COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF KENTUCKY UTILITIES)
COMPANY FOR CERTIFICATES OF PUBLIC)
CONVENIENCE AND NECESSITY AND) CASE NO. 2016-00026
APPROVAL OF ITS 2016 COMPLIANCE PLAN)
FOR RECOVERY BY ENVIRONMENTAL)
SURCHARGE)

DIRECT TESTIMONY OF ROBERT M. CONROY DIRECTOR, RATES KENTUCKY UTILITIES COMPANY

Filed: January 29, 2016

Q. Please state your name, position, and business address.

1

13

19

A. My name is Robert M. Conroy. I am the Director of Rates for Kentucky Utilities

Company ("KU" or "Company") and Louisville Gas and Electric Company

("LG&E") and an employee of LG&E and KU Services Company, which provides

services to LG&E and KU (collectively "Companies"). My business address is 220

West Main Street, Louisville, Kentucky, 40202. A complete statement of my

education and work experience is attached to this testimony as Appendix A.

8 Q. Have you previously testified before this Commission?

9 A. Yes. I have previously testified before this Commission in numerous proceedings, 10 including the Companies' most recent base rate cases (Case Nos. 2014-00371 (KU) 11 and 2014-00372 (LG&E)) and environmental cost recovery ("ECR") compliance plan 12 proceedings (Case Nos. 2011-00161 (KU) and 2011-00162 (LG&E)).

Q. Will you soon assume a new position with the Companies?

14 A. Yes. On February 1, 2016, I will assume the position of Vice President of State
15 Regulation and Rates for the Companies. I will continue to be an employee of LG&E
16 and KU Services Company in my new role. Also, I will continue to testify and
17 participate in this proceeding, and do not anticipate having another witness adopt my
18 testimony.

Q. What are the purposes of your testimony?

A. My testimony summarizes our other witnesses' testimony, KU's 2016 Environmental
Compliance Plan ("2016 Plan"), and our request for certificates of public convenience
and necessity ("CPCNs") for facilities contained in the 2016 Plan. I will also explain
why KU is seeking environmental surcharge recovery of its 2016 Plan through the
Environmental Cost Recovery ("ECR") Surcharge tariff beginning with bills that

reflect the expense month July 2016, which will use the 10.00% return on common equity agreed to in KU's last rate case. I will also address the plan to finance the proposed construction of facilities requiring CPCNs.

1

2

3

4

14

15

16

17

18

19

20

Overview of Testimony

- Please provide an overview of the testimony of the witnesses supporting KU's application in this proceeding.
- A. In addition to my testimony, KU is presenting the testimony of seven other witnesses in this case in support of its application. These witnesses and the subjects of their testimony are:
- John N. Voyles, Jr., Vice President, Transmission and Generation Services, presents testimony that describes the engineering and construction aspects of the projects in KU's 2016 Plan that relate to disposal of coal combustion residuals ("CCR"),² and the projects' costs. Also, Mr. Voyles sponsors the 2016 Plan.
 - R. Scott Straight, Director, Project Engineering, presents testimony that describes the engineering and construction aspects of the projects in KU's 2016 Plan not addressed by Mr. Voyles, and the projects' costs.
 - Gary H. Revlett, Director, Environmental Affairs, presents testimony discussing the
 environmental regulations that necessitate KU's 2016 Plan. Also, Mr. Revlett
 discusses certain environmental regulations that likely will affect the Companies'
 coal-fired units in the near future.

² The CCR Rule defines CCR as "fly ash, bottom ash, boiler slag, and flue gas desulfurization materials generated from burning coal for the purpose of generating electricity by electric utilities and independent power producers." 40 CFR 257.53. This definition includes what is commonly referred to as gypsum.

¹ In the Matter of: Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates, Case No. 2014-00371, Order at 3 (June 30, 2015).

- Charles R. Schram, Director, Energy Planning, Analysis and Forecasting, presents testimony on the cost-effectiveness of the projects in KU's 2016 Plan, and presents as exhibits the cost-benefit studies KU performed related to the 2016 Plan.
- Derek A. Rahn, Manager, Revenue Requirement, presents testimony addressing how
 the environmental surcharge under KU's ECR tariff provisions will be calculated to
 include the costs of the 2016 Plan, presents the revisions to the monthly ECR
 reporting forms that KU proposes and explains why the revisions to the forms are
 appropriate, and discusses the bill impact on KU's customers.

- John J. Spanos, Senior Vice President, Gannett Fleming Valuation and Rate Consultants, LLC presents testimony demonstrating that the terminal net salvage value used with the depreciation rates and reserves in base rates does not reflect any surface impoundment closures under the Coal Combustion Residuals Final Rule ("CCR Rule") and proposes depreciation rates for the surface impoundment closures at each generation station to be used in the ECR filing.
- Christopher M. Garrett, Director, Accounting and Regulatory Reporting, presents testimony affirming that the costs for which KU is seeking recovery through its Environmental Surcharge tariff are not included in base rates, and describes the accounting associated with the projects in KU's 2016 Plan, all consistent with the Commission's prior orders. Also, Mr. Garrett addresses the accounting for the proposed CCR Rule compliance construction contained in Projects 39 through 42.

2016 Plan and Recovery

Q. Please describe the 2016 Plan KU proposes in this proceeding.

The projects in KU's 2016 Plan will serve the E.W. Brown, Ghent, Trimble County, Green River, Pineville, and Tyrone Generating Stations.³ KU's 2016 Plan contains seven new capital projects; KU is seeking ECR recovery of the associated operating and maintenance ("O&M") expenses for only one project. (KU's 2016 Plan is attached as Exhibit JNV-1 to Mr. Voyles's testimony.) More specifically, KU's 2016 Plan contains projects to: build the second phase of the existing Brown landfill (Project 36); improve the sulfur dioxide removal efficiency of the wet flue-gas desulfurization unit ("WFGD") serving Ghent Unit 2 (Project 37); install low-cost and economical supplemental control technologies to reduce mercury re-emissions that will keep the Ghent units in compliance, and provide operational flexibility in maintaining compliance, with the federal Mercury and Air Toxics Standards ("MATS Rule") for mercury (Project 38); close the surface impoundments at Green River, Pineville, and Tyrone (collectively Project 39); and conduct CCR Rule compliance construction at Ghent, Trimble County, and Brown, with the construction of process water systems at those generating stations to enable ongoing coal-fired unit operations at those facilities (Projects 40 through 42).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

A.

Q. Please describe Project 36, constructing Phase II of the Brown landfill.

A. As Mr. Voyles describes, in accordance with Amended Project 29 (approved as part of KU's 2011 Plan) KU is converting its Main Ash Pond (a surface impoundment) at Brown to a dry storage landfill, Phase I of which will be in service this year. As Mr. Voyles explains in his testimony, when the Kentucky Division of Waste Management issued the permit for the Special Waste Landfill at Brown, it set forth a 10 foot height

³ Although Green River, Pineville, and Tyrone no longer have active coal-fired generating operations, the projects contained in the 2016 Plan relate to environmental compliance at those facilities resulting from past coal-fired generation.

limit for each successive phase of lateral expansion such that the volume of CCR disposed in each phase be no more than 10 feet higher than adjoining phase(s). Because of this permit condition, the initial capacity of Phase I is limited to a height of 10 feet. Based on the historical production at Brown, Phase I's initial 10 feet of capacity may be exhausted by as early as the second quarter of 2018. Forecasted production volumes suggest there may be usable capacity until 2019.⁴ To ensure KU's uninterrupted ability to dispatch the Brown coal-fired units with adequate time for construction and possible delays, KU is seeking approval to construct Phase II at this time, but will not begin construction before 2017.⁵ The total expected capital cost of Phase II is \$11.9 million (of which KU seeks to recover \$5.3 million through the ECR mechanism as part of its 2016 Plan Project 36). KU is not seeking O&M cost recovery through the ECR mechanism for this project, as noted on Exhibit JNV-1 (an exhibit to Mr. Voyles's testimony).

As I further discuss below, in accordance with the Commission's recent orders concerning phased landfill construction, KU is seeking a CPCN for Phase II of the Brown landfill even though the capital cost of the project does not meet the financial materiality criterion of 807 KAR 5:001 Section 15(3).

Finally, Mr. Schram's testimony and the cost-benefit analyses he sponsors demonstrate that investing in Phase II of the Brown landfill is economical even if the

⁴ Voyles Testimony at 14.

⁵ Voyles Testimony at 15.

⁶ See In the Matter of: Investigation of Kentucky Utilities Company's and Louisville Gas and Electric Company's Respective Need for and Cost of Multiphase Landfills at the Trimble County and Ghent Generating Stations, Case No. 2015-00194, Order at 31 (Dec. 15, 2015); In the Matter of: Application of Duke Energy Kentucky, Inc. for a Declaratory Order that the Construction of a New Landfill Constitutes an Ordinary Extension in the Usual Course of Business or, in the Alternative, for a Certificate of Public Convenience and Necessity, Case No. 2015-00089, Order at 10 (July 24, 2015).

Brown coal-fired units operate only through the end of 2021 (although KU is not committing or predicting that the units will retire in 2022 or later).

Q. Please describe Project 37, improvements to the WFGD for Ghent Unit 2.

As Mr. Straight discusses in greater detail, Project 37 will consist of installing new-technology spray nozzles and wall rings, both of which will increase the contact area of the limestone slurry with the flue gas, effectively increasing the liquid-to-gas ratio. Depending on the effectiveness of those measures, the project might also include replacing the recycle pump drive gearboxes to increase the flow of limestone slurry through the spray nozzles, thus further increasing the liquid-to-gas ratio. These improvements are necessary to ensure the Ghent site can remain in compliance with the MATS Rule when Ghent Unit 2 is operating but other Ghent coal-fired units, which have higher sulfur dioxide removal efficiencies, are not operating.

The total projected capital cost of these facilities is \$7 million, all of which KU seeks to recover through the ECR mechanism as part of its 2016 Plan Project 37. KU is not seeking O&M cost recovery through the ECR mechanism for this project, as noted on the second page of Exhibit JNV-1.

Mr. Schram's testimony shows that making this capital investment is economical compared to the impaired ability of other options for MATS Rule compliance, and that investing in this project is economical even if the Ghent coal-fired units operate only through the end of 2021 (although KU is not committing or predicting that the units will retire in 2022 or later).

Α.

⁷ Straight Testimony at 4-5.

⁸ Revlett Testimony at 22.

⁹ Schram Testimony at 19-21.

Q. Please describe Project 38, installing supplemental mercury-related control technologies at Ghent.

In addition to the baghouses (pulse-jet fabric filters) with powdered activated carbon ("PAC") injection added to the Ghent Units in Project 35 as part of KU's 2011 Plan, some additional investment is necessary to ensure the Ghent coal-fired units can continually meet the mercury-emission limits of the MATS Rule. In particular, a phenomenon called mercury reemission that occurs in the WFGDs serving the Ghent units could result in excessive mercury emissions. ¹⁰ The purpose of Project 38 is to install equipment to apply additives to Ghent's coal to improve mercury oxidation, which in turn improves mercury capture in WFGDs because oxidized mercury is water soluble (elemental mercury is not). ¹¹ Project 38 further includes equipment for injecting an organosulfide chemical additive into Ghent's WFGD reaction tanks to reduce mercury reemission. ¹²

This project is related to the mercury-sorbent tests the Companies conducted on certain generating units from 2013 through 2015 and described to the Commission Staff in the Companies' quarterly ECR construction update meetings held during that time concerning the Companies' 2011 ECR Compliance Plan. Based on the results of those tests, KU proposes to add the supplemental mercury control systems proposed in Project 38 to give KU the ability to inject these new additives either as a

¹⁰ Straight Testimony at 6-7.

¹¹ *Id.* at 7-8.

¹² *Id.* at 8.

¹³ See, e.g., Companies' 2011 ECR Compliance Plans Quarterly Report – Update #8, 3rd Quarter 2013 Report at 44 (Oct. 18, 2013); Companies' 2011 ECR Compliance Plans Quarterly Report – Update #7, 2nd Quarter 2013 Report at 38-39 (July 19, 2013); Companies' 2011 ECR Compliance Plans Quarterly Report – Update #6, 1st Quarter 2013 Report at 34-35 (Apr. 17, 2013); Companies' 2011 ECR Compliance Plans Quarterly Report – Update #5, 4th Quarter 2012 Report at 26 (Jan. 18, 2013).

total substitute for PAC or in combination with PAC injection, depending on the price and effectiveness of each.

The total projected capital cost of these facilities is \$10.1 million, all of which KU seeks to recover through the ECR mechanism as part of its 2016 Plan Project 38. The projected annual O&M cost of these facilities presented on the second page of Exhibit JNV-1 is shown as zero for all years. That is not because the systems installed through Project 38 will have no O&M cost, particularly with respect to the cost of the additives to be injected and applied; rather, the cost of such additives will correspondingly offset PAC costs currently being recovered through the O&M shown in KU's monthly ECR reports for Project 35 (approved as part of KU's 2011 Plan). Therefore, the zero-O&M costs shown in Exhibit JNV-1 represent the expectation that the O&M costs of Project 38 will be less than or equal to corresponding O&M cost decreases currently being reported for Project 35.

Indeed, the projected O&M savings related to reduced PAC use are anticipated to be large enough that, as Mr. Schram's testimony shows, these proposed investments have the potential to pay for themselves in three to five years. ¹⁴

Q. With regard to Projects 37 and 38, does KU have to continue to comply with the MATS Rule after the Supreme Court's recent decision in *Michigan v. EPA*?¹⁵

As Mr. Revlett discusses in greater detail, the Supreme Court's decision in *Michigan* v. *EPA* did not vacate or stay the effect of the MATS Rule, which has been in effect since 2012; instead, the Court ruled that the U.S. Environmental Protection Agency ("EPA"), by failing to take into account the costs of regulating the emissions covered by the MATS Rule, did not meet the requirements necessary to find that it was

¹⁴ Schram Testimony at 21-22.

¹⁵ 135 S.Ct. 2699; 192 L.Ed.2d 674 (2015).

appropriate and necessary to regulate such emissions.¹⁶ The Court remanded the case to the U.S. Court of Appeals for the D.C. Circuit, which also has not yet stayed or vacated the rule.¹⁷ Therefore, the rule remains in full effect. Moreover, EPA has already begun taking action to cure the rulemaking defect the Court cited: On December 1, 2015, EPA published in the Federal Register a proposed supplemental finding that, even when assessing the costs in several ways, it is appropriate and necessary to regulate the emissions covered by the MATS Rule.¹⁸ Thus, KU must comply with the MATS Rule, and there is every reason to believe it will continue to have to do so for the foreseeable future.

Q. Please describe Project 39, surface impoundment closures at Green River, Pineville, and Tyrone.

KU has ceased all existing electric generating operations at Green River, Pineville, and Tyrone, though unclosed surface impoundments remain at those facilities. As Mr. Revlett discusses in his testimony, KU is proposing in this project to cap and close all of the inactive surface impoundments at Green River, Pineville, and Tyrone except one surface impoundment at Green River, which KU will "clean-close," meaning KU will dewater the surface impoundment and remove all CCR material, leaving only virgin materials in its place. KU will conduct all of these closures in accordance with applicable state regulations. As Mr. Voyles discusses in his testimony, there are a number of benefits to closing these surface impoundments as part of the 2016 Plan, including: (1) minimizing the risk of environmental releases, potential citizen suits, or nuisance lawsuits; (2) minimizing cost escalation that could

¹⁶ *Id*.

¹⁷ Id.

¹⁸ 80 Fed. Reg. 75,025 et seq. (Dec. 1, 2015).

¹⁹ Revlett Testimony at 20-21.

occur if KU closed the surface impoundments later; (3) taking advantage of economies of scale by closing these surface impoundments contemporaneously with other of the Companies' surface-impoundment closures; and (4) as Mr. Revlett explains, it is possible that complying with the federal Effluent Limitation Guidelines could ultimately require KU to close these surface impoundments under state law.²⁰

The total projected capital cost of these surface impoundment closures is \$77.9 million for all three stations (of which KU seeks to recover \$77.5 million through the ECR mechanism as part of its 2016 Plan Project 39). KU is not seeking O&M cost recovery through the ECR mechanism for this project, as noted on the second page of Exhibit JNV-1.

Q. Please describe Projects 40 through 42, CCR Rule compliance construction and related construction of process water systems at Ghent (Project 40), Trimble County (Project 41), and Brown (Project 42).

For the reasons Mr. Revlett explains concerning compliance with the CCR Rule and federal Effluent Limitations Guidelines, it is prudent for KU to begin CCR Rule compliance construction at all of its currently active surface impoundments (i.e., those at Ghent, Trimble County, and Brown) and to construct new process water systems at those stations, and to complete all construction activity by the end of the year 2023.

To the extent feasible and consistent with the CCR Rule, KU will beneficially use CCR to reduce the need for and cost of using virgin fill material to achieve proper

²⁰ Voyles Testimony at 17-18.

grades prior to capping surface impoundments. One source of such fill material will be surface impoundments that KU plans to clean close.²¹

As Mr. Voyles explains, without surface impoundments, KU will require new process water systems to handle process water from ongoing station operations. KU plans to sequence the construction of the necessary process water systems to meet operational needs created by closures of existing surface impoundments.

The total projected capital cost of the proposed CCR Rule compliance construction and construction of process water systems is \$364.2 million for Ghent (of which KU seeks to recover \$339.9 million through the ECR mechanism as part of its 2016 Plan Project 40), \$105.3 million for Trimble County (of which KU seeks to recover \$101.9 million through the ECR mechanism as part of its 2016 Plan Project 41), and \$101.3 million for Brown (of which KU seeks to recover \$98.3 million through the ECR mechanism as part of its 2016 Plan Project 42). As noted in the testimony of Mr. Voyles, as engineering proceeds and matures for each proposed closure and the assessments of the CCR Rule's criteria for each surface impoundment's circumstances becomes clearer, the closure approach and costs for a given surface impoundment could change, perhaps significantly, especially if larger quantities of virgin fill materials become necessary for closure.

KU is not seeking O&M cost recovery through the ECR mechanism for these projects, as noted on the second page of Exhibit JNV-1. Mr. Garrett's testimony

²¹ Voyles Testimony at 23.

²² Please note that KU's cost for Trimble County reflects KU's 36% ownership share of the Trimble County Generating Station, not the total cost of capping and closing surface impoundments and constructing process water systems at Trimble County.

²³ Voyles Testimony at 23-24.

1		addresses cost recovery for ongoing groundwater-monitoring obligations under the
2		CCR Rule.
3	Q.	Are Projects 40 through 42 economical?
4	A.	Yes. Mr. Voyles's testimony demonstrates that KU will address its surface
5		impoundments in a lowest-reasonable-cost manner.
6		With respect to the process water systems KU proposes to construct at Ghent,
7		Trimble County, and Brown to enable ongoing coal-fired generating operations, Mr.
8		Schram's retirement analyses show that building those facilities is economical. ²⁴
9		Certificates of Public Convenience and Necessity
10	Q.	Is KU requesting CPCNs in this proceeding?
11	A.	Yes. KU is seeking four CPCNs, one to construct Phase II of the Brown landfill
12		(Project 36) and three for CCR Rule compliance construction regarding surface
13		impoundments and process water construction projects at Ghent, Trimble County, and
14		Brown (one CPCN per generating station).
15	Q.	How does the proposed construction meet the requirements for CPCNs set out in
16		807 KAR 5:001 § 15(2)?
17	A.	As described in greater detail in the testimony of Messrs. Voyles and Revlett, KU will
18		construct Phase II of the Brown landfill, and conduct the CCR Rule compliance
19		construction and construct related process water systems at Ghent, Trimble County,
20		and Brown, in accordance with the CCR Rule and applicable state environmental
21		regulations.
22		It is important to note that the CPCNs KU is requesting related to surface
23		impoundments at Ghent, Trimble County, and Brown are not for the specific surface-

²⁴ Schram Testimony at 5-6.

impoundment-closure plans KU currently anticipates and describes in the testimony of Mr. Voyles. As noted in the testimonies of Messrs. Voyles and Revlett, those plans and their costs could change, perhaps significantly, as engineering progresses and matures for each surface impoundment and as the CCR Rule's application to each surface impoundment's circumstances becomes clearer. KU is therefore explicitly requesting CPCN authority at each of Ghent, Trimble County, and Brown to perform all construction necessary to comply with the CCR Rule (and other applicable federal, state, and local requirements) in a lowest reasonable cost manner.

Furthermore, without the proposed process water systems at Ghent, Trimble County, and Brown, KU could not operate the coal-fired units at those generating stations. The continued service of these units for KU's customers is in the public interest; as Mr. Schram's testimony shows, it is more cost-effective to continue to operate the units (including the cost to construct the proposed process water systems) than to retire the units in 2019 and replace their capacity and energy with purchased power. Moreover, the proposed construction is not wastefully duplicative—to the extent surface impoundments are not available to handle process water, process water systems are necessary to serve that purpose—nor will it unnecessarily encumber the landscape because the facilities will be physically adjacent to existing generating-unit-related facilities on the Ghent, Trimble County, and Brown properties. And there is no facility or other utility with which the proposed construction will compete.

Concerning the remaining CPCN requirements, Mr. Voyles's testimony further provides a full description of the proposed construction projects and their projected capital costs. Mr. Revlett's testimony addresses the necessary

environmental permit applications and other requirements. Finally, the Application itself contains the maps required for each requested CPCN.

Q. Why is KU requesting a CPCN for Phase II of the Brown landfill, which has an estimated capital cost of just \$11.9 million?

As I noted above in my summary of the 2016 Plan project for the landfill-phase construction (Project 36), the Commission's recent orders concerning phased landfill construction have uniformly required utilities—including the Companies—to seek a CPCN for each new phase of an existing landfill.²⁵ Notably, the Commission's recent order in Case No. 2015-00194 required the Companies to seek a CPCN for each new phase of the Ghent and Trimble County landfills, limiting the existing CPCNs for those landfills to the first phase only.²⁶ Also, in the Commission's recent order concerning Duke Energy Kentucky, Inc.'s proposed new landfill at its East Bend Station, the Commission required Duke to seek a separate CPCN for each phase of the eight-phase landfill, where several of the phases were expected to have a capital cost of only \$12.5 million each.²⁷ Therefore, KU is seeking a CPCN for Phase II of the Brown landfill in this proceeding even though the capital cost of the project does not meet the financial materiality criterion of 807 KAR 5:001 Section 15(3).

_

²⁵ See In the Matter of: Investigation of Kentucky Utilities Company's and Louisville Gas and Electric Company's Respective Need for and Cost of Multiphase Landfills at the Trimble County and Ghent Generating Stations, Case No. 2015-00194, Order at 32 (Dec. 15, 2015); In the Matter of: Application of Duke Energy Kentucky, Inc. for a Declaratory Order that the Construction of a New Landfill Constitutes an Ordinary Extension in the Usual Course of Business or, in the Alternative, for a Certificate of Public Convenience and Necessity, Case No. 2015-00089, Order at 10 (July 24, 2015).

²⁶ In the Matter of: Investigation of Kentucky Utilities Company's and Louisville Gas and Electric Company's Respective Need for and Cost of Multiphase Landfills at the Trimble County and Ghent Generating Stations, Case No. 2015-00194, Order at 31 (Dec. 15, 2015).

²⁷ In the Matter of: Application of Duke Energy Kentucky, Inc. for a Declaratory Order that the Construction of a New Landfill Constitutes an Ordinary Extension in the Usual Course of Business or, in the Alternative, for a Certificate of Public Convenience and Necessity, Case No. 2015-00089, Order at 5, 10 (July 24, 2015).

In view of KU's request for a CPCN for Phase II of the Brown landfill, which has an estimated capital cost of just \$11.9 million, why is KU requesting a declaratory ruling that the surface impoundment closures at Green River, Pineville, and Tyrone do not require CPCNs?

As I noted in my previous answer, KU is seeking a CPCN for Phase II of the Brown landfill only because the Commission's recent orders concerning phased landfills appear to create a new requirement for utilities to seek a CPCN for each new phase of an existing landfill, not because Phase II of the Brown landfill meets the financial materiality criterion of 807 KAR 5:001 Section 15(3). The total capital cost of all of the proposed surface impoundment closures at Green River, Pineville, and Tyrone is less than 1.5% of KU's current net utility rate base, and therefore the closures do not meet the CPCN financial materiality criterion as the Commission has historically interpreted it.²⁸

But out of an abundance of caution, KU has requested in the alternative that the Commission grant one CPCN per generating station for the surface impoundment closures at Green River, Pineville, and Tyrone if the Commission believes one or more of the stations' surface impoundment closures requires a CPCN. If required, the surface impoundment closures at those stations would meet the CPCN requirements set out in 807 KAR 5:001 Section 15(2):

_

Q.

²⁸ See, e.g., In the Matter of: Tariff Filing of Warren County Water District To Establish the Rockfield School Sewer Capital Recovery Fee, Case No. 2012-00269 (Nov. 19, 2012); In the Matter of: Application of Big Rivers Electric Corporation for Approval of an Interconnection Agreement with Kentucky Utilities Company, Case No. 2007-00058 (Apr. 16, 2007); In the Matter of: Application of Southern Madison Water District to Issue Securities in the Approximate Amount of \$860,000 for the Purpose of Refunding an Outstanding Revenue Bond of the District and Finance Certain System Improvements Pursuant to the Provisions of KRS 278.300 and 807 KAR 5:001, Case No. 99-310 (Sept. 1, 1999).

As described in greater detail in the testimony of Messrs. Voyles and Revlett,
 KU will conduct the surface impoundment closures at Green River, Pineville,
 and Tyrone in accordance with applicable state environmental regulations.

A.

- As Mr. Voyles discusses in his testimony and as I summarized above, closing
 the inactive surface impoundments as part of the Companies' overall surface
 impoundment-closure effort would provide several benefits.
- The proposed construction will not be wastefully duplicative, and will likely improve the landscape by replacing open surface impoundments with vegetated hills.
- There is no facility or other utility with which the closed surface impoundments will compete.
- Concerning the remaining CPCN requirements, Mr. Voyles's testimony
 further provides a full description of the proposed surface impoundment
 closures and their projected capital costs. Mr. Revlett's testimony addresses
 the necessary environmental permit applications and other requirements.
 Finally, the Application contains the maps that would be required for each
 station's CPCN.

Q. How does KU plan to finance the 2016 Plan projects, including those requiring CPCNs?

KU expects to finance the costs of the new facilities with a combination of new debt and equity. The mix of debt and equity used to finance the project will be determined so as to allow KU to maintain its strong investment-grade credit rating. To the extent that tax-exempt financing may be available for these projects, the Companies

2		effective.
3		ECR Cost Recovery
4	Q.	How does KU propose to recover the cost of the pollution control projects in its
5		2016 Plan?
6	A.	KU proposes to recover the cost of the projects in its 2016 Plan through KU's Rate
7		Schedule ECR filed with this application and proposed to be effective for bills that
8		reflect the expense month July 2016 (i.e., six months after the filing of the application
9		in this proceeding, in accordance with KRS 278.183(2)).
10	Q.	Please explain why it is appropriate for KU to recover the costs of its 2016 Plan
11		projects through its ECR mechanism.
12	A.	The relevant part of Kentucky's ECR statute states:
13 14 15 16 17 18 19		[A] utility shall be entitled to the current recovery of its costs of complying with the Federal Clean Air Act as amended and those federal, state, or local environmental requirements which apply to coal combustion wastes and by-products from facilities utilized for production of energy from coal in accordance with the utility's compliance plan ²⁹
20		Concerning Phase II of the Brown landfill (Project 36), the project is required to
21		dispose of CCR from coal-fired generation in a way consistent with the federal CCR
22		Rule and state environmental requirements, and it is therefore appropriate to recover
23		its costs through the ECR mechanism. Moreover, the Commission approved ECR
24		recovery of the costs of Phase I of the Brown landfill. ³⁰

anticipate using such opportunities to the extent that they are reasonably cost-

1

²⁹ KRS 278.183(1).

³⁰ In the Matter of: Application of Kentucky Utilities Company for Certificates of Public Convenience and Necessity and Approval of Its 2011 Compliance Plan for Recovery by Environmental Surcharge, Case No. 2011-00161, Order at 21-22 (Dec. 15, 2011).

Concerning Projects 37 and 38, both projects pertain to the Ghent coal-fired units' ability to comply with the MATS Rule, a rule EPA promulgated under the Federal Clean Air Act as amended. Furthermore, the Commission has approved ECR recovery of numerous air-compliance-related projects for KU.³¹ Therefore, it is appropriate for KU to recover the costs of Projects 37 and 38 through KU's ECR mechanism.

Finally, as discussed above and in Mr. Revlett's testimony, the CCR Rule compliance construction and construction of process water systems KU is proposing in its 2016 Plan relate directly to "coal combustion wastes and by-products from facilities utilized for production of energy from coal" and are to be carried out in accordance with applicable environmental requirements. The ongoing groundwater monitoring and other maintenance activities KU will continue to conduct at any closed surface impoundments will also be done in accordance with environmental requirements concerning "coal combustion wastes and by-products from facilities utilized for production of energy from coal," particularly the CCR Rule's requirements concerning any closed surface impoundments at Ghent, Trimble, and Brown. It is therefore appropriate for KU to seek ECR recovery of the costs contained in Projects 39 through 42.

Q. What evidence does KU present on the accounting of the cost for the 2016 Plan?

Mr. Garrett's testimony explains KU's reporting and accounting for the capital costs, removal costs, and O&M expenses associated with the pollution control facilities described in Mr. Voyles's and Mr. Straight's testimonies, and addresses KU's accounting for retirements and replacements associated with the 2016 Plan. Mr.

³¹ See, e.g., id.

Garrett further affirms that the environmental compliance costs KU proposes to recover through its surcharge are not already in existing base rates and will be accounted for consistent with prior Commission orders.

Return on Equity

5 Q. What return on common equity is KU currently authorized in its ECR tariff?

6 A. KU is currently authorized to earn a return on equity ("ROE") of 10.00% per the
7 Commission's June 30, 2015 Order in Case No. 2014-00371, KU's most recent base8 rate case.³²

9 Q. What ROE is KU requesting in this proceeding?

The Company is requesting continuation of the 10.00% ROE. In KU's 2014 rate case, all of the parties to the case stipulated that the 10.00% ROE should be used in KU's monthly environmental surcharge filings beginning with the July 2015 expense month.³³ The Commission's Final Order in that proceeding accepted the terms of the Stipulation, including the agreed upon 10.00% ROE for environmental surcharge filings.³⁴ The approved stipulation in the Company's most recent base-rate case has thus eliminated the controversy often associated with this issue. Moreover, it is particularly appropriate to continue with the 10.00% ROE in view of the Commission's recent approval of it in its June 30, 2015 final order in Case No. 2014-00371, as well as the ROE's recent implementation, which began with the expense month including July 1, 2015.³⁵ Finally, the Commission recently approved continuing to use a 10.00% ROE for ECR purposes in its final order in the

³² In the Matter of: Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates, Case No. 2014-00371, Order at 3 (June 30, 2015).

³³ *Id*.

³⁴ *Id*.

³⁵ *Id.* at Appx. Apg. 4.

1 Company's most recent two-year ECR review proceeding, which order was effective
2 for the December 2015 expense month.³⁶

Q. What revenue allocation is KU proposing in this case?

3

12

14

15

16

17

18

KU is proposing to continue using the two-step revenue-allocation methodology 4 A. approved by the Commission in KU's 2011 ECR Plan proceeding, Case No. 2011-5 6 00161, which KU has used in calculating its ECR charges since the Commission's approval in that proceeding.³⁷ The Commission reviewed this ECR revenue 7 allocation methodology in its two most recent two-year reviews of KU's ECR 8 mechanism and approved KU's ECR roll-ins based on the methodology.³⁸ In the 9 most recent two-year review case, the Commission ordered KU to continue to use the 10 methodology until the Commission directs KU to do otherwise.³⁹ 11

Conclusion and Recommendation

Q. What are your conclusion and recommendation to the Commission?

A. I recommend that the Commission grant KU its requested CPCNs to build Phase II of the Brown landfill and to conduct CCR Rule compliance construction and construct related process water systems at Ghent, Trimble County, and Brown. Also, I recommend that the Commission issue KU's requested ruling declaring that CPCNs are not required for the proposed surface impoundment closures at Green River,

³⁸ In the Matter of: An Examination by the Public Service Commission of the Environmental Surcharge Mechanism of Kentucky Utilities Company for the Two-Year Billing Period Ending April 30, 2013, Case No. 2013-00242, Order (Nov. 14, 2013); In the Matter of: an Examination by the Public Service Commission of the Environmental Surcharge Mechanism of Kentucky Utilities Company for the Two-Year Billing Period Ending April 30, 2015, Case No. 2015-00221, Order at 5 (Dec. 7, 2015).

³⁶ In the Matter of: an Examination by the Public Service Commission of the Environmental Surcharge Mechanism of Kentucky Utilities Company for the Two-Year Billing Period Ending April 30, 2015, Case No. 2015-00221, Order at 6-8 (Dec. 7, 2015).

³⁷ Case No. 2011-00161, Order at Appx. A pgs. 8-10.

³⁹ In the Matter of: an Examination by the Public Service Commission of the Environmental Surcharge Mechanism of Kentucky Utilities Company for the Two-Year Billing Period Ending April 30, 2015, Case No. 2015-00221, Order at 5 (Dec. 7, 2015).

Pineville, and Tyrone; in the alternative, I recommend that the Commission issue a

CPCN for each generating station for which the Commission determines a CPCN is

required. I further recommend that the Commission approve KU's 2016 Plan and

application for cost recovery of its compliance costs through the Rate Schedule ECR

tariff, the continuing use of the current 10.00% ROE for ECR purposes, and the use

of the revised monthly ECR reporting forms beginning with the expense month of

July 2016.

- 8 Q. Does this conclude your testimony?
- 9 A. Yes, it does.

VERIFICATION

COMMONWEALTH OF KENTUCKY)	
)	SS
COUNTY OF JEFFERSON)	

The undersigned, Robert M. Conroy, being duly sworn, deposes and says that he is Director - Rates for LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and that the answers contained therein are true and correct to the best of his information, knowledge and belief.

Robert M. Conroy

Geldy Schooler (SEAL Notary Public)

My Commission Expires:

JUDY SCHOOLER

Notary Public, State at Large, KY

My commission expires July 11, 2018

Notary ID # 512743

APPENDIX A

Robert M. Conroy

Director, Rates LG&E and KU Services Company 220 West Main Street Louisville, Kentucky 40202 Telephone: (502) 627-3324

Previous Positions

Manager, Rates	April 2004 – Feb 2008
Manager, Generation Systems Planning	Feb. 2001 – April 2004
Group Leader, Generation Systems Planning	Feb. 2000 – Feb. 2001
Lead Planning Engineer	Oct. 1999 – Feb. 2000
Consulting System Planning Analyst	April 1996 – Oct. 1999
System Planning Analyst III & IV	Oct. 1992 - April 1996
System Planning Analyst II	Jan. 1991 - Oct. 1992
Electrical Engineer II	Jun. 1990 - Jan. 1991
Electrical Engineer I	Jun. 1987 - Jun. 1990

Professional/Trade Memberships

Registered Professional Engineer in Kentucky, 1995. Financial Research Institutes Advisory Board Edison Electric Institute - Rates and Regulatory Affairs Committee Southeastern Energy Exchange - Rates and Regulation Committee

Education

Essentials of Leadership, London Business School, 2004

Masters of Business Administration

Indiana University (Southeast campus), December 1998

Center for Creative Leadership, Foundations in Leadership program, 1998.

Bachelor of Science in Electrical Engineering; Rose Hulman Institute of Technology, May 1987

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF KENTUCKY UTILITIES)
COMPANY FOR CERTIFICATES OF PUBLIC)
CONVENIENCE AND NECESSITY AND) CASE NO. 2016-00026
APPROVAL OF ITS 2016 COMPLIANCE PLAN)
FOR RECOVERY BY ENVIRONMENTAL)
SURCHARGE)

DIRECT TESTIMONY OF JOHN N. VOYLES, JR. VICE PRESIDENT, TRANSMISSION AND GENERATION SERVICES KENTUCKY UTILITIES COMPANY

Filed: January 29, 2016

Q. Please state your name, position and business address.

A. My name is John N. Voyles, Jr. I am the Vice President of Transmission and
Generation Services for Kentucky Utilities Company ("KU"), and I am an employee
of LG&E and KU Services Company, which provides services to Louisville Gas and
Electric Company ("LG&E") and KU (collectively "the Companies"). My business
address is 220 West Main Street, Louisville, Kentucky, 40202. A complete statement
of my education and work experience is attached to this testimony as Appendix A.

8 Q. Please describe your job responsibilities.

1

9

10

11

12

13

14

15

16

17

A.

I have 39 years of experience in the utility industry. In addition to oversight of the Transmission system, my current responsibilities include support of the generating fleet for both Companies with Generation Engineering and System Lab departments. I am also responsible for Project Engineering, the department that oversees large construction projects including generating stations, pollution control equipment, and on-site Coal Combustion Residual (CCR)¹ management facilities. Prior to this assignment, I was the officer responsible for the generating fleet. Earlier in my career, I served as the corporate environmental director.

Q. Have you previously testified before this Commission?

A. Yes. I have previously testified before this Commission in the Companies' 2009 and 2011 environmental compliance plan proceedings (Case Nos. 2009-00197 and 2011-00161 (KU) and 2009-00198 and 2011-00162 (LG&E)), in Case No. 2014-00002 in which the Companies obtained a certificate of public convenience and necessity to

¹ The CCR Rule defines CCR as "fly ash, bottom ash, boiler slag, and flue gas desulfurization materials generated from burning coal for the purpose of generating electricity by electric utilities and independent power producers." 40 CFR 257.53. This definition includes what is commonly referred to as gypsum.

construct the Brown Solar Facility, as well as recently in Case No. 2015-00194, in which the Commission affirmed its approval of the Companies' landfills to dispose of CCR.

4 Q. Are you sponsoring any exhibits?

5 A. Yes. I am sponsoring the following exhibits:

6 7	Exhibit JNV-1	Kentucky Utilities Company's 2016 Environmental Compliance Plan
8 9	Exhibit JNV-2	CCR Rule – Summary of Scope and Estimate Development
10	Exhibit JNV-3	Green River CCR Management Facilities Plan
11	Exhibit JNV-4	Pineville CCR Management Facilities Plan
12	Exhibit JNV-5	Tyrone CCR Management Facilities Plan
13	Exhibit JNV-6	Ghent CCR Management Facilities Plan
14	Exhibit JNV-7	Trimble County CCR Management Facilities Plan
15	Exhibit JNV-8	Brown CCR Management Facilities Plan

16 Q. What is the purpose of your testimony?

The purpose of my testimony is to describe certain of the proposed pollution control 17 A. projects contained in KU's 2016 Environmental Compliance Plan ("2016 Plan"). 18 The 2016 Plan is attached to my testimony as Exhibit JNV-1 and sets forth each new 19 pollution control project for which KU is seeking environmental surcharge recovery. 20 21 These projects are required for KU to comply with the federal Clean Air Act as 22 amended ("CAA"), the federal Disposal of Coal Combustion Residuals from Electric Utilities ("CCR Rule"), the federal Mercury and Air Toxics Standards ("MATS 23 24 Rule"), and state administrative regulations set forth in 401 KAR Chapter 45 (state closure rules for special wastes). 25

I will also be supporting KU's request for Certificates of Public Convenience and Necessity ("CPCNs") related to the proposed 2016 Plan projects by providing project details, including a description of the proposed projects, the timeframe for construction, and the estimated cost of the projects.

Project Overview and Description

Q. Please provide an overview of the projects in KU's 2016 Plan.

A.

The seven new projects (Projects 36 through 42) contained on Page 1 of Exhibit JNV-1 are required in order for KU to comply with the CAA, CCR Rule, MATS Rule, and state regulations applicable to KU's power plants and the disposal of CCR. The total capital cost of the new projects in the 2016 Plan is estimated to be approximately \$677.7 million. As explained in the testimonies of Robert M. Conroy and Christopher M. Garrett, KU is seeking to recover through the ECR mechanism only the portion of the 2016 Plan's cost that is not already being recovered through base rates. Therefore, only the portion of the 2016 Plan's total projected cost that KU seeks to recover through the ECR mechanism, \$640 million, is reflected in Exhibit JNV-1. KU is also seeking recovery of operating and maintenance expenses associated with Project 38 as detailed on Page 2 of Exhibit JNV-1.

Q. Please describe KU's 2016 Plan as shown in Exhibit JNV-1.

- 19 A. The new pollution control projects in KU's 2016 Plan are shown in Exhibit JNV-1.

 20 Page 1 of Exhibit JNV-1 lists the capital costs associated with KU's compliance plan.
 - Column 1 assigns a number to the project for identification purposes in sequence with the projects from Case No. 93-465 (1 through 15),² Case No.

² In the Matter of: The Application of Kentucky Utilities Company to Assess a Surcharge Under KRS 278.183 to Recover Costs of Compliance with Environmental Requirements for Coal Combustion Wastes and By-Products.

1	2000-439 (16 and 17), ³ Case No. 2002-00146 (18), ⁴ Case No. 2004-00426 (19)
2	through 22), ⁵ Case No. 2006-00206 (23 through 27), ⁶ Case No. 2009-00197
3	(28 through 33), ⁷ and Case No. 2011-00161 (34 and 35). ⁸
4	• Column 2 describes the air pollutant or byproduct to be controlled.
5	• Column 3 identifies the pollution control facility that KU plans to upgrade
6	construct, and/or close to comply with the environmental regulations
7	identified in Column 5.
8	• <i>Column 4</i> identifies the specific location of the pollution control facility.
9	• Column 5 identifies the environmental regulations that require KU to act or
10	the associated project.
11	• Column 6 identifies the environmental permits required for KU's projects to
12	satisfy the environmental regulations.
13	• <i>Column 7</i> shows the anticipated completion date of the specific project.
14	• Column 8 displays the estimated capital cost of the project.
15	Page 2 of Exhibit JNV-1 lists the expected annual incremental operations and
16	maintenance expenses associated with each project.

_

³ In the Matter of: The Application of Kentucky Utilities Company for Approval of an Amended Compliance Plan for Purposes of Recovering the Costs of New and Additional Pollution Control Facilities and to Amend Its Environmental Cost Recovery Surcharge Tariff

⁴ In the Matter of: The Application of Kentucky Utilities Company for Approval of Its 2002 Compliance Plan for Recovery by Environmental Surcharge

⁵ In the Matter of: The Application of Kentucky Utilities Company for a Certificate of Public Convenience and Necessity to Construct Flue Gas Desulfurization Systems and Approval of Its 2004 Compliance Plan for Recovery by Environmental Surcharge

⁶ In the Matter of: The Application of Kentucky Utilities Company for a Certificate of Public Convenience and Necessity to Construct a Selective Catalytic Reduction System and Approval of Its 2006 Compliance Plan for Recovery by Environmental Surcharge

⁷ In the Matter of: The Application of Kentucky Utilities Company for Certificates of Public Convenience and Necessity and Approval of Its 2009 Compliance Plan by Recovery by Environmental Surcharge

⁸ In the Matter of: The Application of Kentucky Utilities Company for Certificates of Public Convenience and Necessity and Approval of Its 2011 Compliance Plan for Recovery by Environmental Surcharge

- Column 1 assigns a number to the project for identification purposes in sequence with the projects from Case No. 93-465 (1 through 15), Case No. 2000-439 (16 and 17), Case No. 2002-00146 (18), Case No. 2004-00426 (19 through 22), Case No. 2006-00206 (23 through 27), Case No. 2009-00197 (28 through 33), and Case No. 2011-00161 (34 and 35).
 - *Column 2* describes the air pollutants or byproducts to be controlled.

6

7

8

9

10

11

12

13

14

- *Column 3* identifies the pollution control facilities that KU plans to upgrade, construct and/or close to comply with the environmental regulations.
 - Column 4 identifies the specific location of the pollution control facilities.
 - *Columns 5-13* identify the incremental annual operation and maintenance costs associated with each project (through 2024).

Changing Federal Environmental Regulations

- Q. How significantly has the federal landscape of environmental regulations changed since KU obtained approval of its 2011 Plan?
- A. Since KU obtained approval of its 2011 Plan, the suite of federal environmental regulations the United States Environmental Protection Agency ("EPA") has

⁹ In the Matter of: The Application of Kentucky Utilities Company to Assess a Surcharge Under KRS 278.183 to Recover Costs of Compliance with Environmental Requirements for Coal Combustion Wastes and By-Products.

¹⁰ In the Matter of: The Application of Kentucky Utilities Company for Approval of an Amended Compliance

Plan for Purposes of Recovering the Costs of New and Additional Pollution Control Facilities and to Amend Its Environmental Cost Recovery Surcharge Tariff

¹¹ In the Matter of: The Application of Kentucky Utilities Company for Approval of Its 2002 Compliance Plan for Recovery by Environmental Surcharge

¹² In the Matter of: The Application of Kentucky Utilities Company for a Certificate of Public Convenience and Necessity to Construct Flue Gas Desulfurization Systems and Approval of Its 2004 Compliance Plan for Recovery by Environmental Surcharge

¹³ In the Matter of: The Application of Kentucky Utilities Company for a Certificate of Public Convenience and Necessity to Construct a Selective Catalytic Reduction System and Approval of Its 2006 Compliance Plan for Recovery by Environmental Surcharge

¹⁴ In the Matter of: The Application of Kentucky Utilities Company for Certificates of Public Convenience and Necessity and Approval of Its 2009 Compliance Plan by Recovery by Environmental Surcharge

¹⁵ In the Matter of: The Application of Kentucky Utilities Company for Certificates of Public Convenience and Necessity and Approval of Its 2011 Compliance Plan for Recovery by Environmental Surcharge

promulgated that pertain to the generation of electricity from coal has continued to expand. The two federal regulations that necessitate nearly all of the capital costs in the 2016 Plan, which are the MATS Rule and CCR Rule, did not even exist in final form prior to 2011.

Q.

At that time, KU obtained approval to perform projects necessary to comply with, among other regulations, the National Ambient Air Quality Standards ("NAAQS"), the Cross State Air Pollution Rule ("CSAPR") and the then-proposed National Emission Standards for Hazardous Air Pollutants ("HAPS Rule"). As explained in the testimony of Gary H. Revlett, the EPA issued a final rule regarding air pollutants in the MATS Rule that contained even more stringent emission limits than in the proposed HAPS Rule.

Relatedly, the final CCR Rule, which provides a comprehensive set of requirements for the disposal of CCR from coal-fired power plants, is likewise more stringent and definitive than its proposed form. Thus, while the projects performed as part of the 2011 Plan were certainly required and remain viable, the newly-finalized regulations necessitate the additional pollution control projects KU has proposed in this case.

- With respect to the CCR Rule, please describe the status of the Companies' assessment of the structural stability; hydrologic and hydraulic ("H&H"), and air; groundwater monitoring and assessment requirements discussed in Mr. Revlett's testimony.
- A. As described by Mr. Revlett, the CCR Rule establishes new operational standards and requirements for CCR management facilities relating to structural stability; H&H and

air; groundwater monitoring and assessment; and location criteria, each of which is phased in over the first three years after the effective date of the Rule. The Companies are in the process of performing the required assessments and have plans to assure that all of the necessary improvements and/or closures of the CCR management facilities are completed within the deadlines set forth in the Rule.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

In 2015 the Companies began the process of evaluating the first criteria, structural integrity, for all active surface impoundments to determine if any of the impoundments did not meet the new, more stringent structural Factors of Safety (FOS) specified in the CCR Rule. If conditions are identified that would not meet the specified FOS, the Rule allows corrections to be made within a specified time period. Through the Companies' engineering analyses, the Bottom Ash Pond at the Trimble County Generating Station – although compliant with all previously existing safety standards - was found to require upgrading to meet the new, more stringent FOS criteria. In order to meet the new FOS requirements, an engineered repair was developed for the north and south embankments of the Bottom Ash Pond that consisted of placing a rock buttress along the outboard slope of the embankment. The buttress is a mass of stone (rip-rap) and provides the additional stability needed to exceed the required FOS for slope stability. The rock buttress work commenced in fall 2015 and was completed in mid-December at a total cost of approximately \$955,000. As of this time, all of the active CCR surface impoundments at KU's generating plants meet or exceed the required FOS in the Rule.

Second, the CCR Rule also requires that all CCR surface impoundments at active generating stations demonstrate sufficient H&H capacities to accommodate

extraordinary rainfall events. In 2015 the Companies began the process of evaluating the H&H capacities of all active surface impoundments to determine if any of the impoundments would need upgraded inflow flood control systems to meet the standards under the CCR Rule. The Companies' analysis determined that none of the surface impoundments at KU's active generating plants required any upgrade to meet the new H&H standards.

The CCR Rule further requires that all CCR management facilities at active generating stations implement a groundwater monitoring and assessment program. For each CCR management facility, the Companies are required to install a groundwater monitoring system and obtain eight independent samples by October 17, 2017. At this time, the Companies are in the process of selecting engineering firms that will develop the groundwater monitoring plans. Once plans are complete, the Companies will install the groundwater monitoring wells. After the groundwater wells are installed, the eight independent samples will be collected and analyzed, and the results will be statistically evaluated in accordance with the requirements specified in the CCR Rule. The work is scheduled to meet the required dates in the CCR Rule.

Finally, the CCR Rule requires that all CCR management facilities at active generating stations be evaluated for compliance with Location Restrictions by October 17, 2018. The Companies are still in the process of evaluating whether these Location Restrictions affect any of their CCR management facilities. As discussed in Mr. Revlett's testimony, there is a high probability that the groundwater monitoring and assessment requirements could trigger closure obligations for one or more of the

- surface impoundments on or before the required Location Restrictions deadline. In the event closure is not triggered by other requirements, the Companies will complete the evaluation of the Location Restrictions prior to the October 17, 2018 deadline.
- 4 Q. Are there other new regulations the EPA has promulgated that KU must consider as a part of evaluating this 2016 Plan?
- A. Yes, the EPA has very recently finalized both the Clean Power Plan ("CPP") and
 Effluent Limitations Guidelines and Standards for the Steam Electric Power
 Generating Point Source Category ("ELG"). The CPP, which the EPA announced in
 August 2015, contains the first-ever national standards that address carbon dioxide
 emissions from both new and existing power plants. The ELG, which was published
 in final form in November 2015, regulates process wastewater discharges from power
 plants operating as utilities.
- 13 Q. Have the Companies determined what changes, if any, to its generation fleet will
 14 be necessary to comply with the CPP and ELG?

15

16

17

18

19

20

21

22

23

At this time determinations regarding changes to the Companies' generating fleet for compliance with the CPP and ELG are premature. With respect to the CPP, the Companies cannot complete an assessment of a possible compliance plan until the Commonwealth of Kentucky determines how it will proceed with its state plan as described by Mr. Revlett. Important as well for the CPP will be the outcome of the multiple legal challenges that have been filed by industry groups, coal companies, utilities, and twenty-seven states—including Kentucky. In late December 2015 numerous parties—including the Companies and Commonwealth of Kentucky—petitioned the EPA for reconsideration of the CPP.

As for the impact of the ELG regulations, the Companies are evaluating the new guidelines for discharge limitations as they pertain to the Companies' generating fleet process wastewater streams. Further engineering must be completed to evaluate the generating fleet wastewater streams to ensure the compliance alternatives identified are determined to be the lowest reasonable cost compliance plan.

Q.

A.

While the Companies are not proposing projects in the 2016 Plan to comply with the CPP or ELG, certain of the emission reductions and changes to the effluent discharges of process waters achieved by the proposed Projects may ultimately help the Companies comply with these new rules. In evaluating the Projects proposed in this case, the Companies looked to optimize their 2016 Plan by finding economical means of complying with the CCR Rule and MATS Rule in a manner consistent with the CPP and ELG.

- Is it fair to characterize this as another period of rapid change with regard to the environmental and air pollutant regulations with which the Companies must comply?
 - Yes. The scope and number of federal regulations that apply to the Companies is vastly different than a mere decade ago. Today's regulations are much more intertwined and complex, which impacts compliance planning. Further complicating matters is that several of the regulations provide the Companies with a very short window of time by which to comply, or risk the shutdown of entire generating *stations*—not just individual generating units. The more recently finalized regulations (CPP and ELG) have compliance deadlines that occur in six or seven years and specific actions have yet to be defined by the state of Kentucky. Consequently, the

Companies are forced to nimbly address a suite of new rules in the face of legal and operational uncertainties. Compressed compliance deadlines, especially with regard to the CCR Rule, require the Companies to act now. The Companies have developed, through conceptual engineering, a plan to comply with these federal regulations within a timeframe that avoids jeopardizing the economic dispatch of the Companies' generating fleet.

Q. How do the types of Projects proposed in this case to comply with the CCR Rule (and related state regulations) differ from Projects in prior cases?

- A. Compliance with the CCR regulations or related state regulations apply to all CCR management facilities at both operating and retired generating stations. Hence the principal difference is that the vast majority of proposed capital investments in the 2016 Plan does not depend on the ongoing generating operations at the affected units, but are necessary regardless of whether the stations produce another kWh. For example, KU expects it will have to close a number of its past and current CCR management facilities that currently store CCR because of the requirements in the federal or state rules. These rules for CCR management facilities must be complied with irrespective of the continued operation of the generating units that produced the CCR.
- 19 Q. Given the fluidity of the regulations with which the Companies must comply,
 20 how are the Companies determining whether the proposed Projects are
 21 economical as compared not only to other alternatives, but also as to retiring the
 22 affected units and stations?

For the Projects KU has proposed that support ongoing operations at Brown and Ghent, such as Phase II of the Brown Landfill, the Company's present value revenue requirement analyses evaluate whether the project is economical for the station's continued operation through 2021. If the Companies determine that complying with the CPP and ELG is more costly than retiring coal units and replacing the capacity, they can likely operate the units through 2021 without incurring any CPP and ELG compliance costs. These analyses, which are set forth in the testimony of Charles R. Schram, show that the Projects in the 2016 Plan are the lowest reasonable cost alternatives, even if the units cease to operate past 2021.

A.

At Trimble County, in addition to the investments required for the 2016 Plan projects, the Companies are already proceeding with spending \$277 million from 2016 through 2021 for Phase I of the landfill and CCR treatment and transport facility ("CCRT"). While the relative benefits from these significant long-term investments will greatly exceed their cost, the point at which their benefits exceed their cost will occur after 2021. As a result, the Companies evaluated the Trimble County Projects over the Companies' standard 30-year analysis period with high-level estimates for CPP and ELG compliance costs.

KU Compliance Projects

Q. How did KU determine what to include in its compliance projects?

A. The proposed Projects are the result of an intensive assessment and ongoing engineering effort by the Companies' Project Engineering group and outside engineering firms (most notably CH2M¹⁶ with respect to the CCR Rule-related

 $^{^{16}}$ CH2M was known as "CH2M Hill" during a portion of the time the firm was performing engineering work for the Companies.

investments). Through the Companies' and outside firms' work, the Companies developed order-of-magnitude estimates regarding the compliance expenditures that would be required for each generating unit to meet the regulatory requirements.

A.

Once that was accomplished, the Companies' Generation Planning group performed analyses to determine if all of the compliance equipment and investments would be the lowest reasonable cost alternatives to achieve compliance with the applicable regulations. Generation Planning also determined for each generating unit whether it would be more cost-effective to put in place the suite of compliance facilities established or to retire the unit. (Mr. Schram's testimony and its attachments contain the full details of that analysis). The 2016 Plan is in fact, a cost-effective means for KU to comply with the applicable regulations.

Project 36: Phase II of the Brown Landfill

Q. What are the components of Project 36, and why are they necessary?

Project 36 involves constructing Phase II of the Brown Landfill, which is currently necessary to remain in compliance with the Special Waste Landfill Permit issued by the Kentucky Division of Waste Management ("KDWM") and store the CCR that is produced at the Brown Generating Station. Phase II requires regrading the clay subgrade to prepare the site for installation of the liner and leachate collection systems necessary for ongoing CCR disposal, but the scope of Phase II with respect to the capital investment and time for completion is considerably less than was required for Phase I. For example, as part of Phase I, KU constructed a CCRT facility to treat, dewater and prepare the CCR for disposal, as well as leachate and storm water ponds to support the entire landfill project and permit requirements. Additional facilities of this scope are not required in the later phases.

This Project relates to environmental control projects at Brown that began with the 2009 ECR Plan. In the 2009 ECR Plan, the Commission approved KU's proposal to increase the height and volume of the main and auxiliary ash ponds that store CCR at Brown. In the 2011 ECR Plan, the Commission approved the conversion of the Main Ash Pond to a dry landfill to comply with the anticipated federal requirements regarding CCR disposal. KU began constructing Phase I of the Brown Landfill in late 2014, which will be placed in service in 2016.

Q. Why is Phase II of the Landfill needed at this time?

A.

When the KDWM issued the permit for the Special Waste Landfill, it set forth a 10 foot height limit for each successive phase of lateral expansion such that the volume of CCR disposed in each phase be no more than 10 feet higher than adjoining phase(s). Because of this permit condition, the design capacity of Phase I is limited to an initial height of 10 feet. Based on the historical production at Brown, Phase I's initial 10 feet of capacity may be exhausted by as early as the second quarter of 2018. Forecasted production volumes suggest there may be usable capacity until 2019. In any event, it is important that KU prepares to construct Phase II to ensure there is sufficient capacity to dispose of CCR because, based upon both historical and forecasted production volumes, the initial capacity of Phase I will soon be exhausted.

KU is continuing to assess and evaluate beneficial use and other alternatives that could affect when Phase I reaches its initial capacity. For example, KU is evaluating the costs of disposing certain types of CCR in municipal landfills (permitted to accept CCR materials). KU has also begun discussions with the KDWM to review the data necessary to modify the permit to raise the 10 foot height

constraint on Phase I. In order to balance the need to ensure the Companies have available capacity to dispose of CCR with the obligation to only construct additional phases when it is required, KU is seeking approval to construct Phase II at this time, but will not begin construction before 2017. This will provide KU with time to review conditions that may affect the projected timing of Phase II, while still providing KU with adequate time to complete construction so as to avoid jeopardizing operation of the Brown units. If the Commission grants a CPCN for Phase II and KU later determines it will not be needed, KU would not construct it and would notify the Commission.

10 Q. When does KU propose to begin construction on Phase II?

1

2

3

4

5

6

7

8

9

- 11 A. KU plans to begin construction in 2017. Construction is expected to last
 12 approximately a year. Depending on suitable weather conditions during the
 13 construction periods, Phase II would be available for commercial operation prior to
 14 the end of 2018.
- 15 Q. How long is Phase II expected to have usable space to store CCR produced at Brown?
- A. Forecasted production volumes suggest the initial vertical 10 foot capacity of Phase II will not be exhausted until the end of 2021.

19 Q. Is constructing Phase II of the Brown Landfill economical?

20 A. Yes, it is. The expected cost of Phase II is \$11.9 million. As discussed in the
21 testimony of Mr. Schram, it is economical to construct the Brown Landfill as
22 compared to retiring the generation in 2019, the year Phase 1 would be at the capacity
23 specified by the permit conditions based on forecasted production volumes.

1 Q. Is KU requesting a CPCN to construct Phase II of the Brown Landfill?

2 A. Yes. This is discussed in the testimony of Mr. Conroy.

Project 37 and 38: Ghent WFGD Upgrade and Mercury Injection Control Systems

- 4 Q. Is R. Scott Straight supporting the need for Project 37 in the 2016 Plan?
- 5 A. Yes. Mr. Straight describes the need for Project 37, which consists of improvements
- to the wet flue gas desulfurization systems at Ghent Unit 2 in order to further reduce
- 7 sulfur dioxide emissions at the unit.

3

12

13

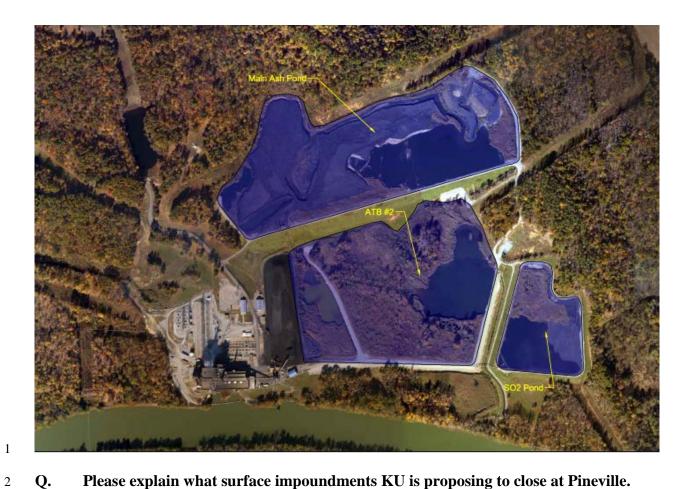
8 Q. Does Mr. Straight also support the need for Project 38 in the 2016 Plan?

9 A. Yes. Mr. Straight likewise describes the need for Project 38, which consists of supplemental injection systems on the Ghent units to further reduce the mercury emissions from the station.

Project 39: Surface Impoundment Closures at the Retired Green River, Pineville, and Tyrone Generating Stations

- 14 Q. Please provide an overview of Project 39.
- As part of Project 39, KU proposes to close surface impoundments at Green River, 15 A. Pineville, and Tyrone. Specifically, KU proposes to close three surface 16 impoundments at Green River, one at Pineville, and one at Tyrone. 17 Exhibits JNV-3, JNV-4, and JNV-5 are the CCR management facilities conceptual 18 plans for the Green River, Pineville, and Tyrone stations, respectively. The CCR 19 management facilities plans for these stations (as well as for the active generating 20 stations discussed below) are comprised of the evaluation performed by CH2M, as 21 supplemented by JNV-2, which is the Companies' description and explanation of 22 modifications to the scope and estimates that have occurred subsequent to CH2M's 23 development of the station evaluations. 24

Q. Please explain why KU is proposing to close these surface impoundments.


Α.

These CCR-containing surface impoundments are located at stations that no longer produce electricity. While the impoundments are being utilized for storm runoff purposes and site sump pump discharge basins, they are no longer receiving CCR. Because the coal-fired units at Green River, Pineville, and Tyrone were no longer in operation as of the effective date of the CCR Rule, the surface impoundments at these stations are not subject to the CCR Rule. With respect to Projects 40 to 42, KU is proposing to close surface impoundments at its stations with ongoing coal-fired generation due to the requirements of the CCR Rule as discussed in sections that follow.

As explained in the testimony of Mr. Revlett, the closure of impoundments at Green River, Pineville, and Tyrone would be completed in accordance with state law for the closure of special waste landfills. Closing these impoundments at this time is prudent for a number of reasons. First, closure will minimize risk by reducing the potential for environmental releases, and potential citizen or nuisance lawsuits arising from the CCR disposed of within the impoundments. Second, by closing these impoundments now, KU will minimize cost escalation for engineering, construction, and materials that could occur as other utilities begin entering the market to close surface impoundments under the CCR Rule and other states' laws. Third, by closing these surface impoundments at the same time as the impoundments at the Ghent, Trimble County, and Brown stations, KU has the opportunity to take advantage of economies of scale that will result if these closures are implemented along with the CCR Rule-required closures.

Finally, it is possible that compliance with ELG could lead to the mandatory closure of these impoundments under state law. As explained in Mr. Revlett's testimony, the water in those impoundments is considered "legacy wastewater." As legacy wastewater under ELG, KU will not be permitted to add to the impoundments the wastewater KU currently adds through sump pumps that are located at various locations at each generation facility. To the extent ELG prohibits that current practice, the impoundments could become "dry" under state law. If that happens, they would be regulated by the KDWM. If the impoundments are regulated by KDWM, they are subject to KDWM's authority to order remedial measures.

- 10 Q. Please explain what surface impoundments KU is proposing to close at Green
 11 River.
 - A. KU is proposing to close three surface impoundments at Green River by 2019. Specifically, these are the Main Ash Pond, Ash Treatment Basin #2 (ATB2), and the SO₂ Pond. As part of the process, the CCR stored in the SO₂ pond will be excavated (cleaned and closed) and used in the closure process of the Main Ash Pond and/or ATB2, and the other two impoundments will be capped and closed. The picture below represents the surface impoundments, in blue, that will be closed by 2019.

Q. Please explain what surface impoundments KU is proposing to close at Pineville.

A. KU is proposing to close the Ash Treatment Basin at Pineville by 2019. KU plans on 3 closing the surface impoundment by regrading the ash and putting a cap on the basin. 4 The picture below represents the surface impoundment, in blue, that will be closed by 5 2019. 6

Q. Please explain what surface impoundments KU is proposing to close at Tyrone.

2

A. KU is proposing to close the Ash Treatment Basin at Tyrone by 2019. KU plans on closing the pond by regrading the ash and putting a cap on the basin to close it. The picture below represents the surface impoundment, in blue, that will be closed by 2019.

Q. Are these closures economical?

2

- A. Yes. As discussed above, including the closure of these facilities with Projects 40 to
 42 is expected to provide the opportunity to take advantage of economies of scale.

 The anticipated costs of the closures at Green River, Pineville, and Tyrone are \$77.9

 million.
- Q. Is KU requesting a CPCN for the surface impoundment closures at the retired generating stations?
- 9 A. No. As explained in the testimony of Mr. Conroy, KU believes that the closure of
 10 these impoundments is construction in the ordinary course of business for which a
 11 CPCN is not required. If the Commission disagrees, however, KU requests a CPCN
 12 for each station's closure plan.

Project 40 through 42: CCR Rule Compliance Construction and Construction of New Process Water Systems

Q. Please provide an overview of Projects 40 through 42.

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

A.

These Projects involve the closure of surface impoundments containing CCR and the construction of process water systems at the Ghent, Trimble County, and Brown stations in order to assure compliance with the CCR Rule while supporting continued operation of the generating units at the stations. As Mr. Revlett explains, the CCR Rule requires that surface impoundments containing CCR close if the surface impoundment does not comply with the applicable structural and location requirements set forth in the Rule. In addition, any surface impoundment must close if it is determined to cause a statistical increase in CCR constituents in the groundwater above applicable groundwater protection standards. Therefore, in order to assure compliance with the CCR Rule's restrictions regarding surface impoundments, KU is proposing in Projects 40 to 42 to close five surface impoundments at Ghent, two surface impoundments at Trimble County, and one at Brown by 2023. Attached as Exhibits JNV-6, JNV-7 and JNV-8 are the CCR management facilities conceptual plans for the Ghent, Trimble County and Brown stations, respectively. The CCR management facilities plans for these stations are comprised of the evaluation performed by CH2M, as supplemented by JNV-2, which is the Companies' description and explanation of modifications to the scope and estimates that have occurred subsequent to CH2M's development of the station evaluations.

Q. How do the Companies plan to close the surface impoundments?

As explained in Mr. Revlett's testimony, the CCR Rule requires that CCR surface impoundments that do not meet the new structural, groundwater, and location requirements must close as set forth in the Rule. The utility must decide how to proceed based on a number of options. These options include closing the surface impoundment by capping it, or "clean closing" it by removing the CCR from the impoundment. Other options include relining and repurposing the impoundment.

A.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

In developing the closure plans for each generating station, the Companies are balancing several challenging factors: compressed compliance deadlines that risk the shutdown of entire stations; optimizing existing properties at each station; sequencing closures to support ongoing operations; and assessing how the closures of each surface impoundment can be performed in a manner that is the lowest reasonable cost option that meets the stringent requirements of the Rule aimed at minimizing environmental impacts. While these analyses continue to be refined as more detailed engineering work proceeds, the Companies have developed the closure plans and corresponding cost estimates presented in their applications that, except for a few impoundments, will involve leaving the CCR in place and installing a cap that meets the requirements of the CCR Rule. To the extent feasible and consistent with the CCR Rule, KU will beneficially use CCR to reduce the need for and cost of using virgin fill material to achieve proper grades prior to capping surface impoundments. One source of such fill material will be surface impoundments that KU plans to clean close.

As with the specific sequencing of when each closure will occur, the Companies will continue to evaluate whether capping and closing in this method is

the lowest reasonable cost alternative of the three options under the CCR Rule for each surface impoundment in the context of the costs and benefits of each generating station and consistent with the CCR Rule's requirements. As engineering proceeds and matures for each proposed closure and the assessments of the CCR Rule's criterion for each surface impoundment's circumstances becomes clearer, the closure approach and costs for a given surface impoundment could change, perhaps significantly, especially if larger quantities of virgin fill materials become necessary for closure.

A.

9 Q. Have the surface impoundments at Ghent, Trimble County, and Brown 10 triggered closure processes under the CCR Rule?

At this time, no surface impoundments have been determined to trigger mandatory closure under the structural, groundwater, or location requirements in the CCR Rule. As explained above, the CCR Rule requires the Companies to assess each surface impoundment by, among other things, placing groundwater monitoring wells around each surface impoundment and gathering samples over a period of time to determine if the groundwater contains CCR in an amount that is outside the allowable limits. At some of the Companies' generating facilities, there are multiple, adjacent surface impoundments. If the groundwater samples contain CCR constituents above the applicable limits, it may be difficult to determine which specific impoundment would trigger the closure process. While the two most recent CCR surface impoundments installed by the Companies were constructed with lining systems (Trimble County Gypsum Storage Pond and Brown Auxiliary Ash Pond), if samples show CCR constituents above the applicable limits, it may not be possible to definitively

determine which impoundment is the specific source, and closure of these lined surface impoundments ensures compliance with the CCR Rule. As the CCR Rule became effective in October 2015, the Companies' evaluation of all unlined and lined surface impoundments is ongoing.

5 Q. If the Companies' evaluation is ongoing, why is KU seeking approval to close surface impoundments at this time?

A.

One of the most challenging aspects of the CCR Rule is that once a surface impoundment is deemed to have triggered the closure process under the Rule, the utility has a mere six months to cease placing CCR wastestreams in that impoundment and initiate the closure process. This compressed timeframe by which to begin closure has required the Companies to assess which impoundments, once the groundwater monitoring and data analysis required by the CCR Rule is complete, are likely to require closure based on information that is otherwise available. As explained in the testimony of Mr. Revlett, the information currently available indicates that the assessments required by the CCR Rule over the next several years are likely to trigger closure of the surface impoundments.

If not for the requirement to cease placement of CCR wastestreams into an existing surface impoundment within six months of a triggering event, the Companies would have preferred to wait to begin closure activities and construction of the process water systems until their analyses were complete. The timetable in the CCR Rule, however, simply does not permit the Companies to wait to make these determinations. As such, KU is proposing to close surface impoundments that, based on the Companies' judgment and experience, are reasonably anticipated to require

closure under the CCR Rule. It is important to consider that these CCR Rule-related Projects differ from the usual projects in KU's Plans. The closures are not merely a means to comply with emission limits or discharge standards. The CCR Rule, if the trigger KU anticipates will occur is indeed met, *mandates* closure of the impoundments. KU believes, in consideration of the short timelines between triggering closure and cessation of placement of CCR wastestreams in an impoundment required to close, it is prudent to manage the process by determining economical means to effectuate the closures while supporting the ongoing generation at the stations, which will include the continued disposal of CCR.

A.

Q. What is involved in the closure process that necessitates more than six months to initiate closure?

The Ghent, Trimble County, and Brown stations are important components of KU's generating fleet. KU has had to develop conceptual engineering plans that allow for the closure of the surface impoundments that are likely to trigger closure under the CCR Rule in a manner that accommodates the continuing day-to-day operations of these stations, including continued disposal of CCR. Sequencing the closures in a manner that does not interfere with generating operations at each station is complex, and the precise order in which the closure activities will occur will depend on further engineering and operational analyses that are ongoing.

One of the most complex issues the Companies must address in closing the surface impoundments is how to handle the process water from ongoing operations in a manner that does not impede the closure processes or continued operation of the generating station. In order to manage this process, continue compliance with

existing water discharge permits, and start the closure, KU will need to construct process water systems. KU will construct these systems, which will consist of elevated tanks, concrete basins, or a combination of both, to process the water involved in the closures and ongoing operations. The process water systems will be constructed on existing station property and will be sequenced appropriately to minimize costs and support future needs from the impact of other environmental rules and regulations.

A.

The 2016 Plan also considers the impact of recently-enacted federal rules with which the Companies must comply; principally, the effects of ELG. As explained in the testimony of Mr. Revlett, utilities are required to begin complying with ELG as soon as possible beginning in 2018. Although there are no costs associated with complying with ELG in the 2016 Plan, consideration of these guidelines in designing the process water systems allows KU to optimize the closure process by increasing efficiencies in the interrelatedness of the CCR Rule and ELG, where possible. As explained in Mr. Revlett's testimony, the EPA has spoken directly to the interaction between the CCR Rule and ELG and encouraged utilities to make appropriate business decisions to meet both sets of requirements.

Q. Please explain what surface impoundments KU is proposing to close at Ghent in Project 40.

In Project 40, KU is proposing to close five surface impoundments at Ghent by 2022, as well as construct process water systems (sequenced appropriately as described above) as part of the Project. Specifically, KU plans to close the Ash Treatment Basin #1 ("ATB1"), the Ash Treatment Basin #2 ("ATB2"), the Gypsum Stack, the

Reclaim Pond, and the Secondary Pond. The proposed closures at Ghent illustrate the complexities associated with this Project, as KU expects that significant excavating of disposed CCR will be required to support the continued operations at Ghent. For example, KU plans to excavate and relocate CCR materials from ATB1 to ATB2 to allow both continued compliance with water discharge permits and uninterrupted operation of the generating units at the station. Also, KU expects to repurpose the Secondary Pond and Reclaim Pond into storm water runoff ponds. Attached to my testimony as Exhibit JNV-6 is the Ghent CCR Management Facilities Plan. The picture below represents the surface impoundments, in blue, that will be closed by 2022 as part of Project 40. The picture also notes possible locations of process water systems, as well.

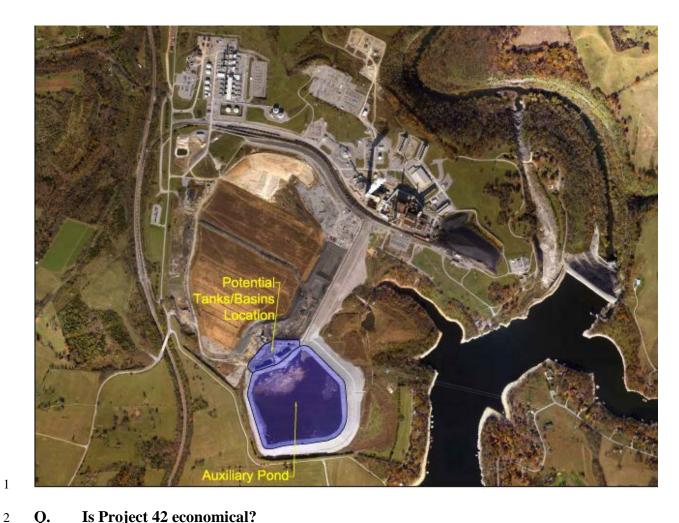
2 Q. Is Project 40 economical?

A. Yes. The expected cost of Project 40 is \$364.2 million. As discussed in the testimony of Mr. Schram, KU evaluated the costs of the process water systems in Project 40 along with the costs of the other projects in the 2016 Plan for Ghent (Project 37 and 38). Even if the Ghent units are assumed to cease operation after 2021, the proposed projects are least-cost. The CCR management facility closure projects are required regardless of whether the Ghent units continue to operate past 2021.

Q. Is KU requesting a CPCN for Project 40?

11 A. Yes. This is discussed in the testimony of Mr. Conroy.

- Q. Please explain what surface impoundments KU is proposing to close at Trimble
 County in Project 41.
 - A. In Project 41, KU is proposing to close two surface impoundments—the Bottom Ash Pond and Gypsum Storage Pond—at Trimble County by 2023. KU plans to cap and close the two surface impoundments, as well as construct process water systems (sequenced appropriately as described above) as part of the Project. Attached to my testimony as Exhibit JNV-7 is the Trimble County CCR Management Facilities Plan. The picture below represents the surface impoundments, in blue, that will be closed by 2023 as part of Project 41, along with proposed locations of process water systems.


Q. Is Project 41 economical?

A. Yes. The expected cost of Project 41 is \$105.3 million. As discussed in the testimony of Mr. Schram, the Companies evaluated the costs of the process water systems in KU Project 41 and LG&E Project 30 along with the costs of the other projects in the 2016 Plan for Trimble County (LG&E Project 28). Continuing to operate the Trimble County coal units with the proposed projects is least-cost. The CCR management facility closure projects at Trimble County are required regardless of whether the Trimble County coal units continue to operate.

8 Q. Is KU requesting a CPCN for Project 41?

- 9 A. Yes. This is discussed in the testimony of Mr. Conroy.
- Q. Please explain what surface impoundments KU is proposing to close at Brown in Project 42.
- In Project 42, KU is proposing to close the Auxiliary Ash Pond at Brown by 2023.

 KU plans to grade the CCR and cap and close the Auxiliary Pond, as well as
 construct process water systems (sequenced appropriately as described above) as part
 of the Project. Attached to my testimony as Exhibit JNV-8 is the Brown CCR
 Management Facilities Plan. The picture below represents the surface impoundment,
 in blue, that will be closed by 2023 as part of Project 42, along with proposed
 locations of process water systems.

Q. Is Project 42 economical?

3

4

5

6

7

8

9

10

A. The expected cost of Project 42 is \$101.3 million. As discussed in the testimony of Mr. Schram, KU evaluated the costs of the process water systems in Project 42 along with the costs of the other projects in the 2016 Plan for Brown (Project 36). Even if the Brown coal units are assumed to cease operation after 2021, the proposed projects are least-cost. The CCR management facility closure project at Brown is required regardless of whether the Brown coal units continue to operate past 2021.

Q. Is KU requesting a CPCN for Project 42?

A. Yes. This is discussed in the testimony of Mr. Conroy. 11

- 1 Q. What is your recommendation to the Commission?
- 2 A. My recommendation is that the Commission approve the projects in the 2016 Plan for
- 3 recovery by environmental surcharge. I further recommend that the Commission
- grant KU the CPCNs it has requested.
- 5 Q. Does this conclude your testimony?
- 6 A. Yes it does.

VERIFICATION

COMMONWEALTH OF KENTUCKY)	
)	SS:
COUNTY OF JEFFERSON)	

The undersigned, **John N. Voyles**, **Jr.**, being duly sworn, deposes and says that he is Vice President, Transmission and Generation Services for Kentucky Utilities Company and Louisville Gas and Electric Company and an employee of LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and that the answers contained therein are true and correct to the best of his information, knowledge and belief.

John N. Voyles, Jr.

> <u>Jeidyschoolen</u> (SEAL) Notary Public

My Commission Expires:

JUDY SCHOOLER
Notary Public, State at Large, KY
My commission expires July 11, 2018
Notary ID # 512743

APPENDIX A

John N. Voyles, Jr.

Vice President, Transmission and Generation Services Louisville Gas and Electric Company and Kentucky Utilities Company 220 West Main Street Louisville, Kentucky 40202 (502) 627-4762

Education

Rose-Hulman Institute of Technology, B.S. in Mechanical Engineering - 1976

Previous Positions

LG&E Energy, LLC

October 2010 - Present -- Vice President, Transmission and Generation Services

E.ON U.S. LLC

June 2008 – October 2010 --Vice President, Transmission and Generation Services 2003 - 2008 -- Vice President, Regulated Generation

LG&E Energy Corp.

February - May 2003 -- Director, Generation Services

Louisville Gas and Electric Company

1998 - 2003 -- General Manager, Cane Run, Ohio Falls and

Combustion Turbines

1996 -1998 -- General Manager, Jefferson County Operations

1991 - 1995 -- Director, Environmental Excellence

1989 - 1991 -- Division Manager, Power Production, Mill Creek

1984 - 1989 -- Assistant Plant Manager, Mill Creek

1982 - 1984 -- Technical and Administrative Manager, Mill Creek

1976 - 1982 -- Mechanical Engineer

Professional Development

Emory Business School -- Management Development Program

Center for Creative Leadership (La Jolla, CA)

University of Louisville -The Effective Executive

Harvard Business School - Finance for the Non-Financial Manager

MIT - Leading Innovation & Growth: Managing the International Energy Co.

Board/Committee Memberships

Fund for the Arts - Board Member

Ohio Valley Electric Co. (OVEC) - Board member and Executive Committee member

Electric Energy, Inc. - Board member

Edison Electric Institute (EEI) - Committee member Energy Supply Executive Advisory Committee and the Environment Executive Advisory Committee Electric Power Research Institute (EPRI) - Chairman, Research Advisory Committee

KENTUCKY UTILITIES COMPANY

2016 ENVIRONMENTAL COMPLIANCE PLAN (Case No. 2016-00026)

Project	Air Pollutant or Waste/By-Product To Be Controlled	Control Facility	Generating Station	Environmental Regulation / Regulatory Requirement*	Environmental Permit*	Actual or Scheduled Completion	Actual (A) or Estimated (E) Projected Capital Cost (\$Million)
36	Fly & Bottom Ash, Gypsum	CCR Storage Landfill (Phase II)	Brown Station	EPA CCR Rule	Division of Waste Mgmt - Landfill Permit	2017	\$5.3 (E)
37	SO_2	Wet Flue Gas Desulfurization Improvements	Ghent Unit 2	Clean Air Act (1990) and MATS	Ky Division for Air Quality Title V Permit	2016	\$7.0 (E)
			Ghent Unit 1			2016	\$2.6 (E)
38	Mercury (Hg)	Supplemental Mercury Related Control	Ghent Unit 2	Clean Air Act (1990) and MATS	Ky Division for Air Quality	2016	\$2.7 (E)
36	Mercury (Hg)	Technologies	Ghent Unit 3	Clean All Act (1990) and MA15	Title V Permit	2016	\$2.7 (E)
			Ghent Unit 4			2016	\$2.1 (E)
		Surface Impoundment Closure	Green River Station		Division of Waste Mgmt -	2018	\$56.4 (E)
39	Fly & Bottom Ash, Gypsum		Pineville Station 401 KAR Chapter 45 Landfill Permit and Division of Water -		2019	\$8.0 (E)	
			Tyrone Station		KPDES Permit	2019	\$13.1 (E)
40	Fly & Bottom Ash, Gypsum	CCR Rule Compliance Construction and Construction of New Process Water Systems	Ghent Station			2022	\$339.9 (E)
41	Fly & Bottom Ash, Gypsum	CCR Rule Compliance Construction and Construction of New Process Water Systems	Trimble County Station (See Note 1)	EPA CCR Rule	Division of Waste Mgmt - Landfill Permit and Division of Water - KPDES Permit	2023	\$101.9 (E)
42	Fly & Bottom Ash, Gypsum	CCR Rule Compliance Construction and Construction of New Process Water Systems	Brown Station			2023	\$98.3 (E)
					•		\$640.0

^{*} Sponsored by Witness Revlett

Note 1: KU and LG&E's costs split 48% / 52% respectively.

Note 2: CCP now known as CCR; HAPS now known as MATS; CATR now known as CSAPR

KENTUCKY UTILITIES COMPANY

2016 ENVIRONMENTAL COMPLIANCE PLAN (Case No. 2016-00026)

Project	Air Pollutant or Waste/By-Product To Be Controlled	Control Facility	Generating Station	Estimated Annual Operations and Maintenance Costs (Through 2024)								
	Be controlled			2016	2017	2018	2019	2020	2021	2022	2023	2024
36	Fly & Bottom Ash, Gypsum	CCR Storage Landfill (Phase II)	Brown Station	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
37	SO_2	Wet Flue Gas Desulfurization Improvements	Ghent Unit 2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
			Ghent Unit 1	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
20	M (H)	Supplemental Mercury Related Control	Ghent Unit 2	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
38	Mercury (Hg)	Technologies (See Note 1)	Ghent Unit 3	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
		10001)	Ghent Unit 4	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
			Green River Station	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
39	Fly & Bottom Ash, Gypsum Surface Impoundment Closures	Pineville Station	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	
			Tyrone Station	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
40	Fly & Bottom Ash, Gypsum	CCR Rule Compliance Construction and Construction of New Process Water Systems	Ghent Station	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
41	Fly & Bottom Ash, Gypsum	CCR Rule Compliance Construction and Construction of New Process Water Systems	Trimble County Station (See Note 2)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
42	Fly & Bottom Ash, Gypsum	CCR Rule Compliance Construction and Construction of New Process Water Systems	Brown Station	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Note 1: The \$0 O&M costs for Project 38 represent KU's expectation that the cost of the proposed additives will balance or partially offset costs currently being recovered through the O&M shown in KU's monthly ECR reports for Project 35 (approved as part of KU's 2011 Plan).

Note 2: KU and LG&E's costs split 48% / 52% respectively.

Project Engineering – LG&E and KU

CCR Rule – Summary of Scope & Estimate Development

Comparison of CH2M September 2015 Reports vs. 2016 ECR Filing

This document summarizes the comparison of the LG&E and KU (collectively, the "Companies") CCR Rule Compliance Construction and Construction of New Process Water Systems projects included in the January 2016 Environmental Cost Recovery ("2016 ECR") filing to the CH2M Reports. Table 1 below summarizes the cost differences between the CH2M reports and the 2016 ECR filing.

Station	CH2M Report	2016 ECR
E.W. Brown	\$ 101,307,000	\$ 101,307,000
Ghent	\$ 365,482,000	\$ 364,177,000
Green River	\$ 56,829,000	\$ 56,829,000
Mill Creek	\$ 189,945,000	\$ 196,941,000
Pineville	\$ 8,029,000	\$ 8,009,000
Trimble County	\$ 291,022,000	\$ 292,511,000
Tyrone	\$ 13,141,000	\$ 13,103,000

Table 1 - Comparison of CH2M Reports and 2016 ECR Filing

The basis of the Companies' compliance plan initiated with the engineering conceptual work performed in concert with CH2M, which is an outside engineering firm, throughout 2015. This initial conceptual engineering was finalized in station specific reports issued by CH2M in September of 2015. After the CH2M reports were issued, Project Engineering continued to perform additional analyses of the scope, schedule and cost to align with a refined sequencing of surface impoundment closures and potential selection of the locations for the new water process systems at each station. This ongoing engineering and planning was incorporated into the 2016 ECR filing.

CH2M Reports

Through most of 2015, the Companies worked with CH2M to review each specific surface impoundment that would need to be evaluated for closure. A conceptual closure profile was developed for each surface impoundment with calculations of estimated quantities of material required to fill the impoundment, construct the closure profile and for cover soils to meet the CCR Rule closure requirements. Included in these estimates were the conceptual cost estimates to engineer and construct new process water systems at each plant to manage the CCR transport waters prior to discharge. These new process water systems are required prior to closing the surface impoundments to support the ongoing operation of the stations' process waters. The operation of these new process water systems then allow the surface impoundments to be removed from the stations' process water streams, allowing the de-watering of the surface impoundments prior to the completion of the closure activities.

The September CH2M reports include an executive summary, conceptual closure narrative, estimate of material volumes and areas, implementation schedules, conceptual layout drawings, and the cost estimate spreadsheets for each impoundment at each station.

2016 ECR

Since finalizing the CH2M reports in September 2015, the Companies continued refining the closure plans for each station. This refinement included continued reviews of the sequencing of surface impoundment closures at each station to ensure impacts to each station's operations were minimized. Additional minor scopes were identified that would be required to support the surface impoundment closure plans and to bring some stations into compliance with the CCR Rule. Examples of these minor scope additions was the need to engineer and construct a new ash treatment basin ("ATB") spillway (with dike modifications) along with a new gypsum stack out pad at Mill Creek. Work continued with developing these emergent items and understanding their costs and schedule impacts. Additionally, further review of the CH2M conceptual plans resulted in sequencing changes needed to meet construction and regulatory deadlines while minimizing operations impacts. These additions and modifications were incorporated into the Companies' 2016 ECR plan. A more detailed explanation of these additions to the CCR Rule Compliance Construction and Construction of New Process Water Systems are discussed below.

E.W. Brown

New construction costs for process water tanks/basins in the CH2M report were shifted from 2016 into 2017, with the exception of \$500K for engineering activities. Construction is now planned for the new process water systems over a two year period (2017-2018). Moving construction out of 2016 allows continued analysis of the impacts of the Clean Power Plan and Effluent Limitation Guidelines regulations on E.W. Brown, while still meeting the required in service date of early 2019 to support the CCR Rule surface impoundment closure requirements. The shifting of construction dollars out of 2016 resulted in escalation. However, the estimated escalation from the shift was considered minor after reviewing the E.W. Brown estimate, therefore, no additional monies were deemed necessary. Table 1 shows that the cost estimates for E.W. Brown are the same for the CH2M report and the 2016 ECR plan.

Ghent

The first change in the estimated costs at Ghent resulted from determining that the timing for groundwater monitoring for ATB #1 in the CH2M report was incorrect. Groundwater monitoring is required to start in 2016 and continue through 2017 to meet regulatory deadlines. Along with the timing of groundwater monitoring, it was determined that the timing of spend for closure activities of Ghent's surface impoundments was too short. The CH2M report was based on closure activities beginning in 2020 and extending through 2021. Based on Project Engineering's review of the necessary construction period for Ghent, changes were incorporated to start closure activities in 2019 and continue through 2022. The cost differences in the Ghent values in Table 1 are solely attributed to the adjustment in the timing of when spending will occur.

Mill Creek

After receipt of the finalized CH2M report, it was determined that for Mill Creek to remain in compliance with the CCR Rule requirements a new gypsum stack out pad was required to provide the hardscaping required for groundwater protection. The existing gypsum stack out pad was deemed to be deficient in coverage area, as well as the condition of the pad was not adequate to ensure minimal CCR leachate conveyance through the pad into the soil. The 2016 ECR plan for Mill Creek was increased by \$3.5M for the construction of a new gypsum stack-out pad. Another scope identified post CH2M report was the need to construct a modified ATB spillway with a larger capability to meet the CCR Rule Hydrologic and Hydraulic requirements. \$1.5M was added to the CH2M report values to account for this new scope with the remainder of the cost being consumed through the estimate contingency. Both of these scopes were identified through the Companies' continued review of the new CCR Rule requirements. In addition to the \$5.0M added, adjustments to the sequencing surface impoundment closures resulted in approximately \$2.0M for escalation.

Trimble County

The Bottom Ash Pond (BAP) required two adjustments to the CH2M report which are reflected in the 2016 ECR plan. The BAP Rock Buttress Project was added to the CH2M report at a cost of approximately \$955K to account for scope required to meet the CCR Rule for dike stability that is more stringent in the CCR Rule than current State requirements. Much like the projects at Mill Creek, the Rock Buttress Project was an unplanned project that emerged out of analysis performed on the dikes of the BAP. The project began in October 2015 and was completed in December of 2015. Additionally, in order to comply with the new CCR Rule, the timing of spend for groundwater monitoring at the BAP was adjusted to occur in 2016 through 2017 similar to the adjustments made to the Ghent project. The Gypsum Storage Pond cost was slightly modified to include timing adjustments to the pre-closure/preparation scope. Dollars were shifted from the CH2M report timeline of 2016 through 2018 to 2017 through 2019.

Pineville and Tyrone

The timing of engineering spend was brought forward into 2016 from 2017, and construction quality assurance services were delayed a year, from 2017 to 2018. The Companies deemed it beneficial to begin engineering work at Pineville and Tyrone stations in concert with the active stations to take advantage of lessons learned and economies of scale. Additionally, the timing of several activities for Tyrone in the CH2M report were adjusted to correct a clerical error in the CH2M report.

Green River

No changes have been made to the Green River plan.

Coal Combustion Residual Pond Closure Evaluation: Green River Generating Station

PREPARED FOR: Louisville Gas & Electric Company and Kentucky Utilities Company

PREPARED BY: CH2M HILL, Inc.

DATE: September 18, 2015

1 Executive Summary

Louisville Gas & Electric Company and Kentucky Utilities Company (LG&E-KU) tasked CH2M HILL, Inc. (CH2M) with performing coal combustion residuals (CCR) evaluations for seven generating stations to develop conceptual CCR ash pond closure approaches and capital cost estimates. The generating stations under evaluation are Ghent, Trimble County, Mill Creek, E.W. Brown, Green River, Tyrone, and Pineville. This technical memorandum applies solely to Green River Generating Station. The following scope activities were completed:

- Reviewed LG&E-KU provided historical CCR information and kickoff meeting workshop (June 2015).
- Developed a CCR pond closure compliance alternative that considers regulatory, geotechnical, and stormwater aspects as it relates to CCR ash ponds and associated cost estimates for the generating station. Discussion of the conceptual approach is included in Section 2, and drawings are contained in Attachment 1. The applicable ponds at Green River are the Main Ash Pond, Ash Treatment Basin (ATB) #2, and the SO2 Pond.
- The estimated cost for closing the three ponds is summarized in Exhibit 1-1. Cost information is included in Attachment 2.

Proposed Conceptual Closure Approach ¹	Low (-30%)	Total Capital Cost	High (+30%)
Main Ash Pond Closure	\$12.9 M	\$18.4 M	\$23.9 M
ATB#2 Closure	\$13.7 M	\$19.5 M	\$25.4 M
SO2 Closure	\$9.6 M	\$13.8 M	\$17.9 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from

information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

2 Proposed Conceptual CCR Pond Closure Approach

2.1 Development of Proposed Conceptual CCR Pond Closure Approach

The proposed conceptual CCR pond closure approach was developed based on previous work completed by CH2M and discussions with LG&E-KU during the kickoff meeting on June 23, 2015. The Green River Generating Station is an operating facility with CCR wastewater generated and discharged to the ponds. However, the station will cease generation on October 19, 2015. The following defines the considered approach for closure for each of the three ponds. Additional assumptions are summarized in Section 2.2.

Main Ash Pond

Regrade ash in pond to balance cuts/fills and install final cover. The surface water drainage channels
will be sized to provide retention, and the existing outlet structure will be modified to regulate
discharge storm event.

ATB#2

• Completely fill with CCR material and material from the SO2 Pond, and install final cover. The surface water drainage channels will be sized to provide retention, and the existing outlet structure may be modified or breach of the dike to regulate discharge storm event.

SO₂ Pond

Clean closure by excavation of CCRs from the SO2 Pond and load, transport, and place in ATB #2.
 Clean closure means removing CCR material, confirming removal, and documenting a report that verifies removal. The dikes will be left in place so the pond may be used in the future as a process pond.

Regulatory Strategy

- Compliance with the Final CCR Rule.
- Closure activities will be permitted by the Kentucky Department of Environmental Protection (KYDEP) under the Final CCR Rule.

The volume of CCR to be managed (that is, excavated, placed and regarded within the ponds) was developed using computer aided engineering (CAE) software and AutoCAD drawings provided by LG&E-KU. The proposed conceptual pond closure approach is presented in drawings provided in Attachment 1.

2.2 Design Assumptions

General

The general design assumptions used for the proposed conceptual CCR pond closure approach is as outlined in our proposal and discussed with LG&E-KU at our kickoff meeting on June 23, 2015, and summarized below:

• The existing conditions were established from AutoCAD files provided by LG&E-KU on June 23, 2015.

- In order to estimate the volume of CCR in the ATB #2 and SO2 Pond, a bottom surface was estimated and developed in AutoCAD based on data and elevations provided by LG&E-KU. It was determined that the SO2 Pond CCRs could be placed in ATB #2 and closed. It also was determined that the ash in the Main Ash Pond could be regraded to balance cuts/fills and closed.
- Where bathometric data were not supplied (ATB #2 and SO2 Pond), an assumed average depth of water was over the wet area from Google Earth images (dated 2015) accessed June 30, 2015.
- Volume calculations are based on an in-place (moist) density 1 ton per cubic yard (74 pounds per cubic foot) for all cut and placed CCR material, and does not account for shrinkage/swell during placement. Quantities do not consider settlement of in-place CCR because of dewatering or new fill/cover loads. Changes to these assumptions should be verified during design development.
- It is assumed these CCR ponds meet the structural integrity requirements, and the pond closure approaches are geotechnically stable as shown. This information will be confirmed during design development.
- Improvements to prepare a workable CCR surface include removing surface water, localized regrading to facilitate dewatering, and installing a geotextile, a layer of dry CCR, and geogrid.
- Final cover surface drainage channels are inside the perimeter dikes, and would include final cover and be lined with structural reinforcement (turf reinforcement mat, riprap etc.), as necessary.
- The dikes will be used without increasing or decreasing height. Some improvements may be required based on the U.S. Environmental Protection Agency (USEPA) dam assessment findings but are outside this project scope.
- CCR within the pond will be regarded and used to fill the pond beneath the final cover.
- The final cover (cap) is assumed to consist of 40-mil linear low-density polyethylene liner (LLDPE) placed directly on subgrade (CCR) and covered with geocomposite and 2 feet of soil cover. A vegetative cover will be established. The 2 feet of soil cover will consist of 1.5 feet of soil and 0.5 foot of vegetated topsoil. The final cover will extend on top of the dikes, due to the potential that ash may be contained within the dikes.
- A 5 percent slope was used for the final cover.
- No special dewatering structures will be required to remove the decant water from the wet coal ash materials in the ash ponds or localized dewatering of the ash to facilitate cover construction.
- Modification will be required to the National Pollutant Discharge Elimination System (NPDES) discharge structure location to ensure permit compliance.
 - The CCR pond discharge structures will be modified to ensure stormwater flows to the NPDES discharge structure and permit compliance.
 - The waste material from the discharge structures will be disposed of properly.
- It is anticipated these pond closure approaches will handle the stormwater runoff, but verification will be performed in design development.

Main Ash Pond

The general design assumptions used for the proposed conceptual closure approach (Main Ash Pond) is as derived from the LG&E-KU drawing and summarized below:

- The existing outfall location of the pond is to be modified to discharge surface drainage to the NPDES discharge location by gravity flow.
- A second discharge structure will be installed at the southern corner of the pond.

- The CCR pond closure approach includes filling the Main Ash Pond with dry CCR material within but below the existing top of dike elevation and including retention and control of stormwater.
- The Main Ash Pond will receive CCR material from the generating station until closure. CCR material will include wet discharges as summarized in Table 2-1. Material accumulation in the Main Ash Pond will continue until October 19, 2015.
- Surface water within the Main Ash Pond will be removed before closure begins to allow surface stabilization and dry material placement.
- A final cover will be constructed. Cover construction will include preliminary grading to shape the
 cover subgrade and will include the components described in the assumptions below. Conceptual
 grades are shown in Attachment 1, Exhibit 2-1. Significant grading features include the following:
 - A perimeter drainage ditch is shown inside the perimeter dike. The ditch shows a high point near the west end, dropping at approximately 0.5 percent to the east. One existing discharge penetration is shown through the dike leading to the NPDES permitted outfall.
 - The final grades include 4H:1V slopes along the inside of the ditch, extending no higher than 10 feet above the ditch invert or the top elevation of the berm crest, whichever is lower.
 The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2-1 has an airspace capacity of approximately 368,000 cubic yards above the existing CCR surface grade.

ATB #2

The general design assumptions used for the proposed conceptual CCR pond closure approach (ATB #2) is as derived from the LG&E-KU drawing and summarized below:

- Surface water would be discharged off the final cover through the existing discharge outlet pipe on the south side. The discharge should be routed around ATB #2 to the existing drainage structures.
- The stormwater drainage channel will be designed along the western edge of ATB #2 to support with offsite stormwater drainage currently directed to ATB #2.
- The ATB #2 dike will be used without modification; however, some improvements may be required based on the USEPA dam assessment findings (not part of this project).
- The CCR pond closure approach includes filling ATB #2 with CCR material within but below the existing top of the perimeter dike elevation and including retention and control of stormwater.
- The primary outlet structure will be modified, and removed portions will be demolished and disposed.
- Surface water within ATB #2 will be removed before closure begins to allow surface stabilization and dry material placement.
- Surface water will be discharged off the final cover through the existing discharge outlet pipe on the east side or breach in dike. The discharge is to the existing drainage structures.
- No special dewatering structures will be required to remove decant water from the wet coal ash materials in the ash ponds or localized dewatering of the ash to facilitate cover construction.
- ATB #2 is developed as a multiple mound structure. Three mounds have been designed for this
 concept.
- ATB #2 to receive material from the SO2 Pond. Material will be trucked from the SO2 Pond to an
 unloading location. Material quantities are summarized in Table 2-2C. Material accumulation in
 ATB #2 will be completed by October 19, 2015.

- CCR materials from the SO2 Pond will be placed, graded, and used to fill the pond beneath the final cover.
- A final cover will be constructed. Cover construction will include preliminary grading to shape the
 cover subgrade, and will include the components described in the assumptions below. Conceptual
 grades are shown in Attachment 1, Exhibit 2-2. Significant grading features include the following:
 - A perimeter drainage ditch is shown within the berm. The ditch shows a high point near the
 west end, dropping at approximately 0.5 percent to the east. One existing discharge
 penetration is shown through the dike leading to the NPDES permitted outfall.
 - The final grades include 4H:1V slopes along the inside of the ditch, extending no higher than 10 feet above the ditch invert or the top elevation of the berm crest, whichever is lower.
 The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2-2 has an airspace capacity of approximately 492,000 cubic yards above the existing CCR surface grade.
- Airspace capacity under ABT #2 cover could be increased (or reduced), as necessary, by approximately 58,900 cubic yards per foot by extending the 4H:1V ditch slope height to the full perimeter berm elevation, or reducing the maximum height of one or all three mounds. Capacity could be reduced by modifying the 4H:1V ditch slope height. Ditch grades should also be refined to create local low points at the perimeter drainage ditch discharge point. Such design refinements should not significantly change the estimated closure costs.

SO₂ Pond

The general design assumptions used for the proposed conceptual design (SO2 Pond) is as derived from the LG&E-KU drawing and summarized below:

- The top of the dike built is 10 feet wide, with 2.5H:1V side slopes.
- The top of the dike elevation is at elevation 405 feet.
- The original (bottom) elevation of the SO2 Pond is at elevation 385 feet.
- Excavation of the SO2 Pond will be to elevation 384 feet for clean closure.
- CCR will be removed from the SO2 Pond and loaded, transported, and placed in ATB #2.
- A final cover of fabriform will be constructed. Restoration construction will include preliminary
 grading to shape the cover subgrade, and will include the components described in the assumptions
 below. Conceptual grades are shown in Attachment 1, Exhibit 2-3. Significant grading features
 include the following:
 - The fabriform installation will consist of 60-mil HDPE liner, 10 ounce geotextile, and 0.5 foot fabriform cover.
 - A uniform slope along the bottom of the pond sloping to the existing pump station. The
 existing pump station will discharge upgraded stormwater piping leading to the NPDES
 permitted outfall.
- Improvements to of pump station structure and piping.
 - It is assumed that the pump station will have enough capacity to pump the stormwater to the NPDES permitted outfall.

3 Estimated Material Volumes and Areas

The volume of fly ash, bottom ash, and gypsum generated by the station and available for use as fill is summarized in Table 2-1. Total production rates by year are as communicated by LG&E-KU on June 23, 2015, and the portion sent to the ponds each year are based on the 2015 year to date production rates provided by LGE-KU on July 1, 2015.

Table 2-1. Estimated CCR Production by Year – Total and Distribution by Ponds

Total CCR Production (Tons)			Assumed	CCR Distribution	on (Tons)		
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	Main Ash Pond ¹	ATB #2	SO2 Pond ²
2015	8,259	33,035	-	41,294	41,294	-	-
2016 ³	1,865	7,460	-	9,325	9,325	-	-
		TOTAL			50,619	0	0

Notes:

The proposed CCR pond closure approach was developed using computer aided engineering (CAE) software and AutoCAD files provided by LG&E-KU as described under assumptions above. Summaries of the estimated material quantities for each pond are shown in Tables 2-2A, 2-2B, and 2-2C.

Table 2-2A. Proposed Conceptual Pond Closure Approach Estimated Material Quantities - Main Ash Pond

Item	Units	Quantity
Total surface area	AC	41.1
Standing surface water (to remove)	GAL	15,074,898
Length of perimeter	LF	6,520
CUT: Existing Surface to Final Cover Subgrade		
CCR cut in 2017 - for Main Ash Pond	CY	160,500
Cut/regrade for cover subgrade/ditch	CY	13,800
FILL REQUIRED: Existing Surface to Final Cover Subgrade	СҮ	370,800
FILL SOURCES:		
From cut for final cover subgrade	CY	174,300
TOTAL POTENTIAL FILL through 2016	СҮ	50,600
Final cover soil volume	CY	145,900
Potential Excess Fill: (to be accommodated in settlement or sent to ATB#2)	СҮ	2,800

¹ Assumes that 100 percent of bottom ash and fly ash will be sent to the Main Ash Pond through October 19, 2015, which will be the baseline for closure design.

² Assumes that all material from the SO2 Pond will be disposed of within ATB #2.

³ Assume CCR generation will stop in October 2015. CCR generation in 2016 is the result of station decommissioning.

Table 2-2B. Proposed Conceptual Pond Closure Approach Estimated Material Quantities -ATB #2

Item	Units	Quantity
Total surface area	AC	36.5
Standing surface water (to remove)	GAL	34,312,100
Length of perimeter	LF	5,000
CUT: Existing Surface to Final Cover Subgrade		
Cut for final cover: Stormwater channel	CY	123,000
FILL REQUIRED: Existing Surface to Final Cover Subgrade	СҮ	451,300
FILL SOURCES:		
Cut for final cover: Stormwater channel	CY	123,000
From the SO2 Pond		198,800
TOTAL POTENTIAL FILL through 2016	CY	0
Final cover soil volume	CY	129,500
Potential Excess Airspace: (to be optimized in final design)	CY	40,700

Table 2-2C. Proposed Conceptual Pond Closure Approach Estimated Material Quantities -SO2 Pond

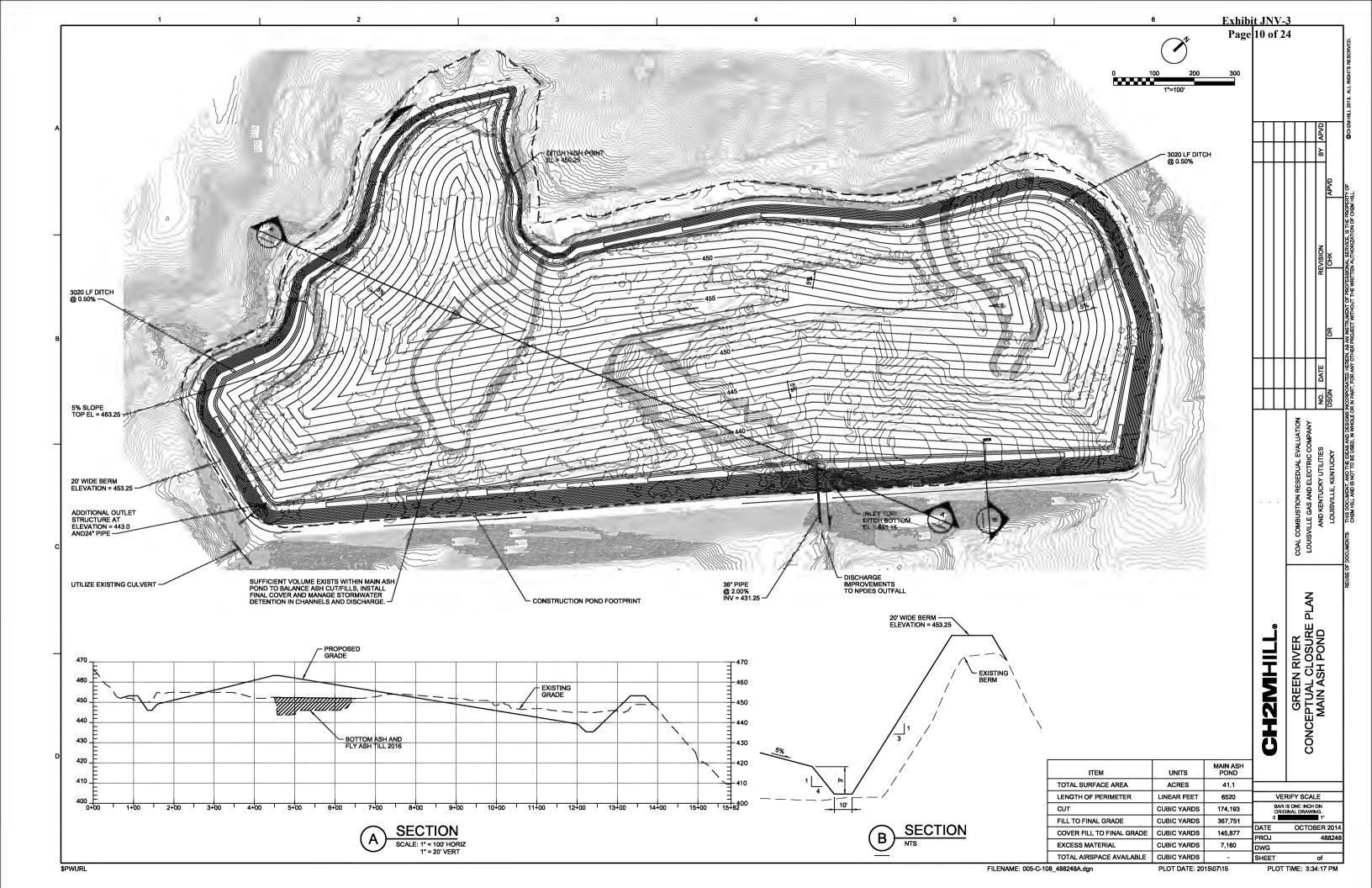
Item	Units	Quantity
Total surface area	AC	10.1
Standing surface water (to remove)	GAL	13,141,000
Length of perimeter	LF	2,780
CUT: Existing Surface to Final Cover Subgrade		
CCR cut in 2016 - for Temporary Treatment Pond - Send to ATB #2	CY	198,800
FILL REQUIRED: Existing Surface to Final Cover Subgrade	CY	17,900
FILL SOURCES:		
TOTAL POTENTIAL FILL through 2016	CY	0
Vegetative layer volume	CY	17,900
Potential Excess Fill/Airspace: (to be optimized in final design)	CY	0

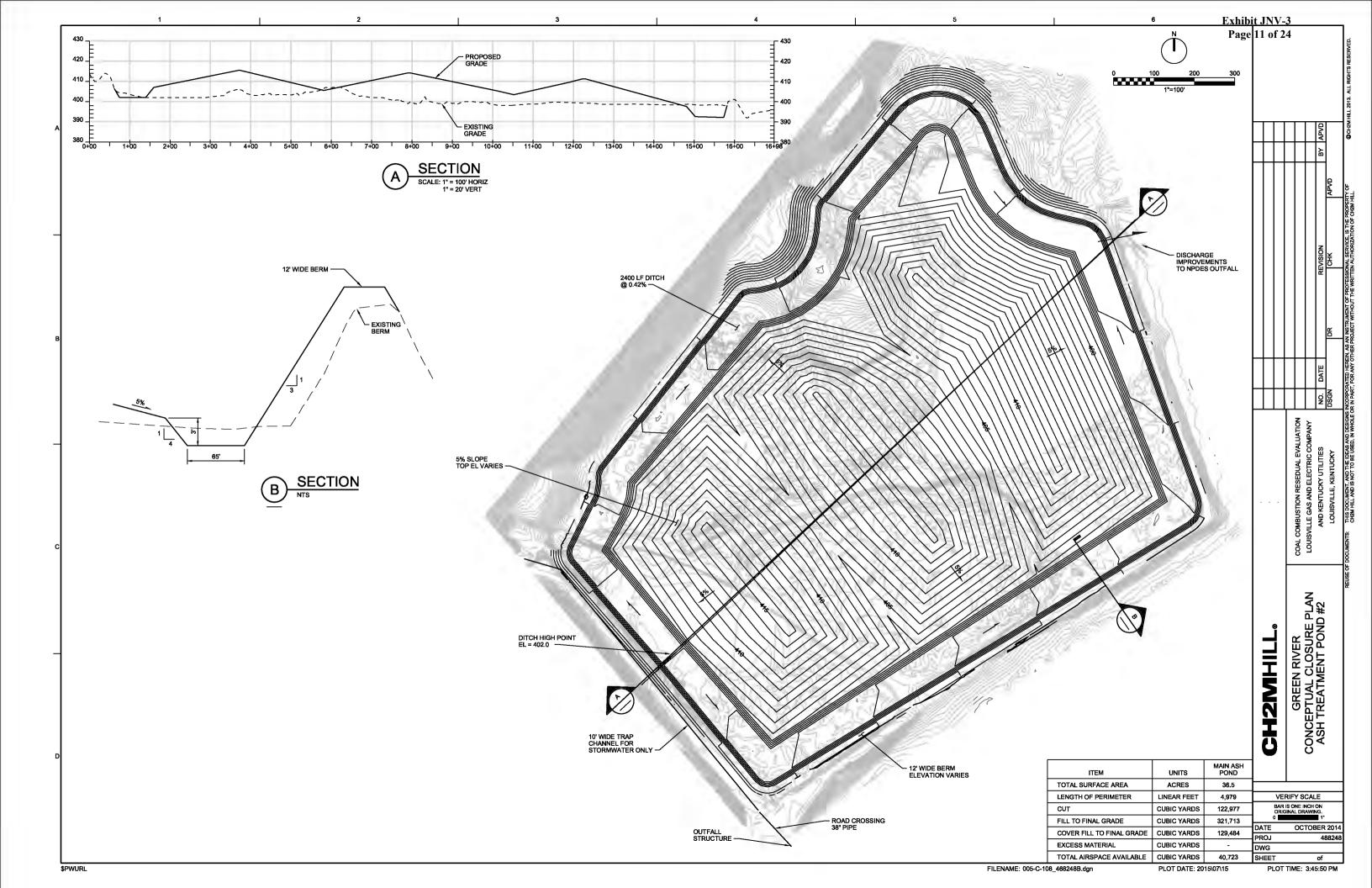
The proposed conceptual pond closure approach shows that CCR from the SO2 Pond can be placed in ATB #2 and closed in-place. The SO2 Pond dikes may be able to be knocked down and used for final cover. However, this will need to be coordinated with the appropriate regulatory agency and therefore these volumes were not included in this evaluation. This estimate accounts for the usage of 1 foot of vegetative layer to be imported and placed over the SO2 Pond for clean closure. There is sufficient area available in the Main Ash Pond to balance ash cut/fills volumes and close in-place.

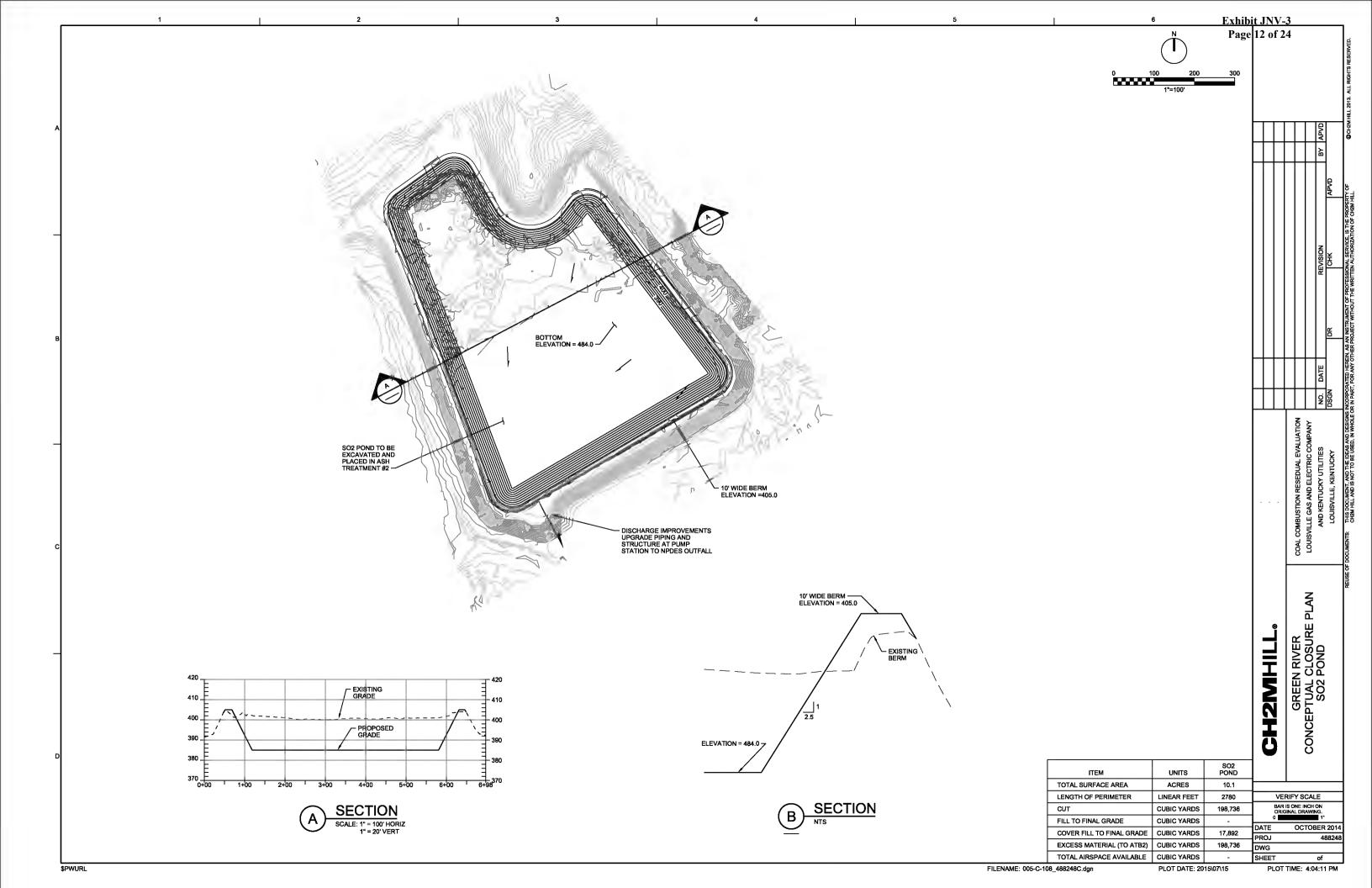
4 Schedule

Exhibits 2-4 in Attachment 3 show the proposed schedule to complete the design, permitting, and construction for each of the pond closures.

5 Construction Cost Estimate


The estimated construction cost for closing the ponds as described in Section 2 is shown within Attachment 2.


		Total Capital	
Proposed Conceptual Closure Design	Low (-30%)	Cost	High (+30%)
Main Ash Pond Closure	\$12.9 M	\$18.4 M	\$23.9 M
ATB#2 Closure	\$13.7 M	\$19.5 M	\$25.4 M
SO2 Closure	\$9.6 M	\$13.8 M	\$17.9 M


This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

Attachment 1 Proposed Conceptual Alternative CCR Closure

Attachment 2 Proposed Conceptual Alternative Cost Estimate

COST SUMMARY

Site: Green River Generation Station

Location: Central City, Kentucky

Phase: Proposed Conceptual CCR Closure

Base Year:

Date: ROM Level: 2015 September

el: Class 4

	Main Ash Pond	Ash Treatment Basin # 2	SO2 Pond
Remedial Technology	Fill Main Ash Pond with CCR's, cover and close in-place.	Fill ATB#2 Pond with CCR's from SO2 Pond, cover and close in-place.	Remove CCR's and clean close.
Description	Fill with CCR materials. Fill as needed for grading. Cover and close in place.	Fill ATB#2 Pond with CCR's from SO2 Pond and facility operations, cover and close in-place.	Completely cleaned of ash. CCRs placed in ATB#2 pond. Grade to drain and clean close.
Impoundment Closure	\$17,771,575	\$18,882,051	\$13,287,123
LG&E Overhead	\$622,005	\$660,872	\$465,049
New Construction	\$0	\$0	\$0
LG&E Overhead	\$0	\$0	\$0
Total Initial Costs	\$18,393,581	\$19,542,923	\$13,752,172
Upper ROM Range	\$23,911,655	\$25,405,799	\$17,877,824
Lower ROM Range	\$12,875,506	\$13,680,046	\$9,626,521

This is not an offer for construction and/or project execution. Please note, these order of magnitude cost estimates are assumed to represent the actual installed cost within the range of - 30 percent to + 30 percent of the costs indicated. The cost estimate has been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project will depend on actual labor, material costs, and competitive variable factors. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific decisions to help ensure proper project evaluation and adequate funding.

ver 6.5

CCR Rule - Green River Generating Station Cost Estimate - Main Ash Pond 21-Sep-15

															T								T
Item	Cost 2015 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	202	3 2024	Check	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
Proposed Conceptual Alternative CCR Closure - Main Ash Pond	\$18,393,581	3%	8%	37%	52%	0%	0%	0%	0%	0%	0%	100%											1
IMPOUNDMENT CLOSURE	\$13,670,443	3%	8%	37%	52%	0%	0%	0%	0%	0%	0%	100%	\$435,000	\$1,089,899	\$5,456,600	\$8,034,374	\$0	\$0	\$0	\$0	\$0	\$0	\$15,015,873
Mobilization/Demobilization	\$50,000	0%	0%	80%	20%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$43,264	\$11,249	\$0	\$0	\$0	\$0	\$0	\$0	\$54,513
Sediment & Erosion Control	\$32,500	0%	0%	90%	10%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$31,637	\$3,656	\$0	\$0	\$0	\$0	\$0	\$0	\$35,293
Site Preparation	\$76,750	0%	0%	80%	20%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$66,410	\$17,267	\$0	\$0	\$0	\$0	\$0	\$0	\$83,677
Dewatering	\$301,498	0%	20%	80%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$62,712	\$260,880	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$323,592
Repair On-Site Pond Embankments	\$250,000	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$270,400	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$270,400
Utility Services	\$100,000	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$108,160	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$108,160
Perimeter Berm (not required)	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$179,765	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$97,217	\$101,106	\$0	\$0	\$0	\$0	\$0	\$0	\$198,322
Pre-Closure / Preparation	\$3,269,419	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$1,768,102	\$1,838,826	\$0	\$0	\$0	\$0	\$0	\$0	\$3,606,928
Final Cover	\$5,811,206	0%	0%	30%	70%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$1,885,620	\$4,575,771	\$0	\$0	\$0	\$0	\$0	\$0	\$6,461,391
Mechanical Improvements/Additions	\$0	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Primary Outlet Structure	\$535,000	0%	0%	20%	80%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$115,731	\$481,442	\$0	\$0	\$0	\$0	\$0	\$0	\$597,173
Emergency Outlet Structure	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$175,905	0%	0%	30%	70%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$57,078	\$138,508	\$0	\$0	\$0	\$0	\$0	\$0	\$195,586
Groundwater Monitoring	\$238,400	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$49,587	\$103,141	\$107,267	\$0	\$0	\$0	\$0	\$0	\$0	\$259,996
Conceptual Design	\$200,000	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$200,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$200,000
Final Design and Permitting and permitting support	\$800,000	20%	80%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$160,000	\$665,600	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$825,600
PDI	\$75,000	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$75,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$75,000
Construction Management, including CQA and OE services	\$1,500,000	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$312,000	\$648,960	\$674,918	\$0	\$0	\$0	\$0	\$0	\$0	\$1,635,878
Closure Report	\$75,000	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$84,365	\$0	\$0	\$0	\$0	\$0	\$0	\$84,365
Subtotal	\$13,670,443												\$435,000	\$1,089,899	\$5,456,600	\$8,034,374	\$0	\$0	\$0	\$0	\$0	\$0	\$15,015,873
Contingency	\$4,101,133	3%	8%	37%	52%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$2,252,381	\$2,252,381	\$0	\$0	\$0	\$0	\$0	\$0	\$4,504,762
Subtotal with Contigency	\$17,771,575												\$435,000	\$1,089,899	\$7,708,981	\$10,286,755	\$0	\$0	\$0	\$0	\$0	\$0	\$19,520,635
LG&E & KU Overheads	\$622,005	3%	8%	37%	52%	0%	0%	0%	0%	0%	0%	100%	\$15,225	\$38,146	\$269,814	\$360,036	\$0	\$0	\$0	\$0	\$0	\$0	\$683,222
Project Total	\$18,393,581												\$450,000	\$1,128,000	\$7,979,000	\$10,647,000	\$0	\$0	\$0	\$0	\$0	\$0	\$20,204,000
																			1	1			

Assumptions	
LG&E & KU Overheads	3.50%
Escalation	4.00%
Contingency	30.00%

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Mill Creek Generating Station" technical memo dated July 24, 2015.
- 2 Assumes the use of CCR material to create grades to support the pond cap.
- $\ensuremath{\mathsf{3}}$ Assumes the use of Soil material to create pond cap or other design features.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Exhibit JNV-3 **COST ESTIMATE SUMMARY Green River Generating Station** Page 16 of 24 Site: Location: Phase: Base Year: Date: Green River Generating Station Central City, Kentucky Proposed Conceptual Alternative CCR Closure - Main Ash Pond 2015 1/18/2016

TAL COSTS DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL	NOTES
NDMENT CLOSURE Mobilization/Demobilization					İ
Workplan, procurement, mobilization, demobilization SUBTOTAL Mobilization/Demobilization	1	LS	\$50,000.00	\$50,000 \$50,000	
Sediment & Erosion Control Sediment and Erosion Control Measures	6,500	LF	\$5.00	\$32,500	
SUBTOTAL Sediment & Erosion Control Site Preparation				\$32,500	
Clearing/Grubbing	5	AC	\$10,350.00		Assume 5 acres (Clearing embankments and around
Surveying Utility Locating SUBTOTAL Surveying	1	LS EA	\$15,000.00 \$10,000.00	\$15,000 \$10,000 \$76,750	
Dewatering				ψ10,100	-
Dewatering and discharge through NPDES permit SUBTOTAL Dewatering	15,074,898	GL	\$0.02	\$301,498 \$301,498	Assumes treatment required for TSS. Pump water to outlet structure
Repair On-Site Pond Embankments					- [
					No existing dam safety deficiencies are recognized loading conditions, but rare or extreme hydrologic e result in a dam safety deficiency. Risk may be in the
					take further action. In addition, historic and recent si slope repairs, wet conditions at piezometer P-5 belo recent slope repair, series configuration and location
Madifications on wisting COP Panel and an hasharante		10	#050 000 00	\$250,000	Ash Treatment Basin #2 warrants a conservative rat diligent monitoring of the impoundment (per EPA D
Modifications on existing CCR Pond embankments SUBTOTAL Repair On-Site Pond Embankments	1	LS	\$250,000.00	\$250,000 \$250,000	Assessment report).
Utility Services Utility Modifications Sharing for towar foundations	1	LS	\$100,000.00		LG&E-KU to complete.
Shoring for tower foundations SUBTOTAL Utility Modifications	1	LS	\$0.00	\$0 \$100,000	Shoring assumed to not be required.
Perimeter Berm (not required) SUBTOTAL	1	LS	\$0.00	\$0 \$0	
Roads					Allowance based on PE's recent bid evaluation at Ca
Dense Grade Aggregate (materials, hauling and placement) SUBTOTAL Roads	4,748	CY	\$37.86	\$179,765 \$179,765	(includes FOB)
Pre-Closure / Preparation	174 400	07	00.40	M. 440.555	\$8.10/ CY 200 HP dozer 300' (RSM 31 23 16.46 442
Cut/regrade for cover subgrade/ditch	174,193	CY	\$8.10	\$1,410,963	\$2.01 Placement; Dozer, 300 hp, 300', common ea 31 23 23.14 5420) + \$0.38 Compaction; sheepsfoot
Placement and Compaction	174,193	CY	\$2.39	\$416,321	passes (RSM 31 23 23.23 5680) 4,000 gallon water truck; rent \$17.03/hr + FOG \$33. opr \$55/hr = \$105.83/hr x 10 hrs/day x 5 days/week
Moisture Conditioning/Dust Control Finish Grading, gentle slopes Geotextile (as needed, assume 100% of 40.8 acre area for filling)	174,193 197,472 238,709	CY SY SY	\$0.57 \$0.20 \$2.46	\$39,494	CY/week RSM 31 22 16.10 3300 woven, 200 lb tensile (RSM 31 32 19.16 1500)
Tensar TriAx (TX140) Geogrid (as needed, assume 100% of 40.8 acre area I SUBTOTAL Geotextile (as needed, assume 100% of 40.8 acre area for		SY	\$3.00	\$716,126	CH2M HILL, recent quote on similar project
filling) Final Cover				\$3,269,419	
Final Cover: 40-mil Tex/smooth LLDPE Geocomposite (includes materials and installation)	1,790,316 1,790,316	SF SF	\$0.65 \$0.55	\$1,163,705 \$984,674	
Cover Soil (2 feet thick) - Excavation and Load-out (from off-site borrow area)	132,615	CY	\$20.00	\$2,652,300	Allowance based on PE's recent bid evaluation at C (includes FOB)
- Hauling (assume 2-mile cycle)	132,615	CY	\$4.36	\$578,201	\$4.36 haul; 12cy, 15mph, 2 mile, 15 minute (RS Me 23.20 1018) \$2.01 Placement; Dozer, 300 hp, 300', common ea
- Placement and Compaction	132,615	CY	\$2.39	\$316,950	31 23 23.14 5420) + \$0.38 Compaction; sheepsfoot, passes (RSM 31 23 23.23 5680) 4,000 gallon water truck; rent \$17.03/hr + FOG \$33.
- Moisture Conditioning/Dust Control	132,615	CY	\$0.57		opr \$55/hr = \$105.83/hr x 10 hrs/day x 5 days/week CY/week
Finish Grading, gentle slopes SUBTOTAL - Moisture Conditioning/Dust Control	198,924	SY	\$0.20	\$39,785 \$5,811,206	RSM 31 22 16.10 3300
Mechanical Improvements/Additions Piping from Ash Pond to Plant Physical or Chemical Treatment plus CO2 Injection System	0	LS LS	\$455,000.00 \$125,000.00		plant not operating
SUBTOTAL Piping from Ash Pond to Plant	U	LO	φ120,000.00	\$0 \$0	plant not operating
Primary Outlet Structure Outfall to be upgraded	1	LS	\$385,000.00	\$385,000	May 2015 cost estimate Install 24-inch culvert, Inlet and outlet structure with
Second Outfall Structure SUBTOTAL Outfall to be upgraded	1	LS	\$150,000.00	\$150,000 \$535,000	embankment
Emergency Outlet Structure Modify	0	LS	\$0.00		Not Applicable
SUBTOTAL Emergency Outlet Structure				\$0	
Surface Restoration Mechanical Seeding & Mulching	41.1	AC	\$3,550.00		Seeding, slope mix, 6#, hydro/air seeding w/mulch 8 (RSM 32 92 19.14 4600) + 40% re-application
Quantity/Final Survey SUBTOTAL Mechanical Seeding & Mulching	1	LS	\$30,000.00	\$30,000 \$175,905	
Groundwater Monitoring					I
New Monitoring wells, 4" (6,695 LF perimeter) Groundwater Monitoring Events SUBCOTAL Groundwater Monitoring	9	EA Ea	\$17,600.00 \$10,000.00	\$80,000	assumes well spacing 1 well/750 feet; 9 wells to 75 unit cost reflects lab, QA/QC eval, report per event
SUBTOTAL Groundwater Monitoring SUBTOTAL CONSTRUCTION				\$238,400 \$11,020,443	
Design, Project & Construction Management, and Closure Report			#000 000 CT	,,,,,,	
Conceptual Design Final Design and Permitting and permitting support PDI	1 1 1	LS LS LS	\$200,000.00 \$800,000.00 \$75,000.00	\$800,000	LG&E provided, based on experience LG&E provided, based on experience LG&E provided, based on experience
Construction Management, including CQA and OE services Construction Contractor Performance and Payment Bonds	0.0%	LS	\$1,500,000.00 \$1,500,000.00	\$1,500,000 \$0	LG&E provided, based on experience LG&E provided
Closure Report SUBTOTAL Design, Project & Construction Management, and Closure Report	1	LS	\$75,000.00	\$75,000 \$2,650,000	Document Const. Work, QA/QC, and Record
				Ψ2,030,000	

- Assumptions:

 1. Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.

 2. CCR volume quantities include utilizing CCR from existing operations.

 3. Existing pond embankments to be used.

 4. Groundwater Monitoring well installation is not included.

 5. Road repair is not included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of ________. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

CCR Rule - Green River Generating Station Cost Estimate - ATB #2 21-Sep-15

Item	Cost 2015 Dollars												2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
item	COST 2015 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check	2013	2010	2017	2018	2019	2020	2021	2022	2023	2024	iotai
Proposed Conceptual Alternative CCR Closure - Ash Treatment Basin #2	\$19,542,923	4%	7%	39%	50%	0%	0%	0%	0%	0%	0%	100%											
IMPOUNDMENT CLOSURE	\$14,524,654	4%	7%	39%	50%	0%	0%	0%	0%	0%	0%	100%	\$595,000	\$1,045,791	\$6,164,736	\$8,126,514	\$0	\$0	\$0	\$0	\$0	\$0	\$15,932,041
Mobilization/Demobilization	\$50,000	0%	0%	80%	20%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$43,264	\$11,249	\$0	\$0	\$0	\$0	\$0	\$0	\$54,513
Sediment & Erosion Control	\$25,500	0%	0%	90%	10%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$24,823	\$2,868	\$0	\$0	\$0	\$0	\$0	\$0	\$27,691
Site Preparation	\$118,500	0%	0%	80%	20%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$102,536	\$26,659	\$0	\$0	\$0	\$0	\$0	\$0	\$129,195
Dewatering	\$686,241	0%	20%	80%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$142,738	\$593,791	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$736,529
Repair On-Site Pond Embankments	\$250,000	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$270,400	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$270,400
Utility Services	\$50,000	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$54,080	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$54,080
Perimeter Berm (not required)	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$109,373	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$59,149	\$61,515	\$0	\$0	\$0	\$0	\$0	\$0	\$120,664
Pre-Closure / Preparation	\$3,536,538	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$1,912,560	\$1,989,062	\$0	\$0	\$0	\$0	\$0	\$0	\$3,901,622
Final Cover (Install FML)	\$6,222,348	0%	0%	30%	70%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$2,019,028	\$4,899,507	\$0	\$0	\$0	\$0	\$0	\$0	\$6,918,535
Surface Water Features	\$445,778	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$241,077	\$250,720	\$0	\$0	\$0	\$0	\$0	\$0	\$491,797
Emergency Outlet Structure	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$159,575	0%	0%	30%	70%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$51,779	\$125,650	\$0	\$0	\$0	\$0	\$0	\$0	\$177,429
Groundwater Monitoring	\$220,800	0%	40%	60%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$91,853	\$143,290	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$235,143
Conceptual Design	\$200,000	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$200,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$200,000
Final Design and Permitting and permitting support	\$800,000	40%	60%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$320,000	\$499,200	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$819,200
PDI	\$75,000	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$75,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$75,000
Construction Management, including CQA and OE services	\$1,500,000	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$312,000	\$648,960	\$674,918	\$0	\$0	\$0	\$0	\$0	\$0	\$1,635,878
Closure Report	\$75,000	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$84,365	\$0	\$0	\$0	\$0	\$0	\$0	\$84,365
Subtotal	\$14,524,654												\$595,000	\$1,045,791	\$6,164,736	\$8,126,514	\$0	\$0	\$0	\$0	\$0	\$0	\$15,932,041
Contingency	\$4,357,396	4%	7%	39%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$2,389,806	\$2,389,806	\$0	\$0	\$0	\$0	\$0	\$0	\$4,779,612
Subtotal with Contigency	\$18,882,051												\$595,000	\$1,045,791	\$8,554,542	\$10,516,320	\$0	\$0	\$0	\$0	\$0	\$0	\$20,711,653
LG&E & KU Overheads	\$660,872	4%	7%	39%	50%	0%	0%	0%	0%	0%	0%	100%	\$20,825	\$36,603	\$299,409	\$368,071	\$0	\$0	\$0	\$0	\$0	\$0	\$724,908
Project Total	\$19,542,923												\$616,000	\$1,082,000	\$8,854,000	\$10,884,000	\$0	\$0	\$0	\$0	\$0	\$0	\$21,436,000

Assumptions	
LG&E & KU Overheads	3.50%
Escalation	4.00%
Contingency	30.00%

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Mill Creek Generating Station" technical memo dated July 24, 2015.
- 2 Assumes the use of CCR material to create grades to support the pond cap.
- 3 Assumes the use of Soil material to create pond cap or other design features.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Site: Location:

Green River Generating Station

Green River Generating Station Central City, Kentucky Proposed Conceptual Alternative CCR Closure - Ash Treatment Basin #2 2015 1/18/2016 Phase:

Base Year: Date:

AL COSTS DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL	NOTES
DMENT CLOSURE					
Mobilization/Demobilization Workplan programment mobilization demobilization	4	LS	\$50,000.00	ØE0 000	
Workplan, procurement, mobilization, demobilization SUBTOTAL Mobilization/Demobilization	1	Lò	φου,υυυ.υυ <u></u>	\$50,000 \$50,000	
Sediment & Erosion Control Sediment and Erosion Control Measures	E 100	LF	¢ E 00	405 500	
Sediment and Erosion Control Measures SUBTOTAL Sediment & Erosion Control	5,100	LF	\$5.00 <u> </u>	\$25,500 \$25,500	
Site Preparation	10	AC	\$10,350.00	¢402 500	Lot of vegetation inside pond.
Clearing/Grubbing Surveying Utility Locating	1	LS EA	\$10,350.00 \$10,000.00 \$5,000.00	\$103,500 \$10,000 \$5,000	
SUBTOTAL Site Preparation	1	EA	\$5,000.00	\$5,000 \$118,500	
Dewatering					Assumes treatment required for TSS. Pump water to ex
Dewatering and discharge through NPDES permit SUBTOTAL Dewatering	34,312,066	GL	\$0.02	\$686,241 \$686,241	
Repair On-Site Pond Embankments					
Modifications on existing CCR Pond embankments	1	LS	\$250,000.00		the pond rating is unchanged due to potential dam safet deficiencies. The addendum notes overtopping of the potential measures 2 into compliance. In addition, the location of ATB 2 below relatively large Main Pond and series configuration of the impoundments at the site resulting in ATB 2 receiving d from all the other ponds warrants extreme conservatism classification, analyses and ratings. (per EPA Dam Asserbert)
SUBTOTAL Repair On-Site Pond Embankments				\$250,000	
Utility Services Utility Modifications	1	LS	\$50,000.00	\$50,000	LG&E-KU to complete.
Shoring for conveyor support foundations SUBTOTAL Utility Services	1	LS	\$0.00		Shoring assumed to not be required.
Roads Person Crade Aggregate (materials, bouling and placement)	0000	07	07.00		Allowance based on PE's recent bid evaluation at Cane
Dense Grade Aggregate (materials, hauling and placement) SUBTOTAL Roads	2889	CY	\$37.86 <u> </u>	\$109,373 \$1 09,373	(includes FOB)
Pre-Closure / Preparation					3 each Cat 735 off-road traile (260V), and \$54.00%
Hauling (assume 2 mile cycle)(CCR from facility)	198,736	CY	\$2.96		3 each, Cat 735 off-road trcuks (26CY); rent \$54.39/hr - \$52.18/hr + Opr \$75/hr = \$182/hr x 10 hrs/day x 5 days each /9.216 CY/week
Cut/regrade for cover subgrade/ditch	122,977	CY	\$8.10	•	\$8.10/ CY 200 HP dozer 300' (RSM 31 23 16.46 4420)+
			·		\$2.01 Placement; Dozer, 300 hp, 300', common earth (23.14 5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2
Placement and Compaction	321,713	CY	\$2.39	,	(RSM 31 23 23.23 5680)
Moisture Conditioning/Dust Control	321,713 176,660	CY SY	\$0.57 \$0.20	\$183,376	4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/h \$55/hr = \$105.83/hr x 10 hrs/day x 5 days/week / 9,216 RSM 31 22 16.10 3300
Finish Grading, gentle slopes Geotextile (as needed, assume 100% of 38.5 acre area for filling) Tensar TriAx (TX140) Geogrid (as needed, assume 100% of 38.5 acre area	176,660	SY SY	\$0.20 \$2.46 \$3.00	\$434,584	woven, 200 lb tensile (RSM 31 32 19.16 1500) CH2M HILL, recent quote on similar project
SUBTOTAL Pre-Closure / Preparation	170,000		ψ3.00	\$3,536,538	
Final Cover (Install FML) Final Cover: 40-mil Tex/smooth LLDPE	1,907,928	SF	\$0.65	\$1,240,153	
Geocomposite (includes materials and installation) Cover Soil (2 feet thick)	1,907,928	SF	\$0.55	\$1,049,360	
- Excavation and Load-out (from off-site borrow area)	97,113	CY	\$20.00		Allowance based on PE's recent bid evaluation at Cane (includes FOB)
- Excavation and Load-out (from off-site borrow area)(top soil)	32,371	CY	\$20.00	\$647,420	Allowance based on PE's recent bid evaluation at Cane (includes FOB)
- Hauling (assume 2-mile cycle)	129,484	CY	\$4.36	\$564,550	
- Placement and Compaction	120 404	CY	\$2.39		\$2.01 Placement; Dozer, 300 hp, 300', common earth (23.14 5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2 (RSM 31 23 23 23 5680)
- Placement and Compaction	129,484	O1	Φ∠.3 9		(RSM 31 23 23.23 5680) 4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/h
Moisture Conditioning/Dust Control Drainage System Piping	129,484 36	CY AC	\$0.57 \$10,000.00		\$55/hr = \$105.83/hr x 10 hrs/day x 5 days/week / 9,216
Finish Grading, gentle slopes SUBTOTAL Final Cover (Install FML)	176,660	SY	\$0.20		RSM 31 22 16.10 3300
Surface Water Features				, ==,-10	·
Items to meet NPDES Permit requirements Surface Water Diversion Channel	1 1	LS LS	\$150,000.00 \$160,000.00	\$150,000 \$160,000	
Channel			. ,	. ,	10-ft bottom, 5-ft deep, 4H:1V sideslopes 1500 LF 7,65 \$2.36 excavator 1 cy cap = 100cy/hr (RSM 31 23 16.42
- Excavation and Load-out (excavator)	7,650	CY	\$5.20		\$2.84 dozer 200 hp 50 ft, clay (31 23 16.46 4040) \$4.36 haul; 12cy, 15mph, 2 mile, 15 minute (RS Means
- Hauling (assume 2-mile cycle)	7,650	CY	\$4.36	\$33,354	\$2.01 Placement; Dozer, 300 hp, 300', common earth (
- Placement and Compaction	7,650	CY	\$2.39		23.14 5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2 (RSM 31 23 23.23 5680)
- Moisture Conditioning/Dust Control	7,650	CY	\$0.57		4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/h \$55/hr = \$105.83/hr x 10 hrs/day x 5 days/week / 9,216
Road Crossing	1	EA	\$10,000.00	\$10,000	36-inch pipe for 50-ft Similar to the second outfall structure at the Main ash po
Outlet Structure SUBTOTAL Surface Water Features	1	EA	\$30,000.00	\$30,000 \$445,778	cost but no inlet structure
Emergency Outlet Structure					
Surface Restoration					
Mechanical Seeding & Mulching	36.5	AC	\$3,550.00	\$129,575	Seeding, slope mix, 6#, hydro/air seeding w/mulch & fer 32 92 19.14 4600) + 40% re-application
Quantity/Final Survey SUBTOTAL Surface Restoration	1	LS	\$30,000.00	\$30,000 \$159,575	
Groundwater Monitoring					
3					
New Monitoring wells, 4" (5,561 LF perimeter)	8	EA	\$17,600.00	\$140,800	assumes well spacing 1 well/750 feet; 8 wells to 75 feet
	8 8	EA Ea	\$17,600.00 \$10,000.00		assumes well spacing 1 well/750 feet; 8 wells to 75 feet unit cost reflects lab, QA/QC eval, report per event

Green	River Generating Station			COST ESTIMAT	E SUMMARY	Exhibit JNV-3 Page 19 of 24
Site: Location: Phase: Base Year: Date:	Green River Generating Station Central City, Kentucky Proposed Conceptual Alternative CCR Closure - Ash Treatment Basin #2 2015 1/18/2016					
	Conceptual Design	1	LS	\$200,000.00	\$200.000 LG&E provide	ed, based on experience
	Final Design and Permitting and permitting support	1	LS	\$800,000.00		ed, based on experience
	PDI	1	LS	\$75,000.00	\$75,000 LG&E provide	ed, based on experience
	Construction Management, including CQA and OE services	1	LS	\$1,500,000.00	\$1,500,000 LG&E provide	
	Construction Contractor Performance and Payment Bonds	0.0%		\$11,874,654.47	\$0 LG&E provide	ed
	Closure Report	1	LS	\$75,000.00	\$75,000 Docume	nt Const. Work, QA/QC, and Record DWGs
	SUBTOTAL Design, Project & Construction Management, and Closure					
	Report				\$2,650,000	
	SUBTOTAL IMPOUNDMENT CLOSURE				\$14,524,654	

Assumptions:

- 1. Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.
- 2. CCR volume quantities include utilizing CCR from existing operations.
- 3. Existing pond embankments to be used.
- Groundwater Monitoring well installation is not included.
 Road repair is not included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of ______. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

CCR Rule - Green River Generating Station Cost Estimate - SO2 Pond 21-Sep-15

Item	Cost 2015 Dollars												2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
Kein	2031 2013 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check					2313						· Otal
Proposed Conceptual Alternative CCR Closure - SO2 Pond	\$13,752,172	2%	6%	30%	62%	0%	0%	0%	0%	0%	0%	100%											
IMPOUNDMENT CLOSURE	\$10,220,864	2%	6%	30%	62%	0%	0%	0%	0%	0%	0%	100%	\$169,000	\$673,863	\$3,301,361	\$7,144,714	\$0	\$0	\$0	\$0	\$0	\$0	\$11,288,938
Mobilization/Demobilization	\$50,000	0%	0%	80%	20%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$43,264	\$11,249	\$0	\$0	\$0	\$0	\$0	\$0	\$54,513
Sediment & Erosion Control	\$14,500	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$7,842	\$8,155	\$0	\$0	\$0	\$0	\$0	\$0	\$15,997
Site Preparation	\$66,750	0%	0%	80%	20%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$57,757	\$15,017	\$0	\$0	\$0	\$0	\$0	\$0	\$72,774
Dewatering	\$262,819	0%	30%	70%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$81,999	\$198,985	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$280,985
Utility Services	\$50,000	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$54,080	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$54,080
Excavation and Haul CCRs to ATB #2	\$2,228,300	0%	0%	90%	10%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$2,169,117	\$250,653	\$0	\$0	\$0	\$0	\$0	\$0	\$2,419,770
Liner System & Fabriform	\$5,208,395	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$5,858,736	\$0	\$0	\$0	\$0	\$0	\$0	\$5,858,736
Mechanical Improvements/Additions	\$150,000	0%	10%	30%	60%	0%	0%	0%	0%	0%	0%	100%	\$0	\$15,600	\$48,672	\$101,238	\$0	\$0	\$0	\$0	\$0	\$0	\$165,510
Transport & Disposal	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Groundwater Monitoring	\$168,000	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$34,944	\$72,684	\$75,591	\$0	\$0	\$0	\$0	\$0	\$0	\$183,218
Soil Sampling	\$24,500	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$25,480	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$25,480
Surface Restoration	\$57,600	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$64,792	\$0	\$0	\$0	\$0	\$0	\$0	\$64,792
Conceptual Design	\$60,000	80%	20%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$48,000	\$12,480	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$60,480
Final Design and Permitting and permitting support	\$230,000	20%	80%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$46,000	\$191,360	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$237,360
PDI	\$75,000	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$75,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$75,000
Construction Management, including CQA and OE services	\$1,500,000	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$312,000	\$648,960	\$674,918	\$0	\$0	\$0	\$0	\$0	\$0	\$1,635,878
Closure Report	\$75,000	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$84,365	\$0	\$0	\$0	\$0	\$0	\$0	\$84,365
Subtotal	\$10,220,864												\$169,000	\$673,863	\$3,301,361	\$7,144,714	\$0	\$0	\$0	\$0	\$0	\$0	\$11,288,938
Contingency	\$3,066,259	2%	6%	30%	62%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$1,693,341	\$1,693,341	\$0	\$0	\$0	\$0	\$0	\$0	\$3,386,681
Subtotal with Contigency	\$13,287,123												\$169,000	\$673,863	\$4,994,701	\$8,838,055	\$0	\$0	\$0	\$0	\$0	\$0	\$14,675,620
LG&E & KU Overheads	\$465,049	2%	6%	30%	62%	0%	0%	0%	0%	0%	0%	100%	\$5,915	\$23,585	\$174,815	\$309,332	\$0	\$0	\$0	\$0	\$0	\$0	\$513,647
Project Total	\$13,752,172										i		\$175,000	\$697,000	\$5,170,000	\$9,147,000	\$0	\$0	\$0	\$0	\$0	\$0	\$15,189,000
																	-		· ·	·		-	

Assumptions							
LG&E & KU Overheads	3.50%						
Escalation	4.00%						
Contingency	30.00%						

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Mill Creek Generating Station" technical memo dated July 24, 2015.
- $\ensuremath{\text{2}}$ Assumes the use of CCR material to create grades to support the pond cap.
- $\ensuremath{\mathsf{3}}$ Assumes the use of Soil material to create pond cap or other design features.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Green River Generating Station COST ESTIMATE SUMMARY Page 21 of 24

Site: Green River Generating Station
Location: Central City, Kentucky

Phase: Proposed Conceptual Alternative CCR Closure - SO2 Pond

Base Year: 2015 **Date:** 1/18/2016

CAPITAL COSTS

PITAL COSTS			UNIT		
DESCRIPTION	QTY	UNIT	COST	TOTAL	NOTES
DUNDMENT CLOSURE					
Mobilization/Demobilization					•
Workplan, procurement, mobilization, demobilization SUBTOTAL Mobilization/Demobilization	1	LS	\$50,000.00	\$50,000 \$50,000	
Sediment & Erosion Control Sediment and Erision Control Measures SUBTOTAL Sediment & Erosion Control	2,900	LF	\$5.00	\$14,500 \$14,500	
Site Preparation					
Clearing/Grubbing Surveying	5 1	AC LS	\$10,350.00 \$5,000.00	\$51,750 \$5,000	
Utility Locating SUBTOTAL Site Preparation	2	EA	\$5,000.00	\$10,000 \$66,750	
Dewatering Dewatering	40.440.005	OI.	#0.00	Ф000 040	Assumes treatment required for TSS. Pump water to existing
Dewatering and discharge through NPDES permit SUBTOTAL Dewatering	13,140,935	GL	\$0.02	\$262,819 \$262,819	outlet structure
Utility Services Utility Modifications	1	LS	\$50,000.00	\$50.000	LG&E-KU to complete.
SUBTOTAL Utility Services				\$50,000	•
Excavation and Haul CCRs to ATB #2					\$2.36 excavator 1 cy cap = 100cy/hr (RSM 31 23 16.42 020) \$4.36 haul 12cy 15mph 2 mile (31 23 23.20 1018)+ \$2.84 do
Excavate and Direct Load to ATB #2	198,736	CY	\$9.56	\$1,899,916	200 hp 50 ft, clay (31 23 16.46 4040)
Regrade Material within SO2 pond (10.1 acres x 2' thick)	39,107	CY	\$8.10		\$8.10/ CY 200 HP dozer 300' (RSM 31 23 16.46 4420)+ no
Finish Grading, gentle slopes SUBTOTAL Excavation and Haul CCRs to ATB #2	12	AC	\$968.00	\$11,616 \$2,228,300	
Liner System & Fabriform					- -
Liner System Area (10.1 acres + 10%)					
60-mil Tex/smooth HDPE 10 oz. Geotextile (includes materials and installation)	483,952 483,952	SF SF	\$0.85 \$0.20	\$411,359 \$96,790	CH2M HILL recent project.
- Fabriform (6" thick product)	483,952	SF	\$6.73		Based on previous engineer's estimate
- Placement and Compaction	483,952	CY	\$2.39	\$1,156,644	\$2.01 Placement; Dozer, 300 hp, 300', common earth (RSI 23 23.14 5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31 23 23.23 5680)
- Moisture Conditioning/Dust Control	483,952	CY	\$0.57	\$275.852	4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + \$55/hr = \$105.83/hr x 10 hrs/day x 5 days/week / 9,216 CY/
Finish Grading, gentle slopes	53,772	SY	\$0.20	\$10,754	RSM 31 22 16.10 3300
SUBTOTAL Liner System & Fabriform				\$5,208,395	
Mechanical Improvements/Additions Piping to NPDES Outfall	1	LS	\$100,000.00	\$100,000	allowance
Items to be constructed to meet NPDES Permitting Requirements	1	LS	\$50,000.00	\$50,000	allowance
SUBTOTAL Mechanical Improvements/Additions Transport & Disposal				\$150,000	
Groundwater Monitoring					
New Monitoring wells, 4" (3,422 LF perimeter)	5	EA	\$17,600.00	\$88,000	assumes well spacing 1 well/750 feet; 5 wells to 75 feet dec
Groundwater Monitoring Events SUBTOTAL SUBTOTAL Groundwater Monitoring	8	Ea	\$10,000.00	\$80,000 \$168,000	unit cost reflects lab, QA/QC eval, report per event
Soil Sampling Confirmation Sampling (5/Acre)	50	EA	\$100.00	\$5,000	
Confirmation Sample Analysis	50	EA	\$150.00	\$7,500	single marker metal
Sample Packaging and Shipping SUBTOTAL Soil Sampling	48	EVENT	\$250.00	\$12,000 \$24,500	4 per month for 12 months
Surface Restoration					Sooding clone mix 64 hudre to be a first to the 6.4 mix
Mechanical Seeding & Mulching	12.0	AC	\$3,550.00	. ,	Seeding, slope mix, 6#, hydro/air seeding w/mulch & fertiliz (RSM 32 92 19.14 4600) + 40% re-application
Quantity/Final Survey SUBTOTAL Surface Restoration	1	LS	\$15,000.00	\$15,000 \$57,600	
SUBTOTAL CONSTRUCTION				\$8,280,864	Ī
Design, Project & Construction Management, and Closure Report Conceptual Design	1	LS	\$60,000.00	የደብ በበብ	LG&E provided, based on experience
Final Design and Permitting and permitting support	1	LS	\$230,000.00	\$230,000	LG&E provided, based on experience
PDI Construction Management, including CQA and OE services	1 1	LS LS	\$75,000.00 \$1,500,000.00		LG&E provided, based on experience LG&E provided, based on experience
Construction Contractor Performance and Payment Bonds	0.0%		\$8,280,863.84	\$0	LG&E provided
Closure Report SUBTOTAL Design, Project & Construction Management, and Closure Report	1	LS	\$75,000.00	\$75,000 \$1,940,000	Document Const. Work, QA/QC, and Record DWGs
SUBTOTAL IMPOUNDMENT CLOSURE				\$1,940,000	
SSS. OTAL IIII OCHDINLERI OLOGORL				ψ10,220,004	1

Assumptions

- 1. Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.
- Excavation volume quantities include removing CCR material from pond.
 Excavated ponds taken out of service will have embankments removed and graded to drain.
- Excavated points taken out of service will have embankinents removed and graded to drait
 Groundwater Monitoring is not required due to clean closure.
- Crodinavater Monitoring is not required due to clean closure.
 Confirmation sampling is required to confirm clean closure.
- 6. No waste characterization sample and profile will be required.
- 7. No road repair is included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to – 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of ________. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

Green River Facility Backup Quantities Nathan Zink

CCR Production Rates

CCR Production - 2015 Plan (tons)

CCR Production Handling Assumptions:

% Bot Ash Wet Sluice to ATB1: 100%

% Fly Ash Wet Sluice to ATB1: 100%

% Gypsum returned: 0%

	Green River				Accumulated Materia	al (Tons)
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	ATB2 Gypsum	Stack
2015	8,259	33,035	-	41,294	41,294	-
2016	-	-	-	-	-	-
2017	-	-	-	-	-	-
2018	-	-	-	-	-	-
2019	-	-	-	-	-	-
2020	-	-	-	-	-	-
2021	-	-	-	-	-	-
2022	-	-	-	-	-	-
2023	-	-	-	-	-	-
2024	-	-	-	-	-	-
2025	-	-	-	-	-	-
Total:	Assumed Additio	nal Accumula	ted Materi	ial (2015 thru clos	sure): 41,294	-

7/14/2015

Projected Material Generation - Handling Assumptions:

- A. Bottom Ash and Flyash:
- Until October 19, 2015 assume all fly ash and bottom ash slurried to Main Ash Pond, and
- After October 19, 2015 all material to the Main Ash Pond
- B. Gypsum
- No gypsum production at Green River Station

Approximate density of CCR in-place: 1 ton/CY

Pond Quantity Balance Estimate - By Pond:

Orange: To be confirmed by CAD

Yellow: Based on assumptions as listed

Based on CAD check on 7/13/15 - Doug Corbett and Nathan Zink

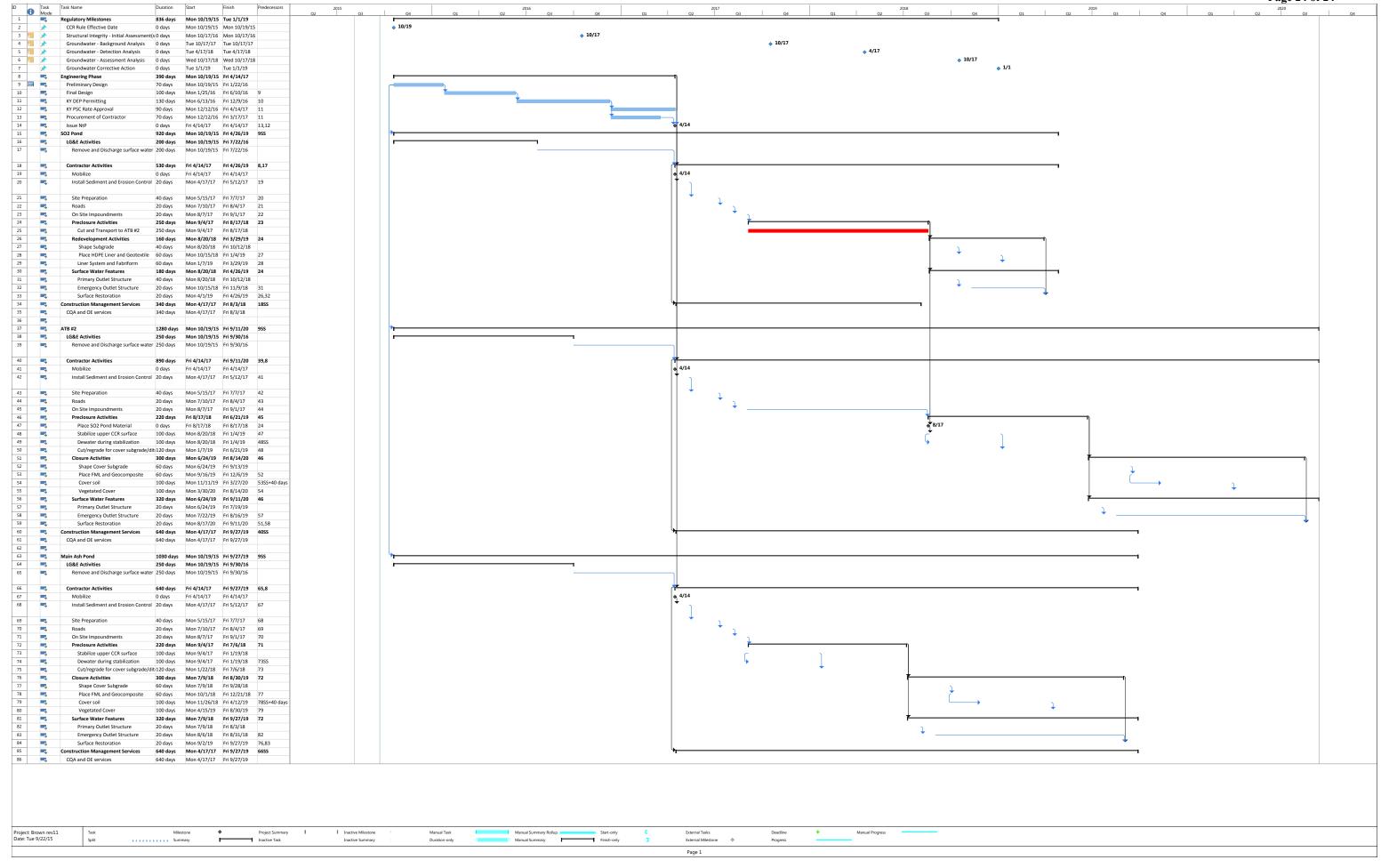
Main Ash Pond

ltem	Units	ATB 1	Notes	Key Item to Confirm for Final Estimate:	Estimated input value:	
Total surface area	AC	41.1				
Standing Surface Water (to remove)	GAL	15,074,898	Assume 10.6 acres with 8-ft average over wet pond area. Confirm with CAD.		8	ft
Length of perimeter	LF	6,520				
CUT:						
CCR cut in 2017 - for Main Ash Pond	CY	160,429	Approx. cut to create ditches in CH2M Jan. 2015 TM. CAD to update.	CAD - confirm cut to grade ditches for final cover		
Cut/regrade for cover subgrade/ditch	CY	13,764	Assume Trapazoidal channel 3H:1V 3-ft deep with 10-ft bottom	CAD - confirm cut to grade ditches for final cover	57	SF
FILL (to cover subgrade):						
CCR for Fill - from Baseline	CY	41,294				
otal Fill - Existing surface to final grade	CY	152,251	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
otal Fill for Closure of Pond	CY	205,758	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
2% Settlement Material Need	CY	4,034				
inal Cover Soil Volume	CY	132,615	CAD to update			
inal Cover Surface Area	AC	41.1	CAD to update	Cover for Anchor trench to estmate 20-ft offset from total surface area	10%	
tructural Support						
Geogrid	AC	49.3	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Geofabric	AC	49.3	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
amount of CCR/import fill required to close pond ^a	СУ	899,585	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
otal Cut: existing surface to final grade	СУ	409,085	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
otal Fill: existing surface to final grade	СУ	1,698,880	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Net: existing surface to final grade	CY	1,289,795	OLD from CH2M concent to make 5% cover. Smaller valley/trench instead			

Ash Treatment Basin #2 (ATB2)

ltem	Units	ATB 2	Notes Key Item to Confirm for Final Estimate:		Estimated input value:	
Total surface area	AC	36.5				
Standing Surface Water (to remove)	GAL	34,312,066	Assume 1.3 acres (8-ft deep) and 6.8 acres (14-ft deep) with 13-ft average over we	et pond area. Confirm with CAD. No bathometric data provided.	13	ft
Length of perimeter	LF	4,979				
CUT						
Cut for Final Cover: Stormwater channel	CY	122,977	Approx. cut to create ditches in CH2M Jan. 2015 TM. CAD to update.	CAD - confirm cut to grade ditches for final cover		
FILL						
From SO2 Pond	CY	198,736				
CCR fill - to estimated to fill water areas	CY	170,207	Assumed 105.5 acre-ft needed to fill the two existing locations of water			
CCR fill - For three (3) mounds at 5% slope	CY	28,529	Assumed Mound running NW to SE length 800-LF	Each mound is estimated to approximately 40,400 cubic yards of fill		
Total Fill - Existing surface to final grade	CY	321,713	D to optimize surface to minimize net fill required CAD - find final cover grading option to minimize net fill			
		225,071				
Total Fill for Closure of Pond	СУ	328,147	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
2% Settlement Material Need	CY	6,434				
Final Cover Soil Volume	СУ	129,484	Total surface area +20% and 2-ft of cover soil - CAD to update	Cover for Anchor trench to estmate 20-ft offset from total surface area	10%	
Final Cover Surface Area	AC	36.5	CAD to update			
Structural Support						
Geogrid	AC	43.8	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Geofabric	AC	43.8	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Total Fill: existing surface to final grade	CY	399,120	OLD - from CH2M concept to make 5% cover. Revise based on updated grades.			
Net: existing surface to final grade	CY	300,455	OLD - from CH2M concept to make 5% cover. Revise based on updated grades.			
Final cover volume	CY	113,790	OLD - from CH2M concept to make 5% cover. Revise based on updated grades.			
Amount of CCR/import fill required to close pond ^a	СУ	512,910	OLD - from CH2M concept to make 5% cover. Revise based on updated grades.			

SO2 Pond


item	Units	ATB 1	Notes	Key Item to Confirm for Final Estimate:	Estimated input value:	
Total surface area	AC	10.1				
Standing Surface Water (to remove)	GAL	13,140,935	Assume 4' over pond area. Confirm with CAD No Bathometric data provided		4	ft
Length of perimeter	LF	2,780				
CUT:						
CCR cut in 2016 - for Temporary Treatment Pond - Send to ATB2	CY	198,736	Excavate total surface area to 7.2 acres (bottom, 21' deep pond at 2.5H:1V Slopes).	Send to ATB2 in 2016	7.2	ac
FILL (to cover subgrade):						
CCR for Fill - from Borrow Source for Clean Closure	CY	17,892	Assume total surface area with an average depth of 1-ft	Cover for Anchor trench to estmate 20-ft offset from total surface area	10%	
ADDITIONAL FILL NEEDED for Final Cover: to cover subgrade	CY	0	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
Final Cover Soil Volume	CY	17,892	CAD to update			
Final Cover Surface Area	AC	10.1	CAD to update			
Amount of CCR/import fill required to close pond ^a	CY	0	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Total Cut: existing surface to final grade	CY	198,245	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Total Fill: existing surface to final grade	CY	3,485	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Net: existing surface to final grade	CY	194,760	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			

^a Dewatering and settlement of ash through closure activities will affect the quantities of fill material. In situ ash and geotechnical soil borings and testing are recommended to determine settlement during closure design.

Other Key Assumptions:

b Represents volume of pond.

Attachment 3 Schedule

Coal Combustion Residual Pond Closure Evaluation: Pineville Generating Station

PREPARED FOR: Louisville Gas & Electric Company and Kentucky Utilities Company

PREPARED BY: CH2M HILL, Inc.

DATE: September 18, 2015

1 Executive Summary

Louisville Gas & Electric Company and Kentucky Utilities Company (LG&E-KU) tasked CH2M HILL, Inc. (CH2M) with performing coal combustion residuals (CCR) evaluations for eight sites to develop conceptual CCR ash pond closure approach and cost estimates. The generating stations under evaluation are Ghent, Trimble County, Mill Creek, E.W. Brown, Cane Run, Green River, Tyrone, and Pineville.

This report applies to Pineville Generating Station (Exhibit 1). The following scope activities were completed:

- Review of LG&E-KU provided historical CCR information and kickoff meeting workshop (June 2015)
- Development of a CCR compliance alternative that consider regulatory, geotechnical, and stormwater aspects as it relates to CCR and ash ponds and associated cost estimates for the site.
- The Ash Treatment Basin (ATB) was identified as the applicable CCR unit for Pineville.
- The estimated cost for closing the ATB is summarized in Table 1-1. Detailed cost information is included in Attachment 2.

Proposed Conceptual CCR Pond Closure Approach	Low (-30%)	Total Capital Cost	High (+30%)
Remove surface water. Construct final cover (maximum grades). Install new surface water control pond and outlet structure.	\$4.9 M	\$7.0 M	\$9.1 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX and OPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and

other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

2 Proposed Conceptual CCR Pond Closure Approach

2.1 Development of Proposed Conceptual CCR Pond Closure Approach

The proposed conceptual CCR pond closure approach was developed based on previous work completed by CH2M and discussions with LG&E-KU during the kickoff meeting on June 23, 2015. The Pineville Generating Station is a closed facility and is not generating CCR wastewater at this time. The following defines the considered approach for closure for the ATB. Additional assumptions are summarized in Section 2.2.

- Surface water within ATB will be removed before closure begins, as needed, to allow surface
 improvement and dry material placement in ATB. Other potential subgrade improvements are
 described under the assumptions below.
- An aggregate perimeter road surrounding the ATB on top of the dike will be constructed.
- A final cover will be constructed. Cover construction will include preliminary CCR grading to shape the cover subgrade and will include the components described in the design assumptions below.
 Conceptual grades are shown in Exhibit 2. Significant grading features include the following:
 - A perimeter drainage ditch is shown within the dike. The ditch shows a high point along the north side, dropping at approximately 0.5 percent to the east and west around ATB.
 - The final grades include 4H:1V slopes along the inside of the ditch, extending no higher than 3 feet above the ditch invert. The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2 has a net airspace capacity of approximately 914 cubic yards above the existing CCR surface grade.

The amount of CCR required to fill the ATB ponds and removed from the remaining ponds was developed using computer aided engineering (CAE) software in AutoCAD using drawings provided by LG&E-KU. The proposed conceptual pond closure approach drawings are provided in Attachment 1.

2.2 Design Assumptions

This section discusses the design assumptions associated with the conceptual design.

Ash Treatment Basin

The general design assumptions used for the conceptual alternative is as derived from the LG&E-KU drawing discussed above and are summarized below:

- The existing grade is established from AutoCAD files provided by LG&E-KU on June 23, 2015.
- The ATB dike will be used without modification. Some improvements may be required based on the U.S. Environmental Protection Agency (USEPA) dam assessment findings, which is not part of this project.
- No additional CCR material will be deposited in the ATB.

- A 2 percent volume reduction has been included in consideration of settlement of in-place CCR because of dewatering or new fill/cover loads. Changes to these assumptions should be verified during design development.
- The conceptual pond closure approach is assumed to be geotechnically stable as shown. This must be confirmed during design development.
- Improvements assumed to prepare a workable CCR surface include removing surface water and localized regrading to facilitate dewatering.
- Final surface drainage channels are within the ATB dikes, would include final cover, and would be lined with turf reinforcement mat.
- The final cover is considered equivalent on a material quantity basis to the published CCR rule final cover requirements. The CCR Rule does not apply to the closure of this site (KYDEP regulations apply to the closure) but for costing purposes we have used a Final CCR Rule compliant cover design.
- The final cover is assumed to consist of 40-mil linear low-density polyethylene liner (LLDPE) placed directly on subgrade (CCR) and covered with geocomposite or strip drains and 2 feet of soil cover. A vegetative cover will be established.
- A 3 percent slope was used for the final cover.
- Ditches were included in the grading for the pond. The ditch geometry for ATB was assumed to consist of a trapezoidal channel with 4H:1V on the inner slope and 3H:1V on the outer side slopes. A bottom width of 10 feet was used to convey the estimated 100-year, 24-hour storm event (worst case) flow, as documented in the CH2M memorandum dated January 2015. Additional drainage features over the 5 percent cover (such as more closely spaced surface water ditches or other features) may be required, which have not been considered herein.
- A new surface water management pond will be installed south of the ATB to manage clean surface
 water from the closed ATB. The existing ATB primary outlet structure may/may not be able to be
 modified to regulate discharge, removed portions demolished and disposed of.
- No special dewatering structures will be required to remove decant water from the wet coal ash materials in the ash pond.

3 Estimated Material Volumes and Areas

The Pineville Generating Station is closed and is not generating CCR material. No additional CCR material will be deposited in the ATB from the station.

The conceptual alternative was developed using AutoCAD files provided by LG&E-KU as described under Section 2.2, Design Assumptions. Summaries of the estimated material quantities for the ATB is shown in Tables 3-1.

Table 3-1. Proposed Conceptual Estimated Material Quantities - ATB

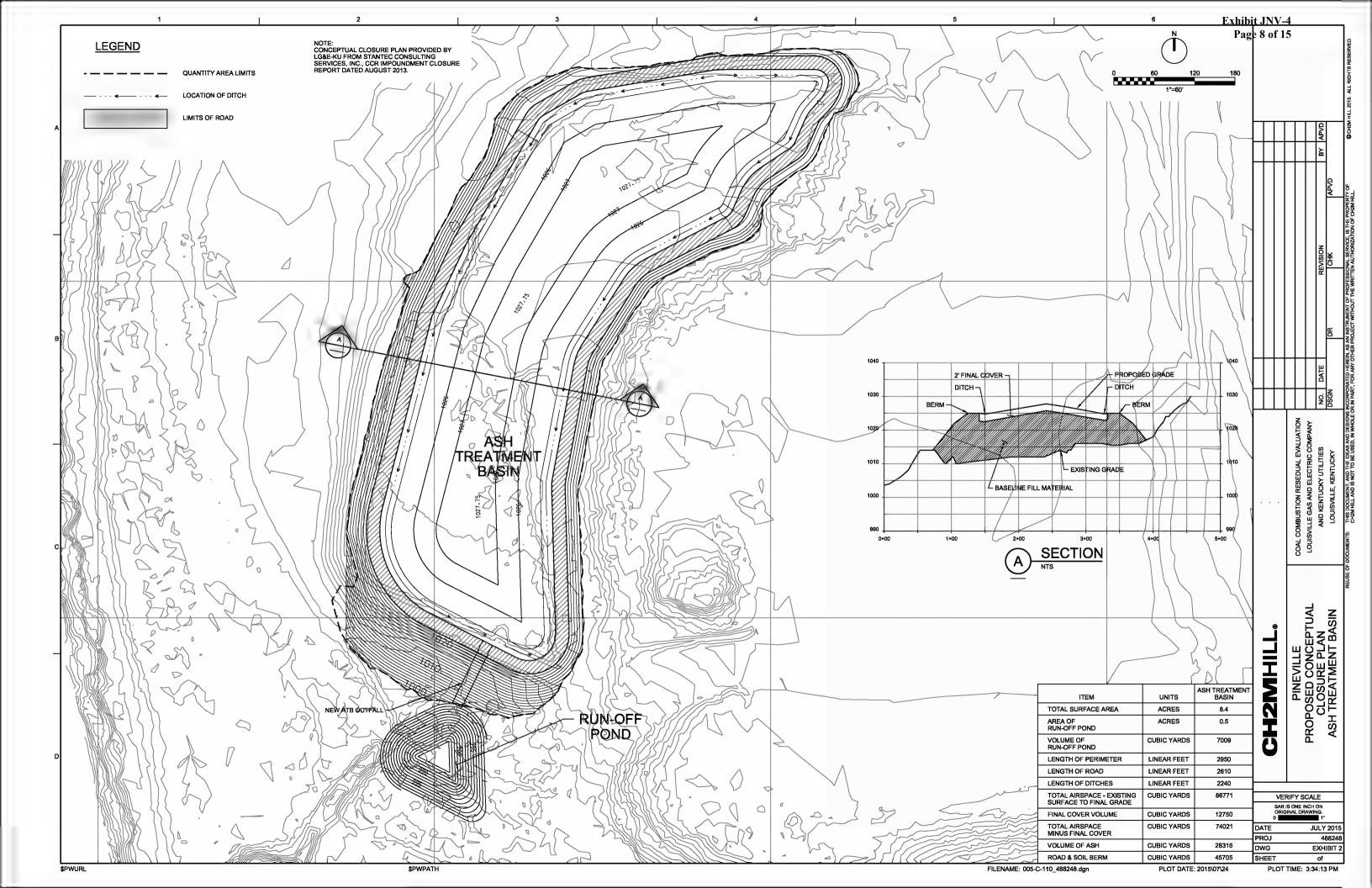
Item	Units	Quantity
Total surface area	AC	8.4
Standing surface water (to remove)	GAL	5,474,290
Length of perimeter	LF	2,950
Length of perimeter road to be installed on the dike	LF	2,610
FILL REQUIRED: Existing Surface to Final Cover Subgrade	СҮ	86,771
FILL SOURCES:		
Fill as part of surface regrading	CY	28,316
From soil volume for material for road and dike	CY	45,705
TOTAL POTENTIAL FILL	CY	0
Final cover soil volume	CY	12,750
New Surface Water Pond (Surface Area)	AC	0.5
New Surface Water Outlet	Each	2

4 Schedule

Exhibit 4-1 presented in Attachment 3 illustrates the proposed schedule to complete the design, permitting, and construction for the ATB closure. We assumed the design work would begin in 2016 to reduce the long-term escalation costs; however, since this pond closure does not need to comply with the Final CCR rule timeline, LG&E-KU has the flexibility to revise this schedule as needed.

5 Construction Cost Estimate

The estimated construction cost for closing the Ponds as described in Section 2 is shown in Table 5-1.


Proposed Conceptual Closure Alternative	Low (-30%)	Total Capital Cost	High (+30%)
Remove surface water. Construct final cover (maximum grades). Install new surface water control pond and outlet structure.	\$4.9 M	\$7.0 M	\$9.1 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX and OPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting

feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

Attachment 1 Proposed Conceptual Alternative CCR Closure

Attachment 2 Proposed Conceptual Alternative Cost Estimate

COST COMPARISON FOR REMEDIAL ALTERNATIVES

Site: Pineville Generation Station Base Year: 2015

Location:Pineville, KentuckyDate:SeptemberPhase:Proposed Conceptual CCR ClosureROM Level:Class 4

Pineville Generating Station	
Fill Ash Treatment Pond with CCR's, install	
final cover and close in-place.	
Fill Ash Treatment Pond with CCR's generated at facility or from other LG&E-	
	Fill Ash Treatment Pond with CCR's, install final cover and close in-place. Fill Ash Treatment Pond with CCR's

Description

KU facilities, install final cover, stormwater control improvements and close in-place.

Empoundment Closure \$6,748,131 **LG&E Overhead** \$236,185

Total Initial Costs\$6,984,316Upper ROM Range\$9,079,611Lower ROM Range\$4,889,021

This is not an offer for construction and/or project execution. Please note, these order of magnitude cost estimates are assumed to represent the actual installed cost within the range of - 30 percent to + 30 percent of the costs indicated. The cost estimate has been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project will depend on actual labor, material costs, and competitive variable factors. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific decisions to help ensure proper project evaluation and adequate funding.

ver 6.5

CCR Rule - Pineville Generating Station Cost Estimate - ATB 21-Sep-15

Item	Cost 2015 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
Proposed Conceptual Alternative CCR Closure - ATB	\$6,748,131	0%		8%			_	_		_	+	100%											
· ·																							1
IMPOUNDMENT CLOSURE	\$5,190,870	0%	0%	8%	29%	63%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$465,175	\$1,677,045	\$3,825,325	\$0	\$0	\$0	\$0	\$0	\$5,967,544
Mobilization/Demobilization	\$50,000	0%	0%	0%	80%	20%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$44,995	\$11,699	\$0	\$0	\$0	\$0	\$0	\$56,693
Sediment & Erosion Control	\$25,000	0%	0%	0%	35%	65%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$9,843	\$19,010	\$0	\$0	\$0	\$0	\$0	\$28,853
Site Preparation	\$71,750	0%	0%	0%	60%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$48,425	\$33,575	\$0	\$0	\$0	\$0	\$0	\$82,000
Dewatering	\$109,486	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$123,157	\$0	\$0	\$0	\$0	\$0	\$0	\$123,157
Repair On-Site Pond Embankments	\$200,000	0%	0%	0%	30%	70%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$67,492	\$163,780	\$0	\$0	\$0	\$0	\$0	\$231,272
Utility Services	\$50,000	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$56,243	\$0	\$0	\$0	\$0	\$0	\$0	\$56,243
Perimeter Berm (not required)	\$0	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$98,815	0%	0%	0%	30%	70%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$33,346	\$80,919	\$0	\$0	\$0	\$0	\$0	\$114,265
Pre-Closure / Preparation	\$1,587,751	0%	0%	0%	30%	70%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$535,801	\$1,300,211	\$0	\$0	\$0	\$0	\$0	\$1,836,012
Closure/Final Cover	\$1,289,343	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$1,508,349	\$0	\$0	\$0	\$0	\$0	\$1,508,349
New Storm Water Pond	\$137,471	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$154,636	\$0	\$0	\$0	\$0	\$0	\$0	\$154,636
Mechanical Improvements/Additions	\$50,000	0%	0%	0%	30%	70%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$16,873	\$40,945	\$0	\$0	\$0	\$0	\$0	\$57,818
Surface Water Features	\$100,000	0%	0%	0%	70%	30%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$78,740	\$35,096	\$0	\$0	\$0	\$0	\$0	\$113,836
Primary Outlet Structure	\$30,000	0%	0%	0%	60%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$20,248	\$14,038	\$0	\$0	\$0	\$0	\$0	\$34,286
Stormwater Pond Outlet Structure	\$50,000	0%	0%	0%	70%	30%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$39,370	\$17,548	\$0	\$0	\$0	\$0	\$0	\$56,918
Surface Restoration	\$65,855	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$77,041	\$0	\$0	\$0	\$0	\$0	\$77,041
Groundwater Monitoring	\$150,400	0%	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$32,535	\$67,672	\$70,379	\$0	\$0	\$0	\$0	\$0	\$170,585
Conceptual Design	\$65,000	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$70,304	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$70,304
Final Design and Permitting and permitting support	\$260,000	0%	0%	50%	30%	20%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$140,608	\$87,739	\$60,833	\$0	\$0	\$0	\$0	\$0	\$289,180
PDI	\$75,000	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$81,120	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$81,120
Construction Management including CQA and OE services	\$650,000	0%	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$140,608	\$292,465	\$304,163	\$0	\$0	\$0	\$0	\$0	\$737,236
Closure Report	\$75,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$87,739	\$0	\$0	\$0	\$0	\$0	\$87,739
Subtotal	\$5,190,870												\$0	\$0	\$465,175	\$1,677,045	\$3,825,325	\$0	\$0	\$0	\$0	\$0	\$5,967,544
																							1
Contingency	\$1,557,261	0%	0%	8%	29%	63%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$895,132	\$895,132	\$0	\$0	\$0	\$0	\$0	\$1,790,263
Subtotal with Contingency	\$6,748,131												\$0	\$0	\$465,175	\$2,572,176	\$4,720,457	\$0	\$0	\$0	\$0	\$0	\$7,757,807
																							1
LG&E & KU Overheads	\$236,185	0%	0%	0%	35%	65%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$16,281	\$90,026	\$165,216	\$0	\$0	\$0	\$0	\$0	\$271,523
Project Total	\$6,984,316												\$0	\$0	\$481,000	\$2,662,000	\$4,886,000	\$0	\$0	\$0	\$0	\$0	\$8,029,000

Assumptions							
LG&E & KU Overheads	3.5%						
Escalation	4.0%						
Contingency	30.0%						

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Pineville Generating Station" technical memo dated July 24, 2015.
- 2 Assumes the use of CCR material to create grades to support the pond cap.
- $\ensuremath{\mathsf{3}}$ Assumes the use of Soil material to create pond cap or other design features.
- $\mbox{\bf 4}$ Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Pineville Generating Station Pineville, Kentucky Proposed Conceptual Alternative CCR Closure - ATB 2015 1/18/2016

Site: Location Phase: Base Year: Date:

			UNIT		
DESCRIPTION	QTY	UNIT	COST	TOTAL	NOTES
NDMENT CLOSURE					1
Mobilization/Demobilization Workplan, procurement, mobilization, demobilization SUBTOTAL Mobilization/Demobilization	1	LS	\$50,000.00	\$50,000 \$50,000	• 1
SUBTOTAL Mobilization/Demobilization Sediment & Erosion Control				\$50,000	
Sediment & Erosion Control Measures SUBTOTAL Sediment & Erosion Control	1	LS	\$25,000.00	\$25,000 \$25,000	allowance for BPM
Site Preparation				• • • • • • • • • • • • • • • • • • • •	1
Clearing/Grubbing Surveying	5 1	AC LS	\$10,350.00 \$10,000.00	\$10,000	Clear & grub areas to receive fill, as required
Utility Locating SUBTOTAL Site Preparation	2	EA	\$5,000.00	\$10,000 \$71,750	Ī
Dewatering					1
Dewatering and discharge through NPDES permit SUBTOTAL Dewatering	5,474,290	GL	\$0.02	\$109,486 \$109,486	Assumes minor treatment required for TSS. Pump water to existing outlet
Repair On-Site Pond Embankments				,,	
Access Modifications on existing CCR Pond embankments SUBTOTAL Repair On-Site Pond Embankments	1	LS	\$200,000.00	\$200,000 \$200,000	Assume embankments in good condition.
Utility Services			φ <u>το</u> ::-		1
Utility Modifications SUBTOTAL Utility Services	1	LS	\$50,000.00	\$50,000 \$50,000	LG&E-KU to complete.
Roads					1
Roads Dense Grade Aggregate (materials, hauling and placement) SUBTOTAL Roads	2,610	CY	\$37.86	\$98,815 \$98,815	Allowance based on PE's recent bid evaluation at Cane Run (includes FO
Pre-Closure / Preparation				ψ30,013	-
Cut/regrade material within pond Material for Road and Soil Berm	40,656	CY	\$8.10		\$8.10/ CY 200 HP dozer 300' (RSM 31 23 16.46 4420)+ no haul
Excavation and Load-out (from off-site borrow area) Hauling (assume 2 mile cycle)	45,705 45,705	CY CY	\$20.00 \$4.36		Allowance based on PE's recent bid evaluation at Cane Run (includes FO \$4.36 haul; 12cy, 15mph, 2 mile, 15 minute (RS Means 31 23 23.20 1018)
- Placement and Compaction	45,705	CY	\$2.39	Ø400.005	\$2.01 Placement; Dozer, 300 hp, 300', common earth (RSM 31 23 23.14 \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31 23 23.23 5680)
- Moisture Conditioning/Dust Control	45,705	CY	\$0.57	\$26,052	4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$ 10 hrs/day x 5 days/week / 9,216 CY/week
Finish Grading, gentle slopes (assume 100% of pond) SUBTOTAL Pre-Closure / Preparation	48,884	SY	\$0.20		RSM 31 22 16.10 3300
Closure/Final Cover					1
Final Cover: 40-mil Tex/smooth LLDPE Geocomposite (includes materials and installation) Cover 50il /2 feet thick)	365,904 365,904	SF SF	\$0.65 \$0.55	\$237,838 \$201,247	
Cover Soil (2 feet thick) - Excavation and Load-out (from off-site borrow area) - Excavation and Load-out (from off-site borrow area)(top soil)	20,328 6,776	CY CY	\$20.00 \$20.00		Allowance based on PE's recent bid evaluation at Cane Run (includes FOI Allowance based on PE's recent bid evaluation at Cane Run (includes FOI
Excavation and Load-out (from off-site borrow area)(top soil) Hauling (assume 2-mile cycle)	6,776 27,104	CY	\$20.00 \$4.36		Allowance based on PE's recent bid evaluation at Cane Run (includes FOI 2013 RSMeans Site Work and Landscape Cost Data, 31 23 2320 0018
- Placement and Compaction	27,104	CY	\$2.39	\$64,779	\$2.01 Placement; Dozer, 300 hp, 300', common earth (RSM 31 23 23.14 \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31 23 23.23 5680)
- Moisture Conditioning/Dust Control	27,104	CY	\$0.57	\$15,449	4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$ 10 hrs/day x 5 days/week / 9,216 CY/week
Drainage System Piping Finish Grading, gentle slopes SUBTOTAL Closure/Final Cover	10 48,884	AC SY	\$10,000.00 \$0.20	\$100,000 \$9,777 \$1,289,343	RSM 31 22 16.10 3300
New Storm Water Pond				ψ1,20 3 ,343	0.5 acre
Excavate New Pond			-		\$2.36 1 CY excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer e
- Excavation and Load-out - Hauling (assume 2 mile cycle)	7,009 7,009	CY CY	\$6.60 \$4.36		200 hp, common earth, 150' (RSM 31 23 16.46 4220) \$4.36 haul; 12cy, 15mph, 2 mile, 15 minute (RS Means 31 23 23.20 1018)
- Placement and Compaction	7,009	CY	\$2.39	\$16.75°	\$2.01 Placement; Dozer, 300 hp, 300', common earth (RSM 31 23 23.14 \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31 23 23.23 5680)
- Moisture Conditioning/Dust Control	7,009	CY	\$0.57	\$3,995	4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$ 10 hrs/day x 5 days/week / 9,216 CY/week
Surface Grading, lagoon bottoms Cover Soil (aggregate - 1 feet thick)	2,420	SY	\$3.87	\$9,365	RSM 31 22 16.10 3500
- Dense Grade Aggregate (materials, hauling and placement) SUBTOTAL New Storm Water Pond	807	CY	\$37.86	\$30,540 \$137,471	Allowance based on PE's recent bid evaluation at Cane Run (includes FOI
Mechanical Improvements/Additions Items to be constructed to meet NPDES Permitting Requirements	1	LS	\$50,000.00	¢50,000	allowance
Items to be constructed to meet NPDES Permitting Requirements SUBTOTAL Mechanical Improvements/Additions		LO	φυυ ₁ υυυ.UU	\$50,000 \$50,000	
Surface Water Features Items to meet NPDES Permit requirements	1	LS	\$100,000.00	\$100,000	allowance
SUBTOTAL Surface Water Features				\$100,000	
Primary Outlet Structure Modify SUPTOTAL Primary Outlet Structure	1	LS	\$30,000.00		allowance
SUBTOTAL Primary Outlet Structure Stormwater Pond Outlet Structure				\$30,000	1
Stormwater Pond Outlet Structure Construct SUBTOTAL Stormwater Pond Outlet Structure	1	LS	\$50,000.00	\$50,000 \$50,000	allowance
SUBTOTAL Stormwater Pond Outlet Structure Surface Restoration				φου,000	-
Mechanical Seeding & Mulching	10	AC	\$3,550.00		Seeding, slope mix, 6#, hydro/air seeding w/mulch & fertilizer (RSM 32 92 4600) + 40% re-application
Quantity/Final Survey SUBTOTAL Surface Restoration	1	LS	\$30,000.00	\$30,000 \$65,855	_
Groundwater Monitoring		F.	¢47.000.00	Ac:	assumes well appoint 4 well 750 ft at 1
New Monitoring wells (2,950 LF perimeter) Groundwater Monitoring Events SUBTOTAL Groundwater Monitoring	4 8	EA Ea	\$17,600.00 \$10,000.00		assumes well spacing 1 well/750 feet; 4 wells to 75 feet deep unit cost reflects lab, QA/QC eval, report per event
SUBTOTAL Groundwater Monitoring SUBTOTAL IMPOUNDMENT CLOSURE				\$150,400 \$4,090,870	-
Design, Project & Construction Management, and Closure Report				ψ ν,υ3 υ,8/0	-
Conceptual Design Final Design and Permitting and permitting support	1 1	LS LS	\$65,000.00 \$260,000.00	\$260,000	LG&E provided, based on experience LG&E provided, based on experience
PDI Construction Management including CQA and OE services	1	LS LS	\$75,000.00 \$650,000.00	\$75,000 \$650,000	LG&E provided, based on experience LG&E provided, based on experience
Construction Contractor Performance and Payment Bonds Closure Report	0.0% 1	LS	\$4,090,870.36 \$75,000.00	\$0	LG&E provided Document Const. Work, QA/QC, and Record DWGs
SUBTOTAL Design, Project & Construction Management, and Closure Report				\$1,060,000	
SUBTOTAL IMPOUNDMENT CLOSURE				\$5,150,870	

Assumptions:

1. Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.

2. Excavation volume quantities include removing CCR material from ponds.

3. Excavated ponds taken out of service will have embankments removed and graded to drain.

8. No road repair is included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to – 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of _______. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

Pineville Facility Backup Quantities Dave Lake

CCR Production Rates

7/21/2015

CCR Production Handling Assumptions:

% Bot Ash Wet Sluice to ATB: 100% % Fly Ash Wet Sluice to ATB: % Gypsum to ATB:

CCR Production - 2015 Plan (tons)

		Pineville		
	Year	Bot Ash	Fly Ash Gyps	um TOTAL
	2015			-
	2016			-
	2017			-
	2018			-
	2019			-
	2020			-
	2021			-
	2022			-
	2023			-
	2024			-
	2025			-
Total:		Assumed Add	itional Accumulated	Material (2015 th

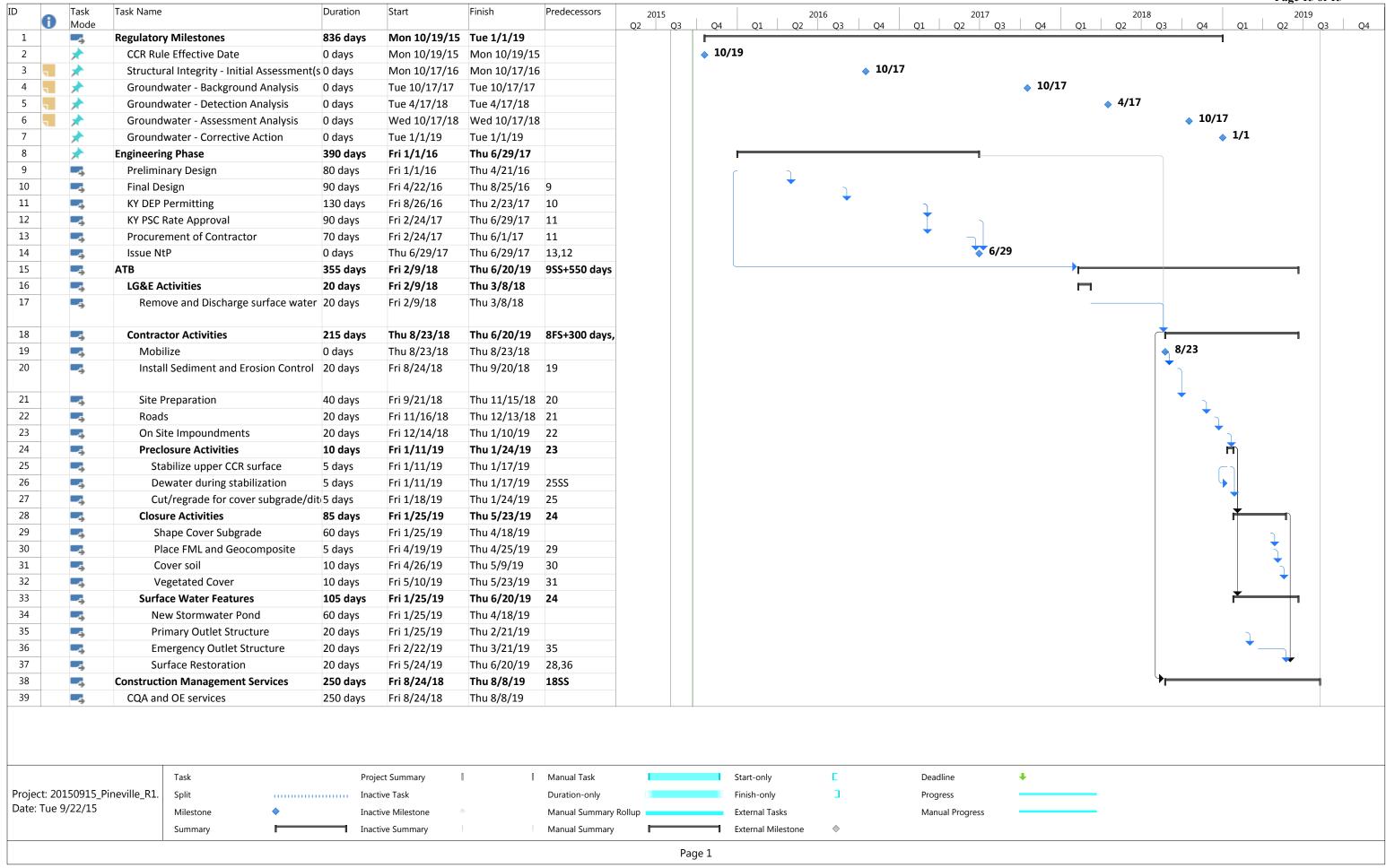
Accumulated Material (Tons) ATB

Assumed Additional Accumulated Material (2015 thru closure):

Projected Material Generation - Handling Assumptions:
Pineville Generating Station is closed and not producing CCR material

Approximate density of CCR in-place: $1 \, \text{ton/CY}$ Assume dry material for this exersize To be confirmed by CAD Based on assumptions as listed

Pond Quantity Balance Estimate:


Ash Treatment Basin

item	Units	АТВ	Notes	Key Item to Confirm for Final Estimate:	Estimated input value:	
Total surface area	AC	8.4				1
Standing Surface Water (to remove)	GAL	5,474,290	Assume 2-ft average over pond area. Confirm with CAD.		2	ft
Length of perimeter	LF	2,950				1
сит:						
CCR cut in 2017	СУ	111,460	Approx. cut to create ditches in CH2M Jan. 2015 TM. CAD to update.	CAD - confirm cut to grade ditches for final cover		1
FILL (to cover subgrade):						
CCR for Fill - from Baseline	CY	0				ł
Length of Perimeter Road to be installed on dyke	LF	2,610				1
Soil Volume for material for road and dyke	СУ	45,705				1
Total Fill - as part of surface regrading	СУ	53,005	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		1
Total Fill for Closure of Pond	СУ	914	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		1
2% Settlement Material Need	СУ	914				1
Final Cover Soil Volume	СУ	12,750	CAD to update			1
Final Cover Surface Area	AC	8.4	CAD to update			1
Structural Support						
Geogrid	AC	0.0	not required as no new fill is being placed			l
Geofabric	AC	0.0	not required as no new fill is being placed			
Surface Water Containment						1
New Surface Water Pond Surface Area	AC	0.5				
Cut volume for New Surface Water Pond	CY	3,970				ł

Other Key Assumptions:

a Dewatering and settlement of ash through closure activities will affect the quantities of fill material. In situ ash and geotechnical soil borings and testing are recommended to determine settlement during closure design.

Attachment 3 Proposed Conceptual Alternative Schedule

Coal Combustion Residual Pond Closure Evaluation: Tyrone Generating Station

PREPARED FOR: Louisville Gas & Electric Company and Kentucky Utilities Company

PREPARED BY: CH2M HILL, Inc.

DATE: November 20, 2015

1 Executive Summary

Louisville Gas & Electric Company and Kentucky Utilities Company (LG&E-KU) tasked CH2M HILL, Inc. (CH2M) with performing coal combustion residuals (CCR) evaluations for eight sites to develop conceptual CCR ash pond closure approach and cost estimates. The generating stations under evaluation are Ghent, Trimble County, Mill Creek, E.W. Brown, Cane Run, Green River, Tyrone, and Pineville.

This report applies to Tyrone Generating Station (Exhibit 1). The following scope activities were completed:

- Review of LG&E-KU provided historical CCR information and kickoff meeting workshop (June 2015)
- Development of a CCR compliance alternative that consider regulatory, geotechnical, and stormwater aspects as it relates to CCR and ash ponds and associated cost estimates for the site.
- The Ash Treatment Basin (ATB) was identified as the applicable CCR unit for Tyrone. Other CCR units that could be affected by the CCR regulations at the site, but that were not evaluated further, include the Beneficial Reuse Stockpile and the possible CCR Fill Area.
- The estimated cost for closing the ATB is summarized in Table 1-1. Detailed cost information is included in Attachment 2.

Table 1-1. Tyrone Proposed Conceptual Cost Estimate

Proposed Conceptual CCR Pond Closure Approach	Low (-30%)	Total Capital Cost	High (+30%)
Fill ATB with material from the Beneficial Reuse Stockpile onsite. Remove surface water. Construct final cover (maximum grades). Install new surface water control pond and outlet structure.	\$8.1 M	\$11.6 M	\$15.1 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX and OPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

2 Proposed Conceptual CCR Pond Closure Approach

2.1 Development of Proposed Conceptual CCR Pond Closure Approach

The proposed conceptual CCR pond closure approach was developed based on previous work completed by CH2M and discussions with LG&E-KU during the kickoff meeting on June 23, 2015. The Tyrone Generating Station is a closed facility and is not generating CCR wastewater at this time. The following defines the considered approach for closure for the ATB. Additional assumptions are summarized in Section 2.2.

- CCR material from the Beneficial Reuse Stockpile onsite (approximately 90,000 cubic yards) will be excavated and placed in the ATB.
- Surface water within ATB will be removed before closure begins, as needed, to allow surface
 improvement and dry material placement in ATB. Other potential subgrade improvements are
 described under the assumptions below.
- An aggregate perimeter road surrounding the ATB on top of the dike will be constructed.
- A final cover will be constructed. Cover construction will include preliminary CCR grading to shape
 the cover subgrade and will include the components described in the design assumptions below.
 Conceptual grades are shown in Exhibit 2. Significant grading features include the following:
 - A perimeter drainage ditch is shown within the dike. The ditch shows a high point along the southwestern side, dropping at approximately 0.5 percent to the east and west around the ATB.
 - The final grades include 4H:1V slopes along the inside of the ditch, extending no higher than 3 feet above the ditch invert. The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2 has a net airspace capacity of approximately 39,290 cubic yards above the existing CCR surface grade.

The amount of CCR required to fill the ATB ponds and removed from the remaining ponds was developed using computer aided engineering (CAE) software in AutoCAD using drawings provided by LG&E-KU. The proposed conceptual pond closure approach drawings are provided in Attachment 1.

2.2 Design Assumptions

This section discusses the design assumptions associated with the conceptual design.

Ash Treatment Basin

The general design assumptions used for the conceptual alternative is as derived from the LG&E-KU drawing discussed above and are summarized below:

• The existing grade is established from AutoCAD files provided by LG&E-KU on June 23, 2015.

