The Accuracy, Bias and Efficiency of Analysts’ Long Run Earnings Growth Forecasts

RICHARD D.F. HARRIS*

1. INTRODUCTION

Considerable research has now been undertaken into professional analysts’ forecasts of companies’ earnings in respect of both their accuracy relative to the predictions of time series models of earnings, and their rationality. The evaluation of the reliability of analysts’ earnings growth forecasts is an important aspect of research in accounting and finance for a number of reasons. Firstly, many empirical studies employ analysts’ consensus forecasts as a proxy for the market’s expectation of future earnings in order to identify the unanticipated component of earnings. The use of consensus forecasts in this way is predicated on the assumption that they are unbiased and efficient forecasts of future earnings growth. Secondly, institutional investors make considerable use of analysts’ forecasts when evaluating and selecting individual shares. The quality of the forecasts that they employ therefore has important practical consequences for portfolio performance. Finally, from an academic point of view, the performance of analysts’ forecasts is interesting because it sheds light on the process by which agents form expectations about key economic and financial variables.

*The author is from the Department of Economics, University of Exeter. This paper was started while the author was a Visiting Fellow at the University of Warwick, April 1997. Financial Support from the ESRC (project no. R000234759) is gratefully acknowledged. He would also like to thank George Bulkeley, Alan Gregory and an anonymous referee for their helpful comments. (Paper received March 1998, revised and accepted December 1998)

Address for correspondence: Richard D.F. Harris, School of Business and Economics, University of Exeter, Exeter EX4 4PU, UK.
E-mail: R.D.F.Harris@exeter.ac.uk
Nearly all of the research to date, however, has been concerned with analysts’ forecasts of quarterly and annual earnings per share. While the properties of analysts’ short run forecasts are undoubtedly important in their own right, it is long run expectations of earnings growth that are more relevant for security pricing (see, for instance, Brown et al., 1985). A number of papers have suggested that there is substantial mis-pricing in the stock market as a consequence of irrational long run earnings growth forecasts being incorporated into the market expectation of earnings growth (DeBondt, 1992; La Porta, 1996; Bulkey and Harris, 1997; and Dechow and Sloan, 1997). The evaluation of the performance of analysts’ long run forecasts is clearly important as corroborating evidence.

This paper provides a detailed study of the accuracy, bias and efficiency of analysts’ long run earnings growth forecasts for US companies. It identifies a number of characteristics of forecast earnings growth. Firstly, the accuracy of analysts’ long run earnings growth forecasts is shown to be extremely low. So low, in fact, that they are inferior to the forecasts of a naïve model in which earnings are assumed to follow a martingale. Secondly, analysts’ long run earnings growth forecasts are found to be significantly biased, with forecast earnings growth exceeding actual earnings growth by an average of about seven percent per annum. Thirdly, analysts’ forecasts are shown to be weakly inefficient in the sense that forecast errors are correlated with the forecasts themselves. In particular, low forecasts are associated with low forecast errors, while high forecasts are associated with high forecast errors. The bias and inefficiency in analysts’ long run forecasts are considerably more pronounced than in their short run and interim forecasts.

It is investigated whether analysts incorporate information about future earnings that is contained in current share prices. It is demonstrated that consistent with their short run and interim forecasts, analysts’ long run earnings growth forecasts can be enhanced by assuming that each individual firm’s earnings will evolve in such a way that its price-earnings ratio will converge to the current market average price-earnings ratio. Analysts therefore neglect valuable information about future earnings that is readily available at the time that their forecasts are made.
The source of analyst inaccuracy is explored by decomposing the mean square error of analysts’ forecasts into two systematic components, representing the error that arises as a result of forecast bias and forecast inefficiency, and a random, unpredictable component. In principle, the systematic components of analysts’ forecast errors can be eliminated by taking into account the bias and inefficiency in their forecasts. However, it is shown that the bias and inefficiency of analysts’ forecasts contribute very little to their inaccuracy. Over eighty-eight percent of the mean square forecast error is random, while less than twelve percent is due to the systematic components. This is an important result for the users of analysts’ forecasts since it means that correcting forecasts for their systematic errors can potentially yield only a small improvement in their accuracy.

A second decomposition is used to examine the level of aggregation at which forecast errors are made. The mean square forecast error is decomposed into the error in forecasting average earnings growth in the economy, the error in forecasting the deviation of average growth in each industry from average growth in the economy, and the error in forecasting the deviation of earnings growth for individual firms from average industry growth. It is demonstrated that the error in forecasting average earnings growth in the economy contributes relatively little to analysts’ inaccuracy. Over half of total forecast error arises from the error in forecasting deviations of individual firm growth from average industry growth. The error in forecasting deviations of average industry growth from average growth in the economy is smaller, but also significant. However, there is evidence that this pattern is changing over time, with increasing accuracy at the industry level, and diminishing accuracy at the individual firm level.

Finally, it is shown that the performance of analysts’ long run earnings growth forecasts varies substantially both with the characteristics of the company whose earnings are being forecast and of the forecast itself. The accuracy, bias and efficiency of analysts’ forecasts is examined for sub-samples of firms partitioned by market capitalisation, price-earnings ratio, market-to-book ratio and the level of the forecast itself. The most reliable earnings growth forecasts are low forecasts issued for large companies with low price-earnings ratios and high
market-to-book ratios. Again, this is of considerable practical importance since it offers users of analysts’ forecasts some opportunity to discriminate between good and bad forecasts.

The organisation of this paper is as follows. The following section gives a detailed description of the data sources and the sample selection criteria. Section 3 describes the methodology used to evaluate forecast accuracy, bias and efficiency. Section 4 reports the results, while Section 5 concludes.

2. DATA

The sample is drawn from all companies listed on the New York, American and NASDAQ stock exchanges. Data on long run earnings growth expectations are taken from the Institutional Brokers Estimate System (IBES). The data item used in this paper is the ‘expected EPS long run growth rate’ (item 0), which has been reported by IBES since December 1981, and is defined as:

the anticipated growth rate in earnings per share over the longer term. IBES Inc. requests that contributing firms focus on the five-year interval that begins on the first day of the current fiscal year and make their calculations based on projections of EPS before extraordinary items.

The expected long term growth rate is therefore taken to be the forecast average annual growth in earnings per share before extraordinary items, over the five year period that starts at the beginning of the current fiscal year. The measure used in this paper is the median forecast calculated and reported in April of each year, t. The analysis was also conducted using the mean forecast, but the quantitative results are virtually identical, and the qualitative conclusions unchanged.

Only December fiscal year end companies are included in the sample and so the use of the consensus forecast reported in April should ensure that the previous fiscal year’s earnings are public information at the time that the individual forecasts that make up the consensus forecast are made (see Alford, Jones and Zmijewski, 1994). Restricting the sample to December fiscal year-end companies ensures that observations for a particular fiscal year span the same calendar period, thus allowing the identification of macroeconomic shocks that contemporaneously affect the earnings of all firms.
Actual growth in earnings is calculated using data on earnings per share, excluding extraordinary items, taken from the Standard and Poor’s CompuStat database (item EPSFX). Average annual earnings growth is computed as the average change in earnings over each five year period, from December of year \(t-1 \) to December of year \(t+5 \), scaled by earnings in December of year \(t-1 \). The need for five years’ subsequent earnings growth data limits the sample period to the eleven years 1982–92. Data on a number of other variables are also used in the analysis. The share price and market capitalisation are both taken at the end of April of year \(t \) (CompuStat items PRCCM and MKVALM). The market price-earnings ratio, used to test whether information contained in the share price is incorporated in analysts’ forecasts, is computed as the price at the end of April in year \(t \) (item PRCCM) divided by earnings per share in the fiscal year ending December \(t-1 \) (item EPSFX). The market-to-book ratio is computed as the market value of the company in April of year \(t \) (item MKVALM) divided by the book value of the company in the fiscal year ending December of year \(t-1 \) (item CEQ).

There are a total of 7,660 firm-year observations that satisfy the data requirements for all the variables used in the analysis, and that have a December fiscal year-end. However, for 658 of these, earnings reported at the end of the preceding fiscal year are zero or negative. These are omitted from the sample since forecast growth has no natural interpretation when earnings in the base year are non-positive.\(^4\) When initial earnings are close to zero, actual growth in earnings may take extreme values, resulting in outliers that have a disproportionately high degree of influence on the least squares regression results. There is no immediately obvious way to circumvent this problem without dropping some observations from the sample. The approach most commonly adopted is to omit observations for which the calculated growth rate, the forecast growth rate or the forecast error is above a certain threshold in absolute value, or for which calculated initial earnings are below a certain level. For instance, Fried and Givoly (1982) truncate observations for which forecast error exceeds 100%. Elton et al. (1984) include in their sample only those companies for which initial earnings are above 0.20 dollars per share. O’Brien (1988), in order to test the robustness of her results to outliers, also uses 0.20 dollars as a threshold value.
Capstaff et al. (1995) omit observations for which forecast earnings growth or forecast error exceeds 100%, while Capstaff et al. (1998) exclude companies for which forecast earnings growth or actual earnings growth exceeds 100%. In this paper, all observations for which actual earnings growth or forecast earnings growth exceeds 100% in absolute value are omitted from the analysis, reducing the sample by a further 336 firm-year observations. The final pooled sample comprises 6,666 firm-year observations.

3. METHODOLOGY

(i) Forecast Accuracy

The metric used to evaluate forecast performance is the forecast error, defined as the difference between actual and forecast earnings growth:

\[f_{it} = g_{it} - g_{it}^{f} \]

where \(f_{it} \) is the forecast error for firm \(i \) corresponding to the forecast made at date \(t \), \(g_{it} \) is actual earnings growth over the five year forecast period and \(g_{it}^{f} \) is forecast five year earnings growth. Forecast accuracy is evaluated using the mean square forecast error, which is computed in each year \(t \) as:

\[MSFE_{t} = \frac{1}{N} \sum_{i=1}^{N} (g_{it} - g_{it}^{f})^2. \]

The mean square forecast error for the pooled sample is computed over all firms and years. The mean square forecast error was chosen in preference to the mean absolute forecast error to maintain consistency with the subsequent analysis which uses the former measure rather than the latter. However, it should be noted that the use of the mean square forecast error is consistent with a quadratic loss function of risk averse economic agents (see Theil, 1964; and Mincer and Zarnowitz, 1969). It can be reported that the conclusions drawn about forecast accuracy are not sensitive to the choice of measure.

As a benchmark against which to compare the accuracy of analysts’ long run forecasts, the performance of two ‘naïve’
forecasts is also considered. The first is the forecast generated by a martingale model of earnings, in which expected earnings growth is zero. The second is the forecast generated by a sub-martingale model, in which expected earnings is equal to a drift parameter that is identical for all firms. In each forecast year, the common drift parameter is set equal to the average growth rate in earnings over all firms, over the previous five year period.6 This choice of naïve forecasts is motivated by the early evidence on the time series properties of earnings, which suggests that annual earnings follow a random walk, or a random walk with drift (see, for instance, Brooks and Buckmaster, 1976; or Foster, 1977). Although more recent evidence finds that annual earnings may have a mean reverting component (see Ramakrishnan and Thomas, 1992), the martingale and sub-martingale models of earnings nevertheless provide simple alternative models that are approximately consistent with the reported evidence.

(ii) Forecast Bias

In order for a forecast to be unbiased, the unconditional expectation of the forecast error must be zero. If the average forecast error is greater than zero then analysts are systematically over-pessimistic (since their forecasts are on average exceeded) while if the average forecast error is less than zero analysts are systematically over-optimistic (since their forecasts are on average unfulfilled). Unbiasedness is tested using the mean forecast error, which is computed in each year \(t \) as:

\[
MFE_t = \frac{1}{N} \sum_{i=1}^{N} (g_{it} - \hat{g}_{it}).
\]

The mean forecast error for the pooled sample is computed over all firms and years. The hypothesis that the mean forecast error is zero is tested using the standard error of the mean forecast error across all firms and years for the pooled sample, and across all firms for each of the annual samples.

(iii) Forecast Efficiency

A forecast is efficient if it optimally reflects currently available information, and is therefore associated with a forecast error that
is unpredictable. If a forecast is strongly efficient, the forecast error is uncorrelated with the entire information set at time \(t \). Strong efficiency is a stringent condition, and so more usually forecasts are instead tested for weak efficiency, which requires that the forecast error is uncorrelated with the forecast itself (see Nordhaus, 1987). Weak efficiency is tested by estimating the following regression:

\[
g_{it} = \alpha + \beta g_{it} + v_{it}. \tag{4}
\]

Under the null hypothesis that analysts’ forecasts are weakly efficient, the intercept, \(\alpha \), should be zero, while the slope coefficient, \(\beta \), should be unity. If \(\beta \) is significantly different from one then conditioning on the forecast itself, the forecast error is predictable.\(^{7}\) If \(\beta \) is significantly less than one then analysts’ forecasts are too extreme, in the sense that high forecasts are associated with high forecast errors, while low forecasts are associated with low forecast errors. If \(\beta \) is significantly greater than one then forecasts are too compressed.

(iv) The Incremental Information Content of Price-Earnings Based Forecasts

A stronger form of forecast efficiency can be tested by examining whether analysts’ forecasts incorporate particular sources of publicly available information. One such source of information is the current share price. In an efficient market, the share price is the present discounted value of all rationally expected future economic earnings of the company, and hence it should reflect, *inter alia*, the market’s expectation of long run earnings growth. To extract the information about future earnings embodied in the share price, some assumption must be made about the company’s cost of equity, or risk. The simplest assumption is that all companies face the same constant cost of equity in the long run, so that the earnings of each company evolve in such a way that its price-earnings ratio converges to the current market average price-earnings ratio. The earnings growth forecast that is implicit in this assumption can then be used to supplement the analysts’ earnings growth forecast in the following regression:

\[
g_{it} = \alpha + \beta g_{it}^{p} + \gamma g_{it}^{p} + v_{it}, \tag{5}
\]

© Blackwell Publishers Ltd 1999
where

\[g_{it}^p = \frac{p_{it} / p_{emt} - e_{it}}{e_{it}}, \quad p_{emt} = \frac{1}{N} \sum_{i=1}^{N} \frac{p_{it}}{e_{it}} \]

and \(p_{it} \) is the share price of firm \(i \) at time \(t \). If analysts incorporate all information contained in the current share price, the coefficient, \(\gamma \), should be zero (see Capstaff et al., 1995 and 1998). Naturally, the assumption that all firms have the same long run price-earnings ratio is a strong simplification, and a superior forecast would almost certainly be obtained by assuming that price-earnings ratios differ between industries. Nevertheless, the assumption of a single market-wide long run price-earnings ratio has been shown to forecast earnings growth over shorter horizons (see, for instance, Ou and Penman, 1989).

\((v)\) Forecast Error Decomposition

In order to analyse the source of analysts’ forecast errors, two decompositions of the mean square forecast error are used. The first decomposes the mean square forecast error into systematic and unsystematic components. The systematic component is further divided into a component due to forecast bias and a component due to forecast inefficiency. In each year \(t \), the decomposition of the MSFE is given by:

\[
\text{MSFE}_t = \frac{1}{N_t} \sum_{i=1}^{N_t} (g_{it} - g_{it}^f)^2 = (\bar{g}_t - \bar{g}_t^f)^2 + (1 - \beta_t)^2 \sigma_{g_{it}}^2 + (1 - \rho_t)^2 \sigma_{g_{it}}^2
\]

(6)

where \(N_t \) is the sample size in year \(t \), \(\bar{g}_t \) and \(\bar{g}_t^f \) are the average values of \(g_{it} \) and \(g_{it}^f \), \(\beta_t \) is the slope coefficient from regression (4), above, \(\rho_t \) is the correlation coefficient between \(g_{it} \) and \(g_{it}^f \), and \(\sigma_{g_{it}}^2 \) and \(\sigma_{g_{it}}^2 \) are the variances of \(g_{it} \) and \(g_{it}^f \). The first term in the decomposition gives the error that is due to the inability of analysts to forecast earnings growth for the whole sample. When computed over all years, it is therefore a measure of the error that is due to forecast bias. The second term captures the error that is due to forecast inefficiency. Together, these two terms capture the systematic error in analysts’ forecasts. In contrast, the third term captures the component of the error that is purely random. This decomposition is particularly useful since it reveals
to what extent forecasts can be improved through ‘optimal linear correction’ procedures (see Mincer and Zarnowitz, 1969; and Theil, 1966). For instance, if the main component of mean square error is systematic, rather than random, then assuming that the data generating process for both the actual data and the forecast data remains constant, the accuracy of analysts’ forecasts can be substantially improved by using the predicted values from regression (4), above, rather than the forecasts themselves. The extent to which this reduces the inaccuracy of the forecasts depends upon the fraction of the mean square forecast error that is due to the systematic component.

The second decomposition breaks the mean square forecast error into economy, industry and firm components. The decomposition of the MSFE is given each year t by:

$$
\text{MSFE}_t = \frac{1}{N} \sum_{i=1}^{N} \left(g_{it} - \bar{g}_t \right)^2
$$

$$
= \left(\bar{g}_t - \bar{g}_t^f \right)^2 + \frac{1}{N} \sum_{j=1}^{J} N_j \left(\left(\bar{g}_{jt} - \bar{g}_t \right) - \left(\bar{g}_{jt} - \bar{g}_t^f \right) \right)^2
$$

$$
+ \frac{1}{N} \sum_{i=1}^{N} \left(\left(g_{it} - \bar{g}_{jt} \right) - \left(g_{it} - \bar{g}_{jt}^f \right) \right)^2,
$$

where J is the number of industries in the sample, N_j is the number of firms in industry j, \bar{g}_{jt} and \bar{g}_{jt}^f are the average values of g_{it} and g_{it}^f in industry j. The decomposition has the following interpretation. As before, the first term measures the error that is due to analysts’ inability to forecast the average growth for the whole sample, which in this context may be interpreted as their inability to forecast earnings growth for the economy. The second term measures the error that is due to an inability to forecast the deviation of average growth in an industry from average growth in the economy. The third term measures the error that is due to an inability to forecast deviation of individual firm growth from average growth in its industry. The decomposition for the pooled sample is computed by taking the weighted average of the decomposition for the annual samples, with weights proportional to the sample size each year. Such a decomposition is useful because it reveals the level of aggregation at which

© Blackwell Publishers Ltd 1999
forecast errors are made, and may reflect the particular approach used to generate earnings growth forecasts (see Elton, Gruber and Gultekin, 1984). In the present study, each industry is defined by a two digit SIC code. This yields a total of 56 industries, with an average of about twelve firms in each industry. The use of three digit SIC codes yields a large number of industries that comprise only a single firm. In these cases, the firm-specific error and industry specific error are not separately identifiable, and are reflected in the third component of the decomposition. The effect of using two digit, rather than three digit SIC codes is therefore to increase the firm specific error and reduce the industry specific error.

For both decompositions, it is convenient to express each term as a percentage of the total mean square forecast error. For the pooled samples, the mean square forecast error components are averaged over the individual years, with weights proportional to the sample size each year.

(vi) The Performance of Analysts’ Forecasts Conditional on Firm and Forecast Characteristics

In order to explore possible heterogeneity in the performance of analysts’ long run earnings growth forecasts, the sample is partitioned by various characteristics of the firm whose earnings are being forecast and of the forecast itself. Specifically, the sample is split into equally sized quintiles on the basis of market capitalisation, market-to-book ratio, price-earnings ratio and the level of the forecast itself. Forecast accuracy, bias and efficiency is then examined for each sub-sample. Forecast accuracy is measured by the mean square forecast error given by (2), forecast bias is measured by the mean forecast error given by (3), while forecast efficiency is measured by the estimated slope parameter in regression (4).

In order to identify the marginal effects of each of the firm and forecast characteristics on forecast accuracy, bias and weak form efficiency, the following regressions are estimated:

\[(g_d - g_d^f)^2 = \alpha + \beta_1 \ln m_d + \beta_2 m_b_d + \beta_3 p_e_d + \beta_4 g_d^f + v_d, \quad (10)\]

\[g_d - g_d^f = \alpha + \beta_1 \ln m_d + \beta_2 m_b_d + \beta_3 p_e_d + \beta_4 g_d^f + v_d \quad (11)\]
and
\[
(g_i - \overline{g}_i)[(g_i - \overline{g}_i) - (g_i - \overline{g}_i)] = \alpha + \beta_1 \ln m_i + \beta_2 mb_i + \beta_3 pe_i + \beta_4 g_i + \nu_i, \tag{12}
\]

where \(\ln m_i\) is the natural logarithm of the market capitalisation of firm \(i\) at the beginning of the forecast period, \(mb_i\) is the market-to-book ratio and \(pe_i\) is the price-earnings ratio. The dependent variables in the three regressions are the summands in (a) the mean square forecast error, (b) the mean forecast error and (c) the estimated covariance between \((g_i - \overline{g}_i)\) and \(g_i\).

(vii) Estimation Procedure

In order to allow for time specific market wide shocks, each of the regression equations (4), (5), (9), (10), (11) and (12) is estimated by OLS, including fixed time effects. However, inference based on OLS estimates of the variance-covariance matrix of the disturbance term may be misleading since both heteroscedasticity and cross-sectional correlation are likely to be present in the data. One potential solution is to use GLS, in which the heteroscedasticity and cross-section correlation are parameterised and estimated. However, in the present case, GLS is infeasible since the number of cross-section observations is large relative to the number of time series observations. This paper employs instead the non-parametric approach of Froot (1989), which is robust to both contemporaneous correlation and heteroscedasticity. This involves partitioning the data by a two digit SIC code and assuming that the intra-industry correlation is zero. This then allows the consistent estimation of the parameter covariance matrix. The Froot estimator is modified using the Newey-West (1987) procedure in order to allow for the serial correlation in the regression error term that is induced by the use of overlapping data.

4. RESULTS

(i) Forecast Accuracy

Panel A of Table 1 reports the mean square forecast error, given by (2), for the pooled sample and for each individual year. It also
reports the mean square forecast errors for the naïve forecasts of the martingale model, where forecast earnings growth is zero, and the sub-martingale model, where forecast earnings growth is the historical economy wide average earnings growth rate.

The accuracy of analysts’ long run earnings growth forecasts is extremely low. In the pooled sample, the mean square forecast error for analysts is 7.15%. For the martingale model, the mean square error is 6.63%, while for the sub-martingale model, it is marginally lower at 6.60%. On average, therefore, a superior forecast of long run earnings growth for individual companies can be obtained simply by assuming that average annual earnings growth will be zero. This is a strong indictment of the accuracy of analysts’ long run forecasts, and in view of the additional information available to analysts, is surprising. It also contrasts with the evidence for shorter horizon forecasts where analysts appear to have some advantage over time series models. Furthermore, the alternative models used here are relatively simple. If in fact earnings are stationary, then it is likely that a yet superior forecast could be obtained from an estimated time series model for each firm, and so the relative inferiority of analysts’ forecasts is probably understated here.

Turning to the annual samples, the martingale model generates superior forecasts in seven out of eleven years, while the sub-martingale model generates forecasts that are superior to analysts’ forecast in nine of the eleven years, and superior to the forecasts of the martingale model in ten out of eleven years. This suggests that one can improve on the zero growth forecast of the martingale model by using the historical economy average earnings growth rate to predict subsequent growth for individual firms. However, the improvement is only marginal, reflecting both considerable variation in average earnings growth between years and considerable dispersion in earnings growth rates across the economy. The time-series pattern of forecast errors suggests that analyst inferiority is not caused by just one or two outlying years. Nor does it suggest that there is any improvement in the accuracy of analysts’ forecasts over the sample period, either relative to the forecasts of the martingale and sub-martingale models, or in absolute terms. The (unweighted) average mean square forecast error for the first five years in the sample is 7.02%, while in the last five years it is 7.28%. This is in contrast
with evidence reported elsewhere that analyst accuracy has increased over time (see Brown, 1997).

(ii) Forecast Bias
Panel B of Table 1 reports the mean forecast error for analysts’ forecasts of long run earnings growth, given by (3), and its standard error. In the pooled sample, the mean forecast error is negative indicating that analysts’ long run earnings growth forecasts are over-optimistic. The mean forecast error is very significant both in statistical and economic terms. On average, forecast growth exceeds actual growth by about seven percent per annum. Over-optimism in long run earnings growth forecasts is consistent with evidence reported for analysts’ shorter horizon earnings forecasts (see, for instance, Fried and Givoly, 1982; Brown et al., 1985; and O’Brien, 1988). It is also consistent with international evidence on analysts short run and interim forecasts (see Capstaff et al., 1995 and 1998).

The mean forecast error is also negative in each individual year, and significantly negative in all but the last, ranging from 1.50% to 11.82% per annum. This is in contrast with analysts’ shorter horizon forecasts where the direction of the reported bias displays considerable year to year variation (see, for instance, Givoly, 1985). It is again notable that the degree of over-optimism has not diminished significantly over time. The (unweighted) mean forecast error for the first five years of the sample is −6.99%, while for the last five years it is −7.20%. It is of course possible that the last year in the sample, where the mean forecast error is less than two percent, marks the start of a reduction in analyst over-optimism. Whether this is borne out by future studies will be of considerable interest.

(iii) Forecast Efficiency
Panel A of Table 2 presents the results of regression (4). The efficiency condition is very strongly rejected for analysts’ long run earnings growth forecasts. In the pooled sample, \(\hat{\beta} \) is significantly less than unity and at 0.20, only marginally greater than zero. This is a considerably stronger rejection of efficiency than found by other authors for shorter horizon forecasts. For instance,
Table 1

Forecast Accuracy and Forecast Bias

<table>
<thead>
<tr>
<th>Panel A: Forecast Accuracy</th>
<th>Panel B: Forecast Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSFE of Analysts</td>
<td>MSFE of Martingale</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Pooled sample</td>
<td>7.15</td>
</tr>
<tr>
<td>1982</td>
<td>7.34</td>
</tr>
<tr>
<td>1983</td>
<td>6.88</td>
</tr>
<tr>
<td>1984</td>
<td>6.75</td>
</tr>
<tr>
<td>1985</td>
<td>7.19</td>
</tr>
<tr>
<td>1986</td>
<td>6.92</td>
</tr>
<tr>
<td>1987</td>
<td>6.95</td>
</tr>
<tr>
<td>1988</td>
<td>7.38</td>
</tr>
<tr>
<td>1989</td>
<td>6.99</td>
</tr>
<tr>
<td>1990</td>
<td>5.69</td>
</tr>
<tr>
<td>1991</td>
<td>7.58</td>
</tr>
<tr>
<td>1992</td>
<td>8.78</td>
</tr>
</tbody>
</table>

Notes:
Panel A reports the mean square forecast error for analysts’ forecasts and the forecasts of two naive models.

The MSFE of analysts forecasts is calculated each year as \(\frac{1}{N} \sum_{i=1}^{N} (\hat{g}_t - g_t)^2 \);

the MSFE of the martingale model is calculated each year as \(\frac{1}{N} \sum_{i=1}^{N} (\hat{g}_t)^2 \);

the MSFE of the sub-martingale model is calculated each year as \(\frac{1}{N} \sum_{i=1}^{N} (\hat{g}_t - \bar{g}_{t-1})^2 \);

where \(g_t \) is five year earnings growth from January year \(t \) to December year \(t+4 \), is forecast of \(g_t \) reported at April year \(t \) and \(\bar{g}_{t-1} \) is the average value over all companies of five year earnings growth from January year \(t-5 \) to December year \(t-1 \). The MSFE for the pooled sample is computed over all firms and years.

Panel B reports the mean forecast error of analysts, calculated as:

\[
\text{MFE} = \frac{1}{N} \sum_{i=1}^{N} (g_t - \hat{g}_t)
\]

and its standard error. The MFE for the pooled sample is computed over all firms and years.

DeBondt and Thaler (1990) find that while they reject the hypothesis that \(\beta \) is equal to unity for one and two year forecasts, their estimated parameters (0.65 for one year forecasts, 0.46 for two year forecasts) are much larger than those reported here, both statistically and economically. For annual earnings forecasts,
Table 2
Forecast Efficiency

<table>
<thead>
<tr>
<th>Panel A: Weak Efficiency</th>
<th>Panel B: The Incremental Information Content of Price-Earnings Based Forecasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}$</td>
<td>SE</td>
</tr>
<tr>
<td>Pooled sample</td>
<td>0.20 (0.08)</td>
</tr>
<tr>
<td>1982</td>
<td>-0.73 (0.26)</td>
</tr>
<tr>
<td>1983</td>
<td>0.42 (0.25)</td>
</tr>
<tr>
<td>1984</td>
<td>0.19 (0.27)</td>
</tr>
<tr>
<td>1985</td>
<td>0.05 (0.29)</td>
</tr>
<tr>
<td>1986</td>
<td>0.31 (0.23)</td>
</tr>
<tr>
<td>1987</td>
<td>0.46 (0.22)</td>
</tr>
<tr>
<td>1988</td>
<td>0.42 (0.21)</td>
</tr>
<tr>
<td>1989</td>
<td>0.08 (0.22)</td>
</tr>
<tr>
<td>1990</td>
<td>0.28 (0.17)</td>
</tr>
<tr>
<td>1991</td>
<td>0.39 (0.17)</td>
</tr>
<tr>
<td>1992</td>
<td>0.09 (0.27)</td>
</tr>
</tbody>
</table>

Notes:
 Panel A reports the results of the test of the weak efficiency of analysts’ forecasts. The regression for the pooled sample is $\hat{g}_t = \alpha_1 + \beta g_{t-1} + \epsilon_t$ where g_{t-1} is the year earnings growth from January year t to December year $t+4$ and g_{t+1} is the median forecast of g_t reported in April of year t. The regression for the annual samples is $\hat{g}_t = \alpha_1 + \beta g_{t-1} + \epsilon_t$. The Panel reports the estimated slope parameter, its Froot-Newey-West adjusted standard error and the adjusted R^2 statistic.

Panel B reports the results of the test for the incremental information content of price-earnings based forecasts. The regression for the pooled sample is $\hat{g}_t = \alpha_1 + \beta g_{t-1} + \gamma g_{t-2} + \epsilon_t$ where g_{t-1} is the year earnings growth from January year t to December year $t+4$, g_{t-2} is the median forecast of g_t reported in April of year t, $\hat{p}_t = \frac{p_t - \hat{p}_t}{\hat{p}_t}$, $\hat{p}_t = \frac{1}{N} \sum_{t=1}^{N} \hat{p}_t$, \hat{e}_t is the earnings reported in December of year $t-1$, and \hat{p}_t is the price in April of year t. The regression for the annual samples is $\hat{g}_t = \alpha_1 + \beta g_{t-1} + \gamma g_{t-2} + \epsilon_t$. The Panel reports the estimated slope parameter, its Froot-Newey-West adjusted standard error and the adjusted R^2 statistic.

Givoly (1985) cannot reject the hypothesis that β is unity. Using UK data on the forecasts of individual analysts, Capstaff et al. (1995) find that the estimated coefficient declines with the forecast horizon, with an estimated value of around 0.5 for 20 month forecasts (their longest horizon). The results of this paper therefore strongly support the view (first offered by DeBondt and Thaler, 1990) that forecast earnings growth is too extreme, and that the longer the horizon, the more extreme it becomes. In the
annual regressions, \(\beta \) is significantly less than unity in all years, and significantly greater than zero in only three years. In one year, it is actually significantly negative.

(iv) The Incremental Information Content of Price-Earnings Based Forecasts

The results of regression (5), which supplements analysts’ forecasts with forecasts that are derived from the assumption that earnings will evolve in such a way that each firm’s price-earnings ratio will converge to the current market price-earnings ratio, are reported in Panel B of Table 2. Under the null hypothesis that analysts make optimal use of information about future earnings that is contained in share prices, the coefficient on the price-earnings based forecast, \(\gamma \), should be zero. In the pooled sample, the estimated coefficient is significantly greater than zero, implying that analysts do not make full use of information that is readily available at the time that their forecasts are made. However, there is much year to year variation in both the statistical and economic significance of the coefficient, with six years in which the coefficient is not statistically different from zero.

The marginal contribution of price-earnings based forecasts can be gauged by comparing the two Panels of Table 2. The inclusion of the price-earnings forecast explains an additional two percent of the variation in actual earnings growth in the pooled sample, while in individual years, this figure varies between zero and five percent. However, the price-earnings based forecast used in the present analysis is derived under the somewhat unrealistic assumption that all firms have a common long run price-earnings ratio. Undoubtedly, more accurate earnings growth forecasts could be imputed by making more sophisticated assumptions about how price-earnings ratios evolve over time. The results presented here therefore almost certainly understate the extent to which analysts neglect information embodied in share prices. The fact that analysts appear to neglect information contained in share prices when forming their long run earnings growth forecasts is consistent with analogous results for their forecasts over shorter horizons (see, for instance, Ou and Penman, 1989; Abarbanell, 1991; Elgers and Murray, 1992; and Capstaff et al., 1995 and 1998).
(v) Forecast Error Decomposition

The preceding results demonstrate that the accuracy of analysts’ long run earnings forecasts is extremely low, and that they are very significantly biased and inefficient. In this sub-section, the source of analysts’ forecast error is investigated using the two decompositions of mean square forecast error described in Section 3. The first decomposes forecast error into systematic and non-systematic components. The results of this decomposition are given in Panel A of Table 3. It can be seen that by far the largest component of mean square forecast error is random. In the pooled sample, less than twelve percent of the forecast error is the result of the systematic component of analysts’ forecast errors. Of the systematic component, about seven percent is due to bias, and about four percent due to inefficiency. A similar pattern holds for the annual samples, although there is considerable year to year variation, with as much as ninety-five percent of mean square forecast error accounted for by the random component in some years. In principle, knowledge of the systematic error in analysts’ forecasts permits the use of ‘optimal linear correction’ techniques in order to improve forecast accuracy. This involves employing the predicted values calculated using the estimated coefficients from regression (4), above, in place of the forecasts themselves. The effect of the ordinary least squares regression is to adjust the forecasts by compensating for their bias and inefficiency. The degree to which accuracy can be enhanced in this way depends upon the proportion of the mean square forecast error that is systematic. The results reported here imply that, assuming that the underlying data generating process for actual earnings growth and the method by which analysts form the expectations of earnings growth remain constant, optimal linear correction of the forecasts will reduce the forecast error only by about twelve percent. This is clearly an important result for the users of analysts’ forecasts.

The second decomposition divides the mean square forecast error into the error in forecasting average earnings growth in the economy, the error in forecasting the deviation of average growth in each industry from average growth in the economy, and the error in forecasting the deviation of earnings growth for
Table 3

Forecast Error Decomposition

<table>
<thead>
<tr>
<th>Panel A: Decomposition by Error Type</th>
<th>Panel B: Decomposition by Level of Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled sample</td>
<td></td>
</tr>
<tr>
<td>Bias</td>
<td>Economy</td>
</tr>
<tr>
<td>Inefficiency</td>
<td>Industry</td>
</tr>
<tr>
<td>Random</td>
<td>Firm</td>
</tr>
<tr>
<td>1982</td>
<td>9.21</td>
</tr>
<tr>
<td>1983</td>
<td>17.67</td>
</tr>
<tr>
<td>1985</td>
<td>4.37</td>
</tr>
<tr>
<td>1986</td>
<td>2.38</td>
</tr>
<tr>
<td>1987</td>
<td>0.07</td>
</tr>
<tr>
<td>1988</td>
<td>8.00</td>
</tr>
<tr>
<td>1989</td>
<td>14.10</td>
</tr>
<tr>
<td>1990</td>
<td>9.62</td>
</tr>
<tr>
<td>1991</td>
<td>3.35</td>
</tr>
<tr>
<td>1992</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Notes:
Panel A reports the results of the decomposition of mean square forecast error for each year \(t \) by error type, given by:

\[
\text{MSFE} = \frac{1}{N_t} \sum_{t=1}^{N_t} (g_t - \hat{g}_t) = (\bar{g}_t - \bar{g}_t')^2 + (1 - \beta_t^2) \sigma_{\hat{g}_t}^2 + (1 - \rho_t^2) \sigma_{\hat{g}_t'}^2
\]

where \(N_t \) is the sample size in year \(t \), \(g_t \) is five year earnings growth from January year \(t \) to December year \(t+4 \), \(g_t' \) is the median forecast of \(g_t \) reported in April year \(t \), \(\bar{g}_t \) and \(\bar{g}_t' \) are the average values of \(g_t \) and \(g_t' \), \(\beta_t \) is the slope coefficient reported in Panel A of Table 2, \(\rho_t \) is the correlation coefficient between \(g_t \) and \(g_t' \), and \(\sigma_{\hat{g}_t}^2 \) and \(\sigma_{\hat{g}_t'}^2 \) are the variances of \(g_t \) and \(g_t' \). The decomposition for the pooled sample is computed over all firms and years.

Panel B reports the results of the decomposition of mean square forecast error for each year \(t \) by the level of aggregation, given by:

\[
\text{MSFE} = \frac{1}{N_t} \sum_{t=1}^{N_t} (g_t - \hat{g}_t) = (\bar{g}_t - \bar{g}_t')^2 + \frac{1}{J} \sum_{j=1}^{J} N_j [(\bar{g}_j - \bar{g}_{j'}) - (\bar{g}_j' - \bar{g}_{j'})] + \frac{1}{N_t} \sum_{t=1}^{N_t} (g_t - \hat{g}_t')^2
\]

where \(J \) is the number of industries in the sample, \(N_t \) is the number of firms in industry \(j \), \(\bar{g}_j \) and \(\bar{g}_j' \) are the average values of \(g_t \) and \(g_t' \) in industry \(j \). The decomposition for the pooled sample is the weighted average of the decompositions for the annual samples, with weights proportional to the sample size each year. The table reports each of the components of mean square forecast error as a percentage of total mean square forecast error.

© Blackwell Publishers Ltd 1999
individual firms from average industry growth. The results of this decomposition are reported in Panel B of Table 3. The results demonstrate that analysts’ forecast inaccuracy derives mainly from an inability to forecast deviations of individual firm growth from the average growth rate in its industry. The error in forecasting deviations of industry growth from the average growth rate in the economy is also important, but somewhat smaller than the error in forecasting individual firm growth. In contrast, analysts’ inability to forecast average earnings growth in the economy contributes relatively little to their inaccuracy. An interesting feature of this decomposition is that the proportion of forecast error generated at the industry level appears to be diminishing over time, while the proportion generated at the individual firm level is increasing. This is potentially related to changes in the methods used by analysts to forecast earnings growth, or changes in accounting standards.

(vi) *The Performance of Analysts’ Forecasts Conditional on Firm and Forecast Characteristics*

The foregoing analysis has considered analysts’ long run earnings growth forecasts as a homogenous group. However, it is likely that forecast performance will vary with the characteristics of the firm whose earnings are being forecast. For instance, one would expect that firms with highly variable cash flows, or those for which little information is available about future earnings prospects, would be associated with lower forecast accuracy. Additionally, forecast performance is likely to vary with the size of the forecast itself since the efficiency results indicate that low forecasts are less overly-optimistic than high forecasts.

In order to investigate this issue, the accuracy, bias and efficiency results are reproduced for sub-samples of companies, partitioned on the basis of market capitalisation, price-earnings ratio, market-to-book ratio and the level of the forecast itself. For each variable, the sample is sorted into ascending order of the partitioning variable and split into quintiles, with equal numbers of firms in each quintile. For all the results of this section, results are reported for quintiles pooled across all years only.

Table 4 presents the results for forecast accuracy, with the mean square forecast error for each quintile reported in Panel A.
There is substantial variation in forecast accuracy across market capitalisation, price-earnings ratio and forecast earnings growth, while there is no obvious systematic variation in forecast accuracy across market-to-book. Forecast accuracy increases with market capitalisation, with forecasts for the quintile of largest firms more than twice as accurate as those for the quintile of smallest firms. There is an inverse relationship between forecast accuracy and price-earnings ratio, with forecasts for the lowest quintile almost three times as accurate as those for the highest quintile. The largest variation in forecast accuracy is with the level of the forecast itself, with low forecasts being five times more accurate than high forecasts. In all three cases, variation in forecast accuracy is monotonic (almost monotonic in the case of price-earnings and forecast size), although it does not appear to be linear, with the largest differences occurring in the lowest and highest quintiles.

The results of Panel A show that forecast accuracy varies substantially with market capitalisation, price-earnings ratio and the forecast itself. However, these variables are not independent, and so variation in forecast accuracy with one variable may merely reflect variation with another. In order to identify the marginal effects of firm and forecast characteristics on forecast accuracy, Panel B of Table 4 reports the regression of the squared forecast error on the natural logarithm of market capitalisation, market-to-book, price-earnings and forecast earnings growth. Interestingly, all four variables independently contribute to the explanation of forecast accuracy, with the most influential, in terms of statistical significance, being the price-earnings ratio, followed by the level of the forecast itself. The most accurate forecasts are therefore low forecasts issued for large companies with low price-earnings ratios and high market-to-book ratios. The four variables together explain more than thirteen percent of the variation in forecast accuracy.

The variation of forecast accuracy with market capitalisation is not surprising. Information about future earnings prospects is likely to be more readily available, and of a higher quality, for larger firms. The variation of forecast accuracy with the forecast itself is consistent with the results on forecast efficiency. The inverse relationship between forecast accuracy and price-earnings ratio is harder to explain, but may be driven by the fact that very
Table 4

Forecast Accuracy Conditional on Firm and Forecast Characteristics

Panel A: Forecast Accuracy by Firm and Forecast Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Quintile 1 (lowest)</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5 (highest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitalisation</td>
<td>11.52</td>
<td>8.24</td>
<td>6.35</td>
<td>5.19</td>
<td>4.47</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>7.84</td>
<td>6.51</td>
<td>6.36</td>
<td>7.18</td>
<td>7.88</td>
</tr>
<tr>
<td>Price-Earnings</td>
<td>5.30</td>
<td>4.55</td>
<td>5.02</td>
<td>6.13</td>
<td>14.79</td>
</tr>
<tr>
<td>Forecast Size</td>
<td>2.77</td>
<td>6.56</td>
<td>5.70</td>
<td>7.46</td>
<td>13.38</td>
</tr>
</tbody>
</table>

Panel B: The Marginal Effect of Firm and Forecast Characteristics on Forecast Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Estimated Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitalisation</td>
<td>–103.18</td>
<td>(14.39)</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>–17.02</td>
<td>(6.80)</td>
</tr>
<tr>
<td>Price-Earnings</td>
<td>24.47</td>
<td>(5.55)</td>
</tr>
<tr>
<td>Forecast Growth</td>
<td>42.67</td>
<td>(6.17)</td>
</tr>
<tr>
<td>R²</td>
<td>0.13</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Panel A reports the MSFE in percent for each quintile of firm-year observations sorted in ascending order of market capitalisation, market-to-book ratio, price-earnings ratio and forecast earnings growth.

Panel B reports the estimated slope coefficients from the regression:

\[(g_{it} - \hat{g}_{it})^2 = \alpha_i + \beta_1 \ln m_{it} + \beta_2 mb_{it} + \beta_3 pe_{it} + \beta_4 \hat{g}_{it} + \nu_{it}\]

where \(g_{it}\) is five year earnings growth from January year \(t\) to December year \(t + 4\), \(\hat{g}_{it}\) is the median forecast of \(g_{it}\) reported in April of year \(t\), \(m_{it}\) is the market capitalisation of firm \(i\) in April of year \(t\), \(mb_{it}\) is the ratio of market capitalisation of firm \(i\) in April of year \(t\) to the book value of equity firm \(i\) in December of year \(t - 1\) and \(pe_{it}\) is the ratio of the share price of firm \(i\) in April of year \(t\) to the earnings for the fiscal year ending in December of year \(t - 1\). Froot-Newey-West adjusted standard errors are reported in parentheses. The regression is estimated for the sample pooled over all years.

High price-earnings ratios arise partly as a result of very low, but transitory earnings, the trajectory of which is likely to be difficult to forecast accurately. The positive relationship between forecast accuracy and market-to-book ratio is potentially explained by the fact that high market-to-book companies, ceteris paribus, should on average have high earnings growth. Since forecast earnings growth is generally too optimistic, the size of the forecast error for these companies should on average be lower.
Table 5 presents the results for forecast bias. Again, there is strong variation in forecast bias with market capitalisation, price-earnings ratio and the level of the forecast itself. Consistent with the results for forecast accuracy reported in Table 4, forecast bias decreases (in absolute value) with market capitalisation and increases with forecast size. However, while forecast inaccuracy increases with price-earnings ratio, forecast bias decreases with price-earnings ratio, implying that while forecasts become less biased as the price-earnings ratio increases, they nevertheless become less accurate. However, this merely implies that the random component of forecast inaccuracy decreases more rapidly with price-earnings ratio than does the systematic component. The largest variation in forecast bias is again with forecast size, with forecasts in the highest quintile being more than four times as biased as those in the lowest quintile. This is consistent with the results on efficiency reported earlier that demonstrate a significant negative relationship between forecast error and the level of the forecast. There is some variation in forecast bias with market-to-book value of equity, although it is not monotonic across quintiles, and the difference between the lowest and highest quintile is not large. There is no quintile of companies for which it can be concluded that analysts’ forecasts are unbiased.

Panel B reports the results of the regression of forecast error on market capitalisation, market-to-book value of equity, price earnings ratio and forecast earnings growth. There is again independent variation in forecast bias with market capitalisation, price-earnings ratio and the level of the forecast itself, with the latter being the strongest factor, statistically speaking. There is no significant variation with market-to-book. The four variables together explain about six percent of the variation in forecast error.

These results are broadly consistent with Frankel and Lee (1996), who investigate the performance of analysts’ shorter horizon forecasts in order to operationalise an accounting valuation model based on book value of equity and the market’s expectation of earnings growth. They find that analyst over-optimism is associated with low book-to-price ratio (the inverse of the market-to-book ratio used in the present analysis) and high past sales growth. They also find that analyst over-optimism is
Table 5

Forecast Bias Conditional on Firm and Forecast Characteristics

<table>
<thead>
<tr>
<th>Panel A: Forecast Bias by Firm and Forecast Characteristics</th>
<th>Quintile 1 (lowest)</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5 (highest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitalisation</td>
<td>−12.28</td>
<td>−8.15</td>
<td>−5.99</td>
<td>−5.34</td>
<td>−5.00</td>
</tr>
<tr>
<td>(0.87)</td>
<td>(0.75)</td>
<td>(0.67)</td>
<td>(0.60)</td>
<td>(0.56)</td>
<td></td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>−5.32</td>
<td>−6.35</td>
<td>−8.61</td>
<td>−8.08</td>
<td>−8.38</td>
</tr>
<tr>
<td>(0.75)</td>
<td>(0.68)</td>
<td>(0.65)</td>
<td>(0.70)</td>
<td>(0.73)</td>
<td></td>
</tr>
<tr>
<td>Price-Earnings</td>
<td>−11.66</td>
<td>−6.87</td>
<td>−7.42</td>
<td>−5.48</td>
<td>−5.32</td>
</tr>
<tr>
<td>(0.54)</td>
<td>(0.55)</td>
<td>(0.58)</td>
<td>(0.66)</td>
<td>(1.04)</td>
<td></td>
</tr>
<tr>
<td>Forecast Size</td>
<td>−3.98</td>
<td>−3.56</td>
<td>−5.49</td>
<td>−7.59</td>
<td>−16.12</td>
</tr>
<tr>
<td>(0.44)</td>
<td>(0.69)</td>
<td>(0.64)</td>
<td>(0.71)</td>
<td>(0.90)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: The Marginal Effect of Firm and Forecast Characteristics on Forecast Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Coefficient</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Capitalisation</td>
</tr>
<tr>
<td>Market-to-Book</td>
</tr>
<tr>
<td>Price-Earnings</td>
</tr>
<tr>
<td>Forecast Growth</td>
</tr>
<tr>
<td>\hat{R}^2</td>
</tr>
</tbody>
</table>

Notes:
Panel A reports the MFE in percent for each quintile of firm-year observations sorted in ascending order of market capitalisation, market-to-book ratio, price-earnings ratio and forecast earnings growth. Standard errors are reported in parentheses.
Panel B reports the estimated slope coefficients from the regression:

$$(g_i - g_i^*)^2 = \alpha_t + \beta_1 \ln m_i + \beta_2 m_{bi} + \beta_3 p_{ei} + \beta_4 m_{bi} + v_t$$

where g_i is five year earnings growth from January year t to December year $t + 4$, g_i^* is the median forecast of g_i reported in April of year t, m_i is the market capitalisation of firm i in April of year t, m_{bi} is the ratio of market capitalisation of firm i in April of year t to the book value of equity firm i in December of year $t − 1$ and p_{ei} is the ratio of the share price of firm i in April of year t to the earnings for the fiscal year ending in December of year $t − 1$. Froot-Newey-West adjusted standard errors are reported in parentheses. The regression is estimated for the sample pooled over all years.

associated with forecasts that are high relative to the current level of earnings (i.e. optimistic forecasts). Since forecast earnings growth and actual earnings growth are largely uncorrelated in the present sample, this is consistent with the finding reported above that analyst over-optimism is associated with high forecast earnings growth.
Table 6
Forecast Efficiency Conditional on Firm and Forecast Characteristics

Panel A: Forecast Efficiency by Firm and Forecast Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Quintile 1 (lowest)</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5 (highest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitalisation</td>
<td>0.01</td>
<td>0.25</td>
<td>0.12</td>
<td>0.56</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.09)</td>
<td>(0.12)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>-0.08</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.12)</td>
<td>(0.11)</td>
<td>(0.11)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>Price-Earnings</td>
<td>-0.51</td>
<td>0.24</td>
<td>0.08</td>
<td>-0.04</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.10)</td>
<td>(0.11)</td>
<td>(0.12)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Forecast Size</td>
<td>0.84</td>
<td>0.59</td>
<td>0.57</td>
<td>0.60</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.86)</td>
<td>(0.98)</td>
<td>(0.84)</td>
<td>(0.13)</td>
</tr>
</tbody>
</table>

Panel B: The Marginal Effect of Firm and Forecast Characteristics on Forecast Efficiency

<table>
<thead>
<tr>
<th></th>
<th>Estimated Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitalisation</td>
<td>3.87</td>
<td>(2.30)</td>
</tr>
<tr>
<td>Market-to-Book</td>
<td>1.99</td>
<td>(1.14)</td>
</tr>
<tr>
<td>Price-Earnings</td>
<td>0.12</td>
<td>(0.63)</td>
</tr>
<tr>
<td>Forecast Growth</td>
<td>-12.47</td>
<td>(2.31)</td>
</tr>
<tr>
<td>\bar{R}^2</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Panel A reports the estimate of β in the regression $g_t = \alpha_t + \beta_1 g_t^4 + u_t$ for each quintile of firm-year observations sorted in ascending order of market capitalisation, market-to-book ratio, price-earnings ratio and forecast earnings growth. Froot-Newey-West adjusted standard errors are reported in parentheses.

Panel B reports the estimated slope coefficients from the regression:

$$(g_t^4 - \bar{g}_t)(g_t - \bar{g}_t) - (g_t^4 - \bar{g}_t^4) = \alpha_t + \beta_1 \ln m_t + \beta_2 m_{t-1} + \beta_3 p_{t-1} + \beta_4 g_t + \nu_t$$

where g_t is five year earnings growth from January year t to December year $t + 4$, g_t^4 is the median forecast of g_t reported in April of year t, m_t is the market capitalisation of firm i in April of year t, m_{t-1} is the ratio of market capitalisation of firm i in April of year t to the book value of equity firm i in December of year $t - 1$ and p_{t-1} is the ratio of the share price of firm i in April of year t to the earnings for the fiscal year ending in December of year $t - 1$. Froot-Newey-West adjusted standard errors are reported in parentheses. The regression is estimated for the sample pooled over all years.

Table 6 presents the results for forecast efficiency. Panel A reveals that there is considerable variation in forecast efficiency across both market capitalisation and the level of the forecast, with some variation across market-to-book. The estimated slope parameter, β, is close to zero for the quintile of smallest firms,
and rises monotonically with firm size. For the quintile of largest firms, the efficiency condition that $\beta = 1$ cannot be rejected. The estimated slope parameter decreases with the level of forecast, and for the quintile of firms with the lowest forecasts, the null hypothesis that $\beta = 1$ cannot be rejected either. There is no systematic variation with price-earnings ratio. The most efficient forecasts are therefore low forecasts for large firms with high market-to-book ratios.

Panel B of Table 6 reports the marginal contribution of each of the independent variables to forecast efficiency. Consistent with results of Panel A, there is positive independent variation in forecast efficiency with market capitalisation and market-to-book ratio, although the significance is marginal. Also consistent with the quintile results, the relationship between forecast efficiency and forecast growth is very significantly negative. There is no significant variation in forecast efficiency with price-earnings ratio. The four variables together explain eleven percent of the variation in forecast efficiency.

5. SUMMARY AND CONCLUSIONS

This paper has undertaken a detailed study of the accuracy, bias and efficiency of analysts’ forecasts of long run earnings growth for US companies. The results of the paper can be summarised as follows.

(i) The accuracy of analysts’ long run earnings growth forecasts is extremely low. Superior forecasts can be achieved simply by assuming that long run earnings growth is zero.

(ii) Analysts’ forecasts are excessively optimistic. Forecast earnings growth, on average, exceeds actual earnings growth by about seven percent per annum.

(iii) Analysts’ forecasts are weakly inefficient. Forecast errors are not independent of the forecasts themselves. In particular, high forecasts are associated with high forecast errors, while low forecasts are associated with low forecast errors.

(iv) Analysts’ forecasts do not incorporate all information contained in current share prices. A superior forecast can be obtained by assuming that each firm’s earnings will
evolve in such a way that its price-earnings ratio will converge to the current market-wide price-earnings ratio.

(v) Despite the bias and inefficiency identified in (ii) and (iii) above, the systematic components of analysts’ forecast errors contribute relatively little to their inaccuracy. More than eighty-eight percent of the mean square forecast error is random. This is an important result for the users of analysts’ long run earnings growth forecasts, since it means that the accuracy of analysts’ forecasts cannot be significantly improved using linear correction techniques.

(vi) The largest part of analysts’ forecast error is made at the individual firm level. The inability of analysts to forecast average earnings growth in the economy does not contribute substantially to their inaccuracy. However, there is evidence that the level of aggregation at which analysts’ errors are being made is changing over time, with increasing accuracy at the industry level, and decreasing accuracy at the individual firm level.

(vii) There is significant heterogeneity in the performance of analysts’ forecasts. The most reliable earnings growth forecasts are low forecasts issued for large companies with low price-earnings and high market-to-book ratios. The least biased forecasts are those for low forecasts for companies with low price-earnings ratios, while the most efficient forecasts are low forecasts for large companies with high market-to-book ratios. This is again an important result for the users of analysts’ forecasts since it offers some opportunity to discriminate between good and bad forecasts.

(viii) There is very little evidence to suggest that the inaccuracy, bias or inefficiency of analyst forecasts have diminished over time.

The idea that analysts systematically make over-optimistic forecasts, is not necessarily an indictment of their rationality per se since they may have considerable incentives to do so. An earnings growth forecast is not generally the final product delivered by an analyst to the client. In particular, earnings growth forecasts will be typically provided as part of a package of services, including brokerage, advice on mergers and acquisitions, and underwriting, and these related activities may
influence the forecasts that an analyst makes (see Schipper, 1991). Sell-side analysts, for instance, have a vested interest in their clients’ reaction to earnings forecasts. If earnings forecasts are used to support stock recommendations then high forecasts will tend to generate more business than low forecasts, since there is a larger potential client base for buy recommendations than for sell recommendations. Francis and Philbrick (1993) provide evidence that suggests that analysts may be intentionally over-optimistic in order to cultivate and maintain good management relations.

The decomposition of mean square forecast error by error type revealed that by far the largest component of analysts’ forecast errors is random, with the systematic component accounting for less than twelve percent. Inevitably, at such long forecasting horizons, the potential to make accurate forecasts of earnings growth is limited. However, the fact that such a large component of actual earnings growth is random may explain why analysts’ forecasts are so biased. The larger the component of the forecast error that is random, the lower the impact of forecast bias on forecast error. Assuming that analysts do have conflicting objectives — one to produce accurate earnings growth forecasts, the other to produce high earnings growth forecasts — then if analysts know that the first objective is largely unattainable, they will use the forecasting process to satisfy the second. If analysts are also producing short term and interim forecasts for the same company, then the bias in their long term forecasts may be compounded.

A number of papers have now concluded that there is substantial mis-pricing in the stock market as a consequence of irrational long run earnings growth forecasts being incorporated into the market expectation of earnings growth. The results of this paper support the hypothesis that analysts’ consensus long run earnings growth forecasts are indeed irrational if they are to be interpreted as optimal forecasts of future earnings growth. However, given the uncertainty over analysts’ incentives, it is by no means inevitable that these forecasts will be incorporated without modification into the market expectation of earnings growth. An interesting topic for future research will be to examine to what extent the market recognises the characteristics in forecast long run earnings growth identified in this paper.
NOTES

2 This was confirmed in conversation with IBES staff.

3 The correlation between the mean and the median forecast in the sample is 0.98. This is accounted for by the fact that most stocks have long term forecasts originating from only one or two analysts.

4 IBES have confirmed that they do receive earnings growth forecasts for companies whose earnings are currently negative. This may be explained by the fact that while analysts use the latest reported earnings as a base for earnings growth when earnings are positive, they use some other unspecified base measure of earnings, such as forecast annual earnings or average historical annual earnings, when earnings are negative.

5 In order to establish the robustness of the results, the analysis was conducted using maximum earnings growth threshold values in the range 50% to 1,000%, and by trimming the sample instead on the basis of initial earnings per share, using a minimum earnings threshold of between 0.10 and 1.00 dollars. The sensitivity of the results to changes in the threshold values was low, and none of the qualitative conclusions were altered. The regressions were additionally estimated using the minimum absolute deviation estimator, which is considerably less sensitive to outliers. This produced results that were almost completely invariant with respect to the choice threshold values. As a further test of the robustness of the results, the analysis was conducted using the change in earnings scaled by price, with the corresponding forecast change in earnings computed using the forecast growth rate. The results of these robustness tests are not reported here, but are available from the author on request.

6 The average growth rate is taken over all firms for which earnings data are available, using the same sample selection criteria as for subsequent earnings growth, namely excluding observations for which earnings are negative at the beginning of the five year period, and those for which the calculated growth rate exceeds 100% in absolute value.

7 This can be seen by subtracting forecast earnings growth, \(g_{it} \), from each side so that the regression becomes one of forecast error on forecast earnings growth — the constant remains the same while the slope parameter becomes 1.

8 Taking the conditional expectation of equations (10) and (11) gives the mean square forecast error and the mean forecast error, respectively, as a function of the independent variables. Regressions (10) and (11) thus measure the marginal contribution of each of the independent variables to forecast accuracy and forecast bias. Taking the conditional expectation of equation (12) gives the covariance between \((g_{it} - g_{it}') \) and \(g_{it}' \) as a function of the independent variables. This covariance is the numerator of the estimated slope coefficient in a regression of \(g_{it} - g_{it}' \) on \(g_{it}' \). Under the
null hypothesis that forecasts are weakly efficient, this covariance should be equal to zero. If it is less than zero, forecasts are too extreme, while if it is greater than zero, forecasts are too compressed. Regression (12) thus measures the marginal contribution of each of the independent variables to forecast efficiency.

9 See, for example, Brown et al. (1987a) and O’Brian (1988), who consider the accuracy of analysts’ quarterly earnings forecasts relative to the forecasts of different time series models, and Fried and Givoly (1982), who consider the relative accuracy of analysts’ annual earnings forecasts.

10 Except for the largest quintile, which has an additional observation.

REFERENCES

Darden Graduate School of Business
University of Virginia

Working Paper No. 99-08

THE MARKET RISK PREMIUM:
EXPECTATIONAL ESTIMATES USING ANALYSTS’ FORECASTS

Robert S. Harris
Felicia C. Marston

This paper can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection at:
The Market Risk Premium: Expectational Estimates Using Analysts' Forecasts

Robert S. Harris
Felicia C. Marston

Draft October 12, 1999

Felicia C. Marston is on the faculty at the McIntire School of Commerce, University of VA 22903, (804) 924-1417, fm2v@virginia.edu. Robert S. Harris is on the faculty at the Darden School, University of Virginia, Charlottesville, VA 22906, (804) 924-4823, harrisr@darden.gbus.virginia.edu. We thank Erik Benrud and seminar participants at the University of Virginia and at the SEC for comments. Thanks to Darden Sponsors, TVA, the Walker Family Fund and McIntire Associates for support of this research and to IBES, Inc. for supplying data.
The Market Risk Premium: Expectational Estimates
Using Analysts' Forecasts

Abstract

We use expectational data from financial analysts to estimate a market risk premium for U.S. stocks. Using the SP500 as a proxy for the market portfolio, we find an average market risk premium of 7.14% above yields on long-term U.S. government bonds over the period 1982-1998. We also find that this risk premium varies over time and that much of this variation can be explained by either the level of interest rates or readily available forward-looking proxies for risk. The market risk premium appears to move inversely with government interest rates suggesting that required returns on stocks are more stable than interest rates themselves.
The Market Risk Premium: Expectational Estimates
Using Analysts’ Forecasts

The notion of a market risk premium (the spread between investor required returns on safe and average risk assets) has long played a central role in finance. It is a key factor in asset allocation decisions to determine the portfolio mix of debt and equity instruments. Moreover, the market risk premium plays a critical role in the Capital Asset Pricing Model (CAPM), practitioners most widely used means of estimating equity hurdle rates. In recent years, the practical significance of estimating such a market premium has increased as firms, financial analysts and investors employ financial frameworks to analyze corporate and investment performance. For instance, the increased use of Economic Value Added to assess corporate performance has provided a new impetus for estimating capital costs.

The most prevalent approach to estimating the market risk premium relies on some average of the historical spread between returns on stocks and bonds.\(^1\) This choice has some appealing characteristics but is subject to many arbitrary assumptions such as the relevant period for taking an average. Compounding the difficulty of using historical returns is the well noted fact that standard models of consumer choice would predict much lower spreads between equity and debt returns than have occurred in U.S. markets—the so called equity premium puzzle (see Welch (1998), Siegel and Thaler (1997)). In addition, theory calls for a forward looking risk premium that could well change over time.

\(^1\) Bruner, Eades, Harris and Higgins (1998) provide survey evidence on both textbook advice and practitioner methods for estimating capital costs. Despite substantial empirical assault, the CAPM continues to play a major role in applied finance. As testament to the market for cost of capital estimates Ibbotson Associates (1998) publishes a “Cost of Capital Quarterly.”
This paper takes an alternate approach by using expectational data to estimate the market risk premium. The approach has two major advantages for practitioners. First, it provides an independent estimate which can be compared to historical averages. At a minimum, this can help in understanding likely ranges for risk premia. Second, expectational data allow investigation of changes in risk premia over time. Such time variations in risk premia serve as important signals from investors that should affect a host of financial decisions.

The paper updates and extends earlier work (Harris (1986), Harris and Marston (1992)) which incorporates financial analysts' forecasts of corporate earnings growth. Updating through 1998 provides an opportunity to see whether changes in the risk premium are in part responsible for the run up in share prices in the bull market. In addition, we provide new tests of whether changes in risk premia over time are linked to forward-looking measures of risk. Specifically, we look at the relationship between the risk premium and four ex-ante measures of risk: the spread between yields on corporate and government bonds, consumer sentiment about future economic conditions, the average level of dispersion across analysts as they forecast corporate earnings and the implied volatility on the SP500 Index derived from options data.

Section I provides background on the estimation of equity required returns and a brief discussion of current practice in estimating the market risk premium. In Section II, models and data are discussed. Following a comparison of the results to historical returns in Section III, we examine the time-series characteristics of the estimated market premium in Section IV. Finally, conclusions are offered in Section V.

I. Background

The notion of a “market” required rate of return is a convenient and widely used construct. Such a rate \(k \) is the minimum level of expected return necessary to compensate investors for bearing the average risk of equity investments and receiving dollars in the future rather than in the present. In general, \(k \) will depend on returns available on alternative
investments (e.g., bonds). To isolate the effects of risk, it is useful to work in terms of a market risk premium \((r_p)\), defined as

\[
r_p = k - i,
\]

where \(i\) = required return for a zero risk investment.

Lacking a superior alternative, investigators often use averages of historical realizations to estimate a market risk premium. Bruner et al. (1998) provide recent survey results on best practices by corporations and financial advisors. While almost all respondents used some average of past data in estimating a market risk premium, a wide range of approaches emerged. “While most of our 27 sample companies appear to use a 60+- year historical period to estimate returns, one cited a window of less than ten years, two cited windows of about ten years, one began averaging with 1960, and another with 1952 data” (p. 22). Some used arithmetic averages and some geometric. This historical approach requires the assumptions that past realizations are a good surrogate for future expectations and, as typically applied, that the risk premium is constant over time. Carleton and Lakonishok (1985) demonstrate empirically some of the problems with such historical premia when they are dissaggregated for different time periods or groups of firms. As Bruner et al (1998) point out, few respondents cited use of expectational data to supplement or replace historical returns in estimating the market premium.

Survey evidence also shows substantial variation in empirical estimates. When respondents gave a precise estimate of the market premium, they cited figures from 4 to over 7 percent (Bruner et al 1998). A quote from a survey respondent highlights the range in practice. “In 1993, we polled various investment banks and academic studies on the issue as to the appropriate rate and got anywhere between 2 and 8%, but most were between 6 and 7.4%.” (Bruner et al 1998, p. 23). An informal sampling of current practice also reveals large differences in assumptions about an appropriate market premium. For instance, in a 1999 application of EVA analysis, Goldman Sachs Investment Research specifies a market risk premium of “3%
from 1994-1997 and 3.5% from 1998-1999E for the S&P Industrials” (Goldman Sachs (1999, p. 59)). At the same time an April 1999 phone call to Stern Stewart revealed that their own application of EVA typically employed a market risk premium of 6%. In its application of the CAPM, Ibbotson Associates (1998) uses a market risk premium of 7.8%. Not surprisingly, academics don’t agree on risk premium either. Welch (1998) surveyed leading financial economists at major universities. For a 30-year horizon, he found a mean risk premium of 6.12% but a range from 2% to 9% with an interquartile range of 2% (based on 104 responses).

To provide additional insight on estimates of the market premium, we use publicly available expectational data. This expectational approach employs the dividend growth model (hereafter referred to as the discounted cash flow or DCF model) in which a consensus measure of financial analysts’ forecasts (FAF) of earnings is used as a proxy for investor expectations. Earlier works by Malkiel (1982), Brigham, Vinson, and Shome (1985), Harris (1986) and Harris and Marston (1992) have used FAF in DCF models.

II. Models and Data

We employ the simplest and most commonly used version of the DCF model to estimate shareholders’ required rate of return, \(k \), as shown in Equation (2):

\[
k = \left(\frac{D_1}{P_0} \right) + g,
\]

(2)

where \(D_1 \) = dividend per share expected to be received at time one, \(P_0 \) = current price per share (time 0), and \(g \) = expected growth rate in dividends per share.\(^2\) A primary difficulty in using the

\(^2\) Ibbotson Associates (1998) use a variant of the DCF model with forward-looking growth rates as one means to estimate cost of equity; however, they do this as a separate technique and not as part of the CAPM. For their CAPM estimates they use historical averages for the market risk premium. The DCF approach with analysts’ forecasts has been used frequently in regulatory settings.

\(^3\) Our methods follow Harris (1986) and Harris and Marston (1992) who provide an overview of earlier research and a detailed discussion of the approach employed here. For instance, theoretically, \(i \) is a risk-free rate, though empirically its proxy (e.g., yield to maturity on a government bond) is only a “least risk” alternative that is itself subject to risk. They also discuss single versus multistage growth discounted cash flow models and procedures used in calculating the expected dividend yield. While the model calls for expected growth in dividends, in the long run, dividend growth is sustainable only via growth in earnings. As long as payout ratios are not expected to change, the two growth rates will be the same.
DCF model is obtaining an estimate of \(g \), since it should reflect market expectations of future performance. This paper uses published FAF of long-run growth in earnings as a proxy for \(g \). Equation (2) can be applied for an individual stock or any portfolio of companies. We focus primarily on its application to estimate a market premium as proxied by the SP500.

FAF come from IBES Inc. The mean value of individual analysts’ forecasts of five-year growth rate in EPS is used as our estimate of \(g \) in the DCF model. The five-year horizon is the longest horizon over which such forecasts are available from IBES and often is the longest horizon used by analysts. IBES requests “normalized” five-year growth rates from analysts in order to remove short-term distortions that might stem from using an unusually high or low earnings year as a base. Growth rates are available on a monthly basis.

Dividend and other firm-specific information come from COMPSTAT. \(D_1 \) is estimated as the current indicated annual dividend times \((1+g)\). Interest rates (both government and corporate) are gathered from Federal Reserve Bulletins and *Moody’s Bond Record*. Table 1 describes key variables used in the study. Data are collected for all stocks in the Standard & Poor’s 500 stock (SP500) index followed by IBES. Since five-year growth rates are first available from IBES beginning in 1982, the analysis covers the period from January 1982-December 1998.

We generally adopt the same approach as used in Harris and Marston (1992). For each month, a market required rate of return is calculated using each dividend paying stock in the SP500 index for which data are available. As additional screens for reliability of data, in a given month we eliminate a firm if there are fewer than three analysts’ forecasts or if the standard deviation around the mean forecast exceeds 20%. Combined these two screens eliminate fewer than 20 stocks a month. Later we report on the sensitivity of our results to various screens. The DCF model in Equation (2) is applied to each stock and the results weighted by market value of
equity to produce the market-required return. The risk premium is constructed by subtracting the interest rate on government bonds.

For short-term horizons (quarterly and annual), past research (Brown, 1993) finds that on average analysts’ forecasts are overly optimistic compared to realizations. However, recent research on quarterly horizons (Brown, 1997) suggests that analysts’ forecasts for SP500 firms do not have an optimistic bias for the period 1993-1996. There is very little research on the properties of five-year growth forecasts, as opposed to shorter horizon predictions. Any analysts’ optimism is not necessarily a problem for our analysis. If investors share analysts’ views, our procedures will still yield unbiased estimates of required returns and risk premia. In light of the possible bias, however, we interpret our estimates as “upper bounds” for the market premium.

To broaden our exploration, we tap four very different sources to create ex ante measures of equity risk at the market level. The first proxy comes from the bond market and is calculated as the spread between corporate and government bond yields (BSPREAD). The rationale is that increases in this spread signal investors’ perceptions of increased riskiness of corporate activity that would be translated to both debt and equity owners. The second measure, CON, is the consumer confidence index reported by the Conference Board at the end of the month. While the reported index tends to be around 100, we rescale CON as the actual index divided by 100. We also examined use of CON as of the end of the prior month; however, in regression analysis

4 We weighted 1998 results by year-end 1997 market values since our monthly data on market value did not extend through this period. Since we did not have data on firm-specific dividend yields for the last four months of 1998, we estimated the market dividend yield for these months using the dividend yield reported in the Wall Street Journal scaled by the average ratio of this figure to the dividend yield for our sample as calculated in the first eight months of 1998. We then made adjustments using growth rates from IBES to calculate the market required return. We also estimated results using an average dividend yield for the month which employed the average of the price at the end of the current and prior months. These average dividend yield measures led to essentially the same regression coefficients as those reported later in the paper but introduced significant serial correlation in some regressions (Durbin-Watson statistics significantly different from 2.0 at the .01 level).

5 To our knowledge, the only studies of possible bias in analysts’ five-year growth rates are Boebel (1991) and Boebel, Harris and Gultekin (1993). They both find evidence of optimism in IBES growth forecasts. In the most thorough study to date, Boebel (1991) reports that this bias seems to be getting smaller over time. His forecast data do not extend into the 1990’s.
this lagged measure was generally not statistically significant in explaining the level of the market risk premium. The third measure, DISP, measures the dispersion of analysts’ forecasts. Such analyst disagreement should be positively related to perceived risk since higher levels of uncertainty would likely generate a wider distribution of earnings forecasts for a given firm. DISP is calculated as the equally weighted average of firm-specific standard deviations for each stock in the SP500 covered by IBES. The firm-specific standard deviation is calculated based on the dispersion of individual analysts’ growth forecasts around the mean of individual forecasts for that company in that month. Our final measure, VOL, is the implied volatility on the SP500 index. As of the beginning of the month, we use a dividend adjusted Black Scholes Formula to estimate the implied volatility in the SP500 index option contract which expires on the third Friday of the month. The call premium, exercise price and the level of the SP500 index are taken from the Wall Street Journal and treasury yields come from the Federal Reserve. Dividend yield comes from DRI. We use the option contract that is closest to being at the money.

III. Estimates of the Market Premium

Table 2 reports both required returns and risk premia by year (averages of monthly data). The results are quite consistent with the patterns reported earlier (e.g., Harris and Marston, 1992). The estimated risk premia are positive, consistent with equity owners demanding additional rewards over and above returns on debt securities. The average expectational risk premium (1982 to 1998) over government bonds is 7.14%, slightly higher than the 6.47% average for 1982 to 1991 reported earlier (Harris and Marston, 1992). For comparison purposes, Table 3 contains historical returns and risk premia. The average expectational risk premium

6 We examined two other proxies for Consumer Confidence. The Conference Board’s Consumer Expectations Index yielded essentially the same results as those reported. The University of Michigan’s Consumer Sentiment Indices tended to be less significantly linked to the market risk premium though coefficients were still negative.
reported in Table 2 is approximately equal to the arithmetic (7.5%) long-term differential between returns on stocks and long-term government bonds.7

Table 2 shows the estimated risk premium changes over time, suggesting changes in the market’s perception of the incremental risk of investing in equity rather than debt securities. Scanning the next to last column of Table 2, the risk premium is higher in the 1990’s than earlier and especially so in late 1997 and 1998. Our DCF results provide no evidence to support the notion of a declining risk premium in the 1990’s as a driver of the strong run up in equity prices.

A striking feature in Table 2 is the relative stability of our estimates of k. After dropping (along with interest rates) in the early and mid-1980’s, the average annual value of k has remained within a 75 basis point range around 15 percent for over a decade. Moreover, this stability arises despite some variability in the underlying dividend yield and growth components of k as Table 2 illustrates. The results suggest that k is more stable than government interest rates. Such relative stability of k translates into parallel changes in the market risk premium. In a subsequent section, we examine whether changes in our market risk premium estimates appear linked to interest rate conditions and a number of proxies for risk8.

We explored the sensitivity of our results to our screening procedures in selecting companies. Our reported results screen out all non-dividend paying stocks on the premise that use of the DCF model is inappropriate in such cases. The dividend screen eliminates an average of 55 companies per month. In a given month, we also screen out firms with fewer than three analysts’ forecasts, or if the standard deviation around the mean forecast exceeds 20%. When we repeated our analysis without any of the screens, the average risk premium over the sample

7 Interestingly, for the 1982-1996 period the arithmetic spread between large company stocks and long-term government bonds was only 3.3% per year. The downward trend in interest rates resulted in average annual returns of 14.1% on long-term government bonds over this horizon. Some (e.g., Ibbotson, 1997) argue that only the income (not total) return on bonds should be subtracted in calculating risk premia.

8 Although our focus is on the market risk premium, in earlier work (Harris and Marston (1992), Marston, Harris and Crawford (1993)), we examined the cross-sectional link between expectational equity risk premia at the firm level and beta and found a significant positive correlation. For comparative purposes, we replicated and updated that
period increased by only 40 basis points, from 7.14% to 7.54%. We also estimated the beta of our sample firms and found the sample average to be one, suggesting that our screens do not systematically remove low or high-risk firms. Specifically, using firms in our screened sample as of December 1997 (the last date for which we had CRSP return data), we used ordinary least squares regressions to estimate beta for each stock using the prior sixty months of data and the CRSP return (SPRTRN) as the market index. The value-weighted average of the individual betas was 1.00.

In the results reported here we use firms in the SP500 as reported by COMPUSTAT in September 1998 which could create a survivorship bias, especially in the earlier months of our sample. We compared our current results to those obtained in our earlier work (Harris and Marston (1992)) for which we had data to update the SP500 composition each month. For the overlapping period, January 1982-May 1991 the two procedures yield the same average market risk premium, 6.47%. This suggests that the firms departing from or entering the SP500 index do so for a number of reasons with no discernable effect on the overall estimated SP500 market risk premium.

IV. Changes in the Market Risk Premium Over Time

With changes in the economy and financial markets, equity investments may be perceived to change in risk. For instance, investor sentiment about future business conditions likely affects attitudes about the riskiness of equity investments compared to investments in the bond markets. Moreover, since bonds are risky investments themselves, equity risk premia (relative to bonds) could change due to changes in perceived riskiness of bonds, even if equities displayed no shifts in risk.

In earlier work covering the 1982-1991 period, Harris and Marston (1992) reported regression results indicating that the market premium decreased with the level of government
interest rates and increased with the spread between corporate and government bond yields (BSPREAD). This bond yield spread was interpreted as a time series proxy for equity risk. We introduce three additional ex ante measures of risk shown in Table 1: CON, DISP and VOL. The three measures come from three independent sets of data and are supplied by different agents in the economy (consumers, equity analysts and investors (via option and share price data)). Table 4 provides summary data on all four of our risk measures.

Table 5 replicates and updates earlier analysis.\(^9\) The results confirm the earlier patterns. For the entire sample period, Panel A shows that risk premia are negatively related to interest rates. This negative relationship is also true for both the 1980's and 1990's as displayed in Panels B and C. For the entire 1982 to 1998 period, the addition of the yield spread risk proxy to the regressions lowers the magnitude of the coefficient on government bond yields, as can be seen by comparing Equations 1 and 2 of Panel A. Furthermore, the coefficient of the yield spread (0.487) is itself significantly positive. This pattern suggests that a reduction in the risk differential between investment in government bonds and in corporate activity is translated into a lower equity market risk premium.

In major respects, the results in Table 5 parallel earlier findings. The market risk premium changes over time and appears inversely related to government interest rates but positively related to the bond yield spread, which proxies for the incremental risk of investing in equities as opposed to government bonds. One striking feature is the large negative coefficients on government bond yields. The coefficients indicate the equity risk premium declines by over 70 basis points for a 100 basis point increase in government interest rates.\(^{10}\) This inverse

\(^9\) OLS regressions with levels of variables generally showed severe autocorrelation. As a result, we used the Prais-Winsten method (on levels of variables) and also OLS regressions on first differences of variables. Since both methods yielded similar results and the latter had more stable coefficients across specifications, we report only the results using first differences. Tests using Durbin-Watson statistics from regressions in Tables 5 and 6 do not accept the hypothesis of autocorrelated errors (tests at .01 significance level, see Johnston 1984, pp. 321-325).

\(^{10}\) The Table 5 coefficients on \(i\) are significantly different from \(-1.0\) suggesting that equity required returns do respond to interest rate changes. However, the large negative coefficients imply only minor adjustments of required
relationship suggests much greater stability in equity required returns than is often assumed. For instance, standard application of the CAPM suggests a one-to-one change in equity returns and government bond yields.

Table 6 introduces three additional proxies for risk and explores whether these variables, either individually or collectively, are correlated with the market premium. Since our estimates of implied volatility start in May 1986, the table shows results for both the entire sample period and for the period during which we can introduce all variables. Entered individually each of the three variables is significantly linked to the risk premium with the coefficient having the expected sign. For instance, in regression (1) the coefficient on CON is -.014 which is significantly different from zero (t = -3.50). The negative coefficient signals that higher consumer confidence is linked to a lower market premium. The positive coefficients on VOL and DISP indicate the equity risk premium increases with both market volatility and disagreement among analysts. The effects of the three variables appear largely unaffected by adding other variables. For instance, in regression (4) the coefficients on CON and DISP both remain significant and are similar in magnitude to the coefficients in single variable regressions.

Even in the presence of the new risk variables, Table 6 shows that the market risk premium is affected by interest rate conditions. The large negative coefficient on government bond rates implies large reductions in the equity premium as interest rates rise. One feature of our data may contribute to the observed negative relationship between the market risk premium and the level of interest rates. Specifically, if analysts are slow to report updates in their growth forecasts, changes in our estimated k would not adjust fully with changes in the interest rate even if the true risk premium were constant. To address the impact of "stickiness" in the measurement of k, we formed "quarterly" measures of the risk premium which treat k as an average over the returns to interest rate changes since the risk premium declines. In earlier work (Harris and Marston (1991)) the coefficient was significantly negative but not as large in absolute value. In that earlier work we reported results
quarter. Specifically, we take the value of k at the end of a quarter and subtract from it the average value of i for the months ending when k is measured. For instance, to form the risk premium for March 1998 we take the March value of k and subtract the average value of i for January, February and March. This approach assumes that in March k still reflects values of g that have not been updated from the prior two months. We then pair our quarterly measure of risk premium with the average values of the other variables for the quarter. For instance, the March 1998 “quarterly” risk premium would be paired with averaged values of BSPREAD over the January through March period. To avoid overlapping observations for the independent variables, we use only every third month (March, June, September, December) in the sample.

As reported in Table 7, sensitivity analysis using “quarterly” observations suggests that delays in updating may be responsible for a portion, but not all, of the observed negative relationship between the market premium and interest rates. For example, when we use quarterly observations the coefficient on i in regression (2) of Table 7 is -.527, well below the earlier estimates but still significantly negative11.

As an additional test, we look at movements in the bond risk premium (BSPREAD). Since BSPREAD is constructed directly from bond yield data it does not have the potential for reporting lags that may affect analysts’ growth forecasts. Regression 3 in Table 7 shows BSPREAD is negatively linked to government rates and significantly so12. While the equity premium need not move in the same pattern as the corporate bond premium, the negative coefficient on BSPREAD suggests that our earlier results are not due solely to “stickiness” in measurements of market required returns.

11 Sensitivity analysis for the 1982-1989 and 1990-1998 subperiods yields results similar to those reported.

12 We thank Bob Conroy for suggesting use of BSPREAD. Regression 3 in Table 7 appears to have autocorrelated errors; the Durbin-Watson (DW) statistic rejects the hypothesis of no autocorrelation. However, in subperiod analysis, the DW statistic for the 1990-98 period is consistent with no autocorrelation and the coefficient on i is essentially the same ($-.24, t = -8.05$) as reported in Table 7.
The results in Table 7 suggest that the inverse relationship between interest rates and the market risk premium may not be as pronounced as suggested in earlier tables. Still, there appears to be a significant negative link between the equity risk premium and government interest rates. The quarterly results in Table 7 would suggest about a 50 basis point change in risk premium for each 100 basis point movement in interest rates.

Overall, our ex ante estimates of the market risk premium are significantly linked to ex ante proxies for risk. Such a link suggests that investors modify their required returns in response to perceived changes in the environment. The findings provide some comfort that our risk premium estimates are capturing, at least in part, underlying economic changes in the economic environment. Moreover, each of the risk measures appears to contain relevant information for investors. The market risk premium is negatively related to the level of consumer confidence and positively linked to interest rate spreads between corporate and government debt, disagreement among analysts in their forecasts of earnings growth and the implied volatility of equity returns as revealed in options data.

II. Conclusions

Shareholder required rates of return and risk premia are based on theories about investors’ expectations for the future. In practice, however, risk premia are typically estimated using averages of historical returns. This paper applies an alternate approach to estimating risk premia that employs publicly available expectational data. The resultant average market equity risk premium over government bonds is comparable in magnitude to long-term differences (1926 to 1998) in historical returns between stocks and bonds. As a result, our evidence does not resolve the equity premium puzzle; rather, our results suggest investors still expect to receive large spreads to invest in equity versus debt instruments.

There is strong evidence, however, that the market risk premium changes over time. Moreover, these changes appear linked to the level of interest rates as well as ex ante proxies for
risk drawn from interest rate spreads in the bond market, consumer confidence in future economic conditions, disagreement among financial analysts in their forecasts and the volatility of equity returns implied by options data. The significant economic links between the market premium and a wide array of risk variables suggests that the notion of a constant risk premium over time is not an adequate explanation of pricing in equity versus debt markets.

Our results have implications for practice. First, at least on average, our estimates suggest a market premium roughly comparable to long-term historical spreads in returns between stocks and bonds. Our conjecture is that, if anything, our estimates are on the high side and thus establish an upper bound on the market premium. Second, our results suggest that use of a constant risk premium will not fully capture changes in investor return requirements. As a specific example, our findings indicate that common application of models such as the CAPM will overstate changes in shareholder return requirements when government interest rates change. Rather than a one-for-one change with interest rates implied by use of constant risk premium, our results indicate that equity required returns for average risk stocks likely change by half (or less) of the change in interest rates. However, the picture is considerably more complicated as shown by the linkages between the risk premium and other attributes of risk.

Ultimately, our research does not resolve the answer to the question “What is the right market risk premium?” Perhaps more importantly, our work suggests that the answer is conditional on a number of features in the economy—not an absolute. We hope that future research will harness ex ante data to provide additional guidance to best practice in using a market premium to improve financial decisions.
Table 1. Variable Definitions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Equity required rate return.</td>
</tr>
<tr>
<td>P_0</td>
<td>Price per share.</td>
</tr>
<tr>
<td>D_1</td>
<td>Expected dividend per share measured as current indicated annual dividend from COMPUSTAT multiplied by $(1 + g)$.</td>
</tr>
<tr>
<td>g</td>
<td>Average financial analysts' forecast of five-year growth rate in earnings per share (from IBES).</td>
</tr>
<tr>
<td>i</td>
<td>Yield to maturity on long-term U.S. government obligations (source: Federal Reserve, 30-year constant maturity series).</td>
</tr>
<tr>
<td>rp</td>
<td>Equity risk premium calculated as $rp = k - i$.</td>
</tr>
<tr>
<td>BSPREAD</td>
<td>Spread between yields on corporate and government bonds, $BSPREAD = yield to maturity on long-term corporate bonds (Moody's average across bond rating categories) minus i.</td>
</tr>
<tr>
<td>CON</td>
<td>Monthly consumer confidence index reported by the Conference Board (divided by 100).</td>
</tr>
<tr>
<td>DISP</td>
<td>Dispersion of analysts' forecasts at the market level.</td>
</tr>
<tr>
<td>VOL</td>
<td>Volatility for the SP500 index as implied by options data.</td>
</tr>
</tbody>
</table>
Table 2. Bond Market Yields, Equity Required Return, and Equity Risk Premium, 1982-1998

Values are averages of monthly figures in percent. \(i \) is the yield to maturity on long-term government bonds, \(k \) is the required return on the SP500 estimated as a value weighted average using a discounted cash flow model with analysts’ growth forecasts. The risk premium \(rp = k - i \). The average of analysts’ growth forecasts is \(g \). \(Div\ yield \) is expected dividend per share divided by price per share.

<table>
<thead>
<tr>
<th>Year</th>
<th>Div yield</th>
<th>(g)</th>
<th>(K)</th>
<th>(i)</th>
<th>(rp = k - i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>6.89</td>
<td>12.73</td>
<td>19.62</td>
<td>12.76</td>
<td>6.86</td>
</tr>
<tr>
<td>1983</td>
<td>5.24</td>
<td>12.60</td>
<td>17.86</td>
<td>11.18</td>
<td>6.67</td>
</tr>
<tr>
<td>1984</td>
<td>5.55</td>
<td>12.02</td>
<td>17.57</td>
<td>12.39</td>
<td>5.18</td>
</tr>
<tr>
<td>1985</td>
<td>4.97</td>
<td>11.45</td>
<td>16.42</td>
<td>10.79</td>
<td>5.63</td>
</tr>
<tr>
<td>1986</td>
<td>4.08</td>
<td>11.05</td>
<td>15.13</td>
<td>7.80</td>
<td>7.34</td>
</tr>
<tr>
<td>1987</td>
<td>3.64</td>
<td>11.01</td>
<td>14.65</td>
<td>8.58</td>
<td>6.07</td>
</tr>
<tr>
<td>1988</td>
<td>4.27</td>
<td>11.00</td>
<td>15.27</td>
<td>8.96</td>
<td>6.31</td>
</tr>
<tr>
<td>1989</td>
<td>3.95</td>
<td>11.08</td>
<td>15.03</td>
<td>8.45</td>
<td>6.58</td>
</tr>
<tr>
<td>1990</td>
<td>4.03</td>
<td>11.69</td>
<td>15.72</td>
<td>8.61</td>
<td>7.11</td>
</tr>
<tr>
<td>1991</td>
<td>3.64</td>
<td>11.99</td>
<td>15.63</td>
<td>8.14</td>
<td>7.50</td>
</tr>
<tr>
<td>1992</td>
<td>3.35</td>
<td>12.13</td>
<td>15.47</td>
<td>7.67</td>
<td>7.81</td>
</tr>
<tr>
<td>1993</td>
<td>3.15</td>
<td>11.63</td>
<td>14.78</td>
<td>6.60</td>
<td>8.18</td>
</tr>
<tr>
<td>1996</td>
<td>2.60</td>
<td>11.89</td>
<td>14.49</td>
<td>6.70</td>
<td>7.79</td>
</tr>
<tr>
<td>1997</td>
<td>2.18</td>
<td>12.60</td>
<td>14.78</td>
<td>6.60</td>
<td>8.17</td>
</tr>
<tr>
<td>1998</td>
<td>1.80</td>
<td>12.95</td>
<td>14.75</td>
<td>5.58</td>
<td>9.17</td>
</tr>
<tr>
<td>Average</td>
<td>3.86</td>
<td>11.81</td>
<td>15.67</td>
<td>8.53</td>
<td>7.14</td>
</tr>
</tbody>
</table>
Table 3. Average Historical Returns on Bonds, Stocks, Bills, and Inflation in the U.S., 1926-1998

<table>
<thead>
<tr>
<th>Historical Return Realizations</th>
<th>Geometric Mean</th>
<th>Arithmetic Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Stock (large company)</td>
<td>11.2%</td>
<td>13.2%</td>
</tr>
<tr>
<td>Long-term government bonds</td>
<td>5.3%</td>
<td>5.7%</td>
</tr>
<tr>
<td>Treasury bills</td>
<td>3.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Inflation rate</td>
<td>3.1%</td>
<td>3.2%</td>
</tr>
</tbody>
</table>

Table 4. Descriptive Statistics on Ex Ante Risk Measures

Entries are based on monthly data. BSPREAD is the spread between yields on long-term corporate and government bonds. CON is the consumer confidence index. DISP measures the dispersion of analysts' forecasts of earnings growth. VOL is the volatility on the SP500 index implied by options data. Variables are expressed in decimal form, e.g., 12% = .12.

<table>
<thead>
<tr>
<th>A. Variable Monthly Levels</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSPREAD</td>
<td>.0123</td>
<td>.0040</td>
<td>.0070</td>
<td>.0254</td>
</tr>
<tr>
<td>CON</td>
<td>.9500</td>
<td>.2240</td>
<td>.473</td>
<td>1.382</td>
</tr>
<tr>
<td>DISP</td>
<td>.0349</td>
<td>.0070</td>
<td>.0285</td>
<td>.0687</td>
</tr>
<tr>
<td>VOL</td>
<td>.1599</td>
<td>.0696</td>
<td>.0765</td>
<td>.6085</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Variable Monthly Changes</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSPREAD</td>
<td>-.00001</td>
<td>.0011</td>
<td>-.0034</td>
<td>.0036</td>
</tr>
<tr>
<td>CON</td>
<td>.0030</td>
<td>.0549</td>
<td>-.2300</td>
<td>.2170</td>
</tr>
<tr>
<td>DISP</td>
<td>-.00002</td>
<td>.0024</td>
<td>-.0160</td>
<td>.0154</td>
</tr>
<tr>
<td>VOL</td>
<td>-.0008</td>
<td>.0592</td>
<td>-.2156</td>
<td>.4081</td>
</tr>
</tbody>
</table>

C. Correlation Coefficients for Monthly Changes

<table>
<thead>
<tr>
<th>BSPREAD</th>
<th>CON</th>
<th>DISP</th>
<th>VOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>-.16*</td>
<td>.05</td>
<td>.22**</td>
</tr>
<tr>
<td>-.16*</td>
<td>1.00</td>
<td>.07</td>
<td>-.09</td>
</tr>
<tr>
<td>.05</td>
<td>.07</td>
<td>1.00</td>
<td>.03</td>
</tr>
<tr>
<td>.22**</td>
<td>-.09</td>
<td>.03</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table 5. Changes in the Market Equity Risk Premium Over Time

The table reports regression coefficients (t-values). Regression estimates use all variables expressed as monthly changes to correct for autocorrelation. The dependent variable is the market equity risk premium for the SP500 index. BSPREAD is the spread between yields on long-term corporate and government bonds. The yield to maturity on long-term government bonds is denoted as i. For purposes of the regression, variables are expressed in decimal form, e.g., 12% = .12.

<table>
<thead>
<tr>
<th>Time period</th>
<th>Intercept</th>
<th>i</th>
<th>BSPREAD</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 1982-1998</td>
<td>-.0002</td>
<td>-.8696</td>
<td>.487</td>
<td>.57</td>
</tr>
<tr>
<td></td>
<td>(-1.49)</td>
<td>(-16.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.0002</td>
<td>-.749</td>
<td>.487</td>
<td>.59</td>
</tr>
<tr>
<td></td>
<td>(-1.11)</td>
<td>(-11.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. 1980’s</td>
<td>-.0005</td>
<td>-.887</td>
<td>.508</td>
<td>.57</td>
</tr>
<tr>
<td></td>
<td>(-1.62)</td>
<td>(-10.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.0004</td>
<td>-.759</td>
<td>.508</td>
<td>.57</td>
</tr>
<tr>
<td></td>
<td>(-1.24)</td>
<td>(-7.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. 1990’s</td>
<td>-.0000</td>
<td>-.840</td>
<td>.347</td>
<td>.65</td>
</tr>
<tr>
<td></td>
<td>(-0.09)</td>
<td>(-13.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.0000</td>
<td>-.757</td>
<td>.347</td>
<td>.65</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(-9.85)</td>
<td>(1.76)</td>
<td></td>
</tr>
</tbody>
</table>
Table 6. Changes in the Market Equity Risk Premium Over Time and Selected Measures of Risk

The table reports regression coefficients (t-values). Regression estimates use all variables expressed as monthly changes to correct for autocorrelation. The dependent variable is the market equity risk premium for the SP500 index. BSPREAD is the spread between yields on long-term corporate and government bonds. The yield to maturity on long-term government bonds is denoted as \(i \). CON is the change in consumer confidence index. DISP measures the dispersion of analysts' forecasts of earnings growth. VOL is the volatility on the SP500 index implied by options data. For purposes of the regression, variables are expressed in decimal form, e.g., 12% = .12.

<table>
<thead>
<tr>
<th>Time period</th>
<th>Intercept</th>
<th>(i)</th>
<th>BSPREAD</th>
<th>CON</th>
<th>DISP</th>
<th>VOL</th>
<th>Adj. (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. 1982-1998</td>
<td>(1) 0.0002</td>
<td>-0.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(.97)</td>
<td>(-3.50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) -0.0001</td>
<td>-0.737</td>
<td>0.453</td>
<td>-0.007</td>
<td></td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>(-.96)</td>
<td>(-11.31)</td>
<td>(2.76)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) 0.0002</td>
<td>0.244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(.78)</td>
<td>(2.38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) -0.0001</td>
<td>-0.733</td>
<td>0.433</td>
<td>-0.007</td>
<td>0.185</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>(-.93)</td>
<td>(-11.49)</td>
<td>(2.69)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) 0.0000</td>
<td>-0.821</td>
<td>0.413</td>
<td>-0.005</td>
<td>0.376</td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>(.03)</td>
<td>(-11.16)</td>
<td>(2.47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) 0.0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.011</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(.53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.89)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) 0.0000</td>
<td>-0.831</td>
<td>0.326</td>
<td>-0.005</td>
<td>0.372</td>
<td>0.006</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>(.02)</td>
<td>(-11.52)</td>
<td>(1.95)</td>
<td></td>
<td></td>
<td>(3.77) (2.66)</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Regressions Using Alternate Measures of Risk Premia to Analyze Potential Effects of Reporting Lags in Analysts’ Forecasts

The table reports regression coefficients (t-values). Regression estimates use all variables expressed as changes (monthly or quarterly) to correct for autocorrelation. BSPREAD is the spread between yields on long-term corporate and government bonds. \(r_p \) is the risk premium on the SP500 index. The yield to maturity on long-term government bonds is denoted as \(i \). For purposes of the regression, variables are expressed in decimal form, e.g., 12% = .12.

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Intercept</th>
<th>(i)</th>
<th>BSPREAD</th>
<th>(Adj. R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Equity Risk Premium ((r_p)) Monthly Observations (same as Table 5)</td>
<td>-.0002</td>
<td>-.749</td>
<td>.487</td>
<td>.59</td>
</tr>
<tr>
<td>(2) Equity Risk Premium ((r_p)) “Quarterly” nonoverlapping observations to account for lags in analyst reporting</td>
<td>-.0002</td>
<td>-.527</td>
<td>.550</td>
<td>.60</td>
</tr>
<tr>
<td>(3) Corporate Bond Spread (BSPREAD) Monthly Observations</td>
<td>-.0001</td>
<td>-.247</td>
<td></td>
<td>.38</td>
</tr>
</tbody>
</table>

REFERENCES

How the Risk Premium Factor Model and Loss Aversion Solve the Equity Premium Puzzle

Stephen D. Hassett

Hassett Advisors
www.HassettAdvisors.com
SHassett@HassettAdvisors.com

This Draft: September 22, 2010
First Draft: September 20, 2010

Abstract

The term “equity premium puzzle” was coined in 1985 by economists Rajnish Mehra and Edward C. Prescott. The equity premium puzzle is considered one of the most significant questions in finance. A number of papers have explored the fundamental questions of why the premium exists and has not been arbitraged away over time. This paper expands upon the findings implicit in the Risk Premium Valuation Model (Hassett 2010) that the equity risk premium is a function of risk free rates. Since 1960 the equity risk premium has been 1.9 – 2.48 times the risk free rate. The long term consistency of this relationship with loss aversion coefficients associated with Prospect Theory (Kahneman and Tversky, 1979) suggest it as a solution to the equity premium puzzle and support the experimental findings of Myopic Loss Aversion (Thaler, Tversky, Kahneman and Schwartz, 1997).
Introduction

The equity premium puzzle is considered one of the most significant questions in finance. The term "equity premium puzzle" was coined by Mehera and Prescott in their 1985 paper, "The Equity Premium, A Puzzle," referring to the inability to reconcile the observed equity risk premium with financial models.

In the analysis, they use short-term treasuries as the risk free rate to calculate the real return on equities over numerous historical periods. They conclude that on average short-term treasuries have produced a real return of about 1% over the long-term, while equities have yielded 7%, implying a premium of about 6% or seven times the risk free return. Unable to reconcile a 7 x premium with financial models, they term it a puzzle.

Since then numerous papers have also attempted to explain the difference, including Shlomo Benartzi; Richard H. Thaler, "Myopic Loss Aversion and the Equity Premium Puzzle" which attempts to explain it in relation of loss aversion as first described in a paper by Daniel Kahneman and Amos Tversky in 1979. They state:

“The second behavioral concept we employ is mental accounting [Kahneman and Tversky 1984; Thaler 1985]. Mental accounting refers to the implicit methods individuals use to code and evaluate financial outcomes: transactions, investments, gambles, etc. The aspect of mental accounting that plays a particularly important role in this research is the dynamic aggregation rules people follow. Because of the presence of loss aversion, these aggregation rules are not neutral.”

Our mental accounting for gains and losses determines how we perceive them.

Loss Aversion

Loss aversion refers to the fact that people are more sensitive to decreases in wealth than increases. Empirical estimates find that losses are weighted about twice as strongly as gains (e.g., Tversky and Kahneman 1992); Kahneman, Knetsch, and Thaler (1991), Thaler, Tversky, Kahneman, Schwartz (1997). The pain of losing $100 is roughly twice the perceived benefit of gaining $100, so on average their subjects required equal odds of winning $200 to compensate for the potential loss of $100. In other words, the average subject required a gain of twice the potential loss to take a gamble that had equal chance of loss or gain. This was in stark contrast to the belief that people, as rational beings, evaluated the expected value and would be indifferent to a chance of gaining $100 to losing $100 if the odds were 50/50; if the gain were tilted to be slightly favorable they should take the bet. In reality, losing hurts more; people on average do not find the prospect of gaining $101 along with an equal
chance of losing $99 to be an attractive wager. In their experiments, they found that subjects required about $200 to be willing to accept the 50/50 proposition of losing $100. Kahneman won the Nobel Prize in Economics in 2002 after Tversky passed away in 1996. Of course all people do not behave this way all the time, otherwise Las Vegas would not exist!

Loss Aversion and Corporate Decision Making

Incorporating loss aversion into financial thinking is in many ways a significant departure from how finance is often taught and practiced. In business school, I was taught to rely on net present value and expected value. A project with positive net present values should be pursued and that when faced with a range of outcomes, the expected value can be calculated by assigning probabilities to each outcome. The mantra: Pursue all NPV positive projects.

My experience has been that the business world rarely works this way. Due to corporate as much as individual loss aversion, decision makers are often much more risk averse, viewing the consequence of failure much greater than the rewards for success. Investments that have only slightly positive NPV or expected value are usually not pursued. Even the more risk tolerant individuals would tend to avoid risk if the organization takes a very dim view of loss.

This is why it is so important for organizations to employ incentive structures that reward sustainable growth in value and prudent risk taking. My own experience is that organizations without such incentives tend to be very risk averse. When decisions come down the internal calculus that investing successfully results in no reward, while failure results in unemployment or at least limited advancement, investment and growth are sure to slow. I would also argue that this also explains risk taking for traders on Wall Street where outsized rewards are given for success compared to the stigmas and punishments for failure. It’s not that traders have high tolerance for risk, it’s that in using OPM (Other People’s Money) the penalty for failure is small.

Attempts to Solve The Equity Premium Puzzle

As discussed above, Mehra and Prescott(1985) coined the phrase “Equity Premium Puzzle” because they estimated that investors would require a very high coefficient of relative risk aversion (of the order of 40 or 50) to justify the observed equity risk premium of 7%. Mehra and Prescott revisited the topic two decades later with their 2003 paper, “The Equity Premium in Retrospect” where they continued to try and solve the puzzle by comparing real returns and ask whether the equity premium is due to a premium for bearing non-diversifiable risk. They conclude the answer is no unless you assume the individual has an extreme aversion to risk; many times higher than the 2x return seen in the lab.

They approach the problem using a general equilibrium model and compared short-term real risk free rates to observed equity premium. While I am not in a position to opine on the use of these models in evaluating equity premium, for several reasons I will discuss shortly, I believe that the use of short-term real rates is mistaken. I am not surprised they could not explain the rational for investors to such a dramatic disparity, since in my opinion they are not making the right comparison. Rather than using short-term real rates, they should be using long-term nominal rates.
What they did was a bit like measuring the speed of one moving vehicle from another moving vehicle. If Car A is moving at 60 mph and Car B is behind it at 66 mph and car C is next traveling at 61 mph, car C will see itself gaining on car A at just 1 mph. From the perspective of car C, car B is gaining on car A at a rate of 6 mph or 6 x faster than itself. This is all fine unless we care about their speed relative to a neutral observer who is not moving. Relative to the neutral observer, Car B is only going 10% faster than Car A.

Mehra and Prescott did not pick the right relative observation point. By using real returns they are measuring the difference from a moving vehicle. If we look at this from the perspective of real returns then the relative premium looks huge. But if we look at from the perspective of nominal returns, the neutral observer, then the premium it is not unreasonable. This is consistent with both the way individuals have been shown to evaluate gains and losses and with financial theory.

The mental accounting of investors focuses on the nominal returns. It’s what investors track and how money managers are compensated. So it makes sense that that proper basis for evaluating the risk premium relative to the risk free rate is long-term nominal returns. For example, let’s assume inflation is 2%. If an investor is considering a $1,000 investment with Treasuries at 4%, the yield is guaranteed to be $40 per year with a full return of principal. While the investor is exposed to interim fluctuations in value, the coupon and return of principal are guaranteed. Alternatively, the same investor considering an investment in the S&P 500 Index, would be evaluating the expected return relative to the nominal long-term rate rather than the real short term rate. In this case, expected equity returns of 10% would look good, yielding on average $100 per year rather than $40. If we calculate real returns by subtracting the 2% inflation, the $80 return for equities dwarfs the $20 for treasuries.

Now let’s assume that expected inflation rises to 6% and the risk free rate jumps to 8%, so a new $1,000 bond would yield $80. If you applied the same 6% premium for equities, you get an expected yield of $140. Sure the real returns are the same, but doesn’t the risky $140 look less attractive compared to a guaranteed $80?

Is it the right thing to track? Maybe not, but it is the reality. If investors compare their returns on equities to the nominal return of other investments, any attempt to explain the premium must compare the relative return as perceived by investors. Nominal not real returns should be used.

Long-term Treasury rates are used in determining cost of capital since they embody the market’s best guess on long-term inflation. Even though this means they are not truly risk free, it is the best market estimate of expected interest rate and inflation risk; it is the right reference point. While it’s true that using real equity returns accounts for the actual inflation component, it does not account for interest rate risk. In order account for expected inflation, most practitioners use long-term treasuries as the risk free rate. In doing so, they also incorporate a risk factor for interest rates.
Required return can be thought of as follows:

\[
\text{Nominal Equity Return} = \text{Real Equity Return} + \text{Inflation} = \text{Short-term Risk Free Rate} + \text{Inflation} + \text{Interest Rate Risk Premium} + \text{Equity Risk Premium} \quad (1)
\]

If you subtract inflation from both sides to derive the real required return, you are still left with interest rate risk, which includes risk of unexpected inflation. So by using real equity returns and short-term risk free rate, you still have to account for the interest rate risk premium.

\[
\text{Real Equity Return} = \text{Short-term Risk Free Rate} + \text{Interest Rate Risk Premium} + \text{Equity Risk Premium} \quad (2)
\]

Essentially, what Mehra and Prescott were calling the equity risk premium, was really the equity risk premium plus the interest rate risk premium.

Some believe that interest rates do not have a material impact on equity returns since inflation will result in earnings growth and since equities are priced as a multiple of earnings, as earnings grow equity prices increase with inflation. As I will discuss later, inflation has a huge impact on equity prices.

In “Myopic Loss Aversion and The Equity Premium Puzzle,” Benzarti and Thaler (1995) they posit that the high degree of loss aversion is due to “myopic loss aversion” in that investors are sensitive to interim losses as equity markets fluctuate. They suggest that investors look at nominal returns since that is what is reported, therefore that’s what investors look at. They find that a loss aversion factor of 2.25 to 2.78 is consistent with observed risk premiums if investors evaluate their portfolios about once a year and overall results are very sensitive to frequency of evaluation. In “The Effect of Myopia and Loss Aversion on Risk,” Thaler, Tversky, Kahneman, Schwarts (1995), looked at this question through lab experiments found that subjects were more loss averse when they evaluated their returns more frequently and that they viewed guaranteed outcomes as a reference point with an evaluation period of about one year (13 months). In other words, investors evaluate their portfolios annually and expect a premium proportionate to the nominal risk free rate. As we will see below the RPF Valuation Model provides real world support for these findings.

Determining the Equity Risk Premium

In introducing the Risk Premium Valuation Model (Hassett 2010), I posited that rather than being a fixed premium, the Equity Risk Premium fluctuates with the risk free rate, maintaining a constant proportionate relationship. The Equity Risk Premium equaled the Risk Free Rate times a constant factor. That factor (Risk Premium Factor) ranged from 0.9 – 1.48 between 1960 and today. So substituting into the formula where Cost of Equity = Rf + ERP,

\[
\text{Cost of Equity} = \text{Risk Free Rate} + \text{Risk Free Rate} \times \text{Risk Premium Factor} \quad (4)
\]

Simplifying to:

\[
\text{Cost of Equity} = \text{Risk Free Rate} \times (1 + \text{RPF}) \quad (5)
\]
The RPF does not change frequently. In fact it has shifted only twice since 1960:

<table>
<thead>
<tr>
<th>Period</th>
<th>RPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960 – 1980</td>
<td>1.24</td>
</tr>
<tr>
<td>1981 – Q2 2002</td>
<td>0.90</td>
</tr>
<tr>
<td>Q3 2002 – Present</td>
<td>1.48</td>
</tr>
</tbody>
</table>

Table 1: Estimated Risk Premium Factors

A Risk Premium Factor of 0.9 – 1.48, means Cost of Equity equals the Risk Free Rate times 1.9 – 2.48, very close to the findings on loss aversion factors.

The factor was determined by applying a set of simplifying assumptions to the constant growth formula:

\[P = E / (C - G) \quad \text{or} \quad P/E = 1 / (C - G) \tag{6} \]

Variables and assumptions used are as follows:

- \(P \) = Price (Value of S&P 500)
- \(E \) = Actual Earnings (Annualize operating earnings for the prior four quarters as reported by S&P). Earnings, while not ideal, are used as a proxy for cash flow and seem to work very well
- \(G \) = Expected long term projected growth rate, which is broken down into Real Growth and Inflation, so \(G = G_R + I_{LT} \)
- \(G_R \) = Expected long-term real growth rate. Long-term expected real growth rate (\(G_R \)) is based on long-term GDP growth expectations on the basis that real earnings for a broad index of large-cap equities will grow with GDP over the long-term. A rate of 2.6% is used with the same rate applied historically.\(^8\)
- \(I_{LT} \) = Expected long-term inflation, as determined by subtracting long-term expected real interest rates (\(I_{LT} \)) from the 10 Year Treasury, where \(I_{LT} \) is 2%, based on the average 10 Year TIPs Yields from March 2003 – present.\(^9\)
- \(C \) = Cost of Capital is derived using Capital Asset Pricing Model, where for the broad market, \(C = R_f + ERP \)
- \(R_f \) = Risk Free Rate as measured using 10 Year Treasury yields
- \(ERP \) = Risk Premium Factor (RPF) x \(R_f \)
- \(RPF \) = 1.24 for 1960 – 1980; 0.90 for 1981 – 2001; and 1.48 for 2002 – present. The RPF for each period was arrived at using a linear regression to fit the assumptions above to actual PE. All data used in the analysis is available for download at: http://sites.google.com/a/hassett-mail.com/marketriskandvaluation/Home

Including all assumptions, the formula reduces to:

\[P = E / (R_f x (1+RPF) - (R_f - I_{LT}) - 2.6\%) \tag{7} \]

\[\text{Or} \quad P/E = 1 / (R_f x (1+RPF) - (R_f - I_{LT}) - 2.6\%) \tag{8} \]

The model explains stock prices from 1960 - 2009 with R Squared around 90%\(^{10}\) to actual index levels from 1960 – 2009 as shown in graph below.
The model only works if we assume that the Equity Risk Premium is conditioned on the Risk Free Rate, meaning that it gets bigger when the Treasury yields increase and smaller when they shrink. In fact one reason that I suspect many studies compared real returns, rather than nominal returns, may be the belief that inflation does not impact valuation. One common belief is that since profits will grow with inflation, inflation does not matter when discounted back. Another look at the constant growth equation can help understand this thinking:

\[
P / E = 1 / (C - G), \text{ where} \tag{9}
\]

\[
C = Rf + ERP \tag{10}
\]

\[
G = \text{Real Growth + Expected Inflation} \tag{11}
\]

\[
Rf = \text{Real Interest Rate + Expect Inflation} \tag{12}
\]

We can restate the equation for P/E as:

\[
P/E = 1 / (\text{Real Interest Rate + Expect Inflation}) - (\text{Real Growth + Expected Inflation}), \tag{13}
\]

Expected Inflation is canceled out and:

\[
P/E = 1 / (\text{Real Interest Rate + Real Growth}) \tag{14}
\]

Since we assume the Real Interest Rate and Real Growth are a constant over the long term, P/E is also a constant. And, this would be true if the Equity Risk Premium were a constant. But if we assume that the Equity Risk Premium moves with the Risk Free Rate, then we get the relationship charted above, which is a very good fit with historical data.

Impact of Inflation on Value

Some argue that inflation should not have an impact on equity values, since higher costs can be passed on in the form of higher prices, so on average, earnings growth should keep up with inflation. If you
How the Risk Premium Factor Model and Loss Aversion Solve the Equity Premium Puzzle

assume P/E ratios should be a constant, say, 19 then with earnings of $2.00 share a company would trade at $38.00. With 5% inflation, earnings would grow to $2.10 and the share price to $39.90 – a gain of 5% which just matches inflation.

We get the same result using a constant growth model and a fixed Equity Risk Premium. Let’s assume the Equity Risk Premium is 6%, the Risk Free Rate is 7%, which embodies 5% inflation, and real long term growth rate of 2.6%. Using the formula \(P/E = 1 / (C-G) \) we get, \(P/E = 1 / ((7\%+6\%) – (5\%+2.6\%)) \) for a P/E of 18.5. If we lower the inflation rate to 2% the risk free rate drops to 4% and we calculate \(P/E = ((4\%+6\%)-(2\%+2.6\%)) = 18.5 \). As shown earlier, any change inflation cancels itself out.

However, if we derive the Equity Risk Premium using the RFP Model, then the Equity Risk Premium varies with inflation. More inflation results in a higher risk premium. Using a 2% real interest rate, Table 2 below demonstrates the impact of inflation on P/E:

<table>
<thead>
<tr>
<th>Inflation</th>
<th>(R_f)</th>
<th>ERP</th>
<th>Cost of Equity</th>
<th>(G)</th>
<th>Predicted P/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0%</td>
<td>4.0%</td>
<td>5.9%</td>
<td>9.9%</td>
<td>4.6%</td>
<td>18.8</td>
</tr>
<tr>
<td>3.0%</td>
<td>5.0%</td>
<td>7.4%</td>
<td>12.4%</td>
<td>5.6%</td>
<td>14.7</td>
</tr>
<tr>
<td>4.0%</td>
<td>6.0%</td>
<td>8.9%</td>
<td>14.9%</td>
<td>6.6%</td>
<td>12.1</td>
</tr>
<tr>
<td>5.0%</td>
<td>7.0%</td>
<td>10.4%</td>
<td>17.4%</td>
<td>7.6%</td>
<td>10.2</td>
</tr>
<tr>
<td>6.0%</td>
<td>8.0%</td>
<td>11.8%</td>
<td>19.8%</td>
<td>8.6%</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Table 2: Inflation Drives Valuation

Since investors expect a proportionately higher return over risk free, as inflation rises they apply a greater discount to future earnings, resulting in a lower present value, resulting in a lower multiple.

Back to Loss Aversion

We know that individuals have different tolerances for risk. If the RPF is 1.48, that implies the market as a whole has a loss aversion coefficient of 2.48. That is the average of all investors, not every individual. We would expect some to have lower coefficients and others higher. Gambling addicts destroy their own lives, knowing the odds are not better than even, implying a loss aversion coefficient of less than 1.0. Likewise, some people are more risk averse than average. This is one of the factors that act to set price.

The prices for individual stocks are set at the margin. For example, Google closed today at $476 and traded about 2.5 million shares. But with 320 million shares outstanding, that is less than 1%. The price is set by the investors trading that 1%. The implication is that the owners of the remaining 99% think Google is worth more than the current $476 and some number of investors would be will to buy Google at a lower price. Mechanically the way this works is that sellers offer to sell a number of shares at a certain price, called the Ask, and potential buyers offer to buy at a specified price, called the Bid. The Bid for Google might be 200 shares at $476.07 and the Ask 700 shares at $476.18. The difference, $0.11 in this case, is called the Bid-Ask spread. These are the current best offers to buy and sell. For high
volume stocks like Google, the Bid-Ask spread is small, just 0.02% in this case. For lower volume equities the spread will generally be higher.

If an investor places a marker order to, say, buy 500 shares, the first 200 shares will be filled at the current Bid price for 200 shares at $476.17. The remaining 300 shares will be filled by the next best ask price, which will be $476.17 or higher. It is not the consensus or average estimate of value that determines the price, but the price at which investors at the margin are willing to buy or sell at any moment. So if I don’t own shares of Google and I think it’s worth just $400 or even $100, I am not a factor in setting the price. But if in the moment described above, I enter a bid for 200 shares at $476.18, the order is immediately filled and, for that moment, I am the price setter.

Similarly, investors with loss-aversion coefficients at the extremes should not be expected to have much market impact. An investor with a loss aversion coefficient well above 2.5 will be risk averse and have portfolio skewed towards government bonds, while an investor with a loss aversion coefficient near 1.0 will always have a portfolio that is mostly equities. Therefore neither will have much impact on price setting. On the other hand, investors with loss aversion coefficients around 2.5 will be more likely to be shifting their portfolios between bonds and equities and have a larger impact on pricing.

Conclusion

Loss aversion is hard wired into us and drives a number of decision processes that seems to include how investors set prices in the stock market. Thaler, Tversky, Kahneman, Schwarts (1995) found evidence of what they called Myopic Loss Aversion and demonstrated the expectations of risk premiums were consistent experimental findings for loss aversion if portfolios were evaluated annually. The Risk Premium Factor Valuation Model (Hassett 2010) provides real world evidence that the market actually behaves this way. Combing evidence that the risk premium varied with the risk free rate in a proportion consistent the findings in behavioral studies, suggests that Loss Aversion is the answer to the equity premium puzzle.
Endnotes

10 See Hassett (2010)
W
d
ile driving increases in shareholder value is one of the most important responsibilities of any business leader, many executives are handicapped by their limited understanding of what drives value. And they are not alone. Even prominent economists say that stock market valuation is not fully understood. For example, in a 1984 speech to the American Finance Association, Lawrence Summers said,

It would surely come as a surprise to a layman to learn that virtually no mainstream research in the field of finance in the past decade has attempted to account for the stock-market boom of the 1960s or the spectacular decline in real stock prices during the mid-1970s.

Some people see the stock market as arbitrary and random in setting values. But despite occasional bouts of extreme volatility (including, of course, the recent crash), most academics (and many practitioners) would likely agree with the proposition that the market does a reasonably good job of incorporating available information in share prices. At the same time, however, certain factors can clearly cause the market to misprice assets. These include problems with liquidity, imperfect information, and unrealistic expectations that can knock valuations out of line for a period of time. But such limitations notwithstanding, over a longer horizon the market appears to be reasonably efficient in correcting these aberrations.

The RFP Valuation Model introduced in this article is intended to explain levels and changes in market values and, by so doing, to help identify periods of likely mispricing. As such, the model offers a general quantitative explanation for the booms, bubbles, and busts—that is, the series of multiple expansions and contractions—that we have experienced over the past 50 years. The model explains stock prices from 1960 through the present (March 2010), including the 2008/09 “market meltdown.” And it does so using a surprisingly simple approach—one that combines generally accepted approaches to valuation with a simple way of estimating the Market or Equity Risk Premium (ERP) that produces remarkably good explanations of market P/E ratios and overall market levels.

To show you what I mean, Figure 1 shows how the P/E ratio predicted by model, when applied to S&P Operating Earnings, explains levels of the S&P 500 over the past 50 years, the earliest date for which I had reliable earnings data.

My approach to estimating the Equity Risk Premium is the most original part of this overall hypothesis. Many if not most finance theorists have assumed that the Equity Risk Premium is a constant that reflects the historical difference between the average return on stocks and the average return on the risk-free rate (generally the return on the 10-year U.S. government bonds). But if we also assume that long-term real interest rates do not change and that real growth can be approximated by real long-term GDP growth (also generally assumed to be stable), then the market-wide P/E would also be absolutely constant over time.

But, of course, the P/E multiple on the earnings of the S&P 500 is volatile, with year-end values ranging from 7.3 in 1974 to 29.5 in 2001. One possible objection to the idea of a constant risk premium is its implication that, when the risk-free rate increases, investors are satisfied with a premium that is smaller as a proportion of the risk-free rate. In this article, I suggest that the Equity Risk Premium is not a fixed number but a variable that fluctuates in direct proportion to the long-term risk-free rate as a fixed percentage, not a fixed premium. When used with the constant growth model, the cost of capital can be determined by the following formula:

\[
\text{Equity Risk Premium} = \text{Risk-Free Long-Term Rate} \times \text{Risk Premium Factor} \quad (1)
\]

This relationship can be used to explain why and how the risk premium varies over time; as interest rates vary, so does the risk premium. This Risk Premium Factor (RPF) appears to have held steady for long periods of time, changing just twice during the 50-year period from 1960 to the present (July 2009). Based on my calculations, the RPF was 1.24 from 1960-1980, 0.90 from 1981-June 2002, and 1.48 from July 2002 to the present. As we saw earlier in Figure 1, the model does a very good job of predicting market levels, even through the present financial crisis.

This result is also consistent with investor “loss aversion,” the well-documented (by Kahneman and Tversky) willingness of investors to sacrifice significant gains to avoid considerably smaller losses. One of their studies produced a loss aversion coefficient of 2.25, which implies that participants, on average, would be indifferent to the outcome of a coin flip promising either an expected but uncertain $325 or a guaranteed $100. The analogous calculation for the RPF model suggests that if the risk-free rate were 4% and the RPF 1.48, investors contemplating a $1,000 investment would assign roughly equal value to a guaranteed (bond-like) $40 and equities with an expected return of $99.

Valuing Constant Growth

The place to start is with the simplest valuation model, the Constant Growth Equation. This model derives from, and represents a specific case of, the Discounted Cash Flow (DCF) model that is used to determine the net present value of a projected stream of future cash flows. In the case in question, it is a perpetual stream of cash flows with a constant rate of growth. Instead of assuming different levels of earnings in each period, it assumes a constant growth rate off the base year and a constant cost of capital.

The DCF model can be expressed as follows:

\[P = \sum \frac{E_0 x (1 + G)^1}{(1+C)} + \frac{E_1 x (1 + G)^2}{(1+C)^2} + \ldots + \frac{E_n x (1 + G)^n}{(1+C)^n} \]

where \(E \) is cash flow and \(C \) is cost of capital. If you assume that \(E \) grows at a constant rate \((G) \), the result simplifies to:

\[P = \frac{E}{C - G} \]

This equation, which is not so much a theory as an indisputable mathematical concept, is the expanded form of the core insight that the value of a perpetual stream is the amount of the payments divided by the required rate of return. In other words, the value of a guaranteed $100 perpetual annuity in a market where the long-run risk-free return is 10% is $1,000 ($100/.10). The next step is to take the constant growth version of this model (equation 4) and apply it to market valuation by substituting S&P operating earnings for the variable \(E \) above.

\[P = \frac{E}{C - G} \]

\[\frac{P}{E} = \frac{1}{C - G} \]

This formula can also be restated to predict the Price-Earnings (P/E) ratio of the S&P 500 as follows:

\[\frac{P}{E} = \frac{1}{C - G} \]
Table 1
Growth Drives P/E

<table>
<thead>
<tr>
<th>Long-term Growth</th>
<th>Predicted P/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>12.6</td>
</tr>
<tr>
<td>2%</td>
<td>16.7</td>
</tr>
<tr>
<td>4%</td>
<td>25</td>
</tr>
<tr>
<td>6%</td>
<td>50</td>
</tr>
</tbody>
</table>

These two equations, when used with the right assumptions (as discussed below) can be helpful in understanding the valuations of both individual companies and the overall market.

Some academics and practitioners argue that equity should be valued as the present value of not earnings or cash flows, but of the dividend payments actually made to shareholders—an argument that is embodied in the Gordon (or Dividend) Growth Model. Some proponents of this model advocate a modified approach that values all corporate distributions, share repurchases as well as dividends. One well-known advocate of this model is Nobel Laureate Paul Krugman, who wrote:

“Now earnings are not the same as dividends, by a long shot; and what a stock is worth is the present discounted value of the dividends on that stock—period, end of story.”

I disagree, and for several reasons. For starters, Modigliani and Miller demonstrated in their famous 1961 article on the “irrelevance” of dividend policy, that it is the underlying expected earnings power of companies, not their dividend payouts, that determine corporate market values.

Dividend policy is as much a reflection of a company’s capital structure and investment opportunity set as of its expected future profits—and decisions to pay out capital may often reflect a maturing of the business and a scarcity of profitable investment opportunities. What’s more, most promising growth companies pay no or minimal dividends—and certainly for those companies, the current levels and changes in earnings are likely to be more reliable indicators than dividends of future profitability.

Why Growth Rate and Cost of Capital Matter—Lessons from the Constant Growth Equation

Assume you have an asset with a cost of capital of 12%, a growth rate of 2% and cash flow of $100. Using the Constant Growth model, the value can be calculated as follows: $100 / (12% - 2%) = $1,000. This might be called the “intrinsic value” of the asset and, as such, it offers the best guide to what it should trade for.

We can also apply this model to a share of stock to determine its intrinsic value. In place of cash flow, we use earnings per share (EPS) of $2.00 with the same cost of capital and growth rate, and the result is $2.00/(12% - 2%) = $20.00. Since EPS is $2.00 and price is $20.00, the Price to Earnings Ratio (P/E) is $20/$2 or a P/E of 10. While the market may value it differently, if these assumptions are true, this formula tells us its intrinsic value.

P/E ratios are often used to assess whether share prices are expensive or cheap. A P/E of 8 is considered very low, but when Google had a P/E of 60 or more, some thought it was very high. Is a company with a P/E of 10 a bargain compared to a company with a P/E of 20? We can explore this question using the constant growth equation.

Take the same company and now assume that its cost of capital drops to 8%, its growth rate increases to 3%, and its earnings stay the same. These might seem like small changes, but their impact is dramatic: $2.00/(8% - 3%) = $40.00, a tripling of value with the P/E rising to 20. If growth increases to 5% (in line with nominal long-term GDP growth), the share price rises to $66, and the P/E is 33. (For additional examples of how P/E varies based on growth for a company with an 8% cost of capital, see Table 1.)

The formula P = E / (C – G) shows that earnings relate directly to price. What many managers fail to realize is that investors don’t look at earnings in a vacuum; they parse the information in earnings in order to estimate growth. And that’s why the reporting of earnings often causes the P/E to change.

So, for all its simplicity, the Constant Growth model has some important lessons:

1. Small changes in growth make a big difference in value
2. Cost of capital is important, so we better get it right
3. Earnings drive value (stock price) but also contain information

While it may not be difficult to project current earnings, the big challenges are forecasting growth and getting the right cost of capital.

A Short Overview of Risk Premiums

The Capital Asset Pricing Model (CAPM) can be used to determine the cost of equity for an individual firm or the market overall. The model takes the form of the following equation: Cost of Equity = R_f + β x (ERP), where R_f = Risk-Free Rate (and we will use the yields on 10-year Treasuries as a proxy); β = Beta, which measures the sensitivity of the stock to market risk (which, by definition, is 1.0 for the entire market).

market; and ERP = Equity Risk Premium (the calculation of which will be the main subject of this discussion). Given that the Beta of the broad market is 1.0, the Cost of Equity for the market as a whole can be expressed as \(C = R_f + ERP \).

While the risk-free rate is easily determined, the risk premium is not. In fact, there is no clear consensus on how this should be done. The Equity Risk Premium (ERP) is the expected return an investor requires above the risk-free rate for investing in a portfolio of equities. It makes sense that if 10-year Treasury yields represent the safest (risk-free) long-term investment, then investors will require higher expected rates of return to buy riskier securities like corporate bonds or equities. My own considerable experience in valuing businesses has made it clear to me how sensitive valuations can be to one’s estimate of the ERP (a topic I return to later).

The most common way of estimating the ERP is to measure the historical premiums that investors have received relative to Treasury yields and assume that investors will expect that rate of return in the future. Depending on method and time-period, this can range from 3% to 7% or more. Other methods include surveys and forward-looking estimates based on current stock market levels. There is a huge body of research on measuring equity risk premiums. Indeed, entire books have been written on the subject.

Many researchers have argued that the Equity Risk Premium changes over time—and that such fluctuations are a major source of stock price changes—and also that the ERP has experienced a “secular” decline during the past few decades. In their book *Dow 36,000*, for example, Kevin Hassett (no relation) and James Glassman pushed this argument to its reduction ad absurdum when suggesting that the risk premium could vanish entirely since, given a sufficient amount of time, stocks appeared virtually certain to outperform bonds. In *The Myth of the Rational Market*, Justin Fox quotes Eugene Fama, one of the pioneers of the efficient market hypothesis, as saying, “My own view is that the risk premium has gone down over time basically because we’ve convinced people that it’s there.” Roger Ibbotson, a well-known compiler of ERP statistics, has suggested that the recent decline in the risk premium should be viewed as a permanent, but non-repeating event, “We think of it as a windfall that you shouldn’t get again,” he said.

The Effects of Risk Premium on Valuation

Table 2 shows the expected effects of differences in ERP (ranging from 3% to 7%) on valuations and P/E ratios. Using the constant growth model, \(P/E = 1 / (C – G) \), if we assume that the market will grow with long-term estimates of real GDP at 3% plus long-term inflation at 2%, our estimate of stock market P/E would have \(P/E = 1 / (C – 5%) \). (Note: Real GDP + Inflation is Nominal GDP). With Treasury yields at 5%, and ERPs ranging from 3%-7%, our range of cost of capital (\(R_f + ERP \)) is from 8% to 12%. Table 2 also shows the P/E implied for the overall market given this range of estimates of ERP and cost of capital. To provide some perspective on these numbers, if the S&P 500 were at 1,200 with its current P/E of 19, it would increase more than 25% to 1,593 with a P/E of 25 and the same level of earnings!

A New ERP Theory: The Risk Premium Factor (RPF) Model

Conventional theory says that if the Equity Risk Premium were 6.0% and 10-year Treasury yield was 4.0% then investors would expect equities to yield 10%. The theory also implies that if the 10-year Treasury was 10%, then investors would require a 16% return, which represents a proportionally smaller premium.

For reasons discussed below, I will argue that investors expect to earn a premium that is not fixed, as in the conventional CAPM, but varies directly with the level of the risk-free rate in accordance with a “Risk Premium Factor” (RPF). While this proportional RPF is fairly stable, it can and does change over longer periods of time.

To illustrate the concept, with an RPF of 1.48, equities are expected to yield 9.9% when Treasury yields are at 4.0%. But if Treasury yields suddenly rose to 10%, equities would have to return 24.8% (10 + 1.48 x 10 = 24.8) to provide investors with the same proportional compensation for risk. In this example, an increase in interest rates (and inflation) causes the risk premium to jump from about 6% to 15%, suggesting that interest rates have a greater impact on valuation and market price than is generally recognized.

