The financial analyst forecasting literature: A taxonomy with suggestions for further research

Sundaresh Ramnath a,1, Steve Rock b,2, Philip Shane b,c,*

a School of Business Administration, University of Miami, Coral Gables, FL 33146, USA
b Leeds School of Business, University of Colorado, 419 UCB, Boulder, CO 80309, USA
c University of Auckland Business School, Private Bag 92019, Auckland, NZ, USA

Abstract

This paper develops a taxonomy of research examining the role of financial analysts in capital markets. The paper builds on the perspectives provided by Schipper [Schipper, K. (1991). Analysts’ forecasts. Accounting Horizons, 5, 105–131] and Brown [Brown, L. (1993). Earnings forecasting research: Its implications for capital markets research. International Journal of Forecasting, 9, 295–320]. We categorize papers published since 1992, describe the research questions addressed, and suggest avenues for further research in seven broad areas: (1) analysts’ decision processes; (2) the nature of analyst expertise and the distributions of earnings forecasts; (3) the information content of analyst research; (4) analyst and market efficiency; (5) analysts’ incentives and behavioral biases; (6) the effects of the institutional and regulatory environment (including cross-country comparisons); and (7) research design issues.

Keywords: Earnings forecasting; Financial analysts; Financial markets; Stock price forecasts; Analyst stock recommendations; Analyst research reports; Analyst decision processes; Analysts’ incentives; Analyst expertise; Analyst inefficiency; Forecast bias; Financial analyst literature review

1. Introduction

This paper provides a taxonomy of research examining the roles financial analysts play in the allocation of economic resources. Two important papers published in the early 1990s provide perspectives on the literature: one appears in Accounting Horizons (Schipper, 1991) and the other appears in the International Journal of Forecasting (Brown, 1993). Our paper begins by summarizing the perspectives and directions for future research suggested by Schipper (1991) and Brown (1993). We then develop a taxonomy of the research that has appeared since 1992.

* Corresponding author. Leeds School of Business, University of Colorado, 419 UCB, Boulder, CO 80309, USA. Tel.: +1 303 492 0423; fax: +1 303 492 5962.
E-mail addresses: s.ramnath@miami.edu (S. Ramnath), steven.rock@colorado.edu (S. Rock), phil.shane@colorado.edu (P. Shane).
1 Tel.: +1 305 284 6668; fax: +1 305 284 5737.
2 Tel.: +1 303 735 5009; fax: +1 303 492 5962.
0169-2070/$ - see front matter © 2007 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
Our goal is to provide an organized look at the literature, paying particular attention to the questions remaining for further research.4 Since 1992, approximately 250 papers related to financial analysts have appeared in the eleven major research journals that we use to develop our taxonomy.5 In our review of papers published since 1992, we have found much progress in some of the areas identified by Schipper (1991) and Brown (1993), and less progress in others. In particular, the research has evolved from descriptions of the statistical properties of analysts’ forecasts to investigations of the incentives and decision processes that give rise to these properties. However, in spite of this broader focus, much of the analysts’ decision processes and the market’s mechanism of drawing a useful consensus from the combination of individual analysts’ decisions remains hidden in a black box. Furthermore, we still have much to learn about relevant valuation metrics and mechanisms by which analysts and investors translate forecasts into equity values. For example, with the renewed popularity of the earnings-based valuation model in the early 1990s, the research turned toward investigating the model’s role in the market’s conversion of analysts’ earnings forecasts into stock prices. Given the unexpected result that this model does a relatively poor job of explaining the variation in market prices and analysts’ price forecasts and recommendations, researchers have turned their attention to examining heuristics that might better explain analyst and market decisions about firm value. We still have much to learn about the heuristics relied upon by analysts and the market.

The rest of this paper draws attention to these issues, as well as other issues that have arisen since 1992. The next section provides a summary of the questions identified in Schipper (1991) and Brown (1993) and the directions for future research suggested by those authors, as well as those suggested by the authors of the four papers commenting on Brown (1993). Section 3 describes our taxonomy, categorizes the papers published since Brown (1993), and identifies new research questions that emerge from our reading of the literature. Section 4 provides concluding comments, highlighting the areas that we consider most promising for future research.

2. Perspectives from Schipper (1991) and Brown (1993)

Katherine Schipper’s (1991) commentary makes two major points. First, she suggests that the research regarding analysts’ earnings forecasts focuses too narrowly on the statistical properties of the forecasts, without considering the full decision context and economic incentives affecting these properties. She takes the point of view that the analyst’s job is to provide buy-sell-hold recommendations, and generate research reports to support those recommendations. Schipper describes analysts’ earnings forecasts as one component of their research reports, and a means to an end rather than an end in themselves. She suggests that a more complete description of analysts’ economic incentives and the role of earnings forecasts in the full decision context of analysts should lead to richer hypotheses regarding the statistical properties of the earnings forecasts. The second major point is that the research on the statistical properties of analysts’ earnings forecasts focuses on outputs from, rather than inputs to, analysts’ decision processes. The commentary calls for more research into how analysts actually use accounting information and their own earnings forecasts in making decisions.

From Larry Brown’s (1993) review paper, we glean four key points. First, he notes that the models that produce the most accurate forecasts of an earnings variable should also produce the best proxies for the market’s expectations, assuming market efficiency and

4 We focus on the research related to analysts’ decision processes and the usefulness of their forecasts and stock recommendations. For broader reviews of archival capital markets research and experimental financial accounting research (including issues related to analysts’ forecasts and recommendations), see Kothari (2001) and Libby, Bloomfield, and Nelson (2002), respectively.

5 Our taxonomy generally excludes papers published before 1993 and after June 2006, and we also generally exclude working papers. However, we believe that our classification scheme is both flexible and broad enough to enable the interested reader to continue categorizing new papers. For an expanded list of papers, we refer the interested reader to the Thomson Financial Research Bibliography (Brown 2007). Our taxonomy focuses only on the papers in that bibliography that were published in the 11 journals we review exhaustively; however, many of the papers in the I/B/E/S Research Bibliography were published in other journals, and many remain in working paper form. We also refer the interested reader to the Financial Analysts’ Journal and the Journal of Investing for articles suggesting practical applications of the ideas in the academic articles included in our taxonomy.
assuming that the research design correctly models the valuation implications of the earnings variable. Under these assumptions, “predictive ability and association are two sides of the same coin (p. 296).” Brown notes mixed results on this issue and calls for future research to sort out whether the apparently conflicting results stem from research design problems or market inefficiency. Second, Brown encourages researchers to carefully consider the appropriateness of summary files of I/B/E/S consensus forecasts. Although the date of the I/B/E/S report and the coding of the forecast horizon indicates a timely consensus, the consensus may contain stale forecasts which have not been updated since the information event on which the study intends to condition the forecasts. Brown suggests that using the I/B/E/S Detail files can avoid this problem. 6 Third, Brown calls for research to better understand the role of analysts’ forecasts in post-earnings announcement drift. In particular, he calls for research into the reasons for variation in the degree and speed of forecast convergence following earnings announcements (i.e., convergence towards a consensus that fully reflects the information in the prior earnings announcement), and the effect, if any, of forecast convergence on post-earnings announcement drift. Finally, like Schipper (1991), Brown calls for research to better understand the decision processes of analysts and the roles of analysts’ earnings forecasts, macroeconomic and industry factors, and other information in formulating stock price forecasts and recommendations.

Both Brown (1993) and Schipper (1991) call for experimental research to play a more prominent role in understanding the uses of accounting and other information in making stock recommendations, within the full context of the analyst’s decision environment and economic incentives. In Brown’s words, “joint efforts by capital markets researchers and behavioralists to examine these issues more thoroughly would considerably enhance our understanding of the role of analysts in the price formation process (p. 315).”

Four authors commented on Brown (1993), and each provides interesting insights and suggestions for future research. O’Hanlon (1993) calls for investigations of the degree to which financial analysts’ earnings forecasts distinguish permanent from temporary earnings changes. Thomas (1993) suggests that the importance of research into how analysts make earnings predictions depends on the answers to several questions, including (1) whether analysts’ forecasts influence the marginal investor; (2) whether analysts seek to predict a ‘core’ earnings number that will persist in the future; and (3) whether their incentives are consistent with producing the most accurate forecasts possible. P. Brown (1993) calls for research into whether some analysts are better forecasters than others, whether the market’s earnings expectations reflect these differences, and the degree to which consensus forecasts drawn from analyst tracking services such as I/B/E/S reflect investor expectations. Zmijewski (1993) focuses on the need for investigations of cross-country variation in the properties of earnings forecasts and their roles in price formation in capital markets.

Based on our reading of Schipper (1991), Brown (1993) and the related comment papers, along with an initial look at the research published since 1992, we organize the research into seven broad topic areas: (1) What is the nature of analysts’ decision processes, and how do analysts rationalize the forecasts and recommendations contained in their research reports? (2) What is the nature of analyst expertise and what are the distributional characteristics of individual analyst earnings forecasts? (3) How informative are the outputs from analyst research (including earnings forecasts, target price forecasts, stock recommendations, and qualitative contextual analysis)? (4) Do analysts’ forecasts and recommendations impound information about future earnings efficiently? Do stock prices impound the information in analysts’ forecasts and recommendations efficiently? (5) How do management and analyst incentives, along with behavioral biases, affect the statistical properties of analysts’ forecasts? (6) How does variation in the regulatory environment (over time and across countries) affect the behavior of analysts’ forecasts and the role of analysts in capital markets? (7) What are some research design and database issues that threaten the validity of inferences from studies of the behavior of analysts and their forecasts and recommendations?

The next section is divided into seven subsections that categorize the research papers addressing these
questions, with a selective focus on papers published since Brown (1993) that stimulate our suggestions of avenues for further research in each category of our taxonomy.

3. A taxonomy of research related to the role of financial analysts in capital markets

The questions at the end of Section 2 naturally arise from the analyst reporting environment shown in Fig. 1, and provide the foundation for our taxonomy. The seven subsections below (3.1 through 3.7) and the triangles in Fig. 1 correspond to the seven questions above. As described in Fig. 1, analysts develop expertise (Section 3.2) in obtaining and analyzing information from various sources, including (1) earnings and other information from SEC filings, such as proxy statements and periodic financial reports; (2) industry and macroeconomic conditions; and (3) conference calls and other management communications. From this information, analysts produce earnings forecasts, target price forecasts, and stock recommendations, along with qualitative reports describing firms’ prospects (Section 3.1). Investors use these outputs from analyst research to make trading decisions that affect market prices (Section 3.3). If the analyst forecasting process and capital markets are efficient, then market prices and analysts’ forecasts immediately reflect all of the information described in Fig. 1. Inefficiencies
create predictable analyst forecast errors and stock price changes (Section 3.4). The decision processes and analyst research output pictured in Fig. 1 also depend on regulatory and institutional factors that vary over time and across countries (Section 3.6), as well as on analysts’ economic incentives and behavioral biases (Section 3.5). Finally, the limitations associated with archival databases, econometric tools, and mathematical models create research design issues that constrain the researcher’s ability to observe the forces that ultimately drive market prices (Section 3.7).

We launch our taxonomy by listing and categorizing all papers related to analysts and published since 1992 in the following eleven major research journals spanning accounting, finance and forecasting: The Accounting Review, Contemporary Accounting Research, International Journal of Forecasting, Journal of Accounting and Economics, Journal of Accounting Research, Journal of Business, Journal of Finance, Journal of Financial Economics, Journal of Financial and Quantitative Analysis, Review of Accounting Studies, and Review of Financial Studies. Our Tables 3.1 through 3.7 exhaustively categorize and briefly describe each paper related to analysts and appearing in any one of the above journals between January 1993 and June 2006. From that starting point, four areas of subjectivity necessarily enter our paper. First, we infer important sub-questions within each area of our taxonomy. Second, we subjectively select papers to discuss in the text that facilitate our assessment of directions for further research in each area of the seven categories of our taxonomy. Third, we list a paper more than once if it relates to more than one of our sub-questions. Finally, we refer to working papers and papers published in journals other than the eleven listed above when they come to our attention and directly relate to our ideas for further research. Our goal is not to provide exhaustive reviews of (or even references to) all of the papers published since 1992 or currently in process, but rather to selectively identify the aspects of papers that we think capture the pulse of the research and suggest new questions that might be addressed in the foreseeable future.6

3.1. Analysts’ decision processes

3.1.1. Questions addressed since 1992

As shown in Table 1, researchers have investigated a number of questions related to analysts’ decision processes since 1992, including:

1. What information affects the development of analysts’ earnings forecasts and recommendations? (Panel A);
2. What information affects analyst following and portfolio decisions? (Panel B);
3. What environmental, classification and reporting quality factors affect analysts’ forecasts and recommendations? (Panel C);
4. How do analysts transform information into target prices and stock recommendations? (Panel D); and
5. What is the role of earnings components in analysts’ decision processes? (Panel E).

Researchers have used surveys to simply ask analysts how they process information (e.g., Block, 1999), content analyses of analysts’ research reports to infer the information analysts rely upon in making forecasts and recommendations (e.g., Rogers & Grant, 1997; Bradshaw, 2002), and laboratory experiments to study how analysts use information (e.g., Hopkins, Houston, & Peters, 2000). Archival studies offer more generalizable results, but are limited in their ability to penetrate the black box of analysts’ actual decision processes. The challenge is that analysts have a context-specific task that is very difficult to model, and, consistent with suggestions in Brown (1993) and Schipper (1991), in recent years we have seen relatively more studies using experimental and contextual approaches to questions about analysts’ decision processes and incentives.

3.1.2. Suggestions for further research related to analysts’ decision processes

In addition to the obvious use of earnings-related information, the research summarized in Table 1, Panel 7 We exclude papers that use analysts’ forecasts merely as a control variable or to proxy for an underlying construct. That is, we focus on papers studying the roles of analysts in capital market resource allocation. We also generally exclude discussion comments on published papers.

6 See Ramnath, Rock, and Shane (2006) for a more detailed review of the research categorized in our taxonomy.
Table 1
Selected Papers Addressing Questions Related to Analysts’ Decision Processes (Section 3.1)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kasznik and Lev (1995)</td>
<td>Archival, I/B/E/S, 1979-1986.</td>
<td>Analysts’ forecast revisions in response to disappointing earnings accompanied by warnings are significantly more negative than the responses to disappointing earnings unaccompanied by warnings, suggesting that warnings occurring before negative earnings surprises have more permanent implications for future earnings.</td>
</tr>
<tr>
<td>Lang and Lundholm (1996)</td>
<td>Archival, Report of the Financial Analysts’ Federation (FAF) Corporate Information Committee, 1985-1989.</td>
<td>The dispersion in analysts’ forecasts declines with higher quality annual report disclosures and better investor relations, but not with the quality of other corporate communications (e.g., quarterly reports, press releases, etc.). Analysts’ forecast accuracy improves with the quality of other corporate communications and investor relations, but not with the quality of annual report disclosures.</td>
</tr>
<tr>
<td>Williams (1996)</td>
<td>Archival, I/B/E/S, 1979-1986.</td>
<td>Analyst reliance on management earnings forecasts increases with the prior “usefulness” of the forecasts (i.e., the incremental contribution of the prior forecasts to prior forecast accuracy).</td>
</tr>
<tr>
<td>Maines, McDaniel, and Harris (1997)</td>
<td>Experiments with 56 professional analysts and 60 MBA students.</td>
<td>Analyst confidence in segment reporting quality depends on the consistency with the definitions of segments used by the company for internal decision-making.</td>
</tr>
<tr>
<td>Ederington and Goh (1998)</td>
<td>Archival, I/B/E/S, 1984-1990.</td>
<td>Analysts’ earnings forecast revisions both lead and lag bond rating downgrades; part of the post-downgrade revision seems to be related to the downgrade itself, as opposed to a change in actual earnings. Bond rating upgrades are followed by upward analyst forecast revisions, although actual earnings are unrelated to upgrades.</td>
</tr>
<tr>
<td>Healy et al. (1999)</td>
<td>Archival, AIMR Reports, 1980-1990.</td>
<td>The key factors valued by analysts are segmental reporting quality; quality and candidness in the management discussion and analysis (MD&A) section of annual and quarterly reports; the publication of supplemental disclosures outside of the required periodic reports; and the availability of management to analysts.</td>
</tr>
<tr>
<td>Bowen, Davis, and Matsumoto (2002)</td>
<td>Archival, Zacks and First Call, 1995-1998.</td>
<td>Prior to Reg FD, the information in conference calls led to improved analyst forecast accuracy and reduced the dispersion in analysts’ earnings forecasts, suggesting a form of selective disclosure, since conference calls were generally closed to the general public prior to Reg FD.</td>
</tr>
<tr>
<td>Conrad, Cornell, Landsman, and Rountree (2006)</td>
<td>Archival, I/B/E/S, 1993-1999.</td>
<td>Analysts are equally likely to upgrade or downgrade recommendations following large stock price increases, but are more likely to downgrade following large stock price declines. The results are consistent with “sticky” downside recommendation revisions.</td>
</tr>
<tr>
<td>Reference</td>
<td>Method</td>
<td>Key result</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>Panel B. Research Question 3.1.2: What information affects analyst following and portfolio decisions?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chung and Jo (1996)</td>
<td>Archival, I/B/E/S, 1984-1987.</td>
<td>Analyst following has a positive impact on firm value, and analysts tend to follow stocks of high quality firms.</td>
</tr>
<tr>
<td>Botosan and Harris (2000)</td>
<td>Archival, Nelson’s Directory, I/B/E/S, 1987-1994.</td>
<td>Analyst following increases with firms’ decisions to include information on segment activity as part of their quarterly (as opposed to only annual) reports.</td>
</tr>
<tr>
<td>Panel C. Research Question 3.1.3: What environmental, classification and reporting quality factors affect analysts’ forecasts and recommendations?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haw et al. (1994)</td>
<td>Archival, I/B/E/S, 1977-1984.</td>
<td>Forecast complexity increases and analyst forecast accuracy deteriorates following mergers, but after four years accuracy levels return to pre-merger levels.</td>
</tr>
<tr>
<td>Hopkins (1996)</td>
<td>Experiment with 83 buy-side financial analysts.</td>
<td>The classification of hybrid instruments as either a liability or an equity causes analysts to overemphasize the debt (equity) attributes of the instruments in making stock recommendations.</td>
</tr>
<tr>
<td>Hirst and Hopkins (1998)</td>
<td>Experiment with 96 buy-side analysts.</td>
<td>The clarity of income effects in comprehensive income disclosures affects analysts’ ability to detect earnings management and make effective valuation judgments.</td>
</tr>
<tr>
<td>Hopkins et al. (2000)</td>
<td>Experiment with 113 buy-side equity analysts.</td>
<td>The method of accounting for a business combination affects analysts’ stock price judgments unless the income effect of the method is clearly delineated.</td>
</tr>
<tr>
<td>Plumlee (2003)</td>
<td>Archival, Value Line, 1984-1988.</td>
<td>The effective tax rate effects of the more complex aspects of the 1986 tax act were more difficult for analysts to forecast.</td>
</tr>
<tr>
<td>Hirst, Hopkins, and Wahlen (2004)</td>
<td>Experiment with 56 buy-side analysts.</td>
<td>Analysts use information about interest rate risk more effectively when gains and losses are measured and reported in financial statements than when they are merely disclosed in financial statements.</td>
</tr>
<tr>
<td>Panel D. Research Question 3.1.4: How do analysts transform information into target prices and stock recommendations?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandyopadhyay, Brown, and Richardson (1995)</td>
<td>Archival study, Research Evaluation Service (RES), Value Line, 1983-1988.</td>
<td>RES next year earnings forecast revisions explain about 30% of the variation in RES 12-month-ahead price forecast revisions; and revisions in Value Line’s 3-5 year ahead earnings forecasts explain about 60% of the variation in revisions in Value Line’s 3-5 year ahead price forecasts.</td>
</tr>
<tr>
<td>Block (1999)</td>
<td>Questionnaire survey of members of AIMR.</td>
<td>46% of respondents said that present value analysis is not part of their normal procedures. Analysts considered earnings and cash flow to be far more important than dividends and book value in security valuation. However, analysts rely more heavily on earnings multiples versus DCF in valuation, and growth potential and earnings quality are the crucial factors in evaluating P/E ratios.</td>
</tr>
</tbody>
</table>
A, shows that analysts’ earnings forecasts rely heavily on disaggregated and qualitative information. The two most commonly used sources of information, other than reported earnings, are management communications (Previts et al., 1994; Lang & Lundholm, 1996; Bowen et al., 2002) and segment reports (Bouwman et al., 1995; Healy et al., 1999). For example, in an experimental setting, Maines, McDaniel, and Harris (1997) find that analyst confidence in segment reporting quality depends on consistency with the definitions of segments used by the company for internal decision-making. The nature of the disaggregated information that is most important to analysts, and their preferred methods of disaggregation are questions that remain open to further research.

Analysts consistently point to the quality of firm reporting as an important factor in determining the usefulness of financial information (Williams, 1996; Healy et al., 1999). Interestingly, Lang and Lundholm (1996) report that the source of information that increases forecast accuracy often does not reduce analyst disagreement. Future research might help us to better understand the relationship between forecast accuracy and consensus as outcomes of the information used by analysts.

Some research, which is summarized in Table 1, Panel B, examines the firm characteristics that influence analyst decisions to follow firms. Assuming that a greater analyst following leads to more efficient information transmission and lower cost of capital, firms benefit by attracting more analysts. Studies find that the firm disclosure quality is the most important factor that drives the analyst following (Lang & Lundholm, 1996; Botosan & Harris, 2000). Interestingly, Previts et al. (1994) observe that analysts prefer to follow firms with effective earnings management tools “which provide analysts with a low-risk earnings platform for making stock price forecasts and buy/sell/hold recommendations... (p. 63).” Future research might evaluate whether analysts tend to follow firms that manage earnings towards expectations, and if so, whether investors have more or less information about firms that do not or cannot manage earnings.

A number of archival studies, beginning with Brown, Richardson, and Schwager (1987), have suggested that complexity affects analyst forecast accuracy. More recent research, which is summarized in Table 1, Panel C, addresses the question of the effects of complexity on analyst forecasting quality. If providing unambiguous information is the objective of financial reporting, then it is important to understand the potential for the

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gu and Chen (2004)</td>
<td>Archival, First Call, 1990-2003.</td>
<td>Non-recurring items that analysts forecast and include in their actual earnings reports have greater persistence and higher valuation multiples than those excluded.</td>
</tr>
</tbody>
</table>
misinterpretation of information by users. Some experimental studies find that analysts’ judgments are affected by the accounting method choice, the classification of financial statement items, and whether items are recognized in financial statements or disclosed in footnotes (Hopkins et al., 2000; Hopkins, 1996; Hirst et al., 2004). A number of archival studies also suggest that complexity affects analyst forecast accuracy (Haw et al., 1994; Duru & Reeb, 2002). Plumlee (2003) provides perhaps the most direct test of this proposition, finding that the magnitude of errors in forecasting effective tax rates increases with the complexity of tax law changes. She interprets her results as indicating that greater information complexity reduces analyst use of the information, due to either processing limitations or time constraints. Since the research design did not predict the direction of the forecast errors, an alternative explanation is that analysts obtained and efficiently processed all possible information regarding the effects of the more complex tax law changes, but because those effects were highly uncertain, the forecast errors were large in absolute value for the firms most affected. Further research is needed to distinguish between these explanations.

Questions regarding the algorithms or models analysts use to convert their earnings forecasts into stock recommendations offer fertile ground for further research. A number of studies, which are summarized in Table 1, Panel D, find correlations between accounting variables and analysts’ price forecasts and recommendations (e.g., Bandyopadhyay, Brown, & Richardson, 1995). However, the evidence in Bradshaw (2002, 2004) suggests that simple algorithms based on P/E ratios and long-term growth forecasts explain analysts’ recommendations better than more sophisticated valuation models.9 Bradshaw’s sample period corresponds to a time when the market was overheating, perhaps due to analysts pushing long-term growth forecasts of growth-oriented firms. It will be interesting to examine whether the heuristics used by analysts to generate recommendations, as well as the stock price effects of these recommendations, change over time. The models analysts use to translate earnings forecasts into valuation and recommendation judgments remains an elusive topic for further research.

Table 1, Panel E, lists some recent research on the role of earnings components in analysts’ forecasting decisions. The analyst’s challenge is to separate the transitory from the more permanent components of earnings surprise, and evaluate the persistence over short- and longer-term forecast horizons (e.g., Mest & Plummer, 1999). We expect to see more research that assesses analysts’ ability to detect and adjust for transitory earnings components. Following Gu and Chen (2004), we also expect to see more research evaluating the degree to which differences between actual earnings, as reported in forecast databases (e.g., I/B/E/S), and the GAAP-based earnings reported in financial statements reflect truly non-recurring items. Finally, we expect researchers to develop approaches to evaluating analyst forecast accuracy with respect to components of earnings not specifically disclosed on I/B/E/S or other analyst databases.

3.2. The nature of analyst expertise and the distributitional characteristics of analysts’ earnings forecasts

3.2.1. Questions addressed since 1992

The studies described in Table 2 focus on the following research questions:

1. What is the nature of analyst expertise? (Panel A);
2. What characteristics make forecasts useful? (Panel B);
3. Do analysts herd? (Panel C); and
4. What attributes of analyst and investor information are associated with dispersion in analysts’ earnings forecasts? (Panel D).

If accuracy and value relevance are related, then identifying expert forecasters may be a profitable strategy for investors. The research since 1992 suggests that forecast accuracy leads to media recognition, and accuracy increases with employer size (proxying for research resources), the number of forecasts made in a forecasting interval (proxying for effort), and both firm-specific and general experience. Forecast accuracy appears to be negatively related to the number of industries and firms that a given analyst follows (proxying for specialization). Some evidence indicates that superior analysts in the forecasting dimension also exert a greater influence on prices, supporting Brown’s (1993)
Table 2
Selected Papers Addressing Questions Related to the Nature of Analyst Expertise and the Distributional Characteristics of Analysts’ Earnings Forecasts (Section 3.2)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Research Question 3.2.1: What is the nature of analyst expertise?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maines et al. (1997)</td>
<td>Experiments with 56 professional analysts and 60 MBA students.</td>
<td>Experienced analysts use segment reports more effectively than MBA students.</td>
</tr>
<tr>
<td>Mikhail et al. (1997)</td>
<td>Archival, Zacks, 1980-1995.</td>
<td>Forecast accuracy increases with firm-specific experience, and market reactions are more closely related to the forecast errors of analysts with firm-specific experience. However, firm-specific experience is not related to abnormal returns following analyst stock recommendation revisions.</td>
</tr>
<tr>
<td>Jacob et al. (1999)</td>
<td>Archival, Zacks, 1981-1992.</td>
<td>Forecast accuracy improves with analyst aptitude (analyst-target alignments), brokerage size, and industry specialization, but not with general experience. Forecast accuracy also improves as a function of the number of forecasts made in a forecasting interval, providing evidence about the characteristics of superior analysts.</td>
</tr>
<tr>
<td>Hirst et al. (2004)</td>
<td>Experiment with 56 buy-side analysts.</td>
<td>Analysts following less than the sample median number of firms make better decisions than analysts following more than the median number of firms.</td>
</tr>
<tr>
<td>Panel B. Research Question 3.2.2: What characteristics make forecasts useful?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooper, Day, and Lewis (2001)</td>
<td>Archival, I/B/E/S, 1993-1995.</td>
<td>Market responses to forecast revisions are higher for forecast timeliness leaders. Performance rankings based on timeliness are more informative than those based on trading volume and accuracy, suggesting that timely forecasts are valued by the market.</td>
</tr>
<tr>
<td>Mozes (2003)</td>
<td>Archival, First Call, 1990-1994.</td>
<td>Forecast immediacy (proximity to the beginning of a forecast cluster) is negatively related to forecast accuracy, and positively related to forecast dispersion and improved accuracy relative to outstanding forecasts, suggesting that forecast timeliness is important in price discovery.</td>
</tr>
<tr>
<td>Clement and Tse (2005)</td>
<td>Archival, I/B/E/S, 1989-1998.</td>
<td>Bold forecasts have larger pricing implications because they offer greater improvements in forecast accuracy as compared to herding forecasts, implying that bold forecasts reflect more useful private information.</td>
</tr>
<tr>
<td>Panel C. Research Question 3.2.3: Do analysts herd?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trueman (1994)</td>
<td>Mathematical Model</td>
<td>To enhance investor assessment of their forecasting ability, analysts tend to release forecasts closer to prior expectations than is warranted given their private information, and analysts with less ability are more likely to herd.</td>
</tr>
<tr>
<td>Graham (1999)</td>
<td>Mathematical Model and Archival, Newsletters, 1981-1992.</td>
<td>Analysts with high reputations or of low ability tend to herd; herding also occurs if strong public information is inconsistent with an analyst’s private information, suggesting that analysts are conservative in forecasting.</td>
</tr>
</tbody>
</table>

(continued on next page)
Table 2 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel C. Research Question 3.2.3: Do analysts herd?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong, Kubik, and Solomon (2000a)</td>
<td>Archival, I/B/E/S, 1983-1996.</td>
<td>Inexperienced analysts are more likely to experience negative employment outcomes due to poor forecasting, and, controlling for accuracy, less experienced analysts are more likely to be fired for bold forecasts, providing motivation for inexperienced analysts to herd.</td>
</tr>
<tr>
<td>Welch (2000)</td>
<td>Archival and Mathematical Model, Zacks, 1989-1994.</td>
<td>While current recommendations influence immediate subsequent recommendations, analysts do not herd to the consensus recommendation when the consensus is a good predictor of subsequent stock returns. This is consistent with analysts herding when there is little information.</td>
</tr>
<tr>
<td>Clarke and Subramanian (2006)</td>
<td>Mathematical Model and Archival, I/B/E/S, 1988-2000.</td>
<td>Analysts who are very good or very poor forecasters tend to issue bold forecasts. Forecast boldness is positively related to experience, possibly because experienced analysts are very good or can take risks without fear of employment loss.</td>
</tr>
</tbody>
</table>

Panel D. Research Question 3.2.4: What attributes of analyst and investor information are associated with dispersion in analysts' earnings forecasts?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abarbanell, Lanen, and Verrecchia (1995)</td>
<td>Mathematical Model</td>
<td>Forecast dispersion is not sufficient to proxy for investor uncertainty, because other forecast attributes are related to precision. A model that includes other forecast attributes is useful in interpreting empirical results and designing empirical tests of reactions to announcements.</td>
</tr>
<tr>
<td>Barron (1995)</td>
<td>Archival, I/B/E/S, 1984-1990.</td>
<td>Belief jumbling across analysts drives trading in securities beyond prior forecast dispersion and changes in dispersion, implying that trading may result when analysts change their relative beliefs, even if the dispersion does not change.</td>
</tr>
<tr>
<td>Barron, Kim, Lim, and Stevens (1998)</td>
<td>Mathematical Model</td>
<td>Analysts’ total uncertainty and consensus can be estimated using the mean forecast error, forecast dispersion, and number of forecasts. Forecast dispersion measures analysts’ idiosyncratic uncertainty but does not capture total earnings uncertainty; thus, decreases in dispersion do not necessarily signal a decrease in overall uncertainty.</td>
</tr>
<tr>
<td>Bamber, Barron, and Stober (1999)</td>
<td>Archival, I/B/E/S, 1984-1994.</td>
<td>Even with minimal price changes, trading volume increases with differential analyst interpretations of the information in quarterly earnings announcements. The differential interpretation of news leads to more informed trading when the abnormal trading volume is high around earnings announcements, consistent with informed traders camouflaging their trades amongst liquidity trades.</td>
</tr>
<tr>
<td>Barron, Byard, Kile, and Riedl (2002a)</td>
<td>Archival, I/B/E/S, 1986-1998.</td>
<td>Consensus, measured as the correlation between individual analyst forecast errors, is negatively related to firms’ levels of intangible assets, suggesting that analysts rely more on gathering their own private information when the disclosure quality is relatively low.</td>
</tr>
<tr>
<td>Diether, Malloy, and Scherbina (2002)</td>
<td>Archival, I/B/E/S, 1983-2000.</td>
<td>Securities with high (low) forecast dispersions subsequently earn negative (positive) returns, implying that dispersion does not proxy for ex ante risk. These results are consistent with stock prices reflecting the most optimistic valuations, possibly due to short-selling constraints.</td>
</tr>
</tbody>
</table>
conjecture that forecast accuracy and the association with stock prices should be two sides of the same coin.

3.2.2. Suggestions for further research related to analyst expertise and the distributional properties of analysts’ earnings forecasts

Clement (1999) and Jacob, Lys, and Neale (1999) develop models of characteristics that explain analyst expertise (e.g., frequency of forecasting, firm-specific experience, resources of larger brokerage houses, and focus on fewer firms and industries). These papers, along with others listed in Table 2, Panel A, provide an important starting point in understanding the characteristics associated with analyst expertise. However, much still remains to be explained, as is evidenced by Brown (2001b), who finds that a simple model using analyst past accuracy as a predictor of future accuracy does as well as the more sophisticated models presented by Clement (1999) and Jacob et al. (1999).

This research can be extended to examine whether analysts who are more accurate for some companies but less accurate for others are retained, but reassigned from companies for which they are relatively inaccurate. Another open question is why certain employers assign their analysts to cover more companies and industries, when decreased breadth is related to improved forecast accuracy. While a convenient explanation is that such employers are most likely smaller brokerage houses employing fewer analysts, what is the role of these overworked/inferior analysts when other, presumably superior, analysts cover the same company for larger brokerage houses?

The results in Diether et al. (2002) do not hold when the Barron et al. (1998) measure of investor disagreement is used. This result is inconsistent with Miller’s (1977) prediction that divergence of opinion results in overvaluation, but is consistent with the divergence of opinion proxying for risk.

The results in Diether et al. (2002) suffer from a selection bias problem related to analyst following. If a trading volume measure of opinion divergence is used, instead of analysts’ forecasts, the divergence of beliefs is positively related to future returns.

Table 2 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barron, Harris, and Stanford (2005)</td>
<td>Archival, I/B/E/S, 1984-1996.</td>
<td>Earnings announcements that increase analysts’ private information are related to increased trading volume, consistent with investors’ acquisition of private information. Announcements that decrease the consensus also relate to increased trading volume.</td>
</tr>
<tr>
<td>Park (2005)</td>
<td>Archival, I/B/E/S, 1982-2001.</td>
<td>Dispersion in S&P 500 earnings forecasts predicts future returns, similar to Diether et al. (2002), but at the aggregate market level. The results are likewise attributed to stock prices reflecting the most optimistic valuations (in this case due to reluctance to engage in short-selling).</td>
</tr>
<tr>
<td>Doukas, Kim, and Pantzalis (2006)</td>
<td>Archival, IBES, 1983-2002.</td>
<td>The results in Diether et al. (2002) do not hold when the Barron et al. (1998) measure of investor disagreement is used. This result is inconsistent with Miller’s (1977) prediction that divergence of opinion results in overvaluation, but is consistent with the divergence of opinion proxying for risk.</td>
</tr>
</tbody>
</table>

Assessing quality in the context of recommendations is tenuous, because there is no corresponding, mutually-agreed-upon “actual” similar to what is available in the context of earnings forecasts. The general approach to assessing recommendation accuracy examines the association between the recommendation and stock returns contemporaneous with, or subsequent to, the recommendation date.

10 Hong and Kubik (2003) (described in Table 5, Panel B) provide some preliminary evidence on this issue.
on assumptions about long-term growth. Dechow, Hutton, and Sloan (2000, p. 6) note that “analysts are frequently evaluated on the accuracy of their buy-sell recommendations and annual earnings forecasts, but not on their long-term growth forecasts.” Thus, both the market and the researchers largely ignore the factors that affect the accuracy of analysts’ long-term forecasts. Identifying analysts who consistently provide more accurate long-term growth forecasts should also be appealing to investors, given the research evidence suggesting significant mispricing due to overly optimistic long-term growth forecasts. Future research can examine whether some of the characteristics associated with superior short-term forecasts also apply to long-term forecasts.

Another avenue for further research related to Table 2, Panel A, is to better understand the differences in the decision-making processes of buy-side versus sell-side analysts, and between more experienced and less experienced analysts. For example, Maines et al. (1997) find that, relative to experienced analysts, MBA students are less efficient processors of the segmental disclosures in footnotes to firms’ financial statements. The way in which analysts develop this type of decision-making expertise remains a question for future research. Similarly, Bouwman et al. (1995) (described in our Table 1, Panel A) find that buy-side analysts seek to combine their own independent analyses with information from sell-side analyst reports as inputs to portfolio formation decisions. This suggests that buy-side analysts value the research reports of sell-side analysts. Cheng et al. (2006) examine self-reported weights placed by fund managers on buy-side versus sell-side analyst research. Consistent with model predictions, they find that fund managers weight buy-side research more highly when sell-side reports are biased or when the uncertainty about the bias in sell-side reports is increasing. Future research could investigate other contexts in which buy-side analysts rely more or less heavily on sell-side analyst reports. Future research could also examine whether sell-side analysts are indeed more efficient processors of corporate financial information, and whether this superiority relates to analyst characteristics which may differ across the two groups, such as the number of firms and industries followed.

Several recent papers (Table 2, Panel B) consider attributes that make forecasts more useful. In addition to accuracy, research suggests that forecast timing plays an important role in forecast usefulness, as reflected in market responsiveness. Forecasts issued shortly before the target earnings announcement date are generally more accurate, but they are not necessarily more informative than less accurate forecasts issued earlier in the period. Analysts issuing forecasts later in the period may simply herd towards the consensus. Cooper et al. (2001) and Gleason and Lee (2003) find a larger price response to the forecast revisions of lead analysts, defined as analysts who provide timely forecasts, than the price response to follower analysts. Mozes (2003) finds that forecasts with greater “immediacy” (i.e., “the speed with which analysts respond to a significant change in the publicly available information set” (p. 417)) are also more useful, in the sense that they offer a greater improvement in forecast accuracy relative to the prevailing consensus. Thus, studies should jointly consider accuracy and timeliness when evaluating the usefulness of analysts’ forecasts, as well as accuracy relative to the prevailing consensus. Sinha et al. (1997), for example, recognize the effect of forecast age on accuracy, and find that forecast accuracy differs across analysts after controlling for the relative ages of the forecasts. In further tests, they find that analysts identified as being superior ex ante, at either firm-specific or industry levels, continue to provide more accurate forecasts in subsequent holdout periods; however, curiously, they do not find that inferior analysts continue to provide poorer earnings estimates. Future research could explore whether inferior analysts who do not improve leave the profession, and are therefore absent from the later sample periods.

Given the preliminary evidence suggesting that analyst expertise is associated with more useful forecasts, identifying expert analysts is a potentially profitable strategy for investors. Identifying the characteristics associated with analyst expertise should also interest brokerage houses, which are trying to enhance the quality of their output. Finally, if the quality of analysts’ forecasts and recommendations differ systematically based on analyst characteristics, then researchers could also use these characteristics to derive more accurate consensus earnings and target price forecasts.

Related to forecast timing usefullness, recent research suggests that “bold” forecasts differentially drive prices, and reflect more private information than herding
forecasts (e.g., Clement & Tse, 2005). However, if analysts have superior information and bold forecasts are valued more by investors, why do some analysts choose to herd (and not fully convey their private information)?

Some of the work listed in Table 2, Panel C, suggests that the answer lies in analysts’ self-confidence. Confident analysts are more likely to issue bold forecasts, while analysts who are less confident in their information are more likely to herd. Analysts with less experience are also more likely to herd, suggesting that career concerns may inhibit boldness (Hong et al., 2000a). Further, research suggests that analysts with either relatively good or relatively poor prior performance are most likely to issue bold forecasts (Clarke & Subramanian, 2006). Graham (1999) suggests that analysts herd to reduce the risk of damaging their reputation when, for example, their private information is inconsistent with contemporaneously available public signals. More uncertainty regarding a firm’s future performance may also lead to herding among analysts.

An interesting question for further research is whether forecasting difficulty is associated with herding behavior. For example, is herding behavior more prevalent for firms with greater earnings volatility? Higher dispersion in analysts’ forecasts is inversely related to measures of herding behavior and positively related to the variance of actual earnings. Thus, uncertainty with respect to firms’ earnings could be the underlying cause of herding behavior, or it could represent an important correlated omitted variable.

Table 2, Panel D, refers to studies examining the attributes of analyst and investor information associated with forecast dispersion, measured as the standard deviation of analysts’ forecasts. Forecast dispersion proxies for investor uncertainty if disagreement among analysts reflects general disagreement among investors. Based on the notion that investor disagreement is one factor that triggers trade, forecast dispersion is used to study trading volume around information events such as earnings announcements. Advances in research since 1992 include a more careful consideration of dispersion and of what drives changes in dispersion. Specifically, Barron (1995) suggests that trading may result even with no change in the level of dispersion, because analysts change their relative positions from one forecast period to the next, referred to as “belief jumbling.” Proxies for this notion of changing beliefs are related to the monthly trading volume and to increases in trading volume around information events such as earnings announcements.

The findings from forecast dispersion studies suggest avenues for future research. In their model of analyst uncertainty, Barron et al. (1998) assume constant precision of private information across all analysts. Future work might derive implications for analyst uncertainty and market trading when this restrictive assumption is relaxed. Future research might also extend Barron et al. (2002a) to connect the Barron et al. (1998) uncertainty measures to firms’ disclosure practices. For example, Byard and Shaw (2003) find that analyst forecast distributions for firms with a reputation for providing higher quality disclosures reflect a greater precision of both analysts’ common and idiosyncratic (private) information. Finally, an interesting research puzzle arising from recent research is why securities with high (low) earnings forecast dispersions earn negative (positive) returns if forecast dispersion is a risk proxy. Conflicting evidence in Diether et al. (2002), Johnson (2004), and Doukas et al. (2006) provides some preliminary insight into this issue, but further research is needed.

3.3. The information content of analyst research

3.3.1. Questions addressed since 1992

As shown in Table 3, researchers have investigated a number of questions since 1992 related to the information content of analysts’ research output, including:

1. How informative are analysts’ short-term earnings forecasts? (Panel A);
2. How informative are analysts’ annual earnings growth forecasts? (Panel B);
3. Do forecasts of earnings components provide information incremental to forecasts of earnings? (Panel C); and
4. How informative are the various components of analyst research reports? (Panel D).

12 Analysts may issue similar forecasts (i.e., appear to herd) because they possess the same information. However, in a study of stock recommendations, Welch (2000) finds evidence that herding towards the consensus is not information driven.

13 Gu (2004) relaxes this assumption and provides generalized measures of analysts’ common and private information based on observable forecasts.
Table 3
Selected Papers Addressing Questions Related to the Information Content of Analyst Research (Section 3.3)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Research Question 3.3.1: How informative are analysts' short-term earnings forecasts?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walther (1997)</td>
<td>Archival, Zacks, 1980-1995.</td>
<td>This study finds no relationship (a strong relationship) between (\text{ex post}) forecast accuracy (investor sophistication) and the degree to which the consensus analyst earnings forecast outperforms forecasts from seasonal random walk time-series models as proxies for the market’s earnings expectations.</td>
</tr>
<tr>
<td>Conroy et al. (1998)</td>
<td>Archival, Toyo Keizai, 1985-1993.</td>
<td>Analyst forecast errors are value relevant for Japanese securities, but less so than management forecast revisions from prior consensus forecasts. The value relevance of management forecasts was greater after the Tokyo Exchange bubble of the late 1980s.</td>
</tr>
<tr>
<td>Park and Stice (2000)</td>
<td>Archival, I/B/E/S, 1988-1994.</td>
<td>During the 30 days prior to a firm’s quarterly earnings announcement, the market responds more strongly to forecast revisions by analysts with relatively high firm-specific forecast accuracy track records over the most recent two years.</td>
</tr>
<tr>
<td>Bonner et al. (2003)</td>
<td>Archival, Zacks, 1991-1999 (Brunswick Lens Model Matching Index).</td>
<td>For firm quarters with more sophisticated investors (i.e., relatively high analyst following, institutional investor interest and trading volume), the market’s response to individual analyst forecast revisions better reflects factors affecting individual analyst forecast accuracy.</td>
</tr>
<tr>
<td>Clement and Tse (2003)</td>
<td>Archival, I/B/E/S, 1994-1998.</td>
<td>The market’s response to analysts’ earnings forecast revisions depends on factors (\text{inversely}) related to forecast accuracy; in particular, days elapsed since the last forecast and forecast timeliness.</td>
</tr>
<tr>
<td>Chen et al. (2005)</td>
<td>Archival, Zacks, 1990-2000.</td>
<td>The market’s response to analysts’ forecast revisions is consistent with investors learning about analysts’ forecasting ability in a Bayesian fashion as more observations of past forecast accuracy become available.</td>
</tr>
<tr>
<td>Gu and Xue (2006)</td>
<td>Archival, First Call, 1989-2002.</td>
<td>Independent analysts provide forecasts that are relatively better proxies for the market’s earnings expectations, particularly in cases of bad news; and independent analysts apparently play a disciplining role, as non-independent analysts produce forecasts that are more consistent with market expectations when independent analysts follow the same firm.</td>
</tr>
<tr>
<td>Frankel, Nanda, and Wang (2006)</td>
<td>Archival, I/B/E/S, 1995-2002.</td>
<td>Forecast revisions are most informative when potential brokerage profits are higher, and less informative when processing costs are high, consistent with the supply and demand for information impacting the informativeness of analyst reports.</td>
</tr>
<tr>
<td>Panel B. Research Question 3.3.2: How informative are analysts' annual earnings growth rate forecasts?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankel and Lee (1998)</td>
<td>Archival, I/B/E/S, 1975-1993.</td>
<td>Analysts’ forecasts of the current year (\text{EPS}), next year’s (\text{EPS}) and the following three years’ (\text{EPS}) growth rates contribute significantly to models explaining the cross-section of current year price-to-book ratios.</td>
</tr>
</tbody>
</table>
Table 3 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel B. Research Question 3.3.2: How informative are analysts’ annual earnings growth rate forecasts?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claus and Thomas (2001)</td>
<td>Archival, I/B/E/S, 1985-1998.</td>
<td>The authors estimate a 3% market risk premium implied by current prices, current book values, current dividend payout ratios, and forecasted 5-year earnings growth. This estimate is much lower and more realistic than estimates based on historical returns on equity securities.</td>
</tr>
<tr>
<td>Gebhardt, Lee, and Swaminathan (2001)</td>
<td>Archival, I/B/E/S, 1979-1995.</td>
<td>This study combines forecasts of earnings over 5 years with dividend payout and terminal value assumptions to derive a firm-specific implied cost of equity capital that can be explained and predicted by risk proxies, including industry membership, B/M ratio (+), forecasted long-term growth rate (+), and analyst earnings forecast dispersion (-).</td>
</tr>
<tr>
<td>Botosan and Plumlee (2005)</td>
<td>Archival, Value Line, 1983-1993.</td>
<td>The information in generally accepted risk factors is captured by two simple cost of capital estimates: (1) expected return implied by analysts’ dividend and price forecasts over a five-year forecast horizon; and (2) the price-deflated square root of a fraction equal to analysts’ forecasts of EPS growth between years four and five of the five-year forecast horizon.</td>
</tr>
<tr>
<td>Easton and Monahan (2005)</td>
<td>Archival, I/B/E/S, 1981-1998.</td>
<td>Approaches combining earnings and long-term growth rate forecasts with current stock prices to infer expected returns are generally unreliable due to low-quality analysts’ earnings forecasts, particularly when long-term growth rate forecasts are high (and ex post forecast accuracy is low).</td>
</tr>
</tbody>
</table>

Panel C. Research Question 3.3.3: Do forecasts of earnings components provide information incremental to forecasts of earnings?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key result</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeFond and Hung (2003)</td>
<td>Archival, I/B/E/S, 1993-1999.</td>
<td>Analysts provide cash flow forecasts to fill an information gap when earnings have low quality or decision-relevance. The long window returns-earnings association is lower among firms with cash flow forecasts, and returns around the earnings announcement date are positively associated (not associated) with cash flow forecast errors (earnings forecast errors).</td>
</tr>
<tr>
<td>Ertimur, Livnat, and Martikainen (2003)</td>
<td>Archival, I/B/E/S, 1996-2001.</td>
<td>Relative to time-series models, analysts’ forecasts provide better proxies for market expectations of both revenues and expenses. Relative to value firms, growth firms have larger revenue and expense response coefficients; the response to earnings surprise is more sensitive to conflicting or confirming signs of revenue surprise; and the market response to barely meeting analysts’ expectations is more sensitive to whether revenues met expectations.</td>
</tr>
</tbody>
</table>

Panel D. Research Question 3.3.4: How informative are the various components of analysts’ research reports?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirst et al. (1995)</td>
<td>Experiment with 291 graduate business student subjects.</td>
<td>Investors’ judgments about a stock are influenced by the strength of the arguments in the analyst report when accompanied by unfavorable recommendations.</td>
</tr>
</tbody>
</table>

(continued on next page)
These questions are addressed almost exclusively using archival empirical methods and drawing data from I/B/E/S or First Call. One study (Conroy, Harris, & Park, 1998) relies on Toyo Kezai data (for forecasts related to Japanese firms), and one study (Cheng et al., 2006) relies on Nelson’s Directory of Fund Managers to assess the relative weights placed on buy-side versus sell-side analyst research. We found one experimental study (Hirst, Koonce, & Simko, 1995) addressing the information contained in narrative sections of analyst reports; and we found one study (Begley & Feltham, 2002) that develops an analytical model distinguishing between the information contained in analysts’ short- and long-term forecasts.

3.3.2. Suggestions for further research related to the information content of analyst research

In an efficient market, stock prices should reflect the best (most accurate) information available at any point in time. The most recent research focusing on the information content of analysts’ short-term earnings forecasts (Table 3, Panel A) relates to a question emerging from O’Brien (1988): why are accuracy and association not two sides of the same coin? Wiedman (1996) and Walther (1997) come to different conclusions. Wiedman (1996) finds that common factors drive both analyst forecast accuracy and the association between analysts’ forecasts and stock prices. Walther (1997), on the other hand, finds that investor sophistication, not forecast accuracy, explains the degree to which analyst expectations (relative to time series model forecasts) effectively proxy for market expectations. However, this begs the question: if not for greater accuracy, why would more sophisticated investors rely on sell-side analysts’ earnings forecasts? Clement and Tse (2003) find that the market weights the forecast horizon and the number of days elapsed since the last forecast variables positively when responding to individual analysts’ forecast revisions, whereas an accuracy prediction model weights them negatively. Analysts issuing forecasts earlier in a sequence (either the first after a public announcement or the first after a long information gap) are likely to have incentives to trade off accuracy for timeliness in order to have more

Table 3 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francis and Soffer (1997)</td>
<td>Archival, Investext, 1988-1991.</td>
<td>Stock recommendation revisions contain information incremental to the information in earnings forecast revisions, and investors place a significantly larger weight on earnings forecast revisions accompanied by buy versus both sell and hold recommendations.</td>
</tr>
<tr>
<td>Asquith, Mikhail, and Au (2005)</td>
<td>Archival, Investext, 1997-1999.</td>
<td>Earnings forecast revisions, stock recommendations, target price revisions and a coding of the strength of the analysts’ (positive or negative) arguments in support of the stock recommendations combine to explain 25% of the variation in returns around the release of analysts’ research reports. The target price and strength of arguments variables appear to have the strongest price impacts.</td>
</tr>
<tr>
<td>Green (2006)</td>
<td>Archival, First Call, 1999-2002.</td>
<td>Early access to analyst recommendation changes enables profitable trades for brokerage firm clients. For NASDAQ stocks, early access to recommendation changes from the top 16 brokerage firms suggests that brokerage clients profit from analyst recommendation advice if they act prior to its public dissemination.</td>
</tr>
</tbody>
</table>

14 A few studies rely on Zacks data (Walther, 1997; Bonner, Walther, & Young, 2003; Chen, Francis, & Jiang, 2005), but these studies could be replicated using I/B/E/S data.
impact on the market’s earnings expectations. Future research should consider uncertainty resolution as a key ingredient in explaining the variation in the market’s response to earnings forecast revisions.15 More generally, whether, and to what degree, other factors, in addition to (or instead of) forecast accuracy, affect the marginal investor’s reliance on one model or another in forming earnings expectations remains an interesting avenue for further research.

In addition, some recent evidence suggests that independent analysts provide forecasts that are relatively better proxies for the market’s earnings expectations, particularly in cases of bad news; and also that independent analysts apparently play a disciplinary role, as non-independent analysts produce forecasts that are more consistent with market expectations when independent analysts follow the same firm (Gu & Xue, 2006). These results suggest the need for further research into the respective roles of independent and non-independent analysts in financial markets.

The studies listed in Table 3, Panel B, that combine analysts’ long-term earnings forecasts with earnings-based valuation models to infer firms’ costs of equity capital depend critically on the assumption that analysts’ earnings and/or price forecasts mirror the market’s expectations (Botosan & Plumlee, 2005). An important corollary to this assumption is that the current stock price mirrors the analyst’s assessment of the firm’s intrinsic equity value. Since analysts are in the business of identifying mispriced stocks, this corollary is unlikely to hold.16 Research regarding divergence between analyst and market expectations can help future studies to evaluate various approaches to estimating the cost of equity capital, make appropriate adjustments to analysts’ forecasts, or choose sub-samples where the critical assumption of similar analyst and market expectations is most likely to hold.

As described in Table 3, Panel C, relatively little research has investigated the information contained in analysts’ forecasts of earnings components. Ertimur et al. (2003) provide evidence that analysts’ revenue forecasts reflect market expectations, and revenue surprise informs the market’s response to earnings surprise. Similarly, DeFond and Hung (2003) find that analysts’ cash flow forecasts provide useful information when earnings lack quality or relevance. Future research might consider that the difference between analysts’ earnings and cash flow forecasts provides a forecast of accruals.17 For example, researchers might derive unexpected accruals by comparing these accruals forecasts to the actual accrual component of the reported earnings, and use these unexpected accrual estimates to study the degree to which the market uses the information in accruals to assess earnings persistence.18

As shown in Table 3, Panel D, researchers have begun examining various components of analyst research reports, and, as described below, many important questions remain unanswered. Francis and Soffer (1997) find that the market responds more strongly to earnings forecast revisions accompanied by buy (versus hold or sell) recommendations. The authors argue that because analysts bias recommendations upward, investors turn to earnings forecast revisions for more information when analysts issue buy or strong buy recommendations. However, Hirst et al. (1995) make the opposite argument. They hypothesize that skepticism about a recommendation extends to other information in the research report and, in an experimental setting, they find that subjects expend effort in analyzing other information in analyst research reports only when analysts’ stock recommendations are unfavorable or are revised downward. Asquith et al. (2005) report archival evidence consistent with the Hirst et al. (1995) prediction. They find a higher correlation between the strength of analysts’ remarks and returns around the release of analyst reports containing recommendation downgrades, as opposed to reiterations or recommendation upgrades.

To reconcile these three studies, we offer a slightly different perspective on investor perceptions of information credibility. Each study considers investor response to information incremental to the recommen-

15 Chen et al. (2005) evaluate the market response to individual analyst forecast revisions, and include empirical proxies of the market’s prior assessment of the analyst’s forecasting ability, but do not include variables to proxy for the precision of the market’s prior earnings expectations.

16 We are grateful to Jake Thomas for discussions leading us to this insight.

17 McInnis and Collins (2006) observe that firms making both cash flow and earnings forecasts also implicitly forecast accruals, and the paper’s evidence suggests that accruals are of higher quality when accompanied by both cash flow and earnings forecasts.

18 We are grateful to one of the referees, who pointed out that a working paper by Melendresz et al. (2005) derives unexpected accruals in the manner suggested above, and finds that the market overprices accruals, particularly for loss firms.
dation. However, the incremental information variable in Francis & Soffer (1997) is an earnings forecast revision, whereas the other two studies consider strength of arguments variables. Analysts’ reputations often depend on their earnings forecast accuracy, and records of forecast accuracy are carefully maintained by interested observers, whereas the strength of arguments variable is harder to measure and verify. For these reasons, investors may view earnings forecast revisions as being more credible than the strength of analysts’ remarks in support of buy recommendations. On the other hand, given analysts’ incentives to bias recommendations upward, investors may attach more credibility to analysts’ arguments in support of hold and sell recommendations. Further empirical research (both experimental and archival) could enhance our understanding of the interaction between the type of recommendation and investors’ usage of other information in analyst research reports.\footnote{Similarly, Brav and Lehavy (2003) find that when analysts revise a recommendation in a direction opposite to (same as) the direction of the target price revision, the association between returns and the recommendation revision declines (increases) dramatically. In addition, the evidence indicates a significantly larger market response to target price forecast revisions accompanied by corroborating downward (versus upward) earnings forecast revisions. Understanding the interactive effects between all combinations of the three variables warrants further research.}

Brav & Lehavy (2003) find that only two-thirds of all analyst reports include target prices, and reports containing buy or strong buy recommendations are more likely to contain target price forecasts. The authors speculate that analysts may provide target prices to stimulate the purchase of equity securities in conjunction with buy recommendations, and that lowering price targets to stimulate sell orders could jeopardize already strained relationships with the managers of the firms followed.\footnote{Research also suggests that analysts generate more trading commissions with buy than sell recommendations (e.g., Irvine, 2004; Hayes, 1998) (described in our Table 5). One explanation is that the population of investors who already hold a particular stock is smaller than the population that could potentially buy the stock. While short selling alleviates this problem, short selling constraints (e.g., higher transaction costs) create incentives for analysts to issue more buy than sell recommendations in order to maximize trading commissions. Assuming costly consequences of inaccurate target prices, analysts are more likely to use target prices to justify buy recommendations. The two most prominent summary statistics associated with equity securities are earnings per share and stock price. Studies like Brav & Lehavy (2003), which examine the informativeness of target price forecast revisions, conditional on the informativeness of earnings forecast revisions, potentially provide insight into analyst expertise in modeling the relationship between earnings and equity value. Opening the black box containing the process by which analysts convert earnings forecasts into price forecasts could provide interesting insights into the valuation models that are most relevant to investors and into the allocation of scarce resources in capital markets. However, the persistent explanatory power of the earnings variable with the target price variable in the regression suggests that the market’s translation of earnings forecasts into current equity value differs from analysts’, or the combination of analysts’ price and earnings forecasts proxies for an unknown risk factor. An interesting question for future research is why earnings forecast revisions are significantly related to returns, conditional on both recommendations and target prices. Asquith et al. (2005, p. 259) note that the earnings forecast revision and strength of arguments variables are highly correlated, and that “this relation suggests that positive (negative) earnings forecast revisions are generally supported by more optimistic (pessimistic) analyst statements.” This begs the question as to the interactive effect of the strength of arguments variable on the market’s reaction to earnings forecast revisions. Finally, it is not clear what analysts attempt to communicate through their stock recommendations. In particular, what does a reiteration of a strong buy or a downgrade from a strong buy to a buy really mean? In the Asquith et al. sample, when analysts reiterated a strong buy, the target price forecast increased by only 1%, on average. Why would analysts reiterate a strong buy when they only increase their target price forecast by 1%? One explanation might be that the market price has not yet increased from the last strong buy recommendation, and therefore analysts still view the firm as undervalued. However, Francis & Soffer (1997) find that the change in the recommendation has a significant contemporaneous association with returns after controlling for the level of the recommendation. Future research will perhaps shed more light on the}
nature of the information in recommendation changes that is not subsumed by the information in recommendation levels.

3.4. Market and analyst efficiency

3.4.1. Questions addressed since 1992

A number of studies have examined analysts’ forecasts as a means to understanding the broader issue of whether investors respond to new information efficiently. Analysts have long been viewed as sophisticated processors of financial information who are less likely (than naïve investors) to misunderstand the implications of financial information. Thus, evidence of inefficient information processing by analysts is seen as strong evidence of overall inefficiency by market participants. A second reason for examining analysts’ forecasts for possible biases is that evidence of market inefficiency based on “abnormal” stock returns is always open to the criticism that the expected return benchmark used in measuring abnormal returns may be misspecified (Fama, 1998). Analysts’ forecasts do not suffer from benchmark issues, and thus provide an avenue for mitigating the criticism that evidence of information processing inefficiencies is due to an omitted risk factor.

As shown in Table 4, we have classified the research since 1992 related to market and analyst inefficiency into four sub-questions:

1. Do analysts’ forecasts and recommendations efficiently reflect the information in earnings? (Panel A);
2. Do analysts’ forecasts and recommendations efficiently reflect information from sources other than earnings? (Panel B);
3. Do stock prices efficiently reflect the information in analysts’ forecasts and recommendations, and other information in analyst research reports? (Panel C);
4. Do analysts’ earnings forecasts explain inefficiencies in stock prices with respect to publicly available information? (Panel D).

3.4.2. Suggestions for further research related to market and analyst efficiency

Regarding the first two questions (Panels A and B), most of the research to date has concluded that analysts underreact to information. The general approach to demonstrating analyst inefficiency is to show that analyst forecast revisions are positively related to the errors in their revised forecasts. In other words, errors in analyst forecasts, on average, are in the same direction as their prior revisions, suggesting that the revisions are incomplete. The research since 1992 has documented analyst underreaction to a wide range of accounting and other economic information. However, not all studies conclude that analysts underreact to information. Easterwood and Nutt (1999) report that inefficiency in analysts’ forecasts is not characterized by a uniform overreaction or underreaction to information, but is more appropriately described as general optimism. Specifically, analysts seem to overreact (underreact) to good (bad) news in prior year earnings, which is consistent with incentive-based explanations of analyst optimism. While this finding is consistent with incentive-driven analyst behavior, the sensitivity of the results to truncation rules warrants future research.

A potentially fruitful area of future research is to investigate analyst ability to anticipate and adjust

21 Asquith et al. (2005) report that in their sample (1997-99), analysts’ reports rarely include prior forecasts and recommendations. Francis and Soffer (1997) report that about half of the reports in their sample (1989-1991) include the analysts’ prior earnings forecast and recommendation. This raises the question as to the factors, apart from sample period, that explain analysts’ decisions to include comparison forecasts and recommendations from prior reports.

22 If analysts revise forecasts efficiently in response to new information, then the error in their revised forecasts should be unrelated to that information. A positive (negative) relationship between the information item and the revised forecast error (actual minus forecast) will imply under-reaction (over-reaction) by analysts with respect to the new information.

23 Some papers note that the findings of Easterwood and Nutt (1999) do not appear to be robust and are sensitive to the treatment of outliers (Mikhail, Walther, & Willis, 2003). Abarbanell and Lehavy (2003) caution that tests of over/underreaction by analysts are affected by the distributional properties of analyst forecast errors. In a recent working paper, Gu and Xue (2005) report that the overreaction to good news documented by Easterwood and Nutt disappears when they control for earnings uncertainty.
Table 4

Selected Papers Addressing Questions Related to Market and Analyst Efficiency (Section 3.4)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Research Question 3.4.1: Do analysts’ forecasts and recommendations efficiently reflect the information in earnings?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chan, Jegadeesh, and Lakonishok (1996)</td>
<td>Archival, I/B/E/S, 1997-1993</td>
<td>Analysts’ forecasts, like returns, respond in a delayed fashion to news in earnings announcements, particularly for firms that have performed poorly in the past.</td>
</tr>
<tr>
<td>Easterwood and Nuff (1999)</td>
<td>Archival, I/B/E/S, 1982-1995</td>
<td>Analysts underreact to negative information but overreact to positive information. The authors interpret this to mean that analysts are systematically optimistic in response to new information.</td>
</tr>
<tr>
<td>Darrough and Russell (2002)</td>
<td>Archival, I/B/E/S, 1987-1999</td>
<td>Bottom-up analysts, who forecast earnings for individual firms, are more optimistic than top-down analysts, who forecast earnings for market indices, possibly due to incentives or cognitive biases.</td>
</tr>
<tr>
<td>Mikhail et al. (2003)</td>
<td>Archival, Zacks, 1980-1995</td>
<td>Analysts underreact less to past earnings information when they have greater experience, implying that inefficiency decreases with experience. Contrary to Easterwood and Nuff (1999), the authors are unable to document analyst overreaction.</td>
</tr>
<tr>
<td>Gu and Xue (2005)</td>
<td>Archival, First Call, 1989-2002</td>
<td>When uncertainty is high, analyst overreaction to extreme good news is a rational response and is not necessarily due to cognitive bias. Analyst overreaction to good news is not evident after controlling for earnings uncertainty.</td>
</tr>
<tr>
<td>Panel B. Research Question 3.4.2: Do analysts’ forecasts and recommendations efficiently reflect information from sources other than earnings?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stickel (1993)</td>
<td>Archival, Zacks, 1981-1985</td>
<td>Updated forecasts based on information in forecast revisions are less biased and more accurate than other frequently cited measures.</td>
</tr>
<tr>
<td>Chaney, Hogan, and Jeter (1999)</td>
<td>Archival, I/B/E/S, 1987-1992</td>
<td>Analysts’ forecasts are optimistic in the year subsequent to a restructuring charge, despite downward revisions on average following the charge for that forecast horizon. This finding suggests that analysts do not interpret the future implications of past restructuring charges appropriately.</td>
</tr>
<tr>
<td>Bradshaw, Richardson, and Sloan (2001)</td>
<td>Archival, I/B/E/S, 1988-1998</td>
<td>Analysts do not fully adjust forecasts for transitory working capital accruals. There is a negative relationship between those accruals and subsequent earnings forecast errors, suggesting that analysts are not aware that high accruals in one period lead to predictable declines in earnings in subsequent periods.</td>
</tr>
<tr>
<td>Burgstahler and Eames (2003)</td>
<td>Archival, Zacks, 1986-1996</td>
<td>The distributions of both earnings forecasts and realizations contain a disproportionate number of observations at or barely above zero, suggesting that firms manage earnings to avoid losses, and analysts anticipate that behavior. However, analysts appear to be unable to identify which firms will manage earnings to avoid losses.</td>
</tr>
<tr>
<td>Louis (2004)</td>
<td>Archival, I/B/E/S, 1992-2000</td>
<td>Post-merger forecasts initially do not fully anticipate the earnings reversals resulting from abnormal accruals, but the reversals appear to be reflected in subsequent forecasts made prior to earnings announcements, suggesting that analysts are initially fooled, but are eventually guided to beatable forecasts.</td>
</tr>
<tr>
<td>Panel C. Research Question 3.4.3: Do stock prices efficiently reflect the information in analysts’ forecasts and recommendations, or the other information in research reports?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Panel C. Research Question 3.4.3: Do stock prices efficiently reflect the information in analysts’ forecasts and recommendations, or the other information in research reports?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Womack (1996)</td>
<td>Archival, First Call, 1989-1991.</td>
<td>Post-event drifts following both “buy” and “sell” recommendations exist, but they are larger and more sustained for sells, suggesting that the market does not fully incorporate the information in “sell” recommendations.</td>
</tr>
<tr>
<td>Barber, Lehavy, McNichols, and Trueman (2001)</td>
<td>Archival, Zacks, 1985-1996.</td>
<td>A trading strategy based on buying (selling short) stocks with the most (least) favorable stock recommendations yields annual abnormal returns of over 9%. However, net returns are insignificant once transaction costs are taken into account.</td>
</tr>
<tr>
<td>Gleason and Lee (2003)</td>
<td>Archival, I/B/E/S, 1993-1998.</td>
<td>Investors underreact to analysts’ earnings forecast revisions, particularly in cases of high innovation (i.e., movement away from the consensus), low analyst profile, and low analyst coverage.</td>
</tr>
<tr>
<td>Barth and Hutton (2004)</td>
<td>Archival, I/B/E/S, 1981-1996.</td>
<td>A trading strategy that simultaneously exploits the accrual anomaly and the forecast revision anomaly yields annual returns of over 28%. The returns from the combined strategy are greater than the returns from either strategy individually.</td>
</tr>
<tr>
<td>Mikhail, Walther, and Willis (2004)</td>
<td>Archival, Zacks, 1985-1999.</td>
<td>Analysts making more profitable recommendation changes in the past also do so in the future. The market recognizes superior recommendation ability, as the market response is stronger to both superior analyst upgrades and downgrades, but the response by the market is incomplete.</td>
</tr>
<tr>
<td>Li (2005)</td>
<td>Archival, I/B/E/S, 1993-2000.</td>
<td>Individual analysts are persistent in making superior recommendations (more so for buy than sell). The market does not fully incorporate the information in superior analysts’ recommendations.</td>
</tr>
<tr>
<td>Loh and Mian (2006)</td>
<td>Archival, I/B/E/S, 1994-2000.</td>
<td>Monthly abnormal returns on hedge portfolios based on recommendations of analysts in the top (bottom) quintile of earnings forecast accuracy are, on average, approximately 0.74% (−0.53%).</td>
</tr>
<tr>
<td>Sorescu and Subrahmanyam (2006)</td>
<td>Archival, I/B/E/S, 1993-2002.</td>
<td>Short-term price reactions to recommendation revisions are larger for more reputed and more experienced analysts. In the long run, smaller (larger) recommendation revisions by analysts with high (low) reputations and more (less) experience are followed by stock price drift (reversals).</td>
</tr>
</tbody>
</table>

Panel D. Research Question 3.4.4: Do analysts' earnings forecasts explain inefficiencies in stock prices with respect to publicly available information?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Porta (1996)</td>
<td>Archival, I/B/E/S, 1982-1990.</td>
<td>Returns to “value” stocks appear high because investors (proxied by analysts) underestimate future performance, not because these stocks are inherently more risky. The results are consistent with an errors-in-expectations explanation, and imply that a reversal of analyst forecast errors impacts security prices.</td>
</tr>
</tbody>
</table>

(continued on next page)
forecasts for the effects of firms’ incentives to manage earnings. Ettredge et al. (1995) provide evidence that analysts use alternative information to effectively adjust their forecasts for approximately 20% of the current earnings surprise effects of earnings misstatements (which later result in prior period adjustments). Burgstahler and Eames (2003) find that analysts’ forecasts reflect a general awareness of firms’ incentives to manage earnings in order to barely avoid reporting losses, but the study finds no evidence that analysts can anticipate which firms will engage in this behavior. In the context of the Tax Reform Act of 1986, Shane and Stock (2006) find little evidence that analysts anticipate or adjust for the earnings effects of firms’ incentives to shift their income from higher to lower tax rate years. Future research might continue these investigations into the ability of analysts to anticipate and adjust for the earnings effects of firms’ earnings management incentives in various contexts.

Future research might also develop and test hypotheses explaining the cross-sectional variation in analyst underreaction to information about future earnings, market underreaction to the information embedded in analysts’ earnings forecast revisions, and the degree to which inefficiencies in analysts’ earnings forecasts explain market inefficiencies. Obviously the context

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajan and Servaes (1997)</td>
<td>Archival, I/B/E/S,</td>
<td>Analysts’ forecasts of earnings and growth are more optimistic for IPO firms</td>
</tr>
<tr>
<td></td>
<td>1975-1987.</td>
<td>than for matched firms. Future stock performance is negatively related to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>optimism in growth forecasts.</td>
</tr>
<tr>
<td>Dechow, Hutton, and Sloan</td>
<td>Archival, I/B/E/S,</td>
<td>Analysts’ year-ahead earnings forecasts fail to fully account for mean-</td>
</tr>
<tr>
<td>(1999)</td>
<td>1976-1995.</td>
<td>reversion in the abnormal earnings component of current year earnings, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>this error is reflected in stock prices, suggesting that investors do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adjust for predictable errors in analyst forecasts.</td>
</tr>
<tr>
<td></td>
<td>1981-1995.</td>
<td>returns, but the lag component dominates and explains most of the book-to-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>market anomaly. The results imply that forecast revisions explain most of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the returns anomaly.</td>
</tr>
<tr>
<td>Shane and Brous (2001)</td>
<td>Archival, Value Line,</td>
<td>Underreaction in analysts’ earnings forecasts with respect to the informa-</td>
</tr>
<tr>
<td></td>
<td>1977-1986.</td>
<td>tion in earnings announcements explains about 50% of the post-earnings-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>announcement drift. The market and analysts also appear to underreact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>similarly to non-earnings surprise information leading to predictable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>returns and analysts’ earnings forecast revisions.</td>
</tr>
<tr>
<td></td>
<td>1985-1997.</td>
<td>earnings increase dramatically and market prices increasingly reflect “street numbers” over the sample period.</td>
</tr>
<tr>
<td>Doukas, Kim, and Pantzalis (2002)</td>
<td>Archival, I/B/E/S,</td>
<td>Inconsistent with La Porta (1996), the evidence from analyst forecast errors and forecast revisions fails to support the hypothesis that analysts are unduly pessimistic (optimistic) about “value” ("glamour") stocks.</td>
</tr>
<tr>
<td>Ikenberry and Ramnath (2002)</td>
<td>Archival, I/B/E/S,</td>
<td>Using earnings surprises as a measure of pre-event information, long-run market returns following corporate events (e.g., SEOs, acquisitions, and repurchases) are most consistent with investor underreaction to pre-event information and information in the corporate event announcement.</td>
</tr>
<tr>
<td>Teoh and Wong (2002)</td>
<td>Archival, I/B/E/S,</td>
<td>Analysts’ earnings forecasts explain at most about 40% of the market’s underestimation of the transitory component in working capital accruals.</td>
</tr>
<tr>
<td></td>
<td>1975-1990.</td>
<td>Using earnings surprises as a measure of pre-event information, long-run market returns following corporate events (e.g., SEOs, acquisitions, and repurchases) are most consistent with investor underreaction to pre-event information and information in the corporate event announcement.</td>
</tr>
<tr>
<td>Elgers, Lo, and Pfeiffer (2003)</td>
<td>Archival, I/B/E/S,</td>
<td>Analysts’ earnings forecasts explain at most about 40% of the market’s underestimation of the transitory component in working capital accruals.</td>
</tr>
<tr>
<td></td>
<td>1989-1998.</td>
<td>Using earnings surprises as a measure of pre-event information, long-run market returns following corporate events (e.g., SEOs, acquisitions, and repurchases) are most consistent with investor underreaction to pre-event information and information in the corporate event announcement.</td>
</tr>
<tr>
<td></td>
<td>1984-1994.</td>
<td>Analysts’ earnings forecasts explain at most about 40% of the market’s underestimation of the transitory component in working capital accruals.</td>
</tr>
<tr>
<td>Purnanandam and Swaminathan (2004)</td>
<td>Archival, I/B/E/S,</td>
<td>IPOs that are overvalued (based on the offer price) tend to have more optimistic long-term growth forecasts (after the IPO date) and more negative long-run returns, relative to undervalued IPOs.</td>
</tr>
<tr>
<td></td>
<td>1980-1997.</td>
<td>Momentum in returns and post-event drift is manifest only if they are coincident with changes in earnings and earnings growth forecasts. After purging both sets of forecasts of their predictable components, no relationship between adjusted forecasts and abnormal returns remains, implying that subsequent returns follow fundamental (earnings) news which explains momentum.</td>
</tr>
<tr>
<td>Jackson and Johnson (2006)</td>
<td>Archival, I/B/E/S,</td>
<td>IPOs that are overvalued (based on the offer price) tend to have more optimistic long-term growth forecasts (after the IPO date) and more negative long-run returns, relative to undervalued IPOs.</td>
</tr>
<tr>
<td></td>
<td>1983-1999.</td>
<td>Momentum in returns and post-event drift is manifest only if they are coincident with changes in earnings and earnings growth forecasts. After purging both sets of forecasts of their predictable components, no relationship between adjusted forecasts and abnormal returns remains, implying that subsequent returns follow fundamental (earnings) news which explains momentum.</td>
</tr>
</tbody>
</table>
matters, and thus far we have little evidence about the contexts in which we are most likely to find particular forms of information processing inefficiencies.

Regarding the third question in Table 4 (Panel C), some studies demonstrate that investors underreact to analysts’ forecast revisions (e.g., Gleason & Lee, 2003), as well as their stock recommendations (e.g., Womack, 1996). Thus, investors seem to be slow in responding, not only to information releases from companies, but also to direct signals from financial analysts. Some studies contend that, while markets may be inefficient with respect to specific pieces of information, like analysts’ stock recommendations, exploiting such market inefficiency is unprofitable because of transaction costs (Barber et al., 2001). Nonetheless, it is intriguing that investors continue to systematically underreact to a direct signal, like analysts’ recommendations and revisions, despite numerous research studies consistently documenting this phenomenon over a number of years.24 Explaining such (continued) anomalous behavior on the part of investors is a challenging task for future research.

Inefficiency in analysts’ forecasts (Table 4, Panels A and B) is an indication, but not conclusive evidence, of market inefficiency. As described in Table 4, Panel D, a number of studies have considered the relative inefficiency of analysts and investors with respect to specific pieces of information. Most studies find that the stock market is generally more sluggish in incorporating information than financial analysts are. For example, Elgers et al. (2003) find that analysts’ forecasts can explain at most 40% of the market’s apparent underestimation of the transitory component of current accruals. Thus, analysts at least partially (and more effectively than investors) recognize the difference in the persistence of accrual and cash flow components of earnings. Evidence that investors are less efficient than financial analysts in responding to information is puzzling for a number of reasons. First, incentive-based explanations of analyst bias, such as better access to management, should not explain investor reactions. Second, investors (especially sophisticated investors like financial institutions) have the opportunity to independently (and efficiently) use the same publicly available information that underlies financial analysts’ (inefficient) forecasts. Third, investors have the option of adjusting analysts’ forecasts for known and widely documented systematic errors. The reason why market prices are relatively less efficient than analysts in various information contexts remains an interesting question for further research.

3.5. Analysts’ incentives and behavioral biases

3.5.1. Questions addressed since 1992

Analyst forecasting research has evolved considerably since the early work documenting what appeared to be a bias toward optimism in forecasts and recommendations. As shown in Table 5, more recent work has addressed such questions as:

1. How do incentives impact analysts’ effort and decisions to follow firms? (Panel A);
2. Do incentives create systematic optimism/pessimism in analysts’ forecasts and recommendations? (Panel B);
3. How do management incentives impact communications with analysts, analysts’ forecasts, and analysts’ recommendations? (Panel C);
4. How does the market consider analysts’ incentives in setting prices? (Panel D); and
5. Do economic incentives or behavioral (psychological) biases create an underreaction in analysts’ forecasts? (Panel E).

An important distinction between biased forecasts driven by judgment errors as distinct from economic incentives is that the former is non-motive driven, while the latter is motive driven.25 The principal lines of inquiry since 1992 have considered incentives related to the career concerns of analysts, the underwriting and trading incentives of their employers, and how the incentives of, and communication with, company management influence analyst behavior. As shown in Table 5, in addition to standard archival empirical approaches, researchers have used mathematical modeling, questionnaire surveys, and experimental methods to evaluate these questions.

24 Givoly and Lakonishok (1979) performed an early study documenting predictable stock returns following analysts’ earnings forecast revisions.

25 We are grateful to a referee for suggesting this distinction.
Incentives and Behavioral Biases (Section 3.5)

Panel A. Research Question 3.5.1: How do incentives impact analysts’ effort and decisions to follow firms?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duru and Reeb (2002)</td>
<td>Archival, I/B/E/S, 1995-1998.</td>
<td>Price-deflated forecast errors based on actual earnings minus April forecasts of current year (5-year-ahead) earnings were about 0.78% (3.54%) in 1985 and about 0.15% (0.74%) in 1993.</td>
</tr>
<tr>
<td>Thomas (2001)</td>
<td>Archival, I/B/E/S, 1985-1998.</td>
<td>Price-deflated forecast errors based on actual earnings minus April forecasts of current year (5-year-ahead) earnings were about 0.78% (3.54%) in 1985 and about 0.15% (0.74%) in 1993.</td>
</tr>
<tr>
<td>Dugar and Reeb (2002)</td>
<td>Archival, I/B/E/S, 1995-1998.</td>
<td>Price-deflated forecast errors based on actual earnings minus April forecasts of current year (5-year-ahead) earnings were about 0.78% (3.54%) in 1985 and about 0.15% (0.74%) in 1993.</td>
</tr>
<tr>
<td>Eames, Glover, and Kennedy (2002)</td>
<td>Archival, Zacks, 1987-1999.</td>
<td>After controlling for the level of earnings, there is no relationship between forecast optimism and past predictability (which is not consistent with Das et al., 1998).</td>
</tr>
<tr>
<td>Eames and Glover (2003)</td>
<td>Archival, Value Line, 1987-1999.</td>
<td>After controlling for the level of earnings, there is no relationship between forecast optimism and past predictability (which is not consistent with Das et al., 1998).</td>
</tr>
<tr>
<td>Hong and Kubik (2003)</td>
<td>Archival, I/B/E/S, 1983-2000.</td>
<td>For underwriter analysts, promotion/demotion depends relatively more on optimism than accuracy, suggesting that analysts have some incentive to issue optimistic forecasts.</td>
</tr>
</tbody>
</table>
Panel B. Research Question 3.5.2: Do incentives create systematic optimism/pessimism in analysts’ forecasts and recommendations?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malloy (2005)</td>
<td>Archival, I/B/E/S, 1994-2001.</td>
<td>Relative optimism is concentrated in geographically distant, not local, affiliated analyst stock recommendations, and distant analysts are more likely to work at high-status firms with pressure to garner investment banking business.</td>
</tr>
<tr>
<td>Cowen, Groysberg, and Healy (2006)</td>
<td>Archival, I/B/E/S and First Call, 1996-2002.</td>
<td>Analysts employed by firms that fund research through underwriting and trading activities issue relatively pessimistic forecasts and recommendations, but brokerage activities are related to forecast optimism, suggesting that optimism is driven by trading versus underwriting incentives. During the “bubble period,” issue prices of IPO firms were lower than peer firm valuations using “comparable” multiples. In the pre-bubble period, IPO issue prices were higher than comparable firm valuations, but within a month post-IPO target prices were at a premium versus comparables (consistent with investment bankers “low-balling” offer prices during the bubble period).</td>
</tr>
</tbody>
</table>

Panel C. Research Question 3.5.3: How do management incentives impact communications with analysts, analysts’ forecasts, and analysts’ recommendations?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francis, Hanna, and Philbrick (1997)</td>
<td>Archival, Corporate presentations to the NYSSA, 1986-1992.</td>
<td>Companies’ experience increases in analyst following and positive returns at presentation dates, but analysts’ post-presentation forecasts are no more accurate, no less dispersed, and no less biased, suggesting that managers/firms benefit from presentations but analysts do not.</td>
</tr>
<tr>
<td>Degeorge, Patel, and Zeckhauser (1999)</td>
<td>Archival, Q-Prime, 1974-1984; I/B/E/S, 1984-1996.</td>
<td>The authors provide indirect evidence of earnings/expectations management in the aggregate, noting that the distribution of forecast errors exhibits a discontinuity at zero cents. They report a threshold hierarchy, where reporting positive earnings and earnings greater than the seasonal random walk expectations appears to be more important than meeting analyst forecasts.</td>
</tr>
<tr>
<td>Libby and Tan (1999)</td>
<td>Experiment with 28 financial analysts.</td>
<td>Consistent with psychological biases, when provided with negative earnings information and warnings simultaneously, analysts made higher future earnings forecasts than analysts provided with warnings and negative earnings information sequentially.</td>
</tr>
<tr>
<td>Fischer and Stocken (2001)</td>
<td>Mathematical model</td>
<td>The quantity of the information provided by analysts is maximized when analysts receive imperfect information. In other cases, firms communicate directly with investors.</td>
</tr>
<tr>
<td>Brown (2001a)</td>
<td>Archival, I/B/E/S, 1984-1999.</td>
<td>Over time, median forecast errors have changed, on average, from slightly negative to slightly positive, which is consistent with managers’ increased incentives to meet or beat analysts’ earnings forecasts. The tendency to just beat forecasts is more prominent for growth firms.</td>
</tr>
<tr>
<td>Matsunaga and Park (2001)</td>
<td>Archival, First Call, 1993-1997.</td>
<td>CEO annual bonuses are reduced if earnings thresholds are not met for two quarters or more, providing evidence of the incentives managers face to meet earnings forecasts.</td>
</tr>
<tr>
<td>Matsumoto (2002)</td>
<td>Archival, Zacks, 1993-1997.</td>
<td>Firms with greater transient institutional ownership, greater reliance on implicit claims, and greater value-relevance of earnings are more likely to meet or beat expectations, providing support for the idea that managers’ incentives influence forecasting.</td>
</tr>
<tr>
<td>Skinner and Sloan (2002)</td>
<td>Archival, I/B/E/S, 1984-1996.</td>
<td>Growth stocks are punished more severely, relative to value stocks, for the same amount of negative earnings surprise, providing incentives for growth firm managers to avoid negative earnings surprises.</td>
</tr>
</tbody>
</table>

(continued on next page)
Reference	Method	Key results
Tan, Libby, and Hunton (2002) | Experiment with 149 financial analysts. | Consistent with psychological biases, firms with negative (positive) total news receive the most optimistic earnings forecasts when the pre-announcement overstates (understates) the extent of the news.
Brown (2003) | Archival, I/B/E/S, 1984-1999. | Over time, the incidence of slightly missing earnings forecasts has decreased as the negative valuation consequences have amplified, principally for “growth” firms.
Richardson, Teoh, and Wysocki (2004) | Archival, I/B/E/S, 1984-2001. | Walk-down to beatable targets is associated with managerial incentives to sell stock (the company’s or the managers’) after earnings announcements. In these cases analysts tend to issue optimistic forecasts early and slightly pessimistic forecasts late in the forecasting period.
Graham, Harvey, and Rajgopal (2005) | Questionnaire of 400+ CFOs. | Managers focus on meeting or beating analysts’ forecasts because of stock price implications and concerns about their reputation. Respondents think that an inability to generate a few cents of earnings to beat an earnings benchmark or a downward-guided benchmark are particularly negative signals.
Libby, Tan, and Hunton (2006) | Experiment with 95 sell-side analysts. | Analysts’ reactions to errors in management guidance are influenced by the guidance form; i.e., wide (narrow) ranges of guidance decrease (increase) the impact of guidance error on forecast revisions.

Panel D. Research Question 3.5.4: How does the market consider analysts’ incentives in setting prices?
Hirst et al. (1995) | Experiment with 291 graduate business student subjects. | When making prospective stock performance judgments, investors react more negatively to unfavorable recommendations of analysts having investment banking conflicts relative to their reaction to unfavorable recommendations of unaffiliated research analysts.
Branson, Guffey, and Pagach (1998) | Archival, Lexis-Nexis, Coverage initiation announcements since 1992. | The market reaction to analyst coverage initiation announcements with buy recommendations depends on prior analyst following, the reputation of the new analyst, brokerage house size, and the richness of the firm’s information environment, proxied by firm size and exchange listing.
Michaely and Womack (1999) | Archival, First Call, 1990-1991. | Returns to “buy” recommendations from security underwriters’ analysts are lower than returns to buy recommendations from unaffiliated analysts before, at, and after recommendation dates, suggesting that the market considers analysts’ incentives.
Hayes and Levine (2000) | Archival, Zacks, 1978-1995. | Adjusting for bias makes forecasts more accurate and less biased, but no more correlated with contemporaneous returns, suggesting that either the market does not adjust for bias or the adjustment captured by the researchers is not the same as the market’s adjustment.
Barber, Lehavy, and Trueman (2007) | Archival, First Call, 1996-2003. | The market reaction to independent analysts’ buy recommendations exceeds the reaction to investment bank analysts’ buy recommendations, while the market reaction to investment bank analysts’ hold and sell recommendations exceeds the reaction to independent analysts’ recommendations of the same type. The findings suggest that the market can unravel optimism in investment bank analysts’ recommendations.

Panel E. Research question 3.5.5: Do economic incentives or behavioral (psychological) biases create underreactions in analysts’ forecasts? Incentives-oriented papers:
Mozes (2003) | Archival, First Call, 1990-1994. | Forecast immediacy (proximity to the beginning of a forecast cluster) is positively related to underreaction, suggesting that uncertainty about future earnings drives underreaction, and that some analysts are willing to trade-off some underreaction and accuracy for greater forecast immediacy and usefulness.
3.5.2. Suggestions for further research related to analysts’ incentives and behavioral biases

As described in Table 5, Panel A, the research since 1992 has established that the likelihood of analyst promotion/reward increases with their relative forecast accuracy. Thus, analysts have incentives to expend effort towards forecast accuracy. Hong et al. (2000a) find that forecast accuracy is directly related to the likelihood of promotion, especially for less experienced analysts. However, when controlling for forecast accuracy, they find that less experienced analysts are more likely to be fired for being bold (i.e., deviating from the consensus). Hence, less experienced analysts have incentives to trade off some accuracy and timeliness for the safety of proximity to the consensus. An alternative interpretation of these results is that analysts gain experience by watching the consensus, while at the same time testing their own models privately. Once they become confident in their own models, they become bolder and attempt to lead rather than follow. Future research might investigate the descriptive validity of this interpretation. Future research might also explore the importance of market price impact or other proxies for forecast usefulness relative to forecast accuracy at various stages of analysts’ careers.

Another promising research area is to further evaluate the selection bias suggested by Hayes (1998) and documented empirically by McNichols and O’Brien (1997). Hayes suggests that analysts’ incentives to

Table 5 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen and Jiang (2006)</td>
<td>Archival, Zacks</td>
<td>On average, analysts overweight private information, but weighting is asymmetric. Analysts overweight (underweight) private information when issuing forecasts that are more (less) favorable than the consensus. The deviation from efficient weighting corresponds to related cost/benefit considerations, suggesting that incentives, rather than cognitive biases, play a prominent role.</td>
</tr>
<tr>
<td>Markov and Tan (2006)</td>
<td>Archival, Mathematical</td>
<td>The distributions of analyst forecast errors are consistent with analysts having asymmetric loss functions.</td>
</tr>
<tr>
<td>Raedy, Shane, and Yang (2006)</td>
<td>Archival, Mathematical Model, I/B/E/S, 1984-1999.</td>
<td>Horizon-dependent underreaction to news about future earnings is consistent with an asymmetric loss function, which provides incentives for analysts to underreact to information. Underreaction reduces the likelihood of subsequent news contradicting the direction of the prior earnings forecast revision.</td>
</tr>
<tr>
<td>Behavioral bias oriented papers:</td>
<td></td>
<td>Consistent with the perception that analysts’ forecasts are optimistic, investors’ expectations are conservatively biased when combining the forecasts of individual analysts. The evidence suggests that individual investors might not combine forecasts from multiple analysts efficiently.</td>
</tr>
<tr>
<td>Maines (1996)</td>
<td>Experiments with 228 MBA student subjects.</td>
<td>Individuals underweight the moving average component of earnings series and misweight the seasonal change component, suggesting that psychological biases may be responsible for market and analyst inefficiency with respect to earnings news.</td>
</tr>
<tr>
<td>Maines and Hand (1996)</td>
<td>Experiment with 60 MBA students.</td>
<td>Individuals underweight innovations in quarterly earnings, suggesting that psychological biases may be responsible for market and analyst underreaction to earnings news. Psychological biases related to underreaction and overconfidence explain the empirical evidence of inefficiency better than rational, game-theoretic models. However, inefficiencies do not seem to have important economic consequences.</td>
</tr>
<tr>
<td>Calegari and Fargher (1997)</td>
<td>Experiments with 87 student subjects.</td>
<td>Consistent with psychological biases, analysts make more optimistic forecasts when provided with management information in scenarios, as opposed to lists.</td>
</tr>
</tbody>
</table>
follow firms for which they have favorable views increase with the extent to which investors already
own shares of the stock, which in turn should increase
with the size of the firm followed and the extent/influence of analysts’ recent buy recommendations.
Hayes also predicts that the asymmetry should in-
crease with short selling restrictions on the stock and the dispersion of ownership among investors. These
predictions can be tested empirically.

Selection bias may also provide an explanation for
the market inefficiency described in the behavioral
finance literature. For example, in tests of Hong and
Stein’s (1999) “gradual information diffusion” theory of
market inefficiency, Hong, Lim, and Stein (2000b)
hypothesize and find that return momentum increases
with a low analyst following. The study also documents
“an interesting regularity” (p. 267): the effect of low
analyst coverage is most pronounced in stocks that are
past losers. This result is consistent with Hayes’ (1998)
theory and McNichols and O’Brien’s (1997) empirical
results suggesting that analysts expend less effort in their
coverage of underperforming stocks; as well as Hayes
and Levine’s (2000) evidence that the market does not
appear to adjust its expectations for the selection bias
documented by McNichols and O’Brien. Thus, the
incentives described by Hayes, when combined with the
results in Hong et al. (2000b), McNichols and O’Brien
(1997), and Hayes and Levine (2000), might contribute
to the theory of return momentum developed in Hong
and Stein (1999). More generally, the interplay between
management and analyst incentives, biases in forecasts
and recommendations, naïve investor psychological
biases, and the degree to which the market unravels
biased forecasts and recommendations, should continue
to provide fertile ground for the application of analytical,
archival, experimental, and other research methods for
many years to come.

A number of recent studies listed in Panel B consider
how employers’ incentives to gain/maintain underwrit-
ing business or generate trading commissions impact
analysts’ forecasts and recommendations. The results
regarding underwriting are generally consistent, in that it
appears that affiliated analysts (those whose employers
have existing underwriting relationships) make relatively
optimistic recommendations (e.g., Dugar & Nathan,
1995; Lin & McNichols, 1998), but the evidence does
not suggest that investment banking activities per se
(without affiliation) cause optimism in forecasts and
recommendations (Cowen et al., 2006). Recent research
evidence questions the impact of investment banking
activities and optimism on analysts’ forecasts (e.g., Jacob
et al., in press). Further research is needed to sort out the
effects of affiliation and investment banking on analyst
optimism/ pessimism in pre- and post-Enron periods.
Future research might also build on Irvine (2004),
Jackson (2005), and Cowen et al. (2006), focusing more
on trade generation as an incentive for analyst optimism,
as opposed to underwriting business.

Interesting questions also remain regarding whether
management incentives drive persistent optimism in
long-term forecasts, and whether the temporal de-
creases in both short and long-term forecast optimism,
documented by Brown (2001a) and Claus and Thomas
(2001), respectively, reflect intertemporal changes in
incentives. The nature of these incentives and the
reasons why they change over time warrant further
research. While Hong and Kubik (2003) report that
optimism plays a role in career advancement, future
research could focus on whether analyst amenability to
a walk-down to beatable forecasts also influences
future career prospects. Another fruitful line of inquiry
might consider whether beatable short-term forecasts,
combined with optimism in recommendations and
long-term earnings forecasts, impact analyst employ-
ment outcomes. Further, analysts’ incentives may
depend on where the target firm is in its lifecycle;
e.g., a firm with a recent IPO versus a mature firm, or
“value” versus “glamour” stocks.

The existence and persistence of biases in analysts’
forecasts and recommendations remain open questions.
The biases are likely to include optimism at longer
horizons, pessimism at shorter horizons, and under-
reaction to new information. As shown in Table 5, Panel
C, Richardson et al. (2004) find that the walk-down to
beatable earnings expectations is most pronounced for
firms with stock issuances or with insiders selling their
own shares in post-earnings announcement periods; and
various other studies provide other reasons why
managers prefer forecasts that are attainable or beatable
(e.g., Matsunaga & Park, 2001; Bartov et al., 2002).
However, it is not clear why analysts do not unravel the
effects of these incentives on managers’ earnings
guidance. The evidence is mixed on whether the market
adjusts analysts’ forecasts for potential biases. For
example, as described in Table 5, Panel D, Lin and
McNichols (1998) find evidence that is consistent with
the market unraveling analysts’ incentives to issue optimistic recommendations due to investment banking relations; whereas Hayes and Levine (2000) suggest that the market does not unravel the effects of analysts’ incentives to drop the coverage of firms for which they have pessimistic views. The degree to which, and the context in which, the market “sees through” incentives that create biased analysts’ forecasts remain areas open for future research. Further, when reported earnings meet analysts’ expectations, the forecasts are, by definition, unbiased. In these cases, have firms managed earnings and expectations downward to just meet forecasts and create reserves for future earnings increases? What are the causes and consequences of just meeting versus barely beating analysts’ forecasts? These questions also warrant further research.

The research is mixed on whether psychological biases or economic incentives affect analysts’ forecasts (Panel E). Analyst incentives may result in analysts underreacting to publicly-available information. True-man (1990) models underreaction as a function of analysts’ incentives to disguise their inability to develop private information about firms’ prospects. On the other hand, Raedy et al. (2006) model an underreaction arising from asymmetric loss functions that create incentives for analysts to revise their future forecasts in a direction consistent with the interpretation of firms’ prospects. On the other hand, Raedy et al. (2006) model an underreaction arising from asymmetric loss functions that create incentives for analysts to revise their future forecasts in a direction consistent with the interpretation of firms’ prospects included in the analysts’ current research reports.26 The question of whether the assumptions underlying these models hold true in financial markets awaits further empirical examination. Similarly, future research might attempt to more directly tie specific incentives like career concerns or employer objectives to underreaction bias. Mozes (2003) suggests that forecasts with greater immediacy (i.e., released quickly after a preceding news event) are associated with greater uncertainty and greater underreaction. Future research might investigate the incentives and behavioral factors that lead some analysts to provide forecasts more quickly (i.e., immediately) after an information event, and whether these analysts underreact in ways that protect against inaccuracy, while at the same time creating more useful forecasts for investors. Loffler (1998) offers a promising approach for separating behavioral explanations from rational economics-based explanations for underreaction in analysts’ earnings forecasts, and concludes that, while behavioral biases dominate, they are economically immaterial. Loffler finds that analysts’ forecasts that adjust for investor perceptions of the forecasts. Analysts who believe that investors overestimate (underestimate) the precision of the analysts’ forecasts will tend to underreact (overreact) to new information. As noted by Loffler (1998, p. 274), these results “raise the question of why analysts do not simply report the precision of their forecasts.” Further research is needed to better understand the constraints analysts face, the techniques they use, and their incentives for communicating the precision of their forecasts to investors.

In experimental tests of biases that might cause underreactions to earnings news, Maines and Hand (1996) find that student subjects generally understand the time-series implications of the first-order autoregressive component of seasonal earnings changes but do not understand the implications of the fourth-order moving average component, while Calegari and Fargher’s (1997) results suggest the opposite. More generally, if psychological biases affect students’ abilities to detect time-series patterns in earnings series, more research is needed to understand whether, and if so, how professional analysts learn to overcome these biases. Further, some behavioral finance theories of market inefficiency assume that psychological biases affect market prices (e.g., Barberis, Shleifer, & Vishny, 1998; Daniel, Hirshleifer, & Subramanyam, 1998). Therefore, an important research question is whether analysts’ forecasts reflect psychological biases, and whether these biases, in turn, affect market prices.27

3.6. Questions related to the regulatory environment

3.6.1. Questions addressed since 1992

The papers summarized in Table 6 examine the impact of the regulatory environment on analyst activities. The questions addressed include:

1. How do new regulations affect the information environment and the characteristics of analysts’ forecasts? (Panel A); and

26 See Markov and Tan (2006) for recent evidence that the distributions of analyst forecast errors are consistent with analysts having asymmetric loss functions.

27 Friesen and Weller (2006) develop a model of behaviorally-biased analyst forecasts due to overconfidence and cognitive dissonance of individual analysts.
Table 6
Selected Papers Addressing Questions Related to the Regulatory Environment (Section 3.6)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Research Question 3.6.1: How do new regulations affect the information environment and the characteristics of analysts’ forecasts?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bailey et al. (2003)</td>
<td>Archival, First Call, 1999-2001.</td>
<td>Analyst forecast dispersion and quarterly earnings disclosures increased following Reg FD, implying that Reg FD increased the quantity of information available to the public, but also increased the demands on investment professionals.</td>
</tr>
<tr>
<td>Bushee, Matsumoto, and Miller (2004)</td>
<td>Archival, First Call and BestCalls, 1999-2001.</td>
<td>Managers are more likely to discontinue conference calls after Reg FD, but the amount of information disclosed during conference calls does not decrease. Reg FD increased price volatility for firms that previously restricted access, resulting in more trade. Overall, Reg FD impacted trading during the conference call period for firms most likely to be affected by Reg FD.</td>
</tr>
<tr>
<td>Gintschel and Markov (2004)</td>
<td>Archival, First Call, 1999-2001.</td>
<td>The absolute price impact of information disseminated by analysts following Reg FD is reduced by 28%, implying that Reg FD was effective in reducing selective disclosure.</td>
</tr>
<tr>
<td>Ivkovic and Jegadeesh (2004)</td>
<td>Archival, I/B/E/S, 1990-2002.</td>
<td>Evidence of a stronger market reaction to upward forecast revisions and recommendations just prior to earnings announcements both before and after Reg FD supports the inference that analysts have access to positive (but not negative) insider information, and that Reg FD was unsuccessful in changing this characteristic of the information environment.</td>
</tr>
<tr>
<td>Barber, Lehavy, McNichols, and Trueman (2006)</td>
<td>Archival, First Call, 1996-2003.</td>
<td>After NASD Rule 2711, the distribution of stock recommendations became more pessimistic. The largest returns are earned based on going long (short) on buy (sell) recommendations from brokers who had issued few buy (sell) recommendations in the past.</td>
</tr>
</tbody>
</table>

Panel B. Research Question 3.6.2: How do differences in regulations across countries affect the information environment and the characteristics of analysts’ forecasts?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hope (2003b)</td>
<td>Archival, I/B/E/S, 1993, 1995.</td>
<td>Across countries, the level of disclosure about accounting policies is inversely related to forecast errors and dispersion, suggesting that increased disclosure reduces uncertainty about earnings.</td>
</tr>
<tr>
<td>Lang, Lins, and Miller (2004)</td>
<td>Archival, I/B/E/S, 1996.</td>
<td>Analyst following and forecast accuracy improve from cross listing in the US, and the increase is associated with higher valuations. The results support the notion that cross-listed firms have better information environments, which are valued by the market.</td>
</tr>
</tbody>
</table>

2. How do differences in regulations across countries affect the information environment and the characteristics of analysts’ forecasts? (Panel B).

A number of studies address whether Regulation Fair Disclosure (Reg FD) served the SEC’s intended purpose of proscribing the selective disclosure of important information to particular (preferred) analysts. In effect, the regulation was intended to level the information playing field. Prior to it being passed, there was broad speculation upon Reg FD’s likely impact with respect to levels of information asymmetry across...
analysts, forecast accuracy, forecast dispersion, forecast informativeness, managers’ propensity to communicate with analysts, the form of management communication, and volatility in stock prices.

3.6.2. Suggestions for further research related to the regulatory environment

Regarding forecast dispersion, directional hypotheses hinge on whether analysts’ forecasts rely more heavily on public or private information in the post-Reg FD period. If public information becomes more important after Reg FD, then the forecast dispersion should decrease. Alternatively, if analysts seek to gain an advantage via their own analysis because public information is common, then private information development activities and dispersion could increase after Reg FD. The results related to the effects of Reg FD on forecast dispersion are mixed (e.g., Bailey, Li, Mao, & Zhong, 2003; Heflin, Subramanyam, & Zhang, 2003). Further research is needed to understand how managers and analysts reacted to Reg FD’s selective disclosure restrictions. With respect to pricing effects, research generally suggests that price impacts have decreased after Reg FD, and that the decreases are related to the level of selective disclosure pre-Reg FD, as proxied by brokerage and firm characteristics (e.g., Gintschel & Markov, 2004).

Ivkovic and Jegadeesh (2004, p. 433) find “a sharp increase in the information content of upward forecast revisions and recommendation upgrades in the week before earnings announcements, but ... do not find a similar increase for downward revisions or for recommendation downgrades.” The authors interpret this result as being consistent with analysts accessing managers’ inside information in the case of good news preceding an earnings announcement, but not in cases of bad news, and the results are similar in the pre- and post-Reg FD periods. However, the paper notes the small post-Reg FD sample period and the correspondingly imprecise parameter estimation. Thus, the effectiveness of Reg FD in limiting analyst access to inside information remains an open question for further research. The results with respect to return volatility are likewise mixed, though some evidence suggests that the trading volume related to differing opinions increased following the regulation (Bushee et al., 2004).

A challenge for many conclusions regarding the impact of Reg FD is that the regulation impacted all U.S. firms at the same time, and as such, control groups are difficult to find. Francis et al. (2006) attempt to control for omitted macroeconomic variables by comparing the effects of Reg FD on the information environment and analyst forecast characteristics of ADR versus U.S. firms. Their results indicate no differential changes in the information environment of ADR versus U.S. domiciled company stocks, but the informativeness of analyst reports on U.S. domiciled stocks declined relative to the informativeness of analyst reports on ADR stocks. However, as noted by the authors, ADR stocks might not be an ideal control group, because, although they are exempt from the requirements of Reg FD, they have close ties to the U.S. economy, need to compete in U.S. capital markets, and might have either been indirectly affected by Reg FD or voluntarily chosen to comply, thus reducing the power of their tests. In general, researchers need to exercise care in dismissing macroeconomic (e.g., market downturn) and firm-specific effects that occurred concurrently with the implementation of Reg FD. Further research is needed to develop more powerful and better controlled hypothesis tests.

In a pre-Reg FD period, Park & Stice (2000) (described in our Table 3, Panel A) find evidence consistent with a positive relationship between the market’s response to analysts’ forecast revisions and analysts’ prior firm-specific forecast accuracy, but they do not find a spillover effect of forecasting superiority from one firm to other firms followed by the same analyst. The authors interpret these results to suggest that analyst forecasting superiority stems more from access to managers’ inside information than from a superior ability to analyze commonly available information. An interesting extension would be to see whether changes in the information environment after Reg FD affect the source of superior analysts’ forecasting advantages. As noted in Section 3.1, Previts et al. (1994) observed that analysts prefer to follow firms with effective strategies for presenting smooth earnings streams. It would be interesting to know whether analysts have the same preferences post-Reg FD. Future archival research might consider the relationship between analyst following decisions and the ability of managers to consistently meet earnings expectations before and after Reg FD.
With the expanded access to international forecasts provided by I/B/E/S and other data providers, researchers have an increased ability to study new research questions about whether differences in accounting standards, regulations, and legal structures and practices across countries impact analyst activities. To date, few studies (Table 6, Panel B) have addressed issues related to the impact of disclosure practices, enforcement standards, and accounting policy disclosures on analysts’ forecasting activities. The results generally suggest that rules aimed at improving disclosure and adherence to accounting rules create an information environment conducive to improved forecast accuracy (see, e.g., Hope, 2003a,b; Lang et al., 2004). Future research might consider the effects of institutional/cultural differences across countries on analysts’ decision processes, expertise, incentives, forecasts, and recommendations. The increased flow of capital, coupled with the convergence of international accounting standards, makes this line of research important, and we expect it to expand considerably in the future.

3.7. Research design issues

3.7.1. Questions addressed since 1992

The widely documented evidence of apparent analyst forecast bias and inefficiency with respect to public information has spawned other research that critically examines the validity of these inferences. The papers summarized in Table 7 generally point to the inappropriateness of the assumptions implicit in the research designs adopted by studies documenting bias and inefficiency in analysts’ responses to information. The research questions posed in Table 7 are:

1. How might statistical validity issues threaten inferences about the behavior of analysts’ forecasts and recommendations? (Panel A); and
2. How might construct or internal validity issues threaten inferences about the behavior of analysts’ forecasts and recommendations? (Panel B).

3.7.2. Suggestions for further research related to research design issues

One criticism leveled against research that documents bias in analysts’ forecasts is that evidence of bias depends on whether the tests focus on the mean or the median of analyst forecast errors. Abarbanell and Lehavy (2003) report that, due to possible management of the target earnings variable, the distribution of price-scaled analyst forecast errors contains more large negative forecast errors than large positive forecast errors. For similar reasons, small positive forecast errors outnumber small negative forecast errors. Abarbanell and Lehavy (2003) caution that these asymmetries in the distribution of analyst forecast errors violate assumptions of a normal distribution, and therefore the choice between the mean and median of the distribution affects conclusions about analyst bias.28

Other studies question the conclusion of analyst inefficiency in prior research. Gu and Wu (2003) argue that analysts’ forecasts may seem inefficient under the assumption that analysts have a quadratic loss function; i.e., that analysts attempt to minimize their mean squared forecast error. If analysts’ objectives are consistent with minimizing their mean absolute forecast error, the evidence is no longer consistent with inefficiency. Future research might identify analysts’ loss functions based on the nature of their incentives in the various situations and decision contexts they face. Future research might also identify the determinants of particular forms of loss functions that affect analysts’ forecasting decisions, and might assess whether utility functions differ across analyst types (e.g., based on affiliation or experience).

Future research could also examine whether analyst inefficiency depends on the sign and magnitude of the forecast error. Analyst forecast errors are determined by reported (rather than unmanaged) earnings, and, as Abarbanell and Lehavy (2003) note, earnings management is more likely in certain regions of the forecast error distribution. Inferences about analyst behavior based on analyst forecast errors are problematic in situations where reported earnings are more likely to (systematically) deviate from unmanaged earnings. Future research should consider the possibility that analysts’ forecasts and reported earnings are jointly determined.29 If firms provide guidance to analysts

28 Keane and Runkle (1998) conclude that inefficiencies and bias in prior studies are due to research design issues that ignore cross-correlation in analyst forecast errors. Their tests using GMM estimation provide no evidence of bias or inefficiency in analyst forecasts.

29 Sankaraguruswamy and Sweeney (2006) take a step in this direction by using a simultaneous equations model to study analysts’ forecasts and reported earnings.
and also manage reported earnings, the implicit assumption that analysts’ forecasts and reported earnings are independently determined does not hold.

A few studies also focus on database issues and their possible implications for conclusions in prior research. Ramnath et al. (2005) examine whether there are inherent differences between two commonly used analyst forecast databases in accounting and finance research, Value Line and I/B/E/S, and find, for example, that forecasts derived from I/B/E/S dominate Value Line analysts’ forecasts as proxies for the market’s earnings expectations. Payne and Thomas (2003) note that the manner in which I/B/E/S pre-adjusts data for stock splits could affect inferences in

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Key result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim, Lim, and Shaw (2001)</td>
<td>Mathematical Model</td>
<td>Using mean (or median) forecasts to evaluate analyst accuracy and bias overweights the common information in analyst forecasts and underweights private information. Bias increases with the number of forecasts in the consensus. Adding a positive fraction of the change in mean forecasts to the prior mean forecast increases the forecast accuracy.</td>
</tr>
<tr>
<td>Abarbanell and Lehavy (2003)</td>
<td>Archival, Zacks, 1985-1998.</td>
<td>Inferences about analyst bias and inefficiency may be tainted by asymmetries in the distribution of forecast errors, where the distribution contains larger errors in the left tail (tail asymmetry) and more small positive forecast errors in the middle (middle asymmetry). Econometric fixes, such as truncation or winsorization, could reduce the effect of the tail asymmetry, but will magnify the effect of the middle asymmetry.</td>
</tr>
<tr>
<td>Gu and Wu (2003)</td>
<td>Archival, I/B/E/S, 1983-1998.</td>
<td>Forecast bias is positively related to skewness in the earnings distribution, consistent with analysts forecasting the median value of the earnings distribution rather than the mean. Forecasting the median minimizes the mean absolute forecast error. Analysts’ forecasts are rational if their objective is to minimize mean absolute forecast errors.</td>
</tr>
<tr>
<td>Payne and Thomas (2003)</td>
<td>Archival, I/B/E/S, 1984-1999.</td>
<td>Conclusions based on using split-adjusted data provided by I/B/E/S may be affected by the rounding conventions I/B/E/S uses to adjust forecasts and actuals for stock splits. The split adjustment effect is more severe for studies of earnings forecast errors that are around zero, and for studies using the I/B/E/S Summary File.</td>
</tr>
<tr>
<td>Basu and Markov (2004)</td>
<td>Archival, I/B/E/S, 1985-2001.</td>
<td>The linear regressions used in analyst efficiency tests assume that analysts’ loss functions dictate the minimization of mean squared forecast errors. The results show that analysts’ forecasts are efficient when econometric tests are designed under the assumption that analysts seek to minimize mean absolute forecast errors.</td>
</tr>
<tr>
<td>Ramnath, Rock, and Shane (2005)</td>
<td>Archival, Value Line and I/B/E/S, 1993-1996.</td>
<td>I/B/E/S forecasts are more accurate than Value Line forecasts and proxy better for market expectations. Much of the superiority in I/B/E/S forecasts is attributable to timeliness (recency) and the aggregation of multiple forecasts. Both Value Line and I/B/E/S earnings forecasts, however, exhibit inefficiency with respect to past forecast errors.</td>
</tr>
</tbody>
</table>
prior research, and Frankel et al. (2006) note that their discussions with I/B/E/S personnel suggest that there may be construct validity issues associated with pre-1995 forecast dates in the I/B/E/S Detail files. The overall message is that the choice of analyst forecast database is not innocuous, and further research is needed to evaluate the degree to which the variables developed from these databases faithfully represent the underlying constructs of interest.

Another avenue for future research-design oriented studies is to address the construct validity of the news variable in studies of the information content of analysts’ forecast revisions. Measurement error in the news proxy potentially creates ambiguities in cross-sectional comparisons of the information content of forecast revisions. The literature includes a curious regularity, indicating that the analyst’s own most recent (i.e., current outstanding) forecast of the target earnings variable is a better proxy for the market’s expectations than a more recent consensus forecast (e.g., Stickel, 1991; Gleason & Lee, 2003 (described in our Table 2, Panel B)). Future research might help us understand how the market forms its expectations regarding the timing and magnitude of an individual analyst’s next earnings forecast.

4. Summary and conclusion

Discovering the information and valuation models that determine equity security prices in capital markets is a daunting task. Analysts may collectively hold the key, but no single analyst can tell you what it is. Instead, the key lies in the way the market derives a consensus from the distribution of extant individual analysts’ forecasts of a company’s future earnings, the characteristics of the information impounded in that consensus, and the additional information the market incorporates into its model for valuing a company’s equity securities. Important insights can be gained from the research regarding analysts’ decision processes, determinants of analyst expertise and distributions of individual analysts’ forecasts, the informativeness of analysts’ research outputs, market and analyst efficiency with respect to value-relevant information, the effects of analysts’ economic incentives and behavioral biases on their research outputs, the effects of the institutional and regulatory environment, and the limitations of databases and various research paradigms. In this paper, we have provided some perspective on the research in each of these important areas.

The areas for future research that seem the most promising to us include the following. First, Schipper’s (1991) and Brown’s (1993) calls for research providing more insight into analysts’ decision processes are as relevant today as they were in 1992. We look forward to research clarifying the distinction between analysts’ roles as interpreters of public information and as developers of private information that is useful in determining prices of equity securities. The decision processes of analysts in distinguishing permanent from more temporary components of earnings reports (including temporary components due to earnings management) remain a critical area for future research. We also expect research to clarify the role of heuristics in the price-setting process and the degree to which these heuristics function as effective substitutes for rigorous multi-period valuation models. More research is needed to understand the interaction between analysts’ economic incentives and the frictions that limit investors’ abilities to arbitrage away any inefficiencies or biases in forecasts and prices resulting from those incentives, and we expect this research to have implications for emerging behavioral finance theories of market inefficiency.

We expect researchers to continue exploring the factors that make some analysts better forecasters than others. We also expect ongoing research attempting to uncover the market’s mechanism for developing earnings expectations from individual analysts’ forecasts. Further research is required to describe the behavior of the forecasts that have higher price impacts, such as long-term growth forecasts and target prices. Given the evidence of the informativeness of earnings in the presence of analysts’ target price forecasts, recommendations, and other information in analysts’ research reports, it is not clear that earnings forecasts are simply a means to an end (Schipper, 1991). Further research is needed to explore the importance of analysts’ earnings forecasts and actual earnings reports in the allocation of resources in capital markets. Finally, we expect to see more international research describing the institutional and regulatory factors that create cross-country differences in the role of analysts and the properties of their forecasts.
Acknowledgements

We greatly appreciate the research assistance of Kevin Hee and comments and suggestions from three anonymous referees, the associate editor, Mark Bradshaw, Donal Byard, Geoff Friesen, Steve Glover, Zhao-yang Gu, Rick Johnston, Dave Smith, Barry Spicer, and Jihnaught Wong.

References

Sundaresh RAMNATH is an Assistant Professor in the Accounting Department at the University of Miami, Florida. He earned his Ph.D. in Accounting from The Pennsylvania State University. His research interests are in the study of the impact of accounting information and the role of financial intermediaries in capital markets. His research has been published in the Journal of Accounting Research, International Journal of Forecasting, and Review of Financial Studies.

Steve ROCK is an Associate Professor of Accounting at the Leeds School of Business at the University of Colorado. He earned his Ph.D. in Accounting from The Pennsylvania State University. His research interests include the study of financial analyst forecasting behavior and the impact of incentives, earnings management, and initial public offerings. His research has appeared in Contemporary Accounting Research, International Journal of Forecasting, Journal of Accounting, Auditing and Finance, Journal of Accounting and Economics, and Journal of Accounting Research.

Philip SHANE is a Professor of Accounting in the Leeds School of Business at the University of Colorado and the Ernst & Young Professor of Accounting at the University of Auckland Business School. He earned his Ph.D. in Business at the University of Oregon. His primary research interests relate to financial analysts’ forecasting incentives and the interpretation of accounting information. His research has appeared in The Accounting Review, Contemporary Accounting Research, Decision Sciences, International Journal of Forecasting, Journal of Accounting Research, and other academic journals.

Maryland Public Service Commission – October 20, 2015

Janine Migden-Ostrander
RAP Principal
The Regulatory Assistance Project (RAP)

We are a global, non-profit team of experts focused on the long-term economic and environmental sustainability of the power sector. We provide assistance to government officials on a broad range of energy and environmental issues.
About RAP – US

RAP provides technical and policy support at the federal, state and regional levels, advising utility and air regulators and their staffs, legislators, governors, other officials and national organizations.

We help states achieve ambitious energy efficiency and renewable energy targets and we provide tailored analysis and recommendations on topics such as ratemaking, smart grid, decoupling and clean energy resources. RAP publishes papers on emerging regulatory issues and we conduct state-by-state research that tracks policy implementation.
What’s On the Horizon?

Convergence of multiple events:
 • Customer empowerment
 • New Technologies and Competitive Service Offerings

This leads to (in absence of any policy or structural response):
 • Reduction in utility sales and hence revenues
 • Potential rate responsibility shifts and equity questions

This is pitted against:
 • Public interest in low carbon energy solutions
 • While grid resilience becomes increasingly important in the wake of severe climate
Rate Design Roadmap for the 21st Century Utility

Utilities face unprecedented changes in the way power is generated and delivered. With the ramp-up in distributed generation, energy efficiency and demand response, electric vehicles, smart appliances, and more, the industry must rethink its rate structures to accommodate and encourage these innovations. Progressive rate design can make the difference in cost-effectively meeting public policy objectives—to use electricity more efficiently, meet environmental goals, and minimize adverse social impacts—while ensuring adequate revenue for utilities.

The Principles

1. A customer should be able to connect to the grid for no more than the cost of connecting to the grid.
2. Customers should pay for grid services and power supply in proportion to how much they use these services, and how much power they consume.
3. Customers that supply power to the grid should be fairly compensated for the full value of the power they supply.

Ill-Advised Shortcut

Failing to apply the principles for modern rate design may lead to higher usage and higher bills for customers. Straight-fixed-variable rate designs with large fixed customer charges discriminate against low-usage customers and those with distributed generation, potentially leading customers to abandon the grid entirely.
Principle #1

A customer should be allowed to connect to the grid for no more than the cost of connecting to the grid.
Principle #2

Customers should pay for the grid in proportion to how much they use the grid, and when they use the grid.
Principle #2 (cont’d)

Customers should pay for the grid in proportion to how much they use the grid, and when they use the grid.
Principle #3

Customers delivering power to the grid should receive full and fair value – no more and no less.
Some Rate Design Options

- Conventional Rate Design
- High Fixed Charges
- Demand or Connected Load Charge
- Bi-Directional Time of Use Rates
- Minimum Bills
Basic Customer Method

ONLY customer-specific facilities classified as customer-related
Straight Fixed/Variable:

100% of Distribution System Classified as Customer-related
Minimum System Method:

~50% of Distribution System Classified as Customer-related
Comparison of High Fixed Charge to Minimum Bill Rate Form

<table>
<thead>
<tr>
<th></th>
<th>Conventional Rate Design</th>
<th>High Customer Charge</th>
<th>$20 Minimum Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Bill; Usage of 1,000 kwh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Charge</td>
<td>$5.00</td>
<td>$30.00</td>
<td></td>
</tr>
<tr>
<td>Minimum Bill:</td>
<td></td>
<td>$20.00</td>
<td></td>
</tr>
<tr>
<td>Per-kWh Charge</td>
<td>$0.100</td>
<td>$0.075</td>
<td>$0.105</td>
</tr>
<tr>
<td>Total Bill (1000kWh)</td>
<td>$105.00</td>
<td>$105.00</td>
<td>$105.00</td>
</tr>
</tbody>
</table>

Elasticity Impact

<table>
<thead>
<tr>
<th></th>
<th>Conventional Rate Design</th>
<th>High Customer Charge</th>
<th>$20 Minimum Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate Difference</td>
<td>($0.025)</td>
<td>$0.005</td>
<td></td>
</tr>
<tr>
<td>% Rate Difference</td>
<td>-25%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Short Run Elasticity</td>
<td>-0.20</td>
<td>5%</td>
<td>-1%</td>
</tr>
<tr>
<td>Long-Run Elasticity</td>
<td>-0.70</td>
<td>18%</td>
<td>-3%</td>
</tr>
</tbody>
</table>
Maryland Ranks 9th in ACEEE Scorecard

“...the legislature enacted the EmPower Maryland Energy Efficiency Act of 2008, creating an EERS that sets a statewide goal of reducing per capita electricity use by 15% by 2015 with targeted reductions of 5% by 2011 (Order 82344). Since then, electric utilities have significantly expanded their energy efficiency program portfolios. More recent goals set by the PSC require utilities to ramp up savings by 0.2% per year to reach 2% incremental savings.”

http://database.aceee.org/state/maryland#sthash.9Tk8YTIR.dpuf
Other Considerations with High Customer Charges

• Does not promote conservation
• Increases the payback on energy efficiency investments
• Results in low usage customers (often low-income) subsidizing high usage customers (often higher income)
• Impact on utility investments – If the Volumetric Charge is less than the Long Run Marginal Cost, then customers will behave as if their incremental usage has less of a cost effect than it does. This can result in greater customer usage which means utilities need to invest in more facilities, hence raising rates.
• High customer charges may hasten customers exiting the grid, rather than maintaining a connection to it, which further exacerbates the situation.
Boiling It Down To Rate Design

<table>
<thead>
<tr>
<th>Rate Element</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs to Connect to the Grid</td>
<td></td>
</tr>
<tr>
<td>Billing and Collection</td>
<td>$4.00/month</td>
</tr>
<tr>
<td>Transformer Demand Charge</td>
<td>$1.00/kVA/month</td>
</tr>
<tr>
<td>Power Supply and Distribution (both directions)</td>
<td></td>
</tr>
<tr>
<td>Off-Peak</td>
<td>$.07/kWh</td>
</tr>
<tr>
<td>Mid-Peak</td>
<td>$.10/kWh</td>
</tr>
<tr>
<td>On-Peak</td>
<td>$.15/kWh</td>
</tr>
<tr>
<td>Critical Periods</td>
<td>$.75/kWh</td>
</tr>
</tbody>
</table>
Traditional Ratemaking View

Utility Average Cost of Service

Retail Rates
Utility View of Net Metering

Lost Revenues from Net Metering

Fuel and Purchased Power Costs Avoided By Net Metering
Solar Advocate View of Net Metering

Lost Revenues From Net Metering

Long-Run Avoided Cost for Generation, Trans, Dist
+ Reduced Emissions
+ Avoided Fuel Cost Risk
+ Avoided Fuel Supply Risk
+ Local Economic Development
+ Future Carbon Costs
+ Shading Benefits on AC Load
+ Much, much more
Balanced Net Metering View

Utility Average Cost of Service

Long-Run Avoided Cost for Generation, Trans, Dist
+ Avoided Emission Cost
+ Avoided RPS Obligation
+ Avoided Fuel Cost Risk
+ Avoided Fuel Supply Risk
Rate Design Resources

• Smart Rate Design for a Smart Future
• Designing Distributed Generation Tariffs Well
• Rate Design Where Advanced Metering Infrastructure Has Not Been Fully Deployed
• Revenue Regulation and Decoupling: A Guide to Theory and Application
• Time-Varying and Dynamic Rate Design

Go to www.raponline.org
About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power sector. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

jmigden@raponline.org
802-498-0740
Appendix
Alternatives to Net Metering

- Infant Industry Subsidy - Is that still valid?
- Value of Solar Tariff (VOST)
- Higher customer charge
- Special charge for PV customers
- Demand Charge
- Directional Pricing

Good Choice
Bad Choice
Infant Industry Subsidies
Are potential cross-subsidies a significant problem?

- Some level of cross-subsidy is normal and even desired
 - Customer classes, not individual rates
 - *Undue* discrimination is bad
- At low penetration levels, these lost revenues are extremely small compared to the revenue requirement
- But as deployment grows, at some point this could become a problem
Value of Solar Tariff (VOST)

Recognize all values of solar:

• Renewable
• New Resource
• Delivered to System
• Environmental
• Fuel Cost Risk
• Price Suppression
Value of Solar Tariff – RMI Study

Average USA Residential Rate: $0.125/kWh

Average Value of Solar: $0.162/kWh
Potential Cross-Subsidies

• **If value of PV < volumetric charges:**
 – Other customers subsidize PV customers
 – Under-recovery of utility’s fixed costs
 – Upward pressure on rates (cross subsidy)
 – Reduced utility shareholder returns

• **If value of PV > volumetric charges:**
 – PV customers subsidize other customers
 – Suppresses PV deployment from societal value
 – Utility effects may still require attention
The stock price effects from downward earnings guidance versus beating analysts’ forecasts: Which effect dominates?

Lynn Rees (corresponding author)
Department of Accounting
TAMU 4353
Texas A&M University
College Station, TX 77843-4353
Phone: (979) 845-6078
Fax: (979) 845-0028
Email: rees@tamu.edu

Brady Twedt
Texas A&M University
Phone: (979) 845-6070
Email: btwedt@tamu.edu

September 2010

Abstract: This paper provides evidence on the net stock price effects associated with managers following a disclosure strategy of guiding earnings down to a level where they can report a positive earnings surprise. Prior literature documents a stock price premium when firms meet or beat analysts’ forecasts. However, studies also show a substantial negative price response to downward earnings guidance that can potentially negate any benefit from reporting a positive earnings surprise. We find that the negative stock price effect for firms that release downward earnings guidance is substantially larger than the stock price premium from meeting analysts’ forecasts. Further, this downward guidance stock price penalty persists after explicitly controlling for other news that might be disclosed by managers that voluntarily provide guidance. These findings challenge conclusions made in some prior research that the optimal disclosure strategy is to ensure a positive earnings surprise at the earnings announcement date.

Acknowledgements: The helpful comments by Marcus Caylor, Ted Christiansen, Michael Drake, Thomas Lopez, and Jenny Tucker are gratefully acknowledged.
The stock price effects from downward earnings guidance versus beating analysts’ forecasts: Which effect dominates?

1. Introduction

This study examines the net stock price effects from following various disclosure strategies that separate total earnings news into management voluntary disclosures and the subsequent official earnings release. We are particularly interested in the net benefits from following a strategy where managers explicitly guide expectations down during a period in order to subsequently report a positive earnings surprise. In addition, we examine whether or not stock price effects associated with this disclosure strategy are permanent and can be justified on the basis of future earnings performance.

Our research question is motivated by several findings from the extant literature. In particular, prior research provides evidence suggesting that the overall reaction by investors to earnings news varies according to the manner in which the news is disclosed to the market.\(^1\) This evidence implies the existence of an optimal disclosure strategy from the perspective of maximizing stock price, and several studies have drawn inferences as to what is the optimal strategy. For example, Soffer, Thiagarajan, and Walther (2000) and Tan, Libby, and Hunton (2002) argue that the optimal disclosure strategy is one where firms report a positive earnings surprise at the official earnings release date no matter whether the total earnings news is positive, neutral, or negative. Consistent with this conclusion, the popular press and academic literature cite stock price implications as an explanation for why firms tend to walk down earnings expectations to a beatable level (Brown, 2002; Richardson et al., 2004).\(^2\) While not explicitly tested, the evidence in these studies suggests that the absolute stock price response to downward guidance is less than the stock price response to a positive earnings surprise.

\(^1\) See, for example, Kasznik and Lev (1995), Libby and Tan (1999); Soffer, Thiagarajan, and Walther (2000); Tan, Libby, and Hunton (2002); and Miller (2005; 2006).

\(^2\) There are many factors involved in a firm’s decision to issue guidance beyond the stock price. These include litigation costs (Francis et al., 1994; Skinner, 1994) and stock option compensation (Aboody and Kasznik, 2000; Noe, 1999). However, our research question is focused on the stock price effects of various earnings disclosure strategies.
However, evidence in other studies yields different implications. Specifically, research shows a more pronounced stock price response to management downward earnings guidance relative to upward guidance.\(^3\) This finding suggests that for firms with negative earnings news, issuing downward guidance is unlikely to yield a more positive response to earnings news relative to remaining silent. Consistent with this view, Kasznik and Lev (1995) find that for a small sample of firms with large negative earnings news that employ a wide variety of voluntary disclosures,\(^4\) the total stock price response for firms that warn is significantly more negative compared to a control sample of non-warning firms.\(^5\) However, Tucker (2007) argues that this finding is driven by firms self-selecting into guidance and non-guidance samples depending on the amount of other bad news they face. Using a Heckman selection model, she finds that after controlling for this self-selection bias, firms with negative earnings news who warn are no longer penalized by the stock market relative to those who keep silent.

Thus, the extant literature showing a stock price penalty for firms that warn is difficult to reconcile with studies that conclude the optimal disclosure strategy is to guide earnings down to a beatable level. Accordingly, the net benefit from guiding expectations down in order to report a positive surprise is ambiguous. We contribute to this literature by explicitly modelling and comparing the stock price effects of issuing downward earnings guidance and meeting analysts’ forecasts.

Our study is most closely related to Kasznik and Lev (1995) and Tucker (2007), both of which examine the overall stock price effect from warning about bad news. Besides explicitly comparing the stock price penalty from guiding forecasts down with the stock price premium from meeting analysts’ forecasts, our study can be further differentiated from Kasznik and Lev (1995) in that we consider only

\(^3\) See Hutton et al. (2003), Skinner (1994), and Kothari et al. (2009). Anecdotally, incidents of a large stock price response to downward earnings guidance are easy to find. On October 24, 2002, after the close of trading, CIGNA announced the company would not meet analysts’ expectations due to weakness in one of its major segments. The price of the company’s shares fell as much as 45 percent the following day. On January 3, 2006, prior to the market open, Pilgrim’s Pride guided first-quarter earnings lower citing lower sales prices and worse than expected performance in its Mexico operations. Share prices fell that day by more than 20 percent.

\(^4\) In addition to earnings guidance, a sampling of the types of management disclosures that are included in Kasznik and Lev (1995) are sales forecasts, asset write-offs, gains on asset sales, order backlog, stock repurchases, dividends, earnings components, appointments of officers and board members, and capital expenditures.

\(^5\) Similar results are documented in Atiase et al. (2006).
earnings guidance for a substantially larger sample and over a different time period. We restrict the analysis to management earnings guidance because we are interested in whether the benefits to walking expectations down to a beatable target are worth the costs of issuing downward guidance. We also do not restrict the analysis only to firms with large earnings news, which increases the generalizability of our results. Expanding on the findings of Tucker (2007), we further examine whether any differential valuation can be justified based on either the simultaneous disclosure of unfavourable non-earnings news or future earnings performance. Thus, the evidence here can more directly assess the overall stock price effects of following an earnings disclosure strategy that guides expectations down in order to report a positive earnings surprise.

The sample is comprised of 8,635 firm/quarter observations where managers provide explicit earnings guidance for quarter \(t \) subsequent to the earnings announcement for quarter \(t-1 \). Each sample observation is paired with a control firm matched on firm size, industry, time period, and the level of total earnings news disclosed during the quarter. As shown in Figure 1, we define total earnings news as the difference between actual quarterly earnings and the first available mean consensus analyst forecast occurring after the earnings announcement for quarter \(t-1 \).

[Insert Figure 1 Here]

Consistent with prior research (e.g., Brown, 2001; Cotter et al., 2006; Richardson et al., 2004), we find that analysts’ forecasts at the beginning of the quarter are generally optimistic, but tend to move downward over time to an attainable level. The propensity of firms to meet analysts’ expectations is much stronger for guidance firms than for non-guidance firms. Specifically, guidance firms meet or beat expectations 79 percent of the time, whereas, the rate for non-guidance firms is only 55 percent. This evidence is consistent with managers using quarterly earnings guidance as a tool to keep expectations in check (Hsieh et al., 2006; Matsumoto, 2002).

We find a significantly negative stock price penalty for firms that provide downward earnings guidance during the quarter, after controlling for the magnitude of total earnings news. Moreover, this downward earnings guidance penalty is larger in absolute value than the equity premium realized by firms
that meet analysts’ forecasts, as documented in prior research (Bartov et al., 2002; Lopez and Rees, 2002). Thus, this evidence challenges the notion purported by some empirical and experimental studies that firms can maximize stock price by following a strategy of disclosing bad news during the quarter in order to report a positive surprise at the earnings announcement date. In fact, our evidence suggests that when total earnings news is negative, on average, firms are better off from a stock price perspective to not provide guidance during the quarter.

We examine whether the stock price penalty for downward earnings guidance in the current quarter can be explained by poor future earnings performance. As pointed out by Tan et al. (2002), different market reactions to various disclosure paths followed by managers could be due to certain signalling properties. If downward earnings guidance has signalling ramifications for periods beyond the current quarter, then the observed stock price penalty for these firms would be justified. In addition, it is possible that firms providing downward guidance for the current quarter also tend to simultaneously disclose or signal negative information about future performance (Tucker 2007).

To investigate these possibilities, we first estimate a regression model where abnormal returns are measured over multiple periods beginning in the quarter when the guidance is issued. These returns are regressed on contemporaneous aggregated earnings and indicator variables for downward guidance and positive surprises at earnings announcement dates (along with other controls). If the stock price penalty is a consequence of the downward guidance signalling unfavourable information about future earnings, its significance should be attenuated when future earnings are explicitly included in the model. We do not document this result but rather, the stock price penalty for downward earnings guidance in the current quarter persists into the future even when we explicitly control for future earnings. In contrast, we observe a significant reduction in the equity premium to meeting analysts’ forecasts, which is consistent with the view that meeting analysts’ forecasts is a signal about superior future performance that is impounded into the current stock price (Kasznik and McNichols, 2002). As a sensitivity analysis, we also perform a two-stage Heckman selection model to control for self-selection bias, consistent with Tucker (2007). The use of the two-stage model does not qualitatively affect our results in that we continue to
find a significant stock price penalty for firms that provide downward earnings guidance, even when the guidance allows firms to meet analysts’ forecasts.

This study contributes to the literature by showing that earnings disclosure strategies that result in a positive earnings surprise are not always preferred from a valuation perspective, because the negative stock price effects from providing downward guidance can dominate the positive equity premium from meeting analysts’ forecasts. Further, we show that the stock price penalty to downward earnings guidance persists for several future quarters even after controlling for future earnings performance. These results challenge the conventional wisdom that companies can benefit from warning investors about impending bad news. However, they are consistent with other studies such as Hutton et al. (2003) and Kasznik and Lev (1995) that show a disproportionate negative reaction to downward guidance.

Our study provides a potential explanation for why firms might discontinue the practice of issuing earnings guidance. A 2007 survey by the National Investor Relations Institute indicates that 51 percent of its members in that year provided earnings guidance, which is a substantial decline from 77 percent in 2003. Recent studies that examine firm characteristics associated with the decision to stop providing earnings guidance consistently find that guidance stoppers tend to have poor current operating performance (e.g., Chen et al., 2007; Cheng et al., 2007; Houston et al., 2008). Evidence in this study suggests that firms might decide to discontinue guidance during periods of poor performance because of the significantly negative valuation effect, which is greater than the option of remaining silent and reporting a negative earnings surprise. A recent working paper finds that when total earnings news for a period is negative, a greater proportion of it is released through the earnings announcement relative to positive total earnings news (Roychowdhury and Sletten, 2010). This evidence suggests that many managers might be aware of the penalty for downward guidance and take actions to avoid it.

The paper proceeds as follows. In the next section, we review the literature related to this study and develop our hypothesis. Section 3 describes the sample. Sections 4 and 5 provide empirical results. In section 6, we reconcile results from this study with prior empirical work that has examined earnings preannouncement strategies. The final section offers some conclusions and discussion.
2. Literature Review and Hypothesis Development

It is well established that stock returns are positively associated with a firm’s earnings news, where total earnings news for a quarter is defined as the difference between the market’s earnings expectations at the beginning of the period and actual realized earnings (see Figure 1). Managers can choose when and how to communicate earnings information to the market, and many firms provide voluntary earnings guidance about current and future earnings. Many studies have documented a significant stock price reaction to news contained in earnings guidance, which indicates that these disclosures are credible (Atiase et al., 2005; McNichols, 1989; Pownall et al., 1993; Pownall and Waymire, 1989).