- The ATB dike will be used without modification. Some improvements may be required based on the U.S. Environmental Protection Agency (USEPA) dam assessment findings, which is not part of this project.
- The existing Beneficial Reuse Stockpile material at the site will be placed in the ATB prior to closure of the ATB.
- All volume calculations are based on an in-place (moist) density 1 ton per cubic yard (74 yards per cubic foot) for all cut and placed CCR material and does not account for shrinkage/swell during placement. A 2 percent volume reduction has been included in consideration of settlement of in-place CCR because of dewatering or new fill/cover loads. Changes to these assumptions should be verified during design development.
- The conceptual pond closure approach is assumed to be geotechnically stable as shown. This must be confirmed during design development.
- Improvements assumed to prepare a workable CCR surface include removing surface water, localized regrading to facilitate dewatering, and installing a geotextile, a layer of dry CCR, and geogrid.
- Final surface drainage channels are within the ATB dikes, would include final cover, and would be lined with turf reinforcement mat.
- The final cover is considered equivalent on a material quantity basis to the published CCR rule final cover requirements. The CCR Rule does not apply to the closure of this site (KYDEP regulations apply to the closure) but for costing purposes we have used a Final CCR Rule compliant cover design.
- The final cover is assumed to consist of 40-mil linear low-density polyethylene liner (LLDPE) placed directly on subgrade (CCR) and covered with geocomposite or strip drains and 2 feet of soil cover. A vegetative cover will be established.
- A 5 percent slope was used for the final cover.
- Ditches were included in the grading for the pond. The ditch geometry for ATB was assumed to
 consist of a trapezoidal channel with 4H:1V on the inner slope and 3H:1V on the outer side slopes. A
 bottom width of 10 feet was used to convey the estimated 100-year, 24-hour storm event (worst
 case) flow, as documented in the CH2M memorandum dated January 2015. Additional drainage
 features over the 5 percent cover (such as more closely spaced surface water ditches or other
 features) may be required, which have not been considered herein.
- A new surface water management pond will be installed northeast of the ATB to manage clean surface water from the closed ATB. The existing ATB primary outlet structure may/may not be able to be modified to regulate discharge, removed portions demolished and disposed of.
- No special dewatering structures will be required to remove decant water from the wet coal ash materials in the ash pond.

3 Estimated Material Volumes and Areas

The Tyrone Generating Station is closed and is not generating CCR material. No additional CCR material will be deposited in the ATB from the station. Existing beneficial reuse stockpiled CCR material at the site will be deposited in the ATB prior to closure of the ATB.

The conceptual alternative was developed using AutoCAD files provided by LG&E-KU as described under Section 2.2, Design Assumptions. Summaries of the estimated material quantities for the ATB is shown in Tables 3-1.

Table 3-1. Proposed Conceptual Estimated Material Quantities - ATB

ltem	Units	Quantity
Total surface area	AC	9.8
Standing surface water (to remove)	GAL	6,386,671
Length of perimeter	LF	2,975
Length of perimeter road to be installed on the dike	LF	2,810
FILL REQUIRED: Existing Surface to Final Cover Subgrade	СҮ	213,555
FILL SOURCES:		
Fill as part of surface regrading		39,290
From soil volume for material for road and dike	CY	65,650
From Beneficial Reuse Stockpile	CY	90,000
TOTAL POTENTIAL FILL	СҮ	0
Final cover soil volume	СҮ	18,615
New Surface Water Pond (Surface Area)	AC	0.5
New Surface Water Outlet	Each	2

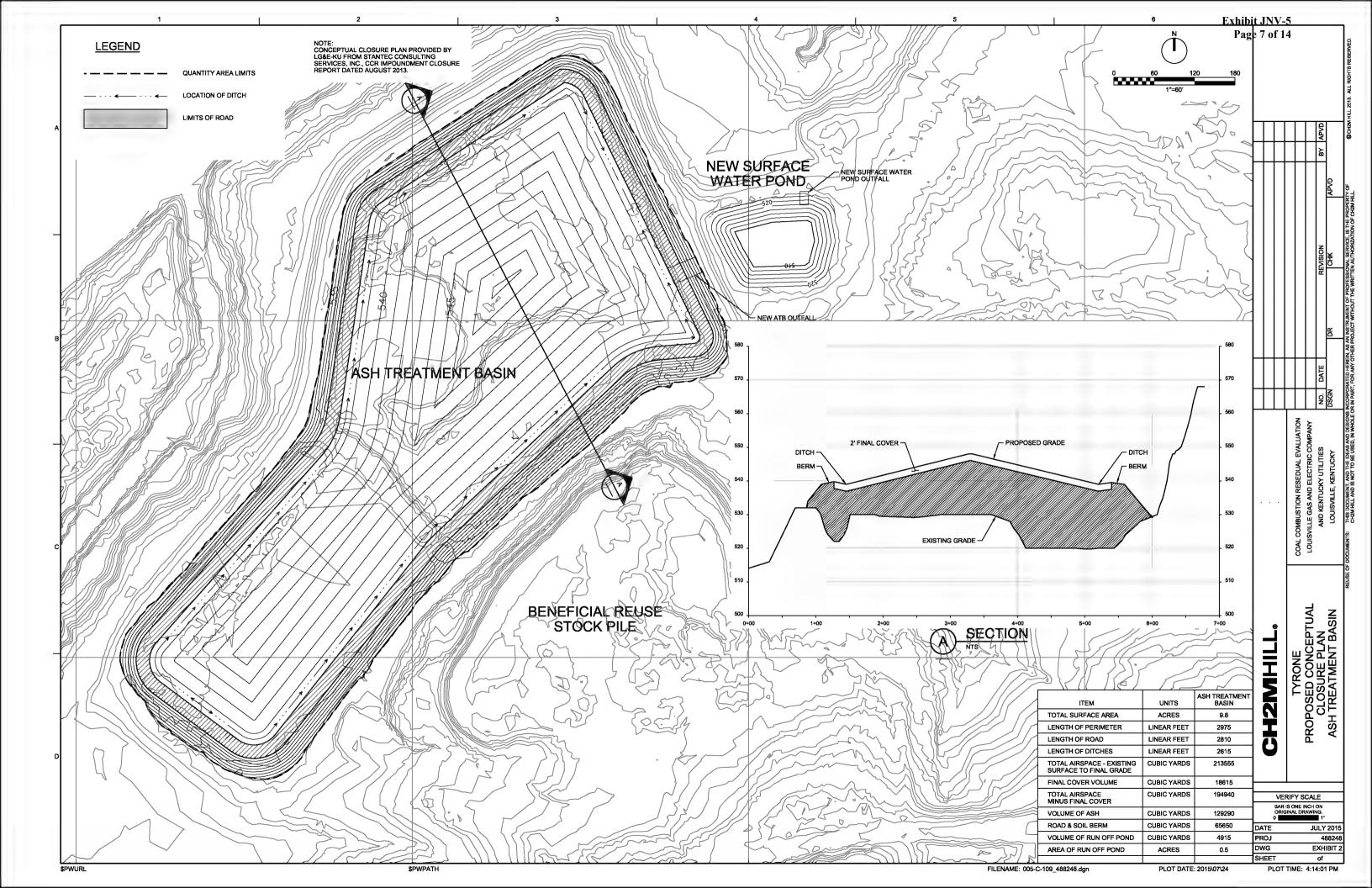
4 Schedule

Exhibit 4-1 as presented in Attachment 3 illustrates the proposed schedule to complete the design, permitting, and construction for the ATB closure. We assumed the design work would begin in 2016 to reduce the long-term escalation costs; however, since this pond closure does not need to comply with the Final CCR rule timeline, LG&E-KU has the flexibility to revise this schedule as needed,

5 Construction Cost Estimate

The estimated construction cost for closing the Ponds as described in Section 2 above is shown in Table 5-1.

Table 5-1. Tyrone Proposed Conceptual Cost Estimate


Proposed Conceptual Closure Alternative	Low (-30%)	Total Capital Cost	High (+30%)
Fill ATB with material from the Beneficial Reuse Stockpile onsite. Remove surface water. Construct final cover (maximum grades). Install new surface water control pond and outlet structure.	\$8.1 M	\$11.6 M	\$15.1 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX and OPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general

bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

Attachment 1 Proposed Conceptual Alternative CCR Closure

Attachment 2 Proposed Conceptual Alternative Cost Estimate

COST COMPARISON FOR REMEDIAL ALTERNATIVES

Site:Tyrone Generation StationBase Year:2015Location:Versailles, KentuckyDate:NovemberPhase:Proposed Conceptual CCR ClosureROM Level:Class 4

	Tyrone Generating Station
Remedial	Fill Ash Treatment Pond with CCR's, install
Technology	final cover and close in-place.
	Fill Ash Treatment Pond with CCR's
	generated at facility or from other LG&E-
	KU facilities, install final cover, stormwater
Description	control improvements and close in-place.
Contracted Direct Capital Cost	\$11,229,393
LG&E Overhead	\$393,029
Total Initial Costs	\$11,622,422
Upper ROM Range	\$15,109,149
Lower ROM Range	\$8,135,695

This is not an offer for construction and/or project execution. Please note, these order of magnitude cost estimates are assumed to represent the actual installed cost within the range of - 30 percent to + 30 percent of the costs indicated. The cost estimate has been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project will depend on actual labor, material costs, and competitive variable factors. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific decisions to help ensure proper project evaluation and adequate funding.

ver 6.5

CCR Rule - Tyrone Generating Station Cost Estimate - ATB 20-Nov-15

ltem	Cost 2015 Dollars	2015	2016	2017	7 2018	2019	2020	2021	2022	2023	3 2024	Check	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
Proposed Conceptual Alternative CCR Closure - ATB	\$11,229,393	0%	0%	15%	58%	27%	0%	0%	0%	0%	0%	100%		1	1								
·																							
IMPOUNDMENT CLOSURE	\$8,637,995	0%	0%	15%	58%	27%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$1,390,029	\$5,641,851	\$2,734,252	\$0	\$0	\$0	\$0	\$0	\$9,766,132
Mobilization/Demobilization	\$50,000	0%	0%	0%	80%	20%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$44,995	\$11,699	\$0	\$0	\$0	\$0	\$0	\$56,693
Sediment & Erosion Control	\$25,000	0%	0%	0%	80%	20%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$22,497	\$5,849	\$0	\$0	\$0	\$0	\$0	\$28,347
Site Preparation	\$71,750	0%	0%	0%	80%	20%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$64,567	\$16,787	\$0	\$0	\$0	\$0	\$0	\$81,355
Dewatering	\$127,733	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$143,683	\$0	\$0	\$0	\$0	\$0	\$0	\$143,683
Repair On-Site Pond Embankments	\$200,000	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$224,973	\$0	\$0	\$0	\$0	\$0	\$0	\$224,973
Utility Services	\$50,000	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$56,243	\$0	\$0	\$0	\$0	\$0	\$0	\$56,243
Perimeter Berm (not required)	\$0	0%	100%	6 0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$106,387	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$119,670	\$0	\$0	\$0	\$0	\$0	\$0	\$119,670
Pre-Closure / Preparation	\$3,158,911	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$3,553,345	\$0	\$0	\$0	\$0	\$0	\$0	\$3,553,345
Closure/Final Cover	\$1,387,601	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$1,623,297	\$0	\$0	\$0	\$0	\$0	\$1,623,297
New Storm Water Pond	\$108,323	0%	0%	0%	60%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$73,109	\$50,689	\$0	\$0	\$0	\$0	\$0	\$123,798
Mechanical Improvements/Additions	\$50,000	0%	0%	0%	50%	50%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$28,122	\$29,246	\$0	\$0	\$0	\$0	\$0	\$57,368
Surface Water Features	\$100,000	0%	0%	0%	60%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$67,492	\$46,794	\$0	\$0	\$0	\$0	\$0	\$114,286
Primary Outlet Structure	\$30,000	0%	0%	0%	50%	50%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$16,873	\$17,548	\$0	\$0	\$0	\$0	\$0	\$34,421
Stormwater Pond Outlet Structure	\$50,000	0%	0%	0%	60%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$33,746	\$23,397	\$0	\$0	\$0	\$0	\$0	\$57,143
Surface Restoration	\$71,890	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$84,101	\$0	\$0	\$0	\$0	\$0	\$84,101
Groundwater Monitoring	\$150,400	0%	0%	40%	40%	20%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$65,069	\$67,672	\$35,189	\$0	\$0	\$0	\$0	\$0	\$167,930
Conceputal Design	\$250,000	0%	0%	100%	6 0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$270,400	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$270,400
Final Design and Permitting and permitting support	\$1,000,000	0%	0%	60%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$648,960	\$449,946	\$0	\$0	\$0	\$0	\$0	\$0	\$1,098,906
PDI	\$75,000	0%	0%	100%	6 0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$81,120	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$81,120
Construction Management including CQA and OE services	\$1,500,000	0%	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$324,480	\$674,918	\$701,915	\$0	\$0	\$0	\$0	\$0	\$1,701,314
Closure Report	\$75,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$87,739	\$0	\$0	\$0	\$0	\$0	\$87,739
Subtotal	\$8,637,995												\$0	\$0	\$1,390,029	\$5,641,851	\$2,734,252	\$0	\$0	\$0	\$0	\$0	\$9,766,132
Contingency	\$2,591,398	0%	0%	15%	58%	27%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$1,464,920	\$1,464,920	\$0	\$0	\$0	\$0	\$0	\$2,929,840
Subtotal with Contigency	\$11,229,393												\$0	\$0	\$1,390,029	\$7,106,770	\$4,199,172	\$0	\$0	\$0	\$0	\$0	\$12,695,971
LG&E & KU Overheads	\$393,029	0%	0%	15%	58%	27%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$48,651	\$248,737	\$146,971	\$0	\$0	\$0	\$0	\$0	\$444,359
Total Project Cost	\$11,622,422												\$0	\$0	\$1,439,000	\$7,356,000	\$4,346,000	\$0	\$0	\$0	\$0	\$0	\$13,141,000

Assumptions							
LG&E & KU Overheads	3.50%						
Escalation	4.00%						
Contingency	30.00%						

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Tyrone Generating Station" technical memo dated July 24, 2015.
- 2 Assumes the use of CCR material to create grades to support the pond cap.
- $\ensuremath{\mathsf{3}}$ Assumes the use of Soil material to create pond cap or other design features.
- $\mbox{\bf 4}$ Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Design, Project & Construction Management, and Closure Report

- Areas and volumes were estimated based on CADD files provided by client.
 Conceptual grading plans were prepared and quantity take-offs obtained from.
 Excavation volume quantities include removing CCR material from ponds.
 Excavated ponds taken out of service will have embankments removed and graded to drain.

8. No road repair is included in this cost estimate.

SUBTOTAL CONSTRUCTION

Conceputal Design Final Design and Permitting and permitting support

Construction Management including COA and OF service

Construction Contractor Performance and Payment Bonds Closure Report

SUBTOTAL IMPOUNDMENT CLOSURE

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the The cost estimates snown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of _______. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

\$5,737,995

\$8,637,995

\$1,000,000 LGE provided based on experience

\$1,500,000 \$500,000 per year

\$0 LGE provided

\$75,000 LGE provided based on experience

\$75,000 Document Const. Work, QA/QC, and Record DWGs

\$1,000,000,00

\$1,500,000,00

\$75,000.00

LS

LS

Tyrone Facility Backup Quantities

Dave Lake

7/21/2015

CCR Production Rates

CCR Production - 2015 Plan (tons)

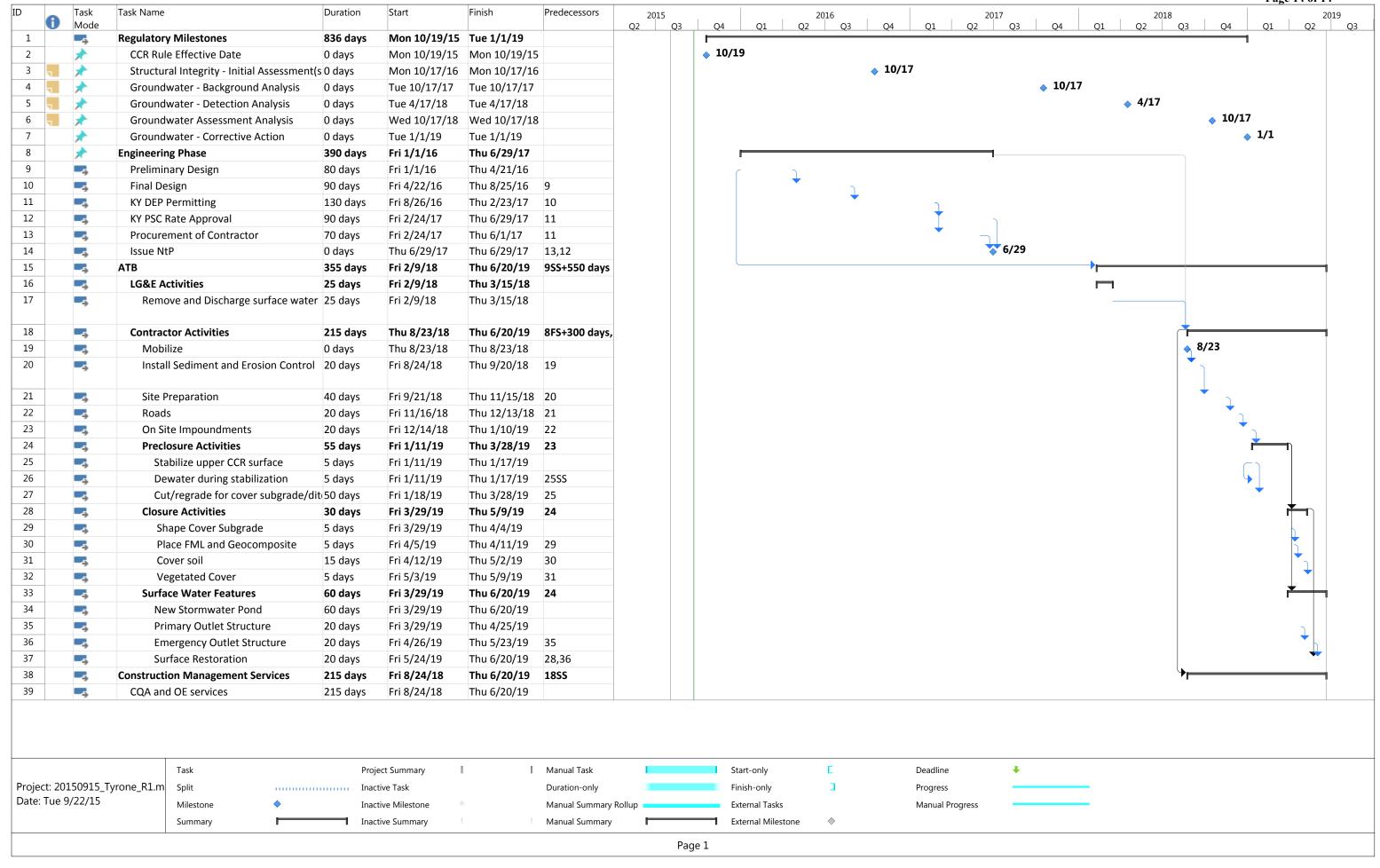
CCR Production Handling Assumptions:

% Bot Ash Wet Sluice to ATB: 100% % Fly Ash Wet Sluice to ATB: % Gypsum to ATB:

	Tyrone				Accumulated Material (Tons)
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	ATB
2015				-	
2016				-	
2017				-	
2018				-	
2019				-	
2020				-	
2021				-	
2022				-	
2023				-	
2024				-	
2025				-	
otal:	Assumed Addit	ional Accumi	lated Mat	erial (2015 thru c	:losure):

Projected Material Generation - Handling Assumptions: Tyrone Generating Station is closed and not producing CCR material

Approximate density of CCR in-place: 1 ton/CY $\,$ Assume dry material for this exersize To be confirmed by CAD Based on assumptions as listed


Pond Quantity Balance Estimate:

Item	Units	ATB			Estimated	
	os	7.1.5	Notes	Key Item to Confirm for Final Estimate:	input value:	
Total surface area	AC	9.8				
Standing Surface Water (to remove)	GAL	6,386,671	Assume 2-ft average over pond area. Confirm with CAD.		2	ft
Length of perimeter	LF	2,975				
CUT:						
CCR cut in 2017	CY	213,555	Approx. cut to create ditches in CH2M Jan. 2015 TM. CAD to update.	CAD - confirm cut to grade ditches for final cover		
FILL (to cover subgrade):						
CCR for Fill - from Baseline	CY	0				
CCR for Fill - from Beneficial Reuse Stockpile onsite	CY	90,000				
Length of Perimeter Road to be installed on dyke	LF	2,810				
Soil Volume for material for road and dyke	CY	65,650				
Total Fill - as part of surface regrading	СУ	39,290	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
Total Fill for Closure of Pond	CY	1,313	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
2% Settlement Material Need	CY	1,313				
Final Cover Soil Volume	CY	18,615	CAD to update			
Final Cover Surface Area	AC	9.8	CAD to update			
Structural Support						
Geogrid	AC	11.8	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Geofabric	AC	11.8	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Surface Water Containment						
New Surface Water Pond Surface Area	AC	0.5				
Cut volume for New Surface Water Pond	CY	3,970				

Other Key Assumptions:

^a Dewatering and settlement of ash through closure activities will affect the quantities of fill material. In situ ash and geotechnical soil borings and testing are recommended to determine settlement during closure design.

Attachment 3
Proposed Conceptual Alternative
Schedule

Coal Combustion Residual Pond Closure Evaluation: Ghent Generating Station

PREPARED FOR: Louisville Gas & Electric Company and Kentucky Utilities Company

PREPARED BY: CH2M HILL, Inc.

DATE: September 29, 2015

1 Executive Summary

Louisville Gas & Electric Company and Kentucky Utilities Company (LG&E-KU) tasked CH2M HILL Engineers (CH2M) with performing coal combustion residuals (CCR) evaluations for eight sites to develop conceptual CCR ash pond closure approaches and cost estimates. The generating stations under evaluation are Ghent, Trimble County, Mill Creek, E.W. Brown, Cane Run, Green River, Tyrone, and Pineville.

This technical memorandum applies to Ghent Generating Station. The following scope activities were completed:

- Reviewed LG&E-KU provided historical CCR information and kickoff meeting workshop (June 2015).
- Developed a CCR pond closure approach that considers regulatory, civil, geotechnical, and stormwater aspects as it relates to CCR and ash ponds and associated cost estimates for the site.
 Discussion of the conceptual CCR pond closure approach is included in Section 2, and drawings (Exhibits 2-1 through 2-4) are contained in Attachment 1.
- The applicable ponds at the Ghent Station are the Ash Treatment Basin #1 (ATB1), Gypsum Stack, Secondary Pond, Reclaim Pond, and the Ash Treatment Basin #2 (ATB2)
- Construct new concrete process tanks for management of wastewater that can no longer be managed in the ponds that will be closed; construct dewatering facility for removing water from solids.
- The estimated cost for closing the ponds is summarized in Exhibit 1-1. Detailed cost information is included in Attachment 2.

Exhibit 1-1. Ghent Proposed Conceptual Pond Closure Approach Cost Estimate

		Total Capital	High
Proposed Conceptual CCR Pond Closure Approach	Low (-30%)	Cost	(+30%)
ATB1	\$39.9 M	\$57.0 M	\$74.0 M
Gypsum Stack	\$49.7 M	\$71.0 M	\$92.3 M
Concrete Process Tanks and Dewatering Facility	\$73.3 M	\$104.7 M	\$136.1 M
ATB2	\$55.6 M	\$79.4 M	\$103.3 M
Secondary Pond	\$2.1 M	\$3.0 M	\$3.9 M
Reclaim Pond	\$3.3 M	\$4.7 M	\$6.1 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

2 Proposed Conceptual CCR Pond Closure Approach

2.1 Development of Proposed Conceptual CCR Pond Closure Approach

The proposed conceptual CCR pond closure approach was developed based on previous work completed by CH2M and discussions with LG&E-KU during the kickoff meeting on June 23, 2015. The Ghent Generating Station is an operating facility with CCR wastewater generated and discharged to the ponds. The following defines the considered approach for closure for each of the five ponds. Additional assumptions are summarized in Section 2.2.

ATB1

- ATB1 will be reactivated starting in early 2017 or sooner to receive CCR material currently
 discharged to the Gypsum Stack, ATB2, and other process flows. This will include dredging
 approximately 10 acres of CCR to a depth of approximately 10 feet and reconfiguring process piping.
 The initial dredged material will be transported to ATB2.
- Material accumulated in ATB1 will include some wet discharges; but by January 2017, the CCR
 material sent to ATB1 (gypsum and ash) are expected to be dry. Expected CCR material discharges to
 ATB1 are summarized in Table 2-1. Material accumulation in ATB1 will continue until at least 2019,
 but could continue until 2023 or until the future fill capacity of ATB1 is maximized.
- Wet material sent to ATB1 after 2017 will be periodically dredged from the 10-acre area and moved elsewhere within ATB1.
- Surface water within ATB1 (outside the dredged area) will be removed before closure begins, as needed, to allow surface improvement and dry material placement in ATB1. Other potential subgrade improvements are described under assumptions below.
- CCR Rule Compliance Activities will begin in 2015.

- A final cover will be constructed. Cover construction will include preliminary grading to shape the cover subgrade and will include the components described in the assumptions below. Conceptual grades are shown in Exhibits 2-1 and 2-2. Significant grading features include the following:
 - A perimeter drainage ditch is shown inside the dike. The ditch shows a high point near the
 western end, dropping at approximately 0.5 percent to the east. Two discharges penetrations
 are shown through the berm leading to a new stormwater pond in the Secondary Pond
 footprint.
 - The final grades include 4H:1V slopes along the inside of the ditch, extending no higher than 10 feet above the ditch invert or the top elevation of the dike crest, whichever is lower elevation. The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2-1 has a net fill capacity (after reduction for ditch cut material)
 of approximately 1.8 million cubic yards above the existing CCR surface grade.
- Fill capacity under the ATB1 cover could be increased by nearly 1 million cubic yards by extending
 the 4H:1V ditch slope height to the full perimeter dike elevation. Capacity could be reduced to
 essentially zero net fill by reducing the 4H:1V ditch slope height to 3 feet, and constructing a
 multicell cover with lower individual crest elevations. Ditch grades could be refined to create local
 low points at the two perimeter drainage ditch discharge points. Such design refinements should not
 significantly change the estimated closure costs.

Gypsum Stack

- Surface water present in the Gypsum Stack will be removed in parallel with gypsum excavation.
- CCR (gypsum) will be excavated from the northern portion of the Gypsum Stack starting before 2017
 to allow completion by mid-2017. Extents of excavation are shown on Exhibits 2-1 and 2-2. Any
 liner/leachate collection system and contaminated subsoils below the CCR also will be removed. The
 material will be transported for placement in ATB2.
- The north and east berms adjacent to the northern portion of the Gypsum Stack will be regraded to level the site. Alternately, the material could be stockpiled for future use as cover soil at ATB1 or ATB2.
- Process water tanks will be built within the regraded northern portion of the Gypsum Stack for startup in 2018.
- CCR (gypsum) will be excavated from the remainder of the Gypsum Stack (southern portion) after the northern portion is excavated. Contaminated subsoils below the CCR also will be removed. The material will be transported for placement in ATB2.
- The east dike adjacent to the southern portion of the Gypsum Stack will be regraded to flatten the site. Alternately, the material could be stockpiled for future use as cover soil at ATB1 or ATB2. Future EGL facilities may be constructed in this area.

ATB2

- CCR discharge to ATB2 will terminate after ATB1 is reactivated to accept discharge (in 2017).
- Surface water within ATB2 will be removed starting several months before closure begins, as needed to allow surface stabilization and dry material placement in ATB2. Other potential subgrade improvements are described under the assumptions below.
- CCR materials and subliner soils from the Gypsum Stack (northern portion) will be disposed within ATB2 starting before 2017. Other CCR materials and subliner soils from the Gypsum Stack (southern portion), Secondary Pond, and Reclaim Pond will follow.

- A final cover will be constructed. Cover construction will include preliminary grading to shape the cover subgrade and will include the components described in the assumptions below. Conceptual grades are shown in Exhibits 2-3 and 2-4. Significant grading features include the following:
 - A perimeter drainage ditch is shown within the dike. The ditch shows a high point near the
 eastern end, dropping at approximately 0.5 percent around both the northern and southern
 sides of the pond to the west. Two discharges penetrations are shown through the dike; one
 (western side) leading to an existing surface water pond, and a second (northern side) leading a
 new ditch and stormwater pond in the Reclaim Pond footprint.
 - The final grades include 4H:1V slopes along the inside of the ditch extending 3 feet above the ditch invert. The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2-3 has a net fill capacity (after reduction for ditch cut material)
 of approximately 4.4 million cubic yards above the existing CCR surface grade
- A surface water ditch will be improved to convey surface water to the existing Sediment Pond (from western side of ATB2), and a new ditch will be constructed to convey surface water to a new stormwater pond in the Reclaim Pond footprint (from northern side of ATB2).
- Fill capacity under the ATB2 cover could be increased (or reduced) as necessary to accept the final CCR excavation quantities at closure by either raising (or lowering) the ditch grade, or by extending the 4H:1V ditch slope height more than 3 feet above the ditch invert. Ditch grades could also be refined to create local low points at the two perimeter drainage ditch discharge points. Such design refinements should not significantly change the estimated closure costs.

Secondary Pond

- Surface water present in the Secondary Pond will be removed.
- The CCR will be excavated and disposed in ATB2. One foot of subsoils below the CCR also will be removed.
- The excavated pond will be converted to a Stormwater Pond. Modifications will include:
 - Regrading the pond sideslopes and bottom.
 - Installing erosion protection on exposed surfaces.
 - Installing two new outfalls into the pond from the ATB1 stormwater ditches.
 - Modifying the outfall from the pond as necessary to accommodate stormwater flows.

Reclaim Pond

- Surface water present in the Reclaim Pond will be removed.
- The CCR will be excavated and disposed in ATB2. One foot of subsoils below the CCR also will be removed.
- The excavated pond will be converted to a stormwater pond. Modifications will include:
 - Regrading the pond sideslopes and bottom.
 - Installing erosion protection on exposed surfaces.
 - Installing a new outfall into the pond from the ATB2 stormwater ditch.
 - Modifying the outfall from the pond as necessary to accommodate stormwater flows.

Regulatory Strategy

- Compliance with the Final CCR Rule.
- Closure activities will be permitted by the Kentucky Department of Environmental Protection (KYDEP) under the Final CCR Rule.

The amount of CCR required to fill the ATB ponds and removed from the remaining ponds was developed using computer aided engineering (CAE) software in AutoCAD using drawings provided by LG&E-KU. The proposed conceptual pond closure approach drawings are provided in Attachment 1.

2.2 Design Assumptions

This section discusses the design assumptions associated with the conceptual design.

ATB1 and ATB2

The general design assumptions used for the proposed conceptual alternative (ATB1 and ATB2) are summarized below:

- The existing grade is established from AutoCAD files provided by LG&E-KU on June 23, 2015.
- The ATB dikes will be used without modification. Some improvements may be required based on the U.S. Environmental Protection Agency (USEPA) dam assessment findings, but that work is not part of this project.
- By January 2017, the CCR material sent to the ponds is expected to be dry.
- The top of the ATB1 and ATB2 berms already includes an aggregate perimeter road.
- Periodic dredging of the 10-acre area within ATB1 and placement elsewhere in ATB1, as needed, to manage solids in 2017 and beyond are not included in the costs for this project.
- All volume calculations are based on an in-place (moist) density 1 ton per cubic yard (74 pounds per cubic foot) for cut and placed CCR material and does not account for shrinkage/swell during placement. Volumes do not consider settlement of in-place CCR because of dewatering or new fill/cover loads. Changes to these assumptions should be verified during design development.
- The conceptual pond closure approaches are assumed to be geotechnically stable as shown. This must be confirmed during design development.
- Improvements assumed to prepare a workable CCR surface include removing surface water, localized regrading to facilitate dewatering, and installing a geotextile, a layer of dry CCR, and geogrid.
- Final cover surface drainage channels are within the ATB dikes, would include final cover, and would be lined with turf reinforcement mat.
- The CCR is assumed to fill the ATB beneath the final cover.
- The final cover is assumed to consist of 40-mil linear low-density polyethylene liner (LLDPE) placed directly on subgrade (CCR) and covered with geocomposite or strip drains and 2 feet of soil cover including 0.5 foot of topsoil. A vegetative cover will be established.
- A 5 percent slope was assumed for the final cover.
- Ditches were included in the grading for the ponds. The ditch geometry for ATB1 and ATB2 was assumed to consist of a trapezoidal channel with 4H:1V on the inner slope and 3H:1V on the outer side slopes. A bottom width of 10 feet was used to convey the estimated 100-year, 24-hour storm event (worst case) flow, as documented in the CH2M memorandum dated January 2015. Additional drainage features over the 5 percent cover (such as more closely spaced surface water ditches or other features) may be required, which have not been considered herein.
- The existing ATB2 primary outlet structure could be modified to regulate discharge, and the
 removed portions would be demolished and disposed. The existing ATB1 primary outlet structure
 may/may not be able to be modified to regulate discharge, with the removed portions demolished
 and disposed of.

• No special dewatering structures will be required to remove the decant water from the wet coal ash materials in the ash ponds or localized dewatering of the ash to facilitate cover construction.

Gypsum Stack

The general design assumptions used for the conceptual alternative (Gypsum Stack) area as follows:

- The existing grade is established from AutoCAD files provided by LG&E-KU on June 23, 2015.
- The top of the original dike is 20 feet wide, with 3H:1V side slopes.
- The top of the original dike elevation is at elevation 520 feet.
- The original (bottom) elevation of the ash treatment basin is at elevation 500 feet.
- Complete removal of CCRs from the Gypsum Stack and loading, transport, and placement in ATB2 will occur in two stages (northern portion followed by southern portion).
- It is assumed that the gypsum material can be excavated and hauled using standard off-road
 construction equipment (multiple excavators and large-capacity off-road trucks). Dredging and/or
 temporary stockpiling before loading and hauling will not be required.
- One foot of material will be excavated and removed below the CCR material, which will include leachate collection liner and piping and potentially contaminated subsoil. This material will be disposed in ATB2.
- The original berms surrounding the gypsum excavated in Stage 1 (northern portion) can be removed/regraded before excavating gypsum in Stage 2 (southern portion).
- An east-west berm of material crossing the center of the Gypsum Stack is suitable to leave in place after regrading the Stage 1 berm and until completion of the gypsum excavation in Stage 2.
- The site will be regraded to construct new concrete process tanks in a location to be determined by LG&E-KU plant personnel. There will be four concrete tanks covering approximately 11.0 acres at a depth of 24-feet (two tanks 780-feet x 195-feet and two tanks 780-feet x 125-feet). Also included will be a dewatering system facility, within this vicinity of the concrete tanks.

Secondary and Reclaim Ponds

The general design assumptions used for the conceptual alternative (Secondary and Reclaim ponds) are as summarized below:

- The existing grade is established from AutoCAD files provided by LG&E-KU.
- Both ponds will be cleaned to the bottom of the CCR, which will be placed in the ATBs.
- Pond bottoms and side slopes will be regraded for conversion to stormwater ponds.
- New surface water outfalls into the ponds will be installed to accept stormwater from ATB1 (in Secondary Pond – two outfalls) and ATB2 (in Reclaim Pond – one outfall).

3 Estimated Material Volumes and Areas

The amount of fly ash, bottom ash, and gypsum generated by the facility and available for use as fill is summarized in Table 3-1. Total production rates by year are as communicated by LG&E-KU on June 23, 2015, and the portion sent to the ponds each year are based on the 2015 year to date production rates provided by LG&E-KU on July 1, 2015.

Table 3-1. Estimated CCR Production by Year – Total and Distribution by Ponds

		Total CCR Pro		Assume	d CCR Distributi	on (Tons)	
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	ATB2	Gypsum Stack	ATB1 ²
2015	95,524	382,098	971,368	1,448,991	85,972	330,265	-
2016	110,978	443,910	1,024,652	1,579,540	99,880	348,382	-
2017	113,956	455,825	1,042,262	1,612,044	-	-	354,369
2018	110,325	441,301	1,019,121	1,570,747	-	-	346,501
2019	108,994	435,976	1,014,263	1,559,233	-	-	344,849
2020	110,869	443,476	1,029,599	1,583,944	-	-	350,064
2021	106,731	426,924	990,608	1,524,263	-	-	336,807
2022	106,190	424,761	985,907	1,516,858	-	-	335,208
2023	111,034	444,136	1,031,235	1,586,405	-	-	350,620
		TOTAL			185,852	678,647	2,418,418

Notes:

The proposed conceptual design alternative was developed using AutoCAD files provided by LG&E-KU as described under assumptions above. Summaries of the estimated material quantities for each pond are shown in Tables 3-2A through 3-2E.

Table 3-2A. Proposed Conceptual Estimated Material Quantities - ATB1

Item	Units	Quantity
Total surface area	AC	111.2
Standing surface water (to remove)	GAL	56,296,720
Length of perimeter	LF	9,279
CUT: Existing Surface to Final Cover Subgrade		
Dredge for temporary treatment pond in 2017 - Send to ATB2	CY	161,333
Cut to Shape Cover Subgrade - Keep in ATB1	CY	362,465
FILL CAPACITY: Existing Surface to Final Cover Subgrade	СҮ	2,191,904
FILL SOURCES:		
From cut for final cover subgrade	CY	362,465
From CCR accumulation in ATB-1 - Jan. 2017 thru 2018	CY	700,870
From CCR accumulation in ATB-1 - Jan. 2019 thru 2023	CY	1,717,548
TOTAL POTENTIAL FILL through 2018	СҮ	1,063,335
TOTAL POTENTIAL FILL through 2023	СУ	2,780,883
Final cover soil volume	CY	382,494

¹ Assumes that 18 percent of bottom ash and fly ash will be sent to ATB2 through end of 2016, converting to dry ash disposal at the onsite landfill in 2017 and later. Assumes 34 percent of gypsum will be sent to the Gypsum Stack through 2016, and then to ATB1 until closure (as dry material). Remaining material is assumed to be either beneficially used offsite or sent to the onsite landfill.

² Material assumed to be sent to ATB1 until the closure airspace capacity is full, with remainder sent to landfill.

Table 3-2A. Proposed Conceptual Estimated Material Quantities - ATB1

Item	Units	Quantity
New ditch to Secondary Pond	LF	1,200

Table 3-2B. Proposed Conceptual Estimated Material Quantities – Gypsum Stack

Item	Units	Quantity
Total surface area	AC	60.28
Standing Surface Water (to remove)	GAL	58,039,125
Length of perimeter	LF	6,065
CUT - From Estimated Final Surface at Closure		
From existing surface to estimated CCR extents - send to ATB2	CY	3,666,633
From accumulation in Gypsum Stack through 2016 - Send to ATB2	CY	678,647
TOTAL Gypsum CUT - Send to ATB2	CY	4,345,280
Stage 1 - North	CY	1,402,173
Stage 2 - South	CY	2,943,107
Total subsoil cut - below gypsum - Send to ATB2	CY	97,257
BERM REGRADING	CY	79,216

Table 3-2C. Proposed Conceptual Estimated Material Quantities - ATB2

Standing Surface Water (to remove)	Units	Quantity
Total surface area	AC	154.5
Standing surface water (to remove)	GAL	247,302,756
Length of perimeter	LF	10,164
CUT: Existing Surface to Final Cover Subgrade		
Cut from existing surface to final subgrade - keep in ATB2	CY	497,662
FILL CAPACITY: Existing surface to final cover subgrade	CY	4,937,298
FILL SOURCES:		
From ATB1 temporary treatment pond	CY	161,333
From CCR accumulation in ATB-2 through 2016	CY	185,852
From Gypsum Stack - Stage 1	CY	1,441,828
From Gypsum Stack - Stage 2	CY	3,000,709
From Secondary Pond - CCR and subsoil	CY	22,977
From Reclaim Pond	CY	35,622
From cut for final cover subgrade	CY	497,662
TOTAL POTENTIAL FILL	СҮ	5,345,983
Potential EXCESS FILL (to be accommodated by refined ATB-2 cover design)	CY	408,685
Final cover soil volume	CY	547,874
New ditch to Reclaim Pond	LF	3,500

Table 3-2D. Proposed Conceptual Estimated Material Quantities - Secondary Pond

Item	Units	Quantity
Area of pond	AC	4.16
Standing surface water (to remove)	GAL	13,362,163
Length of perimeter	LF	1,955
сит:		
From existing surface to estimated CCR extents - send to ATB2	CY	16,266
From subsoil below CCR - Send to ATB2	CY	6,711

Table 3-2E. Proposed Conceptual Estimated Material Quantities - Reclaim Pond

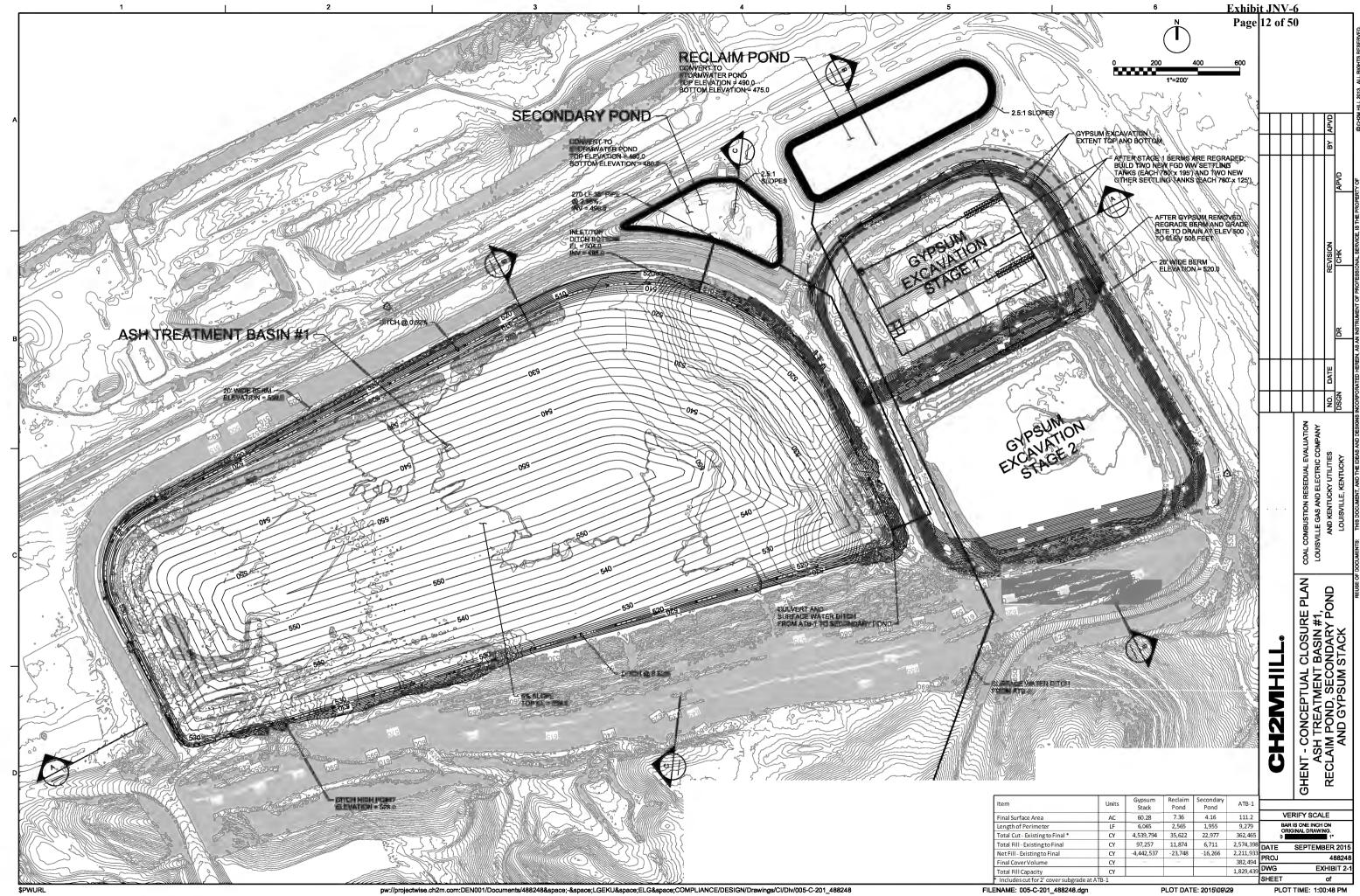
Item	Units	Quantity
Area of pond	AC	7.36
Standing surface water (to remove)	GAL	18,297,183
Length of perimeter	LF	2,565
сит:		
From existing surface to estimated CCR extents - send to ATB2	CY	23,748
From subsoil below CCR - Send to ATB2	CY	11,874

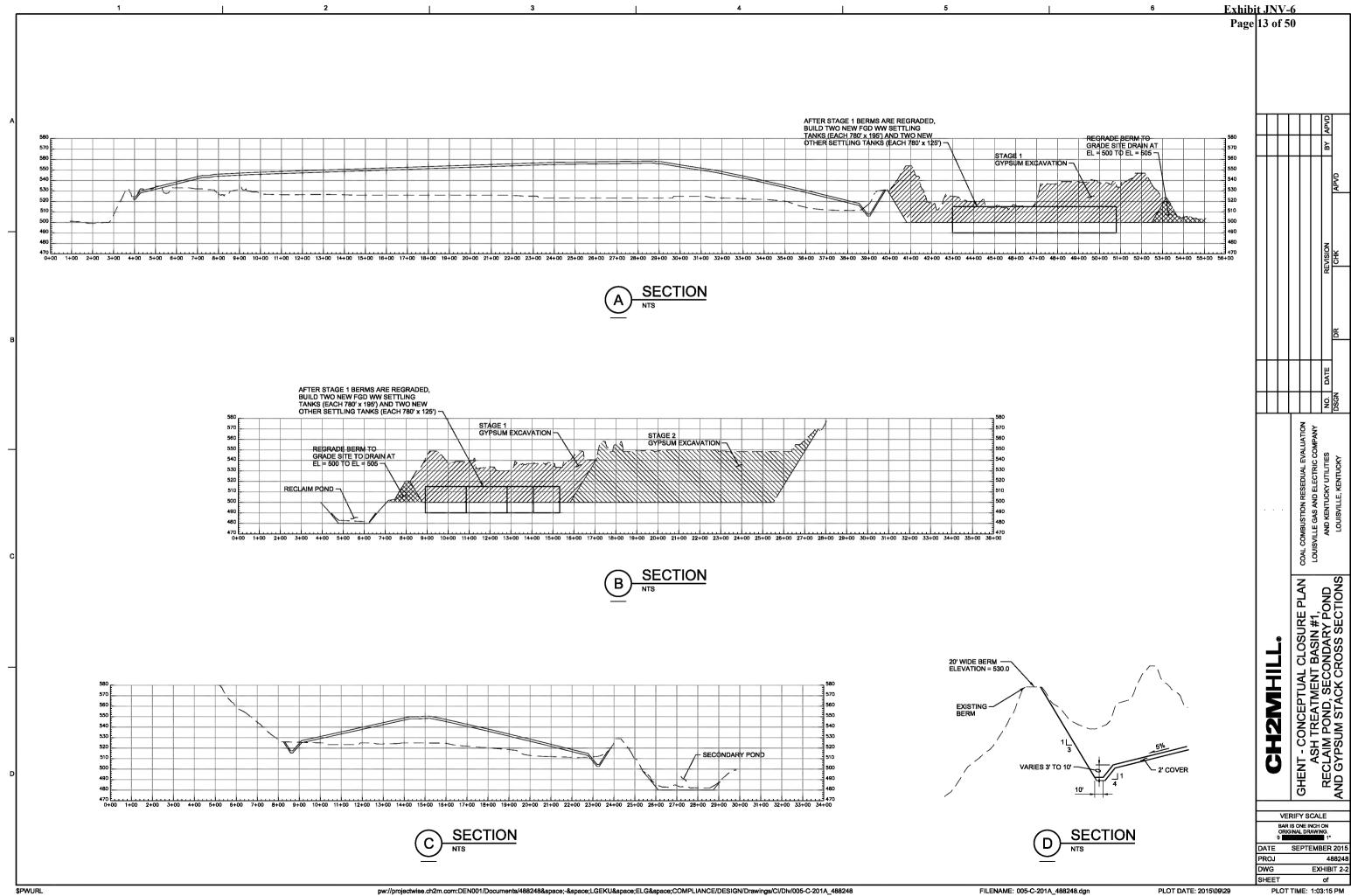
4 Schedule

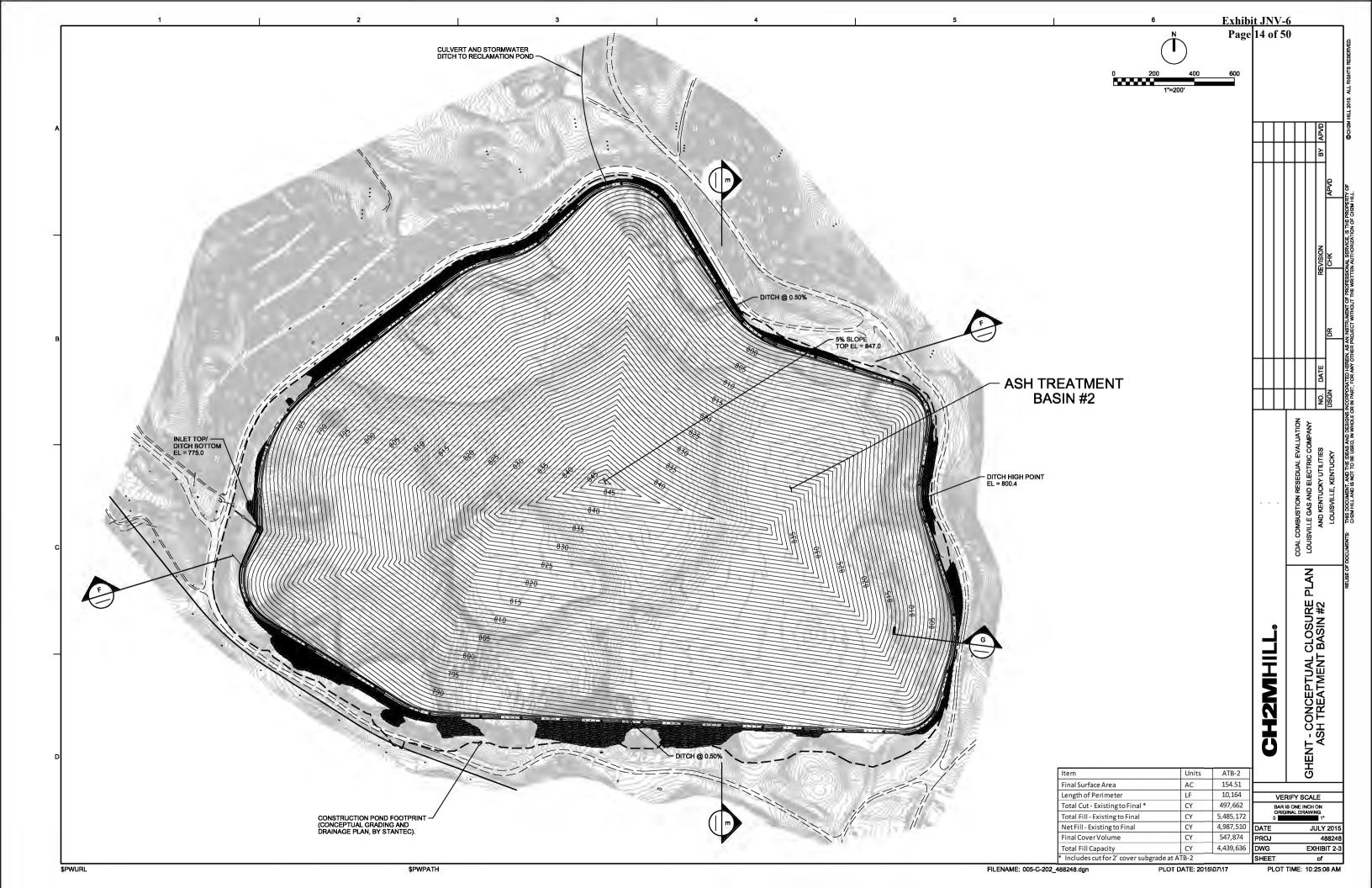
Exhibits 4-1 (in Attachment 3) shows the proposed schedule to complete the design, permitting, and construction for each of the pond closures.

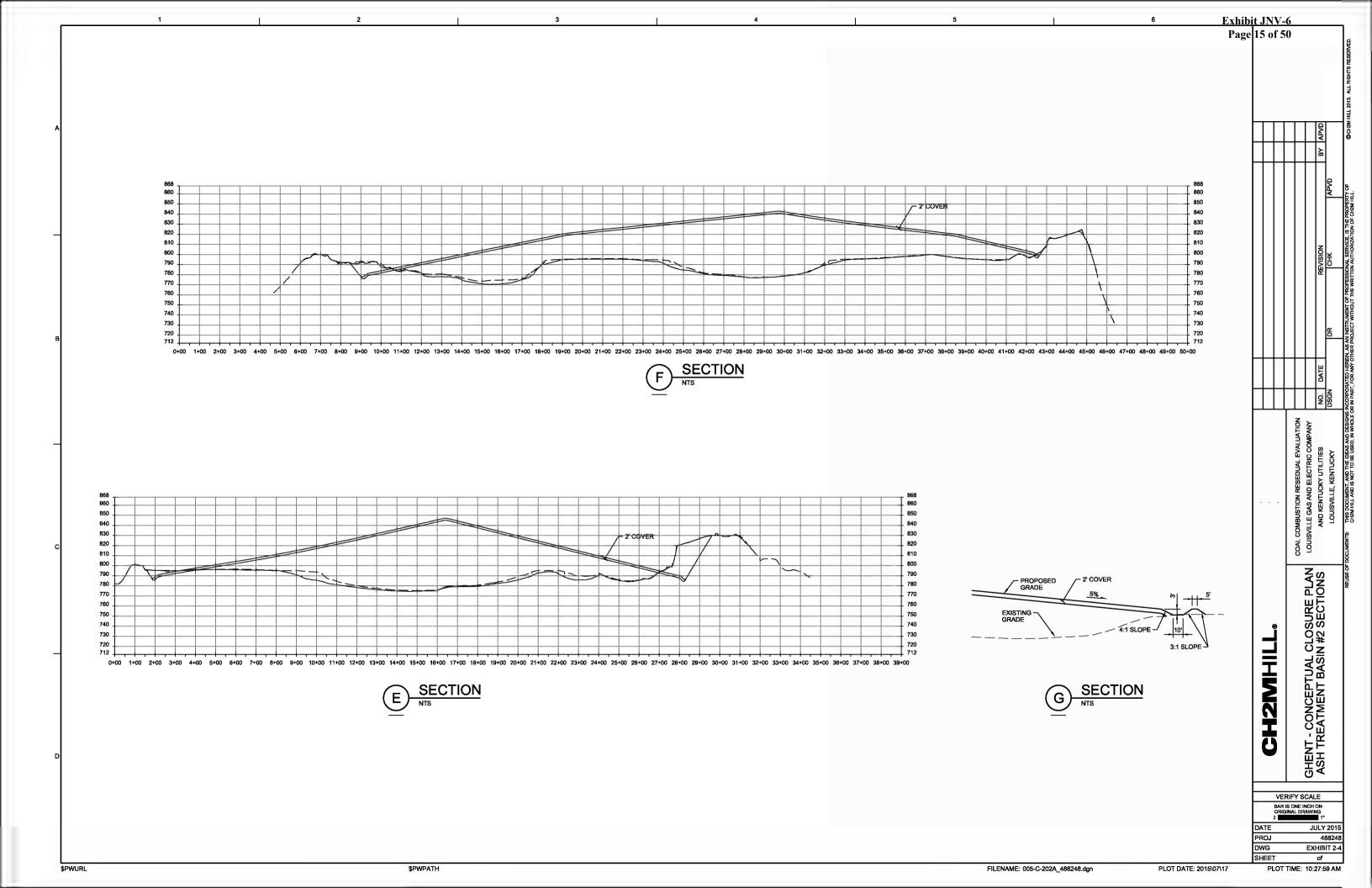
5 Construction Cost Estimate

The estimated construction cost for closing the Ponds as described in Section 2 is shown on Table 5-1. Attachment 2 presents the breakdown of cost for closure.


Table 5-1. Ghent Proposed Conceptual Pond Closure Approach Cost Estimate


		Total Capital	High
Proposed Conceptual CCR Pond Closure Approach	Low (-30%)	Cost	(+30%)
ATB1	\$39.9 M	\$57.0 M	\$74.0 M
Gypsum Stack	\$49.7 M	\$71.0 M	\$92.3 M
Concrete Process Tanks	\$73.3 M	\$104.7 M	\$136.1 M
ATB2	\$55.6 M	\$79.4 M	\$103.3 M
Secondary Pond	\$2.1 M	\$3.0 M	\$3.9 M
Reclaim Pond	\$3.3 M	\$4.7 M	\$6.1 M


This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.


This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

Attachment 1 Proposed Conceptual Alternative CCR Closure

Attachment 2 Proposed Conceptual Alternative Cost Estimate

COST SUMMARY

Site: Ghent Generating Station
Location: Ghent, Kentucky

Phase: Proposed Conceptual CCR Closure

Base Year: Date: ROM Level: 2015 September Class 4

	Ash Treatment Basin #1	Gypsum Stack	Concrete Tanks	Secondary Pond	Reclaim Pond	Ash Treatment Basin #2
Remedial Technology	Fill ATB #1 with CCR's, install final cover and close in-place.	Remove CCR's and close in-place	Installation of CCR concrete tanks	Remove CCR's and line pond	Remove CCR's, line and converted to Process Water Pond	Fill ATB #2 with CCR's, install final cover and close in-place.
Description	Completely fill with CCR material; incorporate 10 Acre flat area for material storage and future WWTP; and final cover installed.	Completely cleaned of ash, remove embankments and grade to drain.	Installation of four new concrete treatement tanks to handle waste water associtated with CCR materials at the facility.	Completely cleaned of ash and lined with a FML	Completely cleaned of ash and lined with a FML and coverted to a Process Water Pond	Completely fill with CCR material and final cover installed. (2,900,000 CY from Gypsum Stack, 58,530 CY from Secondary, 176,535 from Process Water/Reclaim + balance from operations)
Impoundment Closure	\$55,033,740	\$68,593,914	\$0	\$2,921,001	\$4,566,925	\$76,754,383
LG&E Overhead	\$1,926,181	\$2,400,787	\$0	\$102,235	\$159,842	\$2,686,403
New Construction	\$0	\$0	\$101,120,756	\$0	\$0	\$0
LG&E Overhead	\$0	\$0	\$3,539,226	\$0	\$0	\$0
Total Initial Costs	\$56,959,921	\$70,994,701	\$104,659,982	\$3,023,236	\$4,726,768	\$79,440,787
Upper ROM Range	\$74,047,897	\$92,293,111	\$136,057,977	\$3,930,207	\$6,144,798	\$103,273,023
Lower ROM Range	\$39,871,944	\$49,696,291	\$73,261,988	\$2,116,265	\$3,308,737	\$55,608,551

This is not an offer for construction and/or project execution. Please note, these order of magnitude cost estimates are assumed to represent the actual installed cost within the range of - 30 percent to + 30 percent of the costs indicated. The cost estimate has been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project will depend on actual labor, material costs, and competitive variable factors. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific decisions to help ensure proper project evaluation and adequate funding.

ver 6.5

CCR Rule - Ghent Generating Station Cost Estimate - ATB #1 21-Sep-15

														I	1					I I			1
ltem	Cost 2015 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
Proposed Conceptual Alternative CCR Closure - Ash Treatment Basin #1	\$55,033,740	2%	5%	6%	2%	3%	2%	31%	26%	0%	0%	77%						1		1			
IMPOUNDMENT CLOSURE	\$42,333,646	2.4%	7.1%	8.2%	2.4%	3.8%	2.1%	40.7%	33.2%	0.0%	0.0%	100%	\$1,000,000	\$3,142,281	\$3,755,705	\$1,145,142	\$1,902,113	\$1,083,010	\$21,825,340	\$18,497,871	\$0	\$0	\$52,351,462
Mobilization/Demobilization	\$100,000	0%	30%	0%	0%	0%	0%	50%	20%	0%	0%	100%	\$0	\$31,200	\$0	\$0	\$0	\$0	\$63,266	\$26,319	\$0	\$0	\$120,785
Sediment & Erosion Control	\$51,000	0%	0%	50%	0%	0%	0%	50%	0%	0%	0%	100%	\$0	\$0	\$27,581	\$0	\$0	\$0	\$32,266	\$0	\$0	\$0	\$59,846
Site Preparation	\$247,000	0%	0%	50%	0%	0%	0%	50%	0%	0%	0%	100%	\$0	\$0	\$133,578	\$0	\$0	\$0	\$156,267	\$0	\$0	\$0	\$289,844
Dewatering	\$1,125,934	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$1,317,184	\$0	\$0	\$0	\$0	\$0	\$1,317,184
Repair On-Site Pond Embankments	\$250,000	0%	0%	30%	30%	20%	20%	0%	0%	0%	0%	100%	\$0	\$0	\$81,120	\$84,365	\$58,493	\$60,833	\$0	\$0	\$0	\$0	\$284,810
Utility Services	\$100,000	0%	50%	50%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$52,000	\$54,080	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$106,080
Perimeter Berm	\$0	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$286,053	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$154,698	\$160,886	\$0	\$0	\$0	\$0	\$0	\$0	\$315,583
Dredge 10-acre area for treatment cell	\$1,116,424	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$1,161,081	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,161,081
Closure	\$11,537,699	0%	0%	0%	0%	0%	0%	50%	50%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$7,299,435	\$7,591,412	\$0	\$0	\$14,890,847
Final Cover	\$17,595,856	0%	0%	0%	0%	0%	0%	60%	40%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$13,358,623	\$9,261,978	\$0	\$0	\$22,620,601
Mechanical Improvements/Additions	\$1,755,334	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$1,898,569	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,898,569
Surface Water Features	\$118,395	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$144,046	\$0	\$0	\$0	\$0	\$144,046
Primary Outlet Structure	\$60,000	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$72,999	\$0	\$0	\$0	\$0	\$72,999
Emergency Outlet Structure	\$0	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$431,150	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$567,364	\$0	\$0	\$567,364
Groundwater Monitoring	\$308,800	0%	0%	0%	0%	0%	20%	40%	40%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$75,140	\$156,292	\$162,544	\$0	\$0	\$393,977
Conceptual Design	\$600,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$624,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$624,000
Final Design and Permitting and permitting support	\$2,500,000	0%	40%	40%	20%	0%	0%	0%	0%	0%	0%	100%	\$0	\$1,040,000	\$1,081,600	\$562,432	\$0	\$0	\$0	\$0	\$0	\$0	\$2,684,032
PDI	\$75,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$78,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$78,000
Construction Management, including CQA and OE services	\$3,000,000	0%	5%	10%	10%	15%	20%	20%	20%	0%	0%	100%	\$0	\$156,000	\$324,480	\$337,459	\$526,436	\$729,992	\$759,191	\$789,559	\$0	\$0	\$3,623,118
Closure Report	\$75,000	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$98,695	\$0	\$0	\$98,695
CCR Rule Compliance Activities in 2015	\$1,000,000	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$1,000,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,000,000
Subtotal	\$42,333,646												\$1,000,000	\$3,142,281	\$3,755,705	\$1,145,142	\$1,902,113	\$1,083,010	\$21,825,340	\$18,497,871	\$0	\$0	\$52,351,462
Contingency	\$12,700,094	2%	7%	8%	2%	4%	2%	41%	33%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$7,852,719	\$7,852,719	\$0	\$0	\$15,705,439
Subtotal with Contigency	\$55,033,740												\$1,000,000	\$3,142,281	\$3,755,705	\$1,145,142	\$1,902,113	\$1,083,010	\$29,678,059	\$26,350,590	\$0	\$0	\$68,056,901
- ,																					-		
LG&E & KU Overheads	\$1,926,181	2.4%	7.1%	8.2%	2.4%	3.8%	2.1%	40.7%	33.2%	0.0%	0.0%	100%	\$35,000	\$109,980	\$131,450	\$40,080	\$66,574	\$37,905	\$1,038,732	\$922,271	\$0	\$0	\$2,381,992
TOTAL PROJECT COST	\$56,960,000												\$1,035,000	\$3,252,261	\$3,887,155	\$1,185,222	\$1,968,687	\$1,120,915	\$30,716,791	\$27,272,861	\$0	\$0	\$70,438,892
	1														 	 	 	T	† · · · · ·	 		 	

Assumptions	
LG&E & KU Overheads	3.5%
Escalation	4.0%
Contingency	30%

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Ghent Generating Station" technical memo dated July 24, 2015
 2 Assumes the use of CCR material to create grades to support the pond cap.
- 3 Assumes the use of Soil material to create pond cap or other design features. 4 - Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 -Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Assumptions

- . Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from
- Areas and volumes were estimated based on CADD files provided b
 CCR volume quantities include utilizing CCR from existing operations
 Existing pond embankments to be used.
 Groundwater Monitoring well installation is not included.
- 5. Road repair is not included in this cost estimate

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The variance from this estimate or actual prices and conditions obtained.

CCR Rule - Ghent Generating Station Cost Estimate - Gypsum Stack 21-Sep-15

Item	Cost 2015 Dollars												2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
item	Cost 2013 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
Proposed Conceptual Alternative CCR Closure - Gypsum Stack	\$68,593,914	0%	15%	35%	26%	23%	1%	0%	0%	0%	0%	100%											1
																							1
IMPOUNDMENT CLOSURE	\$52,764,549	0.0%	14.6%	35.0%	26.4%	22.8%	1.2%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$8,000,962	\$19,964,566	\$15,672,261	\$14,099,117	\$764,527	\$0	\$0	\$0	\$0	\$58,501,433
Mobilization/Demobilization	\$50,000	0%	0%	80%	0%	0%	20%	0%	0%	0%	0%	100%	\$0	\$0	\$43,264	\$0	\$0	\$12,167	\$0	\$0	\$0	\$0	\$55,431
Sediment & Erosion Control	\$30,325	0%	0%	40%	60%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$13,120	\$20,467	\$0	\$0	\$0	\$0	\$0	\$0	\$33,587
Site Preparation	\$91,750	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$49,618	\$51,603	\$0	\$0	\$0	\$0	\$0	\$0	\$101,222
Dewatering	\$580,391	0%	70%	30%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$422,525	\$188,325	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$610,850
Repair On-Site Pond Embankments	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Utility Services	\$25,000	0%	50%	50%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$13,000	\$13,520	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$26,520
Perimeter Berm	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Closure (northern portion)	\$14,957,339	0%	40%	60%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$6,222,253	\$9,706,714	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$15,928,967
Closure (south portion)	\$30,980,061	0%	0%	25%	40%	35%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$8,377,008	\$13,939,342	\$12,684,801	\$0	\$0	\$0	\$0	\$0	\$35,001,151
Final Cover (Install FML) (Not applicable/required)	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Ditches (included in Final Cover)	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Water Features	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Primary Outlet Structure	\$350,000	0%	0%	50%	0%	50%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$189,280	\$0	\$204,725	\$0	\$0	\$0	\$0	\$0	\$394,005
Emergency Outlet Structure	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$217,065	0%	0%	30%	10%	30%	30%	0%	0%	0%	0%	100%	\$0	\$0	\$70,433	\$24,417	\$76,181	\$79,228	\$0	\$0	\$0	\$0	\$250,259
Groundwater Monitoring	\$238,400	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$49,587	\$103,141	\$107,267	\$0	\$0	\$0	\$0	\$0	\$0	\$259,996
Soil Sampling	\$94,219	0%	20%	20%	10%	20%	30%	0%	0%	0%	0%	100%	\$0	\$19,598	\$20,381	\$10,598	\$22,045	\$34,389	\$0	\$0	\$0	\$0	\$107,011
Conceptual Design	\$500,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$520,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$520,000
Final Design and Permitting and permitting support	\$2,000,000	0%	20%	30%	30%	10%	10%	0%	0%	0%	0%	100%	\$0	\$416,000	\$648,960	\$674,918	\$233,972	\$243,331	\$0	\$0	\$0	\$0	\$2,217,181
PDI	\$75,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$78,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$78,000
Construction Management, including CQA and OE services	\$2,500,000	0%	10%	20%	30%	30%	10%	0%	0%	0%	0%	100%	\$0	\$260,000	\$540,800	\$843,648	\$877,394	\$304,163	\$0	\$0	\$0	\$0	\$2,826,005
Closure Report	\$75,000	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$91,249	\$0	\$0	\$0	\$0	\$91,249
Subtotal	\$52,764,549												\$0	\$8,000,962	\$19,964,566	\$15,672,261	\$14,099,117	\$764,527	\$0	\$0	\$0	\$0	\$58,501,433
																		i	İ				
Contingency	\$15,829,365	0.0%	14.6%	35.0%	26.4%	22.8%	1.2%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$0	\$0	\$0	\$8,775,215	\$8,775,215	\$0	\$0	\$0	\$0	\$17,550,430
Subtotal with Contigency	\$68,593,914												\$0	\$8,000,962	\$19,964,566	\$15,672,261	\$22,874,332	\$9,539,742	\$0	\$0	\$0	\$0	\$76,051,863
																					·		T
LG&E & KU Overheads	\$2,400,787	0.0%	14.6%	35.0%	26.4%	22.8%	1.2%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$280,034	\$698,760	\$548,529	\$800,602	\$333,891	\$0	\$0	\$0	\$0	\$2,661,815
TOTAL PROJECT COST	\$70,995,000												ŚO	\$8,280,996	\$20,663,326	\$16,220,790	\$23,674,934	\$9,873,633	ŚO	ŚO	\$0	\$0	\$78,713,678
	Ţ. 1,2 13, 000		+		+							1		, =,===,=30	,,.20	,,	,,	, ,		**	**	7-	Ţ: z,: zzjo/o

A	
Assumptions	
LG&E & KU Overheads	3.5%
Escalation	4.0%
Contingency	30%

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Ghent Generating Station" technical memo dated July 24, 2015
 2 Assumes the use of CCR material to create grades to support the pond cap.
- 3 Assumes the use of Soil material to create pond cap or other design features.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
 5 -Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

CCR Rule - Ghent Generating Station Cost Estimate - Gypsum Stack 21-Sep-15

ltem	Cost 2015 Dollars												2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
item	COST 2015 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	lotai
Proposed Conceptual Alternative CCR Closure - Gypsum Stack	\$77,785,197	0%	18%	40%	42%	0%	0%	0%	0%	0%	0%	100%											
NEW CONSTRUCTION (COST ASSOCIATED WITH GYPSUM STACK)	\$77,785,197	0.0%	18.3%	40.0%	41.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$14,818,460	\$33,652,988	\$36,471,014	\$0	\$0	\$0	\$0	\$0	\$0	\$84,942,462
Total FGD Concrete Tank Estimated Order of Magnitude Capital Cost	\$25,990,121	0%	10%	40%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$2,702,973	\$11,244,366	\$14,617,676	\$0	\$0	\$0	\$0	\$0	\$0	\$28,565,014
Total Other WW Concrete Tank Estimated Order of Magnitude Capital Cost	\$19,445,076	0%	10%	40%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$2,022,288	\$8,412,718	\$10,936,533	\$0	\$0	\$0	\$0	\$0	\$0	\$21,371,538
Dewatering Facilityl Order of Magnitude Capital Cost	\$32,300,000	0%	30%	40%	30%	0%	0%	0%	0%	0%	0%	100%	\$0	\$10,077,600	\$13,974,272	\$10,899,932	\$0	\$0	\$0	\$0	\$0	\$0	\$34,951,804
Mechanical Improvements/Additions	\$50,000	0%	30%	40%	30%	0%	0%	0%	0%	0%	0%	100%	\$0	\$15,600	\$21,632	\$16,873	\$0	\$0	\$0	\$0	\$0	\$0	\$54,105
Subtotal	\$77,785,197												\$0	\$14,818,460	\$33,652,988	\$36,471,014	\$0	\$0	\$0	\$0	\$0	\$0	\$84,942,462
Contingency	\$23,335,559.03	0%	18%	40%	42%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$12,741,369	\$12,741,369	\$0	\$0	\$0	\$0	\$0	\$0	\$25,482,739
Subtotal with Contigency	\$101,120,756												\$0	\$14,818,460	\$46,394,357	\$49,212,383	\$0	\$0	\$0	\$0	\$0	\$0	\$110,425,200
LG&E & KU Overheads	\$3,539,226	0.0%	18.3%	40.0%	41.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$518,646	\$1,623,802	\$1,722,433	\$0	\$0	\$0	\$0	\$0	\$0	\$3,864,882
TOTAL PROJECT COST	\$104,660,000												\$0	\$15,337,107	\$48,018,159	\$50,934,816	\$0	\$0	\$0	\$0	\$0	\$0	\$114,290,082

Assumptions									
LG&E & KU Overheads	3.5%								
Escalation	4.0%								
Contingency	30%								

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Ghent Generating Station" technical memo dated July 24, 2015

 2 - Assumes the use of CCR material to create grades to support the pond cap.

- 3 Assumes the use of Soil material to create pond cap or other design features.
 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 -Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Ghent	Generating Station			COST ESTIM	ATE SUMMARY	Exhibit JNV-6 Page 22 of 50
Site: Location: Phase: Base Year: Date:	Ghent Generating Station Ghent, Kentucky Proposed Conceptual Alternative CCR Closure - Gypsum Stack 2015 1/18/2016					
	AL COSTS DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL	NOTES
IMPOUN	Mobilization/Demobilization Workplan, procurement, mobilization, demobilization	1	LS	\$50,000	\$50,000	
	SUBTOTAL Mobilization/Demobilization Sediment & Erosion Control Sediment and Erosion Control Measures	6065	LF	\$5	\$50,000 \$30,325	
	SUBTOTAL Sediment & Erosion Control Site Preparation Clearing/Grubbing	5	AC	\$10,350	\$30,325 \$51,750	 Minimal
	Surveying Utility Locating SUBTOTAL Site Preparation	1 1	LS EA	\$25,000 \$15,000	\$25,000 \$15,000 \$91,750	
	Dewatering Dewatering of pond and transfer to Reclaim pond SUBTOTAL Dewatering Repair On-Site Pond Embankments	58,039,125	GL	\$0.01		Drain/pump to reclaim pond, then pump back to plant for reuse. Assumes no treatment required.
	Utility Services Utility Modifications	1	LS	\$25,000		LG&E-KU to complete.
	SUBTOTAL Utility Services Roads				\$25,000	
	Closure (northern portion) Remove Embankment, Spread Berm Contents (northern portion)	43,410	CY	\$8.10		\$8.10/ CY 200 HP dozer 300' (RSM 31 23 16.46 4420)+ no haul \$2.36 excavator 1 cy cap = 100cy/hr (RSM 31 23 16.42 0200) + \$4.36 haul
	Excavate and Load to go to ATB-2	1,402,173	CY	\$9.56	\$13,404,774	12cy 15mph 2 mile (31 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 16.46 4040) \$2.36 excavator 1 cy cap = 100 cy/hr (RSM 31 23 16.42 0200) + \$4.36 haul 12cy 15mph 2 mile (31 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 23 23 23 23 23 23 23 23 23 23 23 23
	Over Excavate (subsoil) and Load to ATB-2 Moisture Conditioning/Dust Control	39,655 1,441,828	CY CY	\$9.56 \$0.57	\$379,102 \$821,842	16.46 4040) 4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$105.83/hr \times 10 hrs/day \times 5 days/week / 9,216 CY/week
	SUBTOTAL Closure (northern portion) Closure (south portion)				\$14,957,339	\$2.36 excavator 1 cy cap = 100cy/hr (RSM 31 23 16.42 0200) + \$4.36 haul
	Excavate and Load to ATB-2	2,943,107	CY	\$9.56	\$28,136,103	12cy 15mph 2 mile (31 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 16.46 4040) \$2.36 excavator 1 cy cap = 100 cy/hr (RSM 31 23 16.42 0200) + \$4.36 haul
	Over Excavate (subsoil) and Load to ATB-2 Remove Embankment, Spread Berm Contents (southern portion)	57,602 35,806	CY CY	\$9.56 \$8.10	\$550,675	12cy 15mph 2 mile (31 23 23.20 1018)+ \$2.84 dozer 200 hp 50 ft, clay (31 23 16.46 4040) \$8.10/ CY 200 HP dozer 300' (RSM 31 23 16.46 4420)+ no haul
	Placement and Compaction	79,216	CY	\$2.39	\$189,326	\$2.01 Placement; Dozer, 300 hp, 300', common earth (RSM 31 23 23.14 5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31 23 23.23 5680) 4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$105.83/hr
	Moisture Conditioning/Dust Control Finish Grading, gentle slopes SUBTOTAL Closure (south portion)	3,079,925 291,852	CY SY	\$0.57 \$0.20		x 10 hrs/day x 5 days/week / 9,216 CY/week RSM 31 22 16:10 3300
	Final Cover (Install FML) (Not applicable/required) Cover Soil (1 feet thick)				\$0	
	Surface Water Features Primary Outlet Structure Remove liners, piping, etc. (entire pond = 60.3 acres)	1	LS	\$100,000	\$100,000	(Remove leachate collection system)
	Disposal of liners, piping etc. SUBTOTAL Primary Outlet Structure	1	LS	\$250,000	\$250,000 \$350,000	Assumed
	Emergency Outlet Structure Surface Restoration					Seeding, slope mix, 6#, hydro/air seeding w/mulch & fertilizer (RSM 32 92 19.14
	Mechanical Seeding & Mulching Quantity/Final Survey SUBTOTAL Surface Restoration	60.3 1	AC LS	\$3,550 \$3,000	\$214,065	4600) + 40% re-application Assume, minimal.
	Groundwater Monitoring New Monitoring wells, 4" (6,100 LF perimeter) Groundwater Monitoring Events	9 8	EA Ea	\$17,600.00 \$10,000.00		assumes well spacing 1 well/750 feet; 9 wells to 75 feet deep unit cost reflects lab, QA/QC eval, report per event
	SUBTOTAL SUBTOTAL Groundwater Monitoring Soil Sampling		5.		\$238,400	
	Confirmation Sampling (5/Acre) Confirmation Sample Analysis Sample Packaging and Shipping SUBTOTAL Soil Sampling	302 302 75	EA EA EVENT	\$100 \$150 \$250		single marker metal 4 samples per cooler
	SUBTOTAL CONSTRUCTION			_	\$47,614,549	
	Design, Project & Construction Management, and Closure Report Conceptual Design Final Design and Permitting and permitting support PDI	1 1	LS LS LS	\$500,000 \$2,000,000 \$75,000	\$2,000,000	LG&E provided, based on experience LG&E provided, based on experience LG&E provided, based on experience
	Construction Management, including CQA and OE services Construction Contractor Performance and Payment Bonds Closure Report	1 0.0% 1	LS LS	\$2,500,000 \$47,614,549 \$75,000	\$2,500,000 \$0	LG&E provided, based on experience LG&E provided Document Const. Work, QA/QC, and Record DWGs
	SUBTOTAL Design, Project & Construction Management, and Closure Report				\$5,150,000	
NEW CONS	SUBTOTAL IMPOUNDMENT CLOSURE	_	_		\$52,764,549	
	Total FGD Concrete Tank Estimated Order of Magnitude Capital Cost	1.0	LS	\$25,990,121		2 tanks, each is 780' x 320' x 22' deep. (~12 acres) - Total CCR tanks (- Contingency)(only the CCR costs for these tanks are included here)
	Total Other WW Concrete Tank Estimated Order of Magnitude Capital Cos	1.0	LS	\$19,445,075.78	\$19,445,076	Rerfer to tab "Capital Cost Estimate" shows the Order of Magnitude Cost (-Contingency), details are not reflected below
	Dewatering Facility Order of Magnitude Capital Cost	1.0	LS	\$32,300,000.00		From ELG Cost Sheet (-Contingency) July 2, 2015 Linked to the total cost from the Capital Cost Estimate Tab, developed from Technical Memorandum " Physical/Chemical Treatment - Settling Tank Treatment
	FGD Treatment Tanks Mix Tank Mixers Flocculation Tank Mixers Fortic Cherida Food Pumps	1.0 1.0	LS LS	\$99,908 \$99,908	\$99,908 \$99,908	Design Basis" dated August 18, 2015 by CH2M
	Ferric Chloride Feed Pumps Sulfuric Acid Feed Pumps Organosulfide Feed Pumps Polymer Blending Systems	1.0 1.0 1.0 1.0	LS LS LS LS	\$15,333 \$15,333 \$15,333 \$53,400	\$15,333 \$15,333 \$15,333 \$53,400	••
	Sodium Hydroxide Feed Pumps Common Equipment Ferric chloride tank	1.0	LS LS	\$15,333 \$18,299	\$15,333 \$18,299	•• ••
	Sulfuric Acid tank Sodium Hydroxide Tank	1.0 1.0	Attorney	\$18,299 \$18,299 ged Confidential Client Privileged by Direction of Councel	\$18,299 \$18,299	
			riepared at t	he Direction of Counsel		raye o UI 34

Ghent (Generating Station			Exhibit JNV-6 Page 23 of 50		
Site: Location: Phase: Base Year: Date:	Ghent Generating Station Ghent, Kentucky Proposed Conceptual Alternative CCR Closure - Gypsum Stack 2015 1/18/2016					
	Safety Shower Total Equipment Cost (TEC) Freight Purchased Equipment Cost - Delivered (PEC-D)	1.0 1.0 1.0 1.0	LS LS LS LS	\$30,000 \$399,000 \$12,761 \$411,761	\$30,000 " " \$399,000 " " \$12,761 " " \$411,761 " "	

Ghent (Generating Station			COST ESTIMA	Exhibit JNV-6			
						Page 24 of 50		
0'4-	Object Occupation Obstice							
Site:	Ghent Generating Station							
Location:	Ghent, Kentucky							
Phase:	Proposed Conceptual Alternative CCR Closure - Gypsum Stack							
Base Year:	2015							
Date:	1/18/2016							
	Organosulfide Tank				и и			
	Mix Tanks Wall Concrete	1.0	LS	\$52,093	\$52,093 " "			
	Mix Tanks Slab Concrete	1.0	LS	\$8,084	\$8,084 " "			
	Floculation Tanks Wall Concrete	1.0	LS	\$52,093	\$52,093 " "			
	Floculation Tanks Slab Concrete	1.0	LS	\$8,084	\$8,084 " "			
	Settling Tanks Wall Concrete	1.0	LS	\$3,616,889	\$3,616,889 " "			
	Settling Tanks Slab Concrete	1.0	LS	\$6,988,276	\$6,988,276 " "			
	Total Ramp concrete	1.0	LS	\$308,102	\$308,102_" "			
	FGD Treatment Tanks				" "			
	Excavation - Soft	1.0	LS	\$1,914,559	\$1,914,559 " "			
	Pre Engineered building	1.0	LS	\$120,000	\$120,000 " "			
	Lining Tanks	1.0	LS	\$1,381,136	\$1,381,136 <u>"</u> "			
	Construction Material							
	Construction Material	1.0	LS	\$14,449,315.64	\$14,449,316 " "			
	State Sales Tax	1.0	LS	\$4,044.16	\$4,044 " "			
	Total Constuction Material	1	LS	\$14,453,359.80	\$14,453,360 " "			
	Total Equipment and Construction	1.0	LS	\$14,865,120.99	\$14,865,121 " "			
	Other Construction							
	Electrical and I&C	1.0	LS	\$743,000	\$743,000 " "			
	Piping	1.0	LS	\$1,189,000	\$1,189,000 " "			
	Yard Improvements (a)	1.0	LS	\$1,189,000	\$1,189,000 " "			
	Metals and Finishes	1.0	LS	\$446,000	\$446,000 " "			
	Subtotal Equipment/Construction/Other	1	LS	\$18,432,121	\$18,432,121 " "			
	Total Direct Costs (TDC)	1.0	LS	\$18,432,121	\$18,432,121 " "			
	Contractor's Field General Conditions	1.0	LS	\$922,000	\$922,000 " "			
	Contractor's OH&P	1.0	LS	\$2,765,000	\$2,765,000 " "			
	Contingency	1.0	LS	\$3,686,000	\$3,686,000 " "			
	Total Construction Cost (TCC)	1.0	LS	\$25,805,121	\$25,805,121 " "			
	Engineering, SDCc and Startup	1.0	LS	\$3,871,000	\$3,871,000 " "			
	Total Estimated Order of Magnitude Capital Cost	1.0	LS	\$29,676,121	\$29,676,121 " "			
	Total Estimated Order of Magnitude Capital Cost	1.0	LS	\$29,070,121	\$29,070,121			
						from the Capital Cost Estimate Tab, developed from		
	Total Fatimated Order of Magnitude Capital Coat / Captings	4.0	1.6	\$25 000 424		m " Physical/Chemical Treatment - Settling Tank Treatment		
	Total Estimated Order of Magnitude Capital Cost (-Contingency)	1.0	LS	\$25,990,121	\$25,990,121 Design Basis" dated A	ugust 10, 2019 by CHZIVI		
	Mechanical Improvements/Additions							
	Piping to new concrete tank	1	LS	\$50,000	\$50,000 allowance			
	SUBTOTAL Mechanical Improvements/Additions				\$50,000			

Assumptions:

- Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.
 CCR volume quantities include utilizing CCR from existing operations.
 Existing pond embankments to be used.

SUBTOTAL NEW CONSTRUCTION

- Groundwater Monitoring well installation is not included.
 Road repair is not included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of ______. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

CCR Rule - Ghent Generating Station Cost Estimate - Secondary Pond 21-Sep-15

Item	Cost 2015 Dollars											2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total	
item	Cost 2013 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check	2013	2010	2017	2010	2019	2020	2021	2022	2023		Total
Proposed Conceptual Alternative CCR Closure - Secondary Pond	\$2,921,001	0%	17%	14%	7%	62%	0%	0%	0%	0%	0%	100%											
MPOUNDMENT CLOSURE	\$2,246,924	0.0%	16.7%	13.8%	7.1%	62.4%	0.0%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$390,083	\$335,469	\$180,158	\$1,639,584	\$0	\$0	\$0	\$0	\$0	\$2,545,295
Mobilization/Demobilization	\$10,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$11,699	\$0	\$0	\$0	\$0	\$0	\$11,699
Sediment & Erosion Control	\$9,775	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$11,435	\$0	\$0	\$0	\$0	\$0	\$11,435
Site Preparation	\$5,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$5,849	\$0	\$0	\$0	\$0	\$0	\$5,849
Dewatering	\$133,622	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$156,318	\$0	\$0	\$0	\$0	\$0	\$156,318
Repair On-Site Pond Embankments	\$0	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Utility Services	\$25,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$29,246	\$0	\$0	\$0	\$0	\$0	\$29,246
Perimeter Berm	\$0	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$54,827	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$64,140	\$0	\$0	\$0	\$0	\$0	\$64,140
Closure	\$236,784	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$277,004	\$0	\$0	\$0	\$0	\$0	\$277,004
Storm Pond Bottom Construction	\$332,016	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$388,412	\$0	\$0	\$0	\$0	\$0	\$388,412
Surface Water Features	\$100,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$116,986	\$0	\$0	\$0	\$0	\$0	\$116,986
Primary Outlet Structure	\$55,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$64,342	\$0	\$0	\$0	\$0	\$0	\$64,342
Emergency Outlet Structure	\$0	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$3,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$3,510	\$0	\$0	\$0	\$0	\$0	\$3,510
Groundwater Monitoring	\$150,400	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$31,283	\$65,069	\$67,672	\$0	\$0	\$0	\$0	\$0	\$0	\$164,024
Soil Sampling	\$6,500	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$7,604	\$0	\$0	\$0	\$0	\$0	\$7,604
Conceptual Design	\$20,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$20,800	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$20,800
Final Design and Permitting and permitting support	\$500,000	0%	50%	50%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$260,000	\$270,400	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$530,400
PDI	\$75,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$78,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$78,000
Construction Management, including CQA and OE services	\$500,000	0%	0%	0%	20%	80%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$112,486	\$467,943	\$0	\$0	\$0	\$0	\$0	\$580,430
Closure Report	\$30,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$35,096	\$0	\$0	\$0	\$0	\$0	\$35,096
Subtotal	\$2,246,924												\$0	\$390,083	\$335,469	\$180,158	\$1,639,584	\$0	\$0	\$0	\$0	\$0	\$2,545,295
Contingency	\$674,077	0.0%	16.7%	13.8%	7.1%	62.4%	0.0%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$0	\$0	\$381,794	\$381,794	\$0	\$0	\$0	\$0	\$0	\$763,588
Subtotal with Contingency	\$2,921,001												\$0	\$390,083	\$335,469	\$561,952	\$2,021,379	\$0	\$0	\$0	\$0	\$0	\$3,308,883
• ,																							
LG&E & KU Overheads	\$102,235	0.0%	16.7%	13.8%	7.1%	62.4%	0.0%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$13,653	\$11,741	\$19,668	\$70,748	\$0	\$0	\$0	\$0	\$0	\$115,811
TOTAL PROJECT COST	\$3,023,000												\$0	\$403,736	\$347,210	\$581,621	\$2,092,127	\$0	\$0	\$0	\$0	\$0	\$3,424,694
	1 ' '												-					-					

Assumptions							
LG&E & KU Overheads							
Escalation	4.0%						
Contingency	30%						

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Ghent Generating Station" technical memo dated July 24, 2015
- 2 Assumes the use of CCR material to create grades to support the pond cap.
 3 Assumes the use of Soil material to create pond cap or other design features.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
 5 -Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

	enerating Station			COST ESTIM	ATE SUMMARY	Exhibit JNV-6 Page 26 of 50
ı: ar:	Ghent Generating Station Ghent, Kentucky Proposed Conceptual Alternative CCR Closure - Secondary Pond 2015 1/18/2016					
ITAL	COSTS DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL	NOTES
	DESCRIPTION	QII	ONIT	COST	TOTAL	NOTES
W	obilization/Demobilization orkplan, procurement, mobilization, demobilization JBTOTAL Mobilization/Demobilization	1	LS	\$10,000.00	\$10,000 \$10,000	
Se	ediment & Erosion Control ediment and Erosion Control Measures JBTOTAL Sediment & Erosion Control	1955	LF	\$5.00	\$9,775 \$9,775	Minimal
Su	te Preparation rveying ility Locating JBTOTAL Site Preparation	1	LS EA	\$2,000.00 \$3,000.00	\$2,000 \$3,000 \$5,000	
De	ewatering ewatering of pond directly to outfall JBTOTAL Dewatering	13,362,163	GL	\$0.01	\$133,622 \$133,622	Minimal - pump to outfall, assumes no treatment required.
	epair On-Site Pond Embankments					
Uti	ility Services ility Modifications JBTOTAL Utility Services	1	LS	\$25,000.00	\$25,000 \$25,000	LG&E-KU to complete.
[pads Dense Grade Aggregate (materials, hauling and placement) JBTOTAL Roads	1448	CY	\$37.86	\$54,827 \$54,827	Jeff Heun with LG&E (November 13, 2012)(+4% escalation for 2 years)
	osure cayate and load to ATB #2	46.000	CV	# C CO	\$407.250	\$2.36 1 CY excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer
	ver Excavate and Load (subsoil)	16,266 6,711	CY	\$6.60 \$6.60		excavation, 200 hp, common earth, 150' (RSM 31 23 16.46 4220) \$2.36 1 CY excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer excavation, 200 hp, common earth, 150' (RSM 31 23 16.46 4220)
	Hauling (assume 2 mile cycle)	22,977	CY	\$2.96	\$68.012	3 each, Cat 735 off-road trcuks (26CY); rent \$54.39/hr + FOG \$52.18/hr + Opr \$75/hr = \$182/hr x 10 hrs/day x 5 days per week x 3 each /9,216 CY/week
ı	Moisture Conditioning/Dust Control	22,977	CY	\$0.57	\$13,097	4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$105.4 x 10 hrs/day x 5 days/week / 9,216 CY/week
	Finish Grading, gentle slopes IBTOTAL Closure	20,134	SY	\$0.20 <u> </u>	\$4,027 \$236,784	RSM 31 22 16.10 3300
Su	orm Pond Bottom Construction urface Grading, lagoon bottoms	20,134	SY	\$3.87	\$77,920	RSM 31 22 16.10 3500
SL	Cover Soil (aggregate - 1 feet thick) Dense Grade Aggregate (materials, hauling and placement) JBTOTAL Storm Pond Bottom Construction	6711	СҮ	\$37.86 <u> </u>	\$254,096 \$332,016	Allowance based on PE's recent bid evaluation at Cane Run (includes FOB)
St.	Irface Water Features ms to meet NPDES Permit requirements JBTOTAL Surface Water Features	1	LS	\$100,000.00	\$100,000 \$100,000	LG&E to advise - include pump station?
-	imary Outlet Structure Modify inter-connecting piping between ponds and NPDES permit outfall.	1	LS	\$50,000.00	\$50,000	
SL	Demolition and Disposal of removed portion JBTOTAL Primary Outlet Structure nergency Outlet Structure	1	LS	\$5,000.00	\$5,000 \$55,000	
Qι	urface Restoration uantity/Final Survey JBTOTAL Surface Restoration	1	LS	\$3,000.00	\$3,000 \$3,000	
Ne Gr	roundwater Monitoring ew Monitoring wells, 4" (1 up-gradient + 3 down-gradient) oundwater Monitoring Events JBTOTAL SUBTOTAL Groundwater Monitoring	4 8	EA Ea	\$17,600.00 \$10,000.00		assumes well spacing 1 well/750 feet; 8 wells to 75 feet deep unit cost reflects lab, QA/QC eval, report per event
	bil Sampling	04	EA	\$100.00	#0.000	
Co Sa	onfirmation Sampling (5/Acre) onfirmation Sample Analysis imple Packaging and Shipping JBTOTAL Soil Sampling	21 21 5	EA EA EVENT	\$100.00 \$150.00 \$250.00		single marker metal 4 samples per cooler
SL	JBTOTAL CONSTRUCTION				\$1,121,924	
	esign, Project & Construction Management, and Closure Report onceptual Design	1	LS	\$20,000.00	\$20,000	LG&E provided, based on experience
Fir PC	nal Design and Permitting and permitting support	1	LS LS	\$65,000.00 \$75,000.00	\$500,000 \$75,000	LG&E provided, based on experience LG&E provided, based on experience
Co	onstruction Management, including CQA and OE services onstruction Contractor Performance and Payment Bonds	1 0.0%	LS	\$160,000.00 \$1,121,923.66	\$0	LG&E provided, based on experience LG&E provided
SU	osure Report JBTOTAL Design, Project & Construction Management, and Closure port	1	LS	\$30,000.00		Document Const. Work, QA/QC, and Record DWGs
	port				\$1,125,000	l

Assumptions:

FGD Treatment Tanks Common Equipment Organosulfide Tank FGD Treatment Tanks

Other Construction

NEW CONSTRUCTION

1. Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.

CCR volume quantities include utilizing CCR from existing operations.
 Existing pond embankments to be used.

4. Groundwater Monitoring well installation is not included.

5. Road repair is not included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of ______. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

CCR Rule - Ghent Generating Station Cost Estimate - Reclaim Pond 21-Sep-15

Item	Cost 2015 Dollars												2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
	2031 2020 2011413	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check	2020	2020	2027	2020	2025	2020	2022		1010		
roposed Conceptual Alternative CCR Closure - Reclaim Pond	\$4,566,925	0%	14%	12%	2%	0%	6%	66%	0%	0%	0%	100%											
MPOUNDMENT CLOSURE	\$3,513,020	0.0%	14.4%	12.4%	1.7%	0.0%	5.7%	65.8%	0.0%	0.0%	0.0%	100%	\$0	\$525,283	\$470,669	\$67,672	\$0	\$243,331	\$2,926,201	\$0	\$0	\$0	\$4,233,15
Mobilization/Demobilization	\$10,000	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$12,653	\$0	\$0	\$0	\$12,653
Sediment & Erosion Control	\$12,825	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$16,228	\$0	\$0	\$0	\$16,228
Site Preparation	\$5,000	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$6,327	\$0	\$0	\$0	\$6,327
Dewatering	\$182,972	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$231,518	\$0	\$0	\$0	\$231,518
Repair On-Site Pond Embankments	\$0	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Utility Services	\$25,000	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$31,633	\$0	\$0	\$0	\$31,633
Perimeter Berm	\$0	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$71,934	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$91,019	\$0	\$0	\$0	\$91,019
Closure	\$367,975	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$465,606	\$0	\$0	\$0	\$465,606
Storm Pond Bottom Construction	\$587,413	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$743,265	\$0	\$0	\$0	\$743,265
Primary Outlet Structure	\$205,000	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$259,390	\$0	\$0	\$0	\$259,390
Emergency Outlet Structure	\$0	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$3,000	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$3,796	\$0	\$0	\$0	\$3,796
Groundwater Monitoring	\$150,400	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$31,283	\$65,069	\$67,672	\$0	\$0	\$0	\$0	\$0	\$0	\$164,024
Soil Sampling	\$11,500	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$14,551	\$0	\$0	\$0	\$14,551
Conceptual Design	\$25,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$26,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$26,000
Final Design and Permitting and permitting support	\$750,000	0%	50%	50%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$390,000	\$405,600	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$795,600
PDI	\$75,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$78,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$78,000
Construction Management, including CQA and OE services	\$1,000,000	0%	0%	0%	0%	0%	20%	80%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$243,331	\$1,012,255	\$0	\$0	\$0	\$1,255,586
Closure Report	\$30,000	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$37,960	\$0	\$0	\$0	\$37,960
Subtotal	\$3,513,020												\$0	\$525,283	\$470,669	\$67,672	\$0	\$243,331	\$2,926,201	\$0	\$0	\$0	\$4,233,156
Contingency	\$1,053,906	0.0%	14.4%	12.4%	1.7%	0.0%	5.7%	65.8%	0.0%	0.0%	0.0%	100%	\$0	\$0	\$0	\$0	\$0	\$634,973	\$634,973	\$0	\$0	\$0	\$1,269,947
subtotal with Contingency	\$4,566,925												\$0	\$525,283	\$470,669	\$67,672	\$0	\$878,304	\$3,561,175	\$0	\$0	\$0	\$5,503,103
																							1
G&E & KU Overheads	\$159,842	0.0%	14.4%	12.4%	1.7%	0.0%	5.7%	65.8%	0.0%	0.0%	0.0%	100%	\$0	\$18,385	\$16,473	\$2,369	\$0	\$30,741	\$124,641	\$0	\$0	\$0	\$192,609
OTAL PROJECT COST	\$4,726,768		i	i	i	i	i	i	İ	ì	i		\$0	\$543,668	\$487,142	\$70,040	Śū	\$909,045	\$3,685,816	ŚO	\$0	\$0	\$5,695,712

Assumptions	
LG&E & KU Overheads	3.5%
Escalation	4.0%
Contingency	30%

1 - 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Ghent Generating Station" technical memo dated July 24, 2015

- 2 Assumes the use of CCR material to create grades to support the pond cap.
- 3 Assumes the use of Soil material to create pond cap or other design features.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 -Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

						F. bibis DW 6
Ghent (Generating Station			COST ESTIM	ATE SUMMARY	Exhibit JNV-6 Page 28 of 50
Site: Location: Phase: Base Year: Date:	Ghent Generating Station Ghent, Kentucky Proposed Conceptual Alternative CCR Closure - Reclaim Pond 2015 1/18/2016					
CAPIT/	AL COSTS DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL	NOTES
	Mobilization/Demobilization Workplan, procurement, mobilization, demobilization SUBTOTAL Mobilization/Demobilization	1	LS	\$10,000.00	\$10,000 \$10,000	
	Sediment & Erosion Control Sediment and Erosion Control Measures SUBTOTAL Sediment & Erosion Control	2565	LF	\$5.00	\$12,825 \$12,825	Minimal
	Site Preparation Surveying Utility Locating SUBTOTAL Site Preparation	1 1	LS EA	\$3,000.00 \$2,000.00	\$3,000 \$2,000 \$5,000	
	Dewatering Dewatering of pond and transfer to another pond SUBTOTAL Dewatering	18,297,183	GL	\$0.01	\$182,972 \$182,972	Assume pumping back to plant for reuse.
	Repair On-Site Pond Embankments					
	Utility Services Utility Modifications SUBTOTAL Utility Services	1	LS	\$25,000.00	\$25,000 \$25,000	LG&E-KU to complete.
	Roads Dense Grade Aggregate (materials, hauling and placement) SUBTOTAL Roads	1900	CY	\$37.86	\$71,934 \$71,934	Allowance based on PE's recent bid evaluation at Cane Run (includes FOB)
	Closure Excavate and load from stockpile Over Excavate and Load (subsoil) Hauling (assume 2 mile cycle) Moisture Conditioning/Dust Control Finish Grading, gentle slopes SUBTOTAL Closure	23,748 11,874 35,622 35,622 35,622	CY CY CY CY SY	\$6.60 \$6.60 \$2.96 \$0.57 \$0.20	\$78,368 \$105,441 \$20,305	\$2.36 1 CY excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer excavation, \$2.36 1 CY excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer excavation, 3 each, Cat 735 off-road trcuks (26CY); rent \$54.39/hr + FOG \$52.18/hr + Opr \$75/ł 4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$105.83/hr RSM 31 22 16.10 3300
	Storm Pond Bottom Construction Surface Grading, lagoon bottoms	35,622	SY	\$3.87	\$137,859	RSM 31 22 16.10 3500
	Cover Soil (aggregate - 1 feet thick) - Dense Grade Aggregate (materials, hauling and placement) SUBTOTAL Storm Pond Bottom Construction	11874	CY	\$37.86	. ,	Allowance based on PE's recent bid evaluation at Cane Run (includes FOB)
	Primary Outlet Structure Modify inter-connecting piping between ponds. Demolition and Disposal of removed portion Remove liners, piping, etc. (entire pond = 7.36 acres) Disposal of liners, piping etc. SUBTOTAL Primary Outlet Structure	1 1 1	LS LS LS	\$50,000.00 \$5,000.00 \$50,000.00 \$100,000.00	\$5,000 \$50,000	LG&E to advise - include pump station? (Assumed some work required) Assumed (Remove leachate collection system) Assumed
	Emergency Outlet Structure					
	Surface Restoration Quantity/Final Survey SUBTOTAL Surface Restoration	1	LS	\$3,000.00	\$3,000 \$3,000	
	Groundwater Monitoring New Monitoring wells, 4" (1 up-gradient + 3 down-gradient) Groundwater Monitoring Events SUBTOTAL SUBTOTAL Groundwater Monitoring	4 8	EA Ea	\$17,600.00 \$10,000.00		assumes well spacing 1 well/750 feet; 4 wells to 75 feet deep unit cost reflects lab, QA/QC eval, report per event
	Soil Sampling Confirmation Sampling (5/Acre) Confirmation Sample Analysis Sample Packaging and Shipping SUBTOTAL Soil Sampling	37 37 9	EA EA EVENT	\$100.00 \$150.00 \$250.00		single marker metal 4 samples per cooler
	SUBTOTAL CONSTRUCTION				\$1,633,020	
	Design, Project & Construction Management, and Closure Report Conceptual Design	100%		\$25,000.00	\$25,000	LG&E provided, based on experience
	Final Design and Permitting and permitting support PDI Construction Management, including CQA and OE services Construction Contractor Performance and Payment Bonds	100% 100% 100% 0.0%	10	\$100,000.00 \$75,000.00 \$260,000.00 \$1,633,019.55	\$750,000 \$75,000 \$1,000,000 \$0	LG&E provided, based on experience LG&E provided, based on experience LG&E provided, based on experience LG&E provided
	Closure Report SUBTOTAL Design, Project & Construction Management, and Closure Report	1	LS	\$30,000.00	\$30,000 \$1,880,000	Document Const. Work, QA/QC, and Record DWGs

NEW CONSTRUCTION

FGD Treatment Tanks Common Equipment FGD Treatment Tanks Common Items Construction Material

SUBTOTAL IMPOUNDMENT CLOSURE

- Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.
 CCR volume quantities include utilizing CCR from existing operations.
- Existing pond embankments to be used.
 Groundwater Monitoring well installation is not included.
- Road repair is not included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to – 30 percent, based upon a conceptual alternatives

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimates is based on material, the project results are the project of the project evaluation and project evalu equipment, and labor pricing as of _____. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

\$3,513,020

CCR Rule - Ghent Generating Station Cost Estimate - ATB #2 21-Sep-15

Item	Cost 2015 Dollars												2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Total
		2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	Check	2025		-01/								
Proposed Conceptual Alternative CCR Closure - Ash Treatment Basin #2	\$76,754,383	0%	11%	16%	14%	10%	29%	20%	0%	0%	0%	100%											
MPOUNDMENT CLOSURE	\$59,041,833	0.0%	10.5%	15.6%	14.3%	9.8%	28.9%	20.4%	0.5%	0.0%	0.0%	100%	\$0	\$6,449,373	\$9,977,645	\$9,509,871	\$6,783,066	\$20,751,266	\$15,221,818	\$364,689	\$0	\$0	\$69,057,728
Mobilization/Demobilization	\$100,000	0%	0%	10%	30%	0%	40%	10%	10%	0%	0%	100%	\$0	\$0	\$10,816	\$33,746	\$0	\$48,666	\$12,653	\$13,159	\$0	\$0	\$119,041
Sediment & Erosion Control	\$60,000	0%	0%	50%	0%	25%	25%	0%	0%	0%	0%	100%	\$0	\$0	\$32,448	\$0	\$17,548	\$18,250	\$0	\$0	\$0	\$0	\$68,246
Site Preparation	\$454,000	0%	0%	50%	0%	25%	25%	0%	0%	0%	0%	100%	\$0	\$0	\$245,523	\$0	\$132,779	\$138,090	\$0	\$0	\$0	\$0	\$516,392
Dewatering	\$4,946,055	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$2,674,827	\$2,781,820	\$0	\$0	\$0	\$0	\$0	\$0	\$5,456,646
Repair On-Site Pond Embankments	\$500,000	0%	0%	35%	15%	15%	15%	20%	0%	0%	0%	100%	\$0	\$0	\$189,280	\$84,365	\$87,739	\$91,249	\$126,532	\$0	\$0	\$0	\$579,165
Utility Services	\$100,000	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$54,080	\$56,243	\$0	\$0	\$0	\$0	\$0	\$0	\$110,323
Perimeter Berm	\$0	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$336,533	0%	0%	50%	40%	10%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$181,997	\$151,422	\$39,370	\$0	\$0	\$0	\$0	\$0	\$372,789
Pre-Closure / Preparation	\$0	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Closure	\$21,805,199	0%	20%	20%	20%	20%	20%	0%	0%	0%	0%	100%	\$0	\$4,535,481	\$4,716,901	\$4,905,577	\$5,101,800	\$5,305,872	\$0	\$0	\$0	\$0	\$24,565,630
Final Cover (Install FML)	\$22,502,976	0%	0%	0%	0%	0%	50%	50%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$13,689,155	\$14,236,722	\$0	\$0	\$0	\$27,925,877
Surface Water Features	\$143,320	0%	0%	0%	0%	0%	0%	80%	20%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$145,076	\$37,720	\$0	\$0	\$182,796
Primary Outlet Structure	\$110,000	0%	0%	0%	0%	0%	0%	80%	20%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$111,348	\$28,950	\$0	\$0	\$140,299
Emergency Outlet Structure	\$0	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$582,350	0%	0%	0%	0%	0%	0%	80%	20%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$589,487	\$153,267	\$0	\$0	\$742,753
Groundwater Monitoring	\$326,400	0%	20%	40%	40%	0%	0%	0%	0%	0%	0%	100%	\$0	\$67,891	\$141,214	\$146,862	\$0	\$0	\$0	\$0	\$0	\$0	\$355,967
Conceptual Design	\$900,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$936,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$936,000
Final Design and Permitting and permitting support	\$2,000,000	0%	30%	30%	10%	10%	20%	0%	0%	0%	0%	100%	\$0	\$624,000	\$648,960	\$224,973	\$233,972	\$486,661	\$0	\$0	\$0	\$0	\$2,218,566
PDI	\$75,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$78,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$78,000
Construction Management, including CQA and OE services	\$4,000,000	0%	5%	25%	25%	25%	20%	0%	0%	0%	0%	100%	\$0	\$208,000	\$1,081,600	\$1,124,864	\$1,169,859	\$973,322	\$0	\$0	\$0	\$0	\$4,557,645
Closure Report	\$100,000	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$131,593	\$0	\$0	\$131,593
Subtotal	\$59,041,833												\$0	\$6,449,373	\$9,977,645	\$9,509,871	\$6,783,066	\$20,751,266	\$15,221,818	\$364,689	\$0	\$0	\$69,057,728
Contingency	\$17,712,550	0.0%	10.5%	15.6%	14.3%	9.8%	28.9%	20.4%	0.5%	0.0%	0.0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$10,358,659	\$10,358,659	\$0	\$0	\$20,717,318
Subtotal with Contingency	\$76,754,383												\$0	\$6,449,373	\$9,977,645	\$9,509,871	\$6,783,066	\$20,751,266	\$25,580,477	\$10,723,349	\$0	\$0	\$89,775,046
LG&E & KU Overheads	\$2,686,403	0.0%	10.5%	15.6%	14.3%	9.8%	28.9%	20.4%	0.5%	0.0%	0.0%	100%	\$0	\$225,728	\$349,218	\$332,845	\$237,407	\$726,294	\$895,317	\$375,317	\$0	\$0	\$3,142,127
TOTAL PROJECT COST	\$79,441,000												Ś0	\$6,675,101	\$10,326,863	\$9,842,717	\$7.020.473	\$21,477,560	\$26,475,794	\$11,098,666	\$0	\$0	\$92,917,173

Assumptions	
LG&E & KU Overheads	3.5%
Escalation	4.0%
Contingency	30%

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Ghent Generating Station" technical memo dated July 24, 2015
- 2 Assumes the use of CCR material to create grades to support the pond cap.
 3 Assumes the use of Soil material to create pond cap or other design features.
 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.

- 5 -Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Site: Location: Phase: Base Year: Date:

Ghent Generating Station Ghent, Kentucky Proposed Conceptual Alternative CCR Closure - Ash Treatment Basin #2 2015 1/18/2016

AL COSTS DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL	NOTES
M 1 W 2 B 1 W 2					
Mobilization/Demobilization Workplan, procurement, mobilization, demobilization SUBTOTAL Mobilization/Demobilization	1	LS	\$100,000.00	\$100,000 \$100,000	l İ
Sediment & Erosion Control Sediment and Erosion Control Measures	12.000	LF	\$5.00	000 022	Assumed
SUBTOTAL Sediment & Erosion Control	12,000	L	φ3.00	\$60,000	
Site Preparation Clearing/Grubbing	40	AC	\$10,350.00	\$414,000	
Surveying Utility Locating	1 1	LS EA	\$25,000.00 \$15,000.00	\$25,000 \$15,000	
SUBTOTAL Site Preparation				\$454,000	
Dewatering	0.47.000.750	01	40.00	04.040.055	Assumes minor treatment required for TSS. Pump water to existing
Dewatering of pond and transfer to another pond SUBTOTAL Dewatering	247,302,756	GL	\$0.02	\$4,946,055 \$4,946,055	structure
Repair On-Site Pond Embankments Existing CCR Pond embankments	1	LS	\$500,000.00		Minimal, based off of USEPA dam assessment report
SUBTOTAL Repair On-Site Pond Embankments				\$500,000	
Utility Services Utility Modifications SUBTOTAL Utility Modifications	1	LS	\$100,000.00	\$100,000 \$100,000	LG&E-KU to complete.
Roads				\$100,000	
Dense Grade Aggregate (materials, hauling and placement) SUBTOTAL Roads	8889	CY	\$37.86	\$336,533 \$336,533	Allowance based on PE's recent bid evaluation at Cane Run (includes FOE
Pre-Closure / Preparation					
SUBTOTAL Pre-Closure / Preparation				\$0	Moved to Closure Tasks
Closure	46-65-		# · · · ·	<u>.</u> .	
Cut/regrade for cover subgrade/ditch Geotextile (as needed, assume 100% of 167.7 acre area for filling)	497,662 747,828	CY SY	\$8.10 \$2.46	\$1,839,658	\$8.10/ CY 200 HP dozer 300' (RSM 31 23 16.46 4420)+ no haul woven, 200 lb tensile (RSM 31 32 19.16 1500)
Tensar TriAx (TX140) Geogrid (as needed, assume 100% of 154.51 acre are	747,828	SY	\$3.00	\$2,243,485	CH2M HILL, recent quote on similar project \$2.01 Placement; Dozer, 300 hp, 300', common earth (RSM 31 23 5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31
Placement and Compaction (from GS north area)	1,441,828	CY	\$2.39	\$3,445,969	
Placement and Compaction (from Reclaim Pond)	35,622	CY	\$2.39	\$85,137	5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31
					\$2.01 Placement; Dozer, 300 hp, 300', common earth (RSM 31 23 5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Placement and Compaction (from GS south area)	3,000,709	CY	\$2.39	\$7,171,695	4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55
Moisture Conditioning/Dust Control Finish Grading, gentle slopes SUBTOTAL Closure	4,975,821 759,880	CY SY	\$0.57 \$0.20		\$105.83/hr x 10 hrs/day x 5 days/week / 9,216 CY/week RSM 31 22 16.10 3300
Final Cover (Install FML)				\$21,005,199	
Final Cover: 40-mil Tex/smooth LLDPE 10 oz. Geotextile (includes materials and installation)	6,838,920 6,838,920	SF SF	\$0.65 \$0.20	\$4,445,298 \$1,367,784	CH2M HILL recent project.
Cover Soil (2 feet thick) - Excavation and Load-out (from off-site borrow area)	410,906	CY	\$20.00		Allowance based on PE's recent bid evaluation at Cane Run (includes FOE
Excavation and Load-out (from off-site borrow area) (top soil) Hauling (assume 2-mile cycle)	136,969 547,874	CY	\$20.00 \$4.36	\$2,739,370	Allowance based on PE's recent bid evaluation at Cane Run (includes FOE 2013 RSMeans Site Work and Landscape Cost Data, 31 23 2320 0018
					\$2.01 Placement; Dozer, 300 hp, 300', common earth (RSM 31 23 5420) + \$0.38 Compaction; sheepsfoot, 12" lift, 2 passes (RSM 31 3
- Placement and Compaction	547,874	CY	\$2.39	\$1,309,419	4,000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$1
Moisture Conditioning/Dust Control Drainage System Piping Finish Grading, gentle slopes	547,874 157 759,880	AC SY	\$0.57 \$10,000.00 \$0.20	\$1,570,000	10 hrs/day x 5 days/week / 9,216 CY/week Allowance RSM 31 22 16.10 3300
SUBTOTAL Final Cover (Install FML)	759,000	31	φυ.20	\$22,502,976	
Surface Water Features Ditch Erosion Protection - Perimeter Ditch	10164	LF	\$5.00	\$50.820	vegetative
Culvert through berm to Channel, West Side (36") Culvert through berm to Channel, North Side (36")	200 200	LF LF	\$100.00 \$100.00	\$20,000 \$20,000	
Ditch to Reclaim Pond, from North Side SUBTOTAL Surface Water Features	3500	LF	\$15.00 <u> </u>	\$52,500 \$143,320	Ī
Primary Outlet Structure					L
Modify inter-connecting piping between ponds. Demolition and Disposal of removed portion SUBTOTAL Primary Outlet Structure	1	LS LS	\$100,000.00 \$10,000.00		(Assumed some work required) Assumed
- John Gudelle				φ110,000	
Emergency Outlet Structure					
Surface Restoration Mechanical Seeding & Mulching	157.0	AC	\$3,550.00	\$557,350	l
Quantity/Final Survey SUBTOTAL Surface Restoration	1	LS	\$25,000.00	\$25,000 \$582,350	ı
Groundwater Monitoring					ı
New Monitoring wells, 4" (10,200 LF perimeter) Groundwater Monitoring Events	14 8	EA Ea	\$17,600.00 \$10,000.00	\$80,000	assumes well spacing 1 well/750 feet; 14 wells to 75 feet deep unit cost reflects lab, QA/QC eval, report per event
SUBTOTAL SUBTOTAL Groundwater Monitoring SUBTOTAL CONSTRUCTION				\$326,400 \$51,966,833	
Design, Project & Construction Management, and Closure Report				\$51,966,833	
Design, Project & Construction Management, and Closure Report Conceptual Design Final Design and Permitting and permitting support	1	LS LS	\$900,000.00 \$3,400,000.00		LG&E provided, based on experience LG&E provided, based on experience
PDI Construction Management, including CQA and OE services	1	LS LS	\$75,000.00 \$8,400,000.00	\$75,000	LG&E provided, based on experience LG&E provided, based on experience
Construction Contractor Performance and Payment Bonds Closure Report	0.0% 1	LS	\$51,966,833.38 \$100,000.00	\$0	LG&E provided Document Const. Work, QA/QC, and Record DWGs
SUBTOTAL Construction Contractor Performance and Payment Bonds				\$7,075,000	
SUBTOTAL IMPOUNDMENT CLOSURE				\$59,041,833	
TRUCTION					
FGD Treatment Tanks Common Equipment					
FGD Treatment Tanks					· ·

- Assumptions:

 1. Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.

 2. CCR volume quantities include utilizing CCR from existing operations.

 3. Existing pond embankments to be used.

 4. Groundwater Monitoring well installation is not included.

 5. Road repair is not included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of _____. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

			No.	Unit Cost		Installation	Total Installed		
Item	Value	Units	Provided	(\$ ea)	Amount	(\$ ea)	Cost (\$)	CCR Cost	ELG Cost
FGD Treatment Tanks									
Mix Tank Mixers Flocculation Tank Mixers	2.0		2	41,628 41,628	83,257 83,257	8,326 8,326	99,908 99,908	99,908 99,908	
Ferric Chloride Feed Pumps	6.3	aph	2	6,266	12,533	1,400	15.333	15,333	
Sulfuric Acid Feed Pumps	6.3	gph	2	6,266	12,533	1,400	15,333	15,333	
Organosulfide Feed Pumps			2	6,266	12,533	1,400	15,333	15,333	
Polymer Blending Systems	0.6	gph	2	25,000	50,000	1,700	53,400	53,400	
Sodium Hydroxide Feed Pumps	6.3	gph	2	6,266	12,533	1,400	15,333	15,333	
Other Wastewater Treatment Tanks Mix Tank Mixers	20.0	hn	2	64,571	129,143	12,914	154,971		154,971
Flocculation Tank Mixers	20.0		2	64,571	129,143	12,914	154,971		154,971
Ferric Chloride Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Sulfuric Acid Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Organosulfide Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Polymer Blending Systems Sodium Hydroxide Feed Pumps	7.4 73.8	gph gph	2 2	25,000 6,266	50,000 12,533	1,700 1,400	53,400 15,333		53,400 15,333
Mix Tank Blower		SCFM	2	2,850	5,700	1,140	7,980		7,980
Common Equipment		001111	_	2,000	0,7.00	1,110	7,000		-
Ferric chloride tank		gal	1	30,499	30,499	6,100	36,599	18,299	18,299
Sulfuric Acid tank	15,000	gal	1	30,499	30,499	6,100	36,599	18,299	18,299
Organosulfide Tank	8,000	gal	6	17,476	17,476	3,495	20,971		20,971
Polymer feed Totes Sodium Hydroxide Tank	265 15,000	gal gal	1	30,499	30,499	6,100	36,599	18,299	18,299
Safety Shower	10,000	5-41	2	25,000	50,000	5,000	60,000	30,000	30,000
Area Labor Adjustment Factor	100.0%	applies to in	stallation cos		30,000	3,000	00,000	55,555	00,000
Total Equipment Cost (TEC) Area Labor Adjustment Factor					700 700		938,000	399,000	539,000
Total Process Equipment Freight	4%	of Proc Equ	ip		739,733		30,000	12,761	17,239
Purchased Equipment Cost - Delivered (F FGD Treatment Tanks			T				968,000	411,761	556,239
Mix Tanks Wall Concrete			1	650	52,093		52,093	52,093	
Mix Tanks Slab Concrete	27	CY	1	300	8,084		8,084	8,084	
Floculation Tanks Wall Concrete Floculation Tanks Slab Concrete	27	CY CY	1	650 300	52,093 8,084		52,093 8,084	52,093 8,084	
Settling Tanks Wall Concrete		CY	1	650	3,616,889		3,616,889	3,616,889	
Settling Tanks Slab Concrete	23,294	CY	1	300	6,988,276		6,988,276	6,988,276	
Total Ramp concrete	514	CY	2	300	308,102		308,102	308,102	
Other Treatment Tanks									
Mix Tanks Wall Concrete	126	CY	1	650	81,784		81,784		81,784
Mix Tanks Slab Concrete	85	CY	1	300	25,624		25,624		25,624
Floculation Tanks Wall Concrete			1	650	81,784		81,784		81,784
Floculation Tanks Slab Concrete	85	CY	1	300	25,624		25,624		25,624
Settling Tanks Wall Concrete Settling Tanks Slab Concrete	5,067	CY	1	650 300	3,293,333		3,293,333		3,293,333
Total Ramp concrete	15,005 514	CY	1 2	300	4,501,641 308,102		4,501,641 308,102		4,501,641 308,102
	314	01	2	300	300,102		300,102		300,102
Common Items	F27 200	CY	1	F 07	3,147,862		2 4 47 962	1 014 550	1 222 202
Excavation - Soft Pre Engineered building		ft2	1	5.97 200	240,000		3,147,862 240,000	1,914,559 120,000	1,233,302 120,000
Lining Tanks		SY	1	30	2,270,824		2,270,824	1,381,136	889,687
-									
Construction Material							25,010,197	14,449,316	10,560,881
State Sales Tax	1.0%	Proc Eq					7,000	4,044	2,956
Total Constuction Material							25,017,197	14,453,360	10,563,837
Total Equipment and Construction	50/						25,985,197	14,865,121	11,120,076
Electrical and I&C Piping	5% 8%						1,299,000 2,079,000	743,000 1,189,000	556,000 890,000
Yard Improvements (a)		of Equip + C	onst.				2,079,000	1,189,000	890,000
Metals and Finishes		of Equip + C					780,000	446,000	334,000
Subtotal							32,222,197	18,432,121	13,790,076
Total Direct Costs (TDC)							32,222,197	18,432,121	13,790,076
Contractor's Field General Conditions		of TDC					1,611,000	922,000	690,000
Contractor's OH&P		of TDC					4,833,000	2,765,000	2,069,000
Contingency Escalation Factor		of TDC					6,444,000	3,686,000	2,758,000
Total Construction Cost (TCC)	0%	OI IDC					45,110,197	25,805,121	19,307,076
Engineering, SDC ^c and Startup	15%	of TCC					6,767,000	3,871,000	2,896,000
Total Estimated Order of Magnitude Capi		51 100					51,877,197	29,676,121	22,203,076
							. ,,.	.,,	,,

⁽a) Includes fencing, grading, roads, sidewalks, and similar items.
(b) The enclosed Engineer's Estimate is only an estimate of possible construction costs. This estimate is limited to the conditions existing at its issuance and is not a guaranty of actual price or cost. Uncertain market conditions such as, but not limited to: local labor or contractor availability, wages, other work, material market fluctuations, price escalations, force majeure events, and developing bidding conditions etc may affect the accuracy of this estimate. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

⁽c) SDC stands for Services During Construction (Startup, Engineer/Site Reps, etc.)

Individual Unit Cost Summary

Cost Worksheet 1 - Individual Unit Cost Line Items

	Unit Cost	Units	s References
Mobilization/Demobilization Workplan, procurement, mobilization, demobilization	50,000	LS	Allowance
Sediment & Erosion Control Sediment and Erision Control Measures	25,000	LS	Allowance includes SWPPP and implementation and maintenance.
Transport & Disposal Waste Characterization T&D non-hazardous soil to off-site LF T&D non-hazardous CRC to off-site LF T&D non-hazardous CRC to off-site LF T&D non-hazardous CRC to on-site LF T&D non-hazardous CRC to on-site LF T&D non-hazardous CRC to Schaiffer LF T&D non-hazardous CRC to schaiffer LF T&D non-hazardous CRC to schaiffer LF T&D non-hazardous CRC to schaiffer LF T&D non-hazardous CRC to schaiffer LF T&D non-hazardous CRC to schaiffer LF T&D non-hazardous CRC to Schaiffer LF T&D non-hazardous CRC to W Schaiffer LF T&D non-hazardous CRC to W Schaiffer LF T&D non-hazardous CRC to W Schaiffer LF T&D non-hazardous CRC to W Schaiffer LF T&D non-hazardous CRC to W Schaiffer LF T&D non-hazardous CRC to W Schaiffer LF T&D non-hazardous CRC to W Schaiffer LF T&D non-hazardous CRC to M no	\$1,500 E 61.1 T 61.1 T 7.18 C 7.18 C 21.4 T 9.03 C 34.78 T 11.05 T	Ton Ton CY CY Ton CY	Lab Estimate for TCLP (VOA, SVOA, Pesticides/Herbicides, Metals) Clucte of \$47 + 30%, due to articipated landfill capacity issues Clucte of \$47 + 30%, due to articipated landfill capacity issues S1.98 (RSM 31 23 23.13 4220) + 0.94 compaction (RSM 31 23 23.23 5640) + \$4.38(cv haul 12 cv 15mph 2 mile (RSM 31 23 23.20 1018) S1.98 (RSM 31 23 23.13 4220) + 0.94 compaction (RSM 31 23 23.25 5640) + \$4.38(cv haul 12 cv 15mph 2 mile (RSM 31 23 23.20 1018) Provided by client. Unit rate provided by client, does not include construction, post-closure can and materiarance for 20-years hybical for Subtitle D landfills. Excavator Loading \$1.56 (RSM 31 23 16.42 2009) + 94.84(if) Recement 51.38 (RSM 31 23 23.14 4220) + 0.94 compaction (RSM 31 23 23.23 5640) + \$4.36(cv haul 12 cv 15mph 2 mile received (RSM 31 23 23.25 5640) + \$4.36(cv haul 12 cv 15mph 2 mile received (RSM 31 23 23.25 5640) + \$4.36(cv haul 12 cv 15mph 2 mile one way 6.54(boaded mile to + \$2.56(mph mile return) 20 tons per truck. No disposal charge.
Slurry Wall Install Slurry Wall	\$0	IF	Place-holder. Included in RCRA Consultant
Repair On-Site Pond Embankments Geotechnical Repairs on existing CCR Pond embankments			Allowance, Items may include embankment soil removal/replacement; localized dewatering; stump removal; drainage improvements; Dike height adjustments, etc.
Site Preparation Clearing/Grubbing Site Debris Clean Up & Removal Surveying Utility Locating	\$276	AC AC LS LS	
Dewatering & Drying of Saturated Coal Ash Dewatering			Number for site preparation in areas with high water table. Eq. Michigan City. Bailly ??? Check with Nick. Allowance to pump water from ponds to on site treatment facility
Earthwork Items Site Work Soil			
Excavate and Temporarily Stockpile Onsite, dragline, haul (pond) Excavate and load, dragline (pond) Surface Gradini, lagono bettoms Mosture Conditioning Dist Control Mosture Conditioning/Dust Control Remove Embarkment, Spread Berms Finish Grading, gentle slopes	\$3.87 \$6.60 \$0.57 \$8.94	CY CY SY CY CY CY SY	\$3.55 dragline 1/2 (vr cap - 30cyhth+no haul (RSM 31 23 16.42 0950) + \$8.10 Dozer excavation, 200 hp, common earth, 300' (RSM 31 23 16.46 5020) RSM3 12 21 61 03 500 \$2.36 1 CY excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer excavation, 200 hp, common earth, 150' (RSM 31 23 16.46 4220) 4.000 callon water truck: rent \$17.03hr + F05 \$33.80hr + or \$55hr = \$105.83hr x 10 hrs/dav x 5 davs/week / 9.216 CY/week \$3.10 CY 200 Hr dozer 300' (RSM 31 23 16.46 2010) - no haul + \$9.04 Compaction, Sheepesfold, 6" lift, 2 passes (RSM 31 23 23.23 25600)
Site Work CCR Excavate and Temporarily Stockpile Onsite (pond)	\$20.81	CY	\$8.35 dragline 1/2 cy cap = 30cy/hr (RSM 31 23 16.42 0950) + \$4.36 haul 12cy 15mph 2 mile (31 23 23.20 1018) + \$8.10 Dozer excavation, 200 hp, common earth, 300' (RSM 31 23 16.46 5020)
Excavate and Temporarily Stocknile Onsite excavator haul (nond)	\$16.45		\$8.35 dragline 1/2 cy cap = 30cy/hr+no haul (RSM 31 23 16.42 0950) + \$8.10 Dozer excavation, 200 hp, common earth, 300' (RSM 31 23 16.46 5020)
Exemente and Temporarily Storolysis Oriente, securator, no had been de Exemente and Lord from Storolysis (Coff. from facility operations) Hauting (assume 2 mile cycle) (CCR from facility operations) Moisture Conditioning/Dust Control Surface Grading, lagoon bottoms Exewate and load from stockpile (excavator) Finish Grading, gentle slopes	\$5.20 \$1.39 \$2.96 \$0.57 \$3.87 \$6.60	CY CY CY CY SY CY SY	\$2.36 excavator 1 or cap = 100c/ylir (RSM 31 23 16.42 0200) ± \$2.24 dozer 200 h p.5 ft. clay (31 23 16.46 4040) 1988 RT Loader (6 CV), inert 85.56 + FCO \$95.51 lift + opt \$75ft x 50 h 1992;16 CV/week 3 each, Car 735 dif-road trucks (26CV); rent \$54.39ht + FCO \$52.18ht + Opt \$75ft x 50 hrs/340 x 5 days/week 4/9.216 CV/week 4.000 callon water truck: rent \$17.03ht + FCO \$33.80ht + opt \$55ft x 50 hrs/340 x 5 days/week 4/9.216 CV/week RSM 31 22 16.10 3500 \$2.36 1 CV excavator (RSM 31 23 16.42 0100) + o haul + \$4.24 Dozer exavation, 20 0h, common earth, 150' (RSM 31 23 16.46 4220)
Fill and Borrow Unclassified Fill, Delivered, Offsite Source, Placed Topsoil, Delivered, Offsite Source, Placed Haul (2 mile cycle) Compacted Clay, 6-in-ch lifts, Offsite Source, Placed Unclassified Fill, Delivered, On-site Source, Placed	\$23.95	CY CY	\$4.36 haut; 12by, 15mph, 2 mile, 15 minute (RS Means 31 23 22.30 1018) \$1.98 place (RSM 31 23 23.13 4220) + \$1.56 compact (RSM 31 23 23.23 5640) + \$20(cy delivered) Placement \$1.98 (RSM 31 23 23.13 4220) + \$4.36 compaction (RSM 31 23 23.23 5640) + \$c. capacity
Finish Grading, gentle slopes			RSM 31 22 16:10 3300
Site Restoration Items Revegetation Mechancial Seeding and Mulching Seed	\$3,550 A \$856 A		Seeding, slope mix, 8#, hydro/air seeding w/mulch & fertilizer (RSM 32 92 19.14 4600) Seeding, slope mix, 6#, tractor spreader - material only (RSM 32 92 19.14 4500)
Site Survey	\$30,000 L	LS	
Confirmation Sample Collection Confirmation Sample Analysis Sample Packaging and Shipping	\$100 E \$150 E \$250 E	EΑ	single metal
On-Site Landfill Sufface Grading, layoon bottom Base Liner: Soil Liner (127) Base Liner: Soil Liner (127) Base Liner: Sonil HDPE Base Liner: Gendrille Base Liner: Gendrille Base Liner: Gendrille Base Liner: Protective Layer (18 inches soil) Final Cover: 40-mil Texysmooth LLDPE Final Cover: 40-mil Texysmooth LLDPE Final Cover: Fond Drainage Layer (12 inches) Final Cover: Protective Layer (18 inches soil) Final Cover: Topsoil Layer (6 inches) Finish Grading, capital soignes Leachate Collection piose Leachate Collection piose	\$ 18,730 # \$ 23,905 # \$ 39,204 # \$ 30,653 # \$ 11,665 # \$ 37,510 # \$ 30,653 # \$ 19,352 # \$ 968 # \$ 30,653 # \$ 968 # \$ \$ 30,000 # \$ \$ 5,000 # \$ \$ 5,000 # \$ \$	AC AC AC AC AC AC AC AC	Finish arrading laspon bottoms (RSM 31 22 16.10 3500) (\$430/1000 sf) \$1.98 (RSM 91 23 23.13 4202) + 0.94 compaction (RSM 31 23 23.23 5640) + \$12/cy delivered Price Based on \$9.00 SF. Price is based on Drainage Sand \$15/EOY and placement \$4/BYD Gectextile. wow, 200 b tensile (RSM 31 22 19.16 19.10) Price is based on General Fill \$1/E/EOY and placement \$3.5/BCY Price is based on Drainage Sand \$15/EOY and placement \$4/BYD Price is based on General Fill \$1/E/EOY and placement \$4/BYD Price is based on General Fill \$1/E/EOY and placement \$3.5/BCY \$3.96 (RSM 31 22 23.14 24/20) + \$20/cy delivered \$3.5/BM3 12 22.16 10.3300 (\$0.20/SY) Allowance
SUBTOTAL Reconstruct and Reline On-Site Pond	\$ 313,564 A	AC	
Remove overfiving soils and 30 mil Hypalon liner Regrade and Compact Suborade Compacted Clay (1 x 10 ⁷) Soil Liner (24 inches) 30-mil PVC Geonet 30-mil PVC Protective Laver (18 inches soil) SUBTOTAL	\$ 17,000 A \$ 17,000 A \$ 96,800 A \$ 19,167 A \$ 28,314 A \$ 19,167 A \$ 37,510 A \$ 234,958 A	AC AC AC AC AC	
Reconstruct and Line Pond, Install Steel Wear Plates Remove and stockpile 16" Coarse Graded Crushed Ballast (3/4" to 1 1/2") Remove 6" Sand Remove estians 30 mill Hvoalon liner Remove 6" Sand Remove and Compact Compacted Clay Subgrade Compacted Clay (1 x 10") Soil Liner (24 inches) 30-mil PVC Geonet 30-mil PVC	\$30,760 # \$ 10,250 # \$ 17,000 # \$ 10,250 # \$ 21,250 # \$ 96,800 # \$ 19,167 # \$ 28,314 # \$ 19,167 # \$	AC AC AC AC AC AC	dradine 1/2 cy cap = 30cy/hr+haul 12cy 15mph 2 mile (RSM 31 23 16.42 0850 + 31 23 23.20 1018 = \$12.71/cy dradine 1/2 cy cap = 30cy/hr+haul 12cy 15mph 2 mile (RSM 31 23 16.42 0850 + 31 23 23.20 1018 = \$12.71/cy dradine 1/2 cy cap = 30cy/hr+haul 12cy 15mph 2 mile (RSM 31 23 16.42 0850 + 31 23 23.20 1018 = \$12.71/cy dradine 1/2 cy cap = 30cy/hr+haul 12cy 15mph 2 mile (RSM 31 23 16.42 0850 + 31 23 23.20 1018 = \$12.71/cy dradine 1/2 cy cap = 30cy/hr+haul 12cy 15mph 2 mile (RSM 31 23 16.42 0850 + 31 23 23.20 1018 = \$12.71/cy dradine 1/2 cy cap = 30cy/hr-haul 12cy 15mph 2 mile (RSM 31 23 16.42 0850 + 31 23 23.20 1018 = \$12.71/cy dradine 1/2 cy cap = 30cy/hr-haul 12cy 15mph 2 mile (RSM 31 23 16.42 0850 + 31 23 23.23 5640)[\$1.56/cy/assume 1' thickly) Price is based on Clay Fill @ \$20/CY and placement @ \$10/CY or Cy cap = 30cy/hr-haul 12cy 15mph 2 mile 1/2 cy cap = 30cy/hr-haul 12cy 15mph 2 mile 1/2
18" Coarse Graded Crushed Ballast-reused (3/4" to 1 1/2" size) Steel Wear Plates - 3/8" - 2000 SF TOTAL for working area SUBTOTAL	\$ 29,500 A \$ 19,200 A \$ 301,658 A	AC	\$1.98 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + \$4.36/cy haul 12 cy 15mph 2 mile (RSM 31 23 23.20 1018) + \$5/CY load = \$12.18/cy 3/8* x 2000 SF = 65 CF x 490lb/d = 16 tons @ \$1,200ton
Reconstruct and Line Bottom Ash Storage Area Remove 30" Bottom Ash'Soil Recrards and Compact Subgrade Compacted Clay (1 x 10") Soil Liner (24 inches) 30-mil PVC Geonat 30-mil PVC 18" Coarse Graded Crushed Ballast-reused (3/4" to 1 1/2" size) SUBTOTAL	\$51.265	AC AC AC AC AC	dradine 1/2 cv cap = 30cwhr+haul 12cv 15mbh 2 mile (RSSM 31 23 16.42 0980 + 31 23 23.20 1018) = \$12.71/cv Friish gradine lapcon bottoms (RSM 31 22 16.10 3500)(\$0.43/SF) + compaction, 6' lifts, 4 passes (RSM 31 23 23.23 5640)(\$1.56/cy(assume 1' thick)) Price is based on Clay Fill © \$20/CV and clacement © \$10/CV 44/SF what, olderver and installation. Price is based on RCM from Geomembrane.com \$0.60/SF what, delivery and installation. Price is based on RCM from Geomembrane.com \$0.44/SF what, olderver and installation. Price is based on RCM from Geomembrane.com \$0.44/SF what, olderver and installation. Price is based on RCM from Geomembrane.com \$1.98 (RSM 31 23 23.13 4220) + 0.34 compaction (RSM 31 23 23.23 5640) + \$4.36/cv haul 12 cv 15mbh 2 mile (RSM 31 23 23.20 1018) + \$5/CV load = \$12.18/cv

1/18/2016 FINAL

Individual Unit Cost Summary

Leachate Collection System (1 per pond)
Final arade
Tranchina
60-mil HDPE liner
HDPE aconet
Leak Detection Fill (25° x 45° x5° = 210 CV)
10-inch dia HDPE Pine (2 each at 300')
24ch dia PVC Pine (1 each at 300')
SUBTOTAL \$ 1.258 EA \$0.43/SF Finish grading lagoon bottoms (RSM 31 22 16.10 3500) x (45 x 65) = \$ 1.063 EA \$3.81/LF. (RSM G1020 805 1800) \$ 9.620 EA \$3.81/LF. (RSM G1020 805 1800) \$ 9.620 EA Assume 7125 F Price based on .90/SF + 50% small quantity (\$1.35) \$ 3.950 EA Assume 45/65 SF. Price based on .90/SF + 50% small quantity (\$1.35) \$ 3.990 EA Price is based on Drainess Read \$15/EGV and lagearent \$4/BYD \$ 21.200 EA \$32/LF. RSM 33 11 13.35 0400 + \$1,000/pipe littings \$ 41,909 EA \$2.59/LS. RSM 33 11 13.20 11/20 + \$100 fittings

Cover Existing Pond
Stabilize
Final grade
40-mil Tex/smooth LLDPE
Sand Drainage Layer (12 inches)
Protective Layer (16 inches soil)
Tossoil Layer (6 inches)
SUBTOTAL \$ 109,000 AC assume 5 thick = 8.067 BCY/Acra = 12.600 tons. 3% Portland = 378 tons @ \$75.ton + \$10/cy handling \$ 18,730 AC Finish reading lacons between \$1.200 tons. 3% Portland = 378 tons @ \$75.ton + \$10/cy handling \$ 28,414 AC Price Based no 50.65 SF \$ 30,5653 AC Price is based on Dianiane Sand \$15/BCY and placement \$4.08YD Price is based on General Fill \$12/BCY and placement \$3.5/BCY \$ 19,352 AC \$ 3.95 (RSM 31 23 23.14 2420) + \$20/cy delivered \$ 224,327 AC \$ 23.95 (RSM 31 23 23.14 2420) + \$20/cy delivered \$ 3.95 (RSM 3

Periodic Cleaing of Pond

Hydraulic dredge (pumped 1000' to shore) = 15.55 + haul 12cy 15mph 2 mile (RSM 35 20 23.23 1100 + 31 23 23.20 1018) = \$12.71/cy totals \$28.26/cy for 1 acre x 2' deep = \$28 CY 3.226.67 BCY \$2.36 CY Wearward (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer excavation, 200 hp., common earth, 150' (RSM 31 23 16.46 4220) Dredge 2' of material Excavate and load from stockpile

Individual Unit Cost Summary

Cost Worksheet 1 - Individual Unit Cost Line Items

Item	Unit Cost Unit	ts References
Mobilization/Demobilization Workplan, procurement, mobilization, demobilization	50,000 LS	Allowance
Sediment & Erosion Control Sediment and Erision Control Measures	25,000 LS	Allowance includes SWPPP and implementation and maintenance.
Transport & Disposal Wasto Characterization 18.D non-hazardous soil to off-site LF 18.D non-hazardous SCO Rto off-site LF 18.D non-hazardous SCO Rto off-site LF 18.D non-hazardous SCO Rt to on-site LF 18.D non-hazardous SCO Rto Schahler LF 18.D non-hazardous SCOR to Schahler LF 18.D non-hazardous SCOR to Schahler LF 18.D non-hazardous SCOR to Schahler LF 18.D non-hazardous FOR EN STOR SCHAHLER 18.D non-hazardous SCOR to Schahler LF 18.D non-hazardous SCOR to Schahler LF 18.D non-hazardous SCOR to Schahler LF 18.D non-hazardous SCOR to Schahler LF 18.D non-hazardous SCOR to Schahler LF 18.D non-hazardous SCOR to SCHAHLER 18.D non-haza	\$1,500 EA 61.1 Ton 61.1 Ton 7.18 CY 7.18 CY 21.4 Ton 9.03 CY 34.78 Ton 11.05 Ton	Quote of \$47 + 30% due to anticipated landfill expacity issues Quote of \$47 + 30% due to anticipated landfill expacity issues \$1.98 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + \$4.36/cv haul 12 cv 15mph 2 mile (RSM 31 23 23.20 1018) Backfill Placement 15.88 (RSM 13 23 23.41 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + \$4.36/cv haul 12 cv 15mph 2 mile (RSM 31 23 23.20 1018) Provided by client. Unit rate provided by client, does not include construction, post-closure care and maintenance for 20-years typical for Subtitle D landfills. Exexavotr Cuading 51.88 (RSM 31 23 16.42 0209) + Backfill Placement 15.88 (RSM 31 23 23.41 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + \$4.36/cv haul 12 cv 15mph 2 mile (RSM 31 23 23.20 1018) 107 miles one way © \$4/loaded mile to + \$2.5/empty mile return / 20 tons per truck. No disposal charge.
Slurry Wall Install Slurry Wall	\$0 LF	Place-holder. Included in RCRA Consultant
Repair On-Site Pond Embankments Geotechnical Repairs on existing CCR Pond embankments	\$1,000,000 LS	Allowance. Items may include embankment soil removal/replacement; localized dewatering; stump removal; drainage improvements; Dike height adjustments, etc.
Site Preparation Clearing(Grubbing Site Debris Clean Up & Removal Surveying Utility Locating	\$10,350 AC \$276 AC \$10,000 LS \$5,000 LS	
Dewatering & Drying of Saturated Coal Ash Dewatering	\$30,000 AC	Number for site oreoaration in areas with hich water table. Eq. Michigan City, Bailly ??? Check with Nick. Allowance to pump water from ponds to on site treatment facility
Earthwork Items Site Work Soil	****	
Excavate and Temporarily Stockpile Onsite, dragline, haul Excavate and Temporarily Stockpile Onsite, excavator, no haul Excavate and load, dragline Surface Grading, lagoon bottoms Excavate and load from stockpile Remove Embankment, Spread Berms Finish Grading, gentle slopes Site Work CCR	\$16.45 CY \$3.87 SY \$6.60 CY \$8.94 CY	\$2.36 excavator 1 ov cap = 100cv/hr (RSM 31 23 16.42 0200) + \$2.84 dozer 200 hp 50 ft, clay (31 23 16.46 4040) \$3.36 excavator 1 cv cap = 30cv/hr+no haul (RSM 31 23 16.42 0850) + \$8.10 Dozer excavation, 200 hp, common earth, 300' (RSM 31 23 16.46 5020) RSM 31 22 16.10 3500
Excavate and Temporarily Stockpile Onsite Excavate and load Surface Grading, lagoon bottomns Excavate and load from stockpile Finish Grading, gentle slopes Fill and Borrow	\$16.45 CY \$3.87 SY \$6.60 CY	(16.46 5020)
Unclassified Fill, Delivered, Offsite Source, Placed Topsoil, Delivered, Offsite Source, Placed Compacted Clay, 6-inch lifts, Offsite Source, Placed Unclassified Fill, Delivered, On-site Source, Placed Finish Grading, gentle slopes	\$23.95 CY \$23.54 CY \$9.03 CY	\$1.98 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + \$15/cv delivered \$3.85 (RSM 31 23 23.14 2420) + 50/cv) edishwered \$3.85 (RSM 31 23 23.14 2420) + 95.56 compact (RSM 31 23 23.23 5640) + \$20/cv delivered \$1.98 (alca (RSM 31 23 23.13 4220) + 9.56 compact (RSM 31 23 23.23 5640) + \$20/cv delivered Placement \$1.98 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + Excavator Loading \$1.85 (RSM 31 23 16.42 0260) + \$4.36 haul 12cy 15mph 2 mile (31 23 23.23 5640) + Excavator Loading \$1.85 (RSM 31 23 16.42 0260) + \$4.36 haul 12cy 15mph 2 mile (31 23 23.23 5640) + RSM 31 22 16.10 3300
Site Restoration Items	Q0.25 C1	10.000
Revegetation Mechancial Seeding and Mulching Seed	\$3,550 AC \$856 AC	Seeding, slope mix, 6#, hydro/air seeding w/mulch & fertilizer (RSM 32 92 19.14 4600) Seeding, slope mix, 6#, tractor spreader - material only (RSM 32 92 19.14 4500)
Site Survey Confirmation Sample Collection	\$30,000 LS \$100 EA	
Confirmation Sample Analysis Sample Packaging and Shipping	\$150 EA \$250 Ever	single metal
On-Site Landfill Surface Gradina, Iacoon bottom Base Liner: Soil Liner (12') Base Liner: Soil There (12') Base Liner: Sand Drainage Layer (12 inches) Base Liner: Sand Drainage Layer (12 inches) Base Liner: Sand Drainage Layer (13 inches soil) Final Coner: 40-mil Teckmonth LLDPE Final Coner: 40-mil Teckmonth LLDPE Final Coner: Sand Drainage Layer (12 inches) Final Coner: Sond Drainage Layer (12 inches) Final Coner: Topotoche Layer (18 inches soil) Final Coner: Topotoche Layer (16 inches) Finish Gradina. centel soloes Leachate Collection pipes Leachate Collection pipes Leachate National Collection pipes Leachate Substotal	\$ 18,730 AC \$ 23,905 AC \$ 39,204 AC \$ 30,653 AC \$ 11,665 AC \$ 37,510 AC \$ 28,414 AC \$ 30,653 AC \$ 19,352 AC \$ 19,352 AC \$ 9,988 AC \$ 30,000 AC \$ 5,000 AC \$ 313,564 AC	Finish grading leacon bottoms (RSM 31 22 16.10 3500) (\$430/1000 sf) \$1.96 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.25 5640) + \$12/cy delivered Price Beased on \$400 SF. Price is based on Divarians Sard \$15/BCY and placement \$4/BYD Gestrellie, wover, 200 b tensile (RSM 31 32 13.16 1500) Price is based on Divarians Sard \$15/BCY and placement \$3.5/BCY Price Beased on \$0.06 SF is \$12/BCY and placement \$3.5/BCY Price is based on Divarianse \$ard \$15/BCY and placement \$4.00 CP Price is based on Divarianse \$ard \$15/BCY and placement \$3.5/BCY \$3.50 (RSM 31 23 23 14 2420) + \$20/cy delivered RSM 31 22 (8.10 3300 (\$0.20/SY) Allowance
Reconstruct and Reline On-Site Pond Remove overwhrian solis and 30 mil Hvoslon liner Regrade and Compact Subgrade Compacted Clay (1 x 10 ²) Soil Liner (24 inches) 30-mil PVC Genoret 30-mil PVC Pridective Layer (18 inches soil) SUBTOTAL Reconstruct and Line Pond. Install Steel Wear Plates	\$ 17,000 AC \$ 17,000 AC \$ 96,800 AC \$ 19,167 AC \$ 28,314 AC \$ 19,167 AC \$ 37,510 AC \$ 234,958 AC	Based on a crew at \$8,500/Dav for two davs Based on a crew at \$8,500/Dav for two davs Price is based on (Disy Fill @ \$20/CV) and placement @ \$10/CV \$0.44/SF witax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.65/SF witax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.44/SF witax, delivery and installation. Price is based on ROM from Geomembrane.com Price is based on General Fill \$12/TCY and placement \$3.5/TCY
Reconstruct and Line Pond, install Steel Wear Hates Remove and stockpile 16* Coarse Graded Crushed Ballast (3/4* to 1 1/2*) Remove 6* Sand Remove existing 30 mill Hvoalon liner Remove 6* Sand Regrade and Compact Compacted Clay Subgrade Compacted Clay (1 x 10*) Soil Liner (24 inches) 30-mill PVC Georet 30-mill PVC	\$30,760 AC \$ 10,250 AC \$ 17,000 AC \$ 10,250 AC \$ 21,250 AC \$ 96,800 AC \$ 19,167 AC \$ 28,314 AC \$ 19,167 AC	dradine 1/2 cv cap = 30cv/hr+haul 12cv 15mph 2 mile (RSM 31 23 16.42 0950 + 31 23 23.20 1018 = \$12.71/cv dradine 1/2 cv cap = 30cv/hr+haul 12cv 15mbh 2 mile (RSM 31 23 16.42 0950 + 31 23 23.20 1018 = \$12.71/cv dradine 1/2 cv cap = 30cv/hr+haul 12cv 15mbh 2 mile (RSM 31 23 16.42 0950 + 31 23 23.20 1018 = \$12.71/cv dradine 1/2 cv cap = 30cv/hr+haul 12cv 15mbh 2 mile (RSM 31 23 16.42 0950 + 31 23 23.20 1018 = \$12.71/cv Frish radradin aboro bettoms (RSM 31 22 16.10 5500)(50.435F) + compaction, of 'list', 4 passes (RSM 31 23 32.23 5640)(\$1.56/cv/assume 1' thick)) Price is based on Clay File \$20CV and placement @ \$10CV \$10.500 (50.45F) + compaction, of 'list', 4 passes (RSM 31 23 23.23 5640)(\$1.56/cv/assume 1' thick)) \$2.04CF what, delivery and hatilation. Price is based on ROM from Geomembrane.com \$3.04CF what, delivery and hatilation. Price is based on ROM from Geomembrane.com
18" Coarse Graded Crushed Ballast-reused (3/4" to 1 1/2" size) Steel Wear Plates - 3/8" - 2000 SF TOTAL for working area SUBTOTAL	\$ 29,500 AC \$ 19,200 AC \$ 301,658 AC	\$1.98 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + \$4.36/cv haul 12 cy 15mph 2 mile (RSM 31 23 23.20 1018) + \$5/CY load = \$12.18/cv 36° x 2000 SF = 65 CF x 490bicf = 16 tons @ \$1,200hcn
Reconstruct and Line Bottom Ash Storage Area Remove 30° Bottom Ash Soil Regrade and Compact Suborade Compacted Clay (1 x 10 ⁷) Soil Liner (24 inches) 30·mil PVC Geonet 30·mil PVC	\$51,265 AC \$ 21,250 AC \$ 96,800 AC \$ 19,167 AC \$ 28,314 AC	dragline 1/2 cy cap = 30cyhr+haul 12cy 15mph 2 mile (RSM 31 23 16.42 0950 + 31 23 23.20 1018) = \$12.71/cy Finish grading lacoon bottoms (RSM 31 22 16.10 3500)(\$0.43/SP) + compaction, 6' lifts, 4 passes (RSM 31 23 23.23 5640)(\$1.56/cy/assume 1' thick)) Price is based on Clay Fill (\$ 250/CY and placement @ \$10/CY \$0.44/SP wilax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.65/SP wilax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.44/SP wilax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.45/SP wilax, delivery and installation. Price is based on ROM from Geomembrane.com
18" Coarse Graded Crushed Ballast-reused (3/4" to 1 1/2" size) SUBTOTAL	\$ 29,500 AC \$ 265,463 AC	\$1.98 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + \$4.36/cy haul 12 cy 15mph 2 mile (RSM 31 23 23.20 1018) + \$5/CY load = \$12.18/cy

1/18/2016 FINAL

Individual Unit Cost Summary

Leachate Collection System (1 per pond)

	Final grade	\$ 1,258	EΑ	\$0.43/SF Finish grading lagoon bottoms (RSM 31 22 16.10 3500) x (45' x 65') =
	Trenching	\$ 1,083	EA	\$3.61/LF. (RSM G1030 805 1800)
	60-mil HDPE liner	\$ 9,620	EA	Assume 7125 SF. Price based on .90/SF + 50% small quantity (\$1.35)
	HDPE geonet	\$ 3,950	EA	Assume 45'x65' SF. Price based on .90/SF + 50% small quantity (\$1.35)
	Leak Detection Fill (25' x 45' x5' = 210 CY)	\$ 3,990	EA	Price is based on Drainage Sand \$15/BCY and placement \$4/BYD
	10-inch dia HDPE Pipe (2 each at 300')	\$ 21.200	EA	\$32/LF. RSM 33 11 13.35 0400 + \$1.000/pipe fittings
	2-inch dia PVC Pipe (1 each at 300')	\$ 868	EA	\$2.59/LS. RSM 33 11 13.20 1120 + \$100 fittings
SUE	BTOTAL	\$ 41,969	EA	

Cover Existing Pond		
Stabilize	\$ 109.020 AC	assume 5' thick = 8,067 BCY/Acre = 12,600 tons. 3% Portland = 378 tons @ \$75/ton + \$10/cy handling
Final grade	\$ 18,730 AC	Finish grading lagoon bottoms (RSM 31 22 16.10 3500)
40-mil Tex/smooth LLDPE	\$ 28.414 AC	Price Based on \$0.65 SF
Sand Drainage Layer (12 inches)	\$ 30,653 AC	Price is based on Drainage Sand \$15/BCY and placement \$4/BYD
Protective Layer (18 inches soil)	\$ 37,510 AC	Price is based on General Fill \$12/BCY and placement \$3.5/BCY
Topsoil Layer (6 inches)	\$ 19,352 AC	\$3.95 (RSM 31 23 23.14 2420) + \$20/cy delivered
SUBTOTAL	\$ 224,327 AC	

Periodic Cleaing of Pond

Hydraulic dredge (pumped 1000' to shore) = 15.55 + haul 12cy 15mph 2 mile (RSM 35 20 23.23 1100 + 31 23 23.20 1018) = \$12.71/cy totals \$28.26/cy for 1 acre x 2' deep = \$28 CY 3.26.67 BCY
\$6.60 CY \$2.36 1 CY excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer excavation, 200 hp., common earth, 150' (RSM 31 23 16.46 4220) Dredge 2' of material Excavate and load from stockpile

CCR Production Rates CCR Production - 2015 Plan (tons)

 CCR Production Handling Assumptions:

 % Bot Ash Wet Sluice to ATB2:
 18%
 2015 YTD - per J. Oswein e-mail of 7/1/2015

 % Bot Ash Wet Sluice to ATB2:
 18%
 2015 YTD - per J. Oswein e-mail of 7/1/2015

 % Gypsum returned to Ponds:
 34%
 2015 YTD - per J. Oswein e-mail of 7/1/2015

ed Material: 185852 678647 700870 1717548

	Ghent				Accumula	ted Material (Tons)	ATB	-1
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	ATB-2	Gypsum Stack	2017-2018	2019-2023
2015	95,524	382,098	971,368	1,448,991	85972	330265		
2016	110,978	443,910	1,024,652	1,579,540	99880	348382		
2017	113,956	455,825	1,042,262	1,612,044		0	354369	
2018	110,325	441,301	1,019,121	1,570,747			346501	
2019	108,994	435,976	1,014,263	1,559,233				344849
2020	110,869	443,476	1,029,599	1,583,944				350064
2021	106,731	426,924	990,608	1,524,263				336807
2022	106,190	424,761	985,907	1,516,858				335208
2023	111,034	444,136	1,031,235	1,586,405				350620
2024	111,891	447,563	1,038,722	1,598,175				
2025	111,608	446,432	1,035,935	1,593,975				

M. Gavin 7/15/2015

- Projected Material Generation Handling Assumptions:
 A. Bottom Ash and Flyash:
 Untill Jan 2017, assume portion of fly ash and bottom ash slurried to ATB #2 (per above %), and remainder to landfill
 After Jan 2017, all ash will be dry (to landfill)

- B. Gypsum
 Will continue to sell portion of Gypsum for off-site beneficial reuse, landfill portion, and send rest to ponds (per assumptions above)
 Until Jan 2017, assume portion gypsum production (per above %) will be accumulated in Gypsum Stack and/or ATB-2
 From Jan 2017 to Jan 2019, assume portion gypsum production (per above %) will accumulate in ATB-1
 After Jan 2019 through 2023, assume ATB-1 may or may not take same yearly production (consider both cases)

Approximate density of CCR in-place: 1 ton/CY (Assumed)

Pond Quantity Balance Estimate - By Pond:

Orange:	To be confirmed by CAD
Yellow:	Based on assumptions as listed
Green:	Confirmed by CAD
Blue:	Per CAD but need to doubleche

Ash Treatment Basin #1 (ATB1)											_
Item	Units	Quantity	Notes					Kev Item to Confi	Estimated		
Total surface area	AC	111.2	Notes					key item to Confi	input value:		
Standing surface water (to remove)	GAL	56,296,720	Per CAD: Vo	lume Report.	Water surface	at Flev. 522					1.55 Avg. depth
Length of perimeter	LF	9,279									
CUT: Existing Surface to Final Cover Subgrade											
CCR cut in 2017 for temporary treatment pond - send to ATB2	CY	161,333	Dredge 10 a	cre, 10' deep p	ond. Send to	ATB2 in 201	7		10	ac	
Cut from existing surface to final subgrade - keep in ATB1	CY	362,465	Per CAD.					CAD - confirm cut	to grade ditch	es for final co	ver
AIRSPACE CAPACITY: Existing Surface to Final Cover Subgrade	CY	2,191,904	CAD to upda	te per final gr	ades						
FILL SOURCES:											
From Secondary Pond - CCR and subsoil	CY	22,977									
From cut for final cover subgrade	CY	362,465	CAD to confi	rm							
From CCR accumulation in ATB-1 - Jan. 2017 thru 2018	CY	700,870						CAD - find min. fin	al cover gradi	ng option to b	palance this
From CCR accumulation in ATB-1 - Jan. 2019 thru 2023	CY	1,717,548	CAD to minii	mize additiona	al fill needed f	or 2019 closu	re. May be 4 years add	tioanl accumulation (1.7 MCY?) thr	ough 2023 for	max case
TOTAL POTENTIAL FILL through 2018	СУ	1,086,313	CAD to confi	rm concept ca	in be made to	manage this	(multi-small hill)				
TOTAL POTENTIAL FILL through 2023	CY	2,803,861	CAD to desig	n cover to ma	ximize fill - up	to this value	if possible				Fi
Final cover soil volume	CY	382,494	CAD to upda	te							R
Final cover surface area	AC	113	Per CAD (are	a within ditch) plus 10' strip	around peri	meter ditch				
Surface Water features											
Ditch Erosion Protection - Perimeter Ditch	LF	9,279									
Culvert/Tunnel through berm to Secondary Pond - From NE corner	LŞ	1									
Culvert/Tunnel through to Secondary Pond - From SE corner	LŞ	1									
Ditch to Secondary Pond - From SE corn	IF	1.200	CAD to confi								1

From To Subject Cc Size Received Categories Reif, Marty Zink, Nath: RE: LGE-KU Mckelvey, 19 KB 12:53 PM

Item	Units	Quantity	Notes	Key Item to Confi	Estimated input value:		
Total surface area	AC	60.28	Per CAD: Volume Report				
Standing Surface Water (to remove)	GAL	58,039,125	Per CAD: Volume Report. Water surface at Elev. 540	CAD: Compare to	po to water ele	ev.	2.96 Avg. depth
Length of perimeter	LF	6,065	CAD to confirm				
CUT - From Estimated Final Surface at Closure							
From current survey surface to estimated CCR extents - send to ATB2	CY	3,666,633	From CAD: Volume report	CAD: Confirm w/r	/t elevation 50	00 bottom elev	vation
Stage 1	CY	1,175,957	From CAD: Volume report				
Stage 2	CY	2,490,676	From CAD: Volume report				
From accumulation 2015 to Jan. 2017 - Send to ATB2	CY	678,647					
TOTAL Gypsum CUT - Send to ATB2	CY	4,345,280					
Stage 1 - North	CY	1,402,173					
Stage 2 - South	CY	2,943,107					
Total Subsoil Cut - below Gypsum - Send to ATB2	CY	97,257			1	ft	
Stage 1	CY	39,655					
Stage 2	CY	57,602					
BERM REGRADING	CY	79,216					
Stage 1 - North (N & E berms)	CY	43410	From CAD: Volume report				ĺ
Stage 2 - South (E berm)	CY	35806	From CAD: Volume report				ĺ

Ash Treatment Basin #2 (ATB2)

Standing Surface Water (to remove)	Units	Quantity	Notes					Key Item to Confir	Estimated input value:	
Total surface area	AC	154.51	Per CAD: Volume Report							
Standing Surface Water (to remove)	GAL	247,302,756	Per CAD: Volu	ıme Report. 1	Water suface	at Elev. 792.			3	ft
Length of perimeter	LF	10,164	Per CAD: Volu	ıme Report						
CUT										
Cut from existing surface to final subgrade - keep in ATB2	CY	497,662	Per CAD: Volu	ıme Report						
FILL CAPACITY: Existing surface to final cover subgrade	CY	4,937,298	Per CAD: Volu	ıme Report						
FILL SOURCES:										
From ATB1 temporary treatement pond	CY	161,333	Per above							
From CCR accumulation in ATB-2 through 2016	CY	185,852	Projection - p	er above						
From Gypsum Stack - Stage 1	CY	1,441,828	Assume 1/3 c	of Gypsum Sta	ck cut					
From Gypsum Stack - Stage 2	CY	3,000,709	Assume 2/3 of Gypsum Stack cut							
From Reclaim Pond	CY	35,622								
From cut for final cover subgrade	CY	497,662	Per above							
TOTAL POTENTIAL FILL	CY	5,323,006								
Potential EXCESS FILL (to be accomodated by refined ATB-2 cover design)	CY	385,708								
Final Cover Soil Volume	CY	547,874	Per CAD: Volu	ıme Report						
Final Cover Surface Area	AC	157	Per CAD (area	within ditch	plus 10' strip	around perin	neter ditch			
Surface Water features										
Ditch Erosion Protection - Perimeter Ditch	LF	10,164								
Culvert/Tunnel through berm to Channel - West Side	LS	1		Ť		,				
Modify Ditch and Sed Pond - from West Side	LS	1		Ť		,				
Culvert/Tunnel through to Secondary Pond - North Side	LS	1								
Ditch to Reclaim Pond - from North Side	LF	3,500	CAD to confir	m						

Secondary Pond						
Item	Units	Quantity	Notes	Key Item to Confir	Estimated input value:	
Area of pond	AC	4.16				
Standing Surface Water (to remove)	GAL	13,362,163	Per CAD: Elev. 492 to existing		5	ft
Length of perimeter	LF	1,955				
сит						
From existing surface to estimated CCR extents - send to ATB1	CY	16,266	Per CAD: Volume report			
From subsoil below CCR - Send to ATB1	CY	6,711			1	ft
FILL - bottom of pond to final grade (clean fill)	CY	0				
Volume of pond	CY	22,977	May not be same as CCR cut above - CAD to confirm design pond volume			
volume of pond	GAL	4,641,150				

9.86 Avg. depth

Item	Units	Quantity	Notes	Key Item to Confir	Estimated input value:	
Area of pond	AC	7.36				
Standing Surface Water (to remove)	CY	90592	Per CAD (Elev. 498 to 492)			
Standing Surface Water (to remove)	GAL	18,297,183			5	ft
Length of perimeter	LF	2,565				
сит						
From existing surface to estimated CCR extents - send to ATB2	CY	23,748	Assume average 2 ft excavation of CCR across pond area		2	ft
From subsoil below CCR - Send to ATB2	CY	11,874			1	ft
FILL - Bottom of pond to final grade (clean fill)	CY	0				
Volume of pond	CY	35,622	May not be same as CCR cut above - CAD to confirm design pond volume			·
	GAL	7,195,262				

7.63 Avg. depth

3.00 Avg. depth

^b Represents volume of pond. Other Key Assumptions:

LG&E-KU Ghent Station Settling Tank-based Treatment System Mass Balances - FGD Wastewater

Streams		1	2	3	4	5	6	7	8	9	10
	Units	FGD Wastewater	Mix Tank Influent	Sodium Hydroxide Feed (2)	Ferric Chloride Feed	Organo-sulfide Feed	Polymer Feed	Sulfuric Acid Feed	Settling Tank Influent	Settled Solids	Settling Tank Enfluent
3-Month Average Flow											
Volumetric Flow, 3-month average	gpm	1,324	1,324	0.07	0.07	0.03	0.66	0.066	1,351	125	1,219
Total Mass Flow	lb/hr	675,780	675,780	42	47	16	331	61	676,230	66,277	609,953
Suspended Solids	%	2.0%	2.00%	0%		0%	0%	0%	2.0%	20%	0.002%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	14	0	0	0			
Mass Flow Liquid	lb/hr	662,530	662,530	42	47	16	331	61	662,966	53,022	609,944
Mass Flow Solids	lb/hr	13,251	13,251	0	14	0	0	0	13,265	13,255	9.1
Specific Gravity		0.00	0.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	0.0	0.0	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4
DESIGN MAX FLOW											
Volumetric Flow, Peak	gpm	2,112	2,112	0.11	0.11	0.04	1.06	0.066	2,156	200	1,945
Total Mass Flow	lb/hr	1,077,982	1,077,982	68	75	25	528	61	1,078,700	105,650	973,049
Suspended Solids	%	2.0%	2.00%	0%		0%	0%	0%	2.0%	20%	0.003%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	22	0	0	0			
Mass Flow Liquid	lb/hr	1,056,845	1,056,845	68	75	25	528	61	1,057,540	84,520	973,020
Mass Flow Solids	lb/hr	21,137	21,137	0	22	0	0	0	21,159	21,130	29.2
Specific Gravity		0.00	0.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	0.0	0.0	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4

Notes:

XX User Entered

LG&E-KU Ghent Station Settling Tank-based Treatment System Mass Balances - Other Wastewater

Streams		1	2	3	4	5	6	7	8	9	10
	Units	Other Wastewater	Mix Tank Influent	Sodium Hydroxide Feed		Organo-sulfide Feed	Polymer Feed	Sulfuric Acid Feed	Settling Tank Influent	Settled Solids	Settling Tank Enfluent
DESIGN FLOW											
Volumetric Flow, 3 month ave	gpm	9,365	9,365	0.47	0.47	0.19	4.68	0.468	9,372	2	9,371
Total Mass Flow	lb/hr	4,686,715	4,686,715	300	429	111	2,343	431	4,689,898	894	4,689,004
Suspended Solids	%	0.01%	0.01%	0%		0%	0%	0%	0.0%	20%	0.002%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	99	0	0	0			
Mass Flow Liquid	lb/hr	4,686,246	4,686,246	300	330	111	2,343	431	4,689,330	396	4,688,934
Mass Flow Solids	lb/hr	469	469	0	99	0	0	0	568	497	70.3
Specific Gravity		1.00	1.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	62.4	62.4	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4
DESIGN MAX FLOW											
Volumetric Flow, Peak	gpm	24,611	24,611	1.23	1.23	0.49	12.31	0.468	24,630	11	24,619
Total Mass Flow	lb/hr	12,316,576	12,316,576	788	868	291	6,158	431	12,324,941	5,612	12,319,329
Suspended Solids	%	0.01%	0.01%	0%		0%	0%	0%	0.0%	20%	0.003%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	260	0	0	0			
Mass Flow Liquid	lb/hr	12,315,344	12,315,344	788	868	291	6,158	431	12,323,449	4,490	12,318,959
Mass Flow Solids	lb/hr	1,232	1,232	0	260	0	0	0	1,492	1,122	369.6
Specific Gravity		1.00	1.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	62.4	62.4	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4

Notes:

vv

User Entered

	-			
Fα	uin	mer	ıt S	izins

		Other Water	
	FGD Treatment	Treatment	Tom's comments - red = not addressed, black = addressed
Mix Tanks			
Average Flow, gpm	1,324	9,365	Design flow for Sludge Generation storage, 3 month rolling average
Max Design Flow, gpm	2,112	24,611	Use for Mix Tanks, Settling tank overflow rate
Number of Tanks	2	2	
HDT Average, Min	16.0	20.0	
HDT Peak, Min	10	7.6	
Mix Tank Volume, gal	21,120	187,044	
Mix Tank Volume, cf	2,823	25,004	
·			Need to account for the mix tanks being higher than the settling tanks to
Side Water Depth, ft	18	23	allow fro head drop
Freeboard, ft	2	2	
Wall Height, ft	20	25	
Length/width, ft	13		inside dimensions
Slab Area, sf	364	1,153	
Wall length, ft	27	68	Wall length split between Mix tanks and floc tanks
Wall Area, sf	1,082	1,699	
Slab thichness, ft	2	2	
Wall thickness, in	24	24	
Wall thickness, ft	2.00	2.00	
Wall Volume, cy	80	126	
Slab Volume, cy	27	85	
Mixing horsepower, HP/1,000 gal	0.1	0.1	
Calculated HP	2.11	18.70	
Actual HP	2	20	
Number	2	2	
Outlet Pipe Nominal Diameter, in	14	32	FRP Pipe
Outlet Pipe ID, in	14	32	
Outlet Pipe Velocity, fps	4.40	4.91	Design for2 to 5 fps
Pipe Head Loss to Floculation Tank, Ft	0.68	0.79	
Number of Dip Tubes	1	2	We will want to design 2 different size dip tubes for other wastewater, a lower one that is smaller for low flows and a larger one for high flow conditions. We need a minimum velocity to suck solids out of the tank, and max velocity to prevent shear.
Number of pip rubes	1		and max velocity to prevent snear.

Flocculation Tanks

		İ	
Average Flow, gpm	1,324		Design flow for Sludge Generation storage, 3 month rolling average
Max Design Flow, gpm	2,112	24,611	Use for Mix Tanks, Settling tank overflow rate
Number of Tanks	2	2	
HDT Average, Min	16.0	20.0	
HDT Peak, Min	10	7.6	
Flocculation Tank Volume, gal	21,120	187,044	
Flocculation Tank Volume, cf	2,823	25,004	
Side Water Depth, ft	18.0	23.0	
Freeboard, ft	2	2	
Wall Height, ft	20.0	25.0	
Length/width, ft	13	33	inside dimensions
Slab Area, sf	364	1,153	
Wall length, ft	27	68	Wall length split between Mix tanks and floc tanks
Wall Area, sf	1,082	1,699	
Slab thichness, ft	2	2	
Wall thickness, in	24	24	
Wall thickness, ft	2.00	2.00	
Wall Volume, cy	80	126	
Slab Volume, cy	27	85	
Mixing horsepower, HP/1,000 gal	0.1	0.1	
Calculated HP	2.11	18.7	
Actual HP	1.5	20	
Number	2	2	
Outlet Pipe Nominal Diameter, in	14	32	FRP
Outlet Pipe ID, in	14	32	
Outlet Pipe Velocity, fps	4.40	4.91	Design for max 3-4 fps
Pipe Head Loss to Floculation Tank	0.68	0.79	
Number of Dip Tubes	1	2	

Settling Tanks			
Average Flow, gpm	1,324		Calculate overflow rate on peak flow, solids storage on average flow
Max Design Flow, gpm	2,112	24,611	
Design solids, mg/L	20,000	100	
Daily solids production , lbs/day	318,351	13,626	
Solids concentration (Settled solids)	20%		Settled solids
Solids density, lbs/cf	80	80	dry solids
Solids generation, cf/day	19,897	3,406	
Solids Storage, days	92	343	
Solids Storage per tank, cf	1,825,200	1,170,000	> 1 yr solids capacity for Other WW ssytem.
Number of Tanks	2	2	
Wall Height, ft	24	24	
Freeboard, ft	2	2	
Side Water Depth, ft	22	22	
Water depth above settled solids	10	10	
Solids Depth.ft	12	12	
Total Tank Volume, gal per tank	25,029,576	16.044.600	
Total Tank Volume, CF per tank	3,346,200	2,145,000	
Solids Storage Volume, gal per tank	13,652,496	8,751,600	
Solids Storage Volume, CF per tank	1,825,200	1,170,000	
, , , , , , , , , , , , , , , , , , ,			Set based on solids storage capacity for FGD WW and overflow rate for
Tank Width, ft	195	125	other WW Treatment
L/W Ratio	4	6.2	
			Tank length for Other WW is set equal to the FGD WW tank and the
Tank Length, ft	780	780	Other WW tank width
Slab Area, sf	314,472	202,574	
Wall length, ft	3,130	2,850	
Wall Area, sf	75,120	68,400	
Slab thichness, ft	2	2	
Wall thickness, in	24	24	
Wall thickness, ft	2.0	2.0	
Wall Volume, cy	5,564	5,067	
Slab Volume, cy	23,294	15,005	
Overflow Rate Average, gpm/sf	0.0087	0.0961	
Overflow Rate peak, gpm/sf	0.0139	0.2524	Want to stay at < 0.26 gpm/sf
Flow capacity based on average overflow rate, gpm	1,300		one train
Flow capacity based on Peak overflow rate, gpm	2,110	-,	One train

Access Ramn to Settling Tank

Access Ramp to Settling Tank			
Access Ramp Inside Settling tank Width, ft	30	30	Need two way truck traffic
Ramp Slope, %	12%	12%	
Ramp tickness, ft	1.50	1.50	Assumed.
Ramp Length, ft	201	201	
Ramp area, sf	6043	6043	
Ramp side wall area sf	2400	2400	
Ramp side wall Thickness, ft	2	2	
Sidewall concerte, cft	4800	4800	
Access Ramp concrete, cft	9065	9065	
Total Ramp concrete, ft3	13865	13865	
Total Ramp concrete, cy	514	514	Per ramp

Excavation	527,	.280	
Liner			
Liner, ft2	398,527	282,720	
Liner, SY	44,281	31,413	

Chemical Feeds Ferric Chloride Feed

Number of pumps	2	2	
Maximum Flow to treat, gpm	2,112	24,611	
Dose (volume of chemical/volume of wastewater), ppmv	50 50		Use 50
Maximum Feed Rate, gph	6.3	73.8	
Average Flow to treat, gpm	1,324	9,365	
Average Feed Rate, gph	4.0	28.1	
Average Treatment Volume, MGD	1.91 13.49		
Average Usage, gpd	95	674	
Average usage of chemical for FGD WW and Other WW	7	70	
Max Day Treatment Volume, MG	3.04	35.4	
Maximum Usage, gpd	152	1772	
Max usage of chemical for FGD WW and Other WW, gpd	1,924		
Nominal Storage Tank Volume, gal	11,000		
Number of Tanks	1		
Total Storage Volume, gal	15,000		Includes 4000 gallon extra capacity for tank truck loading

Storage Time at normal max usage, days		8	
Storage Time at average usage, days	_	19	Size for 14 to 21 days capacity at average usage
Sulfuric Acid Feed	•		
Number of pumps	2	2	
Maximum Flow to treat, gpm	2,112	24,611	
Dose (volume of chemical/volume of wastewater), ppmv	50	50	
Maximum Feed Rate, gph	6	74	
Average Flow to treat, gpm	1,324	9,365	
Average Feed Rate, gph	4.0	28	
Average Treatment Volume, MGD	1.9	13.5	
Average Usage, gpd	95	674	
Average usage of chemical for FGD WW and Other WW	7	70	
Max Day Treatment Volume, MG	3.04	35.4	
Maximum Usage, gpd	152	1772	
Max usage of chemical for FGD WW and Other WW	1,	924	
Nominal Storage Tamk Volume, gal	11	,000	
Number of tanks		1	
Total Storage Volume, gal	15,	,000	Each tank. Includes 4000 gal for tanker truck.
Storage Time at normal max usage, days		8	
Storage Time at average usage, days		19	Size for 14 to 21 days capacity at average usage

Sodium Hydroxide Feed

ooutum riyaroxiao r oou			
Number of pumps	2	2	
Maximum Flow to treat, gpm	2,112	24,611	
Dose (volume of chemical/volume of wastewater), ppmv	50	50	
Maximum Feed Rate, gph	6.3	73.8	
Average Flow to treat, gpm	1,324	9,365	
Average Feed Rate, gph	4.0	28.1	
Average Treatment Volume, MGD	1.91	13.5	
Average Usage, gpd	95	674	
Average usage of chemical for FGD WW and Other WW	770		
Max Day Treatment Volume, MG	3.04	35.4	
Normal Maximum Usage, gpd	152	1772	
Max usage of chemical for FGD WW and Other WW	1,9	924	
Nominal Storage Tank Volume, gal	11,	.000	common Tank
Number of tanks	1		
Total Storage Volume, gal	15,000		Includes 4000 gallon extra capacity for tank truck loading
Storage Time at normal max usage, days	6		
Storage Time at average usage, days	19		Size for 14 to 21 days capacity at average usage

Organosulfide Feed			
Number of pumps	2	2	
Maximum Flow to treat, gpm	2,112	24,611	
Dose (volume of chemical/volume of wastewater), ppmv	20	20	
Maximum Feed Rate, gph	2.53	29.5	
Average Flow to treat, gpm	1,324	9,365	
Average Feed Rate, gph	1.6	11.2	
Average Treatment Volume, MGD	1.91	13.5	
Average Usage, gpd	38.1	270	
Average usage of chemical for FGD WW and Other WW, gpd	3	08	
Max Day Treatment Volume, MG	3.04	35.4	
Normal Maximum Usage, gpd	60.8	709	
Max usage of chemical for FGD WW and Other WW, gpd	7	70	
Nominal Storage Tank Volume, gal	4,0	000	
Number of tanks		1	
Total Storage Volume, gal	8,0	000	
Storage Time at normal max usage, days	10		
Storage Time at average usage, days	26		Size for ~ 21 days capacity at average usage

	Feed		

Number of polymer blending units	2	2	
Maximum Flow to treat, gpm	2,112	24,611	
Dose (volume of chemical/volume of wastewater), ppmv	5	5	1:100 ratio neat polymer to water
Maximum Feed Rate, gph	0.63	7.38	
Dilution Water Feed (volume to volume of neat polymer)	100	100	
Maximum Flow of Dilution water, gph	63.4	738.3	
Average Flow to treat, gpm	1,324	9,365	
Average Feed Rate, gph	0.40	2.81	
Average Treatment Volume, MGD	1.91 13.49		
Average Usage, gpd	9.5	67.4	
Average usage of chemical for FGD WW and Other WW, gpd		77	
Max Day Treatment Volume, MG	3.04	35.4	
Normal Maximum Usage, gpd	15.2	177	
Max usage of chemical for FGD WW and Other WW, gpd	1	192	
Nominal Storage Tote Volume, gal	2	265	265 or 320 gallons are standard volumes/sizes for totes
Number of totes	6		
Total Storage Volume, gal	1,590		
Storage Time at normal max usage, days	8		
Storage Time at average usage, days	21		Size for ~ 21 days capacity at average usage

Note: User Input

12 feet of solids, 10 feet of water and 2 feet of freeboard

Head loss influent Mix tank to Floccuation Tank FGD Treatment

Quantity	Pipe /Fitting	Material	SDR	Nominal	ID	Pipe Length L	Loss Coef	Flow	Flow	Pipe		Hazen C	Headloss	Minor	Subtotal
										Velocity	Head		in Pipe	Loss	head
				(in)	(in)	(ft)		(gpm)	(ft ³ /s)	(ft/sec)	(ft)		(ft)	(ft)	(ft)
1	entrance	FRP		14	14		0.78	2,112	4.71	4.40	0.30	150	0.00	0.24	0.24
	pipe	FRP		14	14	18		2,112	4.71	4.40	0.30	150	0.07	0.00	0.07
0	tee, branch	FRP		14	14		0.72	2,112	4.71	4.40	0.30	150	0.00	0.00	0.00
		FRP											0.00		
-	elbow, 45 degree			14	14		0.19	2,112	4.71	4.40	0.30	150	0.00	0.00	0.00
1	elbow, 90 degree	FRP		14	14		0.19	2,112	4.71	4.40	0.30	150	0.00	0.06	0.06
				14	14			2,112							
	pipe	FRP		14	14	4		2,112	4.71	4.40	0.30	150	0.01	0.00	0.01
1	exit loss	FRP		14	14		1.00	2,112	4.71	4.40	0.30	150	0.00	0.30	0.30

Total head loss 0.68 total minor loss 0.60

Head loss influent Mix tank to Floccuation Tank. Other Water Treatment

Quantity	Pipe /Fitting	Material	SDR	Nominal	ID	Pipe Length L	Loss Coef	Flow	Flow	Pipe Velocity	Velocity Head	Hazen C	Headloss in Pipe	Minor Loss	Subtota head
				(in)	(in)	(ft)		(gpm)	(ft ³ /s)	(ft/sec)	(ft)		(ft)	(ft)	(ft)
1	entrance	FRP		32	32		0.78	12,306	27.42	4.91	0.38	150	0.00	0.29	0.29
	pipe	FRP		32	32	23		12,306	27.42	4.91	0.38	150	0.04	0.00	0.04
0	tee, branch	FRP		32	32		0.72	12,306	27.42	4.91	0.38	150	0.00	0.00	0.00
-	elbow, 45 degree	FRP		32	32		0.19	12,306	27.42	4.91	0.38	150	0.00	0.00	0.00
1	elbow, 90 degree	FRP		32	32		0.19	12,306	27.42	4.91	0.38	150	0.00	0.07	0.07
				32	32			12,306							9.91
				32	32										
	pipe	FRP		32	32	4		12,306	27.42	4.91	0.38	150	0.01	0.00	0.01
1	exit loss	FRP		32	32		1.00	12,306	27.42	4.91	0.38	150	0.00	0.38	0.38

Total head loss 0.79 total minor loss 0.74

Excavation Calculation FGD WW and Other WW Tanks

Settling Tank Depth below grade=	22	ft
Depth Below Tank for Excavation =	4	ft
Depth of excavation	26	ft
Side Slope (H:V) =	1	ft/ft
Tank wall thickness	2	ft
FGD WW Tank Length =	780	ft
FGD WW Tank Width =	195	ft
Number of FGD WW Tanks =	2	each
Other WW Tank Length =	780	ft
Other WW Tank Width =	125	ft
Number of Other WW Tanks =	2	each
Total Length of tanks with walls	784	ft
Total Width of tanks with walls	650	ft
Forested to all the second sec	14 227 570	
Excavated tank area volume		cf
Total Excavated Volume	527,280	cy

Trapezoidal
calculation, average
width of cut time
average length of cut
times depth

LG&E-KU Ghent Station

Settling Tank-based Treatment System

Table 1. Design Basis

Table 1. Design I	Du313			
Facility	Equipment	Design Criteria	FGD Treatment Tank System	Other Treatment Tank System
		Number Length, ft	2 201	2 201
Ramps	Access to	Width, ft	30	30
	Settling Tanks	Slope, %	12%	12%
		Materials	Reinforced Concrete	Reinforced Concrete
		Number	2	2
		Average Flow, gpm	1,324	9,365
		Peak Flow, gpm	2,112	24,611
		Detention Time at Average Flow, min	16	20
	Tanks	Detention Time at Peak Flow, min	10	7.6 33
	Tuliks	Dimension, ft (square) Wall Height, ft	13 20	25
		Freeboard, ft	2	2
		Side Water Depth, ft	18	23
		Volume, gal	21,120	187,044
		Materials	Reinforced Concrete	Reinforced Concrete
		Number	2	2
Mix Tanks		Туре	Hyerboloid	Hyerboloid
	Mix Tank	Turbine tip Speed, ft/sec	2 to 6	2 to 6
	Mixers	Control	VFD	VFD
		Mixing Criteria, HP/1,000 gal	0.1	0.1 20
		Horsepower, each Number	2	20
	Mix Tank	Type		Rotary Lobe
	Blower	Air Required, scfm		500
		Horsepower, each		20
		Number	2	2
	Dip Tubes	Diameter, in	14	32
	- 4	Head loss, ft	0.68	0.79
	1	Materials	FRP	FRP
		Number Average Flow, gpm	2	2 9,365
		Peak Flow, gpm	1,324 2,112	24,611
		Detention Time at Average Flow, min	16	20
		Detention Time at Peak Flow, min	10	8
	Tanks	Dimension, ft (square)	13	33
		Wall Height, ft	20	25
		Freeboard, ft	2	2
		Side Water Depth, ft	18	23
FlacculationTaulo		Volume, gal	21,120	187,044
FlocculationTanks		Materials Number	Reinforced Concrete 2	Reinforced Concrete 2
		Type	2 Hyerboloid	Z Hyerboloid
	Flocculation	Turbine tip Speed, ft/sec	2 to 6	2 to 6
	Tank Mixers	Control	VFD	VFD
		Mixing Criteria, HP/1,000 gal	0.1	0.1
		Horsepower, each	2	20
		Number	2	2
	Dip Tubes	Diameter, in	14	32
		Head loss, ft Materials	0.68 FRP	0.79 FRP
	+	Number	2	2
		Average Flow, gpm	1,324	9,365
		Peak Flow, gpm	2,112	24,611
		Solids Concentration, mg/L	20,000	100
		Average dry solids generation, lbs/day	318,351	13,626
		Solids Settled Concentration (%)	20%	5%
		Solids density, lbs/cf	80	80
		Solids Generation, cf/day	19,897	3,406
		Length, ft Width, ft	780 195	780 125
	1 .	Wall Height, ft	24	24
Settling Tanks	Tanks	Freeboard, ft	2	2
		Side Water Depth, ft	22	22
		Settling Depth, ft	10	10
		Solids Depth, ft	12	12
	1	Total Liquid Volume, gal per tank	25,029,576	16,044,600
		Solids Storage Design Criteria, days	90	90
		Solids Storage Volume, gal	13,652,496	8,751,600
		Solid Storage Provided per tank, days	92	343
		Average Overflow Rate, gpm/sf	0.01	0.10
		Peak Overflow Rate, gpm/sf	0.01	0.25
		Materials	Reinforced Concrete	Reinforced Concrete

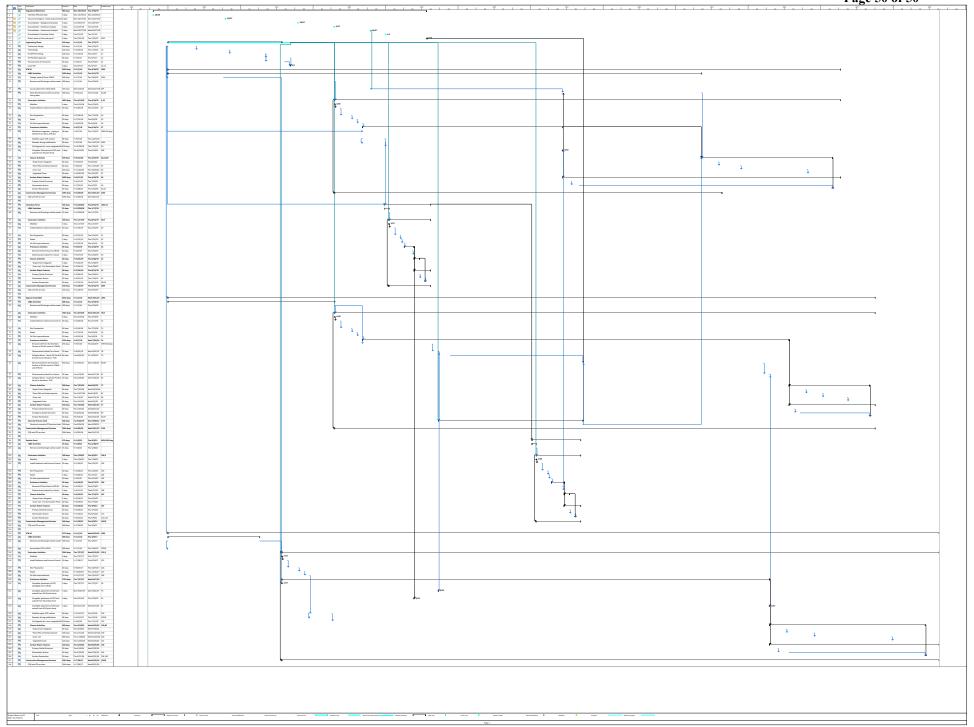
LG&E-KU Ghent Station

Settling Tank-based Treatment System

Table 1. Design Basis

Table 1. Design B	asis		1	
Facility	Equipment	Design Criteria	FGD Treatment Tank System	Other Treatment Tank System
		Number Tank Volume, gal Dose, ppmv	15,0 50	1 000 50
		Average Chemical Use, gal/d	95	674
	Ferric Chloride	Average Chemical Use, gal/d	77	70
	Storage Tank	Peak Chemical Use, gal/d	152	1,772
Ferric Chloride Feed		Peak Chemical Use, gal/d	1,9	
System		Average Use Storage, days		9
		Peak Use Storage, days Chemical Stored	35% Ferri	S a Chlarida
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm
	Ferric Chloride	Capacity, gph	6.3	73.8
	Feed Pumps	Number	2	2
		Power	120 v	121 v
		Chemical Pumped Number	35% Ferric Chloride	35% Ferric Chloride
		Tank Volume, gal	15,0	-
		Dose, ppmv	50	50
		Average Chemical Use, gal/d	95	674
	Sulfuric Acid	Average Chemical Use, gal/d	77	
	Storage	Peak Chemical Use, gal/d	152	1,772
Sulfuric Acid Feed		Peak Chemical Use, gal/d	1,9	
System	1	Average Use Storage, days Peak Use Storage, days	1	9
		Chemical Stored		ruric Acid
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm
	Sulfuric Acid	Capacity, gph	6.3	73.8
	Feed Pumps	Number	2	2
1	recur umps	Power	120 v	121 v
		Chemical Pumped Number	93% Sulfuric Acid	0
		Tank Volume, gal	15,	
	Sodium Hydroxide Storage	Dose, ppmv	50	50
		Average Chemical Use, gal/d	95	674
		Average Chemical Use, gal/d	77	70
		Peak Chemical Use, gal/d	152	1,772
Sodium Hydroxide		Peak Chemical Use, gal/d	1,9	
Feed System		Average Use Storage, days		9 5
Ì		Peak Use Storage, days Chemical Stored	25% and 5	
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm
	Sodium	Capacity, gph	6.3	73.8
	Hydroxide Feed Pumps	Number	2	2
		Power	120 v	121 v
		Chemical Pumped Number	25% and 50% NaOH	0
İ		Tank Volume, gal	8,0	
Ì		Dose, ppmv	20	20
Ì	Organosulfide	Average Chemical Use, gal/d	38	270
Ì	Tote/tank	Average Chemical Use, gal/d	30	
	Storage	Peak Chemical Use, gal/d	61	709
Organosulfide Feed	1	Peak Chemical Use, gal/d	77	70 :6
System		Average Use Storage, days Peak Use Storage, days		.0
		Chemical Stored	Organo	osulfide
				Stepping Motor Diaphragm
	Organosulfide	Chemical Stored Type Capacity, gph	Organo	Stepping Motor Diaphragm 29.5
	Organosulfide Feed Pumps	Chemical Stored Type Capacity, gph Number	Organd Stepping Motor Diaphragm 2.53 2	Stepping Motor Diaphragm 29.5 2
	Organosulfide Feed Pumps	Chemical Stored Type Capacity, gph Number Power	Organo Stepping Motor Diaphragm 2.53 2 120 v	Stepping Motor Diaphragm 29.5 2 121 v
	,	Chemical Stored Type Capacity, gph Number Power Chemical Pumped	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide
	,	Chemical Stored Type Capacity, gph Number Power	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide	Stepping Motor Diaphragm 29.5 2 121 v
	,	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5
	,	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume, Storage, gal Dose, ppmv	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 26 1,5	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 55 90 5
	,	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 26 1,5 5	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 55 690 5
	Feed Pumps	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Average Chemical Use, gal/d	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 6 20 1,5 5 10	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 55 690 5 67
	Feed Pumps Polymer Tote	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Peak Chemical Use, gal/d	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 21 1,5 5 10 7	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 55 90 5 67 7 177
Polymer Feed	Feed Pumps Polymer Tote	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Peak Chemical Use, gal/d Peak Chemical Use, gal/d	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 2(1,5 5 10 7 15	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 55 990 5 67 7 177
Polymer Feed System	Feed Pumps Polymer Tote	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Peak Chemical Use, gal/d	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 6 26 1,5 5 10 7 15	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 55 90 5 67 7 177
-	Feed Pumps Polymer Tote	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Average Chemical Use, gal/d Peak Chemical Use, gal/d Peak Chemical Use, gal/d Average Use Storage, days	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 6 20 1,5 5 10 7 15	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 5 5 7 7 177 122
-	Feed Pumps Polymer Tote	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Average Chemical Use, gal/d Peak Chemical Use, gal/d Peak Chemical Use, gal/d Peak Chemical Use, gal/d Peak Use Storage, days Peak Use Storage, days	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 6 20 1,5 5 10 7 15	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 6 555 990 5 67 7 177 22
-	Feed Pumps Polymer Tote Storage	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Average Chemical Use, gal/d Peak Chemical Use, gal/d Peak Chemical Use, gal/d Average Use Storage, days Peak Use Storage, days Chemical Stored	Organo Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 6 1,5 5 10 7 15 19 2 Anionic Emul	Stepping Motor Diaphragm
-	Feed Pumps Polymer Tote Storage Polymer	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Average Chemical Use, gal/d Peak Chemical Use, gal/d Peak Chemical Use, gal/d Peak Storage, days Peak Use Storage, days Chemical Stored Type	Organo Stepping Motor Diaphragm 2.53 2 120 v	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 5 5 67 7 177 177 18 18 8 8 8 8 8 8 8
-	Feed Pumps Polymer Tote Storage Polymer Blending	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Average Chemical Use, gal/d Peak Chemical Use, gal/d Peak Chemical Use, gal/d Peak Storage, days Peak Use Storage, days Peak Use Storage, days Chemical Stored Type Capacity, gph	Stepping Motor Diaphragm 2.53 2 120 v Organosulfide 2t 1,5 5 10 7 15 19 Anionic Emul	Stepping Motor Diaphragm
-	Feed Pumps Polymer Tote Storage Polymer	Chemical Stored Type Capacity, gph Number Power Chemical Pumped Number Volume, gal each Volume Storage, gal Dose, ppmv Average Chemical Use, gal/d Average Chemical Use, gal/d Peak Chemical Use, gal/d Peak Chemical Use, gal/d Peak Storage, days Peak Use Storage, days Chemical Stored Type	Organo Stepping Motor Diaphragm 2.53 2 120 v	Stepping Motor Diaphragm 29.5 2 121 v Organosulfide 5 5 5 67 7 177 178 18 18 18 18

LG&E-KU Ghent Station Settling Tank-based Treatment System


Table 2. Electrical Load

ltem	Location	НР	No. Provided	No. Active	Installed HP	Active HP	% of Time On	Total HP for O&M
FGD WW Teatment								
Mix Tank Mixers	TBD	2	2	1	4	2	100%	2
Floculation Tank Mixers	TBD	2	2	1	3	2	100%	2
Chemical Feed Pumps	TBD	1	10	5	10	5	100%	5
Other WW Teatment								
Mix Tank Mixers	TBD	20	2	1	40	20	100%	20
Floculation Tank Mixers	TBD	20	2	1	40	20	100%	20
Chemical Feed Pumps	TBD	1	10	5	10	5	100%	5
Mix Tank Blower	TBD	20	2	1	40	20	10%	2
Miscellaneous (bldg heating, lights, etc.)		100			100	100	30%	30
Totals					247	174		86
MW								0.064467
MW-Hr/year								560

LG&E-KU Ghent Station Settling Tank-based Treatment System Table 4. Estimated O&M Cost

Item	Quantity	Units	Unit Cost	Cost
Labor	1,040	hours/yr	\$30	\$31,200
Maintenance (% of Purchased Equipment Cost)	968,000	\$	3%	\$29,040
Solids for Disposal	272,183	tons/yr	-	-
Energy	560	MW-Hr/yr	\$100	\$56,000
Chemicals				
Ferric Chloride	224,726	gal/yr	\$2	\$373,044
Acid	67,418	gal/yr	\$2	\$157,757
Organosulfide	89,890	gal/yr	\$20	\$1,797,804
Polymer	22,473	gal/yr	\$8	\$178,882
Caustic	224,726	gal/yr	\$1	\$247,198
Total Annual O&M				\$2,871,000
Cost per 1000 Gallon Treated (excludes labor)				\$0.51
Annualized Cost				\$7,768,000

Attachment 3 Proposed Conceptual Alternative Schedule

Coal Combustion Residual Evaluation: Trimble County Generating Station

PREPARED FOR: Louisville Gas & Electric Company and Kentucky Utilities Company

PREPARED BY: CH2M HILL Engineers

DATE: September 29, 2015

1 Executive Summary

Louisville Gas & Electric Company and Kentucky Utilities Company (LG&E-KU) tasked CH2M HILL Engineers. (CH2M) with performing coal combustion residuals (CCR) evaluations for seven generation stations to develop conceptual CCR ash pond closure approaches and capital cost estimates. The generating stations under evaluation are Ghent, Trimble County, Mill Creek, E.W. Brown, Green River, Tyrone, and Pineville. This report applies solely to Trimble County Generating Station. The following scope activities were completed:

- Review of LG&E-KU provided historical CCR information and kickoff meeting workshop (June 2015)
- Developed a CCR pond closure compliance alternative that considers regulatory, civil, geotechnical, and stormwater aspects as it relates to CCR ash ponds and associated cost estimates for the generating station. Discussion of the conceptual approach is included in Section 2, and drawings are contained in Attachment 1. The applicable ponds at Trimble County are the Bottom Ash Pond (BAP) and Gypsum Storage Pond.
- Construct new concrete process tanks (four) for management of wastewater that can no longer be managed in the ponds that will be closed; construct dewatering facility for removing water from solids.

The estimated cost for closing the two ponds is summarized in Exhibit 1-1. Cost information is included in Attachment 2.

Proposed Conceptual Closure Approach	Low (-30%)	Total Capital Cost	High (+30%)
BAP Closure	\$76.1 M	\$108.7 M	\$141.3 M
Gypsum Storage Closure	\$23.3 M	\$33.3 M	\$43.3 M
Concrete Process Tanks and Dewatering Facility	\$75.1 M	\$107.2 M	\$139.4 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

2 Proposed Conceptual CCR Closure

2.1 Development of Proposed Conceptual CCR Closure

The proposed conceptual CCR pond closure approach was developed based on previous work completed by CH2M and discussions with LG&E-KU during the kickoff meeting on June 23, 2015. The Trimble County Generating Station is an operating facility with CCR wastewater generated and discharged to the ponds. The following defines the considered approach for closure for each of the two ponds. Additional assumptions are summarized in Section 2.2.

BAP

- Completely fill with CCR material generated at the facility, regrade ash in pond to balance cuts/fills, and install final cover. The surface water drainage channels will be sized to provide retention, and an outlet structure will be sized or breach of the dike to regulate discharge during a storm event.
- Surface water within BAP will be removed before closure begins, as needed, to allow surface improvement and dry material placement in BAP. Other potential subgrade improvements are described under assumptions below.
- BAP will receive material from the station and gypsum storage pond (in 2018) until airspace capacity
 is full. Excess CCR material will be properly disposed of in a landfill. Details are located in Section 3 Estimated Material Volumes and Areas, Table 3-1

Gypsum Storage Pond

- Completely fill with CCR material generated at the facility, regrade ash in pond to balance cuts/fills, and install final cover. The surface water drainage channels will be sized to provide retention and an outlet structure will be sized or breach of the dike to regulate discharge during a storm event to the existing construction sedimentation pond.
- Surface water within Gypsum Storage Pond will be removed before closure begins, as needed, to allow surface improvement and dry material placement in Gypsum Storage Pond. Other potential subgrade improvements are described under assumptions below.
- Gypsum Storage Pond will receive material from the station until airspace capacity is full. Excess CCR material will be properly disposed of in BAP. Details are located in Section 3 - Estimated Material Volumes and Areas, Table 3-1

Regulatory Strategy

- Compliance with the Final CCR Rule.
- Closure activities will be permitted by the Kentucky Department of Environmental Protection (KYDEP).

The volume of CCR to be managed (that is, excavated, placed and regarded within the ponds) was developed using AutoCAD drawings provided by LG&E-KU and computer aided engineering (CAE) software. The proposed conceptual pond closure approach is presented in drawings provided in Attachment 1.