To test this approach, we must determine not only the

7. Ibid.
Risk Premium Factor, but estimates for the other variables in the following equation:

$$P/E = 1 / (C - G)$$ \hspace{1cm} (11)$$

In the analysis that follows, I use the following variables and assumptions:

- \(P \): Price (Value of S&P 500)
- \(E \): Actual Earnings (Annualized operating earnings for the prior four quarters as reported by S&P). Earnings, while not ideal, are used as a proxy for cash flow and seem to work very well
- \(G \): Expected long-term projected growth rate, which is broken down into Real Growth and Inflation, so \(G = G_R + I_{LT} \)
- \(G_R \): Expected long-term real growth rate. Long-term expected real growth rate \((G_R) \) is based on long-term GDP growth expectations on the basis that real earnings for a broad index of large-cap equities will grow with GDP over the long term. A rate of 2.6% is used with the same rate applied historically.
- \(I_{LT} \): Expected long-term inflation, as determined by subtracting long-term expected real interest rates \((\text{Int}_R) \) from the 10-year Treasury, where \(\text{Int}_R \) is 2%; based on the average 10-year TIPS Yields from March 2003 to the present.
- \(C \): Cost of Capital is derived using Capital Asset Pricing Model, where for the broad market, \(C = R_f + ERP \)

\[
\begin{align*}
R_f &= \text{Risk-Free Rate as measured using 10-year Treasury yields} \\
ERP &= \text{Risk Premium Factor (RPF) x R}_f \hspace{1cm} \text{ERP} = 1.24 \text{ for 1960–1980; 0.90 for 1981–2001; and} \hspace{1cm} 1.48 \text{ for 2002–present. The RPF for each period} \\
&= \text{arrived at using a linear regression to fit the assumptions above to actual PE.} \hspace{1cm} 10
\end{align*}
\]

When using these assumptions for the present period—that is, with an RPF of 1.48—the formula reduces to:

$$P/E = 1 / (R_f x (1+RPF) - (R_f - 2\%) - 2.6\%)$$ \hspace{1cm} (12)$$

Explanatory Value of the RPF Valuation Model

As can be seen in Figures 2-6, the actual values deviated significantly from the predicted values at the end of 2008 and the first quarter of 2009, but had returned to something like parity by June 2009. I believe that these deviations from the model were attributable mainly to the abnormally low yields for 10-year Treasuries that had been in effect since late 2008, when the “flight to quality,” along with the Federal Reserve’s purchase of notes beginning in March 2009, caused the 10-year Treasuries to be overpriced. As shown in Figure 2, yields then fell to as low as 2.2%, as compared to a more “normal” range of 4.1% to 5.1% in 2006 and 2007 (and rarely...
13. While earnings are released quarterly, the model was extended to monthly and daily price data by using actual closing prices for S&P 500 and 10-Year Treasury yields along with S&P 500 operating earnings as a constant for each month in the quarter. The quarterly earnings were applied for the month preceding quarter end (i.e., Dec – Feb = Q1) under the assumption that market expectations would have incorporated earnings expectations. Again, it assumed that as the end of quarter approaches earnings estimates should be within a reasonably close to those actual earnings ultimately reported and embodied in share prices. Earnings and S&P Averages 1960-1988 from Damodaran Online: Home Page for Answath Damodaran (New York University) http://pages.stern.nyu.edu/~adamodar/; S&P Earnings and levels from 1988 – Present from Standard and Poors Website, http://www2.standardandpoors.com/portal/site/sp/en/us/page.topic/indices_500/2,3,2,2,0,0,0,0,0,1,5,0,0,0,0,0.html; Calculations and methodology by the Author.

15. See Note 13.

less than 4% since 1960).

To compensate for these abnormally low Treasury yields Figure 3 shows the P/E ratios that would likely have prevailed if Treasury yields had remained at a still low, but more normal yield of 4%. And as shown in each of Figures 3-5, when we normalize the 2008 R variable in this way, the actual year-end valuations correspond closely with the predicted values. One use of the model is to spot anomalies—and I believe that Treasury yields during the 2008/09 financial crisis were an anomaly.

Also plainly visible in Figure 3 is the decline in P/E ratios in the 1970s, reflecting the increase in interest rates during that period. It also shows the jump in P/E during the 1980s, reflecting the drop in inflation and interest rates.

Figure 4 shows the application of the same model using monthly data from the end of 1986 through March 2010. Like Figure 3, Figure 4 shows the return of values to parity by middle of 2009. And as can be seen in Figure 5, the RPF model explains overall market valuation levels when actual S&P operating earnings are applied to the P/E ratio during the period 1960–2009. Using both year-end annual data for the past 50 years and monthly data for the past 20 years, then, the RPF model appears to do a very good job explaining valuations. And that in turn would suggest that, at any
point in time, the general level of market pricing and P/E ratios are driven mainly by just two factors: interest rates and expected earnings.

Estimating the Risk Premium Factor (RPF)

The RPF was estimated by fitting the model to actual levels of the S&P 500 over the period 1960 to the present. This analysis revealed two distinct shifts in the RPF since 1960. Table 3 shows the RFP factors that provide the best fit for each period.

The overall fit was assessed by calculating the R^2s of the regressions using the appropriate RPF for each time period. As previously discussed, the meltdown after September 2008 drove down the risk-free rate to an unsustainable level and left a trail of historical earnings that clearly did not reflect expectations. As also discussed previously, these factors are now back in line. To adjust for this recent anomaly, the R^2 was calculated excluding meltdown time period beginning September 2008.

<table>
<thead>
<tr>
<th>Period</th>
<th>RPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960 – 1980</td>
<td>1.24</td>
</tr>
<tr>
<td>1981 – Q2 2002</td>
<td>0.90</td>
</tr>
<tr>
<td>Q3 2002 – Present</td>
<td>1.48</td>
</tr>
<tr>
<td>6%</td>
<td>50</td>
</tr>
</tbody>
</table>

As reported in Table 4, after excluding the meltdown period, the RPF Valuation Model explains a remarkably high 96% variation of stock prices over the past 50 years, as well as 91% of the daily variation.\(^\text{16}\)

Consistency with Prospect Theory/Loss Aversion

As mentioned earlier, Daniel Kahneman and Amos Tversky first developed “prospect theory” in 1979, proposing that individuals have a sufficiently strong preference for avoiding losses that they are willing to pass up considerably larger gains. (Kahneman won the Nobel Prize in Economics in 2002 after Tversky passed away in 1996.) Such “loss aversion” in turn causes individuals to seek compensation for risk that is greater than what would be indicated by expected value of the outcomes. For example, if you were offered a certain $100 or $201 for correctly guessing a coin flip, you should prefer the coin flip. Not surprisingly, most people require higher levels of compensation to take the bet.

Numerous studies have been conducted to determine how much additional compensation is required; this is called the loss aversion coefficient. In a 1992 study, Kahneman and

\(^{16}\) For daily calculation, actual closing prices for S&P 500 and 10-Year Treasury are used; daily earnings were derived using same approach as monthly earnings as explained in Note 13.
Tversky reported finding a coefficient equal to 2.25.17 In other words, people on average were indifferent to a coin flip for $325 versus a guaranteed $100. Other studies found coefficients of loss aversion in the range of 1.43 to 4.8.18

Such coefficients are consistent with my RPF findings, in which equities require premiums ranging from 90% to 148% over 10-year Treasury yields (roughly equivalent to loss aversion coefficients between 1.90 and 2.48). And the two concepts appear to have another important similarity. Stock market investors, like the subjects in these studies, appear to expect an incremental return for bearing risk that increases proportionally with the level of the risk-free interest rate. For example, if you were indifferent between $10 guaranteed and $30 on a coin flip, you probably would not accept that same fixed $20 premium over the expected value if the stakes were raised and you were offered a choice between a certain $100 and a contingent $220. Likewise, if the risk-free rate is 4% and the RPF is 1.48, a $1,000 investment in bonds would offer a guaranteed $40 and equities an expected return of $99, or a $59 premium. But if bonds instead yielded 10% and the guaranteed return rises to $100, a $59 premium would probably look much less attractive.

Potential Causes for Shifts in The Risk Premium Factor (RPF)

The RPF has shifted twice in the past 50 years, once in 1981 and again in July 2002. The period from 1960-1981 was characterized by increasing inflation expectations, rising from 1.8% in 1960 to 11.7% in 1981.19 In 1981, the trend reversed and inflation expectations began to decline. The 1981 shift in RPF from 1.24 to 0.90 could have resulted from this change in inflation expectations driven by world events, with the decline in inflation resulting in higher real after-tax equity returns. Events during 1981 that could have contributed this change include:

- Resolution of the Iran hostage crisis. The reduction of tensions could have increased expectations of stability and a secure oil supply bringing with it lower inflation and less risk of an economic shock.20
- Inauguration of the Reagan era, with tax reduction leading to higher real after-tax returns.

At the same time, my analysis shows that the RPF increased from 0.90 to 1.48 in mid-2002. The decline of the rate of long-term inflation ended in 2002, with long-term inflation expectations having declined from a peak of 11.7% in 1981 to 2.0% in 2002. From 2002–2008, the rate of inflation has remained fairly stable, fluctuating in the 2% - 3% range. Other events that could have caused or contributed to the shift in 2002 include:

- Department of Justice investigation into Enron, Enron, Tyco and WorldCom’s destruction of confidence in reported earnings may have led to increase risk premium factor.
- The enactment of Sarbanes Oxley in response to accounting scandals. The act faced severe criticism for imposing significant costs on public companies. Some suggested high compliance costs would cause capital to flee to less regulated markets, increasing the premium required for U.S. equities.
- Congressional authorization of war in Iraq. Expectations of a protracted war with Iraq could have increased expectations that increased borrowing to fund the war would lead to increased inflation and tax rates in the future.

Potential Weaknesses in RPF Theory and Methodology

Proper application of the model requires an understanding of its potential weaknesses:

- All data points are current actual or historical. While the market is forward looking, all data in the analysis are based on actual results. Even 10-year Treasury yields, which embody expectations about future real interest and inflation, were sampled at a single point in time, along with earnings that are not released until well after the quarter ends. Analysts’ estimates are widely accepted as being embodied in current share price and would be expected to be reasonably close to actual before the end of each quarter.
- Reasons for changes in Risk Premium Factor (RPF) are not fully explained. The RPF has changed twice over the past 50 years and has historically held for long periods of time. While I have suggested a few possible reasons for the two changes in the RPF over the past 50 years, it is clear that further explanation and understanding is necessary.
- The RPF may seem to be set arbitrarily to fit actual. Given the good linear regression fit across a relatively large number of data points, the RPF seems to make sense and provide good result. Nevertheless, this remains a valid concern.
- RPF cannot be projected. Thus far it only seems possible to discern the RPF with hindsight. Still this would seem superior to other methods for determining risk premiums that produce less definitive results. For example, if the RPF changed just two times over 50 years, one might argue that in any given year there is a 96% chance (48 out of 50) that the RPF will remain constant over the next year.

17 Kahneman and Tversky. (1992), cited earlier.

18 Abdellaoui, Mohammed, Bleichrodt, Han and Paraschv, Corina, Loss Aversion Under Prospect Theory, a Parameter-Free Measurement (October 2007). Management Science, 10:1659-1674.

19 Calculation of inflation expectations based on difference between 10-Year Treasury yield and assumed 2% long-term real interest rate

Declining Interest Rates Explain More than Half of S&P 500 Index Growth Since 1981

Interest rates are much more important than is generally recognized. Some contend that the effects of interest rates on corporate values are limited to the direct impact on corporate borrowing and consumer spending. Such observers tend to argue that although the cost of capital rises with inflation, for the market as a whole, the negative effect of this increase is directly offset by the positive effects of inflation on earnings. In other words, in the equation \(V = \frac{E}{C-G} \), since \(C \) and \(G \) increase by the same amount (inflation), the expected impact of inflation is zero.

By contrast, the RPF Model suggests that since the ERP increases proportionally with the risk-free rate, it rises faster than the growth in earnings, causing a decline in valuations. So, in addition to the direct negative impact of interest rates on earnings, higher rates also have a large impact on P/E multiples.

The highest monthly finish of the S&P 500 was October 2007, when it closed at 1549. The highest annual finish of the risk-free rate was 1981, when the 10-year Treasury yield ended the year at 13.7%. Between these two mileposts, the S&P 500 Index increased 1264%, from 122 to 1549. During the same period, S&P Operating Earnings increased only 588%, rising from 15.2 to 89.3. Thus, earnings accounted for only 47% (588%/1264%) of the growth of the S&P 500 during this period.

And since the increase in S&P earnings account for less than half of the increase in its value, much of the remaining increase can be attributed to decreases in the risk-free rate—and with the 10-year Treasury yields falling to 4.47% in October 2007, the cost of capital dropped from over 26% at the end of 1981 to about 11% in 2007. And according to the RPF model, over 50% of the appreciation over the past 29 years is explained by reductions in both the RPF and risk-free rate. More specifically, the model provides a way of explaining the remarkable increases in corporate P/E multiples since the 1960s—one that relies largely on changes in interest rates (which embody expected inflation) during that period.

The RPF Model can help demystify valuation and also help explain major market events over the past 20 or so years. The exploration of these events may also serve to shed some light on the efficient market hypothesis.

The Efficient Market Hypothesis (EMH) was first fully proposed by Eugene Fama in his doctoral thesis at the University of Chicago in the 1960s. In short, it states that the markets are “informationally efficient” in the sense that all available information is incorporated in the current stock price. The implication is that since all information is embodied in the current price, it should be difficult for investors to beat the market year in and year out.

Over time it has been much debated and variations have emerged that allow exceptions for holders of private information (say, management) small stocks that are not heavily traded. The EMH has been much criticized, particularly by professional money managers who would be out of work if the market were perfectly efficient. After all, if the pros can’t outperform the market, why not just buy index funds?

Many people take the EMH to mean that the markets are always right. Today even Fama admits the market makes mistakes: “In a period of high uncertainty, it’s very difficult to figure out what the right prices are for stocks.”

And Ken French, a frequent collaborator with Fama and Professor at the Tuck School of Business at Dartmouth, said in an interview jointly conducted with Fama that:

“The efficient market hypothesis is just a model and, like all interesting models, it is not literally true. There are mistakes in prices even if one considers just publicly available information and, since people use financial prices to help decide how to allocate resources, those mistakes must affect the underlying reality. Of course, the existence of mistakes does not imply they are easy to find.”

How the RPF Valuation Model Explains October 19, 1987 (Black Monday)

U.S. and global markets plunged on October 18, 1987, with the S&P 500 declining more than 20%. The cause of the decline has been much discussed, with program trading often cited as the main culprit along with portfolio insurance (derivatives).

The application of the RPF Model to this period is revealing. As shown in Figure 6, which shows actual versus predicted S&P levels, the market appears to have gotten “ahead of itself”—thereby creating a bubble of sorts—in anticipating an increase in earnings and values. As can be seen in Figure 7, interest rates began to climb in March 1987, rising from 7.25% in March to 9.25% in October, driving down the predicted P/E and the predicted level of the S&P 500. Yet despite flat earnings, the market grew by 12% from February to September (and a total of 25%...
from December). With the market crash in October, the predicted and actual fell back into parity, with both figures suggesting the creation and bursting of a bubble.\footnote{See Note 14.}

The suggestion offered by the RPF model in this case is that the underlying cause of the crash was excessive valuation relative to the sharp rise in interest rates. While actual and predicted levels often deviate, without a shift in the RPF, they tend to fall back in line.

But why did the market fall on October 19 and not November 19? The market began its decline in August. During the days before October 19, Iran had attacked a U.S flagged tanker, exacerbating fears that oil prices would continue to rise.\footnote{“Iranian Attacks on Kuwaiti Port Called Cause for U.S. to Retaliate,” The New York Times, October 18, 1987, http://www.nytimes.com/1987/10/18/world/iranian-attacks-on-kuwaiti-port-called-cause-for-us-to-retaliate.html.} Perhaps this solidified the belief that earnings would not rise and inflation would stay high, keeping interest rates high. And this point of view was rapidly assimilated into the market. My own belief is that these developments were nothing more than the pinpricks that popped the balloon—actions that, while not particularly momentous in and of themselves, were enough to cause an unbalanced state to return to a more sustainable equilibrium. While derivatives and program trading may have aggravated the market decline once the decent began, they were not the fundamental cause, but rather part of the mechanism that helped to restore equilibrium.

The NASDAQ peaked on March 10, 2000, at 5,132 in what is widely considered to be a bubble driven by excessive valuations of the Internet and other technology companies. Many economists such as Robert Schiller, author of *Irrational Exuberance*, argued that the entire market was embroiled in a speculative bubble throughout this period.

Application of the RPF Model to the S&P 500, strongly suggests that a significant bubble did exist. Indeed, Figure 8 suggests that the dot.com bubble of the late 90s was by far the largest during the period 1986 through 2009.

The model was not applied to the NASDAQ because it would be inappropriate to assume that the long-term growth of the smaller cap and technology heavy NASDAQ would equal long-term GDP growth and that volatility (Beta) would be the same as the S&P 500. As shown in Figure 9, the NASDAQ had declined by 32% in mid-April 2000 from its March 10 high, and by 51% by the end of 2000.

What explains this plunge in prices? From November 1998 until March 2000, 10-year Treasury yields increased from 4.6% to 6.2%. While the NASDAQ began to run up in late 1999, as can be seen in Figure 10, the S&P 500 Index began to diverge from RPF Model predictions in January 2000.
1999. As also shown in the figure, the S&P 500 Index did not begin its decline until August 2000. (Remember the model is applied using actual reported operating earnings, so predicted levels at any point are backward looking and do not reflect expectations.) However, the market began to anticipate that the NASDAQ meltdown would have a negative impact on earnings and the index followed.29 And since S&P earnings fell by 27% from March 2000 to December 2001, the RPF Model appears to have “signaled” that earnings would fall well in advance of the actual reported drop.

The implication, then, is that the bubble was created by the combination of inflated earnings levels with rising 10-year Treasury yields that the market was somehow slow to recognize. To the extent the increases in interest rates were orchestrated by the Fed to cool an overheating economy, investors may have misread the signal and expected the increase in interest rates to be temporary. But, as the rate increases began to affect earnings, the market began a sharp repricing as the new point of view was assimilated.

How the RPF Valuation Model Explains 2008–2009 Meltdown and Recovery

The bursting housing bubble and mortgage crisis ultimately led to the meltdown that began September 2008. By August 2008, the S&P 500 had already fallen by 16% from its May 2007 peak. During this period, 10-year Treasury yields declined from around 5% to less than 4%. As illustrated in Figure 11, this led to an increase in predicted levels of the S&P 500 index.

According to the Case-Schiller Home Price Index, home prices fell more than 10% from second quarter of 2006 to the fourth quarter of 2007 and a total of 18% by the second quarter of 2008.30 This historically large decline led to (well-founded) concerns about financial instability and the elimination of an important source of disposable income. Once again, in anticipation of a decline in earnings, the S&P 500 index fell while the RPF Model (using reported operating earnings) showed an increase in predicted levels as interest rates declined. The lines for expected and actual S&P values in Figure 11 begin to converge in August 2008, just before the worst of meltdown began in September and October. Investors were unable to absorb the seriousness of the pending crisis, so while the market fell in anticipation of an earnings decline, the expectations did not come close to reflecting the magnitude of the situation.

As can be seen in Figure 11, the flight to quality and resulting drop in Treasury rates clearly drove up the predicted levels to abnormal highs. But, as interest rates returned to a more normal level by June 2009, the predicted and actual levels returned to parity.

RPF Model implications for efficient markets?

• Over a longer period of time, the market is efficient if one allows for oscillations around true value, but is also subject to making mistakes. These mistakes can create bubbles.

• Over time the bubbles are deflated and the market returns to predicted levels as new long-term views are assimilated.

• The RPF Valuation model has shown to be useful in identifying bubbles before they pop.

This pattern supports the contention that the valuation model would have worked well during this period with a
normalized interest rate. It also shows how the market led predicted levels as it incorporated expected rather than actual historical operating earnings.

In sum, analysis of these major market events with the RPF Model supports the contention that markets make mistakes in processing information. It also suggests that market prices oscillate around a true fair value price. But, as highlighted throughout this discussion of three major market events, these deviations can be very large.

2010 Outlook
As of this writing, on April 14, 2010, the S&P 500 Index closed at 1,211, as compared to a predicted level of 1,260—still 4% below the predicted level. In addition to looking at the market today, the model can help inform an opinion about the future. S&P estimates 2010 operating earnings of $75.27. If we also assume the 10-year Treasury remains unchanged at 3.83%, the S&P 500 Index would be predicted to end the year at 1,485—a gain of another 23%. But if the bond rate rises to 5%, even with the growth in earnings, the S&P’s predicted value at year end is 1,107—a drop of 9% from the current level.

Conclusions
Many people view the market valuation process as a black-box driven by emotion, leaving many managers unsure what strategies they can pursue to increase shareholder value. Using two main variables, the RPF Valuation model highlights a number of important principles that can be used to inform the valuation of all companies in most (though not all) circumstances:

1. The Equity Risk Premium is not a constant, but a relatively stable Risk Premium Factor (RPF) that is applied to the risk-free rate (10-year Treasury yields).

2. The Risk Premium Factor is consistent with the loss aversion coefficient associated with the prospect theory (of Kahneman and Tversky).

3. The Risk Premium Factor Valuation Model \[P = \frac{E}{R_f \times (1 + \text{RPF}) - (R_f - \text{Int}_R + \text{G}_R)} \] effectively explains both P/E and S&P 500 Index levels using readily available information and simplifying assumptions.

4. Growth is a critical component of valuation, and the impact of growth on value is easily quantified using the RPF model.

5. Interest rates drive market value—and the fair value of the market (P/E Ratio) cannot be estimated without considering interest rates.

6. Interest rates have a greater impact on market price and valuation than is generally recognized, with low rates more beneficial and high rates more punishing.

7. Declining interest rates were a major factor in the long bull market from 1980 through 2007.

8. The RPF model suggests that if Treasury yields remain in the low 4%–5% range and earnings recover to 2006/07 levels, the market could stage a rally and recover to record levels, with the S&P 500 Index rising to the range of 1,300–1,700.

9. Though efficient and rational over longer time periods, the market is prone to occasional, generally short-lived oscillations and pricing errors.

STEVE HASSETT is president of Hassett Advisors based in Atlanta, Georgia, which specializes in corporate development and growth strategies. Previously, he was VP-international and emerging businesses at the Weather Channel, founder of a Web and mobile software company, and a corporate finance consultant with Stern Stewart & Co.
Thank you for the opportunity to share my research with you. This work has been conducted over the past ten years with my colleague at Harvard Business School, Boris Groysberg, and which we have compiled into a book, *Wall Street Research: Past, Present, and Future* (2013). The work that I’m going to discuss comes from a number of research papers, countless interviews with practitioners, surveys, and HBS case studies. Talking with practitioners proved to be particularly valuable. They were able to provide us with a rich understanding of how analysts operate, how they are viewed inside their organizations, how they are compensated and reviewed, and how their clients perceived them. For those of you interested in further detail, I refer you to the book or the academic articles cited therein.

The structure of my talk is as follows. I will first discuss how Wall Street research adds value in financial markets. I will then examine the business model challenges that the industry faces and how the model has been affected by regulatory changes. You will see that despite these challenges the industry has been remarkably resilient, dealing with its challenges in innovative ways. As a result, its performance has been more impressive than many perceive. Finally, I will discuss recent challenges and opportunities for the industry from changing technology and emerging markets. Throughout the talk I will refer to Wall Street analysts as sell-side analysts, and their institutional clients who consume their research as the buy side.

How Does Wall Street Research Add Value?

Wall Street research and Wall Street firms are financial intermediaries that provide services to both investors and corporate issuers. Both these parties view Wall Street research as valuable, but for quite different reasons. Buy-side ratings of sell-side research and practitioner performance of their recommendations, but less about how they performed their function, how they were managed and rewarded, and how they interacted with clients.

Paul Healy is the James R. Williston Professor of Business Administration and Senior Associate Dean for Research at the Harvard Business School in Boston, MA.

This Keynote presentation was presented at the 2014 Applied Finance Conference on May 16th at St. John’s University in New York, NY.
comments indicate that institutional investors value sell-side research for three main reasons. First, for the thousands of buy-side clients, sell-side research provides an efficient source of industry and stock information that forms a basis for their investment decisions. Each of the buy-side firms could collect this information themselves, but to do so would involve inefficient replication, with little opportunity to create an edge in performance. A more efficient outcome is to outsource the collection of this information to the sell side.

The sell-side also helps the buy-side to screen stocks. Given the thousands of listed stocks that are potential investment candidates, buy-side portfolio managers face a challenge in limiting the set to a manageable number. By identifying stocks that are potentially interesting investment ideas, the sell-side helps to meet this demand. Of course the buy-side make the final decision whether to buy or sell a stock, but Wall Street research provides them with new ideas and allows them to winnow the large set of potential investment stocks into a manageable number that they can analyze more deeply.

Finally, the sell-side adds value to the buy-side through its convening function. Wall Street research departments leverage their corporate relationships to convene regular conferences where they invite the leading business leaders in an industry to make presentations and meet with large institutional investors, either in small groups or one-on-one. Such events are a very efficient way for the buy-side to meet with management of the firms in which they are investing or considering investing. Of course, they could arrange such meetings themselves, but they would not be able to arrange for so many industry leaders to be available in one location at the same time.

The other type of sell-side client is the corporate issuer. Corporate executives value Wall Street research because it plays a useful role in initial public offerings or secondary offerings. Research helps to sell the stock to new investors, typically institutions. Once the stock is issued, Wall Street analysts provide valuable information about the company that helps level the playing field among investors and make the market liquid. Corporate clients also value the sell side convening function, by providing a convenient way to meet with key investors.

Business Model Challenges

Despite the benefits of Wall Street research, the economics of the industry is challenging for several reasons.

First, the production of research is costly. Wall Street analysts are typically highly educated and experienced, and therefore have a high opportunity cost. The infrastructure required to perform their research, including access to data, travel, and administrative support, only adds to their cost. But of course once the research has been produced, it costs very little to distribute. In a competitive research market, this creates an incentive for research providers to attract additional clients by pricing above marginal cost, but below average cost. But as a result, it becomes difficult for the research provider to recover the full cost of the research. This problem is not unique to research. For example, it explains why airlines have such a difficult time making money – competitive pressure leads them to lower price to attract passengers. Provided they cover the incremental costs of flying (in this case largely peanuts and a drink), they contribute to covering the cost of the plane, crew, and fuel. But such pricing pressure can easily lead to prices falling below average cost.

The second challenge, which I term the obsolescence challenge, is one with which we’re all familiar given market efficiency. Information produced by a research department could be very valuable to a single client with exclusive access. Such a client might be willing to pay a relatively high price for the research. But in a regulated environment where fair access and disclosure of information is required and selective disclosure prohibited, research information gets broadcasted widely. In an efficient market, the value of the information is therefore quickly reflected in price. Since no single investor can capture its value, it is difficult for research departments to charge a price that covers the cost of producing the research.

The third challenge arises because research is an experience good. I do not learn about its value to me until I have used it. For research, it may take months before the full value is clear. And given market volatility, it is difficult to judge the expected value of research from the analyst’s past performance history. This imposes risk on the purchasers of research, leading them to be willing to pay less for the product upfront.

A fourth challenge is that potential users of research face information overload. Given so much information is available, how do they decide what information is likely to be valuable and how do they determine the share of their budget to allocate to specific information sources?

Finally, Wall Street firms face a strategic challenge since it is difficult to differentiate their research offerings from those of their competitors. For example, if one firm decides to host a conference where they invite large clients and corporate executives from a particular industry, it is relatively easy for their competitors to copy. In other words, the barriers to entry are relatively low.

Given the above challenges two dilemmas arise for Wall Street firms. First, how do they fund their research business? Second, how do they identify and reward their best analysts?

Industry Responses to Business Model Challenges

So how has the industry responded to these challenges?
Prior to 1975, when Wall Street commissions were regulated, buy-side clients paid a bundled price for trading that covered the cost of trade execution and research. Under this arrangement, it was straightforward for Wall Street firms to fund research.

But on May Day 1975, commissions were deregulated and Wall Street had to figure out a new way of funding research in a deregulated market. Two approaches evolved. One was to continue to recover trade execution and research costs through bundled brokerage commissions, now unregulated and declining. Elaborate processes were developed to support this approach. The creation of Institutional Investor and Greenwich Associates ratings of research led to the formation of a voting process, where major buy-side firms periodically collect data from their portfolio managers and analysts on their evaluations of the quality of research provided by analysts in an industry. This data is aggregated to develop ratings of sell-side firm research quality, which is used by buy-side firms to determine how to allocate future brokerage business to individual sell-side firms. The sell-side firms themselves receive disaggregated data on ratings for each of their analysts, which is used to recognize and reward their analysts.

The second funding approach relied on billing the sell-side’s other client, corporate issuers, rather than buy-side institutions. Banks recognized that research provided valuable support to issuers during new security offerings, when research would play an important role in helping bankers to sell a new issue to institutions. Consequently, the costs of research began to be covered through investment banking fees as well as brokerage commissions.

Both these unregulated approaches helped research firms to manage some of their business model challenges. The rating systems used by institutions to allocate future commissions to the most deserving sell-side firms provided a novel way of addressing the experience good challenge discussed above. Essentially sell-side firms were compensated for research ex post, allowing time for users to evaluate the quality of their advice. The ex post settling up also provided firms with incentives to be compensated for any personalized services they offered, such as providing clients with access to management at private industry conferences, or through private calls with their leading analysts, potentially addressing the obsolescence challenge.

The ability of sell-side firms to obtain data on how their research was valued, and on how the research of their individual analysts was valued meant that they were able to distinguish the highest valued analysts from the lowest, facilitating the monitoring and rewarding of analysts.

Regulation

Of course, given the importance of sell-side research for the efficient functioning of public markets, these new approaches were subject to regulatory scrutiny. In 1999, the SEC (Securities Exchange Commission) adopted Regulation Fair Disclosure in response to concerns that analysts were privy to insider information from managers, which was tilting the playing field towards large institutional investors. Regulators also recognized that access to insider management information gave corporate managers power to pressure analysts to issue favorable reports. If analysts wanted access to private company information, the implicit quid pro quo was that they issue positive reports and projections about the company. The new rules barred managers from disclosing material private information to analysts. In the event that valuable information was released, the company had 24 hours to publicly announce the news.

The second significant regulatory intervention arose in 2003, with the Global Settlement. Regulators raised concerns that the investment banking business was generating a conflict of interest for sell-side analysts. Since analysts earned bonuses for supporting their firms’ investment banking business, they had incentives to issue only favorable reports on banking clients. The regulatory concerns were heightened by email evidence indicating that several prominent analysts covering internet stocks had issued favorable ratings on banking clients but privately been skeptical about the companies’ prospects. Also, regulators pointed to the paucity of sell ratings issued for firms covered. The resulting regulations required a strict separation of investment banking from research, both physically and for purposes of rewarding analysts. In addition, analysts were required to disclose potential conflicts of interest and prior performance, and banks covered by the Settlement agreed to provide funding to pay for independent third-party research for a period of five years.

Conflicts of Interest Revisited

Research on conflicts of interest related to investment banking has shown that analysts at investment banks issued more optimistic long-term growth forecasts for banking clients than analysts at other firms and that they were slower to downgrade their forecasts following bad news.

But there are two ways of interpreting these findings. One is that analysts responded to investment banking incentives to issue positive forecasts and recommendations about banking clients. But an alternative, and equally plausible explanation, is that corporate issuers shop for banks to take them public or to underwrite new equity issues. Not surprisingly, they select banks in the best position to sell the new issue, and such banks are likely to have optimistic analysts. So the question of cause and effect is unclear.

In addition, the Global Settlement focused on investment banking conflicts, but because they are intermediaries, analysts face conflicts from multiple sources. For example,
compensating research through brokerage commissions also induces a potential conflict of interest. Analyst research that encourages incremental trading generates greater brokerage commissions, potentially inducing analysts to issues reports that encourage short-term trading, whether or not it is advisable for the clients. And, as noted above, analysts who are beholden to corporate managers who appear at their industry conferences or provide private access, are at risk for becoming consciously or subconsciously partial in their reports. So analysts face a number of conflicts of interest that potentially color their research.

Given these questions, we revisited the question of conflict of interest and its impact on the quality of analyst research.

Differences in Research Bias by Investment Banks and Brokerage Firms

One study, co-authored with Boris and Amanda Cowen, examined the performance of analysts who worked for types of firms with differing incentives for research bias. The first is full-service investment banks that provide both brokerage and underwriting, where both these activities contribute significantly to funding research. The second is syndicate firms that generate the majority of funding for research from the brokerage business. These firms do not provide underwriting, but earn modest fees from distributing new issues. Finally, we examine brokerage firms that generate funding for research solely from brokerage commissions and do not have any investment banking business.

If research biases are primarily driven by investment banking funding for research, we expect to observe greater bias in analysts’ forecasts for the full-service investment bank analysts than for those working for syndicate firms or brokerage firms. Further, these biases are likely to be stronger for industries and stocks that issue capital.

Using analyst forecast data from 1996 to 2002, we examined earnings estimates and target prices relative to the consensus for analysts at full-service banks, syndicate firms, and brokerage firms, standardized by the standard deviation of individual analyst forecasts. A positive (negative) value indicates that the analyst is optimistic (pessimistic) on the company’s future performance relative to other analysts covering the stock at the same time.

The findings, reported in Exhibit 1, show that analysts who issued the most optimistic short-term forecasts worked at brokerage firms. Their forecasts tended to be around 3-5% more optimistic than the sell-side consensus. Thus, assuming a consensus forecast of $1.00, the typical brokerage analysts would project earnings to be $1.03 or $1.05. The brokerage analysts also issued more optimistic target prices, again around 3-5% higher than the consensus. In contrast, investment bank analysts were the least optimistic, with lower forecasts than either brokerage or syndicate analysts. These findings were similar for firms that issued capital and for those that did not.

Of course, there’s nothing wrong with an analyst issuing more optimistic forecasts provided the forecasts are more accurate than those issued by peers. We therefore also examined the forecast accuracy of analysts at the various types of firms. The accuracy findings looked remarkably similar to those reported in Exhibit 1. Namely, sell-side
analysts at brokerage firms issued less accurate short-term earnings estimates and target prices than their counterparts at other firms. The most accurate earnings estimates and target prices were actually issued by analysts at investment banks. Finally, we looked separately at analysts working at subsets of investment banks (bulge versus non-bulge) and at different types of brokerage firms (retail versus institutional). Analysts at the bulge investment banks had the most to gain from biased research, since their firms generated the largest investment banking fees during the study period. However, these analysts also had the most to lose, since their firms had the strongest research reputations on Wall Street. We found that during the sample period their analysts actually provided less optimistic and more accurate research than non-bulge analysts, suggesting that their firms’ reputations were important factors in ameliorating incentives for bias. Among brokerage firm analysts, forecast bias and inaccuracy was higher for firms with retail clients than for those that focused exclusively on institutional clients, suggesting that institutional clients were more likely to perceive and impose reputational costs for biased research.

It is also interesting to examine what happened to research bias after the Global Settlement. In follow-up research, we found that the lower bias and greater accuracy of investment bank forecasts (and for bulge firms in particular) observed prior to the Settlement, disappeared after the Global Settlement. Bulge firms’ forecast accuracy actually deteriorated to the point that their analysts’ estimates became less accurate than those for non-bulge firms, and the stock market reactions to forecast revisions, which had been higher for analysts at bulge firms, now became lower than for the non-bulge firms. Industry experts argued that this change arose from cuts to research budgets, in some cases by as much as 30-40%, at many of the large investment banks after the Global Settlement. These cuts caused many of their top analysts to leave for positions at hedge funds or to start their own hedge funds, reducing the quality of research at the top banks.

Sell-Side Research versus Buy-Side Research

We also completed several studies comparing the performance of research provided by Wall Street firms with that of buy-side firms. Buy-side firms with their own research departments argue that their analysts are superior to those at sell-side firms because they don’t face conflicts of interest.

Unfortunately, it is very difficult to secure data on the performance of buy-side analysts to confirm or refute this prediction. We were able to obtain reports and forecasts for analysts at a top ten buy-side firm from 1997 to 2004. The buy-side firm is a long-only value-based investor that values research. During the study period it employed about 20 analysts, most of whom had been at the firm for many years and had a career path as an analyst. In contrast, some other firms viewed analysts as portfolio managers in training, and promoted those who were most successful to portfolio managers. To assess the sensitivity of our findings to the use of a single firm, we replicated our analysis using survey data for a variety of analysts at different buy-side firms for 2005-2006.

Our tests compared the performance of Wall Street analysts and analysts at the sample buy-side firm. As shown in Exhibit 2, we found that the distribution of earnings forecast errors for analysts from the buy side had a longer,
fatter tail than for analysts at sell side firms, implying that on average the buy-side firm analysts were more optimistic than the typical sell-side firm analyst.

We then examined differences in forecast accuracy. After all, since the buy-side firm is a long investor, it is plausible that its analysts issue forecasts for stocks they view as having strong upside potential, consistent with the observed optimism of their forecasts. But our findings (see Exhibit 3) show that their forecasts are not only more optimistic but less accurate, with the distribution of absolute forecast errors showing the same fat tail relative to the sell-side for forecast inaccuracy as for forecast bias.

In another paper, with George Serafeim and Devin Shanthikumar, we examined recommendations issued by the buy-side firm analysts relative to those issued by sell-side analysts. Here we do observe less optimism by the buy-side firm’s analysts. In particular, they issued fewer strong buy and buy recommendations and more underperform or sell recommendations than their sell-side peers.

However, their recommendations were not as profitable as those issued by the sell-side. To analyze recommendation performance, we used the following investment strategy. We created an equal-weighted portfolio of all strong buy and buy recommendations issued by the buy-side analysts, beginning three days after the issue of their initial buy recommendation and ending one year later (or three days after the recommendation was downgraded to a hold or lower if the downgrade occurred within one year). For each sell-side firm, we followed the same strategy using their own analysts’ recommendations. Our analysis showed that the buy-side portfolio generated average market-adjusted returns of around 2.3%, compared to an average of 8% for the sell-side firms. After controlling for risk, size, book to market, and momentum factors, these differences decline modestly, but the sell-side recommendations continue to outperform those of the buy-side analysts.

We conducted a number of analyses to understand the causes of these differences. Three factors appeared to be relevant. First, we tracked the forecast accuracy of the buy-side analysts in the bottom 25% in terms of forecast accuracy. Poor forecast performers at the buy-side firm had a 5% higher likelihood of being at the same firm the following year, whereas poor forecast sell-side analysts were six percent less likely to be at the same sell-side firm one year later. In other words, it appears that poor performing analysts at sell-side firms exit more quickly than those at the buy-side firm, either because they quickly recognize that they are underperforming or because they are fired. Consistent with this finding, buy-side analysts we interviewed acknowledged that buy-side firms are somewhat less competitive than the sell-side.

Second, our initial analysis compared the performance of all recommendations issued by the buy- and sell-side analysts. When we examined recommendations for the same stocks, we found that the stock performance of sell-side and buy-side buy recommendations was not materially different. The observed differences arose primarily because analysts at sell-side firms also covered some small cap stocks that were more volatile than those covered by buy-side analysts. The sell-side recommendations for these stocks performed remarkably well, with abnormal annual returns of around ten percent.

Finally, anecdotally sell-side analysts argued that they stress test their research ideas regularly when they talk to
clients. As a result, they constantly update and revise their ideas and investment recommendations. In contrast, buy-side analysts do not have the same opportunities—they can discuss their ideas with their portfolio managers, but not with broader market participants.

Our tests also revealed several factors that did not seem to drive the difference in recommendation performance. For example, it did not appear to reflect innate differences in the abilities of buy- and sell-side analysts. Many of the buy-side analysts previously worked on the sell-side, so we were able to track their performance as sell- and buy-side analysts. We found that when they were employed on the sell-side, their earnings estimates were similar to those of other sell-side analysts. Only when they moved to the buy-side did their forecasts become more optimistic and inaccurate.

Buy-side analysts also cover a larger universe of stocks than sell-side analysts. Yet this also did not explain the differences in performance since, when we matched the buy-side analysts with sell-side analysts with comparable scope of coverage, the performance differences discussed above persisted.

Another concern is that the sample buy-side firm was simply a poor-performer, and unrepresentative of other buy-side firms. But when we examined the performance of their funds, they appeared to be one of the better performing firms in their industry. Also, our findings were similar for a sample of analysts from a broad set of buy-side firms for which we collected earnings estimate and recommendation data using a 2005-2006 survey.

Finally, we documented that as much as 50% of the buy-side firm analysts bonuses were tied to the performance of their buy recommendations, suggesting that they have a strong incentive to devote considerable effort to this activity. In contrast, other research we have conducted with David Maber indicates that sell-side analysts’ compensation is not closely linked to the performance of their recommendations.

Funding Research after the Global Settlement

So how do Wall Street firms fund research today? The Global Settlement restricted the use of investment banking funding for research, effectively placing much of the burden on brokerage commissions. In a recent project with David Maber, we examine how brokerage commissions are used to reward research. Our study uses data on commissions, feedback on research from institutional clients (called broker votes), analyst output, and analyst compensation for a mid-sized brokerage firm.

As I noted earlier, buy-side firms regularly survey their portfolio managers and analysts on the quality of sell-side research (usually each six months). Each buy-side portfolio manager and analyst at a firm is allotted a budget and asked to allocate that budget to sell-side analysts based on the quality of the research and services they provide. These votes are then aggregated to construct ratings of research quality for all sell-side firms and analysts. The buy-side firm uses this information to allocate its brokerage business over the next six months. In addition, the buy-side firms provide sell-side firms with information on their research department ratings and that of their individual analysts. By aggregating ratings across all institutional clients, sell-side firms and their analysts therefore have access to regular ratings of the quality of their research and services from all their institutional clients.

Our tests find a strong positive relationship between changes in the broker votes allocated to the sample firm by their institutional clients and changes in brokerage business they receive from those clients during the following six-months. In contrast, we find a much weaker relationship between changes in broker votes and contemporaneous changes in commissions on stocks that analysts cover. This confirms that institutional clients primarily reward sell-side research in a given period by allocating future trading to highly rated research firms, rather than relying on contemporaneous trades with firms whose analysts supply timely news.

As noted above, this approach helps to alleviate the experience good nature of research. But it also recognizes that information provided by an analyst on a particular stock that is valuable may not lead to an immediate trade in the stock. Finally, the system helps buy-side firms to reduce the risk of front running by distributing trades of stocks across firms.

We then examine the types of sell-side research output that buy-side firms recognize through broker votes. We find that changes in broker votes are strongly related to changes in research output and services that are likely to provide valuable, but less timely information to buy-side clients. For example, changes in votes are highly related to changes in white papers issued, planned concierge services such as conferences with management or company visits, and private phone calls with sell-side analysts.

In contrast, the more limited role of using current commissions to reward research seems to be reserved for timely information that is reflected in revisions to topical notes or generated from private phone calls with analysts.

Finally, the sample sell-side firm uses broker votes to align its analysts’ incentives. We observe a positive relation between changes in compensation for the firm’s analysts and changes in their broker votes. Changes in contemporaneous commissions are also related to changes in analyst compensation, but the magnitude of this relation is small in comparison to that of broker votes.

Broker votes therefore provide a unique contractual arrangement that enables buy-side firms to reward sell-side firms that provide high quality research and concierge services, and for sell-side firms to reward analysts that are
perceived as adding value for their clients.

New Challenges to Sell-Side Research

So what challenges do sell-side research departments face today? Exhibit 4 shows recent data on institutional commissions on equity trades for Wall Street firms from 2005 to 2012. Since 2008, commissions have declined by roughly 30%. Some of this decline undoubtedly reflects the weakened US economy since the financial crisis. But, in contrast, the number of analysts on Wall Street has fallen by less than 1%. This raises two questions. First, why have commissions declined so markedly? And second, what are the future prospects for sell-side analysts?

One change that appears to have been significant in explaining the decline in commissions is changing technology. Black pools are private electronic trading networks that provide buy-side firms with low cost, off-market ways to trade. Trade execution costs on these platforms are low, and trading costs do not include any bundled charge for research. Consequently, as more trading has been allocated to electronic black pools, commissions available for research have declined.

The growth of investing models that do not use or pay for sell-side research has also reduced commissions available to support research. This arises primarily from two sources. The first is high frequency trading, which seeks to take advantage of predictable stock price fluctuations accompanying institutional trades and does not require sell-side research. High frequency traders are willing to invest heavily in technology that increases the speed of trading, but not for sell-side research. The second investment model that does not use traditional research is index investing, which provide a low cost way of mirroring the return on a diversified stock index. As evidence has mounted on the relatively strong performance and low costs of index investments, their popularity has grown, further reducing aggregate demand for Wall Street research.

Technology also increases access to information for us all. I call this the democratization of information. Today individual retail investors and buy-side firms have timely access to a wide array of information that would not have been available 20 years ago. For sell-side analysts to continue to maintain their market share of research spending, they now have to provide their clients with new insights that could not be generated simply through current online sources. The growth of buy-side research departments and their allocation of research dollars to databases and other forms of research suggest that buy-side firms have more options for evaluating investment ideas today than 20 years ago, and this has reduced their reliance on sell-side research.

Responses to the Challenges

How are firms responding to these challenges? A number of firms have developed interesting new models that are designed to increase investors’ willingness to pay for research, either by creating new products that appeal to a subset of institutional investors, or by providing additional private and tailored information to their most profitable clients.

Merrill Lynch. Merrill Lynch has developed a series of new products that are designed for hedge funds that are more willing to pay for research. The new products attempt to coordinate research coverage of a variety of different types of securities that could lead to interesting investment opportunities for hedge funds. These include identifying differences in pricing of stocks in global industries. This leverages Merrill’s global scale, but also requires that its analysts that cover similar sectors across
different geographies coordinate their research efforts and output. Another opportunity that Merrill has identified is for distressed debt. Again, by coordinating the research of their debt and equity analysts covering the same firm, Merrill hopes to be able to identify arbitrage opportunities across securities that will be attractive to hedge fund investors and increase their willingness to pay for research.

Sanford C. Bernstein. Sanford C. Bernstein has traditionally appealed to long-term investors. Its analysts’ black book reports on large cap stocks are well known for the depth of their analysis and for providing new information to investors that goes beyond what is available from Wall Street peers. To maintain this research edge, Bernstein spends aggressively to hire, train, and develop its research analysts. When it hires new analysts, the company gives the new hires a year to get up to speed before they really start work. As a result, it estimates that the cost of hiring and training a new analyst runs from $500,000 to $1 million. Through its talent identification and development, it argues that it is able to deliver on its value proposition for institutional clients and increase their willingness to pay for its research.

Sidoti. Sidoti was founded in 1999 to cover small to mid-cap stocks. Given the limited liquidity of such stocks, they are attractive to a relatively small subset of institutional investors, which reduces the risk that Sidoti will face direct competition from the large banks and brokerage firms that cater to large cap investors. Sidoti’s difference in focus is also reflected in its research strategy. Unlike Bernstein, they hire relatively young analysts who have little experience and they do not spend much to train them. Instead, they add value for clients by hosting conferences in New York and San Francisco where corporate issuers and small company executives can meet institutional clients.

Leerink Swann. Leerink Swann focuses on investment opportunities in the healthcare sector. The company built a network of physicians, MEDACorp, to provide expert advice to investors interested in investing in healthcare. It also allowed its own team of researchers to use the expert network. By enabling investors to create private and personalized information from experts with deep knowledge of the field and on new medical products, this approach reduces the risk of research obsolescence and increases investors willingness to pay for research.

Credit Suisse. Credit Suisse has followed a quite different approach to address the challenges facing research. It has used the information provided by broker votes to turn research from a cost center into a profit center. Based on the relation between broker votes and commissions, the company allocates a share of commission revenues to research (around 25%). This helps the research business determine its cost structure, whether to add more resources, etc. Further, Credit Suisse extends this form of analysis to individual analysts, assigning research department revenues to analysts based on the broker votes they generate. Analysts therefore have their own P&Ls (profits and losses), allowing them to make better decisions on how to best to run their businesses. Finally, the methodology has been applied to customers. By allocating costs to customers based on usage of critical research resources, the research department is better able to assess which customers are profitable and which are not. This enables the firm to have a productive conversation with its unprofitable customers, explaining that access to high-touch research services is only available to clients that generate valuable new business. Equally, it can make sure that its most profitable customers are taking full advantage of available services, increasing their satisfaction and loyalty.

Gerson Lehrman. Finally, the traditional sell-side research industry has been supplemented with new types of research providers, many proprietary and tailored to client needs. One such example, discussed above for Leerink Swann, is expert networks. The world’s largest expert network firm is Gerson Lehrman. The company has created an extensive network of experts in a variety of fields who are available to consult with buy-side clients on topics of interest. For example, Gerson Lehrman (GL) can connect a buy-side firm interested in understanding changes in the energy industry with a panel of industry experts. The resulting conversation can therefore provide the client with an opportunity to gather private information relevant to its investment thesis, without alerting other investors, reducing obsolescence risks. The model also works well for GL. It typically receives memberships from clients, and pays experts only when they are used. By tracking feedback on which experts are most valued and building a strong network of clients and experts, it adds value to both.

Of course, expert networks are not without their risk. In an effort to enhance their reputations, experts may provide clients with inside information, violating securities laws and putting GL at risk. To manage this risk, GL trains their experts on the legal risks and prohibits employees of companies from being assigned as experts when the subject of interest is their own firm. But it’s an open question as to how well GL enforces these controls and manages this risk.

Obviously for these approaches to be long-term successful in addressing the challenges facing sell-side research, they will have to generate significant barriers to entry for the adopting firms. Such barriers could arise from scale in providing certain products (e.g. Merrill Lynch), expertise in hiring, training and managing analysts (Bernstein), or developing a reputation for focusing on niche investment areas that attract less competition (e.g. Leerink Swann, Sidoti, and GL).

New Opportunities for Sell-Side Research

Most of the fastest growth in the world today is not in the
US, Japan, or Western Europe, but in emerging economies such as China, India, Brazil, and others. What opportunities does this generate for sell-side research, particularly for established firms in the industry?

One implication is that it is no longer enough for analysts covering stocks in developed economies to focus on their local economy, or even on developed economies. For example, for many US companies a growing share of their business is likely to come from the developing world. So to do your job today as a US analyst, it is important to understand what is going on in these developing countries and to be able to identify which US companies are likely to be able to compete effectively in these markets.

Another implication is that investors from developed economies are likely to want to diversify their portfolios by investing in emerging markets. The limitation for doing so today is that it is challenging for even professional portfolio managers to have a deep understanding of the business risks in those countries. This is exacerbated by concerns about the credibility of emerging country financial information that is used to make investing decisions. Of course, for sell-side analysts willing to dig deep, this gap can also be seen as an opportunity to add value to buy-side clients.

Finally, emerging markets have new investors looking for places to invest their savings and companies looking to raise capital to fund growth. For example, the burgeoning middle classes in China and India save 30-40% of their incomes because they do not have pension plans or medical insurance to provide for their future financial security. Given the emerging state of their financial markets and the limited financial products available to individual savers in these countries, there are opportunities for financial intermediaries to help provide new investment products and ways of managing risks. Financial intermediaries also have opportunities to underwrite new public issues as local Chinese and Indian companies seek to raise capital.

All these business opportunities suggest that sell-side research is likely to be increasingly valuable in emerging markets. Consistent with this prediction, the number of analysts in China and India has exploded in the last few years. In 2011, India had 1,087 analysts and China 850. As a benchmark, the US market had 5,878 analysts for the same year.

So will today’s global financial intermediaries be able to benefit from these opportunities? They face several barriers. One barrier is the local regulatory environment. Emerging economies typically restrict the entry from global firms and regulate products they can provide. For example, in China foreign firms are restricted from investing in local Chinese stocks, or from providing mutual fund products for local citizens. Prior to 1991, there were restrictions on foreign firms investing in India.

Given the historical volatility of stock returns for emerging countries, global and local financial intermediaries face challenges of building investor trust and confidence in equity products. For local investors who rely heavily on savings to cover medical and pension needs given the lack of any social safety net, stock investments are often seen as too unpredictable and risky. As a result, investors in India frequently look to gold as their primary form of investment.

Finally, local financial intermediaries are likely to have an edge over global firms in understanding their home market, local investor needs, and being able to assess investment opportunities (through greater knowledge of local companies). They are also better placed to hear rumors about questionable business practices and understand financial reporting than global firms.

Given the regulatory and informational advantages of local firms, it is perhaps not surprising that from 2000 to 2010, four of the top five investment banks listed on the Chinese IPO (initial public offering) league tables were domestic firms, and in India three of the top five firms were domestic.

Conclusion

In conclusion, sell-side research has an impressive track record of adding value to both buy-side portfolio managers and corporate issuers. Throughout its history, the industry has been remarkably resilient despite facing business model challenges and regulatory changes arising from concerns about conflicts of interest. Yet recent technology changes, the stagnation of developed economies and growth of emerging economies point to new challenges and opportunities. All this suggests that equity research is an industry where we can expect further disruption, particularly for industry leaders.
Healy – Wall Street Research

References

Separate proceedings before the Federal Power Commission by such Commission, by the City of Cleveland and the City of Akron, and by Pennsylvania Public Utility Commission wherein the State of West Virginia and its Public Service Commission were permitted to intervene concerning rates charged by Hope Natural Gas Company which were consolidated for hearing. An order fixing rates was reversed and remanded with directions by the Circuit Court of Appeals, 134 F.2d 287, and Federal Power Commission, City of Akron and Pennsylvania Public Utility Commission in one case and the City of Cleveland in another bring certiorari.

Reversed.

Mr. Justice REED, Mr. Justice FRANKFURTER and Mr. Justice JACKSON, dissenting.

On Writs of Certiorari to the United States Circuit Court of Appeals for the Fourth Circuit.

West Headnotes

[1] Public Utilities 317A 120

317A Public Utilities
317AII Regulation
317Ak119 Regulation of Charges
317Ak120 k. Nature and Extent in General.
Most Cited Cases
(Formerly 317Ak7.1, 317Ak7)
Rate-making is only one species of price-fixing which, like other applications of the police power, may reduce the value of the property regulated, but that does not render the regulation invalid.

317A Public Utilities
317AII Regulation
317Ak119 Regulation of Charges
317Ak123 k. Reasonableness of Charges in General. Most Cited Cases
(Formerly 317Ak7.4, 317Ak7)
Rates cannot be made to depend upon fair value, which is the end product of the process of rate-making and not the starting point, when the value of the going enterprise depends on earnings under whatever rates may be anticipated.

[3] Gas 190 14.3(2)

190 Gas
190k14 Charges
190k14.3 Administrative Regulation
190k14.3(2) k. Federal Power Commission. Most Cited Cases
(Formerly 190k14(1))
The rate-making function of the Federal Power Commission under the Natural Gas Act involves the making of pragmatic adjustments, and the Commission is not bound to the use of any single formula or combination of formulae in determining rates. Natural Gas Act, § 4(a), 5(a), 6, 15 U.S.C.A. § 717c(a), 717d(a), 717e.

190 Gas
190k14 Charges
190k14.5 Judicial Review and Enforcement of Regulations
190k14.5(6) k. Scope of Review and Trial De Novo. Most Cited Cases
(Formerly 190k14(1))
When order of Federal Power Commission fixing natural gas rates is challenged in the courts, the question is whether order viewed in its entirety meets the requirements of the Natural Gas Act. Natural Gas Act, § 4(a), 5(a), 6, 19(b), 15 U.S.C.A. § 717c(a), 717d(a), 717e, 717r(b).

190 Gas
190k14 Charges
190k14.4 Reasonableness of Charges
Under the statutory standard that natural gas rates shall be “just and reasonable” it is the result reached and not the method employed that is controlling. Natural Gas Act § § 4(a), 5(a), 15 U.S.C.A. § § 717c(a), 717d(a).

If the total effect of natural gas rates fixed by Federal Power Commission cannot be said to be unjust and unreasonable, judicial inquiry under the Natural Gas Act is at an end. Natural Gas Act, § § 4(a), 5(a), 6, 19(b), 15 U.S.C.A. § § 717c(a), 717d(a), 717e, 717r(b).

An order of the Federal Power Commission fixing rates for natural gas is the product of expert judgment, which carries a presumption of validity, and one who would upset the rate must make a convincing showing that it is invalid because it is unjust and unreasonable in its consequences. Natural Gas Act, § § 4(a), 5(a), 6, 19(b), 15 U.S.C.A. § § 717c(a), 717d(a), 717e, 717r(b).

The fixing of just and reasonable rates for natural gas by the Federal Power Commission involves a balancing of the investor and the consumer interests.
§ § 4(a), 5(a), 6, 19(b), 15 U.S.C.A. § § 717c(a), 717d(a), 717e, 717r(b).

190 Gas

190k14 Charges

190k14.4 Reasonableness of Charges

190k14.4(4) k. Method of Valuation. Most Cited Cases

(Formerly 190k14(1))

A return of only 3 27/100 per cent. on alleged rate base computed on reproduction cost new to natural gas company earning an annual average return of about 9 per cent. on average investment and satisfied with existing gas rates suggests an inflation of the base on which the rate had been computed, and justified Federal Power Commission in rejecting reproduction cost as the measure of the rate base. Natural Gas Act, § § 4(a), 5(a), 15 U.S.C.A. § § 717c(a), 717d(a).

190 Gas

190k14 Charges

190k14.4 Reasonableness of Charges

190k14.4(9) k. Depreciation and Depletion. Most Cited Cases

(Formerly 190k14(1))

There is no constitutional requirement that owner who engages in a wasting-asset business of limited life shall receive at the end more than he has put into it, and such rule is applicable to a natural gas company since the ultimate exhaustion of its supply of gas is inevitable. Natural Gas Act, § § 4(a), 5(a), 6, 19(b), 15 U.S.C.A. § § 717c(a), 717d(a), 717e, 717r(b).

190 Gas

190k14 Charges

190k14.4 Reasonableness of Charges

190k14.4(9) k. Depreciation and Depletion. Most Cited Cases

(Formerly 190k14(1))

In fixing natural gas rate the basing of annual depreciation on cost is proper since by such procedure the utility is made whole and the integrity of its investment is maintained, and no more is required. Natural Gas Act, § § 4(a), 5(a), 6, 19(b), 15 U.S.C.A. § § 717c(a), 717d(a), 717e, 717r(b).

190 Gas

190k14 Charges

190k14.3 Administrative Regulation

190k14.3(4) k. Findings and Orders. Most Cited Cases

(Formerly 190k14(1))

There are no constitutional requirements more exacting than the standards of the Natural Gas Act which are that gas rates shall be just and reasonable, and a rate order which conforms with the act is valid. Natural Gas Act, § § 4(a), 5(a), 6, 19(b), 15 U.S.C.A. § § 717c(a), 717d(a), 717e, 717r(b).

[16] Commerce 83 62.2

83 Commerce

83II Application to Particular Subjects and Methods of Regulation

83II(B) Conduct of Business in General

83k62.2 k. Gas. Most Cited Cases

(Formerly 83k13)

The purpose of the Natural Gas Act was to provide through the exercise of the national power over interstate commerce an agency for regulating the wholesale distribution to public service companies of natural gas moving in interstate commerce not subject to certain types of state regulation, and the act was not intended to take any authority from state commissions or to usurp state regulatory authority. Natural Gas Act, § 1 et seq., 15 U.S.C.A. § 717 et seq.

260 Mines and Minerals

260III Operation of Mines, Quarries, and Wells

260III(A) Statutory and Official Regulations

260k92.5 Federal Law and Regulations

260k92.5(3) k. Oil and Gas. Most Cited Cases

(Formerly 260k92.7, 260k92)

Under the Natural Gas Act, the Federal Power Commission has no authority over the production or gathering of natural gas. Natural Gas Act, § 1(b), 15 U.S.C.A. § 717(b).

[18] Gas 190 14.1(1)

190 Gas

190k14 Charges

190k14.1 In General

190k14.1(1) k. In General; Amount and
Regulation. Most Cited Cases
(Formerly 190k14(1))
The primary aim of the Natural Gas Act was to protect consumers against exploitation at the hands of natural gas companies and holding companies owning a majority of the pipe-line mileage which moved gas in interstate commerce and against which state commissions, independent producers and communities were growing quite helpless. Natural Gas Act, §§ 4, 6-10, 14, 15 U.S.C.A. §§ 717c, 717e-717i, 717m.

190k14 Charges
190k14 In General
190k14.1(1) k. In General; Amount and Regulation. Most Cited Cases
(Formerly 190k14(1))
Apart from the express exemptions contained in § 7 of the Natural Gas Act considerations of conservation are material where abandonment or extensions of facilities or service by natural gas companies are involved, but exploitation of consumers by private operators through maintenance of high rates cannot be continued because of the indirect benefits derived therefrom by a state containing natural gas deposits. Natural Gas Act, §§ 4, 5, and § 7 as amended 15 U.S.C.A. §§ 717c, 717d, 717f.

[20] Commerce 83 62.2

83 Commerce
83II Application to Particular Subjects and Methods of Regulation
83II(B) Conduct of Business in General
83k62.2 k. Gas. Most Cited Cases
(Formerly 83k13)
A limitation on the net earnings of a natural gas company from its interstate business is not a limitation on the power of the producing state, either to safeguard its tax revenues from such industry, or to protect the interests of those who sell their gas to the interstate operator, particularly where the return allowed the company by the Federal Power Commission was a net return after all such charges. Natural Gas Act, §§ 4, 5, and § 7, as amended. 15 U.S.C.A. §§ 717c, 717d, 717f.

190k14 Charges
190k14.1(1) k. In General. Most Cited Cases
(Formerly 190k14(1))
The wasting-asset nature of the natural gas industry does not require the maintenance of the level of rates so that natural gas companies can make a greater profit on each unit of gas sold. Natural Gas Act, §§ 4(a), 5(a), 15 U.S.C.A. §§ 717c(a), 717d(a).

[22] Gas 190 14.4(1)

190k14 Charges
190k14.4 Reasonableness of Charges
190k14.4(1) k. In General. Most Cited Cases
(Formerly 190k14(1))
The Natural Gas Act granting Federal Power Commission power to fix “just and reasonable rates” does not include the power to fix rates which will disallow or discourage resales for industrial use. Natural Gas Act, §§ 4(a), 5(a), 15 U.S.C.A. §§ 717c(a), 717d(a).

[23] Federal Courts 170B 452

170B Federal Courts
170BVII Supreme Court
170BVII(B) Review of Decisions of Courts of Appeals
170Bk452 k. Certiorari in General. Most Cited Cases
(Formerly 106k383(1))
Where the Federal Power Commission made no findings as to any discrimination or unreasonable differences in rates, and its failure was not challenged in the petition to review, and had not been raised or argued by any party, the problem of discrimination was not open to review by the Supreme Court on certiorari. Natural Gas Act, § 4(b), 15 U.S.C.A. § 717c(b).

[24] Constitutional Law 92 74

92 Constitutional Law
92III Distribution of Governmental Powers and Functions
92III(B) Judicial Powers and Functions
92k71 Encroachment on Executive
92k74 k. Powers, Duties, and Acts Under Legislative Authority. Most Cited Cases
(Formerly 15Ak226)
Congress has entrusted the administration of the...
Natural Gas Act to the Federal Power Commission and not to the courts, and apart from the requirements of judicial review, it is not for the Supreme Court to advise the Commission how to discharge its functions. Natural Gas Act, § 1 et seq., 15 U.S.C.A. § 717 et seq., 717r(b).

[25] Gas 190 Charges
190k14 Judicial Review and Enforcement of Regulations
190k14.5 k. Decisions Reviewable. Most Cited Cases
(Formerly 190k14(1))
Under the Natural Gas Act, where order sought to be reviewed does not of itself adversely affect complainant but only affects his rights adversely on the contingency of future administrative action, the order is not reviewable, and resort to the courts in such situation is either premature or wholly beyond the province of such courts. Natural Gas Act, § 19(b), 15 U.S.C.A. § 717r(b).

[26] Gas 190 Charges
190k14 Judicial Review and Enforcement of Regulations
190k14.5(4) k. Persons Entitled to Relief; Parties. Most Cited Cases
(Formerly 190k14(1))
Findings of the Federal Power Commission on lawfulness of past natural gas rates, which the Commission was without power to enforce, were not reviewable under the Natural Gas Act giving any “party aggrieved” by an order of the Commission the right of review. Natural Gas Act, § 19(b), 15 U.S.C.A. § 717r(b).

Hope is a West Virginia corporation organized in 1898. It is a wholly owned subsidiary of Standard Oil Co. (N.J.). Since the date of its organization, it has been in the business of producing, purchasing and marketing natural gas in that state. It sells some of that gas to local consumers in West Virginia. But the great bulk of it goes to five customer companies which receive it at the West Virginia line and distribute it in Ohio and in Pennsylvania. In July, 1938, the cities of Cleveland and Akron filed complaints with the Commission charging that the rates collected by Hope from East Ohio Gas Co. (an affiliate of Hope which distributes gas in Ohio) were excessive and unreasonable. Later in 1938 the Commission on its own motion instituted an investigation to determine the reasonableness of all of Hope's interstate rates. In March 1939 the Public Utility Commission of Pennsylvania filed a complaint with the Commission charging that the rates collected by Hope from Peoples Natural Gas Co. (an affiliate of Hope distributing gas in Pennsylvania) and two non-affiliated companies were unreasonable. The City of Cleveland asked that the challenged rates be declared unlawful and that just and reasonable rates be determined from June 30, 1939 to the date of the Commission's order. The latter finding was requested in aid of state regulation and to afford the Public Utilities Commission of Ohio a proper basis for disposition of a fund collected by East Ohio under bond from Ohio consumers since June 30, 1939. The cases were consolidated and hearings were held.

Mr. Spencer W. Reeder, of Cleveland, Ohio, for petitioner City of cleveland.
Mr. William B. Cockley, of Cleveland, Ohio, for respondent.
Mr. M. M. Neeley, of Charleston, W. Va., for State of West Virginia, as amicus curiae by special leave of Court.

Mr. Justice DOUGLAS delivered the opinion of the Court.

The primary issue in these cases concerns the validity under the Natural Gas Act of 1938, 52 Stat. 821, 15 U.S.C. s 717 et seq., 15 U.S.C.A. s 717 et seq., of a rate order issued by the Federal Power Commission reducing the rates chargeable by Hope Natural Gas Co., 44 P.U.R.,N.S., 1. On a petition for review of the order made pursuant to s 19(b) of the Act, the Circuit Court of Appeals set it aside, one judge dissenting. 4 Cir., 134 F.2d 287. The cases are here on petitions for writs of certiorari which we granted because of the public importance of the questions presented. City of Cleveland v. Hope Natural Gas Co., 319 U.S. 735, 63 S.Ct. 1165.

FN1 Hope produces about one-third of its annual gas requirements and purchases the rest under some 300 contracts.

FN2 These five companies are the East Ohio Gas Co., the Peoples Natural Gas Co., the
River Gas Co., the Fayette County Gas Co., and the Manufacturers Light & Heat Co. The first three of these companies are, like Hope, subsidiaries of Standard Oil Co. (N.J.). East Ohio and River distribute gas in Ohio, the other three in Pennsylvania. Hope's approximate sales in m.c.f. for 1940 may be classified as follows:

<table>
<thead>
<tr>
<th>Local West Virginia</th>
<th>11,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Ohio</td>
<td>40,000,000</td>
</tr>
<tr>
<td>Peoples</td>
<td>10,000,000</td>
</tr>
<tr>
<td>River</td>
<td>400,000</td>
</tr>
<tr>
<td>Fayette</td>
<td>860,000</td>
</tr>
<tr>
<td>Manufacturers</td>
<td>2,000,000</td>
</tr>
</tbody>
</table>

Hope's natural gas is processed by Hope Construction & Refining Co., an affiliate, for the extraction of gasoline and butane. Domestic Coke Corp., another affiliate, sells coke-oven gas to Hope for boiler fuel.

On May 26, 1942, the Commission entered its order and made its findings. Its order required Hope to decrease its future interstate rates so as to reflect a reduction, on an annual basis of not less than $3,699,857 in operating revenues. And it established 'just and reasonable' average rates per m.c.f. for each of the five customer companies. FN3 In response to the prayer of the City of Cleveland the Commission also made findings as to the lawfulness of past rates, although concededly it had no authority under the Act to fix past rates or to award reparations. 44 P.U.R., U.S., at page 34. It found that the rates collected by Hope from East Ohio were unjust, unreasonable, excessive and therefore unlawful, by $830,892 during 1939, $3,219,551 during 1940, and $2,815,789 on an annual basis since 1940. It further found that just, reasonable, and lawful rates for gas sold by Hope to East Ohio for resale for ultimate public consumption were those required *596 to produce $11,528,608 for 1939, $11,507,185 for 1940 and $11,910,947 annually since 1940.

Hope introduced evidence from which it estimated reproduction cost of the property at $97,000,000. It also presented a so-called trended ‘original cost’ estimate which exceeded $105,000,000. The latter was designed ‘to indicate what the original cost of the property would have been if 1938 material and labor prices had prevailed throughout the whole period of the piece-meal construction of the company's property since 1898.’ 44 P.U.R., N.S., at pages 8, 9. Hope estimated by the ‘percent condition’ method accrued depreciation at about 35% of *597 reproduction cost new. On that basis Hope contended for a rate base of $66,000,000. The Commission refused to place any reliance on reproduction cost new, saying that it was ‘not predicated upon facts’ and was ‘too conjectural and illusory to be given any weight in these proceedings.’ Id., 44 P.U.R., U.S., at page 8. It likewise refused to give any ‘probative value’ to trended ‘original cost’ since it was ‘not founded in fact’ but was ‘basically erroneous’ and produced ‘irrational results.’ Id., 44 P.U.R., N.S., at page 9. In determining the amount of accrued depletion and depreciation the Commission, following Lindheimer v. Illinois Bell
FN4 The book reserve for interstate plant amounted at the end of 1938 to about $18,000,000 more than the amount determined by the Commission as the proper reserve requirement. The Commission also noted that ‘twice in the past the company has transferred amounts aggregating $7,500,000 from the depreciation and depletion reserve to surplus. When these latter adjustments are taken into account, the excess becomes $25,500,000, which has been exacted from the ratepayers over and above the amount required to cover the consumption of property in the service rendered and thus to keep the investment unimpaired.’ 44 P.U.R.,N.S., at page 22.

FN5 That contention was based on the fact that ‘every single dollar in the depreciation and depletion reserves’ was taken ‘from gross operating revenues whose only source was the amounts charged customers in the past for natural gas. It is, therefore, a fact that the depreciation and depletion reserves have been contributed by the customers and do not represent any investment by Hope.’ 44 P.U.R.,N.S., at page 40. And see Railroad Commission v. Cumberland Tel. & T. Co., 212 U.S. 414, 424, 425, 29 S.Ct. 357, 361, 362, 53 L.Ed. 577; 2 Bonbright, Valuation of Property (1937), p. 1139.

FN6 The Commission noted that the case was ‘free from the usual complexities involved in the estimate of gas reserves because the geologists for the company and the Commission presented estimates of the remaining recoverable gas reserves which were about one per cent apart.’ 44 P.U.R.,N.S., at pages 19, 20.

The Commission utilized the ‘straight-line-basis' for determining the depreciation and depletion reserve requirements. It used estimates of the average service lives of the property by classes based in part on an inspection of the physical condition of the property. And studies were made of Hope's retirement experience and maintenance policies over the years. The average service lives of the various classes of property were converted into depreciation rates and then applied to the cost of the property to ascertain the portion of the cost which had expired in rendering the service.

The record in the present case shows that Hope is on the lookout for new sources of supply of natural gas and is contemplating an extension of its pipe line into Louisiana for that purpose. The Commission recognized in fixing the rates of depreciation that much material may be used again when various present sources of gas supply are exhausted, thus giving that property more than scrap value at the end of its present use.

Hope's estimate of original cost was about $69,735,000-approximately $17,000,000 more than the amount found by the Commission. The item of $17,000,000 was made up largely of expenditures which prior to December 31, 1938, were charged to operating expenses. Chief among those expenditures was some $12,600,000 expended *599 in well-drilling prior to 1923. Most of that sum was expended by Hope for labor, use of drilling-rigs, hauling, and similar costs of well-drilling. Prior to 1923 Hope followed the general practice of the natural gas industry and charged the cost of drilling wells to operating expenses. Hope continued that practice until the Public Service Commission of West Virginia in 1923 required it to capitalize such expenditures, as does the Commission under its present Uniform System of Accounts. FN5 The Commission refused to add such items to the rate base stating that ‘No greater injustice to consumers could be done than to allow items as operating expenses and at a later date include them in the rate base, thereby placing multiple charges upon the consumers.’ 44 P.U.R.,N.S., at page 12. For the same reason the Commission excluded from the rate base about $1,600,000 of expenditures on properties which Hope acquired from other utilities, the latter having charged those payments to operating expenses. The Commission disallowed certain other overhead items amounting to

over $3,000,000 which also had been previously charged to operating expenses. And it refused to add some $632,000 as interest during construction since no interest was in fact paid.

Hope contended that it should be allowed a return of not less than 8%. The Commission found that an 8% return would be unreasonable but that 6 1/2% was a fair rate of return. That rate of return, applied to the rate base of $33,712,526, would produce $2,191,314 annually, as compared with the present income of not less than $5,801,171.

The Circuit Court of Appeals set aside the order of the Commission for the following reasons. (1) It held that the rate base should reflect the 'present fair value' of the property, that the Commission in determining the 'value' should have considered reproduction cost and trended original cost, and that 'actual legitimate cost' (prudent investment) was not the proper measure of 'fair value' where price levels had changed since the investment. (2) It concluded that the well-drilling costs and overhead items in the amount of some $17,000,000 should have been included in the rate base. (3) It held that accrued depletion and depreciation and the annual allowance for that expense should be computed on the basis of 'present fair value' of the property not on the basis of 'actual legitimate cost'.

287 The Circuit Court of Appeals also held that the Commission had no power to make findings as to past rates in aid of state regulation. But it concluded that those findings were proper as a step in the process of fixing future rates. Viewed in that light, however, the findings were deemed to be invalidated by the same errors which vitiated the findings on which the rate order was based.

Order Reducing Rates. Congress has provided in s 4(a) of the Natural Gas Act that all natural gas rates subject to the jurisdiction of the Commission ‘shall be just and reasonable, and any such rate or charge that is not just and reasonable is hereby declared to be unlawful.’ Sec. 5(a) gives the Commission the power, after hearing, to determine the ‘just and reasonable rate’ to be thereafter observed and to fix the rate by order. Sec. 5(a) also empowers the Commission to order a ‘decrease where existing rates are unjust * * * unlawful, or are not the lowest reasonable rates.’ And Congress has provided in s 19(b) that on review of these rate orders the ‘finding of the Commission as to the facts, if supported by substantial evidence, shall be conclusive.’ Congress, however, has provided no formula by which the ‘just and reasonable’ rate is to be determined. It has not filled in the *601 details of the general prescription FN8 of s 4(a) and s 5(a). It has not expressed in a specific rule the fixed principle of ‘just and reasonable’.

FN7 See Uniform System of Accounts prescribed for Natural Gas Companies effective January 1, 1940, Account No. 332.1.

FN8. Sec. 6 of the Act comes the closest to supplying any definite criteria for rate making. It provides in subsection (a) that, ‘The Commission may investigate the ascertain the actual legitimate cost of the property of every natural-gas company, the depreciation therein, and, when found necessary for rate-making purposes, other facts which bear on the determination of such cost or depreciation and the fair value of such property.’ Subsection (b) provides that every natural-gas company on request shall file with the Commission a statement of the ‘original cost’ of its property and shall keep the Commission informed regarding the ‘cost’ of all additions, etc.

FN9 We recently stated that the meaning of the word ‘value’ is to be gathered ‘from the purpose for which a valuation is being made. Thus the question in a valuation for rate making is how much a utility will be allowed to earn. The basic

UNSE(0142)011271
question in a valuation for reorganization purposes is how much the enterprise in all probability can earn.' Institutional Investors v. Chicago, M., St. P. & P.R. Co., 318 U.S. 523, 540, 63 S.Ct. 727, 738.

*602 [3] [4] [5] [6] [2] We held in Federal Power Commission v. Natural Gas Pipeline Co., supra, that the Commission was not bound to the use of any single formula or combination of formulae in determining rates. Its rate-making function, moreover, involves the making of 'pragmatic adjustments.' Id., 315 U.S. at page 586, 62 S.Ct. at page 743, 86 L.Ed. 1037. And when the Commission's order is challenged in the courts, the question is whether that order 'viewed in its entirety' meets the requirements of the Act. Id., 315 U.S. at page 586, 62 S.Ct. at page 743, 86 L.Ed. 1037. Under the statutory standard of 'just and reasonable' it is the result reached not the method employed which is controlling. Cf. **288 Los Angeles Gas & Electric Corp. v. Railroad Commission, 289 U.S. 287, 304, 305, 314, 53 S.Ct. 637, 643, 644, 647, 77 L.Ed. 1180; West Ohio Gas Co. v. Public Utilities Commission (No. 1), 294 U.S. 63, 70, 55 S.Ct. 716, 720, 721, 49 L.Ed. 1027; Potomac Tel. Co., 295 U.S. 662, 692, 693, 55 S.Ct. 894, 906, 907, 79 L.Ed. 1640 (dissenting opinion). It is not theory but the impact of the rate order which counts. If the total effect of the rate order cannot be said to be unjust and unreasonable, judicial inquiry under the Act is at an end. The fact that the method employed to reach that result may contain infirmities is not then important. Moreover, the Commission's order does not become suspect by reason of the fact that it is challenged. It is the product of expert judgment which carries a presumption of validity. And he who would upset the rate order under the Act carries the heavy burden of making a convincing showing that it is invalid because it is unjust and unreasonable in its consequences. Cf. Railroad Commission v. Cumberland Tel. & T. Co., 212 U.S. 414, 29 S.Ct. 357, 53 L.Ed. 577; Lindheimer v. Illinois Bell Tel. Co., supra, 292 U.S. at pages 164, 169, 54 S.Ct. at pages 663, 665, 78 L.Ed. 1182; Railroad Commission v. Pacific Gas & E. Co., 302 U.S. 388, 401, 58 S.Ct. 334, 341, 82 L.Ed. 319.

*603 [8] [9] The rate-making process under the Act, i.e., the fixing of 'just and reasonable' rates, involves a balancing of the investor and the consumer interests. Thus we stated in the Natural Gas Pipeline Co. case that 'regulation does not insure that the business shall produce net revenues.' 315 U.S. at page 590, 62 S.Ct. at page 745, 86 L.Ed. 1037. But such considerations aside, the investor interest has a legitimate concern with the financial integrity of the company whose rates are being regulated. From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock. Cf. Chicago & Grand Trunk R. Co. v. Wellman, 143 U.S. 339, 345, 346, 12 S.Ct. 400, 402, 36 L.Ed. 176. By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises having corresponding risks. That return, moreover, should be sufficient to assure confidence in the financial integrity of the enterprise, so as to maintain its credit and to attract capital. See State of Missouri ex rel. South-western Bell Tel. Co. v. Public Service Commission, 262 U.S. 276, 291, 43 S.Ct. 544, 547, 67 L.Ed. 981, 31 A.L.R. 807 (Mr. Justice Brandeis concurring). The conditions under which more or less might be allowed are not important here. Nor is it important to this case to determine the various permissible ways in which any rate base on which the return is computed might be arrived at. For we are of the view that the end result in this case cannot be condemned under the Act as unjust and unreasonable from the investor or company viewpoint.

We have already noted that Hope is a wholly owned subsidiary of the Standard Oil Co. (N.J.). It has no securities outstanding except stock. All of that stock has been owned by Standard since 1908. The par amount presently outstanding is approximately $28,000,000 as compared with the rate base of $33,712,526 established by the Commission. Of the total outstanding stock $11,000,000 was issued in stock dividends. The balance, or about $17,000,000, was issued for cash or other assets. During the four decades of its operations Hope has paid over $97,000,000 in cash dividends. It had, moreover, accumulated by 1940 an earned surplus of about $8,000,000. It had thus earned the total investment in the company nearly seven times. Down to 1940 it earned over 20% per year on the average annual amount of its capital stock issued for cash or other assets. On an average invested capital of some $23,000,000 Hope's average earnings have been about 12% a year. And during this period it had accumulated in addition reserves for depletion and depreciation of about $46,000,000. Furthermore, during 1939, 1940 and 1941, Hope paid dividends of 10% on its stock. And in the year 1942, during about half of which the lower rates were in effect, it paid dividends of 7 1/2%. From 1939-1942 its earned surplus increased from $5,250,000 to about $13,700,000, i.e., to almost half the par value of its outstanding stock.

As we have noted, the Commission fixed a rate of return which permits Hope to earn $2,191,314 annually. In determining that amount it stressed the importance of maintaining the financial integrity of the company. It considered the financial history of Hope and a vast
array of data bearing on the natural gas industry, related businesses, and general economic conditions. It noted that the yields on better issues of bonds of natural gas companies sold in the last few years were 'close to 3 per cent', 44 P.U.R., N.S., at page 33. It stated that the company was a 'seasoned enterprise whose risks have been minimized' by adequate provisions for depletion and depreciation (past and present) with 'current high profits', by 'protected established markets, through affiliated distribution companies, in populous and industrialized areas', and by a supply of gas locally to meet all requirements,*605 'except on certain peak days in the winter, which it is feasible to supplement in the future with gas from other sources.' Id., 44 P.U.R., N.S., at page 33. The Commission concluded, 'The company's efficient management, established markets, financial record, affiliations, and its prospective business place it in a strong position to attract capital upon favorable terms when it is required.' Id., 44 P.U.R., N.S., at page 33.

[10] [11] [12] In view of these various considerations we cannot say that an annual return of $2,191,314 is not 'just and reasonable' within the meaning of the Act. Rates which enable the company to operate successfully, to maintain its financial integrity, to attract capital, and to compensate its investors for the risks assumed certainly cannot be condemned as invalid, even though they might produce only a meager return on the so-called 'fair value' rate base. In that connection it will be recalled that Hope contended for a rate base of $66,000,000 computed on reproduction cost new. The Commission points out that if that rate base were accepted, Hope's average rate of return for the four-year period from 1937-1940 would amount to 3.27%. During that period Hope earned an annual average return of about 9% on the average investment. It asked for no rate increases. Its properties were well maintained and operated. As the Commission says such a modest rate of 3.27% suggests an 'inflation of the base on which the rate has been computed.' Dayton Power & Light Co. v. Public Utilities Commission, 292 U.S. 290, 312, 54 S.Ct. 647, 657, 78 L.Ed. 1267. Cf. Lindheimer v. Illinois Bell Tel. Co., supra, 292 U.S. at page 164, 54 S.Ct. at page 663, 78 L.Ed. 1182. The incongruity between the actual operations and the return computed on the basis of reproduction cost suggests that the Commission was wholly justified in rejecting the latter as the measure of the rate base.

In view of this disposition of the controversy we need not stop to inquire whether the failure of the Commission to add the $17,000,000 of well-drilling and other costs to *606 the rate base was consistent with the prudent investment theory as developed and applied in particular cases.

[13] [14] [15] Only a word need be added respecting depletion and depreciation. We held in the Natural Gas Pipeline Co. case that there was no constitutional requirement 'that the owner who embarks in a wasting-asset business of limited life shall receive at the end more than he has put into it.' 315 U.S. at page 593, 62 S.Ct. at page 746, 86 L.Ed. 1037. The Circuit Court of Appeals did not think that that rule was applicable here because Hope was a utility required to continue its service to the public and not scheduled to end its business on a day certain as was stipulated to be true of the Natural Gas Pipeline Co. But that distinction is quite immaterial. The ultimate exhaustion of the supply is inevitable in the case of all natural gas companies. Moreover, this Court recognized in Lindheimer v. Illinois Bell Tel. Co., supra, the propriety of basing annual depreciation on cost. FN10 By such a procedure the **290 utility is made whole and the integrity of its investment maintained. FN11 No more is required. FN12 We cannot approve the contrary holding.*607 of United Railways & Electric Co. v. West, 280 U.S. 234, 253, 254, 50 S.Ct. 123, 126, 127, 74 L.Ed. 390. Since there are no constitutional requirements more exacting than the standards of the Act, a rate order which conforms to the latter does not run afoul of the former.

FN10 Chief Justice Hughes said in that case (292 U.S. at pages 168, 169, 54 S.Ct. at page 665, 78 L.Ed. 1182): 'If the predictions of service life were entirely accurate and retirements were made when and as these predictions were precisely fulfilled, the depreciation reserve would represent the consumption of capital, on a cost basis, according to the method which spreads that loss over the respective service periods. But if the amounts charged to operating expenses and credited to the account for depreciation reserve are excessive, to that extent subscribers for the telephone service are required to provide, in effect, capital contributions, not to make good losses incurred by the utility in the service rendered and thus to keep its investment unimpaired, but to secure additional plant and equipment upon which the utility expects a return.'

FN12 It should be noted that the Act provides no specific rule governing depletion and depreciation. Sec. 9(a) merely states that the
Commission may from time to time ascertain and determine, and by order fix, the proper and adequate rates of depreciation and amortization of the several classes of property of each natural-gas company used or useful in the production, transportation, or sale of natural gas.'

The Position of West Virginia. The State of West Virginia, as well as its Public Service Commission, intervened in the proceedings before the Commission and participated in the hearings before it. They have also filed a brief amicus curiae here and have participated in the argument at the bar. Their contention is that the result achieved by the rate order 'brings consequences which are unjust to West Virginia and its citizens' and which 'unfairly depress the value of gas, gas lands and gas leaseholds, unduly restrict development of their natural resources, and arbitrarily transfer their properties to the residents of other states without just compensation therefor.'

West Virginia points out that the Hope Natural Gas Co. holds a large number of leases on both producing and unoperated properties. The owner or grantor receives from the operator or grantee delay rentals as compensation for postponed drilling. When a producing well is successfully brought in, the gas lease customarily continues indefinitely for the life of the field. In that case the operator pays a stipulated gas-well rental or in some cases a gas royalty equivalent to one-eighth of the gas marketed. Both the owner and operator have valuable property interests in the gas which are separately taxable under West Virginia law. The contention is that the reversionary interests in the leaseholds should be represented in the rate proceedings since it is their gas which is being sold in interstate commerce. It is argued, moreover, that the owners of the reversionary interests should have the benefit of the 'discovery value' of the gas leaseholds, not the interstate consumers. Furthermore, West Virginia contends that the Commission in fixing a rate for natural gas produced in that State should consider the effect of the rate order on the economy of West Virginia. It is pointed out that gas is a wasting asset with a rapidly diminishing supply. As a result West Virginia's gas deposits are becoming increasingly valuable. Nevertheless the rate fixed by the Commission reduces that value. And that reduction, it is said, has severe repercussions on the economy of the State. It is argued in the first place that as a result of this rate reduction Hope's West Virginia property taxes may be decreased in view of the relevance which earnings have under West Virginia law in the assessment of property for tax purposes. Secondly, it is pointed out that West Virginia has a production tax on the 'value' of the gas exported from the State. And we are told that for purposes of that tax 'value' becomes under West Virginia law 'practically the substantial equivalent of market value.' Thus West Virginia argues that undervaluation of Hope's gas leaseholds will cost the State many thousands of dollars in taxes. The effect, it is urged, is to impair West Virginia's tax structure for the benefit of Ohio and Pennsylvania consumers. West Virginia emphasizes, moreover, its deep interest in the conservation of its natural resources including its natural gas. It says that a reduction of the value of these leasehold values will jeopardize these conservation policies in three respects: (1) exploratory development of new fields will be discouraged; (2) abandonment of lowyield high-cost marginal wells will be hastened; and (3) secondary recovery of oil will be hampered. Furthermore, West Virginia contends that the reduced valuation will harm one of the great industries of the State and that harm to that industry must inevitably affect the welfare of the citizens of the State. It is also pointed out that West Virginia has a large interest in coal and oil as well as in gas and that these forms of fuel are competitive. When the price of gas is materially cheapened, consumers turn to that fuel in preference to the others. As a result this lowering of the price of natural gas will have the effect of depreciating the price of West Virginia coal and oil.

West Virginia insists that in neglecting this aspect of the problem the Commission failed to perform the function which Congress entrusted to it and that the case should be remanded to the Commission for a modification of its order. FN16

FN16 West Virginia suggests as a possible solution (1) that a 'going concern value' of the company's tangible assets be included in the rate base and (2) that the fair market value of gas delivered to customers be added to the outlay for operating expenses and taxes.

We have considered these contentions at length in view of the earnestness with which they have been urged upon us. We have searched the legislative history of the Natural
Gas Act for any indication that Congress entrusted to the Commission the various considerations which West Virginia has advanced here. And our conclusion is that Congress did not.

[16] [17] We pointed out in Illinois Natural Gas Co. v. Central Illinois Public Service Co., 314 U.S. 498, 506, 62 S.Ct. 384, 387, 86 L.Ed. 371, that the purpose of the Natural Gas Act was to provide, ‘through the exercise of the national power over interstate commerce, an agency for regulating the wholesale distribution to public service companies of natural gas moving interstate, which this Court had declared to be interstate commerce not subject to certain types of state regulation.’ As stated in the House Report the ‘basic purpose’ of this legislation was ‘to occupy’ the field in which such cases as *610

State of Missouri v. Kansas Natural Gas Co., 265 U.S. 298, 44 S.Ct. 384, 387, 86 L.Ed. 371, had held the States might not act. H.Rep. No. 709, 75th Cong., 1st Sess., p. 2. In accomplishing that purpose the bill was designed to take ‘no authority from State commissions’ and was ‘so drawn accomplishing that purpose the bill was designed to take no authority from State commissions’ and was ‘so drawn to complement and in no manner usurp State regulatory authority.’ Id., p. 2. And the Federal Power Commission was given authority over the ‘production or gathering of natural gas.’ s 1(b).

[18] The primary aim of this legislation was to protect consumers against exploitation at the lands of natural gas companies. Due to the hiatus in regulation which resulted from the Kansas Natural Gas Co. case and related decisions state commissions found it difficult or impossible to discover what it cost interstate pipe-line companies to deliver gas within the consuming states; and thus they were thwarted in local regulation. H.Rep., No. 709, 75th Cong., 1st Sess., p. 2. Moreover, the investigations of the Federal Trade Commission had disclosed that the majority of the pipe-line mileage in the country used to transport natural gas, together with an increasing percentage of the natural gas supply for pipe-line transportation, had been acquired by a handful of holding companies. FN17 State commissions, independent producers, and communities having or seeking the service were growing quite helpless against these combinations. FN18 These were the types of problems with which those participating in the hearings were pre-occupied. FN19 Congress addressed itself to those specific evils.

FN18 S.Doc. 92, Pt. 84-A, chs. XII, XIII, op. cit., supra, note 17.

*611 The Federal Power Commission was given**292 broad powers of regulation. The fixing of ‘just and reasonable’ rates (s 4) with the powers attendant thereto FN20 was the heart of the new regulatory system. Moreover, the Commission was given certain authority by s 7(a), on a finding that the action was necessary or desirable ‘in the public interest,’ to require natural gas companies to extend or improve their transportation facilities and to sell gas to any authorized local distributor. By s 7(b) it was given control over the abandonment of facilities or of service. And by s 7(c), as originally enacted, no natural gas company could undertake the construction or extension of any facilities for the transportation of natural gas to a market in which natural gas was already being served by another company, or sell any natural gas in such a market, without obtaining a certificate of public convenience and necessity from the Commission. In passing on such applications for certificates of convenience and necessity the Commission was told by s 7(c), as originally enacted, that it was ‘the intention of Congress that natural gas shall be sold in interstate commerce for resale for ultimate public consumption for domestic, commercial, industrial, or any other use at the lowest possible reasonable rate consistent with the maintenance of adequate service in the public interest.’ The latter provision was deleted from s 7(c) when that subsection was amended by the Act of February 7, 1942, 56 Stat. 83. By that amendment limited grandfather rights were granted companies desiring to extend their facilities and services over the routes or within the area which they were already serving. Moreover, s 7(c) was broadened so as to require certificates*612 of public convenience and necessity not only where the extensions were being made to markets in which natural gas was already being sold by another company but in other situations as well.

FN20 The power to investigate and ascertain the ‘actual legitimate cost’ of property (s 6), the requirement as to books and records (s 8), control over rates of depreciation (s 9), the requirements for periodic and special reports (s 10), the broad powers of investigation (s 14) are among the chief powers supporting the rate making function.
These provisions were plainly designed to protect the consumer interests against exploitation at the hands of private natural gas companies. When it comes to cases of abandonment or of extensions of facilities or service, we may assume that, apart from the express exemptions contained in s 7, considerations of conservation are material to the issuance of certificates of public convenience and necessity. But the Commission was not asked here for a certificate of public convenience and necessity under s 7 for any proposed construction or extension. It was faced with a determination of the amount which a private operator should be allowed to earn from the sale of natural gas across state lines through an established distribution system. Secs. 4 and 5, not s 7, provide the standards for that determination. We cannot find in the words of the Act or in its history the slightest intimation or suggestion that the exploitation of consumers by private operators through the maintenance of high rates should be allowed to continue provided the producing states obtain indirect benefits from it. That apparently was the Commission's view of the matter, for the same arguments advanced here were presented to the Commission and not adopted by it.

Apart from the grandfather clause contained in s 7(c), there is the provision of s 7(f) that a natural gas company may enlarge or extend its facilities with the 'service area' determined by the Commission without any further authorization.

We do not mean to suggest that Congress was unmindful of the interests of the producing states in their natural gas supplies when it drafted the Natural Gas Act. As we have said, the Act does not intrude on the domain traditionally reserved for control by state commissions; and the Federal Power Commission was given no authority over*613 'the production or gathering of natural gas.' s 1(b). In addition, Congress recognized the legitimate interests of the States in the conservation of natural gas. By s 11 Congress instructed the Commission to make reports on compacts between two or more States dealing with the conservation, production and transportation of natural gas. The Commission was also **293 directed to recommend further legislation appropriate or necessary to carry out any proposed compact and 'to aid in the conservation of natural-gas resources within the United States and in the orderly, equitable, and economic production, transportation, and distribution of natural gas.' s 11(a). Thus Congress was quite aware of the interests of the producing states in their natural gas supplies. But it left the protection of *614 those interests to measures other than the maintenance of high rates to private companies. If the Commission is to be compelled to let the stockholders of natural gas companies have a feast so that the producing states may receive crumbs from that table, the present Act must be redesigned. Such a project raises questions of policy which go beyond our province.

As we have pointed out, s 7(c) was amended by the Act of February 7, 1942, 56 Stat. 83, so as to require certificates of public convenience and necessity not only where the extensions were being made to markets in which natural gas was already being sold by another company but to other situations as well. Considerations of conservation entered into the proposal to give the Act that broader scope. H.Rep.No. 1290, 77th Cong. 1st Sess., pp. 2, 3. And see Annual Report, Federal Power Commission (1940) pp. 79, 80; Baum, The Federal Power Commission and State Utility Regulation (1942), p. 261.

The bill amending s 7(c) originally contained a subsection (h) reading as follows: ‘Nothing contained in this section shall be construed to affect the authority of a State within which natural gas is produced to authorize or require the construction or extension of facilities for the transportation and sale of such gas within such State: Provided, however, That the Commission, after a hearing upon complaint or upon its own motion, may by order forbid any intrastate construction or extension by any natural-gas company which it shall find will prevent such company from rendering adequate service to its customers in interstate or foreign commerce in territory already being served.’ See Hearings on H.R. 5249, House Committee on Interstate & Foreign Commerce, 77th Cong., 1st Sess., pp. 7, 11, 21, 29, 32, 33. In explanation of its deletion the House Committee Report stated, pp. 4, 5: ‘The increasingly important problems raised by the desire of several States to regulate the use of the natural gas produced therein in the interest of consumers within such States, as against the Federal power to regulate interstate commerce in the interest of both interstate and intrastate consumers, are deemed by the committee to warrant further intensive study and probably a more retailed and comprehensive plan for the handling thereof than that which would have been provided by the stricken subsection.’

It is hardly necessary to add that a limitation on the net earnings of a natural gas company from its interstate business is not a limitation on the power of the producing state either to safeguard its tax revenues from that industry or to protect the interests of those who sell their gas to the interstate operator. The return which allowed was the net return after all such charges.

FN24 We have noted that in the annual operating expenses of some $16,000,000 the Commission included West Virginia and federal taxes. And in the net increase of $421,160 over 1940 operating expenses allowed by the Commission was some $80,000 for increased West Virginia property taxes. The adequacy of these amounts has not been challenged here.

FN25 The Commission included in the aggregate annual operating expenses which it allowed some $8,500,000 for gas purchased. It also allowed about $1,400,000 for natural gas production and about $600,000 for exploration and development.

It is suggested, however, that the Commission in ascertaining the cost of Hope's natural gas production plant proceeded contrary to s 1(b) which provides that the Act shall not apply to 'the production or gathering of natural gas'. But such valuation, like the provisions for operating expenses, is essential to the rate-making function as customarily performed in this country. Cf. Smith, The Control of Power Rates in the United States and England (1932), 159 The Annals 101. Indeed s 14(b) of the Act gives the Commission the power to 'determine the propriety and reasonableness of the inclusion in operating expenses, capital, or surplus of all delay rentals or other forms of rental or compensation for unoperated lands and leases.'

It is suggested that the Commission has failed to perform its duty under the Act in that it has not allowed a return for gas production that will be enough to induce private enterprise to perform completely and efficiently its functions for the public. The Commission, however, was not oblivious of those matters. It considered them. It allowed, for example, delay rentals and exploration and development costs in operating expenses. No serious attempt has been made here to show that they are inadequate. We certainly cannot say that they are, unless we are to substitute our opinions for the expert judgment of the administrators to whom Congress entrusted the decision. Moreover, if in light of experience they turn out to be inadequate for development of new sources of supply, the doors of the Commission are open for increased allowances. This is not an order for all time. The Act contains machinery for obtaining rate adjustments. s 4.

FN26 See note 25, supra.

[21] [22] But it is said that the Commission placed too low a rate on gas for industrial purposes as compared with gas for domestic purposes and that industrial uses should be discouraged. It should be noted in the first place that the rates which the Commission has fixed are Hope's interstate wholesale rates to distributors not interstate rates to industrial users and domestic consumers. We hardly can assume, in view of the history of the Act and its provisions, that the resales intrastate by the customer companies which distribute the gas to ultimate consumers in Ohio and Pennsylvania are subject to the rate-making powers of the Commission. But in any event those rates are not in issue here. Moreover, we fail to find in the power to fix 'just and reasonable' rates the power to fix rates which will disallow or discourage resales for industrial use. The Committee Report stated that the Act provided 'for regulation along recognized and more or less standardized lines' and that there was 'nothing novel in its provisions'. H.Rep.No.709, supra, p. 3. Yet if we are now to tell the Commission to fix the rates so as to discourage particular uses, we would indeed be injecting into a rate case a 'novel' doctrine which has no express statutory sanction. The same would be true if we were to hold that the wasting-asset nature of the industry required the maintenance of the level of rates so that natural gas companies could make a greater profit on each unit of gas sold. Such theories of rate-making for this industry may or may not be desirable. The difficulty is that s 4(a) and s 5(a) contain only the conventional standards of rate-making for natural gas companies. The *617 Act of February 7, 1942, by broadening s 7 gave the Commission some additional authority to deal with the conservation aspects of the problem. But s 4(a) and s 5(a) were not changed. If the standard of 'just and reasonable' is to sanction the maintenance of high rates by a natural gas company because they restrict the use of natural gas for certain purposes, the Act must be further amended.

FN27 The Commission has expressed doubts over its power to fix rates on 'direct sales to industries' from interstate pipelines as distinguished from 'sales for resale to the industrial customers of distributing companies.' Annual Report, Federal Power Commission (1940), p. 11.
Congress has entrusted the administration of the Act to the Commission not to the courts. Apart from the requirements of judicial review it is not *618 for us to advise the Commission how to discharge its functions.

Findings as to the Lawfulness of Past Rates. As we have noted, the Commission made certain findings as to the lawfulness of past rates which Hope had charged its interstate customers. Those findings were made on the complaint of the City of Cleveland and in aid of state regulation. It is conceded that under the Act the Commission has no power to make reparation orders. And its power to fix rates admittedly is limited to those ‘to be thereafter observed and in force.’ s 5(a). But the Commission maintains that it has the power to make findings as to the lawfulness of past rates even though it has no power to fix those rates. FN31 However that may be, we do not think that these findings were revi

FN28 Sec. 1(b) of the Act provides: ‘The provisions of this Act shall apply to the transportation of natural gas in interstate commerce, to the sale in interstate commerce of natural gas for resale for ultimate public consumption for domestic, commercial, industrial, or any other use, and to natural-gas companies engaged in such transportation or sale, but shall not apply to any other transportation or sale of natural gas or to the local distribution of natural gas or to the facilities used for such distribution or to the production or gathering of natural gas.’ And see s 2(6), defining a ‘natural-gas company’, and H.Rep.No. 709, supra, pp. 2, 3.

FN29 The wasting-asset characteristic of the industry was recognized prior to the Act as requiring the inclusion of a depletion allowance among operating expenses. See Columbus Gas & Fuel Co. v. Public Utilities Commission, 292 U.S. 398, 404, 405, 54 S.Ct. 763, 766, 767, 78 L.Ed. 1327, 91 A.L.R. 1403. But no such theory of rate-making for natural gas companies as is now suggested emerged from the cases arising during the earlier period of regulation.

FN30 The Commission has been alert to the problems of conservation in its administration of the Act. It has indeed suggested that it might be wise to restrict the use of natural gas ‘by functions rather than by areas.’ Annual Report (1940) p. 79. The Commission stated in that connection that natural gas was particularly adapted to certain industrial uses. But it added that the general use of such gas ‘under boilers for the production of steam’ is ‘under most circumstances of very questionable social economy.’ Ibid.

FN31 The argument is that s 4(a) makes ‘unlawful’ the charging of any rate that is not just and reasonable. And s 14(a) gives the Commission power to investigate any matter ‘which it may find necessary or proper in order to determine whether any person has violated’ any provision of the Act. Moreover, s 5(b) gives the Commission power to investigate and determine the cost of production or transportation of natural gas in cases where it has ‘no authority to establish a rate governing the transportation or sale of such natural gas.’ And s 17(c) directs the Commission to ‘make available to the several State commissions such information and reports as may be of assistance in State regulation of natural-gas companies.’ For a discussion of these points by the Commission see 44 P.U.R.,N.S., at pages 34, 35.

FN29 The Court recently summarized the various types of administrative action or determination revi

[23] [24] It is finally suggested that the rates charged by Hope are discriminatory as against domestic users and in favor of industrial users. That charge is apparently based on s 4(b) of the Act which forbids natural gas companies from maintaining ‘any unreasonable difference in rates, charges, service, facilities, or in any other respect, either as between localities or as between classes of service.’ The power of the Commission to eliminate any such unreasonable differences or discriminations is plain. s 5(a). The Commission, however, made no findings under s 4(b). Its failure in that regard was not challenged in the petition to review. And it has not been raised or argued here by any party. Hence the problem of discrimination has no proper place in the present decision. It will be time enough to pass on that issue when it is presented to us. Congress has entrusted the administration of the Act...
reviewable. **Id., 307 U.S. at page 130, 59 S.Ct. at page 757, 83 L.Ed. 1147.** The Court said, ‘In view of traditional conceptions of federal judicial power, resort to the courts in these situations is either premature or wholly beyond their province.’ **296Id., 307 U.S. at page 130, 59 S.Ct. at page 757, 83 L.Ed. 1147.** And see United States v. Los Angeles S.R. Co., supra, 273 U.S. at page 310, 47 S.Ct. 413, 414, 415, 71 L.Ed. 651; Shannahan v. United States, 303 U.S. 596, 58 S.Ct. 732, 82 L.Ed. 1039. These considerations are apposite here. The Commission has no authority to enforce these findings. They are ‘the exercise solely of the function of investigation.’ United States v. Los Angeles & S.L.R. Co., supra, 273 U.S. at page 310, 47 S.Ct. at page 414, 71 L.Ed. 651. They are only a preliminary, interim step towards possible future action-action not by the Commission but by wholly independent agencies. The outcome of those proceedings may turn on factors other than these findings. These findings may never result in the respondent feeling the pinch of administrative action.

Reversed.

Mr. Justice ROBERTS took no part in the consideration or decision of this case.

Opinion of Mr. Justice BLACK and Mr. Justice MURPHY.

We agree with the Court's opinion and would add nothing to what has been said but for what is patently a wholly gratuitous assertion as to Constitutional law in the dissent of Mr. Justice FRANKFURTER. We refer to the statement that ‘Congressional acquiescence to date in the doctrine of Chicago etc., R. Co. v. Minnesota, supra (134 U.S. 418, 10 S.Ct. 462, 702, 33 L.Ed. 970), may fairly be claimed.’ That was the case in which a majority of this Court was finally induced to expand the meaning *620 of ‘due process’ so as to give courts power to block efforts of the state and national governments to regulate economic affairs. The present case does not afford a proper occasion to discuss the soundness of that doctrine because, as stated in Mr. Justice FRANKFURTER’S dissent, ‘That issue is not here in controversy.’ The salutary practice whereby courts do not discuss issues in the abstract applies with peculiar force to Constitutional questions. Since, however, the dissent adverts to a highly controversial due process doctrine and implies its acceptance by Congress, we feel compelled to say that we do not understand that Congress voluntarily has acquiesced in a Constitutional principle of government that courts, rather than legislative bodies, possess final authority over regulation of economic affairs. Even this Court has not always fully embraced that principle, and we wish to repeat that we have never acquiesced in it, and do not now. See Federal Power Commission v. Natural Gas Pipeline Co., 315 U.S. 575, 599-601, 62 S.Ct. 736, 749, 750, 86 L.Ed. 1037.

Mr. Justice REED, dissenting.

This case involves the problem of rate making under the Natural Gas Act. Added importance arises from the obvious fact that the principles stated are generally applicable to all federal agencies which are entrusted with the determination of rates for utilities. Because my views differ somewhat from those of my brethren, it may be of some value to set them out in a summary form.

The Congress may fix utility rates in situations subject to federal control without regard to any standard except the constitutional standards of due process and for taking private property for public use without just compensation. Wilson v. New, 243 U.S. 332, 350, 37 S.Ct. 298, 302, 61 L.Ed. 755, L.R.A.1917E, 938, Ann.Cas.1918A, 1024. A Commission, however, does not have this freedom of action. Its powers are limited not only by the constitutional standards but also by the standards of the delegation. Here the standard added by the Natural Gas Act is that the rate be ‘just *621 and reasonable.’ FN2 Section 6 FN2 **297 throws additional light on the meaning of these words.

‘(a) The Commission may investigate and ascertain the actual legitimate cost of the property of every natural-gas company, the depreciation therein, and, when found necessary for rate-making purposes, other facts which bear on the determination of such cost or depreciation and the fair value of such property.

‘(b) Every natural-gas company upon request shall file with the Commission an inventory of all or any part of its property and a statement of the original cost thereof, and shall keep the Commission informed regarding the cost of all additions, betterments, extensions, and new construction.’

When the phrase was used by Congress to describe allowable rates, it had relation to something ascertainable. The rates were not left to the whim of the Commission. The rates fixed would produce an annual return that annual return was to be compared with a theoretical just and reasonable return, all risks considered, on the fair value of the property used and useful in the public service at the time of the determination.

Such an abstract test is not precise. The agency charged
with its determination has a wide range before it could properly be said by a court that the agency had disregarded statutory standards or had confiscated the property of the utility for public use. Cf. Chicago, M. & St. P.R. Co. v. Minnesota, 134 U.S. 418, 461-466, 10 S.Ct. 702, 703-705, 33 L.Ed. 970, dissent. This is as Congress intends. Rates are left to an experienced agency particularly competent by training to appraise the amount required.

The decision as to a reasonable return had not been a source of great difficulty, for borrowers and lenders reached such agreements daily in a multitude of situations; and although the determination of fair value had been troublesome, its essentials had been worked out in fairness to investor and consumer by the time of the enactment of this Act. Cf. Los Angeles G. & E. Corp. v. Railroad Comm., 289 U.S. 287, 304 et seq., 53 S.Ct. 637, 643 et seq., 77 L.Ed. 1180. The results were well known to Congress and had that body desired to depart from the traditional concepts of fair value and earnings, it would have stated its intention plainly. Helvering v. Griffiths, 318 U.S. 371, 63 S.Ct. 636.

It was already clear that when rates are in dispute, ‘earnings produced by rates do not afford a standard for decision.’ 289 U.S. at page 305, 53 S.Ct. at page 644, 77 L.Ed. 1180. Historical cost, prudent investment and reproduction cost were all relevant factors in determining fair value. Indeed, disregarding the pioneer investor's risk, if prudent investment and reproduction cost were not distorted by changes in price levels or technology, each of them would produce the same result. The realization from the risk of an investment in a speculative field, such as natural gas utilities, should be reflected in the present fair value. FN3 The amount of evidence to be admitted on any point was of course in the agency's reasonable discretion, and it was free to give its own weight to these or other factors and to determine from all the evidence its own judgment as to the necessary rates.

FN3 ‘Reproduction cost’ has been variously defined, but for rate making purposes the most useful sense seems to be, the minimum amount necessary to create at the time of the inquiry a modern plant capable of rendering equivalent service. See I Bonbright, Valuation of Property (1937) 152. Reproduction cost as the cost of building a replica of an obsolescent plant is not of real significance.

‘Prudent investment’ is not defined by the Court. It may mean the sum originally put in the enterprise, either with or without additional amounts from excess earnings reinvested in the business.

FN4 It is of no more than bookkeeping significance whether the Commission allows a rate of return commensurate with the risk of the original investment or the lower rate based on current risk and a capitalization reflecting the established earning power of a successful company and the probable cost of duplicating its services. Cf. American T. & T. Co. v. United States, 299 U.S. 232, 57 S.Ct. 170, 81 L.Ed. 142. But the latter is the traditional method.

623 I agree with the Court in not imposing a rule of prudent investment alone in determining the rate base. This leaves the Commission free, as I understand it, to use any available evidence for its finding of fair value, including both prudent investment and the cost of installing at the present time an efficient system for furnishing the needed utility service.

My disagreement with the Court arises primarily from its view that it makes no difference how the Commission reached the rate fixed so long as the result is fair and reasonable. For me the statutory command to the Commission is more explicit. Entirely aside from the constitutional problem of whether the Congress could validly delegate its rate making power to the Commission, in toto and without standards, it did legislate in the light of the relation of fair and reasonable to fair value and reasonable return. The Commission must therefore make its findings in observance of that relationship.

The Federal Power Commission did not, as I construe their action, disregard its statutory duty. They heard the evidence relating to historical and reproduction cost and to the reasonable rate of return and they appraised its weight. The evidence of reproduction cost was rejected as unpersuasive, but from the other evidence they found a rate base, which is to me a determination of fair value. On that base the earnings allowed seem fair and reasonable. So far as the Commission went in appraising the property employed in the service, I find nothing in the result which indicates confiscation, unfairness or unreasonableness. Good administration of rate making agencies under this method would avoid undue delay and render revaluations unnecessary except after violent fluctuations of price levels. Rate making under this method has been subjected to criticism. But until Congress changes the standards for the agencies, these rate making bodies should continue the conventional theory of rate making. It will probably be simpler to improve present methods than to devise new ones.

But a major error, I think was committed in the disregard
by the Commission of the investment in exploratory operations and other recognized capital costs. These were not considered by the Commission because they were charged to operating expenses by the company at a time when it was unregulated. Congress did not direct the Commission in rate making to deduct from the rate base capital investment which had been recovered during the unregulated period through excess earnings. In my view this part of the investment should no more have been disregarded in the rate base than any other capital investment which previously had been recovered and paid out in dividends or placed to surplus. Even if prudent investment throughout the life of the property is accepted as the formula for figuring the rate base, it seems to me illogical to throw out the admittedly prudent cost of part of the property because the earnings in the unregulated period had been sufficient to return the prudent cost to the investors over and above a reasonable return. What would the answer be under the theory of the Commission and the Court, if the only prudent investment in this utility had been the seventeen million capital charges which are now disallowed?

For the reasons heretofore stated, I should affirm the action of the Circuit Court of Appeals in returning the proceeding to the Commission for further consideration and should direct the Commission to accept the disallowed capital investment in determining the fair value for rate making purposes.

Mr. Justice FRANKFURTER, dissenting.

My brother JACKSON has analyzed with particularity the economic and social aspects of natural gas as well as *625 the difficulties which led to the enactment of the Natural Gas Act, especially those arising out of the abortive attempts of States to regulate natural gas utilities. The Natural Gas Act of 1938 should receive application in the light of this analysis, and Mr. Justice JACKSON has, I believe, drawn relevant inferences regarding the duty of the Federal Power Commission in fixing natural gas rates. His exposition seems to me unanswered, and I shall say only a few words to emphasize my basic agreement with him.

For our society the needs that are met by public utilities are as truly public services as the traditional governmental functions of police and justice. They are not less so when these services are rendered by private enterprise under governmental regulation. Who ultimately determines the ways of regulation, is the decisive aspect in the public supervision of privately-owned utilities. Foreshadowed nearly sixty years ago, Railroad Commission Cases (Stone v. Farmers' Loan & Trust Co.), 116 U.S. 307, 331, 6 S.Ct. 334, 344, 388, 1191, 29 L.Ed. 636, it was decided more than fifty **299 years ago that the final say under

the Constitution lies with the judiciary and not the legislature. Chicago, etc., R. Co. v. Minnesota, 134 U.S. 418, 10 S.Ct. 462, 702, 33 L.Ed. 970.

While legal issues touching the proper distribution of governmental powers under the Constitution may always be raised, Congressional acquiescence to date in the doctrine of Chicago, etc., R. Co. v. Minnesota, supra, may fairly be claimed. But in any event that issue is not here in controversy. As pointed out in the opinions of my brethren, Congress has given only limited authority to the Federal Power Commission and made the exercise of that authority subject to judicial review. The Commission is authorized to fix rates chargeable for natural gas. But the rates that it can fix must be 'just and reasonable'. s 5 of the Natural Gas Act, 15 U.S.C. s 717d, 15 U.S.C.A. s 717d. Instead of making the Commission's rate determinations final, Congress*626 specifically provided for court review of such orders. To be sure, 'the finding of the Commission as to the facts, if supported by substantial evidence' was made 'conclusive', s 19 of the Act, 15 U.S.C. s 717r; 15 U.S.C.A. s 717r. But obedience of the requirement of Congress that rates be 'just and reasonable' is not an issue of fact of which the Commission's own determination is conclusive. Otherwise, there would be nothing for a court to review except questions of compliance with the procedural provisions of the Natural Gas Act. Congress might have seen fit so to cast its legislation. But it has not done so. It has committed to the administration of the Federal Power Commission the duty of applying standards of fair dealing and of reasonableness relevant to the purposes expressed by the Natural Gas Act. The requirement that rates must be 'just and reasonable' means just and reasonable in relation to appropriate standards. Otherwise Congress would have directed the Commission to fix such rates as in the judgment of the Commission are just and reasonable; it would not have also provided that such determinations by the Commission are subject to court review.

To what sources then are the Commission and the courts to go for ascertaining the standards relevant to the regulation of natural gas rates? It is at this point that Mr. Justice JACKSON'S analysis seems to me pertinent. There appear to be two alternatives. Either the fixing of natural gas rates must be left to the unguided discretion of the Commission so long as the rates it fixes do not reveal a glaringly had prophecy of the ability of a regulated utility to continue its service in the future. Or the Commission's rate orders must be founded on due consideration of all the elements of the public interest which the production and distribution of natural gas involve just because it is natural gas. These elements are reflected in the Natural Gas Act, if that Act be applied as

The minority an encouragement of and my brief
the light thereof.
be returned to the Commission for further consideration in
rate-making doctrine as applied to natural gas and should
should, I think, be the occasion for reconsideration of our
(Cite as: 51 P.U.R.(NS) 193, 64 S.Ct. 281)
18 S.Ct. 418, 42 L.Ed. 819,
466, 18 S.Ct. 418, 42 L.Ed. 819, an encouragement of
conscious obscurity or confusion in reaching a result, on
the assumption that so long as the result appears harmless
its basis is irrelevant. That may be an appropriate attitude
when state action is challenged as unconstitutional. Cf.
S.Ct. 715, 83 L.Ed. 1134. But it is not to be assumed that
it was the design of Congress to make the accommodation
of the conflicting interests exposed in Mr. Justice
JACKSON'S opinion the occasion for a blind clash of
forces or a partial assessment of relevant factors, either
before the Commission or here.

The objection to the Commission's action is not that the
rates it granted were too low but that the range of its
vision was too narrow. And since the issues before the
Commission involved no less than the *300 total public
interest, the proceedings before it should not be judged by
narrow conceptions of common law pleading. And so I
conclude that the case should be returned to the
Commission. In order to enable this Court to discharge
duty of reviewing the Commission's order, the
Commission should set forth with explicitness the criteria
by which it is guided *628 in determining that rates are
'just and reasonable', and it should determine the public
interest that is in its keeping in the perspective of the
considerations set forth by Mr. Justice JACKSON.

By Mr. Justice JACKSON.

Certainly the theory of the court below that ties rate-
making to the fair-value-reproduction-cost formula should
be overruled as in conflict with Federal Power
Commission v. Natural Gas Pipeline Co. *61 But the case
should, I think, be the occasion for reconsideration of our
rate-making doctrine as applied to natural gas and should
be returned to the Commission for further consideration in
the light thereof.

The Commission appears to have understood the effect of
the two opinions in the Pipeline case to be at least
authority and perhaps direction to fix natural gas rates by
exclusive application of the 'prudent investment' rate
base theory. This has no warrant in the opinion of the
Chief Justice for the Court, however, which released the
Commission from subservience to 'any single formula or
combination of formulas' provided its order, 'viewed in its
entirety, produces no arbitrary result.' 315 U.S. at page
586, 62 S.Ct. at page 743, 86 L.Ed. 1037. The minority
opinion I understood to advocate the 'prudent investment'
theory as a sufficient guide in a natural gas case. The
view was expressed in the court below that since this
opinion was not expressly controverted it must have been
approved. *62 I disclaim this imputed*629 approval with
some particularity, because I attach importance at the very
beginning of federal regulation of the natural gas industry
to approaching it as the performance of economic
functions, not as the performance of legalistic rituals.

FN2 Judge Dobie, dissenting below, pointed out
that the majority opinion in the Pipeline case
'contains no express discussion of the Prudent
Investment Theory' and that the concurring
opinion contained a clear one, and said, 'It is
difficult for me to believe that the majority of the
Supreme Court, believing otherwise, would
leave such a statement unchallenged.' (134 F.2d
287, 312.) The fact that two other Justices had as
matter of record in our books long opposed the
reproduction cost theory of rate bases and had
commented favorably on the prudent investment
theory may have influenced that conclusion. See
opinion of Mr. Justice Frankfurter in Driscoll v.
Edison Light & Power Co., 307 U.S. 104, 122,
59 S.Ct. 715, 724, 83 L.Ed. 1134, and my brief
as Solicitor General in that case. It should be
noted, however, that these statements were made,
in not a natural gas case, but in an electric power
case-a very important distinction, as I shall try to
make plain.

I.

Solutions of these cases must consider eccentricities of
the industry which gives rise to them and also to the Act
of Congress by which they are governed.

The heart of this problem is the elusive, exhaustible, and
irreplaceable nature of natural gas itself. Given sufficient
money, we can produce any desired amount of railroad,
bus, or steamship transportation, or communications facilities, or capacity for generation of electric energy, or for the manufacture of gas of a kind. In the service of such utilities one customer has little concern with the amount taken by another, one's waste will not deprive another, a volume of service and be created equal to demand, and today's demands will not exhaust or lessen capacity to serve tomorrow. But the wealth of Midas and the wit of man cannot produce or reproduce a natural gas field. We cannot even reproduce the gas, for our manufactured product has only about half the heating value per unit of nature's own. FN3

FN3 Natural gas from the Appalachian field averages about 1050 to 1150 B.T.U. content, while by-product manufactured gas is about 530 to 540. Moody's Manual of Public Utilities (1943) 1350; Youngberg, Natural Gas (1930) 7.

301 Natural gas in some quantity is produced in twenty-four states. It is consumed in only thirty-five states, and is *630* available only to about 7,600,000 consumers. FN4 Its availability has been more localized than that of any other utility service because it has depended more on the caprice of nature.

The supply of the Hope Company is drawn from that old and rich and vanishing field that flanks the Appalachian mountains. Its center of production is Pennsylvania and West Virginia, with a fringe of lesser production in New York, Ohio, Kentucky, Tennessee, and the north end of Alabama. Oil was discovered in commercial quantities at a depth of only 69 1/2 feet near Titusville, Pennsylvania, in 1859. Its value then was about $16 per barrel. FN5 The oil branch of the petroleum industry went forward at once, and with unprecedented speed. The area productive of oil and gas was roughed out by the drilling of over 19,000 'wildcat' wells, estimated to have cost over $222,000,000. Of these, over 18,000 or 94.9 per cent, were 'dry holes.' About five per cent, or 990 wells, made discoveries of commercial importance, 767 of them resulting chiefly in oil and 223 in gas only. FN6 Prospecting for many years was a search for oil, and to strike gas was a misfortune. Waste during this period and even later is appalling. Gas was regarded as having no commercial value until about 1882, in which year the total yield was valued only at about $75,000. FN7 Since then, contrary to oil, which has become cheaper gas in this field has pretty steadily advanced in price.

FN7 At Fredonia, New York, in 1821, natural gas was conveyed from a shallow well to some thirty people. The lighthouse at Barcelona Harbor, near what is now Westfield, New York, was at that about time and for many years afterward lighted by gas that issued from a crevice. Report on Utility Corporations by Federal Trade Commission, Sen.Doc. 92, Pt. 84-A, 70th Cong., 1st Sess., 8-9.

FN8 In that year Pennsylvania enacted 'An Act to provide for the incorporation and regulation of natural gas companies.' Penn.Laws 1885, No. 32, 15 P.S s 1981 et seq.

FN9 See Steptoe and Hoffheimer's Memorandum for Governor Cornwell of West Virginia (1917) 25 West Virginia Law Quarterly 257; see also Report on Utility Corporations by

*632 With the source of supply thus tapped to serve centers of large demand, like Pittsburgh, Buffalo, Cleveland, Youngstown, Akron, and other industrial communities, the distribution of natural gas fast became big business. Its advantages as a **302 fuel and its price commended it, and the business yielded a handsome return. All was merry and the goose hung high for consumers and gas companies alike until about the time of the first World War. Almost unnoticed by the consuming public, the whole Appalachian field passed its peak of production and started to decline. Pennsylvania, which to 1928 had given off about 38 per cent of the natural gas from this field, had its peak in 1905; Ohio, which had produced 14 per cent, had its peak in 1915; and West Virginia, greatest producer of all, with 45 per cent to its credit, reached its peak in 1917. FN13

Western New York and Eastern Ohio, on the fringe of the field, had some production but relied heavily on imports from Pennsylvania and West Virginia. Pennsylvania, a producing and exporting state, was a heavy consumer and supplemented her production with imports from West Virginia. West Virginia was a consuming state, but the lion's share of her production was exported. Thus the interest of the states in the North Appalachian supply was in conflict.

Competition among localities to share in the failing supply and the helplessness of state and local authorities in the presence of state lines and corporate complexities is a part of the background of federal intervention in the industry. FN14 West Virginia took the boldest measure. It legislated a priority in its entire production in favor of its own inhabitants. That was frustrated by an injunction*633 from this Court. FN15 Throughout the region clashes in the courts and conflicting decisions evidenced public anxiety and confusion. It was held that the New York Public Service Commission did not have power to classify consumers and restrict their use of gas. FN16 That Commission held that a company could not abandon a part of its territory and still serve the rest. FN17 Some courts admonished the companies to take action to protect consumers. FN18 Several courts held that companies, regardless of failing supply, must continue to take on customers, but such compulsory additions were finally held to be within the Public Service Commission's discretion. FN19 There were attempts to throw up franchises and quit the service, and municipalities resorted to the courts with conflicting results. FN20 Public service commissions of consuming states were handicapped, for they had no control of the supply. FN21

FN11 Arnold and Kemnitzer, Petroleum in the United States and Possessions (1931) 73.

FN12 Id. at 63.

FN13 Id. at 64.

FN15 Commonwealth of Pennsylvania v. West Virginia, 262 U.S. 553, 43 S.Ct. 658, 67 L.Ed. 1117, 32 A.L.R. 300. For conditions there which provoked this legislation, see 25 West Virginia Law Quarterly 257.

FN21 The New York Public Service Commission said: ‘While the transportation of natural gas through pipe lines from one state to another state is interstate commerce * * * Congress has not taken over the regulation of
that particular industry. Indeed, it has expressly excepted it from the operation of the Interstate Commerce Commissions Law (Interstate Commerce Commissions Law, section 1). It is quite clear, therefore, that this Commission can not require a Pennsylvania corporation producing gas in Pennsylvania to transport it and deliver it in the State of New York, and that the Interstate Commerce Commission is likewise powerless.

If there exists such a power, and it seems that there does, it is a power vested in Congress and by it not yet exercised. There is no available source of supply for the Crystal City Company at present except through purchasing from the Porter Gas Company. It is possible that this Commission might fix a price at which the Potter Gas Company should sell if it sold at all, but as the Commission can not require it to supply gas in the State of New York, the exercise of such a power to fix the price, if such power exists, would merely say, sell at this price or keep out of the State.' Lane v. Crystal City Gas Co., 8 New York Public Service Reports, Second District, 210, 212.

303 634 Shortages during World War I occasioned the first intervention in the natural gas industry by the Federal Government. Under Proclamation of President Wilson the United States Fuel Administrator took control, stopped extensions, classified consumers and established a priority for domestic over industrial use. FN22 After the war federal control was abandoned. Some cities once served with natural gas became dependent upon mixed gas of reduced heating value and relatively higher price. FN23

FN22 Proclamation by the President of September 16, 1918; Rules and Regulations of H. A. Garfield, Fuel Administrator, September 24, 1918.

FN23 For example, the Iroquois Gas Corporation which formerly served Buffalo, New York, with natural gas ranging from 1050 to 1150 b.t.u. per cu. ft., now mixes a by-product gas of between 530 and 540 b.t.u. in proportions to provide a mixed gas of about 900 b.t.u. per cu. ft. For space heating or water heating its charges range from 65 cents for the first m.c.f. per month to 55 cents for all above 25 m.c.f. per month. Moody's Manual of Public Utilities (1943) 1350.

Utilization of natural gas of highest social as well as economic return is domestic use for cooking and water heating, followed closely by use for space heating in homes. This is the true public utility aspect of the enterprise, and its preservation should be the first concern of regulation. Gas does the family cooking cheaper than any other fuel. FN24 But its advantages do not end with dollars and cents cost. It is delivered without interruption at the meter as needed and is paid for after it is used. No money is tied up in a supply, and no space is used for storage. It requires no handling, creates no dust, and leaves no ash. It responds to thermostatic control. It ignites easily and immediately develops its maximum heating capacity. These incidental advantages make domestic life more liveable.

FN24 The United States Fuel Administration made the following cooking value comparisons, based on tests made in the Department of Home Economics of Ohio State University:

- Natural gas at 1.12 per M. is equivalent to coal at $6.50 per ton.
- Natural gas at 2.00 per M. is equivalent to gasoline at 27¢ per gal.
- Natural gas at 2.20 per M. is equivalent to electricity at 3¢ per k.w.h.
- Natural gas at 2.40 per M. is equivalent to coal oil at 15¢ per gal.

Use and Conservation of Natural Gas, issued by U.S. Fuel Administration (1918) 5.

Industrial use is induced less by these qualities than by low cost in competition with other fuels. Of the gas exported from West Virginia by the Hope Company a very substantial part is used by industries. This wholesale use speeds exhaustion of supply and displaces other fuels. Coal miners and the coal industry, a large part of whose costs are wages, have complained of unfair competition from low-priced industrial gas produced with relatively little labor cost. FN25

FN25 See Brief on Behalf of Legislation Imposing an Excise Tax on Natural Gas, submitted to N.R.A. by the United Mine Workers of America and the National Coal Association.

Gas rate structures generally have favored industrial users. In 1932, in Ohio, the average yield on gas for domestic consumption was 62.1 cents per m.c.f. and on industrial. FN26 38.7. In Pennsylvania, the figures were 62.9 against 31.7. West Virginia showed the least spread, domestic consumers paying 36.6 cents; and industrial, 27.7. FN27 Although this spread is less than **304 in other parts of the United States, FN27 it can hardly be said to be
self-justifying. It certainly is a very great factor in hastening decline of the natural gas supply.

FN26 Brief of National Gas Association and United Mine Workers, supra, note 26, pp. 35, 36, compiled from Bureau of Mines Reports.

FN27 From the source quoted in the preceding note the spread elsewhere is shown to be:

<table>
<thead>
<tr>
<th>State</th>
<th>Industrial</th>
<th>Domestic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois</td>
<td>29.2</td>
<td>1.678</td>
</tr>
<tr>
<td>Louisiana</td>
<td>10.4</td>
<td>59.7</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>11.2</td>
<td>41.5</td>
</tr>
<tr>
<td>Texas</td>
<td>13.1</td>
<td>59.7</td>
</tr>
<tr>
<td>Alabama</td>
<td>17.8</td>
<td>1.227</td>
</tr>
<tr>
<td>Georgia</td>
<td>22.9</td>
<td>1.043</td>
</tr>
</tbody>
</table>

About the time of World War I there were occasional and short-lived efforts by some hard-pressed companies to reverse this discrimination and adopt graduated rates, giving a low rate to quantities adequate for domestic use and graduating it upward to discourage industrial use. FN28 *637 These rates met opposition from industrial sources, of course, and since diminished revenues from industrial sources tended to increase the domestic price, they met little popular or commission favor. The fact is that neither the gas companies nor the consumers nor local regulatory bodies can be depended upon to conserve gas. Unless federal regulation will take account of conservation, its efforts seem, as in this case, actually to constitute a new threat to the life of the Appalachian supply.

FN28 In Corning, New York, rates were initiated by the Crystal City Gas Company as follows: 70¢ for the first 5,000 cu. ft. per month; 80¢ from 5,000 to 12,000; $1 for all over 12,000. The Public Service Commission rejected these rates and fixed a flat rate of 58¢ per m.c.f. Lane v. Crystal City Gas Co., 8 New York Public Service Comm. Reports, Second District, 210.