Managers give several reasons for why they provide earnings guidance, including, mitigating stock price volatility, building a wider shareholder base, and satisfying a market demand for information (Hsieh et al., 2006). Achieving higher valuations is another frequently cited reason that is supported by academic research. That is, several studies find a stock price premium (penalty) to meeting (missing) analysts’ forecasts (Lopez and Rees, 2002; Skinner and Sloan, 2002). In addition, research evidence is consistent with managers manipulating accruals (Dhaliwal et al., 2004; Moehrle, 2002) or even real decisions (Graham et al., 2005) in order to achieve earnings targets. Managing expectations through earnings guidance is another tool available to managers (Baik and Jiang, 2006; Cotter et al., 2006; Matsumoto, 2002).

From a valuation perspective, guiding earnings down to a beatable level explicitly assumes that the market reaction to a positive earnings surprise at the earnings announcement date more than compensates for the negative response to earnings guidance. Some support for this view is provided by Bartov et al. (2002). Although they do not directly examine explicit earnings guidance disclosed by managers, they find that investors assign a smaller weight to analysts’ forecast revisions during a quarter compared to earnings surprises at the earnings announcement date. Other archival and experimental studies provide additional support for the idea that stock price is maximized by ensuring a positive
surprise at the earnings announcement date, even when it involves issuing downward guidance during the period. Soffer, Thiagarajan, and Walther (2000) find that most firms use earnings preannouncements to avoid a negative surprise at the official earnings release date, and that firms realize a more negative stock price reaction when they report a negative earnings surprise (holding the level of total earnings news constant). In an experimental setting, Tan, Libby, and Hutton (2002) show that analysts’ forecasts of future earnings are higher when firms understate positive news and overstate negative news prior to an earnings announcement. Miller (2005) presents evidence indicating that reactions by investors and analysts to total earnings news are more pronounced when the earnings guidance and the official earnings announcement surprise are of the same sign. In all these studies, the results imply that the optimal strategy from a stock price perspective is to disclose total earnings news to ensure a positive earnings surprise at the earnings announcement date, which would include guiding earnings down during periods when total earnings news is negative.

However, a primary motivation for the current study is extant research that appears to contradict the notion that firms are better off from a stock price perspective to warn investors when they have negative earnings news. Caylor, Lopez, and Rees (2007) do not explicitly examine earnings guidance but examine analyst forecast revisions and abnormal returns for various earnings paths that firms can take during a quarter. They find that across all earnings paths, investors do not always assign a greater weight to the earnings surprise compared to the forecast revision during the period and that, although differential pricing exists across earnings paths, stock returns are not always maximized by reporting a positive earnings surprise at the official earnings release date. The authors reconcile their seemingly contrasting results with prior findings by showing that separate analyses of different earnings paths that were combined in previous research can lead to different conclusions. In addition, Hutton, Miller, and Skinner (2003) find that the stock price response is substantially more pronounced when management provides downward guidance compared to upward guidance. Specifically, they find a mean stock price reaction of -9.96 percent to downward guidance but only 1.93 percent for upward guidance. Other studies find a similar asymmetric response to downward and upward management guidance (Skinner 1994; Kothari et
Thus, when a firm has negative total earnings news, it is not obvious that the optimal preannouncement strategy would be to guide expectations down in order to report a positive earnings surprise.

Finally, Kasznik and Lev (1995) examine all corporate voluntary disclosures 60 days prior to a large earnings surprise announcement and find that the stock price reaction to earnings news for firms that warn is more negative compared to a control group of no-warning firms. These results suggest that firms realize a stock price penalty for issuing downward guidance, and contrast with popular opinion in the business press that investors have little tolerance for earnings disappointments and will punish those firms that do not warn. However, Tucker (2007) provides evidence suggesting that the results in Kasznik and Lev (1995) are driven by a failure to control for a systematic bias that occurs when downward guidance firms tend to have other bad news that is not explicitly contained in the current period guidance.

The contrasting implications from the above studies prevent us from extrapolating their results to the net valuation consequences of issuing downward earnings guidance in order to report a positive earnings surprise. Given that recent research finds that firms tend to discontinue the practice of issuing guidance during periods of poor performance, we examine the following hypothesis:

\textit{Hypothesis: Firms realize a stock price penalty from issuing negative quarterly guidance that is greater in absolute value than the stock price premium from meeting analysts’ forecasts.}

3. Description of Sample

The sample employed in this study is comprised of 8,635 earnings guidance observations issued by 2,751 unique firms over the period 1993-2006 as obtained from the First Call \textit{Company Issued Guidance} (CIG) database. While we are particularly interested in the net effects of downward guidance and a positive earnings surprise, we retain all guidance observations in the sample in order to assess differences in our results across different types of guidance. Table 1 provides a breakdown of the sample

6 Their sample is restricted to earnings surprises that exceed one percent of stock price.
7 By comparison, previous archival studies on earnings preannouncements typically employ only a few hundred observations or less.
selection process. We begin by extracting from the CIG database all available management disclosures that relate to earnings. The initial screen eliminates almost 15,000 observations where the management guidance is open-ended or qualitative such that the nature and/or magnitude of the news cannot be unambiguously determined. The focus in this study is on quarterly earnings guidance and accordingly, approximately 48 percent of the remaining observations are deleted because they are disclosures about annual earnings. We include only the last guidance observation for firms that provide guidance more than once during the quarter.

[Insert Table 1 Here]

We obtain data on analysts’ forecasts, actual earnings, and earnings announcement dates from I/B/E/S. To conduct the analyses, we require that firms must have a consensus forecast for quarters t and $t+1$ prior to the management guidance date for quarter t but after the earnings announcement date for quarter $t-1$, and a consensus forecast for quarter $t+1$ that occurs after the earnings announcement date for quarter t. Firms are eliminated when these forecasts are unavailable along with actual earnings and an earnings announcement date from I/B/E/S. An additional 97 observations are deleted where the earnings announcement date is more than 75 days after the fiscal quarter end. Thus, for our sample, earnings is disclosed on a timely basis for the period, which mitigates confounding factors that can affect returns but not show up in earnings for quarter t. Two additional screens eliminate observations that have missing stock returns data from CRSP (355 observations) and where the matching procedures do not yield a matched firm with sufficient data from I/B/E/S and/or CRSP (2,740 observations).

To control for various factors that could affect the earnings/return relation, we obtain a matched control sample of firms that did not provide earnings guidance during the quarter. The matching procedure is as follows. First, for each firm/quarter guidance observation, we obtain all firms listed on I/B/E/S that are in the same industry\(^8\) and did not provide guidance during the quarter (both qualitative and quantitative guidance firms are excluded). We also require that the sign of total earnings news is the same for the guidance and matched firms, and the absolute difference in total earnings news between the

\(^8\) Industry is represented as the first two digits of the Global Industry Classification Standard code.
guidance and matched firms is less than or equal to five cents. Total earnings news is defined as the
difference between actual earnings and the first available mean consensus analyst forecast for quarter t
that occurs after the earnings announcement for quarter $t-1$ (see Figure 1). Finally, we require that firm
size, as measured by the quarter end market value of equity, for the matched firm is between 75 percent
and 125 percent of firm size for the guidance firm. From this set of potential matches, we choose the firm
that is closest to the guidance firm’s total earnings news. If there are more than one possible match firms
that minimize the difference in total earnings news, we choose the firm that minimizes the difference in
market value of equity. Thus, the non-guidance matched firms control for the sign and magnitude of total
earnings news, industry, firm size, and time period.9

Table 2 provides descriptive statistics for the guidance and no-guidance control samples. Sample
size varies across the different firm characteristics listed in Table 2 because of the availability of financial
statement data from COMPUSTAT, which was not a criterion in the sample selection process. The mean
undeflated earnings per share (EPS) for the guidance and matched firms are about $0.26 and $0.22,
respectively. Most firms have negative total earnings news for the period as indicated by TNews%,
defined as total earnings news deflated by price as of the first consensus analyst forecast for quarter t
occurring after the earnings announcement for quarter $t-1$. This result is consistent with general optimism
in analysts’ forecasts at the beginning of the quarter. Firm characteristics related to size (analyst
following, total sales, and total assets) suggest that the matching procedure on size was successful.
Although we use market value of equity as the matching variable, we do not find substantial median
differences in analyst following, sales, and total assets across the guidance and no-guidance samples.
Dispersion in analysts’ forecasts is slightly greater for the no-guidance sample, which might be expected
given that the control sample is probably less likely to have provided guidance at any time prior to the
first consensus forecast for the period. The median market-to-book ratio (MB) and leverage (Lev) are

9 We find successful matches for an additional 1,410 firm/quarter guidance observations when we eliminate the
industry criterion, and an additional 391 observations when we further eliminate the firm size criterion. All
inferences in the paper remain unchanged when we use this expanded sample.
fairly close across the two samples, although the variability in both appears to be somewhat greater for the control firms.

[Insert Table 2 Here]

In Table 3, the guidance observations are partitioned into groups based on the direction of the earnings guidance and the nature of the earnings surprise at the subsequent official earnings release. The direction of earnings guidance is determined by comparing the guidance to the mean consensus analyst forecast that exists prior to the guidance. Similarly, the nature of the earnings surprise at the official earnings release is considered positive (neutral) [negative] when actual earnings are greater than (equal to) [less than] the management forecast. In the final row of Table 3, we present the direction of earnings news at the earnings announcement date for the matched sample of no-guidance firms. For the matched sample, the nature of the earnings surprise is determined by comparing actual earnings with the most recent available mean consensus analyst forecast prior to the earnings announcement date.

[Insert Table 3 Here]

The cell frequencies in Table 3 reveal that most earnings guidance is negative (63%). Also, only 21 percent of guidance firms experience a negative surprise at the earnings announcement date, which is substantially smaller than 45 percent of no-guidance firms that report a negative earnings surprise. Most of the negative earnings surprises for guidance firms occur when downward guidance is disclosed during the quarter but the guidance failed to disclose all of the bad news (76%). However, among all firms with downward guidance, 22 percent disclose all of the bad news at the guidance date, and 53 percent reveal something greater than the bad news (resulting in a positive earnings surprise).

4. **Contemporaneous Valuation Effects of Downward Earnings Guidance**

 In this section, we examine the net stock price effects from issuing downward earnings guidance and meeting analysts’ forecasts during a quarter. In Table 4, we present statistics on the market reaction to earnings news after partitioning the guidance and matched samples based on the level of total earnings news. Panels A and B report median returns for firms with positive and negative total earnings news,
respectively. The variable CAR^{EG} represents the 3-day size-adjusted return from one day before to one
day after the guidance date. CAR^{EA} is the 3-day size-adjusted return surrounding the earnings
announcement date. The last abnormal return metric (lwCAR) is a long-window size-adjusted return that
extends from one day before the first mean consensus analyst forecast for the quarter until one day
following the earnings announcement date. This quarterly return metric captures the entire valuation
effects of total earnings news disclosed during the period.

[Insert Table 4 Here]

Focusing on the group of firms with small (1 to 5 cents) positive total earnings news in Panel A,
the investor response surrounding the guidance is slightly positive, as indicated by the 1.4 percent
abnormal return.10 The median abnormal return surrounding the subsequent earnings announcement is
also positive, albeit small in magnitude (only 0.9 percent). This evidence is consistent with managers
disclosing only a portion of good news at the guidance date (Soffer et al., 2000). The abnormal return for
the no-guidance matched sample is 1.6 percent at the earnings announcement date and is significantly
greater than the return for the guidance sample, which is to be expected given that some of the good news
for the guidance sample was disclosed previously when the guidance was issued. The overall abnormal
return for the quarter (lwCAR) is close to four percent for both groups and is not significantly different
across the two samples.

Turning now to the medium (+6 to +15 cents) and large (>+15 cents) total earnings news
partitions, we continue to find significantly positive abnormal returns around the guidance date and the
earnings announcement date for the guidance sample, indicating that the guidance provides positive news
to the market, but that managers saved some positive news for the earnings announcement. One
important difference for the medium and large total earnings news subsamples, however, is that we
observe a more pronounced quarterly return for the guidance sample relative to the quarterly return for the
no-guidance matched sample. The difference is statistically significant at the $\alpha = .01$ level for both

10 We do not indicate in the table statistical significance for the median levels; however, unless otherwise indicated,
all medians are statistically significant at conventional levels.
medium and large positive total earnings news. Thus, for medium and large total earnings news,
univariate differences in medians suggest that firms can realize more positive abnormal returns when they
provide guidance during the period. Assuming that the guidance does not disclose more than 100 percent
of the good news, this result is consistent with the cue consistency theory forwarded in Miller (2005).

Results for firms with negative total earnings news are reported in Panel B of Table 4, and it is
here where substantial differences arise between the guidance and no-guidance samples. When the
negative total earnings news is small (-1 to -5 cents), the 3-day abnormal return surrounding the guidance
is large in absolute value, -3.5 percent. The absolute magnitude is substantially greater than the 1.4
percent abnormal return for small upward guidance in Panel A, however, this could be due to managers
disclosing a greater portion of bad news relative to the portion of good news they disclose at the guidance
date. The median abnormal return at the earnings announcement date is not significantly different from
zero for the guidance sample,11 and is -1.3 percent for the no-guidance sample. This difference is
statistically significant at the $\alpha = .01$ level, as would be expected since the guidance sample likely
disclosed their bad news at the guidance date. However, the finding in the last column that the quarterly
abnormal return is significantly more negative for the guidance sample suggests that firms might be
penalized from a stock price perspective for providing the guidance relative to those firms with no
guidance. The difference of 4.1 percent is substantial given the relatively low level of total earnings
news.

For the medium (-6 to -15 cents) and large (< -15 cents) negative total earnings news groups, we
find qualitatively similar results but larger magnitudes for the median levels and differences in medians.
Most importantly, quarterly abnormal returns to negative total earnings news are much more pronounced
when firms provide guidance during the period. The differences in lwCAR for the medium and large total
earnings news groups are -7.9 and -8.6 percent, respectively. These magnitudes are substantially greater
in absolute magnitude than the corresponding differences for positive total earnings news in Panel A, and

11 The median abnormal return surrounding the earnings announcement date for the medium total earnings news
group is also not significantly different from zero. All other median levels in the panel are significant at
conventional levels.
provide preliminary evidence consistent with there being a stock price penalty for negative quarterly earnings guidance.

To more fully control for the effects of the magnitude of total earnings news on returns, we estimate the following regression (firm and time subscripts omitted):

\[
lw\text{CAR} = \beta_0 + \beta_1\text{TNews}\% + \beta_2\text{GUIDE} + \beta_3\text{DOWN}^{\text{Guide}} + \beta_4\text{PS}^{\text{EA}} + \beta_5\text{PTNews} + \sum_{i=1}^{53} \gamma_i QTR + \epsilon
\]

(1)

The variables lw\text{CAR} (long window return) and T\text{News}\% (total earnings news) have been defined previously. \text{GUIDE} is an indicator variable equal to one when the firm provides guidance during the quarter, and zero if the observation is a matched control firm. \text{DOWN}^{\text{Guide}} is an indicator variable equal to one when the quarterly earnings guidance direction is negative, and zero otherwise. Thus, the sum of \beta_2 and \beta_3 yields the average effect on returns from issuing downward earnings guidance after controlling for total earnings news. A negative sum would be consistent with the preliminary findings in Table 4 suggesting a market penalty to issuing an earnings warning. The coefficient on \text{GUIDE} (\beta_2) provides evidence as to how stock prices are affected by the issuance of upward and confirming guidance.

The variable \text{PS}^{\text{EA}} is an indicator variable equal to one when the firm reports a positive surprise at the earnings announcement date, and zero otherwise. The coefficient on this variable is expected to be positive if the firm receives a market reward from reporting actual earnings that beat expectations, as documented in prior research (Bartov et al. 2002). Thus, the sum of \beta_2 + \beta_3 + \beta_4 compares the positive stock price effects that arise from the firm reporting a positive earnings surprise with the negative effects from issuing an earnings warning (after controlling for the magnitude of total earnings news), and represents a formal test of our hypothesis.

\text{PTNews} is an indicator variable equal to one when the firm’s total earnings news is positive, and zero otherwise. Caylor et al. (2007) provide evidence that the market reward to meeting analysts’ forecasts is more a function of the first analyst forecast as opposed to the most recent forecast. Thus, if this finding holds for our sample and period, we expect the coefficient on this variable to be positive.
To test the significance of the coefficient magnitudes in equation 1 (and all other regression equations), we control for dependency in the error terms by reporting standard errors clustered by firm and include quarterly dummy variables in the regression (Petersen, 2009; Rogers, 1993). To control for outliers and observations with undue influence on the regression parameters, we delete observations where the value of total earnings news is greater in absolute value than 25 percent of stock price or abnormal returns is greater than 100 percent in absolute value.12

The results from estimating equation 1 are reported in Table 5 (quarterly dummies not reported). In addition to the full model, we report results from estimating a reduced model that merely examines the well-known relation between earnings and contemporaneous returns and forecast revisions. Comparing the full and reduced models provides some insight as to the effect of the indicator variables on the model’s fit and their significance in explaining how investors and analysts respond to total earnings news. As expected, TNews\% is highly significant. The magnitude of the slope coefficient suggests that for each dollar of total earnings news, stock price increases by approximately $3.41. Measurement error in the explanatory variable and non-linearities in the regression both suggest that this slope coefficient is likely understated (Kothari and Zimmerman, 1995).

Upon estimating the full model, we find a significant increase in the adjusted-R2 and TNews\% remains highly significant. We document a significantly positive coefficient on GUIDE, which indicates that firms realize a small stock price bump from providing upward guidance during the period independent of total earnings news, which is consistent with evidence presented in Table 4. Also consistent with Table 4 results, we find a significantly negative stock price effect on quarterly earnings of about -9.3 percent (-10.8 + 1.5) when firms issue downward earnings guidance. As expected and consistent with prior research, there is an equity premium to meeting the most recent analyst forecast after controlling for the magnitude of total earnings news (Lopez and Rees, 2002). However, this equity

12 Admittedly, these parameter cut-offs are arbitrary, but they result in fewer deleted observations compared to the no less arbitrary method of deleting observations in the extreme 1 or 5 percentile tails of the distribution, which is a common practice in the literature.
premium does not compensate for the downward earnings guidance, as the absolute magnitude of $\beta_2 + \beta_3$ is significantly greater than that of β_4 (p-value = .001).13

The results in Tables 4 and 5 provide new insight as to the net effects from a valuation perspective of guiding earnings down in order to report a positive earnings surprise. When firms have negative total earnings news, they would appear to benefit from going silent, which helps explain why firms choose this route during periods of poor operating performance (e.g., Chen et al., 2007; Cheng et al., 2007; Houston et al., 2008). The results are in stark contrast with research on preannouncement strategies (e.g., Soffer et al., 2000; Tan et al., 2002) suggesting that the optimal strategy is one that ensures a positive earnings surprise at the earnings announcement date. It appears that the pronounced investor reaction to downward earnings guidance is not offset by the equity reward from reporting a positive surprise, which is a new finding that this study contributes to the literature.

5. **Rationality of the Stock Price Penalty for Downward Earnings Guidance**

The previous section documents a net stock price penalty to issuing downward quarterly guidance, even after considering the stock price bump from beating analysts’ forecasts. In particular, the evidence in Tables 4 and 5 consistently shows that downward guidance results in lower quarterly abnormal returns. This response by investors could be rational if firms, by choosing to issue downward earnings guidance in the current period, are signalling (either implicitly or explicitly) poor future performance. Alternatively, given that earnings guidance merely communicates differently the same earnings information for the current period after holding constant the level of total earnings news, it’s possible the results are due to a market overreaction to downward earnings guidance. In an experimental setting, Libby and Tan (1999) find that although analysts believe earnings declines are less permanent for those firms that warn investors, the process of sequentially processing two signals (an earnings preannouncement warning and the subsequent actual earnings release) results in lower forecasts of future

13 We also document an incremental and more pronounced equity premium when firms beat the first mean consensus analyst forecast for the period, which is consistent with Caylor et al. (2007), however, this stock price effect does not depend on whether or not the firm provides guidance during the period.
earnings for firms that warn of bad news. This disconnect between what individuals believe and how they behave is a common finding in the judgment and decision making psychology literatures (Libby, 1981).

To provide evidence on whether the stock price penalty to downward earnings guidance is rational, we first estimate regressions that aggregate earnings news and equity returns over multiple periods. The association of downward guidance with contemporaneous forecast revisions and abnormal returns could be a function of guidance firms disclosing more bad news about future earnings realizations (Tucker, 2007). If this is the case, by including future earnings performance in a regression model where equity returns are cumulated over the corresponding periods that earnings are aggregated, we should observe an attenuation of the coefficient on DOWNGuide since any future earnings signal contained within the downward guidance is explicitly included in the model. Likewise, prior research generally attributes the stock price premium to meeting analysts’ forecasts as a signal for superior future performance (Bartov et al., 2002). If this is the case, a similar attenuation for the coefficients on PSAEA and PTNnews should be observed as future earnings realizations are included in the model.

Accordingly, we estimate the following three regressions, where earnings and returns are aggregated over two, three, and four quarters, respectively.

\[
\text{Two Period Model} \\
\text{CAR}_2 = \gamma_0 + \gamma_1 T\text{News}_0^2 + \gamma_2 \text{GUIDE} + \gamma_3 \text{DOWN}^\text{Guide} + \gamma_4 \text{PS}^\text{EA} + \gamma_5 \text{PTNews} + \gamma_6 \text{PS}^\text{EA+t+1} + \gamma_7 \text{PTNews}^t+1 + \beta_i \sum_{i=1}^{53} QTR + \epsilon \\
(2)
\]

\[
\text{Three Period Model} \\
\text{CAR}_3 = \gamma_0 + \gamma_1 T\text{News}_0^3 + \gamma_2 \text{GUIDE} + \gamma_3 \text{DOWN}^\text{Guide} + \gamma_4 \text{PS}^\text{EA} + \gamma_5 \text{PTNews} + \gamma_6 \text{PS}^\text{EA+t+1} + \gamma_7 \text{PTNews}^t+1 + \gamma_8 \text{PS}^\text{EA+t+2} + \gamma_9 \text{PTNews}^t+2 + \beta_i \sum_{i=1}^{53} QTR + \epsilon \\
(3)
\]

\[
\text{Four Period Model} \\
\text{CAR}_4 = \gamma_0 + \gamma_1 T\text{News}_0^4 + \gamma_2 \text{GUIDE} + \gamma_3 \text{DOWN}^\text{Guide} + \gamma_4 \text{PS}^\text{EA} + \gamma_5 \text{PTNews} + \gamma_6 \text{PS}^\text{EA+t+1} + \gamma_7 \text{PTNews}^t+1 + \gamma_8 \text{PS}^\text{EA+t+2} + \gamma_9 \text{PTNews}^t+2 + \gamma_{10} \text{PS}^\text{EA+t+3} + \gamma_{11} \text{PTNews}^t+3 + \beta_i \sum_{i=1}^{53} QTR + \epsilon \\
(4)
\]

The dependent variables in the respective models (CAR2, CAR3, and CAR4) are size-adjusted returns extending from one day prior to the first mean consensus forecast in quarter \(t\) through one day following
the earnings announcement in quarters $t+1$, $t+2$, and $t+3$, respectively. Therefore, these returns reflect earnings information disclosed within the earnings guidance in quarter t and the entire subsequent quarter(s). TNews%2, TNews%3, and TNews%4 are the total earnings news aggregated over the quarters that correspond with the dependent variable, deflated by stock price as of the first consensus analyst forecast for quarter t occurring after the earnings announcement for quarter $t-1$. Specifically, total earnings news in quarter t is defined as before (actual earnings in quarter t less the first mean consensus analyst forecast after the earnings announcement for quarter $t-1$). In subsequent quarters $t+1$ through $t+3$, total earnings news is defined as actual earnings for those quarters less market expectations existing in quarter t. When available, existing analysts’ forecasts for the corresponding quarters that exist prior to the earnings guidance in quarter t are used as proxies for market expectations. However, most firms do not have analysts’ forecasts beyond quarter $t+1$. Therefore, when analysts’ forecasts for future quarters are not available, we use actual earnings realized by the firm in the same fiscal quarter one year earlier.\(^{14}\)

PS\(^{EA}\) and PTNews, as defined before, are indicator variables equal to one when the firm reports actual earnings greater than the earnings guidance (or the last available mean consensus analyst forecast for the no-guidance sample) and the first available mean consensus forecast for the quarter t, respectively. The remaining variables in the model are similar indicator variables for the quarter indicated. For example, PS\(^{EA+t+1}\), PS\(^{EA+t+2}\), and PS\(^{EA+t+3}\) are equal to one when the firm reports actual earnings in quarters $t+1$, $t+2$, and $t+3$, respectively, that exceed the most recent mean consensus analyst forecast prior to the earnings announcement for that quarter. Similarly, PTNews\(^{t+1}\), PTNews\(^{t+2}\), and PTNews\(^{t+3}\) are equal to one when actual earnings in the respective quarters exceed market expectations as of the guidance date in quarter t.

\(^{14}\) As an alternative approach to obtain market expectations when analysts’ forecasts are unavailable, actual earnings in previous periods are adjusted by the difference between consensus analysts’ forecasts for quarter t that existed immediately prior to the guidance, and the last consensus analyst forecast for quarter $t-4$ prior to the earnings announcement for quarter $t-4$. This approach assumes that any forecasted improvement or decline in earnings for the current period relative to a year ago is permanent and the trend will continue for all subsequent quarters. Results from this alternative approach are qualitatively identical to what is reported in Table 6.
Results from estimating the multi-period regression equations 2 through 4 are presented in Table 6. The coefficient magnitudes and significance levels for DownGuide, PSEEA, and PTNews can be compared with the one period model reported in Table 5. As expected, the association between returns and earnings news is strongly positive in every regression, and the magnitude of γ_1 increases as the number of aggregated periods increase, consistent with prior research (Warfield and Wild, 1992). Of particular interest in these regressions are the magnitudes of γ_2 through γ_5. The coefficients on GUIDE and DownGuide are significant in every period, and their magnitudes are similar across regressions. Thus, the returns association with a firm’s providing guidance and, in particular, the disproportionate decrease in market value from providing downward guidance persists up through quarter $t+3$ and there is virtually no attenuation in this association (change in coefficients across models is not significantly different). This stock price penalty cannot be explained by a decrease in future earnings performance given that future earnings are explicitly included in these models. The association between market value and downward guidance appears to be incremental to any information contained within the guidance about current or future earnings.

[Insert Table 6 Here]

In contrast to the persistent magnitude of the coefficients for GUIDE and DownGuide, we find a general decline in coefficient magnitudes for PSEEA and PTNews and their future counterparts as we increase the number of periods in the model (from the one period model in Table 5 to the four period model in Table 6). For example, the coefficient for PSEEA in regression equation (1) reported in Table 5 is 0.024, suggesting a 2.4 percent equity premium for meeting analysts’ expectations at the earnings announcement, after controlling for total earnings news. This premium tends to decline as future earnings are included in the regression. The only exception is γ_4 in the four period model relative to the three period model. A general declining trend for PTNews is also observed and for these variables’ future counterparts (coefficients γ_6 – γ_9 in Table 6). These results are consistent with the notion that the premium to beating analysts’ forecasts (whether it be the first or last forecast for the period) is a rational
market response to signals about future earnings performance, and the premium declines as earnings performance is explicitly included in the model.

To provide further evidence on the rationality of the differential market response to downward guidance, we also re-estimate regression equation (1) using a two-stage Heckman selection model to control for a potential self-selection bias wherein firms who choose to issue guidance may have larger amounts of unfavourable news than other firms. Although researchers have expressed concerns in recent years regarding these types of selection models (e.g., Francis and Lennox, 2008; Kennedy, 2008; Puhani, 2000), the use of such a model increases the comparability of our findings with those of prior research, notably Tucker (2007).

In the first stage, we follow Tucker (2007) in modelling managers’ litigation, reputation, and earnings-torpedo-related motives for issuing guidance. The following six instrumental variables from Tucker (2007) are utilized: the log of market value of equity, the log of the absolute value of the earnings surprise, the number of quarterly earnings guidelines issued in the previous year, the average number of analysts following the firm, the market-to-book ratio, and earnings volatility. We also include three additional instruments. Litigation risk is captured by including an indicator variable equal to one if the firm belongs to a high litigation-risk industry as defined by Matsumoto (2002). To capture earnings-torpedo-related effects that might motivate managers to warn (Skinner and Sloan, 2002), we include stock return volatility during the previous 12 months and the consensus analyst long-term earnings growth forecast.

Similar to Tucker (2007), we interact the inverse Mills ratios from this analysis with GUIDE in our second stage. In untabulated analysis, we find that while this control for self-selection does slightly reduce the magnitude of the results in Table 5, inferences remain unchanged. Thus, our results do not appear to be driven by a self-selection bias that is related to other earning news simultaneously disclosed by guidance firms.

15 Specifically, the negative stock price effect of issuing downward guidance is reduced from -9.4 percent to -6.9 percent, while the equity premium from meeting analysts’ expectations decreases from 2.7 percent to 2.0 percent. More importantly, the absolute magnitude of $\beta_2 + \beta_3$ remains significantly greater than that of β_4 (p-value = .001).
6. **Reconciling Results with Prior Research**

The evidence in this study indicates that firms realize a stock price penalty from issuing negative quarterly earnings guidance that exceeds the stock price premium from meeting analysts’ forecasts, after holding total earnings news constant. Our results do not explain the rationale for the penalty, but they can assist in explaining why firms tend to discontinue providing guidance during times of poor operating performance (e.g., Chen et al., 2007; Cheng et al., 2007; Houston et al., 2008). In addition, our results are consistent with some prior research on the differential market response to downward guidance (Hutton et al., 2003) and the market response to pre-earnings announcement warnings of large negative surprises (Kasznik and Lev, 1995). However, our results contrast with research suggesting that the optimal disclosure strategy from a stock price perspective is to ensure a positive surprise at the earnings announcement, even when that means talking analysts’ forecasts down. In this section, we attempt to reconcile our results with prior contrasting research by initially estimating the same regression specifications that were implemented in other studies, and then expanding the regressions to examine the incremental significance of DOWNGuide.

Two archival studies that draw different conclusions from this study are Soffer et al. (2000) and Miller (2005). Soffer et al. (2000) conclude that the market reacts more strongly to the earnings announcement compared to an earnings preannouncement, which is opposite from what we find for downward guidance observations. Also, Soffer et al. conclude that the optimal preannouncement strategy to maximize stock price is to always report a positive earnings surprise. In their study, the sign of the preannouncement surprise is unimportant so long as it does not preclude a firm from reporting a positive surprise at the earnings announcement date.

Miller (2005) concludes that the market reaction to total earnings news is most pronounced when the guidance news and earnings announcement news are of the same sign. This cue consistency theory is not completely consistent with the implications in this study that suggest the key to an optimal disclosure strategy is not the consistency of the earnings surprises but rather, the sign of the earnings guidance.
We use the same terminology employed in Soffer et al. (2000) to express their regression specification as follows:

\[
\text{CAR}^{\text{PA}-1,\text{EA}+1} = \alpha_0 + \alpha_1 \text{TOTNEWS} + \alpha_2 \text{NEG}^{\text{EA}} + \alpha_3 (\text{TOTNEWS} \times \text{NEG}^{\text{EA}}) + \varepsilon
\]
(5)

The measurement of the variables in equation (5) is equivalent or very similar to what has already been used in regression equations (1) through (4) in this study, and we continue to employ the same measurement procedures as before. Any differences in variable measurement between this study and Soffer et al. (2000) are specifically delineated. \(\text{CAR}^{\text{PA}-1,\text{EA}+1}\) is defined in Soffer et al. (2000) as the size-adjusted return extending from one day before the earnings guidance to one day following the official earnings release date. We extend the window for this variable to one day before the first consensus analyst forecast to ensure that all the earnings news is captured by returns. TOTNEWS or total earnings news is measured the same way as \(\text{TNews}\%\) in equation (1).\(^{16}\) \(\text{NEG}^{\text{EA}}\) is an indicator variable equal to one when the firm reports a negative surprise at the earnings announcement date and zero otherwise.\(^{17}\)

Upon initially estimating equation (5) and comparing our results with the results reported in Soffer et al. (2000), we estimate an expanded equation that includes \(\text{DOWN}^{\text{Guide}}\) as an additional explanatory variable, which indicates whether or not the earnings guidance during the period is downward (as defined before).

\[
\text{CAR}^{\text{PA}-1,\text{EA}+1} = \alpha_0 + \alpha_1 \text{TOTNEWS} + \alpha_2 \text{NEG}^{\text{EA}} + \alpha_3 (\text{TOTNEWS} \times \text{NEG}^{\text{EA}}) + \alpha_4 \text{DOWN}^{\text{Guide}} + \varepsilon
\]
(6)

Similar to Soffer et al. (2000) we estimate regression equation (6) only for the guidance sample.

A similar process is employed to reconcile our results to those reported in Miller (2005). The regression specification employed in Miller (2005) is as follows:

\[
\text{CAR} = \beta_0 + \beta_1 \text{TOTSURP} + \beta_2 \text{NEGEPSSURP} + \beta_3 \text{TOTSURPSIGN} + \beta_4 (\text{TOTSURPSIGN} \times \text{TOTSURP}) + \beta_5 \text{NEGEARN} + \beta_6 (\text{NEGARNP} \times \text{TOTSURP}) + \beta_7 \text{PATHTYPE} + \beta_8 (\text{PATHTYPE} \times \text{TOTSURP}) + \varepsilon
\]
(7)

\(^{16}\) Soffer et al. (2000) deflate total earnings news by beginning of quarter stock price instead of stock price as of the first consensus analyst forecast for quarter \(t\) occurring after the earnings announcement for quarter \(t-1\).
\(^{17}\) Soffer et al. (2000) define \(\text{NEG}^{\text{EA}}\) as equal to one when the earnings preannouncement released more than 105% of its positive news or less than 95% of its negative news.
CAR and TOTSURP are defined equivalently as lwCAR and TNews in equation (1).\(^\text{18}\) NEGEPSSURP is defined the same way as NEG\(^E_A\) in equation (6); specifically, it is an indicator variable equal to one when the firm reports a negative surprise at the earnings announcement date. TOTSURPSIGN is defined equivalently to PTNews, which is an indicator variable equal to one when the firm reports actual earnings in excess of the mean consensus analyst forecast prior to the guidance. NEGEARN is an indicator variable equal to one when the actual earnings are negative and zero otherwise. Finally, PATHTYPE tests the primary hypothesis in Miller (2005) that the market reaction will be more pronounced when the guidance and official earnings news are of the same sign. This indicator variable is equal to one when the signs of the surprises on the two dates are consistent, and zero otherwise.

After estimating the regression in Miller (2005), we expand the equation to include DOWN\(^\text{Guide}\) as follows to assess whether or not reporting downward guidance has an incremental effect on stock prices.

\[
\text{CAR} = \beta_0 + \beta_1 \text{TOTSURP} + \beta_2 \text{NEGEPSSURP} + \beta_3 \text{TOTSURPSIGN} + \beta_4 (\text{TOTSURPSIGN} \times \text{TOTSURP}) + \beta_5 \text{NEGEARN} + \beta_6 (\text{NEGEARN} \times \text{TOTSURP}) + \beta_7 \text{PATHTYPE} + \beta_8 (\text{PATHTYPE} \times \text{TOTSURP}) + \beta_9 \text{DOWN}^\text{Guide} + \varepsilon
\]

(8)

The results from this exercise are reported in Table 7. Panel A is related to Soffer et al. (2000) and Panel B relates to Miller (2005). The first row of regression results presents what is reported in the original papers. The second row presents the results from estimating the same regression specifications on our sample. As can be seen in Panel A of Table 7, we are able to produce results that are qualitatively similar to what is reported in Soffer et al. (2000). The only meaningful difference is that we find a significantly negative coefficient for the slope interaction TOTNEWS*NEG\(^E_A\); probably because the size of our sample allows for more powerful tests that can detect smaller effects.

[Insert Table 7 Here]

In the last column, we examine how the interpretation of the results is affected by the inclusion of DOWN\(^\text{Guide}\) in the regression. Consistent with our prior results, we continue to find a negative coefficient for DOWN\(^\text{Guide}\) that is strongly significant. We also continue to find a significant coefficient for NEG\(^E_A\);\(^\text{18}\) Miller (2005) deflates TOTSURP by stock price as of ten days prior to the guidance date.
thus, our results confirm the notion that firms realize more positive returns when they are able to avoid reporting a negative earnings surprise. This result is consistent with what is reported in Tables 5 and 6. However, the significance and magnitude of the \(\text{DOWN}^{\text{Guide}} \) coefficient gives rise to a different interpretation of the relative importance of talking down analysts’ forecasts in order to report a positive earnings surprise, as the coefficient on \(\text{DOWN}^{\text{Guide}} \) is significantly more negative than that of \(\text{NEG}^{\text{EA}} \) (p-value = .001), suggesting that the stock price effects of reporting a positive earnings surprise are not as large in absolute value and do not completely offset the negative effects of reporting downward earnings guidance.

The first row of regression results in Panel B presents what was reported in Miller (2005). We are unable to produce an exact replication of Miller (2005). Most importantly, the coefficient on the \(\text{PATHTYPE}^{*} \text{TOTSURP} \) interaction term is not significant for our sample, suggesting that this result is not robust across firms and/or over time. Otherwise, most of the results for our sample are close to what is presented in Miller (2005). Further, the coefficient on \(\text{DOWN}^{\text{Guide}} \) remains strongly significant within this model, providing more evidence of the robustness of our primary findings across regression specifications, and provides a different interpretation from what is presented in Miller (2005) as to the optimal disclosure strategy to maximize stock price.

7. Conclusions and Discussion

Prior studies have examined the important issue of the overall market reaction to the combined news disclosed in earnings preannouncements and subsequent official earnings releases. The evidence from this line of literature is not completely consistent. Some studies suggest that warning investors of impending bad news will result in a more negative overall market response even though the total earnings news is the same if there had been no warning (Kasznik and Lev, 1995; Libby and Tan, 1999). In contrast, more recent research indicates that an optimal disclosure strategy is to guide earnings expectations to ensure a positive surprise at the official earnings release date (Soffer et al., 2000; Tan et al., 2002; Miller, 2005). These latter results suggest that investors and analysts tend to react more
strongly to earnings announcements compared to preannouncements, but this notion cannot be neatly reconciled with the literature that consistently shows a substantial market reaction to management earnings guidance, especially when the guidance is negative (Hutton et al., 2003). Further, although Caylor et al., (2007) do not examine earnings guidance explicitly issued by managers, they find evidence indicating that the optimal disclosure strategy is not always to ensure a positive earnings surprise.

With the development of First Call’s *Company Issued Guidance* database, researchers have access to better data to examine the importance of voluntary management disclosures relative to official earnings announcements. Based upon a large sample extracted from this database, we show that controlling for the magnitude of total earnings news, quarterly stock returns are more negative when the firm provides downward earnings guidance during the period relative to a no-guidance control sample. This study is the first to provide large-sample evidence on the net benefits to explicitly guiding earnings expectations down to a beatable level.

We examine whether this net stock price penalty for downward guidance can be explained by future earnings realizations. The inclusion of future earnings in a multiple-period regression framework reveals that the stock price penalty to downward guidance persists over at least three subsequent quarters relative to the guidance quarter, while the premium to meeting analysts’ forecasts is attenuated over the same period. This result indicates that the market response to the guidance cannot be explained by differential operating performance over the next three quarters. Using a Heckman two-stage selection model, we also show that this market response to downward guidance is not driven by a self-selection bias. These results go against the conventional wisdom that companies can benefit from warning investors about impending bad news, and that stock price is maximized when managers report a positive earnings surprise even when downward guidance is required to do so.

Consistent with prior research, we observe that most guidance is negative, which begs the question: if downward guidance is overall harmful to firm value after controlling for total earnings news, why do managers provide downward guidance? A potential response is the general trend among companies of discontinuing the practice of providing short-term guidance. A 2007 survey by the National
Investor Relations Institute indicates that 51 percent of its members in that year provided earnings guidance, which is a substantial decline from 77 percent in 2003. Research has found that company decisions to go silent are associated with negative operating performance (Chen et al., 2007; Houston et al., 2008). Further, a recent working paper finds that when total earnings news for a period is negative, a greater proportion of it is released through the earnings announcement relative to positive total earnings news (Roychowdhury and Sletten, 2010). This evidence suggests that many managers might be aware of the penalty for downward guidance and take actions to avoid it.

Although we are unaware of managers explicitly citing stock price effects of downward guidance as a motive for discontinuing the practice of issuing guidance, it stands to reason that if a stock price penalty exists for downward guidance, then it would serve as an incentive to managers to stop issuing guidance altogether and not only during periods of poor performance. Selectively issuing guidance only when managers have good news would not seem to be a prudent policy, as that would expose the firm to greater liability. When firms do not meet analysts’ forecasts and stock price falls precipitously, stockholders are eager to assign blame to managers. Having demonstrated a willingness to provide guidance in the past when analysts’ forecasts were too low, managers could be held liable if they stay silent when analysts’ forecasts are too high. In contrast, when a firm adopts a “no guidance” policy, managers are unlikely to be held responsible for what third parties (i.e., analysts) say about the firm. In fact, avoiding litigation is a reason cited by managers as to why they discontinue providing guidance (Morgan, 2003). Another potential response as to why most earnings guidance is negative is the possibility that managers believe the conventional wisdom that firms are penalized for not being forthcoming about bad news.

Our results suggest that the market response to negative guidance is not rational. An explanation for the response is beyond the scope of this study, but prior behavioural research provides a possible explanation. Libby and Tan (1999) design an experiment that examines analyst forecast revisions of future earnings under different conditions. One set of analysts are asked to provide a new forecast after an earnings warning and then again after the official earnings release (a sequential condition). Another
group of analysts are given the same information from the warning and official earnings release simultaneously (a simultaneous condition) and asked to provide a new forecast. Finally, a third group of analysts provide a new forecast after being informed only about the actual earnings with no warning (a no warning condition). The authors find that analysts seem to prefer a warning about negative earnings because the revisions for the simultaneous condition were less negative compared to the no warning condition. However, the sequential condition resulted in the most negative revisions, which suggests that any perceived benefit from warning investors about negative earnings is more than offset by the cognitive process of sequentially receiving an earnings warning followed by an earnings announcement. These results provide a possible explanation for the apparent disconnect between the conventional wisdom that downward guidance might ultimately benefit companies’ stock price and actual market behaviour.
References

Brown, K., (2002). 'Questioning the books: Tweaking results is hardly a sometime thing - many firms, under diverse pressures, may play with numbers'. Wall Street Journal.

Figure 1: Earnings News Timeline

EA = Earnings Announcement
1st Fcast = First Consensus Analyst Forecast for quarters t and t+1
Guidance = Earnings Guidance
TNews = Total Earnings News determination period
Surp = Earnings Surprise determination period
Table 1
Sample Selection Process

<table>
<thead>
<tr>
<th>Sample Screens:</th>
<th>No. of Firms</th>
<th>No. of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data on First Call’s Company Issued Guidance Database from 1993-2006</td>
<td>6,698</td>
<td>86,413</td>
</tr>
<tr>
<td>Delete open-ended or qualitative management guidance</td>
<td>5,703</td>
<td>71,606</td>
</tr>
<tr>
<td>Delete annual guidance</td>
<td>4,953</td>
<td>37,462</td>
</tr>
<tr>
<td>Retain only the last guidance for the quarter</td>
<td>4,902</td>
<td>29,222</td>
</tr>
<tr>
<td>Delete observations with insufficient analysts’ forecast data</td>
<td>3,257</td>
<td>11,823</td>
</tr>
<tr>
<td>Delete observations where earnings announcement occurs more than 75 days after quarter end</td>
<td>3,230</td>
<td>11,730</td>
</tr>
<tr>
<td>Delete observations with insufficient CRSP data</td>
<td>3,122</td>
<td>11,375</td>
</tr>
<tr>
<td>Delete observations with insufficient data for matched firm</td>
<td>2,751</td>
<td>8,635</td>
</tr>
<tr>
<td>Total Sample of Quarterly Earnings Guidance Observations</td>
<td>2,751</td>
<td>8,635</td>
</tr>
</tbody>
</table>

*The following analysts’ forecasts from I/B/E/S are required for an observation to be retained in the sample: 1) mean consensus forecast for quarter t that occurs after the earnings announcement from quarter $t-1$ and before the earnings guidance for quarter t, 2) mean consensus forecast for quarter $t+1$ that occurs after the earnings announcement from quarter $t-1$ and before the earnings guidance for quarter t, and 3) mean consensus forecast for quarter $t+1$ that occurs after the earnings announcement in quarter t.

*We require the matched firm to have returns data available on CRSP and actual earnings and analyst forecast data on I/B/E/S.
Table 2
Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sample</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>Inter-quar Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS</td>
<td>Earnings Guidance Sample</td>
<td>8,635</td>
<td>$0.26</td>
<td>$0.21</td>
<td>$0.35</td>
</tr>
<tr>
<td></td>
<td>Matched Sample</td>
<td>8,635</td>
<td>0.22</td>
<td>0.18</td>
<td>0.40</td>
</tr>
<tr>
<td>TNews%</td>
<td>Earnings Guidance Sample</td>
<td>8,635</td>
<td>-0.36%</td>
<td>-0.11%</td>
<td>0.64%</td>
</tr>
<tr>
<td></td>
<td>Matched Sample</td>
<td>8,635</td>
<td>-0.44</td>
<td>-0.11</td>
<td>0.64</td>
</tr>
<tr>
<td>AnaF</td>
<td>Earnings Guidance Sample</td>
<td>8,635</td>
<td>7.6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Matched Sample</td>
<td>8,635</td>
<td>6.4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Disp</td>
<td>Earnings Guidance Sample</td>
<td>7,934</td>
<td>1.9%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>Matched Sample</td>
<td>7,287</td>
<td>3.0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MB</td>
<td>Earnings Guidance Sample</td>
<td>8,613</td>
<td>2.9</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Matched Sample</td>
<td>8,601</td>
<td>3.7</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Lev</td>
<td>Earnings Guidance Sample</td>
<td>8,612</td>
<td>1.3</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Matched Sample</td>
<td>8,599</td>
<td>1.7</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Assets</td>
<td>Earnings Guidance Sample</td>
<td>8,635</td>
<td>$2,705</td>
<td>$533</td>
<td>$1,559</td>
</tr>
<tr>
<td></td>
<td>Matched Sample</td>
<td>8,635</td>
<td>2,895</td>
<td>563</td>
<td>1,746</td>
</tr>
<tr>
<td>Sales</td>
<td>Earnings Guidance Sample</td>
<td>8,627</td>
<td>$569</td>
<td>$141</td>
<td>$383</td>
</tr>
<tr>
<td></td>
<td>Matched Sample</td>
<td>8,628</td>
<td>480</td>
<td>121</td>
<td>335</td>
</tr>
</tbody>
</table>

The earnings guidance sample is comprised of observations from First Call’s Company Issued Guidance database during the period 1993-2006 where the firm disclosed quarterly earnings guidance after the earnings announcement for quarter \(t-1 \) and before the official earnings announcement for quarter \(t \) (see Table 1 for the sample selection criteria). Each firm/quarter guidance observation is matched with a no-guidance firm where the matching criteria are calendar quarter, industry, size, and the sign and magnitude of total earnings news. Total earnings news is defined as the unscaled difference between actual earnings per share for quarter \(t \) less the first mean consensus forecast for the same period that is issued after the earnings announcement for quarter \(t-1 \). Variable definitions: EPS = reported actual earnings per share for quarter \(t \); TNews% = EPS minus the first mean consensus analyst forecast for the period occurring after the earnings announcement for quarter \(t-1 \), deflated by stock price as of the first consensus analyst forecast for the period; AnaF = the number of unique analyst forecasts that comprise the last consensus forecast for quarter \(t \); Disp = dispersion in analysts’ forecasts that comprise the last consensus forecast for quarter \(t \); MB = market value of common stock divided by the book value of common shareholders’ equity as of the end of fiscal quarter \(t \); Lev = total liabilities divided by total shareholders’ equity as of the end of fiscal quarter \(t \); Assets = total assets as of the end of fiscal quarter \(t \); Sales = total revenues for quarter \(t \).
Table 3
Frequency Matrix of News Released at the Earnings Guidance and Official Earnings Announcement Dates

<table>
<thead>
<tr>
<th>Direction of Earnings Guidance</th>
<th>Nature of Earnings Surprise</th>
<th>Positive</th>
<th>Neutral</th>
<th>Negative</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td></td>
<td>1,576</td>
<td>439</td>
<td>367</td>
<td>2,382</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>66%</td>
<td>19%</td>
<td>15%</td>
<td>100%</td>
</tr>
<tr>
<td>% of row total</td>
<td></td>
<td>32%</td>
<td>23%</td>
<td>20%</td>
<td>27%</td>
</tr>
<tr>
<td>Confirming</td>
<td></td>
<td>459</td>
<td>312</td>
<td>69</td>
<td>840</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>55%</td>
<td>37%</td>
<td>8%</td>
<td>100%</td>
</tr>
<tr>
<td>% of row total</td>
<td></td>
<td>9%</td>
<td>16%</td>
<td>4%</td>
<td>10%</td>
</tr>
<tr>
<td>Down</td>
<td></td>
<td>2,857</td>
<td>1,197</td>
<td>1,359</td>
<td>5,413</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>53%</td>
<td>22%</td>
<td>25%</td>
<td>100%</td>
</tr>
<tr>
<td>% of row total</td>
<td></td>
<td>59%</td>
<td>61%</td>
<td>76%</td>
<td>63%</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>4,892</td>
<td>1,948</td>
<td>1,795</td>
<td>8,635</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>57%</td>
<td>22%</td>
<td>21%</td>
<td>100%</td>
</tr>
<tr>
<td>% of column total</td>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

No Earnings Guidance

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Neutral</th>
<th>Negative</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,681</td>
<td>1,021</td>
<td>3,933</td>
<td>8,635</td>
<td></td>
</tr>
<tr>
<td>43%</td>
<td>12%</td>
<td>45%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

The guidance sample consists of 8,635 observations during the period 1993-2006 as obtained from First Call’s Company Issued Guidance database where managers provided quarterly earnings guidance for quarter \(t \) after the earnings announcement for quarter \(t-1 \) (see Table 1 for sample screening criteria). The direction of earnings guidance is determined by comparing the guidance with the mean consensus analyst forecast that exists immediately prior to the guidance. The nature of the news at the official earnings announcement date is considered positive (neutral) [negative] when actual earnings are greater than (equal to) [less than] the earnings guidance for the guidance sample. For the matched sample, the nature of news at the official earnings announcement date is considered positive (neutral) [negative] when actual earnings are greater than (equal to) [less than] the most recent mean consensus forecast for the period.
Table 4
Median Analyst Forecast Revisions of Future Earnings Forecasts and Stock Returns Across Different Guidance Paths

Panel A: Positive Total Earnings News

<table>
<thead>
<tr>
<th>TNews from +1 to +5</th>
<th>N</th>
<th>CAR<sup>EG</sup></th>
<th>CAR<sup>EA</sup></th>
<th>lwCAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance Sample</td>
<td>1,953</td>
<td>1.4%</td>
<td>0.9%</td>
<td>3.9%</td>
</tr>
<tr>
<td>Matched Sample</td>
<td>1,953</td>
<td>NA</td>
<td>1.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Median Difference</td>
<td>NA</td>
<td>-0.6***</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>TNews from +6 to +15</td>
<td>845</td>
<td>4.3%</td>
<td>1.4%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Guidance Sample</td>
<td>845</td>
<td>NA</td>
<td>2.5</td>
<td>7.2</td>
</tr>
<tr>
<td>Matched Sample</td>
<td>845</td>
<td>NA</td>
<td>-1.4***</td>
<td>2.9***</td>
</tr>
<tr>
<td>Median Difference</td>
<td>NA</td>
<td>-1.4***</td>
<td>2.9***</td>
<td></td>
</tr>
<tr>
<td>TNews greater than +15</td>
<td>175</td>
<td>5.2%</td>
<td>1.6%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Guidance Sample</td>
<td>175</td>
<td>NA</td>
<td>2.8</td>
<td>8.7</td>
</tr>
<tr>
<td>Matched Sample</td>
<td>175</td>
<td>NA</td>
<td>-1.1</td>
<td>4.3***</td>
</tr>
</tbody>
</table>

Panel B: Negative Total Earnings News

<table>
<thead>
<tr>
<th>TNews from -1 to -5</th>
<th>N</th>
<th>CAR<sup>EG</sup></th>
<th>CAR<sup>EA</sup></th>
<th>lwCAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance Sample</td>
<td>1,859</td>
<td>-3.5%</td>
<td>-0.0%</td>
<td>-6.7%</td>
</tr>
<tr>
<td>Matched Sample</td>
<td>1,859</td>
<td>NA</td>
<td>-1.3</td>
<td>-2.5</td>
</tr>
<tr>
<td>Median Difference</td>
<td>NA</td>
<td>1.2***</td>
<td>-4.1***</td>
<td></td>
</tr>
<tr>
<td>TNews from -6 to -15</td>
<td>2,203</td>
<td>-8.5%</td>
<td>0.1%</td>
<td>-12.4%</td>
</tr>
<tr>
<td>Guidance Sample</td>
<td>2,203</td>
<td>NA</td>
<td>-1.3</td>
<td>-5.1</td>
</tr>
<tr>
<td>Matched Sample</td>
<td>2,203</td>
<td>NA</td>
<td>1.5***</td>
<td>-7.9***</td>
</tr>
<tr>
<td>Median Difference</td>
<td>NA</td>
<td>1.5***</td>
<td>-7.9***</td>
<td></td>
</tr>
<tr>
<td>TNews less than -15</td>
<td>975</td>
<td>-11.4%</td>
<td>-0.4%</td>
<td>-18.0%</td>
</tr>
<tr>
<td>Guidance Sample</td>
<td>975</td>
<td>NA</td>
<td>-1.6</td>
<td>-7.2</td>
</tr>
<tr>
<td>Matched Sample</td>
<td>975</td>
<td>NA</td>
<td>1.2***</td>
<td>-8.6***</td>
</tr>
</tbody>
</table>

The guidance sample consists of 8,635 observations during the period 1993-2006 as obtained from First Call’s Company Issued Guidance database where managers provided quarterly earnings guidance for quarter t after the earnings announcement for quarter t-1 (see Table 1 for sample screening criteria). TNews is defined as the unscaled difference between actual earnings per share for fiscal quarter t and the first mean consensus analyst forecast for the same period issued after the earnings announcement for quarter t-1. CAR^{EG} is a 3-day size-adjusted return from one day before to one day after the earnings guidance. CAR^{EA} is a 3-day size-adjusted return from one day before to one day after the official earnings announcement. lwCAR is a size-adjusted return extending from one day before the first mean consensus analyst forecast for quarter t to one day after the official earnings announcement date for quarter t. *, **, and *** indicate the median difference is statistically significant at the α = .10, .05, and .01 levels, respectively, using a two-tailed sign test.
Table 5

Results from Regression Analysis of Market Reaction to Total Earnings News

Regression Equation:

\[\text{lwCAR} = \beta_0 + \beta_1 \text{TNews}\% + \beta_2 \text{GUIDE} + \beta_3 \text{DOWN}^{\text{Guide}} + \beta_4 \text{PS}^{\text{EA}} + \beta_5 \text{PTNews} + \gamma \sum_{i=1}^{53} QTR + \varepsilon \]

<table>
<thead>
<tr>
<th>(\beta_0)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>(\beta_3)</th>
<th>(\beta_4)</th>
<th>(\beta_5)</th>
<th>Adj-R(^2)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coef.</td>
<td>-0.003</td>
<td>3.406</td>
<td></td>
<td></td>
<td></td>
<td>6.7%</td>
<td>17,192</td>
</tr>
<tr>
<td>(t-stat.)</td>
<td>(-0.36)</td>
<td>(12.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| \(\beta_2 \) + \(\beta_3 \) + \(\beta_4 \) = -0.069 |

| Coef. | -0.033 | 1.525 | 0.015 | -0.108 | 0.024 | 0.085 | 15.6\% | 17,192 |
| (t-stat.) | (-3.66) | (6.79) | (3.45) | (-18.82) | (5.37) | (15.7) | | |

Definition of regression variables:

- \(\text{lwCAR} \) is the size-adjusted return extending from one day before the first mean consensus forecast for quarter \(t \) occurring after the earnings announcement for quarter \(t-1 \) to one day after the earnings announcement for quarter \(t \).
- \(\text{TNews}\% \) is defined as the difference between actual earnings per share for fiscal quarter \(t \) and the first mean consensus analyst forecast for quarter \(t \) made after the earnings announcement for quarter \(t-1 \), deflated by stock price as of the first consensus analyst forecast for quarter \(t \) occurring after the earnings announcement for quarter \(t-1 \).
- \(\text{GUIDE} \) is an indicator variable equal to one if the company issued earnings guidance during the quarter (and zero otherwise).
- \(\text{PS}^{\text{EA}} \) is an indicator variable equal to one when actual earnings exceeds the earnings guidance for the guidance sample, or the last mean consensus analyst forecast for the matched sample (and zero otherwise).
- \(\text{PTNews} \) is an indicator variable equal to one when \(\text{TNews}\% \) is positive (and zero otherwise).
- \(\text{DOWN}^{\text{Guide}} \) is an indicator variable equal to one when the earnings guidance is less than the most recent mean consensus analyst forecast that exists prior to the guidance (and zero otherwise).

Coefficients are presented in bold when they are statistically significant at the \(\alpha = .05 \) level using a two-tailed test. Standard errors clustered by firm with time period dummy variables (coefficients not reported) are used to control for correlation in the error terms.
Table 6
Results from Regression of Multiple Period Returns on Aggregated Earnings

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Period Model</td>
<td>γ₀ = 0.064</td>
<td>-4.71</td>
<td>γ₁ = 1.029</td>
<td>7.02</td>
<td>γ₂ = 0.031</td>
<td>4.40</td>
<td>γ₃ = -0.099</td>
<td>-12.37</td>
<td>γ₄ = 0.018</td>
<td>2.94</td>
<td>γ₅ = 0.077</td>
<td>10.46</td>
</tr>
<tr>
<td>Three Period Model</td>
<td>γ₀ = -0.113</td>
<td>-7.46</td>
<td>γ₁ = 1.837</td>
<td>9.91</td>
<td>γ₂ = 0.028</td>
<td>3.14</td>
<td>γ₃ = -0.083</td>
<td>-8.50</td>
<td>γ₄ = 0.007</td>
<td>0.92</td>
<td>γ₅ = 0.058</td>
<td>6.30</td>
</tr>
<tr>
<td>Four Period Model</td>
<td>γ₀ = -0.191</td>
<td>-10.46</td>
<td>γ₁ = 1.974</td>
<td>8.43</td>
<td>γ₂ = 0.034</td>
<td>3.14</td>
<td>γ₃ = -0.088</td>
<td>-7.50</td>
<td>γ₄ = 0.019</td>
<td>2.10</td>
<td>γ₅ = 0.040</td>
<td>3.75</td>
</tr>
<tr>
<td>Adj. R² = 14.5%</td>
<td>N = 13,917</td>
<td></td>
</tr>
<tr>
<td>Adj. R² = 16.7%</td>
<td>N = 13,436</td>
<td></td>
</tr>
</tbody>
</table>
Adj. $R^2 = 18.0\%$ \hspace{1cm} N = 12,903

Regression variable definitions:
CAR2, CAR3, and CAR4 are two-, three-, and four-period CARs defined as size-adjusted returns extending from one day after the first consensus analyst forecast available in quarter t after the earnings announcement for quarter $t-1$ to one day following the earnings announcement in quarters $t+1$, $t+2$, and $t+3$, respectively. TNews$^\%_2$ (TNews$^\%_3$ [TNews$^\%_4$] is the sum of total earnings news from quarter $t+1$ ($t+2$ [$t+3$] and the previous quarter(s), deflated by stock price as of the first consensus analyst forecast for quarter t occurring after the earnings announcement for quarter $t-1$. Total earnings news in quarter t is defined as before. Total earnings news in periods $t+1$, $t+2$, and $t+3$ are defined as the difference between actual earnings for that quarter less the market expectations of earnings for the same quarter that exists prior to the earnings guidance for quarter t. When available in quarter t, mean consensus analyst forecasts are used to proxy for market expectations for all future quarters. When analyst forecasts for future periods are not available, market expectations are defined as actual earnings per share in the same quarter one year prior to the relevant period. GUIDE is an indicator variable equal to one if the company issued earnings guidance during the quarter (and zero otherwise). DOWNGuide is an indicator variable equal to one when the earnings guidance is less than the most recent mean consensus analyst forecast that exists prior to the guidance, and zero otherwise. PSEA is an indicator variable equal to one when actual earnings for quarter t exceeds the earnings guidance for the guidance sample, or the last available consensus analyst forecast for the matched sample, and zero otherwise. PS$^{EA}_t$, PS$^{EA}_t$, and PS$^{EA}_t$ are indicator variables equal to one when actual earnings for the corresponding period exceeds the most recent mean consensus analyst forecast that exists immediately prior to the earnings announcement for the corresponding period. PTNew$t+1$ (PTNew$t+2$ [PTNew$t+3$] is an indicator variable equal to one when TNews$^\%$ is positive, and zero otherwise.

Coefficient magnitudes are presented in bold when they are statistically significant at the $\alpha=.05$ level using a two-tailed test. Standard errors clustered by firm with time period dummy variables (coefficients not reported) are used to control for correlation in the error terms.
Table 7
Results from Employing Regression Specifications from Prior Studies

Panel A

Regression Equation from Soffer et al. (2000)
\[
\text{CAR}^{PA-1,EA+1} = \alpha_0 + \alpha_1 \text{TOTNEWS} + \alpha_2 \text{NEG}^{EA} + \alpha_3 (\text{TOTNEWS} \times \text{NEG}^{EA}) + \varepsilon
\]

Expanded Equation to Include Type of News in Earnings Preannouncement
\[
\text{CAR}^{PA-1,EA+1} = \alpha_0 + \alpha_1 \text{TOTNEWS} + \alpha_2 \text{NEG}^{EA} + \alpha_3 (\text{TOTNEWS} \times \text{NEG}^{EA}) + \alpha_4 \text{DOWN}^{Guide} + \varepsilon
\]

<table>
<thead>
<tr>
<th>Coefficient Estimates (t-statistics in parentheses)</th>
<th>Adj-R²</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Model as reported in Soffer et al. (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_0)</td>
<td>-0.016</td>
<td>(1.95)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>3.250</td>
<td>(6.57)</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>-0.070</td>
<td>(-3.19)</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>1.248</td>
<td>(0.95)</td>
</tr>
<tr>
<td>(\alpha_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Model current sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_0)</td>
<td>0.015</td>
<td>(1.66)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>5.463</td>
<td>(11.34)</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>-0.070</td>
<td>(-11.40)</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>-3.635</td>
<td>(-5.42)</td>
</tr>
<tr>
<td>(\alpha_4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_0)</td>
<td>0.065</td>
<td>(6.95)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>3.540</td>
<td>(8.55)</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>-0.059</td>
<td>(-10.15)</td>
</tr>
<tr>
<td>(\alpha_3)</td>
<td>-2.597</td>
<td>(-4.61)</td>
</tr>
<tr>
<td>(\alpha_4)</td>
<td>-0.092</td>
<td>(-19.35)</td>
</tr>
</tbody>
</table>

Panel B

Regression Equation from Miller (2005)
\[
\text{CAR} = \beta_0 + \beta_1 \text{TOTSURP} + \beta_2 \text{NEGEPSURP} + \beta_3 \text{TOTSURPSIGN} + \beta_4 (\text{TOTSURPSIGN} \times \text{TOTSURP}) + \beta_5 \text{NEGearn} + \beta_6 (\text{NEGearn} \times \text{TOTSURP}) + \beta_7 \text{PATHTYPE} + \beta_8 (\text{PATHTYPE} \times \text{TOTSURP}) + \varepsilon
\]

Expanded Equation to Include Type of News in Earnings Preannouncement
\[
\text{CAR} = \beta_0 + \beta_1 \text{TOTSURP} + \beta_2 \text{NEGEPSURP} + \beta_3 \text{TOTSURPSIGN} + \beta_4 (\text{TOTSURPSIGN} \times \text{TOTSURP}) + \beta_5 \text{NEGearn} + \beta_6 (\text{NEGearn} \times \text{TOTSURP}) + \beta_7 \text{PATHTYPE} + \beta_8 (\text{PATHTYPE} \times \text{TOTSURP}) + \beta_9 \text{DOWN}^{Guide} + \varepsilon
\]
\begin{table}[h]
\centering
\begin{tabular}{lcccccccccc}
\hline
 & β_0 & β_1 & β_2 & β_3 & β_4 & β_5 & β_6 & β_7 & β_8 & β_9 & Adj-R2 & N \\
\hline
Reduced Model & & & & & & & & & & & & \\
As reported in & -0.075 & 6.015 & 0.013 & 0.115 & -3.287 & -0.029 & -7.288 & -0.008 & 1.287 & & 33.1\% & 840 \\
Miller (2005) & (.001) & (.001) & (.117) & (.015) & (.001) & (.012) & (.001) & (.174) & (.006) & & & \\
Current sample & -0.047 & 4.744 & -0.018 & 0.100 & 2.549 & -0.029 & -4.014 & 0.005 & 0.137 & & 19.0\% & 7,928 \\
& (.001) & (.001) & (.009) & (.001) & (.030) & (.001) & (.001) & (.314) & (.787) & & & \\
Expanded Model & -0.014 & 4.730 & -0.023 & 0.077 & 2.699 & -0.028 & -3.868 & 0.000 & -0.262 & -0.031 & & 19.2\% & 7,928 \\
& (.270) & (.001) & (.001) & (.001) & (.20) & (.001) & (.001) & (.947) & (.602) & (.001) & & & \\
\hline
\end{tabular}
\end{table}

Regression variable definitions from panel A:
\begin{itemize}
\item $\text{CAR}_{PA-1,EA+1}$ is the size-adjusted return from one day before the first mean consensus analyst forecast for quarter t to one day following the official earnings announcement for quarter t. \\
\item TOTNEWS is actual earnings per share for quarter t less the first mean consensus analyst forecast for quarter t, deflated by stock price as of the first consensus analyst forecast for quarter t occurring after the earnings announcement for quarter $t-1$. \\
\item NEG^E is an indicator variable equal to one when actual earnings per share are less than the earnings guidance (and zero otherwise). \\
\item DOWN^Guide is an indicator variable equal to one when the earnings guidance is less than the first mean consensus forecast for quarter t. \\
\end{itemize}

Regression variable definitions from panel B:
\begin{itemize}
\item CAR is defined the same as $\text{CAR}_{PA-1,EA+1}$. \\
\item TOTSURP is defined the same as TOTNEWS. \\
\item NEGEPSSURP is defined the same as NEG^E. \\
\item TOTSURPSIGN is an indicator variable equal to one when TOTNEWS is positive (and zero otherwise). \\
\item NEGEARN is an indicator variable equal to one when earnings for quarter t are less than zero (and zero otherwise). \\
\item PATHTYPE is an indicator variable equal to one when the signs of DOWN^Guide and NEGEPSSURP are consistent (and zero otherwise). \\
\end{itemize}

Coefficient magnitudes are presented in bold when they are statistically significant at the $\alpha=.05$ level using a two-tailed test. Standard errors clustered by firm with time period dummy variables (coefficients not reported) are used to control for correlation in the error terms.

39
RATING METHODOLOGY

Regulated Electric and Gas Utilities

Summary

This rating methodology explains Moody’s approach to assessing credit risk for regulated electric and gas utilities globally and is intended to provide general guidance that helps companies, investors, and other interested market participants understand how qualitative and quantitative risk characteristics are likely to affect rating outcomes for companies in the regulated electric and gas utility industry. This document does not include an exhaustive treatment of all factors that are reflected in Moody’s ratings but should enable the reader to understand the qualitative considerations and financial information and ratios that are usually most important for ratings in this sector.

This rating methodology replaces1 the Rating Methodology for Regulated Electric and Gas Utilities published in August 2009. While reflecting many of the same core principles as the 2009 methodology, this updated document provides a more transparent presentation of the rating considerations that are usually most important for companies in this sector and incorporates refinements in our analysis that better reflect credit fundamentals of the industry. No rating changes will result from publication of this rating methodology.

This report includes a detailed rating grid and illustrative examples that compare the mapping of rated public companies against the factors in the grid. The grid is a reference tool that can be used to approximate credit profiles within the regulated electric and gas utility sector in most cases. The grid provides summarized guidance for the factors that are generally most important in assigning ratings to companies in the regulated electric and gas utility industry. However, the grid is a summary that does not include every rating consideration. The weights shown for each factor in the grid represent an approximation of their importance for rating decisions but actual importance may vary substantially. In addition, the illustrative mapping examples in this document use historical results while ratings are based on our forward-looking expectations. As a result, the grid-indicated rating is not expected to match the actual rating of each company.

1 This update may not be effective in some jurisdictions until certain requirements are met.

>>contacts continued on the last page
The grid contains four key factors that are important in our assessment for ratings in the regulated electric and gas utility sector, and a notching factor for structural subordination at holding companies:

1. Regulatory Framework
2. Ability to Recover Costs and Earn Returns
3. Diversification
4. Financial Strength

Some of these factors also encompass a number of sub-factors. Since an issuer’s scoring on a particular grid factor or sub-factor often will not match its overall rating, in Appendix C we include a discussion of some of the grid “outliers” – companies whose grid-indicated rating for a specific sub-factor differs significantly from the actual rating – in order to provide additional insights.

This rating methodology is not intended to be an exhaustive discussion of all factors that our analysts consider in assigning ratings in this sector. We note that our analysis for ratings in this sector covers factors that are common across all industries such as ownership, management, liquidity, corporate legal structure, governance and country related risks which are not explained in detail in this document, as well as factors that can be meaningful on a company-specific basis. Our ratings consider these and other qualitative considerations that do not lend themselves to a transparent presentation in a grid format. The grid used for this methodology reflects a decision to favor a relatively simple and transparent presentation rather than a more complex grid that would map grid-indicated ratings more closely to actual ratings.

Highlights of this report include:

» An overview of the rated universe
» A summary of the rating methodology
» A discussion of the key rating factors that drive ratings
» Comments on the rating methodology assumptions and limitations, including a discussion of rating considerations that are not included in the grid

The Appendices show the full grid (Appendix A), a list of the companies included in our illustrative sample universe of issuers with their ratings, grid-indicated ratings and country of domicile (Appendix B), tables that illustrate the application of the grid to the sample universe of issuers, with explanatory comments on some of the more significant differences between the grid-implied rating for each sub-factor and our actual rating (Appendix C), our approach to ratings within a utility family (Appendix D), a description of the various types of companies rated under this methodology (Appendix E), key industry issues over the intermediate term (Appendix F), regional and other considerations (Appendix G), and treatment of power purchase agreements (Appendix H).

2 In general, the rating (or other indicator of credit strength) utilized for comparison to the grid-implied rating is the senior unsecured rating for investment-grade issuers, the Corporate Family Rating (CFR) for speculative-grade issuers and the Baseline Credit Assessment (BCA) for Government Related Issuers (GRIs). Individual debt instrument ratings also factor in decisions on notching for seniority level and collateral. Related documents that provide additional insight in this area are the rating methodologies “Loss Given Default for Speculative Grade Non-Financial Companies in the US, Canada and EMEA”, published June 2009, and “Updated Summary Guidance for Notching Bonds, Preferred Stocks and Hybrid Securities of Corporate Issuers”, published February 2007.
What's Changed

While incorporating many of the core principles of the 2009 version, this methodology updates how the four key rating factors are defined, and how certain sub-factors are weighted in the grid.

More specifically, this methodology introduces four equally weighted sub-factors into the two rating factors that are related to regulation—the Regulatory Framework and the Ability to Recover Costs and Earn Returns—in order to provide more granularity and transparency on the overall regulatory environment, which is the most important consideration for this sector.

The weighting of the grid indicators for diversification are unchanged, but the proposed descriptive criteria have been refined to place greater emphasis on the economic and regulatory diversity of each utility’s service area rather than the diversity of operations, because we think this emphasis better distinguishes credit risk. We have refined the definitions of the Generation and Fuel Diversity sub-factor to better incorporate the full range of challenges that can affect a particular fuel type.

While the overall weighting of the Financial Strength factor is unchanged, the weighting for two sub-factors that seek to measure debt in relation to cash flow has increased. The 15% weight for CFO Pre-WC/Debt reflects our view that this is the single most predictive financial measure, followed in importance by CFO Pre-WC - Dividends/Debt with a 10% grid weighting. The additional weighting of these ratios is balanced by the elimination of a separate liquidity sub-factor that had a 10% weighting in the prior grid.

Liquidity assessment remains a key focus of our analysis. However, we consider it as a qualitative assessment outside the grid because its credit importance varies greatly over time and by issuer and accordingly is not well represented by a fixed grid weight. See “Other Rating Considerations” for insights on liquidity analysis in this sector.

Lower financial metric thresholds have been introduced for certain utilities viewed as having lower business risk, for instance many US natural gas local distribution companies (LDCs) and certain US electric transmission and distribution companies (T&Ds, which lack generation but generally retain some procurement responsibilities for customers). The low end of the scale in the methodology grid has been extended from B to Caa to better capture our views of more challenging regulatory environments and weaker performance.

We have introduced minor changes to financial metric thresholds at the lower end of the scale, primarily to incorporate this extension of the grid.

We have incorporated scorecard notching for structural subordination at holding companies. Ratings already incorporated structural subordination, but including an adjustment in the scorecard will result in a closer alignment of grid-indicated outcomes and ratings for holding companies.

Treatment of first mortgage bonds (primarily in the US), which was the subject of a Request for Comment in 2009 and adopted subsequent to the 2009 methodology, is summarized in Appendix G.

This methodology describes the analytical framework used in determining credit ratings. In some instances our analysis is also guided by additional publications which describe our approach for analytical considerations that are not specific to any single sector. Examples of such considerations include but are not limited to: the assignment of short-term ratings, the relative ranking of different classes of debt and hybrid securities, how sovereign credit quality affects non-sovereign issuers, and the assessment of credit support from other entities. Documents that describe our approach to such cross-sector methodological considerations can be found [here](#).
About the Rated Universe

The Regulated Electric and Gas Utilities rating methodology applies to rate-regulated\(^3\) electric and gas utilities that are not Networks\(^4\). Regulated Electric and Gas Utilities are companies whose predominant\(^5\) business is the sale of electricity and/or gas or related services under a rate-regulated framework, in most cases to retail customers. Also included under this methodology are rate-regulated utilities that own generating assets as any material part of their business, utilities whose charges or bills to customers include a meaningful component related to the electric or gas commodity, utilities whose rates are regulated at a sub-sovereign level (e.g. by provinces, states or municipalities), and companies providing an independent system operator function to an electric grid. Companies rated under this methodology are primarily rate-regulated monopolies or, in certain circumstances, companies that may not be outright monopolies but where government regulation effectively sets prices and limits competition.

This rating methodology covers regulated electric and gas utilities worldwide. These companies are engaged in the production, transmission, coordination, distribution and/or sale of electricity and/or natural gas, and they are either investor owned companies, commercially oriented government owned companies, or, in the case of independent system operators, not-for-profit or similar entities. As detailed in Appendix E, this methodology covers a wide variety of companies active in the sector, including vertically integrated utilities, transmission and distribution utilities with retail customers and/or sub-sovereign regulation, local gas distribution utility companies (LDCs), independent system operators, and regulated generation companies. These companies may be operating companies or holding companies.

An over-arching consideration for regulated utilities is the regulatory environment in which they operate. While regulation is also a key consideration for networks, a utility’s regulatory environment is in comparison often more dynamic and more subject to political intervention. The direct relationship that a regulated utility has with the retail customer, including billing for electric or gas supply that has substantial price volatility, can lead to a more politically charged rate-setting environment. Similarly, regulation at the sub-sovereign level is often more accessible for participation by interveners, including dissatisfied customers and the politicians who want their votes. Our views of regulatory environments evolve over time in accordance with our observations of regulatory, political, and judicial events that affect issuers in the sector.

This methodology pertains to regulated electric and gas utilities and excludes the following types of issuers, which are covered by separate rating methodologies: Regulated Networks, Unregulated Utilities and Power Companies, Public Power Utilities, Municipal Joint Action Agencies, Electric Cooperatives, Regulated Water Companies and Natural Gas Pipelines.

\(^3\) Companies in many industries are regulated. We use the term rate-regulated to distinguish companies whose rates (by which we also mean tariffs or revenues in general) are set by regulators.

\(^4\) Regulated Electric and Gas Networks are companies whose predominant business is purely the transmission and/or distribution of electricity and/or natural gas without involvement in the procurement or sale of electricity and/or gas; whose charges to customers thus do not include a meaningful commodity cost component; which sell mainly (or in many cases exclusively) to non-retail customers; and which are rate-regulated under a national framework.

\(^5\) We generally consider a company to be predominantly a regulated electric and gas utility when a majority of its cash flows, prospectively and on a sustained basis, are derived from regulated electric and gas utility businesses. Since cash flows can be volatile (such that a company might have a majority of utility cash flows simply due to a cyclical downturn in its non-utility businesses), we may also consider the breakdown of assets and/or debt of a company to determine which business is predominant.
Other Related Methodologies

» Regulated Electric and Gas Networks
» Unregulated Utilities and Power Companies
» Natural Gas Pipelines
» US Public Power Electric Utilities with Generation Ownership Exposure
» US Electric Generation & Transmission Cooperatives
» US Municipal Joint Action Agencies
» Government Related Issuers: Methodology Update
» Global Regulated Water Utilities

The rated universe includes approximately 315 entities that are either utility operating companies or a parent holding company with one or more utility company subsidiaries that operate predominantly in the electric and gas utility business. These companies account for about US$730 billion of total outstanding long-term debt instruments.

The Regulated Electric and Gas Utility sector is predominantly investment grade, reflecting the stability generally conferred by regulation that typically sets prices and also limits competition, such that defaults have been lower than in many other non-financial corporate sectors. However, the nature of regulation can vary significantly from jurisdiction to jurisdiction. Most issuers at the lower end of the ratings spectrum operate in challenging regulatory environments. Additional information about the ratings and default performance of the sector can be found in our publication “Infrastructure Default and Recovery Rates, 1983-2012H1”. As shown on the following table, the ratings spectrum for issuers in the sector (both holding companies and operating companies) ranges from Aaa to Ca:

EXHIBIT 1
Regulated Electric and Gas Utilities’ Senior Unsecured Ratings Distribution

Source: Moody’s Investors Service, ratings as of December 2013
About this Rating Methodology

This report explains the rating methodology for regulated electric and gas utilities in seven sections, which are summarized as follows:

1. Identification and Discussion of the Rating Factors in the Grid

The grid in this rating methodology focuses on four rating factors. The four factors are comprised of sub-factors that provide further detail:

<table>
<thead>
<tr>
<th>Factor / Sub-Factor Weighting - Regulated Utilities</th>
<th>Sub-Factor Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Framework</td>
<td>25%</td>
</tr>
<tr>
<td>Legislative and Judicial Underpinnings of the Regulatory Framework</td>
<td>12.5%</td>
</tr>
<tr>
<td>Consistency and Predictability of Regulation</td>
<td>12.5%</td>
</tr>
<tr>
<td>Ability to Recover Costs and Earn Returns</td>
<td>25%</td>
</tr>
<tr>
<td>Timeliness of Recovery of Operating and Capital Costs</td>
<td>12.5%</td>
</tr>
<tr>
<td>Sufficiency of Rates and Returns</td>
<td>12.5%</td>
</tr>
<tr>
<td>Diversification</td>
<td>10%</td>
</tr>
<tr>
<td>Market Position</td>
<td>5%*</td>
</tr>
<tr>
<td>Generation and Fuel Diversity</td>
<td>5%**</td>
</tr>
<tr>
<td>Financial Strength, Key Financial Metrics</td>
<td>40%</td>
</tr>
<tr>
<td>CFO pre-WC + Interest/ Interest</td>
<td>7.5%</td>
</tr>
<tr>
<td>CFO pre-WC / Debt</td>
<td>15.0%</td>
</tr>
<tr>
<td>CFO pre-WC – Dividends / Debt</td>
<td>10.0%</td>
</tr>
<tr>
<td>Debt/Capitalization</td>
<td>7.5%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Notching Adjustment: Holding Company Structural Subordination 0 to -3

*10% weight for issuers that lack generation; **0% weight for issuers that lack generation

2. Measurement or Estimation of Factors in the Grid

We explain our general approach for scoring each grid factor and show the weights used in the grid. We also provide a rationale for why each of these grid components is meaningful as a credit indicator. The information used in assessing the sub-factors is generally found in or calculated from information in company financial statements, derived from other observations or estimated by Moody’s analysts.

Our ratings are forward-looking and reflect our expectations for future financial and operating performance. However, historical results are helpful in understanding patterns and trends of a company’s performance as well as for peer comparisons. We utilize historical data (in most cases, an average of the last three years of reported results) in this document to illustrate the application of the rating grid. All of the quantitative credit metrics incorporate Moody’s standard adjustments to income statement, cash flow statement and balance sheet amounts for restructuring, impairment, off-balance sheet accounts, receivable securitization programs, under-funded pension obligations, and recurring operating leases.
For definitions of Moody’s most common ratio terms please see Moody’s Basic Definitions for Credit Statistics, User’s Guide (June 2011, document #78480). For a description of Moody’s standard adjustments, please see Moody’s Approach to Global Standard Adjustments in the Analysis of Financial Statements for Non-Financial Corporations December 2010 (128137). These documents can be found at www.moodys.com under the Research and Ratings directory.

In most cases, the illustrative examples in this document use historic financial data from a recent three year period. However, the factors in the grid can be assessed using various time periods. For example, rating committees may find it analytically useful to examine both historic and expected future performance for periods of several years or more, or for individual twelve month periods.

3. Mapping Factors to the Rating Categories

After estimating or calculating each sub-factor, the outcomes for each of the sub-factors are mapped to a broad Moody’s rating category (Aaa, Aa, A, Baa, Ba, B, or Caa).

4. Mapping Issuers to the Grid and Discussion of Grid Outliers

In Appendix C, we provide a table showing how each company in the sample set of issuers maps to grid-indicated ratings for each rating sub-factor and factor. We highlight companies whose grid-indicated performance on a specific sub-factor is two or more broad rating categories higher or lower than its actual rating and discuss the general reasons for such positive and negative outliers for a particular sub-factor.

5. Assumptions, Limitations and Rating Considerations Not Included in the Grid

This section discusses limitations in the use of the grid to map against actual ratings, some of the additional factors that are not included in the grid but can be important in determining ratings, and limitations and assumptions that pertain to the overall rating methodology.

6. Determining the Overall Grid-Indicated Rating

To determine the overall grid-indicated rating, we convert each of the sub-factor ratings into a numeric value based upon the scale below.

<table>
<thead>
<tr>
<th>Aaa</th>
<th>Aa</th>
<th>A</th>
<th>Baa</th>
<th>Ba</th>
<th>B</th>
<th>Caa</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>
The numerical score for each sub-factor is multiplied by the weight for that sub-factor with the results then summed to produce a composite weighted-factor score. The composite weighted factor score is then mapped back to an alphanumeric rating based on the ranges in the table below.

<table>
<thead>
<tr>
<th>Grid-Indicated Rating</th>
<th>Aggregate Weighted Total Factor Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>x < 1.5</td>
</tr>
<tr>
<td>Aa1</td>
<td>1.5 ≤ x < 2.5</td>
</tr>
<tr>
<td>Aa2</td>
<td>2.5 ≤ x < 3.5</td>
</tr>
<tr>
<td>Aa3</td>
<td>3.5 ≤ x < 4.5</td>
</tr>
<tr>
<td>A1</td>
<td>4.5 ≤ x < 5.5</td>
</tr>
<tr>
<td>A2</td>
<td>5.5 ≤ x < 6.5</td>
</tr>
<tr>
<td>A3</td>
<td>6.5 ≤ x < 7.5</td>
</tr>
<tr>
<td>Baa1</td>
<td>7.5 ≤ x < 8.5</td>
</tr>
<tr>
<td>Baa2</td>
<td>8.5 ≤ x < 9.5</td>
</tr>
<tr>
<td>Baa3</td>
<td>9.5 ≤ x < 10.5</td>
</tr>
<tr>
<td>Ba1</td>
<td>10.5 ≤ x < 11.5</td>
</tr>
<tr>
<td>Ba2</td>
<td>11.5 ≤ x < 12.5</td>
</tr>
<tr>
<td>Ba3</td>
<td>12.5 ≤ x < 13.5</td>
</tr>
<tr>
<td>B1</td>
<td>13.5 ≤ x < 14.5</td>
</tr>
<tr>
<td>B2</td>
<td>14.5 ≤ x < 15.5</td>
</tr>
<tr>
<td>B3</td>
<td>15.5 ≤ x < 16.5</td>
</tr>
<tr>
<td>Caa1</td>
<td>16.5 ≤ x < 17.5</td>
</tr>
<tr>
<td>Caa2</td>
<td>17.5 ≤ x < 18.5</td>
</tr>
<tr>
<td>Caa3</td>
<td>18.5 ≤ x < 19.5</td>
</tr>
<tr>
<td>Ca</td>
<td>x ≥ 19.5</td>
</tr>
</tbody>
</table>

For example, an issuer with a composite weighted factor score of 11.7 would have a Ba2 grid-indicated rating. We used a similar procedure to derive the grid indicated ratings shown in the illustrative examples.

7. Appendices

The Appendices provide illustrative examples of grid-indicated ratings based on historical financial information and also provide additional commentary and insights on our view of credit risks in this industry.
Discussion of the Grid Factors

Moody’s analysis of electric and gas utilities focuses on four broad factors:

» Regulatory Framework
» Ability to Recover Costs and Earn Returns
» Diversification
» Financial Strength

There is also a notching factor for holding company structural subordination.

Factor 1: Regulatory Framework (25%)

Why It Matters

For rate-regulated utilities, which typically operate as a monopoly, the regulatory environment and how the utility adapts to that environment are the most important credit considerations. The regulatory environment is comprised of two rating factors - the Regulatory Framework and its corollary factor, the Ability to Recover Costs and Earn Returns. Broadly speaking, the Regulatory Framework is the foundation for how all the decisions that affect utilities are made (including the setting of rates), as well as the predictability and consistency of decision-making provided by that foundation. The Ability to Recover Costs and Earn Returns relates more directly to the actual decisions, including their timeliness and the rate-setting outcomes.

Utility rates\(^6\) are set in a political/regulatory process rather than a competitive or free-market process; thus, the Regulatory Framework is a key determinant of the success of utility. The Regulatory Framework has many components: the governing body and the utility legislation or decrees it enacts, the manner in which regulators are appointed or elected, the rules and procedures promulgated by those regulators, the judiciary that interprets the laws and rules and that arbitrates disagreements, and the manner in which the utility manages the political and regulatory process. In many cases, utilities have experienced credit stress or default primarily or at least secondarily because of a break-down or obstacle in the Regulatory Framework – for instance, laws that prohibited regulators from including investments in uncompleted power plants or plants not deemed “used and useful” in rates, or a disagreement about rate-making that could not be resolved until after the utility had defaulted on its debts.

How We Assess Legislative and Judicial Underpinnings of the Regulatory Framework for the Grid

For this sub-factor, we consider the scope, clarity, transparency, supportiveness and granularity of utility legislation, decrees, and rules as they apply to the issuer. We also consider the strength of the regulator’s authority over rate-making and other regulatory issues affecting the utility, the effectiveness of the judiciary or other independent body in arbitrating disputes in a disinterested manner, and whether the utility’s monopoly has meaningful or growing carve-outs. In addition, we look at how well developed the framework is – both how fully fleshed out the rules and regulations are and how well tested it is – the extent to which regulatory or judicial decisions have created a body of precedent that will help determine future rate-making. Since the focus of our scoring is on each issuer, we consider

\(^6\) In jurisdictions where utility revenues include material government subsidy payments, we consider utility rates to be inclusive of these payments, and we thus evaluate sub-factors 1a, 1b, 2a and 2b in light of both rates and material subsidy payments. For example, we would consider the legal and judicial underpinnings and consistency and predictability of subsidies as well as rates.
how effective the utility is in navigating the regulatory framework – both the utility’s ability to shape the framework and adapt to it.

A utility operating in a regulatory framework that is characterized by legislation that is credit supportive of utilities and eliminates doubt by prescribing many of the procedures that the regulators will use in determining fair rates (which legislation may show evidence of being responsive to the needs of the utility in general or specific ways), a long history of transparent rate-setting, and a judiciary that has provided ample precedent by impartially adjudicating disagreements in a manner that addresses ambiguities in the laws and rules will receive higher scores in the Legislative and Judicial Underpinnings sub-factor. A utility operating in a regulatory framework that, by statute or practice, allows the regulator to arbitrarily prevent the utility from recovering its costs or earning a reasonable return on prudently incurred investments, or where regulatory decisions may be reversed by politicians seeking to enhance their populist appeal will receive a much lower score.

In general, we view national utility regulation as being less liable to political intervention than regulation by state, provincial or municipal entities, so the very highest scoring in this sub-factor is reserved for this category. However, we acknowledge that states and provinces in some countries may be larger than small nations, such that their regulators may be equally “above-the-fray” in terms of impartial and technically-oriented rate setting, and very high scoring may be appropriate.

The relevant judicial system can be a major factor in the regulatory framework. This is particularly true in litigious societies like the United States, where disagreements between the utility and its state or municipal regulator may eventually be adjudicated in federal district courts or even by the US Supreme Court. In addition, bankruptcy proceedings in the US take place in federal courts, which have at times been able to impose rate settlement agreements on state or municipal regulators. As a result, the range of decisions available to state regulators may be effectively circumscribed by court precedent at the state or federal level, which we generally view as favorable for the credit-supportiveness of the regulatory framework.

Electric and gas utilities are generally presumed to have a strong monopoly that will continue into the foreseeable future, and this expectation has allowed these companies to have greater leverage than companies in other sectors with similar ratings. Thus, the existence of a monopoly in itself is unlikely to be a driver of strong scoring in this sub-factor. On the other hand, a strong challenge to the monopoly could cause lower scoring, because the utility can only recover its costs and investments and service its debt if customers purchase its services. There have some instances of incursions into utilities’ monopoly, including municipalization, self-generation, distributed generation with net metering, or unauthorized use (beyond the level for which the utility receives compensation in rates). Incursions that are growing significantly or having a meaningful impact on rates for customers that remain with the utility could have a negative impact on scoring of this sub-factor and on factor 2 - Ability to Recover Costs and Earn Returns.

The scoring of this sub-factor may not be the same for every utility in a particular jurisdiction. We have observed that some utilities appear to have greater sway over the relevant utility legislation and promulgation of rules than other utilities – even those in the same jurisdiction. The content and tone of publicly filed documents and regulatory decisions sometimes indicates that the management team at one utility has better responsiveness to and credibility with its regulators or legislators than the management at another utility.
While the underpinnings to the regulatory framework tend to change relatively slowly, they do evolve, and our factor scoring will seek to reflect that evolution. For instance, a new framework will typically become tested over time as regulatory decisions are issued, or perhaps litigated, thereby setting a body of precedent. Utilities may seek changes to laws in order to permit them to securitize certain costs or collect interim rates, or a jurisdiction in which rates were previously recovered primarily in base rate proceedings may institute riders and trackers. These changes would likely impact scoring of sub-factor 2b - Timeliness of Recovery of Operating and Capital Costs, but they may also be sufficiently significant to indicate a change in the regulatory underpinnings. On the negative side, a judiciary that had formerly been independent may start to issue decisions that indicate it is conforming its decisions to the expectations of an executive branch that wants to mandate lower rates.
Factor 1a: Legislative and Judicial Underpinnings of the Regulatory Framework (12.5%)

<table>
<thead>
<tr>
<th>Aaa</th>
<th>Aa</th>
<th>A</th>
<th>B</th>
<th>Caa</th>
</tr>
</thead>
</table>

Utility regulation occurs under a fully developed national, state or provincial framework based on legislation that provides the utility an extremely strong monopoly (see note 1) within its service territory, a strong assurance, subject to limited review, that rates will be set in a manner that will permit the utility to make and recover all necessary investments, a very high degree of clarity as to the manner in which utilities will be regulated and reasonably prescriptive methods and procedures for setting rates.

Existing utility law is comprehensive and supportive such that changes in legislation are not expected to be necessary, or any changes that have occurred have been strongly supportive of utilities credit quality in general and sufficiently forward-looking so as to address problems before they occurred. There is an independent judiciary that can arbitrate disagreements between the regulator and the utility should they occur, including access to national courts, very strong judicial precedent in the interpretation of utility laws, and a strong rule of law. We expect these conditions to continue.

Utility regulation occurs under a fully developed national, state or provincial framework based on legislation that provides the utility an extremely strong monopoly (see note 1) within its service territory, a strong assurance, subject to reasonable prudency requirements, that rates will be set in a manner that will permit the utility to make and recover all necessary investments, a high degree of clarity as to the manner in which utilities will be regulated, and overall guidance for methods and procedures for setting rates. If there have been changes in utility legislation, they have been timely and clearly credit supportive of the issuer in a manner that shows the utility has had a strong voice in the process.

There is an independent judiciary that can arbitrate disagreements between the regulator and the utility, should they occur including access to national courts, strong judicial precedent in the interpretation of utility laws, and a strong rule of law. We expect these conditions to continue.

Utility regulation occurs under a well developed national, state or provincial framework based on legislation that provides the utility a very strong monopoly (see note 1) within its service territory, an assurance, subject to reasonable prudency requirements, that rates will be set in a manner that will permit the utility to make and recover all necessary investments, a high degree of clarity as to the manner in which utilities will be regulated, and overall guidance for methods and procedures for setting rates. If there have been changes in utility legislation, they have been mostly timely and on the whole credit supportive for the issuer, and the utility has had a clear voice in the legislative process.

There is an independent judiciary that can arbitrate disagreements between the regulator and the utility, should they occur, including access to national courts, clear judicial precedent in the interpretation of utility law, and a strong rule of law. We expect these conditions to continue.

Utility regulation occurs under a national, state, provincial or municipal framework based on legislation or government decree that provides the utility a monopoly within its service territory that is generally strong but may have a greater level of exceptions (see note 1), and that, subject to prudency requirements which may be stringent, provides a general assurance (with some exceptions) that the utility will be set in a manner that will permit the utility to make and recover necessary investments, and (ii) under a new framework where the jurisdiction has a history of less independent and transparent regulation in other sectors. Either: (i) the judiciary that can arbitrate disagreements between the regulator and the utility may not have clear authority or may not be fully independent of the regulator or other political pressure, but there is a reasonably strong rule of law. Alternatively, where there is no independent arbiter, the regulation has only been applied in a manner that often requires some redress adding more uncertainty to the regulatory framework. There may be a periodic risk of creditor-unfriendly government intervention in utility markets or rate-setting.

<table>
<thead>
<tr>
<th>Ba</th>
<th>B</th>
<th>Caa</th>
</tr>
</thead>
</table>

Utility regulation occurs (i) under a national, state, provincial or municipal framework based on legislation or government decree that provides the utility a monopoly within its service territory, but with little assurance that rates will be set in a manner that will permit the utility to make and recover necessary investments, and (ii) under a new framework where the jurisdiction’s history of in other sectors or other factors. The judiciary that can arbitrate disagreements between the regulator and the utility may not have clear authority or is viewed as not being fully independent of the regulator or other political pressure. Alternately, there may be no redress to an effective independent arbiter. The utility may have clear authority but may not have the necessary financial strength to enforce its monopoly or prevent uncompensated usage of its system may be limited. There may be a risk of creditor-unfriendly nationalization or other significant intervention in utility markets or rate-setting.

Note 1: The strength of the monopoly refers to the legal, regulatory and practical obstacles to customers in the utility’s territory to obtain service from another provider. Examples of a weakening of the monopoly would include the ability of a city or large user to leave the utility system to set up their own system, the extent to which self-generation is permitted (e.g. cogeneration) and/or encouraged (e.g., net metering; DSM generation). At the lower end of the ratings spectrum, the utility’s monopoly may be challenged by pervasive theft and unauthorized use. Since utilities are generally presumed to be monopolies, a strong monopoly position in itself is not sufficient for a strong score in this sub-factor, but a weakening of the monopoly can lower the score.
How We Assess Consistency and Predictability of Regulation for the Grid

For the Consistency and Predictability sub-factor, we consider the track record of regulatory decisions in terms of consistency, predictability and supportiveness. We evaluate the utility’s interactions in the regulatory process as well as the overall stance of the regulator toward the utility.

In most jurisdictions, the laws and rules seek to make rate-setting a primarily technical process that examines costs the utility incurs and the returns on investments the utility needs to earn so it can make investments that are required to build and maintain the utility infrastructure - power plants, electric transmission and distribution systems, and/or natural gas distribution systems. When the process remains technical and transparent such that regulators can support the financial health of the utility while balancing their public duty to assure that reliable service is provided at a reasonable cost, and when the utility is able to align itself with the policy initiatives of the governing jurisdiction, the utility will receive higher scores in this sub-factor. When the process includes substantial political intervention, which could take the form of legislators or other government officials publically second-guessing regulators, dismissing regulators who have approved unpopular rate increases, or preventing the implementation of rate increases, or when regulators ignore the laws/rules to deliver an outcome that appears more politically motivated, the utility will receive lower scores in this sub-factor.

As with the prior sub-factor, we may score different utilities in the same jurisdiction differently, based on outcomes that are more or less supportive of credit quality over a period of time. We have observed that some utilities are better able to meet the expectations of their customers and regulators, whether through better service, greater reliability, more stable rates or simply more effective regulatory outreach and communication. These utilities typically receive more consistent and credit supportive outcomes, so they will score higher in this sub-factor. Conversely, if a utility has multiple rapid rate increases, chooses to submit major rate increase requests during a sensitive election cycle or a severe economic downturn, has chronic customer service issues, is viewed as frequently providing incomplete information to regulators, or is tone deaf to the priorities of regulators and politicians, it may receive less consistent and supportive outcomes and thus score lower in this sub-factor.

In scoring this sub-factor, we will primarily evaluate the actions of regulators, politicians and jurists rather than their words. Nonetheless, words matter when they are an indication of future action. We seek to differentiate between political rhetoric that is perhaps oriented toward gaining attention for the viewpoint of the speaker and rhetoric that is indicative of future actions and trends in decision-making.
Factor 1b: Consistency and Predictability of Regulation (12.5%)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>The issuer’s interaction with the regulator has led to a strong, lengthy track record of predictable, consistent and favorable decisions. The regulator is highly credit supportive of the issuer and utilities in general. We expect these conditions to continue.</td>
</tr>
<tr>
<td>Aa</td>
<td>The issuer’s interaction with the regulator has led to a considerable track record of predominantly predictable and consistent decisions. The regulator is mostly credit supportive of utilities in general and in almost all instances has been highly credit supportive of the issuer. We expect these conditions to continue.</td>
</tr>
<tr>
<td>A</td>
<td>The issuer’s interaction with the regulator has led to a track record of largely predictable and consistent decisions. The regulator may be somewhat less credit supportive of utilities in general, but has been quite credit supportive of the issuer in most circumstances. We expect these conditions to continue.</td>
</tr>
<tr>
<td>Baa</td>
<td>The issuer’s interaction with the regulator has led to an adequate track record. The regulator is generally consistent and predictable, but there may some evidence of inconsistency or unpredictability from time to time, or decisions may at times be politically charged. However, instances of less credit supportive decisions are based on reasonable application of existing rules and statutes and are not overly punitive. We expect these conditions to continue.</td>
</tr>
<tr>
<td>Ba</td>
<td>We expect that regulatory decisions will demonstrate considerable inconsistency or unpredictability or that decisions will be politically charged, based either on the issuer’s track record of interaction with regulators or other governing bodies, or our view that decisions will move in this direction. The regulator may have a history of less credit supportive regulatory decisions with respect to the issuer, but we expect that the issuer will be able to obtain support when it encounters financial stress, with some potentially material delays. The regulator’s authority may be eroded at times by legislative or political action. The regulator may not follow the framework for some material decisions.</td>
</tr>
<tr>
<td>B</td>
<td>We expect that regulatory decisions will be largely unpredictable or even somewhat arbitrary, based either on the issuer’s track record of interaction with regulators or other governing bodies, or our view that decisions will move in this direction. However, we expect that the issuer will ultimately be able to obtain support when it encounters financial stress, albeit with material or more extended delays. Alternately, the regulator is untested, lacks a consistent track record, or is undergoing substantial change. The regulator’s authority may be eroded on frequent occasions by legislative or political action. The regulator may not follow the framework for some material decisions.</td>
</tr>
<tr>
<td>Caa</td>
<td>We expect that regulatory decisions will be highly unpredictable and frequently adverse, based either on the issuer’s track record of interaction with regulators or other governing bodies, or our view that decisions will move in this direction. Alternately, decisions may have credit supportive aspects, but may often be unenforceable. The regulator’s authority may have been seriously eroded by legislative or political action. The regulator may consistently ignore the framework to the detriment of the issuer.</td>
</tr>
<tr>
<td>B</td>
<td>We expect that regulatory decisions will be largely unpredictable or even somewhat arbitrary, based either on the issuer’s track record of interaction with regulators or other governing bodies, or our view that decisions will move in this direction. However, we expect that the issuer will ultimately be able to obtain support when it encounters financial stress, albeit with material or more extended delays. Alternately, the regulator is untested, lacks a consistent track record, or is undergoing substantial change. The regulator’s authority may be eroded on frequent occasions by legislative or political action. The regulator may not follow the framework for some material decisions.</td>
</tr>
<tr>
<td>Caa</td>
<td>We expect that regulatory decisions will be highly unpredictable and frequently adverse, based either on the issuer’s track record of interaction with regulators or other governing bodies, or our view that decisions will move in this direction. Alternately, decisions may have credit supportive aspects, but may often be unenforceable. The regulator’s authority may have been seriously eroded by legislative or political action. The regulator may consistently ignore the framework to the detriment of the issuer.</td>
</tr>
</tbody>
</table>
Factor 2: Ability to Recover Costs and Earn Returns (25%)

Why It Matters
This rating factor examines the ability of a utility to recover its costs and earn a return over a period of time, including during differing market and economic conditions. While the Regulatory Framework looks at the transparency and predictability of the rules that govern the decision-making process with respect to utilities, the Ability to Recover Costs and Earn Returns evaluates the regulatory elements that directly impact the ability of the utility to generate cash flow and service its debt over time. The ability to recover prudently incurred costs on a timely basis and to attract debt and equity capital are crucial credit considerations. The inability to recover costs, for instance if fuel or purchased power costs ballooned during a rate freeze period, has been one of the greatest drivers of financial stress in this sector, as well as the cause of some utility defaults. In a sector that is typically free cash flow negative (due to large capital expenditures and dividends) and that routinely needs to refinance very large maturities of long-term debt, investor concerns about a lack of timely cost recovery or the sufficiency of rates can, in an extreme scenario, strain access to capital markets and potentially lead to insolvency of the utility (as was the case when “used and useful” requirements threatened some utilities that experienced years of delay in completing nuclear power plants in the 1980s). While our scoring for the Ability to Recover Costs and Earn Returns may primarily be influenced by our assessment of the regulatory relationship, it can also be highly impacted by the management and business decisions of the utility.

How We Assess Ability to Recover Costs and Earn Returns
The timeliness and sufficiency of rates are scored as separate sub-factors; however, they are interrelated. Timeliness can have an impact on our view of what constitutes sufficient returns, because a strong assurance of timely cost recovery reduces risk. Conversely, utilities may have a strong assurance that they will earn a full return on certain deferred costs until they are able to collect them, or their generally strong returns may allow them to weather some rate lag on recovery of construction-related capital expenditures. The timeliness of cost recovery is particularly important in a period of rapidly rising costs. During the past five years, utilities have benefitted from low interest rates and generally decreasing fuel costs and purchased power costs, but these market conditions could easily reverse. For example, fuel is a large component of total costs for vertically integrated utilities and for natural gas utilities, and fuel prices are highly volatile, so the timeliness of fuel and purchased power cost recovery is especially important.

While Factors 1 and 2 are closely inter-related, scoring of these factors will not necessarily be the same. We have observed jurisdictions where the Regulatory Framework caused considerable credit concerns – perhaps it was untested or going through a transition to de-regulation, but where the track record of rate case outcomes was quite positive, leading to a higher score in the Ability to Recover Costs and Earn Returns. Conversely, there have been instances of strong Legislative and Judicial Underpinnings of the Regulatory Framework where the commission has ignored the framework (which would affect Consistency and Predictability of Regulation as well as Ability to Recover Costs and Earn Returns) or has used extraordinary measures to prevent or defer an increase that might have been justifiable from a cost perspective but would have caused rate shock.

One might surmise that Factors 2 and 4 should be strongly correlated, since a good Ability to Recover Costs and Earn Returns would normally lead to good financial metrics. However, the scoring for the Ability to Recover Costs and Earn Returns sub-factor places more emphasis on our expectation of timeliness and sufficiency of rates over time; whereas financial metrics may be impacted by one-time...
events, market conditions or construction cycles - trends that we believe could normalize or even reverse.

How We Assess Timeliness of Recovery of Operating and Capital Costs for the Grid
The criteria we consider include provisions and cost recovery mechanisms for operating costs, mechanisms that allow actual operating and/or capital expenditures to be true-up periodically into rates without having to file a rate case (this may include formula rates, rider and trackers, or the ability to periodically adjust rates for construction work in progress) as well as the process and timeframe of general tariff/base rate cases – those that are fully reviewed by the regulator, generally in a public format that includes testimony of the utility and other stakeholders and interest groups. We also look at the track record of the utility and regulator for timeliness. For instance, having a formula rate plan is positive, but if the actual process has included reviews that are delayed for long periods, it may dampen the benefit to the utility. In addition, we seek to estimate the lag between the time that a utility incurs a major construction expenditures and the time that the utility will start to recover and/or earn a return on that expenditure.

How We Assess Sufficiency of Rates and Returns for the Grid
The criteria we consider include statutory protections that assure full cost recovery and a reasonable return for the utility on its investments, the regulatory mechanisms used to determine what a reasonable return should be, and the track record of the utility in actually recovering costs and earning returns. We examine outcomes of rate cases/tariff reviews and compare them to the request submitted by the utility, to prior rate cases/tariff reviews for the same utility and to recent rate/tariff decisions for a peer group of comparable utilities. In this context, comparable utilities are typically utilities in the same or similar jurisdiction. In cases where the utility is unique or nearly unique in its jurisdiction, comparison will be made to other peers with an adjustment for local differences, including prevailing rates of interest and returns on capital, as well as the timeliness of rate-setting. We look at regulatory disallowances of costs or investments, with a focus on their financial severity and also on the reasons given by the regulator, in order to assess the likelihood that such disallowances will be repeated in the future.
Factor 2a: Timeliness of Recovery of Operating and Capital Costs (12.5%)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>Tariff formulas and automatic cost recovery mechanisms provide full and highly timely recovery of all operating costs and essentially contemporaneous return on all incremental capital investments, with statutory provisions in place to preclude the possibility of challenges to rate increases or cost recovery mechanisms. By statute and by practice, general rate cases are efficient, focused on an impartial review, quick, and permit inclusion of fully forward-looking costs.</td>
</tr>
<tr>
<td>Aa</td>
<td>Tariff formulas and automatic cost recovery mechanisms provide full and highly timely recovery of all operating costs and essentially contemporaneous or near-contemporaneous return on most incremental capital investments, with minimal challenges by regulators to companies’ cost assumptions. By statute and by practice, general rate cases are efficient, focused on an impartial review, of a very reasonable duration before non-appealable interim rates can be collected, and primarily permit inclusion of forward-looking costs.</td>
</tr>
<tr>
<td>A</td>
<td>Automatic cost recovery mechanisms provide full and reasonably timely recovery of fuel, purchased power and all other highly variable operating expenses. Material capital investments may be made under tariff formulas or other rate-making permitting reasonably contemporaneous returns, or may be submitted under other types of filings that provide recovery of cost of capital with minimal delays. Instances of regulatory challenges that delay rate increases or cost recovery are generally related to large, unexpected increases in sizeable construction projects. By statute or by practice, general rate cases are reasonably efficient, primarily focused on an impartial review, of a reasonable duration before rates (either permanent or non-refundable interim rates) can be collected, and permit inclusion of important forward-looking costs.</td>
</tr>
<tr>
<td>Baa</td>
<td>Fuel, purchased power and all other highly variable expenses are generally recovered through mechanisms incorporating delays of less than one year, although some rapid increases in costs may be delayed longer where such deferrals do not place financial stress on the utility. Incremental capital investments may be recovered primarily through general rate cases with moderate lag, with some through tariff formulas. Alternately, there may be formula rates that are untested or unclear. Potentially greater tendency for delays due to regulatory intervention, although this will generally be limited to rates related to large capital projects or rapid increases in operating costs.</td>
</tr>
<tr>
<td>Ba</td>
<td>There is an expectation that fuel, purchased power or other highly variable expenses will eventually be recovered with delays that will not place material financial stress on the utility, but there may be some evidence of an unwillingness by regulators to make timely rate changes to address volatility in fuel, or purchased power, or other market-sensitive expenses. Recovery of costs related to capital investments may be subject to delays that are somewhat lengthy, but not so pervasive as to be expected to discourage important investments.</td>
</tr>
<tr>
<td>B</td>
<td>The expectation that fuel, purchased power or other highly variable expenses will be recovered may be subject to material delays due to second-guessing of spending decisions by regulators or due to political intervention. Recovery of costs related to capital investments may be subject to delays that are material to the issuer, or may be likely to discourage some important investment.</td>
</tr>
<tr>
<td>Caa</td>
<td>The expectation that fuel, purchased power or other highly variable expenses will be recovered may be subject to extensive delays due to second-guessing of spending decisions by regulators or due to political intervention. Recovery of costs related to capital investments may be uncertain, subject to delays that are extensive, or that may be likely to discourage even necessary investment.</td>
</tr>
</tbody>
</table>

Note: Tariff formulas include formula rate plans as well as trackers and riders related to capital investment.
Factor 2b: Sufficiency of Rates and Returns (12.5%)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>Sufficiency of rates to cover costs and attract capital is (and will continue to be) unquestioned. Rates are (and we expect will continue to be) set at a level that permits full cost recovery and a fair return on all investments, with minimal challenges by regulators to companies' cost assumptions. This will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are strong relative to global peers.</td>
</tr>
<tr>
<td>Aa</td>
<td>Rates are (and we expect will continue to be) set at a level that generally provides full cost recovery and a fair return on investments, with limited instances of regulatory challenges and disallowances. In general, this will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are generally above average relative to global peers, but may at times be average.</td>
</tr>
<tr>
<td>A</td>
<td>Rates are (and we expect will continue to be) set at a level that generally provides full operating cost recovery and a mostly fair return on investments, but there may be somewhat more instances of regulatory challenges and disallowances, although ultimate rate outcomes are sufficient to attract capital without difficulty. In general, this will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are average relative to global peers, but may at times be somewhat below average.</td>
</tr>
<tr>
<td>Baa</td>
<td>Rates are (and we expect will continue to be) set at a level that generally provides full operating cost recovery and a mostly fair return on investments, but there may be somewhat more instances of regulatory challenges and disallowances, although ultimate rate outcomes are sufficient to attract capital without difficulty. In general, this will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are average relative to global peers, but may at times be somewhat below average.</td>
</tr>
<tr>
<td>Ba</td>
<td>Rates are (and we expect will continue to be) set at a level that generally provides recovery of most operating costs but return on investments may be less predictable, and there may be decidedly more instances of regulatory challenges and disallowances, but ultimate rate outcomes are generally sufficient to attract capital. In general, this will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are generally below average relative to global peers, or where allowed returns are average but difficult to earn. Alternately, the tariff formula may not take into account all cost components and/or remuneration of investments may be unclear or at times unfavorable.</td>
</tr>
<tr>
<td>B</td>
<td>We expect rates will be set at a level that at times fails to provide recovery of costs other than cash costs, and regulators may engage in somewhat arbitrary second-guessing of spending decisions or deny rate increases related to funding ongoing operations based much more on politics than on prudence reviews. Return on investments may be set at levels that discourage investment. We expect that rate outcomes may be difficult or uncertain, negatively affecting continued access to capital. Alternately, the tariff formula may fail to take into account significant cost components other than cash costs, and/or remuneration of investments may be generally unfavorable.</td>
</tr>
<tr>
<td>Caa</td>
<td>We expect rates will be set at a level that often fails to provide recovery of material costs, and recovery of cash costs may also be at risk. Regulators may engage in more arbitrary second-guessing of spending decisions or deny rate increases related to funding ongoing operations based primarily on politics. Return on investments may be set at levels that discourage necessary maintenance investment. We expect that rate outcomes may often be punitive or highly uncertain, with a markedly negative impact on access to capital. Alternately, the tariff formula may fail to take into account significant cash cost components, and/or remuneration of investments may be primarily unfavorable.</td>
</tr>
<tr>
<td>B</td>
<td>Rates are (and we expect will continue to be) set at a level that often fails to provide recovery of material costs, and recovery of cash costs may also be at risk. Regulators may engage in more arbitrary second-guessing of spending decisions or deny rate increases related to funding ongoing operations based primarily on politics. Return on investments may be set at levels that discourage necessary maintenance investment. We expect that rate outcomes may often be punitive or highly uncertain, with a markedly negative impact on access to capital. Alternately, the tariff formula may fail to take into account significant cash cost components, and/or remuneration of investments may be primarily unfavorable.</td>
</tr>
</tbody>
</table>
Factor 3: Diversification (10%)

Why It Matters

Diversification of overall business operations helps to mitigate the risk that economic cycles, material changes in a single regulatory regime or commodity price movements will have a severe impact on cash flow and credit quality of a utility. While utilities’ sales volumes have lower exposure to economic recessions than many non-financial corporate issuers, some sales components, including industrial sales, are directly affected by economic trends that cause lower production and/or plant closures. In addition, economic activity plays a role in the rate of customer growth in the service territory and (absent energy efficiency and conservation) can often impact usage per customer. The economic strength or weakness of the service territory can affect the political and regulatory environment for rate increase requests by the utility. For utilities in areas prone to severe storms and other natural disasters, the utility’s geographic diversity or concentration can be a key determinant for creditworthiness. Diversity among regulatory regimes can mitigate the impact of a single unfavorable decision affecting one part of the utility’s footprint.

For utilities with electric generation, fuel source diversity can mitigate the impact (to the utility and to its rate-payers) of changes in commodity prices, hydrology and water flow, and environmental or other regulations affecting plant operations and economics. We have observed that utilities’ regulatory environments are most likely to become unfavorable during periods of rapid rate increases (which are more important than absolute rate levels) and that fuel diversity leads to more stable rates over time. For that reason, fuel diversity can be important even if fuel and purchased power expenses are an automatic pass-through to the utility’s ratepayers. Changes in environmental, safety and other regulations have caused vulnerabilities for certain technologies and fuel sources during the past five years. These vulnerabilities have varied widely in different countries and have changed over time.

How We Assess Market Position for the Grid

Market position is comprised primarily of the economic diversity of the utility’s service territory and the diversity of its regulatory regimes. We also consider the diversity of utility operations (e.g., regulated electric, gas, water, steam) when there are material operations in more than one area. Economic diversity is a typically a function of the population, size and breadth of the territory and the businesses that drive its GDP and employment. For the size of the territory, we typically consider the number of customers and the volumes of generation and/or throughput. For breadth, we consider the number of sizeable metropolitan areas served, the economic diversity and vitality in those metropolitan areas, and any concentration in a particular area or industry. In our assessment, we may consider various information sources. For example, in the US, information sources on the diversity and vitality of economies of individual states and metropolitan areas may include Moody’s Economy.com. We also look at the mix of the utility’s sales volumes among customer types, as well as the track record of volume sales and any notable payment patterns during economic cycles. For diversity of regulatory regimes, we typically look at the number of regulators and the percentages of revenues and utility assets that are under the purview of each. While the highest scores in the Market Position sub-factor are reserved for issuers regulated in multiple jurisdictions, when there is only one regulator, we make a differentiation of regimes perceived as having lower or higher volatility.

Issuers with multiple supportive regulatory jurisdictions, a balanced sales mix among residential, commercial, industrial and governmental customers in a large service territory with a robust and diverse economy will generally score higher in this sub-factor. An issuer with a small service territory economy that has a high dependence on one or two sectors, especially highly cyclical industries, will
generally score lower in this sub-factor, as will issuers with meaningful exposure to economic dislocations caused by natural disasters.

For issuers that are vertically integrated utilities having a meaningful amount of generation, this sub-factor has a weighting of 5%. For electric transmission and distribution utilities without meaningful generation and for natural gas local distribution companies, this sub-factor has a weighting of 10%.

How We Assess Generation and Fuel Diversity for the Grid
Criteria include the fuel type of the issuer’s generation and important power purchase agreements, the ability of the issuer to economically shift its generation and power purchases when there are changes in fuel prices, the degree to which the utility and its rate-payers are exposed to or insulated from changes in commodity prices, and exposure to Challenged Source and Threatened Sources (see the explanations for how we generally characterize these generation sources in the table below). A regulated utility’s capacity mix may not in itself be an indication of fuel diversity or the ability to shift fuels, since utilities may keep old and inefficient plants (e.g., natural gas boilers) to serve peak load. For this reason, we do not incorporate set percentages reflecting an “ideal” or “sub-par” mix for capacity or even generation. In addition to looking at a utility’s generation mix to evaluate fuel diversity, we consider the efficiency of the utility’s plants, their placement on the regional dispatch curve, and the demonstrated ability/ inability of the utility to shift its generation mix in accordance with changing commodity prices.

Issuers having a balanced mix of hydro, coal, natural gas, nuclear and renewable energy as well as low exposure to challenged and threatened sources of generation will score higher in this sub-factor. Issuers that have concentration in one or two sources of generation, especially if they are threatened or challenged sources, will score lower.

In evaluating an issuer’s degree of exposure to challenged and threatened sources, we will consider not only the existence of those plants in the utility’s portfolio, but also the relevant factors that will determine the impact on the utility and on its rate-payers. For instance, an issuer that has a fairly high percentage of its generation from challenged sources could be evaluated very differently if its peer utilities face the same magnitude of those issues than if its peers have no exposure to challenged or threatened sources. In evaluating threatened sources, we consider the utility’s progress in its plan to replace those sources, its reserve margin, the availability of purchased power capacity in the region, and the overall impact of the replacement plan on the issuer’s rates relative to its peer group. Especially if there are no peers in the same jurisdiction, we also examine the extent to which the utility’s generation resources plan is aligned with the relevant government’s fuel/energy policy.
Factor 3: Diversification (10%)

<table>
<thead>
<tr>
<th>Weighting 10%</th>
<th>Sub-Factor Weighting</th>
<th>Aaa</th>
<th>Aa</th>
<th>A</th>
<th>Baa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Position</td>
<td>5% *</td>
<td>A very high degree of multinational and regional diversity in terms of regulatory regimes and/or service territory economies.</td>
<td>Material operations in three or more nations or substantial geographic regions providing very good diversity of regulatory regimes and/or service territory economies.</td>
<td>Material operations in two to three nations, states, provinces or regions that provide good diversity of regulatory regimes and service territory economies. Alternately, operates within a single regulatory regime with low volatility, and the service territory economy is robust, has a very high degree of diversity and has demonstrated resilience in economic cycles.</td>
<td>May operate under a single regulatory regime viewed as having low volatility, or where multiple regulatory regimes are not viewed as providing much diversity. The service territory economy may have some concentration and cyclical, but is sufficiently resilient that it can absorb reasonably foreseeable increases in utility rates.</td>
</tr>
<tr>
<td>Generation and Fuel Diversity</td>
<td>5% **</td>
<td>A high degree of diversity in terms of generation and/or fuel sources such that the utility and rate-payers are well insulated from commodity price changes, no generation concentration, and very low exposures to Challenged or Threatened Sources (see definitions below).</td>
<td>Very good diversification in terms of generation and/or fuel sources such that the utility and rate-payers are affected only minimally by commodity price changes, little generation concentration, and low exposures to Challenged or Threatened Sources.</td>
<td>Good diversification in terms of generation and/or fuel sources such that the utility and rate-payers have only modest exposure to commodity price changes; however, may have some concentration in a source that is neither Challenged nor Threatened. Exposure to Threatened Sources is low. While there may be some exposure to Challenged Sources, it is not a cause for concern.</td>
<td>Adequate diversification in terms of generation and/or fuel sources such that the utility and rate-payers have moderate exposure to commodity price changes; however, may have some concentration in a source that is Challenged. Exposure to Threatened Sources is moderate, while exposure to Challenged Sources is manageable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-Factor Weighting</th>
<th>Ba</th>
<th>B</th>
<th>Caa</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Position</td>
<td>5% *</td>
<td>Operates in a market area with somewhat greater concentration and cyclical in the service territory economy and/or exposure to storms and other natural disasters, and thus less resilience to absorbing reasonably foreseeable increases in utility rates. May show somewhat greater volatility in the regulatory regime(s).</td>
<td>Operates in a limited market area with material concentration and more severe cyclical in service territory economy such that cycles are of materially longer duration or reasonably foreseeable increases in utility rates could present a material challenge to the economy. Service territory may have geographic concentration that limits its resilience to storms and other natural disasters, or may be an emerging market. May show decided volatility in the regulatory regime(s).</td>
<td>Defines</td>
</tr>
<tr>
<td>Generation and Fuel Diversity</td>
<td>5% **</td>
<td>Modest diversification in generation and/or fuel sources such that the utility or rate-payers have greater exposure to commodity price changes. Exposure to Challenged and Threatened Sources may be more pronounced, but the utility will be able to access alternative sources without undue financial stress.</td>
<td>Operates with little diversification in generation and/or fuel sources such that the utility or rate-payers have high exposure to commodity price changes. Exposure to Challenged and Threatened Sources may be high, and accessing alternate sources may be challenging and cause more financial stress, but ultimately feasible.</td>
<td>Operates with high concentration in generation and/or fuel sources such that the utility or rate-payers have exposure to commodity price shocks. Exposure to Challenged and Threatened Sources may be very high, and accessing alternate sources may be highly uncertain.</td>
</tr>
</tbody>
</table>

*10% weight for issuers that lack generation **0% weight for issuers that lack generation

Definitions

- **Challenged Sources**: generation plants that face higher but not insurmountable economic hurdles resulting from penalties or taxes on their operation, or from environmental upgrades that are required or likely to be required. Some examples are carbon-emitting plants that incur carbon taxes, plants that must buy emissions credits to operate, and plants that must install environmental equipment to continue to operate, in each where the taxes/credits/upgrade are sufficient to have a material impact on those plants’ competitiveness relative to other generation types or on the utility’s rates, but where the impact is not so severe as to be likely require plant closure.

- **Threatened Sources**: generation plants that are no longer able to operate due to major unplanned outages or issues with licensing or other regulatory compliance, and plants that are highly likely to be required to de-activate, whether due to the effectiveness of currently existing or expected rules and regulations or due to economic challenges. Some recent examples would include coal fired plants in the US that are not economic to retrofit to meet mercury and air toxics standards, plants that cannot meet the effective date of those standards, nuclear plants in Japan that have not been licensed to re-start after the Fukushima Dai-ichi accident, and nuclear plants that are required to be phased out within 10 years (as is the case in some European countries).
Factor 4: Financial Strength (40%)

Why It Matters
Electric and gas utilities are regulated, asset-based businesses characterized by large investments in long-lived property, plant and equipment. Financial strength, including the ability to service debt and provide a return to shareholders, is necessary for a utility to attract capital at a reasonable cost in order to invest in its generation, transmission and distribution assets, so that the utility can fulfill its service obligations at a reasonable cost to rate-payers.

How We Assess It for the Grid
In comparison to companies in other non-financial corporate sectors, the financial statements of regulated electric and gas utilities have certain unique aspects that impact financial analysis, which is further complicated by disparate treatment of certain elements under US Generally Accepted Accounting Principles (GAAP) versus International Financial Reporting Standards (IFRS). Regulatory accounting may permit utilities to defer certain costs (thereby creating regulatory assets) that a non-utility corporate entity would have to expense. For instance, a regulated utility may be able to defer a substantial portion of costs related to recovery from a storm based on the general regulatory framework for those expenses, even if the utility does not have a specific order to collect the expenses from ratepayers over a set period of time. A regulated utility may be able to accrue and defer a return on equity (in addition to capitalizing interest) for construction-work-in-progress for an approved project based on the assumption that it will be able to collect that deferred equity return once the asset comes into service. For this reason, we focus more on a utility’s cash flow than on its reported net income. Conversely, utilities may collect certain costs in rates well ahead of the time they must be paid (for instance, pension costs), thereby creating regulatory liabilities. Many of our metrics focus on Cash Flow from Operations Before Changes in Working Capital (CFO Pre-WC) because, unlike Funds from Operations (FFO), it captures the changes in long-term regulatory assets and liabilities. However, under IFRS the two measures are essentially the same. In general, we view changes in working capital as less important in utility financial analysis because they are often either seasonal (for example, power demand is generally greatest in the summer) or caused by changes in fuel prices that are typically a relatively automatic pass-through to the customer. We will nonetheless examine the impact of working capital changes in analyzing a utility’s liquidity (see Other Rating Considerations – Liquidity).

Given the long-term nature of utility assets and the often lumpy nature of their capital expenditures, it is important to analyze both a utility’s historical financial performance as well as its prospective future performance, which may be different from backward-looking measures. Scores under this factor may be higher or lower than what might be expected from historical results, depending on our view of expected future performance. In the illustrative mapping examples in this document, the scoring grid uses three year averages for the financial strength sub-factors. Multi-year periods are usually more representative of credit quality because utilities can experience swings in cash flows from one-time events, including such items as rate refunds, storm cost deferrals that create a regulatory asset, or securitization proceeds that reduce a regulatory asset. Nonetheless, we also look at trends in metrics for individual periods, which may influence our view of future performance and ratings.

For this scoring grid, we have identified four key ratios that we consider the most consistently useful in the analysis of regulated electric and gas utilities. However, no single financial ratio can adequately convey the relative credit strength of these highly diverse companies. Our ratings consider the overall financial strength of a company, and in individual cases other financial indicators may also play an important role.
CFO Pre-Working Capital Plus Interest/Interest or Cash Flow Interest Coverage

The cash flow interest coverage ratio is an indicator for a utility’s ability to cover the cost of its borrowed capital. The numerator in the ratio calculation is the sum of CFO Pre-WC and interest expense, and the denominator is interest expense.

CFO Pre-Working Capital / Debt

This important metric is an indicator for the cash generating ability of a utility compared to its total debt. The numerator in the ratio calculation is CFO Pre-WC, and the denominator is total debt.

CFO Pre-Working Capital Minus Dividends / Debt

This ratio is an indicator for financial leverage as well as an indicator of the strength of a utility’s cash flow after dividend payments are made. Dividend obligations of utilities are often substantial, quasi-permanent outflows that can affect the ability of a utility to cover its debt obligations, and this ratio can also provide insight into the financial policies of a utility or utility holding company. The higher the level of retained cash flow relative to a utility’s debt, the more cash the utility has to support its capital expenditure program. The numerator of this ratio is CFO Pre-WC minus dividends, and the denominator is total debt.

Debt/Capitalization

This ratio is a traditional measure of balance sheet leverage. The numerator is total debt and the denominator is total capitalization. All of our ratios are calculated in accordance with Moody’s standard adjustments, but we note that our definition of total capitalization includes deferred taxes in addition to total debt, preferred stock, other hybrid securities, and common equity. Since the presence or absence of deferred taxes is a function of national tax policy, comparing utilities using this ratio may be more meaningful among utilities in the same country or in countries with similar tax policies. High debt levels in comparison to capitalization can indicate higher interest obligations, can limit the ability of a utility to raise additional financing if needed, and can lead to leverage covenant violations in bank credit facilities or other financing agreements. High ratios result from a regulatory framework that does not permit a robust cushion of equity in the capital structure, or from a material write-off of an asset, which may not have impacted current period cash flows but could affect future period cash flows relative to debt.

There are two sets of thresholds for three of these ratios based on the level of the issuer’s business risk – the Standard Grid and the Lower Business Risk (LBR) Grid. In our view, the different types of utility entities covered under this methodology (as described in Appendix E) have different levels of business risk.

Generation utilities and vertically integrated utilities generally have a higher level of business risk because they are engaged in power generation, so we apply the Standard Grid. We view power generation as the highest-risk component of the electric utility business, as generation plants are typically the most expensive part of a utility's infrastructure (representing asset concentration risk) and are subject to the greatest risks in both construction and operation, including the risk that incurred costs will either not be recovered in rates or recovered with material delays.

7 In certain circumstances, analysts may also apply specific adjustments.
8 We also examine debt/capitalization ratios as defined in applicable covenants (which typically exclude deferred taxes from capitalization) relative to the covenant threshold level.
Other types of utilities may have lower business risk, such that we believe that they are most appropriately assessed using the LBR Grid, due to factors that could include a generally greater transfer of risk to customers, very strong insulation from exposure to commodity price movements, good protection from volumetric risks, fairly limited capex needs and low exposure to storms, major accidents and natural disasters. For instance, we tend to view many US natural gas local distribution companies (LDCs) and certain US electric transmission and distribution companies (T&DCs, which lack generation but generally retain some procurement responsibilities for customers), as typically having a lower business risk profile than their vertically integrated peers. In cases of T&DCs that we do not view as having materially lower risk than their vertically integrated peers, we will apply the Standard grid. This could result from a regulatory framework that exposes them to energy supply risk, large capital expenditures for required maintenance or upgrades, a heightened degree of exposure to catastrophic storm damage, or increased regulatory scrutiny due to poor reliability, or other considerations. The Standard Grid will also apply to LDCs that in our view do not have materially lower risk; for instance, due to their ownership of high pressure pipes or older systems requiring extensive gas main replacements, where gas commodity costs are not fully recovered in a reasonably contemporaneous manner, or where the LDC is not well insulated from declining volumes.

The four key ratios, their weighting in the grid, and the Standard and LBR scoring thresholds are detailed in the following table.

<table>
<thead>
<tr>
<th>Factor 4: Financial Strength</th>
<th>Sub-Factor Weighting</th>
<th>Aaa</th>
<th>Aa</th>
<th>A</th>
<th>Baa</th>
<th>Ba</th>
<th>B</th>
<th>Caa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFO pre-WC + Interest / Interest</td>
<td>7.5%</td>
<td>≥ 8x</td>
<td>6x - 8x</td>
<td>4.5x - 6x</td>
<td>3x - 4.5x</td>
<td>2x - 3x</td>
<td>1x - 2x</td>
<td>< 1x</td>
</tr>
<tr>
<td>CFO pre-WC / Debt</td>
<td>15%</td>
<td>Standard Grid</td>
<td>≥ 40%</td>
<td>30% - 40%</td>
<td>22% - 30%</td>
<td>13% - 22%</td>
<td>5% - 13%</td>
<td>1% - 5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Business Risk Grid</td>
<td>≥ 38%</td>
<td>27% - 38%</td>
<td>19% - 27%</td>
<td>11% - 19%</td>
<td>5% - 11%</td>
<td>1% - 5%</td>
</tr>
<tr>
<td>CFO pre-WC - Dividends / Debt</td>
<td>10%</td>
<td>Standard Grid</td>
<td>≥ 35%</td>
<td>25% - 35%</td>
<td>17% - 25%</td>
<td>9% - 17%</td>
<td>0% - 9%</td>
<td>(5%) - 0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Business Risk Grid</td>
<td>≥ 34%</td>
<td>23% - 34%</td>
<td>15% - 23%</td>
<td>7% - 15%</td>
<td>0% - 7%</td>
<td>(5%) - 0%</td>
</tr>
<tr>
<td>Debt / Capitalization</td>
<td>7.5%</td>
<td>Standard Grid</td>
<td>< 25%</td>
<td>25% - 35%</td>
<td>35% - 45%</td>
<td>45% - 55%</td>
<td>55% - 65%</td>
<td>65% - 75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Business Risk Grid</td>
<td>< 29%</td>
<td>29% - 40%</td>
<td>40% - 50%</td>
<td>50% - 59%</td>
<td>59% - 67%</td>
<td>67% - 75%</td>
</tr>
</tbody>
</table>

Notching for Structural Subordination of Holding Companies

Why It Matters

A typical utility company structure consists of a holding company ("HoldCo") that owns one or more operating subsidiaries (each an “OpCo”). OpCos may be regulated utilities or non-utility companies. A HoldCo typically has no operations – its assets are mostly limited to its equity interests in subsidiaries, and potentially other investments in subsidiaries that are structured as advances, debt, or even hybrid securities.

Most HoldCos present their financial statements on a consolidated basis that blurs legal considerations about priority of creditors based on the legal structure of the family, and grid scoring is thus based on
consolidated ratios. However, HoldCo creditors typically have a secondary claim on the group’s cash flows and assets after OpCo creditors. We refer to this as structural subordination, because it is the corporate legal structure, rather than specific subordination provisions, that causes creditors at each of the utility and non-utility subsidiaries to have a more direct claim on the cash flows and assets of their respective OpCo obligors. By contrast, the debt of the HoldCo is typically serviced primarily by dividends that are up-streamed by the OpCos. Under normal circumstances, these dividends are made from net income, after payment of the OpCo’s interest and preferred dividends. In most non-financial corporate sectors where cash often moves freely between the entities in a single issuer family, this distinction may have less of an impact. However, in the regulated utility sector, barriers to movement of cash among companies in the corporate family can be much more restrictive, depending on the regulatory framework. These barriers can lead to significantly different probabilities of default for HoldCos and OpCos. Structural subordination also affects loss given default. Under most default scenarios, an OpCo’s creditors will be satisfied from the value residing at that OpCo before any of the OpCo’s assets can be used to satisfy claims of the HoldCo’s creditors. The prevalence of debt issuance at the OpCo level is another reason that structural subordination is usually a more serious concern in the utility sector than for investment grade issuers in other non-financial corporate sectors.

The grids for factors 1-4 are primarily oriented to OpCos (and to some degree for HoldCos with minimal current structural subordination; for example, there is no current structural subordination to debt at the operating company if all of the utility family’s debt and preferred stock is issued at the HoldCo level, although there is structural subordination to other liabilities at the OpCo level). The additional risk from structural subordination is addressed via a notching adjustment to bring grid outcomes (on average) closer to the actual ratings of HoldCos.

How We Assess It

Grid-indicated ratings of holding companies may be notched down based on structural subordination. The risk factors and mitigants that impact structural subordination are varied and can be present in different combinations, such that a formulaic approach is not practical and case-by-case analyst judgment of the interaction of all pertinent factors that may increase or decrease its importance to the credit risk of an issuer are essential.

Some of the potentially pertinent factors that could increase the degree and/or impact of structural subordination include the following:

» Regulatory or other barriers to cash movement from OpCos to HoldCo

» Specific ring-fencing provisions

» Strict financial covenants at the OpCo level

» Higher leverage at the OpCo level

» Higher leverage at the HoldCo level

» Significant dividend limitations or potential limitations at an important OpCo

» HoldCo exposure to subsidiaries with high business risk or volatile cash flows

9 The HoldCo and OpCo may also have intercompany agreements, including tax sharing agreements, that can be another source of cash to the HoldCo.

10 Actual priority in a default scenario will be determined by many factors, including the corporate and bankruptcy laws of the jurisdiction, the asset value of each OpCo, specific financing terms, inter-relationships among members of the family, etc.

11 While higher leverage at the HoldCo does not increase structural subordination per se, it exacerbates the impact of any structural subordination that exists.
» Strained liquidity at the HoldCo level

» The group’s investment program is primarily in businesses that are higher risk or new to the group

Some of the potentially mitigating factors that could decrease the degree and/or impact of structural subordination include the following:

» Substantial diversity in cash flows from a variety of utility OpCos

» Meaningful dividends to HoldCo from unlevered utility OpCos

» Dependable, meaningful dividends to HoldCo from non-utility OpCos

» The group’s investment program is primarily in strong utility businesses

» Inter-company guarantees - however, in many jurisdictions the value of an upstream guarantee may be limited by certain factors, including by the value that the OpCo received in exchange for granting the guarantee

Notching for structural subordination within the grid may range from 0 to negative 3 notches. Instances of extreme structural subordination are relatively rare, so the grid convention does not accommodate wider differences, although in the instances where we believe it is present, actual ratings do reflect the full impact of structural subordination.

A related issue is the relationship of ratings within a utility family with multiple operating companies, and sometimes intermediate holding companies. Some of the key issues are the same, such as the relative amounts of debt at the holding company level compared to the operating company level (or at one OpCo relative to another), and the degree to which operating companies have credit insulation due to regulation or other protective factors. Appendix D has additional insights on ratings within a utility family.

Rating Methodology Assumptions and Limitations, and Other Rating Considerations

The grid in this rating methodology represents a decision to favor simplicity that enhances transparency and to avoid greater complexity that would enable the grid to map more closely to actual ratings. Accordingly, the four rating factors and the notching factor in the grid do not constitute an exhaustive treatment of all of the considerations that are important for ratings of companies in the regulated electric and gas utility sector. In addition, our ratings incorporate expectations for future performance, while the financial information that is used to illustrate the mapping in the grid in this document is mainly historical. In some cases, our expectations for future performance may be informed by confidential information that we can’t disclose. In other cases, we estimate future results based upon past performance, industry trends, competitor actions or other factors. In either case, predicting the future is subject to the risk of substantial inaccuracy.

Assumptions that may cause our forward-looking expectations to be incorrect include unanticipated changes in any of the following factors: the macroeconomic environment and general financial market conditions, industry competition, disruptive technology, regulatory and legal actions.