2.2 Design Assumptions

General

The general design assumptions used for the proposed conceptual CCR pond closure approach is as outlined in our proposal and discussed with LG&E-KU at our kickoff meeting on June 23, 2015, and summarized below:

- It is anticipated for this analysis that Trimble County Generation Station will be able to discharge pond water via National Pollutant Discharge Elimination System (NPDES) permitted outfall.
 - CH2M assumes that Trimble County Generation Station will be able to develop an acceptable regulatory approach(es) to support managing water. BAP was constructed post 1982 and contains fly ash transport water. At the time of closure, the BAP is estimated to contain in excess of 410 million gallons (MG) of water and the Gypsum Storage Pond contains an excess of 225 MG of water. This accumulated water will need to be removed in order to close this ponds. Costs associated with development of this approach and implementation of the approach are not included in this project or cost estimate. However, a cost to dewater the pond has been included but does not include treatment. It is anticipated that LG&E-KU will have an approved management approach in-place by 1st quarter of 2017. Once approval to dewater is in place, BAP and Gypsum Storage Pond will begin the dewatering process and closure activities will begin. For this scenario to be feasible it is assumed that the CCR ponds will meet structural integrity requirements within the Final CCR Rule.
 - BAP is estimated to have 410 MG of water. CH2M estimated within the schedule 900 working days (approximately 3.5 years) to dewater BAP. The rate of dewatering for BAP will be 500,000 gallons per day (GPD) to achieve this schedule. The cost estimate and schedule does not take into account permitting and infrastructure development for the treatment of process water.
 - Gypsum Storage Pond is estimated to have 225 MG of water. CH2M estimated within the schedule 450 working days (approximately 2.0 years) to dewater the Gypsum Storage Pond. The rate of dewatering for Gypsum Storage Pond will be 500,000 GPD to achieve this schedule. The cost estimate and schedule does not take into account permitting and infrastructure development for the treatment of process water.
- The existing conditions were established from AutoCAD files provided by LG&E-KU on June 23, 2015. In order to estimate the volume of CCR in the BAP and Gypsum Storage Pond, a surface was developed in AutoCAD based on data and elevations provided by LG&E-KU. It was determined that the ash in the BAP and Gypsum Storage Pond could be regraded to balance cuts/fills and closed.
- Volume calculations are based on an in-place (moist) density 1 ton per cubic yard (74 pounds per cubic foot) for all cut and placed CCR material, and does not account for shrinkage/swell during placement. Quantities do not consider settlement of in-place CCR because of dewatering or new fill/cover loads. Changes to these assumptions should be verified during design development.
- It is assumed these CCR ponds meet the structural integrity requirements, and the pond closure approaches are geotechnically stable as shown. This information will be confirmed during design development.

- Improvements to prepare a workable CCR surface include removing surface water, localized regrading to facilitate dewatering, and installing a geotextile, a layer of dry CCR, and geogrid.
- Final cover surface drainage channels are inside the perimeter dikes, and would include final cover and be lined with structural reinforcement (turf reinforcement mat, riprap etc.), as necessary.
- The dikes will be used without increasing or decreasing height. Some improvements may be required based on the U.S. Environmental Protection Agency (USEPA) dam assessment findings but are outside this project scope. The dikes may be able to be knocked down and used for final cover. However, this will need to be coordinated with the appropriate regulatory agency and therefore these volumes were not included in this evaluation.
- CCR within the ponds will be regarded and used to fill the pond beneath the final cover.
- The final cover (cap) is assumed to consist of 40-mil linear low-density polyethylene liner (LLDPE) placed directly on subgrade (CCR) and covered with geocomposite and 2 feet of soil cover. A vegetative cover will be established. The 2 feet of soil cover will consist of 1.5 feet of soil and 0.5 foot of vegetated topsoil. The final cover will extend on top of the dikes, due to the potential that ash may be contained within the dikes.
- A maximum of five percent slope was used for the final cover. CH2M developed closure design to reach the five percent slope or to account for beneficial reuse of CCR material until 2023 within the pond will be regarded and used to fill the pond beneath the final cover.
- Modification will be required to the NPDES discharge structure location to ensure permit compliance.
 - The CCR pond discharge structures will be modified to ensure stormwater flows to the NPDES discharge structure and permit compliance.
 - The waste material from the discharge structures will be disposed of properly.
- It is anticipated these pond closure approaches will handle the stormwater runoff, but verification will be performed in design development.

BAP

The general design assumptions used for the proposed conceptual closure approach (BAP) is as derived from the LG&E-KU drawing and summarized below:

- Material accumulated in BAP will include some wet discharges; but by 2017, the CCR material sent
 to BAP (CCR material) are expected to be dry. Expected CCR material discharges to BAP are
 summarized in Table 3-1. Material accumulation in BAP will continue until at least 2019, but could
 continue until 2023 or until the future fill capacity of BAP is maximized.
 - It is anticipated that capacity (5% cover slope) for BAP will be achieved in the 1st quarter of 2023, based on the projections provided by LG&E-KU in the June 2015 kickoff meeting workshop. This date may change due to actual plant generation rates.
 - BAP to receive material from the Gypsum Storage Pond around first quarter of 2018. Material
 will be re-routed from the Gypsum Storage Pond to an unloading location. Material quantities
 are summarized in Table 3-2A. Material accumulation in BAP will be completed by first quarter
 of 2023.
 - BAP to receive beneficial reuse material until December 31, 2023
- CCR materials from BAP will be placed, graded, and used to fill the pond beneath the final cover.
- CCR Rule Compliance Activities will begin in 2015.
- The top of the BAP berm already includes an aggregate perimeter road.

- A new BAP primary outlet structure will be required to regulate discharge. The outlet structure will discharge to the north to an existing drainage swale.
- Surface water within BAP will be partially removed before closure begins to allow surface stabilization and dry material placement.
- Surface drainage channels are within the BAP dikes.
- Surface water will be discharged off the final cover through the existing discharge outlet pipe on the east side or breach in dike. The discharge is to the existing drainage structures.
- A groundwater monitoring well system currently exists and was considered sufficient.
- A final cover will be constructed. Cover construction will include preliminary grading to shape the cover subgrade, and will include the components described in the assumptions below. Conceptual grades are shown in Attachment 1, Exhibit 2-1. Significant grading features include the following:
 - A perimeter drainage ditch is shown within the berm. The ditch shows a high point near the south end, dropping at approximately 0.5 percent to the northwest. One existing discharge penetration is shown through the dike leading to the NPDES permitted outfall.
 - The final grades include 4H:1V slopes along the inside of the ditch, extending no higher than 10 feet above the ditch invert or the top elevation of the berm crest, whichever is lower. The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2-1 has an airspace capacity of approximately 5,283,100 cubic yards above the existing CCR surface grade.
- Airspace capacity under ABT cover could be increased (or reduced), as necessary, by approximately 152,500 cubic yards per foot by extending the 4H:1V ditch slope height to the full perimeter berm elevation, or reducing the maximum height of the mound. Capacity could be reduced by modifying the 4H:1V ditch slope height. Ditch grades should also be refined to create local low points at the perimeter drainage ditch discharge point. Such design refinements should not significantly change the estimated closure costs.

Gypsum Storage Pond

The general design assumptions used for the proposed conceptual closure approach (Gypsum Storage Pond) is as derived from the LG&E-KU drawing and summarized below:

- The Gypsum Storage Pond base consists of a compacted clay layer; geosynthetic clay liner (GCL); and a 60 mil flexible membrane liner (FML).
- Material accumulated in Gypsum Storage Pond will include some wet discharges; but by January 2017, the CCR material sent to BAP (gypsum) are expected to be dry. Expected CCR material discharges to Gypsum Storage Pond are summarized in Table 3-1. Material accumulation in Gypsum Storage Pond will continue until at least 2019, but could continue until 2023 or until the future fill capacity of BAP is maximized.
 - It is anticipated that capacity (5% cover slope) for Gypsum will be achieved in the 1st quarter of 2018, based on the projections provided by LG&E-KU in the June 2015 kickoff meeting workshop. This date may change due to actual plant generation rates.
 - Gypsum Storage Pond to receive material from the plant until around first quarter of 2018.
 Material will be re-routed from the Gypsum Storage Pond to an unloading location at BAP.
 Material quantities are summarized in Table 3-2B. Material accumulation in Gypsum Storage Pond will be completed by first quarter of 2018.
- The station will construct new concrete process tanks in a location to be determined by LG&E-KU
 plant personnel. There will be four concrete tanks covering approximately 12.4 acres at a depth of

24-feet (two tanks 740-feet x 185-feet feet and two tanks 740-feet x 180-feet). Also within this vicinity of the concrete tanks, will be a dewatering system facility to remove water from solids.

- CCR materials from the Gypsum Storage Pond will be placed, graded, and used to fill the pond beneath the final cover.
- The top of the Gypsum Storage Pond berm already includes an aggregate perimeter road.
- Surface water within Gypsum Storage Pond will be removed before closure begins to allow surface stabilization and dry material placement.
- Surface drainage channels are within the Gypsum Storage Pond embankments.
- Surface water would be discharged off the final cover through a new Gypsum Storage Pond primary outlet structure will be required to regulate discharge. The outlet structure will discharge to the north to an existing construction sediment pond then to drainage swale. In addition, the existing discharge structure may be able to be modified to regulate discharge to the existing drainage swale.
- A groundwater monitoring well system currently exists and was considered sufficient.
- A final cover will be constructed. Cover construction will include preliminary grading to shape the
 cover subgrade, and will include the components described in the assumptions below. Conceptual
 grades are shown in Attachment 1, Exhibit 2-2. Significant grading features include the following:
 - A perimeter drainage ditch is shown within the berm. The ditch shows a high point near the
 west end, dropping at approximately 0.5 percent to the east. One existing discharge penetration
 is shown through the dike leading to the NPDES permitted outfall.
 - The final grades include 4H:1V slopes along the inside of the ditch, extending no higher than 10 feet above the ditch invert or the top elevation of the berm crest, whichever is lower. The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2-2 has an airspace capacity of approximately 1,747,200 cubic yards above the existing CCR surface grade.
- Airspace capacity under Gypsum Storage Pond cover could be increased (or reduced), as necessary, by approximately 53,900 cubic yards per foot by extending the 4H:1V ditch slope height to the full perimeter berm elevation, or reducing the maximum height of the mound. Capacity could be reduced by modifying the 4H:1V ditch slope height. Ditch grades should also be refined to create local low points at the perimeter drainage ditch discharge point. Such design refinements should not significantly change the estimated closure costs.

3 Estimated Material Volumes and Areas

The volume of fly ash, bottom ash, and gypsum generated by the station and available for use as fill is summarized in Table 3-1. Total production rates by year were provided by LG&E-KU on June 23, 2015, and the portion sent to the ponds each year are based on the 2015 year to date production rates provided by LGE-KU on July 1, 2015.

Table 3-1. Estimated CCR Production by Year – Total and Distribution by Ponds

	Total CCR Production (Tons)				Assumed CCI	R Distribution (Tons)
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	BAP ¹	Gypsum Storage Pond ²
2015	51,952	207,810	496,454	756,216	259,762	496,454
2016	62,958	251,833	538,194	852,986	314,791	538,194
2017	63,732	254,930	534,152	852,814	318,662	534,152

				TOTAL	4,977,8195	1,639,444 ⁵
2023	62,147	248,589	536,011	846,747	34,299 ⁴	
2022	61,096	244,382	529,256	834,734	834,734	
2021	61,982	247,927	534,620	844,529	844,529	
2020	61,651	246,602	534,571	842,824	842,824	
2019	62,284	249,135	539,487	850,906	850,906	
2018	62,686	250,746	542,295	855,727	677,312 ³	70,6443

Notes:

The proposed CCR pond closure approach was developed using CAE software and AutoCAD files provided by LG&E-KU as described under assumptions above. Summaries of the estimated material quantities for each pond are shown in Tables 3-2A and 3-2B.

Table 3-2A. Proposed Conceptual Pond Closure Approach Estimated Material Quantities – BAP

Item	Units	Quantity
Total surface area	AC	94.6
Standing surface water (to remove)	GAL	410,955,900
Length of perimeter	LF	8,700
CUT: Existing Surface to Final Cover Subgrade		
Cut/regrade for cover subgrade/ditch	CY	4,900
FILL REQUIRED: Existing Surface to Final Cover Subgrade	CY	4,982,700
FILL SOURCES:		
From cut for final cover subgrade	CY	4,900
From CCR accumulation in BAP - Jan. 2017 thru 2018	CY	1,570,500
From CCR accumulation in BAP - Jan. 2019 thru 2023	CY	3,407,300
TOTAL POTENTIAL FILL through 2018	CY	3,317,700
TOTAL POTENTIAL FILL through 2023	CY	4,219,700
Final cover soil volume	CY	305,300
Potential Excess Fill: (to be accommodated in settlement)	CY	105,700
Potential Excess Fill: (to be sent to Landfill)	CY	812,500

¹ Assumes that 100 percent of bottom ash and fly ash will be sent to the BAP through October 17, 2018, which will be the baseline for closure design.

² Assumes that 100 percent of gypsum will be sent to the Gypsum Storage Pond through October 17, 2018, which will be the baseline for closure design.

³ Material assumed to be sent to Gypsum Storage Pond until the closure airspace capacity is full, with remainder sent to RAP

⁴ Material assumed to be sent to BAP until the closure airspace capacity is full, with remainder sent to landfill. Approximately 0.8 M tons of bottom ash, fly ash, and gypsum will need to be diverted to the land fill from 2023.

⁵ Final cover volume is removed from the calculation of Assumed CCR Distribution.

Table 3-2B. Proposed Conceptual Pond Closure Approach Estimated Material Quantities —Gypsum Storage Pond

Item	Units	Quantity
Total surface area	AC	33.4
Standing surface water (to remove)	GAL	225,005,750
Length of perimeter	LF	4,700
CUT: Existing Surface to Final Cover Subgrade		
Cut for final cover: Stormwater channel	CY	9,800
FILL REQUIRED: Existing Surface to Final Cover Subgrade	CY	1,660,200
FILL SOURCES:		
Cut for final cover: Stormwater channel	CY	9,800
From CCR accumulation in BAP - Jan. 2017 thru 2018	CY	1,650,400
TOTAL POTENTIAL FILL through 2018	CY	1,650,400
Final cover soil volume	CY	107,800
Potential Excess Fill: (to be accommodated in settlement)	CY	35,400
Potential Excess Fill: (to be sent to BAP in 2018)	CY	460,700

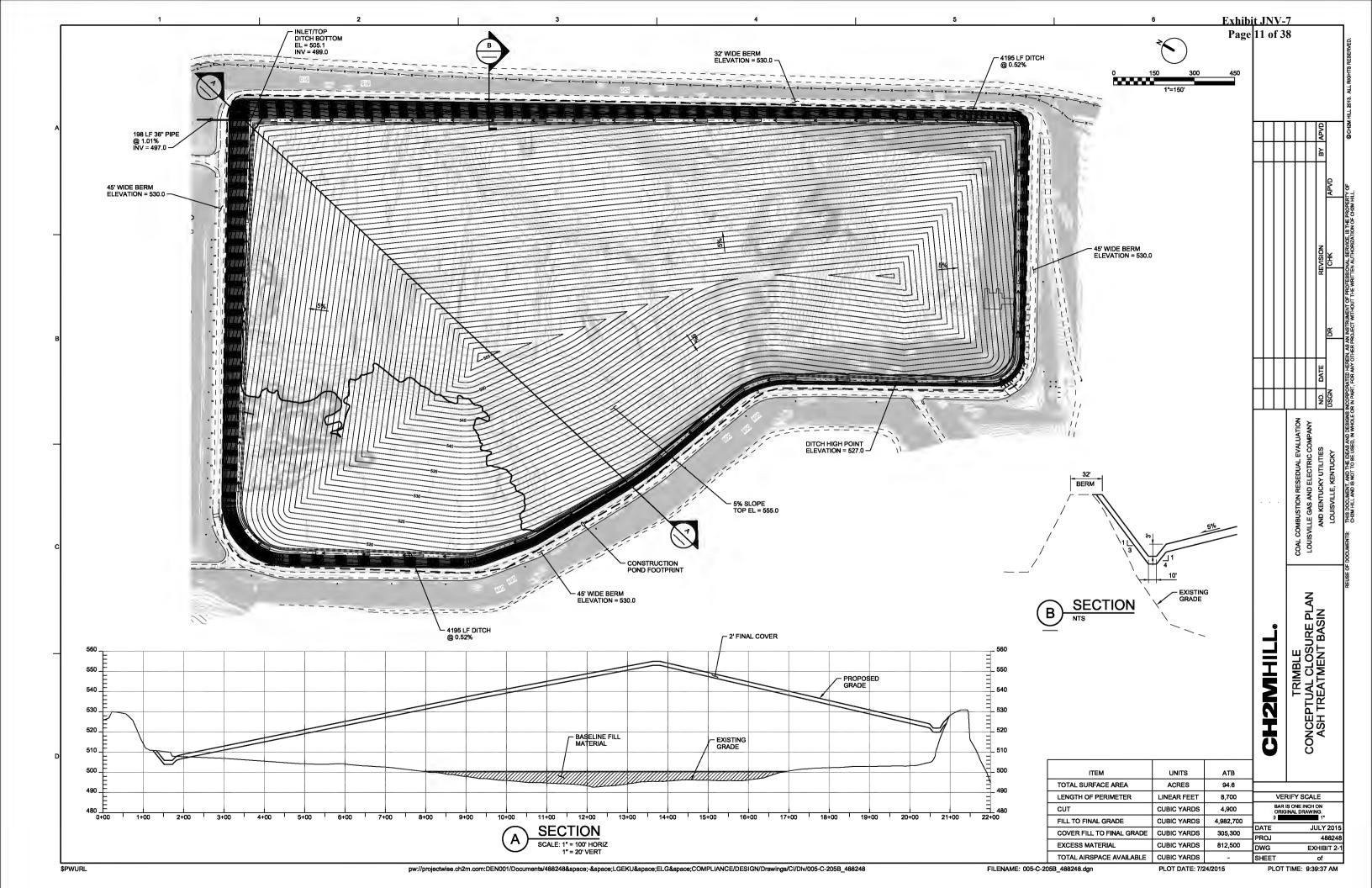
The proposed conceptual pond closure approach shows that CCR from the Gypsum Storage Pond can be closed in-place. The Gypsum Storage Pond dikes may be able to be knocked down and used for final cover. However, this will need to be coordinated with the appropriate regulatory agency and therefore these volumes were not included in this evaluation. There is sufficient area available in BAP to balance ash cut/fills volumes and close in-place.

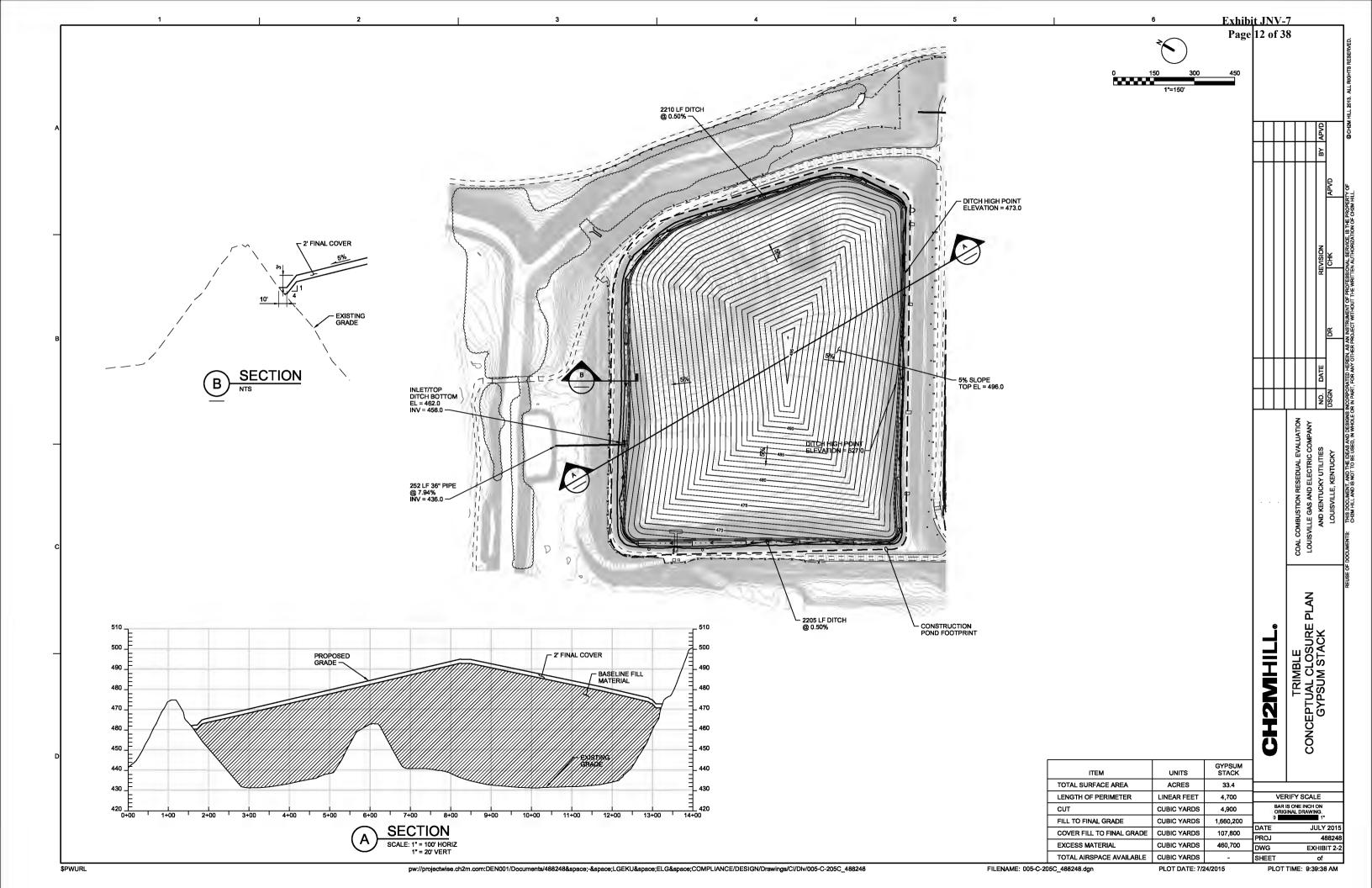
4 Schedule

Exhibits 2-3 in Attachment 3 show the proposed schedule to complete the design, permitting, and construction for each of the pond closures.

5 Construction Cost Estimate

The estimated construction cost for closing the ponds as described in Section 2 is shown within Attachment 2.


Proposed Conceptual Closure Approach	Low (-30%)	Total Capital Cost	High (+30%)
BAP Closure	\$76.1 M	\$108.7 M	\$141.3 M
Gypsum Storage Pond Closure	\$23.3 M	\$33.3 M	\$43.3 M
Concrete Tanks	\$75.1 M	\$107.2 M	\$139.4 M


This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared

for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

Attachment 1 Proposed Conceptual Alternative CCR Closure

Attachment 2 Proposed Conceptual Alternative Cost Estimate

\$75,073,135

COST SUMMARY

Site: Trimble County Generating Station

Location: Bedford, Kentucky

Lower ROM Range

Phase: Proposed Conceptual CCR Closure

Base Year: Date: ROM Level:

\$23,307,935

2015 September Class 4

Ash Treatment Basin Concrete Tanks Gypsum Storage Remedial Fill ATB with CCR's, install final cover and close in-Fill Gypsum Storage with CCR's, install final cover and Technology place. (Not including Pond water management) close in-place. Installation of CCR concrete tanks Installation of four new concrete treatement tanks to Completely fill with CCR material and final cover Completely fill with CCR material and final cover handle waste water associtated with CCR materials at installed. CCR fill from plant operations. installed. CCR fill from plant operations. Description the facility. \$105,048,293 \$32,171,062 \$0 Impoundment Closure LG&E Overhead \$3,676,690 \$1.125.987 \$0 New Construction \$0 \$0 \$103,620,614 LG&E Overhead \$0 \$0 \$3,626,721 **Total Initial Costs** \$108,724,984 \$33,297,049 \$107,247,336 **Upper ROM Range** \$141,342,479 \$43,286,164 \$139,421,536

This is not an offer for construction and/or project execution. Please note, these order of magnitude cost estimates are assumed to represent the actual installed cost within the range of - 30 percent to + 30 percent of the costs indicated. The cost estimate has been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project will depend on actual labor, material costs, and competitive variable factors. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific decisions to help ensure proper project evaluation and adequate funding.

\$76,107,488

CCR Rule - Trimble Generating Station Cost Estimate - ATB 21-Sep-15

Item	Cost 2015 Dollars														2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Total
item	COST ZOTO DOllars	2015	2016	2017	2018	2019	2020	2021	2022	2023 2	024 2	025 20	026	Check	2013	2010	2017	2010	2019	2020	2021	2022	2023	2024	2025	2020	Total
Proposed Conceptual Alternative CCR Closure - Ash Treatment Basin	\$105,048,293	1%	1%	3%	10%	11%	26%	19%	16%	12%	0%	0% 0)%	100%													
IMPOUNDMENT CLOSURE	\$80,806,379	1.5%	1.5%	3.1%	9.5%	10.5%	26.4%	19.5%	16.0%	12.1% 0	.0% 0	.0% 0.	0%	100%	\$1,200,000	\$1,222,000	\$2,697,320	\$8,660,414	\$9,956,022	\$25,923,647	\$19,924,678	\$16,994,679	\$13,356,358	\$0	\$0	\$0	\$99,935,118
Mobilization/Demobilization	\$100,000	0%	0%	0%	0%	80%	0%	0%	0%	20%	0%	0% 0	0%	100%	\$0	\$0	\$0	\$0	\$93,589	\$0	\$0	\$0	\$27,371	\$0	\$0	\$0	\$120,960
Sediment & Erosion Control	\$90,000	0%	0%	0%	0%	50%	50%	0%	0%	0%	0%	0% 0	0%	100%	\$0	\$0	\$0	\$0	\$52,644	\$54,749	\$0	\$0	\$0	\$0	\$0	\$0	\$107,393
Site Preparation	\$91,750	0%	0%	0%	0%	50%	50%	0%	0%	0%	0%	0% 0	0%	100%	\$0	\$0	\$0	\$0	\$53,667	\$55,814	\$0	\$0	\$0	\$0	\$0	\$0	\$109,481
Dewatering	\$16,438,235	0%	0%	10%	30%	30%	30%	0%	0%	0%	0%	0% 0	196	100%	\$0	\$0	\$1,777,960	\$5,547,234	\$5,769,123	\$5,999,888	\$0	\$0	\$0	\$0	\$0	\$0	\$19,094,204
Repair On-Site Pond Embankments	\$250,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0% 0	196	100%	\$0	\$0	\$0	\$0	\$292,465	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$292,465
Utility Services	\$100,000	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0% 0	0%	100%	\$0	\$0	\$0	\$112,486	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$112,486
Perimeter Berm	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$490,497	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0% 0	0%	100%	\$0	\$0	\$0	\$0	\$573,813	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$573,813
Pre-Closure / Preparation	\$42,352,122	0%	0%	0%	5%	5%	35%	35%	20%	0%	0%	0% 0	196	100%	\$0	\$0	\$0	\$2,382,019	\$2,477,300	\$18,034,741	\$18,756,131	\$11,146,501	\$0	\$0	\$0	\$0	\$52,796,692
Final Cover (Install FML)	\$12,652,050	0%	0%	0%	0%	0%	0%	0%	30%	70%	0%	0% 0	196	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$4,994,770	\$12,120,642	\$0	\$0	\$0	\$17,115,413
Mechanical Improvements/Additions	\$1,500,000	0%	0%	0%	0%	20%	60%	20%	0%	0%	0%	0% 0	196	100%	\$0	\$0	\$0	\$0	\$350,958	\$1,094,988	\$379,596	\$0	\$0	\$0	\$0	\$0	\$1,825,541
Surface Water Features	\$125,000	0%	0%	0%	0%	0%	0%	0%	20%	80%	0%	0% 0	096	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$32,898	\$136,857	\$0	\$0	\$0	\$169,755
Primary Outlet Structure	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0	196	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Emergency Outlet Structure	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0	196	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$432,925	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0% 0	196	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$592,488	\$0	\$0	\$0	\$592,488
Groundwater Monitoring	\$308,800	0%	0%	0%	0%	0%	20%	40%	40%	0%	0%	0% 0	196	100%	\$0	\$0	\$0	\$0	\$0	\$75,140	\$156,292	\$162,544	\$0	\$0	\$0	\$0	\$393,977
Conceptual Design	\$500,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0	196	100%	\$0	\$520,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$520,000
Final Design and Permitting and permitting support	\$1,500,000	0%	40%	40%	20%	0%	0%	0%	0%	0%	0%	0% 0	096	100%	\$0	\$624,000	\$648,960	\$337,459	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,610,419
PDI	\$75,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0	196	100%	\$0	\$78,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$78,000
Construction Management, including CQA and OE services	\$2,500,000	0%	0%	10%	10%	10%	20%	20%	20%	10%	0%	0% 0	196	100%	\$0	\$0	\$270,400	\$281,216	\$292,465	\$608,326	\$632,660	\$657,966	\$342,142	\$0	\$0	\$0	\$3,085,175
Closure Report	\$100,000	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0% 0	196	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$136,857	\$0	\$0	\$0	\$136,857
CCR Rule Compliance Activities in 2015	\$1,200,000	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 0	0%	100%	\$1,200,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,200,000
Subtotal	\$80,806,379														\$1,200,000	\$1,222,000	\$2,697,320	\$8,660,414	\$9,956,022	\$25,923,647	\$19,924,678	\$16,994,679	\$13,356,358	\$0	\$0	\$0	\$99,935,118
																											\$0
Contingency	\$24,241,913.82	1%	1%	3%	10%	11%	26%	19%	16%	12%	0%	0% 0)%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$14,990,268	\$14,990,268	\$0	\$0	\$0	\$29,980,535
Subtotal with Contingency	\$105,048,293														\$1,200,000	\$1,222,000	\$2,697,320	\$8,660,414	\$9,956,022	\$25,923,647	\$19,924,678	\$31,984,947	\$28,346,625	\$0	\$0	\$0	\$129,915,653
																											\$0
LG&E & KU Overheads	\$3,676,690	1%	1%	3%	10%	11%	26%	19%	16%	12%	0%	0% 0)%	100%	\$42,000	\$42,770	\$94,406	\$303,114	\$348,461	\$907,328	\$697,364	\$1,119,473	\$992,132	\$0	\$0	\$0	\$4,547,048
TOTAL PROJECT COST	\$108,724,984				i i		i								\$1,242,000	\$1,264,770	\$2,791,726	\$8,963,529	\$10,304,482	\$26,830,975	\$20,622,042	\$33,104,420	\$29,338,757	\$0	\$0	\$0	\$134,462,701
																		. , .,.			· · · · ·						

Assumptions	
LG&E & KU Overheads	3.5%
Escalation	4.0%
Contingency	30%

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Trimble Generating Station" technical memo dated July 24, 2015.

- 2 Assumes the use of CCR material to create grades to support the pond cap.
 3 Assumes the use of Soil material to create pond cap or other design features.
 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
 5 Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

NEW CONSTRUCTION

PDI

Report

Closure Report

FGD Treatment Tanks Common Equipment ommon Items

SUBTOTAL CONSTRUCTION

Construction Material

Design, Project & Construction Management, and Closure Report

SUBTOTAL Design, Project & Construction Management, and Closure

Final Design and Permitting and permitting support

SUBTOTAL IMPOUNDMENT CLOSURE

Construction Management, including CQA and OE services

Construction Contractor Performance and Payment Bonds

\$500,000.00

\$75,000,00

\$1,500,000.00

\$2,500,000.00 \$2,500,000.00

\$100,000.00

LS

LS

LS

LS

0.0%

\$74,931,379

\$4,675,000

\$79,606,379

\$500,000 LG&E provided, based on experience \$1,500,000 LG&E provided, based on experience

\$75,000 LG&E provided, based on experience

\$100,000 Document Const. Work, QA/QC, and Record DWGs

\$2,500,000 LG&E provided, based on experience

\$0 LG&E provided

Trimble County Generating Station COST ESTIMATE SUMMARY Exhibit JNV-7 Page 17 of 38

Trimble County Generating Station Site:

Location: Bedford, Kentucky

Phase: Proposed Conceptual Alternative CCR Closure - Ash Treatment Basin

Base Year: 2015 1/18/2016 Date:

Assumptions:

Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.
 CCR volume quantities include utilizing CCR from existing operations.

3. Existing pond embankments to be used.
4. Groundwater Monitoring well installation is not included.
5. Road repair is not included in this cost estimate.

No allowance for pond water management.
 No allowance for floating membrane and pumping for rain water management.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of ______. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

CCR Rule - Trimble Generating Station Pond Cost Estimate - Gypsum Storage 21-Sep-15

	1	_										_	$\overline{}$		1			ı			ı		1			
Item	Cost 2015 Dollars	2015	2016	2017	2018	2019 2020	2021 2	022 20	23 20	24 2	2025 2	2026	Check	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Total
Proposed Conceptual Alternative CCR Closure - Gypsum Storage	\$32.171.062			12%	_		0%		% 0	_			100%													
IMPOUNDMENT CLOSURE	\$24,746,971	0.0%	9.9%	11.9%	13.4%	17.7% 17.19	6 0.0% 0	0% 0.0	0% 0.0	0% 0	0.0%	0.0%	100%	\$0	\$2,558,115	\$3,190,214	\$3,717,239	\$13,810,041	\$5,144,276	\$0	\$0	\$0	\$0	\$0	\$0	\$28,419,885
Mobilization/Demobilization	\$50,000	0%	0%	0%	0%	80% 20%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$46,794	\$12,167	\$0	\$0	\$0	\$0	\$0	\$0	\$58,961
Sediment & Erosion Control	\$46,500	0%	0%	0%	0%	50% 50%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$27,199	\$28,287	\$0	\$0	\$0	\$0	\$0	\$0	\$55,486
Site Preparation	\$91,750	0%	0%	0%	0%	50% 50%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$53,667	\$55,814	\$0	\$0	\$0	\$0	\$0	\$0	\$109,481
Dewatering	\$9,000,230	0%	0%	0%	0%	100% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$10,528,996	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$10,528,996
Repair On-Site Pond Embankments	\$250,000	0%	0%	0%	0%	50% 50%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$146,232	\$152,082	\$0	\$0	\$0	\$0	\$0	\$0	\$298,314
Utility Services	\$25,000	0%	0%	0%	100%	0% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$28,122	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$28,122
Roads	\$176,049	0%	0%	0%	0%	100% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$205,952	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$205,952
Pre-Closure / Preparation	\$6,423,630	0%	20%	40%	40%	0% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$1,336,115	\$2,779,119	\$2,890,284	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$7,005,518
Closure/Final Cover	\$4,781,057	0%	0%	0%	0%	30% 70%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$1,677,948	\$4,071,821	\$0	\$0	\$0	\$0	\$0	\$0	\$5,749,769
Surface Water Features	\$150,000	0%	0%	0%	0%	100% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$175,479	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$175,479
Primary Outlet Structure	\$300,000	0%	0%	0%	0%	100% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$350,958	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$350,958
Emergency Outlet Structure	\$0	100%	0%	0%	0%	0% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$152,355	0%	0%	0%	0%	0% 100%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$185,363	\$0	\$0	\$0	\$0	\$0	\$0	\$185,363
Groundwater Monitoring	\$150,400	0%	0%	20%	40%	40% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$32,535	\$67,672	\$70,379	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$170,585
Conceptual Design	\$500,000	0%	100%	0%	0%	0% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$520,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$520,000
Final Design and Permitting and permitting support	\$1,000,000	0%	60%	20%	20%	0% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$624,000	\$216,320	\$224,973	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$1,065,293
PDI	\$75,000	0%	100%	0%	0%	0% 0%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$78,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$78,000
Construction Management, including CQA and OE services	\$1,500,000	0%	0%	10%	30%	30% 30%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$162,240	\$506,189	\$526,436	\$547,494	\$0	\$0	\$0	\$0	\$0	\$0	\$1,742,359
Closure Report	\$75,000	0%	0%	0%	0%	0% 100%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$91,249	\$0	\$0	\$0	\$0	\$0	\$0	\$91,249
Subtotal	\$24,746,971													\$0	\$2,558,115	\$3,190,214	\$3,717,239	\$13,810,041	\$5,144,276	\$0	\$0	\$0	\$0	\$0	\$0	\$28,419,885
Contingency	\$7,424,091	0%	10%	12%	13%	48% 17%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$0	\$0	\$0	\$4,263,056	\$4,263,056	\$0	\$0	\$0	\$0	\$0	\$0	\$8,526,112
Subtotal with Contingency	\$32,171,062													\$0	\$2,558,115	\$3,190,214	\$3,717,239	\$18,073,097	\$9,407,332	\$0	\$0	\$0	\$0	\$0	\$0	\$36,945,997
LG&E & KU Overheads	\$1,125,987	0%	10%	12%	13%	48% 17%	0%	0% 0	1% 0	%	0%	0%	100%	\$0	\$89,534	\$111,657	\$130,103	\$632,558	\$329,257	\$0	\$0	\$0	\$0	\$0	\$0	\$1,293,110
TOTAL PROJECT COST	\$33,297,049													\$0	\$2,647,649	\$3,301,871	\$3,847,342	\$18,705,655	\$9,736,589	\$0	\$0	\$0	\$0	\$0	\$0	\$38,239,107
															1			1				1	İ			

Assumptions	
LG&E & KU Overheads	3.5%
Escalation	4.0%
Contingency	30%

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Trimble Generating Station" technical memo dated July 24, 2015.
- 2 Assumes the use of CCR material to create grades to support the pond cap.
- Assumes the use of Soil material to create grades to support depoin cap.

 Assumes the use of Soil material to create pond cap or other design features.

 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

CCR Rule - Trimble Generating Station Cost Estimate - Concrete Tanks 21-Sep-15

	1	_													т	T					т			T		
Item	Cost 2015 Dollars													2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Total
••••	0000 2020 2011015	2015	2016	2017	2018 20	019 202	0 2021	2022	2023	2024	2025	2026	Check													
Proposed Conceptual Alternative CCR Closure - Gypsum Storage	\$103,620,614	0%	0%	50%	50%	0%	6 0%	0%	0%	0%	0%	0%	100%													
NEW CONSTRUCTION	\$79,708,165	0.0%	0.0%	50.0%	50.0% 0.	0.0	% 0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$0	\$43,106,175	\$44,830,422	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$87,936,598
Total FGD Concrete Tank Estimated Order of Magnitude Capital Cost	\$23,800,328	0%	0%	50%	50% (0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$12,871,217	\$13,386,066	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$26,257,283
Total Other WW Concrete Tank Estimated Order of Magnitude Capital Cost	\$23,407,837	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$12,658,958	\$13,165,317	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$25,824,275
Dewatering Facilityl Order of Magnitude Capital Cost	\$32,300,000	0%	0%	50%	50%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$17,467,840	\$18,166,554	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$35,634,394
Mechanical Improvements/Additions	\$200,000	0%	0%	50%	50% (0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$108,160	\$112,486	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$220,646
Subtotal	\$79,708,165													\$0	\$0	\$43,106,175	\$44,830,422	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$87,936,598
Contingency	\$23,912,449.40	0%	0%	50%	50% (0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$13,190,490	\$13,190,490	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$26,380,979
Subtotal with Contingency	\$103,620,614													\$0	\$0	\$56,296,665	\$58,020,912	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$114,317,577
																										\$0
LG&E & KU Overheads	\$3,626,721	0%	0%	50%	50% (0%	6 0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$1,970,383	\$2,030,732	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$4,001,115
TOTAL PROJECT COST	\$107,247,336													\$0	\$0	\$58,267,048	\$60,051,644	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$118,318,692
																										\$0

Assumptions	
LG&E & KU Overheads	3.5%
Escalation	4.0%
Contingency	30%

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: Trimble Generating Station" technical memo dated July 24, 2015.
- 2 Assumes the use of CCR material to create grades to support the pond cap.

- 2 Assumes the use of Soil material to create pond cap or other design features.
 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
 5 Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

Trimble County Generating Station			COST ESTIMA	TE SUMMARY	Exhibit JNV-7 Page 21 of 38
Site: Trimble County Generating Station Location: Bedford, Kentucky Phase: Proposed Conceptual Alternative CCR Closure - Gypsum Storage Base Year: 2015 Date: 1/18/2016					
Floculation Tanks Wall Concrete	1.0	LS	\$51,414.06	\$51,414	**
Floculation Tanks Slab Concrete	1.0	LS	\$7,874.04	\$7,874	n n
Settling Tanks Wall Concrete	1.0	LS	\$3,432,000.00	\$3,432,000	и и
Settling Tanks Slab Concrete	1.0	LS	\$6,300,696.36	\$6,300,696	и и
Total Ramp Concrete	1.0	LS	\$308,101.52	\$308,102	* *
Common Items			•		
Excavation - Soft	1.0	LS	\$1,719,848.99	\$1,719,849	и и
Pre Engineered building	1.0	LS	\$120,000.00	\$120,000	* *
Lining Tanks Construction Material	1.0	LS	\$1,217,033.91	\$1,217,034	* *
Construction Material	1.0	LS	\$13,216,256.98	\$13,216,257	и и
State Sales Tax	1.0	LS	\$3,029.03	\$3,029	и и
Total Constuction Material	1	LS	\$13,219,286.01	\$13,219,286	**
Total Equipment and Construction	1.0	LS	\$13,612,327.73	\$13,612,328	**
Other Construction					
Electrical and I&C	1.0	LS	\$681,000.00	\$681,000	n n
Piping	1.0	LS	\$1,089,000.00	\$1,089,000	n n
Yard Improvements (a)	1.0	LS	\$1,089,000.00	\$1,089,000	**
Metals and Finishes	1.0	LS	\$408,000.00	\$408,000	* *
Subtotal	1	LS	\$16,879,327.73	\$16,879,328	••
Total Direct Costs (TDC)	1.0	LS	\$16,879,327.73	\$16,879,328	и и
Contractor's Field General Conditions	1.0	LS	\$844,000.00	\$844,000	H H
Contractor's OH&P	1.0	LS	\$2,532,000.00	\$2,532,000	и и
Contingency	1.0	LS	\$3,376,000.00	\$3,376,000	* *
Total Construction Cost (TCC)	1.0	LS	\$23,631,327.73	\$23,631,328	* *
Engineering, SDCc and Startup	1.0	LS	\$3,545,000.00	\$3,545,000	и и
Total Estimated Order of Magnitude Capital Cost	1.0	LS	\$27,176,327.73	\$27,176,328	**
Total Estimated Order of Magnitude Capital Cost (-Contingency)	1.0	LS	\$23,800,327.73	\$23,800,328	Linked to the total cost from the Capital Cost Estimate Tab, developed from echnical Memorandum " Physical/Chemical Treatment - Settling Tank Treatment Design Basis" dated August 18, 2015 by CH2M
Mechanical Improvements/Additions					
Piping to new concrete tank from Gypsum Stack	1	LS	\$50,000.00	\$50,000	allowance
Piping to new concrete tank from ATB	1	LS	\$50,000.00	\$50,000	
Items to be constructed to meet NPDES Permitting Requirements	1	LS	\$100,000.00	\$100,000	allowance
SUBTOTAL Mechanical Improvements/Additions				\$200,000	
SUBTOTAL NEW CONSTRUCTION				\$79,708,165	
SSS STEEL STONE OF THE				Ψ10,100,100	

Assumptions:

- 1. Areas and volumes were estimated based on CADD files provided by client. Conceptual grading plans were prepared and quantity take-offs obtained from.

 2. CCR volume quantities include utilizing CCR from existing operations.
- Existing pond embankments to be used.
- Groundwater Monitoring well installation is not included.
 Road repair is not included in this cost estimate.

This cost estimate prepared is considered a Budget Level estimate. It is considered accurate to + 30 percent to - 30 percent, based upon a conceptual alternatives in our technical memo.

The cost estimates shown have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. The estimate is based on material, equipment, and labor pricing as of ______. The client should be cautioned that such prices are highly subject to variation. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

Trimble County Facility Backup Quantities Nathan Zink 7/6/2015

CCR Production Rates

CCR Production - 2015 Plan (tons)

CCR Production Handling Assumptions:

	a , a p e
% Bot Ash Wet Sluice to ATB1:	
% Fly Ash Wet Sluice to ATB1:	100%
% Gypsum returned:	100%

	Trimble County				Accumulated	Material (Tons)			
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	ATB	Gypsum Stack			
2015	51,952	207,810	496,454	756,216	259,762	496,454	baseline Gypsum (2nd Quarter 2018		
2016	62,958	251,833	538,194	852,986	314,791	538,194		1,772,161	Quarterly Gypsum
2017	63,732	254,930	534,152	852,814	318,662	534,152	baseline ATB		135,573.6
2018	62,686	250,746	542,295	855,727	313,432	542,295		1,545,582	
2019	62,284	249,135	539,487	850,906	311,419	539,487	beneficial re-use		
2020	61,651	246,602	534,571	842,824	308,253	534,571		4,219,740	
2021	61,982	247,927	534,620	844,529	309,909	534,620			
2022	61,096	244,382	529,256	834,734	305,478	529,256			5,765,322
2023	62,147	248,589	536,011	846,747	310,736	536,011			5,283,080
2024	-	-	-	-	-	-			482,242
2025	-	-	-	-	-	-			211,687
otal:	Assumed Addition	nal Accumulat	ed Materi	ial (2015 thru closure):	2,752,442	4,785,041		7,537,483	

Projected Material Generation - Handling Assumptions:A. Bottom Ash and Flyash:

- Until October 19, 2015 assume all fly ash and bottom ash slurried to ATB Pond, and
- After December 2017 assume all material will be dry processed After October 19, 2018 all material to the ATB Pond

- B. Gypsum

 Until October 19, 2018 assume all gypsum slurried to Gypsum Stack and

 After October 19, 2018 all material to the Main Ash Pond

Approximate density of CCR in-place: 1 ton/CY

To be confirmed by CAD Based on assumptions as listed

Pond Quantity Balance Estimate - By Pond:

Gypsum Stack						
ltem	Units	Gypsum	Notes	Key Item to Confirm for Final Estimate:	Estimated input value:	
Total surface area	AC	33.4				
Standing Surface Water (to remove)	GAL	225,005,750	1,114,036 CY of Volume for the wet pond area. Confirmed with CAD.		8	ft
Length of perimeter	LF	4,650				
CUT:						
CCR cut in 2017 - for Gypsum Stack	CY	10	Approx. cut to create ditches in CH2M Jan. 2015 TM. CAD to update.	CAD - confirm cut to grade ditches for final cover		
Cut/regrade for cover subgrade/ditch	CY	9,817	Assume Trapazoidal channel 3H:1V 3-ft deep with 10-ft bottom	CAD - confirm cut to grade ditches for final cover	57	SF
FILL (to cover subgrade):						
CCR for Fill - from Baseline	CY	1,772,161				
Total Fill - Existing surface to final grade	CY	1,747,215	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
Total Fill for Closure of Pond	CY	1,807,614	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
2% Settlement Material Need	CY	35,443				
Final Cover Soil Volume	CY	96,857	CAD to update			
Final Cover Surface Area	AC	33.4	CAD to update			
Structural Support						
Geogrid	AC	40.1	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Geofabric	AC	40.1	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Amount of CCR/import fill required to close pond ^a	СУ	899,585	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Total Cut: existing surface to final grade	СУ	409,085	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Total Fill: existing surface to final grade	СУ	1,698,880	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Net: existing surface to final grade	СУ	1,289,795	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			

3,148,738.00

ltem	Units	АТВ	Notes	Key Item to Confirm for Final Estimate:	Estimated input value:	
Total surface area	AC	94.6				
Standing Surface Water (to remove)	GAL	410,955,884	2,034,702 CY of Volume for the wet pond area. Confirmed with CAD.		13	3 ft
Length of perimeter	LF	8,712				
CUT						
Cut for Final Cover: Stormwater channel	СҮ	4,915	Approx. cut to create ditches in CH2M Jan. 2015 TM. CAD to update.	CAD - confirm cut to grade ditches for final cover		
FILL						
From Gypsum Stack	СУ	24,946				
CCR fill - For closure at 5% slope	СУ	5,283,080	Assumed Mound running NW to SE length 800-LF	Each mound is estimated to approximately 40,400 cubic yards of fill		
Total Fill - Existing surface to final grade	СУ	29,861	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
Total Fill for Closure of Pond	СУ	135,522	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
2% Settlement Material Need	СУ	105,662				
Final Cover Soil Volume	СУ	305,261	Total surface area +20% and 2-ft of cover soil - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	5
Final Cover Surface Area	AC	94.6	CAD to update			T
Structural Support						
Geogrid	AC	113.5	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	5
Geofabric	AC	113.5	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	5
Total Fill: existing surface to final grade	СУ	399,120	OLD - from CH2M concept to make 5% cover. Revise based on updated grades.			
Net: existing surface to final grade	СУ	300,455	OLD - from CH2M concept to make 5% cover. Revise based on updated grades.			
inal cover volume	СУ	113,790	OLD - from CH2M concept to make 5% cover. Revise based on updated grades.			
Amount of CCR/import fill required to close pond ^a	СУ	512,910	OLD - from CH2M concept to make 5% cover. Revise based on updated grades.			

a Dewatering and settlement of ash through closure activities will affect the quantities of fill material. In situ ash and geotechnical soil borings and testing are recommended to determine settlement during closure design.

Other Key Assumptions:

^b Represents volume of pond.

LG&E-KU Trimble County Station Settling Tank-based Treatment System Mass Balances - FGD Wastewater

Streams		1	2	3	4	5	6	7	8	9	10
	Units	FGD Wastewater	Mix Tank Influent	Sodium Hydroxide Feed (2)	Ferric Chloride Feed	Organo-sulfide Feed	Polymer Feed	Sulfuric Acid Feed	Settling Tank Influent	Settled Solids	Settling Tank Enfluent
DESIGN FLOW											
Volumetric Flow, 3-month average	gpm	1,175	1,175	0.06	0.06	0.02	0.59	0.059	1,199	111	1,082
Total Mass Flow	lb/hr	599,729	599,729	38	41	14	294	54	600,129	58,819	541,310
Suspended Solids	%	2.0%	2.00%	0%		0%	0%	0%	2.0%	20%	0.002%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	12	0	0	0			
Mass Flow Liquid	lb/hr	587,970	587,970	38	41	14	294	54	588,357	47,055	541,302
Mass Flow Solids	lb/hr	11,759	11,759	0	12	0	0	0	11,772	11,764	8.1
Specific Gravity		1.00	1.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	62.4	62.4	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4
DESIGN MAX FLOW											
Volumetric Flow, Peak	gpm	2,053	2,053	0.10	0.10	0.04	1.03	0.059	2,095	194	1,890
Total Mass Flow	lb/hr	1,047,868	1,047,868	66	72	24	514	54	1,048,565	102,699	945,867
Suspended Solids	%	2.0%	2.00%	0%		0%	0%	0%	2.0%	20%	0.003%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	22	0	0	0			
Mass Flow Liquid	lb/hr	1,027,321	1,027,321	66	72	24	514	54	1,027,997	82,159	945,838
Mass Flow Solids	lb/hr	20,546	20,546	0	22	0	0	0	20,568	20,540	28.4
Specific Gravity		1.00	1.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	62.4	62.4	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4

Notes:

XX

User Entered

LG&E-KU Trimble County Station Settling Tank-based Treatment System Mass Balances - Other Wastewater

Streams		1	2	3	4	5	6	7	8	9	10
	Units	Other Wastewater	Mix Tank Influent	Sodium Hydroxide Feed		Organo-sulfide Feed	Polymer Feed	Sulfuric Acid Feed	Settling Tank Influent	Settled Solids	Settling Tank Enfluent
DESIGN FLOW											
Volumetric Flow, 3 month ave	gpm	5,213	5,213	0.26	0.26	0.10	2.61	0.261	5,217	1	5,216
Total Mass Flow	lb/hr	2,608,846	2,608,846	167	239	62	1,304	240	2,610,618	673	2,609,945
Suspended Solids	%	0.01%	0.01%	0%		0%	0%	0%	0.01%	5%	0.002%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	55	0	0	0			
Mass Flow Liquid	lb/hr	2,608,585	2,608,585	167	184	62	1,304	240	2,610,302	396	2,609,906
Mass Flow Solids	lb/hr	261	261	0	55	0	0	0	316	277	39.1
Specific Gravity		1.00	1.00	1.28	1.41	1.18	1.00	1.84	1.00	1.01	1.00
Density	lb/cf	62.4	62.4	79.9	88.0	73.6	62.4	114.8	62.4	63.3	62.4
DESIGN MAX FLOW											
Volumetric Flow, Peak	gpm	34,144	34,144	1.71	1.71	0.68	17.07	0.261	34,171	61	34,108
Total Mass Flow	lb/hr	17,087,366	17,087,366	1,093	1,205	403	8,543	240	17,098,972	31,158	17,067,813
Suspended Solids	%	0.01%	0.01%	0%		0%	0%	0%	0.01%	5%	0.003%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	361	0	0	0			
Mass Flow Liquid	lb/hr	17,085,658	17,085,658	1,093	1,205	403	8,543	240	17,096,902	29,600	17,067,301
Mass Flow Solids	lb/hr	1,709	1,709	0	361	0	0	0	2,070	1,558	512.0
Specific Gravity		1.00	1.00	1.28	1.41	1.18	1.00	1.84	1.00	1.01	1.00
Density	lb/cf	62.4	62.4	79.9	88.0	73.6	62.4	114.8	62.4	63.3	62.4

Notes:

XX

User Entered

Equipment S	izing

		Other Water	
	FGD Treatment	Treatment	Tom's comments - red = not addressed, black = addressed
Mix Tanks			
Average Flow, gpm	1,175	5,213	Design flow for Sludge Generation storage, 3 month rolling average
Max Design Flow, gpm	2,053	34,144	Use for Mix Tanks, Settling tank overflow rate
Number of Tanks	2	2	
HDT Average, Min	17	20	
HDT Peak, Min	10	3	
Mix Tank Volume, gal	20,530	102,432	
Mix Tank Volume, cf	2,744	13,693	
·			Need to account for the mix tanks being higher than the settling tanks
Side Water Depth, ft	18	23	to allow fro head drop
Freeboard, ft	2	2	
Wall Height, ft	20	25	
Length/width, ft	12	24	inside dimensions
Slab Area, sf	354	644	
Wall length, ft	27	51	Wall length split between Mix tanks and floc tanks
Wall Area, sf	1,068	1,270	
Slab thichness, ft	2	2	
Wall thickness, in	24	24	
Wall thickness, ft	2.00	2.00	
Wall Volume, cy	79	94	
Slab Volume, cy	26	48	
Mixing horsepower, HP/1,000 gal	0.1	0.1	
Calculated HP	2.05	10.24	
Actual HP	2.0	10.0	
Number	2	2	
Outlet Pipe Nominal Diameter, in	14	40	FRP Pipe
Outlet Pipe ID, in	14	40	
Outlet Pipe Velocity, fps	4.28	4.36	Design for max 2-5 fps
Pipe Head Loss to Floculation Tank, Ft	0.64	0.61	
·			
			We will want to design 2 different size dip tubes for other wastewater,
			a lower one that is smaller for low flows and a larger one for high flow
			conditions. We need a minimum velocity to suck solids out of the tank,
Number of Dip Tubes	1	2	and max velocity to prevent shear.

Flocculation Tanks

Flocculation ranks			
Design Flow, gpm	1,175	5,213	Design flow for Sludge Generation storage, 3 month rolling average
Max Design Flow, gpm	2,053	34,144	Use for Mix Tanks, Settling tank overflow rate
Number of Tanks	2	2	
HDT Average, Min	17	20	
HDT Peak, Min	10	3	
Flocculation Tank Volume, gal	20,530	102,432	
Flocculation Tank Volume, cf	2,744	13,693	
Side Water Depth, ft	18	23	
Freeboard, ft	2	2	
Wall Height, ft	20.0	25.0	
Length/width, ft	12	24	inside dimensions
Slab Area, sf	354	644	
Wall length, ft	27	51	Wall length split between Mix tanks and floc tanks
Wall Area, sf	1,068	1,270	
Slab thichness, ft	2	2	
Wall thickness, in	24	24	
Wall thickness, ft	2.00	2.00	
Wall Volume, cy	79	94	
Slab Volume, cy	26	48	
Mixing horsepower, HP/1,000 gal	0.1	0.1	
Calculated HP	2.05	10.2	
Actual HP	2.0	10.0	
Number	2	2	
Outlet Pipe Nominal Diameter, in	14	40	FRP
Outlet Pipe ID, in	14	40	
Outlet Pipe Velocity, fps	4.28	4.36	Design for max 2-5 fps
Pipe Head Loss to Floculation Tank	0.64	0.61	
Number of Dip Tubes	2	2	

Settling Tanks Design Flow, gpm Max Design Flow, gpm 5,213 Calculate overflow rate on peak flow, solids storage on average flow 34,144 2,053 Design solids, mg/L Daily solids production , lbs/day Solids concentration (Settled solids) 20,000 100 8,639 5% Settled solids 20% Solids density, lbs/cf 80 80 dry solids Solids generation, cf/day Solids Storage, days Solids Storage per tank, cf 17,660 2,160 740 About 2 yrs for Other WW 1,598,400 93 1,642,800 Number of Tanks Wall Height, ft Freeboard, ft Side Water Depth, ft 22 Water depth above settled solids Solids Depth,ft Total Tank Volume, gal per tank 22,528,264 21,919,392 Total Tank Volume, CF per tank Solids Storage Volume, gal per tank Solids Storage Volume, CF per tank 3,011,800 12,288,144 1,642,800 2,930,400 11,956,032 1,598,400 Set based on solids storage capacity for FGD WW and overflow rate for Tank Width, ft L/W Ratio 185 180 other WW Treatment Tank length for Other WW is set equal to the FGD WW tank and the Tank Length, ft Slab Area, sf Wall length, ft 740 740 Other WW tank width 275,472 2,950 70,800 283,531 2,970 71,280 Wall Area, sf Slab thichness, ft Wall thickness, in Wall thickness, ft 24 2.0 wan unknies, it Wall Volume, cy Slab Volume, cy Overflow Rate Average, gpm/sf Overflow Rate peak, gpm/sf Flow capacity based on average overflow rate, gpm 5,280 5,244 21,002 0.0086 0.015 0.256 Want to stay at < 0.26 gpm/sf 5,200 one train

Flow capacity based on Peak overflow rate, gpm	2,050	34,140	One train
,,	, , , ,		
Access Ramp to Settling Tank Access Ramp Inside Settling tank Width, ft	30	30	Need two way truck traffic
Ramp Slope, %	12%	12%	Trees the may track traine
Ramp tickness, ft	1.50	1.50	Assumed.
Ramp Length, ft	201	201	
Ramp area, sf	6043	6043	
Ramp side wall area sf	2400	2400	
Ramp side wall Thickness, ft	2	2	
Sidewall concerte, cft	4800	4800	
Access Ramp concrete, cft	9065	9065	
Total Ramp concrete, ft3 Total Ramp concrete, cy	13865 514	13865	Per ramp
Total Namp Concrete, cy	314	314	remp
Excavation, cy	567,	975	
Liner	307,	3,3	
Liner, ft2	262 600	256 142	
Liner, SY	363,699 40,411	356,143 39,571	
Liner, 31	40,411	33,371	
Chemical Feeds			
Ferric Chloride Feed			
Number of pumps	2 2 2 2 2	2	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv	2,053 50	34,144 50	Use 50
		102.4	use 50
Maximum Feed Rate, gph Average Flow to treat, gpm	6.2 1,175	5,213	
Average Feed Rate, gph	3.5	15.6	
Average Treatment Volume, MGD	1.69	7.51	
Average Usage, gpd	85	375	
Average usage of chemical for FGD WW and Other WW	46	50	
Max Day Treatment Volume, MG	2.96	49.2	
Normal Maximum Usage, gpd	148	2458	
Max usage of chemical for FGD WW and Other WW, gpd	2,6		
Nominal Storage Tank Volume, gal Number of Tanks	8,0	00	
Total Storage Volume, gal	12,0	200	lank day 4000 and a substantial for the stand of the stand
Storage Time at normal max usage, days	12,0		Includes 4000 gallon extra capacity for tank truck loading
Storage Time at average usage, days	2		Size for 14 to 21 days capacity at average usage
otorago rimo at avorago acago, aayo		0	Size for 14 to 21 days capacity at average usage
Sulfuric Acid Feed			
Number of pumps	2	2	
Maximum Flow to treat, gpm	2,053	34,144	
Dose (volume of chemical/volume of wastewater), ppmv	50	50	
Maximum Feed Rate, gph	6	102	
Average Flow to treat, gpm	1,175	5,213	
Average Feed Rate, gph	3.525 1.692	15.639 7.50672	
Average Treatment Volume, MGD Average Usage, gpd	84.6	375	
Average usage of chemical for FGD WW and Other WW	84.0		
Max Day Treatment Volume, MG	2.96	49.2	
Normal Maximum Usage, gpd	148	2458	
Max usage of chemical for FGD WW and Other WW	2,6	06	
Nominal Storage Tamk Volume, gal	10,0		
Number of tanks	1		
Total Storage Volume, gal	14,0		Each tank. Includes 4000 gal for tanker truck.
Storage Time at normal max usage, days Storage Time at average usage, days	2		Circ for 144- 21 days are site of a
Storage Time at average usage, days	2	2	Size for 14 to 21 days capacity at average usage
Sodium Hydroxide Feed			
	2	2	
Number of pumps		24 4 4 4	II.
Maximum Flow to treat, gpm	2,053	34,144	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv	50	50	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph	50 6.2	50 102.4	
Maximum Flow to treat, gpm Dose (Volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm	50 6.2 1,175	50 102.4 5,213	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow Rate, gph	50 6.2	50 102.4	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Treatment Volume, MGD Average Treatment was gpm Average Treatment Volume, MGD	50 6.2 1,175 3.5 1.69	50 102.4 5,213 15.6 7.5	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Treatment Volume, MGD Average Treatment was gpm Average Treatment Volume, MGD	50 6.2 1,175 3.5	50 102.4 5,213 15.6 7.5 375	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Treatment Volume, MGD	50 6.2 1,175 3.5 1.69 85	50 102.4 5,213 15.6 7.5 375	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow Rate, gph Average Treatment Volume, MGD Average Usage, gpd Average Usage, gpd Average Usage, gpd Max Day Treatment Volume, MG Max Day Treatment Volume, MG Mormal Maximum Usage, gpd	50 6.2 1,175 3.5 1.69 85	50 102.4 5,213 15.6 7.5 375	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Treatment Volume, MGD Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW	50 6.2 1,175 3.5 1.69 85 46 2.96 148	50 102.4 5,213 15.6 7.5 375 30 49.2 2458	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow Box Rate, gph Average Treatment Volume, MGD Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Normial Stranger Tank Volume, gal	50 6.2 1,175 3.5 1.69 85 46 2.96 148	50 102.4 5,213 15.6 7.5 375 50 49.2 2458	common Tank
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow Rate, gph Average Treatment Volume, MGD Average Usage, gpd Average Usage, gpd Average Usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Norminal Storage Tank Volume, gal Normal Storage Tank Volume, gal	50 6.2 1,175 3.5 1.69 85 46 2.96 148 2,6	50 102.4 5,213 15.6 7.5 375 60 49.2 2458	
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Teatment Volume, MGD Average Usage, gpd Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tank Volume, gal Number of tanks Total Storage Volume, gal	50 6.2 1,175 3.5 1.69 85 46 2.96 148 2,6 100	50 102.4 5,213 15.6 7.5 375 60 49.2 2458 06 000	common Tank Includes 4000 gallon extra capacity for tank truck loading
Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow Rate, gph Average Treatment Volume, MGD Average Usage, gpd Average Usage, gpd Average Usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Norminal Storage Tank Volume, gal Normal Storage Tank Volume, gal	50 6.2 1,175 3.5 1.69 85 46 2.96 148 2,6	50 102.4 5,213 15.6 7.5 375 60 49.2 2458 06 000	

Organosulfide Feed			
Number of pumps	2	2	
Maximum Flow to treat, gpm	2,053	34,144	
Dose (volume of chemical/volume of wastewater), ppmv	20	20	
Maximum Feed Rate, gph	2.46	41.0	
Average Flow to treat, gpm	1,175	5,213	
Average Feed Rate, gph	1.41	6.26	
Average Treatment Volume, MGD	1.69	7.5	
Average Usage, gpd	33.8	150	
Average usage of chemical for FGD WW and Other WW, gpd	1	184	
Max Day Treatment Volume, MG	2.96	49.2	
Normal Maximum Usage, gpd	59.1	983	
Max usage of chemical for FGD WW and Other WW, gpd	1	,042	
Nominal Storage Tank Volume, gal	4	,000	
Number of tanks		1	
Total Storage Volume, gal	8,000		
Storage Time at normal max usage, days		4	
Storage Time at average usage, days		22	Size for 14 to 21 days capacity at average usage

Polymer Fee	ed System
-------------	-----------

Number of polymer blending units	2	2	
Maximum Flow to treat, gpm	2,053	34,144	
Dose (volume of chemical/volume of wastewater), ppmv	5	5	1:100 ratio neat polymer to water
Maximum Feed Rate, gph	0.62	10.24	
Dilution Water Feed (volume to volume of neat polymer)	100	100	
Maximum Flow of Dilution water, gph	61.6	1024.3	
Average Flow to treat, gpm	1,175	5,213	
Average Feed Rate, gph	0.35	1.56	
Average Treatment Volume, MGD	1.69	7.51	
Average Usage, gpd	8.5	37.5	
Average usage of chemical for FGD WW and Other WW, gpd	4	16	
Max Day Treatment Volume, MG	2.96	49.2	
Normal Maximum Usage, gpd	14.8	246	
Max usage of chemical for FGD WW and Other WW, gpd	2	61	
Nominal Storage Tote Volume, gal	2	65	265 or 320 gallons are standard volumes/sizes for totes
Number of totes	4		
Total Storage Volume, gal	1,060		
Storage Time at normal max usage, days	4		
Storage Time at average usage, days	23		Size for 14 to 21 days capacity at average usage

Note: User Input

Head loss influent Mix tank to Floccuation Tank FGD Treatment

Quantity	Pipe /Fitting	Material	SDR	Nominal	ID	Pipe Length L	Loss Coef	Flow	Flow	Pipe	Velocity	Hazen C	Headloss	Minor	Subtota
										Velocity	Head		in Pipe	Loss	head
				(in)	(in)	(ft)		(gpm)	(ft ³ /s)	(ft/sec)	(ft)		(ft)	(ft)	(ft)
1	entrance	FRP		14	14		0.78	2,053	4.57	4.28	0.29	150	0.00	0.22	0.22
	pipe	FRP		14	14	18		2,053	4.57	4.28	0.29	150	0.06	0.00	0.06
0	tee, branch	FRP		14	14		0.72	2,053	4.57	4.28	0.29	150	0.00	0.00	0.00
		FRP											0.00		
100	elbow, 45 degree			14	14		0.19	2,053	4.57	4.28	0.29	150	0.00	0.00	0.00
1	elbow, 90 degree	FRP		14	14		0.19	2,053	4.57	4.28	0.29	150	0.00	0.05	0.05
				14	14			2,053							
	pipe	FRP		14	14	4		2,053	4.57	4.28	0.29	150	0.01	0.00	0.01
1	exit loss	FRP		14	14		1.00	2,053	4.57	4.28	0.29	150	0.00	0.29	0.29

Total head loss 0.6 total minor loss 0.56

Head loss influent Mix tank to Floccuation Tank, Other Water Treatment

Quantity	Pipe /Fitting	Material	SDR	Nominal	ID	Pipe Length L	Loss Coef	Flow	Flow	Pipe Velocity	Velocity Head	Hazen C	Headloss in Pipe	Minor Loss	Subtota head
				(in)	(in)	(ft)		(gpm)	(ft ³ /s)	(ft/sec)	(ft)		(ft)	(ft)	(ft)
1	entrance	FRP		40	40		0.78	17,072	38.04	4.36	0.30	150	0.00	0.23	0.23
	pipe	FRP		40	40	23		17,072	38.04	4.36	0.30	150	0.02	0.00	0.02
0	tee, branch	FRP		40	40		0.72	17,072	38.04	4.36	0.30	150	0.00	0.00	0.00
	elbow, 45 degree	FRP		40	40		0.19	17,072	38.04	4.36	0.30	150	0.00	0.00	0.00
	albani 00 daasaa	FRP		40	40		0.19	17.072	38.04	4.36	0.30	150	0.00	0.06	0.06
	elbow, 90 degree			40	40		0.19	17,072	38.04	4.30	0.30	150		0.06	0.06
								17,072							
		500		40	40										
	pipe	FRP		40	40	4		17,072	38.04	4.36	0.30	150	0.00	0.00	0.00
1	exit loss	FRP		40	40		1.00	17,072	38.04	4.36	0.30	150	0.00	0.30	0.30

Total head loss 0.6 total minor loss 0.59

Excavation Calculation FGD WW and Other WW Tanks

Settling Tank Depth below grade=	22	ft	
Depth Below Tank for Excavation =	4	ft	
Depth of excavation	26	ft	
Side Slope (H:V) =	1		
Tank wall thickness	2	each	
FGD WW Tank Length =	740	ft	
FGD WW Tank Width =	185	ft	
Number of FGD WW Tanks =	2		
Other WW Tank Length =	740	ft	
Other WW Tank Width =	180	ft	
Number of Other WW Tanks =	2		
Total Length of tanks with walls	744	ft	
Total Width of tanks with walls	740	ft	
			Trapezoidal calculation, average with of cut time average length of cut
Excavated tank area volume	15,335,320	cf	times depth
Total Excavated Volume	567,975	cy	

LG&E-KU
Trimble County Station
Settling Tank-based Treatment System
Table 1. Design Basis

Facility	Equipment	Design Criteria	FGD Treatment Tank System	Other Treatment Tank System
		Number	2	2
	Access to	Length, ft	201	201
amps	Settling Tanks	Width, ft	30	30
		Slope, %	12%	12%
		Materials	Reinforced Concrete	Reinforced Concrete
		Number	2	2
		Average Flow, gpm	1,175	5,213
		Peak Flow, gpm	20,530	102,432
		Detention Time at Average Flow, min	17	20
		Detention Time at Peak Flow, min	10	3
	Tanks	Dimension, ft (square)	12	24
		Wall Height, ft	20	25
		Freeboard, ft	2	2
		Side Water Depth, ft	18	23
		Volume, gal	20,530	102,432
		Materials	Reinforced Concrete	Reinforced Concrete
		Number	2	2
lix Tanks		Туре	Hyerboloid	Hyerboloid
	Mix Tank	Turbine tip Speed, ft/sec	2 to 6	2 to 6
	Mixers	Control	VFD	VFD
		Mixing Criteria, HP/1,000 gal	0.1	0.1
		Horsepower, each	2	10
	1	Number		2
	Mix Tank	Туре		Rotary Lobe
	Blower	Air Required, scfm		500
		Horsepower, each		20
		Number	2	2
	Dip Tubes	Diameter, in	14	40
	DIP Tubes	Head loss, ft	0.64	0.61
		Materials	FRP	FRP
		Number	2	2
		Average Flow, gpm	1,175	5,213
		Peak Flow, gpm	2,053	34,144
	Tanks	Detention Time at Average Flow, min	17	20
		Detention Time at Peak Flow, min	10	3
		Dimension, ft (square)	12	24
		Wall Height, ft	20	25
		Freeboard, ft	2	2
		Side Water Depth, ft	18	23
		Volume, gal	20,530	102,432
occulationTanks		Materials	Reinforced Concrete	Reinforced Concrete
		Number	2	2
		Туре	Hyerboloid	Hyerboloid
	Flocculation	Turbine tip Speed, ft/sec	2 to 6	2 to 6
	Tank Mixers	Control	VFD	VFD
		Mixing Criteria, HP/1,000 gal	0.1	0.1
	<u></u>	Horsepower, each	2	10
		Number	2	2
	Dip Tubes	Diameter, in	14	40
	DIP TUDES	Head loss, ft	0.64	0.61
		Materials	FRP	FRP
	1	Number	2	2
		Average Flow, gpm	1,175	5,213
		Peak Flow, gpm	2,053	34,144
		Solids Concentration, mg/L	20,000	100
		Average dry solids generation, lbs/day	282,562	8,639
			20%	5%
		Solids Settled Concentration (%)	20/6	
		Solids Settled Concentration (%)	80	80
		Solids Settled Concentration (%) Solids density, lbs/cf	80	80
		Solids Settled Concentration (%) Solids density, lbs/cf Solids Generation, cf/day	80 17,660	80 2,160
		Solids Settled Concentration (%) Solids density, lbs/cf Solids Generation, cf/day Length, ft	80 17,660 740	80 2,160 740
		Solids Settled Concentration (%) Solids density, lbs/cf Solids Generation, cf/day Length, ft Width, ft	80 17,660 740 185	80 2,160 740 180
ettling Tanks	Tanks	Solids Settled Concentration (%) Solids density, lbs/cf Solids Generation, cf/day Length, ft Width, ft Wall Height, ft	80 17,660 740 185 24	80 2,160 740 180 24
ettling Tanks	Tanks	Solids Settled Concentration (%) Solids density, lbs/cf Solids Generation, cf/day Length, ft Width, ft	80 17,660 740 185	80 2,160 740 180

LG&E-KU
Trimble County Station
Settling Tank-based Treatment System
Table 1. Design Basis

Facility	Equipment	Design Criteria	FGD Treatment Tank System	Other Treatment Tank System	
		Solids Depth, ft	12	12	
		Total Liquid Volume, gal per tank	22,528,264	21,919,392	
		Solids Storage Design Criteria, days	90	90	
		Solids Storage Volume, gal	12,288,144	11,956,032	
		Solid Storage Provided per tank, days	93	740	
		Average Overflow Rate, gpm/sf	0.01	0.04	
		Peak Overflow Rate, gpm/sf	0.01	0.26	
		Materials	Reinforced Concrete	Reinforced Concrete	
		Number	1		
		Tank Volume, gal	12,0		
		Dose, ppmv	50	50	
		Average Chemical Use, gal/d	85	375	
	Ferric Chloride	Average Chemical Use, gal/d	46		
	Storage Tank	Peak Chemical Use, gal/d	148	2,458	
erric Chloride Feed		Peak Chemical Use, gal/d	2,6		
ystem		Average Use Storage, days	26		
,		Peak Use Storage, days	5		
		Chemical Stored	35% Ferrio		
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm	
	Ferric Chloride	Capacity, gph	6.2	102.4	
	Feed Pumps	Number	2	2	
	· ·	Power	120 v	121 v	
		Chemical Pumped	35% Ferric Chloride	35% Ferric Chloride	
		Number	1		
		Tank Volume, gal	14,0		
	Sulfuric Acid Storage	Dose, ppmv	50	50	
		Average Chemical Use, gal/d	85	375	
		Average Chemical Use, gal/d	46		
		Peak Chemical Use, gal/d	148	2,458	
Sulfuric Acid Feed		Peak Chemical Use, gal/d	2,6		
System		Average Use Storage, days	23	2	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Peak Use Storage, days	4		
		Chemical Stored	93% Sulfu		
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm	
	Sulfuric Acid	Capacity, gph	6.2	102.4	
	Feed Pumps	Number	2	2	
		Power	120 v	121 v	
		Chemical Pumped	93% Sulfuric Acid	0	
		Number	1		
		Tank Volume, gal	14,0		
		Dose, ppmv	50	50	
	Sodium	Average Chemical Use, gal/d	85	375	
	Hydroxide	Average Chemical Use, gal/d	46	0	
	Storage	Peak Chemical Use, gal/d	148	2,458	
odium Hydroxide		Peak Chemical Use, gal/d	2,606		
eed System		Average Use Storage, days	30		
cca system		Peak Use Storage, days	5		
		Chemical Stored	25% and 5	0% NaOH	
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm	
	Sodium	Capacity, gph	6.2	102.4	
	Hydroxide Feed	Number	2	2	
	Pumps	Power	120 v	121 v	
		Chemical Pumped	25% and 50% NaOH	0	

LG&E-KU
Trimble County Station
Settling Tank-based Treatment System
Table 1. Design Basis

Facility	Equipment	Design Criteria	FGD Treatment Tank System	Other Treatment Tank System			
,	1. 1.	Number	1				
		Tank Volume, gal	8,0				
		Dose, ppmv	20	20			
		Average Chemical Use, gal/d	34	150			
	Organosulfide	Average Chemical Use, gal/d	18	34			
	Tote/tank	Peak Chemical Use, gal/d	59	983			
	Storage	Peak Chemical Use, gal/d	1,0	42			
Organosulfide Feed		Average Use Storage, days	2	2			
System		Peak Use Storage, days	4	l .			
		Chemical Stored	Organosulfide				
		Type	Stepping Motor Diaphragm	Stepping Motor Diaphragm			
	Organosulfide Feed Pumps	Capacity, gph	2.46	41.0			
		Number	2	2			
		Power	120 v	121 v			
		Chemical Pumped	Organosulfide	Organosulfide			
		Number	4	ļ			
	Polymer Tote	Volume, gal each	26	55			
		Volume Storage, gal	1,0	60			
		Dose, ppmv	5	5			
		Average Chemical Use, gal/d	8	38			
		Average Chemical Use, gal/d	4	6			
	Storage	Peak Chemical Use, gal/d	15	246			
		Peak Chemical Use, gal/d	26	51			
Daluman Faad Custom		Average Use Storage, days	2	3			
Polymer Feed System		Peak Use Storage, days	4	l .			
		Chemical Stored	Anionic Emul	sion Polymer			
	Polymer	Туре	Polymer Blending System	Polymer Blending System			
	Blending	Capacity, gph	0.62	10.2			
	Systems	Number	2	2			
		Power	120 v	121 v			
		Chemical Pumped	Anionic Emulsion Polymer	Anionic Emulsion Polymer			

LG&E-KU Trimble County Station Settling Tank-based Treatment System

Table 2. Electrical Load

ltem	Location	НР	No. Provided	No. Active	Installed HP	Active HP	% of Time On	Total HP for O&M
FGD WW Teatment								
Mix Tank Mixers	TBD	2	2	1	4	2	100%	2
Floculation Tank Mixers	TBD	2	2	1	4	2	100%	2
Chemical Feed Pumps	TBD	1	10	5	10	5	100%	5
Other WW Teatment								
Mix Tank Mixers	TBD	10	2	1	20	10	100%	10
Floculation Tank Mixers	TBD	10	2	1	20	10	100%	10
Chemical Feed Pumps	TBD	1	10	5	10	5	100%	5
Mix Tank Blower	TBD	20	2	1	40	20	10%	2
Miscellaneous (bldg heating, lights, etc.)		100			100	100	30%	30
Mix Tank Blower								
Totals					208	154		66
MW								0.049764
MW-Hr/year								440

LG&E-KU Trimble County Station Settling Tank-based Treatment System Table 3. Estimated Capital Cost

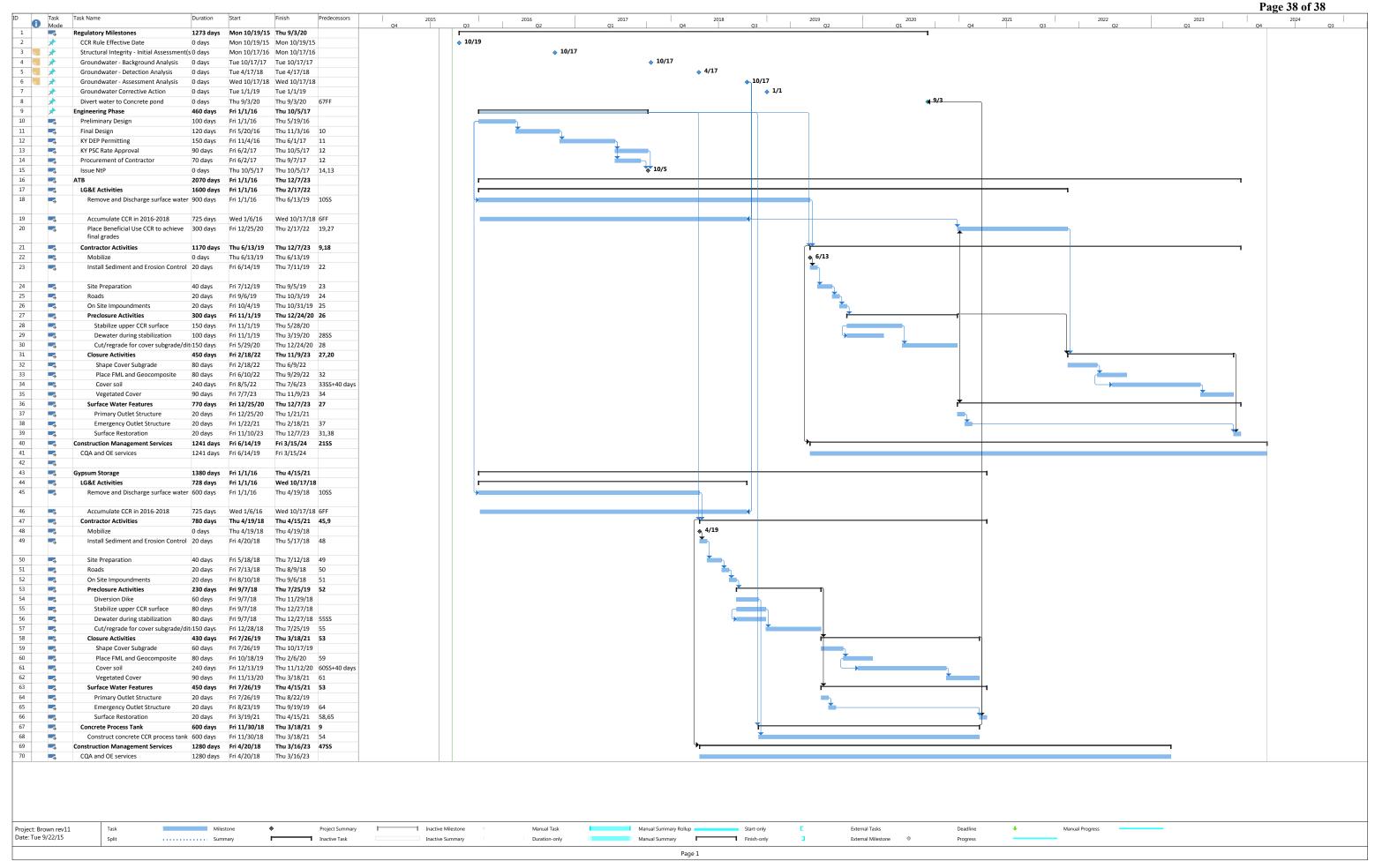
ltem	Value	Units	No. Provided	Unit Cost (\$	Amount	Installation (\$ ea)	Total Installed Cost (\$)	CCR Cost	ELG Cost
FGD Treatment Tanks						(+)	(4)		
Mix Tank Mixers	2	hp	2	41,628	83,257	8,326	99,908	99.908	
Flocculation Tank Mixers		hp	2	41,628	83,257	8,326	99,908	99,908	
Ferric Chloride Feed Pumps		gph	2	6,266	12,533	1,400	15,333	15,333	
Sulfuric Acid Feed Pumps		gph	2	6,266	12,533	1,400	15,333	15,333	
Organosulfide Feed Pumps		gph	2	6,266	12,533	1,400	15,333	15,333	
Polymer Blending Systems	1	gph	2	25,000	50,000	1,700	53,400	53,400	
Sodium Hydroxide Feed Pumps	6	gph	2	6,266	12,533	1,400	15,333	15,333	
oodidiii i iyaroxido i ood i diripo		9511		0,200	12,000	1,100	10,000	10,000	
Other Wastewater Treatment Tanks									
Mix Tank Mixers	10	hp	2	44,860	89,720	8,972	107,664		107,664
Flocculation Tank Mixers		hp	2	44,860	89,720	8,972	107,664		107,664
Ferric Chloride Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Sulfuric Acid Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Organosulfide Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Polymer Blending Systems		gph	2	25,000	50,000	1,700	53,400		53,400
Sodium Hydroxide Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Mix Tank Blower		SCFM	2	2,850	5,700	1,140	7,980		7,980
Common Equipment	300		_	2,000	0,700	1,110	7,000		
Ferric chloride tank	12,000	gal	1	24,918	24,918	4,984	29,901	14,951	14,951
Sulfuric Acid tank	2,606		1	7,441	7,441	1,488	8,929	4,464	4,464
Organosulfide Tank	1,042		1	4,531	4,531	906	5,438	7,704	5,438
Polymer feed Totes		gal	4	7,001	4,331	906	- 5,436		3,430
Sodium Hydroxide Tank	14,000		1	28.639	28,639	5,728	34,366	17,183	17,183
, , , , , , , , , , , , , , , , , , ,	14,000	yaı		-,					
Safety Shower	400.007	annli t- '	2	25,000	50,000	5,000	60,000	30,000	30,000
Area Labor Adjustment Factor	100.0%	applies to ir	stallation cost	only					
Total Equipment Cost (TEC)							791,000	381,000	410,000
Area Labor Adjustment Factor									
Total Process Equipment					617,444				
Freight		of Proc Equ	ıip				25,000	12,042	12,958
Purchased Equipment Cost - Delivered (PEC	C-D)						816,000	393,042	422,95
FGD Treatment Tanks									
Mix Tanks Wall Concrete		CY	1	650	51,414		51,414	51,414	
Mix Tanks Slab Concrete		CY	1	300	7,874		7,874	7,874	
Floculation Tanks Wall Concrete	79	CY	1	650	51,414		51,414	51,414	
Floculation Tanks Slab Concrete	26	CY	1	300	7,874		7,874	7,874	
Settling Tanks Wall Concrete	5280	CY	1	650	3,432,000		3,432,000	3,432,000	
Settling Tanks Slab Concrete	21,002	CY	1	300	6,300,696		6,300,696	6,300,696	
Total Ramp Concrete	514	CY	2	300	308,102		308,102	308,102	
							·		
Other Treatment Tanks									
Mix Tanks Wall Concrete	94	CY	1	650	61,148		61,148		61,148
Mix Tanks Slab Concrete		CY	1	300	14,315		14,315		14,315
Floculation Tanks Wall Concrete		CY	1	650	61,148		61,148		61,148
Floculation Tanks Slab Concrete		CY	1	300	14,315		14,315		14,315
Settling Tanks Wall Concrete	5,244		1	650	3,408,889		3,408,889		3,408,889
Settling Tanks Slab Concrete	20,405		1	300	6,121,593		6,121,593		6,121,593
Total Ramp concrete, cy		CY	2	300	308,102		308,102		308,102
rotal namp concrete, cy	314	<u> </u>		300	300,102		300,102		300,102
Common Items	-	1							
	F07.075	CV	4		2 200 042		2 200 042	4 740 040	1.070.004
Excavation - Soft	567,975		1	6	3,390,810		3,390,810	1,719,849	1,670,961
Pre Engineered building	1,200		1	200	240,000		240,000	120,000	120,000
Lining Tanks	79,982	SY	1	30	2,399,472		2,399,472	1,217,034	1,182,439
		ļ							
		<u> </u>					00.455	40.01	10.0
Construction Material							26,179,165	13,216,257	12,962,90
State Sales Tax	1.0%	of Equipme	nt				6,000	3,029	2,97
Total Constuction Material							26,185,165		
Total Equipment and Construction							27,001,165	13,612,328	13,388,83
Electrical and I&C	5%						1,350,000	681,000	669,000
Piping	8%						2,160,000	1,089,000	1,071,00
Yard Improvements (a)		of Equip + C					2,160,000	1,089,000	1,071,00
Metals and Finishes	3%	of Equip + C	Const.				810,000	408,000	402,000
Subtotal		-					33,481,165	16,879,328	16,601,83
Total Direct Costs (TDC)							33,481,165	16,879,328	16,601,83
Contractor's Field General Conditions	5%	of TDC					1,674,000		
Contractor's OH&P		of TDC					5,022,000	2,532,000	2,490,00
							6,696,000	3,376,000	3,320,00
	200/								J.JZU.UU
Contingency		of TDC							
Contingency Escalation Factor		of TDC					0	0	
Contingency	0%								23,241,83

LG&E-KU Trimble County Station Settling Tank-based Treatment System Table 3. Estimated Capital Cost

_	<u> </u>									
								Total		
				No.	Unit Cost (\$		Installation	Installed		
	Item	Value	Units	Provided	ea)	Amount	(\$ ea)	Cost (\$)	CCR Cost	ELG Cost
ī	Total Estimated Order of Magnitude Capital Cost 53,904,165 27,176,328								26,727,837	
/	Annual Cost of Capital (7% over 20 years) 5,088,000							\$2,565,000	\$2,523,000	

- (a) Includes fencing, grading, roads, sidewalks, and similar items.
- (b) The enclosed Engineer's Estimate is only an estimate of possible construction costs. This estimate is limited to the conditions existing at its issuance and is not a guaranty of actual price or cost. Uncertain market conditions such as, but not limited to: local labor or contractor availability, wages, other work, material market fluctuations, price escalations, force majeure events, and developing bidding conditions etc may affect the accuracy of this estimate. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.
- (c) SDC stands for Services During Construction (Startup, Engineer/Site Reps, etc.)

LG&E-KU


Trimble County Station

Settling Tank-based Treatment System

Table 4. Estimated O&M Cost

Item	Quantity	Units	Unit Cost	Cost
Labor	1,040	hours/yr	\$30	\$31,200
Maintenance (% of Purchased Equipment Cost)	816,000	\$	3%	\$24,480
Solids for Disposal	231,497	tons/yr	-	-
Energy	440	MW-Hr/yr	\$100	\$44,000
Chemicals				
Ferric Chloride	134,301	gal/yr	\$2	\$222,940
Acid	40,290	gal/yr	\$2	\$94,280
Organosulfide	53,721	gal/yr	\$20	\$1,074,410
Polymer	13,430	gal/yr	\$8	\$106,904
Caustic	134,301	gal/yr	\$1	\$147,731
Total Annual O&M				\$1,746,000
Cost per 1000 Gallon Treated (excludes labor)				\$0.51
Annualized Cost				\$6,834,000

Attachment 3 Schedule

Coal Combustion Residual Evaluation: E. W. Brown Generating Station

PREPARED FOR: Louisville Gas & Electric Company and Kentucky Utilities Company

PREPARED BY: CH2M HILL Engineers

DATE: September 29, 2015

1 Executive Summary

Louisville Gas & Electric Company and Kentucky Utilities Company (LG&E-KU) tasked CH2M HILL Engineers (CH2M) with performing coal combustion residuals (CCR) evaluations for seven generation stations to develop conceptual CCR ash pond closure approaches and capital cost estimates. The generating stations under evaluation are Ghent, Trimble County, Mill Creek, E. W. Brown, Green River, Tyrone, and Pineville. This report applies solely to Brown Generating Station. The following scope activities were completed:

- Review of LG&E-KU provided historical CCR information and kickoff meeting workshop (June 2015)
- Developed a CCR pond closure compliance alternative that considers regulatory, civil, geotechnical, and stormwater aspects as it relates to CCR ash ponds and associated cost estimates for the generating station. Discussion of the conceptual approach is included in Section 2, and drawings are contained in Attachment 1.
- Construct new concrete process tanks (four) for management of wastewater that can no longer be managed in the ponds that will be closed; construct dewatering facility for removing water from solids.

The estimated cost for closing the three ponds is summarized in Exhibit 1-1. Cost information is included in Attachment 2.

Proposed Conceptual Closure Approach	Low (-30%)	Total Capital Cost	High (+30%)
Auxiliary Pond Closure	\$18.1 M	\$25.9 M	\$33.6 M
Concrete Process Tanks and Dewatering Facility	\$44.0 M	\$62.9 M	\$81.8 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, process flow diagrams (PFD) for main process systems and engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from

information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

2 Proposed Conceptual CCR Closure

Development of Proposed Conceptual CCR Closure

The proposed conceptual CCR pond closure approach was developed based on previous work completed by CH2M and discussions with LG&E-KU during the kickoff meeting on June 23, 2015. The E. W. Brown Generating Station is an operating facility with fly ash and bottom ash wastewater being generated and discharged to the Auxiliary Pond. The following defines the considered approach for closure of this pond. Additional assumptions are summarized in Section 2.2.

Auxiliary Pond

- Completely fill with CCR material generated at the facility, regrade CCR material in pond to balance
 cut/fills, and install final cover. The surface water drainage channels will be sized to provide
 retention and the existing outlet structure would be modified or breach of the dike to regulate
 discharge during a storm event. Both the fly ash system and bottom ash system will be converted to
 a dry system along with being converted to a closed-loop system with no discharge to the pond.
- Surface water within Auxiliary Pond will be removed before closure begins to allow surface improvement and dry material placement in Auxiliary Pond. Other potential subgrade improvements are described under assumptions below.
- Auxiliary Pond will receive material from the station until airspace capacity is full. Excess CCR material will be properly disposed of in the onsite landfill. Details are located in Section 3 -Estimated Material Volumes and Areas, Table 3-1.

Regulatory Strategy

- Compliance with the Final CCR Rule.
- Closure activities will be permitted by the Kentucky Department of Environmental Protection (KYDEP).

The volume of CCR to be managed (that is, excavated, placed and regarded within the pond) was developed using AutoCAD drawings provided by LG&E-KU on June 23, 2015 and computer aided engineering (CAE) software. The proposed conceptual pond closure approach is presented in drawings provided in Attachment 1.

Design Assumptions

The design assumptions used for the proposed conceptual CCR pond closure approach is as outlined in our proposal and discussed with LG&E-KU at our kickoff meeting on June 23, 2015, and are summarized below:

• The existing conditions were established from AutoCAD files provided by LG&E-KU on June 23, 2015.

- In order to estimate the volume of CCR in the Auxiliary Pond, a surface was developed in AutoCAD based on data and elevations provided by LG&E-KU. It was determined that the ash in the Auxiliary Pond could be regraded to balance cuts/fills and closed.
- Volume calculations are based on an in-place (moist) density 1 ton per cubic yard (74 pounds per cubic foot) for all cut and placed CCR material, and does not account for shrinkage/swell during placement. Quantities do not consider settlement of in-place CCR because of dewatering or new fill/cover loads. Changes to these assumptions should be verified during design development.
- It is assumed these CCR ponds meet the structural integrity requirements, and the pond closure approaches are geotechnically stable as shown. This information will be confirmed during design development.
- Improvements to prepare a workable CCR surface include removing surface water, localized regrading to facilitate dewatering, and installing a geotextile, a layer of dry CCR, and geogrid.
- Final cover surface drainage channels are inside the perimeter dikes, and would include final cover and be lined with structural reinforcement (turf reinforcement mat, riprap etc.), as necessary.
- The dikes will be used without increasing or decreasing height. Some improvements may be required based on the U.S. Environmental Protection Agency (USEPA) dam assessment findings but are outside this project scope. The dikes may be able to be knocked down and used for final cover. However, this will need to be coordinated with the appropriate regulatory agency and therefore these volumes were not included in this evaluation.
- CCR within the pond will be regarded and used to fill the pond beneath the final cover.
- The final cover (cap) is assumed to consist of 40-mil linear low-density polyethylene liner (LLDPE) placed directly on subgrade (CCR) and covered with geocomposite, 1.5 feet of soil, and 0.5 foot of vegetated topsoil. The final cover will extend on top of the dikes due to the potential that ash may be contained within the dikes.
- A maximum of five percent slope was used for the final cover. CH2M developed closure design to reach the five percent slope or to account for beneficial reuse of CCR material until 2023.
- Modification will be required to the Kentucky Pollutant Discharge Elimination System (KPDES) discharge structure location to ensure permit compliance.
 - The CCR pond discharge structures will be modified to ensure stormwater flows to the KPDES discharge structure and permit compliance.
 - The waste material from the discharge structures will be disposed of properly.
- Material accumulated in Auxiliary Pond will include some wet discharges; but by January 2017, the CCR material sent to Auxiliary Pond (gypsum and ash) are expected to be dry. Expected CCR material discharges to Auxiliary Pond are summarized in Table 3-1. Material accumulation in Auxiliary Pond will continue until at least 2019, but could continue until 2023 or until the future fill capacity of Auxiliary Pond is maximized.
 - Auxiliary Pond to receive material from the plant through 3rd quarter of 2018. Material quantities are summarized in Table 3-2. It is anticipated that capacity for Auxiliary Pond will be achieved in the 2nd/3rd quarter of 2019, based on the projections provided by LG&E-KU. This date may change due to actual CCR generation rates.
 - Auxiliary Pond to receive beneficial use material from October 17, 2018 until December 31, 2023.
- The station will construct new concrete process tanks in a location to be determined by LG&E-KU plant personnel. There will be four concrete tanks covering approximately 3.3 acres at a depth of 24-

feet (two tanks 360-feet x 90-feet and two tanks 360-feet x 110-feet). Also within this vicinity of the concrete tanks, will be a dewatering system facility to remove water from solids.

- CH2M HILL conceptual closure approach included filling Auxiliary Pond with CCRs materials within
 the existing top of dike elevation and including retention and control of storm water. It is
 anticipated these pond closure approaches will handle the stormwater runoff, but verification will
 be performed in design development.
- Surface water within Auxiliary Pond will be removed before closure begins to allow surface stabilization and dry material placement.
- The top of the dike already includes an aggregate perimeter road.
- A final cover will be constructed. Cover construction will include preliminary grading to shape the
 cover subgrade, and will include the components described in the assumptions below. Conceptual
 grades are shown in Attachment 1, Exhibit 2-1. Significant grading features include the following:
 - A perimeter drainage ditch is shown within the berm. The ditch shows a high point near the south end, dropping at approximately 0.5 percent to the northwest. One existing discharge penetration is shown through the dike leading to the KPDES permitted outfall.
 - The final grades include 4H:1V slopes along the inside of the ditch, extending no higher than 10 feet above the ditch invert or the top elevation of the berm crest, whichever is lower. The 4H:1V ditch slope then transitions to a 5 percent cover slope to the crest.
 - The final cover shown on Exhibit 2-2 has an airspace capacity of approximately 1,233,800 cubic yards above the existing CCR surface grade.
- Airspace capacity under ATB cover could be increased (or reduced), as necessary, by approximately 53,600 cubic yards per foot by extending the 4H:1V ditch slope height to the full perimeter berm elevation, or reducing the maximum height of the mound. Capacity could be reduced by modifying the 4H:1V ditch slope height. Ditch grades should also be refined to create local low points at the perimeter drainage ditch discharge point. Such design refinements should not significantly change the estimated closure costs.
- LG&E-KU to evaluate diversion of process water flows from Auxiliary Pond.

3 Estimated Material Volumes and Areas

The volume of fly ash, bottom ash, and gypsum generated by the station and available for use as fill is summarized in Table 3-1. Total production rates by year are as communicated by LG&E-KU on June 23, 2015, and the portion sent to the ponds each year are based on the 2015 year to date production rates provided by LGE-KU on July 1, 2015.

Table 3-1. Estimated CCR Production by Year – Total and Distribution by Ponds

		Total CCR Production (Tons)			Assumed CCR Distribution (Tons)
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	Auxiliary Pond ¹
2015	15,324	61,297	148,810	225,431	225,431
2016	17,747	70,986	153,590	242,323	242,323
2017	18,087	72,350	171,435	261,873	261,873
2018	18,856	75,426	178,725	273,007	273,007
2019	17,072	68,289	161,818	247,180	123,4782
2020	17,201	68,803	162,959	248,963	-
2021	15,241	60,962	144,359	220,562	-
2022	13,931	55,723	131,929	201,583	-
2023	14,191	56,766	134,439	205,396	-
		TOTAL			1,126,111 ³

Notes:

The proposed CCR pond closure approach was developed using CAE software and AutoCAD files provided by LG&E-KU as described under assumptions above. Summaries of the estimated material quantities are shown in Table 3-2.

Table 3-2. Proposed Conceptual Pond Closure Approach Estimated Material Quantities – Auxiliary Pond

ltem	Units	Quantity
Total surface area	AC	33.2
Standing surface water (to remove)	GAL	10,727,900
Length of perimeter	LF	5,400
CUT: Existing Surface to Final Cover Subgrade		
Cut/regrade for cover subgrade/ditch	CY	11,500
FILL REQUIRED: Existing Surface to Final Cover Subgrade	CY	1,137,600
FILL SOURCES:		
From cut for final cover subgrade	CY	11,500
From CCR accumulation in ATB-1 - Jan. 2017 thru 2018	CY	1,002,600
From CCR accumulation in ATB-1 - Jan. 2019 thru 2023	CY	123,500
TOTAL POTENTIAL FILL through 2018	СҮ	1,002,600
TOTAL POTENTIAL FILL through 2023	CY	1,123,700
Final cover soil volume	CY	107,600
Potential Excess Fill: (to be accommodated in settlement)	СУ	24,700
Potential Excess Fill: (to be sent to Landfill)	СУ	1,000,200

¹ Assumes that 100 percent of bottom ash, fly ash, and gypsum will be sent to the Auxiliary Pond through October 17, 2018, which will be the baseline for closure design.

² Material assumed to be sent to Auxiliary Pond until the closure airspace capacity is full, with remainder sent to landfill. Approximately 1.0 M tons of bottom ash, fly ash, and gypsum will need to be diverted to the land fill from 2019 to 2023.

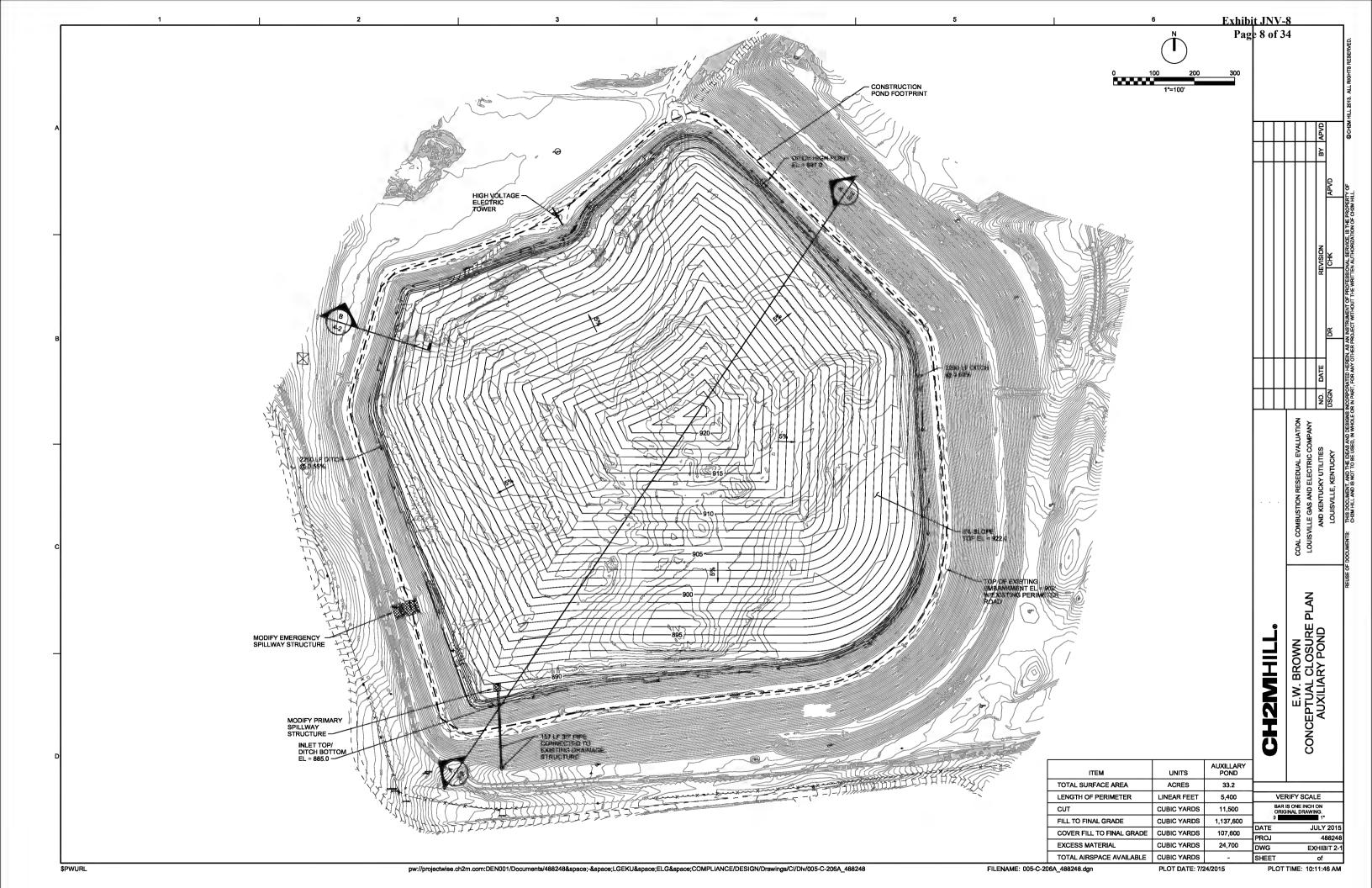
³ Final cover volume is removed from the calculation of Assumed CCR Distribution.

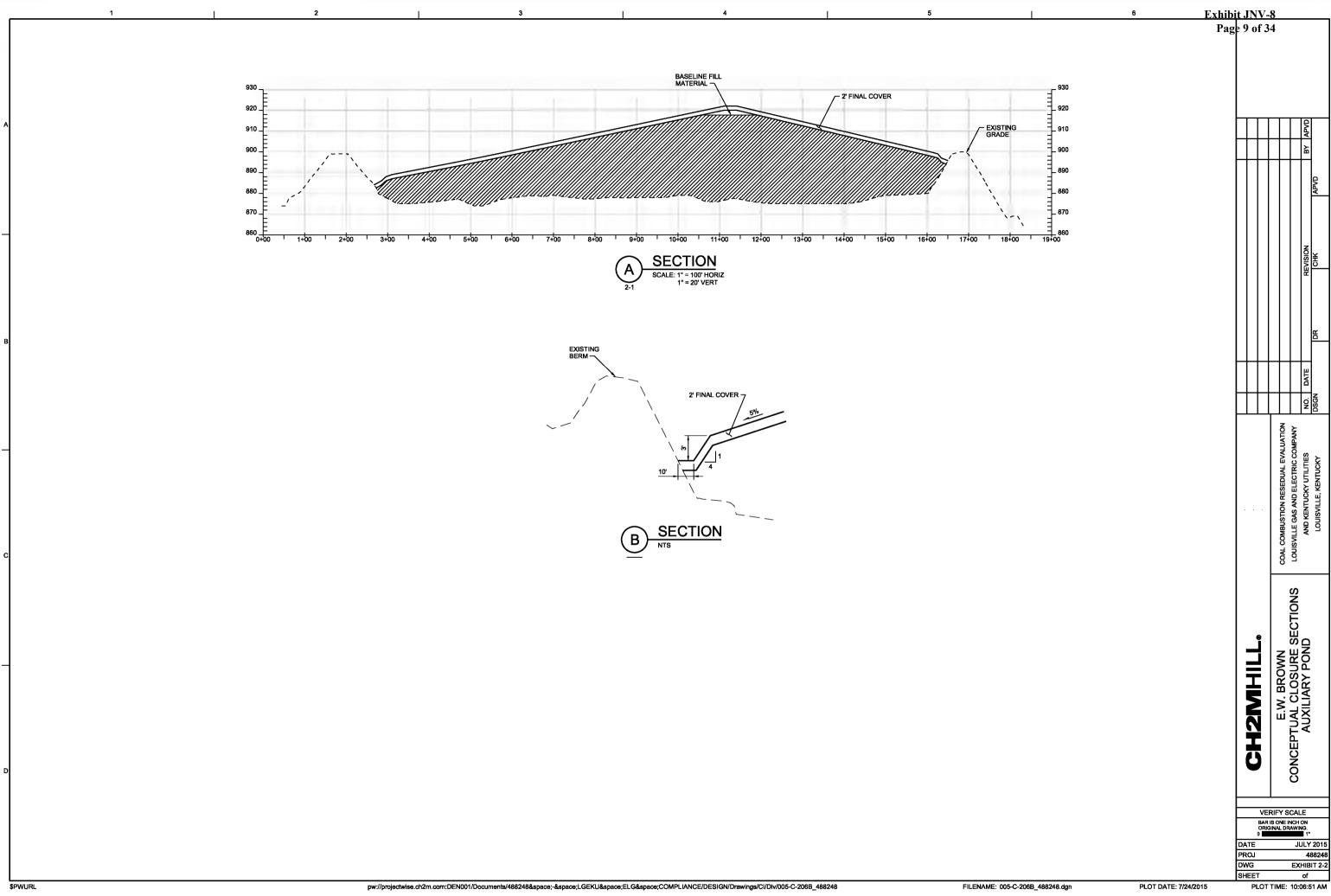
The proposed conceptual pond closure approach shows that CCR from the Auxiliary Pond can be closed in-place. The Auxiliary Pond dikes may be able to be knocked down and used for final cover. However, this will need to be coordinated with the appropriate regulatory agency and therefore these volumes were not included in this evaluation.

4 Schedule

Exhibit 2-4 in Attachment 3 show the proposed schedule to complete the design, permitting, and construction for each of the pond closures.

5 Construction Cost Estimate


The estimated construction cost for closing the ponds as described in Section 2 is shown within Attachment 2.


Proposed Conceptual Closure Approach1	Low (-30%)	Total Capital Cost	High (+30%)
Auxiliary Pond Closure	\$18.1 M	\$25.9 M	\$33.6 M
Concrete Tanks	\$44.0 M	\$62.9 M	\$81.8 M

This cost estimate should be considered a Feasibility or Study (Class 4) cost estimate. A summary breakdown for CAPEX costs for each station for the selected design basis are provide Attachments section. Class 4 estimates are generally prepared based on limited information, and subsequently have wide accuracy ranges. Typically, engineering is from 1 to 5 percent complete, and would comprise at a minimum the following: plant capacity, block schematics, layout, PFDs for main process systems and preliminary engineered process and utility equipment lists. The expected accuracy range for the estimates prepared for this study is +30 percent/-30 percent. A contingency of 30 percent has been included in the cost estimates as a provision for unforeseeable, additional costs within the general bounds of the project scope; particularly where experience has shown that unforeseeable costs are likely to occur.

This cost estimate, along with any resulting conclusions on project financial or economic feasibility or funding requirements, is prepared for guidance in project evaluation and implementation from information available at the time the estimate was prepared. The final costs of the project and resulting feasibility will depend on actual labor and material costs, competitive market conditions, actual site conditions, final project scope, implementation schedule, firm selected for final engineering design, and other variable factors. As a result, the final project costs will vary from the cost estimate presented herein. Because of these factors, project feasibility and funding needs must be carefully reviewed before making specific financial decisions or establishing project budgets to help ensure proper project evaluation and adequate funding. This cost estimate does not include price variations that may be the result of specifications specific for client, nor does it include supply from client preferred suppliers.

Attachment 1 Proposed Conceptual Alternative CCR Closure

Attachment 2 Proposed Conceptual Alternative Cost Estimate

COST SUMMARY

Site: E.W. Brown Generation Station Location: Harrodsburg, Kentucky

Phase: Proposed Conceptual CCR Closure

Base Year:2015Date:SeptemberROM Level:Class 4

	Auxiliary Pond	Concrete Tanks		
Remedial Technology	Fill Auxiliary Pond with CCR's, install final cover and close in-place.	Installation of CCR concrete tanks		
Description	Fill Auxilary Pond with CCR's generated at facility or from other LG&E-KU facilities, install final cover, stormwater control improvements and close in-place.	Installation of four new concrete treatement tanks to handle waste water associtated with CCR materials at the facility.		
Impoundment Closure LG&E Overhead New Construction LG&E Overhead	\$24,988,241 \$874,588 \$0 \$0	\$0 \$0 \$60,786,678 \$2,127,534		
Total Initial Costs Upper ROM Range Lower ROM Range	\$25,862,829 \$33,621,678 \$18,103,980	\$62,914,212 \$81,788,475 \$44,039,948		
O&M Period	0 years	0 years		

This is not an offer for construction and/or project execution. Please note, these order of magnitude cost estimates are assumed to represent the actual installed cost within the range of - 30 percent to + 30 percent of the costs indicated. The cost estimate has been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project will depend on actual labor, material costs, and competitive variable factors. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific decisions to help ensure proper project evaluation and adequate funding.

CCR Rule - E.W. Brown Generating Station Cost Estimate - Aux Pond 24-Sep-15

	1												1	1	1	1	1	<u> </u>			
Item	Cost 2015 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	Check	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Proposed Conceptual Alternative CCR Closure - Auxiliary Pond	\$24,988,241	0%	3%	3%	2%	16%	14%	14%	24%	24%	100%										1
			İ				Ī	Ì	\neg												
IMPOUNDMENT CLOSURE	\$19,221,724	0.0%	2.5%	3.4%	2.1%	16.3%	14.2%	14.4%	23.5%	23.5%	100%	\$0	\$504,400	\$713,856	\$449,946	\$3,668,627	\$3,323,167	\$3,503,043	\$5,945,648	\$6,189,566	\$24,298,253
Mobilization/Demobilization	\$100,000	0%	0%	0%	0%	80%	0%	0%	0%	20%	100%	\$0	\$0	\$0	\$0	\$93,589	\$0	\$0	\$0	\$27,371	\$120,960
Sediment & Erosion Control	\$25,000	0%	0%	0%	0%	50%	10%	10%	10%	20%	100%	\$0	\$0	\$0	\$0	\$14,623	\$3,042	\$3,163	\$3,290	\$6,843	\$30,961
Site Preparation	\$91,750	0%	0%	0%	0%	50%	50%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$53,667	\$55,814	\$0	\$0	\$0	\$109,481
Dewatering	\$214,556	0%	0%	0%	0%	100%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$251,001	\$0	\$0	\$0	\$0	\$251,001
Repair On-Site Pond Embankments	\$200,000	0%	0%	0%	0%	20%	20%	20%	20%	20%	100%	\$0	\$0	\$0	\$0	\$46,794	\$48,666	\$50,613	\$52,637	\$54,743	\$253,453
Utility Services	\$100,000	0%	0%	0%	0%	100%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$116,986	\$0	\$0	\$0	\$0	\$116,986
Perimeter Berm (NO COST ASSOCIATED WITH THIS STATION)	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Roads	\$71,934	0%	0%	0%	0%	20%	20%	20%	20%	20%	100%	\$0	\$0	\$0	\$0	\$16,831	\$17,504	\$18,204	\$18,932	\$19,689	\$91,160
Pre-Closure / Preparation	\$8,514,557	0%	0%	0%	0%	25%	25%	25%	25%	0%	100%	\$0	\$0	\$0	\$0	\$2,490,207	\$2,589,815	\$2,693,408	\$2,801,144	\$0	\$10,574,574
Closure/Final Cover	\$5,094,026	0%	0%	0%	0%	0%	0%	0%	30%	70%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$2,011,017	\$4,880,068	\$6,891,086
Clean Closure Material (NO COST ASSOCIATED WITH THIS STATION)	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Water Features	\$275,000	0%	0%	0%	0%	0%	0%	0%	20%	80%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$72,376	\$301,085	\$373,461
Primary Outlet Structure	\$150,000	0%	0%	0%	0%	0%	0%	20%	80%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$37,960	\$157,912	\$0	\$195,871
Emergency Outlet Structure	\$100,000	0%	0%	0%	0%	0%	0%	20%	80%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$25,306	\$105,275	\$0	\$130,581
Ditches (included in Final Cover - NO COST ASSOCIATED WITH THIS STATION)	\$0	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Surface Restoration	\$164,900	0%	0%	0%	0%	0%	0%	20%	30%	50%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$41,730	\$65,099	\$112,839	\$219,668
Groundwater Monitoring	\$220,000	0%	50%	50%	0%	0%	0%	0%	0%	0%	100%	\$0	\$114,400	\$118,976	\$0	\$0	\$0	\$0	\$0	\$0	\$233,376
Conceputal Design	\$250,000	0%	80%	20%	0%	0%	0%	0%	0%	0%	100%	\$0	\$208,000	\$54,080	\$0	\$0	\$0	\$0	\$0	\$0	\$262,080
Final Design and Permitting and permitting support	\$1,000,000	0%	10%	50%	40%	0%	0%	0%	0%	0%	100%	\$0	\$104,000	\$540,800	\$449,946	\$0	\$0	\$0	\$0	\$0	\$1,094,746
PDI	\$75,000	0%	100%	0%	0%	0%	0%	0%	0%	0%	100%	\$0	\$78,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$78,000
Construction Management including CQA and OE services	\$2,500,000	0%	0%	0%	0%	20%	20%	20%	20%	20%	100%	\$0	\$0	\$0	\$0	\$584,929	\$608,326	\$632,660	\$657,966	\$684,285	\$3,168,166
Closure Report	\$75,000	0%	0%	0%	0%	0%	0%	0%	0%	100%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$102,643	\$102,643
Subtotal	\$19,221,724											\$0	\$504,400	\$713,856	\$449,946	\$3,668,627	\$3,323,167	\$3,503,043	\$5,945,648	\$6,189,566	\$24,298,253
Contingency	\$5,766,517	0%	3%	3%	2%	16%	14%	14%	24%	24%	100%	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$3,644,738	\$3,644,738	\$7,289,476
Subtotal with Contingency	\$24,988,241											\$0	\$504,400	\$713,856	\$449,946	\$3,668,627	\$3,323,167	\$3,503,043	\$9,590,386	\$9,834,303	\$31,587,729
LG&E & KU Overheads	\$874,588	0%	3%	3%	2%	16%	14%	14%	24%	24%	100%	\$0	\$17,654	\$24,985	\$15,748	\$128,402	\$116,311	\$122,607	\$335,664	\$344,201	\$1,105,570
TOTAL PROJECT COST	\$25,863,000											\$0	\$522,000	\$739,000	\$466,000	\$3,797,000	\$3,439,000	\$3,626,000	\$9,926,000	\$10,179,000	\$32,694,000
									\rightarrow			-			1		1			İ	Ť i

Assumptions	
LG&E & KU Overheads	3.5%
Escalation	4.0%
Contingency	30%

Notes:

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: E.W. Brown Generating Station" technical memo dated July 24, 2015
- $\ensuremath{\text{2}}$ Assumes the use of CCR material to create grades to support the pond cap.
- 3 Assumes the use of Soil material to create pond cap or other design features.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 -Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

CCR Rule - E.W. Brown Generating Station Cost Estimate - Concrete Tanks 24-Sep-15

Item	Cost 2015 Dollars											2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
iteiii	COST 2013 Dollars	2015	2016	2017	2018	2019	2020	2021	2022	2023	Check	2013	2010	2017	2018	2019	2020	2021	2022	2023	Total
Proposed Conceptual Alternative CCR Closure - Auxiliary Pond	\$60,786,678	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%										
NEW CONSTRUCTION	\$46,758,983	0.0%	20.0%	40.0%	40.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100%	\$0	\$9,725,868	\$20,229,806	\$21,038,999	\$0	\$0	\$0	\$0	\$0	\$50,994,673
Total FGD Concrete Tank Estimated Order of Magnitude Capital Cost	\$8,628,979	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$1,794,828	\$3,733,242	\$3,882,571	\$0	\$0	\$0	\$0	\$0	\$9,410,641
Total Other WW Concrete Tank Estimated Order of Magnitude Capital Cost	\$10,180,004	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$2,117,441	\$4,404,277	\$4,580,448	\$0	\$0	\$0	\$0	\$0	\$11,102,165
Dewatering Facility Order of Magnitude Capital Cost	\$27,200,000	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$5,657,600	\$11,767,808	\$12,238,520	\$0	\$0	\$0	\$0	\$0	\$29,663,928
Mechanical Improvements/Additions	\$750,000	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$156,000	\$324,480	\$337,459	\$0	\$0	\$0	\$0	\$0	\$817,939
Subtotal	\$46,758,983											\$0	\$9,725,868	\$20,229,806	\$21,038,999	\$0	\$0	\$0	\$0	\$0	\$50,994,673
Contingency	\$14,027,695	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$0	\$7.649.201	\$7.649.201	\$0	\$0	\$0	\$0	\$0	\$15,298,402
Subtotal with Contingency	\$60,786,678			10,1	1,0,1					7,1		\$0	\$9,725,868	\$27,879,007	\$28,688,200	\$0	\$0	\$0	\$0	\$0	\$66,293,075
LG&E & KU Overheads	\$2,127,534	0%	20%	40%	40%	0%	0%	0%	0%	0%	100%	\$0	\$340,405	\$975,765	\$1,004,087	\$0	\$0	\$0	\$0	\$0	\$2,320,258
TOTAL PROJECT COST	\$62,914,000											\$0	\$10,066,000	\$28,855,000	\$29,692,000	\$0	\$0	\$0	\$0	\$0	\$68,613,000

Assumptions							
LG&E & KU Overheads	3.5%						
Escalation	4.0%						
Contingency	30%						

Notes

- 1 2015 Costs are based on CH2M "Coal Combustion Residual Evaluation: E.W. Brown Generating Station" technical memo dated July 24, 2015
- $\ensuremath{\text{2}}$ Assumes the use of CCR material to create grades to support the pond cap.
- 3 Assumes the use of Soil material to create pond cap or other design features.
- 4 Assumes the use of Soil and Liner material(s) to create Clean Close facility.
- 5 -Dollars presented in Year 2016 through 2024 assumes escalation at a rate calculated by the Escalation Assumption.

		COST ESTIMA	I E SUMMAR I	Exhibit JN Page 15 d
1.0	LS	\$0.00	\$0	••
1.0	LS	\$8,567,979.30	\$8,567,979	H H
1.0	LS	\$1,285,000.00	\$1,285,000	* *
1.0	LS	\$9,852,979.30	\$9,852,979	и и
10	18	\$8 628 070 30	\$9 629 0 7 0	Linked to the total cost from the Capital Cost Estimate Tab, developed from Technical Memorandum * Physical/Chemical Treatment - Settling Tank Treatment Design Basis* dated August 18, 2015 by CHZM
1.0	23	\$0,020,979.30	\$0,020,919	dated Adgust 10, 2010 by Onizin
1	LS			allowance
1	LS	\$250,000.00		allowance
			\$750,000	
	1.0 1.0	1.0 LS 1.0 LS 1.0 LS	1.0 LS \$0.00 1.0 LS \$8,567,979.30 1.0 LS \$1,285,000.00 1.0 LS \$9,852,979.30 1.0 LS \$8,628,979.30	1.0 LS \$0.00 \$0 1.0 LS \$8,567,979.30 \$8,567,979 1.0 LS \$1,285,000.00 \$1,285,000 1.0 LS \$9,852,979.30 \$9,852,979 1.0 LS \$8,628,979.30 \$8,628,979

EW Brown Facility Backup Quantities Nathan Zink 9/24/2015

CCR Production Rates

CCR Production Handling Assumptions:

% Bot Ash Wet Sluice to ATB1: 100%

% Fly Ash Wet Sluice to ATB1: 100%

% Gypsum returned: 100%

CCR Production - 2015 Plan (tons)

	EW Brown				Accumulated Mat	erial (Tons)	
Year	Bot Ash	Fly Ash	Gypsum	TOTAL	Auxiliary Pond		
2015	15,324	61,297	148,810	225,431	76,621	148,810 baseline	
2016	17,747	70,986	153,590	242,323	88,733	153,590	1,002,633
2017	18,087	72,350	171,435	261,873	90,437	171,435 beneficial re-use	
2018	18,856	75,426	178,725	273,007	94,282	178,725	1,123,683
2019	17,072	68,289	161,818	247,180	85,362	161,818	
2020	17,201	68,803	162,959	248,963	86,004	162,959	
2021	15,241	60,962	144,359	220,562	76,203	144,359	
2022	13,931	55,723	131,929	201,583	69,654	131,929	
2023	14,191	56,766	134,439	205,396	70,957	134,439	
2024	-	-	-	-	-	-	
2025	=	-	-	-	-	-	
Total:	Assumed Addition	nal Accumula	ted Mater	ial (2015 thru o	closure): 738,254	1,388,063	2,126,317

Projected Material Generation - Handling Assumptions:

- A. Bottom Ash and Flyash:
- Until October 19, 2015 assume all fly ash, bottom ash, and gypsum slurried to Auxiliary Pond, and
- After October 19, 2015 all material to the Aux. Pond to be \mbox{dry}

B. Gypsum

- Until October 19, 2015 assume all fly ash, bottom ash, and gypsum slurried to Aux. Pond, and
- After October 19, 2015 all material to the Aux. Pond to be dry

Approximate density of CCR in-place: 1 ton/CY

Pond Quantity Balance Estimate - By Pond:

Orange: To be confirmed by CAD
Yellow: Based on assumptions as listed

Auxiliary Pond

Item	Units	Aux. Pond	Notes	Key Item to Confirm for Final Estimate:	Estimated input value:	
Total surface area	AC	33.2				
Standing Surface Water (to remove)	GAL	10,727,822	53,115 CY of Volume for the wet pond area. Confirmed with CAD.		8	ft
Length of perimeter	LF	5,426				
CUT:						
CCR cut in 2017 - for Auxiliary Pond	СҮ	275	Approx. cut to create ditches in CH2M Jan. 2015 TM. CAD to update.	CAD - confirm cut to grade ditches for final cover		
Cut/regrade for cover subgrade/ditch	СУ	11,455	Assume Trapazoidal channel 3H:1V 3-ft deep with 10-ft bottom	CAD - confirm cut to grade ditches for final cover	57	SF
FILL (to cover subgrade):						
CCR for Fill - from Baseline	СУ	1,002,633				
Total Fill - Existing surface to final grade	СУ	1,233,727	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
Total Fill for Closure of Pond	СУ	1,022,967	CAD to optimize surface to minimize net fill required	CAD - find final cover grading option to minimize net fill		
2% Settlement Material Need	СУ	20,058				
Final Cover Soil Volume	СУ	107,616	CAD to update			
Final Cover Surface Area	AC	33.2	CAD to update			
Structural Support						
Geogrid	AC	39.8	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Geofabric	AC	39.8	Total surface area +20% - CAD to update	Anchor trench to estmate 20-ft offset from total surface area	20%	
Amount of CCR/import fill required to close pond ^a	СУ	1,233,727	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Fotal Cut: existing surface to final grade	СУ	409,085	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Total Fill: existing surface to final grade	СУ	1,130,307	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			
Net: existing surface to final grade	СҮ	1,289,795	OLD - from CH2M concept to make 5% cover. Smaller valley/trench instead.			

a Dewatering and settlement of ash through closure activities will affect the quantities of fill material. In situ ash and geotechnical soil borings and testing are recommended to determine settlement during closure design.

Other Key Assumptions:

^b Represents volume of pond.

LG&E-KU Brown Station Settling Tank-based Treatment System Mass Balances - FGD Wastewater

Streams		1	2	3	4	5	6	7	8	9	10
	Units	FGD Wastewater	Mix Tank Influent	Sodium Hydroxide Feed (2)	Ferric Chloride Feed	Organo-sulfide Feed	Polymer Feed	Sulfuric Acid Feed	Settling Tank Influent	Settled Solids	Settling Tank Enfluent
3-Month Average Flow											
Volumetric Flow, 3-month average	gpm	275	275	0.01	0.01	0.01	0.14	0.014	281	26	253
Total Mass Flow	lb/hr	140,362	140,362	9	10	3	69	13	140,456	13,766	126,690
Suspended Solids	%	2.0%	2.00%	0%		0%	0%	0%	2.0%	20%	0.002%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	3	0	0	0			
Mass Flow Liquid	lb/hr	137,610	137,610	9	10	3	69	13	137,701	11,013	126,688
Mass Flow Solids	lb/hr	2,752	2,752	0	3	0	0	0	2,755	2,753	1.9
Specific Gravity		0.00	0.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	0.0	0.0	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4
DESIGN MAX FLOW											
Volumetric Flow, Peak	gpm	375	375	0.02	0.02	0.01	0.19	0.014	383	35	345
Total Mass Flow	lb/hr	191,403	191,403	12	13	4	94	13	191,530	18,759	172,772
Suspended Solids	%	2.0%	2.00%	0%		0%	0%	0%	2.0%	20%	0.003%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	4	0	0	0			
Mass Flow Liquid	lb/hr	187,650	187,650	12	13	4	94	13	187,773	15,007	172,766
Mass Flow Solids	lb/hr	3,753	3,753	0	4	0	0	0	3,757	3,752	5.2
Specific Gravity		0.00	0.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	0.0	0.0	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4

Notes:

XX

User Entered

LG&E-KU Brown Station Settling Tank-based Treatment System Mass Balances - Other Wastewater

Streams		1	2	3	4	5	6	7	8	9	10
	Units	Other Wastewater	Mix Tank Influent	Sodium Hydroxide Feed	Ferric Chloride Feed	Organo-sulfide Feed	Polymer Feed	Sulfuric Acid Feed	Settling Tank Influent	Settled Solids	Settling Tank Enfluent
DESIGN FLOW											
Volumetric Flow, 3 month ave	gpm	6,339	6,339	0.32	0.32	0.13	3.17	0.317	6,344	1	6,342
Total Mass Flow	lb/hr	3,172,353	3,172,353	203	291	75	1,586	292	3,174,507	733	3,173,774
Suspended Solids	%	0.01%	0.01%	0%		0%	0%	0%	0.0%	20%	0.002%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	67	0	0	0			
Mass Flow Liquid	lb/hr	3,172,036	3,172,036	203	224	75	1,586	292	3,174,123	396	3,173,727
Mass Flow Solids	lb/hr	317	317	0	67	0	0	0	384	337	47.6
Specific Gravity		1.00	1.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	62.4	62.4	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4
DESIGN MAX FLOW											
Volumetric Flow, Peak	gpm	10,473	10,473	0.524	0.524	0.209	5.237	0.524	10,481	5	10,476
Total Mass Flow	lb/hr	5,241,213	5,241,213	335	369	124	2,620	482	5,244,773	2,388	5,242,385
Suspended Solids	%	0.01%	0.01%	0%		0%	0%	0%	0.0%	20%	0.003%
Chemical Feed	ppmv			50	50	20	500	50			
Chem Solids Generation	lb/hr			0	111	0	0	0			
Mass Flow Liquid	lb/hr	5,240,689	5,240,689	335	369	124	2,620	482	5,244,138	1,911	5,242,228
Mass Flow Solids	lb/hr	524	524	0	111	0	0	0	635	478	157.3
Specific Gravity		1.00	1.00	1.28	1.41	1.18	1.00	1.84	1.00	1.06	1.00
Density	lb/cf	62.4	62.4	79.9	88.0	73.6	62.4	114.8	62.4	65.9	62.4

Notes:

vv

User Entered

Fauinment	Cizina

		Other Water	
	FGD Treatment	Treatment	Tom's comments - red = not addressed, black = addressed
Mix Tanks			
Design Flow, gpm	275	6,339	Design flow for Sludge Generation storage, 3 month rolling average
Max Design Flow, gpm	375	10,473	Use for Mix Tanks, Settling tank overflow rate
Number of Tanks	2	2	
HDT Average, Min	13.6	16.5	
HDT Peak, Min	10	10	
Mix Tank Volume, gal	3,750	104,730	
Mix Tank Volume, cf	501	14,000	
Side Water Depth, ft	10	23	
Freeboard, ft	2	2	
Wall Height, ft	12	25	
Length/width, ft	7		inside dimensions
Slab Area, sf	129	658	
Wall length, ft	16		Wall length split between Mix tanks and floc tanks
Wall Area, sf	388	1,284	
Slab thichness, ft	2	2	
Wall thickness, in	24	24	
Wall thickness, ft	2.00	2.00	
Wall Volume, cy	29	95	
Slab Volume, cy	10	49	
Mixing horsepower, HP/1,000 gal	0.1	0.1	
Calculated HP	0.38	10.47	
Actual HP	0.5	10.0	
Number	2	2	
Outlet Pipe Nominal Diameter, in	6	24	FRP Pipe
Outlet Pipe ID, in	6	24	
Outlet Pipe Velocity, fps	4.26	3.72	Design for max 3-4 fps
Outlet Pipe Elevation, ft	98	98	
Pipe Head Loss to Floculation Tank, Ft	0.66	0.46	
			We will want to design 2 different size dip tubes for other wastewater, a lower one that is smaller for low flows and a larger one for high flow conditions. We need a minimum velocity to suck solids out of the tank,
Number of Dip Tubes	1		and max velocity to prevent shear.
Ground Elevation, ft	100		Assumed ground elevation
Mix Tank Top Elevation, Ft	102	102	
Mix Tank Water Elevation, Ft	100.0	100.0	
Mix Tank Bottom Elevation, Ft	90.0	77.0	

Flocculation Tanks

Flocculation Tanks			
Average Flow, gpm	275	6,339	Design flow for Sludge Generation storage, 3 month rolling average
Max Design Flow, gpm	375	10,473	Use for Mix Tanks, Settling tank overflow rate
Number of Tanks	2	2	
HDT Average, Min	13.6	16.5	
HDT Peak, Min	10	10	
Mix Tank Volume, gal	3,750	104,730	
Mix Tank Volume, cf	501	14,000	
Side Water Depth, ft	10	23	
Freeboard, ft	2	2	
Wall Height, ft	12.0	25.0	
Length/width, ft	7	25	inside dimensions
Slab Area, sf	129	658	
Wall length, ft	16	51	Wall length split between Mix tanks and floc tanks
Wall Area, sf	388	1,284	
Slab thichness, ft	2	2	
Wall thickness, in	24	24	
Wall thickness, ft	2.00	2.00	
Wall Volume, cy	29	95	
Slab Volume, cy	10	49	
Mixing horsepower, HP/1,000 gal	0.1	0.1	
Calculated HP	0.38	10.5	
Actual HP	0.5	10.0	
Number	2	2	
Outlet Pipe Nominal Diameter, in	6	24	FRP
Outlet Pipe ID, in	6	24	
Outlet Pipe Velocity, fps	4.26	3.72	Design for max 3-4 fps
Outlet Pipe Elevation, ft	98	98	
Pipe Head Loss to Floculation Tank	0.66	0.46	
			We will want to design 2 different size dip tubes for other wastewater, a
			lower one that is smaller for low flows and a larger one for high flow
			conditions. We need a minimum velocity to suck solids out of the tank,
Number of Dip Tubes	1	2	and max velocity to prevent shear.
Mix Tank Top Elevation, Ft	102	102	
Mix Tank Water Elevation, Ft	100.0	100.0	
Mix Tank Bottom Elevation, Ft	90.0	77.0	

Settling Tanks

Average Flow, gpm	275	6 220	Calculate overflow rate on peak flow, solids storage on average flow
Max Design Flow, gpm	375		
Design solids, mg/L	20,000	100	
Daily solids production , lbs/day	66,123	9,223	
Solids concentration (Settled solids)	20%	5%	Settled solids
Solids density, lbs/cf	80	80	dry solids
Solids generation, cf/day	4,133	2,306	
Solids Storage, days	94	206	
Solids Storage per tank, cf	388,800	475,200	< 1 yr solids capacity for Other WW ssytem.
Number of Tanks	2	2	
Tank Depth, ft	24	24	
Freeboard, ft	2	2	
Side Water Depth, ft	22	22	
Water depth above settled solids	10	10	
Solids Depth,ft	12	12	
Total Tank Volume, gal per tank	5,331,744	6,516,576	_
Total Tank Volume, CF per tank	712,800	871,200	

Solids Storage Volume, CF per tank 388,800 475,200	Solids Storage Volume, gal per tank	2,908,224	3,554,496	
Tax Width 0				
Section 4 33 34 34 34 34 34 34	Tank Width ft	00	110	Set based on solids storage capacity for FGD WW and overflow rate for
Size Answ. 1				other www freatment
March 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Tank Length, ft		360	
March 1,400 3,72				
Sign Entherwise, St. 2 2 2				
Vall Michaels, CT	Slab thichness, ft	2	2	
Val Volume, cy				
Section Sect				
Continue trap assis, agen/of Continue trap assist, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of Continue trap assis, agen/of	Slab Volume, cy			
Topic capacity based on average certified rate, gen 306				
Setting Tan Water Equation, P1 Setting Tan Water Equation, P1 Setting Tan Water Equation, P1 Setting Tan Water Equation, P1 Setting Tan Water Equation, P1 Setting Tan Water Equation, P2 Setting Tan Water Equation, P2 Setting Tan Water Equation, P2 Setting Tan Water Equation, P2 Setting Tan Water Equation, P2 Setting Tan Water Equation, P2 Setting Tan Water Equation, P3				
Scrotte Remp to Settling Task Section Se		100.7	101.1	
Access Ramp to Setting Trail				
Access Ramp protein Setting ram Worth, ft.	Setling Tank Bottom Elevation, Ft	/6./	//.1	
Access Ramp possels destines paras Worth, rt. 30				
Samp Stopes, St. 1278				Need to a very total traffe
Samp Losenbox 1.50				Need two way truck traffic
Samp Length, 11				Assumed.
Samp side wall Traces of	Ramp Length, ft	201	201	
Samp side woll Thickness, ft				
Soleward Concerte, cft		2400	2400	
Access Ramp concrete, off Total Ramp concrete, 07 Tota		480n	4800	
Total Plane pocure (P. 13 13805 13805 13805 13805 Total Plane pocure (P. 14 131	Access Ramp concrete, cft			
Liner Liner Liner Liner Liner Liner Liner, 17 Line	Total Ramp concrete, ft3			
Liner Liner, 17	Total Ramp concrete, cy	514	514	Per ramp
Liner Liner, 17	Excavation, cv	169	742	
Lines, 172		103,	742	<u> </u>
Chemical Feeds Ferric Chloride Feed Fer		111,539	129,970	
Number of pump 2				
Number of pump 2 2 2				
Number of pump 2 2 2	Chemical Feeds			
Machmun Flow to treat, gam 375 10.473 10				
Dose (volume of chemical/volume of wastewater), ppmv 50 50 Use 50				
Maximum Feed Rate, gph				u 50
Average Feo No to treat, gpm				USE 50
Average Usage of Chemical For DWW and Other WW 476 15.1				
Average Usage, gpd 456				
Average usage of chemical for FGD WW and Other WW				
Max Day Treatment Volume, MG				
Max usage of chemical for FGD WW and Other WW, gpd 781 Number of Tanks 1 Total Sprage Volume, gal 1,000 Storage Time at normal max usage, days 13 Storage Time at normal max usage, days 13 Storage Time at normal max usage, days 21 Suffuric Acid Feed Number of pumps Maximum Flow to treat, gpm 375 Dose (volume of hemical/volume of wastewater), ppmv 50 Maximum Feed Rate, gph 1 Average Flow to treat, gpm 275 Average Feed Rate, gph 1 Average Feed Rate, gph 0.8 Average Flow to treat, gpm 275 Average Flow to treat, gpm 2,4 Average Flow to treat, gpm 2,4 Average Flow Rate, oph 0.8 Average Flow Rate, oph 0.8 Average Lisage, ppd 4 Average Lisage, ppd 4 Average usage of chemical for FGD WW and Other WW 476 Average usage of chemical for FGD WW and Other WW 476 Normal Maximum Usage, gpd 27 754	Max Day Treatment Volume, MG			
Nominal Storage Tank Volume, gal 6,000 Number of Tanks 1				
Number of Tanks				
Total Storage Volume, gal Storage Tree at average usage, days 21 Size for " 21 days capacity for tank truck loading Storage Time at average usage, days 21 Size for " 21 days capacity at average usage Suffuric Acid Feed Number of pumps 2 2 2 2 Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv 50 50 So 0 Maximum Flow fate, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Size Acid Storage Volume, MGD Average Usage, gpd Average Usage, gpd Average Usage, gpd Average Usage of chemical for FGD WW and Other WW Average usage of chemical for FGD WW and Other WW Total Storage Volume, gal Storage Time at normal max usage. days 10.000 Each tank. Includes 4000 gal for tanker truck. Storage Time at normal max usage. days 2 2 2 Storage Time at owns at average usage. Sodium Hydroxide Feed Number of tanks 1 1 5ize for " 21 days capacity at average usage Sodium Hydroxide Feed Number of pumps 2 2 2 2 Average Usage, gpd Average Go chemical for FGD WW and Other WW Total Storage Volume, gal Storage Time at owns at average usage. days 13 5ize for " 21 days capacity at average usage Sodium Hydroxide Feed Number of tanks 1 1 5ize for " 21 days capacity at average usage Sodium Hydroxide Feed Number of tanks 1 1 31.4 Average Usage, gpd Average Go chemical for FGD WW and Other WW Average Usage, gpd Average Othermical FGD WW and Other WW Average Usage of chemical for FGD WW and Other WW Average Usage, gpd Average Othermical FGD WW and Other WW Average Usage of Chemical for FGD WW and Other WW Average Othermical FGD WW and Other WW Average Usage, gpd Average Othermical FGD WW and Other WW Average Othermical FGD WW and Other WW Average Othermical FGD WW and Other W				
Size for ~ 21 days capacity at average usage				Includes 4000 gallon extra capacity for tank truck loading
Suffuric Acid Feed				er of a part to a constant of the constant of
Number of pumps	Storage Time at average usage, days		I	Size for ** 21 days capacity at average usage
Maximum Flow to treat, gpm 375 10,473	Sulfuric Acid Feed			
Dose (volume of chemical/volume of wastewater), ppmv 50 50	N. and an of a summer			
Maximum Feed Rate, gph 1 31 Average Flow to treat, gpm 275 6,339 Average Flow to treat, gpm 0.8 19 Average Treatment Volume, MGD 0.4 9.1 Average Usage of chemical for FGD WW and Other WW 476 Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW 781 Normal Maximum Usage, gpd Nominal Storage Tamk Volume, gal 6,000 Normal Maximum Usage, gpd Nominal Storage Tamk Volume, gal 10,000 Each tank. Includes 4000 gal for tanker truck. Storage Time at normal max usage, days 13 Size for ~ 21 days capacity at average usage Sodium Hydroxide Feed Number of pumps 2 2 Maximum Flow to treat, gpm 375 10,473 Dose (volume of chemical/volume of wastewater), ppmv 50 50 Maximum Flow to treat, gpm 275 6,339 Average Feed Rate, gph 0.8 19.0				
Average Flow to treat, gpm	Maximum Flow to treat, gpm	375	10,473	
Average Treatment Volume, MGD	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv	375 50	10,473 50	
Average Usage, gpd	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm	375 50 1 275	10,473 50 31	
Average Usage of chemical for FGD WW and Other WW	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph	375 50 1 275 0.8	10,473 50 31 6,339 19	
Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 77 754 Max usage of chemical for FGD WW and Other WW 781 1 Nominal Storage Tamk Volume, gal 6,000 Number of Tanks Total Storage Volume, gal 10,000 Each tank. Includes 4000 gal for tanker truck. Storage Time at normal max usage, days 13 Size for ~ 21 days capacity at average usage. Sodium Hydroxide Feed Number of pumps 2 2 Maximum Flow to treat, gpm 375 10,473 Dose (volume of chemical/volume of wastewater), ppmv Dose (volume Fed Rate, gph 1.1 31.4 Average Feed Rate, gph Average Feed Rate, gph 0.8 19.0 Average Feed Rate, gph Average Feed Rate, gph 0.8 19.0 Average Usage, gpd Average Usage, gpd 0.40 9.1 Average Usage, gpd Average Usage, gpd 20 456 Average Usage, gpd Average Usage, gpd 27 754 Normal Maximum Usage, gpd Max Usage, gpd 27 754 Normal Maximum Usage, gpd 27	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Treatment Volume, MGD	375 50 1 275 0.8 0.4	10,473 50 31 6,339 19 9.1	
Normal Maximum Usage, gpd	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Treatment Volume, MGD Average Usage, gpd	375 50 1 275 0.8 0.4 20	10,473 50 31 6,339 19 9.1 456	
Nominal Storage Tamk Volume, gal 6,000	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Treatment Volume, MGD Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG	375 50 1 275 0.8 0.4 20	10,473 50 31 6,339 19 9.1 456	
Number of tanks 1 Total Storage Volume, gal 10,000 Each tank. Includes 4000 gal for tanker truck. Storage Time at normal max usage, days 13 Size for ~ 21 days capacity at average usage Sodium Hydroxide Feed Sodium Hydroxide Feed Number of pumps 2 2 Maximum Flow to treat, gpm 375 10,473 Dose (volume of chemical/volume of wastewater), ppmv 50 50 Maximum Flow to treat, gpm 275 6,339 Average Flow to treat, gpm 275 6,339 Average Feed Rate, gph 0.8 19.0 Average Teament Volume, MGD 0.40 9.1 Average Usage, gpd 20 456 Average usage of chemical for FGD WW and Other WW 476 Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Normal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 In	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Treatment Volume, MGD Average Usage, gpd Average Usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd	375 50 1 275 0.8 0.4 20 47 0.54 27	10,473 50 31 6,339 19 9.1 456 6 15.1 754	
Total Storage Volume, gal 10,000 Each tank. Includes 4000 gal for tanker truck.	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Treatment Volume, MGD Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW	375 50 1 275 0.8 0.4 20 47 0.54 27	10,473 50 31 6,339 19 9.1 456 6 15.1 754	
Storage Time at normal max usage, days 13	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Normal Storage Tamk Volume, gla	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0	10,473 50 31 6,339 19 9.1 456 6 15.1 754	
Sodium Hydroxide Feed	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Teamment Volume, MGD Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Normal Storage Tamk Volume, gal Number of tanks	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,00 1	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1	Each tank. Includes 4000 gal for tanker truck.
Number of pumps 2 2 Maximum Flow to treat, gpm 375 10,473 Dose (volume of chemical/volume of wastewater), ppmv 50 50 Maximum Feed Rate, gph 1.1 31.4 Average Feed Rate, gph 2.75 6,339 Average Feed Rate, gph 0.8 19.0 Average Treatment Volume, MGD 0,40 9.1 Average Usage, gpd 20 456 Average Usage, gpd 476 Max Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13 Includes 4000 gallon extra capacity for tank truck loading	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Teamment Volume, MGD Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Volume, gal Storage Volume, gal	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0 1 10,0 1:	10,473 50 31 6,339 19 9,1 456 6 15.1 754 1 000	
Number of pumps 2 2 Maximum Flow to treat, gpm 375 10,473 Dose (volume of chemical/volume of wastewater), ppmv 50 50 Maximum Feed Rate, gph 1.1 31.4 Average Feed Rate, gph 2.75 6,339 Average Feed Rate, gph 0.8 19.0 Average Treatment Volume, MGD 0,40 9.1 Average Usage, gpd 20 456 Average Usage, gpd 476 Max Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13 Includes 4000 gallon extra capacity for tank truck loading	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Teamment Volume, MGD Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Volume, gal Storage Volume, gal	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0 1 10,0 1:	10,473 50 31 6,339 19 9,1 456 6 15.1 754 1 000	
Number of pumps 2 2 Maximum Flow to treat, gpm 375 10,473 Dose (volume of chemical/volume of wastewater), ppmv 50 50 Maximum Feed Rate, gph 1.1 31.4 Average Feed Rate, gph 0.8 19.0 Average Feed Rate, gph 0.8 19.0 Average Seg, gpd 20 456 Average Usage of chemical for FGD WW and Other WW 476 Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Teamment Volume, MGD Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Volume, gal Storage Volume, gal	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0 1 10,0 1:	10,473 50 31 6,339 19 9,1 456 6 15.1 754 1 000	
Dose (volume of chemical/volume of wastewater), ppmv 50 50	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Feed Rate, gph Average Teamment Volume, MGD Average usage, gpd Average usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Time at normal max usage, days Storage Time at normal max usage, days	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0 1 10,0 1:	10,473 50 31 6,339 19 9,1 456 6 15.1 754 1 000	
Maximum Feed Rate, gph 1.1 31.4 Average Flow to treat, gpm 275 6,339 Average Flow to treat, gpm 0.8 19.0 Average Feed Rate, gph 0.8 19.0 Average Usage (Freatment Volume, MGD 0.40 9.1 Average Usage, gpd 20 456 Average Usage of chemical for FGD WW and Other WW 476 Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Average Of chemical for FGD WW and Other WW 781 Normal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13 Includes 4000 gallon extra capacity for tank truck loading	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Freatment Volume, MGD Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Time at normal max usage, days Storage Time at average usage, days Sodium Hydroxide Feed Number of pumps	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,00 1 10,00 2:	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1 1 000	
Average Flow to treat, gpm 275 6,339 Average Feed Rate, gph Average Feed Rate, gph 0.8 19.0 Average Treatment Volume, MGD 0.40 9.1 Average usage of chemical for FGD WW and Other WW 476 Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13 1	Maximum Flow to treat, gpm Dose (volume of rhemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Usage, gpd Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage of the Micro Max Day Treatment Volume, gal Storage Treat average usage, days Storage Trine at normal max usage, days Storage Trine at average usage, days Sodium Hydroxide Feed Number of trant average usage, days Maximum Flow to treat, gpm	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0 1 10,0 1: 2:	10,473 50 31 6,339 19 9.1 456 65 15.1 754 1 000 000 3 1	
Average Feed Rate, gph 0.8 19.0 Average Treatment Volume, MGD 0.40 9.1 Average Usage, gpd 20 456 Average usage of chemical for FGD WW and Other WW 476 Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13 1	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Usage, gpd Average Usage, gpd Average Usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Time at normal max usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume fo chemical for God Wastewater), ppmv	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0 1 1 10,0 2 2 2 2 375 50	10,473 50 31 6,339 19 9,1 456 6 15.1 754 1 00 00 3 1	
Average Treatment Volume, MGD 0.40 9.1 Average Usage, gpd 20 456 Average usage of chemical for FGD WW and Other WW 476 Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13 1	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Treatment Volume, MGD Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Time at normal max usage, days Storage Time at average usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Flow to treat, gpm	375 50 1 275 0.8 0.4 20 47 0.54 27 1 10.0 1: 2: 2 375 50 1.1	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1 000 000 3 1 1 2 10,473 50 31,4	
Average usage of chemical for FGD WW and Other WW 476	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Usage, gpd Average Usage, gpd Average Usage, gpd Max usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Total Kolume, gal Storage Time at normal max usage, days Storage Time at average usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical for FGD WW Maximum Flow to treat, gpm Dose (volume of chemical for Of chemical for Normal Maximum Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm	375 50 1 275 0.8 0.4 20 47 0.54 27 1 10,0 11 22 375 50 11 10,1 21 22	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1 000 3 1 1 2 10,473 50 31,4 6,339	
Max Day Treatment Volume, MG 0.54 15.1 Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13 1	Maximum Flow to treat, gpm Dose (volume of rhemical/volume of wastewater), ppmv Maximum Fed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Grape of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Storage Time at normal max usage, days Storage Time at normal max usage, days Storage Time at average usage, days Sodium Hydroxide Feed Number of beneficial for FGD WW Max Day Storage Time at average usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Feed Rate, gph Average Feed Rate, gph Average Feed Rate, gph Average Feed Rate, gph	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,00 1 1,00 2: 22 375 50 1,1 1,1 275 0.8 0.40	10,473 50 31 6,339 19 9.1 456 6 15.1 754 1 000 000 3 1 1 2 10,473 50 31.4 6,339 19.0 9,1	
Normal Maximum Usage, gpd 27 754 Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13 13	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Usage, gpd Average Usage, gpd Average Usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of fanks Total Storage Tomk Volume, gal Storage Time at normal max usage, days Storage Time at average usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Foad Rate, gph Average Feed Rate, gph Average Feed Rate, gph Average Foad Rate, gph Average Gpd Treatment Volume, MGD Average Gpd	375 50 1 275 0.8 0.4 20 47 0.54 27 11 10,0 11 22 2375 50 1.1 1.1 22 2375 0.8 0.8 0.40 0.40	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1 000 3 1 1 2 10,473 50 31,4 6,339 19,0 9,1 456	
Max usage of chemical for FGD WW and Other WW 781 Nominal Storage Tank Volume, gal 6,000 common Tank Number of tanks 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Usage, gpd Average Usage, gpd Average Usage, gpd Max usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Time at normal max usage, days Storage Time at average usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Treatment Volume, MGD Average Usage, gpd Average Treatment Volume, MGD Average Usage, gpd Average Treatment Volume, MGD Average Losage of chemical for FGD WW and Other WW	375 50 1 1 275 0.8 0.4 20 47 0.54 27 1 1 10,00 1 1 2: 2: 375 50 1.1 275 0.8 0.8 0.40 0.40 0.9 47	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1 1 000 2 2 10,473 50 31,4 6,339 19,0 9,1 456 6	
Number of tanks 1 1 Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Tromal max usage, days 13	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Pasge, gpd Average Usage, gpd Average Usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Time at normal max usage, days Storage Time at average usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Foed Rate, gph Average Feed Rate, gph Average Freatment Volume, MGD Average Treatment Volume, MGD Average Usage, gpd Average Usage, gpd Average Usage, gpd Average Usage, gpd Average Usage, gpd Average Usage, gpd Average Volume, MGD Average Usage, gpd Average Usage, gpd Average Usage, gpd Average Usage, gpd Average Usage, gpd Average Usage, gpd	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0 1 10,0 11 22 375 50 1 1.1 275 0.8 0.4 24 47 0.54 47	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1 000 3 1 1 2 10,473 50 31,4 6,339 19,0 9,1 456 6	
Total Storage Volume, gal 10,000 Includes 4000 gallon extra capacity for tank truck loading Storage Time at normal max usage, days 13	Maximum Flow to treat, gpm Dose (volume of rhemical/volume of wastewater), ppmv Maximum Fed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Grape of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage of Arm Volume, gal Number of Itania Storage Tank Volume, gal Storage Time at normal max usage, days Storage Time at normal max usage, days Sodium Hydroxide Feed Number of Itania Number of Storage Volume, gal Storage Time at owerage usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Feed Rate, gph Average Flow to treat, gpm Average Freatment Volume, MGD Average Usage, gpd Average of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW	375 50 1 275 0.8 0.4 20 47 0.54 27 1 10,0 11 22: 22 375 50 0.1 1,1 275 0.8 0.40 20 47 0.54 27 78	10,473 50 31 6,339 19 9.1 456 6 15.1 754 1 000 3 3 1 2 10,473 50 31.4 6,339 19.0 9,1 456 6 15.1 754	
Storage Time at normal max usage, days 13	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Fed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Usage, gpd Average Usage, gpd Max Day Treatment Volume, MGD Average Usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Storage Time at normal max usage, days Storage Time at normal max usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Fed Rate, gph Average Flow to treat, gpm Dose (volume of Chemical/volume of Wastewater) Average Flow to treat, gpm Average Foed Rate, gph Average Feed Rate, gph Average Flow to treat, Gpm Average Flow Land Maximum, MGD Average Usage, gpd Max usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of themical for FGD WW and Other WW Nominal Storage Tank Volume, gal	375 50 1 275 0.8 0.4 20 47 0.54 27 11 10,0 11 22 375 50 0.8 0.4 27 78 6,0 0 1 1 0,0 1 2 2 375 50 1 1 7 8 6 0 4 7 7 8 6 7 8 6 7 8 6 7 8 6 8 6 8 6 8 8 8 8	10,473 50 31 6,339 19 9,1 456 6 15.1 754 1 1 2 10,473 50 31.4 6,339 19.0 9,1 456 6 1 15.1 754 1 1000	Size for ~ 21 days capacity at average usage
	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Fed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Time at normal max usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical for FGD WW Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Freatment Volume, MGD Average usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MGD Average Usage, gpd Average usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd Normal Maximum Usage, gpd	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,00 1 1 10,0 22 22 23 375 50 1.1 1.1 275 0.8 0.40 20 47 0.54 27 78 6,00 1.1 27 78 6,00 1.1 27 78 6,00 1.1 27 78 6,00 1.1 27 78 6,00 1.1 27 78 6,00 1.1 27 78 6,00 1.1 27 78 6,00 1.1	10,473 50 31 6,339 19 9,1 456 6 15.1 754 1 1000 2 10,473 50 31.4 6,339 19.0 9,1 456 6 15.1 754 1 1000	Size for ~ 21 days capacity at average usage
	Maximum Flow to treat, gpm Dose (volume of rhemical/volume of wastewater), ppmv Maximum Fed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Usage, gpd Average Usage, gpd Average Usage of chemical for FGD WW and Other WW Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of tanks Total Storage Volume, gal Storage Time at normal max usage, days Storage Time at average usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Flow to treat, gpm Average Treathern Volume, gla Number of tanks Total Storage Volume, gal	375 50 1 275 0.8 0.4 20 47 0.54 27 78 6,0 1 10,0 11 275 0.8 0.4 27 78 6,0 1 10,0 11 27 375 50 1 1,1 275 0.8 0.4 20 47 0.54 27 78 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1 1 2 10,473 50 31 1 1 2 11,473 50 31,4 6,339 19,0 9,1 456 6 15,1 754 1 1 00	Size for ~ 21 days capacity at average usage
	Maximum Flow to treat, gpm Dose (volume of chemical/volume of wastewater), ppmv Maximum Feed Rate, gph Average Flow to treat, gpm Average Flow to treat, gpm Average Flow to treat, gpm Average Lyage, gpd Average Usage, gpd Average Usage, gpd Max Day Treatment Volume, MGD Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tamk Volume, gal Number of fanks Total Storage Volume, gal Storage Time at normal max usage, days Sodium Hydroxide Feed Number of pumps Maximum Flow to treat, gpm Dose (volume of chemical for FGD WW Maximum Flow to treat, gpm Average Flow to treat, gpm Average Feed Rate, gph Average Teatment, gph Average Foed Rate, gph Average Foed Rate, gph Average Foed Rate, gph Average Foed Rate, gph Average Treatment Volume, MGD Normal Maximum Usage, gpd Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max Day Treatment Volume, MG Normal Maximum Usage, gpd Max usage of chemical for FGD WW and Other WW Nominal Storage Tank Volume, gal Number of tanks Total Storage Volume, gal	375 50 1 275 0.8 0.4 20 47 0.54 27 11 10.0 2 2 375 50 1.1 1.1 2.2 2 2 2 2 2 375 50 1.1 1.1 2.7 78 0.8 0.40 0.40 0.54 27 78 6,00 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	10,473 50 31 6,339 19 9,1 456 6 15,1 754 1 1000 3 1 1 2 10,473 50 31,4 6,339 19,0 9,1 456 6 1 15,1 754 1 1 000 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Size for ~ 21 days capacity at average usage Size for ~ 21 days capacity at average usage common Tank Includes 4000 gallon extra capacity for tank truck loading

Number of pumps	2	2	
Maximum Flow to treat, gpm	375	10,473	
Dose (volume of chemical/volume of wastewater), ppmv	20	20	
Maximum Feed Rate, gph	0.45	12.6	
Average Flow to treat, gpm	275	6,339	
Average Feed Rate, gph	0.3	7.6	
Average Treatment Volume, MGD	0.40	9.1	
Average Usage, gpd	7.9	183	
Average usage of chemical for FGD WW and Other WW, gpd	1	90	
Max Day Treatment Volume, MG	0.54	15.1	
Normal Maximum Usage, gpd	10.8	302	
Max usage of chemical for FGD WW and Other WW, gpd	3	12	
Nominal Storage Tank Volume, gal	20	000	
Number of tanks		1	
Total Storage Volume, gal	60	000	
Storage Time at normal max usage, days		19	
Storage Time at average usage, days	3	31	Size for ~ 21 days capacity at average usage

Polymer Feed System

Number of polymer blending units	2	2	
Maximum Flow to treat, gpm	375	10,473	
Dose (volume of chemical/volume of wastewater), ppmv	5	5	1:100 ratio neat polymer to water
Maximum Feed Rate, gph	0.11	3.14	
Dilution Water Feed (volume to volume of neat polymer)	100	100	
Maximum Flow of Dilution water, gph	11.3	314.2	
Average Flow to treat, gpm	275	6,339	
Average Feed Rate, gph	0.08	1.90	
Average Treatment Volume, MGD	0.40	9.13	
Average Usage, gpd	2.0	45.6	
Average usage of chemical for FGD WW and Other WW, gpd	4	18	
Max Day Treatment Volume, MG	0.54	15.1	
Normal Maximum Usage, gpd	2.7	75	
Max usage of chemical for FGD WW and Other WW, gpd		78	
Nominal Storage Tote Volume, gal	2	65	265 or 320 gallons are standard volumes/sizes for totes
Number of totes		4	
Total Storage Volume, gal	10	060	
Storage Time at normal max usage, days	:	14	
Storage Time at average usage, days		22	Size for ~ 21 days capacity at average usage

Note: User Input

Head loss influent Mix tank to Floccuation Tank FGD Treatment

Quantity	Pipe /Fitting	Material	SDR	Nominal	ID	Pipe Length L	Loss Coef	Flow	Flow	Pipe Velocity		Hazen C	Headloss in Pipe	Minor Loss	Subtota head
				(in)	(in)	(ft)		(gpm)	(ft ³ /s)	(ft/sec)	(ft)		(ft)	(ft)	(ft)
1	entrance	FRP		6	6		0.78	375	0.84	4.26	0.28	150	0.00	0.22	0.22
	pipe	FRP		6	6	10		375	0.84	4.26	0.28	150	0.09	0.00	0.09
0	tee, branch	FRP		6	6		0.72	375	0.84	4.26	0.28	150	0.00	0.00	0.00
	elbow, 45 degree	FRP		6	6		0.19	375	0.84	4.26	0.28	150	0.00	0.00	0.00
1	elbow, 90 degree	FRP		6	6		0.19	375	0.84	4.26	0.28	150	0.00	0.05	0.05
				6	6			375							
	pipe	FRP		6	6	2		375	0.84	4.26	0.28	150	0.01	0.00	0.01
1	exit loss	FRP		6	6		1.00	375	0.84	4.26	0.28	150	0.00	0.28	0.28

Total head loss 0.66 total minor loss 0.56

Head loss influent Mix tank to Floccuation Tank, Other Water Treatment

Quantity	Pipe /Fitting	Material	SDR	Nominal	ID	Pipe Length L	Loss Coef	Flow	Flow	Pipe Velocity	Velocity Head	Hazen C	Headloss in Pipe	Minor Loss	Subtotal head
				(in)	(in)	(ft)		(gpm)	(ft ³ /s)	(ft/sec)	(ft)		(ft)	(ft)	(ft)
1	entrance	FRP		24	24		0.78	5,237	11.67	3.71	0.22	150	0.00	0.17	0.17
	pipe	FRP		24	24	23		5,237	11.67	3.71	0.22	150	0.03	0.00	0.03
0	tee, branch	FRP		24	24		0.72	5,237	11.67	3.71	0.22	150	0.00	0.00	0.00
	elbow, 45 degree	FRP		24	24		0.19	5,237	11.67	3.71	0.22	150	0.00	0.00	0.00
1	elbow, 90 degree	FRP		24	24		0.19	5,237	11.67	3.71	0.22	150	0.00	0.04	0.04
				24	24			5,237							
				24	24			0,00							
	pipe	FRP		24	24	2		5,237	11.67	3.71	0.22	150	0.00	0.00	0.00
1	exit loss	FRP		24	24		1.00	5.237	11.67	3.71	0.22	150	0.00	0.22	0.22

Total head loss 0.46 total minor loss 0.42

Excavation Calculation FGD WW and Other WW Tanks

Settling Tank Depth below grade=	22	ft	1
Depth Below Tank for Excavation =	4	ft	1
Depth of excavation	26	ft	
Side Slope (H:V) =	1	ft/ft	
Tank wall thickness	2	ft	
FGD WW Tank Length =	360	ft	
FGD WW Tank Width =	90	ft	
Number of FGD WW Tanks =	2		1
FGD WW Tank Length =	360	ft	
FGD WW Tank Width =	110	ft	1
Number of Other WW Tanks =	2		1
Total Length of tanks with walls	364	ft	
Total Width of tanks with walls	410	ft	1
			Trapezoidal calculation, average width of cut time average length of cut times
Excavated tank area volume	4,421,040	cf	depth
Total Excavated Volume	163,742	cy	

LG&E-KU Brown Station Settling Tank-based Treatment System Table 1. Design Basis

Facility	Equipment	Design Criteria	FGD Treatment Tank System	Other Treatment Tank System
		Number	2	2
	Access to	Length, ft	201	201
amps	Settling Tanks	Width, ft	30	30
	cottining running	Slope, %	12%	12%
		Materials	Reinforced Concrete	Reinforced Concrete
		Number	2	2
		Average Flow, gpm	275	6,339
		Peak Flow, gpm	375	10,473
		Detention Time at Average Flow, min	14	17
		Detention Time at Peak Flow, min	10	10
	Tanks	Dimension, ft (square)	7	25
		Wall Height, ft	12	25
		Freeboard, ft	2	2
		Side Water Depth, ft	10	23
		Volume, gal	3,750	104,730
		Materials	Reinforced Concrete	Reinforced Concrete
i. Taula		Number	2	2
lix Tanks	l	Type	Hyerboloid	Hyerboloid
	Mix Tank	Turbine tip Speed, ft/sec	2 to 6	2 to 6
	Mixers	Control	VFD	VFD
		Mixing Criteria, HP/1,000 gal	0.1	0.1
		Horsepower, each	0.5	10
		Number		2
	Mix Tank	Туре		Rotary Lobe
	Blower	Air Required, scfm		500
		Horsepower, each		20
		Number	2	2
		Diameter, in	6	24
	Dip Tubes	Head loss, ft	0.66	0.46
		Materials	FRP	FRP
		Number	2	2
			275	6,339
		Average Flow, gpm		· ·
		Peak Flow, gpm	375	10,473
		Detention Time at Average Flow, min	14	17
		Detention Time at Peak Flow, min	10	10
	Tanks	Dimension, ft (square)	7	25
		Wall Height, ft	12	25
		Freeboard, ft	2	2
		Side Water Depth, ft	10	23
		Volume, gal	3,750	104,730
locculationTanks		Materials	Reinforced Concrete	Reinforced Concrete
		Number	2	2
		Туре	Hyerboloid	Hyerboloid
	Flocculation	Turbine tip Speed, ft/sec	2 to 6	2 to 6
	Tank Mixers	Control	VFD	VFD
		Mixing Criteria, HP/1,000 gal	0.1	0.1
		Horsepower, each	0.5	10
		Number	2	2
		Diameter, in	6	24
	Dip Tubes	Head loss, ft	0.66	0.46
		Materials	FRP	FRP
		Number	2	2
		Average Flow, gpm	275	6,339
		Peak Flow, gpm	375	10,473
		Solids Concentration, mg/L	20,000	100
		Average dry solids generation, lbs/day	66,123	9,223
		Solids Settled Concentration (%)	20%	5%
		Solids density, lbs/cf	80	80
		Solids Generation, cf/day	4,133	2,306
		Length, ft	360	360
		Width, ft	90	110
ettling Tanks	Tanks	Wall Height, ft	24	24
	ī	Freeboard, ft	2	2
•				
-		Side Water Depth, ft Settling Depth, ft	22 10	22 10

LG&E-KU Brown Station Settling Tank-based Treatment System Table 1. Design Basis

Facility	Equipment	Design Criteria	FGD Treatment Tank System	Other Treatment Tank System
		Solids Depth, ft	12	12
		Total Liquid Volume, gal per tank	5,331,744	6,516,576
		Solids Storage Design Criteria, days	90	90
		Solids Storage Volume, gal	2,908,224	3,554,496
		Solid Storage Provided per tank, days	94	206
		Average Overflow Rate, gpm/sf	0.01	0.16
		Peak Overflow Rate, gpm/sf	0.01	0.26
		Materials	Reinforced Concrete	Reinforced Concrete
		Number		1
		Tank Volume, gal	10,	.000
		Dose, ppmv	50	50
		Average Chemical Use, gal/d	20	456
	Ferric Chloride	Average Chemical Use, gal/d	4	76
	Storage Tank	Peak Chemical Use, gal/d	27	754
erric Chloride Feed		Peak Chemical Use, gal/d	7	81
ystem		Average Use Storage, days	2	21
ystem		Peak Use Storage, days	1	13
		Chemical Stored	35% Ferri	ic Chloride
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm
	Ferric Chloride	Capacity, gph	1.1	31.4
	Feed Pumps	Number	2	2
	reeu rumps	Power	120 v	121 v
		Chemical Pumped	35% Ferric Chloride	35% Ferric Chloride
		Number		1
		Tank Volume, gal	1	,000
		Dose, ppmv	50	50
		Average Chemical Use, gal/d	20	456
	Sulfuric Acid	Average Chemical Use, gal/d		76
	Storage	Peak Chemical Use, gal/d	27	754
ulfuric Acid Feed		Peak Chemical Use, gal/d	7	81
System		Average Use Storage, days	2	21
ystem.		Peak Use Storage, days	1	13
		Chemical Stored		furic Acid
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm
	Sulfuric Acid	Capacity, gph	1.1	31.4
	Feed Pumps	Number	2	2
	recu rumps	Power	120 v	121 v
		Chemical Pumped	93% Sulfuric Acid	0
		Number		1
		Tank Volume, gal	10,	,000
		Dose, ppmv	50	50
	Sodium	Average Chemical Use, gal/d	20	456
	Hydroxide	Average Chemical Use, gal/d	4	76
	c	Peak Chemical Use, gal/d	27	754
odium Hydroxide	Storage	Peak Chemical Use, gal/d	7.	81
•		Average Use Storage, days	2	21
eed System		Peak Use Storage, days	1	13
		Chemical Stored	25% and !	50% NaOH
		Туре	Stepping Motor Diaphragm	Stepping Motor Diaphragm
	Sodium	Capacity, gph	1.1	31.4
	Hydroxide Feed	Number	2	2
	Pumps	Power	120 v	121 v
	<u> </u>	Chemical Pumped	25% and 50% NaOH	0
		Number		1
		Volume Storage, gal	6,0	000
		Dose, ppmv	20	20
	0	Average Chemical Use, gal/d	8	183
	Organosulfide	Average Chemical Use, gal/d	1	90
	Tote/tank	Peak Chemical Use, gal/d	11	302
	Storage	Peak Chemical Use, gal/d		12
rganosulfide Feed		Average Use Storage, days		31
ystem		Peak Use Storage, days		19
		Chemical Stored		osulfide
	I		Stepping Motor Diaphragm	* *

LG&E-KU Brown Station Settling Tank-based Treatment System

Tabl	le 1.	. Desi	gn I	Basis

Facility	Equipment	Design Criteria	FGD Treatment Tank System	Other Treatment Tank System
	Organosulfide	Capacity, gph	0.45	12.6
	Feed Pumps	Number	2	2
	reeu rumps	Power	120 v	121 v
		Chemical Pumped	Organosulfide	Organosulfide
		Number	4	1
		Volume, gal each	26	55
		Volume Storage, gal	1,0	160
		Dose, ppmv	5	5
	Polymer Tote	Average Chemical Use, gal/d	2	46
Storage Polymer Feed System	Average Chemical Use, gal/d	4	8	
	Peak Chemical Use, gal/d	3	75	
	Peak Chemical Use, gal/d	7	8	
		Average Use Storage, days	2	2
		Peak Use Storage, days	1	4
		Chemical Stored	Anionic Emul	sion Polymer
	Polyblend	Туре	Polymer Blending System	Polymer Blending System
	System	Capacity, gph	0.11	3.1
	,	Number	2	2
		Power	120 v	121 v
		Chemical Pumped	Anionic Emulsion Polymer	Anionic Emulsion Polymer

LG&E-KU Brown Station Settling Tank-based Treatment System

Table 2. Electrical Load

ltem	Location	НР	No. Provided	No. Active	Installed HP	Active HP	% of Time On	Total HP for O&M
FGD WW Teatment								
Mix Tank Mixers	TBD	1	2	1	1	1	100%	1
Floculation Tank Mixers	TBD	1	2	1	1	1	100%	1
Chemical Feed Pumps	TBD	1	10	5	10	5	100%	5
Other WW Teatment								
Mix Tank Mixers	TBD	10	2	1	20	10	100%	10
Floculation Tank Mixers	TBD	10	2	1	20	10	100%	10
Chemical Feed Pumps	TBD	1	10	5	10	5	100%	5
Mix Tank Blower	TBD	20	2	1	40	20	10%	2
Miscellaneous (bldg heating, lights, etc.)		100			100	100	30%	30
Totals					202	151		63
MW				_		_	_	0.047502
MW-Hr/year		·				·		420

LG&E-KU
Brown Station
Settling Tank-based Treatment System
Table 3. Estimated Capital Cost

Item	Value	Units	No. Provided	Unit Cost (\$	Amount	Installation (\$ ea)	Total Installed Cost (\$)	CCR Cost	ELG Cost
FGD Treatment Tanks						(,,			
Mix Tank Mixers	0.5	hn	2	17,246	34,493	3,449	41,391	41,391	
Flocculation Tank Mixers	0.5		2	17,246	34,493	3,449	41,391	41,391	
Ferric Chloride Feed Pumps		gph	2	6,266	12,533	1,400	15,333	15,333	
Sulfuric Acid Feed Pumps		gph	2	6,266	12,533	1,400	15,333	15,333	
Organosulfide Feed Pumps		gph	2	6,266	12,533	1,400	15,333	15,333	
Polyblend System		gph	2	25,000	50,000	1,700	53,400	53,400	
Sodium Hydroxide Feed Pumps		gph	2	6,266	12,533	1,400	15,333	15,333	
Other Wastewater Treatment Tanks									
Mix Tank Mixers	10.0	hp	2	53,356	106,712	10,671	128,055		128,055
Flocculation Tank Mixers	10.0		2	53,356	106,712	10,671	128,055		128,055
Ferric Chloride Feed Pumps	31.4		2	6,266	12,533	1,400	15,333		15,333
Sulfuric Acid Feed Pumps	31.4		2	6,266	12,533	1,400	15,333		15,333
Organosulfide Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Polyblend Unit		gph	2	25,000	50,000	1,700	53,400		53,400
Sodium Hydroxide Feed Pumps		gph	2	6,266	12,533	1,400	15,333		15,333
Mix Tank Blower		SCFM	2	2,850	5,700	1,140	7,980		7,980
Common Equipment				_,000	-,	.,5	. ,000		-
erric chloride tank	10,000	nal	0	21,197	-	4,239	-	-	-
Sulfuric Acid tank	10,000		0	21,197	-	4,239	-	-	-
Organosulfide Tank	6,000		0	13,755		2,751	-		-
Polymer feed Totes	265		4	13,733		2,731	-		-
Sodium Hydroxide Tank	10,000		0	21,197		4,239	-	-	-
·	10,000	341	2			5,000			
Safety Shower	100.00/	annli t		25,000	50,000	5,000	60,000	30,000	30,000
Area Labor Adjustment Factor	100.0%	applies to it	nstallation cost	only					
Total Equipment Cost (TEC)							636,000	228,000	409,00
Area Labor Adjustment Factor									
Total Process Equipment					488,372				
reight		of Proc Equ	qip				20,000	7,170	12,86
Purchased Equipment Cost - Delivered (PE	C-D)						656,000	235,170	421,86
FGD Treatment Tanks									
Mix Tanks Wall Concrete	29	CY	1	650	18,674		18,674	18,674	
Mix Tanks Slab Concrete	10	CY	1	300	2,857		2,857	2,857	
Floculation Tanks Wall Concrete	29	CY	1	650	18,674		18,674	18,674	
Floculation Tanks Slab Concrete	10	CY	1	300	2,857		2,857	2,857	
Settling Tanks Wall Concrete	2578	CY	1	650	1,675,556		1,675,556	1,675,556	
Settling Tanks Slab Concrete	5,160	CY	1	300	1,548,063		1,548,063	1,548,063	
Total Ramp concrete, cy	514	CY	2	300	308,102		308,102	308,102	
Other Treatment Tanks		0.7							
Mix Tanks Wall Concrete		CY	1	650	61,803		61,803		61,803
Mix Tanks Slab Concrete		CY	1	300	14,623		14,623		14,623
Floculation Tanks Wall Concrete		CY	1	650	61,803		61,803		61,803
Floculation Tanks Slab Concrete		CY	1	300	14,623		14,623		14,623
Settling Tanks Wall Concrete	2,720		1	650	1,768,000		1,768,000		1,768,000
Settling Tanks Slab Concrete	6,172		1	300	1,851,642		1,851,642		1,851,642
otal Ramp concrete, cy	514	CY	2	300	308,102		308,102		308,102
Common Items									
Excavation - Soft	163,742	CY	1	6	977,541		977,541	445,125	532,416
Pre Engineered building	1,200		1	200	240,000		240,000	120,000	120,000
Lining Tanks	26,834		1	30	805,030		805,030	366,572	438,458
	20,004				300,000		555,050	000,012	100,400
Construction Material							9,677,951	4,506,481	5,171,47
State Sales Tax	1.0%	of Equipme	ent				5,000	2,328	5,171,47 2,67
Total Constuction Material		-: = 10.P.110	-				9,682,951	4,508,809	5,174,14
Total Equipment and Construction							10,338,951	4,743,979	5,596,00
							,		_
Electrical and I&C	10%						1,034,000	474,000	560,00
Piping	8%						827,000	380,000	448,00
ard Improvements (a)		of Equip + C					827,000	380,000	448,00
Metals and Finishes	3%	of Equip + C	Const.				310,000	142,000	168,00
Subtotal							13,336,951	6,119,979	7,220,00
Total Direct Costs (TDC)							13,336,951	6,119,979	7,220,00
Contractor's Field General Conditions	5%	of TDC					667,000	306,000	361,00
Contractor's OH&P		of TDC					2,001,000	918,000	1,083,00
Contingency		of TDC					2,667,000	1,224,000	1,444,00
Escalation Factor		of TDC					2,007,000	0	., , 50
	0%	51 1 DC					18,671,951		10 100 00
Total Construction Cost (TCC) Engineering, SDC ^c and Startup	4=01	-4 TOO						8,567,979	10,108,00
		of TCC					2,801,000	1,285,000	1,516,00
	C*						21,472,951	9,852,979	11,624,00
Total Estimated Order of Magnitude Capital Annual Cost of Capital (7% over 20 years)	Cost						\$2,027,000	\$930,000	\$1,097,00

LG&E-KU Brown Station Settling Tank-based Treatment System Table 3. Estimated Capital Cost

							Total		
			No.	Unit Cost (\$		Installation	Installed		
Item	Value	Units	Provided	ea)	Amount	(\$ ea)	Cost (\$)	CCR Cost	ELG Cost

⁽a) Includes fencing, grading, roads, sidewalks, and similar items.

⁽b) The enclosed Engineer's Estimate is only an estimate of possible construction costs. This estimate is limited to the conditions existing at its issuance and is not a guaranty of actual price or cost. Uncertain market conditions such as, but not limited to: local labor or contractor availability, wages, other work, material market fluctuations, price escalations, force majeure events, and developing bidding conditions etc may affect the accuracy of this estimate. CH2M Hill is not responsible for any variance from this estimate or actual prices and conditions obtained.

⁽c) SDC stands for Services During Construction (Startup, Engineer/Site Reps, etc.)

Estimated O&M Cost

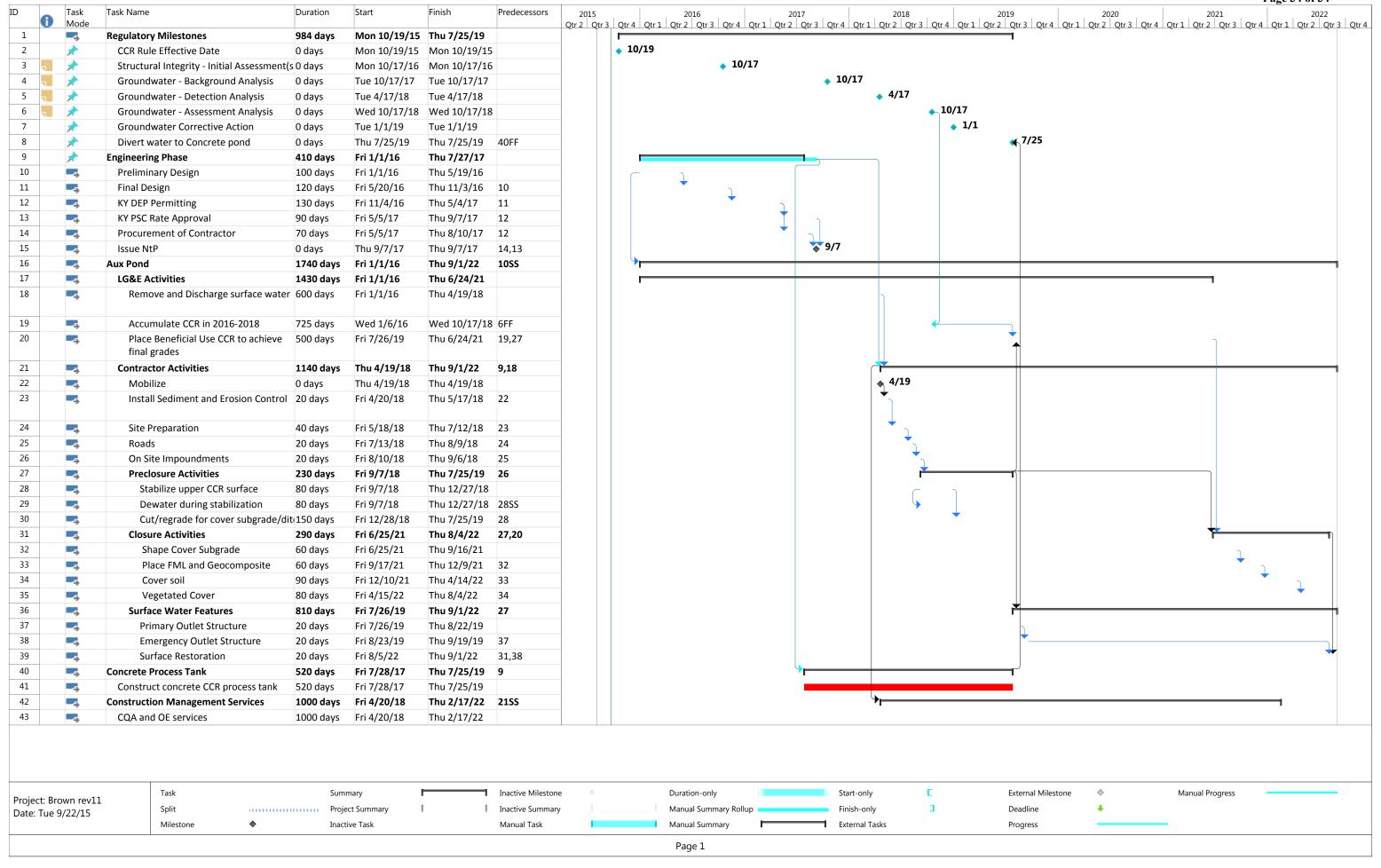
LG&E-KU

Brown Station

Settling Tank-based Treatment System

Table 4. Estimated O&M Cost

ltem	Quantity	Units	Unit Cost	Cost
Labor	1,040	hours/yr	\$30	\$31,200
Maintenance (% of Purchased Equipment Cost)	752,000	\$	3%	\$22,560
Solids for Disposal	47,000	tons/yr	-	-
Energy	420	MW-Hr/yr	\$100	\$42,000
Chemicals				
Ferric Chloride	86,908	gal/yr	\$2	\$144,267
Acid	26,072	gal/yr	\$2	\$61,009
Organosulfide	34,763	gal/yr	\$20	\$695,264
Polymer	8,691	gal/yr	\$8	\$69,179
Caustic	86,908	gal/yr	\$1	\$95,599
Total Annual O&M				\$1,161,000
Cost per 1000 Gallon Treated (excludes labor)				\$0.33
Annualized Cost				\$3,207,000


1/13/2016 FINAL

Individual Unit Cost Summary

Cost Worksheet 1 - Individual Unit Cost Line Items

Cost worksneet 1 - Individual Unit Cost Line Items	Unit Cost Uni	is References
Mobilization/Demobilization Workplan, procurement, mobilization, demobilization		S Allowance
Sediment & Erosion Control Sediment and Erision Control Measures	25,000 LS	S Allowance includes SWPPP and implementation and maintenance.
Transport & Disposal Waste Characterization T&D non-hazardous soil to off-site LF T&D non-hazardous CCR to off-site LF T&D non-hazardous soil to on-site LF T&D non-hazardous CCR to on-site LF T&D non-hazardous CCR to Schahler LF T&D non-hazardous CCR to Schahler LF T&D non-hazardous CCR to Schahler LF Transportation, Pireville to EVW Brown LF Transportation, Pireville to EVW Brown LF Transportation, Tyrone to EW Brown LF	61.1 Ton 61.1 Ton 7.18 CY 7.18 CY 21.4 Ton 9.03 CY 34.78 Ton	
Slurry Wall Install Slurry Wall	\$0 LF	F Place-holder. Included in RCRA Consultant
Repair On-Site Pond Embankments Geotechnical Repairs on existing CCR Pond embankments	\$1,000,000 LS	Allowance: Items may include embankment soil removal/replacement; localized dewatering; stump removal; drainage improvements; Dike height adjustments, etc.
Site Preparation Clearing/Grubbing Site Debris Clean Up & Removal Surveying	\$276 A0 \$10,000 LS	
Utility Locating Dewatering & Drying of Saturated Coal Ash		S Allowance C Number for site preparation in areas with high water table. Eg. Michigan City, Bailly ??? Check with Nick.
Dewatering Earthwork Items		6 Allowance to pump water from ponds to on site treatment facility
Site Work Soil Excavate and Temporarily Stockpile Onsite, dragline, haul (pond) Excavate and load, dragline (pond) Surface Grading, lagoon bottoms Excavate and load from stockpile Moisture Conditioning/Dust Control Remove Embankment, Spread Berms Finish Grading, gentle slopes Site Work CCR	\$16.45 C' \$3.87 S' \$6.60 C' \$0.57 C' \$8.94 C'	Y \$8.35 dragline 1/2 cy cap = 30cy/hr (RSM 31 23 16.42 0950) + \$4.36 haul 12cv 15mph 2 mile (31 23 23.20 1018) + \$8.10 Dozer excavation, 200 hp, common earth, 300' (RSM 31 23 16.46 5020) Y \$8.35 dragline 1/2 cy cap = 30cy/hr+no haul (RSM 31 23 16.42 0950) + \$8.10 Dozer excavation, 200 hp, common earth, 300' (RSM 31 23 16.46 5020) Y \$8.36 1 CY Excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer excavation, 200 hp, common earth, 150' (RSM 31 23 16.46 4220) Y 4.000 gallon water truck; rent \$17.03/hr + FOG \$33.80/hr + opr \$55/hr = \$105.83/hr × 10 hrs/day x 5 days/week / 9.216 CV/week Y \$8.10 CY 200 HP dozer 300' (RSM 31 23 16.46 4420)+ no haul + \$0.84 Compaction, Sheepsfoot, 6" lift, 2 passes (RSM 31 23 23.23 5600) Y RSM 31 22 16.10 3300
Excavate and Temporarily Stockpile Onsite (pond) Excavate and load (pond) Excavate and Temporarily Stockpile Onsite, excavator, haul (pond) Excavate and Temporarily Stockpile Onsite, excavator, no haul (pond) Excavate and Temporarily Stockpile Onsite, excavator, no haul (pond) Excavation and Load from Stockpile (CoR from facility operations) Hauling (assume 2 mile cycle)(CCR trom facility operations) Moisture Conditioning/Dust Control Surface Grading, lagoon bottomns Excavate and load from stockpile (excavator) Finish Grading, gentle slopes	\$16.45 C' \$9.56 C' \$5.20 C' \$1.39 C' \$2.96 C' \$0.57 C' \$3.87 S' \$6.60 C'	Y \$8.35 dragline 1/2 cy cap = 30cy/hr (RSM 31 23 16.42 0950) + \$4.36 haul 12cy 15mph 2 mile (31 23 23.20 1018) + \$8.10 Dozer excavation, 200 hp, common earth, 300' (RSM 31 23 16.46 5020) Y \$8.35 dragline 1/2 cy cap = 30cy/hr+on haul (RSM 31 23 16.42 0950) + \$8.10 Dozer excavation, 200 hp, common earth, 300' (RSM 31 23 16.46 5020) Y \$2.36 excavator 1 cy cap = 100cy/hr (RSM 31 23 16.42 0200) + \$2.36 haul 12cy 15mph 2 mile (31 23 23.20 1018) + \$2.84 dozer 200 hp 50 ft, clay (31 23 16.46 4040) Y \$2.36 excavator 1 cy cap = 100cy/hr (RSM 31 23 16.42 0200) + \$2.84 dozer 200 hp 50 ft, clay (31 23 16.46 4040) Y \$3.36 excavator 1 cy cap = 100cy/hr (RSM 31 23 16.42 0200) + \$2.84 dozer 200 hp 50 ft, clay (31 23 16.46 4040) Y \$3.98 RT Loader (6 CY), rem \$55.95 + F0 row \$75fhr x 50 hrs/9/2 16 CY/week Y 3 each, Cat 735 off-road trcuks (26CY); remt \$54.39/hr + FOG \$55.18/hr + Opr \$75/hr = \$105.83/hr x 10 hrs/day x 5 days/week / 9.216 CY/week Y \$3.36 1 CY excavator (RSM 31 23 16.42 0100) + no haul + \$4.24 Dozer excavation, 200 hp, common earth, 150' (RSM 31 23 16.46 4220) Y \$8.36 1 CY excavator (RSM 31 23 16.42 0100) + no haul + \$4.24 Dozer excavation, 200 hp, common earth, 150' (RSM 31 23 16.46 4220)
Fill and Borrow Unclassified Fill, Delivered, Offsite Source, Placed Topsoil, Delivered, Offsite Source, Placed Haul (2 mile cycle) Compacted Clay, 6-inch lifts, Offsite Source, Placed Unclassified Fill, Delivered, On-site Source, Placed Finish Grading, gentle slopes	\$17.82 C' \$23.95 C' \$4.36 C' \$23.54 C' \$9.03 C'	Y \$1.98 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.23 5640) + \$15/cy delivered Y \$3.95 (RSM 31 23 23.14 2420) + \$20/cy delivered Y \$4.36 haul; 12cy, 15mph, 2 mile, 15 minute (RS Means 31 23 23.20 1018) Y \$1.98 place (RSM 31 23 23.13 4220) + 51.56 compact (RSM 31 23 23.25 640) + \$20/cy delivered Y Placement \$1.98 (RSM 31 23 23.13 4220) + 0.84 compaction (RSM 31 23 23.25 640) + Excavator Loading \$1.85 (RSM 31 23 16.42 0260) + \$4.36 haul 12cy 15mph 2 mile (31 23 23.20 1018) Y RSM 31 22 16.10 3300
Site Restoration Items Revegetation Mechancial Seeding and Mulching Seed	\$3,550 AC \$856 AC	
Site Survey Confirmation Sample Collection Confirmation Sample Analysis Sample Packaging and Shipping	\$30,000 LS \$100 EA \$150 EA \$250 Eve	single metal
On-Site Landfill Surface Grading, lagoon bottom Base Liner: Soil Liner (12") Base Liner: Gonil HDPE Base Liner: Gentextile Base Liner: Gentextile Base Liner: Gentextile Base Liner: Protective Layer (18 inches soil) Final Cover: 40-mil Tev/smooth LLDPE Final Cover: 40-mil Tev/smooth LLDPE Final Cover: Fortective Layer (18 inches soil) Final Cover: Fortective Layer (18 inches soil) Final Cover: Torosoil Layer (6 inches) Finish Grading, dentel sobres Leachate Collection pipes Leachate header SUBTOTAL	\$ 18,730 AC \$ 23,905 AC \$ 39,204 AC \$ 30,653 AC \$ 11,665 AC \$ 228,414 AC \$ 30,653 AC \$ 19,352 AC \$ 19,352 AC \$ 968 AC \$ 5,000 AC \$ 313,564 AC	Price Based on \$-90 SF. Price is based on Drainage Sand \$15/BCY and placement \$4/BYD Geotextile, woven, 200 lb tensile (RSM 31 32 19.16 1500) Price is based on General Fill \$12/BCY and placement \$3.5/BCY Price Based on Senderal Fill \$12/BCY and placement \$3.5/BCY Price Based on Sindage Sand \$15/BCY and placement \$4/BYD Price is based on General Fill \$12/BCY and placement \$3.5/BCY \$3.95 (RSM 31 22 32.14 2420) + \$20/cv delivered RSM 31 22 (3.14 2420) + \$20/cv delivered RSM 31 25 (1.61) 3300 (\$0.20/SY) Allowance Allowance
Reconstruct and Reline On-Site Pond Remove over/fiving soils and 30 mil Hypalon liner Regrade and Compact Subgrade Compacted Clay (1 x 10 ") Soil Liner (24 inches) 30-mil PVC Geonet 30-mil PVC Protective Layer (18 inches soil) SUBTOTAL	\$ 17,000 AC \$ 17,000 AC \$ 96,800 AC \$ 19,167 AC \$ 28,314 AC \$ 19,167 AC \$ 37,510 AC \$ 234,958 AC	Based on a crew at \$8,500/Day for two days Price is based on Clay Fill @ \$20/CY and placement @ \$10/CY \$0.44/SF whax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.65/SF whax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.44/SF whax, delivery and installation. Price is based on ROM from Geomembrane.com
Reconstruct and Line Pond, Install Steel Wear Plates Remove and stockpile 18" Coarse Graded Crushed Ballast (3/4" to 1 1/2") Remove 6" Sand Remove 6" Sand Remove 6" Sand Requared end Compact Compacted Clay Subgrade Compacted Clay (1 x 10") Soil Liner (24 inches) 30-ml PVC Geonet 30-ml PVC Geonet 18" Coarse Graded Crushed Ballast-reused (3/4" to 1 1/2" size) Steel Wear Plates - 3/8" - 2000 SF TOTAL for working area SUBTOTAL	\$30,760 AC \$ 10,250 AC \$ 17,000 AC \$ 10,250 AC \$ 21,250 AC \$ 96,800 AC \$ 19,167 AC \$ 28,314 AC \$ 19,167 AC \$ 29,500 AC \$ 19,200 AC \$ 301,658 AC	dragline 1/2 cy cap = 30cy/hr-haul 1/2cy 15mph 2 mile (RSM 31 23 16.42 0950 + 31 23 23.20 1018 = \$12.71/cy Based on a crew at \$8.50/Day for two days dragline 1/2 cy cap = 30cy/hr-haul 1/2cy 15mph 2 mile (RSM 31 23 16.42 0950 + 31 23 23.20 1018 = \$12.71/cy Finish grading lagoon bottoms (RSM 31 22 16.10 3500)(\$0.43/SF) + compaction, 6* lifts, 4 passes (RSM 31 23 23.23 5640)(\$1.56/cy(assume 1' thick)) Price is based on Clay Fill @ \$20/CY and placement @ \$10/CY \$0.44/SF witax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.65/SF witax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.44/SF witax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.44/SF witax, delivery and installation. Price is based on ROM from Geomembrane.com \$0.44/SF witax, delivery and installation. Price is based on ROM from Geomembrane.com \$1.98 (RSM 31 23 23.13 42 20) + 0.84 compaction (RSM 31 23 23.23 5640) \$4.36(cy haul 12 cy 15mph 2 mile (RSM 31 23 23.20 1018) + \$5/CY load = \$12.18/cy
Reconstruct and Line Bottom Ash Storage Area Remove 30" Bottom Ash/Soil Regrade and Compact Suborade Compacted Clay (1 x 10") Soil Liner (24 inches) 30-ml PVC Geonet 30-ml PVC 18" Coarse Graded Crushed Ballast-reused (3/4" to 1 1/2" size) SUBTOTAL	\$51,265 AC \$ 21,250 AC \$ 96,800 AC \$ 19,167 AC \$ 19,167 AC \$ 29,500 AC \$ 265,463 AC	Finish grading lagoon bottoms (RSM 31 22 16.10 3500)(\$0.43/SF) + compaction, 6° lifts, 4 passes (RSM 31 23 23.23 5640)(\$1.56/cy(assume 1' thick)) Price is based on Clay Fill @ \$20(CV and placement @ \$10(CV
Leachate Collection System (1 per pond) Final grade Trenchinq 60-mil HDPE liner HDPE geonet Leak Detection Fill (25' x 45' x5' = 210 CY) 10-inch dia HDPE Pipe (2 each at 300') 2-inch dia PVC Pipe (1 each at 300') SUBTOTAL	\$ 1,258 EA \$ 1,083 EA \$ 9,620 EA \$ 3,950 EA \$ 3,990 EA \$ 21,200 EA \$ 41,969 EA	\$3.61.F. (RSM G1030 805 1800) Assume 7125 SF. Price based on .90/SF + 50% small quantity (\$1.35) Assume 45%65 SF. Price based on .90/SF + 50% small quantity (\$1.35) Price is based on Drainage Sand \$15/BCY and placement \$4/BYD \$32LF. RSM 33 11 13.35 0400 + \$1,000/ple fittings
Cover Existing Pond Stabilize Final grade 40-mil Tex/smooth LLDPE Sand Drainage Layer (12 inches) Protective Layer (18 inches soil) Topsoil Layer (6 inches) SUBTOTAL	\$ 109.020 AC \$ 18.730 AC \$ 28.414 AC \$ 30.653 AC \$ 37.510 AC \$ 19.352 AC \$ 224,327 AC	Finish aradina laacon bottoms (RSM 31 22 16.10 3500) Price Based on \$0.65 SF Price based on Drainage Sand \$15/BCY and placement \$4/BYD Price is based on Drainage Sand \$15/BCY and placement \$4/BYD Price is based on General Fill \$12/BCY and placement \$3.5/BCY \$3.95 (RSM 31 22 32.14 2420) + \$20/ov delivered
Periodic Cleaing of Pond Dredge 2' of material Excavate and load from stockpile	\$28 CY \$6.60 C	Hydraulic dredge (pumped 1000' to shore) = 15.55 + haul 12cy 15mph 2 mile (RSM 35 20 23.23 1100 + 31 23 23.20 1018) = \$12.71/cy totals \$28.26/cy for 1 acre x 2' deep = 3,226.67 BCY \$2.36 1 CY excavator (RSM 31 23 16.42 0100)+ no haul + \$4.24 Dozer excavation, 200 hp, common earth, 150' (RSM 31 23 16.46 4220)

Attachment 3 Schedule

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In	tho	Mo	tter	of.
ın	ıne	IVI	mer	01:

THE APPLICATION OF KENTUCKY UTILITIES)	
COMPANY FOR CERTIFICATES OF PUBLIC)	
CONVENIENCE AND NECESSITY AND)	CASE NO. 2016-00026
APPROVAL OF ITS 2016 COMPLIANCE PLAN)	
FOR RECOVERY BY ENVIRONMENTAL)	
SURCHARGE)	

DIRECT TESTIMONY OF R. SCOTT STRAIGHT DIRECTOR, PROJECT ENGINEERING KENTUCKY UTILITIES COMPANY

Filed: January 29, 2016

Q. Please state your name, position and business address.

1

15

23

A. My name is R. Scott Straight. I am the Director of Project Engineering for LG&E and KU Services Company, which provides services to Kentucky Utilities

Company ("KU") and Louisville Gas and Electric Company ("LG&E")

(collectively, "the Companies"). My business address is 220 West Main Street,

Louisville, Kentucky, 40202. A statement of my education and work experience is attached to this testimony as Appendix A.

8 Q. Have you previously testified before this Commission?

I have not testified at a Commission hearing, but have sponsored discovery responses in numerous cases regarding projects the Companies have undertaken, as well as having presented in numerous quarterly update meetings associated with the Commission's Construction Monitoring Review of the Companies' 2011 ECR Plans. In addition, I have provided testimony in the most recent KU rate case in Virginia.

Q. What is the purpose of your testimony?

16 A. The purpose of my testimony is to explain the need for Projects 37 and 38 in the
17 2016 ECR Plan ("2016 Plan"), which involves improvements to the wet flue gas
18 desulfurization ("WFGD") technology on Ghent Unit 2 and the installation of
19 mercury-related control technologies on all four generating units at Ghent,
20 respectively. I am also sponsoring exhibits related to these Projects, as well. The
21 other Projects proposed in the 2016 Plan are described in the testimony of John N.
22 Voyles, Jr.

Q. What exhibits are you sponsoring?

- 1 A. I am sponsoring the following exhibits:
- 2 Exhibit RSS-1: MATS Rule Mercury Control Injection Project
- 3 Summary
- 4 **Exhibit RSS-2**: MATS Rule Ghent Unit 2 WFGD Project Summary

5

6

7

13

14

15

16

17

18

19

20

21

2.2

23

24

Project 37: Ghent Unit 2 WFGD Upgrade

Q. Please provide an overview of Project 37.

- 8 A. Project 37 involves proposed improvements to the WFGD on Ghent Unit 2 in
- 9 order to increase the sulfur dioxide removal efficiency of the WFGD. These
- improvements are necessary to comply with the Mercury and Air Toxics
- Standards ("MATS Rule") promulgated by the United States Environmental
- Protection Agency. Exhibit RSS-2 provides a further description of the project.

Q. How does the MATS Rule affect the Ghent generating station?

As discussed in the testimony of Gary H. Revlett, the MATS Rule requires that the Ghent generating station emit no more than 0.002 lbs/mmBtu of heat input of hydrogen chloride ("HCl"). As a surrogate for measuring HCl, sulfur dioxide (which is currently measured and reported on for all KU and LG&E generating units) can be used to calculate HCl emissions values. The surrogate sulfur dioxide emission limit for HCl is 0.2 lbs/mmBtu of heat input. While this emission rate is a station-averaged value allowed in the MATS Rule, the MATS Rule requires each unit be able to demonstrate that it can meet the 0.2 lbs/mmBtu surrogate value. Ghent Unit 2 currently cannot meet this surrogate value on a continuous basis with its WFGD that was installed in 1995. The other three units at Ghent (Units 1, 3 and 4) have WFGDs installed in 2009, 2007 and 2008,

respectively that can continuously meet the MATS Rule required surrogate emission rate.

A.

Q. Has KU previously installed MATS Rule control equipment on the Ghent units?

Yes, it has. Through Project 35, which was part of the 2011 Plan, KU installed particulate and mercury-related control equipment on all four units at Ghent. In order to comply with the federal Clean Air Act as amended, the Cross-State Air Pollution Rule (successor to the proposed Clean Air Transport Rule), the then-proposed National Emission Standards for Hazardous Air Pollutants ("HAPS Rule"), and the National Ambient Air Quality Standard, KU obtained approval of Project 35 and installed HAPS Rule related control systems to serve each of the four Ghent units. Project 35 consisted of a pulse-jet fabric filter ("PJFF") to capture particulate matter, a powdered activated carbon injection system prior to the PJFFs to capture mercury, hydrated lime injection systems to protect the PJFF from the corrosive effects of sulfuric acid mist and to increase the activated carbon's capture of mercury (sulfuric acid mist can blind activated carbon from capturing mercury), as well as other balance-of-plant support system changes.