The Pennsylvania Gas Company (National Fuel Gas Company group) also attempted a sliding scale rate for New York consumers, net per month as follows: First 5,000 feet, 35¢; second 5,000 feet, 45¢; third 5,000 feet, 50¢; all above 15,000, 55¢. This was eventually abandoned, however. The company's present scale in Pennsylvania appears to be reversed to the following net monthly rate; first 3 m.c.f., 75¢; next 4 m.c.f., 60¢; next 8 m.c.f., 55¢; over 15 m.c.f., 50¢. Moody's Manual of Public Utilities (1943) 1350. In New York it now serves a mixed gas.

For a study of effect of sliding scale rates in reducing consumption see 11 Proceedings of Natural Gas Association of America (1919) 287.

II.

Congress in 1938 decided upon federal regulation of the industry. It did so after an exhaustive investigation of all aspects including failing supply and competition for the use of natural gas intensified by growing scarcity. FN29 Pipelines from the Appalachian area to markets were in the control of a handful of holding company systems. FN30 This created a highly concentrated control of the producers' market and of the consumers' supplies. While holding companies dominated both production and distribution they segregated those activities in separate subsidiaries, FN31 the effect of which, if not the purpose, was to isolate some end of the business from the reach of any one state commission. The cost of natural gas to consumers moved steadily upwards over the years, out of proportion to prices of oil, which, except for the element of competition, is produced under somewhat comparable conditions. The public came to feel that the companies were exploiting the growing scarcity of local gas. The problems of this region had much to do with creating the demand for federal regulation.
Virginia, 87 per cent of the total gas production of that state was under control of eight companies. Steptoe and Hoffheimer, Legislative Regulation of Natural Gas Supply in West Virginia, 17 West Virginia Law Quarterly 257, 260. Of these, three were subsidiaries of the Columbia system and others were subsidiaries of larger systems. In view of inter-system sales and interlocking interests it may be doubted whether there is much real competition among these companies.

The Natural Gas Act declared the natural gas business to be ‘affected with a public interest,’ and its regulation ‘necessary in the public interest.’ Originally, and at the time this proceeding was commenced and tried, it also declared ‘the intention of Congress that natural gas shall be sold in interstate commerce for resale for ultimate public consumption for domestic, commercial, industrial, or any other use at the lowest possible reasonable rate consistent with the maintenance of adequate service in the public interest.’ While this was later dropped, there is nothing to indicate that it was not and is not still an accurate statement of purpose of the Act. Extension or improvement of facilities may be ordered where ‘necessary or desirable in the public interest,’ abandonment of facilities may be ordered when ‘depleted to the extent that the continuance of service is unwarranted, or that the present or future public convenience or necessity’ permit’ abandonment and certain extensions can only be made on finding of ‘the present or future public convenience and necessity.’

The Commission is required to take account of the ultimate use of the gas. Thus it is given power to suspend new schedules as to rates, charges, and classification of services except where the schedules are for the sale of gas ‘for resale for industrial use only,’ which gives the companies greater freedom to increase rates on industrial gas than on domestic gas. More particularly, the Act expressly forbids any undue preference or advantage to any person or ‘any unreasonable difference in rates either as between localities or as between classes of service.’ And the power of the Commission expressly includes that to determine the ‘just and reasonable rate, charge, classification, rule, regulation, practice, or contract to be thereafter observed and in force.’

In view of the Court's opinion that the Commission in administering the Act may ignore discrimination, it is interesting that in reporting this Bill both the Senate and the House Committees on Interstate Commerce pointed out that in 1934, on a nationwide average the price of natural gas per m.c.f. was 74.6 cents for domestic use, 49.6 cents for commercial use, and 16.9 for industrial use. I am not ready to think that supporters of a bill called attention to the striking fact that householders were being charged five times as much for their gas as industrial users only as a situation which the Bill would do nothing to remedy. On the other hand the Act gave to the Commission what the Court aptly describes as ‘broad powers of regulation.'

This proceeding was initiated by the Cities of Cleveland and Akron. They alleged that the price charged by Hope for natural gas ‘for resale to domestic, commercial and small industrial consumers in Cleveland and elsewhere is excessive, unjust, unreasonable, greatly in excess of the price charged by Hope to nonaffiliated companies at wholesale for resale to domestic, commercial and small industrial consumers, and greatly in excess of the price charged by Hope to East Ohio for resale to certain favored industrial consumers in Ohio, and therefore is further unduly discriminatory between consumers and between classes of service’ (italics supplied). The company answered admitting differences in prices to affiliated and nonaffiliated companies and justifying them by differences in conditions of delivery.
certain favored industrial consumers in Ohio,' Hope did not deny a price differential, but alleged that industrial gas was not sold to 'favored consumers' but was sold under contract and schedules filed with and approved by the Public Utilities Commission of Ohio, and that certain conditions of delivery made it not 'unduly discriminatory.'

The record shows that in 1940 Hope delivered for industrial consumption 36,523,792 m.c.f. and for domestic and commercial consumption, 50,343,652 m.c.f. I find no separate figure for domestic consumption. It domestic and commercial consumption, 50,343,652 m.c.f. and for industrial consumption 36,523,792 m.c.f. and for

*I I find no separate figure for domestic consumption. It domestic and commercial consumption, 50,343,652 m.c.f. and for industrial consumption 36,523,792 m.c.f. and for

**641 Hope is responsible for discrimination as exists in favor of these few industrial consumers. It controls both the resale price and use of industrial gas by virtue of the very interstate sales contracts over which the Commission is exercising its jurisdiction.

Hope's contract with East Ohio Company is an example. Hope agrees to deliver, and the Ohio Company to take, ‘(a) all natural gas requisite for the supply of the domestic consumers of the Ohio Company; (b) such amounts of natural gas as may be requisite to fulfill contracts made with the consent and approval of the Hope Company by the Ohio Company, or companies which it supplies with natural gas, for the sale of gas upon special terms and conditions for manufacturing purposes.’ The Ohio company is required to read domestic customers' meters once a month and meters of industrial customers daily and to furnish all meter readings to Hope. The Hope Company is to have access to meters of all consumers and to all of the Ohio Company's accounts. The domestic consumers of the Ohio Company are to be fully supplied in preference to consumers purchasing for manufacturing purposes and ‘Hope Company can be required to supply gas to be used for manufacturing purposes only where the same is sold under special contracts which have first been submitted to and approved in writing. The Hope Company and which expressly provide that natural gas will be supplied thereunder only in so far as the same is not necessary to meet the requirements of domestic consumers supplied through pipe lines of the Ohio Company.’ This basic contract was supplemented from time to time, chiefly as to price. The last amendment was in a letter from Hope to East Ohio in 1937. It contained a special discount on industrial gas and a schedule of special industrial contracts, Hope reserving the right to make eliminations therefrom and agreeing that others might be added from time to *642 time with its approval in writing. It said, ‘It is believed that the price concessions contained in this letter, while not based on our costs, are under certain conditions, to our mutual advantage in maintaining and building up the volumes of gas sold by us (italics supplied).’

**307 The Commission took no note of the charges of discrimination and made no disposition of the issue tendered on this point. It ordered a flat reduction in the price per m.c.f. of all gas delivered by Hope in interstate commerce. It made no limitation, condition, or provision as to what classes of consumers should get the benefit of the reduction. While the cities have accepted and are defending the reduction, it is my view that the discrimination of which they have complained is perpetuated and increased by the order of the Commission and that it violates the Act in so doing.

The Commission's opinion aptly characterizes its entire objective by saying that ‘bona fide investment figures now become all-important in the regulation of rates.’ It should be noted that the all-importance of this theory is not the result of any instruction from Congress. The Bill to regulate gas was first before Congress it contained the following: ‘In determining just and reasonable rates the Commission shall fix such rate as will allow a fair return upon the actual legitimate prudent cost of the property used and useful for the service in question.’ H.R. 5423, 74th Cong., 1st Sess. Title III, § 312(c), Congress rejected this language. See H.R. 5423, § 213 (211(c)), and H.R. Rep. No. 1318, 74th Cong., 1st Sess. 30.

The Commission contends nevertheless that the ‘all important’ formula for finding a rate base is that of prudent investment. But it excluded from the investment base an amount actually and admittedly invested of some $17,000,000. It did so because it says that the Company recouped these expenditures from customers before the days of regulation from earnings above a fair return. But it would not apply all of such ‘excess earnings' to reduce the rate base as one of the Commissioners suggested. The reason for applying excess earnings to reduce the investment base roughly from $69,000,000 to $52,000,000 but refusing to apply them to reduce it from that to some $18,000,000 is not found in a difference in the character of the earnings or in their reinvestment. The reason assigned is a difference in bookkeeping treatment many years before the Company was subject to regulation. The $17,000,000, reinvested chiefly in well
drilling, was treated on the books as expense. (The Commission now requires that drilling costs be carried to capital account.) The allowed rate base thus actually was determined by the Company's bookkeeping, not its investment. This attributes a significance to formal classification in account keeping that seems inconsistent with rational rate regulation. Of course, the Commission would not and should not allow a rate base to be inflated by bookkeeping which had improperly capitalized expenses. I have doubts about resting public regulation upon any rule that is to be used or not depending on which side it favors.

FN40 To make a fetish of mere accounting is to shield from examination the deeper causes, forces, movements, and conditions which should govern rates. Even as a recording of current transactions, bookkeeping is hardly an exact science. As a representation of the condition and trend of a business, it uses symbols of certainty to express values that actually are in constant flux. It may be said that in commercial or investment banking or any business extending credit success depends on knowing what not to believe in accounting. Few concerns go into bankruptcy or reorganization whose books do not show them solvent and often even profitable. If one cannot rely on accountancy accurately to disclose past or current conditions of a business, the fallacy of using it as a sole guide to future price policy ought to be apparent. However, our quest for certitude is so ardent that we pay an irrational reverence to a technique which uses symbols of certainty, even though experience again and again warns us that they are delusive. Few writers have ventured to challenge this American idolatry, but see Hamilton, Cost as a standard for Price, 4 Law and Contemporary Problems 321, 323-25. He observes that ‘As the apostle would put it, accountancy is all things to all men. * * * Its purpose determines the character of a system of accounts.’ He analyzes the hypothetical character of accounting and says ‘It was no eternal mold for pecuniary verities handed down from on high. It was-like logic or algebra, or the device of analogy in the law-an ingenious contrivance of the human mind to serve a limited and practical purpose.’ ‘Accountancy is far from being a pecuniary expression of all that is industrial reality. It is an instrument, highly selective in its application, in the service of the institution of money making.’ As to capital account he observes ‘In an enterprise in lusty competition with others of its kind, survival is the thing and the system of accounts has its focus in solvency. * * * Accordingly depreciation, obsolescence, and other factors which carry no immediate threat are matters of lesser concern and the capital account is likely to be regarded as a secondary phenomenon. * * * But in an enterprise, such as a public utility, where continued survival seems assured, solvency is likely to be taken for granted. * * * A persistent and ingenious attention is likely to be directed not so much to securing the upkeep of the physical property as to making it certain that capitalization fails in not one whit to give full recognition to every item that should go into the account.’

*645 The Company on the other hand, has not put its gas fields into its calculations on the present-value basis, although that, it contends, is the only lawful rule for finding a rate base. To do so would result in a rate higher than it has charged or proposes as a matter of good business to charge.

The case before us demonstrates the lack of rational relationship between conventional rate-base formulas and natural gas production and the extremities to which regulating bodies are brought by the effort to rationalize them. The Commission and the Company each stands on a different theory, and neither ventures to carry its theory to logical conclusion as applied to gas fields.

IV.

This order is under judicial review not because we interpose constitutional theories between a State and the business it seeks to regulate, but because Congress put upon the federal courts a duty toward administration of a new federal regulatory Act. If we are to hold that a given rate is reasonable just because the Commission has said it was reasonable, review becomes a costly, time-consuming pageant of no practical value to anyone. If on the other hand we are to bring judgment of our own to the task, we should for the guidance of the regulators and the regulated reveal something of the philosophy, be it legal or economic or social, which guides us. We need not be slaves to a formula but unless we can point out a rational way of reaching our conclusions they can only be accepted as resting on intuition or predilection. I must admit that I possess no instinct jby which to know the ‘reasonable’ from the ‘unreasonable’ in prices and must seek some conscious design for decision.

The Court sustains this order as reasonable, but what makes it so or what could possibly make it otherwise,
I cannot learn. It holds that: ‘it is the result reached not the method employed which is controlling’; ‘the fact that the method employed to reach that result may contain infirmities is not then important’ and it is not ‘important to this case to determine the various permissible ways in which any rate base on which the return is computed might be arrived at.’ The Court does lean somewhat on considerations of capitalization and dividend history and requirements for dividends on outstanding stock. But I can give no real weight to that for it is generally and I think deservedly in discredit as any guide in rate cases. FN41

Our books already contain so much talk of methods of rationalizing rates that we must appear ambiguous if we announce results without our working methods. We are confronted with regulation of a unique type of enterprise which I think requires considered rejection of much conventional utility doctrine and adoption of concepts of ‘just and reasonable’ rates and practices and of the ‘public interest’ that will take account of the peculiarities of the business.

The Court rejects the suggestions of this opinion. It says that the Committees in reporting the bill which became the Act said it provided ‘for regulation along recognized and more or less standardized lines’ and that there was ‘nothing novel in its provisions.’ So saying it sustains a rate calculated on a novel variation of a rate base theory which itself had at the time of enactment of the legislation been recognized only in dissenting opinions. Our difference seems to be between unconscious innovation, FN46 and the purposeful FN42 and deliberate innovation FN309 which itself had at the time of enactment of the legislation been recognized only in dissenting opinions. Our difference seems to be between unconscious innovation, FN46 and the purposeful FN42 and deliberate innovation FN309 and FN47 would make to meet the necessities of regulating the industry before us.

Bonbright says, ‘* * * the vice of traditional law lies, not in its adoption of excessively rigid concepts of value and rules of valuation, but rather in its tendency to permit shifts in meaning that are inept, or else that are ill-defined because the judges that make them will not openly admit that they are doing so.’ Id., 1170.

Hope's business has two components of quite divergent character. One, while not a conventional common-carrier undertaking, is essentially a transportation enterprise consisting of conveying gas from where it is produced to point of delivery to the buyer. This is a relatively routine operation not differing substantially from many other utility operations. The service is produced by an investment in compression and transmission facilities. Its risks are those of investing in a tested means of conveying a discovered supply of gas to a known market. A rate base calculated on the prudent investment formula would seem a reasonably satisfactory measure for fixing a return from that branch of the business whose service is roughly proportionate to the capital invested. But it has other consequences which must not be overlooked. It gives marketability and hence ‘value’ to gas owned by the company and gives the pipeline company a large power over the marketability and hence ‘value’ of the production of others.

The other part of the business—opt to reduce to possession an adequate supply of natural gas—is of opposite character, being more erratic and irregular and unpredictable in relation to investment than any phase of any other utility business. A thousand feet of gas captured and severed from real estate for delivery to consumers is recognized under our law as property of much the same nature as a ton of coal, a barrel of oil, or a yard of sand. The value to be allowed for it is the real battleground between the investor and consumer. It is from this part of the business that the chief difference between the parties as to a proper rate base arises.

It is necessary to a ‘reasonable’ price for gas that it be anchored to a rate base of any kind? Why did courts in the first place begin valuing ‘rate bases’ in order to ‘value’ something else? The method came into vogue FN648 in fixing rates for transportation service which the public obtained from common carriers. The public received none of the carriers' physical property but did make some use of it. The carriage was often a monopoly so there were no open market criteria as to reasonableness. The ‘value’ or ‘cost’ of what was put to use in the service by the carrier was not a remote or irrelevant consideration in making such rates. Moreover the difficulty of appraising an intangible service was thought to be simplified if it could be related to physical property which was visible and measurable and the items of which might have market value. The court hoped to reason from the known to the unknown. But gas fields turn this method topsy turvy. Gas itself is tangible, possessible, and does have a market and a price in the field. The value of the rate base is more elusive than that of gas. It consists of intangibles—leaseholds and freeholds—operated and unoperated—of little use in themselves except as rights to reach and capture gas. Their value lies almost wholly in predictions of discovery, and of price of gas when captured, and bears little relation to cost of tools and supplies and labor to develop it. Gas is what Hope sells and it can be directly priced more reasonably and easily and accurately than the

components of a rate base can be valued. Hence the reason for resort to a roundabout way of rate base price fixing does not exist in the case of gas in the field.

But if found, and by whatever method found, a rate base is little help in determining reasonableness of the price of gas. Appraisal of present value of these intangible rights to pursue fugitive gas depends on the value assigned to the gas when captured. The 'present fair value' rate base, generally in ill repute, is not even urged by the gas company for valuing its fields.

FN43 ‘The attempt to regulate rates by reference to a periodic or occasional reappraisal of the properties has now been tested long enough to confirm the worst fears of its critics. Unless its place is taken by some more promising scheme of rate control, the days of private ownership under government regulation may be numbered.’ 2 Bonbright, Valuation of Property (1937) 1190.

*649 The prudent investment theory has relative merits in fixing rates for a utility which creates its service merely by its investment. The amount and quality of service rendered by the usual utility will, at least roughly, be measured by the amount of capital it puts into the enterprise. But it has no rational application where there is no such relationship between investment and capacity to serve. There is no such relationship between investment and amount of gas produced. Let us assume that Doe and Roe each produces in West Virginia for delivery to Cleveland the same quantity of natural gas per day. Doe, however, through luck or foresight or whatever it takes, gets his gas from investing $50,000 in leases and drilling. Roe drilled poorer territory, got smaller wells, and has invested $250,000. Does anybody imagine that Roe can get or ought to get for his gas five times as much as Doe because he has spent five times as much? The service one renders to society in the gas business is measured by what he gets out of the ground, not by what he puts into it, and there is little more relation between the investment and the results than in a game of poker.

Two-thirds of the gas Hope handles it buys from about 340 independent producers. It is obvious that the principle of rate-making applied to Hope's own gas cannot be applied, and has not been applied, to the bulk of the gas Hope delivers. It is not probable that the investment of any two of these producers will bear the same ratio to their investments. The gas, however, all goes to the same use, has the same utilization value and the same ultimate price.

To regulate such an enterprise by undiscriminatingly transplanting any body of rate doctrine conceived and adapted to the ordinary utility business can serve the 'public interest' as the Natural Gas Act requires, if at all, only by accident. Mr. Justice Brandeis, the pioneer jurist advocate of the prudent investment theory for man-made utilities, never, so far as I am able to discover, proposed its application to a natural gas case. On the other hand, dissenting in Commonwealth of Pennsylvania v. West Virginia, he reviewed the problems of gas supply and said, 'In no other field of public service regulation is the controlling body confronted with factors so baffling as in the natural gas industry, and in none is continuous supervision and control required in so high a degree.' 262 U.S. 553, 621, 43 S.Ct. 658, 674, 67 L.Ed. 1117, 32 A.L.R. 300. If natural gas rates are intelligently to be regulated we must fit our legal principles to the economy of the industry and not try to fit the industry to our books.

As our decisions stand the Commission was justified in believing that it was required to proceed by the rate base method even as to gas in the field. For this reason the Court may not merely wash its hands of the method and rationale of rate making. The fact is that this Court, with no discussion of its fitness, simply transferred the rate base method to the natural gas industry. It happened in Newark Natural Gas & Fuel Co. v. City of Newark, Ohio, 1917, 242 U.S. 405, 37 S.Ct. 156, 157, 61 L.Ed. 393, Ann.Cas.1917B, 1025, in which the company wanted 25 cents per m.c.f., and under the Fourteenth Amendment challenged the reduction to 18 cents by ordinance. This Court sustained the reduction because the court below 'gave careful consideration to the questions of the value of the property *** at the time of the inquiry,' and whether the rate 'would be sufficient to provide a fair return on the value of the property.' The Court said this method was 'based upon principles thoroughly established by repeated decisions of this court,' citing many cases, not one of which involved natural gas or a comparable wasting natural resource. Then came issues as to state power to *651 regulate as affected by the commerce clause. Public Utilities Commission v. Landon, 1919, 249 U.S. 236, 39 S.Ct. 268, 63 L.Ed. 577; Pennsylvania Gas Co. v. Public Service Commission, 1920, 252 U.S. 23, 40 S.Ct. 279, 64 L.Ed. 434. These questions settled, the Court again was called upon in natural gas cases to consider state rate-making claimed to be invalid under the Fourteenth Amendment. United Fuel Gas Co. v. Railroad Commission of Kentucky, 1929, 278 U.S. 300, 49 S.Ct. 150, 73 L.Ed. 390; United Fuel Gas Company v. Public Service Commission of West Virginia, 1929, 278 U.S. 322, 49 S.Ct. 157, 73 L.Ed. 402. Then, as now, the differences were 'due *** chiefly to the difference in value ascribed by each to the gas rights and leaseholds.' 278 U.S. 300, 311, 49 S.Ct. 150, 153, 73 L.Ed. 390. No one seems to have questioned that the rate
base method must be pursued and the controversy was at what rate base must be used. Later the 'value' of gas in the field was questioned in determining the amount a regulated company should be allowed to pay an affiliate therefor—a state determination also reviewed under the Fourteenth Amendment.

Later the 'value' of gas in the field was questioned in determining the amount a regulated company should be allowed to pay an affiliate therefor—a state determination also reviewed under the Fourteenth Amendment.

Public Utilities Commission of Ohio, 1934, 292 U.S. 290, 54 S.Ct. 763, 78 L.Ed. 1327, 91 A.L.R. 1403. In both cases, one of which sustained, and one of which struck down a fixed rate the Court assumed the rate base method, as the legal way of testing reasonableness of natural gas prices fixed by public authority, without examining its real relevancy to the inquiry.

Under the weight of such precedents we cannot expect the Commission to initiate economically intelligent methods of fixing gas prices. But the Court now faces a new plan of federal regulation based on the power to fix the price at which gas shall be allowed to move in interstate commerce. I should now consider whether these rules devised under the Fourteenth Amendment are the exclusive tests of a just and reasonable rate under the federal statute, inviting reargument directed to that point *652 if necessary. As I see it now I would be prepared to hold that these rules do not apply to a natural gas case arising under the Natural Gas Act.

Such a holding would leave the Commission to fix the price of gas in the field as one would fix maximum prices of oil or milk or coal, or any other commodity. Such a price is not calculated to produce a fair return on the synthetic value of a rate base of any individual producer, and would not undertake to assure a fair return to any producer. The emphasis would shift from the producer to the product, which would be regulated with an eye to average or typical producing conditions in the field.

Such a price fixing process on economic lines would offer little temptation to the judiciary to become back seat drivers of the price fixing machine. The unfortunate effect of judicial intervention in this field is to divert the attention of those engaged in the process from what is economically wise to what is legally permissible. It is probable that price reductions would reach economically unwise and self-defeating limits before they would reach constitutional ones. Any constitutional problems growing out of price fixing are quite different than those that have heretofore been considered to inher in rate making. A producer would have difficulty showing the invalidity of such a fixed price so long as he voluntarily continued to sell his product in interstate commerce. Should he withdraw and other authority be invoked to compel him to part with his property, a different problem would be presented.

Allowance in a rate to compensate for gas removed from gas lands, whether fixed as of point of production or as of point of delivery, probably best can be measured by a functional test applied to the whole industry. For good or ill we depend upon private enterprise to exploit these natural resources for public consumption. The function which an allowance for gas in the field should perform *653 for society in such circumstances is to be enough and no more than enough to induce private enterprise completely and efficiently to utilize gas resources, to acquire for public service any available gas or gas rights and to deliver gas at a rate and for uses which will be in the future as well as in the present public interest.

The Court fears that 'if we are now to tell the Commission to fix the rates so as to discourage particular uses, we would indeed be injecting into a rate case a 'novel' doctrine * * *.' With due deference I suggest that there is nothing novel in the idea that any change in price of a service or commodity reacts to encourage or discourage its use. The question is not whether such consequences will or will not follow; the question is whether effects must be suffered blindly or may be intelligently selected, whether price control shall have targets at which it deliberately aims or shall be handled like a gun in the hands of one who does not know it is loaded.

We should recognize 'price' for what it is—a tool, a means, an expedient. In public**312 hands it has much the same economic effects as in private hands. Hope knew that a concession in industrial price would tend to build up its volume of sales. It used price as an expedient to that end. The Commission makes another cut in that same price but the Court thinks we should ignore the effect that it will have on exhaustion of supply. The fact is that in natural gas regulation price must be used to reconcile the private property right society has permitted to vest in an important natural resource with the claims of society upon it-price must draw a balance between wealth and welfare.

To carry this into techniques of inquiry is the task of the Commissioner rather than of the judge, and it certainly is no task to be solved by mere bookkeeping but requires the best economic talent available. There would doubtless be inquiry into the price gas is bringing in the **654 field, how far that price is established by arms' length bargaining and how far it may be influenced by agreements in restraint of trade or monopolistic influences. What must Hope really pay to get and to replace gas it delivers under this order? ' If it should get more or less than that for its own, how much and why? How far are such prices influenced by pipe line access to
markets and if the consumers pay returns on the pipe lines
how far should the increment they cause go to gas
producers? East Ohio is itself a producer in Ohio. FN44
What do Ohio authorities require Ohio consumers to pay
for gas in the field? Perhaps these are reasons why the
Federal Government should put West Virginia gas at
lower or at higher rates. If so what are they? Should
East Ohio be required to exploit its half million acres of
unoperated reserve in Ohio before West Virginia
resources shall be supplied on a devalued basis of which
that State complains and for which she threatens measures
of self keep? What is gas worth in terms of other fuels it
displaces?

FN44 East Ohio itself owns natural gas rights in
550,600 acres, 518,526 of which are reserved
and 32,074 operated, by 375 wells. Moody's
Manual of Public Utilities (1943) 5.

A price cannot be fixed without considering its effect on
the production of gas. Is it an incentive to continue to
exploit vast unoperated reserves? Is it conducive to deep
drilling tests the result of which we may know only after
trial? Will it induce bringing gas from afar to supplement
or even to substitute for Appalachian gas? FN45 Can it be
had from distant fields as cheap or cheaper? If so, that
competitive potentiality is certainly a relevant
consideration. Wise regulation must also consider, as a
private buyer would, what alternatives the producer has
*655 if the price is not acceptable. Hope has intrastate
business and domestic and industrial customers. What
can it do by way of diverting its supply to intrastate sales?
What can it do by way of disposing of its operated or
reserve acreage to industrial concerns or other buyers?
What can West Virginia do by way of conservation laws,
severance or other taxation, if the regulated rate offends?
It must be borne in mind that while West Virginia was
prohibited from giving her own inhabitants a priority that
interstate gas as readily as one-a price for resale to
consumers. Here the Commission fixed a single rate for
all gas delivered irrespective of its use despite the fact that
Hope has established what amounts to two rates-a high
maximum and minimum and it has the incidental
right, and I think the duty, to choose the economic
consequences it will promote or retard in production and
also more importantly in consumption, to which I now
turn.

If we assume that the reduction in company revenues is
warrented we then come to the question of translating the
allowed return into rates for consumers or classes of
consumers. Here the Commission fixed a single rate for
all gas delivered irrespective of its use despite the fact that
Hope has established what amounts to two rates-a high
one for domestic use and a lower one for industrial
contracts. FN46 The Commission can fix two prices for
interstate gas as readily as one-a price for resale to
domestic users and another for resale to industrial users.
This is the pattern Hope itself has established in the very
contracts over which the Commission is expressly given
jurisdiction. Certainly the Act is broad enough to permit
two prices to be fixed instead of one, if the concept of the
‘public interest’ is not unduly narrowed.

FN45 Hope has asked a certificate of
convenience and necessity to lay 1140 miles of
22-inch pipeline from Hugoton gas fields in
southwest Kansas to West Virginia to carry 285
million cu. ft. of natural gas per day. The cost
was estimated at $51,000,000. Moody's Manual
of Public Utilities (1943) 1760.

But there is nothing in the law which compels a
commission to fix a price at that ‘value’ which a company
might give to its product by taking advantage of scarcity,
or monopoly of supply. The very purpose of fixing
maximum prices is to take away from the seller his
opportunity to get all that otherwise the market would
award him for his goods. This is a constitutional use
of the power to fix maximum prices, **313Block v. Hirsh,
256 U.S. 135, 41 S.Ct. 458, 65 L.Ed. 865, 16 A.L.R. 165;
Marcus Brown Holding Co. v. Feldman, 256 U.S. 170, 41
S.Ct. 465, 65 L.Ed. 877; International Harvester Co. v.
Kentucky, 234 U.S. 216, 34 S.Ct. 853, 88 L.Ed. 1284;
Highland v. Russell Car & Snow Plow Co., 279 U.S. 253,
49 S.Ct. 314, 73 L.Ed. 688, just as the fixing of minimum
prices of goods in interstate commerce is constitutional
although it takes away from the buyer the advantage in
bargaining which market conditions would give him.
U.S. 38, 59 S.Ct. 648, 83 L.Ed. 1092; United States v.
993, 83 L.Ed. 1446; Sunshine Anthracite Coal Co. v.
Adkins, 310 U.S. 381, 60 S.Ct. 907, 84 L.Ed. 1263. The
Commission has power to fix *656 a price that will be
both maximum and minimum and it has the incidental
right, and I think the duty, to choose the economic
consequences it will promote or retard in production and
also more importantly in consumption, to which I now
turn.

FN46 I find little information as to the rates for
industries in the record and none at all in such
usual sources as Moody's Manual.

The Commission's concept of the public interest in natural
gas cases which is carried today into the Court's opinion was first announced in the opinion of the minority in the Pipeline case. It enumerated only two 'phases of the public interest: (1) the investor interest; (2) the consumer interest,' which it emphasized to the exclusion of all others. 315 U.S. 575, 606, 62 S.Ct. 736, 753, 86 L.Ed. 1037. This will do well enough in dealing with railroads or utilities supplying manufactured gas, electric, power, a communications service or transportation, where utilization of facilities does not impair their future usefulness. Limitation of supply, however, brings into a natural gas case another phase of the public interest that to my mind overrides both the owner *657 and the consumer of that interest. Both producers and industrial consumers have served their immediate private interests at the expense of the long-range public interest. The public interest, of course, requires stopping unjust enrichment of the owner. But it also requires stopping unjust impoverishment of future generations. The public interest in the use by Hope's half million domestic consumers is quite a different one from the public interest in use by a baker's dozen of industries.

Prudent price fixing it seems to me must at the very threshold determine whether any part of an allowed return shall be permitted to be realized from sales of gas for resale for industrial use. Such use does tend to level out daily and seasonal peaks of domestic demand and to some extent permits a lower charge for domestic service. But is that a wise way of making gas cheaper when, in comparison with any substitute, gas is already a cheap fuel? The interstate sales contracts provide that at times when demand is so great that there is not enough gas to go around domestic users shall first be served. Should the operation of this preference await the day of actual shortage? Since the propriety of a preference seems conceded, should it not operate to prevent the coming of a shortage as well as to mitigate its effects? Should industrial use jeopardize tomorrow's service to householders any more than today's? If, however, it is decided to cheapen domestic use by resort to industrial sales, should they be limited to the few uses **314 for which gas has special values or extend also to those who use it only because it is cheaper than competitive fuels? FN47 And how much cheaper should industrial*658 gas sell than domestic gas, and how much advantage should it have over competitive fuels? If industrial gas is to contribute at all to lowering domestic rates, should it not be made to contribute the very maximum of which it is capable, that is, should not its price be the highest at which the desired volume of sales can be realized?

FN47 The Federal Power Commission has touched upon the problem of conservation in connection with an application for a certificate permitting construction of a 1500-mile pipeline from southern Texas to New York City and says: 'The Natural Gas Act as presently drafted does not enable the Commission to treat fully the serious implications of such a problem. The question should be raised as to whether the proposed use of natural gas would not result in displacing a less valuable fuel and create hardships in the industry already supplying the market, while at the same time rapidly depleting the country's natural-gas reserves. Although, for a period of perhaps 20 years, the natural gas could be so priced as to appear to offer an apparent saving in fuel costs, this would mean simply that social costs which must eventually be paid had been ignored.

'Careful study of the entire problem may lead to the conclusion that use of natural gas should be restricted by functions rather than by areas. Thus, it is especially adapted to space and water heating in urban homes and other buildings and to the various industrial heat processes which require concentration of heat, flexibility of control, and uniformity of results. Industrial uses to which it appears particularly adapted include the treating and annealing of metals, the operation of kilns in the ceramic, cement, and lime industries, the manufacture of glass in its various forms, and use as a raw material in the chemical industry. General use of natural gas under boilers for the production of steam is, however, under most circumstances of very questionable social economy.' Twentieth Annual Report of the Federal Power Commission (1940) 79.

If I were to answer I should say that the household rate should be the lowest that can be fixed under commercial conditions that will conserve the supply for that use. The lowest probable rate for that purpose is not likely to speed exhaustion much, for it will still be high enough to induce economy, and use for that purpose has more nearly reached the saturation point. On the other hand the demand for industrial gas at present rates already appears to be increasing. To lower further the industrial rate is merely further to subsidize industrial consumption and speed depletion. The impact of the flat reduction *659 of rates ordered here admittedly will be to increase the industrial advantages of gas over competing fuels and to increase its use. I think this is not, and there is no finding by the Commission that it is, in the public interest.

There is no justification in this record for the present discrimination against domestic users of gas in favor of industrial users. It is one of the evils against which the Natural Gas Act was aimed by Congress and one of the evils complained of here by Cleveland and Akron. If
Hope's revenues should be cut by some $3,600,000 the whole reduction is owing to domestic users. If it be considered wise to raise part of Hope's revenues by industrial purpose sales, the utmost possible revenue should be raised from the least consumption of gas. If competitive relationships to other fuels will permit, the industrial price should be substantially advanced, not for the benefit of the Company, but the increased revenues from the advance should be applied to reduce domestic rates. For in my opinion the 'public interest' requires that the great volume of gas now being put to uneconomic industrial use should either be saved for its more important future domestic use or the present domestic user should have the full benefit of its exchange value in reducing his present rates.

Of course the Commission's power directly to regulate does not extend to the fixing of rates at which the local company shall sell to consumers. Nor is such power required to accomplish the purpose. As already pointed out, the very contract the Commission is altering classifies the gas according to the purposes for which it is to be resold and provides differentials between the two classifications. It would only be necessary for the Commission to order that all gas supplied under paragraph (a) of Hope's contract with the East Ohio Company shall be at a stated price fixed to give to domestic service the entire reduction herein and any further reductions that may prove possible by increasing industrial rates. It might further provide that gas delivered under paragraph (b) of the contract for industrial purposes to those industrial customers Hope has approved in writing shall be at such other figure as might be found consistent with the public interest as herein defined. It is too late in the day to contend that the authority of a regulatory commission does not extend to a consideration of public interests which it may not directly regulate and a conditioning of its orders for their protection. Interstate Commerce Commission v. Railway Labor Executives Ass'n, 315 U.S. 373, 62 S.Ct. 717, 86 L.Ed. 904; United States v. Lowden, 308 U.S. 225, 60 S.Ct. 248, 84 L.Ed. 208.

Whether the Commission will assert its apparently broad statutory authorization over prices and discriminations is, of course, its own affair, not ours. It is entitled to its own notion of the 'public interest' and its judgment of policy must prevail. However, where there is ground for thinking that views of this Court may have constrained the Commission to accept the rate-base method of decision and a particular single formula as 'all important' for a rate base, it is appropriate to make clear the reasons why I, at least, would not be so understood. The Commission is free to face up realistically to the nature and peculiarity of the resources in its control, to foster their duration in fixing price, and to consider future interests in addition to those of investors and present consumers. If we return this case it may accept or decline the proffered freedom. This problem presents the Commission an unprecedented opportunity if it will boldly make sound economic considerations, instead of legal and accounting theories, the foundation of federal policy. I would return the case to the Commission and thereby be clearly quit of what now may appear to be some responsibility for perpetrating a shortsighted pattern of natural gas regulation.

U.S. 1944.
51 P.U.R.(NS) 193, 320 U.S. 591, 64 S.Ct. 281, 88 L.Ed.
333
END OF DOCUMENT
Conflicts of Interest and Analyst Behavior: Evidence from Recent Changes in Regulation

Armen Hovakimian and Ekkachai Saenyasiri

Regulation FD made analysts less dependent on insider information and diminished analysts’ motives to inflate their forecasts. The Global Research Analyst Settlement had an even bigger impact on analyst behavior: The mean forecast bias declined significantly, whereas the median forecast bias essentially disappeared. These results are similar for all analysts.

Our investigation of the impact of recent changes in regulation on analysts’ forecasting behavior follows a number of studies that argued that analysts were motivated to produce research reports that did not reflect their true opinions. Analysts tended to make excessive “buy” recommendations and inflated earnings forecasts for several reasons, two of which gained considerable attention from regulators in the United States. First, analysts may have felt compelled to favor managers in covered companies in order to gain privileged access to information flow (Lim 2001). Second, although analysts are supposed to provide investors with accurate and truthful research reports, conflicts of interest could occur because analysts’ compensation was tied to profits generated from investment banking business and brokerage commissions (Lin and McNichols 1998; Carleton, Chen, and Steiner 1998).

In the early part of the first decade of this century, in an effort to restore public confidence in U.S. capital markets, U.S. regulators enacted several rules and regulations, prosecuted analysts whose research reports were tainted by conflicts of interest, and fined banks that failed to prevent research analysts’ conflicts of interest. Two of the main regulatory developments during this period were (1) Regulation Fair Disclosure (Reg FD), which became effective on 23 October 2000, and (2) the Global Research Analyst Settlement (Global Settlement), which was announced on 20 December 2002.1

Although the primary goals of these two regulatory actions are different, they both have the potential to improve the quality of analyst forecasts. One of the stated goals of Reg FD is to prohibit private communication between companies and analysts, thereby helping to level the playing field so that market participants can have equal access to information and making analysts less dependent on such communication. In prohibiting companies from selectively disclosing private information to analysts, Reg FD may reduce analyst forecast bias by eliminating the incentive for analysts to inflate their earnings forecasts in order to gain access to insider information.

The Global Settlement is an important enforcement agreement between U.S. regulators and 12 large investment banks (the Big-12 banks) designed to eliminate research analysts’ conflicts of interest. If successful, the Global Settlement should reduce optimistic bias in analyst forecasts.

Our study considered whether these two actions by U.S. regulators reduced the bias in analysts’ earnings forecasts documented in previous studies. We focused on annual earnings forecast bias for several reasons. First, investors may use analyst forecasts to form expectations of earnings and cash flows, both of which are important inputs for stock valuation models. Inflated earnings forecasts can drive stock prices above their fair values if investors fail to adjust for the bias.2

Second, given the flurry of new regulations, regulators clearly consider analyst behavior an important factor in maintaining investor confidence in financial markets. Regulation is costly because of the significant expenses associated with analyzing problematic situations and developing remedies. Moreover, restrictions and reporting requirements imposed on various market participants result in ongoing compliance costs. These costs can be justified only if the new regulations help reduce analysts’ conflicts of interest and thereby generate an important benefit for financial markets.

Armen Hovakimian is professor of finance at Baruch College, New York City. Ekkachai Saenyasiri is assistant professor of finance at Providence College, Providence, Rhode Island.
Third, most studies that have examined the impact of Reg FD and the Global Settlement on analyst behavior focused on forecast accuracy and forecast dispersion (Bailey, Li, Mao, and Zhong 2003; Agrawal, Chadha, and Chen 2006). These aspects of analyst behavior, however, are little affected by conflicts of interest, the focus of our study.

Other studies have examined forecast bias. Clarke, Khorana, Patel, and Rau (2006) found that the Global Settlement had no impact on relative bias in analyst forecasts. Focusing on the impact of Reg FD on bias in quarterly earnings forecasts between October 1999 and December 2001, Mohanram and Sunder (2006) found that these forecasts became more optimistic after Reg FD but attributed the increase to unexpectedly low realized earnings during the 2001 recession. Our longer study period (1996–2006) allowed us to control for macroeconomic conditions in our regression analysis. Furthermore, we examined longer-term (up to 24 months) earnings forecasts in which the forecast bias is more apparent (Richardson, Teoh, and Wysocki 2004). Although Herrmann, Hope, and Thomas (2008) found some evidence of decline in forecast bias following Reg FD, they focused on internationally diversified companies only; we examined all U.S. companies, and our primary focus was on changes in forecast bias after the Global Settlement.

Lastly, the ability of analysts to forecast earnings accurately can be easily and straightforwardly verified because actual earnings are observed at the end of the forecast period. Barber, Lehavy, McNichols, and Trueman (2006) studied the change in distribution of stock recommendations made from 1996 to 2003. They found that the percentage of buys decreased starting in mid-2000. How unbiased the new distribution of stock recommendations is, however, remains uncertain. But we know that the bias should be zero at the aggregate level when analysts make their forecasts on the basis of their true opinions.

Institutional Background

Historically—and especially before recent regulations—analysts have tended to make unduly optimistic earnings forecasts. In this section, we discuss the possible reasons for this optimistic bias and the potential impacts of the recent regulations on such bias.

Why Do Analysts Make Overoptimistic Earnings Forecasts? A number of studies have documented that analysts regularly make overoptimistic earnings forecasts (Brown 1997; Chopra 1998; Beckers, Steliaros, and Thomson 2004). Optimistic bias tends to be larger for longer-term forecasts and smaller for forecasts made closer to the earnings announcement date. This phenomenon is usually referred to as the walk-down trend (Richardson, Teoh, and Wysocki 2004). Several explanations have been offered for analyst optimism.

First, analysts may be influenced by conflicts of interest if their compensation is tied to investment banking fees and brokerage commissions. Lin and McNichols (1998) found that analysts affiliated with underwriters make more favorable stock recommendations and long-term earnings growth forecasts than analysts not so affiliated. Agrawal and Chen (2005) discovered that optimism in long-term earnings growth forecasts is high when analysts work for financial institutions whose revenues come mainly from brokerage business. Carleton, Chen, and Steiner (1998) found that stock recommendations made by brokerage firms are more optimistic than those of nonbrokerage firms. Using Australian data, Jackson (2005) noted that optimistic analysts generate more trades for their brokerage firms than do less optimistic analysts. Chan, Karseki, and Lakonishok (2007) showed that analysts’ earnings forecasts are influenced by their desire to win investment banking clients. Doukas, Kim, and Pantzalis (2005) reported that stocks with excess analyst coverage yield lower future returns, consistent with the conflict-of-interest hypothesis. Hong and Kubik (2003) found that brokerage houses reward optimistic analysts; optimistic analysts at low-status brokerage houses are more likely to move up to higher-status brokerage houses than are less optimistic analysts.

Second, analysts may feel compelled to maintain good relations with company management in order to gain access to insider information that can help improve the accuracy of their forecasts (Lim 2001). Third, analysts may tend to cover stocks for which they have positive views and drop or avoid stocks for which they have negative views, which can induce a self-selection bias (McNichols and O’Brien 1997). Fourth, analysts may have a cognitive bias that leads them to overreact to good earnings information and underreact to bad earnings information (Easterwood and Nutt 1999; Nutt, Easterwood, and Easterwood 1999). Finally, the walk-down trend may be driven by the “earnings guidance game,” in which analysts issue optimistic forecasts at the start of the fiscal year and then revise their estimates until the company can beat the forecast at the earnings announcement date (Richardson, Teoh, and Wysocki 2004).
Recent Regulations. Before Reg FD, analysts and institutional investors often had an informational advantage over small investors through private communications with management and conference calls in which company managers discussed past performance and provided guidance on future prospects. Such timely information gave these investment professionals an unfair advantage that allowed them to trade stocks profitably at the expense of uninformed investors.

To gain access to this information flow, analysts may have had to maintain good relations with insiders by making optimistic forecasts and buy recommendations in their research reports. Analysts’ excessively optimistic views of the stocks were misleading and contributed to the deterioration of investor confidence in capital market integrity. Through Reg FD, which was introduced in October 2000, the U.S. SEC intended to improve fairness and restore public confidence in the markets by requiring U.S. public companies to disclose material information simultaneously to all market participants.

Other sources of conflicts of interest, however, remained unaddressed by Reg FD. For instance, analysts could be pressured to make optimistic forecasts and buy recommendations in order to favor investment banking clients and generate trading volume. The SEC and such self-regulatory organizations (SROs) as the National Association of Securities Dealers (NASD; now the Financial Industry Regulatory Authority [FINRA]) and the NYSE paid significant attention to this issue and introduced a number of new rules and regulations to curb the negative consequences of these conflicts of interest.

The Sarbanes–Oxley Act of 2002 (SOA), also known as the Public Company Accounting Reform and Investor Protection Act of 2002, became law on 30 July 2002. The SOA is a broad piece of legislation that covers various business practices, including auditor independence, corporate responsibility, enhanced financial disclosure, analysts’ conflicts of interest, and corporate and criminal fraud accountability. The SOA amended the Securities Exchange Act of 1934 by creating Section 15D, which requires FINRA and the NYSE to adopt rules reasonably designed to address research analysts’ conflicts of interest.

To comply with the SOA, the NASD released Rule 2711 (Research Analysts and Research Reports) and the NYSE amended its Rule 351 (Reporting Requirements) and Rule 472 (Communications with the Public). Most provisions of these rules went into effect on 9 July 2002. These rules mitigate analysts’ conflicts of interest by separating research analysts from the influence of the investment banking and brokerage businesses. Research analysts’ compensation can no longer be tied to the performance of these businesses. In addition, analysts are restricted from personal trading in the stocks they cover.

On 6 February 2003, the SEC adopted Regulation Analyst Certification (Reg AC).7 Reg AC provides guidelines for proper disclosure of potential conflicts of interest of sell-side analysts, including their association with investment banking clients and the structure of their compensation.

Regulatory objectives have also received support from rigorous enforcement actions. Following a joint investigation by the SEC, NASD, NYSE, and New York State Attorney General, 10 large U.S. and multinational investment banks agreed to pay a fine of $1.435 billion in the Global Research Analyst Settlement for their failure to adequately address research analysts’ conflicts of interest. Announced on 20 December 2002, the terms of the Global Settlement initially covered 10 banks.6 The final agreement was announced on 28 April 2003. Two more banks reached settlements on 26 August 2004.7 The Global Settlement and the SRO rules share the same spirit in that their mutual objective is to eliminate analysts’ conflicts of interest.

The introduction of these rules and regulations allows us to differentiate among the alternative explanations for analyst forecast bias proposed in the literature. First, a reduction in forecast bias after Reg FD would support the argument that analysts were overoptimistic owing to their need for insider information, especially if such a reduction were stronger for informationally more opaque companies. Second, a reduction in bias after the Global Settlement and Rule 2711 would be consistent with the hypothesis that analyst behavior was unduly influenced by conflicts of interest.8 In contrast, self-selection and cognitive biases may exist even in a world without conflicts of interest. Therefore, if these biases are the main reasons for analysts’ overoptimistic forecasts, then these regulatory changes should have no effect on forecast bias.9

Sample and Variables
We downloaded sell-side analysts’ earnings forecasts for fiscal year-end dates between 1996 and 2006 from the Detail file of the I/B/E/S database. We used forecasts for current- and subsequent-year earnings per share (EPS), which are made for the upcoming and following years’ earnings announcement dates.10 Figure 1 illustrates the timeline of analyst forecasts. The earliest analyst forecasts for a specific fiscal year-end EPS are made 24 months before the forecast fiscal year-end (in forecast month –23). For each EPS, analysts can
make multiple forecasts over the course of the next 24 months. Some analysts may continue to make forecasts after the forecast fiscal year ends because companies announce their annual earnings after a delay of several months. Because the length of the EPS announcement delay could be affected by how high or low the realized EPS is relative to the consensus, we retained only those forecasts made no more than one month after the forecast fiscal year-end (in forecast month +1), which left us with a total of 2,297,792 forecasts.

For each forecast, I/B/E/S provides actual earnings, forecast date, forecast period (fiscal year) end, earnings announcement date, analyst code identity, broker code identity, and number of analysts used for consensus calculation. We used the I/B/E/S Broker Translation file to convert broker codes into brokers’ names, which we used to identify analysts who worked for the Big-12 banks. Stock prices are from the I/B/E/S Summary file. We downloaded real GDP growth rates from the website of the U.S. Bureau of Economic Analysis. We downloaded SIC codes from the CRSP monthly file.

We defined analyst forecast bias, the focus of our analysis, as the average analyst forecast error and calculated it as follows:

\[
Bias_{j,t,m} = 100 \left(\frac{F_{j,t,m} - A_{j,t}}{P_{j,t-1}} \right),
\]

(1)

\[
F_{j,t,m} = \frac{1}{I_{j,t,m}} \sum_{i} F_{j,t,m,i},
\]

(2)

and

\[
F_{j,t,m,i} = \frac{1}{K_{j,t,m,i}} \sum_{k} F_{j,t,m,i,k},
\]

(3)

where

- \(A_{j,t} \) = the actual earnings per share for company \(j \) in fiscal year \(t \)
- \(F_{j,t,m} \) = the average of annual earnings forecasts for fiscal year-end \(t \) of company \(j \), made in month \(m \) by analyst \(i \)
- \(K_{j,t,m,i} \) = the number of forecasts made in month \(m \) by the same analyst \(i \) for the same company \(j \) and fiscal year \(t \)
- \(I_{j,t,m} \) = the number of analysts making forecasts in month \(m \) for company \(j \) and fiscal year \(t \)
- \(P_{j,t-1} \) = the stock price of company \(j \) one year before the fiscal year-end \(t \)

Note that all EPS forecasts made for the same company and the same fiscal year are normalized by the same stock price. Using the same stock price as the denominator guarantees that any changes in forecast bias across forecast months \(m \) are the result of changes in analyst forecasts, not of changes in the stock price. In our calculations according to Equations 1–3, we used only new forecasts made in month \(m \). Stale forecasts from earlier months \(m-1, \text{ etc.} \) were not carried over into month \(m \). In other words, each forecast participated in the calculation of the forecast bias only once, in the month in which the forecast was made. In our sample, an average analyst made 4.5 forecasts for each annual EPS. Because for each annual EPS we tracked 25-month forecasts (from month –23 to month +1), the implication is that an average analyst in our sample made a forecast for each covered company about once every six months.

To minimize the influence of outliers and misreported data in our analysis, we replaced with missing values any extreme observations of forecast bias, company size, market-to-book ratio, the number of stocks, and the number of industry analysts following. We dropped from the sample all forecasts made in October 2000 and December 2002 (1.5 percent of our sample) and observations with missing values of any relevant variable. We were
left with 1,586,000 individual analyst forecasts, which we used to calculate 434,268 average forecast errors. For each fiscal year and for each of our 7,315 sample companies, our sample contained up to 25 monthly observations of forecast bias ($Bias_{i,t,m}$).

Table 1 reports the summary statistics for the overall sample of 434,268 observations and for each of the three subperiods. The period before Reg FD represents 53 percent of our sample observations, with the period between Reg FD and the Global Settlement and the period after the Global Settlement representing 18 percent and 29 percent of the sample observations, respectively. The mean forecast bias across all sample observations is 1.39 percent of stock price. This result is consistent with prior evidence that analysts’ forecasts are optimistically biased (Brown 1997; Chopra 1998). No significant difference exists between the mean forecast bias before Reg FD (1.72) and the mean forecast bias between Reg FD and the Global Settlement (1.97). The mean forecast bias is more than four times smaller after the Global Settlement (0.41), with the difference statistically significant at the 1 percent level.

The average market capitalization of companies in our sample was $4.5 billion, and the average market-to-book ratio was 3.57. On average, 8.41 analysts covered a company in any particular month. The analysts in our sample worked for brokers that, on average, each employed 65.7 analysts. A typical analyst followed 16.30 stocks from 4.78 industries and, at the time of the forecast, had been in the I/B/E/S database for 6.24 years and making forecasts for the covered stock for 2.5 years. Around 17 percent of forecasts were made for companies with negative earnings, and 36 percent of forecasts were made for companies whose earnings were declining relative to earnings in the prior fiscal year.

Test Results

In this section, we present the results of the univariate tests and of the regression analysis of the effects of Reg FD and the Global Settlement on bias in analyst forecasts.

Univariate Results by Forecast Month.
Table 2 presents the median forecasts by the month in which the forecasts were made and by the fiscal year for which they were made. The numbers in the leftmost column represent the month (relative to the fiscal year-end) of the forecast. The numbers in the top row represent the fiscal years for which the

<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Number of Observations</th>
<th>Mean</th>
<th>Number of Observations</th>
<th>Mean</th>
<th>Number of Observations</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast bias</td>
<td>Bias</td>
<td>434,268</td>
<td>1.39</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>1.72</td>
</tr>
<tr>
<td>Reg FD indicator</td>
<td>RegFD</td>
<td>434,268</td>
<td>0.18</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>0.00</td>
</tr>
<tr>
<td>Global Settlement indicator</td>
<td>Glob</td>
<td>434,268</td>
<td>0.29</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company characteristics</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyst coverage</td>
<td>NumA</td>
<td>434,268</td>
<td>8.41</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>8.21</td>
</tr>
<tr>
<td>Market cap ($ millions)</td>
<td>CompanySize</td>
<td>434,268</td>
<td>4,470.00</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>3,480.00</td>
</tr>
<tr>
<td>Market-to-book ratio</td>
<td>MB</td>
<td>434,268</td>
<td>3.57</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>3.78</td>
</tr>
<tr>
<td>Negative EPS</td>
<td>EPSLoss</td>
<td>434,268</td>
<td>0.17</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>0.16</td>
</tr>
<tr>
<td>Declining EPS</td>
<td>EPSDecline</td>
<td>434,268</td>
<td>0.36</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>0.37</td>
</tr>
<tr>
<td>Litigation</td>
<td>Litigation</td>
<td>434,268</td>
<td>0.27</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>0.25</td>
</tr>
<tr>
<td>Labor intensive</td>
<td>Labor</td>
<td>434,268</td>
<td>0.61</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>0.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyst characteristics</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-specific experience</td>
<td>YearStk</td>
<td>434,268</td>
<td>2.50</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>2.55</td>
</tr>
<tr>
<td>General experience</td>
<td>YearIBES</td>
<td>434,268</td>
<td>6.24</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>6.45</td>
</tr>
<tr>
<td>No. of stocks covered</td>
<td>NumStk</td>
<td>434,268</td>
<td>16.30</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>18.18</td>
</tr>
<tr>
<td>No. of industries covered</td>
<td>NumInd</td>
<td>434,268</td>
<td>4.78</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>5.46</td>
</tr>
<tr>
<td>Broker size</td>
<td>BrokerSize</td>
<td>434,268</td>
<td>65.70</td>
<td>231,096</td>
<td>77,305</td>
<td>125,867</td>
<td>54.98</td>
</tr>
</tbody>
</table>

Note: This table presents the summary statistics for the overall sample and for the three subperiods.
Conflicts of Interest and Analyst Behavior

Forecasts were made. For example, forecasts made in September 2000 for the fiscal year ended December 2000 (i.e., three months before the fiscal year-end) are in row –3 and column 00. The two solid lines separate the forecasts made before and after Reg FD and the forecasts made before and after the Global Settlement. The six bottom rows present forecast bias for each fiscal year averaged across all forecast months, along with the realized earnings per share, average forecasts, annual stock returns, and real GDP growth rates. 15 To align fiscal year-end dates with annual variables, such as real GDP growth rates, we used only forecasts for companies with December fiscal year-ends.

For each year before the Global Settlement, the median forecast errors are significantly positive. Furthermore, for each year before the Global Settlement, we observe the walk-down trend with forecast bias steadily declining as forecasts are made closer to the fiscal year-end. After the Global Settlement, we observe a significant drop in the forecast bias. The results show a total absence of bias in the median forecast errors for 2004–2006 (–0.1 percent, 0.0 percent, and 0.0 percent, respectively). The walk-down trend in median forecast errors is also practically nonexistent for fiscal years 2004–2006.

Table 2. Forecast Bias by Fiscal Year and Forecast Month

<table>
<thead>
<tr>
<th>Month</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
</tr>
</thead>
<tbody>
<tr>
<td>–23</td>
<td>0.1</td>
<td>0.4</td>
<td>1.4</td>
<td>1.6</td>
<td>–0.3</td>
<td>1.9</td>
<td>2.3</td>
<td>1.2</td>
<td>–0.2</td>
<td>–0.3</td>
<td>–0.3</td>
</tr>
<tr>
<td>–22</td>
<td>0.3</td>
<td>0.5</td>
<td>0.9</td>
<td>1.3</td>
<td>0.5</td>
<td>2.2</td>
<td>2.7</td>
<td>1.3</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>–21</td>
<td>0.3</td>
<td>0.5</td>
<td>1.1</td>
<td>1.6</td>
<td>0.5</td>
<td>2.1</td>
<td>2.6</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>–20</td>
<td>0.4</td>
<td>0.5</td>
<td>1.1</td>
<td>1.3</td>
<td>0.6</td>
<td>2.2</td>
<td>2.2</td>
<td>1.4</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>–19</td>
<td>0.5</td>
<td>0.7</td>
<td>1.1</td>
<td>1.6</td>
<td>0.5</td>
<td>2.1</td>
<td>2.1</td>
<td>1.3</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>–18</td>
<td>0.5</td>
<td>0.4</td>
<td>1.2</td>
<td>1.4</td>
<td>0.6</td>
<td>2.1</td>
<td>1.8</td>
<td>1.1</td>
<td>–0.2</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>–17</td>
<td>0.4</td>
<td>0.4</td>
<td>1.2</td>
<td>1.1</td>
<td>0.5</td>
<td>2.1</td>
<td>1.4</td>
<td>1.0</td>
<td>–0.2</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>–16</td>
<td>0.4</td>
<td>0.5</td>
<td>1.3</td>
<td>1.3</td>
<td>0.6</td>
<td>2.0</td>
<td>1.5</td>
<td>1.1</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>–15</td>
<td>0.4</td>
<td>0.4</td>
<td>1.1</td>
<td>1.8</td>
<td>0.4</td>
<td>1.7</td>
<td>0.9</td>
<td>0.8</td>
<td>–0.3</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>–14</td>
<td>0.4</td>
<td>0.3</td>
<td>0.9</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
<td>–0.2</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>–13</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
<td>0.6</td>
<td>0.4</td>
<td>1.5</td>
<td>0.5</td>
<td>0.3</td>
<td>–0.2</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>–12</td>
<td>0.3</td>
<td>0.2</td>
<td>0.8</td>
<td>0.4</td>
<td>0.3</td>
<td>1.6</td>
<td>0.4</td>
<td>0.3</td>
<td>–0.2</td>
<td>–0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>–11</td>
<td>0.3</td>
<td>0.3</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
<td>1.3</td>
<td>0.3</td>
<td>0.1</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>–10</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>1.1</td>
<td>0.2</td>
<td>0.0</td>
<td>–0.1</td>
<td>–0.1</td>
<td>–0.1</td>
</tr>
<tr>
<td>–9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
<td>0.1</td>
<td>0.1</td>
<td>1.1</td>
<td>0.2</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>–8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
<td>0.2</td>
<td>–0.1</td>
<td>–0.1</td>
<td>–0.1</td>
<td>–0.1</td>
</tr>
<tr>
<td>–7</td>
<td>0.1</td>
<td>0.0</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>0.2</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>–6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>–0.1</td>
<td>–0.1</td>
<td>–0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>–5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>–4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>–3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>–2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>–1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
<td>–0.1</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>–0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>–0.3</td>
</tr>
</tbody>
</table>

Notes: Forecast bias is the difference between the mean of all forecasts made in a particular month for a particular company and a particular fiscal year and the realized EPS, scaled by the stock price and multiplied by 100. Forecast period end year is the fiscal year for which the forecast was made. Month is the month of the forecast relative to the fiscal year-end. FD is the month in which Reg FD became effective (October 2000). GS is the month in which the Global Settlement was announced (December 2002). Stock returns were calculated from our samples.
These results suggest that analysts’ conflicts of interest indeed led to excess optimism in earnings forecasts before the Global Settlement and that the Global Settlement has been effective in neutralizing analysts’ conflicts of interest. Alternative interpretations of the forecast bias, such as self-selection, cognitive bias, and need for insider information, cannot explain these findings because the Global Settlement should have no effect on these factors.

Unusually high stock valuations and/or realized earnings, rather than less optimistic forecasts, could be responsible for the decline in the average forecast errors after the Global Settlement. A quick look at the actual and forecasted EPS, stock returns, and real GDP growth rates before and after the Global Settlement, however, does not seem to support this idea. Neither aggregate economic performance nor stock valuations seem to be out of the ordinary in the post-settlement years. The actual earnings, stock returns, and GDP growth rates seem to be unusually low in the period between Reg FD and the Global Settlement. We controlled for the effects of these and other potentially relevant factors by examining the effects of Reg FD and the Global Settlement in a regression framework.

Regression Analysis. To examine how Reg FD and the Global Settlement affect bias in analyst forecasts while controlling for the confounding effects of company and analyst characteristics, as well as economic conditions, we estimated the following regression model:

\[
\text{Bias}_{j,t,m} = \alpha_0 + \alpha_1 \text{RegFD}_{t,m} + \alpha_2 \text{Glob}_{t,m} + \alpha_3 \text{NumA}_{j,t,m} + \alpha_4 \text{CompanySize}_{j,t,m-1} + \alpha_5 \text{MB}_{j,t,m-1} + \alpha_6 \text{YearStk}_{j,t,m} + \alpha_7 \text{YearIBES}_{j,t,m} + \alpha_8 \text{NumStk}_{j,t,m} + \alpha_9 \text{NumInd}_{j,t,m} + \alpha_{10} \text{BrokerSize}_{j,t,m} + \alpha_{11} \text{EPSLoss}_{j,t} + \alpha_{12} \text{EPSDecline}_{j,t} + \alpha_{13} \text{Litigation}_{j} + \alpha_{14} \text{Labor}_{j,t,m-1} + \alpha_{15} \text{ActualGDP}_{t,m-1} + \alpha_{16} \text{UnexpectedGDP}_{t,m-1} + \beta \text{Month}_{m} + \gamma \text{Year}_{t} + \delta \sum \text{Dcompany}_{j} + \epsilon_{j,t,m}.
\]

In Equation 4, bias_{j,t,m} is the mean forecast error for all forecasts for company j made in month m relative to the end of fiscal year t, calculated according to Equations 1–3. RegFD_{t,m} equals 1 for forecasts made between 23 October 2000 and 20 December 2002. Glob_{t,m} equals 1 for forecasts made after 20 December 2002. A negative sign for the coefficient of RegFD_{t,m} or Glob_{t,m} would indicate a decline in the bias following, respectively, Reg FD and the Global Settlement.

Lim (2001) argued that the forecast bias is higher when a company’s information environment is less transparent—for example, when the company is small and has less analyst coverage. Beckers, Steliaros, and Thomson (2004) showed that the number of analysts following a stock affects the accuracy of the consensus earnings forecast. Hence, we used analyst coverage and company size as proxies for the degree of information transparency. Analyst coverage, NumA_{j,t,m}, is defined as the number of outstanding forecasts used in I/B/E/S’s monthly consensus calculation. Analyst coverage represents the number of analysts following company j in month m for fiscal year t. CompanySize_{j,t,m-1} is defined as the natural log of the company’s market capitalization at the end of the previous month.

Analysts tend to forecast more accurately when they have more experience and resources (Clement 1999; Lim 2001). We measured company-specific experience as the number of years analyst i has been following company j (YearStk_{j,t,m}). We measured general experience as the number of years since analyst i first appeared in the I/B/E/S database (YearIBES_{j,t,m}). BrokerSize_{j,t,m} is the number of analysts who work for the same employer during the same forecast year as the analyst who makes the forecast. Analysts who work for larger firms tend to have more resources at their disposal.

Clement (1999) found that analysts’ forecasts are less accurate the more stocks and the more industries they follow. NumStk_{j,t,m} is the number of stocks for which analyst i supplies at least one forecast within the calendar year. NumInd_{j,t,m} is the number of two-digit SIC industries for which analyst i supplies at least one forecast within the calendar year.

Previous studies have found that forecasting is more difficult when companies report a loss or a decline in earnings (Brown 2001). The EPSLoss_{j,t} indicator equals 1 when the corresponding actual earnings of company j are negative. The EPSDecline_{j,t} indicator equals 1 when actual earnings in fiscal year t are lower than actual earnings in the previous year.

Matsumoto (2002) argued that companies in industries with a higher risk of shareholder lawsuits and/or greater reliance on implicit claims with stakeholders are more likely to avoid missing analyst forecasts. The Litigation_{j} indicator equals 1 for companies in high-litigation-risk industries: SIC codes 2833–2836 (biotechnology), 3570–3577 and 7370–7374 (computers), 3600–3674 (electronics), and 5200–5961 (retailing).
Matsumoto (2002) also argued that labor-intensive companies try to avoid missing analyst forecasts because their stakeholders are concerned about company credit risk. Labor intensity, $L_{t,m}$, is defined as 1 minus the ratio of gross plant, property, and equipment (PPE) to total gross assets, where gross PPE is the quarterly Compustat item 118 and total gross assets is item 44 plus item 41. $L_{t,m}$ is measured at the end of the last quarter preceding forecast month m.

Richardson, Teoh, and Wysocki (2004) found lower forecast bias for companies with high growth opportunities. We used the market-to-book ratio $(MB_{t,m})$ at the end of the last quarter preceding the forecast month as a proxy for growth opportunities. The ratio is calculated as the market value of equity divided by the book value of common equity (Compustat quarterly data item 14 multiplied by item 61 and divided by item 59).

We used both the real GDP growth rate and the unexpected change in the real GDP growth rate to capture analysts’ inability to forecast earnings accurately if the state of the economy changes substantially. Actual GDP, $Actual_{t}$, is the actual real GDP growth rate in fiscal year t. Unexpected GDP, $Unexpected_{t,m}$, is defined as the difference between the expected real GDP growth rate and the actual real GDP growth rate in fiscal year t. For earnings forecasts made more than nine months before the fiscal year-end date, the expected real GDP growth rate in fiscal year t is defined as the real GDP growth rate in the quarter for which analysts made earnings forecasts. For forecasts made in Q2 (seven to nine months before the fiscal year-end date), we calculated the expected real GDP growth rate as $(Growth\ in\ Q1 + 3 \times Growth\ in\ Q2)/4$. For forecasts made in Q3 (four to six months before the fiscal year-end date), we calculated the expected real GDP growth rate as $(Growth\ in\ Q1 + Growth\ in\ Q2 + 2 \times Growth\ in\ Q3)/4$. For forecasts made within the three months before the fiscal year-end date, $Unexpected_{t,m}$ is set to zero.

Prior research and our results in Table 2 show that forecasts made earlier in the fiscal year are less accurate (Richardson, Teoh, and Wysocki 2004). To control for forecast horizon, we used $Month_{m}$, defined as the number of months until the fiscal year-end date. For example, for an analyst forecast made in October 1999 for the fiscal year ended December 1999, $Month_{m}$ equals 2. Richardson, Teoh, and Wysocki (2004) found that forecast bias has been declining gradually since the early 1990s. To address the concern that our results may be driven by this trend, we included a calendar year variable, $Year_{t}$, in the regression model (Equation 4). To control for unobserved company effects, we estimated the regressions with fixed company effects ($D_{Company}$).

The first set of estimation results in Table 3 is for the regression model (Equation 4). The results imply that forecast bias declined by 0.24 percent of the stock price after the introduction of Reg FD. This finding confirms our earlier conjecture that the increase in forecast bias following Reg FD (observed in our univariate results) was driven by unexpectedly poor macroeconomic conditions. The decline in forecast bias following Reg FD is consistent with Lim’s prediction (2001) that analysts become less optimistic when they rely less on insider information.

After the Global Settlement, the forecast bias is lower by 0.96 percent of the stock price compared with the forecast bias before Reg FD. This result is consistent with our univariate findings and implies that the Global Settlement and related regulations successfully neutralized analysts’ conflicts of interest. The positive coefficient on $Month_{m}$ suggests the presence of the walk-down trend. Forecast bias is high for earlier forecasts and becomes lower over time. On average, forecast bias increases by 0.14 percent of the stock price per month with the length of the forecast horizon.

Because the Global Settlement is an enforcement agreement between U.S. regulators and the Big-12 banks, we next examined whether the impact of the Global Settlement is limited to the Big-12 banks or whether there are spillover effects on other analysts. In a recent study, Barber, Lehavy, McNichols, and Trueman (2006) reported that the proportion of buy recommendations declined significantly among all analysts after the implementation of NASD Rule 2711. They also documented that the decline was stronger for the sanctioned banks. Whether the Global Settlement has had a differential impact on analyst forecast bias, however, remains an open question.

To identify the differential impacts of Reg FD and the Global Settlement on Big-12 analysts, we compared the bias in the forecasts of Big-12 analysts with the bias in the forecasts of other analysts. In a univariate comparison, we found that, on average, the forecasts of analysts working for the Big-12 banks are statistically significantly less biased than the forecasts of their counterparts in each of the three periods. The differences, however, are economically trivial. For example, the difference between the mean forecast bias of Big-12 analysts and that of other analysts is −0.04 percent of the share price in the pre–Reg FD period, −0.09 percent after Reg FD, and −0.05 percent after the Global Settlement.
To see whether the differential impacts of Reg FD and the Global Settlement on Big-12 and other analysts change when we control for company and analyst characteristics, as well as economic conditions, we re-estimated the regression model (Equation 4) with the Big-12 indicator and its interactions with the Reg FD and Global Settlement indicators included as additional independent variables. The second set of results in Table 3 is for this regression. Consistent with our univariate results, the Big-12 indicator and its interaction with Reg FD are significant in statistical but not in economic terms. More importantly, the interaction of the Big-12 indicator with the Glob indicator is insignificant, both statistically and economically.

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>t-Statistic</th>
<th>Coefficient</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>RegFD</td>
<td>-0.24**</td>
<td>-3.29</td>
<td>-0.16*</td>
<td>-2.05</td>
</tr>
<tr>
<td>Glob</td>
<td>-0.96**</td>
<td>-10.68</td>
<td>-0.86**</td>
<td>-9.51</td>
</tr>
<tr>
<td>CompanySize</td>
<td>0.65**</td>
<td>16.89</td>
<td>0.67**</td>
<td>17.52</td>
</tr>
<tr>
<td>NumA</td>
<td>0.02**</td>
<td>3.39</td>
<td>0.01**</td>
<td>2.68</td>
</tr>
<tr>
<td>MB</td>
<td>-0.03**</td>
<td>-5.97</td>
<td>-0.03**</td>
<td>-5.59</td>
</tr>
<tr>
<td>YearStk</td>
<td>0.01</td>
<td>1.58</td>
<td>0.01**</td>
<td>2.59</td>
</tr>
<tr>
<td>YearIBES</td>
<td>0.00</td>
<td>1.54</td>
<td>0.00</td>
<td>0.78</td>
</tr>
<tr>
<td>NumStk</td>
<td>0.00*</td>
<td>-2.38</td>
<td>0.00*</td>
<td>-2.05</td>
</tr>
<tr>
<td>NumInd</td>
<td>-0.01</td>
<td>-1.18</td>
<td>-0.01</td>
<td>-1.40</td>
</tr>
<tr>
<td>BrokerSize</td>
<td>0.00</td>
<td>-1.64</td>
<td>0.00</td>
<td>-0.41</td>
</tr>
<tr>
<td>EPSLoss</td>
<td>5.40**</td>
<td>43.20</td>
<td>5.23**</td>
<td>40.53</td>
</tr>
<tr>
<td>EPSDecline</td>
<td>2.40**</td>
<td>62.82</td>
<td>2.38**</td>
<td>60.63</td>
</tr>
<tr>
<td>Litigation</td>
<td>-0.03</td>
<td>-0.24</td>
<td>-0.08</td>
<td>-0.66</td>
</tr>
<tr>
<td>Labor</td>
<td>0.52</td>
<td>2.12</td>
<td>0.47</td>
<td>1.89</td>
</tr>
<tr>
<td>ActualGDP</td>
<td>-0.04*</td>
<td>-2.05</td>
<td>-0.03</td>
<td>-1.23</td>
</tr>
<tr>
<td>UnexpectedGDP</td>
<td>-0.03**</td>
<td>-6.26</td>
<td>-0.04**</td>
<td>-6.61</td>
</tr>
<tr>
<td>Big12</td>
<td>-0.06**</td>
<td>-3.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big12 × RegFD</td>
<td>-0.07*</td>
<td>-2.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big12 × Glob</td>
<td>0.03</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>0.14**</td>
<td>51.70</td>
<td>0.13**</td>
<td>47.76</td>
</tr>
<tr>
<td>Year</td>
<td>0.03*</td>
<td>2.16</td>
<td>0.02</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Adjusted R^2 0.46 0.45
No. of observations 434,268 434,268
No. of companies 7,315 7,315

Notes: This table presents the coefficients obtained from Equation 4. The dependent variable is earnings forecast bias, defined as the difference between the mean of all forecasts made in a particular month for a particular company and a particular fiscal year and the realized EPS, scaled by the stock price and multiplied by 100. The RegFD indicator equals 1 for forecasts made between 23 October 2000 and 20 December 2002. The Glob indicator equals 1 for forecasts made after 20 December 2002. Analyst coverage, NumA, is the number of outstanding forecasts used by I/B/E/S to calculate monthly consensus. CompanySize is the natural log of a company’s market capitalization. Market-to-book ratio, MB, is the market value of equity divided by the book value of common equity. Company-specific experience, YearStock, is the number of years since the analyst made her first forecast for a particular stock. General experience, YearIBES, is the number of years since the first day the analyst appeared in I/B/E/S. NumStk and NumInd are the number of stocks and the number of industries covered by the analyst, respectively. The EPSLoss indicator equals 1 when the corresponding actual earnings of company j are negative. The EPSDecline indicator equals 1 when the realized earnings in fiscal year t are lower than the realized earnings in the previous year. BrokerSize is the number of analysts working for the employer of the analyst who makes the forecast. The litigation risk indicator, Litigation, equals 1 for companies in high-litigation-risk industries. Labor intensity, Labor, is (1 – Gross PPE/Total gross assets). The regressions are estimated with fixed company effects. The reported t-statistics reflect robust standard errors adjusted for heteroscedasticity and clustering by company.

*Significant at the 5 percent level.
**Significant at the 1 percent level.
These results imply that both Big-12 and other analyst forecasts were biased before Reg FD, which is consistent with Lin and McNichols (1998), who found no difference between the earnings forecasts of analysts affiliated with banks involved in underwriting deals with the covered companies and the forecasts of unaffiliated analysts. These results also imply that the impact of the Global Settlement and related regulations is the same among Big-12 and other analysts. This finding may reflect the fear of non-Big-12 firms that they may become targets of similar investigations. In addition, because Big-12 banks no longer reward optimism, the incentive for lower-tier analysts to make optimistic forecasts as a means of moving up to the bigger banks has also been reduced. Finally, the rules and regulations introduced by the SEC, NYSE, and NASD around the time of the Global Settlement covered all analysts.

We checked the robustness of our main conclusion—that forecast bias declined after both Reg FD and the Global Settlement—in a number of ways. First, we used an alternative definition of the forecast bias by normalizing it by the book value of equity per share.18 Second, we changed the cutoff dates for each period by using the effective date of Rule 2711 instead of the announcement date of the Global Settlement. Third, to ensure that our conclusions were unaffected by changes in the sample composition across the three subperiods, we required at least one forecast by the same analyst for the same company in all three periods. Fourth, we dropped observations with stock prices under $5 to avoid any potential biases induced when the scaling factor is a small number. Fifth, we extended our sample period to include an earlier period (January 1984–December 1995). In all these cases, the results (not reported here) remain qualitatively the same as those reported in Table 3, confirming that forecast bias declined after Reg FD and especially after the Global Settlement.

We also examined the breadth of these effects by estimating forecast bias regressions (Equation 4) separately for 12 business sectors and for subsamples formed on the basis of annual quintile sorts by company size and analyst coverage.19 The results (not reported here) show that the effects of the Global Settlement are negative for 11 of 12 sectors and are statistically significant for 9 sectors. The effects of Reg FD are negative for 8 of 12 sectors, but significantly so for only 6 sectors. Our results also show that the effect of Reg FD is concentrated among smaller companies and companies with low analyst coverage, whereas the effect of the Global Settlement is more widespread, with no clear cross-sectional pattern.

Conclusion

Analysts’ conflicts of interest were evident before the Global Research Analyst Settlement and were not limited to the 12 banks covered by it. Reg FD made analysts less dependent on insider information and thus diminished analysts’ motives to favor company managers by inflating their earnings forecasts. The impact of Reg FD is more significant for companies with a less transparent information environment in which insider information has the most value.

Introduced in 2002, the Global Settlement and related regulations had an even bigger impact than Reg FD on analyst behavior. After the Global Settlement, the mean forecast bias declined significantly, whereas the median forecast bias essentially disappeared. Although disentangling the impact of the Global Settlement from that of related rules and regulations aimed at mitigating analysts’ conflicts of interest is impossible, forecast bias clearly declined around the time the Global Settlement was announced. These results suggest that the recent efforts of regulators have helped neutralize analysts’ conflicts of interest.

We thank Donal Byard, Terrence Martell, and seminar participants at Baruch College for helpful comments. Armen Hovakimian gratefully acknowledges the financial support of the PSC-CUNY Research Foundation of the City University of New York.

This article qualifies for 1 CE credit, inclusive of 1 SER credit.

Notes

1. Several rules and regulations were enacted around the Global Research Analyst Settlement—for example, NASD Rule 2711, NYSE Rule 472, and Regulation Analyst Certification. Because they were introduced over a relatively short period, determining the separate impact of each one of these regulatory actions is impossible. Nevertheless, all these rules and regulations share the same goal of reducing analysts’ conflicts of interest. Therefore, we use the term Global Settlement to represent all the rules and regulations enacted around the Global Research Analyst Settlement to address analysts’ conflicts of interest.

2. Scherbinina (2004) found a negative relationship between the estimated bias that arises from self-selection in coverage and subsequent stock returns. Her results suggest that retail
investors fail to adjust for the bias. Malmendier and Shanthikumar (2007) found that retail investors react to stock recommendations literally. Institutional investors buy stocks that have “strong buy” ratings and sell stocks that have “buy” ratings, whereas retail investors buy in both cases. Kwag and Shrieves (2006) found that persistence in forecast errors can lead to potentially profitable trading strategies.

3. Overall, these studies found either no change (Bailey, Li, Mao, and Zhong 2003) or a decrease in forecast accuracy (Agrawal, Chadha, and Chen 2006; Mohanram and Sunder 2006) and forecast dispersion (Agrawal, Chadha, and Chen 2006) following Reg FD.

4. Kadan, Madureira, Wang, and Zach (2009) documented that stock recommendations have become less optimistic since the Global Settlement. Furthermore, they found that the likelihood of an optimistic recommendation is no longer associated with analyst affiliation. Ferreira and Smith (2006) found that investors have not changed the way they respond to analysts’ changes in recommendations since Reg FD. Examining bid–ask spreads and trading activity following Reg FD, Lee, Rosenthal, and Gleason (2004) found no significant increase in volatility or in the adverse-selection component of bid–ask spreads.

5. Reg FD took effect on 14 April 2003. See the joint report by the NASD and NYSE (2005) for the effectiveness of the new rules.

6. The 10 investment banks are Bear Stearns, Citigroup, Credit Suisse First Boston, Goldman Sachs, J.P. Morgan, Lehman Brothers, Morgan Stanley, Merrill Lynch, UBS, and U.S. Bancorp Piper Jaffray. In 2008, Bear Stearns and Merrill Lynch were taken over because of their deteriorating financial positions, whereas Lehman Brothers ended up in bankruptcy. Because our sample period ends in 2006, these events did not affect our results.

7. These two investment banks are Deutsche Bank and Thomas Weisel Partners.

9. Therefore, one would not reasonably expect cross-sectional differences in the impact of the Global Settlement on self-selection bias.

10. Forecasts for current-year EPS are the forecasts in I/B/E/S with code FPI 1. Forecasts for subsequent-year EPS are the forecasts in I/B/E/S with code FPI 2.

11. We excluded forecasts in the I/B/E/S Excluded Estimates file and forecasts for which actual earnings figures were missing.

12. The I/B/E/S Summary file contains monthly snapshots of consensus-level data and corresponding stock prices. The snapshots are as of the Thursday before the third Friday of every month. The reported stock prices in this file are the last available prices before the Thursday. I/B/E/S’s earnings-related data and stock prices are split adjusted.

13. Using stock price to normalize forecast bias is common (see, e.g., Richardson, Teoh, and Wysocki 2004). Later in the article, we discuss the robustness of our findings to alternative scaling of analyst forecast errors.

14. We defined extreme values as those in 1 percent of both tails of the distribution. Variables that took only positive (negative) values were trimmed only on the right (left) tail of the distribution.

15. Realized earnings and forecasts are scaled by the stock price, consistent with the scaling of the bias measure.

16. Other regulations, such as NASD Rule 2711, affect all analysts.

17. In this analysis, for each forecast month of each sample company-year, the mean forecast bias is calculated separately for Big-12 and other analysts.

18. This step also ruled out the possibility that such events as the legalization of stock prices in August 2000–April 2001 affected our findings.

19. The sector classification for each company is from the I/B/E/S Identifier file.

References

Conflicts of Interest and Analyst Behavior

When Sell-Side Analysts Meet High-Volatility Stocks: An Alternative Explanation for the Low-Volatility Puzzle

Jason C. Hsu\(^2\) Hideaki Kudo\(^3\) Toru Yamada\(^4\)

Abstract

Empirically, high-volatility stocks tend to deliver low average returns; this result is robust globally and has been documented in various studies. We confirm this finding using a global equity dataset that includes emerging markets data. We also show that high-volatility stocks exhibit high analyst bias in earnings growth forecasts. Although sell-side analysts are predictably optimistic, the relationship between the degree of optimism and a stock’s volatility has not been documented before. We hypothesize that analysts inflate earnings forecasts more aggressively for volatile stocks, in part because the inflation would be more difficult for investors to detect. Because investors are known to overreact to analyst forecasts (under-adjust to analyst bias), this can lead to systematic overvaluation and low returns for high-volatility stocks. Additionally, we find sell-side analysts’ research informative despite the analysts’ biases; stocks that have high forward E/P ratios based on analyst earnings forecasts tend to outperform and produce significantly positive Fama–French alphas. This evidence rejects the cynical view of some in our industry that sell-side analysts are unskilled. More interestingly, we find high forward E/P stocks also exhibit high analyst bias, which supports an interpretation that analysts are more willing to inflate earnings forecasts for stocks that they believe are likely to deliver high returns—or for which their inflated forecasts are likely to do no harm.

\(^1\) We would like to thank Isao Uesaki and Vivek Vishwanathan for their comments and criticisms, and Katy Sherrerd for her editing assistance.

\(^2\) Research Affiliates and UCLA Anderson School of Management.

\(^3\) Nomura Asset Management.

\(^4\) Nomura Asset Management.
1. Introduction

Somewhat counter to the general intuition, empirical research shows that high-volatility stocks tend to deliver lower average returns than low-volatility stocks. Various explanations of this “puzzle” have been hypothesized, but the topic remains an active area for theoretical research. This paper is empirical in nature and primarily aims to document a new pattern in analyst earnings growth forecast bias in the cross-section for stocks. We also seek to contribute to the low-volatility puzzle literature by arguing that analyst behavior may partially explain the low-volatility anomaly.

We extend the research in two ways. First, we replicate the low-volatility effect using a global dataset that includes emerging markets data. Our results show that the low-volatility effect is robust even after controlling for regions, industrial sectors, and various firm characteristics. Second, we explore a possible link between analyst forecasts and the performance of low- (or high-) volatility stocks and find that high-volatility stocks tend to experience high upward bias in analyst earnings growth forecasts; this cross-sectional relationship has not been identified before. Additionally, high bias (optimistic forecast) generally leads to low stock returns—an observation which suggests that investors underestimate the magnitude of the bias and therefore overreact to analyst growth forecasts. These empirical facts and their interpretations fit neatly together to suggest a new linkage between analyst behaviors and the low-volatility puzzle. As we will discuss later, sell-side analysts have strategic reasons to prefer to inflate growth forecasts for volatile stocks. Because investors overreact to analyst growth forecasts, which creates excess demand for high-volatility stocks, this mechanism produces low returns for volatile stocks and can partially account for the low-volatility effect.

We also find that, despite the upward bias, analyst earnings forecasts are informative for trading. Our evidence suggests that sell-side analysts are likely more skilled than widespread industry cynicism would suggest, and their behaviors are not merely dictated by the incentive to

maintain positive relationships with banking clients and prospects. Specifically, stocks with a high analyst-forecasted earnings-to-price (forward E/P) ratio tend to deliver significantly higher returns and positive Fama–French alphas—that is, stocks that analysts find “cheap” based on their forecasts tend to subsequently outperform.6

The outline of the paper is as follows. We first review the relevant literature on the low-volatility puzzle and sell-side analyst forecast bias. Next, we propose a simple model of analyst behavior, which can explain the low-volatility puzzle and predict a number of interesting equity return patterns. We then describe our global dataset that includes emerging countries. A key contribution of our research is in demonstrating that the low-volatility effect is robust globally and is not driven by country or sector effects or by firm characteristics. Using global equity data and the I/B/E/S database, we next document that high return volatilities are associated with high upward biases in analyst earnings growth forecasts. Finally, we document that analyst forecasts, although systematically biased upward, do indeed contain useful cross-sectional information regarding future stock returns. This last finding argues in favor of the skill and value of sell-side analyst research.

2. Literature Review

Low-Volatility Puzzle

The literature on the low volatility puzzle has typically examined the two components of volatility—systematic and idiosyncratic—separately. The earlier literature on the rejection of the CAPM found that low-beta stocks produce higher risk-adjusted returns than high-beta stocks.7 These findings are related to the low-volatility effect because low- (high-) beta stocks are more likely to exhibit low (high) volatility. The low-beta effect does not, however, subsume

6 Although secondary to the primary focus of our paper, our new findings suggest that not only do sell-side analysts express valuable information in their earnings forecasts, but that investors underreact to the information long (i.e., months) after the forecasts become available, allowing profitable trading strategies to be constructed based on clever manipulation of I/B/E/S data. This evidence is consistent with the findings of Womack [1996], Barber, Lehavy, McNichols, and Trueeman [2001], Mikhail, Walther, and Willis [2004] and Li [2005] on investor underreaction to analyst recommendations.

7 See Black, Jensen, and Scholes [1972], Miller and Scholes [1972], and Haugen and Heins [1975].
the low-volatility effect. More recent literature has focused on idiosyncratic volatility and has generally found that stocks with low idiosyncratic volatility tend to produce higher risk-adjusted returns than stocks with high idiosyncratic volatility. This finding is also related to the low-volatility puzzle since stocks with low idiosyncratic volatility usually exhibit low total volatility. Using developed-country equity data from 1985 to 2006, Blitz and van Vliet [2007] reported that low-volatility stocks outperformed high-volatility stocks. Frazzini and Pedersen [2011] also documented similar results using an expanded time horizon (1984–2009).

Various conjectures have been presented for explaining the low-beta and/or the low-idiosyncratic-volatility effect. Excellent syntheses of the related theories and empirical evidence has been provided by Baker, Bradley, and Wurgler [2011] and Pedersen and Frazzini [2011]. Baker, Bradley, and Wurgler summarized and argued the behavioral explanation for the low-volatility effect: investors are assumed to have a “preference for lotteries” and views high volatility stocks as speculation/gambling tools, which inflates the price for high-volatility stocks and depresses their future returns. Rational asset managers are unable to arbitrage away this behavioral anomaly because over-weighting low-volatility stocks creates too much tracking error against their benchmarks. Pedersen and Frazzini [2011] advocated a rational model in which investors are leverage constrained. In this model, investors use high-beta stocks to improve portfolio expected returns even though leveraging low-volatility stocks would produce better results. This excess demand for high-volatility stocks results in high prices in the present day followed by low future returns for these securities. Because all investors are leverage and shorting constrained to varying degrees, the low-volatility premium is not arbitraged away. In the rational model, high beta stocks would have lower returns than “fair” but would not be expected to actually have lower returns than low beta stocks, which is what has been documented in a number of empirical studies.

In this paper, we provide another explanation for the low-volatility effect based on sell-side analyst behavior and investor reactions to analyst forecasts. We find that volatility can be a proxy for analyst bias—high-volatility stocks tend to experience more analyst optimism.

8 See Malkiel and Xu [2002], Spiegel and Wang [2006], Ang et al. [2006, 2009], and Bali and Cakici [2008].
9 See Mitton and Vorkink [2007], Barberis and Huang [2008] and Kumar [2009] for more detailed discussions regarding the investor preference for lottery-like payoffs and for high-volatility stocks.
10 See Brennan [1993] and Brennan, Cheng, and Li [2012] for more detailed discussions of the theoretical motivation for and the empirical evidence that supports why benchmark-sensitive institutional equity managers are unwilling to take advantage of the low-volatility premium.
11 The original insight into the effect of leverage constraints was provided by Black [1972].
Since the market is fooled, partly by the rosy forecasts, this leads to high prices and low returns for high-volatility stocks.

Sell-Side Analyst Behavior

It is well known that sell-side analysts tend to issue upward-biased earnings forecasts; anecdotal evidence and theoretical research suggest that the optimism may be strategic rather than indicative of a lack of skill.12,13 Interestingly, despite the strong evidence on sell-side analyst optimism, investors do not seem to properly adjust for this bias. For stocks that are associated with high analyst optimism, the literature documents initial price overreaction to the rosy forecasts, followed by mean-reversion when high growth fails to materialize.14

Because investors do not fully adjust for sell-side analyst optimism, the ability to forecast analyst bias for stocks can be a valuable tool for investors. Frankel and Lee [1998] hypothesized that analysts, like naïve investors, can exhibit the behavioral tendency to over-extrapolate recent firm growth in making their own forecasts. They also found that growth-oriented stocks—those with high P/B ratios, high past sales growth, and high long-term earnings forecasts and ROE forecasts—tend to experience high analyst optimism. In this paper, we identify two additional stock characteristics—high volatility and high forward E/P—that predict analyst optimism. Our variables, however, are motivated by rational and strategic analyst behaviors and not by analysts’ mistakes.

Although analysts are encouraged to produce rosy forecasts, they are also incentivized to provide high-quality research and profitable stock recommendations. Research finds that analyst reputation drives brokerage order flows.15 Research also supports that analyst promotions are related to their relative forecast accuracy and the profitability of their stock picks.16 This finding, according to Francis and Philbrick [1993], suggests a complex optimization problem for sell-side analysts. Jackson [2005] claimed that an equilibrium can exist in which sell-side analysts inflate earnings growth forecasts, but these forecasts are still informative. Empirical evidence seems to

\begin{thebibliography}{99}
\bibitem{12} See Ramnath, Rock, and Shane [2008] for a comprehensive review of the analyst forecast literature as well as a suggested list of the unexplored questions in the literature.
\bibitem{13} See Francis and Philbrick [1993], Kang, O'Brien and Sivaramakrishnan [1994], Dugar and Nathan [1995], Lin and McNichols [1998], Michaely and Womack [1999], and Dechow, Hutton and Sloan [2000].
\bibitem{14} See Dechow and Sloan [1997], Rajan and Servaes [1997], Dechow, Hutton and Sloan [1999], and Purnanandam and Swaminathan [2004].
\bibitem{15} See Irvine [2004], Jackson [2005], and Cheng, Liu, and Qian [2006].
\bibitem{16} See Dechow, Hutton, and Sloan [2000] and Hong, Kubik, and Solomon [2000].
\end{thebibliography}
support the informativeness of analyst research in spite of the observed bias: Kim, Lin, and Slovin [1997] and Green [2006] found that early access to sell-side analyst stock picks leads to abnormal profits.

It is an interesting question to explore whether sell-side analyst stock recommendations are valuable when investors do not have privileged early access. In our paper, we are able to extract information from analyst forecasts by examining the forward E/P for stocks based on the sell-side analyst earnings forecast. We found that stocks with high forward E/P ratios based on publicly available I/B/E/S analyst 12-month earnings forecasts produced higher subsequent 12-month returns. This is a new finding in the sell-side analyst literature and is consistent with earlier results supporting market under-reaction to analyst recommendations.17

3. A Model of Analyst Behavior and an Explanation for the Low-Volatility Puzzle

We propose a simple model to reconcile the empirical observation that sell-side analyst earnings forecasts are upward biased and unreliable on the one hand, yet are informative in producing abnormal profits for investors on the other. Although sell-side analysts have been shown to display over-optimism regarding firm earnings growth, it is hard to believe that analyst forecasts are arbitrarily positive. Analysts are presumably skilled and rational economic agents who optimize their behaviors to satisfy competing objectives.18 Sell-side research, considered by some to be valuable, can drive significant brokerage trade flows.19 Thus, because sell-side research can influence client investment activities, analysts are rated and the rankings are publicized. Presumably, research quality rankings matter to the employer investment banks.

17 Frankel and Lee [1998], using an accounting valuation method (the residual income model) based on analyst forecasts, found that analyst forecasts are informative for predicting long-term returns. Barber, Lehavy, McNichols and Trueman [2001] and Loh and Mian [2006] formed trading portfolios based on published analyst recommendations and produced abnormal profits.

18 See Francis and Philbrick [1993].

Theoretical and empirical research support the thesis that forecast accuracy and stock recommendations are linked with analysts’ promotions and turnover.20

On the flip side, theories and empirical evidence also suggest that relationships with investment banking clients and prospects could influence analysts to bias their earnings growth forecasts upward and to set target stock prices higher than they otherwise would.21 So, how might a skilled sell-side analyst achieve the complex objective of producing rosy earnings growth forecasts without appearing obviously biased and, at the same time, providing profitable trading recommendations to clients?

We propose a simple model of analyst behavior that produces both (1) the observed cross-sectional pattern in which high-volatility stocks experience high analyst forecast bias and (2) forecasts that are informative for trading. Imagine that analysts are skilled at ascertaining the mean and standard deviation of earnings growth for the stocks they cover. These analysts need to produce quality research and profitable recommendations to further their careers and reputations, while at the same time remaining sensitive to senior management’s desire to maintain investment banking relationships. We posit that there is an equilibrium behavior such that all analysts inflate their reported growth estimates upward by, say, half a standard deviation in order to (1) be investment banking business friendly22 and (2) avoid detection for inflating growth forecasts in certain situations.

This equilibrium behavior would predict higher growth forecast bias for firms with higher earnings growth variability and would, in turn, predict higher return volatility for these firms. This prediction is consistent with our empirical finding that high-volatility stocks are associated with high analyst forecast bias. Further, because evidence suggests that investors do not fully appreciate the upward bias, and thus overreact to analyst optimism in the short run, volatile stocks tend to be overvalued and experience low subsequent returns. This could then explain, in part, the documented underperformance of high-volatility stocks.

Our simple model also posits that analysts express valuable information in their forecasts in order to signal their skill to clients and management, but they strategically obfuscate the

20 See Mikhail, Walthner, and Willis [1999], Hong, Kubik, and Solomon [2000], and Clarke and Subramanian [2006].
22 The literature primarily focuses on the relationship between analyst earnings forecast inflation and the investment banking client relationship. Evidence also exists, however, that investment banks use inflated earnings growth to justify high price targets and strong buy recommendations in order to encourage more trading for their brokerage businesses (see Irvine [2000]).
information in an attempt to provide client-friendly inflated forecasts. If true, this suggests that profitable trading information can be potentially backed out of biased analyst forecasts; investors simply need to decode the analyst signal more effectively. We know that analysts overwhelmingly prefer to communicate equity attractiveness using E/P ratios, so we can interpret the forward E/P ratio as a proxy for the analyst’s private information on the attractiveness of a stock.

In our research, we find that stocks with high forward E/P forecasts outperform stocks with low forward E/P forecasts. Thus, while the complex strategic behavior of analysts leads to persistent upward bias and poor reliability in analysts’ published growth forecasts, we find evidence that analysts are still able to communicate valuable recommendations through forward E/P forecasts. Our new evidence that analysts are more skilled than would be suggested by their lack of forecasting accuracy is, if anything, a vindicating discovery for sell-side analysts, given the prevailing industry wisdom regarding the value of their research.

4. Data

Our global equity dataset represents a broader dataset than has been used in previous research on the low-volatility premium puzzle; specifically, we expand the global dataset to include emerging markets. We use the I/B/E/S database to gather consensus analyst earnings forecasts. For each stock in the I/B/E/S database, the consensus earnings forecast is generally provided for at least the next two fiscal years. At the start of each fiscal year, the database records the reported previous fiscal year earnings per share (EPS) and also reports the consensus fiscal year-end EPS forecast for the current fiscal year and the following fiscal year. Table 1 shows the I/B/E/S monthly data structure for Company A, which has a fiscal year ending in September. At month-end October 2000, the database records realized EPS for the prior fiscal year (1999) as well as the consensus forecast for the current fiscal year (2000), which ends September 2001, and the next fiscal year (2001), which ends September 2002. We denote the prior fiscal year as FY0, the current fiscal year as FY1, and the next fiscal year as FY2.

23 See Block [1999], Bradshaw [2004] and Demirakos, Strong, and Walker [2004].
A key variable of interest is the analyst forecast bias for current fiscal-year EPS. Analyst forecast bias is simply the time-series average of the forecast errors or the differences between the consensus EPS estimates and the subsequent realized EPS numbers. Operationally, we define the forecast error for Company A associated with the month of October 2000 as the 12-Month-Forward Realized EPS minus the 12-Month-Forward Consensus EPS Forecast. The forward consensus EPS is the time-weighted average of the current and next year’s consensus EPS, and the forward realized EPS is also the time-weighted average. Because EPS_t is neither standardized (EPS_t gives no information for making cross-sectional comparisons) nor stationary (EPS_t generally grows over time and is unbounded), we elect to work with a transformed variable, $\frac{\text{EPS}_t}{\text{BPS}_{t-1}}$. Dividing earnings per share by book value per share creates a variable that is standardized across stocks and is stationary. $\frac{\text{EPS}_t}{\text{BPS}_{t-1}}$ is also referred to as the return on shareholder equity, or ROE$_t$.\(^{24}\)

We do not have an explicit interest in ROE. We are merely interested in standardizing the EPS variable so that it can be more meaningfully compared on a cross-sectional and inter-temporal basis. Other transformations, such as EPS/Asset or EPS/Sales, would accomplish the same goal and produce similar analyses. We then define earnings growth as $\left(\text{EPS}_{12 \text{ months forward}} - \text{EPS}_{\text{past 12 months}}\right)/\text{BPS}$. We do not use the traditional definition of earnings growth, $\frac{\text{EPS}_{12 \text{ months forward}}}{\text{EPS}_{\text{past 12 months}}}$, because EPS can often be negative and can switch signs from year to

\(^{24}\) Here and hereafter, all subindex t are not necessary because the context makes the interpretation obvious. Incidentally, $t-1$ means the prior fiscal year, not the previous month.
year, so that the resulting growth rate measurement can become difficult to interpret.25 For example, two extremely opposite earnings growth profiles—$2 per share last year declining to –$2 per share versus –$2 per share growing to $2 per share—would result in the same growth rate, which is clearly undesirable for our econometric examination.

Corporate accounting data are sourced from Worldscope and total return data are from IDC Exshares. The sample period for our study ranges from January 1987 through December 2011 for developed countries and from December 1994 through December 2011 for emerging countries.26, 27 All return-related statistics are computed using excess returns, which are calculated as the net return in excess of local three-month interest rates. Our universe of stocks draws from the union of the MSCI and FTSE index memberships across all developed and emerging market countries.28

Because we use I/B/E/S consensus and reported EPS in our study, our universe is restricted to stocks for which both variables are available. The average number of stocks in the unrestricted universe is 3,308 and 910 for the developed and emerging markets, respectively. After eliminating stocks without consensus EPS, the universe reduces to 2,846 for the developed markets29 and 537 for the emerging markets. We examine the effect of the sample selection rules and conclude that they do not adversely influence our results. We do not report these tests for the brevity of exposition. For robustness, we have repeated the tests with “winsorized” outlier observations. We do not separately report these results as our research appears to be unaffected by outliers.

5. Portfolios Sorted on Volatility

\textit{Low-Volatility Premium in Developed and Emerging Markets}

We begin our analysis by examining the pattern of returns in the cross-section of global stocks,

25 In very rare situations, book value per share can also be negative. We discard data points with negative book value per share.

26 Before January 1987 and December 1994, the numbers of stocks are too small.

27 For the study of analyst forecast biases, however, we need the next fiscal year realized earnings. This would reduce the sample range up to December 2009.

28 We follow the definition of countries used by the MSCI World (Developed Countries) Index and Emerging Markets Index.

29 The mean numbers of stocks are 1,138 for North America; 898 for Europe; 596 for Japan; and 214 for Asia Pacific ex-Japan.
sorted by volatility. At the end of each month, we rank stocks based on their volatility using the past five years of monthly data. We then report the annualized buy-and-hold return for each decile portfolio. We note, however, that in a simple global sort, the constituents for each volatility decile could be dominated by a particular country or global sector because stocks from a particular country or industry sector may share a similar level of volatility. As a result, country and/or sector effects can become indistinguishable from the volatility effect. Additionally, we observe that small-capitalization stocks tend to be more volatile than average. To adjust for the impact of country, sector, and firm characteristics, we perform a global volatility portfolio sort neutralizing these effects. Specifically, we sort on adjusted volatility using the following equation:

$$\log(\text{Vol}_i) = \beta_1 \cdot \text{Size}_i + \beta_2 \cdot \text{BP}_i + \sum_j \gamma_j \cdot SD_{i,j} + \sum_k \delta_k \cdot Ctry_{i,k} + \epsilon_i,$$

(1)

where Vol_i is the total volatility of stock i measured from the previous 60 months, Size_i is the market capitalization at the end of the preceding month, $SD_{i,j}$ is a dummy variable for industrial sector j (as classified by GICS 10 sectors), $Ctry_{i,k}$ is a dummy for country k, and ϵ_i is the adjusted volatility residual net of the influences of country, sector, and firm characteristics. Using Equation (1), we compute the adjusted volatility for each stock in our global universe and then sort stocks into decile portfolios based on this adjusted measure.

We report the returns and characteristics of the adjusted volatility portfolios in Table 2. The decile portfolios D1 and D10, in the top panel, contain firms with the lowest and highest adjusted volatilities, respectively, for the developed markets. The quintile portfolios follow the same format and report results for the emerging markets. For the developed markets, the returns of the low-volatility portfolios are higher than those of the high-volatility portfolios, and the pattern is nearly monotonic. For the emerging markets, the low-volatility effect is not present when we only examine the quintile returns. When we include the Sharpe ratio term, the low-volatility puzzle is strong for both the developed and emerging market countries. We also note that when we eliminate the 1994–1998 sample period, which was characterized by unprecedented EM currency fluctuations, the low-volatility effects are statistically stronger. This pattern holds true for the global portfolios sorted using raw (unadjusted) volatilities, which we do not separately report. These results are consistent with what was reported by Blitz and van Vliet.
These results confirm that the low-volatility effect is robust globally and is not subsumed by the standard size and value anomalies or driven by country or industry differences.

Analyst Forecast Bias and Stock Volatility

In this section, we examine the portfolio characteristics associated with the various volatility decile portfolios. Table 3 reports the descriptive statistics such as book-to-price (B/P), earnings growth variability, average market capitalization, and so forth for the stocks in the decile portfolios. In addition, we report statistics on analyst earnings growth forecasts, subsequent realized growth, and analyst forecast bias. Again, we only report the statistics of portfolios formed on adjusted volatility, noting that the results are similar using raw volatilities.

Because the influences from countries, sectors, and firm characteristics are neutralized in the portfolio construction process, it is not surprising that the average market-cap and B/P characteristics are similar across the decile portfolios. The country and industry allocations are similar as well, but are not displayed in Table 3 for brevity. First, we observe that the earnings growth forecast biases, as measured by $(\text{EPS}_{12\text{-months-forward forecast}} - \text{EPS}_{12\text{-months-forward realized}})/\text{BPS}$, are positive on average for stocks, meaning that analysts are systematically over-optimistic regarding future corporate earnings growth. This is consistent with the literature on upward bias in sell-side analyst forecasts. Additionally, we observe that the low-volatility portfolios generally have lower forecasted earnings growth as measured by $(\text{EPS}_{12\text{-months-forward forecast}} - \text{EPS}_{\text{past-12-months realized}})/\text{BPS}$, but do not generally display lower realized earnings growth as measured by $(\text{EPS}_{12\text{-months-forward realized}} - \text{EPS}_{\text{past-12-months realized}})/\text{BPS}$. This observation suggests an interesting pattern of analyst bias in the cross-section—analysts seem to be more optimistic on the more volatile stocks!

A Model of Sell-Side Analyst Behavior

The observation that return volatility is cross-sectionally correlated with analyst bias in earnings growth forecasts is a new empirical finding, which contributes to the literature on analyst forecast bias as well as to the literature on the low-volatility premium. Because this paper is empirical in nature, we propose a plausible story to rationalize this finding, but do not propose testable implications of the story to ascertain its validity against competing hypotheses.
As we discussed earlier, sell-side analyst behaviors are thought to be influenced by their desire (1) to maintain good relationships with investment banking clients and prospects, (2) to avoid damaging their reputation with brokerage clients who subscribe to analyst research reports, and (3) to achieve high rankings against other analysts in published quality rankings.

Empirical evidence supports the fact that sell-side analysts have superior abilities to analyze public information and are adept at producing valuable private information on companies. It is not unreasonable to model analysts as skilled at estimating the distribution of next-period earnings growth, \hat{g}_t, for firms they cover. Note that realized earnings growth, g_t, is a random variable drawn from a distribution with mean μ_g and standard deviation σ_g.

More formally, each analyst i produces a forecast of $\hat{g}_{t,i}$ and $\hat{\sigma}_{t,i}$. The true skill of an analyst is determined by the deviation over time between $\hat{g}_{t,i}$ and the unobserved true mean $g_{t,i}$. Since $g_{t,i}$ cannot be observed, the skill of analyst i can only be estimated by the average difference between his forecast $\hat{g}_{t,i}$ and the realized $g_{t,i}$ over time.30 Finally, analysts report a biased forecast, $G_{t,i}$, instead of their true private information, $\hat{g}_{t,i}$.

We assume that the utility function of the analysts is (1) increasing in the “optimism of the reported growth forecast,” or $G_{t,i} - \hat{g}_{t,i}$; (2) decreasing in the “detectability of the forecast bias,” or $(G_{t,i} - \hat{g}_{t,i})/\hat{\sigma}_{t,i}$; and (3) decreasing in distortion in valuation accuracy of the forecast, or $|EPS(G_{t,i})/P_t - EPS(\hat{g}_{t,i})/P_t|$, where $EPS(G_{t,i})/P_t$ is the forward E/P based on the reported forecast $G_{t,i}$, and $EPS(\hat{g}_{t,i})/P_t$ is the forward E/P based on the true forecast $\hat{g}_{t,i}$. Although these assumptions are naïve and incomplete as descriptions of reality, they are consistent with the empirical evidence on analysts’ behaviors and incentives.

If the variability of earnings growth, σ_g, for firm i is extremely low, then large bias, $G_{t,i} - \hat{g}_{t,i}$, would be easy for brokerage clients to detect. An econometrically savvy investor can detect whether an analyst has been “pumping” stock prices through highly inflated forecasts (over the last T periods) by testing if $\frac{1}{T} \sum (G_{t,i} - \hat{g}_{t})/\hat{\sigma}_T$ is significantly larger than zero, where \hat{g}_{t} and $\hat{\sigma}_T$ are the realized earnings growth and variability. Analyst stock recommendations are usually justified by valuation multiples based on forward earnings. As a result, analysts would not want to inflate reported $G_{t,i}$ and next year’s earnings $EPS(G_{t,i})$ so significantly that an unattractive stock (with low $EPS(\hat{g}_{t,i})/P_t$ based on the analyst’s true forecast) appears attractive.

Without writing a formal mathematical model, we simply state that a repeated game

30 For simplicity, we assume that each analyst covers only one firm.
equilibrium exists whereby all analysts inflate their reported earnings growth forecasts relative to their private unbiased growth estimates by k times earnings growth variability. The scalar k is determined by (1) the benefit to the analyst from improving/maintaining investment banking client/prospect relationships through “friendly” outlooks, (2) the risk of being accused of “pump and dump” by brokerage clients, and (3) the benefit from providing quality stock recommendations to brokerage clients. Intuitively, in this equilibrium, analysts inflate growth forecasts by a careful amount to avoid losing credibility outright and to ensure that their forecasts can still result in forward E/P ratios, which lead to good buy/hold/sell recommendations.

Theoretically, return volatility has a positive relationship with earnings growth variability, which we confirm empirically in Table 3. This then suggests that more volatile stocks are more likely to receive greater analyst inflation in earnings growth forecasts. Since investors are documented to overreact to analyst growth forecasts, our model predicts low returns for high-volatility stocks.

6. Forward E/P and Stock Returns

High Forward E/P = High Returns

Another prediction of our simple model is that stocks with analyst-forecasted high forward E/P ratios will outperform stocks with low forward E/P ratios. In Table 4a, we show that developed market stocks in the top decile, as sorted by analyst-forecasted forward E/P ratios, produce a 6% higher annualized return than those in the bottom decile. The Sharpe ratios for the top and bottom deciles are 0.48 and 0.19, respectively. Similarly, for emerging market stocks, the top quintile stocks outperform the bottom quintile by nearly 10% per annum (a Sharpe ratio of 0.73 versus 0.35).

The forward E/P ratio can be interpreted as a tool for analysts to communicate the attractiveness of stocks. In the bottom panel of Tables 4a and 4b, we show that the information contained in an analyst’s forward E/P is not subsumed by the Fama–French return model; specifically, stocks that analysts find attractive (in three of the top four deciles for developed

31 The emerging markets data are likely significantly more noisy than the developed markets data. This might contribute to the lack of monotonicity in the returns and the Sharpe ratios of the sorted portfolios.

32 See Demirakos, Strong, and Walker [2004].
markets and in the top quintiles for emerging markets) display significant Fama–French alphas. Brokerage clients with advanced access to analyst research and recommendations appear to achieve better investment performance.

Tables 4a and 4b show that the analyst-earnings-growth-forecast bias is increasing in the forward E/P. This is another novel empirical fact that we introduce into the literature. This observation suggests that analysts inflate the earnings growth forecasts more aggressively for stocks that they find attractive from a forward E/P perspective and do not tend to inflate the earnings as aggressively for stocks they find to be less attractive. On average, for stocks that analysts find most attractive in the developed markets (top decile by forward E/P), the upward growth bias is 7%, and in the emerging markets (top quintile), the bias is 6%. This behavior is consistent with our simple model in which the analyst prefers to inflate earnings as much as possible without losing credibility with clients. For stocks that analysts believe are likely to produce great returns, inflating earnings aggressively is less likely to create a poor experience for clients who trade on analyst forecasts.

Volatility and Forward E/P Double-Sorted Portfolios
To summarize our findings and to explore any potential interactions, we perform an unconditional double sort on volatility and forward E/P. We report the portfolio statistics in Table 5a for developed markets and in Table 5b for emerging markets. The new discovery that we make is that the low-volatility effect is much more pronounced for the low forward E/P stocks. In the developed markets, for low forward E/P stocks, the lowest volatility portfolio has a Sharpe ratio of 0.42 and the highest volatility portfolio has a Sharpe ratio of 0.11, a difference of 74%. For high forward E/P stocks, the Sharpe ratios for the lowest and highest volatility portfolios are 0.63 and 0.45, respectively, a difference of 28%. In the emerging markets, we observe the same pattern. For low forward E/P stocks, the low volatility portfolio has a Sharpe ratio of 0.39 compared to a Sharpe ratio of 0.26 for the high-volatility portfolio, which is a 33% difference, and for high forward E/P stocks, the corresponding Sharpe ratios are 0.61 and 0.55, respectively, a 9% difference.

Table 6 reports the corresponding Fama–French alphas for the double-sorted portfolios. The results show a general pattern in which alphas are large for high forward E/P stocks and low-volatility stocks and are small for low forward E/P stocks and high-volatility stocks. This
result can be interpreted in the following way. Forward E/P is a proxy for analysts’ valuable private information, which is communicated only to their brokerage firm’s clients. Empirical evidence also shows that investors underreact to analysts’ stock recommendations, and this makes the forward E/P information from the I/B/E/S database valuable for creating outperformance.

Volatility is a proxy for analyst bias. Conventional wisdom indicates that investors have some awareness of the sell-side analyst bias, yet empirical evidence suggests that investors still substantially overreact to analyst optimism (or under-appreciate the size of the analyst bias). The degree to which investors over- or underreact to different aspects of the analyst research report is succinctly captured in the cross-sectional pattern of the Fama–French alphas presented in Table 6. We believe this particular finding is novel and contributes to the empirical literature on investor over/under-reaction to the release of analyst research.

5. Conclusions

The contributions of this paper are mainly empirical; we want to be careful not to overstate the significance of our theoretical contribution. Given our emphasis on the empirical results, we attempt to contribute to the literature by offering plausible explanations for the low-volatility puzzle and the sell-side analyst behaviors discussed throughout the paper.

Our empirical results both confirm and extend the work of other researchers. We confirm the findings of low-volatility returns in global developed and emerging markets. When we explore possible linkages between the low-volatility findings and analyst forecasts, we find several interesting results. We find evidence that sell-side analysts are strategic in how they inflate earnings growth forecasts for stocks. It is well accepted that sell-side analysts have incentives to provide optimistic forecasts, and their positive bias has a very specific cross-sectional pattern. First, they tend to inflate earnings growth forecasts for more volatile stocks. We hypothesize that this is because it is harder for clients to detect inflation in growth
forecasts for stocks that have highly volatile growth. Second, analysts tend to more aggressively inflate growth forecasts for stocks that they have strong positive information on. We suspect that this is because clients are less likely to complain about overly optimistic growth forecasts for stock recommendations that prove to be profitable.

These strategic behaviors by analysts can explain, partially, the low-volatility premium. High-volatility stocks are more likely to receive more inflated earnings forecasts. Because investors are tend to overreact to analyst optimism and are generally willing to overpay for stocks with high analyst bias, this would predict low returns for high-volatility stocks. More interestingly, we find that analyst forecasts, while biased upward, do result on average in the correct stock picks for their clients. Specifically, stocks with forecasted high forward E/P ratios tend to outperform stocks with forecasted low forward E/P ratios. The high E/P stocks also produce sizeable positive Fama–French alphas. Finally, we document that the low-volatility effect is significantly stronger for low forward E/P stocks than for high forward E/P stocks.

Our empirical findings are novel and add to the literature on analyst behavior. They also provide greater richness to and expand on the known cross-sectional pattern of volatility premia. Finally, they provide insights into a plausible new mechanism that uses sell-side analyst behaviors to explain the low-volatility premium.
REFERENCES

What do utility shareholders want? Answer: to earn a total return, dividends plus capital gains, at least commensurate with the risk incurred.

That is, to earn a return equal to, or in excess of, the cost of capital.

Did shareholders earn this in the past? And what do they require now?

In a recent piece written for *Public Utilities Fortnightly*, Steve Huntoon didn’t directly answer those questions. Rather he concluded, much more elegantly, that whatever shareholders want, they get too much of it.\(^1\)

Steve is a lawyer. So what does he know?

The authors of this column spent years on Wall Street, complaining that regulators did not provide investors with adequate returns. So we decided to check out the numbers.

Understand first, the market determines cost of capital. Regulators don’t.

Second, to determine expected return, investors and academics have lately begun to rely more on historical data.

They are taking into account the tendency of markets to revert to the mean. We will try to apply that technique to answer the questions.

Let’s cut to the chase. In the past century or more, globally, common stocks earned real returns of about five and a half percent to six and a half percent per year. Adjusted for inflation.

In the U.S., return on stocks have exceeded return on risk-free Treasury bonds. The equity risk premium was roughly two-point-four to five percentage points.

Recent Federal Reserve Bank monetary policy makes Treasuries a dubious benchmark. So we will use seasoned Baa corporate bonds instead.

Those bonds offered yields of one to two percentage points more than Treasuries in the past. And two to three percentage points more recently.

We estimate that investors, over the long term, expect that corporate bonds will earn two percentage points over Treasuries. And equities will earn five percentage points over Treasuries.

For a rule of thumb, equities will earn about three percentage points over corporate bond yields. Why bother with a rate case? Just use that handy rule of thumb.

Two additional points. Bond yields track inflationary expectations. So our calculation in current dollars indirectly takes inflation into account.

Also, over the postwar period, utility stocks have performed at least as well as industrial stocks. So conclusions derived from the general market probably apply to them as well.

The first question is: what did utility investors earn? And was that good enough?

In the postwar period, investors earned just less than ten percent per year. That’s six and a half percent in real terms.

British-style incentive regulation would offer utilities the opportunity to take higher risks, in order to maintain returns.

Leonard Hyman is an economist and financial analyst specializing in the energy and regulated sectors. He was formerly head of utility equity research at Merrill Lynch, and senior advisor to investment banking at Salomon Smith Barney. At one point, he was on a NASA panel investigating the placement of nuclear power plants on the moon. He is author of *America’s Electric Utilities: Past, Present and Future*.

William Tilles is a senior industry advisor and speaker on energy and finance. He worked as a bond analyst and later headed equity research at Dean Witter Reynolds and then Smith Barney. He then became a portfolio manager at Angelo, Gordon & Co. and later at Sandell Asset Management. For a time he ran the largest long/short equity book in the world.
Dividends made up about sixty-three percent of this return. See Figure 1.

Our rough-and-ready formula calculated a required return of ten and a half percent per year. That’s six-point-nine percent in real terms. See Figure 2.

Utility stocks then earned in-line with long-term market expectations.

But utility stock prices exceeded their book value in fifty-six of the past seventy years. With sub-par pricing during energy and nuclear crises.

This indicates that utilities earned more than the cost of capital in most years.

Thus, utility investors earned an average market return, while taking a lower than average risk. Return probably exceeded the cost of capital.

The numbers tell us about anticipated growth. We define this as expected total return, minus dividend yield.

Over the postwar period, we calculate that investors expected growth of about four and a half percent per year. See Figure 3.

At the end of June 2016, corporate bonds yielded four and a half percent. Utility stocks yielded three-point-four percent.

This indicates, based on historical precedent, that equity investors want a seven and a half percent annual return. Three-point-four percent from dividends. Four-point-one percent from capital gains.

Is seven and a half percent, the number implied by Steve Huntoon, the nominal cost of equity capital? Imagine using that level of return in a utility rate case.

Sooner or later, regulators may see the gap between allowed returns and cost of capital. They might reduce returns.

Or regulators could impose British-style incentive regulation. It would offer utilities the opportunity to take higher risks, in order to maintain returns.

Either option could endanger dividends. That is the downside.

Income-starved investors are looking for means to meet their long-term obligations. They may accept even lower returns than the cost of equity capital we calculated.

The trick is for utilities to find ways to utilize that pool of capital.

Investors just want a better return on a safe investment than the one and a half percent they can get on ten-year
Treasuries. Both utilities and electricity consumers might benefit from this trying financial situation.

And yes, it looks as if Steve Huntoon was right after all. Even if he is a lawyer.

Endnotes:

Intersection of DER, Energy Efficiency, DR

(Cont. from p. 65)

into its grid by 2045.

The company and its regulators are making plans to address the enormous challenges this will create for grid stability on the islands. One of the key features of these plans is to position demand-response as a load following resource.

Through the operation of fast demand response pilot programs, Hawaiian Electric is working with its customers to utilize automation systems that can respond within seconds of receiving a signal of an imbalance between supply and demand.

Notwithstanding the menu of solutions, it is important to recognize that energy efficiency still continues to play an important role in the paradigm. Energy efficiency is by far the least-cost resource available to bridge the advent of distributed resources.

However, as energy efficiency programs are increasingly being viewed through the distributed resources lens, it is important for energy efficiency efforts to be more focused on meeting changing operational needs on the electrical grid. These changes necessitate that energy efficiency programs be focused on delivering savings at the times when those savings are needed most.

While high-efficiency equipment replacements have been the bedrock of programs for many years, program planners are looking to new and innovative approaches for acquiring additional savings that can meet the changing needs of the grid. More savings opportunities are now being realized through behavioral and operational efficiency initiatives.

There was a recent study we conducted for the California Public Utilities Commission in response to the recently passed legislation. From that study, it was determined that significant new savings opportunities are potentially available through operational and behavior-based programs. These are aimed at tapping existing lighting controls and building information or energy management system infrastructures.

Other energy efficiency approaches being investigated are behavioral boosters or kick-starters. These can enhance savings across program administrator portfolios. The notion is to better understand consumers’ motives and needs.

The ways that both energy efficiency and demand response operate make them a natural part of the distributed energy resource paradigm. They are now being fully integrated into deployment and management.
Long-Run Stock Returns: Participating in the Real Economy

Roger G. Ibbotson and Peng Chen

In the study reported here, we estimated the forward-looking long-term equity risk premium by extrapolating the way it has participated in the real economy. We decomposed the 1926–2000 historical equity returns into supply factors— inflation, earnings, dividends, the P/E, the dividend-payout ratio, book value, return on equity, and GDP per capita. Key findings are the following. First, the growth in corporate productivity measured by earnings is in line with the growth of overall economic productivity. Second, P/E increases account for only a small portion of the total return of equity. The bulk of the return is attributable to dividend payments and nominal earnings growth (including inflation and real earnings growth). Third, the increase in the equity market relative to economic productivity can be more than fully attributed to the increase in the P/E. Fourth, a secular decline has occurred in the dividend yield and payout ratio, rendering dividend growth alone a poor measure of corporate profitability and future growth. Our forecast of the equity risk premium is only slightly lower than the pure historical return estimate. We estimate the expected long-term equity risk premium (relative to the long-term government bond yield) to be about 6 percentage points arithmetically and 4 percentage points geometrically.

Numerous authors are directing their efforts toward estimating expected returns on stocks incremental to bonds.¹ These equity risk premium studies can be categorized into four groups based on the approaches the authors took. The first group of studies has attempted to derive the equity risk premium from the historical returns of stocks and bonds; an example is Ibbotson and Sinquefield (1976a, 1976b). The second group, which includes our current work, has used fundamental information—such as earnings, dividends, or overall economic productivity—to measure the expected equity risk premium. The third group has adopted demand-side models that derive expected equity returns through the payoff demanded by investors for bearing the risk of equity investments, as in the Ibbotson, Diermeier, and Siegel (1984) demand framework and, especially, in the large body of literature following the seminal work of Mehra and Prescott (1985).² The fourth group has relied on opinions of investors and financial professionals garnered from broad surveys.

In the work reported here, we used supply-side models. We first used this type of model in Diermeier, Ibbotson, and Siegel (1984). Numerous other authors have used supply-side models, usually with a focus on the Gordon (1962) constant-dividend-growth model. For example, Siegel (1999) predicted that the equity risk premium will shrink in the future because of low current dividend yields and high equity valuations. Fama and French (2002), studying a longer time period (1872–1999), estimated a historical expected geometric equity risk premium of 2.55 percentage points when they used dividend growth rates and a premium of 4.32 percentage points when they used earnings growth rates.³ They argued that the increase in the P/E has resulted in a realized equity risk premium that is higher than the ex ante (expected) premium. Campbell and Shiller (2001) forecasted low returns because they believe the current market is overvalued. Arnott and Ryan (2001) argued that the forward-looking equity risk premium is actually negative. This conclusion was based on the low

Roger G. Ibbotson is professor of finance at Yale School of Management, New Haven, Connecticut. Peng Chen, CFA, is vice president and director of research at Ibbotson Associates, Chicago.
current dividend yield plus their forecast for very low dividend growth. Arnott and Bernstein (2002) argued similarly that the forward-looking equity risk premium is near zero or negative (see also Arnott and Asness 2003).

The survey results generally support somewhat higher equity risk premiums. For example, Welch (2000) conducted a survey of 226 academic financial economists about their expectations for the equity risk premium. The survey showed that they forecasted a geometric long-horizon equity risk premium of almost 4 pps. Graham and Harvey (2001) conducted a multiyear survey of chief financial officers of U.S. corporations and found their expected 10-year geometric average equity risk premium to range from 3.9 pps to 4.7 pps.

In this study, we linked historical equity returns with factors commonly used to describe the aggregate equity market and overall economic productivity. Unlike some studies, ours portrays results on a per share basis (per capita in the case of GDP). The factors include inflation, EPS, dividends per share, P/E, the dividend-payout ratio, book value per share, return on equity, and GDP per capita.

We first decomposed historical equity returns into various sets of components based on six methods. Then, we used each method to examine each of the components. Finally, we forecasted the equity risk premium through supply-side models using historical data.

Our long-term forecasts are consistent with the historical supply of U.S. capital market earnings and GDP per capita growth over the 1926–2000 period. In an important distinction from the forecasts of many others, our forecasts assume market efficiency and a constant equity risk premium. Thus, the current high P/E represents the market’s forecast of higher earnings growth rates. Furthermore, our forecasts are consistent with Miller and Modigliani (1961) theory, in that dividend-payout ratios do not affect P/E high earnings-retention rates (usually associated with low yields) imply higher per share future growth. To the extent that corporate cash is not used for reinvestment, we assumed it to be used to repurchase a company’s own shares or, perhaps more frequently, to purchase other companies’ shares. Finally, our forecasts treat inflation as a pass-through, so the entire analysis can be done in real terms.

Six Methods for Decomposing Returns

We present six different methods for decomposing historical equity returns. The first two methods (especially Method 1) are based entirely on historical returns. The other four methods are methods of the supply side. We evaluated each method and its components by applying historical data for 1926–2000. The historical equity return and EPS data used in this study were obtained from Wilson and Jones (2002). The average compound annual return for the stock market over the 1926–2000 period was 10.70 percent. The arithmetic annual average return was 12.56 percent, and the standard deviation was 19.67 percent. Because our methods used geometric averages, we focus on the components of the 10.70 percent geometric return. When we present our forecasts, we convert the geometric average returns to arithmetic average returns.

Method 1. Building Blocks. Ibbotson and Sinquefield developed a “building blocks” model to explain equity returns. The three building blocks are inflation, the real risk-free rate, and the equity risk premium. Inflation is represented by changes in the U.S. Consumer Price Index (CPI). The equity risk premium for year \(t \), \(ERP_t \), and the real risk-free rate for year \(t \), \(RRf_t \), are given by, respectively,

\[
ERP_t = \frac{1 + R_t - 1}{1 + Rf_t},
\]

and

\[
RRf_t = \frac{1 + Rf_t - 1}{1 + CPI_t},
\]

where \(R_t \) is the return of the U.S. stock market, represented by the S&P 500 Index, is

\[
R_t = (1 + CPI_t)(1 + RRf_t)(1 + ERP_t) - 1
\]

and \(Rf_t \) is the return of risk-free assets, represented by the income return of long-term U.S. government bonds.

The compound average for equity return was 10.70 percent for 1926–2000. For the equity risk premium, we can interpret that investors were compensated 5.24 pps a year for investing in common stocks rather than long-term risk-free assets (such as long-term U.S. government bonds). This calculation also shows that roughly half of the total historical equity return has come from the equity risk premium; the other half is from inflation and the long-term real risk-free rate. Average U.S. equity returns from 1926 through 2000 can be reconstructed as follows:

January/February 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
R = (1 + \bar{CPI})(1 + \bar{RRF})(1 + \bar{ERP}) - 1
\]

10.70\% = (1 + 3.08\%) × (1 + 2.05\%) × (1 + 5.24\%) - 1.

The first column in Figure 1 shows the decomposition of historical equity returns for 1926–2000 according to the building blocks method.

Method 2. Capital Gain and Income. The equity return, based on the form in which the return is distributed, can be broken into capital gain, \(cg\), and income return, \(Inc\). Income return of common stock is distributed to investors through dividends, whereas capital gain is distributed through price appreciation. Real capital gain, \(Rcg\), can be computed by subtracting inflation from capital gain. The equity return in period \(t\) can then be decomposed as follows:

\[
R_t = [(1 + CPI_t)(1 + Rcg_t) - 1] + Inc_t + Rinv_t,
\]

where \(Rinv\) is reinvestment return.

The average income return was calculated to be 4.28 percent in the study period, the average capital gain was 6.19 percent, and the average real capital gain was 3.02 percent. The reinvestment return averaged 0.20 percent from 1926 through 2000. For Method 2, the average U.S. equity return for 1926–2000 can thus be computed according to

\[
R = [(1 + CPI)(1 + Rcg) - 1] + Inc + Rinv,
\]

10.70\% = [(1 + 3.08\%) × (1 + 3.02\%) - 1] + 4.28\% + 0.20\%.

The second column in Figure 1 shows the decomposition of historical equity returns for 1926–2000 according to the capital gain and income method.

Method 3. Earnings. The real-capital-gain portion of the return in the capital gain and income method can be broken into growth in real EPS, \(g_{REPS}\), and growth in P/E, \(g_{P/E}\):

\[
Rcg_t = \frac{P_t}{P_{t-1}} - 1 = \frac{\frac{P_t}{E_t}}{\frac{P_{t-1}}{E_{t-1}}} - 1 = (1 + g_{P/E,t})(1 + g_{REPS,t}) - 1.
\]

Therefore, equity's total return can be broken into four components—inflation, growth in real EPS, growth in P/E, and income return:

\[
R_t = [(1 + CPI_t)(1 + g_{REPS_t})(1 + g_{P/E,t}) - 1] + Inc_t + Rinv_t.
\]

The real earnings of U.S. equity increased 1.75 percent annually between 1926 and 2000. The P/E, as Figure 2 illustrates, was 10.22 at the beginning of 1926 and 25.96 at the end of 2000. The highest P/E (136.50 and off the chart in Figure 2) was recorded during the Great Depression, in December 1932, when earnings were near zero, and the lowest in the period (7.07) was recorded in 1948. The average year-end P/E was 13.76.10
The U.S. equity returns from 1926 and 2000 can be computed according to the earnings method as follows:

\[
R = \left[(1 + CPI_t) \left(1 + \frac{g_{REPS,t}}{g_{P/E,t}} \right) - 1 \right] + Inc_t + Rinv_t
\]

\[
10.70\% = \left[(1 + 3.08\%) \times (1 + 1.75\%) \times (1 + 1.25\%) - 1 \right] + 4.28\% + 0.20\%.
\]

The third column in Figure 1 shows the decomposition of historical equity returns for 1926–2000 according to the earnings method.