Key rating assumptions that apply in this sector include our view that sovereign credit risk is strongly correlated with that of other domestic issuers, that legal priority of claim affects average recovery on different classes of debt, sufficiently to generally warrant differences in ratings for different debt classes of the same issuer, and the assumption that access to liquidity is a strong driver of credit risk.
In choosing metrics for this rating methodology grid, we did not explicitly include certain important factors that are common to all companies in any industry such as the quality and experience of management, assessments of corporate governance and the quality of financial reporting and information disclosure. Therefore ranking these factors by rating category in a grid would in some cases suggest too much precision in the relative ranking of particular issuers against all other issuers that are rated in various industry sectors.

Ratings may include additional factors that are difficult to quantify or that have a meaningful effect in differentiating credit quality only in some cases, but not all. Such factors include financial controls, exposure to uncertain licensing regimes and possible government interference in some countries. Regulatory, litigation, liquidity, technology and reputational risk as well as changes to consumer and business spending patterns, competitor strategies and macroeconomic trends also affect ratings. While these are important considerations, it is not possible to precisely express these in the rating methodology grid without making the grid excessively complex and significantly less transparent. Ratings may also reflect circumstances in which the weighting of a particular factor will be substantially different from the weighting suggested by the grid.

This variation in weighting rating considerations can also apply to factors that we choose not to represent in the grid. For example, liquidity is a consideration frequently critical to ratings and which may not, in other circumstances, have a substantial impact in discriminating between two issuers with a similar credit profile. As an example of the limitations, ratings can be heavily affected by extremely weak liquidity that magnifies default risk. However, two identical companies might be rated the same if their only differentiating feature is that one has a good liquidity position while the other has an extremely good liquidity position.

Other Rating Considerations

Moody’s considers other factors in addition to those discussed in this report, but in most cases understanding the considerations discussed herein should enable a good approximation of our view on the credit quality of companies in the regulated electric and gas utilities sector. Ratings consider our assessment of the quality of management, corporate governance, financial controls, liquidity management, event risk and seasonality. The analysis of these factors remains an integral part of our rating process.

Liquidity and Access to Capital Markets

Liquidity analysis is a key element in the financial analysis of electric and gas utilities, and it encompasses a company’s ability to generate cash from internal sources as well as the availability of external sources of financing to supplement these internal sources. Liquidity and access to financing are of particular importance in this sector. Utility assets can often have a very long useful life—30, 40 or even 60 years is not uncommon, as well as high price tags. Partly as a result of construction cycles, the utility sector has experienced prolonged periods of negative free cash flow—essentially, the sum of its dividends and its capital expenditures for maintenance and growth of its infrastructure frequently exceeds cash from operations, such that a portion of capital expenditures must routinely be debt financed. Utilities are among the largest debt issuers in the corporate universe and typically require consistent access to the capital markets to assure adequate sources of funding and to maintain financial flexibility. Substantial portions of capex are non-discretionary (for example, maintenance, adding customers to the network, or meeting environmental mandates); however, utilities were swift to cut or defer discretionary spending during the 2007-2009 recession. Dividends represent a quasi-permanent outlay, since utilities will typically only rarely cut their dividend. Liquidity is also important to meet
maturing obligations, which often occur in large chunks, and to meet collateral calls under any hedging agreements.

Due to the importance of liquidity, incorporating it as a factor with a fixed weighting in the grid would suggest an importance level that is often far different from the actual weight in the rating. In normal circumstances most companies in the sector have good access to liquidity. The industry generally requires, and for the most part has, large, syndicated, multi-year committed credit facilities. In addition, utilities have demonstrated strong access to capital markets, even under difficult conditions. As a result, liquidity has generally not been an issue for most utilities and a utility with very strong liquidity may not warrant a rating distinction compared to a utility with strong liquidity. However, when there is weakness in liquidity or liquidity management, it can be the dominant consideration for ratings.

Our assessment of liquidity for regulated utilities involves an analysis of total sources and uses of cash over the next 12 months or more, as is done for all corporates. Using our financial projections of the utility and our analysis of its available sources of liquidity (including an assessment of the quality and reliability of alternate liquidity such as committed credit facilities), we evaluate how its projected sources of cash (cash from operations, cash on hand and existing committed multi-year credit facilities) compare to its projected uses (including all or most capital expenditures, dividends, maturities of short and long-term debt, our projection of potential liquidity calls on financial hedges, and important issuer-specific items such as special tax payments). We assume no access to capital markets or additional liquidity sources, no renewal of existing credit facilities, and no cut to dividends. We examine a company’s liquidity profile under this scenario, its ability to make adjustments to improve its liquidity position, and any dependence on liquidity sources with lower quality and reliability.

Management Quality and Financial Policy

The quality of management is an important factor supporting the credit strength of a regulated utility or utility holding company. Assessing the execution of business plans over time can be helpful in assessing management’s business strategies, policies, and philosophies and in evaluating management performance relative to performance of competitors and our projections. A record of consistency provides Moody’s with insight into management’s likely future performance in stressed situations and can be an indicator of management’s tendency to depart significantly from its stated plans and guidelines.

We also assess financial policy (including dividend policy and planned capital expenditures) and how management balances the potentially competing interests of shareholders, fixed income investors and other stakeholders. Dividends and discretionary capital expenditures are the two primary components over which management has the greatest control in the short term. For holding companies, we consider the extent to which management is willing to stretch its payout ratio (through aggressive increases or delays in needed decreases) in order to satisfy common shareholders. For a utility that is a subsidiary of a parent company with several utility subsidiaries, dividends to the parent may be more volatile depending on the cash generation and cash needs of that utility, because parents typically want to assure that each utility maintains the regulatory debt/equity ratio on which its rates have been set. The effect we have observed is that utility subsidiaries often pay higher dividends when they have lower capital needs and lower dividends when they have higher capital expenditures or other cash needs. Any dividend policy that cuts into the regulatory debt/equity ratio is a material credit negative.
Size – Natural Disasters, Customer Concentration and Construction Risks

The size and scale of a regulated utility has generally not been a major determinant of its credit strength in the same way that it has been for most other industrial sectors. While size brings certain economies of scale that can somewhat affect the utility’s cost structure and competitiveness, rates are more heavily impacted by costs related to fuel and fixed assets. Particularly in the US, we have not observed material differences in the success of utilities’ regulatory outreach based on their size. Smaller utilities have sometimes been better able to focus their attention on meeting the expectations of a single regulator than their multi-state peers.

However, size can be a very important factor in our assessment of certain risks that impact ratings, including exposure to natural disasters, customer concentration (primarily to industrial customers in a single sector) and construction risks associated with large projects. While the grid attempts to incorporate the first two of these into Factor 3, for some issuers these considerations may be sufficiently important that the rating reflects a greater weight for these risks. While construction projects always carry the risk of cost over-runs and delays, these risks are materially heightened for projects that are very large relative to the size of the utility.

Interaction of Utility Ratings with Government Policies and Sovereign Ratings

Compared to most industrial sectors, regulated utilities are more likely to be impacted by government actions. Credit impacts can occur directly through rate regulation, and indirectly through energy, environmental and tax policies. Government actions affect fuel prices, the mix of generating plants, the certainty and timing of revenues and costs, and the likelihood that regulated utilities will experience financial stress. While our evolving view of the impact of such policies and the general economic and financial climate is reflected in ratings for each utility, some considerations do not lend themselves to incorporation in a simple ratings grid.\(^{12}\)

Diversified Operations at the Utility

A small number of regulated utilities have diversified operations that are segments within the utility company, as opposed to the more common practice of housing such operations in one or more separate affiliates. In general, we will seek to evaluate the other businesses that are material in accordance with the appropriate methodology and the rating will reflect considerations from such methodologies. There may be analytical limitations in evaluating the utility and non-utility businesses when segment financial results are not fully broken out and these may be addressed through estimation based on available information. Since regulated utilities are a relatively low risk business compared to other corporate sectors, in most cases diversified non-utility operations increase the business risk profile of a utility. Reflecting this tendency, we note that assigned ratings are typically lower than grid-indicated ratings for such companies.

Event Risk

We also recognize the possibility that an unexpected event could cause a sudden and sharp decline in an issuer’s fundamental creditworthiness. Typical special events include mergers and acquisitions, asset sales, spin-offs, capital restructuring programs, litigation and shareholder distributions.

\(^{12}\) See also the cross-sector methodology [How Sovereign Credit Quality May Affect Other Ratings, February 2012](#).
Corporate Governance
Among the areas of focus in corporate governance are audit committee financial expertise, the incentives created by executive compensation packages, related party transactions, interactions with outside auditors, and ownership structure.

Investment and Acquisition Strategy
In our credit assessment we take into consideration management’s investment strategy. Investment strategy is benchmarked with that of the other companies in the rated universe to further verify its consistency. Acquisitions can strengthen a company’s business. Our assessment of a company’s tolerance for acquisitions at a given rating level takes into consideration (1) management’s risk appetite, including the likelihood of further acquisitions over the medium term; (2) share buy-back activity; (3) the company’s commitment to specific leverage targets; and (4) the volatility of the underlying businesses, as well as that of the business acquired. Ratings can often hold after acquisitions even if leverage temporarily climbs above normally acceptable ranges. However, this depends on (1) the strategic fit; (2) pro-forma capitalization/leverage following an acquisition; and (3) our confidence that credit metrics will be restored in a relatively short timeframe.

Financial Controls
We rely on the accuracy of audited financial statements to assign and monitor ratings in this sector. Such accuracy is only possible when companies have sufficient internal controls, including centralized operations, the proper tone at the top and consistency in accounting policies and procedures.

Weaknesses in the overall financial reporting processes, financial statement restatements or delays in regulatory filings can be indications of a potential breakdown in internal controls.
Conclusion: Summary of the Grid-Indicated Rating Outcomes

For the 45 representative utilities shown in the illustrative mapping examples, the grid-indicated ratings map to current assigned ratings as follows (see Appendix B for the details):

- 33% or 15 companies map to their assigned rating
- 49% or 22 companies have grid-indicated ratings that are within one alpha-numeric notch of their assigned rating
- 16% or 7 companies have grid-indicated ratings that are within two alpha-numeric notches of their assigned rating
- 2% or 1 company has a grid-indicated rating that is within three alpha-numeric notches of its assigned rating
Grid Indicated Rating Outcomes

<table>
<thead>
<tr>
<th>Map to Assigned Rating</th>
<th>Map to Within One Notch</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Electric Power Company, Inc.</td>
<td>Appalachian Power Company</td>
</tr>
<tr>
<td>China Longyuan Power Group Corporation Ltd.</td>
<td>Arizona Public Service Company</td>
</tr>
<tr>
<td>Chubu Electric Power Company, Incorporated</td>
<td>China Resources Gas Group Limited</td>
</tr>
<tr>
<td>Entergy Corporation</td>
<td>Duke Energy Corporation</td>
</tr>
<tr>
<td>FortisBC Holdings Inc.</td>
<td>Florida Power & Light Company</td>
</tr>
<tr>
<td>Great Plains Energy Incorporated</td>
<td>Georgia Power Company</td>
</tr>
<tr>
<td>Hokuriku Electric Power Company</td>
<td>Hawaiian Electric Industries, Inc.</td>
</tr>
<tr>
<td>Madison Gas & Electric</td>
<td>Idaho Power Company</td>
</tr>
<tr>
<td>MidAmerican Energy Company</td>
<td>Kansai Electric Power Company, Incorporated</td>
</tr>
<tr>
<td>Mississippi Power Company</td>
<td>Korea Electric Power Corporation</td>
</tr>
<tr>
<td>Newfoundland Power Inc.</td>
<td>MidAmerican Energy Holdings Co.</td>
</tr>
<tr>
<td>Oklahoma Gas and Electric Company</td>
<td>Niagara Mohawk Power Corporation</td>
</tr>
<tr>
<td>Osaka Gas Co., Ltd.</td>
<td>Northern States Power Minnesota</td>
</tr>
<tr>
<td>Saudi Electricity</td>
<td>Okinawa Electric Power Company, Incorporated</td>
</tr>
<tr>
<td>Wisconsin Public Service Corporation</td>
<td>PacifiCorp</td>
</tr>
<tr>
<td></td>
<td>Pennsylvania Electric Company</td>
</tr>
<tr>
<td></td>
<td>PNG Companies</td>
</tr>
<tr>
<td></td>
<td>Public Service Company of New Mexico</td>
</tr>
<tr>
<td></td>
<td>SCANA</td>
</tr>
<tr>
<td></td>
<td>Southwestern Public Service Company</td>
</tr>
<tr>
<td></td>
<td>UGI Utilities, Inc.</td>
</tr>
<tr>
<td></td>
<td>Virginia Electric Power Company</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map to Within Two Notches</th>
<th>Map to Within Three or More Notches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameren Illinois Company</td>
<td>Western Mass Electric Co.</td>
</tr>
<tr>
<td>Consumers Energy Company</td>
<td></td>
</tr>
<tr>
<td>Distribuidora de Electricidad La Paz S.A.</td>
<td></td>
</tr>
<tr>
<td>Empresa Electrica de Guatemala, S.A. (EEGSA)</td>
<td></td>
</tr>
<tr>
<td>Gail (India) Ltd</td>
<td></td>
</tr>
<tr>
<td>Gas Natural Ban, S.A.</td>
<td></td>
</tr>
<tr>
<td>Ohio Power Company</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A: Regulated Electric and Gas Utilities Methodology Factor Grid

Factor 1a: Legislative and Judicial Underpinnings of the Regulatory Framework (12.5%)

| Utility regulation occurs under (i) a national, state, provincial or municipal framework based on legislation or government decree that provides the utility a monopoly within its service territory that is generally strong but may have a greater level of exceptions (see note 1), and that, subject to prudency requirements which may be stringent, provides a general assurance that rates will be set in a manner such that redress to an independent arbiter has not been required. We expect these conditions to continue. | Utility regulation occurs under a well developed national, state or provincial framework based on legislation that provides the utility a very strong monopoly (see note 1) within its service territory, an assurance subject to reasonable prudency requirements, that rates will be set in a manner that will permit the utility to make and recover all necessary investments, a high degree of clarity as to the manner in which utilities will be regulated and reasonably prescriptive methods and procedures for setting rates. If there have been changes in utility legislation, they have been mostly timely and on the whole credit supportive of the issuer, and the utility has had a clear voice in the legislative process. There is an independent judiciary that can arbitrate disagreements between the regulator and the utility, should they occur including access to national courts, clear judicial precedent in the interpretation of utility laws, and a strong rule of law. We expect these conditions to continue. | Utility regulation occurs under a national, state, provincial or municipal framework based on legislation that provides the utility a strong monopoly within its service territory that may have some exceptions such as greater self-generation (see note 1), a general assurance that, subject to prudency requirements that are mostly reasonable, rates will be set in a manner that will permit the utility to make and recover all necessary investments, reasonable clarity as to the manner in which utilities will be regulated and overall guidance for methods and procedures for setting rates; or (ii) under a new framework where independent and transparent regulation exists in other sectors. If there have been changes in utility legislation, they have been credit supportive or at least balanced for the issuer but potentially less timely, and the utility had a voice in the legislative process. There is either (i) an independent judiciary that can arbitrate disagreements between the regulator and the utility, including access to courts at least at the state or provincial level, reasonably clear judicial precedent in the interpretation of utility laws, and a generally strong rule of law; or (ii) regulation has been applied (under a well developed framework) in a manner such that redress to an independent arbiter has not been required. We expect these conditions to continue. |

| Utility regulation occurs under (i) a national, state, provincial or municipal framework based on legislation or government decree that provides the utility a monopoly within its service territory that is generally strong but may have a greater level of exceptions (see note 1), and that, subject to prudency requirements which may be stringent, provides a general assurance that rates will be set in a manner that will permit the utility to make and recover all necessary investments, or (ii) under a new framework where the jurisdiction has a history of less independent and transparent regulation in other sectors. Either: (i) the judiciary that can arbitrate disagreements between the regulator and the utility, should they occur, including access to national courts, strong judicial precedent in the interpretation of utility laws, and a strong rule of law. We expect these conditions to continue. | Utility regulation occurs under a national, state, provincial or municipal framework based on legislation that provides the utility a well established monopoly (see note 1) within its service territory, an assurance subject to reasonable prudency requirements, that rates will be set in a manner that will permit the utility to make and recover all necessary investments, a high degree of clarity as to the manner in which utilities will be regulated, and overall guidance for methods and procedures for setting rates. If there have been changes in utility legislation, they have been mostly timely and on the whole credit supportive for the issuer, and the utility has had a clear voice in the legislative process. There is an independent judiciary that can arbitrate disagreements between the regulator and the utility, should they occur, including access to national courts, clear judicial precedent in the interpretation of utility law, and a strong rule of law. We expect these conditions to continue. | Utility regulation occurs under a national, state, provincial or municipal framework based on legislation that provides the utility a strong monopoly within its service territory that may have some exceptions such as greater self-generation (see note 1), a general assurance that, subject to prudency requirements that are mostly reasonable, rates will be set in a manner that will permit the utility to make and recover all necessary investments, reasonable clarity as to the manner in which utilities will be regulated and overall guidance for methods and procedures for setting rates; or (ii) under a new framework where independent and transparent regulation exists in other sectors. If there have been changes in utility legislation, they have been credit supportive or at least balanced for the issuer but potentially less timely, and the utility had a voice in the legislative process. There is either (i) an independent judiciary that can arbitrate disagreements between the regulator and the utility, including access to courts at least at the state or provincial level, reasonably clear judicial precedent in the interpretation of utility laws, and a generally strong rule of law; or (ii) regulation has been applied (under a well developed framework) in a manner such that redress to an independent arbiter has not been required. We expect these conditions to continue. |

Note 1: The strength of the monopoly refers to the legal, regulatory and practical obstacles for customers in the utility’s territory to obtain service from another provider. Examples of a weakening of the monopoly would include the ability of a city or large user to leave the utility system to set up their own system, the extent to which self-generation is permitted (e.g. cogeneration) and/or encouraged (e.g., net metering, DSM generation). At the lower end of the ratings spectrum, the utility’s monopoly may be challenged by pervasive theft and unauthorized use. Since utilities are generally presumed to be monopolies, a strong monopoly position in itself is not sufficient for a strong score in this sub-factor, but a weakening of the monopoly can lower the score.
Factor 1b: Consistency and Predictability of Regulation (12.5%)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>The issuer’s interaction with the regulator has led to a strong, lengthy track record of predictable, consistent and favorable decisions. The regulator is highly credit supportive of the issuer and utilities in general. We expect these conditions to continue.</td>
</tr>
<tr>
<td>Aa</td>
<td>The issuer’s interaction with the regulator has led to a considerable track record of predominantly predictable and consistent decisions. The regulator is mostly credit supportive of utilities in general and in almost all instances has been highly credit supportive of the issuer. We expect these conditions to continue.</td>
</tr>
<tr>
<td>A</td>
<td>The issuer’s interaction with the regulator has led to a track record of largely predictable and consistent decisions. The regulator may be somewhat less credit supportive of utilities in general, but has been quite credit supportive of the issuer in most circumstances. We expect these conditions to continue.</td>
</tr>
<tr>
<td>Baa</td>
<td>The issuer’s interaction with the regulator has led to an adequate track record. The regulator is generally consistent and predictable, but there may be some evidence of inconsistency or unpredictability from time to time, or decisions may at times be politically charged. However, instances of less credit supportive decisions are based on reasonable application of existing rules and statutes and are not overly punitive. We expect these conditions to continue.</td>
</tr>
<tr>
<td>Ba</td>
<td>We expect that regulatory decisions will demonstrate considerable inconsistency or unpredictability or that decisions will be politically charged, based either on the issuer’s track record of interaction with regulators or other governing bodies, or our view that decisions will move in this direction. The regulator may have a history of less credit supportive regulatory decisions with respect to the issuer, but we expect that the issuer will be able to obtain support when it encounters financial stress, with some potentially material delays. The regulator’s authority may be eroded at times by legislative or political action. The regulator may not follow the framework for some material decisions.</td>
</tr>
<tr>
<td>B</td>
<td>We expect that regulatory decisions will be largely unpredictable or even somewhat arbitrary, based either on the issuer’s track record of interaction with regulators or other governing bodies, or our view that decisions will move in this direction. However, we expect that the issuer will ultimately be able to obtain support when it encounters financial stress, albeit with material or more extended delays. Alternately, the regulator is untested, lacks a consistent track record, or is undergoing substantial change. The regulator’s authority may be eroded on frequent occasions by legislative or political action. The regulator may more frequently ignore the framework in a manner detrimental to the issuer.</td>
</tr>
<tr>
<td>Caa</td>
<td>We expect that regulatory decisions will be highly unpredictable and frequently adverse, based either on the issuer’s track record of interaction with regulators or other governing bodies, or our view that decisions will move in this direction. Alternately, decisions may have credit supportive aspects, but may often be unenforceable. The regulator’s authority may have been seriously eroded by legislative or political action. The regulator may consistently ignore the framework to the detriment of the issuer.</td>
</tr>
</tbody>
</table>

Note: The table provides a summary of the issuer’s interaction with the regulator and the expected consistency and predictability of regulatory decisions based on the issuer’s rating. The table includes descriptions for each rating level, highlighting the conditions under which regulatory decisions are expected to occur.
Factor 2a: Timeliness of Recovery of Operating and Capital Costs (12.5%)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>Tariff formulas and automatic cost recovery mechanisms provide full and highly timely recovery of all operating costs and essentially contemporaneous return on all incremental capital investments, with statutory provisions in place to preclude the possibility of challenges to rate increases or cost recovery mechanisms. By statute and by practice, general rate cases are efficient, focused on an impartial review, quick, and permit inclusion of fully forward-looking costs.</td>
</tr>
<tr>
<td>Aa</td>
<td>Tariff formulas and automatic cost recovery mechanisms provide full and highly timely recovery of all operating costs and essentially contemporaneous or near-contemporaneous return on most incremental capital investments, with minimal challenges by regulators to companies’ cost assumptions. By statute and by practice, general rate cases are efficient, focused on an impartial review, of a very reasonable duration before non-appealable interim rates can be collected, and primarily permit inclusion of forward-looking costs.</td>
</tr>
<tr>
<td>A</td>
<td>Automatic cost recovery mechanisms provide full and reasonably timely recovery of fuel, purchased power and all other highly variable operating expenses. Material capital investments may be made under tariff formulas or other rate-making permitting reasonably contemporaneous returns, or may be submitted under other types of filings that provide recovery of cost of capital with minimal delays. Instances of regulatory challenges that delay rate increases or cost recovery are generally related to large, unexpected increases in sizeable construction projects. By statute or by practice, general rate cases are reasonably efficient, primarily focused on an impartial review, of a reasonable duration before rates (either permanent or non-refundable interim rates) can be collected, and permit inclusion of important forward-looking costs.</td>
</tr>
<tr>
<td>Baa</td>
<td>Fuel, purchased power and all other highly variable expenses are generally recovered through mechanisms incorporating delays of less than one year, although some rapid increases in costs may be delayed longer where such deferrals do not place financial stress on the utility. Incremental capital investments may be recovered primarily through general rate cases with moderate lag, with some through tariff formulas. Alternately, there may be formula rates that are untested or unclear. Potentially greater tendency for delays due to regulatory intervention, although this will generally be limited to rates related to large capital projects or rapid increases in operating costs.</td>
</tr>
<tr>
<td>Ba</td>
<td>There is an expectation that fuel, purchased power or other highly variable expenses will eventually be recovered with delays that will not place material financial stress on the utility, but there may be some evidence of an unwillingness by regulators to make timely rate changes to address volatility in fuel, or purchased power, or other market-sensitive expenses. Recovery of costs related to capital investments may be subject to delays that are somewhat lengthy, but not so pervasive as to be expected to discourage important investments.</td>
</tr>
<tr>
<td>B</td>
<td>The expectation that fuel, purchased power or other highly variable expenses will be recovered may be subject to material delays due to second-guessing of spending decisions by regulators or due to political intervention. Recovery of costs related to capital investments may be subject to delays that are material to the issuer, or may be likely to discourage some important investment.</td>
</tr>
<tr>
<td>Caa</td>
<td>The expectation that fuel, purchased power or other highly variable expenses will be recovered may be subject to extensive delays due to second-guessing of spending decisions by regulators or due to political intervention. Recovery of costs related to capital investments may be uncertain, subject to delays that are extensive, or that may be likely to discourage even necessary investment.</td>
</tr>
</tbody>
</table>

Note: Tariff formulas include formula rate plans as well as trackers and riders related to capital investment.
Factor 2b: Sufficiency of Rates and Returns (12.5%)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>Rates are (and we expect will continue to be) set at a level that permits full cost recovery and a fair return on all investments, with minimal challenges by regulators to companies’ cost assumptions. This will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are strong relative to global peers.</td>
</tr>
<tr>
<td>Aa</td>
<td>Rates are (and we expect will continue to be) set at a level that generally provides full cost recovery and a fair return on investments, with limited instances of regulatory challenges and disallowances. In general, this will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are generally above average relative to global peers, but may at times be average.</td>
</tr>
<tr>
<td>A</td>
<td>Rates are (and we expect will continue to be) set at a level that generally provides full operating cost recovery and a mostly fair return on investments, but there may be somewhat more instances of regulatory challenges and disallowances, although ultimate rate outcomes are sufficient to attract capital without difficulty. In general, this will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are average relative to global peers, but may at times be somewhat below average.</td>
</tr>
<tr>
<td>Baa</td>
<td>Rates are (and we expect will continue to be) set at a level that generally provides recovery of most operating costs but return on investments may be less predictable, and there may be decided more instances of regulatory challenges and disallowances, but ultimate rate outcomes are generally sufficient to attract capital. In general, this will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are generally below average relative to global peers, or where allowed returns are average but difficult to earn. Alternately, the tariff formula may not take into account all cost components and/or remuneration of investments may be unclear or at times unfavorable.</td>
</tr>
<tr>
<td>Ba</td>
<td>Rates are (and we expect will continue to be) set at a level that generally provides recovery of most operating costs but return on investments may be less predictable, and there may be decided more instances of regulatory challenges and disallowances, but ultimate rate outcomes are generally sufficient to attract capital. In general, this will translate to returns (measured in relation to equity, total assets, rate base or regulatory asset value, as applicable) that are generally below average relative to global peers, or where allowed returns are average but difficult to earn. Alternately, the tariff formula may not take into account all cost components and/or remuneration of investments may be unclear or at times unfavorable.</td>
</tr>
<tr>
<td>B</td>
<td>We expect rates will be set at a level that at times fails to provide recovery of costs other than cash costs, and regulators may engage in somewhat arbitrary second-guessing of spending decisions or deny rate increases related to funding ongoing operations based much more on politics than on prudence reviews. Return on investments may be set at levels that discourage investment. We expect that rate outcomes may be difficult or uncertain, negatively affecting continued access to capital. Alternately, the tariff formula may fail to take into account significant cost components other than cash costs, and/or remuneration of investments may be generally unfavorable.</td>
</tr>
<tr>
<td>Caa</td>
<td>We expect rates will be set at a level that often fails to provide recovery of material costs, and recovery of cash costs may also be at risk. Regulators may engage in more arbitrary second-guessing of spending decisions or deny rate increases related to funding ongoing operations based primarily on politics. Return on investments may be set at levels that discourage necessary maintenance investment. We expect that rate outcomes may often be punitive or highly uncertain, with a markedly negative impact on access to capital. Alternately, the tariff formula may fail to take into account significant cash cost components, and/or remuneration of investments may be primarily unfavorable.</td>
</tr>
</tbody>
</table>
Factor 3: Diversification (10%)

<table>
<thead>
<tr>
<th>Weighting 10%</th>
<th>Sub-Factor Weighting</th>
<th>Aaa</th>
<th>Aa</th>
<th>A</th>
<th>Baa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Position</td>
<td>5% *</td>
<td>A very high degree of multinational and regional diversity in terms of regulatory regimes and/or service territory economies.</td>
<td>Material operations in three or more nations or substantial geographic regions providing very good diversity of regulatory regimes and/or service territory economies.</td>
<td>Material operations in two to three nations, states, provinces or regions that provide good diversity of regulatory regimes and service territory economies. Alternately, operates within a single regulatory regime with low volatility, and the service territory economy is robust, has a very high degree of diversity and has demonstrated resilience in economic cycles.</td>
<td>May operate under a single regulatory regime viewed as having low volatility, or where multiple regulatory regimes are not viewed as providing much diversity. The service territory economy may have some concentration and cyclicalitly, but is sufficiently resilient that it can absorb reasonably foreseeable increases in utility rates.</td>
</tr>
<tr>
<td>Generation and Fuel Diversity</td>
<td>5% **</td>
<td>A high degree of diversity in terms of generation and/or fuel sources such that the utility and rate-payers are well insulated from commodity price changes, no generation concentration, and very low exposures to Threatened or Threatened Sources (see definitions below).</td>
<td>Very good diversification in terms of generation and/or fuel sources such that the utility and rate-payers are affected only minimally by commodity price changes, little generation concentration, and low exposures to Threatened or Threatened Sources.</td>
<td>Good diversification in terms of generation and/or fuel sources such that the utility and rate-payers have only modest exposure to commodity price changes; however, may have some concentration in a source that is neither Threatened nor Threatened. Exposure to Threatened Sources is low. While there may be some exposure to Threatened Sources, it is not a cause for concern.</td>
<td>Adequate diversification in terms of generation and/or fuel sources such that the utility and rate-payers have moderate exposure to commodity price changes; however, may have some concentration in a source that is Threatened. Exposure to Threatened Sources is moderate, while exposure to Threatened Sources is manageable.</td>
</tr>
</tbody>
</table>

Definitions

- **Challenged Sources** are generation plants that face higher but not insurmountable economic hurdles resulting from penalties or taxes on their operation, or from environmental upgrades that are required or likely to be required. Some examples are carbon-emitting plants that incur carbon taxes, plants that must buy emissions credits to operate, and plants that must install environmental equipment to continue to operate, in each where the taxes/credits/upgrades are sufficient to have a material impact on those plants' competitiveness relative to other generation types or on the utility's rates, but where the impact is not so severe as to be likely require plant closure.

- **Threatened Sources** are generation plants that are not currently able to operate due to major unplanned outages or issues with licensing or other regulatory compliance, and plants that are highly likely to be required to de-activate, whether due to the effectiveness of currently existing or expected rules and regulations or due to economic challenges. Some recent examples would include coal fired plants in the US that are not economic to retrofit to meet mercury and air toxics standards, plants that cannot meet the effective date of those standards, nuclear plants in Japan that have not been licensed to re-start after the Fukushima Dai-ichi accident, and nuclear plants that are required to be phased out within 10 years (as is the case in some European countries).

* 10% weight for issuers that lack generation
**0% weight for issuers that lack generation
Factor 4: Financial Strength

<table>
<thead>
<tr>
<th>Weighting 40%</th>
<th>Sub-Factor Weighting</th>
<th>Aaa</th>
<th>Aa</th>
<th>A</th>
<th>Baa</th>
<th>Ba</th>
<th>B</th>
<th>Caa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFO pre-WC + Interest / Interest</td>
<td>7.5%</td>
<td>≥ 8x</td>
<td>6x - 8x</td>
<td>4.5x - 6x</td>
<td>3x - 4.5x</td>
<td>2x - 3x</td>
<td>1x - 2x</td>
<td>< 1x</td>
</tr>
<tr>
<td>CFO pre-WC / Debt</td>
<td>15%</td>
<td>Standard Grid</td>
<td>≥ 40%</td>
<td>30% - 40%</td>
<td>22% - 30%</td>
<td>13% - 22%</td>
<td>5% - 13%</td>
<td>1% - 5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Business Risk Grid</td>
<td>≥ 38%</td>
<td>27% - 38%</td>
<td>19% - 27%</td>
<td>11% - 19%</td>
<td>5% - 11%</td>
<td>1% - 5%</td>
</tr>
<tr>
<td>CFO pre-WC - Dividends / Debt</td>
<td>10%</td>
<td>Standard Grid</td>
<td>≥ 35%</td>
<td>25% - 35%</td>
<td>17% - 25%</td>
<td>9% - 17%</td>
<td>0% - 9%</td>
<td>(5%) - 0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Business Risk Grid</td>
<td>≥ 34%</td>
<td>23% - 34%</td>
<td>15% - 23%</td>
<td>7% - 15%</td>
<td>0% - 7%</td>
<td>(5%) - 0%</td>
</tr>
<tr>
<td>Debt / Capitalization</td>
<td>7.5%</td>
<td>Standard Grid</td>
<td>< 25%</td>
<td>25% - 35%</td>
<td>35% - 45%</td>
<td>45% - 55%</td>
<td>55% - 65%</td>
<td>65% - 75%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Business Risk Grid</td>
<td>< 29%</td>
<td>29% - 40%</td>
<td>40% - 50%</td>
<td>50% - 59%</td>
<td>59% - 67%</td>
<td>67% - 75%</td>
</tr>
</tbody>
</table>
Appendix B: Regulated Electric and Gas Utilities – Assigned Ratings and Grid-Indicated Ratings for a Selected Cross-Section of Issuers

<table>
<thead>
<tr>
<th>Issuer</th>
<th>Outlook</th>
<th>Actual Rating</th>
<th>BCA / Rating Before Uplift</th>
<th>Grid Indicated Rating</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ameren Illinois Company</td>
<td>RUR-Up</td>
<td>Baa2</td>
<td>-</td>
<td>A3</td>
<td>USA</td>
</tr>
<tr>
<td>2 American Electric Power Company, Inc.</td>
<td>RUR-Up</td>
<td>Baa2</td>
<td>-</td>
<td>Baa2</td>
<td>USA</td>
</tr>
<tr>
<td>3 Appalachian Power Company</td>
<td>RUR-Up</td>
<td>Baa2</td>
<td>-</td>
<td>Baa1</td>
<td>USA</td>
</tr>
<tr>
<td>4 Arizona Public Service Company</td>
<td>RUR-Up</td>
<td>Baa1</td>
<td>-</td>
<td>A3</td>
<td>USA</td>
</tr>
<tr>
<td>5 China Longyuan Power Group Corporation</td>
<td>Stable</td>
<td>Baa3</td>
<td>Ba1</td>
<td>Ba1</td>
<td>China</td>
</tr>
<tr>
<td>6 China Resources Gas Group Ltd.</td>
<td>Stable</td>
<td>Baa1</td>
<td>Baa2</td>
<td>Baa1</td>
<td>China</td>
</tr>
<tr>
<td>7 Chubu Electric Power Company, Inc.</td>
<td>Negative</td>
<td>A3</td>
<td>Baa2</td>
<td>Baa2</td>
<td>Japan</td>
</tr>
<tr>
<td>8 Consumers Energy Company</td>
<td>RUR-Up</td>
<td>(P)Baa1</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>9 Distribuidora de Electricidad La Paz S.A.</td>
<td>Stable</td>
<td>Ba3</td>
<td>-</td>
<td>Baa1</td>
<td>Bolivia</td>
</tr>
<tr>
<td>10 Duke Energy Corporation</td>
<td>RUR-Up</td>
<td>Baa1</td>
<td>-</td>
<td>Baa2</td>
<td>USA</td>
</tr>
<tr>
<td>11 Empresa Electrica de Guatemala, S.A.</td>
<td>Positive</td>
<td>Ba2</td>
<td>-</td>
<td>Baa3</td>
<td>Guatemala</td>
</tr>
<tr>
<td>12 Entergy Corporation</td>
<td>Stable</td>
<td>Baa3</td>
<td>-</td>
<td>Baa3</td>
<td>USA</td>
</tr>
<tr>
<td>13 Florida Power & Light Company</td>
<td>RUR-Up</td>
<td>A2</td>
<td>-</td>
<td>A1</td>
<td>USA</td>
</tr>
<tr>
<td>14 FortisBC Holdings Inc.</td>
<td>Negative</td>
<td>Baa2</td>
<td>-</td>
<td>Baa2</td>
<td>Canada</td>
</tr>
<tr>
<td>15 Gail (India) Ltd</td>
<td>Stable</td>
<td>Baa2</td>
<td>Baa2</td>
<td>A3</td>
<td>India</td>
</tr>
<tr>
<td>16 Gas Natural BAN, S.A.</td>
<td>Negative</td>
<td>B3</td>
<td>-</td>
<td>B1</td>
<td>Argentina</td>
</tr>
<tr>
<td>17 Georgia Power Company</td>
<td>Stable</td>
<td>A3</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>18 Great Plains Energy Incorporated</td>
<td>RUR-Up</td>
<td>Baa3</td>
<td>-</td>
<td>Baa3</td>
<td>USA</td>
</tr>
<tr>
<td>19 Hawaiian Electric Industries, Inc.</td>
<td>RUR-Up</td>
<td>Baa2</td>
<td>-</td>
<td>Baa1</td>
<td>USA</td>
</tr>
<tr>
<td>20 Hokuriku Electric Power Company</td>
<td>Negative</td>
<td>A3</td>
<td>Baa2</td>
<td>Baa2</td>
<td>Japan</td>
</tr>
<tr>
<td>21 Idaho Power Company</td>
<td>RUR-Up</td>
<td>Baa1</td>
<td>-</td>
<td>A3</td>
<td>USA</td>
</tr>
<tr>
<td>22 Kansai Electric Power Company, Inc.</td>
<td>Negative</td>
<td>A3</td>
<td>Baa2</td>
<td>Baa3</td>
<td>Japan</td>
</tr>
<tr>
<td>23 Korea Electric Power Corporation</td>
<td>Stable</td>
<td>A1</td>
<td>Baa2</td>
<td>Baa3</td>
<td>Korea</td>
</tr>
<tr>
<td>24 Madison Gas & Electric</td>
<td>RUR-Up</td>
<td>A1</td>
<td>-</td>
<td>A1</td>
<td>USA</td>
</tr>
<tr>
<td>25 MidAmerican Energy Company</td>
<td>RUR-Up</td>
<td>A2</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>26 MidAmerican Energy Holdings Co.</td>
<td>RUR-Up</td>
<td>Baa1</td>
<td>-</td>
<td>A3</td>
<td>USA</td>
</tr>
<tr>
<td>27 Mississippi Power Company</td>
<td>Stable</td>
<td>Baa1</td>
<td>-</td>
<td>Baa1</td>
<td>USA</td>
</tr>
<tr>
<td>28 Niagara Mohawk Power Corporation</td>
<td>RUR-Up</td>
<td>A3</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>29 Newfoundland Power Inc.</td>
<td>Stable</td>
<td>Baa1</td>
<td>-</td>
<td>Baa1</td>
<td>Canada</td>
</tr>
<tr>
<td>30 Northern States Power Minnesota</td>
<td>RUR-Up</td>
<td>A3</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>31 Ohio Power Company</td>
<td>Stable</td>
<td>Baa1</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>32 Okinawa Electric Power Company, Inc.</td>
<td>Stable</td>
<td>Aa3</td>
<td>A2</td>
<td>A3</td>
<td>Japan</td>
</tr>
<tr>
<td>33 Oklahoma Gas & Electric Company</td>
<td>RUR-Up</td>
<td>A2</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>34 Osaka Gas Co., Ltd.</td>
<td>Stable</td>
<td>Aa3</td>
<td>A1</td>
<td>A1</td>
<td>Japan</td>
</tr>
</tbody>
</table>

13 BCA means a Baseline Credit Assessment for a government related issuer. Please see Government Related Issuers: Methodology Update, July 2010. In addition, certain companies in Japan receive a ratings uplift due to country-specific considerations. Please see “Support system for large corporate entities in Japan can provide ratings uplift, with limits” in Appendix G.
<table>
<thead>
<tr>
<th>Issuer</th>
<th>Outlook</th>
<th>Actual Rating</th>
<th>BCA / Rating Before Uplift<sup>13</sup></th>
<th>Grid Indicated Rating</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>PacifiCorp</td>
<td>RUR-Up</td>
<td>Baa1</td>
<td>-</td>
<td>A3</td>
<td>USA</td>
</tr>
<tr>
<td>Pennsylvania Electric Company</td>
<td>Stable</td>
<td>Baa2</td>
<td>-</td>
<td>Baa1</td>
<td>USA</td>
</tr>
<tr>
<td>PNG Companies LLC</td>
<td>RUR-Up</td>
<td>Baa3</td>
<td>-</td>
<td>Baa2</td>
<td>USA</td>
</tr>
<tr>
<td>Public Service Company of New Mexico</td>
<td>RUR-Up</td>
<td>Baa3</td>
<td>-</td>
<td>Baa2</td>
<td>USA</td>
</tr>
<tr>
<td>Saudi Electricity Company</td>
<td>Stable</td>
<td>A1</td>
<td>Baa1</td>
<td>Baa1</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>SCANA Corporation</td>
<td>Stable</td>
<td>Baa3</td>
<td>-</td>
<td>Baa2</td>
<td>USA</td>
</tr>
<tr>
<td>Southwestern Public Service Company</td>
<td>RUR-Up</td>
<td>Baa2</td>
<td>-</td>
<td>Baa1</td>
<td>USA</td>
</tr>
<tr>
<td>UGI Utilities, Inc.</td>
<td>RUR-Up</td>
<td>A3</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>Virginia Electric and Power Company</td>
<td>RUR-Up</td>
<td>A3</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>Western Massachusetts Electric Company</td>
<td>RUR-Up</td>
<td>Baa2</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
<tr>
<td>Wisconsin Public Service Corporation</td>
<td>RUR-Up</td>
<td>A2</td>
<td>-</td>
<td>A2</td>
<td>USA</td>
</tr>
</tbody>
</table>
Appendix C: Regulated Electric and Gas Utility Grid Outcomes and Outlier Discussion

In the table below positive or negative “outliers” for a given sub-factor are defined as issuers whose grid sub-factor score is at least two broad rating categories higher or lower than a company’s rating (e.g. a B-rated company whose rating on a specific sub-factor is in the Baa-rating category is flagged as a positive outlier for that sub-factor). Green is used to denote a positive outlier, whose grid-indicated performance for a sub-factor is two or more broad rating categories higher than Moody’s rating. Red is used to denote a negative outlier, whose grid-indicated performance for a sub-factor is two or more broad rating categories lower than Moody’s rating.

<table>
<thead>
<tr>
<th>Grid-Indicated Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor 1a</td>
</tr>
<tr>
<td>Actual Rating / BCA or Rating Before Uplift</td>
</tr>
<tr>
<td>1 Ameren Illinois Company</td>
</tr>
<tr>
<td>3 Appalachian Power Company</td>
</tr>
<tr>
<td>4 Arizona Public Service Company</td>
</tr>
<tr>
<td>5 China Longyuan Power Group Corporation Ltd.</td>
</tr>
<tr>
<td>6 China Resources Gas Group Limited</td>
</tr>
<tr>
<td>7 Chubu Electric Power Company, Incorporated</td>
</tr>
<tr>
<td>8 Consumers Energy Company</td>
</tr>
<tr>
<td>9 Distribuidora de Electricidad La Paz S.A.</td>
</tr>
<tr>
<td>11 Empresa Electrica de Guatemala, S.A. (EECSA)</td>
</tr>
<tr>
<td>12 Entergy Corp</td>
</tr>
<tr>
<td>13 Florida Power & Light Company</td>
</tr>
<tr>
<td>14 FortisBC Holdings Inc.</td>
</tr>
<tr>
<td>15 Gail (India) Ltd</td>
</tr>
<tr>
<td>16 Gas Natural Ban, S.A.</td>
</tr>
</tbody>
</table>
Grid-Indicated Ratings

<table>
<thead>
<tr>
<th>Actual Rating / BCA or Rating Before Uplift</th>
<th>Indicated Rating</th>
<th>Indicated Factor 1 Rating</th>
<th>Factor 1a</th>
<th>Factor 1b</th>
<th>Indicated Factor 2 Rating</th>
<th>Factor 2a</th>
<th>Factor 2b</th>
<th>Indicated Factor 3 Rating</th>
<th>Factor 3a</th>
<th>Factor 3b</th>
<th>Indicated Factor 4 Rating</th>
<th>Factor 4a</th>
<th>Factor 4b</th>
<th>Factor 4c</th>
<th>Factor 4d</th>
<th>Hold-Co Notching for Structural Subordination</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Georgia Power Company</td>
<td>A3</td>
<td>A2</td>
<td>Aa</td>
<td>Aa</td>
<td>A</td>
<td>Aa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>A</td>
<td>Aa</td>
<td>Aa</td>
<td>Baa</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>18 Great Plains Energy Incorporated</td>
<td>Baa3</td>
<td>Baa3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Ba</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>-1</td>
</tr>
<tr>
<td>19 Hawaiian Electric Industries, Inc.</td>
<td>Baa2</td>
<td>Baa1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>A</td>
<td>Ba</td>
<td>Baa</td>
<td>Baa</td>
<td>A</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>-1</td>
</tr>
<tr>
<td>21 Idaho Power Company</td>
<td>Baa1</td>
<td>A3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>A</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>A n/a</td>
</tr>
<tr>
<td>24 Madison Gas & Electric</td>
<td>A1</td>
<td>A1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Ba</td>
<td>Baa</td>
<td>Baa</td>
</tr>
<tr>
<td>25 MidAmerican Energy Company</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>Ba</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Ba</td>
<td>Baa</td>
<td>Baa</td>
</tr>
<tr>
<td>26 MidAmerican Energy Holdings Co.</td>
<td>Baa1</td>
<td>A3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>0</td>
</tr>
<tr>
<td>27 Mississippi Power Company</td>
<td>Baa1</td>
<td>Baa1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>Baa</td>
<td>Ba</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
</tr>
<tr>
<td>28 Niagara Mohawk Power Corporation</td>
<td>A3</td>
<td>A2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Ba</td>
<td>Baa</td>
<td>Baa</td>
<td>Ba</td>
<td>Baa</td>
<td>Baa</td>
</tr>
<tr>
<td>29 Newfoundland Power Inc.</td>
<td>Baa1</td>
<td>Baa1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>Baa</td>
</tr>
<tr>
<td>30 Northern States Power Minnesota</td>
<td>A3</td>
<td>A2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Aa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>n/a</td>
</tr>
<tr>
<td>31 Ohio Power Company</td>
<td>Baa1</td>
<td>A2</td>
<td>A</td>
<td>A</td>
<td>Baa</td>
<td>Baa</td>
<td>A</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Aa</td>
</tr>
<tr>
<td>32 Okinawa Electric Power Company, Incorporated</td>
<td>Aa3 / A2</td>
<td>A3</td>
<td>Aa</td>
<td>Aa</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Aa</td>
</tr>
<tr>
<td>33 Oklahoma Gas and Electric Company</td>
<td>A2</td>
<td>A2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Baa</td>
<td>Aa</td>
</tr>
<tr>
<td>34 Osaka Gas Co., Ltd.</td>
<td>Aa3 / A1</td>
<td>A1</td>
<td>Aa</td>
<td>Aa</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>Aaa</td>
<td>Aa</td>
<td>A n/a</td>
</tr>
<tr>
<td>35 PacifiCorp</td>
<td>Baa1</td>
<td>A3</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Baa</td>
<td>Aa</td>
</tr>
<tr>
<td>36 Pennsylvania Electric Company</td>
<td>Baa2</td>
<td>Baa1</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Baa</td>
<td>Ba</td>
<td>Baa</td>
<td>A n/a</td>
</tr>
</tbody>
</table>
Grid-Indicated Ratings

<table>
<thead>
<tr>
<th>Rating</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baa3</td>
<td>PNG Companies</td>
</tr>
<tr>
<td>Baa2</td>
<td>UGI Utilities, Inc.</td>
</tr>
<tr>
<td>Aa</td>
<td>Western Mass Electric Co.</td>
</tr>
<tr>
<td>Aa</td>
<td>Virginia Electric Power Company</td>
</tr>
<tr>
<td>A</td>
<td>SCANA</td>
</tr>
<tr>
<td>Aa</td>
<td>SCANA</td>
</tr>
</tbody>
</table>

Outliers in Legislative and Judicial Underpinnings of the Regulatory Framework

For Chubu Electric Power Company, Hokuriku Electric Power Company, Kansai Electric Power Company, and Okinawa Electric Power Company, our ratings consider the credit-supportive underpinnings in the Electric Utility Industries Law that have been balanced against higher leverage and lower returns than global peers.

For SCANA Corporation, the South Carolina Base Load Review Act provides strong credit support for companies engaging in nuclear new-build, which also affects the scoring for consistency and predictability of regulation. However, SCANA’s rating also considers the size and complexity of the nuclear construction project, which is out of scale to the size of the company, as well as structural subordination.

Outliers in Consistency and Predictability of Regulation

Consumers Energy Company has benefitted from increasingly predictable regulatory decisions in Michigan, as well as improved timeliness due to forward test years and the ability to implement interim rates. However, the substantial debt at its parent, CMS Energy Corporation (Baa3, RUR-up), has weighed on the ratings.

Duke Energy Corporation has received generally consistent and predictable rate treatment at its subsidiary operating companies, but parent debt has impacted financial metrics.
The shift in business mix at Western Massachusetts Electric Company will place a greater percentage of its rate base under the jurisdiction of the FERC, generally viewed as having greater consistency and predictability, which is somewhat tempered by its financial metrics.

Outliers in Timeliness of Recovery of Operating and Capital Costs

Ameren Illinois Company has a formula rate plan that has a positive impact on timeliness, balanced against rate decisions that have been somewhat below average. Hawaiian Electric Industries, Inc.’s timeliness has improved considerably due to the introduction in rate-making of a de-coupling mechanism, forward test year and an investment tracker at its utility subsidiary.

For Mississippi Power Company, a fully forward test year and the ability to recover some construction-work-in-progress in rates lead to strong scoring for timeliness. Ratings also consider risks associated with construction of a power plant that will utilize lignite and integrated gasification combined cycle technology, that has experienced material costs overruns and that represents a high degree of asset concentration for the utility.

For MidAmerican Energy Company, the absence of a fuel cost pass-through mechanism at the time of this writing results in its relatively low scoring on timeliness. However, the company has proposed a fuel clause in its current rate case, and the regulatory framework has generally been quite credit supportive, which has helped the utility generate good financial metrics.

The primary utility divisions of PacifiCorp have forward test years that have a positive impact on timeliness, balanced against rate decisions that have been somewhat below average.

Outliers in Sufficiency of Rates and Returns

China Longyuan Power Group Corporation Ltd. has benefitted from a higher benchmark tariff for its wind power generation, balanced against a less well developed regulatory framework.

Outliers in Market Position

Okinawa Electric Power Company, Incorporated’s service territory is a group of small islands with limited economic diversity, which negatively impacts its market position. Generation is highly dependent on coal and oil. These factors are balanced against a strong regulatory framework.

Outliers in Generation and Fuel Diversity

Ohio Power Company has been highly dependent on coal-fired generation but will be divesting generation assets in accordance with regulatory initiatives.

Outliers in Financial Strength

Distribuidora de Electricidad La Paz S.A. has strong historical financial metrics that are balanced against the somewhat unpredictable regulatory framework and the risk of government intervention in its business.
Gail (India) Limited has strong historical financial metrics that are balanced against higher business risk in its diversified, non-rate-regulated operations, including in oil and gas exploration and production. Financial metrics are expected to weaken somewhat relative to historical levels due to debt funded capex and are thus expected to be more in line with its rating going forward.

Gas Natural BAN S.A. has strong historical financial metrics that are expected to deteriorate due to frozen tariff positions, reflected in weak scores for the regulatory environment. Its ratings are also impacted by debt maturities that are concentrated in the short term and the Government of Argentina’s B3 negative rating.
Appendix D: Approach to Ratings within a Utility Family

Typical Composition of a Utility Family

A typical utility company structure consists of a holding company ("HoldCo") that owns one or more operating subsidiaries (each an “OpCo”). OpCos may be regulated utilities or non-utility companies. Financing of these entities varies by region, in part due to the regulatory framework. A HoldCo typically has no operations – its assets are mostly limited to its equity interests in subsidiaries, and potentially other investments in subsidiaries or minority interests in other companies. However, in certain cases there may be material operations at the HoldCo level. Financing can occur primarily at the OpCo level, primarily at the HoldCo level, or at both HoldCo and OpCos in varying proportions. When a HoldCo has multiple utility OpCos, they will often be located in different regulatory jurisdictions. A HoldCo may have both levered and unlevered OpCos.

General Approach to a Utility Family

In our analysis, we generally consider the stand-alone credit profile of an OpCo and the credit profile of its ultimate parent HoldCo (and any intermediate HoldCos), as well as the profile of the family as a whole, while acknowledging that these elements can have cross-family credit implications in varying degrees, principally based on the regulatory framework of the OpCos and the financing model (which has often developed in response to the regulatory framework).

In addition to considering individual OpCos under this (or another applicable) methodology, we typically14 approach a HoldCo rating by assessing the qualitative and quantitative factors in this methodology for the consolidated entity and each of its utility subsidiaries. Ratings of individual entities in the issuer family may be pulled up or down based on the interrelationships among the companies in the family and their relative credit strength.

In considering how closely aligned or how differentiated ratings should be among members of a utility family, we assess a variety of factors, including:

» Regulatory or other barriers to cash movement among OpCos and from OpCos to HoldCo

» Differentiation of the regulatory frameworks of the various OpCos

» Specific ring-fencing provisions at particular OpCos

» Financing arrangements – for instance, each OpCo may have its own financing arrangements, or the sole liquidity facility may be at the parent; there may be a liquidity pool among certain but not all members of the family; certain members of the family may better be able to withstand a temporary hiatus of external liquidity or access to capital markets

» Financial covenants and the extent to which an Event of Default by one OpCo limits availability of liquidity to another member of the family

» The extent to which higher leverage at one entity increases default risk for other members of the family

» An entity’s exposure to or insulation from an affiliate with high business risk

14 See paragraph at the end of this section for approaches to Hybrid HoldCos.
» Structural features or other limitations in financing agreements that restrict movements of funds, investments, provision of guarantees or collateral, etc.

» The relative size and financial significance of any particular OpCo to the HoldCo and the family See also those factors noted in Notching for Structural Subordination of Holding Companies.

Our approach to a Hybrid HoldCo (see definition in Appendix E) depends in part on the importance of its non-utility operations and the availability of information on individual businesses. If the businesses are material and their individual results are fully broken out in financial disclosures, we may be able to assess each material business individually by reference to the relevant Moody’s methodologies to arrive at a composite assessment for the combined businesses. If non-utility operations are material but are not broken out in financial disclosures, we may look at the consolidated entity under more than one methodology. When non-utility operations are less material but could still impact the overall credit profile, the difference in business risks and our estimation of their impact on financial performance will be qualitatively incorporated in the rating.

Higher Barriers to Cash Movement with Financing Predominantly at the OpCos

Where higher barriers to cash movement exist on an OpCo or OpCos due the regulatory framework or debt structural features, ratings among family members are likely to be more differentiated. For instance, for utility families with OpCos in the US, where regulatory barriers to free cash movement are relatively high, greater importance is generally placed on the stand-alone credit profile of the OpCo.

Our observation of major defaults and bankruptcies in the US sector generally corroborates a view that regulation creates a degree of separateness of default probability. For instance, Portland General Electric (Baa1 RUR-up) did not default on its securities, even though its then-parent Enron Corp. entered bankruptcy proceedings. When Entergy New Orleans (Ba2 stable) entered into bankruptcy, the ratings of its affiliates and parent Entergy Corporation (Baa3 stable) were unaffected. PG&E Corporation (Baa1 stable) did not enter bankruptcy proceedings despite bankruptcies of two major subsidiaries - Pacific Gas & Electric Company (A3 stable) in 2001 and National Energy Group in 2003.

The degree of separateness may be greater or smaller and is assessed on a case by case basis, because situational considerations are important. One area we consider is financing arrangements. For instance, there will tend to be greater differentiation if each member of a family has its own bank credit facilities and difficulties experienced by one entity would not trigger events of default for other entities. While the existence of a money pool might appear to reduce separateness between the participants, there may be regulatory barriers within money pools that preserve separateness. For instance, non-utility entities may have access to the pool only as a borrower, only as a lender, and even the utility entities may have regulatory limits on their borrowings from the pool or their credit exposures to other pool members. If the only source of external liquidity for a money pool is borrowings by the HoldCo under its bank credit facilities, there would be less separateness, especially if the utilities were expected to depend on that liquidity source. However, the ability of an OpCo to finance itself by accessing capital markets must also be considered. Inter-company tax agreements can also have an impact on our view of how separate the risks of default are.

For a HoldCo, the greater the regulatory, economic, and geographic diversity of its OpCos, the greater its potential separation from the default probability of any individual subsidiary. Conversely, if a HoldCo’s actions have made it clear that the HoldCo will provide support for an OpCo encountering
some financial stress (for instance, due to delays and/or cost over-runs on a major construction project), we would be likely to perceive less separateness.

Even where high barriers to cash movement exist, onerous leverage at a parent company may not only give rise to greater notching for structural subordination at the parent, it may also pressure an OpCo’s rating, especially when there is a clear dependence on an OpCo’s cash flow to service parent debt. While most of the regulatory barriers to cash movement are very real, they are not absolute. Furthermore, while it is not usually in the interest of an insolvent parent or its creditors to bring an operating utility into a bankruptcy proceeding, such an occurrence is not impossible.

The greatest separateness occurs where strong regulatory insulation is supplemented by effective ring-fencing provisions that fully separate the management and operations of the OpCo from the rest of the family and limit the parent’s ability to cause the OpCo to commence bankruptcy proceedings as well as limiting dividends and cash transfers. Currently, most entities in US utility families (including HoldCos and OpCos) are rated within 3 notches of each other. However, Energy Future Holdings Corp. (Caa3 senior unsecured) and its T&D subsidiary Oncor Electric Delivery Company LLC (Baa3 senior secured) have much wider notching due to the combination of regulatory imperatives and strong ring-fencing that includes a significant minority shareholder who must agree to important corporate decisions, including a voluntary bankruptcy filing.

Lower Barriers to Cash Movement with Financing Predominantly at the OpCos

Our approach to rating issuers within a family where there are lower regulatory barriers to movement of cash from OpCos to HoldCos (e.g., many parts of Asia and Europe) places greater emphasis on the credit profile of the consolidated group. Individual OpCos are considered based on their individual characteristics and their importance to the family, and their assigned ratings are typically banded closely around the consolidated credit profile of the group due to the expectation that cash will transit relatively freely among family entities.

Some utilities may have OpCos in jurisdictions where cash movement among certain family members is more restricted by the regulatory framework, while cash movement from and/or among OpCos in other jurisdictions is less restricted. In these situations, OpCos with more restrictions may vary more widely from the consolidated credit profile while those with fewer restrictions may be more tightly banded around the other entities in the corporate family group.
Appendix E: Brief Descriptions of the Types of Companies Rated Under This Methodology

The following describes the principal categories of companies rated under this methodology:

Vertically Integrated Utility: Vertically integrated utilities are regulated electric or combination utilities (see below) that own generation, distribution and (in most cases) electric transmission assets. Vertically integrated utilities are generally engaged in all aspects of the electricity business. They build power plants, procure fuel, generate power, build and maintain the electric grid that delivers power from a group of power plants to end-users (including high and low voltage lines, transformers and substations), and generally meet all of the electric needs of the customers in a specific geographic area (also called a service territory). The rates or tariffs for all of these monopolistic activities are set by the relevant regulatory authority.

Transmission & Distribution Utility: Transmission & Distribution utilities (T&Ds) typically operate in deregulated markets where generation is provided under a competitive framework. T&Ds own and operate the electric grid that transmits and/or distributes electricity within a specific state or region. T&Ds provide electrical transportation and distribution services to carry electricity from power plants and transmission lines to retail, commercial, and industrial customers. T&Ds are typically responsible for billing customers for electric delivery and/or supply, and most have an obligation to provide a standard supply or provider-of-last-resort (POLR) service to customers that have not switched to a competitive supplier. These factors distinguish T&Ds from Networks, whose customers are retail electric suppliers and/or other electricity companies. In a smaller number of cases, T&Ds rated under this methodology may not have an obligation to provide POLR services, but are regulated in subsovereign jurisdictions. The rates or tariffs for these monopolistic T&D activities are set by the relevant regulatory authority.

Local Gas Distribution Company: Distribution is the final step in delivering natural gas to customers. While some large industrial, commercial, and electric generation customers receive natural gas directly from high capacity pipelines that carry gas from gas producing basins to areas where gas is consumed, most other users receive natural gas from their local gas utility, also called a local distribution company (LDC). LDCs are regulated utilities involved in the delivery of natural gas to consumers within a specific geographic area. Specifically, LDCs typically transport natural gas from delivery points located on large-diameter pipelines (that usually operate at fairly high pressure) to households and businesses through thousands of miles of small-diameter distribution pipe (that usually operate at fairly low pressure). LDCs are typically responsible for billing customers for gas delivery and/or supply, and most also have the responsibility to procure gas for at least some of their customers, although in some markets gas supply to all customers is on a competitive basis. These factors distinguish LDCs from gas networks, whose customers are retail gas suppliers and/or other natural gas companies. The rates or tariffs for these monopolistic activities are set by the relevant regulatory authority.

Integrated Gas Utility: Integrated gas regulated utilities are regulated utilities that deliver gas to all end users in a particular service territory by sourcing the commodity; operating transport infrastructure that often combines high pressure pipelines with low pressure distribution systems and, in some cases, gas storage, re-gasification or other related facilities; and performing other supply-related activities, such as customer billing and metering. The rates or tariffs for the totality of these activities are set by the relevant regulatory authority. Many integrated gas utilities are national in scope.
Combination Utility: Combination utilities are those that combine an LDC or Integrated Gas Utility with either a vertically integrated utility or a T&D utility. The rates or tariffs for these monopolistic activities are set by the relevant regulatory authority.

Regulated Generation Utility: Regulated generation utilities (Regulated Gencos) are utilities that almost exclusively have generation assets, but their activities are generally regulated like those of vertically integrated utilities. In the US, this means that the purchasers of their output (typically other investor-owned, municipal or cooperative utilities) pay a regulated rate based on the total allowed costs of the Regulated Genco, including a return on equity based on a capital structure designated by the regulator (primarily FERC). Companies that have been included in this group include certain generation companies (including in Korea and China) that are not rate regulated in the usual sense of recovering costs plus a regulated rate of return on either equity or asset value. Instead, we have looked at a combination of governmental action with respect to setting feed-in tariffs and directives on how much generation will be built (or not built) in combination with a generally high degree of government ownership, and we have concluded that these companies are currently best rated under this methodology. Future evolution in our view of the operating and/or regulatory environment of these companies could lead us to conclude that they may be more appropriately rated under a related methodology (for example, Unregulated Utilities and Power Companies).

Independent System Operator: An Independent System Operator (ISO) is an organization formed in certain regional electricity markets to act as the sole chief coordinator of an electric grid. In the areas where an ISO is established, it coordinates, controls and monitors the operation of the electrical power system to assure that electric supply and demand are balanced at all times, and, to the extent possible, that electric demand is met with the lowest-cost sources. ISOs seek to assure adequate transmission and generation resources, usually by identifying new transmission needs and planning for a generation reserve margin above expected peak demand. In regions where generation is competitive, they also seek to establish rules that foster a fair and open marketplace, and they may conduct price-setting auctions for energy and/or capacity. The generation resources that an ISO coordinates may belong to vertically integrated utilities or to independent power producers. ISOs may not be rate-regulated in the traditional sense, but fall under governmental oversight. All participants in the regional grid are required to pay a fee or tariff (often volumetric) to the ISO that is designed to recover its costs, including costs of investment in systems and equipment needed to fulfill their function. ISOs may be for profit or not-for-profit entities.

In the US, most ISOs were formed at the direction or recommendation of the Federal Energy Regulatory Commission (FERC), but the ISO that operates solely in Texas falls under state jurisdiction. Some US ISOs also perform certain additional functions such that they are designated as Regional Transmission Organizations (or RTOs).

Transmission-Only Utility: Transmission-only utilities are solely focused on owning and operating transmission assets. The transmission lines these utilities own are typically high-voltage and allow energy producers to transport electric power over long distances from where it is generated (or received) to the transmission or distribution system of a T&D or vertically integrated utility. Unlike most of the other utilities rated under this methodology, transmission-only utilities primarily provide services to other utilities and ISOs. Transmission-only utilities in most parts of the world other than the US have been rated under the Regulated Networks methodology, and we expect that FERC-regulated transmission-only utilities in the US will also transition to the Regulated Networks when that methodology is updated (expected in 2014).
Utility Holding Company (Utility HoldCo): As detailed in Appendix D, regulated electric and gas utilities are often part of corporate families under a parent holding company. The operating subsidiaries of Utility Holdcos are overwhelmingly regulated electric and gas utilities.

Hybrid Holding Company (Hybrid HoldCo): Some utility families contain a mix of regulated electric and gas utilities and other types of companies, but the regulated electric and gas utilities represent the majority of the consolidated cash flows, assets and debt. The parent company is thus a Hybrid HoldCo.
Appendix F: Key Industry Issues Over the Intermediate Term

Political and Regulatory Issues

As highly regulated monopolistic entities, regulated utilities continually face political and regulatory risk, and managing these risks through effective outreach to key customers as well as key political and regulatory decision-makers is, or at least should be, a core competency of companies in this sector. However, larger waves of change in the political, regulatory or economic environment have the potential to cause substantial changes in the level of risk experienced by utilities and their investors in somewhat unpredictable ways.

One of the more universal risks faced by utilities currently is the compression of allowed returns. A long period of globally low interest rates, held down by monetary stimulus policies, has generally benefitted utilities, since reductions in allowed returns have been slower than reductions in incurred capital costs. Essentially all regulated utilities face a ratcheting down of allowed and/or earned returns. More difficult to predict is how regulators will respond when monetary stimulus reverses, and how well utilities will fare when fixed income investors require higher interest rates and equity investors require higher total returns and growth prospects.

The following global snapshot highlights that regulatory frameworks evolve over time. On an overall basis in the US over the past several years, we have noted some incremental positive regulatory trends, including greater use of formula rates, trackers and riders, and (primarily for natural gas utilities) de-coupling of returns from volumetric sales. In Canada, the framework has historically been viewed as predictable and stable, which has helped offset somewhat lower levels of equity in the capital structure, but the compression of returns has been relatively steep in recent years. In Japan, the regulatory authorities are working through the challenges presented by the decision to shut down virtually all of the country’s nuclear generation capacity, leading to uncertainty regarding the extent to which increased costs will be reflected in rate increases sufficient to permit returns on capital to return to prior levels. China’s regulatory framework has continued to evolve, with fairly low transparency and some time-to-time shifts in favored versus less-favored generation sources balanced by an overall state policy of assuring sustainability of the sector, adequate supply of electricity and affordability to the general public. Singapore and Hong Kong have fairly well developed and supportive regulatory frameworks despite a trend towards lower returns, whereas Malaysia, Korea and Thailand have been moving towards a more transparent regulatory framework. The Philippines is in the process of deregulating its power market, while Indian power utilities continue to grapple with structural challenges. In Latin America, there is a wide dispersion among frameworks, ranging from the more stable, long established and predictable framework in Chile to the decidedly unpredictable framework in Argentina. Generally, as Latin American economies have evolved to more stable economic policies, regulatory frameworks for utilities have also shown greater stability and predictability.

All of the other issues discussed in this section have a regulatory/political component, either as the driver of change or in reaction to changes in economic environments and market factors.

Economic and Financial Market Conditions

As regulated monopolies, electric and gas utilities have generally been quite resistant to unsettled economic and financial market conditions for several reasons. Unlike many companies that face direct market-based competition, their rates do not decrease when demand decreases. The elasticity of demand for electricity and gas is much lower than for most products in the consumer economy. When financial markets are volatile, utilities often have greater capital market access than industrial companies in competitive sectors, as was the case in the 2007-2009 recession. However, regulated electric and gas utilities are by no means immune to a protracted or severe recession.
Severe economic malaise can negatively affect utility credit profiles in several ways. Falling demand for electricity or natural gas may negatively impact margins and debt service protection measures, especially when rates are designed such that a substantial portion of fixed costs is in theory recovered through volumetric charges. The decrease in demand in the 2007-2009 recession was notable in comparison to prior recessions, especially in the residential sector. Poor economic conditions can make it more difficult for regulators to approve needed rate increases or provide timely cost recovery for utilities, resulting in higher cost deferrals and longer regulatory lag. Finally, recessions can coincide with a lack of confidence in the utility sector that impacts access to capital markets for a period of time. For instance, in the Great Depression and (to a lesser extent) in the 2001 recession, access for some issuers was curtailed due to the sector’s generally higher leverage than other corporate sectors, combined with a concerns over a lack of transparency in financial reporting.

Fuel Price Volatility and the Global Impact of Shale Gas

The ability of most utilities to pass through their fuel costs to end users may insulate a utility from exposure to price volatility of these fuels, but it does not insulate consumers. Consumers and regulators complained vociferously about utility rates during the run-up in hydro-carbon prices in 2005-2008 (oil, natural gas and, to a lesser extent, coal). The steep decline in US natural gas prices since 2009, caused in large part by the development of shale gas and shale oil resources, has been a material benefit to US utilities, because many have been able to pass through substantial base rate increases during a period when all-in rates were declining. Shale hydro-carbons have also had a positive impact, albeit one that is less immediate and direct, on non-US utilities. In much of the eastern hemisphere, natural gas prices under long-term contracts have generally been tied to oil prices, but utilities and other industrial users have started to have some success in negotiating to de-link natural gas from oil. In addition, increasing US production of oil has had a noticeable impact on world oil prices, generally benefitting oil and gas users.

Not all utilities will benefit equally. Utilities that have locked in natural gas under high-priced long-term contracts that they cannot re-negotiate are negatively impacted if they cannot pass through their full contracted cost of gas, or if the high costs cause customer dissatisfaction and regulatory backlash. Utilities with large coal fleets or utilities constructing nuclear power plants may also face negative impacts on their regulatory environment, since their customers will benefit less from lower natural gas prices.

Distributed Generation Versus the Central Station Paradigm

The regulation and the financing of electric utilities are based on the premise that the current model under which electricity is generated and distributed to customers will continue essentially unchanged for many decades to come. This model, called the central station paradigm (because electricity is generated in large, centrally located plants and distributed to a large number of customers, who may in fact be hundreds of miles away), has been in place since the early part of the 20th century. The model has worked because the economies of scale inherent to very large power plants has more than offset the cost and inefficiency (through power losses) inherent to maintaining a grid for transmitting and distributing electricity to end users.

Despite rate structures that only allow recovery of invested capital over many decades (up to 60 years), utilities can attract capital because investors assume that rates will continue to be collected for at least that long a period. Regulators and politicians assume that taxes and regulatory charges levied on electricity usage will be paid by a broad swath of residences and businesses and will not materially discourage usage of electricity in a way that would decrease the amount of taxes collected. A corollary
assumption is that the number of customers taking electricity from the system during that period will continue to be high enough such that rates will be reasonable and generally more attractive than other alternatives. In the event that consumers were to switch en masse to alternate sources of generating or receiving power (for instance distributed generation), rates for remaining customers would either not cover the utility’s costs, or rates would need to be increased so much that more customers may be incentivized to leave the system. This scenario has been experienced in the regulated US copper wire telephone business, where rates have increased quite dramatically for users who have not switched to digital or wireless telephone service. While this scenario continues to be unlikely for the electricity sector, distributed generation, especially from solar panels, has made inroads in certain regions.

Distributed generation is any retail-scale generation, differentiated from self-generation, which generally describes a large industrial plant that builds its own reasonably large conventional power plant to meet its own needs. While some residential property owners that install distributed generation may choose to sever their connection to the local utility, most choose to remain connected, generating power into the grid when it is both feasible and economic to do so, and taking power from the grid at other times. Distributed generation is currently concentrated in roof-top photovoltaic solar panels, which have benefitted from varying levels of tax incentives in different jurisdictions. Regulatory treatment has also varied, but some rate structures that seek to incentivize distributed renewable energy are decidedly credit negative for utilities, in particular net metering.

Under net metering, a customer receives a credit from the utility for all of its generation at the full (or nearly full) retail rate and pays only for power taken, also at the retail rate, resulting in a materially reduced monthly bill relative to a customer with no distributed generation. The distributed generation customer has no obligation to generate any particular amount of power, so the utility must stand ready to generate and deliver that customer’s full power needs at all times. Since most utility costs, including the fixed costs of financing and maintaining generation and delivery systems, are currently collected through volumetric rates, a customer owning distributed generation effectively transfers a portion of the utility’s costs of serving that customer to other customers with higher net usage, notably to customers that do not own distributed generation. The higher costs may incentivize more customers to install solar panels, thereby shifting the utility’s fixed costs to an even smaller group of rate-payers. California is an example of a state employing net solar metering in its rate structure, whereas in New Jersey, which has the second largest residential solar program in the US, utilities buy power at a price closer to their blended cost of generation, which is much lower than the retail rate.

To date, solar generation and net metering have not had a material credit impact on any utilities, but ratings could be negatively impacted if the programs were to grow and if rate structures were not amended so that each customer’s monthly bill more closely approximated the cost of serving that customer.

In our current view, the possibility that there will be a widespread movement of electric utility customers to sever themselves from the grid is remote. However, we acknowledge that new technologies, such as the development of commercially viable fuel cells and/or distributed electric storage, could materially disrupt the central station paradigm and the credit quality of the utility sector.
Nuclear Issues

Utilities with nuclear generation face unique safety, regulatory, and operational issues. The nuclear disaster at Fukushima Daiichi had a severely negative credit impact on its owner, Tokyo Electric Power Company, Incorporated (Ba3, negative), as well as all the nuclear utilities in the country. Japan previously generated about 30% of its power from 50 reactors, but all are currently either idled or shut down, and utilities in the country face materially higher costs of replacement power, a credit negative. Japan also created a new Nuclear Regulation Authority (NRA), under the Ministry of the Environment to replace the Nuclear Safety Commission, which had been under the Ministry of Economy, Trade and Industry. The NRA has not yet set any schedule for completing safety checks at idled plants.

Fukushima Daiichi also had global consequences. Germany’s response was to require that all nuclear power plants in the country be shut by 2022. Switzerland opted for a phase-out by 2031. (Most European nuclear plants are owned by companies rated under other the Unregulated Utilities and Power Companies methodology.) Even in countries where the regulatory response was more moderate, increased regulatory scrutiny has raised operating costs, a credit negative, especially in the US, where low natural gas prices have rendered certain primarily smaller nuclear plants uneconomic. Nuclear license renewal decisions in the US are currently on hold until the Nuclear Regulatory Commission comes to a determination on the safety of spent fuel storage in the absence of a permanent repository. Nonetheless, we view robust and independent nuclear safety regulation as a credit-positive for the industry.

Other general issues for nuclear operators include higher costs and lower reliability related to the increasing age of the fleet. In 2013, Duke Energy Florida, Inc. (Baa1, RUR-up) decided to permanently shut Crystal River Unit 3 after it determined that a de-lamination (or separation) in the concrete of the outer wall of the containment building was uneconomic to repair. San Onofre Nuclear Generating Station was permanently closed in 2013 after its owners, including Southern California Edison Company (A3, RUR-up) and San Diego Gas & Electric Company (A2, RUR-up), decided not to pursue a re-start in light of operating defects in two steam generators that had been replaced in 2010 and 2011.

Korea Hydro and Nuclear Power Company Limited (KHNP, A1 stable) and its parent Korea Electric Power Corporation (KEPCO, A1 stable), face a scandal related to alleged corruption and acceptance of falsified safety documents provided by its parts suppliers for nuclear plants. Korean prosecutors’ widening probe into KHNP’s use of substandard parts at many of its 23 nuclear power plants caused three plants to be temporarily shut down starting in May 2013 and raises the risk the Korean public will lose confidence in nuclear power. However, more than 80% of substandard parts in the idled plants have been replaced, and a restart is expected in late 2013 or early 2014.
Appendix G: Regional and Other Considerations

Notching Considerations for US First Mortgage Bonds

In most regions, our approach to notching between different debt classes of the same regulated utility issuer follows the guidance in the publication Updated Summary Guidance for Notching Bonds, Preferred Stocks and Hybrid Securities of Corporate Issuers, February 2007, including a one notch differential between senior secured and senior unsecured debt. However, in most cases we have two notches between the first mortgage bonds and senior unsecured debt of regulated electric and gas utilities in the US.

Wider notching differentials between debt classes may also be appropriate in speculative grade. Additional insights for speculative grade issuers are provided in the publication Loss Given Default for Speculative-Grade Non-Financial Companies in the US, Canada and EMEA, June 2009.

First mortgage bond holders in the US generally benefit from a first lien on most of the fixed assets used to provide utility service, including such assets as generating stations, transmission lines, distribution lines, switching stations and substations, and gas distribution facilities, as well as a lien on franchise agreements. In our view, the critical nature of these assets to the issuers and to the communities they serve has been a major factor that has led to very high recovery rates for this class of debt in situations of default, thereby justifying a two notch uplift. The combination of the breadth of assets pledged and the bankruptcy-tested recovery experience has been unique to the US.

In some cases, there is only a one notch differential between US first mortgage bonds and the senior unsecured rating. For instance, this is likely when the pledged property is not considered critical infrastructure for the region, or if the mortgage is materially weakened by carve-outs, lien releases or similar creditor-unfriendly terms.

Securitization

The use of securitization, a financing technique utilizing a discrete revenue stream (typically related to recovery of specifically defined expenses) that is dedicated to servicing specific securitization debt, has primarily been used in the US, where it has been quite pervasive in the past two decades. The first generation of securitization bonds were primarily related to recovery of the negative difference between the market value of utilities’ generation assets and their book value when certain states switched to competitive electric supply markets and utilities sold their generation (so-called stranded costs). This technique was then used for significant storm costs (especially hurricanes) and was eventually broadened to include environmental related expenditures, deferred fuel costs, or even deferred miscellaneous expenses. States that have implemented securitization frameworks include Arkansas, California, Connecticut, Illinois, Louisiana, Maryland, Massachusetts, Mississippi, New Hampshire, New Jersey, Ohio, Pennsylvania, Texas and West Virginia. In its simplest form, a securitization isolates and dedicates a stream of cash flow into a separate special purpose entity (SPE). The SPE uses that stream of revenue and cash flow to provide annual debt service for the securitized debt instrument. Securitization is typically underpinned by specific legislation to segregate the securitization revenues from the utility’s revenues to assure their continued collection, and the details of the enabling legislation may vary from state to state. The utility benefits from the securitization because it receives an immediate source of cash (although it gives up the opportunity to earn a return on the corresponding asset), and ratepayers benefit because the cost of the securitized debt is lower than the utility’s cost of debt and much lower than its all-in cost of capital, which reduces the revenue requirement associated with the cost recovery.
In the presentation of US securitization debt in published financial ratios, Moody’s makes its own assessment of the appropriate credit representation but in most cases follows the accounting in audited statements under US Generally Accepted Accounting Principles (GAAP), which is in turn considers the terms of enabling legislation. As a result, accounting treatment may vary. In most states utilities have been required to consolidate securitization debt under GAAP, even though it is technically non-recourse.

In general, we view securitization debt of utilities as being on-credit debt, in part because the rates associated with it reduce the utility’s headroom to increase rates for other purposes while keeping all-in rates affordable to customers. Thus, where accounting treatment is off balance sheet, we seek to adjust the company’s ratios by including the securitization debt and related revenues for our analysis. Where the securitized debt is on balance sheet, our credit analysis also considers the significance of ratios that exclude securitization debt and related revenues. Since securitization debt amortizes mortgage-style, including it makes ratios look worse in early years (when most of the revenue collected goes to pay interest) and better in later years (when most of the revenue collected goes to pay principal).

Strong levels of government ownership in Asia Pacific (ex-Japan) provide rating uplift

Strong levels of government ownership have dominated the credit profiles of utilities in Asia Pacific (excluding Japan), generally leading to ratings that are a number of notches above the Baseline Credit Assessment. Regulated electric and gas utilities with significant government ownership are rated using this methodology in conjunction with the Joint Default Analysis approach in our methodology for Government-Related Issuers.

Support system for large corporate entities in Japan can provide ratings uplift, with limits

Moody’s ratings for large corporate entities in Japan reflect the unique nature of the country’s support system, and they are higher than they would otherwise be if such support were disregarded. This is reflected in the tendency for ratings of Japanese utilities to be higher than their grid implied ratings (currently higher on average by about 2 notches), while utilities globally tend to be more evenly distributed above and below their actual ratings. However, even for large prominent companies, our ratings consider that support will not be endless and is less likely to be provided when a company has questionable viability rather than being in need of temporary liquidity assistance.
Appendix H: Treatment of Power Purchase Agreements ("PPAs")

Although many utilities own and operate power stations, some have entered into PPAs to source electricity from third parties to satisfy retail demand. The motivation for these PPAs may be one or more of the following: to outsource operating risks to parties more skilled in power station operation, to provide certainty of supply, to reduce balance sheet debt, to fix the cost of power, or to comply with regulatory mandates regarding power sourcing, including renewable portfolio standards. While Moody’s regards PPAs that reduce operating or financial risk as a credit positive, some aspects of PPAs may negatively affect the credit of utilities. The most conservative treatment would be to treat a PPA as a debt obligation of the utility as, by paying the capacity charge, the utility is effectively providing the funds to service the debt associated with the power station. At the other end of the continuum, the financial obligations of the utility could also be regarded as an ongoing operating cost, with no long-term capital component recognized.

Under most PPAs, a utility is obliged to pay a capacity charge to the power station owner (which may be another utility or an Independent Power Producer – IPP); this charge typically covers a portion of the IPP’s fixed costs in relation to the power available to the utility. These fixed payments usually help to cover the IPP’s debt service and are made irrespective of whether the utility calls on the IPP to generate and deliver power. When the utility requires generation, a further energy charge, to cover the variable costs of the IPP, will also typically be paid by the utility. Some other similar arrangements are characterized as tolling agreements, or long-term supply contracts, but most have similar features to PPAs and are thus analyzed by Moody’s as PPAs.

PPAs are recognized qualitatively to be a future use of cash whether or not they are treated as debt-like obligations in financial ratios

The starting point of our analysis is the issuer’s audited financial statements – we consider whether the utility’s accountants determine that the PPA should be treated as a debt equivalent, a capitalized lease, an operating lease, or in some other manner. PPAs have a wide variety of operational and financial terms, and it is our understanding that accountants are required to have a very granular view into the particular contractual arrangements in order to account for these PPAs in compliance with applicable accounting rules and standards. However, accounting treatment for PPAs may not be entirely consistent across US GAAP, IFRS or other accounting frameworks. In addition, we may consider that factors not incorporated into the accounting treatment may be relevant (which may include the scale of PPA payments, their regulatory treatment including cost recovery mechanisms, or other factors that create financial or operational risk for the utility that is greater, in our estimation, than the benefits received). When the accounting treatment of a PPA is a debt or lease equivalent (such that it is reported on the balance sheet, or disclosed as an operating lease and thus included in our adjusted debt calculation), we generally do not make adjustments to remove the PPA from the balance sheet. However, in relevant circumstances we consider making adjustments that impute a debt equivalent to PPAs that are off-balance sheet for accounting purposes.

Regardless of whether we consider that a PPA warrants or does not warrant treatment as a debt obligation, we assess the totality of the impact of the PPA on the issuer’s probability of default. Costs of a PPA that cannot be recovered in retail rates creates material risk, especially if they also cannot be recovered through market sales of power.
Additional considerations for PPAs

PPAs have a wide variety of financial and regulatory characteristics, and each particular circumstance may be treated differently by Moody’s. Factors which determine where on the continuum Moody’s treats a particular PPA include the following:

» Risk management: An overarching principle is that PPAs have normally been used by utilities as a risk management tool and Moody’s recognizes that this is the fundamental reason for their existence. Thus, Moody’s will not automatically penalize utilities for entering into contracts for the purpose of reducing risk associated with power price and availability. Rather, we will look at the aggregate commercial position, evaluating the risk to a utility’s purchase and supply obligations. In addition, PPAs are similar to other long-term supply contracts used by other industries and their treatment should not therefore be fundamentally different from that of other contracts of a similar nature.

» Pass-through capability: Some utilities have the ability to pass through the cost of purchasing power under PPAs to their customers. As a result, the utility takes no risk that the cost of power is greater than the retail price it will receive. Accordingly Moody’s regards these PPA obligations as operating costs with no long-term debt-like attributes. PPAs with no pass-through ability have a greater risk profile for utilities. In some markets, the ability to pass through costs of a PPA is enshrined in the regulatory framework, and in others can be dictated by market dynamics. As a market becomes more competitive or if regulatory support for cost recovery deteriorates, the ability to pass through costs may decrease and, as circumstances change, Moody’s treatment of PPA obligations will alter accordingly.

» Price considerations: The price of power paid by a utility under a PPA can be substantially above or below the market price of electricity. A below-market price will motivate the utility to purchase power from the IPP in excess of its retail requirements, and to sell excess electricity in the spot market. This can be a significant source of cash flow for some utilities. On the other hand, utilities that are compelled to pay capacity payments to IPPs when they have no demand for the power or at an above-market price may suffer a financial burden if they do not get full recovery in retail rates. Moody’s will particularly focus on PPAs that have mark-to-market losses, which typically indicates that they have a material impact on the utility’s cash flow.

» Excess Reserve Capacity: In some jurisdictions there is substantial reserve capacity and thus a significant probability that the electricity available to a utility under PPAs will not be required by the market. This increases the risk to the utility that capacity payments will need to be made when there is no demand for the power. We may determine that all of a utility’s PPAs represent excess capacity, or that a portion of PPAs are needed for the utility’s supply obligations plus a normal reserve margin, while the remaining portion represents excess capacity. In the latter case, we may impute debt to specific PPAs that are excess or we take a proportional approach to all of the utility’s PPAs.

» Risk-sharing: Utilities that own power plants bear the associated operational, fuel procurement and other risks. These must be balanced against the financial and liquidity risk of contracting for the purchase of power under a PPA. Moody’s will examine on a case-by-case basis the relative credit risk associated with PPAs in comparison to plant ownership.

» Purchase requirements: Some PPAs are structured with either options or requirements to purchase the asset at the end of the PPA term. If the utility has an economically meaningful requirement to purchase, we would most likely consider it to be a debt obligation. In most such cases, the obligation would already receive on-balance sheet treatment under relevant accounting standards.
Default provisions: In most cases, the remedies for default under a PPA do not include acceleration of amounts due, and in many cases PPAs would not be considered as debt in a bankruptcy scenario and could potentially be cancelled. Thus, PPAs may not materially increase Loss Given Default for the utility. In addition, PPAs are not typically considered debt for cross-default provisions under a utility’s debt and liquidity arrangements. However, the existence of non-standard default provisions that are debt-like would have a large impact on our treatment of a PPA. In addition, payments due under PPAs are senior unsecured obligations, and any inability of the utility to make them materially increases default risk.

Each of these factors will be considered by Moody’s analysts and a decision will be made as to the importance of the PPA to the risk analysis of the utility.

Methods for estimating a liability amount for PPAs

According to the weighting and importance of the PPA to each utility and the level of disclosure, Moody’s may approximate a debt obligation equivalent for PPAs using one or more of the methods discussed below. In each case we look holistically at the PPA’s credit impact on the utility, including the ability to pass through costs and curtail payments, the materiality of the PPA obligation to the overall business risk and cash flows of the utility, operational constraints that the PPA imposes, the maturity of the PPA obligation, the impact of purchased power on market-based power sales (if any) that the utility will engage in, and our view of future market conditions and volatility.

Operating Cost: If a utility enters into a PPA for the purpose of providing an assured supply and there is reasonable assurance that regulators will allow the costs to be recovered in regulated rates, Moody’s may view the PPA as being most akin to an operating cost. Provided that the accounting treatment for the PPA is, in this circumstance, off-balance sheet, we will most likely make no adjustment to bring the obligation onto the utility’s balance sheet.

Annual Obligation x 6: In some situations, the PPA obligation may be estimated by multiplying the annual payments by a factor of six (in most cases). This method is sometimes used in the capitalization of operating leases. This method may be used as an approximation where the analyst determines that the obligation is significant but cannot otherwise be quantified otherwise due to limited information.

Net Present Value: Where the analyst has sufficient information, Moody’s may add the NPV of the stream of PPA payments to the debt obligations of the utility. The discount rate used will be our estimate of the cost of capital of the utility.

Debt Look-Through: In some circumstances, where the debt incurred by the IPP is directly related to the off-taking utility, there may be reason to allocate the entire debt (or a proportional part related to share of power dedicated to the utility) of the IPP to that of the utility.

Mark-to-Market: In situations in which Moody’s believes that the PPA prices exceed the market price and thus will create an ongoing liability for the utility, we may use a net mark-to-market method, in which the NPV of the utility’s future out-of-the-money net payments will be added to its total debt obligations.

Consolidation: In some instances where the IPP is wholly dedicated to the utility, it may be appropriate to consolidate the debt and cash flows of the IPP with that of the utility. If the utility purchases only a portion of the power from the IPP, then that proportion of debt might be consolidated with the utility.
If we have determined to impute debt to a PPA for which the accounting treatment is not on-balance sheet, we will in some circumstances use more than one method to estimate the debt equivalent obligations imposed by the PPA, and compare results. If circumstances (including regulatory treatment or market conditions) change over time, the approach that is used may also vary.
Moody’s Related Research

Industry Outlooks:
» US Regulated Utilities: Regulation Provides Stability as Business Model Faces Challenges, July 2013 (156754)
» Asian Power Utilities (ex-Japan): Broad Stable Outlook; India an Outlier, March 2013 (149101)

Rating Methodologies:
» US Electric Generation & Transmission Cooperatives, April 2013, (151814)
» How Sovereign Credit Quality May Affect Other Ratings, February 2012 (139495)
» Unregulated Utilities and Power Companies, August 2009 (118508)
» Regulated Electric and Gas Networks, August 2009 (118786)
» Natural Gas Pipelines, November 2012 (146415)
» US Public Power Electric Utilities with Generation Ownership Exposure, November 2011 (135299)
» US Electric Generation & Transmission Cooperatives, April 2013 (151814)
» US Municipal Joint Action Agencies, October 2012 (145899)
» Government Related Issuers: Methodology Update, July 2010 (126031)
» Global Regulated Water Utilities, December 2009 (121311)

To access any of these reports, click on the entry above. Note that these references are current as of the date of publication of this report and that more recent reports may be available. All research may not be available to all clients.

The credit ratings assigned in this sector are primarily determined by this credit rating methodology. Certain broad methodological considerations (described in one or more secondary or cross-sector credit rating methodologies) may also be relevant to the determination of credit ratings of issuers and instruments in this sector. Potentially related secondary and cross-sector credit rating methodologies can be found here.

For data summarizing the historical robustness and predictive power of credit ratings assigned using this credit rating methodology, see link.
© 2013 Moody's Investors Service, Inc. and/or its licensors and affiliates (collectively, “MOODY’S”). All rights reserved.

CREDIT RATINGS ISSUED BY MOODY'S INVESTORS SERVICE, INC. ("MIS") AND ITS AFFILIATES ARE MOODY’S CURRENT OPINIONS OF THE RELATIVE FUTURE CREDIT RISK OF ENTITIES, CREDIT COMMITMENTS, OR DEBT OR DEBT-LIKE SECURITIES, AND CREDIT RATINGS AND RESEARCH PUBLICATIONS PUBLISHED BY MOODY’S ("MOODY’S PUBLICATIONS") MAY INCLUDE MOODY’S CURRENT OPINIONS OF THE RELATIVE FUTURE CREDIT RISK OF ENTITIES, CREDIT COMMITMENTS, OR DEBT OR DEBT-LIKE SECURITIES. MOODY’S DEFINES CREDIT RISK AS THE RISK THAT AN ENTITY MAY NOT MEET ITS CONTRACTUAL, FINANCIAL OBLIGATIONS AS THEY COME DUE AND ANY ESTIMATED FINANCIAL LOSS IN THE EVENT OF DEFAULT. CREDIT RATINGS DO NOT ADDRESS ANY OTHER RISK, INCLUDING BUT NOT LIMITED TO: LIQUIDITY RISK, MARKET VALUE RISK, OR PRICE VOLATILITY. CREDIT RATINGS AND MOODY’S OPINIONS INCLUDED IN MOODY’S PUBLICATIONS ARE NOT STATEMENTS OF CURRENT OR HISTORICAL FACT. CREDIT RATINGS AND MOODY’S PUBLICATIONS DO NOT CONSTITUTE OR PROVIDE INVESTMENT OR FINANCIAL ADVICE, AND CREDIT RATINGS AND MOODY’S PUBLICATIONS ARE NOT AND DO NOT PROVIDE RECOMMENDATIONS TO PURCHASE, SELL, OR HOLD PARTICULAR SECURITIES. NEITHER CREDIT RATINGS NOR MOODY’S PUBLICATIONS COMMENT ON THE SUITABILITY OF AN INVESTMENT FOR ANY PARTICULAR INVESTOR. MOODY’S ISSUES ITS CREDIT RATINGS AND PUBLISHES ITS PUBLICATIONS WITH THE EXPECTATION AND UNDERSTANDING THAT EACH INVESTOR WILL MAKE ITS OWN STUDY AND EVALUATION OF EACH SECURITY THAT IS UNDER CONSIDERATION FOR PURCHASE, HOLDING, OR SALE.

ALL INFORMATION CONTAINED HEREIN IS PROTECTED BY LAW, INCLUDING BUT NOT LIMITED TO, COPYRIGHT LAW, AND NONE OF SUCH INFORMATION MAY BE COPIED OR OTHERWISE REPRODUCED, REPACKAGED, FURTHER TRANSMITTED, TRANSFERRED, DISSEMINATED, REDISTRIBUTED OR RESOLD, OR STORED FOR SUBSEQUENT USE FOR ANY SUCH PURPOSE, IN WHOLE OR IN PART, IN ANY FORM OR MANNER OR BY ANY MEANS WHATSOEVER, BY ANY PERSON WITHOUT MOODY’S PRIOR WRITTEN CONSENT.

All information contained herein is obtained by MOODY’S from sources believed by it to be accurate and reliable. Because of the possibility of human or mechanical error as well as other factors, however, all information contained herein is provided “AS IS” without warranty of any kind. MOODY’S adopts all necessary measures so that the information it uses in assigning a credit rating is of sufficient quality and from sources MOODY’S considers to be reliable including, when appropriate, independent third-party sources. However, MOODY’S is not an auditor and cannot in every instance independently verify or validate information received in the rating process. Under no circumstances shall MOODY’S have any liability to any person or entity for (a) any loss or damage in whole or in part caused by, resulting from, or relating to, any error (negligent or otherwise) or other circumstance or contingency within or outside the control of MOODY’S or any of its directors, officers, employees or agents in connection with the procurement, collection, compilation, analysis, interpretation, communication, publication or delivery of any such information, or (b) any direct, indirect, special, consequential, compensatory or incidental damages whatsoever (including without limitation, lost profits), even if MOODY’S is advised in advance of the possibility of such damages, resulting from the use of or inability to use, any such information. The ratings, financial reporting analysis, projections, and other observations, if any, constituting part of the information contained herein are, and must be construed solely as, statements of opinion and not statements of fact or recommendations to purchase, sell or hold any securities. Each user of the information contained herein must make its own study and evaluation of each security it may consider purchasing, holding or selling.

NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE ACCURACY, TIMELINESS, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OF ANY SUCH RATING OR OTHER OPINION OR INFORMATION IS GIVEN OR MADE BY MOODY’S IN ANY FORM OR MANNER WHATSOEVER.

MIS, a wholly-owned credit rating agency subsidiary of Moody’s Corporation ("MCO"), hereby discloses that most issuers of debt securities (including corporate and municipal bonds, debentures, notes and commercial paper) and preferred stock rated by MIS have, prior to assignment of any rating, agreed to pay to MIS for appraisal and rating services rendered by it fees ranging from $1,500 to approximately $2,500,000. MCO and MIS also maintain policies and procedures to address the independence of MIS’s ratings and rating processes. Information regarding certain affiliations that may exist between directors of MCO and rated entities, and between entities who hold ratings from MIS and have also publicly reported to the SEC an ownership interest in MCO of more than 5%, is posted annually at www.moodys.com under the heading “Shareholder Relations — Corporate Governance — Director and Shareholder Affiliation Policy.”

For Australia only: Any publication into Australia of this document is pursuant to the Australian Financial Services License of MOODY’S affiliate, Moody’s Investors Service Pty Limited ABN 61 003 399 637 AFSL 336960 and/or Moody’s Analytics Australia Pty Ltd ABN 94 105 136 972 AFSL 383569 (as applicable). This document is intended to be provided only to “wholesale clients” within the meaning of section 761G of the Corporations Act 2001. By continuing to access this document from within Australia, you represent to MOODY’S that you are, or are accessing the document as a representative of, a “wholesale client” and that neither you nor the entity you represent will directly or indirectly disseminate this document or its contents to “retail clients” within the meaning of section 761G of the Corporations Act 2001. MOODY’S credit rating is an opinion as to the creditworthiness of a debt obligation of the issuer, not on the equity securities of the issuer or any form of security that is available to retail clients. It would be dangerous for retail clients to make any investment decision based on MOODY’S credit rating. If in doubt you should contact your financial or other professional adviser.
The Walk-down to Beatable Analyst Forecasts:
The Role of Equity Issuance and Insider Trading Incentives*

SCOTT RICHARDSON, University of Pennsylvania
SIEW HONG TEOH, The Ohio State University
PETER D. WYSOCKI, Massachusetts Institute of Technology

Abstract
It has been alleged that firms and analysts engage in an “earnings-guidance game” where analysts first issue optimistic earnings forecasts and then “walk down” their estimates to a level that firms can beat at the official earnings announcement. We examine whether the walk-down to beatable targets is associated with managerial incentives to sell stock after earnings announcements on the firm’s behalf (through new equity issuance) or from their personal accounts (through option exercises and stock sales). Consistent with these hypotheses, we find that the walk-down to beatable targets is most pronounced when firms or insiders are net sellers of stock after an earnings announcement. These findings provide new insights on the impact of capital-market incentives on communications between managers and analysts.

Keywords Analysts’ forecasts; Earnings guidance; Insider trading; New equity issuance; Stock options

JEL Descriptors G14, G30, G38, K22, M41

* Accepted by Greg Waymire. We thank an anonymous referee, conference discussants Afshad Irani, Laura Starks, and Kent Womack, and Lisa Bryant, Patricia Dechow, Peter Easton, David Hirshleifer, Doug Skinner, Stephen Taylor, Irem Tuna, Greg Waymire, Eric Wruck, Yinglei Zhang, and conference participants at the American Accounting Association meetings, American Finance Association meetings, Berkeley area research talks, and the 1999 Texas Finance Festival, and seminar participants at the University of Kansas, London School of Economics, Mellon Bank Capital Management, and Ohio State University. We thank I/B/E/S (a service of Thomson Financial) for providing analyst forecast data as part of a broad academic program to encourage earnings-expectation research. This paper was previously circulated under the title “Trading Analysts’ Forecasts over the Annual Earnings Horizon: Are Analysts’ Forecasts Optimistic or Pessimistic?”
La réévaluation des prévisions des analystes à des niveaux permettant le dépassement : le rôle de l’émission d’actions et des facteurs incitatifs aux délits d’initiés

Condensé

Certains prétendent que les sociétés et les analystes se livrent à un « exercice de guidage des résultats » dans lequel les analystes produisent d’abord des prévisions de résultats optimistes pour revenir ensuite sur leurs estimations et les ramener à un niveau que les sociétés sont en mesure de dépasser lors de l’annonce officielle de leurs résultats. Les auteurs élaborent et testent des hypothèses relatives à ce passage des analystes de l’optimisme au pessimisme, à partir des facteurs qui incitent les dirigeants à vendre les actions de la société à des conditions avantageuses en évitant de décevoir les investisseurs lors de l’annonce officielle des résultats de l’entreprise.

L’analyse des auteurs repose sur cinq éléments sous-jacents à l’exercice de guidage des résultats. Premièrement, dans la majorité des opérations, les ventes d’actions par les dirigeants et par l’entreprise se déroulent sur un court laps de temps après les annonces de résultats. Deuxièmement, les dirigeants qui ont l’intention de vendre des actions pour leur propre compte ou au nom de la société après une annonce de résultats s’intéressent au cours des titres de la société à brève échéance après l’annonce. Troisièmement, les dirigeants peuvent influencer les analystes dans leurs prévisions de résultats grâce à la publication d’informations discrétionnaires, et les analystes sont, pour leur part, enclins à collaborer. Quatrièmement, les analystes tendent généralement à être optimistes dans leurs prévisions initiales. Enfin, le marché paraît gratifier les sociétés qui dépassent les dernières prévisions de résultats des analystes d’évaluations supérieures à celles qu’il octroie aux entreprises qui ne sont pas parvenues à dépasser l’objectif prévisionnel, peu importe la voie ou le moyen emprunté pour atteindre l’objectif (soit le guidage des anticipations ou la gestion des résultats). À partir de ces éléments, les auteurs font l’hypothèse que les dirigeants guident systématiquement les analystes vers des objectifs prévisionnels qui peuvent être dépassés, de sorte qu’eux-mêmes ou leurs sociétés puissent vendre des actions à des conditions avantageuses après une annonce de résultats.

Les auteurs exposent d’abord des faits qui relient l’évolution du profil des prévisions des analystes entre les années 1980 et les années 1990 et les changements institutionnels et réglementaires qui ont accentué les facteurs liés au marché financier incitant les dirigeants à guider les analystes dans leurs prévisions de résultats et à dépasser ces objectifs prévisionnels, afin de hausser le cours des actions. Ces changements systémiques incluent l’utilisation accrue de la rémunération des dirigeants sous forme d’options sur actions, la restriction des négociations par les initiés à la période postérieure aux annonces de résultats en réponse à l’Insiders’ Fraud and Securities Trading Act de 1988 et le remaniement, en 1991, de la règle relative au délai d’attente que doivent respecter les initiés entre les opérations de négociation (« short-swing rule »), de façon à leur permettre de lever leurs options et de vendre immédiatement les actions de la société. L’analyse des auteurs montre qu’entre 1984 et 2001, les prévisions de résultats initiales trimestrielles et annuelles des analystes sont trop optimistes par rapport aux résultats réels finaux. Lorsque la date de l’annonce des résultats approche, les analystes révisent à la baisse leurs prévisions afin qu’elles soient moins optimistes par rapport aux résultats réels. Il existe une différence essentielle entre les années
1980 et les années 1990 : les révisions moyennes et médianes des prévisions de résultats des analystes au cours de la période s’échelonnant du milieu jusqu’à la fin des années 1990 deviennent bel et bien pessimistes lorsque la date de l’annonce des résultats approche. Ce virage systématique des analystes vers le pessimisme dans les années 1990 coïncide avec les changements institutionnels et réglementaires qui ont accentué les facteurs liés au marché financier incitant les dirigeants à guider les analystes dans leurs prévisions de résultats et à dépasser ces objectifs prévisionnels, afin de hausser le cours des actions à brève échéance.

Les auteurs soumettent à des tests transversaux leur prédiction principale selon laquelle les facteurs incitatifs liés au marché financier découlant de la vente d’actions, soit à titre personnel (la levée d’options et la vente d’actions par les initiés) soit au nom de la société (l’émission de nouvelles actions), sont associés au fait que les analystes ramènent leurs prévisions à un niveau que les sociétés sont en mesure de dépasser. Dans leurs tests transversaux, les auteurs utilisent un vaste échantillon de prévisions des analystes, du milieu des années 1980 jusqu’à 2001, tirées de la base de données I/B/E/S. Les données sur la vente d’actions par les dirigeants sont tirées de la compilation, effectuée par la société Thompson Financial, des opérations d’initiés soumises à la SEC. Seules les opérations des initiés parmi les achats et les ventes sur le marché libre et la levée d’options figurent dans le calcul des ventes nettes d’actions par les dirigeants. Les auteurs mesurent les ventes d’actions au nom de la société en utilisant les données relatives aux émissions d’actions dans le trimestre au cours duquel sont annoncés les résultats et le trimestre subséquent.

Conformément à leur principale prédiction transversale, les auteurs constatent que le pessimisme dans les prévisions antérieures à l’annonce de résultats est le plus marqué dans le cas des sociétés dont les dirigeants sont le plus fortement incités par les facteurs liés au marché financier à éviter les déceptions relatives aux résultats. Les auteurs observent que les sociétés dont les dirigeants vendent des actions après une annonce de résultats sont plus susceptibles d’être associées à des prévisions pessimistes des analystes avant l’annonce des résultats. La probabilité de pessimisme des prévisions passe de 54 %, dans le cas d’une société moyenne pour laquelle n’est enregistrée aucune vente nette par les initiés, à 66 % dans le cas d’une société moyenne pour laquelle est enregistrée une vente nette subséquente par les initiés. En outre, les sociétés dont les initiés sont des vendeurs nets d’actions de l’entreprise sont également plus susceptibles d’être associées à des analystes qui passent de l’optimisme à long terme au pessimisme à court terme avant l’annonce de résultats. La probabilité du passage de l’optimisme, tôt dans le trimestre, au pessimisme, à proximité de l’annonce des résultats, augmente de 21 % chez les sociétés pour lesquelles n’est pas enregistrée de vente nette des initiés à 27 % chez les sociétés pour lesquelles est enregistrée une vente nette des initiés.

Cette constatation est conforme au fait que les dirigeants orientent les analystes vers des prévisions de résultats pouvant être dépassées pour faciliter les opérations avantageuses que peuvent conclure les initiés après les annonces de résultats.

Les auteurs constatent que les résultats de leur série chronologique résistent : 1) à différents déflateurs des prévisions de résultats des analystes, 2) aux horizons prévisionnels annuel aussi bien que trimestriel, 3) à l’utilisation de la population entière des sociétés figurant dans la base de données I/B/E/S et à l’utilisation d’un échantillon déterminé de sociétés examinées durant toute la période étudiée et 4) aux ajustements visant la prise en compte des fractionnements d’actions susceptibles d’influencer sur le calcul des erreurs prévisionnelles des analystes.
Ils constatent également que leurs résultats empiriques transversaux résistent : 1) à différents déflateurs des prévisions de résultats des analystes, 2) aux horizons prévisionnels annuel aussi bien que et trimestriel, 3) à l’inclusion de diverses caractéristiques des sociétés précédemment liées aux prévisions de résultats des analystes, 4) aux différents types d’analystes (précurseurs ou retardataires) et 5) aux différentes classes d’investisseurs, y inclus les investisseurs institutionnels et les investisseurs individuels.

Les constatations des auteurs complètent les résultats d’Aboody et Kasznik (2000) dont les observations confirment que les dirigeants publient de l’information à des fins stratégiques, en vue d’obtenir des options sur actions à des conditions avantageuses. L’approche des auteurs consiste à examiner les facteurs qui incitent les dirigeants à publier de l’information à des fins stratégiques dans le but de lever des options et de vendre des actions à des conditions avantageuses. Ils poussent également plus loin les études récentes portant sur les caractéristiques des sociétés qui se livrent au guidage des résultats (Matsumoto, 2002) en analysant explicitement les facteurs qui incitent directement les dirigeants à tirer profit de ce guidage. Pour conclure, les résultats empiriques de l’étude nous renseignent davantage sur l’incidence des facteurs incitatifs liés au marché financier sur les communications entre dirigeants et analystes.

1. Introduction

Security regulators and the business press have often alleged that firms and analysts are involved in an “earnings-guidance game”. These critics claim that analysts issue systematically optimistic earnings forecasts at the start of the fiscal period and then “walk down” their estimates to a level the firm can beat on the formal earnings announcement. For example, Laderman (1998, 148) noted in a Business Week article:

"Thanks to the IR [investor relations] people and analysts, in recent years, earnings estimates for the S&P 500 in any quarter tend to start out an average 5% to 8% higher than where the earnings end up. The Street knows this and allows for analysts to whittle down the numbers as the quarter proceeds."

We develop and test hypotheses about this pattern of analyst optimism-to-pessimism based on managerial incentives to sell company stock on favorable terms by avoiding a “disappointment” on the official announcement of firm earnings. The motivation for our investigation is straightforward. As Ken Brown (2002, C1) indicates in his Wall Street Journal column:

"the reasons that executives became so obsessed with hitting their numbers are clear. A company that shows steady growth with few surprises often gets rewarded with a sweet premium from investors — a high stock price — which goes a long way toward keeping the executives’ stock options in the money."

The business press is replete with articles alleging that firms deliberately attempt to deceive or pressure analysts into issuing “beatable” earnings targets. Even as far back as May 6, 1991, Laurie P. Cohen, staff reporter of the Wall Street Journal wrote that
after securities analysts estimate what the companies they follow will earn, the
game begins. Chief financial officers or investor-relations representatives traditionally give “guidance” to analysts, hinting whether the analysts should raise or lower their earnings projections so the analysts won’t be embarrassed later.

And these days, many companies are encouraging analysts to deflate earnings projections to artificially low levels, analysts and money managers say. If the game is played right, a company’s stock will rise sharply on the day it announces its earnings — and beats the analysts’ too conservative estimates.

Prior academic research documents that analysts issued systematically optimistic forecasts during the 1980s (see, e.g., O’Brien 1988). However, consistent with media reports of forecast pessimism, more recent empirical evidence suggests that firms attempt to meet or beat earnings-forecast benchmarks (see, e.g., Bartov, Givoly, and Hayn 2002; Burgstahler and Eames 2002; DeGeorge, Patel, and Zeckhauser 1999; Kasznik and McNichols 2002; Matsumoto 2002; and Richardson, Teoh, and Wysocki 1999). In this paper, we explore empirically whether capital-market incentives stemming from the sale of equity either on personal account (insider option exercise and stock sale) or on the firm’s behalf (new equity issuance) are associated with the walk-down of analysts’ forecasts to targets that are eventually beaten through successful guidance of expectations or earnings management.

We begin our analysis by developing a framework for the earnings-guidance game. The framework is based on five underlying elements outlined below, and discussed in more depth in section 2. First, in the majority of transactions, managerial and firm equity sales occur during a short window after earnings announcements. Second, managers who are about to sell shares on their personal account or on behalf of the firm after an earnings-announcement care about the firm’s short-term post-announcement stock price level. Third, managers can influence analysts’ earnings targets through discretionary information disclosures and analysts have incentives to cooperate. Fourth, analysts’ initial forecasts generally tend to be optimistic. Finally, the market appears to reward firms that beat analysts’ latest earnings target with higher valuations than those that fail to beat the target, regardless of the path to the target or how the target is achieved (that is, through guiding expectations or earnings management). On the basis of these elements, we hypothesize that managers systematically guide analysts toward beatable targets so that they or their firms can sell equity on favorable terms after an earnings announcement. According to this managerial guidance hypothesis, such guidance allows the manager to maintain favorable stock market valuations exactly when they are needed, just after earnings announcements.

In our empirical study, we test this hypothesis by examining the association between firms’ and managers’ equity sales after earnings announcements and (1) the walk-down in analysts’ optimistic forecasts early in the fiscal period and (2) firms meeting or beating analysts’ final revised earnings targets. Given that neither managers’ intentions to guide analysts nor their communications with analysts can be directly observed in our sample, we follow prior empirical studies of agency models and examine principals’ and agents’ observable actions, after controlling for other
In our study, the analysts’ observable actions are their beatable forecast revisions and the managers’ observable actions are their post-earnings announcement equity transactions. Our evidence is consistent with the predictions of our managerial guidance hypothesis, whereas alternative interpretations do not appear to explain the totality of our results.

In our tests, we use a large sample of analyst forecasts from the mid-1980s to 2001 available from I/B/E/S. Data on managers’ sale of shares are obtained from Thomson Financial’s compilation of insider trades that are filed with the Securities and Exchange Commission (SEC). Only insiders’ trades from open-market purchases and sales and option exercises are included in the calculation of the net sale of shares by the managers. We measure the sale of shares on the firm’s own behalf using data on equity issuances in the quarter of and quarter after the earnings announcement.

Consistent with our main predictions, we find that analysts’ earnings forecast pessimism prior to an earnings announcement is (1) more prevalent in the late 1990s following institutional and regulatory changes that increased managers’ capital-market incentives to guide and beat analysts’ forecasts to boost short-term stock prices, and (2) more common for firms that are about to issue new equity and whose insiders are net sellers of the firm’s stock in the quarter immediately following an earnings announcement.

Our findings complement the results of Aboody and Kasznik 2000, who present evidence consistent with managers’ strategically disclosing information in order to obtain stock options on favorable terms. Our approach examines managerial incentives to strategically disclose information in order to exercise options and sell stock on favorable terms. We also contribute to the recent literature (e.g., Matsumoto 2002) examining firm characteristics that influence earnings guidance by explicitly considering firm and managers’ direct incentives to profit from earnings guidance in our study.

The rest of the paper is structured as follows. In section 2, we develop our hypotheses. Section 3 describes the sample and data. Section 4 presents descriptive evidence for the behavior of earnings forecasts over the fiscal period in various calendar subperiods. In section 5, we present primary cross-sectional tests and a robustness analysis of the predictions arising from the earnings-expectations game. Section 6 concludes the paper.

2. Background and hypothesis development

In this section, we motivate the prediction that managers’ capital-market trading incentives are related to their guidance of analysts’ earnings forecasts. We first discuss the institutional rules governing the timing of stock-sale transactions that motivate managers to focus on the firm’s stock price around earnings announcements. We then discuss how analysts’ forecasts influence stock prices, suggest why analysts cooperate with managers in setting forecasts, and discuss recent empirical research consistent with managers’ influencing analysts’ forecasts. Finally, we discuss recent research indicating that investors fixate on meeting earnings thresholds such as analysts’ forecasts and reward good versus bad news asymmetrically. We
argue that if the market rewards firms that beat analysts’ latest earnings target and if managers wish to sell equity on favorable terms after earnings announcements, then managers have strong incentives to influence analysts’ expectations to avoid an earnings disappointment. We combine these elements to develop hypotheses on the cross-sectional variation in analysts’ optimism and pessimism. Together, these elements suggest that insider trading and new equity issuance activities are linked to analyst forecast bias within the fiscal period.

Why and when managers care about short-term stock price

Managers intending to issue new equity on the firm’s behalf care about the firm’s stock price level after an earnings announcement because the stock price directly affects the proceeds the firm can raise through an equity sale. Managers care particularly about the stock price right after an earnings announcement because new equity issues typically occur in the weeks following a public earnings announcement (see, e.g., Korajczyk, Lucas, and MacDonald 1991). Lucas and MacDonald (1990) explain this timing as an attempt to minimize information asymmetry between the firm and uninformed outside investors by delaying equity issues until after an earnings announcement.

Stock-based compensation such as stock options also motivates managers to care about the firm’s stock price by directly tying compensation to the firm’s stock price performance. Hall and Liebman (1998) report that stock options have become an increasingly important portion of managers’ compensation. They report that stock option grants increased to make up almost 50 percent of chief executive officer (CEO) compensation by 1994. Thus, managers face increasing incentives to care about the firm’s stock price from the structure of their compensation package.

Furthermore, managers care about the firm’s short-term stock price specifically during the earnings-announcement period because of institutional constraints on insider trading. These restrictions have arisen because regulatory and corporate concerns that managers may use their inside information to exercise stock options or trade in the firms’ stock at the expense of outside investors. U.S. insider trading laws (Insider Trading Sanctions Act 1984; Insider Trading and Securities Fraud Enforcement Act 1988) expressly prohibit this direct profit-taking opportunity by insiders. In response to the 1988 Insider Trading and Securities Fraud Enforcement Act, firms increasingly have instituted their own policies and procedures to regulate trading by insiders prior to earnings announcements. These restrictions generally take the form of explicit blackout periods specifically in the last two months before the earnings-announcement date (see, e.g., Bettis, Coles, and Lemmon 2000; Jeng 1999). Bettis et al. reported that firms increasingly instituted formal blackout periods during the 1990s, and that by 1997, 80 percent of firms had blackout periods. Therefore, the occurrence of insiders’ option exercises and stock sales are increasingly focused in a narrow window immediately after an earnings announcement. Consistent with this, Sivakumar and Waymire (1994) report a higher incidence of insider trades in the week immediately after a quarterly earnings announcement. Similarly, Noe (1999) reports that insider transactions cluster after voluntary disclosures that are favorable to stock prices.
In sum, stock option compensation, insider trading restrictions, and new equity issue guidelines motivate managers to care about the firm’s short-term stock price immediately following an earnings announcement. As a result, the stock price level during the earnings-announcement period carries special significance for firm management.

Managers’ ability to manage analysts’ forecasts and analysts’ incentives to cooperate

Empirical and anecdotal evidence suggest that managers can indeed influence analysts’ earnings forecasts. As a key provider of information to analysts, managers can affect analysts’ earnings expectations by controlling the content and timing of discretionary information releases. Soffer, Thiagarajan, and Walther (2000) find that firms use pre-announcements of earnings to manage analysts’ expectations. They also find that managers are selective in the content of their disclosures and appear to receive stock price benefit from managing analysts toward beatable targets. Cotter, Tuna, and Wysocki (2004) find that the switch to pessimistic forecasts appears to be concentrated around the release of management forecasts. Using survey data, Hutton (2003) finds that firms where managers indicated that they provide active guidance to analysts are less likely to experience negative earnings surprises. Together these papers suggest that managers are both able and willing to engage in expectations management.

Francis and Philbrick (1993) and Lim (2001) argue that managers can pressure analysts to revise forecasts away from their true beliefs because of analysts’ dependence on management for future information. The business press has reported incidents of analysts who issued unfavorable forecasts being shunned by the management. Analysts may find it very difficult to do their jobs if they are ignored by management at investor conferences and if the firm does not return analysts’ phone calls for information. At the extreme, there have been allegations of analysts losing their jobs after writing negative reports about favored clients. It has also been alleged that analysts face conflicting incentives in maintaining the quality of investment research versus securing investment banking deals. Laderman (1998) asserts that

> most Wall Street research is pitched to institutional investors who pay the firm about a nickel a share in commissions. But if an analyst spends his time trying to land an initial public offering, the firm can earn 15 to 20 times that amount per share. Investment banking deals are much more lucrative for the brokerage firm. Merger advisory fees can be sweet as well … . But what happens when there’s a conflict between objective analyses and the demands of investment bankers? … There’s no conflict. That’s been settled. The investment bankers won.

It is a widespread belief in the business press and among regulators that highly lucrative underwriting deals often pressure analysts to cooperate with firms issuing new securities. The SEC’s investor education website specifically mentions the
potential for analyst conflict of interest because of investment banking relationships. The recent well-publicized $1.4 billion settlement between 10 major brokerages and the U.S. securities regulators stems from this very allegation that investment banking influences compromise analysts’ objectivity. The legal investigation revealed many instances where analysts yielded to investment banking business pressures. The new Regulation AC, released by the SEC in April 2003, specifically requires a research analyst to certify that “the views expressed in the research report accurately reflect such research analyst’s personal views”. It also requires analysts to certify that his or her compensation was not directly or indirectly related to the recommendation; if it was, the extent and source of the relation must be disclosed in the report.5

Previous academic research has also provided some evidence that analysts yielded to client firm pressures. Collectively, Lin and McNichols (1998), Michaely and Womack (1999), Dechow, Hutton, and Sloan (2000), Teoh and Wong (2002), and Bradshaw, Richardson, and Sloan (2003) provide evidence that analysts’ recommendations, forecasts, and price targets are biased because of the conflict of interests introduced by external financing and the associated potential for underwriting business.

General optimism in long-horizon forecasts

To have a walk-down from optimism to pessimism as the forecast horizon shortens, there needs to be optimism at long horizons. All past empirical studies on earnings forecasts have found systematic analyst optimism at long horizons, and we confirm this for our sample in both earlier and more recent periods. Our hypothesis is potentially consistent with different possible reasons for the pervasive initial optimism.

One possibility is an agency problem wherein analysts, on behalf of firms, make high forecasts in order to improve market perceptions of the firms.6 The analysts benefit from covering firms that subsequently do well, so there may be a self-selection tendency for analysts to cover firms about which they are optimistic (see McNichols and O’Brien 1997). Alternatively, analysts could simply be irrationally prone to optimism. Regardless of the source of the initial optimism, our hypothesis is based on the presence of a distinct force acting toward pessimism just before earnings announcements.

Managers’ incentives to achieve beatable targets

In addition to long-horizon forecast optimism, past studies have shown increased forecast accuracy as the earnings-announcement approaches. However, this research has generally found continued analyst optimism at all forecast horizons (see, e.g., Brown, Foster, and Noreen 1985). As discussed in the introduction, it is only in more recent periods that researchers have found evidence of analyst pessimism in short horizons. These authors suggest that management communications with analysts lead to the deflated earnings expectations.

Systematic analyst optimism implies that firms are more likely to miss rather than beat analysts’ targets. This can have detrimental effects for a firm if investors’ perception of the firm is influenced by whether it meets certain earnings thresholds.
For example, Skinner and Sloan (2002) find an asymmetry in investor reaction to beating versus missing a threshold consisting of analyst forecasts made in the last month prior to the earnings announcement. They find that when firms fall short of forecasts, the stock price drops more than the stock price rises when firms beat forecasts by an equivalent magnitude of earnings surprise. They also find that this asymmetry is especially pronounced for high-growth firms. The discontinuity in investor reaction to missing versus meeting or beating analysts’ forecasts creates incentives for managers to guide analysts to beatable earnings forecasts prior to an earnings announcement. A slightly lower forecast can cause the firm to barely beat the forecast instead of missing it, which significantly increases the firm’s expected post-earnings-announcement stock price.

Kasznik and McNichols (2002) and Bartov, Givoly, and Hayn (2002) find that the capital market provides a valuation premium to firms whose earnings meet or beat analysts’ estimates. Specifically, Bartov, Givoly, and Hayn (2002, 196) find that the capital-market premium for meeting or beating forecasts remains significant after controlling for the overall earnings performance in the quarter and even despite the earlier dampening of expectations by earnings guidance. Their further tests provide evidence that the market-valuation premium persists for firms that meet or beat analysts’ earnings forecasts that were revised late in the quarter. In other words, the path by which analyst forecasts come to be beaten appears to be less crucial than whether the forecast ultimately becomes beatable just prior to the earnings announcement, consistent with investor limited attention about the shifting benchmark.

Institutional forces and incentives to beat targets
Two structural changes between the 1980s and 1990s are likely to have increased managerial incentives to guide analysts toward beatable earnings targets. The first structural change is the greater use of stock-based executive compensation by U.S. corporations during the 1990s. For example, Hall and Liebman (1998) present evidence on the growing use of CEO stock option compensation in the 1990s as compared with the 1980s. The mean salary and bonus in 1994 was $1.3 million and the mean value of stock options was $1.2 million. Between 1980 and 1994, mean salary and bonus grew 97 percent whereas mean stock option value grew by over 680 percent. Murphy (1999) confirms this growth and shows that the explosive growth trend in stock options continued to 1996, the latest year in his study. The greater predominance of exercisable stock options in the 1990s encouraged greater managerial attention to stock prices, especially around the earnings-announcement date, given the insider-trading restrictions mentioned earlier. This increase in managerial stock sales after earnings announcements in the 1990s likely led to widespread incentives for managers to guide analysts’ earnings forecasts to avoid any disappointments that would negatively affect share prices.7

The second structural change occurred in May 1991, when securities regulators changed the “short-swing rule” affecting insiders’ stock option exercises. Prior to 1991, section 16b of the Securities Exchange Act of 1934 required insiders to hold shares of stocks acquired through an option exercise for at least six months.
before selling, or the profits would go to the firm. In May 1991, the SEC effectively removed this restriction by changing the starting date of the six-month holding period from the exercise date to the option grant date. Consequently, since May 1991, managers have a more precise target date for when to exercise their stock options and immediately unload their stock, typically in the trading window after earnings announcements. Thus, the incentives to avoid an earnings disappointment by guiding forecasts to a beatable target increased subsequent to 1991.

Hypotheses on cross-sectional determinants of analyst pessimism

To summarize, the key elements that are related to the expectations-management game are that managers care about short-term share prices if they are about to sell shares on their personal account or on behalf of the firm after an earnings announcement, that managers can influence analysts’ expectations through their information disclosures, and that the market appears to reward firms that beat analysts’ latest earnings targets. Therefore, managerial incentives to guide analysts’ forecasts are strongest if the firm and/or its managers are about to sell stock. This leads to the following cross-sectional prediction:

HYPOTHESIS 1. *The likelihood of observing short-horizon pessimistic analyst forecasts prior to an earnings announcement is increasing in management and firm incentives to sell stock after an earnings announcement. These effects are likely to be stronger in the 1990s than in earlier periods.*

Finding evidence in support of this hypothesis is consistent with analysts’ being guided toward a more pessimistic target. However, another way to interpret the correlation between post-earnings-announcement equity sales and short-horizon pessimism is that stockholders sell shares after truly unexpected good news. If managers guide analysts toward beatable targets, then a stronger prediction can be derived on the basis of the following: (1) analysts initially issue optimistic (or unbiased) earnings forecasts, (2) analysts then revise their forecasts to become pessimistic before an earnings announcement, and (3) the firm or its insiders sell stock after the firm beats the revised earnings target. Therefore, we should observe an “opportunistic” switch from optimistic (or unbiased) to pessimistic analyst forecasts prior to firm or insider equity sales.\(^8\) This leads to our second more restrictive prediction on cross-sectional determinants of expectations management:

HYPOTHESIS 2. *The likelihood of observing a switch from optimistic to pessimistic analyst forecasts prior to an earnings announcement is increasing in management and firm incentives to sell stock after an earnings announcement. These effects are stronger in the 1990s than in earlier periods.*

3. **Sample and variable construction**

Data on individual analysts’ forecasts of quarterly and annual earnings per share are obtained from the Institutional Brokers Estimate System (I/B/E/S) Detail
History U.S. Edition tapes from 1984 to 2001. Unlike many previous studies, we use individual analysts’ forecasts to calculate consensus forecasts to avoid potential staleness of the I/B/E/S consensus forecasts (see, e.g., Abarbanell and Bernard 1992).2 The data sample consists of all individual analyst forecasts for firms with data availability on both I/B/E/S and COMPUSTAT.10 To track forecast revisions leading up to the earnings’ announcement, we sort analysts’ forecasts into groups by 30-day blocks prior to the earnings release date over the annual horizon, and into finer two-week blocks over the quarterly horizon in the I/B/E/S Actuals File. We calculate a 30-day (or two-week) consensus forecast for each firm using the median of individual analyst forecasts within a period. We ensure that the calculation of the period’s initial consensus forecast is made after the prior period’s earnings announcement.

The forecast error (FE) is defined as the actual earnings per share minus the median forecast of earnings per share scaled by the stock price at the beginning of the quarter. The stock price deflator is used to control for potential spurious relations resulting from cross-sectional scale differences in earnings per share.11 A negative error implies an optimistic forecast (that is, bad news), whereas a positive error implies a pessimistic forecast (that is, good news). Formally, the scaled forecast error (FESC) for firm i in quarter q and forecast-horizon period $-t$ is calculated as:

$$FESC_{i, q, t} = \frac{\text{Actual EPS}_{i, q} - \text{Forecast EPS}_{i, q, t}}{P_{i, q-1}}$$ (1)

Firms’ actual earnings per share are obtained from I/B/E/S for comparability with the forecast. The deflator $P_{i, q-1}$ is the stock price when the first forecast is available on I/B/E/S for firm i in quarter q. For annual forecasts, the deflator is the first available stock price in the year reported in I/B/E/S, which is typically available 12 months prior to the actual earnings-announcement date.12 For quarterly forecasts, the deflator is the first available stock price in the quarter reported in I/B/E/S, which is typically available 3 months prior to the actual earnings-announcement date. To remove the influence of extreme outliers due to data-coding errors, we remove the extreme forecast errors that are greater than 10 percent in absolute value of share price.13

4. Pattern of forecast bias over the fiscal horizon

In section 2, we described how significant structural changes in executive compensation and insider-trading policies may affect managerial trading incentives in the 1990s, and consequently increased managerial incentives to guide analysts’ forecasts. Before testing for a relation between managers’ trading behavior and forecast revisions, we first examine temporal changes in analysts’ forecast bias in the period from 1986 to 2001.

Panel A of Figure 1 shows the dynamic pattern of forecast bias over the annual forecast horizon for five calendar subperiods: 1984–88, 1989–91, 1992–94, 1995–97, and 1998–2001. For each subperiod, the forecasts show a consistent walk-down pattern. All subperiod initial median forecasts are optimistic, and the forecasts
become increasingly less optimistic as the horizon shrinks toward the announce-
ment date. A key difference across subperiods is that the median forecast crosses
over to become pessimistic toward the earnings-announcement date only for the
later calendar subperiods in the 1990s, consistent with the institutional changes
noted for the 1990s. Furthermore, the median forecasts become pessimistic earlier
in the forecast horizon as the 1990s progressed. For example, the median forecast
becomes pessimistic in Month −2 for the 1992–94 period, and in Month −3 for
1995–97 and 1998–2001 subperiods. These findings are mirrored in the quarterly
forecast data depicted in panel B of Figure 1. In this panel, one gets a more
detailed picture of the short-horizon shift to pessimistic forecasts using two-week
windows just prior to quarterly earnings announcements. Again, the shift to pessi-
mism is only evident in the 1990s for the quarterly horizon.

The dynamic patterns of a shift toward pessimistic forecasts over the forecast
horizon and over calendar subperiods are robust with respect to the empirical
measures of forecast pessimism. For example, similar patterns are observed using
mean analyst forecast errors. More important, our focus on the median forecasts
indicates that the dynamic pattern of forecast bias documented here is independent
of the debate on whether the mean forecast is biased.

The median forecast error in Month 0 is only one cent in the post 1992 subpe-
riods. The small magnitude does not imply low economic significance because
“just beating” the forecast may have disproportionate informational signaling
value to investors (see, e.g., DeGeorge et al. 1999). Overall, the univariate results
present compelling evidence of a switch to systematic pessimism that is coincident
with increased use of executive stock option compensation, greater concentration
of insider trades in the post-earnings-announcement period, and the lifting of the
short-swing rule for insiders during the 1990s.

Robustness checks on the temporal pattern
The analyst forecast errors in our sample are price-deflated to allow direct compa-
rison across firms, which is standard in the literature. Given that scaling by price
may introduce intertemporal variation in forecast bias if price–earnings ratios
change over time, we also perform the tests using total assets per share as an alter-
native deflator. Our findings are robust using this alternative deflator. Figure 1
demonstrates a switch in forecast error from optimism to pessimism as the horizon
moves toward the earnings announcement in the subperiods after 1991. Note that
the sign switch from optimism to pessimism forecasts is independent of the defla-
tor because both price and total asset deflators are positive.

We also considered whether the time-series patterns are affected by changing
sample composition during the sample period. For example, a change in the com-
position of publicly traded companies or in the breadth of coverage on I/B/E/S
may affect the forecast bias over time. To rule this out, we replicated our tests
using a constant sample of firms that existed throughout the sample period and
found a similar dynamic pattern.

Finally, Baber and Kang (2002) report that forecast errors collected by data
providers such as I/B/E/S are rounded to the nearest cent after making retroactive
Figure 1 Median scaled forecast error

Panel A Annual forecast horizon

Panel B Quarterly forecast horizon

(The figure is continued on the next page.)
and cumulative stock split adjustments. This data-processing artifact compresses analyst forecast errors for firms that have experienced stock splits, which can generate a conservative bias in time-series analyses of forecast errors. Specifically, firms experiencing several stock splits have smaller forecast errors early in times series. The fact that we are still able to document a concentration in small positive forecast errors in recent years speaks to the strength of the walk-down phenomenon. However, as a robustness check, we recalculate our forecast variables using an I/B/E/S data set that does not contain this stock-split problem. Our results are robust using this data set and, therefore, retroactive, and cumulative stock-split adjustments do not explain our results.

In sum, we find evidence of a robust shift toward greater final forecast pessimism. The timing of this shift to pessimism is coincident with the increased use of stock-based compensation in the 1990s and regulatory changes in 1991 concerning the short-swing rule affecting insider’s stock option exercises. These changes provide increased managerial incentives to guide analysts to forecast beatable final earnings targets.

5. Quarterly forecast bias and trading incentives
We turn next to tests of the two hypotheses developed in section 2. Although the longer 12-month horizon is useful to show clearly the walk-down pattern over the forecast horizon, we base our tests of the relation between forecast bias and managerial trading incentives using quarterly forecasts. Examining forecasts over the quarterly horizon allows us to focus our analysis on walk-down effects that are not a direct consequence of quarterly earnings announcements. Furthermore, our test results can be compared with recent studies on pessimism in the shortest horizon (e.g., Bagnoli, Beneish, and Watts 1999; Brown 2001; and Matsumoto 2002). Our empirical tests include controls for other factors that affect analyst forecast bias including firm size, growth, and profitability (e.g., Brown 2001).

Table 1 presents descriptive statistics on the sample by calendar subperiods. Firm size is measured at the start of the fiscal quarter as closing stock price at the start of the fiscal quarter (COMPSTAT data item 14) times the number of common shares outstanding (COMPSTAT data item 61). The book-to-market ratio is calculated as the book value of common equity at the start of the fiscal quarter.
TABLE 1
Descriptive statistics for 53,653 firm-quarter observations for the period 1984–2001

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (SM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>2,571</td>
<td>1,662</td>
<td>1,718</td>
<td>1,758</td>
<td>2,274</td>
<td>4,113</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>10,729</td>
<td>3,560</td>
<td>4,701</td>
<td>4,834</td>
<td>7,214</td>
<td>17,638</td>
</tr>
<tr>
<td>Q1</td>
<td>137</td>
<td>155</td>
<td>108</td>
<td>127</td>
<td>132</td>
<td>160</td>
</tr>
<tr>
<td>Median</td>
<td>422</td>
<td>492</td>
<td>336</td>
<td>376</td>
<td>386</td>
<td>519</td>
</tr>
<tr>
<td>Q3</td>
<td>1,504</td>
<td>1,632</td>
<td>1,286</td>
<td>1,302</td>
<td>1,388</td>
<td>1,862</td>
</tr>
<tr>
<td>BM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.52</td>
<td>0.596</td>
<td>0.635</td>
<td>0.521</td>
<td>0.473</td>
<td>0.474</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.38</td>
<td>0.375</td>
<td>0.426</td>
<td>0.324</td>
<td>0.299</td>
<td>0.435</td>
</tr>
<tr>
<td>Q1</td>
<td>0.27</td>
<td>0.347</td>
<td>0.346</td>
<td>0.292</td>
<td>0.257</td>
<td>0.217</td>
</tr>
<tr>
<td>Median</td>
<td>0.44</td>
<td>0.538</td>
<td>0.552</td>
<td>0.466</td>
<td>0.414</td>
<td>0.383</td>
</tr>
<tr>
<td>Q3</td>
<td>0.68</td>
<td>0.771</td>
<td>0.823</td>
<td>0.674</td>
<td>0.621</td>
<td>0.608</td>
</tr>
<tr>
<td>Profit Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.87</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.88</td>
<td>0.82</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.34</td>
<td>0.30</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.38</td>
</tr>
<tr>
<td>Q1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Median</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IssueNow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.02</td>
<td>0.015</td>
<td>0.015</td>
<td>0.024</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.06</td>
<td>0.055</td>
<td>0.055</td>
<td>0.073</td>
<td>0.064</td>
<td>0.065</td>
</tr>
<tr>
<td>Q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Median</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Q3</td>
<td>0.006</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
<td>0.006</td>
<td>0.007</td>
</tr>
<tr>
<td>IssueNext</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.02</td>
<td>0.013</td>
<td>0.013</td>
<td>0.018</td>
<td>0.017</td>
<td>0.018</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.06</td>
<td>0.047</td>
<td>0.049</td>
<td>0.061</td>
<td>0.056</td>
<td>0.063</td>
</tr>
<tr>
<td>Q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Median</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Q3</td>
<td>0.006</td>
<td>0.004</td>
<td>0.004</td>
<td>0.006</td>
<td>0.006</td>
<td>0.007</td>
</tr>
<tr>
<td>Insider Sale Indicator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.65</td>
<td>0.666</td>
<td>0.645</td>
<td>0.668</td>
<td>0.682</td>
<td>0.611</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.48</td>
<td>0.472</td>
<td>0.479</td>
<td>0.471</td>
<td>0.466</td>
<td>0.487</td>
</tr>
<tr>
<td>Q1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Median</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(The table is continued on the next page.)
TABLE 1 (Continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% Shares Sold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.0014</td>
<td>0.00010</td>
<td>0.0014</td>
<td>0.0016</td>
<td>0.0016</td>
<td>0.0013</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0038</td>
<td>0.0030</td>
<td>0.0040</td>
<td>0.0039</td>
<td>0.0040</td>
<td>0.0037</td>
</tr>
<tr>
<td>Q1</td>
<td>−0.0000</td>
<td>−0.0000</td>
<td>−0.0000</td>
<td>−0.0000</td>
<td>−0.0000</td>
<td>−0.0001</td>
</tr>
<tr>
<td>Median</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0001</td>
</tr>
<tr>
<td>Q3</td>
<td>0.0013</td>
<td>0.0006</td>
<td>0.0010</td>
<td>0.0014</td>
<td>0.0016</td>
<td>0.0012</td>
</tr>
<tr>
<td>Value Shares Sold ($M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.12</td>
<td>0.46</td>
<td>0.59</td>
<td>0.83</td>
<td>1.16</td>
<td>1.76</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>3.39</td>
<td>1.62</td>
<td>1.97</td>
<td>2.44</td>
<td>3.15</td>
<td>4.75</td>
</tr>
<tr>
<td>Q1</td>
<td>−0.01</td>
<td>−0.01</td>
<td>−0.01</td>
<td>−0.01</td>
<td>−0.01</td>
<td>−0.02</td>
</tr>
<tr>
<td>Median</td>
<td>0.08</td>
<td>0.05</td>
<td>0.05</td>
<td>0.09</td>
<td>0.12</td>
<td>0.91</td>
</tr>
<tr>
<td>Q3</td>
<td>0.65</td>
<td>0.31</td>
<td>0.37</td>
<td>0.57</td>
<td>0.83</td>
<td>1.05</td>
</tr>
<tr>
<td>Sample size</td>
<td>53,653</td>
<td>6,368</td>
<td>7,098</td>
<td>10,172</td>
<td>14,348</td>
<td>15,667</td>
</tr>
</tbody>
</table>

Notes:

- **Size** is the market capitalization as reported on COMPUSTAT at the start of the fiscal quarter. It is calculated as COMPUSTAT data item 14 (closing stock price at the end of the previous fiscal quarter) multiplied by data item 61 (number of common shares outstanding at the end of the previous quarter).
- **BM** is the book-to-market ratio. It is calculated as the book value of common equity at the start of the fiscal quarter (COMPUSTAT data item 59) divided by market capitalization (Size) at the start of the fiscal quarter.
- **Profit Indicator** is an indicator variable equal to one if EPS as reported on I/B/E/S for the fiscal quarter is positive, and zero otherwise.
- **IssueNow** is the amount of equity issued in the current fiscal quarter. It is calculated as the dollar value of common and preferred equity issued (COMPUSTAT data item 84) divided by market capitalization at the start of the fiscal quarter (that is, at the end of quarter \(t - 1 \)).
- **IssueNext** is the amount of equity issued in the next fiscal quarter. It is calculated as the dollar value of common and preferred equity issued (COMPUSTAT data item 84) in quarter \(t + 1 \) divided by market capitalization at the start of quarter \(t + 1 \) (that is, at the end of quarter \(t \)).
- **Insider Sale Indicator** is an indicator variable equal to one if the insiders are net sellers of stock in the 20-day period after the quarterly earnings announcement, and zero otherwise. Insiders include the CEO, chair, vice-presidents, officers, and directors. We use the following relationship codes from the Thomson Financial data base: “CB”, “D”, “DO”, “F”, “OD”, “VC”, “AV”, “CEO”, “CFO”, “CT”, “CO”, “CT”, “EVP”, “O”, “OB”, “OP”, “OS”, “OT”, “OX”, “P”, “S”, “SVP”, “VP”.