Project 35 also included economizer modifications to Ghent Units 1, 3 and 4 to expand the operating range of the units at which their existing Selective Catalytic Reduction ("SCR") equipment can function, thereby increasing the amount of mercury oxidized by the SCR catalyst. This increased oxidation of mercury allows for more mercury collection by the PJFF and WFGD on those

¹ In the Matter of: Application of Kentucky Utilities Company for Certificates of Public Convenience and Necessity of Its 2011 Compliance Plan for Recovery by Environmental Surcharge (Case No. 2011-00161).

l	units because oxidized mercury is more easily captured than elemental mercury in
2	the flue gas.

- Q. Please discuss the current efficiency level of the WFGD technologies at Ghent 3 Unit 2 as compared to the other Ghent Units. 4
- Presently, the WFGD system installed on Ghent Unit 2 removes slightly over 5 A. 90% of sulfur dioxide from the flue gas before it is released into the air. In order 6 to achieve the 0.2 lbs/mmBtu of heat input of sulfur dioxide limit as a surrogate for HCl in the MATS Rule, taking into account the sulfur content of the coal 8 expected to be burned, approximately 97% of the sulfur dioxide will need to be removed. In contrast, the other units at Ghent have much newer WFGD 10 technology that controls sulfur dioxide to levels of removal equal to or exceeding 98%, which result in emissions less than the allowable limit in the MATS Rule. 12

7

9

11

13

14

15

16

17

18

19

20

21

22

23

A.

How does KU plan to increase the efficiency of the removal of sulfur dioxide Q. from Ghent Unit 2?

Numerous operating variables affect the rate at which sulfur dioxide is removed during the scrubbing process. In WFGD systems, the scrubbing liquid contains an alkali reagent that enhances the absorption of sulfur dioxide. As such, the removal efficiency of sulfur dioxide is highly impacted by the ratio of liquid-togas contact, as well as the chemistry of the system.

KU is proposing improvements to the WFGD system on Ghent Unit 2 that cumulatively will improve the sulfur dioxide removal efficiency by increasing the effective liquid-to-gas contact. KU plans to install new technology spray nozzles that will increase the liquid-to-gas contact surface area through a finer and more concentrated spray droplet, as well as install "wall rings" which are attachments to the WFGD's module walls near the spray nozzle and spray cone areas. The wall rings reduce "leakage" of flue gas up the module walls caused by the pressure drop of the nozzle sprays by forcing the flue gas flow through the nozzle spray cone areas. Increasing the contact area of the limestone slurry with the flue gas essentially increases the effective liquid-to-gas ratio. While currently not expected to be needed, replacing the recycle pump drive gearboxes may also be required to increase the flow of limestone slurry through the spray nozzles, thus increasing the liquid-to-gas ratio. When these improvements are complete, KU expects to be able to operate Ghent Unit 2 in continual compliance with the MATS Rule requirements for the sulfur dioxide surrogate for HCl irrespective of which other Ghent units are operating.

Q. When does KU plan to make these improvements?

A.

A.

It is anticipated that Ghent Unit 2 will be included in the MATS Rule reporting for the Ghent station in mid-year 2016, following the completion of a planned outage to finish other improvements. KU purchased some of the nozzles and installed them in late 2015 to determine their effectiveness. The purchase of the remaining nozzles and wall rings is planned for April 2016, with completion of the Project expected to occur in the summer of 2016.

Q. Are the costs of the improvements to the WFGD economical?

Yes, as the expected cost of the improvements are \$7 million. As discussed in the testimony of Charles R. Schram, it is economical to install these upgrades versus other alternatives, including using reagents to reduce sulfur dioxide emissions,

burning lower sulfur coal, and limiting the operation of Ghent 2 to keep station emissions below the 0.2 lb/mmBtu threshold.

Project 38: Mercury Injection Control Systems

4 Q. Please provide a summary of Project 38.

2.2

A.

A.

Project 38 involves the installation of low-cost and economical control technologies to reduce mercury re-emissions that will keep the Ghent units in compliance, and provide operational flexibility in maintaining compliance with the MATS Rule for mercury. First, KU is proposing supplemental injection control technology to inject an organo-sulfide chemical additive into the WFGD reaction tank for all units at Ghent. Second, KU plans to inject a halogenated chemical additive into the coal feeders at the Ghent units to increase mercury oxidation in the coal combustion zone, which will improve the amount of mercury oxidized and captured by the PJFFs and WFGDs. Exhibit RSS-1 provides a further description of Project 38, as well as an overview of the mercury control systems KU has installed to date at Ghent.

Q. What environmental regulation necessitates the installation of these technologies?

As explained in the testimony of Mr. Revlett, the MATS Rule requires the Companies to further reduce the mercury emissions associated with the production of electricity from coal. The MATS Rule requires the use of maximum achievable control technology within the electric utility industry. Although the Ghent units are presently in compliance, due to mercury re-emissions, the units have the potential to emit mercury above the allowable limits absent installation of the supplemental injection control technologies proposed in Project 38.

continuing compliance with the MATS Rule. How is that different from the 2 HAPS Rule that was proposed when the 2011 Plan proceeding was pending? 3 A. As explained in Mr. Revlett's testimony, the MATS Rule is the final version of 4 the proposed HAPS Rule. The MATS Rule sets emissions limitation standards 5 6 for mercury and other air pollutants, reflecting levels achieved by the bestperforming sources currently in operation. While the addition of the mercury 7 related control equipment that was part of the 2011 ECR Plan reduced mercury 8 9 emissions at the Ghent units, these units will be better equipped, and provide operating flexibility, to satisfy the mercury emission standards established in the 10 MATS Rule in the most cost-effective manner than without the addition of these 11 two supplemental low-capital cost control technologies proposed in Project 38. 12

You stated that Project 38, which is proposed in this case, is needed to ensure

1

13

14

15

16

17

18

19

20

21

22

23

A.

Q.

Q. Please explain mercury re-emission and how it is related to WFGDs.

KU, like many other utilities that generate electricity from coal, utilizes WFGD technologies as part of its existing Air Quality Control Systems. These wet scrubber systems allow for the capture of sulfur dioxide emissions and also capture a large percent of oxidized mercury that is in the flue gas stream.

Because oxidized mercury is water soluble, oxidized mercury is captured in the wet scrubber; thereby reducing the generating unit's mercury emissions. Oxidized mercury can likewise be captured in KU's PJFFs through the injection of powdered activated carbon, as well. At times, however, the oxidized mercury in the wet scrubber slurry can de-oxidize and be released back into the flue gas stream as elemental mercury. This phenomenon, which is known as mercury re-

emission, causes lower net mercury capture efficiency in the WFGDs because the elemental mercury is reemitted into the flue gas stream and then emitted through the chimney.

Q. Please explain how Project 38 seeks to address this concern.

A.

The Companies conducted studies in 2013 through 2015 regarding how to best address mercury re-emission from the WFGDs. The Companies' investigation indicated that by injecting an organo-sulfide chemical additive into the WFGD reaction tank, less oxidized mercury would be reduced to elemental mercury. This allows the wet scrubber to hold the captured mercury that otherwise could be re-emitted so it could be removed through the gypsum dewatering systems. KU is proposing to have the ability to inject this additive on all units at Ghent either as a total substitute for powdered activated carbon or in combination with the carbon injection, depending on the price and effectiveness of each.

Relatedly, KU is proposing to inject a halogenated chemical additive into the coal feeders on the Ghent units. Injecting this additive before the coal is combusted increases the mercury oxidation during the combustion of coal, thus making the powdered activated carbon and WFGD removals of mercury more effective, especially on Ghent Unit 2 that does not have a SCR system and for the other three Units when their SCRs are out of service. As with the injections in the WFGD reaction tank, this will result in increased mercury capture and overall reduced mercury emissions.

Q. Are there other benefits to this Project, as well?

Yes. Another significant benefit to installing this supplemental injection technology is that it allows the Companies to balance the cost of powdered activated carbon against the price of the liquid chemical WFGD and coal additives, while also providing the station flexibility to use either powdered activated carbon, liquid injection or a combination of both. And lastly, the use of this supplemental technology can reduce or avoid the contamination of fly ash caused by the powdered activated carbon, thus potentially increasing each station's offsite beneficial use or reuse opportunities of CCR.

Q. How does KU plan to implement Project 38?

A.

A.

Successfully controlling mercury in an environmentally compliant manner will depend on the consistent and regulated delivery of the organo-sulfide and halogenated chemical additives. The rate at which the additives will be injected at each unit will be determined based on that unit's measured mercury emissions and WFGD process conditions, along with how much activated carbon and hydrated lime is used prior to the PJFFs.

The injection systems will require components such as long-term product storage vessels, metering pumps, piping, valves and instrumentation, electrical and control wiring, programmable logic controllers, and an enclosed climate controlled shelter for the pump skids and instrumentation and controls.

20 Q. When does KU propose to install the injection systems?

21 A. The Company proposes to fully construct and install the injection systems on all affected units during 2016.

Q. Are the costs of the injection system economical?

- Yes. First, it should be noted that the injection systems are a low-cost manner of helping KU comply with the mercury emission standards in the MATS Rule, as the expected capital cost of the systems at Ghent totals \$10.1 million. As discussed in the testimony of Mr. Schram, it is economical to install the systems because the current pricing of the liquid additives is favorable to the cost of powdered activated carbon.
- 7 Q. What is your recommendation to the Commission?
- A. My recommendation is that the Commission approve Projects 37 and 38 as part of the 2016 Plan because the projects are economical, low-cost methods by which to comply with the sulfur dioxide and mercury emission limits set forth in the MATS Rule.
- 12 Q. Does this conclude your testimony?
- 13 A. Yes.

VERIFICATION

COMMONWEALTH OF KENTUCKY)	SS:
COUNTY OF JEFFERSON)	

The undersigned, **R. Scott Straight**, being duly sworn, deposes and says that he is Director – Project Engineering for LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and that the answers contained therein are true and correct to the best of his information, knowledge and belief.

R. Scott Straight

Subscribed and sworn to before me, a Notary Public in and before said County and State, this <u>1944</u> day of <u>January</u> 2016.

Notary Public (SEAL)

My Commission Expires:

JUDY SCHOOLER
Notary Public, State at Large, KY
My commission expires July 11, 2018
Notary ID # 512743

APPENDIX A

R. Scott Straight

Director, Project Engineering LG&E and KU Services Company 220 West Main Street Louisville, KY 40202 (502) 627-2701

Professional Memberships & Achievements:

KY Professional Engineer

IN Professional Engineer

Pinnacle Honor Society for Masters Degrees

Beta Sigma Gamma (National Honor Society for Business Graduates)

Member of SCOAR (Southeastern Construction Owners & Assoc. Roundtable)

Education:

B.S. Mechanical Engineering – Purdue University (1983)

M.B.A. – Indiana University (with honors 1993)

Steven Covey's Lessons in Leadership (1996)

Recent Responsibilities (Director of Project Engineering):

2011 ECR Program (LG&E and KU) including:

PJFFs on Ghent 1-4, E.W. Brown 3, Mill Creek 1-4 and Trimble County 1 WFGDs on Mill Creek 1-4

2009 ECR Program (LG&E and KU)

E.W. Brown, Trimble County and Ghent Landfills; Brown 3 SCR

2004 ECR Program (LG&E and KU)

Ghent 1, 3 and 4 WFGD, Brown Station WFGD

2002 ECR Program

Ghent 1, 3 and 4 SCRs, Mill Creek 3 and 4 SCRs, Trimble County 1 SCR

2010 Trimble County Unit 2 810 MW Supercritical Coal Unit

2015 Cane Run 7 640 MW Natural Gas Combined Cycle Unit

2016 E.W. Brown 10 MWe Solar Station

Ohio Falls Hydro-Station Units 1-8 Rehabilitation

History of Positions:

Director, Project Engineering (2004-present)

Manager, NOx Compliance Program Manager (2001-2004)

Manager, Generation Services (1998-2001)

Manager, Technical Services (1995-1998)

Sr. Engineer, Environmental Affairs (focused on CAA) (1990-1995)

Mechanical Engineer, Special Construction Department (1984-1990)

Design Engineer, Boeing Military Airplane Company (1983-1984)

Project Engineering – LG&E and KU

MATS Rule – Mercury Control Injection Project Summary January 2016

Background

LG&E and KU (collectively, the "Companies") must comply with the Mercury and Air Toxics Standards ("MATS") Rule beginning April 16, 2016 (with a 1-year extension). The MATS Rule regulates mercury and other hazardous air pollutants from fossil fuel fired steam generating units. For the Companies, this includes the Ghent, Mill Creek, Trimble County and E.W. Brown Stations. The Rule also requires the maximum achievable control technology be utilized.

Included in the Companies' 2011 Environmental Cost Recovery ("ECR") filing was the engineering and construction of pulse jet fabric filters ("PJFF") for particulate, including a powdered activated carbon injection ("PAC") system and dry sorbent injection ("DSI") of hydrated lime system prior to each PJFF for mercury and sulfuric acid control, respectively. The 2011 ECR filing included new PJFFs on the four Mill Creek units, the four Ghent Units, Trimble County Unit 1 and E.W. Brown Unit 3. A PJFF is already installed on Trimble County Unit 2. E.W. Brown Units 1 and 2 were excluded from requiring a PJFF in the 2011 ECR filing. The 2011 ECR filing also included new wet flue gas desulfurization systems ("WFGD") for the four Mill Creek coal fired units.

Since the 2011 ECR filing, the Companies have continued with the construction and commissioning of the ten PJFFs in the plan and have placed nine of them into operation. These PJFFs are operating as designed relative to capturing particulate, mercury and acid gases. While the PJFFs capture up to 90-plus percent of the mercury, mercury still exist in the flue gas stream as it leaves the PJFFs. The remaining mercury exiting the PJFFs is in both the elemental and oxidized form. A large percentage of the remaining oxidized mercury that exits the PJFFs is captured in the WFGD downstream of the PJFF.

Over time, the Companies have seen episodes where the oxidized mercury that has been accumulated in the WFGD slurry can be released back into the flue gas stream through a chemical process that converts the captured oxidized mercury into elemental mercury. These intermittent episodes have the potential, under the MATS Rule, to place a coal-fired generating unit in a noncompliance period for mercury. Given this re-emission risk, the Companies have continued the testing of chemical solution injections on coal and in the WFGD wet slurry to determine their viability for capturing mercury. The details of the chemistry and process for each mercury injection system is described below. These mercury injection technologies were in their infancy at the time of the 2011 ECR filing and since have continued to gain industry experience, including the Companies' testing program on its coal-fired units, through the operation of a permanent WFGD injection system on Trimble County Unit 2, as well as testing experience from other coal-fired generators in the United States.

¹ The 2011 ECR Plan filing originally included a shared-PJFF for E.W. Brown Units 1 and 2. The parties to the unanimous stipulation approved by the PSC agreed to remove the shared-PJFF for E.W. Brown Units 1 and 2 from the 2011 ECR Plan.

To date, the Companies' testing has shown very good results of holding on to the mercury captured by the WFGD to avoid the periods of mercury re-emissions. These tests have also been described in summary form in the Companies' 2011 ECR quarterly reports to the KPSC Staff and its consultant. The Companies' latest IRP filing also included several documents describing the Companies' experience in testing these injection technologies.

Need

Due to this mercury re-emission process, the coal-fired units across the Companies' fleet have the potential to exceed current and future mercury emission limits under the MATS Rule, even with their PJFFs and WFGDs operating as designed. Mercury re-emission occurs when the Oxidation-Reduction Potential ("ORP") of a WFGD reaction tank slurry exceeds the optimal range which then converts oxidized mercury back into its elemental state. The water solubility of elemental mercury is much lower than oxidized mercury and the elemental mercury is re-emitted into the flue gas from the WFGD and then emitted out of the chimney. Studies conducted by the Companies in 2013 and 2014 indicated that injecting an organo-sulfide chemical additive into the WFGD reaction tank for a particular unit reduces ORP, mitigating mercury re-emission. The LG&E and KU units that will require WFGD chemical injection systems are Ghent Units 1-4, Mill Creek Units 1&2 combined WFGD tank, Mill Creek Unit 3, Mill Creek Unit 4, and Trimble County Unit 1. It should be noted that the Companies' newest coal-fired unit, Trimble County Unit 2, already employs this technology to remain in compliance. Process Flow Diagrams ("PFD") are shown below for the Ghent, Mill Creek, and Trimble County units in Figures 1, 2 and 3 respectively, along with a common flow diagram showing more details of the injection technologies in Figures 4 and 5.

In addition to the WFGD injection system for enhanced mercury control, an injection technology to spray on the coal prior to combustion is needed on several of the coal-fired units in the fleet. Several coal-fired units will improve their mercury capture efficiency from the coal supplemental injection technologies based on their combustion systems and air pollution control equipment configurations. In particular, the Companies coal-fired units without Selective Catalytic Reduction ("SCR") systems do not oxidize mercury to the extent that units with SCRs do. While there is some oxidation of mercury in the combustion process, the SCR catalyst is a very good oxidizer of mercury. Oxidized mercury is more water soluble than elemental mercury and is therefore captured in WFGDs whereas the remaining elemental mercury is not captured by the WFGD. Studies conducted by the Companies indicated that injecting a halogenated chemical additive into the coal feeders for a particular unit will increase mercury oxidation thus improving mercury capture. The Companies' units that will require coal feeder chemical injection systems are Ghent Units 1-4, Mill Creek Unit 1 and Mill Creek Unit 2. PFDs for Ghent and Mill Creek are shown below in Figure 1 and Figure 2, respectfully.

Scope

Mercury control is dependent on the consistent and regulated delivery of chemical additives. The chemical injection feed rate for each unit will be controlled based on measured mercury emissions and WFGD process conditions. The equipment and layout of each system will be designed by a hired engineering firm who will also have involvement in equipment procurement and will interface with a third party construction contractor. Each injection system will require the following:

- Long-term storage vessels
- Pump skids
- Stainless Steel Piping
- Valves and Instrumentation
- Electrical and Control Wiring
- Programmable Logic Controller ("PLC")
- Enclosed climate controlled shelter for pump skid and PLC

Example Piping and Instrumentation Diagrams ("P&ID") for the organo-sulfide systems and halogenated liquid systems are respectively shown in Figure 4 and Figure 5 below. The P&IDs are generic; thus the actual installed systems may vary slightly but will be similar in layout and design.

Timing

The anticipated project timeline is:

- High-Level Engineering and Cost Estimates: 4th quarter 2015
- Detailed Engineering and Construction Drawings/Technical Specs: 1st quarter 2016
- Equipment Procurement: 1st quarter 2016
- Equipment Delivery: 2nd 4th quarter 2016
- Installation: 2nd 4th quarter 2016

Cash Flow

The estimated costs of the Mercury Control Injection Systems Projects are \$4.9 million for LG&E and \$10.1 million for KU, for a total of \$15 million between the Companies.

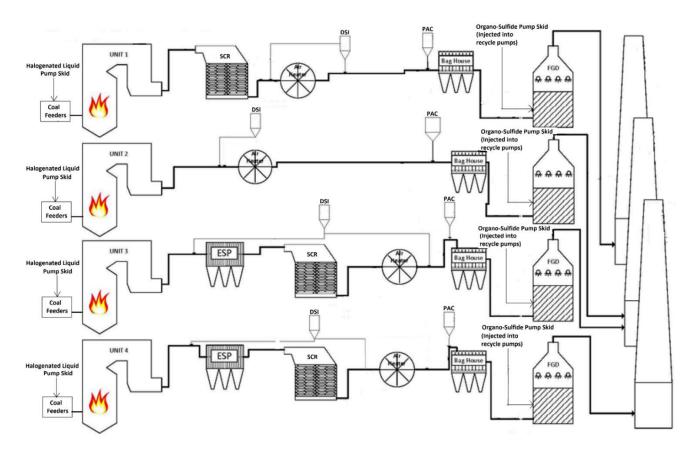


Figure 1- Ghent PFD

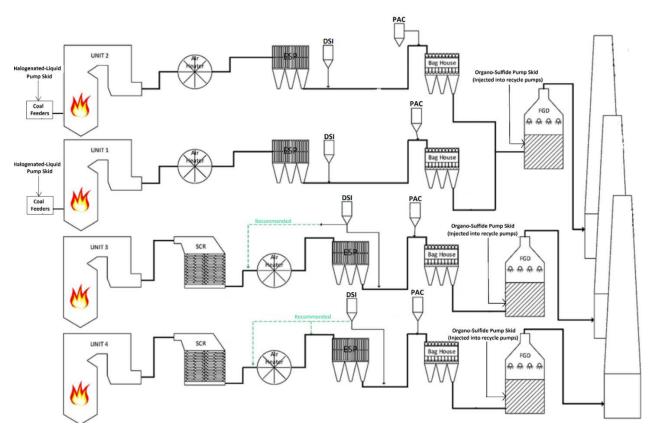


Figure 2- Mill Creek PFD

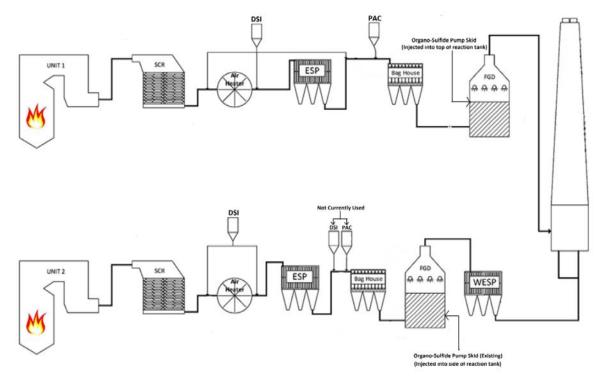


Figure 3- Trimble County PFD

NOTE: Trimble County Unit 2 is not included in the 2016 ECR Filing

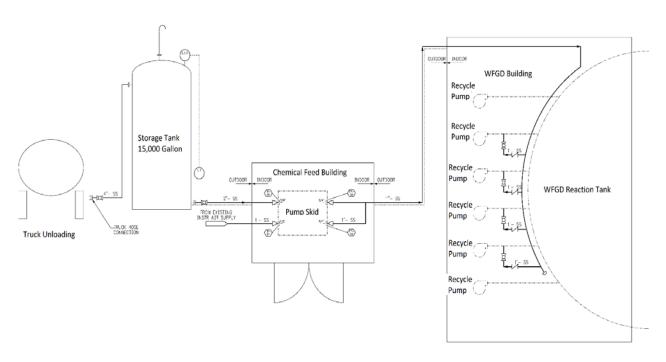


Figure 4- Example Organo-Sulfide System P&ID

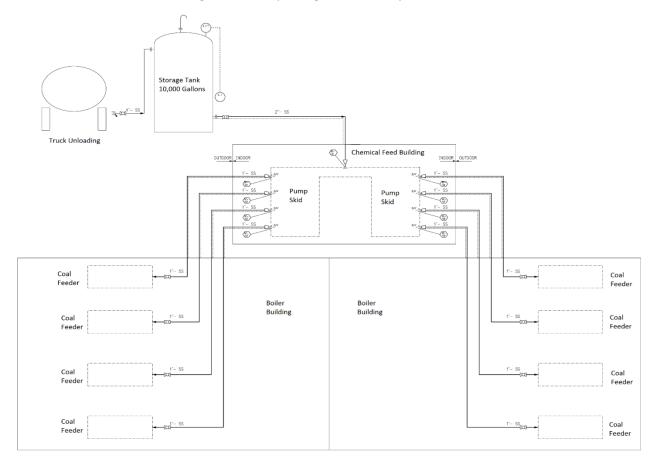


Figure 5- Example Halogenated Liquid P&ID

Project Engineering – LG&E and KU MATS Rule – Ghent Unit 2 WFGD Project Summary January 2016

Background

LG&E and KU (collectively, the "Companies") must comply with the Mercury and Air Toxics Standards ("MATS") Rule beginning April 16, 2016 (includes a 1-year extension). The MATS Rule regulates mercury and other hazardous air pollutants such as acid aerosols from fossil fuel fired steam generating units. For the Companies, this includes the Ghent, Mill Creek, Trimble County and E.W. Brown Stations. The Rule also requires the maximum achievable control technology be utilized.

The Companies' coal-fired units are fitted with state-of-the-art WFGD technology for controlling sulfur dioxide, with the exception of Ghent Unit 2. While the other units include WFGDs constructed or upgraded over the last ten years, Ghent Unit 2's WFGD was installed in 1995. The newer and upgraded WFGDs all have sulfur dioxide removal rates equal to or exceeding 97%, while the older Ghent Unit 2 WFGD currently does meet that removal rate. The 97% removal rate for sulfur dioxide is important due to a provision in the MATS rule that allows sulfur dioxide to be used as a surrogate for hydrogen chloride ("HCl").

With respect to HCl, the MATS Rule requires all units at Ghent to emit no more than 0.002 lbs/mmBtu of heat input. As a surrogate for measuring HCl, sulfur dioxide (which is currently measured and reported on at all KU and LG&E generating units) can be used to calculate HCl emissions values. The surrogate sulfur dioxide emission limit for HCl is 0.2 lbs/mmBtu of heat input. Based on the projected sulfur content of the coal that will be utilized at Ghent, to meet a 0.2 lbs/mmBtu of sulfur dioxide, 97% of the sulfur dioxide must be removed. Ghent Unit 2 currently cannot meet this surrogate value on a continuous basis.

Need

When the Companies obtained approval of their 2011 ECR Plan, the MATS Rule had not been finalized. The final MATS Rule includes the provision allowing a surrogate standard for HCl as described above. Presently, the WFGD system installed on Ghent Unit 2 removes slightly over 90% of sulfur dioxide from the flue gas before it is released into the air. In order to achieve the 0.2 lbs/mmBtu of heat input of sulfur dioxide limit in the MATS Rule, approximately 97% of the sulfur dioxide will need to be removed.

Numerous operating variables affect the rate at which sulfur dioxide is removed during the scrubbing process. In WFGD systems, the scrubbing liquid contains an alkali reagent that enhances the absorption of sulfur dioxide. As such, the removal efficiency of sulfur dioxide is highly impacted by the ratio of slurry liquid-to-gas contact, as well as the chemistry of the system.

KU is proposing improvements to Ghent Unit 2's WFGD system that cumulatively will improve the sulfur dioxide removal efficiency by increasing the effective liquid-to-gas contact. KU plans to install new technology spray nozzles on all spray levels with dual directional sprays on some of the spray levels. Figure 1 shows the existing type nozzles at the top and proposed advanced nozzles at the bottom that will increase the liquid-to-gas contact surface area. Implementation of these advanced

nozzles result in both increased surface area of the slurry spray due to a finer spray and a concentrated spray pattern as conceptually depicted in Figure 2.

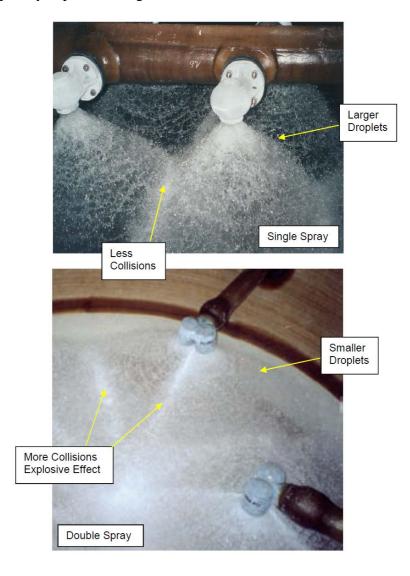
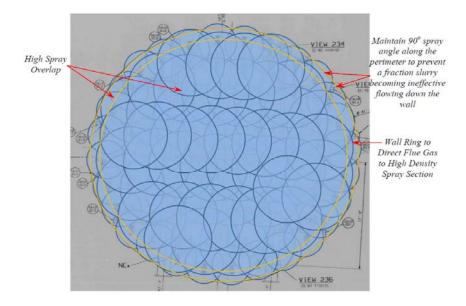



Figure 1 – Current WFGD Nozzles (upper) vs. Proposed Advanced Nozzles (lower)

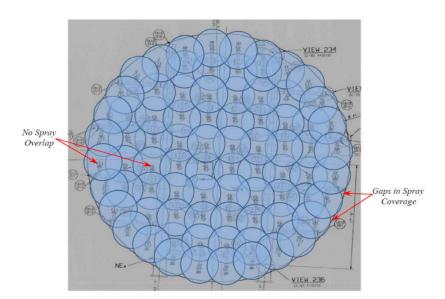


Figure 2 – Current Spray Pattern (lower) vs. Proposed Spray Pattern (upper)

In addition to the nozzles, the project includes the installation of "wall rings" (shown in Figure 3 below) which are attachments to the WFGD's module walls near the spray nozzle and spray cone areas. The wall rings reduce "leakage" of flue gas up the module walls caused by the pressure drop of the nozzle sprays by forcing the flue gas flow through the nozzle spray cone areas. While these upgrades do not increase the amount of liquid flowing through the spray headers, they do essentially increase the contact area of the limestone slurry with the flue gas by increasing surface contact of the slurry with the flue gas through finer spray droplets, concentrated spray patterns and by forcing the flue gas through the sprays by reducing the leakage of flue gas up the wall of the WFGD modules.

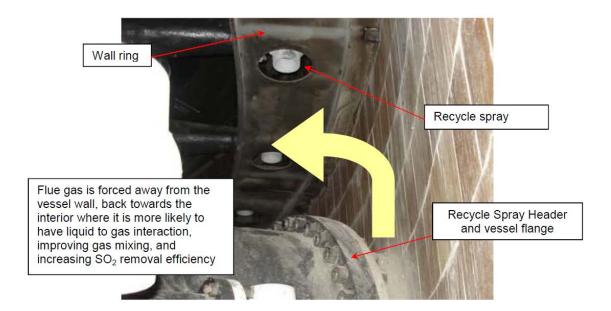


Figure 3 – Wall Ring Concept at WFGD Module Perimeter

While currently not expected to be needed, replacing the recycle pump drive gearboxes may also be required to increase the flow of limestone slurry through the spray nozzles, thus increasing the liquid-to-gas ratio. When these improvements are complete, KU expects to be able to operate Ghent Unit 2 in continual compliance with MATS Rule requirements for the sulfur dioxide surrogate irrespective of which other Ghent units are operating.

Timing

The project timeline includes award to a WFGD technology company late in the first quarter of 2016 with installation occurring later in 2016.

Cash Flow

The estimated cost of the Ghent Unit 2 WFGD upgrades is \$7 million.

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF KENTUCKY UTILITIES)
COMPANY FOR CERTIFICATES OF PUBLIC)
CONVENIENCE AND NECESSITY AND) CASE NO. 2016-00026
APPROVAL OF ITS 2016 COMPLIANCE PLAN)
FOR RECOVERY BY ENVIRONMENTAL)
SURCHARGE)

DIRECT TESTIMONY OF GARY H. REVLETT DIRECTOR, ENVIRONMENTAL AFFAIRS KENTUCKY UTILITIES COMPANY

Filed: January 29, 2016

Q. Please state your name, position and business address.

1

A. My name is Gary H. Revlett. I am the Director of Environmental Affairs for LG&E and KU Services Company, which provides services to Louisville Gas and Electric Company ("LG&E") and Kentucky Utilities Company ("KU") (collectively "the Companies"). My business address is 220 West Main Street, Louisville, Kentucky, 40202. A complete statement of my education and work experience is attached to this testimony as Appendix A.

8 Q. Have you previously testified before this Commission?

9 A. Yes, I testified before the Commission during the proceedings in the Companies' 2006 Environmental Compliance Plans (Case Nos. 2006-002061 (KU) and 2006-10 00208² (LG&E)). I testified in the Companies' 2011 Environmental Compliance 11 Plans cases (Case Nos. 2011-00161³ (KU) and 2011-00162⁴ (LG&E)). I testified in 12 Case No. 2011-00375⁵ in which the Commission issued a Certificate of Public 13 Convenience and Necessity ("CPCN") for the construction of a combined cycle 14 combustion turbine at the Cane Run Generating Station. I testified in Case No. 2014-15 000026 in which the Commission issued a CPCN for the construction of a solar 16

¹ Application of Kentucky Utilities Company for Approval of Its 2006 Compliance Plan for Recovery by Environmental Surcharge, Case No. 2006-00206.

² Application of Louisville Gas and Electric Company for Approval of Its 2006 Compliance Plan for Recovery by Environmental Surcharge, Case No. 2006-00208.

³ Application of Kentucky Utilities for Certificates for Public Convenience and Necessity and Approval of its 2011 Compliance Plan for Recovery by Environmental Surcharge, Case Nos. 2011-00161.

⁴ Application of Louisville Gas and Electric Company for Certificates for Public Convenience and Necessity and Approval of its 2011 Compliance Plan for Recovery by Environmental Surcharge, Case Nos. 2011-00162.

⁵ Joint Application of Louisville Gas and Electric Company and Kentucky Utilities Company for a Certificate of Public Convenience and Necessity and Site Compatibility Certificate for the Construction of a Combined Cycle Combustion Turbine at the Cane Run Generating Station and the Purchase of Existing Simple Cycle Combustion Turbine Facilities From Bluegrass Generation Company, LLC in Lexington, Kentucky.

⁶ In re the Matter of: Joint Application Of Louisville Gas And Electric Company And Kentucky Utilities Company For Certificates Of Public Convenience And Necessity For The Construction Of A Combined Cycle Combustion Turbine At The Green River Generating Station And A Solar Photovoltaic Facility At The E.W. Brown Generating Station, Case No. 2014-00002.

photovoltaic facility at the E.W. Brown Generating Station. Finally, I testified in Case No. 2015-00194⁷ in which the Commission issued its decision on December 15, 2015. In addition to testifying, I have been the responsible witness for many of the data responses the Companies have filed with the Commission in those proceedings.

5 Q. Are you sponsoring any exhibits?

7

8

9

10

11

12

13

14

15

16

17

18

19

A.

6 A. Yes, I am sponsoring the following exhibits:

Exhibit GHR-1 – Groundwater monitoring reports

Q. What is the purpose of your testimony?

The purpose of my testimony is to identify the environmental regulatory requirements that cause the need for the pollution control projects in KU's 2016 Environmental Compliance Plan ("2016 Plan") and demonstrate how those projects will allow KU to comply with these environmental regulations. (A copy of the 2016 Plan is presented in Exhibit JNV-1 to the testimony of John N. Voyles, Jr.) The projects identified in the 2016 Plan are necessary for KU's compliance with the requirements of the Clean Air Act as amended ("CAA"), Coal Combustion Residuals Final Rule ("CCR Rule"), the Mercury and Air Toxics Standards ("MATS Rule"), and other environmental regulations that apply to KU's facilities used for the production of electricity from coal, including state administrative regulations set forth in 401 KAR Chapter 45.

Q. Please describe environmental regulation as it exists today.

20 A. Environmental regulation and compliance is and always has been an ongoing, 21 everyday activity at our facilities and for our operations. The passage of the initial 22 CAA, the Clean Water Act ("CWA"), and the Resource Conservation and Recovery

⁷ Investigation of Kentucky Utilities Company's and Louisville Gas and Electric Company's Respective Need for and Cost of Multiphase Landfills at the Trimble County and Ghent Generating Stations, Case No. 2015-00194.

Act ("RCRA), and all subsequent amendments to and revisions of these and other environmental laws and regulations have significantly increased KU's environmental compliance obligations over time. Environmental regulation has experienced even more significant change over the past several years. During this time, the number and breadth of environmental regulations has expanded such that today, environmental compliance is a complex and costly endeavor. Nonetheless, the Companies continue their culture of compliance on an everyday basis.

As a starting point, the CAA, the CWA, and the RCRA (and their amendments) are the core laws from which almost all environmental regulations have originated. The original CAA, passed in 1970, established regulatory programs to control air pollution. One such program is the National Ambient Air Quality Standards. ("NAAQS"). NAAQS sets the maximum concentration of certain pollutants allowed in ambient air. Another such program is the National Emissions Standards for Hazardous Air Pollutants ("NESHAP"). The NESHAP regulations establish standards for hazardous air pollutants ("HAPs") issued by stationary sources. Around the same time the CAA was passed, Congress established the United States Environmental Protection Agency ("EPA") to implement the requirements found in many of these programs.

In 1990, Congress amended the CAA in significant respects. As part of the amendments, Congress established a procedure that the EPA must follow before it determines whether to regulate power plants pursuant to the NESHAP program. Over time, the EPA has proposed and adopted a number of rules and regulations that have increased the environmental compliance requirements on the Companies and all

⁸ 42 U.S.C. § 7412.

other electric utilities that generate power. The specifics of several of these rules and regulations are discussed below.

Since the Companies' 2011 Environmental Compliance Plan cases, a significant development occurred when the EPA finalized the CCR Rule. That regulation has significant impacts on the Companies' handling and storage of coal combustion residuals ("CCR"). EPA's development of the MATS Rule is another significant development impacting the Companies' operations and environmental compliance requirements. The CCR Rule and the MATS Rule are the main reasons behind the need for the projects at issue in this case. They create a need for significant investments to both manage the Companies' CCR and to maintain environmental pollution control equipment and facilities.

Q. Please describe the CCR Rule.

A.

On April 17, 2015, the EPA published the CCR Rule in the Federal Register. The CCR Rule finalized national regulations to provide a comprehensive set of self-implementing requirements for the safe disposal of CCR from coal-fired power plants such as KU's Ghent, Trimble, and Brown power plants. The CCR Rule was the culmination of extensive study of the effects of coal combustion residuals on the environment and public health. It establishes self-implementing technical requirements for CCR landfills and surface impoundments under subtitle D of the RCRA, the nation's primary law for regulating solid waste. ¹⁰ The effective date of the rule is October 19, 2015.

⁹ The CCR Rule defines CCR as "fly ash, bottom ash, boiler slag, and flue gas desulfurization materials generated from burning coal for the purpose of generating electricity by electric utilities and independent power producers." 40 CFR 257.53. This definition includes what is commonly referred to as gypsum.

¹⁰ http://www2.epa.gov/coalash/coal-ash-rule

Q. What are some of the specific risks the CCR Rule addresses?

The CCR Rule establishes detailed and more stringent design, monitoring, operating, corrective action, closure, and post-closure requirements for CCR landfills and surface impoundments in order to manage environmental and safety risks associated with CCR disposal, including risks to groundwater, surface water, and ambient air, as well as to enhance the integrity of CCR impoundments. Across the industry, the CCR Rule's new performance standards for surface impoundments is expected to result in the closure of many CCR impoundments and replacement of those impoundments with landfills – a move from wet to dry handling and storage of CCR. Additionally, the rule sets out recordkeeping and reporting requirements as well as the requirement for each facility to establish and post specific information to a publicly-accessible website. Finally, the CCR Rule also supports the responsible recycling of CCR by distinguishing safe, beneficial use of CCR from actual disposal of it.¹¹

Q. To what types of facilities does the CCR Rule apply?

The rule applies to new and existing CCR surface impoundments and new and existing CCR landfills. Inactive impoundments at active generation sites that are closed in accordance with applicable closure requirements within three years of the rule's promulgation (i.e., by April 17, 2018) are otherwise exempt from the rule. The rule also does not apply to impoundments and landfills that have already closed or inactive impoundments at plants no longer producing electricity (which, as discussed below, is relevant to the impoundments at the Companies' Green River, Tyrone, and Pineville stations). As to surface impoundments, the CCR Rule applies to new surface impoundments that are designed to hold an accumulation of CCR and liquids

A.

A.

¹¹ Id.

for purposes of treatment, storage, or disposal. The rule requires corrective action for surface impoundments that are affecting groundwater at unacceptable levels. The Companies' ash ponds are just the type of surface impoundments governed by the CCR Rule.

5 Q. Please summarize the key operating requirements of the new CCR Rule.

A. The key operating requirements of the CCR Rule are divided into four areas. They are: 1) structural integrity; 2) hydrologic, hydraulic and air criteria; 3) groundwater monitoring and corrective action; and 4) location standards.

The structural integrity requirements include evaluating the hazard potential classification of the dam, performing a structural stability assessment and analyzing other, new and more stringent structural Factors of Safety.

The hydrologic, hydraulic and air operating requirements include developing a Fugitive Dust Control Plan, stormwater run-on and run-off controls and an assessment of the hydrologic and hydraulic capacities.

Under the groundwater monitoring and corrective action requirements, groundwater monitoring wells must be installed around the perimeter of the CCR management facility or unit to determine if constituents attributable to CCR are present in the groundwater. The determination of whether a release has occurred is based on a statistical analysis, using first detection monitoring, then assessment monitoring if necessary. Following assessment monitoring, if CCR constituents are confirmed to be present in the groundwater at statistically significant levels exceeding groundwater protection standards established for the facility, the owner or operator must undertake corrective measures. As discussed further below, in the case of an

existing unlined CCR impoundment, the detection of CCR constituents above the groundwater protection standards as a result of the groundwater monitoring required by the CCR Rule will trigger a requirement to cease placement of CCR wastestreams within six months thereafter and initiate closure of the impoundment.

The final set of key operating requirements consists of restrictions on the location of regulated management facilities.

Q. Are there dates that apply to these key operating requirements?

Α.

Yes. Each of the key operating requirements has an associated compliance demonstration date. For existing CCR management facilities, the structural integrity criteria must be demonstrated to be satisfied by October 17, 2016. By that same date, the Companies must prepare the initial run-on and run-off control system plan for each existing CCR landfill, demonstrate compliance with the required hydrologic and hydraulic capacities during extraordinary rainfall events for each CCR surface impoundment, and prepare an initial written closure plan for all existing CCR management facilities. The required Fugitive Dust Control Plans were completed by the rule's effective date (October 19, 2015).

For those units requiring the development of Emergency Action Plans, these plans must be finalized and ready to implement by April 17, 2017. By October 17, 2017, each regulated CCR management unit must have developed a groundwater monitoring plan, installed the groundwater monitoring wells and collected at least 8 rounds of samples for statistical comparison to background or the up-gradient wells.

Finally, the CCR Rule requires all CCR management facilities at active generating stations to be evaluated for compliance with the location criteria by

October 17, 2018. Therefore, the demonstration of acceptable operation of each management facility or unit under the new CCR Rule is determined over a 3-year period.

4 Q. Does the CCR Rule require groundwater monitoring of areas in close proximity to surface impoundments?

As summarized above, the rule requires operators of affected surface Yes. impoundments to install a groundwater monitoring system (via a system of monitoring wells), initiate a groundwater detection monitoring program, and evaluate the groundwater data to determine if statistically significant increases of CCR constituents have occurred. The operator must comply with stringent record keeping requirements for the collected data and post the data to a publicly available website titled "CCR Rule Compliance Data and Information." The installation of monitoring wells and the collection of sufficient set of samples for statistical analysis must be completed no later than October 17, 2017. 12 If, on the basis of this analysis, an unlined surface impoundment is determined to cause concentrations of CCR constituents in the groundwater that exceed groundwater protection standards, the owner or operator of the impoundment must cease placing CCR wastestreams into the impoundment and initiate closure of the impoundment within a very short time period - a mere six months. This single provision is a primary driver for the timing of the Companies' closure plans.

Q. If groundwater monitoring triggers a closure of a surface impoundment, what are the key requirements for closure and post-closure?

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

A.

^{12 40} CFR 257.90(b).

As mentioned above, the CCR Rule requires that owners or operators cease placing CCR wastestreams in, and initiate closure of, a surface impoundment within 6 months after the analysis of data shows CCR constituents at statistically significant levels above groundwater protections standards. The rule also requires the closure process to be completed within 60 months after it is initiated. Finally, closure and post-closure plans must be prepared. Major closure options under the CCR Rule include cap and closure, clean and closure, or cleaning and lining. Post-closure cover maintenance and groundwater monitoring is required for at least 30 years.

Q. Of the closure options you list above, which is lowest reasonable cost?

Α.

A.

That is a final determination the Companies will make by evaluating each surface impoundment in the context of all the surface impoundments at each generating station and the CCR Rule's specific requirements for each closure option. As Mr. Voyles describes in greater detail, the Companies currently have a plan for closing surface impoundments on a lowest-reasonable-cost basis for each generating station. That plan includes capping and closing most existing surface impoundments at generating stations with ongoing coal-fired generation by beneficially using CCR to the extent feasible in the closure process, which is lower cost than using other fill material; some remaining surface impoundments are proposed to be cleaned and closed as part of the current overall lowest-reasonable-cost plan for each generating station. But as engineering proceeds and matures for each proposed closure and the assessments of the CCR Rule's criterion for each surface impoundment's circumstances becomes clearer, the closure approach and costs for a given surface impoundment could change, perhaps significantly as described by Mr. Voyles. That

is why the Companies are requesting CPCNs for their CCR Rule-related projects that
authorize the construction necessary to comply with the CCR Rule, not for specific
surface-impoundment-closure plans, as discussed in the testimony of Robert M.
Conroy.

5 Q. Does the CCR Rule contemplate permits for the operation of impoundments or 6 landfills?

A. No. The CCR Rule is "self-implementing." This means that the facilities within purview of the CCR Rule must be in compliance with the rule's standards on the dates set forth in the rule, irrespective of any state requirements or rules. If they are not in compliance, the operator of the facility is subject to citizen suits (including states acting as citizens) to enforce compliance with the rule. In those suits, the Court may award the costs of litigation, including attorney fees and expert witness fees, to the prevailing or substantially prevailing party. ¹³

Q. Please describe the MATS Rule.

7

8

9

10

11

12

13

14

20

15 A. The MATS Rule regulates the emission of mercury and other HAPs from coal- and
16 oil-fired electric utility steam generating units. The MATS Rule requires the use of
17 maximum achievable control technology within the electric-utility industry. The
18 MATS Rule compliance date is April 16, 2015, though state agencies were authorized
19 to grant a one-year extension of time for compliance in certain circumstances.

Q. Please describe the history of the MATS Rule.

A. Like many other environmental regulations, the MATS Rule finds its genesis in the CAA. On December 20, 2000, the EPA decided that it was appropriate and necessary to regulate coal- and oil-fired power plants pursuant to the NESHAP program. The

¹³ 42 U.S.C. § 6972(e).

EPA's initial efforts at regulation were known as the Clean Air Mercury Rule ("CAMR"). EPA promulgated CAMR in 2005, but the rule was struck down in 2008 by the United States Court of Appeals for the District of Columbia.¹⁴

In 2011, the EPA revisited its 2000 decision that it was "necessary and appropriate" to regulate certain power plants under the NESHAP program. The EPA reaffirmed its 2000 decision and proposed new regulations that would govern emissions from coal- and oil-fired power plants. These final regulations—the MATS Rule—were published on February 16, 2012. Shortly thereafter, the MATS Rule was challenged in court. In June 2015, the United States Supreme Court ruled that the EPA acted erroneously when it issued the final MATS Rule without consideration of compliance costs.

O. What is the current status of the MATS Rule?

A. While the Supreme Court held that the EPA erred by not considering cost in its "necessary and appropriate" finding, the MATS Rule remains in place pending EPA's response to the Supreme Court's decision. ¹⁶ In fact, the EPA has begun to address the Supreme Court's holding by publishing a proposed supplemental finding that the MATS Rule remains "necessary and appropriate" even after cost is considered. ¹⁷ This proposed supplemental finding was published on December 1, 2015, and the

¹⁴ See New Jersey v. EPA, 517 F.3d 574 (D.C. Cir. 2008).

¹⁵ *See* 77 Fed. Reg. 9,304 (Feb. 16, 2012), available at: https://www.gpo.gov/fdsys/pkg/FR-2012-02-16/pdf/2012-806.pdf.

¹⁶ The Supreme Court remanded the case to the United States Court of Appeals for the District of Columbia. On December 4, 2015, that court heard argument on whether the MATS Rule should be vacated until the EPA has fully considered cost. No ruling has been made.

¹⁷ 80 Fed. Reg. 75,025 (Dec. 1, 2015), available at: https://www.gpo.gov/fdsys/pkg/FR-2015-12-01/pdf/2015-30360.pdf.

EPA established January 15, 2016, as the deadline for comments. The EPA expects to finalize its proposed supplemental finding by April 2016.

Q. Do other environmental regulations exist that may affect the Companies' future operations?

Yes. The Companies deal on a daily basis with a complex suite of environmental regulations that affect their core business of generating safe and reliable energy for their customers. Of particular importance, the Companies anticipate that the Cross-State Air Pollution Rule ("CSAPR"), NAAQS related to ambient ozone levels, the Clean Power Plan ("CPP"), and the Effluent Limitations Guidelines ("ELG") may have an impact on future operations, and, therefore, may necessitate the addition of other environmental-control equipment.

Q. What is CSAPR?

12

CSAPR is an EPA regulation that requires significant reductions in sulfur dioxide 13 A. ("SO₂") and nitrogen oxides ("NO_X") emissions. CSAPR was promulgated under the 14 Good Neighbor Provision of the CAA, which "instructs States to prohibit in-state 15 sources 'from emitting any air pollutant in amounts which will . . . contribute 16 significantly' to downwind States' 'nonattainment . . . , or interfere with 17 maintenance,' of any EPA-promulgated national air quality standard." ¹⁸ CSAPR is 18 an attempt to bring a number of states and regions into compliance with the NAAQS 19 for 2.5-micron particulate matter ("PM_{2.5}") and 2008 eight-hour ozone (smog). 19 20 (SO₂ is a precursor of PM_{2.5}, and NO_x is a precursor of PM_{2.5} and ozone.) In other 21

¹⁸ EPA v. EME Homer City Generation, L.P., 134 S. Ct. 1584, 1593 (2014) (quoting 42 U.S.C. § 7410(a)(2)(D)(i).

¹⁹ See id. at 1594, 1596 n.3.

words, CSAPR's goal is to reduce air pollution that is naturally transported from one state or area to another.

Q. Please describe the history of CSAPR.

3

11

12

13

14

15

16

17

18

A. CSAPR is the successor to the Clean Air Interstate Rule ("CAIR"). CAIR was an EPA regulation that was focused on the same environmental goals as CSAPR.²⁰
CAIR was finalized in 2005, but in 2008, the United States Court of Appeals for the District of Columbia held that CAIR was not properly promulgated.²¹ The court initially vacated the entire rule, but on rehearing, it amended its decision to allow CAIR to remain in place while the EPA went about correcting the rule's deficiencies.²²

Following the court's decision, the EPA began work on a new rule. The result of that work—CSAPR—was proposed on July 6, 2010, and finalized one year later. CSAPR was immediately challenged in court. On August 21, 2012, the U.S. Court of Appeals for the D.C. Circuit vacated CSAPR and temporarily reinstated CAIR. That decision was reversed by the Supreme Court on April 29, 2014.²³ The D.C. Circuit then held further proceedings to address issues that had not been resolved in its earlier decision.

Q. Is CSAPR currently in effect?

Yes, for most states, including Kentucky. Following the Supreme Court decision reversing the lower court's decision, the D.C. Circuit issued a new decision that left CSAPR in place for most states. EPA then established the effective date for Phase I

²⁰ See id. at 1596–97.

²¹ See North Carolina v. EPA, 531 F.3d 896 (D.C. Cir. 2008).

²² North Carolina v. EPA, 550 F.3d 1176 (D.C. Cir. 2008).

²³ See EPA v. EME Homer City Generation, L.P., 134 S. Ct. 1584 (2014).

of CSAPR as January 1, 2015. The EPA also established the effective date for Phase II of CSAPR as January 1, 2017. The primary difference between Phase I and Phase II of CSAPR is that Phase II lowers even further the maximum permissible level of NO_X and SO₂ emissions.

5 Q. Has the EPA proposed updates to CSAPR related to ozone requirements?

A. Yes. On November 16, 2015, the EPA proposed the CSAPR Update Rule. The proposed CSAPR Update Rule calls for reducing the summertime emissions of NOx from power plants in the eastern half of the United States, including Kentucky. The CSAPR Update Rule has been proposed to assist with meeting the 2008 ozone standard established under NAAQs.

Q. What is the current ozone regulation under NAAQS?

On October 1, 2015, the EPA lowered the maximum allowable ground-level ozone concentration from 75 parts per billion to 70 parts per billion.²⁴ (Before March 2008, the standard was 80 parts per billion.) Several states, including Kentucky, have appealed the EPA's decision to the United States Court of Appeals for the District of Columbia.²⁵ A decision is not expected until at least the fall of 2016.

Q. What is the CPP?

11

17

A. The CPP is a new EPA regulation that, for the first time, establishes greenhouse gas emission guidelines for states to achieve a carbon dioxide ("CO₂") emission limit from existing power plants. The CPP is meant to reduce the emission of CO₂ from power plants. States are authorized to develop their own plans to comply with their specified emission reduction requirements using EPA issued CPP guidelines.

²⁴ 80 Fed. Reg. 65,292 (Oct. 26, 2015), available at https://www.gpo.gov/fdsys/pkg/FR-2015-10-26/pdf/2015-26594 pdf

²⁵ Murray Energy Corp. v. EPA, Case No. 15-1385 (D.C. Cir.).

Under the CPP, the EPA has established CO₂ emission requirements emanating from existing fossil-fired units statewide (rather than each power plant). These requirements are expressed in two ways, a rate-based requirement and a mass-based requirement, based on the "best system of emission reduction." The CPP requires Kentucky to reduce its CO₂ emission rate from 2,166 pounds per net MWh in 2012 to 1,286 pounds per net MWh in 2030 under the rate-based requirement or from 91,372,076 short tons in 2012 to 63,126,121 short tons in 2030 under the mass-based requirement. The CPP provides for the submittal and approval of a state plan by all states, Kentucky included, that will define how the CO₂ emission reductions will be achieved. If the state does not submit an approvable plan, the CAA provides the authority to the EPA to impose a Federal Plan that will define how the state emissions will be reduced to meet the emission requirement.

Q. What is the contemplated timing of the CPP?

A.

The CPP was published on October 23, 2015, and became effective on December 22, 2015.²⁶ The CPP will be phased in over time. The EPA has established three interim periods within the years ranging from 2022 - 2029. Each interim period has an average performance rate or maximum emission level that must be met. The EPA has established 2030 as the first year of implementation for the final CO₂ emission requirement from existing units. The CPP has been challenged in the United States Court of Appeals for the District of Columbia by over half the states (including Kentucky), several utilities (including LG&E and KU), and numerous trade groups.²⁷

²⁶ 80 Fed. Reg. 64,662 (Oct. 23, 2015), available at https://www.gpo.gov/fdsys/pkg/FR-2015-10-23/pdf/2015-22842.pdf.

²⁷ West Virginia v. United States EPA, Case No. 15-1363 (D.C. Cir.). The Petition for Review was filed on October 23, 2015.

- Has the EPA adopted final Effluent Limitations Guidelines ("ELG") 1 Q.
- regulations? 2

8

9

10

20

- A. Yes. Pursuant to the CWA, the EPA finalized new ELG regulations on September 3
- 30, 2015. The final ELG regulations became effective on January 4, 2016. 28 The 4
- 5 previous ELG regulations were last revised in 1982.
- 6 Q. Please describe the new ELG regulations.
- 7 A. The new ELG regulations are extremely complex and lengthy. Speaking at a high

level, the ELG regulations establish new limits for arsenic, mercury, selenium, and

nitrates in flue-gas desulfurization wastewater. The ELG regulations also provide

- that bottom-ash transport water and fly-ash transport water cannot be discharged
- except for very narrow exceptions and water cannot be used to transport flue-gas 11
- 12 mercury control waste. These new regulations are significant and are anticipated to
- result in additional compliance-related expenditures over the next several years. 13
- When must generating facilities begin to comply with the ELG regulations? 14 Q.
- A. Power plants must begin to comply with the ELG regulations "as soon as possible 15
- beginning November 1, 2018, but no later than December 31, 2023."29 Practically 16
- speaking, this means that plants must begin to comply between 2018 and 2023 17
- depending on when the plant needs a new or renewed Kentucky Pollutant Discharge 18
- Elimination System ("KPDES") permit under the CWA. 19

PROPOSED CCR RULE PROJECTS

Q. Please identify the projects KU proposes for compliance with the CCR Rule. 21

²⁸ 80 Fed. Reg. 67,838 (Nov. 3, 2015), available at https://www.gpo.gov/fdsys/pkg/FR-2015-11-03/pdf/2015-25663.pdf.

²⁹ 40 CFR 423.13.

A. Project 36 (construction of Phase II of the Brown Landfill), and Projects 40, 41, and
42 (CCR Rule compliance construction and construction of new process water
systems at Ghent, Trimble, and Brown, respectively) allow for compliance with the
CCR Rule.

Q. Please describe Project 36.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Project 36 involves constructing Phase II of the Brown Landfill which is necessary to store the CCR that is produced at the Brown generating station. The genesis of Project 36 began with 2009 ECR Plan. In the 2009 ECR Plan, the Commission approved KU's proposal to increase the height and volume of the main and auxiliary surface impoundments that store CCR at Brown. In the 2011 ECR Plan, the Commission approved the conversion of the main surface impoundment to a dry landfill to comply with the anticipated federal requirements regarding CCR disposal. The new restrictions on wet CCR disposal established in EPA's final CCR Rule affirmed the Commission's decision was correct. KU began constructing Phase I of the Brown Landfill in late 2014. As Mr. Voyles explains in his testimony, when the Kentucky Division of Waste Management ("KDWM") issued a permit for the Brown Landfill, it set forth a phased approach requiring that the height of CCR disposed in each phase be no more than 10 feet higher than the adjacent phase(s) prior to proceeding with the next layer of disposal across the landfill footprint. Because of this permit condition, KU expects the usable initial 10 foot height capacity of Phase I to be exhausted by the second quarter of 2018 based on historical production rates. Adequate capacity must be ensured to avoid jeopardizing the operation of the Brown units. As Mr. Voyles describes, KU is seeking approval of Phase II at this time.

Q. Please describe Projects 40, 41, and 42.

1

A.

16

17

18

19

20

21

22

23

A. Projects 40, 41, and 42 are for the closure of surface impoundments at the Ghent,

Trimble, and Brown stations, respectively, as required by the CCR Rule. As

described above, the CCR Rule requires that CCR surface impoundments that do not

meet the new structural, groundwater, and location requirements must close as set

forth in the rule. KU proposes the closure of five surface impoundments at Ghent,

two surface impoundments at Trimble, and one surface impoundment at Brown by

2023.

9 Q. Do the surface impoundments at Ghent, Trimble and Brown trigger closure 10 requirements under the CCR Rule?

A. At this time, no surface impoundments at those three stations have been determined to trigger closure because of failure to meet structural, groundwater, or location requirements in the CCR Rule.

Q. If the surface impoundments at Ghent, Trimble, and Brown have not triggered any closure requirement, why is KU proposing closure?

Although KU has not yet implemented the new groundwater monitoring and data evaluation procedures specified in the CCR Rule, existing sampling data from Ghent, Trimble, and Brown suggest that the statistical thresholds that trigger closure for unlined surface impoundments may be exceeded for the impoundments for each of these facilities. Groundwater reports containing existing sampling data have been submitted to KDWM and are attached as Exhibit GHR-1.³⁰ Therefore, there is a high probability that closure requirements could be triggered for surface impoundments at those stations once the groundwater monitoring program required by the CCR Rule is

³⁰ The data shown in Exhibit GHR-1 was filed with KDWM at various times from 2011-2015.

implemented. It is also possible that certain surface impoundments could implicate the location requirements, which are required to be evaluated after the groundwater assessment evaluation.

Prudent utility planning requires that KU start planning for the closure of those surface impoundments now. In light of the extremely short amount of time (a mere six months) the CCR Rule allows between a "triggering" event requiring the initiation of closure of a CCR surface impoundment (analysis of CCR Rule monitoring data showing CCR constituents at statistically significant levels above groundwater protection standards) and the initiation of such closure. It is prudent for KU to move forward now with its plans to close these surface impoundments and arrange for alternate means to manage CCR. Failing to do so would pose an unacceptable risk of having to cease generation at those stations due to a lack of adequate means to manage CCR.

Additionally, as part of KU's closure analysis, KU must consider the effects of other environmental regulations, including ELG, as described above. Indeed, EPA has spoken directly to the interaction between the CCR Rule and ELG:

The proposed ELG would strengthen the existing controls on discharges to surface waters and the publicly owned treatment works from steam electric power plants including from coal ash ponds. Because these two rules affect similar units and may be met with similar compliance strategies, common sense implementation time frames were established in the CCR Rule so that utilities would not be required to make major decisions about CCR units without first understanding the implications that such decisions would have for meeting the surface water protection requirements of the final ELG rule. . . . Thus, utilities will be able to make appropriate business decisions to meet both sets of requirements.³¹

³¹ http://www.epa.gov/coalash/frequent-questions-about-coal-ash-disposal-rule

While closure of surface impoundments will be required under the CCR Rule, KU's plans take into account ELG requirements and will better position KU to comply, just as EPA contemplated.

PROPOSED STATE RULE CLOSURE PROJECTS

Q. Please identify and describe the project KU proposes for the closure of surface impoundments under Kentucky state law.

KU proposes Project 39 for the closure of surface impoundments at Green River, Pineville, and Tyrone. KU proposes to close three impoundments at Green River, one at Pineville, and one at Tyrone. Unlike the required closures proposed at Ghent, Trimble, and Brown under the CCR Rule and ELG, the closure of impoundments at Green River, Pineville, and Tyrone would be completed in accordance only with state law for the closure of special waste landfills and not driven by the federal CCR Rule.³² Because active generation had ceased at these stations prior to the October 19, 2015 effective date of the CCR Rule and the impoundments at these facilities are inactive (i.e., not receiving CCR), the CCR Rule does not apply. However, in an effort to: (1) minimize environmental risk; (2) avoid escalating costs for engineering, construction, and materials; (3) take advantage of economies of scale that will result if these closures are implemented along with the CCR Rule-required closures; and (4) address potential changes in state CCR law that would mandate the closure of these impoundments, it is prudent to proceed with closure.

Additionally, it is possible that compliance with ELG could lead to the mandatory closure of these impoundments under state law. Under ELG, the water in

A.

³² 401 KAR 45:110.

those impoundments is considered "legacy wastewater." 33 As legacy wastewater under ELG, KU will not be permitted to add to the impoundments the wastewater KU currently adds. This wastewater comes from sump pumps that are located at various locations at each generation facility. To the extent ELG prohibits that current practice, the impoundments could become "dry" under state law. If that happens, they would be regulated by KDWM instead of by the Kentucky Division of Water (which currently regulates those impoundments via the KPDES because they are "wet"). If the impoundments are regulated by KDWM, they are subject to KDWM's authority to order remedial measures.³⁴

In short, closure of these surface impoundments at this time is the lowest reasonable cost option for complying with current and anticipated environmental requirements.

PROPOSED MATS RULE PROJECTS

- Q. Please identify the projects KU proposes for compliance with the MATS Rule.
- A. KU proposes Projects 37 and 38 for compliance and to achieve cost efficiencies under 15 the CAA and the MATS Rule. 16
- 17 Q. Please describe Project 37.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

22

- Project 37 involves proposed improvements to the wet flue gas desulfurization A. 18 ("WFGD") technologies at Ghent Unit 2 in order to increase the efficiency of the wet 19 20 scrubber to allow for enhanced removal of SO₂. These improvements are necessary to comply with the MATS Rule. 21
 - Q. How does the MATS Rule require those technology improvements?

³³ 80 Fed. Reg. 67838, 67883. ³⁴ KRS 224.10(5)&(18).

The MATS Rule established a HAP standard of 0.002 lbs./MMBtu for acid gases measured as hydrogen chloride. However, the rule allows for compliance to be demonstrated using SO₂ as a surrogate.³⁵ Using SO₂ as a surrogate, the rule requires that the Ghent generating station emit no more than 0.2 pounds of SO₂ per MMBTU. Ghent Unit 2 is currently emitting more than the allowed 0.2 pounds, although the other units at Ghent are within the permissible range and keep the station average compliant with the surrogate limit. Although the MATS Rule allows KU to average the SO₂ emissions of all of the Ghent units, the emissions at Ghent Unit 2 are such that unless at least two other Ghent units are running when Ghent Unit 2 is operating, Ghent Unit 2 is at risk of having to be shut down for not complying with the MATS Rule.

The WFGD system currently installed on Ghent Unit 2 removes slightly over 90% of SO₂ from the flue gas before it is released into the air. In order to achieve the 0.2 pounds of SO₂ per MMBTU limit in the MATS Rule at Ghent Unit 2, approximately 97% of the SO₂ will need to be removed. In contrast, the other units at Ghent currently emit less than the allowable limit and are of sufficient SO₂ removal efficiencies to comply with the MATS Rule. The testimony of R. Scott Straight describes the details of how Project 37 will increase the efficiency of the removal of SO₂ from Ghent Unit 2, thereby achieving compliance with the MATS Rule and allowing for the operation of Ghent Unit 2 irrespective of which other Ghent units are operating.

Q. Please describe Project 38.

A.

³⁵ 80 Fed. Reg. 9369 and 40 CFR 63; Subpart UUUUU Appendix Table 2.

- A. Project 38 involves the installation of low-cost and economical supplemental control technologies to reduce mercury emissions that will keep Ghent Units 1 4 in compliance with the MATS Rule as efficiently as possible. The project entails injecting an organo-sulfide chemical additive into the WFGD reaction tank for all units at Ghent. It also includes injecting a halogenated chemical additive into the coal feeders at the Ghent units to increase mercury oxidation, which will improve the amount of mercury captured. Mr. Straight describes Project 38 in more detail.
- 8 Q. How does MATS Rule require the improved technologies that Project 38
 9 provides?
- 10 A. The MATS Rule requires KU to further reduce the mercury emissions associated with
 11 the production of electricity from coal. The MATS Rule requires the use of maximum
 12 achievable control technology within the electric-utility industry. Project 38
 13 represents just such maximum achievable technology, providing KU with cost
 14 effective, supplemental control technology.
- 15 Q. How is compliance with the MATS Rule different than the HAPs Rule 16 referenced above and in KU's 2011 ECR case?
- A. The MATS Rule is the final version of the HAPs Rule. The MATS Rule sets
 emissions limitation standards for mercury and other hazardous air pollutants,
 reflecting levels achieved by the best-performing sources currently in operation.
 While the addition of the mercury-related control equipment that was part of the 2011
 Plan reduced mercury emissions at the Ghent units, these supplemental technologies
 will provide operational flexibility when compared to the use of powdered activated

carbon prior to the baghouses. Mr. Straight's testimony discusses these benefits in more detail.

- Q. Given the state of legal proceedings surrounding the MATS Rule (the U.S.

 Supreme Court's holding that EPA did not properly consider cost of implementation and the resulting remand process), why would KU move forward with Projects 37 and 38 to comply with the rule?
- A. The D.C. Circuit decided to remand MATS to EPA without vacating it, so the Rule 7 remains in place and the Companies must comply with it. Moreover, prudent utility 8 9 planning requires it and it also affords greater operational flexibility. There is no doubt about EPA's commitment to the MATS Rule. As described above, EPA 10 addressed the Supreme Court's holding by publishing a proposed supplemental 11 finding that the MATS Rule remains "necessary and appropriate" even after cost is 12 considered.³⁶ This proposed supplemental finding was published on December 1, 13 2015, and the EPA has established January 15, 2016, as the deadline for comments. 14 The EPA expects to finalize its proposed supplemental finding by April 2016. There 15 is every reason to believe that EPA will affirm the MATS Rule and that it will 16 continue to be final and binding. To assume the contrary would be an imprudent 17 utility business practice. 18
 - Q. You have indicated that the CCR Rule, MATS Rule, and ELG require the projects being proposed in this case. Do the other regulations you discussed above (CSAPR, NAAQS, and the CPP) require any of the proposed projects?

 36 80 Fed. Reg. 75,025 (Dec. 1, 2015), available at: https://www.gpo.gov/fdsys/pkg/FR-2015-12-01/pdf/2015-30360.pdf.

24

-

19

20

21

- A. Not directly, but it is important to understand that all of the regulations I have discussed, when taken together, result in an increasingly complex, stringent, and expensive environmental compliance situation for KU and its customers. KU's environmental compliance efforts require prudent business planning and expertise on a daily basis. The projects proposed in this case are a result of that planning and expertise.
- 7 Q. Do you have a recommendation for the Commission?
- 8 A. Yes. I recommend approval of all projects proposed by KU in this case.
- 9 Q. Does this conclude your testimony?
- 10 A. Yes it does.

VERIFICATION

COMMONWEALTH OF KENTUCKY)	
)	SS
COUNTY OF JEFFERSON)	

The undersigned, **Gary H. Revlett**, being duly sworn, deposes and says he is the Director, Environmental Affairs for LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

Sary H. Revlett

Subscribed and sworn to before me, a Notary Public in and before said County and State, this 29th day of 3th 2016.

Notary Public (SEAL)

My Commission Expires:

JUDY SCHOOLER
Notary Public, State at Large, KY
My commission expires July 11, 2018
Notary ID # 512743

APPENDIX A

Gary H. Revlett

Director, Environmental Affairs LG&E and KU Services Company 220 West Main Street Louisville, Kentucky 40202 (502) 627-4621

Education

University of Louisville, Ph.D. Analytical/Environmental Chemistry - May 1976

Murray State University, B.S. Chemistry - June 1971

OSHA Hazardous Waste Worker Training and 8-hour Refresher Courses

Previous Positions

E.ON U.S. Services Inc.

2006-2010 - Air Manager - Environmental Affairs

Tetra Tech EMI, Louisville, Kentucky

2005-2006 - Senior Air Quality Manager

Kenvirons, Inc., Frankfort, Kentucky

1994-2005 - Vice President and Treasurer (Director of Air Services and Laboratory Services)

1985-1994 - Associate (Manager of Testing and Air Services)

1978- 1984 - Senior Environmental Scientist (Manager of Emission Testing and Air Modeling)

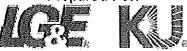
Kentucky Division of Pollution Control, Frankfort, KY

1976-1977 - Principal Chemist - Air Modeling Team

E.W. Brown Station Groundwater Reports

SEP 3 0 2013

DIVISION OF WASTE MANAGEMENT


GROUNDWATER ASSESSMENT REPORT

E.W. BROWN GENERATING STATION MERCER COUNTY, KENTUCKY

AGENCY INTEREST #3148
ACTIVITY ID No. AIN20120001

27 September 2013

Prepared For:

PPL companies

LG&E and KU Services Company 815 Dix Dam Road Harrodsburg, KY 40330

Prepared By:

AMEC Environment & Infrastructure, Inc. 11003 Bluegrass Parkway, Suite 690 Louisville, Kentucky 40299

AMEC Project No. 3143101364

GROUNDWATER ASSESSMENT REPORT

E.W. BROWN GENERATING STATION MERCER COUNTY, KENTUCKY

AGENCY INTEREST #3148 ACTIVITY ID No. AIN20120001

27 September 2013

Prepared For:

PPL companies

LG&E and KU Services Company 815 Dix Dam Road Harrodsburg, KY 40330

Prepared By:

AMEC Environment & Infrastructure, Inc. 11003 Bluegrass Parkway, Suite 690 Louisville, Kentucky 40299

AMEC Project No. 3143101364

Table 4

Dye Monitoring Results and Field Parameter Data, 2011-2013

E.W. Brown Generating Station, Mercer County, Kentucky

AMEC Project No. 3143101364

	Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgd)	Туре	pH (S.U.)	Temp- erature (°C)	DO (mg/L)	Oxidation- Reduction Potential (ORP)**	Turbidity (NTU)	Specific Conduc- tance (SC) (µmho/cm)	Tot. Diss. Solids (TDS) (Field) (ppm)
Sta ID Station Description	Date					, artif			17.7.		\				- X-F
Background Springs									······································						
CLI OFO Channing Carles	5/9/2011	ND/B				40	0.06	V	6.82	19.6				370	180
CH-052 Stonewall Spring CH-052 Stonewall Spring	5/13/2011	ND/B				190	0,3			19.0				370	100
CH-052 Stonewall Spring	5/17/2011	ND/B				90	0.1	—v⊤	7.26	14.8				840	490
CH-052 Stonewall Spring	5/24/2011	ND/B			· · · · · · · · · · · · · · · · · · ·	20	0.03	`	7.30	19.1				410	200
CH-052 Stonewall Spring	5/31/2011	ND/B	768.72	-0.71	768.0		_							_	
CH-052 Stonewall Spring	6/7/2011	ND/B			_	5	0.007	В	7.49	23.8	_		_	470	230
CH-052 Stonewall Spring	6/14/2011	ND/B			_	no flow	no flow								
CH-052 Stonewall Spring	6/21/2011	ND/B			-	no flow	no flow			_					<u> </u>
CH-052 Stonewall Spring	6/30/2011	ND/B			_										
CH-052 Stonewall Spring	7/14/2011	ND/B	_	_	_	_						-			
CH-052 Stonewall Spring	low water	(moved Sta)	768.72		767.5										
CH-052 Stonewall Spring	1/31/2012		768,53	0.04	768,6	11	0.02	8	7.63	12.9	8.31	-226.2	15	324	
CH-052 Stonewall Spring	2/16/2012		768,53	0.09	768.6	4	0,006	<u>B</u>	8.02	10.7	9,52	-223.4	5.8	332	
CH-052 Stonewall Spring	4/13/2012	_	768.53	0.04	768.6	1	0.001	Ē	8.00	22.3			7.7	560	
CH-052 Stonewall Spring	4/26/2012	ND/B	768.53	0.00	768,5	no flow	no flow	E							
CH-052 Stonewall Spring	5/3/2012	ND/B	 768.53	0.01	700 5		0.001	E							
CH-052 Stonewall Spring	5/7/2012				768.5	1									
CH-052 Stonewall Spring	5/10/2012 5/14/2012	ND/B	768.53 768.53	0.00	768.5 768.7	no flow 18	no flow 0.03	<u>—</u> В	7,62	15,7	1,89	-122,3	18,0	 523	
CH-052 Stonewall Spring CH-052 Stonewall Spring	5/17/2012	ND/B	768,53	0.12	768,7	5	0.007	<u>В</u>	7.74	14.4	5.93	155.7	10,0	516	
CH-052 Stonewall Spring	5/24/2012	ND/B	768,53	0.06	768,6	1	0.007	<u> </u>				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		210	
CH-052 Stonewall Spring CH-052 Stonewall Spring	6/1/2012	ND/B	768.53	0.03	768.6	0.3 (low)	low flow	<u>_</u> _					-		_
CH-052 Stonewall Spring CH-052 Stonewall Spring	6/7/2012	ND/B	768,53	dry	dry	no flow	no flow	<u> </u>	<u></u>						
CH-052 Stonewall Spring	6/15/2012	R+?	768.53	dry	dry	no flow	กอ flow							-	
CH-052 Stonewall Spring	6/28/2012		768.53	dry	dry	no flow	no flow					<u>-</u>			
CH-052 Stonewall Spring	7/17/2012		768,53	dry	dry	no flow	no flow								· · · · · · · · · · · · · · · · · · ·
CH-052 Stonewall Spring	8/2/2012		768,53	dry	dry	no flow	no flow	 -	-						
CH-052 Stonewall Spring	8/23/2012		768.53	dry	dry	no flow	no flow		_						_
CH-052 Stonewall Spring	9/4/2012		768,53	dry	dry	no flow	no flow								
CH-052 Stonewall Spring	9/20/2012		768.53	dry	drý	no flow	no flow	_		_			-		_
CH-052 Stonewall Spring	12/18/2012		768.53	0.24	768.80	10	0,01	B	8.84	10,7	4.94	-184,3	22	375	
	**************************************					······································									
CH-063 Rockhouse Spring	4/26/2012	ND/B	812.23	0.29	812.5	4	0.005	E	7.28	17,7	1,65	-34.9	_	534	
CH-063 Rockhouse Spring	5/3/2012	ND/B	812.23	-	_	_						-	_		
CH-063 Rockhouse Spring	5/7/2012	ND/B	812.23	0.27	812.5	5	0.007	E	7.18	12.6	3.04	-140.5		474	
CH-063 Rockhouse Spring	5/10/2012	ND/B	812,23	0.41	812.6	3	0.004	E	7.21	13.0		-111.8		632	_
CH-063 Rockhouse Spring	5/17/2012	ND/B	812.23	0.31	812.5	7	0.01	E	7.05	12.7	2.24	-226.7		589	
CH-063 Rockhouse Spring	5/21/2012		812,23	0,27	812,5	7	0.01	Ε	7.27	13.2	-	-146.3		617	<u> </u>
CH-063 Rockhouse Spring	5/24/2012	ND/B	812.23	0.24	812.5	2	0,003	E	7.11	12.8	1.17	-119.8		616	
CH-063 Rockhouse Spring	6/1/2012	ND/B	812.23	0.20	812.4	2	0.003	٤	7.33	12.7	2.97	-123.7		605	
CH-063 Rockhouse Spring	6/7/2012	ND/B	812,23	standing	 –	low flow	low flow		7.85	13.1		-124.4		639	
CH-063 Rockhouse Spring	6/15/2012	ND/8	812,23	standing		no flow	no flow		7.08	16.3		-123.5		833	
CH-063 Rockhouse Spring	6/28/2012		812,23	dry	dry	no flow	no flow								
CH-063 Rockhouse Spring	7/17/2012		812.23	standing		no flow	no flow		7.00	45.5	~ ~				
CH-063 Rockhouse Spring	8/2/2012	ND/B	812.23	standing		no flow	no flow		7.80	15.5	6.49	92.6		656	
CH-063 Rockhouse Spring	8/23/2012	ND/B	812,23	standing		no flow	no flow		7,84	15,1	6,94	108,6		693	
CH-063 Rockhouse Spring	9/20/2012	ND/B	812.23 812.23	0.18	812.4 812.5	2 50	0.003	E V	7.51 7.78	18.10 14.4		-178.3 -103.8		962 433	
CH-063 Rockhouse Spring CH-063 Rockhouse Spring	12/17/2012 1/14/2012		812.23	0,26 0.34	812.5	60	0.07	E E	8.53	12,5	7,43	-103.8 132.7	13	433	
CH-005 Rockflodse Spring	1/14/2012		012.23	0.34	012,0		60,0		0.55	12.5	7.01	104./	13	423	
CH-062 Hardin Spring	4/26/2012	ND/B	834.63	-		_			_	_				_	
CH-062 Hardin Spring CH-062 Hardin Spring	5/3/2012	ND/B	834,63												
CIFUCE FIGURE OPTING	3/3/2012	ND/D	CQ.+.CO												

Personal Point Environ Loyard Personal Point Environ Personal P	n i merce et et et et en et et en et en en en en en en en en en en en en en	Parameter:		a dijakof ser és Majarahan	Acceptance of the second	s rumaenenge			91.65			i i i i i i i i i i i i i i i i i i i	Oxidation- Reduction	er Sensteiner He Ulanseriks	Specific	Tot. Diss.
Station Description Date Station Description ST2012 NDB SM4.53 D.02 SM4.7 Nor-flow Nor-flo	pod Bones, rom 100 partir (Character of the L	Sulpoperations Sulpoperations	Dye Results	Measuring Point Elev.	Water Level	Water Elevation	Flow	Flow	Type	рН	Temp- erature	DO	Potential (ORP)**	Turbidity	Conduc- tance (SC)	Solids (TDS) (Fleld)
CH4622 Hardin Spring				(ft NAVD88)	(ft AMP)	(ft NAVD88)	(gpm)	(mgd)		(S.U.)	(°C)	(mg/L)	(mV)	(NTU)	(µmho/cm)	(ppm)
CHORD Hardin Spring	a ID Station Description	Date														
CH-062 Hardis Spring	-062 Hardin Spring	5/7/2012	ND/B	834,63	0,02	834.7	low flow	low flow						_	_	
CH-6022 Hardin Spring	I-062 Hardin Spring						low flow									
CH-MS2 Hardin Spring																
CH-026 Hardin Spring																-
CH-062 Hardin Spring																
CH-6082 Hardin Spring																
CH-1026 Herdin Spring						 								_	 	
CH-H022 Hardin Saring		7/17/2012		834,63	dry	dry	no flow	no flow						_	_	_
CH-062 Hardin Syring 920/2012 NDIB 804.68 duy dry no flow																
CH-062 Hardin Spring													·····			
CH-092 Hardin Spring											~~~					_
CH-028 Webb Spring Complex Sin/2011 ND/B 6 0.008 8 7.57 20.8 510			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
CH-028 Webb Spring Complex	-062 Hardin Spring	1/14/2012		534.53	0.29	034.9	20	0.0300	v	0.20	14,44	6,39	132,50	0.0	231	
CH-028 Webb Spring Complex S173:2011 ND/8 6 0.009 B 600	er Sampling Points - Springs and Drains				***************************************											•
CH-028 Webs Spring Complex	-028 Webb Spring Complex	5/9/2011	ND/B				6	0.008	В	7.57	20,8		-		510	250
CH-028 Webb Spring Complex S2A/2011 ND/B 799.92 -0.93 799.0 4 0,006 B 7.58 19.2	I-028 Webb Spring Complex															
CH-028 Webb Spring Complex S61/2011 ND/B 799.92 -9.92 799.0 4 0.006 B 7.19 21.3 550												·				290
CH-028 Webb Spring Complex																300
CH-D28 Webb Spring Complex 6/14/2011 ND/B												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				290
CH-028 Webb Spring Complex																330 330
CH-028 Webb Spring Complex Complex CH-028 Webb Spring Complex CH-028 Webb Sprin																340
CH-1028 Webb Spring Complex																
CH-028 Webb Spring Complex					_						-	-	_		********	
CH-028 Webb Spring Complex	-028 Webb Spring Complex	low water	(moved Sta)	799.92	-1.11	798.8										_
CH-028 Webb Spring Complex																
CH-028 Webb Spring Complex																
CH-028 Webb Spring Complex S73/2012 ND/B	· · · · · · · · · · · · · · · · · · ·															
CH-028 Webb Spring Complex																
CH-028 Webb Spring Complex 5/10/2012 ND/B 794.44 0.20 794.6 65 0.09 V 8.24 17.7 10.24 154.7 — 736 CH-028 Webb Spring Complex 5/14/2012 — 794.44 0.40 794.8 250 0.4 V 7.48 16.1 4.70 123.1 11.0 720 CH-028 Webb Spring Complex 5/14/2012 ND/B 794.44 0.29 794.7 12 0.2 V 8.28 20.1 3.01 -163.7 — 697 CH-028 Webb Spring Complex 5/24/2012 ND/B 794.44 0.24 794.7 103 0.1 V 8.29 22.7 3.60 -162.9 — 710 CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.26 794.7 110 0.2 V 8.10 15.1 138 -181.9 — 732 CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.26 794.7 110 0.2 V 8.10 15.1 138 -181.9 — 732 CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.26 794.7 110 0.2 V 8.10 15.1 138 -181.9 — 732 CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.30 794.7 13 0.02 B 8.31 18.7 9.01 -132.5 — 732 CH-028 Webb Spring Complex 6/15/2012 ND/B 794.44 0.21 794.6 31 0.04 V 7.52 16.6 8.76 167.9 — 832 CH-028 Webb Spring Complex 6/28/2012 ND/B 794.44 0.21 794.6 31 0.04 V 7.52 16.6 8.76 167.9 — 832 CH-028 Webb Spring Complex 6/28/2012 ND/B 794.44 0.19 794.6 39 0.06 V 7.88 17.1 5.79 233.5 — 1.437 CH-028 Webb Spring Complex 7/17/2012 ND/B 794.44 0.19 794.6 39 0.06 V 7.88 17.1 5.79 233.5 — 1.437 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.17 794.6 7 0.01 B 8.18 29.8 5.29 189.4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.17 794.6 7 0.01 B 8.18 29.8 5.29 189.4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.20 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 100 0.1 V 7.74 22.4 — — — — — — — — — — — — — — — — — — —																
CH-028 Webb Spring Complex 5/14/2012 — 794.44 0.40 794.8 250 0.4 V 7.48 16.1 4.70 123.1 11.0 720 CH-028 Webb Spring Complex 5/17/2012 ND/B 794.44 0.29 794.7 12 0.2 V 8.28 20.1 3.01 -163.7 — 697 CH-028 Webb Spring Complex 5/24/2012 ND/B 794.44 0.24 794.7 103 0.1 V 8.29 22.7 3.60 -162.9 — 710 CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.26 794.7 110 0.2 V 8.10 15.1 1.38 -181.9 — 732 CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.30 794.7 113 0.02 B 8.31 18.7 9.01 -132.5 — 757 CH-028 Webb Spring Complex 6/15/2012 ND/B 794.44 0.21 794.6 31 0.04 V 7.52 16.6 8.76 167.9 — 832 CH-028 Webb Spring Complex 6/15/2012 ND/B 794.44 0.19 794.6 31 0.04 V 7.52 16.6 8.76 167.9 — 832 CH-028 Webb Spring Complex 6/28/2012 ND/B 794.44 0.19 794.6 39 0.06 V 7.88 17.1 5.79 233.5 — 1437 CH-028 Webb Spring Complex 7/17/2012 ND/B 794.44 0.17 794.6 7 0.01 B 8.18 29.8 6.29 189.4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.17 794.6 7 0.01 B 8.18 29.8 6.29 189.4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.20 794.6 20 0.03 E 8.15 28.6 6.76 177.5 — 788 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.16 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/2/2012 E++ 794.44 0.16 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/2/2012 E++ 794.44 0.29 794.7 130 0.2 V 7.91 20.8 3.41 -125.4 — 829 CH-028 Webb Spring Complex 9/2/2012 E++ 794.44 0.29 794.7 130 0.2 V 7.91 20.8 3.41 -125.4 — 823 CH-028 Webb Spring Complex 9/2/2012 E++ 794.44 0.29 794.7 130 0.2 V 7.91 20.8 3.41 -125.4 — 823 CH-028 Webb Spring Complex 9/2/2012 E++ 794.44 0.29 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 50 0.07 B — — — — 70 0.1 V 7.74 22.4 — — — — — — — — — — — — — — — — — — —																
CH-028 Webb Spring Complex 5/17/2012 ND/B 794.44 0.29 794.7 12 0.2 V 8.28 20.1 3.01 -163.7 — 697 CH-028 Webb Spring Complex 5/24/2012 ND/B 794.44 0.24 794.7 103 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 8.29 22.7 3.60 -162.9 — 710 0.1 V 7.52 16.6 8.76 162.9 — 710 0.1 V 7.52 16.0 8.70 -162.9 — 710 0.1 V 7.52 16.0 8.70 -162.9 — 710 0.1 V 7.52 16.0 8.70 -162.9 — 710 0.1 V 7.52 16.0 8.70 -162.9 — 710 0.1 V 7.52 16.0 8.70 -162.9 — 710 0.1 V 7.52 16.0 8.76 167.9 — 832 0.0 0.0 V 7.6																
CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.26 794.7 110 0.2 V 8.10 15.1 1.38 -181.9 — 732 CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.30 794.7 13 0.02 B 8.31 18.7 9.01 -132.5 — 757 CH-028 Webb Spring Complex 6/1/2012 ND/B 794.44 0.21 794.6 31 0.04 V 7.52 16.6 8.76 167.9 — 832 CH-028 Webb Spring Complex 6/28/2012 ND/B 794.44 0.19 794.6 39 0.06 V 7.88 17.1 5.79 233.5 — 1.437 CH-028 Webb Spring Complex 7/17/2012 ND/B 794.44 0.19 794.6 39 0.06 V 7.88 17.1 5.79 233.5 — 1.437 CH-028 Webb Spring Complex 7/17/2012 ND/B 794.44 0.19 794.6 7 0.01 B 8.18 29.8 6.29 189.4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.20 794.6 20 0.03 E 8.15 28.6 6.76 177.5 — 788 CH-028 Webb Spring Complex 8/2/2012 E+7 794.44 0.16 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/2/2012 E++ 794.44 0.29 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 50 0.07 B — — — — — — — — — — — — — — — — — —									V				-163.7		697	
CH-028 Webb Spring Complex 6/7/2012 ND/B 794,44 0.30 794,7 13 0.02 B 8.31 18.7 9.01 -132.5 — 757 CH-028 Webb Spring Complex 6/15/2012 ND/B 794,44 0.21 794,6 31 0.04 V 7.52 16.6 8.76 167.9 — 832 CH-028 Webb Spring Complex 6/28/2012 ND/B 794,44 0.19 794.6 39 0.06 V 7.88 17.1 5.79 233.5 — 1,437 CH-028 Webb Spring Complex 7/17/2012 ND/B 794,44 0.17 794.6 7 0.01 B 8.18 29.8 6.29 189,4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794,44 0.17 794.6 7 0.01 B 8.18 29.8 6.29 189,4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794,44 0.20 794.6 20 0.03 E 8.15 28.6 6.76 177.5 — 788 CH-028 Webb Spring Complex 8/2/2012 E+7 794,44 0.16 794,6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/2/2012 E++7 794,44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/20/2012 E+++ 794,44 0.26 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/20/2012 E+++ 794,44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794,44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/9/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.07 B — — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 50 0.07 B — — — — — — — — — — — — — — — — — —																
CH-028 Webb Spring Complex 6/15/2012 ND/B 794.44 0.21 794.6 31 0.04 V 7.52 16.6 8.76 167.9 — 832 CH-028 Webb Spring Complex 6/28/2012 ND/B 794.44 0.19 794.6 39 0.06 V 7.88 17.1 5.79 233.5 — 1.437 CH-028 Webb Spring Complex 7/17/2012 ND/B 794.44 0.17 794.6 7 0.01 B 8.18 29.8 6.29 189.4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.20 794.6 20 0.03 E 8.15 28.6 6.76 177.5 — 788 CH-028 Webb Spring Complex 8/2/2012 E+7 794.44 0.16 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/20/2012 E+7 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/20/2012 E+++ 794.44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/9/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.07 B — — — — — — — — — — — — — — — — — —				******												
CH-028 Webb Spring Complex 6/28/2012 ND/B 794.44 0.19 794.6 39 0.06 V 7.88 17.1 5.79 233.5 — 1.437 CH-028 Webb Spring Complex 7/17/2012 ND/B 794.44 0.17 794.6 7 0.01 B 8.18 29.8 6.29 189.4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.20 794.6 20 0.03 E 8.15 28.6 6.76 177.5 — 788 CH-028 Webb Spring Complex 8/2/2012 E+? 794.44 0.16 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/20/2012 E++ 794.44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.07 B — — — — — — — — — — — — — — — — — —																
CH-028 Webb Spring Complex 7/17/2012 ND/B 794.44 0.17 794.6 7 0.01 B 8.18 29.8 6.29 189.4 — 829 CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.20 794.6 20 0.03 E 8.15 28.6 6.76 177.5 — 788 CH-028 Webb Spring Complex 8/2/2012 E+? 794.44 0.16 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/20/2012 E++ 794.44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/13/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 50 0.07 B — — — — — — — — —																
CH-028 Webb Spring Complex 8/2/2012 ND/B 794.44 0.20 794.6 20 0.03 E 8.15 28.6 6.76 177.5 — 788 CH-028 Webb Spring Complex 8/23/2012 E+7 794.44 0.16 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/20/2012 E++ 794.44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/9/2011 ND/B — — 70 0.1 V 7.74 22.4 — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — 50 0.07 B — — 70 — 740																
CH-028 Webb Spring Complex 8/23/2012 E+7 794.44 0.16 794.6 17 0.02 E 8.03 19.5 6.03 129.2 — 627 CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/20/2012 E+++ 794.44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/9/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — — CH-050 Railroad Spring 5/13/2011 ND/B — — — 50 0.07 B																
CH-028 Webb Spring Complex 9/4/2012 — 794.44 0.29 794.7 130 0.2 V 7.91 20.6 3.41 -125.4 — 840 CH-028 Webb Spring Complex 9/20/2012 E+++ 794.44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/9/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 50 0.07 B — — — — —																
CH-028 Webb Spring Complex 9/20/2012 E+++ 794.44 0.26 794.7 70 0.1 V 8.15 20.0 9.11 179.1 — 833 CH-028 Webb Spring Complex 12/18/2012 — 794.44 0.43 794.9 263 0.4 V 8.69 12.2 6.09 -162.0 80 516 CH-050 Railroad Spring 5/9/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B — — — 50 0.07 B — — — — — —									V							
CH-050 Railroad Spring 5/9/2011 ND/B — — — 70 0.1 V 7.74 22.4 — — — 740 CH-050 Railroad Spring 5/13/2011 ND/B —	-028 Webb Spring Complex															
CH-050 Railroad Spring 5/13/2011 ND/B 50 0.07 B	-028 Webb Spring Complex	12/18/2012		794,44	0.43	794,9	263	0,4	V	8,69	12,2	6,09	-162.0	80	516	-
																360
							50 40									300
CH-050 Railroad Spring 5/17/2011 ND/B — — 40 0.06 V 7.13 15.0 — — — 610 CH-050 Railroad Spring 5/24/2011 ND/B 821.93 -1.67 820.3 120 0.2 V 7.22 19.0 — — — 950																290 470
CH-050 Railroad Spring 5/3/2011 ND/B 821.93 -1.75 820.2 7.26 21.2 710								 								360

Table 4

Dye Monitoring Results and Field Parameter Data, 2011-2013

E.W. Brown Generating Station, Mercer County, Kentucky

AMEC Project No. 3143101364

		Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgd)	Туре	pH (S.U.)	Temp- erature (°C)	DO (mg/L)	Oxidation- Reduction Potential (ORP)** (mV)	Turbidity (NTU)	Specific Conduc- tance (SC) (µmho/cm)	Tot Diss. Solids (TDS) (Field) (ppm)
Sta ID	Station Description	Date														
CH-050	Railroad Spring	6/7/2011	ND/B							6.78	25.2				1,110	560
	Railroad Spring	6/14/2011	ND/B			_	_	_	_	7.13	23.1				620	320
	Railroad Spring	6/21/2011	ND/B	uw	_	_	_	_	_	6.81	18.0	7.57	_	_	1,000	500
		6/30/2011	ND/B										-			
	Railroad Spring	7/14/2011	ND/B													
	Railroad Spring	low water	(moved Sta)	821.93	-1.74	820.2	77		-	7.46			-224,7		<u>-</u> 693	
CH-050 CH-050	Railroad Spring Railroad Spring	1/31/2012 2/16/2012		820,61 820,61	0.17 0.10	820.8 820.7	20	0.1	<u>v</u>	7.46	13,4 13.1	7,18 8.56	-224.1 -214.1	7,5 7.0	905	
	Railroad Spring	4/13/2012		820,61	0.02	820.6	5	0.006	<u>_</u>	7.60	21.8	- 0.36	-214.1	6.2	1,480	
	Railroad Spring	4/26/2012	ND/B	820,61	0.13	820,7	47	0.07		7.86	16.9	4.29	157.3		731	
	Railroad Spring	5/3/2012	ND/B						<u> </u>	-	-		-			
	Railroad Spring	5/7/2012	ND/B	820.61	0.12	820.7	25	0.04	V			— — · · · ·		_		
	Railroad Spring	5/10/2012	ND/B	820.61	0.13	820.7	20	0.03	Ε			***			<u></u>	
	Railroad Spring	5/14/2012		820.61	0.27	820.9	160	0.2	<u>v</u>	7.61	16.5	7.95	206,1	42.0	1,079	
	Railroad Spring	5/17/2012	ND/B	820.61	0.21	820,8	15	0,2	<u> </u>	7,25	16.5	2.78	-187.3		1,120	
	Railroad Spring Railroad Spring	5/24/2012 6/1/2012	ND/B	820.61 820,61	0.09 0.27	820.7 820.9	25 90	0.04 0.1	E V	7.27 7.19	15.9	3.01	-152.9		939	
	Railroad Spring	6/7/2012	ND/B ND/B	820,61	<0.1	820.7	low flow	low flow	<u>V</u>	7.19	14,4 16.3	2.92 10.06	-173.5 -68.7		1,097 1,239	
	Railroad Spring	6/15/2012	R+?	820.61	0.17 standing	820.8	no flow	no flow		7.03	21.8	8.36	156.5		1,235	
	Railroad Spring	6/28/2012	ND/B	820.61	0.15 standing	820.8	low flow	low flow		6,98	22,2	4.03	121.7		1,618	
	Railroad Spring	7/17/2012	ND/B	820.61	0.05	820.7	low flow	low flow								
	Railroad Spring	8/2/2012	ND/B	820.61	0.09	820.7	10	0.01	E							
	Railroad Spring	8/23/2012	ND/B	820,61	0.10	820,7	5	0,007	E							
	Railroad Spring	9/4/2012		820.61	0.27	820.9	68	0.1	٧	7,62	20,2	3,53	-99.8		1,415	
	Railroad Spring	9/20/2012	ND/B	820,61	0,26	820,9	95	0.1	V	7.62	18.8	6.86	149.0	 .	1,386	
CH-050	Railroad Spring	12/18/2012		820,61	0.39	821,0	160	0,2	V	7.98	15.3	4.89	-127.6		2,350	
CH-040	Dam Toe Right (Audible)	5/9/2011	ND/B		, ma					6.72	20.9				1,060	530
CH-040	Dam Toe Right (Audible)	5/13/2011	ND/B				_	_	_							
CH-040	Dam Toe Right (Audible)	5/17/2011	F+							7.20	15.2			_	1,070	520
	Dam Toe Right (Audible)	5/24/2011	F++							6.81	19.1				990	490
	Dam Toe Right (Audible)	5/31/2011	F++, S++							7.51	21.4		-		870	440
	Dam Toe Right (Audible)	6/7/2011	F+, S+							7.04	24.3				1,000	510
	Dam Toe Right (Audible) Dam Toe Right (Audible)	6/14/2011 6/21/2011	F+, S+ F+							7.62 6.82	23.9 17.6	 1,26	-		970 900	490 440
	Dam Toe Right (Audible)	6/30/2011	F+							0.62	17.5	1,20			900	440
	Dam Toe Right (Audible)	7/14/2011	ND/B				_=_							-		
	Dam Toe Right (Audible)	low water	(moved Sta)	754.39	-1.99	752,4							_			
CH-040	Dam Toe Right (Audible)	1/31/2012		752.31	0.25	752.6	24	0.03	В	6.90	17.2	3.63	-229,9	8.6	790	
	Dam Toe Right (Audible)	2/16/2012		752.31	0.19	752.5	25	0,04	E	7.27	14,9	3,99	-234	9.7	746	
	Dam Toe Right (Audible)	4/13/2012		752,31			12	0.02	E	7.20	21.1			8,2	1,070	
	Dam Toe Right (Audible)	4/27/2012	ND/B	752.31	0.25	752.6	10	0.01	E	7,42	16.8		209,6		814	
	Dam Toe Right (Audible)	5/2/2012	ND/B	750.04	0.07					700						
	Dam Toe Right (Audible) Dam Toe Right (Audible)	5/7/2012 5/10/2012	ND/B ND/B	752.31 752.31	0.27 0.31	752.6 752.6	10 5	0.01	E	7.06 7.02	17.7 18.0	3.86 3.07	-211.6		856	
	Dam Toe Right (Audible)	5/14/2012	ND/B	752.31	0.36	752.7	20	0.007	E	7,02	18.8	7,24	-161.2 148.8	 15.0	1,197 1,050	<u>-</u>
	Dam Toe Right (Audible)	5/17/2012	E+?	752.31	0.28	752.6	15	0.03	<u></u>	7.02	17.5	3.02	-195.5	15.0	1,084	
	Dam Toe Right (Audible)	5/24/2012	R+?	752.31	0.27	752.6	15	0.02	Ē	6,92	18.0	2,10	-169,1	<u>-</u>	1,066	
	Dam Toe Right (Audible)	6/1/2012	ND/B	752.31	0.36	752,7	20	0.03	<u>=</u>	7,03	17,7	2.56	-188.9		1,094	
	Dam Toe Right (Audible)	6/7/2012	E++	752.31	0.30	752.6	20	0.03	E	7.04	17.7	2.56	-94.2		1,248	
	Dam Toe Right (Audible)	6/15/2012	E+/ND	752.31	0.21	752,5	5	0,007	E	7.12	18.1	2.81	-112.6	_	968	
	Dam Toe Right (Audible)	6/28/2012	E++	752.31	0.17	752.5	8	0.01	V	7.83	18,7	3.42	-178.9		1,289	
	Dam Toe Right (Audible)	7/17/2012	<u>E++</u>	752.31	0,28	752.6	20	0,03	토	6.83	17.0	2.06	-177.0	_	971	
CH-040	Dam Toe Right (Audible)	8/2/2012	E++	752,31	0.31	752.6	25	0.04	E	7,08	17,5	2,26	-153,3		1,011	

	Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgd)	Туре	рН (S.U.)	Temp- erature (°C)	DO (mg/L)	Oxidation- Reduction Potential (ORP)***	Turbidity (NTU)	Specific Conduc- tance (SC) (µmho/cm)	Tot. Diss, Solids (TDS) (Field) (ppm)
Sta ID Station Description	Date														
CH-040 Dam Toe Right (Audible)	8/23/2012	E++	752,31	0.31	752.6	25	0,04	E	7,24	16.1	2,61	-107,3	_	739	
CH-040 Dam Toe Right (Audible)	9/4/2012		752.31	0.34	752.7	35	0.05	<u>-</u> -	7,23	18.9	2.26	-95,7		995	
CH-040 Dam Toe Right (Audible)	9/20/2012	E++	752.31	0,27	752.6	10	0.01	E E	7.54	17,3		-214.8	_	1,012	
CH-040 Dam Toe Right (Audible)	12/17/2012		752,31	0.31	752.6	5	0,007	Ē	7.81	14.9	5,13	-142,5	.19	897	
CH-044 Ditch Spring	5/9/2011	ND/B				120	0.2	V	6.67	18.3				920	460
CH-044 Ditch Spring	5/13/2011	ND/B				100	0.1	<u> </u>		45.0				930	400
CH-044 Ditch Spring	5/17/2011	F+++ F+++: S+++	— 829.15		<u></u> 827,6	110	0.2		6.87 6.67	15.9 19.5				1,090	460 540
CH-044 Ditch Spring CH-044 Ditch Spring	5/24/2011 5/31/2011	F++, S+++	029.15	-1.50 	- 627,6	60 60	0.09	V	7.41	20.4				620	370
CH-044 Ditch Spring	6/7/2011	F++, S+++				30	0.05		6.88	23.7				820	410
CH-044 Ditch Spring	6/14/2011	F+, S++		<u> </u>		60	0.08	-	7.03	23.7			-	1,250	680
CH-044 Ditch Spring	6/21/2011	F+, S++				100	0,1	v	6.84	16,2	3,33			870	440
CH-044 Ditch Spring	6/30/2011	F++, S+++			_	80	0,1	V		-					<u> </u>
CH-044 Ditch Spring	7/14/2011	ND/B		_			_		_				-	_	
CH-044 Ditch Spring	low water	(moved Sta)	829.15	-1.79	827.4										
CH-044 Ditch Spring	1/31/2012		827.18	0.25	827,4	5	0.007	V	6.95	16.2			5,1	748	
CH-044 Ditch Spring	2/16/2012		827,18	0.11	827.3	15	0.02	E	7,26	13.9	4.53	-220.0	4.7	706	
CH-044 Ditch Spring	4/13/2012		827,18	0.08	827.3	12	0.02	Ę	7.10	22.0			6.9	980	
CH-044 Ditch Spring	4/26/2012	ND/B	827.18	0.23		120	0.5	٧	7.12	15.8	4.02	189.5		795	
CH-044 Ditch Spring	5/2/2012	ND/B								<u>-</u>			-		
CH-044 Ditch Spring	5/7/2012	E+++	827,18	0,19	<u>827.4</u>	76	0,1	V	7.05	15.8	6.49	187.0		811	
CH-D44 Ditch Spring	5/10/2012	E+++	827.18	0.21	827,4	30	0.04	V	7.27	17,7	7,29	179.4		793	
CH-044 Ditch Spring	5/14/2012		827.18	0.41	827.6	135	0.2	V	7.18	16.8	7.01	131.5	130	1,106	
CH-044 Ditch Spring	5/17/2012	E+++	827.18	0.19	827.4	45	0.07	V	6,93	15.8	4.89	-157.2		995	
CH-044 Ditch Spring	5/24/2012	E+++	827.18	0.25	827,4				7.01	16,3	4,33	-159.0		1,050	
CH-044 Ditch Spring	6/1/2012	ND/B	827.18	0.27	827,5	55	80.0	V	7.07	15.9	4.01	-165.3		1,019	
CH-044 Ditch Spring	6/7/2012	E+++	827,18	0,25	827.4	90 45	0.1	<u>V</u>	6.93 7.05	15,9 17,3	3.52	-103,8 23,0		1,001 962	
CH-044 Ditch Spring	6/15/2012	E+++ E+++	827.18 827.18	0.17	827,3 827,3	45 	0,06	v	7.05	17.6	3.27 2.91	108.0		1,172	
CH-044 Ditch Spring CH-044 Ditch Spring	6/28/2012 7/17/2012	E+++	827,18	0.10	827.4	7	0.03	<u>v</u>	7.15	16.3	2,74	-167.8		959	
CH-044 Ditch Spring	8/2/2012	E+++	827.18	0,11	827,3	15	0.02	<u> </u>	7.13	16.1	4.08	149.0		955	
CH-044 Ditch Spring	8/23/2012	E+++	827.18	0,19	827.4	6	0.009	E	7,56	16.1	3.63	-117.5		959	
CH-044 Ditch Spring	9/4/2012	<u> </u>	827.18	0.21	827.4	61	0.09	V	7.40	22.3	1.88	-74.2		638	
CH-044 Ditch Spring	9/20/2012		827.18	no access							7.00				
CH-044 Ditch Spring	12/17/2012		827,18	0.33	827.5	72	0,1		7.52	16,5	7.60	-114.8	>1100	693	
									· · · · · · · · · · · · · · · · · · ·						
CH-057 Briar Patch Spring	5/9/2011					880	1.3	V	6.93	17.3				910	560
CH-057 Briar Patch Spring	5/13/2011					730	1,0	V							
CH-057 Briar Patch Spring	5/17/2011				=	440	0,6	V	7.03	17.8				2,080	1,370
CH-057 Briar Patch Spring	5/24/2011					210	0.3	V	6.96	19.2				1,810	900
CH-057 Briar Patch Spring	5/31/2011	S++				380	0.6	<u> </u>	7,19	21.7				1,290	640
CH-057 Brian Patch Spring	6/7/2011	S++	770.91		770.0	210	0.3	V	7,08	25.1				1,890 1,030	950 560
CH-057 Briar Patch Spring	6/14/2011	S++ E++	779.81	-0.54 	779.3	1060 500	1.5 0.8	V	6,83 6,77	24.6 24.5	2.64			1,500	740
CH-057 Briar Patch Spring CH-057 Briar Patch Spring	6/21/2011 6/30/2011	E++ E++				500	0.8				2.64			7,500	740
CH-057 Briar Patch Spring CH-057 Briar Patch Spring	6/30/2011 7/14/2011	E+++													
CH-057 Briar Patch Spring CH-057 Briar Patch Spring	low water	(moved Sta)	779,81	<u>-4.65</u>	775,2									_	
CH-057 Briar Patch Spring	1/31/2012	(moved Sta)	775.37	0.25	775,6	33	0,05		6.98	11.3	8.24	-166.3	5.9	1,030	
CH-057 Briar Patch Spring	2/16/2012		775.37	0.23	775.5	<u></u>	0.001	E E	7.70	10.2	9.45	-219.5	3.9	808	
CH-057 Briar Patch Spring	4/13/2012		775.37	0.03	775.6		<u> </u>	<u> </u>	7.20	20.1	9. 4 0	- <u>-</u>	6.6	1,120	
CH-057 Briar Patch Spring	4/27/2012	ND/B	775.37	0,50	775.9	590	0.8		7,20	17.5	7.29	187.6		1,052	_
CH-057 Briar Patch Spring	5/3/2012	ND/B	775.37	0.38	775.8	340	0.5				7.20			- 1,002	
	5/7/2012	ND/B	775,37	0.49	775.9	370	0.5		7.29	21.6	2.09	-199.8		1,105	

Table 4

Dye Monitoring Results and Field Parameter Data, 2011-2013

E.W. Brown Generating Station, Mercer County, Kentucky

AMEC Project No. 3143101364

	Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgd)	Type	pH (S.U.)	Temp- erature (°C)	DO (mg/L)	Oxidation- Reduction Potential (ORP)** (mV)	Turbidity (NTU)	Specific Conduc- tance (SC) (µmho/cm)	Tot. Diss. Solids (TDS) (Field) (ppm)
Sta ID Station Description	Date						······································			\\		<i>y</i> /		· · · · · ·	
CH-057 Briar Patch Spring	5/10/2012	ND/B	775,37	0,93	776,3	350	0.5	V	7.23	22.8	2.48	- 175.8	-	1,385	
CH-057 Briar Patch Spring	5/14/2012		775.37	1,24	776.6	2,050	3,0	V	7.44	21.6	2.6	170.7	6.9	1,627	
CH-057 Briar Patch Spring	5/17/2012	E+?	775.37	1.12	776.5	1,540	2.2	V	7.13	21.5	2.57	-202.8	 –	1,723	
CH-057 Briar Patch Spring	5/24/2012	ND/B	775.37	0.71	776.1	673	1.0	V	7.11	23.8	0.92	-253,2		1,542	
CH-057 Briar Patch Spring	6/1/2012	ND/B	775.37	1.17	776.5	1,050	1.5	V	7.10	26.4	0.51	-193.2	_	1,604	
CH-057 Briar Patch Spring CH-057 Briar Patch Spring	6/7/2012 6/15/2012	E++ E++	775.37 775.37	1.05 1.00	776.4 776.4	950 840	1,4 1,2	<u>V</u>	7.24 7.31	24.2 22.1	1.54 2.76	-174.4 -87.6		2,121 1,957	
CH-057 Brian Patch Spring	6/28/2012	E++	775.37	0.50	775.9	121	0.2	- v	7.81	23.2	3.69	108.3		2,318	
CH-057 Briar Patch Spring	7/17/2012	E++	775.37	0.76	776.1	50	0.07	E	7,11	28.0	0.67	-222.5		1,907	
CH-057 Briar Patch Spring	8/2/2012	E+++	775.37	0.92	776.3	350	0.5	- v	7.20	26.2	2.31	-175.2		1,584	
CH-057 Briar Patch Spring	8/23/2012	E+++	775.37	2.03	777.4	Too high to n		<u>-</u>	7.21	18.3	2.19	-185.3		1.492	
CH-057 Briar Patch Spring	9/4/2012		775,37	1,89	777,3	Too high to n		_	7,32	27,0	1.68	-120,7		1,739	
CH-057 Briar Patch Spring	9/20/2012	E+++	775.37	2.89	778.3	Too high to n			7.81	23.2		-174.2		1,615	
CH-057 Briar Patch Spring	12/17/2012		775.37			Ť	_		7.67	14.7	5.94	-92.4	12.0	1,574	
CH-041 Dam Toe Middle	3/30/2011	ND/B	747.12	_									_	_	
CH-041 Dam Toe Middle	5/9/2011	ND/B	-						6,75	22,9				1,120	560
CH-041 Dam Toe Middle	5/13/2011	S+?				_		_	_	<u> </u>					
CH-041 Dam Toe Middle	5/17/2011	ND/B	-	_	_				7.05	15.5				1,220	600
CH-041 Dam Toe Middle	5/24/2011	ND/B	_	_	_				6,77	19.2				1,180	550
CH-041 Dam Toe Middle	5/31/2011	ND/B	-		-				7.38	21,7				1,330	670
CH-041 Dam Toe Middle	6/7/2011	ND/B							6,99	24.2				1,080	530
CH-041 Dam Toe Middle	6/14/2011	ND/B		-		8	0.01		7.42	23.6		_		980	480
CH-041 Dam Toe Middle	6/21/2011	ND/B				220	0.3		7.07	19.9	7.66			1,100	550
CH-041 Dam Toe Middle	6/30/2011	ND/B				70	0.1						_		
CH-041 Dam Toe Middle	7/14/2011	ND/B													
CH-041 Dam Toe Middle CH-041 Dam Toe Middle	low water 4/27/2012	(moved Sta) ND/B	747,12 746,16	-0.66 0.29	746.5 746.5	 68	0.1	$\overline{}$	7.42	18.7	9,13	147.1		1,083	-
CH-041 Dam Toe Middle	5/2/2012	ND/B	746.16	0.23	740.0		<u> </u>			10.7	3,13	<u> </u>	<u></u>	1,000	
CH-041 Dam Toe Middle	5/7/2012	ND/B	746,16	0.36	746.5	80	0.1		7.51	18.6	10,57	149.0		1,069	
CH-041 Dam Toe Middle	5/10/2012	ND/B	746,16	0.62	746,8	205	0.3		7.50	18.3	8.12	124.7		1,238	
CH-041 Dam Toe Middle	5/17/2012	ND/B	746,16	0.39	746.6	90	0.1	v	7.49	18.5	10.35	148.7		1,252	
CH-041 Dam Toe Middle	5/24/2012	ND/B	746.16	0,28	746.4	-	-	<u>-</u>	7.44	19.4	9.60	-129.1	_	1,284	
CH-041 Dam Toe Middle	6/1/2012	ND/B	746,16	0.28	746.4	90	0,1	V	7,43	18,2	7.42	145,2		1,264	
CH-041 Dam Toe Middle	6/7/2012	ND/B	746.16	0.25	746.4	56	80.0	V	7.49	19.7	7,80	-75.5	_	1,297	==
CH-041 Dam Toe Middle	6/15/2012	ND/B	746,16	0,25	746.4	21	0.03	V	7.52	18.8	8.36	110,6		1,132	
CH-041 Dam Toe Middle	6/28/2012	ND/B	746.16	0.17	746.3	13	0.02	V	7.98	19.1	6.39	128.3		2,375	
CH-041 Dam Toe Middle	7/17/2012	ND/B	746.16	0.24	746.4	30	0.04	E	7.39	20.7	9.06	144.9		1,190	
CH-041 Dam Toe Middle	8/2/2012	ND/B	746.16	0.21	746.4	60	0.09	V	7.52	19,1		-120.7		1,149	
CH-041 Dam Toe Middle	8/23/2012	ND/B	746,16	0,27	746,4	36	0,05	V	7.37	19.2	2,62	-97.1		1,118	
CH-041 Dam Toe Middle	9/20/2012	ND/B	746.16	0.21	746.4	20	0.03	<u>E</u>	7.43	19,2		-149.7		723	
CH-042 Dam Toe Left	3/30/2011	ND/B	748.00				_					-			
CH-042 Dam Toe Left	5/9/2011	ND/B	_						7.09	22.0				1,080	530
CH-042 Dam Toe Left	5/13/2011	ND/B									_				
CH-042 Dam Toe Left	5/17/2011	ND/B							7.46	15.5				700	350
CH-042 Dam Toe Left	5/24/2011	ND/B	-						7.17	19.2				750	370
CH-042 Dam Toe Left	5/31/2011	ND/B				<u>8</u>	0.01		7,31	21.7				940	480
CH-042 Dam Toe Left	6/7/2011	ND/B		-	-	9	0,01		7,38	23,2				610	310
CH-042 Dam Toe Left	6/14/2011 6/21/2011	ND/B				<u>7</u> 70	0.01		7.31 7.24	24.1 19.7	 8.52			1,030 690	570 330
CH-042 Dam Toe Left CH-042 Dam Toe Left	6/30/2011	ND/B ND/B				20	0.1								
CH-042 Dam Toe Left	7/14/2011	ND/B			<u>=</u>		0.03								
	//14/2011 low water	(moved Sta)	748.00	-0.94	747.1							<u> </u>			
CH-042 Dam Toe Left	iow water	(utoven ora)	740.UU	-u. 34	747.7										

Table 4

Dye Monitoring Results and Field Parameter Data, 2011-2013

E.W. Brown Generating Station, Mercer County, Kentucky

AMEC Project No. 3143101364

	Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgd)	Type	pH (S.U.)	Temp- erature (°C)	DO (mg/L)	Oxidation- Reduction Potential (ORP)** (mV)	Turbidity (NTU)	Specific Conduc- tance (SC) (µmho/cm)	Tot. Diss. Solids (TDS) (Field) (ppm)
Sta ID Station Description	Date										· · · · · · · · · · · · · · · · · · ·				
CH-042 Dam Toe Left	4/27/2012	ND/B	747,27	0.23	747.5	55	80.0	V	7.49	16.9	8.91	192.1	_	893	
CH-042 Dam Toe Left	5/2/2012	ND/B	747,27					_		_		_			
CH-042 Dam Toe Left	5/7/2012	ND/B	747.27	0.28	747.6	15	0,02		8,22	20.3	2,25	-157.8		660	
CH-042 Dam Toe Left	5/10/2012	ND/B	747.27	0.22	747.5	15	0.02	E	7.88	17.8	3,51	-128.3		860	
CH-042 Dam Toe Left	5/17/2012	ND/B	747.27	0.21	747.5	40	0.06	V	7.88	18.0	2.26	-152.2		834	
CH-042 Dam Toe Left	5/24/2012	ND/B	747,27	0,09	747.4	20	0.03	E	7.86	18.7	10.64	-135.5		907	
CH-042 Dam Toe Left	6/1/2012	ND/B	747,27	0.20	747.5	20	0.03	E	7.76	17.9	8.60	146.1	-	874	
CH-042 Dam Toe Left	6/7/2012	ND/B	747.27	0.20	747.5	20	0.03	Е	7.88	18.7	9.03	-89.5		885	
CH-042 Dam Toe Left	6/15/2012	ND/B	747.27	0.19	747.5	20	0.03	V	7.67	17.7	8.23	212,8		793	-
CH-042 Dam Toe Left	6/28/2012	ND/B	747,27	0,17	747.4	15	0.02	V	7.87	18,4	6.78	178.6		1,379	
CH-042 Dam Toe Left	7/17/2012	ND/B	747.27	0.19	747.5	10	0.01	E	7.70	19.8	9.30	145.3		773	
CH-042 Dam Toe Left	8/2/2012	ND/B	747.27	0.28	747.6	35	0.05	V	7.81	18.7	9.52	125,1	_	770	
CH-042 Dam Toe Left	8/23/2012	ND/B	747.27	0.26	747.5	25	0.04	V	7.86	18.8	2.32	-105.8		713	
CH-042 Dam Toe Left	9/20/2012	ND/B	747.27	0.19	747.5	15	0.02	Е	7.59	18.7		-198.3		621	
CH-045 Beaver Dam Cave Spring	3/30/2011	ND/B								_			· —		
CH-045 Beaver Dam Cave Spring	5/9/2011	ND/B				5	0.007		6.90	19.5				950	630
CH-045 Beaver Dam Cave Spring	5/13/2011	F++	_	_		4	0,006				_		_	-	
CH-045 Beaver Dam Cave Spring	5/17/2011	F+++				20	0.03		6.92	16,2		_	-	1,120	670
CH-045 Beaver Dam Cave Spring	5/24/2011	F+++; S+++	-	_		5	0.007		6.71	19.0			_	1,070	530
CH-045 Beaver Dam Cave Spring	5/31/2011	F+++; S+++	-		,	10	0.01		7,21	21.7		****		1,030	520
CH-045 Beaver Dam Cave Spring	6/7/2011	F+++; S+++				10	0.01	****	7.12	24.1				890	430
CH-045 Beaver Dam Cave Spring	6/14/2011	F+++; S+++		_		20	0,03		7.42	24.1	-	_	_	1,300	660
CH-045 Beaver Dam Cave Spring	6/21/2011	F+++; S+++				6	0.008		6.69	16,4	5.35	_		870	420
CH-045 Beaver Dam Cave Spring	6/30/2011	F+++; S+++	_	_		11	0,02		-			***			-
CH-045 Beaver Dam Cave Spring	7/14/2011	ND/B			_		-	-	•						
CH-045 Beaver Dam Cave Spring	low water	(moved Sta)	824.88	-3.49	821.4										
CH-045 Beaver Dam Cave Spring	4/26/2012	ND/B	823.16	0.13	823,3	10	0,01	Ε	7.14	16.1	8.20	158.5		745	
CH-045 Beaver Dam Cave Spring	5/2/2012	ND/B	823,16												
CH-045 Beaver Dam Cave Spring	5/7/2012	E+++	823,16	0.18	823,3	8	0,01	8	7.32	16.0	7.17	158.8		809	
CH-045 Beaver Dam Cave Spring	5/10/2012	E+++	823.16	0.14	823.3	10	0,01	E	7,17	16,4	6,94	112.9		930	
CH-045 Beaver Dam Cave Spring	5/17/2012	E+++	823.16	0.17	823.3	15	0.02	В	7.21	15.8	10.1	149.0		988	
CH-045 Beaver Dam Cave Spring	5/24/2012	E+++	823.16	0,28	823.4	10	0.01	<u> </u>	7,22	16,3	4,32	-138.0		1,066	
CH-045 Beaver Dam Cave Spring	6/1/2012	ND/B	823.16	0.24	823.4	15	0.02	<u> </u>	7,22	16,1	7,14	142.0		1,005	
CH-045 Beaver Dam Cave Spring	6/7/2012	E+++	823,16	0,20	823,4	3	0.004	<u>B</u>	7.38	15.9	7.81	-106.9	-	977	
CH-045 Beaver Dam Cave Spring	6/15/2012	E+++	823.16	0.13	823.3	3	0,004	В	7,21	17.3	8.36	123.4		873 1,781	
CH-045 Beaver Dam Cave Spring	6/28/2012	E+++ E+++	823.16 823.2	0.10 0.31	823.3 823.5	<u>4</u> 15	0.005 0.02	V E.	7.81 7.12	18.1 17.4	6.78 6.39	148.7 168.2		936	
CH-045 Beaver Dam Cave Spring CH-045 Beaver Dam Cave Spring	7/17/2012 8/2/2012	E+++	823.2	0.31	823.3	11	0.02	<u>E</u>	7.12	16.8	6.44	-120.0		923	
CH-045 Beaver Dam Cave Spring CH-045 Beaver Dam Cave Spring	8/23/2012	E+++	823.2	0.13	823.4	8	0,02	<u>-</u>	7.38	16.8	7.09	100.1		888	
CH-045 Beaver Dam Cave Spring CH-045 Beaver Dam Cave Spring	9/20/2012		823.2	no access	- 023.4	- -	<u> </u>			10,6	7.05				
CH-045 Beaver Dam Cave Spring	12/17/2012		823.2	no access		2	0.003		6.77	15.0	3.10	-189.7	>1100	664	
CH-045 Beaver Dam Cave Spring CH-045 Beaver Dam Cave Spring	1/14/2012		823.2			2	0.003	В	8.81	10.0	9,13	169,2	170,0	500	
Olioto Beater Ball Gate Spring	171-1720-12		<u> </u>					<u></u>	0.01	10,0	0,.0	140,2			
CH-046 HQ Spring	3/30/2011	ND/B										_			
CH-046 HQ Spring	5/9/2011	ND/B				350	0.5		7.34	18.2				1,030	410
CH-046 HQ Spring	5/13/2011	ND/B				250	0.4								
CH-046 HQ Spring	5/17/2011	ND/B		·····		580	0.8		7.12	16.9				1,630	890
CH-046 HQ Spring	5/24/2011	F+?				470	0.7		6.91	19,8		 		1,480	730
CH-046 HQ Spring	5/31/2011	E+++ E+++				320	0.5		7.07	22.1				1,470	740
CH-046 HQ Spring	6/7/2011	E+++				890 240	1.3 0.3		6.92	25.4 29.2				1,660	830 770
CH-046 HQ Spring CH-046 HQ Spring	6/14/2011 6/21/2011	E+++	781.48	-2.29		500	0.3		6,80 6,69	29,2	4.18		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,610	700
	6/30/2011	E+++				200	0.7			20,0		-	<u> </u>	1,410	
CH-046 HQ Spring	6/30/2011	ETTT	_			∠∪∪	V.3								

	Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgď)	Туре	pH (S.U.)	Temp- erature (°C)	D Ó (mg/L)	Oxidation- Reduction Potential (ORP)**	Turbidity (NTU)	Specific Conduc- tance (SC) (µmho/cm)	Tot. Diss. Solids (TDS) (Field) (ppm)
Sta ID Station Desc	ription Date			\\											
CH-046 HQ Spring	7/14/2011	ND/B		_	_				—	_			_		-
CH-046 HQ Spring	low water	(moved Sta)	781.48	-2.98	778.5										
CH-046 HQ Spring	4/27/2012	ND/B	779.69	0.38	780.1	610	0.9	V	7.18	17.0	7.96	173.0		1,086	
CH-046 HQ Spring	5/3/2012	ND/B	779.69					-					_	4.000	
CH-046 HQ Spring CH-046 HQ Spring	5/7/2012 5/10/2012	ND/B ND/B	779,69 779,69	0.43 0.38	780.1 780.1	700 400	1.0 0,6	-	7.15 7,14	18.5 19.4	6.32 6,24	137,6 129.6		1,222 1,485	-
CH-046 HQ Spring	5/17/2012	ND/B	779,69	0.34	780,0	450	0.7	V	7,14	18,5	6.90	48,3	<u> </u>	1,744	
CH-046 HQ Spring	5/24/2012	E+?	779,69	0.34	780.0	-	— V.,	v	7.26	20.8	4.43	-160,3		1,570	
CH-046 HQ Spring	6/1/2012	ND/B	779,69	0,31	780.0	400	0.6	v	7.08	22.5	3.07	-140,8		1,560	
CH-046 HQ Spring	6/7/2012	E+++	779.69	0.30	780.0	310	0.4	V	7.23	21.0	4.04	-145.1		1,904	
CH-046 HQ Spring	6/15/2012	E+++	779.69	0.29	780,0	570	0.8	V	7.07	17.3	5.32	102.8	==	1,632	
CH-046 HQ Spring	6/28/2012	E+++	779,69	0,21	779,9	382	0.6	V	7.61	19.8	6.18	131.9		1,572	
CH-046 HQ Spring	7/17/2012	E+++	779,69	0.21	779.9				7.14	23.2	2.35	-178.9		1,715	
CH-046 HQ Spring	8/2/2012	E+ E+	779.69	0.32	780,0	220	0.3	V	7.11	24.0	2.19	-171.5		1,562	
CH-046 HQ Spring	8/23/2012	E+++	779,69 779.69	1,41	781.1	455 858	0.7	<u> </u>	6.97	17.4	2,01	-172.8		1,039	
CH-046 HQ Spring CH-046 HQ Spring	9/20/2012 12/17/2012		779.69	1.37 1.52	781.1 781.2	858 1417	1.2 2.0	<u>V</u>	7.67 7.69	20.7 14.8	6.07	-186.1 -111.0	<u> </u>	1,673 1,266	=
CH-046 HQ Spring	1/14/2013		779.69	1,41	781.1	2087	3.0	~~~~	8.18	14.8	6.89	152.1	45.1	1,406	
Olabar Har Oping	77172010		170.00	7571	707.1	2007			0.10	.4.0	0.00	102.1	70.1	1,400	
CH-048 Drain Pipe	3/30/2011	ND/B	817.90			_	-							_	
CH-048 Drain Pipe	5/9/2011	ND/B		_	_		_	—	6.45	24.0				2,040	1,030
CH-048 Drain Pipe	5/13/2011	ND/B		***									_		<u> </u>
CH-048 Drain Pipe	5/17/2011	ND/B							6,41	15.4		_	_	2,370	1,180
CH-048 Drain Pipe	5/24/2011	ND/B		_	_	20	0,03		6.21	20,2				2,290	1,140
CH-048 Drain Pipe	5/31/2011	ND/B	817.90	-0.75	817.2	30	0.04		6.47	21.2				2,470	1,240
CH-048 Drain Pipe	6/7/2011	ND/B	817,90	-0,83	817.1	20	0,03		5,94	25,2				2,270	1,130
CH-048 Drain Pipe	6/14/2011	ND/B		-0.75		20	0.03		8.26	24.2				2,190	1,080
CH-048 Drain Pipe CH-048 Drain Pipe	6/21/2011 6/30/2011	ND/B ND/B	817,90		817.2	25 20	0.04		6.53	21,8				2,250	1,130
CH-048 Drain Pipe	7/14/2011	ND/B				<u> </u>	U.U3								
CH-048 Drain Pipe	low water	(moved Sta)	817,90	-1,17	816,7							-	<u>_</u>		
CH-048 Drain Pipe	5/4/2012	ND/B	816.78												_
CH-048 Drain Pipe	5/7/2012	ND/B	816,78	0,10	816,9	60	0.09		6.55	19.0	10.39	210,4		2,037	_
CH-048 Drain Pipe	5/10/2012	ND/B	816.78	80.0	816.9	15	0.02	E		_		_			
CH-048 Drain Pipe	5/17/2012	ND/B	816.78	0.13	816.9	10	0.01	E	7.13	18.42	7.27	195.1		1,739	
CH-048 Drain Pipe	5/24/2012	ND/B	816.78	0.13	816.9	10	0.01	E	6.39	19.24	1.18	-228.1		2,327	
CH-048 Drain Pipe	6/1/2012	ND/B	816.78	0.16	816.9	12	0.02	Е	6,36	19.58	1.95	-196.9	<u> </u>	2,381	
CH-048 Drain Pipe	6/7/2012	ND/B	816.78		-										
CH-048 Drain Pipe CH-048 Drain Pipe	6/15/2012 6/28/2012	ND/B ND/B	816,78 816,78	0.13	816.9 816.9	5	0.007 0.006	<u> </u>	6.57	18.21	2.37	81.9 171.3		1,927	
CH-048 Drain Pipe	7/17/2012	ND/B	816.78	0.13 0.25	817.0	4 15	0.006	<u>Е</u> В	6.31 6.76	19,07 20,8	1,88 1,60	-174.6		2,817 2,513	
CH-048 Drain Pipe	8/2/2012	ND/B	816.78	0.23	817.0	20	0.03	<u></u>	6.87	19,3	0,86	-209,4		2,048	
CH-048 Drain Pipe	8/23/2012	ND/B	816,78	0.34	817,1	20	0,03	<u>В</u>	6,79	18.3	0.95	-220.3	······	2,107	-
CH-048 Drain Pipe	9/20/2012	ND/B	816.78	0.17	817.0	25	0.04	Ē	8.62	23.2		-90.3		2,094	
CH-061 Ison Spring	5/9/2011	ND/B							7.07	18.4	_	_	-	480	240
CH-061 Ison Spring	5/13/2011	ND/B													
CH-061 Ison Spring	5/17/2011	ND/B							7,07	15,5				490	190
CH-061 Ison Spring	5/24/2011	ND/B		<u> </u>				—	7.52	18.9				450	210
CH-061 Ison Spring	5/31/2011	ND/B							7.04	21.1				480	250
CH-061 Ison Spring CH-061 Ison Spring	6/7/2011 6/14/2011	ND/B				no flow	no flow								
	6/21/2011	ND/B				no flow	no flow					<u> </u>	<u> </u>		
CH-061 Ison Spring															

	Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgd)	Туре	pH (S.U.)	Temp- erature (°C)	DO (mg/L)	Oxidation- Reduction Potential (ORP)** (mV)	Turbidity (NTU)	Specific Conduc- tance (SC) (µmho/cm)	Tot. Diss. Solids (TDS) (Field) (ppm)
Sta ID Station Description	Date														
CH-061 Ison Spring	7/14/2011	ND/B				<u>-</u>	-								
CH-061 Ison Spring	low water		550.52	approx 14	approx 565										
														- 1111	
CH-065 Hardin Spring 2	7/23/2012 8/2/2012	ND/B		0.18		1 1	0.001 0.001	Ē	6,91 7,36	15,4 15,8	7.23	129.6 -137.3		1,763 1,678	
CH-065 Hardin Spring 2 CH-065 Hardin Spring 2	8/23/2012	ND/B		0.18		no flow	no flow	<u> </u>	7,30	15,6		-121.2		1,070	
CH-065 Hardin Spring 2	9/20/2012	ND/B	<u> </u>		-	1	0,001	E	7.92	19,4		-99,4		787	
Burgin Spring	5/21/2012								7.43	13.7		-164.2		503	
Burgin Spring	12/17/2012			,		20	0.03	<u>E</u>	8,24	17,7	2,88	-165,7	5,5	336	
Burgin Spring	1/14/2013					620	0.9	V	7.89	10.6	7.14	139.7	76.1	323	
Other Sampling Points - Surface Water															
CH-058 HQ Stream	5/9/2011	ND/B	762.91	_	<u> </u>	550	0.8	_	7.37	20.5		-	_	810	1,640
CH-058 HQ Stream	5/13/2011	ND/B				590	0.9		_				_	-	
CH-058 HQ Stream	5/17/2011	ND/B	-		_	970	1.4		7.38	17.0				1,870	910
CH-058 HQ Stream	5/24/2011	F+?	762.91	-0,67	762,2	1,500	2,1		7.14	19.1				1,630	810
CH-058 HQ Stream CH-058 HQ Stream	5/31/2011 6/7/2011	E+++,S++ E+++,S++			<u> </u>	1,400 1,200	2,0 1,7		7.09 7.33	21.4 24.6	<u></u>			960 1,740	470 870
CH-058 HQ Stream	6/14/2011	E+++	<u> </u>			1,550	2.2		6.96	23.8				1,140	550
CH-058 HQ Stream	6/21/2011	E+++	762.91	-0.75	762.2	710	1.0		7,14	23.0	8.29			1,480	730
CH-058 HQ Stream	6/30/2011	E+++		-	_	2,650	4,0	_	_				_		
CH-058 HQ Stream	7/14/2011	ND/B												· · ·	
CH-058 HQ Stream	low water	(moved Sta)	762,91	-1,63	761,3	- 4 040								<u> </u>	- -
CH-058 HQ Stream CH-058 HQ Stream	4/27/2012 5/3/2012	ND/B ND/B	760,55 760,55	0,25 0,25	760.8 760.8	1,016 810	1.5 1.2	V V	7.71	17,5 18,5	9,23 8,79	172.7 164.6		1,076 1,003	
CH-058 HQ Stream	5/7/2012	ND/B	760.55	0.36	760.9	990	1.4	<u> </u>	7.65	19.9	10,08	148,9		1,170	
CH-058 HQ Stream	5/10/2012	ND/B	760.55	0,32	760.9	770	1.1	V	7.72	21.3	10.57	130,0	_	1,437	
CH-058 HQ Stream	5/17/2012	ND/B	760.55	0.32	760.9	1,220	1.8		7.58	20.5	11.08	245,4		1,737	
CH-058 HQ Stream	5/24/2012	ND/B	760.55	0.28	760.8	1,193	1.7	V	7.44	23,0	9,65	134.2		1,562	
CH-058 HQ Stream	6/1/2012	ND/B	760.55	0.28	760.8 760.8	1,170 535	1.7 0.8	V	7.51	23.6	8.71	139.5		1,579	-
CH-058 HQ Stream CH-058 HQ Stream	6/15/2012 6/28/2012	E+? E+++	760,55 760,55	0,21 0,17	760.7	382	0.6	v	7.67 7.89	19,1 21,6	7,34 5,17	197.8 151.3		1,237 1,761	
CH-058 HQ Stream	7/17/2012	E+++	760.55	0.38	760.9				7.56	26.9	7.12	157.9		1,844	
CH-058 HQ Stream	8/2/2012	E+++	760.55	0.26	760.8	450	0.6	٧	7.60	26.6	7,07	154.2		1,583	_
CH-058 HQ Stream	8/23/2012	E+++	760.55	0.25	760,8	360	0.5	V	7,42	20,4	6.29	103,3		1,493	
CH-058 HQ Stream	9/20/2012		760.55	0.24	760.8	1174	1,7	V	7.75	22,3		-144.0		1,610	
CH-025 Mouth of Dix River	3/30/2011	ND/B	516.01											——————————————————————————————————————	
CH-025 Mouth of Dix River	5/9/2011	ND/B	- 310.01		<u>=</u>				6,71	18.6				250	180
CH-025 Mouth of Dix River	5/13/2011	ND/B		-								-	_		
CH-025 Mouth of Dix River	5/17/2011	ND/B	****	-					7,31	15.2	<u> </u>			360	150
CH-025 Mouth of Dix River	5/24/2011	ND/B	516,01	-2.17	513.8				7,43	19.1			_	530	260
CH-025 Mouth of Dix River CH-025 Mouth of Dix River	5/31/2011 6/7/2011	ND/B ND/B	516.01 516.01	-1.83 -5.00	514.2 511.0				7.31 7.86	22.6 25.4				570 310	280 150
CH-025 Mouth of Dix River (Duplicate)	6/7/2011	ND/B	516,01	-5,00	511.0				7,86	25.4 	<u> </u>	<u> </u>	_	310	150
CH-025 Mouth of Dix River (Dublicate)	6/14/2011	ND/B							7.18	25,1				810	410
CH-025 Mouth of Dix River	6/21/2011	ND/B	_	_	-	-	_	_	7,36	25.3	7.19	_		310	150
CH-025 Mouth of Dix River	6/30/2011	ND/B							-						
CH-025 Mouth of Dix River	7/14/2011	ND/B	_	_	<u> </u>		_	_	_	_		_	_	_	
CH-025 Mouth of Dix River	low water		516.01	-4,24	511,8										

Table 4

Dye Monitoring Results and Field Parameter Data, 2011-2013

E.W. Brown Generating Station, Mercer County, Kentucky

AMEC Project No. 3143101364

	Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgd)	Type	рН (S.U.)	Temp- erature (°C)	DO (mg/L)	Oxidation- Reduction Potential (ORP)** (mV)	Turbidity (NTU)	Specific Conduc- tance (SC) (umho/cm)	Tot. Diss. Solids (TDS) (Field) (ppm)
Sta ID Station Description	Date		(11.01000)		(111011200)	(BP''')			(0.01)				(/	, , , , , , , , , , , , , , , , , , ,	
CH-059 Cedar Branch at Shaker Landing	5/13/2011	ND/B													
CH-059 Cedar Branch at Shaker Landing	5/17/2011	ND/B		_		_	_	_	7,36	15.0	_			870	460
CH-059 Cedar Branch at Shaker Landing	5/24/2011	ND/B	516.05	-0.25	515,8	11,000	17		7,96	18.7				430	200
CH-059 Cedar Branch at Shaker Landing	5/31/2011	ND/B	516,05	-0.92	515.1	2,800	4.0		7.11	22.4				480	250
CH-059 Cedar Branch at Shaker Landing	6/7/2011	ND/B	516.05	-0.96	515.1	970	1.4		7.63	24.1			· —	440	230
CH-059 Cedar Branch at Shaker Landing	6/14/2011	ND/B	-			710	1.0	· · —	7.21	24.7				920	470
CH-059 Cedar Branch at Shaker Landing	6/21/2011	ND/B	516.05	-0.17	515,9	- .			7.14	24,8	6,92			140	90
CH-059 Cedar Branch at Shaker Landing	6/30/2011	ND/B			_	1,100	1.5								
CH-059 Cedar Branch at Shaker Landing	7/14/2011	ND/B													
CH-059 Cedar Branch at Shaker Landing	low water	(moved Sta)	516.05	-0,57	515.5										
CH-059 Cedar Branch at Shaker Landing	4/27/2012	ND/B	515.39	0.33	515.7	362	0.5	V	8.47	14,6	4,45	197.7		504	
CH-059 Cedar Branch at Shaker Landing	5/3/2012	ND/B	515,39	0.22	515.6	240	0.3	V	8,27	17,9	8.96	176.3		514	
CH-059 Cedar Branch at Shaker Landing	5/8/2012	ND/B	515.39	0.52	515.9	2,700	3.8	V	7.19	18.9	9.31	208.7		1,104	
CH-059 Cedar Branch at Shaker Landing	5/10/2012	ND/B	515.39	0.69	516.1	1,800	2.6	V	8,60	17.2	9.94	158.3		505	
CH-059 Cedar Branch at Shaker Landing	5/17/2012	ND/B	515.39	0.37	515.8	1,020	1,5	V	8,62	18.5	4.61	-139.1		547	
CH-059 Cedar Branch at Shaker Landing	5/24/2012	ND/B	515.39	0.33	515.7	705	1.0	V	8.54	20,3	4,07	-74.1		482	
CH-059 Cedar Branch at Shaker Landing	6/1/2012	ND/B	515,39	0.37	515,8	1,000	1.4	V	8.49	17,4	3,95	-163.7		621	
CH-059 Cedar Branch at Shaker Landing	6/15/2012	ND/B	515,39	0,29	515.7	560	8,0	V	8.13	16.4	5.78	181,3		723	
CH-059 Cedar Branch at Shaker Landing	6/28/2012	ND/B	515.39	dry	dry	no flow	no flow								
CH-059 Cedar Branch at Shaker Landing	7/17/2012	ND/B	515,39	0.13	515.5										
CH-059 Cedar Branch at Shaker Landing	8/2/2012	ND/B	515.39	0.20	515.6	100	0,1	V	8.26	26.3	9.07	176.2		772	
CH-059 Cedar Branch at Shaker Landing	8/23/2012	ND/B	515.39	0.24	515.6	110	0.2	V	7.99	22,4	8,49	162.7		638	
CH-059 Cedar Branch at Shaker Landing	9/20/2012	ND/B	515,39	0,37	515.8	360	0.5		7,84	18,D		-173.5		929	
CH-051 Cedar Branch (above KY342)	3/30/2011	ND/8	753.27	_	-									_	
CH-051 Cedar Branch (above KY342)	5/9/2011	ND/B		<u> </u>		30	0.04		7.24	20.1			_	980	180
CH-051 Cedar Branch (above KY342)	5/13/2011	ND/B	_	_	_	30	0.04								
CH-051 Cedar Branch (above KY342)	5/17/2011	ND/B	753,27	-0.56	752,7	270	0.4		7,72	14.3				1,070	580
CH-051 Cedar Branch (above KY342)	5/24/2011	ND/B	753.27	-0.38	752.9	4,600	6.6		7.67	19.4		<u>—</u>	<u> </u>	400	210
CH-051 Cedar Branch (above KY342)	5/31/2011	ND/B				1,600	2.4		7.16	22.1		_		590	280
CH-051 Cedar Branch (above KY342)	6/7/2011	ND/B				1,500	2.1		7.52	24,8				460	210
CH-051 Cedar Branch (above KY342)	6/14/2011	ND/B				410	0.6		7.29	24.3				620	300
CH-051 Cedar Branch (above KY342)	6/21/2011	ND/B				510	0,7		7,61	20,1	8,65	 		570	260
CH-051 Cedar Branch (above KY342)	6/30/2011	ND/B				110	0.2						_		
CH-051 Cedar Branch (above KY342)	7/14/2011	ND/B	_			<u> </u>									
CH-051 Cedar Branch (above KY342)	low water		753,27	-1.02	752,3	400									
CH-053 Steep Tributary	3/30/2011	ND/8	779.47	-											
CH-053 Steep Tributary	5/9/2011	ND/B				210	0,3		7.19	20.2				650	320
CH-053 Steep Tributary	5/13/2011	ND/B			-	220	0.3								
CH-053 Steep Tributary	5/17/2011	ND/B		-		440	0.6		6.91	14.5				870	520
CH-053 Steep Tributary	5/24/2011	ND/B	779.47	-4,00	775,5	530	0.8		7.63	19.4				680	330
CH-053 Steep Tributary	5/31/2011	ND/B	779.47	-4.29	775.2	230	0.3		7,21	21,1				1,070	540
CH-053 Steep Tributary	6/7/2011	ND/B	779.47	-4.50	775,0	110	0.2		7.21	24.1				1,100	530
CH-053 Steep Tributary	6/14/2011	ND/B				no flow	no flow		7.04	23.8				960	480
CH-053 Steep Tributary	6/21/2011	ND/B	779.47	-4.42	775,0	60	0.09		7.49	19.9	6,86			980	480
CH-053 Steep Tributary	6/30/2011	ND/B				30	0.04								<u></u>
CH-053 Steep Tributary	7/14/2011	ND/B			<u></u>										
CH-053 Steep Tributary	low water	(moved Sta)	779.47	-0,82	778.7	<u> </u>									
CH-053 Steep Tributary	4/26/2012	ND/B	780.42	0.33	780.8	4	0.010	E	7.92	16.37	9.13	207.1		518	
CH-053 Steep Tributary	5/3/2012	ND/B	780.42	0.38	780.8	3	0.004	<u>E</u>		16.76	10.21	280,4		929	
CH-053 Steep Tributary	5/7/2012	ND/B	780.42	0.42	780.8	10	0,014	E	7,83	19,52	9,07	193.9		629	
CH-053 Steep Tributary	5/10/2012	ND/B	780.42	0.31	780.7	10	0.010	E	7,73	20.71	8,92	187.4		719	
CH-053 Steep Tributary	5/17/2012	ND/B	780.42	0.32	780.7	65	0.090	V	8,30	15.0	4.94	-159.8	_	881	_

Table 4

Dye Monitoring Results and Field Parameter Data, 2011-2013

E.W. Brown Generating Station, Mercer County, Kentucky

AMEC Project No. 3143101364

L'amortie de la company de la			11.							sand source Modern a reserve		Oxidation-			Lead north Lead to the Lead to
	Parameter:	Dye Results	Measuring Point Elev.	Water Level	Water Elevation	Flow	Flow	Туре	рH	Temp- erature	DO	Reduction Potential (ORP)**	Turbidity	Specific Conduc- tance (SC)	Tot. Diss. Solids (TDS) (Field)
	Unit:	19866	(ft NAVD88)	(ft AMP)	(ft NAVD88)	(gpm)	(mgd)		(S.U.)	(°C)	(mg/L)	`(m√)	(NTU)	(µmho/cm)	(mqq)
Sta ID Station Description	Date		,	X					` '						
					······································					· · · · · · · · · · · · · · · · · · ·					
CH-053 Steep Tributary	5/24/2012	ND/B	780,42	0.37	780.8	20	0.029	В	8.21	17.2	1.03	-185,9		1,041	
CH-053 Steep Tributary	6/1/2012	ND/B	780,42	0,32	780.7	15	0.022	E	8.20	15.1	1.44	- 172,9		1,103	
CH-053 Steep Tributary	6/7/2012	ND/B	780.42	<0.1 standing	780.5	low flow	low flow		8,32	16.5	11.67	-117.6		1,141	
CH-053 Steep Tributary	6/15/2012	R+?	780.42	standing		no flow	no flow		8.29	17.1	9.37	183.7	<u></u>	982	,
CH-053 Steep Tributary	6/28/2012		780.42 780.42	dry	dry	no flow	no flow								
CH-053 Steep Tributary CH-053 Steep Tributary	7/17/2012 8/2/2012		780.42	dry	dry dry	no flow	no flow	==		<u></u>			<u> </u>		
CH-053 Steep Tributary	8/23/2012		780.42	dry dry	dry	no flow	no flow								
CH-053 Steep Tributary	9/20/2012	ND/B	780,42	standing	dry	no flow	no flow								
GIPOSS Seep Hibday	9/20/2012	ND/B	700,72	Starturing	<u> </u>	110 11044	10 (1044								
CH-054 Cedar Branch Upstream	3/30/2011	ND/B	777.88	-		_	——————————————————————————————————————						<u> </u>		
CH-054 Cedar Branch Upstream	5/9/2011	ND/B	-			190	0.3		7,62	20.2				380	190
CH-054 Cedar Branch Upstream	5/13/2011	F+	_			200	0.3					_	_	_	
CH-054 Cedar Branch Upstream	5/17/2011	F+	777.88	-1.75	776.1	180	0.3		7.13	14.9	_			1,030	390
CH-054 Cedar Branch Upstream	5/24/2011	ND/B				4,300	6,2		7.61	18.1				390	190
CH-054 Cedar Branch Upstream	5/31/2011	F+	777.88	-2.13	775.8	1,400	2.0		7.26	22.0				940	460
CH-054 Cedar Branch Upstream	6/7/2011	F++	777.88	-2.08	775.8	570	8.0		7,48	25.1			-	960	470
CH-054 Cedar Branch Upstream	6/14/2011	F+				low flow	low flow								
CH-054 Cedar Branch Upstream	6/21/2011	ND/B			_	no flow	no flow		7.65	24.2	7.18			450	220
CH-054 Cedar Branch Upstream	6/30/2011	ND/B	<u> </u>			no flow	no flow								
CH-054 Cedar Branch Upstream	7/14/2011	ND/B											,		
CH-054 Cedar Branch Upstream	low water	(moved Sta)	777,88	-0.75	777,1										
CH-054 Cedar Branch Upstream	4/26/2012	ND/B	777.08	0.21	777,3	125	0.2	V	7.13	18.3	6.92	103.3		834	
CH-054 Cedar Branch Upstream	5/3/2012	ND/B	777.08	0,19	777.3	5	0,007	E	8.56	20.2	4.14	177.1		351	
CH-054 Cedar Branch Upstream	5/7/2012	ND/B	777.08	0.31	777,4	330	0.5	V	7,21	18.5	7,03	123.7		786	
CH-054 Cedar Branch Upstream	5/10/2012	ND/B	777.08	0,21	· 777.3	130	0,2	<u>V</u>	7.09	21.4	7.29	122.9		743	
CH-054 Cedar Branch Upstream	5/17/2012	ND/B	777.08	0.25	777.3	440	0,6	V V	8.75	20.0	4.67	-163.5		470	
CH-054 Cedar Branch Upstream	5/24/2012	ND/B	777.08	0,10	777.2	35	0.05	<u>B</u>	8.74	21,3	2.6	-193.6		433	
CH-054 Cedar Branch Upstream CH-054 Cedar Branch Upstream	6/1/2012 6/7/2012	ND/B ND/B	777.08 777.08	0.21	777.3	75 no flow	0,1 no flow	E	8.21	17.1	2.31	-180.7		<u>411</u> —	
CH-054 Cedar Branch Upstream	6/15/2012	R+?	777.08	dry dry	dry dry	no flow	no flow								
CH-054 Cedar Branch Upstream	6/28/2012	— KT1	777.08	dry	dry	no flow	no flow								
CH-054 Cedar Branch Upstream	7/17/2012		777.08	dry	dry	no flow	no flow								
CH-054 Cedar Branch Upstream	8/2/2012		777.08	dry	dry	no flow	no flow								
CH-054 Cedar Branch Upstream	8/23/2012		777,08	dry	dry	no flow	no flow								
CH-054 Cedar Branch Upstream	9/20/2012		777,08	dry	dry	no flow	no flow								
										······································					
CH-055 Railroad Stream (upstream of 050)	3/30/2011	ND/B				_					_		-		
CH-055 Railroad Stream (upstream of 050)	5/9/2011	ND/B			—		_		7.52	20.5			_	730	360
CH-055 Railroad Stream (upstream of 050)	5/13/2011	ND/B	<u> </u>			310	0.4	V			_				
CH-055 Railroad Stream (upstream of 050)	5/17/2011	ND/B				170	0,2	V	7.42	16.1				830	360
CH-055 Railroad Stream (upstream of 050)	5/24/2011	ND/B	828.10	-0.75	827.4	20	0.03	В	7.54	19.2				1,000	490
CH-055 Railroad Stream (upstream of 050)	5/31/2011	ND/B	828,10	-1.42	826.7	10	0,02	<u>B</u>	7.58	22.1				930	470
CH-055 Railroad Stream (upstream of 050)	6/7/2011	ND/B				20	0.02	В	7.64	25.1			_	1,150	570
CH-055 Railroad Stream (upstream of 050)	6/14/2011	ND/B				30	0.04	<u>B</u>	7.26	23.8				820	420
CH-055 Railroad Stream (upstream of 050)	6/21/2011	ND/B				35	0,05	<u>B</u>	7.53	20.3	8,54	-		990	490
CH-055 Railroad Stream (upstream of 050)	6/30/2011	ND/B				30	0.04	В							
CH-055 Railroad Stream (upstream of 050)	7/14/2011	ND/B		3.67										-	
CH-055 Railroad Stream (upstream of 050)	low water	-	828.10	-2.87	825.2		_								
CH-056 Railroad Trib. (downstream of 050)	5/9/2011	ND/B		_				-							
CH-056 Railroad Trib. (downstream of 050)	5/13/2011	ND/B		_	_	100	0.1	V	_			_		-	
CH-056 Railroad Trib. (downstream of 050)	5/17/2011	ND/B	754.35	-0.71	753.6	210	0.3	V	7.09	15.0		_	_	730	310
CH-056 Railroad Trib. (downstream of 050)	5/24/2011	ND/B	754.35	-0.58	753.8	20	0,02	В	7,58	18.8				930	450
															

		Parameter: Unit:	Dye Results	Measuring Point Elev. (ft NAVD88)	Water Level (ft AMP)	Water Elevation (ft NAVD88)	Flow (gpm)	Flow (mgd)	Туре	pH (S.U.)	Temp- erature (°C)	DO (mg/L)	Oxidation- Reduction Potential (ORP)**	Turbidity (NTU)	Specific Conduc- tance (SC) (µmho/cm)	Tot. Diss. Solids (TDS) (Field) (ppm)
Sta ID	Station Description	Date														
CH-056	Railroad Trib. (downstream of 050)	5/31/2011	ND/B	754.35	-0,71	753,6	10	0.02	В	7.24	21.0				850	420
CH-056	Railroad Trib. (downstream of 050)	6/7/2011	ND/B				8	0.01		7.54	23.1				1,040	530
CH-056	Railroad Trib, (downstream of 050)	6/14/2011	ND/B		<u> </u>	_	6	0.009		7.28	24.3				870	490
CH-056	Railroad Trib, (downstream of 050)	6/21/2011	ND/B	***			100	0.1	V	7.45	18.9	9.48	-		1,010	510
CH-056	Railroad Trib. (downstream of 050)	6/30/2011	ND/B		_		40	0.06						-		-
CH-056	Railroad Trib. (downstream of 050)	7/14/2011	ND/B		_		_	_	_					-	-	
CH-056	Railroad Trib, (downstream of 050)	low water		754,35	-1.80	752.6			_	_		-		_		_
CH-064	Storm Pond Inlet	4/26/2012	ND/B	837.72	0.58	838,3	5	0.01	E	6.74	18.70	7.05	125.7		1,819	
CH-064	Storm Pond Inlet	5/3/2012	ND/B	837.72	·····						-	 		- .	— .	.
CH-064	Storm Pond Inlet	5/7/2012	ND/B	837,72			10	0.01	E	6.89	15.94	3.81	-127.1		1,006	
CH-064	Storm Pond Inlet	5/10/2012	ND/B	837.72	0.21	837.9	7	0.01	E	6.86	15,43	3.78	-125.1	_	1,249	_
CH-064	Storm Pond Inlet	5/17/2012	ND/B	837.72	0.29	838.0	35	0.05	V	6.96	15.44	4.51	-134.0		1,205	
CH-064	Storm Pond Inlet	5/24/2012	ND/B	837.72	_	_	10	0.01	Θ	6.69	16.56	1.28	-217.8		2,135	_
CH-064	Storm Pond Inlet	6/1/2012	ND/B	837,72	0,30	838.0	160	0.2	V	6.87	15.23	1.41	-198.6		1,251	
CH-064	Storm Pond Inlet	6/7/2012	ND/B	837.72	low flow	low flow	low flow	low flow		7.15	16.22	9.18	-80.4		1,516	_
CH-064	Storm Pond Inlet	6/15/2012	ND/B	837,72	low flow	low flow	3	0.004	Ę	6.73	17.36	4.31	-79.8		1,139	
CH-064	Storm Pond Inlet	6/28/2012	ND/B	837.72	0.04	837.8	1	low flow	Ē	6.73	19.36	6.17	104.3		1,679	_
CH-064	Storm Pond Inlet	7/17/2012	ND/B	837.72	0.11	837,8	3	0.004	Ē.	6.81	21.2	5.82	90,5		1,403	
CH-064	Storm Pond Inlet	8/2/2012	ND/B	837,72	0.13	837.9	7	0.01	E	7.21	18.1	7,73	138.6		2,500	
CH-064	Storm Pond Inlet	8/23/2012	ND/B	837.72	0.18	837.9	3	0.004	E	7.09	17.9	7.89	114.7		2,487	
CH-064	Storm Pond Inlet	9/20/2012	ND/B	837,72	0.19	837,9	10	0.01	E	7.55	18.0		-153,9		1,625	

Notes:

--- = Not measured, not available or not established

Dye Results:

ND/B = No dectection or background level

- + = Positive detection (confirmed)
- +? = Questionable detection (needs two successive detections to be confirmed)
- E = Eosine
- F = Fluorescein
- R = Rhodamine WT
- S = Sulphorhodamine B

Surveyed benchmarks (BMs) set by HDR in July 2011 and May 2012, Measuring Points (MPs) surveyed by AMEC relative to HDR BMs.

"Low water" was lowest observed water level in 2011, surveyed by AMEC relative to HDR BM on August 1, 2011.

Flow Measurement Method (Type);

- B = Bucket method
- V = Velocity-Area method
- E = Visual estimate

Prepared by: CFS 4/11//2013 Checked by: TMH 4/12/2013

		Total	Chemical							0005600005400032		
	Parameter:	Dissolved	Oxygen									
		Solids	Demand	Total Organic	Alkalinity,	Alkalinity,			Signaturi (1995)	g all to all of		
		(TDS)	(COD)	Carbon (TOC)	الأراب ومسانه ووورد الأوالي والانتاء	NOG por consequence per considera con a diffe	Arsenic	Boron	Cadmium	Calcium	Chloride	Copper
	Unit:	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
40	EPA MCL	<u> </u>				 .	0.010		0.005		.	1.3
	KY-SW MCL	_					0.05		0,005			
Sta ID Station Description	Date								······			
Background Springs									······································			
CH-052 Stonewall Spring	5/9/2011	240		_				<0,20	nortes	73	6.9	
CH-052 Stonewall Spring	5/24/2011	260			_	_	_	<0.20	_	83	5.9	
CH-052 Stonewall Spring	6/7/2011	300					_	0.083 J		91	10	
CH-052 Stonewall Spring	1/31/2012	260	<10	1.5	180	<20	<0.020	0.052 J	<0.0050	91	5.6	0.0048 J
CH-052 Second analysis	1/31/2012	-		-	_		0.0014					
CH-052 Stonewall Spring	2/16/2012						<0,020				_	
CH-052 Second analysis	2/16/2012	_			_		<0.0010					
CH-052 Stonewall Spring	4/13/2012	290	5.6 J	1.0	180	<20	<0,020	0,12 J	<0,0050	93	9.6	0.0022 J
CH-052 Stonewall Spring	5/14/2012	330	8.4 J	2.1	220	<20	<0.020	0.17 J	<0.0050	100	7.9	0.0017 J
CH-052 Stonewall Spring	9/4/2012	-					_	_				
CH-052 Stonewall Spring	12/18/2012	310	<10	2.3	180	<20	0.00095 J	0.46	<0.0050	93	8.0	<0,020
CH-063 Rockhouse Spring	5/21/2012	390	5.5 J	1.2	240	<20	<0.0010	0.060 J	<0.0050	120	5.8	<0.020
CH-063 Rockhouse Spring	12/17/2012	320	9.4 J	1.8	220	<20	<0.0010	0.16 J	<0.0050	110	4.4	<0.020
CH-063 Rockhouse Spring (Duplicate)	12/17/2012	340	9.4 J	4.4 P1	220	<20	<0.0010	0.080 J	<0.0050	110	4.1	<0.020
CH-063 Rockhouse Spring	1/14/2013	330	3.3 J	2,1	140	<20	0.0012	0.075 J	<0.0050	86	2.5	<0.020
CIT-000 ROCKIGGS OPING	1/14/2010	300	0.00				0.0012	0.0700	-0.0000		40	-0.020
CH-062 Hardin Spring	1/14/2012	140	<10	1.0	89	<20	0.0012	0.091	<0.0050	50	0.96	<0.020
CIT-502 Hasaii Opinig	1/14/2012	1		1.0			0.0012	0.001			0.00	40.02.0
Other Sampling Points - Springs and Drains												
Other bampang rombs - opinigo did Diams												
CH-028 Webb Spring Complex	5/9/2011	360						<0.20		100	3.5	
CH-028 Webb Spring Complex	5/24/2011	440						1.8		200	3.0	
CH-028 Webb Spring Complex	6/7/2011	490						0.093 J		120	5.9	
CH-028 Webb Spring Complex		520						0.033 J		130	4.8	
CH-028 Webb Spring Complex	6/21/2011 1/31/2012	350	8.1 J	1.1	190	<u>-</u> <20	<0.020	0.070 J	<0.0050	110	2.9	<0.020
		 	0.1.0						***************************************			~0.020
CH-028 Second analysis	1/31/2012						0.0048					
CH-028 Webb Spring Complex	2/16/2012	****					<0.020					
CH-028 Second analysis CH-028 Webb Spring Complex	2/16/2012	 520		0.57 J	200	-	0.00070 J <0.020	0.099 J		150	5.1	<0.020
CH-028 Webb Spring Complex CH-028 Webb Spring Complex	4/13/2012	490	10	0.57 J 0.95 J	170	<20 <20		0.099 J 0.14 J	<0.0050	120	3.1	
<u></u>	5/14/2012						<0.020		<0.0050			0.0069 J
CH-028 Webb Spring Complex	9/4/2012	660 430	<10 <10	1.5 1.9	180 230	<20	<0.020	0.14 J	<0.0050	150	4.2	0.0016 J
CH-028 Webb Spring Complex	12/18/2012	430	<.10	1.5	230	<200	0.00038 J	0.096 J	<0.0050	120	3.0	<0.020
CH-050 Railroad Spring	5/9/2011	540	_	_	-			<0.20		120	18	
CH-050 Railroad Spring	5/24/2011	700	,	-				<0.20	<u> </u>	160	31	
CH-050 Railroad Spring	6/7/2011	900		. –				0.24		180	36	_
CH-050 Railroad Spring	6/21/2011	820						0.22		180	31	
CH-050 Railroad Spring	1/31/2012	700	<10	0.95 J,P1	170	<20	<0.020	0.20 J	<0.0050	170	19	<0.020
CH-050 Second analysis	1/31/2012						0.0012	V-20 0				
CH-050 Railroad Spring	2/16/2012						<0.020					
CH-050 Second analysis	2/16/2012						0.00039 J					
1 01, 500 000000 anaryolo	Z 1012 1Z	L. ,					J.00000 U					

erosicous/silagi (esi/esi/esi/esi	::::::::::::::::::::::::::::::::::::::	experintación (media Como como como como como como como como	Schliggingstolen. Good Solosiones til del 1800	yang mengang Magamang mengang		(Albertanellassistis Albertanellassiste	Vávrence campión. Para les masoras en		Birge Street		
	Parameter:	81100,211011UC000			landydddiadaeth (20	Hanin(2017), 1901 Hanin(2017), 1901		unico dos Acosocias	State I proper to the	krom sakali ez	1900/00/00/00/00/00/00/00/00/00/00/00/00/
0.0000000000000000000000000000000000000	ideológica), a formese esta d	lron	Lead	Mag- nesium	Mercury	Nickel	Potassium	Selenium	Sodium	Sulfate	Zinc
	Unit:	(ma/L)	(mg/L)	(ma/L)	(mg/L)	(mg/L)	(mg/L)	(ma/L)	(ma/L)	(mg/L)	(mg/L)
	EPA MCL	(HI 9 /I-):5555	0.015	(u <i>t</i> g/±)	0.002	(11181/12)	(mg/L/:	0.05		(mg/L)	(IIIQ/L)
	KY-SW MCL	<u>-</u>	0.05		0.002			0.05			
Sta ID Station Description	Date Date		0.03		0.002			0.00			
Sta 10 Station Description	Date									 	***************************************
Background Springs											
CH-052 Stonewall Spring	5/9/2011	_			_	_	_		6.6	25	
CH-052 Stonewall Spring	5/24/2011			_	_		_	_	3.9	29	-
CH-052 Stonewall Spring	6/7/2011	_			←	-		_	4.8	29	
CH-052 Stonewall Spring	1/31/2012	2.0	<0.0050	5.4	<0.00020	<0.020	2.5	<0.020	3.7	29	0.056
CH-052 Second analysis	1/31/2012	_					_	_			
CH-052 Stonewall Spring	2/16/2012	0.12			_	_					-
CH-052 Second analysis	2/16/2012							_			
CH-052 Stonewall Spring	4/13/2012	0.11	<0.0050	5.9	<0.00020	<0.020	1.6	<0.020	5.0	36	<0.030
CH-052 Stonewall Spring	5/14/2012	0.67	0.010	5.9	<0.00020	<0.020	3.0	0.025	7.4	34	0,016 J
CH-052 Stonewall Spring	9/4/2012				—						
CH-052 Stonewall Spring	12/18/2012	0.22	<0.0050	6.0	<0.00020	0.0049 J	2.9	<0.020	4.7	49	0.0078 J
O. 1 SOZ GIOTOTICAN OPTING	121012012		-5,255		-0.000	VV (0 C			***		
CH-063 Rockhouse Spring	5/21/2012	0.34	<0.0050	6.9	<0.00020	0.0056 J	1.7	<0.020	3.3	68	<0,030
CH-063 Rockhouse Spring	12/17/2012	0.37	<0.0050	6,1	<0.00020	<0.020	1,9	<0,020	3.5	43	0.0072 J
CH-063 Rockhouse Spring (Duplicate)	12/17/2012	0.52	<0.0050	6.0	<0.00020	<0.020	1.9	<0.020	3.0	45	0.011 J
CH-063 Rockhouse Spring	1/14/2013	0.16	<0.0050	3.4	<0.00020	<0,020	1.7	0.0090 J	1.7	23	0.079
CH-062 Hardin Spring	1/14/2012	0.12	<0.025 O	1.9	<0.00020	<0,020	0.76	0.025	1.6	10	0.060
Other Sampling Points - Springs and Drain	ns										
CH-028 Webb Spring Complex	5/9/2011				<u> </u>		····		4,3	94	
CH-028 Webb Spring Complex	5/24/2011						_	_	8.0	160	
CH-028 Webb Spring Complex	6/7/2011					*****			5.1	150	
CH-028 Webb Spring Complex	6/21/2011								5.2	210	
CH-028 Webb Spring Complex	1/31/2012	0.37	<0.0050	7.2	<0.00020	<0.020	1.9	<0.020	3.9	90	0.056
CH-028 Second analysis	1/31/2012		_						_		
CH-028 Webb Spring Complex	2/16/2012	0.78			_						+
CH-028 Second analysis	2/16/2012								_		
CH-028 Webb Spring Complex	4/13/2012	0.060 J	<0.0050	12	<0.00020	<0,020	2,2	<0.020	5.6	180	<0.030
CH-028 Webb Spring Complex	5/14/2012	0.000 0	0.0095	21	<0.00020	<0.020	3.7	0.019 J	4.6	200	0.020 J
CH-028 Webb Spring Complex	9/4/2012	0.14	0.0042 J	24	0.000020 J.P1	<0.020	4.1	0.015 J	5,6	280	<0.030
CH-028 Webb Spring Complex	12/18/2012	0.69	<0.0050	13	<0.00020	<0.020	2,3	0.064	3.4	160	0.050
G. 1-020 TYCOD OPING COMPACE	121 10120 12	V.03	-0,5000		-U.UUUZU	~0.020		VIVOT	U.7	. 30	
CH-050 Railroad Spring	5/9/2011	-		-	-	-		-	13	250	
CH-050 Railroad Spring	5/24/2011			-	-				24	320	
CH-050 Railroad Spring	6/7/2011								27	410	_
CH-050 Railroad Spring	6/21/2011								25	420	
CH-050 Railroad Spring	1/31/2012	0.32	<0.0050	29	<0.00020	<0.020	4.6	<0.020	18	350	0.074
CH-050 Second analysis	1/31/2012	_	_						——————————————————————————————————————	_	-
CH-050 Railroad Spring	2/16/2012	0.072 J									
CH-050 Second analysis	2/16/2012										

1,0.5,000 1111 does 211 51 1111 511 50 45 10 00 611 10 14 10 11 11 11 11 11		Tatal	Chamiani	1995 and a factor of the contract		10 10 10 10 10 10 10 10 10 10 10 10 10 1						
		Total Dissolved	Chemical									dan kirist kalendera. Para basa kananan
	Parameter:	Solids	Oxygen Demand	Total Organic	Alkalinity.	Alkalinity.						
		(TDS)	(COD)	Carbon (TOC)	the state of the s	Carbonate		Boron	Cadmium	Calcium	Chloride	Copper
	Unit	Negotia Maria de la Maria de	(COD) (mg/L)	(mg/L)	Paramana and a salam and a salam and a salam and a salam and a salam and a salam and a salam and a salam and a	والمرور والمستحجم والمحمل أواحم والتحارأ أبأوا	AM DOMESTIC AND ADDRESS OF THE WORLD STREET, THE STREE	O block as on the constitution	PSY 100 to play of regular was as so one feet	Kalibbarasa a aga ng pagabilik	Statistica company and a constitution	Commence of the second second second
44 CON ACT EXPENSE (1994) A STORE CONTRACTOR AND ACT OF CONTRACTOR	EPA MCL	(mg/L)	nan(mg/L) wa	mg/L)	(mg/L)	(mg/L)	(mg/L) 0.010	(mg/L) —	(mg/L) 0.005	(mg/L)	(mg/L)	(mg/L) 1.3
	KY-SW MCL						0.010		0.005			1.3
Sta ID Station Description	Date						0.03		0.005			
Out 10 Guiton Description	Date	·····										
CH-050 Railroad Spring	4/13/2012	1100	7,2 J	L 88.0	190	<20	<0.020	2,1	<0.0050	240	34	<0.020
CH-050 Railroad Spring	5/14/2012	870	9.0 J	0.86 J	160	<20	<0.020	0.88	<0.0050	180	24	<0.020
CH-050 Railroad Spring	9/4/2012	1200	<10	1.1	160	<20	<0,020	5.7	<0.0050	220	30	0.0022 J
CH-050 Railroad Spring	12/18/2012	2700	38	3.2	140	<20	0.0064	42	<0.0050	360	100	<0.020
CH-040 Dam Toe Right (Audible)	5/9/2011	890						2.0		210	20	
CH-040 Dam Toe Right (Audible)	5/24/2011	830					_	1.6		220	18	
CH-040 Dam Toe Right (Audible)	6/7/2011	910						2.1		190	22	
CH-040 Dam Toe Right (Audible)	6/21/2011	790						2.0		160	16	
CH-040 Dam Toe Right (Audible)	1/31/2012	740	<10	0.99 J	150	<20	1.8	2.0	<0.0050	180	15	<0.020
CH-040 Second analysis	1/31/2012						35/3/11777555					
CH-040 Dam Toe Right (Audible)	2/16/2012	<u> </u>					0,44		<u> </u>			
CH-040 Second analysis	2/16/2012	-					0,44		<u> </u>		<u> </u>	<u> </u>
CH-040 Dam Toe Right (Audible)	4/13/2012	760	7.6 J	0.94 J	140	<20	0.28	2.5	<0.0050	180	15	0.0024 J
CH-040 Dam Toe Right (Audible)	5/14/2012	850	14	1.1	120	<20	0.66	2,3	<0.0050	190	12	0.0050 J
CH-040 Dam Toe Right (Audible)	9/4/2012	840	<10	0,89 J	150	<20	0.41	2.8	<0.0050	170	14	<0.020
CH-040 Dam Toe Right (Duplicate)	9/4/2012	800	<10	0.69 J	140	<20	0.44	2.9	<0.0050	170	15	<0.020
CH-040 Dam Toe Right (Audible)	12/17/2012	730	6.0 J,P1	2.1	150	<20	0.41	2.3	<0.0050	160	17	<0.020
CH-040 Dam Toe Right (Duplicate)	12/17/2012	730	<10	2.2	150	<20	0.60	2.5	<0.0050	170	16	<0.020
CH-044 Ditch Spring	5/9/2011	780						2,5		180	12	
CH-044 Ditch Spring	5/24/2011	960						1.8		220	9.8	_
CH-044 Ditch Spring	6/7/2011	700						3.1		150	13	
CH-044 Ditch Spring	6/21/2011	760		——————————————————————————————————————	_		····	3.3		160	13	
CH-044 Ditch Spring	1/31/2012	720	<10	1.6	150	<20	g (100 0.11 100.00	3.0	<0.0050	180	16	0.0016 J
CH-044 Second analysis	1/31/2012				—		0.11					-
CH-044 Ditch Spring	2/16/2012	_	-	_	_		0.14	_	_	_		-
CH-044 Second analysis	2/16/2012	_			–		0.13					
CH-044 Ditch Spring	4/13/2012	730	14	1.0	140	<20	0.000.11	3.4	<0.0050	160	17	0.0031 J
CH-044 Ditch Spring	5/14/2012	900	75	1,1	150	<20	0.15	2.4	0.0044 J	200	14	0.042
CH-044 Ditch Spring (Duplicate)	5/14/2012	910	68	0.93 J	150	<20	0.15	2.4	0.0037 J	200	14	0.037
CH-044 Ditch Spring	9/4/2012	510	14	0.53 J	64	<20	0.056	0.73	<0.0050	120	3.1	0,0063 J
CH-044 Ditch Spring	12/17/2012	430	200	3.9	110	<20	0.029	0.56	<0.0050	270	7.5	0.013J
CH-044 Ditch Spring	12/18/2012						0.014	0.79	<0,0050	210		<0.020
CH-044 Ditch Spring (Dissolved)	12/18/2012						0.0081	0.64	<0.0050	210		<0.020
CH-057 Briar Patch Spring	5/9/2011	1600					——————————————————————————————————————	2.0		390	36	
CH-057 Briar Patch Spring	5/24/2011	1700			_			2.4		420	54	
CH-057 Briar Patch Spring	6/7/2011	1700						2.4		390	60	
CH-057 Briar Patch Spring	6/21/2011	1300					_	1.9		300	44	
CH-05/ Briar Patch Spring		4 4 4 4	-40		90	~00	0.012 J	1.0	<0.0050	340		0.0031 J
CH-057 Briar Patch Spring CH-057 Briar Patch Spring	1/31/2012	1400	<10	2.2	90	<20	0.012 3	1.0	~0.0050	340	29	0.00313
	1/31/2012 1/31/2012	1400 —	<10 —	<u> </u>	<u> </u>		0.012	- 1.0	~0.0050 —	340	<u> </u>	0.00313
CH-057 Briar Patch Spring												

	20 (20 Hz do 10 do									escent encetted for two	
									ento de la compansión		
Photos englis serge respeggion in	Parameter:		30 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -	Mag-			Version services	กและเหลาสถเลย			
		Iron	Lead	nesium	Mercury	Nickel	Potassium	Selenium	Sodium	Sulfate	Zinc
no recuestion of the control of	Unit:	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	EPA MCL		0.015		0.002			0.05			
	KY-SW MCL		0.05		0.002			0.05			
Sta ID Station Description	Date										
CH-050 Railroad Spring	4/13/2012	0.12	<0.0050	49	<0.00020	<0,020	5,2	<0.020	27	570	0.011 J
CH-050 Railroad Spring	5/14/2012	0.14	0.019	34	<0.00020	<0.020	4.9	0.034	22	420	0.020 J
CH-050 Railroad Spring	9/4/2012	0.044 J	0.0034 J	60	0.000030 J	<0.020	6.0	0.022	20	570	<0.030
CH-050 Railroad Spring	12/18/2012	0.10	<0.0050	230	<0.0020	0.11 J	8.0	0.14	28	1400	0.014J
CH-040 Dam Toe Right (Audible)	5/9/2011	<u> </u>	*****						10	490	
CH-040 Dam Toe Right (Audible)	5/24/2011		_						12	430 J6	
CH-040 Dam Toe Right (Audible)	6/7/2011						······		9.3	430	
CH-040 Dam Toe Right (Audible)	6/21/2011								11	390	
CH-040 Dam Toe Right (Audible)	1/31/2012	6.8	<0.0050	24	<0.00020	<0.020	9.1	<0.020	10	380	0.091
CH-040 Second analysis	1/31/2012		~0.0000			-0.020					
CH-040 Dam Toe Right (Audible)	2/16/2012	1,3			·						
CH-040 Second analysis	2/16/2012	——————————————————————————————————————						····	_		
CH-040 Dam Toe Right (Audible)	4/13/2012	0.89	<0.0050	25	0,000020 J	<0.020	9.7	<0.020	11	380	0.013 J
CH-040 Dam Toe Right (Audible)	5/14/2012	3.2	0.015	26	<0.00020	<0.020	8.3	0.045	9.3	440	0,029 J
CH-040 Dam Toe Right (Audible)	9/4/2012	1.9	0.0025 J	26	0.000020 J	<0.020	8.4	0.024	9.0	410	<0.030
CH-040 Dam Toe Right (Duplicate)	9/4/2012	2.0	0.0040 J	26	0.000030 J	<0.020	8.0	0,019 J	8.4	410	<0.030
CH-040 Dam Toe Right (Audible)	12/17/2012	0.95	<0.0050	23	<0.00020	0.0057 J	8.6	<0.020	11	370	0.0070 J
CH-040 Dam Toe Right (Duplicate)	12/17/2012	2.3	<0.010 O	24	<0.00020	<0.020	9.0	0.036	11	430	0.011 J
										· · · · · · · · · · · · · · · · · · ·	
CH-044 Ditch Spring	5/9/2011			_	_			-	9.9	410	
CH-044 Ditch Spring	5/24/2011				-				9.1	530	_
CH-044 Ditch Spring	6/7/2011								7,3	340	
CH-044 Ditch Spring	6/21/2011				-				7,8	380	
CH-044 Ditch Spring	1/31/2012	0.16	<0.0050	21	<0.00020	<0.020	5.6	<0.020	11	360	0.078
CH-044 Second analysis	1/31/2012		_							—	
CH-044 Ditch Spring	2/16/2012	0.34				_			_	-	
CH-044 Second analysis	2/16/2012		_		-	-	_	_	_	-	
CH-044 Ditch Spring	4/13/2012	0.28	0,013	21	<0.00020	0.010 J	5.5	0.024	8.6	350	0.014 J
CH-044 Ditch Spring	5/14/2012	6.8	0.041	28	<0.00020	0,020 J	8,9	0.045	28	460	0.065
CH-044 Ditch Spring (Duplicate)	5/14/2012	6,0	0.036	27	<0.00020	0.015 J	9.6	0.049	14	470	0,064
CH-044 Ditch Spring	9/4/2012	0,99	0.0048 J	8.5	0.000040 J	<0.020	2.6	0.097	2,8	270	<0.030
CH-044 Ditch Spring	12/17/2012	8.5	<0.0050	15	<0.00020	0.034	6.4	<0,020	18	380	0.050
CH-044 Ditch Spring	12/18/2012	3.3	<0.0050	34	<0.00020	0.019 J	16	<0.020	78		0.014 J
CH-044 Ditch Spring (Dissolved)	12/18/2012	<0.10	<0.0050	33	<0,00020	<0.020	16	<0.020	81		0.012 J
CH-057 Briar Patch Spring	5/9/2011	, , , , , , , , , , , , , , , , , , ,	-				-		11	1000	******
CH-057 Briar Patch Spring	5/24/2011	_				_	******		9.6	990	
CH-057 Briar Patch Spring	6/7/2011				—				9.4	970	
CH-057 Briar Patch Spring	6/21/2011				*****		—		10	730	_
CH-057 Briar Patch Spring	1/31/2012	0.26	<0.0050	22	<0.00020	<0.020	5.9	<0.020	8.8	840	0.15
CH-057 Second analysis	1/31/2012		<u> </u>		-						
CH-057 Briar Patch Spring	2/16/2012	0.047 J									
CH-057 Second analysis	2/16/2012							****			

	Parameter:	Total Dissolved Solids (TDS)	Chemical Oxygen Demand (COD)	Total Organic Carbon (TOC)	Part of the control o	Alkalinity, Carbonate	Arsenic	Boron	Cadmlum	Calcium	Chloride	Copper
Carene upon properties de companya de la propertie de la prope	Unit	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	EPA MCL						0.010		0.005			1.3
	KY-SW MCL						0.05		0.005			
Sta ID Station Description	Date	1	***************************************									
CH-057 Briar Patch Spring	4/13/2012	720	17	1.0	150	<20	0.11	3.5	<0.0050	180	17	0.0032 J
CH-057 Briar Patch Spring	5/14/2012	1500	4.2	1.8	86	<20	0.012 J	4.2	<0.0050	350	17	0.0055 J
CH-057 Briar Patch Spring	9/4/2012	1600	<10	1.4	100	<20	0.015 J	10	<0.0050	320	27	0.0026 J
CH-057 Briar Patch Spring	12/17/2012	1300	13 J3	2.0	29	<20	0.0084	5.2	<0.0050	300	19	<0.020
CH-041 Dam Toe Middle	5/9/2011	950						1.6	·	220	14	
CH-041 Dam Toe Middle	5/24/2011	970						<0.20		140	14	
CH-041 Dam Toe Middle	6/7/2011	1000						1.6		210	15	
CH-041 Dam Toe Middle	6/21/2011	950						1.1		200	14	
OTFORT DATE TOO WILLIAM	0/21/2011	330	-					1	<u>-</u>			
CH-042 Dam Toe Left	5/9/2011	910						0.64		200	20	
CH-042 Dam Toe Left	5/24/2011	580		_	_			1.8		240	12	
CH-042 Dam Toe Left	6/7/2011	510		<u> </u>				0.20		110	14	_
CH-042 Dam Toe Left	6/21/2011	520						0.19 J		120	12	
CH-045 Beaver Dam Cave Spring	5/9/2011	780					_	2.5		190	12	
CH-045 Beaver Dam Cave Spring	5/24/2011	930						1.6		290	9.5	
CH-045 Beaver Dam Cave Spring	6/7/2011	730						3.1		150	13	
CH-045 Beaver Dam Cave Spring	6/21/2011	740						3.2		160	13	 .
CH-045 Beaver Dam Cave Spring	12/17/2012	690	210	5.2	66	<20	0.080	0.56	<0,0050	230	13	0.012 J
CH-045 Beaver Dam Cave Spring	12/18/2012			_			0.019	0.63	<0.0050	210	_	<0.020
CH-045 Beaver Dam Cave Spring (Dissolved)	12/18/2012		-				0.012	0.58	<0.0050	210		<0.020
CH-045 Beaver Dam Cave Spring	1/14/2013	350	3.2 J	0.79 J	26	<20	<0.0010	0,13 J	<0.0050	80	2.0	<0,020
CH-045 Beaver Dam Cave Spring (Duplicate)	1/14/2013	260	<10	1.1	24	<20	0.00027 J	0.12 J	<0,0050	82	1.9	<0,020
CH-046 HQ Spring	5/9/2011	1400						1,4		300	37	
CH-046 HQ Spring	5/24/2011	1300			_			1.9		400	28	
CH-046 HQ Spring	6/7/2011	1500						1.9		320	38	
CH-046 HQ Spring	6/21/2011	1300		_				1,8		280	29	
CH-046 HQ Spring	12/17/2012	1400	17	1,4	110	<20	0.0063	3,6	<0.0050	290	27	<0.020
CH-046 HQ Spring	1/14/2013	1100	<10	1.2	96	<20	0.0070	1.8	<0.0050	250	14	<0.020
CH-048 Drain Pipe	5/9/2011	2000						1.9		340	32	
CH-048 Drain Pipe	5/24/2011	2200	-				-	1.9		400	37	
CH-048 Drain Pipe	6/7/2011	2400						1.7		400	37	<u> </u>
CH-048 Drain Pipe	6/21/2011	2500						1.9		430	41	<u> </u>
CH-061 Ison Spring	5/9/2011	300	_		_		_	<0.20		88	18	·····
CH-061 Ison Spring	5/24/2011	300			_			<0.20		89	20	

saredzajilātā nāti indistribātā circe i mai nainot estava verd vajartina attā protest	segougestates reconstruction	Riji kan Seri Calue Sere	090W190970cseV11c50cssy	vé huces o en electro.	Reservation State Address (September 2014)	setti motoisisti pataisi	96.48000000000000000000000000000000000000	NOTOLOGIA PROGRAMA	erecon estáblica capacida (1).	Altterso-mannolist	Bibero vakokustan koka
	Parameter:			Mag-				medinen og gj			
	General Control	Iron	Lead	nesium	Mercury	Nickel	Potassium	Selenium	Sodium	Sulfate	Zinc
	Unit	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	EPA MCL		0.015	_	0.002			0.05			
	KY-SW MCL		0.05	_	0.002			0.05			
Sta ID Station Description	Date										
CH-057 Briar Patch Spring	4/13/2012	0.41	<0.0050	22	<0.00020	<0.020	5.2	<0.020	8.6	350	0.010 J
CH-057 Briar Patch Spring	5/14/2012	0.095 J	0.030	30	<0,00020	<0.020	9.2	0.070	14	890	0.026 J
CH-057 Briar Patch Spring	9/4/2012	<0.10	0.0032 J	57	0.00030 J	0.017 J	9.5	0.040	13	970	<0.030
CH-057 Briar Patch Spring	12/17/2012	0.16	<0.0050	34	<0.00020	0.0064 J	7.9	<0.020	15	840	0.0063 J
CH-041 Dam Toe Middle	5/9/2011					_	-		13	540	
CH-041 Dam Toe Middle	5/24/2011		_					-	8.7	510	
CH-041 Dam Toe Middle	6/7/2011	-						_	12	510	
CH-041 Dam Toe Middle	6/21/2011						-	_	11	500	
CH-042 Dam Toe Left	5/9/2011				_				14	490	
CH-042 Dam Toe Left	5/24/2011		_		-		***************************************		9.6	300	······································
CH-042 Dam Toe Left	6/7/2011	_	<u> </u>	<u> </u>					9.4	220	
CH-042 Dam Toe Left	6/21/2011	_				-			10	250	-
CH-045 Beaver Dam Cave Spring	5/9/2011		····		_	_			8.7	410	
CH-045 Beaver Dam Cave Spring	5/24/2011	_	<u>—</u>						14	550	
CH-045 Beaver Dam Cave Spring	6/7/2011			_		_			7.5	320	
CH-045 Beaver Dam Cave Spring	6/21/2011			_					7.7	380	
CH-045 Beaver Dam Cave Spring	12/17/2012	12	<0.0050	14	<0.00020	0.28	5.6	<0.020	18	370	0.044
CH-045 Beaver Dam Cave Spring	12/18/2012	4.7	<0.0050	32	<0.00020	0.018 J	16	<0.020	76		0.017 J
CH-045 Beaver Dam Cave Spring (Dissolved)	12/18/2012	<0.10	<0.0050	32	<0.00020	<0.020	16	<0.020	80	<u> </u>	0.010 J
CH-045 Beaver Dam Cave Spring	1/14/2013	1,3	<0.0050	7.4	<0.00020	<0.020	3.9	0.039	11	210	0.079
CH-045 Beaver Dam Cave Spring (Duplicate)	1/14/2013	2.6	<0.0050	7.9	<0.00020	<0.020	4.8	0.036	12	200	0.082
CH-046 HQ Spring	5/9/2011	<u> </u>							18	800	_
CH-046 HQ Spring	5/24/2011					_	_		18	730	
CH-046 HQ Spring	6/7/2011								14	900	
CH-046 HQ Spring	6/21/2011		_	-				—	14	740	
CH-046 HQ Spring	12/17/2012	0.27	<0.0050	42	<0.00020	0,0070 J	9.8	<0.020	26	800	0.0065 J
CH-046 HQ Spring	1/14/2013	0.10	<0,025 O	44	<0.00020	<0.10 O	10	0.082	23	670	0.12
CH-048 Drain Pipe	5/9/2011								17 J5	1300	
CH-048 Drain Pipe	5/24/2011								18	1500	
CH-048 Drain Pipe	6/7/2011	···-							18	1700	
CH-048 Drain Pipe	6/21/2011							_	19	1700	
CH-061 Ison Spring	5/9/2011	<u>-</u>				——————————————————————————————————————			9,3	20	
CH-061 Ison Spring	5/24/2011					<u>-</u>			12	18	
	-/2-7/2011			_					14	10	

	Parameter: Unit	(TDS)	Chemical Oxygen Demand (COD) (mg/L)	Total Organic Carbon (TOC) (mg/L)		Alkalinity, Carbonate (mg/L)	Arsenic (mg/L)	Boron (mg/L)	Cadmium (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Copper (mg/L)
	EPA MCL						0.010		0.005			1.3
	KY-SW MCL						0.05	_	0.005			
Sta ID Station Description	Date											
Burgin Spring	5/21/2012	310	<10	1.3	200	<20	<0.0010	0.048 J	<0.0050	91	14	<0,020
Burgin Spring	12/172012	280	38	1.8	170	<20	<0,0010	0.088 J	<0,0050	90	12	0.012 J
Burgin Spring	1/14/2013	160	17	3,0	88	<20	0.00072 J	0.065 J	<0.0050	57	6,0	<0.020

ang Ingga Ingga Ingga	Parameter:			Mag-							
	Unit	iron (mg/L)	Lead (mg/L)	nesium (mg/L)	Mercury (mg/L)	Nickel (mg/L)	Potassium (mg/L)		Sodium (mg/L)	Sulfate (mg/L)	Zinc (mg/L)
	EPA MCL		0.015		0.002			0.05			<u>—</u>
	KY-SW MCL		0.05		0.002			0.05			
Sta ID Station Description	Date										
Burgin Spring	5/21/2012	0.077 J	<0.0050	4.8	<0,00020	<0.020	1.7	<0.020	6.6	18	<0.030
Burgin Spring	12/172012	0.092 J	<0.0050	4.6	<0.00020	<0.020	1.9	<0,020	6.3	23	0.012 J
Burgin Spring	1/14/2013	0,70	<0.0050	3.3	<0.00020	<0.020	2.4	0.013 J	3.2	13	0.070

Notes:

Detected values are shown in bold

Prepared by: CFS 4/11//2013

Checked by: TMH 4/12/2013

- = Not measured, not available or not established

EPA MCL= USEPA Maximum Contaminant Level (or Action Level) for drinking water

KY-SW MCL= Kentucky Solid Waste Maximum Contaminant Level in 401 KAR 47:030 Section 6

Yellow highlighted values exceed the KY Solid Waste MCL in 401 KAR 47:030 Section 6.

Lab Qualifiers:

J = (EPA) Estimated value below the lowest calibration point, Confidence correlates with concentration

J3 = The associated batch QC was outside the established quality control range for precision

J5 = The sample matrix interfered with the ability to make any accurate determination; spike value is high

J6 = The sample matrix interfered with ability to make any accurate determination; spike value is low.

P1 = RPD value not applicable for sample concentrations less than 5 times the reporting limit.

B = (EPA) The indicated compound was found in the associated method blank as well as the laboratory sample.

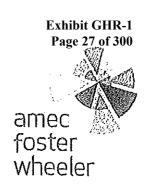
O= Sample diluted due to matrix interference, detection limit elevated to reflect necessary dilution.

		Total	Chemical	Total		(designation contributions)	oslivniki okazentana	nosaussautiilii	18691/Gradistration	ngsi 1994-2000 (1897-28	575241565720278315	REPORTED AND A PROPERTY OF THE PARTY OF THE	
	Parameter: Unit:	Dissolved Solids (TDS)	Oxygen Demand (COD) (mg/L)	Organic Carbon (TOC) (mg/L)	Hardness as CaCO ₃ (1)	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Arsenic (mg/L)	Boron	Cadmium (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Copper (mg/L)
Sta ID Station Description	Date	(mg/L)	(mg/L)	(mg/E)	(mg/L)	(mg/L)	(mg/L)	icos(mg/is)-sec	(mg/L)	(mg/L)		esse(mg/L)ssee	(IIIg/L)
Herrington Lake / Curds Inlet													
Curds Inlet (Dam End)	5/21/2012	230	9.0 J	4.7	129	69	<20	0.00051 J	0.22	<0,0050	38	7.4	<0.020
Curds Inlet (Lake End)	5/21/2012	210	12	4.6	123	62	<20	0.00044 J	0.20	<0.0050	35	7.3	0.0043 JP1
Lake (Near Intake)	5/21/2012	220	12	4.7	123	67	<20	0.00049 J	0.19 J	<0.0050	36	7,3	<0.020
Lake Center	5/21/2012	220	13	4.7	123	58	<20	0.00042 J	0.19 J	<0.0050	36	7.4	<0.020
Plant Lake Intake	5/21/2012	210	<10	2.9	145	110	<20	0.00047 J	0.078 J	<0.0050	46	7.5	<0.020
Other Sampling Points - Surface Water					_	***************************************		*****					
CH-025 Mouth of Dix River	5/9/2011	170							<0.20		39	9.5	
CH-025 Mouth of Dix River	5/24/2011	270							<0.20		120	8.3	
CH-025 Mouth of Dix River	6/7/2011	210							0.045 J		30	5.8	
CH-025 Mouth of Dix River (Duplicate)	6/7/2011	210		_		_	<u> </u>		0.058 J		30	5.5	****
CH-025 Mouth of Dix River	6/21/2011	260	Head			_		helester	0.043 J		34	8.7	
CH-059 Cedar Branch at Shaker Landing	5/9/2011	250							<0.20		74	7.3	
CH-059 Cedar Branch at Shaker Landing	5/24/2011	290		_					<0.20		84	8.7	_
CH-059 Cedar Branch at Shaker Landing	6/7/2011	280				····			0.10 J		83	10	
CH-059 Cedar Branch at Shaker Landing	6/21/2011	270				_			0.066 J		41	9.0	
CH-051 Cedar Branch (above KY 342)	5/9/2011	240	<u> </u>					<u> </u>	<0.20		71	7.4	
CH-051 Cedar Branch (above KY 342)	5/24/2011	280							<0.20		85	6.4	
CH-051 Cedar Branch (above KY 342)	6/7/2011	300			- =				0.095 J		92	10	
CH-051 Cedar Branch (above KY 342)	6/21/2011	400							0.10 J		98	15	
CH-054 Cedar Branch Upstream	5/9/2011	240							<0.20		73	7.6 6.2	,
CH-054 Cedar Branch Upstream	5/24/2011	240			-				<0.20		78		
CH-054 Cedar Branch Upstream CH-054 Cedar Branch Upstream	6/7/2011	300 280							0.053 J 0.061 J	-	89 84	11 15	
CH-054 Cedar Branch Opstream	6/21/2011	280						.	0,061 J		84	15	
CH-053 Steep Tributary	5/9/2011	470				_			<0.20		130	9.6	
CH-053 Steep Tributary	5/24/2011	500		_			_		<0.20		150	11	
CH-053 Steep Tributary	6/7/2011	580	-			E-100			0.19 J	_	160	10	_
CH-053 Steep Tributary	6/21/2011	760		_					0.72		200	29	
CH-055 Railroad Stream (upstream of 050)	5/9/2011	520						_	<0,20		110	17	
CH-055 Railroad Stream (upstream of 050)	5/24/2011	780		·					<0.20		170	23	
CH-055 Railroad Stream (upstream of 050)	6/7/2011	960	_	_				_	0.17 J		190	31	_
CH-055 Railroad Stream (upstream of 050)	6/21/2011	820	_				_	_	0.20 J	_	160	27	
					~								

		Parameter:	Angerman de de la	estale menomination	Mag-			ONE SALEST HIS OF	de neo necro	range handerne	r og filvety der ste	
			Iron	Lead	nesium	Mercury	Nickel	Potassium	Markov primari de sense con 1990	Sodium	Sulfate	Zinc
		Unit	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Sta ID	Station Description	Date						······				
Herringto	on Lake / Curds Inlet											
	Curds Inlet (Dam End)	5/21/2012	0.037 J	<0.0050	8.2	<0.00020	<0.020	2,6	<0.020	4.8	54	<0.030
	Curds Inlet (Lake End)	5/21/2012	0.046 JP1	0.0035 JP1	8.5	<0,00020	<0,020	3.2	0.022	4.9	49	0.011 JP1
	Lake (Near Intake)	5/21/2012	0.036 J	<0.0050	8.1	<0.00020	<0.020	2.8	0.019 J	5.1 B	51	<0.030
	Lake Center	5/21/2012	0.066 J	<0.0050	8.1	<0.00020	<0.020	2.7	0.031	5.0 B	51	0.010 J
	Plant Lake Intake	5/21/2012	0.027 J	<0,0050	7.3	<0.00020	<0.020	2.8	<0.020	4.5	28	<0.030
Other Sa	mpling Points - Surface Water									·····		
CH-025	Mouth of Dix River	5/9/2011	<u> </u>		<u> </u>	<u></u>				5.3	20	
CH-025	Mouth of Dix River	5/24/2011	_							3.8	110	P
CH-025	Mouth of Dix River	6/7/2011		-				_		9.6	71	
CH-025	Mouth of Dix River (Duplicate)	6/7/2011			····			_		9.3	69	
CH-025	Mouth of Dix River	6/21/2011						-		11	71	
CH-059	Cedar Branch at Shaker Landing	5/9/2011						_		5.7	36	
CH-059	Cedar Branch at Shaker Landing	5/24/2011								5.9	48	_
CH-059	Cedar Branch at Shaker Landing	6/7/2011								7.0	50	
	Cedar Branch at Shaker Landing	6/21/2011					-		-	10	70	_
CH-051	Cedar Branch (above KY 342)	5/9/2011	·····	······································					<u></u>	4,1	26	
	Çedar Branch (above KY 342)	5/24/2011			-					4.1	25	
CH-051	Cedar Branch (above KY 342)	6/7/2011					-			5,0	30	
CH-051	Cedar Branch (above KY 342)	6/21/2011								6.6	52	
CH-054	Çedar Branch Upstream	5/9/2011				_				4.3	27	
	Cedar Branch Upstream	5/24/2011	_				<u></u>			3.4	13	
CH-054	Cedar Branch Upstream	6/7/2011				••••	—			4.6	14	
CH-054	Cedar Branch Upstream	6/21/2011	—		-		_			6.2	18	
CH-053	Steep Tributary	5/9/2011		,						9.7	160	
	Steep Tributary	5/24/2011				****				11	200	
	Steep Tributary	6/7/2011			-			_		11	220	······
	Steep Tributary	6/21/2011								16	340	1 41-4
CH-055	Railroad Stream (upstream of 050)	5/9/2011				·····				15	240	
	Railroad Stream (upstream of 050)	5/24/2011			·					19	400	<u> </u>
	Railroad Stream (upstream of 050)	6/7/2011				_	_	_		26	450	
	Railroad Stream (upstream of 050)	6/21/2011						_		23	440	

	Parameter: Unit:	(TDS)	Chemical Oxygen Demand (COD) (mg/L)	Total Organic Carbon (TOC) (mg/L)	Hardness as CaCO ₃ (1) (mg/L)	Alkalinity, Bicarbonate (mg/L)	Alkalinity, Carbonate (mg/L)	Arsenic (mg/L)	Boron (mg/L)	Cadmium (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Copper (mg/L)
Sta ID Station Description	Date											· · · · · · · · · · · · · · · · · · ·	
CH-056 Railroad Trib. (downstream of 050)	5/24/2011	740	······································		<u> </u>	······································			<0.20		160	26	
CH-056 Railroad Trib. (downstream of 050)	6/7/2011	870			_	_	_	_	0.17 J		220	35	
CH-056 Railroad Trib. (downstream of 050)	6/21/2011	820	—						0.21	resur	170	31	
CH-058 HQ Stream	5/9/2011	1500	_		—				1.7		350	37	
CH-058 HQ Stream	5/24/2011	1400	_	_	_	_			2.0	-	350	41	
CH-058 HQ Stream	6/7/2011	1600	_			_	_	_	2,2		360	50	_
CH-058 HQ Stream	6/21/2011	1300				<u> </u>			1,9		290	37	

1648 JOURNAL 1644 J. 1644 J. 1644		Parameter:										eproduste valer Oktober
		rarameter. Unit	Iron (mg/L)	Lead (mg/L)	Mag- nesium (mg/L)	Mercury (mg/L)	Nickel (mg/L)	Potassium (mg/L)	Selenium	Sodium (mg/L)	Sulfate (mg/L)	Zinc (mg/L)
Sta ID	Station Description	Date						· · · · · · · · · · · · · · · · · · ·		***************************************		
CH-056	Railroad Trib. (downstream of 050)	5/24/2011	······································			· ····································		 _		21	340	
CH-056	Railroad Trib. (downstream of 050)	6/7/2011								27	400	
CH-056	Railroad Trib. (downstream of 050)	6/21/2011		-		-	-			24	390	
CH-058	HQ Stream	5/9/2011	-				-			19	900	<u>-</u> -
CH-058	HQ Stream	5/24/2011	_	-	_	-	-			12	840	
CH-058	HQ Stream	6/7/2011	_	_		_	-	_	_	12	920	_
CH UEB	HQ Stream	6/21/2011		——————————————————————————————————————			——————————————————————————————————————			12	740	


Notes:

Detected values are shown in bold

Prepared by: CFS 4/11//2013 Checked by: TMH 4/12/2013

- -= Not measured, not available or not established
- (1) Hardness calculated according the the following formula: Hardness = 2.50 Ca + 4.12 Mg Lab Qualifiers:
 - J = (EPA) Estimated value below the lowest calibration point. Confidence correlates with concentration
 - P1 = RPD value not applicable for sample concentrations less than 5 times the reporting limit.