Method 4. Dividends. In this method, real dividends, \(RDiv \), equal the real earnings times the dividend-payout ratio, \(PO \), or

\[
REPS_t = \frac{RDiv_t}{PO_t}
\]

therefore, the growth rate of earnings can be calculated by the difference between the growth rate of real dividends, \(g_{RDiv} \), and the growth rate of the payout ratio, \(g_{PO} \):

\[
(1 + g_{REPS,t}) = \frac{(1 + g_{RDiv,t})}{(1 + g_{PO,t})}
\]

If dividend growth and payout ratio growth are substituted for the earnings growth in Equation 6, equity total return in period \(t \) can be broken into (1) inflation, (2) the growth rate of \(P/E \), (3) the growth rate of the dollar amount of dividends after inflation, (4) the growth rate of the payout ratio, and (5) the dividend yield:

\[
R_t = \left[(1 + CPI_t) \left(1 + \frac{1 + g_{RDiv,t}}{1 + g_{PO,t}} \right) - 1 \right] + Inc_t + Rinv_t
\]

\[
10.70\% = \left[(1 + 3.08\%) \times (1 + 1.25\%) \times \left(\frac{1 + 1.23\%}{1 - 0.51\%} - 1 \right) \right] + 4.28\% + 0.20\%.
\]

The decomposition of equity return according to the dividends method is given in the fourth column of Figure 1.

Method 5. Return on Book Equity. Earnings can be broken into the book value of equity, \(BV \), and return on the book value of equity, \(ROE \):

\[
EPS_t = BV_t(ROE_t).
\]

The growth rate of earnings can be calculated from the combined growth rates of real book value, \(g_{RBV} \), and of \(ROE \):

\[
1 + g_{REPS,t} = (1 + g_{RBV,t})(1 + g_{ROE,t}).
\]
In this method, BV growth and ROE growth are substituted for earnings growth in the equity return decomposition, as shown in the fifth column of Figure 1. Then, equity’s total return in period t can be computed by

$$R_t = [(1 + CPI_t)(1 + s_{P/E,t})(1 + s_{RV,t})(1 + s_{ROE,t}) - 1] + InC_t + Rinv_t. \quad (12)$$

We estimated that the average growth rate of the book value after inflation was 1.46 percent for 1926–2000. The average ROE growth a year during the same time period was calculated to be 0.31 percent.

Method 6. GDP per Capita. Diermeier et al. proposed a framework to analyze the aggregate supply of financial asset returns. Because we were interested only in the supply model of the equity returns in this study, we developed a slightly different supply model based on the growth of economic productivity. In this method, the market return over the long run is decomposed into (1)
inflation, (2) the real growth rate of overall economic productivity (GDP per capita, \(g_{GDP/POP}\)), (3) the increase in the equity market relative to overall economic productivity (the increase in the factor share of equities in the overall economy, \(g_{FS}\)), and (4) dividend yields. This model is expressed by the following equation:

\[
R_t = [(1 + CPI_t)(1 + g_{GDP/POP,t})(1 + g_{FS,t}) - 1] \\
+ Inc_t + Rinvt.
\]

(13)

Figure 5 shows the growth of the U.S. stock market, GDP per capita, earnings, and dividends initialized to unity ($1.00) at the end of 1925. The level of all four factors dropped significantly in the early 1930s. For the whole period, GDP per capita slightly outgrew earnings and dividends, but all four factors grew at approximately the same rate. In other words, overall economic productivity increased slightly faster than corporate earnings or dividends over the past 75 years. Although GDP per capita outgrew earnings and dividends, the overall stock market price grew faster than GDP per capita. The primary reason is that the market P/E increased 2.54 times during the same time period.

Average equity market return can be calculated according to this model as follows:

\[
\bar{R} = [(1 + CPI_t)(1 + g_{GDP/POP,t})(1 + g_{FS,t}) - 1] \\
+ Inc_t + Rinvt
\]

10.70% = [(1 + 3.08%) (1 + 2.04%) (1 + 0.96%) - 1] \\
+ 4.28% + 0.20%.

We calculated the average annual increase in the factor share of the equity market relative to the overall economy to be 0.96 percent. The increase in this factor share is less than the annual increase of the P/E (1.25 percent) over the same time period. This finding suggests that the increase in the equity market share relative to the overall economy can be fully attributed to the increase in its P/E.

The decomposition of historical equity returns by the GDP per capita model is given in the last column of Figure 1.

Summary of Equity Returns and Components. The decomposition of the six models into their components can be compared by looking at Figure 1. The differences among the five models arise from the different components that represent the capital gain portion of the equity returns.

This analysis produced several important findings. First, as Figure 5 shows, the growth in corporate earnings has been in line with the growth of overall economic productivity. Second, P/E increases accounted for only 1.25 pps of the 10.70 percent total equity return. Most of the return has been attributable to dividend payments and nominal earnings growth (including inflation and real earnings growth). Third, the increase in the relative factor share of equity can be fully attributed to the increase in P/E. Overall, economic productivity outgrew both corporate earnings and dividends from 1926 through 2000. Fourth, despite the record earnings growth in the 1990s, the dividend yield and the payout ratio declined sharply, which renders dividends alone a poor measure for corporate profitability and future earnings growth.
Long-Term Forecast of Equity Returns

Supply-side models can be used to forecast the long-term expected equity return. The supply of stock market returns is generated by the productivity of the corporations in the real economy. Over the long run, the equity return should be close to the long-run supply estimate. In other words, investors should not expect a much higher or a much lower return than that produced by the companies in the real economy. Therefore, we believe investors' expectations for long-term equity performance should be based on the supply of equity returns produced by corporations.

The supply of equity returns consists of two main components—current returns in the form of dividends and long-term productivity growth in the form of capital gains. In this section, we focus on two of the supply-side models—the earnings model and the dividends model (Methods 3 and 4). We studied the components of these two models by identifying which components are tied to the supply of equity returns and which components are not. Then, we estimated the long-term, sustainable return based on historical information about these supply components.

Model 3F. Forward-Looking Earnings. According to the earnings model (Equation 6), the historical equity return can be broken into four components—the income return, inflation, the growth in real EPS, and the growth in P/E. Only the first three of these components are historically supplied by companies. The growth in P/E reflects investors' changing predictions of future earnings growth. Although we forecasted that the past supply of corporate growth will continue, we did not forecast any change in investor predictions. Thus, the supply side of equity return, SR, includes only inflation, the growth in real EPS, and income return.\(^\text{14}\)

\[
SR_t = [(1 + CPI_t)(1 + g_{REPS,t}) - 1] + Inc_t + Rinv_t. \quad (14)
\]

The long-term supply of U.S. equity returns based on the earnings model is 9.37 percent, calculated as follows:

\[
\bar{SR} = [(1 + \bar{CPI})(1 + \bar{g}_{REPS}) - 1] + \bar{Inc} + \bar{Rinv}
\]

9.37% = [(1 + 3.08%)(1 + 1.75%) - 1] + 4.28% + 0.20%.

The decomposition according to Model 3F is compared with that of Method 3 (based on historical data plus the estimated equity risk premium) in the first two columns of Figure 6.

Figure 6. Historical vs. Current Dividend-Yield Forecasts Based on Earnings and Dividends Models

[Diagram showing historical vs. current dividend-yield forecasts based on earnings and dividends models.]

Notes: Inc(00) is the dividend yield in year 2000. FG is the real earnings growth rate, forecasted to be 4.98 percent. Model 4F2 corrects Model 4F as follows: add 1.46 pps for M&M consistency and add 2.24 pps for the additional growth, AG, implied by the high current market P/E.

©2003, AIMR®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
The supply-side equity risk premium, \(ERP \), based on the earnings model is calculated to be 3.97 pps:

\[
ERP = \frac{(1 + \bar{S}_R)}{(1 + CPI)(1 + RR)} - 1 \\
= \frac{1 + 9.37\%}{(1 + 3.08\%)(1 + 2.05\%)} - 1 \\
= 3.97\%.
\]

The \(ERP \) is taken into account in the third column of Figure 6.

Model 4F: Forward-Looking Dividends.

The forward-looking dividends model is also referred to as the constant-dividend-growth model (or the Gordon model). In it, the expected equity return equals the dividend yield plus the expected dividend growth rate. The supply of the equity return in the Gordon model includes inflation, the growth in real dividends, and dividend yield.

As is commonly done with the constant-dividend-growth model, we used the current dividend yield of 1.10 percent instead of the historical dividend yield of 4.28 percent. This decision reduced the estimate of the supply of equity returns to 5.44 percent:

\[
\bar{S}_R = \left(\frac{1 + CPI}{1 + S_{RD}}\right) - 1 + Inc(00) + R_{inv} \\
= 5.54\% = (1 + 3.08\%)(1 + 1.23\%)(1 + 1.10\%)(1 + 0.20\%),
\]

where \(Inc(00) \) is the dividend yield in year 2000. The equity risk premium was estimated to be 0.24 pps:

\[
ERP = \frac{(1 + \bar{S}_R)}{(1 + CPI)(1 + RR)} - 1 \\
= \frac{1 + 5.54\%}{(1 + 3.08\%)(1 + 2.05\%)} - 1 \\
= 0.24\%.
\]

Figure 6 allows a comparison of forecasted equity returns including the equity risk premium estimates based on the earnings model and the dividends model. In the next section, we show why we disagree with the dividends model and prefer to use the earnings model to estimate the supply-side equity risk premium.

Differences between the Earnings Model and the Dividends Model. The earnings model (3F) and the dividends model (4F) differ in essentially two ways. The differences relate to the low current payout ratio and the high current P/E. These two differences are reconciled in what we will call Model 4F2 shown in the two right-hand columns of Figure 6. First, to reflect growth in productivity, the earnings model uses historical earnings growth whereas the dividend model uses historical dividend growth. Historical dividend growth underestimates historical earnings growth, however, because of the decrease in the payout ratio. Overall, the dividend growth underestimated the increase in earnings productivity by 0.51 pps a year for 1926–2000. Today's low dividend yield also reflects the current payout ratio, which is at a historical low of 31.8 percent (compared with the historical average of 59.2 percent). Applying such a low rate to the future would mean that even more earnings would be retained in the future than in the historical period studied. But had more earnings been retained, the historical earnings growth would have been 0.95 pps a year higher, so (assuming the historical average dividend-payout ratio) the current yield of 1.10 percent would need to be adjusted upward by 0.95 pps.

By using the current dividend-payout ratio in the dividend model, Model 4F creates two errors, both of which violate Miller and Modigliani theory. A company’s dividend-payout ratio affects only the form in which shareholders receive their returns (i.e., dividends versus capital gains), not their total returns. The current low dividend-payout ratio should not affect our forecast. Companies today probably have such low payout ratios to reduce the tax burden on their investors. Instead of paying dividends, many companies reinvest earnings, buy back shares, or use the cash to purchase other companies. Therefore, the dividend growth model has to be upwardly adjusted by 1.46 pps (0.51 pp plus 0.95 pp) so as not to violate M&M theory.

The second difference between Model 3F and Model 4F is related to the fact that the current P/E (25.96) is much higher than the historical average (13.76). The current yield (1.10 percent) is at a historic low—because of the previously mentioned low payout ratio and because of the high P/E. Even assuming the historical average payout ratio, the current dividend yield would be much lower than its historical average (2.05 percent versus 4.28 percent). This difference is geometrically estimated to be 2.28 pps a year. In Figure 6, the additional growth, \(AG \), accounts for 2.28 pps of the return; in the last column, the forecasted real earnings growth rate, \(FG \), accounts for 4.98 pps. The high P/E could be caused by (1) mispricing, (2) a low required rate of return, and/or (3) a high expected future earnings growth rate. Mispricing as a cause is eliminated by our assumption of market efficiency, and a low required rate of return is eliminated by our assumption of a constant equity risk premium through the past and future periods that we are trying to estimate. Thus, we interpret the high P/E as the market expectation of higher earnings growth and the following equation is the model for
Model 4F2, which reconciles the differences between the earnings model and the dividends model:

\[
\bar{SR} = \left[1 + \frac{\bar{CPI}}{1 + \bar{g}_{RD}}(1 - \bar{g}_{PD}) - 1\right] + Inc(00) + AY + AG + Rin
\]

9.67% = \left\{\left[(1 + 3.08\%) + (1 + 1.23\%)(1 + 0.51\%)(1 - 1.30\%)\right] + 1.10\% + 0.95\% + 2.28\% + 0.20\%\right\}.

To summarize, the earnings model and the dividends model have three differences. The first two differences relate to the dividend-payout ratio and are direct violations of M&M. The third difference results from the expectation of higher-than-average earnings growth, which is predicted by the high current P/E. Reconciling these differences reconciles the earnings and dividends models.

Geometric vs. Arithmetic. The estimated equity return (9.37 percent) and equity risk premium (3.97 pps) are geometric averages. The arithmetic average, however, is often used in portfolio optimization. One way to convert the geometric average into an arithmetic average is to assume the returns are independently lognormally distributed over time. Then, the arithmetic average, \(\bar{R_A}\), and geometric average, \(\bar{R_C}\), have roughly the following relationship:

\[
\bar{R_A} = \bar{R_C} + \frac{\sigma^2}{2}, \quad (15)
\]

where \(\sigma^2\) is the variance.

The standard deviation of equity returns is 19.67 percent. Because almost all the variation in equity returns is from the equity risk premium, rather than the risk-free rate, we need to add 1.93 pps to the geometric estimate of the equity risk premium to convert the returns into arithmetic form, so \(\bar{R_A} = \bar{R_C} + 1.93\) pps. The arithmetic average equity risk premium then becomes 5.90 pps for the earnings model.

To summarize, the long-term supply of equity return is estimated to be 9.37 percent (6.09 percent after inflation), conditional on the historical average risk-free rate. The supply-side equity risk premium is estimated to be 3.97 pps geometrically and 5.90 pps arithmetically.

Conclusions

We adopted a supply-side approach to estimate the forward-looking, long-term, sustainable equity return and equity risk premium. We analyzed historical equity returns by decomposing returns into factors commonly used to describe the aggregate equity market and overall economic productivity—inflation, earnings, dividends, P/E, the dividend-payout ratio, BV, ROE, and GDP per capita. We examined each factor and its relationship to the long-term supply-side framework. We used historical information in our supply-side models to forecast the equity risk premium. A complete tabulation of all the numbers from all models and methods is presented in Appendix A.

Contrary to several recent studies on the equity risk premium declaring the forward-looking premium to be close to zero or negative, we found

Appendix A. Summary Tabulations for Forecasted Equity Return

<table>
<thead>
<tr>
<th>Method/Model</th>
<th>Sum</th>
<th>Inflation</th>
<th>Real Risk-Free Rate</th>
<th>Equity Risk Premium</th>
<th>Real Capital Gain</th>
<th>(g(\text{Real EPS}))</th>
<th>(g(\text{Real Div}))</th>
<th>(-g(\text{Payout Ratio}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Historical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method 1</td>
<td>10.70</td>
<td>3.08</td>
<td>2.05</td>
<td>5.24</td>
<td>3.02</td>
<td>1.75</td>
<td>1.23</td>
<td>0.51</td>
</tr>
<tr>
<td>Method 2</td>
<td>10.70</td>
<td>3.08</td>
<td>2.05</td>
<td>5.24</td>
<td>3.02</td>
<td>1.75</td>
<td>1.23</td>
<td>0.51</td>
</tr>
<tr>
<td>Method 3</td>
<td>10.70</td>
<td>3.08</td>
<td>2.05</td>
<td>5.24</td>
<td>3.02</td>
<td>1.75</td>
<td>1.23</td>
<td>0.51</td>
</tr>
<tr>
<td>Method 4</td>
<td>10.70</td>
<td>3.08</td>
<td>2.05</td>
<td>5.24</td>
<td>3.02</td>
<td>1.75</td>
<td>1.23</td>
<td>0.51</td>
</tr>
<tr>
<td>Method 5</td>
<td>10.70</td>
<td>3.08</td>
<td>2.05</td>
<td>5.24</td>
<td>3.02</td>
<td>1.75</td>
<td>1.23</td>
<td>0.51</td>
</tr>
<tr>
<td>Method 6</td>
<td>10.70</td>
<td>3.08</td>
<td>2.05</td>
<td>5.24</td>
<td>3.02</td>
<td>1.75</td>
<td>1.23</td>
<td>0.51</td>
</tr>
<tr>
<td>B. Forecast with historical dividend yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3F</td>
<td>9.37</td>
<td>3.08</td>
<td>2.05</td>
<td>3.97</td>
<td>1.75</td>
<td>1.23</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Model 3F (ERP)</td>
<td>9.37</td>
<td>3.08</td>
<td>2.05</td>
<td>3.97</td>
<td>1.75</td>
<td>1.23</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>C. Forecast with current dividend yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 4F</td>
<td>5.44</td>
<td>3.08</td>
<td>2.05</td>
<td>0.24</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 4F (ERP)</td>
<td>5.44</td>
<td>3.08</td>
<td>2.05</td>
<td>0.24</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 4F2</td>
<td>9.37</td>
<td>3.08</td>
<td>2.05</td>
<td>0.24</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 4F3 (FG)</td>
<td>9.37</td>
<td>3.08</td>
<td>2.05</td>
<td>0.24</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*2000 dividend yield.

*Assuming the historical average dividend-payout ratio, the 2000 dividend yield is adjusted up 0.95 pps.
the long-term supply of the equity risk premium to be only slightly lower than the straight historical estimate. We estimated the equity risk premium to be 3.97 pps in geometric terms and 5.90 pps on an arithmetic basis. These estimates are about 1.25 pps lower than the historical estimates. The differences between our estimates and the ones provided by several other recent studies result principally from the inappropriate assumptions those authors used, which violate the M&M theorem. Also, our models interpret the current high P/E as the market forecasting high future growth rather than a low discount rate or an overvaluation. Our estimate is in line with both the historical supply measures of public corporations (i.e., earnings) and overall economic productivity (GDP per capita).

The implication of an estimated equity risk premium being far closer to the historical premium than zero or negative is that stocks are expected to outperform bonds over the long run. For long-term investors, such as pension funds and individuals saving for retirement, stocks should continue to be a favored asset class in a diversified portfolio. Because our estimate of the equity risk premium is lower than historical performance, however, some investors should lower their equity allocations and/or increase their savings rate to meet future liabilities.

Notes

1. In our study, we defined the equity risk premium as the difference between the long-run expected return on stocks and the long-term risk-free (U.S. Treasury) yield. [Some other studies, including Ibbotson and Sinquefield (1976a, 1976b) used short-term U.S. T-bills as the risk-free rate.] We did all of our analysis in geometric form, then converted to arithmetic data at the end, so the estimate is expressed in both arithmetic and geometric forms.

2. See also Mehra (2003).

3. Comparing estimates from one study with another is sometimes difficult because of changing points of reference. The equity risk premium estimate can be significantly different simply because the authors used arithmetic versus geometric returns, a long-term risk-free rate versus a short-term risk-free rate, bond income return (yield) versus bond total return, or long-term strategic forecasting versus short-term market-timing estimates. We provide a detailed discussion of arithmetic versus geometric returns in the section "The Long-Term Forecast."

4. Welch’s survey reported a 7 pp equity risk premium measured as the arithmetic difference between equity and T-bill returns. To make an apples-to-apples comparison, we converted the 7 pp number into a geometric equity risk premium relative to the long-term U.S. government bond income return, which produced an estimate of almost 4 pps.

5. For further discussion of approaches to estimating the equity risk premium, see the presentations and discussions at www.aimrpubs.org/ap/home.html from AIMR’s Equity Risk Premium Forum.

6. Each per share quantity is per share of the S&P 500 portfolio. Hereafter, we will merely refer to each factor without always mentioning “per share”—for example, “dividends” instead of “dividends per share.”

7. Many theoretical models suggest that the equity risk premium is dynamic over time. Recent empirical studies (e.g., Goyal and Welch 2001; Ang and Bekaert 2001) found no evidence, however, of long-horizon return predictability by using either earnings or dividend yields. Therefore, instead

<table>
<thead>
<tr>
<th>g(BV)</th>
<th>g(ROE)</th>
<th>g(P/E)</th>
<th>g(Real GDP/POP)</th>
<th>g(US-GDP/POP)</th>
<th>Income Return</th>
<th>Reinvestment + Interaction</th>
<th>Additional Growth</th>
<th>Forecasted Earnings Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.33</td>
<td></td>
<td>4.28</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
<td>4.28</td>
<td>0.34</td>
<td>4.28</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>4.28</td>
<td>0.31</td>
<td>4.28</td>
<td>0.31</td>
<td>4.28</td>
<td>0.32</td>
<td>0.26</td>
</tr>
<tr>
<td>1.25</td>
<td>0.31</td>
<td>2.04</td>
<td>0.96</td>
<td>4.28</td>
<td>0.26</td>
<td>2.05</td>
<td>0.21</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>1.0^a</td>
<td>0.03</td>
<td>1.10^b</td>
<td>0.07</td>
<td>2.05^b</td>
<td>0.21</td>
<td>1.10^c</td>
<td>4.98</td>
</tr>
</tbody>
</table>

January/February 2003 97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
of trying to build a model for a dynamic equity risk premium, we assumed that the long-term equity risk premium is constant. This assumption provided a benchmark for analysis and discussion.

8. We updated the series with data from Standard and Poor's to include the year 2000.

9. Appendix A summarizes all the tabulations we discuss.

10. The average P/E was calculated by reversing the average earnings-to-price ratio for 1926–2000.

11. Book values were calculated from the book-to-market ratios reported in Vuolteenaho (2000). The aggregate book-to-market ratio was 2.0 in 1928 and 4.1 in 1999. We used the growth rate in book value calculated for 1928–1999 as the proxy for the growth rate for 1926–2000. The average ROE growth rate was calculated from the derived book value and the earnings data.

12. Instead of assuming a constant equity factor share, we examined the historical growth rate of the equity factor share relative to the overall growth of the economy.

13. We did not use Methods 1, 2, and 5 in forecasting because the forecasts of Methods 1 and 2 would be identical to the historical estimate reported in the previous section and because the forecast of Method 5 would require more complete BV and ROE data than we currently have available. We did use Method 6 to forecast future stock returns but found the results to be very similar to those for the earnings model; therefore, we do not report the results here.

14. This model uses historical income return as an input for reasons that are discussed in the section “Differences between the Earnings Model and the Dividends Model.”

15. The current tax code provides incentives for companies to distribute cash through share repurchases rather than through dividends. Green and Hollifield (2001) found that the tax savings through repurchases are on the order of 40–50 percent of the taxes that investors would have paid if dividends were distributed.

16. Contrary to efficient market models, Shiller (2000) and Campbell and Shiller argued that the P/E appears to forecast future stock price change.

17. We could also use the GDP per capita model to estimate the long-term equity risk premium. This model implies long-run stock returns should be in line with the productivity of the overall economy. The equity risk premium estimated by using the GDP per capita model would be slightly higher than the ERP estimate from the earnings model because GDP per capita grew slightly faster than corporate earnings in the study period. A similar approach can be found in Diermeier et al., who proposed using the growth rate of the overall economy as a proxy for the growth rate in aggregate wealth in the long run.

References

The information presented in the 2015 SIBBI® Market Report has been obtained with the greatest of care from sources believed to be reliable, but is not guaranteed to be complete, accurate or timely.

Morningstar and its affiliated companies expressly disclaim any liability, including incidental or consequential damages, arising from the use of this publication or any errors or omissions that may be contained in it.

© 2015 Morningstar. All rights reserved.

No part of this publication may be reproduced or used in any other form or by any other means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without Morningstar’s prior, written permission. To obtain permission, please call Product Sales or write to the address below. Your request should specify the data or other information you wish to use and the manner in which you wish to use it. In addition, you will need to include copies of any charts, tables, and/or figures that you have created based on that information. There is a $1,500 processing fee per request. There may be additional fees depending on your proposed usage.

Published by:

Morningstar, Inc.
22 W. Washington Street
Chicago, Illinois 60602

Main +1 312 696-6000
Product Sales +1 888 298-3647
Fax +1 312 696-6010
global.morningstar.com/DataPublications
Table of Contents

Results for the 2014 Capital Markets

<table>
<thead>
<tr>
<th>Graph 1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wealth Indexes of Investments in the U.S. Capital Markets</td>
<td>6</td>
</tr>
<tr>
<td>Table 1</td>
<td>7</td>
</tr>
<tr>
<td>Basic Series: Annual Total Returns in Percent</td>
<td>7</td>
</tr>
<tr>
<td>Table 2</td>
<td>8</td>
</tr>
<tr>
<td>Portfolios: Annual Total Returns in Percent</td>
<td>9</td>
</tr>
<tr>
<td>Table 3</td>
<td>9</td>
</tr>
<tr>
<td>Basic Series: Monthly and Quarterly Returns in Percent</td>
<td>10</td>
</tr>
<tr>
<td>Table 4</td>
<td>10</td>
</tr>
<tr>
<td>Portfolios: Monthly and Quarterly Returns in Percent</td>
<td>11</td>
</tr>
<tr>
<td>Table 5</td>
<td>11</td>
</tr>
<tr>
<td>Basic Series: Monthly Index Values</td>
<td>12</td>
</tr>
<tr>
<td>Table 6</td>
<td>12</td>
</tr>
<tr>
<td>Portfolios: Monthly Index Values</td>
<td>13</td>
</tr>
<tr>
<td>Table 7</td>
<td>13</td>
</tr>
<tr>
<td>Basic Series and Portfolios: Summary Statistics of Annual Total Returns in Percent</td>
<td>14</td>
</tr>
<tr>
<td>Table 8</td>
<td>14</td>
</tr>
<tr>
<td>Derived Series: Monthly and Quarterly Returns in Percent</td>
<td>15</td>
</tr>
<tr>
<td>Table 9</td>
<td>15</td>
</tr>
<tr>
<td>Derived Series: Monthly Index Values</td>
<td>16</td>
</tr>
<tr>
<td>Table 10</td>
<td>16</td>
</tr>
<tr>
<td>Long-Horizon Expected Equity Risk Premium and Size Premium</td>
<td>17</td>
</tr>
<tr>
<td>Glossary</td>
<td>17</td>
</tr>
</tbody>
</table>
Results for 2014 Capital Markets

Large-Cap Stocks
The market for U.S. large-capitalization stocks is represented here by the total return on the S&P 500 Index (the total return includes reinvestment of dividends). Large-cap stocks for the year posted a total return of 13.69%, down from 32.39% in 2013. Eight months of 2014 produced positive returns; February delivered the highest return at 4.57%, while January’s -3.46% was the lowest.

An index of large-cap stock total returns, started at $1.00 on Dec. 31, 1925, increased to $5,316.85 by the end of 2014. That was up from $4,676.88 a year earlier.

Small-Cap Stocks
Small-cap stocks delivered a total return of 2.92% in 2014, down from 45.07% the prior year. Seven months of 2014 produced positive returns; October posted the highest return at 6.52%, while September and July saw losses of 5.69% and 5.84%, respectively.

The cumulative wealth index grew to $27,419.32 from $1.00 at the end of 1925 and $26,641.17 at the end of 2013.

Long-Term Corporate Bonds
Long-term corporate bonds (with maturity near 20 years) returned 17.28% in 2014, well ahead of the 7.07% loss the previous year. Total returns were positive in 11 months of 2014, with August having the highest return of 3.56%, and September, at -2.71%, the lowest.

The bond default premium, or net return from investing in long-term corporate bonds rather than long-term government bonds of equal maturity, was negative at -5.32% in 2014, compared with 4.84% in 2013.

One dollar invested in long-term corporate bonds at year-end 1925 grew to $189.76 at the end of 2014, up from $161.80 a year earlier.

Long-Term Government Bonds
Long-term government bonds (with maturity near 20 years) returned 23.87% in 2014. This return was significantly higher than the -11.36% return in 2013 and more than four times the long-term average return (1926–2014) of 5.7%.

Ten months produced positive returns, with January’s the highest at 4.99%, and the -1.72% in September the lowest.

A wealth index of long-term government bonds grew to $135.18 at year-end 2014 from $1.00 at year-end 1925. The capital appreciation index of long-term government bond returns closed at $1.44 at year’s end, up from $1.19 in 2013. December’s close hit an all-time high, finally eclipsing the previous high set in February 1946.
Results for 2014 Capital Markets

Intermediate-Term Government Bonds
The total return on intermediate-term government bonds (with maturity near five years) in 2014 was 3.12%, above the -1.07% in 2013, but below the long-term (1926–2014) average return of 5.3%. Five months had positive returns, with October posting the highest return of 2.26% while June had the lowest return at -1.03%.

The wealth index of intermediate-term government bonds grew to $95.88 as of year-end 2014 after starting at $1.00 at year-end 1925. The index dipped in 2013 to $92.98.

Treasury Bills
An investment in bills with approximately 30 days to maturity returned 0.02% in 2014, repeating the return of 2013 and trailing the long-term average (1926–2014) of 3.5%. The cumulative index of Treasury bill total returns ended the year at $20.58, unchanged from a year earlier. Because monthly Treasury bill returns are nearly always positive, each monthly index value typically sets a new all-time high.

Inflation
Inflation decreased to 0.76% in 2014, compared to 1.50% in 2013. The result is lower than the long-term historical average (1926–2014) of 2.9%. Inflation has remained below 5% for 32 of the last 33 years (the exception was the 6.11% rate in 1990).

A cumulative inflation index, beginning at $1.00 at year-end 1925, finished 2014 at $13.10, up from $13.00 at year-end 2013. That is, a “basket” of consumer goods and services that cost $1.00 in 1925 would cost $13.10 today. The two baskets are not identical, but are intended to be comparable.
Graph 1
Wealth Indexes of Investments in the U.S. Capital Markets
Index (Dec. 31, 1925 = $1.00)

From December 1925 to December 2014
Table 1
Basic Series: Annual Total Returns in Percent

<table>
<thead>
<tr>
<th>Year</th>
<th>Large-Cap Stocks</th>
<th>Small-Cap Stocks</th>
<th>Long-Term Corporate Bonds</th>
<th>Long-Term Government Bonds</th>
<th>Intermediate-Term Government Bonds</th>
<th>U.S. Treasury Bills</th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>4.91</td>
<td>5.69</td>
<td>5.87</td>
<td>7.81</td>
<td>1.36</td>
<td>2.98</td>
<td>3.42</td>
</tr>
<tr>
<td>2006</td>
<td>15.79</td>
<td>16.17</td>
<td>3.24</td>
<td>1.19</td>
<td>3.14</td>
<td>4.80</td>
<td>2.54</td>
</tr>
<tr>
<td>2007</td>
<td>5.49</td>
<td>-5.22</td>
<td>2.60</td>
<td>9.88</td>
<td>10.05</td>
<td>4.66</td>
<td>4.08</td>
</tr>
<tr>
<td>2008</td>
<td>-37.00</td>
<td>-36.72</td>
<td>8.78</td>
<td>25.87</td>
<td>13.11</td>
<td>1.60</td>
<td>0.09</td>
</tr>
<tr>
<td>2009</td>
<td>26.46</td>
<td>28.09</td>
<td>3.02</td>
<td>-14.90</td>
<td>2.40</td>
<td>0.10</td>
<td>2.72</td>
</tr>
<tr>
<td>2010</td>
<td>15.06</td>
<td>31.26</td>
<td>12.44</td>
<td>10.14</td>
<td>7.12</td>
<td>0.12</td>
<td>1.50</td>
</tr>
<tr>
<td>2011</td>
<td>2.11</td>
<td>-3.26</td>
<td>17.95</td>
<td>28.23</td>
<td>9.46</td>
<td>0.04</td>
<td>2.96</td>
</tr>
<tr>
<td>2012</td>
<td>16.00</td>
<td>18.24</td>
<td>10.68</td>
<td>3.31</td>
<td>2.07</td>
<td>0.06</td>
<td>1.74</td>
</tr>
<tr>
<td>2013</td>
<td>32.39</td>
<td>45.07</td>
<td>-7.07</td>
<td>-11.36</td>
<td>-1.07</td>
<td>0.02</td>
<td>1.50</td>
</tr>
<tr>
<td>2014</td>
<td>13.69</td>
<td>2.92</td>
<td>17.28</td>
<td>23.87</td>
<td>3.12</td>
<td>0.02</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Table 2
Portfolios: Annual Total Returns in Percent

<table>
<thead>
<tr>
<th>Year</th>
<th>100% Large-Cap Stocks</th>
<th>90% Stocks 10% Bonds</th>
<th>70% Stocks 30% Bonds</th>
<th>50% Stocks 50% Bonds</th>
<th>30% Stocks 70% Bonds</th>
<th>10% Stocks 90% Bonds</th>
<th>100% Long-Term Gov. Bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>10.88</td>
<td>10.70</td>
<td>10.29</td>
<td>9.84</td>
<td>9.34</td>
<td>8.80</td>
<td>8.51</td>
</tr>
<tr>
<td>2005</td>
<td>4.91</td>
<td>5.28</td>
<td>5.96</td>
<td>6.58</td>
<td>7.12</td>
<td>7.60</td>
<td>7.81</td>
</tr>
<tr>
<td>2006</td>
<td>15.79</td>
<td>14.30</td>
<td>11.33</td>
<td>8.40</td>
<td>5.49</td>
<td>2.61</td>
<td>1.19</td>
</tr>
<tr>
<td>2007</td>
<td>5.49</td>
<td>6.03</td>
<td>7.03</td>
<td>7.95</td>
<td>8.79</td>
<td>9.54</td>
<td>9.88</td>
</tr>
<tr>
<td>2008</td>
<td>-37.00</td>
<td>-32.14</td>
<td>-21.55</td>
<td>-9.72</td>
<td>3.43</td>
<td>18.02</td>
<td>25.87</td>
</tr>
<tr>
<td>2010</td>
<td>15.06</td>
<td>14.97</td>
<td>14.52</td>
<td>13.70</td>
<td>12.53</td>
<td>11.02</td>
<td>10.14</td>
</tr>
<tr>
<td>2011</td>
<td>2.11</td>
<td>4.77</td>
<td>10.07</td>
<td>15.34</td>
<td>20.56</td>
<td>25.70</td>
<td>28.23</td>
</tr>
<tr>
<td>2012</td>
<td>16.00</td>
<td>14.83</td>
<td>12.42</td>
<td>9.91</td>
<td>7.32</td>
<td>4.66</td>
<td>3.31</td>
</tr>
<tr>
<td>2013</td>
<td>32.39</td>
<td>27.33</td>
<td>17.70</td>
<td>8.69</td>
<td>0.26</td>
<td>-7.62</td>
<td>-11.36</td>
</tr>
<tr>
<td>2014</td>
<td>13.69</td>
<td>14.73</td>
<td>16.80</td>
<td>18.84</td>
<td>20.87</td>
<td>22.87</td>
<td>23.87</td>
</tr>
</tbody>
</table>

Table 4
Portfolios: Monthly and Quarterly Returns in Percent

<table>
<thead>
<tr>
<th>Month</th>
<th>100% Large-Cap Stocks</th>
<th>90% Stocks 10% Bonds</th>
<th>70% Stocks 30% Bonds</th>
<th>50% Stocks 50% Bonds</th>
<th>30% Stocks 70% Bonds</th>
<th>10% Stocks 90% Bonds</th>
<th>100% Long-Term Govt Bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/13</td>
<td>2.53</td>
<td>2.11</td>
<td>1.28</td>
<td>0.45</td>
<td>-0.39</td>
<td>1.22</td>
<td>-1.64</td>
</tr>
<tr>
<td>1/14</td>
<td>-3.46</td>
<td>-2.61</td>
<td>-0.92</td>
<td>0.77</td>
<td>2.46</td>
<td>4.19</td>
<td>4.99</td>
</tr>
<tr>
<td>2/14</td>
<td>4.57</td>
<td>4.11</td>
<td>3.17</td>
<td>2.24</td>
<td>1.30</td>
<td>0.37</td>
<td>-0.10</td>
</tr>
<tr>
<td>3/14</td>
<td>0.84</td>
<td>0.88</td>
<td>0.97</td>
<td>1.05</td>
<td>1.14</td>
<td>1.22</td>
<td>1.26</td>
</tr>
<tr>
<td>4/14</td>
<td>0.74</td>
<td>0.80</td>
<td>0.93</td>
<td>1.06</td>
<td>1.19</td>
<td>1.32</td>
<td>1.38</td>
</tr>
<tr>
<td>5/14</td>
<td>2.35</td>
<td>2.38</td>
<td>2.46</td>
<td>2.53</td>
<td>2.60</td>
<td>2.67</td>
<td>2.71</td>
</tr>
<tr>
<td>6/14</td>
<td>2.07</td>
<td>1.89</td>
<td>1.53</td>
<td>1.17</td>
<td>0.82</td>
<td>0.46</td>
<td>0.28</td>
</tr>
<tr>
<td>7/14</td>
<td>-1.38</td>
<td>-1.13</td>
<td>-0.64</td>
<td>-0.14</td>
<td>0.35</td>
<td>0.85</td>
<td>1.10</td>
</tr>
<tr>
<td>8/14</td>
<td>4.00</td>
<td>3.91</td>
<td>3.73</td>
<td>3.56</td>
<td>3.38</td>
<td>3.20</td>
<td>3.11</td>
</tr>
<tr>
<td>9/14</td>
<td>-1.40</td>
<td>-1.43</td>
<td>-1.50</td>
<td>-1.56</td>
<td>-1.62</td>
<td>-1.68</td>
<td>-1.72</td>
</tr>
<tr>
<td>10/14</td>
<td>2.44</td>
<td>2.55</td>
<td>2.77</td>
<td>2.99</td>
<td>3.21</td>
<td>3.43</td>
<td>3.54</td>
</tr>
<tr>
<td>11/14</td>
<td>2.69</td>
<td>2.58</td>
<td>2.37</td>
<td>2.16</td>
<td>1.95</td>
<td>1.74</td>
<td>1.64</td>
</tr>
<tr>
<td>12/14</td>
<td>-0.25</td>
<td>0.13</td>
<td>0.90</td>
<td>1.67</td>
<td>2.44</td>
<td>3.20</td>
<td>3.59</td>
</tr>
<tr>
<td>2014</td>
<td>13.69</td>
<td>14.73</td>
<td>16.80</td>
<td>18.84</td>
<td>20.87</td>
<td>22.87</td>
<td>23.87</td>
</tr>
</tbody>
</table>

Quarter

<table>
<thead>
<tr>
<th>Quarter</th>
<th>100% Large-Cap Stocks</th>
<th>90% Stocks 10% Bonds</th>
<th>70% Stocks 30% Bonds</th>
<th>50% Stocks 50% Bonds</th>
<th>30% Stocks 70% Bonds</th>
<th>10% Stocks 90% Bonds</th>
<th>100% Long-Term Govt Bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-12</td>
<td>12.59</td>
<td>10.77</td>
<td>7.19</td>
<td>3.68</td>
<td>0.25</td>
<td>-3.10</td>
<td>-4.75</td>
</tr>
<tr>
<td>I-12</td>
<td>-2.75</td>
<td>-1.51</td>
<td>0.97</td>
<td>3.44</td>
<td>5.88</td>
<td>8.31</td>
<td>9.52</td>
</tr>
<tr>
<td>I-12</td>
<td>6.35</td>
<td>5.76</td>
<td>4.58</td>
<td>3.40</td>
<td>2.22</td>
<td>1.04</td>
<td>0.46</td>
</tr>
<tr>
<td>IV-12</td>
<td>0.38</td>
<td>0.47</td>
<td>-0.57</td>
<td>-0.82</td>
<td>1.02</td>
<td>1.31</td>
<td>1.42</td>
</tr>
<tr>
<td>I-13</td>
<td>10.61</td>
<td>9.28</td>
<td>6.66</td>
<td>4.07</td>
<td>1.51</td>
<td>-1.02</td>
<td>-2.28</td>
</tr>
<tr>
<td>I-13</td>
<td>2.91</td>
<td>2.04</td>
<td>0.30</td>
<td>-1.45</td>
<td>-3.20</td>
<td>-4.95</td>
<td>-5.82</td>
</tr>
<tr>
<td>I-13</td>
<td>5.24</td>
<td>4.62</td>
<td>3.38</td>
<td>2.14</td>
<td>0.89</td>
<td>-0.39</td>
<td>-0.97</td>
</tr>
<tr>
<td>IV-13</td>
<td>10.51</td>
<td>9.14</td>
<td>6.42</td>
<td>3.75</td>
<td>1.12</td>
<td>-1.46</td>
<td>-2.74</td>
</tr>
<tr>
<td>I-14</td>
<td>1.81</td>
<td>2.28</td>
<td>3.21</td>
<td>4.10</td>
<td>4.97</td>
<td>5.80</td>
<td>6.21</td>
</tr>
<tr>
<td>I-14</td>
<td>5.23</td>
<td>5.15</td>
<td>4.99</td>
<td>4.83</td>
<td>4.67</td>
<td>4.50</td>
<td>4.42</td>
</tr>
<tr>
<td>III-14</td>
<td>1.13</td>
<td>1.26</td>
<td>1.53</td>
<td>1.80</td>
<td>2.06</td>
<td>2.32</td>
<td>2.45</td>
</tr>
<tr>
<td>IV-14</td>
<td>4.93</td>
<td>5.34</td>
<td>6.16</td>
<td>6.98</td>
<td>7.79</td>
<td>8.61</td>
<td>9.02</td>
</tr>
</tbody>
</table>
Table 5

Basic Series: Monthly Index Values

Dec. 31, 1925 = $1.00

<table>
<thead>
<tr>
<th>Month</th>
<th>Large-Cap Stocks</th>
<th>Small-Cap Stocks</th>
<th>Long-Term Corporate Bonds</th>
<th>Long-Term Government Bonds</th>
<th>Intermediate-Term Government Bonds</th>
<th>Treasury Bills</th>
<th>Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/14</td>
<td>4,514.990</td>
<td>139.699</td>
<td>25,460.969</td>
<td>167.162</td>
<td>114.584</td>
<td>1.251</td>
<td>94.424</td>
</tr>
<tr>
<td>5/14</td>
<td>4,908.996</td>
<td>150.747</td>
<td>25,902.574</td>
<td>177.034</td>
<td>120.695</td>
<td>1.304</td>
<td>95.376</td>
</tr>
<tr>
<td>6/14</td>
<td>5,010.404</td>
<td>153.620</td>
<td>27,026.746</td>
<td>177.389</td>
<td>121.036</td>
<td>1.305</td>
<td>94.395</td>
</tr>
<tr>
<td>9/14</td>
<td>5,066.916</td>
<td>154.565</td>
<td>25,089.988</td>
<td>179.172</td>
<td>124.005</td>
<td>1.327</td>
<td>94.172</td>
</tr>
<tr>
<td>10/14</td>
<td>5,190.676</td>
<td>158.151</td>
<td>26,725.855</td>
<td>183.199</td>
<td>128.398</td>
<td>1.370</td>
<td>96.297</td>
</tr>
<tr>
<td>12/14</td>
<td>5,316.850</td>
<td>161.353</td>
<td>27,419.317</td>
<td>189.762</td>
<td>135.185</td>
<td>1.437</td>
<td>95.875</td>
</tr>
</tbody>
</table>
Table 6
Portfolios: Monthly Index Values
Dec. 31, 1925 = $1.00

<table>
<thead>
<tr>
<th>Month</th>
<th>100% Large-Cap Stocks</th>
<th>90% Stocks 10% Bonds</th>
<th>70% Stocks 30% Bonds</th>
<th>50% Stocks 50% Bonds</th>
<th>30% Stocks 70% Bonds</th>
<th>10% Stocks 90% Bonds</th>
<th>100% Long-Term Govt. Bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/13</td>
<td>4,676.682</td>
<td>3,765.536</td>
<td>2,192.132</td>
<td>1,107.822</td>
<td>486.743</td>
<td>186.031</td>
<td>109.138</td>
</tr>
<tr>
<td>1/14</td>
<td>4,514.990</td>
<td>3,667.155</td>
<td>2,171.897</td>
<td>1,116.313</td>
<td>498.698</td>
<td>193.743</td>
<td>114.584</td>
</tr>
<tr>
<td>2/14</td>
<td>4,721.522</td>
<td>3,817.763</td>
<td>2,240.791</td>
<td>1,141.287</td>
<td>505.192</td>
<td>194.455</td>
<td>114.470</td>
</tr>
<tr>
<td>3/14</td>
<td>4,761.210</td>
<td>3,851.489</td>
<td>2,262.470</td>
<td>1,153.294</td>
<td>510.935</td>
<td>196.830</td>
<td>115.916</td>
</tr>
<tr>
<td>4/14</td>
<td>4,796.405</td>
<td>3,882.404</td>
<td>2,283.538</td>
<td>1,165.510</td>
<td>517.001</td>
<td>199.419</td>
<td>117.515</td>
</tr>
<tr>
<td>5/14</td>
<td>4,908.996</td>
<td>3,974.933</td>
<td>2,339.601</td>
<td>1,194.961</td>
<td>530.435</td>
<td>204.744</td>
<td>120.695</td>
</tr>
<tr>
<td>6/14</td>
<td>5,010.404</td>
<td>4,049.956</td>
<td>2,375.413</td>
<td>1,208.989</td>
<td>534.771</td>
<td>205.687</td>
<td>121.036</td>
</tr>
<tr>
<td>7/14</td>
<td>4,941.306</td>
<td>4,004.130</td>
<td>2,360.296</td>
<td>1,207.282</td>
<td>536.663</td>
<td>207.433</td>
<td>122.363</td>
</tr>
<tr>
<td>8/14</td>
<td>5,139.983</td>
<td>4,160.752</td>
<td>2,448.419</td>
<td>1,250.208</td>
<td>554.790</td>
<td>214.070</td>
<td>126.169</td>
</tr>
<tr>
<td>9/14</td>
<td>5,086.916</td>
<td>4,101.102</td>
<td>2,411.785</td>
<td>1,230.720</td>
<td>545.794</td>
<td>210.468</td>
<td>124.005</td>
</tr>
<tr>
<td>10/14</td>
<td>5,190.676</td>
<td>4,205.782</td>
<td>2,478.650</td>
<td>1,267.547</td>
<td>563.327</td>
<td>217.689</td>
<td>128.398</td>
</tr>
<tr>
<td>11/14</td>
<td>5,330.277</td>
<td>4,314.474</td>
<td>2,537.497</td>
<td>1,294.976</td>
<td>574.333</td>
<td>221.485</td>
<td>130.501</td>
</tr>
<tr>
<td>12/14</td>
<td>5,316.850</td>
<td>4,320.176</td>
<td>2,560.341</td>
<td>1,316.581</td>
<td>588.326</td>
<td>228.582</td>
<td>135.185</td>
</tr>
</tbody>
</table>

©2015 Morningstar, Inc. All rights reserved. Morningstar and the Morningstar logo are either trademarks or service marks of Morningstar, Inc.
Table 7
Basic Series and Portfolios: Summary Statistics of Annual Total Returns in Percent

<table>
<thead>
<tr>
<th>Asset Class</th>
<th>From 1926 to 2014</th>
<th>Geometric Mean</th>
<th>Arithmetic Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-Cap Stocks</td>
<td></td>
<td>10.1</td>
<td>12.1</td>
<td>20.1</td>
</tr>
<tr>
<td>Small-Cap Stocks</td>
<td></td>
<td>12.2</td>
<td>16.7</td>
<td>32.1</td>
</tr>
<tr>
<td>Long-Term Corporate Bonds</td>
<td></td>
<td>6.1</td>
<td>6.4</td>
<td>8.4</td>
</tr>
<tr>
<td>Long-Term Government Bonds</td>
<td></td>
<td>5.7</td>
<td>6.1</td>
<td>10.0</td>
</tr>
<tr>
<td>Intermediate-Term Government Bonds</td>
<td></td>
<td>5.3</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>U.S. Treasury Bills</td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Inflation</td>
<td></td>
<td>2.9</td>
<td>3.0</td>
<td>4.1</td>
</tr>
<tr>
<td>90% Stocks/10% Bonds</td>
<td></td>
<td>9.9</td>
<td>11.4</td>
<td>18.1</td>
</tr>
<tr>
<td>70% Stocks/30% Bonds</td>
<td></td>
<td>9.2</td>
<td>10.2</td>
<td>14.3</td>
</tr>
<tr>
<td>50% Stocks/50% Bonds</td>
<td></td>
<td>8.4</td>
<td>9.0</td>
<td>11.2</td>
</tr>
<tr>
<td>30% Stocks/70% Bonds</td>
<td></td>
<td>7.4</td>
<td>7.8</td>
<td>9.3</td>
</tr>
<tr>
<td>10% Stocks/90% Bonds</td>
<td></td>
<td>6.3</td>
<td>6.7</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Table 8
Derived Series: Monthly and Quarterly Returns in Percent

<table>
<thead>
<tr>
<th>Month</th>
<th>Equity Risk Premium*</th>
<th>Small-Cap Premium</th>
<th>Bond Default Premium</th>
<th>Bond Horizon Premium</th>
<th>Inflation Adjusted Total Returns (%)</th>
<th>Large-Cap Stocks</th>
<th>Small-Cap Stocks</th>
<th>LT-Corp Bonds</th>
<th>LT-Govt Bonds</th>
<th>T-Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/13</td>
<td>2.53</td>
<td>-0.63</td>
<td>1.69</td>
<td>-1.64</td>
<td>2.54</td>
<td>1.90</td>
<td>0.03</td>
<td>-1.63</td>
<td>-0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>1/14</td>
<td>-3.46</td>
<td>-1.01</td>
<td>-1.60</td>
<td>4.99</td>
<td>-3.82</td>
<td>-4.78</td>
<td>2.93</td>
<td>4.60</td>
<td>1.18</td>
<td>-0.37</td>
</tr>
<tr>
<td>2/14</td>
<td>4.57</td>
<td>-0.35</td>
<td>1.79</td>
<td>-0.10</td>
<td>4.19</td>
<td>3.83</td>
<td>1.31</td>
<td>-0.47</td>
<td>-0.10</td>
<td>-0.36</td>
</tr>
<tr>
<td>3/14</td>
<td>0.84</td>
<td>0.13</td>
<td>-0.63</td>
<td>1.26</td>
<td>0.20</td>
<td>0.32</td>
<td>-0.02</td>
<td>0.62</td>
<td>1.32</td>
<td>-0.64</td>
</tr>
<tr>
<td>4/14</td>
<td>0.74</td>
<td>4.12</td>
<td>0.22</td>
<td>1.38</td>
<td>0.41</td>
<td>3.73</td>
<td>1.27</td>
<td>1.05</td>
<td>0.64</td>
<td>-0.33</td>
</tr>
<tr>
<td>5/14</td>
<td>2.35</td>
<td>-2.20</td>
<td>-0.81</td>
<td>2.71</td>
<td>1.99</td>
<td>-0.25</td>
<td>1.52</td>
<td>2.35</td>
<td>0.11</td>
<td>-0.35</td>
</tr>
<tr>
<td>6/14</td>
<td>2.06</td>
<td>2.23</td>
<td>-0.08</td>
<td>0.28</td>
<td>1.88</td>
<td>4.15</td>
<td>0.01</td>
<td>0.10</td>
<td>-1.21</td>
<td>-0.18</td>
</tr>
<tr>
<td>7/14</td>
<td>-1.38</td>
<td>4.52</td>
<td>-0.84</td>
<td>1.10</td>
<td>-1.34</td>
<td>-5.80</td>
<td>0.26</td>
<td>1.14</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>8/14</td>
<td>4.00</td>
<td>0.52</td>
<td>0.44</td>
<td>3.11</td>
<td>4.17</td>
<td>4.71</td>
<td>3.74</td>
<td>3.28</td>
<td>0.03</td>
<td>0.17</td>
</tr>
<tr>
<td>9/14</td>
<td>-1.40</td>
<td>4.35</td>
<td>1.01</td>
<td>-1.72</td>
<td>-1.48</td>
<td>-5.76</td>
<td>-2.78</td>
<td>-1.79</td>
<td>-0.16</td>
<td>-0.07</td>
</tr>
<tr>
<td>10/14</td>
<td>2.44</td>
<td>3.98</td>
<td>-1.25</td>
<td>3.54</td>
<td>2.70</td>
<td>6.79</td>
<td>2.51</td>
<td>3.80</td>
<td>2.51</td>
<td>0.25</td>
</tr>
<tr>
<td>11/14</td>
<td>2.69</td>
<td>-3.35</td>
<td>0.09</td>
<td>1.64</td>
<td>3.25</td>
<td>-0.21</td>
<td>2.28</td>
<td>2.19</td>
<td>0.53</td>
<td>0.54</td>
</tr>
<tr>
<td>12/14</td>
<td>0.25</td>
<td>3.83</td>
<td>-1.70</td>
<td>3.59</td>
<td>0.32</td>
<td>3.96</td>
<td>2.41</td>
<td>4.18</td>
<td>0.14</td>
<td>0.57</td>
</tr>
<tr>
<td>2014</td>
<td>13.67</td>
<td>-9.47</td>
<td>-5.32</td>
<td>23.85</td>
<td>12.83</td>
<td>2.15</td>
<td>16.40</td>
<td>22.94</td>
<td>2.34</td>
<td>-0.73</td>
</tr>
</tbody>
</table>

Quarter

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Equity Risk Premium*</th>
<th>Small-Cap Premium</th>
<th>Bond Default Premium</th>
<th>Bond Horizon Premium</th>
<th>Inflation Adjusted Total Returns (%)</th>
<th>Large-Cap Stocks</th>
<th>Small-Cap Stocks</th>
<th>LT-Corp Bonds</th>
<th>LT-Govt Bonds</th>
<th>T-Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-12</td>
<td>12.58</td>
<td>-0.30</td>
<td>4.37</td>
<td>-4.75</td>
<td>10.76</td>
<td>10.43</td>
<td>-2.20</td>
<td>-6.29</td>
<td>-2.36</td>
<td>-1.61</td>
</tr>
<tr>
<td>II-12</td>
<td>-2.76</td>
<td>-0.87</td>
<td>-2.56</td>
<td>9.51</td>
<td>-2.79</td>
<td>-3.63</td>
<td>6.68</td>
<td>9.48</td>
<td>2.71</td>
<td>-0.03</td>
</tr>
<tr>
<td>III-12</td>
<td>6.34</td>
<td>0.10</td>
<td>3.34</td>
<td>0.44</td>
<td>5.47</td>
<td>5.58</td>
<td>2.94</td>
<td>-0.38</td>
<td>1.06</td>
<td>-0.82</td>
</tr>
<tr>
<td>IV-12</td>
<td>-0.40</td>
<td>3.02</td>
<td>1.94</td>
<td>-1.44</td>
<td>0.41</td>
<td>3.44</td>
<td>1.28</td>
<td>-0.64</td>
<td>1.11</td>
<td>0.81</td>
</tr>
<tr>
<td>I-13</td>
<td>10.60</td>
<td>1.50</td>
<td>-0.13</td>
<td>2.28</td>
<td>9.10</td>
<td>10.52</td>
<td>3.23</td>
<td>3.61</td>
<td>1.53</td>
<td>-1.26</td>
</tr>
<tr>
<td>II-13</td>
<td>2.90</td>
<td>1.86</td>
<td>0.14</td>
<td>-5.83</td>
<td>2.59</td>
<td>4.50</td>
<td>-5.98</td>
<td>-6.12</td>
<td>-1.22</td>
<td>-0.31</td>
</tr>
<tr>
<td>III-13</td>
<td>5.25</td>
<td>5.45</td>
<td>0.69</td>
<td>-0.98</td>
<td>4.96</td>
<td>10.68</td>
<td>-0.56</td>
<td>-1.25</td>
<td>-0.24</td>
<td>-0.27</td>
</tr>
<tr>
<td>IV-13</td>
<td>10.51</td>
<td>0.70</td>
<td>4.11</td>
<td>-2.75</td>
<td>11.04</td>
<td>11.81</td>
<td>1.73</td>
<td>-2.28</td>
<td>0.45</td>
<td>0.48</td>
</tr>
<tr>
<td>I-14</td>
<td>1.80</td>
<td>-1.23</td>
<td>-0.48</td>
<td>6.20</td>
<td>0.41</td>
<td>-0.82</td>
<td>4.25</td>
<td>4.75</td>
<td>-0.26</td>
<td>-1.36</td>
</tr>
<tr>
<td>II-14</td>
<td>5.23</td>
<td>4.13</td>
<td>-0.67</td>
<td>4.41</td>
<td>4.33</td>
<td>0.02</td>
<td>2.82</td>
<td>3.52</td>
<td>-0.47</td>
<td>-0.86</td>
</tr>
<tr>
<td>III-14</td>
<td>1.13</td>
<td>8.20</td>
<td>-1.41</td>
<td>2.45</td>
<td>1.26</td>
<td>7.04</td>
<td>1.14</td>
<td>2.59</td>
<td>0.11</td>
<td>0.13</td>
</tr>
<tr>
<td>IV-14</td>
<td>4.83</td>
<td>4.15</td>
<td>-2.85</td>
<td>9.01</td>
<td>6.37</td>
<td>10.78</td>
<td>7.36</td>
<td>10.51</td>
<td>3.20</td>
<td>1.37</td>
</tr>
</tbody>
</table>

* In this table, equity risk premium is calculated as the geometric difference between large-cap stock total returns and U.S. Treasury bill total returns.
Table 9
Derived Series: Monthly Index Values
Dec. 31, 1925 = $1.00

<table>
<thead>
<tr>
<th>Month</th>
<th>Inflation Adjusted Total Return ($)</th>
<th>Large Stocks</th>
<th>Small Stocks</th>
<th>LT Corp Bonds</th>
<th>LT Govt Bonds</th>
<th>LT Govt Bonds</th>
<th>1-Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/13</td>
<td>359.728</td>
<td>2,049.227</td>
<td>12.446</td>
<td>8.395</td>
<td>7.152</td>
<td>1.583</td>
<td></td>
</tr>
<tr>
<td>1/14</td>
<td>346.004</td>
<td>1,951.187</td>
<td>12.810</td>
<td>8.781</td>
<td>7.236</td>
<td>1.577</td>
<td></td>
</tr>
<tr>
<td>2/14</td>
<td>360.498</td>
<td>2,026.841</td>
<td>12.978</td>
<td>8.740</td>
<td>7.229</td>
<td>1.571</td>
<td></td>
</tr>
<tr>
<td>3/14</td>
<td>361.202</td>
<td>2,032.403</td>
<td>12.975</td>
<td>8.794</td>
<td>7.133</td>
<td>1.561</td>
<td></td>
</tr>
<tr>
<td>4/14</td>
<td>362.677</td>
<td>1,956.647</td>
<td>13.140</td>
<td>8.886</td>
<td>7.179</td>
<td>1.556</td>
<td></td>
</tr>
<tr>
<td>6/14</td>
<td>376.838</td>
<td>2,032.709</td>
<td>13.342</td>
<td>9.103</td>
<td>7.100</td>
<td>1.548</td>
<td></td>
</tr>
<tr>
<td>7/14</td>
<td>371.786</td>
<td>1,914.746</td>
<td>13.379</td>
<td>9.207</td>
<td>7.101</td>
<td>1.549</td>
<td></td>
</tr>
<tr>
<td>8/14</td>
<td>387.306</td>
<td>2,005.025</td>
<td>13.879</td>
<td>9.509</td>
<td>7.104</td>
<td>1.551</td>
<td></td>
</tr>
<tr>
<td>9/14</td>
<td>381.987</td>
<td>1,889.517</td>
<td>13.493</td>
<td>9.339</td>
<td>7.092</td>
<td>1.550</td>
<td></td>
</tr>
<tr>
<td>10/14</td>
<td>391.892</td>
<td>2,017.783</td>
<td>13.831</td>
<td>9.694</td>
<td>7.270</td>
<td>1.554</td>
<td></td>
</tr>
<tr>
<td>12/14</td>
<td>405.899</td>
<td>2,093.246</td>
<td>14.487</td>
<td>10.320</td>
<td>7.319</td>
<td>1.571</td>
<td></td>
</tr>
</tbody>
</table>
Table 10
Long-Horizon Expected Equity Risk Premium and Size Premium
As of Dec. 31, 2014

Equity Risk Premium

1. *Long-horizon expected equity risk premium (historical)*: large-cap stock total returns minus long-term government bond income returns

 7.00%

2. *Long-horizon expected equity risk premium (supply-side)*: historical equity risk premium minus price-to-earnings ratio calculated using three-year average earnings

 6.19%

Size Premiums (market capitalization in millions)²

<table>
<thead>
<tr>
<th>Decile</th>
<th>Smallest Company</th>
<th>Largest Company</th>
<th>Size Premium (Return in Excess of CAPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Cap (3-5)</td>
<td>2,552,441</td>
<td>–</td>
<td>1.10%</td>
</tr>
<tr>
<td>Low-Cap (6-8)</td>
<td>549,056</td>
<td>–</td>
<td>1.77</td>
</tr>
<tr>
<td>Micro-Cap (9-10)</td>
<td>3,037</td>
<td>–</td>
<td>3.69</td>
</tr>
</tbody>
</table>

Breakdown of Deciles 1-10

<table>
<thead>
<tr>
<th>Decile</th>
<th>Smallest Company</th>
<th>Largest Company</th>
<th>Size Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Largest</td>
<td>24,428,848</td>
<td>–</td>
<td>-0.32%</td>
</tr>
<tr>
<td>2</td>
<td>10,170,746</td>
<td>–</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>5,864,266</td>
<td>–</td>
<td>0.94</td>
</tr>
<tr>
<td>4</td>
<td>3,724,624</td>
<td>–</td>
<td>1.05</td>
</tr>
<tr>
<td>5</td>
<td>2,552,441</td>
<td>–</td>
<td>1.65</td>
</tr>
<tr>
<td>6</td>
<td>1,688,895</td>
<td>–</td>
<td>1.63</td>
</tr>
<tr>
<td>7</td>
<td>1,011,278</td>
<td>–</td>
<td>1.77</td>
</tr>
<tr>
<td>8</td>
<td>549,056</td>
<td>–</td>
<td>2.18</td>
</tr>
<tr>
<td>9</td>
<td>300,752</td>
<td>–</td>
<td>2.64</td>
</tr>
<tr>
<td>10 – Smallest</td>
<td>3,037</td>
<td>–</td>
<td>5.72</td>
</tr>
</tbody>
</table>

1. *Expected equity risk premium* is based on the difference of historical arithmetic mean returns for 1926-2014. Large-cap stocks are represented by the S&P 500 index.

2. *Return in excess of CAPM estimation*. Mid-Cap stocks are defined here as the aggregate of size-deciles 3-6 of the NYSE/AMEX/NASDAQ. Low-Cap stocks are defined here as the aggregate of size-deciles 6-8 of the NYSE/AMEX/NASDAQ. Micro-Cap stocks are defined here as the aggregate of size-deciles 9-10 of the NYSE/AMEX/NASDAQ. The betas used in CAPM estimation were estimated from CRSP NYSE/AMEX/NASDAQ decile portfolio monthly total returns in excess of the 30-day U.S. Treasury bill total return versus the S&P 500 total returns in excess of the 30-day U.S. Treasury bill, January 1926–December 2014. Calculated (or derived) based on data from CRSP US Stock Database and CRSP US Indices Database ©2015 Center for Research in Security Prices (CRSP), The University of Chicago Booth School of Business. Used with permission.
Glossary

Bond Default Premium
Calculated as the geometric difference between long-term corporate bond total returns and long-term government bond total returns.

Bond Horizon Premium
Calculated as the geometric difference between long-term government bond total returns and Treasury bill total returns.

Equity Risk Premium
Calculated as the geometric difference between large-capitalization stock total returns and U.S. Treasury bill total returns.

Inflation
Represented by Consumer Price Index for All Urban Consumer (CPI-U), not seasonally adjusted.

Intermediate–Term Government Bonds
Measured using a one-bond portfolio with a maturity near five years.

Large Capitalization Stocks
Represented by the Standard and Poor’s 500 Stock Composite Index® (S&P 500) 1957–present; and the S&P 90, 1926–1956.

Long–Term Corporate Bonds
Represented by the Citigroup long-term, high-grade corporate bond total return index.

Long–Term Government Bonds
Measured using a one-bond portfolio with a maturity near 20 years.

Small-Capitalization Stocks
A portfolio of stocks represented by the fifth capitalization quintile of stocks on the NYSE for 1926–1981. For January 1982 to March 2001, the series is represented by the DFA U.S. 9–10 Small Company Portfolio and the DFA U.S. Micro Cap Portfolio thereafter.

Small Stock Premium
Calculated as the geometric difference between small-cap stock total returns and large-cap stock total returns.

U.S. Treasury Bills
Measured by rolling over each month a one-bill portfolio containing, at the beginning of each month, the bill having the shortest maturity not less than one month.
Please visit Thomson Reuters Customer Zone, the single online entry point for Thomson Reuters support and service functions, including on-line support capabilities via the “Contact Us” link located at the top left of the page.

If you choose to contact Thomson Reuters by phone, please click here for global product contact information.
NOTICE

This document contains confidential and proprietary information of Thomson Reuters and may be used only by a recipient designated by and for purposes specified by Thomson Reuters.

Reproduction of, dissemination of, modifications to, or creation of derivative works from this document, by any means and in any form or manner, is expressly prohibited, except with the prior written permission of Thomson Reuters. Permitted copies of this document must retain all proprietary notices contained in the original.

The information in this document is subject to change without prior notice. Always confirm with Thomson Reuters that you are using the most current version of this document. Thomson Reuters is free to modify any of its products and services, in any manner and at any time, notwithstanding the information contained in this document.

Certain information, including images, graphics, numerical or textual data pertaining to assets or securities may be included in this document to illustrate different types of products and services of Thomson Reuters. Such information may be fictitious or incomplete and should not be relied upon or considered investment advice.

THE CONTENTS OF THIS DOCUMENT SHALL NOT CONSTITUTE ANY WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE OR GIVE RISE TO ANY LIABILITY OF THOMSON REUTERS, ITS AFFILIATES OR ITS SUPPLIERS.

The terms and conditions governing the use of this document shall consist of those set forth in written agreements with Thomson Reuters.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>4</td>
</tr>
<tr>
<td>ACCOUNTING REGULATIONS</td>
<td>4</td>
</tr>
<tr>
<td>ACTUALS</td>
<td>6</td>
</tr>
<tr>
<td>BASIC VS. DILUTED ESTIMATES</td>
<td>7</td>
</tr>
<tr>
<td>CORPORATE ACTIONS</td>
<td>8</td>
</tr>
<tr>
<td>CONTRIBUTOR REQUIREMENTS</td>
<td>10</td>
</tr>
<tr>
<td>CURRENCY</td>
<td>10</td>
</tr>
<tr>
<td>ENTITLEMENTS INFORMATION</td>
<td>11</td>
</tr>
<tr>
<td>ESTIMATES COLLECTION</td>
<td>12</td>
</tr>
<tr>
<td>ESTIMATES TO RESEARCH LINKING (JUMP-TO)</td>
<td>15</td>
</tr>
<tr>
<td>FISCAL YEAR</td>
<td>15</td>
</tr>
<tr>
<td>FOOTNOTES</td>
<td>16</td>
</tr>
<tr>
<td>GLOBAL ESTIMATES FRESHNESS POLICIES</td>
<td>17</td>
</tr>
<tr>
<td>GUIDANCE</td>
<td>18</td>
</tr>
<tr>
<td>HISTORY</td>
<td>19</td>
</tr>
<tr>
<td>INDUSTRY CLASSIFICATIONS SOURCE / SCHEMA</td>
<td>21</td>
</tr>
<tr>
<td>KEY PERFORMANCE INDICATORS</td>
<td>21</td>
</tr>
<tr>
<td>MULTI LISTED SECURITIES</td>
<td>21</td>
</tr>
<tr>
<td>PARENT / CONSOLIDATED INDICATOR</td>
<td>24</td>
</tr>
<tr>
<td>PERIODICITY</td>
<td>25</td>
</tr>
<tr>
<td>PRELIMINARY ESTIMATES</td>
<td>26</td>
</tr>
<tr>
<td>PRICE FORECASTS</td>
<td>26</td>
</tr>
<tr>
<td>PRIORITIZATION</td>
<td>28</td>
</tr>
<tr>
<td>REASONS FOR CONTACT WITH CONTRIBUTING ANALYSTS</td>
<td>28</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>29</td>
</tr>
<tr>
<td>RESTATEMENT POLICY (ACTUALS)</td>
<td>30</td>
</tr>
<tr>
<td>SHARE CLASS</td>
<td>30</td>
</tr>
<tr>
<td>STOP, FILTER AND DELETION SCENARIOS</td>
<td>31</td>
</tr>
<tr>
<td>TAX RATES</td>
<td>31</td>
</tr>
<tr>
<td>TREATMENT OF SMALL ESTIMATES REVISIONS</td>
<td>32</td>
</tr>
<tr>
<td>GLOSSARY OF ESTIMATES DATA MEASURES</td>
<td>33</td>
</tr>
</tbody>
</table>
INTRODUCTION

About Thomson Reuters

Thomson Reuters is the most complete source for integrated information and technology applications in the global financial services industry. Working in partnership with our clients, we develop individual workflow solutions that answer their specific data and analysis needs. Among those needs, clients would like insight on future earning prospects of publicly traded companies. As a result, Thomson Reuters tracks the reported and forecast earnings of these firms globally. Earnings Per Share is a key metric, and one most commonly utilized in two ways: to measure performance gains and to gauge companies’ results versus expectations.

About This Document

This document provides an in depth look at the methodologies Thomson Reuters uses for estimates. The purpose of this document is to outline, describe and provide reference for the different policies that affect Thomson Reuters estimates data.

ACCOUNTING REGULATIONS

International Financial Reporting Standards (IFRS)

The European Union has passed a regulation that requires listed European companies to comply with International Financial Reporting Standards (IFRS) in 2005 for their consolidated financial statements. There is a limited exception for certain companies to delay implementation until 2007. Generally, the regulation applies to consolidated financial statements for accounting periods starting on or after January 1, 2005. Thus for those companies with 12-month accounting periods covering the calendar year, IFRS will first apply to periods ending on December 31, 2005. As a result, companies will first publish IFRS financial information as at March 31, 2005 (if they report quarterly) or as at June 30, 2005 (if they report semi-annually).

Estimates collected by Thomson Reuters will reflect the adoption of this ruling on a majority basis. The transition period to IFRS is visible for companies in Europe effective April 25, 2005. In addition to countries in Europe, IFRS will be adopted by parts of Asia, including Australia and New Zealand. The transition period to IFRS is visible for companies in Australia and New Zealand effective September 12, 2005.

Dedicated company level footnotes are used to label the majority accounting basis for the company, as well as estimate level footnotes to label and exclude minority accounting basis estimates.

<table>
<thead>
<tr>
<th>Instrument Level Footnote Code (Majority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Earnings on a fully adjusted basis</td>
</tr>
<tr>
<td>4</td>
<td>Accounting differences exist: Estimate on a Fully-Reported/GAAP basis</td>
</tr>
<tr>
<td>W</td>
<td>Estimates based on IFRS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate Level Footnote Code (Minority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Earnings on a fully adjusted basis</td>
</tr>
<tr>
<td>4</td>
<td>Earnings on a fully reported basis</td>
</tr>
<tr>
<td>W</td>
<td>Estimates based on IFRS</td>
</tr>
</tbody>
</table>
FAS123(R)

On December 16, 2004, The Financial Accounting Standards Board (FASB) issued FAS123(R). This ruling requires companies to calculate the fair value of stock options granted to employees, and amortize that amount over the vesting period as an expense through the income statement. FAS123(R) is currently effective for fiscal years beginning after June 15, 2005, with company transition choices of: modified prospective, modified retrospective or early adoption. The effective date of the ruling was then extended from quarterly to annual periods beginning after June 15, 2005.

Thomson Reuters will treat the expensing of stock options on a company-by-company basis. Stock option expenses will only be included in the primary EPS mean when the majority of the contributing analysts have included the expenses in their estimates. Estimates will be footnoted describing whether estimates include or exclude the options expense. Once the majority of the analysts are including stock option expenses in their estimates, the remaining estimates that do not include the expenses will be footnoted, filtered, and excluded from the primary EPS mean calculation. In the event that a contributing analyst provides two sets of EPS estimates for a given company (one including options expenses and one excluding), the majority basis estimate will appear under the EPS field and the alternative estimate will appear under the EPX field.

The GAAP EPS measure (GPS) will however, include option expenses per FAS123(R) for periods where GAAP requires the inclusion of option expenses in reported results, and when the impact is known. When available, estimates from contributing analysts on a GAAP basis appear under the GPS measure.

For periods where GAAP requires the inclusion of stock options expense, estimates excluding stock options expense will be filtered and footnoted once the impact of stock options expense is known for that period, as determined by any of the following:

- company issued guidance,
- a quarterly report,
- the presence of a GAAP estimate including options expense from a single contributor.

For example, if 10 brokers provide a GPS estimate that excludes stock options expense, but 1 broker provides an estimate that includes stock options expense for a period where GAAP requires inclusion, the 10 brokers excluding options will be filtered and footnoted and the 1 broker will remain unfiltered and comprise the GPS mean.

Dedicated company level footnotes are used to label the majority accounting basis for the company, as well as estimate level footnotes to label and exclude minority accounting basis estimates.

<table>
<thead>
<tr>
<th>Company Level Footnote Code (Majority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Estimates reflect adoption of FAS123(R)</td>
</tr>
<tr>
<td>F</td>
<td>Estimates do not reflect adoption of FAS123(R)</td>
</tr>
<tr>
<td>I</td>
<td>Estimates have always reflected adoption of FAS123(R)</td>
</tr>
<tr>
<td>N</td>
<td>No known impact from FAS123(R) on estimates</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate Level Footnote Code (Minority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Estimate includes stock option expenses</td>
</tr>
<tr>
<td>6</td>
<td>Estimate excludes stock option expenses</td>
</tr>
</tbody>
</table>

FASB APB 14-1

On May 9, 2008 The Financial Accounting Standards Board (FASB) issued FASB APB 14-1. This ruling requires companies to change how they account for convertible debt in their financial statements - specifically, debt that can be converted into cash. Companies will be required to amortize the excess of the principal amount of the liability component over its carrying amount. This will result in higher interest costs. The effective date of the change will be the first fiscal year that begins after December 15, 2008, and will impact 2009 fiscal year estimates for most companies. For US traded companies carrying this type of debt, GAAP earnings will be negatively affected starting with 2009.
Thomson Reuters will treat estimates impacted by FASB Staff Position APB 14-1 on a company-by-company basis. Post-FASB APB 14-1 estimates will only be included in the EPS mean when the majority of the contributing analysts have adopted this accounting change in their estimates. Estimates will be footnoted describing whether estimates reflect or do not reflect the accounting change. Once the majority of analysts reflect FASB APB 14-1 in their estimates, the remaining estimates that do not include the expenses will be footnoted, filtered, and excluded from the EPS mean calculation.

The GAAP EPS (Fully Reported) measure will be post FASB APB 14-1 for periods where GAAP requires the amortization of cash-convertible debt in reported results and when the impact is known. When available, estimates from contributing analysts on a GAAP basis appear under the GAAP EPS measure on Thomson Reuters products.

Dedicated company level footnotes are used to label the majority accounting basis for the company, as well as estimate level footnotes to label and exclude minority accounting basis estimates.

<table>
<thead>
<tr>
<th>Company Level Footnote Code (Majority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Estimates reflect FASB APB 14-1</td>
</tr>
<tr>
<td>9</td>
<td>Estimates do not reflect FASB APB 14-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimate Level Footnote Code (Minority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Estimate reflects FASB APB 14-1</td>
</tr>
<tr>
<td>9</td>
<td>Estimate does not reflect FASB APB 14-1</td>
</tr>
</tbody>
</table>

ACTUALS

Evaluation

Thomson Reuters Market Specialists enter both quarterly period and annual actuals where analyst estimates exist on a real-time global basis - as sourced from multiple newswire feeds, press releases, company websites and public filings. When a company reports their earnings, the data is evaluated by a Market Specialist to determine if any Extraordinary or Non-Extraordinary Items (charges or gains) have been recorded by the company during the period. If no items have been recorded during the period the reported value is entered. If one or more items have been recorded during the period, actuals will be entered based upon the estimates majority basis at the time of reporting. The Market Specialist will still review each item in relation to the estimate submissions and how similar items have been treated in past periods. If after review it is determined that majority basis is to be changed, Thomson Reuters will update the actual and corresponding surprise values accordingly.

Certain differences exist across regions pertaining to prioritization, coverage, and timeliness. Companies in Asia-Pacific, North America and Latin America are updated the same day of reporting. In the EMEA region, Tier1 companies (445 companies including FTSE 100 and other major indices) are also updated the same-day of reporting, with the Tier 2 companies updated within 15 days.

Please note that Thomson Reuters collects actuals only for periods and measures where current analyst estimates exist.

Majority Basis

Thomson Reuters goal is to present actuals on an operating basis, whereby a corporation's reported earnings are adjusted to reflect the basis that the majority of contributors use to value the stock. In many cases, the reported figure contains unusual or one-time items that the majority of analysts exclude from their actuals. The majority accounting basis is determined on a quarter-by-quarter basis. Typical adjustments are for the effects of extraordinary and non-extraordinary items.

Thomson Reuters examines each reported item, and includes or excludes the item from the actual based on how the majority of contributing analysts treat the item for that period. Once the Thomson Reuters Market Specialist determines...
whether the item is being included or excluded by the majority of contributors, they will enter the actual and a footnote detailing the type of the item, whether it is included or excluded, the size of the item, and the period affected.

If after the comparable actual for the period is saved for a company and a go-forward majority is established on a different accounting basis, that actual will be replaced to reflect the change and footnoted to indicate the majority basis change. The announce and activation dates of the original comparable actual will remain.

Any submission of an estimate by a contributing analyst using a non majority actual or on a non majority basis results in a call from a Thomson Reuters Market Specialist requiring the contributing analyst to adjust to the majority basis or have their estimates footnoted for an accounting difference and excluded from the mean calculation for the fiscal years in question. In all cases, appropriate footnotes are added to the estimate to denote what items are included or excluded. In some cases, a company's actuals number will be temporarily withheld so that analysts may be contacted and additional research conducted.

Elimination of Held-Out Actuals Practice (September 2009)

Thomson Reuters made changes to the collection of actuals to provide increased data timeliness. As companies report, values will be adjusted to the estimates majority basis for the period, then entered into the database without a “hold out” period.

- Previously, when a company reported results, actuals were collected according to the estimates majority basis for the period at the time of report. If however, unexpected charges or gains were reported, actuals would temporarily be “held out” from products to see if the majority basis would change going forward.
 - This process introduced possible timeliness issues whilst the sell-side analyst community reacted to the company news and issued reports, and subsequently Thomson Reuters re-evaluated the majority basis.
- Going forward, this “hold out” period will be eliminated in cases where unexpected charges or gains are reported. Actuals will be entered strictly based upon the estimates majority basis at the time of report – significantly increasing timeliness of actuals under these scenarios.
 - The review of analyst reaction will still be done by Thomson Reuters, however only after the actual was already saved to the database and available on products.
 - If the analyst majority basis changes after the fact, Thomson Reuters will update the actual and corresponding surprise values accordingly, and footnote the reason.

BASIC VS. DILUTED ESTIMATES

Dilution occurs when a company issues securities that are convertible into common equity. Such issues can take the form of convertible bonds, rights, warrants or other instruments. When Thomson Reuters refers to “fully diluted” earnings estimates it means that the forecasts assume that all eligible shares are converted. Fully diluted earnings per share are, by definition, less than basic EPS (which is based solely on common shares outstanding).

- To be an eligible convertible security, the contributing analyst must predict that the share price will be greater than the strike price.

- If the contributing analyst predicts that the convertible security will be eligible, the convertible shares are included in the analyst’s share count, and the interest expense associated with the conversion is included in their EPS estimate. If the contributing analyst does not predict the convertible security will be eligible, the share count does not include the convertible shares, and there is no interest expense associated with the convertible. (Interest expense is associated with the conversion and this scenario has no conversion.)

Thomson Reuters determines whether a company is followed on basic versus diluted shares based on the majority rule. If a contributor is on the minority basis, the estimate is filtered, footnoted and excluded from the mean calculation using the estimate level footnotes listed below.

<table>
<thead>
<tr>
<th>Estimate Level Footnote Code (Minority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Accounting differences exist: Estimate on a basic share count basis</td>
</tr>
<tr>
<td>E</td>
<td>Accounting differences exist: Estimate on a diluted share count basis</td>
</tr>
</tbody>
</table>
North America

Thomson Reuters defaults to using diluted shares in North America, as this is the most widely used valuation method. Estimates are displayed on a diluted basis taking into account all eligible convertible securities. The only circumstances where basic shares would be the default for a company would be when a company reports a loss, as basic is the more conservative valuation method.

International

For international companies, Thomson Reuters determines whether a company is followed on basic vs. diluted shares based on the majority rule, due to the high amount of variance in which companies are followed. In cases where an analyst follows a company on a basis that is different from the mean, filters/footnotes are applied to their estimates, which are then excluded from the mean calculation.

CORPORATE ACTIONS

Corporate actions are defined as any event which can bring material change to a stock, which include the following:

- Mergers
- Acquisitions
- Spin-offs
- Stock splits

Thomson Reuters obtains information on corporate actions via real-time news feeds as well as information received directly from companies. Thomson Reuters Market Specialists then process corporate actions on a real-time basis. Thomson Reuters Market Specialists verify the corporate action announcement by using original press releases from companies. Corporate action announcements are then footnoted in the appropriate tables (see examples below):

<table>
<thead>
<tr>
<th>Estimate Level</th>
<th>Footnote Code</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Minority)</td>
<td>L</td>
<td>Accounting differences exist: Estimate reflecting corporate action</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>Contributor update pending: Estimate not reflecting corporate action</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Accounting Differences Exist</td>
</tr>
</tbody>
</table>

Example:

St. Paul Travelers Cos Inc. (ticker STA)

Corporate Action Announcement: 17-Nov-03 announced merger with Travelers Property Casualty Corp.

Mergers, Acquisitions and Spin Off’s

Thomson Reuters will reflect estimates on the post-event basis, reflecting the completion of a merger/acquisition/spin-off, when the first of two events occur:

- The majority of analysts covering the company submit estimates on a post-event basis or;
- The event itself actually closes/completes (usually signified by a press release on or around the closure date).

When a corporate action occurs, before Thomson Reuters makes any data changes, all of the following action details are thoroughly researched:

- All information must be confirmed, including the action, the date, and how current and historical estimates will be treated going forward. For example, to which company estimates will be attached.
- Great importance is also placed on how the company will be treating its financial statements going forward. This research is done by using Datastream, the company’s website, or by contacting the company’s IR group directly.
- The corporate action is always treated in the database in accordance with the company’s guidelines (who will be the surviving entity, etc.).
Policies involved with introducing the Merger/Acquisition include:

- Footnotes will be added describing the announced merger/acquisition to all publicly traded companies involved that we have established in our database.
- All Thomson Reuters mean estimates will reflect a merger/acquisition according to how the majority of analysts covering the company treat the action. The mean will follow this majority policy up until the date the merger/acquisition closes. An additional footnote will be added to the database detailing how the mean is treating the action that will remain present until the action closes. Once the merger/acquisition is closed and finalized, the estimates must reflect the full effects of the action.
- Upon the date of closing several actions may need to be taken on the part of Thomson Reuters depending on the type of merger/acquisition that has occurred. All of the possible actions performed are to update the Thomson Reuters estimates database to reflect all effects of the closed corporate action. Below are some broader steps taken but more specific instructions are listed with each possible scenario below:
 - The closing of the merger/acquisition is footnoted. All records and consensus data for surviving or newly formed companies affected by the merger/acquisition must now fully reflect the effects of the completed corporate action. This may involve company name or identifier changes of the acquiring company or the creation of a completely new entity in our database formed through a merger. It will involve making sure all estimate data included in consensus for these companies reflects the completed action. Historical estimates for the surviving company, normally the company doing the acquiring, will remain.
 - If a company has been acquired or merges with another and no longer exists as a separate entity, the estimates/recommendations/price targets associated with that ticker must be stopped and the ticker end-dated upon closing of the action. Since the company will no longer exist, there will be no visible outstanding or active records on our products or database. Please note that when estimates are stopped, the user will not have a link between the former company and the newly created one. Thomson Reuters does, however, keep a record of the movement of companies in the central estimates database.

The policies Thomson Reuters follows in the case of Spin-Off/De-Merger include:

- Footnotes are added describing the announced spin-off/demerger to all publicly traded companies involved that are established in the Thomson Reuters database.
- All mean estimates will reflect a spin-off/demerger according to how the majority of analysts covering the company treat the action. The mean will follow this majority policy up until the date the spin-off/demerger closes. An additional footnote will be added to the database detailing how consensus is treating the action that will remain present until the action closes. Once the spin-off/demerger is closed and finalized, the estimates must reflect the full effects of the action.
- Upon the date of closing several actions may need to be taken on the part of Thomson Reuters depending on the type of spin-off/demerger that has occurred. All of the possible actions performed are to update the estimates database to reflect all effects of the closed corporate action. Below are some broader steps taken but more specific instructions are listed with each possible scenario below:
 - The closing of the spin-off/demerger is footnoted. All records and consensus data for surviving or newly formed companies affected by the spin-off/demerger must now fully reflect the effects of the completed corporate action. This may involve the creation of a completely new entity in the estimates database formed through the spin-off/demerger. This will involve making sure that all estimate data included in consensus for these companies reflect the completed action.
 - If a previously existing company will no longer exist or no longer trades publicly, all estimates, recommendations and price targets must be stopped and the ticker end-dated upon closing of the transaction.

Stock Splits & Stock Dividends

A security begins trading on a post-split or post-stock dividend basis the day after the payment date (date the declared split or dividend is paid). Thomson Reuters enters a footnote that indicates the size of the stock split or stock dividend and the effective date (the day after the payment date).

After the market closes on the day before the stock begins trading on the new basis, all estimates data in Thomson Reuters – both current and historical - will be adjusted for the new shares. If a contributing analyst submits estimates on an adjusted basis prior to the effective date or unadjusted basis after the effective date, Thomson Reuters will contact that analyst to request properly adjusted estimates.

Please note that Thomson Reuters does not make adjustment factors for corporate actions which do not affect the number of shares. This document describes the actions taken when a company’s share count changes. This could include, but is not limited to, spin offs, mergers or cash payments / special payments.
Example of Stock Split:
Meritage Homes Corp [MTH]

Footnote: 20-Dec-04 2 for 1 Split Effective 10-Jan-05

Thomson Reuters does not adjust estimates for cash payments. The effect of cash payments on estimates is treated as a revision by the contributing analyst. On the effective date of the cash payment, a Thomson Reuters market specialist will contact all contributing analysts to request updated figures that include the cash payment. Estimates that are not updated to reflect the cash payment are footnoted as update pending, and will be filtered from the mean until they are updated by the contributing analyst.

Example of Stock Split with Cash Payment:

United Business Media PLC [UBM]
14 for 17 share consolidation
Special cash dividend of 89p per share

Thomson Reuters will apply a split factor of 1.214 reflecting the share consolidation. It is expected that contributors will revise their models to reflect the 89p cash dividend. Contributors that do not revise their estimates to reflect the cash dividend will be footnoted as update pending and filtered from the mean estimate.

Rights Issues

Rights Issues are treated in the following manner:
- When rights issues becomes effective, like stock splits, the ex date triggers all current and historical adjustments for price, shares and earnings.
- Even before the majority of analysts switch to post rights issue estimates, estimates will be collected and displayed on products prior to the ex-date, but will be excluded from the mean with a new estimate level footnote type:

<table>
<thead>
<tr>
<th>Estimate Level Footnote Code (Minority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Accounting differences exist: Estimate reflecting rights issue prior to ex-date</td>
</tr>
</tbody>
</table>

- Once the ex-date occurs, footnotes of excluded estimates will be automatically end-dated and will be then added back into the mean calculation where appropriate.

CONTRIBUTOR REQUIREMENTS

In order to maintain a quality, professional standard for all contributing analysts, Thomson Reuters Contributor Relations requires a candidate to pass a strict set of guidelines before being enlisted as a contributor. A potential contributor must provide information to establish that they are a reputable firm. This process includes providing example research reports, three references from institutional clients, three references from company investor relations, detail on the number of companies covered per analyst in the firm, and background information on the director of research. Thomson Reuters currently collects and analyzes the research, ratings and forecasts from many different sell-side or independent contributors.

Please reference the Thomson Reuters Contributor Approval Policy document for further details.

CURRENCY

The default currency displayed on Thomson Reuters is generally the currency in which the company reports*. Thomson Reuters will however, accept estimates in any currency.
The following describes the treatment of non-default currency conversions on Thomson Reuters products: (Please note that product update schedules vary for currency conversions.)

- All estimates revisions received in a non-default currency are updated using the prior day’s currency conversion rate.
- All non-default estimates have the currency conversion recalculated on Friday night using Friday’s end of the day conversion rate.
- When a contributing analyst confirms a default currency estimate, there is no change in the raw value estimate stored in the database.
- Thomson Reuters provides normalized Summary and Detail history offerings which provide a smooth historical view for companies that have had a currency change over time and it is intended to simplify clients’ workflow.

A confirmation of a non-default currency estimate however, does result in a reconverted estimate being sent to products. This estimate will represent the conversion rate as of the day prior to the confirmation.

Please note one exception: the per-share data measures of United Kingdom companies are always covered in BPN (pence) and the values for non-per-share data measures are displayed in GBP (pounds). The label for all estimates, regardless of per-share or non-per-share measure type however are BPN.

Treatment of Currency Changes

Thomson Reuters follows companies based on their reporting currency. In some cases however, where the reporting currency does not reflect the clear majority of estimate submissions, Thomson Reuters may exercise the option to set the default based on the currency of the majority of estimate submissions. In cases where companies report in multiple currencies, Thomson Reuters will set the default currency based on the majority of estimate submissions.

Occasionally, companies will change the currency in which they report and/or the majority of analysts covering a company will change the currency of their estimates. As a result, Thomson Reuters will change the default currency of a company in order to align with the reporting company or majority of contributing analysts as part of the operational process.

Normalized Summary & Detail History (Currency)

Thomson Reuters provides normalized summary and detail history in addition to regular summary and detail history, providing a smooth historical view for companies that have had a currency change over time and it is intended to simplify clients’ workflow. Whereas the regular summary and detail history offering provides a clear time series of when a company changes reporting currencies, the normalized offering will provide all historical estimates for a company in the current reporting currency of that company.

ENTITLEMENTS INFORMATION

Thomson Reuters is recognized for providing the most timely and accurate estimates data available to investment professionals. This is made possible in part by an agreement with our contributing analysts which restricts the distribution of individual analyst’s estimates to certain parties.

The following policy is strictly adhered to:

- Individual estimates with the associated contributor names are provided exclusively to institutional 'buy-side' investors and the research departments of the contributing analysts.
- Institutional investors are defined as users who are involved in executing trades through multiple brokerage firms.
- Investment banking, corporate finance and trading firms are not considered institutional investors as they do not have a trading relationship with any of the contributing firms and in effect, are competitors of those contributing analysts. Therefore, these firms are not privy to seeing individual analyst’s earnings estimates.
- Analyst’s research is considered proprietary information, unlike news articles or SEC filings. Detailed earnings estimates are also considered a part of an analyst’s research and therefore proprietary in nature.

Examples of disentitlement views by product would be:

- Thomson ONE: Broker and analyst names are displayed while displaying estimate value as “PERMISSION DENIED”
- First Call: Blank records for entire entry are sent with the detail record – no broker or analyst name or estimate value are displayed.
In order to gain access to the research reports of a broker with ‘Prior Approval’ status, a client need only speak with their Thomson Reuters Relationship Manager or Sales Representative directly. Thomson Reuters will contact those brokers in question and seek approval to access their reports on behalf of the client. If approved, the client will have access to view the research reports within 24-48 hours.

ESTIMATES COLLECTION

Process

Thomson Reuters gathers earnings forecasts and other data from hundreds of brokerage and independent analysts who track companies as part of their investment research work. Thomson Reuters calculates a mean consisting of estimates utilizing the same accounting standards (basis).

Majority Policy

Most institutional clients prefer to view estimates on an “operating” basis, reflecting the majority of the analysts covering a security. Consequently, Thomson Reuters follows a ‘majority’ policy, where the accounting basis of each company estimate is determined by the basis used by the majority of contributing analysts.

Once the majority basis has been established, contributing analysts in the minority may keep their original estimates, or are also given the opportunity to adjust to the majority basis. On rare occasions, the majority basis may be revised as additional analysts are heard from or as some change their opinion. In all cases, appropriate footnotes are added to the Thomson Reuters database stating the appropriate basis of each estimate, and if the item has been included or excluded from the mean estimate.

Adoption of Post-Event Mean (as of September 2009)

As of September 21, 2009, Thomson Reuters adopted more stringent updating rules for analyst’s estimates which are not reflecting current company events, such as:

- **Issuance of Company Guidance**
 Detail estimates which have not been updated or confirmed following the issuance of guidance and do not fall within the guidance range (e.g. “$1.00 - $1.10”) will be filtered / excluded from the mean at the time of guidance. In those cases where single-point guidance is issued (e.g. “about $1.00”), estimates not within 5% of the guidance will be footnoted and excluded from the mean. The aforementioned guidance filter will only apply to the specific measure and period.

 Those estimates that are excluded will be labeled with a (N) estimate level footnote. Then, excluded estimates that are updated or confirmed will have the footnote end-dated and added back into the mean calculation.

- **Actual(s) Reporting**
 Detail estimates for unreported periods which are not updated or confirmed within 10 business days of a prior-period reported actual will be excluded from the mean, based on the reporting of the EPS actual for that/their specified period(s).

 Those estimates that are excluded from the mean will be labeled with a type (P) estimate level footnote. The reported actual(s) filter will be applied to all measures and subsequent periods for that fiscal year. Then, excluded estimates that are updated or confirmed will have the footnote end-dated and added back into the mean calculation.

<table>
<thead>
<tr>
<th>Estimate Level Footnote Code (Minority)</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Contributor update pending: Estimate not reflecting recent company guidance</td>
</tr>
<tr>
<td>P</td>
<td>Contributor update pending: Estimate not reflecting recent reported actual</td>
</tr>
</tbody>
</table>
Please note that all other scenarios, including corporate actions, will continue with the original policy of waiting for the full majority of analyst treatment however they will be enhanced with new descriptive footnotes, illustrated below in the Footnotes section of this document.

Extraordinary Items

Extraordinary items are defined by the accounting conventions of the Financial Accounting Standards Board. Companies are required to present extraordinary items as a separate item in their financial statements. Thomson Reuters will always exclude them from the reported figures, since the majority of contributing analysts always choose to exclude extraordinary items. Thomson Reuters uses the word “extraordinary” in the most limited sense as defined by accounting convention (some analysts have the habit of applying the word “extraordinary” to any unusual charges or gains).

The most common extraordinary items are:

- Cumulative Effect of FASB Accounting Changes
- Tax Loss Carry forwards
- Discontinued Operations
- Early Retirement of Debt

Please note that as each quarter is treated independently of each year, any exclusion from a given quarter would result in an exclusion from the annual estimate

Example:

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>FY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Included</td>
<td>Excluded, minority basis</td>
<td>Included</td>
<td>Included</td>
<td>Excluded, due to Q2 exclusion</td>
</tr>
</tbody>
</table>

Non-Extraordinary Items

Non-extraordinary and non-operating items are charges or gains that may or may not be seen as pertinent to ongoing operations, depending on the industry and the opinion of the majority of contributing analysts. In contrast to the uniform recognition of extraordinary items, there is a great deal more variance within the analyst community concerning the treatment of non-extraordinary/non-operating items.

When submitting estimates, contributors are encouraged to include or exclude any non-extraordinary items they deem non-recurring and/or non-operating. Once a non-extraordinary or non-operating item is recognized, a Thomson Reuters Market Specialist will poll all contributor’s estimates covering a particular company, to establish if the majority of them are including or excluding the event. If there is no clear majority, then the charge or gain is included in the mean. If at any point the majority basis cannot be determined, the Thomson Reuters Market Specialist will further research the affected estimates, including potentially contacting the contributing analysts, to determine the majority basis.

Examples of Non-Extraordinary items include:

- Restructuring charges - larger ones are usually excluded
- Asset sale gains or losses - larger ones are usually excluded
- Inventory adjustments - included in the majority of cases
- Currency adjustments - included in the majority of cases; always included in the Oil industry
- Realized securities gains or losses - always excluded in the Insurance industry; always included in the Banking industry
- Acquisition expenses or gains from acquisition - larger ones are usually excluded
- Litigation charges or gains from litigation
- Tax settlements or adjustments
- Write-offs
Majority Basis Footnotes

A new series of valuable company and estimate level footnotes is now available for enhanced transparency of estimate accounting basis and rationale for exclusions.

COMPANY LEVEL FOOTNOTE

<table>
<thead>
<tr>
<th>Footnote Code</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Majority Basis includes/excludes… (freeform criteria utilized to define specific accounting scenario of the mean calculation)</td>
</tr>
</tbody>
</table>

This new company level footnote is designed for flexibility, and as such it will be edited to reflect any specific company scenario. Just a few possible examples of what this new freeform footnote will label include, but are not limited to, the following:

- Majority Basis excludes restructuring charge
- Majority Basis includes tax adjustment gain
- Majority Basis includes currency adjustment gain
- Majority Basis excludes litigation charge

ESTIMATE LEVEL FOOTNOTES

In addition to labeling a company’s majority accounting basis, Thomson Reuters also introduced new estimate level footnotes to clarify the specific reasoning of why an estimate was excluded from the mean. Both the company and estimate level footnotes work in tandem in the event of a change in basis (e.g. if a company’s basis changes, both sets of footnotes will be ‘flipped’ to account for the new majority basis).

New / Modified footnotes to be used are as follows:

<table>
<thead>
<tr>
<th>Footnote Code</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Accounting differences exist: Estimate on a Fully-Reported/GAAP basis</td>
</tr>
<tr>
<td>7</td>
<td>Accounting differences exist: Estimate reflecting rights issue prior to ex-date</td>
</tr>
<tr>
<td>B</td>
<td>Accounting differences exist: Estimate on a basic share count basis</td>
</tr>
<tr>
<td>E</td>
<td>Accounting differences exist: Estimate on a diluted share count basis</td>
</tr>
<tr>
<td>G</td>
<td>Accounting differences exist: Excludes charge(s)</td>
</tr>
<tr>
<td>H</td>
<td>Accounting differences exist: Includes charge(s)</td>
</tr>
<tr>
<td>I</td>
<td>Accounting differences exist: Excludes gain(s)</td>
</tr>
<tr>
<td>J</td>
<td>Accounting differences exist: Includes gain(s)</td>
</tr>
<tr>
<td>L</td>
<td>Accounting differences exist: Estimate reflecting corporate action</td>
</tr>
<tr>
<td>M</td>
<td>Accounting differences exist: Estimate on a non-GAAP basis</td>
</tr>
<tr>
<td>X</td>
<td>Accounting differences exist: Estimate on a Cash EPS basis</td>
</tr>
<tr>
<td>N</td>
<td>Contributor update pending: Estimate not reflecting recent company guidance</td>
</tr>
<tr>
<td>O</td>
<td>Contributor update pending: Estimate failed freshness policy</td>
</tr>
<tr>
<td>P</td>
<td>Contributor update pending: Estimate not reflecting recent reported actual</td>
</tr>
<tr>
<td>V</td>
<td>Contributor update pending: Estimate not reflecting corporate action</td>
</tr>
</tbody>
</table>

Existing footnotes which will continue to be used where appropriate are as follows:

<table>
<thead>
<tr>
<th>Footnote Code</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Earnings on a fully adjusted basis</td>
</tr>
<tr>
<td>5</td>
<td>Estimates Include Stock Options Expense</td>
</tr>
<tr>
<td>6</td>
<td>Estimates Exclude Stock Options Expense</td>
</tr>
<tr>
<td>8</td>
<td>Estimate reflects FASB APB 14-1</td>
</tr>
<tr>
<td>9</td>
<td>Estimate does not reflect FASB APB 14-1</td>
</tr>
<tr>
<td>A</td>
<td>Accounting Differences Exist</td>
</tr>
<tr>
<td>C</td>
<td>Estimate Received directly from Analyst</td>
</tr>
</tbody>
</table>
ESTIMATES TO RESEARCH LINKING (JUMP-TO)

Through use of the Thomson ONE platform, clients subscribing to both Detail-Estimates and Real-Time Research reports have the capability to click from a sell-side analyst’s estimate to the exact research document from which it was sourced. This will provide greater transparency to identify the details around estimate movements and pinpoint the exact reasons why a contributor is revising or confirming an estimate.

Estimates sourced directly from a research report contain a link to the exact report from where the estimate was first received (identified on the platform as any underlined estimate value in blue). If the estimate was confirmed more recently, an additional link will display to take the user to the most recent confirmation document.

These links are offered for current or previous estimates available on the detail estimates, full year, all measures and revision analysis pages of Thomson ONE.

Note that a user must be entitled to Real-Time Research to be able to see the Estimates to Research (Jump-To) functionality. Additionally the page will only contain links to contributor’s documents the user is entitled to view.

*Please note: If Estimates were received through automated feeds or files, the value will display without a link.

FISCAL YEAR

The fiscal year displayed on Thomson Reuters products is determined by the calendar year the last month of the fiscal year falls in. For example, if a company reports fiscal year results ending in January 2007, they are reporting Fiscal Year 2007. If a company reports fiscal year results ending in October 2006, they are reporting Fiscal Year 2006. Thomson ONE platforms contain estimate data for up to five annual fiscal periods, four quarterly fiscal periods and long-term growth. (Analysts typically do not make forecasts for periods beyond the third fiscal year and fourth quarter.) Since not all companies have the same fiscal year end, Thomson Reuters uses the familiar FY1, FY2... convention to identify estimates for each unique period.

The following is a description of how this labeling technique works:

- The most recently reported earnings number is denoted as time slot "0" (**0 can be FY, Q, or SAN).
- A company’s last reported annual earnings is referred to as FY0, the most recently reported quarter is Q0 and the most recent semiannual reported earnings is SAN0.
- Using these periods as a base, the period end dates for all estimated periods are easily found.
- If FY0 corresponds to the December 2006 year-end, the FY1 mean estimate is for December 2007 and the FY2 mean estimate is for the period ended December 2008. The same holds true for the interim periods.
- If Q0 refers to the period ended March 2007 (the last reported quarter), then the Q1 estimate is for the June quarter. A frequent misunderstanding is that Q1 refers to the first fiscal quarter instead of the first estimated quarter.

Fiscal Year-End Changes:

- If a company decides to change their fiscal period end, stops will be inserted in the database for all existing estimates on the company with the previous fiscal period end.
- New estimates data will then be collected under the new fiscal period end going forward.
• For example if a company changed from an October year end to December year end, all 10-2007Y estimates would be stopped, then only 12-2007Y estimates would collected on the effective date of the change.

FOOTNOTES

Footnotes are attached to estimates to alert clients as well as Thomson Reuters Market Specialists of special actions or situations affecting estimates. There are three distinct types of footnotes that can be entered: Company, Instrument and Estimate Level Footnotes.

Company-Level Footnotes

Company-level footnotes are footnotes that apply to estimates received from all contributors in a specific measure for a specific period. All company level footnotes apply to the majority EPS accounting basis, which translates down to all related data measures as well. Thomson Reuters Market Specialists use company-level footnotes to relay the majority basis of a table to clients. For example, if the analysts covering a company are including/excluding a specific charge or gain, a Company-level footnote would be attached to clearly identify this.

The footnotes below show the types of Company-level footnotes available:

<table>
<thead>
<tr>
<th>Footnote Code</th>
<th>Purpose</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Accounting</td>
<td>Estimate reflects FASB APB 14-1</td>
</tr>
<tr>
<td>9</td>
<td>Accounting</td>
<td>Estimate does not reflect FASB APB 14-1</td>
</tr>
<tr>
<td>A</td>
<td>Accounting</td>
<td>Quarters may not add to annual due to changes in shares outstanding</td>
</tr>
<tr>
<td>B</td>
<td>Accounting</td>
<td>Estimates reflect adoption of SFAS 142</td>
</tr>
<tr>
<td>C</td>
<td>Accounting</td>
<td>Stock Carries Goodwill Amortization</td>
</tr>
<tr>
<td>D</td>
<td>Accounting</td>
<td>No Goodwill Amortization Present/In Stock</td>
</tr>
<tr>
<td>E</td>
<td>Accounting</td>
<td>Estimates reflect adoption of FAS123(R)</td>
</tr>
<tr>
<td>F</td>
<td>Accounting</td>
<td>Estimates do not reflect adoption of FAS123(R)</td>
</tr>
<tr>
<td>G*</td>
<td>Accounting</td>
<td>Free Form Extraordinary Event Footnote</td>
</tr>
<tr>
<td>I</td>
<td>Accounting</td>
<td>Estimates were always reflected adoption of FAS123(R)</td>
</tr>
<tr>
<td>M*</td>
<td>Accounting</td>
<td>Majority basis includes/excludes <text></td>
</tr>
<tr>
<td>N</td>
<td>Accounting</td>
<td>No Known impact from FAS123(R) on estimates</td>
</tr>
</tbody>
</table>

*Footnote utilizes free-form criteria to define specific accounting scenarios of the mean calculation.

Instrument-Level Footnotes

Instrument-level footnotes are footnotes without a time frame or specific measure. These footnotes apply to all estimates entered on a particular ticker across every year and every measure.

For example, if the company tracks FFO instead of EPS, an Instrument-level footnote would be attached to clearly identify this.

<table>
<thead>
<tr>
<th>Footnote Code</th>
<th>Purpose</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Accounting</td>
<td>Earnings on a fully adjusted basis</td>
</tr>
<tr>
<td>4</td>
<td>Accounting</td>
<td>Earnings on a fully reported basis</td>
</tr>
<tr>
<td>8</td>
<td>Accounting</td>
<td>Estimate reflects FASB APB 14-1</td>
</tr>
<tr>
<td>9</td>
<td>Accounting</td>
<td>Estimate does not reflect FASB APB 14-1</td>
</tr>
<tr>
<td>A*</td>
<td>Accounting</td>
<td>Accounting Alert. Free Form</td>
</tr>
<tr>
<td>C</td>
<td>Accounting</td>
<td>Accounting Alert, Company followed on a Cash Earnings basis</td>
</tr>
<tr>
<td>E</td>
<td>Accounting</td>
<td>Estimates reflect adoption of FAS123(R)</td>
</tr>
<tr>
<td>F</td>
<td>Accounting</td>
<td>Estimates do not reflect adoption of FAS123(R)</td>
</tr>
<tr>
<td>G</td>
<td>Accounting</td>
<td>Accounting Alert, Company earnings before goodwill amortization</td>
</tr>
<tr>
<td>I</td>
<td>Accounting</td>
<td>Estimates have always reflected adoption of FAS123(R)</td>
</tr>
<tr>
<td>M*</td>
<td>Accounting</td>
<td>Majority basis includes/excludes <text></td>
</tr>
</tbody>
</table>
N Accounting No known impact from FAS123(R) on estimates
W Accounting Estimates based on IFRS

Footnote utilizes free-form criteria to define specific accounting scenarios of the mean calculation

Estimate-Level Footnotes

Estimate-level footnotes are attached to a specific contributor, ticker, year, measure, and/or period estimate.

The footnotes below show the types of Estimate-level footnotes available. The purpose of Estimate-level footnotes is to exclude estimates from the mean calculation, and give a label as to the reason why it is excluded. Footnotes in *italics* however do not automatically exclude estimates from being part of the mean (C, D, F and S).

<table>
<thead>
<tr>
<th>Footnote Code</th>
<th>Purpose</th>
<th>Footnote Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Accounting</td>
<td>Earnings on a fully adjusted basis</td>
</tr>
<tr>
<td>4</td>
<td>Accounting</td>
<td>Accounting differences exist: Estimate on a Fully-Reported/GAAP basis</td>
</tr>
<tr>
<td>5</td>
<td>Accounting</td>
<td>Estimate includes stock option expenses</td>
</tr>
<tr>
<td>6</td>
<td>Accounting</td>
<td>Estimate excludes stock option expenses</td>
</tr>
<tr>
<td>7</td>
<td>Accounting</td>
<td>Accounting differences exist: Estimate reflecting rights issue prior to ex-date</td>
</tr>
<tr>
<td>8</td>
<td>Accounting</td>
<td>Estimate reflects FASB APB 14-1</td>
</tr>
<tr>
<td>9</td>
<td>Accounting</td>
<td>Estimate does not reflect FASB APB 14-1</td>
</tr>
<tr>
<td>A</td>
<td>Accounting</td>
<td>Accounting differences exist</td>
</tr>
<tr>
<td>B</td>
<td>Accounting</td>
<td>Accounting differences exist: Estimate on a basic share count basis</td>
</tr>
<tr>
<td>E</td>
<td>Accounting</td>
<td>Accounting differences exist: Estimate on a diluted share count basis</td>
</tr>
<tr>
<td>G</td>
<td>Accounting</td>
<td>Accounting differences exist: Excludes charge(s)</td>
</tr>
<tr>
<td>H</td>
<td>Accounting</td>
<td>Accounting differences exist: Includes charge(s)</td>
</tr>
<tr>
<td>I</td>
<td>Accounting</td>
<td>Accounting differences exist: Excludes gain(s)</td>
</tr>
<tr>
<td>J</td>
<td>Accounting</td>
<td>Accounting differences exist: Includes gain(s)</td>
</tr>
<tr>
<td>K</td>
<td>Accounting</td>
<td>Forecast estimate not a 12-month figure.</td>
</tr>
<tr>
<td>L</td>
<td>Accounting</td>
<td>Accounting differences exist: Estimate reflecting corporate action</td>
</tr>
<tr>
<td>M</td>
<td>Accounting</td>
<td>Accounting differences exist: Estimate on a non-GAAP basis</td>
</tr>
<tr>
<td>T</td>
<td>Accounting</td>
<td>Accounting basis unknown - contributor contacted</td>
</tr>
<tr>
<td>W</td>
<td>Accounting</td>
<td>Estimates based on IFRS</td>
</tr>
<tr>
<td>X</td>
<td>Accounting</td>
<td>Accounting differences exist: Estimate on a Cash EPS basis</td>
</tr>
<tr>
<td>N</td>
<td>Freshness</td>
<td>Contributor update pending: Estimate not reflecting recent company guidance</td>
</tr>
<tr>
<td>O</td>
<td>Freshness</td>
<td>Contributor update pending: Estimate failed freshness policy</td>
</tr>
<tr>
<td>P</td>
<td>Freshness</td>
<td>Contributor update pending: Estimate not reflecting recent reported actual</td>
</tr>
<tr>
<td>U</td>
<td>Freshness</td>
<td>Contributor update pending.</td>
</tr>
<tr>
<td>V</td>
<td>Freshness</td>
<td>Contributor update pending: Estimate not reflecting corporate action</td>
</tr>
<tr>
<td>C</td>
<td>Supplemental</td>
<td>Estimate received directly from analyst</td>
</tr>
<tr>
<td>D</td>
<td>Supplemental</td>
<td>Est rec'd in currency other than default</td>
</tr>
<tr>
<td>F</td>
<td>Supplemental</td>
<td>Freeform Footnote</td>
</tr>
<tr>
<td>S</td>
<td>Supplemental</td>
<td>Estimate confirmed in analysts notes.</td>
</tr>
</tbody>
</table>

GLOBAL ESTIMATES FRESHNESS POLICIES

Thomson Reuters strives to provide the freshest estimates content possible to clients and consequently, contributors are asked to regularly send confirmations of their existing estimates. Thomson Reuters maintains active policies on the ‘freshness’ of estimates provided by contributing analysts. All forecasted data measures are accompanied by original announce and confirmation dates (in Eastern Time) and are subject to policies designed to prevent stale data:

Estimates

If an estimate has not been updated for 105 days, the estimate is filtered, footnoted with the following estimate level footnote and excluded from the mean. (Estimates are updated by a contributing analyst sending a confirmation, revision or drop in coverage.)
When Q4 is the current reporting period, Q4 and FY1 estimates are an exception to this rule: Q4 and FY1 estimates will be filtered when they have not been updated for 120 days. (This allows extra time for companies to report year-end results.)

If an estimate is not updated for a total of 180 days, the estimate is stopped.

Note:
- All non-updated estimates are auto-filtered at 105 days. If an estimate is later confirmed as current, the filter/footnote/exclusion will be end-dated and the estimate will be confirmed.
- All non-updated estimates are auto-stopped at 180 days. If an estimate is later re-sent by a contributor, it will be treated as a new estimate initiation.

Recommendations

If a recommendation is not updated for a total of 180 days, the recommendation is stopped. (Recommendations are updated by a contributing analyst sending a confirmation, revision or drop in coverage.)

Price Targets

Price target data is stopped at the expiration of its time horizon (For example, a 12-month price target would be stopped 12 months after it was last revised by a contributing analyst).

GUIDANCE

Guidance is any forward-looking expectation issued directly by a company regarding its future financial performance. Most importantly, guidance is used by company management to manage investor expectations and by investors to evaluate the company and predict future performance. Under current full disclosure regulations, guidance is the only legal method a company can utilize to communicate its expectations to investors.

Thomson Reuters StreetEvents obtains guidance information via real-time news feeds as well as information received directly from companies. Thomson Reuters Market Specialists analyze estimates and guidance together on a real-time basis. Thomson Reuters Market Specialists verify the guidance by using original press releases from companies; comments made by analysts are not used as guidance. Guidance will be evaluated and compared with the earnings estimates mean before reflecting on product.

Issuance of Company Guidance

Detail estimates which are not updated in a timely fashion after the issuance of guidance will be excluded in order to create a post-event mean value. Detail estimates which have not been updated or confirmed following the issuance of guidance and do not fall within the guidance range (e.g. "$1.00 - $1.10") will be excluded from the mean at the time of guidance. If a single-point guidance is issued (e.g. "about $1.00"), estimate(s) not within 5% of the guidance would be excluded from the mean with appropriate addition of footnotes (see below). Once excluded estimates are updated or confirmed, they will have the footnote end-dated and added back into the mean calculation.

Product Views

In Q307, Thomson Reuters began offering a “Mean/Guidance Comparison” page on Thomson ONE, which is separate from the standard StreetEvents guidance offering. This enhancement allows clients to view mean estimates, actuals and guidance on the same accounting basis side-by-side to ensure a consistent analysis. Additionally, guidance and estimates not on the same accounting basis are indicated with a footnote. This comparable guidance data is fielded and adjusted for corporate actions. Most importantly it is normalized and adjusted to match the accounting basis of estimates; percentages are translated into values, extraordinary items are included/excluded to adhere to estimates majority.
Thomson Reuters offers estimates-comparable guidance on 14 data measures for over 2,350 companies globally, with history for the S&P500 back to January 2006.

Thomson Reuters also offers Thomson Reuters Guidance Datafeed, bringing I/B/E/S Estimates and Guidance together into one consistent format allowing clients to perform true comparisons. Thomson Reuters Guidance is a unique, intra-day datafeed that offers quantitative (numeric) company expectations from press releases and transcripts of corporate events and plots them alongside the I/B/E/S mean estimate at the time of the release. This offering enables investment professionals to access company expectations alongside earnings forecasts in a single feed, and most importantly, direct from the market-leading source including the benefits of:

- Global coverage
- Historical content dating back to 1994
- Available for fiscal quarters and years
- Announcement dates and timestamps

Estimates Comparable Guidance is available for the following 14 data measures:

<table>
<thead>
<tr>
<th>Code</th>
<th>Data Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPX</td>
<td>Capital Expenditure</td>
</tr>
<tr>
<td>DPX</td>
<td>Dividends Per Share</td>
</tr>
<tr>
<td>EBS</td>
<td>EBITDA Per Share</td>
</tr>
<tr>
<td>EBT</td>
<td>EBITDA</td>
</tr>
<tr>
<td>EPS</td>
<td>Earnings Per Share</td>
</tr>
<tr>
<td>FFO</td>
<td>Funds From Operations Per Share</td>
</tr>
<tr>
<td>GPS</td>
<td>Fully Reported Earnings Per Share</td>
</tr>
<tr>
<td>GRM</td>
<td>Gross Margin</td>
</tr>
<tr>
<td>NET</td>
<td>Net Income</td>
</tr>
<tr>
<td>OPR</td>
<td>Operating Profit</td>
</tr>
<tr>
<td>PRE</td>
<td>Pre-Tax Income</td>
</tr>
<tr>
<td>ROA</td>
<td>Return On Assets (%)</td>
</tr>
<tr>
<td>ROE</td>
<td>Return On Equity (%)</td>
</tr>
<tr>
<td>SAL</td>
<td>Sales</td>
</tr>
</tbody>
</table>

HISTORY

Thomson Reuters I/B/E/S historical earnings database is revision-based. Therefore, a new 'record' is not written into history unless the current estimate changes (referred to as “revised”). In the event that a contributing analyst is confident in the current estimate and does not wish to revise the estimate, a confirmation is requested. Confirmations add integrity to the estimates (a 30-day old estimate, although in-line with all other estimates, is not regarded as confidently as a day-old estimate). Confirmations are easily identifiable in the database in that the announce (effective) date remains unchanged while the confirmation date is updated to the date of the confirmation.

Error-Corrected History

Thomson Reuters has traditionally made error corrections to historical data if it can be substantiated through published research documentation. While there are certain types of estimate data that contain “As published” information (e.g., Surprise values), the majority of the data is error corrected. Policies on historical corrections are defined by data item. In general, historical corrections are made upon request/review and are granted based on: corresponding documentation and if necessary, after the basis is verified.

There are two main types of data items:

- Earnings forecasts and other period-specific data items
- Recommendations or Target Prices

For each of the types, the following factors are taken into consideration when making historical changes:
How long ago did the error occur?

- Within the last six months: Changes are made to the database. History is captured in the recalculated mean figures.
- Prior to the past six months: These changes are made but do not automatically result in recalculated mean figures. This is due to the need to adjust history products and tables, or else detail data will not match mean data. As a result, summary history may not match detail history due to such error corrections.

How was the data received?

- Data can be received via: Notes, PDF Research, or Universe Files.

Types of changes made to historical data:

- Value, Effective Date (and Activation Date for Actuals), Analyst Coverage, Deletion, Addition of Missed Revision

Historical corrections are made to ensure the highest quality data. Errors are minimized; however it is possible that discrepancies exist due to contributing analysts never sending Thomson Reuters the data originally, or that it was sent incorrectly. As a general rule, corrections are only made, if the contributing analyst can support the value through published research. This policy has been in effect for the treatment of both recent and older history - regardless of whether or not the company reported.

As-Was Summary History

In addition to the traditional ‘error-corrected’ history offering, Thomson Reuters has recently made a new historical summary-level dataset available, which is unaltered in any way. The As-Was historical daily mean estimates dataset provides daily mean values as they appeared on a particular day; regardless if the underlying detail estimates have since been corrected or not.

Daily Historical Mean is a collection of detail estimates from analysts calculated on a daily basis. The mean is the average of the detail estimates as reported by the analyst at that particular point in time, without making any revisions or corrections to the data once it’s published. Quantitative researchers utilize “as was” data to analyze the market impact on the actual day the official record was released. Subscribers of this data set will have the ability to view over 20 financial measures, including 5 types of per share data for US and International companies.

- This powerful data set is extremely important to quantitative portfolio managers wishing to see historic data free from modifications due to error corrections.
- As-was history enables clients to see a true snapshot of the exact information available to the market at a given point in time - to see the effect that the company’s estimates had on market events.

Note that Thomson Reuters presently only offers summary-level daily as-was history. As-was detail-level estimates history will be a future enhancement to this offering.

Differences between ‘Error-Corrected’ and ‘As-Was’ History

There are certain circumstances when Thomson Reuters needs to adjust or correct a historical detail estimate that has been stored in the database. This happens when brokers go back to Thomson Reuters to correct a previously provided estimate, or when an estimate was missed from an update. In these cases, Thomson Reuters will change the detailed estimate which may or may not cause the mean to change. If the mean changes, it is no longer an “as-was” figure. Instead, the mean becomes “error-corrected” because it is recalculated based on a corrected detail.

Example:

Company ABC has 10 estimates from 10 different brokers. As of 11-01-2006, the mean for the 12-06 quarter is $2.15. One of the brokers covering Company ABC is Broker XYZ who provided Thomson Reuters with an estimate of $2.20 for the same time period.

On November 30, 2006, Broker XYZ told Thomson Reuters that their $2.20 should have been $2.26. Broker XYZ provides documented proof that the estimate that was sent to Thomson Reuters via a feed was incorrect, and that their research reports support that the estimate is actually $2.26. Thomson Reuters will apply the correct value to the detail estimate for the applicable quarter, on the date that the estimate was effective. Because of the change, the mean will change to $2.17. In this scenario, the “as-was” mean is $2.15 and the “error-corrected” mean is $2.17.
In summary, all traditional estimates history products offer ‘error-corrected’ history in which any time an incorrect value is found, it is then corrected – on either a summary or detail estimate level. Thomson Reuters new ‘as-was’ history offers historical mean estimates, free of any modification, and shows any given mean estimate value as it appeared in that particular day.

History is also available for Normalized Summary & Detail History (Currency) and is detailed in the Currency section above.

INDUSTRY CLASSIFICATIONS SOURCE / SCHEMA

The sector/industry classification schema for I/B/E/S and Thomson ONE products presently are based upon:

- For U.S. companies follow the S&P scale for sector/industries/groups
- For international companies the MSCI schema is used.

Future products will adopt the new proprietary Thomson Reuters Business Classification schema.

KEY PERFORMANCE INDICATORS

Thomson Reuters offers Key Performance Indicators (KPIs) to quickly identify and retrieve analyst forecast information on key drivers within the retail, restaurant and pharmaceutical industries. These key performance indicators are industry-specific measures that facilitate comparisons among similar peer groups. Consensus and detail forecasts are available for Same Store Sales and Pharmaceutical Sales, including business segment and product breakdowns, enabling efficient comparisons between analysts’ expectations on these indicators and your own.

Thomson Reuters collects and displays forecasted and reported industry-specific Key Performance Indicators on products including Thomson ONE Analytics and Thomson ONE Investment Management (under Security -> Estimates -> Detail – Single Period). Estimates data is available on both a detail analyst as well as summary mean level.

Thomson Reuters also offers a Key Performance Indicators (KPI) datafeed collection of current detail and summary level estimates as well as actuals information.

See “Glossary of Estimates Data Measures” section under “Product-Level Measures” for all KPIs collected.

MULTI LISTED SECURITIES

Companies may enlist to trade on multiple exchanges or may have more than one share type trade on a common exchange. The Thomson Reuters estimates database will store forecast information for all listings covered by analysts. The primary listing is referred to as an “S” type Security (Instrument Type: S). This type of security’s I/B/E/S ticker will usually reflect the ticker used for trading on the local exchange, such as MSFT for Microsoft Corporation based in the US and traded on the NASDAQ exchange. It is usually the most liquid share class with the highest trading volume.

In addition to the primary listing, companies may also have other listings including:

- Multiple Shares (Instrument Type M)
- Multiple Listings/Inter-listed Securities (Canada Only) (Instrument Type D)
- American Depositary Receipts - ADR’s (Instrument Type A)
- Combination of all Security Types
- Dual Listed Companies

Multiple Share Classes (Instrument Type M)

Please note: Presently, multiple share listings - indicated by Instrument Type M and having I/B/E/S Tickers with a slash “/” - are not displayed on Thomson Reuters platforms nor included in datafeeds such as I/B/E/S QFS & History.
Multiple share classes of a company occur when more than one share class is traded for that company on the same exchange within the same country. The additional shares are referred to as multiple shares of the same equity. Multiple shares for companies are usually issued because:

- Different levels of voting rights are attached to each share class
- There is a restriction within the market on foreign ownership and a secondary class is created for foreigners
- The company wishes to increase the liquidity of its shares by adding share classes with small nominations
- Other reasons as determined by the company

A multiple share of a company is added to the estimates database as a Multi Share listing (I/B/E/S Type: M). This type of security’s I/B/E/S ticker will always be the I/B/E/S ticker of the S type listing, with a slash “/” and a numeric digit suffix. For example, if the ticker for the S type listing of a company is @ALZ, the ticker for the M type listing will be @ALZ/1. If the numeric digit is greater than 9, then a letter is used in place of a numeric, for example: @ALZ/A.

A multi-listed/inter-listed security has the same class of shares listed on two different exchanges. Multi-listed securities are an additional listing of any security of the company, but are typically related to the primary listing. In this case, the company’s shares are listed on more than one stock exchange in two different geographic locations. Inter-listed securities are those listed on both Toronto Stock Exchange (TSX) and a US exchange, including the NASDAQ, AMEX or NYSE. Each inter-listed security has one CUSIP, is fungible, and can therefore be traded and cleared in either Canada or the US.

A multi-listed/inter-listed security is added to the database as a D Type security under the same issuer name as the primary S type listing. The primary ticker is setup as an S type security and the secondary listing as a D type security.

Example:

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Market Symbol</th>
<th>I/B/E/S Ticker</th>
<th>I/B/E/S Type</th>
<th>Exchange Country</th>
<th>Exchange</th>
<th>Share Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royal Dutch Shell</td>
<td>RDSA.NL</td>
<td>@RDN</td>
<td>S</td>
<td>NETHERLANDS</td>
<td>Euronext Amsterdam</td>
<td>A Shares</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>RDSB.NL</td>
<td>@RDN/1</td>
<td>M</td>
<td>NETHERLANDS</td>
<td>Euronext Amsterdam</td>
<td></td>
</tr>
<tr>
<td>Barrick Gold</td>
<td>RDSA.NL</td>
<td>@RDN</td>
<td>S</td>
<td>NETHERLANDS</td>
<td>Euronext Amsterdam</td>
<td>A Shares</td>
</tr>
<tr>
<td>Barrick Gold</td>
<td>RDSA.GB</td>
<td>@SHE</td>
<td>D</td>
<td>UNITED KINGDOM</td>
<td>London Stock Exchange</td>
<td>A Shares</td>
</tr>
<tr>
<td>Barrick Gold</td>
<td>ABX.US</td>
<td>ABXF</td>
<td>S</td>
<td>Canada</td>
<td>TSX</td>
<td></td>
</tr>
<tr>
<td>Barrick Gold</td>
<td>ABX.CN</td>
<td>ABX3</td>
<td>D</td>
<td>USA</td>
<td>NYSE</td>
<td></td>
</tr>
</tbody>
</table>

Source: www.unification.shell.com
Unique tickers are created for each listing -- the listing on the local exchange as type S and the multi-listed/inter-listed as type D.

Estimates are stored and displayed under the listing provided by the contributing broker.

Thomson Reuters platforms display both types of securities and feed files include data on both types of securities.

A dual-listed security is a Canadian company that trades on both the US and Canadian stock exchanges. In order to increase granularity of its data, Thomson Reuters uses the following method to capture estimate, recommendation and price target data for Canadian dual-listed companies.

- Thomson Reuters adds a secondary instrument or ticker for Canadian dual-listed companies when estimate data is received for both listings. In order to link the tickers, there are two types of securities: The primary security is denoted as type ‘S’ and the dual-listed security is denoted as type ‘D’.
- Duplicate identifiers (CUSIPS) exist since Canadian companies that trade both in Canada and the US share the same CUSIP, but carry a separate SEDOL for each exchange on which they trade. A CUSIP is a number identifying all stocks and registered bonds – Committee on Uniform Securities Identification Procedures. A SEDOL is a code which identifies a foreign stock that has a CUSIP number but does not trade in the U.S. – Stock Exchange Daily Official List.
- Thomson Reuters implements this process in a two-step approach in order to accommodate clients who currently use CUSIP as the identifier to load data. A second dual listed instrument is added and data is captured as received from contributing analysts. An artificial CUSIP is attached, which is the first seven digits of the primary listing and “X” as the last digit eg. 3748593X. The unique SEDOL for each listing is captured in the database in order to maintain correct pricing information.
- The second step requires that data file products be amended in order to adequately support duplicate CUSIPS. Once implemented, Thomson Reuters will continue to maintain the dual listed instruments by properly capturing data and attaching the correct CUSIP for both instruments. The correct digit will replace the artificial “X” once the long-term approach is implemented. At least three months notification will be provided to clients preceding any changes to the ID files.
- Thomson Reuters publishes estimates on whichever security a contributor provides estimates. If an analyst supplies forecasts under both securities then estimates/coverage will be made viewable on both securities. If the analyst supplies forecasts for one security, estimates will be displayed under that particular security and no other.
- Target Price will be the basis for determining which security is covered. For example, if an analyst sends their Target Price under the CAD listing yet supplies US estimates, Thomson Reuters will display coverage under the CAD security. Analyst’s have the ability to cover both listings as long as both target prices are supplied. The currency of estimates will have no determining factor on which listing an analyst covers. Dual-listed securities are shown in the exchange opposite of the primary security. For example, if the primary security is listed on the Canadian Exchange, the newly created security would be listed under the US Exchange.

Example of Dual-Listed Company:

Canadian National Railway

Local Tickers: U.S. – CNI
Canada – CNR

I/B/E/S Tickers: U.S. – CNI
Canada – CN2

Thomson Reuters uses this policy on dual-listed companies due to the request of analysts. Analysts wish to show coverage with specific security. These methods allow analysts to forecast price targets for one or both securities. Having two separate securities increase granularity of data and allow for correct pricing information. It also allows for proper analyst ranking for each security.

American Depository Receipts – ADR’s (I/B/E/S Type A)

American Depository Receipts are listings for a foreign traded company on an American exchange. An ADR is a negotiable certificate issued by a U.S. bank representing a specified number of shares (or one share) in a foreign stock that is traded on a U.S. exchange. ADR’s are denominated in U.S. dollars, with the underlying security held by a U.S. financial institution overseas, and help to reduce administration and duty costs on each transaction that would otherwise be levied. ADR’s make it easier for Americans to invest in foreign companies, due to the widespread availability of dollar-denominated price information, lower transaction costs, and timely dividend distributions.
ADR’s are treated the same as US companies. If an ADR is covered by one of the Thomson Reuters contributing analysts, estimates are collected as well as actuals, and mean data is created based off the number of analysts included in the mean calculation. ADR’s are grouped, however, with US companies, and not by the countries of their local security.

An ADR security is added to the I/B/E/S database as an A type security under the same issuer name as the primary S type listing. The primary ticker is setup as a type S and the secondary listing as a type A security.