(The table is continued on the next page.)
(COMPUSTAT data item 59) divided by market capitalization at the start of the fiscal quarter. Consistent with growth in the economy, the market capitalization has increased and the book-market-to-book ratio has decreased from the 1980s relative to the 1990s. The average value of the profit indicator variable (one if I/B/E/S earnings per share [EPS] for the fiscal quarter are positive, and zero otherwise) shows a marked decline toward the latter half of the 1990s through 2001, consistent with the increase in the number of loss firms over time.15

New equity issuance data

One of our key test variables is the firm’s own trading activity. We consider two equity issuance variables. IssueNow reflects equity issuance in the same quarter as the forecast and IssueNext reflects equity issuance in the quarter following the forecast. The issuance variables are measured as the dollar value of common and preferred equity issued from the statement of cash flows (COMPUSTAT data item 84) divided by market capitalization at the beginning of the quarter.16

We include IssueNext in addition to IssueNow because a firm would likely experience similar pressures to avoid an earnings disappointment immediately after issuance. The issuing firm would like to avoid lawsuits from disgruntled investors unhappy with a sizable stock price drop from an earnings disappointment, and the investment banker and analysts of the brokerage firm underwriting the issue would like to safeguard reputation. Table 1 shows a greater level of new equity issuance by firms in the 1992–2001 subperiods relative to the earlier subperiods.

Insider trading data

The second test variable measures managers’ trading activity on their personal account. Insider-trading data are obtained from the Thompson Financial insider-trading data base (TFN) covering the period 1984 to 2001. TFN reports all insider trades filed with the SEC resulting from stock transactions and option exercises. We only examine open market sales and purchases of the underlying security.
(transaction codes “P” and “S” as reported on the data base that originate from Form 4 filings, which include the sale of stock from option exercises). In order to focus on the trading activities of those individuals that are most likely to have an impact on the reporting process of the firm, we include only directors and officers as “insiders” (e.g., the CEO, chair, vice-presidents, and directors) and eliminate trades by nonofficer insiders (e.g., blockholders, retirees, trustees, etc.); see the note in Table 1 for the officer relationship codes. We examine insider trades in the 20 trading days immediately after the earnings announcement.

The Insider Sale Indicator equals one if the insiders are net sellers of stock in the 20-day period after the quarterly earnings announcement, and zero otherwise. We also consider two other continuous measures of insider trading activity. % Shares Sold is the fraction of shares sold by insiders in the 20-day period after the quarterly earnings announcement. It is the calculated as the net number of shares sold by insiders divided by the number of shares outstanding at the end of the fiscal quarter. The second measure, Value Shares Sold, is the dollar value of shares sold by insiders in the 20-day period after the quarterly earnings announcement. This variable is the calculated as the net number of shares sold by insiders multiplied by the price at which those transactions took place. Both continuous measures are increasing in net sales (that is, negative numbers correspond to net acquisitions by insiders).

Table 1 shows a slightly higher frequency of firms with insider selling in the two 1990s subperiods (66.8 percent and 68.2 percent) than in the two subperiods beginning in the 1980s (66.6 percent and 64.5 percent). The lowest frequency of selling (61.1 percent), however, is in the very latest subperiod (1998 – 2001). A similar pattern is reported for the % Shares Sold variable. However, the Value Shares Sold variable indicates a monotonic increase over time, perhaps reflecting both the increasing number of stock option exercises as well as increasing stock prices over time.

Cross-sectional variation in forecast bias

Our hypotheses focus on the relation between insider trading behavior and analyst forecast bias. Thus, we group firms by the Insider Sale Indicator variable and compare their firm characteristics in Table 2. A firm is classified as a Seller in the quarter the Insider Sale Indicator equals one, and is classified as a Purchaser otherwise. The sample consists of a total of 35,287 Seller-quarter and 18,366 Purchaser-quarter observations.

Table 2 indicates that Sellers are, on average, higher-growth firms as measured by the book-to-market ratios than Purchasers. Sellers also are larger firms and more profitable. There is, however, no significant difference in the level of issuing activity.

The key focus of our tests is on the difference between the Seller and Purchaser groups across samples of firms that differ in the forecast bias in the final month prior to the earnings announcement and in the pattern of analyst forecast bias between long and short horizons. To test Hypothesis 1 directly, we first construct a pessimism indicator variable, PESSlast, which is equal to one if the price
scaled error of the last forecast, \(FESC_{\text{last}} \), is greater than or equal to zero, and zero otherwise. In other words, the firm was able to meet or beat forecasts in the last month (Month 0) prior to the earnings announcement. The Pearson (Spearman) correlation between \(\text{PESS}_{\text{last}} \) and \(\text{FESC}_{\text{last}} \) is 0.48 (0.85). Consistent with analyst guidance incentives associated with insider sales, we find that analysts are significantly more likely to issue pessimistic forecasts for Seller firms (66 percent) than for Purchaser firms (54 percent).

Next, we calculate a walk-down indicator variable, \(\text{SWITCH} \), as equal to one if the earliest forecast in the fiscal quarter was optimistic (that is, \(FESC_{\text{last}} < 0 \)) and the final forecast in the quarter either equaled actual earnings or was pessimistic (that is, \(FESC_{\text{last}} \geq 0 \), and zero if the first and last forecast are both optimistic. This variable is coded as missing for firm-quarter observations where the earliest forecast is pessimistic. Thus, \(\text{SWITCH} \) turns on when the forecast was initially optimistic and the firm was able to meet or beat the forecasts at the end of the quarter. As with the \(\text{PESS}_{\text{last}} \) variable, Table 2 indicates that there is also a significantly higher \(\text{SWITCH} \) for Sellers than Purchasers, consistent with the prediction in Hypothesis 2.

Table 2
Characteristics of firms with net insider sales and net insider purchases following an earnings announcement

<table>
<thead>
<tr>
<th>Variable</th>
<th>Net insider position</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seller, (n = 35,287)</td>
<td>Purchaser, (n = 18,366)</td>
<td>(t)-statistic</td>
</tr>
<tr>
<td>(BM)</td>
<td>0.458</td>
<td>0.618</td>
<td>-44.09*</td>
</tr>
<tr>
<td>(MV)</td>
<td>6.70</td>
<td>5.89</td>
<td>31.70*</td>
</tr>
<tr>
<td>(\text{IssueNow})</td>
<td>0.0195</td>
<td>0.0194</td>
<td>0.12</td>
</tr>
<tr>
<td>(\text{IssueNext})</td>
<td>0.0163</td>
<td>0.0158</td>
<td>0.92</td>
</tr>
<tr>
<td>(\text{Profit Dummy})</td>
<td>0.90</td>
<td>0.84</td>
<td>17.01*</td>
</tr>
<tr>
<td>(\text{PESS}_{\text{last}})</td>
<td>0.66</td>
<td>0.54</td>
<td>27.41*</td>
</tr>
<tr>
<td>(\text{SWITCH})</td>
<td>0.27</td>
<td>0.21</td>
<td>11.22*</td>
</tr>
</tbody>
</table>

(The table is continued on the next page.)
Cross-sectional regression results on forecast pessimism

Table 3 reports the multivariate tests for the cross-sectional determinants of forecast pessimism to evaluate the influence of incentives from insider trading and equity issuance on the final forecast pessimism, after controlling for other factors. We consider two alternative dependent variables, the continuous measure of the scaled forecast error, $FESC$, and the indicator variable for whether the firm beat or met forecast, $PESS$. The measurement of these variables is described above in section 3.

The three key test variables, $InsiderSale$, $IssueNow$, and $IssueNext$, measure the incentives from insider trading and equity issuance. Both $IssueNow$ and $IssueNext$ are calculated as described earlier. We consider both a binary measure ($InsiderSale Indicator$) as well as a continuous measure for insider selling activity ($\%Shares Sold$). These variables are defined above under the heading “Insider trading data”. We consider two alternative regression models that differ only in the
TABLE 3
Relation of forecast pessimism with new equity issuance and insider trading

Regression of analyst pessimism on the sale of stock by the firm’s CEO in the trading window after the earnings announcement. The data set is a pooled time-series cross-sectional sample of 158,089 firm-quarter-forecast month observations for the period 1986–2001.

Panel A: Scaled forecast error ($FESC$)

\[
FESC = \beta_0 + \beta_1 \times \text{InsiderSale} + \beta_2 \times \text{IssueNow} + \beta_3 \times \text{IssueNext} + \beta_4 \times \text{BM} + \beta_5 \times \text{MV} + \beta_6 \times \text{Profit} + \beta_7 \times \text{Year} + \beta_8 \times \text{Horizon} + \gamma_1 \times \text{RD} + \gamma_2 \times \text{LITIG} + \gamma_3 \times \text{IMPLICIT} + \gamma_4 \times \text{CHEARN} + \gamma_5 \times \text{LABINT} + \gamma_6 \times \text{LT_CHEARN} + \epsilon
\]

(2b)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intercept</td>
<td>-0.016^{\dagger}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-101.4)</td>
</tr>
<tr>
<td>InsiderSale</td>
<td>0.002^{\dagger}</td>
<td>0.147^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>(32.0)</td>
<td>(20.7)</td>
</tr>
<tr>
<td>IssueNow</td>
<td>0.003^{\dagger}</td>
<td>0.003^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>(5.94)</td>
<td>(5.65)</td>
</tr>
<tr>
<td>IssueNext</td>
<td>0.009^{\dagger}</td>
<td>0.009^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>(16.8)</td>
<td>(16.3)</td>
</tr>
<tr>
<td>BM</td>
<td>-0.001^{\dagger}</td>
<td>-0.001^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>(-15.8)</td>
<td>(-17.8)</td>
</tr>
<tr>
<td>MV (logSize)</td>
<td>0.0001^{\dagger}</td>
<td>0.0002^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>(7.5)</td>
<td>(13.6)</td>
</tr>
<tr>
<td>Profit</td>
<td>0.013^{\dagger}</td>
<td>0.013^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>(158.9)</td>
<td>(158.8)</td>
</tr>
<tr>
<td>Year</td>
<td>0.0001^{\dagger}</td>
<td>0.0002^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>(29.7)</td>
<td>(27.5)</td>
</tr>
<tr>
<td>Horizon</td>
<td>0.00054^{\dagger}</td>
<td>0.0005^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>(19.1)</td>
<td>(18.8)</td>
</tr>
<tr>
<td>RD</td>
<td></td>
<td>0.028^{\dagger}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(26.8)</td>
</tr>
<tr>
<td>LITIG</td>
<td>-0.0005^{\dagger}</td>
<td>-0.0005^{\dagger}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-8.5)</td>
</tr>
<tr>
<td>IMPLICIT</td>
<td>0.00002^{\dagger}</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.3)</td>
</tr>
<tr>
<td>CHEARN</td>
<td>0.004^{\dagger}</td>
<td>0.004^{\dagger}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(63.2)</td>
</tr>
<tr>
<td>LABINT</td>
<td>-0.0006^{\dagger}</td>
<td>-0.0006^{\dagger}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-6.4)</td>
</tr>
<tr>
<td>LT_CHEARN</td>
<td>0.015^{\dagger}</td>
<td>0.015^{\dagger}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(29.2)</td>
</tr>
<tr>
<td>Model R^2</td>
<td>$16.0%$</td>
<td>$15.7%$</td>
</tr>
<tr>
<td>Model F-value</td>
<td>3,764.7^{\dagger}</td>
<td>3,677.2^{\dagger}</td>
</tr>
<tr>
<td></td>
<td>($2,637.1^{\dagger}$)</td>
<td></td>
</tr>
</tbody>
</table>

(The table is continued on the next page.)
TABLE 3 (Continued)

Panel B: Pessimism indicator variable (PESS)

PESS = β₀ + β₁ InsiderSale + β₂ IssueNow + β₃ IssueNext + β₄ BM + β₅ MV + β₆ Profit
+ β₇ Year + β₈ Horizon + γ₁ RD + γ₂ LITIG + γ₃ IMPLICIT + γ₄ CHEARN
+ γ₅ LABINT + γ₆ LT_CHEARN + ε

(2b)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insider Sale Dummy</td>
<td>% Shares Sold</td>
</tr>
<tr>
<td>Intercept</td>
<td>-1.64‡</td>
<td>-1.53‡</td>
</tr>
<tr>
<td></td>
<td>(2,378.6)</td>
<td>(2,123.2)</td>
</tr>
<tr>
<td>Insider Sale</td>
<td>0.48‡</td>
<td>52.19‡</td>
</tr>
<tr>
<td></td>
<td>(1,751.4)</td>
<td>(1,012.7)</td>
</tr>
<tr>
<td>Issue Now</td>
<td>1.10‡</td>
<td>1.05‡</td>
</tr>
<tr>
<td></td>
<td>(113.2)</td>
<td>(102.2)</td>
</tr>
<tr>
<td>Issue Next</td>
<td>0.60‡</td>
<td>0.51‡</td>
</tr>
<tr>
<td></td>
<td>(26.8)</td>
<td>(19.1)</td>
</tr>
<tr>
<td>BM</td>
<td>-0.17‡</td>
<td>-0.20‡</td>
</tr>
<tr>
<td></td>
<td>(113.5)</td>
<td>(145.5)</td>
</tr>
<tr>
<td>MV (logSize)</td>
<td>-0.01§</td>
<td>0.02‡</td>
</tr>
<tr>
<td></td>
<td>(4.7)</td>
<td>(49.8)</td>
</tr>
<tr>
<td>Profit</td>
<td>1.3266‡</td>
<td>1.32‡</td>
</tr>
<tr>
<td></td>
<td>(5,718.2)</td>
<td>(5,675.9)</td>
</tr>
<tr>
<td>Year</td>
<td>0.0739‡</td>
<td>0.07‡</td>
</tr>
<tr>
<td></td>
<td>(3,244.3)</td>
<td>(2,924.5)</td>
</tr>
<tr>
<td>Horizon</td>
<td>0.18‡</td>
<td>0.17‡</td>
</tr>
<tr>
<td></td>
<td>(925.7)</td>
<td>(898.7)</td>
</tr>
<tr>
<td>RD</td>
<td>4.55‡</td>
<td>4.70‡</td>
</tr>
<tr>
<td></td>
<td>(289.2)</td>
<td>(305.5)</td>
</tr>
<tr>
<td>LITIG</td>
<td>0.11‡</td>
<td>0.12‡</td>
</tr>
<tr>
<td></td>
<td>(63.7)</td>
<td>(72.6)</td>
</tr>
<tr>
<td>IMPLICIT</td>
<td>0.04§</td>
<td>0.06‡</td>
</tr>
<tr>
<td></td>
<td>(8.3)</td>
<td>(19.8)</td>
</tr>
<tr>
<td>CHEARN</td>
<td>1.24‡</td>
<td>1.25‡</td>
</tr>
<tr>
<td></td>
<td>(9,161.6)</td>
<td>(9,352.1)</td>
</tr>
<tr>
<td>LABINT</td>
<td>0.18‡</td>
<td>0.17‡</td>
</tr>
<tr>
<td></td>
<td>(74.3)</td>
<td>(69.8)</td>
</tr>
<tr>
<td>LT_CHEARN</td>
<td>0.97‡</td>
<td>0.96‡</td>
</tr>
<tr>
<td></td>
<td>(69.8)</td>
<td>(68.5)</td>
</tr>
<tr>
<td>Model χ²</td>
<td>12,257.8‡</td>
<td>11,624.0‡</td>
</tr>
<tr>
<td>p-value</td>
<td>(<0.001)</td>
<td>(<0.001)</td>
</tr>
</tbody>
</table>

(The table is continued on the next page.)
Table 3 (Continued)

Notes:

Variables are defined as follows:

- **FESC** is the price-scaled median earnings forecast error for analysts covering firm \(i\), for fiscal quarter \(q\) for month \(t\) prior to the quarterly earnings announcement. It is defined as \((\text{Actual EPS}_{i,q} - \text{Forecast EPS}_{i,q,t})/P_{i,q-1}\), where \(P_{i,q-1}\) is the stock price when the first forecast is available on I/B/E/S for firm \(i\) in quarter \(q\).

- **PESS** is an indicator variable equal to one if **FESC** is non-negative, and zero otherwise.

- **InsiderSale** captures the extent of insider trading in the 20-day period following the quarterly earnings announcement. Insiders include the CEO, chair, vice-presidents, officers, and directors. We use the following relationship codes from the Thomson Financial data base: “CB”, “D”, “DO”, “H”, “OD”, “VC”, “AV”, “CEO”, “CFO”, “CI”, “CO”, “CT”, “EVP”, “O”, “OB”, “OP”, “OS”, “OT”, “OX”, “P”, “S”, “SVP”, “VP”. We use two measures for insider trading. First, we use an indicator variable, **Insider Sale Dummy**. Second, we use a continuous measure, \% Shares Sold, capturing the fraction of firm traded.

- **Insider Sale Dummy** is an indicator variable equal to one if the insiders are net sellers of stock in the 20-day period after the quarterly earnings announcement, and zero otherwise.

- \% Shares Sold, IssueNow, IssueNext, and BM are as defined in Table 1.

- **MV** is as defined in Table 2.

- **Profit** is an indicator variable equal to one if EPS as reported on I/B/E/S for the fiscal quarter is positive, and zero otherwise.

- **Year** captures the time trend in forecast errors. It is the year in which the forecast is made less 1984 (the first year in the sample).

- **Horizon** captures the time between the forecast and the earnings announcement. It is calculated as the number of months prior to the quarterly earnings announcement. For example, a forecast made in February (April) for a fiscal quarter ending March 31 with an announcement date of April 14 corresponds to a value of \(-2\) (0) for **Horizon**. **Horizon** is increasing in closeness to the earnings announcement.

- **RD** is research and development expenditure (COMPSTAT data item 4). It is scaled by average total assets (COMPSTAT data item 44).

- **LITIG** is an indicator variable equal to one for high litigation risk industries as defined by Matsumoto (2002), and zero otherwise. The industry four-digit SIC codes for high litigation industries include 2833, 2836, 3570, 3577, 3600–3674, 5200–5961, and 7370–7374.

- **IMPLICIT** is an indicator variable equal to one for industries with a high degree of reliance on implicit claims by stakeholders as defined by Matsumoto 2002, and zero otherwise. The industry four-digit SIC codes for these industries include 150–179, 245, 250–259, 283, 301, 324–399.

(The table is continued on the next page.)
The Walk-down to Beatable Analyst Forecasts

set of control variables. The inclusion of these variables helps evaluate the incremental influence of insider trading and equity issuance incentives beyond the other incentives identified by Matsumoto 2002. The first regression model is

\[FESC \text{ or } PESS = \beta_0 + \beta_1 \text{InsiderSale} + \beta_2 \text{IssueNow} + \beta_3 \text{IssueNext} + \beta_4 \text{BM} + \beta_5 \text{MV} + \beta_6 \text{Profit} + \beta_7 \text{Year} + \beta_8 \text{Horizon} + \epsilon \quad (2a). \]

Drawing from previous research (e.g., Brown 2001 and Matsumoto 2002), the control variables in model 1 include firm size, growth, and profitability. Profit is an indicator variable equal to one if EPS as reported on I/B/E/S for the fiscal quarter is positive, and zero otherwise. MV is the log of market capitalization as reported on COMPUSTAT at the start of the fiscal quarter (defined earlier). Because a high-growth firm would likely need new capital, and would also care about investor perceptions and want to avoid an earnings disappointment, we include a growth proxy, BM. It is calculated as the book value of common equity at the start of the fiscal quarter divided by market capitalization (MV) at the start of the fiscal quarter.

We use a pooled time-series cross-sectional regression framework, so we also include two additional variables to pick up possible changes in forecast pessimism over the calendar time as well as over the forecast horizon. Year captures the calendar time trend in forecast errors and is measured by the difference between the calendar year of the forecast and the base year 1984 (the first year in the sample). Horizon captures the time between the forecast and the earnings announcement. It is calculated as the number of months prior to the quarterly earnings announcement. For

TABLE 3 (Continued)

Notes:

CHEARN is an indicator variable equal to one for a positive change in earnings from the same quarter in the prior year (COMPUSTAT data item 8), and zero otherwise. This variable is the same as in Matsumoto 2002.

LABINT is a measure of labor intensity. It is calculated as \([1 - (\text{PPE} / \text{Gross Assets})]\). PPE is property, plant, and equipment (COMPUSTAT data item 118). Gross Assets is calculated as the sum of total assets (COMPUSTAT data item 44) and accumulated depreciation and amortization (COMPUSTAT data item 41). See also Matsumoto.

LT_CHEARN is a measure of long-term change in earnings. It is the change in earnings from four quarters prior to the forecast quarter to four quarters after the forecast quarter. The measure is scaled by the market capitalization of the firm four quarters prior to the forecast quarter.

* t-statistics are reported in parentheses.
† \(\chi^2\) statistics are reported in parentheses below parameter estimates.
‡ Significant at the 1 percent level.
§ Significant at the 5 percent level.
example, a forecast made in February (April) for a fiscal quarter ending March 31 with an announcement date of April 14 corresponds to a value of −2 (0) for Horizon. Horizon is increasing in closeness to the earnings announcement.

The second regression model is

\[
FESC or \text{PESS} = \beta_0 + \beta_1 \cdot \text{InsiderSale} + \beta_2 \cdot \text{IssueNow} + \beta_3 \cdot \text{IssueNext} + \beta_4 \cdot \text{BM} \\
+ \beta_5 \cdot \text{MV} + \beta_6 \cdot \text{Profit} + \beta_7 \cdot \text{Year} + \beta_8 \cdot \text{Horizon} + \gamma_1 \cdot \text{RD} \\
+ \gamma_2 \cdot \text{LITIG} + \gamma_3 \cdot \text{IMPLICIT} + \gamma_4 \cdot \text{CHEARN} + \gamma_5 \cdot \text{LABINT} \\
+ \gamma_6 \cdot \text{LT_CHEARN} + \varepsilon \tag{2b}
\]

In addition to the control variables in the first model, model 2 includes proxies for a firm’s litigation risk, reliance of financial information by noninvestor stakeholders, and further proxies for a firm’s future profitability prospects. Sivakumar and Vijaykumar (2001) and Matsumoto (2002) suggest that these factors affect a firm’s ability to meet or beat forecasts.

We use an indicator variable, LITIG, equal to one for high litigation risk industries as defined by Matsumoto 2002, and zero otherwise; see notes to Table 3 for the four-digit SIC codes considered to be high litigation risk industries. We also use the three Matsumoto variables to control for the effects on forecast pessimism that is derived from a greater reliance of financial information for implicit claims by non-investor groups. RD is research and development expenditure (COMPUSTAT data item 4) scaled by average total assets (COMPUSTAT data item 44). IMPLICIT is an indicator variable equal to one for the durable goods industries, and zero otherwise; see notes to Table 3 for the four-digit SIC codes. LABINT, a measure of labor intensity, is calculated as \(1 - (\text{PPE}/\text{Gross Assets})\) where PPE is property, plant, and equipment (COMPUSTAT data item 118), and Gross Assets is the sum of total assets (COMPUSTAT data item 44) and accumulated depreciation and amortization (COMPUSTAT data item 41).

The final two control variables are related to the firm’s current and future profitability. CHEARN, is an indicator variable equal to one for a positive change in earnings (COMPUSTAT data item 8) from the same quarter in the prior year, and zero otherwise. This controls for possible contemporaneous unexpected shocks to earnings that may affect the firm’s ability to meet or beat forecasts independent of the strategic behavior by the firm to guide forecasts. LT_CHEARN is calculated as the change in earnings from four quarters prior to the forecast quarter to four quarters after the forecast quarter, scaled by the market capitalization of the firm four quarters prior to the forecast quarter. The long-term change in earnings, suggested by Sivakumar and Vijaykumar 2001, controls for the possibility that the firm’s long-term prospects may influence the manager’s trading behavior on the firm’s or the manager’s own behalf, as well as the firm’s ability to beat or meet current forecasts.

The ordinary least squares (OLS) pooled cross-sectional regression is run when FESC is the dependent variable, and a logistic regression is run when PESS is the dependent variable. The results reported in Table 3 are consistent with the
predictions of Hypothesis 1. The three key test variables \textit{InsiderSale}, \textit{IssueNow}, and \textit{IssueNext} are all highly statistically significant in the predicted direction, confirming that managerial and firm incentives to sell equity are significantly associated with whether firms meet or beat forecasts.

Taking \textit{InsiderSale} first, Table 3 reports that greater forecast pessimism is found for firms with higher insider selling subsequent to the quarter when they beat or meet the quarterly consensus earnings forecast. In panel A, all else constant, a firm that had net insider selling after the earnings announcement and an average price–earnings (P/E) ratio of 30 would beat forecasts by an average of 5.34 percent (estimated coefficient for $\text{InsiderSale} \times 0.00178 \times 30$) more than a firm that had net insider purchase. A similar message is obtained when the dependent variable is an indicator variable of whether the firm beat or met forecasts.

The analysis in the first column of Table 3 (panel B) reports that the log odds ratio of beating or meeting increases by 48 percent when insiders are net sellers in the 20-day window following the earnings announcement. Alternatively stated, the probability of a pessimistic forecast error is 21 percent higher for a firm with net insider selling compared with a firm with net insider purchases (calculated using mean values for independent variables in the model 1 regression). The result of a positive association between forecast pessimism and insider selling is robust when insider selling is measured as a percentage of shares sold, and is also robust to the set of control variables included.

Turning to the equity issuance incentives, Table 3 reports that \textit{IssueNow} and \textit{IssueNext} representing equity issuance in the same quarter and in the future quarter respectively are associated with positive earnings surprises. For example, in panel A, a firm with an average P/E of 30 that issued an additional 10 percent of its market value in the quarter following the earnings announcement, on average, beat forecasts by about 2.8 percent ($0.00929 \times 0.1 \times 30$) more than a firm that did not issue new equity. In panel B, a firm that issued an additional 10 percent of its market value in the subsequent quarter experiences a 3 percent higher probability of beating or meeting forecasts than a firm that did not issue new equity (calculated as the marginal probability increase for an additional 10 percent of new equity in the following quarter, holding all variables at their mean values). As for \textit{InsiderSale}, the results for the issuance variables are also robust with respect to the set of control variables included in the regression.

Furthermore, the evidence for quarterly forecasts in Table 3 further corroborates the pattern of annual forecast errors, consistent with a forecast walk-down illustrated in Figure 1. The significantly positive \textit{Horizon} coefficient indicates that forecast pessimism increases as the forecast horizon shrinks toward the earnings announcement, consistent with a walk-down in forecasts. The significantly positive \textit{Year} coefficient indicates that forecast pessimism has increased with calendar time from the 1980s to 2001.19

The results reported above are robust with respect to whether the measures of pessimism and insider selling are continuous or binary (\textit{FESC} or \textit{PESS}; \textit{InsiderSale} or \% \textit{Shares Sold}), and whether a partial or full set of control variables is included in the regression. The first set of control variables includes firm size,
growth opportunities, and profitability. Not surprisingly, ex post profitable firms tend to beat analysts’ targets because the earnings realization turned out to be high. Similarly, growth firms as proxied by low book-to-market ratios also demonstrate a greater likelihood of the firm beating or meeting forecasts. With one exception, the results for firm size suggest that larger firms are more able to meet or beat forecasts.

Our results for the additional control variables are consistent with the findings in past studies. Consistent with Matsumoto (2002), the model 2 regression results in Table 3 indicate that firms with high litigation risk or a high reliance on implicit claims with stakeholders are more likely to meet or beat forecasts. Consistent with Sivakumar and Vijaykumar 2001, firms with past long-term growth in earnings are also more able to beat or meet forecasts. Consistent with the managerial guidance hypotheses, our key results here indicate that the equity-issuance and managerial insider-selling incentives exert an incremental influence on forecast pessimism over these additional explanatory variables.

The cross-sectional regressions presented in Table 3 are estimated using a pooled sample from 1984–2001 (some 158,089 firm-quarter-month observations). To examine the impact of forecast horizon, our pooled sample includes multiple firm observations for each firm-quarter. This may raise a concern of dependence in the data. Specifically, we have up to three observations for each firm-quarter. The inclusion of the fixed effects horizon variable may only partially address this dependence. Therefore, as an additional robustness check on the regression specification, we run regressions using only one (the final) forecast for each firm-quarter. We exclude the horizon variable from this specification (as we have only one record per firm-quarter). The results from this reduced sample of 53,653 firm-quarter observations yield similar results. With the exception of the IssueNow variable, which loses significance after inclusion of the Matsumoto 2002 control variables, we continue to find strong statistical (t-statistics range between 6.47 and 16.55 for the alternative specifications) and economic significance for IssueNext and the insider selling variable (both the indicator and continuous variables) in both the FESC and PESS regressions.

As a final sensitivity check, we also perform 60 quarterly cross-sectional regressions for the FESC dependent variable to obtain Fama-Macbeth 1973 t-statistics calculated from the time series of the estimated quarterly cross-sectional regression coefficients; results are not tabulated. Year and Horizon variables are not included in this specification. We include the three control variables for firm size, growth opportunities, and profitability. Both insider-selling variables remain highly statistically significant (t-statistics of 10.31 for the indicator variable and 5.70 for the continuous variable). The IssueNow and IssueNext variables are marginally significant in these specifications (t-statistics of between 1.72 and 1.96). The lower statistical significance from the Fama-Macbeth procedure reflects the lower power from equally weighting the time-series observations (e.g., Loughran and Ritter 2000).
Determinants of the switch from initial forecast optimism to final pessimism

The empirical findings reported in the previous section are consistent with the predictions of Hypothesis 1. However, we are careful to note that the observed association between pessimistic analyst forecast revisions and our trading measures may also be consistent with managers’ ex post timing equity sales when price is relatively high (after truly unexpected good earnings). However, the univariate tests reported in Table 2 indicate that Sellers are more likely to experience a switch from forecast optimism to pessimism during the quarter than Purchasers. This switching behavior seems more consistent with opportunistic guidance. Therefore, to test the more restrictive predictions of Hypothesis 2, we estimate logistic cross-sectional regressions of the Switch indicator variable (described under the heading “Cross-sectional variation in forecast bias”) using the key test variables and the same set of control variables as in Table 3 regressions.

\[
SWITCH = \beta_0 + \beta_1 * \text{InsiderSale} + \beta_2 * \text{IssueNow} + \beta_3 * \text{IssueNext} + \beta_4 * \text{MB} \\
+ \beta_5 * MV + \beta_6 * \text{Profit} + \beta_7 * \text{Year} + \gamma_1 * \text{RD} + \gamma_2 * \text{LITIG} + \gamma_3 * \text{IMPLICIT} \\
+ \gamma_4 * \text{CHEARN} + \gamma_5 * \text{LABINT} + \gamma_6 * \text{LT_CHEARN} + \epsilon
\] (3).

Given the definition of the Switch variable, the estimation of (3) is restricted to the sample of firms where the forecasts are initially optimistic.20 The results are reported in Table 4. As in Table 3, InsiderSale in Table 4 is highly statistically significant, which is consistent with insiders timing their sales to follow immediately after a good news earnings surprise, and consequently after an increase in stock price. Relative to Purchaser firms, Seller firms experience a 21 percent higher probability of a switch from early optimism to final pessimism (calculated as the probability difference from comparing firms with net insider sales to firms with no net insider selling, holding all other variables at their mean values). Similarly, IssueNow and IssueNext are also highly statistically significant in model 1 regressions. An equity issuance equal to 10 percent of market capitalization in the subsequent quarter is associated with a 6 percent higher probability of a switch in early optimism to final pessimism, compared with a firm with no equity issuance in the following quarter. Although IssueNext remains highly significant in model 2 regressions, IssueNow does not, perhaps because of high correlation with the additional included variables. These results support the predictions of Hypothesis 2.

The statistically significant result for Year indicates that there is a greater likelihood of a switch from initial optimism to final pessimism in more recent calendar years, further confirming the predictions of Hypothesis 2. Institutional changes during the 1990s increased the firm’s economic incentives to walk-down forecasts and then to beat or meet them at the earnings-announcement date.

The control variables have similar effects on the SWITCH indicator as on the PESS indicator described in Table 3. Larger firms that have more growth opportunities and that are profitable are more likely to have forecasts that switched from being optimistic to pessimistic over the forecast horizon. Finally, some of the implicit claims and litigation risk proxies are significant (LITIG, IMPLICIT, CHEARN), but others are not (RD, LABINT, LT_CHEARN).
TABLE 4
Relation of switching from initial optimism to final pessimism with new equity issuance and insider trading

Regression of a switch from forecast optimism to pessimism, on the sale of stock by the firm’s CEO in the trading window after the earnings announcement. The data set is a pooled time-series cross-sectional sample of 25,414 firm-quarter observations for the period 1984–2001.

\[
SWITCH = \beta_0 + \beta_1 \text{InsiderSale} + \beta_2 \text{IssueNow} + \beta_3 \text{IssueNext} + \beta_4 \text{MB} + \beta_5 \text{MV} + \beta_6 \text{Profit} + \beta_7 \text{Year} + \gamma_1 \text{RD} + \gamma_2 \text{LITIG} + \gamma_3 \text{IMPLICIT} + \gamma_4 \text{CHEARN} + \gamma_5 \text{LABINT} + \gamma_6 \text{LT_CHEARN} + \varepsilon
\]

(3)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th></th>
<th>Percent Shares Sold</th>
<th>Model 2</th>
<th></th>
<th>Percent Shares Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insider Sale Dummy</td>
<td>% Sold</td>
<td>Insider Sale Dummy</td>
<td>% Sold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>−3.18†</td>
<td>(1,142.3)</td>
<td>−3.02†</td>
<td>(1,112.4)</td>
<td>−3.48†</td>
<td>(990.5)</td>
</tr>
<tr>
<td>InsiderSale</td>
<td>0.25†</td>
<td>(62.0)</td>
<td>25.37†</td>
<td>(33.3)</td>
<td>0.21†</td>
<td>(40.0)</td>
</tr>
<tr>
<td>IssueNow</td>
<td>0.77†</td>
<td>(7.0)</td>
<td>0.78†</td>
<td>(7.2)</td>
<td>0.65†</td>
<td>(4.6)</td>
</tr>
<tr>
<td>IssueNext</td>
<td>0.81†</td>
<td>(6.7)</td>
<td>0.75†</td>
<td>(5.7)</td>
<td>0.92†</td>
<td>(7.7)</td>
</tr>
<tr>
<td>BM</td>
<td>−0.30†</td>
<td>(35.8)</td>
<td>−0.32†</td>
<td>(40.2)</td>
<td>−0.16†</td>
<td>(8.9)</td>
</tr>
<tr>
<td>MV (logSize)</td>
<td>0.10†</td>
<td>(103.5)</td>
<td>0.11†</td>
<td>(138.2)</td>
<td>0.10†</td>
<td>(112.8)</td>
</tr>
<tr>
<td>Profit</td>
<td>0.89†</td>
<td>(334.6)</td>
<td>0.89†</td>
<td>(331.8)</td>
<td>0.81†</td>
<td>(235.1)</td>
</tr>
<tr>
<td>Year</td>
<td>0.06†</td>
<td>(300.5)</td>
<td>0.06†</td>
<td>(279.4)</td>
<td>0.07†</td>
<td>(303.4)</td>
</tr>
<tr>
<td>RD</td>
<td>0.71</td>
<td>(1.1)</td>
<td>0.83</td>
<td>(1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LITIG</td>
<td>0.18†</td>
<td>(23.5)</td>
<td>0.18†</td>
<td>(24.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPLICIT</td>
<td>0.12†</td>
<td>(12.0)</td>
<td>0.13†</td>
<td>(14.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEARN</td>
<td>0.36†</td>
<td>(112.7)</td>
<td>0.37†</td>
<td>(118.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABINT</td>
<td>−0.06‡</td>
<td>(1.2)</td>
<td>−0.06‡</td>
<td>(1.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT_CHEARN</td>
<td>−0.26</td>
<td>(0.6)</td>
<td>−0.26</td>
<td>(0.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model χ^2</td>
<td>1,167.7†</td>
<td>(0.001)</td>
<td>1,136.1†</td>
<td>(0.001)</td>
<td>1,308.2†</td>
<td>(0.001)</td>
</tr>
<tr>
<td>p-value</td>
<td>(<0.001)</td>
<td></td>
<td>(<0.001)</td>
<td></td>
<td>(<0.001)</td>
<td></td>
</tr>
</tbody>
</table>

(The table is continued on the next page.)
In unreported tests, we find similar, if not stronger, results using annual forecast horizons in documenting the relation between equity issuance/insider selling and forecast pessimism and the switch from forecast optimism to pessimism. Taken together, the results from Tables 2, 3, and 4 are consistent with managers guiding analyst earnings targets to facilitate trading on favorable terms after an earnings announcement, on both the manager’s and the firm’s behalf. The potential for the manager or firm to benefit from these transactions is derived from the managers’ ability to guide analysts over the forecast horizon prior to trading.

Robustness analysis and discussion of limitations

In this section, we report two additional robustness checks and discuss some caveats concerning the interpretation of our results. The first robustness check examines whether analyst pessimism varies with analyst type. If bias differs across analysts, then firm variation in a forecast walk-down could result from the presence of different analyst types rather than from varying incentives of managers and firms to sell stock after the earnings announcement.

<table>
<thead>
<tr>
<th>TABLE 4 (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes:</td>
</tr>
<tr>
<td>This table uses only one observation for each firm-quarter. Therefore, the horizon variable is dropped from the analysis.</td>
</tr>
<tr>
<td>Variables are defined as follows:</td>
</tr>
<tr>
<td>InsiderSale captures the extent of insider trading in the 20-day period following the quarterly earnings announcement. This is measured using an indicator variable, Insider Sale Dummy (equal to one if the insiders are net sellers of stock in the 20-day period after the quarterly earnings announcement, and zero otherwise), or a continuous measure, % Shares Sold (the fraction of shares sold by insiders in the 20-day period after the quarterly earnings announcement). This variable is calculated as the net number of shares sold by insiders divided by the number of shares outstanding at the end of the fiscal quarter. The variable is increasing in net sales (that is, negative numbers correspond to net acquisitions by insiders). Insiders include the CEO, chair, vice-presidents, officers, and directors. We use the following relationship codes from the Thomson Financial data base: “CB”, “D”, “O”, “H”, “OD”, “VC”, “AV”, “CEO”, “CFO”, “CT”, “CO”, “CT”, “EVP”, “O”, “OB”, “OP”, “OS”, “OT”, “OX”, “P”, “S”, “SVP”, “VP”.</td>
</tr>
<tr>
<td>IssueNew, IssueNext, and BM are as defined in Table 1.</td>
</tr>
<tr>
<td>Switch and MV are as defined in Table 2.</td>
</tr>
<tr>
<td>All other variables are as defined in Table 3.</td>
</tr>
<tr>
<td>* χ² statistics are reported in parentheses below parameter estimates.</td>
</tr>
<tr>
<td>† Significant at the 1 percent level.</td>
</tr>
<tr>
<td>‡ Significant at the 5 percent level.</td>
</tr>
</tbody>
</table>
We compare the forecast errors and forecast pessimism between “lead” and “follower” analysts, where “lead” and “follower” types are identified using an approach analogous to Cooper, Day and Lewis (2001). Similar to Cooper et al., we ignore forecasts in the first 30 days of the quarter and focus instead on analyst forecasts issued in the last 30 days of the quarter, which are more likely to be revisions resulting from unobservable managerial guidance. Analysts who revise their earnings forecast first in the last 30 days of the quarter are identified as “lead” analysts. To ensure that a “lead” analyst is truly a first mover, we require a 10-day quiet window preceding forecast revision of the “lead” analyst. If multiple analysts revise their forecasts on the same day, the value of the “lead” forecast is calculated as the mean of the analyst forecasts issued on that day. “Follower” analysts are identified as those analysts who revise their forecasts in the days following the “lead” analysts, but before the actual earnings announcement. The sample consists of 12,157 firm-quarter observations.

Our empirical results show no economic or statistical difference between the forecast bias properties of “lead” analysts and those of “follower” analysts. For example, the average pessimism ($PESS_{last}$) for “lead” analysts is 0.644 over the entire sample period while the average pessimism for “follower” analysts is nearly identical at 0.638, and the difference is not statistically significant. Figure 2 presents the temporal trend of pessimism in “lead” and “follower” analyst forecast revisions for the period 1985–2001. The graph shows increasing pessimism for both “lead” and “follower” analysts over the sample period, similar to the graph for the consensus forecasts in Figure 1. There is, however, no statistical difference between the two categories of analysts.

These findings are consistent with the notion that managers have strong incentives to manage the consensus of all analysts’ earnings forecasts. While it may be important to first guide influential “lead” analysts, managers must ultimately guide the consensus of all analyst forecasts because the consensus earnings estimate is the benchmark used to evaluate subsequent reported earnings. Furthermore, the statistically indistinguishable difference between forecasts of lead and follower analysts is consistent with the analyst herding behavior reported in prior studies (see, for example, Hirshleifer and Teoh, 2003).

Our second robustness check examines the impact of different investor types — namely, institutional versus noninstitutional investors — on analyst forecast bias. We reestimate our main regressions using a subsample (140,906 firm-quarter-forecast month observations) with institutional holdings data available from the 2001 Spectrum data base. These regressions now include a variable measuring the fraction of shares held by institutional investors. Our main findings on the relation between insider sales and analyst forecast errors and pessimism remain robust for this subsample. Consistent with Matsumoto 2002, we also find a positive association between the fraction of institutional ownership and forecast pessimism. This finding is consistent with the argument that the increasingly short-term investment objectives of institutional investors may provide managers with additional pressures to beat short-term quarterly targets. The descriptive findings of Matsumoto also suggest that the effect is strongest for transient institutional investors.
While our empirical results are robust to a number of different specifications, as in all empirical research, caution is required in interpreting the findings. The focus of this paper is to identify determinants of (1) forecast pessimism at the end of the fiscal year, and (2) the switch from early optimism to final pessimism. In developing our hypotheses, we rely on the prior research of Bartov, Givoly, and Hayn 2002 to support our premise that analyst guidance leads to more favorable stock prices at the end of the fiscal period. This prior evidence suggests that the path by which forecasts come to be beaten is not as crucial as whether the forecast is beaten. Our finding that final pessimism and the switch from early optimism to final pessimism is concentrated in firms that are net issuers of equity or managers are net sellers of stock after an earnings announcement is consistent with these firms choosing to engage in such behavior because of managerial incentives. Therefore, our results should be interpreted as a joint test of (1) the hypothesis that the forecast path is less crucial than whether the forecast is beaten, and (2) our earnings-guidance hypothesis.

Figure 2 Temporal trend of pessimistic lead and follower analysts

Notes:

* To identify lead and following analysts we use a procedure similar to Cooper, Day, and Lewis 2001. We focus on analysts releasing forecasts in the last month of the fiscal quarter and require there be no forecasts in the first third of the last month (that is, days –30 to –21) to ensure there is no significant news event. We then divide the forecasts made in the last 20 days into the first forecast (lead analyst) and take the average of the remaining forecasts (followers).
In this paper, we investigate expectations management as one of several tools that management has available to achieve a desired level of earnings-surprise. It should be noted that our earnings-surprise measure compares analysts’ earnings estimates with a firm’s reported earnings. The reported earnings number can also be managed (for example, by manipulating accruals or changing earnings definitions) to achieve the desired earnings surprise (e.g., Teoh, Welch, and Wong 1998a, 1998b; and Bradshaw and Sloan 2002). Therefore, we view our results as providing complementary (and often inseparable) evidence on both earnings and expectations management.

Several recent U.S. regulatory reforms may limit the ability of analysts and managers to engage in future earnings guidance games. The enactment of Regulation FD (Fair Disclosure), in October 2000, may limit managers’ hidden opportunities to guide analysts’ forecasts. In addition, the enactment of Regulation AC (Analyst Certification) in 2003 requires analysts to certify that recommendations reflect their personal beliefs. However, to the extent that none of the current regulations require firms to disclose at the time of the earnings announcement the firm’s or insiders’ intention to sell the firm’s stock shortly after the earnings announcement, these economic incentives may still be present to encourage continuation of the earnings-guidance game.

6. Conclusion
This paper examines the dynamic behavior of analyst earnings forecasts leading up to earnings announcements. We provide evidence that links the pattern of analyst pessimism in the 1990s to institutional and regulatory changes that create capital-market incentives for managers to guide and beat forecasts in order to boost stock prices. These systematic changes include greater use of stock option compensation for managers, restrictions on trading by insiders to post-earnings-announcement periods in response to the Insider Trading and Securities Fraud Enforcement Act of 1988, and the lifting of the short-swing rule for insiders in 1991 allowing insiders to exercise stock options and immediately sell company stock.

Our cross-sectional predictions are motivated by the tendency of managers and firms to sell shares after earnings announcements. This can create incentives to guide analysts to systematically pessimistic forecasts just prior to the earnings announcement, so that the salient news of a positive rather than a negative surprise arrives before the share sale.

Consistent with our hypotheses, we find that pre-announcement forecast pessimism is strongest in firms whose managers have the highest capital-market incentives to avoid earnings disappointments. We find that firms with managers that sell stock after an earnings announcement are more likely to have pessimistic analyst forecasts prior to the earnings announcement. The probability of forecast pessimism increases from 54 percent for an average firm without net insider selling to 66 percent for an average firm with subsequent net insider selling. Furthermore, firms in which the insiders are net sellers of the firm’s stock are also more likely to have analysts switch from long-horizon optimism to short-horizon pessimism prior to the earnings announcement. The probability of a switch from optimism early in
the quarter to pessimism closest to the earnings announcement increases from 21 percent in firms without net insider selling to 27 percent in firms with net insider selling. This evidence is consistent with managers behaving opportunistically to guide analysts’ expectations around earnings announcements to facilitate favorable insider trades after earnings announcements.

Endnotes

1. Cotter, Tuna, and Wysocki (2004) examine analysts’ forecast revisions in response to public managerial guidance as provided through management’s earnings forecasts. However, prior to Regulation FD (SEC 2000), a large fraction of managerial guidance of analysts was not publicly observable.

2. For example, one might speculate that managers are just opportunistically taking advantage of unrelated changes in analyst forecast bias by selling shares or exercising options. However, we are not aware of any specific explanation for why their incentive to do so would cause them to behave in a way that explains our evidence.

3. Managers also care about the stock price performance because poor stock price performance encourages a hostile takeover and subsequent firing by the acquirer’s board of directors. An active external labor market also rewards a manager with a reputation for maintaining good stock price performance. In addition, a manager is in a better position to bargain for higher future compensation if the stock price performance is good.

4. By reducing discretion in the timing of the insider trades, the blackout feature reduces the opportunity of the managers to profit from inside information at the expense of uninformed outside investors. Limiting insider trades to the period immediately after earnings announcements also reduces the adverse selection problem by minimizing the asymmetry of information between uninformed outsiders and the inside managers.

5. See http://www.sec.gov/rules/final/33-8193.htm for full details. Part A of the Final Rule indicates the following:

A. Certifications in Connection with Research Reports: As adopted, Regulation Analyst Certification requires that brokers, dealers, and their associated persons that are “covered persons” that publish, circulate, or provide research reports include in those research reports:

(A) a statement by the research analyst (or analysts) certifying that the views expressed in the research report accurately reflect such research analyst’s personal views about the subject securities and issuers; and

(B) a statement by the research analyst (or analysts) certifying either:

(1) that no part of his or her compensation was, is, or will be directly or indirectly related to the specific recommendations or views contained in the research report; or

(2) that part or all of his or her compensation was, is, or will be directly or indirectly related to the specific recommendations or views contained in the research report. If the analyst’s compensation was, is, or will be directly or indirectly related to the specific recommendations or views contained in the research report, the statement must include the source, amount, and purpose of such compensation, and further disclose that it may influence the recommendation in the research report.
6. This does not require that investors be irrational in their evaluations of forecasts. Investors may properly discount for optimism, but firms nevertheless need to induce such analyst optimism because investors would still discount a defecting firm that failed to do so, causing that firm to be viewed as worse than it really is.

7. The increased use of stock options in the 1990s may have been, in part, an endogenous favorable response by firms to the reduced agency-related costs of stock option compensation that resulted from the heightened insider-trading restrictions (discussed above under the heading “Why and when managers care about short-term stock prices”). The findings in this study suggest that we may have substituted one agency-related cost for another. The new agency cost is one that resulted from an increased incentive to play the earnings-guidance game.

8. It is important to note that our analysis of the switch from early optimistic to pessimistic forecasts does not collapse to an analysis of final pessimism. In considering the optimism–pessimism switch we exclude firm-quarter observations where the initial forecast is pessimistic. More details on variable measurement are given in section 5.

9. Our results are not driven by use of this “constructed” consensus forecast. In unreported tests we replicate our empirical analysis using the median consensus forecast as reported by I/B/E/S.

10. The empirical findings documented in this section also exist for a broader sample of firms not restricted by COMPSTAT data availability.

11. We also replicate the analysis using total assets per share as a deflator. The qualitative results are unchanged using this alternative deflator.

12. For example, an analyst forecasts $1.15 earnings per share (EPS) for a firm on November 1, 1995 for the fiscal year ending December 31, 1995. I/B/E/S reports an actual EPS of $1.20 on January 27, 1996. I/B/E/S also reports that the 1994 fiscal year earnings release date occurs during January 1995, and the stock price in February 1995 (the first month after the release of EPS for the previous fiscal year) is $15.10. Thus, \(FE = \frac{1.20 - 1.15}{15.10} = 0.33 \) percent. We use a calendar-year timing convention, so the \(FE \) is considered the forecast error for year 1996 because the actual earnings release date occurs in January 1996.

13. For example, absolute forecast errors (|forecast EPS − actual EPS|) greater than $3 per share for a company trading at $30 per share are removed from the sample. Data-coding errors for forecasts and extreme small prices likely contribute to such large outliers. The 10 percent deletion rule removed 2.1 percent of the sample. We find that the mean (median) numerator of \(FESC \) is −0.04 (0.00) for retained firms and −1.20 (−0.66) for deleted firms. Further, we find that the mean (median) denominator of \(FESC \) is 28.76 (19.25) for retained firms and 5.73 (3.50) for deleted firms. Deleted firms have much larger unscaled forecast errors and lower stock prices. As a robustness check, we apply a less stringent deletion cutoff of greater than 100 percent of price that removes only 0.2 percent of the sample. Our results are qualitatively unchanged in this specification and remain statistically significant.

14. Our empirical findings are stronger in tests (not reported) using annual horizons.

15. Givoly and Hayn (2000) report a loss frequency of about 34 percent in the 1990s based on net income. Our sample is skewed toward larger (more profitable) firms with analyst
following. In addition, we use I/B/E/S income numbers, which are typically based on operating earnings.

16. The empirical results are robust to the use of an equity-issuance indicator variable based on equity-sale cutoffs from 1 percent to 20 percent of equity market value. For the indicator variables, we exclude the smallest equity issuances because they relate to additional equity issued due to the exercise of managerial options. For the continuous variables, we note that the issuance variable may be correlated with the insider trade variable via stock options exercise. The Pearson (Spearman) correlation between the insider selling and equity-issuance variables is 0.18 (0.21).

17. Regression results for the second continuous measure of insider trading (dollar value of shares traded) are similar to the fraction of shares traded variable. We do not report these results for the sake of brevity.

18. In additional tests we also considered the robustness of the regression results in panel B of Table 3 to our definition of PESS. If we limit our categorization of firms who meet/beat (miss) to those firms who report earnings no more than 5 cents greater (lower) than the most recent consensus analyst estimate all of our explanatory variables retain their significance. This reinforces the earlier discussion that firms need only just beat analyst expectations. Managerial incentives to sell equity both on the firm’s behalf and from their own personal accounts are a key determinant in the discontinuity of analyst forecast errors around the zero point.

19. In unreported tests, we also interact the equity-issuance and growth variables with the temporal trend. There is some indication that these effects are more pronounced in the latter part of our sample. In addition, our findings are robust to the inclusion of annual and quarterly fixed effect variables.

20. We reran the analysis in Table 3 using this restricted sample where the initial forecasts are optimistic. The results are essentially the same, and the key variables related to our hypotheses remain statistically significant using the reduced sample.

21. Although the economic magnitude of these quarterly forecast results is modest, the annual forecast results are more substantial. This is because there is a much larger fraction of optimistic forecasts at the beginning of the fiscal year (> 70 percent) than at the start of a fiscal quarter (< 50 percent); this difference has increased in the latter years in our sample period as firms appear to walk-down forecasts to beatable levels earlier and earlier in the fiscal period.

References

The Biggest Mistakes We Teach

Jay R. Ritter
Cordell Professor of Finance
University of Florida
ritter@dale.cba.ufl.edu
http://bear.cba.ufl.edu/ritter

December 3, 2001

Presented at the Southern Finance Association Annual Meetings, November 30, 2001. The comments of Joel Houston, Michael Ryngaert, Richard Warr, and especially Jeremy Siegel are appreciated.

I. Introduction

When I started to teach at the University of Pennsylvania’s Wharton School over twenty years ago, I used the very first edition of the Brealey and Myers’ textbook. The book had some mistakes in it, as almost all books do. For example, the first two editions had an incorrect formula for the valuation of warrants. I taught the incorrect formula for several years before a perceptive student asked a question that exposed the mistake. But I don’t want to dwell on technical errors. Instead, I want to focus on some of the conceptual mistakes that dominate the received body of wisdom in the academic finance profession.

II. The Relative Risk of Stocks and Bonds

Almost all finance textbooks prominently feature the historical returns provided by Ibbotson Associates. These numbers show that since 1926, stocks have produced higher average annual returns than bonds, and that stocks are riskier than bonds. This is consistent with equilibrium risk-return models. There are three problems with this evidence that stocks are riskier than bonds, however.

First, the use of annual holding periods. There is no theoretical reason why one year is the appropriate holding period. People are used to thinking of interest rates as a rate per year, so reporting annualized numbers makes it easy for people to focus on the numbers. But I can think of no reason other than convenience for the use of annual returns. If returns follow a random walk, then whether a one year holding period is used, or a shorter or longer period is used, makes no difference. But if there is mean reversion or mean aversion in the data, then the risk of one class of securities relative to another depends on the holding period.
Second, the use of arithmetic, rather than geometric returns. The relation between the arithmetic (simple) average and the geometric (compounded) average is given by the formula

$$r_{\text{arith}} = r_{\text{geo}} + 1/2\sigma^2$$

The higher is the variance rate, the larger will be the difference between the arithmetic and geometric returns. For stocks, the difference between the arithmetic and geometric averages is about 2% per year. For bonds, the difference is much smaller. As a result, the performance of stocks relative to bonds looks better when arithmetic averages are compared than when geometric averages are compared. Now, if stock and bond returns follow a random walk, the use of annual arithmetic returns is appropriate. But if there is mean reversion or mean aversion, then the use of arithmetic returns over longer time periods is not appropriate. With mean reversion, the multi-period arithmetic return will be closer to the geometric return.

Third, the use of nominal, rather than real returns. People are concerned about the consumption bundle that they can consume. The only reason that nominal returns, rather than real returns, should be reported in textbooks is simplicity. But this simplicity comes at a cost. If stocks are good short-term hedges against inflation, they could have a higher variance of nominal returns and yet offer a lower variance of real returns. In fact, stocks are bad short-term hedges against inflation. On theoretical grounds, it is the standard deviation of real returns that is relevant.

Figure 1 provides an updated version of Figure 2-4 in Jeremy Siegel’s *Stocks for the Long Run*, showing the standard deviation of real returns for different holding periods, using data starting in 1802. For a one-year holding period, stocks are twice as risky as bonds. For holding periods of twenty or more years, however, stocks are less risky than bonds.
Figure 1: The annualized standard deviation of compounded real holding-period returns from January 1802 to September 2001. For example, a two-year buy-and-hold real return of 21% would have an annualized compounded real return of 10%. For the sample period, there are 199 overlapping two-year returns, from which 199 annualized numbers are calculated. The bars represent these actual standard deviations. The dashed bars represent what the standard deviations would be if the one-year standard deviations are divided by the square root of the holding period, which is the random walk assumption. This is an updated version of Figure 2-4 from Siegel (1998), supplied by Jeremy Siegel.

Why is this so? Well, although stocks are a bad hedge against inflation in the short-run, they are a good hedge against inflation over a longer period of time, such as five years. This pattern is a major contributor to the negative autocorrelation of real stock returns that exists over a five-year horizon. In other words, real stock returns show a tendency towards mean-reversion. This makes stocks less risky over a T-year holding period than would be suggested by multiplying the annual variance by T. If there is no mean reversion, the T-period variance of returns, σ_T^2, is equal to T times the variance of single-period returns, σ^2. If one uses monthly returns data, however, researchers generally find that $\sigma_T^2 < T\sigma^2$ when using a market index when T is greater than 24 months.

I can think of another reason why real stock returns are negatively autocorrelated at three-to-five year horizons. If individuals put too much weight on recent evidence, then they will put more money into stocks after stocks have done well, pushing up the prices even further. Similarly, after stocks have done poorly, they will pull money out of stocks, depressing prices
further. This is an example of the representativeness heuristic. People put too much weight on recent evidence. This is also known as the fallacy of small numbers.

In contrast to stocks, the real returns on nominal bonds show no tendency towards mean reversion. In fact, there is a slight tendency towards mean-aversion, making them more risky the longer the holding period. But the big risk with nominal bonds comes from a hyper-inflation. Fortunately, the U.S. has never had a hyper-inflation, but other countries have. In a hyper-inflation, stocks typically have negative real returns, but then recover, at least partially. Bonds get wiped out in real terms, and once this occurs, you can never recover.

Stocks are riskier than bonds for short holding periods. But it is not at all obvious that this is true for long holding periods, either historically or in the future.

III. Estimating the Future Equity Risk Premium

The equity risk premium is the difference in returns between stocks and safe assets, such as Treasury bills. There are three approaches to estimating the equity risk premium on a point-forward basis. The first approach is to extrapolate historical returns. The second approach is to use a theoretical model of what the equity premium should be, given plausible assumptions about risk aversion. The third approach is to use forward-looking information such as the current dividend yield and interest rates.

Many textbooks encourage students to use the historical arithmetic equity risk premium of 9% for computing the cost of equity capital. Ivo Welch’s recent survey of financial economists indicates that most finance professors extrapolate the historical average, too, although many shade it down to about 7%, perhaps due to concerns about survivorship bias. The numbers that I am about to compute using forward-looking information suggest that 1% is a more defensible number.

Before doing so, let me point out how extrapolating historical numbers can result in numbers that are nonsensical. If one were estimating the equity risk premium for Japan at the end of 1989, using the historical data starting when the Japanese stock market reopened after World War II, one would produce an equity risk premium of more than 10%. But at the end of 1989, the Japanese economy was booming, corporate profits were high, and the market’s price-earnings ratio was over 60. At the time, it was the conventional wisdom that the cost of equity capital for Japanese corporations was low. It cannot be the case that the cost of equity capital is low and the equity risk premium is high. But it can be the case that the historical equity premium is high, and the expected equity risk premium for the future is low.

If a theoretical model is used for what the equity risk premium should be, one comes up with a number in the vicinity of 2% if geometric returns are used, or 4% if arithmetic returns are used. This is the approach used by Mehra and Prescott (1985) in their famous paper.

The first forward-looking approach to estimate the future real return on equities is to look at the market’s earnings yield. The earnings yield is just the reciprocal of the P/E ratio. Now,
one must normalize earnings because earnings may be temporarily high or low due to business
cycle effects. Historically, the earnings yield has averaged 7%. Not coincidentally, the average
compounded real return on equities has averaged 7%. This historical average of 7% is composed
of a dividend yield of 4.5% and a real capital gain of 2.5%.

Today, the earnings yield is in the vicinity of 4%, once one smooths out business cycle
effects. This generates a real return on equities, on a point-forward basis, of about 4%, which is
below the historical average. The lower forecast today is because the P/E ratio is higher than the
historical average of about 14. The higher P/E ratio today also results in a lower dividend yield.
Today, the dividend yield is about 1.5%. The dividend yield is low both because the P/E ratio is
high, and the payout ratio of dividends to earnings is relatively low. The dividend payout ratio is
low partly because of the increase in share repurchases. Because of share repurchases, expected
real capital gains have increased. But employee stock options have also become more popular,
and this dilution partly offsets the effect of share repurchases. A 2.5% real capital gain per share
plus a 1.5% dividend yield produces a 4% per year real return on equities.

The second forward-looking approach is to use the Gordon dividend growth model.
Using this model, which is a rearrangement of the growing perpetuity formula $P_0 = \frac{\text{Div}_1}{r - g}$,
once gets that

$$r = \text{the dividend yield} + g$$

where g is the growth rate of dividends per share. If the dividend yield stays constant over time,
then the growth rate of dividends per share will be the same as the growth rate of the stock price.

What is a plausible estimate of g? If aggregate dividends grow at 2.5%, and the
aggregate dividend/labor income ratio for the economy stays constant, this would imply that real
labor income grows at 2.5%. If the population grows at 1%, this would imply that per capita
income grows at 1.5% per year. This is equal to the historical average long-term growth rate of
about 1.5% in developed countries, according to Prichett (1997). A 1.5% per year growth rate
means that real per capita income will double every 47 years. If the net effect of share
repurchases and option dilution adds 1% to per share growth, then a growth rate of real dividends
per share of 2.5% can be justified. Adding a 1.5% dividend yield to this gives a 4% real return
on equities in the future.

Since 1997, the U.S. Treasury has issued inflation-indexed bonds, commonly known as
TIPS, for Treasury Inflation-Protected Securities. These bonds do offer protection against
inflation risk. Many textbooks do not even acknowledge the existence of this important asset
class.

The Ibbotson numbers show that the historical real return on bonds has been about 1%.
But today, TIPS are yielding real returns of about 3.3%. If the expected real return on equities is
4% and the real return on inflation-indexed bonds is 3.3%, the equity risk premium is only 0.7%.
In round numbers, 1%. The equity premium has gotten squeezed from the top (low future real
returns on stocks) and the bottom (a higher real return on bonds).
I think that textbooks should present historical returns, but should focus on the Gordon dividend growth model for estimating the future equity risk premium. For predicting future dividend growth rates, all one has to do is assume an economy-wide growth rate and then assume that the ratio of labor income to capital income is a constant. Fama and French (2002) and Jagannathan, McGratton, and Scherbina (2000), among others, also adopt the Gordon dividend growth model framework and conclude that the equity risk premium is now in the vicinity of 1%, far below the historical average.

IV. The Fed Model

The so-called Fed Model states that the stock market is fairly valued when the earnings yield on stocks is equal to the interest rate on bonds. This model for valuing stocks is based on the empirical regularity that is illustrated in Figure 2.

![DJIA Earnings Yield and 10 Year T Note Rate chart]

Figure 2: Monthly values of the earnings yield (last fiscal year’s earnings) on the Dow Jones Industrial Average and the nominal yield on 10-year Treasury securities.

Empirically, this is a model that works very well. But on theoretical grounds, if most of the variation in nominal interest rates comes from changes in expected inflation rather than changes in real rates, the model should not work well. In fact, the strong positive correlation
should theoretically be negative, in an efficient market. The logic was first pointed out by Modigliani and Cohn in their 1979 *FAJ* article, and is reiterated in my paper with Richard Warr in the March 2002 *JFQA*. The logic is that, for firms with debt in their capital structure, earnings are depressed by high nominal interest payments. The part of the nominal interest payment that goes to compensate bondholders for inflation reflects the decline in the real value of the liabilities of the firm. Accountants measure the cost to equityholders from the interest payments, but they don’t measure the benefit to equityholders from the decline in the value of the firm’s real liabilities. Thus, in an inflationary environment, accounting earnings underestimate the true economic earnings of a firm. Since accounting earnings are used to calculate the price-earning (P/E) ratio, the more economic earnings are understated, the higher should be the P/E ratio.

Now, inflation distorts accounting earnings in other ways, and the tax system is not inflation-neutral. But when Richard Warr and I adjust for these other effects, we conclude that the net impact is that P/E ratios should be higher, not lower, in periods of high inflation. This is exactly the opposite of the empirical evidence.

I think that there is a complacency in the profession. If we have an empirical pattern that is difficult to reconcile with theory, we shy away from saying that the market gets it wrong. Instead, we search for other explanations or just ignore the inconvenient facts.

The Fed model is typically not discussed in textbooks. But it is frequently discussed in the financial press, and there is never any discussion of why the empirical relation is inconsistent with rational valuation. Adjusted for business cycle effects, the earnings yield on stocks is an estimate of the expected real return on stocks.¹ The earnings yield is not an estimate of the expected nominal return on stocks. For the earnings yield to move one-for-one with the nominal bond yield, as the Fed model would have it, one has to assume that the nominal yield on bonds equals the real return on stocks. This is why the empirical success of the Fed model is inconsistent with rational valuation.

V. The Limits to Arbitrage and Market Efficiency

Securities markets in the United States are very good at getting the little things right. It is incredibly difficult to find high-frequency arbitrage opportunities that persist. But in my opinion, the profession has made a serious error in jumping to the conclusion that if the market gets the little things right, it must get the big things right. Low-frequency events are not amenable to formal statistical tests. By definition, they don’t repeat themselves frequently. What makes it difficult to separate out overreactions that slowly correct themselves from rational time-variation in equilibrium expected returns is that the market gets overvalued when there are legitimate grounds for optimism, and undervalued when there are legitimate grounds for pessimism.

¹ Note that every textbook points out that the earnings yield on a stock is not the cost of equity capital for the firm, because earnings growth rates for firms vary all over the map. But the economy’s growth rate of earnings does not vary much over time, once one accounts for business cycle effects. So the “normalized” earnings yield on the market is a good estimate of the cost of equity capital, in real terms, for the market as a whole.
By low-frequency events, I am referring to things like the October 1987 stock market crash, the Japanese bubble of the 1980s, and the TMT (technology, media, and telecom) bubble of the late 1990s.

Market efficiency does not just mean the lack of arbitrage profits. Just because it is difficult to design and implement strategies that will reliably make positive risk-adjusted profits does not mean that large misvaluations are not common. As Shleifer and Vishny (1997) have pointed out, taking positions in misvalued securities is extremely risky. For instance, if one shorted overvalued Japanese stocks at the beginning of 1988, one would have lost substantial money over the next two years. An investor who did this might not have had any capital left when the bubble finally burst starting in January of 1990.

Similarly, money managers that bet against overvalued internet stocks in early 1999 suffered huge losses before the TMT bubble burst starting in March 2000. Few of these investors had any capital left in March 2000. As with the Japanese bubble, unless one had the foresight to avoid taking a position when the misvaluations were large, and wait until the misvaluations became very large, you would have been wiped out. Being right in the long run is no consolation if you have lost everything in the short run.

But I am hard-pressed to find a discussion along these lines in most textbooks. Instead, the evidence on high-frequency efficiency is typically fallaciously applied to assert that low-frequency inefficiencies won’t exist.

VI. Dividend Policy

The chapter on dividend policy should be called payout policy. There are two distinct issues— the form of payout, and the level of payout. In the days of M&M, these were pretty much one and the same. But since 1984, they have been very different. The typical textbook covers the Modigliani and Miller theorem, taxes, and signaling, and then at the end of the chapter adds a few paragraphs on share repurchases. Instead, I would suggest that the first half of the chapter should be devoted to what determines the level of cash payouts, and the second half should be devoted to the choice between share repurchases and dividends. The empirical evidence is that taxes are at best a second-order consideration in determining the form of payout. In particular, any tax-based model would predict that there should have been much more share repurchases prior to the 1986 tax reform act, because capital gains had been given preferential tax status. Shefrin and Statman’s 1984 *Journal of Financial Economics* article giving behavioral reasons for cash dividends is barely mentioned, if it is mentioned at all, in most textbooks.

I suspect that if most of us were writing a textbook from scratch today, the chapter on payout policy would look very different than the one that appears in textbooks. There is a strong path-dependency involved. Even if a textbook author wants to make a major change, most professors don’t want to have to revise their lecture notes.
VII. Lease Finance

Most textbooks cover leasing before they cover options. Many leases give the lessee the right to buy the item that they have leased at the end of the lease, at a fixed exercise price. This option is valuable. But most textbooks ignore it, because they haven’t covered option pricing theory yet.

Similarly, most textbooks cover issuing equity before options are covered. Many of these textbooks cover rights offerings in their chapter on issuing equity or raising capital. But because they haven’t covered options yet, they don’t note that a right is just a warrant. So they don’t give the correct formula for valuing a right that is not deep in the money.

The deferral of the options chapter until late in the book has other costs. In one prominent textbook (I won’t mention names, to protect the guilty), convertible bonds are covered before option pricing is covered. The gyrations that the textbook has to go through are funny, except that students don’t get the humor.

VIII. Conclusions

I’ve taken issue with the way we as a profession teach certain things, and the way that textbooks present them. These are some of my pet peeves. I’m sure that each of us could make up a list. But I have to concede that I find it a lot easier to criticize others than to do it right myself. I have no intention of writing a textbook. And even if I did, and got a lot of things right that other textbooks get wrong, I’m sure that I would introduce different mistakes.

About seven years ago I attended an NBER meeting where Michael Jensen was one of the speakers. Jensen received his Ph.D. from Chicago in 1968. I received my Ph.D. from Chicago in 1981, and by that time a number of Jensen’s articles were on the reading lists. At the NBER meeting, Jensen said that he had come to realize that most of what he learned in graduate school was wrong. Well, I feel that way, too. Twenty years from now, I expect that my former doctoral students will be saying that a lot of what they learned in graduate school was wrong. I just wish that I knew now which things that I’m teaching are wrong, rather than having to wait twenty years to find out.
References

ON COMPUTING MEAN RETURNS AND THE SMALL FIRM PREMIUM

Richard ROLL*

University of California, Los Angeles, CA 90024, USA

Received January 1983, final version received June 1983

The mean return computational method has a substantial effect on the estimated small firm premium. The buy-and-hold method, which best mimics actual investment experience, produces an estimated small-firm premium only one-half as large as the arithmetic and re-balanced methods which are often used in empirical studies. Similar biases can be expected in mean returns when securities are classified by any variable related to trading volume.

1. Introduction

There is a potentially serious problem in estimating expected return differences between small and large firms. Even with exactly the same sample observations, the method used to compute sample mean returns can have a substantial effect on the estimates.

With an arithmetic computational method, daily returns on individual stocks are averaged across both firms and days to obtain the mean daily return on an equally-weighted portfolio; then the portfolio’s mean daily return is compounded to obtain an estimate of the expected return over a longer interval. With a buy-and-hold method, individual stock returns are first obtained for the longer interval by linking together the daily individual returns; then an equally-weighted portfolio’s mean return is computed by averaging the longer-term (individual) returns.

Defining a ‘longer interval’ as one year, the arithmetic method produces an average annual return difference of 14.9 percent between AMEX and NYSE stocks1 over the 19 complete calendar years, 1963–1981 inclusive. The buy-and-hold method gives an annual return difference of only 7.45 percent. Assuming that annual returns are statistically independent, the arithmetic

*Comments and suggestions by Gordon Alexander, Kenneth French, Stephen Ross and the referee, Allan Kleidman, are gratefully acknowledged.

1The effect of smallness can be measured by the difference in returns of stock listed on the American Exchange (AMEX) and the New York Exchange (NYSE) because AMEX issues are, on average, much smaller than NYSE issues. Most of the results presented here are based on the AMEX–NYSE differential because it is convenient and easy to use. Some confirmatory results based directly on measured size will also be presented.
method's return differential had an associated t-statistic of 3.07 while the buy-and-hold method yielded a t-statistic of 1.53.

Speculation on possible causes of the small firm premium has occupied the attention of many finance theorists over the past few years; but perhaps this attention has been premature. If the estimated small firm premium can be cut in half simply by compounding individual returns before averaging them, some consideration should be given to whether the magnitude of the true premium is really all that large. The various explanations for the premium offered so far would become more plausible if the premium is actually smaller than has been previously reported.

This paper investigates why the mean return computational method can be such a significant choice in some empirical research. The reason seems to be that individual asset returns are not as well-behaved as we might like. Individual assets do not trade continuously and there are significant trading costs. In some empirical studies, the effect of these factors might be safely ignored; but when the object of investigation is related to trading volume (and thus to trading frequency and trading costs), there can be measurement problems. Firm size is related to trading volume and it is used as an example throughout the paper. Other variables related to size and to trading, such as dividend yield, price/earnings ratio, and beta, could also present similar empirical difficulties. Section 2 gives a brief theoretical discussion of mean return computational methods and section 3 presents details of the empirical results for small firm premia.

2. Compounding and the bias in mean return calculation

2.1. Formulae for computing mean returns

To elucidate the differences in mean return computation and explain why they might produce different results, consider a sample of N securities, each having returns observed for T periods. Let R_{it} be the value relative $(1+\text{return})$, of security i in period t. Suppose also that investment results are reviewed every τ periods. For example, if data were available daily but returns were to be reviewed every month, we would have $\tau = 21$ since there are usually about 21 trading days per month.

Two alternative methods of computing the mean equally-weighted return over the review period can be written algebraically as

\begin{equation}
R_{AR} = \left(\frac{1}{N \cdot \tau} \sum_{i} \sum_{t} R_{it} \right),
\end{equation}

\begin{equation}
R_{BH} = \frac{1}{N \cdot \tau} \sum_{t} \left[\prod_{i} R_{it} \right].
\end{equation}
where the subscripts 'AR' and 'BH' denote 'arithmetic' and 'buy-and-hold', respectively. These labels are intended to portray the sense of the computation method. The first method (1) is simply an arithmetic mean raised to the \(r \)th power while the second method gives the actual investment results an investor would achieve from buying equal dollar amounts of \(N \) securities and holding the shares for \(r \) periods.

There is also a third possible definition of mean return,

\[
R_{BB} = \prod \left[\frac{1}{N} \sum_{i=1}^{N} R_{it} \right]
\]

(3)

where the subscript 'RB' stands for 'rebalanced'. This would be the actual investment return (ignoring transactions costs) on a portfolio which begins with equal investments in the \(N \) securities and maintains equal investments by rebalancing at the end of each period, \(i = 1, \ldots, N \).

To compare results over different review periods, we must choose some typical and familiar calendar interval, say a year, and express the results as percentage returns over that common calendar interval. In the tables below, annualization is accomplished and reported for 'linked' returns; the review period returns within each calendar year are simply multiplied together (or linked) in order to obtain an annual return.² Linked annualization includes every daily observation in some review period during the year. This assures that in any comparison of the results across review periods, the observed differences are due to review period alone and cannot be ascribed to slightly different sample observations.

The next two subsections investigate some properties of these sample mean returns. Subsection 2.2 derives their expected values under the assumption of temporally independent individual asset returns. Subsection 2.3 then examines the effect of contemporaneous dependence.

²The exact formulae for linked returns can be written as follows. Let \(R_{y,t} \) denote the mean annualized linked return for year \(y (y = 1, \ldots, Y) \) using a review period whose length is \(t \) trading days and using method \(m = \text{BH, AR, RB} \), to compute the review period returns. Then,

\[
R_{\text{AR}}(y,t) = \prod_{j=1}^{t} \left[\frac{1}{N} \sum_{i=1}^{N} \prod_{j=i+1}^{N} \left(R_{it} \right) \right]
\]

\[
R_{\text{BH}}(y,t) = \prod_{j=1}^{t} \left[\frac{1}{N} \sum_{i=1}^{N} \sum_{j=i+1}^{N} R_{it} \right]
\]

\[
R_{\text{RB}}(y,t) = \prod_{j=1}^{t} \left[\frac{1}{N} \sum_{i=1}^{N} R_{it} \right]
\]

where \(k_{y,t} = T(Y,y) \) is the number of review periods per year and \(T \) is the total number of trading days in the entire sample. When returns are reviewed in natural calendar intervals such as months, the review period cannot be a fixed number of trading days and thus \(t \) in the formulae above varies slightly with the actual number of trading days.
2.2. Sample mean return biases with temporal independence

Following Blume (1974), assume that each individual asset return is drawn from a stationary distribution with temporally independent disturbances; that is,

\[\bar{R}_{it} = \mu_i + \tilde{\epsilon}_{it}, \quad \forall i, \]

with \(E(\tilde{\epsilon}_{it}) = \mu_i \), a constant for all \(t \), and where the unexpected return, \(\tilde{\epsilon}_{it} \), satisfies \(\text{cov}(\tilde{\epsilon}_{it}, \tilde{\epsilon}_{i, t-j}) = 0 \) for \(j \neq 0 \).

The expected value of the arithmetic mean (1) can be expressed as

\[E(R_{AR}) = E \left[\left(\frac{1}{N} \sum_{t} \mu_i + \tilde{\epsilon} \right) \right], \quad (5) \]

where

\[\tilde{\epsilon} = \frac{1}{N \cdot T} \sum_{t} \sum_{i} \tilde{\epsilon}_{it} \]

is the average disturbance on the equally-weighted portfolio over the sample review period \(T \).

The expected value of the buy-and-hold mean (2) is

\[E(R_{BH}) = \frac{1}{N} \sum_{t} \left[E \prod_{i} (\mu_i + \tilde{\epsilon}_{it}) \right] = \frac{1}{N} \sum_{t} \langle \mu_i \rangle. \]

(6)

This follows since the expectation can be taken inside the product with independent returns and since \(E(\tilde{\epsilon}) = 0 \), by definition.

The rebalancing method (3) produces a mean return whose expectation is

\[E(R_{RB}) = \prod_{i} \left(\frac{1}{N} \sum_{t} \mu_i \right) \left(\frac{1}{N} \sum_{t} \mu_i \right)^{-1}, \]

(7)

where, again, the expectation can be taken inside the product because of time independence.

Expressions (5), (6) and (7) imply that the three different mean return definitions do not produce the same results. By Jensen's inequality,

\[E(R_{AR}) \geq E(R_{BH}), \]

Jensen's inequality for a random variable \(x \) and a convex function \(f(x) \) is \(E[f(x)] \geq f(E[x]) \). Let \(\bar{x} = (1/N) \sum \mu_i + \tilde{\epsilon} \) then \(f(\bar{x}) = \bar{x}^2 \) is convex since \(\tau > 1 \). \(E(R_{AR}) \geq E(R_{RB}) \) follows immediately from (5) and (7) since \(E(\tilde{\epsilon}) = 0 \).
with strict inequality if \(\text{var}(\bar{h}) > 0 \), and
\[
E(\bar{R}_{\text{BH}}) \geq E(\bar{R}_{\text{AH}}),
\]
with strict inequality if \(N > 1 \) and at least two assets have different returns. Since we generally have some randomness \(\text{var}(\bar{h}) > 0 \), and many securities, \((N > 1) \), the rebalanced method generally should produce lower mean returns than either the arithmetic or the buy-and-hold method, provided that returns are temporally independent.

The relation between the buy-and-hold and arithmetic means is more complex; and, indeed, neither is invariably smaller than the other. The larger the cross-sectional dispersion of individual expected returns, the larger \(E(\bar{R}_{\text{BH}}) \) relative to \(E(\bar{R}_{\text{AH}}) \). But there is an offsetting influence: the larger the intertemporal dispersion of unexpected returns \((\bar{h}) \), the larger \(E(\bar{R}_{\text{AH}}) \) relative to \(E(\bar{R}_{\text{BH}}) \). Their relation in a given sample depends, therefore, on the characteristics of the underlying individual returns.

2.3. Time series dependence and its effect on estimated expected returns

The effect of serial dependence is seen most easily by examining expected mean returns when the review period is doubled, say from daily to bi-daily or from bi-weekly to monthly. Assume first that returns are collected for the shorter review period and then let \(\tau = 2 \) (a doubling of the period). Over the doubled review period, the three mean returns are
\[
\bar{R}_{\text{AR}} = \left[\frac{1}{N} \sum_{i=1}^{N} \left(\mu_i + \frac{\epsilon_{i1} + \epsilon_{i2}}{2} \right) \right]^2.
\]

\[\text{Footnote 4:} \text{Define } f(\mu_i) = \mu_i, \text{ a convex function for } \tau > 1. \text{ With } 1/N \text{ used as a (pseudo) probability, } E(\bar{R}_{\text{BH}}) \geq E(\bar{R}_{\text{AH}}) \text{ follows immediately from (6) and (7). (Cf. footnote 3.) Strict inequality holds if at least two } \mu_i \text{'s are different. [This result was noted by Cheng and Deuts in (1971).]} \]

The inequality above grows with the cross-sectional dispersion in \(\mu_i \), ceteris paribus. To prove this, expand \(\bar{\mu} \) in a Taylor series about \(\bar{\mu} = (1/N) \sum \mu_i \); the second-order term is a positive function of the cross-sectional variance in \(\mu_i \). If \(\mu_i \) were cross-sectionally normally distributed, the variance alone would determine the size of the inequality.

\[\text{Footnote 5:} \text{This can be confirmed by using a Taylor series expansion of } E(\bar{R}_{\text{AH}}). \text{ Define } \tilde{\mu} = (1/N) \sum \mu_i; \text{ then } E(\bar{R}_{\text{AH}}) = \tilde{\mu}^2 E \left[1 + \frac{R^2}{2} (\tau - 1) \mu^{-1} + \frac{R^2}{3!} (\tau - 1)(\tau - 2) \mu^{-3} + \ldots + R \mu^{-\tau} \right]. \]

Jensen's inequality (see footnote 4 above), implies that \(E(\bar{R}_{\text{BH}}) > \mu^2 \) with the inequality being larger the larger the cross-sectional variance in \(\mu_i \). But the term in brackets just above shows that \(E(\bar{R}_{\text{AH}}) \) increases with the higher moments of \(\bar{h} \) (since \(\mu \) is strictly positive). For example, the second term in brackets involves the variance of \(\bar{h} \). Conceivably, this term could more than offset the cross-sectional variance in \(\mu_i \). If the unexpected arithmetic portfolio return \(\bar{h} \) happens to be normally-distributed, the expression above simplifies to \(E(\bar{R}_{\text{AH}}) = \mu^2 (1 + k \cdot \text{var}(\bar{h})) \) with the constant \(k > 0 \). In this case, there is a simple and direct tradeoff between the cross-sectional variance in expected return, \(\mu_i \), and the variance of the unexpected portfolio return, \(\bar{h} \).
\[R_{BH} = \frac{1}{N} \sum_i \left[(\mu_i + \varepsilon_{i1}) (\mu_i + \varepsilon_{i2}) \right], \]

where \(R_{it} = \mu_i + \varepsilon_{it} \) is the observed return on individual stock \(i \) (\(i = 1, \ldots, N \)) in period \(t \), and \(\mu_i \) is \(i \)'s single-period (i.e., shorter review period) expected return.

For notational convenience, define the cross-sectional averages

\[\bar{\mu} = \frac{1}{N} \sum \mu_i \quad \text{and} \quad \bar{\varepsilon}_i = \frac{1}{N} \sum \varepsilon_{it}. \]

Then the three mean returns have expected values,

\[\mathbb{E}(\bar{R}_{AR}) = \bar{\mu}^2 + \frac{1}{2} (\sigma_{x_1}^2 + \sigma_{y_1, y_2}), \]

\[\mathbb{E}(\bar{R}_{BH}) = \frac{1}{N} \sum \mu_i^2 + \frac{1}{N} \sum \sigma_{x_i, y_2}, \]

\[\mathbb{E}(\bar{R}_{RB}) = \bar{\mu}^2 + \sigma_{x_1, y_2}, \]

where \(\sigma_{x_2}^2 \) is the variance of \(x \) and \(\sigma_{x_1, y_2} \) is the covariance of \(x \) and \(y \).

Even with serial dependence, the expected arithmetic mean still exceeds the expected rebalanced mean in all circumstances since,

\[\mathbb{E}(\bar{R}_{AR} - \bar{R}_{RB}) = \frac{1}{2} (\sigma_{x_1}^2 - \sigma_{y_1, y_2}) > 0. \]

Comparing the buy-and-hold means and the rebalanced means, we have

\[\mathbb{E}(\bar{R}_{BH} - \bar{R}_{RB}) = \sigma_{x_1}^2 + \left(\frac{1}{N} \sum \sigma_{x_i, y_2} - \sigma_{x_1, y_2} \right). \]

With no serial dependence in the \(\varepsilon \)'s, the term in parentheses is zero and the BH mean would exceed the RB mean by the cross-sectional variance in expected individual returns.

However, with negative serial dependence in unexpected individual returns (\(\varepsilon_{i1} \) and \(\varepsilon_{i2} \)) or positive dependence in portfolio returns (\(\varepsilon_1 \) and \(\varepsilon_2 \)), the rebalanced mean would become larger; enough such dependence could conceivably render it larger than the buy-and-hold mean. Since the expected arithmetic mean exceeds the expected rebalanced mean, it too could be larger than the BH mean with enough serial dependence of the right type.
There is some reason to anticipate just this type of serial dependence because of the intertemporal characteristics of individual returns. Scholes and Williams (1977, pp. 313–314) explain that because of non-synchronous trading individual assets display first-order negative serial dependence while diversified portfolios display positive dependence. A difference in the sign of serial dependence between individual assets and portfolios is relevant here because buy-and-hold (BH) means are mainly affected by individual asset serial dependence [see (12)], while the arithmetic (AR) and rebalanced (RB) means are affected by portfolio serial dependence [see (11) and (13)]. The Scholes/Williams explanation implies that BH means would tend to fall as review period lengths while the AR and RB means would tend to rise.

There is also negative serial dependence induced in very short-term returns because of the institutional arrangement of trading. Neiderhoffer and Osborne (1966) pointed out that negative serial dependence should be anticipated when a market maker is involved in most transactions (because successive transactions are conducted at either the bid or the asked price).⁶

First-order negative serial dependence in individual returns has the effect of widening the disparity between the buy-and-hold mean and the arithmetic and rebalanced means as the review period lengthens. This follows from the fact that a doubling of the review period introduces serial covariance terms in addition to those already present. However, the marginal effect of lengthening the review period should probably diminish as the review period becomes longer; the effect on measured mean return should be greater when changing from, say, a daily to a weekly review period than from a monthly to an annual period. The exact impact of serial dependence can, of course, only be determined empirically and we now turn to an examination of the data.

3. The empirical small firm premium

3.1. Results

In the previous section, we found that the computational formula for sample mean returns can affect the estimated expected return. The buy-and-hold (BH) mean (2) gives an unbiased estimate of the holding period return on a realistic portfolio. The rebalanced (RB) mean (3), gives an unbiased estimate of return for its strategy but it is not realistic if the period is short since rebalancing is so costly. Except under a fortuitous combination of circumstances, the arithmetic (AR) mean (3) gives a biased estimate of both the rebalanced and the buy-and-hold investment returns.

⁶A paper by Blume and Stambaugh (1983), which came to my attention after the first version of this paper was written, investigates this explanation for serial dependence in detail. They find empirical results very similar to those reported here. See also Cohen et al. (1979).
Although the arithmetic and rebalanced methods of calculating the mean return probably do not portray realistic investment experience, the small-firm premium is calculated as the difference between the two mean returns and one might hope that the improper portrayal in these methods would cancel. Unfortunately, this is not likely for several reasons. The intertemporal variance in the portfolio disturbance, \(h_i \), and the cross-sectional variance in individual security expected returns, \(\mu_i \), will not be the same in samples of large and small firms. The disturbance, \(h_i \), will almost certainly have a larger variance for portfolios of small firms while the cross-sectional variances of \(\mu_i \) within large- and small-firm portfolios could conceivably differ in either direction. Furthermore, serial dependence has an effect which is stronger for stocks with lower trading volumes and thus with less synchronous trading and with larger bid/ask spreads.

Empirical evidence is reported in table 1. Small Firm Premia (AMEX-NYSE) are given for the 19 complete calendar years, 1963–1981, according to the method of computation and the ‘review’ period. As explained earlier, the ‘review’ period refers to the rebalancing interval for buy-and-hold returns. For example, with a monthly review period, an equal allocation is made to stocks listed on the first day of the month and the original positions are held until the end of the month. This is repeated for each calendar month of the sample. The daily rebalancing method uses the same available returns, but it re-initializes equal positions every day during the month. The arithmetic method simply averages the same available returns during the month.

In order to compare results across the different review periods, returns are annualized by linking together the review period returns obtained during the calendar year.7 Thus, there are 19 annual observations (one for each calendar year, 1963–81), regardless of the review period.8 Means and \(t \)-statistics are calculated from the 19 annual return differences between exchanges. \(t \)-

7See footnote 2 for exact computational formulae.
8Daily and bi-daily returns are over trading day intervals, while weekly and longer returns use actual calendar intervals. In the weekly case, the first week of the year ends on the same day of the week as the last trading day of the previous year, say Thursday for a given year. Then weekly returns are computed from Thursday to Thursday during that year. If the year does not terminate on a Thursday trading day, the last ‘weekly’ return of the year is over the remaining fraction of a calendar week. This method of year-end padding was used to ensure that every daily return during a year was included, regardless of the review period. Only the bi-daily, weekly, and bi-weekly returns are subject to such padding because the other intervals are evenly divisible into years.

Weekly returns are not always for five trading day intervals. During 1968, the exchanges were closed on Wednesdays for part of the year so that a week was composed of only four trading days. Holidays are also a problem for weekly returns; if the calendar week ended on a holiday, the return was computed through the next trading day. Then the subsequent week’s return covered four trading days. Bi-weekly returns were treated identically to weekly returns with respect to year-end padding, holidays, and exchange closings.

<table>
<thead>
<tr>
<th>Review period</th>
<th>Return computation method</th>
<th>AMEX-NYSE mean return differential (% per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(number of review periods in sample)</td>
<td>Buy-and-hold (BH)</td>
<td>Arithmetic (AR)</td>
</tr>
<tr>
<td>Daily (4767)</td>
<td>14.9</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>(3.16)</td>
<td>(3.16)</td>
</tr>
<tr>
<td></td>
<td>[7.76]</td>
<td>[7.76]</td>
</tr>
<tr>
<td>Bi-daily (2388)</td>
<td>12.3</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>(2.64)</td>
<td>(3.16)</td>
</tr>
<tr>
<td></td>
<td>[5.59]</td>
<td>[7.06]</td>
</tr>
<tr>
<td>Weekly (992)</td>
<td>9.81</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>(2.16)</td>
<td>(3.15)</td>
</tr>
<tr>
<td></td>
<td>[3.35]</td>
<td>[5.64]</td>
</tr>
<tr>
<td>Bi-weekly (498)</td>
<td>8.27</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>(1.84)</td>
<td>(3.14)</td>
</tr>
<tr>
<td></td>
<td>[2.46]</td>
<td>[3.09]</td>
</tr>
<tr>
<td>Monthly (228)</td>
<td>7.06</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>(1.58)</td>
<td>(3.14)</td>
</tr>
<tr>
<td></td>
<td>[1.82]</td>
<td>[4.40]</td>
</tr>
<tr>
<td>Quarterly (76)</td>
<td>6.42</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>(1.43)</td>
<td>(3.15)</td>
</tr>
<tr>
<td></td>
<td>[1.67]</td>
<td>[3.88]</td>
</tr>
<tr>
<td>Annual (19)</td>
<td>7.45</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>(1.53)</td>
<td>(3.10)</td>
</tr>
<tr>
<td></td>
<td>[1.53]</td>
<td>[3.10]</td>
</tr>
</tbody>
</table>

For the daily and bi-daily cases, one- and two-trading-day intervals were used respectively. For all other cases, actual calendar intervals were used. In the weekly and bi-weekly cases, a residual interval was necessary to fill out each calendar year. All returns were compounded to an annual base by linking successive observations within each year (see footnote 2 of the text).

The computation method follows expressions (1), (2) and (3) of the text. For interested readers, the author will gladly supply a mimeographed sheet containing details on the treatment of delistings and listing securities. The main feature of the treatment of new listings and delistings was to assure that all three mean return methods employed exactly the same sample observations.

\(t\)-statistics based on the 19 annual (linked) observations are in parentheses; \(t\)-statistics based on the review period returns as independent observations are given in brackets. To understand the difference in the two reported \(t\)-statistics, consider the example of the daily review period of which there are 4767 in the sample. The \(t\)-statistic in brackets is calculated from these 4767 (daily) observations (mean daily return divided by standard error of mean daily return). The \(t\)-statistic in brackets is calculated from 19 annual observations; each annual observation having been calculated by linking together approximately 250 (4767/19) daily observations observed during that year. In calculating the review-period-based \(t\)-statistics for the weekly and bi-weekly cases, ten days were omitted; these ten days were the reminders of partial weeks at year end. It turned out that in 10 years of the 19, the year was exactly 52 weeks plus one trading day long. An earlier version of the paper, available on request, details the effect of omitting these single-day partial weeks. N.B. This is an issue only for the bracketed \(t\)-statistics. The linked annual returns include every sample day.
statistics are also given based on review period returns taken as independent observations.\(^9\)

The results most like actual investment experience are those in the first column, buy-and-hold returns. Most actual portfolios pursue a buy-and-hold strategy within a given review period with only minor modifications induced by new information about particular individual issues. The results are frequently expressed on an annual percentage basis by comparing wealth levels at the ends of successive years, i.e., after linking sub-year results.

The review period seems to have little effect on the AR and RB means. The annual average difference in returns between AMEX and NYSE issues is about fifteen percent. But for the BH means, the review period has a large impact. Monthly and longer review periods give an AMEX-NYSE return differential of only around seven percent (and the t-statistic does not indicate an overwhelming probability that the differential is even positive). The drop in the BH mean with lengthening review period is statistically significant and so is the difference between the BH and the other means.\(^10\)

\(^9\)Note that the t-statistics in these tables are based on the assumption that the annual returns (t-statistics in parentheses) and review period returns (t-statistics in brackets) are temporally independent. The results indicate that the AR and RB returns are, in fact, close to independent while there is negative serial dependence in the BH returns. This implies that the t-statistics for the BH means are actually understated.

\(^10\)A statistical test of the significance of the review period can be conducted by considering each year’s mean difference, AMEX-NYSE, as an independent observation. Let \(D_{m,r}\) be the difference for year \(r\), review period \(r\), and the method \(m\) (BH, AR, RB). Then the time series mean of \(D_{m,r} - D_{m,s}\) (\(r \neq s\)) can be tested for significance under the presumption that the years constitute independent observations. t-statistics for the AR and RB means, for all combinations of \(r\) and \(s\), never indicated significance. Of the 42 combinations (3 for each mean AR and RB) none exceeded 2.0, five exceeded 1.5, and 28 were less than 1.0. In contrast, the t-statistics for the BH mean comparisons across review periods are given below:

<table>
<thead>
<tr>
<th>Review period (r)</th>
<th>Daily</th>
<th>Bi-daily</th>
<th>Weekly</th>
<th>Bi-weekly</th>
<th>Monthly</th>
<th>Quarterly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-daily</td>
<td>6.21</td>
<td>6.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekly</td>
<td>6.75</td>
<td>6.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-weekly</td>
<td>7.67</td>
<td>8.37</td>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly</td>
<td>8.11</td>
<td>8.89</td>
<td>11.3</td>
<td>9.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarterly</td>
<td>8.10</td>
<td>7.68</td>
<td>8.65</td>
<td>6.49</td>
<td>3.27</td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>5.08</td>
<td>4.42</td>
<td>2.81</td>
<td>1.04</td>
<td>-0.532</td>
<td>-1.67</td>
</tr>
</tbody>
</table>

All BH means are significantly different across-review periods except the annual mean versus the bi-weekly, monthly and quarterly means. Note that these table entries are not statistically independent of one another (they were all calculated from the same underlying data).

A similar procedure can be employed to test the statistical significance of mean computational method. The difference \(D_{m,r} - D_{m,s}\) (\(m = m'\)) forms another time series across years. Based on 19 annual observations, t-statistics for the significance of this difference from zero are as follows:
Given that the BH results in table 1 are most likely to portray actual investment experience, we now turn to the interesting econometric question: What explains the observed pattern of means? To aid in answering this question, the mean returns for each exchange are presented separately in table 2. Notice that the pattern is not predicted by the expected values of the mean returns derived in section 2.2 under the assumption of temporally independent returns. With serial independence, the BH expected mean should be greater than the RB expected mean. The empirical results in table 2 show, however, that serial dependence must be present since \(R_{BH} \) falls below \(R_{RB} \) as the review period lengths.

The arithmetic (AR) mean is larger than the rebalanced (RB) mean as was expected with or without serial dependence. However, these two means are very close and this suggests that serial dependence in portfolio returns is not much of an influence [cf. eq. (14)]. Indeed, the strikingly different behavior of the BH means from the other two means indicates that negative serial dependence in individual securities is the dominant influence on the results.

In order to be certain that the AMEX–NYSE comparison measures the small firm effect properly, table 3 is presented. It contains results for the annual review period and for portfolios classified directly by size. Firm size was calculated as market capitalization (market price times number shares), at the end of each year, 1962–1980. Firms were assigned to fractiles based on market capitalization and their returns were calculated for the following year according to three mean return methods, BH, AR, and RB.

Not surprisingly, the results are consistent with the AMEX corresponding to lower size quintiles and the NYSE to higher quintiles. The overall implication is identical: viz., the estimated small firm premium is much smaller and less significant when mean returns are computed with the buy-

<table>
<thead>
<tr>
<th>Review period</th>
<th>(m = \text{AR}, m' = \text{BH})</th>
<th>(m = \text{RB}, m' = \text{BH})</th>
<th>(m = \text{AR}, m' = \text{RB})</th>
<th>t-statistic for difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-daily</td>
<td>6.82</td>
<td>6.70</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>Weekly</td>
<td>7.33</td>
<td>6.80</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>Bi-weekly</td>
<td>8.14</td>
<td>7.59</td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>Monthly</td>
<td>8.44</td>
<td>7.90</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>Quarterly</td>
<td>8.21</td>
<td>7.69</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>5.85</td>
<td>5.48</td>
<td>3.16</td>
<td></td>
</tr>
</tbody>
</table>

No statistic was computed in the daily case because all three means are identical by construction in that case. Notice that the BH means are significantly smaller than the other two means for all review periods.

Although the difference between the AR and RB small firm premium is very small (cf. table 1), the AR mean premium is always larger and is significantly larger for monthly, quarterly and annual review periods. This is predicted by eq. (14); the AR mean grows with review period relative to the RB mean.
and-hold method than when means are computed with the AR and RB methods.

3.2. Implications for previous research and for the 'risk-adjusted' small firm premium

The implications of these findings for previously-published estimates of the small firm premium are: if the basic data were very short-term and arithmetic or rebalanced means were used, the estimated premium overstates the reward investors can expect from a buy-and-hold position in small firms. Papers by Reinganum (1981a, b, 1982) and Roll (1981) used daily data and arithmetic mean returns. Reinganum's (1982) paper gives monthly and quarterly returns but these were computed with the daily rebalancing method since the author states that “… these holding period returns are created by compounding the daily portfolio returns” (p. 34, emphasis added).
Table 3
Mean returns and small firm premia for portfolios classified by size* at year-end, 1963–1981, annual review period.

<table>
<thead>
<tr>
<th>Size quintile</th>
<th>Return computation method</th>
<th>Mean return (% per annum)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buy-and-hold (BH)</td>
<td>Arithmetic (AR)</td>
</tr>
<tr>
<td>Smallest</td>
<td>27.9 (2.42)</td>
<td>46.0 (3.68)</td>
</tr>
<tr>
<td>2</td>
<td>21.1 (2.51)</td>
<td>27.6 (3.15)</td>
</tr>
<tr>
<td>3</td>
<td>17.1 (2.41)</td>
<td>20.7 (2.86)</td>
</tr>
<tr>
<td>4</td>
<td>14.6 (2.53)</td>
<td>16.9 (2.89)</td>
</tr>
<tr>
<td>Largest</td>
<td>10.8 (2.50)</td>
<td>12.2 (2.85)</td>
</tr>
</tbody>
</table>

Small firm premium, smallest–largest quintile (% per annum)

| | 17.4 (1.88) | 33.9 (3.47) | 33.4 (3.46) |

Small firm premium, smallest–largest decile (% per annum)

| | 22.8 (2.07) | 49.1 (3.84) | 48.3 (3.83) |

*Firms are included in the kth size fractile if the closing price times the number of outstanding shares is ranked in that fractile among all listed AMEX and NYSE firms.

b The computation method follows expressions (1), (2) and (3) of the text. An unpublished appendix (available from the author) contains details on the treatment of listing and delisting.

*t-statistics based on 19 annual observations are in parentheses.

Papers with monthly returns are apparently much less subject to mean return estimation problems. Tables 1 and 2 show that there is little additional discrepancy between the BH and other means in going from monthly to annual data. The well-known paper by Banz (1981) used monthly data as did earlier papers on the closely-related stock price effect [Blume and Husic (1973), Bachrach and Galai (1979)]. Thus, it seems unlikely that the results presented in those papers will be much affected by the problem investigated here. In a more recent paper, Reinganum, (1983) used the buy-and-hold method and found results close to those reported above. Reinganum did not, however, contrast the buy-and-hold with other mean returns.
It is important to ascertain whether the risk-adjusted small firm premium is attributable solely to econometric problems. Is underestimation of risk for small firms [Roll (1981), Reinganum (1982)], combined with overestimation of expected returns, sufficient to induce the observed risk-adjusted premium; or is the premium really evidence of a misspecified capital asset pricing model (CAPM), perhaps because of omitted factors in the single index CAPM?

This is tantamount to asking whether the implicit CAPM market risk premium \(\hat{\rho} (= \frac{\hat{\rho}_m - \hat{\rho}_b}{\hat{\beta}_m - \hat{\beta}_b}) \), is in a reasonable range. \(\hat{\rho} \) was computed by Reinganum (1983) as 37.5 percent per annum using (a) buy-and-hold means on the smallest and largest deciles of NYSE and AMEX stocks, (b) Dimson’s (1979) aggregated coefficient betas, (c) the value-weighted C.R.S.P. index and (d) daily data for 1963–1980. The return on the value-weighted index during this period was only about 9.5 percent, so \(\hat{\rho} \) is grossly too large, thereby indicating a substantial risk-adjusted small firm premium.

The main problem with such a test was described some time ago [Roll (1977)]. Even if we make the dubious assumption that the value-weighted C.R.S.P. index is ex-ante mean/variance efficient, there is no necessity in the generalized Black (1972) C.A.P.M. that \(\hat{\rho}(\hat{\rho}) = \frac{\hat{\rho}_m - \hat{\rho}_b}{\hat{\beta}_m - \hat{\beta}_b} \). Instead, the model requires that \(\hat{\rho}(\hat{\rho}) = \frac{\hat{\rho}_m - \hat{\rho}_b}{\hat{\beta}_m - \hat{\beta}_b} \) where \(Z \) is \(M \)'s ‘zero-beta’ portfolio. Depending upon \(M \)'s position on the efficient frontier, \(\hat{\rho}(\hat{\rho}) \) can be negative and large.

To illustrate the difference in inferences that can be obtained with a different index, I recomputed \(\hat{\rho} \) using (a) buy-and-hold annual means on the smallest and largest deciles of NYSE and AMEX stocks, (b) simple OLS beta coefficients estimated from annual returns, (c) the equally-weighted C.R.S.P. index, and (d) annual data for 1963–1981.

The beta estimates \((t\text{-statistics}) \) were \(\hat{\beta}_{\text{small}} = 1.78 \) (5.59), \(\hat{\beta}_{\text{large}} = 0.598 \) (8.60). Using the estimated premium \(\hat{\rho} = \frac{\hat{\rho}_m - \hat{\rho}_b}{\hat{\beta}_m - \hat{\beta}_b} = 22.8\% \) from table 3, we have \(\hat{\rho} = 19.3 \) percent. The actual ex post return on this market index was 15.3 percent, so \(\hat{\rho} \) is still somewhat too high (thus indicating a risk-adjusted small firm premium). Nevertheless, the discrepancy between \(\hat{\rho} \) of 19.3 and a market return of 15.3 is much less aberrant than the difference Reinganum (1983) reports between \(\hat{\rho} = 37.5 \) and \(\hat{\rho}_b = 9.5 \) percent.

It still seems that investigation of the observed small firm premium in the context of a more general asset pricing model would be a worthwhile endeavor; but estimation problems in expected returns and in simple risk parameters can explain much of the apparent anomaly.

\[11\] Instead of the Dimson aggregated coefficient betas, I used betas from annual data because of the now well-documented annual seasonal [Keim (1983), Roll (1983)], which has the potential to induce biases into any betas, including the Dimson type, when they are computed from non-yearly data.
5. Conclusion

Computing mean returns in order to estimate investment experience is not as easy as it sounds. Common stock data have serial dependence which, though seemingly slight, substantially affects the estimates obtained under alternate mean return computational methods. Investment experience is best portrayed by buy-and-hold portfolio returns but scholars often use arithmetic or rebalanced portfolio returns because they are easier to compute.

Perhaps this makes little difference for some studies; but if serial dependence differs systematically with the item being investigated, the computational method can be quite material.

For the small firm premium, as measured by the difference in mean returns of American Exchange and New York Exchange listed stocks, the buy-and-hold mean return difference is only about 7 1/2 percent per annum (for 1963–81) while the rebalanced and arithmetic methods produce annual return differences with the same stocks and time periods of over 14 percent. The annual difference in returns between the smallest and largest size quintiles (deciles) is about 34 (49.5) percent using the rebalanced and arithmetic methods and about 17 (22.8) percent using the buy-and-hold method.

The annual small-firm premium is only marginally significant at usual significance levels if mean returns are measured with the buy-and-hold method.

References

Dinsson, Elioy, 1979, Risk measurement when shares are subject to infrequent trading, Journal of Financial Economics 7, June, 197–226.

Predicting Long-term Earnings Growth:
Comparisons of Expected Return Models,
Submartingales and Value Line Analysts

M. S. ROZEFF
University of Iowa, Iowa City, Iowa, U.S.A.

ABSTRACT
This paper derives four–five year predictions of growth rates of accounting
earnings per share implicit in four expected return models commonly used in
financial research. A comparison of such growth rates with those produced
and reported by Value Line analysts and those generated by a submartingale
model revealed the following: two expected return models—the Sharpe–
Lintner–Mossin model and the Black model—were significantly more
accurate than the submartingale model, though not significantly more
accurate than the other return models. However, the growth rate forecasts
provided by Value Line significantly outperformed all the other models
tested—none of which relied on the direct input of a security analyst.

KEY WORDS Forecasting Earnings growth Comparisons Empirical study
Analysts Value Line

An extensive body of literature evaluates the short-run (less than 15 months) earnings forecasts of
security analysts and time-series models. The importance of this subject to accounting and
finance is that a variety of applications such as firm valuation, cost of capital, and event studies
require the measurement of earnings expectations. However, except for a recent paper by Moyer et
al. (1983), little work has been done to this point in studying long-run earnings forecasts.
Moreover, a potential source of earnings forecasts—expected return models—has been
overlooked.

This paper evaluates the accuracy of long-term forecasts of growth rates of annual earnings per
share. Six sources of forecasts are used: a submartingale model, the Value Line Investment Survey,
and four expected return models. Each expected return model is combined with the
Gordon–Shapiro constant growth model. Further, certain expected return models use the beta
coefficient and, as such, lend insight into the usefulness of beta in a forecasting context.

The paper comprises three sections. Section 1 describes the six forecasting sources and states the

1 See Cragg and Malkiel (1968), Elton and Gruber (1972), Barefield and Comiskey (1975), Brown and Rozeff (1978), Abdel-
khalik and Thompson (1977–78), Cricfield et al. (1978), Givoly and Lakonishok (1979), Collins and Hopwood (1980),
Jaggi (1980), Elton et al. (1981), Hopwood et al. (1981), Fried and Givoly (1982) and Imhoff and Pare (1982) for studies of
analyst forecasts and time-series models. See Ball and Watts (1972), Brooks and Buckmaster (1976), Albrecht et al. (1977),
Watts and Leftwich (1977), Foster (1977), Griffin (1977), Brown and Rozeff (1979), Lorek (1979), Hopwood and McKeown
hypotheses. Tests of the hypotheses are presented in Section 2. Section 3 offers tentative conclusions.

1. FORECASTING SOURCES AND HYPOTHESES

This section (1) describes how six sets of growth rate forecasts of earnings per share are derived and (2) discusses the formal hypotheses to be tested.

Submartingale model
Evidence that measured annual accounting income is a submartingale or some similar process can be found in Ball and Watts (1972), Albrecht et al. (1977), and Watts and Leftwich (1977). Although measured (reported) annual earnings per share may not be precisely a submartingale, a submartingale process is included because of its appearance in numerous studies as a benchmark forecasting technique. Another reason for including the submartingale model is to compare its forecasts to those reported in the Value Line Investment Survey. Such comparisons have been done for forecasts of three to fifteen months (Brown and Rozeff, 1978) but not forecasts of four to five years.

The submartingale model (SUB), as used here, estimates the expected annual growth rate of accounting earnings per share as the average compound annual rate of growth of earnings per share of the ten-year period preceding the test period. These historical growth data are obtained from various issues of the Value Line Investment Survey.

Value Line forecasts
The Value Line Investment Survey (VL) contains forecasts of earnings per share made by the Value Line security analysts for time periods four to five years into the future. After adjustment for capital changes, these forecasts, in conjunction with actual earnings per share in the base period, are converted to VL forecasts of a compound annual growth rate for each firm in the sample.

The importance of testing analyst forecasts is explained by Brown and Rozeff (1978). They argue that since analyst forecasts are purchased in a free market they are likely to be informed forecasts with a marginal value exceeding that of less costly forecast alternatives. According to this reasoning, the VL forecasts should be more accurate than the SUB forecasts and those derived from the expected return models (stated next).

Expected return model forecasts
A technique that has not previously been exploited to obtain earnings forecasts is to use expected stock rate of return models in conjunction with the Gordon-Shapiro (1956) constant growth model. This subsection shows how to extract earnings per share growth rate forecasts from these models. First, the four expected stock rate of return models are explained. Secondly, the paper proceeds to show how growth rate forecasts are obtained.

Four expected return models
The four models of how the market sets expected rates of return on securities are:

1. the comparison returns (CMR) model (Masulis, 1980; Brown and Warner, 1980).
2. the market adjusted returns (MAR) model (Latane and Jones, 1979; Brown and Warner, 1980).
3. the Sharpe-Lintner-Mossin (SLM) model (Sharpe, 1964; Lintner, 1965; Mossin, 1966).
4. the Black (BLK) model (Black, 1972).

\(^2\) For example, Ball and Watts (1972, p. 680) conclude: 'Consequently, our conclusion...is that income can be characterized on average as a submartingale or some similar process.'
The CMR model assumes that the expected return on stock i at time T ($E(R_{iT})$) is an expectation that is specific to each security. However, a risk parameter such as the beta coefficient is not explicitly included in the expected return calculation. Instead, the expected stock return at time T is measured as the arithmetic mean of the realized returns of the stock in a prior period. To the extent that individual means of stock return distributions differ as a reflection of risk differences, the CMR model allows for individual differences in risk. This model (see Masulis, 1980) has been tested by Brown and Warner (1980) who found that it compared favourably with alternative expected return models in detecting abnormal performance.

The MAR model states that the expected return on stock i at time T equals the expected return on the market (denoted $E(R_{MT})$), which is the same for all stocks. As for the CMR model, no beta coefficient is used in calculating expected returns. However, unlike the CMR model, the MAR model does not allow for individual risk differences among stocks, since all stocks are assumed to have the same expected return, namely, the expected market return. To estimate expected market returns, an arithmetic average of past returns on the equally-weighted (Center for Research in Securities Prices) CRSP index is used.

The SLM model is infrequently referred to as the capital asset pricing model or CAPM. It is used in its ex $ante$ form:

$$E(R_{iT}) = R_{fT} + [E(R_{MT}) - R_{fT}]\beta_i$$

where

$$R_{fT} = \text{interest rate on a U.S. Treasury security over the forecast horizon},$$

$$\beta_i = \text{beta coefficient of stock } i \text{ expected to prevail over the forecast horizon}.$$

This study examines two annual growth rate forecasts over two non-overlapping horizons of five years and four years. The five year forecast period is 1968–1972 and its base year is 1967. The four year forecast period is 1973–1976 and its base year is 1972. In estimating expected returns using the SLM model, R_{fT} for the forecast period 1968–1972 is taken as the yield-to-maturity on a five year U.S. Government security as of December 1967. Similarly, for the forecast period 1973–1976, R_{fT} is the yield-to-maturity on a four year U.S. Government security as of December 1972.

$E(R_{MT})$ is estimated precisely in the same manner as in the CMR model, namely, as an average over past realized market returns.

The beta coefficients of individual stocks were estimated in two ways. First, the expected beta was measured as the historical beta coefficient of the stock over the 84 months up to and including month T. This beta was simply the covariance of the stock’s returns with the market divided by the variance of the market’s returns over the sample period. Secondly, in an attempt to obtain a more accurate estimate of the future expected beta, the tendency of betas to regress towards the value 1.0 noted by Blume (1971) was taken into account. The method for doing this is Blume’s method.

The last expected return model is the BLK model. This can be stated in ex $ante$ form (Black, 1972) as:

$$E(R_{iT}) = E(R_{ZT}) + [E(R_{MT}) - E(R_{ZT})]\beta_i$$

where $E(R_{ZT})$ is the expected return on the minimum variance portfolio whose return is

3 Schafer (1977) points out the pitfalls of using yield-to-maturity as a surrogate for the interest rate on a no-coupon bond. Livingston and Jain (1982) estimate the biases involved. Since for bonds of maturity four to five years, the coupon bias is comfortably small (of the order of ten basis points), the effect is neglected in this paper.

4 For example, to adjust the betas computed over the 1961–1967 time period, the betas of all stocks on the CRSP file from the 1954–1960 period were regressed on the betas of the same stocks from the 1947–1953 period. The resulting regression coefficients were then used to adjust linearly the 1961–1967 betas.
uncorrelated with the return on the market portfolio. Unlike R_T in the SLM model, $E(R_T)$ is not observable at time T. Historical returns are frequently used to estimate this model (Black et al., 1972). When this is done, the BLK model can be written

$$E(R_T) = \bar{\gamma}_0 + \bar{\gamma}_1 \beta_i$$

(3)

$\bar{\gamma}_0$ and $\bar{\gamma}_1$ are arithmetic averages of monthly estimates of $E(R_T)$ and $E(R_M) - E(R_T)$. The estimation method of Fama and Macbeth (1973) was used to obtain the gamma estimates.\(^5\)

The forecasting model can now be formulated by obtaining $\bar{\gamma}_0$ and $\bar{\gamma}_1$ as of time T and using these as estimates of future gammas. The procedure is legitimate since Fama and Macbeth have shown that the gamma variables are stationary and have autocorrelations that are essentially nil.

Obtaining growth rate forecasts

Suppressing the time subscript T for simplicity, the expected return of security i according to model j is denoted $E(R_{ij})$. Given the expected rate of return of security i from model j, each model's expected growth rate of earnings per share will be extracted by assuming that each firm possesses investment opportunities which are expected to provide a constant rate of growth of earnings in perpetuity. In other words, the 'constant growth' model is assumed to hold for each stock (Gordon and Shapiro, 1956, Miller and Modigliani, 1961).

Let g_{ip} be firm i's rate of price increase, g_{id} be its rate of growth of dividends per share, and g_{ie} be its rate of growth of earnings per share. In the constant growth model, the expected rate of return of security i is given by:

$$E(R_i) = \frac{\bar{D}_{i1} + \bar{D}_{i1} - D_{i0}}{P_{i0}} + \frac{\bar{P}_{i1} - P_{i0}}{P_{i0}}$$

(4)

where

\bar{P}_{i1} = random end-of-period price per share

\bar{D}_{i1} = random end-of-period dividend per share

P_{i0} = current price per share

D_{i0} = current dividend per share.

Hence:

$$\frac{\bar{D}_{i1}}{P_{i0}} + \frac{\bar{P}_{i1} - P_{i0}}{P_{i0}} = \frac{D_{i0}(1 + g_{id})}{P_{i0}} + g_{ip}$$

(5)

Assuming $g_{id} = g_{ip} = g_i$

$$E(R_i) = \frac{D_{i0}(1 + g_i)}{P_{i0}} + g_i$$

(6)

A key assumption to obtain the constant growth is that the firm's payout ratio of dividends from earnings is constant. This ensures the equality of the growth rates of dividends, earnings, and price per share. Violation of the constant payout ratio assumption occurs for a variety of reasons such as a change in the firm's investment opportunities or a change in its financing mix. To the extent that the constant growth model fails to describe the firm's expected rate of return, the derived estimates of g_i will contain measurement error which will bias the tests against the expected return models.

\(^5\) I am grateful to Gary Schlarbaum for supplying these estimates.
Since each expected return model estimates $E(R_i)$ by $E(R_{ij})$, equation (6) can be solved to obtain model j's implicit forecast of g_i, denoted g_{ij} or:

$$g_{ij} = \frac{E(R_{ij}) - D_{t0}/P_{t0}}{1 + D_{t0}/P_{t0}}$$

Hence, by estimating $E(R_{ij})$ and observing the current dividend yield, a forecast by model j of the firm i's growth rate of earning per share, g_{ij}, is extracted.

Statement of hypotheses

The empirical results in this paper will be interpreted with reference to several hypotheses, which are presented and discussed below:

Hypothesis 1. Expected return models that use *ex ante* information on stock beta coefficients contain implicit earnings per share growth rate forecasts that are not more accurate than the implicit earnings per share growth rate forecasts of expected return models that do not use information on beta coefficients.

The SLM and BLK models include beta information whereas the CMR and MAR models do not. Rejection of Hypothesis 1 means that the beta-based expected return models can be employed to obtain forecasts of earnings per share which are superior to those obtained from the non-beta stock return models. Assuming that earnings growth rates observed for a future period reflect the prices and the expected returns established at the start of the period, rejection of Hypothesis 1 provides an indication that the market, in setting expected returns, uses betas or their informational equivalent as opposed to neglecting betas as the CMR and MAR do.

The forecasts of the expected return models can also be compared with the SUB model forecasts. These comparisons provide a natural check on whether the expected return models combined with the constant growth model are producing forecasts that are reasonably competitive with the process which, at least approximately, generates annual earnings.

Hypothesis 2. Expected return models contain implicit earnings per share growth rate forecasts that are not more accurate than the forecasts of the growth rate of earnings per share derived using the submartingale model of earnings.

A third test compares the forecasting ability of the VL model with the expected return models. If the procedure used in this paper to extract forecasts from the expected return models was efficient enough to extract forecasts that reflected all information available to the market, then the VL model forecasts would not be more accurate than the expected return model forecasts. Since the procedure used is clearly crude compared to the information processing of analysts, it is anticipated that Hypothesis 3 will be rejected in favour of VL.

Hypothesis 3. The VL forecasts of the growth rate of earnings per share are no more accurate than the earnings forecasts of the expected return models.

Finally, since the lengthy literature comparing analyst forecasts with those of time series models is confined to short forecast horizons (see footnote 1), it is of interest to compare the VL forecasts with the SUB forecasts over the long forecast horizons used in this paper.

Hypothesis 4. The VL forecasts of the growth rate of earnings per share are no more accurate than the forecasts of the SUB model.

Rejection of Hypothesis 4 in favour of VL superiority would provide further evidence of analyst forecast superiority relative to time-series models.
2. TESTS OF HYPOTHESES

Samples
Two replications of the experiment were conducted. In the first, time T was year-end 1967 and forecasted earnings were for 1972. The first 253 firms (in alphabetical order) were selected from the CRSP tape which met the criteria: (1) return data available during 1961–1967; (2) covered by the Value Line Investment Survey as of December 1967; (3) December fiscal year; and (4) positive earnings per share in 1967 and 1972. The second replication set T at December 1972. The sample size was 348. The criteria were similar with the corresponding changes in dates, namely, return data available during 1966–1972 and positive earnings per share in the base year 1972 and test year 1976.

The reasons for these criteria follow. The requirement that a sample firm have return data on the CRSP tape in the base period allowed computation of the firm's beta coefficient using this data source. The firm had to be covered by the Value Line Investment Survey to allow forecast comparisons to be made. Use of the December fiscal year-end ensured that all six model forecasts were based on comparable amounts of data relative to the fiscal year. Furthermore, the VL model forecasts had to be conditional only on annual earnings of the base year. The requirements of positive earnings per share in the base and test years allowed for positive growth rates. (The positive earnings criterion, as it turned out, was not binding in the first test period. In the second period, ten firms were eliminated because of this criterion.)

Although it is unlikely that the sample selection procedures materially affected the outcomes of the experiments, they did result in noticeably less risky sample firms than the market as a whole. The average beta for both samples was 0.85. As such, the test results may not generalize to the entire population of firms.

Test procedures
Because January 1935 was the starting date for calculating the BLK model estimates, that date was the starting point for most of the other return calculations. Thus, in estimating the CMR model, a stock's mean monthly stock return was found by averaging its returns over the history of the stock available since January 1935. In estimating mean market returns, the average of monthly returns was found over the time period beginning in January 1935. The market index was the equally-weighted return index of all stocks on the CRSP tape. Finally, in estimating the gammas for the BLK model, the monthly averages were also taken over the period starting in 1935.6

The SLM model requires risk-free returns and, for this purpose, yields-to-maturity on U.S. Government Bonds of the relevant maturity were employed. The data source was Moody's Municipal and Government Manual.

Let a_i = growth rate of actual earnings per share for firm i and g_{ij} = growth rate of forecasted earnings per share for firm i by method j. In each test period, a vector of errors $|a_i - g_{ij}| = e_{ij}$ may be calculated for each method j, where e_{ij} is the absolute value of the difference between the forecasted and realized growth rates. For hypothesis tests of two models, an appropriate design is a one-sample or matched-pairs case with self-pairing by firm. The members of each pair are errors, e_{ij}, from the two models, which are reduced to a single observation by taking the difference in the errors. The t-test is the usual parametric test of the mean difference and the Wilcoxon signed ranks test is an alternative non-parametric test of the median difference. Both tests were conducted. But since the results were similar, only the paired t-test results are reported.

6 All tests were also conducted using mean returns calculated over the most recent 84 months. The results were essentially the same as those reported in the paper. If anything, the longer estimation period benefited the CMR model.
Results

Table 1 contains summary statistics of the error distributions generated by the models when regression-adjusted betas were employed.

The average of deviations, \(a_i - g_{ij} \), was computed for all sample firms. Such deviations measure the average bias of the forecast models. It appears that, in period 1, all the models tended to overforecast earnings growth. In period 2, the average deviation of the return models was slight, whereas VL tended to overforecast on average. However, the fraction of firms overestimated by VL (58.0 per cent) was quite close to the fractions for the other models. This suggests that the sample average deviation for VL was heavily influenced by a few firms.

Table 1. Summary statistics of error distributions*†

<table>
<thead>
<tr>
<th>Error measure</th>
<th>SUB</th>
<th>MAR</th>
<th>CMR</th>
<th>SLM</th>
<th>BLK</th>
<th>VL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1, MSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967–1972</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average deviation</td>
<td>-0.001</td>
<td>-0.062</td>
<td>-0.051</td>
<td>-0.049</td>
<td>-0.051</td>
<td>-0.046</td>
</tr>
<tr>
<td>MABE</td>
<td>0.115</td>
<td>0.112</td>
<td>0.117</td>
<td>0.105</td>
<td>0.106</td>
<td>0.088</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.046</td>
<td>0.032</td>
<td>0.034</td>
<td>0.031</td>
<td>0.031</td>
<td>0.018</td>
</tr>
<tr>
<td>% Forecasts overestimated</td>
<td>56.1</td>
<td>81.8</td>
<td>72.7</td>
<td>72.3</td>
<td>73.5</td>
<td>64.0</td>
</tr>
<tr>
<td>Period 2, MSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972–1976</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average deviation</td>
<td>0.040</td>
<td>-0.002</td>
<td>0.012</td>
<td>0.011</td>
<td>0.008</td>
<td>-0.030</td>
</tr>
<tr>
<td>MABE</td>
<td>0.146</td>
<td>0.140</td>
<td>0.147</td>
<td>0.137</td>
<td>0.137</td>
<td>0.118</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.071</td>
<td>0.067</td>
<td>0.070</td>
<td>0.066</td>
<td>0.066</td>
<td>0.031</td>
</tr>
<tr>
<td>% Forecasts overestimated</td>
<td>47.2</td>
<td>58.9</td>
<td>53.4</td>
<td>52.9</td>
<td>53.7</td>
<td>58.0</td>
</tr>
</tbody>
</table>

* MAR = Market adjusted return; SUB = Submartingale; CMR = Comparison return; SLM = Sharpe–Lintner–Mossin; BLK = Black; VL = Value Line.
† Based on adjusted betas for the SLM and BLK models.

The mean absolute error (MABE), defined as the sample average of \(|a_i - g_{ij}|\), better reflects the overall forecasting performance of the models since it takes into account the average error size. In period 1, VL's MABE was lowest at 0.088, followed by SLM and BLK at 0.105 and 0.106, while the other three models had MABE's between 0.112 and 0.117. Two other summary error measures, which give greater weight to large deviations, are mean square error or MSE (the sample average of \((a_i - g_{ij})^2\)) and root mean squared error or RMSE (the square root of MSE). Using these measures of forecast accuracy, VL was most accurate followed by the four expected return models all of which were more accurate than SUB.

In time period 2, VL had the most accurate forecasts. Using MABE, it again appears that SLM and BLK had smaller errors than the CMR, MAR, and SUB models. Using MSE, all models other than VL appear to have approximately equal forecast accuracy.

Table 2 contains the \(t\)-statistics for all paired comparisons over both sample periods and using both the historical beta and the regression-adjusted beta. In reading this table, a positive \(t\)-statistic means that the model at the top has lower errors than the model at the side. Since the results are very similar for both beta estimation methods, the discussion concentrates on the regression-adjusted beta case.

In both sample periods, both the SLM and BLK models produced smaller errors at high levels of confidence than the two non-beta expected return models—MAR and CMR. Hypothesis 1 is thus rejected. If one were attempting to gauge the market's expectation of future earnings growth via
Table 2. Parametric t-statistics, comparisons of six model's earnings prediction errors for two time periods*†

<table>
<thead>
<tr>
<th></th>
<th>Historical beta</th>
<th>Regression-adjusted beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUB</td>
<td>MAR</td>
</tr>
<tr>
<td>Period 1, 1967–1972</td>
<td>0.59</td>
<td>-0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 2, 1972–1976</td>
<td>1.58</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* MAR = Market adjusted return; SUB = Submartingale; CMR = Comparison return; SLM = Sharpe–Lintner–Mossin; BLK = Black; VL = Value Line.
† A positive test statistic indicates superiority (lower forecast error) of model on top as compared with model on side; a negative test statistic indicates superiority of model on side. Forecast error is mean absolute error (MABE).
‡ Significant at the 1 per cent level, two-tailed test.
§ Significant at the 5 per cent level, two-tailed test.
¶ Significant at the 10 per cent level, two-tailed test.
the market's expected rate of return and the revealed dividend yield, then one would be better off employing either of the two models that use beta. The consistency of the results over the two test periods strengthens the conclusion that use of the beta coefficient enhances the predictability of expected rate of return and hence earnings growth.

To check on the efficacy of the procedure by which the expected return model forecasts were extracted, those models were compared with the SUB model. For the non-beta models, the t-statistics were less than ordinary conventional levels in both of the test periods. A comparison of MAR against SUB produced t-statistics of \(-0.50\) and \(-0.40\). These results indicate that Hypothesis 2 cannot be rejected for the non-beta models, although the MAR model provided slight indication of outperforming the SUB model.

For the SLM and BLK models, the t-statistics were positive and significant in both time periods. A comparison of SLM against SUB yielded t-statistics of 1.76 and 2.78, whereas in similar comparisons, BLK yielded 1.58 and 2.68. This is reasonable evidence for rejecting Hypothesis 2 in favour of the alternative hypothesis that SLM and BLK produce smaller errors than SUB. From another point of view, this result is impressive: a relatively simple manipulation of the expected return models, involving extrapolation of the expected market return and the stock's beta coefficient and subtraction of the stock's dividend yield, produced earnings forecasts that were more accurate than a well known time-series model of annual earnings. This interpretation indicates that the SLM and BLK expected return models appear to capture an important aspect of the market's return generating mechanism, and that the forecast extraction procedure has reasonable power.

The next hypothesis tests involve the VL forecasts. It is clear that Hypothesis 3 can be rejected at high levels of significance. By wide margins, VL produced lower forecast errors than all the expected return models, including the more accurate SLM and BLK models.

The last comparison, Hypothesis 4, evaluates VL against the TS model. In both samples, the forecasts of earnings per share growth were statistically superior to those of the TS model. This provides additional evidence that security analysts produce more accurate forecasts than time-series models.

The results of the tests were quite uniform in the two time periods. The average analyst error in forecasting the future annual growth rate for the following four to five year period tended to be about 1.7 per cent below the errors of the SLM and BLK expected return models, whereas the errors of the latter two models were about 0.7-1.2 per cent below the errors of the remaining models, including the SUB model.

3. CONCLUSIONS

This paper has shown that expected return models commonly used in the finance literature contain implicit forecasts of the growth rate of accounting earnings per share. For the comparison returns model (CMR) and the market-adjusted returns model (MAR), the resulting forecasts were no less accurate than a submartingale model. On the other hand, for the Sharpe–Lintner–Mossin (SLM) and Black (BLK) models, the forecasts were significantly more accurate than those generated by the submartingale model.

Evidence that security analysts forecasts are more accurate than those of less costly alternatives is also provided. The forecasts of four to five year growth rates of earnings per share produced and reported in the Value Line Investment Survey were shown to be more accurate than all of the other models tested—none of which required the direct input of a security analyst.
ACKNOWLEDGEMENTS

Earlier versions of this paper were presented at the International Symposium on Forecasting, Quebec City, Canada in May, 1981, the Midlands Finance Conference, Lincoln, Nebraska in September, 1981, and the Finance Workshop of the University of California at Los Angeles in October, 1981. I am grateful to these audiences for useful comments and discussions. Two anonymous referees of this journal also provided stimulating comments for which I am thankful.

REFERENCES

Lorek, K. S., 'Predicting annual net earnings with quarterly earnings time-series models', *Journal of Accounting Research*, 17 (1979), 190–204.

Author's biography:

Michael S. Rozef is Professor of Finance at the University of Iowa. He received his MBA from University of Illinois and PhD from the University of Rochester. His papers have appeared in *Journal of Accounting and Economics*, *Journal of Finance*, *Journal of Financial Economics*, *Journal of Financial and Quantitative Analysis*, and other journals. His principal current research interest is in how stock markets price such firm-specific factors as size, systematic risk, and dividend yield.

Author's address:

Michael S. Rozef, College of Business Administration, The University of Iowa, Iowa City, Iowa 52242, U.S.A.
Quantitative Structuring

vs

the Equity Premium Puzzle

Andrei N. Soklakov*

25 July 2015

Quantitative Structuring is a rational framework for manufacturing financial products. It shares many of its components with mainstream economics. The Equity Premium Puzzle is a well known quantitative challenge which has been defying mainstream economics for the last 30 years. Does Quantitative Structuring face a similar challenge? We find Quantitative Structuring to be in remarkable harmony with the observed equity premium. Observed values for the equity premium (both expected and realized) appear to be a real and transparent phenomenon which should persist for as long as equities continue to make sense as an investment asset. Encouraged by this finding, we suggest a certain modification of mainstream economics.

1 Quantitative Structuring

Each and every financial product is completely defined by its payoff function F which states how the benefits (usually cash flows) depend on the underlying variables. In order to price a product, defined by its payoff F, we compute a quantity of the form

$$\text{Price}(F) \propto \sum_x F(x)Q(x),$$

(1)

where the summation is taken over all possible values of the underlying variables and where Q is given by a mathematical model for the variables. Equation (1) is probably the most famous formula in the whole of mathematical finance. It shows, among other things, that the value of a product is determined by its payoff structure F and the model Q in a nearly symmetric way.

*Head of Equities Model Risk and Analytics, Deutsche Bank.

The views expressed herein should not be considered as investment advice or promotion. They represent personal research of the author and do not necessarily reflect the view of his employers, or their associates or affiliates. Andrei.Soklakov@db.com, gmail.com.
Product design clearly deserves as much technical attention and respect as modeling. In fact, one can argue that products are much more important than modeling for they define the very nature of a business. Quantitative Structuring recognizes the importance of financial products and provides a technical framework for their design [1].

Within Quantitative Structuring all investments begin with research. Ahead of any proposals, a minimum of two learning steps must happen. The investor needs to form an opinion on the market and to learn their own preferences (risk aversion). Mathematically these two steps are described by two equations:

\[b = f m \]
\[\frac{d \ln F}{d \ln f} = \frac{1}{R}. \]

These equations can be introduced by making just a couple of observations. Firstly, we observe that each and every investment is an exercise in optimization. Secondly, we note that the above equations are obeyed by a payoff function \(F(x) \) which solves the following optimization problem [2]

\[
\max_F \int b(x) U(F(x)) \, dx \quad \text{subject to budget constraint} \quad \int F(x) m(x) \, dx = 1.
\]

The risk aversion coefficient \(R \) is connected to the utility \(U \) through the standard Arrow-Pratt formula: \(R = -F U''_{FF}/U'_F \). The economic meaning of the market-implied and investor-believed distributions \(m(x) \) and \(b(x) \) follows from the above optimization.

For further explanations of these equations, including motivation, derivations, intuitive illustrations as well as concrete numerical examples, we refer the reader to [1], [2], [3], [4] and [5].

2 Confronting the Equity Premium Puzzle

In 1985 Mehra and Prescott investigated historical data on the excess returns achieved by equities over government bonds [6]. These excess returns, known as the equity premium, appeared to be surprisingly high. Mehra and Prescott concluded that the equity premium was an order of magnitude greater than could be rationalized within the standard utility-based theories of asset prices.

Given the importance of the challenge, proposals to resolve the puzzle quickly snowballed. More than two decades later Mehra and Prescott revisited the progress on the problem only to reinforce their original conclusions [7]. They estimated the equity premium to be 2-8% in arithmetic terms or up to 6% in terms of geometric (compound) returns and reiterated the Equity Premium Puzzle as a standing challenge to explain these values.

The work on understanding the equity premium continues. Many insightful observations have been made. The scope of proposals has widened enormously. It now ranges from plausible denials of the puzzle to behavioral explanations. The complexity of individual proposals also increased. With some proposals still awaiting adequate independent analysis, it would be fair to say that no single explanation of the puzzle has yet received general acceptance and the search for a clear dominant explanation continues.
A balanced review of the 30 year history of the puzzle is a major task in its own right which would lead us away from the main focus of this paper. For our purposes we need to know only one historical fact. We need to note that the puzzle has posed a major challenge to utility-based economic models. This makes the Equity Premium Puzzle a perfect challenge to Quantitative Structuring which, as we can see from the optimization (4), heavily relies on the expected utility theory.

How would we know if Quantitative Structuring survived the challenge? Of course, it would have to explain the numerical premium of 6% annualized compounded returns. Mehra and Prescott set additional guidelines in their most recent review [7]. They urge clear differentiation between expected and realized returns. They emphasize long-time historical horizons. Furthermore, they set an expectation that any theory which takes on the puzzle must be able to say something about the future of the puzzle. In other words, are the equity returns real and likely to persist or were they a statistical fluke with no material probability of re-occurring?

We accept the challenge with all of the above conditions. We investigate separately the expected and the realized returns. We use long-time horizons when talking about realized returns. Within Quantitative Structuring the observed numerical values of the equity premium appear to be absolutely real and natural. In fact, if these numerical values were somehow not known, Quantitative Structuring would have predicted them.