Heceived
JUN 0 9 2015
Reception

GROUNDWATER ASSESSMENT REPORT UPDATE

E.W. BROWN GENERATING STATION MERCER COUNTY, KENTUCKY

AGENCY INTEREST No. 3148 SOLID WASTE PERMIT No. SW8400010

2 June 2015

Prepared For:

Generation Services

Kentucky Utilities Company 815 Dix Dam Road Harrodsburg, KY 40330

Prepared By:

Amec Foster Wheeler Environment & Infrastructure, Inc. 13425 Eastpoint Centre Drive, Suite #122 Louisville, Kentucky 40223

Project No. 567530023

APPENDIX E

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS BY SAMPLING POINT

MCL		tation Name Lab ID Lection Date Units ft NAVD88 gpm mgd eC S.U. µS/cm mV mg/L NTU	WEBB L515479-03 5/9/2011 6 0,008 20.8 7.57 510	799 9 0.01 15,7 7,83	WEBB L517576-02 5/24/2011 799.1 40 0.06 19.2	799 4 0.006	WEBB L520030-02 6/7/2011 798.8 5 0,008	6/14/2011	WEBB L522574-02 6/21/2011 7
	UPL	ft NAVD88 gpm mgd °C S.U. µS/cm mV mg/L	5/9/2011 6 0,008 20.8 7.57 510	799 9 0.01 15.7 7.83	799.1 40 0.06	5/31/2011 799 4 0.006	6/7/2011 798.8 5	10	6/21/2011
	UPL	ft NAVD88 gpm mgd °C S.U. µS/cm mV mg/L	6 0,008 20.8 7.57 510	799 9 0.01 15.7 7.83	799.1 40 0.06	799 4 0.006	798.8 5	10	
	840	ft NAVD88 gpm mgd °C S.U. µS/cm mV mg/L	6 0,008 20.8 7.57 510	9 0.01 15,7 7,83	40 0.06	0.006	5	10	
	840 	gpm mgd °C S.U. µS/cm mV mg/L	6 0,008 20.8 7.57 510	9 0.01 15,7 7,83	40 0.06	0.006	5	10	
	840 	gpm mgd °C S.U. µS/cm mV mg/L	6 0,008 20.8 7.57 510	9 0.01 15,7 7,83	40 0.06	0.006	5	10	
Albert Al	840	mgd °C S.U. µS/cm mV mg/L	0.008 20.8 7.57 510	0.01 15,7 7,83	0.06	0.006			1 7
	840 	°C S.U. μS/cm mV mg/L	20.8 7.57 510	15.7 7.83			0.008		
	840 	S.U. µS/cm mV mg/L	7.57 510	7,83	192			0.01	0,01
	840	μS/cm mV mg/L	510			21.3	24.5	24.8	22,8
		mV mg/L			7.58	7.19	7.52	7,13	7.57
	= -	mg/L		600	580	590	690	640	660
							_		
		NTU							8,78
=				_	1				
=	_			***************************************					
		S.U.	_		-		-		
	420	mg/L	360	****	440	-	490	-	520
		mg/L		_			_		
		บโก			1				
_	11	mg/L							
	3.8	mg/L	_	-	_				
		mg/L		-	Ī		_		
		mg/L	-		j	_		_	
_		mg/L	_		_	-			_
_ [130	mg/L	100		200		120		130
	130	mg/L					_		
_	8.8	mg/L	_	-			-		
_	8.8	mg/L		_	_				
	3,4	mg/L			-				
	3.4	mg/L			ı				
	7.2	mg/L.	4.3		8.0		5.1		5.2
	7.2	mg/L		_			_		_
					****	***			
·		<u> </u>	······································						
		ma/L							T
_	290								T
	······								
10				_		***			-
7									<u> </u>
									210
		·							
							_		
							-		
				·		····			4.8
		mg/L							
_ \					\		. —		l —
			- mg/L - 130 mg/L - 130 mg/L - 130 mg/L - 130 mg/L - 8.8 mg/L - 8.8 mg/L - 3.4 mg/L - 3.4 mg/L - 7.2 mg/L - 7.2 mg/L - 7.2 mg/L mg/L - mg/L - 100 mg/L - mg/L	- mg/L - 100 - 130 mg/L 100 - 130 mg/L - 100 - 130 mg/L	- mg/L	- mg/L	- mg/L	- mg/L	- mg/L

		Star	tion Number∟	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028
		s	tation Name	WEBB	WEBB	WEB8	WEBB	WEBB	WEBB	WEBB
			Lab ID	L515479-03	_	L517576-02		L520030-02	_	L522574-02
			lection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units							
race Metals										
Iron	_	1.3	mg/L				***		n==	
Iron,Dissolved		1.3	mg/L				-	_		
Ferrous Iron		-	mg/L	•••			-	****		
Ferric Iron	1	_	mg/L	–	-				_	
Aluminum	_	—	mg/L	_			****		_	
Aluminum, Dissolved	_		mg/L		_					_
Antimony	0.006	-	mg/L				run-r		-	-
Antimony, Dissolved	0.006		mg/L			_				
Arsenic	0.01		mg/L						-	
Arsenic,Dissolved	0.01	_	mg/L		_					<u> </u>
Barium	2	_	mg/L	_			_	_	-	_
Barium, Dissolved	2		mg/L				_		***	
Beryllium	0,004		mg/L			****				_
Beryllium, Dissolved	0.004	_	mg/L	-		· · · · · · · · · · · · · · · · · · ·			-	
Boron	_	0.3	mg/L	<0.20		1,8	-	0,093 J	_	0,070
Boron, Dissolved	_	0.3	mg/L						***	
Cadmium	0.005	T	mg/L	-						
Cadmium, Dissolved	0.005	l –	mg/L					_		
Chromium	0.1	_	mg/L			_		-		
Chromium, Dissolved	0.1		mg/L			· · · · · · · · · · · · · · · · · · ·		1 –		1 -
Cobalt		_	mg/L							
Cobalt Dissolved	_		mg/L		_	****				
Copper	1.3		mg/L			-		T -		_
Copper, Dissolved	1.3	_	mg/L							
Lead	0.015		mg/L	_						
Lead, Dissolved	0.015		mg/L	_	_	-	_		_	-
Manganese			mg/L					_		
Manganese, Dissolved			mg/L			-		 _	_	
Mercury	0.002		mg/L				W-0-0			
Mercury, Dissolved	0.002		mg/L			_		<u> </u>	_	_
Molybdenum			mg/L	Ame.			MEE.			
Molybdenum, Dissolved			mg/L	-	_			-	-	
Nickel		0.0085	mg/L		_	_		—	_	T
Nickel, Dissolved	_	0.0085	mg/L		_		_	-	_	_
Selenium	0.05		mg/L	_			_	–	****	_
Selenium, Dissolved	0,05		mg/L	_	***	***		-		
Silver			mg/L		_			_	_	
Silver, Dissolved			mg/L					 		
Thallium	0.002		mg/L		_	 -		 _		
Thallium, Dissolved	0.002		mg/L						****	 _
Vanadium			mg/L			<u> </u>				
Vanadium, Dissolved			mg/L			-	_	_	_	
Zinc		0.18	mg/L							 _
Zinc, Dissolved		0.18	mg/L					 _		

MCL	### Col	tation Name Lab ID Hection Date Units ft NAVD88 gpm mgd °C S.U. uS/cm mV mg/L NTU	WEB8 L558290-04 1/31/2012 794.7 260 0.4 12.87 7.54 406 -221.4	CH-028 WEBB L560970-01 2/16/2012 794.6 66 0.1 12.2 8.01 457	WEBB L570058-04 4/13/2012 794.6 15 0.02 21.2	CH-028 WEBB 4/27/2012 796.9 93 0.1 12.58	CH-028 WEBB 5/7/2012 794.7 130 0.2	CH-028 WEBB 	WEBB L575196-01 5/14/2012 794.8 250 0.4
	UPL	ft NAVD88 gpm mgd °C S.U. µS/cm mV mg/L	794.7 260 0.4 12.87 7.54 406 -221.4	794.6 66 0.1 12.2 8.01	4/13/2012 794.6 15 0.02 21.2	796.9 93 0.1	5/7/2012 794.7 130 0.2	5/10/2012 794.6 65 0.09	5/14/2012 794.8 250
	UPL	ft NAVD88 gpm mgd °C S.U. µS/cm mV mg/L	794.7 260 0.4 12.87 7.54 406 -221.4	794.6 66 0.1 12.2 8.01	4/13/2012 794.6 15 0.02 21.2	796.9 93 0.1	794.7 130 0.2	794.6 65 0.09	5/14/2012 794.8 250
		ft NAVD88 gpm mgd °C S.U. µS/cm mV mg/L	260 0.4 12,87 7,54 406 -221,4	66 0.1 12.2 8.01	15 0.02 21,2	93 0.1	130 0.2	65 0,09	250
	840 ————————————————————————————————————	gpm mgd °C S.U. µS/cm mV mg/L	260 0.4 12,87 7,54 406 -221,4	66 0.1 12.2 8.01	15 0.02 21,2	93 0.1	130 0.2	65 0,09	250
	840 ————————————————————————————————————	gpm mgd °C S.U. µS/cm mV mg/L	260 0.4 12,87 7,54 406 -221,4	66 0.1 12.2 8.01	15 0.02 21,2	93 0.1	130 0.2	65 0,09	250
THE STATE OF THE S	840 ————————————————————————————————————	mgd °C S.U. µS/cm mV mg/L	0.4 12.87 7.54 406 -221.4	66 0.1 12.2 8.01	0.02 21,2	93 0.1	130 0.2	0.09	250
Profit	840 — — —	mgd °C S.U. µS/cm mV mg/L	12,87 7,54 406 -221,4	12.2 8.01	21,2	0.1	0.2		0.4
THE THE THE THE THE THE THE THE THE THE	840 — —	S.U. µS/cm mV mg/L	7,54 406 -221,4	8.01		19 52	20.05		
PIPE PIPE PIPE PIPE PIPE PIPE PIPE PIPE	840 — — —	μS/cm mV mg/L	406 -221,4				20,25	17.71	16,07
		mV mg/L	-221,4	457	7.7	8.2	8,22	8.24	7.48
-		mg/L		1 45/	1,010	568	660	736	720
				-227.3		217.1	-157,8	154.7	123,1
		NTU	8.1	9.5		8.93	2.25	10.24	4.7
			9.4	26	4.7		#		11
					-	······································		<u> </u>	
		S.U.	_	_	—	_	_	- ·	· · · · · -
	420	mg/L	350		520				490
		mg/L			_	_			
_		NTU		_	-				
	11	mg/L	8.1 J	-	<10	_			10
	3,8	mg/L	1,1		0,57 J				0.95 J
	_	mg/L						_	
_		mg/L				_	••••		
		ma/L	_					_	
<u> </u>	130	mg/L	110		150				120
	130					****	_		
	8.8	mg/L	7.2		12				21
	8.8	mg/L	_			· · ·	_	++	
	3.4		1,9		2.2				3.7
								<u></u>	
									4.6
-		1119-2			<u> </u>			<u> </u>	<u> </u>
		mg/L	_					_	
	290	ma/L	190		200	*****			170
									<20
·									-
7							***************************************		
	65				180				200
				_					
								_	
									3.1
								· · · · · · · · · · · · · · · · · · ·	-
			- NTU - 11 mg/L - 3.8 mg/L - mg/L - mg/L - mg/L - mg/L - mg/L - mg/L - mg/L - mg/L - 130 mg/L - 130 mg/L - 130 mg/L - 3.4 mg/L - 3.4 mg/L - 3.4 mg/L - 7.2 mg/L - mg/L				- NTU - NTU		- NTU

		Star	ion Number	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028
		S	tation Name	WEBB	WEBB	WEBB	WEBB	WEBB	WE88	WEBB
			Lab ID	L558290-04	L560970-01	L570058-04		<u> </u>	<u> </u>	L575196-01
		Col	lection Date	1/31/2012	2/16/2012	4/13/2012	4/27/2012	5/7/2012	5/10/2012	5/14/2012
Parameter	MCL	UPL	Units						•	•
Trace Metals										
tron		1.3	mg/L	0.37	0.78	0.060 J				0,41
tron,Dissolved		1.3	mg/L			_	***		-	
Ferrous Iron	_		mg/L		Nen	_				-
Ferric Iron			mg/L			_	_	_		_
Atuminum	-	-	mg/L	_			-		-	-
Aluminum, Dissolved		_	mg/L	_	ŀ		-			
Antimony	0.006		mg/L	_	ĭ					
Antimony, Dissolved	0.006	_	mg/L			-	-		***	
Arsenic	0.01		mg/L	0.0048	0.00070	<0,020				<0.020
Arsenic, Dissolved	0.01	_	mg/L	·		_			_	_
Barium	2		mg/L	_	_	_	-	_		
Barium, Dissolved	2		mg/L						~-	
Beryllium	0,004		mg/L		Į	_	_	_	_	_
Beryflium, Dissolved	0.004	_	mg/L		***		***			
Boron		0.3	mg/L	0.080 J		0.099 J	4444			0.14 J
Boron,Dissolved		0.3	mg/L	-	ı		I		_	_
Cadmium	0.005		mg/L	<0.0050		<0.0050	+	-	-	<0.0050
Cadmium, Dissolved	0.005	_	mg/L		-		*	****	-	L –
Chromium	0.1		mg/L							
Chromium, Dissolved	0,1		mg/L							
Cobalt			mg/L		_					_
Cobalt, Dissolved			mg/L	-			_	_	_	
Copper	1.3		mg/L	<0.020		<0.020				0.0069 J
Copper, Dissolved	1.3		mg/L							<u> </u>
Lead	0.015		mg/L	<0.0050	-	<0.0050	-			0.0095
Lead, Dissolved	0.015		mg/L					_	-	_
Manganese			mg/L		-					
Manganese, Dissolved			mg/L						-	
Mercury	0.002		mg/L	<0,00020		<0,00020		www.		<0.00020
Mercury, Dissolved	0.002		mg/L							
Molybdenum			mg/L							
Molybdenum, Dissolved			mg/L				***		-	<u> </u>
Nickel		0.0085	mg/L	<0.020	-	<0.020			_	<0.020
Nickel, Dissolved		0.0085	mg/L		***				_	
Selenium	0.05		mg/L	<0.020	1	<0.020				0.019 J
Selenium, Dissolved	0.05		mg/L						<u> </u>	<u> </u>
Silver			mg/L		1	_				
Silver, Dissolved		<u> </u>	mg/L					-		
Thallium	0.002		mg/L	-			-		_	<u> </u>
Thallium, Dissolved	0.002		mg/L		-	_				
Vanadium			mg/L		-				_	
Vanadium, Dissolved			mg/L							<u> </u>
Zinc		0.18	mg/L	0.056		<0.030			-	0.020 J
Zinc, Dissolved	_	0.18	mg/L	-	-		ŧ	_	<u> </u>	

		Sta	tion Number	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028
		5	Station Name	WEBB	WEBB	WEBB	WEBB	WEBB	WE88	WEBB
			Lab ID		_				<u> </u>	_
		Co	lection Date	5/17/2012	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012	7/17/2012
Parameter	MCL	UPL	Units							
Field Parameters										
Water Level Elevation			ft NAVD88	794.7	794.7	794.7	794.7	794.6	794.6	794.6
Flow			gpm	12	103	110	13	31	39	7
Flow		_	mgd	0.2	0.1	0.2	0.02	0.04	0.06	0.01
Temperature		_	°C	20.13	22,7	15.05	18,73	16.56	17,12	29.84
pH (field)			S.U.	8.28	8,29	8.1	8,31	7.52	7.88	8.18
Specific Conductance		840	μS/cm	697	710	732	757	832	1,437	829
Ox-Red Potential (ORP)	+		mV	-163.7	-162.9	-181,9	-132.5	167.9	233.5	189.4
Dissolved Oxygen (DO)			mg/L	3.01	3.6	1.38	9.01	8,76	5.79	6.29
Turbidity (field)			NTU		-				_	
ndicator Parameters										
pH (lab)	_		S.U.		_		_			
Dissolved Solids		420	mg/L		-			_	_	
Suspended Solids		_	mg/L				<u> </u>			
Turbidity (lab)			NTU							
Chemical Oxygen Demand (COD)		11	mg/L			_				
Total Organic Carbon (TOC)	_	3.8	mg/L					***		
Acidity		_	mg/L							
Free Carbon Dioxide			mg/L							
Hardness, Total (mg/L as CaCO3)			mg/L					_		
Vajor Cations			- Hight							
Calcium	· · · · · · · · · · · · · · · · · · ·	130	mg/L		<u> </u>				T —	
Calcium.Dissolved		130	mg/L							
Magnesium		8.8	mg/L							
Magnesium, Dissolved		8.8	mg/L		_					
Potassium		3.4	mg/L		 	-			_	
Potassium, Dissolved		3.4	mg/L							
Sodium		7.2	ma/L		-					
Sodium, Dissolved		7.2	mg/L							
Ammonia Nitrogen			mg/L						-	
Major Anions			1 (119/5				<u> </u>			
Alkalinity, Total	_		1 2021			_			-	
Alkalinity, rotal Alkalinity, Bicarbonate		290	mg/L mg/L							
		<20		-		-				
Alkalinity,Carbonate			mg/L					···-		
Nitrate-Nitrite, as N			mg/L							
Nitrate, as N	10		mg/L					_		
Nitrite, as N			mg/L							
Sulfate	****	65	mg/L							
Sulfide			mg/L		-					
Reactive Sulf.(SV/846 7.3.4.1)			mg/L					_		
Bromide			mg/L	<u> </u>						
Fluoride			mg/L							
Chloride		13	mg/L			,				
Silica			mg/L		-		<u> </u>			
Silicon			mg/L					 _		
Silicon, Dissolved			mg/L		L —		l —			l —

		Stat	ion Number	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028
		S	tation Name	WEB8	WEB8	WEBB	WE88	WEBB	WEBB	WEBB
			Lab ID	_	_	_	_			
		Col	lection Date	5/17/2012	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012	7/17/2012
Parameter	MCL	UPL	Units							
race Metals										
Iron		1.3	mg/L						_	
Iron,Dissolved	_	1.3	mg/L				-	_		_
Ferrous Iron			mg/L	_						
Ferric Iron	_	_	mg/L	_	-	_	<u> </u>			_
Aluminum	_	_	mg/L					_		
Aluminum, Dissolved	_	_	mg/L						_	
Antimony	0.006		mg/L						N=s	
Antimony, Dissolved	0.006	_	mg/L	_		-	<u> </u>	-	_	
Arsenic	0.01		mg/L			_	_			_
Arsenic, Dissolved	0.01	_	mg/L		-		<u> </u>	_	_	
Barium	2		mg/L				-	_	_	
Barium, Dissolved	2		mg/L			-				
Beryllium	0.004		mg/L	_	_	-				_
Beryllium, Dissolved	0.004		mg/L	_	—					
Boron		0.3	mg/L					_		
Boron, Dissolved		0.3	mg/L			_	_		_	
Cadmium	0.005		mg/L		***	_				
Cadmium, Dissolved	0.005	_	mg/L		_					_
Chromium	0.1		mg/L		_					
Chromium, Dissolved	0.1		mg/L	_		_		-	_	
Cobalt			mg/L			man		_	_	_
Cobalt, Dissolved		_	mg/L	_				_		
Copper	1.3	_	mg/L	mmm	-	_		-		
Copper, Dissolved	1.3		mg/L				_		_	
Lead	0.015		mg/L		T -	_				
Lead, Dissolved	0.015		mg/L	-				T -		
Manganese			mg/L			_	-	-		
Manganese, Dissolved		_	mg/L	_	_		***	-		
Mercury	0,002	_	mg/L			_	<u> </u>	•••		
Mercury, Dissolved	0.002		mg/L	_				_		
Molybdenum			mg/L		-					_
Molybdenum, Dissolved	_		mg/L	_		_		-		
Nickel		0.0085	mg/L		_			—		
Nickel, Dissolved	_	0.0085	mg/L				_		-	_
Selenium	0.05		mg/L		_	_	-		-	,
Selenium, Dissolved	0.05		mg/L							
Silver			mg/L	_				_	_	
Silver, Dissolved			mg/L			-				
Thallium	0,002		mg/L				-			
Thallium, Dissolved	0.002		mg/L						uus.	
Vanadium			mg/L		-	-			_	
Vanadium, Dissolved			mg/L					_		
Zinc		0.18	ma/L	_			 		—	
Zinc.Dissolved		0.18	mg/L				-			

		Sta	ation Number	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028
		5	Station Name	WEB8	WEBB	WE88	WEBB	WEBB	WEBB	WEBB
			Lab ID		-	L593301-01		L612149-01	L713403-01	L729333-01
		Co	llection Date	8/2/2012	8/23/2012	9/4/2012	9/20/2012	12/18/2012	7/31/2014	10/22/2014
Parameter	MCL	UPL	Units							
Field Parameters			-						<u> </u>	•
Water Level Elevation			ft NAVD88	794,6	794.6	794.7	794.7	794.9	-	****
Flow			gpm	20	17	130	70	263	30	6
Flow	_		mgd	0.03	0.02	0.2	0.1	0.4	0.04	0.009
Temperature			°C	28,63	19.49	20,55	20.03	12.16	21.83	19,72
pH (field)			S.U.	8.15	8,03	7.91	8.15	8.69	8,15	7.95
Specific Conductance	-	840	μS/cm	788	627	840	833	516	786	892
Ox-Red Potential (ORP)			mV	177.5	129,2	-125.4	179.1	-162	-87.1	165
Dissolved Oxygen (DO)			mg/L	6.76	6,03	3.41	9.11	6,09	7.02	4.8
Turbidity (field)			UTN				_	80	6.93	5.8
ndicator Parameters										
pH (lab)		_	S.U.				_		_	
Dissolved Solids		420	mg/L			660		430	590	610
Suspended Solids	_		mg/L	_		T -	_			
Turbidity (lab)			NTU				_	-		
Chemical Oxygen Demand (COD)	_	11	mg/L	··· —		<10	_	<10	12 P1	<10
Total Organic Carbon (TOC)		3.8	mg/L	~~		1.5	_	1.9	2.2	1.0
Acidity	_	_	mg/L							_
Free Carbon Dioxide			mg/L			_		_		
Hardness, Total (mg/L as CaCO3)			mg/L					-	****	
Major Cations						· · · · · · · · · · · · · · · · · · ·				
Calcium		130	mg/L		_	150		120	160	160
Calcium, Dissolved	****	130	mg/L	_				_	-	170
Magnesium		8.8	mg/L		+	24	_	13	17	17
Magnesium, Dissolved		8.8	mg/L		_	_	_	_		16
Potassium		3.4	mg/L			4.1		2.3	3.4	3.9
Potassium, Dissolved		3.4	mg/L	_			+-	_		2.9
Sodium		7.2	mg/L			5.6	_	3,4	5.2	30
Sodium, Dissolved		7.2	mg/L					_		5.6
Ammonia Nitrogen			mg/L				-	-		
Major Anions	in in				·	<u> </u>	*************************************			
Alkalinity, Total	-	_	mg/L		—					220
Alkalinity,Bicarbonate		290	ma/L			180		230	200	190
Alkalinity,Carbonate		<20	mg/L			<20		<200	<20	25
Nitrate-Nitrite, as N		_	mg/L		_					
Nitrate, as N	10		mg/L	_					_	
Nitrite, as N	1		mg/L		*****					
Sulfate		65	mg/L	_		280	_	160	220	240
Sulfide			mg/L				-			
Reactive Sulf.(SW846 7.3.4.1)			mg/L							
Bromide			mg/L	_					·	_
Fluoride			mg/L		_	-				_
Chloride		13	mg/L			4.2		3.0	5.1	4.7
Silica	_		ma/L				 			
Silicon		_	mg/L							
Silicon, Dissolved			mg/L							

			tion Number[_	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028	CH-028
		S	tation Name	WEBB	WEBB	WEBB	WEBB	WEBB	WEBB	WEBB
			Lab ID			L593301-01		L612149-01	L713403-01	L729333-01
			lection Date	8/2/2012	8/23/2012	9/4/2012	9/20/2012	12/18/2012	7/31/2014	10/22/2014
Parameter	MCL	UPL	Units							
race Metals						·		·		
Iron		1.3	mg/L	770		0.14	-	0.69	0.39	0.24
Iron,Dissolved		1.3	mg/L						0.13	0.11
Ferrous Iron	_	_	mg/L	***	<u> </u>	<u> </u>	_	_		
Ferric Iron			mg/L	anu		_	_	_	_	-
Aluminum			mg/L		_					
Aluminum, Dissolved	_		mg/L			_	_	1		
Antimony	0.006	_	mg/L	***			يسم	-	-	
Antimony, Dissolved	0.006	l 	mg/L	***		_				-
Arsenic	0.01		mg/L	***		<0.020		0.00038 J	0.00034 J	0.00052 J
Arsenic, Dissolved	0.01		mg/L						0.00033 J	<0.0010
Barium	2	-	mg/L	_				-		_
Barium, Dissolved	2		mg/L				_		****	
Beryllium	0.004	_	mg/L					_	-	
Beryllium, Dissolved	0.004		mg/L	_			000		****	
Boron		0.3	mg/L	_		0.14 J		0.096 J	0.090 J	0,22
Boron, Dissolved		0.3	mg/L	****	_		·-	_	0.088 J	0,072 J
Cadmium	0.005		mg/L		-	<0.0050		<0.0050	<0.00050	<0.0050
Cadmium, Dissolved	0.005		mg/L		_		_	_	0.00017 J	<0.0050
Chromium	0.1		mg/L		-	-				
Chromium, Dissolved	0.1		mg/L					-		
Cobalt			mg/L		_	_			***	
Cobalt, Dissolved			mg/L	_			_	_	_	_
Copper	1.3		mg/L	_	_	0,0016 J		<0.020	<0.0020	<0.020
Copper, Dissolved	1.3	-	mg/L	_	-			_	<0.0020	0,020 J
Lead	0.015		mg/L		-	0.0042 J	~~	<0.0050	0.00031 J	<0.0050
Lead,Dissolved	0.015	_	mg/L	-	_				0.00043 J	<0,0050
Manganese			mg/L		_	_				-
Manganese, Dissolved			mg/L			-		-		****
Mercury	0.002		mg/L			0.000020 J, P1	one.	<0.00020	<0.00020	<0.00020
Mercury, Dissolved	0.002	_	mg/L				wa.		<0.00020	<0.00020
Molybdenum	_		mg/L		_	_	_	_		_
Molybdenum, Dissolved		I 	mg/L	_						
Nickel		0.0085	mg/L	_		<0.020		<0.020	0.0026	<0.020
Nickel,Dissolved		0.0085	mg/L	-	_		_	-	0.0026	<0.020
Selenium	0.05		mg/L	_	-	0.015 J		0.064	0.00038 J	<0.020
Selenium, Dissolved	0.05		mg/L						<0.010	<0.020
Silver			mg/L			_		_	_	_
Silver, Dissolved	_		mg/L	-						
Thallium	0.002	_	mg/L	_						
Thallium, Dissolved	0.002		mg/L	_	-	_			-	_
Vanadium			mg/L		_	_	-	_		-
Vanadium, Dissolved			mg/L	_	-	_				
Zinc		0.18	mg/L		_	<0,030		0,050	0,0068 J	<0,050
Zinc.Dissolved		0.18	mg/L						<0.010	<0.050

CH-040 DAM TOE RIGHT Summary of Groundwater Analytical Results

EW Brown, Harrodsburg, Kentucky AMEC Project No. 567530023

r					WIZC Project No. 567				<u>, ,</u>	
			tion Number	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040
		8	Station Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID	L515479-04		L517576-03		L520030-03		L522574-03
			llection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units				*			
Field Parameters										
Water Level Elevation			ft NAVD88							
Flow			gpm							
Flow			mgd	<u> </u>						
Temperature			°C	20.9	15,2	19.1	21,4	24.3	23.9	17.6
pH (field)			S.U.	6.72	7.2	6.81	7.51	7.04	7,62	6.82
Specific Conductance		840	μS/cm	1,060	1,070	990	870	1,000	970	900
Ox-Red Potential (ORP)		<u> </u>	mV					-		
Dissolved Oxygen (DO)	<u>-</u>		mg/L			_ -	***			1.26
Turbidity (field)			NTU						_	
Indicator Parameters										
pH (lab)			S.U.	-			+	_		
Dissolved Solids	_	420	mg/L	890		830		910	_	790
Suspended Solids			mg/L					-		
Turbidity (lab)			NTU					_		
Chemical Oxygen Demand (COD)		11	mg/L	***				_		
Total Organic Carbon (TOC)	nne .	3.8	mg/L	_	_	_		_	_	_
Acidity			mg/L					_	_	
Free Carbon Dioxide			mg/L			_	_		_	_
Hardness, Total (mg/L as CaCO3)			mg/L		_					
Major Cations						<u>. </u>			······································	
Calcium		130	mg/L	210		220		190		160
Calcium, Dissolved	_	130	mg/L	-		_	***	-		
Magnesium	_	8.8	mg/L			-		_	1	
Magnesium, Dissolved		8.8	mg/L							
Potassium		3.4	mg/L				_		-	_
Potassium, Dissolved		3,4	mg/L					_		
Sodium		7,2	mg/L	10		12		9,3		11
Sodium, Dissolved		7.2	mg/L				_	_		_
Ammonia Nitrogen			mg/L							_
Major Anions			1							
Alkalinity, Total	400		mg/L		_	_		_		
Alkalinity,Bicarbonate		290	mg/L				*****			
Alkalinity,Carbonate		<20	mg/L							
Nitrate-Nitrite, as N		=	mg/L				_			
Nitrate, as N	10		mg/L							_
Nitrite, as N	7	 	mg/L	_						
Sulfate	<u>-</u> -	65	mg/L	490		430 J6		430		390
Sulfide			mg/L							
Reactive Sulf.(SW846 7.3.4.1)			mg/L							
Bromide			mg/L							_
Fluoride			mg/L				****			
Chloride		13	mg/L	20		18		22		16
Silica		/3	mg/L							
Silicon			mg/L mg/L					****		

Silicon, Dissolved		<u> </u>	mg/L				***			

		Sta	tion Number	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040
		S	tation Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID	L515479-04		L517576-03	_	L520030-03		L522574-03
		Col	llection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units		•	<u> </u>				*
Trace Metals		·								
Iron		1.3	mg/L	-		T	T +-			
Iron,Dissolved	_	1.3	mg/L							
Ferrous Iron			mg/L	_		_				_
Ferric Iron			mg/L					-		
Aluminum	-		mg/L	_	_		_			
Aluminum, Dissolved			mg/L				-			
Antimony	0.006		mg/L					_		
Antimony, Dissolved	0.006		mg/L							
Arsenic	0.01		mg/L	****	_		-	<u> </u>		_
Arsenic, Dissolved	0.01		mg/L	 -					***	
Banum	2	_	mg/L	***						
Barium, Dissolved	2		mg/L			-	_	_		
Beryllium	0.004		mg/L							
Beryllium, Dissolved	0,004		mg/L					_		
Boron		0.3	mg/L	2.0		1.6		2.1		2,0
Boron, Dissolved		0.3	mg/L		_	-	200			_
Cadmium	0.005		mg/L			-	_			
Cadmium, Dissolved	0.005		mg/L			_		_		
Chromium	0.1		mg/L	-					_	
Chromium, Dissolved	0.1		mg/L					_	_	
Cobalt			mg/L		<u> </u>	_	_			
Cobalt, Dissolved	-	_	mg/L			_				
Copper	1,3		mg/L		_	—	-		-	
Copper, Dissolved	1.3		mg/L		_		_	_		
Lead	0.015		mg/L			_		<u></u>	_	_
Lead, Dissolved	0,015		mg/L			_		-		
Manganese			mg/L		_			-	-	
Manganese, Dissolved		_	mg/L	_				-	_	_
Mercury	0.002		mg/L	<u></u>	_		_	_		_
Mercury, Dissolved	0.002		mg/L		_			_		
Molybdenum			mg/L	_		_	_		_	-
Molybdenum, Dissolved			mg/L		 	t —				<u> </u>
Nickel		0.0085	mg/L		-	_			_	_
Nickel, Dissolved		0.0085	mg/L	-			_			
Selenium	0.05		mg/L				-	****	-	
Selenium, Dissolved	0.05		mg/L		_		-	_	-	
Silver			mg/L						_	
Silver, Dissolved			mg/L							
Thallium	0.002		mg/L	· · · · · · · · · · · · · · · · · · ·	_		_		_	<u> </u>
Thallium, Dissolved	0.002		mg/L			_	_			
Vanadium			mg/L		-				-	
Vanadium, Dissolved			mg/L		_	_	_	_	_	_
Zinc		0.18	mg/L				_			_
Zinc, Dissolved		0.18	mg/L						-	

	Sta	tion Number	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040
	•	Station Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
		Lab ID	L558290-03	L560970-02	L570058-03	_	_		L575196-02
	Co	llection Date	1/31/2012	2/16/2012	4/13/2012	4/27/2012	5/7/2012	5/10/2012	5/14/2012
MCL	UPL	Units		· · · · · · · · · · · · · · · · · · ·	<u> </u>				
		ft NAVD88	752.6	752,5		752,6	752.6	752,6	752.7
		gpm	24	25	12	10	10	5	20
		mgd	0.03	0.04	0.02	0.01	0,01	0.007	0,03
		°C	17.2	14.9	21,1	16.76	17.74	17,96	18.77
	-	S.U.	6,9	7.27	7.2	7.42	7.06	7.02	7.29
	840	μS/cm	790	746	1,070	814	856	1,197	1,050
		m∨	-229,9	-234	_	209.6	211,6	-161.2	148,8
		mg/L	3,63	3.99			3,86	3.07	7.24
		NTU	8.6	9,7	8,2		_		15
	· · · · · · · · · · · · · · · · · · ·								
		S.U.	_	_		_		-	
	420	mg/L	740		760				850
		mg/L			_				_
		NTU		_		_			
	11	mg/L	<10		7.6 J			_	14
_	3.8	ma/L	0.99 J	_	0.94 J	_			1.1
	_	mg/L				<u> </u>		_	
		mg/L	_				_		
		mg/L			_		· · · · · · · · · · · · · · · · · · ·		
	130	mg/L	180		180				190
	130	mg/L				_			
	8.8	mg/L	24		25	_	_		26
_	8.8	ma/L	_				_		
	3.4	ma/L	9.1	-	9.7	_			8.3
	3.4								
	7.2	×	10		11	·			9,3
					_	_		_	
			-			_			
	I		*******	· · · · · · · · · · · · · · · · · · ·		·		.l	I
_		ma/L	-	_		_			<u> </u>
	290		150		140				120
	<20	mg/L	<20		<20	_			<20
			_						
10		mg/L		_			_		
1		mg/L				_		***	_
	65		380		380			***	440
		mg/L				,			-
		mg/L				<u> </u>			
		mg/L					_		
_		mg/L			****		_		
_	13		15	-	15		_		12
_							!		
								 	
		mg/L		_			i —		
		CCC MCL UPL	Collection Date MCL	Station Name	Station Name Lab ID 1.560970-02 1.56	Station Name	Station Name Lab ID Collection Date Lab ID Collection Date Lab ID Collection Date Lab ID Collection Date Lab ID Collection Date Lab ID Lab	Station Name	Station Name DAM TOE RIGHT

CH-040 DAM TOE RIGHT ary of Groundwater Analytica

		Stat	ion Number	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040
		S	tation Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID	L558290-03	L560970-02	L570058-03			-	L575196-02
		Col	lection Date	1/31/2012	2/16/2012	4/13/2012	4/27/2012	5/7/2012	5/10/2012	5/14/2012
Parameter	MCL	UPL	Units							1
race Metals										
Iron		1.3	mg/L	6,8	1,3	0.89				3.2
Iron,Dissolved		1.3	mg/L							
Ferrous Iron	-	1	mg/L	· · · · · · · · · · · · · · · · · · ·	-	_	— — — — — — — — — — — — — — — — — — —	—	_	_
Ferric Iron	-		mg/L	_	1			-	_	_
Aluminum	_		ma/L	_	_			_	_	-
Aluminum, Dissolved			mg/L							-
Antimony	0.006		mg/L							_
Antimony, Dissolved	0.006		mg/L		_	_	_			
Arsenic	0.01		mg/L	www.govg.w. 4.7 0.000.	0.44	0.28	_	_	_	0,66
Arsenic, Dissolved	0.01		mg/L	_	_	_		_	_	
Barium	2		mg/L			-				
Barium, Dissolved	2		mg/L	_	_			_	_	
Bervllium	0.004	<u> </u>	ma/L	_					7000	
Beryllium, Dissolved	0,004		mg/L	_	_	_		_	_	_
Boron		0.3	mg/L	2,0		2.5		_	_	2.3
Boron, Dissolved		0.3	mg/L				_			
Cadmium	0.005		mg/L	<0.0050		<0.0050				<0.0050
Cadmium, Dissolved	0.005		mg/L							
Chromium	0.1		mg/L	_				<u> </u>	——————————————————————————————————————	
Chromium, Dissolved	0.1		mg/L				_			
Cobalt			mg/L							
Cobalt, Dissolved			mg/L	·						
Copper	1.3		mg/L	<0.020	_	0.0024 J	_	_		0.0050 J
Copper, Dissolved	1.3		mg/L		_		_			
Lead	0.015		ma/L	<0.0050		<0.0050				0.015
Lead,Dissolved	0.015		mg/L	-5.0500		-0.0000				_
Manganese	<u> </u>		mg/L							
Manganese, Dissolved			mg/L	_						
Mercury	0,002		ma/L	<0.00020		0,000020 J	-			<0.00020
Mercury, Dissolved	0,002		mg/L	-0.00020						
Molybdenum	0,002		mg/L	_			_		une .	
Molybdenum, Dissolved			mg/L	<u> </u>						+=
Nickel		0.0085	rng/L			<0.020				<0.020
Nickel, Dissolved		0.0085	mg/L	~0.020		~0.020				
Selenium	0.05	0.0000	mg/L	<0.020		<0.020		-		0.045
Selenium, Dissolved	0.05		mg/L						_	- 0.040
Silver	0.03		mg/L							
Silver, Dissolved		 _	ma/L							
Thallium	0.002									
			mg/L							
Thallium, Dissolved	0.002	 -	mg/L							
Vanadium Vanadium, Dissolved		 	mg/L							
		0.18	mg/L	0.091		0.013 J				0,029 J
Zinc Zinc, Dissolved		0.18	mg/L mg/L	0,091		0.013 J				

CH-040 DAM TOE RIGHT

		Sta	tion Number	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040
		5	Station Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID							
		Co	Ilection Date	5/17/2012	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012	7/17/2012
Parameter	MCL	UPL	Units							
ield Parameters					•					
Water Level Elevation			ft NAVD88	752.6	752,6	752.7	752.6	752.5	752,5	752.6
Flow			gpm	15	15	20	20	5	4	20
Flow			mgd	0.02	0.02	0.03	0.03	0.007	0.006	0.03
Temperature		_	•℃	17.49	17.99	17.71	17.71	18.11	18,66	16,96
pH (field)			S.U.	7.02	6,92	7.03	7.04	7.12	7,83	6.83
Specific Conductance		840	μS/cm	1,084	1,066	1,094	1,248	968	1,289	971
Ox-Red Potential (ORP)			mV	-195.5	-169.1	-188.9	-94,2	-112.6	-178,9	-177
Dissolved Oxygen (DO)			mg/L	3.02	2.1	2.56	2.56	2,81	3.42	2,06
Turbidity (field)		-	NTU	_				_		
ndicator Parameters										
pH (lab)	_	_	S.U.	_		_	_			
Dissolved Solids		420	mg/L			-				
Suspended Solids			mg/L			-	-	_		
Turbidity (lab)			NŤU		_				-	
Chemical Oxygen Demand (COD)		11	mg/L							
Total Organic Carbon (TOC)		3.8	mg/L		_		-			
Acidity			ma/L							
Free Carbon Dioxide		-	mg/L					_		
Hardness, Total (mg/L as CaCO3)			mg/L			_		_		
Major Cations		I	-				·			
Calcium	_	130	mg/L					_		
Calcium, Dissolved		130	mg/L		_	_		_		
Magnesium		8.8	mg/L	_		_		_		_
Magnesium, Dissolved		8.8	mg/L		_					
Potassium		3.4	mg/L							
Potassium.Dissolved		3.4	mg/L							
Sodium		7.2	mg/L							
Sodium, Dissolved		7.2	mg/L							
Ammonia Nitrogen			mg/L		_	-			_	
Major Anions			1							
Alkalinity, Total			mg/L		_			_		-
Alkalinity, Bicarbonate		290	mg/L						Para	
Alkalinity,Carbonate	200	<20	mg/L							
Nitrate-Nitrite, as N			mg/L							
Nitrate, as N	10		mg/L							
Nitrite, as N	1		mg/L		_		_		***	
Sulfate	<u> </u>	65	mg/L		-			-		
Sulfide			mg/L							
Reactive Sulf.(SW846 7.3,4.1)		 _	mg/L							
Bromide			mg/L					_		
Fluoride			mg/L				****			
Chloride		13	mg/L					_		
Silica		73	mg/L							
Silicon			mg/L							
Silicon Dissolved		- -	mg/L		<u> </u>					

		Stat	tion Number	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040
		s	tation Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID	_			_	-		_
		Col	fection Date	5/17/2012	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012	7/17/2012
Parameter	MCL	UPL	Units			· · · · · · · · · · · · · · · · · · ·		*·····································		1
Trace Metals	·									
Iron	- I 	1.3	mg/L					Г — — — — — — — — — — — — — — — — — — —		I
Iron,Dissolved		1.3	mg/L					_	_	
Ferrous Iron	_		mg/L	_	_			_	_	<u> </u>
Ferric Iron	_		mg/L		_		_	_		_
Aluminum			mg/L			_	_	_		_
Aluminum, Dissolved			mg/L			_	_	-		
Antimony	0.006		mg/L	_					_	
Antimony, Dissolved	0.006		mg/L				<u> </u>		-	
Arsenic	0,01		mg/L	_			_			
Arsenic, Dissolved	0.01		mg/L	_						_
Barium	2		mg/L	-			-	_	_	
Barium, Dissolved	2		mg/L							
Beryllium	0.004		mg/L					-	_	_
Beryllium, Dissolved	0,004		mg/L	-						
Boron		0.3	mg/L			_				***
Boron, Dissolved		0.3	mg/L	_	-					
Cadmium	0.005		ma/L			-			—	
Cadmium, Dissolved	0.005		mg/L							
Chromium	0.1		mg/L		_					
Chromium, Dissolved	0.1		mg/L				_	_	_	_
Cobalt	_		mg/L						_	
Cobalt Dissolved		٠٠٠ نسم	mg/L	_						_
Copper	1.3		mg/L		_					
Copper, Dissolved	1.3	 	mg/L	-					_	
Lead	0.015		ma/L							
Lead, Dissolved	0.015		mg/L	_						
Manganese		<u> </u>	mg/L	_		*****				
Manganese, Dissolved			mg/L		***					_
Mercury	0.002		mg/L					_		
Mercury, Dissolved	0.002		mg/L					****		
Molybdenum			mg/L	···· <u>-</u>				_		
Molybdenum, Dissolved			mg/L							
Nickel		0.0085	mg/L			A	_	_	228	
Nickel, Dissolved		0.0085	mg/L						<u></u>	
Selenium	0.05		mg/L					_	_	
Selenium, Dissolved	0.05		mg/L							_
Silver		 	mg/L	***						
Silver, Dissolved			mg/L							——————————————————————————————————————
Thallium	0,002		mg/L							
Thallium, Dissolved	0.002	 	mg/L							-
Vanadium		 	mg/L					_	-	
Vanadium, Dissolved		 	mg/L		_		_	_	_	
Zinc		0.18	mg/L	770						
Zinc,Dissolved		0.18	mg/L							

CH-040 DAM TOE RIGHT

			ion Number	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040
		S	tation Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM YOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID		_	L593301-02	L593301-02		L611710-01	L611710-04
			lection Date	8/2/2012	8/23/2012	9/4/2012	9/4/2012	9/20/2012	12/17/2012	12/17/2012
Parameter	MCL	UPL	Units							•
Field Parameters										***************************************
Water Level Elevation			ft NAVD88	752,6	752,6	752,7	752.7	752,6	752.6	752,6
Flow			gpm	25	25	35	35	10	5	5
Flow			mgd	0.04	0.04	0.05	0.05	0.01	0.007	0.007
Temperature			°C	17,54	16.09	18.9		17.27	14.91	
pH (field)			S.U.	7.08	7.24	7.23		7.54	7.81	<u> </u>
Specific Conductance		840	μS/cm	1,011	739	995		1,012	897	<u>-</u>
Ox-Red Potential (ORP)			m∨	-153,3	-107,3	-95.7		-214.8	-142.5	
Dissolved Oxygen (DO)			mg/L	2.26	2.61	2.26		1:	5.13	
Turbidity (field)			NTU		_			_	19	***
Indicator Parameters								•		
pH (lab)			S.U.				_			
Dissolved Solids		420	mg/L			840	800		730	730
Suspended Solids			mg/L	·						
Turbidity (lab)			NTU		***	-	***		***	
Chemical Oxygen Demand (COD)		11	mg/L			<10	<10		6.0 J, P1	<10
Total Organic Carbon (TOC)	-	3.8	mg/L		-	0.89 J	0.69 J	-	2.1	2.2
Acidity		1	mg/L	_				1		
Free Carbon Dioxide			mg/L			—				
Hardness, Total (mg/L as CaCO3)		<u> </u>	mg/L		:					
Major Cations										
Calcium		130	mg/L		-	170	170		160	170
Calcium, Dissolved		130	mg/L			_	_	***	Ī	_
Magnesium	-	8.8	mg/L	****		26	26		23	24
Magnesium, Dissolved		8.8	mg/L					_		
Potassium		3.4	mg/L		_	8.4	8.0		8.6	9.0
Potassium, Dissolved		3.4	mg/L					-		
Sodium		7.2	mg/L			9.0	8.4		11	11
Sodium, Dissolved		7.2	mg/L_							
Ammonia Nitrogen			mg/L		_					
Major Anions		· · · · · · · · · · · · · · · · · · ·								
Alkalinity, Total			mg/L,	_	_		_	_		
Alkalinity, Bicarbonate		290	mg/L			150	140		150	150
Alkalinity,Carbonate		<20	mg/L	_		<20	<20		<20	<20
Nitrate-Nitrite, as N			mg/L		_	-	_	_	1	
Nitrate, as N	10	_	mg/L	*****	_	_	_	1	-	
Nitrite, as N	1		mg/L	_		_	_	1	_	
Sulfate		65	mg/L	_		410	410		370	430
Sulfide			mg/L							
Reactive Sulf.(SW846 7.3.4.1)	-		mg/L					-		<u> </u>
Bromide			mg/L	_				_	-	_
Fluoride			mg/L		_	_		•		
Chloride		13	mg/L	-	_	14	15	_	17	16
Silica			mg/L		_				_	
Silicon		_	mg/L				_		<u> </u>	
Silicon, Dissolved			mg/L							

CH-040 DAM TOE RIGHT

		Stat	ion Number	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040	CH-040
		s	tation Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID		,	L593301-02	L593301-02		L611710-01	L611710-04
			lection Date	8/2/2012	8/23/2012	9/4/2012	9/4/2012	9/20/2012	12/17/2012	12/17/2012
Parameter	MCL	UPL	Units							
race Metals										
Iron		1.3	mg/L		<u> </u>	1.9	2.0	—	0,95	2,3
Iron,Dissolved		1.3	mg/L			-				-
Ferrous Iron			mg/L				_	-	1	<u> </u>
Ferric Iron			mg/L		_	1		_		
Aluminum			mg/L		<u> </u>		-	_	_	_
Aluminum, Dissolved	_		mg/L			1		_	-	-
Antimony	0.006	_	mg/L		_					
Antimony, Dissolved	0.006		mg/L					_		
Arsenic	0.01		mg/L		_	0.41	0.44		0.41%	0.60
Arsenic,Dissolved	0.01		mg/L		_	_	-			4-4
Barium	2		mg/L	_	_					
Barium, Dissolved	2		mg/L		_					_
Beryllium	0.004	<u> </u>	mg/L							
Beryllium, Dissolved	0,004		mg/L	_	_	_	—			-
Boron		0.3	mg/L			2.8	2.9	_	2.3	2.5
Boron, Dissolved		0.3	mg/L	_		****				
Cadmium	0.005		mg/L		_	<0.0050	<0.0050		<0.0050	<0.0050
Cadmium, Dissolved	0.005	_	mg/L		-	_	_	_	_	_
Chromium	0.1	_	mg/L	_			·	w-m		
Chromium, Dissolved	0.1		mg/L				-	_	_	
Cobalt	_		mg/L	_	-				****	
Cobalt, Dissolved	Í		mg/L	_		_			_	<u> </u>
Copper	1.3		mg/L			<0.020	<0.020	•••	<0.020	<0.020
Copper Dissolved	1.3		mg/L		_					
Lead	0.015		mg/L		_	0.0025 J	0.0040 J	_	<0.0050	<0.010 O
Lead, Dissolved	0.015		mg/L		_		_	_		_
Manganese	<u> </u>	_	mg/L		_	—		_	_	
Manganese, Dissolved		_	mg/L			-	-			
Mercury	0.002		rng/L	_	_	0,000020 J	0,000030 J	_	<0,00020	<0.00020
Mercury, Dissolved	0.002	_	mg/L	-				_		_
Molybdenum	_	-	mg/L				_			-
Molybdenum, Dissolved			mg/L				_			
Nickel	-	0,0085	rng/L			<0.020	<0.020		0.0057 J	<0.020
Nickel,Dissolved	-	0.0085	mg/L			-	_	_		_
Selenium	0.05	_	mg/L	1		0,024	0.019 J		<0.020	0.036
Selenium, Dissolved	0.05		mg/L							
Silver		1 -	mg/L		_			-	_	
Silver, Dissolved			mg/L		-		-	-		_
Thallium	0.002		mg/L	-	-			_		_
Thallium, Dissolved	0.002		mg/L	_	_				-	_
Vanadium	_		mg/L							
Vanadium, Dissolved			mg/L	_	_	_	_	_		-
Zinc		0.18	mg/L			<0.030	<0.030	_	0.0070 J	0.011 J
Zinc.Dissolved		0.18	mg/L					nno		

		St	ation Number	CH-040	CH-040	CH-040
			Station Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID	L713424-01	L719267-04	L728124-01
		C	ollection Date	7/31/2014	8/29/2014	10/16/2014
Parameter	MCL	UPL	Units			·
ield Parameters	***************************************					***************************************
Water Level Elevation			ft NAVD88			_
Flow	-	-	gpm	30	20	_
Flow		1 —	mgd	0.04	0.03	
Temperature		_	•℃	16.2	16.24	16.34
pH (field)		_	S.U.	7.95	7.3	7.55
Specific Conductance		840	μS/cm	1,478	1,510	1,501
Ox-Red Potential (ORP)			mV	-72.7	-92,3	-4.5
Dissolved Oxygen (DO)			mg/L	1,55	1.87	3,15
Turbidity (field)	_	_	NYU	7.2	4	5.1
ndicator Parameters						
pH (lab)			S.U.		7.5 T8	6.8 T
Dissolved Solids		420	mg/L	1,300	1,300	1,200
Suspended Solids			mg/L	_	12	8.0 F
Turbidity (lab)			NTU			
Chemical Oxygen Demand (COD)	-	11	mg/L	9.8 J	6.4 J	<10
Total Organic Carbon (TOC)		3.8	mg/L	0.92 J	1.1	1.1
Acidity			mg/L		<10	<10
Free Carbon Dioxide		_	mg/L	_	_	
Hardness, Total (mg/L as CaCO3)			mg/L		890	970
Major Cations						
Calcium	—	130	mg/L	260	280	260
Calcium, Dissolved		130	mg/L	-	260	270
Magnesium		8.8	mg/L	53	55	57
Magnesium, Dissolved		8.8	mg/L		56	57
Potassium		3.4	mg/L	11	12	12
Potassium, Dissolved		3.4	mg/L		11	12
Sodium	_ `	7.2	mg/L	12	13	12
Sodium, Dissolved		7.2	mg/L		13	12
Ammonia Nitrogen		_	mg/L		0.74	0.51
lajor Anions						
Alkalinity, Total		_	mg/L	_	160	150
Alkalinity,Bicarbonate		290	mg/L	150	160	150
Alkalinity,Carbonate		<20	mg/L	<20	<20	<20
Nitrate-Nitrite, as N			mg/L		0.22	
Nitrate, as N	10	_	mg/L	_		<0.10
Nitrite, as N	1		mg/L			<0.10
Sulfate		65	mg/L	590	550	620
Sulfide			mg/L		<0.050	<0.050
Reactive Sulf.(SW846 7.3.4.1)			mg/L	•••	<25	<25
Bromide			mg/L		0.55 J	<1.0
Fluoride		-	mg/L		0.95	0.74
Chloride		13	mg/L	94	93	93
Silica			mg/L		8.8	9.3
Silicon			mg/L		4.1	4.3
Silicon, Dissolved			mg/L		4.3	4,2

		Sta	tion Number	CH-040	CH-040	CH-040
		S	tation Name	DAM TOE RIGHT	DAM TOE RIGHT	DAM TOE RIGHT
			Lab ID	L713424-01	L719267-04	L728124-01
		Col	lection Date	7/31/2014	8/29/2014	10/16/2014
Parameter	MCL	UPL	Units		•	
Trace Metals						
Iron		1,3	mg/L	4.2	3.8	3.4
Iron,Dissolved		1.3	mg/L	0.035 J	2.1	<0.10
Ferrous Iron			mg/L	_	3.4 T8	3.2 T8
Ferric Iron		-	mg/L		0.38	0.25 J
Aluminum	_	-	mg/L		<0.10	<0.10
Aluminum, Dissolved			mg/L		<0.10	<0.10
Antimony	0.006		mg/L		0.00048 J	U 0.00033 J
Antimony, Dissolved	0.006		mg/L		0.00021 J	U 88000.0
Arsenic	0.01	_	mg/L	0.72 01	0.67	0.60
Arsenic, Dissolved	0.01		ma/L	0.0012	0.47	0.038
Barium	2		mg/L		0.096	0,087
Barium, Dissolved	2	_	mg/L		0.11	0.089
Bervilium	0.004		ma/L		<0.0010	<0.0010
Beryllium, Dissolved	0.004		mg/L		<0.0010	0.00012 J
Boron		0.3	mg/L	4.6	5.1	4.6
Boron, Dissolved		0.3	mg/L	4.7	4.9	4.6
Cadmium	0.005		mg/L	0.00061	0.00087	<0.00050
Cadmium, Dissolved	0.005		mg/L	0.00068	0.00022 J	0.0014
Chromium	0.1		mg/L		<0.0020	0.0017 J.
Chromium.Dissolved	0.1		mg/L		<0.0020	<0,0020
Cobalt		 	ma/L	V	0.00072 J	0.00072 J
Cobalt, Dissolved			mg/L		0.0012	0.0015
Copper	1.3	<u> </u>	mg/L	<0.0020	<0.0020	0,00055 J
Copper, Dissolved	1.3	 	mg/L	0.00075 J	0.0021	0.00095 J
Lead	0.015		mg/L	<0.0010 O1	<0.0010	<0.0010
Lead.Dissolved	0.015		ma/L	0,00036 J	0.0071	<0.0010
Manganese		 	mg/L		1.8	2.0
Manganese, Dissolved		 	mg/L		2.0	2.0
Mercury	0,002		mg/L	<0.00020	<0.00020	<0.00020
Mercury, Dissolved	0.002		mg/L	<0.00020	<0.00020	<0.00020
Molybdenum	0.002	+==-	mg/L		0.32	0.28
Molybdenum.Dissolved			mg/L		0.34	0.29
Nickel		0.0085	mg/L	0.0052	0.0054	0,0019
Nickel Dissolved		0.0085	mg/L	0.0039	0.0068	0.0066
Selenium	0.05	- 0.0000	mg/L	0,0035	0.0031	0.0016
Selenium, Dissolved	0.05	 	mg/L	0,0058	0.0027	0.0035
Silver			mg/L		<0.0010	<0.0010
Silver, Dissolved			mg/L	-	<0.0010	<0.0010
Thallium	0.002		mg/L		0.00030 J	0.00022 J
Thallium, Dissolved	0.002		mg/L		0.00050 J	<0.0010
Vanadium	0.002		mg/L		0.00030 J	0.00025 J
Variadium, Dissolved		 	mg/L	_	0,00028 J	0.0013 J
Zinc Zinc	+ =	0.18	mg/L	0.0074 J	0.0028 J	0.0073 J
Zinc Dissolved		0.18	mg/L	<0.010	0.012	<0.050

		Sta	tion Number	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041
			Station Name	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE
			Lab ID	L515479-05		L517576-04		L520030-04		L522574-04
		Co	llection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL.	UPL	Units			<u></u>				
Field Parameters		<u>'</u>	1	W. W.					· · · · · · · · · · · · · · · · · · ·	T
Water Level Elevation			ft NAVD88				T —		ĭ —	
Flow			gpm					_	8	220
Flow			mad				-		0.01	0,3
Temperature			°C	22.9	15.5	19,2	21.7	24,2	23,6	19,9
pH (field)			S.U.	6.75	7.05	6.77	7.38	6.99	7.42	7,07
Specific Conductance		840	μS/cm	1,120	1,220	1,180	1,330	1,080	980	1,100
Ox-Red Potential (ORP)			mV			′			_	
Dissolved Oxygen (DO)	_		mg/L					-		7.66
Turbidity (field)			NTU			_				
Indicator Parameters	•		· —		L	<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			·	
pH (lab)	_		S.U.	-						
Dissolved Solids		420	mg/L	950	~~~	970	-	1,000		950
Suspended Solids			mg/L						-	
Turbidity (lab)			NTU					_		
Chemical Oxygen Demand (COD)		11	mg/L							-
Total Organic Carbon (TOC)		3.8	mg/L			_		<u> </u>		T -
Acidity			mg/L							
Free Carpon Dioxide			mg/L				_		-	
Hardness, Total (mg/L as CaCO3)			mg/L				-			
Major Cations									<u> </u>	
Calcium		130	mg/L	220	_	140	<u> </u>	210		200
Calcium Dissolved		130	mg/L							_
Magnesium		8.8	mg/L						-	_
Magnesium, Dissolved		8.8	ma/L				_			
Potassium		3.4	mg/L							
Potassium, Dissolved		3,4	mg/L							
Sodium		7.2	mg/L	13		8,7	7000	12		11
Sodium, Dissolved		7.2	mg/L							
Ammonia Nitrogen			mg/L	_		_				
Major Anions							·			
Alkalinity, Total		_	mg/L						_	T
Alkalinity Bicarbonate		290	mg/L					-		
Alkalinity,Carbonate		<20	mg/L				-			
Nitrate-Nitrite, as N			mg/L			maa	 			
Nitrate, as N	10		mg/L							
Nitrite, as N	7		mg/L							
Sulfate		65	mg/L	540		510		510		500
Sulfide			mg/L							
Reactive Sulf.(SW846 7.3.4.1)			mg/L							
Bromide			mg/L		_				_	-
Fluoride			mg/L							
Chloride		13	mg/L	14		14		15	-	14
Silica		- ,5	mg/L							
Silicon			mg/L				 			
Silicon Dissolved			mg/L							

CH-041 DAM TOE MIDDLE ry of Groundwater Analytical Re

Collect	n Number	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041
Parameter MCL UPL	tion Name	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE
Parameter	Lab ID	L515479-05	-	L517576-04		L520030-04	_	L522574-04
Iron	ction Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Iron	Units		· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·	'' '	
Iron,Dissolved								
Ferrous Iron	mg/L							
Ferric Iron	mg/L		_			_	_	_
Aluminum — — Aluminum, Dissolved — — Antimony 0.006 — Antimony, Dissolved 0.001 — Arsenic 0.01 — Barium 2 — Barium, Dissolved 2 — Beryllium 0.004 — Beryllium, Dissolved 0.004 — Boron — 0.3 Boron, Dissolved — 0.3 Cadmium 0.005 — Cadmium, Dissolved 0.005 — Chromium, Dissolved 0.1 — Chromium, Dissolved 0.1 — Cobalt — — — Cobalt, Dissolved — — — Copper, Dissolved — — — Copper, Dissolved 1.3 — — Copper, Dissolved — — — Manganese — — — Marganese, Dissol	mq/L		_	_				
Aluminum, Dissolved	mg/L	_	-	_	-	-		
Antimony Antimony, Dissolved Antimony, Dissolved Arsenic Arsenic, Dissolved Ansenic, Dissolved Ansenic, Dissolved Barium Barium, Dissolved Beryllium Beryllium Beryllium, Dissolved Boron Boron, Dissolved Cadmium Cadmium Cadmium Conos Cadmium Conos Cadmium Cohromium Cohromium Cobalt Cobalt Cobalt Cobalt Copper Copper Dissolved	mg/L	****	_	_		1	_	_
Antimony, Dissolved	mg/L	_		_	<u> </u>			
Arsenic	mg/L	_						
Arsenic, Dissolved Barium Barium Barium Barium, Dissolved Beryllium C.004 Beryllium Beryllium, Dissolved Boron Boron, Dissolved Cadmium Cadmium Cadmium Cadmium Cobs Chromium, Dissolved Chromium, Dissolved Cobalt Cobalt Cobalt Copper Copper 1.3 Copper, Dissolved Copper, Dis	mg/L			_		_		
Barium 2	mg/L							
Barium 2	mg/L	-	_	_		****	_	_
Beryllium	mg/L							
Beryllium	ma/L							
Beryllium, Dissolved	mg/L					_	_	
Boron	mg/L			_			_	_
Boron,Dissolved	mg/L	1.6		<0.20		1.6		1.1
Cadmium 0.005 Cadmium, Dissolved 0.005 Chromium 0.1 Chromium, Dissolved 0.1 Cobalt Cobalt, Dissolved Copper 1.3 Copper, Dissolved 1.3 Lead 0.015 Lead, Dissolved 0.015 Manganese Manganese, Dissolved Mercury 0.002 Mercury, Dissolved 0.002 Molybdenum Molybdenum, Dissolved Nickel, Dissolved 0.0085 Selenium 0.05 Selenium, Dissolved Silver, Dissolved Thallium, Dissolved 0.002 Thallium Thallium	mg/L			-	_	_	_	_ "
Cadmium, Dissolved 0.005 — Chromium 0.1 — Chromium, Dissolved 0.7 — Cobalt — — Cobalt, Dissolved — — Copper 1.3 — Lead 0.015 — Lead, Dissolved 0.015 — Manganese — — Manganese, Dissolved — — Mercury 0.002 — Mercury, Dissolved 0.002 — Molybdenum — — Nickel — 0.0085 Nickel, Dissolved — 0.0085 Selenium 0.05 — Selenium, Dissolved — — Silver — — Silver, Dissolved — — Thatllium 0.002 — Thatllium, Dissolved — — Vanadium — —	mg/L					Aprilan		
Chromium 0.7 — Chromium.Dissolved 0.1 — Cobalt — — Copper 1.3 — Copper, Dissolved 1.3 — Lead 0.015 — Lead, Dissolved 0.015 — Manganese — — Marcury 0.002 — Mercury 0.002 — Molybdenum — — Molybdenum, Dissolved — — Nickel — 0.0085 Nickel, Dissolved — 0.0065 Selenium 0.05 — Silver, Dissolved — — Silver, Dissolved — — Thallium, Dissolved 0.002 — Thallium, Dissolved — — Vanadium — —	mg/L				****			
Chromium Dissolved 0.1 — Cobalt — — Cobalt Dissolved — — Copper Dissolved 1.3 — Lead 0.015 — Lead, Dissolved 0.015 — Manganese — — Manganese, Dissolved — — Mercury 0.002 — Mercury, Dissolved 0.002 — Molybdenum — — Molybdenum, Dissolved — 0.0085 Nickel — 0.0085 Nickel, Dissolved — 0.05 Selenium 0.05 — Selver, Dissolved — — Thallium, Dissolved — — Thallium, Dissolved 0.002 — Vanadium — —	mg/L							
Cobalt — — Cobalt, Dissolved — — Copper 1.3 — Copper, Dissolved 1.3 — Lead 0.015 — Lead, Dissolved 0.015 — Manganese — — Manganese, Dissolved — — Mercury 0.002 — Mercury, Dissolved 0.002 — Molybdenum — — Molybdenum, Dissolved — — Nickel — 0.0085 Nickel, Dissolved — 0.0085 Selenium, Dissolved 0.05 — Silver, Dissolved — — Thallium, Dissolved 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L				_			
Cobalt, Dissolved — — Copper 1.3 — Copper, Dissolved 1.3 — Lead 0.015 — Lead, Dissolved 0.015 — Manganese — — Mercury 0.002 — Mercury, Dissolved 0.002 — Molybdenum — — Molybdenum, Dissolved — — Nickel — 0.0085 Nickel, Dissolved — 0.05 Selenium, Dissolved 0.05 — Silver, Dissolved — — Thatllium, Dissolved 0.002 — Thatllium, Dissolved 0.002 — Vanadium — —	mg/L	***					_	
Copper 1.3 — Copper, Dissolved 1.3 — Lead 0.015 — Lead, Dissolved 0.015 — Manganese — — Manganese, Dissolved — — Mercury 0.002 — Mercury, Dissolved 0.002 — Molybdenum — — Molybdenum, Dissolved — — Nickel — 0.0085 Nickel, Dissolved — 0.0085 Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L						_	~
Copper,Dissolved 1.3 — Lead 0.015 — Lead,Dissolved 0.015 — Manganese — — Manganese,Dissolved — — Mercury 0.002 — Mercury,Dissolved 0.002 — Molybdenum — — Molybdenum,Dissolved — 0.0085 Nickel — 0.0085 Nickel,Dissolved — 0.05 Selenium,Dissolved 0.05 — Silver — — Silver,Dissolved — — Thallium 0.002 — Thallium,Dissolved 0,002 — Vanadium — —	mg/L							
Lead 0.015 — Lead, Dissolved 0.015 — Manganese — — Manganese, Dissolved — — Mercury 0.002 — Mercury, Dissolved 0.002 — Molybdenum — — Molybdenum, Dissolved — — Nickel — 0.0085 Nickel, Dissolved — — Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thallium, Dissolved 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L		_	_			_	_
Lead, Dissolved 0.015 — Manganese — — Manganese, Dissolved — — Mercury 0.002 — Mercury, Dissolved 0.002 — Molybdenum — — Nicket — 0.0085 Nickel, Dissolved — 0.0085 Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thatllium, Dissolved 0.002 — Thatllium, Dissolved 0.002 — Vanadium — —	mg/L							
Manganese — — Manganese,Dissolved — — Mercury 0.002 — Mercury,Dissolved 0.002 — Molybdenum,Dissolved — — Nickel — 0.0085 Nickel,Dissolved — 0.0085 Selenium 0.05 — Selenium,Dissolved 0.05 — Silver — — Silver,Dissolved — — Thallium 0.002 — Thallium,Dissolved 0.002 — Vanadium — —	mg/L							
Manganese,Dissolved — — Mercury 0.002 — Mercury,Dissolved 0.002 — Molybdenum — — Molybdenum,Dissolved — 0.0085 Nickel — 0.0085 Nickel,Dissolved — 0.05 Selenium 0.05 — Selenium,Dissolved 0.05 — Silver — — Silver,Dissolved — — Thallium 0.002 — Thallium,Dissolved 0.002 — Vanadium — —	mg/L							
Mercury 0.002 — Mercury, Dissolved 0.002 — Molybdenum — — Molybdenum, Dissolved — 0.0065 Nickel, Dissolved — 0.0085 Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L							
Mercury, Dissolved 0.002 — Molybdenum — — Molybdenum, Dissolved — — Nickef — 0.0085 Nickel, Dissolved — 0.05 Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thatlium 0.002 — Thatlium, Dissolved 0.002 — Vanadium — —	mg/L	_		_				
Molybdenum — — Molybdenum, Dissolved — — Nickel — 0.0085 Nickel, Dissolved — 0.0085 Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L							
Molybdenum, Dissolved — — Nickel — 0.0085 Nickel, Dissolved — 0.0085 Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L				_			
Nickel — 0.0085 Nickel, Dissolved — 0.0085 Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L		_			<u> </u>		
Nickel, Dissolved — 0.0085 Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L							
Selenium 0.05 — Selenium, Dissolved 0.05 — Silver — — Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L	****		<u> </u>				
Setenium, Dissolved	mg/L			=		Profes		
Silver — — Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L			}				
Silver, Dissolved — — Thallium 0.002 — Thallium, Dissolved 0.002 — Vanadium — —	mg/L mg/L					nun.		
Thallium 0.002 Thallium, Dissolved 0.002 Vanadium								
Thaflium,Dissolved 0.002 Vanadium	mg/L		_					
Vanadium	mg/L		-					
	mg/L					-		
	mg/L					***		
Vanadium, Dissolved — — —	mg/L		-					
Zinc 0.18 Zinc Dissolved 0.18	mg/L mg/L		<u> </u>	-				

		Sta	tion Number	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041
		S	itation Name[DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDL
			Lab ID		_			_	_	_
		Co	llection Date	4/27/2012	5/7/2012	5/10/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012
Parameter	MCL	UPL	Units			_		·		
ield Parameters										
Water Level Elevation			ft NAVD88	746,5	746.5	746.8	746.6	746.4	746,4	746.4
Flow			gpm	68	80	205	90		90	56
Flow			mgd	0.1	0.1	0.3	0.1		0.13	80.0
Temperature		-	°C	18.65	18.63	18,34	18.45	19,35	18.2	19.72
pH (field)			S.U.	7.42	7.51	7.5	7.49	7.44	7,43	7.49
Specific Conductance		840	μS/cm	1,083	1,069	1,238	1,252	1,284	1,264	1,297
Ox-Red Potential (ORP)			mV_	147.1	149	124.7	148.7	-129.1	145,2	-75.5
Dissolved Oxygen (DO)			mg/L	9,13	10.57	8.12	10.35	9.6	7.42	7.8
Turbidity (field)			NTU							
ndicator Parameters								,		
pH (lab)	_		S.U.	<u> </u>			-			
Dissolved Solids		420	mg/L					_		
Suspended Solids	_		mg/L		_					
Turbidity (lab)			NTU						<u></u>	
Chemical Oxygen Demand (COD)		11	mg/L					-		
Total Organic Carbon (TOC)		3.8	mg/L							
Acidity			mg/L							
Free Carbon Dioxide			mg/L							
Hardness, Total (mg/L as CaCO3)	***		mg/L							<u> </u>
lajor Cations					V					
Calcium		130	mg/L		****	_				
Calcium, Dissolved		130	mg/L							
Magnesium		8.8	mg/L							
Magnesium, Dissolved		8.8	mg/L							
Potassium		3.4	mg/L							
Potassium, Dissolved		3.4	mg/L							
Sodium	-	7.2	mg/L							
Sodium,Dissolved		7.2	mg/L							
Ammonia Nitrogen			mg/L				<u> </u>			
lajor Anions						_				
Alkalinity, Total			mg/L							
Alkalinity,Bicarbonate		290	mg/L							
Alkalinity, Carbonate	<u> </u>	<20	mg/L,							
Nitrate-Nitrite, as N	<u> </u>		mg/L							
Nitrate, as N	10		mg/L						ware	
Nitrite, as N	1		mg/L					<u> </u>		
Sulfate		65	mg/L				nn=			
Sulfide			mg/L					<u> </u>	<u> </u>	
Reactive Sulf.(SW846 7.3.4.1)			mg/L		<u> </u>					
Bromide	—		mg/L_					_		
Fluoride			mg/L			770		_	_	_
Chloride		13	mg/L		—					-
Silica			mg/L							
Silicon	_		mg/L			_				
Silicon, Dissolved			ma/L							

		Sta	tion Number	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041
		S	tation Name	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE
			Lab ID			_	_	_	—	
		Col	lection Date	4/27/2012	5/7/2012	5/10/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012
Parameter	MCL.	UPL	Units			•				
Trace Metals										
Iron	_	1.3	mg/L	-						
Iron,Dissolved	-	1.3	mg/L	-	-	-				-
Ferrous Iron			mg/L							
Ferric Iron		_	mg/L			~~			_	
Aluminum	_	_	mg/L	_	_	_		_	_	_
Aluminum, Dissolved	_	_	mg/L			—		~~	-	
Antimony	0.006		mg/L							
Antimony, Dissolved	0.006	_	mg/L						_	_
Arsenic	0.01	_	mg/L							_
Arsenic, Dissolved	0.01	_	mg/L				***		-	_
Barium	2		mg/L			_			_	_
Barium, Dissolved	2		mg/L		-	_	-		_	
Beryllium	0.004		mg/L			_			_	_
Beryllium, Dissolved	0.004		mg/L			_		-		_
Boron		0,3	mg/L						-	
Boron, Dissolved	-	0.3	mg/L	_	<u> </u>	_			_	
Cadmium	0.005	_	mg/L		_					
Cadmium, Dissolved	0.005		mg/L							_
Chromium	0.1		mg/L						_	
Chromium, Dissolved	0.1		mg/L		_	_		_		
Cobalt		 	mg/L			_	_	_		
Cobalt, Dissolved			mg/L	_		_			nmn	
Copper	1.3		mg/L					_		
Copper, Dissolved	1.3		mg/L			_		_		
Lead	0,015		mg/L	-			757	<u> </u>	_	
Lead.Dissolved	0.015		mg/L			,				
Manganese			mg/L							
Manganese, Dissolved			mg/L						_	
Mercury	0,002		mg/L							
Mercury, Dissolved	0.002		mg/L							
Molybdenum			mg/L						_	
Molybdenum, Dissolved			mg/L			-	_			
Nickel		0.0085	mg/L							l
Nickel, Dissolved		0.0085	mg/L			_				
Selenium	0.05		mg/L					_		
Selenium, Dissolved	0.05		mg/L							
Silver		 	mg/L	****						
Silver, Dissolved	-	 	mg/L	_		Lana .				
Thallium	0.002		mg/L	-						
Thallium, Dissolved	0,002	 	mq/L					<u> </u>	_	
Vanadium	0.002	 	mg/L			BDD	-	_		
Vanadium.Dissolved		ऻ ==	mg/L				_	_		
Zinc		0.18	mg/L						_	
Zinc, Dissolved		0.18	mg/L		 			-		

	•	St2	tion Number	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041	CH-041
		5	Station Name	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE
			Lab ID	_	-	<u>-</u>			_	L728124-02
		Co	llection Date	6/15/2012	6/28/2012	7/17/2012	8/2/2012	8/23/2012	9/20/2012	10/16/2014
Parameter	MCL	UPL	Units				***************************************		<u> </u>	
Field Parameters										
Water Level Elevation			ft NAVD88	746.4	746,3	746.4	746,4	746.4	746,4	<u> </u>
Flow		-	gpm	21	13	30	60	36	20	15
Flow	_		mgd	0.03	0.02	0.04	0.09	0.05	0.03	0.0216
Temperature		_	°C	18.76	19,13	20.71	19.14	19.19	19.2	19,33
pH (field)	_	_	S.U.	7.52	7.98	7,39	7.52	7.37	7.43	7.5
Specific Conductance	-	840	μ\$/cm	1,132	2,375	1,190	1,149	1,118	723	990
Ox-Red Potential (ORP)			mV	110.6	128,3	144.9	-120,7	-97.1	-149.7	12,3
Dissolved Oxygen (DO)		_	mg/L	8.36	6,39	9.06		2.62		6.14
Turbidity (field)			NTU			_	-	-		0.91
Indicator Parameters	, ,									
pH (lab)		_	S.U.		1			_	_	6.9 T8
Dissolved Solids		420	mg/L					_		700
Suspended Solids			mg/L							7.7
Turbidity (lab)		_	NTU						_	
Chemical Oxygen Demand (COD)		11	mg/L			_	_			<10
Total Organic Carbon (TOC)	_	3.8	mg/L					_		1.5
Acidity			mg/L		_				-	<10
Free Carbon Dioxide			mg/L		_					
Hardness, Total (mg/L as CaCO3)			mg/L							600
Major Cations										
Calcium	-	130	mg/L					BAN.		170
Calcium, Dissolved		130	mg/L							180
Magnesium	_	8.8	mg/L				-	***		31
Magnesium, Dissolved		8,8	mg/L	_				-		31
Potassium		3.4	mg/L		_	_		-	_	6.9
Potassium, Dissolved		3.4	mg/L					-		7,1
Sodium	_	7.2	mg/L			_				9.1
Sodium, Dissolved		7.2	mg/L		_	_		_	_	9,3
Ammonia Nitrogen	_	_	mg/L	_					-	<0,25
Major Anions										
Alkalinity, Total			mg/L							140
Alkalinity, Bicarbonate		290	mg/L					_		140
Alkalinity, Carbonate		<20	mg/L	-			_		_	<20
Nitrate-Nitrite, as N			mg/L			700		_		
Nitrate, as N	10		mg/L		Ī		_	_		0.99
Nitrite, as N	1	_	mg/L				_			<0,10
Sulfate		65	mg/L							360
Sulfide		_	mg/L		-				_	<0.050
Reactive Sulf.(SW846 7.3.4.1)			mg/L	-						<25
Bromide			mg/L		_		-			<1.0
Fluoride	_		mg/L							0.31
Chloride		13	mg/L	_	_		_	_		24
Silica		-	mg/L				_			7.3
Silicon			mg/L		_			_		3.4
Silicon, Dissolved			mg/L							3.4

Eve brown, riacroussary, richtacky
AMEC Project No. 567530023

									CH-041
	S	tation Name	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE	DAM TOE MIDDLE
		Lab ID					-	_	L728124-02
	Col	lection Date	6/15/2012	6/28/2012	7/17/2012	8/2/2012	8/23/2012	9/20/2012	10/16/2014
MCL	UPL	Units	•						
							•		
_	1.3	mg/L			-			_	<0.10
	1.3	mg/L		-		_	-	1	<0.10
	-	mg/L		_	<u> </u>	_	_	-	<0.050 T8
		mg/L							<0.10
		mg/L	_	_	_	-	_	_	<0.10
_		mg/L	-						<0.10
0.006		mg/L	_	_	_		 -	_	0,00024 J
0.006		mg/L				-		-	0.00082 J
0.01	_	mg/L							0.0063
0.01	_	mg/L						_	0,0062
2		mg/L		****		****			0.020
2		mg/L		-					0.020
0.004		ma/L							<0.0010
									<0.0010
	0.3				_				0.76
						<u> </u>	- · · · <u>-</u>		0.76
							_		<0.00050
				 		<u> </u>			0.00029 J
						 			0.0018 J. E
							_		<0,0020
							_		<0.0010
							_		0,00097 J
	 								0,00076 J
	+				· · ·				0.0012 J
		—-				-			<0.0010
		X							<0.0010
									0.017
									0.011
									<0.00020
						 			<0.00020
_						 			0,012
_					`				0,011
-						 			0,0014
						 			0.0048
				 	}	 			0.0015
					}				0.0015
	 				}				<0.0029
						 			<0.0010
						+			<0.0010
				<u> </u>					<0.0010
				 		ł			
				-	1				<0.0020
					•			-	0.0011 J
					-				<0.050 <0.050
		MCL UPL - 1.3 - 1.3 - 1.3 - 1.3 1.3	Collection Date WCL	Collection Date	Lab ID G/15/2012 G/25/2012	Collection Date G/15/2012 G/25/2012 7/17/2012	Lab ID Collection Date 6/15/2012 5/28/2012 7/17/2012 8/2/2012	Collection Date Collection	Collection Date Collection

CH-042 DAM TOE LEFT

		Sta	tion Number	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042
		5	Station Name	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT
			Lab ID	L515479-06	_	L517576-05	_	L520030-05		L522574-05
		Co	llection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units					' 		
Field Parameters										
Water Level Elevation		<u> </u>	ft NAVD88						_	1 –
Flow			gpm				8	9	7	70
Flow			mgd	_	_	_	0.01	0.01	0.01	0.1
Temperature		_	°C	22	15,5	19.2	21,7	23.2	24.1	19.7
pH (field)			S.U.	7.09	7.46	7.17	7.31	7.38	7.31	7.24
Specific Conductance		840	μS/cm	1,080	700	750	940	610	1,030	690
Ox-Red Potential (ORP)			m∨				-		_	
Dissolved Oxygen (DO)			mg/L		-	_	-			8.52
Turbidity (field)			NTU		_	_			_	_
Indicator Parameters										_
pH (lab)	_	_	S.U.			_			_	
Dissolved Solids		420	mg/L	910	_	580		510		520
Suspended Solids			mg/L							
Turbidity (lab)	<u></u>		NTU				_			440
Chemical Oxygen Demand (COD)		11	mg/L		_		<u> </u>			_
Total Organic Carbon (TOC)	****	3.8	mg/L			<u> </u>		_		_
Acidity			mg/L					-		
Free Carbon Dioxide			mg/L		i _				_	
Hardness, Total (mg/L as CaCO3)			mg/L		1000					_
Major Cations					·		'	l		
Calcium		130	mg/L	200		240		110		120
Calcium, Dissolved	_	130	mg/L	_	_			-		_
Magnesium		8.8	mg/L				_			
Magnesium, Dissolved		8.8	mg/L,							
Potassium		3.4	mg/L		_		_			
Potassium, Dissolved		3.4	mg/L		_			_		
Sodium		7.2	mg/L	14		9.6		9,4		10
Sodium, Dissolved		7.2	mg/L	_					_	
Ammonia Nitrogen			mg/L			_		_		
Major Anions										
Alkalinity, Total			mg/L							
Alkalinity, Bicarbonate		290	mg/L							
Alkalinity, Carbonate		<20	mg/L							
Nitrate-Nitrite, as N			mg/L					-		
Nitrate, as N	10		mg/L			-		_	-	
Nitrite, as N	1		mg/L							
Sulfate		65	mg/L	490	<u></u>	300		220		250
Sulfide			mg/L			<u></u>				_
Reactive Sulf.(SW846 7.3.4.1)			mg/L							
Bromide			mg/L				_ "			_
Fluoride	_		mg/L							
Chloride		13	mg/L	20	_	12		14		12
Silica	_		mg/L							
Silicon			mg/L				_			
Silicon, Dissolved			mg/L					_		

CH-042 DAM TOE LEFT pary of Groundwater Analytical F

			tion Number	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042
		s	tation Name	DAM TOÉ LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT
			Lab ID	L515479-06	<u> </u>	L517576-05		L520030-05	_	L522574-05
			lection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL.	UPL	Units							
Trace Metals	•									
Iron		1.3	mg/L							· · · · · · · · · · · · · · · · · · ·
Iron,Dissolved		1.3	mg/L						-	-
Ferrous Iron			mg/L	_	_	_	<u> </u>	_	_	
Ferric Iron	_	_	mg/L	_			_		_	
Aluminum	-		mg/L					····	_	
Aluminum, Dissolved			mg/L							
Antimony	0.006		mg/L		_	_		_		
Antimony, Dissolved	0.006		mg/L							
Arsenic	0.01		mg/L							
Arsenic, Dissolved	0.01		mg/L		_	_		-	_	
Barium	2		mg/L		_	_	-	_		
Barium, Dissolved	2		mg/L	_					_	
Beryllium	0,004		mg/L							
Beryllium, Dissolved	0.004	-	mg/L	-		_	_	_	_	-
Boron		0.3	mg/L	0.64		1.8		0,20		0.19 J
Boron Dissolved		0.3	mg/L	_	_	_	_	_		
Cadmium	0.005	-	mg/L	_	_					_
Cadmium, Dissolved	0.005	-	mg/L		_	_				
Chromium	0,1		ma/L							_
Chromium, Dissolved	0.1		mg/L	_	_					
Cobalt			mg/L			_				
Cobalt, Dissolved			mg/L		_	_				
Copper	1.3		mg/L		-				_	
Copper.Dissolved	1.3		mg/L	Aphins						
Lead	0,015	 	mg/L						_	
Lead.Dissolved	0.015		mg/L							_
Manganese			mg/L			_				
Manganese, Dissolved			mg/L		_		_			_
Mercury	0.002	==	mg/L				_	_		
Mercury, Dissolved	0.002	 	mg/L				_			
Molybdenum	0.002		mg/L			+ = -				
Molybdenum, Dissolved			mg/L							
Nickel		0.0085	mg/L							
Nickel, Dissolved		0.0085	mg/L					_		
Selenium	0.05		mg/L						_	
Selenium, Dissolved	0.05		mg/L						_	
Silver	0,03		mg/L							
Silver Dissolved			mg/L							
Thallium	0,002		mg/L					-		
Thallium, Dissolved	0.002		mg/L		<u> </u>				_	
Vanadium Vanadium	0.002	 	* * * * * * * * * * * * * * * * * * * *			***				
Vanadium, Dissolved			mg/L		-					
Zinc		0.18	mg/L			-	_			
Zinc.Dissolved	-	0.18	mg/L mg/L		<u> </u>					

<u> </u>		Sta	tion Number	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042
			Station Name	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT .	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT
<u> </u>			Lab ID		_				-	
		Cc	llection Date	4/27/2012	5/7/2012	5/10/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012
Parameter	MCL	UPL	Units							
Field Parameters										
Water Level Elevation			ft NAVD88	747.5	747,6	747.5	747,5	747,4	747.5	747,5
Flow	_		gpm	55	15	15	40	20	20	20
Flow			mgd	0.08	0.02	0.02	0.06	0.03	0.03	0.03
Temperature	_		°C	16.93	20,25	17.79	17.97	18.67	17.93	18.72
pH (field)	_		S.U.	7,49	8.22	7.88	7.88	7.86	7.76	7.88
Specific Conductance	_	840	μS/cm	893	660	860	834	907	874	885
Ox-Red Potential (ORP)	-		mV	192,1	-157.8	-128,3	-152.2	-135.5	146,1	-89,5
Dissolved Oxygen (DO)			mg/L	8.91	2,25	3.51	2.26	10.64	8.6	9.03
Turbidity (field)		-	NTU			_	_	-		-
Indicator Parameters										
pH (lab)			\$.Ų.		_			_		_
Dissolved Solids	_	420	mg/L		-					
Suspended Solids			mg/L		-	_		_		
Turbidity (lab)			NTU		<u> </u>					_
Chemical Oxygen Demand (COD)		11	mg/L					_		
Total Organic Carbon (TOC)	_	3.8	mg/L	_	_		_	_	_	
Acidity	-		mg/L	***						
Free Carbon Dioxide			mg/L		_	-		_	_	_
Hardness, Total (mg/L as CaCO3)			mg/L							
Major Cations										
Calcium	****	130	mg/L				-			
Calcium, Dissolved	_	130	mg/L	****						_
Magnesium		8.8	mg/L						_	
Magnesium, Dissolved	_	8.8	mg/L		_					_
Potassium		3.4	mg/L	***					-	
Potassium, Dissolved		3.4	mg/L		-		-			<u></u>
Sodium		7.2	mg/L					_		
Sodium, Dissolved	_	7.2	mg/L			_		_		
Ammonia Nitrogen			mg/L		_		_	_		-
Major Anions	-l	<u> </u>				<u></u>		.	<u> </u>	
Alkalinity, Total	· 1		mg/L			Τ –		_	—	
Alkalinity, Bicarbonate	-	290	mg/L							
Alkalinity,Carbonate		<20	mg/L				_			
Nitrate-Nitrite, as N			mg/L					-		_
Nitrate, as N	10		mg/L		_					
Nitrite, as N	1		mg/L					_		
Sulfate	<u> </u>	65	mg/L							_
Sulfide			mg/L	_				_		_
Reactive Sulf.(SW846 7.3.4.1)			mg/L			-	-			
Bromide	-		mg/L		_		_			
Fluoride			mg/L							-
Chloride	_	13	mg/L	_			_	_	-	 ·
Silica			mg/L							_
Silicon	1		mg/L	_			_			
		L	1 1177 -		1					

			tion Number	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042
		s	tation Name	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEF
			Lab ID			-	_	-	-	
		Col	lection Date	4/27/2012	5/7/2012	5/10/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012
Parameter	MCL	UPL	Units							
race Metals										
tron		1.3	mg/L	. .		-		<u> </u>	-	
Iron,Dissolved		1.3	mg/L		-			-	_	
Ferrous Iron			mg/L					_	_	
Ferric Iron			mg/L	- -	_	_	_			
Aluminum	_		mg/L	-	_	-	-	_	_	
Aluminum, Dissolved			mg/L							
Antimony	0.006		mg/L							_
Antimony, Dissolved	0,006		mg/L						-	
Arsenic	0.01		mg/L	_			-	_		-
Arsenic, Dissolved	0.01	 	mg/L		<u> </u>	_	-			-
Barium	2		mg/L		_		_			
Barium, Dissolved	2		mg/L					_		
Beryllium	0.004		mg/L	_	_	_				
BervIlium.Dissolved	0.004		mg/L	_	_			_		
Boron	_	0.3	mg/L	****						_
Boron, Dissolved		0.3	mg/L				_	_		
Cadmium	0.005		mg/L		-	·	_			
Cadmium, Dissolved	0.005		mg/L	-		_	_	_	_	
Chromium	0,1		ma/L							
Chromium, Dissolved	0.1		mg/L					_		_
Cobalt			mg/L			***				
Cobalt, Dissolved			mg/L			200		··· -		
Copper	1,3		mg/L	_	_	_	_			_
Copper, Dissolved	1.3		mg/L							
Lead	0.015		mg/L	······································						
Lead, Dissolved	0.015		mg/L			-				
Manganese		===	mg/L				_	. —		
Manganese, Dissolved			mg/L		 				_	
Mercury	0.002		mg/L		_				_	_
Mercury.Dissolved	0.002		mg/L					_		
Molybdenum	0.002		mg/L				-			
Molybdenum, Dissolved			ma/L			-				
Nickel		0.0085	ma/L							
Nickel, Dissolved		0.0085	mg/L							
Selenium	0.05	0.0085	mg/L	****						
Selenium, Dissolved	0.05		mg/L					_		
Silver	0.03		mg/L	wee						=
Silver, Dissolved		 _	mg/L		-					=
	0.002	+								
Thallium Discalued			mg/L						····	
Thallium, Dissolved	0.002		mg/L	-					_	ļ. ——
Vanadium			mg/L							
Vanadium, Dissolved Zinc		0.18	mg/L			·				
		1 072	mg/L		l	_	l —	l	l	1

			tion Number	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042
		5	Station Name	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT
			Lab ID					_	_	L728124-03
		Co	ilection Date	6/15/2012	6/28/2012	7/17/2012	8/2/2012	8/23/2012	9/20/2012	10/16/2014
Parameter	MCL	UPL	Units							
Field Parameters	•									•
Water Level Elevation			ft NAVD88	747.5	747.4	747.5	747,6	747.5	747.5	
Flow			gpm	20	15	10	35	25	15	20
Flow	_		mgd	0.03	0.02	0.01	0.05	0.04	0.02	0.0288
Temperature	_		°C	17,69	18.37	19.78	18,66	18.76	18,74	19,49
pH (field)	_		S.U.	7.67	7.87	7.7	7.81	7.86	7.59	7.89
Specific Conductance		840	μS/cm	793	1,379	773	770	713	621	767
Ox-Red Potential (ORP)	_		mV	212.8	178,6	145,3	125.1	-105,8	-198,3	8.1
Dissolved Oxygen (DO)			mg/L	8.23	6.78	9.3	9.52	2.32		6.89
Turbidity (field)	_		NTU							2.84
Indicator Parameters										
pH (lab)			S.U.		_	-				7.0 T8
Dissolved Solids		420	mg/L		****					540
Suspended Solids			mg/L							28
Turbidity (lab)			NTU					_		
Chemical Oxygen Demand (COD)		11	mg/L					_		<10
Total Organic Carbon (TOC)		3.8	mg/L				_		<u> </u>	1.0
Acidity			mg/L	-		***				<10
Free Carbon Dioxide	-		mg/L	_	_		<u> </u>	_		
Hardness, Total (mg/L as CaCO3)			mg/L							470
Major Cations										
Calcium		130	mg/L					_		140
Calcium, Dissolved		130	mg/L					-		140
Magnesium		8.8	mg/L							24
Magnesium, Dissolved		8.8	mg/L				-	_		23
Potassium	_	3.4	mg/L		_					4.5
Potassium, Dissolved		3.4	mg/L					***		4,2
Sodium		7.2	mg/L					_	<u> </u>	8.6
Sodium,Dissolved		7.2	mg/L					_		8.1
Ammonia Nitrogen			mg/L					_		<0.25
Major Anions										
Alkalinity, Total			mg/L							120
Alkalinity,Blcarbonate		290	mg/L			<u> </u>	-			120
Alkalinity,Carbonate	_	<20	mg/L		**					<20
Nitrate-Nitrite, as N			mg/L							
Nitrate, as N	10		mg/L				_			1,2
Nitrite, as N	1		mg/L				***	-		<0.10
Sulfate		65	mg/L							270
Sulfide		└ =	mg/L							<0.050
Reactive Sulf.(SW846 7.3.4.1)			mg/L							<25
Bromide			mg/L						<u> </u>	<1.0
Fluoride	-		mg/L		_		_			0.29
Chloride	-	13	mg/L		_				<u> </u>	14
Silica	-		mg/L							6.0
Silicon			mg/L					_	<u> </u>	2.8
Silicon, Dissolved			mg/L		1					2.5

		Stat	ion Number	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042	CH-042
		s	tation Name	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT	DAM TOE LEFT
			Lab ID		_	_	-		_	L728124-03
		Col	fection Date	6/15/2012	6/28/2012	7/17/2012	8/2/2012	8/23/2012	9/20/2012	10/16/2014
Parameter	MCL.	UPL	Units						•	
Trace Metals										
Iron		1.3	mg/L							0.16
Iron,Dissolved	-	1.3	mg/L		T —	_	_	-		<0.10
Ferrous Iron			mg/L		J —	_		_	—	0.022 J, T8
Ferric Iron	-		mg/L		_	_	_			0,14
Aluminum			mg/L		_	_	_	_	_	0.077 J
Aluminum, Dissolved	_	_	mg/L						-	<0.10
Antimony	0.006		mg/L	_					_	0.00026 J
Antimony, Dissolved	0,006		mg/L	_	-	_		-	_	0.00097 J
Arsenic	0.01	_	mg/L		_	_	_	_	-	0,0018
Arsenic, Dissolved	0.01	_	mg/L			w	-			0.0018
Barium	2		mg/L,		_	_		_		0.020
Barium, Dissolved	2		mg/L		_			-		0,017
Beryllium	0.004	_	mg/L		_					<0.0010
Beryllium, Dissolved	0.004		mg/L		_	_		_	-	<0.0010
Boron	_	0.3	mg/L		_	_	_			0.30
Boron, Dissolved		0.3	mg/L		_	_		_	-	0.27
Cadmium	0.005	_	mg/L				_			<0.00050
Cadmium, Dissolved	0.005		mg/L		-	-	-	_		0.00029 J
Chromium	0.1	-	mg/L		_					0.0020 J, B
Chromium, Dissolved	0.1		mg/L	_	_	_		_	<u> </u>	<0.0020
Cobalt			mg/L		_		_			<0.0010
Cobalt, Dissolved		<u> </u>	mg/L	_				***	_	0.00096 J
Copper	1.3		mg/L		_		_	_		0.0017 J
Copper, Dissolved	1,3		mg/L			_		-		0,0013 J
Lead	0.015		mg/L				ner-	_		0.00036 J
Lead, Dissolved	0.015		mg/L		-	_			_	<0.0010
Manganese	T -	_	mg/L	_	_	_		_	-	0.018
Manganese, Dissolved			mg/L		_	_	-	_	_	<0.010
Mercury	0.002		mg/L	_	_	_	_			<0.00020
Mercury, Dissolved	0.002		mg/L		_			_		<0.00020
Molybdenum			mg/L				_		_	0.0090
Molybdenum, Dissolved			mg/L							0.0088
Nickel		0.0085	mg/L		_			_		0.0016
Nickel,Dissolved	-	0.0085	mg/L				_		—	0.0041
Selenium	0.05		mg/L					-		0.0013
Selenium, Dissolved	0.05	_	mg/L	-				-		0,0025
Silver			mg/L		 ` `	_				<0,0010
Silver, Dissolved		 	mg/L						_	0.00038 J
Thallium	0.002		mg/L	<u> </u>			nen	_	-	<0.0010
Thallium, Dissolved	0.002		mg/L		_			_	_	0.00045 J
Vanadium	_		mg/L						****	0.00020 J
Vanadium, Dissolved			mg/L		_	_	 			0,0012 J
Zine		0.18	mg/L				_			<0.050
Zinc.Dissolved		0.18	mg/L					_		<0.050

		Sta	tion Number	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044
		5	Station Name	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING
			Lab ID	L515479-07	-	L517576-06	_	L520030-06		L522574-06
		Co	Ilection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units							
Field Parameters										
Water Level Elevation	_		ft NAVD88			827,6				_
Flow			gpm	120	110	60	60	30	60	100
Flow			mgd	0.2	0.2	0.09	0.1	0.05	80.0	0.1
Temperature			°C	18.3	15,9	19.5	20,4	23.7	23.7	16,2
pH (field)	_		S.U.	6.67	6.87	6.67	7.41	6.88	7.03	6.84
Specific Conductance	_	840	μS/cm	920	930	1,090	620	820	1,250	870
Ox-Red Potential (ORP)			mV	<u> </u>					_	_
Dissolved Oxygen (DO)	_		mg/L	-	_					3.33
Turbidity (field)			NTU		_	· —		_		
Indicator Parameters										
pH (lab)		_	S.U.				-			
Dissolved Solids	_	420	mg/L	780		960		700	***	760
Suspended Solids	_		mg/L	_		_				·
Turbidity (lab)			NTU						-	
Chemical Oxygen Demand (COD)		11	mg/L		_		-	-	<u> </u>	
Total Organic Carbon (TOC)	_	3.8	mg/L		_		-			_
Acidity	_	-	mg/L				-			_
Free Carbon Dioxide			mg/L		_		_	_		_
Hardness, Total (mg/L as CaCO3)			mg/L	***					_	
Major Cations										
Calcium		130	mg/L	180		220		150		160
Calcium, Dissolved		130	mg/L	_	-	ĺ	****			
Magnesium		8.8	mg/L		-	men				
Magnesium, Dissolved	_	8.8	mg/L		—			_		
Potassium		3.4	mg/L		-			***		
Potassium, Dissolved		3.4	mg/L	_						
Sodium		7.2	mg/L	9.9	_	9.1		7.3	_	7.8
Sodium, Dissolved	_	7.2	mg/L	<u> </u>		-				7
Ammonia Nitrogen			mg/L	-	_			_		-
Major Anions										
Alkalinity, Total	_		mg/L		-		1		_	
Alkalinity,Bicarbonate		290	mg/L			1	_		<u> </u>	
Alkalinity,Carbonate		<20	mg/L						<u> </u>	
Nitrate-Nitrite, as N	***	_	mg/L							
Nitrate, as N	10		mg/L						-	
Nitrite, as N	1		mg/L						-	
Sulfate		65	mg/L	410		530	-	340		380
Sulfide			mg/L		_					
Reactive Sulf,(SW846 7.3.4.1)			mg/L							
Bromide			mg/L	-	-		_	-	-	
Fluoride			mg/L							_
Chloride		13	mg/L	12	-	9.8		13	_	13
Silica			mg/L							
Silicon			mg/L							
Silicon, Dissolved		-	mg/L			-			-	-

CH-044 DITCH SPRING

			tion Number	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044
		S	tation Name	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING
			Lab ID	L515479-07		L517576-06	_	L520030-06		L522574-06
			lection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL.	Units							
race Metals										
Iron		1.3	mg/L	 -						<u> </u>
Iron,Dissolved		1.3	mg/L		_	_		-		
Ferrous Iron			mg/L		1 –	_	-	_		_
Ferric Iron			mg/L					_	_	
Aluminum	_		mg/L		_	_		_	_	_
Aluminum,Dissolved			mg/L					_	_	_
Antimony	0.006		mg/L		-	_	-	_	_	_
Antimony, Dissolved	0.006	<u> </u>	mg/L				_			
Arsenic	0.01		mg/L					_		
Arsenic Dissolved	0.01		mg/L			-	_			
Barium	2		mg/L	***	-			_		
Barium, Dissolved	2		mg/L		-			-		
Beryllium	0.004		mg/L				<u> </u>		<u> </u>	
Beryllium, Dissolved	0.004		mg/L	<u> </u>		_		_		
Boron		0.3	mg/L	2.5		1.8		3,1		3,3
Boron, Dissolved		0.3	mg/L	_			_			_
Cadmium	0,005		mg/L						m	
Cadmium, Dissolved	0.005		mg/L						_	
Chromium	0.1		mg/L		_					
Chromium, Dissolved	0.1		mg/L				_			
Cobalt			mg/L							
Cobalt, Dissolved			mg/L	_					_	-
Copper	1.3		mg/L	ww.				_		_
Copper.Dissolved	1,3		mg/L					_		
Lead	0.015		mg/L	_				-	444	
Lead.Dissolved	0,015		mg/L							
Manganese			mg/L				_	<u> </u>		
Manganese, Dissolved			mg/L	_						
Mercury	0.002	 	mg/L		-			_	_	
Mercury, Dissolved	0.002		mg/L							
Molybdenum			mg/L		_					
Molybdenum.Dissolved			ma/L							
Nickel		0.0085	mg/L							
Nicket, Dissolved		0.0085	mg/L			F				
Selenium	0.05		mg/L	irran-				-		
Selenium, Dissolved	0.05		mg/L				_			
Silver			mg/L							
Silver, Dissolved			mg/L				-			
Thallium	0,002	 	mg/L		 _					
Thallium, Dissolved	0.002	 	mg/L	-		-				
Vanadium	0.002	 	 							
			mg/L				-			
Vanadium, Dissolved Zinc		0.18	mg/L							
Zinc, Dissolved		0.18	mg/L mg/L							

CH-044 DITCH SPRING nmary of Groundwater Analytical

		St	ation Number	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044
•			Station Name	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	Offich SPRING
			Lab ID	L558290-02	L560970-03	L570058-01		_		L575196-03
		c	ollection Date	1/31/2012	2/16/2012	4/13/2012	4/26/2012	5/7/2012	5/10/2012	5/14/2012
Parameter	MCL	UPL	Units							······
Field Parameters										
Water Level Elevation		T =	ft NAVD88	827.4	827,3	827,3	_	827,4	827.4	827,6
Flow			gpm	5	15	12	120	76	30	135
Flow			mgd	0.007	0.02	0.02	0,5	0.1	0.04	0,2
Temperature			°C	16.15	13,93	22	15,83	15.84	17.73	16,79
pH (fleld)			S.U.	6.95	7.26	7.1	7.12	7.05	7.27	7.18
Specific Conductance		840	μS/cm	748	706	980	795	811	793	1,106
Ox-Red Potential (ORP)			mV		-220	_	189.5	187	179,4	131.5
Dissolved Oxygen (DO)			mg/L		4.53		4.02	6.49	7.29	7.01
Turbidity (field)			NTU	5.1	4,7	6.9		-		130
Indicator Parameters										
pH (lab)	_		S.U.		_		_			_
Dissolved Solids		420	mg/L	720		730	nme	<u> </u>	-	900
Suspended Solids		_	mg/L		-			_		-
Turbidity (lab)		_	NTU	·····		T -				
Chemical Oxygen Demand (COD)		11	mg/L,	<10		14				75
Total Organic Carbon (TOC)	-	3.8	mg/L	1.6		1.0				1,1
Acidity	****		mg/L	***			_		***	_
Free Carbon Dioxide			mg/L		_			_		
Hardness, Total (mg/L as CaCO3)			mg/L							
Major Cations									······	
Calcium		130	mg/L	180		160			_	200
Calcium, Dissolved		130	mg/L			_	-			
Magnesium	1	8.8	mg/L	21		21				28
Magnesium, Dissolved		8.8	mg/L						-	
Potassium		3.4	mg/L	5,6		5.5	_			8.9
Potassium, Dissolved	_	3.4	mg/L							
Sodium	_	7.2	mg/L	11	_	8.6				28
Sodium, Dissolved		7.2	ma/L				-			_
Ammonia Nitrogen			mg/L				_	_		_
Major Anions					····	<u></u>				<u> </u>
Alkalinity, Total			mg/L	_	_		_	<u> </u>		
Alkalinity,Bicarbonate		290	ma/L	150		140			-	150
Alkalinity, Carbonate		<20	mg/L	<20		<20		_		<20
Nitrate-Nitrite, as N			mg/L					_		
Nitrate, as N	10		mg/L			-				
Nitrite, as N	1		mg/L	***	_		_			_
Sulfate		65	mg/L	360		350				460
Sulfide	_		mg/L						_	
Reactive Sulf.(SW846 7.3.4.1)			mg/L							
Bromide			mg/L		_			_	_	
Fluoride	_		mq/L		_			-		
Chloride		13	mg/L	16		17	_			14
Silica		 	mg/L							
Silicon		 = 	mg/L	_			_			
Silicon, Dissolved			mg/L							

		Sta	tion Number	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044
		s	tation Name	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING
			Lab ID	L558290-02	L560970-03	L570058-01		_	—	L575196-03
		Col	lection Date	1/31/2012	2/16/2012	4/13/2012	4/26/2012	5/7/2012	5/10/2012	5/14/2012
Parameter	MCL	UPL	Units				•			
Trace Metals										
Iron		1.3	mg/L	0,16	0,34	0,28				6,8
Iron,Dissolved		1,3	mg/L				-	_		
Ferrous Iron		_	mg/L	****	***		***			-
Ferric Iron			mg/L	<u> </u>	—					
Aluminum	-		mg/L	_	-					1 -
Aluminum, Dissolved			mg/L	***						
Antimony	0.006		mg/L		_		_	_		
Antimony, Dissolved	0.006		mg/L				***			
Arsenic	0.01		mg/L	0.11	5-90-55-55-0.13 5-6-6-6	accelerate and 0:11 december				0,15
Arsenic, Dissolved	0.01		mg/L	_	_	_		TOO	_	
Barium	2		mg/L	_		_	-	_	_	_
Barium, Dissolved	2		mg/L							
Beryllium	0.004		mg/L				***			
Beryllium, Dissolved	0.004		mg/L	_		i _ i	_		_	 _
Boron		0,3	mg/L	3,0	_	3.4	~~			2,4
Boron, Dissolved		0.3	mg/L			-		_	_	
Cadmium	0,005	77.7	mg/L	<0.0050		<0.0050		***		0.0044 J
Cadmium, Dissolved	0.005		mg/L				nm			
Chromium	0.1		mg/L		***	 	***			
Chromium, Dissolved	0,1		mg/L			_	_			·
Cobalt			mg/L			_			_	
Cobalt, Dissolved			mg/L			- 1			_	
Copper	1.3		mg/L	0.0016 J		0.0031 J				0,042
Copper, Dissolved	1.3	-	mg/L							
Lead	0,015		mg/L	<0.0050	_	0.013	***		_	0.041
Lead, Dissolved	0.015		mg/L				,	_	_	
Manganese			mg/L						_	<u>-</u>
Manganese,Dissolved			mg/L			 _ 	-			
Mercury	0.002		mg/L	<0.00020	_	<0,00020	+	_	_	<0.00020
Mercury.Dissolved	0.002		mg/L			~0.00020				
Molybdenum	- 0.002	 	mg/L			=			=	
Molybdenum, Dissolved			mg/L							
Nickel		0.0085	mg/L	<0.020		0.010 J				0,020 J
Nickel, Dissolved		0.0085	mg/L							
Selenium	0,05	-	mg/L	<0.020		0.024			-	0.045
Selenium, Dissolved	0.05	<u> </u>	mg/L	-0.520		0.024	-			
Silver			mg/L							
Silver, Dissolved			mg/L							_
Thallium	0.002	 	mg/L							
Thallium, Dissolved	0,002	 	mg/L						_	
Vanadium	0,00Z	 	mg/L					_		
Vanadium, Dissolved	<u>-</u>		mg/L		_				_	
Zinc		0.18	mg/L	0.078		0,014 J				0.065
Zinc, Dissolved		0.18	mg/L	- 0.078	-	- 0,0143				- 0.003

CH-044 DITCH SPRING

			tion Number	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044
		5	Station Name	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING
			Lab ID	L575196-07					_	-
		Co	Ilection Date	5/14/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012
Parameter	MCL	UPL	Units							
ield Parameters	•									
Water Level Elevation		_	ft NAVD88	827.6	827,4	827,4	827.5	827.4	827.3	827.3
Flow			gpm	135	45	-	55	90	45	22
Flow			mgd	0.2	0.07		0.1	0.1	0.06	0.03
Temperature		1	°C		15,82	16.32	15.88	15.88	17.32	17.61
pH (field)	1	-	S.U.	_	6.93	7.01	7.07	6.93	7.05	7.27
Specific Conductance		840	μS/cm	man	995	1,050	1,019	1,001	962	1,172
Ox-Red Potential (ORP)	nee		mV	_	-157.2	-159	-165,3	-103,8	23	108
Dissolved Oxygen (DO)			mg/L		4,89	4.33	4.01	3.52	3.27	2.91
Turbidity (field)	-		NTU				_		-	
ndicator Parameters			<u>-</u>							•
pH (lab)			S.U.						· -	_
Dissolved Solids		420	mg/L	910			_		—	
Suspended Solids			mg/L	-				_		
Turbidity (lab)			NTU		-			_	· · · · · · · · · · · · · · · · · · ·	
Chemical Oxygen Demand (COD)		11	mg/L	68					·	
Total Organic Carbon (TOC)		3.8	mg/L	0.93 J	_				Leu	
Acidity			mg/L	_		_				_
Free Carbon Dioxide			mg/L			_	_		-	
Hardness, Total (mg/L as CaCO3)			mg/L				_	_	PAGE 1	
Aajor Cations			1 111972			1				<u> </u>
Calcium		130	mg/L	200	-			_		
Calcium.Dissolved		130	mg/L				_			_
Magnesium		8.8	mg/L	27		_	_	_		
Magnesium, Dissolved		8.8	mg/L							
Potassium		3.4	mg/L	9.6						
Potassium.Dissolved		3.4	mg/L		_					
Sodium		7.2	mg/L	14					<u>-</u>	
Sodium, Dissolved		7.2								_
Ammonia Nitrogen		-	mg/L			-				
			mg/L	_						
lajor Anions										
Alkalinity, Total			mg/L		<u> </u>			***		
Alkalinity,Bicarbonate		290	mg/L	150						<u> </u>
Alkalinity, Carbonate		<20	mg/L	<20						
Nitrate-Nitrite, as N			mg/L		_					
Nitrate, as N	10		mg/L				Anna .			
Nitrite, as N	1		mg/L							
Sulfate		65	mg/L	470		-				
Sulfide			mg/L	-	<u> </u>					
Reactive Sulf.(SW846 7.3.4.1)			mg/L				<u> </u>	-	Ţ	
Bromide			mg/L	_		<u> </u>				
Fluoride			mg/L		-					-
Chloride		13	mg/L	14				-	-	
Silica			mg/L		-			-		_
Silicon			mg/L		<u> </u>					
Silicon, Dissolved			mg/L				_	_	_	_

			ion Number	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044
		s	tation Name	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING
			Lab ID	L575196-07						[
		Col	lection Date	5/14/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012
Parameter	MCL	UPL	Units							
race Metals										•
Iron		1,3	mg/Ļ	6,0					— — — — — — — — — — — — — — — — — — —	
Iron, Dissolved	-	1.3	mg/L			_		_		
Ferrous Iron			mg/L		_	_	_	_		
Ferric Iron		_	mg/L		-	_	_	_	_	
Aluminum			mg/L						_	_
Aluminum, Dissolved		_	mg/L	_	_		_	_		
Antimony	0,006		mg/L	_				_	_	
Antimony, Dissolved	0.006		mg/L				T		····	
Arsenic	0.01		mg/L	0.15						
Arsenic, Dissolved	0.01	_	mg/L							-
Barium	2		mg/L		· · · ·	_				
Barium, Dissolved	2		mg/L		_	_	<u> </u>			
Beryllium	0.004		mg/L	_	_	_	-	_		
Beryllium, Dissolved	0.004	_	mg/L		_	_			<u> </u>	-
Boron		0.3	mg/L	2,4			_	_		_
Boron, Dissolved		0.3	mg/L						_	
Cadmium	0.005		ma/L	0.0037 J	_	_	_	-	_	
Cadmium, Dissolved	0.005	_	mg/L	_		_				_
Chromium	0.1		mg/L							
Chromium.Dissolved	0.1		mg/L	_ 1	_	_	_	_		
Cobalt			mg/L							
Cobalt, Dissolved	***		mg/L			-			-	-
Copper	1.3		mg/L	0.037	_	_	_			
Copper, Dissolved	1.3	_	mg/L			-	-	_	_	
Lead	0.015		ma/L	0.036	_					
Lead, Dissolved	0.015		mg/L			-	_	_		
Manganese		_	mg/L		_	-	_	<u> </u>		
Manganese, Dissolved			mg/L						_	_
Mercury	0.002		ma/L	<0.00020	_	_				_
Mercury, Dissolved	0.002		mg/L			_	_			
Molybdenum			mg/L	······································		_	_	_		_
Molybdenum, Dissolved			mg/L						_	
Nickel		0.0085	mq/L	0.015 J			-			
Nickel, Dissolved		0.0085	mg/L						-	
Selenium	0,05	_	mg/L	0.049				-	_	-
Selenium, Dissolved	0,05		mg/L		_			_		
Silver			mg/L				_		_	
Silver, Dissolved		 	mg/L			_			_	
Thallium	0,002	 	mg/L		_			_		
Thallium.Dissolved	0.002		mg/L							
Vanadium	0.002		mg/L							
Vanadium, Dissolved	_	-	mg/L		-	_				
Zinc		0.18	mg/L	0.064					_	
Zinc, Dissolved		0.18	mg/L							

Lab ID Collection Date	OTCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING			
Collection Date			DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING
				L593301-03	L611710-02	L612149-04	L728124-06
	7/17/2012	8/2/2012	8/23/2012	9/4/2012	12/17/2012	12/18/2012	10/16/2014
Parameter MCL UPL Units							
Field Parameters							
Water Level Elevation ft NAVD88	827,4	827,3	827,4	827.4	827,5		_
Flow gpm	7	15	6	61	72		5
Flow — mgd	0.01	0.02	0.009	0.09	0,1	_	0,0072
Temperature — — °C	16,28	16.12	16.07	22,34	16,54		15,97
pH (field) — S.U.	7.15	7.57	7.56	7.4	7.52		8.29
Specific Conductance — 840 µS/cm	959	955	959	638	693		1,344
Ox-Red Potential (ORP) — mV	-167.8	149	-117.5	-74.2	-114.8	_	28,1
Dissolved Oxygen (DO) — mg/L	2.74	4.08	3.63	1.88	7.6		5.58
Turbidity (field) NTU	_	_					4.68
Indicator Parameters							
рн (lab) — S.U.	_	- 1	_		_	_	7.2 T8
Dissolved Solids — 420 mg/L				510	430	-	1,100
Suspended Solids — mg/L	_						62
Turbidity (lab) — NTU						_	1
Chemical Oxygen Demand (COD) — 11 mg/L			***	14	200	_	12
Total Organic Carbon (TOC) — 3.8 mg/L				0.53 J	3.9	_	0.80 J
Acidity mg/L							<10
Free Carbon Dioxide - mg/L				1		-	
Hardness, Total (mg/L as CaCO3) — mg/L			_			***	870
Major Cations							
Calcium 130 mg/L			-	120	270	210	260
Calcium, Dissolved — 130 mg/L						210	260
Magnesium — 8.8 mg/L				8.5	15	34	40
Magnesium, Dissolved — 8.8 mg/L						33	41
Potassium 3.4 mg/L				2.6	6.4	16	9,0
Potassium, Dissolved 3,4 mg/L		_	_			16	8.7
Sodium — 7.2 mg/L				2.8	18	78	17
Sodium, Dissolved — 7.2 mg/L	1	-		1	_	81	16
Ammonia Nitrogen — mg/L				-	_	_	<0,25
Major Anions							
Alkalinity, Total — mg/L	-	-	-				130
Alkalinity, Bicarbonate — 290 mg/L				64	110		130
Alkalinity,Carbonate — <20 mg/L	_	-		<20	<20		<20
Nitrate-Nitrite, as N — mg/L	_					-	
Nitrate, as N 10 — mg/L							0.45
Nitrite, as N 1 mg/L							<0.10
Sulfate — 65 mg/L	-	-	-	270	380		540
Sulfide — mg/L	_						<0.050
Reactive Sulf.(SW846 7.3.4.1) mg/L							<25
Bromide — mg/L	_				_	. —	<1.0
Fluoride mg/L	-		nnn .	W-W-1			0.59
Chloride — 13 mg/L	-	_	_	3,1	7,5		9.8
Silica — mg/L	=			_		***	6.7
Silicon mg/L						-	3.1
Silicon,Dissolved mg/L							2.9

•		Stat	ion Number	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044	CH-044
		\$1	ation Name	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING	DITCH SPRING
			Lab ID			-	L593301-03	L611710-02	L612149-04	L728124-06
		Col	ection Date	7/17/2012	8/2/2012	8/23/2012	9/4/2012	12/17/2012	12/18/2012	10/16/2014
Parameter	MCL	UPL	Units		· <u>'</u>	· 	1		· · · · · · · · · · · · · · · · · · ·	·
race Metals										
Iron	<u> </u>	1,3	mg/L				0.99	8.5	3.3	0.27
Iron.Dissolved		1.3	ma/L				—	_	<0,10	0,037 J
Ferrous Iron			mg/L					-	_	0.070 T8
Ferric Iron	_		mg/L			_	_		_	0.20
Aluminum	-		mg/L			_	—	_	_	0.22
Aluminum, Dissolved			mg/L	_	_	1000				0.040 J
Antimony	0.006		mg/L	-		_				0.00070 J
Antimony, Dissolved	0.006		mg/L							0.0012
Arsenic	0.01		mg/L			pro-	0.056	0.029	0.014	0.076
Arsenic, Dissolved	0.01		mg/L	~	 				0,0081	0.061
Barlum	2		mg/L							0.050
Barium, Dissolved	2		mg/L						_	0,042
Bervilium	0,004	 	mg/L				<u> </u>			<0.0010
Bervilium.Dissolved	0.004		mg/L						_	<0.0010
Boron		0.3	mg/L				0.73	0,56	0,79	1,3
Boron, Dissolved		0.3	mg/L	_	<u> </u>				0,64	1.3
Cadmium	0.005		mg/L				<0.0050	<0.0050	<0.0050	<0.00050
Cadmium.Dissolved	0.005	 	ma/L					-	<0.0050	0.00096
Chromium	0,1		mg/L					-		0.0024 B
Chromium, Dissolved	0.1	 	mg/L		 	_			<u> </u>	<0.0020
Cobalt			mg/L		-					0,00075 J
Cobalt, Dissolved			mg/L		_	_				0,0012
Copper	1,3		mg/L				0,0063 J	0,013 J	<0.020	0.0022
Copper, Dissolved	1.3		mg/L		<u> </u>				<0.020	0.0016 J
Lead	0.015	 	mg/L				0.0048 J	<0.0050	<0.0050	0.00082 J
Lead.Dissolved	0.015		mg/L						<0.0050	<0.0010
Manganese			mg/L							2.7
Manganese, Dissolved			mg/L							2,6
Mercury	0.002		mg/L		 		0,000040 J	<0.00020	<0.00020	<0.00020
Mercury, Dissolved	0.002		mg/L					-	<0.00020	<0.00020
Molybdenum	0.002	 	mg/L		_				10,00020	0.15
Molybdenum.Dissolved		 	mg/L		+-3					0.15
Nickel		0.0085	mg/L				<0.020	0.034	0.019 J	0.0025
Nickel, Dissolved		0.0085	mg/L			=	- 40.020	<u> </u>	<0.020	0,0071
Selenium	0.05	0.0083	mg/L			1 = =	0,097	<0.020	<0.020	0.0077
Selenium, Dissolved	0.05		mg/L			 		- 40,020	<0.020	0.0087
Silver	0.03	 							~0.020	<0.0010
Silver, Dissolved			mg/L		-		 			<0.0010
Thallium	0.002	 	mg/L mg/L							0.00045 J
Thailium, Dissolved	0.002		mg/L		 					0.00039 J
		-			+	_				0.0039
Vanadium Nanadium			mg/L		****					0.0039
Vanadium, Dissolved Zinc	-	0.18	mg/L mg/L		 		<0.030	0.050	0.014 J	<0.050
								U.U5U	0.012 J	<0.050
Zinc,Dissolved		0.18	mg/L		-				1 0.012.0	

		Sta	tion Number	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045
		:	Station Name	BDC	BDC	BDC	BDC	BDC	BDC	BDC
			Lab ID	L515479-08		L517576-07	_	L520030-07		L522574-07
		Co	llection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units			1			1	
Field Parameters		·				· · · · · · · · · · · · · · · · · · ·				
Water Level Elevation			ft NAVD88				 .			
Flow	_	1	gpm	5	20	5	10	10	20	6
Flow			mgd	0.007	0.03	0.007	0,01	0.01	0.03	800.0
Temperature			°C	19,5	16,2	19	21.7	24.1	24.1	16.4
pH (field)	_	1 –	S.U.	6.9	6.92	6.71	7.21	7.12	7.42	6.69
Specific Conductance	_	840	μS/cm	950	1,120	1,070	1,030	890	1,300	870
Ox-Red Potential (ORP)			mV							
Dissolved Oxygen (DO)	-		ma/L		=			_		5.35
Turbidity (field)			NTU			_				—
Indicator Parameters		4	·							
pH (lab)	****		S.U.	•••		_	_	_	_	_
Dissolved Solids		420	mg/L	780	_	930		730	-	740
Suspended Solids	-		mg/L	_	_				-	- '
Turbidity (lab)			NTU		_	_	_	_		_
Chemical Oxygen Demand (COD)	_	11	mg/L	_	_	_		l —		-
Total Organic Carbon (TOC)		3.8	mg/L	_		i		_		<u> </u>
Acidity		I _	mg/L		-	-				
Free Carbon Dioxide			mg/L		_	_	<u></u>	_		
Hardness, Total (mg/L as CaCO3)			mg/L				_			
Major Cations					·····	<u> </u>	<u> </u>	······		
Calcium		130	mg/L	190		290		150	****	160
Calcium, Dissolved		130	mg/L	_	_	_	_			
Magnesium		8.8	mg/L					_		_
Magnesium, Dissolved		8.8	mg/L			_				
Potassium		3.4	mg/L							_
Potassium, Dissolved		3.4	mg/L							
Sodium		7.2	mg/L	8.7		14		7.5		7,7
Sodium, Dissolved		7.2	mg/L			_				-
Ammonia Nitrogen			mg/L				***	_	_	
Major Anions		I								
Alkalinity, Total		T	mg/L					***		
Alkalinity, Bicarbonate		290	ma/L			_		_		
Alkalinity,Carbonate		<20	mg/L							_
Nitrate-Nitrite, as N			mg/L	-						-
Nitrate, as N	10		mg/L			_				
Nitrite, as N	1		mg/L	_	_				***	_
Sulfate	<u> </u>	65	mg/L	410	***	550		320	_	380
Sulfide			mg/L							
Reactive Sulf.(SW846 7,3,4,1)			mg/L	_	_	_	_	_		-
Bromide	_	_	mg/L	_	_	_	_	_		
Fluoride	_		mg/L	-				l –		
Chloride		13	mg/L	12		9.5		13	_	13
Silica	_	=	mg/L					_		
Silicon			mg/L	***				_		_
Silicon, Dissolved			mg/L			_				

		Station Number			CH-045	CH-045	CH-045	CH-045	CH-045	CH-045
	Station Name Lab ID Collection Date			BDC L515479-08 5/9/2011	BDC 5/17/2011	BDC L517576-07 5/24/2011	BDC — 5/31/2011	BDC L520030-07 6/7/2011	BDC — 6/14/2011	BDC L522574-07 6/21/2011
Parameter	MCL	UPL	Units			*****	*		*	
race Metals		· · · · · · · · · · · · · · · · · · ·			•			•		
Iron	_	1.3	mg/L	-	_			-		
Iron,Dissolved		1.3	mg/L	_	-				_	
Ferrous Iron	_		mg/L		l —	_		_	_	
Ferric Iron	_		mg/L	_	_	_	-			-
Aluminum			mg/L			_		-	_	
Aluminum,Dissolved	-		mg/L				<u> </u>	_		
Antimony	0.006	_	mg/L	_	—	_	_			_
Antimony, Dissolved	0.006		mg/L					-		
Arsenic	0.01		mg/L		_		***			
Arsenic, Dissolved	0.01		mg/L	_	-	_		_		
Barium	2	T -	mg/L	_	_		-	_	-	
Barium, Dissolved	2		mg/L							
Beryllium	0.004		mg/L						-	
Beryllium, Dissolved	0.004		mg/L		-				_	
Boron		0.3	mg/L	2.5	_	1,6		3,1	_	3.2
Boron, Dissolved		0.3	mg/L					_		_
Cadmium	0.005		mg/L							
Cadmium, Dissolved	0.005		mg/L			_	_			
Chromium	0.1		mg/L	_	_		-	<u> </u>		
Chromium, Dissolved	0.1		mg/L		<u> </u>					
Cobalt			mg/L		_					
Cobalt, Dissolved			mg/L		200		_		_	
Copper	1.3		mg/L	_	_	 -				
Copper, Dissolved	1.3		mg/L		-					
Lead	0.015		mg/L	—			-		-	
Lead, Dissolved	0.015		mg/L							
Manganese			mg/L					_	_	
Manganese, Dissolved			mg/L	-ma		_		_		
Mercury	0,002		mg/L				_	_	_	
Mercury,Dissolved	0.002	 	mg/L							
Molybdenum			mg/L			_				_
Molybdenum, Dissolved			mg/L							
Nickel		0.0085	mg/L		4	_		-		
Nickel Dissolved		0.0085	mg/L				-	-		
Selenium	0.05		mg/L		_					
Selenium, Dissolved	0.05	-	mg/L		-					
Silver			mg/L			 	-			
Silver,Dissolved			mg/L	***						
Thallium	0,002		mg/L							<u> </u>
Thallium, Dissolved	0,002		mg/L		_		_		_	
Vanadium	- 0,002		mg/L					_		
Vanadium, Dissolved		 	mg/L		_				_	
Zinc		0.18	mg/L		-					
Zinc,Dissolved		0.18	mg/L		<u> </u>					

		Sta	tion Number	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045
		5	Station Name	BDC	BDC	BDC	BDC	BDC	SDC	BDC
			Lab ID							
		Co	llection Date	4/26/2012	5/7/2012	5/10/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012
Parameter	MCL	UPL	Units	1/20/2012	0///2012		U 0/1//2012	O/L-WLO IL	07 1720 12	U GATALO IL
Field Parameters	11102	<u> </u>	0,		-					****
Water Level Elevation			ft NAVD88	823,3	823,3	823.3	823,3	823.4	823,4	823,4
Flow			gpm	10	8	10	15	10	15	3
Flow	-		mgd	0,01	0.01	0.01	0.02	0.01	0,02	0.004
Temperature			°C	16.12	15.98	16,42	15.75	16,32	16.07	15.94
pH (field)			S.U.	7.14	7,32	7,17	7.21	7.22	7.22	7,38
Specific Conductance .		840	μS/cm	745	809	930	988	1,066	1,005	977
Ox-Red Potential (ORP)			mV	158,5	158.8	112.9	149	-138	142	-106.9
Dissolved Oxygen (DO)			mg/L	8.2	7.17	6,94	10.1	4.32	7.14	7.81
Turbidity (field)			NTU		- '			! 	7.14	
Indicator Parameters			1 1410		L		L	<u> </u>		<u> </u>
pH (lab)			S.U.	_	_		_	_		
Dissolved Solids		420	mg/L	 _						
Suspended Solids		420	mg/L							
Turbidity (lab)			NTU		<u> </u>		-	<u> </u>		<u> </u>
Chemical Oxygen Demand (COD)		11	mg/L				 			
Total Organic Carbon (TOC)		3.8								
Acidity			mg/L							_
Free Carbon Dioxide			mg/L	***						
			mg/L		<u> </u>					
Hardness, Total (mg/L as CaCO3)			mg/L		<u> </u>			<u> </u>		<u> </u>
Major Cations Calcium		130						······	1	
Calcium, Dissolved		130	mg/L	- man						
		8.8	mg/L							
Magnesium Discolusi		8.8	mg/L					<u> </u>		
Magnesium, Dissolved			mg/L	_						
Potassium		3.4	mg/L		_		_	_		_
Potassium, Dissolved		3.4	mg/L	 						
Sodium		7,2	mg/L	. -		-	778			man .
Sodium, Dissolved		7.2	mg/L				-		-	
Ammonia Nitrogen		-	mg/L							
Major Anions						<u></u>				
Alkalinity, Total			mg/L							
Alkalinity,Bicarbonate		290	mg/L							<u> </u>
Alkalinity,Carbonate		<20	mg/L				***			
Nitrate-Nitrite, as N			mg/L						~~~	
Nitrate, as N	10		mg/L							
Nitrite, as N	1		mg/L							 -
Sulfate		65	mg/L							
Sulfide			mg/L							_
Reactive Sulf.(SW846 7.3.4.1)			mg/L							
Bromide			mg/L		_		_	_		
Fluoride			mg/L							
Chloride	_	13	mg/L	_			_			_
Silica			mg/L		_		_			
Silicon			mg/L	-						
Silicon, Dissolved			mg/L			-				

			tion Number	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045
		S	tation Name	BDC	BDC	BDC	BDC	BDC	BDC	BDC
			Lab ID				_	_		
		Col	lection Date	4/26/2012	5/7/2012	5/10/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012
Parameter	MCL	UPL	Units							
race Metals										
Iron		1.3	mg/L		_	_				· ·
Iron,Dissolved		1.3	mg/L	_			-			
Ferrous Iron		_	mg/L	_	_	_				
Ferric Iron			mg/L	_	_		****	_		
Aluminum		_	mg/L	_				-	_	_
Aluminum, Dissolved	,		mg/L	_				_		_
Antimony	0.006	-	mg/L			 -		_	_	
Antimony, Dissolved	0.006		mg/L				-		<u> </u>	
Arsenic	0.01		mg/L	_	_	 -				
Arsenic, Dissolved	0.01	 	mg/L			www				
Barium	2	-	mg/L		_	_	-	_		
Barium, Dissolved	2	_	mg/L	_	_				_	_
Bervillium	0.004	_	ma/L	_	_	_	_			
Beryllium, Dissolved	0.004		ma/L					_		
Boron		0.3	mg/L							
Boron, Dissolved		0.3	mg/L				_	_		
Cadmium	0.005		mg/L	_	_					_
Cadmium, Dissolved	0.005		mg/L	_				_		
Chromium	0.1		mg/L					—		
Chromium, Dissolved	0.1		mg/L	_					_	
Cobalt			mg/L							
Cobalt, Dissolved			mg/L				-			
Copper	1.3		mg/L		 		_		_	-
Copper, Dissolved	1.3	 	mg/L							
Lead	0.015		mg/L	-	 					
Lead.Dissolved	0.015		mg/L							
Manganese	0.075	+ = -	mg/L		 				-	
Manganese, Dissolved		 	mg/L			 	 _			
Mercury	0,002		mg/L				-		 	
Mercury, Dissolved	0.002					=		 =		
	0.002		mg/L		 					
Molybdenum Molybdenum, Dissolved			mg/L mg/L			 	+ =			
		0.0005			 	-	 			
Nickel		0.0085	mg/L							
Nickel Dissolved	0.05	0.0085	mg/L		4					
Selenium Discolused	0.05 0.05		mg/L		_			-		
Selenium, Dissolved		 -	mg/L		 -		-			
Silver			mg/L		-	-				
Silver, Dissolved		 -	mg/L				-			-
Thallium	0.002	ļ .	mg/L					 -	-	
Thallium, Dissolved	0.002	 	mg/L		-					
Vanadium	_		mg/L	· · · · · · · · · · · · · · · · · · ·	<u> </u>					
Vanadium,Dissolved			mg/L		<u> </u>		_			<u> </u>
Zinc		0.18	mg/L				ue-	 		
Zinc,Dissolved		0.18	mg/L					<u> </u>	<u> </u>	

		Sta	tion Number	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045
		٤	tation Name	BDC	BDC	BDC	BDC	BDC	8DC	8DC
			Lab ID	-			_	_	L611707-01	L612145-01
		Co	liection Date	6/15/2012	6/28/2012	7/17/2012	8/2/2012	8/23/2012	12/17/2012	12/18/2012
Parameter	MCL	UPL.	Units		ĺ					
Field Parameters										
Water Level Elevation			ft NAVD88	823,3	823,3	823,5	823,3	823,4		
Flow		_	gpm	3	4	15	11	8	2	
Flow	_	_	mgd	0.004	0.006	0.02	0.02	0.01	0.003	
Temperature	_	_	°C	17.29	18.13	17.41	16.75	16.83	14.95	
pH (field)	-	_	S.U.	7.21	7.81	7.12	7.33	7.38	6.77	
Specific Conductance		840	μS/cm	873	1,781	936	923	888	664	
Ox-Red Potential (ORP)			mV	123.4	148.7	168,2	-120	100,1	-189.7	
Dissolved Oxygen (DO)			mg/L	8,36	6,78	6,39	6.44	7.09	3.1	***
Turbidity (field)			NTU			_				
Indicator Parameters					·					
pH (lab)	_	-	S.U.		_	_				
Dissolved Solids		420	mg/L				·	·	690	
Suspended Solids	_		mg/L				***			
Turbidity (lab)			NTU			——————————————————————————————————————		_		
Chemical Oxygen Demand (COD)		11	mg/L						210	_
Total Organic Carbon (TOC)		3.8	mg/L						5.2	
Acidity	_	_	mg/L						****	_
Free Carbon Dioxide			mg/L	_	_	_				
Hardness, Total (mg/L as CaCO3)			mg/L						_	
Major Cations									, , , , , , , , , , , , , , , , , , , ,	
Calcium		130	mg/L			·	T -	_	230	210
Calcium, Dissolved		130	mg/L	-					-	210
Magnesium	****	8.8	mg/L	_	_	_		,	14	32
Magnesium, Dissolved		8.8	mg/L							32
Potassium		3.4	mg/L	_		_		_	5.6	16
Potassium.Dissolved	_	3,4	mg/L					_		16
Sodium		7.2	ma/L						18	76
Sodium, Dissolved		7.2	mg/L							80
Ammonia Nitrogen	_		mg/L				_	_		
Major Anions			111972		I	L,		· ·		
Alkalinity, Total			mg/L	_						_
Alkalinity, Fotal Alkalinity, Bicarbonate		290	mg/L						66	
Alkalinity, Carbonate		<20	mg/L						<20	
Nitrate-Nitrite, as N			mg/L		_					
Nitrate, as N	10	<u> </u>	mg/L							
Nitrite, as N	10		mg/L		_					
Sulfate		65	mg/L			<u> </u>			370	
Sulfide			mg/L							
Reactive Sulf.(SW846 7.3.4.1)			mg/L		_		_	-		
Bromide			mg/L						_	<u>_</u>
Fluoride			mg/L							
Chloride		13	mg/L						13	
Silica			mg/L			<u></u>				
Omua			-							
Silicon		j	mg/L I	_	I —	!		!	<u> </u>	I —

			tion Number	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045	CH-045
		S	tation Name	BDC	BDC	BDC	BDC	BDC	BDC	BDC
			Lab ID	_		<u> </u>			L611707-01	L612145-01
		Col	lection Date	6/15/2012	6/28/2012	7/17/2012	8/2/2012	8/23/2012	12/17/2012	12/18/2012
Parameter	MCL	UPL	Units							
race Metals										
Iron	_	1.3	mg/L		_	man			12	4.7
Iron,Dissolved		1,3	mg/L		i –					<0.10
Ferrous Iron		<u> </u>	mg/L	-						
Ferric Iron	-		mg/L		_		Į		-	—
Aluminum			mg/L		_	_				
Aluminum, Dissolved			mg/L		_	_			_	
Antimony	0.006	_	mg/L	_				_		
Antimony, Dissolved	0.006		mg/L		_	_		-	-	_
Arsenic	0.01	_	mg/L						0.080	0.019
Arsenic, Dissolved	0.01	-	mg/L	mma						5555 - 0.012 J
Barium	2		mg/L		_	_	-	-	-	_
Barium, Dissolved	2		mg/L		-	_			_	
Beryllium	0.004	<u> </u>	mg/L	me					-	
Beryllium, Dissolved	0.004	-	mg/L	-	 _			-		
Boron		0.3	mg/L			_			0,56	0,63
Boron, Dissolved		0.3	mg/L		i –	_	_	_	_	0,58
Cadmium	0.005		mg/L					_	<0.0050	<0.0050
Cadmium, Dissolved	0.005		mg/L		 	-			-	<0,0050
Chromium	0.1		mg/L				<u> </u>			
Chromium, Dissolved	0.1		mg/L					444		
Cobalt		-	mg/L							_
Cobalt, Dissolved			mg/L	-					-	_
Copper	1.3		mg/L			_		<u></u>	0.012 J	<0.020
Copper, Dissolved	1.3		mg/L		-			-		<0,020
Lead	0.015		ma/L						<0.0050	< 0.0050
Lead, Dissolved	0.015	-	mg/L		 					<0.0050
Manganese			mg/L		-	 	-	 		
Manganese, Dissolved			mg/L		 	<u> </u>				_
Mercury	0.002		mg/L	_		_	_	-	<0.00020	<0.00020
Mercury, Dissolved	0,002		mg/L	warer .			_			<0.00020
Molybdenum			mg/L	_		_	_			-
Molybdenum, Dissolved			mg/L		 _					_
Nicke!		0,0085	mg/L		-		 	_	0.028	0.018
Nickel, Dissolved		0.0085	mg/L							<0.020
Selenium	0.05	-	mg/L	MATE .	***	****		-	<0.020	<0.020
Selenium, Dissolved	0.05		mg/L							<0.020
Silver			mg/L			_				
Silver,Dissolved		 	mg/L		_	_				
Thallium	0.002		mg/L							—
Thallium, Dissolved	0.002	 	mg/L			_				
Vanadium		<u> </u>	mg/L			-		-	_	
Vanadium,Dissolved			mg/L			_		 		
Zinc		0.18	mg/L						0.044	0.017
Zinc,Dissolved		0.18	mg/L							0.010 J

		Sta	tion Number	CH-045	CH-045	CH-045
			Station Name	BDC	BDC	BDC
			Lab ID	L615509-04	L615509-06	L728124-05
		Co	llection Date	1/14/2013	1/14/2013	10/16/2014
Parameter	MCL	UPL	Units			
Field Parameters		-				
Water Level Elevation	_	-	ft NAVD88			
Flow		-	gpm	2	2	12
Flow		<u> </u>	mgd	0.003	0,003	0.02
Temperature			°C	9,98		15.95
pH (field)			Ş.Ų.	8.81		8.23
Specific Conductance		840	μS/cm	500		1,324
Ox-Red Potential (ORP)			mV	169.2		17,7 R
Dissolved Oxygen (DO)			mg/L	9.13		6.69 R
Turbidity (field)			NTU	170		4.8
Indicator Parameters						******
pH (lab)		_	S.U.	_		7.1 T8
Dissolved Solids		420	mg/L	350	260	1,100
Suspended Solids	mer		mg/L			23
Turbidity (lab)			NTU			
Chemical Oxygen Demand (COD)		11	mg/L	3,2 J	<10	13 P1
Total Organic Carbon (TOC)		3.8	mg/L	0.79 J	1.1	0.91 J
Acidlty		_	mg/L			<10
Free Carbon Dioxide			mg/L			
Hardness, Total (mg/L as CaCO3)	••••		mg/L			860
Major Cations			1			
Calcium		130	mg/L	80	82	260
Calcium, Dissolved		130	mg/L			260
Magnesium .		8.8	mg/L	7.4	7.9	40
Magnesium, Dissolved		8.8	mg/L			40
Potassium		3.4	mg/L	3.9	4.8	8.6
Potassium, Dissolved		3.4	mg/L			8,5
Sodium		7.2	ma/L	11	12	16
Sodium, Dissolved	<u></u>	7.2	mg/L			16
Ammonia Nitrogen			mg/L	_		<0,25
Major Anions			1			
Alkalinity, Total		1 —	ma/L			130
Alkalinity, Bicarbonate		290	mg/L	26	24	130
Alkalinity,Carbonate		<20	mg/L	<20	<20	<20
Nitrate-Nitrite, as N			mg/L			
Nitrate, as N	10		mg/L			0.44
Nitrite, as N	1	_	mg/L			<0.10
Sulfate	<u>-</u>	65	mg/L	210	200	690
Sulfide			mg/L			<0.050
Reactive Sulf.(SW846 7.3.4.1)		 	mg/L			<25
Bromide		 	mg/L			<1.0
Fluoride			mg/L	_		0.59
Chloride		13	mg/L	2.0	1.9	9.5
Silica		-	mg/L		1.3	7.0
Silicon	 -	 	ma/L			3.2
Silicon Dissolved			mg/L			2.9

		Sta	tion Number	CH-045	CH-045	CH-045
		s	tation Name	BDC	BDC	BDC
			Lab ID	L615509-04	L615509-06	L728124-05
		Col	lection Date	1/14/2013	1/14/2013	10/16/2014
Parameter	MCL	UPL	Units			*
Trace Metals				 		
Iron		1.3	mg/L	1.3	2.6	0.19
Iron,Dissolved	-	1.3	mg/L	ш-		<0,10
Ferrous Iron	······		mg/L		_	<0.050 T8
Ferric Iron		_	mg/L			0.19
Aluminum	-		mg/L			0.20
Aluminum, Dissolved			mg/L			<0.10
Antimony	0.006		mg/L	_		0,00067 J
Antimony, Dissolved	0.006		mg/L		_	0.0012
Arsenic	0.01		mg/L	<0,0010	0,00027 J	0.065
Arsenic, Dissolved	0.01	1	mg/L			96789797940000597999
Barium	2		ma/L		_	0.043
Barium, Dissolved	2		mg/L	_	_	0.037
Beryllium	0.004		mg/L			<0.0010
Beryllium, Dissolved	0,004		mg/L	-		0,00012 J
Boron		0.3	mg/L	0,13 J	0,12 J	1,3
Boron, Dissolved		0,3	mg/L	_	_	1.3
Cadmium	0.005		mg/L	<0.0050	<0.0050	<0.00050
Cadmium, Dissolved	0.005		mg/L		_	0.00091
Chromium	0.1		ma/L			0.0024 B
Chromium, Dissolved	0.1		mg/L			<0,0020
Cobalt		_	ma/L	-		0,00054 J
Cobalt Dissolved	· · · · · · · · · · · · · · · · · · ·		mg/L			0.0012
Copper	1.3		mg/L	<0.020	<0.020	0.0016 J
Copper, Dissolved	1.3		mg/L			0.00082 J
Lead	0.015		mg/L	<0,0050	<0.0050	0.00058 J
Lead, Dissolved	0.015		mg/L		_	<0.0010
Manganese			mg/L			2,1
Manganese, Dissolved	_		mg/L		H-1-4	2.0
Mercury	0.002		mg/L	<0,00020	<0.00020	<0.00020
Mercury, Dissolved	0.002		mg/L			<0.00020
Molybdenum			mg/L			0.15
Molybdenum, Dissolved			ma/L			0.15
Nickel		0.0085	mg/L	<0.020	<0.020	0.0020
Nickel, Dissolved		0,0085	mg/L			0,0070
Selenium	0.05	_	mg/L	0.039	0.036	0.0061
Selenium, Dissolved	0.05		mg/L		_	0,0085
Silver		_	mg/L			<0.0010
Silver, Dissolved	——————————————————————————————————————		mg/L		-	<0.0010
Thallium	0.002		mg/L			0.00034 J
Thallium, Dissolved	0.002		mg/L	_		0.00019 J
Vanadium			mg/L			0.0038
Vanadium, Dissolved			mg/L			0.0031
Zinc		0.18	mg/L	0.079	0.082	<0.050
Zinc,Dissolved	—	0.18	mg/L			<0.050

CH-046 HQ SPRING arv of Groundwater Anal

		Stat	ion Number	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046
		St	tation Name	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING
			Lab ID	L515479-09		L517576-08		L520030-08		L522574-08
		Coll	ection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units							
Field Parameters						1				
Water Level Elevation	_	_	ft NAVD88			_	_			779,2
Flow			gpm	350	580	470	320	890	240	500
Flow	-	1	mgd	0.5	8.0	0.7	0,5	1,3	0.3	0.7
Temperature	_		°C	18,2	16.9	19.8	22.1	25.4	29.2	20
pH (field)	-	_	S.U.	7.34	7.12	6.91	7.07	6.92	6.8	6.69
Specific Conductance	-	840	μS/cm	1,030	1,630	1,480	1,470	1,660	1,610	1,410
Ox-Red Potential (ORP)			m∨		<u> </u>			_		
Dissolved Oxygen (DO)		_	mg/L		-	~~~				4.18
Turbidity (field)	1		NTU	***			-			_
Indicator Parameters	•									
pH (lab)	_	_	S.U.	_						-
Dissolved Solids		420	mg/L	1,400	_	1,300		1,500		1,300
Suspended Solids			mg/L			<u></u>				
Turbidity (lab)	_	-	NTU			<u> </u>		-	-	
Chemical Oxygen Demand (COD)	-	11	mg/L							-
Total Organic Carbon (TOC)		3,8	mg/L		_	_		_	—	_
Acidity		_	mg/L,			www		_		_
Free Carbon Dioxide			mg/L					_		
Hardness, Total (mg/L as CaCO3)			mg/L	-						
Major Cations										
Calcium		130	mg/L	300		400		320		280
Calcium,Dissolved		130	mg/L			-				
Magnesium	_	8.8	mg/L				-			
Magnesium, Dissolved		8.8	mg/L							_
Potassium	_	3.4	mg/L		_		_		_	T _
Potassium, Dissolved		3,4	mg/L				-			
Sodium		7.2	mg/L	18	_	18	-	14		14
Sodium, Dissolved	-	7.2	mg/L					-		-
Ammonia Nitrogen			mg/L		_		_		_	-
Major Anions					<u> </u>		*			• • • • • • • • • • • • • • • • • • • •
Alkalinity, Total	****		mg/L		_	_	<u> </u>	_	<u> </u>	_
Alkalinity, Bicarbonate		290	mg/L				-		_	
Alkalinity, Carbonate	-	<20	mg/L			~~				
Nitrate-Nitrite, as N		-	mg/L			-	_	_		-
Nitrate, as N	10	-	mg/L							<u> </u>
Nitrite, as N	1	_	mg/L							<u> </u>
Sulfate		65	mg/L	800		730		900		740
Sulfide	<u> </u>	-	mg/L				-			
Reactive Sulf.(SW846 7.3.4.1)			mg/L							
Bromide		-	mg/L	_	_			-	_	-
Fluoride			mg/L	11.000		~~~			***	
Chloride		13	mg/L	37	_	28	_	38	_	29
Silica	-	-	mg/L					-		
Silicon	,,		mg/L	-	-			_		_
Silicon.Dissolved		_	mg/L	w						

CH-046 HQ SPRING

			tion Number	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046
		s	tation Name	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING
			Lab ID	L515479-09	-	L517576-08	—	L520030-08		L522574-08
			lection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units							
race Metals	•				· ·					
tron		1.3	mg/L					_		
Iron,Dissolved		1.3	mg/L	_	-	-		-	-	-
Ferrous Iron			mg/L			-	_			_
Ferric Iron			mg/L	_	_	1			_	_
Aluminum	_	_	mg/L				-	_	_	
Aluminum, Dissolved	_		mg/L			P				
Antimony	0.006		mg/L		_	_	_	_	_	_
Antimony, Dissolved	0,006		mg/L							-
Arsenic	0.01		mg/L	-			_		*****	_
Arsenic, Dissolved	0.01	_	mg/L					_	_	
Barium	2		mg/L				-	-	_	
Barium, Dissolved	2	-	mg/L							
Beryllium	0.004	_	mg/L		_	-				
Beryllium, Dissolved	0.004		mg/L	_	—	_		_	_	_
Boron		0.3	mg/L	1.4		1,9		1,9		1.8
Boron, Dissolved	_	0.3	mg/L							-
Cadmium	0.005	-	mg/L					_		_
Cadmium, Dissolved	0.005		mg/L		-		 		_	
Chromium	0.1		mg/L				 			
Chromium, Dissolved	0.1		mg/L		<u> </u>					
Cobalt		 	mg/L	700						<u> </u>
Cobalt, Dissolved			mg/L	_			 _ 	·		
Copper	1.3		mg/L		_	_	_	_		
Copper, Dissolved	1.3		mg/L							
Lead	0.015	_	mg/L				-	_		
Lead,Dissolved	0.015		mg/L				 			
Manganese			mg/L		_	_	 _			
Manganese, Dissolved			mg/L		_	_		_		_
Mercury	0.002		mg/L	-					_	_
Mercury, Dissolved	0.002		mg/L							
Molybdenum	0.002		mg/L	<u>-</u>			 		_	
Molybdenum, Dissolved			mg/L							
Nickel		0.0085	mg/L							
Nickel, Dissolved		0.0085	mg/L		 					
Selenium	0.05		mg/L		 					
Selenium, Dissolved	0.05		mg/L		 					
Silver	- 0.03		mg/L							
Silver, Dissolved			mg/L		 		1 =			
Thallium	0,002		mg/L		 					
Thallium, Dissolved	0,002		mg/L							
Vanadium	0.002	_				man		_		
Vanadium, Dissolved			mg/L		 		 		_	_
Zinc Zinc		0,18	mg/L mg/L	***						
Zinc Dissolved		0.18	mg/L	***	<u></u>		-	= = = = = = = = = = = = = = = = = = = =		

		Sta	ition Number	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046
		5	Station Name	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING
			Lab ID		_			·	_	
		Co	llection Date	4/27/2012	5/7/2012	5/10/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012
Parameter	MCL	UPL	Units				<u> </u>			
Field Parameters		•								
Water Level Elevation			ft NAVD88	780,1	780.1	780.1	780	780	780	780
Flow			gpm	610	700	400	450		400	310
Flow			mgd	0,9	1	0.6	0.7		0.6	0.4
Temperature			°C	17	18,52	19.35	18.52	20.79	22,54	20,97
pH (field)		_	S.U.	7.18	7.15	7.14	7,09	7.26	7.08	7.23
Specific Conductance		840	μS/cm	1,086	1,222	1,485	1,744	1,570	1,560	1,904
Ox-Red Potential (ORP)			mV	173	137.6	129,6	48,3	-160 ₋ 3	-140.8	-145,1
Dissolved Oxygen (DO)			mg/L	7,96	6.32	6.24	6.9	4.43	3.07	4.04
Turbidity (field)			NTU	-	_			_	_	_
Indicator Parameters			· i							
pH (lab)	_		S.U.			_		_		
Dissolved Solids		420	mg/L			<u> </u>	_	-		
Suspended Solids		—.	mg/L		***		_		-	
Turbidity (lab)			NTU						-	_
Chemical Oxygen Demand (COD)		11	mg/L				****	_		
Total Organic Carbon (TOC)	_	3.8	mg/L	-				-	-	_
Acidity		-	mg/L	***	-	——————————————————————————————————————	****			
Free Carbon Dioxide	_	T —	mg/L			-	_	-	_	
Hardness, Total (mg/L as CaCO3)			mg/L							
Major Cations			· · · · · · · · · · · · · · · · · · ·							
Calcium	_	130	mg/L							-
Calcium, Dissolved		130	mg/L		_			_	-	_
Magnesium	_	8.8	mg/L							_
Magnesium, Dissolved	_	8.8	mg/L					_	-	_
Potassium		3.4	mg/L			_				
Potassium, Dissolved		3.4	mg/L		_		***			_
Sodium		7.2	mg/L	_			_		-	_
Sodium, Dissolved	_	7.2	mg/L			_	—	_		
Ammonia Nitrogen	-	_	mg/L				_	-	1	_
Major Anions		***************************************	*			······································				·
Alkalinity, Total	_		mg/L				T -	_		
Alkalinity, Bicarbonate	_	290	mg/L				_	-		
Alkalinity,Carbonate		<20	mg/L							
Nitrate-Nitrite, as N	_		mg/L	_			_	-		
Nitrate, as N	10		mg/L		-	-				
Nitrite, as N	1		mg/L	_	_				_	
Sulfate		65	mg/L			_	_	_	_	
Sulfide			mg/L							
Reactive Sulf.(SW846 7.3.4.1)	_		mg/L							
Bromide			mg/L		_	_	_	_		_
Fluoride	_	-	mg/L	***						-
Chloride		13	mg/L	_				420		
Silica	-		mg/L		_	****	mme			
Silicon			mg/L				-		-	
Silicon, Dissolved			mg/L				-			-

		Stat	ion Number	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046
		\$	tation Name	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING
			Lab ID		-			_	_	
		Col	lection Date	4/27/2012	5/7/2012	5/10/2012	5/17/2012	5/24/2012	6/1/2012	6/7/2012
Parameter	MCL	UPL	Units							
race Metals										
Iron		1.3	mg/L							
Iron,Dissolved		1.3	mg/L					-	-	
Ferrous Iron	_		mg/L					_		_
Ferric Iron	_		mg/L		_		_	_		
Aluminum	_	_	mg/L					_	_	_
Aluminum, Dissolved	_	-	mg/L							
Antimony	0.006		mg/L							
Antimony, Dissolved	0.006		mg/L							
Arsenic	0.01		mg/L	_	_		_	_	_	_
Arsenic, Dissolved	0.01		mg/L					_		
Barium	2		mg/L			_	_			
Barium, Dissolved	2		mg/L	-						
Beryllium	0.004	_	mg/L							
Beryllium, Dissolved	0.004	<u> </u>	mg/L	_	-			_	_	_
Boron	-	0.3	mg/L			-			-	_
Boron, Dissolved		0.3	mg/L							_
Cadmium	0.005	_	mg/L				_	_		-
Cadmium, Dissolved	0.005	_	mg/L	_	_	_	_	_	-	
Chromium	0.1		mg/L		_		-	_		
Chromium, Dissolved	0.1	T -	mg/L			pme.			-	
Cobalt	_	_	mg/L	***				_		_
Cobalt, Dissolved	_	_	mg/L		_	_			-	_
Copper	1.3		mg/L	_		-	_			_
Copper,Dissolved	1.3		mg/L	_				_	***	_
Lead	0.015		mg/L			_		-		_
Lead, Dissolved	0.015		mg/L					-	<u> </u>	-
Manganese			mg/L	***		-ma	-	_	_	T -
Manganese, Dissolved			mg/L				-			_
Mercury	0.002		mg/L	-	_			_	_	
Mercury, Dissolved	0.002		mg/L							-
Molybdenum			mg/L	_	-		<u> </u>	_		-
Molybdenum, Dissolved	_		mg/L		-				-	
Nickel		0.0085	mg/L						-	
Nickel, Dissolved	_	0.0085	mg/L				-	_		
Selenium	0.05		mg/L					_		
Selenium, Dissolved	0.05	<u> </u>	mg/L			-	_	<u> </u>		
Silver		_	mg/L							
Silver, Dissolved			mg/L					_	-	
Thallium	0.002	i –	mg/L	_	_					
Thallium, Dissolved	0.002		mg/L		_	_		_		
Vanadium			mg/L	-				_		
Vanadium, Dissolved	_		mg/L	_	_				_	
Zinc		0.18	mg/L					_	_	
Zinc, Dissolved		0.18	mg/L							

		Sta	ation Number	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046
		:	Station Name	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING
			Lab ID		_		_	l –		L611707-02
		Co	liection Date	6/15/2012	6/28/2012	. 7/17/2012	8/2/2012	8/23/2012	9/20/2012	12/17/2012
Parameter	MCL	UPL.	Units	***************************************						
ield Parameters			_					· '''		
Water Level Elevation	_		ft NAVD88	780	779.9	779.9	780	781,1	781,1	781.2
Flow			gpm	570	462	35	220	455	858	1417
Flow			mgd	0.8	0.7	0.1	0.3	0.7	1.2	2
Temperature	_		°C	17,29	19.81	23.16	23,99	17.43	20.69	14.76
pH (field)	_		S.U.	7.07	7,61	7,14	7.11	6.97	7.67	7,69
Specific Conductance		840	μS/cm	1,632	1,572	1,715	1,562	1,039	1,673	1,266
Ox-Red Potential (ORP)	_		mV	102,8	131,9	-178.9	-171.5	-172.8	-186,1	-111
Dissolved Oxygen (DO)			mg/L	5.32	6.18	2.35	2.19	2.01		6.07
Turbidity (field)			NTU						<u> </u>	6.1
ndicator Parameters		·			·········	<u> </u>			<u> </u>	*
pH (lab)	_		S.U.		ſ			_	-	_
Dissolved Solids		420	mg/L				_			1,400
Suspended Solids			mg/L	_				 _		
Turbidity (lab)	_		NTU	_		_	-	_		_
Chemical Oxygen Demand (COD)		11	mg/L				****		<u> </u>	17
Total Organic Carbon (TOC)		3.8	mg/L	_		_		_	-	1.4
Acidity			mg/L		_		-			_
Free Carbon Dioxide			mg/L	_	_			_		_
Hardness, Total (mg/L as CaCO3)			mg/L							
Najor Cations			· · · ·		'				·	•
Calcium		130	mg/L		T			_		290
Calcium, Dissolved	_	130	mg/L		_					_
Magnesium		8.8	mg/L					-		42
Magnesium, Dissolved		8.8	mg/L	***	_					
Potassium		3.4	mg/L		_					9.8
Potassium, Dissolved		3.4	mg/L	***			-			
Sodium		7.2	mg/L				_			26
Sodium, Dissolved		7.2	mg/L		_		—			
Ammonia Nitrogen			mg/L						_	_
lajor Anions						L			<u> </u>	
Alkalinity, Total			mg/L			Γ –				T —
Alkalinity, local		290	ma/L	***						110
Alkalinity, Carbonate		₹20	mg/L		<u> </u>					<20
Nitrate-Nitrite, as N			mg/L		 					
Nitrate, as N	10		mg/L		_					_
Nitrite, as N	1		mg/L				_	_		
Sulfate		65	mg/L						_	800
Sulfide			mg/L							
Reactive Sulf.(SW846 7.3,4.1)			mg/L				_		····	
Bromide			mg/L						_	
Fluoride			mg/L			-				
Chloride		13	mg/L		_					27
Silica		<u> </u>	mg/L		 					
Silicon			mg/L	_			<u> </u>			_
Silicon, Dissolved			mg/L					 	-	

		Sta	tion Number	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046	CH-046
		S	tation Name	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING
			Lab ID			_				L611707-02
		Col	flection Date	6/15/2012	6/28/2012	7/17/2012	8/2/2012	8/23/2012	9/20/2012	12/17/2012
Parameter	MCL	UPL	Units							
race Metals										
Iron	_	1.3	mg/L				_	_		0.27
Iron,Dissolved		1.3	mg/L					<u> </u>	_	-
Ferrous Iron		<u> </u>	mg/L					-		<u> </u>
Ferric Iron	_	<u>l – </u>	mg/L	-		-mn	_	_		
Aluminum			mg/L				_			
Aluminum, Dissolved			mg/L		-				_	
Antimony	0.006		mg/L	_	_	_		_		
Antimony, Dissolved	0.006	l	mg/L				—		****	<u> </u>
Arsenic	0,01	I -	mg/L					_		0.0063
Arsenic, Dissolved	0.01	1	mg/L		-	_	-			_
Barium	2	1 . –	mg/L							
Barium, Dissolved	2		mg/L						-	
Beryllium	0.004	_	mg/L	_	-		_			_
Beryllium, Dissolved	0.004		mg/L	<u> </u>		_				
Boron		0.3	mg/L				T -	_	-	3.6
Boron, Dissolved		0.3	mg/L					_	-	_
Cadmium	0.005		mg/L				-			< 0.0050
Cadmium, Dissolved	0.005		ma/L		_ `				_	_
Chromium	0.1		mg/L						***	
Chromium, Dissolved	0.1	T	mg/L				1 -	_	_	
Cobalt			mg/L	<u></u>			_			_
Cobalt, Dissolved			mg/L				_	-	-	
Copper	1.3		mg/L	_	<u> </u>					<0.020
Copper, Dissolved	1.3		mg/L				_			
Lead	0.015	_	mg/L				_		_	<0.0050
Lead,Dissolved	0.015		mg/L					_		
Manganese		-	mg/L							
Manganese, Dissolved			mg/L			_				_
Mercury	0,002		mg/L	_			_	_	_	<0.00020
Mercury, Dissolved	0.002		mg/L		***			-		
Molybdenum			mg/L	_	-		-		_	
Molybdenum, Dissolved			mg/L	_			_			
Nickel		0.0085	mg/L							0.0070
Nickel, Dissolved		0.0085	mg/L				-	_		_
Selenium	0.05		mg/L			-	-			<0.020
Selenium, Dissolved	0.05		mg/L						_	
Silver	_	<u> </u>	mg/L				-			-
Silver.Dissolved			mg/L		 		<u> </u>		,	_
Thallium	0.002	 	mg/L		 _				_	
Thallium, Dissolved	0.002		mg/L		 _		†			
Vanadium	- 0.002	_	mg/L					_	_	
Vanadium, Dissolved			mg/L	-	_	_				
Zinc		0.18	mg/L							0.0065
Zinc, Dissolved		0,18	mg/L			_	***			

		Sta	ation Number	CH-046	CH-046	CH-046	CH-046
		;	Station Name	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING
			Lab ID	L615509-01	L713403-02	L719267-05	L728124-07
		Co	Ilection Date	1/14/2013	7/31/2014	8/29/2014	10/16/2014
Parameter	MCL	UPL	Units				
Field Parameters							
Water Level Elevation	1		ft NAVD88	781.1			
Flow	ı		gpm	2087	150	300	1,4
Flow	1		mgd	3	0.22	0.4	0,002
Temperature	1		°C	14.76	22,25	25.25	17,55
pH (field)	-	_	S.U.	8.18	7.37	6.32	7.95
Specific Conductance		840	μS/cm	1,406	1,471	1,432	1,776
Ox-Red Potential (ORP)	 		mV	152,1	81.7	-34,4	38.5
Dissolved Oxygen (DO)		_	mg/L (6.89	2.16	1.18	3.86
Turbidity (field)	_		NTU	45.1	12,1	5	2,43
Indicator Parameters	-						
pH (lab)			S.U.			7.2 T8	7.1 T8
Dissolved Solids		420	mg/L	1,100	1,300	1,300	1,600
Suspended Solids			mg/L			0.60 J	1,8 J, T4
Turbidity (lab)			NTU				
Chemical Oxygen Demand (COD)		11	mg/L	<10	14	<10	<10
Total Organic Carbon (TOC)		3.8	mg/L	1,2	1.3	0.96 J	0.82 J
Acidity			mg/L			<10	<10
Free Carbon Dioxide			mg/L		_		_
Hardness, Total (mg/L as CaCO3)			mg/L			860	1,300
Major Cations		•					
Calcium		130	mg/L	250	240	250	320 O1, V
Calcium, Dissolved		130	mg/L		n.m.	240	330
Magnesium		8.8	mg/L	44	66	67	83
Magnesium, Dissolved		8.8	mg/L	_	- Land	69	85
Potassium		3,4	mg/L	10	11	12	13
Potassium, Dissolved	-	3.4	mg/L			12	14
Sodium	_	7.2	mg/L	23	18	21	24
Sodium, Dissolved		7.2	mg/L		_	20	26
Ammonia Nitrogen			mg/L		_	0.15 J	<0.25
Major Anions			· · · · ·				· · · · · · · · · · · · · · · · · · ·
Alkalinity, Total			mg/L		_	130	140
Alkalinity,Bicarbonate		290	ma/L	96	140	130	140
Alkalinity,Carbonate		<20	mg/L	<20	<20	<20	<20
Nitrate-Nitrite, as N	-	_	mg/L			2,4	}
Nitrate, as N	10		mg/L	-	-		1,6
Nitrite, as N	1		mg/L			_	<0.10
Sulfate		65	mg/L	670	670	610	980
Sulfide		-	mg/L		_	<0,050	<0.050
Reactive Sulf.(SW846 7.3.4.1)	_		mg/L			<25	<25
Bromide		_	mg/L			<1.0	<1.0
Fluoride	-	_	mg/L		_	1.9	1.2
Chloride		13	mg/L	14	36	47	20
Silica			mg/L			6.0	6.0
Silicon			mg/L		_	2.8	2,8
Silicon.Dissolved		 	mg/L			3.0	2.8

CH-046 HQ SPRING

		Sta	tion Number	CH-046	CH-046	CH-046	CH-046
		S	tation Name	HQ SPRING	HQ SPRING	HQ SPRING	HQ SPRING
			Lab ID	L615509-01	L713403-02	L719267-05	L728124-07
		Col	lection Date	1/14/2013	7/31/2014	8/29/2014	10/16/2014
Parameter	MCL	UPL	Units				
Trace Metals				,			
Iron		1.3	mg/L	0.10	1.1	0.022 J	<0.10
Iron,Dissolved		1.3	mg/L		0.34	<0.10	<0.10
Ferrous Iron			mg/L			0.033 J, T8	<0.050 T8
Ferric Iron			mg/L			<0.10	<0.10
Aluminum		_	mg/L	·		<0.10	<0.10
Aluminum, Dissolved			mg/L			<0.10	<0.10
Antimony	0.006	_	mg/L	_	_	0.0062 O1, J5	0,0018
Antimony, Dissolved	0.006		mg/L			0.0060	0.0026
Arsenic	0.01	-	mg/L	0,0070	0.010	0.0098	0.0071
Arsenic Dissolved	0.01		mg/L	-	0.0094 O1	0.012	0,0073
Barium	2	_	mg/L			0.063 J5	0.037
Barium, Dissolved	2	_	mg/L		_	0,055	0.041
Beryllium	0.004	_	mg/L			<0.0010	<0.0010
Bervillium, Dissolved	0.004		mg/L	_		<0.0010	<0.0010
Boron		0.3	mg/L	1.8	6.1	6.3	3.4
Boron, Dissolved	_	0.3	mg/L		5.8	6.3	3.5
Cadmium	0.005		mg/L	<0.0050	0.00068	0.00024 J	<0.00050
Cadmium, Dissolved	0.005		mg/L	_	0.00052	0.00022 J	0.00083
Chromium	0.1	_	mg/L			<0.0020 O1, J6	0.0023 B
Chromium, Dissolved	0.1	-	mg/L	_	_	<0.010	<0.0020
Cobalt			mg/L		-	<0,0010 O1, J6	<0.0010
Cobalt Dissolved	-		mg/L			<0.0050	0.0011
Соррег	1.3		ma/L	<0.020	<0.010 O	<0.0020 O1, J6	0.0013 J
Copper Dissolved	1,3	_	mg/L	· · · · · · · · · · · · · · · · · · ·	<0.010 O, Q1	<0.010	0.0013 J
Lead	0.015		mg/L	<0.025 O	0.00067 J	0.0020 J	<0.0010
Lead, Dissolved	0.015		mg/L		0.00034 J	0.0016	<0.0010
Manganese			mg/L		***	0.21	0.0036 J
Manganese, Dissolved		-	mg/L		_	0.22	0.0041 J
Mercury	0.002	_	mg/L	<0.00020	<0,00020	<0.00020	<0.00020
Mercury, Dissolved	0,002		mg/L	_	<0.00020	<0.00020	<0.00020
Molybdenum			mg/L			0,28 O1, V	0.10
Molybdenum, Dissolved			mg/L	_		0.28	0.095
Nickel		0.0085	mg/L	<0.10 O	0.0092	0.0068 O1, J6	0.0041
Nickel, Dissolved		0.0085	mg/L		0.0095 O1	0.010	0,010
Selenium	0.05		ma/L	0.082	0.026	0.022	0,010
Selenium, Dissolved	0.05		ma/L	-	0,025 Q1	0,024	0.015
Silver	-		mg/L	_	-	0.0014	<0.0010
Silver, Dissolved	-		mg/L			<0.0010	<0.0010
Thatlium	0.002	_	mg/L		www	0.0023 J	0,00064 J
Thailium, Dissolved	0.002	 -	mg/L	_		0.0019	0.00048 J
Vanadium			mg/L			0.0026 Q1, J6	0.0020
Vanadium, Dissolved			mg/L	_		0.0040 J	0.0023
Zinc		0,18	mg/L	0.12	<0.050 O	<0.010	0.0062 J
Zinc.Dissolved		0.18	mg/L		<0.050 O, O1	0.018 J	0.0071 J

		Sta	tion Number	CH-048	CH-048	CH-048	CH-048	CH-048	CH-048	CH-048
		,	Station Name	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN
			Lab ID	L515479-20	L517576-09	L517576-09		L520030-09		L522574-09
		Co	llection Date	5/9/2011	5/24/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units	0,0,20		0,2 1,2011	0,0,,2011	0/1/2011	W.1-112011	0/21/2511
Field Parameters		0. 4	Ų <u></u>		·		•			
Water Level Elevation			ft NAVD88		-		817.2	817.1	****	817.2
Flow			gpm		20	20	30	20	20	25
Flow			mad		0,03	0.03	0.04	0.03	0.03	0.04
Temperature			°C	24	15.4	20.2	21.2	25.2	24.2	21.8
pH (field)			s.ŭ.	6.45	6,41	6,21	6.47	5.94	8.26	6.53
Specific Conductance	-	840	μS/cm	2,040	2,370	2,290	2,470	2,270	2,190	2,250
Ox-Red Potential (ORP)			mV		2,370		<u> </u>	<u> </u>		2,230
Dissolved Oxygen (DQ)			mg/L							· · · · · · · · · · · · · · · · · · ·
Turbidity (field)			NTU				=			
			NID		-		_			L
Indicator Parameters pH (lab)			S.U.			1				
Dissolved Solids		420		2,000	2,200	_	****		_	2,500
Suspended Solids		420	mg/L ma/L					2,400	·····	
Turbidity (lab)			MG/L NTU						non-	
Chemical Oxygen Demand (COD)		<u> </u>		_	n-m				_	
			mg/L					-	-	
Total Organic Carbon (TOC)		3.8	mg/L		–	_				
Acidity			mg/L	~~		_	=		~~	
Free Carbon Dioxide			mg/L	<u> </u>					<u> </u>	
Hardness, Total (mg/L as CaCO3)		<u> </u>	mg/L					<u> </u>		<u> </u>
Major Cations									γ	
Calcium		130	mg/L	340	400	<u> </u>		400		430
Calcium, Dissolved		130	mg/L	<u> </u>						
Magnesium		8.8	mg/L							<u> </u>
Magnesium, Dissolved		8.8	mg/L					_	-	
Potassium		3.4	mg/L			-		****	***	
Potassium, Dissolved		3.4	mg/L						_	
Sodium	_	7.2	mg/L	17 J5	18			18		19
Sodium,Dissolved		7.2	mg/L	_		-			_	
Ammonia Nitrogen			mg/L		-				<u> </u>	_
Major Anions										
Alkalinity, Total			mg/L				ı	ł	_	-
Alkalinity, Bicarbonate		290	mg/L	~~~			1	ł	+	
Alkalinity,Carbonate		<20	mg/L		_	-	-	-	_	
Nitrate-Nitrite, as N			mg/L	*****				-	-	
Nitrate, as N	10	_	mg/L			-			-	
Nitrite, as N	1	_	mg/L		~~~		-	_	_	_
Sulfate		65	mg/L	1,300	1,500			1,700	_	1,700
Sulfide			mg/L		_	_		-		_
Reactive Sulf.(SW846 7.3.4.1)			mg/L					_	_	-
Bromide	_		mg/L		_	***				
Fluoride	_	-	mg/L							
Chloride		13	mg/L	32	37	_	_	37	_	41
Silica			mg/L							
Silicon			ma/L							
Silicon, Dissolved			mg/L							

CH-048 ORANGE DRAIN of Groundwater Analytica

			CH-048	CH-048	CH-048	CH-048	CH-048	CH-048	CH-048
	S	tation Name	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN
		Lab ID	L515479-20	L517576-09	L517576-09		L520030-09	_	L522574-09
	Col	lection Date	5/9/2011	5/24/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
MCL	UPL	Units							· · · · · · · · · · · · · · · · · · ·
	1.3	mg/L			****	_	_		_
	1.3	mg/L						_	
		mg/L	_				_	—	
		mg/L				_			
		mg/L		_	_	_			
_		mg/L	_					_	_
0.006		mg/L		-		_		_	_
0.006		mg/L		_		_			~~-
0.01			_	_				_	_
0.01	_		_					war.	-an-
2			_			_	_		_
2				_			_	_	
	<u> </u>				·				_
0.004						_	_		_
	0.3								1.9
0.005						<u> </u>			
	ļ								
				 					
	! 								
	 								