Example:

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Market Symbol</th>
<th>I/B/E/S Ticker</th>
<th>I/B/E/S Type</th>
<th>Exchange Country</th>
<th>Exchange</th>
<th>Share Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royal Dutch Shell</td>
<td>RDSA.NL</td>
<td>@RDN</td>
<td>S</td>
<td>NETHERLANDS</td>
<td>Euronext Amsterdam</td>
<td>A Shares</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>RDS/A.US</td>
<td>RD</td>
<td>A</td>
<td>USA</td>
<td>NYSE</td>
<td>A Shares</td>
</tr>
</tbody>
</table>

- Unique I/B/ES tickers are created for each listing - the listing on the local exchange as type S and the ADR as type A.
- Estimates are stored and displayed under the listing provided by the contributing broker.
- All platforms display both types of securities and feed files include data on both types of securities.

Combination of All Security Types

Some companies have a combination of different listing types including dual listings, multiple share classes and ADR’s, as is the case for Royal Dutch Shell PLC.

Example:

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Market Symbol</th>
<th>I/B/E/S Ticker</th>
<th>I/B/E/S Type</th>
<th>Exchange Country</th>
<th>Exchange</th>
<th>Share Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royal Dutch Shell</td>
<td>RDSA.NL</td>
<td>@RDN</td>
<td>S</td>
<td>NETHERLANDS</td>
<td>Euronext Amsterdam</td>
<td>A Shares</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>RDSB.NL</td>
<td>@RDN/1</td>
<td>M</td>
<td>NETHERLANDS</td>
<td>Euronext Amsterdam</td>
<td>B Shares</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>RDSA.GB</td>
<td>@SHE</td>
<td>D</td>
<td>UNITED KINGDOM</td>
<td>London Stock Exchange</td>
<td>A Shares</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>RDSB.GB</td>
<td>@SHE/1</td>
<td>M</td>
<td>UNITED KINGDOM</td>
<td>London Stock Exchange</td>
<td>B Shares</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>RDS/A.US</td>
<td>RD</td>
<td>A</td>
<td>USA</td>
<td>NYSE</td>
<td>A Shares</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>RDS/B.US</td>
<td>RD/1</td>
<td>M</td>
<td>USA</td>
<td>NYSE</td>
<td>B Shares</td>
</tr>
</tbody>
</table>

Thomson Reuters publishes estimates on whichever security a contributor provides estimates. If an analyst supplies forecasts under both securities then estimates/coverage will be made viewable on both securities. If the analyst supplies forecasts for one security, estimates will be displayed under that particular security and no other.

- Target Price will be the basis for determining which security is covered. For example, if an analyst sends their Target Price under the CAD listing yet supplies US estimates, Thomson Reuters will display coverage under the CAD security. Analyst’s have the ability to cover both listings as long as both target prices are supplied. The currency of estimates will have no determining factor on which listing an analyst covers. Dual-listed securities are shown in the exchange opposite of the primary security. For example, if the primary security is listed on the Canadian Exchange, the newly created security would be listed under the US Exchange.

PARENT / CONSOLIDATED INDICATOR

Indicates whether the estimates of a company are carried (by Thomson Reuters) on a parent or consolidated basis. The way a company appears on the database is based on the majority of the earnings estimates received. Contributors are free to provide either parent or consolidated estimates for any given company. Using sales estimates as an example, consolidated sales estimates would be under SAL, whereas sales for parent company would be under SALPAR. The primary basis (either P or C) is determined by whichever is the majority basis.
Consolidated Companies

Companies are classified as consolidated when the earnings of the investee companies where the parent holds a 20% voting stake or more are combined with the earnings of the parent company, after elimination of inter-company transactions.

Parent Companies

Companies are classified as parent when only the earnings of the reporting entity, including dividends, interest, royalties, etc. received from its investee companies, are presented as net income.

Companies Without Subsidiaries

Companies without subsidiaries are classified as consolidated by default since a great majority of the markets adhere to the consolidated basis.

Consolidated / Parent Companies

If companies are carried in two-basis (Consolidated and Parent) and use a different calculation, a review and shifting of the affected measures are necessary to ensure that the majority and minority of broker submissions are stored in the right primary measures (Primary Parent/ Primary Consolidated) and secondary measures (Secondary Parent/ Secondary Consolidated). Switching the primary basis from secondary and vice versa is imperative when there is a significant drop or increase in either broker submission.

Shifting Company Indicators

The reason for the need to shift is that there are two main data products that are dependent on current collection:

- History- The detail history product only includes primary basis. Due to constraints it is imperative that the primary basis includes the majority of contribution.
- Global Aggregates- This product also offers history. If EPS history for primary basis is deleted/ removed/ relabeled calculations that includes these companies will be affected.

The switch from consolidated primary to parent primary or vice versa should be based on two main factors:

- Change in reporting standards/ actual availability - Availability of actual data for the basis identified as primary. When company does not have subsidiaries and no earnings to consolidate.
- Change in broker submission- when there is a shift in majority of basis brokers is sending their data.

When a significant number of brokers are shifted to a different basis, the primary measure is shifted to the basis where the majority of the brokers are sending. The basis where the minority of the brokers are sending will be the new secondary measure. All measures for the same basis will be shifted all together.

When equal contribution is submitted for both bases, the deciding factor should be the availability of the actuals for that company/market based on proposed/ reviewed and approved by the accounting board.

When equal contributions are submitted for both bases and there is an actuals available for both bases as well, the company basis should remain as of the day of the review. When companies have minimal (1 or 2 contributor in the P/C status) difference in contribution and majority have shifted to a different basis, the current measures remain until a significant number of contributors have shifted. Significant number is considered as 60% if company has fewer than 8 estimates & 40% if it is has 9 estimates up.

PERIODICITY

Periodicity is the frequency for which a company reports their full financial results. A company will have either a quarterly (QTR) periodicity, a semi annual (SAN) periodicity, or an annual (ANN) periodicity once it is established with the database and data is collected.

Quarterly (QTR) periodicity is used when:

- Company reports full financial results quarterly;
Company reports full financial results semi annually, and contributors are making quarterly EPS or FFO estimates; and;
Company reports full financial results annually and there are no contributors making interim estimates.

Semi-Annual (SAN) periodicity is used when:
- Company reports full financial results semi annually, and contributors are not making quarterly EPS or FFO estimates. There are cases where contributors will supply quarterly sales estimates for companies that only report full financials semi annually. These sales estimates should not be used to determine the periodicity since it is not a shifting measure; and
- Company reports full financial results semi annually, and there are no contributors making interim estimates.

Annual (ANN) periodicity is used when:
- Company reports full financial results every 12 months, and a period year consists of one annual.
- A company’s periodicity should be set to the most frequent time interval based on one of the following:
 - The company report; or
 - EPS or FFO estimates periodicity supplied by contributors

Please note that quarterly periodicity is the most frequent interval used as the default periodicity when setting up new companies.

PRELIMINARY ESTIMATES

When Thomson Reuters receives a contributor’s estimate, it goes through an extensive and thorough verification process prior to delivery to all estimates products to ensure accuracy and consistency. This value-added quality control process ensures estimates are of the highest quality and estimates are delivered to products in the quickest time possible, however there are times where this added level of process may affect the timeliness of estimates.

As a solution for the most time-sensitive clients, Preliminary Estimates are available which combine real-time estimate availability, with an automated quality screening process. A Preliminary Estimate bypasses the manual portion of Thomson Reuters value-added quality control checks and verification tests – and is only subjected to limited automated verification tests. This data is then available in true real-time, enabling clients to view a contributor’s updated forecasts prior to the Thomson Reuters full verification, filtering and footnoting process. The majority of Preliminary Estimates will be followed by a ‘fully-verified’ estimate, which are subjected to all of Thomson Reuters quality control checks.

- Preliminary Estimates enable true real-time delivery to clients.
- Preliminary Estimates are useful to any customers making investment decisions based on estimate revisions and related time sensitive activity.
- Preliminary estimates are currently being offered via the First Call Datalink feed, as well as Thomson ONE Analytics and Thomson ONE Investment Management platforms.
- First Call Datalink offers Preliminary Estimates for the following data measures: EPS, Sales, Cash Flow per Share, Recommendations and Price Target.
- Thomson ONE Analytics and Thomson ONE Investment Management offer Preliminary Estimates for all 26 data measures.

Please note that Preliminary Estimates are available in real-time after fielded receipt of estimate values from analysts (either once automated feeds/files are received from brokers, or once Thomson Reuters Market Specialists extract estimate values from PDF research documents.)

PRICE FORECASTS

In addition to publicly traded companies, Thomson Reuters also collects forecasts on the price levels of commodities, as well as both bottom-up and top-down price forecasts on select indices.

Commodity Price Forecasts

Commodities are something that are relatively easily traded, that can be physically delivered, and that can be stored for a reasonable period of time. A common characteristic of commodities is that their prices are determined on the basis of an active market. Examples of commodities include metals, minerals, and energy sources such as crude oil, natural gas,
Commodity price forecasts are collected by Thomson Reuters if available from contributing analysts. Unique I/B/E/S tickers are created for each commodity with sell-side analyst estimates coverage and are set up as a Type “O” Instrument type. For a complete listing of all available commodity price forecasts, please reference the document “Thomson Reuters Top-Down Index & Commodity Price Forecasts”.

Actuals

Commodity price actuals are entered within 15 days of the end of the period by using the calculated average price of the preceding three (3) months period. Please note that this method is also used by the contributing analysts, who take the average closing price of the quarter to determine actuals, not the closing price at the end of the quarter.

Estimates

Commodity price forecasts are based off spot prices and are entered using the same majority basis policy as estimates on companies. These estimates are sourced from the same sell-side analysts covering companies and related industries.

Index Price Forecasts

Thomson Reuters collects and calculates price forecasts for a handful of US stock indices, most notably including the S&P500 and Dow Jones Industrial Average (DJIA). Unique I/B/E/S tickers are created for each index with sell-side analyst estimates coverage and are set up as a Type “I” Instrument type. For a complete listing of all available index price forecasts, please reference the document “Thomson Reuters Top-Down Index & Commodity Price Forecasts”.

Two types of index price forecasts are available on Thomson Reuters; top-down, which are an average of market strategists’ forecasts, and bottom-up, which are aggregations of all analyst mean forecasts for each individual company in an index.

Top-Down Estimates

Index price forecasts are based off index prices and are entered using the same majority basis policy as estimates on individual companies. These detail estimates are sourced from sell side industry analysts, as well as market strategists who forecast based upon macroeconomic conditions, rather than individual company performance. All of these individual estimates are then averaged to create a mean (consensus) top down forecast.

Bottom-Up Estimates

In addition to Thomson Reuters collecting top-down forecasts from sell-side contributors, bottom-up forecasts are calculated as well. These forecasts are sourced from aggregating all of the individual mean estimates for each individual company in an index, and then weighted by market cap. The explicit bottom-up index forecasts calculation used by Thomson Reuters is as follows:

\[
\text{Avg}_{\text{eps}} = \frac{\text{spi} \times \text{total}_\text{cons}_\text{shares}}{\text{total}_\text{price}_\text{shares}}
\]

Where:
- \(\text{Avg}_{\text{eps}}\) = bottom-up index estimate displayed on products
- \(\text{spi}\) = price index value
- \(\text{total}_\text{cons}_\text{shares}\) = consensus eps * shares of each company of the Index
- \(\text{total}_\text{price}_\text{shares}\) = price * shares of each company of the index

Actuals

The current policy for updating actuals for index estimates is to enter the bottom up calculated figure two quarters after the end of the period. Bottom-up estimates and actuals are calculated on a calendarized basis, in order to account for different fiscal year ends for companies and allow for comparison of companies regardless of fiscal period. The calendar quarter end is taken along with the month before and the month after to create a quarter number that allows companies with different fiscal periods to be compared against each other.
Actuals Entry Schedule:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Period Ending</th>
<th>Enter Actual Value on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>March 31</td>
<td>July 1</td>
</tr>
<tr>
<td>Q2</td>
<td>June 30</td>
<td>October 1</td>
</tr>
<tr>
<td>Q3</td>
<td>September 30</td>
<td>January 1</td>
</tr>
<tr>
<td>Q4</td>
<td>December 31</td>
<td>April 1</td>
</tr>
</tbody>
</table>

Calendarization Methodology:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Period Ending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>February, March, April</td>
</tr>
<tr>
<td>Q2</td>
<td>May, June July</td>
</tr>
<tr>
<td>Q3</td>
<td>August, September, October</td>
</tr>
<tr>
<td>Q4</td>
<td>November, December, January (of next calendar year)</td>
</tr>
</tbody>
</table>

PRIORITIZATION

Estimates and recommendations are researched and reviewed by Thomson Reuters Market Specialists to insure accuracy – prior to becoming available on products. Every revision is subject to a stringent quality control process – both before and after the data is available on products. If the accuracy or accounting basis cannot be verified by the data source alone, Thomson Reuters Market Specialists will further research the affected estimates/recommendations, by contacting the contributing analysts directly for clarification. It is however Thomson Reuters goal to deliver accurate and reliable estimate revisions as timely as possible.

During peak times such as earning seasons, the added revision volume can sometimes cause slight delays. Thomson Reuters uses a rolling ‘priority scheme’ which gives higher priority to market movers, index constituents, higher market cap companies, companies in the news/reporting etc. – to ensure that estimate revisions for these types of companies are the first to be updated.

All of the following would be considered as higher priorities when updating estimates; surprising earnings news, pre-announcements, reported earnings, S&P companies, market capitalization, major merger announcements/ completions and post-market prior day events (e.g., companies in the news to which the market has yet to react). Index Constituents tend to be considered market movers and therefore given priority over lesser-followed companies. For that reason, the mechanism is in place to highlight an index as a priority grouping.

Please note that Preliminary Estimates are available in real-time after fielded receipt of estimate values from analysts – prior to the manual verification process. See Preliminary Estimates section for more details.

REASONS FOR CONTACT WITH CONTRIBUTING ANALYSTS

All phone calls between Thomson Reuters Market Specialists and Contributors/IR Representatives are logged in a phone call database.

Cases that would typically trigger Thomson Reuters to contact a contributor include but are not limited to:

- Quarterly estimates within the published research document do not add to the annual provided (indicating use of non-majority prior period actual).
- Quarterly or annual estimates received from a contributor (either via research or feed) which fail quality control tests and validations for accuracy, such as standard deviations, decimalization errors, etc.
- An accounting basis issue is identified within a contributor’s estimate or reported actual – contributor contacted and communicated what the ‘majority’ basis is using.
- A company issues guidance, and the contributor either does not update/confirm their estimate or it is outside of the guidance range.
- An estimate fails the Thomson Reuters Freshness Policy and a contributor is contacted to confirm/revise their estimates.
- A company announces a merger/acquisition/spinoff – a contributor is contacted for their post-event estimate.
• A contributor’s estimates are not updated after a company reports their quarterly/annual results.
• Pre-split estimates are provided in research, after a company has gone through a stock dividend or split of their stock.
• A company goes through a FYE change and the contributor sends numbers on the old FYE.

RECOMMENDATIONS

Recommendation Mapping: Thomson Reuters I/B/E/S 1-5 Scale

The Thomson Reuters I/B/E/S recommendation scale is as follows:
1 - Strong Buy
2 – Buy
3 – Hold
4 – Underperform
5 – Sell

Each contributor determines how their individual recommendation scale maps to the Thomson Reuters I/B/E/S 5-point scale. Every firm, no matter if they have a 3-point scale or a dual-tiered system, must map their scale to the normalized 1-5 scale utilized by Thomson Reuters. The only stipulation being that the mapping requested must allow for negative to negative ratings, positive to positive ratings and neutral to neutral ratings when mapping to Thomson Reuters I/B/E/S 1-5 scale. A contributor using a 3-point scale of BUY, HOLD, SELL would not be allowed to have a mapping of 1,2,3 on the 1-5 Thomson Reuters Scale. Contributors are made aware that the 1-5 value will be calculated to create a mean and displayed across Thomson Reuters products.

Please note that while contributors may have elaborate multi-tier recommendation scales, including both company and industry/sector ratings, all points in their scale must map back to the standardized Thomson Reuters I/B/E/S scale is 1-5. In cases of broker scales being greater than 5 points, multiple points in a broker’s scale may map back to a single point in the Thomson Reuters I/B/E/S scale.

Recommendation Mapping: Impact on Products

Clients viewing the Recommendations data measure, depending upon the product, can view analyst recommendations in multiple versions:
• Contributor Text format – the actual text provided by the contributor
• Normalized Text format – the corresponding text on Thomson Reuters normalized scale
• Normalized Code format – the corresponding code on Thomson Reuters normalized scale

Contributor Text format is the exact recommendation language used by that specific contributing firm. Normalized Text and Code make the Contributor Text more consistent, by mapping the Contributor Text to Thomson Reuters standard 1-5 recommendation scale. It is the Normalized Codes which are used to calculate the Thomson Reuters Mean Recommendation.

Recommendation Scale Changes

If a contributor changes their recommendation scale, stops must be applied to the database to prevent false revisions, followed directly by new recommendations applied on the same day. When recommendation scale changes occur, Thomson Reuters Market Specialists work closely with the contributor to outline the implications, and make decisions on how the change should be represented, based on the guidelines Thomson Reuters uses in mapping contributor scales to the normalized scale.

Note: Recommendation scale change requests received from contributors will be processed on a go-forward basis

Recommendation Drops

If a contributor drops coverage of a company, a stop is applied to the recommendation field. Additionally, if a contributor is "restricted” on the stock or has suspended their recommendation, a stop would be applied to the recommendation field.
RESTATEMENT POLICY (ACTUALS)

Thomson Reuters actuals restatement policy addresses the needs of two distinct sets of end users: those who prefer the actual data as it was initially reported and those who wish to view the company as it is constituted today.

- Thomson Reuters can restate actuals for any available measures; however the ones most commonly restated are EPS, Sales and FFO.
- Thomson Reuters will restate the quarterly figures for the current fiscal year, as well as the prior year’s actuals data to provide comparability. Thomson Reuters will not restate actual data for more than one year back.
- All other actuals data will be left as originally entered, to allow historical examination.
- In all cases, footnotes will be entered to explain the basis of the modified figures.
- Once a restatement has taken place, any existing estimates or new estimate submissions must use the restated actual data: this ensures a proper apples-to-apples comparison among contributing analysts. If a contributor is not using the restated figure, a Thomson Reuters Market Specialist will contact the analyst to adjust to the restated basis, or will have their estimates footnoted and excluded from the mean for the fiscal year in question.

Examples of events that would require restatement include:

- Changes in the accounting basis
- Classification of certain operations as discontinued
- Sales and acquisitions of business lines

Example of company with restated actuals:

Integrated Circuit Systems (ticker ICST)

Restated EPS Actual: Q105 = 0.24R
Accompanying Footnote: 11-Nov-04 SEP04Q Restated from 0.23 upward for accounting change

*Thomson Reuters will only restate actuals after a company has officially made the restatement, and can be documented via a press release, or by confirmation of all the contributing analysts.

SHARE CLASS

Default share class is determined by the majority of estimates submitted. Policies differ slightly for the US and International companies.

U.S.

1. Determined by majority of coverage.
2. If there is not a majority of coverage, then defer to liquidity.
3. If liquidity is comparable then defer to the share class with the most voting rights.

International

1. Determined by majority of coverage.
2. If there is not a majority of coverage, then defer to the share class with voting rights.

*Only recommendations and target prices are affected by share class; all other estimates are generally available under the primary share class.

Shares Outstanding Data

Number of Shares Outstanding (NOSH)

Current number of shares outstanding (NOSH) data is provided as a supplemental data item in I/B/E/S datafeeds as well as on Thomson ONE (Security->Overview->Snapshot). This data provided is based on the NOSH for the specific security (SEDOL-specific), and not on the consolidated/company level.
Shares Outstanding Used in Per-Share Estimates

The shares outstanding data, for per-share data measures, which is utilized in individual analyst’s detail estimates, and subsequently the summary level mean data, are all consolidated/company-specific data (it is not share class specific, like the NOSH data displayed on products is).

- The above is only for per-share measures. Exclusions would be Dividend Per Share and Price Targets, which would be based upon NOSH for the particular share class.

Example

To illustrate, here is an example using Viacom:

- NOSH data would display 549.503m for VIAB, and VIAB/1 has 57.364m number of shares outstanding; each security showing security-specific shares outstanding.
- Analyst research reports, and subsequently estimates data, would show 607m number of shares outstanding; showing consolidated/company level shares outstanding.

STOP, FILTER AND DELETION SCENARIOS

Stop - Results in a contributing analyst’s estimates no longer being displayed on products.

- The contributing analyst has dropped coverage.
- The contributing analyst is “restricted” on the stock.
- Estimate/recommendation has not been updated (confirmed or revised) for 180 days or more.
- Recommendation / Target Price under review

Filter - Contributing analyst’s estimates are still displayed on products but are footnoted and excluded from the mean calculation.

- Estimate is on a different accounting basis than the majority of contributing analysts.
- Estimate has not been confirmed or revised at the issuance of a company’s earnings guidance and it is either outside of the guidance range or >5% of a single-point guidance value; applying only to the specific measure and period issued.
- Estimate is not on the majority basis pertaining to a corporate action or the estimate has not been updated to reflect a corporate action after the effective date.
- Quarterly estimates revised without a corresponding adjustment to the annual estimate (all other period estimates for the same year are filtered).
- Annual estimate revised without a corresponding adjustment to the quarterly estimates (all quarterly estimates for the same year are filtered).
- A Thomson Reuters Market Specialist has requested data verification and no response was received for more than 48 hours.
- Estimate is under review by the contributing analyst.
- Estimate has not been updated (confirmed or revised) for 105 days or more.
- After an actual is reported, an estimate is excluded from the mean if it is not or confirmed within 10 business days of a prior-period reported actual.
- Estimate is updated for post-Rights Issue prior to the ex-date.

Deletion - Estimate is removed from the database and history. The previous estimate becomes the current estimate.

- Incorrect estimate was entered into the database (only if verified by published research).

TAX RATES

A quarterly estimate is only considered to be on a different basis with respect to taxes if some analysts are taxing the estimates and others are not. For example, if an analyst is not taxing their estimates and the other analyst is using a tax rate of 30%, those two estimates are on a different basis and one of them needs to be excluded from the mean calculation. On the other hand, if one analyst is using a tax rate of 20% and the other is using a tax rate of 33%, and there are no other basis issues, those estimates are on the same basis and should both be included in the mean.
This holds true for an annual estimate as long as the analyst is using the same tax rate for the actuals that we are using. If the analyst is using a different tax rate for a reported period (different actual), then the annual estimate should be filtered. Any future quarters should remain unfiltered if they do not violate the quarterly rule above.

TREATMENT OF SMALL ESTIMATES REVISIONS

Thomson Reuters accepts data from contributors to varying degrees of precision. Most contributors provide estimates to 2 or 3 decimal places. The following are scenarios under which small estimates revisions would be treated:

Second Decimal Place

- An estimate revision that is less than 0.01, which does not result in a new value after rounding to the second decimal place, is treated as a confirmation of the existing estimate (i.e., it is not recorded in the Thomson Reuters I/B/E/S collection database as a revision and is not fed to products as a revision).
- An estimate revision that is less than 0.01 which does result in a new value after rounding to the second decimal place is treated as a revision and is fed to products as a revision.

Third Decimal Place (in effect since June 15, 2009)

- All estimates revisions that impact the third decimal place after rounding will now be recorded and fed to products as a revision, for select currencies, in order to provide additional estimates granularity for markets that are regularly impacted by very small revisions:
 - Australian Dollar (AUD)
 - Japanese Yen (JPY)
 - Malaysian Ringgit (MYR)
 - New Zealand Dollar (NZD)
 - Singapore Dollar (SGD)
 - South African Rand (ZAR)
 - South Korean Won (KRW)

Scenario 1: New estimate differs from the current estimate by less than 0.01, but does not impact the second decimal place after rounding.

Example 1 – Not Impacting Second Decimal Place

<table>
<thead>
<tr>
<th>ANALYST’S ESTIMATE</th>
<th>3+ DECIMAL PLACE PRODUCTS (I/B/E/S QFS, I/B/E/S HISTORY, REUTERS KNOWLEDGE, 3000 XTRA)</th>
<th>2 DECIMAL PLACE PRODUCTS (THOMSON ONE, FIRST CALL DATALINK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate</td>
<td>Revision Date</td>
<td>Estimate</td>
</tr>
<tr>
<td>Existing</td>
<td>0.241</td>
<td>05-May-2009</td>
</tr>
<tr>
<td>New</td>
<td>0.244</td>
<td>03-Jun-2009</td>
</tr>
</tbody>
</table>

In Example 1, the new estimate is treated as a confirmation on all products since the change does not impact the second decimal place after rounding. No subsequent revision dates change, but confirmation date is updated.
Example 2 – Impacting Third Decimal Place - Select Currencies

In Example 2, the new estimate is treated as a revision on products displaying 3 decimal places since it is for one of the select currencies and it impacts the third decimal place after rounding. On products with 2 decimal places it appears as the same value since the second decimal place is not impacted, however the revision and confirmation dates are updated.

Scenario 2: new estimate differs from the current estimate by less than 0.01, but does impact the second decimal place after rounding.

Example 3 – Impacting Second Decimal Place

In Example 3, the new estimate is treated as a revision on all products since it impacts the second decimal place after rounding.

GLOSSARY OF ESTIMATES DATA MEASURES

Product-Level Measures

<table>
<thead>
<tr>
<th>Key Performance Indicator Description</th>
<th>Relevant Industries</th>
<th>Measure Code</th>
<th>Measure Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Sales</td>
<td>Drug Manufacturers</td>
<td>SAL</td>
<td>PS</td>
</tr>
<tr>
<td>Same Store Sales</td>
<td>Retailers, Restaurants, Lodging</td>
<td>SSS</td>
<td>SS</td>
</tr>
</tbody>
</table>

Pharmaceutical Sales

Pharmaceutical Sales represents the revenue associated with individual pharmaceutical drug unit products.

- Thomson Reuters collects reported company results and forecasted sales estimates on a quarterly and annual basis for pharmaceutical companies globally.
- Estimates data available on both a detail analyst as well as summary mean level.
Thomson Reuters links these drugs on multiple levels depending on the business relationship, chemical ingredients and purpose associated with each - allowing not only specific forecast data for each separate drug but also aggregate sales of generic ingredients and instances where global revenues are shared as a joint venture between companies.

Same Store Sales

Same Store Sales represents a percentage sales growth for retail stores and restaurants that have been open for more than one year. Same Store Sales allows investors to decipher what portion of sales growth is due to true retail growth and what portion is due to new store openings.

- Thomson Reuters collects reported company results and sales growth forecasts on a monthly, quarterly and annual basis for North American companies.
- Estimates available on a store line as well as consolidated basis, where available.
- Estimates data available on both a detail analyst as well as summary mean level.
- Companies followed include discount retailers, department stores, specialty retailers, casual dining, quick serve restaurants and more.

Company-Level Measures

<table>
<thead>
<tr>
<th>Data Measure Description</th>
<th>Primary Consolidated Code</th>
<th>Secondary Consolidated Code</th>
<th>Primary Parent Code</th>
<th>Secondary Parent Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Value Per Share</td>
<td>BPS</td>
<td>SBP</td>
<td>BPSPAR</td>
<td>SBPPAR</td>
</tr>
<tr>
<td>Capital Expenditure</td>
<td>CPX</td>
<td>SPX</td>
<td>CPXPAR</td>
<td>SPXPAR</td>
</tr>
<tr>
<td>Cash Flow Per Share</td>
<td>CPS</td>
<td>SCP</td>
<td>CPSPAR</td>
<td>SCPPAR</td>
</tr>
<tr>
<td>Dividend Per Share</td>
<td>DPS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earnings Before Interest & Taxes (EBIT)</td>
<td>EBI</td>
<td>SBI</td>
<td>EBIPAR</td>
<td>SBIPAR</td>
</tr>
<tr>
<td>Earnings Before Interest, Taxes, Depreciation & Amortization (EBITDA)</td>
<td>EBT</td>
<td>SBT</td>
<td>EBTPAR</td>
<td>SBTPAR</td>
</tr>
<tr>
<td>Earnings Per Share</td>
<td>EPS</td>
<td>SEP</td>
<td>EPSPAR</td>
<td>SEPPAR</td>
</tr>
<tr>
<td>Earnings per Share - Alternate</td>
<td>EPX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earnings per Share - Before Goodwill</td>
<td>EBG</td>
<td>SBG</td>
<td>EBGPAR</td>
<td>SBGPAR</td>
</tr>
<tr>
<td>Earnings per Share - Cash</td>
<td>CSH</td>
<td>SCS</td>
<td>CSHPAR</td>
<td>SCSPAR</td>
</tr>
<tr>
<td>Earnings per Share - Fully Reported / GAAP</td>
<td>GPS</td>
<td>SGP</td>
<td>GPSPAR</td>
<td>SGPPAR</td>
</tr>
<tr>
<td>EBITDA Per Share</td>
<td>EBS</td>
<td>SEB</td>
<td>EBSPAR</td>
<td>SEBPAR</td>
</tr>
<tr>
<td>Enterprise Value</td>
<td>ENT</td>
<td>SNT</td>
<td>ENTPAR</td>
<td>SNTPAR</td>
</tr>
<tr>
<td>Funds From Operations Per Share</td>
<td>FFO</td>
<td>SFO</td>
<td>FFOPAR</td>
<td>SFOPAR</td>
</tr>
<tr>
<td>Gross Profit Margin</td>
<td>GRM</td>
<td>SGM</td>
<td>GRMPAR</td>
<td>SGMPAR</td>
</tr>
<tr>
<td>Long Term Growth Rate (%)</td>
<td>LTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Asset Value</td>
<td>NAV</td>
<td>SAV</td>
<td>NAVPAR</td>
<td>SAVPAR</td>
</tr>
<tr>
<td>Net Debt</td>
<td>NDT</td>
<td>SND</td>
<td>NDTPAR</td>
<td>SNDPAR</td>
</tr>
<tr>
<td>Net Income</td>
<td>NET</td>
<td>SNI</td>
<td>NETPAR</td>
<td>SNPAR</td>
</tr>
<tr>
<td>Operating Profit</td>
<td>OPR</td>
<td>SOP</td>
<td>OPRPAR</td>
<td>SOPPAR</td>
</tr>
<tr>
<td>Pre-tax Profit</td>
<td>PRE</td>
<td>SPR</td>
<td>PREPAR</td>
<td>SPRPAR</td>
</tr>
<tr>
<td>Price Target</td>
<td>PTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommendation</td>
<td>REC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on Assets (%)</td>
<td>ROA</td>
<td>SOA</td>
<td>ROAPAR</td>
<td>SOAPAR</td>
</tr>
<tr>
<td>Return on Equity (%)</td>
<td>ROE</td>
<td>SOE</td>
<td>ROEPAR</td>
<td>SOEPAR</td>
</tr>
<tr>
<td>Revenue</td>
<td>SAL</td>
<td>SSA</td>
<td>SALPAR</td>
<td>SSAPAR</td>
</tr>
</tbody>
</table>

*While EPS, Revenue, Price Target and Recommendations are the most popular measures contributed, analysts are free to contribute forecasts for any or all of the collected data metrics specified above. Thomson Reuters doesn’t require any minimums in terms of collected data measures, and is willing to accept all metrics a broker provides.

*For companies followed on both a parent and consolidated basis (see the Parent/Consolidated Indicator section), both Primary and Secondary data measures are available. The markets where two-basis measures are usually available include India, Japan, South Korea, Taiwan, and Thailand.
Book Value per Share (BPS)

A company's common stock equity as it appears on a balance sheet equal to total assets minus liabilities, preferred stock, and intangible assets such as goodwill, divided by the weighted average number of total shares outstanding for the year. This is how much the company would have left over in assets per share after all debts are paid, if it went out of business immediately. Thomson Reuters provides both expected and actual BPS data (where available).

Capital Expenditure (CPX)

Funds used by a company to acquire or upgrade physical assets such as property, industrial buildings, or equipment or the amount used during a particular period to acquire or improve long term assets such as property, plant, or equipment. Thomson Reuters provides both expected and actual CPX data (where available).

Cash Flow per Share (CPS)

Cash Flow per Share is a corporation’s cash flow from operations, before investing and financing activities, divided by the weighted average number of common shares outstanding for the year. Investing includes the sale or purchase of land, factories, buildings etc.

- Financing includes dividend payments, loan proceeds and sale of stock. Thomson Reuters provides both expected and actual CPS data (where available).
- Interest payments are an operating activity.
- Thomson Reuters CPS is a company’s Operating Cash Flow. The basic formula is Operating Cash flow less maintenance capital = Distributable Cash flow per unit.
- CPS is generally calculated after-tax.
- Thomson Reuters does not have DCFPU (Distributable Cash Flow per Unit) as a measure. This is something to consider as an industry specific measure as well as payout ratio. If the company does not provide operating cash flow, Thomson Reuters will collect the DCFPU estimate and place it in the CPS filtered with "A" for accounting difference.

Dividend per Share (DPS)

DPS are a corporation’s common stock dividends on an annualized basis, divided by the weighted average number of common shares outstanding for the year. In the US dividend per share is calculated before withholding taxes (though for some non-US companies DPS is calculated after withholding taxes). Thomson Reuters provides both expected and actual DPS data (where available).

- Thomson Reuters DPS is equivalent to Cash Distribution (not the same as Distributable Cash Flow per Unit.)
- For DPS estimates a “0” is a valid estimate, indicating no expected dividend payment for a company. The absence of any estimate or a “stopped” estimate indicates that a contributor does not have any DPS estimate.

Earnings per Share (EPS)

Valuation earnings per share, defined as the EPS that the contributing analyst considers to be that with which to value a security. This figure may include or exclude certain items depending on the contributing analyst’s specific model. Estimates that are not on the majority basis for a given security are displayed on certain Thomson Reuters products but filtered from the mean calculation. Thomson Reuters provides both expected and actual EPS data where available.

Earnings per Share - Alternate (EPX)

Alternate EPS is a corporation’s net income from continuing operations, divided by the weighted average number of shares outstanding. This measure tracks the estimates of contributing analysts who wish to forecast EPS on the non-majority basis. This alternate basis is not included in the mean calculation; it is filtered from the main EPS data measure. This data measure therefore, will not have corresponding Summary-Level (mean), nor actuals data.

Earnings per Share - Before Goodwill (EBG)

EBG measures a company’s per share earnings before the amortization of goodwill. In some countries (France, for example) goodwill is treated as a part of ordinary income for companies and the amortized component of goodwill is added back to yield earnings before goodwill amortization. EBG is a corporation’s net income from continuing operations before goodwill amortization divided by the weighted average number of shares outstanding. Thomson Reuters provides both expected and actual EBG data (where available).
Due to the implementation of International Financial Reporting Standards (IFRS) in various European countries, goodwill will no longer be amortized but instead written off as an impairment charge and will be treated as an exceptional item. This change eliminates the necessity for a separate EBG measure for companies residing in those countries. In such markets, Thomson Reuters will only collect and display EPS and GPS (valuation EPS and fully-reported EPS).

Earnings per Share - Cash (CSH)

Cash Earnings Per Share is a company’s net income, plus depreciation, amortization of goodwill, intangibles, and prepaid assets (non-cash items); divided by weighted average number of shares outstanding. Thomson Reuters provides both expected and actual CSH data (where available).

Earnings per Share – Fully Reported / GAAP (GPS)

Statutory or reported earnings per share, defined as net profit (on continuous activities) divided by the weighted average number of shares outstanding during the period. Where a company carries exceptional items or goodwill amortization, this measure is post-exceptional, post-goodwill. Thomson Reuters provides both expected and actual GPS data (where available).

In North America this figure is referred to as GAAP Earnings per Share and is calculated according to Generally Accepted Accounting Principles (GAAP), which is reported in SEC filings. The mean estimate for the GPS data measure will only reflect the strict adaptation of GAAP basis estimates. Estimates from contributors on an adjusted GAAP basis will be displayed but footnoted and filtered from the mean, even if the adjusted basis is the majority. A-type footnotes will include as much information as possible regarding the difference in accounting basis from the strict GAAP basis. This policy may result in the majority of estimates being filtered under GPS if the majority basis is an adjusted GAAP basis.

In countries that have adopted International Financial Reporting Standards (IFRS) this figure will include all items according to IFRS rules.

EBIT / Earnings Before Interest & Taxes (EBI)

EBIT represents the earnings of a company before interest expense and income taxes paid. As such, EBIT is a gauge of corporate earnings before any debt servicing to creditors (including bondholders) and the payment of corporate taxes. It is calculated in general form by taking the pretax corporate income of a company, adding back interest expense on debt, and subtracting any interest capitalized. Thomson Reuters provides both expected and actual EBIT data (where available).

- Displayed in whole number terms (millions).
- In certain European and Asian markets, EBIT is calculated as total sales and subtracting total costs and operating expenses. In these cases EBIT will be similar to Operating Profit.

EBITDA / Earnings Before Interest, Taxes, Depreciation & Amortization (EBT)

EBITDA gauges the raw earnings power of a company before debt servicing, corporate taxes, and any allowances made for depreciation and amortization costs the company faces. It is calculated in general form by taking the pretax corporate income of a company, adding back any depreciation and amortization costs charged, plus any interest expense on debt (subtracting any capitalized interest). Thomson Reuters provides both expected and actual EBITDA data (where available).

- Displayed in whole number terms (millions).
- In the United Kingdom, the general market standard is to include royalties as part of gross revenue, net of royalty tax. This tax portion would be included as part of the royalties, and would therefore be deducted before EBITDA, rather than as part of the income taxes lower down the income statement.

EBITDA per Share (EBS)

EBITDA per share represents EBITDA divided by the weighted average number of shares outstanding. Thomson Reuters provides both expected and actual EBS data (where available).

Enterprise Value (ENT)

Enterprise Value is calculated as market capitalization plus debt, minority interest and preferred shares, minus total cash and cash equivalents. Cash equivalents are defined as an item on the balance sheet that reports the value of a
company’s assets that can be converted into cash immediately. Examples of cash and equivalents are bank accounts, marketable securities and Treasury bills. An Enterprise Value actual is calculated using the closing price at the end of the fiscal period. Thomson Reuters provides both expected and actual ENT data (where available).

Funds from Operations per Share (FFO)

A measure used by real estate and other investment trusts to define the cash flow from trust operations. It is earnings with depreciation and amortization added back. A similar term increasingly used is Funds Available for Distribution (FAD), which is FFO less capital investments in trust property and the amortization of mortgages. Thomson Reuters provides both expected and actual FFO data (where available).

Gross Margin (Gross Profit Margin) (GRM)

A company’s total sales revenue minus cost of goods sold, divided by the total sales revenue, expressed as a percentage. Thomson Reuters provides both expected and actual GRM data (where available).

Long Term Growth Rate (%) (LTG)

The long term growth rate represents an expected annual increase in operating earnings over the company’s next full business cycle. These forecasts refer to a period of between three and five years, and are expressed as a percentage.

Long term growth rate forecasts are received directly from contributing analysts; they are not calculated by Thomson Reuters. While different analysts apply different methodologies, the Long Term Growth Forecast generally represents an expected annual increase in operating earnings over the company’s next full business cycle. In general, these forecasts refer to a period of between three to five years. Due to the variance in methodologies for Long Term Growth calculations, Thomson Reuters recommends (and uses as its default display) the median value for Long Term Growth Forecast as opposed to the mean value. The median value (defined as the middle value in a defined set of values) is less affected by outlier forecasts.

Net Asset Value (NAV)

Net Asset Value is the total book value of a company’s securities. It is calculated in general form by taking the total assets of a company and subtracting the value of the company’s intangible assets (goodwill, patents, etc.) minus current and long-term liabilities. NAV is helpful in determining under-priced equities by indicating the ultimate value of a company’s securities in the event of their liquidation. Thomson Reuters provides both expected and actual NAV data (where available).

- Displayed in whole number terms (millions).
- As NAV is not a measure companies generally report in filings or press releases, Thomson Reuters calculates NAV actual data as total shareholders equity including minority share or total assets minus total liabilities.

Net Debt (NDT)

Net Debt is calculated as short and long term interest bearing debt minus cash (and equivalents). Thomson Reuters provides both expected and actual NDT data (where available).

Please note the examples below:

Rule: If debt is greater than cash, the value collected will be a positive number in the database.

From the balance sheet.
Cash and Equivalents $175
Short and Long Term Debt $400
Net Debt = $400 – 175
NDT = $225

Rule: If debt is less than cash then the value collected will be a negative number in the database.

From the balance sheet.
Cash and Equivalents $300
Short and Long Term Debt $250
Net Debt = $250 – 300
NDT = ($50)
Net Income (NET)

Net income is defined as a corporation's after-tax income. This item varies significantly from market to market as regards the inclusion or exclusion of non-recurring items. In most markets, non-recurring items are backed out of net income and this measure is restricted to income from continuing operations only (also referred to as normalized income). Some markets (Japan, for example) apply reported net income, including any and all extraordinary items. Recent accounting changes in still other markets (particularly Southeast Asia) have resulted in a reclassification of extraordinary versus exceptional items, bringing many formerly extraneous items above the net income line. Thomson Reuters provides both expected and actual NET data (where available).

Operating Profit (OPR)

Operating Profit is the difference between a company's revenues and its costs and expenditures arising directly out of a company's regular operations. Operating Profit is calculated before any deductions in income owing to non-operating activities (generally such items as interest expense, corporate tax payments, material gains or losses arising from changes in accounting policy, and the like) and excludes any income derived from outside the firm's regular activities. Thomson Reuters provides both expected and actual OPR data (where available).

- Displayed in whole number terms (millions).
- In certain European and Asian markets, EBIT is calculated as total sales and subtracting total costs and operating expenses. In these cases EBIT will be similar to Operating Profit.

Pre-Tax Profit (PRE)

Pre-tax profit is a company's net income before tax expense. Where applicable, extraordinary items and non-recurring charges are subtracted from net income. Thomson Reuters provides both expected and actual PRE data (where available).

- In Japan, companies compliant with Japan Accounting Standards use Recurring Profit.

Price Target (PTG)

Price target is the projected price level forecasted by the analyst within a specific time horizon. Note that while detail-level data can be collected for various time horizons, Thomson Reuters summary-level mean data is only calculated for targets with 12-month time horizons.

Recommendation (REC)

The recommendation value reflects the contributing analyst's rating for a particular company.

Return on Assets (ROA)

Return on Assets is a profitability ratio and as such gauges the return on investment of a company. Specifically, ROA measures a company's operating efficiency regardless of its financial structure (in particular, without regard to the degree of leverage a company uses) and is calculated by dividing a company's net income prior to financing costs by total assets. Thomson Reuters provides both expected and actual ROA data (where available).

- Displayed as a percentage.

\[
\text{ROA (Return on Assets)} = \frac{\text{Net Income}}{\text{Average Total Assets}}
\]

Return on Equity (ROE)

Return on Equity is another profitability ratio, which gauges return on investment by measuring how effectually the company is employing stockholder money. ROE is calculated by dividing a company's net income by total equity of common shares. Unlike ROA, ROE does consider the degree to which a company uses leveraging, as interest expense paid to creditors is generally deducted from earnings to arrive at Net Income. Thomson Reuters provides both expected and actual ROE data (where available).
• Displayed as a percentage.

Return on Equity is calculated as follows:

\[
\text{ROE} = \frac{\text{Net Income}}{\text{Average Total Equity}}
\]

Revenue (Sales) (SAL)

The Revenue measure is a corporation’s net revenue, generally derived from core business activities. For non-financial companies, the calculation of net revenue (or net turnover) in most markets generally involves subtracting transportation and related operational costs from gross revenue/sales. Revenue recognition practices vary significantly from market to market, though generally the recording of revenue is based upon sales invoices issued (or anticipated for forecast purposes) during the accounting period.

For banks, revenue is generally defined as net interest income plus net non-interest income. Net interest income is defined as interest income minus interest expenses. Net interest income components generally include net interest earned on loans, reserve deposits and deposits with other banks, and net interest earned from inter-bank money market operations (IMMO) and marketable securities. Net non-interest income components generally include net income from fees and commissions, net gains from capital market and foreign exchange operations, and net income earned from participations.

For insurance companies, revenue is generally defined as net technical income plus net financial income. Net technical income is generally defined as technical income minus technical expenses. Technical income components generally include income from premiums and commissions received, re-insurer’s share of claims paid, transferred net technical reserves, and re-insurer’s share of technical reserves. Net financial income is generally defined as financial income minus financial expenses. Net financial income components generally include net interest income, net dividend income, and net foreign exchange gains. Thomson Reuters provides both expected and actual SAL data (where available).
Expected Returns on Stocks and Bonds

Investors must moderate their expectations.

Anu Imanen

The equity-bond risk premium—the long-run expected return advantage of stocks over government bonds—is one of the biggest questions in financial markets. The extent of the premium is widely debated, but it is generally clear that it declined in the last quarter of the 20th century, to partly rebound in the first year of the 21st century. One review provides a road map to the complex literature on the topic. We explain the key drivers of the risk premium and varying assumptions about them, letting investors themselves assess the long-run prospects for stocks versus bonds. Long-term government bond yields are known, while prospective equity returns are inherently less transparent and thus more open to question.

There is an ongoing shift in opinion about expected returns. Long-term equity premia have traditionally been predicted from historical average asset performance assuming a constant risk premium, but today they are increasingly predicted with the help of dividend discount models, assuming time-varying expected returns.

We first review the historical average returns by major asset classes and explain why these are misleading guides for the future. Essentially, the double-digit returns of the 20th century were due to equities starting cheap and getting richer over time. Many investors extrapolated this past performance and expected (at least) as high future returns. Investors thus missed, first, the fact that a part of realized returns was unexpected windfalls from rising equity valuation multiples, and, second, the fact that when starting from high valuation levels it is not reasonable to...
EXHIBIT 1
Road Map to Equity Risk Premiums—Alternative Means for Assessing Levels

<table>
<thead>
<tr>
<th>Means of Assessing the Equity-Bond Risk Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Ex Post</td>
</tr>
<tr>
<td>Historical average in a popular proxy for the ex ante premium — but likely to be misleading.</td>
</tr>
<tr>
<td>Problems/Debated Issues</td>
</tr>
</tbody>
</table>

EXHIBIT 2
Moving Average of 10-Year Stock Market Performance 1900–2001

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>25%</td>
<td>30%</td>
<td>35%</td>
<td>40%</td>
<td>45%</td>
<td>50%</td>
<td>55%</td>
<td>60%</td>
<td>65%</td>
<td>70%</td>
<td>75%</td>
<td>80%</td>
<td>85%</td>
<td>90%</td>
<td>95%</td>
<td>100%</td>
<td>105%</td>
<td>110%</td>
<td>115%</td>
<td>120%</td>
</tr>
</tbody>
</table>

There is a lack of predictable valuation changes (often a good base case), feasible long-run equity return is the sum of dividend yield and a long-run earnings growth rate. We stress the distinction between two types of expected returns—subjectively feasible long-run returns, and subjective return expectations—as well as the balance between them. Objectively high feasible returns are bullish for equities, while excessive subjective investor expectations are bearish, because high hopes make future disappointments more likely. Neither expected return can be directly observed, but we attempt to estimate them by analyzing historical returns, investor surveys, and market valuation indicators (see Exhibit 1). Surveys provide direct estimates of changing return expectations, but they may reflect hope-for returns as much as required returns.

As of the time of writing in mid-2002, long-term bond yields are 4%-5%, and the DDM suggests feasible long-run equity returns between 5% and 8% (depending on input assumptions). There may still be an illusion between the objective return prospects and subjective expectations that we put between 8% and 10%. The gap has narrowed significantly from the year 2000 when feasible returns were even lower (due to higher valuation multiples), while subjective return expectations were well into double-digits.²

PITFALLS OF BACKWARD-LOOKING RETURNS

The 20th century was the century of equities. Dimson, Marsh, and Staunton [2002] review the 1990–2000
asset returns in 16 countries, and conclude that in all markets stocks handily outperformed bonds and cash. We extend the data to include the 2001 experience, and discuss primarily the U.S. market history.

Even after large losses in the last two years, U.S. equities' average real returns over the 1990-2001 period are 6.5%, with excess return over long-term government bonds of 4.8 percentage points. Looking at just the 1950-1999 period, stocks did even better, outperforming bonds by 7.7 percentage points per year. For comparison, the excess return of equities over bonds was much slimmer (1.5 percentage point) in the 19th century (1802-1899), while the realized average real equity return was similar (6.2%) (see Siegel [1998] and Arnott and Bernstein [2002]).

Exhibit 2 plots the ten-year average compound returns of stock market 1900—comparing nominal returns, real returns, and excess returns over bonds. In some studies, equity performance is expressed in raw returns, while in others the inflation rate or long-term bond return (or short-term bill return) is subtracted from it. Another distinction is between compound (geometric) average returns and simple (arithmetic) average returns.

Given that the United States has been the world's most successful economy of the past two centuries, it is not surprising that real equity returns have been somewhat lower in most other markets. For example, the average real equity returns for the other G-5 markets over the 1900-2001 period range between 3.4% (Germany) and 3.8% (the United Kingdom). Hyperinflation experiences made excess stock returns versus government bonds harder, to come by.

Did Realized Returns Exaggerate Expected Returns?

A consensus is emerging that the high long-term returns on equities, relative to bonds, are unlikely to persist. The 20th century was favorable to stocks and unfavorable to bonds, unproved valuations boosted ex post equity returns, while rising inflation expectations and real yields hurt bonds. Thus, the realized return gap almost surely exaggerates the expected return gap investors actually required (in the past, let alone after the decline in required returns).

Various systematic biases make it likely that the publicized related equity market returns from historical studies exceed the returns that were anticipated—notably survivorship bias, easy data bias, and the so-called pseudo problem (see Dimson, Marsh, and Staunton [2002] and Fama and French [2002], among others).

Survivorship bias raises the odds that we examine countries that have had good capital market performance (as the current G-5 is opposed to Russia, Austria-Hungary, India, Turkey, or Argentina). Easy data bias makes it likely that we start samples after annual events (war, hyperinflation, market closures), which often means that assets are cheap at the start of the period and that no comparable turmoil occurs again during the period.

The peso problem literature recognizes that past U.S. market pricing was influenced by what could have happened but did not. With hindsight we know that the United States and its market economy survived two world wars, the Cold War, and the Great Depression, and did not suffer the hyperinflation, invasion, or other calamities of many other countries. This was not a forgone conclusion at the time, so it is little wonder that realized equity returns have been distorted by a repricing effect.

Despite these arguments, it is common to use historical excess returns as a proxy for the ex ante risk premium; indeed this is the approach taken in most investment textbooks. Historical average returns equal expected returns, however, only if expected returns are constant, and if unexpected returns from exogenous value-change shocks do not distort the within-sample results. Such valuation changes can materially impact average realized returns even for long sample periods—and indeed they have done so in the 20th century. Thus the crucial distinction between realized (ex post) average excess returns and expected (ex ante) risk premiums.

Bond investors understand better than equity investors the folly of extrapolating expected returns from past average returns drawn from a time when valuation levels have trended up or down. A rally—high realized returns—caused by falling discount rates will reduce future yields (likely expected returns), rather than raise them.

The example in Exhibit 3 shows that between 1932 and 2001 ten-year Treasury yields averaged 8.1%, but the realized annual return was 10.7% because the downtrend in yields (from 14.4% to 3.1%) added almost 3 percentage points to annual capital gains to the yield income. Using the 8.1% realized annual return or even the 8.1% average yield as an expected return proxy makes little sense.
now that the yield is 5%. The transparency of market yields prevents bondholders from harboring excessive return expectations after a long bull market.

Exhibit 3 shows that the revaluation effect was even greater for equities. The earnings-to-price (E/P) ratio fell from 12.4% to 4.0% in 20 years; that is, the market paid 3.1 times more for a given amount of dollar earnings at the end of 2001 than at the end of 1981. This repricing explains almost 6 percentage points of the S&P 500’s 15.5% realized annual return (11.8% real). Again the realized average return clearly exceeds the forward-looking return that was feasible in the 1980s, let alone now. Unfortunately, most equity investors may have focused more on historical returns than on forward-looking returns.

Repricing: Valuation-Neutral Sample or Adjusted Realized Returns

If required returns vary over time, past average returns may be poor predictors of future returns. We try to recover the past average expected returns using two approaches—by selecting a sample period when valuation changes were minimal, and by adjusting realized returns for the estimated repricing impact.

We first focus on a relatively valuation-neutral subperiod—1960–2001. Realized average returns can be dominated by unexpected capital gains/losses even over long sample periods if markets undergo significant valuation changes. Indeed, starting from 1900 or 1950, D/P and E/P ratios have fallen dramatically, while bond yields have risen. These within-sample changes are much smaller between 1960 and 2001, which means that future expected return extrapolations from this subperiod should be less distorted.

The 3.3 percentage point excess return in the United States falls short of the 4.8 percentage points for the 1900–2001 period. During the same period, the excess returns in Germany and Japan (1.1 and 1.0 percentage points) are even smaller as real equity returns have been lower and real bond returns higher than in the U.S.

These average returns conceal significant time variation in market performance. Besides the equity correction of 2000–2002, these numbers show that equities can underperform long bonds over a period as long as a decade (Germany in the 1970s, Japan in the 1990s). In Japan, the realized excess return over the past 30 years is now negative. Because such a sustained underperformance did not take place in the United States in the last century, many investors took the idea of equities’ long-run superiority too far, and believed that equities will always beat bonds over a 20- to 30-year horizon.

By now it is clear that all statements about the probability of stocks beating bonds were distorted by the favorable sample period, and that the outperformance odds are much dimmer now given the narrower equity-bond premium.

Alternatively, we can pick any sample period and adjust the returns for unexpected capital gains. Several recent studies take this approach, notably Dimson, Marsh, and Staunton [2002], Fan and French [2002], and Shiboson and Chen [2002]. Each study uses a slightly different way to remove the impact of unexpected capital gains to recover the typical expected equity risk premium over the sample period. All these studies find (adjusted) expected equity-bond risk premium is 4 percentage points in the United States, averaged over very long histories.

Moving Toward Forward-Looking Expected Returns

Exhibit 4 shows how Shiboson and Chen [2002] decompose the realized 75-year average compound stock

EXHIBIT 3
Bond and Stock Market Repricing Gains
Due to Falling Discount Rates Between 1982 and 2001

Stocks 1982-2001

1600 1400 1200 1000 800 600 400 200 0

Bonds 1982-2001

1600 1400 1200 1000 800 600 400 200 0

Strategically Average Well End of Year High Yield High Return Low Return Low Growth

Repricing Gains

Repricing Losses

Repricing Bond

Repricing Stock

Source: Skulleru Savings Trust Bank

WESTLAKE 2002

EXPECTED RETURNS ON STOCKS AND BONDS
market return of 10.7% into demanded or supplied parts. The total return is split either into:

- A sum of demanded returns on the assumption that sample averages capture required returns well (5.2% nominal Treasury bond return + 5.5% ex post equity risk premium + small interaction/ reinvestment terms), or into:
- A sum of supplied returns (3.1% inflation + 4.3% dividend yield + 1.8% real earnings growth rate + 1.3% repricing effect + small interaction/reinvestment terms).

The third column in Exhibit 4 removes from the supplied returns the unexpected re pricing effect (1.3%, the unrealized impact of the within-sample change in E/P ratio). The study concludes that investors required a nominal equity market return of 9.4% between 1926 and 2006, on average.

Analysis of past average levels can be a misleading guide for the future when current dividend yields and inflation expectations are much lower than the sample average. It misses the point that if expected returns and valuations vary over time, historical averages incorporate biased information about medium-term market prospects. Using solely the dividend yield and inflation expectations from mid-2002 together with the historical real earnings growth rate, in the spirit of the DDM, the prospective long-term equity market return is below 6%. The implicit equity-bond premium is about 1 percentage point.

The question marks in the last column in Exhibit 4 are related to debates that we review below.

The ongoing shift from constant risk premiums and rational investors to time- varying risk premiums and partly irrational investors means that forward-looking (ex ante) returns are gaining ground over historical (ex post) returns. This change is moderating experts’ and investors’ perceptions of prospective long-run equity returns and equity-bond premiums, given that the fourth column in Exhibit 4 (ex ante return) is much lower than the first column (ex post return).

Survey Evidence on Subjective Return Expectations

There is a dichotomy between objectively feasible return prospects and less rational subjective expectations. To provide direct evidence on subjective return expectations, Exhibit 5 summarizes survey views on nominal long-term equity returns from various sources.5

Private investors’ subjective return expectations were especially high in the late 1990s. Poterba [2001] quotes a broad Gallup poll from 1999 when the consensus of private investors expected 19% annual returns over the long term. Pernamente those were deemed moderate expectations after five years of 20%-40% annual returns. No follow-up surveys tell us how much these excessive expectations have faded, but we would guess to around 10%. Consensus forecasts in one-year-ahead surveys seem to center around 10% (but dropped to summer 2002 below 9%), while many U.S. pension funds continue to budget well over 10% annual equity returns.

Two surveys of different U.S. experts—finance and economics professors by Welch [2000, 2001] and CFOs and treasurers by Graham and Harvey [2001]— imply long-run equity returns of 8%-9% and stock-bond risk premium estimates of 3.5 to 4.5 percentage points. The equity return forecast in the CFO survey has stabilized at around 8.2% to 8.3% in 2002.

Winter 2003
EXHIBIT 5
Survey Forecasts of Long-Term Nominal Expected Returns of U.S. Equities

5.2%. These forecasts imply a stock-bond risk premium of 2.4 percentage points. Are these survey-based risk premium estimates useful proxies for the equity risk premium that the market requires? One can always question how representative any survey is of market views. More important, because of behavioral biases, survey-based expected returns may tell us more about hoped-for returns than about required returns. Private investor surveys appear especially prone to extrapolation (high hopes after high returns), witness the striking 95% correlation between the past year's returns and next year's expected returns in Exhibit 6. Even the expert surveys are not free from this bias, as consensus views of future risk premium have edged lower amid poor market performance.

Given the tendency of investors to extrapolate from past returns, the danger of exaggerated expectations and the scope for subsequent disappointment were especially high after two decades of double-digit returns. To quote Dimson, Marsh, and Staunton [2002, p. 4]:

The most fundamental question of all is: Do investors realize that returns are likely to revert to more normal levels, or do current valuations embody exaggerated expectations based on imperfect understanding of history?

Survey data indicate that investor expectations have corrected lower in the past two years—but it is not possible to say whether the adjustment has gone far enough.

How High Should the Equity-Bond Risk Premium Be?

There is also a normative question about the appropriate size of the equity risk premium, but academic theories provide limited guidance. In the context of the capital asset pricing model, the required market risk premium

Our own survey in April 2002 of global bond investors came up with the most caustic views on future equity market returns. The mean forecast for next-decade average equity market return is 7.6% for the United States. Compared with bond yields of around

EXHIBIT 6

Source: CFA Institute Research Foundation's Survey of Investment Managers
would reflect the price of risk (market risk aversion) and the premium of risk (stock market volatility). Other asset pricing models relate the required risk premium to asset return expectations with consumption, intuitively the risk premiums should be high for assets that perform poorly in bad states of the world when losses hurt most (economic downturns with high marginal utility and low consumption).

Given the low observed correlations between equity returns and consumption data, popular utility functions need extremely high risk aversion coefficients to justify the high observed equity risk premiums, see Mehra and Prescott [1988]. Academics have proposed various solutions to this equity premium puzzle—alternative utility functions and market imperfections—but there is little agreement on the topic.

While the academic consensus has been shifting from constant risk premiums to time-varying expected returns, opinions vary about the source of the variation: rational time variation in required risk premiums or irrational fluctuations in market sentiment. We believe that both matter.

Because stock prices can be viewed in discounted views of expected future cash flows, it is an accounting identity that higher stock prices and realized returns reflect higher expected growth expectations or lower required returns. Both factors likely contributed to the run-up in stock prices in the 1990s. The growth optimism was based on a range of factors from real evidence on higher productivity to irrational hopes about the Internet and the new economy (see Ayers [2000] and Shiller [2000]).

Here we focus on a host of possible reasons for the 1990s stock market performance:

- Declines in riskless Treasury yields that contributed to equity discount rates.
- Changing risk—Output volatility and earnings volatility have fallen during past decades; recessions are less frequent (as well as shorter and shallower); monetary and fiscal policies are more stable; improved regulatory and legal infrastructure make bankruptcy less likely; and world wars and the Cold War are history.
- Changing risk aversion—Consumer surveys reveal a fall in perceived risk aversion that may be attributed to wealth-dependent risk tolerance or demographic developments. Lower risk and risk aversion are intertwined in many arguments.
- Higher realized volatility and market losses may remind investors of their risk aversion. Many authors contrast investor caution about equities after the depression of the 1930s with the market-dip-and-buying-opportunities mentality in the 1990s. The optimistic spin is that investors learned in the 1980s-1990s about the consistency of equity long-horizon outperformance, and that risk learning enhanced investors’ risk tolerance and thereby slimmed equity’s required return cushion over low risky assets.
- Lower trading costs, better market access, greater global diversification opportunities, and negative stock-bond correlations enabled investors to reduce the systemic risk in their portfolios, which in turn raised investors’ willingness to take risks.

Some of these factors have reversed since 2000. Although macroeconomic volatility remains low by historical standards, financial market volatility has been extremely high, and perceived risks have risen since September 11, 2001, and various corporate scandals. Stock prices in share prices certainly have reminded investors of the inherent risks in equity investing and brought investors closer to their subsistence levels, thereby raising the risk aversion level. If investors perceived, say, a 2 percentage point equity-bond premium sufficient three years ago, we suspect they would now require twice as high compensation for bearing equity risks. Finally, the recent declines in government bond yields appear related to bonds’ safe-haven characteristics and should not help reduce the equity discount rates.

SIMPLE VALUATION RATIOS AS EQUITY-BOND PREMIUM PROXIES

A stock market’s price-earnings (P/E) ratio is the most popular pure-equity valuation indicator. Similarly, the ratio of government bond yield (Y) over earnings yield (E/P) is the most popular relative valuation measure for the two major asset classes and thus a shorthand for the equity-bond premium. (Sometimes the earnings yield spread is used instead of the yield ratio, but the broad patterns tend to be similar.)

Lower Bond Yields Explain Lower Earnings Yields

Exhibit 7 shows the history of earnings yield and the ten-year government bond yields for over one century. We focus on the earnings yield rather than its reciprocal.
EXHIBIT 7
Earnings Yield of S&P 500 (Operating Earnings) and 10-Year Treasury Yield, 1960-June 2002

EXHIBIT 8
Bond-Earnings Yield Ratio and Bond-Stock Volatility Ratio, 1900-June 2002

(P/E), because the former is a rate of return measure, akin to a bond yield. Unless otherwise stated, our earnings yield refers to the trailing one-year operating earnings per share of the S&P 500 index and its predecessors. The broad picture is that the earnings yield has ranged between 4% and 16%, but has been near historical lows for the past few years. Bond yields traded between 2% and 6% for the first 70 years, then hit a 16% peak in the early 1980s, followed by a decline to 4%-5% in 2002. Bond yields traded systematically below earnings yields for most of the century, but traded above them for the last two decades. The measures at the foot of the graph show the timing of the increasingly rare official recessions.

While earnings yields and bond yields were hardly related until 1960, since then they have shared common upturns and downturns. Exhibit 8 plots the yield ratio of the Treasury yield over the earnings yield. This ratio is high when stocks are expensive versus bonds, in the sense that bond yields exceed earnings yields.

For the last 20 years, this ratio has been nearly mean-reverting, providing good relative-value signals for asset allocation trades between stock and bond markets. Over this period, we can say that low bond yields explain lower earnings yields (higher equity market valuations). This is not surprising, because bonds are the main competing asset class for equities, and the bond yield constrains the riskless part of equities' discount rate.

But what are we to make of the long-run trends in the yield ratio? If we cannot explain them, we may deem the last 40 years' close relation between stock and bond yields spurious, perhaps related to the broad rises and falls in inflation.
Lower Relative Risk of Stocks versus Bonds Explains the Long-Run Puzzle

The yield ratio series was relatively trendless in the first half of the 20th century but clearly upward-trending in the second, signaling relative thinning of stocks versus bonds. Assumptions [2001] proposes an appealing explanation for the long upward trend in the yield ratio: The relative risk of bonds versus stocks has grown over time.

The thin line in Exhibit 8 shows the relative return volatility of ten-year government bonds and the stock market index, measured by ten-year moving standard deviations. In the first half of the century, stock market returns were about seven times as volatile as bond returns. By the 1980s, relative volatilities were virtually equal—although subsequent disinflation has reduced bond volatility to about half of stock market volatility.

The trend increase in the volatility ratio reflects an increase in bond volatility, particularly in the 1970s-1980s, and a decline in stock volatility since the 1930s. The related underlying macroeconomic trends are:

- Growing inflation uncertainty associated with the persistent rise in inflation until the early 1980s.
- More stable real growth, as evidenced by lower volatilities in real output and earnings growth rates and by less frequent, shorter, and shallower recessions. 11

Changing relative risk between asset classes is a structural change that undermines the usefulness of valuation signals like the yield ratio. This ratio will serve well as a mean-reverting signal within any one regime, but it typically gives a wrong value signal when a structural change occurs.

How to watch out for those structural changes?

One guideline is the relative importance of long-run inflation and growth risks.

- If central bank credibility and other arguments, for example, convince people of future inflation stability, and thus of relatively higher real growth risks, relative bond-stock volatility may again shift lower. Such a change should favor bonds and perhaps move the yield ratio back below unity in the medium term. Exhibit 8 shows a reversal in the volatility ratio in the past 15 years but not yet any trend reversal in the yield ratio. (In third quarter 2002, the yield ratio did fall below unity, however.)
- As a more current example, we think that in the world after September 11, 2001, with heightened security concerns and policy uncertainties, both growth and inflation risks have increased. It is less clear which has increased more, making the impact on the yield ratio debatable.
- Deflation would arguably reduce the required bond risk premium and raise the required equity risk premium. Thus, incipient deflation should systematically reduce the yield ratio.

Drivers of Earnings Yields

Since stock prices reflect the discounted values of expected future cash flows, it is an accounting identity that low earnings yields (high P/E ratios) reflect some combination of low discount rates and/or high expected earnings growth rates.

Like many others, we find that various growth indicators are only loosely related to earnings yield fluctuations and that P/E ratios have only a modest ability to predict subsequent earnings growth. Discount rate effects may reflect the riskless yield component or the required equity-bond risk premium. The sensitivity of earnings yields to nominal bond yields can be traced back to expected inflation rates or required real bond yields. Historical analysis suggests that earnings yields have been more closely related to inflation than to any other series, including nominal or real bond yields.

Exhibit 9 depicts the relation between U.S. earnings yields and the previous three years' average inflation. There is a similarly close relationship in other countries, including Japan. 12

A high correlation between earnings yields and inflation rates may be surprising, because the E/P is supposed to be a real variable. The textbook view is that stocks are real assets since higher inflation should be fully compensated by higher nominal earnings growth rate, with little impact on the stock price or the D/P or E/P ratios.

What explains this anomalous correlation? Here are the main candidates, all of which may contribute:

- Inflation may impact real earning growth prospects—steady low-but-positive inflation appears to be the optimal environment for real growth.
- Inflation may raise prospective real returns because irrational, money illusion makes equity markets undervalued (overvalued) when inflation is high (low). 12
EXHIBIT 9
Dependence of Earnings Yields on Inflation Level—1900-2001

Source: Miki Shiba, Shalome Schaefer, Swidn Bayern

- Inflation may raise required returns on bonds and equities (real inflation-related risk premium).

We can explain the bulk of the past 50 years’ variation in earnings yields by just two factors: inflation level, and output volatility (see Bernstein [1999], Wieland [2001], and Ferguson [2002]). The rise and fall in inflation explains the humped shape (20-year rise in earnings yields before 1980 and 20-year fall thereafter), while the trailing volatility of GDP growth rates (or earnings growth rates) explains the general downward trend.

By the end of the century, equity markets benefited from low levels in both factors, in addition to a record-long expansion, productivity optimism, and high risk tolerance after a persistent bull market. No wonder that irrational exuberance and overshooting valuations followed.

The good news is that at least part of the multiple expansion is fundamentally justified. Above-average P/E levels may then be sustainable (as long as inflation stays at the apparently optimal level for equities, near 2%-3%, and macroeconomic stability rather than equity volatility drives equity investors’ risk aversion). Yet many observers appear to forget that sustainably high P/E still means low E/P and low long-term equity returns; sustainability would just remove the need for further chiseling in the near term (as the P/E falls to the historical mean).

EXPECTED EQUITY PREMIUMS BASED ON DDM

While the yield ratio is a useful shorthand for the equity-bond premium, the dividend discount model gives us directly what we really want to see: the difference between stocks’ and bonds’ expected long-run returns. In the basic version of the DDM, equity cash flows (dividends) are assumed to grow at a constant annual rate g. A feasible long-run return on equities is then the sum of the cash flow yield (D/P) and the trend cash flow growth rate (see the appendix). The required return on equities, or the discount rate, can be viewed as a sum of the riskless long-term government yield (Y) and the required equity-bond risk premium (ERP).

Intuitively, markets are in equilibrium when the equity market return that investors require (Y + ERP) equals the ratio of a feasible expected return (D/P + g). This equality can be restated to express the ex ante equity-bond risk premium in terms of three building blocks:

Equity-Bond Risk Premium =

Expected Stock Return - Expected Bond Return

or

ERP = D/P + G_{const} - Y_{nom}

The appendix shows how this model can be extended to real (inflation-adjusted) terms or to discounted earnings terms. The DDM framework is simple, but there is a wide disagreement about the inputs to the equity premium calculation. There are two main observable, ERP and G. One can either infer ERP for a given G assumption, as we do, or one can restructure the equation to infer G (implied growth rate) for a given ERP assumption.

Even the observable inputs—dividend yield and bond yields—are ambiguous. It may be decided whether to include share repurchases in dividend yield and whether to use a ten-year or longer-maturity Treasury yield. The

Winter 2003

16 EXPECTED RETURNS ON STOCKS AND BONDS
main source of contention, though, is the assumed trend profit growth rate G. Instead of assuming a constant profit growth rate, we may allow G to vary over time according to survey forecasts or statistical estimates. Before we explore the various debates, we present equity-bond premium estimates based on survey forecasts of long-term GDP growth rate, motivated by the widely held idea that corporate profit trends are somehow tied to output trends.

Beale and Byrne [2001] examine risk premium estimates that use consensus forecasts of next-decade average real GDP growth and inflation as inputs for nominal G. Exhibit 10 shows that the estimated equity-cash risk premium and bond risk premium together trended downward between 1983 and 2000, while the ex ante equity-bond risk premium ranged between 0.5 and 3.5 percentage points.15

Debates on Inputs for Statistical Risk Premium Estimates

There will never be full agreement about the equity-bond premium, because there are a wide range of views about DDJ inputs. Here we simply summarize the key questions.

Long-Run Growth Rate (G). This is the main debate. Since G is the least-anchored DDJ input, differing views on it can shift risk premium estimates by several percentage points, while disagreements about dividend yields and bond yields are worth about 1 percentage point at most.

Earnings or dividend data? In historical analysis, some authors use earnings data, others dividend data, and yet others gross domestic product data to proxy for cash flows. While earnings data have their own shortcomings, we use them. Historical dividend growth is arguably understated by the declining trend in dividend payout rate since the late 1970s, partly related to firms' shift from dividend payments toward share repurchases.

Nominal or real G? Many observers refer to historical earnings growth rates in nominal terms (perhaps even using arithmetic averages), thereby overstating future prospects now that inflation rates are quite low. We prefer to assess expected inflation and real earnings growth separately. We do concede that assuming stable nominal earnings growth rates over time could work surprisingly well, because inflation may be inversely related to real earnings growth.

Relation to GDP growth? It is useful to first assess the trend GDP growth rate and then the gap between earnings and GDP growth.

- The long-run productivity growth is important because it determines the potential earnings growth rate, and because persistent changes influence stock prices much more than cyclical changes. If the recent extraordinary productivity growth is sustained, it could be quite bullish for long-run profits and share valuations.

- Historical evidence on the gap between earnings (or dividends) and GDP growth is low encouraging—indeed, recent findings are shocking to many market participants. Several recent studies show that per share earnings and dividends have over long histories lagged the pace of GDP growth and in many cases even per capita GDP growth. Focusing on our past-century sample period (1900-2003), U.S. GDP growth averaged 3.3% in real terms, compared with 1.9% GDP per capita growth, 1.5% earnings growth, and 1.1% dividend growth.
Exhibit 11 shows that cumulative real growth of earnings has consistently lagged GDP growth in the past 50 years, while stock prices beat GDP only because of the multiple expansion. International evidence by Arnott and Ryan [2001] is hardly more encouraging, and Dimson, Marsh, and Staunton [2002] show that real dividend growth has lagged real GDP per capita growth between 1960-2000 in 15 of the 16 countries they examine.

What explains these disappointing results? Arnott and Bernstein [2002] attribute them to the dynamic nature of entrepreneurial capitalism. New entrepreneurs and labor (perhaps especially top management) capture a large share of economic surpluses of current shareholders. Stock market indexes (made up of listed stocks) do not participate in all growth, and indeed may miss the most dynamic growth of yet-unlisted start-up ventures. Arnott and Bernstein argue that aggregate earnings growth of the corporate sector (listed and unlisted firms) should better keep pace with aggregate GDP growth, and this conjecture seems to hold in the national accounts data.

Siegel [1999] adds that real output growth related to technological progress may have been largely labor-augmenting and wage-enhancing rather than the capital-enhancing type that would spur EPS growth (also see discussion in Nohnhaus [2002] and "Proceedings of Equity Risk Premium Forum" [2002]).

Can we do better than using historical averages? Empirical studies find limited predictability in long-term earnings growth rates (see Fama and French [2002]). No predictability implies that the historical sample average may be the best estimate of future earnings growth.

How long a sample? The compound average real earnings growth rate over very long periods is around 1.5%. Others argue that the world has changed, and that the future should be more like the 1990s' experience, with its 4.3% average real earnings growth, and unlike the preceding decades (0.4% in the 1980s and 1.8%-2.9% in the 1970s).

Payout rates appear to have some ability to predict future growth, but the results are debatable. Liborot and Chen [2002] argue on theoretical grounds that low-dividend payout rates are a sign of high growth prospects. Arnott and Ansar [2002] show that the empirical experience has been exactly opposite. Low-dividend payout rates have preceded low subsequent earnings growth. If this pattern holds, it is a bad omen for the coming years, given the low payout rates of the boom years. On a positive note, there are some signs that real earnings growth is higher when the trend productivity growth is higher, when the inflation rate is lower (but positive), and when earnings volatility is lower. Lower inflation and volatility may have boosted real earnings in the last 15 years and, if sustained, could keep future trend earnings growth more in line with the GDP growth (see Wieting [2003]).

Dividend Yield (D/P). Dividend yields in the United States fell even faster in the 1980s and 1990s than earnings yields. The declining propensity to pay dividends partly reflects a shift toward more tax-efficient share repurchases; by the late 1990s, U.S. firms disbursed cash flows more in share repurchases than in dividends [see Madhavan [1999], Fama and French [2002], and Japan-
...nabek, McGraner, and Scherbina [2001]. Adding up dividends and gross buy-backs, however, exaggerates sustainable cash flow yields. One reason is that gross buy-backs should be adjusted for related share issuance (buy-backs are often linked to employee stock options); another is that share repurchase programs are less permanent (easier to discontinue) than dividend payments. While gross buy-backs added perhaps 2 percentage points and net repurchase payouts 1.5 percentage points to U.S. cash flow yields during the late 1990s peak buy-back wave, Liang and Sharpe [1999] argue that adding 0.5 percentage point to dividend yields is a more realistic medium-run estimate. Even this adjustment may be questioned because the 1990s share buy-backs never exceeded new share issuance.

Bond Yield (Y). It is common to use the ten-year government bond yield in equity-bond premium calculations, mainly for data availability reasons. In fact, the "duration" of equities is much longer. Using a longer-maturity yield may thus be appropriate.1

Yield curves tend to be upward-sloping, so the use of a longer yield typically reduces the equity-bond premium. But when the yield curve was inverted in the early 1980s, the reverse was true.

Inputs for Ex Ante Asset Returns and Premiums—and Resulting Outputs

Arnott and Bernstein [2002] carefully create a time series of ex ante real long-term stock and bond returns since the early 1900s that would have been realistic to expect, given the information available at the time. Roughly speaking, their inputs include the historical average real dividend growth rate to proxy for the real G (averaging previous 40 years and full-sample experience), a regression-based proxy for expected future inflation, and dividend yield and long-term Treasury yield. These plausible inputs give rise to recently low equity-bond risk premium estimates (near-zero average since the mid-1980s) and negative values between 1997 and 2001. We propose an alternative set of plausible input assumptions that are somewhat more optimistic for stocks and thus give rise to higher risk premium estimates.19

Exhibit 12 summarizes our selections, and Exhibit 13 shows the histories of our inputs (except for yields).

D/P. Since raw dividend yields arguably underestimate recent equity market cash flow yields due to share buy-backs, and since we do not have long histories of net buy-back-adjusted dividend yields, we prefer to use earnings data that have not undergone such a structural change as dividends. We use smoothed earnings yields multiplied by a constant payout rate (0.59) as a proxy for sustainable dividend yields.20

G_m. As we find limited predictability in long-term real earnings growth, we assume that investors take historical average real earnings growth as a proxy for future G_m. The geometric average growth rate is more relevant than the arithmetic average if investors are interested in a long-run wealth accumulation rate.

The historical window length is ambiguous, and we prefer to take an average of the past 10, 25, 30, 40, and 50 years' average growth rates; this choice gives more weight to more recent decades and implies shorter windows than in Arnott and Bernstein [2002]. This approach hopes to capture some slow-moving variation in trend earnings growth rates that may be associated with changing productivity trends and changing inflation or volatility drags.

Since these historical averages are quite unstable over time—the extremes of their range (from −4% to +6%) appear unreasonable for long-run ex ante G views—we take an average of these averages and a 2% anchor for the G_m Proxy. This admittedly ad hoc approach succeeds in giving a plausible ex ante G_m series (a range between 0 and 4% most of the time), while allowing slow variation over time (see Exhibit 13). The latest value is 2.5%.

Y. We use the longest available Treasury yield (Fiboson Associates' roughly 30-year bond until 1951, Solomon Brothers' 20-year or 30-year on-the-run series thereafter), and annualize it. These long bonds' durations are roughly double the ten-year maturity bonds' durations (near seven), and thus are closer to equity durations, although still shorter.

Ex Ante Inflations. We follow Arnott and Bernstein [2002] in regressing each quarter the next-decade inflation on the previous three years' inflation and using the fitted value as a quasi-out-of-sample projection of the long-term inflation outlook.21 The regression window length is arbitrary. We use a moving 30-year window and full sample since 1870, averaging the two. We make one exception around World War I; we cap the 1915-1918 expected inflation at 5%, even though our regression proxy rose above 5%, peaking above 9%.

When survey-based inflation forecasts become available, we incorporate them. After 1951, we use the Livingston survey's median forecast of one-year-ahead inflation as a third component in the average that proxies for expected inflation. And from 1979 when ten-year-ahead
EXHIBIT 12
Estimates of Expected Asset Class Returns and Underlying Input Assumptions

<table>
<thead>
<tr>
<th>Input/Assumption</th>
<th>Mid-2002</th>
<th>End-09</th>
<th>(10yr avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex Ante Real Stock Return:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP</td>
<td>5.5%</td>
<td>4.9%</td>
<td>(6.2%)</td>
</tr>
<tr>
<td>Real Growth</td>
<td>0.5% (5-Year Operating Earnings Yield):</td>
<td>3.0</td>
<td>1.8</td>
</tr>
<tr>
<td>(G_{t-1})</td>
<td>Average of 2% and past 1992/1993/94/95/96/97/98 real earnings growth adjusted for volatility</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Ex Ante Real Bond Return:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Govt Yield</td>
<td>3.0% - 20-Year Treasury Yield (annualized)</td>
<td>3.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Ex Ante Inflation (ESI)</td>
<td>Consensus forecast of decade-ahead inflation since 1990</td>
<td>2.6</td>
<td>2.7</td>
</tr>
</tbody>
</table>

EXHIBIT 13
Three Components of Ex Ante Nominal Stock Return—1990-June 2002

Survey forecasts are available, we use them as our expected inflation proxy. This set of inputs results in the feasible ex ante real long-term stock and bond return series shown in Exhibit 14. The estimated real stock returns varied between 4% and 9% most of the century, swelling from the top of this range to the bottom between 1982 and 1999. The estimated real bond returns varied between 0% and 5% except for the 1980-1985 period, when ex ante real returns occasionally exceeded 5%. Overall, the post-Second World War pattern of a long upward trend (pre-1982) and a long downward trend (post-1982) in inflation is matched in required real bond returns, although with a short lag. Bernstein (2002) notes that the great variation in required bond and stock returns in recent decades makes the use of historical returns either irrelevant or, worse, misleading for any kind of future projections.

The equity-bond premium (the difference between the other two series) experienced a clear downward shift 20 years ago. Before 1982, the premium ranged between 2 and 10 percentage points most of the time, while since 1982, the range has mostly been 0 to 2 percentage points.

The lowest equity-bond premium—June 1984, September 1987, and December 1999—coincided with temporary peaks in bond risk premiums. On all three occasions, a Fed tightening triggered a heavy bond market sell-off (year-end rise in 10-year yields of 310bp, 220bp, and 180bp, respectively), while equity markets had not yet suffered much. Over
the following year, stocks underperformed bonds by 5, 25, and 26 percentage points, respectively.

It is counter-intuitive that the ex ante equity-bond premium was averaging just 1 percentage point during the great bull market, while realized equity returns between 1982-2001 were 16% per year (see Exhibit 5). Using the more conservative Arnott and Bernstein estimates, the ex ante premium was actually negative most of this period.

How could equities outperform bonds by 5 percentage points per year with such a slim ex ante premium? The first answer that comes to mind, a falling equity-bond premium, is not valid for this period; the premium already had shrunk by 1982 and actually edged a bit wider during the 20-year period. A better answer is that discount rates fell (ex ante real returns for stocks fell by 3.5 percentage points, and expected long-run inflation fell even more), and the longest-duration asset class, equities, escaped the greater windfall gains from falling rates.

This analysis assigns almost all of the equity outperformance and P/E multiple expansion to lower discount rates rather than greater growth optimism. But recall that our series of feasible ex ante equity returns is based on pretty rational real earnings growth forecasts (but rate just by 1% in the 1990s; see Exhibit 13). Actual subjective growth forecasts probably were much less rational during the Internet boom. Indeed, analysts' medium-term earnings growth forecasts rose from their normally overoptimistic 11% 12% level (of nominal annual growth) to a heady 18%-19% level in 2000, before tailing off (see Exhibit 13).

The Journal of Portfolio Management 21
Sharpe [2002] notes these growth forecasts, without prejudging their reasonableness, and estimates that about half of the late-1990s P/E expansion reflects lower discount rates and half greater growth optimism. Thus, part of the late-1990s decline in expected real equity returns in Exhibit 14 likely should be attributed to trational growth forecasts. How robust are these estimates of ex-ante asset class returns? Details are sensitive to the input assumptions, but the broad consensus of such estimates tends to be similar (compare Exhibits 10 and 14), because all are anchored by market yields on equities and bonds.51 The long-term growth forecasts can vary more widely, and in the basic DDM these forecasts translate one-on-one into higher or lower estimated equity returns or premiums.

Predictive Ability of Equity-Bond Premium Estimates

To assess the usefulness of our ex-ante expected return estimates, we use these measures to predict real stock returns and real bond return and their difference (excess return) over ten-year, five-year, and one-year horizons. Exhibit 16 displays for each vade the predictive ability of our ex-ante expected return measure and two alternative predictors, a simpler yield proxy and a past-return measure. In all cases, our estimates exhibit reasonable forecasting ability, but they are clearly better predictors than the simple yield measures only at the short (one-year) horizon. The long-horizon correlations are typically higher than short-horizon correlations, mainly because the realized returns are smoother at longer horizons.

For example, the correlations between the ex-ante equity-bond premium and subsequent realized outperformance of equities over bonds are 0.51 for the ten-year horizon, 0.32 for the five-year horizon, and 0.26 for the one-year horizon. In a scatterplot of ex post long-run equity-bond premiums on the ex ante premiums, the 1998-2000 observations show up as major outliers.

Past five-year equity returns (real and excess) have generally been negatively correlated with future returns, consistent with a mild mean-reversion tendency. This pattern underscores the extrapolation risk following an extended period of above-average market returns. Past bond returns on the contrary have been positively related to future returns, consistent with down-moving variation in required returns.

WHERE DO WE STAND?

While our analysis cannot unambiguously reveal the current extent of the equity-bond premium, our framework does clarify the assumptions needed for various risk premium estimates. Moreover, we argue that...
Since inflation is also likely to remain low, high returns need to be earned the hard way—by very high real profit growth rates.

The mega-bullish equity market view requires throwing away the history books and fully embracing the "this time is different" idea. For example, technology-related arguments might be used to justify a tripling of long-run CPEs to 4%-5%, which would enable long-run nominal equity returns near 9%-10%. (The finding that the trend earnings growth lag for the trend GDP growth does challenge the credibility of such assumptions, given the consensus view of next-decade real GDP growth at 3.1%.)

A moderately constructive case is that feasible and subjectively expected long-run equity returns are in balance near 7%-8%. The deliberately optimistic assumptions we use in Exhibit 12 give rise to 8% feasible (minimal) return, almost as high as the CFO survey forecasts. Stable inflation, low macroeconomic volatility, reduced trading costs, and better diversification opportunities may help sustain the above-average P/E levels. And, given the fall in bond yields, equities again offer more than a negligible risk premium. A moderately bearish view is that the feasible long-run nominal equity return is closer to 5%-6% than 7%-8%. Such estimates simply follow from using (unadjusted) dividend yields and historical average dividend growth rates.

The most bearish view involves further declines (mean reversion) in the market's P/E multiples. Below-average earnings growth and higher risk aversion are plausible scenarios (see Campbell and Shiller [2001]) and Assuett and Anson [2002]. Unwarranted investor optimism, a remnant of the 1990s bull market returns, can also be bad news. Refusal of investors to reconcile themselves to the moderate feasible long-run returns is not sustainable in the medium term.

APPENDIX

Dividend Discount Models and Equity-Bond Premiums

Dividend discount models analyze stocks as if they were perpetual (cursed) bonds, with the twist that their coupon rate is expected to grow over time. We describe here the basic Gordon [1962] model with a constant dividend growth rate. Given a constant discount rate R, (which can be viewed as a sum of riskless component r and an equity-bond risk premium component...
The expected dividend yield on a stock is given by:

\[D/P = (R - G) / Y + ERP - G \]

where:
- \(R \) = Required Return
- \(Y \) = Expected Dividend Yield
- ERP = Equity Risk Premium
- \(G \) = Expected Growth Rate

The formula can be rearranged to solve for the required return:

\[R = D/P + G \]

ENDNOTES

The author thanks Robert Arnott, Clifford Asness, Peter Bernstein, Alanis Byrne, and Steven Wiener for helpful discussions and for help in acquiring historical data. This article is largely based on research reports written for Schroder Salomon Smith Barney in May and June 2002. The original disclaimer there applies.

1. The price-to-earnings ratio is a common measure of value that assumes earnings growth and future cash flows.

2. Some of the data analysis is based on U.S. markets because the literature has concentrated on them, partly because of better data availability and reliability. The global leading role of the U.S. economy and asset markets and higher valuation ratios than most other major equity markets also make the U.S. experience the most interesting topic.

3. We use historic data on compound annual returns, unless otherwise stated.

4. Some ex-nugot returns are not perceived to be riskless if the additional return is less than the required return. (This D/E ratio, we assume a constant dividend payout ratio and a constant dividend growth rate and earnings growth rate.)

5. We use the geometric mean of expected returns to estimate future returns. We assume that low earnings yields are related to high growth prospects or low required returns.
the ultimate sale. The negative beta feature can even jus-
tify a negative risk premium for government bonds when the
marginal inflation risk premium has fallen to near zero. All else
equal, a low or negative bond risk premium (over cash) makes the
current equity-bond premium widen. (See Best, Byrne, and
Hillman [1998] and Emmer [2002].)

We use operating earnings rather than reported earn-
ings since the former became available in the early 1980s.
Broadly speaking, operating earnings are earnings from con-
ventional operations, excluding non-recurring items. Operating
earnings may give a better picture of trend earnings, as they are
less influenced by one-off events and cyclical downturns (see
Wanger and Peng [2002]).

Findings of aggressive and even illegal earnings-accounting
practices, however, have made many investors prefer the
reported earnings. Such option expensing and pension return
assumptions are other conventions coming to grips. Any adjust-
ment to recent earnings levels would imply lower earnings yields
and lower ex ante equity returns in our empirical analysis.

"Improving asset stability has not brought along finan-
cial market stability, an unattractive outcome for equity
investors. Alan Greenspan, among others, highlighted the con-
trast between low output volatility and high equity market
volatility in his annual Jackson Hole speech in August 2003.

Overall, Japan's experience confirms the inflation-
dependence of earnings yields but there is a hint of a learning
process. We conjecture that earnings yields could actually rise
in inflationary environment. Low or low-positive inflation is the
optimal environment for equity valuation, both higher infla-
tion and deflation can hurt equities and raise E/P ratios. This
also suggests that U.S. equity multiples already reflect all the
possible gains from disinflation and that the best they can do now
is to hold onto these gains (if inflation remains near 2%-4%).

"Modigliani and Coha [1979] argue that investors and an-
alysts uniformly discount real dividends earning normal disc-
count rates, resulting in too low a price for real fundamentals.
When inflation is high, for a recent review, see Fitter and Warr
[2005]." Munro [2002] suggests a variety of inflation illusion
investors and analysts actually do discount nominal cash flows using
nominal discount rates, but do not make sufficient inflation
allowances on their extrapolative nominal growth forecasts.

"Under certain conditions, the earnings yield equates the
ex ante real equity return—for example, if the constant reten-
tion one (D/P ratio) matches the constant dividend growth rate.
Intuitively, earnings yield underestimates expected return because
it excludes dividend growth, but it exaggerates expected return
because only a part of earnings are paid out as dividends.

Under the two extra terms just balanced, the DDM should pro-
vide a better ex ante real return measure than the earnings yield.

The equity-cash premium is the difference between the
ex ante equity return and the expected average Treasury bill
rate over the next decade. The equity-

average Treasury bill rate over the next decade. The equity-

bond premium is the difference between the ex ante equity
return and the ten-year Treasury yield.

The nominal ex ante equity return is estimated as a sum of
the dividend yield (proxied by a forward-looking earnings
yield using a constant assumed payout ratio), expected long-run
real GDP growth rate, and expected inflation. The raw real
material economists' consensus forecasts of next decade aver-

real GDP growth, inflation, and Treasury bill rates from the
superintendent of the National Economic Indicators series.

Note that using the current Treasury bill yield in equity
premium calculations could be quite misleading when short rates
are exceptionally low (or high) and expected to revert to nor-
mal levels. For example, the current three-month rate is near 2%,
while the expected next decade average short rate is above 4%. "The theoretical argument is in the "Modigliani-Miller
spurt," based on the idea that management retains a greater share
of earnings when it sees greater future profit opportunities.
The empirical finding that high retention rates predict low earnings
growth may reflect management's overconfidence or inefficient
empire building (see Amott and Benoit [2002]). Alternatively,
management may be concerned with dividend smoothing, and will
pay higher dividends only when it can afford it (or needs to) to
do so, given its expectations of strong future profit growth.

In the DDM context, the equity market can be viewed as
a corned bond with a growing coupon rate. It follows from
simple algebra that the modified duration of equity is $D \times \gamma$,
which is the inverse of the dividend yield. For D/P of 2.25%,
this duration is 40, but this result is model-dependent; recall that
the basic model assumes constant R and G. More generally,
equities rarely are long-duration assets, that is, very sensitive to
permanent discount rate changes—and even more so when dividend
yields are low.

Amott and Benoit present the real dividend growth rate component in two parts: the predicted long-run growth rate of GDP per capita, and the predicted dilution of dividend growth versus GDP per capita growth.

Our references follows in the same spirit as the Arnett-
Bennet study—trying to come up with reasonable views on all
of the DDM inputs (say, what long-term real growth rate and
what inflation rate investors would expect at the time). There is
sufficient uncertainty about these inputs that both sets of
assumptions can be deemed plausible. Our assumptions are
deliberately more optimistic than those of Amott and Benoit,
since we let the market decide what is if we add an
implicit adjustment for share buy-backs to dividend yields, and
if we use higher, but not outrageous, earnings growth estimates.

Recall that $D/P = D/E(R/P)$. Since one-year trailing
cash earnings are volatile, we use smoother five-year-average
earnings.

We do not use geometric averages but rather a closely
related procedure proposed in Fama and French [2000]. We
reduce arithmetic averages by half the variance difference

The Journal of Portfolio Management Vol 26 No 1 2010
between the earnings growth rate and dividend growth rate.

The simple approach we use captures both the past average as an anchor and the varying sensitivity of future expectations to current inflation; this sensitivity increased during the 20th century once inflation became more persistent. We explored other inflation forecasting models with yield spread growth indicators. The results were not robust, perhaps because forecasting decade-ahead developments leaves us with few independent observations.

War-related inflation had typically been temporary before the First World War. More generally, inflation had not been persistent in the past, so investors had little reason to raise long-term inflation expectations too high (and would have been right, as a definition soon followed). The 8% cap actually may be too high, given that the 1860s experienced mild net deflation, and given that bond yields stayed below 5% through the 1915-1918 period.

Our proxy series and the consensus forecast are closely related during the overlapping period, and there is no large jump when moving from one series to another.

As we have noted, even these yields are subject to debate about the impact of share buy-backs on dividend yields and about the appropriate Treasury maturity. Our current D/P estimate of 5.6% in Exhibit 1.1 is especially high, virtually double the raw number. This high level is partly offset in the equity-bond premium by our use of the 30-year Treasury yield (1 percentage point higher than the 10-year yield).

Our analysis ends in mid-2002, but even during the third-quarter 2002 equity sell-off the dividend yield rose only to 2%. The long-duration of equities means that feasible returns are painfully slow: a 1905-2000 price decline may increase the feasible long-term return by about 0.5 percentage point. Yet the 18% fall in long-term Treasury yields in the third quarter had a greater impact on the equity-bond premium, raising our estimate to nearly 4 percentage points. Greater attractiveness versus bonds can benefit equities in the near term, but a wide cushion does not make the absolute level of feasible equity returns any higher. It is unclear whether absolute or relative return prospects matter more.

Further disintermediation or yield declines are unlikely to boost P/E ratios, because they likely would reflect bad definitions. Moreover, there appear little chance that the late-1990s growth optimism, exuberant sentiment, and risk tolerance will reappear anytime soon. Observed empirical patterns (mean returns, low payout rates) point rather to lower P/E multiples in the future. A cyclical upturn supported by easy monetary policy can of course raise equity valuations and realized returns over a shorter horizon.

Siegell (1999) and Carlson, Pelz, and Woehar (2002) review these arguments. Jones (2003) provides specific evidence of falling trading costs during the past century and notes that the gross equity premium may have fallen by 1 percentage point as a result.

REFERENCES

Biases in Arithmetic and Geometric Averages as Estimates of Long-Run Expected Returns and Risk Premia

Author(s): Daniel C. Indro and Wayne Y. Lee
Published by: Wiley on behalf of the Financial Management Association International
Stable URL: http://www.jstor.org/stable/3666130
Accessed: 22/10/2013 10:25

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Wiley and Financial Management Association International are collaborating with JSTOR to digitize, preserve and extend access to Financial Management.

http://www.jstor.org
Biases in Arithmetic and Geometric Averages as Estimates of Long-Run Expected Returns and Risk Premia

Daniel C. Indro and Wayne Y. Lee

Consider an investment project with an average life (duration) of N months. What rate should be used to discount this project’s expected cash flows? In particular, suppose the required return on the N-month investment project is based on a market equity-risk premium, that is, the difference between the future expected return on the market index and the risk-free rate of interest. Since risk premia are not constant (Brigham, Shome, and Vinson, 1985; Harris, 1986; Harris and Marston, 1992; Maddox, Pippert, and Sullivan, 1995; and Brennan, 1997) and can depend on the choice of measurement period, averaging method, or portfolio weighting (Carleton and Lakanishok, 1985), how should the historical monthly market return data be used to compute the risk premium? In practice, the arithmetic and geometric average of monthly returns are used as a proxy for determining the future expected N-month market return.¹

We wish to thank Michael Hu, the Editors, and especially the referee whose comments and suggestions greatly improved the paper’s expositions. We are responsible for any remaining errors.

¹Alternatively, in deriving the cost of equity estimates, Harris (1986) and Harris and Marston (1992) employ the Discounted Cash Flow (DCF) model, which uses a consensus measure of financial analysts’ forecasts of earnings growth as a proxy for investor expectations. Although this alternative is appealing, Timme and Eisemann (1989) caution that it requires a judicious choice of the weight assigned to each forecast to construct the consensus forecast. Otherwise, the DCF model can generate a risk-adjusted discount rate that contains estimation risk and requires an adjustment such as that outlined in Butler and Schachter (1989).

Brealey and Myers (1991) argue that if monthly returns are identically and independently distributed, then the arithmetic average of monthly returns should be used to estimate the long-run expected return. However, the empirical evidence from Fama and French (1988a, 1988b), Lo and MacKinlay (1988), and Poterba and Summers (1988) suggests that there is significant long-term negative autocorrelation in equity returns and that historical monthly returns are not independent draws from a stationary distribution. Based on this evidence, Copeland, Koller, and Murrin (1994) argue that the geometric average is a better estimate of the long-run expected return. Thus, as noted by Fama (1996), when expected returns are autocorrelated, compounding a sequence of one-period returns is problematic for project valuation.

In this paper, we examine the biases obtained by using the arithmetic or geometric sample averages of single-period returns to assess the long-run expected rates of return when there is both a time-varying and a stationary component in those returns. To do this, we adopt the analytical framework outlined in Blume (1974). We find that for long-run expected return and risk premium, the arithmetic average produces an upward adjustment to the consensus forecast. Otherwise, the DCF model can generate a risk-adjusted discount rate that contains estimation risk and requires an adjustment such as that outlined in Butler and Schachter (1989).
estimate that is too high relative to the true mean, and that the geometric average produces an estimate that is too low. The magnitude of upward and downward bias is proportional to the total variance underlying the asset’s return, and to the length of the investment horizon (N months) relative to the length of the historical sample period (T ≥ N > 1). In addition, we confirm Blume’s finding that there are significant biases associated with the use of the arithmetic and geometric averages, even when returns are independently and identically distributed each period. Finally, simulation results show that the horizon-weighted average of the arithmetic and geometric averages proposed by Blume is less biased and more efficient than alternative estimates.

I. The Bias in the Arithmetic and Geometric Averages

Here, we describe the return generating process and derive the biases in the arithmetic and geometric averages.

A. Return Generating Process

Let R_t denote a one-period total return over a time interval of length dt. Specifically,

$$R_t = 1 + r_t dt = 1 + \mu dt + \epsilon_t \sqrt{dt}$$

(1)

where $r_t dt$ is the net return for period $t = 1, 2, \ldots, T$; μdt is the conditional mean, and the deviations from the conditional mean, $\epsilon_t \sqrt{dt}$ are independently and identically distributed over time with mean zero and variance $\sigma^2 \epsilon_t$. Further, assume that the conditional mean μdt is distributed as follows. For $t = 1$, the conditional mean is

$$\mu_t dt = \mu dt + \eta_t \sqrt{dt}$$

(2)

where μdt is the unconditional mean. For $t = 2, 3, \ldots, T$, the conditional mean follows a mean-reverting process around the unconditional mean:

$$\mu_{t+1} dt = \mu dt + p(\mu_t dt - \mu dt) + \eta_{t+1} \sqrt{dt} = (1 - p) \mu dt + p \mu dt + \eta_{t+1} \sqrt{dt}$$

(3)

where the single-period autocorrelation between conditional means, $p \leq 0$, captures the time variation in expected returns, and $\eta_t \sqrt{dt}$ are independently and identically distributed random variables with mean zero and variance $\sigma^2 \eta dt$. From Equations (1) through (3) it follows that

$$r_t dt = \mu dt + \epsilon_t \sqrt{dt} + \sum_{i=1}^t p^{i-1} \eta_i \sqrt{dt} = \mu dt + \nu_t \sqrt{dt}$$

(4)

for all t. The return generating process described by Equation (4) is consistent with that used by Fama and French (1988a) to document significant negative autocorrelations in long-horizon returns. The unconditional mean, $E(r_t dt)$, is μdt. The unconditional variance, $\text{Var}(r_t dt)$, is $
[(1-p^2)/(1-p^2)]\sigma^2 \epsilon_t dt + \sigma^2 \epsilon_t dt$ for a finite T, and $[1/(1-p^2)]\sigma^2 \epsilon_t dt + \sigma^2 \epsilon_t dt$ as $T \to \infty$.

B. The Bias in the Arithmetic Average

From a sample of T observations, we compute the arithmetic average, R_N, as:

$$R_N = 1 + \frac{1}{T-1} \sum_{i=1}^{T-1} \frac{d_i}{T} dt$$

(5)

and the estimated N-period return, $R_N^N = (1 + r_A dt)^N$.

$$R_N^N = (1 + \frac{1}{T} \sum_{i=1}^{T-1} \frac{d_i}{T} dt)^N$$

(6)

In addition, applying the expected value operators to Equation (6) yields:

$$E(R_N^N) = E(1 + \mu dt + \sum_{i=1}^{T-1} \frac{d_i}{T} dt)^N$$

(7)

Since $E(1 + \mu dt + \sum_{i=1}^{T-1} \frac{d_i}{T} dt)^N$ is a convex function of $\sum_{i=1}^{T-1} \frac{d_i}{T} dt$, it follows by Jensen’s inequality that for $N > 1$, the arithmetic average is biased upward:

$$E(R_N^N) > (1 + \mu dt + \sum_{i=1}^{T-1} \frac{d_i}{T} dt)^N > (1 + \mu dt)^N$$

(8)

Further, by taking a Taylor series expansion of $E(R_N^N)$ around $(1 + \mu dt)$, the extent of the bias is given by:

$$E(R_N^N) = (1 + \mu dt)^N + \frac{N(N-1)}{2} (1 + \mu dt)^{N-2} \sigma^2 dt + O(dt^2)$$

(9)

2Specifically, in Fama and French (1988a), $p(t)$, the natural log of a stock price at time t, is the sum of a random walk, $q(t)$, and a stationary component, $z(t)$:

$$p(t) = q(t) + z(t) and q(t) = q(t-1) + \mu + \epsilon(t)$$

(3a)

where μ is expected drift and $\epsilon(t)$ is white noise. $z(t)$ follows a first-order autoregression (AR1) process:

$$z(t) = \phi z(t-1) + \eta(t)$$

(3b)

where $\eta(t)$ is white noise and ϕ is less than 1. From Equations (3a) and (3b), we compute a continuously compounded return:

$$p(t) - p(t-1) = [q(t) - q(t-1)] + [z(t) - z(t-1)] = \mu + \epsilon(t) + \eta(t) + (\phi-1)z(t-1)$$

(3c)

Through successive substitutions for $z(t)$ from Equations (3b) into (3c), the consistency between our formulation and that of Fama and French (1988a) follows from a comparison of Equations (3c) and (3).
where \(O(dt^2) \) denotes an order of no greater than \(dt^2 \), \(\lim_{dt \to 0} O(dt^2) \to 0 \) as \(dt \to 0 \). From Equation (5),
\[
\xi \sqrt{dt} = T^{-1} \sum_{i=1}^{N} \nu_i \sqrt{dt},
\]
and
\[
\sigma^2 dt = E[\xi (dt)^2] = T^{-2} (T \sigma^2 \Delta t + \sum_{i=1}^{T} (T-i) \rho^2 \sigma^2 dt) + T^{-1} (T \sigma^2 \Delta t + \sigma^2 dt) + T^{-1} \left(\frac{T+1}{2} \right) \rho^2 \sigma^2 dt
\]
(10)

since by the mean value theorem there exists a \(\tau, \; T > \tau > 1 \) such that \(\sum_{i=1}^{T} (T-i) \rho^2 \sigma^2 \Delta t \) for any number of periods, \(T(N-1)/2 \), and variance, \(T^{-1} (\sigma^2 \Delta t + \sigma^2 \Delta t) \). Furthermore, for \(\rho = 0 \) and fixed \(N \), the estimator \(R^N \) is asymptotically unbiased and consistent only for \(N > 1 \).

For \(\rho = 0 \) and fixed \(N \), it is clear that the estimator \(R^N \) is asymptotically unbiased and consistent as \(T \to \infty \), but for a finite and small \(T \), it is upward-biased for \(N > 1 \) by an amount proportional to the number of periods, \(T(N-1)/2 \), and variance, \(T^{-1} (\sigma^2 \Delta t + \sigma^2 \Delta t) \). Furthermore, for \(\rho = 0 \) and fixed \(N \), the estimator \(R^N \) is asymptotically unbiased and consistent only for \(N = 1 \). For \(N > 1 \), the amount of upward bias is proportional to the number of periods, \(T(N-1)/2 \), and either the variance \(T^{-1} (\sigma^2 \Delta t + \sigma^2 \Delta t) \) or the variance \(T^{-1} (\sigma^2 \Delta t + \sigma^2 \Delta t) + T^{-1} (T+1)/2 \) for a finite and small \(T \). Compounding the single-period arithmetic return to produce an estimated long-run return, and thus a risk premium, that is too high relative to the true mean \((1 + \mu dt)^N \).

C. The Bias in the Geometric Average

From a sample of \(T \) observations, the geometric average, \(R_0 \), is computed as:
\[
R_0 = \left(\prod_{i=1}^{T} R_i \right)^{1/T}
\]
(11)
and the estimated \(N \)-period return, \(R^N_0 \), as:
\[
R^N_0 = \left(\prod_{i=1}^{T} R_i \right)^{N/T} = \exp \left\{ \frac{N}{T} \sum_{i=1}^{T} \ln R_i \right\}
\]
(12)
Hence, for a fixed \(N \) and \(T \to \infty \), it is clear from Equation (12) that
\[
p \lim R^N_0 = \exp \left\{ \lim_{T \to \infty} \frac{N}{T} \sum_{i=1}^{T} \ln R_i \right\} = \exp \left\{ N E[\ln R_i] \right\} = \exp \left\{ N E[\ln R_i] \right\} < 1 + \mu dt
\]
(13)

The geometric average is asymptotically biased downwards and thus is an inconsistent estimator of the long-run expected return.

To examine the bias for a fixed \(N \) and finite \(T \), we rewrite the geometric average as:
\[
R^N_0 = \left(\prod_{i=1}^{T} R_i \right)^{N/T} = \prod_{i=1}^{T} (1 + \mu dt + \nu_i \sqrt{dt})^{N/T}
\]
(14)
where
\[
\zeta \sqrt{dt} = \prod_{i=1}^{T} (1 + \mu dt + \nu_i \sqrt{dt}) - (1 + \mu dt)^T
\]
(15)
Taking the expectation of Equation (14) and a Taylor series expansion around \((1 + \mu dt)^T \) yields:
\[
E \left(R^N_0 \right) = E\left(\prod_{i=1}^{T} (1 + \mu dt + \zeta \sqrt{dt})^{N/T} \right) = (1 + \mu dt)^N
\]
\[
+ \left(\frac{N}{T} \right) (1 + \mu dt)^{N-1} E[\zeta \sqrt{dt}] + \left(\frac{N}{T} \right) \left(\frac{N}{T} - 1 \right)
\]
\[
(1 + \mu dt)^{N-2} E[\zeta \sqrt{dt}]^2 + O(dt^2)
\]
(16)
where
\[
E[\zeta \sqrt{dt}] = (1 + \mu dt)^T \sum_{j=0}^{T} \rho^{2j-1} \sum_{i=1}^{T-j} \left(\sum_{k=1}^{i} \rho \right)^{j-1} \sigma^2 dt + O(dt^2)
\]
(17)
and
\[
E[\zeta \sqrt{dt}]^2 = (1 + \mu dt)^{2T-1} \sum_{j=0}^{T} \rho^{2j-1} \sum_{i=1}^{T-j} \left(\sum_{k=1}^{i} \rho \right)^{j-1} \sigma^2 dt + \sigma^2 dt \sum_{j=1}^{T} \rho^{2j-1} \sum_{i=1}^{T-j} \left(\sum_{k=1}^{i} \rho \right)^{j-1} \sigma^2 dt + O(dt^2)
\]
(18)
Observe that for \(\rho = 0 \),
\[
E(R^N_0) = (1 + \mu dt)^N \left\{ 1 + (1 + \mu dt)^{-1} \left[\frac{N}{T} \left(\frac{N}{T} - 1 \right) \right] \right\}
\]
(19)
the geometric average is downward-biased for \(N < T \) but unbiased as \(N \to T \). For \(\rho < 0 \),
\[
E(R^N_0) = (1 + \mu dt)^N \left\{ 1 + \left(\frac{N}{T} \right) \left(1 + \mu dt \right)^{-2} \left[E(\zeta \sqrt{dt}) \right] \right\}
\]
(20)
By definition, \(E(\zeta \sqrt{dt}) = \text{Var}(\zeta \sqrt{dt}) > 0 \), and it can be shown that \(E(\zeta \sqrt{dt}) \leq 0 \) for \(\rho \leq 0 \). Hence, from Equation (20), the geometric average is always biased downward for \(\rho < 0 \), even as \(N \to T \). It is also clear from Equation (20) that an increase in the stationary variance \(\sigma^2 dt \) raises the magnitude of the downward bias. The effect on the bias of changes in the parameters governing the temporal variation in expected returns, namely, \(\rho \) and \(\sigma^2 dt \), is generally ambiguous. However, when \(N \to T \),
\[
E(R^N_0) = (1 + \mu dt)^N \left\{ 1 + (1 + \mu dt)^{-1} \left((1 + (T - 2) \rho) \rho \sigma^2 dt \right) + O(\rho) \sigma^2 dt \right\}
\]
(21)
the downward bias at the limit is an increasing function of \(\rho \) and \(\sigma^2 dt \).

The sketch of the proof is as follows. Let \(T = 5 \), Compute and sum the five variances and ten covariances of \(\nu_i \sqrt{dt} \). Examining the covariances sum for \(\rho \leq 0 \) results in \(E(\zeta \sqrt{dt}) \leq 0 \). The general result is obtained by induction. The formal derivation is available from the authors on request.
II. Simulation Results

We use simulations to assess the severity of the biases in the arithmetic and geometric averages. In addition, we present two other estimates of expected return, as suggested in Blume (1974): a weighted average and an overlapping average.

We calculate the weighted average as a horizon-weighted average of the arithmetic and geometric averages:

\[E(W^N) = \frac{T - N}{T - 1} \bar{R}^N + \frac{N - 1}{T - 1} \bar{R}_G^N \]

(22)

where the weights sum to one. When \(N = 1 \), the arithmetic average receives all the weight. As \(N \to T \), more weight is given to the geometric average.

We construct the overlapping average as follows. We compute an \(N \)-period total return, \(T-N+1 \) in number, by multiplying the first through the \(N \)th one-period total returns together, the second through the \((N+1)^{th}\) one-period returns together, and so on. We then average the overlapping total returns.

To examine the empirical properties of each estimator, we use the return generating process described in Equation (3). For a benchmark monthly return, \(\mu = 0.01 \), and alternative values of autocorrelations \(\rho = 0, -0.05, -0.25 \), we draw a total of 250,000 random values of \(\sum \sqrt{dt} \) and \(\eta \sqrt{dt} \) from zero mean normal variates with variances ranging from zero to 0.0081 for \(\sigma^2 \) and zero to 0.0045 for \(\sigma^2 \), respectively. We then partition the 250,000 returns into 1,000 samples of 250 observations (\(T = 250 \)), and calculate the values of the four estimators for horizons \(N = 12,24,60,84,120 \).

Table 1 presents the simulation results when the autocorrelation and time-varying variance components are absent, i.e., \(\rho = 0 \) and \(\sigma^2 = 0 \). Simulation results in the presence of both time-varying and stationary variance as well as negative autocorrelation components appear in Table 2 (\(\rho = -0.05 \)) and Table 3 (\(\rho = -0.25 \)).

For the four estimators, the patterns of bias (direction and magnitude) and efficiency (standard deviation or the 0.05-0.95 fractile values) that appear in Table 1 are similar to those found in Blume (1974). Notice from Table 1 that for any investment horizon and stationary variance, the geometric average is always biased downward. For longer horizons \(N = 60,84,120 \), the arithmetic average is upward-biased, regardless of the stationary variance. For shorter horizons, \(N = 12,24 \), the arithmetic average is downward-biased for a small value of stationary variance, \(\sigma^2 = 0.0036 \), but upward-biased for a large value of stationary variance, \(\sigma^2 = 0.0081 \). For a small value of stationary variance, \(\sigma^2 = 0.0036 \), the overlapping estimator is downward-biased for any horizon, but for a large value of stationary variance, \(\sigma^2 = 0.0081 \), the estimator is upward-biased for shorter horizons, \(N = 12,24 \), and downward-biased for longer horizons, \(N = 60,84,120 \). Finally, for any horizon, the weighted average estimator is downward-biased for a small value of stationary variance, \(\sigma^2 = 0.0036 \), and upward-biased for a large value of stationary variance, \(\sigma^2 = 0.0081 \).

The magnitude of the bias is the largest for the geometric average. In addition, observe that for the smaller value of stationary variance, \(\sigma^2 = 0.0036 \), the arithmetic average has the least bias for shorter horizons, \(N = 12,24 \), and the overlapping average the least bias for longer horizons, \(N = 60,84,120 \). For the large value of stationary variance, \(\sigma^2 = 0.0081 \), and any horizon, the weighted and overlapping averages have less bias than the arithmetic and geometric averages. Overall, the geometric average is the most efficient estimator, and the overlapping average is the least efficient. The weighted average is consistently more efficient than the arithmetic and overlapping averages.

If we compare both Panel A’s in Tables 1 and 2, we see that the arithmetic and geometric averages are more upward and less downward-biased, respectively, and that both averages are less efficient. This represents the combined effect of a small negative autocorrelation (\(\rho = -0.05 \)) and time-varying variance (\(\sigma^2 = 0.0036 \)), which is greater than that of \(\sigma^2 \) alone. Moreover, although the bias for all estimators increases with \(N \), the weighted average is not only the least biased, but is also more efficient than the overlapping average.

Similarly, if we compare Panels A and B of Table 2, introducing \(\sigma^2 = 0.0045 \) to a small negative autocorrelation (\(\rho = -0.05 \)) and time-varying variance (\(\sigma^2 = 0.0036 \)) magnifies the magnitude of bias for all estimators. The overlapping average is the least biased, but least efficient, estimator. The weighted average is only slightly more biased, but is more efficient than the overlapping average.

Finally, the relative impact of \(\sigma^2 \) and \(\sigma^2 \) is evident when we compare Panels B and C of Table 2. When \(\sigma^2 \) > \(\sigma^2 \), the weighted average contains consistently smaller biases than when \(\sigma^2 < \sigma^2 \) and its efficiency improves as \(N \) increases. Although the overlapping average is still the least biased, it is also the least efficient estimator. The weighted average is only slightly more biased, but is more efficient, than the overlapping average.

In general, the direction and magnitude of the biases reported in Table 2 are also observed in Table 3. In the majority of the cases reported in Table 3, however, the weighted average is the least biased of all estimators, although this improvement is achieved at the expense of efficiency. If we compare Panels A and C, we also
Table 1. Simulation Results in the Absence of Autocorrelation and Time-Varying Variance, $p = 0$ and $\sigma^2_t = 0$

Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average of the arithmetic and geometric averages. Overlap is the overlapping average.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmk Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1254</td>
<td>0.0507</td>
<td>1.0427</td>
<td>1.1246</td>
<td>1.2076</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.1018</td>
<td>0.0499</td>
<td>1.0209</td>
<td>1.1013</td>
<td>1.1831</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.1243</td>
<td>0.0507</td>
<td>1.0417</td>
<td>1.1237</td>
<td>1.2064</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.1251</td>
<td>0.0516</td>
<td>1.0427</td>
<td>1.1248</td>
<td>1.2090</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>1.2697</td>
<td>1.2691</td>
<td>0.1146</td>
<td>1.0872</td>
<td>1.2648</td>
<td>1.4582</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.2165</td>
<td>0.1104</td>
<td>1.0422</td>
<td>1.2128</td>
<td>1.3998</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.2640</td>
<td>0.1142</td>
<td>1.0831</td>
<td>1.2604</td>
<td>1.4526</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.2657</td>
<td>0.1191</td>
<td>1.0786</td>
<td>1.2610</td>
<td>1.4682</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.8422</td>
<td>0.4198</td>
<td>1.2325</td>
<td>1.7990</td>
<td>2.5677</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.6575</td>
<td>0.3796</td>
<td>1.1088</td>
<td>1.6198</td>
<td>2.3181</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.7966</td>
<td>0.4098</td>
<td>1.2036</td>
<td>1.7567</td>
<td>2.5050</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.8022</td>
<td>0.4725</td>
<td>1.1562</td>
<td>1.7383</td>
<td>2.6531</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.3858</td>
<td>0.7693</td>
<td>1.3400</td>
<td>2.2752</td>
<td>3.7442</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.0580</td>
<td>0.6672</td>
<td>1.1556</td>
<td>1.9645</td>
<td>3.2448</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>2.2719</td>
<td>0.7337</td>
<td>1.2796</td>
<td>2.1701</td>
<td>3.5650</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.2851</td>
<td>0.8909</td>
<td>1.1991</td>
<td>2.1236</td>
<td>3.9425</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>3.5698</td>
<td>1.6822</td>
<td>1.5190</td>
<td>3.2362</td>
<td>6.5931</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.8912</td>
<td>1.3714</td>
<td>1.2295</td>
<td>2.6239</td>
<td>5.3736</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>3.2319</td>
<td>1.5270</td>
<td>1.3830</td>
<td>2.9328</td>
<td>5.9712</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>3.2528</td>
<td>1.9440</td>
<td>1.2160</td>
<td>2.7965</td>
<td>6.8591</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmk Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1306</td>
<td>0.0760</td>
<td>1.0079</td>
<td>1.1284</td>
<td>1.2583</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.0774</td>
<td>0.0730</td>
<td>0.9599</td>
<td>1.0745</td>
<td>1.2022</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.1281</td>
<td>0.0758</td>
<td>1.0059</td>
<td>1.1261</td>
<td>1.2556</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.1283</td>
<td>0.0780</td>
<td>1.0047</td>
<td>1.1260</td>
<td>1.2605</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>1.2697</td>
<td>1.2839</td>
<td>0.1727</td>
<td>1.0159</td>
<td>1.2734</td>
<td>1.5833</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.1662</td>
<td>0.1581</td>
<td>0.9214</td>
<td>1.1544</td>
<td>1.4452</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.2726</td>
<td>0.1713</td>
<td>1.0071</td>
<td>1.2624</td>
<td>1.5697</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.2703</td>
<td>0.1791</td>
<td>0.9944</td>
<td>1.2607</td>
<td>1.5759</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.9316</td>
<td>0.6610</td>
<td>1.0403</td>
<td>1.8298</td>
<td>3.1544</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.5195</td>
<td>0.5244</td>
<td>0.8149</td>
<td>1.4320</td>
<td>2.5107</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.8299</td>
<td>0.6269</td>
<td>0.9857</td>
<td>1.7356</td>
<td>2.9926</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.8074</td>
<td>0.6846</td>
<td>0.8913</td>
<td>1.6954</td>
<td>3.1078</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.5929</td>
<td>1.2706</td>
<td>1.0569</td>
<td>2.3301</td>
<td>4.9944</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.8540</td>
<td>0.9167</td>
<td>0.7508</td>
<td>1.6531</td>
<td>3.6284</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>2.3363</td>
<td>1.1471</td>
<td>0.9532</td>
<td>2.1020</td>
<td>4.5182</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.2787</td>
<td>1.2826</td>
<td>0.7824</td>
<td>2.0096</td>
<td>4.7529</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>4.1676</td>
<td>3.0671</td>
<td>1.0823</td>
<td>3.3482</td>
<td>9.9503</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.5834</td>
<td>1.9241</td>
<td>0.6640</td>
<td>2.0506</td>
<td>6.3036</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>3.3788</td>
<td>2.4961</td>
<td>0.8798</td>
<td>2.7156</td>
<td>8.1821</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>3.2201</td>
<td>2.7834</td>
<td>0.6314</td>
<td>2.4351</td>
<td>8.7221</td>
</tr>
</tbody>
</table>
Table 2. Simulation Results with a Small Autocorrelation $\rho = -0.05$

Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average of the arithmetic and geometric averages. Overlap is the overlapping average.

Panel A. $\rho = -0.05$, $\sigma^2 = 0.036$, $c^2 = 0$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmk Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1269</td>
<td>0.0515</td>
<td>1.0446</td>
<td>1.1237</td>
<td>1.2166</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.1032</td>
<td>0.0506</td>
<td>1.0246</td>
<td>1.1003</td>
<td>1.1917</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.1258</td>
<td>0.0515</td>
<td>1.0437</td>
<td>1.1226</td>
<td>1.2156</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.1236</td>
<td>0.0527</td>
<td>1.0383</td>
<td>1.1211</td>
<td>1.2165</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>1.2697</td>
<td>1.2724</td>
<td>0.1171</td>
<td>1.0913</td>
<td>1.2627</td>
<td>1.4801</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.2195</td>
<td>0.1125</td>
<td>1.0499</td>
<td>1.2107</td>
<td>1.4201</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.2674</td>
<td>0.1167</td>
<td>1.0872</td>
<td>1.2574</td>
<td>1.4748</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.2621</td>
<td>0.1216</td>
<td>1.0743</td>
<td>1.2546</td>
<td>1.4707</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.8556</td>
<td>0.4393</td>
<td>1.2440</td>
<td>1.7918</td>
<td>2.6651</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.6687</td>
<td>0.3962</td>
<td>1.1294</td>
<td>1.6127</td>
<td>2.4032</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.8095</td>
<td>0.4286</td>
<td>1.2159</td>
<td>1.7476</td>
<td>2.6108</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.7869</td>
<td>0.4676</td>
<td>1.1393</td>
<td>1.7179</td>
<td>2.6344</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.4123</td>
<td>0.8214</td>
<td>1.3575</td>
<td>2.2626</td>
<td>3.9446</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.0793</td>
<td>0.7102</td>
<td>1.1858</td>
<td>1.9524</td>
<td>3.4127</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>2.2966</td>
<td>0.7826</td>
<td>1.2986</td>
<td>2.1572</td>
<td>3.7605</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.2608</td>
<td>0.8839</td>
<td>1.1510</td>
<td>2.1064</td>
<td>4.0036</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>3.6361</td>
<td>1.8669</td>
<td>1.5475</td>
<td>3.2106</td>
<td>7.1027</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.9415</td>
<td>1.5153</td>
<td>1.2756</td>
<td>2.6007</td>
<td>5.7753</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>3.2902</td>
<td>1.6915</td>
<td>1.4119</td>
<td>2.9204</td>
<td>6.4612</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>3.2330</td>
<td>1.9575</td>
<td>1.1754</td>
<td>2.7698</td>
<td>6.8499</td>
</tr>
</tbody>
</table>

Panel B. $\rho = -0.05$, $\sigma^2 = 0.036$, $c^2 = 0.0045$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmk Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1319</td>
<td>0.0748</td>
<td>1.0164</td>
<td>1.1283</td>
<td>1.2568</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.0786</td>
<td>0.0720</td>
<td>0.9662</td>
<td>1.0763</td>
<td>1.1971</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.1294</td>
<td>0.0747</td>
<td>1.0143</td>
<td>1.1259</td>
<td>1.2544</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.1278</td>
<td>0.0771</td>
<td>1.0077</td>
<td>1.1238</td>
<td>1.2610</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>1.2697</td>
<td>1.2867</td>
<td>0.1713</td>
<td>1.0331</td>
<td>1.2732</td>
<td>1.5796</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.1686</td>
<td>0.1571</td>
<td>0.9335</td>
<td>1.1585</td>
<td>1.4330</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.2754</td>
<td>0.1669</td>
<td>1.0239</td>
<td>1.2617</td>
<td>1.5668</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.2720</td>
<td>0.1819</td>
<td>1.0056</td>
<td>1.2590</td>
<td>1.6056</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.9412</td>
<td>0.6685</td>
<td>1.0847</td>
<td>1.8290</td>
<td>3.1359</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.5266</td>
<td>0.5307</td>
<td>0.8419</td>
<td>1.4446</td>
<td>2.4583</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.8388</td>
<td>0.6343</td>
<td>1.0243</td>
<td>1.7300</td>
<td>2.9745</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.8159</td>
<td>0.7385</td>
<td>0.9271</td>
<td>1.6760</td>
<td>3.1844</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.6111</td>
<td>1.3023</td>
<td>1.1206</td>
<td>2.3285</td>
<td>4.9536</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.8663</td>
<td>0.9401</td>
<td>0.7859</td>
<td>1.6736</td>
<td>3.5227</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>2.3524</td>
<td>1.1760</td>
<td>1.0025</td>
<td>2.0926</td>
<td>4.4684</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.3005</td>
<td>1.4391</td>
<td>0.8698</td>
<td>1.9396</td>
<td>4.7906</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>4.2146</td>
<td>3.2132</td>
<td>1.1767</td>
<td>3.3451</td>
<td>9.8342</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.6119</td>
<td>2.0128</td>
<td>0.7088</td>
<td>2.0869</td>
<td>6.0431</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>3.4166</td>
<td>2.6141</td>
<td>0.9468</td>
<td>2.6988</td>
<td>7.9694</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>3.3191</td>
<td>3.4287</td>
<td>0.7108</td>
<td>2.3538</td>
<td>8.5702</td>
</tr>
</tbody>
</table>
Table 2. Simulation Results with a Small Autocorrelation $\rho = -0.05$ (Continued)

Panel C. $\rho = -0.05$, $\sigma^2 = 0.0045$, $\sigma^2_e = 0.0036$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmk Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1306</td>
<td>0.0749</td>
<td>1.0085</td>
<td>1.1289</td>
<td>1.2550</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.0779</td>
<td>0.0720</td>
<td>0.9603</td>
<td>1.0771</td>
<td>1.1963</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.1282</td>
<td>0.0747</td>
<td>1.0064</td>
<td>1.1265</td>
<td>1.2522</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.1266</td>
<td>0.0779</td>
<td>0.9985</td>
<td>1.1242</td>
<td>1.2583</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>2.697</td>
<td>1.2839</td>
<td>0.1701</td>
<td>1.0172</td>
<td>1.2744</td>
<td>1.5750</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.1670</td>
<td>0.1559</td>
<td>0.9223</td>
<td>1.1602</td>
<td>1.4312</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.2727</td>
<td>0.1687</td>
<td>1.0084</td>
<td>1.2632</td>
<td>1.5609</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.2689</td>
<td>0.1828</td>
<td>0.9850</td>
<td>1.2568</td>
<td>1.5954</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.9297</td>
<td>0.6472</td>
<td>1.0435</td>
<td>1.8333</td>
<td>3.1133</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.5206</td>
<td>0.5141</td>
<td>0.8168</td>
<td>1.4500</td>
<td>2.4503</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.8287</td>
<td>0.6141</td>
<td>0.9896</td>
<td>1.7368</td>
<td>2.9461</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.8123</td>
<td>0.7192</td>
<td>0.8688</td>
<td>1.6657</td>
<td>3.1331</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.5865</td>
<td>1.2959</td>
<td>1.0614</td>
<td>2.3363</td>
<td>4.9036</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.8538</td>
<td>0.8962</td>
<td>0.7533</td>
<td>1.6824</td>
<td>3.5067</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>2.3320</td>
<td>1.1197</td>
<td>0.9580</td>
<td>2.1085</td>
<td>4.4085</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.2913</td>
<td>1.3224</td>
<td>0.7811</td>
<td>1.9445</td>
<td>4.7278</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>4.4242</td>
<td>2.9827</td>
<td>1.0888</td>
<td>3.3611</td>
<td>9.6930</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.5764</td>
<td>1.8779</td>
<td>0.6672</td>
<td>2.1025</td>
<td>6.0039</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>3.3626</td>
<td>2.4308</td>
<td>0.8854</td>
<td>2.7379</td>
<td>7.8210</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>3.2489</td>
<td>2.8583</td>
<td>0.6348</td>
<td>2.3838</td>
<td>8.1933</td>
</tr>
</tbody>
</table>

Table 3. Simulation Results with a Large Autocorrelation $\rho = -0.25$

Monthly benchmark return is 1%. Horizon is stated in the number of months. Wt. Ave. is the horizon-weighted average of the arithmetic and geometric averages. Overlap is the overlapping average.