3 Expected premiums

Using the notation of (4), we can write the investor-expected continuously-compounded rate of return as

$$\text{ER} = \int b(x) \ln F(x) \, dx.$$ \hspace{1cm} (5)

This quantity is determined by two things – the structure of the investment $F(x)$, and the investor-believed distribution $b(x)$.

As we focus on equity investments, we describe the investment structure as:

$$F(x) = x,$$ \hspace{1cm} (6)

where x is a total return on one unit of wealth invested in the equity.

To get the believed distribution we need to know the investor’s risk aversion. For example, in the case of a growth-optimizing investor $R = 1$, equation (3) becomes redundant, i.e. $F(x) = f(x)$, and Eq. (2) gives us the believed distribution

$$b_{\text{GO}}(x) = F(x) m(x) = x m(x).$$ \hspace{1cm} (7)

The corresponding expected return becomes

$$\text{ER} \rightarrow \text{ER}_{\text{GO}} = \int \left(x \ln x \right) m(x) \, dx.$$ \hspace{1cm} (8)

As an example, consider a log-normal market-implied distribution

$$\frac{m(x)}{DF} = \frac{1}{x \sigma \sqrt{2\pi}} \exp \left\{ - \frac{(\ln x - \mu)^2}{2\sigma^2} \right\}, \quad \mu = r - \sigma^2/2,$$ \hspace{1cm} (9)
where DF is the discount factor, \(r \) is the risk free return and \(\sigma \) is the volatility. In this case the integral in Eq. (8) can be computed analytically with the result:

\[
ER_{GO} \rightarrow ER_{GO}^{LN} = r + \sigma^2/2. \tag{10}
\]

Mehra and Prescott considered an investor with arbitrary constant relative risk aversion. Generalization of the above calculations to this case is very easy. All we have to do is to bring into play Eq. (3) with a constant value of \(R \). Equation (10) is then replaced by a slightly more general quantity (see Eq. (33) in the Appendix):

\[
ER_{R}^{LN} = r + (R - 1/2)\sigma^2. \tag{11}
\]

This gives us the expected premium of

\[
EP_{R}^{LN} \overset{\text{def}}{=} ER_{R}^{LN} - r = (R - 1/2)\sigma^2. \tag{12}
\]

In their pioneering paper [6], Mehra and Prescott argue that the acceptable values for \(R \) must be below 10. In fact, all of the actual estimates of \(R \) which they cite to support their argument were below 3. Even staying within this tight range below 3 and making the standard assumption of 20% for typical equity volatility we can easily explain premia as high as 10% in terms of continuously compounded annual returns. This ball-park range is in remarkable agreement with the values observed by Mehra and Prescott.

In the remainder of this section we are going to examine independent quotes for the expected risk premia and see what values of \(R \) they imply. Before we do that, let us restore the generality of our arguments by removing the above made assumption of log-normality. In the case of arbitrary market-implied distributions, Eq. (12) is replaced by the expression (see Eq. (30) in the Appendix):

\[
EP_{R} \overset{\text{def}}{=} ER_{R} - r = \frac{1}{\text{Price}(x^R)} \frac{\partial \text{Price}(x^R)}{\partial R} - r. \tag{13}
\]

Implying the value of \(R \) from this expression is considerably less convenient than using Eq. (12). Nevertheless, it is a simple root-finding problem which can be solved. In terms of technology, we just need the ability to price power payoffs, \(x^R \), which can be done by replication with vanillas.

In terms of independent quotes for the equity premium we reach out to the field of equity valuations where the expected premium is a very important factor. On Fig. 1 we display expected equity premia as reported by Damodaran [8] using SPX data. It is important to note that these values are just as large as noted by Mehra and Prescott – at least an order of magnitude above 0.35%.
Figure 1: Implied Equity Premia as reported by Damodaran [8]. The records are updated on a monthly basis starting from September 2008. The quoted values refer to the beginning of each month. In our calculations we interpreted this as the first business day of each month.

There are always limits to how far in the future one can look using available market data. According to Damodaran [8], his quotes for the premia accurately reflect detailed market information (such as market-implied dividends) of up to five years into the future.

At five year horizons, equity skew is quite flat. This makes Eq. (12) useful as a test calculation which requires very little access to market data. On Fig. 2 we compute relative risk aversion from the quoted premia using both the exact Eq. (13) and the test Eq. (12).

In the former case we made no simplifying assumptions and used complete historical records of 5-year volatility curves. In the latter case we used 5-year at-the-money-forward implied volatilities (displayed for convenience on Fig. 3). The graphs for the two cases show good agreement.

All computed values of risk aversion are comfortably within the realistic range. We conclude that, in terms of investors’ expectations, Quantitative Structuring is consistent with the observed equity premia.
Figure 2: Implied risk aversion. Solid and dashed lines correspond to Eqs. (13) and (12) respectively. In both cases the timing of investments is chosen consistently with the quoted values of implied risk premia, i.e. they are assumed to mature in five years starting on the first business day of each month.

Figure 3: SPXT 5-year at-the-money-forward values of implied volatility.
4 Realized premiums

In the above section we managed to reconcile rational expectations of equity premiums. In terms of numerical values, these expectations were just as high as reported by Mehra and Prescott [6]. In this section we would like to understand how such expectations materialize, with investors doing no more than just keeping their money in the equity.

Let S_t be the value of the total return version of some equity index at time t. The return on the equity investment can be partitioned arbitrarily into N imaginary reinvestment steps:

$$S_N = S_0 \cdot \frac{S_1}{S_0} \cdot \frac{S_2}{S_1} \cdots \frac{S_N}{S_{N-1}}.$$

(14)

Defining $x_i = S_i / S_{i-1}$ we compute

$$S_N = S_0 \prod_{i=1}^{N} x_i = S_0 e^{\sum_{i=1}^{N} \ln x_i} = S_0 e^{N \times \text{Rate}},$$

(15)

where

$$\text{Rate} = \frac{1}{N} \sum_{i=1}^{N} \ln x_i.$$

(16)

Let us now look at the time series x_1, \ldots, x_N using the standard statistical approach. In this approach the individual elements $\{x_i\}$ are viewed as realizations of a random variable X with some (possibly unknown) distribution $P(X)$. For the basic statistical concepts, like the average, to make practical sense, the law of large numbers is assumed to hold\footnote{This can be ensured if the individual values are sufficiently independent.}. In this framework, as N increases, the average (16) converges almost surely to the expectation

$$\text{Rate} \xrightarrow{a.s.} \int P(x) \ln x \, dx.$$

(17)

Let us compare this equation with Eq. (5) (remember $F(x) = x$ for equity investments). We see that the investor-expected returns can be achieved provided that the time series is long enough (i.e. N is sufficiently large) and, crucially, that the investor correctly determines the probabilities, i.e. $b(x) \approx P(x)$. This gives us some information about equity investors. Our task now is to understand enough detail to see if it is realistic.

Mehra and Prescott describe the Equity Premium Puzzle as a long-term phenomenon. This discourages us from considering very short reinvestment periods. Ideally, we want to consider the case of smallest possible N that is large enough to ensure noticeable convergence (17). The standard deviation of the sum (16) from its mean (17) scales as $N^{-1/2}$. For the first significant digit of the sum (16) to emerge with some reasonable probability, the convergence must reduce the standard deviation by an order of magnitude ($N^{-1/2} \sim 0.1$). This means that we must choose N which is not much lower than 100.

We managed to find full market data, including volatility surfaces, for SPXT (total return version of SPX) going back to 17 May 2000. At the time of writing, this was about 15 years worth of data (daily records). Some researchers might argue the need for longer historical records. However, 15-year investments are already at the limit of what many
people would consider practical, so we choose to accept it. Viewing 15 years of the entire investment history \(^{(14)}\) as if it was a sequence of bi-monthly reinvestments we get \(N = 90\) reinvestment periods.

We need access to the distribution \(P(x)\). One way of defining a probability distribution is to imagine a source of numbers distributed according to this distribution. Given such a source one can estimate expectations using the Monte-Carlo method. In terms of such a definition for the distribution of the actual realized returns, \(P(x)\), all we have is a set of \(N = 90\) values \(\{x_i\}_{i=1}^{N}\). As discussed above, this is just enough to talk about expectations like \(^{(16)}\).

Consider an investor whose original belief happened to coincide with the actual realized distribution, \(b(x) = P(x)\). For this investor, the expected return is given by equation \(^{(16)}\) which, by construction, evaluates to the actual realized returns exactly. The analysis of the realized equity premium boils down to the analysis of whether such an investor is realistic. Following Mehra and Prescott, this means computing and examining the investor’s risk aversion.

Using Eqs. \(^{(2-3)}\) and recalling that for the simple equity investment \(F(x) = x\) we compute

\[
\frac{d\ln f}{d\ln F} = \frac{d\ln(b/m)}{d\ln x} = \frac{m}{b} \left(\frac{b}{m}\right)' x.
\]

Theoretically, this gives us the complete risk-aversion profile for the investor in question. Right now, however, we have a bare minimum of statistical information regarding \(b\). So, as many other researchers before us have done, we choose to focus on the overall level of risk aversion and defer the very interesting topic of the shape of risk-aversion profiles to further research. As a measure of the overall risk aversion we consider the investor’s own expectation of it

\[
\langle R \rangle_b \overset{\text{def}}{=} \int R(x) b(x) \, dx.
\]

Put together, the above two equations give

\[
\langle R \rangle_b = \int m \left(\frac{b}{m}\right)' x \, dx = \int mx d\left(\frac{b}{m}\right).
\]

Integrating by parts and noticing that \(xb\big|_0^\infty = 0\), we obtain

\[
\langle R \rangle_b = -\int \frac{b}{m} d(xm) = -\int \frac{b}{m} (m \, dx + x \, dm) = -1 - \int b x \, \frac{dm}{m}.
\]

Finally, using the notation of \(^{(19)}\) we derive

\[
\langle R \rangle_b = -1 - \langle x (\ln m)' \rangle_b.
\]

This formula does not look very intuitive so, before using it, let us spend a few lines understanding it. To this end, let us see what it implies for a log-normal market-implied distribution. From Eq. \(^{(9)}\) we derive

\[
(\ln m)'_x \overset{\text{LN}}{=} \left(-\ln x - \frac{(\ln x - \mu)^2}{2\sigma^2} + \text{const} \right)'_x = -\frac{1}{x} - \frac{\ln x - \mu}{\sigma^2 x}.
\]
Substitution into Eq. (22) gives

$$\langle R \rangle_b \overset{\text{LN}}{=} \frac{\langle \ln x \rangle_b - \mu}{\sigma^2} = \frac{1}{2} + \frac{\langle \ln x \rangle_b - r}{\sigma^2}. \quad (24)$$

Compare this to Eq. (12) which we studied above. We recognize Eq. (22) as a generalized analog of Eq. (12). The extent of generalization is very substantial: the market can have any implied distribution, and the investor can have an arbitrary profile of risk-aversion.

As discussed above, we now substitute \(b(x) = P(x) \) into Eq. (22) and obtain the formula for the expected risk aversion for the equity investor who correctly expressed an accurate long-term view on the market

$$\langle R \rangle_P = -1 - \frac{1}{N} \sum_{i=1}^{N} x_i \left(\ln m(x_i) \right)' \quad (25)$$

We are now in a position to compute \(\langle R \rangle_P \) as of any day for which we have market information, \(m \). We should remember, however, that our investor took a 15-year view and is completely ignoring all intermediate updates from the markets. The level of risk aversion for such an investor should be measured in a way that represents most of the actual investment period and is not sensitive to daily market fluctuations. Below we report two kinds of experiments which achieve this. In the first kind we look at the averaged value of \(\langle R \rangle_P \) across the entire 15-year investment period. In the second type we get a glimpse of the term structure of risk aversion by looking at a 10-year moving average.

Above we explained our choice to partition historical investments into bi-monthly reinvestment periods. This choice has a useful side effect. A single experiment would skip most of the available market data using only what it needs at bi-monthly intervals. The skipped market data can be used to repeat the experiment (42 times in total) – we just need to start the bi-monthly sequence on a different business day within the first two months for which we have data.

The horizontal green lines on Fig. 4 report the levels of \(\langle R \rangle_P \) averaged across the entire (~15-year) investment period. Different lines correspond to the 42 different runs of the experiment. The red line on Fig. 4 is a bi-monthly report of the 10-year moving average of \(\langle R \rangle_P \) for the investment which started on the 17th of May 2000 – the first day for which we have market data. The 42 runs of this experiment are plotted by faint hashed lines across the same graph.

As in the case of the expected equity premia considered in the previous section, we see completely normal levels of risk aversion. Even our attempt to glimpse the term structure, which misaligned investment horizon with the measurement of risk aversion, returned reasonable values.

Speaking about historical premia, we must mention that the performance of equities over the last 15 years has been rather patchy. This has reduced the magnitude of the relevant historical equity premia. However, the reduction was not strong or persistent enough to remove large equity premia across the entire data set used in this paper. Out of the 42

\[2\] This might be partially responsible for the slight dip of risk aversion below zero on Fig. 4, although the confidently positive values for the averages (represented by the green lines) indicate that this is probably just noise.
investments represented by the green lines on Fig. 4, the worst and the best-performing ones delivered around 2% and 2.6% per annum in terms of the annualized equity premium. All of these values are well above the threshold of 0.35% reported by Mehra and Prescott [6].

![Figure 4: Historical risk aversion. 10-year moving averages are computed on the bi-monthly grid as described in the main text. Within the 15-years of history this produces sequences of 30 (or 29) values (depending on the availability of data for the last period).](image)

As a final remark, we would like to point the reader back to the discussion around Eqs. (22-24) which brings together the separate investigations of the expected and the realized premia. The two types of premia are different in terms of their precise interpretations. They also come with their own inherent challenges such as high levels of statistical noise in the case of realized premia. Yet, whether we talk about expected or realized equity premia, it is important to note that the underlying mathematics addressing the equity premium puzzle is basically identical.

5 Epilogue

Quantitative Structuring successfully survives the challenge from the Equity Premium Puzzle. In fact, it shows how the puzzle can be resolved. Indeed, given realistic values of risk aversion, Quantitative Structuring predicts the correct expected premia and shows how such expectations materialize over long time horizons. We expect the equity premia
to stay at the levels given by our formulae (Eq. (12), or more generally, Eq. (13)) for as long as investing in equities makes rational sense.

Our analysis is highly generalizable. In this paper we focused on equity investments, which happened to have a linear payoff function $F(x) = x$, but just as easily we could have examined any other investment strategy with a very different payoff function.

This is interesting because economic environments emerge from the successes and failures of individual strategies. It is not unreasonable to think that we might understand an economy by understanding the performance of its key strategies. Due to the potential importance of this line of thinking, let us conclude this paper with a few paragraphs articulating what our approach can offer to the wider subject of economics.

Detailed economics

Investments thrive on information. The information content of an investment is compressed into its economic structure – the payoff function. In the field of economics it has been a popular custom to replace the detailed payoff structure of an investment by simpler ad-hoc representations such as a point on a mean-variance diagram. The resulting loss of information is hard to quantify and even harder to compensate for, even with the most reasonable of assumptions.

Ideally, economic theories should mirror the reality and consider investors as individuals: each one with their own views and goals. Every attempt to get closer to this ideal inevitably faces the formidable challenge of practicality. More detailed models need more detailed information. Quantitative Structuring fulfills this need by providing access to the deep information content of payoff functions.

This is how we escaped the Equity Premium Puzzle. We consider investors as individuals which are allowed to hold any views they want. At the same time we leave no room for speculation about what these views actually are. It is crucial that the views are not assumed, they are derived using the knowledge of payoff functions (see Eqs. (7) and (28)).

Equity investors express strong directional views. Investment premia of over 6% per annum are not unusual in such circumstances. Similar premia can be seen in much more subtle investment strategies [5]. The expected premia are achieved in the long term, provided, of course, that the views are correct.

6 Appendix

Equation (3) can be rewritten as

$$d \ln f = R \, d \ln F.$$ \hspace{1cm} (26)

For the case of constant but otherwise arbitrary R the above equation is immediately integrated to obtain

$$f(x) \propto e^{R \ln F(x)} = F^R(x).$$ \hspace{1cm} (27)
This result together with Eq. [2] give us the investor-believed distribution

\[b(x) = f(x) m(x) = \frac{e^{R \ln F(x)} m(x)}{\int e^{R \ln F(y)} m(y) dy}, \]

where we used the fact that \(b(x) \) is normalized. For the expected logarithmic return we compute

\[ER_R = \int b(x) \ln F(x) \, dx \]

\[= \frac{1}{Z} \frac{\partial Z}{\partial R}, \]

where

\[Z = \int F^R(x) m(x) \, dx. \]

In this paper we focus on the straightforward equity investment. In this case \(F(x) = x \), and \(Z \) becomes essentially the \(R \)th moment of \(m \). In the special case of log-normal market-implied distribution, this can be computed analytically (see Eq. [9] for notation)

\[Z = \int x^R m(x) \, dx = DF \cdot \exp \left\{ R\mu + \frac{1}{2} R^2 \sigma^2 \right\}, \]

and therefore

\[ER_R \to ER^{LN}_R = \mu + R\sigma^2. \]

References

Final Rule: Disclosure of Mutual Fund After-Tax Returns

SECURITIES AND EXCHANGE COMMISSION

17 CFR Parts 230, 239, 270, and 274

[Release Nos. 33-7941; 34-43857; IC-24832; File No. S7-09-00]

RIN 3235-AH77

Disclosure of Mutual Fund After-Tax Returns

AGENCY: Securities and Exchange Commission

ACTION: Final rule

SUMMARY: The Securities and Exchange Commission is adopting rule and form amendments under the Securities Act of 1933 and the Investment Company Act of 1940 to improve disclosure to investors of the effect of taxes on the performance of open-end management investment companies ("mutual funds" or "funds"). These amendments require mutual funds to disclose in their prospectuses after-tax returns based on standardized formulas comparable to the formula currently used to calculate before-tax average annual total returns. The amendments also require certain funds to include standardized after-tax returns in advertisements and other sales materials. Disclosure of standardized mutual fund after-tax returns will help investors to understand the magnitude of tax costs and compare the impact of taxes on the performance of different funds.

EFFECTIVE DATE: April 16, 2001. Section II. J. of this release contains information on compliance dates.

FOR FURTHER INFORMATION CONTACT: Vincent J. Di Stefano, Senior Counsel, Peter M. Hong, Special Counsel, Martha B. Peterson, Special Counsel, or Kimberly Dopkin Rasevic, Assistant Director, (202) 942-0721, Office of Disclosure Regulation, Division of Investment Management, Securities and Exchange Commission, 450 5th Street, N.W., Washington, D.C. 20549-0506.

SUPPLEMENTARY INFORMATION: The Securities and Exchange Commission ("Commission") is adopting amendments to Form N-1A [17 CFR 239.15A and 274.11A], the registration form used by mutual funds to register under the Investment Company Act of 1940 [15 U.S.C. 80a-1 et seq.] ("Investment Company Act" or "Act") and to offer their shares under the Securities Act of 1933 [15 U.S.C. 77a et seq.] ("Securities Act"). The Commission also is adopting amendments to rule 482 under the Securities Act [17 CFR 230.482] and rule 34b-1 under the Investment Company Act [17 CFR 270.34b-1].

Table of Contents
I. **Introduction**

II. **Discussion**

 A. Required Disclosure of After-Tax Returns

 B. Types of Return to Be Disclosed

 C. Location of Required Disclosure

 D. Format of Disclosure

 E. Exemptions from the Disclosure Requirement

 F. Advertisements and Other Sales Literature

 G. Formulas for Computing After-Tax Return

 1. Tax Bracket

 2. Capital Gains and Losses Upon a Sale of Fund Shares

 3. Other Assumptions

 H. Narrative Disclosure

 I. Technical and Conforming Amendments

 J. Effective Date; Compliance Dates

 1. Effective Date

 2. Compliance Date for Prospectuses

 3. Compliance Date for Advertisements and Other Sales Materials

III. **Cost/Benefit Analysis**

 A. Benefits

 B. Costs

IV. **Effects on Efficiency, Competition, and Capital Formation**

V. **Summary of Final Regulatory Flexibility Analysis**

 A. Need for the Rule and Form Amendments

 B. Significant Issues Raised by Public Comment

 C. Small Entities Subject to the Rule

 D. Projected Reporting, Recordkeeping, and Other Compliance Requirements
E. Agency Action to Minimize Effects on Small Entities

VI. Paperwork Reduction Act

VII. Statutory Authority

Text of Rules and Forms

I. Introduction

We are adopting rule and form amendments that require a mutual fund to disclose after-tax returns.¹ Taxes are one of the most significant costs of investing in mutual funds through taxable accounts. In 1999, mutual funds distributed approximately $238 billion in capital gains and $159 billion in taxable dividends.² Shareholders investing in stock and bond funds paid an estimated $39 billion in taxes in 1998 on distributions by their funds.³ Recent estimates suggest that more than two and one-half percentage points of the average stock fund’s total return is lost each year to taxes.⁴ Moreover, it is estimated that, between 1994 and 1999, investors in diversified U.S. stock funds surrendered an average of 15 percent of their annual gains to taxes.⁵

Despite the tax dollars at stake, many investors lack a clear understanding of the impact of taxes on their mutual fund investments.⁶ Generally, a mutual fund shareholder is taxed when he or she receives income or capital gains distributions from the fund and when the shareholder redeems fund shares at a gain.⁷ The tax consequences of distributions are a particular source of surprise to many investors when they discover that they can owe substantial taxes on their mutual fund investments that appear to be unrelated to the performance of the fund. Even if the value of a fund has declined during the year, a shareholder can owe taxes on capital gains distributions if the portfolio manager sold some of the fund’s underlying portfolio securities at a gain.⁸

The tax impact of mutual funds on investors can vary significantly from fund to fund. For example, the amount and character of a fund’s taxable distributions are affected by its investment strategies, including the extent of a fund’s investments in securities that generate dividend and other current income, the rate of portfolio turnover and the extent to which portfolio trading results in realized gains, and the degree to which portfolio losses are used to offset realized gains. One recent study reported that the annual impact of taxes on the performance of stock funds varied from zero, for the most tax-efficient funds, to 5.6 percentage points, for the least tax-efficient.⁹ While the tax-efficiency of a mutual fund is of little consequence to investors in 401(k) plans or other tax-deferred vehicles, it can be very important to an investor in a taxable account, particularly a long-term investor whose tax position may be significantly enhanced by minimizing current distributions of income and capital gains.

Recently, there have been increasing calls for improvement in the disclosure of the tax consequences of mutual fund investments. Mutual funds, as well as third party providers that furnish information to mutual fund shareholders, are responding to this growing investor demand by providing after-tax returns, calculators that investors can use to compute after-tax returns, and other tax information.¹⁰ In addition, several fund groups have created new funds promoting the use of more tax-efficient portfolio management strategies.¹¹ Moreover, in April 2000, a bill that would require the Commission to revise its regulations to require improved disclosure of mutual fund after-tax returns was passed by the U.S. House of Representatives and referred to the Senate.¹² Many press commenters also have highlighted the need for improvements in mutual fund tax disclosure.¹³
Currently, the Commission requires mutual funds to disclose significant information about taxes to investors. While we believe that this disclosure is useful, we are persuaded that funds can more effectively communicate to investors the tax consequences of investing. As a result, last March we proposed for public comment amendments to our rules and to Form N-1A, the registration form for mutual funds, that would require disclosure of standardized mutual fund after-tax returns.

Today we adopt rule and form amendments that require a fund to disclose its standardized after-tax returns for 1-, 5-, and 10-year periods. After-tax returns, which will accompany before-tax returns in fund prospectuses, will be presented in two ways: (i) after taxes on fund distributions only; and (ii) after taxes on fund distributions and a redemption of fund shares. Although after-tax returns will not generally be required in fund advertisements and sales literature, any fund that either includes after-tax returns in these materials or includes other performance information together with representations that the fund is managed to limit taxes will be required to include after-tax returns computed according to our standardized formulas.

While the Commission recognizes that a significant amount of mutual fund assets are held through tax-deferred arrangements, such as 401(k) plans or individual retirement accounts ("IRAs"), almost forty percent of non-money market fund assets held by individuals are held in taxable accounts. We are concerned that the millions of mutual fund investors who are subject to current taxation may not fully appreciate the impact of taxes on their fund investments because mutual funds are required to report their performance on a before-tax basis only. Although performance is only one of many factors that an investor should consider in deciding whether to invest in a particular fund, many investors consider performance one of the most significant factors when selecting or evaluating a fund. As a result, we believe it would be beneficial for funds to provide their after-tax performance in order to allow investors to make better-informed decisions.

This is the latest Commission action in our continuing effort to improve fund disclosure of costs. Since 1988, we have required mutual funds to include a uniform fee table in the prospectus. More recently, we have increased our efforts to educate investors about mutual fund costs and how those costs affect performance. In 1999, we introduced a "Mutual Fund Cost Calculator" to assist investors in determining how fund fees and charges affect their mutual fund returns. Moreover, we are currently considering recommendations made in separate reports by the United States General Accounting Office and the Commission's Division of Investment Management on ways to improve fund disclosure of fees and costs.

The amendments we adopt today represent another significant step in these efforts. Taxes are one of the largest costs associated with a mutual fund investment, having a dramatic impact on the return an investor realizes from a fund. Disclosure of standardized mutual fund after-tax returns will help investors to understand the magnitude of tax costs and compare the impact of taxes on the performance of different funds.

II. Discussion

The Commission received 235 letters commenting on the Proposing Release. One hundred ninety-five of the letters were from individual investors or investor advocacy groups. The individual investors and investor advocacy groups overwhelmingly supported the Commission's proposal to require disclosure of after-tax returns. The remaining 40 letters were from industry participants, who were divided in their views. Many generally supported the proposal, while expressing concerns regarding specific disclosure requirements. Others opposed the proposal. Many commenters offered recommendations for improving portions of the proposal.
The Commission is adopting the proposed rule and form amendments with the modifications described below that address commenters' concerns.

A. Required Disclosure of After-Tax Returns

The Commission is adopting, with modifications, the requirement that mutual funds disclose after-tax return, a measure of a fund's performance adjusted to reflect taxes that would be paid by an investor in the fund. As discussed more fully below, funds will be required to include after-tax return information in the risk/return summary of the prospectus. Funds will not generally be required to include after-tax returns in advertisements or other sales materials. Funds will, however, be required to include after-tax returns computed according to a standardized formula in sales materials that either include after-tax returns or include any other performance information together with representations that the fund is managed to limit taxes.

Individual commenters overwhelmingly supported the required disclosure of after-tax returns. Many of these individuals stated that after-tax returns would help them compare funds and make better-informed investment decisions. Industry comments, however, were mixed regarding whether funds should be required to disclose this information. Industry commenters supporting after-tax return disclosure noted that the disclosure would give investors a clearer understanding of fund performance and assist them in evaluating the impact of taxes on the performance of various funds. Industry commenters opposing after-tax return disclosure argued, among other things, that the disclosure would overwhelm investors, be irrelevant to investors in tax-deferred accounts such as 401(k) plans, be inaccurate because the returns are not tailored to individual investors' specific tax situation, place funds at a competitive disadvantage, and be unduly burdensome to compute. A few of these commenters suggested that, instead of requiring the disclosure of after-tax returns, the Commission should encourage the development of web-based personalized after-tax return calculators.

After careful consideration of these comments, we continue to believe that requiring funds to provide standardized after-tax returns will be beneficial to investors, allowing them to make better-informed investment decisions. We believe that after-tax return disclosure is useful to, and understandable by, investors, as evidenced by the overwhelming support of individual commenters. Moreover, in recognition of the fact that after-tax returns would not be relevant for investors who hold fund shares through tax-deferred arrangements, we are requiring that after-tax returns be accompanied by narrative disclosure to that effect, and we are exempting prospectuses used exclusively to offer fund shares as investment options for tax-deferred arrangements from the after-tax return disclosure requirement.

We recognize that the computation of after-tax return depends on assumed tax rates, which vary from investor to investor. Standardized after-tax returns will, however, serve as useful guides to understanding the effect of taxes on a fund's performance and allow investors to compare funds' after-tax returns. The presentation of standardized after-tax returns, coupled with the presentation of before-tax returns, will provide investors with a more complete and accurate picture of a fund's performance than before-tax returns standing alone.

We strongly encourage funds to develop web-based calculators and other tools that investors may use to compute their individualized after-tax return for a fund. This information will be very useful to investors in assessing how a particular fund has performed for them. We believe, however, that after-tax returns should be made available to all investors, not only to those who have the ability to access and use these web-based programs. In addition, personalized after-tax calculators often do not facilitate ready comparisons of different funds' after-tax performance.

We do not believe that requiring funds to disclose after-tax returns will place them
at a competitive disadvantage vis-à-vis other investments. Investors choose funds over other investment products because they offer advantages unavailable with most other investment products, *e.g.*, access to professional portfolio management and diversification with a relatively small investment. In addition, we are exempting money market funds from the after-tax return disclosure requirement, in part because of our concern that they would be disadvantaged vis-à-vis very similar, competing products.

Finally, we believe that the burden to funds of computing and disclosing after-tax returns is justified by the benefits to investors from receiving this information. While we acknowledge that funds will incur a one-time cost to modify their systems to compute after-tax returns, the computation thereafter should be straightforward to perform using readily available data.

B. Types of Return to Be Disclosed

As proposed, funds will be required to calculate after-tax returns using a standardized formula similar to the formula presently used to calculate before-tax average annual total return.\(^{27}\) We proposed to require funds to disclose after-tax return for 1-, 5-, and 10-year periods on both a "pre-liquidation" and "post-liquidation" basis, and we are adopting that requirement. Pre-liquidation after-tax return assumes that the investor continued to hold fund shares at the end of the measurement period, and, as a result, reflects the effect of taxable distributions by a fund to its shareholders but not any taxable gain or loss that would have been realized by a shareholder upon the sale of fund shares.\(^{28}\) Post-liquidation after-tax return assumes that the investor sold his or her fund shares at the end of the measurement period, and, as a result, reflects the effect of both taxable distributions by a fund to its shareholders and any taxable gain or loss realized by the shareholder upon the sale of fund shares.\(^{29}\) Pre-liquidation after-tax return reflects the tax effects on shareholders of the portfolio manager's purchases and sales of portfolio securities, while post-liquidation after-tax return also reflects the tax effects of a shareholder's individual decision to sell fund shares.

Most commenters addressing the issue of whether we should require pre- and post-liquidation after-tax returns supported disclosure of both types of after-tax returns. A few commenters argued that pre-liquidation after-tax return should be eliminated because the addition of another performance figure could overwhelm and confuse investors and, if provided without post-liquidation after-tax return, would tend to suggest to shareholders that taxation could be deferred indefinitely. A few commenters recommended that only pre-liquidation after-tax returns be required because post-liquidation returns reflect the action of a specific shareholder *(i.e.,* the decision to sell fund shares), rather than the tax-efficiency of the fund's portfolio management.

The Commission is adopting, as proposed, the requirement that funds present both pre- and post-liquidation after-tax returns in order to provide investors with a more complete understanding of the impact of taxes on a fund's performance.\(^{30}\) We believe that pre-liquidation after-tax return is important because it provides information about the tax-efficiency of portfolio management decisions. We also believe, however, that it is important for shareholders, many of whom hold shares for a relatively brief period, to understand the full impact that taxes have on a mutual fund investment that has been sold.\(^{31}\)

In response to commenters' concerns about investor confusion, we are streamlining the returns required to be disclosed. Most commenters recommended that we revise the proposed pre-liquidation after-tax return figure to deduct fees and charges payable upon a redemption of fund shares, such as sales charges or redemption fees. This would make the pre-liquidation after-tax return figure comparable to currently required standardized before-tax returns, which also deduct fees and charges payable upon sale, and would result in comparable disclosure by funds that
impose sales charges upon purchase and those that impose sales charges upon redemption. Commenters also argued that this modification would eliminate the need for the proposed pre-liquidation before-tax return figure with no deduction of fees and charges payable upon sale, thereby simplifying the presentation of before- and after-tax returns.

We agree and have eliminated pre-liquidation before-tax returns. This will result in three, rather than four, types of return, all of which are net of all fees and charges: before-tax return; return after taxes on distributions (pre-liquidation); and return after taxes on distributions and redemption (post-liquidation). To address concerns that investors could be confused by a pre-liquidation after-tax return measure that assumes no sale of fund shares for purposes of computing tax consequences but nonetheless reflects fees and charges payable upon a sale of fund shares, we have modified the captions in the performance table to focus investor attention on the taxes that are deducted, rather than whether or not the shareholder held or sold his shares.

C. Location of Required Disclosure

We are requiring, as proposed, that funds disclose after-tax returns in the performance table contained in the risk/return summary of the prospectus. The amendments also will have the effect of requiring that after-tax returns be included in any fund profile because a profile must include the prospectus risk/return summary. We proposed, but are not adopting, a requirement that after-tax returns be included in Management's Discussion of Fund Performance ("MDFP"), which is typically contained in the annual report. Funds will, however, be required to state in the MDFP that the performance table and graph do not reflect the deduction of taxes that a shareholder would pay on fund distributions or the redemption of fund shares.

We are requiring that after-tax returns be included in the prospectus and profile because, for the overwhelming majority of prospective investors who base their investment decision, in part, on past performance, after-tax returns can be useful in understanding past performance. Most commenters that addressed the issue of the appropriate location for after-tax return disclosure supported requiring disclosure of after-tax returns in fund prospectuses.

Several commenters recommended that after-tax returns not be included in fund profiles. Commenters were concerned that the length and complexity of the disclosure could overwhelm the remaining information in the profile, defeating the purpose of the summary disclosure document. We continue to believe, however, that after-tax returns should be included in the fund profile because of the importance of past performance in many investors' investment decisions. We have, however, addressed the concerns expressed by commenters by simplifying the presentation of required after-tax returns.

Some commenters supported inclusion of after-tax returns in the risk/return summary, but others recommended that after-tax returns be disclosed in the section of the prospectus describing the tax consequences to investors of buying, holding, exchanging, and selling fund shares. These commenters argued that the required disclosure is too lengthy and technical for inclusion in the risk/return summary. We believe that it is critical that after-tax returns be disclosed in the same location as before-tax returns, so that after-tax returns will be easy for investors to find and compare with before-tax returns. Therefore, we are adopting, as proposed, the requirement that after-tax returns be presented in the risk/return summary. In addition, in response to commenters' concerns that the proposed disclosure would be too lengthy or complex for inclusion in the risk/return summary, we have simplified the presentation of returns in the table, as well as the accompanying narrative.
We have decided not to require funds to include after-tax returns in the MDFP, which is typically contained in the annual report. Many commenters who addressed the issue of the appropriate location for disclosing after-tax returns recommended that after-tax returns not be included in the MDFP. As commenters observed, existing shareholders already receive detailed information that allows them to determine the tax impact of their investment in the fund. They also typically receive on an annual basis an updated prospectus that will contain after-tax performance information. Moreover, commenters pointed out that, because after-tax returns in the MDFP would have been calculated on a fiscal year basis, they would not be comparable from fund to fund, and use of fiscal year results could enable funds to time distributions in order to artificially enhance after-tax returns. We have therefore decided not to require disclosure of after-tax returns in the MDFP.

We are concerned, however, that investors may be confused about whether the returns included in the performance table and graph in the MDFP have been calculated on a before- or after-tax basis. Therefore, funds will be required to include a statement in the MDFP that accompanies the performance table and graph to the effect that the returns shown do not reflect the deduction of taxes that a shareholder would pay on fund distributions or the redemption of fund shares.

D. Format of Disclosure

We are requiring, as proposed, that before and after-tax returns be presented in a standardized tabular format. Consistent with the modifications to the types of returns required, funds must present before- and after-tax returns as follows:

<table>
<thead>
<tr>
<th>AVERAGE ANNUAL TOTAL RETURNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(For the periods ended December 31, _____)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1 year</th>
<th>5 years [or Life of Fund]</th>
<th>10 years [or Life of Fund]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Before Taxes</td>
<td>___%</td>
<td>___%</td>
<td>___%</td>
</tr>
<tr>
<td>Return After Taxes on Distributions</td>
<td>___%</td>
<td>___%</td>
<td>___%</td>
</tr>
<tr>
<td>Return After Taxes on Distributions and Sale of Fund Shares</td>
<td>___%</td>
<td>___%</td>
<td>___%</td>
</tr>
<tr>
<td>Index (reflects no deduction for [fees, expenses, or taxes])</td>
<td>___%</td>
<td>___%</td>
<td>___%</td>
</tr>
</tbody>
</table>

Before- and after-tax returns must be presented in the order specified, using the captions provided by Form N-1A. When more than one fund or series is offered in a prospectus, the before- and after-tax returns of each fund or series must be adjacent to one another. A prospectus may not, for example, present the before-tax returns for all funds, followed by the after-tax returns for all funds. We believe that this presentation will help investors to compare funds and to understand the differences among the different measures of return for any particular fund.

We have modified the captions in the performance table to focus investor attention on the taxes that are deducted, rather than whether or not the shareholder held or sold his shares. We have also modified the captions to clarify that returns are shown for the life of the fund, if shorter than the 5- or 10-year measurement periods, and...
that the language following the caption for the index may be modified, as appropriate, to be consistent with the index selected by the fund.

We have also simplified the presentation for funds that offer multiple classes of a fund in a single prospectus. We were persuaded by several commenters who argued that requiring after-tax returns for all classes of a fund, as proposed, could result in overwhelming or confusing disclosure to investors, and that, with the exception of expense ratio differences, which affect the level of dividend distributions, the tax burden of the various share classes will be similar. We have modified the amendments to require that a fund offering multiple classes in a single prospectus present the after-tax returns of only one class.48 The class selected must be offered to investors who hold their shares through taxable accounts and have returns for at least 10 years, or, if no such class has 10 years of return, be the class with the returns for the longest period.

A fund that offers multiple classes in a single prospectus must explain in the narrative that accompanies the performance table that the after-tax returns are for only one class offered by the prospectus and that the after-tax returns for other classes will vary.49 In addition, in order to facilitate comparisons among the returns shown, after-tax returns for the one class presented must be adjacent to the before-tax returns for that class and not interspersed with the before-tax returns of the other classes, returns of other funds, or with the return of the broad-based securities market index.50 The return of the broad-based securities index may either precede or follow the returns for the fund.51

E. Exemptions from the Disclosure Requirement

We are exempting money market funds from the requirement to disclose after-tax returns, as proposed.52 We are also adopting, with modifications, our proposal to permit a fund to omit the after-tax return information in a prospectus used exclusively to offer fund shares as investment options for defined contribution plans and similar arrangements.53

Specifically, we are permitting a fund to omit the after-tax return information in a prospectus used exclusively to offer fund shares as investment options to one or more of the following:

- a defined contribution plan that meets the requirements for qualification under section 401(k) of the Internal Revenue Code ("Code");
- a tax-deferred arrangement under section 403(b) or 457 of the Code;
- a variable contract as defined in section 817(d) of the Code;
- a similar plan or arrangement pursuant to which an investor is not taxed on his or her investment in the fund until the investment is sold;54 or
- entities that are not subject to the individual federal income tax.

The proposed after-tax return information would largely be irrelevant in these circumstances because the affected investors either are not subject to current taxation on fund distributions or are not subject to current taxation at the individual federal income tax rates, and their tax consequences on a sale of fund shares are different from those experienced by individual investors in taxable accounts.55

In response to the recommendations of several commenters, we have expanded the exemption to include prospectuses used to offer fund shares to entities that are not subject to individual taxation (\textit{e.g.}, tax-exempt foundations, colleges, and
We agree that the after-tax return information is not relevant to these investors. A fund may not, however, rely on this exemption if the prospectus is used indirectly to offer shares to persons that are subject to individual taxation, such as an offer to a partnership whose individual partners are taxed on a pass-through basis.

The Commission carefully considered whether to exclude bond funds, generally, or tax-exempt funds, specifically, from the requirement to disclose after-tax returns. A number of commenters argued that bond funds should be exempt from disclosing after-tax returns because investors in bond funds are generally aware of the tax consequences of investing in these funds, the funds do not usually make unexpected distributions of capital gains, and the funds are bought for their yield and not their growth potential. Other commenters argued that bond funds should not be exempt because such funds may have significant capital gains or losses in volatile markets, certain types of bond funds commonly realize significant capital gains, and some managers of bond funds seek to avoid making capital gains distributions by using various tax management strategies.

Having considered the views expressed by commenters, we have decided not to exempt bond funds from disclosing after-tax returns. While investors may more readily understand the tax impact of owning a bond fund that makes few, if any, capital gains distributions, than the tax impact of owning other funds, bond funds may have significant capital gains or losses, and we believe that it is important for after-tax return information to be available to their shareholders.

Similarly, while most, if not all, income distributed by a tax-exempt mutual fund generally will be tax-exempt, a tax-exempt mutual fund may also make capital gains distributions that are taxable and an investor is taxed on gains from the sale of fund shares. As a result, the performance of a tax-exempt fund may be affected by taxes, and taxes may have a greater or lesser impact on different tax-exempt funds. Therefore, we have decided not to exempt tax-exempt funds from the required disclosure.

F. Advertisements and Other Sales Literature

We are adopting, with modifications, amendments that require certain fund advertisements and sales literature to include after-tax performance that is calculated according to the standardized formulas prescribed in Form N-1A for computation of after-tax returns in the risk/return summary. As proposed, all fund advertisements and sales literature that include after-tax performance information will be required to include after-tax returns computed according to the standardized formulas. Any quotation of non-standardized after-tax return also will be subject to the same conditions currently applicable to quotations of non-standardized performance that are included in fund advertisements and sales literature. Requiring advertisements and sales literature that include after-tax performance information to include standardized after-tax returns will help to prevent misleading advertisements and sales literature and permit shareholders to compare claims about after-tax performance.

Commenters generally supported the proposal to require fund advertisements and sales literature that include after-tax performance information to include standardized after-tax returns, but several commenters recommended that we extend the requirement to advertisements and sales literature that claim that a fund is "tax-managed" or "tax-efficient" and that include any performance information. As noted by one commenter, a fund advertising 20 percent before-tax return and claiming 100 percent tax-efficiency could have significant unrealized gains that would result in tax liabilities when a shareholder redeems his or her shares. We are persuaded that, to help prevent such tax-efficiency claims from being misleading, such advertisements should include standardized after-tax returns, which will help an investor to assess the tax-efficiency of the fund more accurately. Therefore, we
have modified the proposal to require the inclusion of standardized after-tax returns in any advertisement or sales literature that includes a quotation of performance and that represents or implies that the fund is managed to limit or control the effect of taxes on performance.61

This requirement does not apply to advertisements or sales literature for a fund that is eligible to use a name suggesting that the fund's distributions are exempt from federal income tax or from both federal and state income tax under our recently-adopted fund names rule.62 Because these funds meet the strict standards of the names rule, we have concluded that the additional requirement for including standardized after-tax returns in advertisements or sales literature should not apply to them unless they voluntarily choose to include after-tax performance information.

One commenter recommended that we prohibit funds from publishing after-tax returns for periods of less than one year. The commenter argued that this would prevent funds from reporting year-to-date after-tax returns just before a large taxable distribution, wrongly suggesting to shareholders that the fund had been tax-efficient. While we have decided not to prohibit funds from publishing after-tax returns for periods of less than one year in all cases, we remind funds that sales materials are subject to the antifraud provisions of the federal securities laws and that compliance with the terms of rule 482 under the Securities Act or rule 34b-1 under the Investment Company Act is not a safe harbor from liability for fraud.63 Therefore, any fund that publishes after-tax returns for periods shorter than one year should be extremely careful to ensure that the returns are not materially misleading, e.g., because the returns incorrectly suggest that a fund has been more tax-efficient than has, in fact, been the case.

G. Formulas for Computing After-Tax Return

We are adopting, with the modifications discussed below, the requirement that funds compute after-tax returns using standardized formulas that are based largely on the current standardized formula for computing before-tax average annual total return.64 After-tax returns will be computed assuming a hypothetical $1,000 one-time initial investment and the deduction of the maximum sales load and other charges from the initial $1,000 payment.65 Also, after-tax returns will be calculated for 1-, 5-, and 10-year periods.66

1. Tax Bracket

We are requiring, as proposed, that standardized after-tax returns be calculated assuming that distributions by the fund and gains on a sale of fund shares are taxed at the highest applicable individual federal income tax rate.67 Comment was divided on this issue. Some commenters supported the highest tax rate as providing investors with the full range of historical after-tax returns, as well as being the simplest rate to use to compute after-tax returns. Other commenters, however, recommended that we require funds to calculate after-tax returns using an intermediate tax rate in addition to, or in lieu of, the highest tax rate. These commenters observed that the typical mutual fund investor is not in the highest tax bracket, and argued that after-tax returns calculated using tax rates to which the typical mutual fund investor is subject would be more useful.

After careful consideration of these comments, we continue to believe that it is most appropriate to use the highest tax rate, rather than an intermediate rate. Computing after-tax returns with maximum tax rates will provide investors with the "worst-case" federal income tax scenario. Coupled with before-tax return, which reflects the imposition of taxes at a 0 percent rate, this "worst-case" scenario will effectively provide investors with the full range of historical after-tax returns. We believe that providing the full range of federal income tax outcomes provides investors the most complete information.
In addition, we concluded that any benefits of using an intermediate tax rate would be outweighed by the complexity of determining the appropriate intermediate rate from one year to the next as tax rates and the income of a typical mutual fund investor change. Most of the commenters who recommended that after-tax returns be calculated using an intermediate rate suggested that we either use a specific rate (e.g., 28 percent) or select a specific income level (e.g., $55,000) that would be used to identify the appropriate tax rate. If we were to adopt either of these approaches, we would be required to make ongoing modifications to respond to changes in tax rates and income levels. One commenter suggested that we determine the intermediate rate by reference to the median United States household income reported by the U.S. Census Bureau. This approach would be predicated on assumptions about the "typical" mutual fund investor and the past, present, and future income of that investor.

In any case, a requirement that funds calculate after-tax returns using an intermediate rate would effectively require that we continually monitor the changing demographics of mutual fund investors, as well as changing tax laws, and update our rules accordingly. The use of an intermediate rate also would require that funds include complex narrative disclosure in the risk/return summary about how the intermediate rate had been selected or what intermediate rate had been used from year to year. 68

While we are not adopting a requirement that funds calculate after-tax returns using an intermediate rate, we encourage funds to provide their investors with additional information that is tailored to a particular fund’s typical investor, or to make available to investors after-tax returns calculated using multiple tax rate assumptions. Funds can supply this information in a variety of ways (e.g., calculators on their websites or disclosure elsewhere in the prospectus of returns calculated based on different tax rate assumptions).

2. Capital Gains and Losses Upon a Sale of Fund Shares

We are adopting, substantially as proposed, amendments requiring that return, after taxes on distributions and redemption, be computed assuming a complete sale of fund shares at the end of the 1-, 5-, or 10-year measurement period, resulting in capital gains taxes or a tax benefit from any resulting capital losses.69 As proposed, a fund will be required to track the actual holding periods of reinvested distributions and may not assume that they have the same holding period as the initial $1,000 investment. 70 We have made technical changes to clarify that applicable federal tax law should be used to determine whether and how gains and losses from the sale of shares with different holding periods should be netted, as well as the tax character (e.g., short-term or long-term) of any resulting gains or losses.71

Several commenters suggested that we permit funds to calculate taxes on gains realized upon a sale of shares at the end of the one-year period (i.e., short-term capital gains) as if the shares had been held for one year and one day (i.e., long-term capital gains). 72 These commenters argued that a reasonable shareholder would hold the shares for the extra day in order to qualify for the more advantageous tax treatment, and that it is inappropriate to assume that shares would be sold at the end of the one-year period. We are not modifying the proposal to reflect this comment. A shareholder who redeems his or her shares at any time during the one-year period is subject to taxation of gains at short-term rates. We believe that it is important for the after-tax return calculation to accurately reflect the fact that redeeming shares within the one-year period may have significant adverse tax consequences. In addition, we are providing that the tax consequences of a sale of fund shares should be determined in accordance with applicable federal tax law on the redemption date. If we were, instead, to prescribe a special rule for one-year returns, we would have to reevaluate this special rule in light of subsequent changes in tax law, such as increases to the holding period required for long-term gain treatment.
A number of commenters suggested other modifications to the proposal regarding the tracking of holding periods, such as treating the holding period of all reinvested distributions as beginning on the date of the original investment, and treating all gains on redemption as qualifying for long-term capital gains treatment. We are not adopting these recommended modifications, each of which would have the effect of reclassifying short-term gains as long-term gains, as they would minimize the impact of short-term gains on fund returns, in a manner inconsistent with federal tax law. One of our purposes in requiring the disclosure of after-tax returns is to provide investors with information about the differential impact that taxes have on the before-tax returns of various funds, and we believe that ignoring the effect of short-term gains would tend to minimize these differences inappropriately.

3. Other Assumptions

Commenters generally supported the other assumptions that the Commission proposed to require in the computation of after-tax returns, and we are adopting those requirements as proposed. Specifically, after-tax returns:

- Will be calculated using historical tax rates;\(^73\)
- Will be based on calendar-year periods, consistent with the before-tax return disclosure that currently appears in the risk/return summary;\(^74\)
- Will exclude state and local tax liability;\(^75\)
- Will not take into account the effect of either the alternative minimum tax or phaseouts of certain tax credits, exemptions, and deductions for taxpayers whose adjusted gross income is above a specified amount;\(^76\)
- Will assume that any taxes due on a distribution are paid out of that distribution at the time the distribution is reinvested and reduce the amount reinvested;\(^77\) and
- Will be calculated assuming that the taxable amount and tax character (e.g., ordinary income, short-term capital gain, long-term capital gain) of each distribution are as specified by the fund on the dividend declaration date, adjusted to reflect subsequent recharacterizations.\(^78\)

Tax Treatment of Distributions

As proposed, we are not specifying in detail the tax consequences of fund distributions. Funds generally should determine the tax consequences of distributions by applying the tax law in effect on the date the distribution is reinvested. However, because a number of commenters expressed concern about whether a fund that has elected to pass through foreign tax credits to its shareholders may reflect the foreign tax credit in after-tax returns, we are providing that the effect of applicable tax credits, such as the foreign tax credit, should be taken into account in accordance with federal tax law.\(^79\)

H. Narrative Disclosure

We are adopting, with modifications, the requirement that funds include a short, explanatory narrative adjacent to the performance table in the risk/return summary.\(^80\) This is intended to facilitate investor understanding of the table. We are not mandating specific language for the narrative, but it must be in plain English.\(^81\)

Commenters generally agreed that the proposed narrative disclosure would help
investors understand information in the performance table. Several commenters,
however, recommended streamlining the narrative by combining some of the
proposed items with the narrative currently required for before-tax returns and by
eliminating technical items unnecessary for investor understanding of performance
information. We agree and have modified the narrative disclosure to require the
following information:

- After-tax returns are calculated using the historical highest individual federal
 marginal income tax rates, and do not reflect the impact of state and local
taxes; and

- Actual after-tax returns depend on the investor's tax situation and may differ
 from those shown, and the after-tax returns shown are not relevant to
 investors who hold their fund shares through tax-deferred arrangements such
 as 401(k) plans or individual retirement accounts.83

In addition, a fund will be required to provide a statement to the effect that the
fund's past performance, before and after taxes, is not necessarily an indication of
how the fund will perform in the future.84

I. Technical and Conforming Amendments

We proposed to amend rule 482(e)(3) under the Securities Act in order to clarify
that the average annual total returns that are required to be shown in any
performance advertisement are before-tax returns net of fees and charges payable
upon a sale of fund shares. This technical change is no longer necessary due to
modifications we have made to the types of returns required. We are adopting, as
proposed, amendments to rule 34b-1(b)(3) under the Investment Company Act to
exclude after-tax performance information contained in periodic reports to
shareholders from the updating requirements of the rule.

We proposed to delete an instruction contained in Form N-1A that provides that
total return information in a mutual fund prospectus need only be current to the end
of the fund's most recent fiscal year because the items of Form N-1A that require
funds to include total returns in the prospectus have explicit instructions about how
current the total return information must be. We have decided not to delete this
instruction because it applies to returns that are not required by specific items of
Form N-1A.85

J. Effective Date; Compliance Dates

1. Effective Date

The rule and form amendments that the Commission is adopting today will be

2. Compliance Date for Prospectuses

February 15, 2002. All post-effective amendments that are annual updates to
effective registration statements and profiles filed on or after February 15, 2002,
must comply with the amendments to Form N-1A. Based on the comments, we
believe that this will provide funds with sufficient time to make the necessary
changes to existing software and internal systems in order to compile after-tax
returns and incorporate the new disclosure in their prospectuses. We would not
object if existing funds file their first annual update complying with the amendments
pursuant to rule 485(b), provided that the post-effective amendment otherwise
meets the conditions for immediate effectiveness under the rule.86
3. Compliance Date for Advertisements and Other Sales Materials

October 1, 2001. All fund advertisements and sales materials must comply with the amendments to rules 482 and 34b-1 no later than October 1, 2001. These amendments apply only to those funds voluntarily choosing to include after-tax returns in advertisements or sales literature, or claiming to be managed to limit or control the effect of taxes on performance and including performance information in these materials. As these funds have made the decision to market themselves in this manner, we believe that they should be required to do so in a standardized fashion as soon as practicable.

III. Cost/Benefit Analysis

In the Proposing Release, we analyzed the costs and benefits of our proposals and requested comments and data regarding the costs and benefits of the rule and form amendments. In response to our request for comments, a few commenters generally argued that the proposed amendments would increase costs for the funds and that such costs will be passed on to investors. None of the commenters, however, provided specific data quantifying additional costs.

The rule and form changes will require a fund to disclose its standardized after-tax returns for 1-, 5-, and 10-year periods. After-tax returns, which will accompany before-tax returns in fund prospectuses, will be presented in two ways: (i) after taxes on fund distributions only; and (ii) after taxes on fund distributions and a redemption of fund shares. The before- and after-tax returns would be required to be presented in a standardized tabular format. Although after-tax returns will not generally be required in fund advertisements and sales literature, any fund that either includes after-tax returns in these materials or includes other performance information together with representations that the fund is managed to limit taxes will be required to include after-tax returns computed according to our standardized formulas.

A. Benefits

As discussed above, taxes are one of the most significant costs of investing in mutual funds through taxable accounts. In 1999, mutual funds distributed approximately $238 billion in capital gains and $159 billion in taxable dividends. Shareholders investing in stock and bond funds paid an estimated $39 billion in taxes in 1998 on distributions by their funds. Recent estimates suggest that more than two and one-half percentage points of the average stock fund's total return is lost each year to taxes. Moreover, it is estimated that, between 1994 and 1999, investors in diversified U.S. stock funds surrendered an average of 15 percent of their annual gains to taxes.

Despite the tax dollars at stake, many investors lack a clear understanding of the impact of taxes on their mutual fund investments. The tax consequences of distributions are a particular source of surprise to many investors when they discover that they can owe substantial taxes on their mutual fund investments that appear to be unrelated to the performance of the fund. Even if the value of a fund has declined during the year, a shareholder can owe taxes on capital gains distributions if the portfolio manager sold some of the fund's underlying portfolio securities at a gain.

There have been increasing calls for improvement in the disclosure of the tax consequences of mutual fund investments. Mutual funds, as well as third party providers that furnish information to mutual fund shareholders, are responding to this growing investor demand by providing after-tax returns, calculators that investors can use to compute after-tax returns, and other tax information. Indeed, all but a few of the comment letters we received from individual investors...
supported the Commission's proposal to require standardized after-tax returns.

Currently, the Commission requires mutual funds to disclose significant information about taxes to investors. While this disclosure is useful, we believe funds can more effectively communicate to investors the tax consequences of investing. Therefore, the Commission is adopting amendments to Form N-1A and rules 482 and 34b-1 that will require disclosure of standardized mutual fund after-tax returns.

By requiring all funds to report after-tax performance pursuant to a standardized formula, the amendments will allow investors to compare after-tax performance among funds, which is likely to affect investor decisions relating to the purchase or sale of fund shares. This could have indirect benefits, such as the creation of new funds designed to maximize after-tax performance or causing existing funds to alter their investment strategies to invest in a more tax-efficient manner. The changes in fund investment strategies and investor behavior resulting from this disclosure may also result in higher average after-tax returns for investors.

Requiring standardized after-tax performance in the prospectus, fund advertisements, and sales literature also should help prevent confusing and misleading after-tax performance claims by funds. Currently, fund advertisements and sales literature may contain tax-adjusted performance calculated according to non-standardized methods. In addition to making it difficult to compare after-tax performance measures among different funds, the lack of a standardized method for computing after-tax returns creates the possibility that after-tax performance information as currently reported could be misleading or confusing to investors.

The amendments will also increase the amount of after-tax performance information available to investors. With the exception of the few funds that publish after-tax performance information, investors currently must rely on third-party providers to obtain information regarding a fund's after-tax performance.

Moreover, information regarding a fund's after-tax performance helps investors understand the magnitude of tax costs and how they affect fund performance. Increased understanding should have the beneficial effect of enhancing investor confidence in the fund industry.

B. Costs

The changes in fund investment strategies and investor behavior resulting from the after-tax requirements may have distributional effects among funds depending on their relative after-tax returns. Funds that have lower after-tax returns relative to other funds may experience loss of market share. We expect, however, that any reduction of market share for funds with lower after-tax returns will be offset by a commensurate increase in market share for funds with higher after-tax returns.

Funds affected by the after-tax requirements will incur costs in complying with the new disclosure. Funds will have to compute the after-tax returns using a standardized method prescribed by Form N-1A. The costs associated with computing the new after-tax performance will include the costs of purchasing or developing software, implementing a new system for computing the returns, analyzing data for inclusion in the standardized formula, and training fund employees. In addition, funds will incur costs in incorporating the new disclosure in their prospectuses, advertisements, and sales literature. Funds could also incur costs in responding to questions from investors regarding the after-tax returns.

We expect that the costs of implementing new systems to compute the standardized after-tax performance will largely consist of initial, one-time expenses. In addition, the software development and implementation costs may be reduced if software vendors begin to offer "off-the-shelf" programs for computing the standardized
after-tax performance data.96 Also, the costs of analyzing data for inclusion in the standardized formula will be substantially greater in connection with a fund’s first-time compliance with the amendments than it will be in subsequent disclosures. Likewise, the costs of revising fund prospectuses, advertisements, and sales literature to incorporate the new disclosure should decrease after the first disclosures complying with the amendments have been made. We note that in response to concerns expressed by certain commenters regarding the burdens imposed on funds by the new requirements, we have simplified the presentation of after-tax returns.97 Although the costs of updating the disclosure in fund prospectuses, advertisements, and sales literature will be ongoing, the costs incurred in subsequent disclosures should be less than the costs associated with the initial computations and disclosures because neither the formula for calculating performance nor the format for the disclosure will change from year to year.

Because funds filing initial registration statements will not have any performance information to report, the new after-tax performance requirements will not impose any additional costs on the preparation and filing of an initial registration statement on Form N-1A. The disclosure required by the amendments will appear in the first post-effective amendment that is required to include the after-tax return disclosure. The costs associated with including the disclosure in this first post-effective amendment will consist of the costs required for developing a system for performing the standardized calculations and the costs of revising the prospectus to incorporate the new disclosure. The costs incurred by funds choosing to include after-tax returns in fund advertisements and sales literature will be limited to the cost of revising the advertisements and sales literature to incorporate the same standardized after-tax returns that will be required to appear in fund prospectuses.

\textit{Form N-1A}

The primary cost of complying with the amendments to Form N-1A is the cost of preparing and filing post-effective amendments to registration statements. We estimate that 4,500 post-effective amendments to registration statements are filed annually on Form N-1A, for 7,875 portfolios.

These post-effective amendments will contain performance figures and thus be affected by the amendments. For purposes of the Paperwork Reduction Act ("PRA"), we have estimated that the amendments will increase the hour burden per portfolio per filing of a post-effective amendment by 18 hours.98 Of the 7,875 funds referenced in post-effective amendments, 1,040 are money market funds, which will be exempted from the after-tax disclosure requirements. An additional 1,575 funds are used as investment vehicles for variable insurance contracts, which will be permitted to omit the after-tax information. Thus, approximately 5,260 of the 7,875 funds referenced in post-effective amendments will be affected by the amendments.99 We estimate that the cost for all funds to comply with the amendments discussed above is $6,059,520.100

The amendments to Form N-1A will impose other related costs on funds. Our current estimated cost of preparing a post-effective amendment to a previously effective registration statement is $7,500. We estimate that the additional cost imposed by the amendments to Form N-1A is $1,860 per portfolio/fund or a total cost of $9,783,600.101 This estimate represents the cost of developing and implementing a computerized system for compiling tax data and computing after-tax returns and the costs of hiring outside counsel to assist in revising the prospectus to incorporate the new after-tax return disclosure.102 Again, a portion of this cost burden will be comprised largely of initial, one-time costs.

\textit{Rule 482}

Rule 482 is a safe harbor that permits a fund to advertise information the
"substance of which" is contained in its statutory prospectus, subject to the requirements of the rule. Rule 482 limits performance information to standardized quotations of yield and total return and other measures of performance that reflect all elements of return.

Because rule 482 does not require funds to perform any computations not required by the amendments for Form N-1A, the primary cost of complying with the amendments is the cost of the additional hour burden that is outlined in our PRA analysis. As described above, there are approximately 5,260 funds filing post-effective amendments that will be affected by the amendments. The Commission further estimates that three percent of these funds will elect to use advertisements or sales literature that either include after-tax returns or include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance and therefore be required to comply with the amendments to rule 482. For purposes of the PRA, we have estimated that the additional hour burden required to comply with the amendments to rule 482 is .5 hours. The amendments to rule 482 will thus impose additional estimated costs of $5,506.

Rule 34b-1

Rule 34b-1 governs sales material that is accompanied or preceded by the delivery of a statutory prospectus and requires the inclusion of standardized performance data and certain legend disclosure in sales material that includes performance data. As with the amendments to rule 482, these amendments will not require funds to perform any computations not required by the amendments to Form N-1A. Hence, the cost of complying with these amendments is primarily the cost associated with the burden estimate in our PRA analysis.

We estimate that approximately 8,495 respondents file approximately 4.35 responses annually pursuant to rule 34b-1. Of these respondents, we estimate that 1,040 are money market funds that will be exempt from the amendments and that an additional 620 funds and unit investment trusts ("UITs") registered on Forms N-3 and N-4 will not be affected by the amendments. We estimate that an additional 1,575 funds registered on Form N-1A and subject to rule 34b-1 are used as underlying portfolios for variable insurance contracts and will not use advertisements or sales literature that include after-tax returns or include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance. Thus, 5,260 respondents subject to rule 34b-1 will also be subject to the after-tax disclosure. We further estimate that three percent of respondents subject to rule 34b-1 or 157.8 respondents will elect to use advertisements or sales literature that either include after-tax returns or include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance and therefore be subject to the amendments. For purposes of the PRA, we have estimated that the additional hour burden attributable to the amendments to rule 34b-1 is .5 hours, for a total of 78.9 annual burden hours or $5,049.60.

IV. Effects on Efficiency, Competition, and Capital Formation

Section 2(c) of the Investment Company Act, section 2(b) of the Securities Act, and section 3(f) of the Exchange Act require the Commission, when engaging in rulemaking that requires it to consider or determine whether an action is consistent with the public interest, to consider, in addition to the protection of investors, whether the action will promote efficiency, competition, and capital formation. The Commission has considered these factors.

The Commission believes that the after-tax return requirements will help to increase investor understanding of a fund's after-tax performance. Increased understanding...
should enable investors to better evaluate various funds in determining which funds are most suitable for their investment needs. More educated investors should promote competition among funds as they seek to attract those investors interested in the impact of taxes on fund investments. On balance, the Commission believes that the after-tax return requirements will benefit investors, foster efficiency, and promote competition among mutual funds. While investors will be better equipped to make investment decisions, it is unclear whether these amendments will result in an increase in capital formation.

V. Summary of Final Regulatory Flexibility Analysis

A Final Regulatory Flexibility Analysis ("FRFA") has been prepared in accordance with 5 U.S.C. 604. The Commission proposed amendments to Form N-1A [17 CFR 239.15A and 274.11A], the registration form used by mutual funds to register under the Act and to offer their shares under the Securities Act, and amendments to rule 482 under the Securities Act and rule 34b-1 under the Act in the Proposing Release. The Commission prepared an Initial Regulatory Flexibility Analysis ("IRFA") in accordance with 5 U.S.C. 603 in conjunction with the Proposing Release, which was made available to the public. The Proposing Release summarized the IRFA and solicited comments on it. No comments specifically addressed the IRFA.

A. Need for the Rule and Form Amendments

As discussed above, taxes are one of the most significant costs of investing in mutual funds through taxable accounts. Despite the tax dollars at stake, many investors lack a clear understanding of the impact of taxes on their mutual fund investments.\(^{111}\)

There have been increasing calls for improvement in the disclosure of the tax consequences of mutual fund investments. Mutual funds, as well as third party providers that furnish information to mutual fund shareholders, are responding to this growing investor demand by providing after-tax returns, calculators that investors can use to compute after-tax returns, and other tax information.\(^{112}\) In addition, several fund groups have created new funds promoting the use of more tax-efficient portfolio management strategies.\(^{113}\) Moreover, in April 2000, a bill that would require the Commission to revise its regulations to require improved disclosure of mutual fund after-tax returns was passed by the U.S. House of Representatives and was referred to the Senate.\(^{114}\)

B. Significant Issues Raised by Public Comment

The Commission requested comment on the IRFA, but we received no comments specifically addressing the analysis. One commenter, however, argued that the proposed amendments would have a greater impact on smaller entities while another commenter suggested a longer phase-in period for smaller funds to comply with the new requirements. Neither of the commenters provided any specific or quantifiable data.

C. Small Entities Subject to the Rule

For purposes of the Regulatory Flexibility Act, a fund is a small entity if the fund, together with other funds in the same group of related funds, has net assets of $50 million or less as of the end of its most recent fiscal year.\(^{115}\) As of December 1999, there were approximately 2,900 investment companies registered on Form N-1A that may be affected by the proposed amendments.\(^{116}\) Of these 2,900, approximately 150 are investment companies that meet the Commission's definition of small entity for purposes of the Investment Company Act.\(^{117}\) The amendments that require funds to provide after-tax returns in registration statements, advertisements, and sales literature will affect those small entities.
D. Projected Reporting, Recordkeeping, and Other Compliance Requirements

The amendments will require all funds subject to the amendments to provide after-tax return information in their prospectuses. Although after-tax returns will not generally be required in fund advertisements and sales literature, any fund that either includes after-tax returns in these materials or includes other performance information together with representations that the fund is managed to limit taxes will be required to include after-tax returns computed according to our standardized formulas.

After assessing the amendments in light of the current reporting requirements and consulting with representatives in the industry, the Commission has considered the potential effect that the amendments will have on the preparation of registration statements, advertisements, and sales literature. The Commission estimates that, as a result of the amendments, it will take approximately 18 additional hours per portfolio to prepare the first post-effective amendment to the registration statement on Form N-1A that is required to include the proposed after-tax return disclosure.118 The Commission believes that this estimate represents an initial, one-time burden and that the hour burden will be reduced for subsequent post-effective amendments. For purposes of calculating the rule 482 hour burden relating to advertisements, the Commission estimates that the proposed amendments will impose approximately .5 additional hours per portfolio.119 The Commission also estimates that the proposed amendments will impose approximately .5 additional hours per response for sales literature subject to rule 34b-1.120

E. Agency Action to Minimize Effects on Small Entities

The Commission believes that special compliance or reporting requirements for small entities would not be appropriate or consistent with investor protection. The disclosure amendments we are adopting will give prospective and existing shareholders greater access to information about the after-tax returns of mutual funds. Different disclosure requirements for small entities, such as reducing the level of disclosure that small entities would have to provide, would create the risk that investors would not receive adequate information about a fund's after-tax returns or would receive confusing, false, or misleading information. In addition, investors would not be able to easily compare each fund when making an investment decision if there were no uniform disclosure standards for after-tax performance information applicable to all funds. The Commission believes it is important for prospective and existing shareholders to receive this information about after-tax returns for all funds, not just for funds that are not considered small entities.

Investors in small funds should have information about the funds' after-tax returns and would benefit from this information as much as investors in larger funds. If we do not require certain information for small entities, this could create the risk that investors in small funds might not receive important information about a fund's after-tax returns. The Commission also notes that current disclosure requirements in registration statements do not distinguish between small entities and other funds. In addition, the Commission believes it would be inappropriate to impose a different timetable on small entities for complying with the requirements because investors would not have the ability to compare the after-tax returns of all funds when making an investment decision.

Further clarification, consolidation, or simplification of the proposals for funds that are small entities would be inconsistent with concerns for investor protection. Simplifying or otherwise reducing the regulatory requirements of the proposals for small entities could undercut the purpose of these proposals: to emphasize to investors the impact of taxes on a fund's return and to enable investors to make effective comparisons among various fund performance claims. For the same
reasons, using performance standards to specify the requirements for small entities also would not be appropriate.

We note, however, that in response to concerns expressed by certain commenters regarding the burdens imposed on funds by the new requirements, we have simplified the presentation of after-tax returns. \[121\] We have also extended the date by which all post-effective amendments that are annual updates to effective registration statements and profiles must comply with the amendments to Form N-1A from the proposed six-month period to February 15, 2002, which will provide funds an additional four months to comply with the amendments. Overall, these amendments will not adversely affect small entities. We believe that the burden on funds of computing and disclosing after-tax returns is justified by the benefits to investors from receiving this information. While we acknowledge that funds will incur a one-time cost to modify their systems to compute after-tax returns, the computation thereafter should be straightforward to perform using readily available data.

The FRFA is available for public inspection in File No. S7-23-99, and a copy may be obtained by contacting Peter M. Hong, Special Counsel, at (202) 942-0721, Office of Disclosure Regulation, Division of Investment Management, Securities and Exchange Commission, 450 5th Street, N.W., Washington, D.C. 20549-0506.

VI. Paperwork Reduction Act

As explained in the Proposing Release, certain provisions of the amendments contain "collection of information" requirements within the meaning of the Paperwork Reduction Act of 1995 [44 U.S.C. 3501, et seq.], and the Commission has submitted the proposed collections of information to the Office of Management and Budget ("OMB") for review in accordance with 44 U.S.C. 3507(d) and 5 CFR 1320.11. The titles for the collections of information are: (i) "Form N-1A under the Investment Company Act of 1940 and Securities Act of 1933, Registration Statement of Open-End Management Investment Companies"; (ii) "Registration Statements - Regulation C"; \[122\] and (iii) "Rule 34b-1 of the Investment Company Act of 1940, Sales Literature Deemed to Be Misleading." An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid control number. \[123\]

Form N-1A (OMB Control No. 3235-0307) was adopted pursuant to section 8(a) of the Investment Company Act [15 U.S.C. 80a-8] and section 5 of the Securities Act [15 U.S.C. 77e]. Rule 30d-1 (OMB Control No. 3235-0025) was adopted pursuant to Section 30(e) of the Investment Company Act [15 U.S.C. 80a-2]. Rule 482 of Regulation C (OMB Control No. 3235-0074) was adopted pursuant to section 10(b) of the Securities Act [15 U.S.C. 77j(b)]. Rule 34b-1 (OMB Control No. 3235-0346) was adopted pursuant to section 34(b) of the Investment Company Act [15 U.S.C. 80a-33(b)].

As discussed above, the amendments will require a fund to disclose its standardized after-tax returns for 1-, 5-, and 10-year periods. After-tax return information is to be included in the risk/return summary of the prospectus. Funds are required to include a short, explanatory narrative adjacent to the performance table in the risk/return summary. After-tax returns, which will accompany before-tax returns in fund prospectuses, will be presented in two ways: (i) after taxes on fund distributions only; and (ii) after taxes on fund distributions and a redemption of fund shares. The before- and after-tax returns will be required to be presented in a standardized tabular format. Although after-tax returns will not generally be required in fund advertisements and sales literature, any fund that either includes after-tax returns in these materials or includes other performance information together with representations that the fund is managed to limit taxes will be required to include after-tax returns computed according to our standardized formulas.
The information required by the amendments is primarily for the use and benefit of investors. The Commission is concerned that mutual fund investors who are subject to current taxation may not fully appreciate the impact of taxes on their fund investments because mutual funds are currently required to report their performance on a before-tax basis only. Many investors consider performance one of the most significant factors when selecting or evaluating a fund, and we believe that requiring funds to disclose their after-tax performance would allow investors to make better-informed decisions. The information required to be filed with the Commission pursuant to the information collections also permits the verification of compliance with securities law requirements and assures the public availability and dissemination of the information.

In the Proposing Release, the Commission estimated the burden hours that would be necessary for the collection of information requirements under the proposed amendments. Although no commenters specifically addressed the burden estimates for the collection of information requirements, a few commenters raised concerns regarding the costs involved in complying with the disclosure requirements of the amendments. These commenters, however, did not provide an estimate of the burden hours associated with the proposed rule changes. We continue to believe that the estimates of the burden hours contained in the Proposing Release are appropriate.124

Form N-1A

Form N-1A, including the amendments, contains collection of information requirements. The purpose of Form N-1A is to meet the registration and disclosure requirements of the Securities Act and the Investment Company Act and to enable funds to provide investors with information necessary to evaluate an investment in the fund. The likely respondents to this information collection are open-end funds registering with the Commission on Form N-1A.

We estimate that 170 initial registration statements are filed annually on Form N-1A, registering 298 portfolios, and that the current hour burden per portfolio per filing is 824 hours, for a total annual hour burden of 245,552 hours.125 We estimate that 4,500 post-effective amendments to registration statements are filed annually on Form N-1A, for 7,875 portfolios, and that the current hour burden per portfolio per post-effective amendment filing is 104 hours, for an annual burden of 819,000 hours.126 Thus, we estimate a current total annual hour burden of 1,064,552 hours for the preparation and filing of Form N-1A and post-effective amendments on Form N-1A.

The proposed amendments will not affect the hour burden of an initial filing of a registration statement on Form N-1A since an investment company filing such an initial form will have no performance history to disclose. Post-effective amendments to such registration statements, however, will contain performance figures and thus be affected by the amendments. We estimate that the amendments will increase the hour burden per portfolio per filing of a post-effective amendment by 18 hours.127 Of the 7,875 funds referenced in post-effective amendments, 1,040 are money market funds, which will be exempted from the after-tax return disclosure requirements. An additional 1,575 funds are used as investment vehicles for variable insurance contracts, which will be permitted to omit the after-tax information. Thus, approximately 5,260 of the 7,875 funds referenced in post-effective amendments will be affected by the proposed amendments.128 The Commission estimates the total annual hour burden for all funds for preparation and filing of initial registration statements and post-effective amendments on Form N-1A will be 1,159,311 hours.129

Compliance with the disclosure requirements of Form N-1A is mandatory. Responses to the disclosure requirements will not be kept confidential.
Rule 482

Rule 482, including the amendments, contains collection of information requirements. The rule permits a fund to advertise information the "substance of which" is contained in its statutory prospectus, subject to the requirements of the rule. Rule 482 limits performance information to standardized quotations of yield and total return and other measures of performance that reflect all elements of return.

The increased burden associated with the amendments to rule 482 is included in Form N-1A.130 Thus, the amendments to rule 482 will affect the burden hours for Form N-1A, the registration form for open-end investment companies that currently may advertise pursuant to rule 482. As described above, there are approximately 5,260 funds filing post-effective amendments that will be affected by the proposed amendments. The Commission further estimates that three percent of these funds will elect to use advertisements or sales literature that either include after-tax returns or include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance and therefore be required to comply with the proposed amendments to rule 482.131 We estimate that the additional hour burden required to comply with the proposed amendments to rule 482 is .5 hours.132

Compliance with rule 482 is mandatory for every registered fund that issues advertisements. Responses to the disclosure requirements will not be kept confidential.

Rule 34b-1

Rule 34b-1, including the amendments, contains collection of information requirements. The rule governs sales material that is accompanied or preceded by the delivery of a statutory prospectus and requires the inclusion of standardized performance data and certain legend disclosure in sales material that includes performance data.

We estimate that approximately 8,495 respondents file approximately 4.35 responses annually pursuant to rule 34b-1.133 Of these respondents, we estimate that 1,040 are money market funds that will be exempt from the amendments and that an additional 620 funds and unit investment trusts ("UITs") registered on Forms N-3 and N-4 will not be affected by the amendments. We estimate that an additional 1,575 funds registered on Form N-1A and subject to rule 34b-1 are used as underlying portfolios for variable insurance contracts and will not advertise after-tax returns or use advertisements that either include after-tax returns or use advertisements that include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance due to their unique tax-deferred nature. Thus, 5,260 respondents subject to rule 34b-1 will also be subject to the after-tax return disclosure.134 We further estimate that three percent of respondents subject to rule 34b-1 will elect to use advertisements or sales literature that either include after-tax returns or include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance and therefore be subject to the proposed amendments.135 The burden for rule 34b-1 requires approximately 2.4 hours per response resulting from creating the information required by rule 34b-1. We estimate that rule 34b-1 imposes a current total annual reporting burden of 88,800 hours on the industry.136 We estimate that the additional hour burden required to comply with the proposed amendments to rule 34b-1 is .5 hours, for a total burden per response of 2.9 hours and a total annual burden on the industry of 89,143 hours.137

Compliance with rule 34b-1 is mandatory for every registered investment company that issues sales literature. Responses to the disclosure requirements will not be kept confidential.
kept confidential.

VII. Statutory Authority

The Commission is adopting amendments to Form N-1A pursuant to authority set forth in sections 5, 6, 7, 10, and 19(a) of the Securities Act [15 U.S.C. 77e, 77f, 77g, 77j, 77s(a)] and sections 8, 24(a), and 38 of the Investment Company Act [15 U.S.C. 80a-8, 80a-24(a), 80a-37]. The Commission is adopting amendments to rule 482 pursuant to authority set forth in sections 5, 10(b), and 19(a) of the Securities Act [15 U.S.C. 77e, 77j(b), and 77s(a)]. The Commission is adopting amendments to rule 34b-1 pursuant to authority set forth in sections 34(b) and 38(a) of the Investment Company Act [15 U.S.C. 80a-33(b) and 80a-37(a)].

List of Subjects

17 CFR Part 230

Advertising, Investment companies, Reporting and recordkeeping requirements, Securities.

17 CFR Part 239

Reporting and recordkeeping requirements, Securities.

17 CFR Parts 270 and 274

Investment companies, Reporting and recordkeeping requirements, Securities.

Text of Rules and Forms

For the reasons set out in the preamble, Title 17, Chapter II of the Code of Federal Regulations is amended as follows:

PART 230 -- GENERAL RULES AND REGULATIONS, SECURITIES ACT OF 1933

1. The general authority citation for part 230 is revised to read as follows:

Authority: 15 U.S.C. 77b, 77c, 77d, 77f, 77g, 77h, 77j, 77r, 77sss, 77z-3, 78c, 78d, 78l, 78m, 78n, 78o, 78t, 78w, 78//d), 78mm, 79t, 80a-8, 80a-24, 80a-28, 80a-29, 80a-30, and 80a-37, unless otherwise noted.

2. Section 230.482 is amended by:

a. removing "; and" at the end of paragraph (e)(3)(iv) and in its place adding a period;

b. redesignating paragraph (e)(4) as paragraph (e)(5) and paragraph (f) as paragraph (g);

c. adding new paragraphs (e)(4) and (f); and

d. revising newly redesignated paragraph (e)(5) to read as follows:

§ 230.482 Advertising by an investment company as satisfying requirements of section 10.
(e) * * *

(4) For an open-end management investment company, average annual total return (after taxes on distributions) and average annual total return (after taxes on distributions and redemption) for one, five, and ten year periods; Provided, That if the company's registration statement under the Securities Act of 1933 (15 U.S.C. 77a et seq.) has been in effect for less than one, five, or ten years, the time period during which the registration statement was in effect is substituted for the period(s) otherwise prescribed; and Provided further, That such quotations:

(i) Are based on the methods of computation prescribed in Form N-1A;

(ii) Are current to the most recent calendar quarter ended prior to the submission of the advertisement for publication;

(iii) Are accompanied by quotations of total return as provided for in paragraph (e)(3) of this section;

(iv) Include both average annual total return (after taxes on distributions) and average annual total return (after taxes on distributions and redemption);

(v) Are set out with equal prominence and are set out in no greater prominence than the required quotations of total return; and

(vi) Identify the length of and the last day of the one, five, and ten year periods; and

(5) Any other historical measure of company performance (not subject to any prescribed method of computation) if such measurement:

(i) Reflects all elements of return;

(ii) Is accompanied by quotations of total return as provided for in paragraph (e)(3) of this section;

(iii) In the case of any measure of performance adjusted to reflect the effect of taxes, is accompanied by quotations of total return as provided for in paragraph (e)(4) of this section;

(iv) Is set out in no greater prominence than the required quotations of total return; and

(v) Identifies the length of and the last day of the period for which performance is measured.

(f) An advertisement for an open-end management investment company (other than a company that is permitted under § 270.35d-1(a)(4) of this chapter to use a name suggesting that the company's distributions are exempt from federal income tax or from both federal and state income tax) that represents or implies that the company is managed to limit or control the effect of taxes on company performance shall accompany any quotation of the company's performance permitted by paragraph (e) of this section with quotations of total return as provided for in paragraph (e)(4) of this section.

* * * * *
PART 270 -- RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940

3. The authority citation for part 270 continues to read in part as follows:

Authority: 15 U.S.C. 80a-1 et seq., 80a-34(d), 80a-37, 80a-39, unless otherwise noted;

4. Section 270.34b-1 is amended by:
 a. redesignating paragraphs (b)(1)(iii)(B) and (C) as paragraphs (b)(1)(iii)(D) and (E);
 b. adding new paragraphs (b)(1)(iii)(B) and (C); and
 c. revising paragraph (b)(3) before the note to read as follows:

§ 270.34b-1 Sales literature deemed to be misleading.

* * * * *
(b)(1) * * *
(iii) * * *

(B) Accompany any quotation of performance adjusted to reflect the effect of taxes (not including a quotation of tax equivalent yield or other similar quotation purporting to demonstrate the tax equivalent yield earned or distributions made by the company) with the quotations of total return specified by paragraph (e)(4) of § 230.482 of this chapter;

(C) If the sales literature (other than sales literature for a company that is permitted under § 270.35d-1(a)(4) to use a name suggesting that the company’s distributions are exempt from federal income tax or from both federal and state income tax) represents or implies that the company is managed to limit or control the effect of taxes on company performance, include the quotations of total return specified by paragraph (e)(4) of § 230.482 of this chapter;

* * * * *

(3) The requirements specified in paragraph (b)(1) of this section shall not apply to any quarterly, semi-annual, or annual report to shareholders under Section 30 of the Act (15 U.S.C. 80a-29) containing performance data for a period commencing no earlier than the first day of the period covered by the report; nor shall the requirements of paragraphs (e)(3)(ii), (e)(4)(ii), and (g) of § 230.482 of this chapter apply to any such periodic report containing any other performance data.

* * * * *

PART 239 -- FORMS PRESCRIBED UNDER THE SECURITIES ACT OF 1933

5. The authority citation for part 239 continues to read, in part, as follows:

Authority: 15 U.S.C. 77f, 77g, 77h, 77j, 77s, 77z-2, 77sss, 78c, 78l, 78m, 78n, 78o(d), 78u-5, 78w(a), 78ll(d), 79e, 79f, 79g, 79j, 79l, 79m, 79n, 79q, 79t, 80a-8,
80a-24, 80a-29, 80a-30 and 80a-37, unless otherwise noted.

PART 274 -- FORMS PRESCRIBED UNDER THE INVESTMENT COMPANY ACT OF 1940

6. The authority citation for part 274 continues to read as follows:

Authority: 15 U.S.C. 77f, 77g, 77h, 77j, 77s, 78c(b), 78l, 78m, 78n, 78o(d), 80a-8, 80a-24, and 80a-29, unless otherwise noted.

Note: The text of Form N-1A does not and these amendments will not appear in the Code of Federal Regulations.

7. General Instruction C to Form N-1A (referenced in §§ 239.15A and 274.11A) is amended by adding paragraphs 3.(d)(iii) and (iv) to read as follows:

Form N-1A

* * * * *

General Instructions

* * * * *

C. Preparation of the Registration Statement

* * * * *

3. Additional Matters:

* * * * *

(d) * *

(iii) A Fund may omit the information required by Items 2(c)(2)(iii)(B) and (C) and 2(c)(2)(iv) if the Fund's prospectus will be used exclusively to offer Fund shares as investment options for one or more of the following:

(A) a defined contribution plan that meets the requirements for qualification under section 401(k) of the Internal Revenue Code (26 U.S.C. 401(k)), a tax-deferred arrangement under section 403(b) or 457 of the Internal Revenue Code (26 U.S.C. 403(b) or 457), a variable contract as defined in section 817(d) of the Internal Revenue Code (26 U.S.C. 817(d)), or a similar plan or arrangement pursuant to which an investor is not taxed on his or her investment in the Fund until the investment is sold; or

(B) persons that are not subject to the federal income tax imposed under section 1 of the Internal Revenue Code (26 U.S.C. 1), or any successor to that section.

(iv) A Fund that omits information under Instruction (d)(iii) may alter the legend required on the back cover page by Item 1(b)(1) to state, as applicable, that the prospectus is intended for use in connection with a defined contribution plan, tax-deferred arrangement, variable contract, or similar plan or arrangement, or persons described in Instruction (d)(iii)(B).
8. Item 2 of Form N-1A (referenced in §§ 239.15A and 274.11A) is amended by:

a. revising paragraphs (c)(2)(i) and (c)(2)(iii);

b. adding paragraph (c)(2)(iv);

c. revising paragraph (a) of Instruction 2;

d. adding paragraph (e) to Instruction 2; and

e. revising paragraph (c) of Instruction 3 to read as follows:

Form N-1A

Item 2. Risk/Return Summary: Investments, Risks, and Performance

(c) * * *

(2) * * *

(i) Include the bar chart and table required by paragraphs (c)(2)(ii) and (iii) of this section. Provide a brief explanation of how the information illustrates the variability of the Fund's returns (e.g., by stating that the information provides some indication of the risks of investing in the Fund by showing changes in the Fund's performance from year to year and by showing how the Fund's average annual returns for 1, 5, and 10 years compare with those of a broad measure of market performance). Provide a statement to the effect that the Fund's past performance (before and after taxes) is not necessarily an indication of how the Fund will perform in the future.

(iii) If the Fund has annual returns for at least one calendar year, provide a table showing the Fund's (A) average annual total return; (B) average annual total return (after taxes on distributions); and (C) average annual total return (after taxes on distributions and redemption). A Money Market Fund should show only the returns described in clause (A) of the preceding sentence. All returns should be shown for 1-, 5-, and 10- calendar year periods ending on the date of the most recently completed calendar year (or for the life of the Fund, if shorter), but only for periods subsequent to the effective date of the Fund's registration statement. The table also should show the returns of an appropriate broad-based securities market index as defined in Instruction 5 to Item 5(b) for the same periods. A Fund that has been in existence for more than 10 years also may include returns for the life of the Fund. A Money Market Fund may provide the Fund's 7-day yield ending on the date of the most recent calendar year or disclose a toll-free (or collect) telephone number that investors can use to obtain the Fund's current 7-day yield. For a Fund (other than a Money Market Fund or a Fund described in General Instruction C.3.(d)(iii)), provide the information in the following table with the specified captions:

AVERAGE ANNUAL TOTAL RETURNS

http://www.sec.gov/rules/final/33-7941.htm
(For the periods ended December 31, _____)

<table>
<thead>
<tr>
<th></th>
<th>1 year [or Life of Fund]</th>
<th>5 years [or Life of Fund]</th>
<th>10 years [or Life of Fund]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Before Taxes</td>
<td>___%</td>
<td>___%</td>
<td>___%</td>
</tr>
<tr>
<td>Return After Taxes on Distributions</td>
<td>___%</td>
<td>___%</td>
<td>___%</td>
</tr>
<tr>
<td>Return After Taxes on Distributions and Sale of Fund Shares</td>
<td>___%</td>
<td>___%</td>
<td>___%</td>
</tr>
</tbody>
</table>

Index
(reflects no deduction for [fees, expenses, or taxes])

___% ___% ___%

(iv) Adjacent to the table required by paragraph 2(c)(2)(iii), provide a brief explanation that:

(A) After-tax returns are calculated using the historical highest individual federal marginal income tax rates and do not reflect the impact of state and local taxes;

(B) Actual after-tax returns depend on an investor's tax situation and may differ from those shown, and after-tax returns shown are not relevant to investors who hold their Fund shares through tax-deferred arrangements, such as 401(k) plans or individual retirement accounts;

(C) If the Fund is a Multiple Class Fund that offers more than one Class in the prospectus, after-tax returns are shown for only one Class and after-tax returns for other Classes will vary; and

(D) If average annual total return (after taxes on distributions and redemption) is higher than average annual total return, the reason for this result may be explained.

Instructions.

* * * * *

2. Table.

(a) Calculate a Money Market Fund's 7-day yield under Item 21(a); the Fund's average annual total return under Item 21(b)(1); and the Fund's average annual total return (after taxes on distributions) and average annual total return (after taxes on distributions and redemption) under Items 21(b)(2) and (3), respectively.

* * *

(e) Returns required by paragraphs 2(c)(2)(iii)(A), (B), and (C) for a Fund or Series must be adjacent to one another and appear in that order. When more than one Fund or Series is offered in the prospectus, do not intersperse returns of one Fund or Series with returns of another Fund or Series. The returns for a broad-based securities market index, as required by paragraph 2(c)(2)(iii), must precede or follow all of the returns for a Fund or Series rather than be interspersed with the returns of the Fund or Series.
3. Multiple Class Funds.

(c) When a Multiple Class Fund offers more than one Class in the prospectus:

(i) Provide the returns required by paragraph 2(c)(2)(iii)(A) of this Item for each Class offered in the prospectus;

(ii) Provide the returns required by paragraphs 2(c)(2)(iii)(B) and (C) of this Item for only one of those Classes. The Fund may select the Class for which it provides the returns required by paragraphs 2(c)(2)(iii)(B) and (C) of this Item, provided that the Fund:

(A) Selects a Class that has been offered for use as an investment option for accounts other than those described in General Instruction C.3.(d)(iii)(A);

(B) Selects a Class described in paragraph (c)(ii)(A) of this instruction with 10 or more years of annual returns if other Classes described in paragraph (c)(ii)(A) of this instruction have fewer than 10 years of annual returns;

(C) Selects the Class described in paragraph (c)(ii)(A) of this instruction with the longest period of annual returns if the Classes described in paragraph (c)(ii)(A) of this instruction all have fewer than 10 years of returns; and

(D) If the Fund provides the returns required by paragraphs 2(c)(2)(iii)(B) and (C) of this Item for a Class that is different from the Class selected for the most immediately preceding period, explain in a footnote to the table the reasons for the selection of a different Class;

(iii) The returns required by paragraphs 2(c)(2)(iii)(A), (B), and (C) of this Item for the Class described in paragraph (c)(ii) of this instruction should be adjacent and should not be interspersed with the returns of other Classes; and

(iv) All returns shown should be identified by Class.

9. Item 5 of Form N-1A (referenced in §§ 239.15A and 274.11A) is amended by revising paragraph (b)(2) to read as follows:

Form N-1A

Item 5. Management's Discussion of Fund Performance

(b)(1) * * *

(2) In a table placed within or next to the graph, provide the Fund's average annual total returns for the 1-, 5-, and 10-year periods as of the end of the last day of the most recent fiscal year (or for the life of the Fund, if shorter), but only for periods
subsequent to the effective date of the Fund's registration statement. Average annual total returns should be computed in accordance with Item 21(b)(1). Include a statement accompanying the graph and table to the effect that past performance does not predict future performance and that the graph and table do not reflect the deduction of taxes that a shareholder would pay on fund distributions or the redemption of fund shares.

* * * * *

10. Item 21 of Form N-1A (referenced in §§ 239.15A and 274.11A) is amended by:

a. revising the phrase "(b)(1) - (4)" to read "(b)(1) - (6)" in the introductory text of paragraph (b);

b. redesignating paragraphs (b)(2), (3), (4), and (5) as paragraphs (b)(4), (5), (6), and (7), respectively;

c. adding new paragraphs (b)(2) and (b)(3); and

d. revising paragraph (b)(1) to read as follows:

Form N-1A

* * * * *

Item 21. Calculation of Performance Data

* * * * *

(b) * * *

(1) *Average Annual Total Return Quotation.* For the 1-, 5-, and 10-year periods ended on the date of the most recent balance sheet included in the registration statement (or for the periods the Fund has been in operation), calculate the Fund's average annual total return by finding the average annual compounded rates of return over the 1-, 5-, and 10-year periods (or for the periods of the Fund's operations) that would equate the initial amount invested to the ending redeemable value, according to the following formula:

\[P(1+T)^n = ERV \]

Where:

- \(P \) = a hypothetical initial payment of $1,000.
- \(T \) = average annual total return.
- \(n \) = number of years.

\(ERV \) = ending redeemable value of a hypothetical $1,000 payment made at the beginning of the 1-, 5-, or 10-year periods at the end of the 1-, 5-, or 10-year periods (or fractional portion).

Instructions.

1. Assume the maximum sales load (or other charges deducted from payments) is
deducted from the initial $1,000 payment.

2. Assume all distributions by the Fund are reinvested at the price stated in the prospectus (including any sales load imposed upon reinvestment of dividends) on the reinvestment dates during the period.

3. Include all recurring fees that are charged to all shareholder accounts. For any account fees that vary with the size of the account, assume an account size equal to the Fund's mean (or median) account size. Reflect, as appropriate, any recurring fees charged to shareholder accounts that are paid other than by redemption of the Fund's shares.

4. Determine the ending redeemable value by assuming a complete redemption at the end of the 1-, 5-, or 10-year periods and the deduction of all nonrecurring charges deducted at the end of each period. If shareholders are assessed a deferred sales load, assume the maximum deferred sales load is deducted at the times, in the amounts, and under the terms disclosed in the prospectus.

5. State the average annual total return quotation to the nearest hundredth of one percent.

6. Total return information in the prospectus need only be current to the end of the Fund's most recent fiscal year.

(2) Average Annual Total Return (After Taxes on Distributions) Quotation.

For the 1-, 5-, and 10-year periods ended on the date of the most recent balance sheet included in the registration statement (or for the periods the Fund has been in operation), calculate the Fund's average annual total return (after taxes on distributions) by finding the average annual compounded rates of return over the 1-, 5-, and 10-year periods (or for the periods of the Fund's operations) that would equate the initial amount invested to the ending value, according to the following formula:

\[P(1+T)^n = ATV_D \]

Where:

- \(P \) = a hypothetical initial payment of $1,000.
- \(T \) = average annual total return (after taxes on distributions).
- \(n \) = number of years.
- \(ATV_D \) = ending value of a hypothetical $1,000 payment made at the beginning of the 1-, 5-, or 10-year periods at the end of the 1-, 5-, or 10-year periods (or fractional portion), after taxes on fund distributions but not after taxes on redemption.

Instructions.

1. Assume the maximum sales load (or other charges deducted from payments) is deducted from the initial $1,000 payment.

2. Assume all distributions by the Fund, less the taxes due on such distributions, are reinvested at the price stated in the prospectus (including any sales load imposed upon reinvestment of dividends) on the reinvestment dates during the period.
3. Calculate the taxes due on any distributions by the Fund by applying the tax rates specified in Instruction 4 to each component of the distributions on the reinvestment date (e.g., ordinary income, short-term capital gain, long-term capital gain).

The taxable amount and tax character of each distribution should be as specified by the Fund on the dividend declaration date, but may be adjusted to reflect subsequent recharacterizations of distributions. Distributions should be adjusted to reflect the federal tax impact the distribution would have on an individual taxpayer on the reinvestment date. For example, assume no taxes are due on the portion of any distribution that would not result in federal income tax on an individual, e.g., tax-exempt interest or non-taxable returns of capital. The effect of applicable tax credits, such as the foreign tax credit, should be taken into account in accordance with federal tax law.

4. Calculate the taxes due using the highest individual marginal federal income tax rates in effect on the reinvestment date. The rates used should correspond to the tax character of each component of the distributions (e.g., ordinary income rate for ordinary income distributions, short-term capital gain rate for short-term capital gain distributions, long-term capital gain rate for long-term capital gain distributions). Note that the required tax rates may vary over the measurement period. Disregard any potential tax liabilities other than federal tax liabilities (e.g., state and local taxes); the effect of phaseouts of certain exemptions, deductions, and credits at various income levels; and the impact of the federal alternative minimum tax.

5. Include all recurring fees that are charged to all shareholder accounts. For any account fees that vary with the size of the account, assume an account size equal to the Fund's mean (or median) account size. Assume that no additional taxes or tax credits result from any redemption of shares required to pay such fees. Reflect, as appropriate, any recurring fees charged to shareholder accounts that are paid other than by redemption of the Fund's shares.

6. Determine the ending value by assuming a complete redemption at the end of the 1-, 5-, or 10-year periods and the deduction of all nonrecurring charges deducted at the end of each period. If shareholders are assessed a deferred sales load, assume the maximum deferred sales load is deducted at the times, in the amounts, and under the terms disclosed in the prospectus. Assume that the redemption has no tax consequences.

7. State the average annual total return (after taxes on distributions) quotation to the nearest hundredth of one percent.

(3) Average Annual Total Return (After Taxes on Distributions and Redemption) Quotation. For the 1-, 5-, and 10-year periods ended on the date of the most recent balance sheet included in the registration statement (or for the periods the Fund has been in operation), calculate the Fund's average annual total return (after taxes on distributions and redemption) by finding the average annual compounded rates of return over the 1-, 5-, and 10-year periods (or for the periods of the Fund's operations) that would equate the initial amount invested to the ending value, according to the following formula:

\[P(1 + T)^n = ATV_{DR} \]

Where:

\[P = \text{a hypothetical initial payment of }$1,000. \]

\[T = \text{average annual total return (after taxes on distributions and redemption)}. \]
\[n = \text{number of years.} \]

\[\text{ATV}_{DR} = \text{ending value of a hypothetical$1,000 payment made at the beginning of the 1-, 5-, or 10-year periods at the end of the 1-, 5-, or 10-year periods (or fractional portion), after taxes on fund distributions and redemption.} \]

Instructions.

1. Assume the maximum sales load (or other charges deducted from payments) is deducted from the initial $1,000 payment.

2. Assume all distributions by the Fund, less the taxes due on such distributions, are reinvested at the price stated in the prospectus (including any sales load imposed upon reinvestment of dividends) on the reinvestment dates during the period.

3. Calculate the taxes due on any distributions by the Fund by applying the tax rates specified in Instruction 4 to each component of the distributions on the reinvestment date (e.g., ordinary income, short-term capital gain, long-term capital gain). The taxable amount and tax character of each distribution should be as specified by the Fund on the dividend declaration date, but may be adjusted to reflect subsequent recharacterizations of distributions. Distributions should be adjusted to reflect the federal tax impact the distribution would have on an individual taxpayer on the reinvestment date. For example, assume no taxes are due on the portion of any distribution that would not result in federal income tax on an individual, e.g., tax-exempt interest or non-taxable returns of capital. The effect of applicable tax credits, such as the foreign tax credit, should be taken into account in accordance with federal tax law.

4. Calculate the taxes due using the highest individual marginal federal income tax rates in effect on the reinvestment date. The rates used should correspond to the tax character of each component of the distributions (e.g., ordinary income rate for ordinary income distributions, short-term capital gain rate for short-term capital gain distributions, long-term capital gain rate for long-term capital gain distributions). Note that the required tax rates may vary over the measurement period. Disregard any potential tax liabilities other than federal tax liabilities (e.g., state and local taxes); the effect of phaseouts of certain exemptions, deductions, and credits at various income levels; and the impact of the federal alternative minimum tax.

5. Include all recurring fees that are charged to all shareholder accounts. For any account fees that vary with the size of the account, assume an account size equal to the Fund’s mean (or median) account size. Assume that no additional taxes or tax credits result from any redemption of shares required to pay such fees. Reflect, as appropriate, any recurring fees charged to shareholder accounts that are paid other than by redemption of the Fund’s shares.

6. Determine the ending value by assuming a complete redemption at the end of the 1-, 5-, or 10-year periods and the deduction of all nonrecurring charges deducted at the end of each period. If shareholders are assessed a deferred sales load, assume the maximum deferred sales load is deducted at the times, in the amounts, and under the terms disclosed in the prospectus.

7. Determine the ending value by subtracting capital gains taxes resulting from the redemption and adding the tax benefit from capital losses resulting from the redemption.

(a) Calculate the capital gain or loss upon redemption by subtracting the tax basis from the redemption proceeds (after deducting any nonrecurring charges as specified by Instruction 6).
(b) The Fund should separately track the basis of shares acquired through the $1,000 initial investment and each subsequent purchase through reinvested distributions. In determining the basis for a reinvested distribution, include the distribution net of taxes assumed paid from the distribution, but not net of any sales loads imposed upon reinvestment. Tax basis should be adjusted for any distributions representing returns of capital and any other tax basis adjustments that would apply to an individual taxpayer, as permitted by applicable federal tax law.

(c) The amount and character (e.g., short-term or long-term) of capital gain or loss upon redemption should be separately determined for shares acquired through the $1,000 initial investment and each subsequent purchase through reinvested distributions. The Fund should not assume that shares acquired through reinvestment of distributions have the same holding period as the initial $1,000 investment. The tax character should be determined by the length of the measurement period in the case of the initial $1,000 investment and the length of the period between reinvestment and the end of the measurement period in the case of reinvested distributions.

(d) Calculate the capital gains taxes (or the benefit resulting from tax losses) using the highest federal individual capital gains tax rate for gains of the appropriate character in effect on the redemption date and in accordance with federal tax law applicable on the redemption date. For example, applicable federal tax law should be used to determine whether and how gains and losses from the sale of shares with different holding periods should be netted, as well as the tax character (e.g., short-term or long-term) of any resulting gains or losses. Assume that a shareholder has sufficient capital gains of the same character from other investments to offset any capital losses from the redemption so that the taxpayer may deduct the capital losses in full.

8. State the average annual total return (after taxes on distributions and redemption) quotation to the nearest hundredth of one percent.

* * * * *

By the Commission.

Jonathan G. Katz
Secretary

January 18, 2001

Footnotes

2 Liberty Funds Distributor News Release, Liberty Announces Annual Mutual Fund Tax Pain Index (Apr. 12, 2000) http://www.libertyfunds.com (estimate of the tax burden based on net capital gains realized on mutual funds other than money market funds, and net investment income on equity, bond, and
income funds).

6 In a recent telephone survey, 1,000 mutual fund investors were asked about their tax knowledge. Eighty-five percent of respondents claimed taxes play an important role in investment decisions, but only thirty-three percent felt that they were very knowledgeable about the tax implications of investing. Eighty-two percent were unable to identify the maximum rate for long-term capital gains. The Dreyfus Corporation, *Dreyfus' 1999 Tax Informed Investing Study* (visited Jan. 2, 2001) <http://www.dreyfus.com/>.

7 I.R.C. 61(a)(3) and (7) (providing that an individual's gross income includes dividends and gains derived from dealings in property); I.R.C. 852(b)(3)(8) (capital gain dividend from a mutual fund treated as gain from sale or exchange of capital asset held for more than one year); I.R.C. 1001 (gain from sale or other disposition of property is excess of amount realized over adjusted basis, and loss is excess of the adjusted basis over amount realized). See IRS Publication 564, *Mutual Fund Distributions* (2000), at 2-4 (explaining tax treatment of distributions of income and capital gains by mutual funds to their shareholders).

8 This is attributable, in part, to the fact that a mutual fund generally must distribute substantially all of its net investment income and realized capital gains to its shareholders in order to qualify for favorable tax treatment as a "regulated investment company" ("RIC"). I.R.C. 852 and 4982(b). As a RIC, a mutual fund is generally entitled to deduct dividends paid to shareholders, resulting in its shareholders being subject to only one level of taxation on the income and gains distributed to them. I.R.C. 851 (circumstances under which an investment company may be treated as a RIC) and 852(b)(2) (calculation of taxable income of a RIC).

9 KPMG study, supra note 3, at 14 (reporting the impact of taxes on performance of 496 stock funds for the ten-year period ending December 31, 1997).

In its prospectus, a mutual fund is required to disclose (i) the tax consequences of buying, holding, exchanging, and selling fund shares, including the tax consequences of fund distributions; and (ii) whether the fund may engage in active and frequent portfolio trading to achieve its principal investment strategies, and, if so, the tax consequences of increased portfolio turnover and how this may affect fund performance. Item 7(e) of Form N-1A; Instruction 7 to Item 4 of Form N-1A. A fund also must disclose in its prospectus and annual report the portfolio turnover rate and dividends and capital gains distributions per share for each of the last five fiscal years. Items 9(a) and 22(b)(2) of Form N-1A. These items also require funds to show net realized and unrealized gain or loss on investments on a per share basis for each of the fund's last five fiscal years.

Proposing Release, supra note 1.

As of year end 1999, eighty-one percent of mutual fund assets ($5.5 trillion) were held by individuals. 2000 Mutual Fund Fact Book, supra note 2, at 41. At the end of 1999, mutual fund assets held in retirement accounts stood at $2.5 trillion. 2000 Mutual Fund Fact Book, at 49. Mutual fund assets held by individuals in money market funds stood at $885 billion. 2000 Mutual Fund Fact Book, at 103. Thus, almost 40 percent of non-money market fund assets held by individuals ($2.1 trillion) were held in taxable accounts.

An investor is not taxed on his or her investments in IRAs, 401(k) plans, and other qualified retirement plans until the investor receives a distribution from the plan.

See Items 2, 5, 9, and 22(b)(2) of Form N-1A.
Last year, we posted a bulletin for mutual fund investors on our website, in which we cautioned investors to look beyond performance when evaluating mutual funds and to consider the costs relating to a mutual fund investment, including fees, expenses, and the impact of taxes on their investment. Securities and Exchange Commission, *Mutual Fund Investing: Look at More Than a Fund's Past Performance* (last modified Jan. 24, 2000) http://www.sec.gov/consumer/mperf.htm.

See ICI, *Understanding Shareholders' Use of Information and Advisers* (Spring 1997), at 21 and 24 (Total return information was frequently considered by investors before a purchase, second only to the level of risk of the fund. Eighty-eight percent of fund investors surveyed said that they considered total return before their most recent purchase of a mutual fund. Eighty percent of fund owners surveyed reported that they followed a fund's rate of return at least four times per year.).

Item 3 of Form N-1A; Consolidated Disclosure of Mutual Fund Expenses, Investment Company Act Release No. 16244 (Feb. 1, 1988) [53 FR 3192 (Feb. 4, 1988)].

United States General Accounting Office, Mutual Fund Fees: Additional Disclosure Could Encourage Price Competition (June 2000) (recommending that the Commission require fund quarterly account statements to include the dollar amount of each investor's share of fund operating expenses); Division of Investment Management, Securities and Exchange Commission, Report on Mutual Fund Fees and Expenses (Dec. 2000) (recommending that the Commission consider requiring fund shareholder reports to include a table showing the cost in dollars incurred by a shareholder who invested a standardized amount in the fund, paid the fund's actual expenses, and earned the fund's actual return for the period).

The comment letters and a summary of the comments prepared by the Commission staff are available for public inspection and copying in the Commission's Public Reference Room, 450 Fifth Street, N.W., Washington, D.C. (File No. S7-09-00).

Items 2(c)(2)(i) and (iii) of Form N-1A.

Rule 482(e)(4) and (5)(iii); rule 482(f); rule 34b-1(b)(1)(iii)(B) and (C).

General Instruction C.3(d)(iii) and Item 2(c)(2)(iv)(B) of Form N-1A.

See Item 21(b)(1) of Form N-1A.
Proposed Item 21(b)(3) of Form N-1A.

Proposed Item 21(b)(4) of Form N-1A.

Items 21(b)(2) and (3) of Form N-1A.

A recent report estimates that over the past decade the average holding period of mutual funds has decreased from over 10 years to about 3 years. Steve Galbraith, Mary Medley, Sean Yu, The Apotheosis of Stuart--Lighting the Candle in U.S. Equities, Bernstein Research Call, Sanford C. Bernstein & Co., Jan. 10, 2000.

Instruction 4 to Item 21(b)(1) of Form N-1A.

Items 2(c)(2)(i) and (iii) and 21(b)(1)-(3) of Form N-1A.

See Section D, infra, regarding modifications to the format of disclosure.

Item 2(c)(2)(iii) of Form N-1A.

Rule 498(c)(2)(iii) under the Securities Act [17 CFR 230.498(c)(2)(iii)]. In addition, after-tax returns would be required in registration statements filed on Form N-14 [17 CFR 239.23], the registration form used by mutual funds to register securities to be issued in mergers and other business combinations under the Securities Act. See Item 5(a) of Form N-14 (cross-referencing Item 2 of Form N-1A).

See Proposing Release, supra note 1, at nn. 36-41, and accompanying text.

Item 5(b)(2) of Form N-1A.

An estimated 88 percent of mutual fund shareholders considered the total return of the fund before their most recent fund purchase. Seventy-five percent of mutual fund shareholders considered the fund's performance relative to similar funds. ICI, Understanding Shareholders' Use of Information and Advisers, supra note 18, at 21.

See Section II.A., supra, regarding modifications to the types of returns required; Section II.D., infra, regarding modifications to the format of disclosure, including simplification of presentation for funds offering more than one class of shares in the prospectus; Section II.H., infra, regarding the narrative accompanying the performance table.

Item 7(e) of Form N-1A.

See discussion in note 40, supra.

Annually, funds are required to send Form 1099-DIV or a similar statement to any shareholder receiving $10 or more in taxable income. I.R.C. 6042. Form 1099-DIV reports the amount and character of fund distributions (e.g., ordinary dividends, capital gain distributions, and non-taxable distributions) received by shareholders during the year. Funds also are required to send Form 1099-B or a similar statement to any shareholder who sells, exchanges, or redeems fund shares during the year. I.R.C. 6045. Form 1099-B reports the proceeds from the sale of fund shares.

The Securities Act requires mutual funds to send updated prospectuses only to those existing shareholders who make additional purchases. In practice, many mutual funds send an updated prospectus annually to all of their shareholders.

Item 5(b)(2) of Form N-1A.

Item 2(c)(2)(iii) of Form N-1A.
Item 2(c)(2)(iii) of Form N-1A; Instruction 2(e) to Item 2 of Form N-1A.

Instruction 3(c)(ii) to Item 2 of Form N-1A.

Item 2(c)(2)(iv)(C) of Form N-1A.

Instructions 2(e) and 3(c)(iii) to Item 2 of Form N-1A.

Instruction 2(e) to Item 2 of Form N-1A.

Item 2(c)(2)(iii) of Form N-1A.

General Instruction C.3(d)(iii) of Form N-1A.

These similar plans or arrangements may include those existing under current tax law or new types of plans or arrangements permitted by future changes in the tax law.

See IRS Publication 575, Pension and Annuity Income (2000), at 4 (explaining tax treatment of earnings under a variable annuity contract) and 7-19 (explaining tax treatment of distributions from retirement plans); IRS Publication 525, Taxable and Non-Taxable Income (2000), at 6 (explaining tax treatment of contributions to a retirement plan) and 15 (explaining tax treatment of proceeds of a life insurance contract); IRS Publication 575, Pension and Annuity Income (2000), at 5 (tax treatment of Section 457 Deferred Compensation Plan); IRS Publication 571, Tax Sheltered Annuity Programs for Employees of Public Schools and Certain Tax-Exempt Organizations (1999), at 2 (explaining tax treatment of Section 403(b) tax sheltered annuities).

I.R.C. 702 (regarding taxation of partners).

Interest on any state or local bond is excluded from gross income. However, there is no exclusion for capital gains resulting from the sale of such bonds. See I.R.C. 103(a); IRS Publication 564, Mutual Fund Distributions (2000), at 2 (describing tax treatment of tax-exempt mutual funds).

A tax-exempt fund, like any other fund, may assume, when calculating after-tax returns, that no taxes are due on the portions of any distribution that would not result in federal income tax on an individual. Instruction 3(a) to Item 21(b)(2) and Instruction 3(a) to Item 21(b)(3) of Form N-1A.

Rule 482(e)(4) permits the standardized after-tax returns for 1-, 5-, and 10-year periods to be contained in an advertisement, provided that the standardized after-tax returns (i) are current to the most recent calendar quarter ended prior to the submission of the advertisement for publication; (ii) are accompanied by quotations of standardized before-tax return; (iii) include both measures of standardized after-tax return; (iv) are set out with equal prominence to one another and in no greater prominence than the required quotations of standardized before-tax return; and (v) identify the length of and the last day of the 1-, 5-, and 10-year periods.

Any other measure of after-tax return could be included in advertisements if accompanied by the standardized measures of after-tax return. Rule 482(e)(5)(iii). Similarly, measures of after-tax return may be included in other sales materials if accompanied by the standardized measures of after-tax return. Rule 34b-1(b)(1)(iii)(B).

A quotation of standardized tax equivalent yield in an advertisement or other sales literature need not be accompanied by standardized after-tax returns. Rules 482(e)(2) and 34b-1(b)(iii)(B).

Specifically, any measure of after-tax return in a rule 482 advertisement will
be required to reflect all elements of return and be set out in no greater prominence than the required quotations of standardized before-tax and after-tax returns. The advertisement will be required to identify the length of and the last day of the period for which performance is measured. Rule 482 (e)(5)(i), (iv), and (v).

Likewise, any sales literature that contains a quotation of performance that has been adjusted to reflect the effect of taxes remains subject to the other requirements of rule 34b-1.

We believe that any fund that uses terms such as tax-managed, tax-efficient, tax-sensitive, or tax-aware in its name is representing or implying that the fund is managed to limit or control the effect of taxes on performance. Therefore, a fund using these terms in its name will be required to include standardized after-tax returns in any advertisement or sales literature that includes a quotation of performance.

Rules 482(e)(6) and 34b-1(b)(1)(iii)(C). The fund names rule, rule 35d-1(a) (4), requires a fund that uses a name suggesting that a fund's distributions are exempt from federal income tax or from both federal and state income tax to adopt a fundamental policy under section 8(b)(3) of the Investment Company Act: (i) to invest at least 80 percent of its assets in investments the income from which is exempt, as applicable, from federal income tax or from both federal and state income tax; or (ii) to invest its assets so at least 80 percent of the income that it distributes will be exempt, as applicable, from federal income tax or from both federal and state income tax. See Investment Company Names, Investment Company Act Release No. 24828 (Jan. 17, 2001).

Currently, the highest individual marginal income tax rate imposed on ordinary income is 39.6%, and the highest rate imposed on long-term capital gains is 20%. I.R.C. 1(a)-(d), (h).

The concerns expressed by the commenters are, in any event, mitigated by the fact that after-tax returns will not reflect state and local taxes, which are often quite significant. State income tax rates can be as high as 12%; and a rate of 6%-7%, or higher, is common on taxable income of $55,000, the income level suggested by commenters as representative of a typical mutual fund investor. See The World Almanac and Book of Facts 161 (2000) (state income tax rates).

Instructions 6 and 7 to Item 21(b)(3) of Form N-1A. In order to simplify the computation of returns after taxes on distributions and sale of fund shares, funds may assume that a taxpayer has sufficient capital gains of the same character to offset any capital losses on a sale of fund shares and therefore that the taxpayer may deduct the entire capital loss. Instruction 7(d) to Item
21(b)(3) of Form N-1A.

Instruction 7(c) to Item 21(b)(3) of Form N-1A.

A fund would also be required to separately track the basis of shares acquired though the $1,000 initial investment and each subsequent purchase through reinvested distributions. We wish to clarify that a distribution representing a return of capital will reduce the basis of an existing lot of shares and be included in the basis of the shares acquired upon reinvestment, which may have the effect of shifting the amount of basis allocated to shares with various holding periods.

Instruction 7(d) to Item 21(b)(3) of Form N-1A.

I.R.C. 1222(1) provides that the term "short-term capital gain" means "gain from the sale or exchange of a capital asset held for not more than 1 year, if and to the extent such gain is taken into account in computing gross income."

Instruction 4 to Item 21(b)(2) of Form N-1A; Instruction 4 to Item 21(b)(3) of Form N-1A. The Proposing Release sets forth the maximum federal income tax rates for the years 1990-2000. Proposing Release, supra note 1, at n.66, and accompanying text.

Instruction 3 to Item 21(b)(2) of Form N-1A; Instruction 3 to Item 21(b)(3) of Form N-1A. A fund may elect to pass through to shareholders foreign tax credits if more than 50 percent of the value of the fund’s total assets at the close of the taxable year consists of stock or securities in foreign corporations and the fund otherwise qualifies for favorable tax treatment as a regulated investment company for the taxable year. I.R.C. 853. In computing after-tax returns, a fund that elects to pass foreign tax credits through to shareholders may assume that the shareholders use those credits. We would not object if a fund adjusts after-tax returns to reflect the impact of distributions of up to $600 of foreign tax credits, the amount of credit that may be taken by a married couple filing jointly without regard to limits on the foreign tax credit. I.R.C. 904(a) and (j)(2). If a fund makes distributions of foreign tax credits in excess of $600, the fund must take into account the limits in the federal tax law on the ability of shareholders to use foreign tax credits.

Instruction 2(c)(iii) of Form N-1A.

Instruction 2(c)(2)(iv) of Form N-1A.

Instruction 3 to Item 21(b)(2) of Form N-1A; Instruction 3 to Item 21(b)(3) of Form N-1A.

Id.

Id.

Id.

Item 2(c)(2)(iv) of Form N-1A.

See rule 421(b) and (d) under the Securities Act [17 CFR 230.421(b) and (d)] (requiring that all information in the prospectus be presented in clear, concise, and understandable fashion and that registrants use plain English principles in the organization, language, and design of the summary and risk factors sections of their prospectuses); General Instruction C.1 to Form N-1A (fund prospectus should be easy to understand and promote effective communication); Item 2 of Form N-1A (requiring that the response to Item 2 be stated in plain English).

We eliminated the proposed requirement that funds explain the differences between the types of returns presented, which is unnecessary in light of our reduction of the returns from four to three and our revision of the table.
captions. We also eliminated the proposed requirement that funds disclose that before-tax returns assume all distributions are reinvested. As commenters noted, funds are not currently required to include this technical information with before-tax returns. We also eliminated the similar proposed requirement that funds disclose that after-tax returns assume that taxes are paid out of fund distributions and that distributions, less taxes, are reinvested. Finally, we eliminated the proposed requirement that funds, whose after-tax returns exceed before-tax returns, explain the reason for this result. Funds, however, will have the option of including this explanatory material. Item 2(c)(2)(iv)(D) of Form N-1A.

As discussed above, we have simplified the proposal to require a fund offering more than one class of shares in its prospectus to show after-tax returns for one class only. See Section II.C., supra notes 48-50 and accompanying text. Consistent with this modification, such funds will be required to include disclosure that after-tax returns are shown for only one class and that after-tax returns for other classes will vary. Item 2(c)(2)(iv)(C) of Form N-1A.

As discussed above, we have modified the proposal by eliminating the proposed requirement to include after-tax returns in the MDFP, which is typically contained in the annual report. Accordingly, the hour burden for preparing and filing annual reports in compliance with rule 30d-1 will be reduced by 7.5 hours. See Proposing Release, supra note 1, at nn. 107-110, and accompanying text (discussing the estimated hour burden for proposal requiring after-tax return disclosure in annual reports). Funds will be required to include a statement in the MDFP that accompanies the performance table and graph to the effect that the returns shown do not reflect the deduction of taxes that a shareholder would pay on fund distributions or the redemption of fund shares. Item 5(b)(2) of Form N-1A. We believe that the hour burden for the required statement in the MDFP will be negligible and will not result in a change to the current hour burden for preparing and filing annual reports.

In its prospectus, a mutual fund is required to disclose (i) the tax consequences of buying, holding, exchanging, and selling fund shares, including the tax consequences of fund distributions; and (ii) whether the fund may engage in active and frequent portfolio trading to achieve its principal investment strategies, and, if so, the tax consequences of increased portfolio turnover and how this may affect fund performance. See Item 7(e) of Form N-1A; Instruction 7 to Item 4 of Form N-1A. A fund also must disclose in its prospectus turnover rate and dividends and capital gains distributions per share for each of the last five fiscal years. See Items 9(a) and 22(b)(2) of Form N-1A. These items also require funds to show net realized and unrealized gain or loss on investments on a per share basis for each of the fund’s last five fiscal years.

Given the $2.1 trillion of assets held in individual non-money market fund
taxable accounts, even a small change in relative after-tax returns affecting only a small portion of those assets can lead to significant benefits to investors.

A service provider that compiles and disseminates fund pricing and performance information recently announced that it will offer to calculate and publish after-tax returns for its fund clients. See Daly, Program Lets Fund Companies Offer After-Tax Returns (Dec. 29, 1999) (visited Feb. 9, 2000) http://www.ignites.com/.

As discussed above, we have modified the proposal by: eliminating the proposed requirement to disclose pre-liquidation before-tax returns; eliminating after-tax returns in annual reports; streamlining the required narrative disclosure; and simplifying the presentation for funds that offer multiple classes in a single prospectus.

This estimate is based on the staff’s consultations with industry representatives.

The number of funds referenced in post-effective amendments that will be affected by the amendments is computed by subtracting those funds that are exempt from or permitted to omit the after-tax disclosure from the number of funds referenced in post-effective amendments (7,875 - 1,040 - 1,575, or 5,260). For purposes of our analysis, we have not excluded certain funds that also would be permitted to omit the after-tax return disclosure, such as funds that distribute prospectuses for use by investors in 401(k) plans or other similar tax-deferred arrangements. While these funds will be permitted to omit the after-tax return disclosure in prospectuses distributed to investors in these tax-deferred arrangements, they will still incur a burden from including the disclosure in prospectuses distributed to other investors.

This cost estimate is calculated by multiplying the estimated number of hours to comply with the requirements (94,680 hours) by the weighted average hourly wage ($64). The Commission’s estimate concerning the burden hours is based on the staff’s consultation with industry representatives. The Commission’s estimate concerning the wage rate is based on salary information for the securities industry compiled by the Securities Industry Association. See Securities Industry Association, Report on Management & Professional Earnings in the Securities Industry 1999 (Sept. 1999).

The estimate is based on the staff’s consultation with industry representatives.

Software-related costs may decrease as vendors offering services for computing the new standardized after-tax returns enter the market. See Daly, Program Lets Fund Companies Offer After-Tax Returns (Dec. 29, 1999) (visited Feb. 9, 2000) http://www.ignites.com/.

This estimate is based on the assumption that tax-managed funds and index funds would be most likely to use advertisements that either include after-tax returns or include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance.

This estimate is based on the staff’s consultations with industry representatives.

The total cost of the annual hour burden is calculated by multiplying the annual hour burden (79) by the weighted average hourly wage ($64). See supra note 100.

These estimates are based on filings received in calendar year 1999.

This number is computed by subtracting from the number of respondents filing rule 34b-1 sales material the number of money market funds, the
number of funds and UITs registered on Forms N-3 and N-4, and the number of funds used as underlying portfolios for variable insurance contracts (8,495 - 1,040 - 620 - 1,575, or 5,260).

This estimate is based on the assumption that tax-managed funds and index funds would be most likely to advertise after-tax performance.

The total annual burden for the amendments is computed by multiplying the estimated number of respondents (157.8) subject to rule 34b-1 by the additional burden imposed by the amendments (.5). The total cost of the annual burden attributable to the amendments is calculated by multiplying the total burden hours (78.9) by the weighted average hourly rate of $64.

15 U.S.C. 77(b), 78c(f), and 80a-2(c).

See supra notes 1-5 and accompanying text.

See supra note 10 and accompanying text.

See supra note 11 and accompanying text.

See supra note 12 and accompanying text.

17 C.F.R. 270.0-10.

This estimate is based on statistics compiled by the Commission's Division of Investment Management staff from January 1, 1999, through December 31, 1999.

This estimate is based on the staff's consultation with industry representatives. Since an investment company filing an initial registration statement on Form N-1A has no performance history to disclose, the proposed amendments would not affect such initial filings.

This estimate is based on the staff's consultation with industry representatives.

This estimate is based on the staff's consultation with industry representatives.

As discussed above, we have modified the proposal by: eliminating the proposed requirement to disclose pre-liquidation before-tax returns; eliminating after-tax returns in annual reports; streamlining the required narrative disclosure; and simplifying the presentation for funds that offer multiple classes in a single prospectus.

The amendments modify rule 482, which is part of Regulation C under the Securities Act of 1933. Regulation C describes the disclosure that must appear in registration statements under the Securities Act and Investment Company Act. The PRA burden associated with rule 482, however, is included in the investment company registration statement form, not in Regulation C. In this case, the amendments to rule 482 will affect the burden hours for Form N-1A, the registration form for open-end investment companies that currently advertise pursuant to rule 482. We estimate that the burden associated with Regulation C will not change with the amendments to rule 482.

As discussed above, we have modified the proposal by eliminating the proposed requirement to include after-tax returns in the MDFP, which is typically contained in the annual report. Accordingly, the hour burden for preparing and filing annual reports in compliance with rule 30d-1 will be...
reduced by 7.5 hours. See Proposing Release, supra note 1, at nn. 107-110, and accompanying text (discussing the estimated hour burden for proposal requiring after-tax return disclosure in shareholder reports). Funds will be required to include a statement in the MDFP that accompanies the performance table and graph to the effect that the returns shown do not reflect the deduction of taxes that a shareholder would pay on fund distributions or the redemption of fund shares. Item 5(b)(2) of Form N-1A. We believe that the hour burden for the required statement in the MDFP will be negligible and will not result in a change to the current hour burden for preparing and filing annual reports.

124 As discussed above, we have modified the proposal by: eliminating the proposed requirement to disclose pre-liquidation before-tax returns; eliminating after-tax returns in annual reports; streamlining the required narrative disclosure; and simplifying the presentation for funds that offer multiple classes in a single prospectus. The elimination of after-tax returns in annual reports will reduce the hour burden for preparing and filing annual reports in compliance with rule 30d-1 by 7.5 hours. See Proposing Release, supra note 1, at nn. 107-110, and accompanying text (discussing the estimated hour burden for proposal requiring after-tax return disclosure in annual reports). We do not believe, however, that the other three modifications will affect the estimated burden hours overall.

125 These estimates are based on filings received in calendar year 1999. The current approved hour burden per portfolio for an initial Form N-1A is 824 hours.

126 These estimates are based on filings received in calendar year 1999. The current approved hour burden per portfolio for post-effective amendments to Form N-1A is 104 hours.

127 This estimate is based on the staff's consultations with industry representatives.

128 The number of funds referenced in post-effective amendments that will be affected by the amendments is computed by subtracting those funds that are exempt from or permitted to omit the after-tax return disclosure from the number of funds referenced in post-effective amendments (7,875 - 1,040 - 1,575, or 5,260). For purposes of our analysis, we have not excluded certain funds that also would be permitted to omit the after-tax return disclosure, such as funds that distribute prospectuses for use by investors in 401(k) plans or other similar tax-deferred arrangements. While these funds will be permitted to omit the after-tax return disclosure in prospectuses distributed to investors in these tax-deferred arrangements, they would still incur a burden from including the disclosure in prospectuses distributed to all other investors.

129 This total annual hour burden is calculated by adding the total annual hour burden for initial registration statements and the total annual hour burden for post-effective amendments, including the additional burden imposed by the amendments. As explained, the hour burden per portfolio for an initial filing would remain at 824 hours, for a total burden of 245,552 hours. The hour burden per portfolio for a post-effective amendment will be 122 hours (104 + 18), with a burden of 104 hours imposed on all 7,875 portfolios (104 × 7,875, or 819,000) and the additional 18 hours affecting 5,260 portfolios (18 × 5,260, or 94,680). Moreover, since the burden associated with rule 482 is included in Form N-1A (as discussed in note 122, supra), the Form N-1A burden will include the estimated rule 482 burden of .5 hours (the rule 482 burden is discussed below) that will be imposed on the three percent of funds that we estimate would use advertisements or sales literature that either include after-tax returns or include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance [.5 × (5,260 × 3%), or 79]. Thus, the total annual
hour burden for all funds for the preparation and filing of initial registration statements and post-effective amendments on Form N-1A will be 1,159,311 hours (245,552 + 819,000 + 94,680 + 79).

130 See supra note 122.

131 This estimate is based on the assumption that tax-managed funds and index funds would be most likely to advertise after-tax performance or use advertisements that include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance.

132 This estimate is based on the staff's consultations with industry representatives.

133 These estimates are based on filings received in calendar year 1999. The current approved hour burden per response for rule 34b-1 is 2.4 hours.

134 This number is computed by subtracting from the number of respondents filing rule 34b-1 sales material the number of money market funds, the number of funds and UITs registered on Forms N-3 and N-4, and the number of funds used as underlying portfolios for variable insurance contracts (8,495 - 1,040 - 620 - 1,575, or 5,260).

135 This estimate is based on the assumption that tax-managed funds and index funds would be most likely to advertise after-tax performance or use advertisements that include other performance information together with representations that the fund is managed to limit or control the effect of taxes on performance.

136 The current total annual hour burden is computed by multiplying the number of responses filed annually under rule 34b-1 by the current hour burden (37,000 × 2.4). The total annual hour burden for the industry has increased significantly from previous estimates because we have reevaluated the number of respondents subject to rule 34b-1.

137 The total annual burden is computed by adding the current burden (2.4 × 37,000, or 88,800) to the additional burden imposed by the proposed amendments [.5 × (8,495 - 1,040 - 620 - 1,575) × 4.35 × 3%, or 343].
Has The Realized Equity Premium Been Shrinking?

Jun. 4, 2014 7:20 AM ET | 23 comments | by: Larry Swedroe

Disclosure: I have no positions in any stocks mentioned, and no plans to initiate any positions within the next 72 hours. (More...)

Summary

- Claude Erb has done a series of papers in which he examines the various premiums — size, value, momentum, and beta.
- His most recent one focused specifically on the equity risk premium.
- While it’s certainly possible that the equity risk premium could revert to its historical mean, mean reversion of valuations is far from a certainty.

Tying up our two-part series on premiums, today we'll explore the equity premium.

Claude Erb has done a series of papers in which he examines the various premiums - size, value, momentum, and beta - and found that there's a demonstrable trend in each case of the premiums shrinking in terms of realized returns. His April 2014 paper, "The Incredible Shrinking Realized Equity Risk Premium," focused specifically on the equity risk premium.

To create a trend line Erb used a three-step process:

Step 1: He linked the monthly excess returns into a "growth of $1" cumulative. The "market" excess return is the monthly total return minus the monthly Treasury-bill return from Ken French's website.

Step 2: On a monthly basis, he calculated the 10-year annualized rate of return. The first calculation covered the 10 years from June 1926 to June 1936, the second from July 1926 to July 1936, etc. Part of the reason for using the 10-year time horizon was that it is the same time horizon that Campbell and Shiller used in their early CAPE ratio research.

Step 3: He created a trend line using an Excel/PowerPoint function that regressed the rolling 10-year return on time (the x axis). He found that a 4.3 percent equity risk premium (the stock market total return in excess of the return of the t-bill) was the best fit of the relationship between 10-year excess return and time as of April 2014. Or given the way that 10-year equity excess returns have evolved over time, the relationship that best captures the downtrend in this measure suggests that the trend equity risk premium is currently 4.3 percent.

It's worth noting that Erb's 4.3 percent estimate is very similar to the current real expected return using Shiller's adjusted CAPE 10. The CAPE 10 is now at about 25.9. That produces an earnings yield of about 3.9 percent. However, we need to make an adjustment to arrive at the forecasted
A real return to stocks because the earnings figure from the CAPE 10 is on average a lag of 5 years. With real earnings growing about 1.5 percent a year, we need to multiply the 3.9 percent earnings yield by 1.075 percent (1.5 percent x 5 years). That produces a real expected return to stocks of about 4.2 percent.

Having estimated the equity risk premium at 4.3 percent, Erb noted that "the realized 'equity risk premium' has been in a downward trend since 1925. He explained that while a constant equity risk premium, and mean reversion, leads to the view that the probability rises over time that stocks will outperform high quality bonds, a declining equity risk premium, and mean reversion, leads to the view that the probability increases over time that safe assets will outperform stocks. He suggests that the declining equity risk premium has created a conundrum for many investors: Is it stocks for the long run, or bonds for the long run?

Erb also noted that a simple extrapolation of the declining trend in the equity risk premium results in a 0 premium by 2050. Logically (not that markets are always rational - see March 2000 when the earnings yield was below the yield on TIPS), that world shouldn't exist since no one would buy riskier stocks if there was no expectation of earning a risk premium. In other words, Stein's Law applies: If something cannot go on forever, it will stop (usually ending badly when it comes to stocks). However, it's certainly possible that instead of reverting to its historical mean (as many, such as Jeremy Grantham, are predicting) the equity risk premium could remain where it is, or even decline somewhat further. There are several possible/likely explanations for why the equity risk premium has been falling:

- When risk capital is scarce, it earns high "economic rents." As national wealth increases, the equity risk premium tends to fall as more capital is available to invest in risky assets. All else equal our rising national wealth should be expected to lead to a fall in the equity risk premium.
- Over time, the SEC's regulatory powers have increased, and accounting rules and regulations have been strengthened. The result is that investors have should have more confidence to invest in risky assets. Again, all else equal, this should lead to a smaller required equity risk premium.
- Implementation costs of equity strategies have fallen. Both commissions and bid/offer spreads have come way down over time. In addition, mutual fund expense ratios and loads are also much lower. And, the Internet has made trading much easier/more convenient. All else equal, lower implementation costs should lead to a lower equity risk premium. Lower trading costs can also help explain the falling small cap premium that Erb had found.
- Longer life expectancies can lead investors to have a stronger preference for equities as they provide the higher expected returns that may be needed to allow portfolios to last for longer horizons.

The bottom line is that while it's certainly possible that the equity risk premium could revert to its historical mean, mean reversion of valuations is far from a certainty. Thus, investors shouldn't draw the conclusion that the market is overvalued, nor that it's ripe for a fall.
How Does the Market Interpret Analysts’ Long-term Growth Forecasts?

Steven A. Sharpe

Division of Research and Statistics
Federal Reserve Board
Washington, D.C. 20551
(202)452-2875
ssharpe@frb.gov

April, 2004

Forthcoming in the *Journal of Accounting, Auditing and Finance*. The views expressed herein are those of the author and do not necessarily reflect the views of the Board nor the staff of the Federal Reserve System. I am grateful for comments and suggestions from Jason Cummins, Steve Oliner, and an anonymous referee, and members of the Capital Markets Section at the Board. Excellent research assistance was provided by Eric Richards and Dimitri Paliouras.
How Does the Market Interpret Analysts’ Long-term Growth Forecasts?

Abstract

The long-term growth forecasts of equity analysts do not have well-defined horizons, an ambiguity of substantial import for many applications. I propose an empirical valuation model, derived from the Campbell-Shiller dividend-price ratio model, in which the forecast horizon used by the “market” can be deduced from linear regressions. Specifically, in this model, the horizon can be inferred from the elasticity of the price-earnings ratio with respect to the long-term growth forecast. The model is estimated on industry- and sector-level portfolios of S&P 500 firms over 1983-2001. The estimated coefficients on consensus long-term growth forecasts suggest that the market applies these forecasts to an average horizon somewhere in the range of five to ten years.
1. Introduction

Long-term earnings growth forecasts by equity analysts have garnered increasing attention over the last several years, both in academic and practitioner circles. For instance, one of the more popular valuation yardsticks employed by investment professionals of late is the ratio of a company’s PE to its expected growth rate, where the latter is conventionally measured using analysts’ long-term earnings growth forecasts. An expanding body of academic research uses equity analysts’ earnings forecasts as well.

One of the more common and important applications is the measurement of the equity risk premium; and, as Chan, Karceski and Lakonishok (2003) argue, analysts’ long-term forecasts are a “vital component” of such exercises. However, inferences from such studies can be quite sensitive to how those long-term growth forecasts are applied. Unfortunately, as evidenced by the range of assumptions employed in these applications, how these forecasts should be interpreted – that is, the horizon to which they ought to be applied – is quite ambiguous. For instance, Claus and Thomas (2001), in gauging the level of the equity risk premium, apply these growth forecasts to years 3 through 5; and beyond year 5 they apply a fixed growth rate assumption. At the other extreme, Harris and Marston (1992, 2001) and Khorana, Moyer and Patel (1999), apply these growth forecasts to an infinite horizon. In other studies, the assumed horizon usually falls somewhere in the middle. ¹

The implications are not purely academic, as these growth forecasts, or the perceptions they reflect, appear to have been a key factor driving equity market valuations skyward during the latter half of the 1990s. Indeed, as shown in figure 1, the PE ratio for S&P500, the ratio of the index price to 12-month-ahead operating earnings, rose more than 50 percent between January 1994 and January 2000. Over roughly that same time period, the “bottom-up” (weighted average) long-term earnings growth forecast for the S&P500 climbed almost 4 percentage points to nearly 15 percent, well above previous peaks. Findings in Sharpe (2001) suggest this was no

¹To estimate the intrinsic value of the companies in the Dow Jones Industrials Index, Lee, Myers and Swaminathan (1999) use the long-term earnings growth rate as a proxy for expected growth only through year 3. They implicitly pin down earnings growth beyond that point by assuming that the rate of return on equity reverts toward the industry median over time. Gebhardt, Lee and Swaminathan (2001) also use this formulation.
coincidence, that Wall Street’s long-term growth forecasts have been a significant factor in valuations; however, because of their relatively short history and high autocorrelation, the size of that influence is difficult to gauge in aggregate analysis.