	+								
	-			·					
					-			<u> </u>	
				-					
	ļ	,		· · · · · · · · · · · · · · · · · · ·				·	
	 								
	<u> </u>							,	_
	 			}			·······		
				 					
	}			 					<u> </u>
								ļ	
+			·	 	·····				
									-
									_
					-				

	 								-
	 	,							
	 								
· · · · · · · · · · · · · · · · · · ·	 								
	0.18			_	_		-		
		ma/L		l 					
		S Col MCL UPL - 1.3 - 1.3 - 1.3	MCL	Station Name Lab ID Collection Date	Station Name	Station Name Lab ID Collection Date L515479-20 L517576-09	Station Name Lab ID Light Ligh	Station Name Lab ID Collection Date Lab ID Collection Date Lab ID Collection Date Lab ID Collection Date Significant Size Lab Iz Siz	Station Name

		Sta	tion Number	CH-048	CH-048	CH-048	CH-048	CH-048	CH-048	CH-048
		:	Station Name	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN
	- *		Lab ID	_	-					
		Co	liection Date	5/7/2012	5/17/2012	5/24/2012	6/1/2012	6/15/2012	6/28/2012	7/17/2012
Parameter	MCL	UPL	Units		· · · · · · · · · · · · · · · · · · ·					
Field Parameters	-		`							
Water Level Elevation			ft NAVD88	816.9	816.9	816.9	816.9	816,9	816.9	817
Flow			gpm	60	10	10	12	5	4	15
Flow			mgd	0.09	0.01	0.01	0.02	0.01	0.01	0.02
Temperature	-		°C	18.95	18,42	19.24	19,58	18,21	19.07	20,84
pH (field)			S.U.	6.55	7.13	6,39	6.36	6.57	6,31	6.76
Specific Conductance	_	840	μS/cm	2,037	1,739	2,327	2,381	1,927	2,817	2,513
Ox-Red Potential (ORP)			mV	210,4	195.1	-228.1	-196,9	81.9	171.3	-174.6
Dissolved Oxygen (DO)			mg/L	10.39	7,27	1.18	1.95	2,37	1.88	1.6
Turbidity (field)		-	NTU				_	_		
Indicator Parameters						·	 			,,
pH (lab)	_		S.U.		_	T -		_		
Dissolved Solids		420	mg/L							
Suspended Solids			ma/L							_
Turbidity (lab)	_	 	NTU			-				
Chemical Oxygen Demand (COD)		11	mg/L				_			
Total Organic Carbon (TOC)		3.8	mg/L		_	_			_	
Acidity			mg/L	656	_		700			
Free Carbon Dioxide		 	mg/L							
Hardness, Total (mg/L as CaCO3)			mg/L	····	-	~~~				
Major Cations	····	·	1 11974		L	L				
Calcium		130	mg/L		T	Τ				
Calcium, Dissolved		130	mg/L							
Magnesium		8.8	mg/L							=
Magnesium, Dissolved		8.8	mg/L							
Potassium		3.4	mg/L				<u> </u>			
Potassium, Dissolved		3.4	mg/L			<u> </u>				=
Sodium		7.2	mg/L					-		=
Sodium, Dissolved		7.2	mg/L							
Ammonia Nitrogen			mg/L			 	_			
Major Anions			IIIg/L			L -	<u> </u>			L —
Alkalinity, Total		T			 					
		290	mg/L				 .			
Alkalinity,Bicarbonate		<20	mg/L							\
Alkalinity.Carbonate			mg/L							
Nitrate-Nitrite, as N			mg/L					_	_ _	
Nitrate, as N	10	 	mg/L							
Nitrite, as N	1	===	mg/L		_		-			_
Sulfate		65	mg/L		-			-	-	
Sulfide			mg/L			<u> </u>				
Reactive Sulf.(SW846 7,3,4,1)		 -	mg/L				. =	_		
Bromide		<u> </u>	mg/L	_	***		<u> </u>			
Fluoride			mg/L					-		
Chloride		13	mg/L	_			_	_		
Silica		<u></u>	mg/L		-		_			
Silicon		<u> </u>	mg/L			_				_
Silicon, Dissolved			mg/L	-	_	Γ				_

			ion Number	CH-048	CH-048	CH-048	CH-048	CH-048	CH-048	CH-048
		S	tation Name	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN
			Lab ID		_			_		
			lection Date	5/7/2012	5/17/2012	5/24/2012	6/1/2012	6/15/2012	6/28/2012	7/17/2012
Parameter	MCL	ÜPL	Units					<u> </u>	<u> </u>	
Trace Metals	·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,					
Iron	<u> </u>	1.3	mg/L		-	***				
Iron,Dissolved	<u> </u>	1.3	mg/L					ļ <u> —</u>		
Ferrous Iron	-		mg/L		_					
Ferric Iron			mg/L		_	man .		-		
Aluminum			mg/L					_	-	
Aluminum, Dissolved			mg/L	***	<u> </u>					
Antimony	0.006		mg/L			 .				
Antimony, Dissolved	0.006		mg/L			***	-	-		
Arsenic	0.01		mg/L							<u> </u>
Arsenic, Dissolved	0.01		mg/L			_			-	
Barium	2		mg/L	-					-	
Barium, Dissolved	2		mg/L				_			
Beryllium	0.004		mg/L			-		-	-	
Beryllium, Dissolved	0,004		mg/L						<u> </u>	
Boron		0.3	mg/L			_			-	-
Boron, Dissolved		0.3	mg/L	n-co-			_			
Cadmium	0.005	ļ. 	mg/L	Arrest .						
Cadmium, Dissolved	0.005		mg/L		<u> </u>				_	
Chromium	0.1		mg/L							
Chromium, Dissolved	0,1		mg/L							
Cobalt		<u> </u>	mg/L	mmo						ļ.
Cobalt, Dissolved			mg/L		_				****	
Copper	1.3		mg/L		_					
Copper, Dissolved	1.3		mg/L							
Lead	0.015		mg/L							
Lead, Dissolved	0.015		mg/L					-	-	<u> </u>
Manganese			mg/L	PA-94						
Manganese, Dissolved			mg/L	****		-				_
Mercury	0.002		mg/L				_	_	_	<u> </u>
Mercury, Dissolved	0.002	-	mg/L			***				
Molybdenum	-		mg/L							
Molybdenum, Dissolved			mg/L							
Nickel		0.0085	mg/L							
Nickel Dissolved		0.0085	mg/L			_			-	_
Setenium Discolund	0.05		mg/L				_			
Setenium, Dissolved	0.05	_	mg/L	<u></u>		_			-	-
Silver Silver, Dissolved			mg/L			1				
			mg/L	444		- -			-	-
Thallium Thallium Dissalued	0.002		mg/L	_			****	-		
Thallium,Dissolved	0.002		mg/L					_		
Vanadium			mg/L	+4444						_
Vanadium, Dissolved			mg/L		Ţ		_	_		-
Zinc		0.18	mg/L							
Zinc,Dissolved		0.18	mg/L		-		***			<u> </u>

CH-048 ORANGE DRAIN Summary of Groundwater Analytical Results

EW Brown, Harrodsburg, Kentucky
AMEC Project No. 567530023

			ation Number	CH-048	CH-048	CH÷048	CH-048
		;	Station Name	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN
			Lab ID			-	L689251-01
			Ilection Date	8/2/2012	8/23/2012	9/20/2012	3/20/2014
Parameter	MCL	UPL	Units				
Field Parameters							
Water Level Elevation			ft NAVD88	817	817.1	817	1
Flow	_		gpm	20	20	25	ľ
Flow			mgd	0.03	0.03	0.04	ı
Temperature	_		°C	19.27	18.33	23.17	17,51
pH (field)			S.U.	6,87	6.79	8.62	5.71
Specific Conductance		840	μS/cm	2,048	2,107	2,094	1,286
Ox-Red Potential (ORP)			mV	-209.4	-220.3	-90.3	-57.5
Dissolved Oxygen (DO)			mg/L	0.86	0,95	_	1,47
Turbidity (field)	-		NTU			_	_
ndicator Parameters							
pH (lab)			S.U.	_			
Dissolved Solids	_	420	mg/L		_	_	1,900
Suspended Solids	_		mg/L			_	92
Turbidity (lab)			NTU			_	290
Chemical Oxygen Demand (COD)		11	mg/L				
Total Organic Carbon (TOC)		3.8	mg/L	_		_	_
Acidity			mg/L			-	<10
Free Carbon Dioxide			mg/L		-	_	
Hardness, Total (mg/L as CaCO3)			mg/L				1,300
Najor Cations				•			
Calcium		130	mg/L				440
Calcium, Dissolved		130	mg/L				
Magnesium		8.8	mg/L				57
Magnesium, Dissolved	_	8,8	mg/L				
Potassium		3.4	mg/L				21
Potassium, Dissolved		3.4	mg/L				
Sodium		7.2	mg/L				21
Sodium, Dissolved		7.2	mg/L				_
Ammonia Nitrogen			mg/L				
Vajor Anions					·		
Alkalinity, Total			mg/L				160
Alkalinity,Bicarbonate		290	mg/L	****			
Alkalinity, Carbonate		<20	mg/L				
Nitrate-Nitrite, as N			mg/L	-		****	
Nitrate, as N	10		mg/L				
Nitrite, as N	1		mg/L	_	_		
Sulfate		65	mg/L				
Sulfide			mg/L				
Reactive Sulf.(SW846 7,3,4,1)			mg/L		_		= =
Bromide			mg/L				
Fluoride			mg/L			-	
Chloride		13	mg/L			-	
Silica			mg/L				
Silicon			mg/L				
Silicon Dissolved		_	mg/L				

CH-048 ORANGE DRAIN

			tion Number	CH-048	CH-048	CH-048	CH-048
		5	Station Name	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN	ORANGE DRAIN
			Lab ID		-		L689251-01
			flection Date	8/2/2012	8/23/2012	9/20/2012	3/20/2014
Parameter	MCL	UPL.	Units		, ,	***	
race Metals							
Iron	_	1.3	mg/L		-	_	140
Iron,Dissolved	_	1.3	mg/L				_
Ferrous Iron		l. —	mg/L		–	-	110 T8
Ferric Iron		_	mg/L				22
Aluminum		-	mg/L	_	_	-	<0.10
Aluminum, Dissolved			mg/L			_	_
Antimony	0,006		mg/L	_		_	0.00022 J
Antimony, Dissolved	0.006		mg/L		_		
Arsenic	0.01		mg/L		_		10,000,000,000,000,000
Arsenic, Dissolved	0.01		mg/L		_	_	<u> </u>
Barium	2	_	mg/L		_	_	0.032
Barium, Dissolved	2		mg/L		_	-	
Bervillium	0.004		mg/L			_	<0,0020
Beryllium, Dissolved	0.004		mg/L	****			
Boron		0.3	mg/L		_	_	
Boron, Dissolved		0.3	mg/L		-		
Cadmium	0.005		mg/L		_		<0.0050
Cadmium, Dissolved	0.005		mg/L			-	
Chromium	0.1		mg/L		_	_	0.0026 J
Chromium, Dissolved	0.1		mg/L		_		
Cobalt		<u> </u>	mg/L				0.025
Cobalt, Dissolved	_		mg/L	-			
Copper	1.3	_	mg/L				<0.020
Copper, Dissolved	1.3		mg/L				
Lead	0.015		mg/L				0.00066 J
Lead.Dissolved	0.015		mg/L				U.00000 J
Manganese	0.075		mg/L				23
Manganese, Dissolved			mg/L				
Mercury	0,002	_	mg/L		_		<0.00020
Mercury, Dissolved	0.002		mg/L	<u> </u>		_	
Molybdenum, Dissolved		_	mg/L		_	=	_
Nickel		0.0085	mg/L				0,017 J
			mg/L		[
Nickel, Dissolved		0.0085	mg/L	-			-2.502
Selenium	0.05		mg/L		****	-	<0.020
Selenium,Dissolved Silver	0,05		mg/L				0.0000 /
			mg/L				0.0083 J
Silver, Dissolved			mg/L				
Thallium	0.002		mg/L				<0.0010
Thallium, Dissolved	0.002		mg/L				
Vanadium	****		mg/L				<0.010
Vanadium, Dissolved			mg/L				
Zinc	-	0.18	mg/L				0.0066 J
Zinc,Dissolved		0.18	mg/L		L 		

•		St	ation Number	CH-050	CH-050	CH-050	CH-050	CH-050	CH-050	CH-050
		:	Station Name	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING
			Lab ID	L515479-10		L517576-10		L520030-10		L522574-10
		Co	ollection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units			* ***				
Field Parameters										
Water Level Elevation			ft NAVD88			820.3	820,2	ĵ		
Flow			gpm	70	40	120		ľ	-	
Flow		<u> </u>	mgd	0.1	0.06	0.2		1	_	_
Temperature			•€	22.4	15	19	21,2	25.2	23.1	18
pH (field)		-	S.U.	7.74	7,13	7.22	7.26	6.78	7.13	6,81
Specific Conductance		840	μS/cm	740	610	950	710	1,110	620	1,000
Ox-Red Potential (ORP)			m∨			_	_	1	-	
Dissolved Oxygen (DO)		 .	mg/L			man				7.57
Turbidity (field)	-		NTU		_	_	· · · –	-		
ndicator Parameters										
pH (lab)			S.U.)						
Dissolved Solids		420	mg/L	540		700		900		820
Suspended Solids		_	mg/L		_			_		
Turbidity (lab)			UTN	-		-		_	_	
Chemical Oxygen Demand (COD)	_	11	mg/L	****		_		_	-	
Total Organic Carbon (TOC)		3.8	mg/L		_		_	-		-
Acidity			mg/L							-
Free Carbon Dioxide	_	1 _	ma/L	-			_	-		
Hardness, Total (mg/L as CaCO3)			mg/L		_			-		
Major Cations		-1								
Calcium		130	mg/L	120	_	160	_	180		180
Calcium, Dissolved		130	ma/L	_		_				
Magnesium		8.8	mg/L			_		_	_	
Magnesium, Dissolved	_	8.8	mg/L				_	_		
Potassium		3.4	mg/L			_		_	- depter	_
Potassium.Dissolved		3.4	mg/L		-			-		
Sodium	***	7.2	mg/L	13	_	24		27		25
Sodium, Dissolved		7,2	mg/L				-			
Ammonia Nitrogen			mg/L	_	_				_	
Major Anions		I	1119/2			**-				
Alkalinity, Total		T	mg/L				_	_		***
Alkalinity, Bicarbonate		290	mg/L		_			_		
Alkalinity, Carbonate		<20	mg/L	·······	_					
Nitrate-Nitrite, as N			mg/L		_					
Nitrate, as N	10		mg/L					-	-	
Nitrite, as N	10		mg/L							
Sulfate		65	mg/L	250		320		410		420
Sulfide		- 65				320		410		— 42U
Reactive Sulf.(SW846 7.3.4.1)			mg/L mg/L						·····	

Bromide Etyoddo			mg/L			***				
Fluoride			mg/L	40						- ^4
Chloride		13	mg/L	18	_	31	-	36	-	31
Silica			mg/L							
Silicon		<u> </u>	mg/L							
Silicon, Dissolved		_	mg/L				-	-		

, C. 6
AMEC Project No. 567530023

		Star	tion Number	CH-050	CH-050	CH-050	CH-050	CH-050	CH-050	CH-050
		s	tation Name	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING
			Lab ID	L515479-10	_	L517576-10		L520030-10		L522574-10
		Col	lection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units		<u> </u>		1	I	J	
Trace Metals										
lron		1.3	mg/L			***				
Iron.Dissolved		1.3	mg/L	_			_	_		_
Ferrous Iron			ma/L							
Ferric Iron		<u> </u>	mg/L		_		_	_	_	_
Aluminum		_	mg/L	_	T		_		_	
Aluminum, Dissolved			mg/L	_				_		
Antimony	0.006		mg/L			_				
Antimony, Dissolved	0.006	T _	mg/L		<u> </u>		_	-		
Arsenic	0.01	<u> </u>	mg/L		<u> </u>					
Arsenic, Dissolved	0.01		mg/L	-ma		_	_			
Barium	2	<u> </u>	mg/L							
Barium, Dissolved	2		mg/L			⊢		-	-	_
Beryllium	0,004	 	mg/L		-					
Beryllium, Dissolved	0.004	1 -	mg/L				_	i –	_	_
Boron		0.3	mg/L	<0,20		<0.20		0.24	_	0,22
Boron, Dissolved		0.3	mg/L	-						
Cadmium	0.005	1 -	mg/L		_	-	_		_	_
Cadmium, Dissolved	0.005	—	mg/L			-	<u> </u>	_		
Chromium	0,1	-	mg/L		_	_				
Chromium, Dissolved	0.1	 	mg/L	······	_	_		_		
Cobalt	_	1 -	mg/L		_					_
Cobalt, Dissolved		_	mg/L		_	_	_	_	_	_
Copper	1.3		mg/L	****					-	
Copper, Dissolved	1.3	—	mg/L	_	_		-	-	_	****
Lead	0.015	—	mg/L	****	_	_	_	_		
Lead, Dissolved	0.015	-	mg/L			-				_
Manganese	-		mg/L					_	——————————————————————————————————————	
Manganese, Dissolved		<u> </u>	mg/L		-					
Mercury	0.002	_	mg/L				****	-	_	
Mercury, Dissolved	0.002		mg/L							-
Molybdenum			mg/L	_	_		_	_		
Molybdenum, Dissolved			mg/L					-		_
Nickel	_	0.0085	mg/L					_		
Nickel, Dissolved	_	0.0085	mg/L	****						
Selenium	0.05	_	mg/L					_		
Selenium,Dissolved	0.05	<u> </u>	mg/L					****	-	-
Silver	-	<u> </u>	mg/L			-		_		
Silver,Dissolved			mg/L				***	_		
Thallium	0.002		mg/L	- .	- .		-		***	
Thallium, Dissolved	0.002	1 –	mg/L		_		_			
Vanadium	_	_	mg/L							
Vanadium, Dissolved	-	_	mg/L	–	_	-	_	_		-
Zinc	_	0.18	mg/L					_		
Zinc, Dissolved		0.18	mg/L					_		

CH-050 RAILROAD SPRING

			ition Number	CH-050	CH-050	CH-050	CH-050	CH-050	CH-050
		;	Station Name	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING
			Lab ID	L558290-05	L560970-04	L570058-05		L575196-04	_
			llection Date	1/31/2012	2/16/2012	4/13/2012	4/26/2012	5/14/2012	5/17/2012
Parameter	MCL	UPL	Units			·			
Field Parameters									
Water Level Elevation		-	ft NAVD88	820.8	820.7	820,6	820.7	820,9	820,8
Flow	_	,	gpm	77	20	5	47	160	15
Flow	_		mgd	0.1		0.006	0,07	0,2	0.2
Temperature		_	° C	13.44	13.1	21,8	16,91	16,53	16,54
pH (field)			S.U.	7.46	7.8	7.6	7.86	7.61	7,25
Specific Conductance		840	μS/cm	693	905	1,480	731	1,079	1,120
Ox-Red Potential (ORP)			mV	-224.7	-214.1		157,3	206,1	-187.3
Dissolved Oxygen (DO)			mg/L	7.18	8.56	-	4.29	7.95	2.78
Turbidity (field)			NTU	7.5	7	6,2		42	_
Indicator Parameters									
pH (lab)		_	S.U.	-					
Dissolved Solids		420	mg/L	700	_	1,100		870	
Suspended Solids			mg/L					-	_
Turbidity (lab)			NTU					<u> </u>	_
Chemical Oxygen Demand (COD)		11	mg/L	<10		7,2 J		9.0 J	_
Total Organic Carbon (TOC)		3.8	mg/L	0.95 J, P1		0.88 J	_	0.86 J	-
Acidity			mg/L					was	_
Free Carbon Dioxide	_	-	mg/L	_	_	_	_	_	-
Hardness, Total (mg/L as CaCO3)	-		mg/L			-	_	-	
Major Cations							•		
Calcium	-	130	mg/L	170		240		180	
Calcium, Dissolved		130	mg/L		***	-	_	-	
Magnesium		8.8	mg/L	29	}	49	_	34	-
Magnesium, Dissolved		8.8	mg/L						
Potassium		3.4	mg/L	4.6		5.2	_	4.9	
Potassium, Dissolved		3.4	mg/L				_	_	
Sodium	_	7.2	mg/L	18	****	27		22	
Sodium, Dissolved		7.2	mg/L	-	-				
Ammonia Nitrogen	_		mg/L		1			_	
Major Anions			•		······································	·····			I
Alkalinity, Total			mg/L			_	_	_	_
Alkalinity, Bicarbonate		290	mg/L	170		190	_	160	
Alkalinity, Carbonate		<20	mg/L	<20		<20		<20	
Nitrate-Nitrite, as N			mg/L						
Nitrate, as N	10		mg/L						
Nitrite, as N	1		mg/L		_		_	_	_
Sulfate		65	ma/L	350	ww	570	_	420	
Sulfide			mg/L		_				
Reactive Sulf.(SW846 7.3.4.1)		_	mg/L	-				-	_
Bromide	_		mg/L	_		_	_	—	_
Fluoride		_	mg/L						
Chloride		13	mg/L	19		34	_	24	_
Silica			mg/L		<u> </u>				
Silicon			mg/L	·	-				
Silicon, Dissolved			mg/L					-	

		Stat	tion Number	CH-050	CH-050	CH-050	CH-050	CH-050	CH-050
		S	tation Name	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING
			Lab ID	L558290-05	L560970-04	L570058-05		L575196-04	
		Col	lection Date	1/31/2012	2/16/2012	4/13/2012	4/26/2012	5/14/2012	5/17/2012
Parameter	MCL	UPL	Units						
Trace Metals	•	·	·			i			
Iron		1,3	mg/L	0.32	0.072 J	0.12		0,14	-
Iron,Dissolved		1.3	mg/L			_			_
Ferrous Iron			mg/L	_			_		_
Ferric Iron			mg/L	_			_	_	
Aluminum			mg/L			_	-	_	1
Aluminum, Dissolved			mg/L	_					
Antimony	0.006		mg/L	_	i –	_	_	_	_
Antimony, Dissolved	0,006	_	mg/L		_	_			-
Arsenic	0.01		mg/L	0.0012	0.00039 J	<0.020	-	<0.020	
Arsenic,Dissolved	0.01		ma/L			_		-	~~~
Barium	2		mg/L	_	_		-		
Barium, Dissolved	2		mg/L						
Beryllium	0.004		mg/L			_		_	_
Beryllium, Dissolved	0.004		mg/L	_	_	-			
Boron		0,3	mg/L	0,20 J		2,1		0.88	
Boron, Dissolved		0.3	ma/L	_	_	_			-
Cadmium	0.005		ma/L	<0.0050	_	<0.0050	—	<0.0050	~~
Cadmium, Dissolved	0.005	_	ma/L			_	_	_	_
Chromium	0.1		ma/L	_					
Chromium.Dissolved	0.1	<u></u>	mg/L						
Cobalt			mg/L						
Cobalt, Dissolved			ma/L						
Copper	1.3	_	ma/L	<0.020		<0,020	_	<0.020	1
Copper, Dissolved	1.3		ma/L	_	_	_		-	_
Lead	0.015		mg/L	<0.0050		<0.0050		0.019	
Lead,Dissolved	0.015	<u> </u>	mg/L				_		
Manganese	1 -		ma/L						
Manganese, Dissolved			ma/L	_	_	_		_	_
Mercury	0.002		ma/L	<0.00020		<0.00020		<0,00020	
Mercury.Dissolved	0,002		mq/L	-					_
Molybdenum	T		mg/L	· · · · · · · · · · · · · · · · · · ·	_	_		_	
Molybdenum, Dissolved			mg/L						
Nickel	_	0,0085	mg/L	<0.020		<0.020		<0,020	
Nickel, Dissolved		0.0085	mg/L		-				-
Selenium	0.05		mg/L	<0.020		<0.020		0.034	
Selenium, Dissolved	0.05		mg/L				_		_
Silver			mg/L		_				
Silver, Dissolved	 	_	mg/L	_					
Thallium	0.002		ma/L				****	_	_
Thallium, Dissolved	0.002		mg/L			_			
Vanadium			mg/L						
	·							_	
Vanadium.Dissolved	ł	_	ma/L i						
Vanadium, Dissolved Zinc	 -	0.18	mg/L mg/L	0.074		0.011 J		0.020 J	-

			ition Number	CH-050	CH-050	CH-050	CH-050	CH-050	CH-050
		5	Station Name	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING
			Lab ID			-	_		L593301-04
		Co	liection Date	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012	9/4/2012
Parameter	MCL_	UPL	Units	· ·					
Field Parameters							,		
Water Level Elevation		-	ft NAVD88	820,7	820.9	820.7	820,8	820.8	820.9
Flow			gpm	25	90	JF	NF	NF	68
Flow			mgd	0.04	0.1	ĬĒ	NF	NF	0.1
Temperature			%	15.92	14.38	16.34	21,76	22.17	20.17
pH (field)			S.U.	7.27	7 <u>.</u> 19	7.23	7.03	6.98	7.62
Specific Conductance		840	μS/cm	939	1,097	1,239	1,173	1,618	1,415
Ox-Red Potential (ORP)			m∨	-152,9	-173.5	-68.7	156,5	121.7	-99.8
Dissolved Oxygen (DO)			mg/L	3.01	2.92	10.06	8.36	4.03	3,53
Turbidity (field)			NTU		_				
Indicator Parameters									
pH (lab)			S.U.				_	***	-
Dissolved Solids	-	420	mg/L						1,200
Suspended Solids			mg/L						<u> </u>
Turbidity (lab)			NTU			_			<u> </u>
Chemical Oxygen Demand (COD)		11	mg/L						<10
Total Organic Carbon (TOC)		3.8	mg/L		<u> </u>			L	1.1
Acidity			mg/L					-	-
Free Carbon Dioxide			mg/L				_		
Hardness, Total (mg/L as CaCO3)			mg/L						***
Major Cations									
Calcium		130	mg/L						220
Calcium, Dissolved		130	mg/L	-			***		_
Magnesium		8.8	mg/L				-		60
Magnesium, Dissolved		8.8	mg/L		_			<u> </u>	
Potassium		3.4	mg/L						6,0
Potassium, Dissolved		3.4	mg/L]		_
Sodium		7.2	mg/L					_	20
Sodium, Dissolved		7.2	mg/L		<u> </u>				
Ammonia Nitrogen	-		mg/L				_	- '	
Major Anions									
Alkalinity, Total			mg/L		_		· ·		
Alkalinity Bicarbonate		290	mg/L		-	_			160
Alkalinity,Carbonate		<20	mg/L	·					<20
Nitrate-Nitrite, as N			mg/L						
Nitrate, as N	10		mg/L			-	-		
Nitrite, as N	1		mg/L	"					
Sulfate		65	mg/L						570
Sulfide			mg/L			nen-			
Reactive Sulf.(SW846 7.3.4.1)			mg/L			blubar .			-
Bromide			mg/L		-		-	mmn	
Fluoride			mg/L						
Chloride		13	mg/L		_				30
Silica	—		mg/L		-				
Silicon		-	mg/L			-	_		
Silicon, Dissolved			mg/L						_

		Stat	ion Number	CH-050	CH-050	CH-050	CH-050	CH-050	CH-050
		Si	tation Name	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRING
			Lab ID			-	_	_	L593301-04
			lection Date	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012	9/4/2012
Parameter	MCL	UPL,	Units						
Trace Metals			Ī						
fron		1.3	mg/L		****				0.044 J
Iron,Dissolved	-	1.3	mg/L						
Ferrous Iron			mg/L				_		_
Ferric Iron		-	mg/L		_	1	1	-	_
Aluminum		-	mg/L	_		****			-
Aluminum, Dissolved	-		mg/L		_				_
Antimony	0.006		mg/L		-		_	_	
Antimony, Dissolved	0.006	Ī	mg/L		—			_	
Arsenic	0.01		mg/L					l 	<0.020
Arsenic, Dissolved	0.01		mg/L		_	-			-
Barium	2	-	mg/L	vuu		_	1		***
Barium,Dissolved	2		mg/L	-	-	-		-	-
Beryllium	0.004	ļ	mg/L		 .	-	_	-	1
Beryllium,Dissolved	0.004		mg/L				1	— · · · · · · · · · · · · · · · · · · ·	
Boron		0.3	mg/L			_		<u> </u>	5,7
Boron, Dissolved		0.3	mg/L						
Cadmium	0.005	_	mg/L	ann .					<0.0050
Cadmium, Dissolved	0.005	_	mg/L	nnn			_		
Chromium	0.1	-	mg/L	_	1.	-			_
Chromium, Dissolved	0.1	_	mg/L		-		***		
Cobalt		_	mg/L						_
Cobalt, Dissolved			mg/L		***	nan I		-	_
Copper	1.3		mg/L				***	_	0,0022 J
Copper, Dissolved	1.3		mg/L		-		_		
Lead	0.015	_	mg/L	_	_	_		_	0.0034 J
Lead,Dissolved	0.015		mg/L	 	_	_	-		<u> </u>
Manganese	<u> </u>	_	mg/L (_		-		
Manganese, Dissolved			mg/L			_			
Mercury	0.002	_	mg/L			***			0.000030 J
Mercury, Dissolved	0.002		mg/L	-	-	_			<u> </u>
Molybdenum			mg/L	_	-	_	_		-
Molybdenum, Dissolved			mg/L		_	_	-		
Nickel	-	0.0085	mg/L			_			<0,020
Nickel, Dissolved	_	0.0085	mg/L	****	-				
Selenium	0.05	_	mg/L	-	_		-		0.022
Selenium, Dissolved	0.05	-	mg/L		—	_	-		
Silver			mg/L			_			
Silver, Dissolved			mg/L	<u> </u>	<u></u>				_
Thallium	0,002		mg/L	-	_				
Thallium, Dissolved	0.002		mg/L	_	_				
Vanadium	+		mg/L	_		_	1	****	
Vanadium, Dissolved			mg/L		_		. 	_	_
Zinc		0.18	mg/L		-	_	1		<0.030
Zinc,Dissolved		0.18	mg/L			_	-		

		Sta	tion Number	CH-050	CH-050	CH-050
		9	Station Name	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRIN
			Lab ID		L612149-02	L728978-01
		Co	llection Date	9/20/2012	12/18/2012	10/21/2014
Parameter	MCL.	UPL	Units	•		
Field Parameters			Ì			
Water Level Elevation		T -	ft NAVD88	820.9	821	
Flow	-	-	gpm	95	160	5
Flow		_	mgd	0.1	0.2	0.007
Temperature	-	_	ဇင	18.83	15.31	16.96
pH (field)			S.U.	7,62	7,98	8,64
Specific Conductance	***	840	μS/cm	1,386	2,350	1,099
Ox-Red Potential (ORP)			mV	149	-127.6	15
Dissolved Oxygen (DO)			mg/L	6.86	4.89	6.51
Turbidity (field)		_	NTU			0 R
Indicator Parameters			·			·
pH (lab)			S.U.			_
Dissolved Solids	_	420	mg/L		2,700	820
Suspended Solids	_		mg/L			
Turbidity (lab)	<u> </u>		NŤU	_		
Chemical Oxygen Demand (COD)	-	11	mg/L		38	5,2 J
Total Organic Carbon (TOC)		3,8	mg/L	_	3.2	1.8
Acidity			mg/L			
Free Carbon Dioxide	_		mg/L			
Hardness, Total (mg/L as CaCO3)	_	—	mg/L			_
Major Cations			**.			
Calcium		130	mg/L	~~	360	180
Calcium, Dissolved		130	mg/L			180
Magnesium		8.8	mg/L		230	47
Magnesium, Dissolved	-	8.8	mg/L		 '	45
Potassium		3.4	mg/L		8.0	5.1
Potassium, Dissolved	_	3.4	mg/L			5.0
Sodium	-	7.2	mg/L	reno.	28	20
Sodium, Dissolved		7.2	mg/L		_	20
Ammonia Nitrogen	_	l –	mg/L	_	_	-
Major Anions						
Alkalinity, Total			mg/L			_
Alkalinity, Bicarbonate		290	mg/L		140	180
Alkalinity, Carbonate		<20	mg/L	-	<20	<20
Nitrate-Nitrite, as N		_	mq/L	***		
Nitrate, as N	10		mg/L			_
Nitrite, as N	1	1 —	mg/L			
Sulfate		65	mg/L		1,400	350
Sulfide			mg/L		-	_
Reactive Sulf.(SW846 7.3.4.1)			mg/L			-
Bromide		-	mg/L		***	
Fluoride	-		mg/L	men	*****	
Chloride		13	mg/L		100	24
Silica			mg/L		_	
Silicon			mg/L	_	***	
Silicon, Dissolved			mg/L	***		

		Sta	tion Number	CH-050	CH-050	CH-050
		S	tation Name	RAILROAD SPRING	RAILROAD SPRING	RAILROAD SPRIN
			Lab ID		L612149-02	L728978-01
		Col	lection Date	9/20/2012	12/18/2012	10/21/2014
Parameter	MCL	UPL	Units			
race Metals						
Iron	-	1.3	mg/L	_	0,10	0,028 J
Iron,Dissolved		1,3	mg/L		_	<0.10
Ferrous Iron		_	mg/L		_	_
Ferric Iron			mg/L			-
Aluminum		_	mg/L		-	
Aluminum, Dissolved	-	_	mg/L	_	-	man.
Antimony	0.006		mg/L	_	_	_
Antimony, Dissolved	0.006		mg/L		_	
Arsenic	0.01		mg/L,		0.0064	0,00045 J
Arsenic, Dissolved	0.01		mg/L	****		<0,0010
Barium	2		mg/L	_		
Barium, Dissolved	2	-	mg/L			
Beryllium	0.004		mg/L		_	
Beryllium Dissolved	0.004	_	mg/L	_		
Boron		0.3	mg/L		42	1,4
Boron, Dissolved		0.3	mg/L			1.5
Cadmium	0,005		mg/L	w	<0,0050	<0.00050
Cadmium, Dissolved	0,005	_	mg/L	_		<0.00050
Chromium	0.1		mg/L,		. *****	
Chromium, Dissolved	0.1	_	mg/L	_	_	
Cobalt		_	mg/L			
Cobalt, Dissolved	_		mg/L			
Copper	1.3		mg/L		<0.020	0.0010 J
Copper, Dissolved	1.3		mg/L			<0.0020
Lead	0.015	_	mg/L	_	<0.0050	<0.0010
Lead, Dissolved	0.015	_	mg/L			<0.0010
Manganese			mg/L	_		
Manganese, Dissolved			mg/L			
Mercury	0.002	-	mg/L	_	<0.00020	<0.00020
Mercury,Dissolved	0.002		mg/L	***		<0.00020
Molybdenum	-	_	mg/L	_	_	
Molybdenum, Dissolved			mg/L	 .	<u> </u>	-
Nickel		0.0085	mg/L	ma	0.011 J	0.0033
Nickel, Dissolved		0.0085	mg/L	-	_	0.0024
Selenium	0.05		mg/L		5-200 - 14 - 5 - 6	0.0020
Selenium,Dissolved	0.05		mg/L			0.0024
Silver			mg/L			
Silver, Dissolved			mg/L		<u> </u>	
Thallium	0,002		mg/L		<u></u>	
Thallium, Dissolved	0.002		mg/L	–	_	
Vanadium	_	_	mg/L	Andrea .		
Vanadium, Dissolved			mg/L			
Zinc		0.18	mg/L		0.014 J	0.0077 J
Zinc,Dissolved		0.18	mg/L			0.0055 J

CH-052 STONEWALL SPRING Summary of Groundwater Analytical Results EW Brown, Harrodsburg, Kentucky

CAA DIOA	vii, ridirot	азыы у, лени	aun)
AMEC	Project N	No. 56753002	23

		St	ation Number	CH-052	CH-052	CH-052	CH-052	CH-052	CH-052	CH-052
			Station Name	STONEWALL	STONEWALL	STONEWALL	STONEWALL	STONEWALL	STONEWALL	STONEWALL
			Lab ID	L515479-12		L517576-12	L520030-12	L558290-06	L560970-05	1,570058-06
			ollection Date	5/9/2011	5/17/2011	5/24/2011	6/7/2011	1/31/2012	2/16/2012	4/13/2012
Parameter	MCL	UPL	Units							
leid Parameters										
Water Level Elevation	_		ft NAVD88	_				768.6	768,6	768.6
Flow	- 1		gpm	40	90	20	5	11	4	1
Flow			mgd	0.06	0.1	0.03	0.007	0.02	0.006	0,001
Temperature			ဇင	19.6	14.8	19.1	23.8	12.93	10,71	22.3
pH (field)			S.U.	6.82	7.26	7.3	7.49	7.63	8,02	8
Specific Conductance		840	μS/cm	370	840	410	470	324	332	560
Ox-Red Potential (ORP)			mV					-226.2	-223,4	_
Dissolved Oxygen (DO)	(mg/L					8.31	9,52	
Turbidity (field)			NTU	_	_		- .	15	5.8	7.7
ndicator Parameters										•
pH (lab)		_	S.U.		_		I –			_
Dissolved Solids		420	mg/L	240		260	300	260		290
Suspended Solids			mg/L		<u></u>					
Turbidity (lab)	_		NTU	,		-				
Chemical Oxygen Demand (COD)		11	mg/L				_	<10	_	5.6
Total Organic Carbon (TOC)		3.8	mg/L				_	1.5		1.0
Acidity			mg/L				_			
Free Carbon Dioxide			mg/L		-					_
Hardness, Total (mg/L as CaCO3)			mg/L			<u></u>	_			
faior Cations		•	1319/2							L.,
Calcium		130	mg/L	73		83	91	91		93
Calcium, Dissolved		130	mg/L							
Magnesium		8.8	mg/L		_			5.4		5.9
Magnesium, Dissolved		8,8	mg/L							- 3.5
Potassium		3.4	mg/L			····		2.5		1.6
Potassium Dissolved		3.4								
Sodium Sodium		7,2	mg/L	6.6		3.9	4.8	3.7		5.0
Sodium, Dissolved		7.2	mg/L							
Ammonia Nitrogen			mg/L					_		
			mg/L_							L
Major Anions	Г						I			
Alkatinity, Total			mg/L							
Alkalinity,Bicarbonate		290	mg/L				-	180		180
Alkalinity.Carbonate		<20	mg/L				<u> </u>	<20		<20
Nitrate-Nitrite, as N			mg/L							
Nitrate, as N	10		mg/L		_					
Nitrite, as N	1		mg/L		~					
Sulfate		65	mg/L	25		29	29	29		36
Sulfide			mg/L	—			-			
Reactive Sulf.(SW846 7.3.4.1)			mg/L		-			-		
Bromide			mg/L							
Fluoride			mg/L							
Chloride	_	13	mg/L	6,9	—	5,9	10	5.6		9,6
Silica	<u> </u>		mg/L,				-		## *	
Silicon			mg/L		_	_	-			-
Silicon, Dissolved			mg/L							_

		Sta	tion Number	CH-052	CH-052	CH-052	CH-052	CH-052	CH-052	CH-052
		S	tation Name	STONEWALL	STONEWALL	STONEWALL	STONEWALL	STONEWALL	STONEWALL	STONEWALL
			Lab ID	L515479-12		L517576-12	L520030-12	L558290-06	L560970-05	L570058-06
		Co	Ilection Date	5/9/2011	5/17/2011	5/24/2011	6/7/2011	1/31/2012	2/16/2012	4/13/2012
Parameter	MCL	UPL	Units							
Trace Metals										
Iron	-	1.3	mg/L					2.0	0.12	0.11
Iron,Dissolved		1.3	mg/L		_	-				
Ferrous Iron			mg/L	_		_				
Ferric Iron		_	mg/L							_
Aluminum		_	mg/L			-	_	_	_	_
Aluminum, Dissolved			mg/i_	_			_			_
Antimony	0.006		mg/L		_				_	_
Antimony, Dissolved	0.006	L —	mg/L	-		_		_		
Arsenic	0.01		mg/L	1				0.0014	<0,0010	< 0.020
Arsenic, Dissolved	0.01		mg/L	_		-			w.e-	
Barlum	2		mg/L		1	_				
Barium, Dissolved	2	_	mg/L			_				***
Beryllium	0.004		mg/L			_				
Beryllium, Dissolved	0.004		mg/L			<u> </u>	_	_	,	
Boron		0.3	mg/L	<0.20		<0.20	0,083 J	0,052 J		0,12 J
Boron Dissolved		0.3	mg/L		_	-	-	_		
Cadmium	0.005		mg/L	-	_	_	_	<0.0050		<0.0050
Cadmium, Dissolved	0.005		mg/L	-	_	<u> </u>			***	
Chromium	0.1		mg/L	-						
Chromium, Dissolved	0.1		mg/L		-	_	_		_	_
Cobalt			mg/L		-	i –			nee	
Cobalt, Dissolved			mg/L		1	-				_
Copper	1.3	_	mg/L	_	_			0.0048 J		0.0022 J
Copper, Dissolved	1.3		mg/L		***			_	<u></u>	
Lead	0.015		mg/L	_	_		_	<0.0050	_	<0.0050
Lead, Dissolved	0.015		mg/L			i =				
Manganese	_	-	mg/L							
Manganese, Dissolved		-	mg/L		_					_
Mercury	0.002		mg/L		1	_		<0.00020	_	<0.00020
Mercury, Dissolved	0.002	_	mg/L					_		
Molybdenum		-	mg/L			_	-			
Molybdenum, Dissolved			mg/L	_				~~		<u> </u>
Nicket		0.0085	mg/L		-	_		<0.020		<0.020
Nickel,Dissolved		0.0085	mg/L					1		**-
Selenium	0.05	-	mg/L			_		<0.020		<0.020
Selenium, Dissolved	0.05		mg/L		_	_	_		_	
Silver	_	-	mg/L							
Silver, Dissolved			mg/L		_		-		-	
Thallium	0.002		mg/L	_	_	_	<u></u>			
Thallium, Dissolved	0.002		mg/L		_	<u> </u>	_	_	_	
Vanadium			mg/L			_	_	****	***	
Vanadium, Dissolved	_	<u> </u>	mg/L			_				
Zinc		0.18	mg/L					0.056	ш-н	<0.030
Zinc.Dissolved		0.18	ma/L						_	

		Sta	ation Number	CH-052	CH-052	CH-052	CH-052
		;	Station Name	STONEWALL	STONEWALL	STONEWALL	STONEWALL
			Lab ID	L575196-05		L612149-03	L729376-01
		Co	Ilection Date	5/14/2012	5/17/2012	12/18/2012	10/22/2014
Parameter	MCL	UPL	Units				
Field Parameters							
Water Level Elevation			ft NAVD88	768.7	768,7	768.8	
Flow			gpm	18	5	10	5
Flow			mgd	0.03	0.007	0.01	0.007
Temperature	_		0℃	15.74	14.44	10.73	15.8
pH (field)			S.U.	7.62	7.74	8.84	7.86
Specific Conductance		840	μS/cm	523	516	375	682
Ox-Red Potential (ORP)			mV	-122,3	155.7	-184.3	-152,6
Dissolved Oxygen (DO)			mg/L	1,89	5.93	4.94	3.08
Turbidity (field)			NTU	18		22	3
ndicator Parameters							
pH (lab)			S.U.		***	1	-
Dissolved Solids		420	mg/L	330		310	500
Suspended Solids		<u> </u>	mg/L				
Turbidity (lab)		_	NTU			_	
Chemical Oxygen Demand (COD)		11	mg/L	8.4 J		<10	<10
Total Organic Carbon (TOC)		3.8	mg/L	2.1		2.3	2.1
Acidity			mg/L	_	_	-	
Free Carbon Dioxide	700		mg/L				
Hardness, Total (mg/L as CaCO3)		_	mg/L			_	
Major Cations							
Calcium		130	mg/L	100		93	140
Calcium, Dissolved		130	mg/L	-		_	150
Magnesium	_	8.8	mg/L	5,9	-	6.0	11
Magnesium, Dissolved	_	8.8	mg/L				11
Potassium		3.4	mg/L	3,0	-	2.9	6.2
Potassium, Dissolved		3.4	mg/L			_	5,8
Sodium		7.2	mg/L	7.4		4,7	12
Sodium, Dissolved		7.2	mg/L		_	_	12
Ammonia Nitrogen		-	mg/L			-	
lajor Anions		,	i i				
Alkalinity, Total			mg/L			· –	240
Alkalinity,Bicarbonate		290	mg/L	220		180	240
Alkalinity,Carbonate		<20	mg/L	<20		<20	<20
Nitrate-Nitrite, as N			mg/L	****			
Nitrate, as N	10		mg/L				
Nitrite, as N	7	_	mg/L		-		-
Sulfate		65	mg/L	34		49	120
Sulfide			mg/L				
Reactive Sulf.(SW846 7.3.4.1)			mg/L	_	— — — — — — — — — — — — — — — — — — —		
Bromide		-	mg/L				
Fluoride			mg/L	***			
Chloride	_	13	mg/L	7.9	_	8.0	3 <u>1</u>
Silica		_	mg/L				
Silicon			mg/L			_	-1
Silicon, Dissolved			mg/L		***		

		Stat	ion Number	CH-052	CH-052	CH-052	CH-052
		s	tation Name	STONEWALL	STONEWALL	STONEWALL.	STONEWALL
			Lab ID	L575196-05		L612149-03	L729376-01
		Col	lection Date	5/14/2012	5/17/2012	12/18/2012	10/22/2014
Parameter	MCL	UPL,	Units				
race Metals	•					•	
Iron	_	1.3	mg/L	0,67	_	0,22	0,095 J
Iron,Dissolved		1.3	mg/L		-		<0,10
Ferrous Iron			mg/L				
Ferric Iron			mg/L	-			_
Aluminum		_	mg/L	- 1	_	_	_
Aluminum, Dissolved		_	mg/L				
Antimony	0,006	-	mg/L	_ 1			
Antimony, Dissolved	0.006		mg/L				***
Arsenic	0.01		mg/L	<0.020		0.00095 J	0.00066 J
Arsenic, Dissolved	0.01		mg/L		-	_	0,00063 J
Barium	2	_	mg/L	_	_	_	
Barium, Dissolved	2	_	mg/L				
Beryllium	0.004	_	mg/L			_	_
Beryllium, Dissolved	0.004	_	mg/L				_
Boron		0,3	mg/L	0.17 J		0.46	0,17 J
Boron, Dissolved		0.3	mg/L	_	_	_	0.12 J
Cadmium	0.005	_	mg/L	<0.0050		<0.0050	<0.00050
Cadmium, Dissolved	0.005		mg/L	_	_		<0,00050
Chromium	0.1	_	mg/L	 1		_	
Chromium, Dissolved	0.1		mg/L				
Cobalt	-	-	mg/L				
Cobalt, Dissolved	-		mg/L		****		_
Copper	1.3	·	mg/L	0.0017 J	***	<0.020	0.0010 J
Copper Dissolved	1,3	_	mg/L	_	-	_	<0.0020
Lead	0.015		mg/L	0.01	***	<0.0050	0.00036 J
Lead, Dissolved	0.015		mg/L				<0.0010
Manganese			mg/L				***
Manganese, Dissolved		_	mg/L			_	
Mercury	0.002		mg/L	<0.00020		<0.00020	<0.00020
Mercury, Dissolved	0.002		mg/L	****	****		<0.00020
Molybdenum			mg/L		_	_	
Molybdenum, Dissolved			mg/L				
Nickel		0.0085	mg/L	<0.020		0.0049 J	0,0024
Nickel, Dissolved	_	0.0085	mg/L				0.0023
Selenium	0.05		mg/L	0.025		<0.020	<0.0010
Selenium, Dissolved	0.05		mg/L	_		-	0,00074 J
Silver			mg/L				
Silver, Dissolved			mg/L			-	-
Thallium	0,002		mg/L				_
Thallium, Dissolved	0.002	_	mg/L	-		_	_
Vanadium			mg/L	_		,	
Vanadium, Dissolved			mg/L	_	_	_	
Zinc		0.18	mg/L	0.016 J		0.0078 J	0.0046 J
Zinc, Dissolved		0.18	mg/L				0.019

		Sta	tion Number	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057
		5	Station Name	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH
			Lab ID	L515479-16		L517576-17		L520030-17		L522574-16
		Co	llection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011
Parameter	MCL	UPL	Units				· · · · · · · · · · · · · · · · · · ·			
Field Parameters										
Water Level Elevation			ft NAVD88	-	<u></u>		——————————————————————————————————————		779.3	
Flow			gpm	880	440	210	380	210	1060	500
Flow			mgd	1.3	0.6	0.3	0.6	0.3	1.5	8.0
Temperature			°C	17.3	17.8	19,2	21.7	25,1	24.6	24.5
pH (field)	_	_	S.U.	6,93	7.03	6.96	7,19	7.08	6,83	6.77
Specific Conductance		840	μS/cm	910	2,080	1,810	1,290	1,890	1,030	1,500
Ox-Red Potential (ORP)			mV			-				
Dissolved Oxygen (DO)	-		mg/L							2.64
Turbidity (field)			NYU		_			-	_	
ndicator Parameters			1							
pH (lab)		-	S.U.		_			_	-	_
Dissolved Solids		420	mg/L	1,600	_	1,700	_	1,700		1,300
Suspended Solids			mg/L				-			
Turbidity (lab)			NTU			_		-		
Chemical Oxygen Demand (COD)		11	mg/L			-		_		
Total Organic Carbon (TOC)		3.8	mg/L		****					
Acidity			mg/L		4					
Free Carbon Dioxide			mg/L							_
Hardness, Total (mg/L as CaCO3)			mg/L							
Major Cations			1							
Calcium		130	mg/L	390		420		390		300
Calcium, Dissolved		130	mg/L							
Magnesium		8.8	mg/L					_	-	_
Magnesium, Dissolved		8.8	mg/L							
Potassium	·· _	3.4	mg/L	-		-				
Potassium, Dissolved	-	3.4	mg/L				-			
Sodium		7.2	mg/L	11		9.6		9.4		10
Sodium, Dissolved		7.2	mg/L							
Ammonia Nitrogen			mg/L		_	-	_			
Major Anions		<u> </u>	1mg/c							
Alkalinity, Total			mg/L			_		_		
Alkalinity, Bicarbonate		290	mg/L			_				
Alkalinity, Carbonate		<20	mg/L			_				
Nitrate-Nitrite, as N			mg/L							
Nitrate, as N	10		mg/L							
Nitrite, as N	1		mg/L							
Sulfate		65	mg/L	1,000	= -	990		970		730
Sulfide		- 65	mg/L							730
Reactive Sulf.(SW846 7.3.4.1)										
Bromide			mg/L mg/L					-		
Fluoride		-	mg/L							
Chloride		13		36		54		60		44
Silica			mg/L							44
			mg/L							
Silicon			mg/L		-					
Silicon, Dissolved			mg/L					_	<u> </u>	<u> </u>

		Station Number			CH-057	CH-057	CH-057	CH-057	CH-057	CH-057
	Station Name			BRIAR PATCH	BRIAR PATCH	BRIAR PATCH L517576-17	BRIAR PATCH	BRIAR PATCH L520030-17	BRIAR PATCH	BRIAR PATCH L522574-16
		Lab ID								
	Col	lection Date	5/9/2011	5/17/2011	5/24/2011	5/31/2011	6/7/2011	6/14/2011	6/21/2011	
Parameter	MCL	UPL,	Units				<u> </u>	•	•	
race Metals	•		•							<u> </u>
Iron	-	1.3	mg/L	~~		_	T		I	T =
Iron,Dissolved	_	1.3	mg/L					_	_	
Ferrous Iron			mg/L		_	_				
Ferric Iron	_	-	mg/L				_	-		_
Aluminum			mg/L	_			_	_	_	
Aluminum, Dissolved	-		mg/L		_	_				
Antimony	0.006		mg/L		_					
Antimony, Dissolved	0,006		mg/L							
Arsenic	0.01		mg/L							
Arsenic, Dissolved	0.01		mg/L		_		_	_	_	<u> </u>
Barlum	2		mg/L					_		
Banum,Dissolved	2	 	mg/L		<u> </u>		-			
Beryllium	0.004		mg/L		===					
Beryllium,Dissolved	0.004		mg/L							
Boron		0.3	mg/L	2.0		2.4	 	2.4		1.9
Boron, Dissolved		0.3	mg/L				+ =			
Cadmium	0.005	- U.S		mere.			-	_	<u> </u>	
	0.005		mg/L			-				
Cadmium, Dissolved	0,005		mg/L		_	_	_		-	ļ
Chromium			mg/L		<u> </u>	-	-			
Chromium, Dissolved	0.1	_	mg/L			-	_		<u> </u>	
Cobalt			mg/L	***	unn .					
Cobalt, Dissolved			mg/L	<u></u>	_	_	 -			
Copper	1.3		mg/L						-	<u> </u>
Copper,Dissolved	1.3		mg/L							
Lead	0.015		mg/L				****			
Lead, Dissolved	0.015		mg/Ļ			_				
Manganese			mg/L							
Manganese, Dissolved			mg/L			1		_	***	-
Mercury	0.002		mg/L		_	•				
Mercury, Dissolved	0.002		mg/L							
Molybdenum		_	mg/L			_		_	_	_
Molybdenum, Dissolved			mg/L							_
Nickel		0.0085	mg/L	***			_	_		
Nickel, Dissolved		0.0085	mg/L				_	_		_
Selenium	0.05	_	mg/L							_
Selenium, Dissolved	0,05		mg/L				_	_		 -
Silver			mg/L				_			
Silver.Dissolved	· · · · · · · · · · · · · · · · · · ·		mg/L	-			_	_		
Thatlium	0.002		mg/L					_		
Thallium, Dissolved	0.002		mg/L						_	
Vanadium			mg/L							
Vanadium, Dissolved		 	mg/L					_		
Zinc		0.18	mg/L				 			
Zinc, Dissolved		0.18	mg/L							

CH-057 BRIAR PATCH SPRING

			ation Number	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057
	Station Name Lab ID			BRIAR PATCH	BRIAR PATCH L560970-06	BRIAR PATCH L570058-02	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH L575196-06
				L558290-01						
		Co	Mection Date	1/31/2012	2/16/2012	4/13/2012	4/27/2012	5/7/2012	5/10/2012	5/14/2012
Parameter	MCL	UPL	Units							
Field Parameters					****					
Water Level Elevation	_		ft NAVD88	775,6	775,5	775.6	775,9	775,9	776,3	776.6
Flow		_	gpm	33	1		590	370	350	2050
Flow		_	mgd	0.05	0.001	_	0.8	0.5	0.5	3
Temperature			°C	11.28	10.2	20,1	17.53	21.64	22,82	21,57
pl-i (field)	_		S.U.	6.98	7.7	7.2	7.34	7.29	7.23	7.44
Specific Conductance		840	μS/cm	1,030	808	1,120	1,052	1,105	1,385	1,627
Ox-Red Potential (ORP)			mV	-166,3	-219,5		187,6	-199,8	-175.8	170.7
Dissolved Oxygen (DO)			mg/L	8.24	9.45	-	7.29	2.09	2,48	2.6
Turbidity (field)			NTU	5,9	3,9	6.6	****	_		6.9
Indicator Parameters		·						·		
pH (lab)		T	S.U.		-	_		-	_	_
Dissolved Solids		420	mg/L	1,400	_	720				1,500
Suspended Solids			mg/L							
Turbidity (lab)			NTU	_	***					_
Chemical Oxygen Demand (COD)		11	mg/L	<10		17				4,2 J, F
Total Organic Carbon (TOC)		3.8	mg/L	2,2		1.0				1.8
Acidity			mg/L		<u> </u>			_		_
Free Carbon Dioxide		_	mg/L			_		-		
Hardness, Total (mg/L as CaCO3)			mg/L	-				_		
Major Cations							•			
Calcium		130	mg/L	340		180		200		350
Calcium, Dissolved		130	ma/L	700	_					
Magnesium		8.8	mg/L	22	~~	22		_		30
Magnesium, Dissolved	_	8.8	mg/L					_		_
Potassium		3.4	mg/L	5.9		5.2		_		9.2
Potassium, Dissolved		3.4	mg/L					_	<u></u>	_
Sodium	-	7.2	mg/L	8,8		8.6		_		14
Sodium, Dissolved		7.2	mg/L				_			
Ammonia Nitrogen			mg/L	_			_			
Major Anions		J	1			<u> </u>	I	1	I	
Alkalinity, Total			mg/L	_			_			
Alkalinity.Bicarbonate	-	290	ma/L	90		150	 			86
Alkalinity.Carbonate		<20	mg/L	<20		<20				<20
Nitrate-Nitrite, as N		-	mg/L		-		-	****		
Nitrate, as N	10		mg/L							_
Nitrite, as N	7	1 =	mg/L		_		_			
Sulfate		65	mg/L	840	_	350				890
Sulfide		= ==	mg/L				-			
Reactive Sulf.(SW846 7.3.4.1)	_		mg/L							
Bromide		 	mg/L		 	<u> </u>				
Fluoride			mg/L					-		
Chloride		13	mg/L	29		17		_		17
Silica			mg/L		_					
Silicon		 	mg/L		_	<u> </u>	=			
Silicon, Dissolved		 =	mg/L				-			
Silicon, Dissolved			1 119/5				L		<u> </u>	_

CH-057 BRIAR PATCH SPRING

		Stat	ion Number	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057
		S	tation Name	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH
			Lab (D		L560970-06	L570058-02				L575196-06
		Col	lection Date	1/31/2012	2/16/2012	4/13/2012	4/27/2012	5/7/2012	5/10/2012	5/14/2012
Parameter	MCL	UPL.	Units			1				
race Metals						1				
tron		1.3	mg/L	0.26	0.047 J	0,41	****	<u> </u>		0.095 J
Iron.Dissolved		1.3	mg/L							
Ferrous Iron			mg/L	<u> </u>						
Ferric tron			mg/L						_	
Aluminum			mg/L	_		T - 1	_	_	_	***
Aluminum, Dissolved			mg/L						_	-
Antimony	0.006		mg/L			_				
Antimony, Dissolved	0.006		mg/L				_	_		
Arsenic	0.01		mg/L	0.012	0.0097	0.11				0.012 J
Arsenic, Dissolved	0.01	-	mg/L	-					-	_
Barium	2	_	mg/L	_	_	_				
Barium, Dissolved	2		mg/L			_	_			
Bervllium	0.004		mg/L						_	_
Beryllium, Dissolved	0.004		mg/L	_		-			_	
Boron		0.3	mg/L	1.0		3.5			_	4,2
Boron, Dissolved		0.3	mg/L		mn	_		_	_	T -
Cadmium	0.005		mg/L	<0.0050		<0.0050				<0.0050
Cadmium, Dissolved	0.005		mg/L	_		_	_		T	
Chromium	0.1		mg/L		-					
Chromium, Dissolved	0.1		mg/L					-		
Cobalt			mg/L					-		
Cobalt, Dissolved	_	 	mg/L				_	_		
Copper	1.3		mg/L	0.0031 J		0.0032 J				0,0055 J
Copper, Dissolved	1.3		mg/L			T 1	_	_	_	
Lead	0.015		mg/L	<0.0050		<0.0050	_			0.030
Lead, Dissolved	0.015		mg/L			<u> </u>				
Manganese			mg/L							
Manganese, Dissolved		_	mg/L		***				_	
Mercury	0.002	_	mg/L	<0.00020	_	<0.00020	_		_	<0,00020
Mercury, Dissolved	0.002		mg/L				-	-		_
Molybdenum		-	mg/L					_		
Molybdenum, Dissolved		-	mg/L	-		_	_	<u> </u>		-
Nickel	-	0.0085	mg/L	<0.020		<0.020		_		<0.020
Nickel, Dissolved		0.0085	mg/L	_		1 1	_		****	_
Selenium	0.05	_	mg/L	<0.020	****	<0.020			- .	0.070
Selenium,Dissolved	0.05		mg/L		-					****
Silver			mg/L	_						-
Silver, Dissolved			mg/L				-	-		
Thallium	0.002		mg/L	-				- "		
Thallium, Dissolved	0.002	-	mg/L			_	_			
Vanadium			mg/L					_	***	
Vanadium, Dissolved			mg/L	-	_	_				
Zinc		0.18	mg/L	0.15		0,01 J				0.026 J
Zinc,Dissolved		0.18	mg/L		_					-

		St	ation Number	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057
			Station Name	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH
			Lab ID			_				
		Co	llection Date	5/17/2012	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012	7/17/2012
Parameter	MCL	UPL	Units			<u> </u>	-t			· · · · · · · · · · · · · · · · · · ·
Field Parameters		<u> </u>								
Water Level Elevation			ft NAVD88	776.5	776.1	776.5	776.4	776.4	775,9	776,1
Flow			gpm	1540	673	1050	950	840	121	50
Flow			mgd	2.2	1	1.5	1.4	1.2	0.2	0,1
Temperature			%	21.52	23,83	26,44	24.21	22,05	23,17	27.97
pH (field)	_		S.U.	7.13	7.11	7.1	7.24	7.31	7.81	7.11
Specific Conductance		840	μS/cm	1,723	1,542	1,604	2,121	1,957	2,318	1,907
Ox-Red Potential (ORP)		<u> </u>	mV	-202,8	-253.2	-193.2	-174,4	-87.6	108.3	-222.5
Dissolved Oxygen (DO)			mg/L	2.57	0.92	0,51	1.54	2.76	3.69	0.67
Turbidity (field)			NTU		_					_
Indicator Parameters										
pH (lab)			S.U.	-			_	_		_
Dissolved Solids		420	mg/L							
Suspended Solids	_	<u> </u>	mg/L		_		W			
Turbidity (lab)	- .		NTU				_	***		
Chemical Oxygen Demand (COD)		11	mg/L	-						
Total Organic Carbon (TOC)	_	3.8	mg/L	_		_	_	-	***	-
Acidity		<u> </u>	mg/L			_ ~				
Free Carbon Dioxide			mg/L			<u> </u>				
Hardness, Total (mg/L as CaCO3)		<u> </u>	mg/L		<u> </u>			<u> </u>	<u> </u>	<u> </u>
Major Cations			<i>_</i>							
Calcium		130	mg/L		-					
Calcium.Dissolved		130	mg/L					-		
Magnesium		8.8	mg/L							
Magnesium, Dissolved		8.8	mg/L		****			<u> </u>		
Potassium	_	3.4	mg/L	<u> </u>	-				-	
Potassium, Dissolved		3.4	mg/L		-		_			
Sodium		7.2	mg/L							
Sodium, Dissolved		7.2	mg/L				_			
Ammonia Nitrogen			mg/L	-		<u> </u>				
Major Anions			,							
Alkalinity, Total			mg/L							
Alkalinity,Bicarbonate	<u> </u>	290	mg/L		<u> </u>		<u> </u>			<u> </u>
Alkalinity,Carbonate		<20	mg/L							
Nitrate-Nitrite, as N			mg/L			-				-
Nitrate, as N	10		mg/L				_	-		
Nitrite, as N	1		mg/L	-						
Sulfate		65	mg/L					-		
Sulfide			mg/L							
Reactive Sulf.(SW846 7.3.4.1)			mg/L	-						
Bromide	<u> </u>		mg/L		ļ -					
Fluoride			mg/L				***	***		
Chloride		13	mg/L		****		-	_		_
Silica			mg/L				-			
Silicon	<i>_</i>		mg/L		_	ļ				
Silicon Dissolved			mg/L		l —					

CH-057 BRIAR PATCH SPRING of Groundwater Analytical

Summary of Groundwater Analytical Results EW Brown, Harrodsburg, Kentucky AMEC Project No. 567530023

			tion Number	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057	CH-057
		s	tation Name	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATC
			Lab ID		_				_	
			lection Date	5/17/2012	5/24/2012	6/1/2012	6/7/2012	6/15/2012	6/28/2012	7/17/2012
Parameter	MCL	UPL	Units							
race Metals										
Iron		1.3	mg/L		_			_		
Iron,Dissolved		1.3	mg/L					_	-	-
Ferrous Iron			mg/L	-			-	_	_	_
Ferric Iron		_	mg/L		_		_	Ī., —	-	<u> </u>
Aluminum			mg/L	-	_		-	_	_	-
Aluminum, Dissolved			mg/L	-	_			-	_	·
Antimony	0,006	_	mg/L						_	—
Antimony, Dissolved	0.006		mg/L		_	<u> </u>				
Arsenic	0.01		mg/L							
Arsenic, Dissolved	0.01	_	mg/L	-				-	_	<u> </u>
Barium	2		mg/L			_	_	_	_	
Barium, Dissolved	2	_	mg/L				_		_	
Beryllium	0.004	_	mg/L							
Beryllium, Dissolved	0.004		mg/L	_				_	_	
Boron	_	0.3	mg/L		_	_		_	-	-
Boron, Dissolved		0.3	mg/L	-						
Cadmium	0.005	_	mg/L		-					
Cadmium, Dissolved	0.005		mg/L	-				_	_	
Chromium	0.1		mg/L							
Chromium, Dissolved	0.1		mg/L	_	_	_			_	_
Cobalt			mg/L					_	_	
Cobalt, Dissolved	-		mg/L			_				
Copper	1.3	-	mg/L	_						
Copper, Dissolved	1,3	–	mg/L	_	_		 	-		_
Lead	0.015		mg/L					_		
Lead,Dissolved	0.015		ma/L							
Manganese			mg/L							
Manganese, Dissolved			mg/L			_			_	
Mercury	0.002	_	mg/L							
Mercury, Dissolved	0.002		mg/L	_	1000					
Molybdenum			mg/L			_	_	_	_	<u> </u>
Molybdenum, Dissolved			mg/L							
Nickel		0.0085	mg/L							
Nickel, Dissolved		0.0085	mg/L							
Selenium	0.05		mg/L							
Selenium, Dissolved	0.05		mg/L					-		
Silver			mg/L							
Silver, Dissolved		-	mg/L							
Thallium	0.002	 	mg/L			 	 			-
Thallium, Dissolved	0.002	 	mg/L	· <u>-</u> · · · ·	 		 		_	 =
Vanadium	0.002		mg/L			 			=	
Vanadium, Dissolved			mg/L				-			
Zinc Zinc		0.18	mg/L						Nee Nee	
Zinc, Dissolved		0.18	mg/L							

CH-057 BRIAR PATCH SPRING

Summary of Groundwater Analytical Results EW Brown, Harrodsburg, Kentucky AMEC Project No. 567530023

		Sta	tion Number	CH-057	CH-057	CH-057	CH-057	CH-057
		5	Station Name	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH
			Lab ID			L593301-05	_	L611710-03
_		Co	llection Date	8/2/2012	8/23/2012	9/4/2012	9/20/2012	12/17/2012
Parameter	MCL	UPL,	Units					
Field Parameters								
Water Level Elevation			ft NAVD88	776,3	777.4	777.3	778,3	
Flow	-	_	gpm	350	TH	TH	TH	
Flow	-		mgd	0.5				
Temperature			°C	26.15	18,31	27	23.16	14.74
pH (field)			S.U.	7.2	7.21	7.32	7.81	7,67
Specific Conductance		840	μS/cm	1,584	1,492	1,739	1,615	1,574
Ox-Red Potential (ORP)			m∨	-175.2	-185,3	-120,7	-174.2	-92.4
Dissolved Oxygen (DO)			mg/L	2,31	2.19	1.68		5,94
Turbidity (field)			NTU				*****	12
Indicator Parameters								
pH (lab)			S.U.					
Dissolved Solids		420	mg/L			1,600		1,300
Suspended Solids			mg/L.					
Turbidity (lab)	_		NŤU				_	
Chemical Oxygen Demand (COD)		11	mg/L			<10		13 J3
Total Organic Carbon (TOC)		3.8	mg/L			1,4	_	2.0
Acidity			mg/L	-				-
Free Carbon Dioxide			mg/L			-	_	
Hardness, Total (mg/L as CaCO3)			mg/L		T -	_		
Major Cations			·				·········	
Calcium		130	mg/L	-		320	_	300
Calcium, Dissolved		130	mg/L				_	
Magnesium		8.8	mg/L	_	_	57		34
Magnesium, Dissolved		8,8	mg/L		_		_	-
Potassium	_	3.4	ma/L	_	***	9,5	-	7.9
Potassium, Dissolved		3.4	mg/L					
Sodium		7.2	mg/L		_	13	-	15
Sodium, Dissolved		7.2	mg/L				_	
Ammonia Nitrogen	_		mg/L		_		 .	
Major Anions		<u> </u>	· · · · ·		· -	•	·	
Alkalinity, Total			mg/L	_			_	
Alkalinity,Bicarbonate		290	mg/L			100	-	29
Alkalinity,Carbonate	_	<20	mg/L			<20		<20
Nitrate-Nitrite, as N			mg/L					
Nitrate, as N	10		mg/L					
Nitrite, as N	1		mg/L				_	_
Sulfate		65	mg/L			970		840
Sulfide			mg/L				=	
Reactive Sulf.(SW846 7.3.4.1)	<u> </u>		mg/L	_				
Bromide			mg/L	_		 		
Fluoride			mg/L		***			
Chloride		13	mg/L		_	27	_	19
Silica		-	mg/L	_				
Silicon		<u></u> ,	mg/L					
Silicon, Dissolved		_	mg/L				_	

		Stat	ion Number	CH-057	CH-057	CH-057	CH-057	CH-057
		SI	tation Name	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH	BRIAR PATCH
			Lab ID	_		L593301-05		L611710-03
			lection Date	8/2/2012	8/23/2012	9/4/2012	9/20/2012	12/17/2012
Parameter	MCL	UPL	Units					
race Metals				•			٦	
Iron		1.3	mg/L			<0.10	-	0,16
Iron,Dissolved		1.3	mg/L			-	1	-
Ferrous Iron			mg/L		_		_	•
Ferric Iron		_	mg/L		-	-		****
Aluminum	<u> </u>		mg/L	-				
Aluminum, Dissolved		_	mg/L	 .			_	
Antimony	0.006		mg/L				-	_
Antimony, Dissolved	0.006		mg/L				ı	
Arsenic	0.01		mg/L			0.015 J		0,0084
Arsenic, Dissolved	0.01	-	mg/L		_	-	~~	
Barlum	2		mg/L		780			
Barium, Dissolved	2		mg/L					
Beryllium	0.004		mg/L	<u> </u>				
Beryllium, Dissolved	0,004		mg/L	_	_	-		
Boron		0.3	mg/L			10	•••	5.2
Boron, Dissolved	_	0.3	mg/L			_	_	
Cadmlum	0.005	_	mg/L	_	_	<0.0050		<0.0050
Cadmium, Dissolved	0,005	-	mg/L				_	_
Chromium	0.1		mg/L			_		_
Chromium, Dissolved	0.1		mg/L	_	_			
Cobalt		_	mg/L	-		wen		
Cobalt, Dissolved			mg/L	_				
Copper	1,3		mg/L	_		0.0026 J		<0.020
Copper, Dissolved	1.3		mg/L			-	_	_
Lead	0.015		mg/L			0.0032 J	_	<0.0050
Lead, Dissolved	0.015		mg/L	_	_			
Manganese			mg/L		_	<u> </u>		
Manganese, Dissolved			mg/L		_		-	
Mercury	0.002		mg/L	_	_	0.000030 J		<0.00020
Mercury, Dissolved	0,002	-	mg/L					
Molybdenum			mg/L		_	_	_	_
Molybdenum, Dissolved			mg/L	_	_			
Nickel		0.0085	mg/L		-	0.017 J	-	0.0064 J
Nickel,Dissolved		0,0085	mg/L	***	_	-		
Selenium	0.05	_	mg/L			0.040	_	<0.020
Selenium, Dissolved	0.05		mg/L					***
Silver		_	mg/L	_	_	-		-
Silver, Dissolved			mg/L		_			
Thallium	0,002		mg/L	_	_	_	_	
Thallium, Dissolved	0.002		mg/L		_	_		-
Vanadium	,		mg/L	_	_	_		
Vanadium, Dissolved			mg/L					
Zinc		0.18	mg/L		_	<0.030		0.0063 J
Zinc,Dissolved		0.18	mg/L		 		_	

		Sta	tion Number	CH-062	CH-062
			Station Name	HARDIN SPRING	HARDIN SPRING
			Lab ID		L615509-02
			liection Date	5/17/2012	1/14/2013
Parameter	MCL	UPL	Units		
Field Parameters					
Water Level Elevation			ft NAVD88	834.7	834,9
Flow			gpm	0,3	20
Flow	-	_	mgd	0.0004	0.03
Temperature			°C	16.74	14.44
pH (field)			S.Ų.	7,16	8.28
Specific Conductance		840	μ\$/cm	631	257
Ox-Red Potential (ORP)			mV	-182,4	132,5
Dissolved Oxygen (DO)	_	_	mg/L		8,39
Turbidity (field)		-	NTU	****	8.3
ndicator Parameters			·		
pH (lab)			S.U.		
Dissolved Solids		420	mg/L	_	140
Suspended Solids			ma/L	_	_
Turbidity (lab)	_		UTU	-	
Chemical Oxygen Demand (COD)		11	mg/L		<10
Total Organic Carbon (TOC)		3,8	mg/L		1.0
Acidity			mg/L	****	
Free Carbon Dioxide			mg/L	_	_
Hardness, Total (mg/L as CaCO3)			mg/L		_
Major Cations					
Calcium		130	mg/L		50
Calcium, Dissolved		130	mg/L		-
Magnesium		8.8	mg/L		1.9
Magnesium, Dissolved		8.8	mg/L		
Potassium		3.4	mg/L		0.76
Potassium, Dissolved		3.4	mg/L		0.10
Sodium		7.2	mg/L		1.6
Sodium, Dissolved		7.2	mg/L		1.0
Ammonia Nitrogen		1.2	mg/L	-	
Major Anions		1	1 1119/6		
Alkalinity, Total		1	mg/L		1
Alkalinity, Fotal Alkalinity, Bicarbonate		290	mg/L		89
Alkalinity, Carbonate		<20 <20	mg/L		<20
Nitrate-Nitrite, as N		- 20			1 20
	10		mg/L	enn Manu	
Nitrate, as N			mg/L		
Nitrite, as N	1		mg/L	-	10
Sulfate		65	mg/L		70
Sulfide			mg/L		
Reactive Sulf.(SW846 7.3.4.1)			mg/L		
Bromide			mg/L	-	
Fluoride			mg/L		+
Chloride		13	mg/L		0.96 J
Silica			mg/L	_	<u> </u>
Silicon			mg/L	_	
Silicon, Dissolved			mg/L		

CH-062 HARDIN SPRING

Summary of Groundwater Analytical Results EW Brown, Harrodsburg, Kentucky AMEC Project No. 567530023

			Station Number	CH-062	CH-062
			Station Name	HARDIN SPRING	HARDIN SPRING
			Lab ID		L615509-02
			Collection Date	5/17/2012	1/14/2013
Parameter	MCL	UPL	Units		
race Metals					
Iron		1.3	mg/L		0.12
Iron,Dissolved		1.3	mg/L		-
Ferrous Iron			mg/L		
Ferric Iron	_	<u> </u>	mg/L		_
Aluminum		_	mg/L		
Aluminum, Dissolved	_		mg/L		
Antimony	0.006		mg/L	-	
Antimony, Dissolved	0.006		mg/L		
Arsenic	0.01	-	mg/L		0.0012
Arsenic, Dissolved	0.01		mg/L		_
Barium	2	_	mg/L		_
Barium, Dissolved	2		mg/L		
Beryllium	0.004		mg/L		
Beryllium, Dissolved	0,004		mg/L		
Boron		0.3	mg/L	-	0.091 J
Boron, Dissolved		0.3	mg/L		nr-
Cadmium	0,005		mg/L		<0.0050
Cadmium, Dissolved	0,005		mg/L		
Chromium	0.1		mg/L		
Chromium, Dissolved	0.1		mg/L		_
Cobalt		_	mg/L	_	
Cobalt, Dissolved	-		mg/L		me
Copper	1.3	_	mg/L,	_	<0.020
Copper, Dissolved	1.3	_	mg/L		_
Lead	0.015		mg/L		<0.025 O
Lead, Dissolved	0.015	-	mg/L		****
Manganese			mg/L		_
Manganese, Dissolved			mg/L		
Mercury	0.002		mg/L	_	<0,00020
Mercury, Dissolved	0,002	_	mg/L		****
Molybdenum			mg/L		<u> </u>
Molybdenum, Dissolved	_		mg/L		
Nickel		0,0085	mg/L		<0.020
Nickel, Dissolved	_	0.0085	mg/L		
Selenium	0.05		mg/L	_	0.025
Selenium,Dissolved	0.05		mg/L	_	_
Silver			mg/L		
Silver, Dissolved			mg/L		
Thallium	0.002		mg/L		
Thallium, Dissolved	0.002		mg/L		
Vanadium	_		mg/L		
Vanadium, Dissolved			mg/L	_	_
Zinc		0,18	mg/L	·	0.060
Zinc, Dissolved		0.18	mg/L		

			ation Number	CH-063	CH-063	CH-063	CH-063	CH-063	CH-063	CH-063
		:	Station Name	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE
			Lab ID					L576419-05		
		Cc	llection Date	4/26/2012	5/7/2012	5/10/2012	5/17/2012	5/21/2012	5/24/2012	6/1/2012
Parameter	MCL	UPL	Units	0.0.000						
ield Parameters										
Water Level Elevation	_		ft NAVD88	812.5	812,5	812.6	812,5	812.5	812,5	812.4
Flow			gpm	4	5	3	7	7	2	2
Flow			mgd	0.005	0.007	0.004	0.01	0.01	0.003	0.003
Temperature			°C	17,69	12.64	12,96	12.7	13,17	12.83	12,73
pH (field)			S.U.	7.28	7.18	7,21	7.05	7.27	7.11	7.33
Specific Conductance		840	μS/cm	534	474	632	589	617	616	605
Ox-Red Potential (ORP)			mV_	-34.9	-140,5	-111.8	-226,7	-146.3	-119,8	-123,7
Dissolved Oxygen (DO)			mg/L	1.65	3.04	10,83 R	2.24	14.7 R	1.17	2.97
Turbidity (field)			NTU			_	_			
ndicator Parameters										, , , , , , , , , , , , , , , , , , , ,
pH (lab)			S.U.							
Dissolved Solids		420	mg/L	_	_	-		390		
Suspended Solids			mg/L			-				_
Turbidity (lab)			NTU			1				<u> </u>
Chemical Oxygen Demand (COD)		11	mg/L		_		_	5.5 J		
Total Organic Carbon (TOC)	_	3.8	mg/L		_	-	. —	1.2		_
Acidity		-	mg/L			1			-	_
Free Carbon Dioxide			mg/L				-	_		
Hardness, Total (mg/L as CaCO3)			mg/L							
Najor Cations										•
Calcium		130	mg/L					120		I
Calcium, Dissolved		130	mg/L			-	_	_		_
Magnesium	_	8.8	mg/L				_	6.9		
Magnesium, Dissolved		8.8	mg/L			1	_	-		
Potassium		3.4	ma/L	_				1.7	_	
Potassium, Dissolved		3.4	mg/L		-				-	
Sodium		7.2	mg/L					3.3		_
Sodium, Dissolved		7.2	mg/L		_			_		
Ammonia Nitrogen	_		mg/L			_		_		
fajor Anions				***************************************						J
Alkalinity, Total			mg/L	· <u> </u>			_			
Alkalinity,Bicarbonate		290	mg/L					240		
Alkalinity,Carbonate		<20	mg/L					<20		
Nitrate-Nitrite, as N			mg/L							
Nitrate, as N	10		ma/L					_	-	
Nitrite, as N	7		mg/L	****						_
Sulfate		65	mg/L	· ·				68		
Sulfide			mg/L					_ ~		
Reactive Sulf.(SW846 7.3.4.1)			mg/L							
Bromide			mg/L							
Fluoride			mg/L	****				_		
Chloride		13	mg/L	_				5.8		_
Silica			mg/L		_		_			****
Silicon			mg/L							
Silicon Dissolved			mg/L							

		tion Number	CH-063	CH-063	CH-063	CH-063	CH-063	CH-063	CH-063
	\$	tation Name	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE
		Lab ID				-	L576419-05		1
	Col	lection Date	4/26/2012	5/7/2012	5/10/2012	5/17/2012	5/21/2012	5/24/2012	6/1/2012
MCL	UPL	Units		•	<u>*</u>		<u> </u>		ļ
	•	· · · · · · · · · · · · · · · · · · ·							*
	1,3	mg/L					0,34	-	T
	1.3	mg/L		_				_	
	-	mg/L	,	_	_	-			
	_	mg/L		_					_
		mg/L	-	_	_		-	+	_
					****				<u> </u>
0.006									
0.006		-		_	_	_	_	_	_
0.01							<0.0010		
0.01	_		777		_	—	_		<u> </u>
2		ma/L			mon				+ -
	 				ŧ .		_		
							_	_	
	 				[
	<u> </u>						0.060 J		
								_	
				 		-			
	 			1					-
									
				· · · · · · · · · · · · · · · · · · ·		-	-		
				 					-
								_	
12							1		
	 			ļ		-	1		
		,							
		,							
_	-			}		 			
				}					
		· · · · · · · · · · · · · · · · · · ·	······································	 					
	-			_		· · · · · · · · · · · · · · · · · · ·	 		
_				}			•		
	 			<u> </u>					
				}			<u> </u>		
							 		
		• • • • • • • • • • • • • • • • • • • 		 		 	T .		
				 					
				}					
	 			+			· · · · · · · · · · · · · · · · · · ·	·	
	 								
							· · · · · · · · · · · · · · · · · · ·		-
	•			!					
	-				·····	 			
·····				+		· 			
									<u> </u>
		Col MCL UPL 1.3 1.3 1.3	MCL UPL Units	Collection Date	Lab ID Collection Date 4/26/2012 5/7/2012	Collection Date Collection	Lab ID	Collection Date	Lab ID

			rtion Number	CH-063	CH-063	CH-063	CH-063	CH-063	CH-063	CH-063
		5	Station Name	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE
			Lab ID						L611707-03	L611707-03
		Co	llection Date	6/7/2012	6/15/2012	8/2/2012	8/23/2012	9/20/2012	12/17/2012	12/17/2012
Parameter	MCL	UPL	Units	•						
Field Parameters										
Water Level Elevation			ft NAVD88					812,4	812,5	812,5
Flow	_		gpm	IF	NF	NF	NF	2	50	50
Flow			mgd	IF	NF	NF	NF	0,003	0.072	0.07
Temperature	_		°C	13.12	16.31	15.52	15.09	18.1	14.43	
pH (field)			S.U.	7.85	7.08	7.8	7.84	7.51	7.78	_
Specific Conductance		840	μS/cm	639	833	656	693	962	433	
Ox-Red Potential (ORP)			mV	-124,4	-123,5	92,6	108,6	-178,3	-103,8	_
Dissolved Oxygen (DO)			mg/L		8.93 R	6.49	6.94	ı	7.43	···
Turbidity (field)			NTU	_			_		12	
Indicator Parameters										
pH (lab)			Ş.Ų.			_		_		
Dissolved Solids		420	mg/L				-	_	320	340
Suspended Solids			mg/L	<u> </u>		_	_			
Turbidity (lab)	_	l . . .	NTU	-	_	-	_	1	_	<u> </u>
Chemical Oxygen Demand (COD)		11	mg/L		_	-	ı	ł	9,4 J	9.4 J
Total Organic Carbon (TOC)		3.8	mg/L				1	1	1.8	4.4 P1
Acidity			mg/L	***						
Free Carbon Dioxide			mg/L	_	-			1	-	_
Hardness, Total (mg/L as CaCO3)			mg/L					1		
Major Cations								,		
Calcium		130	mg/L	_	_	-	_	1	110	110
Calcium, Dissolved		130	mg/L						h-man.	_
Magnesium		8.8	mg/L						6.1	6.0
Magnesium, Dissolved		8.8	mg/L				****	1		
Potassium	_	3.4	mg/L						1.9	1.9
Potassium, Dissolved		3.4	mg/L							-
Sodium	_	7.2	mg/L	_	_		_	-	3.5	3.0
Sodium, Dissolved	_	7.2	mg/L	_	_	-		1	_	
Ammonia Nitrogen	-	-	mg/L	_	_	_				
Major Anions										
Alkalinity, Total			mg/L			-				
Alkalinity,Bicarbonate		290	mg/L		_				220	220
Alkalinity,Carbonate		<20	mg/L				****		<20	<20
Nitrate-Nitrite, as N	1		mg/L					-		
Nitrate, as N	10	_	mg/L	_	_					
Nitrite, as N	1		mg/L	_	-		-			
Sulfate		65	mg/L		-				43	45
Sulfide	· · · · · · · · · · · · · · · · · · ·		mg/L	<u> </u>	_	<u> </u>			_	
Reactive Sulf.(SW846 7.3.4.1)	_		mg/L					_	_	
Bromide		_	mg/L		_	-	_			
Fluoride		-	mg/L		_				_	
Chloride	_	13	mg/L		_	_		_	4.4	4.1
Silica			mg/L			****		1	-	
Silicon			mg/L		_	_	_			
Silicon, Dissolved			mg/L				—			

CH-063 ROCKHOUSE SPRING

Summary of Groundwater Analytical Results EW Brown, Harrodsburg, Kentucky AMEC Project No. 567530023

		Sta	tion Number	CH-063	CH-063	CH-063	CH-063	CH-063	CH-063	CH-063
		S	tation Name	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE	ROCKHOUSE
			Lab ID		_			_	L611707-03	L611707-03
			lection Date	6/7/2012	6/15/2012	8/2/2012	8/23/2012	9/20/2012	12/17/2012	12/17/2012
Parameter	MCL	UPL	Units							
race Metals	•		•						*	*
Iron	_	1.3	mg/L						0.37	0.52
Iron, Dissolved	_	1.3	mg/L							
Ferrous Iron		_	mg/L	_	-			_	_	
Ferric Iron	_		mg/L			_	_	_		
Aluminum	_		mg/L		_	-		_		
Aluminum, Dissolved			mg/L			<u> </u>				
Antimony	0.006		mg/L	_	-	_		_		
Antimony, Dissolved	0.006		mg/L			_		_	_	
Arsenic	0.01		mg/L	_					<0,0010	<0,0010
Arsenic, Dissolved	0.01	 	mg/L				-		_	_
Barium	2		mg/L	_		_				
Barium, Dissolved	2		mg/L			-		_		~~
Bervllium	0.004		mg/L	_		_				
Beryllium,Dissolved	0.004		mg/L			_	 			
Boron	-	0.3	mg/L	***				<u> </u>	0.16 J	0.080
Boron, Dissolved		0.3	mg/L			_				
Cadmium	0,005	_	mg/L		227				<0.0050	<0.0050
Cadmium, Dissolved	0.005	<u> </u>	mg/L				_		_	_
Chromium	0.1		mg/L	-			 			·
Chromium, Dissolved	0.1		mg/L		_	_		_	_	
Cobalt			mg/L	_						
Cobalt, Dissolved			mg/L		_	_				
Copper	1.3	-	mg/L				_		<0.020	<0.020
Copper, Dissolved	1,3	<u> </u>	mg/L							
Lead	0.015	 _	mg/L				<u> </u>		<0.0050	<0.0050
Lead, Dissolved	0.015		mg/L						-	
Manganese			mg/L					_		
Manganese, Dissolved		 	mg/L		200	_		_		
Mercury	0,002		mg/L	_	_	_		_	<0,00020	<0.00020
Mercury, Dissolved	0.002		mg/L		_	_	_			-5,0002,0
Molybdenum			mg/L			-	<u> </u>			
Molybdenum.Dissolved			mg/L	_	_	_	-		_	
Nickel		0,0085	mg/L		_				<0.020	<0.020
Nickel.Dissolved		0.0085	mg/L							
Selenium	0.05		mg/L						<0.020	<0.020
Selenium, Dissolved	0.05	 	mg/L							
Silver			mg/L							
Silver, Dissolved			mg/L							_
Thallium	0.002		mg/L		-		 			
Thallium, Dissolved	0.002	-	mg/L		_	_		-	_	
Vanadium			mg/L		_	_				
Vanadium, Dissolved		 =	mg/L							
Zinc		0.18	mg/L			_			0.0072 J	0.011
Zinc.Dissolved		0.18	ma/L		_	_	 	 	- 0.0072 0	

		St	ation Number	CH-063	CH-063
			Station Name	ROCKHOUSE	ROCKHOUSE
			Lab ID	L615509-03	L728970-01
		Co	offection Date	1/14/2013	10/21/2014
Parameter	MCL	UPL	Units		
ield Parameters					
Water Level Elevation			ft NAVD88	812,6	
Flow			gpm	60	IF
Flow			mgd	0.09	IF
Temperature			°C	12.49	13,64
pH (field)			S.U.	8,53	9.29
Specific Conductance		840	µS/cm	429	633
Ox-Red Potential (ORP)			mV	132.7	1,5
Dissolved Oxygen (DO)			ma/L	7,81	7.78
Turbidity (field)		1	NTU	12.9	0 R
ndicator Parameters		<u> </u>			
pH (lab)		-	S.U.		_
Dissolved Solids		420	mg/L	330	390
Suspended Solids		T -	mg/L		
Turbidity (lab)			NTU		
Chemical Oxygen Demand (COD)	_	11	mg/L	3,3 J	<10
Total Organic Carbon (TOC)	_	3.8	mg/L	2.1	1.8
Acidity		_	mg/L		
Free Carbon Dioxide			mg/L		
Hardness, Total (mg/L as CaCO3)			mg/L		
Major Cations					
Calcium		130	mg/L	86	130
Calcium, Dissolved		130	mg/L		130 V
Magnesium	****	8.8	mg/L	3,4	7.8
Magnesium, Dissolved		8.8	mg/L		7.2
Potassium		3.4	mg/L	1,7	2.7
Potassium, Dissolved		3.4	mg/L		2,5
Sodium		7.2	mg/L	1.7	4.4
Sodium, Dissolved		7.2	mg/L		4.1
Ammonia Nitrogen			mg/L		_ `
Major Anions		·	11,9/0		
Alkalinity, Total			mg/L		
Alkalinity, Bicarbonate		290	mg/L	140	250
Alkalinity,Carbonate		<20	mg/L	<20	<20
Nitrate-Nitrite, as N			mg/L	720	
Nitrate, as N	10		mg/L	****	
Nitrite, as N	1	 	mg/L		***
Sulfate		65	mg/L	23	55
Sulfide			mg/L		
Reactive Sulf.(SW846 7.3.4.1)		 	mg/L		
Bromide		 	mg/L		
Pluoride			mg/L		
Chloride		13	mg/L	2,5	15
Silica		- 13	mg/L		
Silicon			mg/L		
Silicon, Dissolved			mg/L		

		St	ation Number	CH-063	CH-063
			Station Name	ROCKHOUSE	ROCKHOUSE
			Lab ID	L615509-03	L728970-01
		C	ollection Date	1/14/2013	10/21/2014
Parameter	MCL	UPL.	Units		
race Metals					
Iron	-	1.3	mg/L	0.16	0.22
Iron,Dissolved		1.3	mg/L		<0.10
Ferrous Iron		_	mg/L		
Ferric Iron			mg/L	_	_
Aluminum			mg/L		
Aluminum,Dissolved		I	mg/L		-
Antimony	0.006		mg/L		_
Antimony, Dissolved	0.006		mg/L	~~~	
Arsenic	0.01		mg/L	0.0012	0,00033 J
Arsenic,Dissolved	0.01		mg/L	· ·	<0.0010
Barium	2	_	mg/L		-
Barium,Dissolved	2		mg/L	_	
Beryllium	0.004	T	mg/L		
Beryllium, Dissolved	0,004	_	mg/L	_	
Boron		0,3	mg/L	0,075 J	0.068 J
Boron, Dissolved	_	0.3	mg/L	-	0.034 J
Cadmium	0.005	I. –	mg/L	<0.0050	<0.00050
Cadmium, Dissolved	0,005		mg/L		<0,00050
Chromium	0.1		mg/L		
Chromium, Dissolved	0.1		mg/L		
Cobalt		<u> </u>	mg/L		
Cobalt Dissolved	_		mg/L		
Copper	1.3	_	mg/L	<0,020	0,00066 J
Copper, Dissolved	1,3		mg/L		<0.0020
Lead	0.015		mg/L	<0.0050	0,00039 J
Lead, Dissolved	0.015		mg/L		<0.0010
Manganese			mg/L	-	
Manganese, Dissolved			mg/L		-
Mercury	0.002	_	mg/L	<0.00020	<0.00020
Mercury,Dissolved	0.002		mg/L		<0.00020
Molybdenum	_		mg/L		
Molybdenum, Dissolved			mg/L		_
Nickel		0.0085	mg/L	<0.020	0.0022
Nickel,Dissolved		0.0085	mg/L		0.0013
Selenium	0.05		mg/L	C 0600'0	0.00073 J
Selenium, Dissolved	0.05		mg/L	-	<0,0010
Silver			mg/L	-	
Silver, Dissolved	-	_	mg/L		-
Thallium	0.002		mg/L	unu .	
Thallium, Dissolved	0.002		mg/L	_	
Vanadium			mg/L		
Vanadium, Dissolved			mg/L		
Zinc		0.18	mg/L	0.079	0.0028 J
Zinc, Dissolved		0.18	mg/L		0.0027 J

		Sta	tion Number	CH-065	CH-065	CH-065
		5	Station Name	HARDIN 2 SPRING	HARDIN 2 SPRING	HARDIN 2 SPRING
			Lab ID		_	
			llection Date	7/23/2012	8/2/2012	9/20/2012
Parameter	MCL	UPL	Units			
Field Parameters						
Water Level Elevation			ft NAVD88			
Flow			gpm	1	1	1
Flow			mgd	0.001	0.001	0.001
Temperature			°C	15.37	15.76	19.41
pH (field)			S.U.	6.91	7.36	7.92
Specific Conductance		840	μS/cm	1,763	1,678	787
Ox-Red Potential (ORP)			m∨	129.6	-137,3	-99.4
Dissolved Oxygen (DO)	-		mg/L	7.23	9.74 R	
Turbidity (field)			NTU		•••	1
ndicator Parameters	*					
pH (lab)			S.U.	-	_	
Dissolved Solids		420	mg/L			
Suspended Solids			mg/L		_	-
Turbidity (lab)			NTU			-
Chemical Oxygen Demand (COD)		11	mg/L	. —		
Total Organic Carbon (TOC)		3.8	mg/L	_	-	
Acidity			mg/L	_		
Free Carbon Dioxide	_		mg/L	_		
Hardness, Total (mg/L as CaCO3)			mg/L		—	
Major Cations						
Calcium		130	mg/L	1	-	
Calcium, Dissolved		130	mg/L	-	-	
Magnesium		8.8	mg/L			_
Magnesium, Dissolved		8.8	mg/L	_	_	
Potassium		3.4	mg/L			
Potassium, Dissolved	_	3.4	mg/L			_
Sodium		7.2	mg/L			iren
Sodium, Dissolved		7.2	mg/L			
Ammonia Nitrogen			mg/L		_	
Major Anions		1	<u>,,</u>			
Alkalinity, Total			mg/L			
Alkalinity,Bicarbonate	_ ···	290	ma/L			
Alkalinity, Carbonate		<20	mg/L			
Nitrate-Nitrite, as N			mg/L			-
Nitrate, as N	10	-	mg/L			
Nitrite, as N	1	_	mg/L			_
Sulfate		65	mg/L	_		_
Sulfide			mg/L		_	
Reactive Sulf.(SW846 7.3.4.1)		 	mg/L		_	
Bromide			mg/L			
Fluoride		_	mg/L	_		
Chloride		13	mg/L			
Silica			mg/L			
Silicon		 	mg/L			
Silicon, Dissolved		 	mg/L			

		Sta	tion Number	CH-065	CH-065	CH-065
		. \$	tation Name	HARDIN 2 SPRING	HARDIN 2 SPRING	HARDIN 2 SPRING
			Lab ID			
		Col	lection Date	7/23/2012	8/2/2012	9/20/2012
Parameter	MCL	UPL	Units			
Trace Metals						
Iron		1.3	mg/L	_	_	
Iron,Dissolved		1.3	mg/L			1
Ferrous Iron	_	_	mg/L			-
Ferric Iron		-	mg/L	_	_	
Aluminum	_	_	mg/L	_		_
Aluminum, Dissolved			mg/L			
Antimony	0.006	_	mg/L			_
Antimony, Dissolved	0.006		mg/L	****		
Arsenic	0.01		mg/L		-	
Arsenic, Dissolved	0.01		mg/L			
Barium	2		mg/L	_	_	_
Barium, Dissolved	2	_	mg/L		_	
Beryllium	0.004		mg/L			-
Beryllium, Dissolved	0.004	<u> </u>	mg/L			_
Boron		0.3	mg/L		→	
Boron, Dissolved		0.3	mg/L	_	-	-
Cadmium	0.005		mg/L		_	_
Cadmium, Dissolved	0.005		mg/L	_	<u> </u>	
Chromium	0.1	_	mg/L			_
Chromium, Dissolved	0.1	_	mg/L		-	
Cobalt			mg/L	***		_
Cobalt, Dissolved	_	<u> </u>	mg/L			-
Copper	1.3		mg/L		_	
Copper, Dissolved	1.3		mg/L			_
Lead	0.015		ma/L	···		
Lead, Dissolved	0.015		mg/L	-		
Manganese			mg/L		-	
Manganese, Dissolved		-	mg/L			_
Mercury	0.002		mg/L	-	_	
Mercury, Dissolved	0.002	-	mg/L		_	
Molybdenum			mg/L			_
Molybdenum, Dissolved			mg/L			
Nickel	-	0.0085	mg/L			
Nickel, Dissolved		0.0085	mg/L			
Selenium	0.05		mg/L			
Selenium.Dissolved	0.05		mg/L		-	
Silver	_		mg/L			
Silver, Dissolved			mg/L		-	
Thallium	0.002		mg/L		_	
Thallium, Dissolved	0.002		mg/L	_		
Vanadium			mg/L	- me	-	
Vanadium, Dissolved			mg/L	_		
Zinc	<u> </u>	0.18	mg/L			
Zinc.Dissolved		0.18	mg/L			

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	E.W (As offic	. Brown Stat. ially shown on DWM I	<i>ion</i> Pennit Face)	Activity <u>Spe</u>	ecial Waste Landfill
Permit No. <u>084</u>	-00010	_ Finds/Unit	No	Quarter &	& Year_ <i>4th 2014</i>
Please check <u>only</u>	ONE of t	he following:	•		
Characterizat	ion	_Quarterly	X Semi-Annu	alAnn	ualAssessment
Please check appli	cable sul	mittal:	X Groundwater	Surface	Water
and 45:160) or by statue the jurisdiction of the I eight (48) hours of ma	(Kentucky Division of king the de port is <u>NO</u>	Revised Statues Waste Managem termination usin	Chapter 224) to conduct gent. You must report ang statistical analyses, di	roundwater and sony indication of rect comparison,	egulations - 401 KAR 48:300 arface water monitoring under contamination within forty-or other similar techniques. e form are attached. Do not
accordance with a syste Based on my inquiry of to the best of my know	m designed the person vledge and	to assure that qu or persons directl belief, true, accu	alified personnel properly by responsible for gathering	gather and evalue g the information n aware that ther	ny direction or supervision in the the information submitted, the information submitted is, a are significant penalties for ns.
J. No	De		2		8-17-15
sic	NATUR	E	-		DATE
	W. Micha	iel Winkler – .	Manager of Environ	mental Progra	ms

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date:	10/21-22/2014	County:_	Mercer	Permit No.:_	<u>084-00010</u>
Facility Name: <u><i>Ker</i></u>	ntucky <u>Utilities Co.</u> E.W (As officially shown on b		(contact: A	ngela Zeveli)	
Mailing Address:	815 Dix Dam Road	Harr	odsburg	40330)
	Street	1,4111	City	Zip	
Phone No.: <u>(859)</u>	748-4414 Lati	tude <u>N 37</u>	7.787°	Longitude	W 84.721°
	OWNER	INFORMA	TION		
Facility Owner:	Kentucky Utilities	Company	P	hone No.: <i>(502)</i>	<u>627-4659</u>
Contact Person:	W. Paul Pu	ckett		Phone No.: <u>(502</u>) <i>627-4659</i>
Contact Person Titl	e: <u>Engineer, Environi</u>	nental Affairs	<u>Department</u>	, LG&E and KU	
Mailing Address:	P.O. Box 32010	Lo	ouisv <u>ille</u>	40232	
<u> </u>	Street		City	Zip	
		NG PERSO V LANDFILL OR LABO	•		
Company:	AMEC-Foster Wheeler	r Consultants	(formerly M	ACTEC)	
Contact Person:	Alison L. Dunn		Pho	ne No.: <i>(859) 56</i>	6-3729
Mailing Address:	2456 Fortune Drive, Suit	e 100	Lexingto	n 4050	9
	Street		City	Zip	
	LABORAT	ORY REC	ORD #1		
Laboratory:	ESC Lab Sciences			Lab ID No.:	
Contact Person:	Leslie Newton		_ Phone N	No.: <u>(615) 758</u>	<u>2-5858</u>
Mailing Address:	12065 Lebanon Road	Mt. Juliet,	TN	37122	
	Street	City		Zip	
	LABORAT	ORY REC	ORD #2		
Laboratory:				Lab ID No.	<u> </u>
Contact Person:			I	Phone No.:()
Mailing Address:					
	Street		Ci	tv 2	7.in

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

(S)

Exhibit GHR-1		-
Page 121 of 300	/	1
LAB ID:		

Page 1 of 4

For Official Uso Only

GROUNDWATER SAMPLE ANALYSIS

F												 	
AKGWA NUMBERI	, Fac:	ility Well/Spring Number											
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2	, etc.)		Stonewall Sp	pr.	Dam Toe Right		Ditch Spring	g	Briar Patch	Spr.
Sample Sequen	ce #					6 1		1		2		-	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applical	ole	Not Applicab	Le	Not Applical	ble	Not Applicab	ole
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				10/22/14 11:	: 45	10/16/14 10:3	L5	10/16/14 12	:57	Not Sampled	
Duplicate ("Y	" or	"N") 2				No		No		No		No .	
Split ("Y" or	"N")	3				Мо		ИО		No		No	
Facility Sample ID Number (if applicable)					Not Applical	ble	Not Applicab	Le	Not Applical	ble	Not Applical	ole	
Laboratory Sample ID Number (if applicable)					Not Applicat	ole	Not Applicab	Le	Not Applical	ble	Not Applicat	ole	
Date of Analy	sis (Month/Day/Year)				10/24-11/7/3	14	10/17-24/14		10/17-24/15			
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKONOWN)		UP		DOWN		DOWN		DOWN	
CAS RN4		CONSTITUENT	D ₂	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE ÿR PQL6	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G		G
							s		s		s		s
s0906	0	Static Water Level Elevation		Ft. MSL	Fld. Meas.	-		_				-	
S0296	0	рн		units	Fld. Meas.	7.86		7.6		8.3		_	
S0145	1	Specific Conductance		UHMS/CM	Fld. Meas.	682		1,501		1,344		-	
S0145	1	Temperature		°C	Fld. Meas.	15.8		16.34		15.97		-	
16887-00-6	2	Chloride(s)	T	MG/L	9056A	31		93		9.8		_	
18785-72-3	0	Sulfate	T	MG/L	9056A	120		620		540		-	
S0266	0	Total Dissolved Solids	T	MG/L	2540C	500		1,200		1,100		_	
S0130	0	Chemical Oxygen Demand	T	MG/L	5220D	<3.0		<3.0		12		_	

1AKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

FINDS/UNIT:_

Exhibit GHR-1 / 1 Page 122 of 300

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	, Fac	ility Well/Spring Number											
Facility's L	ocal W	Well or Spring Number (e.g. M	W-1, MW-2,	etc.)		Stonewall Spr.		Dam Toe Right		Ditch Spring		Briar Patch Spr.	
CAS RN⁴		CONSTITUENT	T D5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F L
							A G		A		A. G		A
							s		s		s		s
S0268	1	Total Organic Carbon	T	MG/L	5310C	2.10		1.10		0.80		-	
7440-42-8		Boron	T	MG/L	6010C	0.17		4.6		1.3			
7440-59-4		Calcium	T	MG/L	6010C	140		260		260		_	
7440-50-8	0	Copper	т	MG/L	6010C	0.0010		0.00055		0.0022		_	
7440-23-5	0	Sodium	T	MG/L	6010C	12		12		17		-	
													<u></u>
										,			
													<u> </u>
								_					_
													4
	<u> </u>												
	-												
	<u> </u>												
													 -
····			-										ļ
							-						<u> </u>
	-												
							ļ				 		
- Andrews													

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL

(S)

Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

Exhibit GHR-I
Page 123 of 300 / 1
LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

			 .			1		· · · · · · · · · · · · · · · · · · ·		T		T	
AKGWA NUMBER1	Faci	lity Well/Spring Number	••••			9000-1873		9000-1872					
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2	, etc.)		Webb Spr. Cplx.		Railroad Spring		Rock House	Spr.		
Sample Sequen	ce #			·		5		4		3			
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applical	ole	Not Applicat	le	Not Applica	ble		
Sample Date a	nd Ti	ne (Month/Day/Year hour:minutes)				10/22/14 10	:30	10/21/14 16:	25	10/21/14 15	:50		
Duplicate ("Y	" or	"N") 2				No		No		No			
Split ("Y" or	(ייעיי	3				No		No	•	No			
Facility Samp	le ID	Number (if applicable)				Not Applical	ole	Not Applical	le	Not Applica	ble		
Laboratory Sa	mple :	ID Number (if applicable)				Not Applical	ole	Not Applical	le	Not Applica	ble		
Date of Analysis (Month/Day/Year)					10/24-11/7/14 10/23-11/10/14		10/23-11/10/14						
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)				UNKNOWN		UNKNOWN		UΡ					
CAS RN4		CONSTITUENT	T D5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G		G
							s		s		s		s
S0906	0	Static Water Level Elevation		Ft. MSL	Fld. Meas.	_		-		_			
s0296	0	рн		units	Fld. Meas.	7.95		8.64		9.29			
s0145	1.	Specific Conductance		UHMS/CM	Fld. Meas.	892		1,099		633			
S0145	1	Temperature		°C	Fld. Meas.	19.7		17.0		13.6			
16887-00-6	2	Chloride(s)	T	MG/L	9056A	4.7		24		15			
18785-72-3	0	Sulfate	T	MG/L	9056A	240		350		55			
S0266	0	Total Dissolved Solids	T	MG/L	2540C	610		820		390			
s0130	0	Chemical Oxygen Demand	T	MG/L	5220D	<3.0		5.2		<3.0		····	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU E.W. Brown Special Waste Landfill Permit Number: 084-00010

FINDS/UNIT:

Exhibit GHR-1 Page 124 of 300

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	, Fac	ility Well/Spring Number				9000-1873		9000-1872					
Facility's L	ocal W	Well or Spring Number (e.g. MW-1	, MW-2	, etc.)		Webb Spr. C	plx.	Railroad Spring		Rock House Spr.			
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G S		G S		G		G S
S0268	1	Total Organic Carbon	T	MG/L	5310C	1.00	-	1.80	3	1.80	-		+
7440-42-8	1	Boron	T	MG/L	6010C	0.22		1.4		0.068			
7440-59-4		Calcium	T	MG/L	6010C	160		180		130			
7440-50-8	0	Copper	T	MG/L	6010C	<0.0053		0.001		0.00066			
7440-23-5	0	Sodium	T	MG/L .	6010C	30		20		4.4			
<u></u>							-		ļ		ļ		
,	_			, <u>.</u>	<u> </u>		ļ						
	_		<u> </u>						<u> </u>				
				<u> </u>									-
			-			<u> </u>	-						
			 				}				<u> </u>		_
	_						-		<u> </u>				+
	 						 				<u> </u>		-
	-						-				-		+
	 		 								 		+
<u> </u>	<u> </u>	<u> </u>		<u></u>	<u> </u>	<u> </u>	<u></u>	L		<u> </u>	<u> </u>	<u></u>	

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	E.W. Brown (As officially shown on		_Activity_ <i>Special</i> _	<u> Waste Landfill</u>
Permit No. <u>084</u>		/Unit No	Quarter & Yes	ar <u> 1st 2015</u>
Please check only	<u>ONE</u> of the follow	wing:		
Characterizat	ionQuarte	erly <u>X</u> Semi-Annu	alAnnual	Assessment
Please check appli	cable submittal:	<u>X</u> Groundwater	Surface Wat	er
and 45:160) or by statue the jurisdiction of the D eight (48) hours of mal	(Kentucky Revised St Division of Waste Mar ding the determination port is <u>NOT</u> conside	red by regulation (Kentucky Wa tatues Chapter 224) to conduct a nagement. You must report a on using statistical analyses, di ered notification. Instructions	groundwater and surface on my indication of containing irect comparison, or oth	water monitoring under nination within forty- ter similar techniques.
accordance with a system Based on my inquiry of to the best of my know	n designed to assure the person or persons of ledge and belief, true	ment and all attachments were hat qualified personnel properly directly responsible for gathering, accurate, and complete. I austicity of fine and imprisonments	y gather and evaluate the ng the information, the in m aware that there are s	information submitted formation submitted is,
	200	OL	9-	9-15
stG	NATURE		DAT	E
	W Michael Winkl	ler – Manager of Environ	mantal Programs	

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date: _	3/11/2015	Count	y: <u>Mercer</u>	Permit No.:	084-00010
Facility Name: <u><i>Ke</i></u>	ntucky Utilities Co. E.W (As officially shown o			ngela Zeveli)	
Mailina Address	815 Dix Dam Road		Harrodsburg	4033	20
Maning Addiess	Street		City	Zip	 ,
Phone No.: <u>(859</u>) 748-4414 La	ntitude	N 37.787°	_ Longitude_	W 84.721°
	OWNER	R INFOR	MATION		
Facility Owner:	Kentucky Utilities	s Company	P	hone No.: <u>(502)</u>	<u>627-4659</u>
Contact Person:	W. Paul F	uckett_	-	Phone No.:_(50	<u>2) 627-4659</u>
Contact Person Tit	le: <u>Engineer, Enviro</u>	nmental Aff	åirs Departmen	t, LG&E and KU	<u> </u>
Mailing Address:	P.O. Box 32010		Louisville	40232	
	Street		City	Zip	
, ,	AMEC-Foster Wheel		unts (formerly M	ACTEC)	
Contact Person:	<u> Alison L. Dunn</u>		Pho	one No.: <u>(859) 56</u>	56- <u>3729</u>
Mailing Address:_	2456 Fortune Drive, Su Street	ite 100	<u>Lexingto</u> City	on 4050 Zip	
	LABORA'	TORY R	ECORD #1		
Laboratory:	ESC Lab Sciences			Lab ID No.: _	
Contact Person:	<u>Leslie Newtor</u>	1	Phone N	No.: <u>(615) 75</u>	<u>8-5858</u>
Mailing Address:_	12065 Lebanon Road Street		<i>liet, TN.</i> ity	37122 Zip	
			•	.	
			ECORD #2		
Laboratory:				Lab ID No	
Contact Person:			I	Phone No.: (<u>)</u>
Mailing Address:_					
	Street		Ci	tv	7 in

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

(S)

Exhibit GHR-1-	1	of	4
Page 127 of 300 FINDS/UNIT:		/	1
LAB ID:			

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

										<u> </u>			
AKGWA NUMBER!	, Fac:	ility Well/Spring Number											
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		Stonewall Sp	pr.	Dam Toe Righ	t	Ditch Sprin	9	Briar Patch	Spr.
Sample Sequer	ce #					7		2		1		-	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	o, (M)	ethod, or (E	:) quipment	Not Applical	ble	Not Applicab	le	Not Applica	ble	Not Applica	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				3/11/15 16:	10	3/11/15 11:2	0	3/11/15 9:2	5	Not Sampled	
Duplicate ("Y	" ox	"N") 2				ио		No		No		No	
Split ("Y" or	"N")	3				Мо		No		No		No	
Facility Samp	le ID	Number (if applicable)				Not Applica	ble	Not Applicab	le	Not Applica	ble	Not Applica	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applica	ble	Not Applicab	le	Not Applica	ble	Not Applica	ple
Date of Analy	sis (Month/Day/Year)				3/11-20/15		3/11-20/15		3/11-20/15		3/11-20/15	
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE,	, UNKNOWN)	· · · · · · · · · · · · · · · · · · ·	UP:		DOWN		DOWN		DOWN	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F
							A G S		A G S		A G S		A G S
S0906	0	Static Water Level Elevation		Ft. MSL	Fld. Meas.	_	3	_		_	-		+
s0296	0	pH		units	Fld. Meas.	7.39		6.91		7.28		_	
S0145- →	1	Specific Conductance	_	UHMS/CM	Fld. Meas.	337		1,156		676		-	
s0145	1	Temperature		°C	Fld. Meas.	8.5		14.5		7.95			
16887-00-6	2	Chloride(s)	т	MG/L	9056A	4.6		55		0.63		-	
18785-72-3	0	Sulfate	T	MG/L	9056A	21		470		320		_	
S0266	0	Total Dissolved Solids	т	MG/L	2540C	210		900		520		_	
s0130- →	T ₀	Chemical Oxygen Demand	T	MG/L	5220D	4.7		<3.0		4.4		-	

1AKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

FINDS/UNIT:____

Page 128 of 300 / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER¹	, Fac	ility Well/Spring Number											
Facility's Lo	cal W	ell or Spring Number (e.g. M	W-1, MW-2,	etc.)		Stonewall	Spr.	Dam Toe Ri	ght	Ditch Spr	ing	Briar Patch	Spr.
CAS RN4		CONSTITUENT	T Ds	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F
							A G		A		A G		A
							s		s		s		s
s0268	1	Total Organic Carbon	T	MG/L	5310C	1.6		1.2		0.89		-	†
7440-42-8		Boron	т	MG/L	6010C	0.046		2.9		0.19		-	
7440-59-4		Calcium	Т	MG/L	6010C	72		230		140		-	
7440-50-8	0	Copper	Т	MG/L	6010C	<0.00052		<0.00052		0.00091			
7440-23-5	0	Sodium	Т	MG/L	6010C	2.6		8.2		2.7		-	
											<u> </u>		
								_					
													\bot
												-	

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

(S)

Exhibit GHR-19-	3	οf	4	
Page 129 of 300 FINDS/UNIT:				
FINDS/UNIT:		/-	<u> 1</u>	

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER	, Fac.	ility Well/Spring Number				9000-1873		9000-1872					
Facility's L	ocal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		Webb Spr. Cr	plx.	Railroad Spr	ing	Rock House	Spr.	Hardin Spri	ng
Sample Seque	nce #					5		6		4		3	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	o, (M)	ethod, or (E) quipment	Not Applical	ole	Not Applicab	Le	Not Applica	ble	Not Applica	ple
Sample Date	and Ti	me (Month/Day/Year hour:minutes)				3/11/15 15:0	00	3/11/15 15:3	5	3/11/15 14:	30	3/11/15 13:	35
Duplicate ("	Y" or	"N") ²			***************************************	No		No		No		No	
Split ("Y" o	r "N")	3				No		Мо		No		No	
Facility Sam	ole ID	Number (if applicable)				Not Applicat	ole	Not Applicab	le	Not Applica	ble	Not Applica	ple
Laboratory S	ample	ID Number (if applicable)				Not Applicat	ble	Not Applicab	le	Not Applica	ble	Not Applica	ble
Date of Anal	ysis (Month/Day/Year)				3/11-20/15		3/11-20/15		3/11-20/15		3/11-20/15	
Gradient wit	n resp	ect to Monitored Unit (UP, DOWN,	SIDE,	UNKNOWN)		UNKNOWN		UNKNOWN		UP		UP	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F
	Address of the Walter of the Control						A G S		A G S	;	A G S		A G S
\$0906	0	Static Water Level Elevation		Ft. MSL	Fld. Meas.	-		_		-			
s0296	0	рн		units	Fld. Meas.	7.66	-	6.99	1	6.97		6.93 ·	
S0145	1	Specific Conductance		UHMS/CM	Fld. Meas.	507		895		390		239	
s0145	1	Temperature		°C	Fld. Meas.	12.2		10.8		10.8		12.5	
16887-00-6	2	Chloride(s)	Т	MG/L	9056A	3.0		38		2.5		4.4	
18785-72-3	0	Sulfate	Ħ	MG/L	9056A	100		290		26		44	
S0266	0	Total Dissolved Solids	T	MG/L	2540C	340		700		240		220	
s0130	0	Chemical Oxygen Demand	T	MG/L	5220D	<3.0		3.7		<3.0		<3.0	

LAKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"I" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary

dilution factor

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

FINDS/UNIT:_

Exhibit GHR 4 of 4 Page 130 of 300 / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	, Fac	ility Well/Spring Number				9000-1873		9000-1872					
Facility's Lo	ocal W	Well or Spring Number (e.g. N	W-1, MW-2,	etc.)		Webb Spr. C	plx.	Railroad Spr	ing	Rock House	Spr.	Hardin Spri	ing
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L
							A G		A G		A. G	٠.	A G
							s		s		s		s .
S0268	1	Total Organic Carbon	Т	MG/L	5310C	2.6		1.5		2.2		1.1	
7440-42-8		Boron	r	MG/L	6010C	0.044		0.90		0.042		0.17	
7440-59-4		Calcium	T	MG/L	6010C	100		150		86		75	
7440-50-8	0	Copper	T	MG/L	6010C	0.00078		<0.00052		<0.00052		<0.00052	
7440-23-5	0	Sodium	Т	MG/L	6010C	2.9		22		1.7		3.9	
		·											

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 200 FAIR OAKS DRIVE FRANKFORT, KY 40601

Facility Name	E.W. Brown Station (As officially shown on DWM Pen	nit Face) A	ctivity <u>Special W</u>	aste Landfill
Permit No. <u>084-000</u>	<u>10 </u>	To	Quarter & Year	· 4th 2015
Please check only ONI	\underline{E} of the following:			
Characterization	_X_Quarterly	Semi-Annual	Annual _	Assessment
Please check applicabl	e submittal: <u>X</u>	C_Groundwater _	Surface Wate	r
This form is to be utilized by and 45:160) or by statue (Ker the jurisdiction of the Divisic eight (48) hours of making to Submitting the lab report submit the instruction pages.	tucky Revised Statues Chon of Waste Management the determination using	apter 224) to conduct grou . You must report any statistical analyses, direc	ndwater and surface wa indication of contami t comparison, or other	ater monitoring under nation within forty- r similar techniques.
I certify under penalty of law accordance with a system des Based on my inquiry of the p to the best of my knowledge submitting false information,	igned to assure that quali erson or persons directly re and belief, true, accurat	fied personnel properly gar esponsible for gathering the, and complete. I am a	ther and evaluate the in ne information, the info ware that there are sig	formation submitted. rmation submitted is,
i W. Ma	DWa	2		6-15
SIGNA	ΓURE		DATE	ζ
W λ	Aichael Winkler – M	anager of Environme	ntal Programs	

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date: _	10/2/2015	_ County:_	Mercer	_ Permit No.:_	<u>084-00010</u>
Facility Name: <u>Ke</u>	entucky Utilities Co. E.W. (As officially shown on		n (contact: Ar	ngela Zeveli)	
Mailing Address:	815 Dix Dam Road	Har	rodsburg	4033	9
.	Street		City	Zip	
Phone No.: <u>(859</u>) <i>748-4414</i> Lat	itude <u>N</u> 3	3 <u>7.787°</u>	_ Longitude_	W 84.721°
	OWNER	INFORM	ATION		
Facility Owner:	Kentucky Utilities	Company	Pl	none No.: <i>(502)</i>	<u>627-4659</u>
Contact Person:	W. Paul Pı	ıckett		Phone No.:_ <i>(502</i>) 627-4659
Contact Person Tit	le: <i>Engineer, Environ</i>	mental Affair.	s Department,	. LG&E and KU	****
Mailing Address:	P.O. Box 32010	1	Louisville	40232	
2 -	Street		City	Zip	
		NG PERSO N LANDFILL OR LAB			
Company:	AMEC-Foster Wheele	r Consultants	(formerly M	ACTEC)	
Contact Person:	Alison L. Dunn		Pho	ne No.: <i>(859) 56</i>	<u>6-3729</u>
Mailing Address:_	2456 Fortune Drive, Suit	e 100	<u>Lexingto</u>	n 4050	9
	Street		City	Zip	
	LABORAT	ORY REC	CORD #1		
Laboratory:	ESC Lab Sciences			Lab ID No.: _	
	Leslie Newton			o.: <u>(615) 758</u>	
Mailing Address:_	12065 Lebanon Road Street	Mt. Juliet	, <i>TN</i> .	37122	
	Street	City		Zip	•
	LABORAT	ORY REC	CORD #2		
Laboratory:				Lab ID No.	· · · · · · · · · · · · · · · · · · ·
Contact Person:			P	hone No.: <i>(</i>)
Mailing Address:_	Street				
	Street		City	7	Zip

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502) 564-6716

SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

Page 1 of 6 Exhibit GHR-1 Page 133-of 300 LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

								T		 		1	
AKGWA NUMBER1	. Fac:	ility Well/Spring Number											
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		Stonewall S	pr.	Dam Toe Righ	t	Ditch Sprin	a	Briar Patch	Spr.
Sample Sequen	ce #				.,	-		1		2		_	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicat	ble	Not Applicab	le	Not Applica	ble	Not Applica	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				Not Sampled		10/2/15 8:30		10/2/15 9:3	5	Not Sampled	,
Duplicate ("Y	" or	nNu) 2				Ио	•	ио		ио.		No	
Split ("Y" or	"N")	3				Ио		МО		No		ЙО	
Facility Samp	le ID	Number (if applicable)				Not Applicat	ble	Not Applicab	Le	Not Applica	ble	Not Applica	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applica	ble	L792432-01		L792432-02		Not Applica	ble
Date of Analy	sis (Month/Day/Year)				-		10/2-12/15		10/2-12/15			
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		UP .	,	DOWN		DOMN		DOMN	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F
		·			overhelment a	·	A. G.		A G S		A G S		A. G
s0906	0	Static Water Level Elevation		Ft MSL	Fld. Meas.	_		_		-	†	_	
s0296	0	рн		units	Fld. Meas.	_		6.55		9.97		_	
s0145	1.	Specific Conductance		UHMS/CM	Fld. Meas.	-		1,665		492			
s0145	1.	Temperature		°C	Fld. Meas.	_		15.94		13.70		-	
16887-00-6	2	Ćhloride(s)	T	MG/L	9056A	-		113		6.58		- ·	
18785-72-3	0	Sulfate	т	MG/L	9056A	_		668		46.3		- .	
s0266	0	Total Dissolved Solids	Т	MG/L	2540C	_		1,480		530		_	
s0130	0	Chemical Oxygen Demand	'n	MG/L	5220D			15.8		41.7		· _	1

LAKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill Permit Number: 084-00010

FINDS/UNIT:

Exhibit GHR-1 of 6 Page 134 of 300

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER¹	, Fac:	llity Well/Spring Number		,									
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW−2	etc.)		Stonewall s	Spr.	Dam Toe Rig	ht	Ditch Spr	ing	Briar Patch	Spr.
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	E.	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F
				••			A		A		A		A
							G S		G S		G S		G S
S0268	1	Total Organic Carbon	T	MG/L	5310C	_	3	1.28	-	5.67	3	_	
7440-42-8		Boron	T	MG/L	6010C	-		5.78		0.356		_	
7440-59-4	-	Calcium	т	MG/L	6010C	-		288		17.2		-	
7440-50-8	0	Copper	T	MG/L	6010C	-		<0.000520		0.01070		-	
7440-23-5	0	Sodium	т	MG/L .	6010C	-		12.4		33.8		-	
7440-38-2	0	Arsenic	T	MG/L	6020A ·	_		0.451		0.0285		-	
7440-43-9	0	Cadmium	T	MG/L	6020	-		<0.000160		<0.000160		-	
7439-89-6	0	Iron	т	MG/L	6010B	_		2.19		1.24		-	
7439-92-1	0	Lead	T	MG/L	6020	-		0.000288		0.000898		-	
7439-95-4	0	Magnesium	T	MG/L	6010B	-		65.2		1.33			
7439-97-6	0	Mercury	T	MG/L	7470A	-		<0.0000490		<0.0000490		_	
7440-02-0	0	Nickel	T	MG/L	6020	_		0.00205		0.00604		-	
7440-09-7	0	Potassium	T	MG/L	6010C .	_		13.8		94.8			
7782-49-2	0	Selenium	T	MG/L	6020	-		0.00182		0.00303			
7440-66-6	0	Zinc	T	MG/L	6020	_		0.00581		0.00487		_	
							<u> </u>						
											.		
			-										<u> </u>
	<u> </u>		- '										<u> </u>
												•	

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502) 564-6716

SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

Page_ Exhibit GHR-1	3	of	6
Exhibit GHR-1			
Page 135 of 300		1	1
T.AR TD.			

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

					(5)	,							
AKGWA NUMBER¹	, Faci	ility Well/Spring Number				9000-1873		9000-1872					
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2	, etc.)		Webb Spr. C	olx.	Railroad Spr	ing	Rock House	Spr.	Hardin Spri	ng
Sample Sequen	ce #					3		4.		-		-	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applical	ole	Not Applicab	Le	Not Applica	ble	Not Applical	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				10/2/15 13:4	45	10/2/15 14:3	5	Not Sampled		Not Sampled	l .
Duplicate ("Y	" or	nNu) 5				Мо		No		No		ио	
Split ("Y" ox	(ייעיי	3				ио		No		No	•	No	
Facility Samp	le ID	Number (if applicable)				Not Applicat	ole	Not Applicab	le	Not Applica	ble	Not Applical	ble
Laboratory Sa	mple	ID Number (if applicable)				L792440-01		1792440-03		Not Applica	ble	Not Applical	ble
Date of Analy	sis (Month/Day/Year)				10/2-12/15		10/2-12/15		-		-	
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		UNKNOWN		UNKNOWN		UP		UP	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	F L
							A		A		A		A
							G		G		G		G
							s		s		s		s
s0906	0	Static Water Level Elevation		Ft. MSL	Fld. Meas.	_		-		_			
s0296	0	Hq		units	Fld. Meas.	8.00		7.25		_		-	
s0145	1	Specific Conductance		UHMS/CM	Fld. Meas.	699 [*]		796		-		_	
s0145	1	Temperature		°C	Fld. Meas.	14.9		17.0		_		_	
16887-00-6	2	Chloride(s)	T	MG/L	9056A	2.64		10.9		_		-	
18785-72-3	0	Sulfate	T	MG/L	9056A	194		. 264		-		-	
		Total Dissolved Solids	т	MG/L	2540C	537		689		-		_	
S0266	0	Total Dissolved Solids	_ ~	11.67.13	25400	1	1		1		i		- 1

1AKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU E.W. Brown Special Waste Landfill Permit Number: 084-00010

FINDS/UNIT:

Exhibit GHB_{edge 4 of 6} Page 136 of 300 / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Faci	lity Well/Spring Number				9000-1873		9000-1872					
Facility's Loc	cal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		Webb Spr. Cr	olx.	Railroad Spri	ng	Rock House	Spr.	Hardin Sprin	ıg
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
•							A		A		A		A
		•		.,			G		G		G		G
-	•				•		s		s		s		s
S0268	1 .	Total Organic Carbon	т	MG/L	5310C	2.09		1.49		-		_	
7440-42-8		Boron	T	MG/L	6010C	0.111		0.622		_		-	
7440-59-4		Calcium	T	MG/L	6010C	128		143		-		_	
7440-50-8	0	Copper	T	MG/L	6010C ·	0.00226		0.00183		-		_	
7440-23-5	0 1	Sodium	T	MG/L	6010C	3.88		12.1		-			
7440-38-2		Arsenic	T	MG/L	6020A	0.000496		0.00107				-	
7440-43-9		Cadmium	T	MG/L	6020	<0.000160		<0.000160		_		-	
7439-89-6		Iron	T	MG/L	6010B	0.200		0.824		-		-	
7439-92-1		Lead	т	MG/L	6020	0.000724		0.00206		_		-	
7439-95-4		Magnesium	T	MG/L	6010B	16.6		23.1				_	
7439-97-6		Mercury .	T	MG/L	7470A	<0.0000490		<0.0000490		••••		-	
7440-02-0		Nickel	T.	MG/L	6020	0.000670		0.00181		-		_	
7440-09-7		Potassium	Т	MG/L	6010C	3.98		3.90		-		-	
7782-49-2		Selenium	T	MG/L	6020	.<0.000380		0.00238		_ ·		_	
7440-66-6		Zinc .	Т	MG/L	. 6020	0.00276		0.00899		_		_	:
										,			

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL

(S)

Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER	, Fac:	ility Well/Spring Number					•••		····				***************************************
Facility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)						HQ Spring				***************************************			
Sample Sequence #						3							
						Not Applica	ıble						
						10/2/15 11:	:00						
Duplicate ("Y" or "N")2						No							
Split ("Y" or "N")3						No		-				,	
Facility Sample ID Number (if applicable)						Not Applica	able ·						
		ID Number (if applicable)				L792440-02	•						
Date of Analysis (Month/Day/Year)						10/2-12/16							
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)					DOWN		-					
CAS RN4		CONSTITUENT	D _R	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F
							A G S		A G S		A G S		A G S
s0906	10	Static Water Level Elevation		Ft. MSL	Fld. Meas.	_			-		-	 	+
\$0296	- 0	pH	 	units	Fld. Meas.	7.28			1		 		1
s0145	1	Specific Conductance		UHMS/CM	Fld. Meas.	1,249							+
s0145	1	Temperature	 -	°C	Fld. Meas.	18.1			<u> </u>				
16887-00-6	2	Chloride(s)	T	MG/L	9056A	11.7		-	-				
18785-72-3	0	Sulfate	T	MG/L	9056A	590					~	-	
s0266	0	Total Dissolved Solids	T	MG/L	2540C	1,110			1.				
s0130	- 0	Chemical Oxygen Demand	T	MG/L	5220D	7.7			 	 			+

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

FINDS/UNIT:

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBERI	, Fac	ility Well/Spring Number		Provide and a section of the section	AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA AMARAMA								
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		HQ Spring							
CAS RN4	-	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR POL ⁶	F
							A G		A G		A G		A G
	-			va tr		1.04	S		S		s		S.
s0268	1 .	Total Organic Carbon Boron	T	MG/L	5310C	2.75							
7440-42-8	ļ		T	MG/L	6010C								+
7440-59-4	<u> </u>	Calcium	T	MG/L	6010C	206			<u> </u>				
7440-50-8	0	Copper.	T	MG/L	6010C	0.000901							
7440-23-5	0	Sodium	T	MG/L	6010C	15.3			ļ			1	
7440-38-2		Arsenic	T	MG/L	6020A	0.008260							1
7440-43-9	ļ	Cadmium ·	T	MG/L	6020	<0.000160			ļ				
7439-89-6		Iron	T	MG/L .	6010B	0.200							ļ
7439-92-1		Lead :	T	MG/L	6020	0.000828							
7439-95-4		Magnesium	T	MG/L	6010B	48							ļ!
7439-97-6		Mercury	T	MG/L	7470A	<0.0000490							
7440-02-0		. Nickel	T	MG/L	6020	0.00332							
7440-09-7	·	Potassium	T	MG/L .	6010C	18.8					-		
7782-49-2		Selenium	T	MG/L	6020	0.00997				•			
7440-66-6		Zinc	T	MG/L	6020	<0.00256							
													,
		-								•			
				•									

Exhibit GHR-1 6 of 6 Page 138 of 300 / 1

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	E.W. (As official	Brown Statio	nt Face)	Activity_Special Waste Landfill					
Permit No. <u>084</u>	-00010	Finds/Unit N	No	Quarter & Yo	ear_ <i>4th 2015</i>				
Please check <u>only</u>	ONE of the	e following:							
Characterizat	ion <u>X</u>	_Quarterly	Semi-Annual	Annual	Assessment				
Please check appli	cable subn	nittal: <u>X</u>	CGroundwater	Surface Wa	iter				
and 45:160) or by statue the jurisdiction of the E eight (48) hours of mal	(Kentucky Re Division of Waing the deter port is <u>NOT</u>	evised Statues Chaste Management rmination using	gulation (Kentucky Waste) apter 224) to conduct ground to You must report any statistical analyses, directions. Instructions for	ndwater and surface indication of conta t comparison, or ot	water monitoring under mination within forty- her similar techniques.				
accordance with a system Based on my inquiry of to the best of my know	n designed to the person or ledge and be	assure that quali- persons directly r lief, true, accurat	all attachments were pre fied personnel properly ga esponsible for gathering the e, and complete. I am a f fine and imprisonment for	ther and evaluate the ne information, the in ware that there are	information submitted. nformation submitted is,				
W.M.	100c	Dol			<u> </u>				
	NATURE				IE				
	W. Michael	<u>l Winkler – Ma</u>	<u>anager of Environme</u>	ntal Programs					

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date: _	12/22//2015	C	County:_	Mercer	Permit No	.: <u>084-00010</u>	
Facility Name: <i>Ke</i>	entucky Utilities Co. E (As officially sho			(contact: A	Angela Zeveli)		
Mailing Address:	815 Dix Dam Road		Harr	ndshuro	40330		
111111111111111111111111111111111111111	Street		110,7	City	Zi		
Phone No.: <u>(859</u>	748-4414	Latitude_	N 37	7.787°	_ Longitude	W 84.721°	
	OWNI	ER INF	ORMA	TION			
Facility Owner:	<u>Kentucky Utili</u>	ties Comp	any	I	Phone No.: <u>(502</u>) 627-4659	
Contact Person:	W. Pau	l Puckett			Phone No.: <u>(56</u>	02) 627-4659	
Contact Person Tit	le: <i>Engineer, Envi</i>	<u>ironmenta</u>	ıl Affairs	<u>Departmen</u>	nt, LG&E and K	IJ	
Mailing Address:	P.O. Box 32010		L_0	ouisville	4023	2	
<i>O</i>	Street			City	Zi		
		LING P					
Company:	AMEC-Foster Wh	<u>eeler Con</u>	<u>sultants</u>	(formerly M	MACTEC)		
Contact Person:	Alison L. Dunn			Pho	one No.: <u>(859) 3</u>	566-3729	
Mailing Address:_	2456 Fortune Drive,	Suite 100		Lexingt	on 405	i09	
	Street			City	Zij)	
	LABOR	ATORY	Y REC	ORD #1			
Laboratory:	ESC Lab Science	2S			Lab ID No.:		
Contact Person:	Leslie New	ton		_ Phone l	No.: <u>(615) 7</u> .	5 <u>8-5858</u>	
Mailing Address:_	12065 Lebanon Roa	id M	t. Juliet,	TN.	37122		
-	Street		City		Zip		
	LABOR	ATORY	Y REC	ORD #2			
Laboratory:					Lab ID No	o.:	
					Phone No.:(_)	
Mailing Address:							
	Street			C	ity	Zip	

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716

SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

(S)

Page 141 of 300	
FINDS/UNIT:/	1
LAB ID:	

Exhibit Carre 11 of 6

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

	THE CONTRACT OF THE CONTRACT O											
AKGWA NUMBER ¹ ,	Facility Well/Spring Number											
Facility's Loca	al Well or Spring Number (e.g. MW-1,	MW-2,	etc.)		Stonewall Spr.		DUP-01		Ditch Spring		HQ Spring	
Sample Sequence	e #				9		10		4		5	
If sample is a	Blank, specify Type: (F) ield, (T) ri	.p, (M)	ethod, or (E) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applicat	ole	Not Applicat	ole
Sample Date and	Time (Month/Day/Year hour:minutes)				12/22/15 14:	25	12/22/15 0:00)	12/22/15 11	: 05	12/22/15 11:	:40
Duplicate ("Y"	Duplicate ("Y" or "N")2						Yes		Мо		No	
Split ("Y" or "N")3					Ио		No		No		Мо	
Facility Sample	cility Sample ID Number (if applicable)				Not Applicat	ole	Not Applicabl	.е	Not Applical	ole	Not Applicat	ole
Laboratory Sam	ple ID Number (if applicable)				L808729-04		L808729-10		L808729-02		L808729-03	
Date of Analys	f Analysis (Month/Day/Year)				12/22-30/15		12/22-20/15		12/22-30/15		12/22-30/15	
Gradient with	ent with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)				UP :		DOWN		DOWN			
CAS RN4	CONSTITUENT	n Ds	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F
				e in the second of the second	i i	A G		A G	,	A G	٠.	A G
						s		s		s		s
A200-00-0	Flow		Gal/Min	Fld. Meas.	25		_		341		365	
S0145	Specific Conductance		UHMS/CM	Fld. Meas.	467.0		_		2,053	ŀ	1,630	
S0296	рн		units	Fld. Meas.	7.65		-		7.87		7.41	
S0266	Total Dissolved Solids	т	MG/L	2540C	307		271		1,750		1,450	
s0130	Chemical Oxygen Demand	T	MG/L	410.4	<3.00		21.7		<3.00		<3.00	
S0268	Total Organic Carbon	T	MG/L	9060A	1.75		1.89		2.72		1.04	
16887-00-6	Chloride(s)	T	MG/L	9056A	4.18		3.95		59.9		27.9	
s0145	Temperature		°C	Fld. Meas.	11.65		-		11.25		15.17	

1AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary

dilution factor

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

Exhibit GHRG4 2 of 6 FINDS/UNIT: Page 142 of 300 / 1

LAB ID:

For official Use only

AKGWA NUMBER1,	Facility Well/Spring Number											
Facility's Loca	l Well or Spring Number (e.g. M	W-1, MW-2,	etc.)		Stonewall Spr.		Stonewall (DUP)		Ditch Spr	ing	HQ Spring	
CAS RN4	CONSTITUENT	T D5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
				THE PARTY OF THE P		A		A		A		A
						G		G		G		G
						s		s		s		s
7439-89-6	Iron	T	MG/L	6010B	0.814		0.865		2.87		0.430	
7440-23-5	Sodium	T	MG/L	6010B	2.79	_	2.74		45.1		20.2	
18785-72-3	Sulfate	Ť	MG/L	9056A	22.0		20.5		1,270		899	
7440-38-2	Arsenic	T	MG/L	6020	0.00116		0.00114		0.0123		0.00613	
7440-42-8	Boron	T	MG/L	6010B	0.0684		0.0669		7.83		3.52	
7440-59-4	Calcium	Ī	MG/L	6010B	95.7		95.1		357		288	
7440-50-8	Copper	T	MG/L	6020	0.00463		0.00401		0.00906		0.00470	
•								 				
										1		
									<u></u>			-
								+				_
								 		-		+
						-		+			<u> </u>	-
								_	1		<u> </u>	
										 		+
			 		<u> </u>			-				
												+
						-		_				+
								_		-		

SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

(S)

Exhibit GHR-1 Page 143 of 300 3 of 6

FINI	OS/UNIT:/_1
LAB	ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

3777773 377787777777 774	acility Well/Spring Number					-	9000-1873		9000-1872		· · · · · · · · · · · · · · · · · · ·	
				. .								
Facility's Local	Well or Spring Number (e.g. MW-1	, MW-2,	etc.)		Briar Patch Spr.		Webb Spr. Cplx.		Railroad Spring		Hardin Spring	
Sample Sequence	#				6		7		8		2	
If sample is a B	lank, specify Type: (F)ield, (T)r	(M) ,qi	ethod, or (E) quipment	Not Applicab	le	Not Applicabl	Le	Not Applical	ole	Not Applica	ble
Sample Date and	Time (Month/Day/Year hour:minutes)			12/22/15 11:	:55	12/22/15 13:2	25	12/22/15 13	:50	12/22/15 9:	25
Duplicate ("Y" o	No		Мо		Ио		Мо					
Split ("Y" or "N	No		No		No		No					
Facility Sample ID Number (if applicable)						ole	Not Applicab	Le	Not Applical	ble	Not Applica	ble
Laboratory Sampl	Laboratory Sample ID Number (if applicable)				L808729-07		L808729-01		L808729-05	.,	L808729-06	
Date of Analysis	(Month/Day/Year)				12/22-30/15		12/22-30/15		12/22-30/15		12/22-30/15	
Gradient with re	spect to Monitored Unit (UP, DOWN	, SIDE,	UNKNOWN)		DOWN		UNKNOWN		UNKNOWN		UP	
CAS RN4	CONSTITUENT	D ₂	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F
						A		A		A	1	A
				}		G		G		G		G
						s		s		s		s
A200-00-0	Flow		Gal/Min	Fld. Meas.	61		790		240		148	
S0145	Specific Conductance		UHMS/CM	Fld. Meas.	1,453		597		927		676	
s0296	рн		units	Fld. Meas.	7.28		8.17		7.49		6.51	
S0266	Total Dissolved Solids	T	MG/L	2540C	1,100		410		673		436	
s0130	Chemical Oxygen Demand	T	MG/L	410.4	<3.00		7.63		3.08		<3.00	
S0268	Total Organic Carbon	T	MG/L	9060A	1.21		1.4		0.87		0.89	
16887-00-6	Chloride(s)	T	MG/L	9056A	24.7		1.72		10.8		29.3	
S0145	Temperature		°C	Fld. Meas.	15.60		14.06		14.48		14.62	

1AKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID D = Concentration from

analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU E.W. Brown Special Waste Landfill Permit Number: 084-00010

FINDS/UNIT:____

Exhibit GHPRGF 4 of 6 Page 144 of 300 / 1

LAB ID:

For official Use only

AKGWA NUMBER ¹ , I	Facility Well/Spring Number						9000-1873		9000-1872			
Facility's Loca	l Well or Spring Number (e.g. MV	V-1, MW-2,	etc.)		Briar Patch Spr.		Webb Spr. Cplx.		Railroad Spring		Hardin Spring	
CAS RN4	CONSTITUENT	D ₂	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F
		ļ				A		A		A		A
			***			G		G		G		G
						s		s		s		s
7439-89-6	Iron	Т	MG/L	6010B	0.623		0.875		0.124		0.440	
7440-23-5	Sodium	T	MG/L	6010B	16.3		2.85		13.6		10.4	
18785-72-3	Sulfate	T	MG/L	9056A	641		121		265		122	
7440-38-2	Arsenic	T	MG/L	6020	0.00820		0.00100		0.00088		0.00251	
7440-42-8	Boron	T	MG/L	6010B	3.34		0.065		0.684		0.071	
7440-59-4	Calcium	Ţ	MG/L	6010B	259		117		149		128	
7440-50-8	Copper	т	MG/L	6020	0.00346		0.00475		0.004		0.00387	
		,,,,,,										

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716

SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

(S)

Exhibit GHRFI_	5	οf	<u>-6</u>
Page 145 of 300			

FINI	OS/UNIT:	_/_	1
LAB	ID:		

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER¹, E	Facility Well/Spring Number											
Facility's Local	l Well or Spring Number (e.g. MW-	1, MW-2,	etc.)		Rock House Spr.		Hardin Spring 2					
Sample Sequence	Sample Sequence #						1			1		
If sample is a 1	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						Not Applicab	Le				
Sample Date and	Time (Month/Day/Year hour:minute	s)	"-		12/22/15 9:4	15	12/22/15 9:0	5				
Duplicate ("Y"	or "N") ²				No		No					
Split ("Y" or "	N") ³				No		No					
Facility Sample	ID Number (if applicable)			 	Not Applical	ole	Not Applicab	le				
Laboratory Samp	le ID Number (if applicable)		,		L808729-08		L808729-09					
Date of Analysi	s (Month/Day/Year)	•			12/22-30/15		12/22-30/15					
Gradient with r	Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)				UP		Ú.P					
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	F
						A		A		.A.		A
						G		G		G		G
						s		s		s		s
A200-00-0	Flow		Gal/Min	Fld. Meas.	1,666		101			<u> </u>		
s0145	Specific Conductance		UHMS/CM	Fld. Meas.	416		585					
s0296	нд		units	Fld. Meas.	6.68		6.75					
S0266	Total Dissolved Solids	T	MG/L	2540C	272		365					
s0130	Chemical Oxygen Demand	T	MG/L	410.4	28.7		19.2				"	
S0268	Total Organic Carbon	T	MG/L	9060A	3.6		1.70					
16887-00-6	Chloride(s)	Т	MG/L	9056A	2.76		6.17					
S0145	Temperature		°C	Fld. Meas.	13.03		14.13					

1AKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "EDL". Value then shown is Practical Quantification Limit

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU E.W. Brown Special Waste Landfill

Permit Number: 084-00010

FINDS/UNIT:____

Exhibit GHRade 6 of 6

Page 146 of 300 / 1

LAB ID:

For official Use only

AKGWA NUMBER¹,	Facility Well/Spring Number											
Facility's Loca	al Well or Spring Number (e.g. M	W-1, MW-2,	etc.)		Rock House	Spr.	Hardin Spri	ng 2				
CAS RN4	CONSTITUENT	T D⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F
						A G		A		A		A
						s		s		s		s
7439-89-6	Iron	Т	MG/L	6010B	0.803		0.679		-			
7440-23-5	Sodium	T	MG/L	6010B	1.41		6.31					
18785-72-3	Sulfate	T	MG/L	9056A	15.0		100					
7440-38-2	Arsenic	Т	MG/L	6020	0.00105		0.00126					
7440-42-8	Boron	Т	MG/L	6010B	0.058		0.381					
7440-59-4	Calcium	T	MG/L	6010B	84.2		110					
7440-50-8	Copper	T	MG/L	6020	0.00385		0.00365					
	·											
				,								

Ghent Station Groundwater Reports

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	Ghent Station As officially shown on DWM Permit Face		Special Waste Landfill
Permit No. <u>Pending</u>	Finds/Unit No	not known Quar	ter & Year <u>All Otrs-2011</u>
Please check only ONE	of the following:		
X Characterization	QuarterlyS	Semi-AnnualA	nnualAssessment
Please check applicable	e submittal: <u>X</u> G	roundwaterSui	rface Water
and 45:160) or by statue (Ken the jurisdiction of the Divisio eight (48) hours of making t	tucky Revised Statues Chapter 2 n of Waste Management. You he determination using statist	224) to conduct groundwater a must report any indication ical analyses, direct compa	nent Regulations - 401 KAR 48:300 and surface water monitoring under on of contamination within fortyrison, or other similar techniques, ing the form are attached. Do not
accordance with a system desi Based on my inquiry of the pe to the best of my knowledge	igned to assure that qualified person or persons directly respon	ersonnel properly gather and sible for gathering the information of the complete. I am aware that	nder my direction or supervision in evaluate the information submitted nation, the information submitted is, at there are significant penalties for iolations.
W. M. QQ			1-20-12
\SIGNA7	TURE		DATE
W N	Aichael Winkler – Manac	ver of Environmental Pr	raarams

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date: <u>3</u>	/17/11; 6/23/11; 9/28/11; 11/17/11	County: Carro	oll Permit No.: 1	Not Known
Facility Name:	Kentucky Utilities Cor (As officially shown on DWM Perm		Station	
Mailing Address:_	9485 U.S. Highway 42E, Box 33 Street	38 Ghent City	41045 Zip	
Phone No.: <u>(502)</u>	627-4659 Latitude N 3	8° 43' 27.5"	Longitude W 85	° 00° 33.4°
	OWNER INFO	RMATION		
Facility Owner:	LG&E and KU Energy Corpo	ration	Phone No.: (502)	<u>627-4659</u>
Contact Person:	Paul Puckett		Phone No.: (502)	627-4659
Contact Person Tit	le: Sr Engineer, Environmental	Affairs Departme	ent, LG&E and KU	
Mailing Address:	P.O. Box 32010	Louisville	40232	
	Street	City	Zip	•
	SAMPLING PI (IF OTHER THAN LANDFIL			
Company:	GAI Consul	tants, Inc.		
Contact Person:	Robert J. Turka	Phone	No.: <u>(724) 387-217</u>	0 ext. 2737
Mailing Address:_	4101 Triangle Lane Street	Export, PA City	15632-1358 Zip	3
	LABORATORY	RECORD #	1	
Laboratory:	Microbac Laboratories, Inc.	Lab	ID No.:	
Contact Person:	Ms. Laura Revlett		Phone No.: <u>(502)</u>	962-6400
Mailing Address:_	3323 Gilmore Industrial Blvd. Street	Louisvill		3 Lip
	LABORATORY	RECORD #	2	
Laboratory:		Lab	ID No.:	
Contact Person:			Phone No.:	
Mailing Address:_	Street		City	Zip

BACKGROUND QUARTERLY SAMPLING - 1st Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

Page 1 of 4

Exhibit GHR-1 Page 150 of 300

LAB ID:

FINDS/UNIT:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, F	acility Well/Spring Number		8004-6810		8004-6809		8004-6807		8004-6807			
Facility's Local	Well or Spring Number (e.g. MW-1		, etc.)		GWMP-1		GWMP-2		GWMP-3D		GWMP-3D	
Sample Sequence	#			,	1		3		2		4	
If sample is a B	Slank, specify Type: (F)ield, (T)r	.р, (M	ethod, or (I	E) quipment	Not Applica	able	Not Applical	ole	Not Applica	ble	Not Applica	able
Sample Date and	Time (Month/Day/Year hour:minutes)				3/17/11 09	:38	3/17/11 12:	TO.	3/17/11 10:	39	3/24/11 09:22	
Duplicate ("Y" o	or "N") ²				No		No		No		No	
Split ("Y" or "N	Įπ) ³		,		МО		No		No		No	
Facility Sample	ID Number (if applicable)				Not Applica	able	Not Applical	ole	Not Applica	ble	Not Applica	able
Laboratory Sampl	le ID Number (if applicable)				Not Applica	able	Not Applicable		Not Applica	ble	Not Applicable	
Date of Analysis (Month/Day/Year)						11	3/17-3/24/1:	L	3/17-3/24/1	1	3/28/11	
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)												
CAS RM4	CONSTITUENT	T D5	Unit OF MEASURE	METHOD	DETECTED VALUE OR POL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
:						G		G		G		G
						s		s		s		s
s0906	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	666.90	1	694.17	<u> </u>	657.68		662.06	
s0907	Temperature	T	°C	Fld. Meas.					_		19.8	
16887-00-6	Chloride(s)	T	MG/L	846 9056A	140		140				_	
s0130	Chemical Oxygen Demand	T	MG/L	5220D	<10		<10				_	
s0266	Total Dissolved Solids	T	MG/L	I-1750-85	720		860					
s0268	Total Organic Carbon	T	MG/L	5310C	<1		<1		-		_	
s0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	1100		1500		-		-	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

[&]quot; indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

BACKGROUND - QUARTERLY SAMPLING - 1st

Facility: KU Ghent Special Waste Landfill FINDS/UNIT:____/_1

Permit Number: Pending

FINDS/UNIT:___/_1
LAB ID:

Page 2 of 4 Exhibit GHR-1 Page 151 of 300

For official Use only

AKGWA NUMBER¹,	Facility Well/Spring Number		8004-6810		8004-6809		8004-6807		8004-6807			
Facility's Loca	l Well or Spring Number (e.g. MW	-1, MW-2,	etc.)		GWMP-1		GWMP-2		GWMP-3D		GWMP-3D	
CAS RN⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METEOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A	}	A
						G		G		G		G
						s		s		s		s
S0296	рн	T	units	Fld. Meas.	7.14		7.36		7.25		7.8	
14808-79-8	Sulfate	T	MG/L	846 9056a	88		180		_		_	
71-52-3	Alkalinity, Bicarbonate	T	MG/L	2320B	280		410		_			
3812-32-6	Alkalinity, Carbonate	T	MG/L	2320B	<5		<5		_		-	
7440-38-2	Arsenic, dissolved	D	MG/L	846 6010C	<0.10		<0.10		<0.10		<0.10	
7440-39-3	Barium, dissolved	D	MG/L	846 6010C	0.060		0.026		0.20		0.14	
7440-42-8	Boron, dissolved	D	MG/L	846 6010C	1.2		1.1		5.5		5.3	
7440-43-9	Cadmium, dissolved	В	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7440-70-2	Calcium, dissolved	D	MG/L	846 6010C	89		83		450		310	
7440-47-3	Chromium, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7440-50-8	Copper, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7439-89-6	Iron, dissolved	מ	MG/L	846 6010C	0.034		0.040		0.032		0.045	
7439-92-1	Lead, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7439-95-4	Magnesium, dissolved	D	MG/L	846 6010C	34		51		200		140	
7439-97-6	Mercury, dissolved	Q	MG/L	846 7470A	<0.0002		<0.0002		<0.0002		<0.0002	
7440-02-0	Nickel, dissolved	ם	MG/L	846 6010C	<0.010		<0.010		<0.020		0.019	
7440-09-7	Potassium, dissolved	ם	MG/L	846 6010C	9.1		17		95		70	
7782-49-2	Selenium, dissolved	D	MG/L	846 6010C	<0.10		<0.10		<0.10		<0.10	
7440-23-5	Sodium, dissolved	ם	MG/L	846 6010C	97		160		2800		2400	
7440-66-6	Zinc, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	

BACKGROUND QUARTERLY SAMPLING - 1st

Permit Number: Pending

Facility: KU Ghent Special Waste Landfill

Page 3 of 4

Exhibit GHR-1 Page 152 of 300

FINDS/UNIT: LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Fa	KGWA NUMBER ¹ , Facility Well/Spring Number acility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)						8004-6807 GWMP-3D GWMP-3D GWMP-3D 6 7 Not Applicable 5/19/11 09:30 No No No No No No No Not Applicable Not Applicable Not Applicable Not Applicable S/23-5/24/2011 DETECTED VALUE OR PQL6 A A A					
Facility's Local	Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		CMMD-3D		GWMP-3D		GWMP-3D			
Sample Sequence	#		•		5		6		7			
If sample is a B	lank, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applica	ble	Not Applicab	le	Not Applica	ble		
Sample Date and ?	Time (Month/Day/Year hour:minutes)				4/28/11 09:	45	5/19/11 09:3	0	5/26/11 09:	15		
Duplicate ("Y" or	r "N") ²				No		No		No			
Split ("Y" or "N	") ³	·			No		No		No			
Facility Sample :	ID Number (if applicable)		· · · · · · · · · · · · · · · · · · ·		Not Applica	ble	Not Applicab	le	Not Applica	ble		
Laboratory Sample	a ID Number (if applicable)				Not Applica	ble	Not Applicab	Le	Not Applicable			
Date of Analysis (Month/Day/Year)					5/2-5/6/201	1.	5/23-5/24/20	11	5/31-6/2/20	11		
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)												
CAS RN ⁴	CONSTITUENT	T D⁵	Unit OF MEASURE	METEM	DETECTED VALUE OR PQL ⁶	F	VALUE		VALUE		DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
s0906	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	662.87		658.76		663.81			
s0907	Temperature	T	°C	Fld. Meas.	_		-		_			
16887-00-6	Chloride(s)	T	MG/L	846 9056A	_		-		_			
s0130	Chemical Oxygen Demand	T	MG/L	5220D	-							
S0266	Total Dissolved Solids	Ŧ	MG/L	I-1750-85	-		-		_			
s0268	Total Organic Carbon	T	MG/L	5310C	_				-			
S0145	Specific Conductance	т	UHMS/CM	Fld. Meas.	_		-		_			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BACKGROUND - QUARTERLY SAMPLING - 1st

Facility: KU Ghent Special Waste Landfill FINDS/UNIT:____/_1

Permit Number: Pending

LAB ID:

Page 4 of 4 Exhibit GHR-1 Page 153 of 300

For official Use only

AKGWA NUMBER¹,	Facility Well/Spring Number		8004-6807		8004-6807		8004-6807			-,-		
Facility's Loca	al Well or Spring Number (e.g. MW	-1, MW-2,	etc.)		GWMP-3D		GWMP-3D		GWMP-3D			
CAS RN ⁴	CONSTITUENT	T D⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ^c	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ^c	F
						A G		A G		A G		A G
S0296	рĦ	т	units	Fld. Meas.		S		s		s		s
14808-79-8	Sulfate	T	MG/L	846 9056a	_				_			
71-52-3	Alkalinity, Bicarbonate	T	MG/L	2320B	_				_			1
3812-32-6	Alkalinity, Carbonate	T	MG/L	2320B	_		-					
7440-38-2	Arsenic, dissolved	מ	MG/L	846 6010C	<0.10		<0.10	 	<0.10			
7440-39-3	Barium, dissolved	D	MG/L	846 6010C	0.12		0.11		0.12			
7440-42-8	Boron, dissolved	D	MG/L	846 6010C	4.6		5.8		4.2			
7440-43-9	Cadmium, dissolved	Q	MG/L	846 6010C	<0.010		<0.010		<0.010			
7440-70-2	Calcium, dissolved	D	MG/L	846 6010C	230		290		250			
7440-47-3	Chromium, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010			
7440-50-8	Copper, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010			
7439-89-6	Iron, dissolved	D	MG/L	846 6010C	0.045	<u> </u>	0.055		0.050			
7439-92-1	Lead, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010	<u> </u>		
7439-95-4	Magnesium, dissolved	D	MG/L	846 6010C	100		120		110			
7439-97-6	Mercury, dissolved	D	MG/L	846 7470A	<0.0002		<0.0002		<0.0002			
7440-02-0	Nickel, dissolved	D	MG/L	846 6010C	0.014		0.01		<0.010			
7440-09-7	Potassium, dissolved	Q	MG/L	846 6010C	54		57		54			
7782-49-2	Selenium, dissolved	D	MG/L	846 6010C	<0.050		<0.050		<0.050			
7440-23-5	Sodium, dissolved	ם	MG/L	846 6010C	1700		1700		1500			
7440-66-6	Zinc, dissolved	D	MG/L	846 6010C	0.012	-	0.013		0.010			

BACKGROUND QUARTERLY SAMPLING - 2nd Facility: KU Ghent Special Waste Landfill Permit Number: Pending

FINDS/UNIT:

Exhibit GHR-1 Page 154 of 300

LAB ID:

For Official Use Only

Page 1 of 2

_/__1

GROUNDWATER SAMPLE ANALYSIS (S)

			8004-6810			<u> </u>	T		T	·····		
AKGWA NUMBER ¹ , F	AKGWA NUMBER ¹ , Facility Well/Spring Number Cacility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)						8004-6809		8004-6807		8004-6807	
Facility's Local	Well or Spring Number (e.g. MW-1	MW-2	, etc.)		GWMP-1		GWMP-2		GWMP-3D		GMMP-3D	,
Sample Sequence	#				1		3		2		4	
If sample is a B	Blank, specify Type: (F)ield, (T)ri	p, (M	ethod, or (1	E) quipment	Not Applica	able	Not Applical	ole	Not Applica	able	Not Applicable	
Sample Date and	Time (Month/Day/Year hour:minutes)				6/23/11 14:	:15	6/23/11 16:	00	6/23/11 15:	:10	6/30/11 10:58	
Duplicate ("Y" c	r "N") ²		· · · · · · · · · · · · · · · · · · ·		No		No		No		No	
Split ("Y" or "N	(n) ³				No		Мо		No		Мо	
Facility Sample	ID Number (if applicable)			, .,. 	Not Applica	able	Not Applical	ole	Not Applica	ble	Not Applica	ble
Laboratory Sampl	e ID Number (if applicable)				Not Applica	able	Not Applical	ole	Not Applica	ble	Not Applicable	
Date of Analysis	6/23-7/5/11	1	6/23-7/5/11		6/23-7/5/13	L	6/30-7/12/1	.1				
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)												
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METROD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
		ļ				s		s		s		s
s0906	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	666.80		690.93		659.86		665.34	
s0907	Temperature	Т	°c	Fld. Meas.	_		-		_		19.8	
16887-00-6	Chloride	т	MG/L	846 9056A	120		150		3600			
s0130	Chemical Oxygen Demand	T	MG/L	5220D	<10		<10		46		-	
s0266	Total Dissolved Solids	T	MG/L	I-1750-85	580		910		6200		_	
s0268	Total Organic Carbon	T	MG/L	5310C	<1.0		1.3		<1.0		-	
S0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	1000		1600		12000		_	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

Suru = Total; "D" = Dissolved

[&]quot;"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BACKGROUND - QUARTERLY SAMPLING - 2nd

Facility: KU Ghent Special Waste Landfill FINDS/UNIT:____/_1

Permit Number: Pending

LAB ID:

Page 2 of 2 Exhibit GHR-1 Page 155 of 300

For official Use only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-6810		8004-6809		8004-6807		8004-6807			
Facility's Loca	l Well or Spring Number (e.g. MW	-1, MW-2	etc.)		GWMP-1		GWMP-2		GWMP-3D		GWMP-3D	
CAS RN⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ^c	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
ļ						G		G		G		G
						s		s		s		s
S0296	рН	T	units	Fld. Meas.	7.19		7.41		7.0		7.09	
14808-79-8	Sulfate	T	MG/L	846 9056a	81		190		120		-	
71-52-3	Alkalinity, Bicarbonate	T	MG/L	2320B	250		400		260		_	
3812-32-6	Alkalinity, Carbonate	T	MG/L	2320B	<5		< 5		<5		_	
7440-38-2	Arsenic, dissolved	D	MG/L	846 6010C	<0.10		<0.10		<0.10		<0.10	
7440-39-3	Barium, dissolved	D	MG/L	846 6010C	0.056		0.026		0.12		0.18	
7 4 40-42 - 8	Boron, dissolved	ם	MG/L	846 6010C	1.3		1.0		3.2		9.2	
7440-43-9	Cadmium, dissolved	ם	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7440-70-2	Calcium, dissolved	D	MG/L	846 6010C	72		78		300		270	T
7440-47-3	Chromium, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7440-50-8	Copper, dissolved	D	MG/L	846 6010C	<0.020		<0.020		<0.020		<0.50	
7439-89-6	Iron, dissolved	D	MG/L	846 6010C	0.030		0.041		0.037		0.058	
7439-92-1	Lead, dissolved	a	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7439-95-4	Magnesium, dissolved	D	MG/L	846 6010C	28		48		130		130	7
7439-97 - 6	Mercury, dissolved	a	MG/L	846 7470A	<0.0002		<0.0002		<0.0002		<0.0002	
7440-02-0	Nickel, dissolved	ם	MG/L	846 6010C	<0.020		<0.020		<0.020		<0.020	
7440-09-7	Potassium, dissolved	D	MG/L	846 6010C	9.7		16		57		48	
7782-49-2	Selenium, dissolved	D	MG/L	846 6010C	<0.050		<0.050		<0.050		<0.050	
7440-23-5	Sodium, dissolved	D	MG/L	846 6010C	90		180		2200		1500	
7440-66-6	Zinc, dissolved	D	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	

BACKGROUND QUARTERLY SAMPLING - 3rd Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

Page 1 of 2

Exhibit GHR-1 Page 156 of 300

FINDS/UNIT: LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ , I	Facility Well/Spring Number		8004-6810		8004-6809 GWMP-2 3 Not Applicable 9/28/11 14:47 No No Not Applicable Not Applicable 9/28-10/13/11 DETECTED F VALUE CR PQL ⁶ L A G S		8004-6807					
Facility's Loca	l Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		GWMP-1		GWMP-2		GWMP-3D			
Sample Sequence	#				1		3		2			
If sample is a	Blank, specify Type: (F)ield, (T)ri	.p, (M	ethod, or (E	E) quipment	Not Applica	able	Not Applicab	le	Not Applica	ble		
Sample Date and	Time (Month/Day/Year hour:minutes)				9/28/11 14:	47	9/28/11 14:4	7	9/28/11 14:	47		
Duplicate ("Y"	or "N") ²				No		No		No			
Split ("Y" or "	N") ³	•			Ио		Ио		No			
Facility Sample	ID Number (if applicable)				Not Applica	able	Not Applicab	le	Not Applica	ble		
Laboratory Samp		Not Applica	able	Not Applicab	le	Not Applica	ble					
Date of Analysis (Month/Day/Year)						/11			9/28-10/13/	9/28-10/13/11		
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)												
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	VALUE		DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
į						G		G		G		G
				}		s		s		s		s
s0906	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	666.69		693.64		661.61			
S0907	Temperature	T	°C	Fld. Meas.	-				13.6			
16887-00-6	Chloride	Т	MG/L	846 9056A	140		150		4000			
s0130	Chemical Oxygen Demand	T	MG/L	5220D	<10		<10		97			
s0266	Total Dissolved Solids	T	MG/L	I-1750-85	610		910		7100			
s0268	Total Organic Carbon	T	MG/L	5310C	<1.0		1.1		<1.0			
S0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	1100		1600		14000			

AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

BACKGROUND - QUARTERLY SAMPLING - 3rd

Facility: KU Ghent Special Waste Landfill FINDS/UNIT: / 1

Permit Number: Pending

Page 2 of 2 Exhibit GHR-1 Page 157 of 300

For official Use only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-6810		8004-6809		8004-6807					
Facility's Loca	L Well or Spring Number (e.g. MW	-1, MW-2,	etc.)		GWMP-1		GWMP-2		GWMP-3D		GWMP-3D	
CAS RN4	CONSTITUENT	D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL	F	DETECTED VALUE OR PQL ⁶	F
						A G		A G		A G		A. G
						S		s		s		s
s0296	рн	T	units	Fld. Meas.	7.14		7.33	-	7.13	ļ		
14808-79-8	Sulfate	T	MG/L	846 9056a	72		200		160			
71-52-3	Alkalinity, Bicarbonate	T	MG/L	2320B	260	<u> </u>	410		290	<u> </u>		
3812-32-6	Alkalinity, Carbonate	Т	MG/L	2320B	<5		<5		<5			
7440-38-2	Arsenic	T	MG/L	846 6010C	<0.10		<0.10		<0.10	<u></u>		
7440-39-3	Barium	T	MG/L	846 6010C	0.055		0.024		0.21			
7440-42-8	Boron	T	MG/L	846 6010C	1.6		1.1		5.2			
7440-43-9	Cadmium	T	MG/L	846 6010C	<0.010		<0.010		<0.010			
7440-70-2	Calcium	т	MG/L	846 6010C	59		74		230			
7440-47-3	Chromium	T	MG/L	846 6010C	<0.010		<0.010		<0.010			
7440-50-8	Copper	T	MG/L	846 6010C	<0.020		<0.020		<0.020			
7439-89-6	Iron	T	MG/L	846 6010C	0.24		0.48		0.87			
7439-92-1	Lead	т	MG/L	846 6010C	<0.010		<0.010		<0.010			
7439-95-4	Magnesium	T	MG/L	846 6010C	24		44		110			
7439-97-6	Mercury	Т	MG/L	846 7470A	<0.0002		<0.0002	1	<0.0002			
7440-02-0	Nickel	T	MG/L	846 6010C	<0.020		<0.020		<0.020			
7440-09-7	Potassium	T	MG/L	846 6010C	10		15		48			
7782-49-2	Selenium	T	MG/L	846 6010C	<0.050		<0.050		<0.050			
7440-23-5	Sodium	т	MG/L	846 6010C	100		160		1600			
7440-66-6	Zinc	T	MG/L	846 6010C	<0.010		<0.010		0.013			

BACKGROUND QUARTERLY SAMPLING - 4th Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

Page 1 of 2

For Official Use Only

Exhibit GHR-1

FINDS/UNIT: LAB ID:

Page 158 of 300

GROUNDWATER SAMPLE ANALYSIS (S)

					·							
AKGWA NUMBER ¹ , Fa	acility Well/Spring Number				8004-6810		8004-6809		8004-6807			
Facility's Local	Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		GWMP-1		GWMP-2		GMMB-3D			
Sample Sequence	#				1		3		2			
If sample is a B	lank, specify Type: (F)ield, (T)ri	.p, (M)	ethod, or (F	E) quipment	Not Applica	ble	Not Applicab	le	Not Applica	ble		
Sample Date and	Time (Month/Day/Year hour:minutes)				11/17/11 08	:39	11/17/11 10:	05	11/17/11 09:15			
Duplicate ("Y" o	r "N") ²				No		No		No			
Split ("Y" or "N	") ³				No		No		No			
Facility Sample	TD Number (if applicable)				Not Applica	ble	Not Applicab	le	Not Applicable			
Laboratory Sampl	e ID Number (if applicable)				Not Applica	ble	Not Applicab	le	Not Applica	ble		
Date of Analysis	11/17-12/2/	11	11/17-12/2/1									
Gradient with re	Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)										J	
CAS RN ⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METEOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
					<u> </u>	A		A		A		A
						G		G		G		G
						s		s		s		s
s0906	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	667.14		690.11		660.81			
s0907	Temperature	T	°C	Fld. Meas.	10.6		9.8		9.4			
16887-00-6	Chloride(s)	Т	MG/L	846 9056A	100		120		4200			
s0130	Chemical Oxygen Demand	Т	MG/L	5220D	<10		<10		84	1		1
s0266	Total Dissolved Solids	T	MG/L	1-1750-85	560		840		8700			
S0268	Total Organic Carbon	T	MG/L	5310C	<1.0		<1.0		<1.0			
S0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	1000		1600		26000			1

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from

analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

[&]quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BACKGROUND - QUARTERLY SAMPLING - 4th

Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

FINDS/UNIT:___/_1
LAB ID:

Page 2 of 2 Exhibit GHR-1 Page 159 of 300

For official Use only

AKGWA NUMBER ¹ , 1	Facility Well/Spring Number		8004-6810		8004-6809 GWMP-2 DETECTED F VALUE OR PQL ⁶ L A G S 7.19 150 390 <5 <0.10 0.025 1.1 <0.010 160 <0.010 <0.020 0.13		8004-6807		T			
Facility's Loca	l Well or Spring Number (e.g. MW	-1, MW-2	, etc.)		GWMP-1		GWMP-2		GWMP-3			
CAS RN ⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	VALUE		DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A				A		A
						G S				G S		G S
S0296	рн	T	units	Fld. Meas.	6.99		7.19		6.99			1
14808-79-8	Sulfate	T	MG/L	846 9056a	62		150		78			
71-52-3	Alkalinity, Bicarbonate	T	MG/L	2320В	280		390	<u> </u>	220			
3812-32-6	Alkalinity, Carbonate	T	MG/L	2320B	<5		<5		<5			
7440-38-2	Arsenic	T	MG/L	846 6010C	<0.10		<0.10		<0.10			
7440-39-3	Barium	T	MG/L	846 6010C	0.056		0.025		0.35		<u> </u>	
7440-42-8	Boron	T	MG/L	846 6010C	1.6		1.1		4.7			
7440-43-9	Cadmium	Т	MG/L	846 6010C	<0.010		<0.010		<0.010			
7440-70-2	Calcium	T	MG/L	846 6010C	140		160		330			
7440-47-3	Chromium	T	MG/L	846 6010C	<0.010		<0.010		<0.010			
7440-50-8	Copper	T	MG/L	846 6010C	<0.020		<0.020		<0.020			
7439-89-6	Iron	T	MG/L	846 6010C	0.14		0.13		0.38			
7439-92-1	Lead	T	MG/L	846 6010C	<0.010		<0.010		<0.010			
7439-95-4	Magnesium	T	MG/L	846 6010C	50		92		150			
7439-97-6	Mercury	T	MG/L	846 7470A	<0.0002		<0.0002		<0.0002			
7440-02-0	Nickel	T	MG/L	846 6010C	<0.020		<0.020		<0.020			
7440-09-7	Potassium	т	MG/L	846 6010C	10		14		50			
7782-49-2	Selenium	T	MG/L	846 6010C	<0.050		<0.050		<0.050			
7440-23-5	Sodium	T	MG/L	846 6010C	180		300		1900			
7440-66-6	Zinc	T	MG/L	846 6010C	<0.010		<0.010	1	<0.010			

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name		J Ghent Station rially shown on DWM Perm		Activity_ <u>Special Waste Landfill</u>					
Permit No	021-00024	_ Finds/Unit N	0	Quarter & Yea	nr_ <i>2nd-2013</i>				
Please check <u>o</u>	nly ONE of t	the following:							
X_Charact	erization _	Quarterly	Semi-Annual Groundwater	Annual	Assessment				
Please check a	pplicable sul	bmittal: <u>X</u>	Groundwater _	X Surface Wa	ter				
and 45:160) or by s the jurisdiction of eight (48) hours o	statue (Kentucky the Division of f making the de ab report is <u>NC</u>	Revised Statues Cha Waste Management. termination using s	nlation (Kentucky Waste Meter 224) to conduct groue You must report any itatistical analyses, directication. Instructions for	ndwater and surface indication of contar comparison, or oth	water monitoring under nination within forty- ter similar techniques.				
accordance with a Based on my inqui to the best of my	system designed ry of the person knowledge and	to assure that qualif or persons directly re belief, true, accurate	all attachments were preparted personnel properly gates sponsible for gathering the and complete. I am an fine and imprisonment for	her and evaluate the e information, the in ware that there are s	information submitted. formation submitted is,				
w. 1/4	i Da			4-	-1-14				
	SIGNATUR	E		DAT	E				
	W. Miche		nager of Environme						
		NAME AND	TITLE - PLEASE P	RINT					

FACILITY INFORMATION SHEET

Sampling Date: _	5/28/2013	County	r: <u>Carroll</u>	Permit	No.: 021-00024
Facility Name:	Kentucky Utilitie (As officially shown	es Company (on DWM Permit Fac			<u>.</u>
Mailing Address:	9485 US Highway 42E	Ē	Ghent	41	045
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Street		City		Zip
Phone No.: <u>(502)</u>	627-4659 Latitu	de <u>N 38°</u>	43'27.5"	Longitude_	W 85° 00' 33.4"
	OWNE	R INFOR	MATION		
Facility Owner:	Kentucky Utilitie	es Company		Phone No.:_	<u>(502) 627-4659</u>
Contact Person:	Paul .	Puckett		Phone No.:	<u>(502) 627-4659</u>
Contact Person Ti	tle: <u>Sr Engineer, Env</u>	rironmental A	Affairs Departi	nent, LG&E o	and KU
Mailing Address:	P.O. Box 32010		Louisville	4	0232
	Street		City		Zip
		ING PER	SONNEL R LABORATORY)		
Company:	Kentucky Utilities Com	<u>pany Ghent S</u>	Station Labora	<u>itory</u>	
Contact Person:	Mr. Eric Ferguson-La	b Technician	n Pho	ne No.: <u>(50</u>	<u>)2) 347-4135</u>
Mailing Address:	9485 U.S. Highway 42	2E	Ghent	4.	1045
<i>5</i>	Street		City		Zip
	LABORA	ATORY R	ECORD #1	l	
Laboratory:	Generation Service	s Laborator	y	_ Lab ID N	lo.:
Contact Person:	Mr. Matthew Wood	lson-Scientis	<i>t</i>	Phone No.:_	(502) 347-4189
Mailing Address:	P.O. Box 437, 8815 U.S	S. Highway 4	2 Ghent, KY	41	045
-	Street		City		Zip
	LABORA	ATORY R	ECORD #2	,	
Laboratory:	Microbac Labora	tories, Inc.		Lab ID No	o.:
Contact Person:	Ms. Laur	a Revlett		Phone No.:_	<u>(502) 962-6400</u>
Mailing Address:	3323 Gilmore Industri	al Blvd.	Louisville, K	Y 40.	213
	Street		City		Zip

BASELINE/BACKGROUND QUARTERLY SAMPLING - 1^{st} Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

Page 1 of 2

Exhibit GHR-1
FINDS/UNIT Page 162 of 300 / 1

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, I	Facility Well/Spring Number	8004-6810		8004-6809		8004-6807						
Facility's Loca	1 Well or Spring Number (e.g. MW-1	, MW-2	, etc.)		GWMP-1	WMP-1 GWMP-2		GWMP-3D				
Sample Sequence	#				3		2	2		1		
If sample is a	Blank, specify Type: (F)ield, (T)ri	ip, (M)	ethod, or (E	() quipment	Not Applica	able	Not Applicable		Not Applicable			
Sample Date and	Time (Month/Day/Year hour:minutes)				5/8/13 14:1	1.0	5/8/13 13:30		5/8/13 11:3	1		
Duplicate ("Y"	or "N") ²				No		No		No			
Split ("Y" or "N") ³							No		No			
Facility Sample ID Number (if applicable)						able	Not Applicab	le	Not Applica	ble		
Laboratory Sample ID Number (if applicable)						able	Not Applicab	le	Not Applica	ble		
Date of Analysis (Month/Day/Year)					5/8-5/20/13	3 5/8-5/20/13		5/8-5/20/13				
Gradient with re	espect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)									
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
S0906	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	663.50		695.25		698.27			
s0907	Temperature	T	°C	Fld. Meas.	13.9		15.9		15.7			
16887-00-6	Chloride(s)	T	MG/L	846 9056A	62.4		156		5,264			
s0130	Chemical Oxygen Demand	T	MG/L	5220D	6		27		524			
S0266	Total Dissolved Solids	T	MG/L	I-1750-85	996		934		9,918			
S0268	Total Organic Carbon	T	MG/L	5310C	<5.00		<5.00		<5.00			
S0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	1,457		1,594		1,704			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

analysis of a secondary dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

BASELINE/BACKGROUND QUARTERLY SAMPLING - 1st Facility: KU Ghent Special Waste Landfill Permit Number: Pending

Page	2	Exhibit GHR-1 Page 163 of 300	
FINDS	3/t	NIT:	

FIN.	DS/UNIT:		/_1
LAB	ID:		
For	official	Use	only

AKGWA NUMBER¹,	Facility Well/Spring Number				8004-6810		8004-6809		8004-6807			
Facility's Loca	d Well or Spring Number (e.g. MW	7-1, MW-2,	etc.)		GWMP-1		GWMP-2		GWMP-3			
CAS RN ⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL	F	DETECTED VALUE OR PQL°	F
						A		A		A		A
						G		G		G		G
						s		s	-	s		s
S0296	рн	Т	units	Fld. Meas.	7.12		7.32		7.10			
14808-79-8	Sulfate	T	MG/L	846 9056a	343		196		70.9			
71-52-3	Alkalinity, Bicarbonate	Т	MG/L	2320B	256		365		267			
3812-32-6	Alkalinity, Carbonate	T	MG/L	2320B	<5		<5		<5			
7440-38-2	Arsenic	T	MG/L	846 6010C	<0.001		<0.001		0.001			
7440-42-8	Boron	T	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-43-9	Cadmium	I	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-70-2	Calcium	Т	MG/L	846 6010C	182		93.9		462			
7440-47-3	Chromium	т	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-50-8	Copper	T	MG/L	846 6010C	0.002		<0.001		<0.001			
7439-89-6	Iron	т	MG/L	846 6010C	0.018		0.142		0.021			
7439-92-1	Lead	т	MG/L	846 6010C	<0.001		<0.001		<0.001			
7439-95-4	Magnesium	T	MG/L	846 6010C	74.8		52.2		185			
7439-97-6	Mercury	Т	MG/L	846 7470A	0.0000069		0.0000167		0.0000041			
7440-02-0	Nickel	Т	MG/L	846 6010C	<0.001		0.003		0.003			
7440-09-7	Potassium	т	MG/L	846 6010C	4.60		14.6		53.9			
7782-49-2	Selenium	Т	MG/L	846 6010C	0.001		0.078		0.079			
7440-23-5	Sodium	T	MG/L	846 6010C	58.2		201		3,138			
7440-66-6	Zinc	T	MG/L	846 6010C	0.005		0.004		0.004			

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name_	(As offic	Ghent Station ally shown on DWM Perm	Act	Activity <u>Special Waste Landfill</u>					
Permit No	021-00024	Finds/Unit N	0	Quarter & Year	<u> 3rd-2013</u>				
Please check <u>or</u>	<u>ily ONE</u> of t	he following:							
_X_Characte	rization _	Quarterly	Semi-Annual _Groundwater	Annual	Assessment				
Please check ap	plicable sub	mittal: X	_Groundwater	Surface Wate	er•				
and 45:160) or by st the jurisdiction of t eight (48) hours of	atue (Kentucky he Division of ' making the de b report is <u>NO</u>	Revised Statues Cha Waste Management, termination using s	ulation (Kentucky Waste Mapter 224) to conduct ground You must report any intatistical analyses, directions. Instructions for	ndwater and surface w indication of contam comparison, or othe	ater monitoring under ination within forty- r similar techniques.				
accordance with a s Based on my inquir to the best of my l	ystem designed y of the person on mowledge and	to assure that qualif or persons directly re belief, true, accurate	all attachments were prepared personnel properly gates ponsible for gathering the and complete. I am as fine and imprisonment for	her and evaluate the in e information, the info ware that there are sig	nformation submitted. ormation submitted is,				
سلام	20w			4-	1~14				
7	SIGNATURI	3		DATI	<u>—</u> E				
	W. Micha		<u>unager of Environme</u>						
		NAME AND	TITLE - PLEASE P	RINT					

FACILITY INFORMATION SHEET

Sampling Date: _	8/27/2013	County	: <u>Carroll</u>	Permit	No.: 021-00024
Facility Name:	Kentucky Utilities (As officially shown				
Mailing Address:	9485 US Highway 42E		Ghent	410	045
	Street		City		Zip
Phone No.: <i>(502)</i>	627-4659 Latitud	le <u>N 38° 4</u>	43' 27.5"	Longitude_	W 85° 00' 33.4"
	OWNER	R INFORI	MATION		
Facility Owner:	Kentucky Utilitie	s Company		Phone No.:_(<u>(502) 627-4659</u>
Contact Person:	Paul F	Puckett		Phone No.:	(502) 627-4659
Contact Person Tit	le: <u>Sr Engineer, Envi</u>	ronmental A	ffairs Departn	nent, LG&E o	and KU
Mailing Address:	P.O. Box 32010		Louisville	4	0232
	Street		City		Zip
		ING PER	SONNEL LABORATORY)		
Company:	Kentucky Utilities Comp	oany Ghent S	Station Labora	tory	
Contact Person:	Mr. Eric Ferguson-Lab	<u>Technician</u>	Pho	ne No.: <u>(50</u>	<u>(2) 347-4135</u>
Mailing Address:	9485 U.S. Highway 421	E	Ghent	4.	1045
	Street		City		Zip
	LABORA	TORY R	ECORD #1		
Laboratory:	Generation Services	s Laboratory	,	Lab ID N	To.:
Contact Person:	Mr. Matthew Wood	son-Scientist	·	Phone No.:_	<u>(502) 347-4189</u>
Mailing Address:_	P.O. Box 437, 8815 U.S.	Highway 42	? Ghent, KY	41	045
	Street		City		Zip
	LABORA	TORY R	ECORD #2	}	
Laboratory:	Microbac Labora	tories, Inc.		Lab ID No).:
Contact Person:	Ms. Laure	i Revlett		Phone No.:_	<u>(502) 962-6400</u>
Mailing Address:	3323 Gilmore Industric	al Blvd.		7 40.	213
	Street		City		Zip

BASELINE/BACKGROUND QUARTERLY SAMPLING - 3rd Facility: KU Ghent Special Waste Landfill Permit Number: Pending

Page 1 of 2

Exhibit GHR-1 FINDS/UNIT: Page 166 of 300 / 1 LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Fa	AKGWA NUMBER ¹ , Facility Well/Spring Number								8004-6807			
Facility's Local	Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		GWMP-1 GWMP-:		GWMP-2	GWMP-2				
Sample Sequence #	•				2 3		3	1				
If sample is a Bl	ank, specify Type: (F) ield, (T) ri	.p, (M	ethod, or (E	E) quipment	Not Applica	able	Not Applical	ole	Not Applica	ble		
Sample Date and T	Sample Date and Time (Month/Day/Year hour:minutes)						8/27/13 11:4	14	8/27/13 10:	:33		
Duplicate ("Y" or "N") ²							Мо		No			
Split ("Y" or "N")3							ио		No			
Facility Sample ID Number (if applicable)						able	Not Applical	ole	Not Applica	able		
Laboratory Sample ID Number (if applicable)						able	Not Applical	ole	Not Applica	able		
Date of Analysis (Month/Day/Year)						8/27-9/11/13 8/27-9/11/13		8/27-9/11/13				
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)												
CAS RN ⁴	CONSTITUENT	D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
s0906	Static Water Level Elevation	т	Ft. MSL	Fld. Meas.	664.35		694.38		696.97			
s0907	Temperature	T	°C	Fld. Meas.	15.6		14.8		15.5			
16887-00-6	Chloride(s)	T	MG/L	846 9056A	43.2		156		2,477			
s0130	Chemical Oxygen Demand	T	MG/L	5220D	<25		<25		146			
s0266	Total Dissolved Solids	Т	MG/L	I-1750-85	926		1,020		4,956			
s0268	Total Organic Carbon	T	MG/L	5310C	<5.00		<5.00		<5.00			
S0145	Specific Conductance	Т	UHMS/CM	Fld. Meas.	1,400		1,700		895			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary

BASELINE/BACKGROUND QUARTERLY SAMPLING - 3rd Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

2age	2	Exhibit GHR-1 Page 167 of 300	
FINDS	3/0	JNIT:	

FINDS/UN	IIT:		/1	Ļ
LAB ID:				_
For offic	rial Hse	only		

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-6810		8004-6809		8004-6807			
Facility's Loca	l Well or Spring Number (e.g. MW	-1, MW-2	, etc.)		GWMP-1		GWMP-2		GMMP-3			
CAS RN4	CONSTITUENT	₩ D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
s0296	рн	T	units	Fld. Meas.	6.97		7.45		7.14			
14808-79-8	Sulfate	Т	MG/L	846 9056a	280		197		79.4			
71-52-3	Alkalinity, Bicarbonate	T	MG/L	2320B	400		432		390			
3812-32-6	Alkalinity, Carbonate	T	MG/L	2320B	<5		<5		<5			
7440-38-2	Arsenic	Т	MG/L	846 6010C	<0.001		0.002		<0.001			
7440-42-8	Boron	Т	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-43-9	Cadmium	T	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-70-2	Calcium	т	MG/L	846 6010C	183		89.0		197			
7440-47-3	Chromium	Т	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-50-8	Copper	т	MG/L	846 6010C	0.001		<0.001		<0.001			
7439-89-6	Iron	T	MG/L	846 6010C	0.016		0.224		0.059			
7439-92-1	Lead	T	MG/L	846 6010C	<0.001		<0.001		<0.001			
7439-95-4	Magnesium	T	MG/L	846 6010C	73.1		48.1		78.7			
7439-97-6	Mercury	T	MG/L	846 7470A	0.0000064		0.0000121		0.0000047			
7440-02-0	Nickel	ī	MG/L	846 6010C	<0.001		<0.001		0.002		·	
7440-09-7	Potassium	T	MG/L	846 6010C	4.80		14.3		34.4			
7782-49-2	Selenium	T	MG/L	846 6010C	<0.001		0.002		0.036			
7440-23-5	Sodium	T	MG/L	846 6010C	39.6		228		1,710			
7440-66-6	Zinc	T	MG/L	846 6010C	0.009		0.008		0.010			

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	KU Ghent S (As officially shown on I		Activity <u>Special Waste Land</u>					
Permit No <i>021-6</i>	<i>00024</i> Finds/	Unit No	Quarter	& Year_ <i>4th-2013</i>				
Please check <u>only O</u>	<u> NE</u> of the follow	ving:						
_X_Characterizat	tionQuar	terlySemi-A	AnnualAnn	nualAssessment ce Water				
Please check applic	able submittal:	X Groundwat	er <u>X</u> Surfac	ce Water				
and 45:160) or by statue (the jurisdiction of the Di eight (48) hours of maki	Kentucky Revised Stavision of Waste Maning the determination ort is NOT consider	atues Chapter 224) to con agement. You must rep n using statistical analys	duct groundwater and sort any indication of es, direct comparison	Regulations - 401 KAR 48:300 surface water monitoring under contamination within forty-t, or other similar techniques, he form are attached. Do not				
accordance with a system Based on my inquiry of th	designed to assure the ne person or persons of edge and belief, true,	nat qualified personnel pr directly responsible for ga , accurate, and complete.	operly gather and evaluation the information I am aware that the	my direction or supervision in uate the information submitted. In the information submitted is, re are significant penalties for ons.				
W. July	2 Wood			4-1-14 DATE				
	NATURE			DATE				
		e <u>r – Manager of Env</u> 3 and title _– pei	-	ams				

FACILITY INFORMATION SHEET

Sampling Date: _	12/20/2013	County:	Carroll	Permit	No.: <u>021-00024</u>
Facility Name:	Kentucky Utilities Comp (As officially shown on DWM)		nt Station		<u>.</u>
Mailing Address:	9485 US Highway 42E		hent	410	045
	Street	_	City		Zip
Phone No.: <u>(502)</u>	627-4659 Latitude 1	V 38° 43° 2	27.5"	Longitude_	W 85° 00' 33.4'
	OWNER IN	FORMA	TION		
Facility Owner:	Kentucky Utilities Com	pany		Phone No.:_(<u>(502) 627-4659</u>
Contact Person:	Paul Puckett	ţ.		Phone No.:	<u>(502) 627-4659</u>
Contact Person Tit	de: <u>Sr Engineer, Environme</u>	ental Affai	rs Depart	ment, LG&E a	ınd KU
Mailing Address:_	P.O. Box 32010	$L\epsilon$	ouisville	4(0232
	Street		City		Zip
	SAMPLING I				
Company:	Kentucky Utilities Company G	hent Stati	on Laboro	atory	
Contact Person:	Mr. Eric Ferguson-Lab Tech	nician	Pho	ne No.: <u>(50</u>	2) 347-413 <u>5</u>
Mailing Address:_	9485 U.S. Highway 42E		Ghent	4)	1045
	Street		City		Zip
,	LABORATOR	Y REC	ORD #1	[
Laboratory:	Generation Services Labo	ratory		_ Lab ID N	o.:
Contact Person:	Mr. Matthew Woodson-Sc	<u>ientist</u>		Phone No.:_	<u>(502) 347-4189</u>
Mailing Address:_	P.O. Box 437, 8815 U.S. High	way 42 G	ihent, KY	410	045
_	Street		City		Zip
	LABORATOR	Y REC	ORD #2	2	
Laboratory:	Microbac Laboratories,	Inc.		Lab ID No	·.:
Contact Person:	Ms. Laura Revle	ett		Phone No.:_	<u>(502) 962-6400</u>
Mailing Address:_	3323 Gilmore Industrial Blvd	!. Lou	iisville, K	Y 402	213
_	Street		City		7in

BASELINE/BACKGROUND QUARTERLY SAMPLING - $4^{\rm th}$ Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

Page 1 of 2

Exhibit GHR-1 FINDS/UNITPage 170 of 300

LAB ID: For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹. 1	Facility Well/Spring Number	***	 		8004-6810		8004-6809		8004-6807			
						GWMP-1 GWMP-2		GWMP-3D				
Facility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)												
Sample Sequence	· #		·		1		3		2			
If sample is a	Blank, specify Type: (F)ield, (T)r:	p, (M	ethod, or (E) quipment	Not Applic	able	Not Applica	ble	Not Applica	ble —		
Sample Date and	Time (Month/Day/Year hour:minutes)				12/20/13 1	3:30	12/20/13 14	:00	12/20/13 12	:48		
Duplicate ("Y"	or "N") ²				No		Мо		No			
Split ("Y" or "	N") ³				Мо		No		No			
Facility Sample	ID Number (if applicable)				Not Applica	able	Not Applica	ble	Not Applica	ble		
Laboratory Samp	le ID Number (if applicable)				Not Applica	able	Not Applica	ble	Not Applica	ble		
Date of Analysis (Month/Day/Year)					1/10-3/13/	1/10-3/13/14 1/10-3/13/14		1/10-3/13/14				
Gradient with r	espect to Monitored Unit (UP, DOWN	, SIDE	, UNKNOWN)									
CAS RN ⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁵	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
s0906	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	664.28		695.15		700.15			
s0907	Temperature	T	°C	Fld. Meas.	14.1		13.5		14.7			
16887-00-6	Chloride(s)	T	MG/L	846 9056A	40.6		166		3,951			
s0130	Chemical Oxygen Demand	T	MG/L	5220D	<25		<25		143			
S0266	Total Dissolved Solids	T	MG/L	I-1750-85	854		988		7,382			
S0268	Total Organic Carbon	T	MG/L	5310C	<5.00		5.63		<5.00			
S0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	1,390		1,691		1,304			

LAKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from

analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BASELINE/BACKGROUND QUARTERLY SAMPLING - $4^{\rm th}$ Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

Page 2 of Exhibit GHR-1 Page 171 of 300

FINDS/UNIT:	1	1
AR TD.		

For official Use only

AKGWA NUMBER ¹ , Facility Well/Spring Number							8004-6809		8004-6807			***************************************
Facility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)						GWMP-1			GWMP-3			
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
S0296	рн	ī	units	Fld. Meas.	7.04		7.33		7.13			
14808-79-8	Sulfate	T	MG/L	846 9056a	296		161		54.6			
71-52-3	Alkalinity, Bicarbonate	т	MG/L	2320B	416		444		368			
3812-32-6	Alkalinity, Carbonate	r	MG/L	2320B	<5		<5		<5			
7440-38-2	Arsenic	т	MG/L	846 6010C	0.001		0.002		0.009			
7440-42-8	Boron	т	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-43-9	Cadmium	т	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-70-2	Calcium	T	MG/L	846 6010C	160		79.2		263			
7440-47-3	Chromium	Ť	MG/L	846 6010C	0.001		0.001		<0.001			
7440-50-8	Copper	Т	MG/L	846 6010C	0.003		0.006		0.228			
7439-89-6	Iron	T	MG/L	846 6010C	0.016		0.642		0.018			
7439-92-1	Lead	T	MG/L	846 6010C	0.002		0.001		0.002			
7439-95-4	Magnesium	T	MG/L	846 6010C	67.9		44.9		117			
7439-97-6	Mercury	T	MG/L	846 7470A	0.0000014		0.0000013		0.0000012			
7440-02-0	Nickel	T	MG/L	846 6010C	0.006		0.002		0.009			
7440-09-7	Potassium	T	MG/L	846 6010C	1.00		17.8		48.5			
7782-49-2	Selenium	Т	MG/L	846 6010C	<0.001		0.002		0.013			
7440-23-5	Sodium	т	MG/L	846 6010C	27.3		215		1,660			
7440-66-6	Zinc	Ţ	MG/L	846 6010C	0.009		0.009		0.013			

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name		Ent Station lly shown on DWM Permit Fac		y <u>Special Waste</u>	<u> Landfill</u>
Permit No. <u>021</u>	-00024	Finds/Unit No		Quarter & Yea	or <u> 1st 2014</u>
Please check <u>only</u>	ONE of th	ne following:			
<u>X</u> Characteriza	ation _	_Quarterly _	Semi-Annual	Annual	Assessment
Please check appli	cable subi	mittal: <u>X</u> C	Groundwater _	Surface Wat	er
This form is to be utilize and 45:160) or by statue the jurisdiction of the E eight (48) hours of mal Submitting the lab re submit the instruction parts.	(Kentucky F Pivision of W ding the dete port is <u>NO</u> T	Revised Statues Chapter Vaste Management. Your Ermination using stati	r 224) to conduct grou ou must report any i stical analyses, direct	ndwater and surface values and ication of contant comparison, or oth	vater monitoring under nination within forty- er similar techniques.
I certify under penalty of accordance with a system Based on my inquiry of to the best of my know submitting false informa	n designed to the person of dedge and b	o assure that qualified r r persons directly respo elief, true, accurate, a	personnel properly gat insible for gathering th id complete. I am av	her and evaluate the e information, the int vare that there are si	information submitted. formation submitted is,
٧,١	funda Q	WOL)	4-	<u> 29-15</u>
SIG	NATURE			DAT	E
	W. Michae	el Winkler – Mana	ger of Environme	ntal Programs	

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date: _	3/28/14	County:_	<u>Carroll</u>	Pern	nit No.:_(<u> 021-00024</u>
Facility Name:	Kentucky Utilities Comp (As officially shown on DV		ation (co	ntact: Dav	ve Smith)	
Mailing Address:_	9485 US Highway 42E	Gh		4		
	Street		City		Zip	
Phone No.: (502)	347-4145 Latitude_	N 38° 43 ' 22	7.5"	Longitud	e <u> <i>W 85°</i></u>	00'33.4"
	OWNER II	NFORMA	FION			
Facility Owner:	Kentucky Utilities C	I	Phone No.	: <u>(502) 6</u>	<u>27-4659</u>	
Contact Person:	W. Paul Puc	kett		Phone No	o.: <u>(502)</u>	<u>627-4659</u>
Contact Person Tit	ile: <i>Engineer, Environm</i>	ental Affairs L	Departmer	t, LG&E o	and KU	
Mailing Address:	P.O. Box 32010	Loi	uisville		40232	
	Street	200	City		Zip	
	SAMPLING OF OTHER THAN I	G PERSON				
Company:	Kentucky Utilities	Company Ghe	ent Station	ı Laborato	ry	
Contact Person:	David Valkovci		Phon	e No.: <u>(</u>	<u>502) 347</u>	<u>-4134</u>
Mailing Address:	9485 US Highway 42	$^{\circ}E$	Ghent		41045	<u>.</u>
	Street		City		Zip	-
	LABORATO	ORY RECO)RD #1			
Laboratory:	Generation Service System	n Laboratory		_ Lab II	D No.: _	
Contact Person:	Mr. Ed Raker	· ·	Phor	ne No.:	<u>(502) 34</u>	<u>7-4187</u>
Mailing Address:	8815 U.S. Highway 4.	2 G	hent, KY		401045	
0 =	Street		City		Zip	
	LABORATO	ORY RECO)RD #2			
Laboratory:	Beckmar Environmental L	aboratory		Lab II) No.:	·
Contact Person:	Ms. Kimberly Fallon		·····	Phone No	o.:_ <i>(502</i>)	<u>266-6533</u>
Mailing Address:	3251 Ruckriegel Parkway	<u>, </u>		Jefferso	<u>ntown</u>	40299
- -	Street			City		Zip

BASELINE/BACKGROUND QUARTERLY SAMPLING - 1st Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

Page 1 of 2

FINDS/UNIT: Exhibit GHR-1/ 1

LAB ID: Page 174 of 300 For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1, Facility Well/Spring Number							8004-6810			8004-6807			
Facility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)						GWMP-1		GWMP-2		GWMP-3D			
Sample Sequence	e #					2		3		1			<u> </u>
If sample is a	Bla	nk, specify Type: (F)ield, (T)ri	e, (M)	ethod, or (E) quipment	Not Applica	ple	Not Applicab	Le	Not Applica	ble	,	
Sample Date an	d Ti	me (Month/Day/Year hour:minutes)				3/28/14 13:	02	3/28/14 13:25	5	3/28/14 12:	35		
Duplicate ("Y"	or	nŊn) ²				No		No		No			
Split ("Y" or	"N")	3				No		No		No			
Facility Sampl	e ID	Number (if applicable)				Not Applica	ble	Not Applicabl	Le	Not Applica	ble		
Laboratory Sam	ple:	ID Number (if applicable)				Not Applica	ble	Not Applicab	le	Not Applica	ble		
Date of Analysis (Month/Day/Year)					3/28-4/29/14 3/28-4/29/14			3/28-4/29/14					
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)					UP/DOWN UP/DOWN		UP						
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ^c	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A	ļ	A		A		A
		·					G		G		G		G
-				}		<u> </u>	s		s		s		s
s0906		Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	664.19	 	694.88		698.37			1
s0907		Temperature	T	°C	Fld. Meas.	12.0		17.5		13.4			
16887-00-6		Chloride(s)	T	MG/L	846 9056A	21.1		144.8		4,136			
s0130		Chemical Oxygen Demand	T	MG/L	5220D	28		44		177			
s0266		Total Dissolved Solids	T	MG/L	I-1750-85	880		980		7,454			
S0268		Total Organic Carbon	Ħ	MG/L	5310C	1.10		14.0		1.70			
S0145		Specific Conductance	T	UHMS/CM	Fld. Meas.	1,411		1,649		1,335			
							THE STATE OF THE S			STANDARD FLAG	S:		

AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

^{&#}x27;Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

[&]quot;T" = Total; "D" = Dissolved

^{&#}x27;"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BASELINE/BACKGROUND QUARTERLY SAMPLING - 4th Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

Page 2 of 2

FINDS/UNIT: Exhibit GHR-1
LAB ID: Page 175 of 300 / 1

For official Use only

AKGWA NUMBER¹, Facility Well/Spring Number Facility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)						8004-6810 GWMP-1		8004-6809				
									GWMP-3			_
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ^c	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G.
						s		s		s		S
s0296	рн	T	units	Fld. Meas.	7.34		7.53		7.29			
14808-79-8	Sulfate	T	MG/L	846 9056a	261.5		213.2		64.0			
71-52-3	Alkalinity, Bicarbonate	T	MG/L	2320в	442		424		344			
3812-32 - 6	Alkalinity, Carbonate	Т	MG/L	2320B	<1		<1		<1			
7440-38-2	Arsenic	T	MG/L	846 6010C	0.001		0.005		<0.001			
7440-42-8	Boron	T	MG/L	846 6010C	0.800		1.567		4.026			
7440-43-9	Cadmium	T	MG/L	846 6010C	<0.001		<0.001		<0.001]
7440-70-2	Calcium	T	MG/L	846 6010C	156		81.9		339			
7440-50-8	Copper	T	MG/L	846 6010C	<0.001		<0.001		<0.001			
7439-89-6	Iron	T	MG/L	846 6010C	0.072		0.472		0.017			
7439-92-1.	Lead	т	MG/L	846 6010C	<0.001		<0.001		<0.001			
7439-95-4	Magnesium	Т	MG/L	846 6010C	64.9		34.5		114			
7439-97-6	Mercury	T	MG/L	846 7470A	0.0000026		0.0000094		0.0000025			
7440-02-0	Nickel	T	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-09-7	Potassium	T	MG/L	846 6010C	5.50		13.9		42.6			
7782-49-2	Selenium	т	MG/L	846 6010C	0.001		0.003		0.007			
7440-23-5	Sodium	Т	MG/L	846 6010C	26.3		214		2,161			7
7440-66-6	Zinc	T	MG/L	846 6010C	0.014		0.009		0.002			

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	Ghent Station (As officially shown on DWM Po	Activity	y <u>Special Waste Landfill</u>
Permit No. <u>021</u> -	00024 Finds/Unit	No.	Quarter & Year <u>4th, 2014</u>
Please check only	<u>ONE</u> of the following:		
Characterizati	onQuarterly	X_Semi-Annual	AnnualAssessment
Please check applic	cable submittal:	X Groundwater	Surface Water
and 45:160) or by statue the jurisdiction of the D eight (48) hours of make	(Kentucky Revised Statues C ivision of Waste Manageme ing the determination using port is <u>NOT</u> considered no	hapter 224) to conduct ground nt. You must report any i g statistical analyses, direct	Management Regulations - 401 KAR 48:30 indwater and surface water monitoring unde indication of contamination within forty tomparison, or other similar techniques completing the form are attached. Do no
accordance with a system Based on my inquiry of to the best of my know	n designed to assure that qua the person or persons directly	lified personnel properly gat responsible for gathering th ate, and complete. I am av	pared under my direction or supervision in ther and evaluate the information submitted the information, the information submitted is ware that there are significant penalties for r such violations.
W. U.	Qwd .		4-24-15
•	NATURE	fanna e f Til and a comme	DATE
J	W. Michael Winkler – N	aunuger of Environme	mai x rograms

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date: _	12/16/2014	County: <u>Carrol</u>	Permit No.	:_ <i>021-000</i> 24
Facility Name:	Kentucky Utilities Compan		ntact: Dave Smith)	· .
Mailina Address	_9485 US Highway 42E	Ghent	41045	
maning Address	Street	City		
Phone No.: <i>(502)</i>	347-4145 Latitude_	·	•	
	OWNER II	NFORMATION	1	
Facility Owner:	Kentucky Utilities Co	отрапу	Phone No.: <u>(502</u>) 627-465 <u>9</u>
Contact Person:	W. Paul Puci	kett	Phone No.:_ <i>(50</i>	02) 627-4659
Contact Person Ti	tle: <u>Engineer, Environna</u>	ental Affairs Departi	ment, LG&E and KU	IJ
Mailing Address:_	P.O. Box 32010	Louisville	4023.	2
_	Street	City	Ziţ)
Company:		G PERSONNEI ANDFILL OR LABORATORY NY Ghent Station Lab		_
Contact Person:	David Valkovci	Ph	one No.: <i>(502) 347</i>	-413 <u>4</u>
Mailing Address:	9485 US Highway 42E	Ghent	41045	•
<u> </u>	Street .	City	Zip	
	LABORATO	ORY RECORD	#1	
Laboratory:	Generation Services Syst	em Laboratory	Lab ID No.	:
Contact Person:	Mr. Ed Raker	P	hone No.: (502)	<u>347-4187</u>
Mailing Address:_	8815 U.S. Highw	vay 42 Ghent,	KY 40145	
	Street	City	Ziŗ) .
	LABORATO	RY RECORD !	#2	
Laboratory: B	eckmar Environmental Labo	ratory	Lab ID N	lo.:
Contact Person:	Kimberly Fallon		Phone No.: <i>(50</i>) <u>2) 266-6533</u>
Mailing Address:_	3251 Ruckriegel Po	arkway .	Jeffersontown	40299
	Street	•	City	Zip

Division of Waste Management Solid Waste Branch 200 Fair Caks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

(S)

Page 1 of 2
Exhibit GHR-1
Page 158 of 1300 / 1
LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

						8004-6810		8004-6809		8004-6807		<u> </u>	
	<u> </u>	ility Well/Spring Number										<u> </u>	
Facility's L	ocal W	ell or Spring Number (e.g. MW-1,	MW-2,	, etc.)		GWMP-1		GWMP-2		GWMP-3D			
Sample Seque	ace #					2		3		1		<u> </u>	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E	E) quipment	Not Applica	ble	Not Applicab	le	Not Applica	ble		
Sample Date	and Ti	me (Month/Day/Year hour:minutes)	•••			12/16/14 11	:15	12/16/14 11:	55	12/16/14 10	:40		
Duplicate ("	r" or	"N" } 2				Мо		No		No			
Split ("Y" o	r "N")	3		<u> </u>		Мо		No		No			
Facility Sam	ole ID	Number (if applicable)			***************************************	Not Applica	ble	Not Applicab	le	Not Applica	ble		
Laboratory S	ample	ID Number (if applicable)				Not Applica	ble	Not Applicab	le	Not Applica	ble		
Date of Anal	ysis (Month/Day/Year)				12/16-1/27		12/16-1/27		12/16-1/27			
Gradient wit	h resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		UP/DOWN		UP/DOWN		UP			
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F
				;			A		A		A		A. G
				,			s		s		s		s
s0906	0	Static Water Level Elevation		Ft. MSL	Fld. Meas.	664.88	 	695.22		699.97	-		
S0296	0	рН		units	Fld. Meas.	7.20		7.38		7.30			
S0145	ı	Specific Conductance		UHMS/CM	Fld. Meas.	1,259		1,942		1,090			
S0145	1	Temperature		°C	Fld. Meas.	12.9		12.8		12.2			
16887-00-6	2	Chloride(s)	T	MG/L	9056A	15		163		3,455			
18785-72-3	0	Sulfate	Т	MG/L	9056A	181		178		66.4			1
s0266	0	Total Dissolved Solids	T	MG/L	2540C	730		1,078		6,360			
s0130	0	Chemical Oxygen Demand	T	MG/L	5220D	53.0		141		433	1		

'AKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

FINDS/UNIT:_

Exhibit GHR-1 Page 179 of 300° 2 of 2

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

akgwa number	, Fac	ility Well/Spring Number				8004-6810		8004-6809		8004-6807			
Facility's Lo	cal W	Well or Spring Number (e.g. MW-	-1, MW-2,	etc.)		GWMP-1		GWMP-2		GWMP-3D			
CAS RN4		CONSTITUENT	T D ^s	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	· F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F
							A G S		A G S		A G S		A G S
S0268	1	Total Organic Carbon	т	MG/L	5310C	25.7		36.7		<5.00		•	
7440-42-8		Boron	т	MG/L	6010C	<0.001		0.001		0.002			-
7440-59-4		Calcium	т	MG/L	6010C	137		110		547			
7440-50-8	0	Copper	т	MG/L	6010C	<0.001		<0.001		0.002			
7440-23-5	0	Sodium	T	MG/L	6010C	24.0		238		2,035			
							<u> </u>						
					<u> </u>			_					

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	Ghent Station As officially shown on DWM Permit Fa		Special Wast	te Landfill
Permit No. <u>021-000</u>	24 Finds/Unit No		Quarter & Ye	ar <u> 2nd 2015</u>
Please check <u>only ONE</u>	of the following:			
Characterization	QuarterlyX	Semi-Annual	Annual	Assessment
Please check applicable	e submittal: <u>X</u> (Groundwater _	Surface Wa	ter
and 45:160) or by statue (Kent the jurisdiction of the Divisio eight (48) hours of making t	those sites required by regulat tucky Revised Statues Chapte on of Waste Management. Y he determination using stati is <u>NOT</u> considered notificat	r 224) to conduct groun ou must report any it stical analyses, direct	dwater and surface idication of conta comparison, or otl	water monitoring under mination within forty- ner similar techniques.
accordance with a system desi Based on my inquiry of the pe to the best of my knowledge	v that this document and all igned to assure that qualified erson or persons directly respondent and belief, true, accurate, a including the possibility of fin	personnel properly gath onsible for gathering the nd complete. I am aw	ner and evaluate the information, the in are that there are s	information submitted. aformation submitted is,
W. Miss	200l		<u>8-</u>	<u>3~15</u> TE
SIGNAT	TURE		DAT	TE
W. M	ichael Winkler – Mana	ger of Environmen	ntal Programs	

NAME AND TITLE - PLEASE PRINT

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502)564-6716

SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

(S)

Exhibit GHR de 1 of 2 Page 181 of 300

FINI	OS/UNIT	:	/_	1
LAB	ID:			

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

												T.	
AKGWA NUMBER¹	, Fac	ility Well/Spring Number				8004-6810		8004-6810		8004-6809		8004-6807	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		GWMP-1		GWMP-1 (DUP)		GWMP-2		GWMP-3D	
Sample Sequen	ce #					2		3		4		1	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E	2) quipment	Not Applicat	ole	Not Applicabl	Le	Not Applical	ble	Not Applical	ble
Sample Date a	and Ti	me (Month/Day/Year hour:minutes)		* **		5/28/15 10:0	00	5/28/15 10:01	L	5/28/15 10:2	20	5/28/15 9:30	0
Duplicate ("Y	" or	nNu) 5				Ио		Yes		No		ЙО	
Split ("Y" or	("וא" :	3				ио		Мо		No		Ио	
Facility Samp	ole ID	Number (if applicable)				Not Applicat	ble	Not Applicab	le	Not Applical	ble	Not Applical	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applical	ble	Not Applicab	le	Not Applical	ble	Not Applical	ble
Date of Analy	rsis (Month/Day/Year)				5/28-6/29/15	5	5/28-6/29/15		5/28-6/29/1	5	5/28-6/29/1	5
Gradient with	ı resp	ect to Monitored Unit (UP, DOWN,	SIDE	UNKNOWN)		UP/DOWN		UP/DOWN		UP/DOWN		UP	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F L
							A		A		A		A
							G		G		G		G
				,			s		s		s		s
s0906	0	Static Water Level Elevation		Ft. MSL	Fld. Meas.	665.61				695.00		698.74	
S0296	0	рн		units	Fld. Meas.	7.30		7.30		7.80		7.40	
S0145	1	Specific Conductance		UHMS/CM	Fld. Meas.	1,170				1,196		1,198	
S0145	1	Temperature		°C	Fld. Meas.	12.5		12.7		13.0		12.1	
16887-00-6	2	Chloride(s)	Т	MG/L	9056A	12.1		12.0		63.9		4,065.4	
18785-72-3	0	Sulfate	Т	MG/L	9056A	189.8		186.9		89.5		71.1	
s0266	0	Total Dissolved Solids	т	MG/L	2540C	813		762		774		6,797	
s0130	0	Chemical Oxygen Demand	Т	MG/L	5220D	26		47		72		148	
		1	1	1			_						

^{&#}x27;AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

analysis of a secondary dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

[&]quot;"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

FACILITY INFORMATION SHEET

Sampling Date: _	5/28/2015	County: Carroll	Permit	: No.: <u>021-00024</u>
Facility Name:	Kentucky Utilities Company (As officially shown on DWA		tact: Dave Smi	(th)
Mailing Address:	9485 US Highway 42E	Ghent	41	045
_	Street	City		Zip
Phone No.: (502)	347-4145 Latitude	N 38° 43 ' 27.5"	_ Longitude_	W 85° 00' 33.4"
	OWNER IN	FORMATION		
Facility Owner:	Kentucky Utilities Cor	прапу	Phone No.:_	(502) 627-465 <u>9</u>
Contact Person:	W. Paul Pucke	ett .	_ Phone No.:	<u>(502) 627-4659</u>
Contact Person Tit	tle: <u>Engineer, Environmer</u>	<u>ıtal Affairs Departm</u>	ıent, LG&E an	d KU
Mailing Address:_	P.O. Box 32010	Louisville	4	10232
	Street	City		Zip
	aF OTHER THAN LAI Kentucky Utilities Compan David Valkovci		•	
Mailing Address:_	9485 US Highway 42E	Ghent	41	045
	Street	City		Zip
	LABORATOI	RY RECORD #	:1	
Laboratory:	Beckmar Environmental	Laboratory	Lab ID	No.:
Contact Person:	Kimberly Fallon		Phone No.:	(502) 266-6533
Mailing Address:_	3251 Ruckriegel Parkway		KY .	
	Street	City		Zip
	LABORATOI	RY RECORD #	2	
Laboratory: F	ouser Environmental Laborat	ory	Lab I	D No.:
Contact Person:	Christina Thomas	· · · · · · · · · · · · · · · · · · ·	Phone No.:_	(859) 873-6211
Mailing Address:_	165 Camden Avenue Street	Versai	<i>lles, KY</i>	

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

FINDS/UNIT:_

Exhibit $GHR_{e}1_{2 \text{ of } 2}$ Page 183 of 300 / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

akgwa number	, Fac	ility Well/Spring Number				8004-6810		8004-6810		8004-6809		8004-6807	
Facility's L	ocal W	ell or Spring Number (e.g. M	W-1, MW-2,	etc.)		GWMP-1		GWMP-1	•••	GWMP-2		GMMP-3D	
CAS RN⁴		CONSTITUENT	D ₂	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F L
							A	Ļ	A		A	ļ	A
							G		G		G		G
							s		s		s		s
S0268	1	Total Organic Carbon	T	MG/L	5310C	1.4		1.4		17		2.5	
7440-42-8		Boron	Т	MG/L	6010C	0.20		0.23		0.86		3.33	
7440-59-4		Calcium	Ţ	MG/L	6010C	293.330		225.875		55.791		343.014	
7440-50-8	0	Copper	Т	MG/L	6010C	<0.020		<0.020		<0.020		<0.020	
7440-23-5	. 0	Sodium	T	MG/L	6010C	18.846		18.493		215.860		2,240.847	
													1
							1						
·····.													
													1

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	(As officially shown on DWA	Activit	y <u>Special Waste</u>	<u>Landfill</u>
Permit No. <u>021</u>	-00024 Finds/Uni	t No.	Quarter & Year	4 th 2015
Please check <u>only</u>	<u>ONE</u> of the following	n ·		·
Characterizat	ionQuarterly	X. Šemi-Annual	Annual _	Assessment
Please check appli	cable submittal:	X Groundwater	Surface Wate	r .
and 45:160) or by statue the jurisdiction of the E cight (48) hours of mal	(Kentucky Revised Statues Division of Waste Manager ldng the determination us port is <u>NOT</u> considered	regulation (Kentucky Waste he Chapter 224) to conduct grounent. You must report any ing statistical analyses, direct notification. Instructions for	ndwater and surface wa indication of contami t comparison, or other	ater monitoring under nation within forty- r similar techniques
accordance with a system Based on my inquiry of to the best of my know	m designed to assure that q the person or persons direc vledge and belief, true, acc	and all attachments were pre ualified personnel properly ga tly responsible for gathering the curate, and complete. I am a lty of fine and imprisonment fo	ther and evaluate the in the information, the info ware that there are sig	formation submitted rmation submitted is
.(2).	Missour).OL.	\(r \)	1-160
SIG	NATURE		DATE	3
	W. Michael Winkler –	- Mänager of Environme	ntal Programs	
	NAME A	ND TITLE - PLEASE P	RINT	

FACILITY INFORMATION SHEET

<u>3</u> Co	unty: <u>Carroll</u>	Permit	No.: <u>021-00024</u>
lties Company Gli Micially shown on DWM Pen	<u>nent Station (cont</u> mit face)	act: Dave Sml	(th)
nvay 42E	Ghent City	41	045 Zip
Latitude N.	38° 43 ' 27.5"	Longitude	W 85° 00' 33.4"
WNER INFO	DRMATION		
ky Utilities Compa	iny	Phone No.:_	<u>(502) 627-4659</u>
IV. Paul Puckett		_ Phone No.	: <u>(502) 627-4659</u>
er, Environmental	Affairs Departm	ent, LG&E an	d KU
10	Louisville	4	10232
			Zip
ar отнектнах landri lities Company G	ц, ок ілвоплюку Hent Station Lab	orator <u>ý</u>	
guson		'none 140.; <u>(3</u>	<u>02) 347-4134</u>
nvay 42E			•
	City		Zip
BORATORY	RECORD#	1	
<u>'nvironmental Lal</u>	boratory	Lab ID	No.:
			(*************
mberly Fallon		Phone No.:	(302) 266-6333
mberly Fallon ege <i>l Parkway</i> et			
egel Parkway	<i>Jeffersontown,</i> City	KY	40299
<i>egel Parkway</i> et	Jeffersontown, City RECORD #	<u>KY</u>	40299
<i>egel Parkway</i> et ABORATORY	Jeffersontown, City Z RECORD #	<i>KY</i> 2 Lab ID No.:	40299 Zip
	Ities Company Glorically shown on DWM Per INFO Latitude N. DWNER INFO LAY Utilities Company G. Latitude Puckett Per, Environmental Latitudes Company G. Lati	Ities Company Ghent Station (continically shown on DWM Pennit Face) Invay 42E Ghent City Latitude N 38° 43' 27.5" OWNER INFORMATION By Utilities Company IV. Paul Puckett Ex. Environmental Affairs Departmental Affairs Departmental City AMPLING PERSONNEL AF OTHER THAN LANDFILL OR LABORATORY City AWAY 42E Ghent City ABORATORY RECORD #	Latitude N 38° 43' 27.5" Longitude DWNER INFORMATION And Utilities Company Phone No.: W. Paul Puckett Phone No. Er, Environmental Affairs Department, LG&E and City AMPLING PERSONNEL AF OTHER THAN LANDFILL OR LABORATORY Clities Company Ghent Station Laboratory Buson Phone No.: (5) The Way 42E Ghent

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502) 564-6716

SP. WASTE/COAL COMBUSTION-SEMI-ANNUAL Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

Exhibit ^P G PR- L	of	_2
Page 186 of 300		
finds/unit:	/_	1
LAB ID:		

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(\$)

AKGWA NUMBERI	, Fac	ility Well/Spring Number		•		8004-6810		8004-6809		8004-6807			
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2	, etc.)		GWMP-1		GWMP-2		GWMP-3D		<u></u>	
Sample Sequen	ce #	,, , , , , , , , , , , , , , , , , , ,		···········		2	,	3		1.			*
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applica	able	Not Applical	ole	Not Applica	ble		
Sample Date a	ad Ti	me (Month/Day/Year hour:minutes)		···········	·	11/5/15 14	:31	11/5/15 15:1	.0	11/5/15 13:	28		
Duplicate ("Y	π oż	"N")2				No		No		No	***************************************		
Split ("Y" or	"N")	3			•	No		No		No			
Facility Samp	le ID	Number (if applicable)	·		***	Not Applica	able	Not Applical	le	Not Applica	ble		************
Laboratory Sa	mple.	ID Number (if applicable)				Not Applica	able	Not Applical	le	Not Applica	ble		
Date of Analy	sis (Month/Day/Year)				11/19-12/4/	/15	11/19-12/4/1	.5	11/19-12/4/	1.5		
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		UB/DOMM.		TE/DOWN		ΔĐ:			
CAS RN4		CONSTITUENT	T Ds	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR POL ^c	F	DETECTED VALUE OR POL ⁶	F L	DETECTED VALUE OR POL	F
							A G S		A. G	,	G S		A G S
s0906	0	Static Water Level Elevation		Ft. MSL	Fld. Meas.	665.69		694.54		697.97			
s0296	0	рн		units	Fld. Meas.	7.40		7.60		700			
S0145	1	Specific Conductance		UHMS/CM	Fld. Meas.	1,352		2,040		>2,000			
S0145	1	Temperature		°C	Fld. Meas.	16.5		14.3		15.5			
16887-00-6	2	Chloride(s)	T	MG/L	905.6A	23.7		150		213			
18785-72-3	0	Sulfate	Ŧ	MG/L	9056A	190		98		14.6			
s0266	0	Total Dissolved Solids	T	MG/L	2540C	79.6		1,193		28,203			1
s0130	0	Chemical Oxygen Demand	ī	MG/L	5220D	50		230	7.	743		· [1

TARGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Respond "I" if the sample was a duplicate of another sample in this report.
Respond "I" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

SP. WASTE/COAL COMBUSTION - SEMI-ANNUAL

Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

Exhibit GHR-1 Page 187 of 366° 2 of 2

FINDS/UNIT:___

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NOMBERI	, Fac	ility Well/Spring Number		8004-6810		8004-6809		8004-6807					
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2	etc.)		GMP-1		GWMP-2		GRMP-3D			
CAS FN4		CONSTITUENT	T Ds	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR POL	H H	DETECTED VALUE OR PQL ^c	F	DETECTED VALUE OR PQL ⁶	F
							A G S		a G S		A G S		a G S
S0268	1	Total Organic Carbon	1	MG/L	5310C	1.1	-	52	3	1.5			+-
7440-42-8		Boron	T	MG/L	6010C	<0.50		2.4		4.1			1
7440-59-4		Calcium	r	MG/L	6010C	155		79.9		520			†
7440-50-8	0	Copper	T	MG/L	6010C	0-002		0.002		<0.001			
7440-23-5	0	Sodium	T	MG/L	6010C	46.2		378		2,620			
		·											
								ļ.					<u> </u>
			ļ						ļ				
													<u> </u>
	ļ												
											-		
											<u> </u>		<u> </u>
	<u> </u>												
	<u> </u>								ļ				
	<u> </u>				1				<u> </u>		-	-	
				1					ļ		-		-
				1			<u> </u>				<u> </u>		

Ghent Station Surface Water Reports

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	Ghent Stati (As officially shown on		_Activity_ <i>Spec</i>	cial Waste Lan	<u>ıdfill</u>
Permit No. <u>021-</u>	-00024 Finds/	Unit No	Quarter & Ye	ear <u> <i>Various-20</i></u>	011 & 2013
Please check <u>only (</u>	<u>ONE</u> of the follow	ving:			
Characteriza					_Assessment
Please check applic	cable submittal:	<u>Z</u> Groundy	vater <u>X</u> Sur	face Water	
This form is to be utilized and 45:160) or by statue the jurisdiction of the Deight (48) hours of make Submitting the lab reposition page 14.	(Kentucky Revised Stativision of Waste Man sting the determination port is <u>NOT</u> consider	atues Chapter 224) to co agement. You must r n using statistical anal	onduct groundwater a eport any indicatio yses, direct compar	and surface water r n of contamination ison, or other sim	nonitoring under on within forty- illar techniques.
I certify under penalty of accordance with a system Based on my inquiry of to the best of my know submitting false informate.	n designed to assure the the person or persons of ledge and belief, true	nat qualified personnel pair directly responsible for a accurate, and comple	properly gather and og gathering the inform te. I am aware that	evaluate the inform ation, the informat there are signific	nation submitted. ion submitted is,
w.Mi	0000	L_			13
SIG	NATURE			DATE	
		e <u>r – Manager of E</u> i		ograms	
	NAMI	I AND TITLE - PI	EASE PRINT		

FACILITY INFORMATION SHEET

Sampling Date: 6/2	2 <u>3/11; 9/27/11; 11/16/11 & 7/3</u>	<u>3/13</u> County: <u>Carr</u>	oll Permit No.:	021-00024
Facility Name:	Kentucky Utilities Co (As officially shown on DW			
Mailing Address:	9485 US Highway 42E	Ghent	41045	
0	Street	City	Zip	
Phone No.: <u>(502)</u>	627-4659 Latitude_	N 38° 43' 27.5"	Longitude W 85	' <i>00' 33.4</i> '
	OWNER IN	NFORMATION		
Facility Owner:	Kentucky Utilities Co	ompany	Phone No.: (502) 6	27-4659
Contact Person:	Paul Puck	ett	Phone No.: <u>(502)</u>	<u>627-4659</u>
Contact Person Tit	le: <i>Sr Engineer, Environme</i>	ntal Affairs Departme	ent, LG&E and KU	
Mailing Address:	P.O. Box 32010	Louisville	40232	
	· Street	City	Zip	
		G PERSONNEL AND FILL OR LABORATORY)		
Company:	Kentucky Utilities Compar	ny Ghent Station Labo	oratory	
Contact Person:	David Valkovci	Pho	ne No.: <i>(502) 347-4</i>	<u>134</u>
Mailing Address:	9485 US Highway 42E	Ghent	41045	
	Street	City	Zip	
	LABORATO	RY RECORD #	1	
Laboratory:	Microbac Laboratorie	s, Inc.	Lab ID No.:	
Contact Person:	Ms. Laura Re	vlett	Phone No.: (502)	<u>962-6400</u>
Mailing Address:_	3323 Gilmore Industrial Bl	vd. Louisville, K	Y 40213	
	Street	City	Zip	
	LABORATO	RY RECORD #	2	
Laboratory:		Lab) ID No.:	
Contact Person:			Phone No.:	
Mailing Address:_				
-	Street		City	Zip

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716 BACKGROUND QUARTERLY SAMPLING - 1st Event

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Page 1 of 4

Exhibit GHR-1 FINDS/UNIT: Page 191 of 300

LAB ID:

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Poi	nt ()	KPDES Discharge Number, or "UPST	REAM",	or "DOWNSTR	EAM")	UPSTREAM		DOWNSTREAM		UPSTREAM		DOWNSTREAM	
Sample Sequenc	e #		•			2		1		3		4	
If sample is a	Bla	ık, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applicat	ole
Sample Date an	d Ti	me (Month/Day/Year hour:minutes)				6/23/11 12:0	00	6/23/11 10:15	5	6/23/11 12:4	16	6/23/2011 13	3:25
Duplicate ("Y"	or 1	"N") ²				Ио		мо		No		ио	
Split ("Y" or	"N")	3				No No				No		ио	
Facility Sampl	acility Sample ID Number (if applicable)					SWMP-01-N		SWMP-02-N		SWMP-01-S		SWMP-02-S	
Laboratory Sam	Laboratory Sample ID Number (if applicable)					Not Applicat	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ole
Date of Analysis (Month/Day/Year)						6/27-7/5/11		6/27-7/5/11		6/27-7/5/11		6/27-7/5/11	
CAS RN⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
A200-00-0	•	Flow	T	Gal./Min.	Fld. Meas.	80		300		30		2,950	
16887-00-6		Chloride(s)	T	MG/L	300.0	32		14		6.8		8.6	
14808-79-8		Sulfate	T	MG/L	300.0	33		36		18		17	
7439-89-6		Iron	T	MG/L	200.7	0.59		1.8		7.0		8.9	
7440-23-5		Sodium	T	MG/L	200.7	14		6.0		7.1		6.2	
s0268		Organic Carbon	T	MG/L	5310C	2.3		5.7		8.4		5.9	
s0130		Chemical Oxygen Demand	T	MG/L	5220D	<10		18		28		17	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from

analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BACKGROUND - QUARTERLY SAMPLING - 1st Event

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

LAB ID:

For official Use only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Poin	nt (KPDES Discharge Number, or "U	JPSTREAM",	or "DOWNSTE	REAM")	UPSTREAM		DOWNSTREAM		UPSTREAM		DOWNSTREAM	
Facility Sample	e ID Number (if applicable)				SWMP-01-N		SWMP-02-N		SWMP-01-S		SWMP-02-S	
CAS RN ⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
s0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	600		480		350		350	
s0270	Total Suspended Solids	т	MG/L	I-3765-85	22		43		210		200	
S0266	Total Dissolved Solids	T	MG/L	2540C	350	***************************************	320		250		300	
S0269	Total Solids	Ţ	MG/L	I-3750-85	380		360		460		450	
S0296	рн	Т	units	Fld. Meas.	8.01		8.27		7.82		8.15	
\$0907	Temperature	Т	°C	Fld. Meas.	19.8		19.4		19.6		21.4	
7440-38-2	Arsenic	T	MG/L	200.7	<0.10		<0.10	<u> </u>	<0.10		<0.10	
7440-42-8	Boron	T	MG/L	200.7	<0.5		<0.5		<0.5		<0.5	
7440-43-9	Cadmium	T	MG/L	200.7	<0.010		<0.010		<0.010		<0.010	
7440-70-2	Calcium	T	MG/L	200.7	100		80		53		56	
7440-50-8	Copper	T	MG/L	200.7	<0.020		<0.020		<0.020		<0.020	
7439-92-1	Lead	Т	MG/L	200.7	<0.010		<0.010		<0.010		<0.010	
7439-97-6	Mercury	Т	MG/L	245.1	<0.0002		<0.0002		<0.0002		<0.0002	
7440-02-0	Nickel	т	MG/L	200.7	<0.020		<0.020		<0.020		<0.020	
7782-49-2	Selenium	т	MG/L	200.7	<0.050		<0.050		<0.050		<0.050	
7440-66-6	Zinc	T	MG/L	200.7	<0.010		<0.010		0.017		0.020	

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 BACKGROUND QUARTERLY SAMPLING - 1^{st} Event Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

Page 3 of 4 Exhibit GHR-1 Page 193 of 300

FINDS/UNIT:	/	1
LAB ID:		

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Point	: (KPDES Discharge Number, or "UP	STREAM"	, or "DOWNSTE	REAM")	_			•				
Sample Sequence	#				5						**	
If sample is a B	Slank, specify Type: (F)ield, (T)	rip, (M)	ethod, or (F	E) quipment	F							
Sample Date and	Time (Month/Day/Year hour:minute	s)			6/23/11 13:50							
Duplicate ("Y" o	r "N") ²				No							
Split ("Y" or "N	in) ₃				No							
Facility Sample	Facility Sample ID Number (if applicable)									·		
Laboratory Sampl	Laboratory Sample ID Number (if applicable)					ble						
Date of Analysis	(Month/Day/Year)				6/27-7/5/11							
CAS RN ⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A	DETECTED VALUE OR PQL ⁶	F L A	DETECTED VALUE OR PQL ⁵	F L A	DETECTED VALUE OR PQL ⁶	F L A
						G S		G S		G S	,	G S
A200-00-0	Flow	T	Gal./Min.	Fld. Meas.	_							
16887-00-6	Chloride(s)	T	MG/L	300.0	<0.50							
14808-79-8	Sulfate	T	MG/L	300.0	<0.50							
7439-89-6	Iron	T	MG/L	200.7	<0.010							
7440-23-5	Sodium	Т	MG/L	200.7	<2.0							
s0268	Organic Carbon	T	MG/L	5310C	<0.5							
s0130	Chemical Oxygen Demand	T	MG/L	5220D	<10							

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from
 - analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BACKGROUND - QUARTERLY SAMPLING - 1st Event Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

Exhibit GHR-1
Page 4 of 4
Page 194 of 300
FINDS/UNIT: / 1

LAB ID:

For official Use only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER¹, F	acility Well/Spring Number				-							
Facility's Local	Well or Spring Number (e.g. MW-	-1, MW-2,	etc.)		FIELD BLANK							
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL	F	DETECTED VALUE OR PQL	F L	DETECTED VALUE OR PQL ^c	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G.		G		G
						s		s		s		s
S0145	Specific Conductance	т	UHMS/CM	Fld. Meas.	<0.50							
s0270	Total Suspended Solids	т	MG/L	I-3765-85	<0.50							
S0266	Total Dissolved Solids	т	MG/L	2540C	<0.5							
S0269	Total Solids	T	MG/L	I-3750-85	<0.10							
S0296	нq	T	units	Fld. Meas.	_							
s0907	Temperature	т	°c	Fld. Meas.	1							
7440-38-2	Arsenic	т	MG/L	200.7	<0.50							
7440-42-8	Boron	T	MG/L	200.7	<0.020							
7440-43-9	Cadmium	Т	MG/L	200.7	<0.010							
7440-70-2	Calcium	т	MG/L	200.7	<0.010							
7440-50-8	Copper	T	MG/L	200.7	<0.0002							
7439-92-1	Lead	T	MG/L	200.7	<0.020							
7439-97-6	Mercury	T	MG/L	245.1	<0.050							
7440-02-0	Nickel	T	MG/L	200.7	<2.0							
7782-49-2	Selenium	T	MG/L	200.7	<0.010							

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 BACKGROUND QUARTERLY SAMPLING - 2nd Event

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Page 1 of 2

FINDS/UNIT: Exhibit GHR-1
Page 195 of 300/ 1

LAB ID:

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Poir	nt (KPDES Discharge Number, or "U	PSTREAM"	, or "DOWNSTI	REAM")	UPSTREAM		DOWNSTREAM	<u> </u>	DOWNSTREAM		_	
Sample Sequence	÷ #				2		1		3		4	
If sample is a	Blank, specify Type: (F)ield, (T	rip, (M)	ethod, or (I	E) quipment	Not Applical	ble	Not Applicab	Le	Not Applica	ble	Field	
Sample Date and	Time (Month/Day/Year hour:minut	es)			9/27/11 14:0	05	9/27/11 11:30)	9/27/11 15:	25	9/27/2011 1	6:23
Duplicate ("Y"	or "N")2				No		No		No		No	
Split ("Y" or '	'Z") ³				No		No	Ио			No	
Facility Sample	E ID Number (if applicable)		SWMP-01-N	SWMP-02-N		SWMP-02-S		BLANK				
Laboratory Samp	ole ID Number (if applicable)				Not Applical	ble	Not Applicab	Le	Not Applica	ble	Not Applica	ble
Date of Analysi	is (Month/Day/Year)				9/27-10/6/1	1	9/27-10/6/11		9/27-10/6/1	1	9/30-10/6/1	1
CAS RN ⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A G S		A G S		A G S		A G S
A200-00-0	Flow	T	Gal./Min.	Fld. Meas.	110		130		940		-	
16887-00-6	Chloride(s)	т	MG/L	300.0	29		17		10		<0.5	
14808-79-8	Sulfate	т	MG/L	300.0	30		42		29		<0.5	
7439-89-6	Iron	r	MG/L	200.7	0.70		1.2		0.78		<0.050	
7440-23-5	Sodium	Т	MG/L	200.7	9.5		6.7		6.7		<0.50	
s0268	Organic Carbon	Т	MG/L	5310C	3.7		3.9		4.3		<0.5	
s0130	Chemical Oxygen Demand	Т	MG/L	5220D	<10		<10		<10		11	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BACKGROUND - QUARTERLY SAMPLING - 2nd Event Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

Page 2 of 2 Page 196 of 300

FINDS/UNIT:____/_1

LAB ID:

For official Use only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Poir	at (KPDES Discharge Number, or "UPS	STREAM"	, or "DOWNSTE	REAM")	UPSTREAM		DOWNSTREAM	· · · · · · · · · · · · · · · · · · ·	DOWNSTREAM	•••	_	
Facility Sample	ID Number (if applicable)				SWMP-01-N		SWMP-02-N		SWMP-01-S		BLANK	
CAS RN4	CONSTITUENT	т D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
- And Andrews						A		A		A		A
						G		G		G		G
						s		s		s		s
S0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	470		470		380		1.9	
s0270	Total Suspended Solids	r	MG/L	I-3765-85	20		20		6		<5	
s0266	Total Dissolved Solids	T	MG/L	2540C	300		310		230		<50	
s0269	Total Solids	Т	MG/L	1-3750-85	320		320		250		20	
s0296	рн	T	units	Fld. Meas.	6.96		7.01		7.74		_	
s0907	Temperature	Т	°c	Fld. Meas.	16.0		15.8		15.8		-	
7440-38-2	Arsenic	T	MG/L	200.7	<0.10		<0.10		<0.10		<0.10	
7440-42-8	Boron	T	MG/L	200.7	<0.5		<0.5		<0.5		<0.5	
7440-43-9	Cadmium	T	MG/L	200.7	<0.010		<0.010		<0.010		<0.010	
7440-70-2	Calcium	T	MG/L	200.7	78		84		64		<0.50	
7440-50-8	Copper	T	MG/L	200.7	<0.020	<u> </u>	<0.020		<0.020		<0.020	
7439-92-1	Lead	T	MG/L	200.7	<0.010		<0.010		<0.010		<0.010	
7439-97-6	Mercury	T	MG/L	245.1	<0.0002		<0.0002		<0.0002		<0.0002	
7440-02-0	Nickel	T	MG/L	200.7	<0.020		<0.020		<0.020		<0.020	
7782-49-2	Selenium	T	MG/L	200.7	<0.050		<0.050		<0.050		<0.050	
7440-66-6	Zinc	T	MG/L	200.7	<0.010		<0.010		<0.010		<0.010	

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 BACKGROUND QUARTERLY SAMPLING - 3rd Event

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Page 1 of 4

FINDS/UNIT: Exhibit GHR-1
Page 197 of 300/ 1

LAB ID:

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Poin	nt (KPDES Discharge Number, or "U	PSTREAM"	, or "DOWNSTE	ŒAM")	UPSTREAM		DOWNSTREAM		UPSTREAM		DOWNSTREAM	
Sample Sequence	e #	_			3		1		4	**	5	
If sample is a	Blank, specify Type: (F)ield, (T	rip, (M)	ethod, or (E	l) quipment	Not Applical	ole	Not Applicab	le	Not Applica	ble	Not Applica	ble
Sample Date and	d Time (Month/Day/Year hour:minut	es)			11/16/11 11	:15	11/16/11 10:	33	11/16/11 13	:51	11/16/2011	14:18
Duplicate ("Y"	or "N") ²				No		No	No			No	
Split ("Y" or '	"N") ³				No		No		No	No		
Facility Sample	a ID Number (if applicable)				SWMP-01-N	SWMP-02-N		SWMP-01-S		SWMP-02-S		
Laboratory Sam	ole ID Number (if applicable)		Not Applical	ole	Not Applicab	le	Not Applica	ble	Not Applicabl			
Date of Analysi	is (Month/Day/Year)				11/16-12/2/:	LI	11/16-12/2/1	1	11/16-12/2/	11	11/16-12/2/	11
CAS RN ⁴	CONSTITUENT	D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL°	F L A G
A200-00-0	Flow	Т	Gal./Min.	Fld. Meas.	561		2,100		200	-	17,107	1
16887-00-6	Chloride	T	MG/L	846 9056A	5.4		5.9		5.3		13	
14808-79-8	Sulfate	T	MG/L	846 9056a	14		23		14		18	
7439-89-6	Iron	T	MG/L	846 6010C	6.0		4.7		4.7		4.7	
7440-23-5	Sodium	т	MG/L	846 6010C	5.4		3.9		4.3		8.1	
s0268	Organic Carbon	Т	MG/L	5310C	8.2		6.5		6.5		5.7	
s0130	Chemical Oxygen Demand		MG/L	5220D	36		31		30		34	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BACKGROUND - QUARTERLY SAMPLING - 3rd Event Facility: KU Ghent Special Waste Landfill

Permit Number: 021-00024

Page 2 of 4 Page 198 of 300

FINDS/UNIT:___/_1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

SURPACE

Monitoring Poin	t (KPDES Discharge Number, or "U	PSTREAM",	or "DOWNSTF	ŒAM")	UPSTREAM		DOWNSTREAM		UPSTREAM		DOWNSTREAM	,
Facility Sample	: ID Number (if applicable)				SWMP-01-N		SWMP-02-N		SWMP-01-S		SWMD-02-S	
CAS RN ⁴	CONSTITUENT	T D ^S	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ^c	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
S0145	Specific Conductance	Т	UHMS/CM	Fld. Meas.	240		360		390		390	
s0270	Total Suspended Solids	т	MG/L	I-3765-85	26		48		39		61	
S0266	Total Dissolved Solids	T	MG/L	I-1750-85	240		220		290		290	
S0269	Total Solids	T	MG/L	I-3750-85	220		290		220		340	
S0296	нд	T	units	Fld. Meas.	7.60		7.47		7.27		7.30	
s0907	Temperature	T	°C	Fld. Meas.	11.8		11.4		11.6	<u> </u>	11.4	
7440-38-2	Arsenic	Т	MG/L	846 6010C	<0.10		<0.10		<0.10		<0.10	
7440-42-8	Boron	T	MG/L	846 6010C	<0.5		<0.5		<0.5		<0.5	
7440-43-9	Cadmium	T	MG/L	846 6010C	<0.010		<0.010	<u> </u>	<0.010		<0.010	
7440-70-2	Calcium	Т	MG/L	846 6010C	35		59		45		66	
7440-50-8	Copper	T	MG/L	846 6010C	<0.020		<0.020		<0.020		<0.020	
7439-92-1	Lead	T	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7439-97-6	Mercury	T	MG/L	846 7470A	<0.0002		<0.0002		<0.0002		<0.0002	
7440-02-0	Nickel	T	MG/L	846 6010C	<0.020		<0.020		<0.020		<0.020	
7782-49-2	Selenium	T	MG/L	846 6010C	<0.050		<0.050		<0.050		<0.050	
7440-66-6	Zinc	Т	MG/L	846 6010C	0.018		0.016		0.015		0.031	

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 BACKGROUND QUARTERLY SAMPLING - 4th Event

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Page 3 of 4Exhibit GHR-1

FINDS/UNIT: Page 199 of 300

LAB ID:

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Poir	nt (KPDES Discharge Number, or "UP	STREAM"	, or "DOWNSTF	REAM")	DOWNSTREAM							
Sample Sequence	#			···	2							
If sample is a	Blank, specify Type: (F)ield, (T)	rip, (M)	ethod, or (E) quipment	Not Applical	ole						
Sample Date and	Time (Month/Day/Year hour:minute:	s)			11/16/11 11	:15						
Duplicate ("Y" or "N") ²												
Split ("Y" or "N") ³												
Facility Sample	ID Number (if applicable)				SWMP-02-ND							
Laboratory Samp	ole ID Number (if applicable)				Not Applical	ole						
Date of Analysis (Month/Day/Year)					11/16-12/2/:	L1						
CAS RN ⁴	CONSTITUENT	D _s	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
A200-00-0	Flow	r	Gal./Min.	Fld. Meas.	204	s		s		Ş		S
16887-00-6	Chloride	T	MG/L	300.0	5.6	<u> </u>		 				
14808-79-8	Sulfate			300.0	22					-		
		T	MG/L					i e				+
7439-89-6	Iron	T	MG/L	200.7	4.7	ļ		ļ		ļ		
7440-23-5	Sodium	т	MG/L	200.7	4.0							
s0268	Organic Carbon	Т	MG/L	5310C	6.5							
s0130	Chemical Oxygen Demand	T	MG/L	5220D	29							

AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

[&]quot;"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

BACKGROUND - QUARTERLY SAMPLING - 4th Event

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Page <u>4 of 4</u>

FINDS/UNIT:____/_1

LAB ID:

For official Use only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Poin	t (KPDES Discharge Number, or "	UPSTREAM"	, or "DOWNSTI	REAM")	DOWNSTREAM							
Facility Sample	ID Number (if applicable)		,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		SWMP-02-ND							
CAS RN⁴	CONSTITUENT	T D ^S	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
S0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	360							
s0270	Total Suspended Solids	T	MG/L	I-3765-85	48							
S0266	Total Dissolved Solids	T	MG/L	2540C	270							
S0267	Total Solids	T	MG/L	I-3750-85	310							
s0296	рн	T	units	Fld. Meas.	7.47							
s0907	Temperature	т	°c	Fld. Meas.	11.4							
7440-38-2	Arsenic	т	MG/L	200.7	<0.10							
7440-42-8	Boron	T	MG/L	200.7	<0.5							
7440-43-9	Cadmium	Т	MG/L	200.7	<0.010							
7440-70-2	Calcium	T	MG/L	200.7	60							
7440-50-8	Copper	T	MG/L	200.7	<0.020							
7439-92-1	Lead	T	MG/L	200.7	<0.010							
7439-97-6	Mercury	т	MG/L	245.1	<0.0002							
7440-02-0	Nickel	Т	MG/L	200.7	<0.020							
7782-49-2	Selenium	Т	MG/L	200.7	<0.020							
7440-66-6	Zinc	Т	MG/L	200.7	0.016							

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 BACKGROUND QUARTERLY SAMPLING - 4th Event

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Page 1 of 12 WPF

Exhibit GHR-1

FINDS/UNIT Page 201 of 300 1

LAB ID:

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Point	t (KPDES Discharge Number, or "UP	STREAM"	or "DOWNSTE	REAM")	UPSTREAM		DOWNSTREAM	/	DOWNSTREAM		-	
Sample Sequence	#	····			3		2		1		4	
If sample is a F	Blank, specify Type: (F)ield, (T)	rip, (M)	ethod, or (E	e) quipment	Not Applica	ble	Not Applicable		Not Applica	ble	(F)	
Sample Date and	Time (Month/Day/Year hour:minute	s)	<u> </u>	······································	7/3/13 12:3	5	7/3/13 12:04		7/3/13 11:1	.3	7/3/13 14:0	0
Duplicate ("Y"	or "N") ²				No		No		No		No	
Split ("Y" or ")	411) ₃				No		ио		No		No	
Facility Sample	TD Number (if applicable)				SWMP-01-N		SWMP-02-N	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SWMP-02-S		Field Blank	:
Laboratory Sampl	le ID Number (if applicable)			· <u></u>	1		2		3		4	
Date of Analysis (Month/Day/Year)					7/3-12/13		No No No No No No No No No No No No No N		7/3-12/13	7/3-12/13		
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	VALUE		VALUE	-	DETECTED VALUE OR PQL	F L
				· The state of the		A						A
						G S		-		-		G S
A200-00-0	Flow	T	Gal./Min.	Fld. Meas.	90		204	1	172		_	
16887-00-6	Chloride	T	MG/L	846 9056A	37		18		16		<0.50	
14808-79-8	Sulfate	T	MG/L	846 9056a	41.		300		57		<0.50	
7439-89-6	Iron	T	MG/L	846 6010C	0.74		3.2		1.3		<0.0050	
7440-23-5	Sodium	T	MG/L	846 6010C	13	1	12		11		<0.25	
S0268	Organic Carbon	T	MG/L	5310C	2.3		3.7		2.9		0.6	
S0130	Chemical Oxygen Demand		MG/L	5220D	<10		<10		<10		<10	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

J = Estimated Value

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

BACKGROUND - QUARTERLY SAMPLING - 4th Event

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Exhibit GHR-1
Page 2 of 4 Page 202 of 300

FINDS/UNIT:____/_1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

Monitoring Poin	t (KPDES Discharge Number, or "N	JPSTREAM",	, or "DOWNSTE	ream")	UPSTREAM		UPSTREAM DOWNSTREAM		DOWNSTREAM		***	
Facility Sample	ID Number (if applicable)				SWMP-01-N		SWMP-02-N		SWMP-02-S		Field Blank	
CAS RN4	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL	F L	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
S0145	Specific Conductance	Т	UHMS/CM	Fld. Meas.	742		942		577		<10	
S0270	Total Suspended Solids	T	MG/L	I-3765-85	120		81		27		<5	
s0266	Total Dissolved Solids	т	MG/L	I-1750-85	420		660		340		<50	
S0269	Total Solids	Т	MG/L	I-3750-85	580		750		380		<50	
S0296	рн	Т	units	Fld. Meas.	7.80		7.81		8.16		6.72	
s0907	Temperature	T	°C	Fld. Meas.	18.9		16.9		20.8		_	
7440-38-2	Arsenic	T	MG/L	846 6010C	<0.050		<0.050		<0.050		<0.050	
7440-42-8	Boron	T	MG/L	846 6010C	<1.0		<1.0		<1.0		<0.25	
7440-43-9	Cadmium	T	MG/L	846 6010C	<0.0050		<0.0050		<0.0050		<0.0050	
7440-70-2	Calcium	T	MG/L	846 6010C	120		160		88		<0.25	
7440-50-8	Copper	T	MG/L	846 6010C	<0.010		<0.010		<0.010		<0.010	
7439-92-1	Lead	I	MG/L	846 6010C	<0.0050		<0.0050		<0.0050		<0.0050	
7439-97-6	Mercury	Т	MG/L	846 7470A	<0.00020		<0.00020		<0.00020		<0.00020	
7440-02-0	Nickel	Т	MG/L	846 6010C	<0.0050		<0.0050		<0.0050		<0.0050	
7782-49-2	Selenium	Т	MG/L	846 6010C	<0.025		<0.025		<0.025		<0.025	
7440-66-6	Zinc	Т	MG/L	846 6010C	<0.0050		0.0074		<0.0050		<0.0050	

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name		J Ghent Station ially shown on DWM Perm		tivity <u>Special W</u>	Vaste Landfill
Permit No. 022	•	•	0	Quarter & Yea	ar_ <i>3rd-2013</i>
Please check <u>only</u>	ONE of t	the following:			
_X_Characteriz	ation _	Quarterly	Semi-Annual	Annual	Assessment
Please check appl	icable sul	bmittal:	_Groundwater _	X Surface Wa	ter
and 45:160) or by statu the jurisdiction of the eight (48) hours of ma	e (Kentucky Division of aking the de eport is <u>NC</u>	Revised Statues Cha Waste Management, termination using s	ulation (Kentucky Waste Inper 224) to conduct ground You must report any tatistical analyses, direction. Instructions for	indwater and surface indication of contart tomparison, or other	water monitoring under nination within forty- er similar techniques.
accordance with a syste Based on my inquiry of to the best of my know	em designed f the person wledge and	to assure that qualif or persons directly re belief, true, accurate	all attachments were pre- ied personnel properly ga- esponsible for gathering the e, and complete. I am a fine and imprisonment for	ther and evaluate the he information, the in ware that there are s	information submitted. formation submitted is,
W. Hard	OC. 3NATUR	E E			1-14 E
, , , ,			mager of Environme	ontal Programs	

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date: _	8/27/2013	_ County:_	<u>Carroll</u>	Permit	No.: 021-00024
Facility Name:	Kentucky Utilities ((As officially shown on I				
Mailina Address	9485 US Highway 42E		Ghont	410	045
waning Addices	Street		City	710	Zip
Phone No.: <u>(502)</u>	627-4659 Latitude	N 38° 4.	3 ' 27.5"	Longitude_	W 85° 00' 33.4"
	OWNER :	INFORM	IATION		
Facility Owner:	Kentucky Utilities (Company_		Phone No.:_(<u>(502) 627-4659</u>
Contact Person:	Paul Pu	ckett		Phone No.:	<u>(502) 627-4659</u>
Contact Person Tit	tle: <u>Sr Engineer, Enviro</u>	nmental Af	fairs Departi	ment, LG&E o	and KU
Mailing Address:	P.O. Box 32010		Louisyille	4	0232
<u> </u>	Street		City		Zip
	SAMPLIN (IF OTHER THAI	G PERS			
Company:	Kentucky Utilities Compa	ny Ghent St	ation Laboro	utory	
Contact Person:	Mr. Eric Ferguson-Lab T	Technician	Pho	ne No.: <u>(50</u>	(2) 347-413 <u>5</u>
Mailing Address:_	9485 U.S. Highway 42E		Ghent	4.	1045
	Street		City		Zip
	LABORAT	ORY RE	CORD #1		
Laboratory:	Generation Services 1	Laboratory		_ Lab ID N	o.:
Contact Person:	Mr. Matthew Woodso	n-Scientist		Phone No.:_	<u>(502) 347-4189</u>
Mailing Address:_	P.O. Box 437, 8815 U.S. H	lighway 42	Ghent, KY	41	045
	Street		City		Zip
	LABORAT	ORY RE	CORD #2	2	•
Laboratory:	Microbac Laborator	ies, Inc.	<u>-</u>	Lab ID No	o.:
Contact Person:	Ms. Laura I	Revlett		Phone No.:_	<u>(502) 962-6400</u>
Mailing Address:_	3323 Gilmore Industrial	Blvd. I		Y 402	
	Street		City		Zip

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 BASELINE/BACKGROUND QUARTERLY SAMPLING - $3^{\rm rd}$ Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

Page 1 of 2

Exhibit GHR-1 FINDS/UNITPage 205 of 300 / 1

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, F	acility Well/Spring Number		- Indiana		8004-6810		8004-6809		8004-6807			
Facility's Local	Well or Spring Number (e.g. MW-1,		, etc.)	· · · · · · · · · · · · · · · · · · ·	GWMP-1		GWMP-2		GWM2P-3D			
Sample Sequence	#				2		3		1			
If sample is a B	lank, specify Type: (F)ield, (T)ri	p, (M	ethod, or (1	E) quipment	Not Applica	able	Not Applicat	le	Not Applica	able		
Sample Date and	Time (Month/Day/Year hour:minutes)				8/27/13 11	:08	8/27/13 11:4	4	8/27/13 10	:33		
Duplicate ("Y" o	Duplicate ("Y" or "N") ²				No		No		No			
Split ("Y" or "N	Split ("Y" or "N") ³						хо		No			
Facility Sample	ID Number (if applicable)				Not Applica	able	Not Applicab	le	Not Applic	able		
Laboratory Sampl	e ID Number (if applicable)				Not Applica	able	Not Applicat	le	Not Applic	ble		
Date of Analysis (Month/Day/Year)					8/27-9/11/	13	8/27-9/11/13	;	8/27-9/11/	1.3		
Gradient with re	spect to Monitored Unit (UP, DOWN,	SIDE	, unknown)									
CAS RN ⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
					į.	G		G		G		G
						s		s		s		s
50906	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	664.35		694.38		696.97			
S0907	Temperature	т	°C	Fld. Meas.	15.6		14.8		15.5			
16887-00-6	Chloride(s)	T	MG/L	846 9056A	43.2		156		2,477			
s0130	Chemical Oxygen Demand	T	MG/L	5220D	<25		<25		146			
s0266	Total Dissolved Solids	T	MG/L	I-1750-85	926		1,020		4,956			
s0268	Total Organic Carbon	T	MG/L	5310C	<5.00		<5.00		<5.00			
S0145	Specific Conductance	T	UHMS/CM	Fld. Meas.	1,400		1,700		895			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from

analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "EDL". Value then shown is Practical Quantification Limit

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 BASELINE/BACKGROUND QUARTERLY SAMPLING - 3rd Facility: KU Ghent Special Waste Landfill

Permit Number: Pending

Page	2	ef Exhibit GHR-1 Page 206 of 300
rage	~	Page 206 of 300

FIN	DS/UNIT:			_/_	_1
LAB	ID:				
For	official	Use	only		

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER¹, I	Facility Well/Spring Number		"		8004-6810		8004-6809		8004-6807			
Facility's Loca	l Well or Spring Number (e.g. MW	-1, MW-2	, etc.)		GWMP-1		GWMP-2		GWMP-3			
CAS RN⁴	CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
S0296	рН	T	units	Fld. Meas.	6.97		7.45		7.14			
14808-79-8	Sulfate	T	MG/L	846 9056a	280		197 -		79.4			
71-52-3	Alkalinity, Bicarbonate	Т	MG/L	2320B	400		432		390			
3812-32-6	Alkalinity, Carbonate	T	MG/L	2320B	<5		<5		<5			
7440-38-2	Arsenic	Т	MG/L	846 6010C	<0.001		0.002		<0.001			
7440-42-8	Boron	r	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-43-9	Cadmium	Т	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-70-2	Calcium	Т	MG/L	846 6010C	183		89.0		197			1
7440-47-3	Chromium	T	MG/L	846 6010C	<0.001		<0.001		<0.001			
7440-50-8	Copper	Т	MG/L	846 6010C	0.001		<0.001		<0.001			
7439-89-6	Iron	T	MG/L	846 6010C	0.016		0.224		0.059			
7439-92-1	Lead	r	MG/L	846 6010C	<0.001		<0.001		<0.001			
7439-95-4	Magnesium	т	MG/L	846 6010C	73.1		48.1		78.7			
7439-97-6	Mercury	T	MG/L	846 7470A	0.0000064		0.0000121		0.0000047			
7440-02-0	Nickel	т	MG/L	846 6010C	<0.001		<0.001		0.002			
7440-09-7	Potassium	т	MG/L	846 6010C	4.80		14.3		34.4			
7782-49-2	Selenium	т	MG/L	846 6010C	<0.001		0.002		0.036			
7440-23-5	Sodium	T	MG/L	846 6010C	39.6		228		1,710			
7440-66-6	Zinc	T	MG/L	846 6010C	0.009	1	0.008	1	0.010			\top

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name	KU Ghent	Station	Aetivity	Special Was	te Landfill
	(As officially shown on	DWM Pennit Face)		-	3ro WPO
Permit No. <u>021</u> -	- <i>00024</i> Finds/	Unit No	Qua	rter & Year	2 <u>n1-2014</u>
Please check <u>only (</u>	<u>ONE</u> of the follor	ving:			
<u>X</u> Characteriza	ntionQuar	terlySemi	Annual	_Annual _	Assessment
Please check applic	cable submittal:	Groundw	ater <u>X</u> S	urface Water	
This form is to be utilize and 45:160) or by statue the jurisdiction of the Deight (48) hours of mal-Submitting the lab resubmit the instruction pa	(Kentucky Revised St vivision of Waste Mar dug the determinatio port is <u>NOT</u> conside	atues Chapter 224) to co nagement. You must r n using statistical anal	onduct groundwate eport any indicat yses, direct comp	r and surface wate ion of contamina arison, or other s	er monitoring under ation within forty- similar techniques.
I certify under penalty of accordance with a syster Based on my inquiry of to the best of my know submitting false informa	n designed to assure t the person of persons ledge and belief, true	hat qualified personnel directly responsible for , accurate, and comple	properly gather and gathering the infor te. I am aware th	d evaluate the info mation, the inform at there are signi	ormation submitted.
<u> </u>	Jin Cu	200		1-127	16
SIG	NATURE			DATE	
Ī	W. Michael Winkl	er – Manager of E	wironmental I	Programs	
		E AND TITLE - PI			

FACILITY INFORMATION SHEET

Sampling Date: _	7/28/14	County: <u>Carroll</u>	Permit No.: <u>02</u>	1-00024
Facility Name:	Kentucky Utiliti (As officially shown on DWA	ies Company Ghent S	Station	
	(As officially shown on DWA	f Pennit Face)		
Mailing Address:_	9485 US Highway 42E			
	Street	City	Zip	
Phone No.: <u>(502)</u>	627-4659 Latitude	N 38° 43' 27.5"	Longitude W85° 0	0'33.4"
	OWNER IN	FORMATION		
Facility Owner:	Kentucky Utilities Con	<u>npany</u>	Phone No.: (502) 627	7-4659
Contact Person:	Paul Pucke	tt	Phone No.: (502) 62	<u> 27-4659</u>
Contact Person Tit	le; <u>Engineer, Environme</u>	ntal Affairs Departm	ent, LG&E and KU	
Mailing Address:	P.O. Box 32010	Louisville	40232	
Ü _	Street	City	Zip	
		PERSONNEL NDFILL OR LABORATORY)		
Company:	Kentucky Utilities Company	y Ghent Station Labo	<u>pratory</u>	
Contact Person;	David Valkovci	Phor	ne No.: <i>(502) 347-413</i>	4
Mailing Address:_	9485 US Highway 42E Street	<i>Ghent</i> City	41045 Zip	
	LABORATO	RY RECORD #1	L	
Laboratory:	Generation Services System	n Laboratory	Lab ID No.:	
Contact Person:	Mr. Edgar Rak	ei•	Phone No.: (502) 347	<u>'-4187</u>
Mailing Address:_	8815 U.S. Highway 42 Street	Ghent, KY	41045	
	Street	City	Zip	
	LABORATO	RY RECORD #2	2.	
Laboratory:		Lab	ID No.:	
Contact Person:			Phone No.:	<i>,,,,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,
Mailing Address:_	Street	***************************************		
	Street		City	Zip

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane

Frankfort, KY 40601 (502) 564-6716

OPERATIONAL SEMI-ANNUAL SAMPLING

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Page 1 of 2 Exhibit GHR-1
Page 209 of 300

FINDS/UNIT: LAB ID:

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")					UPSTREAM		DOWNSTREAM		DOWNSTREAM		UPSTREAM	
					1 2			3		_		
Sample Sequence #												
If sample is a Blank, specify Type: (F) ield, (T) rip, (M) ethod, or (E) quipment						Not Applicable Not Appl					Not Applicable	
Sample Date and Time (Month/Day/Year hour:minutes)						7/28/14 12:55 7/28/14 13:20		20	7/28/14 13:45			
Duplicate ("Y" or "N")2					No No		No		No		-	
Split ("Y" or "N")3					ио ио		No	Мо			-	
Facility Sample ID Number (if applicable)					SWMP-01-N SWMP-02-N			SWM2-02-S		SWMP-01-S		
Laboratory Sample ID Number (if applicable)								·		* 1		
Date of Analysis (Month/Day/Year)				7/28 - 9/19	28 - 9/19/14 7/28 - 9/19/14		7/28 - 9/19/14		-			
CAS RN4	CONSTITUENT	D ₂	Unit OF MEASURE	CORTEM	OR POL ^c DETECTED	E L A	DETECTED VALUE OR PQL	P L	OR POL ^c	F L	DETECTED VALUE OR PQL ⁶	F
						G S		G S		G S		6
A200-00-0	Flow	T	Gal./Min.	Fld. Meas.	486		1,868		4,894		0	
so145	Specific Conductance	T	umbos /cm	SM 2510B	594		749		802		-	
so296	pH	T	STD unit	Fld. Meas.	8.00		8.30		8.20		_	T
\$0266	Total Dissolved Solids	מ	MG/L	SM 2540C	346		544		870		-]
16887-00-6	Chloride	T	MG/L	EPA 300.0	35.6		9.70		10.8		_	
7440-23-5	Sodium	T	MG/L	EPA 200.7	-		-		-		-	
	Sulfates	T	MG/L	EPA 300.0	31.5	<u> </u>	287	\neg	515		_	

*AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a seconda

analysis of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

[&]quot;Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

[&]quot;"" = Total; "D" = Dissolved

[&]quot;c"<" indicates a non-detect; do not use "ND" or "EDL". Value then shown is Practical Quantification Limit

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane

OPERATIONAL SEMI-ANNUAL SAMPLING

Permit Number: 021-00024

Frankfort, KY 40601 (502) 564-6716

Facility: KU Ghent Special Waste Landfill

Page 1 of 2 Exhibit GHR-1 Page 210 of 300

FINDS/UNIT:

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM") Facility Sample ID Number (if applicable)					UPSTREAM SWMP-01-N		DOWNSTREAM SWMP-02-N		DOWNSTREAM SWMP-02-S		UPSTREAM SWMP-01-S		
													CAS RN4
				}			A	1	A	:	A		A
							G		G		G		G
	• •	,					s		s		s		s
7440-70-2		Calcium	T	MG/L	EPA 200.7	91.6		126		204		_	
7440-50-8		Copper	T	MG/L	EPA 200.7	<0.001		<0.001		<0.001		_	
										, , , , , , , , , , , , , , , , , , ,			
							<u> </u>		<u> </u>				<u> </u>
									<u>.</u>				
													<u></u>
													
			,				ļ		ļ				
						<u></u>							
		,											
			-					-					

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS DRIVE
FRANKFORT, KY 40601

Facility Name		Ghent Station ally shown on DWM Perr		Activity <u>Special Waste Landfill</u>					
Permit No. 02	<u>1-00024</u>	_ Finds/Unit N	0	Quarter & Year	· 2 nd 2015				
Please check <u>only</u>	ONE of the	he following:							
_X_Characteriz	cation _	Quarterly	Semi-Annual	Annual	Assessment				
Please check appl	icable sub	mittal:	_Groundwater _	X Surface Wate	er•				
and 45:160) or by statu the jurisdiction of the eight (48) hours of ma	e (Kentucky) Division of V Iking the det eport is <u>NO</u>	Revised Statues Cha Waste Management ermination using s	ulation (Kentucky Waste I apter 224) to conduct grou You must report any statistical analyses, directication. Instructions for	ndwater and surface windication of contamit comparison, or other	ater monitoring under ination within forty- r similar techniques.				
accordance with a syste Based on my inquiry of to the best of my kno	em designed f the person o wledge and l	to assure that qualit or persons directly r belief, true, accurat	all attachments were presented personnel properly gatesponsible for gathering the and complete. I am a fine and imprisonment for	ther and evaluate the in- the information, the info- ware that there are sign	nformation submitted. ormation submitted is,				
_ W Ni	<u> </u>	DOL	,		3-15				
stro	GNATURI	Ξ		DATE	3				
P-18-18-18-18-18-18-18-18-18-18-18-18-18-	W. Micha	el Winkler – Mo	anager of Environme	ntal Programs					
		NAME AND	TITLE - PLEASE P	RINT					

FACILITY INFORMATION SHEET

Sampling Date: _	5/29/15	County:	Carroll	Permit No.:_	021-00024		
Facility Name:	Kentucky Utili. (As officially shown on DW	<i>ties Compai</i> M Permit Face)	ny Ghent Si	tation			
Mailing Address:	9485 US Highway 42E		Ghent	4104.	5		
	Street		City	Zip			
Phone No.: <i>(502)</i>	627-4659 Latitude_	N 38° 43'	27.5"	Longitude W 85	00' 33.4"		
	OWNER IN	NFORMA	ATION				
Facility Owner:	Kentucky Utilities Co		Phone No.: (502) 627-4659				
Contact Person:	Paul Puck	ett		Phone No.: <u>(502</u>)) <u>627-4659</u>		
Contact Person Tit	tle: Engineer, Environme	ental Affairs	s Departme	nt, LG&E and KU	————		
Mailing Address:	P.O. Box 32010	L	ouisville	40232			
	Street		City	Zip			
	SAMPLING (IF OTHER THAN LA						
Company:	Kentucky Utilities Compar	y Ghent Sto	ution Labor	ratory			
Contact Person:	David Valkovci	,	Phone	e No.: <u>(502) 347-</u> 4	<u> 134</u>		
Mailing Address:_	9485 US Highway 42E		<u> hent</u>	41045			
	Street		City	Zip			
	LABORATO	RY REC	ORD #1				
Laboratory:	Beckmar Environmental	<u>Laboratory</u>	,	Lab ID No.: _			
Contact Person:	Ms. Kimberly Fo	allon		Phone No.: <u>(502</u>)	266-6533		
Mailing Address:_	3251 Ruckreigel Parkway	Jeffe		KY 40299			
	Street		City	Zip			
	LABORATO	RY REC	ORD #2				
Laboratory:				_ Lab ID No.: _			
Contact Person:				Phone No.:			
Mailing Address:_	Street			City	Zin		
	Street			f 'ifty	7 m		

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716

OPERATIONAL SEMI-ANNUAL SAMPLING

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Exhibit GHR-1

FINDS/UNIT: Page 213 of 300/

LAB ID:

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Point	t (KPDES Discharge Number, or "U	PSTREAM",	or "DOWNSTR	EAM")	UPSTREAM		DOWNSTREAM		DOWNSTREAM	-	DOWNSTREAM	· · ·
Sample Sequence	#			··············	1		2				3	*******
If sample is a D	Blank, specify Type: (F)ield, (T) rip, (M)	ethod, or (E) quipment	_		-	•	-			
Sample Date and	Time (Month/Day/Year hour:minut	es)		,	5/29/15 8:00	ı	5/29/15 8:30		DNS		5/29/15 8:35	 5
Duplicate ("Y"	or "N")2				и		И		N		И	,
Split ("Y" or ")	Zu) 3				И		N		И		И	
Facility Sample	cility Sample ID Number (if applicable)						SWMP-02-N		SWMP-01-S		SWMP-02-S	
Laboratory Samp	aboratory Sample ID Number (if applicable) ate of Analysis (Month/Day/Year)						BMSG150529-01	.2	_		BMSG1505029-	-013
Date of Analysis	s (Month/Day/Year)		_		5/29-6/3/15		5/29-6/3/15				5/29-6/3/15	
CAS RN4	CONSTITUENT	T D ⁵	UNIT OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A. G S		A G S		A G S		A G S
A200-00-0	Flow		Gal./Min.	Fld. Meas.	<5		<5		No Flow		635	
16887-00-6	Chloride	T	MG/L	846 9056A	29.0		29.1		DNS		11.1	
7439-89-6	Iron	T	MG/L	846 6010C	0.338		10.394		DNS		0.976	
so296	PH		units	Fld. Meas.	7.70		8.00		DNS		8.20	
7440-23-5	Sodium	т	MG/L	846 6010C	13.058		20.326		DNS		10.791	
S0145	Specific Conductance		UHMS/CM	Fld. Meas.	691		1,260		DNS		516	
14808-79-8	Sulfate	T	MG/L	846 9056A	44.3		561.4		DNS		71.2	
s0907	Temperature		°C	Fld. Meas.	16.4		13.0		DNS		19.9	
s0266	Total Dissolved Solids	T	MG/L	I-3765-85	412		1,035		DNS		303	
s0270	Total Suspended Solids	T	MG/L	I-1750-85	13		122		DNS		26	

^{&#}x27;AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lame Frankfort, KY 40601 (502)564-6716

OPERATIONAL SEMI-ANNUAL SAMPLING

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

Page 2 of 2 Exhibit GHR-1

FINDS/UNIT: Page 214 of 300 / 1

LAB ID:

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Poin	t (KPDES Discharge Number, or "U	PSTREAM",	or "DOWNSTR	EAM")	DOWNSTREAM							
Sample Sequence	#				3							
If sample is a	Blank, specify Type: (F)ield, (T	rip, (M)	ethod, or (E) quipment	-							:
Sample Date and	Time (Month/Day/Year hour:minut	es)			5/29/15 8:35							
Duplicate ("Y"	OF "N") ²				Y						,	
Split ("Y" or "	Mu) 3				N			•				
Facility Sample	ID Number (if applicable)				SWMP-02-S (D	UP)						
Laboratory Samp	le ID Number (if applicable)	•			BMSG150529-0	14						
Date of Analysi	s (Month/Day/Year)				5/29-6/3/15							
CAS RN4	CONSTITUENT	D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ^c	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
						A		A		A		A
						G		G		G		G
						s		s		s		s
A200-00-0	Flow		Gal./Min.	Fld. Meas.	635							
16887-00-6	Chloride	Т	MG/L	846 9056A	11.3							
7439-89-6	Iron	Т	MG/L	846 6010C	0.974							
S0296	рн		units	Fld. Meas.	8.20							
7440-23-5	Sodium	Т	MG/L	846 6010C	10.724							
S0145	Specific Conductance		UHMS/CM	Fld. Meas.	516							
14808-79-8	Sulfate	T	MG/L	846 9056A	69.5							
s0907	Temperature		°C	Fld. Meas.	19.9							
S0266 \	Total Dissolved Solids	T	MG/L	I-3765-85	296							
S0270	Total Suspended Solids	T	MG/L	I-1750-85	26						:	

^{&#}x27;AKGWA # is 0000-0000 for any type of blank.

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution factor

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

[&]quot;c" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 200 FAIR OAKS DRIVE FRANKFORT, KY 40601

Facility Name	KU Ghent Station (As officially shown on DWM Pennit Fa	Act	tivity <u>Special IV</u>	aste Landfill
Permit No. <u>021-</u>	00024 Finds/Unit No		Quarter & Year	r. 4th 2015
Please check <u>only (</u>	ONE of the following:			
Characterizat	lonQuarterly	X Semi-Annual	Annual	Assessment
Please check applic	able submittal:G	roundwater _	X Surface Wate	er•
and 45:160) or by statue the jurisdiction of the D eight (48) hours of mak	I by those sites required by regulat (Kentucky Revised Statues Chapte (Vision of Waste Management. Ying the determination using stationt is <u>NOT</u> considered notificates.	r 224) to conduct grow on must report any l stical analyses, direct	ndwater and surface w indication of contam comparison, or othe	ater monitoring under Ination within forty- r similar techniques.
accordance with a systen Based on my inquiry of t to the best of my know	of law that this document and all a designed to assure that qualified the person or persons directly respo ledge and belief, true, accurate, a ion, including the possibility of fin	personnel properly gat unsible for gathering th nd complete. I am av	her and evaluate the he e information, the info ware that there are sig	nformation submitted. ormation submitted is,
W. Ha	20 WED.		1-	7-16_ E
SIG	NATURE		DATI	<u>B</u>
	V. Michael Winkler – Mana			
	NAME AND TI	TLE - PLEASE P	RINT	

FACILITY INFORMATION SHEET

Sampling Date: _	10/21/15	County: Carroll	Permit No.:_ <u>0</u>	<u>21-00024</u>
Facility Name:	Kentucky Utilit (As officially shown on DW)	<u>ies Company Ghent ;</u> M Pennit Face)	Station	<u>.</u>
	9485 US Highway 42E			
	Street	City	Zip	
Phone No.: <i>(502)</i>	627-4659 Latitude	N 38° 43' 27.5"	Longitude W85°	00' 33.4"
	OWNER IN	FORMATION		*
Facility Owner:	Kentucky Utilities Co	mpany	Phone No.: (502) 62	<u> 7-4659</u>
Contact Person:	Paul Pucke	ett	Phone No.: (502) (5 <u>27-4659</u>
Contact Person Tit	le: Engineer, Environme	ental Affairs Departn	nent, LG&E and KU	
Mailing Address:	P.O. Box 32010	Louisville	40232	
	Street	. City		, -
		F PERSONNEL NOFILL OR LABORATORY)		
Company:	Kentucky Utilities Compan	y Ghent Station Lab	oratory	
Contact Person;	Eric Ferguson	Phor	ne No.: <u>(502) 347-413</u>	<u>4</u>
Mailing Address:_	9485 US Highway 42E			
	Street	City	Zip	
	LABORATO	RY RECORD#	1	
Laboratory:	Beckmar Environmental	Laboratory	Lab ID No.:	
Contact Person:	Ms. Kimberly Fo	ullon	Phone No.: <u>(502) 2</u>	<u> 266-6533</u>
Mailing Address:_	3251 Ruckreigel Parkway	Jeffersontown		
:,	Street	City	ZÌp	
	LABORATO	RY RECORD #	2	
Laboratory:			Lab ID No.;	
Contact Person:			Phone No.:	`
Mailing Address:			· .	
	Street		City	7in

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 OPERATIONAL SEMI-ANNUAL SAMPLING

Permit Number: 021-00024

Facility: KU Ghent Special Waste Landfill

FINDS/UNIT:

Page 217 of 300

LAB ID:______
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (W)

Monitoring Poi	nt (I	RPDES Discharge Number, or "UPS	TREAM"	, or "DOWNSTR	eam")	UPSTREAM		DOWNSTREAM		DOWNSTREAM		DOWNSTREAM		
Sample Sequence	:e #					2		ī		-		3		
If sample is a	Blar	nk, specify Type: (F)ield, (T):	nip, (M	ethod, or (E) quipment	-		_		-				
		me (Month/Day/Year hour:minutes				10/21/15 10:	26	10/21/15 10:0	05 DNS			10/21/15 12:40		
Duplicate ("Y"	, or ,	nN±);				N		N		N		×		
Split ("Y" or	"N") ²					и		N		N		×		
Pacility Sampl	e ID	Number (if applicable)				SWMP-01-N		SWMP-02-N		SWMP-01-S		SWM2-02-S		
Laboratory Sam	ĎJ6)	ID Number (if applicable)				151027-001C	Ð	151027-001ASE		-		151027-001-E	ær	
Date of Analys	is ()	Month/Day/Year)				10/21-12/3/1	.5	10/21-12/3/15		-		10/21-12/3/1	.5	
Cas and		CONSTITUENT	D ₂	UNIT OF MEASURE	METHOD	DETECTED VALUE OR POL	F H	DETECTED VALUE OR POL ^c	F	DETECTED VALUE OR POL ^c	F	ON POLG VALUE DETECTED	F	
				TOTAL CONTRACTOR OF THE STATE O			A G	·	A G		A G		A G	
							s		S		s		s	
A200-00-0		Flow		Gal./Min.	Fld. Meas.	<5		<5		No Flow	ļ	<5		
16887-00-6		Chloride	T	MG/L	846 9056A	25.2		58.0		DNS		15.7		
7439-89-6		Iron	T	MG/L	846 6010C	0.134		0.664		DNS		0.687		
so296		PH		units	Fld. Meas.	8.00		7.60		DNS		8.20		
7440-23-5		Sodium	T	MG/L	846 6010C	11.6		38.6		DNS		15.9		
S0145		Specific Conductance		UHMS/CM	Fld. Meas.	801		2,230		DNS		670		
14808-79-8		Sulfate	Ŧ	MG/L	846 9056A	39.1		1,185		DNS		\$4.5		
s0907		Temperature		°c	Fld. Meas.	9.2		13.3		DNS		12.5		
s0266		Total Dissolved Solids	T	MG/L	I-3765-85	500		2,053		DNS		438		
s0270		Total Suspended Solids	Ŧ	MG/L	1-1750-85	<6		20		DNS		16		

'AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

"Respond "Y" if the sample was split and analyzed by separate laboratories.

*Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

"T" = Total; "D" = Dissolved

"" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

y = yanarade Asine

N = Presumptive ID

D = Concentration from analysis
of a secondary dilution factor

Trimble County Station Groundwater Reports

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
14 REILLY ROAD
FRANKFORT, KY 40601

Facility Name Trimble County Station Activity Ash Pond (As officially shown on DWM Permit Face)
Permit No. 112-00003 Finds/Unit No. Quarter & Year 1st 2011
Please check only ONE of the following:
CharacterizationQuarterly _X_Semi-AnnualAnnualAssessment
Please check applicable submittal: X GroundwaterSurface Water
This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations - 401 KAR 48:30 and 45:160) or by statue (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar technique Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do no submit the instruction pages.
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision is accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted it to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.
SIGNATURE 8-8-11 DATE
W. Michael Winkler-Manager of Environmental Programs

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date:	6/14-16/2011 C	ounty: 1 rimble	Permit No.:_112-00003
Facility Name:	Louisville Gas & Electric Tri (As officially shown on DW		
Site Address: 48'	7 Corn Creek Road	Bedford	40006
Stre		City	Zip
Phone No.: (502	2) 627-4659 Latitude_	N 38° 35' 30"	Longitude W 85° 25' 00"
	OWNER IN	FORMATION	
Facility Owner:	Louisville Gas and Electric	Company	Phone No.: (502) 627-4659
Contact Person:	W. Paul Pucke	tt	Phone No.: (502) 627-4659
Contact Person Ti	tle: <u>Senior Engineer, LG&E I</u>	Environmental Affairs	<u>Department</u>
Mailing Address	P.O.Box 32010	Louisville	40032
maning Address	Street	City	Zip
	sville Gas & Electric Co Diana Freibert	The second seco	Phone No.: (502) 627-6204
Mailing Address:	487 Corn Creek Road		
	Street	City	Zip
	LABORATO	RY RECORD #	1
Laboratory:	Generation Services System I	Laboratory Lab) ID No.:
Contact Person:	Ed Raker, Laboratory	Supervisor	Phone No.: (502) 347-8481
Mailing Address:	8815 Highway 42 East	Ghent	41045
	Street	City	Zip
	LABORATO	RY RECORD #	2
Laboratory:	Microbac Laboratories, In	c. Lab	ID No.:
Contact Person:	Mr. Ken Ford	F	Phone No.: (502) 962-6400
Mailing Address:	3323 Gilmore Industrial Bou	levard Louisville	, KY 40213 Zip

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-OUARTERLY

Facility: LG&E Trimble County Station

Exhibit GHR-1 FINDS/UNIT: Not Applicable Page 221 of 300

Page 1 of 6

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

Permit Number:

AKGWA NUMBER¹	, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's Lo	cal V	Well or Spring Number (e.g. MW-1	, MW-2	, etc.)		MW-1		MW-2		MW-3		MW-4	
Sample Sequen	.ce #					1		2		4		3	
If sample is	a Bla	unk, specify Type: (F)ield, (T)r	ip, (M	ethod, or (I	E) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)	(6/14/11 14:2	28	6/14/11 15:26	5	6/14/11 18:0	04	6/14/11 17:2	27
Duplicate ("Y	" or	"N") ²				Мо		No		No		No	
Split ("Y" or	plit ("Y" or "N") ³							No		No		Мо	
Facility Samp	Number (if applicable)		Not Applicab	ole	Not Applicabl	.e	Not Applicat	ole	Not Applical	ble			
Laboratory Sa	ID Number (if applicable)	Not Applicab	ole	Not Applicabl	.e	Not Applicat	ole	Not Applical	ble				
Date of Analy	sis ((Month/Day/Year)				6/14-7/25/	/11	6/14-7/25/3	.1	6/14-7/25,	/11	6/14-7/25	/11
Gradient with	resp	pect to Monitored Unit (UP, DOWN	SIDE	, UNKNOWN)		ďρ		Down		Down		Down	
CAS RN⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G S		A G S		A G S		G
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	421.90		413.11	1160%	421.75		420.69	
s0145	1	Specific Conductance	Т	MG/L	120.1	654		1,333		858		2,067	
s0130	0	Chemical Oxygen Demand	T	MG/L	5220D	<3.0		8.0		<3.0		26	
S0268	1	Total Organic Carbon	T	MG/L	5310C	<1.0		3.4		1.3		1.1	
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	17.3		7.40		9.70		511	
S0266	0	Total Dissolved Solids	T	MG/L	160.1	472		370		478		4,658	
	0	рн	т	units	150.1	7.10		6.59		6.60		6.59	
S0296	-												

AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report. Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Page 2 of 6

SP. WASTE/COAL COMBUSTION - QUARTERLY

Facility: LG&E Trimble County Station

Permit Number:

FINDS/UNIT: Not Applicable Exhibit GHR-1

For official Use only

AKGWA NUMBER	KGWA NUMBER ¹ , Facility Well/Spring Number acility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)					8001-6326		8001-6327		8001-6334		8001-6335	
Facility's Lo	cal W	Well or Spring Number (e.g. MW-	L, MW-2	, etc.)		MW-1		MW-2		MW-3		MW-4	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
							A G		A G		A G		A G
							s		s		s		s
7440-39-3		Boron	Т	MG/L	200.7	0.038		0.042		0.066		51.0	
7440-70-2		Calcium	T	MG/L	200.7	130		102		139		769	
7440-23-5	0	Sodium	T	MG/L	200.7	5.98		9.48		7.71		20.4	
18785-72-3	0	Sulfate	т	MG/L	300.0	31.8		48.7		67.9		2,154	
										2 2 20 1			
	-												
	-												
	-												
				-									
	1						Ü.						
		<u> </u>									VI 0777 /		

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Permit Number:

Facility: LG&E Trimble County Station

Exhibit GHR-1 Page 223 of 300

Page 3 of 6

FINDS/UNIT: Not Applicable

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

AKGWA NUMBER ¹	, Fac	ility Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	Well or Spring Number (e.g. MW-1	, MW-2	, etc.)		MW-5		MW-6		MW-7		MW-8	
Sample Sequen	ce #					5		6		7		8	
If sample is	a Bla	nk, specify Type: (F)ield, (T)r	ip, (M	ethod, or (E	E) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				6/16/11 8:51	•	6/16/11 9:25		6/16/11 9:52	2	6/16/11 10:	13
Duplicate ("Y	" or	"N") ²				No		No		Ио		No	
Split ("Y" or	"N")	3				No		No		No		No	
Facility Samp	acility Sample ID Number (if applicable) aboratory Sample ID Number (if applicable)							Not Applicabl	.e	Not Applicat	ole	Not Applical	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applicab	ole	Not Applicabl	.e	Not Applicat	ole	Not Applical	ble
Date of Analy	sis ((Month/Day/Year)				6/16-7/25/	11	6/16-7/25/3	11	6/16-7/25,	/11	6/16-7/25	/11
Gradient with	rate of Analysis (Month/Day/Year) radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)					Down		Down		Down		Down	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A G S		A G S		A G S		A G S
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	421.54		420.42		422.19		422.16	
s0145	1	Specific Conductance	T	MG/L	120.1	1,146		657		659		3,340	
s0130	0	Chemical Oxygen Demand	T	MG/L	5220D	3.0		<3.0		<3.0		<3.0	
s0268	1	Total Organic Carbon	T	MG/L	5310C	1.8		1.8		1.9		2.2	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	129		56.4		25.2		258	
s0266	0	Total Dissolved Solids	T	MG/L	160.1	1,126		528		612		2,390	
			Т	units	150.1	6.97		7.02		7.09		6.87	
s0296	0	pН	1	unites	130.1								-

AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report. Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LG&E Trimble County Station
Permit Number:

FINDS/UNIT: Not Applicable Exhibit GHR-1

Page 4 of 6

LAB ID:

For official Use only

AKGWA NUMBER	, Fac	ility Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's L	ocal V	Well or Spring Number (e.g. MW	V-1, MW-2,	, etc.)		MW-5		MW-6		MW-7		MW-8	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							G S		G S		G S		G S
7440-39-3		Boron	T	MG/L	200.7	11.9		0.590		0.350		22.9	
7440-70-2		Calcium	Т	MG/L	200.7	228		146		156		445	
7440-23-5	0	Sodium	т	MG/L	200.7	34.4		5.50		9.16		9.61	
18785-72-3	0	Sulfate	T	MG/L	300.0	344		62.6		111		979	
												7,012 1,012 1,000	

Division of Waste Management Solid Waste Branch 200 Fair Oaks Drive, 2nd Floor Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station

Exhibit GHR-1 Page 225 of 300

LAB ID:

For Official Use Only

FINDS/UNIT: Not Applicable

Page 5 of 6

GROUNDWATER SAMPLE ANALYSIS

(S)

Permit Number:

AKGWA NUMBER ¹	, Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's Lo	cal V	Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		MW-9		MW-10		MW-11		MW-12	
Sample Sequer	ce #					9		10		11	13		
If sample is	a Bla	ank, specify Type: (F)ield, (T)ri	.p, (M	ethod, or (E) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applicat	ole	Not Applical	ble
Sample Date a	nd Ti	ime (Month/Day/Year hour:minutes)				6/16/11 11:3	35	6/16/11 13:34		6/16/11 14:2	24	6/16/11 16:	40
Duplicate ("Y	" or	"N") ²				No		No		No		No	
Split ("Y" or	lit ("Y" or "N") ³ cility Sample ID Number (if applicable)							No		No		No	
Facility Samp	acility Sample ID Number (if applicable)							Not Applicabl	.e	Not Applicat	ole	Not Applical	ble
Laboratory Sa	boratory Sample ID Number (if applicable)						ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Date of Analy	sis	(Month/Day/Year)				6/16-7/25/	/11	6/16-7/25/	11	6/16-7/25,	/11	6/16-7/25	/11
Gradient with	resp	pect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Down		Side		Side		Side	
CAS RN ⁴		CONSTITUENT	Ψ D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G		G
							s		s		s		s
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	423.89		424.02		423.57		424.06	
s0145	1	Specific Conductance	T	MG/L	120.1	654		1,045		1,617		1,314	
s0130	0	Chemical Oxygen Demand	T	MG/L	5220D	<3.0		<3.0		<3.0		<3.0	
S0268	1	Total Organic Carbon	T	MG/L	5310C	2.2		2.1		2.3		1.8	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	5.6		31.8		35.7		28.7	
S0266	0	Total Dissolved Solids	T	MG/L	160.1	392	Ī	520		1,280		676	
s0296	0	рн	T	units	150.1	7.24		7.17		7.07		7.00	
7440-50-8	0	Copper	т	MG/L	200.7	0.006		0.013		0.007		0.004	

¹AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report. Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LG&E Trimble County Station

Permit Number:

FINDS/UNIT: Not ApplicableExhibit GHR-1

Page 6 of 6

For official Use only LAB ID:

AKGWA NUMBER	, Fac	eility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's L	cility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.) CAS RN ⁴ CONSTITUENT T Unit					MW-9		MW-10		MW-11		MW-12	
CAS RN⁴		CONSTITUENT	T _D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L
							A G		A G		A G		A G
							s		s		s		s
7440-39-3		Boron	T	MG/L	200.7	0.790		0.760		2.02		1.78	
7440-70-2		Calcium	T	MG/L	200.7	108		151		279		170	
7440-23-5	0	Sodium	T	MG/L	200.7	4.31		9.93		31.9		11.4	
18785-72-3	0	Sulfate	T	MG/L	300.0	43.5		84.7		550		175	
	-												
	-												
	1												
	-												
	-												
	-												
	-												
	-												
	-												

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
14 REILLY ROAD
FRANKFORT, KY 40601

Facility Name	Trimble Count (As officially shown on DWM)		_Activity	Ash Pond
Permit No. 112-0000	3 Finds/Unit N	0	_ Quarter &	& Year 2nd 2011
Please check only ONE	\underline{S} of the following.	:		
Characterization	Quarterly	X Semi-Annual	Annua	alAssessment
Please check applicable	e submittal:	X_Groundwater	Surface	Water
This form is to be utilized by 48:300 and 45:160) or by symonitoring under the jurisdict within forty-eight (48) hou similar techniques. Submit attached. Do not submit the in	statue (Kentucky Rev tion of the Division of ars of making the do ting the lab report is	rised Statues Chapter 224) Waste Management. You metermination using statistic	to conduct gro lust report any cal analyses, d	undwater and surface water indication of contamination irect comparison, or other
I certify under penalty of lav accordance with a system des Based on my inquiry of the pe to the best of my knowledge submitting false information,	signed to assure that querson or persons direct e and belief, true, accu	palified personnel properly grally responsible for gathering turate, and complete. I am a	ather and evalua the information, aware that there	te the information submitted. the information submitted is, are significant penalties for
2. Valor	Jal			1-13-17
SIGNA	TURE .			DATE
W. Mic	chael Winkler-Mar	nager of Environmenta	l Programs	
	A STATE OF THE STA	LE - PLEASE PRINT		

FACILITY INFORMATION SHEET

Sampling Date: 12/7-8/2011 County:	Trimble	Permit No.: 112-00003
Facility Name: Louisville Gas & Electric Trimble (As officially shown on DWM Perm		
Site Address: 487 Corn Creek Road	Bedford	40006
Street	City	Zip
Phone No.: (502) 627-4659 Latitude N	38° 35' 30"	Longitude W 85° 25' 00"
OWNER INFO	RMATION	
Facility Owner: Louisville Gas and Electric Com	pany	Phone No.: (502) 627-4659
Contact Person: W. Paul Puckett		Phone No.: (502) 627-4659
Contact Person Title: Senior Engineer, LG&E & KU	J Environmental	Affairs Department
Mailing Address: P.O.Box 32010	Louisville	40032
Street	City	Zip
SAMPLING PI (IF OTHER THAN LANDFIL) Company: Louisville Gas & Electric Co Trimble	L OR LABORATORY)	ahoratory
Company. Boulsvino das de Biochie Co. Timiole	County Station I	<u>Baooratory</u>
Contact Person: Adam Raker	P	hone No.: (502) 627-6204
Mailing Address: 487 Corn Creek Road	Bedford	40006
Street	City	Zip
LABORATORY	RECORD #	1
Laboratory: LG&E/KU System Laboratory	_ Lab ID No.:	
Contact Person: Ed Raker, Laboratory Supe	ervisor	Phone No.: (502) 347-4187
Mailing Address: 8815 Highway 42 East	Ghent	41045
Street	City	Zip
LABORATORY	RECORD #2	2
Laboratory: Microbac Laboratories, Inc.	Lab	ID No.:
Contact Person: Mr. Ken Ford	P	hone No.: (502) 962-6400
Mailing Address: 3323 Gilmore Industrial Boulevar	d Louisville	KY 40213
Street	City	Zip

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Facility: LG&E Trimble County Station
Permit Number: FINDS/UNIT:

Page 1 of 6

Exhibit GHR-1 / Page 229 of 300

LAB ID:

For Official Use Only

FINDS/UNIT: Not Applicable

GROUNDWATER SAMPLE ANALYSIS

(S)

AKGWA NUMBER ¹	, Fac:	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
	D ⁵ OF MEASURE					MW-1		MW-2R		MW-3		MW-4	
Sample Sequer	nce #					12		11		10		9	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	ole	Not Applicabl	Le	Not Applicat	ole	Not Applicat	ble
Sample Date a	and Ti	me (Month/Day/Year hour:minutes)				12/8/11 12:3	13	12/8/11 11:03	3	12/8/11 10:3	36	12/8/11 9:55	5
Duplicate ("Y	" or	"N") ²				No		Ио		No		No	
Split ("Y" or	c "N")	3				No		ИО		No		No	
Facility Samp	ole ID	Number (if applicable)				Not Applicab	ole	Not Applicabl	Le	Not Applicab	ole	Not Applicab	ble
Laboratory Sa	ample	ID Number (if applicable)				Not Applicab	ole	Not Applicabl	Le	Not Applical	ole	Not Applicat	ble
Date of Analy	ysis (Month/Day/Year)				6/14-7/25/	11	6/14-7/25/1	11	6/14-7/25/	/11	6/14-7/25	/11
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Up		Down		Down		Down	
CAS RN ⁴		CONSTITUENT	T D ⁵	OF	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G S		A G S		A G S		A G S
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	431.73		434.27		431.96		431.94	
s0145	1	Specific Conductance	Т	MG/L	120.1	654		1,333		858		2,067	
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.1	<7	. 1	11		<7		9	
S0268	0	Organic Carbon	Т	MG/L	415.1	<1.0		2.2		1.2		<1.0	
16887-00-6	2	Chloride(s)	т	MG/L	300.0	26.2		8.40		11.9		548	
S0266	0	Total Dissolved Solids	т	MG/L	160.1	416		384		508		4,750	
S0296	0	рн	Т	units	150.1	7.53		7.16		7.36		6.81	
										<0.001		0.001	

AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LG&E Trimble County Station

Permit Number:

FINDS/UNIT: Not Applicable ExhibitiGHR-1

Page 230 of 300

Page 2 of 6

LAB ID: For official Use only

AKGWA NUMBER	, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's L	Lity's Local Well or Spring Number (e.g. MW-1, MW-2, etc.) AS RN ⁴ CONSTITUENT T Unit					MW-1		MW-2		MW-3		MW-4	
CAS RN4		CONSTITUENT	T ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
							A		A		A		A
							G		G		G		G
	0	Boron	Т	MG/L	200.7	0.275	S	0.704	S	2.20	S	56.5	S
7440-70-2	0	Calcium	T	MG/L	200.7	104		98		118		666	
7440-23-5	0	Sodium	T	MG/L	200.7	9.92	-	8.51		5.96		98.2	
	0	Sulfate	Т	MG/L	300.0	35.8		58.6		74.3		2,006	
							E						
	-		_										
	-		_										
	+-		_				-						
							-						
						41							

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Facility: LG&E Trimble County Station Permit Number:

Page 3 of 6

Exhibit GHR-1 Page 231 of 300

FINDS/UNIT: Not Applicable For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

AKGWA NUMBER ¹	Fac	ility Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	etc.)		MW-5		MW-6		MW-7		MW-8		
Sample Sequen	ce #					13		4	-	6		7	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E	:) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)		The second secon		12/8/11 13:0	04	12/7/11 13:26	;	12/7/11 13:5	50	12/7/11 14:3	14
Duplicate ("Y	or	"N") ²				No		No		No		No	
Split ("Y" or	"N")	3				No		No		No		No	
Facility Samp	le ID	Number (if applicable)				Not Applicab	ole	Not Applicabl	.e	Not Applicat	ole	Not Applical	ble
Laboratory San	mple	ID Number (if applicable)				Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Date of Analy	sis (Month/Day/Year)				6/16-7/25/	/11	6/16-7/25/1	.1	6/16-7/25,	/11	6/16-7/25	/11
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Down		Down		Down		Down	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G		G
							s		s		s		s
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	432.82		432.36		431.69		431.61	
S0145	1	Specific Conductance	Т	MG/L	120.1	1,146		657		659		3,340	
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.1	12		<7		<7		8	
S0268	0	Organic Carbon	Т	MG/L	415.1	<1.0		<1.0		<1.0		<1.0	
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	142		108.3		42.0		335	
s0266	0	Total Dissolved Solids	T	MG/L	160.1	1,028		640		658		2,848	
s0296	0	рн	Т	units	150.1	7,22		7.10		7.14		6.80	
7440-50-8	0	Copper	D	MG/L	200.7	0.003		0.004		0.015		0.003	

AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LG&E Trimble County Station
Permit Number:

FINDS/UNIT: Not Applicable

Exhibit GHR-1 Page 232 of 300

Page 4 of 6

LAB ID:

For official Use only

AKGWA NUMBER	, Fac	ility Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.) CAS RN ⁴ CONSTITUENT T Unit N		MW-5		MW-6		MW-7		MW-8				
CAS RN ⁴		CONSTITUENT	т D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
							A G		A G		A G		A G
							s		s		s		S
	0	Boron	Т	MG/L	200.7	12.2		0.937		0.627		27.6	
7440-70-2	0	Calcium	т	MG/L	200.7	196		154		165		415	
7440-23-5	0	Sodium	т	MG/L	200.7	30.9		5.46		9.01		46.3	
	0	Sulfate	Т	MG/L	300.0	396		94.4		139		1,222	
	_												
	-		-										
	-		-										
	-												
·	+					-							
										,			
	-												
	-												
	+		+										

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Facility: LG&E Trimble County Station
Permit Number: FINDS/UNIT:

FINDS/UNIT: Not Applicable

Exhibit GHR-1 Page 233 of 300

Page 5 of 6

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

											-		_
AKGWA NUMBER ¹	, Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's Lo	cility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.) mple Sequence # sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E mple Date and Time (Month/Day/Year hour:minutes) plicate ("Y" or "N") ² lit ("Y" or "N") ³ cility Sample ID Number (if applicable) boratory Sample ID Number (if applicable) te of Analysis (Month/Day/Year) adient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN ⁴ CONSTITUENT T Unit					MW-9		MW-10	444	MW-11		MW-12	
Sample Sequen	ce #					8		3		2		5	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	le	Not Applicabl	.e	Not Applicab	ole	Not Applical	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				12/7/11 14:3	15	12/7/11 10:35	,	12/7/11 9:46	5	12/7/11 13:4	45
Duplicate ("Y	" or	"N") ²				No		No		No		No	
Split ("Y" or	("N")	3				No		No		No		Мо	
Facility Samp	le ID	Number (if applicable)				Not Applicab	ole	Not Applicabl	.e	Not Applicab	ole	Not Applical	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applicab	ole	Not Applicabl	.e	Not Applicab	ole	Not Applicat	ble
Date of Analy	rsis (Month/Day/Year)				6/16-7/25/	11	6/16-7/25/1	.1	6/16-7/25,	/11	6/16-7/25,	/11
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Down		Side		Side		Side	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
							A		A		A		A
							G		G		G		G
							S		S		S		S
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	430.42		427.97		430.26		428.65	
s0145	1	Specific Conductance	т	MG/L	120.1	654		1,045		1,617		1,314	
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.1	<7		<7		<7		<7	
S0268	0	Organic Carbon	Т	MG/L	415.1	<1.0		<1.0		<1.0		<1.0	
16887-00-6	2	Chloride(s)	т	MG/L	300.0	7.4		51.6		61.6		24.4	
S0266	0	Total Dissolved Solids	T	MG/L	160.1	422		756		1,700		688	
S0296	0	рН	т	units	150.1	7.30		7.08		6.84		6.78	
7440-50-8	0	Copper	D	MG/L	200.7	0.004		0.015		0.004		0.004	

¹AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

Facility: LG&E Trimble County Station

Permit Number:

FINDS/UNIT: Not Applicable

Page 6 of 6 Exhibit:GHR-1 Page 234 of 300

LAB ID:

For official Use only

AKGWA NUMBER1	KGWA NUMBER ¹ , Facility Well/Spring Number acility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)							8001-6328		8001-6336		8001-6337	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-		MW-9		MW-10		MW-11		MW-12			
CAS RN ⁴		CONSTITUENT	T _D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G		A G		A G		A G
							s		s		s		S
	0	Boron	Т	MG/L	200.7	0.854		1.98		2.99		1.86	
7440-70-2	0	Calcium	т	MG/L	200.7	105		174		336		152	
7440-23-5	0	Sodium	т	MG/L	200.7	3.62		10.5		33.7		9.51	
10	0	Sulfate	Т	MG/L	300.0	48.9		162		851		163	
													L
													L
								-					
				-									_
	_												L
													_
													_
													\vdash
													_
		-											_
													_

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
14 REILLY ROAD
FRANKFORT, KY 40601

Facility Name	As officially shown on DWM		_ActivityA	Ash Pond
Permit No. <u>112-0000</u>	•	the second second to the second of	_ Quarter & Y	Year 2nd 2012
Please check <u>only ONE</u>	of the following:			
Characterization	Quarterly	X Semi-Annual	Annual	Assessment
Please check applicable	e submittal:	X_Groundwater	Surface W	ater
This form is to be utilized by 48:300 and 45:160) or by symmonitoring under the jurisdict within forty-eight (48) hou similar techniques. Submittattached. Do not submit the in	statue (Kentucky Revision of the Division of the revision of the desired the desired the lab report is	ised Statues Chapter 224) Waste Management. You m termination using statistic	to conduct ground just report any ind cal analyses, dire	dwater and surface water lication of contamination ct comparison, or other
I certify under penalty of lav accordance with a system des Based on my inquiry of the pe to the best of my knowledge submitting false information,	igned to assure that querson or persons directle and belief, true, accu	alified personnel properly g ly responsible for gathering trate, and complete. I am	ather and evaluate the information, the aware that there ar	the information submitted. e information submitted is,
SIGNA	OO C			7-10-17 DATE
	when the commence of the contract of the contr	nager of Environmenta	l Programs	

FACILITY INFORMATION SHEET

Sampling Date:	4/10-12/2012	County:_	Trimble	Permit No.: 112-00003
Facility Name:	Louisville Gas & Elec	etric Trimble (
Site Address: 48'	7 Corn Creek Road	Ве	edford	40006
Stre			City	Zip
Phone No.: (502	2) 627-4659 La	titude N 38	3° 35' 30"	Longitude W 85° 25' 00"
	OWN	ER INFOR	RMATION	
Facility Owner:	Louisville Gas and E	Electric Compa	any	Phone No.: (502) 627-4659
Contact Person:	W. Paul	Puckett		Phone No.: (502) 627-4659
Contact Person Ti	tle: <u>Senior Engineer, L</u>	G&E & KU <u>I</u>	Environmental	Affairs Department
Mailing Address:	P.O.Box 32010 Street		Louisville City	40032 Zip
Company: <u>Louis</u>		ER THAN LANDFILL C	8	<u>Laboratory</u>
Contact Person:	Adam Ra	aker	P	Phone No.: (502) 627-6204
Mailing Address:	487 Corn Creek Road	1	Bedford	40006
	Street		City	Zip
	LABOR	RATORY F	RECORD #	1
Laboratory:	LG&E/KU System La	boratory	Lab ID No.:	
Contact Person:	Ed Raker, Labo	oratory Superv	visor	Phone No.: (502) 347-4187
Mailing Address:	8815 Highway 42 Ea	ast		41045
	Street		City	Zip
	LABOR	RATORY F	RECORD #	2
Laboratory:	Microbac Laborato	ries, Inc.	Lab	ID No.:
Contact Person:	Mr. Ker	Ford	P	hone No.: <u>(502) 962-6400</u>
Mailing Address:	3323 Gilmore Industr	ial Boulevard		
	Street		City	Zip

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Facility: LG&E Trimble County Station

Permit Number:

FINDS/UNIT: Not Applicable

Page 1 of 6

Exhibit GHR-1 Page 237 of 300

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

AKGWA NUMBER ¹	, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's Lo	ility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.) ple Sequence # sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipm ple Date and Time (Month/Day/Year hour:minutes) licate ("Y" or "N") ² it ("Y" or "N") ³ ility Sample ID Number (if applicable) oratory Sample ID Number (if applicable) e of Analysis (Month/Day/Year) dient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) AS RN ⁴ CONSTITUENT T Unit D ⁵ OF					MW-1		MW-2R		MW-3		MW-4	
Sample Sequen	cility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.) mple Sequence # sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment of the continuous management of the continuous management of the continuous management of the continuous management of the continuous management of the continuous co							2		3		4	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M	ethod, or (E	E) quipment	Not Applicab	le	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				4/10/12 14:3	8	4/10/12 15:06	5	4/10/12 15:4	46	4/10/12 16:	11
Duplicate ("Y	" or	"N") ²				No		No		No		No	
Split ("Y" or	"N")	3				No		No		No		No	
Facility Samp	le ID	Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Date of Analy	sis (Month/Day/Year)				4/10-5/22/	12	4/10-5/22/3	.2	4/10-5/22	/11	4/10-5/22	/12
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Up		Down		Down		Down	
CAS RN ⁴		CONSTITUENT	T D ⁵	OF	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A G S		A G S		A G S		A G S
S0906	0	Static Water Level Elevation	т	Ft. MSL	Fld. Meas.	421.63		423.76		421.85		421.97	
s0145	1	Specific Conductance	T	MG/L	120.1	654		1,333		858		2,067	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	7		<7		<7		14.0	
S0268	0	Organic Carbon	T	MG/L	415.1	<1.0		2.2		1.2		1.1	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	21.4		5.20		14.8		721	
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	446		378		496		4,708	
S0296	0	рн	Т	units	150.1	7.39		7.13		7.26		7.11	
7440-50-8	0	Copper	D	MG/L	200.7	0.006		0.013		0.006		0.009	

AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LG&E Trimble County Station

Permit Number:

FINDS/UNIT: Not Applicable Page 2 of 6 Exhibit GHR-1

Page 238 of 300

LAB ID:

For official Use only

AKGWA NUMBER	, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's Lo	ocal W	Well or Spring Number (e.g. MW-	1, MW-2,	etc.)		MW-1		MW-2		MW-3		MW-4	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G	4	G
							s		s		s		s
	0	Boron	T	MG/L	200.7	0.039		<0.001		2.264		100	
7440-70-2	0	Calcium	T	MG/L	200.7	123		35.6		42.1		790	
7440-23-5	0	Sodium	T	MG/L	200.7	8.85		11.2		9.43		125	
	0	Sulfate	T	MG/L	300.0	36.4		12.0		64.8		2,219	
												Į.	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station

Permit Number:

FINDS/UNIT: Not Applicable

Page 3 of

6 Exhibit GHR-1 Page 239 of 300

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

AKGWA NUMBER¹	, Fac	ility Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	Well or Spring Number (e.g. MW-1	, MW-2	, etc.)		MW-5		MW-6		MW-7		MM-8	
Sample Sequen	ce #					5		6		7		8	
If sample is	a Bla	nk, specify Type: (F)ield, (T)r	ip, (M	ethod, or (E	E) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applical	ole Not Applica		ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)):			4/11/12 10:4	4	4/11/12 11:12		4/11/12 13:08		4/11/12 13:2	
Duplicate ("Y	" or	"N") ²				No		No		Мо	Мо		
Split ("Y" or	"N")	3				No		No		No	No		
Facility Samp	le ID	Number (if applicable)				Not Applicab	le	Not Applicable		Not Applical	ole	Not Applical	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Date of Analy	te of Analysis (Month/Day/Year)							4/11-5/22/1	L2	4/11-5/22	/12	4/11-5/22	/12
Gradient with	adient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						Down		Down			Down	
CAS RN⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G S		A G S		A G S		9
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	422.20		422.45		423.26		423.25	
S0145	1	Specific Conductance	T	MG/L	120.1	1,146		657		659		3,340	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<7		<7		<7		<7	
S0268	0	Organic Carbon	T	MG/L	415.1	<1.0		<1.0		<1.0		<1.0	T
16887-00-6	2	Chloride(s)	T	MG/L	300.0	138		49.9		62.1		341	
E12 (4500MC, MILD) 1785 (462) 100	0	Total Dissolved Solids	Т	MG/L	160.1	1,104		544		754		2,694	
S0266	0												_
S0266 S0296	0	рн	T	units	150.1	7.27		7.54		7.56		7.27	

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from

analysis of a secondary dilution factor

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank. 2 Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

Facility: LG&E Trimble County Station

Permit Number:

Finds/Unit: Not Applicable Exhibit GHR-1

Page 240 of 300

For official Use only

AKGWA NUMBER ¹ , Facility Well/Spring Number						8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	ocal W	Well or Spring Number (e.g. MW-	-1, MW-2,	etc.)		MW-5		MW-6		MW-7		MW-8	
CAS RN4		CONSTITUENT	т D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
							A		A		A		A
							G		G		G		G
							s		s		s		s
	0	Boron	T	MG/L	200.7	19.7		1.70		0.989		41.73	
7440-70-2	0	Calcium	T	MG/L	200.7	195		53.4		117		417	
7440-23-5	0	Sodium	Т	MG/L	200.7	39.1		7.66		13.8		57.6	
	0	Sulfate	T	MG/L	300.0	419		82.3		196		1,355	
												1	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Facility: LG&E Trimble County Station Permit Number:

(S)

FINDS/UNIT: Not Applicable

Page 5 of 6 **Exhibit GHR-1** Page 241 of 300

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER	, Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's L	ocal W	Well or Spring Number (e.g. MW-1,	, MW-2	, etc.)		MW-9		MW-10		MW-11		MW-12	
Sample Seque	nce #					9		10		11		12	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	ip, (M	ethod, or (E) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Sample Date	and Ti	me (Month/Day/Year hour:minutes)				4/11/12 13:5	50	4/11/12 14:17	7	4/12/12 10:5	50	4/12/12 11:	19
Duplicate ("	Y" or	"N") ²				No		No		No		No	
Split ("Y" o	r "N")	3				No		No	No			No	
Facility Sam	ple II	Number (if applicable)				Not Applicable No		Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Laboratory S	ample	ID Number (if applicable)				Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Date of Anal	te of Analysis (Month/Day/Year)							4/11-5/22/1	L2	4/12-5/22	2/12 4/12-5/2		/12
Gradient wit	adient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						Down		Side			Side	
CAS RN⁴		CONSTITUENT	T D5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A	DETECTED VALUE OR PQL ⁶	F L A	DETECTED VALUE OR PQL ⁶	F L A	DETECTED VALUE OR PQL ⁶	I
							s		s		s		1
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	424.58		424.88		423.56		425.73	1
S0145	1	Specific Conductance	T	MG/L	120.1	654		1,045		1,617		1,314	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<7		<7		<7		15	
S0268	0	Organic Carbon	T	MG/L	415.1	<1.0		<1.0		<1.0		<1.0	
16887-00-6	2	Chloride(s)	т	MG/L	300.0	7.30		34.6		50.2		23.5	
s0266	0	Total Dissolved Solids	T	MG/L	160.1	414		520		1,656		656	
S0296	0	рн	T	units	150.1	7.55		7.44		7.11		7.27	
7440-50-8	0	Copper	D	MG/L	200.7	0.013		0.037		0.021	7.	0.013	

STANDARD FLAGS:

dilution factor

AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary

Facility: LG&E Trimble County Station
Permit Number:

Page 6 of 6 FINDS/UNIT: Not Applicable Exhibit GHR-1 Page 242 of 300 LAB ID:

For official Use only

AKGWA NUMBER¹	, Fac	ility Well/Spring Number			8001-6329		8001-6328		8001-6336		8001-6337		
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1	, MW-2	, etc.)		MW-9		MW-10		MW-11		MW-12	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G		G
							s		s		s		s
	0	Boron	T	MG/L	200.7	1.26		1.39		2.68		2.31	
7440-70-2	0	Calcium	T	MG/L	200.7	29.9		45.9		264		63.5	
7440-23-5	0	Sodium	т	MG/L	200.7	5.82		13.2		38.7		12.5	
	0	Sulfate	T	MG/L	300.0	54.6		77.7		839		152	

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS LANE
FRANKFORT, KY 40601

	Frimble Count of DWM		Activity As	sh Pond
Permit No. 112-00003			_ Quarter & Yo	ear 4th 2012
Please check <u>only ONE</u> o	f the following:			
Characterization	Quarterly	X Semi-Annual	Annual	Assessment
Please check applicable s	ubmittal:	X_Groundwater	Surface Wa	iter
This form is to be utilized by the 48:300 and 45:160) or by state monitoring under the jurisdiction within forty-eight (48) hours similar techniques. Submitting attached. Do not submit the installant techniques.	ue (Kentucky Rev of the Division of of making the de g the lab report is	ised Statues Chapter 224) Waste Management. You m termination using statistic	to conduct groundy ust report any indicated analyses, direct	vater and surface water cation of contamination comparison, or other
I certify under penalty of law the accordance with a system design Based on my inquiry of the person to the best of my knowledge are submitting false information, inc	ed to assure that quon or persons direct and belief, true, accurate	alified personnel properly ga ly responsible for gathering t trate, and complete. I am a	other and evaluate the information, the inware that there are	e information submitted. nformation submitted is,
SIGNATU		2		24-13 DATE
		pager of Environmenta		

NAME AND TITLE - PLEASE PRINT

FACILITY INFORMATION SHEET

Sampling Date:	11/13-14/2012 C	ounty: <u>Trimble</u>	Permit No.: 112-00003
Facility Name:			1
Site Address: 48	7 Corn Creek Road	Bedford	40006
		City	Zip
Phone No.: (50)	2) 627-4659 Latitude_	N 38° 35' 30"	Longitude_ W 85° 25' 00"
	OWNER IN	FORMATION	
Facility Owner:	Louisville Gas and Electric (Company	Phone No.: (502) 627-4659
Contact Person:	W. Paul Puckett		Phone No.: (502) 627-4659
Contact Person Ti	tle: Senior Engineer, LG&E &	KU Environmental	Affairs Department
Mailing Address:	P.O.Box 32010	Louisville	40032
	Street	City	Zip
Company: Louis	(IF OTHER THAN LAN	PERSONNEL UDFILL OR LABORATORY) Uble County Station	
Company. <u>Board</u>	The Gas to Electric Co. Time	ioro county button	<u> Lacoratory</u>
Contact Person:	Adam Raker		Phone No.: (502) 627-6204
Mailing Address:	487 Corn Creek Road	Bedford	
	Street	City	Zip
	LABORATOI	RY RECORD #	±1
Laboratory:	LG&E/KU System Laboratory	Lab ID No.	:
Contact Person:	Ed Raker, Laboratory S	Supervisor	Phone No.: (502) 347-4187
Mailing Address:	8815 Highway 42 East	Ghent	41045
	Street	City	Zip
	LABORATOI	RY RECORD #	22
Laboratory:	Microbac Laboratories, Inc	Lal	b ID No.:
Contact Person:	Mr. Ken Ford	I	Phone No.: (502) 962-6400
Mailing Address:	3323 Gilmore Industrial Boule	evard Louisville	e, KY 40213
	W. Paul Puckett t Person: W. Paul Puckett t Person Title: Senior Engineer, LG&E & I g Address: P.O.Box 32010 Street SAMPLING (IF OTHER THAN LAND any: Louisville Gas & Electric Co Trimb t Person: Adam Raker g Address: 487 Corn Creek Road Street LABORATOR tory: LG&E/KU System Laboratory t Person: Ed Raker, Laboratory St g Address: 8815 Highway 42 East		Zip

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

(S)

Facility: LG&E Trimble County Station Permit Number:

FINDS/UNIT: Not Applicable Page 245 of 300

Page 1 of 6

Exhibit GHR-1

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

								7					
AKGWA NUMBER	1, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's L	ocal W	ell or Spring Number (e.g. MW-1,	MW-2	, etc.)		MW-1		MW-2		MW-3		MW-4	
Sample Seque	nce #					6		8		10		11	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	le	Not Applicabl	.e	Not Applical	ole	Not Applicab	ole
Sample Date	and Ti	me (Month/Day/Year hour:minutes)				11/14/12 9:1	.3	11/14/12 9:33	ii .	11/14/12 10	:02	11/14/12 10:	:15
Duplicate ("	Y" or	"N") ²				Мо		Ио		No		No	
Split ("Y" o	r "N")	3				Ио		No		No		No	
Facility Sam	ple ID	Number (if applicable)		- K		Not Applicab	le	Not Applicabl	.e	Not Applical	ole	Not Applicab	ole
Laboratory S	ample	ID Number (if applicable)		Not Applicable Not Applicable			.e	Not Applicat	ole	Not Applicab	ole		
Date of Anal	ysis (Month/Day/Year)				11/14/12-1/	2/13	11/14/12-1/2	/13	11/14/12-1/	2/13	11/14/12-1/	2/13
Gradient wit	h resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Up		Down		Down		Down	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G		G
							s		s		S		S
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	420.98		422.50		421.05		421.12	
s0145	1	Specific Conductance	T	MG/L	120.1	606		616		597		4,110	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<3.0		<3.0		<3.0		8.0	
s0268	0	Organic Carbon	T	MG/L	415.1	<1.0		2.2		1.1		<1.0	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	22.4		5.20		10.5		593	
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	452		428		460		4,772	
S0296	0	рН	Т	units	150.1	7.06		6.97		6.95		6.65	
7440-50-8	0	Copper	D	MG/L	200.7	<0.001		<0.001		<0.001		<0.001	

AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LG&E Trimble County Station
Permit Number:

FINDS/UNIT: Not Applicable

Exhibit GHR-1 Page 246 of 300

Page 2 of 6

LAB ID:

For official Use only

AKGWA NUMBER	, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's L	ocal W	Well or Spring Number (e.g. MW	√1, MW-2,	etc.)		MW-1		MW-2		MW-3		MW-4	
CAS RN ⁴		CONSTITUENT	T _D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G		G
							S		s		S		s
	0	Boron	T	MG/L	200.7	0.233		0.238		2.32		83.7	
7440-70-2	0	Calcium	T	MG/L	200.7	126		110		71.7		779	
7440-23-5	0	Sodium	Т	MG/L	200.7	16.9		15.2		10.6		170	
	0	Sulfate	T	MG/L	300.0	36.8		21.7		65.0		2,325	
		511											

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716

SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station Permit Number:

(S)

Exhibit GHR-1

Page 3 of 6

FINDS/UNIT: Not Applicable Page 247 of 300

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

8001-6333 8001-6332 8001-6330 8001-6331 AKGWA NUMBER1, Facility Well/Spring Number MW-5 MW-6 MW-7 MW-8 Facility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.) 9 3 5 4 Sample Sequence # Not Applicable Not Applicable Not Applicable Not Applicable If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment 11/14/12 9:45 11/13/12 10:51 Sample Date and Time (Month/Day/Year hour:minutes) 11/13/12 10:09 11/13/12 10:35 Duplicate ("Y" or "N")2 No No No No Split ("Y" or "N")3 No No No No Not Applicable Not Applicable Not Applicable Not Applicable Facility Sample ID Number (if applicable) Laboratory Sample ID Number (if applicable) Not Applicable Not Applicable Not Applicable Not Applicable 11/14/12-1/2/13 11/13/12-1/2/13 11/13/12-1/2/13 11/13/12-1/2/13 Date of Analysis (Month/Day/Year) Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) Down Down Down Down DETECTED DETECTED DETECTED DETECTED CAS RN4 METHOD F F F CONSTITUENT Unit VALUE VALUE VALUE VALUE OF OR PQL6 OR PQL6 OR PQL6 OR PQL6 L MEASURE L L L A A A A G G G G S S S S 421.55 421.15 416.47 419.45 S0906 - -0 Static Water Level Elevation Ft. MSL Fld. Meas. S0145- -1 Specific Conductance T MG/L 120.1 1,248 664 964 2,630 T 9.0 <3.0 4.0 <3.0 S0130- -0 Chemical Oxygen Demand MG/L 410.1 <1.0 <1.0 <1.0 T <1.0 S0268- -0 MG/L 415.1 Organic Carbon 135 30.6 78.1 338 2 Т 16887-00-6 Chloride(s) MG/L 300.0 1,136 506 870 2,946 S0266- -0 Total Dissolved Solids T MG/L 160.1 6.98 7.11 7.01 6.75 S0296- -0 T units 150.1 рН 0.006 <0.001 0.008 <0.001 7440-50-8 D MG/L 200.7 Copper

STANDARD FLAGS:

dilution factor

AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary

Facility: LG&E Trimble County Station

Permit Number:

FINDS/UNIT: Not Applicable

Exhibit GHR-1

Page 4 of 6

LAB ID:

Page 248 of 300

For official Use only

AKGWA NUMBER ¹	, Fac	ility Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-	1, MW-2,	etc.)		MW-5		MW-6		MW-7		MW-8	
CAS RN ⁴		CONSTITUENT	т D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
							A G		A G		A G		A G
							s		s		s		s
	0	Boron	Т	MG/L	200.7	14.8		1.57		1.86		44.7	
7440-70-2	0	Calcium	Т	MG/L	200.7	216		81.9		184		473	
7440-23-5	0	Sodium	т	MG/L	200.7	47.0		9.60		20.6		87.6	
	0	Sulfate	Т	MG/L	300.0	353		64.0		252		1,271	
	-												
	1								_				
	-					-							
***					1								
	_												
	-		-										
									_				

Division of Waste Management Solid Waste Branch 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station

(S)

Permit Number:

FINDS/UNIT: __Not_Applicable Page 249 of 300

Page 5 of 6

Exhibit GHR-1

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER	¹ , Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's L	ocal W	Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		MW-9		MW-10		MW-11		MW-12	
Sample Seque	nce #					1		2		12		6	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	ole	Not Applicabl	.e	Not Applicat	ole	Not Applicat	ole
Sample Date	and Ti	me (Month/Day/Year hour:minutes)				11/13/12 1:0	7	11/13/12 1:34		11/14/12 10:	42	11/14/12 9:1	L3
Duplicate ("	Y" or	"N") ²				No		Ио		No		No	
Split ("Y" o	r "N")	3				No		Ио		No		No	
Facility Sam	ple II	Number (if applicable)				Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ole
Laboratory S	ample	ID Number (if applicable)				Not Applicab	ole	Not Applicabl	.e	Not Applical	ole	Not Applical	ole
Date of Anal	ysis ((Month/Day/Year)				11/13/12-1/	2/13	11/13/12-1/2	/13	11/14/12-1/	2/13	11/14/12-1/	2/13
Gradient wit	h resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Down		Side		Side		Side	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G		A G		A G		A G
							S		s		s		S
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	421.40		421.23		421.00		421.23	
S0145	1	Specific Conductance	т	MG/L	120.1	644		924		1,610		768	
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.1	<3.0		<3.0		<3.0		<3.0	
S0268	0	Organic Carbon	Т	MG/L	415.1	<1.0		<1.0		<1.0		<1.0	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	10.6		47.0		57.0		22.0	
S0266	0	Total Dissolved Solids	T	MG/L	160.1	436		696		1,622		572	
s0296	0	рн	T	units	150.1	7.51		6.92		6.87		7.12	
7440-50-8	0	Copper	D	MG/L	200.7	0.004		0.007		<0.001		<0.001	

STANDARD FLAGS:

AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

Facility: LG&E Trimble County Station
Permit Number:

FINDS/UNIT: Not Applicable Exhibit GHR-1

Page 6 of 6 Page 250 of 300

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	, Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's Lo	ocal W	Well or Spring Number (e.g. MW	7-1, MW-2,	etc.)		MW-9		MW-10		MW-11		MW-12	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
							A		A		A		A
							G		G		G		G
							s		S		S		s
	0	Boron	Т	MG/L	200.7	1.54		1.22		3.19		1.65	
7440-70-2	0	Calcium	т	MG/L	200.7	120		141		338		120	
7440-23-5	0	Sodium	Т	MG/L	200.7	8.40		18.8		50.0		14.6	
	0	Sulfate	Т	MG/L	300.0	75.6		115		697		131	
		200											

GROUNDWATER ASSESSMENT REPORT

LOUISVILLE GAS & ELECTRIC

TRIMBLE COUNTY GENERATING STATION BEDFORD, TRIMBLE COUNTY, KENTUCKY

Prepared for:

LG&E and KU Services Company

October 31, 2013

Prepared by:

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	LYTICAL METI	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
									Total Inorgani	ics					
ANALY	YTICAL PARAM	IETER													
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	lron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
LIS.	USEPA MCLs (mg/L)		0,01000	0.005		1.3		0.015		0.002	0.10		0.050		
	05/19/09				84.60	0,0020	_			·			-	6.46	-
	10/01/09		****	_	92.80	0.0030		****			_	_	-	7.19	-
	06/21/10		_		75.60	0.0030	_	-	-					2.73	
	10/12/10			_	82.60	0.0050	_	_				_	_	5.39	_
	06/14/11				130.00	<0.00100		_	_	_				5.98	-
	12/08/11			_	104.00	<0.00100				_	—	-		9.92	-
MW-1	04/10/12				123.00	0.0060		_						8.85	
10(00-1	11/14/12			_	126.00	<0.00100					_	_	_	16.90	
	06/25/13	26.0	0.00044(J)	<0.00016	110.00	0,00110(J)	0.200	0.00077(J)	29.000	<0.000049	<0.0049	4.30	0.00081(J)	9.50	<0.0026
	08/28/13	26.0	<0.00025	<0.00016	91,00	0.00073(J)	0.310	0.00032(J)	24.000	<0.000049	<0.0049	1.50	<0.00038	6.60	<0.0026
		Minimum	<0.00025	<0.00016	75.60	<0.00100	0.200	0.00032	24.000	<0.000049	<0.0049	1.50	<0.00038	2.73	<0.0026
	Statistical	Maximum	0.00044	<0.00016	130.00	0.0060	0.310	0,00077	29.000	<0.000049	<0.0049	4.30	0.00081	16.90	<0.0026
	Computations	Median	0.00028	<0.00016	98.40	0.0016	0.255	0,00055	26.500	<0.000049	<0.0049	2.90	0.00050	6.90	<0.0026
		Average	0.00028	<0.00016	101.96	0.0022	0.255	0,00055	26.500	<0.000049	<0.0049	2.90	0.00050	7.95	<0.0026

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METH	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
									Total Inorgani	ics		_			
ANAL	YTICAL PARAN	TETER													
Sample Identification ——— Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
Üs	SEPA MCLs (mg/l	Ľ)	0.01000	0.005	_	1.3		0.015	_	0.002	0.10		0.050		- -
····	05/19/09	_	<u>—</u>	<u> </u>	222.00	0.0020	—		<u> </u>	_			<u> </u>	14.20	
MW-2	10/01/09	_	_	_	205.00	0.0020	_		_	_	****		_	15.20	
	06/21/10	_		_	160,70	0.0050			_		_	<u> </u>		13.60	
	10/15/10	_	-		81.50	0.0050		-			_		_	9.10	_
	06/14/11	_	_		102.34	0.0020			-	_				9.48	
	12/08/11	-			98.00	0.0050			_	_		<u> </u>	-	8.51	
MW-2R	04/10/12			_	35.60	0.0130		_	_			_	_	11.20	
	11/14/12				110.00	<0.00100			-	_			-	15,20	_
	06/26/13	35.0	0.02400	<0.00016	93.00	<0.00052	11.000	0.00037(J)	35.000	<0.000049	<0.0049	0.81	0.00120	8.20	<0.0026
	08/29/13	29.2	0.02200	<0.00016	88.00	0.00160(J)	11.000	0.00089(J)	34.000	<0.000049	<0.0049	0.70	<0.00038	7.80	0.0028(J)
00/2		Minimum	0.02200	<0.00016	35.60	<0.00052	11.000	0.00037	34.000	<0.000049	<0.0049	0.70	<0.00038	7.80	<0.0026
MW-2/MW-2R	Statistica!	Maximum	0.02400	<0.00016	222.00	0.01300	11.000	0.00089	35.000	<0.000049	<0.0049	0.81	0.00120	15.20	0.0028
1010 A-51101 AA-51	Computations	Median	0.02300	<0.00016	100.17	0.00200	11.000	0.00063	34.500	<0.000049	<0.0049	0.76	0.00070	10.34	0.0021
		Average	0.02300	<0.00016	119.61	0.00364	11.000	0.00063	34.500	<0.000049	<0.0049	0.76	0.00070	11.25	0.0021

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

AN.	ALYTICAL METH	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
									Total Inorgani	cs					
ANAL	YTICAL PARAM	IETER										77			
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
	JSEPA MCLs (mg/l	L)	0,01000	0.005		1.3	34 - 3 <u>4</u> - 34 - 34	0.015	_	0.002	0.10		0.050		
	05/19/09	****			149.00	0.0040								7,65	
	10/01/09				110.00	0.0020	-	_			<u>—</u>	<u>—</u>	_	7.40	_
İ	06/21/10			_	121.20	0.0080								5.82	
	10/12/10		****		100.90	0.0070	_	_	-		_	-	-	7.71	_
	06/14/11		-	_	138,83	<0.00100								7.71	
	12/08/11		—		118.00	<0.00100			_	-	_	-	_	5.96	_
	04/10/12		_		42.10	0.0060	_	-			-	_	-	9,43	_
MW-3	11/14/12				71,70	<0.00100					—			10.60	
	06/25/13	31.0	0.00082(J)	<0.00016	140.00	0.0028	0.290	0.00260	35.000	<0.000049	<0.0049	1.60	0.00130	5.90	0.0043(J)
	06/25/13(DUP)	31.0	0.00150	<0.00016	140.00	0.0210	1.600	0.01600	36.000	<0.000049	<0.0049	1.40	0.00120	5.90	0.0200
	08/29/13	31.0	0.00060(J)	<0.00016	130.00	0.0120	0.650	0.00740	33.000	<0.000049	<0.0049	1.20	<0.00038	6.20	0.0049(J)
	08/29/13(DUP)*	31,0	0.00084(J)	<0.00016	140.00	0.00130(J)	0.260	0.00031(J)	34.000	<0.000049	0.0110(J)	1.10	0.00120	6.40	0.0036(J)
		Minimum	0.00060	<0.00016	42.10	<0.0010	0.260	0.00031	33.000	<0.000049	<0.0049	1.10	<0.00038	5.82	0.0036
	Statistical	Maximum	0.00150	<0.00016	149.00	0.0210	1.600	0.01600	36.000	<0.000049	0.0110	1.60	0.00130	10.60	0.0200
	Computations	Median	0,00083	<0.00016	125,60	0.0034	0.470	0.00500	34.500	<0.000049	0.0025	1.30	0.00120	6.90	0.0046
		Average	0.00094	<0.00016	116.81	0.0055	0.700	0.00658	34.500	<0.000049	0.0046	1.33	0.00097	7,22	0.0082

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METH	łOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
		,						•	Total Inorgani	ics					
ANAL	YTICAL PARAM	ETER													
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zînc
U	SEPA MCLs (mg/l)	0.01000	0.005		1.3		0,015		0.002	0.10		0.050		
	05/19/09		—	—	668.00	0.0030			<u> </u>	—		_	_	72.60	
	10/01/09				699.80	0.0130	****		_			_	_	86.20	_
	06/21/10			_	590.00	0.0040		_		-	_			87.70	<u> </u>
	10/12/10			-	694.50	0.0050		_					_	85.70	
	06/14/11		_	_	768.66	0.0270	****	_	_					20.39	
	12/08/11	-	_		666.00	0.0010		_	_		_			98.20	_
	04/10/12		_		790,00	0.0090		_			_			125.00	_
MW -4	11/14/12	_	_		779.00	<0.00100		_	_		_	_	_	170.00	_
****	06/25/13	66.0	0.00230	<0.00016	640.00	0.00140(J)	<0.014	0.00024(J)	370.000	<0.000049	<0.0049	12.00	0.01200	95.00	<0.0026
	06/25/13(DUP)*	************************	0.00160	<0.00016	600.00	0.00140(J)	0.032	<0.00024	380.000	<0.000049	<0.0049	11.00	0.00890	93.00	<0.0026
	08/29/13	66.0	0.00520	<0.00016	600.00	0.0022	0.025(J)	<0.00024	360.000	<0.000049	<0.0049	10.00	0.01900	93.00	<0,0026
	08/29/13(DUP)	66.0	0.00870	<0.00016	600.00	0.00120(J)	0.290	0.00280	360.000	<0.000049	0.0050(J)	10.00	0.02100	91.00	0.0039(J)
		Minimum	0.00160	<0.00016	590.00	<0.00100	<0.014	<0.00024	360.000	<0.000049	<0.0049	10.00	0.00890	20.39	<0.0026
	Statistical	Maximum	0.00870	<0.00016	790.00	0.0270	0.290	0.00280	380.000	<0.000049	0.0050	12.00	0.02100	170.00	0.0039
	Computations	Median	0.00375	<0.00016	667.00	0.0026	0.029	0.00018	365.000	<0.000049	0.0025	10.50	0.01550	92.00	0.0013
		Average	0.00445	<0.00016	674,66	0.0057	0.089	0.00082	367.500	<0.000049	0.0031	10,75	0.01523	93.15	0.0020

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METI	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
							•		Total Inorgani	ics					
ANAL	YTICAL PARAN	TETER													
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
	SEPA MCLs (mg/	L)	0.01000	0.005	*****	1.3		0.015	_	0.002	0.10	_	0.050		
	05/19/09		—	—	189.00	0.0050			_		,			25.400	_
	10/01/09	_	_	_	194,40	0.0060		<u> </u>	-	_		_	_	31.800	_
	06/22/10			_	164.20	0.0080	_		<u> </u>					29.200	_
	10/12/10	_	_	-	186.80	0.0080		-		_	_	_	_	27.740	_
	06/16/11				227.71	0.0120		_	_	_	_	_	_	34.428	_
	12/07/11		_	_	196.00	0.0030					_		_	30.900	_
MW-5	04/11/13	_		_	195,00	0.0120		_						39.100	
14144-0	11/14/12	_			216.00	0.0060		_	_	_	_	-	_	47.000	_
	06/25/13	58.0	0.00120	<0.00016	210.00	0.00970(J)	<0.014	0.00055(J)	73.000	<0.000049	<0.0049	5.30	0.00500	28.000	0.0066(J)
	08/29/13	58,0	0.00190	<0.00016	190.00	0.0100	0.019(J)	0.00029(J)	71.000	<0.000049	<0.0049	4.60	0.00250	26.000	0.0064(J)
		Minimum '	0.00120	<0.00016	164.20	0.0030	<0.014	0.00029	71.000	<0.000049	<0.0049	4,60	0.00250	25.400	0.0064
	Statistical	Maximum	0,00190	<0.00016	227.71	0.0120	0.019	0.00055	73.000	<0.000049	<0.0049	5.30	0.00500	47.000	0.0066
	Computations	Median	0,00155	<0.00016	194.70	0.0080	0.013	0.00042	72.000	<0.000049	<0.0049	4.95	0.00375	30.050	0.0065
		Average	0.00155	<0.00016	196.91	0.0080	0.013	0.00042	72.000	<0.000049	<0.0049	4.95	0.00375	31.957	0.0065

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	LYTICAL METH	IOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
		<u> </u>							Total Inorgani	cs					
ANALY	YTICAL PARAM	ETER													111144414
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
Us	USEPA MCLs (mg/L)		0.01000	0.005		1.3		0.015		0.002	0.10		0.050		
	05/19/09			-	104.00	0.0050	—		_					3.37	
}	10/01/09			-	104.00	0.0030			_		-			4.25	_
	06/22/10		_		91.30	0.0190		-			_		_	2.28	_
	10/12/10		_	-	82.40	0.0040	-		_			-		4.84	
	06/16/11				145,60	0.0060		_			_		-	5.50	
	12/07/11	_		-	154,00	0.0040	_	_		_	_		_	5.46	
MW-6	04/10/13		_	_	53.40	0.0110	_		_	_		_		7.66	
10100-0	11/13/12	****		_	81.90	<0.00100	_			_		_	_	9.60	
	06/25/13	58.0	0.00050(J)	<0.00016	120.00	0.0070	<0.014	0.00084(J)	37.000	<0.000049	<0.0049	2.00	0.00160	4.80	0.0066(J)
	08/30/13	58.0	0.00071(J)	<0.00016	110.00	0.0058	<0.014	0.00037(J)	34.000	<0.000049	<0.0049	1.60	0.00180	4.60	0.0048(J)
		Minimum	0.00050	<0.00016	53.40	<0.00100	0.007	0.00037	34.000	<0.000049	<0.0049	1.60	0.00160	2.28	0.0048
	Statistical	Maximum	0.00071	<0.00016	154.00	0.0190	0.007	0.00084	37.000	<0.000049	<0.0049	2.00	0.00180	9.60	0.0066
	Computations	Median	0.00061	<0.00016	104-00	0.0054	0.007	0.00061	35.500	<0.000049	<0.0049	1.80	0.00170	4.82	0.0057
		Average	0.00061	<0.00016	104.66	0.0065	0.007	0.00061	35.500	<0.000049	<0.0049	1.80	0.00170	5.24	0.0057

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METH	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
								•	Total Inorgani	ics					
ANAL	YTICAL PARAM	ETER		***************************************											
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
U	SEPA MCLs (mg/l	-)	0.01000	0.005	-	1.3	-	0.015		0.002	0.10		0.050		
	05/19/09			_	121.00	0.0170					_		_	6.85	_
	10/02/09			_	78.10	0.0010	<u> </u>	_	_	_	-		_	5,90	<u> </u>
	06/22/10				115.00	0.0330			_	-	_		_	6.46	_
	10/12/10			_	125.40	0.0060	_	_	_		_	_	_	8.62	<u> </u>
	06/16/11	_	_	_	155.53	0.0150					<u> </u>			9.16	
	12/07/11				165.00	0.0150		_	_	_	_		_	9.01	——————————————————————————————————————
	04/11/12				117.00	0.0190	_	_	_	_	_	_	_	13.80	_
MW-7	11/13/12			_	184.00	0.0080	_	_	-		_	_	_	20.60	-
19(4.4-2	06/26/13	62.0	0.00150	0.00048(J)	240.00	0.0280	0.017(J)	0.00072(J)	56.000	<0.000049	<0.0049	4.10	0.00670	14.00	0.0300
	06/26/13(DUP)*	02.0	0.00180	<0.00016	250.00	0.0270	<0.014	0.00031(J)	60.000	<0.000049	<0.0049	3.50	0.00920	14.00	0.0310
	08/30/13	62.0	0.00300	<0.00016	250.00	0.0270	<0.014	<0.00024	59.000	<0.000049	<0.0049	3.60	0.00700	15.00	0.0340
	08/30/13(DUP)	62.0	0.00320	<0.00016	250.00	0.0290	<0.014	0.00041(J)	60.000	<0.000049	<0.0049	3.80	0.00780	15.00	0.0380
		Minimum	0.00150	<0.00016	78.10	0.0010	0.007	<0.00024	56.000	<0.000049	<0.0049	3.50	0.00670	5.90	0.0300
	Statistical	Maximum	0.00320	0.00048	250.00	0.0330	0.017	0.00072	60.000	<0.000049	<0.0049	4.10	0.00920	20.60	0.0380
	Computations	Median	0.00240	0.00008	160.26	0.0180	0.007	0.00036	59.500	<0.000049	<0.0049	3.70	0.00740	11.48	0.0325
		Average	0.00238	0.00018	170.92	0.0188	0.010	0.00039	58.750	<0.000049	<0.0049	3.75	0.00768	11.53	0.0333

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	LYTICAL METH	łOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
								*	Total Inorgani	cs					
ANAL	YTICAL PARAM	ETER													
Sample Identification ——— Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
U:	SEPA MCLs (mg/l	3	0.01000	0.005		1.3		0.015		0.002	0.10		0.050		
	05/19/09			_	586.00	0.0050								47.90	
	10/02/09			_	546.00	0.0100								53.80	
	06/22/10		_	<u> </u>	443.60	0.0050	_	<u> </u>	_	<u>—</u>		<u> </u>		46.70	<u> </u>
	10/12/10			_	493.70	0.0050	-	_	_	-	-	—	_	54.96	_
	06/16/11				445.17	0.0140			_	-	_			9.61	
	12/07/11				415.00	0.0030								46.30	<u> </u>
	04/11/12	_	-	_	417.00	0.0090							_	57.60	_
MW-8	11/13/12		-	_	473.00	<0.00100		_	_		-	_		87.60	
	06/24/13	96.0	0.00260	<0.00016	410.00	0.0025	<0.014	0.00031	240.000	<0.000049	<0.0049	5.60	0.01000	49.00	<0.0026
	06/24/13(DUP)	96.0	0.00220	<0.00016	400.00	0.0029	0.230	0.00160	230.000	<0.000049	<0.0049	5.60	0.01100	49.00	0.0028
	08/30/13	96.0	0.00680	<0.00016	390.00	0.0028	<0.014	<0.00024	240.000	<0.000049	<0.0049	4.90	0.01200	48.00	0.0038(J)
	08/30/13(DUP*)		0.00510	<0.00016	410.00	0.0029	<0.014	<0.00024	250.000	<0.000049	0.0140(J)	5.10	0.00900	48.00	0.0038(J)
		Minimum	0.00220	<0.00016	390.00	<0.0010	0.007	0.00012	230.000	<0.000049	0.0025	4.90	0.00900	9.61	<0.0026
	Statistical	Maximum	0.00680	<0.00016	586.00	0.0140	0.230	0.00160	250.000	<0.000049	0.0140	5.60	0.01200	87.60	0.0038
	Computations	Median	0.00385	<0.00016	430.30	0.0040	0.007	0.00022	240.000	<0.000049	0.0025	5.35	0.01050	48.50	0.0033
		Average	0.00418	<0.00016	452.46	0.0052	0.063	0.00054	240.000	<0.000049	0.0053	5,30	0.01050	49.87	0.0029

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METH	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
								•	Total Inorgani	ics					
ANAL	YTICAL PARAN	ETER													***************************************
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
) 	SEPA MCLs (mg/	1)	0.01000	0.005		1.3	-	0.015	I	0.002	0.10	_	0.050		
	05/20/09				106.00	0.0070		-		—		_		3.29	
	10/02/09	-	-	_	102.60	0.0020		_		_				3.05	—
	06/22/10				97.20	0.0150				_				2.01	
	10/12/10	_		-	100.60	0.0060	-	-	_	_	_	-	-	4.90	_
	06/16/11			_	108.21	0.0060	-	_	_	_	—	_	_	4.31	
	12/07/11				105.00	0.0040		-	_	-			_	3.62	_
MW-9	04/11/12				29.90	0.0130								5.82	_
14144-5	11/13/12	-	-	_	120.00	0.0040	_	_	_	_	_	—	-	8.40	-
	06/26/13	96.0	0.00058	<0.00016	120.00	0.0069	0.037	0.00140	35.000	<0.000049	<0.0049	2.10	0.00074	4.00	0.0062
	08/30/13	96.0	0.00068(J)	<0.00016	110.00	0.0076	<0.014	0.00048(J)	34.000	<0.000049	<0.0049	1.70	0.00130	3.80	0.0057(J)
		Minimum	0.00058	<0.00016	29.90	0.0020	<0.014	0.00048	34.000	<0.000049	<0.0049	1.70	0.00074	2.01	0.0057
	Statistical	Maximum	0.00068	<0.00016	120.00	0.0150	0.037	0.00140	35.000	<0.000049	<0.0049	2.10	0.00130	8.40	0.0062
	Computations	Median	0.00063	<0.00016	105.50	0.0065	0.022	0.00094	34.500	<0.000049	<0.0049	1.90	0.00102	3.90	0.0060
		Average	0.00063	<0.00016	99.95	0.0072	0.022	0.00094	34.500	<0.000049	<0.0049	1.90	0.00102	4.32	0.0060

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL MET	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
								•	Total Inorgani	ics			*		•
ANAL	YTICAL PARAIV	IETER													
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
Ü	SEPA MCLs (mg/	ر.	0.01000	0.005	_	1.3		0.015	2 <u>-</u>	0.002	0.10	-	0.050		- 4
	05/20/09	****		_	173.00	0.0200	_							9.42	_
	10/02/09				120.00	0.0030								6.57	
	06/22/10		-	_	103.60	0.0340	-	<u> </u>	_		_	_	_	6.73	_
	10/13/10			_	108.70	0.0090			-		_	-	_	9.43	_
	06/16/11		***		151.38	0.0130			_				_	9.93	_
	12/07/13		_	_	174.00	0.0150		-						10.50	_
MW-10	04/11/12			-	45.90	0.0370			-		_	_	_	13,20	_
14144-10	11/13/12	-		_	141.00	0.0070								18.80	_
	06/26/13	71.0	<0.00025	<0.00016	130.00	0.0240	0.036	0.00130	35.000	<0.000049	<0.0049	2,20	0.00042	9.60	0.0210
	08/29/13	71.0	<0.00025	<0.00016	120.00	0.0240	<0.014	0.00071(J)	33.000	<0.000049	<0,0049	1.50	0.00120	9.30	0.0230
		Minimum	<0.00025	<0.00016	45.90	0.0030	<0.014	0.00071	33.000	<0.000049	<0.0049	1.50	0.00042	6.57	0.0210
:	Statistical	Maximum	<0.00025	<0.00016	174.00	0.0370	0.036	0.00130	35,000	<0.000049	<0.0049	2.20	0.00120	18.80	0.0230
	Computations	Median	<0.00025	<0.00016	125.00	0.0175	0.022	0.00101	34.000	<0.000049	<0.0049	1.85	0.00081	9.52	0.0220
		Average	<0.00025	<0.00016	126.76	0.0186	0.022	0.00101	34.000	<0.000049	<0.0049	1.85	0.00081	10.35	0.0220

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METI	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
									l'otal Inorgani	ics					
ANAL	YTICAL PARAN	TETER													
Sample Identification Location	entification Date Depth			Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
ט	SEPA MCLs (mg/	Ľ)	0.01000	0,005	•	1.3		0.015		0.002	0.10		0.050		
	05/20/09	_	—		296.00	0.0060	<u> </u>	-				-		16.40	
	10/02/09	_	_		261,60	0.0070	— -						_	17.50	
	06/22/10	_	_	_	249,00	0.0100		<u> </u>						26.20	_
	10/13/10				275.10	0.0050		_	_	_	_	<u> </u>	_	24.97	
	06/16/11	_	_	_	279,43	0.0070						_	-	31.86	_
	12/07/13		_	-	336.00	0.0040			_	_	-		_	33,70	
MW-11	04/12/12	_			264.00	0.0210	_	_	_	_	_	-	_	38.70	<u> </u>
19104-11	11/14/12	_			338.00	<0.00100		_	_	_	-	—	_	50.00	_
	06/27/13	66.0	0.00067	<0.00016	300.00	0.0039	0.021	0.00065	93.000	<0.000049	<0.0049	3.90	0.00740	27.00	0.0050
	08/28/13	66.0	0.00096(J)	<0.00016	290.00	0.0044	<0.014	0.00047(J)	93.000	<0.000049	<0.0049	3.30	0.00750	28.00	0.0078(J)
		Minimum	0.00067	<0.00016	249.00	<0.0010	<0.014	0.00047	93.000	<0.000049	<0.0049	3.30	0.00740	16.40	0.0050
	Statistical	Maximum	0.00096	<0.00016	338.00	0.0210	0.021	0.00065	93.000	<0.000049	<0.0049	3.90	0.00750	50.00	0.0078
	Computations	Median	0,00082	<0.00016	284.72	0.0055	0.014	0.00056	93.000	<0.000049	<0.0049	3.60	0.00745	27.50	0.0064
		Average	0.00082	<0.00016	288.91	0.0069	0.014	0.00056	93.000	<0.000049	<0.0049	3.60	0.00745	29.43	0.0064

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL MET	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
								•	Total Inorgani	ics					
ANAL	YTICAL PARAN	IETER										4			
Sample Identification Location	ntification Date Depth			Cadmium	Calcium	Copper	lron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
Ů:	USEPA MCLs (mg/L) 05/20/09 —			0.005	7	1.3		0.015		0.002	0.10		0.050	parame.	
	05/20/09	-	_	_	243.00	0.0100							_	6.15	_
	10/02/09	_	_	_	218,00	0.0010					_		_	6.91	_
	06/22/10	_	_		189.00	0.0160		_						8.50	
	10/13/10	_	_		187.00	0.0040		_			_		_	7.92	_
	06/14/11		_		170.00	0.0040		_	_		_		_	11.43	_
	12/07/11				152.00	0.0040		_					-	9,51	-
MW-12	04/12/12				63.50	0.0130		_	-	-	_	-	_	12.50	_
10100-12	11/14/12				120.00	<0.0010		_	-	-	_	-	_	14.60	_
	06/27/13	67.0	<0.00025	<0.00016	140.00	0.0035	0.031	0.00450	41.000	<0.000049	<0.0049	1.90	<0.00038	7.40	0.0055
	08/29/13	67,0	<0.00025	<0.00016	130.00	0.0046	<0.014	0.00079(J)	42.000	<0.000049	<0.0049	1.10	0.00085(J)	6.60	0.0028(J)
		Minimum	<0.00025	<0.00016	63.50	<0.00100	<0.014	0.00079	41.000	<0.000049	<0.0049	1.10	<0.00038	6.15	0.0028
	Statistical	Maximum	<0.00025	<0.00016	243.00	0.0160	0.031	0.00450	42.000	<0.000049	<0.0049	1.90	0.00085	14.60	0.0055
	Computations	Median	<0.00025	<0.00016	161.00	0.0040	0.019	0.00265	41.500	<0.000049	<0.0049	1.50	0.00052	8.21	0.0042
		Average	<0.00025	<0.00016	161.25	0.0061	0.019	0.00265	41.500	<0.000049	<0.0049	1.50	0.00052	9.15	0.0042

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METI	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
									Total Inorgani	ics					
ANAL	YTICAL PARAN	TETER													
Sample Identification Location	Date	Collection Depth (ft btoc)	Arsenic	Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
ů:	SEPA MCLs (mg/	L)	0.01000	0.005	-	1.3		0.015		0.002	0.10		0.050		
	09/29/09		_	—	122.00	*****								4.91	
	06/23/10	_		_	114.80	_	_	_	-				_	2.44	_
	06/14/11				130.38	_								5.24	_
	04/10/12	_	_	_	29.20	0.0060								6.54	
MW-13	06/24/13	105.5	<0.00025	<0.00016	140.00	0.0016	0.067	0.00082	43.000	<0.000049	<0.0049	2.10	<0.00038	4.60	<0.0026
10100-12	08/28/13	105.5	<0.00025	<0.00016	130.00	<0.00052	0.014(J)	<0.00024	42.000	<0.000049	<0.0049	1.10	0.00048(J)	3.80	<0.0026
		Minimum	<0.00025	<0.00016	29,20	<0.00052	0.014	<0.00024	42.000	<0.000049	<0.0049	1.10	<0.00038	2.44	<0.0026
	Statistical	Maximum	<0.00025	<0.00016	140.00	0.0060	0.067	0.00082	43.000	<0.000049	<0.0049	2.10	0.00048	6,54	<0.0026
	Computations	Median	<0.00025	<0.00016	126.00	0.0016	0.041	0.00047	42.500	<0.000049	<0.0049	1.60	0.00034	4.76	<0.0026
		Average	<0.00025	<0.00016	111.06	0.0026	0.041	0.00047	42.500	<0.000049	<0.0049	1.60	0.00034	4.59	<0.0026
	09/30/09				129.00								_	3.85	
	06/23/10				116.20	_	_		_	-	-			2.58	
	06/14/11	_			149,23	_	_			—		-	_	4.95	
	04/10/12		_		31.80	0.0050							_	6.60	_
MW-14	06/24/13	95.5	0.00025	<0.00016	140.00	<0.00052	0.080	<0.00024	42.000	<0.000049	<0.0049	1.90	<0.00038	4.40	<0.0026
	08/28/13	95.5	<0.00025	<0.00016	130.00	<0.00052	0.037(J)	<0.00024	41.000	<0.000049	<0.0049	1.00	<0.00038	3.70	<0.0026
		Minimum	<0.00025	<0,00016	31,80	<0.00052	0.037	<0.00024	41.000	<0.000049	<0.0049	1,00	<0.00038	2.58	<0.0026
	Statistical	Maximum	0.00250	<0.00016	149.23	0.0050	0.080	<0.00024	42.000	<0.000049	<0.0049	1.90	<0.00038	6.60	<0.0026
	Computations	Median	0.00131	<0.00016	129.50	0.0003	0.059	<0.00024	41.500	<0.000049	<0.0049	1,45	<0.00038	4.13	<0.0026
		Average	0.00131	<0,00016	116.04	0,0018	0.059	<0,00024	41,500	<0,000049	<0.0049	1.45	<0.00038	4.35	<0.0026

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METH	НОД	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
•	' I Collectio							٦	Total Inorgani	cs					
ANAL	ample Collection iffication Date Depth (ff btoc)											***************************************			
Sample Identification Location	ntification Date ocation USEPA MCLs (mg		Arsenic	Cadmium	Calcium	Copper	lron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
U	SEPA MCLs (mg/	L)	0.01000	0.005		1.3		0.015		0,002	0.10		0.050		
	09/30/09	_	_	_	750.00	—	—	_			-		-	64.40	_
	06/23/10				400.10						_			40.60	
	06/14/11	_	_		873.08	_	_	_	_	_	_	_	_	15,35	_
	04/10/12	_	-	-	710.00	0.0060	_	-		_	-	-	_	68.80	_
MW-15	06/25/13	120.5	0,00270	<0.00016	720.00	0,0013	0.046	0.00049	360,000	<0.000049	<0.0049	7,60	0.01200	72.00	<0.0026
10100-13	08/28/13	120.5	0,00940	0.00037(J)	720,00	0.00140(J)	0,092(J)	0,00077(J)	380,000	<0.000049	<0.0049	6,60	0.01400	73.00	0.0033(J)
		Minimum	0.00270	<0.00016	400.10	0,0013	0.046	0.00049	360,000	<0.000049	<0.0049	6,60	0.01200	15.35	<0.0026
	Statistical	Maximum	0.00940	0.00037	873.08	0.0060	0.092	0.00077	380,000	<0.000049	<0.0049	7.60	0.01400	73.00	0.0033
	Computations	Median	0.00605	0.00023	720.00	0.0014	0.069	0.00063	370.000	<0.000049	<0.0049	7.10	0.01300	66.60	0.0023
		Average	0.00605	0.00023	695,53	0.0029	0.069	0.00063	370.000	<0.000049	<0.0049	7.10	0.01300	55.69	0.0023
	09/30/09				266.40									8.27	-
	06/23/10				273.30									8.27	_
	06/14/11	_		_	430.29	_	_	_	-	_	-	-	_	12.63	
	04/11/12	_	_	_	447.00	0.0070	_	_	_	_	_	_	_	17.50	-
MW-16	06/26/13	105.5	0.00170	<0.00016	440.00	<0.00052	0.072	<0.00024	120.000	<0.000049	<0.0049	2.70	0,00590	13.00	<0.0026
MINT IV	08/28/13	105.5	0.00230	0.00035(J)	430.00	0.00053(J)	<0.014	0.00050(J)	110.000	<0.000049	<0.0049	2.30	0.00510	13.00	0.0039(J)
		Minimum	0,00170	<0,00016	266,40	<0,00052	<0.014	<0,00024	110,000	<0.000049	<0.0049	2.30	0.00510	8.27	<0.0026
	Statistical	Maximum	0.00230	0.00035	447.00	0.0070	0.072	0.00050	120.000	<0.000049	<0.0049	2.70	0.00590	17,50	0.0039
	Computations	Median	0,00200	0.00022	430.14	0.0005	0.040	0.00031	115.000	<0.000049	<0.0049	2.50	0.00550	12.81	0.0026
		Average	0.00200	0,00022	381,16	0,0026	0.040	0.00031	115.000	<0.000049	<0.0049	2.50	0.00550	12.11	0.0026

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

ANA	ALYTICAL METI	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
									otal Inorgani	cs					
ANAL	Date Collection Date Depth (ft btoc) USEPA MCLs (mg/L)											_			
Sample Identification ——- Location	ntification Dateocation USEPA MCLs (mg/l		Arsenic	Cadmium	Calcium	Copper	lron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
Ů	SEPA MCLs (mg/	Ď	0.01000	0.005		1.3		0.015		0.002	0,10		0.050		
	09/30/09	· —	—		386.90	—		-	_			—	_	28.00	
	06/23/10		—		339.60			<u> </u>	_		***************		-	28.40	—
	06/16/11	_	_		532.50	_	****	_	-			_	_	9.30	
	04/12/12				377.00	0.0110		_		_		_	_	49.20	_
MW-17	06/26/13	139.9	0.00090	<0.00016	390.00	0.0013	0.810	0.00053	120.000	<0.000049	0.0093	2,80	0,00540	37.00	0.0038
1010.6-13	08/28/13	139.9	0.00150	0,00039(J)	380.00	0.00075(J)	0.600	0.00050(J)	120,000	<0.000049	<0.0049	2.70	0.00460	38.00	0.0049(J)
		Minimum	0.00090	<0.00016	339.60	0.0008	0.600	0.00050	120.000	<0.000049	<0.0049	2.70	0.00460	9.30	0.0038
	Statistical	Maximum	0.00150	0.00039	532.50	0.0110	0.810	0.00053	120.000	<0.000049	0.0093	2,80	0,00540	49,20	0.0049
	Computations	Median	0.00120	0.00024	383.45	0.0013	0.705	0.00052	120.000	<0.000049	0.0059	2.75	0.00500	32.70	0.0044
		Average	0.00120	0,00024	401.00	0.0044	0.705	0.00052	120.000	<0.000049	0.0059	2.75	0.00500	31.65	0.0044
	09/30/09	_			82.00	_		_	_					9.93	_
	06/23/10			****	70.40	_	_	_						6.16	_
	06/16/11			-	96.20	_				_			_	9.95	
	04/12/12	—			49.00	0.0080	-	_	_		*****			13.70	
MW-18	06/26/13	127.5	0.00063	<0.00016	76.00	<0.00052	0.750	<0.00024	18.000	<0.000049	<0.0049	1.40	0.00056	7.60	<0.0026
	08/29/13	127.5	(L)0e000.0	0,00038(J)	74.00	0.00057(J)	0.680	0.00047(J)	18.000	<0.000049	<0.0049	1.10	0.00100	7.40	<0.0026
		Minimum	0.00063	<0,00016	49,00	<0.00052	0.680	<0.00024	18.000	<0.000049	<0.0049	1,10	0,00056	6,16	<0.0026
	Statistical	Maximum	0.00090	0,00038	96.20	0.0080	0.750	0.00047	18.000	<0.000049	<0.0049	1,40	0.00100	13,70	<0.0026
	Computations	Median	0.00077	0.00023	75.00	0.0006	0,715	0.00030	18.000	<0.000049	<0.0049	1.25	0.00078	8.77	<0.0026
	•	Average	0.00077	0.00023	74.60	0.0029	0.715	0.00030	18.000	<0.000049	<0.0049	1.25	0.00078	9.12	<0.0026

TRIMBLE COUNTY GENERATING STATION

487 CORN CREEK ROAD

BEDFORD, KENTUCKY

ANA	LYTICAL METI	HOD	SW84	6 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 6020	SW846 6010B	SW846 7470A	SW84	6 6010B	SW846 6020 Mod	SW846 6010B	SW846 6020
						1.00		-	Total Inorgan	ics					
ANAL	YTICAL PARAN	METER													
Sample Identification Location	ntification Date Depth			Cadmium	Calcium	Copper	Iron	Lead	Magnesium	Mercury	Nickel	Potassium	Selenium	Sodium	Zinc
		20 St. 10 St. 10 St.	La puerre pestad	addaraggar. Ag	15-11. 44		attanese.	t personal a		ur ertafestöt	rdiertkerere	profit distributed (1985)	300000000000000000000000000000000000000	eria sassa.	
	SEPA MCLs (mg/	נ)	0.01000	0.005		1.3		0.015		0.002	0.10		0.050		
	SEPA MCLs (mg/ 09/30/09	-	0.01000 —	0.005 —	66,20	1.3 		0.015	<u> </u>	0.002 —	0.10 —		0.050 —	5.04	
			000000000000000000000000000000000000000		***************************************				,000axacca0,00a0,00a						<u> </u>
	09/30/09		—		66.20								——————————————————————————————————————	5.04	
	09/30/09 06/23/10		——————————————————————————————————————		66.20 59.50		 -				<u></u>	 	——————————————————————————————————————	5.04 3.00	
	09/30/09 06/23/10 06/16/11		——————————————————————————————————————		66.20 59.50 82.46	——————————————————————————————————————						 -	— — —	5.04 3.00 6.31	_
MW-19	09/30/09 06/23/10 06/16/11 04/12/12			 	66.20 59.50 82.46 38.20	 0.0070				 				5.04 3.00 6.31 8.67	
	09/30/09 06/23/10 06/16/11 04/12/12 06/25/13			 <0.00016	66.20 59.50 82.46 38.20 69.00		 (L)0000,0	0.0006(J)		 <0.000049	——————————————————————————————————————		— — — — — — <0.00038	5.04 3.00 6.31 8.67 5.30	
	09/30/09 06/23/10 06/16/11 04/12/12 06/25/13		— — — — — — — — — — — — — — — — — — —	——————————————————————————————————————	66.20 59.50 82.46 38.20 69.00 68.00	0.0070 0.00100(J)	 0.090(J) 0.041(J)	0.00066(J) 0.00086(J)		 <0.000049 <0.000049	 <0.0049 <0.0049		— — — — — — — — — — — — — — — — — — —	5.04 3.00 6.31 8.67 5.30 5.50	
	09/30/09 06/23/10 06/16/11 04/12/12 06/25/13 08/29/13	119.0 119.0 Minimum	0.00044(J) 0.00072(J) 0.00044		66.20 59.50 82.46 38.20 69.00 68.00 38.20		0.090(J) 0.041(J) 0.041	0.0006(J) 0.00063(J) 0.00063	21.000 20.000 20.000		 <0.0049 <0.0049	2.20 1.90		5.04 3.00 6.31 8.67 5.30 5.50 3.00	

Notes:

All units reported as milligrams per liter (mg/L), unless otherwise noted.

--- = No Data or value reported

USEPA MCLs = USEPA Maximum Contaminant Levels for Drinking Water.

ft btoc = feet below top of casing.

DUP = Duplicate sample.

SW846 6010B = USEPA SW846 Method 6010B laboratory analyses for metals.

SW846 6020 = USEPA SW846 Method 6020 laboratory analyses for metals.

SW846 7470A = USEPA SW846 Method 7470A laboratory analyses for Mercury.

Sample collection depth varied per well per sampling event due to changes in water table elevation relative to the screened interval of each well.

- (J) = Estimated value. Result is > than Method Detection Limit (MDL) but < Reporting Detection Limit (RDL).
- (*) Denotes field filtered sample analyzed for dissolved fraction constituents.

Bold and Highlighted values exceed USEPA MCLs

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS LANE
FRANKFORT, KY 40601

Facility Name	Trimble Count As officially shown on DWM		_ActivityAsh	<u>Pond</u>
Permit No. <u>112-0000</u>	3 Finds/Unit N	0	_ Quarter & Yea	r <u>2nd 2014</u>
Please check <u>only ON</u> E	of the following	•		
Characterization	Quarterly	X Semi-Annual	Annual _	Assessment
Please check applicable	e submittal:	X Groundwater	Surface Wate	er
This form is to be utilized by 48:300 and 45:160) or by a monitoring under the jurisdict within forty-eight (48) hou similar techniques. Submit attached. Do not submit the in	statue (Kentucky Revion of the Division of rs of making the diffing the lab report is	vised Statues Chapter 224) Waste Management, You metermination using statistic	to conduct groundwat ust report any indicat cal analyses, direct co	er and surface wate ion of contamination omparison, or other
I certify under penalty of lav accordance with a system des Based on my inquiry of the p to the best of my knowledge submitting false information,	igned to assure that querson or persons direct and belief, true, acc	nalified personnel properly ga tly responsible for gathering t urate, and complete. I am a	other and evaluate the in the information, the information are significant.	nformation submitted ormation submitted is
D. Mus	Q D		((-1	12-14
SIGNA	TURE		DA	ATE
W. Mic	hael Winkler-Ma	nager of Environmenta	l Programs	
		LE - PLEASE PRINT		

FACILITY INFORMATION SHEET

Sampling Date:	7/15-17, 8/15/2014	County:Trimb	<u>le Permit No.: 112-0</u>	<u> </u>
Facility Name:	Louisville Gas & Electric Tri (As officially shown on DW			
Site Address: 48	7 Corn Creek Road	Bedford	40006	
Stre	eet	City	Zip	
Phone No.: (502	2) 627-4659 Latitude_	N 38° 35' 30"	Longitude W 85° 25'	<u>00"</u>
·	OWNER IN	NFORMATION		
Facility Owner:	Louisville Gas and Electric	Company	Phone No.: (502) 627-4	<u>659</u>
Contact Person:	W. Paul Pucke	tt	Phone No.: (502) 627-46	<u> 559</u>
Contact Person Ti	tle: <u>Senior Engineer, LG&E &</u>	& KU Environmental	Affairs Department	
Mailing Address:	P.O.Box 32010	Louisville	40032	
0	Street	City	Zip	
		G PERSONNEL ANDFILL OR LABORATORY)		
Company: <u>Louis</u>	ville Gas & Electric Co Tri	mble County Station	Laboratory	
Contact Person:_	Adam Raker		Phone No.: <u>(502) 627-620</u>	<u>4</u>
Mailing Address:	487 Corn Creek Road	Bedford	40006	
	Street	City	Zip	
	LABORATO	RY RECORD #	1	
Laboratory:	LG&E/KU System Laborator	y Lab ID No.	•	
Contact Person:_	Ed Raker, Laboratory	Supervisor	Phone No.: (502) 347-4	187
Mailing Address:	8815 Highway 42 East	Ghent	41045	
	Street	City	Zip	
	LABORATO	RY RECORD #	2	
Laboratory:	Microbac Laboratories, In	ic. Lal	DID No.:	
Contact Person:	Mr. Ken Ford	· I	Phone No.: <u>(502) 962-640</u>	<u>0</u>
Mailing Address:	3323 Gilmore Industrial Bou			
	Street	City	Zip	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Facility: LG&E Trimble County Station
Permit Number: FINDS/UNIT:

Page 1 of 6

Exhibit GHR-1 Page 271 of 300

LAB ID:

For Official Use Only

FINDS/UNIT: Not Applicable

GROUNDWATER SAMPLE ANALYSIS

(S)

AKGWA NUMBER ¹	, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's Lo	cal W	Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		MW-1		MW-2R		MW-3		MW-4	
Sample Sequen	ce #					1		2		3		13	
If sample is	a Bla	nk, specify Type: (F)ield, (T)r	p, (M	ethod, or (E) quipment	Not Applicab	le	Not Applicabl	.e	Not Applicat	ole	Not Applicat	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				7/15/14 11:1	.1	7/15/14 13:09)	7/15/14 13:4	1	8/6/14 11:12	2
Duplicate ("Y	" or	"N") ²			,	No		No		No		No	
Split ("Y" or	"N")	3				No		No		No		No	
Facility Samp	le II	Number (if applicable)	•		·	Not Applicab	le	Not Applicabl	e	Not Applicat	ole	Not Applical	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat	ole	Not Applical	ble
Date of Analy	sis (Month/Day/Year)				7/15-28/1	.4	7/15-28/14	i	7/15-28/	4	8/6-9/15/	/14
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		υp		Down		Down		Down	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G S		A G S		A G S		A G S
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	420.68		421.90		420.95		420.92	 -
s0145	1	Specific Conductance	T	MG/L	120.1	654	"	1,333		858		2,067	
S0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<25		<25		<25		DNS	
S0268	0	Organic Carbon	T	MG/L	415.1	0.7		2.1		1.7		DNS	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	25.4		6.70		29.9		726	
S0266	0	Total Dissolved Solids	T	MG/L	160.1	436		350		608		4,517	1
	0	рн	T	units	150.1	7.19		7.13		7.09		7.04	
S0296	1	*	}				1						

lakewa # is 0000-0000 for any type of blank.

STANDARD FLAGS:

Respond "Y" if the sample was a duplicate of another sample in this report. Respond "Y" if the sample was split and analyzed by separate laboratories.

Acapoind I II the sample was spirt and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

S"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LG&E Trimble County Station
Permit Number:

FINDS/UNIT: Not Applicable

LAB ID: For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	, Fac	ility Well/Spring Number	-			8001-6326		8001-6327		8001-6334		8001-6335	
Facility's Lo	ocal W	Well or Spring Number (e.g. MW-	L, MW-2	etc.)		MW-1		MW-2		MW-3	•	MW-4	
CAS RN⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
	-			and the state of t			A G S		A G S		A G S		A G S
	0	Boron	T	MG/L	200.7	0.038		0.386		1.24		113	
7440-70-2	0	Calcium	T	MG/L	200.7	99.7		91.7		164		663	-
7440-23-5	0	Sodium	T	MG/L	200.7	9.0		7.6		5.9		104	
	0	Sulfate	T	MG/L	300.0	33.3		20.0		141		2,011	
										,			
	ļ							-					
,													
<u> </u>					<u></u>					-			

Exhibit GHR-1 Page 272 of 300

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Facility: LG&E Trimble County Station Permit Number:

FINDS/UNIT: Not Applicable

Exhibit GHR-1 Page 273 of 300

Page 3 of 6

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

AKGWA NUMBER ¹	, Fac	ility Well/Spring Number			-	8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	Well or Spring Number (e.g. MW-1,		, etc.)	·····	MW-5		MW-6		MW-7		MM-8	
Sample Sequen	.ce #	-				4		5		6		7	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	.р, (M	ethod, or (E	E) quipment	Not Applicat	le	Not Applicabl	.e	Not Applicat	le	Not Applical	ble
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				7/16/14 10:5	6	7/16/14 11:20		7/16/14 13:3	.3	7/16/14 13:3	33
Duplicate ("Y	" or	"N") ²				No		No		Мо	, ,	Мо	
Split ("Y" or	"N")	3	-			No		No		No		No	
Facility Samp	le II	Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat	le	Not Applical	ble
Laboratory Sa	mple	ID Number (if applicable)				Not Applicat	le	Not Applicabl	.e	Not Applicat	le	Not Applical	ble
Date of Analy	sis (Month/Day/Year)				7/16-28/1	.4	7/16-28/14	l.	7/16-28/	4	7/16-28/	14
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Down		Down		Down		Down	
CAS RN ⁴		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G S		A G S		A G S		A G S
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	421.30		421.10		421.58		421.75	
S0145	1	Specific Conductance	T	MG/L	120.1	1,146		657		659		3,340	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<25		<25		<25		<25	
S0268	0	Organic Carbon	T	MG/L	415.1	0.6		0.6		0.7	_	0.6	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	191		27.6		143		324	
S0266	0	Total Dissolved Solids	т	MG/L	160.1	1,216		504		1,052		2,496	
S0296	0	рĦ	T	units	150.1	7.43		7.24		7.23		7.09	
00.550													

AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LG&E Trimble County Station
Permit Number:

FINDS/UNIT: Not Applicable

LAB ID:

For official Use only

Exhibit GHR-1

Page 274 of 300

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	, Fac	ility Well/Spring Number	, , , , , , , , , , , , , , , , , , ,		,	8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-	., MW-2,	etc.)		MW-5		MW-6		MW-7		MW-8	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L
							A G		A. G		A. G	,	A G
							s		s		s		s
	0	Boron	T	MG/L	200.7	10.8		0.660		5.20		21.7	
7440-70-2	0	Calcium	T	MG/L	200.7	202		105		203		393	
7440-23-5	0	Sodium	T	MG/L	200.7	26.8		5.30		12.5		38.3	
	0	Sulfate	T	MG/L	300.0	391		65.5		250		1,136	
													<u> </u>
													<u> </u>
													<u> </u>
			ļ										
			<u> </u>										<u> </u>
													ļ
													<u> </u>
									ļ				<u> </u>
" 												_	
	-								_				
<u></u>							-						<u> </u>
							···						-
													-
	+				<u> </u>		<u> </u>						
		<u> </u>					<u> </u>	***************************************	<u> </u>	<u> </u>		· -	<u></u>

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY

Facility: LG&E Trimble County Station Permit Number:

Page 5 of 6

Exhibit GHR-1 Page 275 of 300

LAB ID:

For Official Use Only

FINDS/UNIT: Not Applicable

GROUNDWATER SAMPLE ANALYSIS

(S)

												7	
AKGWA NUMBER ¹	, Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's Lo	cal W	Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		MW-9		MW-10		MW-11		MW-12	
Sample Sequen	ce #					8		9		10		11	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	le	Not Applicable		Not Applicat	le	Not Applicab	ole
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				7/16/14 13:5	6	7/17/14 9:57		7/17/14 10:3	31	7/17/14 11:0	04
Duplicate ("Y	" or	"N") ²				No		No		мо		ИО	
Split ("Y" or	"N")	3				No		No		Мо		Мо	
Facility Samp	le II	Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat)le	Not Applicab	ole
Laboratory Sa	mple	ID Number (if applicable)				Not Applicab	le	Not Applicabl	e	Not Applicat	ole	Not Applicat	ole
Date of Analy	e of Analysis (Month/Day/Year)						.4	7/17-28/14		7/17-28/	L <u>4</u>	7/17-28/	14
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)					Down		Side		Side		Side	
CAS RN⁴		CONSTITUENT	± D⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G S	·	A. G		A G S		A G S
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	422.18		422.53		421.90		422.53	
S0145	1	Specific Conductance	T	MG/L	120.1	654		1,045		1,617		1,314	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<25		<25		<25		<25	
s0268	0	Organic Carbon	T	MG/L	415.1	0.8		0.6		0.7		0.6	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	52.8		69.2		55.4		33.3	
s0266	0	Total Dissolved Solids	T	MG/L	160.1	468		583		1,404		560	
s0296	0	рн	T	units	150.1	7.42		7.12		7.09		7.26	
7440-50-8	0	Copper	D	MG/L	200.7	0.010		0.011		0.003		0.004	

STANDARD FLAGS:

AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

Facility: LG&E Trimble County Station
Permit Number:

FINDS/UNIT: Not Applicable

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	KGWA NUMBER ¹ , Facility Well/Spring Number					8001-6329		8001-6328		8001-6336		8001-6337	
Facility's L	ocal W	ell or Spring Number (e.g. MW	-1, MW-2,	etc.)		MW-9	*	MW-10	·	MW-11 .		MW-12	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
	1						A.		A		A		A
							G		G		G		G
							s		s		s		s
	0	Boron	. T	MG/L	200.7	1.11		0.363		1.7		0.720	<u> </u>
7440-70-2	0	Calcium	T	MG/L	200.7	130		133		254		124	<u> </u>
7440-23-5	0	Sodium	T	MG/L	200.7	4.9		9.1		21.4		6.9	<u> </u>
	0	Sulfate	T	MG/L	300.0	141		82.9		629		127	<u> </u>
													<u> </u>
													ļ
													<u> </u>
					-								ļ
													ļ
													<u> </u>
												_	<u> </u>
												_	<u> </u>
													ļ
													<u> </u>
													<u> </u>
													<u> </u>
•													

Exhibit GHR-1 Page 276 of 360

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS LANE
FRANKFORT, KY 40601

Facility Name	Trimble Count As officially shown on DWM	y Station Permit Face)	_ActivityAs	h Pond
Permit No. <u>112-0000</u>			_ Quarter & Ye	ar 2nd 2014
Please check <u>only ONE</u>	of the following	<i>:</i>		
Characterization	Quarterly	X Semi-Annual	Annual	Assessment
Please check applicable	e submittal:	X_Groundwater	Surface Wa	ter
This form is to be utilized by 48:300 and 45:160) or by symonitoring under the jurisdict within forty-eight (48) hou similar techniques. Submitt attached. Do not submit the in	statue (Kentucky Revion of the Division of rs of making the deting the lab report is	rised Statues Chapter 224) Waste Management. You netermination using statisti	to conduct groundw nust report any indica cal analyses, direct	ater and surface water ation of contamination comparison, or other
I certify under penalty of lav accordance with a system des Based on my inquiry of the pe to the best of my knowledge submitting false information,	igned to assure that querson or persons direct and belief, true, acc	nalified personnel properly gathering urate, and complete. I am	ather and evaluate the the information, the ir aware that there are s	information submitted. nformation submitted is,
w Nigo	10C1	-	:3~	27-15 DATE
ŞIGNAT	TURE		<u> </u>	DATE
W. Mic	hael Winkler-Ma	nager of Environmenta	ıl Programs	
		LE - PLEASE PRINT		

FACILITY INFORMATION SHEET

Sampling Date:	7/15-17, 8/15/2014	County: <u>Trimb</u>	le Permit No.: 112-00003
Facility Name:	Louisville Gas & Electric Tri		
Site Address: 487	Corn Creek Road	Bedford	40006
Stre	•	City	Zip
Phone No.: (502	2) 627-4659 Latitude_	N 38° 35' 30"	Longitude W 85° 25' 00"
	OWNER IN	FORMATION	
Facility Owner:	Louisville Gas and Electric	Company	Phone No.: (502) 627-4659
Contact Person:	W. Paul Pucket	t .	Phone No.: (502) 627-4659
Contact Person Tit	le: <u>Senior Engineer, LG&E &</u>	KU Environmental	Affairs Department
Mailing Address:	P.O.Box 32010	Louisville	40032
<i>5</i> –	Street	City	Zip
		•	<u>Laboratory</u> Phone No.:_(502) 627-6204
Mailing Address:_	487 Corn Creek Road Street	Bedford City	40006 Zip
	LABORATO	RY RECORD #	1
Laboratory:I	LG&E/KU System Laboratory	Lab ID No.:	
Contact Person:	Ed Raker, Laboratory	Supervisor	Phone No.: (502) 347-4187
Mailing Address:_	8815 Highway 42 East	Ghent	41045
	Street	City	Zip
	LABORATO	RY RECORD #	2
Laboratory:	Microbac Laboratories, Inc	c. Lat	D ID No.:
Contact Person:	Ms. Laura Revl	ett	Phone No.: (502) 962-6400
Mailing Address:_	3323 Gilmore Industrial Boul Street	evard Louisville City	KY 40213 Zip
	Surve	City	Ľ.Υ

Division of Waste Management Solid Waste Branch, 2nd Floor 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station Permit Number:

Page 1 of 6
Exhibit GHR-1

FINDS/UNIT: Not ApplPage1279 of 300 1

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	Faci	lity Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's Loc	al W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		MW-1		MW-2R		MM-3	•	MW-4	
Sample Sequence	:e #					9		7		8	•	13	
If sample is a	Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	le	Not Applicabl	.e	Not Applicable		Not Applicable	
Sample Date ar	nd Ti	me (Month/Day/Year hour:minutes)				12/10/14 10:	00	12/9/14 13:05		12/9/14 13:3	30	12/11/14 13:	:15
Duplicate ("Y	or	"N") 2				No		Ио		No		No	
Split ("Y" or	"N")	3				No		No		No		No	
Facility Sampl	Le ID	Number (if applicable)				Not Applicable		Not Applicabl	.е	Not Applicat	le	Not Applical	ole
Laboratory San	ple :	ID Number (if applicable)				Not Applicable		Not Applicabl	.е	Not Applicat	ole	Not Applicab	ole
Date of Analys	Date of Analysis (Month/Day/Year)						7/15	12/9/14-3/17	/15	12/9/14-3/1	7/15	12/11/14-3/	17/15
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE,	UNKNOWN)		ďp		Down		Down		Down	
CAS RN4		CONSTITUENT	T D⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F
							A		A		A		A
							G		G		G		G
							s		s		s		s
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	426.99		428.79		426.74		426.77	
S0145	1	Specific Conductance	T	MG/L	120.1	654		1,333		858		2,067	
S0130	0	Chemical Oxygen Demand	т	MG/L	410.1	<8.0		<8.0		<8.0		<8.0	
S0268	0	Organic Carbon	T	MG/L	415.1	0.69		2.2		1.4		0.76	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	26.7		5.50		29.8		655	
S0266	0	Total Dissolved Solids	т	MG/L	160.1	418		412		652		4,452	
S0296	0	рн	T	units	150.1	7.34		7.09		7.09		7.09	
7440-50-8	0	Copper	200.8	0.001		<0.001		0.003		0.001			

LAKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

Facility: LGSE Trimble County Station

Permit Number:

Exhibit GHR-1
Page 280 of 300 age 2 of 6
FINDS/UNIT: Not Applicable / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER¹	, Fac	ility Well/Spring Number				8001-6326	-	8001-6327		8001-6334		8001-6335	
Facility's Lo	cal W	ell or Spring Number (e.g. MW	7-1, MW-2,	etc.)	-	MW-1		MW-2R		MW-3		MW-4	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
							A G		A G		A. G		A G
7440-38-2	0	Arsenic	T	MG/L	6020A	<0.001	S	0.014	s	0.002	s	0.018	S
7440-38-2	0	Boron	T	MG/L	200.8	0.053		0.062		1.87		3.80	
7440-70-2	0	Calcium	T	MG/L	200.8	75.0.		83.0		122		592	
7440-23-5	0	Sodium	T	MG/L	200.8	12.0		9.00		6.00		80.0	
	0	Sulfate	T	MG/L	300.0	40.90		13.80		155.3		2,260	
	ļ		- t-t-t-										
													ļ
							<u> </u>				***************************************		ì
	ļ.,.												
	├				·								
·····	 												
	<u> </u>	·											
· · · · · · · · · · · · · · · · · · ·				•									

Division of Waste Management Solid Waste Branch, 2nd Floor 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station Permit Number:

Page 3 of 6 **Exhibit GHR-1**

FINDS/UNIT: Not ApplRage 281 of 300/ 1

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

									• • • • • • • • • • • • • • • • • • • •				
AKGWA NUMBER1,	Faci	llity Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Loc	al We	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		MW-5	_	MW-6		MW-7		MW-8	
Sample Sequence	:e #					5		4		3		2	
If sample is a	Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	le	Not Applicable		Not Applicat	le	Not Applical	ble
Sample Date an	d Ti	me (Month/Day/Year hour:minutes)				12/9/14 10:5	5	12/9/14 10:35		12/9/14 10:1	.0	12/9/14 9:50	0
Duplicate ("Y	or '	nNu) 5	•			No		Мо		No		No	
Split ("Y" or	"Mu):	3				No		No		No		No	
Facility Sampl	e ID	Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat	le	Not Applical	ble
Laboratory San	ple :	ID Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat	le	Not Applicat	ble
Date of Analys	te of Analysis (Month/Day/Year)						7/15	12/9/14-3/17	/15	12/9/14-3/1	7/15	12/9/14-3/1	17/15
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	UNKNOWN)		Down		Down		Down		Down	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
		· .					A G S		A G S		A G S	·	A G S
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	425.04	_	424.15	:	423.10		423.24	1
S0145	1	Specific Conductance	T	MG/L	120.1	1,146	_	657		659		3,340	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<8.0		<8.0		<8.0		<8.0	
S0268	0	Organic Carbon	T	MG/L	415.1	1.0		1.3		1.0		0.73	
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	212		206		193		422	
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	1,232	_	1,284		1,071		2,880	
s0296	0	рн	T	units	150.1	7.17		7.07		7.10		7.00	1
7440-50-8	0	Copper	D	MG/L	200.8	0.006		0.009		0.012		0.002	1

'AKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

5"T" = Total; "D" = Dissolved

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary

dilution factor

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

Facility: LG&E Trimble County Station

Permit Number:

Exhibit GHR-1
Page 282 of 300 4 of 6
FINDS/UNIT: Not Applicable / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER1	, Fac	ility Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	ell or Spring Number (e.g. MW	-1, MW-2,	etc.)		MW-5		MW-6		MW-7		MW-8	
CAS RN4		CONSTITUENT	T D5	Unit OF MEASURE	METHOD	DETECTED VALUE OR POL®	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
							G		G		G		G
							s		s		s		s
7440-38-2	0	Arsenic	T	MG/L	6020A	0.010		0.007		0.007		0.011	
7440-42-8	0	Boron	T	MG/L	200.8	9.70		11.5		9.80		25.1	
7440-70-2	0	Calcium	T	MG/L	200.8	201		170		161		358	
7440-23-5	0	Sodium	T	MG/L	200.8	30.0		26.0		18.0		44.0	
	0	Sulfate	Т	MG/L	300.0	432.8		411.6		295.7		1,313	
	1									"			
··													
										_			
													

Division of Waste Management Solid Waste Branch, 2nd Floor 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station Permit Number:

Page 5 of 6

Exhibit GHR-1

FINDS/UNIT: Not ApplParel283 of 300 1

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

						l							
AKGWA NUMBER	, Fac:	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		MW-9		MW-10		MW-11		MW-12	
Sample Sequen	ce #					1	***	10		11		6 ,	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	le	Not Applicabl	Le	Not Applicable		Not Applicat	ole
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				12/9/14 8:55	i	12/10/14 10:40		12/10/14 13:	:20	12/9/14 11:2	25
Duplicate ("Y	or	"N") 2				Ио		МО		No		No	
Split ("Y" or	п И п):	3				ио		No		No		No	
Facility Samp	le ID	Number (if applicable)				Not Applicat	le	Not Applicabl	Le	Not Applicat	ole	Not Applicat	ole
Laboratory Sa	mple :	ID Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat	ole	Not Applicab	ole
Date of Analys	ate of Analysis (Month/Day/Year)						7/15	12/10/14-3/17	7/15	12/10/14-3/	17/15	12/9/14-3/1	7/15
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	UNKNOWN)		Down		Side		Side		Side	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A		A		A		A
		,					G		G		G		G
	}						s		s		s		s
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	422.30		421.67		424.28		422.27	
S0145	1	Specific Conductance	T	MG/L	120.1	654		1,045		1,617		1,314	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<8.0		<8.0		<8.0		<8.0	
S0268	0	Organic Carbon	T	MG/L	415.1	0.69	·	0.77		0.72		0.62	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	67.3		91.1		69.2		38.6	
S0266	0	Total Dissolved Solids	T	MG/L	160.1	720		710		1,542		656	
s0296	0	рн	T	units	150.1	7.21		7.38		7.04		7.18	
7440-50-8	0	Copper	D	MG/L	200.8	0.004		0.009		0.002		0.002	

STANDARD FLAGS:

1AKGWA # is 0000-0000 for any type of blank.

Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

Facility: LG&E Trimble County Station

Permit Number:

Exhibit GHR-1
Page 284 of 300 ge 6 of 6
FINDS/UNIT: Not Applicable / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER¹	, Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's Lo	cal W	Well or Spring Number (e.g. MW-1	, MW-2	, etc.)		MW-9		MW-10		MW-11		MW-12	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
		1					A		A		A		A.
							G		G		G		G
							s		s		s		s
7440-38-2	0	Arsenic	T	MG/L	6020A	0.006		0.006		0.004		0.001	
7440-42-8	0	Boron	T	MG/L	200.8	2.10		1.40		2.20		1.00	
7440-70-2	0	Calcium	T	MG/L	200.8	124		130		242		96.0	i e
7440-23-5	0	Sodium	T	MG/L	200.8	5.00		13.0		29.0		8.00	
	O	Sulfate	т	MG/L	300.0	200.9		110.4		707.8		149.7	:

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS LANE
FRANKFORT, KY 40601

Facility Name	Trimble Count As officially shown on DWM		Activity As	sh Pond
Permit No. <u>112-0000</u>	3 Finds/Unit N	0	_ Quarter & Y	ear <u>3rd 2015</u>
Please check <u>only ONE</u>	of the following	;		
Characterization	Quarterly	X Semi-Annual	Annual	Assessment
Please check applicable	e submittal:	X Groundwater	Surface Wa	nter
This form is to be utilized by 48:300 and 45:160) or by symonitoring under the jurisdict within forty-eight (48) hou similar techniques. Submit attached. Do not submit the in	statue (Kentucky Revion of the Division of rs of making the deting the leting the leting the lab report is	ised Statues Chapter 224) Waste Management. You metermination using statistic	to conduct grounds ust report any indi- cal analyses, direct	vater and surface water cation of contamination comparison, or other
I certify under penalty of lav accordance with a system des Based on my inquiry of the pe to the best of my knowledge submitting false information,	igned to assure that querson or persons direct and belief, true, acc	nalified personnel properly g ly responsible for gathering urate, and complete. I am	ather and evaluate the the information, the aware that there are	e information submitted information submitted is
D. Muid	DU	OL_	9	2-74-15
SIGNA	TURE		-	DATE
W. Mic	hael Winkler-Ma	nager of Environmenta	l Programs	
	NAME AND TIT	LE - PLEASE PRINT		

FACILITY INFORMATION SHEET

Sampling Date:	8/6/2015	County: Trim	ble Permit No.: 112-00003
Facility Name:	Louisville Gas & Electric Trimb		<u>n</u>
Site Address: 487	Corn Creek Road	Bedford	40006
Stree		City	Zip
Phone No.: <u>(502</u>) 627-4659 Latitude 1	N 38° 35' 30"	Longitude W 85° 25' 00"
	OWNER INF	ORMATION	Į
Facility Owner:	Louisville Gas and Electric Co	ompany	Phone No.: (502) 627-4659
Contact Person:	W. Paul Puckett		Phone No.: (502) 627-4659
Contact Person Tit	le: <u>Senior Engineer, LG&E & K</u>	U Environmenta	al Affairs Department
Mailing Address:_	P.O.Box 32010	Louisvill	le 40032
_	Street	City	Zip
	SAMPLING I		ı
Company: <u>Louisy</u>	rille Gas & Electric Co Trimb	<u>le County Station</u>	Laboratory
Contact Person:	Adam Raker	,	Phone No.: (502) 627-6204
Mailing Address:_	487 Corn Creek Road	Bedford	40006
	Street	City	Zip
	LABORATOR	Y RECORD	#1
Laboratory:I	.G&E/KU System Laboratory	Lab ID No	.:
Contact Person:	Ed Raker, Laboratory Su	pervisor	Phone No.: (502) 347-4187
Mailing Address:_	8815 Highway 42 East		41045
	Street	City	Zip
	LABORATOR	Y RECORD	#2
Laboratory:	Microbac Laboratories, Inc.	La	ab ID No.:
Contact Person:	Ms. Laura Revlett		Phone No.: (502) 962-6400
Mailing Address:	3323 Gilmore Industrial Bouley	ard Louisvill	le, KY 40213
·	Street	City	Zip

Division of Waste Management Solid Waste Branch, 2nd Floor 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station

Permit Number:

Page 1 of 6 **Exhibit GHR-1**

Not Applied 287 of 300 FINDS/UNIT:

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

akgwa number	¹, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's L	ocal W	ell or Spring Number (e.g. MW-1,	MW−2	, etc.)		MW-1		MW-2R		MW-3		MW-4	
Sample Seque	nce #					3		4		1		2	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E	E) quipment	Not Applicat	ole _	Not Applicabl	Le	Not Applical	ole	Not Applical	ble
Sample Date	and Ti	me (Month/Day/Year hour:minutes)				8/5/15 8:16		8/5/15 8:40		8/4/15 13:2	3	8/4/15 13:4	9
Duplicate ("	Y" or	"N") ²	-			No		No		No		Ио	
Split ("Y" o	r "N")	3				No		No		No		No	+
Facility Sam	ple ID	Number (if applicable)				Not Applicat	le -	Not Applicabl	le	Not Applical	ole	Not Applical	ble
Laboratory S	ample	ID Number (if applicable)				Not Applicat	le	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Date of Analy	ysis (Month/Day/Year)		•		8/5-20/1	5	8/5-20/15		8/4-20/1	5	8/4-20/1	L5
Gradient with	h resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		qU		Down		Down		Down	
CAS RN4		CONSTITUENT	T D⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F
							A G S		A G S		A G S		A G S
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	421.05		422.53		421.41		421.41	——
s0145	1	Specific Conductance	T	MG/L	120.1	654		1,333		858		2,067	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<4.4		5.6		<4.4		10	
s0268	0	Organic Carbon	Т	MG/L	415.1	0.81		2.0		1.3	-	1.2	
16887-00-6	2	Chloride(s)	т	MG/L	300.0	29.4		6.40		22.1		715	1
S0266	0	Total Dissolved Solids	Ţ	MG/L	160.1	406		380		556		4,556	
S0296	0	pH	T	units	150.1	7.31		7.10		7.04		7.03	
7440-50-8	0	Copper	D	MG/L	200.8	<0.020		<0.020		<0.020		<0.020	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from

analysis of a secondary dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

SP. WASTE/COAL COMBUSTION - QUARTERLY

Facility: LG&E Trimble County Station
Permit Number:

Exhibit GHR-1ge 2 of 6 FINDS/UNIT: Not Appage 288 of 300 / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	KGWA NUMBER ¹ , Facility Well/Spring Number 'acility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.)					8001-6326	:	8001-6327		8001-6334		8001-6335	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1	, MW-2	, etc.)		MW-1		MW-2R		мw-3		MW-4	
CAS RN4	***************************************	CONSTITUENT	D\$	Unit OF MEASURE	METROD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F L
							A G S		A G S		A G S		A G S
7440-38-2	0	Arsenic	T	MG/L	6020A	<0.001	 	0.015		<0.001		0.003	
7440-42-8	0	Boron	T	MG/L	200.8	<0.500		<0.500		1.60		96	
7440-70-2	0	Calcium	T	MG/L	200.8	120		100		150		700	
7440-23-5	0	Sodium	Т	MG/L	200.8	8.7		7.5		4.8		84	
	0	Sulfate	T	MG/L	300.0	36.9		4.10		127		2,216	
	ļ												
						-							
			1										
					2								
	<u> </u>												
<u> </u>													
	<u> </u>												
									:		,	., .,	

Division of Waste Management Solid Waste Branch, 2nd Floor 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716

Date of Analysis (Month/Day/Year)

SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station Permit Number:

8/5-20/15

Down

Page 3 of 6 Exhibit GHR-1

8/5-20/15

Down

FINDS/UNIT: Not Applicable of 300 / 1

TAR TD:

8/5-20/15

Down

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)

8001-6331 8001-6333 8001-6332 8001-6330 AKGWA NUMBER1, Facility Well/Spring Number MW-5 MW-6 MW-7 MW-8 Facility's Local Well or Spring Number (e.g. MW-1, MW-2, etc.) 9 6 8 Sample Sequence # Not Applicable Not Applicable Not Applicable Not Applicable If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment 8/5/15 11:00 8/5/15 11:20 8/5/15 11:41 Sample Date and Time (Month/Day/Year hour:minutes) 8/5/15 10:39 No No No Duplicate ("Y" or "N")2 Nο No No No Split ("Y" or "N")3 Not Applicable Not Applicable Not Applicable Not Applicable Facility Sample ID Number (if applicable) Not Applicable Not Applicable Not Applicable Not Applicable Laboratory Sample ID Number (if applicable)

(S)

CAS RN4		CONSTITUENT	T D⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL	F L	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F L
							A		A	,	A	. ,	A
							G		G		G		G
							s		s		s		s
s0906	0	Static Water Level Elevation	Т	Ft. MSL	Fld. Meas.	421.98		422.21		423.29		423.35	
S0145	1	Specific Conductance	T	MG/L	120.1	1,146		657		659		3,340	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<4.4		<4.4		1.0		<4.4	
s0268	0	Organic Carbon	T	MG/L	415.1	2.3		1.0		0.71		0.73	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	240		168.9		67.1		294	
S0266	0	Total Dissolved Solids	T	MG/L	160.1	1,346		1,090		866		2,280	
S0296	0	рн	Т	units	150.1	7.14		7.08		7.13		7.05	
7440-50-8	0	Copper	Q	MG/L	200.8	<0.020		<0.020		<0.020		<0.020	
								·		CUNTUADD ET VO			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

8/5-20/15

Down

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - QUARTERLY

Facility: LG&E Trimble County Station

Permit Number:

Exhibit GHR-1 4 of 6 FINDS/UNIT: Not Applies 290 of 300/1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBERI	, Fac	ility Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-	L, MW-2	, etc.)	· · · · · · · · · · · · · · · · · · ·	MW-5		MW-6		MW-7		MW-8	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L
						•	A	- X	A		A		A
		·					G		G		G		G
							s		s		s		s
7440-38-2	0	Arsenic	T	MG/L	6020A	0.0025		0.0023		<0.001		0.0024	
7440-42-8	0	Boron	T	MG/L	200.8	49		14		8.0		22	
7440-70-2	0	Calcium	Т	MG/L	200.8	260		230		200		270	
7440-23-5	0	Sodium	T	MG/L	200.8	25		13		11		25	
	0	Sulfate	Т	MG/L	300.0	442		353		243		982	
						. ,,,,,						·	
	<u> </u>												
							ļ						
							<u> </u>						

Division of Waste Management Solid Waste Branch, 2nd Floor 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716

SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station Permit Number:

Page 5 of 6 Exhibit GHR-1

FINDS/UNIT: Not Applage 291 of 300 / 1

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

(S)

AKGWA NUMBER	, Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's Lo	ocal W	Well or Spring Number (e.g. MW-1,	MW-2	, etc.)		MW-9	•••	MW-10		MW-11		MW-12	
Sample Sequer	ice #			·		10		5		11		12	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M	ethod, or (E	E) quipment	Not Applicat	le	Not Applicabl	.е	Not Applical	ole	Not Applical	ole
Sample Date a	and Ti	me (Month/Day/Year hour:minutes)		·		8/6/15 8:40		8/5/15 9:41		8/6/15 10:04	1	8/6/15 10:2:	1
Duplicate (")	r" or	"N") ²				No		No		No		No	
Split ("Y" o	"N")	3				No		Мо		ио		No	
Facility Samp	ole ID	Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat	ole	Not Applical	ole
Laboratory Sa	mple	ID Number (if applicable)		<u></u>		Not Applicab	le	Not Applicabl	.e	Not Applical	ole	Not Applical	ble
Date of Analy	rsis (Month/Day/Year)	;····			8/6-20/1	5	8/5-20/15		8/6-15/2	0	8/6-20/1	.5
Gradient with	resp	ect to Monitored Unit (UP, DOWN,	SIDE	, UNKNOWN)		Down		Side		Side		Side	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A G S		A G S		A G S		A G S
S0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	424.39	-	426.13		423.86		426.30	1
S0145	1	Specific Conductance	T	MG/L	120.1	654		1,045		1,617		1,314	
S0130	0	Chemical Oxygen Demand	T	MG/L	410.1	11	<u> </u>	<4.4		6.3		4.9	
S0268	0	Organic Carbon	T	MG/L	415.1	0.76		0.58		0.57		<0.50	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	136		81.2		60.4		43.8	
S0266	0	Total Dissolved Solids	т	MG/L	160.1	869		678		1,346		626	
S0296	0	рн	т	units	150.1	7.18		7.08		. 7.08		7.30	
7440-50-8	0	Copper	D	MG/L	200.8	<0.020		<0.020		<0.020	_	<0.020	

STANDARD FLAGS:

1AKGWA # is 0000-0000 for any type of blank.

2Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

4Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - QUARTERLY

Facility: LG&E Trimble County Station
Permit Number:

Exhibit GHR-1 Finds/unit: Not Applicable of 300 / 1

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

		ility Well/Spring Number				8001-6329		8001-6328	-	8001-6336		8001-6337	
Facility's Lo	cal W	Well or Spring Number (e.g. MW-	-1, MW-2	, etc.)		MW-9		MW-10		MW-11		MW-12	
CAS RN4		CONSTITUENT	Т D5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁵	F L	DETECTED VALUE OR PQL ⁶	F
							A.		A G		A G		A G
					,		s		s		s		s
7440-38-2	. 0	Arsenic Arsenic	T	MG/L	6020A	0.0013		<0.001		<0.001		<0.001	
7440-42-8	0	Boron	Т	MG/L	200.8	2.1		1.2		6.2		1.1	
7440-70-2	0	Calcium	Т	MG/L	200.8	200		170		300		150	
7440-23-5	0	Sodium	r	MG/L	200.8	5.6		8.9		22		6.5	
	0	Sulfate	T	MG/L	300.0	233		128		1,290		151	
· · · · · · · · · · · · · · · · · · ·							J						
·		., .,,											
	<u> </u>												
	ļ												
	<u> </u>												
	ļ												
	<u> </u>			<u> </u>					•				
	ļ .												
····					-								
	 			-									
	 						-		*				
	<u></u> _			<u></u>	<u> </u>					<u> </u>			<u> </u>

GROUNDWATER AND SURFACE WATER MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET
DEPARTMENT FOR ENVIRONMENTAL PROTECTION
DIVISION OF WASTE MANAGEMENT
SOLID WASTE BRANCH
200 FAIR OAKS LANE
FRANKFORT, KY 40601

Facility Name	Trimble Count (As officially shown on DWM)		Activity As	<u>h Pond</u>
Permit No. <u>112-0000</u>	3 Finds/Unit N	0	_ Quarter & Ye	ear 4 th 2015
Please check <u>only ONI</u>	of the following			
Characterization	Quarterly	X Semi-Annual	Annual	Assessment
Please check applicabl	e submittal:	X Groundwater	Surface Wa	ter
This form is to be utilized to 48:300 and 45:160) or by a monitoring under the jurisdict within forty-eight (48) hou similar techniques. Submit attached. Do not submit the i	statue (Kentucky Revion of the Division of the Constitution of the desired the desired the lab report is	ised Statues Chapter 224) Waste Management, You metermination using statistic	to conduct groundw ust report any indic cal analyses, direct	rater and surface water ation of contamination comparison, or other
I certify under penalty of lav accordance with a system des Based on my inquiry of the po to the best of my knowledge submitting false information,	igned to assure that querson or persons direct and belief, true, accu	ralified personnel properly ga ly responsible for gathering t rrate, and complete. I am a	nther and evaluate the he information, the in ware that there are	information submitted is
Diff. Co	2W.OL		12	-9-15 DATE
SIGNA	ΓURE		I	DATE
W. Mic	hael Winkler-Ma	nager of Environmental	l Programs	
		LE - PLEASE PRINT	,	***************************************

FACILITY INFORMATION SHEET

Sampling Date: 11/11-12	/2015	County:	<u>Trimbl</u>	<u>le</u> Permit	No.:_	112-00003
Facility Name: LG&E - Trin	nble County Static	<u>en</u> Permit Face)				
Site Address: 487 Corn Creek	Road	Bedford		40006		
Street		City		Zip		
Phone No.: (502) 627-4659	Latitude	N 38º 35' 3	30"	Longitude_	W 85	° 25' 00"
	OWNER IN	FORMAT	TION			
Facility Owner:	LG&E		I	Phone No.: <u>(</u> 5	602) 62	27-4659
Contact Person:	W. Paul Puckett		<u>-</u>	Phone No.:_(502) 6	<u>27-4659</u>
Contact Person Title: Senior En	gineer, LG&E & 1	KU Environ	ımental .	Affairs Depar	tment	
Mailing Address: P.O.Box 32	010	Lo	uisville		40032	
Street			City		Zip	
Company:	SAMPLING OFF OTHER THAN LAND LG&E - Trimble	OFILL OR LABORA	ITORY)	<u>oratory</u>		
Contact Person:	Adam Raker		P	hone No.: <u>(5</u> 0	02) 62	<u>7-6204</u>
Mailing Address: 487 Corn Cr	eek Road				4 <u>0006</u>	
Street			City		Zip	
I	ABORATOR	Y RECO) RD #1	l		
Laboratory: LG&E/KU Sy	ystem Laboratory	Lab	ID No.:			
Contact Person: Ed Ra	ker, Laboratory St	pervisor		Phone No.:_	(502)	<u>347-4187</u>
Mailing Address: 8815 Highw	vay 42 East		hent		41045	
Street			City		Zip	
I	ABORATOR	Y RECO)RD #2	2		
Laboratory: Microbac	Laboratories, Inc.		Lab	ID No.:		
Contact Person:	Ms. Laura Revlet	<u>t</u>		Phone No.	(502	<u>) 962-6400</u>
Mailing Address: 3323 Gilmore Street	e Industrial Bouler		uisville, City	KY	40213 Zip	

Division of Waste Management Solid Waste Branch, 2nd Floor 200 Fair Oaks Lane Frankfort, KY 40601 (502)564-6716 SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station

(S)

Permit Number: 112-00003

Exhibit CHARCA 1 of 6 Page 295 of 300

FINDS/UNIT: Not Applicable /

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

AKGWA NUMBER¹	, Fac	ility Well/Spring Number				8001-6326		8001-6327		8001-6334		8001-6335	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		MW-1		MW-2R		MW-3		MW-4	
Sample Sequer	ce #					1		2		3		4,	
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicab	ole	Not Applicabl	le	Not Applical	ole	Not Applicat	ole
Sample Date a	nd Ti	me (Month/Day/Year hour:minutes)				11/11/15 14:	03	11/11/15 14:2	21	11/11/15 14:	: 45	11/11/15 15:	:00
Duplicate ("Y	co "	"M") 5				ио		No		Мо		No	
Split ("Y" or	"N")	3				No	•	Йо		No		No	
Facility Samp	le ID	Number (if applicable)				Not Applicab	ole	Not Applicab	Le	Not Applical	ole	Not Applicat	ole
Laboratory Sa	mple	ID Number (if applicable)	if applicable)				Not Applicable Not Applicable			Not Applicat	ole	Not Applicat	ole
Date of Analy	sis (Month/Day/Year)				11/11-30/	15	11/11-30/1	.5	11/11-30/	15	11/11-30/	15
Gradient with	with respect to Monitored Unit (UP, Do			UNKNOWN)	Ūρ	•	Down		Down		Down		
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL6	F L
			Andreas Andrea				A G S		A G S		A G S	·	A G S
S0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	421.05		422.50		421.06		420.84	1
S0145	1	Specific Conductance	r	MG/L	120.1	654		1,333		858		2,067	
s0130	0	Chemical Oxygen Demand	т	MG/L	410.1	<4.4		7.7		6.0		6.3	
S0268	0	Organic Carbon	т	MG/L	415.1	0.63		1.8		1.1		2.9	
16887-00-6	2	Chloride(s)	т	MG/L	300.0	26.8		4.90		20.2		733	
50266	0	Total Dissolved Solids	Т	MG/L	160.1	380		326		526		4,724	
s0296	0	рн	т	units	150.1	7.32		6.98		7.10		7.05	
7440-50-8	0	Copper	D	MG/L	200.8	<0.020		<0.020		<0.020		<0.020	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

analysis of a secondary dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "I" if the sample was a duplicate of another sample in this report Respond "I" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from

Page 2 of 6

SP. WASTE/COAL COMBUSTION - QUARTERLY Facility: LG&E Trimble County Station Permit Number: 112-00003

FINDS/UNIT: Not Applicable GHR-1/1

Page 296 of 300

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER¹		ility Well/Spring Number	Alban			8001-6326		8001-6327		8001-6334		8001-6335	······
Facility's Lo	cal W	ell or Spring Number (e.g. MW-1,	MW-2,	, etc.)		MW-1		MW-2R		MW-3		MW-4	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F
							A G		A. G		A. G		A G
							s		s		s		s
7440-38-2	0	Arsenic	T	MG/L	6020A	<0.001		0.021		<0.001		0.008	
7440-42-8	0	Boron	Т	MG/L	200.8	<0.50		<0.50		2.0		65	
7440-70-2	0	Calcium	T	MG/L	200.8	110		97		140		700	
7440-23-5	0	Sodium	T	MG/L	200.8	9.5	<u> </u>	8.6		6.5		100	
	0	Sulfate	T	MG/L	300.0	33.1		5.70		113		2,261	
													<u> </u>
												_	
			ļ										
•													
			ļ							ļ	ļ		
					,		ļ						ļ
													ļ
	ļ		ļ										
							<u> </u>						<u> </u>
			ļ								ļ		
	-		-						ļ		ļ		<u> </u>
	-		<u> </u>				1		<u> </u>				<u> </u>
			-										<u> </u>
***************************************			<u> </u>		<u> </u>						<u> </u>		

Division of Waste Management Solid Waste Branch, 2nd Floor 200 Fair Oaks Lane Frankfort, KY 40601 (502) 564-6716

SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station

(S)

Permit Number: 112-00003

Exhibit GPARG4 3 of 6 Page 297 of 300

FINDS/UNIT: Not Applicable

LAB ID:

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

						0001 6006		T 0000 5000		0001 5005		8001-6331	
	·	ility Well/Spring Number				8001-6333		8001-6332		8001-6330			
Facility's L	ocal W	ell or Spring Number (e.g. MW-1,	MW-2	, etc.)		MW-5		MW-6		MW-7		MM-8	
Sample Seque	nce #					5 6			7		8		
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E	E) quipment	Not Applicable		Not Applicable		Not Applicable		Not Applicabl	
Sample Date	and Ti	me (Month/Day/Year hour:minutes)				11/11/15 15:20		11/12/15 8:05	;	11/12/15 8:3	30	11/12/15 8:45	
Duplicate ("	Y" or	"N") ²		· · · · · · · · · · · · · · · · · · ·		Ио		Мо		No		No	
Split ("Y" or	r "N")	3				No		Йо		No		No	
Facility Sam	ole ID	Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat	ole	Not Applicab	ole
Laboratory Sa	ample	ID Number (if applicable)				Not Applicab	le	Not Applicabl	.e	Not Applicat	ole	Not Applicab	ole
Date of Analysis (Month/Day/Year)						11/11-30/	15	11/12-30/1	5	11/12-12/2	/15	11/12-12/2/1	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)					Down		Down		Down		Down	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F L
							A G S		A G S		G S		A G S
s0906	0	Static Water Level Elevation	т	Ft. MSL	Fld. Meas.	420.72		420.82		421.22		421.16	
S0145	1	Specific Conductance	T	MG/L	120.1	1,146		657		659		3,340	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<4.4		<4.4		<4.4		<4.4	
S0268	0	Organic Carbon	T	MG/L	415.1	0.96		0.58		0.74		0.98	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	226		76.1		126		352	T
s0266	0	Total Dissolved Solids	T	MG/L	160.1	1,346		526		1,032		2,604	
s0296	0	рн	T	units	150.1	7.16		7.18		7.06		7.01	
		· · · · · · · · · · · · · · · · · · ·	<u> </u>		_1	<0.020		1		1			

AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

dilution factor

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID D = Concentration from

analysis of a secondary

SP. WASTE/COAL COMBUSTION - QUARTERLY Facility: LG&E Trimble County Station Permit Number: 112-00003

LAB ID:

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBERI	, Faci	lity Well/Spring Number				8001-6333		8001-6332		8001-6330		8001-6331	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-	1, MW-2,	, etc.)		MW-5		MW-6		MW-7		MM-8	
CAS RN4		CONSTITUENT	T D ⁵	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F
							A G		A. G		A G		A
							s		s		s		s
7440-38-2	0	Arsenic	T	MG/L	6020A	0.0030		<0.001		<0.001		0.0040	
7440-42-8	0	Boron	т	MG/L	200.8	13		2.1		7.3		50	
7440-70-2	0	Calcium	T	MG/L	200.8	270		160		240		360	
7440-23-5	0	Sodium	T	MG/L	200.8	27		8.0		14		35	
	0	Sulfate	T	MG/L	300.0	418		116		338		1,134	
	<u> </u>											,	
	<u> </u>												
										,			
													<u> </u>
		,											
							<u> </u>						
•													
							<u> </u>						ļ
											ļ		
							-						ļ
	ļ									,			

Division of Waste Management Solid Waste Branch, $2^{\rm nd}$ Floor 200 Fair Oaks Lane

Frankfort, KY 40601 (502) 564-6716

SP. WASTE/COAL COMBUSTION-QUARTERLY Facility: LG&E Trimble County Station

(S)

Permit Number: 112-00003

Exhibit GHAG 5 of 6 Page 299 of 300

FINDS/UNIT: Not Applicable

LAB ID: For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

AKCHA MIMPEDI	Wa = -	Titr Mall Coming Number			NAME OF THE PERSON OF THE PERS	8001-6329		8001-6328		8001-6336		8001-6337	
		Llity Well/Spring Number											
Facility's Lo	ocal W	ell or Spring Number (e.g. MW-1,	MW-2,	etc.)		MW-9		MW-10		MW-11		MW-12	
Sample Sequer	ce #					9		10	11		12		
If sample is	a Bla	nk, specify Type: (F)ield, (T)ri	p, (M)	ethod, or (E) quipment	Not Applicable No		Not Applicabl	.e	Not Applicable		Not Applicable	
Sample Date a	and Ti	me (Month/Day/Year hour:minutes)				11/12/15 10:05 11,		11/12/15 10:3	32	11/12/15 10:54		11/12/15 13:18	
Duplicate ("	Z" OF	"M") ₅				No		No		No		No	
Split ("Y" or	("M" :	3				No		No		No	•	No	
Facility Samp	Facility Sample ID Number (if applicable)					Not Applicab	le	Not Applicabl	.e	Not Applical	ole	Not Applicab	ole
Laboratory Sample ID Number (if applicable)						Not Applicab	le	Not Applicabl	.e	Not Applicat	ole	Not Applicab	le
Date of Analysis (Month/Day/Year)						11/12-12/2	/15	11/12-12/2/	15	11/12-12/2	/15	.5 11/12-12/2/:	
Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)					Down Side			Side		Side			
Cas Rn4	-	CONSTITUENT	D ₂	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL ^c	F	DETECTED VALUE OR PQL ⁶	F	DETECTED VALUE OR PQL ⁶	F
							A. G		A G	eginetis de la companio del companio del companio de la companio del companio de la companio del companio de la companio del companio de la companio del co	A G		A. G
							s		s		S		\$
s0906	0	Static Water Level Elevation	T	Ft. MSL	Fld. Meas.	421.40		421.14		421.11		421.38	
s0145	1.	Specific Conductance	T	MG/L	120.1	654		1,045		1,617		1,314	
s0130	0	Chemical Oxygen Demand	T	MG/L	410.1	<4.4		<4.4		<4.4		<4.4	
S0268	0	Organic Carbon	T	MG/L	415.1	0.60		0.50		<0.50		4.6	
16887-00-6	2	Chloride(s)	T	MG/L	300.0	90.8		57.0		42.8		34.0	
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	778		578		1,214		577	
S0296	0	рн	T	units	150.1	7.16		7.07		6.89		7.09	
7440-50-8	0	Copper	D	MG/L	200.8	<0.020		<0.020		0.021		<0.020	

STANDARD FLAGS:

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

SP. WASTE/COAL COMBUSTION - QUARTERLY

Facility: LG&E Trimble County Station Permit Number: 112-00003

FINDS/UNIT: Not Applicable GHR-1/1
LAB ID: Page 300 of 300

For official Use only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBERI	, Fac	ility Well/Spring Number				8001-6329		8001-6328		8001-6336		8001-6337	
Facility's Lo	cal W	ell or Spring Number (e.g. MW-	1, MW-2,	etc.)		MW-9		MW-10		MW-11		MW-12	
CAS RN⁴		CONSTITUENT	D ₂	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL6	F	DETECTED VALUE OR PQL6	F L	DETECTED VALUE OR PQL ⁶	F L	DETECTED VALUE OR PQL6	F
							A G		A G	ļ	A G		A
							s		s		s		s
7440-38-2	0	Arsenic	T	MG/L .	6020A	0.0010		<0.001		<0.001		<0.001	
7440-42-8	0	Boron	T	MG/L	200.8	2.0		1.1		2.5		1.3	
7440-70-2	0	Calcium	T	MG/L	200.8	170		140		250		130	
7440-23-5	0	Sodium	T	MG/L	200.8	5.7		11		18		7.6	
	0	Sulfate	T	MG/L	300.0	202		78.7		482		130	
			•										
	<u></u>												
					'								
	<u> </u>												\perp
	ļ				<u> </u>								_
												ļ	
								ļ			ļ		┿
	.	•											
	<u> </u>								<u> </u>				\downarrow
	<u> </u>												+
	<u> </u>				<u> </u>						ļ		1
	-						ļ						_
											<u></u>		

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

•	4 1	TA #	4.4	•
In	tha	1/16	atter	At.
111	шс	1714	LLLCI	w.

THE APPLICATION OF KENTUCKY UTILITIES)
COMPANY FOR CERTIFICATES OF PUBLIC)
CONVENIENCE AND NECESSITY AND) CASE NO. 2016-00026
APPROVAL OF ITS 2016 COMPLIANCE PLAN)
FOR RECOVERY BY ENVIRONMENTAL)
SURCHARGE)

DIRECT TESTIMONY OF CHARLES R. SCHRAM DIRECTOR, ENERGY PLANNING, ANALYSIS, AND FORECASTING KENTUCKY UTILITIES COMPANY

Filed: January 29, 2016

Q. Please state your name, position and business address.

1

7

A. My name is Charles R. Schram. I am the Director – Energy Planning, Analysis & Forecasting for Kentucky Utilities Company ("KU" or "Company") and an employee of LG&E and KU Services Company, which provides services to KU and Louisville Gas and Electric Company ("LG&E") (collectively "Companies"). My business address is 220 West Main Street, Louisville, Kentucky 40202. A complete statement

of my education and work experience is attached to this testimony as Appendix A.

- 8 Q. Please describe your current job responsibilities.
- 9 A. I am responsible for developing the Companies' load forecast, market analysis, and
 10 long-term planning of utility generation. As it pertains to this proceeding, the
 11 Generation Planning & Analysis group performed the analyses discussed below under
 12 my direction.

13 Q. Have you previously testified before this Commission?

14 A. Yes. I have previously testified before this Commission on several occasions, 15 including in the Companies' most recent environmental cost recovery proceedings 16 (Case Nos. 2011-00161 (KU) and 2011-00162 (LG&E)).

17 Q. What are the purposes of your testimony?

A. The purposes of my testimony are to explain the methods by which KU analyzed the projects included in its 2016 Environmental Compliance Plan ("2016 Plan"), present the analyses, and recommend Commission approval of the 2016 Plan and related certificates of public convenience and necessity ("CPCNs") and environmental cost recovery ("ECR") because the projects in the 2016 Plan are the most economical methods of complying with applicable environmental laws and regulations.

Q. What is the nature of the projects in KU's 2016 Plan?

1

2 A. KU's 2016 Plan consists of (1) constructing Phase II of the coal combustion residuals 3 ("CCR") landfill at the E.W. Brown Generating Station ("Brown"); (2) making 4 improvements to the wet flue gas desulfurization ("WFGD") equipment serving Unit 5 2 at the Ghent Generating Station ("Ghent"); (3) adding supplemental mercurycontrol equipment to serve all four of the Ghent coal-fired generating units; and (4) 6 7 closing CCR surface impoundments at the Brown, Ghent, Trimble County, Green 8 River, Pineville, and Tyrone Generating Stations, along with related construction of process-water systems at Brown, Ghent, and Trimble County. These projects are 9 10 explained in more detail in the testimonies of John N. Voyles, Jr. and R. Scott 11 Straight. The testimony of Gary H. Revlett explains the various environmental 12 requirements that necessitate these projects.

13 Q. Are you sponsoring any exhibits?

- 14 A. Yes. I am sponsoring the following exhibits:
- Exhibit CRS-1: Analysis of 2016 ECR Projects E.W. Brown Generating
 Station
- Exhibit CRS-2: Analysis of 2016 ECR Projects Ghent Generating Station
- Exhibit CRS-3: Analysis of 2016 ECR Projects Trimble County Generating
 Station

20 Analytical Approach

21 Q. What are the goals of the Companies' resource planning activities?

¹ The CCR Rule defines CCR as "fly ash, bottom ash, boiler slag, and flue gas desulfurization materials generated from burning coal for the purpose of generating electricity by electric utilities and independent power producers." 40 CFR 257.53. This definition includes what is commonly referred to as gypsum.

- A. Resource planning starts with reliability as its objective and seeks to ensure reliability at the lowest reasonable cost and risk. Decisions about unit retirements require both compelling economics and a clear understanding of how reliability will be ensured.
- 4 Q. Please describe the analytical approach the Companies used to evaluate the projects in KU's 2016 Plan.
 - As Mr. Revlett explains in his testimony, there are two recently finalized federal environmental regulations that could significantly affect the Companies' coal-fired generating fleet beginning in 2022, namely the Clean Power Plan ("CPP") and the Effluent Limit Guidelines ("ELG").² The Companies will continue to work to understand the cost of complying with these regulations over the next 1-2 years, but today the precise means and costs of complying with the CPP and ELG are unknown.

What is known, as Mr. Revlett further explains, is that it is prudent for KU to begin to close all of its currently active surface impoundments (i.e., those at Ghent, Trimble County, and Brown), and to complete those closures by the end of the year 2023, to comply with the federal Coal Combustion Residuals Final Rule ("CCR Rule"), even though no surface impoundments at Ghent, Trimble County, or Brown have been determined to trigger closure requirements under the CCR Rule.³ Furthermore, for the coal-fired units to continue to operate at the generating stations in which KU has an ownership interest (Brown, Ghent, and Trimble County), the Companies will have to complete construction of process-water systems at those stations by 2019 for the reasons Mr. Voyles describes in his testimony.⁴

A.

² Revlett Testimony at 14-16.

³ Revlett Testimony at 18-19.

⁴ Voyles Testimony at 24-27.

For the Brown and Ghent stations, to avoid speculation regarding CPP and ELG compliance costs, as well as to account for the known need for process-water systems to be in place by 2019, the Companies chose to perform the cost-benefit analyses presented in this proceeding to determine if the proposed projects were economical through 2021. If the Companies determine that complying with the CPP and ELG is more costly than retiring coal units and replacing the capacity, they can likely operate the units through 2021 without incurring any CPP and ELG compliance costs. This approach differs from the Companies' typical approach of evaluating whether proposed investments are economical over a longer period, usually 30 years. In other words, the Companies' analyses show that constructing the proposed projects—even if the affected coal-fired units were retired in 2022—is economically superior to retiring the affected coal-fired units in 2019 and replacing their capacity through the end of 2021.

For Trimble County, the analysis of the process-water system is considered in the context of the longer-term outlook for the station. The Companies are planning to invest \$277 million from 2016 through 2021 for a new special waste landfill, including a coal combustion residuals treatment facility ("CCRT"), in addition to the investments required for the 2016 Plan projects. While the relative benefits of these long-term investments will greatly exceed their cost, the point at which their benefits exceed their cost will occur after 2021. As a result, the Companies evaluated these projects over the Companies' standard 30-year analysis period with high-level estimates for CPP and ELG compliance costs. As discussed below, the cost of environmental compliance at Trimble County is clearly justified by the significant

1	benefits of continuing to operate the Trimble County coal units, even when facing
2	uncertainty about the cost of future environmental compliance.

3

4

14

15

21

- Q. For the 30-year analysis of the Trimble County ECR projects, how did you assess CPP compliance costs?
- 5 For the reasons discussed in Exhibit CRS-3, the Trimble County coal units would be A. the last coal units the Companies would retire in a CPP compliance plan. If – at a 6 7 cost of more than \$3.5 billion - the Companies' Brown, Ghent, and Mill Creek coal units were retired and replaced with renewable or new natural gas-fired generation 8 9 with CO₂ emissions ranging from 0 lb/MWh to approximately 1,000 lb/MWh, the 10 Companies' generating portfolio would over-comply with any interpretation of the CPP – even if the Trimble County coal units operated at full capacity.⁵ For this 11 12 reason, the 30-year retirement analysis assumed no incremental cost for CPP 13 compliance at Trimble County.
 - Q. When analyzing projects for which a retirement analysis was necessary, how did the Companies choose a replacement capacity cost?
- Because the Companies could not design and construct suitable replacement capacity 16 A. 17 for any of its coal-fired units prior to 2021 or 2022, the analysis includes the purchase 18 of replacement capacity based on the estimated cost of applicable replacement units, 19 for the period 2019-2021. For each station, the replacement capacity portfolios were 20 developed using resources evaluated in the Companies' 2014 Integrated Resource Plan ("IRP") to meet the Companies' target reserve margin range (16% to 21%) in 22 2019 through 2021. In addition, the costs of the IRP resources were used to develop

⁵ The federal new source performance standard for carbon-dioxide emissions from natural-gas fired electric generating units is 1,000 lb/MWh. 80 Fed. Reg. 64,658 (Oct. 23, 2015).

the cost of the power purchase agreement for each portfolio. The analysis also includes costs for firm transmission and firm gas transportation services.

Q.

A.

After purchasing replacement capacity through 2021, the retirement alternative in the 30-year Trimble County analysis assumes natural gas combined-cycle ("NGCC") capacity is commissioned at Trimble County in 2022 as a lowest reasonable cost resource for capacity and energy. The cost of this capacity is also taken from the Companies' 2014 IRP.

For your analysis of the 2016 Plan projects for Brown and Ghent, why was it appropriate to analyze the projects through the end of 2021 rather than over a longer timeframe, as you did when analyzing the projects for Trimble County?

It was actually conservative to evaluate the 2016 Plan projects for Brown and Ghent only through the end of 2021. Analyzing these long-lived investments over a short

timeframe ensures that the investments are economical by the end of 2021 (relative to the cost of retiring the coal-fired units in 2019). The Companies characterize this as a "no-regrets" approach because it ensures that even if KU determines in the next 1-2 years that retiring the units in 2022 is a lower cost alternative than the costs of ELG

and CPP compliance, the investments proposed for Brown and Ghent in the 2016

Plan will have been economical relative to having retired the units in 2019.

To be clear, using this analytical approach is neither a commitment nor a prediction that KU will retire any or all of the coal-fired units at Brown or Ghent in early 2022 or later; indeed, at this time, KU does not have sufficient information about ELG and CPP compliance options and costs to make definitive decisions about whether or when KU might retire any or all of the coal-fired units at Brown and

- Ghent. But one of the advantages of this analytical approach is that it provides assurance to the Commission, KU, and its customers that investments in the 2016 Plan projects for Brown and Ghent will be money well spent regardless of whether the coal-fired units ultimately retire in 2022 or later.
- When analyzing the projects through 2021, are any revenue requirements considered after 2021?
- A. Yes. The revenue requirements for capital costs incurred through 2021 extend through the remaining book life of the generating unit. These revenue requirements are included in the calculation of the present value of revenue requirements ("PVRR") in determining whether the projects are economical for operation of the units through 2021. However, no other production costs or other investments subsequent to 2021 are considered in the evaluation.

- Q. You note in your analysis of the 2016 Plan projects for Brown and Ghent that all of the scenarios you analyzed involved retiring the coal-fired units, regardless of whether those retirements occurred in 2019 or 2022. You further noted that your analysis reduced capital and O&M spending at Brown and Ghent in anticipation of those unit retirements beginning in 2017 for 2019 retirements and beginning in 2018 for 2022 retirements. If KU isn't willing to commit to retire any of these units in 2022, why is your analysis valid when it assumes they will indeed retire and tapers capital and O&M spending accordingly?
- A. The validity of the approach hinges on KU's ability to make better-informed retire-orcontinue-operation decisions after completing ongoing efforts to gather information and understand the costs of ELG and CPP compliance in the next 1-2 years. As the

question indicates, at first glance the analytical approach might appear to undervalue retiring the units in 2019 because the other scenarios taper off capital and O&M spending beginning in 2018 on the assumption the units will retire in 2022. But if the units do not retire in 2022, presumably KU would continue to make the capital and O&M expenditures necessary for ongoing operations, which would increase the cost of any non-2019-retirement scenario, in turn increasing the relative value of retiring the units in 2019. One might therefore object that KU's analysis is invalid for not taking into account the full amount of capital and O&M costs necessary for the units to operate in 2022 and beyond.

In fairness, that would be a valid objection to this analytical approach if KU were not going to have better information about ELG and CPP compliance options and costs before 2018, when the modeled capital and O&M tapering begins. But KU will indeed have more information about such options and costs by 2018, and should be in a better position to determine whether or when to retire the coal-fired units. Therefore, if KU's analyses over the next 1-2 years show that retiring any or all of the coal-fired units in early 2022 would be more economical than incurring the costs of ELG and CPP compliance, then KU would be able to begin tapering capital and O&M spending as this analysis reflects. On the other hand, if KU's analyses over the next 1-2 years show it would be more economical to incur ELG and CPP compliance costs—in addition to ongoing capital and O&M spending at non-tapered levels—to keep the units operating beyond 2021, then KU would continue to operate the units, seeking any necessary Commission approvals for ongoing coal-fired operations (e.g., for any additional ECR projects). Therefore, the analytical approach for Brown and

Ghent truly is a no-regrets approach, and accords all due value to the option of retiring units in 2019.

3 <u>Brown Projects</u>

4 Q. What projects are included in the 2016 Plan for Brown?

- 5 A. The 2016 Plan includes the following projects for the Brown Station:
- Project 36 Brown Landfill Phase II
- Project 42 CCR Rule Compliance Construction and Construction of New
 Process-Water Systems at Brown

9 Q. Please describe KU Project 36.

14

10 A. KU Project 36 includes the costs to design and construct Phase II of the Brown landfill. The costs of this project are summarized in Table 1. Table 1 includes the total cost of the project and not only the portion being recovered through the ECR mechanism.

Table 1 – KU Project 36 Costs (\$M. As-Spent Dollars)

Tubic 1 110 110j		φ1119	ris spend	Domai b)
	2015	2016	2017	Total
Landfill Phase II	0.1	0.0	11.7	11.9

15 Q. How much CCR does the Brown station produce?

A. From 2012 to 2014, the Brown coal units operated at a 44 percent capacity factor and produced an average of 331 thousand tons of CCR per year. In 2015, with lower gas prices and the addition of Cane Run 7 in June 2015, the Brown coal units operated at a 34 percent capacity factor and produced approximately 280 thousand tons of CCR.

Based on the forecast for continued low natural gas prices and year-round Cane Run 7 operation, the Brown coal units are forecast on average to operate at a 25 percent

- capacity factor and to produce 198 thousand tons of CCR annually from 2016 to
- 2 2021.
- 3 Q. How many tons of CCR can be stored in a cubic yard of landfill space?
- 4 A. Approximately 1.18 tons of CCR can be stored in one cubic yard of landfill space.
- 5 The Brown coal units are forecast to produce 198 thousand tons of CCR from 2016 to
- 6 2021. This equates to approximately 167 thousand cubic yards.
- 7 Q. Where is the CCR currently stored?
- 8 A. The Brown Station currently has two CCR storage facilities (the Auxiliary Pond and
- 9 the new special waste landfill). Fly ash from Brown Unit 3 as well as bottom ash and
- gypsum from all three Brown coal units are currently stored in the Auxiliary Pond
- until Phase I of the special waste landfill goes into service this year. Because Brown
- Units 1 and 2 do not have dry handling systems for their fly ash, fly ash from Brown
- Units 1 and 2 is sluiced to the Auxiliary Pond.
- 14 Q. What is the capacity of Phase I of the landfill, and when will additional CCR
- 15 storage capacity be needed?
- 16 A. Phase I of the Brown landfill will be placed in service in 2016. When the landfill was
- permitted, the Kentucky Division of Waste Management included a restriction in the
- landfill permit that limits the elevation difference between landfill phases to ten feet.
- As a result, the station can only store up to ten feet of CCR in Phase I of the landfill
- before additional CCR storage is needed to continue operating the Brown coal units.
- 21 Ten feet of CCR storage capacity in Phase I equates to approximately 540 thousand
- cubic yards. Table 2 contains a detailed summary of the Brown CCR forecast
- 23 through 2021. Based on the cumulative total of CCR stored in the landfill, the

capacity of Phase I will be depleted in 2019. To account for potential construction delays, KU is seeking authorization to construct Phase II of the landfill by 2018. Ten feet of CCR storage capacity in Phase II of the landfill equates to approximately 490 thousand cubic yards.

Table 2 - Detailed Brown CCR Forecast (2016 Plan, Thousand Cubic Yards)

	2016	2017	2018	2019	2020	2021	Total 2016-2021
Auxiliary Pond							
Brown 1-2 Fly Ash	16	17	20	0	0	0	53
Cumulative Total	16	33	53	53	53	53	53
Landfill							
Brown 1-2 Fly Ash	0	0	0	20	20	23	64
Brown 3 Fly Ash	24	26	34	35	29	36	185
Brown 1-3 Bottom Ash	9	9	11	12	11	13	65
Brown 1-3 Gypsum	94	102	103	113	102	121	635
Annual Total	127	137	149	180	162	193	949
Cumulative Total	127	264	413	593	756	949	949
			_		_		
Total CCR	143	154	169	180	162	193	1,002

6 Q. What alternatives did you consider in your analysis of Project 42?

- 7 A. The Companies evaluated the following alternatives:
 - Construct Phase II of Brown Landfill

- Transport CCR to Beneficial Use Markets
- Transport CCR to Municipal Landfill (permitted for CCR materials)

A summary of these alternatives is included in the attached Exhibit CRS-1. For the reasons discussed in the exhibit, the alternative to transport CCR to beneficial use markets is not a viable alternative due to the quality of CCR produced at the Brown station compared to the quality of CCR produced at other stations and challenges associated with transporting the CCR to beneficial use markets.

- 1 Q. What are the results of your analysis?
- 2 A. The results of KU's analysis are summarized in Table 3. Compared to transporting
- 3 CCR to a municipal landfill, constructing Phase II of the Brown landfill is lower cost.

CONFIDENTIAL INFORMATION REDACTED

Table 3 - Project 36 Analysis Results (PVRR of Costs Incurred from 2016 to 2021, \$M, 2016 Dollars)

Gas Price	Alternative	Capital	CCR Handling Costs	Total	Difference from Best
Low	Landfill Phase II	13.8	5.9	19.7	0
Low	Municipal Landfill	0	24.2	24.2	4.5
Mid	Landfill Phase II	13.8	6.7	20.5	0
IVIIU	Municipal Landfill	0	25.0	25.0	4.5
High	Landfill Phase II	13.8	7.8	21.6	0
nigli	Municipal Landfill	0	26.1	26.1	4.5

3 Q. What cost did you assume for hauling and placing CCR in the municipal

landfill?