Panel A. $\rho = -0.25$, $\sigma^2 = 0.00108$, $\sigma^2_e = 0.00252$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmk Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1262</td>
<td>0.0487</td>
<td>1.0448</td>
<td>1.1266</td>
<td>1.2077</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.1021</td>
<td>0.0478</td>
<td>1.0213</td>
<td>1.1024</td>
<td>1.1816</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.1251</td>
<td>0.0486</td>
<td>1.0437</td>
<td>1.1254</td>
<td>1.2065</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.1225</td>
<td>0.0494</td>
<td>1.0386</td>
<td>1.1221</td>
<td>1.2011</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>1.2697</td>
<td>1.2708</td>
<td>0.1097</td>
<td>1.0915</td>
<td>1.2692</td>
<td>1.4585</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.2169</td>
<td>0.1054</td>
<td>1.0431</td>
<td>1.2152</td>
<td>1.3962</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.2656</td>
<td>0.1092</td>
<td>1.0869</td>
<td>1.2638</td>
<td>1.4527</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.2603</td>
<td>0.1136</td>
<td>1.0728</td>
<td>1.2567</td>
<td>1.4536</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.8458</td>
<td>0.3996</td>
<td>1.2447</td>
<td>1.8149</td>
<td>2.5689</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.6565</td>
<td>0.3602</td>
<td>1.1113</td>
<td>1.6280</td>
<td>2.3034</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.7991</td>
<td>0.3898</td>
<td>1.2134</td>
<td>1.7704</td>
<td>2.5056</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.7895</td>
<td>0.4342</td>
<td>1.1623</td>
<td>1.7311</td>
<td>2.5611</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.3891</td>
<td>0.7302</td>
<td>1.3586</td>
<td>2.3035</td>
<td>3.7467</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.0536</td>
<td>0.6308</td>
<td>1.1592</td>
<td>1.9784</td>
<td>3.2159</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>2.2726</td>
<td>0.6955</td>
<td>1.2935</td>
<td>2.1953</td>
<td>3.5686</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.2606</td>
<td>0.7989</td>
<td>1.1846</td>
<td>2.1236</td>
<td>3.7313</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>3.5665</td>
<td>1.5918</td>
<td>1.5493</td>
<td>3.2937</td>
<td>6.5994</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.8738</td>
<td>1.2908</td>
<td>1.2349</td>
<td>2.6504</td>
<td>5.3055</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>3.2216</td>
<td>1.4415</td>
<td>1.3994</td>
<td>2.9794</td>
<td>5.9669</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>3.2091</td>
<td>1.6643</td>
<td>1.1889</td>
<td>2.8265</td>
<td>6.4095</td>
</tr>
</tbody>
</table>
Table 3. Simulation Results with a Large Autocorrelation $\rho = -0.25$ (Continued)

Panel B. $\rho = -0.25$, $\sigma^2 = 0.000405$ $\sigma^2 = 0.007695$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmark Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1299</td>
<td>0.0785</td>
<td>1.006</td>
<td>1.126</td>
<td>1.267</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.0768</td>
<td>0.0756</td>
<td>0.951</td>
<td>1.073</td>
<td>1.207</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.1275</td>
<td>0.0783</td>
<td>0.998</td>
<td>1.124</td>
<td>1.264</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.1264</td>
<td>0.0812</td>
<td>0.936</td>
<td>1.123</td>
<td>1.262</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>1.2697</td>
<td>1.2829</td>
<td>0.1789</td>
<td>1.001</td>
<td>1.269</td>
<td>1.609</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.1652</td>
<td>0.1643</td>
<td>0.904</td>
<td>1.152</td>
<td>1.458</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.2715</td>
<td>0.1775</td>
<td>0.990</td>
<td>1.258</td>
<td>1.591</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.2679</td>
<td>0.1898</td>
<td>0.975</td>
<td>1.251</td>
<td>1.593</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.9326</td>
<td>0.6969</td>
<td>1.002</td>
<td>1.816</td>
<td>3.273</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.5208</td>
<td>0.5546</td>
<td>0.778</td>
<td>1.426</td>
<td>2.567</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.8309</td>
<td>0.6615</td>
<td>0.944</td>
<td>1.702</td>
<td>3.081</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.8186</td>
<td>0.7458</td>
<td>0.866</td>
<td>1.656</td>
<td>3.286</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.6022</td>
<td>1.3673</td>
<td>1.004</td>
<td>2.302</td>
<td>5.296</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.8619</td>
<td>0.9902</td>
<td>0.704</td>
<td>1.644</td>
<td>3.744</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>2.3451</td>
<td>1.2358</td>
<td>0.896</td>
<td>2.074</td>
<td>4.680</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.3242</td>
<td>1.4276</td>
<td>0.784</td>
<td>1.957</td>
<td>5.107</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>4.2200</td>
<td>3.4602</td>
<td>1.005</td>
<td>3.298</td>
<td>10.713</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.6200</td>
<td>2.1793</td>
<td>0.606</td>
<td>2.035</td>
<td>6.594</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>3.4233</td>
<td>2.8210</td>
<td>0.803</td>
<td>2.667</td>
<td>8.590</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>3.3601</td>
<td>3.1676</td>
<td>0.656</td>
<td>2.365</td>
<td>9.757</td>
</tr>
</tbody>
</table>

Panel C. $\rho = -0.25$, $\sigma^2 = 0.00243$ $\sigma^2 = 0.00567$

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmark Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1294</td>
<td>0.0721</td>
<td>1.019</td>
<td>1.125</td>
<td>1.250</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.0753</td>
<td>0.0694</td>
<td>0.969</td>
<td>1.072</td>
<td>1.197</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.1269</td>
<td>0.0719</td>
<td>1.017</td>
<td>1.122</td>
<td>1.253</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.1200</td>
<td>0.0738</td>
<td>1.011</td>
<td>1.146</td>
<td>1.250</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>1.2697</td>
<td>1.2808</td>
<td>0.1641</td>
<td>1.040</td>
<td>1.266</td>
<td>1.577</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.1611</td>
<td>0.1505</td>
<td>0.939</td>
<td>1.149</td>
<td>1.432</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.2693</td>
<td>0.1628</td>
<td>1.029</td>
<td>1.254</td>
<td>1.562</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.2529</td>
<td>0.1700</td>
<td>1.013</td>
<td>1.236</td>
<td>1.553</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.9141</td>
<td>0.6252</td>
<td>1.103</td>
<td>1.803</td>
<td>3.127</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.4987</td>
<td>0.4957</td>
<td>0.854</td>
<td>1.416</td>
<td>2.457</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>1.8115</td>
<td>0.5930</td>
<td>1.040</td>
<td>1.704</td>
<td>2.956</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>1.7524</td>
<td>0.6358</td>
<td>0.918</td>
<td>1.640</td>
<td>2.963</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.5532</td>
<td>1.1906</td>
<td>1.148</td>
<td>2.283</td>
<td>4.934</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>1.8140</td>
<td>0.8578</td>
<td>0.802</td>
<td>1.627</td>
<td>3.523</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>2.2965</td>
<td>1.0745</td>
<td>1.030</td>
<td>2.048</td>
<td>4.431</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.1744</td>
<td>1.1431</td>
<td>0.836</td>
<td>1.915</td>
<td>4.432</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>4.0541</td>
<td>2.8088</td>
<td>1.218</td>
<td>3.253</td>
<td>9.708</td>
</tr>
<tr>
<td>Geometric</td>
<td></td>
<td></td>
<td>2.4915</td>
<td>1.7562</td>
<td>0.730</td>
<td>2.005</td>
<td>6.039</td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td></td>
<td></td>
<td>3.2761</td>
<td>2.2832</td>
<td>0.976</td>
<td>2.621</td>
<td>7.862</td>
</tr>
<tr>
<td>Overlap</td>
<td></td>
<td></td>
<td>2.9808</td>
<td>2.3220</td>
<td>0.675</td>
<td>2.282</td>
<td>7.586</td>
</tr>
</tbody>
</table>
observe that when σ^2 and σ^2 both increase by the same proportion, the weighted average experiences a smaller bias relative to the other three estimators. Furthermore, we see from Panels B and C that a reduction in σ^2 that is offset by a corresponding increase in σ^2 improves the weighted average’s efficiency.

The effect of higher negative autocorrelation is evident when we compare Panel D in Table 3 with Panel B in Table 2. Even though we obtain a higher efficiency for all estimators, a higher negative autocorrelation ρ leads to a smaller bias in the arithmetic and weighted averages, but a larger bias for the geometric and overlapping averages. Moreover, although Table 3 shows that the weighted average is the second most efficient estimator, it is overall the least biased when negative autocorrelation, time-varying, and stationary variance components are all present.

III. Concluding Remarks

We show that both the arithmetic and geometric averages are biased estimates of long-run expected returns, and the bias increases with the length of the investment horizons. The existence of negative autocorrelation in long-horizon returns documented by Fama and French (1988a, 1988b), Lo and MacKinlay (1988), and Poterba and Summers (1988) exacerbates the bias. The implication is that without making an adjustment, we are likely to obtain an estimate of long-run expected return (and risk premium) that is either too high or too low, and this can result in an inappropriate decision to reject a good project or accept a bad project.

The horizon-weighted average of the arithmetic and geometric averages, proposed by Blume (1974), is an alternative estimate of long-run expected returns. Our simulation results indicate that in general, the horizon-weighted average contains the least bias. It is also more efficient than other estimators in the presence of negative autocorrelation, time-varying, and stationary variances. This conclusion contrasts with Blume’s conjecture that “...if one cannot assume independence of successive one-period relatives or if there is even a slight chance that these relatives are dependent, the simple average of N-period relatives would appear preferable to the nonlinear estimators which, even under ideal conditions, yield only a modest increase in efficiency.”

Table 3. Simulation Results with a Large Autocorrelation $\rho = -0.25$ (Continued)

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Horizon</th>
<th>Benchmk Return</th>
<th>Average</th>
<th>Standard Error</th>
<th>0.05</th>
<th>0.50</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>12</td>
<td>1.1268</td>
<td>1.1275</td>
<td>0.0709</td>
<td>1.0146</td>
<td>1.1272</td>
<td>1.2492</td>
</tr>
<tr>
<td>Geometric</td>
<td>1.0730</td>
<td>0.0684</td>
<td>0.9633</td>
<td>1.0725</td>
<td>1.1877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td>1.1250</td>
<td>0.0708</td>
<td>1.0125</td>
<td>1.1247</td>
<td>1.2467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap</td>
<td>1.1158</td>
<td>0.0724</td>
<td>1.0008</td>
<td>1.1168</td>
<td>1.2410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic</td>
<td>24</td>
<td>1.2697</td>
<td>1.2762</td>
<td>0.1605</td>
<td>1.0295</td>
<td>1.2705</td>
<td>1.5606</td>
</tr>
<tr>
<td>Geometric</td>
<td>1.1560</td>
<td>0.1474</td>
<td>0.9280</td>
<td>1.1503</td>
<td>1.4107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td>1.2646</td>
<td>0.1592</td>
<td>1.0207</td>
<td>1.2593</td>
<td>1.5468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap</td>
<td>1.2446</td>
<td>0.1662</td>
<td>0.9894</td>
<td>1.2401</td>
<td>1.5459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic</td>
<td>60</td>
<td>1.8167</td>
<td>1.8947</td>
<td>0.6019</td>
<td>1.0754</td>
<td>1.8196</td>
<td>3.0423</td>
</tr>
<tr>
<td>Geometric</td>
<td>1.4809</td>
<td>0.4767</td>
<td>0.8296</td>
<td>1.4190</td>
<td>2.3638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td>1.7925</td>
<td>0.5707</td>
<td>1.0183</td>
<td>1.7202</td>
<td>2.8760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap</td>
<td>1.7249</td>
<td>0.6193</td>
<td>0.8986</td>
<td>1.6286</td>
<td>2.9045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic</td>
<td>84</td>
<td>2.3067</td>
<td>2.5137</td>
<td>1.1352</td>
<td>1.1072</td>
<td>2.3119</td>
<td>4.7477</td>
</tr>
<tr>
<td>Geometric</td>
<td>1.7816</td>
<td>0.8146</td>
<td>0.7699</td>
<td>1.6323</td>
<td>3.3347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td>2.2595</td>
<td>1.0233</td>
<td>0.9959</td>
<td>2.0773</td>
<td>4.2567</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap</td>
<td>2.1478</td>
<td>1.1423</td>
<td>0.8072</td>
<td>1.8783</td>
<td>4.4142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arithmetic</td>
<td>120</td>
<td>3.3004</td>
<td>3.9518</td>
<td>2.6400</td>
<td>1.1565</td>
<td>3.3109</td>
<td>9.2557</td>
</tr>
<tr>
<td>Geometric</td>
<td>2.4201</td>
<td>1.6346</td>
<td>0.6883</td>
<td>2.0137</td>
<td>5.5876</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wt. Ave.</td>
<td>3.1891</td>
<td>2.1377</td>
<td>0.9301</td>
<td>2.6705</td>
<td>7.4157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overlap</td>
<td>2.9632</td>
<td>2.3759</td>
<td>0.6444</td>
<td>2.2599</td>
<td>7.7379</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

THE CROSS-SECTION OF HURDLE RATES FOR CAPITAL BUDGETING:
AN EMPIRICAL ANALYSIS OF SURVEY DATA

Ravi Jagannathan
Iwan Meier
Vefa Tarhan

Working Paper 16770
http://www.nber.org/papers/w16770

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
February 2011

We thank Michael Fishman, Robert Korajczyk, Deborah Lucas, Robert McDonald, David Matsa, Mitchell Petersen, Artur Raviv, Ernst Schaumburg, Michael Sher, Paul Spindt, and Timothy Thompson for helpful comments. We also thank the focus group participants William A. Colaianni, James J. Cowhey, Pavel A. Dorosevich, Gaea Gomez, Art Mollenhauer, and Don Porth for their input to improve the design of the survey. This research is sponsored by the Zell Center for Risk Research and we are indebted to its Director and Dean Emeritus of the Kellogg School of Management Donald Jacobs for his support and advice. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

© 2011 by Ravi Jagannathan, Iwan Meier, and Vefa Tarhan. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
The Cross-Section of Hurdle Rates for Capital Budgeting: An Empirical Analysis of Survey Data
Ravi Jagannathan, Iwan Meier, and Vefa Tarhan
NBER Working Paper No. 16770
February 2011
JEL No. G12,G3,G31

ABSTRACT

Whereas Poterba and Summers (1995) find that firms use hurdle rates that are unrelated to their CAPM betas, Graham and Harvey (2001) find that 74% of their survey firms use the CAPM for capital budgeting. We provide an explanation for these two apparently contradictory conclusions. We find that firms behave as though they add a hurdle premium to their CAPM based cost of capital. Following McDonald and Siegel (1986), we argue that the hurdle premium depends on the value of the option to defer investments. While CAPM explains only 10% of the cross-sectional variation in hurdle rates across firms, variables that proxy for the benefits from the option to wait for potentially better investment opportunities explain 35%. Estimates of our hurdle premium model parameters imply an equity premium of 3.8% per year, a figure that is essentially the same as that reported in the survey by Graham and Harvey (2005). Consistent with our model, growth firms use a higher hurdle rate when compared to value firms, even though they have a lower cost of capital.

Ravi Jagannathan
Kellogg Graduate School of Management
Northwestern University
2001 Sheridan Road
Leverone/Anderson Complex
Evanston, IL 60208-2001
and NBER
rjaganna@northwestern.edu

Iwan Meier
HEC Montreal
3000, chemin de la Cote-Sainte-Catherine
Montreal (Quebec) H3T 2A7
Canada
iwan.meier@hec.ca

Vefa Tarhan
Loyola University Chicago
Graduate School of Business
1 E. Pearson St., Maguire Hall
Chicago, IL 60611
v-tarhan@luc.edu
I. Introduction

According to a survey by Womack and Zhang (2005) 38% of the total class time of the core finance courses at major MBA programs is devoted to capital budgeting decisions, computing net present value (NPV) and cost of capital. The tuition fees of the top 30 ranked MBA programs by Business Week total 1.6 billion in 2010. Thus, it appears that business schools generate considerable revenues in return for an education of the principles of corporate finance.

A number of studies document that when computing the net present value of a project, the majority of firms discount future cash flows using hurdle rates that reflect their weighted average cost of capital (WACC) (e.g. Bierman (1993), Bruner, Eades, Harris, and Higgins (1998)) and thus indeed follow the standard approach as taught in MBA programs. Additionally, surveys over the past four decades report that since Sharpe (1964) and Lintner (1965) introduced the capital asset pricing model (CAPM), firms have increasingly adopted its framework to determine their cost of equity. In fact, Graham and Harvey (2001) find that three out of four CFOs rely on the CAPM. Thus, in spite of its criticism in the literature, it appears that CAPM is widely used in practice.

In a survey that we conducted, we ask firms what they use for hurdle rates in their capital budgeting decisions. Since we know the identity of the respondents to our survey, we can match firms with fundamental Barra betas and data from Compustat and CRSP to compute their WACC. We document that hurdle rates firms use in practice exceed their computed WACC, i.e., firms add a hurdle premium to their cost of capital.\(^2\) The hurdle premium is substantial and

\(^2\) In a roundtable discussion on capital structure and payout policy, Jon Anda from the investment banking division of Morgan Stanley states that “my feeling is that a large number of companies today are using hurdle rates that are well above their weighted average cost of capital” (see Smith, Ikenberry, Nayar,
accounts, on average, for about half of the hurdle rate. We also find that the presence of the hurdle rate premium is independent of whether the cost of equity is inferred from the single-factor CAPM, the Fama-French three-factor model, or computed by making assumptions about the size of the equity premium.

Poterba and Summers (1995) also find hurdle rates to be on the high side. They document an average real hurdle rate of 12.2%, at a time when the long-term inflation expectation was around 5%. They argue that the hurdle rates are higher than both the cost of debt and the cost of equity of firms in their survey sample. Moreover, they find that hurdle rates are not related to CAPM betas. How is it that firms claim to use CAPM and WACC, and yet their hurdle rates are not systematically related to beta, and are also much higher than firms’ computed WACC? In this paper, we provide an explanation based on high growth prospects that make options to wait for better investment opportunities valuable when firms cannot undertake all positive net present value projects due to limited availability of organization capital. We propose a model that explains the determinants of hurdle rates and at the same time produces results that are consistent with the previous survey findings that firms indeed use CAPM and WACC. While WACC is an important determinant of the hurdle rate, it is not its only component.

The key to our model is that firms with high growth opportunities incorporate a premium associated with an option to wait to their hurdle rates. This insight is provided by McDonald and Siegel (1986). In addressing the investment timing problem they observe that investing in a current positive NPV project is irreversible, while the decision to defer the investment is reversible. They argue that the correct decision is reached by comparing the NPV of the current project with the NPV (as of the current period) that can be obtained if the investment is made in Anda and McVey (2005, p. 52)). Additionally, Antill and Arnott (2004) claim that the hurdle rates of the twelve oil companies they examine exceed their WACC.
the future. This option to wait is valuable to growth firms since it may enable them to take future projects that possibly have higher NPVs than the (positive) NPV projects they have in the current period. Such firms may behave in this manner due to managerial and other human capital constraints in the current period. At the same time, these firms may fear facing adverse conditions in capital markets in the future when highly valuable projects materialize. We hypothesize that in order to avoid this possibility, in the current period these firms would put themselves in a financial position to undertake the highly valuable projects that they may encounter in the future. In other words, current period financial flexibility concerns are likely to be important for firms with high growth prospects. This suggests that firms with high cash reserves would have high hurdle premia.

It is important to emphasize that the option to wait for future projects that have higher expected values than the current period positive NPV investments, is different from a traditional real option attached to a specific project. If firms consider a project to be strategic, then they judge that investing in such a project has the potential to generate additional future cash flows that are currently not incorporated in the valuation of the project. For instance, the first investment in a foreign country might pave the way for other positive NPV projects in the future. In such cases, firms could use decision trees to incorporate future cash flows. However, survey evidence shows that firms often incorporate such real options associated with strategic projects by using lower hurdle rates (e.g. Bruner, Eades, Harris, and Higgins (1998)). In contrast, firms that are in a position to take advantage of options to wait would use higher discount rates in screening projects in the current period. When firms uncover a new positive NPV project, they have to decide whether to take it or to wait for a potentially better future opportunity. The decision can be characterized as an optimal stopping problem. Given a number of future projects
with a distribution of NPVs, where only the approximate distribution is known, the firm has to decide whether it is optimal to take a currently available positive NPV project or to wait for a better opportunity. The average expected NPV of the future projects depends on the growth prospects of the industry, while the dispersion is driven by the riskiness of the industry. This suggests that both recent period industry returns and the unpredicted fraction of industry returns would be positively correlated with hurdle premia.

If firms do not face any constraints and capital markets are well functioning, every positive NPV project in the current period would be funded. However, firms with high-growth prospects may not want to take every positive NPV project in the current period since they may find even better opportunities in the future. For this reason, firms with high growth prospects may pass up on some good current period projects by using hurdle rates that exceed their WACC. The difference between the hurdle rates they use and their computed WACC would represent the premium associated with the option to wait. The option to wait is more valuable to firms with high growth prospects who operate in an environment where the NPV distribution of possible projects are likely to have a wider dispersion than those faced by mature firms.

Jagannathan and Meier (2002) argue that organizational and managerial constraints may represent another reason why firms with valuable options to wait, i.e., firms with ample growth opportunities, would use higher hurdle rates. Since in corporate finance growth is about the sales variable, we use sales growth per employee as a proxy to measure the presence of managerial constraints. Jagannathan and Meier (2002) use a real options framework that builds on McDonald (1999) to demonstrate that depending on growth prospects and the dispersion of the NPV distribution of future projects, the hurdle rate premium can be substantial. The optimal
solution for when to take a positive NPV project can be found using the classical stopping problem (also known as parking or secretary problem).

In this paper we make several contributions. First, we document that there is a hurdle rate premium. Second, we develop a model where hurdle rates have two components: WACC, and variables that represent firm characteristics that proxy for the value of the option to wait. The model enables us to estimate the equity premium, along with the loadings on firm characteristics. Our estimate for the equity premium is identical to the figure found by Graham and Harvey (2005) from a survey they conducted at about the same date of our survey (3.8% in both cases). Also, unlike Poterba and Summers (1995) who do not find a significant relation between historical beta and hurdle rates, we find that fundamental beta is positively correlated with hurdle rates in our sample. Third, we find that actual WACC constitutes about half of the value of the average hurdle rate, while the remaining half of the variation in hurdle rates can be explained by variables that proxy for the value of options to wait. Furthermore, we find that dispersion of hurdle premia is three times the dispersion of WACC. Fourth, as hypothesized, financial flexibility considerations play an important role: firms with high levels of cash use higher hurdle rates. Fifth, we find that firms with high growth opportunities use higher hurdle rates (they load negatively on the Fama-French HML factor) even though their stocks earn lower returns. Additionally, the R-square obtained from the estimation of the market model for firms that are in the same industry (2 digit SIC) as the sample firms, is negatively correlated with hurdle rates. Finally, we confirm Jagannathan and Meier (2002) that managerial and organizational constraints play an important role in investment decisions: the estimate for the sales growth per employee variable is positive and is significantly related to hurdle rates.
The remainder of the paper proceeds as follows. Section II describes the experimental design and data. Section III discusses survey results. Section IV presents the model. Empirical findings are discussed in Section V. Finally, Section VI concludes.

II. Experimental Design and Data

Figure 1 gives an overview of the results from the survey literature. Apparently, starting in the 1990s an overwhelming fraction of firms use discounted cash flow (DCF) methods. Similarly, starting in the 1980s the use of WACC and CAPM has increased dramatically. Interestingly, the use of company-wide hurdle rates has not declined over time. In order to examine how hurdle rates are related to cost of capital and to test whether the hurdle premium is related to options to wait, we combine survey questions with archival data from Barra, CRSP, and Compustat. Hurdle rates cannot be observed directly in archival databases and require a survey. Besides Poterba and Summers (1995), to the best of our knowledge, ours is the only survey on hurdle rates that knows the identity of the respondents. Combining survey data with financial databases enables us to examine the determinants of the hurdle premium.

The survey was completed by the CFOs of 127 companies in October 2003. A high percentage of the respondents reveal their identity (83.5%). Almost all surveys are filled out completely and there is no decline in the number of responses towards the end of the four-page questionnaire. Survey data has strengths and weaknesses. Surveys are the only way to obtain hurdle rates used in practice. On the downside, surveys do not produce as many observations as databases such as Compustat. Additionally, if survey questions are not phrased carefully, tests based on survey responses could be misleading. In designing the survey, we carefully followed
the advice of experts in the fields of psychology and marketing.\(^3\) We designed the questions in such a way that we minimize the use of technical terms and names of models that are taught in a typical MBA course. For example, we avoid terms such as “cost of capital” and “CAPM” in our questionnaire. Instead, the survey participants were asked questions on their “hurdle rates.” It is a well documented observation in psychology, known as the social desirability hypothesis (see e.g. Singer and Presser (1989)), that respondents to surveys tend to try to please the conductor of the survey by providing the answers they think the survey’s author expects. Therefore, in designing the survey questions we tried to avoid using technical terms. The input from numerous finance academics helped to further improve the content of the questions. Additionally, in order to test the survey with practitioners, we invited six CFOs from the Chicago area to a focus group meeting. After filling out the survey, we discussed each question to assure that the wording was not ambiguous. The survey was sent out together with a cover letter from the Dean Emeritus of the Kellogg School of Management, Donald Jacobs, along with a postage-paid return envelope to a total of 4,600 CFOs of U.S. companies listed in the Compustat name file. We asked the participants to return the questionnaire within ten days. A week after the initial mailing we sent a follow-up mailing to remind the potential participants.

We have some evidence that the surveys were actually filled out by CFOs as we received a number of e-mails from the CFOs requesting an advance copy of the survey results. In addition, many respondents provided elaborate comments to open questions. The survey responses appear to be accurate. For example, when we compare self-reported sales figures with the numbers retrieved from Compustat, we find that a reassuring 92.3% of the respondents checked the correct sales range.

\(^3\) Among others, Gillman (2000) and Morgan (1988) provide guidelines for surveys and focus group meetings.
Table I compares the breakdown by industry, hurdle rate statistics, and the use of CAPM/WACC to previous surveys. Except for the fact that our sample excludes financial firms, the distribution across industries are comparable to other surveys. In all surveys and in the Compustat sample manufacturing exceeds 50% of the sample. In our survey manufacturing firms make up 66% of the sample. Firms in the wholesale and retail sectors make-up 11.6% of our sample, while mining and construction and transportation/communication sectors are equally represented (10.7% each). In Table I, in the Compustat sample we compute the weights by including only the sectors that we have mailed our survey to. While our sample size is a third of Graham and Harvey (2001), we know the identity of 106 out of 127 firms and are able to match 93 firms with Barra and CRSP/Compustat. Summary statistics of the hurdle rates in our survey match those of Poterba and Summers (1995), and the use of WACC is comparable to Bruner, Eades, Harris and Higgins (1998). Other characteristics (not reported in the table) of survey firms are as follows: Firm size measured by (self-reported) sales is below $100 million for 35.2% of the companies and 31.2% of the responding firms report sales in excess of $1 billion. The majority of the firms (72.0%) have multiple product lines.

Table II compares the characteristics of the 93 responding firms for which we can match Compustat data and the Compustat sample of firms. Based on mean values it appears that the two samples are similar except for four variables. Survey firms have higher market value of

4 Financial firms account for 15% of the respondents in Graham and Harvey (2001). We exclude all finance and insurance companies with the major SIC code in the ranges 6000-6499, 6700-6799; and utilities (4900-4999) in order to exclude regulated firms. We also discard radio and TV broadcasting, cable, and other pay TV services (4840-4949), as these firms might be driven by non-commercial interests, e.g. religious radio stations. Finally, we exclude health, education, social services, and museums (7200+).

5 In a number of surveys the fraction of manufacturing firms is even more pronounced. For example, in Gitman and Mercurio (1982) this ratio is 93.8%, while in Gitman and Forrester (1977) it is 74%.
assets (even though the mean book values are not statistically different). They also have a higher ratio of cash-to-book assets. The book assets of survey firms also generate higher operating profits. Finally, the survey firms are more capital expenditure intensive. Given that manufacturing firms are somewhat overrepresented in the survey sample, this is not surprising. Other important financial variables, such as, leverage ratio (total debt divided by book value of assets), current ratio, total asset turnover, and return on book equity are comparable.

III. Survey Findings

Since Poterba and Summers (1995) is the only other study where the identity of survey firms are known, it is useful to compare their findings with ours. They comment that hurdle rates in their sample appear to be too high compared to cost of capital. We confirm this observation for our survey sample. As can be seen in Panel B of Table I, while our average nominal hurdle rate of 14.8% is somewhat lower than their implied nominal rate of 17.8% (12.2% real and inflation expectation of 5%), their median rate that we construct from their data is 10% in real terms and 15.5% in nominal terms, which is very close to our median of 15%. The standard deviations of the two samples are also similar. Taken together, these stylized facts suggest that, the real discount rates used by firms have not changed much even though the two surveys were conducted 14 years apart.

As we discussed in Section I, Poterba and Summers (1995) find no relation between hurdle rates and systematic risk as measured by historical betas. This is puzzling since it appears to contradict the evidence from the survey literature that firms use CAPM along with WACC to

6 For variable definitions, see the caption of Table II.
compute cost of equity and cost of capital.7 For this reason, we repeat the exercise of Poterba and Summers (1995) for our sample by regressing self-reported hurdle rates on the same set of financial variables they use. Figure 2 illustrates the results from kernel-weighted local polynomial regressions for our sample firms. We use a non-parametric kernel method to minimize the effect of outliers and to account for the presence of non-linearities. The figures suggest that the relation between hurdle rates and all the explanatory variables, except for the current ratio, are essentially flat. Even in the case of the current ratio, it appears that the relationship is dominated by some firms which have high current ratios and high hurdle rates.

Table III summarizes the bivariate OLS coefficients for the same set of explanatory variables using the two survey samples in question. The table indicates that the similarity between the two surveys extends beyond having similar summary statistics: The regression coefficients obtained from the two samples are also comparable. In neither of the samples the explanatory financial variables, except for current ratio, is related to hurdle rates.8 In our sample, even the current ratio turns out to be insignificant (p-value of 0.12) once the two firms with current ratios in excess of 10 (the cutoff rate as e.g., in Cleary (1999)) are excluded from the analysis. Using fundamental beta from Barra instead of historical beta (estimated from five years of monthly data) slightly increases the coefficient estimates for both the full sample and manufacturing sector sub samples. In the case of manufacturing firms, the positive relationship between fundamental beta and hurdle rates cannot be rejected at the 10\% level. Given that

7 Graham and Harvey (2001) find that three out of four CFOs use CAPM and 85\% of the firms that Bruner, Eades, Harris, and Higgins (1998) interview use WACC.

8 The coefficients for total equity return have the same sign as in Poterba and Summers (1995) but differ in size. Over the 10 years preceding the survey date (1993-2003) the S&P 500 index increased by 138\%, whereas over the period 1980-1990 considered in Poterba and Summers (1995) the index increased by 227.4\%.

11
historical beta coefficients for individual firms from an index model tend to have low R-squares, and hence provide noisy estimates, in the remainder of this paper we rely on fundamental betas.

The bar chart in Panel A of Figure 3 shows what survey participants use as their hurdle rate. Of the 117 firms that responded to the question on what their hurdle rate represents, a significant percentage of the CFOs (71.8%) claim that the hurdle rate they use is their weighted average cost of capital (WACC). In the case of 7 firms (6.0%), the hurdle rate represents their cost of levered equity, while for 9 firms (7.7%) it reflects their unlevered cost of equity. For 17 firms (14.5%), the hurdle rate falls into the “other” category. The widespread use of WACC in our sample is consistent with the findings of Gitman and Vandenberg (2000), Bruner, Eades, Harris, and Higgins (1998), and Bierman (1993) who report that even larger fractions of firms use WACC. As displayed in Figure 1, similar to the increased use of discounted cash flow (DCF) techniques and CAPM, the use of WACC has also increased over time. For example, in a survey conducted 30 years ago, Petty, Scott, and Bird (1975) document that only 30% of the Fortune 500 firms that responded to their survey use WACC. In contrast, in later surveys, such as the one by Bruner, Eades, Harris, and Higgins (1998), this figure is over 80%.

In the survey, we ask the participants for the nominal hurdle rate that they have used for a typical project during the two years preceding the survey date. Since hurdle rates represent firms’ WACC by a substantial margin, in the case of the small number of firms which use their levered or unlevered cost of equity, we convert their hurdle rates to their WACC equivalents. In doing this, we use data on debt/asset ratios and tax rates from Compustat, and cost of debt information we obtain from the survey responses. The details of how we convert the 16 levered/unlevered cost equity responses to their WACC equivalents are described in the

9 This category consists of firms which provide their hurdle rates without indicating what they represent.
Appendix. Panel B of Figure 3 displays the distribution of hurdle rates (WACC and its equivalents sample) used by survey firms.

Panel A of Table IV displays summary statistics on self-reported hurdle rates for various samples: The sample of firms which indicated what their hurdle rates are (all respondents), the sample of firms which indicated what their hurdle rates are, but did not state what they represent (the “other” category), the WACC equivalent sample (those who marked WACC as their hurdle rates plus the WACC of the levered/unlevered cost of equity subsample), finally, the sample for which we can match with Compustat, CRSP, and Barra databases. In the next section we analyze the determinants of the hurdle premium using this last sample. The summary statistics for all respondents in Panel A show that the mean hurdle rate is 14.8% in nominal terms (the median is 15.0%). In this sample none of the numbers is less than 5%, and the maximum hurdle rate used is 40%. Furthermore, the skewness coefficient of 1.7 indicates that the distribution is fairly symmetric, and the kurtosis coefficient of 9.6 confirms that the distribution is centered around the mean and median. Adjusting for the average realized inflation of 2.2% during the two years preceding the survey date (January 2001 to December 2003) produces an average real hurdle rate of 12.3%, which is essentially same as the 12.2% real hurdle rate reported by Poterba and Summers (1995). The mean and median of the WACC equivalent sample are 14.1%, and 14.0%, respectively. Next, we look at those firms for which we can match Barra betas and CRSP/Compustat data. Again, the means and medians are very close to those for the full sample. Thus, sample selection does not change the characteristics of the hurdle rate distribution.

Panel B of Table IV reports the industry composition of firms in each sample. Comparing the first (full) sample, and the sample we use in our tests (the last sample), suggest that there is
no industry related bias. Examination of Panel C leads to the conclusion that other than the standard deviation for the manufacturing firms (which is somewhat higher), the summary statistics across industries are similar.

IV. Modeling Hurdle Rates

In order to test our hypothesis that firms screen projects by adding a hurdle premium to their cost of capital and to explore the determinants of the premium, we propose a model that explains hurdle rates by the weighted average cost of capital plus a linear combination of firm characteristics that are likely to be related to the value of the option to wait. We use nonlinear least squares estimation to solve simultaneously for the equity premium that firms use to compute their cost of equity and WACC, and the loadings on firm characteristics that proxy for the value of the option to wait.

\[\text{Hurdle} = WACC + a + \sum_{j=1}^{k} b_j \text{Char}_j + \epsilon \]

where,

\[WACC = \frac{D}{D+E} r_D (1 - \text{Tax}) + \frac{E}{D+E} r_E \]

\[r_E = r_F + \beta_{\text{MKT}} P_{\text{MKT}} \]

\[r_E = r_F + \beta_{\text{MKT}} P_{\text{MKT}} + \beta_{\text{SMB}} P_{\text{SMB}} + \beta_{\text{HML}} P_{\text{HML}} \]

In the CAPM specification (3a) we use the fundamental Barra beta. In the three factor specification (3b), in order to get the beta coefficients for SMB and HML we first subtract \(\beta_{\text{Barra}} r_{\text{MKT}} \) from monthly returns to get a time series of residual returns in excess of what can be explained by market returns.
We then regress five years of monthly residual returns prior to the survey date on the returns of the factor-mimicking portfolios for SMB and HML.

The firm characteristics variables that we include in our model are: cash-to-assets ratio, average industry stock returns during the five years prior to the survey date, the average R^2-squares of the market model in the industry that the firm belongs (again using 5 years worth of monthly observations), sales growth per employee, and Altman’s Z-score.

Due to tax related costs of holding excess cash and agency costs, we expect growth firms to have high cash-to-assets ratio. There is ample evidence that shareholders force non-growth firms to distribute their cash holdings. For example, Nohel and Tarhan (1998) show that firms with low Q ratios improve their operating performance by distributing cash via share repurchases. The value of the option to wait should be higher for high-growth firms, since it may enable these firms to undertake future projects that are more valuable than the positive NPV projects they have in the present period. These firms are likely to screen projects using a hurdle rate that exceeds their WACC. At the same time, due to the possibility that they may face difficulties in the future when valuable projects materialize, they are likely to maintain high financial flexibility in the current period by having a high cash-to-assets ratio. Thus, we expect cash-to-assets to have a positive sign.

Financially healthy firms are likely to have higher growth prospects. Thus, measures of financial health, such as Altman’s Z-score, are expected to have a positive estimated coefficient.\footnote{For financially unhealthy firms, a measure of how close the firm is to bankruptcy is likely to be positively correlated with hurdle rates. As probability of bankruptcy increases, provided that the firm has time to wait before chapter 11 or liquidation, the higher is the value of option to wait. This represents a lottery type of situation. Rather than accepting a project which has a positive NPV where the NPV is not} Systematic risk is also likely to be positively related to hurdle rates. Holding other
firm characteristics constant, fundamental Barra beta will be positively correlated with hurdle rates since it would mean a higher WACC.

Since stock prices reflect anticipated future growth, industries with high past returns are likely to have high growth prospects in the future. The average expected NPV of future projects, in turn, is likely to be positively correlated with the growth prospects of the industry. For this reason, firms that belong to industries with high average returns are likely to have high hurdle premia.

Dispersion of the distribution of future NPVs is driven by the riskiness of the industry. The firm has to decide whether it is optimal to accept a current positive NPV project or wait for a possibly better one by using a hurdle rate with two components – WACC and the hurdle premium. Holding the point estimate of beta constant, the lower is the R-squares of the market model, the wider is the dispersion, thus, the higher is the value of the option for waiting.¹¹

Finally, managerial and other human capital constraints will influence hurdle rates in the positive direction. High-growth firms are likely to have high opportunity costs of not waiting for possible better projects in the future due to limited managerial talent. These firms are likely to place a high value on the option to wait. Since in corporate finance the term “growth” concerns the sales variable, we use a categorical variable sales growth per employee to capture human capital constraints.

V. Empirical Findings

high enough to materially change the firm’s situation, it would be reasonable for the firm to reject the project by using a high hurdle rate in hopes of encountering a project with a high enough NPV that would make a difference in the firm’s value.

¹¹ There is also the possibility that unsystematic risk may also play a role (Goyal and Santa-Clara (2003)). First, managers may feel that shareholders are not fully diversified and price this risk in their hurdle rates. Second, lower R-squares involve a wider confidence around the point estimate for beta and, to be on the safe, side managers may use higher rather than lower hurdle rates when the R-squares is low.
Table V displays the results from various models that we use to determine the relative importance of WACC, and variables related to the option to wait, in explaining the cross-sectional variation in hurdle rates. In Columns 1 and 2 we show the results from estimating (1), (2), for the single factor CAPM (equation 3a), and the Fama-French three factor model (3b), respectively. The 3.8% equity premium estimate obtained from the single factor CAPM is identical to Graham and Harvey (2005), who in a survey they conduct at approximately the same date as our survey, find the average expected equity premium to be 3.8% (median 3.6%).

The cash-to-assets is positively correlated with hurdle rates (at 1% level of significance). Simutin (2010) finds that firms with high cash balances generate higher future stock returns. Based on this finding, he argues that excess cash holdings proxy for high growth opportunities. Since high growth opportunities imply a high valuation for the option to wait, the positive correlation between cash and hurdle rate is as expected.\footnote{Opler, Pinkowitz, Stulz, and Williamson (1999) analyze the tradeoff between the benefits and costs of cash holdings. While cash holdings create value by providing financial flexibility to take advantage of future profitable projects, cash holdings also involve tax related costs and agency costs (e.g., by enabling managers to engage in empire building types of activities). In fact, Pinkowitz, Stulz, and Williamson (2006) find that in countries with weak investor protection, cash is discounted at a higher rate. However, in countries with intense shareholder activism (such as the U.S.), benefits of cash exceed its potential costs (especially in the case of growth firms).}

The dispersion of the distribution of future NPVs is driven by the riskiness of the industry, and since low R-squares obtained from estimating the market model of individual firms in the same industry imply a wider dispersion, the expected correlation between average industry R-squares and hurdle rates is negative. This expectation is confirmed by the highly significant negative coefficient for the R-squares variable. The positive estimate (significant at the 1% level) for the sales growth per employee variable is also as expected. We use this variable as a proxy for managerial and organizational constraints. Growth firms are more likely to find this constraint to be binding. As a result, they would put a high value for the option to wait. The
positive and highly significant estimate for the variable in question is consistent with this interpretation.

Thus, the three variables discussed above each have the expected sign and are statistically significant. However, even though the other two variables – average industry return, and the financial health of a firm as measured by Altman’s Z-score – are, as expected, positively correlated with the value of the option to wait, the financial health variable is not statistically significant when CAPM is used (it is significant at the 5% level when the three-factor model is used). The model estimated in Column 1, explains 45% of the cross-sectional variation in hurdle rates. Furthermore, Panel A of Figure 4 shows the relation between the predicted values of hurdle rates (horizontal axis), and the actual hurdle rates (vertical axis). The 45 degree line in the figure is superimposed. However, when we run a regression of predicted values on actual hurdle rates we obtain a slope that is not statistically different from one (estimated slope coefficient is 0.87 with a standard error of 0.15), and the estimate for the intercept is 0.025 (with a p-value of 0.27).

In Table V, Column (2) displays the results from estimating (1), and (2) using the three-factor model (3b). An interesting result is that the estimated loading on the HML factor is negative. The literature finds that value stocks earn higher returns than growth stocks. The negative estimated coefficient for the HML factor indicates that growth firms use higher hurdle rates than value firms. Thus, while value firms earn higher returns, growth firms expect to earn more on their future projects and use higher hurdle rates. At the same time, the estimated equity premium becomes smaller in this specification. However, the 3.8% equity premium estimate of Column 1 is still within one standard deviation of the estimate for the equity premium in Column 2. The results also show that the SMB loading is unrelated to hurdle rates. Given that small
firms are more likely to suffer from financial constraints, this suggests that capital rationing cannot explain the high hurdle rates. Another finding is that estimated coefficients for variables that proxy for the value of option to wait are robust with respect to whether the single-factor CAPM or the three-factor model is used. The three factor model has slightly higher explanatory power than CAPM (0.49 vs. 0.45). Finally, we find that in our models the intercept coefficient is not statistically different from zero. This suggests that we are not missing any systematic adjustments managers may be making to hurdle rates, such as using a higher hurdle rate to account for possible optimism in the cash flow projections.

It is possible that the results in columns 1 and 2 may be driven by the non-linear specification and also by simultaneously solving for the implied equity premium. To see whether or not this is the case, in Columns 3 and 4, we repeat the two exercises by including the three components of WACC in linear regression models for the single and three-factor models without simultaneously inferring the equity premium. The results displayed are remarkably similar to those in columns 1 and 2 in terms of magnitudes, statistical significance, and explanatory power. The similarity of the options related coefficients across the four columns indicate that the results are robust not just with respect to the non-linear and linear specifications, but also with respect to CAPM vs. the three-factor model. Taken together, this suggests that the variables we use to proxy for the option value to wait are orthogonal to the cost of capital component of hurdle rates.

This observation is confirmed by Panels B and C of Figure 4 which break up the two components of hurdle rates. As in Panel A, both Panels B and C have the 45 degree line superimposed. In Panel B the horizontal axis is the predicted WACC, while the hurdle rate minus the predicted hurdle premium (i.e., cost of capital plus the error term) is plotted on the
vertical axis. The estimated slope coefficient is not statistically different from one (0.93, with standard errors of 0.30), and the intercept is not different from zero (0.011 with a p-value of 0.63). Panel C examines the hurdle rate premium by plotting the predicted hurdle premium (horizontal axis) against hurdle rate minus implied WACC using 3.8% as the equity premium (vertical axis). As in Panels A and B, the slope and intercept terms in Panel C are not different from one and zero, respectively.

In Table VI we pursue the relative importance of cost of capital and the option value to wait components of hurdle rates in explaining both the levels of and the cross-sectional variation in hurdle rates. In (5) and (6) we examine the cost of capital component using CAPM and the three-factor model, respectively. Judging by the R-squares of 0.11 and 0.17, we conclude that cost of capital is an important component. In fact using beta alone (Model 7) results in an R-square of only 0.03. The failure of (5) to satisfactorily explain hurdle rates can also be seen in Panel A of Figure 5: only one of the observations is below the 45 degree line. Apparently, this situation cannot be attributed to the inferred equity premium of 3.8% since using the historical risk premium of 6.6% (Panel B) does not produce a material improvement.\(^{13}\)

Two additional comments are in order: One, the intercept estimates in (5) and (6) indicate that 6.3% to 7.7% of the average levels of hurdle rates cannot be explained by WACC. Two, while the cost of capital component belongs in the specification of hurdle rates, it is less important in explaining the variation in hurdle rates than the option to wait component. The linear model in (9) has an R-square of 0.37 suggesting that the premium component has approximately three times the explanatory power of the cost of capital component. However, in spite of this, based on the estimated intercept of 0.079, this component alone is not sufficient in

\(^{13}\) Welch (2000) reports that academic financial economists forecast an arithmetic average equity premium over a 10-year horizon of 7%.
explaining the hurdle rates either. The implication that emerges from Table VI is that the specification of hurdle rates needs to include variables that capture both components. Combining the findings of Tables V and VI reveals that our non-linear models which simultaneously infer the equity premium (Models 1 and 2 of Table V) are superior to the two linear models that incorporate both components (Models 3 and 4 in Table V). Our models have the highest explanatory power (0.45 vs. 0.41 when CAPM is used and 0.49 vs. 0.48 when the three-factor model is used). At the same time, our two models have intercept estimates that are undistinguishable from zero. In sum, our models succeed in explaining both the average levels of hurdle rates and also the cross-sectional variation of hurdle rates.

VI. Conclusion

We examine the cross-sectional variation in hurdle rates that firms use in their capital budgeting decisions. We find that managers systematically add a hurdle premium to their CAPM based cost of capital. The size of this premium is substantial; it makes up about one half of the average hurdle rate used in practice. Following McDonald and Siegel (1986) we argue that the option to defer investments can explain the hurdle premium. This option to wait is most valuable to firms with growth opportunities facing organizational capital constraints that limit the rate of growth.

We develop a model of hurdle rates where the CAPM beta enters nonlinearly through the weighted average cost of capital (WACC) and variables that proxy for the option to wait that enter linearly. The coefficient estimates corresponding to the variables that proxy for the value of the option to wait for better future investment opportunities have the right signs and are statistically significant. We find that firms with higher hurdle rates keep higher cash balances,
which is consistent with maintaining financial flexibility to undertake future valuable projects when they materialize. Such firms tend to be growth firms loading negatively on the Fama and French (1993) HML factor, which is also consistent with our hypothesis that the option to wait is more valuable to growth firms.

The model explains the level of hurdle rates and 45% of its cross-sectional variation across firms. The implied equity premium of 3.8% that we infer from the model is identical to the average equity premium that Graham and Harvey (2005) report in their survey of CFOs. The specification of our model is robust to whether we use CAPM or the Fama-French three-factor model. Since small firms are more likely to suffer from capital rationing, the insignificant factor loading for the Fama and French (1993) SMB factor suggests that the high hurdle rates are not driven by capital market constraints. Furthermore, the zero intercept of the model suggests that managers do not use higher hurdle rates to compensate for optimistic cash flow projections.

While we find both the cost of capital and the hurdle premium components to be important, cost of capital can only explain 10% of the variation in hurdle rates across firms, whereas proxies for the option to wait explain 35%. Further, the variation of the hurdle premium across firms is three times the variation in cost of capital.

Our analysis reconciles two seemingly contradictory findings in the literature. Since the hurdle premium (the difference between the hurdle rate used by a firm and its CAPM based cost of capital) varies substantially more than the cost of capital across firms, it masks the relation between the hurdle rate and the CAPM beta. This may explain why Poterba and Summers (1995) do not find CAPM betas to be significant in explaining hurdle rates. We also find that the CAPM based cost of capital is an important determinant of the hurdle rate that a firm uses. This is consistent with Graham and Harvey (2001) who report that most managers use the CAPM.
We hope that our findings – that the hurdle premium is about the same as the cost of capital and varies much more across firms – will stimulate further research that will help understand how firms arrive at what hurdle premium to use.
Appendix

Converting Levered/Unlevered Cost of Equity Hurdle Rates into WACC Equivalents

In 13.7% of the cases where survey participants indicate that they use either levered or unlevered cost of equity as their hurdle rate, we transform these cost of equity figures to their weighted average cost of capital (WACC) equivalents. If they indicate that the hurdle rate represents their cost of levered equity, we use this rate as the cost of equity and average it with their after-tax cost of debt and market value weights to compute their WACC. If they indicate that the hurdle rate represents their cost of unlevered equity, we check if these firms have any debt. Obviously, for the four firms that do not have any debt, unlevered cost of equity and WACC are identical. For firms with debt in their balance sheets, we lever up the reported cost of unlevered equity to obtain their cost of levered equity, and then compute WACC.

To compute WACC we use Compustat data to infer the market value-based weights for cost of debt and cost of equity. To compute the weight of debt, we divide total debt (Compustat items DLTT + DLC) by total debt plus market value of common and book value of preferred equity (CSHO × PRCC_F + PSTK). For the weight of equity we use (1 – weight of debt).

The mean life of a typical project for firms in our survey sample is 6.8 years. For this reason, we use the 10-year Treasury bond rate, which was 4.3% at the time of our survey, as a proxy for the risk-free rate. For the before-tax cost of debt we use the survey participants’ answers to our question regarding what the interest rate on their senior debt is. The survey

14 This choice seems to be justified for other reasons as well: In their survey of 27 highly regarded corporations, Bruner, Eades, Harris, and Higgins (1998) find that more than 70% use a 10-year or longer-term Treasury rate as the proxy for the risk-free rate. They report that only 4% of the firms in their survey use the 90-day T-bill rate.

15 We do not know whether their answers refer to the coupon rate or the yield to maturity of their senior bonds. Thus, for firms that have not issued debt recently, it is possible that their answers do not reflect the marginal cost of debt if they report coupon rates. However, given the secular decline of interest rates
provides data on the before-tax cost of debt for 88 firms. Using Compustat data, we check whether firms that left the interest rate question blank had any debt. Out of the 39 non-responding firms we can match Compustat data for 28, and 16 of these firms turn out to have no debt. The remaining 12 firms with debt left the interest rate question blank. For these firms we use their Altman’s Z-score and the default spreads at the time of the survey to assign interest rates. If a firm’s Z-score is greater than 3, a score that indicates a very low probability of default (8 firms), we assign the 10-year Treasury bond rate in effect at the time of the survey plus 1 percent (5.3%). For the two firms with Z-scores of less than 1.81 (financially unhealthy firms), we assign the 10-year Treasury rate plus 4 percent (8.3%). Firms that have Z-scores in the interval between 1.81 and 3 (2 firms) are assigned a before-tax cost of debt of 6.3. Finally, for firms that report a rate below the 10-year Treasury rate (4.3% at the time of the survey) we add a spread of 0.5% to the Treasury rate. Therefore, all our WACC calculations assume cost of debt of at least 4.8%.

We calculate a firm’s tax rate by dividing total income taxes (Compustat item TXT) by income before taxes (PI). When item TXT or PI is negative (tax credits and negative profits, respectively), we set the tax rate to zero. Additionally, we cap the tax rate at 34 percent.

that started in the late 1990s and continued during the early 2000s, this should work against finding a hurdle rate premium.

16 Out of these 12 firms, 2 have less than 1% debt (as a fraction of market value of assets) and another 6 less than 5%.

17 The tax rate we obtain in this manner reflects a firm’s average and not marginal tax rate. However, we were unable to obtain a sufficient number of observations on marginal tax rates.
References

Gillham, Bill, 2000, Developing a questionnaire, Continuum, New York, NY.

Table I: Comparison of survey samples.

Panel A shows the industry breakdown using 2-digit SIC codes. "-" indicates that these sectors were excluded from the survey/sample or not listed as a category in the questionnaire. Panel B shows summary statistics on hurdle rate and the percentage of survey respondents that use CAPM and WACC.

Panel A

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture, forestry, fishing</td>
<td>01 - 09</td>
<td>0.0</td>
<td>3.7</td>
<td>-</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Mining, construction</td>
<td>10 - 17</td>
<td>4.4</td>
<td>0.0</td>
<td>4.0</td>
<td>10.5</td>
<td>10.7</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>20 - 39</td>
<td>60.6</td>
<td>77.8</td>
<td>51.3<sup>(a)</sup></td>
<td>64.5</td>
<td>66.0</td>
</tr>
<tr>
<td>Transportation, communication</td>
<td>40 - 49</td>
<td>12.5</td>
<td>11.1</td>
<td>18.2<sup>(b)</sup></td>
<td>10.1<sup>(c)</sup></td>
<td>10.7<sup>(c)</sup></td>
</tr>
<tr>
<td>Wholesale and retail trade</td>
<td>50 - 59</td>
<td>6.9</td>
<td>3.7</td>
<td>11.1</td>
<td>13.7</td>
<td>11.6</td>
</tr>
<tr>
<td>Finance, insurance, and real estate</td>
<td>60 - 67</td>
<td>6.9</td>
<td>-</td>
<td>15.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Services</td>
<td>70 - 89</td>
<td>5.6</td>
<td>3.7</td>
<td>-</td>
<td>0.6<sup>(d)</sup></td>
<td>1.0<sup>(d)</sup></td>
</tr>
<tr>
<td>Total obs.</td>
<td></td>
<td>228<sup>(e)</sup></td>
<td>27<sup>(f)</sup></td>
<td>392<sup>(g)</sup></td>
<td>5,108</td>
<td>127</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th>Hurdle Rate</th>
<th>Mean 12.2% (real)<sup>(h)</sup> = 17.8% nom</th>
<th>14.8% (nominal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>10.0%<sup>(i)</sup></td>
<td>5.0%</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>~5.6%<sup>(k)</sup></td>
<td>5.0%</td>
</tr>
<tr>
<td>Use CAPM</td>
<td>81%<sup>(i)</sup></td>
<td>74%</td>
</tr>
<tr>
<td>Use WACC</td>
<td>85%<sup>(m)</sup></td>
<td>71.8%</td>
</tr>
</tbody>
</table>
Notes to Table I:

(a) Combines the survey categories “manufacturing” and “high-tech”; excludes “energy” (see footnote c below) which is reported in the survey category “transportation/energy”.

(b) Including “energy”; SIC codes 46, 49 (5540 and 5541).

(c) Excluding radio/TV and utilities providing gas, electricity, and water supply (SIC codes 4830, 4941).

(d) Only SIC code 70 (hotels, other lodging places).

(e) 160 respondents identified their firms. The questionnaire was sent to each CEO in the 1990 Fortune 1,000 list.

(f) Firms that were selected by their peers for best financial management practices according to Business International Corporation (1992), “Creating World-Class Financial Management: Strategies of 50 Leading Companies,” Research Report 1-110, New York, NY, 7-8. From the 50 companies, 18 with headquarters outside the US were excluded, 5 declined to participate.

(g) Questionnaires were sent by mail to each CFO in the 1998 Fortune 500 list and faxed out to 4,400 Financial Executives International (FEI) member firms. The raw data and a detailed description of the dataset are available on Campbell R. Harvey’s website.

(h) 66.2% of the respondents report nominal rates and the authors convert these to real rates using a long-term expected inflation rate of 5%.

(i) Page 46: 1/3 of all firms use <10% and the most common rate, used by 1/5 of the firms, is 10%.

(k) This is an approximation based on the midpoints of the categories and the frequencies shown in Figure 2 (page 46).

(l) An additional 4% use sometimes WACC, only 4% answered no (2 firms did not answer this question). 89% use some form of cost of capital as their discount rate (an additional 7% sometimes).

(m) An additional 4% use a modified version of CAPM.
Table II: Firm characteristics of surveyed firms.

The mean and median firm characteristics are tabulated for the 93 responding firms for which we can match with Compustat data in 2003 and for the 3,832 non-responding firms in Compustat. We exclude utilities, radio/TV broadcasting, cable, and other pay TV services (4840-4999), finance and insurance companies (SIC codes 6000-6499, 6700-6799), and health/education/social services, and museums (7200+). Book value of assets is Compustat item AT. Market value of assets is defined as book value of liabilities (LT) plus market value of assets, which is the sum of preferred stock (PSTK) and market value of common equity (PRCC_F × CSHO). Current ratio is current assets divided by current liabilities (ACT / LCT), total debt is the sum of debt in current liabilities plus long-term debt (DLC + DLTT), and return on book equity is the ratio between net income and book equity (NI / CEQ). For the characteristics that are expressed as fractions of book assets, we trim the top and bottom 0.5% of all Compustat firms, and then report the characteristics for responding survey firms and non-responding Compustat firms. The last two columns show the p-values for the difference in mean t-test and Fishers’s exact test for differences in medians under the null hypothesis of zero mean and median, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Survey N = 93</th>
<th></th>
<th>Computstat N = 3,832</th>
<th></th>
<th>Difference tests p-values</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Mean</td>
<td>Median</td>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>Book assets</td>
<td>4,293</td>
<td>524</td>
<td>2,556</td>
<td>158</td>
<td>0.23</td>
<td>0.00</td>
</tr>
<tr>
<td>Market assets</td>
<td>8,821</td>
<td>680</td>
<td>4,168</td>
<td>279</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Sales</td>
<td>4,142</td>
<td>373</td>
<td>2,392</td>
<td>144</td>
<td>0.15</td>
<td>0.01</td>
</tr>
<tr>
<td>Market/book assets</td>
<td>2.37</td>
<td>1.69</td>
<td>3.09</td>
<td>1.60</td>
<td>0.21</td>
<td>0.46</td>
</tr>
<tr>
<td>Cash/book assets</td>
<td>0.15</td>
<td>0.07</td>
<td>0.20</td>
<td>0.11</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Sales/book assets</td>
<td>0.66</td>
<td>0.47</td>
<td>0.70</td>
<td>0.51</td>
<td>0.27</td>
<td>0.75</td>
</tr>
<tr>
<td>Current ratio</td>
<td>2.53</td>
<td>1.80</td>
<td>2.87</td>
<td>1.97</td>
<td>0.27</td>
<td>0.25</td>
</tr>
<tr>
<td>Total debt/book assets</td>
<td>0.29</td>
<td>0.24</td>
<td>0.29</td>
<td>0.19</td>
<td>0.99</td>
<td>0.40</td>
</tr>
<tr>
<td>Capital expenditures/book assets</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>Operating income/book assets</td>
<td>0.05</td>
<td>0.07</td>
<td>0.02</td>
<td>0.05</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Return on book equity</td>
<td>-0.01</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
<td>0.38</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Table III: Hurdle rates and financial characteristics.

The table shows coefficients and standard errors (in brackets below) for bivariate regressions. The dependent variable in all regressions is self-reported hurdle rate. All explanatory variables are defined as in Figure 2 above, with the exception of the dividend payout ratio that is expressed in % to make the coefficients comparable to Poterba and Sommers (1995). *** indicates significance at the 1% level, ** at the 5% level, and * at the 10% level. Standard errors are below in brackets.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All firms</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>P/E ratio</td>
<td>−0.008 (0.031)</td>
<td>−0.018 (0.036)</td>
</tr>
<tr>
<td>Dividend payout ratio (in %)</td>
<td>−0.002 (0.002)</td>
<td>−0.002 (0.002)</td>
</tr>
<tr>
<td>Current ratio</td>
<td>1.889*** (0.633)</td>
<td>1.891*** (0.746)</td>
</tr>
<tr>
<td>% change in EPS (past 10 years)</td>
<td>0.062 (0.051)</td>
<td>0.072 (0.055)</td>
</tr>
<tr>
<td>Total equity return (past 10 years)</td>
<td>−0.052 (0.052)</td>
<td>−0.039 (0.057)</td>
</tr>
<tr>
<td>Historical beta</td>
<td>−0.102 (1.411)</td>
<td>−0.067 (2.038)</td>
</tr>
<tr>
<td>Fundamental beta</td>
<td>1.950 (1.249)</td>
<td>3.127* (1.884)</td>
</tr>
<tr>
<td>Equity market-to-book</td>
<td>−0.187 (0.170)</td>
<td>−0.287 (0.307)</td>
</tr>
<tr>
<td>Tobin’s q ratio</td>
<td>−0.043 (0.622)</td>
<td>−0.336 (0.777)</td>
</tr>
<tr>
<td>Stock turnover rate</td>
<td>0.003 (0.007)</td>
<td>0.008 (0.008)</td>
</tr>
</tbody>
</table>
Table IV: Statistics on hurdle rates and industry affiliation.

Panel A shows summary statistics of self-reported hurdle rates for three samples (in percent). The hurdle rates represent the nominal rate that the company has used for a typical project during the previous two years. In the column “WACC equivalent sample” we drop firms do not use WACC or cost of levered/unlevered equity (category “other”). We convert self-reported hurdle rates that represent the cost of levered or unlevered equity are to their weighted average cost of capital (WACC) equivalents. This conversion procedure is explained in Section III.C. For two out of the 17 firms that use either cost of equity or unlevered cost of equity we cannot match the debt-equity ratio from Compustat to calculate the WACC equivalent. Therefore, we report the 101 WACC equivalent hurdle rates. The last column shows the sample statistics for WACC equivalent hurdle rates for which we can match beta from Barra and information from CRSP/Compustat. Panel B tabulates the fractions of firms in each industry.

Panel A

<table>
<thead>
<tr>
<th>Hurdle rate</th>
<th>All respondents</th>
<th>Category “other”</th>
<th>WACC equivalent sample</th>
<th>Sample matched with Barra and CRSP/Compustat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>14.8</td>
<td>17.6</td>
<td>14.1</td>
<td>14.5</td>
</tr>
<tr>
<td>Median</td>
<td>15.0</td>
<td>15.0</td>
<td>14.0</td>
<td>14.9</td>
</tr>
<tr>
<td>Minimum</td>
<td>5.0</td>
<td>9.0</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Maximum</td>
<td>40.0</td>
<td>40.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>5.3</td>
<td>6.4</td>
<td>4.9</td>
<td>4.3</td>
</tr>
<tr>
<td>25th percentile</td>
<td>12.0</td>
<td>12.0</td>
<td>10.8</td>
<td>12.0</td>
</tr>
<tr>
<td>75th percentile</td>
<td>16.0</td>
<td>22.5</td>
<td>15.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.4</td>
<td>0.7</td>
<td>1.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>6.7</td>
<td>2.2</td>
<td>9.6</td>
<td>4.6</td>
</tr>
<tr>
<td>N</td>
<td>119</td>
<td>18</td>
<td>101</td>
<td>73</td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th>Industry</th>
<th>All respondents</th>
<th>Category “other”</th>
<th>WACC equivalent sample</th>
<th>Sample matched with Barra and CRSP/Compustat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining, construction</td>
<td>10.7</td>
<td>28.6</td>
<td>8.3</td>
<td>8.1</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>66.0</td>
<td>50.0</td>
<td>67.9</td>
<td>66.2</td>
</tr>
<tr>
<td>Transport, communication</td>
<td>10.7</td>
<td>14.3</td>
<td>10.7</td>
<td>12.2</td>
</tr>
<tr>
<td>Wholesale and retail trade</td>
<td>11.6</td>
<td>0.0</td>
<td>11.9</td>
<td>12.2</td>
</tr>
<tr>
<td>Services</td>
<td>1.0</td>
<td>7.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Panel C

<table>
<thead>
<tr>
<th>Industry</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>Standard deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining, construction</td>
<td>6</td>
<td>13.1</td>
<td>12.5</td>
<td>3.8</td>
<td>9.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>48</td>
<td>15.2</td>
<td>15.0</td>
<td>4.3</td>
<td>7.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Transport, communication</td>
<td>9</td>
<td>12.4</td>
<td>12.0</td>
<td>2.2</td>
<td>9.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Wholesale and retail trade</td>
<td>9</td>
<td>14.2</td>
<td>15.0</td>
<td>2.2</td>
<td>8.5</td>
<td>16.0</td>
</tr>
<tr>
<td>Services</td>
<td>1</td>
<td>14.0</td>
<td>14.0</td>
<td>-</td>
<td>14.0</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Table V: Model to explain hurdle rates.

The dependent variable in all models is hurdle rate (WACC equivalent). The values for the equity premium and SMB and HML show implied premia from the model estimation. Beta is the fundamental Barra beta. Debt-to-assets is total debt (Compustat items DLC + DLTT) divided by market value of assets, which is book value of total liabilities and preferred stock plus shares of common stock outstanding times price (LT + PSTK + PRCC_F × CSHO). Cash/assets is CHE to market value of assets, industry return is the average monthly return of the firms in the same 2-digit SIC industry over the past 5 years, and the industry R-square is the average R-square from the index model of firms in the same 2-digit SIC industry (using 5 years of monthly returns and the S&P 500 as the index). Sales growth/employee \(((\text{SALE}_{t} - \text{SALE}_{t-1})/\text{SALE}_{t-1})/\text{EMP} \) is a categorical variable where firms are assigned to 1 if the value is lower than mean – 2 standard deviations across all firms; the next category is from mean – 2 std. dev. to mean – 1.5 std. dev., for which we assign 2, etc. For values larger than mean + 2 std.dev. we assign 10. Financial health (Altman’s Z-score) is a categorical variable which is 1 if z-score < 1.81 (financially unhealthy), 2 if z-score ≥ 1.81 and < 3 (neutral), and 3 if ≥ 3 (financially very healthy firms).

<table>
<thead>
<tr>
<th></th>
<th>Nonlinear model</th>
<th>Linear model</th>
<th>Linear model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) CAPM</td>
<td>(2) Fama-French 3-factor model</td>
<td>(3) WACC components</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.014</td>
<td>0.034</td>
<td>0.062*</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.023)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>Equity premium</td>
<td>0.038***</td>
<td>0.028**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td>SMB</td>
<td>0.004</td>
<td>0.010</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>HML</td>
<td>-0.012***</td>
<td>-0.012***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Beta</td>
<td>0.027**</td>
<td>0.020*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.010)</td>
<td></td>
</tr>
<tr>
<td>Debt-to-assets</td>
<td>0.008</td>
<td>0.015</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.023)</td>
<td></td>
</tr>
<tr>
<td>Cost of debt</td>
<td>-0.172</td>
<td>-0.056</td>
<td>0.360</td>
</tr>
<tr>
<td>Cash/assets</td>
<td>0.119***</td>
<td>0.098***</td>
<td>0.126***</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.037)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Industry return</td>
<td>0.054</td>
<td>0.052</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.041)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>Industry R-square</td>
<td>-0.374***</td>
<td>-0.398***</td>
<td>-0.361***</td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>(0.095)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>Sales growth/employee</td>
<td>0.008***</td>
<td>0.007***</td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Financial health</td>
<td>0.007</td>
<td>0.010**</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.452</td>
<td>0.494</td>
<td>0.410</td>
</tr>
</tbody>
</table>
Table VI: Separating WACC and the explanatory variables for hurdle premium.

The dependent variable is hurdle rate (WACC equivalent). Variable definitions are the same as in Table V.

<table>
<thead>
<tr>
<th></th>
<th>Nonlinear model</th>
<th>Linear model</th>
<th>Linear model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAPM</td>
<td>Fama-French 3-factor model</td>
<td>Only beta</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.063***</td>
<td>0.077***</td>
<td>0.124***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.038)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Equity premium</td>
<td>0.047***</td>
<td>0.031**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>SMB</td>
<td>0.009</td>
<td></td>
<td>0.020*</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td></td>
<td>(0.011)</td>
</tr>
<tr>
<td>HML</td>
<td>-0.014**</td>
<td></td>
<td>-0.035</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td></td>
<td>(0.025)</td>
</tr>
<tr>
<td>Beta</td>
<td></td>
<td></td>
<td>0.026**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.011)</td>
</tr>
<tr>
<td>Debt-to-assets</td>
<td></td>
<td></td>
<td>-0.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.410)</td>
</tr>
<tr>
<td>Cost of debt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash/assets</td>
<td></td>
<td></td>
<td>0.158***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.038)</td>
</tr>
<tr>
<td>Industry return</td>
<td></td>
<td></td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.045)</td>
</tr>
<tr>
<td>Industry R-square</td>
<td></td>
<td></td>
<td>-0.284***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.100)</td>
</tr>
<tr>
<td>Sales growth/employee</td>
<td></td>
<td></td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Financial health</td>
<td></td>
<td></td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.114</td>
<td>0.165</td>
<td>0.030</td>
</tr>
</tbody>
</table>
Figure 1: Adoption of DCF methods, WACC, CAPM, and company-wide hurdle rates over time.

The surveys on capital budgeting practices of U.S. firms are listed in chronological order below the horizontal time axis. The scatter plot summarizes their findings regarding the percentage of firms that: (i) Use discounted cash flow (DCF) methods, including net present value (NPV), adjusted present value (APV), internal rate of return (IRR), and the profitability index (PI); (ii) Use the weighted average cost of capital (WACC) to discount cash flows; (iii) Employ the Capital Asset Pricing Model (CAPM) to compute cost of equity; and (iv) Use a company-wide hurdle rate.
Figure 2: Hurdle rates and firm characteristics.

Kernel-weighted local polynomial regressions of hurdle rate on various firm characteristics. For the local mean smoothing we apply the Epanechnikov kernel function with a rule-of-thumb bandwidth estimator (the bandwidth is shown below the graphs). The characteristics are P/E ratio (Compustat items PRCC_F/EPSPX), dividend ratio (DVC/IBAD), current ratio (ACT/LCT), percentage change in earnings per share ([EPSPX_t – EPSPX_{t-10}] / EPSPX_{t-10}), total past equity return over 10 years ([PRCC_F_{t}/CUMADJ_{t-10}] – PRCC_{F_{t-10}}/CUMADJ_{t-10}) / [PRCC_{F_{t-10}}/CUMADJ_{t-10}]), historical beta (regressing five years of monthly total stock returns on stock market returns), fundamental beta from Barra, market-to-book equity ratio ([CSHO × PRCC_F] / CEQ), Tobin’s q ([AT + CSHO × PRCC_F – CEQ – TXDB] / [0.9 × AT + 0.1 × MKVAL]), and stock turnover rate (SHSTRD/CSHOQ). The footnote below indicates outliers that have been removed from the graphs.

A: Price-earnings ratio

B: Dividend payout ratio

C: Current ratio

D: Percentage change in EPS
Notes to Figure II:

The following observations in each Panel have been excluded for the local polynomial fitting and are not shown in the graph:

A: (hurdle rate 0.12, P/E ratio 467) and (0.14, 479). Additionally, the observation with hurdle rate = 0.40 shown in the graph is excluded when fitting the curve.

B: (hurdle rate 0.15, dividend payout ratio -2.8).

C: (hurdle rate 0.20, current ratio 25.2). Additionally, the observation (0.40, 9.7) is shown in the graph but excluded when fitting the curve.

E: (hurdle rate 0.15 and total equity return 11.7) and (0.09, 82.5).

H: Negative ratios and ratios larger than 20: (WACC equivalent hurdle rate 0.20 and equity market-to-book ratio 25.6) and (0.14, -14.6).
Figure 3: What self-reported hurdle rate represents.

A total of 117 firms responded to the question what the firm’s hurdle rate represents (Panel A). The eleven firms that explicitly indicate that they add a premium to the weighted average cost of capital (WACC) to assess their hurdle rate are included in the category WACC. Panel B shows summary statistics of self-reported hurdle rates. The hurdle rates represent the nominal rate that the company has used for a typical project during the previous two years. Self-reported hurdle rates that represent the cost of levered or unlevered equity are converted to their weighted average cost of capital (WACC) equivalents (see Appendix A for details) and firms in the “other” category are dropped from the sample. We report the hurdle rates for the remaining 101 firms.

Panel A

Panel B
Figure 4: Comparison of the predictions of the full model with self-reported hurdle rates.

Panel A compares predicted hurdle rate from the full model on the horizontal axis with self-reported hurdle rates shown on the vertical axis. Panels B and C decompose the predicted values in two components: Predicted WACC against the WACC = hurdle rate – predicted premium and predicted premium against premium = hurdle rate – computed WACC. The solid line in all three panels is the 45-degree line.

Panel A

Panel B

Panel C
Figure 5: Relationship between hurdle rates and WACC.

The two scatter plots show predicted hurdle rates when using WACC plus a constant (Model 1 in Table VI). Panel A uses the implied equity premium of 3.8% and Panel B assumes an equity premium of 6.6% based on a historical average from Ibboston (2004).

Panel A Panel B
The Most Important Number in Finance

The Quest for the Market Risk Premium

Marc Zenner
marc.p.zenner@jpmorgan.com
(212) 834-4330

Scott Hill
scott.d.hill@jpmorgan.com
(415) 315-8842

John Clark
john.hs.clark@jpmorgan.com
(212) 834-2156

Nishant Mago
nishant.x.mago@jpmorgan.com
(212) 834-2172
We would like to thank Andy Chi, Amra Coralic, and Jessica Vega for their invaluable contributions to the analytics and construction of this report. We would further like to thank Ben Berinstein, Tomer Berkovitz, Jennifer Conrad, John Graham, Thomas Hagerstrom, Chris Harvey, Sean Nossel, Bob Principe, James Rothschild, Mark Shifke, Mark Solomons, Jerry Topitzer, Chris Ventresca, Stephen Wolf, and Janet Wiener for their helpful comments and suggestions. Special thanks are due to Colleen Galle for her support and guidance in writing and publishing this report.
1. The most important number in finance

You will not find it in section C of The Wall Street Journal. CNBC will not mention it in its morning market recap. The Economist will not provide it in its back pages with other financial data. Yet it is one of the most critical metrics in finance, a figure implicit in the evaluation of financing and investment opportunities: the market risk premium. What is it? How and where should it be used? What is the right number to use? Does it change over time?

In this report, we (1) estimate a current range of risk premiums; (2) explain how the risk premium has increased since the beginning of the subprime crisis; (3) discuss how, thanks to Federal Reserve intervention, a higher risk premium does not necessarily lead to a higher cost of capital; and (4) debate how possible divergence between equity and credit markets since last summer may affect strategic and financial decision-making. In addition, we review some common methods used to estimate the market risk premium.

What is the market risk premium?

The market risk premium (MRP) reflects the incremental premium required by investors, relative to a risk-free asset like U.S. Treasury bonds, to invest in a globally diversified market portfolio. Below is a simple and generally accepted equation:

$$\text{Expected return on the market portfolio} = \text{Risk-free rate of return} + \text{market risk premium}$$

Should the market risk premium be higher for some assets and lower for others? Most likely yes, but how should the adjustment be made? The Capital Asset Pricing Model (CAPM) proposes one such adjustment. CAPM states that the expected return on an asset is the risk-free rate plus an MRP that is adjusted, through beta, to reflect the market risk of the asset:

$$\text{Expected return on an asset} = \text{Risk-free rate of return} + \beta \times \text{market risk premium}$$

The beta is a calibration factor that is higher (lower) than one if the asset has a systematic, or non-diversifiable, risk that is higher (lower) than the market’s risk. In the CAPM framework, the MRP should apply to all assets, including bonds, real estate, art, etc. In practice, however, the risk premium is mostly used to estimate the expected return on equity (also referred to as the cost of equity). Bond markets rely on their own risk premium concept, the credit spread, which is the difference between the yield on a bond and the maturity-matched Treasury rate.

From a macroeconomic perspective, the MRP reflects the broader outlook on the whole economy. Factors influencing investors’ views on market risk include outlooks for economic growth, consumer demand, inflation, interest rates, and geopolitical risks. As such, the MRP is a single metric that reflects these inputs in the expected returns of various asset classes.

Why is the market risk premium so important?

While many finance professionals and executives actively manage their debt and debate the incremental basis points their firm may have to pay on new bonds, they do not tend to focus much on the cost of equity. Is it that debt financing is so much more prevalent than equity financing? Not really. Even with a tax system that favors debt financing, equity financing constitutes over 80% of the total market capitalization for a typical non-financial S&P 500 firm today.

Why then is there less focus on the cost of equity? Maybe because most firms manage debt actively and equity only passively; or because an economic cost of equity of 12% does not translate into an actual cash outlay of 12%; or perhaps because there is no consensus on how to estimate the market risk premium.

Practical Application: Understanding and quantifying the MRP is critical to the value-creation process. With most of their capitalization in the form of equity, decision-makers require an estimate of the MRP to determine their cost of capital, identify projects that create shareholder value, decide how much to pay for acquisition targets, evaluate their capital structure, and compare the costs of various sources of financing. Not adjusting the cost of equity to new market realities may lead firms to (1) over or under-invest or (2) forgo capital-structure opportunities.
What is the market risk premium today?

No single method to estimate the MRP is used universally. Our review of various methods (detailed in Section 2) suggests that they each have strengths and weaknesses. They also generate a wide range of results as summarized in the figure below. We therefore recommend thinking about the MRP in terms of a range rather than a unique number. Based on our results, the MRP probably falls within a range of 5% - 7% today.

Figure 1: Summary of risk premium estimates

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Estimated range:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical U.S. 1926–2007 geometric mean</td>
<td>5%–7%</td>
</tr>
<tr>
<td>Dividend Discount Model</td>
<td></td>
</tr>
<tr>
<td>Constant Sharpe ratio</td>
<td></td>
</tr>
<tr>
<td>Dividend Yield Methodology</td>
<td></td>
</tr>
<tr>
<td>Geometric Academic survey</td>
<td></td>
</tr>
<tr>
<td>Arithmetic Academic survey</td>
<td></td>
</tr>
<tr>
<td>Historical U.S. 1926–2007 arithmetic mean</td>
<td></td>
</tr>
<tr>
<td>Implied from AA bonds</td>
<td></td>
</tr>
</tbody>
</table>

If I do not use CAPM, should I still focus on the market risk premium?

Most practitioners use CAPM as their method of choice to estimate the cost of capital. Interestingly, while academics often emphasize the limitations of CAPM, they still tend to focus on it when teaching about the cost of capital. Two of the risk premium estimation methods we used rely on CAPM (the Dividend Yield and the bond-based methods). The Dividend Discount and Sharpe ratio methods, as well as the historical analysis, do not rely on CAPM. Practitioners who do not use CAPM can still use the risk premium range we suggest by using the low (high) end of the range for projects they perceive to be at the low (high) end of their risk spectrum.

My firm is global, so should I focus on a risk premium based on U.S. data?

The results we present are based on U.S. market data. Can you use these risk premium estimates for investments in other countries? We believe that the U.S.-based MRP is a reasonable estimate for developed economies for a couple of reasons. First, an unconstrained investor would not freely invest in a market in which he/she would earn a lower risk-adjusted return. Hence risk premiums should gravitate to each other across open developed markets, and the U.S.-based risk premium should serve as a good estimate for this. The situation may be different in emerging markets, however, where non-market risks may exist (e.g., political risk) or where investor segmentation and constraints limit the free flow of capital into and out of the country. Second, the U.S. market has some data advantages, namely very broad markets with long data histories. Many other markets tend to be over-weighted in some sectors (e.g., banking, shipping, energy, telecommunications) or have data series that have been interrupted by political events in the 20th century.

Has the risk premium changed since last summer?

Are we in a new risk premium environment? The figure below shows that the answer depends on the methodology. The historical method, as expected, suggests no change in the risk premium. On the other hand, methods that rely on current market information (which we discuss in detail later)
signal that the risk premium has increased since the credit crisis began last summer, but that it has declined from its peak in February/March.

Figure 2: Comparing risk premium estimates since last summer

![Graph showing risk premium estimates since last summer](source: JPMorgan, SBBI Market Report-Morningstar, Bloomberg)

Should executives change their hurdle rates for capital allocation?

Boards of Directors and senior executives implicitly use the MRP when determining hurdle rates for new projects and acquisitions. There is a preference for hurdle rates that do not change often, possibly because stable hurdle rates facilitate communication with regional and divisional management. In some cases, however, it is critical to understand whether changing market conditions affect how the market prices risk. Financial decision-makers examine day-to-day data when they look at debt financing, so why not also for equity, often the biggest component of the capital structure? We believe that today’s environment warrants re-estimating the cost of capital using new market information, in particular when considering large capital projects or acquisitions.

Practical Application: The cost of capital for many S&P 500 firms has not increased since last summer. Why? While risk premiums increased in both credit and equity markets, the Fed’s policy of lowering interest rates has succeeded in offsetting this increase for the largest firms in the economy. It is worth noting that, even in today’s environment, many firms tend to use a hurdle rate that is a few percentage points higher than their true cost of capital, which may lead them to forgo valuable investment opportunities.

Which is right—equity or credit markets?

Many market observers have focused on how the equity and credit markets have behaved differently since last summer. While credit markets lost significant liquidity and experienced dramatic pricing changes, the non-financial component of equity markets remained relatively unaffected until the beginning of this year. Have credit markets overreacted, and should they revert to more normalized pricing? Have the equity markets failed to completely absorb the effects of the financial crisis, and should we expect a further decline in equity values, along with an increase in the MRP? Or do credit markets reflect a higher overall premium combining both a heightened risk premium and an increased liquidity premium? In many segments of the credit markets, liquidity diminished significantly over the last few months, but not so in the equity markets. We believe that both effects have taken place; i.e., the equity risk premium has increased, but the credit markets have been affected even more because they are also pricing in an additional premium for liquidity.

Practical Application: Executives should consider this debt vs. equity market premium dynamic when making funding decisions. For example, the after-tax cost of hybrids should be compared to an updated after-tax cost of equity. Furthermore, as discussed above, given that low Treasury rates have offset rising risk premia for the largest firms, executives should consider locking in a low long-term cost of capital, especially if they have near-term refinancing, capital or liquidity needs, or if they expect rates to increase because of inflationary pressures.
2. **Different methods to estimate the MRP**

A. **Historical average realized returns**

A common way to estimate the MRP has been to compare realized annual equity returns to average returns of U.S. Treasury bonds over some historical time period.

\[
\text{MRP} = \text{average annual equity index return} - \text{average return on Treasury bonds}
\]

This method is widely used in practice but has a few weaknesses which diminish its usefulness.

Choice of averaging method: The choice of arithmetic vs. geometric averaging methods can lead to significant differences in MRP estimates. For example, if $100 grows to $110 in one year and then drops back to $100 the next, the arithmetic average annual return is \([+10.0\% - 9.1\%]/2\), or 0.5%. The geometric mean, however, will be 0%, which is the compounded annual return the investor actually earned. Many academics prefer the arithmetic average because it represents an investor’s expected return at any given point in time. But the geometric mean better reflects asset returns investors should expect over long horizons.

Time horizon: As evidenced in Figure 3 below, different time horizons also yield different MRP estimates. For example, an observer examining the U.S. data since 1978 using the geometric mean would determine that the MRP is 4.9%, whereas an observer viewing the data since 1946 would instead conclude it is 5.7%.

Figure 3: Historical risk premium estimates across various time periods

<table>
<thead>
<tr>
<th>Large company stocks - Intermediate T bonds</th>
<th>Arithmetic</th>
<th>Geometric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1926-2007</td>
<td>6.9%</td>
<td>5.1%</td>
</tr>
<tr>
<td>1946-2007</td>
<td>6.8%</td>
<td>5.7%</td>
</tr>
<tr>
<td>1978-2007</td>
<td>5.7%</td>
<td>4.9%</td>
</tr>
</tbody>
</table>

Source: Morningstar, JPMorgan

Reaction to changing risk premium: In a changing risk-premium environment, this method can produce counterintuitive results. For example, if the risk premium increases and cash-flow projections remain unchanged, equity prices will drop. This drop in equity prices reflects investors’ demand for higher future expected returns in the riskier environment. But the drop would cause lower realized returns, which in turn would lower the average historical returns, thereby suggesting a lower instead of higher risk premium. Though this backward-looking method may not capture the direction of the change in risk premium well, it may still be a viable long-term estimate of the risk premium investors expect to earn by investing in equity.

Figure 4: Pros and cons of using the historical method

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to compute</td>
<td>Estimate depends on historical window</td>
</tr>
<tr>
<td>Has been a standard in business schools</td>
<td>Estimate depends on averaging method</td>
</tr>
<tr>
<td>Does not change often and rapidly</td>
<td>Does not change often and rapidly; i.e., does not incorporate new market realities</td>
</tr>
<tr>
<td>Can be sourced by a third-party provider such as Ibbotson Associates</td>
<td>Responds in a counterintuitive way to changes in actual risk premium</td>
</tr>
</tbody>
</table>

Source: JP Morgan
B. Dividend Discount Model

Another means of estimating the MRP is through the Dividend Discount Model (DDM), which can be used to calculate the current market cost of equity. The model solves for an internal rate of return (cost of equity) based on the price level and expected dividend stream of an index (often the S&P 500 as a proxy for the broad market). Dividends are projected by applying an expected payout ratio to forecasted earnings. Earnings are forecasted, in turn, by combining near-term (i.e., 5 years) market estimates with a perpetuity growth rate equivalent to long-term nominal GDP growth. The dividend payout ratio is initially assumed to be the average of recent historical payout ratios, but increases over the long-term towards 80% in the terminal period as reinvestment opportunities are assumed to subside. Simplistically, the formula for the market cost of equity is:

$$Price_0 = \sum_{t=1}^{\infty} \frac{Dividend_t}{(1 + Cost of Equity)^t}$$

where \(t \) is time from now to infinity. Subtracting the 10-year government bond yield from the market cost of equity then provides the market risk premium. Thus, the MRP formula is as follows:

$$MRP = Cost of equity implied by DDM - 10-year government bond yield$$

Figure 5: Pros and cons of risk premium implied from Dividend Discount Model

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implied from equity market values</td>
<td>Price variable changes daily</td>
</tr>
<tr>
<td>Changes and responds to current market environment</td>
<td>Highly dependent on future dividend/cash flow estimates</td>
</tr>
<tr>
<td>Forward-looking; not heavily reliant on historical data</td>
<td>Dividend forecasts not updated frequently; may not take market cycles into account</td>
</tr>
</tbody>
</table>

Source: JPMorgan

Changes over time: The market cost of equity varies primarily with movements in the level of the index, but also with changes in expectations for future dividends. The chart below shows the market cost of equity based on the S&P 500, as well as the 10-year Treasury yield, over the last 10 years. The resulting MRP, shown to the right, varies from a low of 1.3% at the peak of the market to a high of over 6% in the post-9/11 era. After 2003, the MRP stabilized in the 4% range until the recent credit crisis, which has led to a re-pricing of risk and a higher MRP.

Figure 6: Dividend Discount Model implied risk premium over time

<table>
<thead>
<tr>
<th>Yearly arithmetic average market risk premium since 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average MRP</td>
</tr>
</tbody>
</table>

Source: JPMorgan, Bloomberg
C. Constant Sharpe ratio method

Another useful metric to estimate the risk premium, the Sharpe ratio, has been inherited from portfolio management theory. The Sharpe ratio measures a portfolio’s excess return per unit of risk and can be used to estimate the MRP:

\[
Market \text{ Sharpe ratio} = S_M = \frac{Portfolio \text{ MRP}}{Volatility \text{ of MRP}}
\]

We estimate that, over the last 50 years, the Sharpe ratio for the broad market (using the S&P 500 index as a proxy) has been about 0.3, which is consistent with academic research. Assuming that this ratio is constant going forward, we can then solve for the forward-looking MRP by multiplying the S&P 500 Sharpe ratio by a measure of future market volatility. We estimate future market volatility via the VIX index, which measures the volatility implied from options on the S&P 500 index. Thus, the Sharpe ratio-implied MRP is:

\[
MRP = Market \text{ (S&P 500) Sharpe ratio } \times \text{ Market (S&P 500) implied volatility}
\]

Pros and cons of the Sharpe ratio method

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate of Sharpe ratio based on more than 50 years of historical data; consistent with academic research.</td>
<td>Some evidence that Sharpe ratio may change over time instead of remaining constant.</td>
</tr>
<tr>
<td>VIX component is forward-looking; captures shifts in investor sentiment very quickly.</td>
<td>VIX measures short-term volatility (<1 year), whereas risk premium is generally viewed long-term (10+ years).</td>
</tr>
</tbody>
</table>

Source: JPMorgan

Changes over time: Figure 8 displays the Sharpe ratio-implied MRP over the last 10 years. By definition, the Sharpe ratio-implied MRP moves proportionally with the VIX volatility index. At times of greater uncertainty and market panic, including the Long-Term Capital Management fallout in 1998, the 2000-2002 recession/tech bubble burst, and the current credit crisis, investors have fled to safer securities and demanded a greater MRP to keep their investments in riskier assets. Such shifts in risk preferences have been accompanied by spikes in volatility.

Historical risk premiums computed from the Sharpe ratio method

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average MRP</td>
<td>8.2%</td>
<td>7.8%</td>
<td>7.4%</td>
<td>7.9%</td>
<td>8.0%</td>
<td>6.6%</td>
<td>4.6%</td>
<td>3.9%</td>
<td>3.7%</td>
<td>5.2%</td>
<td>7.2%</td>
</tr>
</tbody>
</table>

U.S.—S&P 500 market risk premium %

Source: Bloomberg, Federal Reserve Data
D. Bond-market implied risk premium

Most of us think of the MRP in the context of cost of equity. Risk premiums do, however, also exist for corporate bonds. The expected return of a bond can therefore be expressed using the Capital Asset Pricing Model, as:

\[\text{AA yield} = \text{AA expected return} = \text{risk-free rate} + \beta \times \text{market risk premium} \]

Therefore, if we know the expected return on the bond and its beta, we can estimate the implied MRP. For high-yield bonds, we know the yield, but the expected return is likely to be significantly lower than the promised yield. For AA rated corporate bonds, on the other hand, the default probabilities are very low and we can use the yield as a proxy for expected returns. Hence, we use the price series of AA corporate bonds to estimate the MRP. The beta of AA bonds is between 0.15 and 0.20, depending on the estimation period. Using a beta of 0.15, we estimate that the bond-implied MRP was below 4% in 1998 and 2004-2005 but recently rose to about 8.6%.

Figure 9: Pros and cons of the bond-market data methodology

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on daily market feedback regarding risk premium on bonds</td>
<td>Possibility that expected default rates change at the same rating</td>
</tr>
<tr>
<td>Assumes no capital-structure arbitrage; i.e., when bonds demand a higher risk premium, other assets such as equity also demand a higher return</td>
<td>Depends on CAPM and an assumption about bond betas</td>
</tr>
<tr>
<td>Implied risk premium captures both a liquidity and risk premium</td>
<td></td>
</tr>
</tbody>
</table>

Source: JPMorgan

Figure 10: Recent changes in the bond-market implied risk premium

| Yearly arithmetic average market risk premium since 1998 |
|---|---|---|---|---|---|---|---|---|---|
| Average MRP | 3.5% | 5.1% | 8.0% | 7.0% | 6.0% | 4.2% | 3.8% | 4.0% | 4.7% | 5.7% | 8.9% |

Source: JPMorgan, Bloomberg
E. Dividend Yield Method

A methodology that is closely related to the Dividend Discount Model method uses the dividend yield as a starting point. The price of a dividend-paying stock can be estimated using the constant-growth valuation model. This model assumes that the dividend will grow at a constant rate forever. We rewrite this model as a function of the cost of equity, stating that the cost of equity is the dividend yield plus the long-term growth rates. The formulas are:

\[\text{Price} = \frac{\text{Div}_t}{\text{Cost of Equity} - \text{Growth Rate}}, \]

and therefore

\[\text{Cost of Equity} = \frac{\text{Div}_t}{\text{Price}} + \text{Growth Rate} \]

This approach works well in sectors with large and steadily growing dividends. We applied the methodology to three industries known for their focus on dividend yields: Real Estate Investment Trusts (REITs), Master Limited Partnerships (MLPs), and regulated utilities. In the regulated utilities industry, regulators accept this method as a way to estimate the cost of equity. Another useful feature of the model is its closeness to the cash cost of the equity. In fact, some practitioners look at the dividend yield only and ignore the growth component of the equation.

\[\text{MRP} = \frac{(\text{Cost of equity implied by Dividend Yield Method} - \text{10-year government bond yield})}{\beta} \]

Figure 11: MRP implied by dividend yields in dividend-heavy sectors

<table>
<thead>
<tr>
<th></th>
<th>Dividend yield</th>
<th>IBES 5-yr EPS growth</th>
<th>Overall growth(^1)</th>
<th>Cost of equity</th>
<th>Equity beta</th>
<th>Implied MRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulated utilities</td>
<td>4.1%</td>
<td>6.1%</td>
<td>4.5%</td>
<td>8.6%</td>
<td>0.78</td>
<td>6.6%</td>
</tr>
<tr>
<td>MLPs</td>
<td>6.4%</td>
<td>6.5%</td>
<td>5.1%</td>
<td>11.4%</td>
<td>0.61</td>
<td>13.0%</td>
</tr>
<tr>
<td>REITs</td>
<td>5.4%</td>
<td>6.5%</td>
<td>4.7%</td>
<td>10.5%</td>
<td>1.13</td>
<td>6.1%</td>
</tr>
<tr>
<td>Mean</td>
<td>5.3%</td>
<td>6.4%</td>
<td>4.8%</td>
<td>10.2%</td>
<td>0.84</td>
<td>8.6%</td>
</tr>
<tr>
<td>Median</td>
<td>5.4%</td>
<td>6.5%</td>
<td>4.7%</td>
<td>10.5%</td>
<td>0.78</td>
<td>6.6%</td>
</tr>
</tbody>
</table>

Source: JPMorgan, FactSet

\(^1\) Overall growth is weighted combination of 5-yr EPS growth and 4% perpetuity growth assumptions

We use EPS estimates and an assumption of constant payout ratios to forecast the dividend growth over the next five years, and an assumption that dividends will grow at 4% thereafter (long-term real growth plus inflation). Our results suggest that the cost of equity for these sectors is in the 9% to 12% range. The figures also display two clear weaknesses: (1) the need for assumptions to estimate overall or long-term growth, estimated in this case as a weighted-average of the 5-year EPS growth projection followed thereafter by a 4% perpetuity growth rate; and (2) the need to rely on CAPM and a beta estimate to extract the MRP implied by our cost-of-equity estimates. Today, this approach yields an MRP in the 6% range for REITs and utilities, and a higher number for MLPs.

Figure 12: Pros and cons of MRP implied from Dividend Yield Method

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitive: cost of equity equals dividend yield plus a growth rate</td>
<td>Only applicable in a few dividend-heavy sectors</td>
</tr>
<tr>
<td>Widely accepted in dividend-heavy sectors</td>
<td>Capital structures of these sectors may not represent those of the market at large</td>
</tr>
<tr>
<td>Close to the actual cash cost on equity</td>
<td>Relies on perpetuity growth rate assumption</td>
</tr>
<tr>
<td>Dividend yield changes daily</td>
<td>Depends on CAPM and assumption about industry or firm beta</td>
</tr>
</tbody>
</table>

Source: JPMorgan
F. Survey evidence

One relatively basic method for determining the MRP is to survey market participants for their views on required returns. Such surveys have polled academics, investors, and other corporate-finance practitioners such as CFOs.

An academic survey by Ivo Welch from Brown University provides useful insights on MRP estimates.1 The typical finance professor responding to Welch’s survey estimates that the long-term market risk premium is 5% on a geometric basis and 5.8% on an arithmetic basis. Interestingly, these numbers are very close to the MRP estimates of the historical realized returns methodology, suggesting that finance professors still primarily rely on that approach.

A similar survey conducted quarterly from 2000 to 2007 by John Graham and Campbell Harvey of Duke University compiled the views of U.S. CFOs regarding the current risk premium.2 Their average risk premium in 1Q07 was 3.2%, and the range from 2000 to 2007 was 2.4% to 4.7%.

Relying on these survey results has some advantages. First and foremost, in the case of finance professors, participants may be biased in their preferred methodology, but they are typically unbiased in their MRP estimates—that is, they do not have any specific incentive to make low or high estimates. Secondly, academics tend to spend a lot of time on the subject and have significant influence on how regulators, practitioners, and even investors look at the MRP.

On the other hand, survey respondents can provide wide differences of opinion and express views that may be extreme (such as a negative MRP). Surveys can also reflect the collective views of the constituent base. As an example, academics’ reliance on the historical-data approach suggests that their estimates will not change very often. This may be an advantage for executives looking for a MRP estimate that is robust through time, but it may not capture the realities of a new market environment (such as structural shifts, tax changes, etc.). Conversely, the CFO-based survey is different in that its results are quite volatile and might represent current market conditions and concerns.

Figure 13: Pros and cons of surveys

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant time researching this topic</td>
<td>Wide differences in opinion</td>
</tr>
<tr>
<td>Academic estimate unbiased (no reasons for it being high or low)</td>
<td>Does not change often and rapidly; i.e., does not incorporate new market realities (e.g., tax rate changes)</td>
</tr>
</tbody>
</table>

Source: JPMorgan

As stated above, none of these six estimation methods are used universally. Taken together, however, they provide an understanding of the drivers of the market risk premium, and allow decision-makers to consider using a method that reflects today’s volatile market environment.

The Effect of Issuing Biased Earnings Forecasts on Analysts’ Access to Management and Survival

by

Bin Ke*
Smeal College of Business
Pennsylvania State University

and

Yong Yu
McCombs School of Business
University of Texas at Austin

Abstract

This study offers evidence on the earnings forecast bias analysts use to please firm management and the associated benefits they obtain from issuing such biased forecasts in the years prior to Regulation Fair Disclosure. Analysts who issue initial optimistic earnings forecasts followed by pessimistic earnings forecasts before the earnings announcement produce more accurate earnings forecasts and are less likely to be fired by their employers. The effect of such biased earnings forecasts on forecast accuracy and firing is stronger for analysts who follow firms with heavy insider selling and hard-to-predict earnings. The above results hold regardless of whether a brokerage firm has investment banking business or not. These results are consistent with the hypothesis that analysts use biased earnings forecasts to curry favor with firm management in order to obtain better access to management’s private information.

First draft: January 28, 2004
Current draft: April 25, 2006

We thank an anonymous reviewer, Anil Arya, Larry Brown, Steve Huddart, Artur Hugon, Henry Y. Lo, Jim McKeown, Drew Newman, and workshop participants at the 2005 American Accounting Association FARS mid-year meeting and annual meeting, Chinese University of Hong Kong, the 12th Conference on the Theories and Practices of Securities and Financial Markets held at the National Sun Yat-sen University (Kaohsiung, Taiwan), University of Colorado (Boulder), Ohio State University and Pennsylvania State University for helpful comments. We thank IBES for providing the earnings forecast data. Bin Ke acknowledges the research support of the Smeal College of Business.

*Corresponding author
Bin Ke
Pennsylvania State University
354 Business Building
University Park, PA 16802
814-865-0572 (phone)
814-863-8393 (fax)
bxk127@psu.edu (email)
1. Introduction

Prior research finds that financial analysts often issue biased earnings forecasts to please firm management (see e.g., Richardson et al., 2004; Francis and Philbrick, 1993; Das et al., 1998; Lim, 2001; Matsumoto, 2002), but it is not well understood why analysts have incentives to do so. In addition, the form of the forecast bias analysts are assumed to use to please management varies across studies. Some studies assume managers prefer optimistic earnings forecasts (e.g., Francis and Philbrick, 1993) while others assume managers prefer pessimistic forecasts (e.g., Matsumoto, 2002). Recently Richardson et al. (2004) argue that managers prefer initial optimistic forecasts followed by pessimistic forecasts immediately before the earnings announcement.

The objective of this study is to identify the form of the earnings forecast bias analysts use to please management and the associated benefits analysts receive from such biased earnings forecasts. We consider both annual and quarterly earnings forecast biases because analysts often issue both forecasts. To our knowledge, we are the first study that simultaneously examines annual and quarterly earnings forecast biases at the individual analyst level. Because earnings forecast accuracy is important to analysts and their brokerage firms (Mikhail et al., 1999; Leone and Wu, 2002), we hypothesize that analysts issue biased earnings forecasts to curry favor with management so that they can obtain more private information from management to improve their earnings forecast accuracy relative to other analysts (H1). In addition, we hypothesize that analysts who issue biased earnings forecasts are less likely to be fired by their employers (H2).

In light of previous research’s conflicting results on the form of the forecast bias analysts use to please management, we consider four possible forms of earnings forecast biases that capture the intertemporal pattern of each analyst’s earnings forecasts (denoted OP, OO, PO, PP). For annual earnings forecasts, the four forecast biases are defined using each analyst’s first and last
one-year ahead annual earnings forecasts issued between two consecutive annual earnings announcement dates. OP denotes the analysts whose first one-year ahead annual earnings forecast issued after the prior fiscal year’s earnings announcement is optimistic (i.e., forecast is greater than the realized earnings), but whose last one-year ahead annual earnings forecast issued before the current year’s earnings announcement is pessimistic (i.e., forecast is less than or equal to the realized earnings); OO denotes the analysts whose first and last annual earnings forecasts are always optimistic; PP denotes the analysts whose first and last annual earnings forecasts are always pessimistic; finally, PO represents the analysts whose annual earnings forecasts switch from initial pessimism to later optimism. For quarterly earnings forecasts, the four forecast biases for each analyst are defined similarly except that the first earnings forecast for the current quarter is defined as the first two-quarters ahead earnings forecast issued after the announcement of the quarterly earnings two quarters prior and the last earnings forecast is defined as the last one-quarter ahead earnings forecast issued before the current quarter’s earnings announcement. The difference in the definitions of the four forecast biases for annual and quarterly earnings forecasts reflects the reality that the majority of analysts issue at least two one-year-ahead annual earnings forecasts between two consecutive annual earnings announcements while only one one-quarter-ahead quarterly earnings forecast between two consecutive quarterly earnings announcements.¹

We test our hypotheses over the period January 1, 1983-June 30, 2000.² For both annual and quarterly earnings forecasts, we find that OP analysts are associated with more accurate earnings forecasts. For all the stocks with nonmissing data included in the IBES database over calendar years 1983-1999, 73% of the analyst firm years issue at least two one-year ahead annual earnings forecasts between two consecutive annual earnings announcement dates, while only 23% of the analyst firm year quarters issue at least two one-quarter ahead quarterly earnings forecasts between two consecutive quarterly earnings announcement dates.²

Our sample ends on June 30, 2000 because Regulation Fair Disclosure (FD) became effective on October 23, 2000, which prohibits firm management from disclosing material nonpublic information to select individuals, and our variable definitions are measured from July 1, year \(t \) to June 30, year \(t+1 \). We leave to future research to study the effect of the regulation on the private communication between firm management and analysts.

¹ For all the stocks with nonmissing data included in the IBES database over calendar years 1983-1999, 73% of the analyst firm years issue at least two one-year ahead annual earnings forecasts between two consecutive annual earnings announcement dates, while only 23% of the analyst firm year quarters issue at least two one-quarter ahead quarterly earnings forecasts between two consecutive quarterly earnings announcement dates.

² Our sample ends on June 30, 2000 because Regulation Fair Disclosure (FD) became effective on October 23, 2000, which prohibits firm management from disclosing material nonpublic information to select individuals, and our variable definitions are measured from July 1, year \(t \) to June 30, year \(t+1 \). We leave to future research to study the effect of the regulation on the private communication between firm management and analysts.
forecasts and a smaller likelihood of being fired by their employers than other analysts, suggesting that it is the OP bias that analysts use to obtain better access to firm management.

Richardson et al. (2004) find that the OP bias based on consensus earnings forecasts is more severe for firms whose managements wish to sell their personal equity holdings in the firm. Das et al. (1998) argue that access to management is more valuable to analysts when a firm’s earnings are difficult to forecast. Therefore, we conjecture that analysts who cover firms with heavy insider trading or hard-to-forecast earnings benefit more from issuing OP earnings forecasts. Consistent with this conjecture, we find that the predicted effect of OP on forecast accuracy and firing is stronger for firms whose earnings are more difficult to forecast and whose managements engage in heavy insider selling. Overall, these results are consistent with the hypothesis that analysts use OP earnings forecasts to gain better access to managers’ private information.

Further analyses indicate that the predicted effects of H1 and H2 exist for analysts employed by both investment banks and pure brokerage firms (i.e., those without investment banking businesses). Thus, our results cannot be solely driven by the alleged investment banking incentive. However, we cannot rule out the possibility that the predicted effects for H1 and H2 for the investment bank analysts are partially driven by the investment banking incentive.

Given the documented benefits from issuing OP earnings forecasts, why don’t all analysts issue OP forecasts for all firms? We believe there are several reasons. First, as Hong and Kubik (2003) argue, some analysts may not be willing to issue biased forecasts given their good conscience and what they know. Second, firm managers do not have incentives to play the biased earnings forecast game. For example, as we have shown above, managers who do not plan to sell stocks in their own firms do not have as strong an incentive as managers who do to pressure analysts to issue biased forecasts. Furthermore, even if both analysts and managers have incentives
to play the biased forecast game, it seems reasonable to assume that managers prefer to cooperate with analysts who have a significant influence on capital market investors (hereafter referred to as the “bang for the buck” hypothesis). We find empirical support for this hypothesis. Specifically, relative to other analysts, we find that OP analysts are more experienced, employed by larger brokerage firms, and more likely to be an All-Star as determined by the Institutional Investor magazine, all indicators of influential analysts.

The results from our study should be of interest to investors and securities regulators who wish to understand the causes of biased earnings forecasts. Our results are also relevant to future researchers who wish to investigate analysts’ forecasting behavior. It is common for researchers to require an analyst to be in the sample for several years. Since less biased analysts do not survive, analyses based on surviving analysts could be biased and should be interpreted with caution.

Our study is not the first to recognize the potential influence of firm management on analysts’ biased earnings forecasts. For example, Francis and Philbrick (1993) argue that analysts issue optimistic earnings forecasts in order to maintain good relations with management (see also Das et al., 1998; Lim, 2001). However, those studies do not examine the benefits of biased forecasts to individual analysts (i.e., improved forecast accuracy and job security) nor simultaneously consider the various earnings forecast biases.

Chen and Matsumoto (2006) study how revisions in stock recommendations affect analysts’ access to management and forecast accuracy. They find that analysts who upgrade a stock experience a significant increase in forecast accuracy relative to analysts who downgrade a stock prior to the passage of regulation FD but not after. They do not study earnings forecast biases or analyst firing.

3 A recent study by Eames and Glover (2003) raises questions on the robustness of Das et al. (1998).
Hong and Kubik (2003) and Leone and Wu (2002) examine the impact of forecast optimism on analyst turnover (including promotion) but do not consider the other bias measures. More importantly, neither study considers the fear of losing access to management as an explanation for analysts’ biased earnings forecasts.

The rest of the paper is organized as follows. Section 2 develops the research hypotheses. Section 3 describes the sample selection and data. Section 4 discusses the variable definitions and presents the regression models. Section 5 reports the test results. We conclude in Section 6.

2. Hypothesis Development

2.1. Benefits from Issuing Biased Earnings Forecasts

Prior research on earnings forecast biases often focus on managerial incentives (see e.g., Matsumoto, 2002; Richardson et al., 2004). Those studies assume that analysts have incentives to issue biased earnings forecasts preferred by managers. We directly test this assumption by demonstrating the benefits individual analysts receive from issuing biased earnings forecasts. Specifically, we examine whether analysts who issue biased earnings forecasts gain better access to management’s private information so that their earnings forecast accuracy and job security can be improved relative to other analysts. The possible forms of earnings forecast biases analysts could use to please managers are discussed in section 2.2.

It is well recognized that earnings forecast accuracy is an important determinant of an analyst’s reputation, annual compensation, and career success. For example, Mikhail et al. (1999) and Hong et al. (2000) find that analysts whose earnings forecasts are more accurate relative to others are less likely to be fired. The reason forecast accuracy is important to analysts and their brokerage firms is that brokerage firms want analysts who are influential among the buy-side
(especially institutional investors) and this influence is directly determined by an analyst’s ability to make accurate earnings forecasts. Leone and Wu (2002) document that earnings forecast accuracy is an important determinant of the All-Star analyst ranking in the Institutional Investor magazine’s annual survey of buy-side investors. Influential analysts can significantly raise the reputation and influence of their brokerage firms among Wall Street investors and corporate executives, which in turn can bring many tangible and intangible benefits, such as stimulating more trading by their firms’ investing clients, helping their firms win more lucrative investment-banking businesses, etc.

Both anecdotal evidence and academic research also suggest that management is an important source of analysts’ private information (see Schipper, 1991). One important form of private communication between management and analysts is closed conference calls (before Regulation FD took effect). Bowen et al. (2002) find that conference calls significantly increase analysts’ earnings forecast accuracy. Furthermore, Solomon and Frank (2003) report that analysts who issue unfavorable earnings forecasts are often punished in subtle ways by firm management, especially before Regulation FD took effect. Therefore, we hypothesize that analysts have an incentive to use biased earnings forecasts to please management so that they can gain better access to management’s private information to improve their earnings forecast accuracy relative to other analysts. This prediction is stated in the following hypothesis:

H1: analysts who issue biased earnings forecasts have more accurate earnings forecasts relative to other analysts.

In addition to suffering a decrease in current earnings forecast accuracy, analysts who do not issue biased earnings forecasts are likely to lose the privileged access to management and their future earnings forecast accuracy is expected to deteriorate as a result. Since analysts’ forecast accuracy is critical to brokerage firms’ reputation and influence, we expect brokerage firms to fire
those analysts who do not issue biased earnings forecasts, even after controlling for those analysts’ current earnings forecast accuracy. This discussion leads to the following hypothesis:

H2: analysts who issue biased earnings forecasts are less likely to be fired.

Given the hypothesized benefits in H1 and H2, why would not all analysts issue biased earnings forecasts preferred by management? We believe there are several reasons. First, as Hong and Kubik (2003, p. 339) argue, some analysts may not, out of good conscience, be willing to play the biased earnings forecast game with management given what they know. However, good conscience is unobservable and thus cannot be directly tested. Second, even if analysts are interested in playing the biased earnings forecast game, some firm managers may lack incentives. For example, Richardson et al. (2004) find that managers’ preference for biased earnings forecasts is stronger for firms whose managers wish to sell a portion of their personal equity holdings in the firm. Thus, if a manager does not plan to sell shares, he should have little incentives to play the biased forecast game, ceteris paribus. Section 5.2.3 reports evidence consistent with this argument. Third, even if both analysts and managers have incentives to play the biased forecast game, it is reasonable to assume that managers prefer to cooperate with analysts who can exert a significant influence on both other analysts and equity investors (referred to as the “bang for the buck” hypothesis). Cooperation with obscure analysts will be less beneficial to managers because these analysts will be less effective in affecting stock investors’ expectations. Furthermore, the strategy of giving all analysts who are willing to issue biased forecasts the same private information may not be optimal because it would make no single analyst better off relative to his peers and thus

4 Although an analyst who issues biased forecasts may be able to move up to a more prestigious brokerage firm, we expect this move-up effect to be weaker than the firing effect in H2 because the analyst’s current employer will try to offer monetary incentives to retain him. Empirically, we find only weak evidence that analysts who issue biased forecasts are more likely to move up to more prestigious brokerage firms.

5 This hypothesis has support from both academic research (see e.g., Gintschel and Markov, 2004; Krigman et al., 2001) and anecdotal news reports (see e.g., Smith and Cauley, 1999; Levitt, 1998).
would reduce all analysts’ incentives to play the biased forecast game. In section 5.2.6 we provide evidence on the characteristics of the analysts who issue biased forecasts that are consistent with the “bang for the buck” hypothesis.

2.2. Definitions of Earnings Forecast Biases

Although the idea that analysts use biased earnings forecasts to win favor from firm management has been advanced in many studies, the form of the earnings forecast bias analysts are assumed to use to please management varies across studies. Many studies assume that managers prefer optimistic earnings forecasts (see e.g., Francis and Philbrick, 1993) while others assume that managers prefer pessimistic forecasts (see e.g., Matsumoto, 2002). Richardson et al. (2004) reconcile the conflicting assumptions in prior research by analyzing the intertemporal patterns of consensus earnings forecasts. They show that managers prefer initial optimistic consensus earnings forecasts followed by pessimistic consensus earnings forecasts immediately before the earnings announcement.

Richardson et al. (2004) further show that one important reason that managers prefer initial optimism and later pessimism is their desire to sell a portion of their equity holdings in the firm at a higher price. To avoid the perception of illegal insider trading and investor litigations, corporate executives are usually allowed to sell their equity holdings only after the earnings announcement (see Bettis et al., 2000; Roulstone, 2003). In addition, Bartov et al. (2002) find that for firms with similar earnings forecast errors at the beginning of a quarter, firms that can meet or beat analysts’ latest earnings forecasts before the earnings announcement enjoy a higher stock return than firms that cannot. Therefore, corporate executives prefer analysts to issue pessimistic earnings forecasts
immediately before the earnings announcement and optimistic earnings forecasts immediately after the earnings announcement, both of which lead to higher stock prices.6

In addition to different assumptions on the form of the earnings forecast bias preferred by managers, prior research does not differentiate annual versus quarterly earnings forecast biases nor study how individual analysts, if issuing multiple earnings forecasts for the same fiscal period, adjust their forecast biases over the forecast horizon. Because a typical analyst issues both annual and quarterly earnings forecasts, it is important to understand whether analysts issue biased annual or biased quarterly earnings forecasts or both to win favor from management. In this study we consider both annual and quarterly earnings forecasts at the individual analyst level. To our knowledge, we are the first study that examines the intertemporal pattern of individual analysts’ annual and quarterly forecast biases.

Although the evidence in Richardson et al. (2004) and our discussion above suggest that analysts should issue OP earnings forecasts to win favor from management, we also investigate the other three earnings forecast biases (i.e., PP, OO, and PO) as well because prior research has argued that managers prefer pure forecast optimism or pure forecast pessimism. By considering the four possible forecast biases simultaneously, we can determine the exact form of the forecast bias preferred by managers. For example, if managers are only interested in meeting or beating analysts’ latest earnings forecasts, analysts who issue either OP or PP should have more accurate earnings forecasts and are less likely to be fired. In contrast, if managers prefer the OP bias only, OP analysts should have more accurate earnings forecasts and be less likely fired than other analysts.

3. Data and Sample Selection Procedures

6 We refer interested readers to Richardson et al. (2004) for a detailed discussion of managers’ preferences for biased earnings forecasts.
Our analyst forecast sample comes from the merged IBES actual/detail file over the period January 1, 1983-June 30, 2000. Our sample starts from 1983 because there are very few earnings forecast observations before 1983 in IBES. The sample ends on June 30, 2000 because Regulation FD became effective on October 23, 2000, which significantly changed the communications between firm management and analysts, and our variables are measured from July 1, year t to June 30, t+1 (see section 4 below for the details). We retain only those analysts that work for a U.S.-based brokerage firm and have non-missing values for the following variables in IBES: annual and quarterly earnings forecasts, actual earnings, earnings announcement date, IBES ticker, analyst code, and broker code. We eliminate late annual (quarterly) earnings announcements by deleting the top one percent of the distribution of the distance between the annual (quarterly) earnings announcement and the fiscal year (quarter) end. In addition, we require each firm to have at least 3 analysts following for the quarterly and annual earnings forecasts separately because some of our regression variables cannot be defined or are unreliable for thinly covered stocks. We obtain similar results if each stock is required to have a minimum of 5 analysts following. For annual earnings forecasts, we further require each analyst to issue at least two one-year ahead annual earnings forecasts between two consecutive annual earnings announcement dates; for quarterly earnings forecasts, we require each analyst to issue at least one one-quarter ahead and one two-quarters ahead quarterly earnings forecast for the same fiscal quarter. Our final annual earnings forecast sample contains a maximum of 228,904 firm-analyst-year observations over the period January 1, 1983-June 30, 2000, representing 32,303 analyst-year observations and 7,871 unique analysts. Our final quarterly earnings forecast sample contains a maximum of 114,075 firm-analyst-year-quarter observations over January 1, 1983-June 30, 2000, representing 15,278 analyst-year observations and 4,359 unique analysts. Note that we do not require each analyst to have both annual and
quarterly earnings forecasts for the same fiscal year. The significantly smaller sample size for quarterly earnings forecasts is due to the fact that analysts typically do not issue multiple earnings forecasts for the same fiscal quarter before the quarterly earnings announcement. Note our quarterly forecast sample includes earnings forecasts for all four fiscal quarters.

Data on executive insiders’ stock sales and purchases, which are required for some of our analyses, come from First Call/Thomson Financial Insider Research Services Historical Files. The insider trading data are available for only calendar years 1985-2000. Data on brokerage firm classification come from the Securities Data Company over the period 1980-2002.

4. Research Design

4.1. Variable Definitions

Because earnings forecast accuracy is measured at the firm-analyst level, H1 is tested at the firm-analyst level. Similarly, because analyst turnover is defined at the analyst level, H2 is tested at the analyst level. As a sensitivity check, we also test H1 using the average values of the regression variables at the analyst level and obtain similar conclusions. We follow Hong and Kubik (2003) for most of our variable definitions. Below we describe the construction of our regression variables. The role of each variable is discussed in Section 4.2.

Figure 1 depicts the timeline we use to construct our variables for the annual earnings forecasts. Because the majority of our sample firms end their fiscal years on December 31, we define analysts’ firing over a one-year period from July 1, year \(t+1 \) to June 30, year \(t+2 \) (denoted year \(t+1 \)) to ensure that an analyst’s firing is based on his performance in the year immediately before July 1, year \(t+1 \) (denoted year \(t \)).\(^7\) All the other regression variables are constructed using

\(^7\) The percentage of our sample firms whose fiscal year end falls in December, January, February, and March are 66%, 3.5%, 1.3%, and 6.4%, respectively.
data before July 1, t+1. Hong and Kubik (2003) also use July 1 as the cutoff for their analysis of
analyst turnover. Our results are robust to alternative cutoffs (e.g., April 1, or January 1).

\[\text{Fire}_{i,t+1} \] is equal to 1 if analyst i works for a large brokerage house during the year from
July 1, t to June 30, t+1, and moves to a small brokerage house during the year from July 1, t+1 to
June 30, t+2 (i.e., demotion), or if analyst i permanently leaves the IBES database during the year
from July 1, t+1 to June 30, t+2 (i.e., termination); and zero otherwise. Following Hong and Kubik
(2003), a brokerage house is large if it employs at least 25 analysts in year t. Because we are
interested in how biased forecasts affect analysts’ chance of being fired, analysts who move from a
small brokerage firm to a large one (i.e., promotion) or move between equal-status brokerage firms
(i.e., parallel moves) are coded zero in \[\text{Fire}_{i,t+1} \]. However, we obtain similar conclusions if parallel
moves or promotions are coded one in \[\text{Fire}_{i,t+1} \]. 8 We use \[\text{Fire}_{i,t+1} \] for both the annual and quarterly
earnings forecast analyses. Our definition of \[\text{Fire}_{i,t+1} \] is consistent with Hong et al. (2000) and
Leone and Wu (2002).

An important limitation of \[\text{Fire}_{i,t+1} \] is that we do not know the real causes of an analyst’s
job change. We assume that demotion and termination are due to current or expected future poor
performance, but it is possible that these analysts left their current employers for better
opportunities. However, we show below that \[\text{Fire}_{i,t+1} \] is negatively associated with current earnings
forecast accuracy, suggesting that \[\text{Fire}_{i,t+1} \] represents a reasonable (though noisy) proxy for the true
unobservable incidence of firing.

Variables Related to Annual Earnings Forecasts

8 The percentages of analysts who experience demotion, termination, promotion and parallel moves in our sample are 1.2, 13.9, 1.4 and 4.9, respectively.
A_{jt} denotes firm j’s annual earnings for year t that is announced immediately before July 1, year t+1. A_{jt-1} denotes firm j’s annual earnings for year t-1. F^{last}_{ijt} is analyst i’s latest forecast of annual earnings A_{jt}, issued in the second half of the period from the earnings announcement date of A_{jt-1} to the earnings announcement date of A_{jt}. F^{first}_{ijt} is analyst i’s earliest forecast of annual earnings A_{jt} issued in the first half of the period from the earnings announcement date of A_{jt-1} to the earnings announcement date of A_{jt}.

OP_{ijt} denotes analyst’s i’s optimism-to-pessimism bias in year t and is defined as follows. First, we define a dummy OP_{ijt} that is equal to 1 if F^{first}_{ijt} is greater than A_{jt} (i.e., initial optimism), and F^{last}_{ijt} is less than or equal to A_{jt} (i.e., later pessimism), and zero otherwise. OP_{ijt} is the average of OP_{ijt} for all the firms covered by analyst i in year t. The other annual earnings forecast biases (i.e., OO_{ijt}, PP_{ijt}, PO_{ijt} at the firm-analyst level and OO_{i,t}, PP_{i,t}, PO_{i,t} at the analyst level) are defined similarly.

Accuracy_{ijt} is the average accuracy of analyst i’s earnings forecasts in year t and is defined following Hong and Kubik (2003). Specifically, we first calculate analyst i’s absolute forecast error in year t as FE_{ijt} = |F^{last}_{ijt} - A_{jt}|. Second, we rank all analysts based on the absolute forecast errors for firm j in year t (denoted rank_{ijt}). The most accurate analyst receives a rank of 1, and the least accurate analyst receives the highest rank. If analysts are equally accurate, we assign those analysts the midpoint of the ranks they take up. Third, we develop a ranking score that adjusts for the difference in analyst coverage across different firms:

\[
\text{Accuracy}_{ijt} = 100 - \frac{\text{rank}_{ijt} - 1}{\text{number of analysts}_{j,t} - 1} \times 100.
\]

9 Inference is similar if the observations whose F^{last}_{ijt} is equal to A_{jt} (6.5% of the sample) are deleted.
Thus, $Accuracy_{ijt}$ ranges from zero to 100. $Accuracy_{ijt}$ is the average of $Accuracy_{ijt}$ for all the firms covered by analyst i in year t, representing the average relative forecast accuracy of analyst i in year t.

An alternative measure of forecast accuracy is the absolute forecast accuracy, defined as the absolute forecast error scaled by lagged stock price. We use $Accuracy_{ijt}$ and $Accuracy_{ijt}$ because they are more consistent with our hypotheses and prior research (e.g., Hong et al., 2000; Jacob et al., 1999; Leone and Wu, 2002; Mikhail et al. 1999). For example, both Mikhail et al. (1999) and Hong et al. (2000) show that it is the relative forecast accuracy rather than the absolute forecast accuracy that determines analyst firing. However, as Hong et al. (2000) acknowledge, the relative accuracy measures could be less reliable for analysts who cover few firms or cover thinly followed firms. In addition, analysts who cover fewer firms may be able to spend more time on each firm and thus produce more accurate earnings forecasts. We control for these effects by including

$FirmsCovered_{ijt}$ and $Follow_{ijt}$ in the regression model for H1. $FirmsCovered_{ijt}$ is the number of firms (including firm j) followed by analyst i in year t. $Follow_{ijt}$ is the total number of analysts (including analyst i) who follow firm j in year t.

Consistent with prior research (e.g., O’Brien, 1990; Clement, 1999; Jacob et al., 1999; Mikhail et al., 1999; Hong and Kubik, 2003), relative forecast accuracy is defined using F_{ijt}^{last} rather than F_{ijt}^{first}. We believe using F_{ijt}^{last} to define relative forecast accuracy is preferred for several reasons. First, because management is likely to communicate their private earnings information to favored analysts throughout the year, forecast accuracy defined using F_{ijt}^{last} will more completely reflect the effect of issuing biased earnings forecasts on analysts’ access to management. Second, the evidence in Mikhail et al. (1999) suggests that analysts’ earnings forecast
accuracy before earnings announcements (i.e., $Accuracy_{i,t}$) is important to brokerage firms and their investors. Leone and Wu (2002) also find that $Accuracy_{i,t}$ is a significant determinant of institutional investors’ All-Star analyst ranking. Finally, even if analysts obtain more private information from management at the beginning of the year, they may not wish to reveal this private information immediately in F_{ijt}^{first} because doing so will erode their competitive advantage later in the year when they issue F_{ijt}^{last}. Arya et al. (2005) further demonstrate that investors may also prefer this strategy because it reduces other analysts’ incentive to herd and thus increases the total information available to investors. In untabulated regression analysis we find forecast accuracy defined using F_{ijt}^{last} is a more important determinant of $Fire_{i,t+1}$ than that defined using F_{ijt}^{first}, suggesting F_{ijt}^{last} is the earnings forecast that analysts care the most.

$Bold_{i,t}$ denotes the average boldness of analyst i’s earnings forecasts in year t and is defined similarly to $Accuracy_{i,t}$. First, we calculate the consensus earnings forecast (excluding analyst i) as follows:

$$F_{-i,j,t}^{first} = \frac{\sum_{m \neq i} F_{m,j,t}^{first}}{number \ of \ analysts_{j,t} - 1},$$

(2)

where $-i$ is the set of analysts other than analyst i. Second, we calculate analyst i’s deviation from the consensus, $deviation_{i,j,t} = |F_{i,j,t}^{first} - F_{-i,j,t}^{first}|$. Third, we rank all the analysts who cover firm j in year t based on $deviation_{i,j,t}$. Fourth, we use equation (1) to develop a ranking score (denoted $Bold_{ijt}$) that adjusts for the difference in analyst coverage across firms. Finally, $Bold_{ijt}$ is the average of $Bold_{ij}$ over all the firms covered by analyst i in year t. Intuitively, $Bold_{ijt}$ captures analyst i’s deviation from his peers in earnings forecasts.
Experience\(_{i,t}\) is the number of years analyst \(i\) appears in the IBES annual earnings forecast database as of year \(t\). FirmExperience\(_{i,t}\) is the number of years analyst \(i\) follows stock \(j\) as of year \(t\). FirmExperience\(_{i,t}\) is the average of FirmExperience\(_{i,t}\) across all the stocks followed by analyst \(i\) in year \(t\). GAP\(_{i,t}\) is the distance between the earnings announcement date for \(A_{jt}\) and the forecast date for \(F_{jt}^{last}\). GAP\(_{i,t}\) is the average GAP\(_{i,t}\) for all the firms covered by analyst \(i\) in year \(t\). Because Accuracy\(_{i,t}\) is expressed in ranking, we also create a similar ranking variable for FirmsCovered\(_{i,t}\), FirmExperience\(_{i,t}\) and GAP\(_{i,t}\), denoted R_FirmsCovered\(_{i,t}\), R_FirmExperience\(_{i,t}\), and R_GAP\(_{i,t}\), respectively. Similar to Accuracy\(_{i,t}\), FirmExperience\(_{i,t}\) and GAP\(_{i,t}\) are converted into ranking and denoted R_FirmExperience\(_{i,t}\) and R_GAP\(_{i,t}\), respectively.

Variables Related to Quarterly Earnings Forecasts

Note that the analyst turnover definition (Fire\(_{i,t+1}\)) is identical for the annual and quarterly forecast analyses. To compute the other regression variables needed for the quarterly earnings forecast analysis, we first identify the quarterly earnings announcements made between the two annual earnings announcement dates for \(A_{jt-1}\) and \(A_{jt}\) in Figure 1, including the earnings announcement for the last fiscal quarter (i.e., announcement date for \(A_{jt}\)). Then, for each quarterly earnings announcement (say fiscal quarter 2 of 1998), we identify all the one-quarter ahead and two-quarters ahead quarterly earnings forecasts that are issued after the announcement of the quarterly earnings two quarters prior (i.e., fiscal quarter 4 of 1997) but before the announcement of the current quarterly earnings announcement (i.e., fiscal quarter 2 of 1998). We do not consider three or more quarters ahead quarterly earnings forecasts because there are very few in IBES. Finally, we retain the first (last) quarterly earnings forecast that is issued in the first (second) half of
the period between the announcement of the quarterly earnings two quarters prior (i.e., fiscal quarter 4 of 1997) and the announcement of the current quarterly earnings (i.e., fiscal quarter 2 of 1998).

The quarterly equivalents of Accuracy$_{ijt}$, Bold$_{ijt}$, FirmsCovered$_{ijt}$, FirmExperience$_{ijt}$, GAP$_{ijt}$, R$_{-}$FirmsCovered$_{ijt}$, R$_{-}$FirmExperience$_{ijt}$, and Follow$_{ijt}$ are computed for each of the quarterly earnings announcements that fall between the two annual earnings announcement dates for A$_{jt-1}$ and A$_{jt}$ in Figure 1. To obtain the yearly equivalents of OP$_{i,t}$, OO$_{i,t}$, PP$_{i,t}$, PO$_{i,t}$, Accuracy$_{i,t}$, Bold$_{i,t}$, and Experience$_{i,t}$, we first compute the mean of each quarterly equivalent across all quarters in year t for each firm-analyst, followed by the averaging of the mean quarterly equivalent across all firms followed by analyst i in year t.

4.2. Regression Models

We use the following OLS regression model to test H1:

$$ Accuracy_{ijt} = \alpha_k + \alpha_t + \alpha_1 Bias_{ijt} + Control\ variables_{ijt} + \epsilon_{ijt} \tag{3} $$

The model is estimated using annual earnings forecasts at the firm-analyst-year level and quarterly earnings forecasts at the firm-analyst-year-quarter level. Therefore, the subscript ‘t’ in the model refers to either yearly or quarterly observations. α_k and α_t are brokerage firm and year fixed effects, controlling for systematic differences in Accuracy$_{ijt}$ across time and brokerage firms. The control variables are Bold$_{ijt}$, R$_{-}$FirmExperience$_{ijt}$, R$_{-}$FirmsCovered$_{ijt}$, R$_{-}$GAP$_{ijt}$, and ln(Follow$_{ijt}$). Bold$_{ijt}$ controls for the potential effect of forecast boldness on forecast accuracy because Hong et al. (2000) find that bold but inexperienced analysts are more likely to be fired. R$_{-}$FirmExperience$_{ijt}$, R$_{-}$FirmsCovered$_{ijt}$, and R$_{-}$GAP$_{ijt}$ control for the effect of analyst i’s
firm-specific forecasting experience, number of firms covered, and forecast timing, respectively, on forecast accuracy. Because the dependent variable is a relative measure, these three variables are also defined on relative terms. Because Follow_{ijt} is identical for all the analysts who follow the same firm j, it is not converted to a ranking variable. We use $\ln(\text{Follow}_{ijt})$ to allow for a possible nonlinear effect of Follow_{ijt}. Bias_{ijt} refers to OP_{ijt}, OO_{ijt}, PP_{ijt}, or PO_{ijt} for both annual and quarterly earnings forecasts. To avoid multicollinearity, the coefficient on PO_{ijt} is suppressed in model (3). If a forecast bias is used to win favor from management, H1 predicts the coefficient on that forecast bias to be larger than the coefficients on the other forecast biases.

We do not include any firm-specific control variables in regression model (3) because Accuracy_{ijt} is relative forecast accuracy for all analysts covering the same firm and thus automatically controls for firm-specific differences. For example, relative forecast accuracy controls for variations in earnings forecast difficulty across companies and time. As another example, firm size may be a determinant of absolute forecast accuracy because large firms tend to have a richer information environment. However, firm size should not have an effect on relative forecast accuracy because all analysts who cover the firm face the same information environment. Likewise, regression model (3) does not need to control for management’s earnings management incentives or public information disclosures (e.g., quarterly earnings announcements) between the annual earnings announcement dates for A_{jt-1} and A_{jt} because such events are common to all analysts who follow the same firm and thus has been controlled for in Accuracy_{ijt}.