(Insert Figure 1)

In this study, I attempt to gauge the appropriate horizon over which to apply these growth forecasts by appealing to the market’s judgement, that is, by inferring the horizon from market prices. In particular, I propose a straightforward empirical valuation model in which linear regression can be used to deduce the forecast horizon that the “market” uses to value stocks. This model is a descendent of the Campbell and Shiller (1988, 1989) dividend-price ratio model, which is an approximation to the standard dividend-discount formula. As in Sharpe (2001), their model is modified in order to emphasize the expected dynamics of earnings rather than dividends. In the resulting framework, the horizon over which the market applies analysts’ long-term growth forecasts can be inferred from the elasticity of the PE ratio with respect to the growth forecast.

I estimate the model using industry- and sector-level portfolios of S&P 500 firms, constructed from quarterly data on stock prices and consensus firm-level earnings forecasts over 1983-2001. The estimated coefficients on consensus long-term growth forecasts suggest that the market applies these forecasts to an average horizon somewhere in the range of 5 to 10 years. Thus, these growth forecasts are more important for valuation than assumed in the many applications that treat them as 3-to-5 year forecasts, though far less influential than forecasts of growth into perpetuity. Among other implications, the results suggest that the increase in S&P500 constituent growth forecasts during the second half of the 1990s can explain up to half of the concomitant rise in their PE ratios.

2. The Relation Between PE Ratios, Expected EPS Growth, and Payout Rates

2.1 The Basic Idea

The principal modeling goal is to develop a simple estimable model of the relationship between the price-earnings ratio and expected earnings growth. As discussed in the subsequent section, by expanding out terms in the model of Campbell and Shiller (1988), we can produce the following relation for any equity or portfolio of equities:
where P_t is the current stock price, EPS_{t+1} is expected earnings per share in the year ahead, g_{t+j} is expected growth in earnings per share in year $t+j$. ρ is a constant slightly less than 1, similar to a discount factor, and Z_t is a function of the expected dividend payout rates and the required return.

For the analysis that follows, divide the discounted sum of expected EPS growth rates into two pieces:

$$\sum_{j=2}^{\infty} \rho^{j-1}g_{t+j} = \sum_{j=2}^{T} \rho^{j-1}g_{t}^L + \sum_{j=T+1}^{\infty} \rho^{j-1}g^*$$

where g_t^L represents the expected average EPS growth rate over the next T years, measured by analysts’ long-term growth forecasts, and g^* is the average growth rate expected thereafter. This amounts to assuming there is a finite horizon, T, over which investors formulate their forecasts of earnings growth; beyond that horizon, expected average growth (g^*) is assumed constant or, at a minimum, uncorrelated with g_t^L.

We thus rewrite (1) as follows:

$$\log \frac{P_t}{EPS_{t+1}} = \frac{\rho(1-\rho^{T-1})}{1-\rho} g_t^L + Z_0(T)$$

where $\frac{\rho(1-\rho^{T-1})}{1-\rho} = [\rho + \rho^2 + \rho^3 + ... + \rho^{T-1}]$ and $Z(T)$ now subsumes an additional (independent) term containing the growth rate expected after T. Clearly, the longer the horizon over which investors’ formulate “long-term” growth forecasts, the larger will be the “effect” on stock prices of any change in that expected (average) growth rate. For instance, suppose $\rho=0.96$; if investors apply the forecast on a horizon running between year 1 through year 5 (growth in year 2, 3, 4, and 5) the multiplier on g_t^L is 3.6. If, instead, this horizon ran from year 1 through year 10, the multiplier would be 7.4. The main contribution of this paper is to infer this horizon by estimating this multiplier—the elasticity of the PE ratio with respect to the expected growth rate—in the context of the valuation model described more thoroughly below.
2.2 Derivation of the Empirical Model

Campbell and Shiller (1988) show that the log of the dividend-price ratio of a stock can be expressed as a linear function of forecasted one-period rates of return and forecasted one-period dividend growth rates; that is,

\[
\log \left(\frac{D_t}{P_t} \right) = E_t \left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j} - \sum_{j=1}^{\infty} \rho^{j-1} \Delta d_{t+j} \right] + k \tag{4}
\]

where \(D_t\) is dividends per share in the period ending at time \(t\) and \(P_t\) is the price of the stock at \(t\). On the right hand side, \(E_t\) denotes investor expectations taken at time \(t\), \(r_{t+j}\) is the return during period \(t+j\), and \(\Delta d_{t+j}\) is dividend growth in \(t+j\), calculated as the change in the log of dividends. The \(\rho\) is a constant less than unity, and can be thought of as a pseudo-discount factor.

Campbell-Shiller show that \(\rho\) is best approximated by the average value over the sample period of the ratio of the share price to the sum of the share price and the per share dividend, or \(P_t/(P_t + D_t)\). \(k\) is a constant that ensures the approximation holds exactly in the steady-state growth case. In that special case, where the expected rate of return and the dividend growth rate are constant, equation (4) collapses to the Gordon growth model: \(D_t/P_t = R - G\).

The Campbell-Shiller dynamic growth model is convenient because it facilitates the use of linear regression for testing hypotheses. As pointed out by Nelson (1999), the Campbell Shiller dividend-price ratio model can be reformulated by breaking the log dividends per share term into the sum of two terms--the log of the earnings per share and the log of the dividend payout rate. When this is done and terms are rearranged, then the Campbell-Shiller formulation can be rewritten as:

\[
\log \left(\frac{EPS_t}{P_t} \right) = E_t \left[\sum_{j=1}^{\infty} \rho^{j-1} r_{t+j} - \sum_{j=1}^{\infty} \rho^{j-1} g_{t+j} - (1 - \rho) \sum_{j=1}^{\infty} \rho^{j-1} \phi_{t+j} \right] + k \tag{5}
\]

where \(EPS_t\) represents earnings per share in the period ending at \(t\), \(g_{t+j} = \Delta \log EPS_{t+j}\), or earnings per share growth in \(t+j\), and \(\phi_{t+j} = \log(D_{t+j}/EPS_{t+j})\), the log of the dividend payout rate in \(t+j\).

This reformulation is particularly convenient as it facilitates a focus on earnings growth.
To simplify and further focus data requirements on earnings forecasts (as opposed to dividend forecasts), I assume that the expected path of the payout ratio can be characterized by a simple dynamic process. In particular, reflecting the historical tendency of payout ratios to revert back toward their target levels subsequent to significant departures, I assume that investors forecast the (log) dividend payout ratio as a stationary first-order autoregressive process:

\[E_t \phi_{t+j} = \lambda \phi^* + (1 - \lambda) \phi_{t+j-1} \]

In words, the payout rate is expected to adjust toward some norm, \(\phi^* \), at some speed \(\lambda < 1 \).

It is straightforward to show that, given (6), the discounted sum of expected log payout ratios in (5) can be written as a linear function of the current payout rate:

\[
E_t \sum_{j=1}^{\infty} \rho^{j-1} \phi_{t+j} = \frac{1 - \lambda}{1 - \rho (1 - \lambda)} \phi_t + \frac{\lambda (1 - \rho)}{1 - \rho (1 - \lambda)} \phi^*
\]

The final equation is arrived at by substituting into (5) the assumed structure of expected payout rates (7), and the assumed structure of earnings growth forecasts (2). Rearranging terms, and defining \(R_t \) as the discounted sum of expected returns:

\[
\log \frac{P_t}{EP_S_{t+1}} = \frac{\rho (1 - \rho^{r-1})}{1 - \rho} g^L_t + \alpha \phi_t + \left[\frac{\rho^{r+1}}{1 - \rho} g^r + (1 - \omega) \phi^* \right] - R_t + k
\]

where \(\alpha = \frac{(1 - \rho)(1 - \lambda)}{1 - \rho (1 - \lambda)} \) is between 0 and 1.

2.3 **Empirical Implementation**

To translate equation (8) into a regression equation with the log PE ratio as dependent variable, note that the first pair of right-hand side variables—the long-term growth forecast \(g^L \) and the current log dividend payout rate \(\phi \)—are observable, at least by proxy. The pair of terms in brackets are the expected “long-run” log payout ratio and expected earnings growth in the “out years,” both of which are unobservable and assumed constant; thus, they are absorbed into the regression constant. Even if constant over time, they are likely to vary cross-sectionally,
which suggests the need for additional controls or industry dummies. Finally, expected future returns, \(R_\tau \), are also unobservable. To control for time variation in expected returns, macroeconomic factors are added to the list of regressors. As discussed below, cross-sectional variation in expected returns is dealt with by including fixed effects.

Letting \(i \) represent a firm or portfolio of firms, and letting \(Z \) represent proxies for, or factors in, expected returns, (8) is translated into the following regression equation:

\[
\log \frac{P_n}{EPS_{t-1}} = \beta g^L + \alpha \phi + \beta_0 - \gamma Z + \epsilon
\]

with \(\epsilon \) a mean-zero error term, assumed to be uncorrelated with the explanatory variables.

Given an assumed value for \(D \), the horizon over which investors apply analysts’ long-term growth forecasts can be inferred from the magnitude of \(\beta \), which should be positive. For these calculations I assume \(D = 0.96 \); in that case, if long-term growth horizon applied to the five years of growth beginning at the end of the current year \((T = 6) \), we would expect the coefficient on long-term growth to be 4.4. The resultant mapping from horizon \(T \) to implied coefficient is provided in the following table:

<table>
<thead>
<tr>
<th>(T)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>20</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.96</td>
<td>1.9</td>
<td>2.8</td>
<td>3.6</td>
<td>4.4</td>
<td>6.0</td>
<td>7.4</td>
<td>12.9</td>
<td>24</td>
</tr>
</tbody>
</table>

To understand why the best approximation for \(D \) is \(\frac{P}{P + D} \), consider the case where \(g \) is the expected growth into perpetuity \((T = \infty) \). In this case, the coefficient on \(g \), according to (8), would boil down to simply \(\rho/(1 - \rho) = P/D \). But this is precisely the implied effect of growth on price in the Gordon (constant) growth model; in that model, \(\frac{\partial \log P}{\partial g} = \frac{1}{r - g} = \frac{P}{D} \). Moreover, as long as the horizon is not extremely distant -- the coefficient on \(g^L \) is not too large -- then the inferred horizon is not very sensitive to the precise choice of \(D \).

According to the model (8), the coefficient on the dividend payout rate should lie between 0 and 1. It would equal 1 if the current payout rate was expected to be maintained

\[^2 \text{For instance, if } T = 6, \text{ then the coefficient (} \beta \text{) is predicted to be 4.3 for } \rho = 0.95 \text{ versus 4.6 for } \rho = 0.97. \]
forever ($\lambda=0$); in most cases it should be much closer to zero than 1, even if the dividend payout rate is expected to revert quite slowly back to the long-run payout rate. For instance, if $\lambda=0.1$ (the payout rate is adjusted annually by 10 percent of the gap between the desired and current level), then the theoretical coefficient on the payout rate (given $\rho=.96$) would be 0.27.

Clearly, the assumed dynamics of the payout rate are a simplification. It is quite plausible, for instance, that the long-run target for any given industry evolves over time. If that were the case, then we would expect the current payout rate to carry more information about the average future payout; thus, its coefficient would be larger than that what is implied by short-run autocorrelations, and we would interpret it somewhat differently. However, this would not alter our interpretation of the coefficient on the growth forecast. Indeed, excluding the payout rate from the regression or adding another lag does not substantially alter inferences drawn with regard to the growth horizon.

As in much of the research on expected returns, estimation is conducted on portfolios of firms. One potential benefit of this aggregation is a reduction in potential measurement error that comes from using analysts’ forecasts as proxies for long-term growth forecasts. But using portfolios is also necessary because model (8) cannot be applied literally to firms that do not have positive dividends and earnings because the log payout ratio would be undefined. The model is too stylized for application to very immature firms. To some extent, this observation guides the choice of portfolio groupings. In particular, firms are grouped into portfolios by industry, rather than by characteristics that would be correlated with firm size or maturity.

3. Data and Sample Description

3.1 The data

The sample is constructed using monthly survey data on equity analyst earnings forecasts and historical annual operating earnings, both obtained from I/B/E/S International. A dataset of quarterly stock prices and earnings forecasts is constructed using the observations from the middle month of each quarter (February, May, August, and November), beginning in 1983, when long-term growth forecasts first become widely available in the I/B/E/S database. The sample in each quarter is built using firms belonging to the S&P500 at the time. Sample firms must also have consensus forecasts for earnings per share in the current fiscal year (EPS1) and the
following fiscal year (EPS2), as well as a consensus long-term growth forecast. Data on dividends per share are mostly drawn from the historical I/B/E/S tape, though missing values in the early part of the sample are filled in using Compustat.

The data of greatest interest in this study are the equity analysts’ long-term growth forecasts, which I measure using the median analyst forecast from I/B/E/S, where the typical forecast represents the “expected annual increase in operating earnings over the company’s next full business cycle.” In general, these forecasts refer to a period of between three to five years (I/B/E/S International, 1999). Clearly, this description is fairly ambiguous about the horizon of these forecasts, though three to five years is probably the most widely cited horizon.

The measure of expected earnings used for the denominator of the PE ratio is constructed using forecasts for both current-year and next-year earnings. For any given observation, a firm’s “12-month-ahead” earnings per share \(EPS_t = w_m * EPS1 + (1-w_m) * EPS2 \), where the weight \(w_m \) on current year EPS is proportional to the fraction of the current year that remains. For instance, \(w_m \) is 1 if the firm just reported its previous fiscal-year earnings within the past month, and it equals 11/12 if the firm reported its previous year’s earnings one month ago. The PE ratio is then calculated as the ratio of current price to 12-month-ahead earnings.

To construct the lagged dividend payout ratio, I create an analogous measure of 12-month lagging earnings. Specifically; 12-month lagging earnings, or \(EPS_{t-1} = w_m * EPS0 + (1-w_m) * EPS1 \), where \(EPS0 \) is earnings per share reported for the previous fiscal year. The dividend payout rate is then calculated as the ratio of the firm’s most recent (annualized) dividend per share to its 12-month lagging operating earnings per share. Prior to 1985, the dividend variable is not provided in the I/B/E/S data. For these observations, the dividend per share value is taken from Compustat.

3.2 Construction of Sector and Industry Portfolios

For each quarterly observation, firms are grouped into portfolios using two alternative levels of aggregation. In the more aggregated case, firms are grouped into 11 sectors, which are broad economic groupings as defined by I/B/E/S (Consumer Services, Technology, ...etc.). The second portfolio grouping is comprised of industry-level portfolios, constructed using I/B/E/S industry codes that are similar in detail to the old 2-digit Standard Industrial Classification (SIC)
industry groupings. For instance, the technology sector is broken down into (i) computer manufacturers, (ii) semiconductors and components, (iii) software and EDP services, and (iv) office and communication equipment.

Each quarterly observation for each variable is constructed by aggregating over all portfolio members in that quarter--S&P500 firms in the given sector (or industry). Constructing a portfolio aggregate long-term growth forecast is somewhat tricky because these variables are growth rates and because there is no clearly optimal set of weights for aggregating these growth rates. The most intuitive choice would be the level of a firm’s previous-year earnings; but this would be nonsensical in the case where some firms had negative earnings. To get around this, I use a measure of expected earnings; in particular, each firm’s weight is calculated as current shares times the maximum of [EPS1, EPS2, 0]. Because EPS2 is almost always positive for S&P500 firms, this approach avoids the problem of potentially negative weights and minimizes the number of companies that get zero weight.

The dependent variable, the price-earnings ratio, is constructed by summing up the market values of all (S&P500) sector or industry members, and then dividing by the sum of their expected 12-month ahead earnings. Similarly, dividend payout rates at the portfolio level are constructed by summing the dividends (dividends per share times shares outstanding) of portfolio members and dividing by the sum of their 12-month lagging earnings.

The payout rate and the PE ratio are undefined when their denominators are negative; thus, these variables are occasionally undefined when we use the finer industry-level portfolio partition. Moreover, there is a higher frequency of negative observations on 12-month lagging earnings than on 12-month ahead earnings (presumably owing to analysts’ optimistic bias); that is, actual earnings are negative more often than expected earnings. To reduce the loss of industry-level observations as a result of negative earnings, in constructing industry payout ratios, I substituted an industry’s 12-month ahead earnings for its 12-month lagging earnings in cases where the latter is negative and the former is not, with little effect on the results.

3.3 Controls for expected returns

Because empirical inferences are partly drawn from the time series dimension of the data, I include a couple proxies for the expected long-run return on the market portfolio, specifically
the long-term (10-year) government bond yield and the risk spread on corporate bonds, equal to the difference between the yields on the Moody’s Aaa and Baa corporate bond indexes. In light of the findings by Fama and French (1989) and others, that excess expected equity returns are positively related to the risk spreads on bonds, we expect the PE ratio to be negatively related to both the corporate risk spread and the bond yield.

A third macro factor I consider is the expected inflation rate, as proxied by the four-quarter expected inflation rate from the Philadelphia Federal Reserve survey of professional forecasters. As suggested in Sharpe (2001), expected inflation also appears to be a positive factor in required equity returns (before taxes), perhaps because inflation raises the effective tax rate on real equity returns.

I do not construct a measure of the industry or sector portfolio betas, or any other cross-sectional determinants of expected returns. First, the bulk of empirical research weighs in on the side of finding very little role for beta. Perhaps most salient study in this regard is Gebhardt, Lee, and Swaminathan (2001), which also analyzes expected returns with an earnings-based ex ante measure. They find beta to be of little value in explaining cross-sectional differences in expected return. On the other hand, their findings suggest that industry membership is a factor in expected returns; I control for potential industry factors in expected returns by including fixed industry effects.³

3.4 Sample Statistics

After dropping the first observation per sector or industry in order to create one lag on the PE ratio, the sample runs from 1983:Q2 to 2001:Q2. This leaves a potential of 73 quarterly

³Indeed, Gebhardt, et. al find the long-term growth forecast to be a positive factor in firm-level expected returns. But that finding might be the result of assumptions they use to construct their ex ante measure of expected return. If their measure builds in too long a horizon on the growth forecast, then the growth forecast will appear to have a positive effect on expected return (or a negative effect on valuations). In their “terminal value” calculation, the slow decay rate of ROE, and the use of median industry ROE as the expected ROE for perpetuity, may implicitly build in too long a horizon on current expected earnings growth or, more precisely, on the value of ROE in year t+4. Indeed, it is somewhat curious that long-term growth is a significant factor in expected return only when the regression also includes the book-to-market ratio—an other key component in the construction of the dependent variable.
observations for each of 11 sectors, or 803 sector-time observations. In addition to excluding observations for which earnings are negative or dividends are zero, those with extreme values are also filtered out. In particular, observations are excluded if either the portfolio PE ratio exceeds 300 or its dividend payout rate exceeds 5.0.

In the case of sector portfolios, these filters remove only 2 observations; and no observations are lost as a result of negative earnings or zero dividends. Distributions of the key variables for the sector portfolios are depicted by the top number among each pair of numbers in table 1. The average sector price-earnings ratio over the sample period is about 14, and it ranges from 3.5 to 54.1. The average dividend payout rate is 0.45 (or 45 percent of earnings), with a range of 0.08 to 2.16. The average expected long-term growth rate is 11 percent, with a range of 5 to 20 percent.

Correlations among variables are shown in the bottom half of the table. The PE ratio is strongly correlated with the earnings growth forecast, as theory would suggest, but it is uncorrelated with the dividend payout rate. The earnings growth forecast is negatively correlated with the dividend payout rate, consistent with the prediction that firms with lower growth prospects pay out a higher proportion of their dividends.

In the case of industry portfolios, roughly 120 observations are excluded where industry dividends are zero or, in a handful of cases, where expected year-ahead earnings are negative, leaving 4071 observations on 66 industries. Another 14 observations are excluded because the PE ratio exceeds 300 or the dividend payout rate exceeds 5, leaving 4057 industry-quarter observations, an average of about 62 quarters per industry. Distributions and correlations for the industry portfolio variables are depicted by the bottom figures among the pairs in table 1.

4. Empirical Results

4.1 Sector Regressions

Table 2 shows the results of sector portfolio regressions with the log of the PE ratio as dependent variable. Heteroskedasticity and autocorrelation-consistent (Newey-West) standard

4I have also excluded 5 very small industries for which the average total industry market value (over the sample period) is less than $1 billion. Also note that not all industries exist over the entire sample.
errors are reported below the coefficient estimates. Column (1) shows the simplest specification; it includes the earnings growth forecast, the sector payout rate, the yield on the 10-year Treasury bond, and the risk spread on corporate bonds. The coefficient estimate on the growth forecast is 8.05, with a standard error of 0.5, indicating relatively high precision. The magnitude of the coefficient suggests that growth forecasts reflect expectations over a fairly long horizon. In particular, given that \(\rho(1 - \rho^{T-1}) \) equals 7.75 for \(T=10 \) and 8.5 for \(T=11 \), the inference would be that the long-term growth forecast represents the expected growth rate for a 9 or 10 year period, starting from the coming year’s expected level of earnings.

The coefficient on the payout rate, 0.34, falls within the [0,1] range dictated by theory; but, interpreted literally, the magnitude of the coefficient implies that payout rates adjust very slowly toward their long-run desired levels. Interpreted more loosely, one could infer that the current payout rate conveys some information about a sector’s long-run desired payout rate, which is not likely to be constant over the very long run as assumed by the model.

The coefficients on the bond yield and the risk spread are both negative, as theory and previous empirical results would predict. The coefficient on the Treasury bond yield implies that a one percentage point increase in long-term yields drives down the PE ratio by about 12 percent -- or, holding \(E \) constant, drives down the stock price 12 percent. The regression R-squared is quite high, suggesting these four variables explain about 70 percent of the overall cross-sectional and time series variation in price-earnings ratios. The root mean squared error is 0.2.

One problem with this specification, however, is the presence of strong autocorrelation in the errors, reflected in a Durbin-Watson statistic of 0.32. In specification (2), this is rectified by modeling the dynamics with the addition of a lagged dependent variable, the lagged PE ratio, which receives a coefficient of 0.75. Not surprisingly, adding this regressor boosts the R-squared substantially, to 0.910, and cuts the root mean squared error in half. The Durbin-h test now strongly rejects the presence of autocorrelation.

Interpreting the coefficient on the growth forecast is a bit more complicated here because that coefficient, equal to 2.00, now represents only the “impact effect”. The total long-run effect of a change in the growth forecast is equal to the impact coefficient divided by one minus the coefficient on the lagged PE, or \(2/(1-0.75) = 8 \). Thus, the conclusion from the original regression holds up: the growth forecast still appears to represent a horizon of about 9 years.
The long-run effect of the payout rate is 0.28, only a bit smaller than the static estimate. One notable difference from the static model is that the sign on the risk spread flips to positive, although that variable is no longer statistically significant. Thus, once we account for growth expectations and the underlying dynamics, the risk spread no longer has marginal explanatory power for stock valuations.

The third and fourth specifications address the potential omitted variable problem. Gebhardt, et. al (2001) find sector-level factors in expected returns. If sector-level (but non-growth-related) factors are correlated with sector long-term growth expectations, then the coefficient on growth forecasts will be biased. Sector-level expected-return factors can be removed using a fixed effects estimator. In column (3), results are shown for the static version of the model estimated on sector-mean-adjusted variables; and, in (4), results are shown when fixed effects are similarly incorporated into the dynamic model. In both cases, the results continue to yield conclusions similar to the first specification.5

Finally, I consider the possibility that omitted macroeconomic factors in expected returns are correlated with changes in the average sector growth forecast over time. Column (5) shows the results from adding expected inflation, specifically, expected inflation over the next four quarters as measured by the Philadelphia Fed survey of professional forecasters. As shown by Sharpe (2001), expected inflation seems to be related to both expected earnings growth and expected returns. In addition, controlling for expected inflation allows us to interpret the estimated effect of changes in expected long-term growth as reflecting changes in real growth expectations. In any case, adding expected inflation to the dynamic specification reduces somewhat the estimated effect of expected growth. Here, the long-run effect of 6.63 is consistent with a horizon between 7 and 8 years.

The final specification takes a more agnostic approach to macro factors and adds year dummies (in addition to the fixed sector effects). This eliminates any effect of the growth forecast that might be purely time-driven, and thus provides the most conservative estimate of the effect of these earnings expectations. Indeed, the long-run coefficient on the growth forecast falls to 5.45 in this regression, which suggests a horizon of about 6 years. Considering the

5Given the sample size, the small sample bias that arises when a lagged dependent variable is used in conjunction with fixed effects should not be an issue.
totality of the findings in table 2, one would conclude that the horizon of the earnings growth forecast falls somewhere in the range of 6 to 10 years.

4.2 Industry Regressions

An analogous set of results based on narrower industry-level portfolios is shown in table 3. The industry-level results generally follow the pattern of the sector-portfolio results, with one important difference. In these regressions, the long-run coefficient on the growth forecast tends to be about two-thirds the magnitude found in the analogous sector-level regressions. In particular, the coefficient estimate on the growth forecast runs from 5.4 in the specifications without fixed effects down to 3.9 in the specification with both fixed industry and time effects. These results would suggest that investors apply the growth forecast to a somewhat shorter horizon – between 5 and 7 years, compared to the 6 to 10-year range suggested by the sector-level analysis.

One potential explanation of the difference between the sector- and industry-level coefficient estimates revolves around the idea that the analyst growth forecasts measure investor expectations with error. Assuming minimal measurement error on other regressors, then measurement error in the growth forecast would produce a downward bias in the coefficient on expected growth. Furthermore, if measurement errors were not highly correlated across firms or industries within a given sector, then using a higher level of aggregation would tend to reduce this measurement error. A similar but more structural explanation for the difference in results could be that investor expectations of a firm’s or industry’s growth beyond the very near term is partly reflected in growth expectations for other firms or industries within the same sector.

Under either interpretation, we would expect sector growth forecasts to help explain variation in industry PE ratios, even after controlling for the industry growth forecast.

This hypothesis can be examined by reestimating the industry regressions but with the sector growth forecast as an additional explanatory variable. With both the industry and sector growth forecasts in the regression, the sum of their two coefficients can be interpreted as measuring the total effect of an increase in forecasted industry growth that is matched by an equal-sized increase in the forecast for sector-level growth.

The key results from re-estimating specification (1) are provided in the first column of
Table 4. As shown, the coefficients on the industry and sector growth forecasts are 4.35 and 1.87, respectively. These two coefficients sum up to 6.22, which is larger than the original industry growth effect from the analogous industry-level regression (table 3) though still smaller than the coefficient in the sector-level regression (table 2). Results from rerunning specification (4) are shown in the second column. The estimated (long-run) coefficients on industry and sector growth forecasts are 3.62 and 3.41, respectively. Thus, it again appears that sector growth expectations help explain industry valuations. Here, the coefficients sum to a total effect of 7.03, which is closer to the long-run coefficient on growth in the sector regression (7.92) than to that in the industry regression (4.53).\(^6\)

4.3 Robustness over time

As a final robustness test of the model and its application to the analyst forecast data, I split the data into early (1983-1991) and late (1992-2001) subsamples and reestimate some of the key industry- and sector-level regressions. This experiment provides evidence on the extent to which our inferences depend upon the time period under consideration. Table 5 compares the coefficients estimates on the long-term growth forecast for the two time periods, under four alternative specifications (regressions (1) and (4) for both the sector and industry portfolios). Although not shown in the table, the coefficient on the dividend payout rate is always positive and less than 0.5, while the coefficient on the Treasury bond yield is always negative.

In short, the results do indicate that there is a substantial difference between the early and late sample valuation effects of long-term growth forecasts. Although statistically positive in all cases, the coefficient on the growth forecast is about double in the later subsample compared to the analogous early-sample estimate. For instance, in the simple sector regression (1), the early-sample coefficient on growth is 6.1, whereas the late sample coefficient in 10.0. This suggests that the horizon in the early sample is about 7 years, whereas it is closer to 12 years in the more recent period. At the other end of the spectrum, the dynamic fixed-effect regression (4) on

\(^6\)An alternative tack, which amounts to the same test, would be to put the industry growth forecast and, second, the differential between the sector and industry growth forecasts in the regression. In this case, the coefficient on the industry growth forecast would be 7.02, and the coefficient on the differential would be 3.4.
industry portfolios produces a long-run coefficient of 2.3 in the early period, suggesting a 2 to 3 year horizon, versus 4.5 in the late period, consistent with a 5-year horizon. We are thus led to the inference that long-term growth forecasts carried more weight, or were applied to a longer horizon, during the past decade. This could owe either to the fact that analyst forecasts have become more widely applied in valuation analysis or to an increased emphasis placed on these long-term growth forecasts by analysts and their customers.

4.4 Caveats

Before concluding, some cautionary remarks are in order. It should be emphasized that the interpretation of the results is conditioned upon the maintained hypothesis that the assumptions behind the model are a reasonably approximation of reality. While this is true of any econometric application, it is important here because the conclusions revolve around the magnitude of the key coefficients, rather than just their sign and statistical significance. Clearly, there are a number of rationales one could invoke for why that model might be prone to either overestimate or underestimate the forecast horizons imputed to investors.

On one hand, the analysis ignores the potential influence of momentum, or positive-feedback, trading, which would cause stock prices to overreact to fundamentals. In other words, if stock prices in an industry rise due to an increase in the growth outlook over the next few years, momentum trading could amplify the ultimate stock price effect. In that case, the model would overstate the duration that investors actually attribute to growth forecasts.

On the other and, it is possible that the required return on a firm or industry’s stock is positively related to its expected growth rate, since high growth firms or industries may be riskier. This would imply the presence of a second (negative) channel through which growth expectations might influence PE ratios, making identification problematic. If we fail to control for a any such negative effect on stock prices coming through a required-return channel, the model would underestimate the imputed horizon of these forecasts, by underestimating their positive influence owing to their role as proxies of expected growth.

While the “discount” or weighting factor \[\rho = \frac{P}{P+D} \] used in the model approximation should be somewhat smaller in the early period, due to the higher average dividend yield in the 1980s, the difference would not be nearly enough to justify the difference in coefficient estimates.
5. Summary and Implications

The empirical analysis strongly confirms the value-relevance of analysts’ long-term earnings growth forecasts. In particular, most regression coefficient estimates suggest that a 1 percentage point increase in expected earnings growth can explain a 4 to 8 percent boost in an industry’s PE ratio. According to the model, these regression coefficients imply that the market treats these forecasts as having an applicable horizon of at least 5 years, and perhaps as many as 10 years. Results from splitting the sample indicates that long-term growth forecasts had larger valuation effects during the past decade than they did in the previous decade, which suggests that the upper-end estimates (the 10-year horizon) may be more relevant for the more recent period. In light of the 4 percentage point increase in the “bottom-up” growth forecast for the S&P500 during the latter half of the 1990s (documented in figure 1), these findings suggest that the increase in long-term growth expectations might account for as much as a 32% (8 x 4%) rise in the market PE ratio over those years, about half of the total increase.

The empirical relation between equity valuations and long-term growth forecasts suggests that investors view such forecasts as strong indicators of growth prospects for several years. It would thus appear that the market places a great deal of faith in the ability of analysts to divine differences in firm or industry long-term prospects; but, this begs the question: How good are such longer-term growth predictions? A detailed analysis of this issue is beyond the scope of my study; however, some recent research suggests that investors could well be misguided in putting so much weight on these forecasts.

One finding is that long-term forecasts are not only upward biased, like forecasts on more specific, shorter-term horizons, but they also appear to be “extreme”; that is to say, the higher a growth forecast is, the more upward biased it tends to be [Dechow and Sloan (1997), Rajan and Servaes (1997)]. In addition, there is mixed support for the view that analysts over-extrapolate from recent observations [De Bondt (1992), La Porta (1996)].

If the weight placed on these forecasts overreaches the ability of analysts (and perhaps anyone else) to predict long-run performance, the forecasts should be contrary indicators of future stock performance. Indeed, these studies find that stock returns for firms with high long-term growth forecasts tend to be substandard. In an analysis of long-term growth forecasts

Finally, Chan, Karceski and Lakonishok (2003) offer some very interesting evidence on the efficacy of long-term growth forecasts. In particular, they compare realized growth to forecasted growth for firms sorted annually into quintile portfolios based on their I/B/E/S long-term growth forecasts. On average over their sixteen year sample, the median growth rate forecast in the top quintile is 22.4 percent, compared to a median of 6 percent in the bottom quintile, a spread of 16-1/2 percentage points. They compare this spread with the spread between the median growth rates actually experienced in subsequent years. Their calculations imply that, from year 2 through 5, the median realized growth rates in the top and bottom quintiles differed by 5-1/2 percentage points, only a third of the average forecasted differential.\(^8\)

On average, my coefficient estimates suggest that industry portfolios are valued as if the market believes that the differential in long-term growth forecasts should be applied to a six- to seven-year horizon. Of course, there are alternative interpretations of my regression estimates. One possibility is that investors (correctly) expect only a third of the differential between growth forecasts to be realized, but that they apply that smaller differential over a much longer horizon. To rationalize this interpretation, though, investors would need to expect the reduced differential to persist for over 20 years. Such beliefs would appear to fly in the face of another finding by Chan, et al. (2001), that there is remarkably little long-term persistence in firm-level income growth. All this would seem to indicate that, even if using the long horizons suggested by my estimates produces more accurate measures of investors’ expected returns, using such horizons would seem to be an ill-advised strategy for making portfolio investment decisions.

\(^8\)They find that, in the first year after the forecast, median realized growth in operating income for those quintiles was 16 percent and 3-1/2 percent, a spread of 12-1/2 percentage points, about three-fourths of the expected spread. But the spread in median realized growth narrows to 7 points when the performance period is extended to 5 years. Backing out the strong contribution from the first year yields an implied average growth differential in the subsequent four years (years 2-5) of about 5-1/2 percent.
Like the evidence on stock returns and growth forecasts discussed earlier, the analysis by Chan, et al. (2001) is largely focused on the cross-sectional informativeness of growth forecasts. To complete the picture, an important direction for future research would involve focusing on the efficacy of the time-series information in long-term growth forecasts, measured by changes in such forecasts for a given firm or industry.
References

Table 1

Sample Statistics for Sector Portfolios (top) and Industry Portfolios (bottom)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/E</td>
<td>14.2</td>
<td>5.8</td>
<td>3.5</td>
<td>54.1</td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>7.5</td>
<td>3.0</td>
<td>127.3</td>
</tr>
<tr>
<td>Payout</td>
<td>0.45</td>
<td>0.20</td>
<td>0.08</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.28</td>
<td>0.01</td>
<td>4.1</td>
</tr>
<tr>
<td>Growth</td>
<td>11.2</td>
<td>0.03</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>14.9</td>
<td>0.03</td>
<td>0.03</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients

<table>
<thead>
<tr>
<th></th>
<th>P/E</th>
<th>Payout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payout</td>
<td>0.02</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>1.00</td>
</tr>
<tr>
<td>Growth</td>
<td>0.45</td>
<td>-0.44</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>-0.33</td>
</tr>
</tbody>
</table>

The samples runs quarterly from 1983:Q2 to 2001:Q2. In the more aggregated portfolios, there are 801 observations on 11 sectors; the second sample has 4071 observations on 66 industries.
Table 2

Sector Portfolio Regressions: Dependent variable is the sector-level log PE ratio*

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth (β)</td>
<td>8.05</td>
<td>2.00</td>
<td>9.69</td>
<td>2.66</td>
<td>2.30</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
<td>(0.55)</td>
<td>(1.05)</td>
<td>(0.77)</td>
<td>(0.70)</td>
<td>(0.70)</td>
</tr>
<tr>
<td>β/(1-λ)</td>
<td></td>
<td></td>
<td>8.00</td>
<td>7.92</td>
<td>6.63</td>
<td>5.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout Rate</td>
<td>0.34</td>
<td>0.07</td>
<td>0.31</td>
<td>0.07</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.03)</td>
<td>(0.08)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>10-Year Treasury Yield</td>
<td>-11.99</td>
<td>-3.99</td>
<td>-11.84</td>
<td>-4.73</td>
<td>-2.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.63)</td>
<td>(0.78)</td>
<td>(0.52)</td>
<td>(0.67)</td>
<td>(0.57)</td>
<td></td>
</tr>
<tr>
<td>Risk Spread</td>
<td>-9.90</td>
<td>3.41</td>
<td>-8.82</td>
<td>2.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.02)</td>
<td>(1.92)</td>
<td>(3.27)</td>
<td>(1.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected. Inflation</td>
<td></td>
<td></td>
<td></td>
<td>-5.18</td>
<td></td>
<td>(1.04)</td>
</tr>
<tr>
<td>Lagged PE (λ)</td>
<td></td>
<td>0.75</td>
<td>0.67</td>
<td>0.65</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.06)</td>
<td></td>
</tr>
<tr>
<td>Adj. R-Squared</td>
<td>.706</td>
<td>.910</td>
<td>.714</td>
<td>.889</td>
<td>.893</td>
<td>.764</td>
</tr>
<tr>
<td>Root MSE</td>
<td>.204</td>
<td>.113</td>
<td>.172</td>
<td>.107</td>
<td>.106</td>
<td>.085</td>
</tr>
</tbody>
</table>

*801 sector-time observations on 11 sectors over 1983:Q2 to 2001:Q2. Specifications (1) and (2) are estimated with OLS; fixed industry effects are added in (3)-(6) by using OLS on industry mean-adjusted values; year dummies are added in (6). Newey-West robust standard errors are shown in parentheses. Below the standard error for the coefficient on Growth (long-term growth) in (2), (4)-(6) is the implied “long-run” effect of Growth – equal to the coefficient on growth divided by (1-λ), where λ is the coefficient on the lagged PE.
Table 3
Industry Portfolio Regressions: Dependent variable is the industry-level log PE ratio*

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth (β)</td>
<td>5.39</td>
<td>0.91</td>
<td>5.06</td>
<td>1.36</td>
<td>1.20</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.16)</td>
<td>(0.36)</td>
<td>(0.21)</td>
<td>(0.20)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>β/(1-λ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.45</td>
<td>4.53</td>
<td>3.96</td>
<td>3.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout Rate</td>
<td>0.15</td>
<td>0.04</td>
<td>0.20</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>10-Year Treasury Yield</td>
<td>-10.59</td>
<td>-2.87</td>
<td>-10.33</td>
<td>-3.98</td>
<td>-2.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.54)</td>
<td>(0.27)</td>
<td>(0.38)</td>
<td>(0.28)</td>
<td>(0.30)</td>
<td></td>
</tr>
<tr>
<td>Risk Spread</td>
<td>-5.93</td>
<td>4.36</td>
<td>-6.83</td>
<td>2.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.33)</td>
<td>(1.30)</td>
<td>(2.13)</td>
<td>(1.31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Inflation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.67)</td>
</tr>
<tr>
<td>Lagged PE (λ)</td>
<td>0.83</td>
<td>0.71</td>
<td>0.70</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. R-Squared</td>
<td>.421</td>
<td>.857</td>
<td>.510</td>
<td>.792</td>
<td>.794</td>
<td>.699</td>
</tr>
<tr>
<td>Root MSE</td>
<td>.311</td>
<td>.155</td>
<td>.226</td>
<td>.147</td>
<td>.146</td>
<td>.12</td>
</tr>
</tbody>
</table>

*4057 industry-time observations on 66 industries over 1983:Q2-2001:Q2. Specifications (1) and (2) are estimated with OLS; fixed industry effects are added to (3)-(6), by using OLS on industry mean-adjusted values; year dummies are added in (6). Newey-West robust standard errors are shown in parentheses. Below the standard error for the coefficient on Growth (long-term growth) in (2), (4)-(6) is the implied “long-run” effect of Growth – equal to the coefficient on growth divided by (1-λ), where λ is the coefficient on the lagged PE.
Table 4
Sector Growth Effects in Industry Portfolio Regressions

<table>
<thead>
<tr>
<th>Coefficient on:</th>
<th>(1)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Growth</td>
<td>4.35</td>
<td>3.62</td>
</tr>
<tr>
<td>Sector Growth</td>
<td>1.87</td>
<td>3.40</td>
</tr>
<tr>
<td>Total</td>
<td>6.22</td>
<td>7.02</td>
</tr>
</tbody>
</table>

Coefficients on growth forecast’s are all significant at the 1 percent level. Figures under specifications (4) refer to implied long-run effects of growth, analogous to those in column (4) of tables 2 and 3.

Table 5
Coefficients on Growth in Early & Late Samples

<table>
<thead>
<tr>
<th></th>
<th>Sectors (1)</th>
<th>Sectors (4)</th>
<th>Industries (1)</th>
<th>Industries (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983-1991</td>
<td>6.1</td>
<td>2.9</td>
<td>4.0</td>
<td>2.3</td>
</tr>
<tr>
<td>1992-2001</td>
<td>10.0</td>
<td>10.6</td>
<td>6.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Coefficients on growth forecast’s are all significant at the 1 percent level. Figures under specifications (4) refer to implied long-run effects of growth, analogous to those in column (4) of tables 2 and 3.
CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK*

WILLIAM F. SHARPE†

I. INTRODUCTION

One of the problems which has plagued those attempting to predict the behavior of capital markets is the absence of a body of positive microeconomic theory dealing with conditions of risk. Although many useful insights can be obtained from the traditional models of investment under conditions of certainty, the pervasive influence of risk in financial transactions has forced those working in this area to adopt models of price behavior which are little more than assertions. A typical classroom explanation of the determination of capital asset prices, for example, usually begins with a careful and relatively rigorous description of the process through which individual preferences and physical relationships interact to determine an equilibrium pure interest rate. This is generally followed by the assertion that somehow a market risk-premium is also determined, with the prices of assets adjusting accordingly to account for differences in their risk.

A useful representation of the view of the capital market implied in such discussions is illustrated in Figure 1. In equilibrium, capital asset prices have adjusted so that the investor, if he follows rational procedures (primarily diversification), is able to attain any desired point along a capital market line.¹ He may obtain a higher expected rate of return on his holdings only by incurring additional risk. In effect, the market presents him with two prices: the price of time, or the pure interest rate (shown by the intersection of the line with the horizontal axis) and the price of risk, the additional expected return per unit of risk borne (the reciprocal of the slope of the line).

* A great many people provided comments on early versions of this paper which led to major improvements in the exposition. In addition to the referees, who were most helpful, the author wishes to express his appreciation to Dr. Harry Markowitz of the RAND Corporation, Professor Jack Hirshleifer of the University of California at Los Angeles, and to Professors Yoram Barzel, George Brabb, Bruce Johnson, Walter Ol and R. Haney Scott of the University of Washington.

† Associate Professor of Operations Research, University of Washington.

1. Although some discussions are also consistent with a non-linear (but monotonic) curve.
At present there is no theory describing the manner in which the price of risk results from the basic influences of investor preferences, the physical attributes of capital assets, etc. Moreover, lacking such a theory, it is difficult to give any real meaning to the relationship between the price of a single asset and its risk. Through diversification, some of the risk inherent in an asset can be avoided so that its total risk is obviously not the relevant influence on its price; unfortunately little has been said concerning the particular risk component which is relevant.

![Diagram](image)

Figure 1

In the last ten years a number of economists have developed *normative* models dealing with asset choice under conditions of risk. Markowitz, following Von Neumann and Morgenstern, developed an analysis based on the expected utility maxim and proposed a general solution for the portfolio selection problem. Tobin showed that under certain conditions Markowitz's model implies that the process of investment choice can be broken down into two phases: first, the choice of a unique optimum combination of risky assets; and second, a separate choice concerning the allocation of funds between such a combination and a single riskless asset.

asset. Recently, Hicks\(^4\) has used a model similar to that proposed by Tobin to derive corresponding conclusions about individual investor behavior, dealing somewhat more explicitly with the nature of the conditions under which the process of investment choice can be dichotomized. An even more detailed discussion of this process, including a rigorous proof in the context of a choice among lotteries has been presented by Gordon and Gangolli.\(^5\)

Although all the authors cited use virtually the same model of investor behavior,\(^6\) none has yet attempted to extend it to construct a market equilibrium theory of asset prices under conditions of risk.\(^7\) We will show that such an extension provides a theory with implications consistent with the assertions of traditional financial theory described above. Moreover, it sheds considerable light on the relationship between the price of an asset and the various components of its overall risk. For these reasons it warrants consideration as a model of the determination of capital asset prices.

Part II provides the model of individual investor behavior under conditions of risk. In Part III the equilibrium conditions for the capital market are considered and the capital market line derived. The implications for the relationship between the prices of individual capital assets and the various components of risk are described in Part IV.

II. OPTIMAL INVESTMENT POLICY FOR THE INDIVIDUAL

The Investor's Preference Function

Assume that an individual views the outcome of any investment in probabilistic terms; that is, he thinks of the possible results in terms of some probability distribution. In assessing the desirability of a particular investment, however, he is willing to act on the basis of only two para-

7. After preparing this paper the author learned that Mr. Jack L. Treynor, of Arthur D. Little, Inc., had independently developed a model similar in many respects to the one described here. Unfortunately Mr. Treynor's excellent work on this subject is, at present, unpublished.
meters of this distribution—its expected value and standard deviation. This can be represented by a total utility function of the form:

\[U = f(E_w, \sigma_w) \]

where \(E_w \) indicates expected future wealth and \(\sigma_w \) the predicted standard deviation of the possible divergence of actual future wealth from \(E_w \).

Investors are assumed to prefer a higher expected future wealth to a lower value, ceteris paribus (\(dU/dE_w > 0 \)). Moreover, they exhibit risk-aversion, choosing an investment offering a lower value of \(\sigma_w \) to one with a greater level, given the level of \(E_w \) (\(dU/d\sigma_w < 0 \)). These assumptions imply that indifference curves relating \(E_w \) and \(\sigma_w \) will be upward-sloping.

To simplify the analysis, we assume that an investor has decided to commit a given amount (\(W_t \)) of his present wealth to investment. Letting \(W_t \) be his terminal wealth and \(R \) the rate of return on his investment:

\[R = \frac{W_t - W_i}{W_i}, \]

we have

\[W_t = R \cdot W_i + W_i. \]

This relationship makes it possible to express the investor's utility in terms of \(R \), since terminal wealth is directly related to the rate of return:

\[U = g(E_R, \sigma_R). \]

Figure 2 summarizes the model of investor preferences in a family of indifference curves; successive curves indicate higher levels of utility as one moves down and/or to the right.

8. Under certain conditions the mean-variance approach can be shown to lead to unsatisfactory predictions of behavior. Markowitz suggests that a model based on the semi-variance (the average of the squared deviations below the mean) would be preferable; in light of the formidable computational problems, however, he bases his analysis on the variance and standard deviation.

9. While only these characteristics are required for the analysis, it is generally assumed that the curves have the property of diminishing marginal rates of substitution between \(E_w \) and \(\sigma_w \), as do those in our diagrams.

10. Such indifference curves can also be derived by assuming that the investor wishes to maximize expected utility and that his total utility can be represented by a quadratic function of \(R \) with decreasing marginal utility. Both Markowitz and Tobin present such a derivation. A similar approach is used by Donald E. Farrar in *The Investment Decision Under Uncertainty* (Prentice-Hall, 1962). Unfortunately Farrar makes an error in his derivation; he appeals to the Von-Neumann-Morgenstern cardinal utility axioms to transform a function of the form:

\[E(U) = a + bE_R - cE_R^2 - c\sigma_R^2 \]

into one of the form:

\[E(U) = k_1E_R - k_2\sigma_R^2. \]

That such a transformation is not consistent with the axioms can readily be seen in this form, since the first equation implies non-linear indifference curves in the \(E_R, \sigma_R^2 \) plane while the second implies a linear relationship. Obviously no three (different) points can lie on both a line and a non-linear curve (with a monotonic derivative). Thus the two functions must imply different orderings among alternative choices in at least some instance.
The Investment Opportunity Curve

The model of investor behavior considers the investor as choosing from a set of investment opportunities that one which maximizes his utility. Every investment plan available to him may be represented by a point in the E_R, σ_R plane. If all such plans involve some risk, the area composed of such points will have an appearance similar to that shown in Figure 2. The investor will choose from among all possible plans the one placing him on the indifference curve representing the highest level of utility (point F). The decision can be made in two stages: first, find the set of efficient investment plans and, second choose one from among this set. A plan is said to be efficient if (and only if) there is no alternative with either (1) the same E_R and a lower σ_R, (2) the same σ_R and a higher E_R or (3) a higher E_R and a lower σ_R. Thus investment Z is inefficient since investments B, C, and D (among others) dominate it. The only plans which would be chosen must lie along the lower right-hand boundary (AFBDCX)—the investment opportunity curve.

To understand the nature of this curve, consider two investment plans —A and B, each including one or more assets. Their predicted expected values and standard deviations of rate of return are shown in Figure 3.
If the proportion \(\alpha \) of the individual's wealth is placed in plan A and the remainder \((1-\alpha)\) in B, the expected rate of return of the combination will lie between the expected returns of the two plans:

\[
E_{Re} = \alpha E_{Ra} + (1 - \alpha) E_{Rb}
\]

The predicted standard deviation of return of the combination is:

\[
\sigma_{Re} = \sqrt{\alpha^2 \sigma_{Ra}^2 + (1 - \alpha)^2 \sigma_{Rb}^2 + 2 \alpha (1 - \alpha) \sigma_{Ra} \sigma_{Rb}}
\]

Note that this relationship includes \(r_{ab} \), the correlation coefficient between the predicted rates of return of the two investment plans. A value of +1 would indicate an investor's belief that there is a precise positive relationship between the outcomes of the two investments. A zero value would indicate a belief that the outcomes of the two investments are completely independent and —1 that the investor feels that there is a precise inverse relationship between them. In the usual case \(r_{ab} \) will have a value between 0 and +1.

Figure 3 shows the possible values of \(E_{Re} \) and \(\sigma_{Re} \) obtainable with different combinations of A and B under two different assumptions about

![Figure 3](image-url)
the value of r_{ab}. If the two investments are perfectly correlated, the combinations will lie along a straight line between the two points, since in this case both E_{rc} and σ_{rc} will be linearly related to the proportions invested in the two plans. If they are less than perfectly positively correlated, the standard deviation of any combination must be less than that obtained with perfect correlation (since r_{ab} will be less); thus the combinations must lie along a curve below the line AB. AZB shows such a curve for the case of complete independence ($r_{ab} = 0$); with negative correlation the locus is even more U-shaped.

The manner in which the investment opportunity curve is formed is relatively simple conceptually, although exact solutions are usually quite difficult. One first traces curves indicating E_R, σ_R values available with simple combinations of individual assets, then considers combinations of combinations of assets. The lower right-hand boundary must be either linear or increasing at an increasing rate ($\frac{d^2 \sigma_R}{dE_R^2} > 0$). As suggested earlier, the complexity of the relationship between the characteristics of individual assets and the location of the investment opportunity curve makes it difficult to provide a simple rule for assessing the desirability of individual assets, since the effect of an asset on an investor's over-all investment opportunity curve depends not only on its expected rate of return (E_R) and risk (σ_R), but also on its correlations with the other available opportunities ($r_{1}, r_{2}, \ldots, r_{n}$). However, such a rule is implied by the equilibrium conditions for the model, as we will show in part IV.

The Pure Rate of Interest

We have not yet dealt with riskless assets. Let P be such an asset; its risk is zero ($\sigma_{P} = 0$) and its expected rate of return, E_{RP}, is equal (by definition) to the pure interest rate. If an investor places α of his wealth

$$E_{Rc} = \alpha E_{Ra} + (1 - \alpha) E_{Rb} = E_{Rb} + (E_{Ra} - E_{Rb}) \alpha$$

$$\sigma_{Rc} = \sqrt{\alpha^2 \sigma_{Ra}^2 + (1 - \alpha)^2 \sigma_{Rb}^2 + 2 \alpha (1 - \alpha) \sigma_{Ra} \sigma_{Rb}}$$

but $r_{ab} = 1$, therefore the expression under the square root sign can be factored:

$$\sigma_{Rc} = \sqrt{[\alpha \sigma_{Ra} + (1 - \alpha) \sigma_{Rb}]^2}$$

$$= \alpha \sigma_{Ra} + (1 - \alpha) \sigma_{Rb}$$

$$= \sigma_{Rb} + (\sigma_{Ra} - \sigma_{Rb}) \alpha$$

12. This curvature is, in essence, the rationale for diversification.

13. When $r_{ab} = 0$, the slope of the curve at point A is $-\frac{\sigma_{Ra}}{E_{Rb} - E_{Ra}}$, at point B it is $\frac{\sigma_{Rb}}{E_{Rb} - E_{Ra}}$, when $r_{ab} = -1$, the curve degenerates to two straight lines to a point on the horizontal axis.

14. Markowitz has shown that this is a problem in parametric quadratic programming. An efficient solution technique is described in his article, "The Optimization of a Quadratic Function Subject to Linear Constraints," Naval Research Logistics Quarterly, Vol. 3 (March and June, 1956), 111-133. A solution method for a special case is given in the author's "A Simplified Model for Portfolio Analysis," op. cit.
in P and the remainder in some risky asset A, he would obtain an expected rate of return:

$$E_{R_e} = \alpha E_{R_p} + (1 - \alpha) E_{R_a}$$

The standard deviation of such a combination would be:

$$\sigma_{R_e} = \sqrt{\alpha^2 \sigma_{R_p}^2 + (1 - \alpha)^2 \sigma_{R_a}^2 + 2\sigma_{R_p} \alpha (1 - \alpha) \sigma_{R_p} \sigma_{R_a}}$$

but since $\sigma_{R_p} = 0$, this reduces to:

$$\sigma_{R_e} = (1 - \alpha) \sigma_{R_a}.$$

This implies that all combinations involving any risky asset or combination of assets plus the riskless asset must have values of E_{R_e} and σ_{R_e} which lie along a straight line between the points representing the two components. Thus in Figure 4 all combinations of E_R and σ_R lying along

![Figure 4](image)

the line PA are attainable if some money is loaned at the pure rate and some placed in A. Similarly, by lending at the pure rate and investing in B, combinations along PB can be attained. Of all such possibilities, however, one will dominate: that investment plan lying at the point of the original investment opportunity curve where a ray from point P is tangent to the curve. In Figure 4 all investments lying along the original curve
from X to ϕ are dominated by some combination of investment in ϕ and lending at the pure interest rate.

Consider next the possibility of borrowing. If the investor can borrow at the pure rate of interest, this is equivalent to disinvesting in P. The effect of borrowing to purchase more of any given investment than is possible with the given amount of wealth can be found simply by letting α take on negative values in the equations derived for the case of lending. This will obviously give points lying along the extension of line PA if borrowing is used to purchase more of A; points lying along the extension of PB if the funds are used to purchase B, etc.

As in the case of lending, however, one investment plan will dominate all others when borrowing is possible. When the rate at which funds can be borrowed equals the lending rate, this plan will be the same one which is dominant if lending is to take place. Under these conditions, the investment opportunity curve becomes a line (PϕZ in Figure 4). Moreover, if the original investment opportunity curve is not linear at point ϕ, the process of investment choice can be dichotomized as follows: first select the (unique) optimum combination of risky assets (point ϕ), and second borrow or lend to obtain the particular point on PZ at which an indifference curve is tangent to the line.\(^{15}\)

Before proceeding with the analysis, it may be useful to consider alternative assumptions under which only a combination of assets lying at the point of tangency between the original investment opportunity curve and a ray from P can be efficient. Even if borrowing is impossible, the investor will choose ϕ (and lending) if his risk-aversion leads him to a point below ϕ on the line Pϕ. Since a large number of investors choose to place some of their funds in relatively risk-free investments, this is not an unlikely possibility. Alternatively, if borrowing is possible but only up to some limit, the choice of ϕ would be made by all but those investors willing to undertake considerable risk. These alternative paths lead to the main conclusion, thus making the assumption of borrowing or lending at the pure interest rate less onerous than it might initially appear to be.

III. Equilibrium in the Capital Market

In order to derive conditions for equilibrium in the capital market we invoke two assumptions. First, we assume a common pure rate of interest, with all investors able to borrow or lend funds on equal terms. Second, we assume homogeneity of investor expectations.\(^{16}\) Investors are assumed

15. This proof was first presented by Tobin for the case in which the pure rate of interest is zero (cash). Hicks considers the lending situation under comparable conditions but does not allow borrowing. Both authors present their analysis using maximization subject to constraints expressed as equalities. Hicks' analysis assumes independence and thus insures that the solution will include no negative holdings of risky assets; Tobin's covers the general case, thus his solution would generally include negative holdings of some assets. The discussion in this paper is based on Markowitz' formulation, which includes non-negativity constraints on the holdings of all assets.

16. A term suggested by one of the referees.
to agree on the prospects of various investments—the expected values, standard deviations and correlation coefficients described in Part II. Needless to say, these are highly restrictive and undoubtedly unrealistic assumptions. However, since the proper test of a theory is not the realism of its assumptions but the acceptability of its implications, and since these assumptions imply equilibrium conditions which form a major part of classical financial doctrine, it is far from clear that this formulation should be rejected—especially in view of the dearth of alternative models leading to similar results.

Under these assumptions, given some set of capital asset prices, each investor will view his alternatives in the same manner. For one set of prices the alternatives might appear as shown in Figure 5. In this situa-

![Figure 5](image-url)

...tion, an investor with the preferences indicated by indifference curves A_1 through A_4 would seek to lend some of his funds at the pure interest rate and to invest the remainder in the combination of assets shown by point \(\phi \), since this would give him the preferred over-all position A*. An investor with the preferences indicated by curves B_1 through B_4 would seek to invest all his funds in combination \(\phi \), while an investor with indifference curves C_1 through C_4 would invest all his funds plus additional (borrowed)
Capital Asset Prices

funds in combination ϕ in order to reach his preferred position (C^*). In any event, all would attempt to purchase only those risky assets which enter combination ϕ.

The attempts by investors to purchase the assets in combination ϕ and their lack of interest in holding assets not in combination ϕ would, of course, lead to a revision of prices. The prices of assets in ϕ will rise and, since an asset's expected return relates future income to present price, their expected returns will fall. This will reduce the attractiveness of combinations which include such assets; thus point ϕ (among others) will move to the left of its initial position. On the other hand, the prices of assets not in ϕ will fall, causing an increase in their expected returns and a rightward movement of points representing combinations which include them. Such price changes will lead to a revision of investors' actions; some new combination or combinations will become attractive, leading to different demands and thus to further revisions in prices. As the process continues, the investment opportunity curve will tend to become more linear, with points such as ϕ moving to the left and formerly inefficient points (such as F and G) moving to the right.

Capital asset prices must, of course, continue to change until a set of prices is attained for which every asset enters at least one combination lying on the capital market line. Figure 6 illustrates such an equilibrium condition. All possibilities in the shaded area can be attained with combinations of risky assets, while points lying along the line PZ can be attained by borrowing or lending at the pure rate plus an investment in some combination of risky assets. Certain possibilities (those lying along PZ from point A to point B) can be obtained in either manner. For example, the E_R, σ_R values shown by point A can be obtained solely by some combination of risky assets; alternatively, the point can be reached by a combination of lending and investing in combination C of risky assets.

It is important to recognize that in the situation shown in Figure 6 many alternative combinations of risky assets are efficient (i.e., lie along line PZ), and thus the theory does not imply that all investors will hold the same combination. On the other hand, all such combinations must be perfectly (positively) correlated, since they lie along a linear border of

17. If investors consider the variability of future dollar returns unrelated to present price, both E_R and σ_R will fall; under these conditions the point representing an asset would move along a ray through the origin as its price changes.

18. The area in Figure 6 representing E_R, σ_R values attained with only risky assets has been drawn at some distance from the horizontal axis for emphasis. It is likely that a more accurate representation would place it very close to the axis.

19. This statement contradicts Tobin's conclusion that there will be a unique optimal combination of risky assets. Tobin's proof of a unique optimum can be shown to be incorrect for the case of perfect correlation of efficient risky investment plans if the line connecting their E_R, σ_R points would pass through point P. In the graph on page 83 of this article (op. cit.) the constant-risk locus would, in this case, degenerate from a family of ellipses into one of straight lines parallel to the constant-return loci, thus giving multiple optima.
the E_r, σ_R region. This provides a key to the relationship between the prices of capital assets and different types of risk.

IV. THE PRICES OF CAPITAL ASSETS

We have argued that in equilibrium there will be a simple linear relationship between the expected return and standard deviation of return for efficient combinations of risky assets. Thus far nothing has been said about such a relationship for individual assets. Typically the E_r, σ_R values associated with single assets will lie above the capital market line, reflecting the inefficiency of undiversified holdings. Moreover, such points may be scattered throughout the feasible region, with no consistent relationship between their expected return and total risk (σ_R). However, there will be a consistent relationship between their expected returns and what might best be called systematic risk, as we will now show.

Figure 7 illustrates the typical relationship between a single capital

20. E_r, σ_R values given by combinations of any two combinations must lie within the region and cannot plot above a straight line joining the points. In this case they cannot plot below such a straight line. But since only in the case of perfect correlation will they plot along a straight line, the two combinations must be perfectly correlated. As shown in Part IV, this does not necessarily imply that the individual securities they contain are perfectly correlated.
asset (point i) and an efficient combination of assets (point g) of which it is a part. The curve igg' indicates all E_R, σ_R values which can be obtained with feasible combinations of asset i and combination g. As before, we denote such a combination in terms of a proportion α of asset i and $(1 - \alpha)$ of combination g. A value of $\alpha = 1$ would indicate pure invest-

![Figure 7](image)

ment in asset i while $\alpha = 0$ would imply investment in combination g. Note, however, that $\alpha = .5$ implies a total investment of more than half the funds in asset i, since half would be invested in i itself and the other half used to purchase combination g, which also includes some of asset i. This means that a combination in which asset i does not appear at all must be represented by some negative value of α. Point g' indicates such a combination.

In Figure 7 the curve igg’ has been drawn tangent to the capital market line (PZ) at point g. This is no accident. All such curves must be tangent to the capital market line in equilibrium, since (1) they must touch it at the point representing the efficient combination and (2) they are continuous at that point.\(^{21}\) Under these conditions a lack of tangency would

\(^{21}\) Only if $r_{ig} = -1$ will the curve be discontinuous over the range in question.
imply that the curve intersects PZ. But then some feasible combination of assets would lie to the right of the capital market line, an obvious impossibility since the capital market line represents the efficient boundary of feasible values of E_R and σ_R.

The requirement that curves such as igg' be tangent to the capital market line can be shown to lead to a relatively simple formula which relates the expected rate of return to various elements of risk for all assets which are included in combination g. Its economic meaning can best be seen if the relationship between the return of asset i and that of combination g is viewed in a manner similar to that used in regression analysis. Imagine that we were given a number of (ex post) observations of the return of the two investments. The points might plot as shown in Fig. 8. The scatter of the R_i observations around their mean (which will approximate E_R) is, of course, evidence of the total risk of the asset — σ_R.

But part of the scatter is due to an underlying relationship with the return on combination g, shown by B_{ig}, the slope of the regression line. The response of R_i to changes in R_g (and variations in R_g itself) account for

22. The standard deviation of a combination of g and i will be:

$$\sigma = \sqrt{\alpha^2 \sigma_{R_i}^2 + (1 - \alpha)^2 \sigma_{R_g}^2 + 2\alpha(1 - \alpha) \sigma_{R_i} \sigma_{R_g}}$$

at $\alpha = 0$:

$$\frac{d\sigma}{d\alpha} = -\frac{1}{\sigma} [\sigma_{R_g}^2 - r_{ig} \sigma_{R_i} \sigma_{R_g}]$$

but $\sigma = \sigma_{R_g}$ at $\alpha = 0$. Thus:

$$\frac{d\sigma}{d\alpha} = -[\sigma_{R_g}^2 - r_{ig} \sigma_{R_i}]$$

The expected return of a combination will be:

$$E = \alpha E_{R_i} + (1 - \alpha) E_{R_g}$$

Thus, at all values of α:

$$\frac{dE}{d\alpha} = -[E_{R_g} - E_{R_i}]$$

and, at $\alpha = 0$:

$$\frac{dE}{d\alpha} = \frac{\sigma_{R_g} - r_{ig} \sigma_{R_i}}{E_{R_g} - E_{R_i}}.$$

Let the equation of the capital market line be:

$$\sigma_B = \frac{1}{E_{R_g} - P}$$

where P is the pure interest rate. Since igg' is tangent to the line when $\alpha = 0$, and since $(E_{R_g}$, $\sigma_{R_g})$ lies on the line:

$$\frac{\sigma_{R_g} - r_{ig} \sigma_{R_i}}{E_{R_g} - E_{R_i}} = \frac{\sigma_{R_g}}{E_{R_g} - P}$$

or:

$$\frac{r_{ig} \sigma_{R_i}}{\sigma_{R_g}} = -\left[\frac{P}{E_{R_g} - P}\right] + \left[\frac{1}{E_{R_g} - P}\right] E_{R_i}.$$

23. This model has been called the diagonal model since its portfolio analysis solution can be facilitated by re-arranging the data so that the variance-covariance matrix becomes diagonal. The method is described in the author’s article, cited earlier.
much of the variation in R_i, it is this component of the asset's total risk which we term the \textit{systematic} risk. The remainder, being uncorrelated with R_g, is the unsystematic component. This formulation of the relationship between R_i and R_g can be employed \textit{ex ante} as a predictive model. B_{ig} becomes the \textit{predicted} response of R_i to changes in R_g. Then, given σ_{rg} (the predicted risk of R_g), the systematic portion of the predicted risk of each asset can be determined.

This interpretation allows us to state the relationship derived from the tangency of curves such as igg' with the capital market line in the form shown in Figure 9. All assets entering efficient combination g must have (predicted) B_{ig} and E_{R_i} values lying on the line PQ. Prices will

24. \textit{ex post}, the standard error.

25.

$$r_{ig} = \frac{B_{ig} \sigma_{rg}}{\sigma_{R_i^2}} = \frac{B_{ig} \sigma_{rg}}{\sigma_{R_i}}$$

and:

$$B_{ig} = \frac{r_{ig} \sigma_{R_i}}{\sigma_{rg}}.$$

The expression on the right is the expression on the left-hand side of the last equation in footnote 22. Thus:

$$B_{ig} = \left[\frac{P}{E_{R_g} - P} \right] + \left[\frac{1}{E_{R_g} - P} \right] E_{R_i}.$$
adjust so that assets which are more responsive to changes in R_g will have higher expected returns than those which are less responsive. This accords with common sense. Obviously the part of an asset's risk which is due to its correlation with the return on a combination cannot be diversified away when the asset is added to the combination. Since B_{ig} indicates the magnitude of this type of risk it should be directly related to expected return.

The relationship illustrated in Figure 9 provides a partial answer to the question posed earlier concerning the relationship between an asset's risk and its expected return. But thus far we have argued only that the relationship holds for the assets which enter some particular efficient combination (g). Had another combination been selected, a different linear relationship would have been derived. Fortunately this limitation is easily overcome. As shown in the footnote, we may arbitrarily select any one

26. Consider the two assets 1 and i^*, the former included in efficient combination g and the latter in combination g^*. As shown above:

$$B_{ig} = -\left[\frac{P}{E_R - P} \right] + \left[\frac{1}{E_R - P} \right] E_{R1}$$

and:

of the efficient combinations, then measure the predicted responsiveness of every asset's rate of return to that of the combination selected; and these coefficients will be related to the expected rates of return of the assets in exactly the manner pictured in Figure 9.

The fact that rates of return from all efficient combinations will be perfectly correlated provides the justification for arbitrarily selecting any one of them. Alternatively we may choose instead any variable perfectly correlated with the rate of return of such combinations. The vertical axis in Figure 9 would then indicate alternative levels of a coefficient measuring the sensitivity of the rate of return of a capital asset to changes in the variable chosen.

This possibility suggests both a plausible explanation for the implication that all efficient combinations will be perfectly correlated and a useful interpretation of the relationship between an individual asset's expected return and its risk. Although the theory itself implies only that rates of return from efficient combinations will be perfectly correlated, we might expect that this would be due to their common dependence on the over-all level of economic activity. If so, diversification enables the investor to escape all but the risk resulting from swings in economic activity—this type of risk remains even in efficient combinations. And, since all other types can be avoided by diversification, only the responsiveness of an asset's rate of return to the level of economic activity is relevant in

\[B_{1g^*} = - \left(\frac{1}{ER_{g^*} - P} \right) + \left(\frac{1}{ER_{g^*} - P} \right) E_{RI^*}. \]

Since \(R_g \) and \(R_{g^*} \) are perfectly correlated:

\[\beta_{1g^*} = \beta_{1g}. \]

Thus:

\[\left(\frac{B_{1g^*} \sigma_{R_{g^*}}}{\sigma_{RI^*}} \right) = \frac{B_{1g} \sigma_{R_g}}{\sigma_{RI^*}}. \]

and:

\[B_{1g^*} = B_{1g} \left(\frac{\sigma_{R_g}}{\sigma_{R_{g^*}}} \right). \]

Since both \(g \) and \(g^* \) lie on a line which intercepts the E-axis at \(P \):

\[\sigma_{R_{g^*}} = \frac{ER_{g^*} - P}{ER_{g^*} - P} \]

and:

\[B_{1g^*} = B_{1g} \left(\frac{ER_{g^*} - P}{ER_{g^*} - P} \right). \]

Thus:

\[\left(\frac{1}{ER_{g^*} - P} \right) + \left(\frac{1}{ER_{g^*} - P} \right) E_{RI^*} = \frac{B_{1g^*} \left(ER_{g^*} - P \right)}{ER_{g^*} - P}. \]

from which we have the desired relationship between \(R_{g^*} \) and \(g^* \):

\[B_{1g^*} = \left(\frac{1}{ER_{g^*} - P} \right) + \left(\frac{1}{ER_{g^*} - P} \right) E_{RI^*}. \]

\(B_{1g^*} \) must therefore plot on the same line as \(B_{1g} \).
assessing its risk. Prices will adjust until there is a linear relationship between the magnitude of such responsiveness and expected return. Assets which are unaffected by changes in economic activity will return the pure interest rate; those which move with economic activity will promise appropriately higher expected rates of return.

This discussion provides an answer to the second of the two questions posed in this paper. In Part III it was shown that with respect to equilibrium conditions in the capital market as a whole, the theory leads to results consistent with classical doctrine (i.e., the capital market line). We have now shown that with regard to capital assets considered individually, it also yields implications consistent with traditional concepts: it is common practice for investment counselors to accept a lower expected return from defensive securities (those which respond little to changes in the economy) than they require from aggressive securities (which exhibit significant response). As suggested earlier, the familiarity of the implications need not be considered a drawback. The provision of a logical framework for producing some of the major elements of traditional financial theory should be a useful contribution in its own right.
The equity risk premium, or the difference between the expected returns on stocks and on risk-free assets, has commanded the attention of both professional economists and investment practitioners for many decades. In the past 20 years, more than 320 articles, enough to fill some 40 economics and finance journals, have been published with the words “equity premium” in the title.

The intense interest in the magnitude of the premium is not surprising. The difference between the return on stocks and the return on bonds is critical not only for asset allocation but also for wealth projections for individual investors, foundations, and endowments. One of the most asked questions by investors is: How much more can I expect to earn from shifting from bonds to stocks?

Academic interest in the equity premium surged after Mehra and Prescott published a seminal article in 1985 titled “The Equity Premium: A Puzzle.” By examining the behavior of the stock market and aggregate consumption, they showed that the equity risk premium, under the usual assumptions about investor behavior toward risk, should be much lower than had been calculated from the historical data. Indeed, Mehra and Prescott stated that the equity premium in the U.S. markets should be, at most, 0.35 percent instead of the approximately 6 percent premium computed from data going back to 1872.

The Mehra–Prescott research raised the following question: Have investors been demanding—and receiving—“too high” a return for holding stocks based on the fundamental uncertainty in the economy, or are the models that economists use to describe investor behavior fundamentally flawed? If the returns have been too high, then analysts can justify increased asset allocation to equities and reduced allocation to bonds; if the models are flawed, economists need to develop new models to describe investor behavior.

My discussion of the equity risk premium will be divided into three parts: (1) a summary of the data used to calculate the equity premium and discussion of potential biases in the historical data, (2) analysis of the economic models, and (3) discussion of the implications of the findings for investors and for forecasts of the future equity premium.

Historical Returns on Stocks and Bonds

In this section, I present historical asset returns since 1802, define the equity premium, and discuss biases in the historical data that affect future estimates of the equity premium.

Jeremy J. Siegel is the Russell E. Palmer Professor of Finance at the Wharton School, University of Pennsylvania, Philadelphia.
Equity Returns. The historical returns on stocks, bonds, and bills and the equity risk premium for the U.S. markets from 1802 through 31 December 2004 are in Table 1. Both the arithmetic mean of the annual data, which is the "expected return" used in the capital asset pricing model (CAPM), and the compound (or geometric) return, which is the return most often used by individual and professional investors, are given in Table 1. The last columns display the equity risk premium in relation to both long-term U.S. government bonds and T-bills. Returns and premiums are broken down into two subperiods in Panel A, into three major subperiods in Panel B, and into the major bull and bear markets since World War II in Panel C.

The stability of the real (inflation-adjusted) return on stocks over all long periods is impressive. The compound annual real return on equity has averaged 6.82 percent over the past 203 years and, as Panels B and C show, settled between 6.5 percent and 7.0 percent for each of the three major subperiods and for the post–World War II data. This return is about twice the growth of the economy and includes the risk premium above risk-free assets that investors have demanded to hold stocks.

When the period for which stock returns are analyzed shrinks to one or two decades, the real return on stocks can deviate substantially from the long-run average. Since World War II, returns in major market cycles have fluctuated from a 10.02 percent annual real equity return in the bull market of 1946–1965 to a −0.36 percent annual real equity return in the bear market of 1966–1981; in the great bull market of 1982–1999, the return doubled the 203-year average.

Fixed-Income Returns. The middle columns in Table 1 show that real bond returns, in contrast to stocks, have experienced a declining trend in the past two centuries. From 1802 through 2004, the average annual compound real return on long-term bonds was about half the equity return, but in the 19th century, real bond returns were nearly 5 percent. Since the end of World War II, the bond return has averaged less than 1.50 percent. The 3.31 percent average real return over the last two centuries is approximately equal to the real growth of the economy, but in the post–World War II period, real returns on bonds have fallen far below economic growth.

The real return on short-dated T-bills has fallen even more sharply than the return on bonds over the past two centuries. For the entire period, real T-bill returns averaged 2.84 percent, 67 bps below the return on long-term bonds. Average short-term

Table 1. Historical Real Stock and Bond Returns and the Equity Premium

<table>
<thead>
<tr>
<th>Period</th>
<th>Stocks Real Return</th>
<th>Bonds Real Return</th>
<th>Bills Real Return</th>
<th>Stock Return minus Return on:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Long periods to present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1802–2004</td>
<td>6.82%</td>
<td>8.38%</td>
<td>3.51%</td>
<td>3.88%</td>
</tr>
<tr>
<td>1871–2004</td>
<td>6.71%</td>
<td>8.43%</td>
<td>2.85%</td>
<td>3.24%</td>
</tr>
<tr>
<td>B. Major subperiods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1802–1870</td>
<td>7.02%</td>
<td>8.28%</td>
<td>4.78%</td>
<td>5.11%</td>
</tr>
<tr>
<td>1871–1925</td>
<td>6.62%</td>
<td>7.92%</td>
<td>3.73%</td>
<td>3.93%</td>
</tr>
<tr>
<td>1926–2004</td>
<td>6.78%</td>
<td>8.78%</td>
<td>2.25%</td>
<td>2.77%</td>
</tr>
<tr>
<td>C. Post–World War II full sample, bull markets, and bear markets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946–2004</td>
<td>6.83%</td>
<td>8.38%</td>
<td>1.44%</td>
<td>2.04%</td>
</tr>
<tr>
<td>1946–1965</td>
<td>10.02%</td>
<td>11.39%</td>
<td>−1.19%</td>
<td>−0.95%</td>
</tr>
<tr>
<td>1966–1981</td>
<td>−0.36%</td>
<td>1.38%</td>
<td>−4.17%</td>
<td>−3.86%</td>
</tr>
<tr>
<td>1982–1999</td>
<td>13.62%</td>
<td>14.30%</td>
<td>8.40%</td>
<td>9.28%</td>
</tr>
<tr>
<td>1982–2004</td>
<td>9.47%</td>
<td>10.64%</td>
<td>8.01%</td>
<td>8.74%</td>
</tr>
</tbody>
</table>

Note: “Comp.” stands for "compound"; “Arith.” stands for "arithmetic."
rates were 34 bps above long-term rates for 1802–1870, but they were 57 bps below long rates from 1871 through 1925 and have been 156 bps below long rates since 1926.

The increase in the spread between long rates and short rates was caused partly by the increased liquidity of the T-bill market, which lowered short rates, and partly by the increase in the inflation premium investors have required on long-term bonds over much of the post–World War II period.

The Equity Premium. The decline in the real return on bonds, combined with the relative stability of the real return on equity, has increased the equity premium over time, as the last columns in Table 1 show. Over the 1802–2004 period, the equity risk premium as measured from compound annual returns and in relation to bonds rose (see Panel B) from 2.24 percent to 2.89 percent to 4.53 percent. Measured in relation to T-bills, the equity risk premium has increased even more.

The Risk-Free Rate: Long or Short? Should the equity risk premium be measured against the rate of short-term or long-term government bonds? In the simple representations of the CAPM, the risk-free rate is calculated against the rate on short-term risk-free assets, such as T-bills. When an intertemporal CAPM is used, however, a short rate may not be appropriate. Investors should hedge against changes in investment opportunities, as represented by changes in the real risk-free rate. And in an intertemporal context, a risk-free asset can be considered an annuity that provides a constant real return over a long period of time. The return on this annuity is best approximated by the returns on long-term inflation-indexed government bonds. In the United States, inflation-indexed government bonds were not introduced until 1997, so real returns on bonds before that date must be calculated ex post by subtracting inflation from nominal bond yields.

Calculation of the Equity Premium. The equity risk premium can be defined by the reference asset class, time period chosen, or method of calculating mean returns so as to take on a wide range of values. Its maximum value is calculated by using the arithmetic mean return of historical stock returns and subtracting the mean return on the high-quality short-dated securities, such as T-bills. Measured in this way, the equity premium in the United States since 1802 has been 5.36 percent and since 1926, has been 8.02 percent. When geometric mean returns are used, the equity premium shrinks to 3.98 percent since 1802 and 6.09 percent since 1926. If we calculate the equity premium against long-dated (instead of short-term) bonds, the compound premium falls farther—to 3.31 percent over the past 202 years and 4.53 percent since 1926.

So, over the period from 1926 to the present, the premium can differ by 3.5 percentage points depending on whether long- or short-dated securities are used or arithmetic or geometric returns are calculated. Notwithstanding, the premium calculated by any of these methods far exceeds the magnitude derived in the Mehra–Prescott model.

Biases in Historical Equity Returns. In calculations of the equity risk premium, certain biases must be recognized: the international survivorship bias; failure to take transaction costs and diversification benefits into account; investor ignorance of risks, returns, and mean reversion; taxes and individuals’ pension assets; and biases in the historical record of bond returns.

International survivorship bias. Some economists claim that the historical real return on U.S. equities quite probably overstates the true expected return on stocks (Brown, Goetzmann, and Ross 1995). They maintain that the United States simply turned out to be the most successful capitalist country in history, a development that was by no means certain when investors were buying stock in the 19th and early 20th centuries.

Because the economic outcome in the United States was better than expected, U.S. returns may overstate the expected return on stocks. The cause is a phenomenon called “survivorship bias.” This bias will exist whenever stock returns are recorded in successful equity markets, such as those in the United States, but omitted where stocks have faltered or disappeared outright, such as they did in Russia.

To address survivorship bias and to compile definitive series of long-term international stock returns, three U.K. economists—Dimson and Marsh from the London School of Business and Staunton from the U.K. statistical center—examined stock and bond returns over the past century in 16 countries. Their research, published in Triumph of the Optimists: 101 Years of Global Investment Returns, found that the superior returns on stocks over bonds is not characteristic of the U.S. market alone but
exists in virtually all countries (see Dimson, Marsh, and Staunton 2002, 2004). Figure 1 shows the average annual real stock, bond, and bill returns of the 16 countries they analyzed from 1900 through 2003.

Real equity returns ranged from a low of 1.9 percent in Belgium to a high of 7.5 percent in Sweden and Australia. Stock returns in the United States, although quite good, were not exceptional. U.S. stock returns were exceeded by the returns in Sweden, Australia, and South Africa.

If an equal investment had been placed in each of these markets in 1900, the average annual real return on stocks from 1900 through 2003 would have been 6.0 percent a year, not far below the U.S. return of 6.5 percent. Furthermore, in the countries where real equity returns were low, such as Belgium, Italy, and Germany, real bond returns were also low, so the equity premium in Italy and Germany as measured against bonds was actually higher than the premium in the United States. In fact, the compound annual return of an equal amount invested in stocks in each country surpassed an identical amount in bonds in each country by 4 percent a year, only slightly less than the 4.6 percent equity risk premium found for the United States over the same time period.

When all the information was analyzed, the authors concluded:

While the U.S. and the U.K. have indeed performed well . . . there is no indication that they are hugely out of line with other countries. . . . Concerns about success and survivorship bias, while legitimate, may therefore have been somewhat overstated [and] investors may have not been materially misled by a focus on the U.S. (Dimson, Marsh, and Staunton 2002, p. 175)

The high historical equity premium is a worldwide, not just a U.S., phenomenon.

Transaction costs and diversification. The returns used to calculate the equity premium are derived from published stock indices, but investors may not have realized these returns in their portfolios. Transaction costs in the equity markets were far higher over most of the period than they are today.

Low-cost indexed mutual and exchange-traded funds were not available to investors of the 19th century or most of the 20th century. Before 1975, brokerage commissions on buying and selling individual stocks were fixed by the NYSE at high levels. Moreover, it is not unreasonable to

Figure 1. Real Returns on International Assets, 1900–2003

![Bar chart showing annual real return (%) for various countries and asset classes.]

- Equities
- Bonds
- Bills
assume that until recently, transaction costs involved with replicating a market portfolio with reinvested dividends subtracted 1–2 percentage points a year from stockholder returns. So, the realized equity returns were probably much lower than those calculated from published data.

Investor ignorance of risks, returns, and mean reversion. Because data on long-term stock returns were not available until the second half of the 20th century, investors in the past were probably ignorant of the true risks and returns from holding stocks and may have underestimated the return and/or overestimated the risk of equities. When Fisher and Lorie (1964) first documented long-term returns in the 1960s, many economists were surprised that even when the Great Depression was included, stocks yielded such a high rate of return.

Another advantage of stocks that until recently was not recognized is the evidence of mean reversion of long-term equity returns. In the early development of capital asset pricing theory, financial returns were modeled as random walks whose risk increased as the square root of the time period. But examination of long-term data strongly suggests a predictable component of stock returns that makes the returns less variable over long periods than they would be if mean reversion did not exist. Mean reversion increases the desirability of stocks as assets for long-term investors.

Ignorance of the historical risks and returns of various asset classes may have led to a general underpricing of assets as an asset class. This result, in turn, may have raised realized returns higher than would be justified if stocks were priced by investors with full knowledge of the distribution of stock returns.

Pension assets and taxes. The evolution of U.S. federal tax policy also may have influenced stock returns. The tremendous increase in tax-sheltered plans over the past several decades has greatly increased the demand for equities. For example, in 1974, ERISA established minimum standards for pension plans in private industry and allowed equities to play a greatly expanded role in asset accumulation.

McGrattan and Prescott (2003) argued that the increase in tax-sheltered savings has led to a significant drop in the average tax rate on equities. This drop may have boosted stock returns and, to the extent that stocks substituted for bonds, lowered the real return on fixed-income assets.

Biases in historical bond returns. Real government bond returns may have been biased downward in the period since 1926, especially since World War II. Bondholders clearly did not anticipate the double-digit inflation of the 1970s and 1980s.

Table 1 shows the extraordinarily poor bond returns in the 35 years following World War II. Of course, when inflation was brought down in the 1980s and 1990s, interest rates returned to the levels of the immediate postwar period. But the resulting bull market in bonds did not offset the losses of the inflationary 1960s and 1970s because, although the inflation rate returned to its earlier level, the price level did not. So, over the entire inflation cycle, bondholders suffered a permanent loss of return. This phenomenon is one reason real bond returns since World War II have averaged only 1.4 percent, less than half their historical level.

Models of the Equity Premium

The biases just discussed have probably raised the historical return on equities and, therefore, the historical value of the equity risk premium. Nevertheless, accounting for these biases is unlikely to reduce the premium to the level that Mehra and Prescott maintain is consistent with reasonable levels of risk aversion. So, we are compelled to analyze whether the assumptions of the models used to describe investor behavior are, in fact, reasonable representations of investor and financial market behavior.

The equity premium puzzle is centered on the “reasonable” level of risk aversion for investors. Recall that risk premiums exist because individuals are assumed to have declining marginal utility of consumption. How fast this utility declines measures the investor’s degree of risk aversion. In early risk models, the investor’s utility function, U, was assumed to be a function of wealth, W, such that

$$U(W) = \frac{1}{(1-A)} W^{(1-A)}. \quad (1)$$

The parameter A is the coefficient of relative risk aversion, or the percentage change (elasticity) of the marginal utility of wealth caused by a 1 percent change in the level of wealth. In other words, A is directly related to the pain felt by investors when their wealth falls.

With this utility function, and under the assumption that returns are lognormally distributed, the arithmetic equity premium, EP, can be approximated by

$$EP = A(\sigma^2). \quad (2)$$
where \(\sigma \) is the standard deviation of returns on an investor’s portfolio. If we use 0.18 as the standard deviation of annual stock market returns and an (arithmetic) equity risk premium of 8 percent as measured from annual data since 1926, we obtain a level of risk aversion, \(A \), of 2 or 3.14

These levels of risk aversion produced by the early models seemed reasonable. With a risk aversion of 2, an individual would be willing to pay 4 percent of his wealth to insure against an equal probability of a 20 percent rise or 20 percent fall in wealth. If \(A \) equals 3, this insurance payment would be 5.6 percent of wealth.

But Equation 1 is not correctly specified. Economists knew that wealth is a proxy for consumption, which is the correct variable to put into the utility function. Putting consumption into the utility function led to the development of the “consumption CAPM” (CCAPM) popularized by Breeden (1979).

There is an important empirical difference between the consumption-based CAPM and the wealth-based CAPM. Per capita consumption, as measured by national income account statistics, fluctuates far less than the value of wealth. The standard deviation of the growth of consumption is only about 4 percent, so the variance of changes in the stock market is almost 20 times greater than the variance of the changes in consumption.

If we plug the variance of consumption of 0.16 percent and an equity premium of 8 percent into Equation 2, we find a risk aversion of 50. If investors were really this risk averse, they would pay an insurance premium of 17 percent to avoid an equal probability of a 20 percent rise or fall in their wealth. For investors to act this risk averse is implausible. In other words, if individuals actually have a risk aversion coefficient of 2 or 3, the equity risk premium implied in the CCAPM is much smaller, on the order of 0.3–0.4 percent. The intuition here is that historical changes in consumption are not large enough to significantly alter utility, so investors are willing to take nearly a “fair bet” with stocks.15

Another way of looking at this issue is that the standard CAPM assumes that changes in wealth cause equal changes in consumption, but in reality, movements in the stock market are not associated with dramatic changes in consumption. Any risk that is not strongly correlated with consumption should not require a large risk premium, and empirically, the returns on equities fall into that category.16

The equity premium puzzle was not the only anomaly implied by the consumption CAPM. Weil (1989) showed that not only did the CCAPM imply that the historical equity premium was too large, but it also implied that the historical real rate of return on bonds, given economic growth and reasonable risk-aversion parameters, was far too small. This anomaly was called the “risk-free rate puzzle.” These two puzzles were related to the “excess volatility puzzle,” which had been explored earlier by Shiller (1981), who showed that stock prices have been too volatile to be explained by changes in subsequent dividends.

These puzzles are caused by the fact that the stock market has fluctuated far more than the underlying economic variables, such as aggregate consumption or GDP.

Finding the Model That Fits the Data

Before attempting to change the basic model summarized by Equation 1 with consumption substituting for wealth, I should note that some economists believe that the high levels of risk aversion implied by the model are not necessarily unreasonable. Kandel and Stambaugh (1991) pointed out that, although high levels of risk aversion may lead to unreasonable behavior with respect to large changes in consumption, the behavior may not be implausible for small changes in wealth. For example, to avoid a 50/50 chance of your consumption rising or falling by 1 percent if your coefficient of risk aversion is 10, you would pay 5 percent of the gamble. Even if risk-aversion coefficient \(A \) is as high as 29, which best fits the data in the Kandel–Stambaugh model, an investor would pay only 14.3 percent of the gamble to avoid the risk of a 1 percent rise or fall in wealth. Neither of these actions appears unreasonable.

Fama, agreeing that a large risk-aversion coefficient is not necessarily a puzzle, stated that a large equity premium says that consumers are extremely averse to small negative consumption shocks. This is in line with the perception that consumers live in morbid fear of recessions (and economists devote enormous energy to studying them) even though, at least in the post war period, recessions are associated with small changes in per capita consumption. (1991, p. 1596)
In evaluating these arguments, however, remember that in the domain of retirement savings, the stakes are large relative to wealth or yearly consumption. A typical faculty member at age 55 saving, say, 10 percent of her salary a year might well have half or more of her wealth (including future earnings) in her retirement account. Similarly, university endowments are a substantial portion of the wealth of private universities. And even with mean reversion of equity returns, the 10-year to 20-year standard deviation of equity returns is substantial. So, we seem to be back in the high-stakes category, where high values of risk aversion lead to absurd behavior.

Changes in the Utility Function. In an attempt to solve the puzzle, most economists have been driven to modify the consumption-based utility function represented by Equation 1 to justify a higher equity premium without requiring an implausibly high level of risk aversion. A popular generalization of Equation 1, pioneered by Epstein and Zin (1989), breaks the rigid link between risk aversion (investor reaction to changes in consumption over a given period of time) and the reaction to changes in consumption over time, called the inter-temporal rate of substitution, which affects the real rate of interest. This class of utility functions has been fruitful in explaining low real rates but does not go far in explaining the equity premium.

Another line of research makes utility a function not only of current consumption but also of some “benchmark” level of consumption. If the benchmark is taken to be prior levels of consumption, then individuals are taken to be sensitive not only to their level of consumption today but also to how it has changed from yesterday. Thus, individuals are assumed to take time to adjust to new levels of consumption, a behavior that can be described as “habit formation.”

Constantinides (1990) showed that habit formation makes an investor more risk averse to a short-run change in consumption, leading to higher “short-run” risk aversion than “long-run” risk aversion. Evidently, once one has tasted the good life, it is difficult to adjust one’s consumption downward. A similar approach was taken by Campbell and Cochrane (1999), who claimed that utility is a function of consumption over and above some habit that is slow to change. Therefore, in a recession, risk aversion increases markedly even though in absolute terms, recessions exhibit relatively small declines in consumption. The equity premium, as well as all other risk premiums, does indeed increase in recessionary periods.

Abel (1990) examined asset pricing when an individual’s utility is derived not only from the individual’s own consumption but also relative to the consumption of others around them—what he termed “catching up with the Joneses.” This utility function is less risk averse if everyone’s income moves up and down together, but when individuals compare their living standards with others’, the comparison makes individuals act very risk averse. This utility function helps solve the real rate puzzle but is not much help in explaining the equity premium.\(^\text{17}\)

An alternative approach, elaborated by Benartzi and Thaler (1995), is built on the “cumulative prospect theory” proposed by Tversky and Kahneman (1992). Prospect theory shares the claim that utility is based on benchmarks, so today’s level of consumption is important, but prospect theory, which is a pioneering model in behavioral finance, asserts that asset returns, rather than consumption or wealth, are arguments of the utility function. In these models, investors dislike losses much more intensely than they like gains. When the utility function is based on changes in wealth rather than levels of wealth, investors are referred to as “loss averse” rather than “risk averse.”\(^\text{18}\)

When investors have these loss-averse preferences, their attitudes toward risky assets depend crucially on the time horizon over which returns are evaluated. For example, loss-averse investors who compute the values of their portfolios every day would find investing in stocks unattractive because stock prices fall almost as often as they rise. Investors who check returns less frequently have a higher probability of seeing positive returns. The concept of loss-averse preferences explains why individuals are so risk averse in the short run, what Benartzi and Thaler called “myopic loss aversion.”

Uncertain Labor Income. The previous models assumed that the only important source of uncertainty is the return on equity. A more realistic way to model uncertainty would be to recognize that labor income is also uncertain. This fact can markedly change investors’ behavior toward the risks in financial markets.

Uncertain labor income may explain why risk aversion increases in a recession; it is well known that unemployment and the number of layoffs...
affect workers’ decisions. During recessions, stocks frequently sell at large discounts relative to their long-term values, a factor that increases long-run equity returns.

The inability to borrow large sums against labor income also means that many workers, especially young workers, are not able to hold as much equity as they would like, even though their “human capital,” measured as the value of their future labor income, is high. Constantinides, Donaldson, and Mehra (2002) reported that this phenomenon can have important consequences for asset pricing. Older workers do hold equity, but this age cohort displays greater risk aversion than younger workers because older workers have much more limited ability to offset portfolio losses by changing their work effort. As a result, the economy in general displays the greater risk aversion of the older generation, for whom future consumption is more geared to the level of financial assets than to income. Indeed, Mankiw and Zeldes (1991) found that large stockholders’ consumption reflects a larger sensitivity to market fluctuations than does the consumption of smaller stockholders.

Modeling the Risks to Consumption and Equities. Another path to justifying the equity risk premium, rather than changing the form of the utility function, is to reexamine the statistical properties of consumption and stock returns. The standard approach is to assume that both the growth of consumption and the return on stocks are stochastic processes marked by lognormal distributions with constant expected returns. Although this specification is analytically tractable and reasonably replicates the behavior of the historical data, it may not be correct.

Weitzman (2004) argues in a working paper that we do not know the exact distributions of output in the economy, so treating the historically estimated means and standard deviations as known parameters is incorrect. Uncertainty about the true means and variances of the distribution signifies that the probability distributions of consumption and stock returns have fatter tails than assumed in the lognormal distribution.

We know that stock returns do, in fact, have fatter tails than implied by lognormality. If lognormality prevailed, the probability of the 19 percent decline in the S&P 500 Index that occurred on 19 October 1987 would be less than 1 in 10^7, so even if we had had billions of exchanges operating daily

for the last 12 billion years (the estimated age of the universe), there would be virtually no chance of observing this event. Yet, the decline did occur, and it may have dramatically increased investors’ perceptions of equity risk.

Weitzman shows that, in the absence of risk-free assets, these fatter-tailed distributions alter the analytics of the equity premium dramatically. Instead of yielding an extremely low equity premium, these distributions yield an arbitrarily high equity premium for any level of risk aversion. Furthermore, this model has the ability to explain a low risk-free rate and the “excess volatility” of the stock market.

This research is not unrelated to the earlier studies of Rietz (1988), who speculated shortly after Mehra and Prescott’s research that investors fear a lurking “disaster state” of extreme negative consumption that has not yet been realized. Such fear would lead to a higher equity premium. Recently, Barro (2005) found strong support for this theory in the data for international markets.

In a similar vein, Bansal and Yaron (2004) rewrote the stochastic properties of the consumption and dividend growth models. Instead of modeling consumption growth as uncorrelated through time, they assumed it has a small long-run predictable component that is affected by past growth. So, a shock to consumption influences its expected growth as well as the expected growth of dividends many years into the future, which can have a dramatic impact on the valuation of equities. When this consumption process is combined with time-varying variance, the Bansal–Yaron model, like Weitzman’s approach, has the capability of explaining all the asset pricing puzzles.

Practical Applications

The practitioner might ask: How does the equity premium puzzle matter to investors? This question should be analyzed in the following way.

If the equity premium should be only a fraction of 1 percent, as the basic economic model suggests, then either stocks should be priced much higher or bonds should be priced much lower than they have been on a historical basis. If stock prices rose and bond prices fell, the result would lower the forward-looking returns on equities and raise returns on fixed-income assets, thereby lowering the equity premium. Clearly, if investors believe this narrower premium will prevail at some time in the future, they should be fully invested in stocks now.
But this scenario is highly unlikely to occur. Although the future equity premium is likely to be somewhat lower than in the past, few believe investors will hold stocks if their expected return is only a fraction of a percent above the return of risk-free assets.

Yet, we should not dismiss the equity premium puzzle. The search for the right model has yielded insights that can give practitioners guidance in structuring their clients' portfolios. One promising area is the work on habit formation, which implies that there may be a significant difference in an investor's short-term and long-term attitudes toward risk. This research suggests that an advisor may find it worthwhile to explore the investor's reaction to lowering consumption in a short time frame versus lowering it in a longer time frame, when other adjustments can be made to ease the impact of a reduced standard of living.

A related issue is the importance of examining labor income as a component of portfolio choice. Individuals whose labor income is uncertain and whose borrowing capabilities are low should hold a lower allocation of equities. Those with highly marketable skills should hold a higher fraction in equities. Those who are near retirement and have no flexibility to change their labor income will be more risk averse than investors with marketable labor skills.

A high equity premium can arise from assuming that investors demand a minimum level of consumption that must be attained in any investment plan, no matter what the time period to adjust. The effect is equivalent to assuming that risk aversion becomes extremely high at low levels of consumption. This approach has given rise to the growth of "liability investing," in which investors, especially those approaching retirement, fund what they deem absolute minimum expenditures with risk-free assets, such as Treasury Inflation-Indexed Securities (informally called TIPS), with the remainder being subject to the usual risk and return trade-offs (see Waring 2004).

 Investors who suffer from myopic loss aversion, the condition in which the downs in the market deliver much more pain than the ups deliver pleasure, should be advised to set their best allocations and then assess the value of their portfolios infrequently. Blind trusts controlled by outside advisors might be the best strategy for the investors who are particularly sensitive to losses.

Financial planners must also evaluate their clients' fears of remote but catastrophic events and evaluate the likelihood of such events. In some economic states, such as a terrorist strike or a nuclear attack, equities could suffer extreme losses. Practitioners should note that these events will also affect the value of government bonds, so what are considered risk-free assets may even no longer exist.23 War and other conflicts that destroy wealth also cannot be ruled out. Furthermore, over a very long horizon, there is the possibility that capitalism as a form of economic organization may cease to exist and that the wealth of the property classes will be expropriated. For investors with fears of these remote, yet not inconceivable, events, a financial advisor must determine whether the equity premium is sufficient to overcome the outcomes.

Future of the Equity Risk Premium

Despite the fact that the models that economists taught in their classes predicted a small equity premium, most academic economists, even at the peak of the bull market in 2000, maintained a personal estimate of the equity premium (which, presumably, they taught to students) close to the historical mean realized premium since 1926—that is, about 6 percent (compound) or 8 percent (arithmetic) over T-bills.

For his 2000 paper, Welch surveyed a large number of academic economists, who estimated the arithmetic premium of stocks over short-term bonds at 7 percent, about 100 bps below the 1926–2004 average.24 If we subtract 2 percentage points to convert to the geometric average and then subtract a further 150 bps to convert from short-run to long-run bonds, we obtain a geometric equity premium of stocks over bonds of about 3.5 percent.

Professional money managers apparently have a lower estimate of the equity risk premium than do academics. At a CFA Institute conference I spoke to in early 2004, Peter Bernstein—noted author, money manager, and an organizer of the conference—asked the large crowd of professional investors whether they would be inclined to hold in their portfolios a preponderance of equity over fixed income if they knew that the equity premium was 3 percent. A majority raised their hands. When he asked the same question with a 2 percent premium, most of the audience did not.25
I noted in the opening of this article that persuasive reasons support a lower forward-looking real return on equity than the return found in the historical data. The sharp drop in the cost of acquiring and maintaining a diversified portfolio of common stocks, not only in the United States but now worldwide, should increase the price of equities and lower their future return. If we assume these annual costs have been brought down by 100 bps, then the future real return on equities should be 5.5–6.0 percent, about 1 percentage point lower than the historical range of 6.5–7.0 percent. Although these returns are below the historical average calculated from indices, investors today will receive the same realized return from stocks as they obtained earlier when trading costs were higher.

For bonds, the question is whether real future returns should be higher than the 2.25 percent average recorded since 1926. Until recently, I believed that the answer was unambiguously yes. The historical real return on bonds was biased downward by the inflation of the 1970s. Indeed, when TIPS were issued in 1997, their real yield was 3.5 percent, and it climbed to more than 4 percent in 2000. If we assume future real bond returns will be 3.5 percent and real stock returns will be between 5.5 percent and 6 percent, the equity premium will be between 2 percent and 3 percent, a level that would leave most money managers satisfied with their equity allocations.

But in the last few years, the real return on protected government bonds has dropped sharply. TIPS yields, which had been as high as 3 percent in the summer of 2002, fell to 1.5 percent in 2005. The causes of the drop are not well understood but may be related to such factors as fear of a decline in growth because of the decline in the number of workers, the increased risk aversion of an aging population, the excess of saving over investment, manifesting itself through the demand for U.S. government bonds from developing Asian countries, or the increased demand for fixed-income assets by pension funds seeking to offset their pension liabilities. Another possibility is that bondholders believe central banks will keep inflation low, so they view government bonds as true hedges against disaster scenarios ranging from armed conflict to terrorist attacks—and even natural disasters.

If the equity premium is 2–3 percent and real bond yields remain at 1.5 percent, the projected real return on stocks is only about 4 percent. Some noted analysts believe that real stock returns will indeed be this low because this return comports with a 2 percent dividend yield plus the 2 percent long-term real growth of per share dividends found in long-run stock data (Bernstein and Arnott 2003). I believe, however, that this forecast of real stock returns is too low. First, future dividend growth should be higher than the historical average because the dividend payout ratio has fallen dramatically, which enables companies to use retained earnings to finance growth. Second, future real stock returns can be predicted by taking the earnings yield, which is the inverse of the well-known P/E. This approach works extremely well with long-run data because the average historical P/E of 15 has corresponded to a 6.7 percent real return on stocks. The P/E taken from data in August 2005 points to a 5.5–6.0 percent real stock return. As mentioned earlier, the higher level of stock prices relative to earnings is justified by the steep decline in the costs of holding a fully diversified equity portfolio.

Finally, I believe that the pessimism about future economic growth is unwarranted. In my opinion, the negative impact of the aging of the developed world’s population will be more than offset by accelerating growth in the developing world, which will lead to rapid worldwide growth over the next several decades. Forward-looking equity returns of an internationally diversified portfolio should therefore be in the range of 5.5–6.0 percent. If the real return on bonds remains in the 1.5–2.0 percent range, because of increased risk aversion or other factors unrelated to economic growth, then the equity risk premium has probably risen to a level that comports with the post-1926 data.

Conclusion

The equity premium is a critical number in financial economics. It determines asset allocations, projections of retirement and endowment wealth, and the cost of capital to companies. Economists are still searching for a simple model that can justify the premium in the face of the much lower volatility of aggregate economic data. Although there are good reasons why the future equity risk premium should be lower than it has been historically, projected compound equity returns of 2–3 percent over bonds will still give ample reward for investors willing to tolerate the short-term risks of stocks.
Notes

1. Many excellent academic reviews of the equity premium puzzle are available. Cochrane (2005) of the University of Chicago has provided a complete updated review.

2. The stock series is from a combination of sources. Data for 1802–1871 are from Schwert (1990); data for 1871–1925 are from Cowles (1938); data for 1926–2004 are from the CRSP capitalization-weighted indexes of all NYSE, Amex, and NASDAQ stocks. More extensive descriptions of the data can be found in Siegel (2002).

3. As an approximation, the geometric return minus one-half the variance of the return. For a fuller description, see the subsection “Calculation of the Equity Premium.”

4. Smithers and Wright (2000) called this stable long-term return “Siegel’s Constant.”

5. Theoretically, real interest rates do not necessarily equal growth. The real rate is also a function of the time rate of discount and the level of risk aversion.

6. See Merton (1973) for a description of the intertemporal CAPM.

7. Campbell and Viceira (2002) indicated that the yield on the 10-year U.S. inflation-linked bond would be the closest in duration to the indexed annuity, especially for someone approaching retirement.

8. Mathematically, the average return of an equally weighted world portfolio is higher than the average equity return in each country.

9. In fact, *Triumph of the Optimists* may have actually understated long-term international stock returns. The U.S. stock markets and other world markets for which we have data did very well in the 30 years prior to 1900, which is when their study began. U.S. returns measured from 1871 outperformed returns taken from 1900 by 32 bps. Data from the United Kingdom show a similar pattern.

10. Before commissions were deregulated in May 1975, a typical trade—say, 100 shares at $30—paid a commission of $58.21, almost 2 percent of market value. Small odd-lot trades resulting from reinvesting dividends could cost, considering odd-lot premiums, as much as 4 percent.

12. Abel (2002) explored the implications for the equity risk premium when investors had incorrect information on the distributions of returns.

13. Recently, real bond returns have fallen sharply, which is discussed later.

14. See Friend and Blume (1975) for an earlier derivation of the risk-aversion parameter.

15. Arrow (1965) showed that for small risks, investors should be risk neutral, requiring little or no premium.

16. When consumption and stock returns are not perfectly correlated, \[EP = \sigma_c \sigma_w \rho_c \rho_w \], where \(\sigma_c \) is the standard deviation of consumption, \(\sigma_w \) is the standard deviation of stocks, and \(\rho_c \rho_w \) is the correlation coefficient between the two. Because empirically \(\rho \) is about 0.2, this equation leads to approximately the same estimate of risk aversion as does the CCAPM (see Cochrane 2005).

17. Once Abel (1999) added leverage, the equity premium was better estimated.

18. In the standard model, loss aversion is equivalent to a “kink” in the utility function at the current level of consumption. The loss in utility when consumption drops below the kink is greater than the gain when consumption is above, even for tiny changes in consumption.

19. Mehra and Prescott (1988), criticizing Rietz’s research, noted that a disaster state was very likely to be realized in the more than 100 years of data that Mehra and Prescott analyzed.

20. The intuition here comes from the Gordon model of stock price determination, in which small changes in the growth rate of dividends have a large impact on stock prices.

21. Note that in reconciling the volatility of stocks with underlying macroeconomic variables, the compilation of national income accounts requires a large amount of estimation and smoothing of past data, and averaged data on any index lower its volatility. As for estimation, it is well known that the “appraised” value of real estate is far more stable than the value of securities that represent similar assets, such as REITs.

22. Indeed, a best-selling book by James Glassman and Kevin Hassett (1999) on the stock market, Dow 36,000, marketed at the peak of the last bull market, maintained this thesis and predicted that stocks would have to increase fourfold to bring their real yields down to those of bonds.

23. Perhaps this fear explains why gold continues to be popular despite the fact that in portfolio models, precious metals are often dominated by stocks and inflation-protected bonds.

24. These academics predicted that other academics’ estimates were higher—in the 7.5-8.0 percent range.

25. The conference was “Points of Inflection: Investment Management Tomorrow”: a webcast of the Bernstein presentation is available at www.cfawebcasts.org. Rob Arnott has been doing such surveys for a number of years and has communicated to me that most of the institutional money managers would be satisfied with an equity premium measured against bond returns of 2-3 percent (see Arnott and Bernstein 2002).

26. If retained earnings can be invested at the same rate of return as required by equity investors, a drop in the dividend yield will produce an equal rise in the future growth of dividends (see Siegel 2002). Arnott and Asness (2003), believing that company managers squander retained earnings on low-return projects, rejected my contention that real dividends will grow faster in the future.

27. See Siegel (2005) for support for these statements.
References

Bank of America has an opportunity for a Research Analyst II Equity to initiate and conduct fundamental research analysis and provide macroeconomic advice with regard to potential and existing investments in the Asian region. Reqs. include Masters in Business or related; 2 yrs of related exp; exp with Asian business including; legal and accounting practices, supervised audits, multi-national companies, IPO/corporate investment. Job site: Portland, OR.

Applicants reference # 5ZTLTU and submit resume to Bank of America, Attn: NC1-002-04-18, 101 S. Tryon Street, Charlotte, NC 28255-0001. No phone calls. Must be legally authorized to work in the U.S. without sponsorship. EOE

Banc of America Securities has an opportunity for a Research Associate to provide technical expertise on semiconductor capital equipment industry. Reqs. include Master's degree; 3 yrs exp related occupation; and exp with Semiconductor capital equipment industry; Semiconductor technology and trends; and Supply chain basic and spending patterns. Job site: San Francisco, CA.

Applicants reference #63JYVL and submit resume to Bank of America, Attn: NC1-002-04-18, 101 S. Tryon Street, Charlotte, NC 28255-0001. No phone calls. Must be legally authorized to work in the U.S. without sponsorship. EOE.
The Shrinking Equity Premium

Historical facts and future forecasts.

Jeremy J. Siegel

Few conundrums have caught the imagination of economists and practitioners as much as the “Equity Premium Puzzle,” the title chosen by Rajneesh Mehra and Edward Prescott for their seminal 1985 article in the *Journal of Monetary Economics*. Mehra and Prescott show that the historical return on stocks has been too high in relation to the return on risk-free assets to be explained by the standard economic models of risk and return without invoking unreasonably high levels of risk aversion.¹ They calculate the margin by which stocks outperformed safe assets — the *equity premium* — to be in excess of 6 percentage points per year, and claim that the profession is at a loss to explain its magnitude.

There have been many attempts since to explain the size of the equity premium by variations of the standard finance model. I shall not enumerate them here, but refer readers to reviews by Abel [1991], Kocherlakota [1996], Cochrane [1997], and Siegel and Thaler [1997]. I review here the estimates of the equity premium derived from historical data, and offer some reasons why I believe that most of the historical data underestimate the real return on fixed-income assets and overestimate the expected return on equities. I shall also offer some reasons why, given the current high level of the stock market relative to corporate earnings, the forward-looking equity premium may be considerably lower than the historical average.

REAL RETURNS ON “RISK-FREE” ASSETS

From 1889 through 1978, Mehra and Prescott estimate the real return on short-dated fixed-income

JEREMY J. SIEGEL is the Russell E. Palmer professor of finance at the Wharton School of the University of Pennsylvania in Philadelphia (PA 19104).
assets (commercial paper until 1920 and Treasury bills thereafter) to have been 0.8%. In 1976 and again in 1982, Roger Ibotson and Rex Sinquefield formally estimated the real risk-free rate to be even lower — at zero, based on historical data analyzed from 1926. This extremely low level of the short-term real rate is by itself puzzling, and has been termed the “real rate puzzle” by Weil [1989]. The essence of this puzzle is that, given the historical growth of per capita income, it is surprising that the demand to borrow against tomorrow’s higher consumption has not resulted in higher borrowing rates.

The low measured level of the risk-free rate may in fact be in part an artifact of the time period examined. There is abundant evidence that the real rate both during the nineteenth century and after 1982 has been substantially higher. Exhibit 1, based on Siegel [1998], indicates that over the entire period from 1802 through 1998, the real compound annual return on Treasury bills (or equivalent safe assets) has been 2.9%, while the realized return on long-term government bonds has been 3.5%. Exhibit 2 presents the historical equity premium for selected time periods for both bonds and bills based on the same data.3

The danger of using historical averages — even over long periods — to make forecasts is readily illustrated by noting Ibotson and Sinquefield’s long-term predictions made in 1976 and again in 1982 on the basis of their own analysis of the historical data. In 1976, they made predictions for the twenty-five-year period from

Waterfront International Ltd. is a Toronto-based financial consulting firm specializing in developing computer based statistical trading strategies. We seek highly motivated and energized analysts to spearhead the start-up of new portfolios in the following areas:

Risk Arbitrage Analyst
Email: susanbh@waterint.com
Fax: (416) 956-4719

- Manage an international post-announcement risk arbitrage portfolio.
- Analyze and monitor deal-failure risk of individual positions.
- Design systems to analyze and manage overall portfolio risk.

IPO Analyst
Email: susanbh@waterint.com
Fax: (416) 956-4719

- Manage a portfolio of IPO stocks.
- Design qualitative and quantitative systems for selecting recent IPO stocks.

Micro-Cap Analyst
Email: lewis@waterint.com
Fax: (416) 956-4719

- Manage a portfolio of micro-cap stocks.
- Design trading systems based on quantitative screening and qualitative analysis.

Prerequisites of the above positions:
- Two to four-years of experience in equity analysis
- A CFA/MBA or equivalent experience is preferred.
- Strong written, verbal and computer skills.
- Programming experience is an asset.

Resumes will be received in confidence

No telephone calls please
EXHIBIT 2
EQUITY PREMIUMS (%) — U.S. DATA, 1802-1998

<table>
<thead>
<tr>
<th>Year</th>
<th>Equity Premium with Bonds</th>
<th></th>
<th>Equity Premium with Bills</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geometric</td>
<td>Arithmetic</td>
<td>Geometric</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>1802-1998</td>
<td>3.5</td>
<td>4.7</td>
<td>5.1</td>
<td>5.5</td>
</tr>
<tr>
<td>1802-1870</td>
<td>2.2</td>
<td>3.2</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>1871-1925</td>
<td>2.9</td>
<td>4.0</td>
<td>3.4</td>
<td>4.6</td>
</tr>
<tr>
<td>1926-1998</td>
<td>5.2</td>
<td>6.7</td>
<td>6.7</td>
<td>8.6</td>
</tr>
<tr>
<td>1946-1998</td>
<td>6.5</td>
<td>7.3</td>
<td>7.2</td>
<td>8.6</td>
</tr>
</tbody>
</table>

1976 through 2000, and in 1982 they made predictions for the twenty-year period from 1982 through 2001. Their forecasts are shown in Exhibit 3. Since we now have data for most of these forecast periods, it is of interest to assess their estimates.

The last two decades have been extremely good for financial assets, so it is not surprising that Ibbotson and Sinquefield underestimate all their real returns. But their most serious underestimation is for fixed-income assets, where they forecast the real bill rate to average essentially zero and the real return on bonds to be less than 2%. Given the standard deviation of estimates, realized annual real bond and bill returns have been 9.9% and 2.9%, respectively, significantly above their estimates. Since negative real returns on fixed-income assets persisted between the two surveys, Ibbotson and Sinquefield more seriously underestimate long-term real bill rates in their 1982 forecasts than they did in 1976.4

My purpose here is not to highlight errors in Ibbotson’s and Sinquefield’s past forecasts. Their analysis was state-of-the-art, and their data have rightly formed the benchmark for the risk and return estimates used by both professional and academic economists. I bring these forecasts to light to show that even the fifty-year history of financial returns available to economists at that time was insufficient to estimate future real fixed-income returns.

It is not well understood why the real rate of returns on fixed-income assets was so low during the 1926-1980 period. The bursts of unanticipated inflation following the end of World War II and during the 1970s certainly had a negative impact on the realized real returns from long-term bonds. Perhaps the shift from a gold standard to a paper monetary standard had a negative impact on these real returns until investors fully adjusted to the inflationary bias inherent in the new monetary standard.5

Whatever the reasons, the current yields on the Treasury inflation-protected securities, or TIPS, first issued in 1997 support the assertion that the future real returns on risk-free assets will be substantially above the level estimated over the Ibbotson-Sinquefield period. This is so even when the estimating period includes the higher real rates of the past two decades. In August 1999, the ten- and thirty-year TIPS bond yielded 4.0%, nearly twice the realized rate of return on long-dated government bonds over the past seventy-five years.5

The market projects real returns on risk-free assets to be substantially higher in the future than they have been over most of this century. It is also likely that the expected returns in the past are substantially greater than they have turned out ex post, especially for longer-dated securities. If one uses a 3.5% real return on fixed-income assets, the geometric equity premium for a 7.0% real stock return falls to 3.5%.

HISTORICAL EQUITY RETURNS AND SURVIVORSHIP BIAS

The real return on stocks, as I have emphasized [1998], has displayed a remarkable long-term stability. Over the entire 196-year period that I examine, the long-term after-inflation geometric annual rate of return on equity averages 7.0%. In the 1926-1998 period, the real return has been 7.4%, and since 1946 (when virtually all the threecold increase in the consumer price index over the past two hundred years has taken place) the real return on equity has been 7.8%. The relative stability of long-term real equity returns is in marked contrast to the unstable real returns on fixed-income assets.

Some economists believe the 7% historical real
return on equities very likely overstates the true expected return on stocks. They claim that using the ex post equity returns in the United States to represent returns expected by shareholders is misleading. This is because no investor in the nineteenth or early twentieth century could know for certain that the United States would be the most successful capitalist country in history and experience the highest equity returns.

This “survivorship bias” hypothesis, as it has been called, is examined by Jorion and Goetzmann [1999] in “Global Stock Markets in the Twentieth Century.” They conclude that of thirty-nine equity markets that existed in 1921, none of them show as high a real capital appreciation as the United States, and most of them have had substantial disruptions in their operations or have disappeared altogether. They report that the median real capital appreciation of non-U.S. markets has been only 0.8% per year as opposed to 4.3% in the U.S.6

But this evidence may be misleading. Total returns of a portfolio, especially over long periods of time, are a very non-linear function of the returns of the individual components. Mathematically it can be shown that if individual stock returns are lognormal, the performance of the median stock is almost always worse than the market portfolio performance.7

So, it is not surprising that the median performance of individual countries will not match the “world portfolio” or the returns in the dominant market. Jorion and Goetzmann recognize this near the end of their study when they show that compound annual real return on a GDP-weighted portfolio of equities in all countries falls only 28 basis points short of the U.S. return. In fact, because of the real depreciation of the dollar over this time, the compound annual dollar return on a GDP-weighted world is actually 30 basis points higher than the return on U.S. equities.8

But examining international stock returns alone does not give us a better measure of the equity premium. The equity premium measures the difference between the returns on stocks and safe bonds. Although stock returns may be lower in foreign countries than the U.S., the real returns on foreign bonds are substantially lower. Almost all disrupted markets experienced severe inflation, in some instances wiping out the value of fixed-income assets. (One could say that the equity premium in Germany covering any period including the 1922-1923 hyperinflation is over 100%, since the real value of fixed-income assets fell to zero while equities did not.)

Even investors who purchased bonds that promised precious metals or foreign currency experienced significant defaults. It is my belief that if one uses a world portfolio of stocks and bonds, the equity premium will turn out higher, not lower, than found in the U.S.9

TRANSACTION COSTS AND DIVERSIFICATION

I believe that 7.0% per year does approximate the long-term real return on equity indexes. But the return on equity indexes does not necessarily represent the realized return to the equityholder. There are two reasons for this: transaction costs and the lack of diversification.10

Mutual funds and, more recently, low-cost “index funds” were not available to investors of the nineteenth or early twentieth century. Prior to 1975, brokerage commissions on buying and selling individual stocks were fixed by the New York Stock Exchange, and were substantially higher than today. This made the accumulation and maintenance of a fully diversified portfolio of stocks quite costly.

The advent of mutual funds has substantially lowered the cost of maintaining a diversified portfolio. And the cost of investing in mutual funds has declined over the last several decades. Rea and Reid [1998] report a decline of 76 basis points (from 225 to 149) in the average annual fee for equity mutual funds from 1980 to 1997 (see also Bogle [1999, p. 69]). Index funds with a cost of less than 20 basis points per year are now available to small investors.

Furthermore, the risk experienced by investors unable to fully diversify their portfolios made the risk-return trade-off less desirable than that calculated from stock indexes. On a risk-adjusted basis, a less-than-fully diversified portfolio has a lower expected return than the total market.

Given transaction costs and inadequate diversification, I assume that equity investors experienced real returns more in the neighborhood of 5% to 6% over most of the nineteenth and twentieth century rather than the 7% calculated from indexes. Assuming a 3.5% real return on bonds, the historical equity premium may be more like 1.5 to 2.5 percentage points, rather than the 6.0 percentage points recorded by Mehra and Prescott.

PROJECTING FUTURE EQUITY RETURNS

Future stock returns should not be viewed independently of current fundamentals, since the price of
stocks is the present discounted value of all expected future cash flows. Earnings are the source of these cash flows, and the average price-to-earnings (P-E) ratio in the U.S. from 1871 through 1998 is 14 (see Shiller [1989] for an excellent source for this series).

Using data from August 13, 1999, the S&P 500 stock index is 1327, and the mean 1999 estimate for operating earnings of the S&P 500 stock index of fifteen analysts polled by Bloomberg News is $48.47.11 This yields a current P-E ratio on the market of 27.4. But due to the increased number of write-offs and other special charges taken by management over the last several years, operating earnings have exceeded total earnings by 10% to 15%.12 On the basis of reported earnings, which is what most historical series report (including Shiller’s), the P-E ratio of the market is currently about 32.13

There are two long-term consequences of the high level of stock prices relative to fundamentals. Either 1) future stock returns are going to be lower than historical averages, or 2) earnings (and hence other fundamentals such as dividends or book value) are going to rise at a more rapid rate in the future. A third possibility, that P-E ratios will rise continually without bound, is ruled out since this would cause an unstable bubble in stock prices that must burst.

If future dividends grow no faster than they have in the past, forward-looking real stock returns will be lower than the 7% historical average. As is well known from the dividend discount model, the rate of return on stocks can be calculated by adding the current dividend yield to the expected rate of growth of future dividends. The current dividend yield on the S&P 500 index is 1.2%. Since 1871, the growth of real per share dividends on the index has been 1.3%, but since 1946, due in part to a higher reinvestment rate, growth has risen to 2.1%. If we assume future growth of real per share dividends to be close to the most recent average of 2.1%, we obtain a 3.3% real return on equities, less than one-half the historical average.

A second method of calculating future real returns yields a similar figure. If the rate of return on capital equals the return investors require on stocks, the earnings yield, or the reciprocal of the price-earnings ratio, equals the forward-looking real long-term return on equity (see Phillips [1999] for a more formal development of this proposition). Long-term data support this contention; a 14 price-to-earnings ratio corresponds to a 7.1% earnings yield, which approximates the long-term real return on equities. The current P-E ratio on the S&P 500 stock index is between 27 to 32, depending on whether total or operating earnings are considered. This indicates a current earnings yield, and hence a future long-term and real return, of between 3.1% to 3.7% on equities.

One way to explain these projected lower future equity returns is that investors are bidding up the price of stocks to higher levels as the favorable historical data about the risks and returns in the equity market become incorporated into investor decisions.14 Lower transaction costs further enable investors to assemble diversified portfolios of stocks to take advantage of these returns. The desirability of stocks may be further reinforced by the perception that the business cycle has become less severe over time and has reduced the inherent risk in equities.15

If these factors are the cause of the current bull market, then the revaluation of equity prices is a one-time adjustment. This means that future expected equity returns should be lower, not higher, than in the past. During this period of upward price adjustment, however, equity returns will be higher than average, increasing the historical measured returns in the equity market.

This divergence between increased historical returns and lower future returns could set the stage for some significant investor disappointment, as survey evidence suggests that many investors expect future returns to be higher, not lower, than in the past (see “PaineWebber Index of Investor Optimism” [1999]).

SOURCES OF FASTER EARNINGS GROWTH

Although the increased recognition of the risks and returns to equity may be part of the explanation for the bull market in stocks, there must be other reasons. This is because the forward-looking rates of return we derive for equities fall below the current 4.0% yield on inflation-protected government bonds. Although one could debate whether in the long run stocks or nominal bonds are riskier in real terms, there should be no doubt that the inflation-protected bonds are safer than equities and should have a lower expected return.

Hence, some part of the current bull market in stocks must be due to the expectations that future earnings (and dividend) growth will be significantly above the historical average. Optimists frequently cite higher growth of real output and enhanced productivity, enabled by the technological and communications revolution, as the source of this higher growth. Yet the long-run relation between the growth of real output and per share earn-
ings growth is quite weak on both theoretical and empirical grounds. Per share earnings growth has been primarily determined by the reinvestment rate of the firm, or the earnings yield minus the dividend yield, not the rate of output growth.16

The reason why output growth does not factor into per share earnings growth is that new shares must be issued (or debt floated) to cover the expansion of productive technology needed to increase output. Over the long run, the returns to technological progress have gone to workers in the form of higher real wages, while the return per unit of capital has remained essentially unchanged. Real output growth could spur growth in per share earnings only if it were "capital-enhancing," in the growth terminology, which is contrary to the labor-augmenting and wage-enhancing technological change that has marked the historical data (see Diamond [1999] for a discussion of growth and real return).

But there are factors that may contribute to higher future earnings growth of U.S. corporations, at least temporarily. The United States has emerged as the leader in the fastest-growing segments of the world economy: technology, communications, pharmaceuticals, and, most recently, the Internet and Internet technology. Furthermore, the penetration of U.S. brand names such as Coca-Cola, Procter & Gamble, Disney, Nike, and others into the global economy can lead to temporarily higher profit growth for U.S. firms.

Nonetheless, the level of corporate earnings would have to double to bring the P-E ratio down to the long-term average, or to increase by 50% to bring the P-E ratio down to 20. A 20 price-to-earnings yield corresponds to a 5% earnings yield or a 5% real return, a return that I believe approximates realized historical equity returns after transaction costs are subtracted. For per share earnings to temporarily grow to a level 50% above the long-term trend is clearly possible in a world economy where the U.S. plays a dominant role, but it is by no means certain.

CONCLUSION

The degree of the equity premium calculated from data estimated from 1926 is unlikely to persist in the future. The real return on fixed-income assets is likely to be significantly higher than that estimated on earlier data. This is confirmed by the yields available on Treasury inflation-linked securities, which currently exceed 4%. Furthermore, despite the acceleration in earnings growth, the return on equities is likely to fall from its historical level due to the very high level of equity prices relative to fundamentals.17

All of this makes it very surprising that Ivo Welch [1999] in a survey of over 200 academic economists finds that most estimate the equity premium at 5 to 6 percentage points over the next thirty years. Such a premium would require a 9% to 10% real return on stocks, given the current real yield on Treasury inflation-indexed securities. This means that real per share dividends would have to grow by nearly 8.0% to 9.0% per year, given the current 1.2% dividend yield, to prevent the P-E ratio from rising farther from its current record levels. This growth rate is more than six times the growth rate of real dividends since 1871 and more than triple their growth rate since the end of World War II.

Unless there is a substantial increase in the productivity of capital, dividend growth of this magnitude would mean an ever-increasing share of national income going to profits. This by itself might cause political ramifications that could be negative for shareholders.

ENDNOTES

This article is adapted from a paper delivered at the UCLA Conference, "The Equity Premium and Stock Market Valuations," and a Princeton Center for Economic Policy Studies Conference, "What's Up with the Stock Market?" both held in May 1999. The author thanks participants in these seminars and particularly Jay Ritter, Robert Shiller, and Peter L. Bernstein for their comments.

1A few economists believe these high levels of risk aversion are not unreasonable; see, e.g., Kandel and Stambaugh [1991].

2In the capital asset pricing model, equity risk premiums are derived from the arithmetic and not geometric returns. Compound annual geometric returns are almost universally used in characterizing long-term returns.

3Their wildly high 12.8% long-term inflation estimate in 1982 is derived by subtracting their low historical real yield from the high nominal bond rate. This overprediction has no effect on their estimated real returns.

4But real rates on short-dated bonds, for which unanticipated inflation should have been less important, were also extremely low between 1926 and 1980.

5I am very persuaded by the research of Campbell and Viceira [1998], who argue that in a multiperiod world the proper risk-free asset is an inflation-indexed annuity rather than the short-dated Treasury bill. This conclusion comes from intertemporal models where agents desire to hedge against unanticipated changes in the real rate of interest. The duration of such an indexed annuity is closely approximated by the ten-year inflation-indexed bond.

6They are unable to construct dividend series for most foreign countries, but they make a not-unreasonable assumption that dividend yields in the U.S. were at least as high as abroad.
Intuitively, the return of the winners more than compensates for the lower returns of the more numerous losers.

Furthermore, the dollar return on the foreign portfolio is much better measured than the real return. These data are taken from Jorion and Goetzmann [1991], Tables VI and VII.

To avoid the problems with default, gold is considered the “risk-free” alternative in many countries. But gold’s long-term real returns are negative in the U.S., even before one considers storage and insurance costs. And precious metals are far from risk-free in real terms. The real return on gold since 1982 has been negative 7% per year.

1A abstract from taxes, which reduce the return on both bonds and stocks.

1These data were taken from the Bloomberg terminal on August 16, 1999.

1From 1970 through 1989, operating earnings exceeded reported earnings by an average of 2.29%. Since 1990, the average has been 12.93%.

1There are other factors that distort reported earnings, some upward (underreporting option costs; see Murray, Smithers, and Emerson [1998]) and some downward (overexpensing R&D; see Nakamura [1999]). No clear bias is evident.

1This is particularly true on a long-term, after-inflation basis. See Siegel [1998, Chapter 2].

1Bernstein [1998] has emphasized the role of economic stability in stock valuation. Also see Zarnowitz [1999] and Romer [1999]. Other reasons given for the high price of equities rely on demographic factors, specifically the accumulations of “baby boomers.” This should, however, reduce both stock and bond returns, yet we see real bond returns as high if not higher than historically.

1From 1871 to 1998, the growth of real per share earnings is only 1.7% per year, slightly less than obtained by subtracting the median dividend yield of 4.8% from the median earnings yield of 7.2%.

1This should not be construed as predicting that equity prices need fall significantly, or that the expected returns on equities are not higher, even at current levels, than those on fixed-income investments.

REFERENCES

Utilities’ Profit Recipe: Spend More
To expand regulator-imposed earnings caps, electricity producers splurge on new equipment, boosting customers’ bills

Every time Southern California Edison replaces a 50-year-old pole with a new one, it has a fresh investment on which it is eligible to earn an annual profit. PHOTO: FRED PROUSER/REUTERS

By
Rebecca Smith
April 20, 2015 6:04 p.m. ET
Families in New York are paying 40% more for electricity than they were a decade ago. Meanwhile, the cost of the main fuel used to generate electricity in the state—natural gas—has plunged 39%.

Why haven’t consumers felt the benefit of falling natural-gas prices, especially since fuel accounts for at least a quarter of a typical electric bill?

One big reason: utilities’ heavy capital spending. New York power companies poured $17 billion into new equipment—from power plants to pollution-control devices—in the past decade, a spending surge that customers have paid for.

New York utilities’ spending plans could push electricity prices up an additional 63% in the next decade, said Richard Kauffman, the former chairman of Levi Strauss & Co. who became New York’s energy czar in 2013. It’s “not a sustainable path for New York,” he said.

New York is no outlier. Capital spending has climbed at utilities nationwide—and so have their customers’ bills.

The average price of a kilowatt-hour of electricity rose 3.1% last year to 12.5 cents a kilowatt-hour, far above the rate of inflation. Since 2004, U.S. residential electricity prices have jumped 39%, according to federal statistics.

Over that same period, annual capital expenditures by investor-owned utility companies more than doubled—jumping to $103 billion in 2014 from $41 billion in 2004, according to the Edison Electric Institute, a trade association. The group expects total capital spending from 2003 through 2016 to top $1 trillion.

“This is the biggest splurge in capital spending we’ve seen in at least 30 years—it’s the reason rates have been going up,” said Bob Burns, an independent consultant and former energy researcher at Ohio State University.
The biggest chunk of that spending—38% in 2013—went into new power lines and other delivery systems, the Edison Electric Institute said. Almost as much went to generation, often for new gas-fired plants to replace coal-fired ones that don’t meet new environmental rules.

Experts say there are several reasons for soaring spending, including environmental mandates, and the need to harden the grid to protect it from storms, physical attacks and cyber hacking.

But utilities have another incentive for heavy spending: It actually boosts their bottom lines—the result of a regulatory system that turns corporate accounting on its head.

In most industries, companies generate revenue, deduct their costs, and are left with profits, which can be expressed as a percentage of revenues—the profit margin. Regulated utilities work differently. State regulators usually set an acceptable profit margin for utilities, and then set electric rates at levels that generate enough revenue to cover their expenses and allow them to make a profit.

Power Gauge

Regulators are trying to rein in utilities’ capital spending, which has ramped up over the past 10 years, driving up electricity prices.

Utility industry capital spending

$100 billion

- Forecasts

Residential electricity price

14 cents per kilowatt hour

Sources: Edison Electric Institute (spending); Energy Dept. (prices) THE WALL STREET JOURNAL.
At the moment, it is common for utilities’ allowable profit to be capped at 10% or so of the shareholders’ equity that they have tied up in transmission lines, power plants and other assets. So the more they spend, the more profits they earn.

Critics say this can prompt utilities to spend on projects that may not be necessary, like electric-car charging stations, or to choose high-cost alternatives over lower-cost ones.

“Until we change things so utilities don’t get rewarded based on how much they spend, it’s hard to break that mentality,” says Jerry R. Bloom, an energy lawyer at Winston & Strawn in Los Angeles who often represents independent power companies.

Southern California Edison, a unit of Edison International in Rosemead, Calif., plans to spend about $1 billion in debt and equity replacing or repairing thousands of power poles, which cost $13,000 each. Every time the company replaces a 50-year-old pole with a new one, it has a fresh investment on which it is eligible to earn an annual profit, currently 10.45%, for 45 years.

The sudden interest in poles “suggests they’ve been negligent in the past or they’re just looking for ways to spend money,” said Bob Finkelstein, a lawyer at the Utility Reform Network, a San Francisco-based watchdog group.

Mike Marelli, SoCal Edison’s rates director, said his company analyzed 5,000 poles before deciding a massive program was needed to deal with deferred maintenance.

‘Until we change things so utilities don’t get rewarded based on how much they spend, it’s hard to break that mentality.’

—Jerry R. Bloom, an energy lawyer at Winston & Strawn

Overall, SoCal Edison intends to spend $15 billion to $17 billion on dozens of initiatives from 2014 through 2017. Similarly, Charlotte, N.C.-based Duke Energy Corp. DUK -0.69 % expects to make $17 billion worth of capital expenditures from 2014 and 2016. A rule of thumb it recently shared with investors: for every billion dollars in assets it adds to its inventory, it boosts earnings by about 8 cents a share.

Utilities can’t bill customers for new capital expenditures without first getting the consent of state or federal regulators, notes Richard McMahon, a vice president at the Edison Electric Institute.

But Ken Rose, an energy consultant in Chicago, says that regulators don’t always do enough to make sure projects are the best deal for the customers footing the bills. He says companies have a propensity to choose expensive solutions to problems—building a new power plant instead of promoting energy efficiency, for example—because it puts big chunks of capital to work that lift profits.

Some analysts say utilities’ capital spending has been necessary and smart at a time of low interest rates.
“I don’t subscribe to the belief that utility companies are gold-plating their systems just to increase profits,” says Jim Hempstead, associate managing director of the global infrastructure finance at Moody’s Investors Service.

Utilities earned $36 billion in 2013, excluding nonrecurring items, up 36% from 2004, according to the Edison Electric trade group.

So long as electricity consumption is growing, utilities can spread hefty costs across their customers without increasing rates. But since 2008, power sales haven’t been growing fast enough to absorb the impact of all the added spending.

Kansas City Power & Light has raised rates about 60% since it kicked off its current investment cycle in 2007. It is seeking rate increases of 12.5% in Kansas and 15.5% in Missouri.

Some states are pushing back.

In New York, regulators balked at Consolidated Edison Inc. ED -0.53 % ’s plan to build a $1 billion electrical substation in Brooklyn and Queens by 2017. Instead, the company has decided to help customers cut energy use by improving the efficiency of their electrical equipment through a $500 million program that defers a decision about a new substation for at least a decade.

“What we’re doing is an alternative that’s less costly,” said Stuart Nachmias, vice president of regulatory affairs for ConEd.

From now on, utilities must prove that their spending will make an electric system cleaner, more efficient or stronger, says Audrey Zibelman, chair of the New York Public Service Commission. “Business as usual has become unaffordable.”
The Equity Risk Premium:
An Annotated Bibliography

Zhiyi Song, CFA
Greenwich Alternative Investments
Hong Kong

The equity risk premium is broadly defined as the difference between the expected total return on an equity index and the return on a riskless asset. The magnitude of the equity risk premium, arguably the most important variable in financial economics, affects the asset allocation decisions of individual and institutional investors, and the premium is a critical factor in estimating companies' costs of capital. This literature review explores research by academics and practitioners on this topic during the past three decades.

History of Research on the Equity Risk Premium

The topic of the equity risk premium (ERP) has attracted attention from academics and practitioners. There are three major themes in the intellectual history of the equity premium. The first theme builds on Gordon and Shapiro's suggestion that a dividend discount model (DDM) be used to estimate the required return on capital for a corporate project, and, by extension, the expected return on an equity (if the equity is fairly priced). Specifically, the DDM says that expected total equity return equals the dividend yield plus the expected dividend growth rate; the equity premium is this sum minus the riskless rate. The DDM was widely used by practitioners to estimate the equity premium until Ibbotson and Sinquefield (1976) introduced a different approach based on historical returns. An early work by Diermeier, Ibbotson, and Siegel (1984) attempted to bolster the use of the DDM for long-range forecasting, but it was not widely used; the recent, and quite remarkable, revival of the DDM as an estimator of the equity premium dates back only to the late 1990s.

The second theme arose from Ibbotson and Sinquefield's 1976 article, which decomposed historical returns on an equity index into a part attributable to the riskless rate and a part attributable to the equity premium. The arithmetic mean of the equity premium part is assumed to be stationary—that is, the same in the future as in the past. Thus, if equities had beaten riskless Treasury bills by an arithmetic mean margin of 7 percent a year over the historical measurement period, which was usually 1926 through the then-current time, then equities were forecast to beat bills by the same amount in the future. This approach dominated practitioners' estimates of the equity premium starting in the late 1970s, but its influence has faded recently, under attack from both the DDM and the "puzzle" literature that began with Mehra and Prescott (1985).

Mehra and Prescott's 1985 article, "The Equity Premium: A Puzzle," began a third theme. The puzzle they described is that the historical equity risk premium during the period of 1889–1978 (or any other similarly long period, such as 1926 to the present) was too high, by at least an order of magnitude, to be explained by standard

“general equilibrium” or “macroeconomic” asset-pricing models. Using these models, such a high premium can only be explained by a very high coefficient of risk aversion, one in the range of 30 to 40. Risk aversion parameters observed in other aspects of financial behavior are around 1. So, Mehra and Prescott argued, either the model used to describe investors’ behavior is flawed or equity investors have received a higher return than they expected.

We call the asset-pricing models referenced by Mehra and Prescott (1985) “macroeconomic” because they originated in that specialty, but more importantly to distinguish them from asset-pricing models commonly used in investment finance—such as the capital asset pricing model, the three-factor Fama–French model, and arbitrage pricing theory—that are silent on the absolute size of the risk premium (in fact, requiring it as an input) and that distinguish instead among the expected relative returns on specific securities or portfolios.

The rest of this introductory essay focuses on attempts to resolve the equity premium “puzzle” identified by Mehra and Prescott (1985). Their “puzzle” has stimulated a remarkable response in the academic literature. Most practitioners today, however, use estimates of the equity premium that emerge from the DDM—the earliest method. Moreover, practitioner debates tend to focus on which DDM estimate to use and the extent to which the estimate should be influenced by historical returns, not the question of whether either the DDM or the historical approach can be reconciled with that of Mehra and Prescott. Reflecting practitioners’ concerns, this annotated bibliography covers all three major themes in the literature.

Reconciling the “Puzzle”

Research on the question of why the realized equity premium was so large can be grouped into two broad categories: (1) studies alleging bias in the historical data and (2) studies suggesting improvements in the macroeconomic model. A third category, studies that set forth methods for estimating for the equity risk premium independent of the macroeconomic model, is also addressed in this review.

Biases in Historical Data. Potential biases in the historical data vary from survivorship bias and variations in transaction and tax costs to the choice of short-term bills versus long-term bonds as the riskless asset.

■ Survivorship bias. Brown, Goetzmann, and Ross (1995) argued that the historical equity premium calculated using U.S. data is likely to overstate the true (expected) premium because the U.S. stock market turned out to be the most successful in world history. However, Dimson, Marsh, and Staunton (2006) examined stock and bond returns using data from 1900 to 2005 for 17 countries and concluded that the high historical equity premium obtained for the United States is comparable with that of other countries.

■ Transaction costs, regulations, and taxes. McGrattan and Prescott (2001) suggested that the higher historical equity premium is mainly because of a large run-up in the equity price caused by the sharp decline in the tax rate on dividends. In their 2003 article, they claimed that the equity premium is less than 1 percent after accounting for taxes, regulations, and costs.

■ Short-term bills vs. long-term bonds as the riskless asset. McGrattan and Prescott (2003) argued that short-term bills provide considerable liquidity services and are a negligible part of individuals’ long-term debt holdings. As a result, long-term bonds should be used as the riskless asset in equity premium calculations. Siegel (2005) argued that the riskless asset that is relevant to most investors (that is, to long-term investors) is “an annuity that provides a constant real return over a long period of time” (p. 63). And the return on long-term inflation-indexed government bonds is the closest widely available proxy for such an annuity.

■ Unanticipated repricing of equities. Bernstein (1997) suggested that because equities started the sample period (which begins in 1926) at a price-to-earnings ratio (P/E) of about 10, and ended the period at a P/E of about 20, the actual return on equities was higher than investors expected or required. Thus, the historical return overstates the future expected return. This finding was bolstered by Fama and French (2002), who used the DDM to show that investors expected an equity risk premium of about 3 percent, on average, from 1926 to the present.

■ Unanticipated poor historical bond returns. Historical bond returns may have been biased downward because of unexpected double-digit inflation in the 1970s and 1980s (Arnott and Bernstein 2002; Siegel 2005). However, subsequent disinflation and declines in bond yields have caused the bond yield to end the historical study period only a little above where it started, thus mostly negating the validity of this objection.
Improvements in the Theoretical Model. The second broad category of research on the equity risk premium is a large body of literature exploring a variety of improvements in the original Mehra and Prescott (1985) model.

- **Rare events.** Rietz (1988) suggested that the ERP puzzle can be solved by incorporating a very small probability of a very large drop in consumption. If such a probability exists, the predicted equity premium is large (to compensate investors for the small risk of a very bad outcome). In the same year, Mehra and Prescott countered that Rietz's model requires a 1 in 100 chance of a 25 percent decline in consumption to reconcile the equity premium with a risk aversion parameter of 10, which is the approximate degree of risk aversion that would be required to predict an equity premium equal to that which was realized. However, they argued, the largest aggregate consumption decline in the last 100 years was only 8.8 percent. Campbell, Lo, and MacKinlay pointed out in 1997 that “the difficulty with Rietz’s argument is that it requires not only an economic catastrophe, but one which affects stock market investors more seriously than investors in short-term debt instruments” (p. 311). Recently, Barro (2006) extended Rietz’s model and argued that it does provide a plausible resolution of the equity premium “puzzle.”

- **Recursive utility function.** One critique of the power utility function used by Mehra and Prescott (1985) is the tight link between risk aversion and intertemporal substitution. Hall argued that this link is inappropriate because the intertemporal substitution concerns the willingness of an investor to move consumption between different time periods whereas the risk aversion parameter concerns the willingness of an investor to move consumption between states of the world. However, Weil (1989) showed that the ERP puzzle cannot be solved by simply separating risk aversion from intertemporal substitution. More recently, Bansal and Yaron (2004) argued that risks related to varying growth prospects and fluctuating economic uncertainty, combined with separation between the intertemporal substitution and risk aversion, can help to resolve the ERP puzzle.

- **Habit formation.** Constantinides (1990) introduced habit persistence in an effort to explain the ERP puzzle. His model assumes that an investor’s utility is affected by both current and past consumption and that a small fall in consumption can generate a large drop in consumption net of the subsistence level. This preference makes investors extremely averse to consumption risk even when risk aversion is small. Constantinides showed that the historical equity premium can be explained if past consumption generates a subsistence level of consumption that is about 80 percent of the normal consumption rate.

Abel defined a similar preference, called “catching up with the Joneses,” where one’s utility depends not on one’s absolute level of consumption, but on how one is doing relative to others.

- **Borrowing constraints and life-cycle issues.** Constantinides, Donaldson, and Mehra (2002) introduced life-cycle and borrowing constraints. They argued that as the correlation of equities with personal income changes over the life of the investor, so too does the attractiveness of equities to that investor. The young, who should borrow to smooth consumption and to invest in equities, cannot do so. Therefore, equities are priced almost exclusively by middle-aged investors, who find equities to be unattractive. Thus, equities are underpriced and bonds are overpriced, producing a higher equity risk premium than predicted by Mehra and Prescott (1985).

- **Limited market participation.** Mankiw and Zeldes (1991) examined whether the consumption of stockholders differs from that of nonstockholders and whether this difference helps explain the historical equity risk premium. They showed that aggregate consumption of stockholders is more highly correlated with the stock market and is more volatile than the consumption of nonstockholders. A risk aversion parameter of 6 can explain the size of the equity premium based on consumption of stockholders alone. Although this value is still too large to be plausible, it is much less than the magnitude of 30 to 40 derived by Mehra and Prescott (1985) using the aggregate consumption data of both stockholders and nonstockholders.

Incomplete markets. Heaton and Lucas introduced uninsurable, idiosyncratic income risk into standard and dynamic general equilibrium models and showed that it can increase the risk premium. Brav, Constantinides, and Geczy (2002) showed that the equity premium can be “explained with a stochastic discount factor calculated as the weighted average of the individual households’ marginal rate of substitution with low and economically plausible values of the rate of risk aversion coefficient.” This explanation relies on incomplete markets in that all risks would be insurable if markets were “complete.”

Behavioral approach. Starting with prospect theory as proposed by Kahneman and Tversky, a large swath of behavioral finance literature argues that the combination of “myopic” loss aversion and narrow framing can help to resolve the ERP puzzle, including works by Benartzi and Thaler (1995), Barberis, Huang, and Santos (2001), and Barberis and Huang (2006).

Summary

The various (and quite different, almost unrelated) approaches to estimating the equity risk premium is best summarized by Ibbotson and Chen, who categorized the estimation methods into four groups:

1. Historical method. The historical equity risk premium, or difference in realized returns between stocks and bonds (or stocks and cash), is projected forward into the future. See Ibbotson and Sinquefield (1976), which is updated annually by Ibbotson Associates (now Morningstar), and Dimson, Marsh, and Staunton (2002).

2. Supply-side models. This approach uses fundamental information, such as earnings, dividends, or overall economic productivity, to estimate the equity risk premium. See Diermeier, Ibbotson, and Siegel (1984); Siegel (1999); Shiller (2000); Fama and French (1999); Arnott and Ryan (2001); Campbell, Diamond, and Shoven (2001); Arnott and Bernstein (2002); and Grinold and Kroner (2002).

3. Demand-side models. This approach uses a general equilibrium or macroeconomic model to calculate the expected equity return by considering the payoff demanded by investors for bearing the risk of equity investments. Mehra and Prescott (1985) is the best known example of this approach, and the “puzzle debate” is an attempt to reconcile the results of this approach with the much higher ERP estimates given by the other approaches.

4. Surveys. An estimate of the equity risk premium is obtained by surveying financial professionals or academics (e.g., Welch 2000). Such results presumably incorporate information from the other three methods.

In closing, the equity risk premium has been the topic of intense and often contentious research over at least the last three decades. As Siegel (2005) said, although there are good reasons why the future equity risk premium should be lower than it has been historically, a projected equity premium of 2 percent to 3 percent (over long-term bonds) will still give ample reward for investors willing to bear the risk of equities.

Bibliography

This article proposes a partial solution to the ERP puzzle by distinguishing between the consumption of basic goods and that of luxury goods. The authors argue that the aggregate consumption does not measure the marginal risk of investing in the stock market. Using several novel datasets on luxury goods consumption, such as sales of imported luxury automobiles, this study shows that the covariance of luxury goods and excess returns implies a risk aversion parameter of 7, significantly lower than that implied by aggregate consumption data.

This article examines empirically the relation between the equity risk premium and demographics using a long-term data sample (1900–2001) from the United States, Japan, the United Kingdom, Germany, and France as well as a shorter-term data sample (1970–2000) for 15 countries. By pooling international data, the authors show that a negative relation exists between the expected equity risk premium and the percentage of adults over 65 years old. The international results from this study support Abel’s prediction that the equity risk premium is likely to decrease as the Baby Boom generation enters retirement.9

Contrary to the predictions of Ibbotson and Chen (2003) and others who apply Modigliani and Miller (M&M) dividend invariance intertemporally, earnings growth has been fastest when dividend payout is highest, not lowest, because of diminishing marginal productivity of capital. Thus, investors should not look to today’s low payout ratios as a sign of stronger-than-historical earnings growth in the future.

The expected equity return equals the dividend yield, plus dividend growth, plus the expected change in valuation, if any. As of year-end 1925, investors expected about 5.1 percent (about 1.4 percent more than the bond yield). The subsequent positive surprise was because of four historical accidents: (1) bonds had unanticipated losses; (2) valuations quadrupled, as measured by the price-to-dividend ratio (P/D); (3) the market survived; and (4) accelerated growth in real dividends and earnings occurred because of regulatory reform. These observations are used to construct a framework for estimating the equity risk premium at each point in time, including the present. The “normal” equity risk premium, or historical average of what investors were actually expecting, is 2.4 percent, and the current equity risk premium is around zero.

Applying the dividend discount model to then-current (January 2000) valuations produces an equity risk premium of −0.9 percent, consisting of a real equity expected return of 3.2 percent minus a real Treasury Inflation–Protected Securities (TIPS) yield of 4.1 percent. A similar analysis of the equity risk premium at the end of 1925 shows that it was 2.7 percent. Pension funds, especially (because of their liability characteristics), should invest more in bonds given these estimates.

The authors construct optimal portfolios that allow for company-level equity expected returns, variances, and covariances to vary conditional on a set of macroeconomic variables. Predictability-based investments outperform static and dynamic investments in the market, the Fama–French plus momentum factors, and strategies that invest in stocks with similar size, book-to-market, and prior return characteristics. Returns on individual stocks are predictable out-of-sample because of alpha variation, not because of equity premium predictability.

This article presents a model that can explain the equity risk premium. Dividend and, thus, consumption growth are assumed to consist of two components: a small persistent expected growth rate component and a time-varying economic uncertainty component. The authors show that the historical equity risk premium can be quantitatively justified by the model using a risk aversion parameter of 7.5 to 10.

The authors review the behavioral approach to understanding the ERP puzzle. The key elements of this approach are loss aversion and narrow framing, two well-known features of decision making under risk in experimental settings. By incorporating these features into traditional utility functions, Barberis and Huang show that a large equity premium and a low and stable risk-free rate can be generated simultaneously, even when consumption growth is smooth and only weakly correlated with the stock market.

This paper proposes a new approach for pricing assets by incorporating two psychological ideas into the traditional consumption-based model. Investors are assumed to be more sensitive to losses than to gains, and their risk aversion changes over time depending on their prior investment outcomes. The authors show that this framework can help explain the high historical equity risk premium.

This paper extends the analysis of Rietz (1988) and argues that it does provide a plausible resolution of the ERP puzzle. The author suggests that the rare-disasters framework (i.e., the allowance for low-probability disasters proposed by Rietz) can explain the ERP puzzle while “maintaining the tractable framework of a representative agent, time-additive and iso-elastic preferences, and complete markets” (p. 823). These technical terms refer to assumptions that are embedded in Mehra and Prescott (1985) and that are considered standard in general equilibrium or macroeconomic models.

This article proposes an explanation for the equity premium based on two concepts from the psychology of decision making. The first concept is called “loss aversion,” meaning that investors are more sensitive to losses than to gains. The second concept is called “mental accounting,” which points out that investors mentally separate their portfolios into subportfolios for which they have quite different utility functions or risk aversion parameters. For example, investors may have one set of portfolios that they never evaluate and another set that they evaluate every day. Benartzi and Thaler show that the size of the historical equity premium can be explained if investors evaluate their portfolio at least annually.

By studying historical intervals when stock valuation (P/D or P/E) was the same at the end of the interval as at the beginning, one can avoid incorporating unexpected valuation changes into long-term rate of return studies. The analysis gives an equity risk premium of 3 percent, although the more interesting finding is that equity returns are mean-reverting whereas bond returns have no mean to which to regress. Thus, in the very long run and in real terms, stocks are safer than bonds.

The authors show that the expected equity premium has gone steadily down since the 1950s from an unusually high level in the late 1930s and 1940s. Blanchard et al. show the positive relation between inflation and the equity premium, and they conclude that the equity premium is expected to stay at its current level of 2–3 percent if inflation remains low. Implications of this forecast for the macroeconomy are explored.

This paper shows that the equity risk premium can be explained with a stochastic discount factor (SDF) calculated as the weighted average of the individual households’ marginal rate of substitution. Important components of the SDF are cross-section variance and skewness of the households’ consumption growth rates.

This paper suggests that survival could induce a substantial spurious equity premium and at least partially explain the equity premium puzzle documented by Mehra and Prescott (1985). (That is, to explain it away, because the returns used to frame the “puzzle” were neither expected nor were they achieved by many investors.)

This collection of papers presented to the Social Security Advisory Board explores expected equity rates of return for the purpose of assessing proposals to invest Social Security assets in the stock market.

Under certain stringent conditions, the earnings-to-price ratio (E/P) is an unbiased estimator of the expected equity return. Noting that earnings are highly cyclical, Campbell, in “Forecasting U.S. Equity Returns in the 21st Century,” produces a more stable numerator for E/P by taking the 10-year trailing
average of real earnings, E* (after Graham and Dodd; see also Campbell and Shiller 1998, Shiller 2000, and Asness). From this perspective, current data suggest that the structural equity risk premium is now close to zero or that prices will fall, causing the equity risk premium to rise to a positive number. A little of each is the most likely outcome. Departing from the steady-state assumptions used to equate E/P with the expected equity return and using a macroeconomic growth forecast and sensible assumptions about the division, by investors, of corporate risk between equities and bonds, a real interest rate of 3–3.5 percent is forecast, along with an equity risk premium of 1.5–2.5 percent geometric (3–4 percent arithmetic).

In “What Stock Market Returns to Expect for the Future?” Diamond explores the implications of an assumed 7 percent real rate of return on equities. Stocks cannot earn a real total return of 7 percent or else they will have a market capitalization of 39.5 times U.S. GDP by the year 2075 (assuming a 2 percent dividend-plus-share-buyback yield). In contrast, the current capitalization/GDP ratio is 1.5. Changing the GDP growth rate within realistic bounds does not change the answer much. To justify a real total return of 7 percent, stocks must fall by 53 percent in real terms over the next 10 years (assuming a 2 percent dividend yield). Increasing the dividend payout does reduce the projected capitalization/GDP ratio materially, but in no case does it reduce the ratio below 7.86 in 2075.

In “What Are Reasonable Long-Run Rates of Return to Expect on Equities?” Shoven examines what is likely to happen to rates of return over the next 75 years. Dividends are irrelevant, because of tax policy; what counts is total cash flow to the investor. In a steady state, the expected return on equities (per share) equals the dividend yield, plus the share buyback yield, plus the growth rate of macroeconomic aggregates. This analysis produces an expected real total return on equities of 6.125 percent (say, 6–6.5 percent). Because of high (3 percent) real rates as projected—not the very high, current TIPS yield—the equity risk premium is only 3–3.5 percent, but these projections require one to reduce the 7 percent real equity return projection used by the Social Security Advisory Board only a little. At a P/E of 15, the real equity return projection would be a little better than 7 percent.

The dividend-to-price ratio (D/P) can forecast either changes in dividend, which is what efficient market theory suggests, or changes in price, or both. Empirically, it forecasts only changes in price. At the current D/P, the forecast is extraordinarily bearish: The stock market will lose about two-thirds of its real value. The forecast becomes less drastically bearish (although still quite bearish) when one uses (dividend + share buybacks), earnings, the 10-year moving average of earnings in constant dollars, or other variables in the denominator. Real stock returns close to zero over the next 10 years are forecast. A number of statistical weaknesses in the analysis are acknowledged: The historical observations are not independent, and the analysis depends on valuation ratios regressing to their historical means, whereas the actual means are not known and could conceivably lie outside the historical range.

The 2001 update reaches the same conclusion and an even more bearish forecast.

Historical perspective and an equilibrium estimate of the equity risk premium are discussed. The authors estimate that the U.S. corporate bond yield above Treasury bonds is 2.25 percent, and the expected U.S. corporate bond risk premium is thus 1.5 percent after subtracting an expected default loss of 0.75 percent. This amount (1.5 percent) is considered to be the lower bound of the current equity risk premium. Because equity volatility is two or three times higher than that of corporate bonds, the authors “cautiously” suggest an equity risk premium of 3 percent or higher.

The Ibbotson or historical-extrapolation method gives ERP estimates that are much too high, relative to both purely utility-based estimates (Mehra and Prescott 1985) and estimates based on valuation (for example, Campbell and Shiller 1998). Estimates of the equity risk premium were calculated for each year since 1985 by subtracting the 10-year risk-free rate from the discount rate that equates U.S. stock market valuations with forecasted future flows, and results suggest that the equity risk premium is probably no more than 3 percent. International evidence from Canada, France, Germany, Japan, and the United Kingdom also support this claim. Known upward biases in analysts’ earnings forecasts are corrected in making the estimates. Possible reasons why the historical method might have overstated the expected equity risk premium in recent years are discussed.

This paper summarizes the statistical evidence on average stock return and surveys economic theories that try to explain it. Standard models can only justify a low equity risk premium, whereas new models that can explain the 8 percent historical equity premium drastically modify the description of stock market risk. The author concludes that low forecast stock returns do not imply that the investor should change his portfolio unless he is different from the average investor in risk exposure, attitude, or information.

Constantinides introduces habit persistence in an effort to explain the ERP puzzle. This model assumes that an investor’s utility is affected by both current and past consumption and that a small drop in consumption can generate a large drop in consumption net of the subsistence level. The author shows that the historical equity premium can be explained if past consumption generates a subsistence level of consumption that is about 80 percent of the normal consumption rate.

This article examines the extent to which historical asset returns can be explained by relaxing the assumptions of the traditional asset pricing model. Constantinides reviews statistical evidence on historical equity returns and premiums and discusses the limitations of existing theories. The author suggests that it is promising to try to explain the equity risk premium by integrating the notions of incomplete market, life-cycle issues, borrowing constraints, and limited stock participation (i.e., stockholdings are concentrated in the hands of the wealthiest few), along with investors’ deviation from rationality.

As the correlation of equities with personal income changes over the life of the investor, so does the attractiveness of equities to that investor. The young, who should borrow to smooth consumption and
The Equity Risk Premium

to invest in equities, can’t do so. Therefore, equities are priced almost exclusively by middle-aged investors, who find equities to be unattractive. (Middle-aged investors have a shorter time horizon and also prefer bonds because they smooth consumption in retirement, as wages do when one is working.) The result is a decreased demand for equities and an increased demand for bonds relative to what it would be in a perfectly competitive market. Thus, equities are (on average, over time) underpriced and bonds are overpriced, producing a higher equity risk premium than predicted by Mehra and Prescott (1985).

The literature on the equity risk premium is extensively reviewed and somewhat popularized in this book. The conclusion is that the equity risk premium will be lower in the future than it was in the past. A premium of 3.5–5.5 percent over Treasury bonds and 5–7 percent over Treasury bills is projected.

For the NYSE and Amex, the author finds that dollar-weighted returns are 1.9 percent per year lower on average than value-weighted (or buy-and-hold) returns. For the NASDAQ, dollar-weighted returns are 5.3 percent lower. Similar results hold internationally. Because actual investor returns are lower than published returns, empirical measurements of the equity risk premium and companies’ cost of equity are potentially overstated.

Stock total returns must equal dividend yields plus the growth rate of dividends, which cannot, in the long run, exceed the growth rate of the economy. If infinite-run expected dividend growth exceeded infinite-run expected economic growth, then dividends would crowd out all other economic claims. Net new issues, representing new capital (transferred from the labor market) that is needed so the corporate sector can grow, may cause the dividend growth rate to be slower than the GDP growth rate. Thus, the equity risk premium equals the dividend yield (minus new issues net of share buybacks), plus the GDP growth rate, minus the riskless rate.

As far as we know, this is the first direct application of the dividend discount model of John Burr Williams (writing in the 1930s) and Myron Gordon and Eli Shapiro (in the 1950s) to the question of the equity risk premium for the whole equity market as opposed to an individual company. The “supply side” thread thus begins with this work.

This book provides a comprehensive examination of returns on stocks, bonds, bills, inflation, and currencies for 16 countries over the period from 1900 to 2000. This evidence suggests that the high historical equity premium obtained for the United States is comparable with that of other countries. The point estimate of the historical equity premium for the United States and the United Kingdom is about 1.5 percent lower than reported in previous studies, and the authors attribute the difference to index construction bias (for the United Kingdom) and a longer time frame (for the United States). The prospective risk premium that investors can expect going forward is also discussed. The estimated geometric mean premium for the United States is 4.1 percent, 2.4 percent for the United Kingdom, and 3.0 percent for the 16-country world index. Implications for individual investors, investment institutions, and companies are carefully explored.
This article examines the historical equity risk premium for 16 countries using data from 1900 to 2002. The geometric mean annualized equity risk premium for the United States was 5.3 percent, and the average risk premium across the 16 countries was 4.5 percent. The forward-looking risk premium for the world’s major markets is likely to be around 3 percent on a geometric mean basis and about 5 percent on an arithmetic mean basis.

This paper is an updated version of Dimson, Marsh, and Staunton (2003). Using 1900–2005 data for 17 countries, the authors show that the annualized equity premium for the rest of the world was 4.2 percent, not too much below the U.S. equity premium of 5.5 percent over the same period.

The historical equity premium is decomposed into dividend growth, multiple expansion, the dividend yield, and changes in the real exchange rate. Assuming zero change in the real exchange rate and no multiple expansion, and a dividend yield 0.5–1 percent lower than the historical mean (4.49 percent), the authors forecast a geometric equity premium on the world index around 3–3.5 percent and 4.5–5 percent on an arithmetic mean basis.

At one time, researchers felt they had to (weakly) defend the assumption that expected returns were equal to realized returns. Now, they just make the assumption without defending it. This practice embeds the assumption that information surprises cancel to zero; evidence, however, shows they do not. The implications of this critique are applied to asset-pricing tests, not to the equity risk premium.

The authors use Compustat data to estimate the internal rate of return (IRR) of the capitalization-weighted corporate sector from 1950 to 1996. This IRR, 10.72 percent, is assumed to have been the nominal weighted average cost of capital (WACC). By observing the capital structure and assuming a corporate debt yield 150 bps above Treasuries, and making the usual tax adjustment to the cost of debt, a nominal expected equity total return of 12.8 percent is derived, which produces an equity risk premium of 6.5 percent. The cash flow from the “sale” of securities in 1996 is a large proportion of the total cash flow studied, so the sensitivity of the result to the 1996 valuation is analyzed. Because the period studied is long, the result is not particularly sensitive to the exit price.

This paper compares alternative estimates of the unconditional expected stock return between 1872 and 2000, and provides explanation to the low expected return estimates derived from fundamentals such as dividends and earnings for the 1951–2000 period. The authors conclude that the decline in discount rates largely causes the unexplained capital gain of the last half-century.

Two macroeconomic equity premium models are derived and tested for consistency with historical data. The first model illustrates that the long-term equity premium is directly related to per capita growth in GDP. The second model, based on a portfolio insurance strategy of buying put options, illustrates that debtholders are paying stockholders an insurance premium, which is essentially the equity premium.
The Equity Risk Premium

This paper presents the first comprehensive data on rates of return on investments in common stocks listed on New York Stock Exchange over the period from 1926 to 1960. The authors show that the annually compounded stock return was 9 percent with reinvestment of dividend for tax-exempt institutions during this period.

This paper points out that the equity premium calculated from the standard growth model in Mehra and Prescott (1985) is quite sensitive to small changes in distribution assumptions. As such, it is questionable to use this kind of growth model to interpret observed economic behavior.

This paper examines a wide range of variables that have been proposed by economists to predict the equity premium. The authors find that the prediction models have failed both in sample and out of sample using data from 1975 to 2004 and that out-of-sample predictions of the models are unexpectedly poor. They conclude that “the models would not have helped an investor with access only to the information available at the time to time the market” (p. 1).

The authors examine the four components of the expected equity risk premium separately (income return, expected real earnings growth, expected inflation, and expected repricing) and suggest a current risk premium of about 2.5 percent. The authors argue that neither the “rational exuberance” view (5.5 percent equity risk premium) and “risk premium is dead” (zero or negative premium) view can be justified without making extreme and/or irrational assumptions.

The authors also forcefully attack the “puzzle” literature by arguing that literature on the equity risk premium puzzle is too academic and is dependent on unrealistic asset-pricing models.

If one simply uses the dividend discount model to forecast stock returns, the forecast violates M&M dividend invariance because the current dividend yield is much lower than the average dividend yield over the period from which historical earnings growth rates were taken. Applying M&M intertemporally, lower dividend payouts should result in higher earnings growth rates. The solution is to add, to the straight dividend discount model estimate, an additional-growth term of 2.28 percent as well as using a current-dividend number of 2.05 percent, which is what the dividend yield would have been in 2000 if the dividend payout ratio had equaled the historical average of 59.2 percent. The equity risk premium thus estimated is about 4 percent (geometric) or 6 percent (arithmetic), about 1.25 percent lower than the straight historical estimate.

Total equity returns consist of a stationary part (the equity risk premium) and a nonstationary part (the interest rate component, which consists of a real interest rate plus compensation for expected inflation). The estimator of the future arithmetic mean equity risk premium is the past arithmetic
The Equity Risk Premium

mean premium, which is currently about 7 percent. To this is added the current interest rate, 4.8 percent (on 20-year Treasury bonds). The sum of these, about 12 percent, is the arithmetic mean expected total return on equities. This method is justified by the assertion that in the long run, investors should and do conform their expectations to what is actually realizable. As a result, the historical equity risk premium reflects equilibrium at all times and forms the proper estimator of the future equity risk premium. (Note that the 2006 update discusses other methods rather than supporting a doctrinaire "future equals past" interpretation of historical data.)

The IRR equating expected future dividends from a stock portfolio with the current price is the expected total return on equities; subtracting the bond yield, one arrives at the equity risk premium. This number is estimated at historical points in time and is shown to have declined over the sample period (1926–1999). The expected total return on equities is about the same in the 1990s as it was in the 1960s, but the equity risk premium is smaller because bond yields have increased. The equity risk premium in 1999 is –0.27 percent for the S&P 500, –0.05 percent for the “CRSP portfolio,” and 2.71 percent for the “Board of Governors stock portfolio” (a broad-cap portfolio with many small stocks that pay high dividend yields). The analysis is shown to be reasonably robust when tested for sensitivity to the dividend yield being too low because of share repurchases and the bond yield being too high. If dividend growth is assumed equal to GNP growth, instead of being 1.53 percentage points lower as it was historically, then the equity risk premium based on the S&P 500 rises to 1.26 percent.

The U.S. equity market experience in the 20th century is an unrepresentative sample of what can and does happen. The high equity risk premium observed globally is mostly a result of high equity returns in the United States (with a 4.3 percent real capital appreciation return), which had a large initial weight in the GDP-weighted world index. All other surviving countries had lower returns (with a median real capital appreciation return of 0.8 percent), and there were many nonsurviving countries. Although the large capitalization of the United States was in a sense the market’s forecast of continued success, investors did not know in advance that they would be in the highest-returning country or even in a surviving one. Nonsurvival or survival with poor returns should be factored in when reconstructing the history of investor expectations (and should conceivably be factored into current expectations too). This finding contrasts with that of Dimson, Marsh, and Staunton (2002, 2003, 2006).

After reviewing the literature on modifications of investor risk preference and on market friction, the author suggests that the ERP puzzle is still unsolved. Kocherlakota concludes that the equity risk premium puzzle should be solved by discovering the fundamental features of goods and asset markets rather than patching existing models.

Investors do not know when they are going to need their money back (for consumption), so the terminal-wealth criterion used by Mehra and Prescott (1985) to frame the ERP puzzle greatly understates the risk of equities (but not of bonds). In addition, some investors face risk from “breaching a threshold” that is not captured by classical utility theory. Thus, a much higher equity risk premium is justified by utility theory than is proposed by Mehra and Prescott.
Most studies assume that aggregate dividends equal aggregate consumption. This article argues that separating corporate cash flow from aggregate consumption is critical because “corporate cash flows have historically been far more volatile and sensitive to economic shocks than has aggregate consumption” (p. 402). The authors show that the equity premium consists of three components, identified by allowing aggregate dividends and consumption to follow distinct dynamic processes. The first component is called the consumer-risk premium, which is the Mehra and Prescott (1985) equity risk premium proportional to the variance of consumption growth. The second component is the event-risk premium, which compensates for downward jumps. And the third component is the corporate-risk premium, which is proportional to the covariance between the consumption growth rate and the “corporate fraction” (defined as the ratio of aggregate dividends to consumption). Using a risk aversion parameter of 5, the three components are 0.36 percent, 0.51 percent, and 1.39 percent, summing to a total equity premium of 2.26 percent. The authors admit that their model does not solve the ERP puzzle completely and suggest that the ultimate resolution may lie in the integration of their model with other elements, such as habit formation or investor heterogeneity in incomplete markets.

Although the risk–return trade-off is fundamental to finance, the empirical literature has offered mixed results. The author extends the sample considerably and analyzes nearly two centuries of both U.S. and U.K. market returns and finds a positive and statistically significant risk–return trade-off in line with the postulated theory.

This article shows that one cannot judge the appropriateness of the equity premium from aggregate data alone, as Mehra and Prescott (1985) did. In an economy where aggregate shocks are not dispersed equally throughout the population, the equity premium depends on the concentrations of these aggregate shocks in particular investors and can be made arbitrarily large by making the shock more and more concentrated.

This article examines whether the consumption of stockholders differs from that of nonstockholders and whether this difference helps to explain the historical equity risk premium. It shows that aggregate consumption of stockholders is more highly correlated with the stock market and is more volatile than the consumption of nonstockholders. A risk aversion parameter of 6 (relative to the magnitude of 30–40 in Mehra and Prescott 1985) can explain the size of the equity premium based on consumption of stockholders alone.

Standard macroeconomic growth theory (Cobb–Douglas, etc.) is used to value the corporate sector in the United States. The current capitalization-to-GDP ratio of 1.8 is justified, so the market is not overvalued. “[T]heory… predicts that the real returns on debt and equity should both be near 4 percent” (p. 26). Thus, the predicted equity risk premium is small.
This paper shows that the large run-up in equity value relative to GDP between 1962 and 2000 is mainly caused by (1) large reductions in individual tax rates, (2) increased opportunities to hold equity in a nontaxed pension plan, and (3) increases in intangible and foreign capital. The authors argue that the high equity risk premium documented by Mehra and Prescott (1985) is not puzzling after these three factors are accounted for. However, in the future, one should expect no further gains from tax policy; the currently expected real return on equities is about 4 percent, down from 8 percent in the early postwar period.

The ERP puzzle literature is easily misunderstood because of its difficulty. Here, the puzzle is stated in language that is accessible to most finance practitioners. First, empirical facts regarding the returns and risks of major asset classes are presented. Then, the theory responsible for the “puzzle” is summarized. Modern asset pricing theory assumes that economic agents pursue and, on average, get fair deals. When one follows this line of reasoning to its conclusion, using the tools of classic growth and real business cycle theory, an equity risk premium of at most 1 percent emerges. An extensive discussion reveals why this is the case and addresses various attempts made by other authors to resolve the puzzle.

In this seminal work, Mehra and Prescott first document the “equity premium puzzle” using a consumption-based asset-pricing model in which the quantity of risk is defined as the covariance of excess stock return with consumption growth and the price of risk is the coefficient of relative risk aversion. Because of the low risk resulting from the smooth historical growth of consumption, the 6 percent equity risk premium in the 1889–1978 period can only be explained by a very high coefficient of risk aversion in the magnitude of 30 to 40. Risk aversion parameters observed in other aspects of financial behavior are around 1. Such a risk aversion parameter is consistent with at most a 1 percent equity risk premium, and possibly one as small as 0.25 percent.

Note that Mehra and Prescott assumed that consumption was equal to aggregate dividends. Because consumption is very smooth and dividends are not as smooth, this comparison may be troublesome.

In this article, the Edwards–Bell–Ohlson equation,
where \(P \) is price, \(B \) is book value, \(ROE \) is return on book equity, \(r \) is the expected return on equity, and \(i \) is the time increment, is first used to derive closed-form expressions for the expected return on equities, stated in terms of both dividends and earnings. Then, the GDP growth rate is introduced as an indicator of earnings growth. Share repurchases are considered to be a part of dividends. This setup leads to the following conclusions: (1) The expected return increases monotonically with book-to-price ratio (\(B/P \)), \(E/P \), and \(D/P \); (2) if a corporation's return on equity equals its cost of capital (expected return), then its price-to-book ratio (\(P/B \)) should be 1 and its expected return should equal \(E/P \). The analysis suggests that nominal total expected equity returns shrank from almost 14 percent in 1982 to 6.5 percent in 1999 (a larger decline than can be explained by decreases in unanticipated inflation). This decrease in expected return was accompanied by very high concurrent actual returns that were misread by investors as evidence of an increase in the expected return. Going forward, investors will not get an increased return.

Rietz suggests that the ERP puzzle can be solved by incorporating a very small probability of a very large drop in consumption. In such a scenario, the risk-free rate is much lower than the equity return. In an article published in the same issue, Mehra and Prescott argued that Rietz’s model requires a 1 in 100 chance of a 25 percent decline in consumption to reconcile the equity premium with a risk aversion parameter of 10. However, the author says, the largest consumption decline in the last 100 years was only 8.8 percent. Campbell, Lo, and MacKinlay (see Note 3) point out that “the difficulty with Rietz’s argument is that it requires not only an economic catastrophe, but one which affects stock market investors more seriously than investors in the short-term debt instruments” (p. 311).

But during the Great Depression, the stock market fell by 86 percent from peak to trough and dividends fell by about half; consumption by stockholders over that period thus probably fell by much more than 8.8 percent. Aggregate consumption at that time included many lower-income people, especially farmers, whose consumption was not directly affected by falling stock prices.

This influential book provides a wealth of historical detail on the equity risk premium. Using 10 years of trailing real earnings (see, originally, Graham and Dodd) to estimate normalized P/Es, Shiller concludes that the market is not only overpriced but well outside the range established by previous periods of high stock prices.

In contrast to Siegel (2002), analysis of dividend and earnings multiples suggests a real return (not an equity risk premium) of only 3.1–3.7 percent for stocks, lower than the then-current real TIPS yield. Although then-current high prices suggest higher-than-historical earnings growth, investors are likely to realize lower returns than in the past. (Incidentally, past achieved returns are lower than index returns because of transaction costs and lack of diversification.) On the positive side, the Jorion and Goetzmann (1999) finding that world markets returned a real capital gain of only 0.8 percent from 1921 to the present, compared with 4.3 percent in the United States, is misstated because the analysis is of the median portfolio, not the average. The GDP-weighted average is only 0.28 percent short of the U.S. return and is higher than the U.S. return if converted to dollars (although Jorion and Goetzmann point out that the large initial size of the United States causes the annualized world index return to lie within 1 percent of the U.S. return by construction).
Siegel argues for a U.S. equity risk premium of 2–3 percent, about half of the historic equity risk premium. He expects a future real return on equity of about 6 percent, justified by several positive factors. Siegel considers an equity risk premium as low as 1 percent but clearly sees that stocks must yield more than inflation-indexed bond yields (3.5 percent at the time of the book). He turns to earnings yield arguments to answer the question of how much more. A Tobin’s \(q \) greater than 1 in 2001 leads Siegel to see the earnings yield as understated. In addition, the overinvestment in many technology companies led to a drop in the cost of productivity-enhancing investments, which allows companies to buy back shares or raise dividends. In technology, an excess supply of capital, overbuilding, and a subsequent price collapse provide a technological base to benefit the economy and future shareholder returns. Also, the United States is still seen as an entrepreneurial nation to attract a growing flow of investment funds seeking a safe haven, leading to higher equity prices. Furthermore, short-run room for growth in corporate profits is another positive factor for future real return enhancement.

Proposed resolutions of the ERP puzzle fall into two categories: (1) observations that the stock market is riskier, or the equity risk premium is smaller, than generally thought, and (2) different theoretical frameworks that would make the observed risk aversion rational. Neither approach has been “completely successful” in explaining why, if stocks are so rewarding, investors don’t hold more of them.

This article presents one unified Bayesian theory that explains the ERP puzzle, risk-free rate puzzle, and excess volatility puzzle. The author shows that Bayesian updating of unknown structural parameters introduces a permanent thick tail to posterior expectation that can account for, and even reverse, major asset-return puzzles.

This paper presents the results of a comprehensive survey of 226 financial economists. The main findings are: (1) the average arithmetic 30-year equity premium forecast is about 7 percent; (2) short-term forecasts are lower than the long-term forecast, in the range of 6–7 percent; (3) economists perceive that their consensus is about 0.5–1 percent higher than it actually is.
The equity premium forecast in this 2001 survey declined significantly compared with the 1998 survey. The one-year forecast is 3–3.5 percent, and the 30-year forecast stands at 5–5.5 percent.

I would like to thank Laurence Siegel, research director of the Research Foundation of CFA Institute, for his assistance and for providing much of the foundation for this project with his earlier work on the equity risk premium. I am also grateful to the Research Foundation for financial support.

This publication qualifies for 1 CE credit.
S&P 500® January Price Return: -3.70%
S&P SmallCap 600® January Price Return: -3.45%

The Market

S&P 500

The market began 2010 with a six-day rally (the record is 7 days in 1987) until into the arms of volatility it fell. Over the following five days (days 10 through 14), the market moved at least 1% on higher volume. Later in January, three consecutive days of declines produced a 5.08% loss for the S&P 500, and saw the VIX jump from 17.58 to 27.31. The VIX settled the month at 24.66. The largest daily downturn, however, was the 2.21% decline on January 22nd, which, when compared to 2009 at this time, is mild.

The S&P 500 finished January down 3.70%, its second monthly loss (October 2009 at -1.98%) since the March 2009 recovery. The index is still 58.73% up from its March low, however. Of the 82 Januarys in the history of S&P 500 from 1929, 52 have been positive and 29 have been negative. Of the 52 January gains, 42 were positive for the entire year and 9 were down (1947 was flat). Of the 29 Januarys that were down, 18 were down for the year and 11 were up. The result is that 60 of the 81 (74.1%) Januarys in the index’s history ended the full year in the same direction as it opened, and 21 did not (25.9%).

Nine of the ten sectors were down in January, with Health Care posting the only sector gain for the month, at +0.42%. Telecommunications was the sector that was down the most in January, with a 9.32% decline. T, which represents 52% of the sector, was down 9.53% for the month. One-year returns remain strongly positive for eight of the ten sectors, with Telecommunications and Utilities showing mild single-digit gains of +4.62% and +2.19%, respectively.

S&P SmallCap 600

The S&P SmallCap 600 started 2010 with a broad 2.11% advance. Unfortunately, that was the best day of the month for the index. As uncertainty set in with low volume, an upward seesaw period pushed the S&P SmallCap 600 up 3.42% by January 19th, to a market level not seen since October 1, 2008. From there, however, the markets turned negative due to a combination of domestic banking and tax issues, as well as global concerns over China pulling back on its lending. From January 19th on, the index declined 6.64% to post a 3.45% loss for the month; its second monthly loss (October 2009 at -5.79%) since the market recovery started in March 2009. Just as the opening gain was broad, the monthly loss was broad as well with just 188 issues up for the month averaging +9.57%, compared to 536 issues up in December 2009 averaging +10.38%, and 408 issues declining with an average of 7.91% in January versus 63 decliners averaging 5.14% in December 2009.
All ten sectors within the S&P SmallCap 600 were in the red for the month, with Telecommunications declining another 16.73% for a one-year decline of 43.06%. For the year, the other nine sectors remain positive. Of greater concern this month was Information Technology, which declined 6.59% due to concerns regarding sales and growth for 2010 – the sector makes up 17.23% of the index.

Percent Price Change: S&P 500

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500</td>
<td>-3.70%</td>
<td>3.64%</td>
<td>30.03%</td>
<td>-22.10%</td>
<td>-9.09%</td>
<td>-29.70%</td>
<td>-2.58%</td>
</tr>
<tr>
<td>Consumer Discret</td>
<td>-2.95%</td>
<td>8.07%</td>
<td>50.70%</td>
<td>-10.93%</td>
<td>-14.63%</td>
<td>-20.06%</td>
<td>-1.83%</td>
</tr>
<tr>
<td>Consumer Staples</td>
<td>-1.25%</td>
<td>1.86%</td>
<td>18.93%</td>
<td>-4.47%</td>
<td>13.07%</td>
<td>62.68%</td>
<td>3.40%</td>
</tr>
<tr>
<td>Energy</td>
<td>-4.51%</td>
<td>-2.76%</td>
<td>9.74%</td>
<td>-23.57%</td>
<td>38.48%</td>
<td>96.10%</td>
<td>6.97%</td>
</tr>
<tr>
<td>Financials</td>
<td>-1.48%</td>
<td>1.00%</td>
<td>53.98%</td>
<td>-51.01%</td>
<td>-52.46%</td>
<td>-42.89%</td>
<td>-4.77%</td>
</tr>
<tr>
<td>Health Care</td>
<td>0.42%</td>
<td>11.56%</td>
<td>19.10%</td>
<td>-6.64%</td>
<td>7.26%</td>
<td>13.61%</td>
<td>0.50%</td>
</tr>
<tr>
<td>Industrials</td>
<td>-1.21%</td>
<td>8.57%</td>
<td>32.64%</td>
<td>-29.09%</td>
<td>-14.79%</td>
<td>-11.99%</td>
<td>-0.34%</td>
</tr>
<tr>
<td>Info Technology</td>
<td>-8.45%</td>
<td>1.50%</td>
<td>51.05%</td>
<td>-5.76%</td>
<td>8.69%</td>
<td>-65.39%</td>
<td>-7.57%</td>
</tr>
<tr>
<td>Materials</td>
<td>-8.66%</td>
<td>3.13%</td>
<td>43.00%</td>
<td>-26.82%</td>
<td>2.84%</td>
<td>33.80%</td>
<td>2.61%</td>
</tr>
<tr>
<td>Telecomm Svc</td>
<td>-9.32%</td>
<td>0.88%</td>
<td>4.64%</td>
<td>-31.44%</td>
<td>-12.86%</td>
<td>-67.16%</td>
<td>-10.38%</td>
</tr>
<tr>
<td>Utilities</td>
<td>-5.10%</td>
<td>4.01%</td>
<td>2.19%</td>
<td>-25.43%</td>
<td>3.89%</td>
<td>1.43%</td>
<td>-0.50%</td>
</tr>
</tbody>
</table>

Percent Price Change: S&P SmallCap 600

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 600</td>
<td>-3.45%</td>
<td>7.38%</td>
<td>37.05%</td>
<td>-14.48%</td>
<td>-21.29%</td>
<td>88.10%</td>
<td>46.55%</td>
</tr>
<tr>
<td>Energy</td>
<td>-5.26%</td>
<td>3.74%</td>
<td>60.59%</td>
<td>-9.71%</td>
<td>1.62%</td>
<td>303.66%</td>
<td>302.64%</td>
</tr>
<tr>
<td>Materials</td>
<td>-8.01%</td>
<td>7.88%</td>
<td>62.65%</td>
<td>-24.88%</td>
<td>-28.20%</td>
<td>120.60%</td>
<td>77.72%</td>
</tr>
<tr>
<td>Industrials</td>
<td>-4.88%</td>
<td>4.64%</td>
<td>27.30%</td>
<td>-16.83%</td>
<td>-15.91%</td>
<td>116.51%</td>
<td>78.66%</td>
</tr>
<tr>
<td>Consumer Discret</td>
<td>-1.51%</td>
<td>7.41%</td>
<td>71.32%</td>
<td>-14.55%</td>
<td>-37.70%</td>
<td>38.20%</td>
<td>43.04%</td>
</tr>
<tr>
<td>Consumer Staples</td>
<td>-2.97%</td>
<td>7.97%</td>
<td>43.49%</td>
<td>22.40%</td>
<td>14.87%</td>
<td>119.80%</td>
<td>197.26%</td>
</tr>
<tr>
<td>Health Care</td>
<td>-1.41%</td>
<td>12.09%</td>
<td>29.63%</td>
<td>-9.55%</td>
<td>-3.01%</td>
<td>114.02%</td>
<td>119.27%</td>
</tr>
<tr>
<td>Financials</td>
<td>-0.17%</td>
<td>9.74%</td>
<td>18.29%</td>
<td>-35.00%</td>
<td>-50.98%</td>
<td>-1.04%</td>
<td>37.27%</td>
</tr>
<tr>
<td>Info Technology</td>
<td>-6.59%</td>
<td>5.83%</td>
<td>50.75%</td>
<td>-7.81%</td>
<td>-10.25%</td>
<td>115.33%</td>
<td>-45.84%</td>
</tr>
<tr>
<td>Telecomm Svc</td>
<td>-16.72%</td>
<td>-3.95%</td>
<td>-43.06%</td>
<td>-75.88%</td>
<td>-85.81%</td>
<td>-72.04%</td>
<td>-98.22%</td>
</tr>
<tr>
<td>Utilities</td>
<td>-3.88%</td>
<td>4.71%</td>
<td>1.63%</td>
<td>-4.61%</td>
<td>-7.29%</td>
<td>87.29%</td>
<td>109.23%</td>
</tr>
</tbody>
</table>
Market Attributes

U.S. Equities January 2010

Breadth

Monthly Breadth: S&P 500

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>AVERAGE UP % CHANGE</th>
<th>UP ISSUES</th>
<th>AVERAGE UNCHANGED % CHANGE</th>
<th>UNCHANGED ISSUES</th>
<th>AVERAGE DOWN % CHANGE</th>
<th>DOWN ISSUES</th>
<th>TOP 10 BY MKT VAL % AVG CHG</th>
<th>TOP 50 BY MKT VAL % AVG CHG</th>
<th>S&P 500 % CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan,'10</td>
<td></td>
<td>133</td>
<td></td>
<td>1</td>
<td>366</td>
<td>-3.16</td>
<td>-2.62</td>
<td>-2.89</td>
<td>-3.70</td>
</tr>
<tr>
<td>Dec,'09</td>
<td></td>
<td>377</td>
<td></td>
<td>0</td>
<td>123</td>
<td>4.63</td>
<td>-0.16</td>
<td>0.75</td>
<td>1.78</td>
</tr>
<tr>
<td>Nov,'09</td>
<td></td>
<td>403</td>
<td></td>
<td>2</td>
<td>95</td>
<td>5.19</td>
<td>5.65</td>
<td>6.29</td>
<td>5.74</td>
</tr>
<tr>
<td>Oct,'09</td>
<td></td>
<td>162</td>
<td></td>
<td>0</td>
<td>338</td>
<td>-3.52</td>
<td>-0.22</td>
<td>-0.65</td>
<td>-1.98</td>
</tr>
</tbody>
</table>

Monthly Breadth: S&P SmallCap 600

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>AVERAGE UP % CHANGE</th>
<th>UP ISSUES</th>
<th>AVERAGE UNCHANGED % CHANGE</th>
<th>UNCHANGED ISSUES</th>
<th>AVERAGE DOWN % CHANGE</th>
<th>DOWN ISSUES</th>
<th>TOP 100</th>
<th>BOTTOM 100</th>
<th>S&P 600 % CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan,'10</td>
<td></td>
<td>-2.38</td>
<td></td>
<td>188</td>
<td>408</td>
<td>-7.91</td>
<td>-4.02</td>
<td>-0.52</td>
<td>-3.45</td>
</tr>
<tr>
<td>Dec,'09</td>
<td></td>
<td>8.73</td>
<td></td>
<td>536</td>
<td>63</td>
<td>-5.14</td>
<td>9.73</td>
<td>8.78</td>
<td>8.49</td>
</tr>
<tr>
<td>Nov,'09</td>
<td></td>
<td>2.59</td>
<td></td>
<td>346</td>
<td>254</td>
<td>-6.61</td>
<td>4.48</td>
<td>-0.50</td>
<td>2.53</td>
</tr>
<tr>
<td>Oct,'09</td>
<td></td>
<td>-7.13</td>
<td></td>
<td>134</td>
<td>466</td>
<td>-11.14</td>
<td>-3.03</td>
<td>-15.79</td>
<td>-5.79</td>
</tr>
</tbody>
</table>

Earnings

S&P 500

With 214 issues (56.2% of the market value) reported, earnings on a weighted basis are running well above expectations, and are drastically better than the Q4 2008 comparisons – a quarter which posted the worst earnings in S&P 500 history. Sales in aggregate are running 4.1% ahead of estimates and 6.5% above Q4 2008. However, ex the Financials sector, sales are only up 2.6% from estimates and 3.3% from Q4 2008. Operating margins are high again at 8.09%, with S&P’s full quarter estimate at 7.22%, as slow growth is offset by prior cost cutting to produce a bottom-line improvement. As Reported margins are at 7.15%, and are expected to decline to 6.45% as some unusual items are posted. Overall, however, the numbers show continued bottom-line improvement but a much slower top-line advance. For the recovery to continue, sales will need to increase.

To date, 75.6% of the issues have beaten their estimated sales, with 57.9% beating last year’s sales, and 48.3% beating both. 71.8% of the issues have beaten their estimated Operating EPS, with 65.6% beating last year’s EPS, and 46.7% doing both.

S&P SmallCap 600

Price-to-earnings ratios were high based on 2009 EPS. EPS ratios were more moderate when based on 2010, however, reflecting the expected 81% gain in 2010 over 2009 after a 4% decline over 2008 and a 46% decline in 2007.
Operating EPS Change: S&P 500

<table>
<thead>
<tr>
<th>QUARTERLY CHANGE</th>
<th>Q2 2009 OVER Q2 2008</th>
<th>Q3 2009 OVER Q3 2008</th>
<th>Q4 2009 OVER Q4 2008</th>
<th>Q1 2010 OVER Q1 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500</td>
<td>-18.85%</td>
<td>-1.12%</td>
<td>17966.84%</td>
<td>69.56%</td>
</tr>
<tr>
<td>Consumer Discretionary</td>
<td>65.35%</td>
<td>157.35%</td>
<td>1019.15%</td>
<td>676.41%</td>
</tr>
<tr>
<td>Consumer Staples</td>
<td>8.11%</td>
<td>4.62%</td>
<td>8.62%</td>
<td>9.24%</td>
</tr>
<tr>
<td>Energy</td>
<td>-66.26%</td>
<td>-71.39%</td>
<td>49.80%</td>
<td>1621.39%</td>
</tr>
<tr>
<td>Financials</td>
<td>196.09%</td>
<td>124.71%</td>
<td>112.56%</td>
<td>439.59%</td>
</tr>
<tr>
<td>Health Care</td>
<td>4.13%</td>
<td>10.11%</td>
<td>19.56%</td>
<td>10.55%</td>
</tr>
<tr>
<td>Industrials</td>
<td>-37.18%</td>
<td>-40.63%</td>
<td>-19.67%</td>
<td>10.31%</td>
</tr>
<tr>
<td>Information Technology</td>
<td>-20.55%</td>
<td>3.03%</td>
<td>122.00%</td>
<td>73.09%</td>
</tr>
<tr>
<td>Materials</td>
<td>-64.80%</td>
<td>-33.90%</td>
<td>142.73%</td>
<td>143.17%</td>
</tr>
<tr>
<td>Telecommunication Services</td>
<td>-16.41%</td>
<td>-10.58%</td>
<td>-2.30%</td>
<td>-4.20%</td>
</tr>
<tr>
<td>Utilities</td>
<td>-5.93%</td>
<td>-4.99%</td>
<td>6.85%</td>
<td>9.58%</td>
</tr>
</tbody>
</table>

Operating EPS Change: S&P SmallCap 600

<table>
<thead>
<tr>
<th>QUARTERLY CHANGE</th>
<th>Q2 2009 OVER Q2 2008</th>
<th>Q3 2009 OVER Q3 2008</th>
<th>Q4 2009 OVER Q4 2008</th>
<th>Q1 2010 OVER Q1 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P SmallCap600</td>
<td>-57.13%</td>
<td>-35.55%</td>
<td>493.88%</td>
<td>429.73%</td>
</tr>
<tr>
<td>Consumer Discretionary</td>
<td>-59.66%</td>
<td>358.06%</td>
<td>329.84%</td>
<td>281.99%</td>
</tr>
<tr>
<td>Consumer Staples</td>
<td>11.56%</td>
<td>29.63%</td>
<td>-20.91%</td>
<td>-15.48%</td>
</tr>
<tr>
<td>Energy</td>
<td>-67.30%</td>
<td>-81.54%</td>
<td>120.96%</td>
<td>318.75%</td>
</tr>
<tr>
<td>Financials</td>
<td>-150.98%</td>
<td>-402.69%</td>
<td>118.69%</td>
<td>170.44%</td>
</tr>
<tr>
<td>Health Care</td>
<td>-1.77%</td>
<td>31.90%</td>
<td>10.66%</td>
<td>19.31%</td>
</tr>
<tr>
<td>Industrials</td>
<td>-45.62%</td>
<td>-32.85%</td>
<td>9.16%</td>
<td>55.84%</td>
</tr>
<tr>
<td>Information Technology</td>
<td>-95.01%</td>
<td>-1.50%</td>
<td>1085.37%</td>
<td>410.76%</td>
</tr>
<tr>
<td>Materials</td>
<td>-39.48%</td>
<td>-12.02%</td>
<td>181.71%</td>
<td>31381.27%</td>
</tr>
<tr>
<td>Telecommunication Services</td>
<td>-102.48%</td>
<td>-75.38%</td>
<td>113.10%</td>
<td>-51.93%</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.32%</td>
<td>-42.44%</td>
<td>11.48%</td>
<td>11.83%</td>
</tr>
</tbody>
</table>
Returns

Monthly Returns: S&P 500

<table>
<thead>
<tr>
<th>MONTH OF</th>
<th>PRICE CLOSE</th>
<th>PRICE CHAGE</th>
<th>1 MONTH % CHANGE</th>
<th>3 MONTH % CHANGE</th>
<th>6 MONTH % CHANGE</th>
<th>1 YEAR % CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/2010</td>
<td>1073.87</td>
<td>-41.23</td>
<td>-3.70%</td>
<td>3.64%</td>
<td>8.75%</td>
<td>30.03%</td>
</tr>
<tr>
<td>12/2009</td>
<td>1151.30</td>
<td>19.47</td>
<td>1.78%</td>
<td>5.49%</td>
<td>21.30%</td>
<td>23.45%</td>
</tr>
<tr>
<td>11/2009</td>
<td>1095.63</td>
<td>59.44</td>
<td>5.74%</td>
<td>7.35%</td>
<td>19.20%</td>
<td>22.25%</td>
</tr>
<tr>
<td>10/2009</td>
<td>1036.19</td>
<td>-20.88</td>
<td>-1.98%</td>
<td>4.93%</td>
<td>18.72%</td>
<td>6.96%</td>
</tr>
<tr>
<td>09/2009</td>
<td>1057.08</td>
<td>36.45</td>
<td>3.57%</td>
<td>14.98%</td>
<td>32.49%</td>
<td>-9.37%</td>
</tr>
<tr>
<td>08/2009</td>
<td>1020.62</td>
<td>33.14</td>
<td>3.36%</td>
<td>11.04%</td>
<td>38.84%</td>
<td>23.45%</td>
</tr>
<tr>
<td>07/2009</td>
<td>987.48</td>
<td>68.16</td>
<td>7.41%</td>
<td>13.14%</td>
<td>19.57%</td>
<td>-22.08%</td>
</tr>
<tr>
<td>06/2009</td>
<td>919.14</td>
<td>0.18</td>
<td>0.02%</td>
<td>15.22%</td>
<td>1.78%</td>
<td>-28.18%</td>
</tr>
<tr>
<td>05/2009</td>
<td>919.14</td>
<td>46.33</td>
<td>5.31%</td>
<td>25.04%</td>
<td>2.56%</td>
<td>-34.36%</td>
</tr>
<tr>
<td>04/2009</td>
<td>872.81</td>
<td>74.94</td>
<td>9.39%</td>
<td>5.68%</td>
<td>-9.90%</td>
<td>-37.01%</td>
</tr>
<tr>
<td>03/2009</td>
<td>797.87</td>
<td>62.77</td>
<td>8.54%</td>
<td>11.67%</td>
<td>-31.59%</td>
<td>-39.68%</td>
</tr>
<tr>
<td>02/2009</td>
<td>735.09</td>
<td>-90.79</td>
<td>-10.99%</td>
<td>-17.98%</td>
<td>-42.70%</td>
<td>-44.76%</td>
</tr>
<tr>
<td>01/2009</td>
<td>825.88</td>
<td>-77.37</td>
<td>-8.57%</td>
<td>-14.75%</td>
<td>-34.84%</td>
<td>-40.09%</td>
</tr>
</tbody>
</table>

Monthly Returns: S&P SmallCap 600

<table>
<thead>
<tr>
<th>MONTH OF</th>
<th>PRICE CLOSE</th>
<th>PRICE CHAGE</th>
<th>1 MONTH % CHANGE</th>
<th>3 MONTH % CHANGE</th>
<th>6 MONTH % CHANGE</th>
<th>1 YEAR % CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/2010</td>
<td>321.14</td>
<td>-11.49</td>
<td>-3.45%</td>
<td>7.38%</td>
<td>8.59%</td>
<td>37.05%</td>
</tr>
<tr>
<td>12/2009</td>
<td>332.63</td>
<td>26.02</td>
<td>8.49%</td>
<td>4.79%</td>
<td>23.97%</td>
<td>23.78%</td>
</tr>
<tr>
<td>11/2009</td>
<td>306.62</td>
<td>7.56</td>
<td>2.53%</td>
<td>1.45%</td>
<td>15.75%</td>
<td>20.83%</td>
</tr>
<tr>
<td>10/2009</td>
<td>299.06</td>
<td>-18.37</td>
<td>-5.79%</td>
<td>1.13%</td>
<td>14.61%</td>
<td>3.96%</td>
</tr>
<tr>
<td>09/2009</td>
<td>317.43</td>
<td>15.21</td>
<td>5.03%</td>
<td>18.30%</td>
<td>42.71%</td>
<td>-11.99%</td>
</tr>
<tr>
<td>08/2009</td>
<td>302.22</td>
<td>6.50</td>
<td>2.20%</td>
<td>14.09%</td>
<td>46.74%</td>
<td>-21.98%</td>
</tr>
<tr>
<td>07/2009</td>
<td>295.73</td>
<td>27.40</td>
<td>10.21%</td>
<td>13.33%</td>
<td>26.21%</td>
<td>-20.53%</td>
</tr>
<tr>
<td>06/2009</td>
<td>268.32</td>
<td>3.43</td>
<td>1.30%</td>
<td>20.63%</td>
<td>-0.15%</td>
<td>-26.48%</td>
</tr>
<tr>
<td>05/2009</td>
<td>264.89</td>
<td>3.96</td>
<td>1.52%</td>
<td>28.61%</td>
<td>4.39%</td>
<td>-32.99%</td>
</tr>
<tr>
<td>04/2009</td>
<td>260.93</td>
<td>38.50</td>
<td>17.31%</td>
<td>11.36%</td>
<td>-9.29%</td>
<td>-31.13%</td>
</tr>
<tr>
<td>03/2009</td>
<td>224.43</td>
<td>16.47</td>
<td>8.00%</td>
<td>-17.23%</td>
<td>-38.33%</td>
<td>-38.99%</td>
</tr>
<tr>
<td>02/2009</td>
<td>205.96</td>
<td>-28.36</td>
<td>-12.10%</td>
<td>-18.84%</td>
<td>-46.83%</td>
<td>-43.37%</td>
</tr>
<tr>
<td>01/2009</td>
<td>234.32</td>
<td>-34.41</td>
<td>-12.80%</td>
<td>-18.55%</td>
<td>-37.03%</td>
<td>-37.60%</td>
</tr>
</tbody>
</table>

Dividends

S&P 500

2009 marked the worst year on record for dividends since 1955. For the year, there were 1,191 increases, which is a drop of 36.4% from the 1,874 increases of 2008, and a 52.6% decline from the 2,513 increases of 2007. The year saw 804 decreases, marking a 631% gain over the 110 decreases of 2007.

In January, 15 issues increased, 3 initiated, 0 decreased and 0 suspended versus 17 increases, 0 initiations, 10 decreases, and 1 suspension for the same period in 2009 and 31 increases, 0
initiations, 5 decreases, and 1 suspension for January 2008. For the month, payers outperformed non-payers by losing less: payers were down 2.48% compared to non-payers decline of 4.75%. Outside of the S&P 500 (NY, ASE, NASD common) dividends continued to improve. January saw 133 increases compared to 114 increases for January 2009 and 223 increases for January 2008, and 17 decreases for the month compared to 92 decreases in January 2009 and 20 decreases in January 2008.

<table>
<thead>
<tr>
<th>Issue Indicated Dividend Rate Change: S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREASES</td>
</tr>
<tr>
<td>2010: January</td>
</tr>
<tr>
<td>2009: January</td>
</tr>
<tr>
<td>2008: January</td>
</tr>
<tr>
<td>2007: January</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dividend Total Return Performance: S&P 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average S&P 500</td>
</tr>
<tr>
<td>Payers</td>
</tr>
<tr>
<td>Month - average change</td>
</tr>
<tr>
<td>12 Month</td>
</tr>
<tr>
<td>Issues</td>
</tr>
<tr>
<td>Average Yield</td>
</tr>
</tbody>
</table>

World Markets

Global markets started 2010 positive, continuing to add to their 34% 2009 record. However, as January progressed, the markets lost momentum. While rates remained relatively stable, China moved to restrict its lending policy and excess liquidity in an effort to reduce the speed of growth. As a result, China posted a 10.7% Q4 2009 GDP gain, while in the United States, Q4 2009 GDP came in higher than expected at 5.7%. For the month, emerging markets were mixed, with seven markets gaining and thirteen declining. Overall, emerging markets were down 5.33%, with Egypt up 8.34% and Taiwan (-6.86%), China (-8.49%), and Brazil (-10.62%) all declining. Developed markets were down 3.97% in January, with 22 of the 25 markets in the red. Notable was Japan, which gained 2.00%, Greece which declined 10.86% due to debt issues, and the United States which was down 3.51% for the month.
S&P Global Broad Market Index (BMI): Emerging, January 2010

<table>
<thead>
<tr>
<th>BMI MEMBER</th>
<th>1-MONTH</th>
<th>3-MONTHS</th>
<th>1 YEAR</th>
<th>2-YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>-4.12%</td>
<td>1.77%</td>
<td>40.45%</td>
<td>-21.47%</td>
</tr>
<tr>
<td>Global Ex-U.S.</td>
<td>-4.56%</td>
<td>0.01%</td>
<td>46.43%</td>
<td>-22.24%</td>
</tr>
<tr>
<td>Emerging</td>
<td>-5.33%</td>
<td>3.12%</td>
<td>83.31%</td>
<td>-11.68%</td>
</tr>
<tr>
<td>Turkey</td>
<td>3.87%</td>
<td>16.66%</td>
<td>128.75%</td>
<td>0.64%</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3.14%</td>
<td>11.64%</td>
<td>155.55%</td>
<td>-8.21%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3.11%</td>
<td>0.00%</td>
<td>51.61%</td>
<td>-25.56%</td>
</tr>
<tr>
<td>Russia</td>
<td>2.44%</td>
<td>9.08%</td>
<td>144.23%</td>
<td>-33.56%</td>
</tr>
<tr>
<td>Chile</td>
<td>1.98%</td>
<td>14.90%</td>
<td>68.66%</td>
<td>11.51%</td>
</tr>
<tr>
<td>Israel</td>
<td>1.17%</td>
<td>12.39%</td>
<td>61.26%</td>
<td>8.63%</td>
</tr>
<tr>
<td>Morocco</td>
<td>0.61%</td>
<td>-3.04%</td>
<td>15.84%</td>
<td>-24.42%</td>
</tr>
<tr>
<td>Hungary</td>
<td>0.48%</td>
<td>2.56%</td>
<td>132.88%</td>
<td>-25.45%</td>
</tr>
<tr>
<td>Malaysia</td>
<td>-0.43%</td>
<td>0.65%</td>
<td>50.41%</td>
<td>-17.59%</td>
</tr>
<tr>
<td>Poland</td>
<td>-1.61%</td>
<td>4.30%</td>
<td>83.79%</td>
<td>-33.41%</td>
</tr>
<tr>
<td>India</td>
<td>-4.35%</td>
<td>7.07%</td>
<td>92.76%</td>
<td>-21.55%</td>
</tr>
<tr>
<td>Philippines</td>
<td>-4.80%</td>
<td>2.83%</td>
<td>65.36%</td>
<td>-20.07%</td>
</tr>
<tr>
<td>Thailand</td>
<td>-5.12%</td>
<td>2.35%</td>
<td>71.25%</td>
<td>-12.61%</td>
</tr>
<tr>
<td>South Africa</td>
<td>-5.29%</td>
<td>4.52%</td>
<td>66.91%</td>
<td>-2.01%</td>
</tr>
<tr>
<td>Mexico</td>
<td>-5.55%</td>
<td>6.23%</td>
<td>67.88%</td>
<td>-17.82%</td>
</tr>
<tr>
<td>Peru</td>
<td>-5.78%</td>
<td>-3.61%</td>
<td>84.80%</td>
<td>3.61%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>-6.86%</td>
<td>6.11%</td>
<td>89.69%</td>
<td>-1.33%</td>
</tr>
<tr>
<td>China</td>
<td>-8.49%</td>
<td>-4.15%</td>
<td>65.47%</td>
<td>-9.41%</td>
</tr>
<tr>
<td>Brazil</td>
<td>-10.62%</td>
<td>-1.51%</td>
<td>93.46%</td>
<td>-5.85%</td>
</tr>
</tbody>
</table>
S&P Global Broad Market Index (BMI): Developed, January 2010

<table>
<thead>
<tr>
<th>BMI MEMBER</th>
<th>1-MONTH</th>
<th>3-MONTHS</th>
<th>1 YEAR</th>
<th>2-YEARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed</td>
<td>-3.97%</td>
<td>1.60%</td>
<td>36.31%</td>
<td>-22.57%</td>
</tr>
<tr>
<td>Developed Ex-U.S.</td>
<td>-4.37%</td>
<td>-0.72%</td>
<td>39.57%</td>
<td>-24.42%</td>
</tr>
<tr>
<td>Denmark</td>
<td>2.32%</td>
<td>3.73%</td>
<td>45.83%</td>
<td>-19.91%</td>
</tr>
<tr>
<td>Finland</td>
<td>2.01%</td>
<td>7.33%</td>
<td>39.78%</td>
<td>-43.76%</td>
</tr>
<tr>
<td>Japan</td>
<td>2.00%</td>
<td>0.72%</td>
<td>13.40%</td>
<td>-21.53%</td>
</tr>
<tr>
<td>Ireland</td>
<td>-1.60%</td>
<td>6.21%</td>
<td>54.33%</td>
<td>-56.13%</td>
</tr>
<tr>
<td>Belgium</td>
<td>-2.21%</td>
<td>-0.33%</td>
<td>56.64%</td>
<td>-42.30%</td>
</tr>
<tr>
<td>Sweden</td>
<td>-2.33%</td>
<td>-2.27%</td>
<td>81.62%</td>
<td>-14.09%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>-2.85%</td>
<td>0.26%</td>
<td>36.85%</td>
<td>-10.91%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-3.40%</td>
<td>2.17%</td>
<td>48.63%</td>
<td>-22.99%</td>
</tr>
<tr>
<td>United States</td>
<td>-3.51%</td>
<td>4.37%</td>
<td>32.67%</td>
<td>-20.52%</td>
</tr>
<tr>
<td>Austria</td>
<td>-3.55%</td>
<td>-4.98%</td>
<td>62.25%</td>
<td>-39.56%</td>
</tr>
<tr>
<td>Norway</td>
<td>-4.12%</td>
<td>5.66%</td>
<td>78.79%</td>
<td>-22.51%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>-4.37%</td>
<td>0.02%</td>
<td>41.59%</td>
<td>-28.01%</td>
</tr>
<tr>
<td>New Zealand</td>
<td>-4.84%</td>
<td>-4.66%</td>
<td>50.53%</td>
<td>-31.39%</td>
</tr>
<tr>
<td>Korea</td>
<td>-5.01%</td>
<td>2.99%</td>
<td>67.25%</td>
<td>-18.34%</td>
</tr>
<tr>
<td>Singapore</td>
<td>-5.57%</td>
<td>3.70%</td>
<td>76.54%</td>
<td>-10.39%</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>-6.07%</td>
<td>-3.75%</td>
<td>57.29%</td>
<td>-17.62%</td>
</tr>
<tr>
<td>France</td>
<td>-6.89%</td>
<td>-2.54%</td>
<td>38.22%</td>
<td>-25.28%</td>
</tr>
<tr>
<td>Canada</td>
<td>-7.07%</td>
<td>3.17%</td>
<td>51.35%</td>
<td>-19.66%</td>
</tr>
<tr>
<td>Australia</td>
<td>-7.28%</td>
<td>-3.32%</td>
<td>84.57%</td>
<td>-18.80%</td>
</tr>
<tr>
<td>Italy</td>
<td>-8.05%</td>
<td>-6.18%</td>
<td>32.12%</td>
<td>-40.22%</td>
</tr>
<tr>
<td>Germany</td>
<td>-8.40%</td>
<td>-2.49%</td>
<td>37.41%</td>
<td>-30.76%</td>
</tr>
<tr>
<td>Portugal</td>
<td>-9.62%</td>
<td>-10.10%</td>
<td>31.06%</td>
<td>-34.63%</td>
</tr>
<tr>
<td>Greece</td>
<td>-10.86%</td>
<td>-30.37%</td>
<td>19.09%</td>
<td>-57.94%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>-10.99%</td>
<td>13.31%</td>
<td>66.00%</td>
<td>-34.94%</td>
</tr>
<tr>
<td>Spain</td>
<td>-11.17%</td>
<td>-10.20%</td>
<td>35.00%</td>
<td>-26.11%</td>
</tr>
</tbody>
</table>
2. Estimates as a Percentage of Gross Domestic Product

This section contains long-range projections of the operations of the theoretical combined Old-Age and Survivors Insurance and Disability Insurance (OASI and DI) Trust Funds and of the Hospital Insurance (HI) Trust Fund, expressed as a percentage of gross domestic product (GDP). While expressing fund operations as a percentage of taxable payroll is the most useful approach for assessing the financial status of the programs (see section IV.B.1), expressing them as a percentage of the total value of goods and services produced in the United States provides an additional perspective.

Table VI.G4 shows non-interest income, total cost, and the resulting balance of the combined OASI and DI Trust Funds, of the HI Trust Fund, and of the combined OASI, DI, and HI Trust Funds, expressed as percentages of GDP on the basis of each of the three alternative sets of assumptions. Table VI.G4 also contains estimates of GDP. For OASDI, non-interest income consists of payroll tax contributions, proceeds from taxation of benefits, and reimbursements from the General Fund of the Treasury, if any. Cost consists of scheduled benefits, administrative expenses, financial interchange with the Railroad Retirement program, and payments for vocational rehabilitation services for disabled beneficiaries. For HI, non-interest income consists of payroll tax contributions (including contributions from railroad employment), up to an additional 0.9 percent tax on earned income for relatively high earners, proceeds from taxation of OASDI benefits, and reimbursements from the General Fund of the Treasury, if any. Cost consists of outlays (benefits and administrative expenses) for insured beneficiaries. The Trustees show income and cost estimates on a cash basis for the OASDI program and on an incurred basis for the HI program.

The Trustees project the OASDI annual balance (non-interest income less cost) as a percentage of GDP to be negative throughout the projection period under the intermediate and high-cost assumptions, and to be negative through 2076 under the low-cost assumptions. Under the low-cost assumptions the OASDI annual deficit as a percentage of GDP decreases through 2018. After 2018, deficits increase to a peak in 2033 and then decrease through 2076, after which annual balances are positive, reaching 0.07 percent of GDP in 2088. Under the intermediate assumptions, annual deficits decrease from 2014 to 2015, generally increase through 2037, decrease from 2037 through 2051, and mostly increase thereafter. Under the high-cost assumptions, annual deficits increase throughout the projection period.

The Trustees project that the HI balance as a percentage of GDP will be positive throughout the projection period under the low-cost assumptions. Under the intermediate assumptions, the HI balance is negative for each year of the projection period except for 2015-21. Annual deficits increase through 2049 and remain relatively stable thereafter. Under the high-cost assumptions, the HI balance is negative for all years of the projection period. Annual deficits reach a peak in 2075 and mostly decline thereafter.
The combined OASDI and HI annual balance as a percentage of GDP is negative throughout the projection period under both the intermediate and high-cost assumptions. Under the low-cost assumptions, the combined OASDI and HI balance is negative through 2015, positive from 2016 through 2024, negative from 2025 through 2037, and then positive and mostly rising thereafter. Under the intermediate assumptions, combined OASDI and HI annual deficits decline from 2014 through 2017, increase from 2017 through 2041, and mostly decrease through 2052. After 2052, annual deficits generally rise, reaching 2.18 percent of GDP by 2088. Under the high-cost assumptions, combined annual deficits rise throughout the projection period.

By 2088, the combined OASDI and HI annual balances as percentages of GDP range from a positive balance of 0.85 percent for the low-cost assumptions to a deficit of 7.01 percent for the high-cost assumptions. Balances differ by a much smaller amount for the tenth year, 2023, ranging from a positive balance of 0.11 percent for the low-cost assumptions to a deficit of 1.82 percent for the high-cost assumptions.

The summarized long-range (75-year) balance as a percentage of GDP for the combined OASDI and HI programs varies among the three alternatives by a relatively large amount, from a positive balance of 0.53 percent under the low-cost assumptions to a deficit of 4.20 percent under the high-cost assumptions. The 25-year summarized balance varies by a smaller amount, from a positive balance of 0.35 percent to a deficit of 2.12 percent. Summarized rates are calculated on a present-value basis. They include the trust fund balances on January 1, 2014 and the cost of reaching a target trust fund level equal to 100 percent of the following year’s annual cost at the end of the period. (See section IV.B.4 for further explanation.)

Table VI.G4.—OASDI and HI Annual and Summarized Income, Cost, and Balance as a Percentage of GDP, Calendar Years 2014-90

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>OASDI Income</th>
<th>OASDI Cost</th>
<th>OASDI Balance</th>
<th>HI Income</th>
<th>HI Cost</th>
<th>HI Balance</th>
<th>Combined Income</th>
<th>Combined Cost</th>
<th>Combined Balance</th>
<th>GDP in billions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate:</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>4.464.92</td>
<td>-0.45</td>
<td>1.451.50</td>
<td>-0.05</td>
<td>5.92</td>
<td>6.42</td>
<td>-0.50</td>
<td>17,557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>4.574.94</td>
<td>-0.37</td>
<td>1.471.44</td>
<td>0.03</td>
<td>6.04</td>
<td>6.38</td>
<td>-.34</td>
<td>18,426</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>4.594.97</td>
<td>-0.38</td>
<td>1.491.44</td>
<td>0.05</td>
<td>6.08</td>
<td>6.41</td>
<td>-.33</td>
<td>19,377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>4.635.01</td>
<td>-0.38</td>
<td>1.511.45</td>
<td>0.06</td>
<td>6.14</td>
<td>6.46</td>
<td>-.32</td>
<td>20,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>4.675.06</td>
<td>-0.39</td>
<td>1.531.48</td>
<td>0.05</td>
<td>6.20</td>
<td>6.55</td>
<td>-.34</td>
<td>21,475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>4.705.13</td>
<td>-0.44</td>
<td>1.541.50</td>
<td>0.04</td>
<td>6.24</td>
<td>6.63</td>
<td>-.39</td>
<td>22,578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>4.715.21</td>
<td>-.50</td>
<td>1.551.53</td>
<td>0.02</td>
<td>6.27</td>
<td>6.74</td>
<td>-.47</td>
<td>23,694</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>4.735.29</td>
<td>-.55</td>
<td>1.561.56</td>
<td>b</td>
<td>6.30</td>
<td>6.85</td>
<td>-.55</td>
<td>24,815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>4.755.38</td>
<td>-.63</td>
<td>1.571.60</td>
<td>-.03</td>
<td>6.32</td>
<td>6.98</td>
<td>-.66</td>
<td>25,935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td>4.765.48</td>
<td>-.72</td>
<td>1.581.63</td>
<td>-.05</td>
<td>6.34</td>
<td>7.11</td>
<td>-.77</td>
<td>27,091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>4.765.66</td>
<td>-.90</td>
<td>1.601.74</td>
<td>-.15</td>
<td>6.36</td>
<td>7.41</td>
<td>-1.05</td>
<td>29,575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>4.766.01</td>
<td>-1.25</td>
<td>1.631.91</td>
<td>-.28</td>
<td>6.39</td>
<td>7.92</td>
<td>-1.53</td>
<td>36,750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>4.756.16</td>
<td>-1.41</td>
<td>1.662.06</td>
<td>-.40</td>
<td>6.41</td>
<td>8.21</td>
<td>-1.81</td>
<td>45,659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>4.736.12</td>
<td>-1.39</td>
<td>1.672.17</td>
<td>-.50</td>
<td>6.40</td>
<td>8.29</td>
<td>-1.89</td>
<td>57,003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>4.706.03</td>
<td>-1.33</td>
<td>1.692.24</td>
<td>-.55</td>
<td>6.39</td>
<td>8.27</td>
<td>-1.88</td>
<td>71,254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>4.675.97</td>
<td>-1.30</td>
<td>1.702.26</td>
<td>-.56</td>
<td>6.37</td>
<td>8.24</td>
<td>-1.87</td>
<td>88,833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Total Index</td>
<td>Change</td>
<td>Total</td>
<td>Excess</td>
<td>Change</td>
<td>Total</td>
<td>Low Cost</td>
<td>Change</td>
<td>Total</td>
<td>Low Cost</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>2055</td>
<td>4.64597</td>
<td>-1.33</td>
<td>1.72227</td>
<td>-.54</td>
<td>6.36</td>
<td>8.24</td>
<td>-1.88</td>
<td>110,392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td>4.61601</td>
<td>-1.40</td>
<td>1.74228</td>
<td>-.54</td>
<td>6.35</td>
<td>8.29</td>
<td>-1.94</td>
<td>136,921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2065</td>
<td>4.58605</td>
<td>-1.47</td>
<td>1.76231</td>
<td>-.55</td>
<td>6.34</td>
<td>8.36</td>
<td>-2.02</td>
<td>169,890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2070</td>
<td>4.55609</td>
<td>-1.54</td>
<td>1.77235</td>
<td>-.57</td>
<td>6.32</td>
<td>8.44</td>
<td>-2.11</td>
<td>211,004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2075</td>
<td>4.52610</td>
<td>-1.57</td>
<td>1.78238</td>
<td>-.59</td>
<td>6.31</td>
<td>8.47</td>
<td>-2.16</td>
<td>262,181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2080</td>
<td>4.50607</td>
<td>-1.57</td>
<td>1.79237</td>
<td>-.58</td>
<td>6.29</td>
<td>8.44</td>
<td>-2.15</td>
<td>325,644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2085</td>
<td>4.48608</td>
<td>-1.61</td>
<td>1.80236</td>
<td>-.55</td>
<td>6.28</td>
<td>8.44</td>
<td>-2.16</td>
<td>403,770</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2090</td>
<td>4.46614</td>
<td>-1.68</td>
<td>1.82234</td>
<td>-.52</td>
<td>6.28</td>
<td>8.48</td>
<td>-2.20</td>
<td>499,900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summarized rates:
25-year: 2014-38 5.335.87 -.54 1.641.83 -.19 6.97 7.70 -.73
50-year: 2014-63 5.045.91 -.87 1.672.00 -.34 6.71 7.91 -1.20
75-year: 2014-88 4.915.93 -1.02 1.702.08 -.39 6.61 8.01 -1.41

Low-cost: 2014 4.44485 -.40 1.45145 b 5.90 6.29 -.40 17,771
2015 4.58477 -.18 1.47135 .12 6.06 6.12 -.06 19,032
2016 4.59473 -.14 1.49132 .17 6.08 6.05 .03 20,464
2017 4.65473 -.08 1.51130 .21 6.16 6.04 .12 21,918
2018 4.71476 -.06 1.53131 .22 6.23 6.07 .16 23,335
2019 4.74480 -.06 1.54129 .24 6.28 6.09 .18 24,843
2020 4.76484 -.08 1.55129 .25 6.31 6.13 .18 26,401
2021 4.79488 -.09 1.56130 .26 6.34 6.18 .17 27,969
2022 4.82493 -.12 1.57130 .26 6.38 6.24 .15 29,611
2023 4.84499 -.16 1.57131 .27 6.41 6.30 .11 31,324
2025 4.84510 -.26 1.59134 .25 6.44 6.44 -.01 35,064
2030 4.85528 -.43 1.64134 .30 6.49 6.62 -.13 46,398
2035 4.85531 -.45 1.68131 .37 6.53 6.61 -.08 61,419
2040 4.85520 -.35 1.71123 .48 6.56 6.43 .13 81,834
2045 4.84506 -.22 1.74117 .57 6.58 6.23 .35 109,456
2050 4.82497 -.14 1.77112 .65 6.59 6.08 .51 146,344
2055 4.81493 -.12 1.80108 .72 6.61 6.01 .60 195,464
2060 4.80493 -.13 1.83107 .76 6.63 6.00 .63 261,102
2065 4.79491 -.11 1.85108 .76 6.64 5.99 .65 349,338
2070 4.78487 -.09 1.87111 .76 6.65 5.98 .66 468,439
2075 4.77480 -.03 1.88113 .75 6.65 5.94 .72 629,283
2080 4.77471 .06 1.89114 .75 6.66 5.85 .81 845,859
2085 4.77468 .09 1.91114 .77 6.67 5.82 .86 1,135,314
2090 4.77472 .06 1.93115 .78 6.70 5.86 .84 1,521,298

Low-cost (Cont.): Summarized rates:
25-year:
2014-38

<table>
<thead>
<tr>
<th>Year</th>
<th>50-year</th>
<th>75-year</th>
<th>High-cost</th>
</tr>
</thead>
</table>

Summarized rates:

<table>
<thead>
<tr>
<th>Year</th>
<th>25-year</th>
<th>50-year</th>
<th>75-year</th>
</tr>
</thead>
</table>

a Income for individual years excludes interest on the trust funds. Interest is implicit in all summarized values.
b Between 0 and 0.005 percent of GDP.

c Summarized rates are calculated on a present-value basis. They include the value of the trust funds on January 1, 2014 and the cost of reaching a target trust fund level equal to 100 percent of annual cost at the end of the period.

Note: Totals do not necessarily equal the sums of rounded components.

To compare trust fund operations expressed as percentages of taxable payroll and those expressed as percentages of GDP, table VI.G5 displays ratios of OASDI taxable payroll to GDP. HI taxable payroll is about 25 percent larger than the OASDI taxable payroll throughout the long-range period; see section 1 of this appendix for a detailed description of the difference. The cost as a percentage of GDP is equal to the cost as a percentage of taxable payroll multiplied by the ratio of taxable payroll to GDP.

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Intermediate</th>
<th>Low-cost</th>
<th>High-cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>0.352</td>
<td>0.353</td>
<td>0.352</td>
</tr>
<tr>
<td>2015</td>
<td>0.353</td>
<td>0.354</td>
<td>0.352</td>
</tr>
<tr>
<td>2016</td>
<td>0.356</td>
<td>0.357</td>
<td>0.354</td>
</tr>
<tr>
<td>2017</td>
<td>0.359</td>
<td>0.361</td>
<td>0.355</td>
</tr>
<tr>
<td>2018</td>
<td>0.361</td>
<td>0.365</td>
<td>0.357</td>
</tr>
<tr>
<td>2019</td>
<td>0.363</td>
<td>0.367</td>
<td>0.358</td>
</tr>
<tr>
<td>2020</td>
<td>0.364</td>
<td>0.369</td>
<td>0.358</td>
</tr>
<tr>
<td>2021</td>
<td>0.365</td>
<td>0.370</td>
<td>0.358</td>
</tr>
<tr>
<td>2022</td>
<td>0.365</td>
<td>0.372</td>
<td>0.359</td>
</tr>
<tr>
<td>2023</td>
<td>0.365</td>
<td>0.373</td>
<td>0.358</td>
</tr>
<tr>
<td>2025</td>
<td>0.364</td>
<td>0.373</td>
<td>0.357</td>
</tr>
<tr>
<td>2030</td>
<td>0.362</td>
<td>0.372</td>
<td>0.353</td>
</tr>
<tr>
<td>2035</td>
<td>0.360</td>
<td>0.372</td>
<td>0.350</td>
</tr>
<tr>
<td>2040</td>
<td>0.358</td>
<td>0.371</td>
<td>0.347</td>
</tr>
<tr>
<td>2045</td>
<td>0.356</td>
<td>0.371</td>
<td>0.343</td>
</tr>
<tr>
<td>2050</td>
<td>0.354</td>
<td>0.370</td>
<td>0.338</td>
</tr>
<tr>
<td>2055</td>
<td>0.351</td>
<td>0.369</td>
<td>0.334</td>
</tr>
<tr>
<td>2060</td>
<td>0.348</td>
<td>0.368</td>
<td>0.330</td>
</tr>
<tr>
<td>2065</td>
<td>0.346</td>
<td>0.367</td>
<td>0.326</td>
</tr>
<tr>
<td>2070</td>
<td>0.343</td>
<td>0.367</td>
<td>0.322</td>
</tr>
<tr>
<td>2075</td>
<td>0.341</td>
<td>0.366</td>
<td>0.318</td>
</tr>
<tr>
<td>2080</td>
<td>0.339</td>
<td>0.366</td>
<td>0.314</td>
</tr>
<tr>
<td>2085</td>
<td>0.337</td>
<td>0.366</td>
<td>0.311</td>
</tr>
<tr>
<td>2090</td>
<td>0.336</td>
<td>0.367</td>
<td>0.308</td>
</tr>
</tbody>
</table>

Projections of GDP reflect projected increases in U.S. employment, labor productivity, average hours worked, and the GDP deflator. Projections of taxable payroll reflect the components of growth in GDP along with assumed changes in the ratio of worker compensation to GDP, the ratio of earnings to worker compensation, the ratio of OASDI covered earnings to total earnings, and the ratio of taxable to total covered earnings.
Over the long-range period, the Trustees project that the ratio of OASDI taxable payroll to GDP will decline mostly due to a projected decline in the ratio of wages to employee compensation. Over the last five complete economic cycles, the ratio of wages to employee compensation declined at an average annual rate of 0.25 percent. The Trustees project that the ratio of wages to employee compensation will continue to decline, over the 65-year period ending in 2088, at an average annual rate of 0.03, 0.13, and 0.23 percent for the low-cost, intermediate, and high-cost assumptions, respectively.
Social Security

OASDI And HI Annual Income, Cost, And Balance As A Percentage Of GDP — 2014

OASDI Trustees Report

<table>
<thead>
<tr>
<th>Single-Year Tables</th>
<th>Historical Data</th>
<th>Intermediate Assumptions</th>
<th>Low-Cost Assumptions</th>
<th>High-Cost Assumptions</th>
</tr>
</thead>
</table>

Table VI.G4.- OASDI and HI Annual Income, Cost, and Balance as a Percentage of GDP, Calendar Years 1970-2090

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>OASDI Income</th>
<th>OASDI Cost</th>
<th>OASDI Balance</th>
<th>HI Income</th>
<th>HI Cost</th>
<th>HI Balance</th>
<th>Combined Income</th>
<th>Combined Cost</th>
<th>Combined Balance</th>
<th>GDP in dollars (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical:</td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>3.27</td>
<td>3.08</td>
<td>0.19</td>
<td>0.46</td>
<td>0.50</td>
<td>-0.04</td>
<td>3.73</td>
<td>3.58</td>
<td>0.15</td>
<td>1,076</td>
</tr>
<tr>
<td>1971</td>
<td>3.33</td>
<td>3.30</td>
<td>0.03</td>
<td>.43</td>
<td>.52</td>
<td>-0.09</td>
<td>3.76</td>
<td>3.82</td>
<td>-0.07</td>
<td>1,168</td>
</tr>
<tr>
<td>1972</td>
<td>3.39</td>
<td>3.37</td>
<td>0.01</td>
<td>.45</td>
<td>.52</td>
<td>-0.07</td>
<td>3.84</td>
<td>3.90</td>
<td>-0.06</td>
<td>1,282</td>
</tr>
<tr>
<td>1973</td>
<td>3.67</td>
<td>3.72</td>
<td>-0.05</td>
<td>.70</td>
<td>.52</td>
<td>.18</td>
<td>4.37</td>
<td>4.24</td>
<td>.13</td>
<td>1,429</td>
</tr>
<tr>
<td>1974</td>
<td>3.84</td>
<td>3.91</td>
<td>-0.08</td>
<td>.71</td>
<td>.62</td>
<td>.09</td>
<td>4.54</td>
<td>4.53</td>
<td>.01</td>
<td>1,549</td>
</tr>
<tr>
<td>1975</td>
<td>3.84</td>
<td>4.10</td>
<td>-0.26</td>
<td>.69</td>
<td>.71</td>
<td>-0.02</td>
<td>4.52</td>
<td>4.80</td>
<td>-0.28</td>
<td>1,689</td>
</tr>
<tr>
<td>1976</td>
<td>3.85</td>
<td>4.17</td>
<td>-0.32</td>
<td>.69</td>
<td>.73</td>
<td>-0.04</td>
<td>4.54</td>
<td>4.90</td>
<td>-0.36</td>
<td>1,878</td>
</tr>
<tr>
<td>1977</td>
<td>3.81</td>
<td>4.18</td>
<td>-0.37</td>
<td>.68</td>
<td>.76</td>
<td>-0.08</td>
<td>4.49</td>
<td>4.94</td>
<td>-0.46</td>
<td>2,086</td>
</tr>
<tr>
<td>1978</td>
<td>3.80</td>
<td>4.07</td>
<td>-0.27</td>
<td>.74</td>
<td>.76</td>
<td>-0.02</td>
<td>4.55</td>
<td>4.84</td>
<td>-0.29</td>
<td>2,357</td>
</tr>
<tr>
<td>1979</td>
<td>3.94</td>
<td>4.08</td>
<td>-0.14</td>
<td>.80</td>
<td>.79</td>
<td>b</td>
<td>4.74</td>
<td>4.87</td>
<td>-0.13</td>
<td>2,632</td>
</tr>
<tr>
<td>1980</td>
<td>4.10</td>
<td>4.32</td>
<td>-0.22</td>
<td>.84</td>
<td>.88</td>
<td>-0.04</td>
<td>4.94</td>
<td>5.20</td>
<td>-0.26</td>
<td>2,862</td>
</tr>
<tr>
<td>1981</td>
<td>4.37</td>
<td>4.50</td>
<td>-0.13</td>
<td>1.04</td>
<td>.95</td>
<td>.09</td>
<td>5.40</td>
<td>5.44</td>
<td>-0.04</td>
<td>3,211</td>
</tr>
<tr>
<td>1982</td>
<td>4.38</td>
<td>4.79</td>
<td>-0.41</td>
<td>1.04</td>
<td>1.06</td>
<td>-0.02</td>
<td>5.42</td>
<td>5.85</td>
<td>-0.42</td>
<td>3,345</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>OASDI Income</th>
<th>OASDI Cost</th>
<th>OASDI Balance</th>
<th>HI Income</th>
<th>HI Cost</th>
<th>HI Balance</th>
<th>Combined Income</th>
<th>Combined Cost</th>
<th>Combined Balance</th>
<th>GDP in billions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>4.48</td>
<td>4.71</td>
<td>-.23</td>
<td>1.03</td>
<td>1.09</td>
<td>-.06</td>
<td>5.51</td>
<td>5.80</td>
<td>-.28</td>
<td>3,638</td>
</tr>
<tr>
<td>1984</td>
<td>4.53</td>
<td>4.47</td>
<td>.07</td>
<td>1.06</td>
<td>1.10</td>
<td>-.05</td>
<td>5.59</td>
<td>5.57</td>
<td>.02</td>
<td>4,041</td>
</tr>
<tr>
<td>1985</td>
<td>4.62</td>
<td>4.39</td>
<td>.23</td>
<td>1.10</td>
<td>1.09</td>
<td>.01</td>
<td>5.72</td>
<td>5.47</td>
<td>.25</td>
<td>4,347</td>
</tr>
<tr>
<td>1986</td>
<td>4.64</td>
<td>4.39</td>
<td>.25</td>
<td>1.20</td>
<td>1.06</td>
<td>.13</td>
<td>5.84</td>
<td>5.45</td>
<td>.38</td>
<td>4,590</td>
</tr>
<tr>
<td>1987</td>
<td>4.64</td>
<td>4.29</td>
<td>.34</td>
<td>1.21</td>
<td>1.05</td>
<td>.16</td>
<td>5.85</td>
<td>5.34</td>
<td>.50</td>
<td>4,870</td>
</tr>
<tr>
<td>1988</td>
<td>4.86</td>
<td>4.24</td>
<td>.62</td>
<td>1.20</td>
<td>1.00</td>
<td>.20</td>
<td>6.06</td>
<td>5.23</td>
<td>.82</td>
<td>5,253</td>
</tr>
<tr>
<td>1989</td>
<td>4.89</td>
<td>4.18</td>
<td>.72</td>
<td>1.22</td>
<td>1.08</td>
<td>.14</td>
<td>6.11</td>
<td>5.25</td>
<td>.85</td>
<td>5,658</td>
</tr>
<tr>
<td>1990</td>
<td>4.99</td>
<td>4.23</td>
<td>.75</td>
<td>1.21</td>
<td>1.11</td>
<td>.10</td>
<td>6.20</td>
<td>5.34</td>
<td>.86</td>
<td>5,980</td>
</tr>
<tr>
<td>1991</td>
<td>4.99</td>
<td>4.44</td>
<td>.54</td>
<td>1.27</td>
<td>1.17</td>
<td>.10</td>
<td>6.25</td>
<td>5.61</td>
<td>.64</td>
<td>6,174</td>
</tr>
<tr>
<td>1992</td>
<td>4.85</td>
<td>4.46</td>
<td>.39</td>
<td>1.26</td>
<td>1.28</td>
<td>-.02</td>
<td>6.11</td>
<td>5.74</td>
<td>.36</td>
<td>6,539</td>
</tr>
<tr>
<td>1993</td>
<td>4.76</td>
<td>4.49</td>
<td>.28</td>
<td>1.23</td>
<td>1.34</td>
<td>-.11</td>
<td>5.99</td>
<td>5.83</td>
<td>.17</td>
<td>6,879</td>
</tr>
<tr>
<td>1994</td>
<td>4.79</td>
<td>4.42</td>
<td>.37</td>
<td>1.37</td>
<td>1.44</td>
<td>-.07</td>
<td>6.16</td>
<td>5.86</td>
<td>.30</td>
<td>7,309</td>
</tr>
<tr>
<td>1995</td>
<td>4.76</td>
<td>4.43</td>
<td>.32</td>
<td>1.38</td>
<td>1.52</td>
<td>-.14</td>
<td>6.14</td>
<td>5.96</td>
<td>.18</td>
<td>7,664</td>
</tr>
<tr>
<td>1996</td>
<td>4.76</td>
<td>4.36</td>
<td>.40</td>
<td>1.38</td>
<td>1.57</td>
<td>-.18</td>
<td>6.15</td>
<td>5.93</td>
<td>.21</td>
<td>8,100</td>
</tr>
<tr>
<td>1997</td>
<td>4.81</td>
<td>4.29</td>
<td>.52</td>
<td>1.40</td>
<td>1.57</td>
<td>-.17</td>
<td>6.21</td>
<td>5.86</td>
<td>.35</td>
<td>8,608</td>
</tr>
<tr>
<td>1998</td>
<td>4.84</td>
<td>4.21</td>
<td>.63</td>
<td>1.45</td>
<td>1.43</td>
<td>.02</td>
<td>6.29</td>
<td>5.64</td>
<td>.65</td>
<td>9,089</td>
</tr>
<tr>
<td>1999</td>
<td>4.87</td>
<td>4.06</td>
<td>.81</td>
<td>1.46</td>
<td>1.33</td>
<td>.13</td>
<td>6.34</td>
<td>5.40</td>
<td>.94</td>
<td>9,666</td>
</tr>
<tr>
<td>2000</td>
<td>4.90</td>
<td>4.03</td>
<td>.86</td>
<td>1.49</td>
<td>1.27</td>
<td>.22</td>
<td>6.39</td>
<td>5.31</td>
<td>1.08</td>
<td>10,290</td>
</tr>
<tr>
<td>2001</td>
<td>4.98</td>
<td>4.13</td>
<td>.85</td>
<td>1.47</td>
<td>1.34</td>
<td>.13</td>
<td>6.45</td>
<td>5.47</td>
<td>.98</td>
<td>10,625</td>
</tr>
<tr>
<td>2002</td>
<td>4.98</td>
<td>4.20</td>
<td>.77</td>
<td>1.43</td>
<td>1.38</td>
<td>.05</td>
<td>6.41</td>
<td>5.59</td>
<td>.82</td>
<td>10,980</td>
</tr>
<tr>
<td>2003</td>
<td>4.75</td>
<td>4.16</td>
<td>.59</td>
<td>1.41</td>
<td>1.37</td>
<td>.04</td>
<td>6.16</td>
<td>5.53</td>
<td>.63</td>
<td>11,512</td>
</tr>
<tr>
<td>2004</td>
<td>4.63</td>
<td>4.09</td>
<td>.55</td>
<td>1.40</td>
<td>1.39</td>
<td>.01</td>
<td>6.03</td>
<td>5.47</td>
<td>.56</td>
<td>12,277</td>
</tr>
<tr>
<td>2005</td>
<td>4.64</td>
<td>4.05</td>
<td>.59</td>
<td>1.38</td>
<td>1.41</td>
<td>-.03</td>
<td>6.02</td>
<td>5.46</td>
<td>.57</td>
<td>13,095</td>
</tr>
<tr>
<td>2006</td>
<td>4.64</td>
<td>4.01</td>
<td>.63</td>
<td>1.39</td>
<td>1.41</td>
<td>-.02</td>
<td>6.03</td>
<td>5.42</td>
<td>.61</td>
<td>13,858</td>
</tr>
<tr>
<td>2007</td>
<td>4.66</td>
<td>4.11</td>
<td>.55</td>
<td>1.41</td>
<td>1.43</td>
<td>-.02</td>
<td>6.07</td>
<td>5.53</td>
<td>.54</td>
<td>14,480</td>
</tr>
<tr>
<td>2008</td>
<td>4.68</td>
<td>4.25</td>
<td>.43</td>
<td>1.40</td>
<td>1.51</td>
<td>-.11</td>
<td>6.08</td>
<td>5.76</td>
<td>.32</td>
<td>14,720</td>
</tr>
<tr>
<td>2009</td>
<td>4.78</td>
<td>4.76</td>
<td>.02</td>
<td>1.39</td>
<td>1.64</td>
<td>-.25</td>
<td>6.17</td>
<td>6.40</td>
<td>-.22</td>
<td>14,418</td>
</tr>
<tr>
<td>2010</td>
<td>4.44</td>
<td>4.76</td>
<td>-.33</td>
<td>1.38</td>
<td>1.62</td>
<td>-.24</td>
<td>5.82</td>
<td>6.38</td>
<td>-.57</td>
<td>14,958</td>
</tr>
<tr>
<td>2011</td>
<td>4.45</td>
<td>4.74</td>
<td>-.29</td>
<td>1.39</td>
<td>1.62</td>
<td>-.24</td>
<td>5.83</td>
<td>6.36</td>
<td>-.53</td>
<td>15,534</td>
</tr>
<tr>
<td>2012</td>
<td>4.50</td>
<td>4.84</td>
<td>-.34</td>
<td>1.40</td>
<td>1.58</td>
<td>-.19</td>
<td>5.90</td>
<td>6.42</td>
<td>-.52</td>
<td>16,245</td>
</tr>
<tr>
<td>2013</td>
<td>4.48</td>
<td>4.90</td>
<td>-.42</td>
<td>1.44</td>
<td>1.56</td>
<td>-.12</td>
<td>5.92</td>
<td>6.46</td>
<td>-.54</td>
<td>16,790</td>
</tr>
<tr>
<td>Calendar year</td>
<td>OASDI Income</td>
<td>OASDI Cost</td>
<td>OASDI Balance</td>
<td>HI Income</td>
<td>HI Cost</td>
<td>HI Balance</td>
<td>Combined Income</td>
<td>Combined Cost</td>
<td>Combined Balance</td>
<td>GDP in dollars (billions)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Intermediate:</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>4.46</td>
<td>4.92</td>
<td>-.45</td>
<td>1.45</td>
<td>1.50</td>
<td>-.05</td>
<td>5.92</td>
<td>6.42</td>
<td>-0.50</td>
<td>17,557</td>
</tr>
<tr>
<td>2015</td>
<td>4.57</td>
<td>4.94</td>
<td>-.37</td>
<td>1.47</td>
<td>1.44</td>
<td>.03</td>
<td>6.04</td>
<td>6.38</td>
<td>-.34</td>
<td>18,426</td>
</tr>
<tr>
<td>2016</td>
<td>4.59</td>
<td>4.97</td>
<td>-.38</td>
<td>1.49</td>
<td>1.44</td>
<td>.05</td>
<td>6.08</td>
<td>6.41</td>
<td>-.33</td>
<td>19,377</td>
</tr>
<tr>
<td>2017</td>
<td>4.63</td>
<td>5.01</td>
<td>-.38</td>
<td>1.51</td>
<td>1.45</td>
<td>.06</td>
<td>6.14</td>
<td>6.46</td>
<td>-.32</td>
<td>20,400</td>
</tr>
<tr>
<td>2018</td>
<td>4.67</td>
<td>5.06</td>
<td>-.39</td>
<td>1.53</td>
<td>1.48</td>
<td>.05</td>
<td>6.20</td>
<td>6.55</td>
<td>-.34</td>
<td>21,475</td>
</tr>
<tr>
<td>2019</td>
<td>4.70</td>
<td>5.13</td>
<td>-.44</td>
<td>1.54</td>
<td>1.50</td>
<td>.04</td>
<td>6.24</td>
<td>6.63</td>
<td>-.39</td>
<td>22,578</td>
</tr>
<tr>
<td>2020</td>
<td>4.71</td>
<td>5.21</td>
<td>-.50</td>
<td>1.55</td>
<td>1.53</td>
<td>.02</td>
<td>6.27</td>
<td>6.74</td>
<td>-.47</td>
<td>23,694</td>
</tr>
<tr>
<td>2021</td>
<td>4.73</td>
<td>5.29</td>
<td>-.55</td>
<td>1.56</td>
<td>1.56</td>
<td>b</td>
<td>6.30</td>
<td>6.85</td>
<td>-.55</td>
<td>24,815</td>
</tr>
<tr>
<td>2022</td>
<td>4.75</td>
<td>5.38</td>
<td>-.63</td>
<td>1.57</td>
<td>1.60</td>
<td>-.03</td>
<td>6.32</td>
<td>6.98</td>
<td>-.66</td>
<td>25,935</td>
</tr>
<tr>
<td>2023</td>
<td>4.76</td>
<td>5.48</td>
<td>-.72</td>
<td>1.58</td>
<td>1.63</td>
<td>-.05</td>
<td>6.34</td>
<td>7.11</td>
<td>-.77</td>
<td>27,091</td>
</tr>
<tr>
<td>2024</td>
<td>4.76</td>
<td>5.57</td>
<td>-.81</td>
<td>1.59</td>
<td>1.67</td>
<td>-.08</td>
<td>6.35</td>
<td>7.24</td>
<td>-.89</td>
<td>28,304</td>
</tr>
<tr>
<td>2025</td>
<td>4.76</td>
<td>5.66</td>
<td>-.90</td>
<td>1.60</td>
<td>1.74</td>
<td>-.15</td>
<td>6.36</td>
<td>7.41</td>
<td>-.105</td>
<td>29,575</td>
</tr>
<tr>
<td>2026</td>
<td>4.76</td>
<td>5.74</td>
<td>-.98</td>
<td>1.60</td>
<td>1.77</td>
<td>-.17</td>
<td>6.36</td>
<td>7.51</td>
<td>-.115</td>
<td>30,900</td>
</tr>
<tr>
<td>2027</td>
<td>4.76</td>
<td>5.82</td>
<td>-1.06</td>
<td>1.61</td>
<td>1.81</td>
<td>-.20</td>
<td>6.37</td>
<td>7.63</td>
<td>-.126</td>
<td>32,275</td>
</tr>
<tr>
<td>2028</td>
<td>4.76</td>
<td>5.89</td>
<td>-1.13</td>
<td>1.62</td>
<td>1.84</td>
<td>-.22</td>
<td>6.38</td>
<td>7.73</td>
<td>-.135</td>
<td>33,704</td>
</tr>
<tr>
<td>2029</td>
<td>4.76</td>
<td>5.96</td>
<td>-1.20</td>
<td>1.62</td>
<td>1.87</td>
<td>-.25</td>
<td>6.38</td>
<td>7.83</td>
<td>-.145</td>
<td>35,196</td>
</tr>
<tr>
<td>2030</td>
<td>4.76</td>
<td>6.01</td>
<td>-1.25</td>
<td>1.63</td>
<td>1.91</td>
<td>-.28</td>
<td>6.39</td>
<td>7.92</td>
<td>-.153</td>
<td>36,750</td>
</tr>
<tr>
<td>2031</td>
<td>4.76</td>
<td>6.06</td>
<td>-1.30</td>
<td>1.64</td>
<td>1.94</td>
<td>-.30</td>
<td>6.39</td>
<td>8.00</td>
<td>-.160</td>
<td>38,369</td>
</tr>
<tr>
<td>2032</td>
<td>4.76</td>
<td>6.09</td>
<td>-1.34</td>
<td>1.64</td>
<td>1.97</td>
<td>-.33</td>
<td>6.40</td>
<td>8.06</td>
<td>-.167</td>
<td>40,063</td>
</tr>
<tr>
<td>2033</td>
<td>4.76</td>
<td>6.12</td>
<td>-1.36</td>
<td>1.65</td>
<td>2.00</td>
<td>-.35</td>
<td>6.40</td>
<td>8.12</td>
<td>-.172</td>
<td>41,843</td>
</tr>
<tr>
<td>2034</td>
<td>4.75</td>
<td>6.14</td>
<td>-1.39</td>
<td>1.65</td>
<td>2.03</td>
<td>-.38</td>
<td>6.40</td>
<td>8.17</td>
<td>-.177</td>
<td>43,703</td>
</tr>
<tr>
<td>2035</td>
<td>4.75</td>
<td>6.16</td>
<td>-1.41</td>
<td>1.66</td>
<td>2.06</td>
<td>-.40</td>
<td>6.41</td>
<td>8.21</td>
<td>-.181</td>
<td>45,659</td>
</tr>
<tr>
<td>2036</td>
<td>4.75</td>
<td>6.16</td>
<td>-1.42</td>
<td>1.66</td>
<td>2.08</td>
<td>-.42</td>
<td>6.41</td>
<td>8.25</td>
<td>-.184</td>
<td>47,710</td>
</tr>
<tr>
<td>2037</td>
<td>4.74</td>
<td>6.16</td>
<td>-1.42</td>
<td>1.66</td>
<td>2.11</td>
<td>-.44</td>
<td>6.41</td>
<td>8.27</td>
<td>-.186</td>
<td>49,863</td>
</tr>
<tr>
<td>2038</td>
<td>4.74</td>
<td>6.16</td>
<td>-1.42</td>
<td>1.67</td>
<td>2.13</td>
<td>-.46</td>
<td>6.41</td>
<td>8.28</td>
<td>-.188</td>
<td>52,130</td>
</tr>
<tr>
<td>2039</td>
<td>4.74</td>
<td>6.14</td>
<td>-1.41</td>
<td>1.67</td>
<td>2.15</td>
<td>-.48</td>
<td>6.41</td>
<td>8.29</td>
<td>-.188</td>
<td>54,510</td>
</tr>
<tr>
<td>2040</td>
<td>4.73</td>
<td>6.12</td>
<td>-1.39</td>
<td>1.67</td>
<td>2.17</td>
<td>-.50</td>
<td>6.40</td>
<td>8.29</td>
<td>-.189</td>
<td>57,003</td>
</tr>
<tr>
<td>2041</td>
<td>4.72</td>
<td>6.10</td>
<td>-1.38</td>
<td>1.68</td>
<td>2.19</td>
<td>-.51</td>
<td>6.40</td>
<td>8.29</td>
<td>-.189</td>
<td>59,614</td>
</tr>
<tr>
<td>2042</td>
<td>4.72</td>
<td>6.08</td>
<td>-1.36</td>
<td>1.68</td>
<td>2.20</td>
<td>-.52</td>
<td>6.40</td>
<td>8.28</td>
<td>-.189</td>
<td>62,337</td>
</tr>
<tr>
<td>2043</td>
<td>4.71</td>
<td>6.06</td>
<td>-1.35</td>
<td>1.68</td>
<td>2.22</td>
<td>-.53</td>
<td>6.40</td>
<td>8.28</td>
<td>-.188</td>
<td>65,182</td>
</tr>
<tr>
<td>Calendar year</td>
<td>OASDI Income</td>
<td>OASDI Cost</td>
<td>OASDI Balance</td>
<td>HI Income</td>
<td>HI Cost</td>
<td>HI Balance</td>
<td>Combined Income</td>
<td>Combined Cost</td>
<td>Combined Balance</td>
<td>GDP in dollars (billions)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>2044</td>
<td>4.71</td>
<td>6.05</td>
<td>-1.34</td>
<td>1.68</td>
<td>2.23</td>
<td>-.54</td>
<td>6.39</td>
<td>8.27</td>
<td>-1.88</td>
<td>68,158</td>
</tr>
<tr>
<td>2045</td>
<td>4.70</td>
<td>6.03</td>
<td>-1.33</td>
<td>1.69</td>
<td>2.24</td>
<td>-.55</td>
<td>6.39</td>
<td>8.27</td>
<td>-1.88</td>
<td>71,254</td>
</tr>
<tr>
<td>2046</td>
<td>4.69</td>
<td>6.02</td>
<td>-1.33</td>
<td>1.69</td>
<td>2.25</td>
<td>-.56</td>
<td>6.38</td>
<td>8.27</td>
<td>-1.88</td>
<td>74,484</td>
</tr>
<tr>
<td>2047</td>
<td>4.69</td>
<td>6.01</td>
<td>-1.32</td>
<td>1.69</td>
<td>2.25</td>
<td>-.56</td>
<td>6.38</td>
<td>8.26</td>
<td>-1.88</td>
<td>77,852</td>
</tr>
<tr>
<td>2048</td>
<td>4.68</td>
<td>5.99</td>
<td>-1.31</td>
<td>1.70</td>
<td>2.26</td>
<td>-.56</td>
<td>6.38</td>
<td>8.25</td>
<td>-1.88</td>
<td>81,364</td>
</tr>
<tr>
<td>2049</td>
<td>4.67</td>
<td>5.98</td>
<td>-1.31</td>
<td>1.70</td>
<td>2.26</td>
<td>-.56</td>
<td>6.37</td>
<td>8.24</td>
<td>-1.87</td>
<td>85,024</td>
</tr>
<tr>
<td>2050</td>
<td>4.67</td>
<td>5.97</td>
<td>-1.30</td>
<td>1.70</td>
<td>2.26</td>
<td>-.56</td>
<td>6.37</td>
<td>8.24</td>
<td>-1.87</td>
<td>88,833</td>
</tr>
<tr>
<td>2051</td>
<td>4.66</td>
<td>5.97</td>
<td>-1.30</td>
<td>1.71</td>
<td>2.27</td>
<td>-.56</td>
<td>6.37</td>
<td>8.23</td>
<td>-1.86</td>
<td>92,806</td>
</tr>
<tr>
<td>2052</td>
<td>4.66</td>
<td>5.96</td>
<td>-1.31</td>
<td>1.71</td>
<td>2.27</td>
<td>-.56</td>
<td>6.37</td>
<td>8.23</td>
<td>-1.86</td>
<td>96,939</td>
</tr>
<tr>
<td>2053</td>
<td>4.65</td>
<td>5.96</td>
<td>-1.31</td>
<td>1.71</td>
<td>2.26</td>
<td>-.55</td>
<td>6.36</td>
<td>8.23</td>
<td>-1.86</td>
<td>101,241</td>
</tr>
<tr>
<td>2054</td>
<td>4.64</td>
<td>5.97</td>
<td>-1.32</td>
<td>1.72</td>
<td>2.26</td>
<td>-.55</td>
<td>6.36</td>
<td>8.23</td>
<td>-1.87</td>
<td>105,723</td>
</tr>
<tr>
<td>2055</td>
<td>4.64</td>
<td>5.97</td>
<td>-1.33</td>
<td>1.72</td>
<td>2.27</td>
<td>-.54</td>
<td>6.36</td>
<td>8.24</td>
<td>-1.88</td>
<td>110,392</td>
</tr>
<tr>
<td>2056</td>
<td>4.63</td>
<td>5.98</td>
<td>-1.35</td>
<td>1.73</td>
<td>2.27</td>
<td>-.54</td>
<td>6.36</td>
<td>8.25</td>
<td>-1.89</td>
<td>115,257</td>
</tr>
<tr>
<td>2057</td>
<td>4.63</td>
<td>5.99</td>
<td>-1.36</td>
<td>1.73</td>
<td>2.27</td>
<td>-.54</td>
<td>6.36</td>
<td>8.26</td>
<td>-1.90</td>
<td>120,330</td>
</tr>
<tr>
<td>2058</td>
<td>4.62</td>
<td>6.00</td>
<td>-1.38</td>
<td>1.73</td>
<td>2.27</td>
<td>-.54</td>
<td>6.35</td>
<td>8.27</td>
<td>-1.92</td>
<td>125,625</td>
</tr>
<tr>
<td>2059</td>
<td>4.62</td>
<td>6.00</td>
<td>-1.39</td>
<td>1.74</td>
<td>2.27</td>
<td>-.54</td>
<td>6.35</td>
<td>8.28</td>
<td>-1.93</td>
<td>131,153</td>
</tr>
<tr>
<td>2060</td>
<td>4.61</td>
<td>6.01</td>
<td>-1.40</td>
<td>1.74</td>
<td>2.28</td>
<td>-.54</td>
<td>6.35</td>
<td>8.29</td>
<td>-1.94</td>
<td>136,921</td>
</tr>
<tr>
<td>2061</td>
<td>4.60</td>
<td>6.02</td>
<td>-1.42</td>
<td>1.74</td>
<td>2.28</td>
<td>-.54</td>
<td>6.35</td>
<td>8.30</td>
<td>-1.95</td>
<td>142,948</td>
</tr>
<tr>
<td>2062</td>
<td>4.60</td>
<td>6.03</td>
<td>-1.43</td>
<td>1.75</td>
<td>2.29</td>
<td>-.54</td>
<td>6.35</td>
<td>8.31</td>
<td>-1.97</td>
<td>149,250</td>
</tr>
<tr>
<td>2063</td>
<td>4.59</td>
<td>6.04</td>
<td>-1.44</td>
<td>1.75</td>
<td>2.29</td>
<td>-.54</td>
<td>6.34</td>
<td>8.33</td>
<td>-1.98</td>
<td>155,831</td>
</tr>
<tr>
<td>2064</td>
<td>4.59</td>
<td>6.04</td>
<td>-1.46</td>
<td>1.75</td>
<td>2.30</td>
<td>-.54</td>
<td>6.34</td>
<td>8.34</td>
<td>-2.00</td>
<td>162,707</td>
</tr>
<tr>
<td>2065</td>
<td>4.58</td>
<td>6.05</td>
<td>-1.47</td>
<td>1.76</td>
<td>2.31</td>
<td>-.55</td>
<td>6.34</td>
<td>8.36</td>
<td>-2.02</td>
<td>169,890</td>
</tr>
<tr>
<td>2066</td>
<td>4.57</td>
<td>6.06</td>
<td>-1.48</td>
<td>1.76</td>
<td>2.32</td>
<td>-.55</td>
<td>6.33</td>
<td>8.37</td>
<td>-2.04</td>
<td>177,398</td>
</tr>
<tr>
<td>2067</td>
<td>4.57</td>
<td>6.07</td>
<td>-1.50</td>
<td>1.76</td>
<td>2.32</td>
<td>-.56</td>
<td>6.33</td>
<td>8.39</td>
<td>-2.06</td>
<td>185,248</td>
</tr>
<tr>
<td>2068</td>
<td>4.56</td>
<td>6.07</td>
<td>-1.51</td>
<td>1.77</td>
<td>2.33</td>
<td>-.56</td>
<td>6.33</td>
<td>8.40</td>
<td>-2.08</td>
<td>193,456</td>
</tr>
<tr>
<td>2069</td>
<td>4.56</td>
<td>6.08</td>
<td>-1.52</td>
<td>1.77</td>
<td>2.34</td>
<td>-.57</td>
<td>6.33</td>
<td>8.42</td>
<td>-2.09</td>
<td>202,037</td>
</tr>
<tr>
<td>2070</td>
<td>4.55</td>
<td>6.09</td>
<td>-1.54</td>
<td>1.77</td>
<td>2.35</td>
<td>-.57</td>
<td>6.32</td>
<td>8.44</td>
<td>-2.11</td>
<td>211,004</td>
</tr>
<tr>
<td>2071</td>
<td>4.55</td>
<td>6.10</td>
<td>-1.55</td>
<td>1.77</td>
<td>2.35</td>
<td>-.58</td>
<td>6.32</td>
<td>8.45</td>
<td>-2.13</td>
<td>220,364</td>
</tr>
<tr>
<td>2072</td>
<td>4.54</td>
<td>6.10</td>
<td>-1.56</td>
<td>1.78</td>
<td>2.36</td>
<td>-.58</td>
<td>6.32</td>
<td>8.46</td>
<td>-2.14</td>
<td>230,149</td>
</tr>
<tr>
<td>2073</td>
<td>4.54</td>
<td>6.10</td>
<td>-1.56</td>
<td>1.78</td>
<td>2.37</td>
<td>-.59</td>
<td>6.32</td>
<td>8.47</td>
<td>-2.15</td>
<td>240,368</td>
</tr>
<tr>
<td>2074</td>
<td>4.53</td>
<td>6.10</td>
<td>-1.57</td>
<td>1.78</td>
<td>2.37</td>
<td>-.59</td>
<td>6.31</td>
<td>8.47</td>
<td>-2.16</td>
<td>251,038</td>
</tr>
<tr>
<td>2075</td>
<td>4.52</td>
<td>6.10</td>
<td>-1.57</td>
<td>1.78</td>
<td>2.38</td>
<td>-.59</td>
<td>6.31</td>
<td>8.47</td>
<td>-2.16</td>
<td>262,181</td>
</tr>
</tbody>
</table>
Percentage of GDP

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>OASDI Income</th>
<th>OASDI Cost</th>
<th>OASDI Balance</th>
<th>HI Income</th>
<th>HI Cost</th>
<th>HI Balance</th>
<th>Combined Income</th>
<th>Combined Cost</th>
<th>Combined Balance</th>
<th>GDP in dollars (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2076</td>
<td>4.52</td>
<td>6.09</td>
<td>-1.57</td>
<td>1.79</td>
<td>2.38</td>
<td>-.59</td>
<td>6.31</td>
<td>8.47</td>
<td>-2.16</td>
<td>273,817</td>
</tr>
<tr>
<td>2077</td>
<td>4.51</td>
<td>6.09</td>
<td>-1.57</td>
<td>1.79</td>
<td>2.38</td>
<td>-.59</td>
<td>6.30</td>
<td>8.46</td>
<td>-2.16</td>
<td>285,964</td>
</tr>
<tr>
<td>2078</td>
<td>4.51</td>
<td>6.08</td>
<td>-1.57</td>
<td>1.79</td>
<td>2.38</td>
<td>-.58</td>
<td>6.29</td>
<td>8.45</td>
<td>-2.15</td>
<td>298,640</td>
</tr>
<tr>
<td>2079</td>
<td>4.50</td>
<td>6.07</td>
<td>-1.57</td>
<td>1.79</td>
<td>2.38</td>
<td>-.58</td>
<td>6.29</td>
<td>8.45</td>
<td>-2.15</td>
<td>311,860</td>
</tr>
<tr>
<td>2080</td>
<td>4.50</td>
<td>6.07</td>
<td>-1.57</td>
<td>1.79</td>
<td>2.37</td>
<td>-.58</td>
<td>6.29</td>
<td>8.44</td>
<td>-2.15</td>
<td>325,644</td>
</tr>
<tr>
<td>2081</td>
<td>4.49</td>
<td>6.07</td>
<td>-1.57</td>
<td>1.80</td>
<td>2.37</td>
<td>-.57</td>
<td>6.29</td>
<td>8.44</td>
<td>-2.15</td>
<td>340,008</td>
</tr>
<tr>
<td>2082</td>
<td>4.49</td>
<td>6.07</td>
<td>-1.58</td>
<td>1.80</td>
<td>2.37</td>
<td>-.57</td>
<td>6.29</td>
<td>8.43</td>
<td>-2.15</td>
<td>354,980</td>
</tr>
<tr>
<td>2083</td>
<td>4.49</td>
<td>6.07</td>
<td>-1.58</td>
<td>1.80</td>
<td>2.36</td>
<td>-.56</td>
<td>6.29</td>
<td>8.43</td>
<td>-2.15</td>
<td>370,581</td>
</tr>
<tr>
<td>2084</td>
<td>4.48</td>
<td>6.08</td>
<td>-1.59</td>
<td>1.80</td>
<td>2.36</td>
<td>-.56</td>
<td>6.28</td>
<td>8.44</td>
<td>-2.15</td>
<td>386,832</td>
</tr>
<tr>
<td>2085</td>
<td>4.48</td>
<td>6.08</td>
<td>-1.61</td>
<td>1.80</td>
<td>2.36</td>
<td>-.55</td>
<td>6.28</td>
<td>8.44</td>
<td>-2.16</td>
<td>403,770</td>
</tr>
<tr>
<td>2086</td>
<td>4.48</td>
<td>6.09</td>
<td>-1.62</td>
<td>1.81</td>
<td>2.35</td>
<td>-.55</td>
<td>6.28</td>
<td>8.45</td>
<td>-2.17</td>
<td>421,428</td>
</tr>
<tr>
<td>2087</td>
<td>4.47</td>
<td>6.11</td>
<td>-1.63</td>
<td>1.81</td>
<td>2.35</td>
<td>-.54</td>
<td>6.28</td>
<td>8.46</td>
<td>-2.18</td>
<td>439,833</td>
</tr>
<tr>
<td>2088</td>
<td>4.47</td>
<td>6.12</td>
<td>-1.65</td>
<td>1.81</td>
<td>2.35</td>
<td>-.54</td>
<td>6.28</td>
<td>8.46</td>
<td>-2.18</td>
<td>459,020</td>
</tr>
<tr>
<td>2089</td>
<td>4.47</td>
<td>6.13</td>
<td>-1.66</td>
<td>1.81</td>
<td>2.34</td>
<td>-.53</td>
<td>6.28</td>
<td>8.47</td>
<td>-2.19</td>
<td>479,029</td>
</tr>
<tr>
<td>2090</td>
<td>4.46</td>
<td>6.14</td>
<td>-1.68</td>
<td>1.82</td>
<td>2.34</td>
<td>-.52</td>
<td>6.28</td>
<td>8.48</td>
<td>-2.20</td>
<td>499,900</td>
</tr>
</tbody>
</table>

Low-cost:

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>OASDI Income</th>
<th>OASDI Cost</th>
<th>OASDI Balance</th>
<th>HI Income</th>
<th>HI Cost</th>
<th>HI Balance</th>
<th>Combined Income</th>
<th>Combined Cost</th>
<th>Combined Balance</th>
<th>GDP in dollars (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>4.44</td>
<td>4.85</td>
<td>-.40</td>
<td>1.45</td>
<td>1.45</td>
<td>.b</td>
<td>5.90</td>
<td>6.29</td>
<td>-.40</td>
<td>17,771</td>
</tr>
<tr>
<td>2015</td>
<td>4.58</td>
<td>4.77</td>
<td>-.18</td>
<td>1.47</td>
<td>1.35</td>
<td>.12</td>
<td>6.06</td>
<td>6.12</td>
<td>-.06</td>
<td>19,032</td>
</tr>
<tr>
<td>2016</td>
<td>4.59</td>
<td>4.73</td>
<td>-.14</td>
<td>1.49</td>
<td>1.32</td>
<td>.17</td>
<td>6.08</td>
<td>6.05</td>
<td>.03</td>
<td>20,464</td>
</tr>
<tr>
<td>2017</td>
<td>4.65</td>
<td>4.73</td>
<td>-.08</td>
<td>1.51</td>
<td>1.30</td>
<td>.21</td>
<td>6.16</td>
<td>6.04</td>
<td>.12</td>
<td>21,918</td>
</tr>
<tr>
<td>2018</td>
<td>4.71</td>
<td>4.76</td>
<td>-.06</td>
<td>1.53</td>
<td>1.31</td>
<td>.22</td>
<td>6.23</td>
<td>6.07</td>
<td>.16</td>
<td>23,335</td>
</tr>
<tr>
<td>2019</td>
<td>4.74</td>
<td>4.80</td>
<td>-.06</td>
<td>1.54</td>
<td>1.29</td>
<td>.24</td>
<td>6.28</td>
<td>6.09</td>
<td>.18</td>
<td>24,843</td>
</tr>
<tr>
<td>2020</td>
<td>4.76</td>
<td>4.84</td>
<td>-.08</td>
<td>1.55</td>
<td>1.29</td>
<td>.25</td>
<td>6.31</td>
<td>6.13</td>
<td>.18</td>
<td>26,401</td>
</tr>
<tr>
<td>2021</td>
<td>4.79</td>
<td>4.88</td>
<td>-.09</td>
<td>1.56</td>
<td>1.30</td>
<td>.26</td>
<td>6.34</td>
<td>6.18</td>
<td>.17</td>
<td>27,969</td>
</tr>
<tr>
<td>2022</td>
<td>4.82</td>
<td>4.93</td>
<td>-.12</td>
<td>1.57</td>
<td>1.30</td>
<td>.26</td>
<td>6.38</td>
<td>6.24</td>
<td>.15</td>
<td>29,611</td>
</tr>
<tr>
<td>2023</td>
<td>4.84</td>
<td>4.99</td>
<td>-.16</td>
<td>1.57</td>
<td>1.31</td>
<td>.27</td>
<td>6.41</td>
<td>6.30</td>
<td>.11</td>
<td>31,324</td>
</tr>
<tr>
<td>2024</td>
<td>4.84</td>
<td>5.05</td>
<td>-.21</td>
<td>1.58</td>
<td>1.31</td>
<td>.27</td>
<td>6.43</td>
<td>6.36</td>
<td>.07</td>
<td>33,134</td>
</tr>
<tr>
<td>2025</td>
<td>4.84</td>
<td>5.10</td>
<td>-.26</td>
<td>1.59</td>
<td>1.34</td>
<td>.25</td>
<td>6.44</td>
<td>6.44</td>
<td>-.01</td>
<td>35,064</td>
</tr>
<tr>
<td>2026</td>
<td>4.84</td>
<td>5.14</td>
<td>-.30</td>
<td>1.60</td>
<td>1.34</td>
<td>.26</td>
<td>6.45</td>
<td>6.48</td>
<td>-.04</td>
<td>37,100</td>
</tr>
<tr>
<td>2027</td>
<td>4.84</td>
<td>5.19</td>
<td>-.34</td>
<td>1.61</td>
<td>1.34</td>
<td>.27</td>
<td>6.46</td>
<td>6.53</td>
<td>-.07</td>
<td>39,242</td>
</tr>
<tr>
<td>2028</td>
<td>4.85</td>
<td>5.23</td>
<td>-.38</td>
<td>1.62</td>
<td>1.34</td>
<td>.28</td>
<td>6.47</td>
<td>6.56</td>
<td>-.10</td>
<td>41,498</td>
</tr>
</tbody>
</table>

5/28/2015
Percentage of GDP

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>OASDI Income</th>
<th>OASDI Cost</th>
<th>OASDI Balance</th>
<th>HI Income</th>
<th>HI Cost</th>
<th>HI Balance</th>
<th>Combined Income</th>
<th>Combined Cost</th>
<th>Combined Balance</th>
<th>GDP in dollars (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2029</td>
<td>4.85</td>
<td>5.26</td>
<td>-.41</td>
<td>1.63</td>
<td>1.34</td>
<td>.29</td>
<td>6.48</td>
<td>6.59</td>
<td>-.12</td>
<td>43,882</td>
</tr>
<tr>
<td>2030</td>
<td>4.85</td>
<td>5.28</td>
<td>-.43</td>
<td>1.64</td>
<td>1.34</td>
<td>.30</td>
<td>6.49</td>
<td>6.62</td>
<td>-.13</td>
<td>46,398</td>
</tr>
<tr>
<td>2031</td>
<td>4.85</td>
<td>5.30</td>
<td>-.45</td>
<td>1.64</td>
<td>1.33</td>
<td>.31</td>
<td>6.50</td>
<td>6.63</td>
<td>-.14</td>
<td>49,057</td>
</tr>
<tr>
<td>2032</td>
<td>4.85</td>
<td>5.31</td>
<td>-.46</td>
<td>1.65</td>
<td>1.33</td>
<td>.32</td>
<td>6.51</td>
<td>6.64</td>
<td>-.13</td>
<td>51,873</td>
</tr>
<tr>
<td>2033</td>
<td>4.85</td>
<td>5.31</td>
<td>-.46</td>
<td>1.66</td>
<td>1.32</td>
<td>.34</td>
<td>6.51</td>
<td>6.63</td>
<td>-.12</td>
<td>54,868</td>
</tr>
<tr>
<td>2034</td>
<td>4.85</td>
<td>5.31</td>
<td>-.46</td>
<td>1.67</td>
<td>1.32</td>
<td>.35</td>
<td>6.52</td>
<td>6.63</td>
<td>-.11</td>
<td>58,042</td>
</tr>
<tr>
<td>2035</td>
<td>4.85</td>
<td>5.31</td>
<td>-.45</td>
<td>1.68</td>
<td>1.31</td>
<td>.37</td>
<td>6.53</td>
<td>6.61</td>
<td>-.08</td>
<td>61,419</td>
</tr>
<tr>
<td>2036</td>
<td>4.85</td>
<td>5.29</td>
<td>-.44</td>
<td>1.68</td>
<td>1.30</td>
<td>.38</td>
<td>6.54</td>
<td>6.59</td>
<td>-.06</td>
<td>65,008</td>
</tr>
<tr>
<td>2037</td>
<td>4.85</td>
<td>5.28</td>
<td>-.42</td>
<td>1.69</td>
<td>1.29</td>
<td>.40</td>
<td>6.54</td>
<td>6.56</td>
<td>-.02</td>
<td>68,826</td>
</tr>
<tr>
<td>2038</td>
<td>4.85</td>
<td>5.25</td>
<td>-.40</td>
<td>1.70</td>
<td>1.28</td>
<td>.42</td>
<td>6.55</td>
<td>6.53</td>
<td>.02</td>
<td>72,897</td>
</tr>
<tr>
<td>2039</td>
<td>4.85</td>
<td>5.23</td>
<td>-.38</td>
<td>1.70</td>
<td>1.24</td>
<td>.46</td>
<td>6.55</td>
<td>6.47</td>
<td>.09</td>
<td>77,229</td>
</tr>
<tr>
<td>2040</td>
<td>4.85</td>
<td>5.20</td>
<td>-.35</td>
<td>1.71</td>
<td>1.23</td>
<td>.48</td>
<td>6.56</td>
<td>6.43</td>
<td>.13</td>
<td>81,834</td>
</tr>
<tr>
<td>2041</td>
<td>4.85</td>
<td>5.17</td>
<td>-.32</td>
<td>1.72</td>
<td>1.22</td>
<td>.50</td>
<td>6.56</td>
<td>6.38</td>
<td>.18</td>
<td>86,728</td>
</tr>
<tr>
<td>2042</td>
<td>4.84</td>
<td>5.13</td>
<td>-.29</td>
<td>1.72</td>
<td>1.21</td>
<td>.52</td>
<td>6.57</td>
<td>6.34</td>
<td>.23</td>
<td>91,915</td>
</tr>
<tr>
<td>2043</td>
<td>4.84</td>
<td>5.11</td>
<td>-.27</td>
<td>1.73</td>
<td>1.19</td>
<td>.54</td>
<td>6.57</td>
<td>6.30</td>
<td>.27</td>
<td>97,420</td>
</tr>
<tr>
<td>2044</td>
<td>4.84</td>
<td>5.08</td>
<td>-.24</td>
<td>1.74</td>
<td>1.18</td>
<td>.55</td>
<td>6.57</td>
<td>6.26</td>
<td>.31</td>
<td>103,268</td>
</tr>
<tr>
<td>2045</td>
<td>4.84</td>
<td>5.06</td>
<td>-.22</td>
<td>1.74</td>
<td>1.17</td>
<td>.57</td>
<td>6.58</td>
<td>6.23</td>
<td>.35</td>
<td>109,456</td>
</tr>
<tr>
<td>2046</td>
<td>4.83</td>
<td>5.04</td>
<td>-.21</td>
<td>1.75</td>
<td>1.16</td>
<td>.59</td>
<td>6.58</td>
<td>6.20</td>
<td>.38</td>
<td>116,010</td>
</tr>
<tr>
<td>2047</td>
<td>4.83</td>
<td>5.02</td>
<td>-.19</td>
<td>1.75</td>
<td>1.15</td>
<td>.60</td>
<td>6.58</td>
<td>6.17</td>
<td>.41</td>
<td>122,953</td>
</tr>
<tr>
<td>2048</td>
<td>4.83</td>
<td>5.00</td>
<td>-.17</td>
<td>1.76</td>
<td>1.14</td>
<td>.62</td>
<td>6.59</td>
<td>6.14</td>
<td>.45</td>
<td>130,309</td>
</tr>
<tr>
<td>2049</td>
<td>4.82</td>
<td>4.98</td>
<td>-.16</td>
<td>1.76</td>
<td>1.13</td>
<td>.64</td>
<td>6.59</td>
<td>6.11</td>
<td>.48</td>
<td>138,100</td>
</tr>
<tr>
<td>2050</td>
<td>4.82</td>
<td>4.97</td>
<td>-.14</td>
<td>1.77</td>
<td>1.12</td>
<td>.65</td>
<td>6.59</td>
<td>6.08</td>
<td>.51</td>
<td>146,344</td>
</tr>
<tr>
<td>2051</td>
<td>4.82</td>
<td>4.95</td>
<td>-.13</td>
<td>1.78</td>
<td>1.11</td>
<td>.67</td>
<td>6.60</td>
<td>6.06</td>
<td>.53</td>
<td>155,082</td>
</tr>
<tr>
<td>2052</td>
<td>4.82</td>
<td>4.94</td>
<td>-.13</td>
<td>1.78</td>
<td>1.10</td>
<td>.68</td>
<td>6.60</td>
<td>6.04</td>
<td>.56</td>
<td>164,327</td>
</tr>
<tr>
<td>2053</td>
<td>4.82</td>
<td>4.94</td>
<td>-.12</td>
<td>1.79</td>
<td>1.09</td>
<td>.70</td>
<td>6.60</td>
<td>6.03</td>
<td>.57</td>
<td>174,111</td>
</tr>
<tr>
<td>2054</td>
<td>4.81</td>
<td>4.93</td>
<td>-.12</td>
<td>1.79</td>
<td>1.08</td>
<td>.71</td>
<td>6.61</td>
<td>6.02</td>
<td>.59</td>
<td>184,480</td>
</tr>
<tr>
<td>2055</td>
<td>4.81</td>
<td>4.93</td>
<td>-.12</td>
<td>1.80</td>
<td>1.08</td>
<td>.72</td>
<td>6.61</td>
<td>6.01</td>
<td>.60</td>
<td>195,464</td>
</tr>
<tr>
<td>2056</td>
<td>4.81</td>
<td>4.93</td>
<td>-.12</td>
<td>1.81</td>
<td>1.07</td>
<td>.73</td>
<td>6.61</td>
<td>6.01</td>
<td>.61</td>
<td>207,101</td>
</tr>
<tr>
<td>2057</td>
<td>4.81</td>
<td>4.93</td>
<td>-.13</td>
<td>1.81</td>
<td>1.07</td>
<td>.74</td>
<td>6.62</td>
<td>6.00</td>
<td>.61</td>
<td>219,437</td>
</tr>
<tr>
<td>2058</td>
<td>4.81</td>
<td>4.93</td>
<td>-.13</td>
<td>1.82</td>
<td>1.07</td>
<td>.75</td>
<td>6.62</td>
<td>6.00</td>
<td>.62</td>
<td>232,518</td>
</tr>
<tr>
<td>2059</td>
<td>4.80</td>
<td>4.93</td>
<td>-.13</td>
<td>1.82</td>
<td>1.07</td>
<td>.75</td>
<td>6.62</td>
<td>6.00</td>
<td>.63</td>
<td>246,392</td>
</tr>
<tr>
<td>2060</td>
<td>4.80</td>
<td>4.93</td>
<td>-.13</td>
<td>1.83</td>
<td>1.07</td>
<td>.76</td>
<td>6.63</td>
<td>6.00</td>
<td>.63</td>
<td>261,102</td>
</tr>
</tbody>
</table>