Because the definitions of Accuracy_{ijt} and Bias_{ijt} use information in the last earnings forecast, the regression model (3) implicitly assumes that an analyst who receives privileged access

10 Because \hat{R}_GAP_{ijt} is an important determinant of forecast accuracy, we also allow the effect of \hat{R}_GAP_{ijt} to differ for each value of \hat{R}_GAP_{ijt} and obtain similar inference.
to management’s private information before issuing his last earnings forecast can credibly commit to firm management that his last earnings forecast will be biased. This seems a reasonable assumption given the intimate and frequent interactions between firm management and financial analysts.

As argued in section 2.2, $Bias_{ijt}$ is also expected to affect $Accuracy_{ijt+1}$. Unfortunately, such effect is not observable for the analysts who do not issue biased forecasts and thus are fired (see H2). Thus, we do not use $Accuracy_{ijt+1}$ in regression model (3). However, as a sensitivity check, we also report the Heckman (1976) regression result of $Accuracy_{ijt+1}$ on $Bias_{ijt}$ in section 5.2.4.

We use the following logit regression model to test H2:

$$Fire_{ijt+1} = \beta_k + \beta_1Bias_{ijt} + \beta_2Accuracy_{ijt} + \beta_3Bold_{ijt} + \beta_4\ln(Experience_{ijt}) + \varepsilon_{ijt}$$ (4)

The model is estimated using annual and quarterly earnings forecasts aggregated at the analyst year level. β_k and β_1 are brokerage firm and year fixed effects. $Accuracy_{ijt}$ controls for the effect of past forecast accuracy on $Fire_{ijt+1}$, while $\ln(Experience_{ijt})$ controls for an analyst’s tenure in the profession. $Bold_{ijt}$ controls for the effect of forecast boldness on analyst turnover. Hong et al. (2000) find that bold but inexperienced analysts are more likely to leave the analyst profession. $Bias_{ijt}$ refers to OP_{ijt}, OO_{ijt}, PP_{ijt}, or PO_{ijt}. Again, to avoid multicollinearity, the coefficient on PO_{ijt} is suppressed in model (4). If a forecast bias is used to win favor with management, H2 predicts the coefficient on that forecast bias to be smaller than the coefficients on the other forecast biases. Note that regression model (4) controls for the current period earnings.

For our sample, 20% of the analysts who were terminated (i.e., disappeared from the IBES database) did so only after one year of employment.
forecast accuracy $\text{Accuracy}_{i,t}$, thus the coefficient on $\text{Bias}_{i,t}$ captures the effect of a forecast bias on the probability of firing above and beyond the current period forecast accuracy.

5. Descriptive Statistics and Regression Results

5.1. Descriptive Statistics

Table 1 reports the descriptive statistics for the variables used in regression models (3) and (4). Panels A and B show the variables used in model (3) for the annual and quarterly earnings forecasts, respectively, while Panels C and D show the variables used in model (4) for the annual and quarterly earnings forecasts, respectively.

The unit of observation in Panel A is a firm-analyst-year. The mean values of OP, OO, PP, and PO indicate that the most common annual earnings forecast bias is OO, followed by PP, OP, and PO. Although it is difficult to assess whether the frequencies of the four biases are normal or abnormal in the absence of a clear benchmark, it is striking to observe that the PO bias is the rarest in the sample. The mean analyst has 4.3 years of stock-specific forecasting experience ($\text{FirmExperience}_{ijt}$), follows 25.29 stocks ($\text{FirmsCovered}_{ijt}$), and covers stocks with 21.07 analysts following (Follow_{ijt}).\(^{12}\) The mean GAP of 78.89 days suggests that the last annual earnings forecast is on average issued after the 3rd fiscal quarter’s earnings announcement date. Panel A also reports the distribution of the ranked variables. The mean of each of those ranked variables is 50 by construction.

\(^{12}\) The distribution of $\text{FirmsCovered}_{ijt}$ at the firm-analyst-year level is distorted because the values of $\text{FirmsCovered}_{ijt}$ are identical for all the firms covered by analyst i in year t. The mean (median) of $\text{FirmsCovered}_{ijt}$ at the analyst-year level is 13.91 (11). This problem also applies to $\text{FirmsCovered}_{ijt}$ in Panel B.
The unit of observation in Panel B is a firm-analyst-year-quarter. Had all analysts who are included in Panel A issued at least two quarterly earnings forecasts for each fiscal quarter, the sample size for Panel B should be four times the size in Panel A (i.e., 228,904*4). The smaller sample size of 114,075 in Panel B reflects the fact that analysts issue either zero or only one quarterly earnings forecast for many fiscal quarters. Despite the significant difference in the sample size between Panel A and Panel B, the frequencies of the four forecast biases in Panel B are close to those in Panel A except that the PP bias has the highest frequency. The mean values of $FirmExperience_{it}$, $Follow_{it}$, and $FirmsCovered_{it}$ are similar to those in Panel A. The mean GAP of 48.67 days suggests that the last quarterly earnings forecast is on average issued in the middle of two consecutive quarterly earnings announcement dates.

The unit of observation in Panel C is an analyst-year. The mean indicates that 15% of the analysts are fired over our sample period, a nontrivial percentage. Untabulated analyses further indicate that among the fired analysts in our sample, 20.2% of them are fired in the second year of their career, 22.47% in the third year of their career, 14.59% in the fourth year of their career, and 9.49% in the fifth year of their career. Clearly, the majority of the firing occurs in an analyst’s early stage of his career. The distributions of the four forecast biases are similar to those in Panel A. The mean analyst has been in the analyst profession for 5.01 years ($Experience_{i,t}$).

The unit of observation in Panel D is an analyst-year. Due to the sample size difference, the mean $Fire_{i,t+1}$ is slightly smaller than that in Panel C. The distributions of the four forecast biases are similar to those in Panel B. The distribution of $Experience_{i,t}$ is approximately one year higher than that in Panel C.

Table 2 reports the Spearman (top diagonal) and Pearson (bottom diagonal) correlations for the key regression variables in models (3) and (4) using observations at the analyst-year level.
Because the correlations are similar for both Spearman and Pearson, we focus on the Pearson correlations (bottom diagonal) in the following discussion.

\[\text{Accuracy}^A_{i,t} \] is the relative earnings forecast accuracy (\(\text{Accuracy}_{i,t} \)) using annual earnings forecasts while \(\text{Accuracy}^Q_{i,t} \) is the relative earnings forecast accuracy (\(\text{Accuracy}_{i,t} \)) using quarterly earnings forecasts. The other variables in Table 2 are similarly defined. The correlation between \(\text{Accuracy}^A_{i,t} \) and \(\text{OP}_{i,t} \) is significantly positive for both annual and quarterly forecasts, but the correlation between \(\text{Accuracy}^Q_{i,t} \) and any of the other three biases is either significantly negative or insignificant. These univariate correlations are consistent with the hypothesis that analysts use \(\text{OP}_{i,t} \) forecasts to gain better access to management’s private information. In addition, the significantly positive correlation between \(\text{OP}^A_{i,t} \) and \(\text{OP}^Q_{i,t} \) suggests that analysts often issue both annual and quarterly OP earnings forecasts to please management.

\(\text{Fire}_{i,t+1} \) is significantly negatively correlated with \(\text{OP}_{i,t} \) for both annual and quarterly forecasts. Except for the marginally significantly negative correlation between \(\text{Fire}_{i,t+1} \) and \(PP^A_{i,t} \), the correlation between \(\text{Fire}_{i,t+1} \) and any of the other forecast biases is either insignificant or significantly positive. These univariate correlations are consistent with the hypothesis that analysts who issue annual and quarterly OP earnings forecasts are less likely to be fired. This evidence is consistent with the univariate correlations for \(\text{Accuracy}_{i,t} \).

5.2 Regression Results

5.2.1. H1
Table 3 reports the OLS regression results for H1. Panel A reports the results for annual earnings forecasts while Panel B shows the results for quarterly earnings forecasts. The standard errors are adjusted for heteroskedasticity and correlations for observations of the same stocks using the method of Rogers (1993).

Results for Annual Earnings Forecasts

Column (1) of Panel A shows that relative to PO analysts’ forecast accuracy, OP analysts’ annual earnings forecasts are more accurate while OO analysts’ forecasts are less accurate and PP analysts’ forecasts are equally accurate. In addition, the coefficient on OP is significantly larger than those of OO and PP (two-tailed p<0.001). These results are consistent with the hypothesis that analysts use OP forecasts to gain better access to management’s private information. The significantly negative coefficient on OO and the insignificant coefficient on PP are inconsistent with the hypothesis that analysts issue consistently optimistic or pessimistic annual earnings forecasts to gain better access to management.¹³

The negative coefficient on $Bold_{ijt}$ suggest that bolder analysts produce less accurate earnings forecasts. The coefficient on $FirmExperience_{ijt}$ is significantly positive, suggesting that experienced analysts produce more accurate forecasts, a finding consistent with Clement (1999). As expected, forecasts issued closer to the earnings announcement date are more accurate. We do not offer any economic interpretation on the coefficients on $R_{-FirmsCovered_{ijt}}$ and $ln(Follow_{ijt})$ because they mainly control for the limitations of $Accuracy_{ijt}$ for analysts who follow few firms or thinly covered firms.

¹³ An alternative earnings forecast optimism definition used in prior research is defined relative to the consensus earnings forecast of the other analysts who follow the same firm (see e.g., Hong and Kubik, 2003). Including this alternative optimism definition in models (3) and (4) does not alter any of our inferences. In addition, the coefficient on this alternative optimism is significantly negative in model (3) and significantly positive in model (4), suggesting that optimistic analysts produce less accurate earnings forecasts and are more likely to be fired, inconsistent with the hypothesis that analysts use optimistic earnings forecasts to please firm management for more private information.
Because only the coefficient on OP in column (1)’s regression is consistent with H1, column (2) of Panel A reports the regression in column (1) after dropping OO and PP. As expected, the coefficient on OP continues to be significantly positive. The result in column (3) is discussed in section 5.2.3.

Results for Quarterly Earnings Forecasts

Column (1) of Panel B reports the regression coefficients of model (3) for quarterly earnings forecasts. The coefficients on both the control variables and the four forecast biases are consistent with those in column (1) of Panel A. Column (2) of Panel B reports the regression result without OO and PP. As expected, the coefficient on OP remains significantly positive. Overall, the evidence in Panels A and B is consistent with Richardson et al. (2004) who find that managers prefer OP consensus earnings forecasts. The result in column (3) is discussed in section 5.2.3.14

5.2.2. H2

Table 4 reports the logit regression results for H2. Panel A reports the results for annual earnings forecasts while Panel B shows the results for quarterly earnings forecasts. Panel C combines the regression variables in Panels A and B into one regression. The standard errors in table 4 are adjusted for heteroskedasticity and correlations for observations of the same brokers using the method of Rogers (1993).

Results for Annual Earnings Forecasts

14 Including the relative earnings forecast accuracy defined using the initial earnings forecast F_{ijt}^{first} in regression model (3) does not affect the coefficient on OP in Table 3, suggesting that the positive coefficient on OP is not because OP analysts are inherently more accurate than other analysts. In addition, the coefficient on OP is robust to controlling for the ranked signed difference between the reported earnings and an individual analyst’s initial or last earnings forecast (defined in the same way as $Accuracy_{ijt^*}$).
Column (1) of Panel A reports the regression coefficients of model (4) using annual earnings forecasts. Consistent with prior research, more accurate and more experienced analysts are less likely to be fired. The coefficient on $Bold_{i,t}$ is insignificant. The coefficient on OP is significantly negative but the coefficients on OO and PP are insignificant. In addition, the coefficient on OP is significantly larger in magnitude than those on OO and PP (two-tailed $p=0.01$ or lower). Because model (4) controls for current forecast accuracy, the significant regression coefficient on OP suggests that OP analysts are less likely to be fired presumably because of their improved future earnings forecast accuracy relative to other analysts (see section 5.2.4 for direct evidence). The insignificant coefficients on OO and PP further suggest that consistently issuing optimistic or pessimistic annual earnings forecasts alone is not sufficient to reduce the probability of firing. As a sensitivity check, column (2) of Panel A reports the coefficients of model (4) after dropping OO and PP. Not surprisingly, the coefficient on OP remains significantly negative. The result in column (3) is discussed in section 5.2.3.

Results for Quarterly Earnings Forecasts

Column (1) of Panel B reports the regression coefficients of model (4) for quarterly earnings forecasts. The coefficients on the control variables are consistent with those in column (1) of Panel A. Consistent with the coefficients in Panel A, the coefficients on OP and OO are significantly negative and insignificant, respectively. There is weak evidence at the 10% two-tailed significance level that PP analysts are less likely to be fired relative to the benchmark PO analysts. However, the coefficient on PP is significantly smaller in magnitude than that on OP (two-tailed $p=0.05$). In addition, as shown in column (2) of Panel B, the effect of OP dominates the other three biases as the coefficient on OP remains significantly negative after the omission of OO and PP in
the regression. Overall, the results for the quarterly forecasts are consistent with those for the annual forecasts. The result in column (3) is discussed in section 5.2.3.

Results for Annual and Quarterly Earnings Forecasts Combined

To determine the incremental effect of $OP_{i,t}$ and $OP_{i,t}$ on the probability of firing, Panel C of Table 4 reports the coefficients of model (4) by combining the independent variables in column (1) of Panels A and B. The sample size in this regression is smaller than that in Panel A or Panel B because not all analysts issue both annual and quarterly earnings forecasts for the same fiscal year. The coefficients on the control variables remain in the same directions as those in Panels A and B and significant except for the insignificant coefficient on $Accuracy_{i,t}$. Thus, once controlling for the annual earnings forecast accuracy, the quarterly earnings forecast accuracy matters little in the probability of firing. The coefficients on $OP_{i,t}$ and $OP_{i,t}$ are both significantly negative but are not significantly different from each other (two-tailed p=0.59), suggesting that both the annual and quarterly OP biases are associated with the probability of firing.

5.2.3. Further Tests of H1 and H2

Regression models (3) and (4) assume that analysts have incentives to use biased earnings forecasts to please managements of all firms. However, as discussed in section 2.2, the preference for biased earnings forecasts should be stronger for managers who need to sell significant amounts of their personal equity holdings in the firm regularly. Thus, these managers should have a stronger incentive to trade their private information for analysts’ biased earnings forecasts. In addition, we also expect the predicted effect of biased forecasts on relative forecast accuracy and the probability of firing to be stronger for firms with difficult-to-forecast earnings. This is because when earnings are easy to predict and thus all analysts’ earnings forecasts are already very accurate, having
management’s private information will not enable an analyst to significantly improve his relative forecast accuracy. The converse is true when earnings are difficult to predict.

The last column of Table 3 reports the regression results of model (3) allowing the coefficient on OP_{ijt} (annual forecasts in Panel A and quarterly forecasts in Panel B) to vary with the insider trading intensity (denoted $InsiderSell_{ijt}$) and the degree of earnings forecasting difficulty (denoted $Dispersion_{ijt}$). For both the annual and quarterly samples, $InsiderSell_{ijt}$ is a dummy that is equal to 1 if the average net insider selling (expressed in 1982 dollars) by all corporate officers and directors for firm j followed by analyst i during the calendar year immediately before the earnings announcement date for $Accuracy_{ijt}$ is larger than the 75th percentile of our sample. For the annual sample, $InsiderSell_{ijt}$ is the average of $InsiderSell_{ijt}$ over all the firms covered by analyst i in year t. For the quarterly sample, $InsiderSell_{ijt}$ is defined as the mean of $InsiderSell_{ijt}$ across all quarters in year t for each firm-analyst, followed by the averaging of the above mean across all firms covered by analyst i in year t.

Because we wish to capture the ex ante effect of insider selling, $InsiderSell_{ijt}$ is measured before $Accuracy_{ij,t}$ and $Fire_{ij,t+1}$ (the dependent variables for H1 and H2 respectively). Using insider sales after the measurement of the dependent variables is problematic because insiders tend to sell (buy) after positive (negative) earnings surprises. In addition, insiders should continue to have an incentive to report earnings increases immediately after their stock sales in order to avoid the perception of illegal insider trading. Therefore, $InsiderSell_{ijt}$ should be a reasonable proxy for

15 Aboody and Kasznik (2000) find that corporate executives manage voluntary disclosures to depress stock prices immediately before new stock option grants. Because new option grants are unavailable for all of our sample firms, they are not included in $InsiderSell_{ijt}$. As a result, our insider selling measure likely understates the true effect of the insider selling incentive.
insiders’ ex ante preference for biased earnings forecasts. The correlation between $\text{InsiderSell}_{i,t}$ and $\text{InsiderSell}_{i,t+1}$ is very high (the Pearson correlation is 62% for our sample).

Dispersion_{ijt} is a dummy that is equal to 1 if the forecast dispersion (defined as the standard deviation of the earnings forecasts scaled by the magnitude of the realized earnings) is greater than the 75th percentile of our sample.16 For both the annual and quarterly samples, Dispersion_{ijt} is computed using each analyst’s first earnings forecast, although results are similar if each analyst’s last earnings forecast is used instead. $\text{Dispersion}_{i,t}$ is the average of Dispersion_{ijt} over all the firms covered by analyst i in year t and defined similarly to $\text{InsiderSell}_{i,t}$.

Note that InsiderSell_{ijt} and Dispersion_{ijt} are not defined as continuous variables because the effects of insider selling and forecast difficulty are likely nonlinear. In addition, continuous measures of InsiderSell_{ijt} and Dispersion_{ijt} could be unduly influenced by a few of the stocks followed by analysts i in year t. Untabulated sensitivity checks indicate that the interaction results for InsiderSell_{ijt} and Dispersion_{ijt} are robust to alternative cutoffs (e.g., 66th, 70th, or 80th percentile), but become insignificant when InsiderSell_{ijt} and Dispersion_{ijt} are defined as continuous variables.

Consistent with our predictions, the coefficients on $\text{OP}_{ijt} \times \text{InsiderSell}_{ijt}$ and $\text{OP}_{ijt} \times \text{Dispersion}_{ijt}$ in both Panels A and B of Table 3 are significantly positive with the exception of the positive but insignificant coefficient on $\text{OP}_{ijt} \times \text{Dispersion}_{ijt}$ in Panel B. The results suggest

16 Because of zero realized earnings, Dispersion_{ijt} is not defined for 298 firm-analyst-year observations in the annual forecast sample and 462 firm-analyst-year-quarter observations in the quarterly forecast sample. Dispersion_{ijt} is set equal to 1 in those cases.
that the positive effect of issuing OP annual and quarterly earnings forecasts on relative forecast accuracy is stronger for firms with heavy insider sales and hard-to-predict earnings.

The negative coefficients on $InsiderSell_{it}$ and $Dispersion_{it}$ in Table 3 are expected and consistent with H1 because they reflect the effect of these two variables for only analysts who do not issue OP forecasts. For example, for a low forecast dispersion firm, management’s private information should matter less in determining the ranking of the analysts who follow the firm; therefore analysts who do not issue OP forecasts are not going to suffer significantly in forecast accuracy relative to those who issue OP forecasts. In contrast, for a high dispersion firm, management’s private information matters more in the ranking and therefore those analysts who do not issue OP forecasts are going to suffer more in forecast accuracy relative to the OP analysts who cover the same firm. Therefore, we should expect non-OP analysts’ relative earnings forecast accuracy to be lower for high dispersion firms than for low dispersion firms. A similar reasoning applies to $InsiderSel_{it}$. The negative coefficients on $InsiderSell_{it}$ and $Dispersion_{it}$ do not conflict with our argument in section 4.2 that firm-specific variables should not affect $Accuracy_{it}$ when included alone. We have verified that the coefficients on $InsiderSell_{it}$ and $Dispersion_{it}$ are insignificant when OP_{it}, $OP_{it} \times InsiderSell_{it}$ and $OP_{it} \times Dispersion_{it}$ are omitted from the interaction model in Table 3.

The last column of Table 4 reports the regression results of model (4) allowing the coefficients on OP_{it} to vary with $InsiderSell_{it}$ and $Dispersion_{it}$. As predicted, the coefficients on $OP_{it} \times InsiderSell_{it}$ and $OP_{it} \times Dispersion_{it}$ in Panels A and B of Table 4 are significantly negative except for the insignificant coefficient on $OP_{it} \times Dispersion_{it}$ in Panel B. These results suggest that the negative effect of issuing annual and quarterly OP forecasts on the probability of
firing is stronger for firms with heavy insider sales and hard-to-predict earnings. Overall, the results from the interaction models in Tables 3 and 4 provide further support for our hypotheses.

Because we find little evidence in column (1) of tables 3 and 4 (panels A and B) that OO and PP are associated with improved forecast accuracy and a smaller probability of firing, the interaction models in column (3) of tables 3 and 4 do not allow the coefficients on OO and PP to vary with the insider selling and forecast dispersion variables. As a sensitivity check, we rerun the interaction models in tables 3 and 4 by allowing the coefficients on OO and PP to vary with the insider selling and forecast dispersion variables (results not tabulated). For the annual sample in panel A of table 3, the coefficient on $OP_{jt} \times InsiderSell_{jt}$ is larger (i.e., consistent with H1) than the coefficients on $OO_{jt} \times InsiderSell_{jt}$ and $PO_{jt} \times InsiderSell_{jt}$ but not different from the coefficient on $PP_{jt} \times InsiderSell_{jt}$ at the 10% one-tailed level or better; the coefficient on $OP_{jt} \times Dispersion_{jt}$ is larger than the coefficient on $PP_{jt} \times Dispersion_{jt}$ but not different from the coefficients on $OO_{jt} \times Dispersion_{jt}$ and $PO_{jt} \times Dispersion_{jt}$ at the 10% one-tailed level or better. For the quarterly sample in panel B of table 3, the coefficient on $OP_{jt} \times InsiderSell_{jt}$ is significantly larger than the coefficients on $OO_{jt} \times InsiderSell_{jt}$, $PP_{jt} \times InsiderSell_{jt}$, and $PO_{jt} \times InsiderSell_{jt}$ at the 10% one-tailed level or better, but the coefficient on $OP_{jt} \times Dispersion_{jt}$ is never significantly larger than any of the other three dispersion interactions at the 10% one-tailed level.

For the annual sample in panel A of table 4, the coefficient on $OP_{i,t} \times InsiderSell_{i,t}$ is significantly smaller (i.e., consistent with H2) than the coefficients on $OO_{i,t} \times InsiderSell_{i,t}$ and $PP_{i,t} \times InsiderSell_{i,t}$ but not different from the coefficient on $PO_{i,t} \times InsiderSell_{i,t}$ at the 10% one-tailed level or better; the coefficient on $OP_{i,t} \times Dispersion_{i,t}$ is smaller than the coefficients on
$OO_{i,t} \times Dispersion_{i,t}$ and $PP_{i,t} \times Dispersion_{i,t}$ but not different from the coefficient on $PO_{i,t} \times Dispersion_{i,t}$ at the 10% one-tailed level or better. For the quarterly sample in panel B of table 4, the coefficient on $OP_{i,t} \times InsiderSell_{i,t}$ is significantly smaller than the coefficients on $OO_{i,t} \times InsiderSell_{i,t}$ and $PP_{i,t} \times InsiderSell_{i,t}$ but not different from the coefficient on $PO_{i,t} \times InsiderSell_{i,t}$ at the 10% one-tailed level or better; but the coefficient on $OP_{i,t} \times Dispersion_{i,t}$ is not different from any of the other dispersion interactions at the 10% one-tailed level. Overall, the results from above sensitivity checks are broadly consistent with the reported interaction models in tables 3 and 4 but weaker in significance because of the separation of the control group into three subgroups.17

To gauge the economic significance of issuing OP earnings forecasts on analysts’ forecast accuracy and job security, we compute the marginal effects of OP for the annual earnings forecast regressions in Panel A of Tables 3 and 4. The coefficient on $OP_{i,t}$ in Panel A, column (2) of Table 3 (6.530) indicates that a one standard deviation increase in $OP_{i,t}$ is associated with an increase in relative forecast accuracy of 2.86 (i.e., 6.530*0.438). For analysts who cover stocks with heavy insider selling and difficult-to-forecast earnings (defined as observations whose values of $InsiderSell_{i,t}$ and $Dispersion_{i,t}$ are equal to one), a one standard deviation increase in $OP_{i,t}$ is associated with an increase in relative forecast accuracy of 3.33 (i.e., [6.079+0.781+0.736]*0.438). As a comparison, a one standard deviation increase in $R_{-FirmExperience_{i,t}}$ in Panel A, column (2) of Table 3 is associated with an increase in relative forecast accuracy of only 0.41 (i.e., 0.013*31.43).

17 As a sensitivity check, we also replaced OP in the regressions of columns (2) and (3) of tables 3 and 4 with either OO, PP, or PO. We found no evidence consistent with H1 and H2 for any of those biases.
The coefficient on $OP_{i,t}$ in Panel A, column (2) of Table 4 indicates that a one standard deviation increase in $OP_{i,t}$ is associated with a decrease in the probability of firing by 0.99% evaluated at the mean values of the independent variables. For analysts who cover stocks with heavy insider selling and difficult-to-forecast earnings (defined as observations whose values of $InsiderSell_{i,t}$ and $Dispersion_{i,t}$ exceed the 75th percentile of the sample), a one standard deviation increase in $OP_{i,t}$ is associated with a decrease in the probability of firing by 1.45% evaluated at the mean values of the independent variables. Because the mean unconditional probability of firing is 15% (see Table 1, Panel C), increasing $OP_{i,t}$ by one standard deviation will reduce the probability of firing by 9.7% (i.e., 1.45/15). As a comparison, the coefficient on $Accuracy_{i,t}$ in Panel A, column (2) of Table 4 indicates that a one standard deviation increase in $Accuracy_{i,t}$ is associated with a decrease in the probability of firing by 3.91% evaluated at the mean values of the independent variables. It should be noted that the effect of $Accuracy_{i,t}$ partially reflects the effect of $OP_{i,t}$ because OP analysts also produce more accurate contemporaneous earnings forecasts.

5.2.4. The Effect of Issuing Biased Earnings Forecasts on Future Earnings Forecast Accuracy

As part of the motivation for H2 in section 2.1, we assume that analysts who do not issue biased earnings forecasts will suffer in their future earnings forecast accuracy, even after controlling for current forecast accuracy. We use the following regression model to offer direct evidence on this hypothesis for the annual and quarterly earnings forecasts separately:

$$Accuracy_{i,t+1} = \alpha_k + \alpha_{i+1} + \alpha_{2}Bias_{i,t} + \alpha_{3}Accuracy_{i,t} + \alpha_{4}Bold_{i,t+1} + \alpha_{A} \ln(Follow_{i,t+1})$$

$$+ \alpha_{5}R_{-FirmsCovered}_{i,t+1} + \alpha_{6}R_{-FirmExperience}_{i,t+1} + \alpha_{7}R_{-GAP}_{i,t+1} + \epsilon_{i,t+1}$$

(5)
The above model is similar to model (3) except for the addition of \(Accuracy_{i,t} \). In addition, model (5) can only be estimated using the surviving analysts because analysts who do not issue biased earnings forecasts are more likely to be fired. To produce consistent estimates of the regression coefficients of model (5), we use regression model (4) without the year and broker fixed effects to correct for the sample selection bias (see Heckman, 1976). Because regression model (4) is estimated at the analyst year level, the unit of observation for model (5) is also an analyst year. \(Bias_{i,t} \) refers to the \(OP_{i,t} \) bias and is predicted to be positive. The other variables are defined in section 4.1.

Table 5 reports the regression coefficients of model (5) for annual (Panel A) and quarterly (Panel B) earnings forecasts. The standard errors are adjusted for heteroskedasticity and correlations for observations of the same brokers using the method of Rogers (1993).

For both the annual and quarterly earnings forecasts, the coefficients on the control variables are consistent with those in Table 3 and generally significant. As expected, the coefficient on \(Accuracy_{i,t} \) is significantly positive in both panels. The coefficient on \(OP_{i,t} \) is significantly positive for the annual earnings forecasts in Panel A but insignificant (though positive) for the quarterly earnings forecasts in Panel B (two-tailed \(p=0.13 \)). The weaker coefficient on \(OP_{i,t} \) in Panel B could be caused by the smaller sample size. Another reason is that not all analysts issue multiple quarterly earnings forecasts for every fiscal quarter (see footnote 1) and thus the values of \(OP_{i,t} \) and \(Accuracy_{i,t+1} \) could be computed for different mixes of firms, which should weaken the association between \(OP_{i,t} \) and \(Accuracy_{i,t+1} \). Overall, the results in Table 5 are consistent with the hypothesis that OP analysts produce more accurate future earnings forecasts, even after controlling
for the current earnings forecast accuracy. This evidence offers one rationale for why the coefficient on $OP_{t,d}$ in model (4) is negative even after controlling for current forecast accuracy.

5.2.5. Investment Banking Incentive As an Alternative Explanation

Popular press (see e.g., Gasparino, 2002) alleges that analysts use biased earnings forecasts to help their employers win more investment banking businesses. The record settlement between U.S. government regulators and the ten largest securities firms in 2003 directly targets securities firms’ alleged abuses of using biased analyst research to win investment-banking business. While several studies (e.g., Michaely and Womack, 1999; Dugar and Nathan, 1995; Lin and McNichols, 1998; Bradshaw et al., 2003) finds evidence supporting the above allegation, a few recent studies (e.g., Cowen et al., 2006; Jacob et al., 2003) find no such evidence.

Because analysts who work for investment banks may have better access to management’s private information during the underwriting process of existing clients or during the competition for new clients, our H1 and H2 are potentially consistent with the investment banking incentive. However, such associations are spurious (not causal) because an analyst’s primary purpose for issuing biased earnings forecasts is not to obtain management’s private information to improve forecast accuracy. Instead, improved forecast accuracy is merely a byproduct of analysts’ effort to use biased earnings forecasts to win more investment banking deals.

To determine whether the hypothesized effects of H1-H2 are solely motivated by the investment banking incentive, we rerun regression models (3) and (4) for both annual and quarterly earnings forecasts by allowing the coefficient on OP to vary with $Bookrunner_{t,d}$, a dummy variable that is equal to 1 if a brokerage house served as an equity offering book runner in at least 11 out of the 23 years from 1980 to 2002 (denoted book runner), and 0 if a brokerage house never derived
any revenues from investment banking over 1980-2002 (denoted pure brokerage firm). We also tried 15 years and 23 years as cutoffs and obtained similar results. Brokerage firms who served as book runners for fewer than 11 years or only as syndicates over 1980-2002 are excluded from this analysis because the influence of investment banking business is unclear for these firms, although inference is similar if those brokerage firms are combined with the book runners or pure brokerage firms.

If the investment banking incentive is the driver of biased earnings forecasts, the predicted effects of H1 and H2 should not exist for analysts who work for pure brokerage firms. Untabulated regression results find no evidence that the predicted effects of H1 and H2 are stronger for analysts who work for investment banks than for those who work for pure brokerage firms. Thus, the documented results for H1 and H2 cannot be solely explained by the investment banking incentive. However, we cannot rule out the possibility that the predicted effects of H1 and H2 for the investment bank analysts are partially related to the investment banking incentive.

5.2.6. Who Are the OP Analysts?

The results in the previous sections show that analysts who issue OP forecasts produce more accurate earnings forecasts and are less likely to be fired. Thus, a natural question to ask is why not all analysts issue OP forecasts. Section 2.1 offers several plausible explanations. One testable explanation is the “bang for the buck” hypothesis. This hypothesis states that managers will play the biased earnings forecast game only with analysts who can exert a significant influence on investors’ expectations. Prior research (see e.g., Jacob et al., 1999; Mikhail et al., 1997; Stickel, 1992) indicates that analysts that are more experienced, from large brokerage houses, and an All-
Star as rated by the Institutional Investor magazine are more influential among investors. Thus, we expect those analysts to be more likely to issue OP forecasts.

Table 6 reports test results consistent with this hypothesis based on the larger annual earnings forecast sample. The unit of observation is an analyst year. Panel A reports the univariate statistics of analyst characteristics by high and low OP using a cutoff of the median OP, while Panel B reports the regression of OP on the multiple analyst characteristics. The regression model also controls for year fixed effects and adjusts the coefficient standard errors for heteroskedasticity and dependence of observations of the same brokerage firms per Rogers (1993). The dependent variable OP is multiplied by 100 in Panel B to increase the precision of the reported regression coefficients. \(FirmExperience_{it} \) is defined as before. \(BrokerSize_{it} \) is defined as the number of unique analysts that belong to brokerage firm \(i \) in year \(t \). \(AllStar_{it} \) is a dummy variable that is coded one if an analyst is an All-Star as ranked by the Institutional Investors magazine in the prior year, and zero otherwise. Consistent with the hypothesis, Panel A of Table 6 shows that high OP analysts are more experienced, employed by larger brokerage firms, and more likely to be an All-Star. The results from the multiple variable regression in Panel B of Table 6 are consistent with the descriptive statistics in Panel A.

6. Conclusion

Analysts are often alleged to use biased earnings forecasts to please management, but the form of the earnings forecast bias analysts use and the benefits analysts receive from issuing biased forecasts are not clearly identified. We hypothesize that analysts use biased earnings forecasts to gain better access to management’s private information to improve their earnings forecast accuracy and job security. Based on prior research, we consider four earnings forecast biases that analysts
could use to please firm management (denoted OP, OO, PP, and PO). OP denotes individual analysts whose initial earnings forecasts are optimistic (i.e., forecast is greater than the realized earnings) but whose last earnings forecasts before the earnings announcement are pessimistic (i.e., forecast is no greater than the realized earnings); OO denotes analysts whose initial and last forecasts are both optimistic while PP denotes analysts whose initial and last forecasts are both pessimistic; finally PO denotes analysts whose initial earnings forecasts are pessimistic but whose last forecasts are optimistic. We test our research questions using both annual and quarterly earnings forecasts because individual analysts often issue both annual and quarterly earnings forecasts and thus it is interesting to examine whether the forecast bias analysts use to please management varies across forecast horizon.

We find that analysts who issue both annual and quarterly OP forecasts have more accurate current and future earnings forecasts relative to other analysts and are less likely to be fired by their employers. These effects are stronger for firms with heavy insider sales and hard-to-predict earnings. In addition, we find that those results hold for analysts employed by both investment banks and pure brokerage firms without investment banking business. Taken together, these empirical results are consistent with the hypothesis that analysts use the OP bias to please firm management to gain better access to management’s private information. Further analyses indicate that OP analysts are more experienced, employed by larger brokerage firms and more likely to be an All-Star. The characteristics of the OP analysts are consistent with the hypothesis that management is more willing to play the biased earnings forecast game with analysts who have more influence on capital market investors.

Despite the robust and consistent empirical results for H1 and H2, our results should be interpreted with caution because we merely document associations and thus our results could be
subject to unknown alternative explanations. In addition, the regression results for H2 should be
interpreted with caution because the construct validity of the dependent variable (Firing) cannot be
independently verified.

Regulation FD has significantly changed the private communication between firm
management and financial analysts. Future research may study how Regulation FD affects analysts’
incentives to use biased earnings forecasts to gain better access to management’s private
information. Although recent research (see e.g., Gintschel and Markov, 2004) shows that
Regulation FD significantly reduces the amount of private information analysts receive from firm
management, it remains unclear whether the private communication between management and
analysts has been completely cut off. For instance, Regulation FD still allows managers to disclose
nonmaterial nonpublic information to analysts. As the SEC recognizes, such nonmaterial
information could be combined with analysts’ own private information to generate material new
insights. As a result, firm management may still have substantial leverage in pressing analysts to
issue biased earnings forecasts to gain access to their private information.
References

Heckman, J. 1976. The common structure of statistical models of truncation, sample selection, and limited dependent variables and a simple estimator for such models. The Annals of Economic and Social Measurement 5: 475-492.

Variable definitions:

A_{jt} denotes firm j’s annual earnings for year t that is announced immediately before July 1, year $t+1$;

A_{jt-1} denotes firm j’s annual earnings for year $t-1$;

F_{ijt}^{last} is analyst i’s latest forecast of annual earnings A_{jt} issued in the second half of the period from the earnings announcement date of A_{jt-1} to the earnings announcement date of A_{jt}; and

F_{ijt}^{first} is analyst i’s earliest forecast of annual earnings A_{jt} issued in the first half of the period from the earnings announcement date of A_{jt-1} to the earnings announcement date of A_{jt}.
Table 1. Descriptive Statistics over January 1, 1983-July 1, 2000

Panel A. Variables used in model (3) for annual earnings forecasts

<table>
<thead>
<tr>
<th>variable</th>
<th>N</th>
<th>Mean</th>
<th>25%</th>
<th>median</th>
<th>75%</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP_{ijt}</td>
<td>228,904</td>
<td>0.260</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.438</td>
</tr>
<tr>
<td>OO_{ijt}</td>
<td>228,904</td>
<td>0.343</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.475</td>
</tr>
<tr>
<td>PP_{ijt}</td>
<td>228,904</td>
<td>0.306</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.461</td>
</tr>
<tr>
<td>PO_{ijt}</td>
<td>228,904</td>
<td>0.091</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.287</td>
</tr>
<tr>
<td>$Accuracy_{ijt}$</td>
<td>228,904</td>
<td>50.00</td>
<td>23.53</td>
<td>50.00</td>
<td>76.19</td>
<td>31.67</td>
</tr>
<tr>
<td>$Bold_{ijt}$</td>
<td>228,904</td>
<td>50.00</td>
<td>21.43</td>
<td>50.00</td>
<td>77.78</td>
<td>32.44</td>
</tr>
<tr>
<td>$FirmExperience_{ijt}$</td>
<td>228,904</td>
<td>4.30</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>3.15</td>
</tr>
<tr>
<td>$R_{-}FirmExperience_{ijt}$</td>
<td>228,904</td>
<td>50.00</td>
<td>22.73</td>
<td>50.00</td>
<td>76.67</td>
<td>31.43</td>
</tr>
<tr>
<td>$Follow_{ijt}$</td>
<td>228,904</td>
<td>21.07</td>
<td>11</td>
<td>19</td>
<td>29</td>
<td>12.62</td>
</tr>
<tr>
<td>$FirmsCovered_{ijt}$</td>
<td>228,904</td>
<td>25.29</td>
<td>14</td>
<td>20</td>
<td>29</td>
<td>22.56</td>
</tr>
<tr>
<td>$R_{-}FirmsCovered_{ijt}$</td>
<td>228,904</td>
<td>50.00</td>
<td>21.15</td>
<td>50.00</td>
<td>78.57</td>
<td>33.13</td>
</tr>
<tr>
<td>GAP_{ijt}</td>
<td>228,904</td>
<td>78.89</td>
<td>43</td>
<td>81</td>
<td>104</td>
<td>43.81</td>
</tr>
<tr>
<td>$R_{-}GAP_{ijt}$</td>
<td>228,904</td>
<td>50.00</td>
<td>21.43</td>
<td>50.00</td>
<td>78.57</td>
<td>32.97</td>
</tr>
</tbody>
</table>
Panel B. Variables used in model (3) for quarterly earnings forecasts

<table>
<thead>
<tr>
<th>variable</th>
<th>N</th>
<th>Mean</th>
<th>25%</th>
<th>median</th>
<th>75%</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP_{ijt}</td>
<td>114,075</td>
<td>0.291</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.454</td>
</tr>
<tr>
<td>OO_{ijt}</td>
<td>114,075</td>
<td>0.298</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.458</td>
</tr>
<tr>
<td>PP_{ijt}</td>
<td>114,075</td>
<td>0.365</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.481</td>
</tr>
<tr>
<td>PO_{ijt}</td>
<td>114,075</td>
<td>0.045</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.208</td>
</tr>
<tr>
<td>$Accuracy_{ijt}$</td>
<td>114,075</td>
<td>50.00</td>
<td>25.00</td>
<td>50.00</td>
<td>75.00</td>
<td>33.03</td>
</tr>
<tr>
<td>$Bold_{ijt}$</td>
<td>114,075</td>
<td>50.00</td>
<td>21.42</td>
<td>50.00</td>
<td>80.00</td>
<td>34.33</td>
</tr>
<tr>
<td>$FirmExperience_{ijt}$</td>
<td>114,075</td>
<td>4.89</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>3.71</td>
</tr>
<tr>
<td>$R_{-FirmExperience_{ijt}}$</td>
<td>114,075</td>
<td>50.00</td>
<td>21.42</td>
<td>50.00</td>
<td>78.57</td>
<td>33.51</td>
</tr>
<tr>
<td>$Follow_{ijt}$</td>
<td>114,075</td>
<td>23.96</td>
<td>15</td>
<td>22</td>
<td>32</td>
<td>11.91</td>
</tr>
<tr>
<td>$FirmsCovered_{ijt}$</td>
<td>114,075</td>
<td>20.15</td>
<td>13</td>
<td>18</td>
<td>24</td>
<td>11.98</td>
</tr>
<tr>
<td>$R_{-FirmsCovered_{ijt}}$</td>
<td>114,075</td>
<td>50.00</td>
<td>21.00</td>
<td>50.00</td>
<td>80.00</td>
<td>35.39</td>
</tr>
<tr>
<td>GAP_{ijt}</td>
<td>114,075</td>
<td>48.67</td>
<td>23</td>
<td>46</td>
<td>76</td>
<td>28.48</td>
</tr>
<tr>
<td>$R_{-GAP_{ijt}}$</td>
<td>114,075</td>
<td>50.00</td>
<td>20.00</td>
<td>50.00</td>
<td>80.00</td>
<td>34.87</td>
</tr>
</tbody>
</table>
Panel C. Variables used in model (4) for annual earnings forecasts

<table>
<thead>
<tr>
<th>variable</th>
<th>N</th>
<th>Mean</th>
<th>25%</th>
<th>median</th>
<th>75%</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fire_{i,t+1}$</td>
<td>32,303</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.36</td>
</tr>
<tr>
<td>$OP_{i,t}$</td>
<td>32,303</td>
<td>0.25</td>
<td>0.00</td>
<td>0.22</td>
<td>0.38</td>
<td>0.25</td>
</tr>
<tr>
<td>$OO_{i,t}$</td>
<td>32,303</td>
<td>0.35</td>
<td>0.13</td>
<td>0.33</td>
<td>0.50</td>
<td>0.29</td>
</tr>
<tr>
<td>$PP_{i,t}$</td>
<td>32,303</td>
<td>0.30</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
<td>0.28</td>
</tr>
<tr>
<td>$PO_{i,t}$</td>
<td>32,303</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>$Accuracy_{i,t}$</td>
<td>32,303</td>
<td>49.85</td>
<td>41.33</td>
<td>50.00</td>
<td>58.77</td>
<td>14.70</td>
</tr>
<tr>
<td>$Bold_{i,t}$</td>
<td>32,303</td>
<td>50.32</td>
<td>42.09</td>
<td>50.00</td>
<td>58.18</td>
<td>14.18</td>
</tr>
<tr>
<td>$Experience_{i,t}$</td>
<td>32,303</td>
<td>5.01</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>3.76</td>
</tr>
</tbody>
</table>
Panel D: Variables used in model (4) for quarterly earnings forecasts

<table>
<thead>
<tr>
<th>variable</th>
<th>N</th>
<th>Mean</th>
<th>25%</th>
<th>median</th>
<th>75%</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire_{i,t+1}</td>
<td>15,278</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.32</td>
</tr>
<tr>
<td>OP_{i,t}</td>
<td>15,278</td>
<td>0.30</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
<td>0.29</td>
</tr>
<tr>
<td>OO_{i,t}</td>
<td>15,278</td>
<td>0.32</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
<td>0.31</td>
</tr>
<tr>
<td>PP_{i,t}</td>
<td>15,278</td>
<td>0.34</td>
<td>0.00</td>
<td>0.33</td>
<td>0.50</td>
<td>0.31</td>
</tr>
<tr>
<td>PO_{i,t}</td>
<td>15,278</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
</tr>
<tr>
<td>Accuracy_{i,t}</td>
<td>15,278</td>
<td>49.65</td>
<td>37.50</td>
<td>50.00</td>
<td>62.50</td>
<td>21.67</td>
</tr>
<tr>
<td>Bold_{i,t}</td>
<td>15,278</td>
<td>50.28</td>
<td>37.50</td>
<td>50.00</td>
<td>62.50</td>
<td>22.17</td>
</tr>
<tr>
<td>Experience_{i,t}</td>
<td>15,278</td>
<td>6.22</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>4.10</td>
</tr>
</tbody>
</table>

* The subscript i refers to analyst i; the subscript j refers to stock j; and the subscript t refers to year t, defined as the period from July 1, t to July 1, t+1 (see Figure 1). OP_{ij} is optimism-to-pessimism forecast bias for analyst i who follows firm j in year t. OO_{ij} is optimism-to-optimism forecast bias for analyst i who follows firm j in year t. PP_{ij} is pessimism-to-pessimism forecast bias for analyst i who follows firm j in year t. PO_{ij} is pessimism-to-optimism forecast bias for analyst i who follows firm j in year t. The four forecast biases are defined using each analyst’s first and last annual earnings forecasts over two consecutive annual earnings announcement dates. Accuracy_{ij} is the standardized earnings forecast accuracy ranking (based on the last earnings forecast) of analyst i relative to other analysts who follow the same firm j in year t. Bold_{ij} is the standardized ranking of the deviation of analyst i’s first annual earnings forecast relative to other analysts’ forecasts for the same firm j in year t. FirmExperience_{ij} is the number of years analyst i follows stock j as of year t. Follow_{ij} is the total number of analysts (including analyst i) who follow firm j in year t. FirmsCovered_{ij} is the number of firms (including firm j) followed by analyst i in year t. GAP_{ij} is the distance in days between the earnings announcement date for A_{ij} and the forecast date for F_{ij}^{last} for
analyst i in year t. \(R_{\text{FirmExperience}_{ijt}} \), \(R_{\text{FirmsCovered}_{ijt}} \), and \(R_{\text{GAP}_{ijt}} \) are the standardized ranking of \(\text{FirmExperience}_{ijt} \), \(\text{FirmsCovered}_{ijt} \), and \(\text{GAP}_{ijt} \), respectively.

\(\text{OP}_{ijt} \) is optimism-to-pessimism forecast bias for analyst i who follows firm j in quarter t. \(\text{OO}_{ijt} \) is optimism-to-optimism forecast bias for analyst i who follows firm j in quarter t. \(\text{PP}_{ijt} \) is pessimism-to-pessimism forecast bias for analyst i who follows firm j in quarter t. \(\text{PO}_{ijt} \) is pessimism-to-optimism forecast bias for analyst i who follows firm j in quarter t. The four forecast biases are defined using each analyst’s first and last quarterly earnings forecasts issued between the quarterly earnings announcement two quarters prior and the current quarter’s earnings announcement. The other variables in Panel B are defined in the same way as the annual definitions in Panel A, using quarterly earnings forecasts.

\(\text{Fire}_{i,t+1} \) is equal to one if analyst i is demoted from a large brokerage firm to a small brokerage firm or permanently leaves the profession during the year from July 1, t+1 to June 30, t+2, and zero otherwise. \(\text{Experience}_{i,t} \) is the number of years analyst i appears in the IBES annual earnings forecast database as of year t. The other variables in Panel C are the average of the respective variables in Panel A across all stocks j followed by analyst i in year t.

\(\text{Experience}_{i,t} \) is defined in Panel C above. The other variables in Panel D are the average of the same variables in Panel B across all stocks j followed by analyst i in year t and are defined as the mean of each quarterly variable across all quarters in year t for each firm-analyst, followed by the averaging of the mean quarterly variable across all firms j followed by analyst i in year t.
Table 2. Correlations for Key Regression Variables over January 1, 1983-July 1, 2000

<table>
<thead>
<tr>
<th></th>
<th>$OP_{i,t}^A$</th>
<th>$OO_{i,t}^A$</th>
<th>$PP_{i,t}^A$</th>
<th>$PO_{i,t}^A$</th>
<th>$OP_{i,t}^Q$</th>
<th>$OO_{i,t}^Q$</th>
<th>$PP_{i,t}^Q$</th>
<th>$PO_{i,t}^Q$</th>
<th>$Accuracy_{i,t}^A$</th>
<th>$Accuracy_{i,t}^Q$</th>
<th>$Fire_{i,t+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$OP_{i,t}^A$</td>
<td>-0.292***</td>
<td>-0.293***</td>
<td>-0.150***</td>
<td>0.257***</td>
<td>-0.011</td>
<td>-0.189***</td>
<td>-0.090***</td>
<td>0.118***</td>
<td>0.030***</td>
<td>-0.107***</td>
<td></td>
</tr>
<tr>
<td>$OO_{i,t}^A$</td>
<td>-0.378***</td>
<td>-0.548***</td>
<td>-0.125***</td>
<td>-0.044***</td>
<td>0.352***</td>
<td>-0.296***</td>
<td>-0.032***</td>
<td>-0.062***</td>
<td>-0.020***</td>
<td>0.033***</td>
<td></td>
</tr>
<tr>
<td>$PP_{i,t}^A$</td>
<td>-0.372***</td>
<td>-0.570***</td>
<td>-0.033***</td>
<td>-0.122***</td>
<td>-0.290***</td>
<td>0.386***</td>
<td>0.039***</td>
<td>-0.033***</td>
<td>-0.017***</td>
<td>-0.050***</td>
<td></td>
</tr>
<tr>
<td>$PO_{i,t}^A$</td>
<td>-0.219***</td>
<td>-0.227***</td>
<td>-0.138***</td>
<td>-0.131***</td>
<td>-0.065***</td>
<td>0.126***</td>
<td>0.140***</td>
<td>-0.014**</td>
<td>0.010</td>
<td>0.016***</td>
<td></td>
</tr>
<tr>
<td>$OP_{i,t}^Q$</td>
<td>0.297***</td>
<td>-0.049***</td>
<td>-0.112***</td>
<td>-0.130***</td>
<td>-0.419***</td>
<td>-0.440***</td>
<td>-0.170***</td>
<td>0.021**</td>
<td>0.180***</td>
<td>-0.029***</td>
<td></td>
</tr>
<tr>
<td>$OO_{i,t}^Q$</td>
<td>0.030***</td>
<td>0.350***</td>
<td>-0.295***</td>
<td>-0.037***</td>
<td>-0.336***</td>
<td>-0.547***</td>
<td>-0.154***</td>
<td>-0.001</td>
<td>-0.147***</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>$PP_{i,t}^Q$</td>
<td>-0.177***</td>
<td>-0.316***</td>
<td>0.402***</td>
<td>0.125***</td>
<td>-0.359***</td>
<td>-0.504***</td>
<td>-0.105***</td>
<td>-0.022**</td>
<td>-0.018***</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>$PO_{i,t}^Q$</td>
<td>-0.076***</td>
<td>-0.055***</td>
<td>0.071***</td>
<td>0.191***</td>
<td>-0.102***</td>
<td>-0.090***</td>
<td>0.030***</td>
<td>0.006</td>
<td>-0.006</td>
<td>0.016*</td>
<td></td>
</tr>
<tr>
<td>$Accuracy_{i,t}^A$</td>
<td>0.123***</td>
<td>-0.038***</td>
<td>-0.022***</td>
<td>-0.014**</td>
<td>0.022**</td>
<td>0.001</td>
<td>-0.027**</td>
<td>0.003</td>
<td>0.232***</td>
<td>-0.147***</td>
<td></td>
</tr>
<tr>
<td>$Accuracy_{i,t}^Q$</td>
<td>0.032***</td>
<td>-0.020**</td>
<td>-0.012</td>
<td>0.011</td>
<td>0.170***</td>
<td>-0.137***</td>
<td>-0.017**</td>
<td>0.007</td>
<td>0.199***</td>
<td>-0.036***</td>
<td></td>
</tr>
<tr>
<td>$Fire_{i,t+1}$</td>
<td>-0.064***</td>
<td>0.062***</td>
<td>-0.014*</td>
<td>0.013**</td>
<td>-0.044***</td>
<td>-0.009</td>
<td>-0.001</td>
<td>0.002</td>
<td>-0.137***</td>
<td>-0.037***</td>
<td></td>
</tr>
</tbody>
</table>

* $Accuracy_{i,t}^A$ is $Accuracy_{i,t}$ using annual earnings forecasts, while $Accuracy_{i,t}^Q$ is $Accuracy_{i,t}$ using quarterly earnings forecasts. See Table 1 for other variable definitions. Spearman correlations are reported in the top diagonal and Pearson correlations are reported in the bottom diagonal. The sample size for the correlations among the annual earnings forecast variables is 32,303; the sample size for the correlations among the quarterly earnings forecast variables is 15,278; the sample size for the correlations across annual and quarterly earnings forecast variables is 14,511. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.
Table 3. OLS Regression Results of Analyst Forecast Accuracy (H1)

Panel A. Regression results using annual earnings forecasts

<table>
<thead>
<tr>
<th>Dependent variable = Accuracy\textsubscript{ijt}</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient (standard error)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP\textsubscript{ijt}</td>
<td>5.059</td>
<td>6.530</td>
<td>6.079</td>
</tr>
<tr>
<td></td>
<td>(0.296)***</td>
<td>(0.162)***</td>
<td>(0.235)***</td>
</tr>
<tr>
<td>OO\textsubscript{ijt}</td>
<td>-3.106</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.255)***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP\textsubscript{ijt}</td>
<td>-0.105</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.308)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bold\textsubscript{ijt}</td>
<td>-0.018</td>
<td>-0.017</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(0.002)***</td>
<td>(0.002)***</td>
<td>(0.002)***</td>
</tr>
<tr>
<td>R_\textsubscript{FirmExperience}\textsubscript{ijt}</td>
<td>0.013</td>
<td>0.013</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.003)***</td>
<td>(0.003)***</td>
<td>(0.003)***</td>
</tr>
<tr>
<td>ln(Follow\textsubscript{ijt})</td>
<td>-0.054</td>
<td>0.058</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.049)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>R_\textsubscript{FirmsCovered}\textsubscript{ijt}</td>
<td>-0.006</td>
<td>-0.006</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.003)***</td>
<td>(0.003)***</td>
<td>(0.003)***</td>
</tr>
<tr>
<td>R_\textsubscript{GAP}\textsubscript{ijt}</td>
<td>-0.108</td>
<td>-0.111</td>
<td>-0.108</td>
</tr>
<tr>
<td></td>
<td>(0.003)***</td>
<td>(0.003)***</td>
<td>(0.003)***</td>
</tr>
<tr>
<td>InsiderSell\textsubscript{ijt}</td>
<td></td>
<td>-0.185</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.098)*</td>
<td></td>
</tr>
<tr>
<td>OP\textsubscript{ijt} × InsiderSell\textsubscript{ijt}</td>
<td></td>
<td>0.781</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.332)**</td>
<td></td>
</tr>
<tr>
<td>Dispersion\textsubscript{ijt}</td>
<td></td>
<td>-0.646</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.115)***</td>
<td></td>
</tr>
<tr>
<td>OP\textsubscript{ijt} × Dispersion\textsubscript{ijt}</td>
<td></td>
<td>0.736</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.362)**</td>
<td></td>
</tr>
<tr>
<td>Brokerage firm fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>228,904</td>
<td>228,904</td>
<td>220,734</td>
</tr>
<tr>
<td>R2</td>
<td>0.038</td>
<td>0.037</td>
<td>0.036</td>
</tr>
</tbody>
</table>
Panel B. Regression results using quarterly earnings forecasts

<table>
<thead>
<tr>
<th>Dependent variable = Accuracy<sub>ijt</sub></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient (standard error)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP<sub>ijt</sub></td>
<td>8.533</td>
<td>10.740</td>
<td>10.252</td>
</tr>
<tr>
<td></td>
<td>(0.594)***</td>
<td>(0.224)***</td>
<td>(0.291)***</td>
</tr>
<tr>
<td>OO<sub>ijt</sub></td>
<td>-5.464</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.519)***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP<sub>ijt</sub></td>
<td>0.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.573)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bold<sub>ijt</sub></td>
<td>-0.015</td>
<td>-0.014</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td>(0.003)***</td>
<td>(0.003)***</td>
<td>(0.003)***</td>
</tr>
<tr>
<td>R<sub>-FirmExperience<sub>ijt</sub></td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(0.004)**</td>
<td>(0.004)**</td>
<td>(0.004)**</td>
</tr>
<tr>
<td>ln(Follow<sub>ijt</sub>)</td>
<td>-0.006</td>
<td>0.009</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)**</td>
<td>(0.005)</td>
</tr>
<tr>
<td>R<sub>-FirmsCovered<sub>ijt</sub></td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.003)**</td>
<td>(0.004)**</td>
<td>(0.004)**</td>
</tr>
<tr>
<td>R<sub>-GAP<sub>ijt</sub></td>
<td>-0.102</td>
<td>-0.105</td>
<td>-0.105</td>
</tr>
<tr>
<td></td>
<td>(0.004)***</td>
<td>(0.004)***</td>
<td>(0.004)***</td>
</tr>
<tr>
<td>InsiderSell<sub>ijt</sub></td>
<td></td>
<td>-0.231</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.167)</td>
<td></td>
</tr>
<tr>
<td>OP<sub>ijt</sub> × InsiderSell<sub>ijt</sub></td>
<td>1.153</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.468)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersion<sub>ijt</sub></td>
<td>-1.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.173)***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP<sub>ijt</sub> × Dispersion<sub>ijt</sub></td>
<td>0.511</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.470)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brokerage firm fixed effects | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes |
N | 114,075 | 114,075 | 113,000 |
R² | 0.049 | 0.044 | 0.044 |

*a The subscript i refers to analyst i; the subscript j refers to stock j; and the subscript t refers to year t, defined as the period from July 1, t to July 1, t+1 (see Figure 1). InsiderSell_{ijt} is a dummy that is equal to 1 if the average net
insider selling (expressed in 1982 dollars) by all corporate officers and directors for firm j followed by analyst i during the calendar year immediately before the earnings announcement date for $Accuracy_{ijt}$ is larger than the 75th percentile of our sample. $Dispersion_{ijt}$ is a dummy that is equal to 1 if the forecast dispersion (defined as the standard deviation of the earnings forecasts scaled by the magnitude of the realized earnings) is greater than the 75th percentile of our sample. $Dispersion_{ijt}$ is computed using each analyst’s first earnings forecast F_{ijt}^{first}, although results are similar if each analyst’s last earnings forecast F_{ijt}^{last} is used instead. See Table 1 for other variable definitions. The standard errors are computed using Rogers’ (1993) method, which allows heteroskedasticity and any type of correlation for observations of the same stocks but assumes independence for observations of different stocks. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.

b The subscript i refers to analyst i; the subscript j refers to stock j; and the subscript t refers to any of the quarters that fall within year t, defined as the period from July 1, t to July 1, t+1 (see Figure 1). $InsiderSell_{ijt}$ and $Dispersion_{ijt}$ are defined similarly to Panel A above. See Table 1 for other variable definitions. The standard errors are computed using Rogers’ (1993) method, which allows heteroskedasticity and any type of correlation for observations of the same stocks but assumes independence for observations of different stocks. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.
Table 4. Logit Regression Results of Analyst Firing (H2)

Panel A. Regression results using annual earnings forecasts

<table>
<thead>
<tr>
<th>Dependent variable = Fire_{i,t+1}</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient (standard error)</td>
<td>Coefficient (standard error)</td>
<td>Coefficient (standard error)</td>
</tr>
<tr>
<td>Accuracy_{i,t}</td>
<td>-0.027**</td>
<td>-0.028**</td>
<td>-0.028**</td>
</tr>
<tr>
<td></td>
<td>(0.001)**</td>
<td>(0.001)**</td>
<td>(0.001)**</td>
</tr>
<tr>
<td>OP_{i,t}</td>
<td>-0.371**</td>
<td>-0.366**</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.117)**</td>
<td>(0.069)**</td>
<td>(0.158)</td>
</tr>
<tr>
<td>OO_{i,t}</td>
<td>0.142</td>
<td>(0.109)</td>
<td></td>
</tr>
<tr>
<td>PP_{i,t}</td>
<td>-0.158</td>
<td>(0.126)</td>
<td></td>
</tr>
<tr>
<td>Bold_{i,t}</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)*</td>
</tr>
<tr>
<td>ln(Experience_{i,t})</td>
<td>-0.223</td>
<td>-0.222</td>
<td>-0.214</td>
</tr>
<tr>
<td></td>
<td>(0.036)**</td>
<td>(0.036)**</td>
<td>(0.035)**</td>
</tr>
<tr>
<td>InsiderSell_{i,t}</td>
<td></td>
<td></td>
<td>-0.280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.109)**</td>
</tr>
<tr>
<td>OP_{i,t} × InsiderSell_{i,t}</td>
<td>-0.620</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.271)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersion_{i,t}</td>
<td>0.404</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.093)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP_{i,t} × Dispersion_{i,t}</td>
<td>-0.617</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.284)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brokerage firm fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>32,303</td>
<td>32,303</td>
<td>30,650</td>
</tr>
<tr>
<td>Dependent variable = $Fire_{i,t+1}$</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Coefficient (standard error)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Accuracy_{i,t}$</td>
<td>-0.004</td>
<td>-0.004</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
</tr>
<tr>
<td>$OP_{i,t}$</td>
<td>-0.527</td>
<td>-0.297</td>
<td>-0.110</td>
</tr>
<tr>
<td></td>
<td>(0.184)***</td>
<td>(0.105)***</td>
<td>(0.154)</td>
</tr>
<tr>
<td>$OO_{i,t}$</td>
<td>-0.191</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.173)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$PP_{i,t}$</td>
<td>-0.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.173)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Bold_{i,t}$</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>$ln(Experience_{i,t})$</td>
<td>-0.081</td>
<td>-0.081</td>
<td>-0.073</td>
</tr>
<tr>
<td></td>
<td>(0.038)**</td>
<td>(0.038)**</td>
<td>(0.037)*</td>
</tr>
<tr>
<td>$InsiderSell_{i,t}$</td>
<td></td>
<td></td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.115)</td>
</tr>
<tr>
<td>$OP_{i,t} \times InsiderSell_{i,t}$</td>
<td></td>
<td>-0.738</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.392)*</td>
<td></td>
</tr>
<tr>
<td>$Dispersion_{i,t}$</td>
<td></td>
<td>-0.049</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.116)</td>
<td></td>
</tr>
<tr>
<td>$OP_{i,t} \times Dispersion_{i,t}$</td>
<td></td>
<td>-0.011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.263)</td>
<td></td>
</tr>
<tr>
<td>Brokerage firm fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>15,278</td>
<td>15,278</td>
<td>14,942</td>
</tr>
</tbody>
</table>

Panel B. Regression results using quarterly earnings forecasts
Panel C. Regression results using both annual and quarterly earnings forecasts

\[
\text{Dependent variable } = \text{Fire}_{ij,t+1} (1)
\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Accuracy}_{ij}^A)</td>
<td>-0.036 (0.003)**</td>
</tr>
<tr>
<td>(\text{Accuracy}_{ij}^O)</td>
<td>-0.002 (0.002)</td>
</tr>
<tr>
<td>(\text{OP}_{ij}^A)</td>
<td>-0.308 (0.140)**</td>
</tr>
<tr>
<td>(\text{OP}_{ij}^O)</td>
<td>-0.197 (0.114)*</td>
</tr>
<tr>
<td>(\text{Bold}_{ij}^A)</td>
<td>-0.003 (0.002)</td>
</tr>
<tr>
<td>(\text{Bold}_{ij}^O)</td>
<td>0.003 (0.001)**</td>
</tr>
<tr>
<td>(\ln(\text{Experience}_{ij}))</td>
<td>-0.121 (0.041)**</td>
</tr>
</tbody>
</table>

Brokerage firm fixed effects: Yes
Year fixed effects: Yes
N: 14,511

\[a\] The subscript i refers to analyst i; the subscript j refers to stock j; and the subscript t refers to year t, defined as the period from July 1, t to July 1, t+1 (see Figure 1). \(\text{InsiderSell}_{ij,t}\) is the average of \(\text{InsiderSell}_{ij}\) over all the firms j covered by analyst i in year t. \(\text{Dispersion}_{ij,t}\) is the average of \(\text{Dispersion}_{ij}\) over all the firms j covered by analyst i in year t. See Tables 1 and 3 for other variable definitions. The standard errors are computed using Rogers’ (1993) method, which allows heteroskedasticity and any type of correlation for observations of the same brokerage houses but assumes independence for observations of different brokerage houses. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.

\[b\] The subscript i refers to analyst i; the subscript j refers to stock j; and the subscript t refers to any of the quarters that fall within year t, defined as the period from July 1, t to July 1, t+1 (see Figure 1). \(\text{InsiderSell}_{ij,t}\) and \(\text{Dispersion}_{ij,t}\)
are defined as the mean of the same quarterly variable across all quarters in year \(t \) for each firm-analyst, followed by the averaging of the mean quarterly variable across all firms \(j \) followed by analyst \(i \) in year \(t \). See Tables 1 and 3 for other variable definitions. The standard errors are computed using Rogers’ (1993) method, which allows heteroskedasticity and any type of correlation for observations of the same brokerage houses but assumes independence for observations of different brokerage houses. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.

The subscript \(i \) refers to analyst \(i \); the subscript \(j \) refers to stock \(j \); and the subscript \(t \) refers to year \(t \), defined as the period from July 1, \(t \) to July 1, \(t + 1 \) (see Figure 1). \(\text{Bold}_i^A \) and \(\text{Bold}_i^Q \) are \(\text{Bold}_i \), for annual earnings forecasts and quarterly earnings forecasts, respectively. \(\text{OP}_i^A \) and \(\text{OP}_i^Q \) are \(\text{OP}_i \), for annual earnings forecasts and quarterly earnings forecasts, respectively. See Tables 1, 2, and 3 for other variable definitions. The standard errors are computed using Rogers’ (1993) method, which allows heteroskedasticity and any type of correlation for observations of the same brokerage houses but assumes independence for observations of different brokerage houses. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.
Table 5: Heckman Regression Results of Future Earnings Forecast Accuracy

Panel A. Regression results using annual earnings forecasts

<table>
<thead>
<tr>
<th>Dependent variable = $Accuracy_{i,t+1}$</th>
<th>Coefficient (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$OP_{i,t}$</td>
<td>0.968</td>
</tr>
<tr>
<td></td>
<td>(0.344)***</td>
</tr>
<tr>
<td>$Accuracy_{i,t}$</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td>(0.008)***</td>
</tr>
<tr>
<td>$Bold_{i,t+1}$</td>
<td>-0.036</td>
</tr>
<tr>
<td></td>
<td>(0.009)***</td>
</tr>
<tr>
<td>$R_{-}FirmExperience_{i,t+1}$</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
</tr>
<tr>
<td>$\ln(Follow_{i,t+1})$</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>(0.013)*</td>
</tr>
<tr>
<td>$R_{-}FirmsCovered_{i,t+1}$</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>$R_{-}GAP_{i,t+1}$</td>
<td>-0.178</td>
</tr>
<tr>
<td></td>
<td>(0.008)***</td>
</tr>
<tr>
<td>Brokerage firm fixed effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>23,289</td>
</tr>
</tbody>
</table>
Panel B. Regression results using quarterly earnings forecasts

<table>
<thead>
<tr>
<th>Dependent variable = (Accuracy_{i,t+1})</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OP_{i,j})</td>
<td>1.330</td>
</tr>
<tr>
<td>() (0.881)</td>
<td></td>
</tr>
<tr>
<td>(Accuracy_{i,j})</td>
<td>0.043</td>
</tr>
<tr>
<td>() (0.011)***</td>
<td></td>
</tr>
<tr>
<td>(Bold_{i,t+1})</td>
<td>-0.007</td>
</tr>
<tr>
<td>() (0.013)</td>
<td></td>
</tr>
<tr>
<td>(R_{FirmExperience_{i,t+1}})</td>
<td>-0.002</td>
</tr>
<tr>
<td>() (0.008)</td>
<td></td>
</tr>
<tr>
<td>(\ln(Follow_{i,t+1}))</td>
<td>0.032</td>
</tr>
<tr>
<td>() (0.026)</td>
<td></td>
</tr>
<tr>
<td>(R_{FirmsCovered_{i,t+1}})</td>
<td>-0.002</td>
</tr>
<tr>
<td>() (0.007)</td>
<td></td>
</tr>
<tr>
<td>(R_{GAP_{i,t+1}})</td>
<td>-0.115</td>
</tr>
<tr>
<td>() (0.013)***</td>
<td></td>
</tr>
</tbody>
</table>

Brokerage firm fixed effects: Yes
Year fixed effects: Yes
\(N \): 9,737

\(a \) The subscript \(i \) refers to analyst \(i \); the subscript \(j \) refers to stock \(j \); and the subscript \(t \) refers to year \(t \), defined as the period from July 1, \(t \) to July 1, \(t+1 \) (see Figure 1). \(\bar{Follow}_{i,t+1} \) is the average of \(Follow_{ij,t+1} \) across all firms \(j \) covered by analyst \(i \) in year \(t \). \(R_{FirmExperience_{i,t}} \) and \(R_GAP_{i,t} \) are the averages of \(R_FirmExperience_{ij,t} \) and \(R_GAP_{ij,t} \), respectively, across all firms \(j \) covered by analyst \(i \) in year \(t \). See Table 1 for other variable definitions. The standard errors are computed using Rogers’ (1993) method, which allows heteroskedasticity and any type of correlation for observations of the same brokerage houses but assumes independence for observations of different brokerage houses. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.

\(b \) The subscript \(i \) refers to analyst \(i \); the subscript \(j \) refers to stock \(j \); and the subscript \(t \) refers to any of the quarters that fall within year \(t \), defined as the period from July 1, \(t \) to July 1, \(t+1 \) (see Figure 1). All the variables in Panel B are the
mean of their quarterly equivalents across all firms j covered by analyst i in year t and are defined as the mean of each quarterly variable across all quarters in year t for each firm-analyst, followed by the averaging of the mean quarterly variable across all firms j followed by analyst i in year t. The standard errors are computed using Rogers’ (1993) method, which allows heteroskedasticity and any type of correlation for observations of the same brokerage houses but assumes independence for observations of different brokerage houses. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.
Table 6: Characteristics of Analysts Who Issue annual OP Forecasts

Panel A. Descriptive statistics (N=32,303)a

Mean (median)[standard Deviation]

<table>
<thead>
<tr>
<th>Variable</th>
<th>OP>median</th>
<th>OP≤median</th>
<th>P Value from a Ranksum Test of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$FirmExperience_{i,t}$</td>
<td>3.320</td>
<td>2.975</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>(2.750)</td>
<td>(2.416)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.082]</td>
<td>[1.949]</td>
<td></td>
</tr>
<tr>
<td>$Broker size_{i,t}$</td>
<td>43.570</td>
<td>41.011</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>(32.000)</td>
<td>(28.000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[42.857]</td>
<td>[41.498]</td>
<td></td>
</tr>
<tr>
<td>$AllStar_{i,t}$</td>
<td>0.133</td>
<td>0.104</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.340]</td>
<td>[0.306]</td>
<td></td>
</tr>
</tbody>
</table>

Panel B. Regression of OP on analyst characteristicsb

Dependent variable = $OP_{i,t} \times 100$ \hspace{1cm} (1)

<table>
<thead>
<tr>
<th>Coefficient (standard error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$FirmExperience_{i,t}$</td>
</tr>
<tr>
<td>$Broker size_{i,t}$</td>
</tr>
<tr>
<td>$AllStar_{i,t}$</td>
</tr>
</tbody>
</table>

Year fixed effects Yes
N 32,303
The subscript \(i \) refers to analyst \(i \); and the subscript \(t \) refers to year \(t \), defined as the period from July 1, \(t \) to July 1, \(t+1 \) (see Figure 1). \(\text{Bro} \ ker \ size_{i,t} \) is the number of unique analysts that belong to brokerage firm \(i \) in year \(t \). \(AllStar_{i,t} \) is coded one if an analyst is an All-Star as determined by the Institutional Investor magazine in year \(t-1 \), and zero otherwise. The All-Star data are available for only 1995-2000. See Panel C of Table 1 for other variable definitions.

The subscript \(i \) refers to analyst \(i \); and the subscript \(t \) refers to year \(t \), defined as the period from July 1, \(t \) to July 1, \(t+1 \) (see Figure 1). See Panel A above for other variable definitions. The standard errors are computed using Rogers’ (1993) method, which allows heteroskedasticity and any type of correlation for observations of the same brokerage houses but assumes independence for observations of different brokerage houses. *, **, *** denote two-tailed significance levels of 10%, 5%, and 1%, respectively.
Analysts’ Forecasts and Asset Pricing: A Survey

S.P. Kothari, Eric So, and Rodrigo Verdi

Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email: kothari@mit.edu

Keywords
information intermediary, mispricing, anomalies, disclosure

Abstract
This survey reviews the literature on sell-side analysts’ forecasts and their implications for asset pricing. We review the literature on the supply and demand forces shaping analysts’ forecasting decisions as well as on the implications of the information they produce for both the cash flow and the discount rate components of security returns. Analysts’ forecasts bring prices in line with the expectations they embody, consistent with the notion that they contain information about future cash flows. However, analysts’ forecasts exhibit predictable biases, and the market appears to underreact to the information in forecasts and to not fully filter the biases in forecasts. Analysts’ forecasts are also helpful in estimating expected returns on securities, but evidence on the relation between analysts’ forecasts and expected returns is still scarce. We conclude by identifying unanswered questions and offering suggestions for future research.
1. INTRODUCTION

This survey reviews the literature on sell-side analysts’ forecasts and their implications for asset pricing. Analysts are information intermediaries who gather, analyze, and produce information for the investment community. As a result, analysts’ forecasts have the potential to influence asset prices by conveying information about future cash flows and about the discount rates applied to future cash flows. We discuss the implications of the information produced by analysts for both the cash flow and the discount rate components of security returns. In doing so, we identify unanswered questions and offer suggestions for future research.

Understanding how analysts influence (and are influenced by) market prices is predicated on a detailed understanding of the information that analysts produce and their incentives to convey accurate and unbiased information. These dimensions jointly shape the information transmitted to investors, the timing of information transmission, and the extent to which market participants rely on analysts as information intermediaries. Thus, we begin by reviewing the literature on the supply and demand forces shaping the properties of analysts’ outputs. A key insight from Section 2 is that the influence analysts’ forecasts have on asset prices depends upon both the nature of the information they produce and their incentives to convey it accurately and without bias.

Analyst information is potentially useful for asset pricing because it provides essential inputs for security valuation. For example, earnings forecasts provide estimates of expected cash flows; stock recommendations and price targets can be useful in identifying mispriced stocks; dispersion in analysts’ forecasts can be used to identify appropriate discount rates; and long-term growth forecasts can serve as benchmarks for calculating expected growth rates. All of these are relevant parameters in asset pricing models. In this sense, analyst research and asset pricing are closely intertwined.

Our survey proceeds by looking at the relation between analysts’ forecasts and both the cash flow and discount rate components of asset prices. Specifically, Section 3 reviews the literature on analysts’ forecasts and their implications for cash flow news. We begin with early evidence on the use of analysts’ forecasts as a proxy for the market’s expectations of future earnings and on the extent to which analysts’ forecast revisions convey information about future cash flows. We then examine whether the market’s response to analysts’ forecasts is timely and complete. We conclude Section 3 with evidence on whether market prices unravel predictable biases in analysts’ forecasts, or whether prices behave as if market participants fixate on analysts’ forecasts with biases embedded in them. Collectively, the evidence suggests that although investors appear to recognize predictable sources of bias, they fail to fully factor these biases into market prices in a timely fashion.

Section 4 focuses on the implications of analysts’ forecasts for expected returns. We first summarize the evidence on the use of analysts’ forecasts in estimating expected returns. We proceed with a discussion of classical asset pricing models in which analysts play no role in affecting expected returns. We then introduce information frictions that allow analysts to influence expected returns. We focus on two types of frictions: (a) information uncertainty and (b) information asymmetry and liquidity. A central conclusion of Section 4 is that analysts’ forecasts are helpful in mitigating both types of frictions. Consequently, analysts’ forecasts influence asset prices through several channels (beyond cash flow expectations), and are thus relevant to a wide array of capital market studies on prices, expected returns, and liquidity.

A picture emerging from our survey is that, although extensive evidence identifies sources of cross-sectional and time-series variation in analysts’ forecast bias and accuracy, it is not clear how forecast properties influence expected returns. We find limited evidence on (a) the channels through which analyst forecast properties impact expected returns; (b) the direction of these effects; and (c) how the various properties, such as bias, accuracy, timeliness, and intensity, interact.
Understanding these effects is crucial for assessing the efficacy of regulation, internal controls, and media scrutiny aimed at curtailting predictable biases and inaccuracies in analysts’ forecasts.

Another fruitful area of research would be a deeper dive into modeling analysts’ beliefs about firms’ future performance. As we discuss in Section 2, as researchers we observe analysts’ forecasts, which reflect a potentially biased indication of analysts’ underlying expectations. Most prior research in this area explores the biased component of analysts’ forecasts, whereas relatively little research sheds light on the formation of the unbiased component. Much research focuses on the directional impact of analysts’ employment incentives on forecast bias and accuracy, but it typically stops short of using the predictable links to study analysts’ beliefs about firms’ future cash flows. Understanding how analysts form and revise their true expectations about future earnings is crucial to how information about firm performance is disseminated to investors.

Last, a broader challenge for this area is the difficulty of obtaining exogenous variation in the properties of analysts’ forecasts that could be used to make causal inferences. Generally, prior studies examine the link between market outcomes and analysts’ forecasts without accounting for analysts’ decision to initiate coverage and provide a forecast. Because of the first-stage selection problem underlying analysts’ coverage decisions, it is difficult to attribute observable effects of forecast properties to the forecasts themselves versus to the underlying incentives that prompted the initial forecasting decision. As we briefly discuss in Section 2, asset pricing attributes (e.g., trading volume and stock liquidity) influence analysts’ coverage decisions, which in turn influence how analysts’ forecasts affect prices. In the spirit of isolating exogenous variations in forecast properties, we also survey the recent literature on regulation [e.g., Regulation Fair Disclosure (Reg FD) and the Global Settlement] as examples of avenues to study the sources of bias in analysts’ forecasts and their implications for asset prices.

Before we proceed, we note that, because of its focus on asset pricing, our survey is not designed as a comprehensive review of the role analysts play in capital markets. We refer the interested reader to Givoly & Lakonishok (1984), Schipper (1991), Brown (1993), Ramnath, Rock & Shane (2008), Beyer et al. (2010), and Bradshaw (2011) for related reviews of the literature on analysts. Even within the asset-pricing framework, we restrict our focus to equity prices and as a result do not survey work on other securities (e.g., bond pricing). (For an example of early evidence on the role of bond analysts, see De Franco, Vasvari & Wittenberg-Moerman 2009.)

2. PROPERTIES OF ANALYSTS’ FORECASTS

Analysts gather information about firms through several formal communication channels that include, but are not limited to, financial disclosures, news, and earnings conference calls. Analysts also supplement these formal channels with discussions with firms’ management, brokerage clients, investors, etc. (Bradshaw 2011). As a part of this process, analysts produce information about firms in a variety of ways, including issuing earnings forecasts, growth forecasts, buy/sell recommendations, and target prices, which collectively manifest as an analyst report (Schipper 1991).

As in any industry, supply and demand forces shape the properties of analysts’ outputs, forecasts, and stock recommendations. This survey focuses on analysts’ forecasts, with a limited discussion of recommendations. Although the realization of earnings at earnings announcements provides a natural benchmark for studying variation in the bias, accuracy, and timeliness of analysts’ forecasts, the open-ended nature of recommendations makes them less useful for evaluating analysts’ performance and its implications for asset prices.

Two properties of analysts’ forecasts have received considerable attention in the literature: forecast accuracy and forecast bias. Accuracy generally refers to the absolute difference between
the analysts’ forecast and the realization of an output, whereas bias generally refers to the signed difference between them. Forecast accuracy and bias are a function of the complexity of the task, the skill level of the analyst, and the incentives facing the analyst (e.g., effort). Complexity undermines accuracy, whereas skill enhances accuracy. Further, incentives can influence both the accuracy and bias in forecasts.

Understanding the drivers of cross-sectional and time-series variation in analysts’ forecast accuracy and bias is important because the information content of analysts’ forecasts is, of course, dependent on the extent to which analyst information is unbiased and precise (i.e., the first- and second-moment properties of errors in analysts’ outputs). Bias and accuracy influence market prices as well as researchers’ inferences. To the extent that market participants identify predictable variation in analyst accuracy, market prices respond more strongly to credible forecasts. Similarly, to the extent that market participants anticipate variation in forecast bias, researchers can improve estimates of earnings expectations by estimating the component of forecast bias that is unanticipated by market participants. To the extent that these weights are imperfect, understanding the predictive component of analysts’ errors could also yield predictable patterns in stock returns (assuming that the expectation errors will eventually be corrected in the future) (see Frankel & Lee, 1998; Bradshaw, Richardson & Sloan 2001; Elgers, Lo & Pfeiffer 2003; So 2013).

Before we proceed, we note that an implicit assumption underlying papers that study analysts’ forecasts is that firms receive analyst coverage in the first place. This is important because research shows that coverage decisions are a function of the relative costs and benefits shared among several market participants, including firms, analysts, and investors. For instance, an analyst faces strong economic incentives to follow firms that are expected to establish reputational credibility, yield higher salaries, secure investment banking business, and generate trading revenue for his/her employer. However, analysts must balance a series of considerations, including resource constraints and opportunity costs, as well as cater to firms’ and users’ objective functions.1

The implication of this literature for asset pricing is that the factors driving analysts’ decisions to cover a firm are likely to capture direct properties of asset prices (e.g., trading volume, volatility, information asymmetry, etc.) as well as factors correlated with them (e.g., firm size, the presence of institutional investors, etc.). Further, the decision to cover a firm not only is influenced by asset prices, but also has the potential to influence asset prices. Regarding the latter, Kelly & Ljungqvist (2012) show that exogenous coverage terminations lead to a reduction in prices and an increase in expected returns because of increased adverse selection risk. As a result, because the factors driving the first-stage selection problem underlying analysts’ coverage decisions are likely to be correlated with the factors driving variation in the properties of analysts’ forecasts, it

1The literature on the determinants of analyst coverage is extensive and beyond the scope of this review. Among different features affecting the decision to cover a firm, early research focused on firm characteristics such as institutional holdings, firm size, and return variability (e.g., Bhushan 1989, O’Brien & Bhushan 1990). Subsequent studies have placed a greater emphasis on the role of the costs of acquiring information. Some studies document a positive association between analyst following and firms’ disclosures (e.g., Lang & Lundholm 1996; Healy, Hutton & Palepu 1999; Hope 2001a,b; Lang, Lins & Miller 2004; De Franco, Kathari & Verdi 2011), whereas other research documents a positive relation between firm complexity (an inverse proxy for disclosure) and analyst following (e.g., Barth, Kasznik & McNichols 2001; Kirk 2011; Lehavy, Li & Merkley 2011). Another stream of the literature examines the link between investment banking incentives and analysts’ coverage decisions (e.g., Dunbar 2000; Krigman, Shaw & Womack 2001; Bradley, Jordan & Ritter 2003; Clifford & Denis 2004; O’Brien, McNichols & Lin 2003; James & Karekesi 2006; Ljungqvist, Marston & Wilhelm 2006; McNichols, O’Brien & Pamukcu 2007; Clarke et al. 2007). An inescapable conclusion from the literature on determinants of analyst coverage is that the demand for information from intermediaries (analysts) about firms with attractive prospects, large market capitalization, and potential for investment banking business (i.e., security issuances and corporate acquisition activity) largely influences analysts’ coverage decisions. That is, it is the demand emanating from investor interest in a firm that creates the supply of analyst coverage.
is difficult to attribute observable effects of forecast properties to the forecasts themselves versus to the underlying incentives that drove the initial forecasting decision.

2.1. Forecast Accuracy

Forecast accuracy is perhaps the single most important attribute of the quality of an analyst’s output. Naturally, it has attracted tremendous attention in the literature and in practice. A substantial portion of the existing literature on analysts’ forecasts focuses on how and to what extent information processing costs, experience, and employment incentives impact the accuracy of analysts’ forecasts.

Several characteristics are associated with the accuracy of analysts’ forecasts. For example, forecast accuracy decreases with measures of uncertainty such as firm complexity and volatility in earnings and returns (Kross, Ro & Schröder 1990; Lang & Lundholm 1996) and when firm performance is transitory (Helfin, Subramanyam & Zhang 2003). Forecast accuracy is also negatively associated with forecast horizon, as it is harder to forecast more distant firm performance (Sinha, Brown & Das 1997; Clement 1999; Brown & Mohd 2003). In addition, factors such as analysts’ ability, available resources, and portfolio complexity also significantly influence forecast accuracy. For example, Clement (1999) shows that forecast accuracy is increasing with experience (a proxy for ability) and employer size (a proxy for available resources) and decreasing with the number of firms and industries followed (a proxy for portfolio complexity).

Another stream of research studies whether compensation incentives motivate analysts to provide accurate forecasts. Forecast accuracy and All-Star status granted by *Institutional Investor* are positively associated; this status, in turn, is likely to influence analysts’ compensation and career prospects (e.g., Stickel 1992; Groysberg, Healy & Maber 2011). Using proprietary compensation data from a large investment bank, Groysberg, Healy & Maber (2011) show that analysts are primarily compensated for their ability to garner investment banking business, the size of their coverage portfolio, and their reputation as an All-Star. The evidence, however, seems to collectively document that compensation does not materially influence forecast accuracy. One explanation for this evidence is that analysts’ employers, such as investment banks, do not rely on forecast accuracy as a first-order determinant of annual compensation because it is easy for analysts to free ride off of the forecasts of competing analysts. Because of the ease of mimicking other analysts’ behavior, forecast accuracy is a noisy signal about analysts’ ability and/or effort relative to other outcomes, such as motivating or securing investment banking business.

Despite the lack of evidence for an impact of accuracy on analyst compensation, research documents a strong relation between analysts’ accuracy and other career outcomes (e.g., Mikhail, Walther & Willis 1999; Hong, Kubik & Solomon 2000; Wu & Zang 2009; Groysberg, Healy & Maber 2011). For example, Groysberg, Healy & Maber (2011) use proprietary compensation data from a prominent investment bank to document that inaccurate analysts are more likely to move to lower-status banks or to exit the I/B/E/S (Institutional Brokers’ Estimate System) database, a sign of termination; however, they find no evidence of a relation between forecast accuracy and compensation. Overall, the evidence suggests that small deviations in accuracy have a minimal impact on analyst compensation, but large (negative) forecast inaccuracy can affect analyst wealth by increasing the probability of dismissal.

Overall, forecast accuracy appears to be a firm characteristic influenced by firm-level attributes such as the riskiness of its investments, firm size, and temporary shocks. It is likely that forecast accuracy appears to not be an analyst-specific attribute because analysts can free ride off of other analysts’ forecasts. Still, the accuracy of an analyst’s forecasts influences his/her career success, especially when it stands out positively or negatively.
2.2. Forecast Bias

Another attribute of analysts’ forecasts that has attracted attention is whether they exhibit a bias. The source of bias could trace to information supplied by management or analysts’ own economic motivations. We discuss the evidence and potential sources of bias in analysts’ forecasts in this section. Prior literature documents various sources of bias in analysts’ forecasts of earnings and in their recommendations (e.g., Michaely & Womack 1999; McNichols & O’Brien 1997; Groysberg, Healy & Maber 2011). A central theme in this literature is that forecast bias varies in the cross-section and over forecast horizon (i.e., long-term forecasts are generally too high, whereas short-term forecast are too low). We discuss the key mechanisms driving the variation in bias that is related to forecast horizon and in the cross-section.

A variety of economic temptations facing analysts introduce cross-sectional variation in analyst bias. For instance, in exchange for favorable coverage of deals that the analysts’ employer underwrites, analysts might be rewarded for maintaining existing underwriting businesses or possibly attracting new ones. Similarly, analysts might ingratiate themselves to management by optimistically biasing their earnings forecasts in order to gain access to private information. In both instances, the lure of a good relationship with management might motivate analysts to optimistically bias their forecasts. Motivated by this intuition, a significant part of the literature investigates the extent to which the optimistic bias in analysts’ forecasts is explained by analysts’ incentives to appease management and generate revenues for investment banks.

A commonly cited source of bias is analysts’ incentives to gain access to management by issuing forecasts that conform to managers’ preferences. Francis & Philbrick (1993) study firms with negative buy/sell recommendations and show that analysts who do not provide a recommendation are more likely to issue optimistic earnings forecasts. The study interprets this result as evidence that analysts generate bias in their forecasts to distinguish themselves from competing analysts (who previously provided unfavorable recommendations), in hopes of receiving access to management as part of a quid pro quo arrangement. Similarly, Das, Levine & Sivaramakrishnan (1998) find that analysts produce more optimistic earnings forecasts for firms with less predictable earnings. The study interprets this finding as evidence that when earnings are less predictable, analysts optimistically bias their earnings forecasts to ensure access to management’s private information (see also Chen & Matsumoto 2006, Mayew 2008). A related stream of research links investment banking affiliation to analysts’ incentive to curry favor with management in order to have superior access to information, and finds that affiliated analysts are systematically overoptimistic relative to nonaffiliated ones (e.g., Hunton & McEwen 1997; Lin & McNichols 1998; Michaely & Womack 1999; Dechow, Hutton & Sloan 2000; Agrawal & Chen 2008).

Recently, research has begun to examine the role played by social and professional networks in influencing the accuracy and bias of the information supplied by analysts to investors. Westphal & Clement (2008) show that managers invest in, and leverage, personal relationships with analysts to deter them from conveying negative information. This points to a reciprocal relationship in which managers and analysts perform favors for one another. Cohen, Frazzini & Malloy (2010) show that shared backgrounds, as measured by education ties, serve as a conduit of information

2On a related topic, Hayes (1998) and Irvine (2000) demonstrate that analysts’ desire to generate trading commissions for their employers creates an incentive for analysts to bias their forecasts. Additionally, Lester, Bennett & Geoum (1999) and Lim (2001) provide evidence that forecasters are rationally biased because the payoffs are higher when their forecast is accurate at times when other forecasts are inaccurate versus being inaccurate at times when other forecasts are accurate.

3Eames & Glover (2003), however, point out that the findings of Das, Levine & Sivaramakrishnan (1998) likely stem from the failure to control for the level of earnings. That is, the association between analysts’ forecast error and earnings predictability is no longer significant once the level of earnings is controlled for.
between managers and analysts and that these shared backgrounds result in less biased analysts’ forecasts and more profitable investment recommendations in the pre–Reg FD era (and this is still the case in the United Kingdom, where Reg FD restrictions do not apply). Related evidence from Brochet, Miller & Srinivasan (2014) shows that analysts tend to initiate coverage of firms when they have a past relationship with the firms’ management, and these past relationships are associated with higher forecast accuracy. Overall, these studies suggest an influence of social and professional networks in both informing analysts’ outputs and compromising their integrity.

Although we observe economic incentives facing analysts to bias their forecasts, we would naturally also expect offsetting forces such as reputational concerns that would rein in such bias. With respect to reputation, some studies find limited evidence of biased forecasts leading to more profitable investment banking deals for the analysts’ employers (e.g., Krigman, Shaw & Womack 2001; Cowen, Groysberg & Healy 2006; Ljungqvist, Marston & Wilhelm 2006; Clarke et al. 2007; Kolasinski & Kothari 2008). Rather, these studies suggest that analysts are sufficiently concerned with their reputation as credible information intermediaries to be motivated to issue unbiased, accurate forecasts.

In addition, managers’ preference for optimistically biased forecasts appears to be contextual or timing-specific. For instance, optimistic earnings forecasts are more difficult to beat, and evidence shows that meeting or beating targets are important managerial objectives (e.g., Burgstahler & Dichev 1997; Degeorge, Patel & Zeckhauser 1999; Brown 2001; Kasznik & McNichols 2002; Matsumoto 2002; Bartov, Givoly & Hayn 2002). (For survey evidence on managers’ perceptions of analysts’ targets and the potential price impact of beating analysts’ targets, see Graham, Harvey & Rajgopal 2005.) Hence, if analysts indeed seek to appease management, we might expect analysts’ forecasts to be pessimistic sometimes. Consistent with this intuition, by examining the intertemporal patterns of forecast bias, Richardson, Teoh & Wysocki (2004) and Ke & Yu (2006) document that managers seem to prefer initially optimistic forecasts, but also prefer to have those optimistic forecasts adjusted downward to beatable levels prior to earnings announcements. Similarly, Hilary & Hsu (2013) document evidence that analysts who consistently lowball forecasts (to curry favor with management by providing beatable targets) have better career prospects and better access to management’s private information. This explanation is consistent with the findings of Hong & Kubik (2003), who document annual forecasts to be optimistic on average, whereas Matsumoto (2002) finds quarterly forecasts to be pessimistic on average.

Finally, some studies depart from incentives-based explanations to analysts’ forecast bias and explore how the cognitive limitations of analysts may affect forecast bias. Many studies show that analysts do not fully and rationally incorporate publicly available data (e.g., Lys & Sohn 1990, Abarbanell 1991, Abarbanell & Bernard 1992). Further, Sedor (2002) suggests that optimism in analysts’ annual earnings forecasts are in part explained by their reactions to causal narratives that managers employ when communicating about enhancing future firm performance.

Collectively, research in this area shows that analysts’ forecasts are often biased as a result of analysts’ career concerns, compensation incentives, and desire to maintain reciprocal relationships. The interaction between analysts’ incentives and management’s preference for the nature of bias creates both cross-sectional and intertemporal variation in both the sign and magnitude of forecast bias. Future research will benefit from a deeper understanding of how litigation risk and sector-wide demands for analysts and their employers impact the information they supply to investors.

2.3. Role of Regulation

Before we conclude Section 2, we briefly discuss the role of regulation in analysts’ behavior. (For comprehensive reviews, see Mehran & Stulz 2007; Ramnath, Rock & Shane 2008; Koch,
As we discussed above, firm and analyst characteristics, as well as incentives, influence the properties of analysts’ forecasts. In particular, we highlight two sources of conflict of interest: (a) an incentive to maintain investment banking relationships and (b) a desire to maintain access to private managerial information. Regulatory responses such as Reg FD and the Global Settlement (NASD 2711 and NYSE 472) took place in the early 2000s to mitigate these potential conflicts of interest.

Specifically, Reg FD was intended to level the playing field by curtailing selective disclosure, so that analysts or institutional investors could no longer receive value-relevant information before others (i.e., smaller investors). A potential downside of Reg FD, however, is that it escalates the cost of analysts’ services, which could lead to unintended consequences regarding the flow of information into the market. That is, if restricting private access to managerial information imposes a sufficient cost on analysts’ information production process, the overall amount of information available to investors may decline, which in turn may cause information flows to deteriorate post–Reg FD.

Acknowledging this cost–benefit tension, academic work has focused on Reg FD’s influence on the quantity and quality of analysts’ services as well as its consequent implications for investor welfare. For instance, studies have shown that analysts’ forecasts have become less precise (Gintschel & Markov 2004; Agrawal, Chadha & Chen 2006), analysts’ forecast dispersion has increased (Bailey et al. 2003, Mohanram & Sunder 2006), and analyst coverage has declined (Mohanram & Sunder 2006). These results collectively suggest that private communications with managers were an important input for analysts in their production of information. Curbing private communication hence adversely affects financial markets by reducing both the quantity and quality of information provided by analysts.

Studies have also shown, however, that Reg FD indeed leveled the playing field among market participants (Bushee, Matsumoto & Miller 2004; Chiyachantana et al. 2004; Eleswarapu, Thompson & Venkataraman 2004; Ke, Petroni & Yu 2008). For example, Chiyachantana et al. (2004) document that informed trading around earnings announcements declined post–Reg FD, and Ke, Petroni & Yu (2008) find a decline in abnormal trading by transient institutional investors prior to a bad news break after the introduction of Reg FD. These studies collectively suggest that the loss of private information by informed investors created a more equitable information environment between informed and uninformed investors.

With respect to the Global Settlement, a stream of work has investigated the effects of separating the investment banking department and its research unit (i.e., Global Settlement, NASD 2711, and NYSE 472). These studies show that recommendations generally become more pessimistic postregulation (Barber et al. 2006, Kadan et al. 2009, Clarke et al. 2011). There is mixed evidence, however, on the regulation’s effect on analyst coverage. Boni (2006) shows that the ten firms that agreed to the Global Settlement reduced coverage postregulation, whereas Kolasinski (2006) concludes that regulatory restrictions did not adversely impact analyst coverage prior to equity issuances, when conflicts of interest are potentially heightened.

3. ANALYSTS’ FORECASTS AND CASH FLOW NEWS

In this section, we discuss evidence showing the information content of analysts’ forecasts, i.e., evidence that they convey cash flow news to the market. We begin with early evidence on the use of analysts’ forecasts as a proxy for the market’s expectations of future earnings (a proxy for future cash flows). This is important because correctly assessing the influence of analyst-supplied cash flow news on asset prices hinges on the quality of the proxy for the market’s expectations of cash flows. We proceed to a discussion of the literature on the information content of analysts’ forecasts—specifically, the market reaction to changes in analysts’ forecasts (i.e., forecast revisions). We then
turn our attention to examining whether the stock price response to analysts’ forecasts is immediate and unbiased. This discussion primarily reviews the evidence on whether the market over-, under-, or unbiasedly reacts to analyst-provided cash flow news. We conclude this section with evidence on whether investors unravel predictable biases in analysts’ forecasts when impounding news of cash flow revisions.

3.1. Analysts’ Earnings Forecasts as a Proxy for Market Expectations for Earnings

Conceptually, news (or information) is thought to be the unexpected component of a release, be it a financial report or an analyst forecast. Quantifying the amount of cash flow news contained in any type of cash flow announcement requires a sound proxy for (unobservable) cash flow expectations. Motivated by this requirement, early studies investigate whether analyst earnings forecasts could serve as a proxy for the market’s expectations of future earnings (e.g., Elton & Gruber 1972, Barefield & Comiskey 1975, Brown & Rozeff 1978, Fried & Givoly 1982, Brown et al. 1987). Although this is still debated, since the work of Fried & Givoly (1982) the industry standard has been to use analysts’ forecasts as a proxy for market expectations, given their superiority in time-series models (see Bradshaw 2011). (For overviews of this literature, see also Lev 1989, Kothari 2001.)

3.2. Information Content of Analysts’ Earnings Forecast Revisions

Having established that analysts’ forecasts can be a proxy for the market’s expectations about future cash flows, subsequent researchers investigate whether and to what extent revisions in analysts’ forecasts contain news that moves contemporaneous stock prices. Analysts’ forecast revisions are a significant source of cash flow information in financial markets. Unlike (quarterly) earnings announcements, analysts’ forecast revisions do not have a predetermined periodicity; they occur throughout the quarter. A higher frequency of analysts’ earnings forecast revisions results in timely updates about cash flow information to investors. Moreover, to the extent that analysts’ forecasts reflect both public information and the analysts’ private information, earnings forecast revisions serve to disseminate a valuable source of private information otherwise unattainable through public signals.

Recognizing this importance, researchers have documented a robust positive relation between market prices and analysts’ forecast revisions (e.g., Griffin 1976; Givoly & Lakonishok 1979; Elton, Gruber & Gultekin 1981; Imhoff & Lobo 1984). More recently, studies such as those by Lys & Sohn (1990), Asquith, Mikhail & Au (2005), and Frankel, Kothari & Weber (2006) confirm that revisions in analyst earnings forecasts not only incorporate publicly observed signals, but also provide new information to investors. That is, prices, trading activity, and liquidity all change around analysts’ forecast revisions.

Although these studies find that market prices move in the direction of forecast revisions (i.e., prices increase subsequent to upward revisions in earnings forecasts), the evidence for response incompleteness of market prices to analysts’ forecast revisions (i.e., the degree to which the market under- or overreacts to the forecast revision) is muted.

Our attention is primarily given to analyst earnings forecasts, but related research on the information content of analysts’ recommendations also exists. For example, Bradley et al. (2014) document significant information content in analysts’ recommendations using high-frequency data. Further, Cornett, Tehranian & Yalcın (2007) document that analysts’ recommendation changes became less informative post–Reg FD, as it became more difficult for analysts to access value-relevant private information from managers.
Figure 1
Cumulative abnormal returns around analysts’ forecast revisions. The three lines plot the cumulative monthly return starting in month $M - 3$ and extending to month $M + 12$ for firms with an upward revision (brown line), downward revision (blue line), and no revision (red line) in their 1-year-ahead earnings forecast; M denotes the forecast revision month. The sample consists of all firms in the I/B/E/S Consensus file, 1976–2015, that are listed on the NYSE, Amex, and Nasdaq exchanges with a stock price above $1.

To illustrate the price movements around analysts’ forecast revisions, Figure 1 presents cumulative monthly returns around forecast revisions, where M denotes the forecast revision month. The sample for Figure 1 consists of all firms contained in the I/B/E/S Consensus file spanning 1976–2015 that are listed on the NYSE, Amex, and Nasdaq exchanges with a stock price above $1. The graph shows that prices rise ahead of upward revisions, suggesting that analysts revise forecasts in the direction of past price movements, which is what we might expect if pricing is rational in the market. The return spread widens in month M, indicating that analysts’ forecast revision also triggers a market reaction in the direction of the revision. Finally, the graph shows a drift in prices in the direction of the revision, indicating an incomplete reaction to the revision, which is gradually incorporated into market prices.

The evidence in prior research and Figure 1 is important for our understanding of the price discovery process and asset pricing in general. If market reactions were complete, i.e., unbiased, then forecast revisions would have only short-term implications for stock prices. In contrast, if reactions are not complete, price drifts or reversals with respect to forecast revisions will be predictable. Section 3.3 reviews the literature that investigates the degree of completeness in market responses to analysts’ forecast revisions, as well as the determinants that drive the heterogeneity in the market reaction.

3.3. Do Investors Fully React to Analysts’ Forecast Revisions?
The extent to which market prices efficiently incorporate information has been a central theme of investigation in asset pricing for many years (e.g., Fama 1970). In this section, we review
the literature that investigates how analysts’ forecast revisions are incorporated into prices. In an informationally efficient market, analysts’ forecast revisions, like any other observable, value-relevant signal, are priced in a timely and unbiased fashion. Put differently, initial price reactions to analysts’ forecast revisions are not able to predict subsequent returns. In contrast, to the extent that the market should underreact to analysts’ forecast revisions, prices would follow a predictable drift subsequent to the forecast. In addition, any conclusions drawn from such evidence will depend on whether the underreaction is driven by (a) investors’ information processing biases, i.e., investors’ ability to interpret analysts’ forecasts in an unbiased fashion, or (b) market frictions, i.e., the severity of market microstructure and trading costs that might prevent arbitrageurs who understand and seek to capitalize on investors’ biased processing of analysts’ forecasts that results in security mispricing.5

Givoly & Lakonishok (1980) conducted the first study showing that market prices initially underreact to forecast revisions, resulting in short-term return drift. Subsequent studies, such as those by Stickel (1991) and Chan, Jegadeesh & Lakonishok (1996), confirm that market prices indeed initially underreact to analysts’ forecast revisions, causing predictable drifts in stock prices. Stickel (1991), for example, demonstrates that the initial underreaction takes significant time to correct, resulting in long-term return predictability. Specifically, Stickel shows that firms whose consensus forecast has been recently revised upward tend to earn higher abnormal returns over the next 3–12 months than firms whose consensus forecast has been recently revised downward.

The initial underreaction to analysts’ forecast revisions is often viewed as stemming from two broad reasons. First are market frictions that could potentially influence the information diffusion process. A poor information environment, for example, can inhibit the efficiency with which prices absorb available information, thus causing a gradual, delayed price response to analysts’ forecast revisions. Second, investors’ information processing biases with respect to specific attributes of the analysts’ forecast revision (e.g., analyst reputation) might themselves cause a delayed price response.

Gleason & Lee (2003), for example, study how the above two channels jointly influence the dissemination of analysts’ forecast revision information. Specifically, they find that postrevision drift (a) decreases with analyst reputation, (b) increases with revision quantity, and (c) decreases with the number of analysts following. They further point out that even after one controls for various firm characteristics known to be associated with expected returns, the market still appears to underreact to revisions. Specifically, investors appear to react more strongly to star analysts compared to less well-known analysts and analysts from smaller brokerage houses. They conclude that although certain analyst and firm characteristics enhance the dissemination process of forecast revision information, market prices overall do not seem to completely understand the subtler aspects (e.g., analysts’ reputation) of analysts’ forecast revisions.

Other studies investigate the above two channels in isolation (e.g., Stickel, 1992; Park & Stice 2000; Zhang 2006; Bonner, Hugon & Walther 2007; Hui & Yeung 2013). Zhang (2006), for example, investigates how information uncertainty (proxied by firm size, age, analyst coverage, dispersion in analysts’ forecasts, return volatility, and cash flow volatility) influences postrevision drifts. Zhang (2006) finds that lower information uncertainty enables investors to react more completely to analysts’ forecast revisions, resulting in lower postrevision drifts.

5This line of argument, known as limits to arbitrage, appears, for instance, in the work of Barber et al. (2001). They show that stock returns following analyst recommendation signals are dependent on the frequency of rebalancing, highlighting the importance of transaction costs in explaining the drift in returns following analyst recommendations.
(2013) focus on the properties of analysts’ forecasts and show that investors do not fully understand the implied persistence of industry-wide analysts’ forecasts.6

In sum, the literature shows that (a) investors tend to underreact to analysts’ forecast revisions and (b) the underreaction is a function of both the information environment and analysts’ forecast characteristics. On the latter point, the extent to which investors impound forecast revisions into prices is a function of information processing biases and market frictions.

3.4. Do Investors Unravel Predictable Biases in Analysts’ Forecasts?

In Section 2 we reviewed the underlying determinants that drive biases in analysts’ forecasts. Biases can be conscious, in the sense that analysts’ self-interest might drive some of the biases, or unconscious, in the case of cognitive information-processing biases. In this section, we investigate (a) to what extent market prices are able to rationally unravel these biases and (b) what factors influence whether investors unravel analysts’ forecast biases.

Evidence on whether investors unravel predictable biases in analysts’ forecasts has been mixed, in part because of differences in research methodologies and settings. On the one hand, Hughes, Liu & So (2008) find evidence suggesting that market prices fail to incorporate predictable biases in analyst forecasts. Specifically, they find that a strategy of sorting firms by predicted errors fails to generate abnormal returns, which they interpret as market efficiency with respect to predictable analyst errors. On the other hand, So (2013) highlights an important methodological limitation in the way (Hughes, Liu & So 2008) and other related studies calculate the predicted component of analyst errors.7 So (2013) introduces an alternative approach. By showing profitable investment strategies based on the new measure of predicted analyst errors, he provides evidence of a market that is naïvely fixated on analysts’ forecasts. In a similar vein, Frankel & Lee (1998) present indirect evidence consistent with market prices failing to incorporate the predictable component of analyst errors. They show this by demonstrating that their valuation model’s performance in predicting the cross-section of stock returns improves when the predictable component of analyst errors is taken into account.

More broadly, studies in the anomalies literature suggest that investors naïvely fixate on analysts’ forecasts (Abarbanell & Bernard 1992; Dechow & Sloan 1997; Bradshaw, Richardson & Sloan 2001). The underlying motivation behind these studies is to offer a potential explanation for well-known stock market anomalies such as the postearnings announcement drift (Ball & Brown 1968), the value anomaly (Basu 1977, Fama & French 1992), and the accruals anomaly (Sloan 1996). (For a recent survey of this literature, see Richardson, Tuna & Wysocki 2010.) Specifically, these studies investigate whether investors’ fixation on biased analyst signals is responsible for anomalous returns. For example, Abarbanell & Bernard (1992) show that markets’ naïve fixation on analysts’ forecasts explains up to half of the postearnings announcement drift anomaly, and Dechow & Sloan (1997) show that bias in analysts’ forecasts of future earnings growth explains over half of the returns to contrarian investment strategies.

6A related stream of work identifies how investors weight specific firm or analyst characteristics that are predictive of analysts’ forecast errors. For instance, Clement & Tse (2003) find that investors respond more strongly to longer-horizon forecasts, which are known to be less accurate, than to shorter-horizon forecasts because investors are generally more uncertain about earnings earlier in the year.

7The traditional approach involves regressing realized forecast errors on observable, lagged firm characteristics. To the extent that these firm characteristics correlate with unobservable inputs to analyst forecasts such as analysts’ incentive misalignment or private information, biases in the methodology emerge. Examples of other studies that use the traditional approach include, for example, those of Ali, Klein & Rosenfeld (1992), Elgers & Murray (1992), Frankel & Lee (1998), and Lo & Elgers (1998).
Lastly, a stream of research investigates how investors’ characteristics influence how they might unravel analysts’ biases. For instance, Bonner, Walther & Young (2003) show that sophisticated investors appear to have a better understanding of the factors that drive forecast accuracy than do unsophisticated investors. Similarly, Malmendier & Shanthikumar (2007) show that small investors, compared with large investors, are more naive about analyst recommendations, which are overoptimistic because of underwriting incentives. More recently, Hilary & Hsu (2013) find evidence that institutional investors are better at unraveling consistent analyst errors (i.e., errors that are inaccurate with low standard deviation) compared to retail investors.

Overall, this literature suggests that investors partially unravel the biases in analysts’ forecasts, and that partial unraveling results in predictable stock prices. Further, the degree to which investors unravel predictable biases in analysts’ forecasts is a function of firm, analyst, and investor characteristics. Future research would benefit from a detailed understanding of the drivers of this variation, such as behavioral biases and capital constraints.

4. ANALYSTS’ OUTPUTS AND EXPECTED RETURNS

In this section, we discuss channels through which analysts’ forecasts are linked to expected returns. We preface this discussion by noting that although the implications of analysts’ forecasts to cash flows is clear and the empirical evidence is vast, the links between analysts’ forecasts and expected returns are less established. We review the literature below, but note that the current state of literature presents a promising opportunity for future research.

We begin this section with a discussion of the use of analysts’ forecasts in developing expected return proxies within a valuation framework. We then discuss the relation between analysts’ forecasts and expected returns in an asset-pricing framework, focusing on (a) the effect of analysts’ forecasts on information uncertainty and (b) the effect of analysts’ forecasts on information asymmetry and liquidity.

4.1. Use of Earnings Forecasts in Estimating Expected Returns

Analysts’ forecasts influence expected returns and facilitate the estimation of expected return proxies. In this section, we focus on the latter (in Section 4.2 we focus on the former). We begin with an earnings-based valuation model to obtain an estimate of firm value that is independent of price. Then, by comparing the valuation to observed market price, one may estimate the discount rate that investors place on future earnings as a proxy for the firm’s expected return.

A central goal of valuation analysis is to incorporate the latest information about the amount, timing, and uncertainty of expected future cash flows in developing estimates of firm value, which may be compared against prevailing market prices. Under classical valuation models (e.g., the dividend discount model), the fundamental value of a firm is defined as the present value of its expected future dividends. Using these approaches, firm value can be expressed as a function of two central inputs: (a) its expected future dividends and (b) the discount rate applied to the firm’s future dividends. More specifically, firm value at time \(t \) can be expressed as

\[
\text{Value}_t = \sum_{i=1}^{\infty} \frac{E_t(D_{t+i})}{(1+r_t)^i},
\]

where \(E_t(D_{t+i}) \) is the firm’s expected future dividends based on all information available in period \(t \) and \(r_t \) is the (constant) market discount rate applied to future dividends.

A key challenge in implementing the dividend discount model shown in Equation 1 is the need to forecast the stream of firms’ future dividends, particularly among firms that do not issue
dividends. Recognition of this issue gave rise to valuation models that rely on the clean surplus relation (Ohlson 1995), which states that changes in a firm’s book value must be attributable to either earnings or dividends. That is,

\[B_t = B_{t+1} + E_t - D_t, \]

(2)

where \(B_t \) denotes a firm’s book value, \(E_t \) is the firm’s earnings in period \(t \), and \(D_t \) is the firm’s dividends in period \(t \). Rearranging the clean surplus relation, dividends for period \(t \) can be expressed as

\[D_t = E_t - (B_t - B_{t+1}). \]

(3)

Substituting Equation 3 into Equation 1, firm value can be expressed as

\[\text{Value}_t = \left[\frac{E_t - (B_t - B_{t+1})}{(1 + r)^t} \right] + \left[\frac{E_{t+1} - (B_{t+1} - B_t)}{(1 + r)^{t+1}} \right] + \left[\frac{E_{t+2} - (B_{t+2} - B_{t+1})}{(1 + r)^{t+2}} \right] + \ldots \]

(4)

Equation 4 relates to valuation analysis using the Q model of Tobin (1969), which relies on forecasting firms’ ability to generate value, i.e., cash flows in excess of the cost of capital, rather than on their stream of future dividend payments. Valuation analysis using the Q model compares the market value of a firm to the replacement value of its physical assets.

Like the Q model, researchers commonly implement Equation 4 by estimating a firm’s future residual income. The notion of residual income captures the idea that expected future accounting rates of return that exceed the firms’ costs of obtaining capital create economic value. These expected earnings represent cash flows that exceed the costs of acquiring assets and thus create value for shareholders. Using this intuition, a substantial literature in economics, finance, and accounting operationalizes valuation analysis using a residual income (RI) model, where RI refers to a firm’s earnings minus the required rate of return on equity multiplied by the beginning-of-period book value:

\[\text{RI}_t = E_t - r_e B_{t-1}. \]

(5)

Substituting Equation 4 into Equation 5 expresses firm value as a function of a firm’s book value and forecasted earnings per share. More specifically, the residual income model re-expresses firm value as

\[\text{Value}_t = B_t + \sum_{i=1}^{\infty} \frac{E_t[(\text{ROE}_{t+i} - r_e)B_{t+i-1}]}{(1 + r)^i}, \]

(6)

where ROE\(_{t+i}\) is the return on book equity corresponding to period \(t + i \). The application of clean surplus accounting shifts the focus of valuation exercises from forecasting dividends to forecasting earnings.

Both academics and practitioners commonly use these valuation models because, as illustrated in Equation 6, they provide estimates of firm value by inputting forecasts of future earnings, current book values, and discount rates. By replacing firm value with the market price of a firm’s equity and using analysts’ forecasts to proxy for expected future earnings, prior research demonstrates how to derive the implicit discount rate (e.g., Gebhardt, Lee & Swaminathan 2001; Easton 2004; Easton & Monahan 2005; Guay, Kothari & Shu 2011). These estimates can be informative to investors in predicting future returns as well as to corporate managers in making internal capital investment decisions.

The estimated discount rate is commonly referred to as a firm’s implied cost of capital (ICC). ICCs have gained appeal in recent decades, first in accounting and now increasingly in finance, as a proxy for firms’ expected returns. These studies suggest that ICCs offer an alternative approach for implementing empirical asset-pricing tests. (For a review of the accounting literature on ICCs, see...
Easton & Sommers 2007.) In finance, ICCs have been used to test the intertemporal capital asset-pricing model (CAPM) (P´astor, Sinha & Swaminathan 2008), international asset-pricing models (Lee, Ng & Swaminathan 2009), and the pricing of default risk (Chava & Purnanandam 2010).

The ability of ICCs to proxy for expected returns hinges upon several key assumptions, including whether analysts’ forecasts accurately reflect the market’s expectation of earnings. Given the predictable and recurring nature of analysts’ biases discussed in Sections 2 and 3, prior research has attempted to refine ICCs as a proxy of expected returns by removing predictable biases in analysts’ forecasts (e.g., Easton & Monahan 2005; Easton 2009; Hou, van Dijk & Zhang 2012; Larocque 2013). Similarly, Guay, Kothari & Shu (2011) show that sluggishness in analysts’ forecast revisions creates biased ICC estimates. They develop techniques to mitigate this form of bias. Collectively, these studies show that analysts’ forecasts can facilitate the estimation of firm-level expected returns using an ICC approach, and they also point to a need to recognize and address the impact of predictable variation in the biases, inaccuracies, and timeliness of analysts’ forecasts.

4.2. Analysts’ Forecasts and Models of Expected Returns

Valuation is a function of two unobservables: risk and cash flows. Models show that uncertainty surrounding these unobservables affects valuation. Analysts, as information intermediaries, can influence the uncertainty around estimates of risk and cash flows through their output (forecasts, recommendations, and qualitative discussion). We begin with a classical model that ignores uncertainty. We then overlay uncertainty about the parameters and examine the role played by analysts’ outputs in reducing uncertainty.

In classical asset-pricing models such as the CAPM, the expected return of an asset is a function of the covariance between the firm’s return and the return of the market, commonly referred to as the firm’s beta. Classical models implicitly assume that the investor knows the covariance between the firm’s return and that of the market. In other words, there is no information uncertainty about the firm’s beta. Further, because investors have homogenous beliefs, there is no source of risk arising from information asymmetry among market participants. As a result, in such models there is little opportunity for analysts to influence the expected return of a stock by supplying information to the market.

Subsequent studies relax the assumption of no information uncertainty by acknowledging that the beta parameter needs to be estimated, and such uncertainty introduces so-called estimation risk (e.g., Brown 1979, Barry & Brown 1984, Coles & Loewenstein 1988). More recently, researchers have linked the estimation risk literature to corporate disclosure (Hughes, Liu & Liu 2007; Lambert, Leuz & Verrecchia 2007). The idea is that firms’ disclosures are imperfect signals about future cash flows and, as a result, better disclosures can reduce expected returns via a reduction in the (estimation of) firm beta. As discussed by Lambert, Leuz & Verrecchia (2007), this effect is nondiversifiable because it manifests through the covariance of a firm’s cash flows and the market cash flows (i.e., it lowers the cash flow beta).

The insights from the estimation risk literature have implications for the literature on analysts’ forecasts because analysts, by supplying information into the market, can alter the extent of information uncertainty in the markets. Specifically, the literature on estimation risk predicts that firms with richer information sets stemming from analysts’ information production will have lower expected returns because analysts’ forecasts reduce estimation risk, which translates to a lower beta.

Another stream of literature relaxes the assumption that investors have homogenous beliefs and exploits the extent to which information asymmetry between investors gives rise to a source of priced risk. For example, Easley & O’Hara (2004) study a model of asymmetric information and
argue that information asymmetry is a source of nondiversifiable risk. Lambert, Leuz & Verrecchia (2011) argue that the effect proposed by Easley & O’Hara (2004) is diversifiable in models of perfect competition, but show that information asymmetry is a source of nondiversifiable risk in markets with imperfect competition. (For empirical evidence, see Armstrong et al. 2011; Akins, Ng & Verdi 2012.) A related stream of research uses a rational expectations equilibrium framework that links information asymmetry to asset prices by lowering demand from uninformed traders (e.g., Grossman & Stiglitz 1980, Hellwig 1980, Admati 1985, Wang 1993).

The relation between analysts’ information production and expected returns via changes in information asymmetry, however, is more subtle. On the one hand, by supplying previously private information to the public domain, analysts’ forecasts can reduce information asymmetry. This would predict that analyst-supplied information would reduce expected returns through a reduction in information asymmetry. On the other hand, analysts are compensated on the basis of their ability to garner trading commissions, and thus they may cater to large institutional investors. To the extent that analysts provide selective access to their reports, analysts could also exacerbate information asymmetry among market participants, which would increase expected returns.

4.3. Empirical Evidence

Evidence on the link between analysts’ forecasts and expected returns is relatively scarce. One potential explanation for this scarcity is that the expected link between analysts’ forecasts and asset prices is ambiguous, given two potentially offsetting effects from uncertainty and asymmetry, as discussed above. Additionally, other forces such as market mispricing and trading frictions potentially confound the empirical link between analysts’ outputs and market prices (e.g., Miller 1977; Diether, Malloy & Scherbina 2002).

In the context of Reg FD, some studies directly test the information uncertainty versus information asymmetry mechanisms by investigating changes in cost of capital as a proxy for expected returns around the regulation’s passage. Consistent with the argument that Reg FD increased the information acquisition costs for analysts, Gomes, Gorton & Madureira (2007) document a decrease in information (i.e., higher analysts’ forecast errors and higher volatility) for small firms, causing a higher cost of capital after the passage of Reg FD. The authors interpret this result as Reg FD restricting analysts’ private access to managerial information, thus leading analysts to choose to produce less information (i.e., higher information uncertainty); this in turn adversely affected small firms.

In contrast, consistent with the argument that Reg FD reduced information asymmetry by leveling the playing field, Chen, Dhaliwal & Xie (2010) document that the cost of capital for medium and large firms declined after the passage of the new regulation. This suggests that, prior to Reg FD, analysts, especially in big firms, selectively provided information to large investors and that this channel was reduced subsequent to the new regulation.

In a similar vein, other studies show that analysts increase liquidity by mitigating information asymmetry among investors. For example, Brennan & Subrahmanyam (1995), Easley, O’Hara & Paperman (1998), and Roulstone (2003) show that analysts create a more equitable information environment among investors by publicly disclosing information that would otherwise be costly to process. Similarly, Chung, Elder & Kim (2010) suggest that analysts help mitigate information asymmetry between firms and investors by serving a governance role, deterring corporate wrongdoing. In contrast, researchers such as Irvine, Lipson & Puckett (2007), Juergens & Lindsey (2009), and Christophe, Ferri & Hsieh (2010) suggest that analysts may also increase adverse selection risk among investors by sharing information privately with preferred clientele before publicly releasing their forecasts or recommendations.
Finally, an influential study by Diether, Malloy & Scherbina (2002) investigates the relation between analysts’ forecast dispersion and the cross-section of future returns, finding that analysts’ forecast dispersion is negatively associated with future returns. The authors interpret this result as differences in opinion driving overvaluation in the stock (a theory set forth by Miller 1977). (For evidence of a similar pattern using idiosyncratic volatility and the cross-section of returns, see Ang et al. 2006; Stambaugh, Yu & Yuan 2015.) Other studies attribute the findings of Diether, Malloy & Scherbina (2002) to trading costs (Sadka & Scherbina 2007) and to financial distress (Avramov et al. 2009). Regardless of whether forecast dispersion captures information uncertainty or asymmetry (in the form of disagreement) among analysts or a correlated factor (e.g., trading costs or distress risk) reflecting fundamental risk (and as a result information risk), the evidence seems inconsistent with the argument that analysts’ forecast dispersion is associated with priced information risk.

5. CONCLUSIONS

This survey reviews the literature on sell-side analysts’ forecasts and their implications for asset pricing. Section 2 reviews the literature on the supply and demand forces shaping analysts’ forecasting decisions, noting that research on the impact of analyst forecasts on asset prices needs to account for the information analysts produce, which firms they cover, and their incentives to convey accurate and unbiased information. Section 3 reviews the literature on analyst forecasts and their implications for cash flow news, which highlights both instantaneous and delayed reactions to analysts’ forecasts as well as the role of market over- versus underreaction. Section 4 reviews the literature on analyst forecasts’ implications for expected returns.

Despite a substantial literature on the intersection of analysts’ forecasts and asset pricing, the specific mechanisms through which analysts’ forecasts influence asset prices, and expected returns in particular, are still not entirely clear. We identify unanswered questions and offer suggestions for future research to better understand the channels through which analysts’ forecasts influence expected returns, the formation of analysts’ beliefs, and techniques to causally link forecasts to market outcomes.

Before we conclude, we note that it has been more than 20 years since Schipper (1991) highlighted a disproportionate focus within academic research on analysts’ forecasts, largely because of the availability of analyst forecast data and the use of this data within studies of earnings news (for a similar remark, see Bradshaw 2011). In our view, this disproportion remains despite the proliferation of new data sources and technologies, such as textual analysis, that afford researchers the ability to paint a more complete view of the information analysts themselves convey to the market. We encourage future research to help fill this void and, in doing so, to enhance our understanding of how information supplied by analysts becomes reflected in market prices.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

We appreciate the very helpful suggestions from Gus DeFranco, Andrew Lo, Greg Miller, Heidi Packard, Will Powley, Charles Wasley, and Peter Wysocki. We also thank Jinhwan Kim for excellent research assistance. All errors are our own.
LITERATURE CITED

Abarbanell JS. 1991. Do analysts’ earnings forecasts incorporate information in prior stock price changes?

Abarbanell JS, Bernard VL. 1992. Tests of analysts’ overreaction/underreaction to earnings information as an

 53(3):629–58

Agrawal A, Chadha S, Chen MA. 2006. Who is afraid of Reg FD? The behavior and performance of sell-side
 analysts following the SEC’s Fair Disclosure rules. J. Bus. 79(6):2811–34

 51(3):503–37

Akins BK, Ng J, Verdi RS. 2012. Investor competition over information and the pricing of information
 asymmetry. Account. Rev. 87(1):35–58

 components in forecasting annual EPS. Account. Rev. 67(1):183–98

 J. Finance 61(1):259–99

Armstrong CS, Core JE, Taylor DJ, Verrecchia RE. 2011. When does information asymmetry affect the cost

Avramov D, Chordia T, Jostova G, Philipov A. 2009. Dispersion in analysts’ earnings forecasts and credit
 rating. J. Financ. Econ. 91(1):83–101

 33(2):173–204

 efficient market hypothesis. J. Finance 32(3):663–82

 literature. J. Account. Econ. 50(2):296–343

Boni L. 2006. Analyzing the analysts after the global settlement. In Financial Gatekeepers: Can They Protect

Bonner SE, Walther BR, Young SM. 2003. Sophistication-related differences in investors’ models of the

 evidence on the impact of time stamp delays. J. Finance 69(2):645–73

Contents

The Economics of High-Frequency Trading: Taking Stock
Albert J. Menkveld 1

Money Market Funds and Regulation
Craig M. Lewis 25

Agency Dynamics in Corporate Finance
Bart M. Lambrecht and Stewart C. Myers 53

Credit Supply Disruptions: From Credit Crunches to Financial Crisis
Joe Peek and Eric Rosengren 81

Deposit Insurance: Theories and Facts
Charles W. Calomiris and Matthew Jaremski 97

Equity Capital, Internal Capital Markets, and Optimal Capital Structure in the US Property-Casualty Insurance Industry
J. David Cummins and Mary A. Weiss 121

The Life Insurance Industry and Systemic Risk: A Bond Market Perspective
Anna Paulson and Richard Rosen 155

Credit Default Swaps: Past, Present, and Future
Patrick Augustin, Marti G. Subrahmanyam, Dragon Y. Tang, and Sarah Q. Wang 175

Analysts’ Forecasts and Asset Pricing: A Survey
S.P. Kothari, Eric So, and Rodrigo Verdi 197

Globalization and Asset Returns
Geert Bekaert, Campbell R. Harvey, Andrea Kiguel, and Xiaozheng Wang 221

Education Financing and Student Lending
Gene Amromin and Janice Eberly 289

Small Business Bankruptcy
Michele J. White 317
An Evaluation of Financial Analysts and Naïve Methods in Forecasting Long-Term Earnings

Michael Lacina
University of Houston-Clear Lake - School of Business

BuRyung Brian Lee
affiliation not provided to SSRN

Zhaohui Randall Xu
University of Houston, Clear Lake

Advances in Business and Management Forecasting (Vol. 8), Kenneth D. Lawrence, Ronald K. Klimberg (ed.), Emerald Group Publishing Limited, pp.77-101

Abstract:
We evaluate the performance of financial analysts versus naïve models in making long-term earnings forecasts. Long-term earnings forecasts are generally defined as third-, fourth-, and fifth- year earnings forecasts. We find that for the fourth and fifth years, analysts’ forecasts are no more accurate than naïve random walk (RW) forecasts or naïve RW with economic growth forecasts. Furthermore, naïve model forecasts contain a large amount of incremental information over analysts’ long-term forecasts in explaining future actual earnings. Tests based on subsamples show that the performance of analysts’ long-term forecasts declines relative to naïve model forecasts for firms with high past earnings growth and low analyst coverage. Furthermore, a model that combines a naïve benchmark (last year’s earnings) with the analyst long-term earnings growth forecast does not perform better than analysts’ forecasts or naïve model forecasts. Our findings suggest that analysts’ long-term earnings forecasts should be used with caution by researchers and practitioners. Also, when analysts’ earnings forecasts are unavailable, naïve model earnings forecasts may be sufficient for measuring long-term earnings expectations.
AN EVALUATION OF FINANCIAL ANALYSTS AND NAÏVE METHODS IN FORECASTING LONG-TERM EARNINGS

Michael Lacina, B. Brian Lee and Randall Zhaohui Xu

ABSTRACT

We evaluate the performance of financial analysts versus naïve models in making long-term earnings forecasts. Long-term earnings forecasts are generally defined as third-, fourth-, and fifth-year earnings forecasts. We find that for the fourth and fifth years, analysts’ forecasts are no more accurate than naïve random walk (RW) forecasts or naïve RW with economic growth forecasts. Furthermore, naïve model forecasts contain a large amount of incremental information over analysts’ long-term forecasts in explaining future actual earnings. Tests based on subsamples show that the performance of analysts’ long-term forecasts declines relative to naïve model forecasts for firms with high past earnings growth and low analyst coverage. Furthermore, a model that combines a naïve benchmark (last year’s earnings) with the analyst long-term earnings growth forecast does not perform better than analysts’ forecasts or naïve model forecasts. Our findings suggest that analysts’ long-term earnings
forecasts should be used with caution by researchers and practitioners. Also, when analysts’ earnings forecasts are unavailable, naïve model earnings forecasts may be sufficient for measuring long-term earnings expectations.

INTRODUCTION

This chapter evaluates the performance of financial analysts versus naïve models in forecasting long-term earnings. Analysts’ earnings forecasts are widely used in accounting research as proxy for market expected earnings (Ramnath, Rock, & Shane, 2008; Schipper, 1991). The underlying assumption is that in an informationally efficient market, the capital market should use the best future earnings data available, where the best is defined as the most accurate (Brown, 1993). Indeed, many researchers in recent years have assumed that analysts’ forecasts are superior to those of naïve and time series models.1 However, prior evidence on the superiority of analysts’ earnings forecasts over statistical model forecasts mainly originates from studies that focus on a comparison of predictive accuracy for short-term earnings forecasts, typically for the upcoming quarters or the coming year (e.g., Brown, Griffin, Hagerman, & Zmijewski, 1987a, 1987b; Brown, Richardson, & Schwager, 1987; Brown & Rozell, 1978; Fried & Givoly, 1982; Imhoff & Pare, 1982).