5/28/2015
<table>
<thead>
<tr>
<th>Calendar year</th>
<th>OASDI Income</th>
<th>OASDI Cost</th>
<th>OASDI Balance</th>
<th>HI Income</th>
<th>HI Cost</th>
<th>HI Balance</th>
<th>Combined Income</th>
<th>Combined Cost</th>
<th>Combined Balance</th>
<th>GDP in dollars (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2061</td>
<td>4.80</td>
<td>4.93</td>
<td>-.12</td>
<td>1.83</td>
<td>1.07</td>
<td>.76</td>
<td>6.63</td>
<td>5.99</td>
<td>.64</td>
<td>276,709</td>
</tr>
<tr>
<td>2062</td>
<td>4.80</td>
<td>4.92</td>
<td>-.12</td>
<td>1.84</td>
<td>1.07</td>
<td>.76</td>
<td>6.63</td>
<td>5.99</td>
<td>.64</td>
<td>293,281</td>
</tr>
<tr>
<td>2063</td>
<td>4.80</td>
<td>4.92</td>
<td>-.12</td>
<td>1.84</td>
<td>1.07</td>
<td>.77</td>
<td>6.64</td>
<td>5.99</td>
<td>.65</td>
<td>310,865</td>
</tr>
<tr>
<td>2064</td>
<td>4.79</td>
<td>4.91</td>
<td>-.12</td>
<td>1.84</td>
<td>1.08</td>
<td>.76</td>
<td>6.64</td>
<td>5.99</td>
<td>.65</td>
<td>329,531</td>
</tr>
<tr>
<td>2065</td>
<td>4.79</td>
<td>4.91</td>
<td>-.11</td>
<td>1.85</td>
<td>1.08</td>
<td>.76</td>
<td>6.64</td>
<td>5.99</td>
<td>.65</td>
<td>349,338</td>
</tr>
<tr>
<td>2066</td>
<td>4.79</td>
<td>4.90</td>
<td>-.11</td>
<td>1.85</td>
<td>1.09</td>
<td>.76</td>
<td>6.64</td>
<td>5.99</td>
<td>.65</td>
<td>370,368</td>
</tr>
<tr>
<td>2067</td>
<td>4.79</td>
<td>4.89</td>
<td>-.11</td>
<td>1.86</td>
<td>1.10</td>
<td>.76</td>
<td>6.64</td>
<td>5.99</td>
<td>.65</td>
<td>392,712</td>
</tr>
<tr>
<td>2068</td>
<td>4.79</td>
<td>4.89</td>
<td>-.10</td>
<td>1.86</td>
<td>1.10</td>
<td>.76</td>
<td>6.64</td>
<td>5.99</td>
<td>.66</td>
<td>416,450</td>
</tr>
<tr>
<td>2069</td>
<td>4.78</td>
<td>4.88</td>
<td>-.10</td>
<td>1.86</td>
<td>1.11</td>
<td>.76</td>
<td>6.65</td>
<td>5.99</td>
<td>.66</td>
<td>441,663</td>
</tr>
<tr>
<td>2070</td>
<td>4.78</td>
<td>4.87</td>
<td>-.09</td>
<td>1.87</td>
<td>1.11</td>
<td>.76</td>
<td>6.65</td>
<td>5.98</td>
<td>.66</td>
<td>468,439</td>
</tr>
<tr>
<td>2071</td>
<td>4.78</td>
<td>4.86</td>
<td>-.08</td>
<td>1.87</td>
<td>1.12</td>
<td>.75</td>
<td>6.65</td>
<td>5.98</td>
<td>.67</td>
<td>496,860</td>
</tr>
<tr>
<td>2072</td>
<td>4.78</td>
<td>4.85</td>
<td>-.07</td>
<td>1.87</td>
<td>1.12</td>
<td>.75</td>
<td>6.65</td>
<td>5.97</td>
<td>.68</td>
<td>527,052</td>
</tr>
<tr>
<td>2073</td>
<td>4.78</td>
<td>4.84</td>
<td>-.06</td>
<td>1.87</td>
<td>1.12</td>
<td>.75</td>
<td>6.65</td>
<td>5.96</td>
<td>.69</td>
<td>559,108</td>
</tr>
<tr>
<td>2074</td>
<td>4.77</td>
<td>4.82</td>
<td>-.05</td>
<td>1.88</td>
<td>1.13</td>
<td>.75</td>
<td>6.65</td>
<td>5.95</td>
<td>.70</td>
<td>593,144</td>
</tr>
<tr>
<td>2075</td>
<td>4.77</td>
<td>4.80</td>
<td>-.03</td>
<td>1.88</td>
<td>1.13</td>
<td>.75</td>
<td>6.65</td>
<td>5.94</td>
<td>.72</td>
<td>629,283</td>
</tr>
<tr>
<td>2076</td>
<td>4.77</td>
<td>4.79</td>
<td>-.01</td>
<td>1.88</td>
<td>1.13</td>
<td>.75</td>
<td>6.65</td>
<td>5.92</td>
<td>.73</td>
<td>667,641</td>
</tr>
<tr>
<td>2077</td>
<td>4.77</td>
<td>4.76</td>
<td>b</td>
<td>1.88</td>
<td>1.14</td>
<td>.75</td>
<td>6.65</td>
<td>5.90</td>
<td>.75</td>
<td>708,355</td>
</tr>
<tr>
<td>2078</td>
<td>4.77</td>
<td>4.74</td>
<td>.02</td>
<td>1.89</td>
<td>1.14</td>
<td>.75</td>
<td>6.65</td>
<td>5.88</td>
<td>.77</td>
<td>751,545</td>
</tr>
<tr>
<td>2079</td>
<td>4.77</td>
<td>4.73</td>
<td>.04</td>
<td>1.89</td>
<td>1.14</td>
<td>.75</td>
<td>6.66</td>
<td>5.86</td>
<td>.79</td>
<td>797,329</td>
</tr>
<tr>
<td>2080</td>
<td>4.77</td>
<td>4.71</td>
<td>.06</td>
<td>1.89</td>
<td>1.14</td>
<td>.75</td>
<td>6.66</td>
<td>5.85</td>
<td>.81</td>
<td>845,859</td>
</tr>
<tr>
<td>2081</td>
<td>4.77</td>
<td>4.70</td>
<td>.07</td>
<td>1.90</td>
<td>1.14</td>
<td>.76</td>
<td>6.66</td>
<td>5.83</td>
<td>.83</td>
<td>897,285</td>
</tr>
<tr>
<td>2082</td>
<td>4.76</td>
<td>4.69</td>
<td>.08</td>
<td>1.90</td>
<td>1.14</td>
<td>.76</td>
<td>6.66</td>
<td>5.82</td>
<td>.84</td>
<td>951,771</td>
</tr>
<tr>
<td>2083</td>
<td>4.77</td>
<td>4.68</td>
<td>.08</td>
<td>1.90</td>
<td>1.14</td>
<td>.76</td>
<td>6.67</td>
<td>5.82</td>
<td>.85</td>
<td>1,009,475</td>
</tr>
<tr>
<td>2084</td>
<td>4.77</td>
<td>4.68</td>
<td>.09</td>
<td>1.90</td>
<td>1.14</td>
<td>.77</td>
<td>6.67</td>
<td>5.82</td>
<td>.85</td>
<td>1,070,587</td>
</tr>
<tr>
<td>2085</td>
<td>4.77</td>
<td>4.68</td>
<td>.09</td>
<td>1.91</td>
<td>1.14</td>
<td>.77</td>
<td>6.67</td>
<td>5.82</td>
<td>.86</td>
<td>1,135,314</td>
</tr>
<tr>
<td>2086</td>
<td>4.77</td>
<td>4.68</td>
<td>.08</td>
<td>1.91</td>
<td>1.14</td>
<td>.77</td>
<td>6.68</td>
<td>5.82</td>
<td>.86</td>
<td>1,203,867</td>
</tr>
<tr>
<td>2087</td>
<td>4.77</td>
<td>4.69</td>
<td>.08</td>
<td>1.92</td>
<td>1.14</td>
<td>.78</td>
<td>6.68</td>
<td>5.83</td>
<td>.86</td>
<td>1,276,481</td>
</tr>
<tr>
<td>2088</td>
<td>4.77</td>
<td>4.70</td>
<td>.07</td>
<td>1.92</td>
<td>1.14</td>
<td>.78</td>
<td>6.69</td>
<td>5.83</td>
<td>.85</td>
<td>1,353,413</td>
</tr>
<tr>
<td>2089</td>
<td>4.77</td>
<td>4.71</td>
<td>.06</td>
<td>1.92</td>
<td>1.14</td>
<td>.79</td>
<td>6.69</td>
<td>5.84</td>
<td>.85</td>
<td>1,434,924</td>
</tr>
<tr>
<td>2090</td>
<td>4.77</td>
<td>4.72</td>
<td>.06</td>
<td>1.93</td>
<td>1.15</td>
<td>.78</td>
<td>6.70</td>
<td>5.86</td>
<td>.84</td>
<td>1,521,298</td>
</tr>
</tbody>
</table>

High-cost:

<table>
<thead>
<tr>
<th>Calendar year</th>
<th>OASDI In-</th>
<th>OASDI Cost</th>
<th>OASDI Balance</th>
<th>HI In-</th>
<th>HI Cost</th>
<th>HI Balance</th>
<th>Combined In-</th>
<th>Combined Cost</th>
<th>Combined Balance</th>
<th>GDP in dollars (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>4.49</td>
<td>5.01</td>
<td>-0.52</td>
<td>1.45</td>
<td>1.56</td>
<td>-0.11</td>
<td>5.94</td>
<td>6.57</td>
<td>-0.63</td>
<td>17,268</td>
</tr>
<tr>
<td>2015</td>
<td>4.54</td>
<td>5.14</td>
<td>-0.61</td>
<td>1.47</td>
<td>1.54</td>
<td>-0.08</td>
<td>6.01</td>
<td>6.69</td>
<td>-0.68</td>
<td>17,750</td>
</tr>
<tr>
<td>2016</td>
<td>4.57</td>
<td>5.26</td>
<td>-0.68</td>
<td>1.49</td>
<td>1.57</td>
<td>-0.08</td>
<td>6.06</td>
<td>6.83</td>
<td>-0.77</td>
<td>18,332</td>
</tr>
<tr>
<td>2017</td>
<td>4.60</td>
<td>5.35</td>
<td>-0.75</td>
<td>1.51</td>
<td>1.61</td>
<td>-0.10</td>
<td>6.11</td>
<td>6.97</td>
<td>-0.85</td>
<td>19,002</td>
</tr>
<tr>
<td>2018</td>
<td>4.64</td>
<td>5.46</td>
<td>-0.82</td>
<td>1.53</td>
<td>1.68</td>
<td>-0.15</td>
<td>6.17</td>
<td>7.15</td>
<td>-0.98</td>
<td>19,710</td>
</tr>
<tr>
<td>2019</td>
<td>4.65</td>
<td>5.58</td>
<td>-0.92</td>
<td>1.54</td>
<td>1.74</td>
<td>-0.19</td>
<td>6.20</td>
<td>7.32</td>
<td>-1.12</td>
<td>20,442</td>
</tr>
<tr>
<td>2020</td>
<td>4.67</td>
<td>5.70</td>
<td>-1.03</td>
<td>1.56</td>
<td>1.81</td>
<td>-0.25</td>
<td>6.23</td>
<td>7.51</td>
<td>-1.29</td>
<td>21,200</td>
</tr>
<tr>
<td>2021</td>
<td>4.68</td>
<td>5.80</td>
<td>-1.12</td>
<td>1.57</td>
<td>1.89</td>
<td>-0.32</td>
<td>6.25</td>
<td>7.69</td>
<td>-1.44</td>
<td>21,983</td>
</tr>
<tr>
<td>2022</td>
<td>4.69</td>
<td>5.92</td>
<td>-1.23</td>
<td>1.59</td>
<td>1.98</td>
<td>-0.39</td>
<td>6.28</td>
<td>7.90</td>
<td>-1.62</td>
<td>22,758</td>
</tr>
<tr>
<td>2023</td>
<td>4.70</td>
<td>6.05</td>
<td>-1.36</td>
<td>1.60</td>
<td>2.06</td>
<td>-0.46</td>
<td>6.29</td>
<td>8.11</td>
<td>-1.82</td>
<td>23,522</td>
</tr>
<tr>
<td>2024</td>
<td>4.70</td>
<td>6.18</td>
<td>-1.49</td>
<td>1.60</td>
<td>2.15</td>
<td>-0.55</td>
<td>6.30</td>
<td>8.33</td>
<td>-2.03</td>
<td>24,283</td>
</tr>
<tr>
<td>2025</td>
<td>4.70</td>
<td>6.31</td>
<td>-1.62</td>
<td>1.61</td>
<td>2.29</td>
<td>-0.68</td>
<td>6.30</td>
<td>8.60</td>
<td>-2.30</td>
<td>25,060</td>
</tr>
<tr>
<td>2026</td>
<td>4.69</td>
<td>6.44</td>
<td>-1.74</td>
<td>1.61</td>
<td>2.37</td>
<td>-0.76</td>
<td>6.31</td>
<td>8.80</td>
<td>-2.50</td>
<td>25,860</td>
</tr>
<tr>
<td>2027</td>
<td>4.69</td>
<td>6.55</td>
<td>-1.86</td>
<td>1.62</td>
<td>2.46</td>
<td>-0.85</td>
<td>6.31</td>
<td>9.02</td>
<td>-2.71</td>
<td>26,680</td>
</tr>
<tr>
<td>2028</td>
<td>4.69</td>
<td>6.66</td>
<td>-1.98</td>
<td>1.62</td>
<td>2.55</td>
<td>-0.93</td>
<td>6.31</td>
<td>9.22</td>
<td>-2.91</td>
<td>27,520</td>
</tr>
<tr>
<td>2029</td>
<td>4.69</td>
<td>6.76</td>
<td>-2.08</td>
<td>1.63</td>
<td>2.66</td>
<td>-1.03</td>
<td>6.31</td>
<td>9.42</td>
<td>-3.11</td>
<td>28,385</td>
</tr>
<tr>
<td>2031</td>
<td>4.68</td>
<td>6.93</td>
<td>-2.25</td>
<td>1.64</td>
<td>2.86</td>
<td>-1.22</td>
<td>6.32</td>
<td>9.79</td>
<td>-3.47</td>
<td>30,188</td>
</tr>
<tr>
<td>2032</td>
<td>4.68</td>
<td>7.00</td>
<td>-2.33</td>
<td>1.64</td>
<td>2.96</td>
<td>-1.32</td>
<td>6.32</td>
<td>9.97</td>
<td>-3.65</td>
<td>31,131</td>
</tr>
<tr>
<td>2033</td>
<td>4.67</td>
<td>7.06</td>
<td>-2.39</td>
<td>1.64</td>
<td>3.07</td>
<td>-1.42</td>
<td>6.32</td>
<td>10.13</td>
<td>-3.81</td>
<td>32,110</td>
</tr>
<tr>
<td>2034</td>
<td>4.67</td>
<td>7.12</td>
<td>-2.45</td>
<td>1.65</td>
<td>3.17</td>
<td>-1.53</td>
<td>6.32</td>
<td>10.29</td>
<td>-3.97</td>
<td>33,120</td>
</tr>
<tr>
<td>2035</td>
<td>4.66</td>
<td>7.16</td>
<td>-2.49</td>
<td>1.65</td>
<td>3.28</td>
<td>-1.63</td>
<td>6.31</td>
<td>10.44</td>
<td>-4.12</td>
<td>34,167</td>
</tr>
<tr>
<td>2036</td>
<td>4.66</td>
<td>7.19</td>
<td>-2.53</td>
<td>1.65</td>
<td>3.39</td>
<td>-1.74</td>
<td>6.31</td>
<td>10.58</td>
<td>-4.27</td>
<td>35,249</td>
</tr>
<tr>
<td>2037</td>
<td>4.65</td>
<td>7.22</td>
<td>-2.56</td>
<td>1.65</td>
<td>3.50</td>
<td>-1.84</td>
<td>6.31</td>
<td>10.72</td>
<td>-4.41</td>
<td>36,369</td>
</tr>
<tr>
<td>2038</td>
<td>4.65</td>
<td>7.23</td>
<td>-2.59</td>
<td>1.66</td>
<td>3.61</td>
<td>-1.95</td>
<td>6.30</td>
<td>10.84</td>
<td>-4.54</td>
<td>37,534</td>
</tr>
<tr>
<td>2039</td>
<td>4.64</td>
<td>7.24</td>
<td>-2.60</td>
<td>1.66</td>
<td>3.67</td>
<td>-2.01</td>
<td>6.30</td>
<td>10.91</td>
<td>-4.61</td>
<td>38,738</td>
</tr>
<tr>
<td>2040</td>
<td>4.63</td>
<td>7.25</td>
<td>-2.61</td>
<td>1.66</td>
<td>3.77</td>
<td>-2.11</td>
<td>6.29</td>
<td>11.01</td>
<td>-4.72</td>
<td>39,978</td>
</tr>
<tr>
<td>2041</td>
<td>4.62</td>
<td>7.25</td>
<td>-2.62</td>
<td>1.66</td>
<td>3.86</td>
<td>-2.21</td>
<td>6.28</td>
<td>11.11</td>
<td>-4.83</td>
<td>41,255</td>
</tr>
<tr>
<td>2042</td>
<td>4.62</td>
<td>7.24</td>
<td>-2.63</td>
<td>1.66</td>
<td>3.96</td>
<td>-2.30</td>
<td>6.27</td>
<td>11.20</td>
<td>-4.93</td>
<td>42,561</td>
</tr>
<tr>
<td>2043</td>
<td>4.61</td>
<td>7.24</td>
<td>-2.64</td>
<td>1.66</td>
<td>4.05</td>
<td>-2.39</td>
<td>6.27</td>
<td>11.29</td>
<td>-5.02</td>
<td>43,900</td>
</tr>
<tr>
<td>2044</td>
<td>4.60</td>
<td>7.24</td>
<td>-2.65</td>
<td>1.66</td>
<td>4.13</td>
<td>-2.47</td>
<td>6.26</td>
<td>11.37</td>
<td>-5.12</td>
<td>45,278</td>
</tr>
<tr>
<td>2045</td>
<td>4.59</td>
<td>7.25</td>
<td>-2.66</td>
<td>1.66</td>
<td>4.21</td>
<td>-2.55</td>
<td>6.25</td>
<td>11.46</td>
<td>-5.21</td>
<td>46,683</td>
</tr>
<tr>
<td>Calendar year</td>
<td>OASDI Income</td>
<td>OASDI Cost</td>
<td>OASDI Balance</td>
<td>HI Income</td>
<td>HI Cost</td>
<td>HI Balance</td>
<td>Combined Income</td>
<td>Combined Cost</td>
<td>Combined Balance</td>
<td>GDP in dollars (billions)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>2046</td>
<td>4.58</td>
<td>7.25</td>
<td>-2.67</td>
<td>1.66</td>
<td>4.28</td>
<td>-2.62</td>
<td>6.24</td>
<td>11.53</td>
<td>-5.30</td>
<td>48.121</td>
</tr>
<tr>
<td>2047</td>
<td>4.57</td>
<td>7.25</td>
<td>-2.69</td>
<td>1.66</td>
<td>4.35</td>
<td>-2.69</td>
<td>6.23</td>
<td>11.60</td>
<td>-5.37</td>
<td>49.593</td>
</tr>
<tr>
<td>2048</td>
<td>4.56</td>
<td>7.25</td>
<td>-2.70</td>
<td>1.66</td>
<td>4.41</td>
<td>-2.75</td>
<td>6.22</td>
<td>11.66</td>
<td>-5.44</td>
<td>51.098</td>
</tr>
<tr>
<td>2049</td>
<td>4.55</td>
<td>7.26</td>
<td>-2.71</td>
<td>1.66</td>
<td>4.46</td>
<td>-2.80</td>
<td>6.21</td>
<td>11.72</td>
<td>-5.51</td>
<td>52.639</td>
</tr>
<tr>
<td>2050</td>
<td>4.54</td>
<td>7.26</td>
<td>-2.72</td>
<td>1.66</td>
<td>4.51</td>
<td>-2.85</td>
<td>6.20</td>
<td>11.77</td>
<td>-5.57</td>
<td>54.209</td>
</tr>
<tr>
<td>2051</td>
<td>4.53</td>
<td>7.27</td>
<td>-2.74</td>
<td>1.66</td>
<td>4.55</td>
<td>-2.89</td>
<td>6.19</td>
<td>11.82</td>
<td>-5.63</td>
<td>55.818</td>
</tr>
<tr>
<td>2052</td>
<td>4.52</td>
<td>7.28</td>
<td>-2.76</td>
<td>1.66</td>
<td>4.59</td>
<td>-2.93</td>
<td>6.18</td>
<td>11.87</td>
<td>-5.69</td>
<td>57.459</td>
</tr>
<tr>
<td>2053</td>
<td>4.51</td>
<td>7.30</td>
<td>-2.79</td>
<td>1.66</td>
<td>4.62</td>
<td>-2.96</td>
<td>6.17</td>
<td>11.91</td>
<td>-5.74</td>
<td>59.131</td>
</tr>
<tr>
<td>2054</td>
<td>4.50</td>
<td>7.32</td>
<td>-2.81</td>
<td>1.66</td>
<td>4.65</td>
<td>-2.99</td>
<td>6.16</td>
<td>11.97</td>
<td>-5.80</td>
<td>60.840</td>
</tr>
<tr>
<td>2055</td>
<td>4.49</td>
<td>7.34</td>
<td>-2.84</td>
<td>1.66</td>
<td>4.68</td>
<td>-3.02</td>
<td>6.16</td>
<td>12.02</td>
<td>-5.86</td>
<td>62.586</td>
</tr>
<tr>
<td>2056</td>
<td>4.48</td>
<td>7.36</td>
<td>-2.88</td>
<td>1.66</td>
<td>4.71</td>
<td>-3.05</td>
<td>6.15</td>
<td>12.07</td>
<td>-5.92</td>
<td>64.370</td>
</tr>
<tr>
<td>2057</td>
<td>4.48</td>
<td>7.38</td>
<td>-2.91</td>
<td>1.66</td>
<td>4.73</td>
<td>-3.07</td>
<td>6.14</td>
<td>12.12</td>
<td>-5.98</td>
<td>66.195</td>
</tr>
<tr>
<td>2058</td>
<td>4.47</td>
<td>7.41</td>
<td>-2.94</td>
<td>1.67</td>
<td>4.75</td>
<td>-3.08</td>
<td>6.13</td>
<td>12.16</td>
<td>-6.03</td>
<td>68.065</td>
</tr>
<tr>
<td>2059</td>
<td>4.46</td>
<td>7.44</td>
<td>-2.98</td>
<td>1.67</td>
<td>4.76</td>
<td>-3.09</td>
<td>6.13</td>
<td>12.20</td>
<td>-6.07</td>
<td>69.983</td>
</tr>
<tr>
<td>2060</td>
<td>4.45</td>
<td>7.46</td>
<td>-3.01</td>
<td>1.67</td>
<td>4.77</td>
<td>-3.11</td>
<td>6.12</td>
<td>12.24</td>
<td>-6.12</td>
<td>71.948</td>
</tr>
<tr>
<td>2061</td>
<td>4.44</td>
<td>7.49</td>
<td>-3.05</td>
<td>1.67</td>
<td>4.79</td>
<td>-3.12</td>
<td>6.11</td>
<td>12.28</td>
<td>-6.17</td>
<td>73.967</td>
</tr>
<tr>
<td>2062</td>
<td>4.43</td>
<td>7.52</td>
<td>-3.09</td>
<td>1.67</td>
<td>4.80</td>
<td>-3.12</td>
<td>6.10</td>
<td>12.32</td>
<td>-6.21</td>
<td>76.044</td>
</tr>
<tr>
<td>2065</td>
<td>4.41</td>
<td>7.61</td>
<td>-3.20</td>
<td>1.67</td>
<td>4.82</td>
<td>-3.14</td>
<td>6.08</td>
<td>12.43</td>
<td>-6.34</td>
<td>82.599</td>
</tr>
<tr>
<td>2066</td>
<td>4.40</td>
<td>7.64</td>
<td>-3.24</td>
<td>1.68</td>
<td>4.83</td>
<td>-3.15</td>
<td>6.08</td>
<td>12.47</td>
<td>-6.39</td>
<td>84.901</td>
</tr>
<tr>
<td>2067</td>
<td>4.39</td>
<td>7.67</td>
<td>-3.28</td>
<td>1.68</td>
<td>4.84</td>
<td>-3.16</td>
<td>6.07</td>
<td>12.51</td>
<td>-6.44</td>
<td>87.266</td>
</tr>
<tr>
<td>2068</td>
<td>4.38</td>
<td>7.70</td>
<td>-3.32</td>
<td>1.68</td>
<td>4.85</td>
<td>-3.17</td>
<td>6.06</td>
<td>12.56</td>
<td>-6.49</td>
<td>89.697</td>
</tr>
<tr>
<td>2069</td>
<td>4.37</td>
<td>7.74</td>
<td>-3.36</td>
<td>1.68</td>
<td>4.86</td>
<td>-3.18</td>
<td>6.06</td>
<td>12.60</td>
<td>-6.54</td>
<td>92.194</td>
</tr>
<tr>
<td>2070</td>
<td>4.37</td>
<td>7.77</td>
<td>-3.41</td>
<td>1.68</td>
<td>4.87</td>
<td>-3.19</td>
<td>6.05</td>
<td>12.64</td>
<td>-6.59</td>
<td>94.757</td>
</tr>
<tr>
<td>2071</td>
<td>4.36</td>
<td>7.81</td>
<td>-3.45</td>
<td>1.69</td>
<td>4.88</td>
<td>-3.19</td>
<td>6.04</td>
<td>12.68</td>
<td>-6.64</td>
<td>97.384</td>
</tr>
<tr>
<td>2072</td>
<td>4.35</td>
<td>7.84</td>
<td>-3.49</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.20</td>
<td>6.04</td>
<td>12.72</td>
<td>-6.68</td>
<td>100.083</td>
</tr>
<tr>
<td>2073</td>
<td>4.34</td>
<td>7.86</td>
<td>-3.52</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.20</td>
<td>6.03</td>
<td>12.76</td>
<td>-6.72</td>
<td>102.850</td>
</tr>
<tr>
<td>2074</td>
<td>4.33</td>
<td>7.89</td>
<td>-3.56</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.20</td>
<td>6.02</td>
<td>12.79</td>
<td>-6.76</td>
<td>105.686</td>
</tr>
<tr>
<td>2075</td>
<td>4.33</td>
<td>7.92</td>
<td>-3.59</td>
<td>1.69</td>
<td>4.90</td>
<td>-3.20</td>
<td>6.02</td>
<td>12.81</td>
<td>-6.79</td>
<td>108.592</td>
</tr>
<tr>
<td>2076</td>
<td>4.32</td>
<td>7.94</td>
<td>-3.62</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.20</td>
<td>6.01</td>
<td>12.83</td>
<td>-6.82</td>
<td>111.569</td>
</tr>
<tr>
<td>2077</td>
<td>4.31</td>
<td>7.96</td>
<td>-3.65</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.19</td>
<td>6.01</td>
<td>12.85</td>
<td>-6.84</td>
<td>114.619</td>
</tr>
<tr>
<td>Calendar year</td>
<td>OASDI Income</td>
<td>OASDI Cost</td>
<td>OASDI Balance</td>
<td>HI Income</td>
<td>HI Cost</td>
<td>HI Balance</td>
<td>Combined Income</td>
<td>Combined Cost</td>
<td>Combined Balance</td>
<td>GDP in dollars (billions)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2078</td>
<td>4.30</td>
<td>7.98</td>
<td>-3.68</td>
<td>1.70</td>
<td>4.88</td>
<td>-3.18</td>
<td>6.00</td>
<td>12.86</td>
<td>-6.86</td>
<td>117,742</td>
</tr>
<tr>
<td>2079</td>
<td>4.30</td>
<td>8.00</td>
<td>-3.70</td>
<td>1.70</td>
<td>4.87</td>
<td>-3.17</td>
<td>5.99</td>
<td>12.87</td>
<td>-6.88</td>
<td>120,935</td>
</tr>
<tr>
<td>2080</td>
<td>4.29</td>
<td>8.02</td>
<td>-3.73</td>
<td>1.70</td>
<td>4.86</td>
<td>-3.16</td>
<td>5.99</td>
<td>12.88</td>
<td>-6.89</td>
<td>124,200</td>
</tr>
<tr>
<td>2081</td>
<td>4.28</td>
<td>8.04</td>
<td>-3.76</td>
<td>1.70</td>
<td>4.84</td>
<td>-3.14</td>
<td>5.98</td>
<td>12.89</td>
<td>-6.90</td>
<td>127,543</td>
</tr>
<tr>
<td>2083</td>
<td>4.27</td>
<td>8.09</td>
<td>-3.82</td>
<td>1.70</td>
<td>4.82</td>
<td>-3.11</td>
<td>5.97</td>
<td>12.91</td>
<td>-6.94</td>
<td>134,467</td>
</tr>
<tr>
<td>2084</td>
<td>4.26</td>
<td>8.11</td>
<td>-3.85</td>
<td>1.71</td>
<td>4.80</td>
<td>-3.10</td>
<td>5.97</td>
<td>12.92</td>
<td>-6.95</td>
<td>138,049</td>
</tr>
<tr>
<td>2085</td>
<td>4.25</td>
<td>8.14</td>
<td>-3.88</td>
<td>1.71</td>
<td>4.79</td>
<td>-3.08</td>
<td>5.96</td>
<td>12.93</td>
<td>-6.97</td>
<td>141,718</td>
</tr>
<tr>
<td>2086</td>
<td>4.25</td>
<td>8.16</td>
<td>-3.92</td>
<td>1.71</td>
<td>4.78</td>
<td>-3.07</td>
<td>5.96</td>
<td>12.94</td>
<td>-6.98</td>
<td>145,478</td>
</tr>
<tr>
<td>2087</td>
<td>4.24</td>
<td>8.19</td>
<td>-3.95</td>
<td>1.71</td>
<td>4.76</td>
<td>-3.05</td>
<td>5.95</td>
<td>12.95</td>
<td>-7.00</td>
<td>149,330</td>
</tr>
<tr>
<td>2088</td>
<td>4.24</td>
<td>8.21</td>
<td>-3.98</td>
<td>1.71</td>
<td>4.75</td>
<td>-3.03</td>
<td>5.95</td>
<td>12.96</td>
<td>-7.01</td>
<td>153,280</td>
</tr>
<tr>
<td>2089</td>
<td>4.23</td>
<td>8.23</td>
<td>-4.00</td>
<td>1.72</td>
<td>4.73</td>
<td>-3.02</td>
<td>5.95</td>
<td>12.97</td>
<td>-7.02</td>
<td>157,331</td>
</tr>
<tr>
<td>2090</td>
<td>4.22</td>
<td>8.25</td>
<td>-4.03</td>
<td>1.72</td>
<td>4.83</td>
<td>-3.12</td>
<td>5.94</td>
<td>13.09</td>
<td>-7.15</td>
<td>161,487</td>
</tr>
</tbody>
</table>

a Income for individual years excludes interest on the trust funds.

b Between 0 and 0.005 percent of GDP.

Notes: Totals do not necessarily equal the sums of rounded components.
OASDI and HI Annual Income, Cost, and Balance as a Percentage of GDP —

2014 OASDI Trustees Report

Accessibility Contact Us FAQs Español Other Languages Sign In

Social Security

Official Social Security Website

Menu

Home

Numbers & Cards

New or Replacement Social Security Number Card

Change Your Name
Social Security Numbers for Children

Replacement Medicare Card

Benefits

Learn

Retirement

Disability

Medicare

Survivors

Supplemental Security Income
Retirement Estimator

Calculators

After Incarceration

Benefits outside the U.S.

Spouses

Children

Children with Disabilities

Government Employees

Apply

Apply Online for Retirement
Apply Online for Disability

Apply Online for Medicare Only

Extra Help with Medicare Prescription Costs

Apply for Spouse's Benefits

Apply for Child's Benefits

Check Application Status

Appeal a Decision

Manage

Benefit Verification/
Proof of Benefits Letter
Change Your Address

Check Your Information or Benefits

Direct Deposit

Form SSA-1099/1042S

Replacement Medicare Card

Ticket to Work

Information for...

People Like Me

American Indians/Alaska Natives

African Americans
Asian Americans/Pacific Islanders

Blind or Visually Impaired

Deaf or Hard of Hearing

Hispanics

Immigrants

Kids & Families

Same-Sex Couples

Veterans

Women
Wounded Warriors

Young People

Third Parties

Appointed Representatives

Financial Planners

Groups & Organizations

Health & School Professionals

Human Resource Professionals

Medicare Outreach Organizations

my Social Security Information
Press

Representative Payees

School Officials

Service Providers for the Homeless

Business & Government

Business Services

Congress

Data Exchange

Electronic Records Express
Employers

Financial Institutions

Government Services Online

Self-Employed

Small Business

Software Developers

Our Agency

General Information

About Us

Ask for a Speaker
Careers with Social Security

Compassionate Allowances

Digital Government Strategy

Death Master File (Death Index)

Donations to the Trust Funds

Equal Employment Information

Glossary of Social Security Terms

History of Social Security

No FEAR
Open Government

Plain Writing

Research, Policy & Planning

Actuarial Resources

Agency Conference Reporting

Agency Financial Report

Annual Performance Plan & Performance Report

Budget Estimates & Related Info

Budget & Performance

Disability Research
Limited English Proficiency Plan

Program Rules

Reducing Improper Payments

Research, Statistics & Policy Analysis

Solvency of Social Security

Vision 2025

OASDI and HI Annual Income, Cost, and Balance as a Percentage of GDP — 2014

OASDI Trustees Report
Table VI.G4.- OASDI and HI Annual Income, Cost, and Balance as a Percentage of GDP,
Calendar Years 1970-2090
OASDI

HI

Combined

Calendar year

Income a

Cost

Balance

Income a

Cost

Balance
In-
come a Cost

Bal-
ance

GDP in
dollars
(billions)

Historical:

<table>
<thead>
<tr>
<th>Year</th>
<th>GDP (billions)</th>
<th>Income</th>
<th>Cost Balance</th>
<th>GDP in dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>3.27, 3.08, 0.19, 0.46, 0.50, -0.04, 3.73, 3.58, 0.15, 1,076</td>
<td>1,043</td>
<td>3.57</td>
<td>3.50</td>
</tr>
<tr>
<td>1971</td>
<td>3.33, 3.30, 0.03, 0.43, 0.52, -0.09, 3.76, 3.82, -0.07, 1,168</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1972</td>
<td>3.39, 3.37, 0.01, 0.45, 0.52, -0.07, 3.84, 3.90, -0.06, 1,282</td>
<td>1,043</td>
<td>3.53</td>
<td>3.53</td>
</tr>
<tr>
<td>1973</td>
<td>3.67, 3.72, -0.05, 0.70, 0.52, 0.18, 4.37, 4.24, 0.13, 1,429</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1974</td>
<td>3.84, 3.91, -0.08, 0.71, 0.62, 0.09, 4.54, 4.53, 0.01, 1,549</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1975</td>
<td>3.84, 4.10, -0.26, 0.69, 0.71, -0.02, 4.52, 4.80, -0.28, 1,689</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1976</td>
<td>3.85, 4.17, -0.32, 0.69, 0.73, -0.04, 4.54, 4.90, -0.36, 1,878</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1977</td>
<td>3.81, 4.18, -0.37, 0.68, 0.76, -0.08, 4.49, 4.94, -0.46, 2,086</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1978</td>
<td>3.80, 4.07, -0.27, 0.74, 0.76, -0.02, 4.55, 4.84, -0.29, 2,357</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1979</td>
<td>3.94, 4.08, -0.14, 0.80, 0.79, 0.4, 4.74, 4.87, -0.13, 2,632</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1980</td>
<td>4.10, 4.32, -0.22, 0.84, 0.88, -0.04, 4.94, 5.20, -0.26, 2,862</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>1981</td>
<td>4.37, 4.50, -0.13, 1.04, 0.95, 0.09, 5.40, 5.44, -0.04, 3,211</td>
<td>1,043</td>
<td>3.53</td>
<td>3.52</td>
</tr>
<tr>
<td>Year</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1982</td>
<td>4.38</td>
<td>4.79</td>
<td>-0.41</td>
<td>1.04</td>
</tr>
<tr>
<td>1983</td>
<td>4.48</td>
<td>4.71</td>
<td>-0.23</td>
<td>1.03</td>
</tr>
<tr>
<td>1984</td>
<td>4.53</td>
<td>4.47</td>
<td>0.07</td>
<td>1.06</td>
</tr>
<tr>
<td>1985</td>
<td>4.62</td>
<td>4.39</td>
<td>0.23</td>
<td>1.10</td>
</tr>
<tr>
<td>1986</td>
<td>4.64</td>
<td>4.39</td>
<td>0.25</td>
<td>1.20</td>
</tr>
<tr>
<td>1987</td>
<td>4.64</td>
<td>4.29</td>
<td>0.34</td>
<td>1.21</td>
</tr>
<tr>
<td>1988</td>
<td>4.86</td>
<td>4.24</td>
<td>0.62</td>
<td>1.20</td>
</tr>
<tr>
<td>1989</td>
<td>4.89</td>
<td>4.18</td>
<td>0.72</td>
<td>1.22</td>
</tr>
<tr>
<td>1990</td>
<td>4.99</td>
<td>4.23</td>
<td>0.75</td>
<td>1.21</td>
</tr>
<tr>
<td>1991</td>
<td>4.99</td>
<td>4.44</td>
<td>0.54</td>
<td>1.27</td>
</tr>
<tr>
<td>1992</td>
<td>4.85</td>
<td>4.46</td>
<td>0.39</td>
<td>1.26</td>
</tr>
<tr>
<td>1993</td>
<td>4.76</td>
<td>4.49</td>
<td>0.28</td>
<td>1.23</td>
</tr>
<tr>
<td>1994</td>
<td>4.79</td>
<td>4.42</td>
<td>0.37</td>
<td>1.37</td>
</tr>
<tr>
<td>1995</td>
<td>4.76</td>
<td>4.43</td>
<td>0.32</td>
<td>1.38</td>
</tr>
<tr>
<td>1996</td>
<td>4.76</td>
<td>4.36</td>
<td>0.40</td>
<td>1.38</td>
</tr>
<tr>
<td>1997</td>
<td>4.81</td>
<td>4.29</td>
<td>0.52</td>
<td>1.40</td>
</tr>
<tr>
<td>1998</td>
<td>4.84</td>
<td>4.21</td>
<td>0.63</td>
<td>1.45</td>
</tr>
<tr>
<td>1999</td>
<td>4.87</td>
<td>4.06</td>
<td>0.81</td>
<td>1.46</td>
</tr>
<tr>
<td>2000</td>
<td>4.90</td>
<td>4.03</td>
<td>0.86</td>
<td>1.49</td>
</tr>
<tr>
<td>2001</td>
<td>4.98</td>
<td>4.13</td>
<td>0.85</td>
<td>1.47</td>
</tr>
<tr>
<td>2002</td>
<td>4.98</td>
<td>4.20</td>
<td>0.77</td>
<td>1.43</td>
</tr>
<tr>
<td>2003</td>
<td>4.75</td>
<td>4.16</td>
<td>0.59</td>
<td>1.41</td>
</tr>
<tr>
<td>2004</td>
<td>4.63</td>
<td>4.09</td>
<td>0.55</td>
<td>1.40</td>
</tr>
<tr>
<td>2005</td>
<td>4.64</td>
<td>4.05</td>
<td>0.59</td>
<td>1.38</td>
</tr>
<tr>
<td>2006</td>
<td>4.64</td>
<td>4.01</td>
<td>0.63</td>
<td>1.39</td>
</tr>
<tr>
<td>2007</td>
<td>4.66</td>
<td>4.11</td>
<td>0.55</td>
<td>1.41</td>
</tr>
<tr>
<td>2008</td>
<td>4.68</td>
<td>4.25</td>
<td>0.43</td>
<td>1.40</td>
</tr>
<tr>
<td>2009</td>
<td>4.78</td>
<td>4.76</td>
<td>0.02</td>
<td>1.39</td>
</tr>
<tr>
<td>2010</td>
<td>4.44</td>
<td>4.76</td>
<td>0.33</td>
<td>1.38</td>
</tr>
<tr>
<td>Year</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>2011</td>
<td>4.45</td>
<td>4.74</td>
<td>-0.29</td>
<td>1.39</td>
</tr>
<tr>
<td>2012</td>
<td>4.50</td>
<td>4.84</td>
<td>-0.34</td>
<td>1.40</td>
</tr>
<tr>
<td>2013</td>
<td>4.48</td>
<td>4.90</td>
<td>-0.42</td>
<td>1.44</td>
</tr>
</tbody>
</table>

Intermediate:

<table>
<thead>
<tr>
<th>Year</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
<th>Value 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>4.46</td>
<td>4.92</td>
<td>-0.45</td>
<td>1.45</td>
<td>1.50</td>
<td>-0.05</td>
<td>5.92</td>
<td>6.42</td>
<td>-0.50</td>
</tr>
<tr>
<td>2015</td>
<td>4.57</td>
<td>4.94</td>
<td>-0.37</td>
<td>1.47</td>
<td>1.44</td>
<td>-0.03</td>
<td>6.04</td>
<td>6.38</td>
<td>-0.34</td>
</tr>
<tr>
<td>2016</td>
<td>4.59</td>
<td>4.97</td>
<td>-0.38</td>
<td>1.49</td>
<td>1.44</td>
<td>-0.05</td>
<td>6.08</td>
<td>6.41</td>
<td>-0.33</td>
</tr>
<tr>
<td>2017</td>
<td>4.63</td>
<td>5.01</td>
<td>-0.38</td>
<td>1.51</td>
<td>1.45</td>
<td>-0.06</td>
<td>6.14</td>
<td>6.46</td>
<td>-0.32</td>
</tr>
<tr>
<td>2018</td>
<td>4.67</td>
<td>5.06</td>
<td>-0.39</td>
<td>1.53</td>
<td>1.48</td>
<td>-0.05</td>
<td>6.20</td>
<td>6.55</td>
<td>-0.34</td>
</tr>
<tr>
<td>2019</td>
<td>4.70</td>
<td>5.13</td>
<td>-0.44</td>
<td>1.54</td>
<td>1.50</td>
<td>-0.04</td>
<td>6.24</td>
<td>6.63</td>
<td>-0.39</td>
</tr>
<tr>
<td>2020</td>
<td>4.71</td>
<td>5.21</td>
<td>-0.50</td>
<td>1.55</td>
<td>1.53</td>
<td>-0.02</td>
<td>6.27</td>
<td>6.74</td>
<td>-0.47</td>
</tr>
<tr>
<td>2021</td>
<td>4.73</td>
<td>5.29</td>
<td>-0.55</td>
<td>1.56</td>
<td>1.56</td>
<td>-0.05</td>
<td>6.30</td>
<td>6.85</td>
<td>-0.55</td>
</tr>
<tr>
<td>2022</td>
<td>4.75</td>
<td>5.38</td>
<td>-0.63</td>
<td>1.57</td>
<td>1.60</td>
<td>-0.03</td>
<td>6.32</td>
<td>6.98</td>
<td>-0.66</td>
</tr>
<tr>
<td>2023</td>
<td>4.78</td>
<td>5.48</td>
<td>-0.72</td>
<td>1.58</td>
<td>1.63</td>
<td>-0.05</td>
<td>6.34</td>
<td>7.11</td>
<td>-0.77</td>
</tr>
<tr>
<td>2024</td>
<td>4.76</td>
<td>5.57</td>
<td>-0.81</td>
<td>1.59</td>
<td>1.67</td>
<td>-0.08</td>
<td>6.35</td>
<td>7.24</td>
<td>-0.89</td>
</tr>
<tr>
<td>2025</td>
<td>4.76</td>
<td>5.66</td>
<td>-0.90</td>
<td>1.60</td>
<td>1.74</td>
<td>-0.15</td>
<td>6.36</td>
<td>7.41</td>
<td>-1.05</td>
</tr>
<tr>
<td>2026</td>
<td>4.76</td>
<td>5.74</td>
<td>-0.98</td>
<td>1.60</td>
<td>1.77</td>
<td>-0.17</td>
<td>6.36</td>
<td>7.51</td>
<td>-1.15</td>
</tr>
<tr>
<td>2027</td>
<td>4.76</td>
<td>5.82</td>
<td>-1.06</td>
<td>1.61</td>
<td>1.81</td>
<td>-0.20</td>
<td>6.37</td>
<td>7.63</td>
<td>-1.26</td>
</tr>
<tr>
<td>2028</td>
<td>4.76</td>
<td>5.89</td>
<td>-1.13</td>
<td>1.62</td>
<td>1.84</td>
<td>-0.22</td>
<td>6.38</td>
<td>7.73</td>
<td>-1.35</td>
</tr>
<tr>
<td>2029</td>
<td>4.76</td>
<td>5.96</td>
<td>-1.20</td>
<td>1.62</td>
<td>1.87</td>
<td>-0.25</td>
<td>6.38</td>
<td>7.83</td>
<td>-1.45</td>
</tr>
<tr>
<td>2030</td>
<td>4.76</td>
<td>6.01</td>
<td>-1.25</td>
<td>1.63</td>
<td>1.91</td>
<td>-0.28</td>
<td>6.39</td>
<td>7.92</td>
<td>-1.53</td>
</tr>
<tr>
<td>2031</td>
<td>4.76</td>
<td>6.06</td>
<td>-1.30</td>
<td>1.64</td>
<td>1.94</td>
<td>-0.30</td>
<td>6.39</td>
<td>8.00</td>
<td>-1.60</td>
</tr>
<tr>
<td>2032</td>
<td>4.76</td>
<td>6.09</td>
<td>-1.34</td>
<td>1.64</td>
<td>1.97</td>
<td>-0.33</td>
<td>6.40</td>
<td>8.06</td>
<td>-1.67</td>
</tr>
<tr>
<td>2033</td>
<td>4.76</td>
<td>6.12</td>
<td>-1.36</td>
<td>1.65</td>
<td>2.00</td>
<td>-0.35</td>
<td>6.40</td>
<td>8.12</td>
<td>-1.72</td>
</tr>
<tr>
<td>2034</td>
<td>4.75</td>
<td>6.14</td>
<td>-1.39</td>
<td>1.65</td>
<td>2.03</td>
<td>-0.38</td>
<td>6.40</td>
<td>8.17</td>
<td>-1.77</td>
</tr>
<tr>
<td>2035</td>
<td>4.75</td>
<td>6.16</td>
<td>-1.41</td>
<td>1.66</td>
<td>2.06</td>
<td>-0.40</td>
<td>6.41</td>
<td>8.21</td>
<td>-1.81</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2036</td>
<td>4.75</td>
<td>6.16</td>
<td>1.42</td>
<td>6.41 8.25</td>
<td>-1.84</td>
<td>47,710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2037</td>
<td>4.74</td>
<td>6.16</td>
<td>1.42</td>
<td>6.41 8.27</td>
<td>-1.86</td>
<td>49,863</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2038</td>
<td>4.74</td>
<td>6.16</td>
<td>1.42</td>
<td>6.41 8.28</td>
<td>-1.88</td>
<td>52,130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2039</td>
<td>4.74</td>
<td>6.16</td>
<td>1.42</td>
<td>6.41 8.29</td>
<td>-1.88</td>
<td>54,510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>4.73</td>
<td>6.16</td>
<td>1.39</td>
<td>6.40 8.29</td>
<td>-1.89</td>
<td>57,014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2041</td>
<td>4.72</td>
<td>6.16</td>
<td>1.39</td>
<td>6.40 8.29</td>
<td>-1.89</td>
<td>59,614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2042</td>
<td>4.72</td>
<td>6.16</td>
<td>1.39</td>
<td>6.40 8.28</td>
<td>-1.89</td>
<td>62,337</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2043</td>
<td>4.71</td>
<td>6.16</td>
<td>1.39</td>
<td>6.40 8.28</td>
<td>-1.88</td>
<td>65,182</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2044</td>
<td>4.71</td>
<td>6.16</td>
<td>1.39</td>
<td>6.40 8.27</td>
<td>-1.88</td>
<td>68,158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2045</td>
<td>4.70</td>
<td>6.16</td>
<td>1.39</td>
<td>6.40 8.27</td>
<td>-1.88</td>
<td>71,254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>4.69</td>
<td>6.16</td>
<td>1.39</td>
<td>6.39 8.27</td>
<td>-1.88</td>
<td>74,484</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2047</td>
<td>4.69</td>
<td>6.16</td>
<td>1.39</td>
<td>6.39 8.26</td>
<td>-1.88</td>
<td>77,852</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td>4.68</td>
<td>6.16</td>
<td>1.39</td>
<td>6.38 8.25</td>
<td>-1.88</td>
<td>81,364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2049</td>
<td>4.67</td>
<td>6.16</td>
<td>1.39</td>
<td>6.37 8.24</td>
<td>-1.87</td>
<td>85,024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td>4.67</td>
<td>6.16</td>
<td>1.39</td>
<td>6.37 8.24</td>
<td>-1.87</td>
<td>88,833</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2051</td>
<td>4.66</td>
<td>6.16</td>
<td>1.39</td>
<td>6.37 8.23</td>
<td>-1.86</td>
<td>92,806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2052</td>
<td>4.66</td>
<td>6.16</td>
<td>1.39</td>
<td>6.37 8.23</td>
<td>-1.86</td>
<td>96,939</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2053</td>
<td>4.65</td>
<td>6.16</td>
<td>1.39</td>
<td>6.36 8.23</td>
<td>-1.86</td>
<td>101,241</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2054</td>
<td>4.64</td>
<td>6.16</td>
<td>1.39</td>
<td>6.36 8.23</td>
<td>-1.87</td>
<td>105,723</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2055</td>
<td>4.64</td>
<td>6.16</td>
<td>1.39</td>
<td>6.36 8.23</td>
<td>-1.87</td>
<td>110,392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2056</td>
<td>4.63</td>
<td>6.16</td>
<td>1.39</td>
<td>6.36 8.25</td>
<td>-1.89</td>
<td>115,257</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2057</td>
<td>4.63</td>
<td>6.16</td>
<td>1.39</td>
<td>6.36 8.26</td>
<td>-1.90</td>
<td>120,330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2058</td>
<td>4.62</td>
<td>6.16</td>
<td>1.39</td>
<td>6.35 8.27</td>
<td>-1.92</td>
<td>125,625</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2059</td>
<td>4.62</td>
<td>6.16</td>
<td>1.39</td>
<td>6.35 8.28</td>
<td>-1.93</td>
<td>131,153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2060</td>
<td>4.61</td>
<td>6.16</td>
<td>1.39</td>
<td>6.35 8.29</td>
<td>-1.94</td>
<td>136,921</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2061</td>
<td>4.60</td>
<td>6.16</td>
<td>1.39</td>
<td>6.35 8.30</td>
<td>-1.95</td>
<td>142,948</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2062</td>
<td>4.60</td>
<td>6.16</td>
<td>1.39</td>
<td>6.35 8.31</td>
<td>-1.97</td>
<td>149,250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2063</td>
<td>4.59</td>
<td>6.16</td>
<td>1.39</td>
<td>6.34 8.33</td>
<td>-1.98</td>
<td>155,831</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064</td>
<td>4.59</td>
<td>6.16</td>
<td>1.39</td>
<td>6.34 8.34</td>
<td>-2.00</td>
<td>162,707</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2065 4.58 6.05 -1.47 1.76 2.31 -55 6.34 8.36 -2.02 169,890
2066 4.57 6.06 -1.48 1.76 2.32 -55 6.33 8.37 -2.04 177,398
2067 4.57 6.07 -1.50 1.76 2.32 -.56 6.33 8.39 -2.06 185,248
2068 4.56 6.07 -1.51 1.77 2.33 -.56 6.33 8.40 -2.08 193,456
2069 4.56 6.08 -1.52 1.77 2.34 -.57 6.33 8.42 -2.09 202,037
2070 4.55 6.09 -1.54 1.77 2.35 -.57 6.32 8.44 -2.11 211,004
2071 4.55 6.10 -1.55 1.77 2.35 -.58 6.32 8.45 -2.13 220,364
2072 4.54 6.10 -1.56 1.78 2.36 -.58 6.32 8.46 -2.14 230,149
2073 4.54 6.10 -1.56 1.78 2.37 -.59 6.32 8.47 -2.15 240,368
2074 4.53 6.10 -1.57 1.78 2.37 -.59 6.31 8.47 -2.16 251,038
2075 4.52 6.10 -1.57 1.78 2.38 -.59 6.31 8.47 -2.16 262,181
2076 4.52 6.09 -1.57 1.79 2.38 -.59 6.31 8.47 -2.16 273,817
2077 4.51 6.09 -1.57 1.79 2.38 -.59 6.30 8.46 -2.16 285,964
2078 4.51 6.08 -1.57 1.79 2.38 -.59 6.30 8.45 -2.16 298,640
2079 4.50 6.07 -1.57 1.79 2.38 -.58 6.29 8.45 -2.15 311,860
2080 4.50 6.07 -1.57 1.79 2.37 -.58 6.29 8.44 -2.15 325,644
2081 4.49 6.07 -1.57 1.80 2.37 -.57 6.29 8.44 -2.15 340,008
2082 4.49 6.07 -1.58 1.80 2.37 -.57 6.29 8.43 -2.15 354,980
2083 4.49 6.07 -1.58 1.80 2.36 -.56 6.29 8.43 -2.15 370,581
2084 4.48 6.08 -1.59 1.80 2.36 -.56 6.28 8.44 -2.15 386,832
2085 4.48 6.08 -1.61 1.80 2.36 -.55 6.28 8.44 -2.16 403,770
2086 4.48 6.09 -1.62 1.81 2.35 -.55 6.28 8.45 -2.17 421,428
2087 4.47 6.11 -1.63 1.81 2.35 -.54 6.28 8.46 -2.18 439,833
2088 4.47 6.12 -1.65 1.81 2.35 -.54 6.28 8.46 -2.18 459,020
2089 4.47 6.13 -1.66 1.81 2.34 -.53 6.28 8.47 -2.19 479,029
2090 4.46 6.14 -1.68 1.82 2.34 -.52 6.28 8.48 -2.20 499,900

Low-cost:
<table>
<thead>
<tr>
<th>Year</th>
<th>GDP Growth</th>
<th>Inflation</th>
<th>Interest Rate</th>
<th>Budget Deficit</th>
<th>Unemployment Rate</th>
<th>Consumer Price Index</th>
<th>Producer Price Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>4.44</td>
<td>1.45</td>
<td>.40</td>
<td>5.90</td>
<td>6.29</td>
<td>-.40</td>
<td>17,771</td>
</tr>
<tr>
<td>2015</td>
<td>4.58</td>
<td>1.47</td>
<td>.18</td>
<td>6.06</td>
<td>6.12</td>
<td>-.06</td>
<td>19,032</td>
</tr>
<tr>
<td>2016</td>
<td>4.59</td>
<td>1.49</td>
<td>.14</td>
<td>6.08</td>
<td>6.05</td>
<td>.03</td>
<td>20,464</td>
</tr>
<tr>
<td>2017</td>
<td>4.65</td>
<td>1.51</td>
<td>.08</td>
<td>6.16</td>
<td>6.04</td>
<td>.12</td>
<td>21,918</td>
</tr>
<tr>
<td>2018</td>
<td>4.71</td>
<td>1.53</td>
<td>.06</td>
<td>6.23</td>
<td>6.07</td>
<td>.16</td>
<td>23,335</td>
</tr>
<tr>
<td>2019</td>
<td>4.74</td>
<td>1.54</td>
<td>.06</td>
<td>6.28</td>
<td>6.09</td>
<td>.18</td>
<td>24,843</td>
</tr>
<tr>
<td>2020</td>
<td>4.76</td>
<td>1.55</td>
<td>.08</td>
<td>6.31</td>
<td>6.13</td>
<td>.18</td>
<td>26,401</td>
</tr>
<tr>
<td>2021</td>
<td>4.79</td>
<td>1.56</td>
<td>.09</td>
<td>6.34</td>
<td>6.18</td>
<td>.17</td>
<td>27,969</td>
</tr>
<tr>
<td>2022</td>
<td>4.82</td>
<td>1.57</td>
<td>.12</td>
<td>6.38</td>
<td>6.24</td>
<td>.15</td>
<td>29,611</td>
</tr>
<tr>
<td>2023</td>
<td>4.84</td>
<td>1.57</td>
<td>.16</td>
<td>6.41</td>
<td>6.30</td>
<td>.11</td>
<td>31,324</td>
</tr>
<tr>
<td>2024</td>
<td>4.84</td>
<td>1.58</td>
<td>.21</td>
<td>6.43</td>
<td>6.36</td>
<td>.07</td>
<td>33,134</td>
</tr>
<tr>
<td>2025</td>
<td>4.84</td>
<td>1.59</td>
<td>.26</td>
<td>6.44</td>
<td>6.44</td>
<td>-.01</td>
<td>35,064</td>
</tr>
<tr>
<td>2026</td>
<td>4.84</td>
<td>1.60</td>
<td>.30</td>
<td>6.45</td>
<td>6.48</td>
<td>-.04</td>
<td>37,100</td>
</tr>
<tr>
<td>2027</td>
<td>4.84</td>
<td>1.61</td>
<td>.34</td>
<td>6.46</td>
<td>6.53</td>
<td>-.07</td>
<td>39,242</td>
</tr>
<tr>
<td>2028</td>
<td>4.85</td>
<td>1.62</td>
<td>.38</td>
<td>6.47</td>
<td>6.56</td>
<td>-.10</td>
<td>41,498</td>
</tr>
<tr>
<td>2029</td>
<td>4.85</td>
<td>1.63</td>
<td>.41</td>
<td>6.48</td>
<td>6.59</td>
<td>-.12</td>
<td>43,882</td>
</tr>
<tr>
<td>2030</td>
<td>4.85</td>
<td>1.64</td>
<td>.43</td>
<td>6.49</td>
<td>6.62</td>
<td>-.13</td>
<td>46,398</td>
</tr>
<tr>
<td>2031</td>
<td>4.85</td>
<td>1.64</td>
<td>.45</td>
<td>6.50</td>
<td>6.63</td>
<td>-.14</td>
<td>49,057</td>
</tr>
<tr>
<td>2032</td>
<td>4.85</td>
<td>1.65</td>
<td>.46</td>
<td>6.51</td>
<td>6.64</td>
<td>-.13</td>
<td>51,873</td>
</tr>
<tr>
<td>2033</td>
<td>4.85</td>
<td>1.66</td>
<td>.46</td>
<td>6.51</td>
<td>6.63</td>
<td>-.12</td>
<td>54,868</td>
</tr>
<tr>
<td>2034</td>
<td>4.85</td>
<td>1.67</td>
<td>.46</td>
<td>6.52</td>
<td>6.63</td>
<td>-.11</td>
<td>58,042</td>
</tr>
<tr>
<td>2035</td>
<td>4.85</td>
<td>1.68</td>
<td>.45</td>
<td>6.53</td>
<td>6.61</td>
<td>-.08</td>
<td>61,419</td>
</tr>
<tr>
<td>2036</td>
<td>4.85</td>
<td>1.68</td>
<td>.44</td>
<td>6.54</td>
<td>6.59</td>
<td>-.06</td>
<td>65,008</td>
</tr>
<tr>
<td>2037</td>
<td>4.85</td>
<td>1.69</td>
<td>.42</td>
<td>6.54</td>
<td>6.56</td>
<td>-.02</td>
<td>68,826</td>
</tr>
<tr>
<td>2038</td>
<td>4.85</td>
<td>1.70</td>
<td>.40</td>
<td>6.55</td>
<td>6.53</td>
<td>.02</td>
<td>72,897</td>
</tr>
<tr>
<td>2039</td>
<td>4.85</td>
<td>1.70</td>
<td>.38</td>
<td>6.55</td>
<td>6.47</td>
<td>.09</td>
<td>77,229</td>
</tr>
<tr>
<td>2040</td>
<td>4.85</td>
<td>1.71</td>
<td>.35</td>
<td>6.56</td>
<td>6.43</td>
<td>.13</td>
<td>81,834</td>
</tr>
<tr>
<td>2041</td>
<td>4.85</td>
<td>1.72</td>
<td>.32</td>
<td>6.56</td>
<td>6.38</td>
<td>.18</td>
<td>86,728</td>
</tr>
<tr>
<td>Year</td>
<td>April</td>
<td>May</td>
<td>June</td>
<td>July</td>
<td>August</td>
<td>September</td>
<td>October</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>2042</td>
<td>4.84</td>
<td>5.13</td>
<td>-0.29</td>
<td>1.72</td>
<td>1.21</td>
<td>0.52</td>
<td>6.57</td>
</tr>
<tr>
<td>2043</td>
<td>4.84</td>
<td>5.11</td>
<td>-0.27</td>
<td>1.73</td>
<td>1.19</td>
<td>0.54</td>
<td>6.57</td>
</tr>
<tr>
<td>2044</td>
<td>4.84</td>
<td>5.08</td>
<td>-0.24</td>
<td>1.74</td>
<td>1.18</td>
<td>0.55</td>
<td>6.57</td>
</tr>
<tr>
<td>2045</td>
<td>4.84</td>
<td>5.06</td>
<td>-0.22</td>
<td>1.74</td>
<td>1.17</td>
<td>0.57</td>
<td>6.58</td>
</tr>
<tr>
<td>2046</td>
<td>4.83</td>
<td>5.04</td>
<td>-0.21</td>
<td>1.75</td>
<td>1.16</td>
<td>0.59</td>
<td>6.58</td>
</tr>
<tr>
<td>2047</td>
<td>4.83</td>
<td>5.02</td>
<td>-0.19</td>
<td>1.75</td>
<td>1.15</td>
<td>0.60</td>
<td>6.58</td>
</tr>
<tr>
<td>2048</td>
<td>4.83</td>
<td>5.00</td>
<td>-0.17</td>
<td>1.76</td>
<td>1.14</td>
<td>0.62</td>
<td>6.59</td>
</tr>
<tr>
<td>2049</td>
<td>4.82</td>
<td>4.98</td>
<td>-0.16</td>
<td>1.76</td>
<td>1.13</td>
<td>0.64</td>
<td>6.59</td>
</tr>
<tr>
<td>2050</td>
<td>4.82</td>
<td>4.97</td>
<td>-0.14</td>
<td>1.77</td>
<td>1.12</td>
<td>0.65</td>
<td>6.59</td>
</tr>
<tr>
<td>2051</td>
<td>4.82</td>
<td>4.95</td>
<td>-0.13</td>
<td>1.78</td>
<td>1.11</td>
<td>0.67</td>
<td>6.60</td>
</tr>
<tr>
<td>2052</td>
<td>4.82</td>
<td>4.94</td>
<td>-0.13</td>
<td>1.78</td>
<td>1.10</td>
<td>0.68</td>
<td>6.60</td>
</tr>
<tr>
<td>2053</td>
<td>4.82</td>
<td>4.94</td>
<td>-0.12</td>
<td>1.79</td>
<td>1.09</td>
<td>0.70</td>
<td>6.60</td>
</tr>
<tr>
<td>2054</td>
<td>4.81</td>
<td>4.93</td>
<td>-0.12</td>
<td>1.79</td>
<td>1.08</td>
<td>0.71</td>
<td>6.61</td>
</tr>
<tr>
<td>2055</td>
<td>4.81</td>
<td>4.93</td>
<td>-0.12</td>
<td>1.80</td>
<td>1.08</td>
<td>0.72</td>
<td>6.61</td>
</tr>
<tr>
<td>2056</td>
<td>4.81</td>
<td>4.93</td>
<td>-0.12</td>
<td>1.81</td>
<td>1.07</td>
<td>0.73</td>
<td>6.61</td>
</tr>
<tr>
<td>2057</td>
<td>4.81</td>
<td>4.93</td>
<td>-0.13</td>
<td>1.81</td>
<td>1.07</td>
<td>0.74</td>
<td>6.62</td>
</tr>
<tr>
<td>2058</td>
<td>4.81</td>
<td>4.93</td>
<td>-0.13</td>
<td>1.82</td>
<td>1.07</td>
<td>0.75</td>
<td>6.62</td>
</tr>
<tr>
<td>2059</td>
<td>4.80</td>
<td>4.93</td>
<td>-0.13</td>
<td>1.82</td>
<td>1.07</td>
<td>0.75</td>
<td>6.62</td>
</tr>
<tr>
<td>2060</td>
<td>4.80</td>
<td>4.93</td>
<td>-0.13</td>
<td>1.83</td>
<td>1.07</td>
<td>0.76</td>
<td>6.63</td>
</tr>
<tr>
<td>2061</td>
<td>4.80</td>
<td>4.93</td>
<td>-0.12</td>
<td>1.83</td>
<td>1.07</td>
<td>0.76</td>
<td>6.63</td>
</tr>
<tr>
<td>2062</td>
<td>4.80</td>
<td>4.92</td>
<td>-0.12</td>
<td>1.84</td>
<td>1.07</td>
<td>0.76</td>
<td>6.63</td>
</tr>
<tr>
<td>2063</td>
<td>4.80</td>
<td>4.92</td>
<td>-0.12</td>
<td>1.84</td>
<td>1.07</td>
<td>0.77</td>
<td>6.64</td>
</tr>
<tr>
<td>2064</td>
<td>4.79</td>
<td>4.91</td>
<td>-0.12</td>
<td>1.84</td>
<td>1.08</td>
<td>0.76</td>
<td>6.64</td>
</tr>
<tr>
<td>2065</td>
<td>4.79</td>
<td>4.91</td>
<td>-0.11</td>
<td>1.85</td>
<td>1.08</td>
<td>0.76</td>
<td>6.64</td>
</tr>
<tr>
<td>2066</td>
<td>4.79</td>
<td>4.90</td>
<td>-0.11</td>
<td>1.85</td>
<td>1.09</td>
<td>0.76</td>
<td>6.64</td>
</tr>
<tr>
<td>2067</td>
<td>4.79</td>
<td>4.89</td>
<td>-0.11</td>
<td>1.86</td>
<td>1.10</td>
<td>0.76</td>
<td>6.64</td>
</tr>
<tr>
<td>2068</td>
<td>4.79</td>
<td>4.89</td>
<td>-0.10</td>
<td>1.86</td>
<td>1.10</td>
<td>0.76</td>
<td>6.64</td>
</tr>
<tr>
<td>2069</td>
<td>4.78</td>
<td>4.88</td>
<td>-0.10</td>
<td>1.86</td>
<td>1.11</td>
<td>0.76</td>
<td>6.65</td>
</tr>
<tr>
<td>2070</td>
<td>4.78</td>
<td>4.87</td>
<td>-0.09</td>
<td>1.87</td>
<td>1.11</td>
<td>0.76</td>
<td>6.65</td>
</tr>
<tr>
<td>Year</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
<td>Value5</td>
<td>Value6</td>
<td>Value7</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>2071</td>
<td>4.78</td>
<td>4.86</td>
<td>-0.08</td>
<td>1.87</td>
<td>1.12</td>
<td>0.75</td>
<td>5.98</td>
</tr>
<tr>
<td>2072</td>
<td>4.78</td>
<td>4.85</td>
<td>-0.07</td>
<td>1.87</td>
<td>1.12</td>
<td>0.75</td>
<td>5.97</td>
</tr>
<tr>
<td>2073</td>
<td>4.78</td>
<td>4.84</td>
<td>-0.06</td>
<td>1.87</td>
<td>1.12</td>
<td>0.75</td>
<td>5.96</td>
</tr>
<tr>
<td>2074</td>
<td>4.77</td>
<td>4.82</td>
<td>-0.05</td>
<td>1.88</td>
<td>1.13</td>
<td>0.75</td>
<td>5.95</td>
</tr>
<tr>
<td>2075</td>
<td>4.77</td>
<td>4.80</td>
<td>-0.03</td>
<td>1.88</td>
<td>1.13</td>
<td>0.75</td>
<td>5.94</td>
</tr>
<tr>
<td>2076</td>
<td>4.77</td>
<td>4.79</td>
<td>-0.01</td>
<td>1.88</td>
<td>1.13</td>
<td>0.75</td>
<td>5.92</td>
</tr>
<tr>
<td>2077</td>
<td>4.77</td>
<td>4.76</td>
<td>-0.02</td>
<td>1.88</td>
<td>1.14</td>
<td>0.75</td>
<td>5.90</td>
</tr>
<tr>
<td>2078</td>
<td>4.77</td>
<td>4.74</td>
<td>-0.02</td>
<td>1.89</td>
<td>1.14</td>
<td>0.75</td>
<td>5.88</td>
</tr>
<tr>
<td>2079</td>
<td>4.77</td>
<td>4.73</td>
<td>-0.04</td>
<td>1.89</td>
<td>1.14</td>
<td>0.75</td>
<td>5.86</td>
</tr>
<tr>
<td>2080</td>
<td>4.77</td>
<td>4.71</td>
<td>-0.06</td>
<td>1.89</td>
<td>1.14</td>
<td>0.75</td>
<td>5.85</td>
</tr>
<tr>
<td>2081</td>
<td>4.77</td>
<td>4.70</td>
<td>-0.07</td>
<td>1.90</td>
<td>1.14</td>
<td>0.76</td>
<td>5.83</td>
</tr>
<tr>
<td>2082</td>
<td>4.76</td>
<td>4.69</td>
<td>-0.08</td>
<td>1.90</td>
<td>1.14</td>
<td>0.76</td>
<td>5.82</td>
</tr>
<tr>
<td>2083</td>
<td>4.77</td>
<td>4.68</td>
<td>-0.08</td>
<td>1.90</td>
<td>1.14</td>
<td>0.76</td>
<td>5.82</td>
</tr>
<tr>
<td>2084</td>
<td>4.77</td>
<td>4.68</td>
<td>-0.09</td>
<td>1.90</td>
<td>1.14</td>
<td>0.77</td>
<td>5.82</td>
</tr>
<tr>
<td>2085</td>
<td>4.77</td>
<td>4.68</td>
<td>-0.09</td>
<td>1.91</td>
<td>1.14</td>
<td>0.77</td>
<td>5.82</td>
</tr>
<tr>
<td>2086</td>
<td>4.77</td>
<td>4.68</td>
<td>-0.08</td>
<td>1.91</td>
<td>1.14</td>
<td>0.77</td>
<td>5.82</td>
</tr>
<tr>
<td>2087</td>
<td>4.77</td>
<td>4.69</td>
<td>-0.08</td>
<td>1.92</td>
<td>1.14</td>
<td>0.78</td>
<td>5.83</td>
</tr>
<tr>
<td>2088</td>
<td>4.77</td>
<td>4.70</td>
<td>-0.07</td>
<td>1.92</td>
<td>1.14</td>
<td>0.78</td>
<td>5.83</td>
</tr>
<tr>
<td>2089</td>
<td>4.77</td>
<td>4.71</td>
<td>-0.06</td>
<td>1.92</td>
<td>1.14</td>
<td>0.79</td>
<td>5.84</td>
</tr>
<tr>
<td>2090</td>
<td>4.77</td>
<td>4.72</td>
<td>-0.06</td>
<td>1.93</td>
<td>1.15</td>
<td>0.78</td>
<td>5.86</td>
</tr>
</tbody>
</table>

High-cost:

<table>
<thead>
<tr>
<th>Year</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Value4</th>
<th>Value5</th>
<th>Value6</th>
<th>Value7</th>
<th>Value8</th>
<th>Value9</th>
<th>Value10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>4.49</td>
<td>5.01</td>
<td>-0.52</td>
<td>1.45</td>
<td>1.56</td>
<td>-1.11</td>
<td>5.94</td>
<td>6.57</td>
<td>-0.63</td>
<td>17,268</td>
</tr>
<tr>
<td>2015</td>
<td>4.54</td>
<td>5.14</td>
<td>-0.61</td>
<td>1.47</td>
<td>1.54</td>
<td>-0.08</td>
<td>6.01</td>
<td>6.69</td>
<td>-0.68</td>
<td>17,750</td>
</tr>
<tr>
<td>2016</td>
<td>4.57</td>
<td>5.26</td>
<td>-0.68</td>
<td>1.49</td>
<td>1.57</td>
<td>-0.08</td>
<td>6.06</td>
<td>6.83</td>
<td>-0.77</td>
<td>18,332</td>
</tr>
<tr>
<td>2017</td>
<td>4.60</td>
<td>5.35</td>
<td>-0.75</td>
<td>1.51</td>
<td>1.61</td>
<td>-0.10</td>
<td>6.11</td>
<td>6.97</td>
<td>-0.85</td>
<td>19,002</td>
</tr>
<tr>
<td>2018</td>
<td>4.64</td>
<td>5.46</td>
<td>-0.82</td>
<td>1.53</td>
<td>1.68</td>
<td>-0.15</td>
<td>6.17</td>
<td>7.15</td>
<td>-0.98</td>
<td>19,710</td>
</tr>
<tr>
<td>Year</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td>Value 8</td>
<td>Value 9</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>4.65</td>
<td>5.58</td>
<td>-0.92</td>
<td>1.54</td>
<td>1.74</td>
<td>-0.19</td>
<td>6.20</td>
<td>7.32</td>
<td>-1.12</td>
<td>20,442</td>
</tr>
<tr>
<td>2020</td>
<td>4.67</td>
<td>5.70</td>
<td>-1.03</td>
<td>1.56</td>
<td>1.81</td>
<td>-0.25</td>
<td>6.23</td>
<td>7.51</td>
<td>-1.29</td>
<td>21,200</td>
</tr>
<tr>
<td>2021</td>
<td>4.68</td>
<td>5.80</td>
<td>-1.12</td>
<td>1.57</td>
<td>1.89</td>
<td>-0.32</td>
<td>6.25</td>
<td>7.69</td>
<td>-1.44</td>
<td>21,983</td>
</tr>
<tr>
<td>2022</td>
<td>4.69</td>
<td>5.92</td>
<td>-1.23</td>
<td>1.59</td>
<td>1.98</td>
<td>-0.39</td>
<td>6.28</td>
<td>7.90</td>
<td>-1.62</td>
<td>22,758</td>
</tr>
<tr>
<td>2023</td>
<td>4.70</td>
<td>6.05</td>
<td>-1.36</td>
<td>1.60</td>
<td>2.06</td>
<td>-0.46</td>
<td>6.29</td>
<td>8.11</td>
<td>-1.82</td>
<td>23,522</td>
</tr>
<tr>
<td>2024</td>
<td>4.70</td>
<td>6.18</td>
<td>-1.49</td>
<td>1.60</td>
<td>2.15</td>
<td>-0.55</td>
<td>6.30</td>
<td>8.33</td>
<td>-2.03</td>
<td>24,283</td>
</tr>
<tr>
<td>2025</td>
<td>4.70</td>
<td>6.31</td>
<td>-1.62</td>
<td>1.61</td>
<td>2.37</td>
<td>-0.68</td>
<td>6.30</td>
<td>8.60</td>
<td>-2.30</td>
<td>25,060</td>
</tr>
<tr>
<td>2026</td>
<td>4.69</td>
<td>6.44</td>
<td>-1.74</td>
<td>1.61</td>
<td>2.37</td>
<td>-0.76</td>
<td>6.31</td>
<td>8.80</td>
<td>-2.50</td>
<td>25,860</td>
</tr>
<tr>
<td>2027</td>
<td>4.69</td>
<td>6.55</td>
<td>-1.86</td>
<td>1.62</td>
<td>2.46</td>
<td>-0.85</td>
<td>6.31</td>
<td>9.02</td>
<td>-2.71</td>
<td>26,680</td>
</tr>
<tr>
<td>2028</td>
<td>4.69</td>
<td>6.66</td>
<td>-1.98</td>
<td>1.62</td>
<td>2.55</td>
<td>-0.93</td>
<td>6.31</td>
<td>9.22</td>
<td>-2.91</td>
<td>27,520</td>
</tr>
<tr>
<td>2029</td>
<td>4.69</td>
<td>6.76</td>
<td>-2.08</td>
<td>1.63</td>
<td>2.66</td>
<td>-1.03</td>
<td>6.31</td>
<td>9.42</td>
<td>-3.11</td>
<td>28,385</td>
</tr>
<tr>
<td>2031</td>
<td>4.68</td>
<td>6.93</td>
<td>-2.25</td>
<td>1.64</td>
<td>2.86</td>
<td>-1.22</td>
<td>6.32</td>
<td>9.79</td>
<td>-3.47</td>
<td>30,188</td>
</tr>
<tr>
<td>2032</td>
<td>4.68</td>
<td>7.00</td>
<td>-2.33</td>
<td>1.64</td>
<td>2.96</td>
<td>-1.32</td>
<td>6.32</td>
<td>9.97</td>
<td>-3.65</td>
<td>31,131</td>
</tr>
<tr>
<td>2033</td>
<td>4.67</td>
<td>7.06</td>
<td>-2.39</td>
<td>1.64</td>
<td>3.07</td>
<td>-1.42</td>
<td>6.32</td>
<td>10.13</td>
<td>-3.81</td>
<td>32,110</td>
</tr>
<tr>
<td>2034</td>
<td>4.67</td>
<td>7.12</td>
<td>-2.45</td>
<td>1.65</td>
<td>3.17</td>
<td>-1.53</td>
<td>6.32</td>
<td>10.29</td>
<td>-3.97</td>
<td>33,120</td>
</tr>
<tr>
<td>2035</td>
<td>4.66</td>
<td>7.16</td>
<td>-2.49</td>
<td>1.65</td>
<td>3.28</td>
<td>-1.63</td>
<td>6.31</td>
<td>10.44</td>
<td>-4.12</td>
<td>34,167</td>
</tr>
<tr>
<td>2036</td>
<td>4.66</td>
<td>7.19</td>
<td>-2.53</td>
<td>1.65</td>
<td>3.39</td>
<td>-1.74</td>
<td>6.31</td>
<td>10.58</td>
<td>-4.27</td>
<td>35,249</td>
</tr>
<tr>
<td>2037</td>
<td>4.65</td>
<td>7.22</td>
<td>-2.56</td>
<td>1.65</td>
<td>3.50</td>
<td>-1.84</td>
<td>6.31</td>
<td>10.72</td>
<td>-4.41</td>
<td>36,369</td>
</tr>
<tr>
<td>2038</td>
<td>4.65</td>
<td>7.23</td>
<td>-2.59</td>
<td>1.66</td>
<td>3.61</td>
<td>-1.95</td>
<td>6.30</td>
<td>10.84</td>
<td>-4.54</td>
<td>37,534</td>
</tr>
<tr>
<td>2039</td>
<td>4.64</td>
<td>7.24</td>
<td>-2.60</td>
<td>1.66</td>
<td>3.67</td>
<td>-2.01</td>
<td>6.30</td>
<td>10.91</td>
<td>-4.61</td>
<td>38,738</td>
</tr>
<tr>
<td>2040</td>
<td>4.63</td>
<td>7.25</td>
<td>-2.61</td>
<td>1.66</td>
<td>3.77</td>
<td>-2.11</td>
<td>6.29</td>
<td>11.01</td>
<td>-4.72</td>
<td>39,978</td>
</tr>
<tr>
<td>2041</td>
<td>4.62</td>
<td>7.25</td>
<td>-2.62</td>
<td>1.66</td>
<td>3.86</td>
<td>-2.21</td>
<td>6.28</td>
<td>11.11</td>
<td>-4.83</td>
<td>41,255</td>
</tr>
<tr>
<td>2042</td>
<td>4.62</td>
<td>7.24</td>
<td>-2.63</td>
<td>1.66</td>
<td>3.96</td>
<td>-2.30</td>
<td>6.27</td>
<td>11.20</td>
<td>-4.93</td>
<td>42,561</td>
</tr>
<tr>
<td>2043</td>
<td>4.61</td>
<td>7.24</td>
<td>-2.64</td>
<td>1.66</td>
<td>4.05</td>
<td>-2.39</td>
<td>6.27</td>
<td>11.29</td>
<td>-5.02</td>
<td>43,900</td>
</tr>
<tr>
<td>2044</td>
<td>4.60</td>
<td>7.24</td>
<td>-2.65</td>
<td>1.66</td>
<td>4.13</td>
<td>-2.47</td>
<td>6.26</td>
<td>11.37</td>
<td>-5.12</td>
<td>45,278</td>
</tr>
<tr>
<td>2045</td>
<td>4.59</td>
<td>7.25</td>
<td>-2.66</td>
<td>1.66</td>
<td>4.21</td>
<td>-2.55</td>
<td>6.25</td>
<td>11.46</td>
<td>-5.21</td>
<td>46,683</td>
</tr>
<tr>
<td>2046</td>
<td>4.58</td>
<td>7.25</td>
<td>-2.67</td>
<td>1.66</td>
<td>4.28</td>
<td>-2.62</td>
<td>6.24</td>
<td>11.53</td>
<td>-5.30</td>
<td>48,121</td>
</tr>
<tr>
<td>2047</td>
<td>4.57</td>
<td>7.25</td>
<td>-2.69</td>
<td>1.66</td>
<td>4.35</td>
<td>-2.69</td>
<td>6.23</td>
<td>11.60</td>
<td>-5.37</td>
<td>49,593</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>2048</td>
<td>4.56</td>
<td>7.25</td>
<td>-2.70</td>
<td>1.66</td>
<td>4.41</td>
<td>-2.75</td>
<td>6.22</td>
<td>11.66</td>
<td>-5.44</td>
<td>51,098</td>
</tr>
<tr>
<td>2049</td>
<td>4.55</td>
<td>7.26</td>
<td>-2.71</td>
<td>1.66</td>
<td>4.46</td>
<td>-2.80</td>
<td>6.21</td>
<td>11.72</td>
<td>-5.51</td>
<td>52,639</td>
</tr>
<tr>
<td>2050</td>
<td>4.54</td>
<td>7.26</td>
<td>-2.72</td>
<td>1.66</td>
<td>4.51</td>
<td>-2.85</td>
<td>6.20</td>
<td>11.77</td>
<td>-5.57</td>
<td>54,209</td>
</tr>
<tr>
<td>2051</td>
<td>4.53</td>
<td>7.27</td>
<td>-2.74</td>
<td>1.66</td>
<td>4.55</td>
<td>-2.89</td>
<td>6.19</td>
<td>11.82</td>
<td>-5.63</td>
<td>55,818</td>
</tr>
<tr>
<td>2052</td>
<td>4.52</td>
<td>7.28</td>
<td>-2.76</td>
<td>1.66</td>
<td>4.59</td>
<td>-2.93</td>
<td>6.18</td>
<td>11.87</td>
<td>-5.69</td>
<td>57,459</td>
</tr>
<tr>
<td>2053</td>
<td>4.51</td>
<td>7.30</td>
<td>-2.79</td>
<td>1.66</td>
<td>4.62</td>
<td>-2.96</td>
<td>6.17</td>
<td>11.91</td>
<td>-5.74</td>
<td>59,131</td>
</tr>
<tr>
<td>2054</td>
<td>4.50</td>
<td>7.32</td>
<td>-2.81</td>
<td>1.66</td>
<td>4.65</td>
<td>-2.99</td>
<td>6.16</td>
<td>11.97</td>
<td>-5.80</td>
<td>60,840</td>
</tr>
<tr>
<td>2055</td>
<td>4.49</td>
<td>7.34</td>
<td>-2.84</td>
<td>1.66</td>
<td>4.68</td>
<td>-3.02</td>
<td>6.16</td>
<td>12.02</td>
<td>-5.86</td>
<td>62,586</td>
</tr>
<tr>
<td>2056</td>
<td>4.48</td>
<td>7.36</td>
<td>-2.88</td>
<td>1.66</td>
<td>4.71</td>
<td>-3.05</td>
<td>6.15</td>
<td>12.07</td>
<td>-5.92</td>
<td>64,370</td>
</tr>
<tr>
<td>2057</td>
<td>4.48</td>
<td>7.38</td>
<td>-2.91</td>
<td>1.66</td>
<td>4.73</td>
<td>-3.07</td>
<td>6.14</td>
<td>12.12</td>
<td>-5.98</td>
<td>66,195</td>
</tr>
<tr>
<td>2058</td>
<td>4.47</td>
<td>7.41</td>
<td>-2.94</td>
<td>1.67</td>
<td>4.75</td>
<td>-3.08</td>
<td>6.13</td>
<td>12.16</td>
<td>-6.03</td>
<td>68,065</td>
</tr>
<tr>
<td>2059</td>
<td>4.46</td>
<td>7.44</td>
<td>-2.98</td>
<td>1.67</td>
<td>4.76</td>
<td>-3.09</td>
<td>6.13</td>
<td>12.20</td>
<td>-6.07</td>
<td>69,983</td>
</tr>
<tr>
<td>2060</td>
<td>4.45</td>
<td>7.46</td>
<td>-3.01</td>
<td>1.67</td>
<td>4.77</td>
<td>-3.11</td>
<td>6.12</td>
<td>12.24</td>
<td>-6.12</td>
<td>71,948</td>
</tr>
<tr>
<td>2061</td>
<td>4.44</td>
<td>7.49</td>
<td>-3.05</td>
<td>1.67</td>
<td>4.79</td>
<td>-3.12</td>
<td>6.11</td>
<td>12.28</td>
<td>-6.17</td>
<td>73,967</td>
</tr>
<tr>
<td>2062</td>
<td>4.43</td>
<td>7.52</td>
<td>-3.09</td>
<td>1.67</td>
<td>4.80</td>
<td>-3.12</td>
<td>6.10</td>
<td>12.32</td>
<td>-6.21</td>
<td>76,044</td>
</tr>
<tr>
<td>2065</td>
<td>4.41</td>
<td>7.61</td>
<td>-3.20</td>
<td>1.67</td>
<td>4.82</td>
<td>-3.14</td>
<td>6.08</td>
<td>12.43</td>
<td>-6.34</td>
<td>82,599</td>
</tr>
<tr>
<td>2067</td>
<td>4.39</td>
<td>7.67</td>
<td>-3.28</td>
<td>1.68</td>
<td>4.84</td>
<td>-3.16</td>
<td>6.07</td>
<td>12.51</td>
<td>-6.44</td>
<td>87,266</td>
</tr>
<tr>
<td>2068</td>
<td>4.38</td>
<td>7.70</td>
<td>-3.32</td>
<td>1.68</td>
<td>4.85</td>
<td>-3.17</td>
<td>6.06</td>
<td>12.56</td>
<td>-6.49</td>
<td>89,697</td>
</tr>
<tr>
<td>2069</td>
<td>4.37</td>
<td>7.74</td>
<td>-3.36</td>
<td>1.68</td>
<td>4.86</td>
<td>-3.18</td>
<td>6.06</td>
<td>12.60</td>
<td>-6.54</td>
<td>92,194</td>
</tr>
<tr>
<td>2070</td>
<td>4.37</td>
<td>7.77</td>
<td>-3.41</td>
<td>1.68</td>
<td>4.87</td>
<td>-3.19</td>
<td>6.05</td>
<td>12.64</td>
<td>-6.59</td>
<td>94,757</td>
</tr>
<tr>
<td>2071</td>
<td>4.36</td>
<td>7.81</td>
<td>-3.45</td>
<td>1.69</td>
<td>4.88</td>
<td>-3.19</td>
<td>6.04</td>
<td>12.68</td>
<td>-6.64</td>
<td>97,384</td>
</tr>
<tr>
<td>2072</td>
<td>4.35</td>
<td>7.84</td>
<td>-3.49</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.20</td>
<td>6.04</td>
<td>12.72</td>
<td>-6.68</td>
<td>100,083</td>
</tr>
<tr>
<td>2073</td>
<td>4.34</td>
<td>7.86</td>
<td>-3.52</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.20</td>
<td>6.03</td>
<td>12.76</td>
<td>-6.72</td>
<td>102,850</td>
</tr>
<tr>
<td>2074</td>
<td>4.33</td>
<td>7.89</td>
<td>-3.56</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.20</td>
<td>6.02</td>
<td>12.79</td>
<td>-6.76</td>
<td>105,686</td>
</tr>
<tr>
<td>2075</td>
<td>4.33</td>
<td>7.92</td>
<td>-3.59</td>
<td>1.69</td>
<td>4.90</td>
<td>-3.20</td>
<td>6.02</td>
<td>12.81</td>
<td>-6.79</td>
<td>108,592</td>
</tr>
<tr>
<td>2076</td>
<td>4.32</td>
<td>7.94</td>
<td>-3.62</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.20</td>
<td>6.01</td>
<td>12.83</td>
<td>-6.82</td>
<td>111,569</td>
</tr>
<tr>
<td>Year</td>
<td>GDP</td>
<td>Oil</td>
<td>Coal</td>
<td>Natural Gas</td>
<td>Gasoline</td>
<td>Airfare</td>
<td>Interest</td>
<td>GDP Growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2077</td>
<td>7.96</td>
<td>-3.65</td>
<td>1.69</td>
<td>4.89</td>
<td>-3.19</td>
<td>6.01</td>
<td>12.85</td>
<td>-6.84</td>
<td>114,619</td>
<td></td>
</tr>
<tr>
<td>2078</td>
<td>7.98</td>
<td>-3.68</td>
<td>1.70</td>
<td>4.88</td>
<td>-3.18</td>
<td>6.00</td>
<td>12.86</td>
<td>-6.86</td>
<td>117,742</td>
<td></td>
</tr>
<tr>
<td>2079</td>
<td>8.00</td>
<td>-3.70</td>
<td>1.70</td>
<td>4.87</td>
<td>-3.17</td>
<td>5.99</td>
<td>12.87</td>
<td>-6.88</td>
<td>120,935</td>
<td></td>
</tr>
<tr>
<td>2080</td>
<td>8.02</td>
<td>-3.73</td>
<td>1.70</td>
<td>4.86</td>
<td>-3.16</td>
<td>5.99</td>
<td>12.88</td>
<td>-6.89</td>
<td>124,200</td>
<td></td>
</tr>
<tr>
<td>2081</td>
<td>8.04</td>
<td>-3.76</td>
<td>1.70</td>
<td>4.84</td>
<td>-3.14</td>
<td>5.98</td>
<td>12.89</td>
<td>-6.90</td>
<td>127,543</td>
<td></td>
</tr>
<tr>
<td>2083</td>
<td>8.09</td>
<td>-3.82</td>
<td>1.70</td>
<td>4.82</td>
<td>-3.11</td>
<td>5.97</td>
<td>12.91</td>
<td>-6.94</td>
<td>134,467</td>
<td></td>
</tr>
<tr>
<td>2084</td>
<td>8.11</td>
<td>-3.85</td>
<td>1.71</td>
<td>4.80</td>
<td>-3.10</td>
<td>5.97</td>
<td>12.92</td>
<td>-6.95</td>
<td>138,049</td>
<td></td>
</tr>
<tr>
<td>2085</td>
<td>8.14</td>
<td>-3.88</td>
<td>1.71</td>
<td>4.79</td>
<td>-3.08</td>
<td>5.96</td>
<td>12.93</td>
<td>-6.97</td>
<td>141,718</td>
<td></td>
</tr>
<tr>
<td>2086</td>
<td>8.16</td>
<td>-3.92</td>
<td>1.71</td>
<td>4.78</td>
<td>-3.07</td>
<td>5.96</td>
<td>12.94</td>
<td>-6.98</td>
<td>145,478</td>
<td></td>
</tr>
<tr>
<td>2087</td>
<td>8.19</td>
<td>-3.95</td>
<td>1.71</td>
<td>4.76</td>
<td>-3.05</td>
<td>5.95</td>
<td>12.95</td>
<td>-7.00</td>
<td>149,330</td>
<td></td>
</tr>
<tr>
<td>2088</td>
<td>8.21</td>
<td>-3.98</td>
<td>1.71</td>
<td>4.75</td>
<td>-3.03</td>
<td>5.95</td>
<td>12.96</td>
<td>-7.01</td>
<td>153,280</td>
<td></td>
</tr>
<tr>
<td>2089</td>
<td>8.23</td>
<td>-4.00</td>
<td>1.72</td>
<td>4.73</td>
<td>-3.02</td>
<td>5.95</td>
<td>12.97</td>
<td>-7.02</td>
<td>157,331</td>
<td></td>
</tr>
<tr>
<td>2090</td>
<td>8.25</td>
<td>-4.03</td>
<td>1.72</td>
<td>4.83</td>
<td>-3.12</td>
<td>5.94</td>
<td>13.09</td>
<td>-7.15</td>
<td>161,487</td>
<td></td>
</tr>
</tbody>
</table>

a Income for individual years excludes interest on the trust funds.

b Between 0 and 0.005 percent of GDP.

Notes: Totals do not necessarily equal the sums of rounded components.
You are exiting the Social Security Administration's website.

Select OK to proceed.

Disclaimer

The Social Security Administration (SSA) website contains links to websites not affiliated with the United States government. These may include State and Local governmental agencies, international agencies, and private entities.

SSA cannot attest to the accuracy of information provided by such websites. If we provide a link to such a website, this does not constitute an endorsement by SSA or any of its employees of the information or products presented on the non-SSA website.

Also, such websites are not within our control and may not follow the same privacy, security or accessibility policies. Once you visit such a website, you are subject to the policies of that site.

Cancel OK
Quantitative Structuring

vs

the Equity Premium Puzzle

Andrei N. Soklakov*

25 July 2015

Quantitative Structuring is a rational framework for manufacturing financial products. It shares many of its components with mainstream economics. The Equity Premium Puzzle is a well known quantitative challenge which has been defying mainstream economics for the last 30 years. Does Quantitative Structuring face a similar challenge? We find Quantitative Structuring to be in remarkable harmony with the observed equity premium. Observed values for the equity premium (both expected and realized) appear to be a real and transparent phenomenon which should persist for as long as equities continue to make sense as an investment asset. Encouraged by this finding, we suggest a certain modification of mainstream economics.

1 Quantitative Structuring

Each and every financial product is completely defined by its payoff function F which states how the benefits (usually cash flows) depend on the underlying variables. In order to price a product, defined by its payoff F, we compute a quantity of the form

$$\text{Price}(F) \propto \sum_x F(x)Q(x),$$

where the summation is taken over all possible values of the underlying variables and where Q is given by a mathematical model for the variables. Equation (1) is probably the most famous formula in the whole of mathematical finance. It shows, among other things, that the value of a product is determined by its payoff structure F and the model Q in a nearly symmetric way.

*Head of Equities Model Risk and Analytics, Deutsche Bank.

The views expressed herein should not be considered as investment advice or promotion. They represent personal research of the author and do not necessarily reflect the view of his employers, or their associates or affiliates. Andrei.Soklakov@db.com, gmail.com.
Product design clearly deserves as much technical attention and respect as modeling. In fact, one can argue that products are much more important than modeling for they define the very nature of a business. Quantitative Structuring recognizes the importance of financial products and provides a technical framework for their design [1].

Within Quantitative Structuring all investments begin with research. Ahead of any proposals, a minimum of two learning steps must happen. The investor needs to form an opinion on the market and to learn their own preferences (risk aversion). Mathematically these two steps are described by two equations:

$$b = f m$$

$$\frac{d \ln F}{d \ln f} = \frac{1}{R}.$$

These equations can be introduced by making just a couple of observations. Firstly, we observe that each and every investment is an exercise in optimization. Secondly, we note that the above equations are obeyed by a payoff function $F(x)$ which solves the following optimization problem [2]

$$\max_F \int b(x) U(F(x)) \, dx \quad \text{subject to budget constraint} \quad \int F(x) m(x) \, dx = 1.$$

The risk aversion coefficient R is connected to the utility U through the standard Arrow-Pratt formula: $R = -F U''_{F}/U'_{F}$. The economic meaning of the market-implied and investor-believed distributions $m(x)$ and $b(x)$ follows from the above optimization.

For further explanations of these equations, including motivation, derivations, intuitive illustrations as well as concrete numerical examples, we refer the reader to [1], [2], [3], [4] and [5].

2 Confronting the Equity Premium Puzzle

In 1985 Mehra and Prescott investigated historical data on the excess returns achieved by equities over government bonds [6]. These excess returns, known as the equity premium, appeared to be surprisingly high. Mehra and Prescott concluded that the equity premium was an order of magnitude greater than could be rationalized within the standard utility-based theories of asset prices.

Given the importance of the challenge, proposals to resolve the puzzle quickly snowballed. More than two decades later Mehra and Prescott revisited the progress on the problem only to reinforce their original conclusions [7]. They estimated the equity premium to be 2-8% in arithmetic terms or up to 6% in terms of geometric (compound) returns and reiterated the Equity Premium Puzzle as a standing challenge to explain these values.

The work on understanding the equity premium continues. Many insightful observations have been made. The scope of proposals has widened enormously. It now ranges from plausible denials of the puzzle to behavioral explanations. The complexity of individual proposals also increased. With some proposals still awaiting adequate independent analysis, it would be fair to say that no single explanation of the puzzle has yet received general acceptance and the search for a clear dominant explanation continues.
A balanced review of the 30 year history of the puzzle is a major task in its own right which would lead us away from the main focus of this paper. For our purposes we need to know only one historical fact. We need to note that the puzzle has posed a major challenge to utility-based economic models. This makes the Equity Premium Puzzle a perfect challenge to Quantitative Structuring which, as we can see from the optimization (4), heavily relies on the expected utility theory.

How would we know if Quantitative Structuring survived the challenge? Of course, it would have to explain the numerical premium of 6% annualized compounded returns. Mehra and Prescott set additional guidelines in their most recent review [7]. They urge clear differentiation between expected and realized returns. They emphasize long-time historical horizons. Furthermore, they set an expectation that any theory which takes on the puzzle must be able to say something about the future of the puzzle. In other words, are the equity returns real and likely to persist or were they a statistical fluke with no material probability of re-occurring?

We accept the challenge with all of the above conditions. We investigate separately the expected and the realized returns. We use long-time horizons when talking about realized returns. Within Quantitative Structuring the observed numerical values of the equity premium appear to be absolutely real and natural. In fact, if these numerical values were somehow not known, Quantitative Structuring would have predicted them.

3 Expected premiums

Using the notation of (4), we can write the investor-expected continuously-compounded rate of return as

$$ER = \int b(x) \ln F(x) \, dx.$$ \hspace{1cm} (5)

This quantity is determined by two things – the structure of the investment $F(x)$, and the investor-believed distribution $b(x)$.

As we focus on equity investments, we describe the investment structure as:

$$F(x) = x,$$ \hspace{1cm} (6)

where x is a total return on one unit of wealth invested in the equity.

To get the believed distribution we need to know the investor’s risk aversion. For example, in the case of a growth-optimizing investor $R = 1$, equation (3) becomes redundant, i.e. $F(x) = f(x)$, and Eq. (2) gives us the believed distribution

$$b_{GO}(x) = F(x) m(x) = x m(x).$$ \hspace{1cm} (7)

The corresponding expected return becomes

$$ER \rightarrow ER_{GO} = \int (x \ln x) m(x) \, dx.$$ \hspace{1cm} (8)

As an example, consider a log-normal market-implied distribution

$$\frac{m(x)}{DF} = \frac{1}{x \sigma \sqrt{2\pi}} \exp \left\{- \frac{\ln x - \mu}{2\sigma^2}\right\}, \quad \mu = r - \sigma^2/2,$$ \hspace{1cm} (9)
where DF is the discount factor, \(r \) is the risk free return and \(\sigma \) is the volatility. In this case the integral in Eq. (8) can be computed analytically with the result:

\[
\text{ER}_{\text{GO}} \rightarrow \text{ER}_{\text{LN}} = r + \sigma^2/2.
\] (10)

Mehra and Prescott considered an investor with arbitrary constant relative risk aversion. Generalization of the above calculations to this case is very easy. All we have to do is to bring into play Eq. (3) with a constant value of \(R \). Equation (10) is then replaced by a slightly more general quantity (see Eq. (33) in the Appendix):

\[
\text{ER}_{\text{LN}}^R = r + (R - 1/2)\sigma^2.
\] (11)

This gives us the expected premium of

\[
\text{EP}_{\text{LN}}^R \overset{\text{def}}{=} \text{ER}_{\text{LN}}^R - r = (R - 1/2)\sigma^2.
\] (12)

In their pioneering paper [6], Mehra and Prescott argue that the acceptable values for \(R \) must be below 10. In fact, all of the actual estimates of \(R \) which they cite to support their argument were below 3. Even staying within this tight range below 3 and making the standard assumption of 20% for typical equity volatility we can easily explain premia as high as 10% in terms of continuously compounded annual returns. This ball-park range is in remarkable agreement with the values observed by Mehra and Prescott.

In the remainder of this section we are going to examine independent quotes for the expected risk premia and see what values of \(R \) they imply. Before we do that, let us restore the generality of our arguments by removing the above made assumption of log-normality. In the case of arbitrary market-implied distributions, Eq. (12) is replaced by the expression (see Eq. (30) in the Appendix):

\[
\text{EP}_{\text{R}} \overset{\text{def}}{=} \text{ER}_{\text{R}} - r = \frac{1}{\text{Price}(x^R)} \frac{\partial \text{Price}(x^R)}{\partial R} - r.
\] (13)

Implying the value of \(R \) from this expression is considerably less convenient than using Eq. (12). Nevertheless, it is a simple root-finding problem which can be solved. In terms of technology, we just need the ability to price power payoffs, \(x^R \), which can be done by replication with vanillas.

In terms of independent quotes for the equity premium we reach out to the field of equity valuations where the expected premium is a very important factor. On Fig. 1 we display expected equity premia as reported by Damodaran [8] using SPX data. It is important to note that these values are just as large as noted by Mehra and Prescott – at least an order of magnitude above 0.35%.
Figure 1: Implied Equity Premia as reported by Damodaran \cite{8}. The records are updated on a monthly basis starting from September 2008. The quoted values refer to the beginning of each month. In our calculations we interpreted this as the first business day of each month.

There are always limits to how far in the future one can look using available market data. According to Damodaran \cite{8}, his quotes for the premia accurately reflect detailed market information (such as market-implied dividends) of up to five years into the future.

At five year horizons, equity skew is quite flat. This makes Eq. (12) useful as a test calculation which requires very little access to market data. On Fig. 2 we compute relative risk aversion from the quoted premia using both the exact Eq. (13) and the test Eq. (12).

In the former case we made no simplifying assumptions and used complete historical records of 5-year volatility curves. In the latter case we used 5-year at-the-money-forward implied volatilities (displayed for convenience on Fig. 3). The graphs for the two cases show good agreement.

All computed values of risk aversion are comfortably within the realistic range. We conclude that, in terms of investors’ expectations, Quantitative Structuring is consistent with the observed equity premia.
Figure 2: Implied risk aversion. Solid and dashed lines correspond to Eqs. (13) and (12) respectively. In both cases the timing of investments is chosen consistently with the quoted values of implied risk premia, i.e. they are assumed to mature in five years starting on the first business day of each month.

Figure 3: SPXT 5-year at-the-money-forward values of implied volatility.
4 Realized premiums

In the above section we managed to reconcile rational expectations of equity premiums. In terms of numerical values, these expectations were just as high as reported by Mehra and Prescott [6]. In this section we would like to understand how such expectations materialize, with investors doing no more than just keeping their money in the equity.

Let S_t be the value of the total return version of some equity index at time t. The return on the equity investment can be partitioned arbitrarily into N imaginary reinvestment steps:

$$S_N = S_0 \cdot \frac{S_1}{S_0} \cdot \frac{S_2}{S_1} \cdots \frac{S_N}{S_{N-1}}. \quad (14)$$

Defining $x_i = S_i / S_{i-1}$ we compute

$$S_N = S_0 \prod_{i=1}^{N} x_i = S_0 e^{\sum_{i=1}^{N} \ln x_i} = S_0 e^{N \cdot \text{Rate}}, \quad (15)$$

where

$$\text{Rate} = \frac{1}{N} \sum_{i=1}^{N} \ln x_i. \quad (16)$$

Let us now look at the time series x_1, \ldots, x_N using the standard statistical approach. In this approach the individual elements $\{x_i\}$ are viewed as realizations of a random variable X with some (possibly unknown) distribution $P(X)$. For the basic statistical concepts, like the average, to make practical sense, the law of large numbers is assumed¹ to hold. In this framework, as N increases, the average (16) converges almost surely to the expectation

$$\text{Rate} \xrightarrow{a.s.} \int P(x) \ln x \, dx. \quad (17)$$

Let us compare this equation with Eq. (5) (remember $F(x) = x$ for equity investments). We see that the investor-expected returns can be achieved provided that the time series is long enough (i.e. N is sufficiently large) and, crucially, that the investor correctly determines the probabilities, i.e. $b(x) \approx P(x)$. This gives us some information about equity investors. Our task now is to understand enough detail to see if it is realistic.

Mehra and Prescott describe the Equity Premium Puzzle as a long-term phenomenon. This discourages us from considering very short reinvestment periods. Ideally, we want to consider the case of smallest possible N that is large enough to ensure noticeable convergence (17). The standard deviation of the sum (16) from its mean (17) scales as $N^{-1/2}$. For the first significant digit of the sum (16) to emerge with some reasonable probability, the convergence must reduce the standard deviation by an order of magnitude ($N^{-1/2} \sim 0.1$). This means that we must choose N which is not much lower than 100.

We managed to find full market data, including volatility surfaces, for SPXT (total return version of SPX) going back to 17 May 2000. At the time of writing, this was about 15 years worth of data (daily records). Some researchers might argue the need for longer historical records. However, 15-year investments are already at the limit of what many regulators would consider too long.

¹This can be ensured if the individual values are sufficiently independent.
people would consider practical, so we choose to accept it. Viewing 15 years of the entire investment history as if it was a sequence of bi-monthly reinvestments we get \(N = 90 \) reinvestment periods.

We need access to the distribution \(P(x) \). One way of defining a probability distribution is to imagine a source of numbers distributed according to this distribution. Given such a source one can estimate expectations using the Monte-Carlo method. In terms of such a definition for the distribution of the actual realized returns, \(P(x) \), all we have is a set of \(N = 90 \) values \(\{x_i\}_{i=1}^{N} \). As discussed above, this is just enough to talk about expectations like (16).

Consider an investor whose original belief happened to coincide with the actual realized distribution, \(b(x) = P(x) \). For this investor, the expected return is given by equation (16) which, by construction, evaluates to the actual realized returns exactly. The analysis of the realized equity premium boils down to the analysis of whether such an investor is realistic. Following Mehra and Prescott, this means computing and examining the investor’s risk aversion.

Using Eqs. (2 - 3) and recalling that for the simple equity investment \(F(x) = x \) we compute

\[
R = \frac{d \ln f}{d \ln F} = \frac{d \ln (b/m)}{d \ln x} = \frac{m}{b} \left(\frac{b}{m} \right)' x.
\]

(18)

Theoretically, this gives us the complete risk-aversion profile for the investor in question. Right now, however, we have a bare minimum of statistical information regarding \(b \). So, as many other researchers before us have done, we choose to focus on the overall level of risk aversion and defer the very interesting topic of the shape of risk-aversion profiles to further research. As a measure of the overall risk aversion we consider the investor’s own expectation of it

\[
\langle R \rangle_b \overset{\text{def}}{=} \int R(x) b(x) \, dx.
\]

(19)

Put together, the above two equations give

\[
\langle R \rangle_b = \int m \left(\frac{b}{m} \right)' x \, dx = \int x m \left(\frac{b}{m} \right) \, dx.
\]

(20)

Integrating by parts and noticing that \(xb \big|_{0}^{\infty} = 0 \), we obtain

\[
\langle R \rangle_b = - \int \frac{b}{m} d (xm) = - \int \frac{b}{m} (m \, dx + x \, dm) = - 1 - \int b x \frac{dm}{m}.
\]

(21)

Finally, using the notation of (19) we derive

\[
\langle R \rangle_b = - 1 - \langle x (\ln m)' \rangle_b.
\]

(22)

This formula does not look very intuitive so, before using it, let us spend a few lines understanding it. To this end, let us see what it implies for a log-normal market-implied distribution. From Eq. (9) we derive

\[
(\ln m)'_x \overset{\text{LN}}{=} \left(- \ln x - \frac{(\ln x - \mu)^2}{2 \sigma^2} + \text{const} \right)'_x = - \frac{1}{x} - \frac{\ln x - \mu}{\sigma^2 x}.
\]

(23)
Substitution into Eq. (22) gives

\[
\langle R \rangle_b^{\text{LN}} = \langle \ln x \rangle_b - \frac{\langle \ln x \rangle_b - \mu}{\sigma^2} = \frac{1}{2} + \frac{\langle \ln x \rangle_b - r}{\sigma^2}. \tag{24}
\]

Compare this to Eq. (12) which we studied above. We recognize Eq. (22) as a generalized analog of Eq. (12). The extent of generalization is very substantial: the market can have any implied distribution, and the investor can have an arbitrary profile of risk-aversion.

As discussed above, we now substitute \(b(x) = P(x) \) into Eq. (22) and obtain the formula for the expected risk aversion for the equity investor who correctly expressed an accurate long-term view on the market

\[
\langle R \rangle_P = -1 - \frac{1}{N} \sum_{i=1}^{N} x_i \left(\ln m(x_i) \right)_{x_i}'. \tag{25}
\]

We are now in a position to compute \(\langle R \rangle_P \) as of any day for which we have market information, \(m \). We should remember, however, that our investor took a 15-year view and is completely ignoring all intermediate updates from the markets. The level of risk aversion for such an investor should be measured in a way that represents most of the actual investment period and is not sensitive to daily market fluctuations. Below we report two kinds of experiments which achieve this. In the first kind we look at the averaged value of \(\langle R \rangle_P \) across the entire 15-year investment period. In the second type we get a glimpse of the term structure of risk aversion by looking at a 10-year moving average.

Above we explained our choice to partition historical investments into bi-monthly reinvestment periods. This choice has a useful side effect. A single experiment would skip most of the available market data using only what it needs at bi-monthly intervals. The skipped market data can be used to repeat the experiment (42 times in total) – we just need to start the bi-monthly sequence on a different business day within the first two months for which we have data.

The horizontal green lines on Fig. 4 report the levels of \(\langle R \rangle_P \) averaged across the entire (\(\sim 15\)-year) investment period. Different lines correspond to the 42 different runs of the experiment. The red line on Fig. 4 is a bi-monthly report of the 10-year moving average of \(\langle R \rangle_P \) for the investment which started on the 17th of May 2000 – the first day for which we have market data. The 42 runs of this experiment are plotted by faint hashed lines across the same graph.

As in the case of the expected equity premia considered in the previous section, we see completely normal levels of risk aversion. Even our attempt to glimpse the term structure, which misaligned investment horizon with the measurement of risk aversion, returned reasonable values.

Speaking about historical premia, we must mention that the performance of equities over the last 15 years has been rather patchy. This has reduced the magnitude of the relevant historical equity premia\(^2\). However, the reduction was not strong or persistent enough to remove large equity premia across the entire data set used in this paper. Out of the 42

\(^2\)This might be partially responsible for the slight dip of risk aversion below zero on Fig. 4, although the confidently positive values for the averages (represented by the green lines) indicate that this is probably just noise.
investments represented by the green lines on Fig. 4, the worst and the best-performing ones delivered around 2% and 2.6% per annum in terms of the annualized equity premium. All of these values are well above the threshold of 0.35% reported by Mehra and Prescott [6].

Figure 4: Historical risk aversion. 10-year moving averages are computed on the bi-monthly grid as described in the main text. Within the 15-years of history this produces sequences of 30 (or 29) values (depending on the availability of data for the last period).

As a final remark, we would like to point the reader back to the discussion around Eqs. (22-24) which brings together the separate investigations of the expected and the realized premia. The two types of premia are different in terms of their precise interpretations. They also come with their own inherent challenges such as high levels of statistical noise in the case of realized premia. Yet, whether we talk about expected or realized equity premia, it is important to note that the underlying mathematics addressing the equity premium puzzle is basically identical.

5 Epilogue

Quantitative Structuring successfully survives the challenge from the Equity Premium Puzzle. In fact, it shows how the puzzle can be resolved. Indeed, given realistic values of risk aversion, Quantitative Structuring predicts the correct expected premia and shows how such expectations materialize over long time horizons. We expect the equity premia
to stay at the levels given by our formulae (Eq. (12), or more generally, Eq. (13)) for as long as investing in equities makes rational sense.

Our analysis is highly generalizable. In this paper we focused on equity investments, which happened to have a linear payoff function $F(x) = x$, but just as easily we could have examined any other investment strategy with a very different payoff function.

This is interesting because economic environments emerge from the successes and failures of individual strategies. It is not unreasonable to think that we might understand an economy by understanding the performance of its key strategies. Due to the potential importance of this line of thinking, let us conclude this paper with a few paragraphs articulating what our approach can offer to the wider subject of economics.

Detailed economics

Investments thrive on information. The information content of an investment is compressed into its economic structure – the payoff function. In the field of economics it has been a popular custom to replace the detailed payoff structure of an investment by simpler ad-hoc representations such as a point on a mean-variance diagram. The resulting loss of information is hard to quantify and even harder to compensate for, even with the most reasonable of assumptions.

Ideally, economic theories should mirror the reality and consider investors as individuals: each one with their own views and goals. Every attempt to get closer to this ideal inevitably faces the formidable challenge of practicality. More detailed models need more detailed information. Quantitative Structuring fulfills this need by providing access to the deep information content of payoff functions.

This is how we escaped the Equity Premium Puzzle. We consider investors as individuals which are allowed to hold any views they want. At the same time we leave no room for speculation about what these views actually are. It is crucial that the views are not assumed, they are derived using the knowledge of payoff functions (see Eqs. (7) and (28)).

Equity investors express strong directional views. Investment premia of over 6% per annum are not unusual in such circumstances. Similar premia can be seen in much more subtle investment strategies [5]. The expected premia are achieved in the long term, provided, of course, that the views are correct.

6 Appendix

Equation (4) can be rewritten as

$$d \ln f = R d \ln F.$$ \hfill (26)

For the case of constant but otherwise arbitrary R the above equation is immediately integrated to obtain

$$f(x) \propto e^{R \ln F(x)} = F^R(x).$$ \hfill (27)
This result together with Eq. [2] give us the investor-believed distribution
\[b(x) = f(x) m(x) = \frac{e^{R \ln F(x)} m(x)}{\int e^{R \ln F(y)} m(y) dy}, \] (28)
where we used the fact that \(b(x) \) is normalized. For the expected logarithmic return we compute
\[\text{ER}_R = \int b(x) \ln F(x) \, dx \] (29)
\[= \frac{1}{Z} \frac{\partial Z}{\partial R}, \] (30)
where
\[Z = \int F^R(x) m(x) \, dx. \] (31)

In this paper we focus on the straightforward equity investment. In this case \(F(x) = x \), and \(Z \) becomes essentially the \(R \)th moment of \(m \). In the special case of log-normal market-implied distribution, this can be computed analytically (see Eq. [9] for notation)
\[Z = \int x^R m(x) \, dx = DF \cdot \exp \left\{ R \mu + \frac{1}{2} R^2 \sigma^2 \right\}, \] (32)
and therefore
\[\text{ER}_R \rightarrow \text{ER}_R^{LN} = \mu + R \sigma^2. \] (33)

References

Predicting Individual Analyst Earnings Forecasts

SCOTT E. STICKEL*

1. Introduction

In this study I propose and test a model that predicts individual analyst forecasts of corporate earnings per share (EPS) using the change in the mean consensus forecast of other analysts since the date of the analyst's current outstanding forecast; the deviation of the analyst’s current forecast from the consensus forecast; and cumulative stock returns since the date of the analyst’s current forecast. I find that these three variables explain about 38% of the variability in analyst forecast revisions. While there is evidence of a relation between changes in earnings expectations and price changes, virtually all of the explanatory power of my model arises from other analyst forecasts.

Section 2 describes the data bases used and the sample selection process. Section 3 presents the model and method for predicting individual analyst forecasts. Section 4 reports the bias and accuracy of the predicted forecasts. Conclusions are in section 5.

2. Data Bases and Sample Selection Process

Individual analyst forecasts of annual EPS are supplied by Zacks Investment Research (Zacks). Daily returns data for firms listed on the New York Stock Exchange or American Stock Exchange are provided by the Center for Research in Security Prices (CRSP) at the University of Chicago.

* University of Pennsylvania. I received helpful comments from Larry Brown, Nick Gonides, Prem Jain, Rick Lambert, Dave Larcker, Don Lewin, Jody Magliolo, participants at the 1989 International Symposium on Forecasting, and an anonymous referee. I appreciate the financial support of the KPMG Peat Marwick Foundation, Deloitte Haskins & Sells, and the Institute for Quantitative Research in Finance. I am also grateful to Zacks Investment Research, Inc. for supplying the analyst forecasts.

Copyright ©, Institute of Professional Accounting 1990
Individual analyst forecast revisions included in the sample meet these four criteria: (1) the forecast revision and the fiscal year-end of the firm are within 1980–85; (2) stock return data are available on the CRSP Daily Returns File of NYSE and ASE firms; (3) the forecast revision date is within 200 trading days of the date of the analyst’s prior forecast and within the current fiscal year of the firm; (4) there are at least two analysts with an outstanding forecast for the firm on the dates of the original forecast and the revision.

Table 1 summarizes the sample selection process. Of the approximately 3,600 firms on the Zacks database for fiscal year-ends within 1980–85, about 1,960 have revisions that meet the sample selection criteria. No industry appears to be missing from the final sample, which includes many banks and utilities as well as industrial companies. However, excluded firms are, on average, smaller than sample firms. Thus, the inferences made from the final sample may not be applicable to very small firms with analyst following.

3. Predicting Individual Analyst Earnings Forecasts

3.1 THE MODEL AND METHOD FOR PREDICTING FORECASTS

I use publicly available information released since the date of an analyst’s current forecast to predict his next forecast. Assume the current day is day $t - 1$. Define $FRCST_{t,a}$ as a revised forecast of EPS for company i to be issued by analyst a on day t and define $FRCST_{t,a-1}$ as the current outstanding forecast dated v days prior to day t. A positive relation is hypothesized between each of the following three pieces of information and the change in investors’ expectations of $FRCST_{t,a}$ between day $t - v$ and $t - 1$:

1. The change in the mean consensus forecast of other analysts

<p>| TABLE 1 |</p>
<table>
<thead>
<tr>
<th>Summary of Sample Selection Process for Individual Forecast Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revisions on Zacks files dated within the 1980–85 calendar period and within the current fiscal year of the firm for firms with fiscal year-ends within the 1980–85 period</td>
</tr>
<tr>
<td>Revisions excluded:</td>
</tr>
<tr>
<td>Firm not on CRSP file of NYSE and ASE firms</td>
</tr>
<tr>
<td>Date of the forecast is more than 200 trading days after the date of the analyst’s prior forecast</td>
</tr>
<tr>
<td>Only one analyst with an outstanding forecast</td>
</tr>
<tr>
<td>Remaining revisions included in forecast prediction regressions (table 2)</td>
</tr>
<tr>
<td>Revisions within the 1980 calendar year</td>
</tr>
<tr>
<td>Remaining revisions included in measures of forecast predictability (table 3)</td>
</tr>
</tbody>
</table>
following firm \(i \) between days \(t - \nu \) and \(t - 1 \). This change proxies for new information released after date \(t - \nu \).

2. The difference between the mean consensus forecast of other analysts following firm \(i \) on day \(t - \nu \) and analyst \(a \)'s forecast on day \(t - \nu \). Zacks supplies brokerage houses with a “deviation report,” which officials at Zacks believe pressures analysts to issue forecasts closer to the consensus.

3. The cumulative return to firm \(i \) from days \(t - \nu \) to \(t - 1 \), multiplied by the forecast by analyst \(a \) on day \(t - \nu \). This return also proxies for new information released after date \(t - \nu \).

To mitigate potential problems from calendar clustering, the sample is segregated into 144 subsamples on the basis of the semimonthly period in which day \(t \) falls, and tests are performed on the data by subsample. This design subsumes any cross-sectional temporal dependence within subsamples and reduces any cross-sectional temporal dependence between subsamples. The significance of mean results from these 144 subsamples is determined by dividing the mean by its standard error, which is the estimated standard deviation of the 144 observations divided by the square root of 144 (see Fama and MacBeth [1973]).

I estimate the following ordinary least squares regression for each of the 144 subsamples:

\[
\begin{align*}
(FRCST_{i,t-\nu} - FRCST_{i,t-\nu-1}) &= \beta_0 + \beta_1 (CONS_{i,t-1} - CONS_{i,t-\nu}) \\
+ \beta_2 (CONS_{i,t-\nu} - FRCST_{i,t-\nu-1}) + \beta_3 (FRCST_{i,t-\nu} \cdot CR_{i,t-\nu-1}) + \epsilon_{i,t-\nu},
\end{align*}
\]

\(CONS_{i,t-\nu} \) is the mean consensus forecast, excluding analyst \(a \), of EPS for company \(i \) on day \(t - 1 \) and is calculated as the equally weighted average of all other individual forecasts.\footnote{1} \(CR_{i,t-\nu-1} \) is the cumulative stock return for firm \(i \) from day \(t - \nu \) to day \(t - 1 \).

3.2 EMPIRICAL RESULTS FOR PREDICTING INDIVIDUAL ANALYST FORECASTS

Table 2 reports the mean results of the 144 regressions. The mean coefficient on each explanatory variable is significantly different from zero.\footnote{2} The mean-adjusted \(R \)-square is .38.\footnote{3} The results suggest that an individual analyst’s next forecast is a positive function of all three proxy
<table>
<thead>
<tr>
<th></th>
<th>Mean Coefficients</th>
<th>Mean-Adjusted R-square</th>
<th>Total Number of Revisions</th>
<th>Number of Regressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>All revisions</td>
<td>(\beta_0)</td>
<td>(\beta_1)</td>
<td>(\beta_2)</td>
<td>(\beta_3)</td>
</tr>
<tr>
<td>((r\text{-statistic})^*)</td>
<td>(-0.07^{a})</td>
<td>(.96^{b})</td>
<td>(.44^{c})</td>
<td>(.11^{d})</td>
</tr>
<tr>
<td></td>
<td>((21.44))</td>
<td>((48.69))</td>
<td>((35.52))</td>
<td>((15.86))</td>
</tr>
<tr>
<td>By analyst reputation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"All-Americans"</td>
<td>(-0.08^{a})</td>
<td>(.88^{b})</td>
<td>(.40^{c})</td>
<td>(.11^{d})</td>
</tr>
<tr>
<td></td>
<td>((29.57))</td>
<td>((46.58))</td>
<td>((37.52))</td>
<td>((15.86))</td>
</tr>
<tr>
<td>"Non-All-Americans"</td>
<td>(-0.07^{a})</td>
<td>(.92^{b})</td>
<td>(.48^{c})</td>
<td>(.10^{d})</td>
</tr>
<tr>
<td></td>
<td>((29.57))</td>
<td>((46.58))</td>
<td>((37.52))</td>
<td>((15.86))</td>
</tr>
<tr>
<td>Two independent variables</td>
<td>(-0.06^{a})</td>
<td>(.92^{b})</td>
<td>(.45^{c})</td>
<td>(.12^{d})</td>
</tr>
<tr>
<td></td>
<td>((29.57))</td>
<td>((46.58))</td>
<td>((37.52))</td>
<td>((15.86))</td>
</tr>
<tr>
<td>Using only forecast revisions from every 15th semimonthly period and restricting (t) to be less than 125</td>
<td>(-0.07^{a})</td>
<td>(.86^{b})</td>
<td>(.36^{c})</td>
<td>(.09^{d})</td>
</tr>
<tr>
<td></td>
<td>((29.57))</td>
<td>((46.58))</td>
<td>((37.52))</td>
<td>((15.86))</td>
</tr>
</tbody>
</table>

Table 2

Relation Between Changes in Analyst Forecasts and Other Information

- \(a \): Significant at the 1% level
- \(b \): Significant at the 5% level
- \(c \): Significant at the 10% level
By number of analysts following the firm

<table>
<thead>
<tr>
<th>Analyst Range</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>R²</th>
<th>n</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-7 analysts</td>
<td>-.07</td>
<td>.76</td>
<td>.28</td>
<td>.11</td>
<td>.27</td>
<td>55,410</td>
</tr>
<tr>
<td>8-11 analysts</td>
<td>-.06</td>
<td>.99</td>
<td>.46</td>
<td>.10</td>
<td>.41</td>
<td>41,205</td>
</tr>
<tr>
<td>12-17 analysts</td>
<td>-.06</td>
<td>1.02</td>
<td>.52</td>
<td>.09</td>
<td>.47</td>
<td>51,180</td>
</tr>
<tr>
<td>18-29 analysts</td>
<td>-.07</td>
<td>.96</td>
<td>.57</td>
<td>.09</td>
<td>.51</td>
<td>45,518</td>
</tr>
</tbody>
</table>

Mean regression results for the relation between changes in analyst α's forecast of EPS and other publicly available information released since analyst α's current forecast and before analyst α's next forecast. Regressions use a sample of individual analyst forecast revisions from the 1980-85 period. The form of the estimated relation is:

\[(\text{FRCST}_{\text{t-1}} - \text{FRCST}_{\text{t-2}}) = \beta_0 + \beta_1(\text{CONS}_{\text{t-1}} - \text{CONS}_{\text{t-2}}) + \beta_2(\text{CONS}_{\text{t-1}} - \text{FRCST}_{\text{t-1}}) + \beta_4(\text{FRCST}_{\text{t-1}} - \text{CONS}_{\text{t-1}} - \text{CR}_{\text{t-1}}) + \epsilon_{\text{t}})\]

where \(\text{FRCST}_{\text{t-1}}\) is the current outstanding forecast of EPS for firm i by analyst α, \(\text{CONS}_{\text{t-1}}\) is the forecasted EPS for firm i by analyst α on day t, a day on which the forecast is revised.

\(\text{CONS}_{\text{t-1}}\) = mean consensus estimate of EPS for firm i on day t - 1, excluding analyst α.

\(\text{CR}_{\text{t-1}}\) = cumulative common stock return for firm i from day t - c to day t - 1.

* The t-statistics are calculated by using the estimated standard deviation of the estimated coefficients.
* The estimated coefficient is significantly different from zero at less than the .01 level.
* The estimated coefficient is significantly different from zero at less than the .05 level.
variables. The estimated coefficients imply that a $1.00 change in the mean forecast of other analysts since the date of an analyst's current forecast changes the expectation of the analyst's next forecast by $.90; an analyst's next forecast is expected to close the deviation between the mean forecast of other analysts and the analyst's forecast by approximately 44%; and cumulative share price gains or losses of 10% since an analyst's current forecast changes the expectation of the analyst's next forecast by 11%. The negative intercept suggests that analysts initially overestimate earnings, at least during 1980–85, and subsequently revise those forecasts downward by $.07 per revision, ceteris paribus.4

Table 2 also reports a comparison of the predictability of forecasts made by analysts on the Institutional Investor annual “All-American Research Team” with that of other analysts. Forecast revisions by analysts who are first-, second-, and third-team “All-Americans” in any year within 1981–85 are segregated from those of other analysts, and regressions are performed. Based on paired comparisons t-tests, where differences are computed semimonthly, the mean difference in β_1 is .037 (t-statistic = 1.48), the mean difference in β_2 is .081 (t-statistic = 3.88), and the mean difference in R^2 is .049 (t-statistic = 3.26). Thus, ceteris paribus, the forecasts of “All-Americans” are less likely to “follow the crowd” and are less predictable than forecasts by other analysts.5

3.3 Sensitivity Analyses

The estimated coefficients are not sensitive to performing one regression with all 191,313 observations, although the significance levels of the t-statistics are higher. Using a single regression, the coefficients (t-statistics) for β_0, β_1, β_2, and β_3 are –.08 (–75.04), .86 (326.46), .41 (190.10), and .11 (54.24), respectively.

The regression results are sensitive to the exclusion of single independent variables. The results reported on table 2 suggest that most of the explanatory power of my model arises from the change in the consensus and the deviation of the forecast from the consensus forecast. The marginal explanatory power of price changes is very small.

Table 2 also reports regression results for subsamples restricted to be 14 semimonthly periods apart and revisions that are dated within 125 trading days of the date of the prior forecast. The semimonthly periods used end on the following dates: 1/15/80, 8/31/80, 4/15/81, 11/30/81, 7/

4 A similar upward bias over the same period has been documented for Value Line Investment Survey forecasts by Abarbanell [1989] and in my own unpublished analysis of IBES mean consensus forecasts.

5 The mean and median number of analysts following (1) firms followed by “All-Americans” and (2) firms followed by others are (1) 12.2 and 11 and (2) 12.3 and 11, respectively. Thus, the differences in model fit between “All-Americans” and other analysts are not associated with the differences in model fit reported in section 3.3 for analyst following.
15/82, 2/28/83, 10/15/83, 5/31/84, 1/15/85, and 8/31/85. Restricting the sample to these ten semimonthly periods ensures that any portion of the change in FRCST cannot be in more than one semimonthly period. The estimated coefficients are again significantly different from zero.

The results are somewhat sensitive to grouping revisions by the number of analysts with an outstanding forecast. As reported in Table 2, the mean-adjusted R-square for the quartile of firms with the least analyst following is .27. The mean-adjusted R-squares for the remaining three quartiles are .41, .47, and .51, respectively.

The mean coefficients are relatively insensitive to merging regressions on a firm-by-firm basis before averaging. Regressions are performed for firms with at least 30 forecast revisions over the 1980-85 period. This procedure allows the intercept to vary across firms (see Murphy [1985]). There are 1,047 firms meeting this requirement, for which the mean coefficients for \(\beta_0, \beta_1, \beta_2, \) and \(\beta_3 \) are \(-.09, .80, .54, \) and .08, respectively. The individual firm coefficients are unbiased, but not independent; thus, t-statistics are not calculated. The mean-adjusted R-square for a random sample of 50 of these firms is .30. Thus, there is no apparent advantage to allowing the intercept to vary on a firm-by-firm basis.

The mean coefficient for \(CR_{i(t; t-1)} \) declines somewhat when cumulative abnormal returns, measured as market model residuals (e.g., Fama [1976]) and mean-adjusted returns (see Masulis [1978]), are substituted.6 Using market model residuals and mean-adjusted returns results in estimated coefficients (t-statistics) for \(\beta_3 \) of 0.05 (8.62) and 0.05 (9.93), respectively. However, for both definitions, the explanatory power of abnormal returns is negligible, and the mean-adjusted R-square is again .38.

4. The Bias and Accuracy of Predicted Individual Analyst Forecasts

This section evaluates the predictive ability of the model using the following measure:

\[
\text{"Updated" PFE}_{it}\| = \frac{\text{FRCST}_{it} - E_{t-1}(\text{FRCST}_{it})}{\text{FRCST}_{it}},
\]

where \(\text{PFE}_{it}\| \) is defined as the percentage forecast error7 and:

\[
E_{t-1}(\text{FRCST}_{it}) = \text{FRCST}_{it} + \beta_1 (\text{CONS}_{it-1} - \text{CONS}_{it-2}) + \beta_2 (\text{CONS}_{it-2} - \text{FRCST}_{it-2}).
\]

6 For both definitions, parameters are estimated over event days +201 to +350, with at least 30 days of returns required for sample inclusion.
7 The results discussed below are not sensitive to scaling the forecast error by price per share or the cross-sectional standard deviation of analyst forecasts at day \(t - 1 \). I used the procedures described in n. 3 for mitigating the small-denominator problem.
TABLE 3
Bias and Accuracy of Predicted Individual Analyst Forecasts

<table>
<thead>
<tr>
<th>Percentage Forecast Error</th>
<th>Distribution of Percentage Forecast Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Using current outstanding forecast: $\frac{(FRCST_{i,t} - FRCST_{i,t-1})}{FRCST_{i,t-1}}$</td>
<td>$-.166$</td>
</tr>
<tr>
<td>Using "updated" forecast: $\frac{(FRCST_{i,t} - E_{t-1}(FRCST_{i,t}))}{FRCST_{i,t}}$</td>
<td>$-.045$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absolute Percentage Forecast Error</th>
<th>Distribution of Absolute Percentage Forecast Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Using current outstanding forecast: $\frac{</td>
<td>FRCST_{i,t} - FRCST_{i,t-1}</td>
</tr>
<tr>
<td>Using "updated" forecast: $\frac{</td>
<td>FRCST_{i,t} - E_{t-1}(FRCST_{i,t})</td>
</tr>
</tbody>
</table>

Distribution of measures of the bias and accuracy in predicted individual analyst forecasts. Percentage forecast error, a measure of bias, and absolute percentage forecast error, a measure of accuracy, are calculated from forecast revisions dated within the 1981–85 period. The number of revisions is 174,700.

$E_{t-1}(FRCST_{i,t})$ is the expected next forecast of EPS for firm i by analyst a as of day $t - 1$. This expectation uses publicly available information released since day $t - 1$, the date of the analyst’s current forecast. See table 2 for definitions of other variables.

The parameters β_0, β_1, and β_2 are estimated using data from the prior year. Because of the low marginal explanatory power of past price changes noted on table 2, β_2 is not estimated or used.

As a benchmark, I use the following measure of the predictability of individual analyst forecast revisions.

"Naive" $PFE_{i,t}=\frac{(FRCST_{i,t} - FRCST_{i,t-1})}{FRCST_{i,t-1}}$.

"Naive" PFE conditions expectations of the next forecast on only the current outstanding forecast and is analogous to a random walk model.

Table 3 reports signed percentage forecast errors (measures of bias) and unsigned (absolute) percentage forecast errors (measures of accuracy). The distribution of "updated" PFE is more symmetrically distributed around zero and has smaller absolute values than "naive" PFE.

4The regression results of the prior section are also relatively insensitive to the forecast year. Because prior year data are used for parameter estimation, there are no 1980 "updated" forecasts. This leaves 5 years or 120 semimonthly periods.

5Subtracting the regression intercept from each outstanding forecast and using the resulting number as the expected forecast results in a mean percentage forecast error of -12.0% and a mean absolute forecast error of 22.2%. Thus, the improvement in predictive ability from using "updated" forecasts is not simply due to the intercept term.
I used paired comparisons t-tests to evaluate the significance of the differences in bias and accuracy. The differences in bias ("naive" PFE minus "updated" PFE) and accuracy (absolute "naive" PFE minus absolute "updated" PFE) are computed at the individual analyst level, and a mean difference is computed by semimonthly period. Significance is determined by dividing the mean of the semimonthly mean differences by its standard error. Aggregated in this manner, the mean difference in bias is −11.3% (t-statistic = −32.17) and the mean difference in accuracy is 5.2% (t-statistic = 31.55). Thus, "updated" forecasts are less biased and more accurate predictors of future forecasts than the analyst's current forecast.

5. Conclusions

My model predicts an individual analyst's next EPS forecast by updating his current forecast for subsequent information. "Updated" forecasts from this model are less biased and more accurate predictors of future forecasts than the analyst's current forecast. Possible extensions of this line of research include examining whether or not "updated" forecasts are better predictors of future reported earnings; using "updated" forecasts as measures of market expectations; and using the dispersion of "updated" forecasts as measures of earnings uncertainty.

REFERENCES