Analysts tend to have a timing advantage over naïve and time series models in predicting short-term earnings due to the information available between the end of the final time period included in the forecast model and the date the analyst makes a forecast. Analysts do not have as much of a timing advantage over naïve and time series methods in making earnings forecasts over longer horizons, which normally extend more than two years from the forecast date. Furthermore, analysts are often evaluated on the accuracy of their short-term forecasts but not of their long-term forecasts (Dechow, Hutton, & Sloan, 2000; Stickel, 1992). This would on average provide analysts with more of an incentive to be accurate in their short-term forecasts than in their long-term forecasts. In fact, Chan, Karceski, and Lakonishok (2003) find that analysts’ long-term earnings growth forecasts are overly optimistic and have little predictive power. The questionable predictive ability of analysts’ long-term growth forecasts puts doubt on the assumption that analysts’ forecasts are the default proxy for market expectations of long-term earnings extending beyond two years. Nevertheless,
long-term earnings growth forecasts are widely disseminated by financial analysts. Bradshaw (2004) finds that analysts use their long-term earnings growth forecasts in formulating stock recommendations. Moreover, prior studies plug in up to five years of analysts’ earnings forecasts into earnings-based valuation models to infer the implied cost of capital (e.g., Botosan & Plumlee, 2005; Claus & Thomas, 2001; P. Easton, Taylor, Shroff, & Sougiannis, 2002) or assess firms’ intrinsic values (e.g., Frankel & Lee, 1998; Sougiannis & Yaekura, 2001).

When earnings forecasts serve as inputs to valuation models, the accuracy of the earnings forecasts directly affects the estimates of cost of capital and intrinsic values. For example, P. Easton and Sommers (2007) find that optimism in analysts’ earnings forecasts leads to an upward bias in the estimated cost of capital of about 3%. P. Easton and Monahan (2005) show that cost of capital derived from analysts’ earnings forecasts is negatively correlated with realized returns after controlling for proxies for cash flow news and discount rate news. Similarly, prior studies (e.g., Francis, Olsson, & Oswald, 2000; Sougiannis & Yaekura, 2001) find large valuation errors from valuation models that use analysts’ forecasts as a proxy for future earnings. Evidence in P. Easton and Monahan (2005) and Sougiannis and Yaekura (2001) suggests that their aforementioned findings are partially due to problems with analyst earnings forecast quality. Therefore, it is important to examine the performance of analysts’ forecasts against alternative sources of earnings forecasts such as statistical models. The findings will provide fresh insight into the appropriateness of using analysts’ forecasts as the default proxy for expected earnings in academic research.

A number of studies that examine the performance of analysts’ long-term earnings forecasts use samples selected based on a transaction that has taken place, which limits the generalizability of their findings. There are exceptions, that is, Cragg and Malkiel (1968) and Rozef (1983). Cragg and Malkiel (1968) find that analysts’ long-term earnings growth forecasts are on the whole no more accurate than naive forecasts based on past earnings growth. They use analysts’ forecasts made in 1962 and 1963 by five brokerage houses for 185 firms. On the contrary, Rozef (1983) finds that growth rates derived from four- to five-year earnings forecasts from Value Line are more accurate than the corresponding growth rates implicit in four expected stock return models. His study uses a sample that includes Value Line long-term earnings forecasts made in 1967 (253 firms) and 1972 (348 firms). Given the poor performance of analysts’ long-term earnings growth forecasts found in Chan et al.(2003) and the small samples from the 1960s and early 1970s used in Cragg and Malkiel (1968) and Rozef (1983), it is
important to reexamine the performance of analysts’ long-term earnings forecasts versus those of naïve models.

We use I/B/E/S analyst forecast data to compare analysts’ long-term earnings forecasts with those of two naïve models. Whereas the analysts’ first year (end of year following last reported annual earnings) and second year earnings forecasts are normally considered short-term forecasts, the third year through fifth-year forecasts are generally considered long term. Analysts’ long-term earnings forecasts are either obtained directly on I/B/E/S or derived using the analysts’ last available explicit earnings forecast with the analysts’ long-term earnings growth rate, as is often done in the literature. The two naïve earnings forecast models are a random walk (RW) model and a RW with a drift based on historical inflation and historical real GDP growth (RWGDP). Additionally, some researchers have found that combining analysts’ forecasts with naïve benchmarks can improve forecast accuracy (e.g., Cheng, Fan, & So, 2003; Conroy & Harris, 1987; Newbold, Zumwalt, & Kannan, 1987). Therefore, we also examine whether a hybrid model (RWLTG) combining a naïve benchmark, last year’s earnings, with the analysts’ long-term earnings growth rate forecast can improve long-term earnings forecast accuracy. The performances of the analyst, naïve, and hybrid forecasts are evaluated by examining their accuracy and information content.

The results for short-term forecast horizons show that analysts’ earnings forecasts are more accurate than RW and RWGDP forecasts, which is consistent with prior research. However, as the forecast horizon extends beyond the second year, the higher accuracy of analysts’ forecasts wanes such that for long-term horizons (especially fourth and fifth years), we cannot conclude whether analysts’ forecasts are more accurate than RW or RWGDP forecasts. In some cases, we find evidence that the RWGDP model is more accurate than analysts’ forecasts. As far as information content is concerned, a regression analysis shows that analysts’ forecasts provide the majority of the information in explaining first- and second-year actual earnings. However, naïve model forecasts provide substantial incremental information over analysts’ forecasts in explaining future actual earnings as the forecast horizon is extended beyond the second year.

We perform additional tests of accuracy and information content. First, we run the analyses on sample partitions. The results of these tests show that the performance of analysts’ earnings forecasts declines relative to naïve model forecasts for firms with high past earnings growth and low analyst following. Also, when analysts issue explicit (as opposed to growth rate) long-term earnings forecasts, the performance of their forecasts improves relative to naïve model forecasts for only the fifth year in the forecast.
horizon. However, financial analysts infrequently issue explicit earnings forecasts for the fifth year. Second, we compare earnings forecasts of the hybrid RWLTG model with analysts’ forecasts and RWGDP forecasts (the most accurate naïve forecast). We find that the hybrid RWLTG model does not enhance forecast accuracy. Furthermore, the hybrid model forecasts contain less information content in explaining future earnings than RWGDP model forecasts or analysts’ forecasts.

Our results convey that academics and practitioners should use analysts’ long-term earnings forecasts with caution, especially for firms with high earnings growth. These analyst long-term forecasts appear to be no more accurate than some of the simple, naïve forecasts. Also, much of the information useful in explaining long-term future actual earnings is provided by naïve forecasts as opposed to analysts’ forecasts. Our findings imply that the use of naïve forecast models such as RWGDP and RW may be sufficient and easily derived ways of forecasting long-term earnings when analysts’ forecasts are unavailable. It is well known that analyst coverage is affected by various factors, and analysts tend to cover firms that are large and profitable (Bhushan, 1989; Hong, Lim, & Stein, 2000). Therefore, using forecasts from naïve models enables researchers to expand the sample to include firms without analyst coverage, thereby reducing the potential sampling bias in research design that limits the generalizability of their findings. This study contributes to the burgeoning stream of research that uses alternative earnings forecasts as a proxy for expected earnings. For example, Allee (2009) and Hou, van Dijk, and Zhang (2010) use earnings forecasts derived from time series models and a cross-sectional model, respectively, to estimate cost of capital.

The chapter proceeds as follows. The second section reviews relevant literature. In the third section, we explain the chapter’s methodology. The fourth section discusses the results, including those for the full sample, sample partitions, and the hybrid model. The fifth section contains the conclusions.

LITERATURE REVIEW

Much of the literature that compares analysts’ earnings forecasts with naïve or time series forecasts focuses on short-term forecasts. Brown and Rozell (1978) examine quarterly earnings forecasts ranging from one quarter to five quarters ahead and first (current)-year annual earnings forecasts. They find that Value Line analysts’ forecasts, on the whole, are more accurate than time series forecasts. Imhoff and Pare (1982) show that analysts’ forecasts on
average outperform time series forecasts in terms of accuracy when the forecast horizon is four quarters ahead but not when it is three quarters ahead. Fried and Givoly (1982) examine first-year annual earnings forecasts and find that analysts’ forecasts are more accurate than forecasts from two time series models. Brown et al. (1987) test analysts’ one, two, and three-quarter-ahead forecasts from Value Line made one, two, and three months before the end of a quarter and analysts’ first- and second-year annual forecasts from I/B/E/S. Their findings support the superiority of analysts’ forecasts over time series forecasts. Cheng et al. (2003) use I/B/E/S analysts’ first-year annual forecasts from Hong Kong. For the first 10 months following the previous earnings announcement, both analysts and RW forecasts have information content in explaining actual earnings. However, analysts’ forecasts have relatively more information content as the earnings announcement date approaches. Brown et al. (1987a) test quarterly forecasts from one to three quarters ahead and find that the predictive accuracy of analysts’ forecasts is superior to that of time series forecasts. They attribute this analyst superiority to two factors: (1) a contemporaneous advantage due to an analyst’s ability to make better use of current information and (2) a timing advantage stemming from the acquisition of information by an analyst between the date the naïve forecast is made and the date the analyst forecast is made. However, although timing can be a major advantage for analysts relative to naïve methods for short-term forecasts, this advantage is less likely to have a significant impact on long-term forecasts.

Research that directly examines the performance of analysts’ long-term forecasts has been sparse. Cragg and Malkiel (1968) study the accuracy of analysts’ five-year earnings growth forecasts from five brokerage houses. They find that analysts’ five-year earnings growth forecasts are no more accurate than long-term earnings growth forecasts based on past earnings growth rates or price-to-earnings ratios. On the contrary, analysts’ five-year growth forecasts are found to be more accurate than naïve forecasts of no earnings growth. Rozell (1983) uses four-to-five year earnings growth rates from Value Line analysts during 1967 and 1972. These forecasts are found to predict long-term earnings growth better than naïve forecasts from four expected return models. Chan et al. (2003) analyze the growth rates of earnings and sales. They document that analysts’ long-term earnings growth forecasts are overly optimistic and have little predictive power for future earnings. A defect of these forecasts is that analysts predict sustained earnings growth rates over a long future time horizon (e.g., three to five years) for a large proportion of firms. On the contrary, the authors show that only 12.2% (2.6%) of their sample firms achieve above median growth in income.
before extraordinary items for three (five) straight years. Dechow et al. (2000) study analysts’ long-term earnings growth forecasts made around the equity offerings and find that the forecasts are systematically optimistic. Bradshaw (2004) documents that analysts use their long-term earnings growth forecasts in generating stock recommendations but that their long-term earnings growth forecasts are negatively related to future returns.

METHODOLOGY

Sample Selection

Our sample is from the I/B/E/S database. For the month of June for each year from 1988 to 2003, we obtain the median consensus analysts’ earnings forecasts for up to five years ahead and the median consensus analysts’ forecasted long-term earnings growth rate. I/B/E/S recommends the usage of the median (as opposed to mean) long-term earnings growth rate forecast to prevent excessive influence from outliers (Thomson Financial, 2004). We retrieve actual earnings per share (EPS) from I/B/E/S through 2007. To allow comparison using similar samples across forecast horizons, we require each firm year to have actual EPS for the upcoming five years. Stock price, which is used as a deflator in some of the analyses, is acquired from the CRSP database. We keep only firm years with December fiscal year ends to align the time horizons for analysts’ earnings forecasts in our sample. The analysts’ earnings forecasts and the actual earnings, which are in per share format, are adjusted for stock dividends and stock splits to coincide with the number of shares outstanding as of the June base month. Furthermore, analysts’ forecasts in fully diluted form are adjusted to the basic format. If, for some reason, the firm has yet to release its prior year earnings before the I/B/E/S June consensus earnings forecast period, we drop the observation. Our final sample contains 27,081 firm years. There are fewer firm years in the individual analyses due to missing forecasts from analysts and naïve models, missing actual EPS, or missing stock price when applicable.

Analyst and Model Forecasts

The first-year analysts’ earnings forecasts are obtained from I/B/E/S and designated as year t (first-year) forecasts. For the subsequent four years, year $t + 1$ through year $t + 4$, explicit analysts’ forecasts are obtained from I/B/E/S,
if available. Explicit forecasts are almost always available for year $t + 1$ but are usually unavailable for the long-term horizons, years $t + 2$ through $t + 4$. If an explicit forecast is not available, we calculate a forecast as follows:

$$\text{ANEPS}_{t+\tau} = \text{ANEPS}_{t+s} \times (1 + \text{LTG})^{\tau-s}$$

where ANEPS_{t+s} is the I/B/E/S median consensus analysts’ EPS forecast for year $t+s$ (the last year with an explicit EPS forecast), LTG is the median consensus analysts’ long-term earnings growth rate forecast on I/B/E/S, $\tau = 1, \ldots, 4$, $s = 0, \ldots, 3$, and $\tau > s$. In this chapter, usually the second year’s (year $t+1$) explicit EPS forecast is compounded at the long-term earnings growth rate to calculate the analysts’ long-term earnings forecast. The compounding of the second year’s analysts’ earnings forecast with the analysts’ long-term earnings growth rate to calculate the subsequent years’ analyst earnings forecasts is common in the literature (Claus & Thomas, 2001; P. Easton et al., 2002; Frankel & Lee, 1998; Gebhardt, Lee, & Swaminathan, 2001; Hribar & Jenkins, 2004; and others).

We also produce earnings forecasts using two naïve statistical models, namely, a RW model and a RW with a drift based on past economic growth rate (RWGDP) model. The RW model is specified as follows:

$$\text{RW}_{t+\tau} = \text{EPS}_{t-1}$$

where EPS_{t-1} is last year’s actual EPS, and $\tau = 0, \ldots, 4$.

The RWGDP model is specified as follows:

$$\text{RWGDP}_{t+\tau} = \text{EPS}_{t-1}(1 + g)^{\tau+1}$$

where $g =$ historical inflation rate + historical growth in real GDP, and $\tau = 0, \ldots, 4$. The growth rate g is determined using the inflation rate and the growth in real GDP for year $t-1$. The historical inflation rate is retrieved from the Inflationdata.com web site (Capital Professional Services, 2009). The historical growth rate of GDP is based on GDP data at the web site of the U.S. Department of Commerce, Bureau of Economic Analysis (U.S. Department of Commerce, 2009).

We also calculate earnings forecasts using a hybrid (RWLTG) model that combines a RW based on prior year EPS with the analysts’ long-term earnings growth forecast. The model is estimated as follows:

$$\text{RWLTG}_{t+\tau} = \text{EPS}_{t-1}(1 + \text{LTG})^{\tau+1}$$

where LTG is the I/B/E/S median consensus analysts’ long-term earnings growth rate forecast, and $\tau = 0, \ldots, 4$.
An additional issue arises if ANEPS\(_{t+s}\) is negative for ANEPS calculations that require analysts’ long-term earnings growth forecasts or if EPS\(_{t-1}\) is negative for the RWGDP and RWLTG models. First, it is unrealistic to assume that a firm can sustain an increasingly negative EPS over the forecast horizon. Second, positive earnings growth forecasts are meant to convey earnings increases. Therefore, when ANEPS\(_{t+s}\) or EPS\(_{t-1}\) is negative, we use the negative of the growth rate in formulating the forecast. This implies a reversion toward zero earnings for future periods if the growth rate is positive (most cases). For example, using the RWLTG model as an illustration and assuming that EPS\(_{t-1}\) is -$1.00 and LTG is 10%; RWLTG\(_{t}\) is -$0.90, RWLTG\(_{t+1}\) is -$0.81, RWLTG\(_{t+2}\) is -$0.73, and so on.

Measurement of Forecast Accuracy and Forecast Bias

To compare the forecast accuracy between analysts and naïve models, we calculate forecast error (FE) and relative forecast accuracy (RFA). We use two alternative deflators to calculate FEs. Specifically, we measure FE deflated by price (FE/P) as follows:

\[
\frac{|\text{EPS}_{t+\tau} - \text{ANEPS}_{t+\tau} (\text{or STATEPS}_{t+\tau})|}{P_{t-1}}
\]

and FE deflated by forecasted EPS (FE/EPS) as follows:

\[
\frac{|\text{EPS}_{t+\tau} - \text{ANEPS}_{t+\tau} (\text{or STATEPS}_{t+\tau})|}{|\text{ANEPS}_{t+\tau} (\text{or STATEPS}_{t+\tau})|}
\]

where EPS\(_{t+\tau}\) is future actual EPS, STATEPS\(_{t+\tau}\) is the earnings forecast generated by one of the naïve models or the hybrid model discussed above, P\(_{t-1}\) is the stock price per share for the end of May, the month previous to the base month, and \(\tau = 0, \ldots, 4\).

We also measure the RFA, which directly compares the FE from the analysts’ forecast with that from the naïve forecast. RFA deflated by price (RFA/P) is measured as follows:

\[
\frac{(|\text{EPS}_{t+\tau} - \text{ANEPS}_{t+\tau}| - |\text{EPS}_{t+\tau} - \text{STATEPS}_{t+\tau}|)}{P_{t-1}}
\]

while RFA deflated by EPS (RFA/E) is calculated as follows:
A negative (positive) RFA value implies higher analyst (model) forecast accuracy.

The RFA measure differs from the FE measure. For FE, we calculate the absolute values of earnings FEs of analysts and those of a particular model at the individual observation level and then determine the significance of the difference in means (medians) between the two groups of FEs using a t-test (sign test). For RFA, we take the difference in the absolute FEs of analysts and the applicable model at the individual observation level and then measure whether the mean (median) of these differences is significantly different from zero through a t-test (sign test). FE and RFA serve as alternative measures of earnings forecast accuracy. The FEs above 1.0 are winsorized at 1.0 and the RFA measures are winsorized at ± 1.0 (Brown et al., 1987a; Fried & Givoly, 1982).

Testing Information Content of Analysts’ Forecasts versus Model Forecasts

The above measures of forecast accuracy examine the magnitudes of the deviations of the forecasted earnings from the actual earnings. However, given the earnings forecast with higher accuracy, the earnings forecast with lower accuracy may also contain incrementally useful information in predicting future earnings. For instance, if analysts misestimate the persistence of the prior year’s earnings, then a naïve model using the prior year’s earnings would likely contain information incremental to that from analysts’ forecasts even if analysts’ forecasts happen to be more accurate. To explore the information content of analysts’ forecasts and model forecasts, we run the following regression using OLS (Cheng et al., 2003; Granger & Newbold, 1973):

$$\frac{\text{EPS}_{t+\tau}}{\text{EPS}_{t-1}} - \frac{\text{STATEPS}_{t+\tau}}{\text{EPS}_{t-1}} = \alpha + \beta \left(\frac{\text{ANEPS}_{t+\tau}}{\text{EPS}_{t-1}} - \frac{\text{STATEPS}_{t+\tau}}{\text{EPS}_{t-1}} \right) + \epsilon_{t+\tau} \quad (3)$$

where EPS is actual EPS, ANEPS is the analysts’ forecast, STATEPS is the earnings forecast from one of the naïve models or the hybrid model, and $\tau = 0, \ldots, 4$. If all information in forecasting future actual earnings is provided by ANEPS, then β will equal one. On the contrary, if all information is provided by STATEPS, then β will equal zero. When information is provided by both ANEPS and STATEPS, $0 < \beta < 1$. It is
It is possible that β could be greater than one or less than zero. In these situations, both forecasts have information content in explaining future earnings but investors put a negative weight on one of the forecasts.

Although Granger and Newbold (1973) hypothesize that the intercept term is zero, we follow Cheng et al. (2003) and include an intercept term to account for any bias in analysts’ forecasts. To reduce excessive influence from outliers, we do two procedures. First, we winsorize the dependent variable and the independent variable at $+1.0$ and -1.0. Second, we eliminate outliers based on the guidelines of Belsley, Kuh, and Welsch (1980).

RESULTS

Full Sample

Panel A of Table 1 compares the earnings forecasts made by analysts with those from the RW model. The number of observations is lower for FE/P than FE/EPS due to the requirement of stock price from the CRSP database for FE/P. An analysis of FE/P and FE/EPS shows that, in forecasting short-term earnings (years t and $t+1$), analysts’ forecasts have significantly lower FEs than the RW model forecasts. For long-term forecasts, the results are mixed based on the FE measures. The median (mean and median) FE/P (FE/EPS) values convey that analysts tend to be more accurate over years $t+2$ through $t+4$. However, the results show that the forecast advantage for analysts steadily declines as the forecast horizon is extended. In fact, mean FE/P is significantly lower for RW forecasts at the 1% level in year $t+4$. An observation of RFA/P and RFA/EPS, which serve as alternative measures of forecast accuracy, confirms analyst superiority over the naïve model for short-term earnings forecasts. On the contrary, for years $t+3$ and $t+4$ (years $t+2$ through $t+4$), the positive mean values of RFA/P (RFA/EPS) signify that RW model forecasts are significantly more accurate at the 1% level. Nevertheless, the median values of RFA/P and RFA/EPS convey that analysts’ forecasts are significantly more accurate than RW forecasts for all forecast horizons. Overall, analysts’ forecasts outperform the RW model in forecasting short-term earnings. However, the conflicting forecast accuracy results do not support the superiority of either analysts or the RW model in forecasting long-term earnings, especially for years $t+3$ and $t+4$.

We also compute forecast bias, which is measured using Eqs. (1) and (2) except that the numerators are signed values instead of absolute values.
Table 1. Comparison of Forecasts between Analysts and Naive Models.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year t</td>
<td>t + 1</td>
</tr>
<tr>
<td>Panel A: Analysts' forecasts versus random walk model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE/P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysts</td>
<td>2.036</td>
<td>3.885</td>
</tr>
<tr>
<td>RW</td>
<td>3.198</td>
<td>4.453</td>
</tr>
<tr>
<td>Difference</td>
<td>−1.161*</td>
<td>−0.568*</td>
</tr>
<tr>
<td>N</td>
<td>12,527</td>
<td>12,248</td>
</tr>
<tr>
<td>FE/EPS Analysts</td>
<td>26.148</td>
<td>40.089</td>
</tr>
<tr>
<td>RW</td>
<td>36.668</td>
<td>45.906</td>
</tr>
<tr>
<td>Difference</td>
<td>−10.520*</td>
<td>−5.816*</td>
</tr>
<tr>
<td>N</td>
<td>27,079</td>
<td>26,383</td>
</tr>
<tr>
<td>RFA/P</td>
<td>−1.221***</td>
<td>−0.607***</td>
</tr>
</tbody>
</table>

Notes: All values are shown as percentages. FE/P is forecast error deflated by price, specified as \(|\text{EPS}_{t+1} - \hat{\text{ANEPS}}_{t+1} (\text{or STATEPS}_{t+1})|/P_{t-1}\), where \(\text{EPS}\) is actual annual earnings per share, \(\hat{\text{ANEPS}}\) is analyst forecasted earnings per share, \(\text{STATEPS}\) is earnings per share estimated with one of the naive models, and \(P\) is stock price per share. FE/EPS is forecast error deflated by earnings per share, specified as \(|\text{EPS}_{t+1} - \hat{\text{ANEPS}}_{t+1} (\text{or STATEPS}_{t+1})|/\hat{\text{ANEPS}}_{t+1} (\text{or STATEPS}_{t+1})|\), where \(\text{EPS}\) is actual annual earnings per share, \(\hat{\text{ANEPS}}\) is analyst forecasted earnings per share, and \(\text{STATEPS}\) is earnings per share estimated with one of the naive models. RFA/P is relative forecast accuracy deflated by price, specified as \((\text{EPS}_{t+1} - \hat{\text{ANEPS}}_{t+1} (\text{or STATEPS}_{t+1}))|/\hat{\text{ANEPS}}_{t+1} (\text{or STATEPS}_{t+1})|)/P_{t-1}\), where \(\text{EPS}\) is actual annual earnings per share, \(\hat{\text{ANEPS}}\) is analyst forecasted earnings per share, \(\text{STATEPS}\) is earnings per share estimated with one of the naive models, and \(P\) is stock price per share. RFA/EPS is relative forecast accuracy deflated by earnings per share, specified as \((\text{EPS}_{t+1} - \hat{\text{ANEPS}}_{t+1} (\text{or STATEPS}_{t+1})|/\hat{\text{ANEPS}}_{t+1} (\text{or STATEPS}_{t+1})|)/\hat{\text{ANEPS}}_{t+1} (\text{or STATEPS}_{t+1})|\), where \(\text{EPS}\) is actual annual earnings per share, \(\hat{\text{ANEPS}}\) is analyst forecasted earnings per share, and \(\text{STATEPS}\) is earnings per share estimated with one of the naive models. The measures (FE/P, RFA/P, etc.) are winsorized at −1.0 (if applicable) and +1.0. **Significance at the 0.01 level (two-tailed). ***Significance at the 0.05 level (two-tailed).

*Significance at the 0.10 level (two-tailed).
The untabulated statistics show that analysts’ earnings forecast bias values indicate analyst optimism, which increases as the forecast horizon is extended. This is consistent with the literature. The RW forecasts convey that they are pessimistically biased, which is not surprising because the assumption with RW forecasts is no growth over prior year’s earnings.

Table 1, panel B, compares analysts’ earnings forecasts with forecasts from the RWGDP model. Similar to the results in panel A, analysts are superior in forecasting short-term earnings. On the contrary, the findings are mixed with respect to long-term forecasts. An observation of mean FE/P shows that RWGDP long-term forecasts have lower FEs for year \(t + 3 \) (at the 5% significance level) and year \(t + 4 \) (at the 1% significance level). The results for median FE/P convey that analysts’ FEs are significantly lower at the 1% level for year \(t + 2 \), there is no significant difference for year \(t + 3 \), and RWGDP model FEs are significantly lower at the 5% level for year \(t + 4 \). The results for mean and median values of FE/EPS convey that analysts are more accurate for years \(t \) through \(t + 3 \). However, the findings with respect to mean (median) values of FE/EPS in year \(t + 4 \) indicate lower RWGDP model FEs (no significant difference in FEs). Turning to the alternative measures of forecast accuracy, the positive mean values of RFA/P and RFA/EPS for years \(t + 2 \) through \(t + 4 \) imply that RWGDP long-term forecasts are significantly more accurate at the 1% level. The median values of RFA/P indicate higher accuracy for analysts’ forecasts in years \(t + 2 \) and \(t + 3 \) (at the 5% level) and no significant difference in year \(t + 4 \). The median values of RFA/EPS show that while analysts are significantly more accurate at the 1% level in year \(t + 2 \), there is no significant difference in year \(t + 3 \), and the RWGDP model has significantly higher accuracy at the 1% level in year \(t + 4 \). Overall, the results in panel B do not support the conjecture that analysts outperform the RWGDP model in making long-term earnings forecasts. Also, the accuracy of RWGDP model forecasts improves relative to analysts’ forecasts as the forecast horizon is extended. The results provide some evidence on the superiority of RWGDP model forecasts over analysts’ forecasts for year \(t + 4 \).

The regression results from Eq. (3) with analysts’ earnings forecasts and RW earnings forecasts are listed in Table 2, panel A. The parameter \(\beta \) is significantly greater than zero for all forecast periods, indicating that analysts’ forecasts have information content in explaining future actual earnings. However, \(\beta \) is also significantly less than one for all forecast horizons, which implies that RW forecasts provide incremental information over analysts’ forecasts. The value of \(\beta \) is 0.82 in year \(t \), which conveys that analysts’ forecasts for the first year play more of a role in assimilating information about future earnings than do RW model forecasts.
Nevertheless, the coefficient b steadily decreases as the forecast horizon is extended. Its value is 0.50, 0.46, and 0.42 for years $t+2$, $t+3$, and $t+4$, respectively. The substantially lower coefficients in years $t+2$ through $t+4$ suggest that for longer-term forecasts, much of the information content in explaining future actual earnings originates from the RW model instead of analysts’ forecasts. This is likely in part due to (1) less of a timing advantage for analysts in forecasting long-term earnings as opposed to short-term earnings and (2) analysts’ high optimism in forecasting long-term earnings.

Table 2. Regression Analysis of Information Content of Analysts’ Forecasts versus Naïve Model Forecasts.

<table>
<thead>
<tr>
<th>Forecast Period</th>
<th>x Coefficient</th>
<th>x p-Value</th>
<th>β Coefficient</th>
<th>β p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Analysts’ forecasts versus random walk model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>-0.05</td>
<td>0.00</td>
<td>0.82</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+1$</td>
<td>-0.08</td>
<td>0.00</td>
<td>0.64</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+2$</td>
<td>-0.05</td>
<td>0.00</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+3$</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.46</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+4$</td>
<td>0.00</td>
<td>0.69</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>Panel B: Analysts’ forecasts versus random walk with economic growth model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>-0.06</td>
<td>0.00</td>
<td>0.81</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+1$</td>
<td>-0.11</td>
<td>0.00</td>
<td>0.64</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+2$</td>
<td>-0.12</td>
<td>0.00</td>
<td>0.52</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+3$</td>
<td>-0.13</td>
<td>0.00</td>
<td>0.49</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+4$</td>
<td>-0.14</td>
<td>0.00</td>
<td>0.46</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes:
1. The regression model is as follows:

$$\frac{\text{EPS}_{t+\tau}}{\text{EPS}_{t-1}} - \frac{\text{STATEPS}_{t+\tau}}{\text{EPS}_{t-1}} = x + \beta \left(\frac{\text{ANEPS}_{t+\tau}}{\text{EPS}_{t-1}} - \frac{\text{STATEPS}_{t+\tau}}{\text{EPS}_{t-1}} \right) + \epsilon_{t+\tau}$$

where \(\text{EPS}\) is actual annual earnings per share, \(\text{ANEPS}\) is the analysts’ earnings per share forecast, \(\text{STATEPS}\) is the earnings per share forecast from one of the naïve models (random walk, random walk with economic growth), and \(\tau = 0, \ldots, 4\).

2. The dependent and independent variables are winsorized at +1.0 and −1.0. Furthermore, outliers are eliminated using the techniques in Belsley et al. (1980).

3. The p-values show the significance of the difference from zero.

Nevertheless, the coefficient β steadily decreases as the forecast horizon is extended. Its value is 0.50, 0.46, and 0.42 for years $t+2$, $t+3$, and $t+4$, respectively. The substantially lower coefficients in years $t+2$ through $t+4$ suggest that for longer-term forecasts, much of the information content in explaining future actual earnings originates from the RW model instead of analysts’ forecasts. This is likely in part due to (1) less of a timing advantage for analysts in forecasting long-term earnings as opposed to short-term earnings and (2) analysts’ high optimism in forecasting long-term earnings.
Table 2, panel B, presents the results from regression Eq. (3) with RWGDP as the naïve model. The results are similar to those in panel A, where RW is the naïve model. The coefficient β in panel B does have a slightly smaller (larger) value than the corresponding coefficient in panel A for year t (years $t+2$ through $t+4$). A two-tailed t-test shows that the difference in coefficients is significant for year t at the 1% level and year $t+2$ at the 5% level. This implies that RWGDP model earnings forecasts contain slightly more (less) information in explaining future earnings that is not in analysts’ earnings forecasts than do RW model earnings forecasts for years t (year $t+2$). Furthermore, for years t through $t+4$ in panel B, we find that the coefficient α is significantly less than zero, which is indicative of an optimistic bias in analysts’ forecasts.

Sample Partitions and Hybrid Model

Prior research (e.g., Alford & Berger, 1999; Chan et al., 2003) suggests that the performance of financial analysts versus naïve models may be influenced by various attributes. Therefore, we evaluate the performance of analysts’ earnings forecasts versus RWGDP model earnings forecasts across different sample partitions. The sample partitions are based on past earnings growth, analyst coverage, and a subsample with only explicit analysts’ forecasts. Also, we compare the hybrid model, RWLTG, with the RWGDP model and analysts’ forecasts. The objective is to determine whether improvements in accuracy and information content can be achieved by applying the analysts’ forecasted long-term earnings growth rate to last year’s (year $t-1$) earnings. For brevity, of the naïve models, we analyze only the RWGDP model in these additional tests because it is the most accurate.

Partitioning on Past Earnings Growth

Chan et al. (2003) show that very few firms are able to consistently achieve above-normal earnings growth over five years and the probability of doing so is about equal to pure chance. Furthermore, their findings suggest that financial analysts may incorrectly assume that past above-normal earnings growth will continue well into the future. However, the authors do not explicitly test this conjecture. If analysts often assume that high past earnings growth will continue well into the future, then based on findings in Chan et al. (2003), we would expect analysts’ earnings forecasts for high past growth firms to have less accuracy, more bias, and less information content in explaining future actual earnings.
To test whether higher past earnings growth affects the performance of analysts’ earnings forecasts relative to naïve forecasts (specifically, the RWGDP forecasts), we partition our sample according to past earnings growth. Past earnings growth is measured as the geometric growth in earnings between year \(t-5 \) and year \(t-1 \). It is necessary to mention two limitations of using the past geometric growth rate. First, only sample firms with positive year \(t-5 \) and positive year \(t-1 \) earnings can be used. Second, only firms with sufficient earnings histories are included. This may favor analysts’ forecasts over RWGDP model forecasts because analysts tend to make more accurate forecasts for firms that are more mature. Firms with earnings growth rates above (below) the median level of 8.63% are designated as high (low) growth firms. This median growth rate is determined before observations are eliminated due to missing future actual earnings.

Table 3, panel A and panel B, presents the results for high and low past earnings growth firms, respectively. There are fewer observations in panel B because the low past growth subsample includes more firms that were in financial trouble, which means more bankruptcies and delistings and fewer observations with five years of future actual earnings. For both high past growth and low past growth firms, the majority of the FE (FE/P and FE/EPS) and RFA (RFA/P and RFA/EPS) values show that analysts are more accurate than the RWGDP model in forecasting short-term (year \(t \) and year \(t+1 \)) earnings.

The nature of the findings changes for long-term earnings forecasts, which are the focus of our analysis. A comparison of panels A (high past earnings growth) and B (low past earnings growth) shows that the performance of analysts tends to improve relative to the RWGDP model when the past earnings growth is low. For the high past earnings growth subsample, the mean (median) FE measures FE/P, FE/EPS, RFA/P, and RFA/EPS imply consistently lower RWGDP model FEs than analysts’ FEs at the 1% level over years \(t+3 \) and \(t+4 \) (year \(t+4 \)). However, for low past earnings growth firms, the results are mixed with the mean RFA/EPS measure indicating lower FE for the RWGDP model and the median FE/P, FE/EPS, RFA/P, and RFA/EPS measures indicating lower errors for analysts’ forecasts for years \(t+2 \) through \(t+4 \). Overall, for firms with high past earnings growth, the results imply a lower level of accuracy for financial analysts’ earnings forecasts compared to the naïve RWGDP model forecasts for years \(t+3 \) and \(t+4 \). On the contrary, for firms with low past earnings growth, the results are mixed.
Table 3. Comparison of Forecasts between Analysts and Random Walk with Economic Growth Model; Observations Partitioned by Past Earnings Growth.

<table>
<thead>
<tr>
<th>Panel A: High past earnings growth</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year t</td>
<td>$t+1$</td>
</tr>
<tr>
<td>FE/P</td>
<td>1.238</td>
<td>2.821</td>
</tr>
<tr>
<td>Analysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWGDP</td>
<td>1.936</td>
<td>3.010</td>
</tr>
<tr>
<td>Difference</td>
<td>−0.698***</td>
<td>−0.189***</td>
</tr>
<tr>
<td>FE/EPS</td>
<td>17.852</td>
<td>32.613</td>
</tr>
<tr>
<td>Analysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWGDP</td>
<td>24.978</td>
<td>35.300</td>
</tr>
<tr>
<td>Difference</td>
<td>−7.126***</td>
<td>−2.687***</td>
</tr>
<tr>
<td>RFA/P</td>
<td>−0.766***</td>
<td>−0.163*</td>
</tr>
<tr>
<td>RFA/EPS</td>
<td>−10.627***</td>
<td>−1.426***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Low past earnings growth</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year t</td>
<td>$t+1$</td>
</tr>
<tr>
<td>FE/P</td>
<td>1.494</td>
<td>2.801</td>
</tr>
<tr>
<td>Analysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWGDP</td>
<td>2.307</td>
<td>3.125</td>
</tr>
<tr>
<td>Difference</td>
<td>−0.813***</td>
<td>−0.324**</td>
</tr>
<tr>
<td>FE/EPS</td>
<td>24.806</td>
<td>36.295</td>
</tr>
<tr>
<td>Analysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RWGDP</td>
<td>33.659</td>
<td>40.624</td>
</tr>
<tr>
<td>RFA/P</td>
<td>−0.833***</td>
<td>−0.373***</td>
</tr>
<tr>
<td>RFA/EPS</td>
<td>−10.267***</td>
<td>−0.511***</td>
</tr>
</tbody>
</table>

Notes: All values are shown as percentages. For the observations on the I/B/E/S database for June of each year from 1988 to 2007 that have the prior five years of earnings, we find the geometric growth rate in earnings from year $t−5$ to year $t−1$. Panel A (B) presents the results for sample observations with above (below) median prior earnings growth. The forecast measures (FE/P, RFA/P, etc.) are winsorized at −1.0 (if applicable) and +1.0. For variable definitions, see Table 1.***Significance at the 0.01 level (two-tailed).**Significance at the 0.05 level (two-tailed).*Significance at the 0.10 level (two-tailed).
The untabulated bias statistics suggest that for short-term forecasts (years \(t\) and \(t+1\)), analysts’ forecasts are less optimistically biased for high past growth firms compared with low past growth firms. However, for longer horizons, analysts’ forecasts are more optimistically biased for high past growth firms than low past growth firms, and the difference becomes larger as the forecast horizon is extended. Although financial analysts may often be correct to assume that high past earnings growth will continue over the short term, the bias results imply that analysts may tend to incorrectly assume that high past earnings growth will continue well into the future. This is further supported by the FE (FE/P and FE/EPS) statistics for analysts in Table 3. Although analysts’ FEs tend to be lower for high past growth firms in years \(t\) and \(t+1\), they are clearly higher for high past growth firms in years \(t+3\) and \(t+4\).\(^{11}\)

Table 4 summarizes the results from regression Eq. (3) with panel A presenting the results for high past earnings growth firms and panel B displaying the findings for low past earnings growth firms. The coefficient \(\beta\) is higher for high past growth firms for forecast horizons \(t\) and \(t+1\). However, the situation reverses in years \(t+2\) through year \(t+4\). The differences are significant at the 1% level for all years except year \(t+2\). These results imply that analysts’ forecasts have more incremental information content over the RWGDP model in explaining long-term future actual earnings for low past growth firms than for high past growth firms.

Partitioning on Analyst Following

Prior research (Alford & Berger, 1999; Brown, 1997; Coën, Desfleurs, & L’Her, 2009; Lim, 2001; Lys & Soo, 1995) provides evidence that higher analyst following is associated with greater analyst forecast accuracy. Analysts tend to follow firms with information that is more extensive and accurate. This reduces the uncertainty about the firms’ prospects and helps analysts to make more accurate earnings forecasts. We partition our sample according to analyst following and examine the performance of analysts’ long-term forecasts and the RWGDP model for the sub-samples. Firm years with long-term growth forecasts from more than three (three or fewer) analysts are considered firms with high (low) analyst following.

Untabulated results show that both analysts’ forecasts and RWGDP model forecasts are more accurate when there is high analyst following compared with low analyst following. This result is consistent with Previts, Bricker, Robinson, and Young (1994), who show that financial analysts tend to follow firms that smooth earnings. If firms smooth earnings, they
An Evaluation of Analysts and Naïve Model Earnings Forecasts

Table 4. Regression Analysis of Information Content of Analysts’ Forecasts versus Random Walk with Economic Growth Model; Observations Partitioned by Past Earnings Growth.

<table>
<thead>
<tr>
<th>Forecast Period</th>
<th>Coefficient</th>
<th>p-Value</th>
<th>Coefficient</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: High past earnings growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>-0.05</td>
<td>0.00</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+1$</td>
<td>-0.12</td>
<td>0.00</td>
<td>0.72</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+2$</td>
<td>-0.14</td>
<td>0.00</td>
<td>0.51</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+3$</td>
<td>-0.14</td>
<td>0.00</td>
<td>0.42</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+4$</td>
<td>-0.17</td>
<td>0.00</td>
<td>0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Panel B: Low past earnings growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>-0.07</td>
<td>0.00</td>
<td>0.81</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+1$</td>
<td>-0.10</td>
<td>0.00</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+2$</td>
<td>-0.10</td>
<td>0.00</td>
<td>0.54</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+3$</td>
<td>-0.11</td>
<td>0.00</td>
<td>0.55</td>
<td>0.00</td>
</tr>
<tr>
<td>$t+4$</td>
<td>-0.13</td>
<td>0.00</td>
<td>0.57</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes:

1. For observations on the I/B/E/S database for June of each year from 1988 to 2007 that have five prior years of earnings, we find the geometric growth rate in earnings from year $t-5$ to year $t-1$. Panel A (B) presents the results for observations with above (below) median prior earnings growth.

2. The regression model is as follows:

$$\frac{\text{EPS}_{t+\tau}}{\text{EPS}_{t-1}} - \frac{\text{RWGD}_{t+\tau}}{\text{EPS}_{t-1}} = \alpha + \beta \left(\frac{\text{ANEPS}_{t+\tau}}{\text{EPS}_{t-1}} - \frac{\text{RWGD}_t}{\text{EPS}_{t-1}} \right) + \epsilon_{t+\tau}$$

where EPS is actual annual earnings per share, ANEPS is the analysts’ earnings per share forecast, RWGD is the earnings per share forecast from the random walk with economic growth model, and $\tau = 0, \ldots, 4$.

3. The dependent and independent variables are winsorized at $+1.0$ and -1.0. Furthermore, outliers are eliminated using the techniques in Belsley et al. (1980).

4. The p-values test the significance of the difference from zero.

are easier to predict by analysts and a RW with a drift model such as RWGD should be more accurate. Furthermore, for long-term earnings forecasts, the findings on accuracy convey that analysts’ forecasts moderately improve relative to RWGD model forecasts when there is
high analyst following. The results from regression Eq. (3) show that the coefficient β is significantly larger at the 1% level for the high analyst following subsample than for the low analyst following subsample for all five years. These results imply that financial analysts’ forecasts have more information content in explaining future actual earnings for firms with high analyst coverage.

Explicit Analysts’ Forecasts
Due to a scarcity of explicit analysts’ long-term earnings forecasts (e.g., fourth-year EPS is expected to be $2.50), most of the long-term earnings forecasts are calculated through compounding the analysts’ second-year earnings forecast with the analysts’ long-term earnings growth rate. However, it is possible that the accuracy of analysts’ forecasts versus naïve models is different when analysts make explicit forecasts. Therefore, we also run our tests using only explicit forecasts from analysts.

The untabulated results show that the number of explicit forecasts drops precipitously between year $t + 1$ and year $t + 2$. The FEs (FE/P and FE/EPS) indicate that both analysts’ forecasts and RWGDP model forecasts are more accurate for years $t + 3$ and $t + 4$ for the explicit forecast sample compared with the results for the entire sample noted in Table 1, panel B. This conveys that analysts tend to issue explicit long-term forecasts when earnings are easier to predict. However, the accuracy of analysts’ earnings forecasts relative to RWGDP model forecasts for year $t + 2$ does not improve when analysts make explicit forecasts. Nonetheless, when analysts make explicit forecasts, there is improvement in the accuracy of analysts’ forecasts relative to RWGDP model forecasts for year $t + 4$. On the contrary, explicit analysts’ for year $t + 4$ are scarce. For instance, there are only 1,323 (1,939) year $t + 4$ explicit analysts’ forecasts available when stock price (EPS) is the deflator. The untabulated regression results are in line with the forecast accuracy results. When analysts make explicit forecasts, the Eq. (3) coefficient β for year $t + 2$ ($t + 4$) is significantly less (greater) than the corresponding coefficient value in Table 2, panel B, at the 1% level.

Hybrid Model Forecasts
We compare the hybrid model, RWLTG, with the RWGDP model and analysts’ earnings forecasts through variations of the previously discussed tests of accuracy and information content. Untabulated results show that combining a naïve model with analysts’ long-term earnings growth rate forecasts does not improve forecast accuracy. In matching RWLTG against
An Evaluation of Analysts and Naïve Model Earnings Forecasts

RWGDP, median (mean) values indicate that the RWLTG (RWGDP) model is more accurate in forecasting short-term earnings. However, the RWLTG model is inferior to the RWGDP model in long-term earnings forecast accuracy. In addition, the RWLTG model is less accurate than analysts’ forecasts in years t and $t+1$. However, the difference in forecast accuracy gets smaller as the forecast horizon is extended. In fact, there is no significant difference in forecast accuracy between the RWLTG model and analysts’ forecasts for year $t+4$.

Untabulated regression results using the RWLTG and RWGDP models show that both models have incremental information content in explaining future actual earnings but that the RWGDP model has more information content. Similarly, although both analysts’ earnings forecasts and the RWLTG model have incremental information content in explaining future actual earnings, analysts’ forecasts have more information content.

CONCLUSIONS

We examine the performance of financial analysts versus naïve models in forecasting long-term earnings. Forecast performance is evaluated through analyzing forecast accuracy and information content. We find that analysts’ long-term earnings forecasts (especially for the fourth year and fifth year in the forecast horizon) are often less accurate than forecasts from naïve models. Furthermore, both naïve model earnings forecasts and analysts’ long-term earnings forecasts contain information content in predicting long-term earnings. Also, we find that the performance of analysts’ forecasts declines relative to naïve model forecasts for subsamples of firms with high past earnings growth and low analyst following. When analysts make explicit earnings forecasts, the performance of analysts’ forecasts increases compared to naïve model forecasts for only the fifth year in the forecast horizon. But explicit analysts’ forecasts for the fifth year are scarce. Moreover, we test the accuracy and information content of a hybrid model that assumes a RW with a drift based on the analysts’ long-term earnings growth rate. We find that this hybrid model is less accurate and has less information content in predicting long-term earnings than the RWGDP model or financial analysts.

Our findings imply that analysts’ long-term earnings forecasts should be used with caution by researchers and practitioners as they do not appear to be more accurate than long-term forecasts from naïve models. Furthermore, the naïve models incorporate a large amount of information content useful
in explaining future actual earnings that is not in analysts’ long-term earnings forecasts. Researchers and practitioners should be especially cautious when using analysts’ long-term earnings forecasts for firms with high recent earnings growth. Furthermore, our findings indicate that it may be appropriate to use strong performing naïve models such as the RWGDP model or a pure RW model as a substitute for missing analysts’ long-term earnings forecasts in applications such as implementing valuation models.

NOTES

1. Not all naïve forecasts are technically time series forecasts. For example, a pure RW forecast that uses the prior period’s earnings as a forecast of future earnings is not a time series forecast because it is not based on a series of time periods. However, time series forecasts are naïve because they are mechanically based on past information. The term “time series forecast” is often used loosely in the literature.

2. For example, Dechow et al. (2000) examine the performance of analysts’ long-term earnings growth forecasts that pertain to a sample of firms that recently issued equity.

3. The I/B/E/S database rarely provides forecast information pertaining to years after the fifth year.

4. The RW model assumes that future annual earnings will equal the most recent prior year’s actual earnings.

5. We use June consensus forecasts because we use only December fiscal year-end firms. Thus, as of June, the previous year’s financial results are likely to have been released. Also, the focus of this chapter is on long-term forecasts. The forecast month does not have as much of an impact on long-term forecasts as it would on short-term forecasts.

6. This requirement would likely favor analysts because they tend to forecast with more accuracy for firms that are more stable.

7. In defining the variables in this chapter, the firm subscript is suppressed.

8. It is only necessary to show the numbers of observations for the mean values of FE/P and FE/EPS because the numbers of observations are the same in the other related parts of the panel. There is a moderate drop in the number of observations between year \(t + 1 \) and year \(t + 2 \) because only short-term analysts’ earnings forecasts are available for some firm years. Also, there is a slight decline in the number of observations over the long-term forecast horizons. As mentioned in the section on Analyst and Model Forecasts, we retrieve explicit EPS forecasts for the long-term horizons, if possible. Some firm years have a per share forecast for one or two long-term forecast period(s) (e.g., years \(t + 2 \) and \(t + 3 \)) but not subsequent long-term forecast period(s) (e.g., year \(t + 4 \)).

9. In the regression analyses in this chapter, we test for heteroskedasticity using methodology from White (1980) and find that heteroskedasticity is not a problem.

10. We use a two-tailed \(t \)-test to conduct statistical comparisons of the values of the coefficient \(\beta \) in panel A with those in panel B for Tables 2 and 4. For the sake of
simplicity, we just discuss the results in the text and do not report the statistical
significance in the tables.

11. We also determine analysts’ long-term earnings growth rate forecasts for high
and low past earnings growth firms. The mean (median) growth rate forecast is
15.37% (14.0%) and 12.55% (11.0%) for high and low past growth firms,
respectively. The differences in the means and the medians are significant at the
1% level. Therefore, these findings show that analysts are more optimistic in their
long-term earnings growth forecasts for firms with higher past earnings growth.

ACKNOWLEDGMENTS

We thank Jian Cao, Hui Du, Barry Marks, and Haeyoung Shin for their
helpful comments and suggestions. Also, we thank participants at the 2010
American Accounting Annual Meeting and the 2010 Southwest Region
American Accounting Association Annual Meeting for useful discussions.
The second author acknowledges a 2009 summer research grant from the
College of Business at Prairie View A&M University.

REFERENCES

Alford, A. W., & Berger, P. G. (1999). A simultaneous equations analysis of forecast accuracy,
analyst following, and trading volume. Journal of Accounting, Auditing & Finance,
14(Summer), 219–240.
paper. Michigan State University, East Lansing, MI.
Bhushan, R. (1989). Firm characteristics and analyst following. Journal of Accounting and
The Accounting Review, 80(January), 21–53.
53(November/December), 81–88.
relative to time-series models in forecasting quarterly earnings. Journal of Accounting and
Economics, 9, 61–87.
proxies for the market’s assessment of unexpected earnings. Journal of Accounting and
Economics, 9, 159–193.

The Size Premium in the Long Run

Ching-Chih Lu*

This Draft: December 25, 2009

Abstract

Contrary to the usual practice of including a size premium in a small firm's cost-of-equity estimation, this paper shows that there should not be such a premium in the long run because firm size is a changing characteristic. By tracking the return performance of firms in the same size group for a longer horizon, I find that the size premium wears off just after two years. This is much shorter than the general assumption used in the cost-of-equity estimation, so the role of the size premium in it should be reconsidered.

Keywords: Cost of Equity Capital, Size Premium, Size Effect, Regime Switching

JEL Classification: G12, G14

*Department of Finance, National Chengchi University, No. 64, Sec.2 Zhinan Rd., Mucha, Taipei 116, Taiwan. E-mail: cclu@nccu.edu.tw.
1 Introduction

In the field of business valuation, practitioners usually include a size premium in a small firm’s cost-of-equity estimation to account for a risk source or risk sources that cannot be captured by usual risk factors.\(^1\) That is, on top of the cost of equity a small firm gets from the estimation by the CAPM or other models, it is usually offered an extra premium to compensate for the higher risk it is taking.\(^2\) This paper aims to examine its validity, and the finding suggests that this commonly accepted size premium is not appropriate.

Since Banz (1981) and Reinganum (1981) both demonstrated that small size firms on the New York Stock Exchange usually outperform big firms than what the asset-pricing model of Sharpe (1964), Lintner (1965) and Black (1972) would suggest, the existence of the size effect has come into consideration by standard practice in the finance industry and soon became one of the most exploited concepts in modern finance. This size anomaly leads to an assumption that it might stem from a risk source or risk sources which cannot be explained by the market factor. Berk (1995) explains in theory that market value is inversely correlated with unmeasured risk because investors pay a lower price for a company’s stock if it bears a higher risk than its CAPM beta could measure. The seminal works of Fama and French (1993), and Fama and French (1995) also acknowledge another kind of size effect in which

\(^{1}\)Although there are many ways to define the size of a company, I stick to the most popular criteria, the market value of its equity, to proceed the discussion.

\(^{2}\)Other than the CAPM, the build-up method and the Fama-French 3-factor model are also popular approaches in business valuation. The build-up method is advocated by the Ibbotson Associates, now a part of Morningstar, Inc., which aims to break down the expected return of a firm into a risk-free rate, a premium for equity risk, a risk premium attributable to this company by the industry it is in, and another risk premium for smaller size if applicable. This size premium is added in practice no matter whether the CAPM model or the build-up method is used. Please see Pratt and Grabowski (2008) Chapter 12 for a thorough discussion. Such a size premium is not required in the Fama-French 3-factor model because size is a risk factor embedded in it already.
small firms usually outperform big firms in realize returns and they use the return differential between small and big stork portfolios (I call it “small stock premium” hereafter for convenience) as a risk factor (also known as \textit{SMB}). If the CAPM holds well, the small stock premium should be proportional to the difference between the CAPM betas of small and big stock portfolios in cross section, and the size premium should not exist. However, empirical evidence shows that the small stock premium is usually much bigger than the CAPM could explain because small firms usually have a significant size premium, which links these two different perspectives of size anomalies together.

Besides serving as a measure of an alternative risk source, the idea of the existence of a small stock premium is often used in forming a trading strategy. Since the commence of the Dimensional Fund Advisors (DFA hereafter) in 1981, the strategy of overweighing small-cap stocks to exploit this small stock premium has been utilized extensively. This same concept is also used to construct ETFs featuring size as an important characteristic. There are currently at least 6 micro-cap and 40 small-cap ETFs trading on the U.S. stock exchanges. The main attraction of these ETFs is to exploit their potentially higher returns over big firms or the market.

With all the acknowledgement from both academics and practitioners, however, there lies an inconsistency between these applications of the size effect. The usage of the \textit{SMB} factor requires yearly rebalancing of the size portfolios, and a trading strategy related to firm size demands probably even more frequent position adjustments. However, the size premium added to a small firm’s cost-of-equity estimation is based

\footnote{Size is an important characteristic of these ETFs. However, it may not be the “only” characteristic. For example, the Vanguard Group, a U.S. investment management company, has three ETFs related to small-cap firms. Their exchange ticker symbols are VB, VBR, and VBK, which account for a total of $2.79 billion capital at the end of 2007. VBK is the combination of small-cap and growth stocks, while VBR is a small-cap and value stock ETF.}
on the assumption that a firm will carry this extra premium in its discount factor moving forward for an extended period of time. Fama and French (2007) explain that the small stock premium comes from small firms gaining market capitalization and subsequently becoming bigger firms, but a firm’s size behaves more like a long-lasting characteristic in the size premium application, which contradicts the empirical evidence. Although we do not know for certain which small firm will move to a bigger size group because of its own success, we do know that firms shift between different size groups in subsequent years after they were first assigned to a certain size rank. The size premium of a firm should be time-varying even if the CAPM beta of the size portfolio is time-invariant, so the cost of equity capital estimation could or should be adjusted accordingly if size has to be taken into consideration.

The existence of the size effect is not always perceived with full faith. This issue has to be addressed first, otherwise the debate of the application of the size premium will become a vain attempt. In the early 1980s when a fierce debate was conducted about the existence and the explanation of the size effect, Roll (1983) and Blume and Stambaugh (1983) both question the empirical importance of this phenomenon because the magnitude of the size effect is too sensitive to the technique used to evaluate the risk-adjusted return. Keim (1983) and Reinganum (1983) show that most of the risk-adjusted abnormal return to small firms occurs in the first two weeks in January, thus makes this effect easily exploited. It was the evaluation and the existence of the size premium being challenged, but the small stock premium was mostly untouched. Fiercer challenges came in the late 1990s, when Booth, Keim, and Ziemba (2000) argue that the January effect is not significantly different from zero in the returns to the DFA 9-10 portfolio over the period 1982-1995.\footnote{The DFA 9-10 portfolio includes stocks with the lowest 20% market capitalization according to NYSE breakpoints.} and Horowitz,
Loughran, and Savin (2000b) also claim that the size effect ceases to exist after it was made well known because its benefit has already been exploited. Small firms do not have higher returns over big firms from the early 1980s to the mid-to-late 1990s, so the existence of the size effect is in doubt and deserves a thorough examination.

In this paper I will show that the size effect in the traditional definition is still intact given a longer sample period. The disappearance of the size effect in the 1980s and 1990s probably stems from a sample selection bias because the effect re-emerged in the late 1990s. I also examine whether this sample selection anomaly is a recurring scenario with a longer history of stock prices and find that the similar event occurred from the 1940s to 1960s.

However, an analysis of the evolution of the size premium will show that it is inappropriate to attach a fixed amount of premium to the cost of equity of a firm simply because of its current market capitalization. For a small stock portfolio which does not rebalance since the day it was constructed, its annual return and the size premium are all declining over years instead of staying at a relatively stable level. This confirms that a small firm should not be expected to have a higher size premium going forward sheerly because it is small now.

The paper proceeds as follows. Section 2 introduces the data used in this study. All NYSE, AMEX and NASDAQ operating firms are included and they are sorted by their respective market capitalization to form size portfolios. I also examine whether the size effect disappeared during the 1980s and 1990s and discuss its possible impact in this section. Section 3 offers a forward looking perspective of the size effect in response to the assumption of Fama and French (2007) that the small stock premium mainly resulted from firms moving between different size groups. We can also see the evolution of the size premium of the small stock portfolio and find evidence to con-
clude that a small firm does not always have a larger size premium simply because of its current size. Section 4 provides a method to separate the size premium into different regimes with macroeconomic variables, which shows that it is also very difficult to estimate the size premium with a time-varying estimation. Section 5 offers concluding remarks.
2 Data Description and the Evidence of the Existence of the Size Effect

2.1 Data Description

Monthly stock return data used in this research are collected from the University of Chicago Center for Research in Security Prices (CRSP) database. All NYSE, AMEX and NASDAQ operating firms are included when they are available on the CRSP tape. Unlike Fama and French (1992), this study does not exclude financial firms from the sample because financial leverage is not in discussion. Since the market capitalization of a firm is the only firm characteristic covered in this paper and I also do not incorporate the Compustat database for the book equity data of companies, the number of firms each year is also greater than research considering both size and book-to-market equity characteristics. This choice of sample also prevents the potential survival bias generated by the Compustat database, please see the discussion in Kothari, Shanken, and Sloan (1995). The sample period is from December 1925 to December 2008.

The market portfolio return used in this paper is the CRSP value-weighted return on all NYSE, AMEX, and NASDAQ stocks, and the risk free rate is the total return on 30-day Treasury bill calculated by Ibbotson Associates.

To sort firms into different deciles according to their relative size, I follow the Fama and French (1992, 1993) tradition to use a firm’s market equity at the end of June each year as the measure of its size. A firm has to be on the CRSP tape in

\footnote{American Depository Receipts, closed-end funds, Real Estate Investment Trusts, and companies incorporated outside the U.S. are excluded, which means only firms with CRSP share code 12 or less are included in this research.}
June of year \(t \) to be included in a size portfolio from July of year \(t \) to June of year \(t + 1 \) and years after that.\(^6\) All NYSE listed firms are ranked each year according to their June market value, then these firms are allocated equally into 10 size portfolios on the basis of their relative size, so each portfolio has the same number of NYSE firms. The breakpoints between size portfolios are extracted from these NYSE firms, and AMEX and NASDAQ firms are inserted into these portfolios according to their market capitalization relative to the portfolio breakpoints. The first decile (portfolio 1) contains the smallest firms and the 10th decile (portfolio 10) includes the largest firms. In December 2008, Portfolio 1 has 1,895 firms and portfolio 10 has 158.

2.2 Does the Size Effect Still Exist?

In response to the question raised by Horowitz, Loughran, and Savin (2000b) about whether the size effect still exists, some basic statistics are presented in Table I to show that the effect did disappear during the 1980s and the early 1990s, but it was intact in most of the other sample periods. The statistics from the full sample are shown in Panel A. They are consistent with early findings on the size effect: big firms report lower returns than small firms, and the CAPM beta is also negatively related to size. The size premiums in the last row of each panel are calculated as follows:

\[
SP_{i,t} = R_{i,t} - (R_{f,t} + \beta_i (R_{m,t} - R_{f,t})), \quad \text{and} \\
SP_i = \frac{1}{T} \sum_{t=1}^{T} SP_{i,t} \quad i = 1, \ldots 10.
\]

\(^6\) Instead of the usual one-year holding period immediately following the size sorting date, I also extend the holding period to longer time spans to see how persistent the size premium is for the same group of firms.
where SP_i represents the average size premium of portfolio i which is shown in the table, $R_{i,t}$ and $R_{m,t}$ are monthly returns on size portfolio i and the market portfolio, respectively. R_f is the risk-free rate. β_i is the CAPM beta estimated by regressing $(R_i - R_f)$ on $(R_m - R_f)$ with the matching sample period. This size premium captures the part of the size portfolio return which cannot be explained by the CAPM. Practitioners usually add it to the cost-of-equity estimation of small-cap firms to compensate for their higher risks. Another way to estimate the size premium is through the estimation of the CAPM alpha. However, I will not adopt this approach because the sample period used by the regression to estimate CAPM coefficients and the one used by the realized return in equation (1) do not always match in this article.

[Insert Table 1 here.]

Panel B displays the statistics of the same variables with the sample period before June 1980, roughly when the size effect was made well known by academia. Although the statistics in the first two panels are not exactly the same, they look very much alike.

Panel C of Table 1 is consistent with the assertion of Horowitz, Loughran, and Savin (2000a) that there is no significant difference between the performance of different size portfolios during the period from 1980 to 1996. The average returns on different size portfolios are no longer negatively related to their market capitalizations. From portfolio 1 to 4, the four smallest size portfolios, the average returns are increasing instead of moving in the opposite direction shown in the early years. The pattern of size premiums is also different from the ones shown in the previous two panels.

7This period can be extended to 1998 and the results are still in the similar pattern to what one would get with sample period from 1980 to 1996, so this longer sub-sample period is chosen instead of the one used by Horowitz, Loughran, and Savin (2000a).
panels. For instance, portfolio 1 and 2 did not have the largest size premiums, they had biggest size “discounts” instead.

It is often suggested that pricing anomalies may disappear after they were made known to the public by researchers or financial practitioners if these anomalies were easily exploited. Horowitz, Loughran, and Savin (2000a) show that simply adding $0.125 to the December 31 price of small stocks can easily lower their average January returns from over 8% to -0.37% during the 1982-1997 span. Since Keim (1983) and Reinganum (1983) showed that most of the size premiums to small firms occurred during the first two weeks in January, it is no surprise that the January effect could be totally wiped out just by informed investors flocking into the market to buy small firm stocks in December, and so goes the size premium.

Sixteen years of time is not short, but the recent development shows that the result in Panel C is more likely to be an aberration from the formerly established rule than a new norm. Panel D presents the statistics from the past 10 years and shows that the negative relation between firm size and equity return has been restored, with only a few exceptions from some mid-cap size portfolios. The inconsistency of the mid-cap portfolios probably arises because the sample period is too short to offer a robust pattern between a firm’s size and its return. It has to be noted that the realized equity premium of the U.S. market during these 10 years is slightly below zero, which is significantly lower than the historical standard. This might contribute to the flat security market line, where the beta of size portfolios seems independent of their respective average return.

Another serious threat generated by the data from the 1980s and 1990s is that the return differential between small and big firm size portfolios, also known as SMB in the Fama-French 3-factor model, may have an insignificant or even a negative price
of risk. This implies that the \textit{SMB} factor is either meaningless or has a negative effect on the stock return. We can use a simple cross-sectional regression to show how and why this matters.

[Insert Table 2 here.]

Table 2 displays price-of-risk estimations of the popular Fama-French factors with different sample periods. Following the Fama and MacBeth (1973) procedures, in each sub-sample period I run time-series regressions of each test portfolio return in excess of the risk-free rate \((R_{it}^e = R_{it} - R_{ft})\) on the excess market return \((R_{mt}^e = R_{mt} - R_{ft})\), the returns on the small size portfolios minus the returns on the big size portfolio \((SMB)\), and the differential between the returns on high and low book-to-market equity firms \((HML)\).

\[
R_{it}^e = \alpha_i + \beta_iR_{mt}^e + s_iSMB_t + h_iHML_t + \epsilon_{it} \quad t = 1,2,\ldots,T, \forall i. \tag{2}
\]

The test portfolios include 5-by-5 portfolios formed on book-to-market equity and size, and 17 industry portfolios. Since there are missing observations in the return series of the portfolio with the highest book-to-market equity and the largest size, it is taken out of the test portfolios. These portfolios are chosen because they cover different aspects of security characteristics.

The next step is to regress the expected returns of test portfolios from each sample period on their respective risk loading estimates from the time-series regression. I

\footnote{Please refer to Fama and French (1993) for the detailed definition of \textit{SMB} and \textit{HML}. Data on these two variables are obtained from Professor Kenneth French's website at Dartmouth University.}

\footnote{All the portfolio data are also acquired from French’s website.}
take the average return of each portfolio from the corresponding sample period as their return expectation. The cross-sectional regression is:

$$E_T(R_i^e) = \beta_i \lambda_1 + s_i \lambda_2 + h_i \lambda_3 + a_i, \quad i = 1, 2, \ldots, N.$$

(3)

where λ_2 is the price of the risk represented by the size factor SMB. During the period from 1980 to 1998, the price of SMB is insignificantly different from zero and its magnitude is also comparably smaller than it is in the other sub-periods. The number is 0.29 before 1980 and 0.20 after 1998, but it is only 0.07 from July 1980 to June 1998. The other parameters do not change as dramatically over different sub-periods. The price of a risk factor being equal to zero discredits its explanatory power to the cross-sectional variability of returns, and this is exactly the case for the SMB factor from 1980 to 1998.

It may be too early to say that the explanatory power of the SMB factor fully recovers in the post-1996 or the post-1998 period, but it is clear that the zero or slightly negative SMB price during the 1980s and 1990s is not necessarily a lasting problem.

2.3 Regime Shifts of the small stock premium

As mentioned earlier, the size premium and the small stock premium are related because the risk-adjusted abnormal return of small firms is an important part of the return differential between small and big stock portfolios. According to Table 1 Panel A, the small stock premium of portfolio 1 is 3.39%, which accounts for half of the return difference between portfolio 1 and 10. Since the size premium is highly dependent on the asset pricing model and the sample period it is using, I will focus
on the possible structural change or regime shift of the small stock premium in this section first.

Although the differential between the returns on size portfolio 1 and portfolio 10 is different from the definition of the SMB factor in the Fama and French 3-factor model, I will borrow this acronym to represent the small stock premium for the following discussion. Motivated by the earlier discussion of the disappearance of the small stock premium in the 1980s and 1990s and the reappearance in the following years, I believe that there may exist structural changes or regime shifts of the expected mean of SMB. Panel A of Figure 1 exhibits the annual return differential between portfolio 1 and portfolio 10, in which we see annual SMB alternates between high and low values but certain persistency exists. From 1984 to 1998, the supposedly positive SMB is negative in most years except in 1988 and 1991 to 1993. The sample average of the equity risk premium during these 15 years is 10.53%, which is well above the historical average. Big firms performed exceptionally well while small firms did not during this period, so the disappearance of SMB should certainly came from the size premium, or lack thereof.

[Insert Figure 1 here.]

Assuming that the expected mean and variance of SMB can be expressed by a two state Markov-switching model, so the state variable S_t, which governs the regime shift, takes a value of 1 or 2. When $S_t = 1$, the expected mean of SMB_t is in the state of a low value, while $S_t = 2$ represents the state when the expected mean of SMB_t is high.

$$y_t = \mu_k + \sigma_k \varepsilon_t \quad \varepsilon_t \sim N(0, 1).$$

(4)
where \(y_t \) represents \(SMB_t \), \(\mu_k \) and \(\sigma_k \) are state-dependent mean and standard deviation of \(SMB_t \). \(k=1 \) or 2, which identifies the state \(SMB_t \) is in at time \(t \).

The state variable \(S_t \) is assumed to follow a 2-state first-order Markov process with fixed transition probabilities as follows:

\[
p = \Pr(S_t = 1|S_{t-1} = 1) \\
1 - p = \Pr(S_t = 2|S_{t-1} = 1) \\
q = \Pr(S_t = 2|S_{t-1} = 2) \\
1 - q = \Pr(S_t = 1|S_{t-1} = 2)
\]

(5)

The mean and variance of \(SMB \) are determined by the current state, and the state variable \(S_t \) is not dependent on the past information beyond one period.

\(SMB_t \) under each state is assumed to follow the normal distribution and the parameters of the distribution function are only contingent on the state \(k \), so

\[
f(y_t|S_t = k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(y_t - \mu_k)^2}{2\sigma_k^2}\right)
\]

(6)

for \(k = 1,2 \). The log-likelihood function is

\[
\ln \mathcal{L}(y_1, y_2, \ldots, y_T; \theta) = \sum_{t=1}^{T} \ln[\Pr(S_t = 1)f(y_t|S_t = 1) + \Pr(S_t = 2)f(y_t|S_t = 2)]
\]

(7)

and the regime probability \(\Pr(S_t = k) \) can be estimated with the following recursive representation proposed by Gray (1996):

\[
\Pr(S_t = 1) = (1 - q) \left[\frac{f(y_{t-1}|S_{t-1} = 2)\Pr(S_{t-1} = 2)}{f(y_{t-1}|S_{t-1} = 1)\Pr(S_{t-1} = 1) + f(y_{t-1}|S_{t-1} = 2)\Pr(S_{t-1} = 2)} \right]
\]
\[f(y_{t-1}|S_{t-1} = 1)Pr(S_{t-1} = 1) \\
\frac{f(y_{t-1}|S_{t-1} = 1)Pr(S_{t-1} = 1)}{f(y_{t-1}|S_{t-1} = 1)Pr(S_{t-1} = 1) + f(y_{t-1}|S_{t-1} = 2)Pr(S_{t-1} = 2)} \]

(8)

where the lowercase \(p \) and \(q \) are the transition probabilities defined in equation (5) and \(Pr(S_t = 2) = 1 - Pr(S_t = 1) \).

Table 3 presents the estimation results of the above Markov-switching model along with an unconditional normal distribution model as its comparison. The sample period is from July 1940 to December 2008 instead of starting from July 1926 because it has to be trimmed short in the following sections to accommodate the portfolio positions with longer holding periods. According to the log-likelihood values, AIC, and BIC statistics of these two models, the Markov-switching model fits the sample better than the model with the assumption that \(SMB \) follows an unconditional normal distribution. The expected mean of the low \(SMB \) state is insignificantly different from zero, which explains why \(SMB \) can disappear over an extended period. The average annualized returns under two different states are -2.67% and 44.97%.

[Insert Table 3 here.]

Panel B of Figure 1 displays the smoothed probability in state 2 (high \(SMB \) state). Table 3 also shows the transition probabilities \(p \) and \(q \), which are 0.9579 and 0.8090, respectively. These results imply that the low \(SMB \) regime is more persistent than the high \(SMB \) regime. On average the high \(SMB \) regime lasts for 5.2 months, and the low \(SMB \) regime keeps at the same state for 23.8 months. If the true data generating process of \(SMB \) follows the description of this Markov-switching model, it is no surprise that the small stock premium could disappear over a long period during the 1980s and most of the 1990s then resurfaces in recent years.
From Figure 1, we can also see that SMB is persistently low from 1946 to 1963, which indicates that the experience from the 1980s and 90s indeed has a predecessor. Repeat the same exercise done in Table 1 for this period, we can find that portfolio 1 has an average size premium at -1.77% per annum, while portfolio 10 has a slightly positive 0.42% average size premium. The average of SMB from 1946 to 1963 is -0.74%, which mostly stems from the low size premium of small stocks instead of the difference between their respective CAPM projections. These results show that the temporary disappearance of the size effect is a recurring event. However, when we look at a longer time span, the small stock premium could still hold true at least on average.

\footnote{CAPM beta is still negatively related to firm size during this period, but the slope of the security market line calculated with returns on size portfolios and their respective betas is smaller than it is calculated with the full sample.}
3 Size as a Genetic Code or a Short-Lived Characteristic?

If the size premium ceases to exist like Horowitz, Loughran, and Savin (2000b) assert, or its magnitude has no relation to firm size, there is no need to give a “premium” to a small firm when estimating its cost of equity capital. In fact, given what we see in Panel C of Table 1, we might have to give small-cap firms a discount if the negative size premium of portfolio 1 remains. The data from the last 10 years seem to restore the order of the size premium and the necessity to add it to small firms, but I will show in this section that it still remains to be proved whether a small-cap firm should require this size premium in its cost-of-equity estimation.

3.1 Design of the $t+j$ Portfolio

Fama and French (2007) find that the return differential between small and big firms is mainly driven by small-cap firms moving up the size rank to become large-cap firms. This perspective changes the assumption of the size premium a small firm should get in the long run. The logic is simple: a small firm becomes a big firm because its market capitalization increases faster than its peer, which usually results from its fast growing price. However, small firms cannot keep the higher average return of old once they become big firms, otherwise the small stock premium will turn into a big stock premium. Although this is mainly an explanation of the small stock premium instead of the size premium, the discussion in the previous section shows that these two premiums are related.
Since the Fama-French size portfolios are constructed in each June and are held for a whole year until they are rebalanced in June next year, their finding implies that some firms are likely to switch to different size groups sooner than a year, especially for the small firms to become big firms. The usual practice of the size premium estimation is to calculate it with annually rebalanced size portfolios, then we add this number to a firm’s cost of equity for the following years to discount its future cash flows to the present value. We know this is probably a proper assessment of the discount factor for the first year, but is it still proper if an originally small firm becomes a big firm from the second year on and does not warrant such a premium hereafter?

To investigate whether the size premium is changing over time and how it evolves, I design the following $t+j$ size portfolio approach. In the traditional size portfolio formation, securities are assigned to each portfolio in June and the portfolios are held from July to June next year under a buy-and-hold strategy. In the $t+j$ size portfolio approach I also choose to sort securities in June of each year t, but instead of holding the portfolios for the following year, I also look at the monthly returns for an one-year holding period from July of year $t+j-1$ to June of year $t+j$, where $j = 2, \ldots, 15$. All the firms are identified and tracked by their CRSP permanent number. If a firm goes bankrupt or is merged by another firm in the following years, then it is taken out of the portfolio once it is off the CRSP tape. Otherwise it keeps in the same $t+j$ size portfolio as assigned in the initial sorting date no matter how big or how small its market capitalization becomes.

11 For getting the size premium estimation, some practitioners rebalance the size portfolios more frequently. For example, Ibbotson Associates sorts and assigns all eligible companies to different size portfolios with the closing price and shares outstanding data for the last trading day of March, June, September and December instead of June each year.

12 This approach reduces to the traditional size portfolio formation when $j = 1$.

18
For example, the firms in \(t+2 \) portfolios from July 1989 to June 1990 were sorted and assigned to different size portfolios in June 1988; the same composition of firms is used in \(t+1 \) portfolios from July 1988 to June 1989, which are 12 months immediately after the sorting date. The \(t+3 \) portfolios in July 1990 also consist of the same firms, except for those were delisted during the first two years. There is also another set of \(t+2 \) portfolios from July 1988 to June 1989, each consists firms sorted by their June 1987 size. We can string together all the \(t+2 \) portfolios to see how firms perform a year after its original sorting date for a whole year. The same process is done for all \(t+j \) size portfolios. This approach allows us to follow the average performance of firms \(j \) years after they were assigned to a specific size group.

If a firm’s size behaves as a characteristic and this attribute follows the firm for an extended period of time, return patterns among different \(t+j \) size portfolios should not change much for different \(j \). On the other hand, if a small firm deserves a lower size premium after it becomes a bigger firm, the size premium in the following years will decrease accordingly. By tracking the historical performance of firms sorted by size, we can get a better idea on how the size premium of a firm behaves and whether it is a good indicator of an extra risk source.

3.2 Size Premium is Changing Over Time

Practitioners usually consider a fixed size premium for a firm for subsequent years, which implies that either firms will not migrate to other size groups, or they will still demand the same size premium even after they switch to different size groups. To make a valid comparison between different \(t+j \) portfolios, I change the starting date of all portfolios from July 1926 to July 1940 to accommodate the \(t+15 \) portfolios,
which have companies being sorted in June 1926 but will not report the first return observation until July 1940.

Table 4 presents the average size premiums of different \(t+j \) size portfolios in reference to the respective CAPM projected returns on the traditional size portfolios. The “traditional” size portfolio means that firms are sorted and assigned to different size portfolios according to their June market capitalization, and the portfolios are held from July of the same year to June next year. The definition of the average size premium of a \(t+j \) size portfolio is

\[
SP_{t+j}^{i,t} = R_{i,t}^{t+j} - (R_{f,t} + \beta_i (R_{m,t} - R_{f,t})) , \text{ and}
\]

\[
SP_{i}^{t+j} = \frac{1}{T} \sum_{t=1}^{T} SP_{i,t}^{t+j} , \tag{9}
\]

where \(R_{i,t}^{t+j} \) represents the time \(t \) return on the \(t+j \) portfolio of firms in the \(i \)th size group, and \(\beta_i \) is the same as in equation (1).

The first decile size portfolio, which contains firms with the lowest market capitalizations among all listed firms on the sorting date, usually has a large and significant CAPM alpha and a beta too low to project the realized return. Table 1 shows that portfolio 1 has a size premium of 3.39% per annum with the sample period from July 1926 to December 2008. The corresponding number in Table 4 is the average size premium of the \(t+1 \) portfolio for portfolio 1. Although the benchmark is still calculated with the same beta, it drops to 1.49% because the sample period here does not start until July 1940. The difference reflects a large historical size premium for the

\[13\]The security return data on CRSP tape start from December 1925, so June 1926 becomes the first available sorting date.
small firms from 1926 to 1940. The premiums change a lot with different sample periods, but the pattern is nevertheless revealing. The smallest firms still get a bigger size premium, while the biggest firms even get a size discount.

If firms are supposed to be awarded a fixed size premium for years, we should see the numbers in Table 4 remain stable over different \(t+j \) portfolios within each size group. The result is apparently contrary to this hypothesis. The size premium of portfolio 1 drops dramatically two years after the initial sorting date and becomes insignificantly different from zero in the third year. After that the small firms get a discount and such a discount gradually becomes significantly different from zero. On the other hand, portfolio 10 sees its size premium going up from the negative value in the first two years to a positive but insignificant number for the most part of the following eight years. Most of the size portfolios have a declining size premium after the sorting date except for portfolio 10, which reflects the fact that returns on different size portfolios tend to converge to the same number over years. Table 5 shows that the difference in average returns on different size portfolios gradually becomes insignificant as sorting dates pass by.

[Insert Table 5 here.]

If history can be any guide to the future performance, we are likely to over-estimate the cost of equity capital of small firms and under-estimate the cost of equity of big firms by the current treatment of the size premium.

3.3 Robustness Check

We have seen in Table 1 that the historical averages of both the size premium and the small stock premium are sensitive to the choice of the sample period, but the
pattern remains unchanged if given a long enough horizon. Here I will verify that the findings in this section are not sensitive to different breakpoints of size groups.

Fama and French (2007) divide firms into two groups in terms of size to explain the cause of the Fama-French SMB factor, so I also divide all the acting firms into two groups according to the NYSE median market-cap breakpoint in each June.

For better examining the relation between firm size and the corresponding return performance, I also rank firms according to their size each June and form three portfolios with firms of their size in the bottom 30%, middle 40%, and top 30% (S-30%, M-40% and B-30% hereafter) by the NYSE market-cap breakpoints.

The size premiums calculated with new breakpoints are displayed in Table 6. The big size portfolios (Big or B-30%) all have very small and insignificant size premiums like the size premium of portfolio 10 reported in Table 4. Please be noted that I still use the traditional size portfolio approach (it is equivalent to the $t+1$ portfolio here) with the new breakpoints and the sample period from 1926 to 2008 to estimate CAPM betas. The size premiums of “Small” and “S-30%” size portfolios are significant through $t+1$ to $t+4$ or $t+5$ portfolios, respectively, and they are also declining as j goes up. Ten or seven years after the initial sorting dates, these two small size portfolios even have a discount. These characteristics are all consistent with the pattern shown in portfolio 1 in Table 4.

Comparing Table 6 to Table 4, it is apparent that the size premium for small stocks in the traditional sense does exist no matter how many size groups the stocks
are divided into, but it fades out gradually if the same composition of firms is held longer than a year.\[14\]

If a group of firms have the same stream of expected future cash flows, it is possible that the firm with a higher risk is going to be priced lower. Such a firm may end up having a higher return because it is more likely to have a higher dividend yield. However, small firms do not only gather higher returns through higher dividend yields, they usually have higher capital appreciation rates too. Fama and French (2007) explain that migration of stocks across size groups is the cause of the small stock premium.\[15\] Once a small firm’s market capitalization increases and it is qualified as a big firm, a size premium should not apply anymore. According to Table 4 and 6, small firms did have higher size premiums when they were first assigned to the small size portfolio, but this effect does not persist. A firm which belongs to portfolio 1 sees its size premium turns into a discount after a few years if it is still expected to be compensated as a small stock. It is probably reasonable for a small firm to get a larger discount factor than the CAPM suggests because it bears higher risks than the model can explain for the time being, but the usual practice could very likely over-compensate the risks a small firm is bearing.

If the size effect has to be considered in the cost-of-equity estimation, we should search for the root of this short-lived premium and identify the risk source it represents. This is just as important as how much it is, if not more important.

\[14\] The small stock premium fades away until it is barely noticeable. However, the size premium for small stocks sometimes becomes a size discount if the same composition of stocks is held for a few years.

\[15\] In their article Fama and French use “size premium” to refer to the fact that small-cap firms have higher returns than big-cap firms without risk adjustment, which is equivalent to the “small stock premium” used in this paper. As shown earlier that these two premiums are related.
4 Size Premium under Different Economic Situations

Section 3 shows that a small firm can have a higher size premium only in the short run. Over a longer time span, a firm’s size and even its sensitivity to risk are all subject to change, and its size premium changes accordingly. In light of these results, I propose not to include a fixed size premium in the long-term cost-of-equity estimation. However, the size premium, no matter how short-lived it is, still appears to exist in the first few years for small firms. Take the popular discounted cash flow method as an example, the first few years matter the most if given a steady stream of future cash flows. By excluding the size premium from the cost-of-equity estimation, one might argue that we are also likely to understate the risk a small firm is taking.

The simplest way to resolve this conundrum seems to apply a time-varying cost of equity by adding different size premiums to the estimation according to the results in Table 4. The short-term size effect is thus accounted for, and the long-term size premium is also no longer permanent. However, Table 4 only displays the standard deviation of the average of the size premium, the variation of the annual size premium per se is much larger. If the size premium swings between high and low levels like the two-regime small stock premium model shown in section 2.3, adding an average size premium into the short-term cost-of-equity estimation may not help the matter. We could easily over-estimate the cost of equity of small firms in one period and suppress their value, while under-estimate the cost of equity in another period.

\[16\text{CAPM betas of all size groups are monotonically decreasing from } t+1 \text{ through } t+15 \text{ portfolios. These results are not shown in the tables, but they are available upon request. In this paper I use the traditional size portfolios with the full sample (July 1926 to December 2008) to estimate CAPM betas to get a consistent benchmark in all cases but ones in Table 4.}\]
and bring the price to an un-deserving high level. In this section I will examine the likelihood of this scenario.

The concept of connecting financial distress to firm size has been discussed in the asset pricing literature to explain the anomalous cross-sectional pattern of stock returns. Queen and Roll (1987) find that a firm’s unfavorable mortality rate is a decreasing function of its size, and Campbell, Hilscher, and Szilagyi (2008) further show that size has a negative relation with the excess return between safe and distress stocks. I will examine from a different angle to see whether economic distress has an effect on the size premiums.

I divide the sample period into several two-regime scenarios according to different macroeconomic variables related to distress and calculate the size effect under each regime. There are two reasons for this experiment: the first is that only the systematic risk should be taken into account when pricing a firm or an asset. If small firms are supposed to be awarded a higher premium sheerly because of their failure risk, then we should be able to distinguish different patterns of their size premium under different economic situations. Second, in light of the success of a simple Markov-switching model used on the small stock premium in section 2, it is natural to try a two-regime model on the size premium as well. However, the estimation of the size premium is highly contingent on the choice of the asset pricing model and the sample period, so I do not investigate the possible regime shifts of the size premium directly. Instead, I will try to explore the relation between the size premium and three different candidates of macroeconomic variables. If the size premium is at least partly driven by systematic risk sources, its magnitude should vary as the economic environment changes.
4.1 Identifying the States of Economy

The first state variable is an indicator variable which identifies the economic status during a business cycle: a dummy variable which equals 1 for months in the expansion period and 0 for months in the contraction period.\footnote{NBER’s Business Cycle Dating Committee publishes the U.S. business cycle peak and trough months on the NBER website. Their latest announcement on 12/01/2008 declares that the previous expansion period peaked in December 2007 and a recession soon followed. The conclusion of the current recession has not yet been determined as the writing of this paper. I assume all of year 2008 fell into the contraction period to make the sample period consistent with other state variables.} When in distress, smaller firms usually get hit harder because they have thinner cushion in common equity and their ability to raise capital via new debts, bank loans, or even government bailouts is also poorer than big firms. On the other hand, small firms which survive the storm can often see a sudden boom in their stock returns, as were evidenced by their bigger beta.\footnote{Fama and French (1993) point out that small firms do not participate in the economic boom of the middle and late 1980s for an unknown reason. This finding is consistent with the argument of the disappearance of the size effect in the 1980s and 1990s. Indeed, the small stock premium was -10.4\% per annum from December 1982 to July 1990, the expansion period right after the longest recession since the Great Depression. However, small firms greatly outperform big firms during the economic booms after the Great Depression or the recession caused by 1973 oil crisis, with average small stock premiums at 55.9\% and 23.1\%, respectively. It is probably premature to judge the experience in the 1980s as a new norm or just an anomaly. Nonetheless, the magnitude of SMB during the expansion periods in the middle 1930s and the late 1980s could counter the argument raised by Fama and French (1993).} Whether the bigger volatility in the stock return for the small stock portfolio can translate to separate size premiums is the focus of the investigation. According to NBER’s Business Cycle Dating Committee, there are 14 business cycles since 1926 to date with the shortest contraction period being 6 months and the shortest expansion period being 24 months.

The second indicator is the market trend, which is similar to the idea of the business cycle. I distinguish the bull and bear markets by a Markov-switching model on the CRSP value-weighted market portfolio return with the similar procedure laid
Regime 1 represents the state of the bear market with a lower mean return and higher volatility; regime 2 indicates the bull market with a higher mean return and lower volatility. An indicator variable is used to represent the bull market with its value being equal to 1 when the regime 2 smoothed inference of the month is greater than 0.5, and 0 otherwise. The reason to use a dummy to identify the market trend instead of the realized market return is to filter out noise. When we apply the size premium on the cost of equity capital estimation, we look for the long-term performance instead of the short-term disturbance. Looking too much into the day-to-day or month-to-month performance will mix up true trend and noise. For instance, even during the huge market downturn in the Great Depression, when the Dow Jones Industrial Average (DJIA) dropped from then historical high of 381.17 on 9/3/1929 to the following lowest point of 41.22 on 7/8/1932, we can still see the market posted double digit gains on return during the process. In February and June 1931, the monthly returns derived from the DJIA were 12.40% and 16.90%, respectively. These were great rallies even in any bull market, but they still cannot stop the free fall of the stock market and the investment environment would not be changed simply because of a sudden spark of life. Since the cost of equity capital and the size premium are all about the long term prospect of the firm, it is more fitting to examine the general market trend in this simple fashion.

The third indicator is the credit spread between AAA and BAA corporate bond rates. The data are obtained from the Federal Reserve Bank of St. Louis website. Although we cannot link a firm’s size directly to its credit rating, large firms usually get better ratings and lower borrowing rates. When there is abundant credit

19 There is no consensus on the definition of bear or bull markets other than a general description. Here I adopt the market trend definition of the model 1 in Chen (2009).
20 According to the summary statistics provided by Altman and Rijken (2004), firm’s credit rating is negatively related to the market value of equity. I also compare the average market values between
floating in the market, the credit spread tends to narrow down because banks and funds compete against each other for an investment opportunity without thinking too much about the risk. This process will eventually drive the spread down. On the other hand, the credit spread increases when the credit market is in a dire condition and investors take default risks more seriously. Every banker will think twice before lending money out. When the credit spread is high, it is more likely that small firms endure a higher borrowing cost than big firms, therefore their failure risk induced by the poorer credit rating is also higher. I continue to apply the same technique previously used in the market trend indicator to separate the credit spreads into two different states, and then convert the smoothed inference into a dummy variable using the 0.50 threshold.

The transition probabilities of staying in the same state for the Markov-switching model of the market trend are 0.892 (bear market) and 0.963 (bull market); they are 0.987 (low credit spread) and 0.974 (high credit spread) for the credit spread. The common feature of these macroeconomic variables is that the states defined by them are all very persistent, so we can link these variables with the shift of the size premium over a longer span instead of the month-by-month movement. Once the state variable of the market trend shifts to the bull market state, it would stay put for 27 months on average, and a credit spread dummy remains in the state of a lower mean value for 78 months.

firms with investment grade ratings and with non-investment grade ratings over the past 15 years. The average size of firms with better credit is 9 to 10 times bigger than the size of poorer rating firms. The sample includes all firms in the Compustat database from 1994 to 2008.
Figure 2 illustrates three different dummy variables on the right-hand side and their original data on the left.\footnote{It has to be noted that these state variables are all asymmetrical. We see expansion periods more often than contraction periods, longer bull markets than bear markets, and more days with low credit spreads than days with high ones. Over the total 822 observations, there are 698 months identified as in the expansion period, 646 months in the bull market, and 552 months in the low credit spread regime.}

4.2 The Size Premium under Different Economic Environments

These state variables do not highly coincide with each other, but they are all capable of separating the size premium of small stocks under different states. I also use the \(t+j \) portfolio approach to see whether these states can identify the size effect of stocks over the long run. Table 7 and 8 present the size premiums of the first and the 10th size portfolios under different economic situations.

[Insert Table 7 here.]

[Insert Table 8 here.]

The first column of Table 7 or 8 shows the same average size premiums as the corresponding column in Table 4. Through the second column to the last, the average size premiums under different states of the same macroeconomic variable are paired with each other. The second and third columns are the average size premiums in the expansion or contraction state identified by the business cycle dummy; the fourth and fifth columns show the averages during bull or bear markets from the market

\footnote{I use the GDP growth rate for the business cycle dummy as its “original data”. However, it is well known that the Business Cycle Dating Committee of the NBER does not determine the peaks and troughs by the GDP data alone.}
trend dummy; and the last two columns are average size premiums in the high or low state of the credit spread dummy.

The last row of each table shows the number of observations in a specific state. These three dummy variables post asymmetric states as earlier mentioned, but the credit spread dummy is significantly different from the others because the state brings the higher average returns has a lot less observations than the state brings the higher return for the other two dummy variables.²²

Small stocks usually have a high and significant size premium, and this premium is even more pronounced in the expansion period or the high credit spread period, and interestingly, during the bear market. Portfolio 1 has a positive premium for most of the \(t+j \) portfolios during the market downturn because the market trend dummy successfully identifies the low return period of the market, which in turn drives the benchmark even lower than the drop of the realized return on small stocks. The time series dynamics of the size premium revealed by the \(t+j \) portfolio approach present a different scenario for the business cycle dummy. It is indecisive whether a small firm has a greater size premium during the expansion or contraction period.

Table 8 displays the size premium, or more precisely, the size discount of portfolio 10. Large firms usually can be explained well by the CAPM or other asset pricing models, so the common practice does not require a size premium on them. Even under different states, the size premiums are still small in magnitude comparing to the corresponding statistics of portfolio 1. If we focus on the first few \(t+j \) portfolios, the business cycle does not seem to play an important role. The average size premi-

²²The state generates the higher average return does not necessarily have the higher size premium. The latter also depends on the sensitivity to the market risk and the market return under this “unfavorable” state.
ums under different regimes of the market trends or credit spreads are much more different, but they are still not as pronounced as their counterparts in portfolio 1.

A one-sided t test on unequal sized variables is also applied here to compare the difference between average size premiums under different economic states. The size premiums in Table 7 and 8 are shown in **boldface fonts** if the difference is significant at the 10 percent level. We cannot reject the null hypothesis that none of the size premium pairs of portfolio 1 or 10 are significantly different during different periods of business cycles. The same test for different market trends shows the similar result for the first nine years for portfolio 1 and the first two years for portfolio 10. The state variable derived from the credit spread data is the most successful of all. The difference of the average size premiums of $t+j$ portfolios is significant at 10 percent level for most of the cases for portfolio 1, and it is also significant for the first 6 years for portfolio 10.

The size premium a small firm should demand for bearing higher risks is limited only in the first few years and its magnitude is difficult to predict. The empirical results imply that we should be very careful to identify the risks a firm is bearing instead of taking it only by the firm’s current size. If there are other systematic risks which is related to size, we should reconsider whether that is the cause of a firm being riskier than the others and assign the specific risk premium to it accordingly.
5 Conclusion

This study verifies the existence of the size effect of annually rebalanced size portfolios with a longer sample period, but suggests not to include the size premium in the cost-of-equity estimation of small firms because this effect is only short-lived.

The assertion of the disappearance of the size effect in the 1980s and 90s was just a result of sample selection. Similar events of temporary disappearance of the size effect from different periods were found but they have never been proved permanent. Suffice it to say that the size effect did not simply disappear because it was revealed by academics and exploited by practitioners. It is shown in section 2 that the small stock premium can be better captured by a two-state Markov-switching model rather than the usual stationary normal distribution assumption. This empirical evidence is consistent with the story of the temporary disappearance of the size effect in the 1980s and 1990s.

Using the $t+j$ portfolio approach designed for this study, I demonstrate that the small stock premium declines if we hold the size portfolio longer than the usual one-year holding period rule. This can be considered as evidence of Fama and French (2007)'s finding that the size premium stems from small firms moving up the size rank to become big firms. Since firms move between size groups, the size premium should not be considered as a constant and it has to reflect the new size group they are currently in. The popular perception of a fixed size premium used by practitioners in the cost-of-equity estimation is obviously mistaken. I track the size premiums of different size portfolios for the subsequent 15 years after their formation date and find that most of the premiums converge toward zero, so firms should not be awarded a size premium for a long-term estimation.
If the size premium of a firm is estimated with the assumption that a firm moves from one size group to another all the time, it should be time-varying as well. The average size premium of portfolio 1, which includes all NYSE, NASDAQ and AMEX firms with market capitalization less than the first decile market-cap breakpoint of all NYSE listed firms, is 1.49% for the first year after its creation for the past 68 years. The same composition of firms still merit an average of 1.02% premium in the following year, but it declines rapidly after that. Adding a fixed size premium according to a firm’s current size could very well overstate the relation between a firm’s size and the risk it is bearing.

Certain macroeconomic variables can help us to distinguish the possible regimes of the size premium. These variables include the business cycle, the market trend, and the credit spread. However, the decision to distinguish the size premium of a firm under the assumption of one specific state is very difficult to make given how highly volatile the monthly size premium is. Adding a naive size premium to a firm’s cost of equity capital estimation still potentially introduces more errors no matter this size premium is fixed or time-varying.
References

Figure 1: The return difference between the first and the 10th decile size portfolios and the smoothed probability of the high small stock premium regime. Panel A shows the annual portfolio return difference between small and big stocks. It is apparent that big firms outperform small firms most of the time from the mid-1980s to late 1990s. This account for the “disappearance” of the size effect in that time span. Similar situation also happened in the 1950s and late 1960s to early 1970s. The smoothed inference of the high SMB regime is shown in Panel B.
Figure 2: Three different dummy variables indicates three different economic environments. The first row includes the GDP growth rate of the U.S. and the business cycle dummy. The second row presents the CRSP monthly return and the market trend dummy variable derived from the smoothed probability of the bull market regime. The third row contains the credit spread and the high credit spread dummy also generated from the smoothed inference of a two-state Markov-switching model.
Table 1: Returns on Size Portfolios and Size Premiums in Reference to CAPM

Panel A. Full Sample (1926.7 to 2008.12)

<table>
<thead>
<tr>
<th>Portfolios</th>
<th>Mean Return</th>
<th>Standard Dev.</th>
<th>β</th>
<th>Size Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Small)</td>
<td>17.36</td>
<td>35.46</td>
<td>1.46</td>
<td>3.39</td>
</tr>
<tr>
<td>2</td>
<td>14.79</td>
<td>30.86</td>
<td>1.40</td>
<td>1.21</td>
</tr>
<tr>
<td>3</td>
<td>14.52</td>
<td>28.39</td>
<td>1.34</td>
<td>1.37</td>
</tr>
<tr>
<td>4</td>
<td>14.37</td>
<td>26.58</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>5</td>
<td>13.68</td>
<td>25.08</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>6</td>
<td>13.22</td>
<td>23.68</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>7</td>
<td>12.75</td>
<td>22.77</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td>8</td>
<td>12.16</td>
<td>21.82</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td>9</td>
<td>11.66</td>
<td>20.24</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>10 (Big)</td>
<td>10.14</td>
<td>17.80</td>
<td>0.93</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Panel B. 1926.7 to 1980.6

<table>
<thead>
<tr>
<th>Portfolios</th>
<th>Mean Return</th>
<th>Standard Dev.</th>
<th>β</th>
<th>Size Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Small)</td>
<td>20.44</td>
<td>41.17</td>
<td>1.60</td>
<td>5.14</td>
</tr>
<tr>
<td>2</td>
<td>16.19</td>
<td>34.89</td>
<td>1.48</td>
<td>1.79</td>
</tr>
<tr>
<td>3</td>
<td>15.61</td>
<td>31.96</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>15.23</td>
<td>29.55</td>
<td>1.32</td>
<td>1.32</td>
</tr>
<tr>
<td>5</td>
<td>14.14</td>
<td>27.82</td>
<td>1.29</td>
<td>1.29</td>
</tr>
<tr>
<td>6</td>
<td>13.84</td>
<td>26.30</td>
<td>1.24</td>
<td>1.24</td>
</tr>
<tr>
<td>7</td>
<td>12.58</td>
<td>25.13</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>8</td>
<td>12.22</td>
<td>23.80</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>9</td>
<td>11.45</td>
<td>22.12</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>10 (Big)</td>
<td>9.70</td>
<td>19.04</td>
<td>0.93</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Panel C. 1980.7 to 1998.6

<table>
<thead>
<tr>
<th>Portfolios</th>
<th>Mean Return</th>
<th>Standard Dev.</th>
<th>β</th>
<th>Size Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Small)</td>
<td>12.93</td>
<td>17.63</td>
<td>0.95</td>
<td>-2.99</td>
</tr>
<tr>
<td>2</td>
<td>14.50</td>
<td>17.89</td>
<td>1.07</td>
<td>-2.61</td>
</tr>
<tr>
<td>3</td>
<td>15.96</td>
<td>17.77</td>
<td>1.10</td>
<td>-1.40</td>
</tr>
<tr>
<td>4</td>
<td>16.52</td>
<td>17.66</td>
<td>1.10</td>
<td>-1.40</td>
</tr>
<tr>
<td>5</td>
<td>17.23</td>
<td>17.16</td>
<td>1.09</td>
<td>-0.90</td>
</tr>
<tr>
<td>6</td>
<td>16.96</td>
<td>16.24</td>
<td>1.05</td>
<td>-0.90</td>
</tr>
<tr>
<td>7</td>
<td>17.16</td>
<td>16.09</td>
<td>1.08</td>
<td>-0.90</td>
</tr>
<tr>
<td>8</td>
<td>15.94</td>
<td>15.58</td>
<td>1.04</td>
<td>-0.90</td>
</tr>
<tr>
<td>9</td>
<td>16.84</td>
<td>15.32</td>
<td>1.04</td>
<td>-0.90</td>
</tr>
<tr>
<td>10 (Big)</td>
<td>17.40</td>
<td>14.32</td>
<td>0.96</td>
<td>0.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portfolios</th>
<th>Mean Return</th>
<th>Standard Dev.</th>
<th>β</th>
<th>Size Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Small)</td>
<td>9.14</td>
<td>25.11</td>
<td>1.06</td>
<td>7.47</td>
</tr>
<tr>
<td>2</td>
<td>8.05</td>
<td>26.08</td>
<td>1.21</td>
<td>6.59</td>
</tr>
<tr>
<td>3</td>
<td>6.48</td>
<td>23.24</td>
<td>1.15</td>
<td>4.95</td>
</tr>
<tr>
<td>4</td>
<td>6.26</td>
<td>22.94</td>
<td>1.13</td>
<td>4.68</td>
</tr>
<tr>
<td>5</td>
<td>5.23</td>
<td>21.33</td>
<td>1.13</td>
<td>3.66</td>
</tr>
<tr>
<td>6</td>
<td>3.61</td>
<td>19.83</td>
<td>1.13</td>
<td>1.97</td>
</tr>
<tr>
<td>7</td>
<td>6.03</td>
<td>19.57</td>
<td>1.08</td>
<td>4.38</td>
</tr>
<tr>
<td>8</td>
<td>5.36</td>
<td>20.24</td>
<td>1.08</td>
<td>3.80</td>
</tr>
<tr>
<td>9</td>
<td>3.87</td>
<td>17.13</td>
<td>1.04</td>
<td>2.07</td>
</tr>
<tr>
<td>10 (Big)</td>
<td>-0.03</td>
<td>16.10</td>
<td>0.98</td>
<td>-1.92</td>
</tr>
</tbody>
</table>

All securities in NYSE, AMEX and NASDAQ are sorted at the end of June of each year \(t \) and are assigned to ten different size portfolios according to NYSE breakpoints. The size portfolios are constructed with securities in each size group with their respective market cap as weights and are held from July of year \(t \) through June of year \(t + 1 \).

\(\beta \)'s are estimated with regression of monthly portfolio returns in excess of the Ibbotson Associates risk free rate on the CRSP value-weighted market returns in excess of the same risk free rate.

The size premium is calculated by subtracting the product of the CAPM beta and the equity premium from the size portfolio returns in excess of the risk free rate. All the equity risk premiums in different panels are estimated from their respective sample periods.

Returns, standard deviations and size premiums are all annualized and in percentage points.
Table 2: Prices of Fama-French Risk Factors

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_m - R_f$</td>
<td>0.64 (0.17)</td>
<td>0.70 (0.23)</td>
<td>0.84 (0.29)</td>
<td>-0.04 (0.44)</td>
</tr>
<tr>
<td>SMB</td>
<td>0.24 (0.11)</td>
<td>0.29 (0.14)</td>
<td>-0.04 (0.17)</td>
<td>0.47 (0.37)</td>
</tr>
<tr>
<td>HML</td>
<td>0.38 (0.12)</td>
<td>0.41 (0.15)</td>
<td>0.41 (0.18)</td>
<td>0.24 (0.35)</td>
</tr>
</tbody>
</table>

I calculate the price of risk of the Fama-French (1993) three factors with Fama and MacBeth (1973)'s two-pass regression approach. These data are retrieved from Professor French’s website at Dartmouth. Test portfolios are obtained from 25 portfolios formed on size and book-to-market equity and 17 industry portfolios. Since there exist missing values in one of the 25 size/BM portfolio, it is taken out of the portfolio set. The returns on the remaining 41 test portfolios are named as R_{it}, $i = 1, 2, \ldots, N$, $N = 41$.

First we find beta estimates from the time-series regressions,

$$R_{it}^e = \alpha_i + \beta_i R_{mt}^e + s_i SMB_t + h_i HML_t + \epsilon_{it}$$

where $R_{it}^e = R_{it} - R_{ft}$ and $R_{mt}^e = R_{mt} - R_{ft}$.

Then estimate the factor risk premiums λ from a cross-sectional regression,

$$E_T(R_{it}^e) = \beta_1 \lambda_1 + s_i \lambda_2 + h_i \lambda_3 + a_i, \quad i = 1, 2, \ldots, N.$$

Since the pricing errors a_i are likely to be correlated, we follow Cochrane (2005)'s suggestion to run a GLS cross-sectional regression and the estimations of the price of risk are

$$\hat{\lambda} = (\beta \Sigma^{-1} \beta)^{-1} \hat{\beta} \Sigma^{-1} E_T(R_{it}^e),$$

$$\sigma^2(\hat{\lambda}) = \frac{1}{T} \left[(\beta \Sigma^{-1} \beta)^{-1} + \Sigma_f \right]$$

where β is an N-by-3 matrix with $[\beta_i, s_i, h_i]$ in each row, $\lambda = [\lambda_1, \lambda_2, \lambda_3]$, f is a T-by-3 matrix of the risk factors, R_{mt}^e, SMB, HML.

The sample period is broken down like in Table 1. The parameter estimates in each subperiod use only observations from that subperiod. Standard deviations of λ estimates are reported in parentheses.

The insignificance of parameters in the subperiod from July 1996 to December 2007 probably results from sample selection and short sample period. The most interesting finding is on λ_2, the price of the risk factor SMB. During the sample period from July 1980 to June 1996, the price of this factor is not only insignificant but also much smaller in its value.
Table 3: Regime Switching Model of the return difference between the 1st and 10th decile Size Portfolios

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Regime Switching Model</th>
<th>Standard Deviation</th>
<th>Unconditional Normal Dist</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1</td>
<td>-0.002436</td>
<td>0.00189</td>
<td>μ</td>
<td>0.004590</td>
</tr>
<tr>
<td>μ_2</td>
<td>0.036465</td>
<td>0.01184</td>
<td>σ^2</td>
<td>0.052284</td>
</tr>
<tr>
<td>σ^2_1</td>
<td>0.001263</td>
<td>0.00013</td>
<td>σ^2</td>
<td>0.052284</td>
</tr>
<tr>
<td>σ^2_2</td>
<td>0.008167</td>
<td>0.00179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.9579</td>
<td>0.01991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>0.8090</td>
<td>0.11592</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood Value</td>
<td>1367.73901</td>
<td>1257.87773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>-2723.47802</td>
<td></td>
<td>-2511.75546</td>
<td></td>
</tr>
<tr>
<td>BIC</td>
<td>-2695.20758</td>
<td></td>
<td>-2502.33198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>t+1</td>
<td>1.49</td>
<td>0.57</td>
<td>0.94</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>(0.56)</td>
<td>(0.42)</td>
<td>(0.34)</td>
<td>(0.31)</td>
</tr>
<tr>
<td>t+2</td>
<td>1.02</td>
<td>1.70</td>
<td>1.63</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td>(0.40)</td>
<td>(0.33)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>t+3</td>
<td>-0.67</td>
<td>1.33</td>
<td>1.51</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.39)</td>
<td>(0.32)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>t+4</td>
<td>-1.60</td>
<td>1.96</td>
<td>0.79</td>
<td>1.69</td>
</tr>
<tr>
<td></td>
<td>(0.45)</td>
<td>(0.37)</td>
<td>(0.32)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>t+5</td>
<td>-0.83</td>
<td>1.42</td>
<td>1.26</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.37)</td>
<td>(0.31)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>t+6</td>
<td>-0.18</td>
<td>0.43</td>
<td>0.91</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.36)</td>
<td>(0.30)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>t+7</td>
<td>-1.57</td>
<td>0.51</td>
<td>0.43</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(0.35)</td>
<td>(0.30)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>t+8</td>
<td>-1.31</td>
<td>-0.54</td>
<td>0.86</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>(0.42)</td>
<td>(0.33)</td>
<td>(0.30)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>t+9</td>
<td>-1.38</td>
<td>-0.46</td>
<td>0.43</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.32)</td>
<td>(0.30)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>t+10</td>
<td>-1.61</td>
<td>-0.72</td>
<td>-0.65</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.31)</td>
<td>(0.30)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>t+11</td>
<td>-1.30</td>
<td>-0.62</td>
<td>-0.76</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.31)</td>
<td>(0.28)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>t+12</td>
<td>-1.62</td>
<td>-1.60</td>
<td>-0.83</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.30)</td>
<td>(0.30)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>t+13</td>
<td>-1.40</td>
<td>-2.30</td>
<td>-0.20</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.31)</td>
<td>(0.30)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>t+14</td>
<td>-2.64</td>
<td>-1.08</td>
<td>-1.22</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.31)</td>
<td>(0.31)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>t+15</td>
<td>-3.14</td>
<td>-0.86</td>
<td>-1.50</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.31)</td>
<td>(0.30)</td>
<td>(0.26)</td>
</tr>
</tbody>
</table>

Standard deviations of mean returns (or return differential in the last column) are in the parentheses.

CAPM betas used in this table are estimated with full sample period (July 1926 to December 2008) instead of the trimmed sample period (July 1940 to December 2008) for the $t+j$ portfolios. The size premium of the $t+1$ portfolios here and the size premium of the Panel A of Table 1 should be the same if given the same length of sample.
Table 5: **Average Returns on $t+j$ Decile Size Portfolio and Decile 1- Decile 10 Return Difference**

<table>
<thead>
<tr>
<th></th>
<th>Small</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Big</th>
<th>1-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.81)</td>
<td>(0.74)</td>
<td>(0.69)</td>
<td>(0.67)</td>
<td>(0.63)</td>
<td>(0.60)</td>
<td>(0.59)</td>
<td>(0.57)</td>
<td>(0.53)</td>
<td>(0.49)</td>
<td>(0.63)</td>
</tr>
<tr>
<td></td>
<td>(0.80)</td>
<td>(0.74)</td>
<td>(0.69)</td>
<td>(0.67)</td>
<td>(0.63)</td>
<td>(0.60)</td>
<td>(0.60)</td>
<td>(0.57)</td>
<td>(0.54)</td>
<td>(0.48)</td>
<td>(0.60)</td>
</tr>
<tr>
<td>$t+3$</td>
<td>14.01</td>
<td>15.61</td>
<td>15.35</td>
<td>14.12</td>
<td>14.61</td>
<td>13.27</td>
<td>12.89</td>
<td>12.81</td>
<td>11.94</td>
<td>10.90</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>(0.79)</td>
<td>(0.75)</td>
<td>(0.69)</td>
<td>(0.66)</td>
<td>(0.63)</td>
<td>(0.62)</td>
<td>(0.59)</td>
<td>(0.57)</td>
<td>(0.53)</td>
<td>(0.48)</td>
<td>(0.58)</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(0.73)</td>
<td>(0.69)</td>
<td>(0.66)</td>
<td>(0.65)</td>
<td>(0.61)</td>
<td>(0.59)</td>
<td>(0.55)</td>
<td>(0.53)</td>
<td>(0.48)</td>
<td>(0.56)</td>
</tr>
<tr>
<td>$t+5$</td>
<td>13.85</td>
<td>15.69</td>
<td>15.10</td>
<td>13.93</td>
<td>12.71</td>
<td>13.53</td>
<td>13.43</td>
<td>12.81</td>
<td>12.04</td>
<td>10.97</td>
<td>2.88</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(0.73)</td>
<td>(0.70)</td>
<td>(0.66)</td>
<td>(0.64)</td>
<td>(0.60)</td>
<td>(0.58)</td>
<td>(0.56)</td>
<td>(0.53)</td>
<td>(0.47)</td>
<td>(0.55)</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(0.74)</td>
<td>(0.69)</td>
<td>(0.66)</td>
<td>(0.62)</td>
<td>(0.60)</td>
<td>(0.59)</td>
<td>(0.56)</td>
<td>(0.53)</td>
<td>(0.47)</td>
<td>(0.55)</td>
</tr>
<tr>
<td>$t+7$</td>
<td>13.12</td>
<td>14.79</td>
<td>14.27</td>
<td>13.61</td>
<td>13.80</td>
<td>13.70</td>
<td>11.77</td>
<td>12.41</td>
<td>12.27</td>
<td>11.15</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>(0.79)</td>
<td>(0.73)</td>
<td>(0.68)</td>
<td>(0.63)</td>
<td>(0.60)</td>
<td>(0.59)</td>
<td>(0.56)</td>
<td>(0.53)</td>
<td>(0.47)</td>
<td>(0.47)</td>
<td>(0.56)</td>
</tr>
<tr>
<td></td>
<td>(0.78)</td>
<td>(0.72)</td>
<td>(0.68)</td>
<td>(0.64)</td>
<td>(0.63)</td>
<td>(0.61)</td>
<td>(0.58)</td>
<td>(0.55)</td>
<td>(0.52)</td>
<td>(0.47)</td>
<td>(0.55)</td>
</tr>
<tr>
<td>$t+9$</td>
<td>13.30</td>
<td>13.82</td>
<td>14.27</td>
<td>13.33</td>
<td>14.13</td>
<td>12.82</td>
<td>13.82</td>
<td>11.86</td>
<td>12.24</td>
<td>11.03</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>(0.76)</td>
<td>(0.70)</td>
<td>(0.69)</td>
<td>(0.64)</td>
<td>(0.63)</td>
<td>(0.60)</td>
<td>(0.59)</td>
<td>(0.55)</td>
<td>(0.53)</td>
<td>(0.47)</td>
<td>(0.51)</td>
</tr>
<tr>
<td>$t+10$</td>
<td>13.08</td>
<td>13.56</td>
<td>13.20</td>
<td>14.57</td>
<td>13.07</td>
<td>13.13</td>
<td>11.54</td>
<td>12.03</td>
<td>12.53</td>
<td>11.07</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>(0.75)</td>
<td>(0.69)</td>
<td>(0.69)</td>
<td>(0.64)</td>
<td>(0.63)</td>
<td>(0.59)</td>
<td>(0.59)</td>
<td>(0.55)</td>
<td>(0.53)</td>
<td>(0.46)</td>
<td>(0.50)</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(0.70)</td>
<td>(0.68)</td>
<td>(0.63)</td>
<td>(0.63)</td>
<td>(0.58)</td>
<td>(0.58)</td>
<td>(0.54)</td>
<td>(0.53)</td>
<td>(0.46)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>$t+12$</td>
<td>13.06</td>
<td>12.68</td>
<td>13.02</td>
<td>14.46</td>
<td>13.27</td>
<td>13.18</td>
<td>12.69</td>
<td>12.08</td>
<td>11.60</td>
<td>11.20</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(0.68)</td>
<td>(0.69)</td>
<td>(0.63)</td>
<td>(0.63)</td>
<td>(0.59)</td>
<td>(0.56)</td>
<td>(0.55)</td>
<td>(0.53)</td>
<td>(0.46)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>$t+13$</td>
<td>13.28</td>
<td>11.97</td>
<td>13.65</td>
<td>14.07</td>
<td>13.51</td>
<td>12.77</td>
<td>11.93</td>
<td>11.78</td>
<td>11.51</td>
<td>11.21</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(0.68)</td>
<td>(0.69)</td>
<td>(0.62)</td>
<td>(0.61)</td>
<td>(0.59)</td>
<td>(0.58)</td>
<td>(0.54)</td>
<td>(0.53)</td>
<td>(0.46)</td>
<td>(0.49)</td>
</tr>
<tr>
<td>$t+14$</td>
<td>12.04</td>
<td>13.19</td>
<td>12.62</td>
<td>14.25</td>
<td>12.70</td>
<td>11.72</td>
<td>11.65</td>
<td>11.45</td>
<td>11.51</td>
<td>11.28</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>(0.73)</td>
<td>(0.67)</td>
<td>(0.67)</td>
<td>(0.62)</td>
<td>(0.62)</td>
<td>(0.59)</td>
<td>(0.59)</td>
<td>(0.55)</td>
<td>(0.52)</td>
<td>(0.46)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>$t+15$</td>
<td>11.54</td>
<td>13.42</td>
<td>12.34</td>
<td>13.34</td>
<td>12.12</td>
<td>11.52</td>
<td>11.72</td>
<td>11.48</td>
<td>10.56</td>
<td>11.55</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(0.66)</td>
<td>(0.66)</td>
<td>(0.63)</td>
<td>(0.60)</td>
<td>(0.59)</td>
<td>(0.58)</td>
<td>(0.53)</td>
<td>(0.52)</td>
<td>(0.46)</td>
<td>(0.50)</td>
</tr>
</tbody>
</table>

Standard deviations of mean returns (or return differential in the last column) are in the parentheses.
Table 6: **Robustness Check: Size Premium of Different Size Portfolios in Reference to CAPM Projected Return**

<table>
<thead>
<tr>
<th></th>
<th>Small</th>
<th>Big</th>
<th>S-30%</th>
<th>M-40%</th>
<th>B-30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t+1$</td>
<td>0.96</td>
<td>0.02</td>
<td>0.91</td>
<td>0.91</td>
<td>-0.05</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td>(0.05)</td>
<td>(0.40)</td>
<td>(0.21)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>$t+2$</td>
<td>1.51</td>
<td>0.05</td>
<td>1.60</td>
<td>0.77</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.05)</td>
<td>(0.38)</td>
<td>(0.20)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>$t+3$</td>
<td>1.09</td>
<td>0.11</td>
<td>0.94</td>
<td>0.70</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(0.06)</td>
<td>(0.36)</td>
<td>(0.19)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>$t+4$</td>
<td>0.99</td>
<td>0.14</td>
<td>0.72</td>
<td>0.65</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(0.28)</td>
<td>(0.07)</td>
<td>(0.35)</td>
<td>(0.18)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>$t+5$</td>
<td>0.44</td>
<td>0.20</td>
<td>0.95</td>
<td>0.46</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.07)</td>
<td>(0.34)</td>
<td>(0.17)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>$t+6$</td>
<td>0.30</td>
<td>0.23</td>
<td>0.49</td>
<td>0.52</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.07)</td>
<td>(0.32)</td>
<td>(0.17)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>$t+7$</td>
<td>0.03</td>
<td>0.24</td>
<td>-0.10</td>
<td>0.07</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.07)</td>
<td>(0.30)</td>
<td>(0.17)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>$t+8$</td>
<td>0.17</td>
<td>0.20</td>
<td>-0.25</td>
<td>0.37</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.08)</td>
<td>(0.30)</td>
<td>(0.16)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>$t+9$</td>
<td>0.10</td>
<td>0.21</td>
<td>-0.31</td>
<td>0.52</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.09)</td>
<td>(0.29)</td>
<td>(0.16)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>$t+10$</td>
<td>-0.22</td>
<td>0.17</td>
<td>-1.05</td>
<td>-0.14</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.09)</td>
<td>(0.27)</td>
<td>(0.16)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>$t+11$</td>
<td>-0.35</td>
<td>0.22</td>
<td>-1.04</td>
<td>-0.30</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.09)</td>
<td>(0.26)</td>
<td>(0.16)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>$t+12$</td>
<td>-0.28</td>
<td>0.21</td>
<td>-1.30</td>
<td>0.23</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.10)</td>
<td>(0.27)</td>
<td>(0.16)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>$t+13$</td>
<td>-0.28</td>
<td>0.13</td>
<td>-1.16</td>
<td>-0.02</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.10)</td>
<td>(0.26)</td>
<td>(0.16)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>$t+14$</td>
<td>-0.50</td>
<td>0.07</td>
<td>-1.52</td>
<td>-0.55</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.11)</td>
<td>(0.26)</td>
<td>(0.16)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>$t+15$</td>
<td>-0.97</td>
<td>0.10</td>
<td>-1.68</td>
<td>-0.87</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.12)</td>
<td>(0.26)</td>
<td>(0.17)</td>
<td>(0.12)</td>
</tr>
</tbody>
</table>

Standard deviations of mean returns (or return differential in the last column) are in the parentheses.
Table 7: Average Size Premium of Portfolio 1 under Different Economic Environments

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Expansion</th>
<th>Contraction</th>
<th>Bull Mkt</th>
<th>Bear Mkt</th>
<th>High CS</th>
<th>Low CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t+1)</td>
<td>1.49</td>
<td>2.07</td>
<td>-1.78</td>
<td>0.65</td>
<td>4.57</td>
<td>5.45</td>
<td>-0.45</td>
</tr>
<tr>
<td></td>
<td>(0.56)</td>
<td>(0.61)</td>
<td>(1.42)</td>
<td>(0.57)</td>
<td>(1.57)</td>
<td>(1.15)</td>
<td>(0.62)</td>
</tr>
<tr>
<td>(t+2)</td>
<td>1.02</td>
<td>1.36</td>
<td>-0.86</td>
<td>0.15</td>
<td>4.24</td>
<td>4.57</td>
<td>-0.71</td>
</tr>
<tr>
<td></td>
<td>(0.52)</td>
<td>(0.56)</td>
<td>(1.35)</td>
<td>(0.53)</td>
<td>(1.47)</td>
<td>(1.01)</td>
<td>(0.60)</td>
</tr>
<tr>
<td>(t+3)</td>
<td>-0.67</td>
<td>-0.70</td>
<td>-0.47</td>
<td>-1.08</td>
<td>0.84</td>
<td>2.17</td>
<td>-2.06</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.52)</td>
<td>(1.30)</td>
<td>(0.50)</td>
<td>(1.32)</td>
<td>(0.90)</td>
<td>(0.57)</td>
</tr>
<tr>
<td>(t+4)</td>
<td>-1.60</td>
<td>-1.51</td>
<td>-2.09</td>
<td>-2.13</td>
<td>0.35</td>
<td>2.62</td>
<td>-3.67</td>
</tr>
<tr>
<td></td>
<td>(0.45)</td>
<td>(0.48)</td>
<td>(1.30)</td>
<td>(0.47)</td>
<td>(1.23)</td>
<td>(0.83)</td>
<td>(0.54)</td>
</tr>
<tr>
<td>(t+5)</td>
<td>-0.83</td>
<td>-0.82</td>
<td>-0.87</td>
<td>-1.33</td>
<td>1.02</td>
<td>3.34</td>
<td>-2.87</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.48)</td>
<td>(1.19)</td>
<td>(0.45)</td>
<td>(1.24)</td>
<td>(0.79)</td>
<td>(0.53)</td>
</tr>
<tr>
<td>(t+6)</td>
<td>-0.18</td>
<td>-0.23</td>
<td>0.06</td>
<td>-0.72</td>
<td>1.80</td>
<td>3.18</td>
<td>-1.83</td>
</tr>
<tr>
<td></td>
<td>(0.44)</td>
<td>(0.47)</td>
<td>(1.17)</td>
<td>(0.45)</td>
<td>(1.21)</td>
<td>(0.75)</td>
<td>(0.54)</td>
</tr>
<tr>
<td>(t+7)</td>
<td>-1.57</td>
<td>-1.67</td>
<td>-0.97</td>
<td>-1.26</td>
<td>-2.70</td>
<td>2.56</td>
<td>-3.59</td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(0.46)</td>
<td>(1.16)</td>
<td>(0.43)</td>
<td>(1.24)</td>
<td>(0.72)</td>
<td>(0.53)</td>
</tr>
<tr>
<td>(t+8)</td>
<td>-1.31</td>
<td>-1.27</td>
<td>-1.51</td>
<td>-1.30</td>
<td>-1.32</td>
<td>1.60</td>
<td>-2.73</td>
</tr>
<tr>
<td></td>
<td>(0.42)</td>
<td>(0.44)</td>
<td>(1.28)</td>
<td>(0.43)</td>
<td>(1.14)</td>
<td>(0.72)</td>
<td>(0.51)</td>
</tr>
<tr>
<td>(t+9)</td>
<td>-1.38</td>
<td>-1.25</td>
<td>-2.12</td>
<td>-1.93</td>
<td>0.64</td>
<td>3.54</td>
<td>-3.79</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.42)</td>
<td>(1.13)</td>
<td>(0.42)</td>
<td>(1.01)</td>
<td>(0.68)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>(t+10)</td>
<td>-1.61</td>
<td>-1.47</td>
<td>-2.36</td>
<td>-2.99</td>
<td>3.48</td>
<td>2.38</td>
<td>-3.56</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.40)</td>
<td>(1.13)</td>
<td>(0.40)</td>
<td>(1.03)</td>
<td>(0.65)</td>
<td>(0.47)</td>
</tr>
<tr>
<td>(t+11)</td>
<td>-1.30</td>
<td>-1.21</td>
<td>-1.83</td>
<td>-2.64</td>
<td>3.61</td>
<td>1.22</td>
<td>-2.54</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.41)</td>
<td>(1.17)</td>
<td>(0.40)</td>
<td>(1.03)</td>
<td>(0.65)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>(t+12)</td>
<td>-1.62</td>
<td>-1.80</td>
<td>-0.61</td>
<td>-2.60</td>
<td>1.97</td>
<td>1.23</td>
<td>-3.01</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.41)</td>
<td>(1.13)</td>
<td>(0.41)</td>
<td>(1.06)</td>
<td>(0.69)</td>
<td>(0.47)</td>
</tr>
<tr>
<td>(t+13)</td>
<td>-1.40</td>
<td>-1.22</td>
<td>-2.42</td>
<td>-2.20</td>
<td>1.55</td>
<td>0.35</td>
<td>-2.25</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.40)</td>
<td>(1.16)</td>
<td>(0.40)</td>
<td>(1.03)</td>
<td>(0.68)</td>
<td>(0.47)</td>
</tr>
<tr>
<td>(t+14)</td>
<td>-2.64</td>
<td>-2.33</td>
<td>-4.37</td>
<td>-3.39</td>
<td>0.11</td>
<td>0.33</td>
<td>-4.09</td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.40)</td>
<td>(1.12)</td>
<td>(0.39)</td>
<td>(1.04)</td>
<td>(0.67)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>(t+15)</td>
<td>-3.14</td>
<td>-3.20</td>
<td>-2.82</td>
<td>-4.41</td>
<td>1.53</td>
<td>1.30</td>
<td>-5.32</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.42)</td>
<td>(1.12)</td>
<td>(0.39)</td>
<td>(1.12)</td>
<td>(0.74)</td>
<td>(0.45)</td>
</tr>
</tbody>
</table>

| Number of Observations | 822 | 698 | 124 | 646 | 176 | 270 | 552 |

The standard deviation of the average size premium is in the parenthesis.
The first column shows the average size premium of the first decile size portfolio, which is the same as the first column of Table 4.
The number of observations in each state is in the last row of the table. The second and third columns are the expansion and contraction states; the fourth and fifth columns are the bull and bear market states; and the last two columns are the high and low credit spread states.
The size premiums are shown in boldface fonts if the difference is significant at the 10 percent level using a one-sided \(t\) test.
Table 8: Average Size Premium of Portfolio 10 under Different Economic Environments

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Expansion</th>
<th>Contraction</th>
<th>Bull Mkt</th>
<th>Bear Mkt</th>
<th>High CS</th>
<th>Low CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t+1)</td>
<td>-0.19</td>
<td>-0.17</td>
<td>-0.27</td>
<td>-0.29</td>
<td>0.21</td>
<td>-1.10</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.12)</td>
<td>(0.29)</td>
<td>(0.11)</td>
<td>(0.32)</td>
<td>(0.20)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>(t+2)</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-0.12</td>
<td>-0.39</td>
<td>0.80</td>
<td>-1.10</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.12)</td>
<td>(0.29)</td>
<td>(0.11)</td>
<td>(0.34)</td>
<td>(0.20)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>(t+3)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td>-0.34</td>
<td>1.38</td>
<td>-0.87</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.12)</td>
<td>(0.30)</td>
<td>(0.11)</td>
<td>(0.35)</td>
<td>(0.20)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>(t+4)</td>
<td>0.10</td>
<td>0.04</td>
<td>0.43</td>
<td>-0.33</td>
<td>1.66</td>
<td>-0.63</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.13)</td>
<td>(0.31)</td>
<td>(0.11)</td>
<td>(0.35)</td>
<td>(0.21)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>(t+5)</td>
<td>0.10</td>
<td>-0.03</td>
<td>0.85</td>
<td>-0.42</td>
<td>2.02</td>
<td>-0.73</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.13)</td>
<td>(0.32)</td>
<td>(0.11)</td>
<td>(0.36)</td>
<td>(0.21)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>(t+6)</td>
<td>0.14</td>
<td>0.00</td>
<td>0.95</td>
<td>-0.43</td>
<td>2.22</td>
<td>-0.59</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.13)</td>
<td>(0.33)</td>
<td>(0.11)</td>
<td>(0.38)</td>
<td>(0.21)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>(t+7)</td>
<td>0.29</td>
<td>0.11</td>
<td>1.29</td>
<td>-0.37</td>
<td>2.68</td>
<td>-0.29</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.13)</td>
<td>(0.34)</td>
<td>(0.12)</td>
<td>(0.39)</td>
<td>(0.22)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>(t+8)</td>
<td>0.11</td>
<td>-0.08</td>
<td>1.17</td>
<td>-0.49</td>
<td>2.30</td>
<td>-0.55</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.14)</td>
<td>(0.33)</td>
<td>(0.12)</td>
<td>(0.42)</td>
<td>(0.22)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>(t+9)</td>
<td>0.16</td>
<td>0.01</td>
<td>1.03</td>
<td>-0.52</td>
<td>2.67</td>
<td>-0.60</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(0.14)</td>
<td>(0.32)</td>
<td>(0.12)</td>
<td>(0.44)</td>
<td>(0.21)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>(t+10)</td>
<td>0.20</td>
<td>0.03</td>
<td>1.16</td>
<td>-0.45</td>
<td>2.60</td>
<td>-0.51</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.15)</td>
<td>(0.34)</td>
<td>(0.12)</td>
<td>(0.46)</td>
<td>(0.22)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>(t+11)</td>
<td>0.31</td>
<td>0.12</td>
<td>1.37</td>
<td>-0.45</td>
<td>3.10</td>
<td>-0.38</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.36)</td>
<td>(0.12)</td>
<td>(0.49)</td>
<td>(0.22)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>(t+12)</td>
<td>0.33</td>
<td>0.20</td>
<td>1.08</td>
<td>-0.43</td>
<td>3.11</td>
<td>-0.37</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.37)</td>
<td>(0.13)</td>
<td>(0.49)</td>
<td>(0.23)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>(t+13)</td>
<td>0.35</td>
<td>0.18</td>
<td>1.27</td>
<td>-0.42</td>
<td>3.15</td>
<td>-0.25</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.16)</td>
<td>(0.39)</td>
<td>(0.13)</td>
<td>(0.48)</td>
<td>(0.24)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>(t+14)</td>
<td>0.42</td>
<td>0.21</td>
<td>1.55</td>
<td>-0.28</td>
<td>2.96</td>
<td>-0.14</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.16)</td>
<td>(0.38)</td>
<td>(0.13)</td>
<td>(0.51)</td>
<td>(0.24)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>(t+15)</td>
<td>0.68</td>
<td>0.49</td>
<td>1.76</td>
<td>-0.13</td>
<td>3.67</td>
<td>-0.03</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.16)</td>
<td>(0.39)</td>
<td>(0.13)</td>
<td>(0.53)</td>
<td>(0.24)</td>
<td>(0.19)</td>
</tr>
</tbody>
</table>

Number of Observations | 822 | 698 | 124 | 646 | 176 | 270 | 552 |

The standard deviation of the average size premium is in the parenthesis.
The first column shows the average size premium of the 10th decile size portfolio, which is the same as the last column of Table 4.
Column 2 to column 7 use the same dummy variables to separate different states as the corresponding columns in Table 7.
The size premiums are shown in **boldface fonts** if the difference is significant at the 10 percent level using a one-sided \(t \) test.