4

5

6

7

8

9

10

11

12

13

18

A. The total cost of the municipal landfill tipping fee along with the associated CCR handling and transportation costs is assumed to be \$38.21/ton. This cost of trucking CCR a shorter distance (about 14 miles) from the Trimble County Station to the Valley View Municipal Solid Waste Landfill was included in Case No. 2015-000194. While the Companies continue to look for opportunities for off-site disposal and beneficial use, the cost to transport CCR to a municipal landfill along with the associated tipping fee would have to drop below before the municipal landfill alternative would be lower cost.

Q. Please describe Project 42.

A. For the purposes of the analysis, KU assumed that the Brown Auxiliary Pond must be capped and closed to comply with the CCR Rule. Based on that assumption, it would be necessary to install a new process-water system at Brown. Project 42 includes the costs associated with these activities.

Q. How did you evaluate the cost of Project 42?

- 1 A. KU evaluated the costs of Project 42 along with the costs of Project 36. Table 4
 2 contains a summary of these costs.
- 3 Table 4 Brown ECR Project Costs (\$M, As-Spent Dollars)

	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Cap and Closure	0.0	0.5	0.7	0.5	3.8	3.4	3.6	9.9	10.2	32.7
Process-Water System	0.0	0.5	33.0	35.1	0.0	0.0	0.0	0.0	0.0	68.6
Total CCR Ruling										
Compliance	0.0	1.0	33.7	35.6	3.8	3.4	3.6	9.9	10.2	101.3
Landfill Phase II	0.1	0.0	11.7	0.0	0.0	0.0	0.0	0.0	0.0	11.9
Total Brown ECR										
Project Costs	0.1	1.0	45.5	35.6	3.8	3.4	3.6	9.9	10.2	113.2

- 4 Q. What alternatives did you consider in your analysis of Projects 36 and 42?
- 5 A. KU evaluated the following alternatives:

16

17

- 6 1. Continue operating the Brown coal units through 2021 ("Operate through 7 2021").
- Retire the Brown coal units in 2019 and purchase replacement capacity through 2021. The analysis evaluated power purchase agreements for two replacement capacity portfolios:
- 11 A. Two 201 MW SCCT units (402 MW in total) ("Retire in 2019: SCCT").
- B. One 368 MW natural gas combined cycle ("NGCC") unit and one 201

 MW simple cycle combustion turbine ("SCCT") unit (569 MW in

 total) ("Retire in 2019: NGCC/SCCT").
 - 2. Convert the Brown coal units to operate on natural gas beginning in 2019 and operate on natural gas from 2019 to 2021 ("Natural Gas Conversion").
- 18 Q. Why did you evaluate two replacement alternatives for the Brown coal units?

A. Since the Brown coal units have the lowest capacity factors of any coal units in the system, the Companies wanted to consider a range of potential replacement alternatives. The 402 MW replacement with two simple cycle combustion turbines results in a reserve margin that is slightly below the Companies' 16 percent to 21 percent range by 2021, while the 569 MW combined cycle plus simple cycle replacement alternative results in a slightly higher reserve margin for enhanced reliability. The 569 MW alternative also includes a combined cycle unit, recognizing that the Brown coal units are forecast to produce more energy than might typically be produced by simple cycle turbines. Considering both alternatives allowed the Companies to evaluate a range of results.

Q. What are the results of your analysis?

A.

The results of the Companies' analysis are summarized in Table 5. Each alternative was evaluated over three gas price scenarios. Compared to the retirement and natural gas conversion alternatives, continuing to operate the Brown coal units through 2021 is \$153 million favorable to \$5 million unfavorable. Only one out of twelve results favor 2019 retirement: the 402 MW replacement alternative is slightly favorable under low gas prices, but unfavorable under mid and high gas prices. The 569 MW replacement alternative, as well as the natural gas conversion alternative, are unfavorable under all three gas prices.

Table 5 – Brown Analysis Results (PVRR of Costs Incurred from 2016 to 2021, \$M, 2016 Dollars)*

	ψινι, 2010 D	,	Other						
Gas Price	Alternative	System Production Costs	Capital and FOM	ECR Project Costs	Replacement Capacity Costs	NG Conversion	Trans. System Upgrade	Total	Diff from Best
	Operate through 2021	4,896	204	105	0	0	17	5,222	5
Low	Retire in 2019: NGCC/SCCT	4,876	114	13	216	0	57	5,276	58
Low	Retire in 2019: SCCT	4,913	114	13	120	0	57	5,217	0
	Natural Gas Conversion	4,902	201	13	0	172	17	5,306	88
	Operate through 2021	4,993	204	105	0	0	17	5,320	0
Mid	Retire in 2019: NGCC/SCCT	4,996	114	13	216	0	57	5,396	76
Mid	Retire in 2019: SCCT	5,031	114	13	120	0	57	5,335	16
	Natural Gas Conversion	5,024	201	13	0	172	17	5,427	108
	Operate through 2021	5,131	204	105	0	0	17	5,457	0
High	Retire in 2019: NGCC/SCCT	5,176	114	13	216	0	57	5,576	119
Hgir	Retire in 2019: SCCT	5,210	114	13	120	0	57	5,514	57
	Natural Gas Conversion	5,207	201	13	0	172	17	5,610	153

^{3 *}The landfill and process water systems in the 2016 Plan are included in the "Operate through 2021" alternative.

5 Q. Since one of the six results for the replacement alternative was comparable to operating the units through 2021, did you perform any other evaluation?

7 A. Yes. KU also considered a three year recovery of the revenue requirements
8 associated with the landfill and process water systems to further assess how
9 customers would be affected by the proposed projects.

Q. What did the three year analysis show?

1

2

10

11 A. As seen below in Table 6, even if customers paid the full revenue requirements for 12 the landfill and process water systems in only a three year period (2019-2021), the revenue requirements of some of the retire/replace alternatives in certain scenarios are still not materially favorable.

3

4

7

8

9

10

11

12

13

A.

Table 6 – Brown ECR Project Results (PVRR of Costs Incurred from 2016 to 2021, \$M, 2016 Dollars, 3 Year Book Life for ECR Capital)*

Other									
Gas Price	Alternative	System Production Costs	Capital and FOM	ECR Project Costs	Replacement Capacity Costs	NG Conversion	Trans. System Upgrade	Total	Diff from Best
Low	Operate through 2021	4,896	204	106	0	0	17	5,223	6
	Retire in 2019: NGCC/SCCT	4,876	114	13	216	0	57	5,276	58
	Retire in 2019: SCCT	4,913	114	13	120	0	57	5,217	0
	Natural Gas Conversion	4,902	201	13	0	174	17	5,308	90
Mid	Operate through 2021	4,993	204	106	0	0	17	5,321	0
	Retire in 2019: NGCC/SCCT	4,996	114	13	216	0	57	5,396	75
	Retire in 2019: SCCT	5,031	114	13	120	0	57	5,335	14
	Natural Gas Conversion	5,024	201	13	0	174	17	5,429	109
High	Operate through 2021	5,131	204	106	0	0	17	5,458	0
	Retire in 2019: NGCC/SCCT	5,176	114	13	216	0	57	5,576	118
	Retire in 2019: SCCT	5,210	114	13	120	0	57	5,514	55
	Natural Gas Conversion	5,207	201	13	0	174	17	5,612	154

^{*}The landfill and process water systems in the 2016 Plan are included in the "Operate through 2021" alternative.

Q. Based on all of the analysis for the Brown projects, what do you recommend?

Constructing Phase II of the Brown landfill, building the process-water system, and operating the Brown units through at least 2021 is the lowest reasonable cost alternative. As discussed earlier in my testimony, decisions to retire generating units require both compelling economics and a clear understanding of how reliability will be ensured. Neither requirement is satisfied by the results of the analysis for the Brown coal units. The range of results for the replacement alternatives do not

provide compelling evidence of a clear and likely economic advantage to retiring the Brown units in 2019 and replacing the capacity. Furthermore, it is not clear how reliability would be ensured during this period. Customers are much better off from a reliability perspective with the Brown units, since there is no assurance that 400+ MW of replacement capacity and associated transmission can be obtained.

Ghent Projects

7 Q. What projects are included in the 2016 Plan for Ghent?

- 8 A. The 2016 Plan includes the following projects for the Ghent Station:
- Project 37 Wet Flue-Gas Desulfurization ("WFGD") Improvements at Ghent 2
- Project 38 Supplemental Mercury Control Injection Systems at Ghent 1-4
- Project 40 CCR Rule Compliance Construction and Construction of New
 Process-Water Systems for Ghent

13 Q. Please describe Project 37.

1

2

3

4

5

6

14 As discussed in Mr. Revlett's testimony, by the summer of 2016, the 30-day rolling A. 15 generation-weighted average SO₂ emission rate ("SO₂ emission rate") for the Ghent 16 station must remain below 0.2 lb/mmBtu to demonstrate compliance with the federal 17 Mercury and Air Toxics Standards ("MATS") limit for acid gases measured as 18 hydrogen chloride ("HCl"). Ghent Unit 2 currently has an SO₂ removal rate of 90.0 19 percent compared to 98.5 percent for the other three units. Project 37 improves the 20 Ghent Unit 2 SO₂ removal rate to 97 percent to ensure compliance with MATS. 21 Table 7 contains a summary of these costs.

Table 7 – Project 37 Costs (\$M, As-Spent Dollars)

	2015	2016	Total
WFGD Modifications	1.0	6.0	7.0

2 Q. In your analysis of Project 37, what alternatives did you consider for meeting the

3 **MATS HCl limits?**

1

- 4 A. KU evaluated the following alternatives:
- Do nothing (comply using dispatch modifications only)
- Modify the Ghent 2 FGD to improve its SO₂ removal rate ("Modify Ghent 2
 FGD")
- Use reagent to improve SO₂ removal rate ("Reagent")
- Burn lower sulfur coal in Ghent 2 ("Burn Lower Sulfur Coal")
- A summary of these alternatives is included in the attached Exhibit CRS-2.
- 11 Q. Were all of the alternatives evaluated in the same way?
- 12 A. No. An extended analysis was used to evaluate the Modify Ghent 2 WFGD, Reagent, 13 and Burn Lower Sulfur Coal alternatives to assess the impact of these alternatives' 14 tradeoffs between O&M and capital costs in the longer-term. Then, the lowest cost of 15 these alternatives was compared to the cost of the "Do Nothing" alternative. The 16 results of the extended analysis are summarized in Table 8. Modifying the Ghent 2 17 WFGD is clearly the lowest-cost alternative. The additional capital costs associated 18 with the WFGD modification project are more than offset by the higher O&M or fuel 19 costs associated with the other alternatives.

Table 8 - Project 37: 30-Year Analysis (PVRR, 2016-2045, \$M, 2016 Dollars)

	Capital	O&M	Fuel	Total	Difference
Alternative	Cost	Impact	Impact	PVRR	from Best
Modify Ghent 2 FGD	8.8	0.0	0.0	8.8	0.0
Reagent	1.8	20.6	0.0	22.4	13.6
Burn Lower Sulfur Coal	0.0	0.0	174.4	174.4	165.6

- 2 Q. What are the results of your analysis after comparing the Ghent 2 WFGD
- 3 modification to the "Do Nothing" alternative?
- 4 A. The results of this analysis are summarized in Table 9. Modifying the Ghent 2
- 5 WFGD is the lowest reasonable cost alternative for complying with the MATS HCl
- 6 limits.

7

9

10

11

12

13

14

15

16

1

Table 9 – Project 37 Results (PVRR, 2016-2021, \$M, 2016 Dollars)

Gas Price	Alternative	System Production Costs	ECR Project Costs	Total	Diff from Best
Low	Do Nothing	4,942	0	4,942	37
Low	Modify Ghent 2 WFGD	4,896	8.8	4,905	0
Mid	Do Nothing	5,050	0	5,050	48
MIG	Modify Ghent 2 WFGD	4,993	8.8	5,002	0
High	Do Nothing	5,208	0	5,208	68
riigii	Modify Ghent 2 WFGD	5,131	8.8	5,140	0

8 Q. Describe Project 38.

A. Each of the four Ghent units uses a baghouse and powdered activated carbon ("PAC") to reduce mercury to comply with MATS. As a supplemental alternative to using PAC for capturing mercury in the baghouse, coal and FGD additives can be used to capture mercury in the station's gypsum. This alternative approach would require a \$10 million investment in supplemental equipment to store and inject the additives ("mercury control injection system"). Based on the Companies' experience at the Trimble County Station, the cost of these additives is lower than the cost of PAC.

Q. How did you analyze the economics of Project 38?

1

8

9

10

11

12

13

14

15

A. Based on the Companies' test results at Trimble County Unit 1, the cost of the coal and FGD additives for mercury control will be approximately \$0.30/MWh lower than the cost of PAC. The analysis compared the capital investment required to implement this lower O&M cost solution to the continued cost of PAC.

6 Q. Based on a \$0.30/MWh lower cost compared to PAC, what is the result of your analysis?

A. As seen below in Table 10, the O&M savings associated with the coal and FGD additives more than offset the revenue requirements associated with the cost of the mercury control injection system. Making the capital investment to enable the use of coal and FGD additives reduces revenue requirements by approximately \$7 million over the 2016-2021 period. The payback period for the project is approximately three to five years.

Table 10 - Mercury Control System (PVRR of Costs Incurred from 2016 to 2021, \$M, 2016 Dollars)

		Payback Period
	PVRR (\$M)	(years)
Ghent 1	(1.6)	3.9
Ghent 2	(1.0)	4.6
Ghent 3	(1.8)	3.8
Ghent 4	(2.3)	3.0
Total	(6.7)	

16 Q. Please describe Project 40.

A. For the purposes of the analysis, KU assumed that (a) the Gypsum Stack, Secondary
Pond, and Reclaim Pond must be cleaned and closed and (b) Ash Treatment Basin #1
and Ash Treatment Basin #2 must be capped and closed to comply with the CCR

Rule. Based on that assumption, it would be necessary to install a new process-water
system at Ghent. Project 40 includes the costs associated with these activities.

3 Q. How did you evaluate the costs of Project 40?

7

A. KU evaluated the costs of Project 40 along with the costs of Projects 37 and 38. The alternative to each of these projects is retiring the Ghent units in 2019 and replacing the capacity. Table 11 contains a summary of the costs in Projects 37, 38, and 40.

Table 11 – Ghent ECR Project Costs (\$M, As-Spent Dollars)

	2015	2016	2017	2018	2019	2020	2021	2022	Total
Closure Construction									
ATB #1 Capping	1.0	3.3	4.0	1.3	6.2	5.4	25.9	22.3	69.5
ATB #2 Capping	0.0	6.7	10.3	9.8	7.0	21.5	26.5	11.1	92.9
Gypsum Stack	0.0	8.3	20.7	16.2	23.7	9.9	0.0	0.0	78.7
Secondary Pond Cleanout	0.0	0.4	0.3	0.6	2.1	0.0	0.0	0.0	3.4
Reclaim Pond Cleanout	0.0	0.5	0.5	0.3	2.8	0.6	0.6	0.0	5.4
Total Closure Construction	1.0	19.2	35.8	28.3	41.7	37.4	53.0	33.4	249.9
Process-Water System	0.0	15.3	48.0	50.9	0.0	0.0	0.0	0.0	114.3
Total CCR Ruling									
Compliance	1.0	34.6	83.9	79.2	41.7	37.4	53.0	33.4	364.2
WFGD Modifications	1.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0
Mercury Control System	0.1	10.0	0.0	0.0	0.0	0.0	0.0	0.0	10.1
				_	_	_			
Total Ghent ECR Projects	2.1	50.5	83.9	79.2	41.7	37.4	53.0	33.4	381.2

8 Q. What are the results of your analysis?

9 A. The results of the analysis are summarized in Table 12. Each alternative was
10 evaluated over three gas price scenarios. Compared to the retirement alternative, the
11 PVRR associated with operating the Ghent units with the proposed capital projects
12 through 2021 is \$278 million to \$574 million lower. In other words, even if the
13 Ghent units are assumed to cease operation after 2021, the proposed capital projects
14 are the lowest reasonable cost.

Table 12 – Ghent Retirement Analysis (PVRR, 2016-2021, \$M, 2016 Dollars)*

			Other	ECR	Replace- ment		
Gas		Production	Capital	Project	Capacity		
Price	Alternative	Costs	and FOM	Costs	Costs	Total	
	Retirement	4,896	271	232	683	6,082	
Low	Operate through 2021	4,896	523	386	0	5,805	
LOW	Operate through 2021	(0)	252	154	(683)	(278)	
	Less Retire in 2019	(0)	232	154	(003)	(276)	
	Retirement	5,116	271	232	683	6,303	
Mid	Operate through 2021	4,993	523	386	0	5,903	
IVIIG	Operate through 2021 Less Retire in 2019	(123)	252	154	(683)	(400)	
	Retirement	5,428	271	232	683	6,614	
High	Operate through 2021	5,131	523	386	0	6,040	
Tiigii	Operate through 2021 Less Retire in 2019	(297)	252	154	(683)	(574)	

^{*}The WFGD modifications, mercury control system, and process-water systems in the 2016 Plan are included in the "Operate through 2021" alternative.

Trimble County Project

- 5 Q. What projects are included in the 2016 Plan for Trimble County?
- 6 A. The 2016 Plan includes the following project for the Trimble County Station:
- Project 41 CCR Rule Compliance Construction and Construction of New
 Process-Water Systems for Trimble County
- 9 Q. Please describe Project 41.

1

2

3

4

- 10 A. For the purposes of the analysis, KU assumed that the cap and closure of the Trimble
 11 County surface impoundments must begin by 2019. Based on that assumption, it
 12 would be necessary to install a new process-water system at Trimble County. KU
 13 Project 41 and LG&E Project 30 include the costs associated with these activities.
- 14 Q. How did you analyze KU Project 41 and LG&E Project 30?

- 1 A. The Companies evaluated the costs of these projects along with the cost of LG&E
- 2 Project 28 over a 30-year analysis period. Table 13 contains a summary of the
- 3 Trimble County ECR project costs.

4 Table 13 – Trimble County ECR Project Costs (\$M, As-Spent Dollars,

5 Reflecting Companies' 75% Ownership Share)

rediceting companies	70 70 6 Whership Share)									
	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Cap and Closure										
Ash Pond	1.7	1.0	2.2	6.8	7.7	20.1	15.3	24.8	22.1	101.7
Gypsum Pond	0.0	0.9	1.4	2.9	16.4	7.3	0.0	0.0	0.0	28.9
Total Cap and Closure	1.7	1.9	3.6	9.7	24.1	27.4	15.3	24.8	22.1	130.6
Process-Water System	0.0	0.0	43.7	45.0	0.0	0.0	0.0	0.0	0.0	88.7
Total CCR Ruling Compliance	1.7	1.9	47.3	54.8	24.1	27.4	15.3	24.8	22.1	219.4
Mercury Control System	0.02	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
Total Trimble County ECR Projects	1.7	2.5	47.3	54.8	24.1	27.4	15.3	24.8	22.1	219.9

- 6 Q. What alternatives did you consider in your analysis of the Trimble County
 7 projects?
- 8 A. The Companies evaluated the following alternatives:
- 9 1. Continue operating the Trimble County coal units ("Long Term Operation").
- 10 2. Retire the Trimble County coal units in 2019 and replace the capacity ("Retire TC Coal Units").
- 3. Convert the Trimble County coal units to operate on natural gas ("Natural GasConversion").
- Q. What costs did you assume for the Trimble County landfill and ELG compliance in the alternative to continue operating the Trimble County coal units?
- 16 A. Over the 30-year analysis period, the analysis includes \$414 million for the Trimble
 17 County landfill and \$143 million for ELG compliance. Both values are quoted in as-

spent dollars. A complete summary of cost assumptions for the 30-year analysis is included in Appendix A of Exhibit CRS-3.

Q. What are the results of your analysis?

A. The results of the analysis are summarized in Table 14. Each alternative was evaluated over three gas price scenarios. Clearly, continuing to operating the Trimble County coal units with the proposed investments is least-cost. The PVRR of continuing to operate the Trimble County coal units is \$495 million to \$2.9 billion favorable to retiring the units and replacing the capacity. Furthermore, even with no cost included for the modifying the Trimble County burners and building a new gas pipeline, continuing to operate the Trimble County coal units is \$478 million to \$4.0 billion favorable to converting the units to burn natural gas.

Table 14 – Trimble County Retirement Analysis Results (PVRR, 2016-2045, \$M, Reflecting Companies' 75% Ownership Share, 2016 Dollars)*

		System	Landfill	Other Capital	ECR	Replace- ment			NG		Diff
Gas Price	Alternative	Prod Costs	and CCRT	and FOM	Project Costs	Capacity Costs	NGCC Capital	NGCC FOM		Total	from Best
	Long Term Operation	2,692	367	1,229	210	0	0	0	0	4,499	0
Low	Retire TC Coal Units	2,946	116	141	116	367	944	364	0	4,994	495
	Natural Gas Conversion	3,796	116	949	116	0	0	0	0	4,976	478
	Long Term Operation	2,692	367	1,229	210	0	0	0	0	4,499	0
Mid	Retire TC Coal Units	4,112	116	141	116	367	944	364	0	6,160	1,661
	Natural Gas Conversion	5,546	116	949	116	0	0	0	0	6,727	2,228
	Long Term Operation	2,692	367	1,229	210	0	0	0	0	4,499	0
High	Retire TC Coal Units	5,312	116	141	116	367	944	364	0	7,360	2,861
	Natural Gas Conversion	7,346	116	949	116	0	0	0	0	8,527	4,028

^{*}The mercury control system and process-water systems in the 2016 Plan are included in the

[&]quot;Long Term Operation" alternative.

Q. How would you assess the uncertainty in CPP and ELG Compliance costs?

A. Because (a) the Trimble County coal units would be the last coal units that the Companies would retire in a CPP compliance plan and (b) the Companies' generating portfolio would over-comply with any interpretation of the CPP if the Companies' Brown, Ghent, and Mill Creek coal units were retired and replaced with renewable or natural gas-fired generation, it is appropriate to assume no cost for Trimble County's CPP compliance when evaluating the retirement of the Trimble County coal units. Therefore, the Companies would associate little to no uncertainty associated with the CPP as it relates specifically to the Trimble County coal units.

As it relates to the ELG, the analysis includes \$143 million for ELG compliance. Even in the Low gas price scenario, if ELG compliance is two to three times this amount, continuing to operating the Trimble County coal units with the proposed investments is least-cost. With a full suite of emissions reduction equipment, the Trimble County coal units are well positioned to operate economically past 2030. It would be difficult to envision the retirement of the Trimble County coal units in the absence of a mandate to retire all coal units.

Q. What is your conclusion about the cost-effectiveness of the projects proposed in KU's 2016 Plan?

A. Based on the Companies' analyses, I conclude the projects KU proposes in its 2016

Plan are economical. I therefore recommend that the Commission approve the proposed projects and KU's requested CPCNs and cost recovery.

VERIFICATION

COMMONWEALTH OF KENTUCKY)	
)	SS:
COUNTY OF JEFFERSON)	

The undersigned, **Charles R. Schram**, being duly sworn, deposes and says that he is Director – Energy Planning, Analysis and Forecasting for LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and that the answers contained therein are true and correct to the best of his information, knowledge and belief.

Charles R. Schram

Michy Schoole (SEAL)
Notary Public

Church Rockram

My Commission Expires:

JUDY SCHOOLER
Notary Public, State at Large, KY
My commission expires July 11, 2018
Notary ID # 512743

APPENDIX A

Charles R. Schram

Director, Energy Planning, Analysis and Forecasting LG&E and KU Services Company 220 West Main Street Louisville, Kentucky 40202 (502) 627-3250

Education

Master of Business Administration University of Louisville, 1995 Bachelor of Science – Electrical Engineering University of Louisville, 1984

E.ON Academy General Management Program: 2002-2003

Center for Creative Leadership, Leadership Development Program: 1998

Professional Experience

LG&E and KU

g 2008 – Present
2006 - 2008
2005 - 2006
2001 - 2005
2000 - 2001
1997 - 2000
1995 – 1997

U.S. Department of Defense – Naval Ordnance Station

Manager, Software Integration	1993 – 1995
Electronics Engineer	1984 - 1993

Analysis of 2016 ECR Projects E.W. Brown Generating Station

Generation Planning & Analysis January 2016

Table of Contents

1	Inti	roduc	tion	3
2	Ana	alysis	Methodology	3
3	Pro	oject 3	6 – Brown Landfill Phase II	4
	3.1	Bac	kground	4
	3.2	Alte	rnatives	5
	3.2	.1	Construct Phase II of Brown Landfill	5
	3.2	2	Transport CCR to Beneficial Use Markets	5
	3.2	3	Transport CCR to Municipal Landfill	6
	3.3	Ana	lysis	6
4 fo		-	2 – CCR Rule Compliance Construction and Construction of New Process-Water Syste	
	4.1	Bac	kground	7
	4.2	Alte	rnatives	7
	4.2	.1	Retire Brown Coal Units in 2019 and Replace Capacity	8
	4.2	.2	Convert the Brown Coal Units to Burn Natural Gas	10
	4.3	Ana	lysis	10
	4.3	.1	Accelerated Recovery	11
5	Coi	nclusio	on	12
6	Арј	pendi	x A – Cost Assumptions	13
	6.1	PPA	Financing Costs	15
7	Δηι	nendi	y R — Other Innuts	16

1 Introduction

The 2016 Environmental Compliance Plan ("2016 Plan") for Kentucky Utilities Company ("KU") includes the following projects for the E.W. Brown Generating Station ("Brown"):

- 1. Project 36 Brown Landfill Phase II
- 2. Project 42 CCR Rule Compliance Construction and Construction of New Process-Water Systems for Brown

Project 36 includes the costs to construct Phase II of the Brown landfill to address Brown's need for additional CCR storage capacity. Project 42 enables Brown to comply with the final federal rule concerning disposal of coal combustion residuals ("CCR") from electric utilities ("CCR Rule") and this analysis includes costs to cap and close the Brown Auxiliary Pond and install a new process-water system at the station. The cap and closure costs are unavoidable, but the new process-water system is required in 2019 to continue operating the Brown coal units. This analysis evaluates Projects 36 and 42 along with alternatives to these projects, and ultimately concludes that constructing Phase II of the Brown landfill along with the new process-water system is (a) the lowest reasonable cost alternative for operating Brown through 2021 and (b) lower cost than retiring the Brown coal units prior to 2021.

2 Analysis Methodology

In October 2015 and November 2015, respectively, the U.S. Environmental Protection Agency ("EPA") published the final versions of the Clean Power Plan ("CPP") and Effluent Limitation Guidelines ("ELG"). Much uncertainty exists regarding the costs to comply with these regulations; KU and its sister utility, Louisville Gas and Electric Company (collectively, "Companies") must comply with the CPP and ELG by 2022 and will continue to work to understand these costs over the next 1-2 years. If the Companies determine that complying with these regulations is more costly than retiring the Brown coal units and replacing their capacity, KU can likely operate the units through 2021 without incurring any CPP and ELG compliance costs.

To avoid speculation regarding CPP and ELG compliance costs, Projects 36 and 42 were evaluated based only on costs incurred and benefits produced through 2021. The analysis period is consistent with the assumed 2022 CPP and ELG compliance timelines. This approach ensures that the investments associated with the proposed projects are lowest reasonable cost even if the Brown units cease to operate after 2021. Revenue requirements for capital costs incurred through 2021 extend through the remaining book life of the generating unit. These revenue requirements are included in the calculation of the present value of revenue requirements ("PVRR") to ensure that the full impact of any capital costs incurred through 2021 is considered in determining whether the proposed projects are economical for operation of the units through 2021. In addition, the retirement alternatives considered in this analysis accelerate the need for transmission system upgrades that are currently planned for implementation after 2021. The analysis captures the impact of accelerating these projects.

It is important to note that choosing this analytical approach does not reflect a decision to retire the Brown coal units or any judgment on the likelihood of retiring the units. Instead, the Companies have adopted this analytical methodology to eliminate any potential concerns due to the uncertainty associated with the CPP and ELG rules and their cost, as well as any other future environmental regulations not yet promulgated.

Each of the projects at Brown is supported with a separate economic analysis and is discussed in the following sections.

3 Project 36 – Brown Landfill Phase II

3.1 Background

Brown has three coal-fired generating units with a combined summer net generating capacity of 679 megawatts. From 2012 to 2014, the Brown coal units operated at a 44 percent capacity factor and produced an average of 331 thousand tons of CCR per year. In 2015, with lower gas prices and the addition of the Cane Run 7 natural gas combined cycle ("NGCC") unit in June 2015, the Brown coal units operated at a 34 percent capacity factor and produced approximately 280 thousand tons of CCR. Based on the forecast for continued low natural gas prices and year-round Cane Run 7 operation, the Brown coal units on average are forecast to operate at a 25 percent capacity factor and produce 198 thousand tons of CCR annually from 2016 to 2021. Table 1 contains the most recent forecast of CCR production for Brown.

Table 1 – Brown CCR Forecast (Mid Gas Price Scenario)

							Annual	Total
	2016	2017	2018	2019	2020	2021	Average	2016-2021
CCR Production (thousand tons)	169	182	198	214	194	230	198	1,186
CCR Production (thousand cubic yards)	143	154	169	180	162	193	167	1,002

Brown currently has two CCR storage facilities (the Auxiliary Pond and the new special waste Landfill). All CCR from the Brown coal units is currently stored in the Auxiliary Pond. When Phase I of the special waste landfill goes into service later this year, fly ash from Brown Unit 3 as well as bottom ash and gypsum from all three Brown coal units will be stored in it. Because Brown Units 1 and 2 do not have dry handling systems for their fly ash, fly ash from Brown Units 1 and 2 will continue to be sluiced to the Auxiliary Pond. In addition to storing CCR from Brown Units 1 and 2, the Auxiliary Pond serves as a process-water system for all three of the Brown coal units.

When the special waste landfill was permitted, the Kentucky Division of Waste Management included a restriction in the landfill permit that limits the elevation difference between landfill phases to ten feet. As a result, the station can only store up to ten feet of CCR in phase I of the landfill before additional CCR storage is needed to continue operating the Brown coal units. Ten feet of CCR storage capacity equates to approximately 540 thousand cubic yards of capacity.

Table 2 contains a detailed summary of the Brown CCR forecast through 2021. Based on the cumulative total of CCR stored in the landfill, the capacity of phase 1 will be depleted in 2019. To account for potential construction delays, KU is seeking authorization to construct phase II of the landfill by 2018. Ten feet of CCR storage capacity in phase II of the landfill will create approximately 490 thousand cubic yards of capacity.

¹ The capacity of phase 1 of the landfill is 540 thousand cubic yards; the cumulative total of CCR stored in the landfill through 2019 is 613 thousand cubic yards.

able 2 – Detailed Brown CCR Forecast (Mid Gas Frice Scenario, Tribusand Cubic Farus)							
							Total
	2016	2017	2018	2019	2020	2021	2016-2021
Auxiliary Pond							
Brown 1-2 Fly Ash	16	17	20	0	0	0	53
Cumulative Total	16	33	53	53	53	53	53
Landfill							
Brown 1-2 Fly Ash	0	0	0	20	20	23	64
Brown 3 Fly Ash	24	26	34	35	29	36	185
Brown 1-3 Bottom Ash	9	9	11	12	11	13	65
Brown 1-3 Gypsum	94	102	103	113	102	121	635
Annual Total	127	137	149	180	162	193	949
Cumulative Total	127	264	413	593	756	949	949
Total CCR	143	154	169	180	162	193	1,002

Table 2 - Detailed Brown CCR Forecast (Mid Gas Price Scenario, Thousand Cubic Yards)

3.2 Alternatives

KU considered several alternatives for complying with the CCR Rule and addressing the need for additional CCR storage capacity at Brown. Each of these alternatives is discussed in the following sections.

3.2.1 Construct Phase II of Brown Landfill

The Brown landfill design includes three phases. Due to the restriction in KU's landfill permit that limits the elevation difference between landfill phases to ten feet, the capacity of phase II of the landfill is approximately 490 thousand cubic yards. The total cost of phase II of the landfill in as-spent dollars is \$11.7 million. The assumed cost to store CCR in the landfill is in 2016 dollars. Phase II of the landfill will provide CCR storage capacity through 2021.²

3.2.2 Transport CCR to Beneficial Use Markets

KU considered transporting CCR to beneficial use markets as an alternative to building additional on-site landfill capacity. To eliminate the need for additional on-site landfill capacity through 2021, KU would have to transport offsite at least 600 thousand tons (approximately 500 thousand cubic yards) of Brown's CCR. For the following reasons, transporting Brown's CCR to beneficial use markets is not currently a viable option.

Brown fly ash and bottom ash have unburned carbon levels, measured as loss on ignition
("LOI"), that exceed beneficial use market limits. Beneficial use markets for fly ash and bottom
ash have an LOI limit of two to four percent compared to the Brown LOI level of approximately

² Note that Phases I and II of the Brown landfill will provide significant additional CCR disposal capacity if Phase III of the landfill is built (as KU currently expects it will be). When all three phases are in operation, the 10-footheight-differential limitation in the landfill's sold-waste permit will no longer constrain the total amount of CCR KU can place in the landfill; instead, KU will be able to fill each phase within the 10-foot limit, then place additional CCR in an adjoining phase to the 10-foot limit, and continue that pattern sequentially without additional landfill construction until the entire landfill reaches capacity.

- eight percent. Given the availability of fly ash and bottom ash from other sources with acceptable LOI levels, Brown's fly ash and bottom ash are not currently marketable.³
- Gypsum moisture levels exceed beneficial use market limits. A key factor in determining the
 marketability of gypsum is its moisture content. The gypsum moisture content at Brown is 15%,
 but it must be less than 10% to be marketable.⁴ Given the availability of gypsum from other
 sources with acceptable levels of moisture, Brown's higher-moisture gypsum is not currently
 marketable.
- Brown is farther from known beneficial-use opportunities and does not have access to barge transportation. The Companies' other stations are closer to beneficial-use opportunities and have access to barge transportation. Even if KU installed equipment to address the LOI levels and gypsum moisture content issues, the marketability of the station's CCR would be limited by transportation logistics (related to the inability to barge CCR) and high transportation costs to beneficial use markets.

3.2.3 Transport CCR to Municipal Landfill

As a second alternative to building additional on-site landfill capacity, KU considered trucking CCR to a municipal landfill. The nearest municipal landfill to Brown is approximately 29 miles from the station. KU does not have a negotiated contract for storing CCR in a municipal landfill. Instead, for the purpose of this analysis, the total cost of the municipal landfill tipping fee along with the associated CCR handling and transportation costs is assumed to be \$38.21/ton. This cost was the assumed cost of trucking CCR a shorter distance (about 14 miles) from the Trimble County Station to the Valley View Municipal Solid Waste Landfill in Case No. 2015-000194. To eliminate the need through 2021 for additional on-site landfill capacity, KU would have to transport offsite at least 600 thousand tons (500 thousand cubic yards) of Brown's CCR.

3.3 Analysis

The present value of revenue requirements ("PVRR") for constructing phase II of the Brown landfill ("Landfill Phase II") and transporting CCR to a municipal landfill ("Municipal Landfill") are summarized in Table 3.⁵ The capital PVRR value for phase II of the landfill includes the entire stream of capital revenue requirements, which extends through the remaining book life of Brown 3 (23 years). The PVRR values for CCR handing costs include CCR handling costs for each alternative through 2021.

Gas			CCR Handling		Difference from
Price	Alternative	Capital	Costs	Total	Best
Low	Landfill Phase II	13.8	5.9	19.7	0.0
	Municipal Landfill	0.0	23.8	23.8	4.2
Mid	Landfill Phase II	13.8	6.7	20.4	0.0
	Municipal Landfill	0.0	25.0	25.0	4.5
High	Landfill Phase II	13.8	7.8	21.6	0.0
	Municipal Landfill	0.0	26.1	26.1	4.5

³ LOI at the Companies' Mill Creek, Trimble County, and Ghent stations is in the two to four percent range.

⁴ Lower moisture contents reduce the cost of processing the gypsum for beneficial use.

⁵ The alternative to transport CCR to beneficial use markets is excluded because it is not a viable alternative.

CONFIDENTIAL INFORMATION REDACTED

Compared to transporting CCR to a municipal landfill, constructing phase II of the Brown landfill is lower cost. The cost to transport CCR to a municipal landfill along with the associated tipping fee would have to drop below before the municipal landfill alternative would be lower cost.

4 Project 42 – CCR Rule Compliance Construction and Construction of New Process-Water Systems for Brown

4.1 Background

In April 2015, the U.S. Environmental Protection Agency ("EPA") issued the final CCR Rule. To comply with this rule, the analysis assumes KU will have to construct a new process-water system for the station by 2019 and begin cap and closure activities at the Brown Auxiliary Pond in the same year under Project 42. Whatever KU ultimately must do to comply with the CCR Rule, the costs of such compliance will be unavoidable; retiring the coal units at Brown—even retiring them today—would not allow KU to avoid those costs. However, the new process-water system is required only if the Brown coal units continue to operate past 2018. Table 4 summarizes the Project 42 costs along with the costs of phase II of the landfill.

Table 4 – Brown ECR Project Costs (\$M, As-Spent Dollars)

	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Cap and Closure	0.0	0.5	0.7	0.5	3.8	3.4	3.6	9.9	10.2	32.7
Process-Water System	0.0	0.5	33.0	35.1	0.0	0.0	0.0	0.0	0.0	68.6
Total CCR Ruling Compliance	0.0	1.0	33.7	35.6	3.8	3.4	3.6	9.9	10.2	101.3
Landfill Phase II	0.1	0.0	11.7	0.0	0.0	0.0	0.0	0.0	0.0	11.9
Total Brown ECR Project Costs	0.1	1.0	45.5	35.6	3.8	3.4	3.6	9.9	10.2	113.2

4.2 Alternatives

KU evaluated the following alternatives to constructing the new process-water system and Phase II of the landfill:

- 1. Retire the Brown coal units in 2019 and purchase replacement capacity through 2021 ("Retire in 2019").
- 2. Convert the Brown coal units to operate on natural gas beginning in 2019 and operate on natural gas from 2019 to 2021 ("Natural Gas Conversion").

Both alternatives are compared to a scenario where the Brown coal units are assumed to retire at the beginning of 2022 ("Operate through 2021").⁶ This analytical approach—comparing retiring the coalfired units at the beginning of 2019 versus retiring the units at the beginning of 2022—is a conservative approach to evaluating whether it is economical to proceed with the proposed projects and keep the units operating through the end of 2021. Analyzing the 2016 Plan's long-lived investments over a short timeframe requires the investments to be economical by the end of 2021 (relative to the cost of retiring the units in 2019). In other words, this no-regrets analytical approach ensures that even if KU determines in the next 1-2 years that retiring the units in 2022 is more economical than incurring the

⁶ The 2016-2021 analysis period is consistent with the assumed 2022 CPP and ELG compliance timelines. As stated previously, using this analytical approach is neither a commitment nor a prediction that KU will retire any or all of the coal-fired units at Brown in early 2022 or at any other time.

costs of ELG or CPP compliance, the investments proposed for Brown in the 2016 Plan will have been economical relative to having retired the units in 2019.

A decision to retire the Brown coal units in either 2019 or 2022 would result in reduced maintenance spending in the years prior to retirement. By recognizing this fact, it is important to note that this approach—again, comparing retiring the units in 2019 to retiring the units in 2022—does not undervalue retiring the units in 2019 even though KU is not committing to retire the units in 2022 or later. At first glance, this approach might appear to undervalue the 2019 retirement scenario because the 2022 retirement scenario reduces capital and O&M spending for the units beginning in 2018 as the units prepare for retirement; but if the units do not retire in 2022, presumably KU would continue to make the capital and O&M expenditures necessary for ongoing operations, which would relatively increase the value of retiring the units in 2019. This would be a valid analytical concern if KU were not going to have better information about ELG and CPP compliance options and costs before 2018, when the modeled capital and O&M tapering begins. But KU will indeed have more information about such options and costs by 2018 and will be better positioned to determine whether or when to retire any coal-fired units.

If KU's analyses over the next 1-2 years show that retiring Brown's coal-fired units in early 2022 would be more economical than incurring the costs of ELG and CPP compliance, then KU would be able to begin tapering capital and O&M spending at Brown as this analysis reflects. On the other hand, if KU's analyses over the next 1-2 years show it would be more economical to incur ELG and CPP compliance costs—in addition to ongoing capital and O&M spending at non-tapered levels—to keep the units operating beyond 2021, then KU would seek any necessary Commission approvals for ongoing coal-fired operations. Therefore, this analytical approach is indeed a no-regrets approach.

The "Retire in 2019" and "Natural Gas Conversion" alternatives are discussed further in the following sections. A complete summary of costs for each alternative is included in Appendix A – Cost Assumptions.

4.2.1 Retire Brown Coal Units in 2019 and Replace Capacity

In addition to eliminating all maintenance and operating costs after the units are retired, a decision to retire the Brown coal units would result in reduced maintenance spending in the years prior to retirement. Furthermore, KU would avoid the cost of the process-water system needed to continue operating the coal units.

In the "Retire in 2019" alternative, the Brown coal units (679 MW) are assumed to be retired at the beginning of 2019 and replaced by a three-year power purchase agreement. The analysis evaluated power purchase agreements for two generation portfolios:

- A. Two 201 MW SCCT units (402 MW in total).
- B. One 368 MW NGCC unit and one 201 MW simple cycle combustion turbine ("SCCT") unit (569 MW in total).

The replacement capacity portfolios were developed using resources evaluated in the Companies' 2014 Integrated Resource Plan ("IRP") to minimally comply with the Companies' target reserve margin range (16% to 21%) in 2019 through 2021. This analysis does not account for additional reliability risks and costs associated with operating at a lower reserve margin. In addition, the costs of the IRP resources

were used to develop the cost of the power purchase agreement for each portfolio. Table 5 summarizes the impact of each of the replacement capacity portfolios on the Companies' reserve margin. With the Brown coal units, the Companies' reserve margin in 2019 to 2021 ranges from 19% to 20%. With the SCCT replacement capacity portfolio, the Companies' reserve margin would drop to 15% to 16%. Because (a) the SCCT replacement capacity portfolio causes the Companies' reserve margin to drop below the minimum of the target range and (b) the Brown units produce more energy than SCCT units typically produce, the Companies also evaluated a replacement capacity portfolio consisting of NGCC and SCCT units. With the NGCC and SCCT replacement capacity portfolio, the reserve margin ranges from 18% to 19%.

Table 5 – LG&E/KU Resource Summary (MW)

•	VV)					
	2016	2017	2018	2019	2020	2021
Forecasted Peak Load	7,314	7,395	7,448	7,225	7,244	7,266
Demand Side Management	(366)	(407)	(444)	(481)	(490)	(480)
Net Peak Load	6,948	6,988	7,004	6,744	6,754	6,786
Operate through 2021						
Existing Resources	7,974	7,976	7,986	7,821	7,822	7,823
Firm Purchases (OVEC)	152	152	152	152	152	152
Curtailable Load	136	136	136	136	136	136
Total Supply	8,262	8,264	8,274	8,109	8,110	8,111
Reserve Margin ("RM")	18.9%	18.3%	18.1%	20.2%	20.1%	19.5%
Retire in 2019: SCCT						
Existing Resources	7,974	7,976	7,986	7,821	7,822	7,823
Firm Purchases (OVEC)	152	152	152	152	152	152
Curtailable Load	136	136	136	136	136	136
Brown Units 1-3 Retirement	0	0	0	(679)	(679)	(679)
New SCCT Capacity	0	0	0	402	402	402
Total Supply	8,262	8,264	8,274	7,832	7,833	7,834
Reserve Margin ("RM")	18.9%	18.3%	18.1%	16.1%	16.0%	15.4%
Retire in 2019: NGCC/SCCT						
Existing Resources	7,974	7,976	7,986	7,821	7,822	7,823
Firm Purchases (OVEC)	152	152	152	152	152	152
Curtailable Load	136	136	136	136	136	136
Brown Units 1-3 Retirement	0	0	0	(679)	(679)	(679)
New NGCC/SCCT Capacity	0	0	0	569	569	569
Total Supply	8,262	8,264	8,274	7,999	8,000	8,001
Reserve Margin ("RM")	18.9%	18.3%	18.1%	18.6%	18.4%	17.9%

-

⁷ The 368 MW NGCC unit evaluated in the IRP is a G- or H-class NGCC unit with a 1x1 configuration. The 201 MW SCCT unit is an F-class SCCT unit. Additional information regarding replacement capacity costs is included in Appendix A – Cost Assumptions.

Because replacement capacity cannot be constructed at Brown by 2019, this alternative includes an estimated \$62 million in transmission system upgrades to maintain grid stability and reliability; as currently configured, having significant generating capacity available at Brown is vital to maintaining grid stability and reliability in central Kentucky, so significant transmission upgrades would be necessary if the coal units were retired without replacement generation at the Brown site. Approximately \$24 million of the transmission system upgrade cost is for projects that are currently planned for implementation after 2021 with the assumption that generating capacity will remain at the Brown station; a decision to retire the Brown units in 2019 and purchase replacement capacity would accelerate the need for these projects. The analysis captures the impact of accelerating these projects.

4.2.2 Convert the Brown Coal Units to Burn Natural Gas

KU can avoid constructing phase II of the landfill by converting the Brown coal units to burn natural gas instead of coal. This project would require burner modifications to the units as well as an additional 12-mile natural gas pipeline from the TETCO and Tennessee pipelines to the station. In 2013, Black and Veatch estimated the cost of converting Brown Units 1 and 2 to burn natural gas to be \$120 million (in 2013 dollars). The estimated cost of converting all three coal units is estimated to be \$146 million (in 2013 dollars). The analysis assumes the efficiency of the units would be unchanged.

4.3 Analysis

The results of this analysis are summarized in Table 6. Each alternative was evaluated over three gas price scenarios. Constructing the projects that will enable the Brown units to operate through 2021 is \$153 million favorable to \$5 million unfavorable to retiring the units in 2019 or converting the units to burn natural gas. Operating the Brown coal units at least through 2021 is least cost in eleven of the twelve results. In the Low gas price scenario, the PVRR of the "Operate through 2021" alternative is only \$5 million higher than the alternative where the Brown coal units are replaced with 402 MW of SCCT capacity. In all gas price scenarios, the "Natural Gas Conversion" alternative has the highest PVRR. 9

⁸ Tables of the gas prices and financial inputs are included in Appendix B – Other Inputs.

⁹ The cost of the "Natural Gas Conversion" alternative includes \$35 million for a natural gas pipeline that would be needed if the Brown coal units were replaced by NGCC capacity. If this cost is included in 2022 in the other alternatives, the PVRR of the "Natural Gas Conversion" alternative becomes \$32 million less unfavorable in all gas price scenarios.

Table 6 – Brown Analysis Results (PVRR of Costs Incurred from 2016 to 2021, \$M, 2016 Dollars)¹⁰

	O - BIOWII Allaly:	System	Other	ECR	Replacement	, ,	Trans.		Diff
Gas		Production	Capital	Project	Capacity	NG	System		from
Price	Alternative	Costs	and FOM	Costs	Costs	Conversion	Upgrade	Total	Best
	Operate through 2021	4,896	204	105	0	0	17	5,222	5
Low	Retire in 2019: NGCC/SCCT	4,876	114	13	216	0	57	5,276	58
LOW	Retire in 2019: SCCT	4,913	114	13	120	0	57	5,217	0
	Natural Gas Conversion	4,902	201	13	0	172	17	5,306	88
	Operate through 2021	4,993	204	105	0	0	17	5,320	0
Mid	Retire in 2019: NGCC/SCCT	4,996	114	13	216	0	57	5,396	76
IVIIG	Retire in 2019: SCCT	5,031	114	13	120	0	57	5,335	16
	Natural Gas Conversion	5,024	201	13	0	172	17	5,427	108
	Operate through 2021	5,131	204	105	0	0	17	5,457	0
High	Retire in 2019: NGCC/SCCT	5,176	114	13	216	0	57	5,576	119
Tilgil	Retire in 2019: SCCT	5,210	114	13	120	0	57	5,514	57
	Natural Gas Conversion	5,207	201	13	0	172	17	5,610	153

4.3.1 Accelerated Recovery

Because the PVRRs of the "Operate through 2021" and "Retire in 2019: SCCT" alternatives are comparable in the Low gas price scenario, KU also evaluated the "Operate through 2021" alternative with the assumption that the costs for the process-water system and phase II of the landfill would be recovered over three years instead of the remaining book life of Brown 3 (23 years). The results of this analysis are summarized in Table 8. The assumed book life of a project has very little impact on the project's PVRR. When the cost of the process-water system and phase II of the landfill are assumed to be recovered over three years, the PVRR difference between the "Operate through 2021" and "Retire in 2019: SCCT" alternatives remains small.

¹⁰ A decision to retire the Brown units in 2019 and purchase replacement capacity would accelerate the need for transmission system upgrades that are currently planned for implementation after 2021. The analysis captures the impact of accelerating these projects.

Table 7 – Brown Analysis Results (PVRR of Costs Incurred from 2016 to 2021, \$M, 2016 Dollars, 3 Year Book Life for Process-Water Systems and Phase II Landfill)¹¹

	Life for Process-v	System	Other	ECR	Replacement		Trans.		Diff
Gas		Production	Capital	Project	Capacity	NG	System		from
Price	Alternative	Costs	and FOM	Costs	Costs	Conversion	Upgrade	Total	Best
Low	Operate through 2021	4,896	204	106	0	0	17	5,223	6
	Retire in 2019: NGCC/SCCT	4,876	114	13	216	0	57	5,276	58
	Retire in 2019: SCCT	4,913	114	13	120	0	57	5,217	0
	Natural Gas Conversion	4,902	201	13	0	174	17	5,308	90
Mid	Operate through 2021	4,993	204	106	0	0	17	5,321	0
	Retire in 2019: NGCC/SCCT	4,996	114	13	216	0	57	5,396	75
	Retire in 2019: SCCT	5,031	114	13	120	0	57	5,335	14
	Natural Gas Conversion	5,024	201	13	0	174	17	5,429	109
High	Operate through 2021	5,131	204	106	0	0	17	5,458	0
	Retire in 2019: NGCC/SCCT	5,176	114	13	216	0	57	5,576	118
	Retire in 2019: SCCT	5,210	114	13	120	0	57	5,514	55
	Natural Gas Conversion	5,207	201	13	0	174	17	5,612	154

5 Conclusion

The analyses summarized in Sections 3 and 4 result in the following conclusions:

- 1. Even if the Brown coal units cease operation after 2021, constructing phase II of the landfill is lower cost than transporting CCR to a municipal landfill.
- 2. Even if the Brown coal units cease operation after 2021, constructing phase II of the landfill along with the process water system is the lowest reasonable cost alternative. The fact that only a single scenario for replacement of the units in 2019 is comparable to operating through 2021 is not compelling economic evidence that the retire/replace alternative is preferable. Furthermore, from a reliability perspective, customers are better served with the Brown units versus the risk of finding replacement capacity. It is not clear that 400+ MW of capacity and import transmission will be available to ensure reliability.

¹¹ A decision to retire the Brown units in 2019 and purchase replacement capacity would accelerate the need for transmission system upgrades that are currently planned for implementation after 2021. The analysis captures the impact of accelerating these projects.

6 Appendix A – Cost Assumptions

Table 8 – Capital and Fixed O&M Assumptions for Brown Analysis (\$M, As-Spent Dollars)

	2016	2017	2018	2019	2020	2021	Total
2016 Plan with Updated ECR Costs							
Coal Unit Fixed O&M	29	28	35	31	38	32	193
Ongoing Capital	20	5	14	12	21	9	81
Cap and Closure Costs	1	1	0	4	3	4	13
Process-Water System	1	33	35	0	0	0	69
Landfill Phases II and III	0	12	0	16	0	0	28
ELG Costs	2	0	8	51	40	42	143
Total	52	78	92	115	102	86	526
Operate through 2021							
Coal Unit Fixed O&M ¹²	29	20	21	20	21	20	170
Ongoing Capital ¹²		28 5	31 7	30	31 5	30	178
Cap and Closure Costs	20 1	1	0	4	3	4	42 13
Process-Water System	1	33	35	0	0	0	69
Landfill Phase II	0	12	0	0	0	0	12
ELG Costs	2	0	0	0	0	0	2
Total	52	78	74	36	40	35	315
Total	32	76	74	30	40	33	313
Retire in 2019: SCCT							
Coal Unit Fixed O&M ¹²	29	27	29	1	0	0	86
Ongoing Capital ¹²	20	1	3	0	0	0	25
Cap and Closure Costs	1	1	0	4	3	4	13
Process-Water System	0	0	0	0	0	0	0
Landfill Phase II	0	0	0	0	0	0	0
Replacement Capacity Cost ¹³	0	0	0	49	50	50	149
ELG Costs	2	0	0	0	0	0	2
Transmission Upgrades	0	0	0	35	10	17	62
Total	51	29	33	89	63	71	336
Retire in 2019: NGCC/SCCT							
Coal Unit Fixed O&M ¹²	29	27	29	1	0	0	86
Ongoing Capital ¹²	20	1	3	0	0	0	25
Cap and Closure Costs	1	1	0	4	3	4	13
Process-Water System	0	0	0	0	0	0	0
Landfill Phase II	0	0	0	0	0	0	0
Replacement Capacity Cost ¹³	0	0	0	88	89	90	267
ELG Costs	2	0	0	0	0	0	2
Transmission Upgrades	0	0	0	35	10	17	62
Total	51	29	33	129	102	111	454

 $^{^{12}}$ Reduced capital and O&M expenditures in the years leading up to a unit's retirement are consistent with the Companies' recent experience at the Cane Run Generating Station.

¹³ See Table 10 for a summary of the costs included in Replacement Capacity Cost.

CONFIDENTIAL INFORMATION REDACTED

	2016	2017	2018	2019	2020	2021	Total
Natural Gas Conversion							
Coal Unit Fixed O&M	29	28	31	28	30	28	174
Ongoing Capital	20	5	7	3	5	2	42
Cap and Closure Costs	1	1	0	4	3	4	13
Process-Water System	0	0	0	0	0	0	0
Landfill Phase II	0	0	0	0	0	0	0
New Pipeline and Burner Mods	0	0	0	164	0	0	164
ELG Costs	2	0	0	0	0	0	2
Total	51	34	38	199	38	34	395

Table 9 – Transmission Costs (\$M)

	Operate through	Retire in 2019:	Retire in 2019:	Natural Gas
Year	2021	SCCT	NGCC/SCCT	Conversion
2016	0	0	0	0
2017	0	0	0	0
2018	0	0	0	0
2019	0	35	35	0
2020	0	10	10	0
2021	0	17	17	0
2022	8	0	0	8
2023	8	0	0	8
2024	0	0	0	0
2025	0	0	0	0
2026	4	0	0	4
2027	3	0	0	3
2028	0	0	0	0
2029	1	0	0	1
Total	24	62	62	24

Table 10 – Replacement Capacity Costs

Cost Item	1x1 NGCC	SCCT
Replacement Capacity (\$/kW, 2013 Dollars) ¹⁴		
Average Annual Capacity (MW)	398	211
Fixed Charge Rate	9.5%	9.2%
Book Life (Years)	40	30
Fixed O&M (\$/kW-year, 2013 Dollars)		
Firm Gas Transport (\$/kW-year, 2013 Dollars) ¹⁵	20.3	20.7
Firm Transmission Service (\$/kW-year, 2015 Dollars) ¹⁶	22.5	22.5
Escalation Rate	2.0%	2.0%

¹⁴ Replacement capacity costs reflect capacity costs from the Companies' 2014 Integrated Resource Plan.

 $^{^{15}}$ Firm gas transportation costs were taken from the 2014 Integrated Resource Plan and are based on the firm gas transportation rates for Cane Run 7.

¹⁶ PJM tariff for firm transmission service, effective June 1, 2015.

6.1 PPA Financing Costs

When rating agencies assess a utility's debt rating, they impute debt on the utility's balance sheet to reflect the fixed financial obligations associated with PPAs. As a result, when utilities enter into a PPA, they must increase the equity share of their capital structure to offset the imputed debt and maintain their debt rating.¹⁷

To calculate the amount of imputed debt, rating agencies compute the net present value ("NPV") of future fixed payments associated with the PPA (e.g., capacity payments) using a discount rate equivalent to the company's average cost of debt. Then, a risk factor is applied to reflect the benefits of regulatory or legislative cost recovery mechanisms. In the Companies' business environment, where regulators use a utility's rate case to establish base rates that provide for the recovery of the fixed costs created by PPAs, a risk factor of 50% is applied to the NPV. This product is then multiplied by the utilities' target share of debt financing to calculate the amount of imputed debt associated with a PPA. This process is consistent with the process used to address capitalization issues in the Companies' last rate case before the KPSC.

¹⁷ A utility's debt rating is a function of its capital structure.

¹⁸ A complete summary of the methodology Standard & Poor's uses to calculate imputed debt for U.S. utilities' PPAs is available at http://www.psc.utah.gov/utilities/electric/09docs/0903523/062309ExhibitE.pdf.

7 Appendix B – Other Inputs

The Henry Hub ("HH") natural gas price scenarios considered in this analysis are listed in Table 11. The Mid natural gas price forecast is based on market prices for the short term and the Energy Information Administration's ("EIA") 2015 Annual Energy Outlook ("AEO") for the long term. Prices in 2016-2017 were taken from the Companies' 2016 Business Plan and reflect NYMEX HH monthly forward prices as of 6/18/2015. Prices in 2018-2020 reflect a blend of market prices and a midpoint average curve between the annual HH prices from two EIA AEO 2015 scenarios: "High Oil Price" (a proxy for high gas price) and "High Oil and Gas Resource" (a proxy for low gas price). Blending is 75% market in 2018, 50% market in 2019, and 25% market in 2020. Prices in 2021 reflect the midpoint average curve between the annual HH prices from the "High Oil Price" and "High Oil-Gas Resource" scenarios. Monthly prices after 2017 are calculated using average monthly shape indices derived from the market forwards for 2016-2020. The Low natural gas price forecast is based on EIA's 2015 AEO "High Oil and Gas Resource" scenario. To maintain a consistent spread between the Low and Mid natural gas price scenarios, years 2016-2018 in the Low scenario were adjusted to reflect the 2019 percentage difference between the Low and Mid scenarios. The High natural gas price forecast is based on EIA's 2015 AEO "High Oil Price" scenario.

Table 11 - Natural Gas Prices (Nominal Henry Hub \$/MMBtu)

Year	Low	Mid	High
2016	2.93	3.17	3.53
2017	3.08	3.34	3.89
2018	3.27	3.54	4.30
2019	3.49	3.78	4.67
2020	3.51	4.16	5.18
2021	3.69	4.72	5.76

Table 12 - Financial Inputs

Input	Value
Return on Equity	10.0%
Cost of Debt	4.21%
Capital Structure	
Debt	47.0%
Equity	53.0%
Tax Rate	38.9%
Revenue Requirement Discount Rate	6.51%

¹⁹ The EIA's 2015 AEO was published in April 2015. For the AEO data tables, see http://www.eia.gov/oiaf/aeo/tablebrowser/#release=AEO2015&subject=0-AEO2015&table=1-AEO2015®ion=0-0&cases=ref2015-d021915a. For the AEO report, see http://www.eia.gov/forecasts/aeo/.

Analysis of 2016 ECR Projects Ghent Generating Station

Generation Planning & Analysis January 2016

Table of Contents

1	Intr	oduc	tion	3
2	Ana	alysis	Methodology	3
3	Pro	ject 3	37 – WFGD Improvements at Ghent 2	4
	3.1	Вас	kground	4
	3.2	Alte	ernatives	5
	3.2.	.1	Do Nothing (Comply Using Dispatch Modifications Only)	5
	3.2.	.2	Modify the Ghent 2 WFGD to Improve Its SO ₂ Removal Rate	5
	3.2.	.3	Use Reagent to Improve SO ₂ Removal Rate	6
	3.2.	.4	Burn Lower Sulfur Coal in Ghent 2	6
	3.3	Ana	llysis	6
4	Pro	ject 3	8 – Supplemental Mercury Control Injection Systems at Ghent 1-4	9
	4.1	Вас	kground	9
	4.2	Ana	llysis	10
5	Pro	ject 4	0 – CCR Rule Compliance Construction and Construction of New Process-Water System	าร
fo	r Gher	nt		10
	5.1	Вас	kground	10
	5.2	Ana	ılysis	11
6	Cor	nclusi	on	13
7	App	pendi	x A – Cost Assumptions	14
	7.1	PPA	Financing Costs	15
g	Anr	nendi	x B – Other Innuts	16

1 Introduction

The 2016 Environmental Compliance Plan ("2016 Plan") for Kentucky Utilities Company ("KU") includes the following projects for the Ghent Generating Station ("Ghent"):

- 1. Project 37 Wet Flue-Gas Desulfurization ("WFGD") Improvements at Ghent 2
- 2. Project 38 Supplemental Mercury Control Injection Systems at Ghent 1-4
- 3. Project 40 CCR Rule Compliance Construction and Construction of New Process-Water Systems for Ghent

This analysis evaluates these projects along with alternatives to these projects and ultimately concludes the following:

- 1. The proposed WFGD improvements at Ghent 2 are the least-cost way to comply with the U.S. Environmental Protection Agency's ("EPA's") Mercury and Air Toxics Standards ("MATS Rule") for acid gases measured as hydrogen chloride ("HCl").
- 2. Based on the projected O&M savings, the proposed mercury control injection systems have a favorable impact on revenue requirements.
- 3. The cost of the new process-water systems required to continue operating the Ghent units, along with the WFGD improvements and mercury control injection systems, are least-cost even if the Ghent units only operate through 2021.

2 Analysis Methodology

In October 2015 and November 2015, respectively, the U.S. Environmental Protection Agency ("EPA") published the final versions of the Clean Power Plan ("CPP") and Effluent Limit Guidelines ("ELG"). Much uncertainty exists regarding the costs to comply with these regulations; KU and its sister utility, Louisville Gas and Electric Company (collectively, "Companies") must comply with the CPP and ELG by 2022 and will continue to work to understand these costs over the next 1-2 years. If the Companies determine that complying with these regulations is more costly than retiring the Ghent coal units and replacing their capacity, KU can likely operate the units through 2021 without incurring any CPP and ELG compliance costs.

In this analysis, Projects 37 and 38 were initially evaluated over a 30-year analysis period to assess the longer-term impacts of tradeoffs between O&M and capital spending in specific alternatives. Then, to avoid speculation regarding CPP and ELG compliance costs, all of the proposed projects were evaluated based only on costs incurred and benefits produced through 2021. This analysis period is consistent with the assumed 2022 CPP and ELG compliance timelines. This approach ensures that the investments associated with the proposed projects are lowest reasonable cost even if the Ghent units cease to operate after 2021. Revenue requirements for capital costs incurred through 2021 extend through the remaining book life of the generating unit. These revenue requirements are included in the calculation of the present value of revenue requirements ("PVRR") to ensure that the full impact of any capital costs incurred through 2021 is considered in determining whether the proposed projects are economical for operation of the units through 2021.

It is important to note that choosing this analytical approach does not reflect a decision to retire the Ghent coal units or any judgment on the likelihood of retiring the units. Instead, the Companies have adopted this analytical methodology to eliminate any potential concerns due to the uncertainty associated with the CPP and ELG rules and their cost, as well as any other future environmental regulations not yet promulgated.

Each of the projects at Ghent is supported with a separate economic analysis and is discussed in the following sections.

3 Project 37 – WFGD Improvements at Ghent 2

3.1 Background

Ghent has four coal-fired generating units with a combined summer net generating capacity of 1,917 megawatts. The Ghent units have very similar capacities and operating costs. All four units are equipped with flue gas desulfurization ("FGD") equipment for the reduction of sulfur dioxide ("SO $_2$ ") emissions. Table 1 contains a listing of the Ghent coal units along with their net summer ratings and SO $_2$ removal rates.

Table 1 - Ghent Generating Units

	Net Summer	SO₂ Removal
Unit	Rating (MW)	Rate
Ghent 1	474	98.5%
Ghent 2	493	90.0%
Ghent 3	485	98.5%
Ghent 4	465	98.5%

The amount of SO_2 produced during the combustion of coal varies based on the sulfur content of the coal. Coal with a higher sulfur content is generally less expensive than coal with a lower sulfur content. At Ghent, using Illinois Basin coal, the amount of SO_2 produced during the combustion process ranges between 5.5 and 6.5 pounds per mmBtu of coal burned ("lb/mmBtu"). Based on this range and the SO_2 removal rates listed in Table 1, Ghent Units 1, 3, and 4 emit between 0.0825 and 0.0975 lb/mmBtu. Because the older FGD equipment on Ghent 2 has a lower SO_2 removal rate, Ghent 2 emits between 0.55 and 0.65 lb/mmBtu.

By the summer of 2016, the 30-day rolling generation-weighted average SO_2 emission rate (" SO_2 emission rate") for Ghent must remain below 0.2 lb/mmBtu to demonstrate compliance with the MATS Rule for acid gases measured as $HCl.^1$ Table 2 lists Ghent's SO_2 emission rate over a range of generation levels for Ghent 2, where generation for Ghent 2 is expressed as a percentage of the station's total generation. During 30-day periods with no planned maintenance outages, Ghent 2 would be expected to produce approximately one-fourth (25%) of the station's total generation. When one or two of the other Ghent units are offline for four weeks of planned maintenance, Ghent 2 would be expected to produce between one-third (33%) and one-half (50%) of the station's total generation. Based on the information in Table 2, the station's SO_2 emission rate would exceed the 0.2 lb/mmBtu threshold in all of these scenarios.

¹ The SO₂ emission rate is a surrogate for demonstrating compliance with the MATS Rule for HCl emissions.

Table 2 – Ghent SO₂ Emission Rates

Ghent 2 Generation as	SO2 Emission
Percentage of Station's	Rate ²
Total Generation	(lb/mmBtu)*
0%	0.09
10%	0.14
15%	0.17
16%	0.17
17%	0.18
18%	0.18
19%	0.19
20%	0.19
25%	0.22
30%	0.24
33%	0.26
40%	0.29
50%	0.35
60%	0.40
70%	0.45
80%	0.50
90%	0.55
100%	0.60

^{*}Highlighted cells denote SO₂ emission rates that exceed the 0.2 lb/mmBtu MATS Rule threshold.

3.2 Alternatives

KU considered several alternatives for complying with the MATS Rule for acid gases measured as HCl at Ghent. Each of these alternatives is discussed in the following sections.

3.2.1 Do Nothing (Comply Using Dispatch Modifications Only)

Without taking action to reduce Ghent's SO_2 emission rate, the Ghent station cannot comply with the MATS Rule for acid gases measured as HCl when Ghent 2's generation exceeds 20% of the station's total generation (see Table 2). This alternative includes the costs of modifying Ghent 2's dispatch so that it does not produce more than 20% of the station's total generation, effectively reducing Ghent 2's capacity by approximately 110 MW when the other three Ghent units are operating at full load. These costs include increased production costs as well as increased reliability costs. For the purpose of this analysis, reliability cost impacts are ignored.

3.2.2 Modify the Ghent 2 WFGD to Improve Its SO₂ Removal Rate

At an estimated cost of \$7 million (spent in 2016), KU can modify the Ghent 2 WFGD to increase its SO₂ removal rate from 90% to 97%. The cost of this project includes the addition of new nozzles and/or wall rings to improve gas-to-liquid contact, new tray plugs to increase pressure drop, and a new recycle pump and gearbox modifications to increase the liquid-to-gas ratio.

 $^{^2}$ SO $_2$ emission rates are computed based on the assumption that the amount of SO $_2$ produced during coal combustion is 6 lb/mmBtu.

3.2.3 Use Reagent to Improve SO₂ Removal Rate

As an alternative to the WFGD modifications, KU can increase the SO_2 removal rate for Ghent 2 from 90% to 95% by injecting a reagent into the unit's scrubber liquor. The estimated cost of the equipment to store and inject the reagent is \$1.4 million (spent in 2016). The estimated annual cost of the reagent is approximately \$1.3 million and is assumed to escalate at 2% per year.

3.2.4 Burn Lower Sulfur Coal in Ghent 2

Currently, the amount of SO_2 produced by any Ghent unit during the combustion process ranges between 5.5 and 6.5 lb/mmBtu, depending on the amount of sulfur in the coal. By switching Ghent 2 to coal with a lower sulfur content, the station can reduce the amount of SO_2 produced by Ghent 2 to approximately 3.5 lb/mmBtu. As a result, the rate of SO_2 emissions for Ghent 2 would decrease by 35 to 45 percent.

The most cost-effective way to implement this alternative would be to maintain two coal piles at Ghent: one lower sulfur pile for Ghent 2 and one higher sulfur for Ghent 1, 3, and 4. Compared to the higher sulfur coal that is currently burned at Ghent, lower sulfur coal is \$8/ton to \$10/ton more expensive. Based on the Companies' 2016 Plan, Ghent 2 is expected to burn an average of approximately 1,400,000 tons of coal per year over the next 10 years. If coal costs increase by \$8/ton, the annual fuel expense will increase by approximately \$11 million.

3.3 Analysis

Table 3 summarizes the impact of each of the alternatives on Ghent's SO_2 emission rates. In Table 3, Ghent's SO_2 emission rates are listed over a range of generation levels for Ghent 2 where generation for Ghent 2 is expressed as a percentage of the station's total generation. Highlighted cells in Table 3 denote SO_2 emission rates that exceed the 0.2 lb/mmBtu MATS Rule threshold. To comply with MATS Rule in the "Do Nothing" alternative, for example, the Companies would have to modify Ghent 2's dispatch so that Ghent 2 does not produce more than 20% of the station's total generation. In the "Modify Ghent 2 WFGD" alternative, Ghent 2 can produce more than 60% of the station's generation and still comply with MATS Rule.

Table 3 – Impact of Alternatives on Ghent SO₂ Emission Rates

Ghent 2 Generation	SO2 Emission Rate ³ (lb/mmBtu)						
as Percentage of Station's Total		Modify Ghent 2		Burn Lower			
Generation	Do Nothing	WFGD	Reagent	Sulfur Coal			
0%	0.09	0.09	0.09	0.09			
10%	0.14	0.10	0.11	0.12			
15%	0.17	0.10	0.12	0.13			
16%	0.17	0.10	0.12	0.13			
17%	0.18	0.11	0.13	0.13			
18%	0.18	0.11	0.13	0.14			
19%	0.19	0.11	0.13	0.14			
20%	0.19	0.11	0.13	0.14			
25%	0.22	0.11	0.14	0.16			
30%	0.24	0.12	0.15	0.17			
33%	0.26	0.12	0.16	0.18			
40%	0.29	0.13	0.17	0.19			
50%	0.35	0.14	0.20	0.22			
60%	0.40	0.14	0.22	0.25			
70%	0.45	0.15	0.24	0.27			
80%	0.50	0.16	0.26	0.30			
90%	0.55	0.17	0.28	0.32			
100%	0.60	0.18	0.30	0.35			

^{*}Highlighted cells denote SO₂ emission rates that exceed the 0.2 lb/mmBtu MATS Rule threshold.

When Ghent 2 is operating and one of the remaining three units is offline for the 30-day period, Ghent 2 would ordinarily produce approximately one-third (33%) of the station's generation. In all but the "Do Nothing" alternative, no dispatch modifications would be required to comply with MATS Rule in this operating scenario. When Ghent 2 is operating and two of the remaining three units are offline for the 30-day period, Ghent 2 would ordinarily produce approximately one-half (50%) of the station's generation. In this operating scenario, the station can comply with MATS Rule with no dispatch modifications in only the "Modify Ghent 2 WFGD" alternative.

The analysis of these alternatives was completed in two steps. First, revenue requirements for the "Modify Ghent 2 FGD," "Reagent," and "Burn Lower Sulfur Coal" alternatives were computed over 30 years to determine which of these alternatives is least-cost in the longer-term. This step is necessary to assess the impact of the first three alternatives' tradeoffs between O&M and capital costs in the longer-term. Then, the least-cost of these alternatives was compared to the cost of the "Do Nothing" alternative based on operations through 2021.

Table 4 contains the results of the 30-year revenue requirements analysis. Over a 30-year analysis period, modifying the WFGD is clearly the least-cost alternative. The additional capital costs associated with the WFGD modification project are more than offset by the higher O&M or fuel costs associated with the other alternatives.

 $^{^3}$ SO $_2$ emission rates are computed based on the assumption that the amount of SO $_2$ produced during coal combustion is 6 lb/mmBtu.

Table 4 - Project 37: 30-Year Analysis (PVRR, 2016-2045, \$M, 2016 Dollars)

	Capital				Difference
Alternative	Cost	O&M Impact	Fuel Impact	Total PVRR	from Best
Modify Ghent 2 WFGD	8.8	0.0	0.0	8.8	0.0
Reagent	1.8	20.6	0.0	22.4	13.6
Burn Lower Sulfur Coal	0.0	0.0	174.4	174.4	165.6

Table 5 compares the PVRR of these alternatives for costs incurred through 2021. Due to the shorter analysis period, the O&M and fuel-related PVRR values in Table 5 are much lower than the O&M and fuel-related PVRR values in Table 4. However, because the revenue requirements for capital costs incurred through 2021 extend through the remaining book life of the generating unit, the capital-related PVRR values in Table 5 are still computed over the 30-year analysis period. As a result, the capital-related PVRR values in Table 5 are the same as the capital-related PVRR values in Table 4.

Table 5 – PVRR of Costs Incurred from 2016 to 2021 (\$M, 2016 Dollars)

	Capital				Difference
Alternative	Cost	O&M Impact	Fuel Impact	Total PVRR	from Best
Modify Ghent 2 WFGD	8.8	0.0	0.0	8.8	1.4
Reagent	1.8	5.6	0.0	7.4	0.0
Burn Lower Sulfur Coal	0.0	0.0	47.5	47.5	40.1

As mentioned previously, the WFGD modification alternative has higher capital costs and lower O&M costs than the reagent alternative. Despite the shorter period over which the O&M savings are realized, the PVRR of costs incurred between 2016 and 2021 for the WFGD modification alternative is only \$1.4 million higher than the same value for the reagent alternative. Based on this small difference and the fact that the Reagent alternative does not enable the Companies to comply with the MATS Rule when two of the remaining three Ghent units are offline, the WFGD modification alternative is preferred as the lowest reasonable cost alternative even if Ghent 2 ceases to operate after 2021.⁴

In Table 6, the PVRR of the WFGD modification alternative is compared to the PVRR of the "Do Nothing" alternative. These alternatives were evaluated based only on costs incurred through 2021 to avoid speculation regarding CPP and ELG compliance costs. This analysis period is consistent with the assumed 2022 CPP and ELG compliance deadlines. Based on the results in Table 6, proceeding with the WFGD modifications is the lowest reasonable cost alternative – even if Ghent 2 ceases to operate after 2021.

⁴ The unfavorable PVRR difference in Table 5 for the "Modify Ghent 2 WFGD" alternative would be recouped in O&M savings after only two additional years of operation.

Table 6 – Project 37: WFGD Modification Versus Retire/Replace (PVRR of Costs Incurred from 2016 to 2021, SM, 2016 Dollars)

Gas		System			
Price	Alternative	Production Costs	ECR Project Costs	Total	Diff from Best
Low	Do Nothing	4,942	0	4,942	37
	Modify Ghent 2 WFGD	4,896	8.8	4,905	0
Mid	Do Nothing	5,050	0	5,050	48
	Modify Ghent 2 WFGD	4,993	8.8	5,002	0
High	Do Nothing	5,208	0	5,208	68
	Modify Ghent 2 WFGD	5,131	8.8	5,140	0

4 Project 38 – Supplemental Mercury Control Injection Systems at Ghent 1-4

4.1 Background

KU installed baghouses at each of the Ghent units to limit particulate emissions and comply with the National Ambient Air Quality Standards for 2.5 micron particulate matter and the MATS Rule for mercury emissions. To comply with the MATS Rule for mercury emissions, the station is planning to use powdered activated carbon ("PAC") to oxidize mercury in the flue gas so that it can be captured by the baghouse in the station's fly ash. As an alternative to this approach for capturing mercury and to minimize the risk of mercury reemission that can occur in wet FGDs, coal and FGD additives can be used to capture mercury in the station's gypsum. This alternative approach would require a \$10 million investment in equipment to store and inject the additives ("mercury control injection system"), but based on the Companies' experience at the Trimble County Station, the cost of these additives is lower than the cost of PAC.

In addition to potential cost reductions, the addition of a mercury control injection system will support the Companies' beneficial use initiatives for CCR. The option to use PAC or coal and FGD additives will enable the Companies' to have greater control over where mercury is captured – either in the unit's fly ash or gypsum. As a result, the Companies will be better able to serve beneficial use markets that are sensitive to mercury levels.

Also, Ghent is planning to spend \$7-8 million per year on PAC. Small changes in the cost of PAC will have a significant impact on production costs. The option to use PAC or the coal and FGD additives could potentially improve the Companies' bargaining position in procuring these commodities and better enable the Companies to control these costs.

The cost of the supplemental mercury control injection system is summarized by unit in Table 7.

Table 7 – Supplemental Mercury Control Injection Equipment (\$000s, As-Spent Dollars)

Unit	2015	2016	Total
Ghent 1	25.5	2,560.8	2,586.3
Ghent 2	25.5	2,679.2	2,704.7
Ghent 3	25.5	2,679.2	2,704.7
Ghent 4	25.5	2,049.9	2,075.3
Total	102.0	9,969.0	10,071.0

4.2 Analysis

Based on test results at Trimble County 1, the cost of the coal and FGD additives for mercury control is approximately \$0.30/MWh lower than the cost of PAC. Table 8 summarizes the PVRR of these projects for each of the Ghent units.

Table 8 – Supplemental Mercury Control System (PVRR of Costs Incurred from 2016 to 2021, \$M, 2016 Dollars)

		Payback Period
	PVRR (\$M)	(years)
Ghent 1	(1.6)	3.9
Ghent 2	(1.0)	4.6
Ghent 3	(1.8)	3.8
Ghent 4	(2.3)	3.0
Total	(6.7)	

As seen in the results in Table 8, the O&M savings associated with the coal/FGD additives more than offsets the revenue requirements associated with the cost of the mercury control injection system. Considering the current spread between the cost of PAC and the cost of coal/FGD additives (\$0.30/MWh), the use of coal and FGD additives reduces revenue requirements by approximately \$7 million over the 2016-2021 period. Furthermore, at this cost difference, the payback period for the project is only three to five years.⁵

5 Project 40 – CCR Rule Compliance Construction and Construction of New Process-Water Systems for Ghent

5.1 Background

In April 2015, the EPA issued its final rule concerning disposal of CCR from electric utilities ("CCR Rule"). To comply with this rule at Ghent, the analysis assumes KU will have to begin clean closure activities at the Gypsum Stack in late 2016, begin cap and closure activities at Ash Treatment Basin # 1 and Ash Treatment Basin # 2 in late 2016, begin clean closure activities at the Secondary and Reclaim Ponds in 2019 and complete the construction of a new process-water system by 2019 under Project 40. Whatever KU ultimately must do to comply with the CCR Rule, the costs of such compliance will be unavoidable; retiring the coal units at Ghent—even retiring them today—would not allow KU to avoid those costs. A new process-water system is required if the Ghent units continue to operate past 2018. Table 9 summarizes the Project 40 costs along with the cost of the WFGD modifications and the supplemental mercury control injection system.

⁵ The payback period is the time required for the present value of the O&M savings to fully offset the PVRR associated with the capital cost of the mercury control injection system.

Table 9 – Ghent ECR Project Costs (\$M, As-Spent Dollars)

	ı		2017	2010	2010	2020	2024	2022	Takal
	2015	2016	2017	2018	2019	2020	2021	2022	Total
Closure Construction									
ATB #1 Capping	1.0	3.3	4.0	1.3	6.2	5.4	25.9	22.3	69.5
ATB #2 Capping	0.0	6.7	10.3	9.8	7.0	21.5	26.5	11.1	92.9
Gypsum Stack Cleanout	0.0	8.3	20.7	16.2	23.7	9.9	0.0	0.0	78.7
Secondary Pond Cleanout	0.0	0.4	0.3	0.6	2.1	0.0	0.0	0.0	3.4
Reclaim Pond Cleanout	0.0	0.5	0.5	0.3	2.8	0.6	0.6	0.0	5.4
Total Closure Construction	1.0	19.2	35.8	28.3	41.7	37.4	53.0	33.4	249.9
Process-Water System	0.0	15.3	48.0	50.9	0.0	0.0	0.0	0.0	114.3
Total CCR Ruling Compliance	1.0	34.6	83.9	79.2	41.7	37.4	53.0	33.4	364.2
WFGD Modifications	1.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0
Mercury Control System	0.1	10.0	0.0	0.0	0.0	0.0	0.0	0.0	10.1
Total Ghent ECR Projects	2.1	50.5	83.9	79.2	41.7	37.4	53.0	33.4	381.2

5.2 Analysis

An alternative to the new process-water system, along with the Ghent 2 WFGD modifications, and the supplemental mercury control injection systems, is retiring the Ghent units and purchasing replacement capacity. Therefore, this analysis compares the costs of continuing to operate the Ghent units through 2021 ("Operate through 2021") to the cost of retiring the Ghent units in 2019 and purchasing replacement capacity ("Retire in 2019"). Both alternatives include the costs in Table 9 to cap and close the surface impoundments. The cost of the process-water system, the Ghent 2 WFGD modifications, and the supplemental mercury control injection systems is excluded in the "Retire in 2019" alternative. A complete summary of costs for each alternative is included in Appendix A – Cost Assumptions.

In the "Retire in 2019" alternative, the Ghent units (1,917 MW) are assumed to be retired at the beginning of 2019 and replaced by a three-year power purchase agreement for four 368 MW natural gas combined cycle ("NGCC") units and one 201 MW simple cycle combustion turbine ("SCCT") unit (1,673 MW in total). The replacement capacity portfolio was developed using resources evaluated in the Companies' 2014 Integrated Resource Plan ("IRP") to minimally comply with the Companies' target reserve margin range (16% to 21%) in 2019 through 2021. In addition, the costs of the IRP resources were used to develop the cost of the power purchase agreement for each portfolio. Table 10 summarizes the impact of the replacement capacity portfolio on the Companies' reserve margin. With the Ghent units, the Companies' reserve margin in 2019 to 2021 ranges from 19% to 20%. With the replacement capacity, the reserve margin ranges from 16% to 17%. This analysis does not account for the additional reliability risks and costs associated with operating at a lower reserve margin.

⁶ Only the cost of the process-water system is included in this analysis for Project 40. The remaining costs must be incurred to close the surface impoundments regardless of whether the units continue to operate.

⁷ The 368 MW NGCC unit evaluated in the IRP is a G- or H-class NGCC unit with a 1x1 configuration. The 201 MW SCCT unit is an F-class SCCT unit. Additional information regarding replacement capacity costs is included in Appendix A – Cost Assumptions.

Table 10 - LG&E/KU Resource Summary (MW)

	`					
	2016	2017	2018	2019	2020	2021
Forecasted Peak Load	7,314	7,395	7,448	7,225	7,244	7,266
Demand Side Management	(366)	(407)	(444)	(481)	(490)	(480)
Net Peak Load	6,948	6,988	7,004	6,744	6,754	6,786
Operate through 2021						
Existing Resources	7,974	7,976	7,986	7,821	7,822	7,823
Firm Purchases (OVEC)	152	152	152	152	152	152
Curtailable Load	136	136	136	136	136	136
Total Supply	8,262	8,264	8,274	8,109	8,110	8,111
Reserve Margin	18.9%	18.3%	18.1%	20.2%	20.1%	19.5%
Retire in 2019						
Existing Resources	7,974	7,976	7,986	7,821	7,822	7,823
Firm Purchases (OVEC)	152	152	152	152	152	152
Curtailable Load	136	136	136	136	136	136
Ghent Units 1-4 Retirement	0	0	0	(1,917)	(1,917)	(1,917)
Replacement Capacity	0	0	0	1,673	1,673	1,673
Total Supply	8,262	8,264	8,274	7,865	7,866	7,867
Reserve Margin	18.9%	18.3%	18.1%	16.6%	16.5%	15.9%

In the "Operate through 2021" alternative, for the purpose of this analysis, the Ghent coal units are assumed to retire at the beginning of 2022. This analytical approach—comparing retiring the coal-fired units at the beginning of 2019 versus retiring the units at the beginning of 2022—is a conservative approach to evaluating whether it is economical to proceed with the proposed projects and keep the units operating through the end of 2021. Analyzing the 2016 Plan's long-lived investments over a short timeframe requires the investments to be economical by the end of 2021 (relative to the cost of retiring the units in 2019). In other words, this no-regrets analytical approach ensures that even if KU determines in the next 1-2 years that retiring the units in 2022 is more economical than incurring the costs of ELG or CPP compliance, the investments proposed for Ghent in the 2016 Plan will have been economical relative to having retired the units in 2019.

A decision to retire the Ghent units in either 2019 or 2022 would result in reduced maintenance spending in the years prior to retirement. By recognizing this fact, it is important to note that this approach—again, comparing retiring the units in 2019 to retiring the units in 2022—does not undervalue retiring the units in 2019 even though KU is not committing to retire the units in 2022 or later. At first glance, this approach might appear to undervalue the 2019 retirement scenario because the 2022 retirement scenario reduces capital and O&M spending for the units beginning in 2018 as the units prepare for retirement; but if the units do not retire in 2022, presumably KU would continue to make the capital and O&M expenditures necessary for ongoing operations, which would relatively increase the value of retiring the units in 2019. This would be a valid analytical concern if KU were not going to have better information about ELG and CPP compliance options and costs before 2018, when

⁸ As stated previously, using this analytical approach is neither a commitment nor a prediction that KU will retire any or all of the units at Ghent in early 2022 or at any other time.

the modeled capital and O&M tapering begins. But KU will indeed have more information about such options and costs by 2018 and will be better positioned to determine whether or when to retire any coal-fired units.

If KU's analyses over the next 1-2 years show that retiring Ghent's coal-fired units in early 2022 would be more economical than incurring the costs of ELG and CPP compliance, then KU would be able to begin tapering capital and O&M spending at Ghent as this analysis reflects. On the other hand, if KU's analyses over the next 1-2 years show it would be more economical to incur ELG and CPP compliance costs—in addition to ongoing capital and O&M spending at non-tapered levels—to keep the units operating beyond 2021, then KU would seek any necessary Commission approvals for ongoing coal-fired operations. Therefore, this analytical approach is indeed a no-regrets approach.

The results of this analysis are summarized in Table 11. Each alternative was evaluated over three gas price scenarios. Even if the Ghent units are assumed to cease operation after 2021, the proposed capital projects are least-cost.

Table 11 - Project 40: Analysis Results (PVRR of Costs Incurred from 2016 to 2021, \$M, 2016 Dollars)

		System	Other		Replacement	
		Production	Capital and	ECR Project	Capacity	
Gas Price	Alternative	Costs	FOM	Costs	Costs	Total
Low	Retire in 2019	4,896	271	232	683	6,082
	Operate through 2021	4,896	523	386	0	5,805
	Operate through 2021 Less Retire in 2019	(0)	252	154	(683)	(278)
Mid	Retire in 2019	5,116	271	232	683	6,303
	Operate through 2021	4,993	523	386	0	5,903
	Operate through 2021 Less Retire in 2019	(123)	252	154	(683)	(400)
High	Retire in 2019	5,428	271	232	683	6,614
	Operate through 2021	5,131	523	386	0	6,040
	Operate through 2021 Less Retire in 2019	(297)	252	154	(683)	(574)

6 Conclusion

The analyses summarized in Sections 3, 4, and 5 result in the following conclusions:

- 1. Even if Ghent 2 ceases to operate after 2021, the Ghent 2 WFGD modifications are the least-cost way to comply with the MATS Rule for acid gases measured as HCl.
- 2. At the current spread between the cost of PAC and the cost of coal and FGD additives (\$0.30/MWh), the use of coal and FGD additives has a favorable impact revenue requirements. The payback periods for the mercury control injection systems are three to five years.
- 3. Even if all of the Ghent units cease operation after 2021, the process water system, the Ghent 2 WFGD modifications, and the supplemental mercury control injection system are least-cost.

⁹ Tables of the gas prices and financial inputs are included in Appendix B – Other Inputs.

7 Appendix A – Cost Assumptions

Table 12 – Capital and Fixed O&M Cost Assumptions for Retirement Analysis (\$M, As-Spent Dollars)

Table 12 - Capital and Tixed Oct	2016	2017	2018	2019	2020	2021	Total
2016 Plan with Updated ECR Costs							
Coal Unit Fixed O&M	67	66	78	82	82	95	469
On-Going Capital	47	37	50	28	47	61	269
Cap and Closure Costs	20	36	28	42	37	53	217
Process-Water System	15	48	51	0	0	0	114
WFGD Modifications	7	0	0	0	0	0	7
Mercury Control System	10	0	0	0	0	0	10
ELG Costs	3	0	9	36	56	51	155
Total	169	187	217	188	221	260	1,241
Operate through 2021							
Coal Unit Fixed O&M ¹⁰	67	66	70	71	68	73	415
On-Going Capital ¹⁰	47	37	25	7	12	15	143
Cap and Closure Costs	20	36	28	42	37	53	217
Process-Water System	15	48	51	0	0	0	114
WFGD Modifications	7	0	0	0	0	0	7
Mercury Control System	10	0	0	0	0	0	10
ELG Costs	3	0	0	0	0	0	3
Total	169	187	174	120	117	141	909
Retire in 2019							
Coal Unit Fixed O&M ¹⁰	67	60	66	3	0	0	195
On-Going Capital ¹⁰	47	9	12	0	0	0	68
Cap and Closure Costs	20	36	28	42	37	53	217
Process-Water System	0	0	0	0	0	0	0
WFGD Modifications	0	0	0	0	0	0	0
Mercury Control System	0	0	0	0	0	0	0
Replacement Capacity Cost ¹¹	0	0	0	280	282	284	846
ELG Costs	3	0	0	0	0	0	3
Total	137	105	107	324	319	337	1,329

¹⁰ Reduced capital and O&M expenditures in the years leading up to a unit's retirement are consistent with the Companies' recent experience at the Cane Run Generating Station.

¹¹ See Table 13 for a summary of the costs included in Replacement Capacity Cost.

Table 13 – Replacement Capacity Costs

Cost Item	1x1 NGCC	SCCT
Replacement Capacity (\$/kW, 2013 Dollars) ¹²		
Average Annual Capacity (MW)	398	211
Fixed Charge Rate	9.5%	9.2%
Book Life (Years)	40	30
Fixed O&M (\$/kW-year, 2013 Dollars)		
Firm Gas Transport (\$/kW-year, 2013 Dollars) ¹³	20.3	20.7
Firm Transmission Service (\$/kW-year, 2015 Dollars) ¹⁴	22.5	22.5
Escalation Rate	2.0%	2.0%

7.1 PPA Financing Costs

When rating agencies assess a utility's debt rating, they impute debt on the utility's balance sheet to reflect the fixed financial obligations associated with PPAs. As a result, when utilities enter into a PPA, they must increase the equity share of their capital structure to offset the imputed debt and maintain their debt rating.¹⁵

To calculate the amount of imputed debt, rating agencies compute the net present value ("NPV") of future fixed payments associated with the PPA (e.g., capacity payments) using a discount rate equivalent to the company's average cost of debt. Then, a risk factor is applied to reflect the benefits of regulatory or legislative cost recovery mechanisms. In the Companies' business environment, where regulators use a utility's rate case to establish base rates that provide for the recovery of the fixed costs created by PPAs, a risk factor of 50% is applied to the NPV. This product is then multiplied by the utilities' target share of debt financing to calculate the amount of imputed debt associated with a PPA. This process is consistent with the process used to address capitalization issues in the Companies' last rate case before the KPSC.

¹² Replacement capacity costs reflect capacity costs from the Companies' 2014 Integrated Resource Plan.

¹³ Firm gas transportation costs were taken from the 2014 Integrated Resource Plan and are based on the firm gas transportation rates for Cane Run 7.

¹⁴ PJM tariff for firm transmission service, effective June 1, 2015.

¹⁵ A utility's debt rating is a function of its capital structure.

¹⁶ A complete summary of the methodology Standard & Poor's uses to calculate imputed debt for U.S. utilities' PPAs is available at http://www.psc.utah.gov/utilities/electric/09docs/0903523/062309ExhibitE.pdf.

8 Appendix B – Other Inputs

The Henry Hub ("HH") natural gas price scenarios considered in this analysis are listed in Table 14. The Mid natural gas price forecast is based on market prices for the short term and the Energy Information Administration's ("EIA") 2015 Annual Energy Outlook ("AEO") for the long term. Prices in 2016-2017 were taken from the Companies' 2016 Business Plan and reflect NYMEX HH monthly forward prices as of 6/18/2015. Prices in 2018-2020 reflect a blend of market prices and a midpoint average curve between the annual HH prices from two EIA AEO 2015 scenarios: "High Oil Price" (a proxy for high gas price) and "High Oil and Gas Resource" (a proxy for low gas price). Blending is 75% market in 2018, 50% market in 2019, and 25% market in 2020. Prices in 2021 reflect the midpoint average curve between the annual HH prices from the "High Oil Price" and "High Oil-Gas Resource" scenarios. Monthly prices after 2017 are calculated using average monthly shape indices derived from the market forwards for 2016-2020. The Low natural gas price forecast is based on EIA's 2015 AEO "High Oil and Gas Resource" scenario. To maintain a consistent spread between the Low and Mid natural gas price scenarios, years 2016-2018 in the Low scenario were adjusted to reflect the 2019 percentage difference between the Low and Mid scenarios. The High natural gas price forecast is based on EIA's 2015 AEO "High Oil Price" scenario.

Table 14 - Natural Gas Prices (Nominal Henry Hub \$/MMBtu)

Year	Low	Mid	High
2016	2.93	3.17	3.53
2017	3.08	3.34	3.89
2018	3.27	3.54	4.30
2019	3.49	3.78	4.67
2020	3.51	4.16	5.18
2021	3.69	4.72	5.76

Table 15 - Financial Inputs

Input	Value
Return on Equity	10.0%
Cost of Debt	4.21%
Capital Structure	
Debt	47.0%
Equity	53.0%
Tax Rate	38.9%
Revenue Requirement Discount Rate	6.51%

¹⁷ The EIA's 2015 AEO was published in April 2015. For the AEO data tables, see http://www.eia.gov/oiaf/aeo/tablebrowser/#release=AEO2015&subject=0-AEO2015&table=1-AEO2015®ion=0-0&cases=ref2015-d021915a. For the AEO report, see http://www.eia.gov/forecasts/aeo/.

Analysis of 2016 ECR Projects Trimble County Generating Station

Generation Planning & Analysis January 2016

Table of Contents

1		Intro	oduct	ion	. 3
2				Methodology	
3				8 – Supplemental Mercury Control Injection Systems for Trimble County Unit 1	
	3.	1	Back	ground	. 5
	3.2	2	Anal	ysis	. 5
4 Pr				rject 30 and KU Project 41 – CCR Rule Compliance Construction and Construction of New	
	4.	1	Back	ground	. 6
	4.2	2	Alte	rnatives	. 6
		4.2.2	1	Retire Trimble County Coal Units and Replace Capacity	. 7
		4.2.2	2	Convert the Trimble County Coal Units to Burn Natural Gas	. 7
	4.3	3	Anal	ysis	. 7
5		Con	clusic	on	. 8
6		Арр	endix	A – Cost Assumptions	.9
	6.3	1	PPA	Financing Costs	10
7		Δnn	endix	R – Other Innuts	11

1 Introduction

The 2016 Environmental Compliance Plans ("2016 Plans") for Kentucky Utilities Company ("KU") and Louisville Gas and Electric Company ("LG&E") (collectively, "Companies") include the following projects for the Trimble County Generating Station ("Trimble County"):

- 1. LG&E Project 28 Mill Creek & Trimble County Unit 1 Supplemental Mercury Control Injection Systems
- 2. LG&E Project 30 CCR Rule Compliance Construction and Construction of New Process-Water Systems for Trimble County
- 3. KU Project 41 CCR Rule Compliance Construction and Construction of New Process-Water Systems for Trimble County

This analysis evaluates these projects along with alternatives to these projects and ultimately demonstrates the following:

- 1. Based on the projected O&M savings, the proposed supplemental mercury control injection system for Trimble County Unit 1 has a favorable impact on revenue requirements.
- 2. The Trimble County ECR projects are least-cost.

2 Analysis Methodology

In October 2015 and November 2015, respectively, the U.S. Environmental Protection Agency ("EPA") promulgated the final versions of the Clean Power Plan ("CPP") and Effluent Limitation Guidelines ("ELG"). Much uncertainty exists regarding the costs to comply with these regulations; the Companies must comply with the CPP and ELG by 2022 and will be working to understand these costs over the next 1-2 years.

The estimated cost of the projects proposed for Trimble County in the 2016 Plans is \$220 million.¹ An alternative to proceeding with these projects is retiring the Trimble County coal units in 2019 and replacing the capacity. Based on the uncertainty of CPP and ELG compliance costs, projects in the 2016 Plans at other generating stations were evaluated based only on costs incurred through 2021.² However, at Trimble County, in addition to the investments required for the 2016 Plan projects, the Companies are already proceeding with spending \$277 million from 2016 through 2021 for a new landfill and coal combustion residuals treatment facility ("CCRT"). While the relative benefits from these significant long-term investments will greatly exceed their cost, the point at which their benefits exceed their cost will occur after 2021. As a result, the Companies evaluated the retirement of the Trimble County coal units over the Companies' standard 30-year analysis period with high-level estimates for CPP and ELG compliance costs.

In the 30-year analysis, ELG capital costs for Trimble County are assumed to be \$143 million. For the reasons discussed below, the incremental cost associated with CPP compliance—specifically for the Trimble County Station—was assumed to be zero.

Table 1 includes the emission controls, commissioning date, summer net capacity, summer net heat rate, CO_2 emission rate, and dispatch cost for each of the Companies' coal units. Compared to the average age of the Trimble County coal units (15 years), the average age of coal units at other stations is 22 to 37 years older. Considering the units with flue-gas desulfurization ("FGD"), selective catalytic

¹ All cost estimates reflect the Companies' 75% ownership share of Trimble County Units 1 and 2.

² This analysis period is consistent with the assumed 2022 CPP and ELG compliance deadline.

CONFIDENTIAL INFORMATION REDACTED

reduction ("SCR"), and baghouses, the Trimble County coal units have among the lowest dispatch costs. Trimble County Unit 2 has the lowest CO_2 emissions rate among the Companies' coal units, about 10% below the next unit. Assuming an 80% capacity factor, Trimble County Unit 2's annual CO_2 emissions would be approximately 400,000 tons lower than CO_2 emissions from an equal amount of capacity from the Companies' other coal units. The favorable efficiency would also result in an annual coal expense about \$10 million less than other units. For these reasons, the Trimble County coal units would likely be the last coal units to retire as part of a potential CPP compliance plan.

Table 1 - LG&E and KU Coal Units

Emission Controls as			Net Summer	Summer Net Heat Rate	CO ₂ Emission	Average Dispatch
of June		Commission	Capacity	(Max Load,	Rate (Max	Cost
2016	Coal Unit	Date	(MW)	mmBtu/MWh)	Load, lb/MWh)	(\$/MWh)
FGD	Brown 1	5/1/1957	106	10.4	2,128	
FGD	Brown 2	6/1/1963	166	10.3	2,110	
FGD,	Ghent 2	4/20/1977	493	10.7	2,187	
	Mill Creek 1	7/11/1972	300	10.4	2,142	
Baghouse	Mill Creek 2	6/11/1974	297	10.6	2,177	
	Brown 3	7/19/1971	407	10.9	2,241	
	Ghent 1	2/19/1974	474	10.9	2,228	
	Ghent 3	5/31/1981	485	11.0	2,263	
FGD, SCR,	Ghent 4	8/18/1984	465	11.0	2,248	
Baghouse	Mill Creek 3	6/28/1978	385	10.7	2,195	
	Mill Creek 4	7/15/1982	477	10.7	2,203	
	Trimble 1	12/23/1990	379	10.7	2,195	
	Trimble 2	1/22/2011	549	9.3	1,899	

If the Trimble County coal units were the last coal units considered for retirement and – at a cost of more than \$3.5 billion³ – the Companies' Brown, Ghent, and Mill Creek coal units were already retired and replaced with renewable or natural gas-fired generation with CO_2 emissions ranging from 0 lb/MWh to approximately 1,000 lb/MWh, the Companies' generating portfolio would already over-comply with the CPP – even if the Trimble County coal units operated at full capacity.⁴ Therefore, the 30-year retirement analysis assumed no incremental cost for future CPP compliance for Trimble County.

The analyses supporting these projects are discussed in the following sections.

³ Assuming a replacement capacity cost of the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown, Ghent, and Mill Creek coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the total cost to replace the Brown coal units (4,051 MW) is the Brown coal units (4,051 MW) is the Brown coal units (4,051 MW) is the Brown coal units (4,051 MW) is the Brown coal units (4,051 MW) is the Brown coal units (4

 $^{^4}$ Over the next 30 years, the Trimble County coal units are expected to operate at 70-80% capacity factors and produce 5,900-6,400 GWh per year. From 2022 to 2030, the Companies' total energy requirements are approximately 35,000 GWh per year. If the Companies' other coal units were replaced with natural gas combined-cycle ("NGCC") units with CO_2 emissions of approximately 900 lb/MWh, the average CO_2 emission rate for the balance of the fleet – after factoring in the 1,200 lb/MWh emission rate of the Companies' simple-cycle combustion turbines – would be less than 950 lb/MWh. Even if the Trimble County coal units operated at a 90% capacity factor and produced 7,400 GWh per year, the Companies' system CO_2 emission rate would be less than 1,200 lb/MWh ([7,400 GWh * 2,050 lb CO_2 /MWh + 27,600 GWh * 950 lb CO_2 /MWh]/[7,400 GWh+27,600 GWh] = 1,183 lb/MWh).

3 Project 28 – Supplemental Mercury Control Injection Systems for Trimble County Unit 1

3.1 Background

The Companies installed a baghouse at Trimble County Unit 1 to limit particulate emissions and comply with the National Ambient Air Quality Standards for 2.5 micron particulate matter and the Mercury and Air Toxics Standards ("MATS Rule") for mercury emissions. To comply with the MATS Rule for mercury emissions, the station is planning to use powdered activated carbon ("PAC") to oxidize mercury in the flue gas so that it can be captured by the baghouse in the station's fly ash. As an alternative to this approach for capturing mercury and to minimize the risk of mercury reemission that can occur in wet FGDs, coal and FGD additives can be used to capture mercury in the station's gypsum. This alternative approach would require an investment in equipment to store and inject the additives ("mercury control system"), but the cost of these additives is lower than the cost of PAC.

In addition to potential cost reductions, the addition of a mercury control injection system will support the Companies' beneficial use initiatives for CCR. The option to use PAC or coal and FGD additives will enable the Companies' to have greater control over where mercury is captured – either in the unit's fly ash or gypsum. As a result, the Companies will be better able to serve beneficial use markets that are sensitive to mercury levels.

Also, LG&E is planning to spend approximately \$3-4 million per year on PAC for the Trimble County Unit 1. Small changes in the cost of PAC will have a significant impact on production costs. The option to use PAC or the coal and FGD additives could potentially improve the Companies' bargaining position in procuring these commodities and better enable the Companies to control these costs.

The Companies' 75% share of the cost of the supplemental mercury control injection system is summarized by unit in Table 2.

Table 2 – Trimble County Unit 1 Supplemental Mercury Control Injection System (Capital Cost, \$000s, As-Spent Dollars, Reflecting Companies' 75% Ownership Share)

Unit	2015	2016	Total
Trimble County Unit 1	22.9	531.3	554.2

3.2 Analysis

Based on test results at Trimble County Unit 1, the cost of the coal and FGD additives for mercury control is approximately \$0.30/MWh lower than the cost of PAC. Table 3 summarizes the PVRR of this project based on costs incurred through 2021.⁵

Table 3 – Trimble County Unit 1 Supplemental Mercury Control Injection System (PVRR of Costs Incurred from 2016 to 2021, \$M, Reflecting Companies' 75% Ownership Share, 2016 Dollars)

		Payback Period
	PVRR (\$M)	(years)
Trimble County Unit 1	(3.0)	1.0

⁵ This analysis period is consistent with the analysis period used to evaluate supplemental mercury control injection systems at other stations.

Based on the results in Table 3, the O&M savings associated with the coal and FGD additives more than offset the revenue requirements associated with the cost of the mercury control system. At the current spread between the cost of PAC and the cost of coal and FGD additives (\$0.30/MWh), the payback period for this project is only one year.⁶

4 LG&E Project 30 and KU Project 41 – CCR Rule Compliance Construction and Construction of New Process-Water Systems for Trimble County

4.1 Background

In April 2015, the EPA issued its final rule concerning disposal of CCR from electric utilities ("CCR Rule"). To comply with this rule at Trimble County, our analysis assumes the Companies will have to (a) begin cap and closure of the Bottom Ash Pond ("BAP") and the Gypsum Storage Pond ("GSP") in 2016 under LG&E Project 30 and KU Project 41. Whatever the Companies ultimately must do to comply with the CCR Rule, the costs of such compliance will be unavoidable; retiring the Trimble County units – even retiring them today – would not allow the Companies to avoid those costs. A new process-water system is required only if the Trimble County coal units continue to operate past 2018. Table 4 summarizes the costs for these projects along with the cost of the supplemental mercury control injection system.

Table 4 – Trimble County 2016 ECR Capital Costs (\$M, As-Spent Dollars, Reflecting Companies' 75% Ownership Share)

Ownership Share)										
	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Cap and Closure										
BAP	1.7	1.0	2.2	6.8	7.7	20.1	15.3	24.8	22.1	101.7
GSP	0.0	0.9	1.4	2.9	16.4	7.3	0.0	0.0	0.0	28.9
Total Cap and Closure	1.7	1.9	3.6	9.7	24.1	27.4	15.3	24.8	22.1	130.6
Process-Water System	0.0	0.0	43.7	45.0	0.0	0.0	0.0	0.0	0.0	88.7
Total CCR Rule Compliance	1.7	1.9	47.3	54.8	24.1	27.4	15.3	24.8	22.1	219.4
Mercury Control System	0.02	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
Total Trimble County ECR Projects	1.7	2.5	47.3	54.8	24.1	27.4	15.3	24.8	22.1	219.9

4.2 Alternatives

As an alternative to constructing the process-water system and supplemental mercury control injection system, the Companies evaluated the following alternatives:

- 1. Retire the Trimble County coal units in 2019 and purchase replacement capacity ("Retire TC Coal Units").
- 2. Convert the Trimble County coal units to operate on natural gas ("Natural Gas Conversion").

A complete summary of costs for this analysis is included in Appendix A – Cost Assumptions. All alternatives include the costs in Table 4 to cap and close the ponds. In addition to costs for the process-water system and supplemental mercury control injection system, the "Long Term Operation" alternative includes costs for the landfill and CCRT as well as an estimated \$143 million cost for ELG compliance. In the Retire TC Coal Units and Natural Gas Conversion alternatives, all costs for the

⁶ The payback period is the time required for the present value of the O&M savings to fully offset the PVRR associated with the capital cost of the mercury control injection system.

process-water system and the supplemental mercury control injection system are avoided and all costs after 2016 for the landfill/CCRT and ELG compliance are avoided. These alternatives are discussed further in the following sections.

4.2.1 Retire Trimble County Coal Units and Replace Capacity

In the "Retire TC Coal Units" alternative, the Trimble County coal units are retired at the beginning of 2019 and replaced by purchased NGCC capacity through 2021.⁷ Then, the retirement alternative assumes that NGCC capacity commissioned at Trimble County in 2022 will be a least-cost resource. The amount of capacity purchased in 2019 and commissioned at Trimble County in 2022 is equal to the capacity of Trimble County Units 1 and 2. In addition to cost savings associated with the process-water system, mercury control system, landfill, CCRT, and ELG compliance, a decision to retire the Trimble County coal units in 2019 would result in reduced maintenance spending in the years prior to retirement.

4.2.2 Convert the Trimble County Coal Units to Burn Natural Gas

In the Natural Gas Conversion alternative, the cost savings associated with the process-water system, mercury control system, landfill, CCRT, and ELG compliance are assumed to be the same as these savings in the Retire TC Coal Units alternative. In addition, if the Trimble County units are converted to burn natural gas, the Companies can avoid the cost of replacing the capacity of the Trimble County coal units. This project would require burner modifications to the units as well as an additional natural gas pipeline to the station. Because cost estimates have not been developed for this project, the analysis was conducted to determine the project's maximum cost for it to be economical.

4.3 Analysis

The results of this analysis are summarized in Table 5. Each alternative was evaluated over three gas price scenarios. For the reasons discussed in Section 2, the analysis assumed no incremental cost for CPP compliance for Trimble County. The PVRR of continuing to operate the Trimble County coal units is \$495 million to \$2.9 billion favorable to retiring the units and replacing the capacity. Furthermore, even with no cost included for the modifying the Trimble County burners and building a new gas pipeline, continuing to operate the Trimble County coal units is \$478 million to \$4.0 billion favorable to converting the units to burn natural gas.

⁷ The Retirement alternative does not account for the cost of transmission system upgrades that would likely be required to account for the 932 MW reduction in generating capacity at Trimble County between 2019 and 2021.

⁸ Tables of the gas prices and financial inputs are included in Appendix B – Other Inputs.

Table 5 – Trimble County Retirement Analysis Results (PVRR, 2016-2045, \$M, Reflecting Companies' 75% Ownership Share)

				Other		Replace-					
			Landfill	Capital	ECR	ment					Diff
Gas		Prod	and	and	Project	Capacity	NGCC	NGCC	NG		from
Price	Alternative	Costs	CCRT	FOM	Costs	Costs	Capital	FOM	Conversion	Total	Best
Low	Long Term Operation	2,692	367	1,229	210	0	0	0	0	4,499	0
	Retire TC Coal Units	2,946	116	141	116	367	944	364	0	4,994	495
	Natural Gas Conversion	3,796	116	949	116	0	0	0	0	4,976	478
Mid	Long Term Operation	2,692	367	1,229	210	0	0	0	0	4,499	0
	Retire TC Coal Units	4,112	116	141	116	367	944	364	0	6,160	1,661
	Natural Gas Conversion	5,546	116	949	116	0	0	0	0	6,727	2,228
High	Long Term Operation	2,692	367	1,229	210	0	0	0	0	4,499	0
	Retire TC Coal Units	5,312	116	141	116	367	944	364	0	7,360	2,861
	Natural Gas Conversion	7,346	116	949	116	0	0	0	0	8,527	4,028

5 Conclusion

The analyses summarized in Sections 3 and 4 result in the following conclusions:

- 1. The Trimble County Unit 1 mercury control system reduces revenue requirements. At the current spread between the cost of PAC and the cost of coal and FGD additives (\$0.30/MWh), the payback period for the supplemental mercury control injection system is only one year.
- 2. Continuing to operating the Trimble County coal units with the proposed investments for process-water systems and supplemental mercury control injection is least-cost.

6 Appendix A – Cost Assumptions

Table 6 – Capital and Fixed O&M Cost Assumptions for Retirement Analysis (\$000s, As-Spent Dollars, Reflecting Companies' 75% Ownership Share)

Table 6 – Capital and Fixed Ox																			2024	2025	2026	2027	2020	2020	2040	2044	2042	2042	2044	2045	Tatal
2016 Plan with Undeted FCP	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	Total
2016 Plan with Updated ECR Costs (Long Term Operation)																															
Coal Unit Fixed O&M	30	35	40	39	40	45	47	47	49	54	56	52	53	54	55	57	58	67	68	62	64	65	67	68	70	80	81	75	77	78	1,733
On-Going Capital	29	28	25	17	14	26	72	20	10	37	25	19	19	20	20	21	21	54	30	22	23	23	24	24	25	63	35	26	27	27	825
CCR Treatment Facility	47	49	33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	03	0	0	0	0	128
CCR Transport Facility	5	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
Landfill	43	30	38	9	13	1	21	6	7	1	1	0	0	0	34	8	1	1	1	1	1	1	1	44	2	1	1	1	1	1	271
Cap and Closure Costs	43	4	10	24	27	15	25	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	131
Process-Water System	0	44	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	89
Mercury Control System	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
ELG Costs	2	0	18	66	34	23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	143
Total	161	195	213	155	128	110	165	95	66	92	83	71	72	74	109	85	80	122	98	85	87	89	91	136	97	144	117	102	104	106	3,335
Total	101	133	213	133	120	110	103	33	- 00	32	03	, 1	72	, ,	103	03	00	122	30	03	07	03	71	130	37	177	+ 11/	102	104	100	3,333
Retire TC Coal Units	+																										 			 	
Coal Unit Fixed O&M ⁹	30	29	33	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	94
On-Going Capital ⁹	29	7	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43
CCR Treatment Facility	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47
CCR Transport Facility	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Landfill	43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43
Cap and Closure Costs	4	4	10	24	27	15	25	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	131
Process-Water System	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mercury Control System	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Replacement Capacity Cost ¹⁰	0	0	0	151	152	153	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	455
ELG Costs	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
NGCC Capital	0	0	0	192	700	123	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,029
NGCC Fixed O&M	0	0	0	0	0	0	35	35	36	37	38	38	39	40	41	42	42	43	44	45	46	47	48	49	50	51	52	53	54	55	1,059
Total	161	40	49	368	879	292	73	58	36	37	38	38	39	40	41	42	42	43	44	45	46	47	48	49	50	51	52	53	54	55	2,907
Natural Gas Conversion																															
Fixed O&M	30	35	39	37	37	36	38	38	39	45	47	42	43	44	45	46	47	56	57	51	52	53	54	56	57	68	68	61	63	65	1,450
On-Going Capital	29	28	25	17	14	26	22	20	10	37	25	19	19	20	20	21	21	54	30	22	23	23	24	24	25	63	35	26	27	27	775
CCR Treatment Facility	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47
CCR Transport Facility	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Landfill	43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43
Cap and Closure Costs	4	4	10	24	27	15	25	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	131
Process-Water System	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mercury Control System	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELG Costs	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
New Pipeline and Burner Mods	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	161	67	74	78	79	78	85	81	49	82	72	61	62	64	65	67	68	110	86	73	75	76	78	80	82	130	103	88	90	92	2,453

⁹ Reduced capital and O&M expenditures in the years leading up to a unit's retirement are consistent with the Companies' recent experience at the Cane Run Generating Station. ¹⁰ See Table 7 for a summary of the costs included in Replacement Capacity Cost.

Table 7 – Replacement Capacity Costs

Cost Item	1x1 NGCC
Replacement Capacity (\$/kW, 2013 Dollars) ¹¹	
Fixed Charge Rate	9.5%
Book Life (Years)	40
Fixed O&M (\$/kW-year, 2013 Dollars)	
Firm Gas Transport (\$/kW-year, 2013 Dollars) ¹²	20.3
Firm Transmission Service (\$/kW-year, 2015 Dollars) ¹³	22.5
Escalation Rate	2.0%

6.1 PPA Financing Costs

When rating agencies assess a utility's debt rating, they impute debt on the utility's balance sheet to reflect the fixed financial obligations associated with PPAs. As a result, when utilities enter into a PPA, they must increase the equity share of their capital structure to offset the imputed debt and maintain their debt rating.¹⁴

To calculate the amount of imputed debt, rating agencies compute the net present value ("NPV") of future fixed payments associated with the PPA (e.g., capacity payments) using a discount rate equivalent to the company's average cost of debt. Then, a risk factor is applied to reflect the benefits of regulatory or legislative cost recovery mechanisms. In the Companies' business environment, where regulators use a utility's rate case to establish base rates that provide for the recovery of the fixed costs created by PPAs, a risk factor of 50% is applied to the NPV. This product is then multiplied by the utilities' target share of debt financing to calculate the amount of imputed debt associated with a PPA. This process is consistent with the process used to address capitalization issues in the Companies' last rate case before the KPSC.

¹¹ Replacement capacity costs reflect capacity costs from the Companies' 2014 Integrated Resource Plan.

¹² Firm gas transportation costs were taken from the 2014 Integrated Resource Plan and are based on the firm gas transportation rates for Cane Run 7.

¹³ PJM tariff for firm transmission service, effective June 1, 2015.

¹⁴ A utility's debt rating is a function of its capital structure.

¹⁵ A complete summary of the methodology Standard & Poor's uses to calculate imputed debt for U.S. utilities' PPAs is available at http://www.psc.utah.gov/utilities/electric/09docs/0903523/062309ExhibitE.pdf.

7 Appendix B – Other Inputs

The Henry Hub ("HH") natural gas price scenarios considered in this analysis are listed in Table 8. The Mid natural gas price forecast is based on market prices for the short term and the Energy Information Administration's ("EIA") 2015 Annual Energy Outlook ("AEO") for the long term. ¹⁶ Prices in 2016-2017 were taken from the Companies' 2016 Business Plan and reflect NYMEX HH monthly forward prices as of 6/18/2015. Prices in 2018-2020 reflect a blend of market prices and a midpoint average curve between the annual HH prices from two EIA AEO 2015 scenarios: "High Oil Price" (a proxy for high gas price) and "High Oil and Gas Resource" (a proxy for low gas price). Blending is 75% market in 2018, 50% market in 2019, and 25% market in 2020. Prices in 2021-2037 reflect the midpoint average curve between the annual HH prices from the "High Oil Price" and "High Oil-Gas Resource" scenarios ("Midpoint"). Prices in 2038-2045 are escalated annually at the 2027-2037 compound annual growth rate of the Midpoint forecast (4.4%) from the 2037 Midpoint forecast prices. Monthly prices after 2017 are calculated using average monthly shape indices derived from the market forwards for 2016-2020. The Low natural gas price forecast is based on EIA's 2015 AEO "High Oil and Gas Resource" scenario. To maintain a consistent spread between the Low and Mid natural gas price scenarios, years 2016-2018 in the Low scenario were adjusted to reflect the 2019 percentage difference between the Low and Mid scenarios. The High natural gas price forecast is based on EIA's 2015 AEO "High Oil Price" scenario.

¹⁶ The EIA's 2015 AEO was published in April 2015. For the AEO data tables, see http://www.eia.gov/oiaf/aeo/tablebrowser/#release=AEO2015&subject=0-AEO2015&table=1-AEO2015®ion=0-0&cases=ref2015-d021915a. For the AEO report, see http://www.eia.gov/forecasts/aeo/.

Table 8 – Natural Gas Prices (Nominal Henry Hub \$/MMBtu)

Table 6 - Natul	al Gas Prices (N		
Year	Low	Mid	High
2016	2.93	3.17	3.53
2017	3.08	3.34	3.89
2018	3.27	3.54	4.30
2019	3.49	3.78	4.67
2020	3.51	4.16	5.18
2021	3.69	4.72	5.76
2022	3.75	5.01	6.26
2023	3.89	5.49	7.09
2024	3.96	5.81	7.66
2025	4.09	6.14	8.19
2026	4.21	6.51	8.80
2027	4.39	6.78	9.18
2028	4.61	7.04	9.47
2029	4.67	7.38	10.09
2030	4.76	7.74	10.72
2031	4.94	8.23	11.52
2032	5.18	8.62	12.07
2033	5.42	8.86	12.31
2034	5.69	9.24	12.79
2035	5.94	9.58	13.22
2036	6.14	9.97	13.80
2037	6.42	10.45	14.49
2038	6.67	10.91	15.16
2039	6.92	11.40	15.87
2040	7.19	11.90	16.62
2041	7.47	12.43	17.39
2042	7.76	12.98	18.20
2043	8.06	13.55	19.06
2044	8.37	14.15	19.95
2045	8.70	14.77	20.88

Table 9 – Financial Inputs

Input	Value
Return on Equity	10.0%
Cost of Debt	4.21%
Capital Structure	
Debt	47.0%
Equity	53.0%
Tax Rate	38.9%
Revenue Requirement Discount Rate	6.51%

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF KENTUCKY UTILITIES)
COMPANY FOR CERTIFICATES OF PUBLIC)
CONVENIENCE AND NECESSITY AND) CASE NO. 2016-00026
APPROVAL OF ITS 2016 COMPLIANCE PLAN)
FOR RECOVERY BY ENVIRONMENTAL)
SURCHARGE)

DIRECT TESTIMONY OF DEREK A. RAHN MANAGER, REVENUE REQUIREMENT KENTUCKY UTILITIES COMPANY

Filed: January 29, 2016

- 1 Q. Please state your name, position, and business address.
- 2 A. My name is Derek A. Rahn. I am the Manager, Revenue Requirement for Kentucky
- 3 Utilities Company ("KU" or "Company") and Louisville Gas and Electric Company
- 4 ("LG&E") and an employee of LG&E and KU Services Company, which provides
- services to LG&E and KU (collectively "Companies"). My business address is 220
- West Main Street, Louisville, Kentucky, 40202. A complete statement of my
- 7 education and work experience is attached to this testimony as Appendix A.

8 Q. Have you previously testified before this Commission?

- 9 A. Yes. I testified before this Commission in the Companies' most recent environmental
- cost recovery six-month review proceedings (Case Nos. 2015-00411 (KU) and 2015-
- 11 00412 (LG&E)).

12 Q. Are you sponsoring any exhibits?

- 13 A. Yes. I am sponsoring five exhibits, identified as Exhibits DAR-1, DAR-2, DAR-3,
- DAR-4, and DAR-5. These exhibits are:
- 15 Exhibit DAR-1 Proposed ECR Tariff
- 16 Exhibit DAR-2 Proposed ECR Tariff Redline
- 17 Exhibit DAR-3 Current KU Environmental Surcharge Monthly Reports
- 18 Exhibit DAR-4 Proposed KU Environmental Surcharge Monthly Reports
- 19 *Exhibit DAR-5* 2016 Plan Customer Bill Impact

20 Q. What are the purposes of your testimony?

- A. My testimony addresses how the environmental surcharge under KU's Environmental
- 22 Cost Recovery ("ECR") Surcharge tariff provisions will be calculated to include the
- costs of KU's 2016 Environmental Compliance Plan ("2016 Plan"), presents the
- revisions to the monthly ECR reporting forms ("ES Forms") that KU proposes and

1	explains why the revisions to the forms are appropriate, and discusses the bill impact
2	on KU's customers

- 3 Q. Is KU proposing any changes to its Environmental Cost Recovery Surcharge 4 tariff sheets?
- Surcharge tariff sheets other than to change their issue and effective dates to reflect

 KU's Application in this proceeding. The proposed ECR Tariff is attached as Exhibit

 DAR-1 and a redline version comparing the proposed ECR Tariff to the existing tariff is attached as Exhibit DAR-2. The ECR tariff has an issue date of January 29, 2016, and is proposed to be effective on July 29, 2016. Therefore, bills reflecting the expense month of July 2016 will reflect the revised environmental surcharge.
- Q. Will the methodologies for calculating the environmental surcharge change if the
 Commission approves recovery of KU's 2016 Plan?
- A. No. KU will use the currently approved methodologies for calculating the environmental surcharge, including the revenue allocation discussed in Robert M. Conroy's testimony. The proposed calculation of the monthly Environmental Surcharge billing factor will continue to consolidate the 2009 Plan and the 2011 Plan and will add the proposed 2016 Plan.
- Q. Will the monthly reporting forms used for calculating the environmental surcharge change if the Commission approves recovery of KU's 2016 Plan?
- 21 A. Yes. KU is proposing to revise several of its monthly reporting forms to reflect the 22 recovery of the costs associated with the 2016 Plan. Exhibit DAR-3 contains KU's 23 current monthly ES Forms; Exhibit DAR-4 contains KU's proposed monthly ES 24 Forms.

- Q. Please describe the monthly-reporting-form modifications that KU is proposing as a result of the 2016 Plan.
- A. The calculation of the monthly billing factor for recovery of the cost of KU's 2016

 Plan will be consistent with the current methodology approved by the Commission

 and used to calculate the recovery of the cost of KU's current Environmental

 Compliance Plans. ES Form 1.00 will continue to show the calculation of the

 Jurisdictional Environmental Surcharge Billing Factor using the same methodology

 previously approved by the Commission.

Determination of the Environmental Compliance Rate Base is based on combining all ECR-approved expenditures and calculating the rate base according to the methodologies ordered in the previous Compliance Plan cases.

KU proposes to modify ES Form 2.00 (Revenue Requirements of Environmental Compliance Costs) to account for the impact of surface-impoundment-related construction on environmental compliance rate base of construction related to compliance with the federal Coal Combustion Residuals ("CCR") Rule and to change various references to other ES Forms to track the proposed ES Form changes discussed below.

The plant, construction work in progress, and depreciation expenses for the 2009 and 2011 Plans are currently reported on ES Form 2.10. This form is being expanded to include the 2016 Plan projects for which KU is seeking cost recovery, including two rows for each of Projects 40 through 42 to show separately the costs of CCR Rule compliance construction and the costs of process water system construction for each project. Also, KU proposes to add a column called "CCR Rule"

Compliance Construction Costs" to ES Form 2.10, which will apply to Projects 39 through 42.

KU proposes to modify current ES Forms 2.30 through 2.33 to reflect changes associated with the implementation of the Cross-State Air Pollution Rule ("CSAPR") in January 2015. As KU noted in its February 20, 2015 submittal letter to the Commission providing KU's Monthly Environmental Surcharge Report for the expense month of January 2015, it was necessary at that time to provide the Commission supplemental schedules to ES Form 2.31 to differentiate between SO₂ allowances under the Clean Air Interstate Rule ("CAIR") and CSAPR. KU now proposes to make those supplemental forms a permanent part of KU's monthly reporting by modifying ES Forms 2.30 through 2.33 as follows:

- ES Form 2.30 will be modified to allow for the differentiation of SO₂ allowances between CAIR and CSAPR allowances. This is being done by including two additional columns to display the differentiation.
- Current ES Form 2.31 will be removed as redundant relative to the renamed
 ES Forms 2.31 and 2.32 (currently Supplemental ES Form 2.31 CAIR and
 Supplemental ES Form 2.31 CSAPR).
- The current Supplemental ES Form 2.31 CAIR will be renamed ES Form 2.31
 Inventory of CAIR Emission Allowances (SO₂) Current Vintage Year.
- The current Supplemental ES Form 2.31 CSAPR will be renamed ES Form
 2.32 Inventory of CSAPR Emission Allowances (SO₂) Current Vintage
 Year.
- The current ES Form 2.32 will be renamed ES Form 2.33 Inventory of Emission Allowances (NOx) Ozone Season Allowance Allocation.

• The current ES Form 2.33 will be renamed ES Form 2.34 - Inventory of Emission Allowances (NOx) - Annual Allowance Allocation.

A.

The pollution control equipment operating and maintenance ("O&M") expenses for the 2009 and 2011 Plans are currently reported on ES Form 2.50. This form is being expanded to include the O&M expenses associated with Project 38. KU is not proposing to recover O&M expenses through the ECR mechanism for the other projects in the 2016 Plan.

ES Form 3.00 will be modified to change the name of column (4) from "Fuel Clause Revenues," to "Fuel Clause Revenues Including Off-System Sales Tracker." Similarly, ES Form 3.10 Item (2) "Fuel Adjustment Clause" is being renamed "Fuel Adjustment Clause including Off System Sales Tracker." These changes reflect the settlement agreement in KU's 2014 base-rate case (Case No. 2014-00371), which implemented the off-system sales adjustment clause factor as a credit to customers through the Fuel Adjustment Clause.

Q. Has KU estimated the impact of the new projects on the Environmental Cost Recovery Surcharge?

Yes. The table below shows the estimated annual impact on Total E(m), Jurisdictional E(m), and the incremental billing factor associated with the projects contained in the 2016 Plan. As shown in the table, the estimated impact on a customer is an increase of 2.06% initially in 2016 and increasing to a maximum of 3.35% in 2019. For a residential customer using an average of 1,146 kWh per month, the initial monthly increase is expected to be \$2.16 in 2016, upon approval by the Commission. It is estimated that this amount will increase to a maximum of \$3.52

per month in 2019. Exhibit DAR-5 shows the details of the impact on the calculation of the environmental surcharge and a residential customer for 2016 through 2024.

Environmental Cost Recovery Surcharge Summary

	2016	2017	2018	2019	2020
Total E(m) - (\$000)	\$35,178	\$47,402	\$57,456	\$63,533	\$53,645
12 Month Average Jurisdictional Ratio	87.10%	87.10%	87.10%	87.10%	87.10%
Jurisdictional E(m) - (\$000)	\$30,640	\$41,286	\$50,044	\$55,336	\$46,724
Forecasted Jurisdictional $R(m)$ - $(million)$	1,487	1,538	1,580	1,650	1,693
Incremental Billing Factor	2.06%	2.68%	3.17%	3.35%	2.76%
Residential Customer Impact Monthly bill (1,146 kWh per month)	\$2.16	\$2.82	\$3.32	\$3.52	\$2.90

3

5

10

Conclusion and Recommendation

Q. What are your conclusion and recommendation to the Commission?

A. I recommend that the Commission approve KU's 2016 Plan and application for cost recovery of its compliance costs through the Rate Schedule ECR tariff, as well as the proposed changes to KU's Rate Schedule ECR tariff and monthly ES Forms beginning with the expense month of July 2016.

Q. Does this conclude your testimony?

11 A. Yes, it does.

VERIFICATION

COMMONWEALTH OF KENTUCKY)	
)	SS:
COUNTY OF JEFFERSON)	

The undersigned, **Derek A. Rahn**, being duly sworn, deposes and says that he is Manager - Revenue Requirement for LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and that the answers contained therein are true and correct to the best of his information, knowledge and belief.

Derek A. Rahn

Notary Public (SEAL)

My Commission Expires:

JUDY SCHOOLER

Notary Public, State at Large, KY

My commission expires July 11, 2018

Notary ID # 512743

APPENDIX A

Derek A. Rahn

Manager, Revenue Requirement LG&E and KU Services Company 220 West Main Street Louisville, Kentucky 40202 (502) 627-4127

Education

Masters of Business Administration, Bellarmine University, July 2010. Bachelor of Science in Electrical Engineering, University of Kentucky, December 2003.

Training: Managing People & Processes (2014), IUS Leadership Program (2007-2008), Professional Development Program (2007-2008), Global Leadership Summit (2013 & 2015), Mentoring Program (2008, 2014, & 2015), Project Management (2006), Microsoft Project (2005), Advanced Operator (2008), Basic Shaft Alignment (2006).

Previous Positions

Manager, Transmission Policy & Tariffs
Group Leader, Transmission Operations Engineering
Supervisor, Operations (Ghent Power Station)
Electrical Engineer II (Ghent Power Station)
Project Engineer (TubeMaster, Inc.)
Sept. 2010 – Oct. 2015
Dec. 2008 – Sept. 2010
Dec. 2007 – Dec. 2008
Jul. 2005 – Dec. 2007
Dec 2003 – Jul. 2005

P.S.C. No. 17, Second Revision of Original Sheet No. 87 Canceling P.S.C. No. 17, First Revision of Original Sheet No. 87

Adjustment Clause

ECR

Environmental Cost Recovery Surcharge

APPLICABLE

In all territory served.

AVAILABILITY OF SERVICE

This schedule is mandatory to all Standard Electric Rate Schedules listed in Section 1 of the General Index except CTAC and Special Charges, all Pilot Programs listed in Section 3 of the General Index, and the FAC (including the Off-System Sales Tracker) and DSM Adjustment Clauses. Standard Electric Rate Schedules subject to this schedule are divided into Group 1 or Group 2 as follows:

Group 1: Rate Schedules RS; RTOD-Energy; RTOD-Demand; VFD; AES; LS; RLS; LE; and TE.

Group 2: Rate Schedules GS; PS; TODS; TODP; RTS; and FLS.

RATE

The monthly billing amount under each of the schedules to which this mechanism is applicable, shall be increased or decreased by a percentage factor calculated in accordance with the following formula.

Group Environmental Surcharge Billing Factor = Group E(m) / Group R(m)

As set forth below, Group E(m) is the sum of Jurisdictional E(m) of each approved environmental compliance plan revenue requirement of environmental compliance costs for the current expense month allocated to each of Group 1 and Group 2. Group R(m) for Group 1 is the 12-month average revenue for the current expense month and for Group 2 it is the 12-month average non-fuel revenue for the current expense month.

DEFINITIONS

- For all Plans, E(m) = [(RB/12) (ROR + (ROR DR) (TR / (1 TR))] + OE EAS + BR
 - a) RB is the Total Environmental Compliance Rate Base.
 - b) ROR is the Rate of Return on Environmental Compliance Rate Base, designated as the overall rate of return [cost of short-term debt, long-term debt, preferred stock, and common equity].
 - c) DR is the Debt Rate [cost of short-term debt, and long-term debt].
 - d) TR is the Composite Federal and State Income Tax Rate.
 - e) OE is the Operating Expenses. OE includes operation and maintenance expense recovery authorized by the K.P.S.C. in all approved ECR Plan proceedings.
 - f) EAS is the total proceeds from emission allowance sales.
 - g) BR is the operation and maintenance expenses, and/or revenues if applicable, associated with Beneficial Reuse.
 - h) Plans are the environmental surcharge compliance plans submitted to and approved by the Kentucky Public Service Commission pursuant to KRS 278.183.

DATE OF ISSUE: January 29, 2016

DATE EFFECTIVE: July 29, 2016

ISSUED BY: /s/ Edwin R. Staton, Vice President

State Regulation and Rates

Lexington, Kentucky

Issued by Authority of	of an Order of the
Public Service Comm	ission in Case No.
2016-00026 dated	. 20

P.S.C. No. 17, First Revision of Original Sheet No. 87.1 Canceling P.S.C. No. 17, Original Sheet No. 87.1

Adjustment Clause

ECR Environmental Cost Recovery Surcharge

DEFINITIONS (continued)

- 2) Total E(m) (sum of each approved environmental compliance plan revenue requirement) is multiplied by the Jurisdictional Allocation Factor. Jurisdictional E(m) is adjusted for any (Over)/Under collection or prior period adjustment and by the subtraction of the Revenue Collected through Base Rates for the Current Expense month to arrive at Adjusted Net Jurisdictional E(m). Adjusted Net Jurisdictional E(m) is allocated to Group 1 and Group 2 on the basis of Revenue as a Percentage of Total Revenue for the 12 months ending with the Current Month to arrive at Group 1 E(m) and Group 2 E(m).
- 3) The Group 1 R(m) is the average of total Group 1 monthly base revenue for the 12 months ending with the current expense month. Base revenue includes the customer, energy, and lighting charges for each rate schedule included in Group 1 to which this mechanism is applicable and automatic adjustment clause revenues for the Fuel Adjustment Clause and the Demand-Side Management Cost Recovery Mechanism as applicable for each rate schedule in Group 1.
- 4) The Group 2 R(m) is the average of total Group 2 monthly base non-fuel revenue for the 12 months ending with the current expense month. Base non-fuel revenue includes the customer, non-fuel energy, and demand charges for each rate schedule included in Group 2 to which this mechanism is applicable and automatic adjustment clause revenues for the Demand-Side Management Cost Recovery Mechanism as applicable for each rate schedule in Group 2. Non-fuel energy is equal to the tariff energy rate for each rate schedule included in Group 2 less the base fuel factor as defined on Sheet No. 85.1, Paragraph 6.
- 5) Current expense month (m) shall be the second month preceding the month in which the Environmental Surcharge is billed.

DATE OF ISSUE: January 29, 2016

DATE EFFECTIVE: July 29, 2016

ISSUED BY: /s/ Edwin R. Staton, Vice President

State Regulation and Rates

Lexington, Kentucky

Issued by Authority	of an Order of the
Public Service Comn	nission in Case No.
2016-00026 dated	, 20

P.S.C. No. 17, <u>Second First Revision of Original Sheet No. 87</u> Canceling P.S.C. No. 17, <u>First Revision of Original Sheet No. 87</u>

Adjustment Clause

ECR

Environmental Cost Recovery Surcharge

APPLICABLE

In all territory served.

AVAILABILITY OF SERVICE

This schedule is mandatory to all Standard Electric Rate Schedules listed in Section 1 of the General Index except CTAC and Special Charges, all Pilot Programs listed in Section 3 of the General Index, and the FAC (including the Off-System Sales Tracker) and DSM Adjustment Clauses. Standard Electric Rate Schedules subject to this schedule are divided into Group 1 or Group 2 as follows:

Group 1: Rate Schedules RS; RTOD-Energy; RTOD-Demand; VFD; AES; LS; RLS; LE; and TE.

Group 2: Rate Schedules GS; PS; TODS; TODP; RTS; and FLS.

RATE

The monthly billing amount under each of the schedules to which this mechanism is applicable, shall be increased or decreased by a percentage factor calculated in accordance with the following formula.

Group Environmental Surcharge Billing Factor = Group E(m) / Group R(m)

As set forth below, Group E(m) is the sum of Jurisdictional E(m) of each approved environmental compliance plan revenue requirement of environmental compliance costs for the current expense month allocated to each of Group 1 and Group 2. Group R(m) for Group 1 is the 12-month average revenue for the current expense month and for Group 2 it is the 12-month average non-fuel revenue for the current expense month.

DEFINITIONS

- For all Plans, E(m) = [(RB/12) (ROR + (ROR DR) (TR / (1 TR))] + OE EAS + BR
 - a) RB is the Total Environmental Compliance Rate Base.
 - b) ROR is the Rate of Return on Environmental Compliance Rate Base, designated as the overall rate of return [cost of short-term debt, long-term debt, preferred stock, and common equity].
 - c) DR is the Debt Rate [cost of short-term debt, and long-term debt].
 - d) TR is the Composite Federal and State Income Tax Rate.
 - e) OE is the Operating Expenses. OE includes operation and maintenance expense recovery authorized by the K.P.S.C. in all approved ECR Plan proceedings.
 - f) EAS is the total proceeds from emission allowance sales.
 - g) BR is the operation and maintenance expenses, and/or revenues if applicable, associated with Beneficial Reuse.
 - h) Plans are the environmental surcharge compliance plans submitted to and approved by the Kentucky Public Service Commission pursuant to KRS 278.183.

DATE OF ISSUE: January 29, 2016December 16, 2015

DATE EFFECTIVE: July 29, 2016 December 7, 2015

ISSUED BY: /s/ Edwin R. Staton, Vice President

State Regulation and Rates

Lexington, Kentucky

Issued by Authority of an Order of the Public Service Commission in Case No.

2016-000262015-00221 dated , 20 December 7, 2015

P.S.C. No. 17, First Revision of Original Sheet No. 87.1

Canceling P.S.C. No. 17, Original Sheet No. 87.1

Adjustment Clause

ECR Environmental Cost Recovery Surcharge

DEFINITIONS (continued)

- 2) Total E(m) (sum of each approved environmental compliance plan revenue requirement) is multiplied by the Jurisdictional Allocation Factor. Jurisdictional E(m) is adjusted for any (Over)/Under collection or prior period adjustment and by the subtraction of the Revenue Collected through Base Rates for the Current Expense month to arrive at Adjusted Net Jurisdictional E(m). Adjusted Net Jurisdictional E(m) is allocated to Group 1 and Group 2 on the basis of Revenue as a Percentage of Total Revenue for the 12 months ending with the Current Month to arrive at Group 1 E(m) and Group 2 E(m).
- 3) The Group 1 R(m) is the average of total Group 1 monthly base revenue for the 12 months ending with the current expense month. Base revenue includes the customer, energy, and lighting charges for each rate schedule included in Group 1 to which this mechanism is applicable and automatic adjustment clause revenues for the Fuel Adjustment Clause and the Demand-Side Management Cost Recovery Mechanism as applicable for each rate schedule in Group 1.
- 4) The Group 2 R(m) is the average of total Group 2 monthly base non-fuel revenue for the 12 months ending with the current expense month. Base non-fuel revenue includes the customer, non-fuel energy, and demand charges for each rate schedule included in Group 2 to which this mechanism is applicable and automatic adjustment clause revenues for the Demand-Side Management Cost Recovery Mechanism as applicable for each rate schedule in Group 2. Non-fuel energy is equal to the tariff energy rate for each rate schedule included in Group 2 less the base fuel factor as defined on Sheet No. 85.1, Paragraph 6.
- 5) Current expense month (m) shall be the second month preceding the month in which the Environmental Surcharge is billed.

DATE OF ISSUE: <u>January 29, 2016 July 10, 2015</u>

DATE EFFECTIVE: July <u>29</u>4, <u>2016</u>, <u>2015</u>

ISSUED BY: /s/ Edwin R. Staton, Vice President

State Regulation and Rates

Lexington, Kentucky

ES FORM 1.00

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Net Jurisdictional E(m) and Jurisdictional Environmental Surcharge Billing Factor For the Expense Month of

GROUP 1 (Total Revenue)					
Group 1 E(m) ES Form 1.10, line 15	=				
Group 1 ES Billing Factor ES Form 1.10, line 17	=				
GROUP 2 (Net Revenue)					
Group 2 E(m) ES Form 1.10, line 15					
Group 2 ES Billing Factor ES Form 1.10, line 17	=				
Effective Date for Billing:					
Submitted by:					
Title: Manager - Revenue Requirement					
Date Submitted:					

ES FORM 1.10

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Calculation of Total E(m) and Jurisdictional Surcharge Billing Factor

For the Expense Month of

Calculation of Total E(m)

E(m) = [(RB / 12)]	(ROR+(RO	(R - DR)(TR/(1-TR)))] + OE - BAS + BR, where
RB	=	Environmental Compliance Rate Base
ROR	=	Rate of Return on the Environmental Compliance Rate Base
DR	=	Debt Rate (both short-term and long-term debt)
TR	=	Composite Federal & State Income Tax Rate
OE	=	Pollution Control Operating Expenses
BAS	=	Total Proceeds from By-Product and Allowance Sales
BR	=	Beneficial Reuse Operating Expenses

		Environmental Compliance Plans	s
(1) RB (2) RB / 12		= =	
` '	DR) (TR / (1 - TR)))	= =	
(5) BAS (6) BR		= =	
,			
(7) E(m)	(2) x (3) + (4) - (5) + (6)	=	

$Calcula \underline{tion\ of\ Adjusted\ Net\ Jurisdictional\ E(m)}$

(8)	Jurisdictional Allocation Ratio for Expense Month ES Form 3.10	=	
(9)	$\label{eq:Jurisdictional} \text{Jurisdictional E(m)} = \text{Total E(m)} \ x \ \text{Jurisdictional Allocation Ratio} [(7) \ x \ (8)]$	=	
(10)	Adjustment for (Over)/Under-collection pursuant to Case No. 2015-00020	=	
(11)	Prior Period Adjustment (if necessary)	=	
(12)	Revenue Collected through Base Rates	=	
(13)	Adjusted Net Jurisdictional E(m) $[(9) + (10) + (11) - (12)]$	=	

Calculation of Group Environmental Surcharge Billing Factors

		GROUP 1 (Total Revenue)	GROUP 2 (Net Revenue)
(14)	Revenue as a Percentage of 12-month Total Revenue ending with the Current Month ES Form 3.00	=	
(15)	Group E(m) [(13) x (14)]	=	
(16)	Group R(m) = Average Monthly Group Revenue for the 12 Months Ending with the Current Expense Month ES Form 3.00	=	
(17)	Group Environmental Surcharge Billing Factors $[(15) \div (16)]$	=	

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Revenue Requirements of Environmental Compliance Costs For the Expense Month of

Determination of Environmental Compliance Rate Base

	Enviromental Complian	Enviromental Compliance Plan		
Eligible Pollution Control Plant				
Eligible Pollution CWIP Excluding AFUDC				
Subtotal				
Additions:				
Inventory - Emission Allowances per ES Form 2.31, 2.32 and 2.33				
Less: Allowance Inventory Baseline				
Net Emission Allowance Inventory				
Cash Working Capital Allowance				
Subtotal				
Deductions:				
Accumulated Depreciation on Eligible Pollution Control Plant				
Pollution Control Deferred Income Taxes				
Pollution Control Deferred Investment Tax Credit				
Subtotal		•		
Environmental Compliance Rate Base				

Determination of Pollution Control Operating Expenses

	Enviromental	Compliance Plan
Monthly Operations & Maintenance Expense	_	
Monthly Depreciation & Amortization Expense		
Monthly Taxes Other Than Income Taxes		
Monthly Emission Allowance Expense from ES Form 2.31, 2.32 and 2.33		
Add KU Current Month TC2 Emission Allowance Expense reported on ES Form 2.31, 2.32 and 2.33		
Less Monthly Emission Allowance Expense in base rates		
Net Recoverable Emission Allowance Expense		
Monthly Surcharge Consultant Fee		
Construction Monitoring Consultant Fee		
Total Pollution Control Operations Expense		

Determination of Beneficial Reuse Operating Expenses

	Environmental
	Compliance Plan
Total Monthly Beneficial Reuse Expense	
Adjustment for Beneficial Reuse in Base Rates (from ES Form 2.61)	
Net Beneficial Reuse Operations Expense	

Proceeds From By-Product and Allowance Sales

110cccus 110m by-110duct and Miowance Baies			
	Total	Amount in	Net
	Proceeds	Base Rates	Proceeds
	(1)	(2)	(1) - (2)
Allowance Sales			
Scrubber By-Products Sales			
Total Proceeds from Sales			

ES FORM 2.10

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Plant, CWIP & Depreciation Expense

For the Month Ended:

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Description	Eligible Plant In Service	Eligible Accumulated Depreciation	CWIP Amount Excluding AFUDC	Eligible Net Plant In Service	Unamortized ITC as of 12/31/2015	Deferred Tax Balance as of 12/31/2015	Monthly Depreciation Expense	Monthly Property Tax Expense
				(2)-(3)+(4)				
2009 Plan: Project 28 - Brown 3 SCR Project 29 - ATB Expansion at E.W. Brown Station (Phase II) Project 30 - Ghent CCP Storage (Landfill- Phase I) Project 31 - Trimble County Ash Treatment Basin (BAP/GSP) Project 32 - Trimble County CCP Storage (Landfill - Phase I) Project 33 - Beneficial Reuse								
Subtotal Less Retirements and Replacement resulting from implementation of 2009 Plan								
Net Total - 2009 Plan:								
2011 Plan: Project 29 - Brown Landfill (Phase I) Project 34 - E.W. Brown Station Air Compliance Project 35 - Ghent Station Air Compliance								
Subtotal Less Retirements and Replacement resulting from implementation of 2011 Plan								
Net Total - 2011 Plan:	-		-		<u> </u>			
N (T) (I All D)								
Net Total - All Plans:								

Note 1: Trimble County projects for the 2009 Plan are proportionately shared by KU at 48% and LG&E at 52%

Note 2: Project 29 as approved in the 2009 ECR Plan recovers costs associated with the Brown Aux Pond (Phase II). In the 2011 Plan, Project 29 was amended to recover costs associated with the conversion of the Brown Main Ash Pond to the Brown Landfill (Phase I)

ES FORM 2.30

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of Emission Allowances

For the Month Ended:

Vintage Year	Number of Allowances			Tota	al Dollar Value Of Vintage	Year	Comments and Explanations
	SO_2	NOx	NOx	SO_2	NOx	NOx	
	(Note 1)	Annual	Ozone Season	(Note 2)	Annual	Ozone Season	
Current Year							
2016							
2017							
2018							
2019							
2020							
2021							
2022							
2023							
2024							
2025							
2026							
2027							
2028							
2029							
2030							
2031							
2032							
2033							
2034							
2035 - 2044							

Note 1: Includes CAIR allowances of 222,364 for the current year and 77,535 for years 2016 through 2044.

Note 2: Total Dollar Value of Vintage Year for SO₂ allowances are associated with CAIR allowances only. EPA allotment of CSAPR allowances have \$0 value when received.

In the "Comments and Explanation" Column, describe any allowance inventory adjustment other than the assignment of allowances by EPA. Inventory adjustments include, but are not limited to, purchases, allowances acquired as part of other purchases, and the sale of allowances.

ES FORM 2.31

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of Emission Allowances (SO₂) - Current Vintage Year

For the Expense Month of

	Beginning	Allocations/	Utilized	Utilized		Ending	Allocation, Purchase, or
	Inventory	Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
TOTAL EMISSI	ON ALLOWANCE	S IN INVENTORY	, ALL CLASSIFIC	CATIONS		_	
Quantity							
Dollars							
\$/Allowance							
	•	•	•	•	•	•	
ALLOCATED A	LLOWANCES FRO	OM EPA: COAL F	UEL				
Quantity							
Dollars							
ALLOCATED A	LLOWANCES FRO	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
	•		•	•	-	•	
ALLOWANCES	FROM PURCHAS	SES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
	•	•	•	•	•	•	
From LG&E							
Quantity							
Dollars							
\$/Allowance							
	L	1	1	1	1	1	

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor

SUPPLEMENTAL ES FORM 2.31 - SUPPORT SCHEDULE

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of CAIR Emission Allowances (SO₂) - Current Vintage Year

For the Expense Month of

	Beginning	Allocations/	Utilized	Utilized		Ending	Allocation, Purchase, or
	Inventory	Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
TOTAL EMISSI	ON ALLOWANCE	S IN INVENTORY	, ALL CLASSIFIC	CATIONS			
Quantity							
Dollars							
\$/Allowance							
	*	*	•	-	•	•	
ALLOCATED A	LLOWANCES FRO	OM EPA: COAL F	UEL				
Quantity							
Dollars							
	•	•			•	•	•
ALLOCATED A	LLOWANCES FRO	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
	•	•	•	•	•	•	•
ALLOWANCES	FROM PURCHAS	SES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
	<u> </u>	•	·	•		•	
From LG&E							
Quantity							
Dollars							
\$/Allowance							
	•	•	•	•	•	•	•

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor

SUPPLEMENTAL ES FORM 2.31 - SUPPORT SCHEDULE

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of CSAPR Emission Allowances (SO₂) - Current Vintage Year

For the Expense Month of

	Beginning	Allocations/	Utilized	Utilized		Ending	Allocation, Purchase, or
	Inventory	Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
TOTAL EMISSI	ON ALLOWANCE	S IN INVENTORY	, ALL CLASSIFIC	CATIONS			
Quantity							
Dollars							
\$/Allowance							
	•	•	•	•	•	•	
ALLOCATED A	LLOWANCES FRO	OM EPA: COAL F	UEL				
Quantity							
Dollars							
ALLOCATED A	LLOWANCES FRO	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
	•		•	•	-	•	
ALLOWANCES	FROM PURCHAS	SES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
	*	*		•	•	•	•
From LG&E							
Quantity							
Dollars							
\$/Allowance							
+, Allee	1	1	1	1	I.	1	

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of Emission Allowances (NOx) - Ozone Season Allowance Allocation

For the Expense Month of

	Beginning	Allocations/	Utilized	Utilized		Ending	Allocation, Purchase, or
	Inventory	Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
TOTAL EMISSI	ON ALLOWANCE	S IN INVENTORY	, ALL CLASSIFICA	ATIONS			
Quantity							
Dollars							
\$/Allowance							
ALLOCATED A	LLOWANCES FRO	OM EPA: COAL F	UEL				
Quantity							
Dollars				·			
ALLOCATED A	LLOWANCES FRO	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
ALLOWANCES	FROM PURCHAS	ES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
From LG&E:							
Quantity			_				
Dollars							
\$/Allowance							

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of Emission Allowances (NOx) - Annual Allowance Allocation

For the Expense Month of

	Inventory			Utilized		Ending	Allocation, Purchase, or
		Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
TOTAL EMISSIO	N ALLOWANCE	S IN INVENTORY	, ALL CLASSIFIC	ATIONS			
Quantity							
Dollars							
\$/Allowance							
ALLOCATED AL	LOWANCES FRO	OM EPA: COAL F	UEL				
Quantity				·			
Dollars							
		•	•	•	•	•	•
ALLOCATED AL	LOWANCES FRO	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
				•		•	
ALLOWANCES F	FROM PURCHAS	ES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
						•	
From LG&E:							
Quantity							
Dollars							
\$/Allowance							
<u>;</u>		ı	1	1	· ·	-1	1

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

O&M Expenses and Determination of Cash Working Capital Allowance

For the Month Ended:

Environmental Compliance Plan							
O&M Expenses	Amount						
11th Previous Month							
10th Previous Month							
9th Previous Month							
8th Previous Month							
7th Previous Month							
6th Previous Month							
5th Previous Month							
4th Previous Month							
3rd Previous Month							
2nd Previous Month							
Previous Month							
Current Month							
Total 12 Month O&M							

Determination of Working Capital Allowance	
12 Months O&M Expenses	
One Eighth (1/8) of 12 Month O&M Expenses	1/8
Pollution Control Cash Working Capital Allowance	

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Pollution Control - Operations & Maintenance Expenses

For the Month Ended:

	E. W.			
O&M Expense Account	Brown	Ghent	Trimble County	Total
2009 Plan				
506154 - ECR NOx Operation Consumables				
506155 - ECR NOx Operation Labor and Other				
512151 - ECR NOx Maintenance				
506159 - ECR Sorbent Injection Operation				
506152 - ECR Sorbent Reactant - Reagent Only				
512152 - ECR Sorbent Injection Maintenance				
502013 - ECR Landfill Operations				
512107 - ECR Landfill Maintenance				
Adjustment for CCP Disposal in Base Rates (ES Form 2.51)				
Total 2009 Plan O&M Expenses				
2011 Plan	•			
506159 - ECR Sorbent Injection Operation				
506152 - ECR Sorbent Reactant - Reagent Only				
512152 - ECR Sorbent Injection Maintenance				
506156 - ECR Baghouse Operations				
512156 - ECR Baghouse Maintenance				
506151 - ECR Activated Carbon				
502013 - ECR Landfill Operations				
512107 - ECR Landfill Maintenance				
Total 2011 Plan O&M Expenses				
			_	
Current Month O&M Expense for All Plans				

Note 1: Trimble County projects for the 2009 Plan are proportionately shared by KU at 48% and LG&E at 52%.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

CCP Disposal Facilities Expenses For the Month Ended:

On-Site CCP Disposal O&M Expense	Ghent	Trimble County
Existing CCP Disposal Facilities (Pre 2009 Plan Project)		T
(1) 12 Months Ending with Expense Month		
(2) Monthly Amount [(1) / 12]		
2009 Plan Project		
(3) Monthly Expense		
Total Generating Station		
(4) Monthly Expense [(2) + (3)]		
Base Rates		
(5) Annual Expense Amount (12 Mo Ending with Last Test Year)		
(6) Monthly Expense Amount [(5) / 12]		
(7) Total Generating Station Less Base Rates [(4) - (6)]		
(8) Less 2009 Plan Project [(7) - (3)]		
If Line (8) Greater than Zero, No Adjustment		
If Line (8) Less than Zero, Adjustment for Base Rates		
Adjustment for Base Rate Amount (to ES Form 2.50)		

Note 1: Trimble County projects for the 2009 Plan are proportionately shared by KU at 48% and LG&E at 52%.

Note 2: ES Form 2.51 will not be utilized until O&M costs associated with the 2009 Plan are incurred.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Beneficial Reuse - Operations & Maintenance Expenses For the Month Ended:

Third Party	O&M Expense Account	Plant	Total O&M							
Total Monthly Beneficia	al Reuse Expense									
	Adjustment for Beneficial Reuse in Base Rates (from ES Form 2.61)									
Net Beneficial Reuse O	&M Expense									

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Beneficial Reuse Opportunities For the Month Ended:

On-Site CCP Disposal O&M Expense	E. W. Brown	Ghent	Trimble County	Total
Existing Beneficial Reuse Opportunities (Pre 2009 Plan Project)				
(1) 12 Months Ending with Expense Month				
(2) Monthly Amount [(1) / 12]				
2009 Plan Project 33				
(3) Monthly Amount (Expense/Revenue)				
Total Beneficial Reuse - Generating Station				
(4) Monthly Expense [(2) + (3)]				
Beneficial Reuse in Base Rates				
(5) Annual Expense Amount (12 Mo Ending with Last Test Year)				
(6) Monthly Expense Amount [(5) / 12]				
(7) Total Generating Station Less Base Rates [(4) - (6)]	1			
(8) Less 2009 Plan Project 33 [(7) - (3)]				
If Line (8) Greater than Zero, No Adjustment	+		+	
If Line (8) Less than Zero, Adjustment for Base Rates				
Adjustment for Base Rate Amount (to ES Form 2.60)				

Note 1: Trimble County projects for the 2009 Plan are proportionately shared by KU at 48% and LG&E at 52%.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Monthly Average Revenue Computation of R (m) for GROUP 1 AND GROUP 2

For the Month Ended:

		GROUP 1 (Total Revenues) - Kentucky Jurisdictional Revenues									
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Month	Non-fuel Base Rate Revenues	Base Rate Fuel Component	Fuel Clause Revenues	DSM Revenues	Environmental Surcharge Revenues	Total (2)+(3)+(4)+(5)+(6)	Total Excluding Environmental Surcharge (7)-(6)				
or 12 Months End	Jurisdictional Revenues, ding Current Expense Mo	nth.	<u> </u>								
	Jurisdictional Revenues		Surcharge for 12-month hs ending with the Curr		Month =						

		GROUP 2 (Net Revenues) - Kentucky Jurisdictional Revenues										
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)				
Month	Non-fuel Base Rate Revenues	Base Rate Fuel Component	Fuel Clause Revenues	DSM Revenues	Environmental Surcharge Revenues	Total (2)+(3)+(4)+(5)+(6)	Total Excluding Environmental Surcharge (7)-(6)	Total Non-Fuel Revenues plus DSM (2)+(5)				
A 36 d1 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		16 1 15 1		<u> </u>							
	furisdictional Revenues, ling Current Expense Mo		I Surcharge and Fuel,									
	Jurisdictional Revenues es as a Percentage of To				Month =							

ES FORM 3.10

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Reconciliation of Reported Revenues

For the Month Ended:

	D	D
	Revenues per Form 3.00	Revenues per Income Statement
Kentucky Retail Revenues	FORM 5.00	Income Statement
· ·		
(1) Base Rates (Customer Charge, Energy Charge, Demand Charge)		
(2) Fuel Adjustment Clause		
(3) DSM		
(4) Environmental Surcharge		
(5) CSR Credits		
(6) Total Kentucky Jurisdictional Revenues for Environmental Surcharge Purposes =		
Non -Jurisdictional Revenues		
(7) Tennessee Retail		
(8) Virginia Retail		
(9) Wholesale		
(10) InterSystem (Total Less Transmission Portion Booked in Account 447)		
(11) Total Non-Jurisdictional Revenues for Environmental Surcharge Purposes =		
(12) Total Company Revenues for Environmental Surcharge Purposes =		
Jurisdictional Allocation Ratio for Current Month $[(6)/(12)] =$		
		1
Reconciling Revenues		
(13) Brokered		
(14) InterSystem (Transmission Portion Booked in Account 447)		
(15) Unbilled		
(16) Provision for Refund		
(17) Miscellaneous		
(18) Total Company Revenues per Income Statement =		

ES FORM 1.00

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Net Jurisdictional E(m) and Jurisdictional Environmental Surcharge Billing Factor For the Expense Month of

GROUP 1 (Total Revenue)	
Group 1 E(m) ES Form 1.10, line 15	=
Group 1 ES Billing Factor ES Form 1.10, line 17	=
GROUP 2 (Net Revenue)	
Group 2 E(m) ES Form 1.10, line 15	=
Group 2 ES Billing Factor ES Form 1.10, line 17	=
Effective Date for Billing:	
Submitted by:	
Title: Manager, Revenue Requirements	
Date Submitted:	

ES FORM 1.10

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Calculation of Total E(m) and Jurisdictional Surcharge Billing Factor

For the Expense Month of

Calculation of Total E(m)

E(m) = [(RB / 12) (ROR + (ROR - DR)(TR/(1-TR)))] + OE - BAS + BR, where							
RB	=	Environmental Compliance Rate Base					
ROR	=	Rate of Return on the Environmental Compliance Rate Base					
DR	=	Debt Rate (both short-term and long-term debt)					
TR	=	Composite Federal & State Income Tax Rate					
OE	=	Pollution Control Operating Expenses					
BAS	=	Total Proceeds from By-Product and Allowance Sales					
BR	=	Beneficial Reuse Operating Expenses					

				Environmental Compliance Plans
(1)	RB		=	
(2)	RB / 12		=	
(3)	(ROR + (ROR - DR))(TR /	(1 - TR)))	=	
(4)	OE		=	
(5)	BAS		=	
(6)	BR		=	
(7)	E(m)	(2) x (3) + (4) - (5) + (6)	=	

Calculation of Adjusted Net Jurisdictional E(m)

(8)	Jurisdictional Allocation Ratio for Expense Month ES Form 3.10	=	
(9)	$\label{eq:Jurisdictional} \text{Jurisdictional E(m)} = \text{Total E(m)} \; x \; \text{Jurisdictional Allocation Ratio} [(7) \; x \; (8)]$	=	
(10)	Adjustment for (Over)/Under-collection pursuant to Case No.	=	
(11)	Prior Period Adjustment (if necessary)	=	
(12)	Revenue Collected through Base Rates	=	
(13)	Adjusted Net Jurisdictional $E(m) = [(9) + (10) + (11) - (12)]$	=	

Calculation of Group Environmental Surcharge Billing Factors

		GROUP 1 (Total Revenue)	GROUP 2 (Net Revenue)
(14)	Revenue as a Percentage of 12-month Total Revenue		
	ending with the Current Month ES Form 3.00	=	
(15)	Group E(m) [(13) x (14)]	=	
(16)	Group $R(m) = Average Monthly Group Revenue for the 12$		
	Months Ending with the Current Expense Month ES Form 3.00	=	
(17)	Group Environmental Surcharge Billing Factors $[(15) \div (16)]$	=	

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Revenue Requirements of Environmental Compliance Costs For the Expense Month of

	Enviromental Compliance Plan
Eligible Pollution Control Plant	
Eligible Pollution CWIP Excluding AFUDC	
Eligible CCR Rule Compliance Construction Costs	
Subtotal	
Additions:	
Inventory - Emission Allowances per ES Forms 2.31, 2.32, 2.33 and 2.34	
Less: Allowance Inventory Baseline	
Net Emission Allowance Inventory	
Cash Working Capital Allowance	
Subtotal	
Deductions:	
Accumulated Depreciation on Eligible Pollution Control Plant	
Pollution Control Deferred Income Taxes	
Pollution Control Deferred Investment Tax Credit	
Subtotal	
Environmental Compliance Rate Base	
Determination of Pollution Control Operating Expenses	
	Enviromental Compliance Plan
Monthly Operations & Maintenance Expense	
Monthly Depreciation & Amortization Expense	

	Enviromental Compliance Plan
Monthly Operations & Maintenance Expense	
Monthly Depreciation & Amortization Expense	
Monthly Taxes Other Than Income Taxes	
Monthly Emission Allowance Expense from ES Forms 2.31, 2.32, 2.33 and 2.34	
Add KU Current Month TC2 Emission Allowance Expense reported on ES Form 2.31, 2.32, 2.33 and 2.34	
Less Monthly Emission Allowance Expense in base rates	
Net Recoverable Emission Allowance Expense	
Monthly Surcharge Consultant Fee	
Construction Monitoring Consultant Fee	
Total Pollution Control Operations Expense	

Determination of Beneficial Reuse Operating Expenses

	Environmental Compliance Plan
Total Monthly Beneficial Reuse Expense	
Adjustment for Beneficial Reuse in Base Rates (from ES Form 2.61)	
Net Beneficial Reuse Operations Expense	

Proceeds From By-Product and Allowance Sales

	Total Proceeds	Amount in Base Rates	Net Proceeds
	(1)	(2)	(1) - (2)
Allowance Sales			
Scrubber By-Products Sales			
Total Proceeds from Sales			

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Plant, CWIP & Depreciation Expense

For the Month Ended:

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Description	Eligible Plant In Service	Eligible Accumulated Depreciation	CWIP Amount Excluding AFUDC	CCR Rule Compliance Construction Costs	Eligible Net Plant In Service	Unamortized ITC as of	Deferred Tax Balance as of	Monthly Depreciation Expense	Monthly Property Tax Expense
					(2)-(3)+(4)+(5)				
2009 Plan: Project 28 - Brown 3 SCR Project 29 - ATB Expansion at E.W. Brown Station (Phase II) Project 30 - Ghent CCP Storage (Landfill- Phase I) Project 31 - Trimble County Ash Treatment Basin (BAP/GSP) Project 32 - Trimble County CCP Storage (Landfill - Phase I) Project 33 - Beneficial Reuse									
Subtotal Less Retirements and Replacement resulting from implementation of 2009 Plan									
Net Total - 2009 Plan:									
2011 Plan: Project 29 - Brown Landfill (Phase I) Project 34 - E.W. Brown Station Air Compliance Project 35 - Ghent Station Air Compliance Subtotal Less Retirements and Replacement resulting from implementation of 2011 Plan									
•									
Net Total - 2011 Plan:									
2016 Plan: Project 36 - Brown Landfill (Phase II) Project 37 - Ghent 2 WFGD Improvements Project 38 - Supplemental Mercury Control Project 39 - Surface Impoundment Closure (Retired Plants) Project 40 - Ghent CCR Rule Compliance Construction Project 41 - Trimble County CCR Rule Compliance Construction Project 41 - Trimble County CCR Rule Compliance Construction Project 42 - Brown CCR Rule Compliance Construction Project 42 - Brown CCR Rule Compliance Construction Project 42 - Brown New Process Water Systems									
Subtotal Less Retirements and Replacement resulting from implementation of 2016 Plan									
Net Total - 2016 Plan:									
Net Total - All Plans:	1				1				

Note 1: Trimble County projects for the 2009 Plan are proportionately shared by KU at 48% and LG&E at 52%

Note 2: Project 29 as approved in the 2009 ECR Plan recovers costs associated with the Brown Aux Pond (Phase II). In the 2011 Plan, Project 29 was amended to recover costs associated with the conversion of the Brown Main Ash Pond to the Brown Landfill (Phase I)

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of Emission Allowances

For the Month Ended:

Vintage Year	Number of Allowances					Total Dollar Value Of Vintage Year			Comments and Explanations
	SO_2	SO_2	NOx	NOx	SO_2	SO_2	NOx	NOx	
	CAIR	CSAPR	Ozone Season	Annual	CAIR	CSAPR	Ozone Season	Annual	
Current Year									
2017									
2018									
2019									
2020									
2021									
2022									
2023									
2024									
2025									
2026									
2027									
2028									
2029									
2030									
2031	_				_				
2032									
2033									
2034									
2035									
2036 - 2045									

In the "Comments and Explanation" Column, describe any allowance inventory adjustment other than the assignment of allowances by EPA. Inventory adjustments include, but are not limited to, purchases, allowances acquired as part of other purchases, and the sale of allowances.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of CAIR Emission Allowances (SO_2) - Current Vintage Year

For the Expense Month of

	Beginning	Allocations/	Utilized	Utilized		Ending	Allocation, Purchase, or
	Inventory	Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
-							
TOTAL EMISSI	ION ALLOWANCE	S IN INVENTORY	, ALL CLASSIFIC	CATIONS			
Quantity							
Dollars							
\$/Allowance							
ALLOCATED A	LLOWANCES FR	OM EPA: COAL F	UEL				
Quantity							
Dollars							
Í							
ALLOCATED A	LLOWANCES FR	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
	FROM PURCHAS	SES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
From LG&E							
Quantity							
Dollars							
\$/Allowance							
•							

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of CSAPR Emission Allowances (SO₂) - Current Vintage Year

For the Expense Month of

	Beginning	Allocations/	Utilized	Utilized		Ending	Allocation, Purchase, or
	Inventory	Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
TOTAL EMISSI	ON ALLOWANCE	S IN INVENTORY	, ALL CLASSIFIC	CATIONS			
Quantity							
Dollars							
\$/Allowance							
ALLOCATED A	LLOWANCES FRO	OM EPA: COAL F	UEL				
Quantity							
Dollars							
ALLOCATED A	LLOWANCES FRO	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
ALLOWANCES	FROM PURCHAS	SES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
		•	•		•	•	
From LG&E							
Quantity							
Dollars			_				
\$/Allowance							
	•		•		•	•	
1							

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of Emission Allowances (NOx) - Ozone Season Allowance Allocation

For the Expense Month of

	Beginning	Allocations/	Utilized	Utilized		Ending	Allocation, Purchase, or
	Inventory	Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
TOTAL EMISSION	ON ALLOWANCE	S IN INVENTORY	, ALL CLASSIFIC	CATIONS			
Quantity							
Dollars							
\$/Allowance							
ALLOCATED AI	LOWANCES FRO	OM EPA: COAL F	UEL				
Quantity							
Dollars							
ALLOCATED AI	LOWANCES FRO	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
ALLOWANCES	FROM PURCHAS	ES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
From LG&E:							
Quantity							
Dollars							
\$/Allowance							
	•	•			•	•	•

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Inventory of Emission Allowances (NOx) - Annual Allowance Allocation

For the Expense Month of

	Beginning	Allocations/	Utilized	Utilized		Ending	Allocation, Purchase, or
	Inventory	Purchases	(Coal Fuel)	(Other Fuels)	Sold	Inventory	Sale Date & Vintage Years
TOTAL EMISSI	ON ALLOWANCE	S IN INVENTORY	, ALL CLASSIFIC	CATIONS			
Quantity							
Dollars							
\$/Allowance							
ALLOCATED A	LLOWANCES FRO	OM EPA: COAL F	UEL				
Quantity							
Dollars							
ALLOCATED A	LLOWANCES FRO	OM EPA: OTHER	FUELS				
Quantity							
Dollars							
	FROM PURCHAS	ES:					
From Market:							
Quantity							
Dollars							
\$/Allowance							
From LG&E:							
Quantity							
Dollars							
\$/Allowance							

Emission Allowance Expense for Other Power Generation is excluded from expense reported on Form 2.00 for recovery through the monthly billing factor.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

O&M Expenses and Determination of Cash Working Capital Allowance

For the Month Ended:

Environmental Compliance Plan	
O&M Expenses	Amount
11th Previous Month	
10th Previous Month	
9th Previous Month	
8th Previous Month	
7th Previous Month	
6th Previous Month	
5th Previous Month	
4th Previous Month	
3rd Previous Month	
2nd Previous Month	
Previous Month	
Current Month	
Total 12 Month O&M	

Determination of Working Capital Allowance	
12 Months O&M Expenses	
One Eighth (1/8) of 12 Month O&M Expenses	1/8
Pollution Control Cash Working Capital Allowance	

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Pollution Control - Operations & Maintenance Expenses

For the Month Ended:

	E. W.			
O&M Expense Account	Brown	Ghent	Trimble County	Total
2009 Plan				
506154 - ECR NOx Operation Consumables				
506155 - ECR NOx Operation Consumations 506155 - ECR NOx Operation Labor and Other	_			
512151 - ECR NOx Maintenance				
506159 - ECR Sorbent Injection Operation				
506153 - ECR Sorbent Reactant - Reagent Only	_			
512152 - ECR Sorbent Injection Maintenance	_			
502013 - ECR Landfill Operations	_			
512107 - ECR Landfill Maintenance	_			
Adjustment for CCP Disposal in Base Rates (ES Form 2.51)	_			
Total 2009 Plan O&M Expenses				
•	•	•	<u> </u>	
2011 Plan				
506159 - ECR Sorbent Injection Operation				
506152 - ECR Sorbent Reactant - Reagent Only				
512152 - ECR Sorbent Injection Maintenance				
506156 - ECR Baghouse Operations				
512156 - ECR Baghouse Maintenance				
506151 - ECR Activated Carbon				
502013 - ECR Landfill Operations				
512107 - ECR Landfill Maintenance				
Total 2011 Plan O&M Expenses	1			
2016 Plan				
506153 - ECR Liquid Injection - Reagent Only				
Total 2016 Plan O&M Expenses				
C M 100ME C MID		1	<u> </u>	
Current Month O&M Expense for All Plans				

Note 1: Trimble County projects for the 2009 Plan are proportionately shared by KU at 48% and LG&E at 52%.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

CCP Disposal Facilities Expenses For the Month Ended:

On-Site CCP Disposal O&M Expense	Ghent	Trimble County
Existing CCP Disposal Facilities (Pre 2009 Plan Project)		
(1) 12 Months Ending with Expense Month		
(2) Monthly Amount [(1) / 12]		
2000 Pl		
2009 Plan Project		
(3) Monthly Expense		
Total Generating Station		
(4) Monthly Expense [(2) + (3)]		
Base Rates		
(5) Annual Expense Amount (12 Mo Ending with Last Test Year)		
(6) Monthly Expense Amount [(5) / 12]		
(7) Total Generating Station Less Base Rates [(4) - (6)]		
(8) Less 2009 Plan Project [(7) - (3)]		
·		
If Line (8) Greater than Zero, No Adjustment		
If Line (8) Less than Zero, Adjustment for Base Rates		
		_
Adjustment for Base Rate Amount (to ES Form 2.50)		

Note 1: Trimble County projects for the 2009 Plan are proportionately shared by KU at 48% and LG&E at 52%.

Note 2: ES Form 2.51 will not be utilized until O&M costs associated with the 2009 Plan are incurred.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Beneficial Reuse - Operations & Maintenance Expenses For the Month Ended:

Third Party	O&M Expense Account	Plant	Total O&M
Total Monthly Beneficia	al Reuse Expense		
	al Reuse in Base Rates (from ES Form 2.61)		
Net Beneficial Reuse O	&M Expense		

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Beneficial Reuse Opportunities For the Month Ended:

On-Site CCP Disposal O&M Expense	E. W. Brown	Ghent	Trimble County	Total
			<u> </u>	
Existing Beneficial Reuse Opportunities (Pre 2009 Plan Project)				
(1) 12 Months Ending with Expense Month				
(2) Monthly Amount [(1) / 12]				
2009 Plan Project 33				
(3) Monthly Amount (Expense/Revenue)				
Total Beneficial Reuse - Generating Station				
(4) Monthly Expense [(2) + (3)]				
Beneficial Reuse in Base Rates				
(5) Annual Expense Amount (12 Mo Ending with Last Test Year)				
(6) Monthly Expense Amount [(5) / 12]				
(7) Total Generating Station Less Base Rates [(4) - (6)]				
(8) Less 2009 Plan Project 33 [(7) - (3)]				
If Line (8) Greater than Zero, No Adjustment				
If Line (8) Less than Zero, Adjustment for Base Rates				
Adjustment for Base Rate Amount (to ES Form 2.60)				

Note 1: Trimble County projects for the 2009 Plan are proportionately shared by KU at 48% and LG&E at 52%.

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Monthly Average Revenue Computation of R (m) for GROUP 1 AND GROUP 2

For the Month Ended:

		GROUP 1 (Total Revenues) - Kentucky Jurisdictional Revenues									
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Month	Non-fuel Base Rate Revenues	Base Rate Fuel Component	Fuel Clause Revenues Including Off-System Sales Tracker	DSM Revenues	Environmental Surcharge Revenues	Total (2)+(3)+(4)+(5)+(6)	Total Excluding Environmental Surcharge (7)-(6)				
for 12 Months End	Jurisdictional Revenues, ling Current Expense Mo	nth.									
			1 Surcharge for 12-months ths ending with the Curren		Month =						

		GROUP 2 (Net Revenues) - Kentucky Jurisdictional Revenues										
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)				
Month	Non-fuel Base Rate Revenues	Base Rate Fuel Component	Fuel Clause Revenues Including Off-System Sales Tracker	DSM Revenues	Environmental Surcharge Revenues	Total (2)+(3)+(4)+(5)+(6)	Total Excluding Environmental Surcharge (7)-(6)	Total Non-Fuel Revenues plus DSM (2)+(5)				
for 12 Months End	Jurisdictional Revenues, ling Current Expense Mo	nth.	Surcharge and Fuel, Surcharge for 12-months	anding with Current N	Month -							
			ths ending with the Currer		TOHHI —							

ES FORM 3.10

KENTUCKY UTILITIES COMPANY ENVIRONMENTAL SURCHARGE REPORT

Reconciliation of Reported Revenues

For the Month Ended:

	Revenues per	Revenues per
	Form 3.00	Income Statement
Kentucky Retail Revenues		
(1) Base Rates (Customer Charge, Energy Charge, Demand Charge)		
(2) Fuel Adjustment Clause including Off System Sales Tracker		
(3) DSM		
(4) Environmental Surcharge		
(5) CSR Credits		
(6) Total Kentucky Jurisdictional Revenues for Environmental Surcharge Purposes =		
Non -Jurisdictional Revenues		
(7) Tennessee Retail		
(8) Virginia Retail		
(9) Wholesale		
(10) InterSystem (Total Less Transmission Portion Booked in Account 447)		
(11) Total Non-Jurisdictional Revenues for Environmental Surcharge Purposes =		
(12) Total Company Revenues for Environmental Surcharge Purposes =		
Jurisdictional Allocation Ratio for Current Month [(6) / (12)] =		
		=
Reconciling Revenues		
(13) Brokered		
(14) InterSystem (Transmission Portion Booked in Account 447)		
(15) Unbilled		
(16) Provision for Refund		
(17) Miscellaneous		
(18) Total Company Revenues per Income Statement =		

Kentucky Utilities Company Environmental Cost Recovery Surcharge Summary

	2016	2017	2018	2019	2020	2021	2022	2023	2024
Total E(m) - (\$000)	\$35,178	\$47,402	\$57,456	\$63,533	\$53,645	\$56,142	\$58,023	\$57,805	\$56,381
12 Month Average Jurisdictional Ratio	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%
Jurisdictional E(m) - (\$000)	\$30,640	\$41,286	\$50,044	\$55,336	\$46,724	\$48,898	\$50,537	\$50,347	\$49,107
Forecasted Jurisdictional $R(m)$ - $(million)$	1,487	1,538	1,580	1,650	1,693	1,784	1,849	1,899	1,948
Incremental Billing Factor	2.06%	2.68%	3.17%	3.35%	2.76%	2.74%	2.73%	2.65%	2.52%
Residential Customer Impact Monthly bill (1,146 kWh per month)	\$2.16	\$2.82	\$3.32	\$3.52	\$2.90	\$2.88	\$2.87	\$2.78	\$2.65

		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Project 36	Brown Landfill - Phase II										
	Revenue Requirement										
	Eligible Plant	0	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625
	Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
	Less: Accumulated Depreciation	0	(118,293)	(241,730)	(365,167)	(488,604)	(612,040)	(735,477)	(858,914)	(982,350)	(1,105,787)
	Plus: Accumulated Depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Less: Deferred Tax Balance	0	(1,007,832)	(1,033,412)	(1,053,488)	(1,068,487)	(1,078,774)	(1,084,714)	(1,086,623)	(1,084,816)	(1,082,399)
	Plus: Deferred Tax Balance on retired plant	0	0	0	0	0	0	0	0	0	0
	Environmental Compliance Rate Base	0	4,126,500	3,977,483	3,833,970	3,695,535	3,561,811	3,432,434	3,307,088	3,185,459	3,064,439
	Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
		\$0	\$412,292	\$397,404	\$383,065	\$369,233	\$355,872	\$342,946	\$330,422	\$318,270	\$306,178
	Operating expenses	0	0	0	0	0	0	0	0	0	0
	Annual Depreciation expense	0	118,293	123,437	123,437	123,437	123,437	123,437	123,437	123,437	123,437
	Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Annual Property Tax expense	0	0	7,701	7,516	7,331	7,146	6,961	6,776	6,591	6,405
	Total OE	\$0	\$118,293	\$131,138	\$130,953	\$130,768	\$130,583	\$130,398	\$130,212	\$130,027	\$129,842
	Total E(m)	0	530,586	528,542	514,018	500,001	486,455	473,343	460,635	448,297	436,020

		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Project 37	Ghent Unit 2 WFGD Improvements										
	Revenue Requirement										
	Eligible Plant	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000
	Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
	Less: Accumulated Depreciation	(6,154)	(153,854)	(301,554)	(449,254)	(596,954)	(744,654)	(892,354)	(1,040,054)	(1,187,754)	(1,335,454)
	Plus: Accumulated Depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Less: Deferred Tax Balance	(1,401,680)	(1,442,265)	(1,475,516)	(1,502,000)	(1,522,205)	(1,536,618)	(1,545,658)	(1,549,745)	(1,553,020)	(1,556,282)
	Plus: Deferred Tax Balance on retired plant	0	0	0	0	0	0	0	0	0	0
	Environmental Compliance Rate Base	5,592,166	5,403,881	5,222,930	5,048,745	4,880,840	4,718,728	4,561,988	4,410,201	4,259,226	4,108,264
	Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
	_	\$558,732	\$539,920	\$521,840	\$504,437	\$487,661	\$471,464	\$455,803	\$440,638	\$425,553	\$410,470
	Operating expenses	0	0	0	0	0	0	0	0	0	0
	Annual Depreciation expense	6,154	147,700	147,700	147,700	147,700	147,700	147,700	147,700	147,700	147,700
	Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Annual Property Tax expense	0	10,491	10,269	10,048	9,826	9,605	9,383	9,161	8,940	8,718
	Total OE	\$6,154	\$158,191	\$157,969	\$157,748	\$157,526	\$157,305	\$157,083	\$156,861	\$156,640	\$156,418
	Total E(m)	564,886	698,110	679,810	662,185	645,187	628,768	612,886	597,499	582,193	566,889

		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Project 38	Supplemental Mercury Control Systems										
	Revenue Requirement										
	Eligible Plant	10,071,005	10,071,005	10,071,005	10,071,005	10,071,005	10,071,005	10,071,005	10,071,005	10,071,005	10,071,005
	Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
	Less: Accumulated Depreciation	(43,493)	(252,259)	(461,025)	(669,791)	(878,557)	(1,087,323)	(1,296,089)	(1,504,855)	(1,713,621)	(1,922,387)
	Plus: Accumulated Depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Less: Deferred Tax Balance	(2,003,224)	(2,063,058)	(2,112,340)	(2,151,886)	(2,182,398)	(2,204,577)	(2,219,027)	(2,226,350)	(2,232,505)	(2,238,640)
	Plus: Deferred Tax Balance on retired plant	0	0	0	0	0	0	0	0	0	0
	Environmental Compliance Rate Base	8,024,288	7,755,687	7,497,640	7,249,327	7,010,049	6,779,104	6,555,889	6,339,800	6,124,879	5,909,978
	Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
	_	\$801,733	\$774,897	\$749,114	\$724,304	\$700,397	\$677,323	\$655,021	\$633,431	\$611,957	\$590,486
	Operating expenses	0	0	0	0	0	0	0	0	0	0
	Annual Depreciation expense	43,493	208,766	208,766	208,766	208,766	208,766	208,766	208,766	208,766	208,766
	Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Annual Property Tax expense	0	15,041	14,728	14,415	14,102	13,789	13,476	13,162	12,849	12,536
	Total OE	\$43,493	\$223,807	\$223,494	\$223,181	\$222,868	\$222,555	\$222,242	\$221,928	\$221,615	\$221,302
	Total E(m)	845,226	998,704	972,608	947,485	923,265	899,878	877,262	855,359	833,572	811,788

		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Project 39	Surface Impoundment Closure (Retired Plants)										
	Revenue Requirement										
	Eligible Plant	4,972,500	27,533,500	68,209,500	77,522,500	77,522,500	77,522,500	77,522,500	77,522,500	77,522,500	77,522,500
	Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
	Less: Accumulated Depreciation	(19,349,526)	(38,699,053)	(58,048,579)	(77,398,106)	0	0	0	0	0	0
	Plus: Accumulated Depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Less: Deferred Tax Balance	5,559,021	4,317,273	(3,928,822)	(48,098)	(48,098)	(48,098)	(48,098)	(48,098)	(48,098)	(48,098)
	Plus: Deferred Tax Balance on retired plant	0	0	0	0	0	0	0	0	0	0
	Environmental Compliance Rate Base	(8,818,005)	(6,848,280)	6,232,099	76,296	77,474,402	77,474,402	77,474,402	77,474,402	77,474,402	77,474,402
	Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
	<u>-</u>	\$(881,036)	\$(684,234)	\$622,670	\$7,623	\$7,740,725	\$7,740,725	\$7,740,725	\$7,740,725	\$7,740,725	\$7,740,725
	Operating expenses	0	0	0	0	0	0	0	0	0	0
	Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
	Annual Depreciation expense on CCR Project	19,349,526	19,349,526	19,349,526	19,349,526	0	0	0	0	0	0
	Annual Property Tax expense	0	(21,566)	(16,748)	15,241	187	116,284	116,284	116,284	116,284	116,284
	Total OE	\$19,349,526	\$19,327,961	\$19,332,778	\$19,364,768	\$187	\$116,284	\$116,284	\$116,284	\$116,284	\$116,284
	Total E(m)	18,468,490	18,643,726	19,955,448	19,372,391	7,740,912	7,857,009	7,857,009	7,857,009	7,857,009	7,857,009

		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Project 40	CCR Rule Compliance Construction and Construction	on of New Process V	Vater Systems for	Ghent							
	Revenue Requirement										
	Eligible Plant	11,344,470	95,211,470	174,424,470	216,171,470	253,545,470	306,550,470	339,926,470	339,926,470	339,926,470	339,926,470
	Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
	Less: Accumulated Depreciation	(11,314,841)	(22,629,681)	(34,044,610)	(47,761,560)	(61,478,510)	(75,195,461)	(88,912,411)	(102,629,361)	(116,346,312)	(130,063,262)
	Plus: Accumulated Depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Less: Deferred Tax Balance	1,935,159	(7,551,219)	(31,059,283)	(43,638,941)	(54,396,980)	(71,078,279)	(80,057,889)	(76,029,082)	(71,904,500)	(67,691,621)
	Plus: Deferred Tax Balance on retired plant	0	0	0	0	0	0	0	0	0	0
	Environmental Compliance Rate Base	1,964,788	65,030,570	109,320,578	124,770,969	137,669,979	160,276,731	170,956,170	161,268,027	151,675,659	142,171,587
	Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
		\$196,309	\$6,497,421	\$10,922,583	\$12,466,283	\$13,755,066	\$16,013,782	\$17,080,800	\$16,112,826	\$15,154,420	\$14,204,837
	Operating expenses	0	0	0	0	0	0	0	0	0	0
	Annual Depreciation expense	0	0	100,088	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110
	Annual Depreciation expense on CCR Project	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841
	Annual Property Tax expense	0	44	108,873	210,570	252,615	288,100	347,033	376,521	355,946	335,370
	Total OE	\$11,314,841	\$11,314,885	\$11,523,801	\$13,927,520	\$13,969,565	\$14,005,051	\$14,063,983	\$14,093,471	\$14,072,896	\$14,052,321
	Total E(m)	11,511,149	17,812,306	22,446,384	26,393,803	27,724,631	30,018,833	31,144,783	30,206,297	29,227,316	28,257,157

		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Project 41	CCR Rule Compliance Construction and Construction	n of New Process W	later Systems for	Trimble County (N	let, 48%)						
	Revenue Requirement										
	Eligible Plant	0	21,073,752	47,355,912	58,919,472	72,055,872	79,421,472	91,328,472	101,940,192	101,940,192	101,940,192
	Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
	Less: Accumulated Depreciation	(1,189,321)	(2,378,642)	(3,603,917)	(5,656,137)	(7,708,357)	(9,760,577)	(11,812,796)	(13,865,016)	(15,917,236)	(17,969,455)
	Plus: Accumulated Depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Less: Deferred Tax Balance	459,863	300,273	(7,741,816)	(12,107,644)	(17,029,959)	(19,673,272)	(24,028,331)	(27,841,757)	(27,514,209)	(27,151,772)
	Plus: Deferred Tax Balance on retired plant	0	0	0	0	0	0	0	0	0	0
	Environmental Compliance Rate Base	(729,458)	18,995,383	36,010,179	41,155,691	47,317,556	49,987,623	55,487,345	60,233,419	58,508,747	56,818,965
	Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
	<u>-</u>	\$(72,883)	\$1,897,892	\$3,597,897	\$4,112,002	\$4,727,655	\$4,994,430	\$5,543,925	\$6,018,122	\$5,845,804	\$5,676,972
	Operating expenses	0	0	0	0	0	0	0	0	0	0
	Annual Depreciation expense	0	0	35,954	862,899	862,899	862,899	862,899	862,899	862,899	862,899
	Annual Depreciation expense on CCR Project	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321
	Annual Property Tax expense	0	(1,784)	28,043	65,628	79,895	96,521	104,491	119,274	132,113	129,034
	Total OE	\$1,189,321	\$1,187,537	\$1,253,318	\$2,117,848	\$2,132,115	\$2,148,741	\$2,156,711	\$2,171,493	\$2,184,333	\$2,181,254
	Total E(m)	1,116,438	3,085,429	4,851,215	6,229,850	6,859,769	7,143,171	7,700,637	8,189,615	8,030,136	7,858,226

		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Project 42	CCR Rule Compliance Construction and Construction	n of New Process W	later Systems for	Brown							
	Revenue Requirement										
	Eligible Plant	0	31,695,300	67,297,300	71,094,300	74,533,300	78,159,300	88,085,300	98,264,300	98,264,300	98,264,300
	Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
	Less: Accumulated Depreciation	(2,846,392)	(5,692,784)	(8,603,935)	(13,004,535)	(17,405,136)	(21,805,736)	(26,206,337)	(30,606,937)	(33,386,894)	(36,166,852)
	Plus: Accumulated Depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
	Less: Deferred Tax Balance	1,100,586	1,932,532	(7,926,344)	(8,800,597)	(9,453,264)	(10,101,519)	(13,114,539)	(16,159,715)	(15,834,802)	(15,453,733)
	Plus: Deferred Tax Balance on retired plant	0	0	0	0	0	0	0	0	0	0
	Environmental Compliance Rate Base	(1,745,806)	27,935,048	50,767,021	49,289,168	47,674,900	46,252,044	48,764,424	51,497,648	49,042,603	46,643,715
	Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
	<u>-</u>	\$(174,429)	\$2,791,084	\$5,072,302	\$4,924,645	\$4,763,358	\$4,621,196	\$4,872,216	\$5,145,302	\$4,900,010	\$4,660,329
	Operating expenses	0	0	0	0	0	0	0	0	0	0
	Annual Depreciation expense	0	0	64,759	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208
	Annual Depreciation expense on CCR Project	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392
	Annual Property Tax expense	0	(4,270)	39,004	88,040	87,135	85,692	84,530	92,818	101,486	97,316
	Total OE	\$2,846,392	\$2,842,122	\$2,950,155	\$4,488,641	\$4,487,735	\$4,486,293	\$4,485,131	\$4,493,419	\$4,502,087	\$4,497,917
	Total E(m)	2,671,963	5,633,206	8,022,457	9,413,285	9,251,093	9,107,488	9,357,347	9,638,720	9,402,096	9,158,246

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Total E(m) - All KU Projects	35,178,153	47,402,068	57,456,463	63,533,017	53,644,859	56,141,602	58,023,268	57,805,134	56,380,621	54,945,335
Total Revenue Requirements										
Project 36	0	530,586	528,542	514,018	500,001	486,455	473,343	460,635	448,297	436,020
Project 37	564,886	698,110	679,810	662,185	645,187	628,768	612,886	597,499	582,193	566,889
Project 38	845,226	998,704	972,608	947,485	923,265	899,878	877,262	855,359	833,572	811,788
Project 39	18,468,490	18,643,726	19,955,448	19,372,391	7,740,912	7,857,009	7,857,009	7,857,009	7,857,009	7,857,009
Project 40	11,511,149	17,812,306	22,446,384	26,393,803	27,724,631	30,018,833	31,144,783	30,206,297	29,227,316	28,257,157
Project 41	1,116,438	3,085,429	4,851,215	6,229,850	6,859,769	7,143,171	7,700,637	8,189,615	8,030,136	7,858,226
Project 42	2,671,963	5,633,206	8,022,457	9,413,285	9,251,093	9,107,488	9,357,347	9,638,720	9,402,096	9,158,246
Total	35,178,153	47,402,068	57,456,463	63,533,017	53,644,859	56,141,602	58,023,268	57,805,134	56,380,621	54,945,335
12 Month Average Jurisdictional Ratio	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%	87.10%
Jurisdictional Allocation	30,639,585	41,286,411	50,043,622	55,336,199	46,723,778	48,898,400	50,537,299	50,347,309	49,106,581	47,856,471
Forecasted 12-Month Retail Revenue	1,486,563,168	1,537,679,572	1,580,101,378	1,649,609,037	1,693,096,210	1,783,919,326	1,848,889,897	1,899,431,631	1,947,690,996	2,009,227,982
Billing Factor	2.06%	2.68%	3.17%	3.35%	2.76%	2.74%	2.73%	2.65%	2.52%	2.38%
KU Residential Bill Impact										
Customer Charge	\$10.75	\$10.75	\$10.75	\$10.75	\$10.75	\$10.75	\$10.75	\$10.75	\$10.75	\$10.75
1146 Energy - 1146 kWh @ \$0.08508	\$97.50	\$97.50	\$97.50	\$97.50	\$97.50	\$97.50	\$97.50	\$97.50	\$97.50	\$97.50
FAC billings (Nov 15 factor - \$-0.00586/kWh)	-\$6.72	-\$6.72	-\$6.72	-\$6.72	-\$6.72	-\$6.72	-\$6.72	-\$6.72	-\$6.72	-\$6.72
DSM billings (Nov 15 factor - \$0.00298/kWh)	\$3.42	\$3.42	\$3.42	\$3.42	\$3.42	\$3.42	\$3.42	\$3.42	\$3.42	\$3.42
ECR billings (Nov 15 factor: 6.09%)	\$6.39	\$6.39	\$6.39	\$6.39	\$6.39	\$6.39	\$6.39	\$6.39	\$6.39	\$6.39
Additional ECR factor	\$2.16	\$2.82	\$3.32	\$3.52	\$2.90	\$2.88	\$2.87	\$2.78	\$2.65	\$2.50

		January								
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service		1	2	3	4	5	6	7	8	9
Brown 3										
Project 36 - Brown Landfill Phase II	\$0	\$5,252,625	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$0	\$5,252,625	\$5,252,625	\$5,252,625	\$5,252,625	\$5,252,625	\$5,252,625	\$5,252,625	\$5,252,625	\$5,252,625
Book Depreciation rate, per year	0.000%	2.350%	2.350%	2.350%	2.350%	2.350%	2.350%	2.350%	2.350%	2.350%
Tax Depreciation rate, per year	0.000%	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%	4.462%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	0	1,007,832	1,033,412	1,053,488	1,068,487	1,078,774	1,084,714	1,086,623	1,084,816	1,082,399
Book Accumulated Depreciation Balance	0	118,293	241,730	365,167	488,604	612,040	735,477	858,914	982,350	1,105,787
Unrecovered Investment Book	0	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625
Book Depreciation	0	118,293	123,437	123,437	123,437	123,437	123,437	123,437	123,437	123,437
Unrecovered Investment Tax total	0	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625
Bonus Tax Depreciation	0	2,626,313	0	0	0	0	0	0	0	0
MACRS Tax Depreciation	0	98,487	189,593	175,359	162,227	150,041	138,801	128,374	118,762	117,186
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	118,293	123,437	123,437	123,437	123,437	123,437	123,437	123,437	123,437
Tax expense total	0	2,724,799	189,593	175,359	162,227	150,041	138,801	128,374	118,762	117,186
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	0	1,007,832	25,580	20,076	14,999	10,287	5,941	1,909	(1,808)	(2,417)
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	0	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625	5,252,625
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	(118,293)	(241,730)	(365,167)	(488,604)	(612,040)	(735,477)	(858,914)	(982,350)	(1,105,787)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	0	(1,007,832)	(1,033,412)	(1,053,488)	(1,068,487)	(1,078,774)	(1,084,714)	(1,086,623)	(1,084,816)	(1,082,399)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	0	4,126,500	3,977,483	3,833,970	3,695,535	3,561,811	3,432,434	3,307,088	3,185,459	3,064,439
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$0	\$412,292	\$397,404	\$383,065	\$369,233	\$355,872	\$342,946	\$330,422	\$318,270	\$306,178
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	118,293	123,437	123,437	123,437	123,437	123,437	123,437	123,437	123,437
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	0	7,701	7,516	7,331	7,146	6,961	6,776	6,591	6,405
Total OE	\$0	\$118,293	\$131,138	\$130,953	\$130,768	\$130,583	\$130,398	\$130,212	\$130,027	\$129,842
Total E(m) - Project	0	530,586	528,542	514,018	500,001	486,455	473,343	460,635	448,297	436,020

		•	.0,000.01	110						
	December									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent 2PC										
Project 37 - Ghent Unit 2 WFGD Improvements	\$7,000,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$7,000,000	\$7,000,000	\$7,000,000	\$7,000,000	\$7,000,000	\$7,000,000	\$7,000,000	\$7,000,000	\$7,000,000	\$7,000,000
Book Depreciation rate, per year	2.110%	2.110%	2.110%	2.110%	2.110%	2.110%	2.110%	2.110%	2.110%	2.110%
Tax Depreciation rate, per year	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%	4.462%	4.461%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	1,401,680	1,442,265	1,475,516	1,502,000	1,522,205	1,536,618	1,545,658	1,549,745	1,553,020	1,556,282
Book Accumulated Depreciation Balance	6,154	153,854	301,554	449,254	596,954	744,654	892,354	1,040,054	1,187,754	1,335,454
Unrecovered Investment Book	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000
Book Depreciation	6,154	147,700	147,700	147,700	147,700	147,700	147,700	147,700	147,700	147,700
Unrecovered Investment Tax total	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000
Bonus Tax Depreciation	3,500,000	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation	131,250	252,665	233,695	216,195	199,955	184,975	171,080	158,270	156,170	156,135
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	6,154	147,700	147,700	147,700	147,700	147,700	147,700	147,700	147,700	147,700
Tax expense total	3,631,250	252,665	233,695	216,195	199,955	184,975	171,080	158,270	156,170	156,135
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	1,401,680	40,586	33,251	26,484	20,205	14,413	9,040	4,087	3,275	3,261
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000
Less: Retired Plant	0	0	0	7,000,000	0	0	0	7,000,000	7,000,000	0
Less: Accumulated Depreciation	(6,154)	(153,854)	(301,554)	(449,254)	(596,954)	(744,654)	(892,354)	(1,040,054)	(1,187,754)	(1,335,454)
Plus: Accumulated Depreciation on Retired Plant	(0,134)	(133,034)	0	0	(390,304)	0	0	0	0	(1,555,454)
Less: Deferred Tax Balance	(1,401,680)	(1,442,265)	(1,475,516)	(1,502,000)	(1,522,205)	(1,536,618)	(1,545,658)	(1,549,745)	(1,553,020)	(1,556,282)
Plus: Deferred Tax Balance on Retired Plant	(1,401,000)	0	0	0	0	(1,000,010)	0	0	(1,000,020)	0
Environmental Compliance Rate Base	5,592,166	5,403,881	5,222,930	5,048,745	4,880,840	4,718,728	4,561,988	4,410,201	4,259,226	4,108,264
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$558,732	\$539,920	\$521,840	\$504,437	\$487,661	\$471,464	\$455,803	\$440,638	\$425,553	\$410,470
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	6,154	147,700	147,700	147,700	147,700	147,700	147,700	147,700	147,700	147,700
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	10,491	10,269	10,048	9,826	9,605	9,383	9,161	8,940	8,718
Total OE	\$6,154	\$158,191	\$157,969	\$157,748	\$157,526	\$157,305	\$157,083	\$156,861	\$156,640	\$156,418
Total E(m) - Project	564,886	698,110	679,810	662,185	645,187	628,768	612,886	597,499	582,193	566,889

		-	. 0,000 00							
	October									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent 1										
Project 38 - Supplemental Mercury Control (Ghent 1)	\$2,586,300	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$2,586,300	\$2,586,300	\$2,586,300	\$2,586,300	\$2,586,300	\$2,586,300	\$2,586,300	\$2,586,300	\$2,586,300	\$2,586,300
Book Depreciation rate, per year	2.600%	2.600%	2.600%	2.600%	2.600%	2.600%	2.600%	2.600%	2.600%	2.600%
Tax Depreciation rate, per year	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%	4.462%	4.461%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	513,343	523,438	530,823	535,708	538,273	538,698	537,138	533,748	530,058	526,363
Book Accumulated Depreciation Balance	14,009	81,253	148,497	215,741	282,984	350,228	417,472	484,716	551,960	619,203
Unrecovered Investment Book	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300
Book Depreciation	14,009	67,244	67,244	67,244	67,244	67,244	67,244	67,244	67,244	67,244
Unrecovered Investment Tax total	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300
Bonus Tax Depreciation	1,293,150	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation	48,493	93,352	86,344	79,878	73,878	68,343	63,209	58,476	57,700	57,687
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	14,009	67,244	67,244	67,244	67,244	67,244	67,244	67,244	67,244	67,244
Tax expense total	1,341,643	93,352	86,344	79,878	73,878	68,343	63,209	58,476	57,700	57,687
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	513,343	10,095	7,385	4,885	2,565	425	(1,560)	(3,390)	(3,690)	(3,695)
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300	2,586,300
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(14,009)	(81,253)	(148,497)	(215,741)	(282,984)	(350,228)	(417,472)	(484,716)	(551,960)	(619,203)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(513,343)	(523,438)	(530,823)	(535,708)	(538,273)	(538,698)	(537,138)	(533,748)	(530,058)	(526,363)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	2,058,948	1,981,609	1,906,980	1,834,851	1,765,042	1,697,373	1,631,690	1,567,836	1,504,282	1,440,733
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$205,716	\$197,989	\$190,533	\$183,326	\$176,351	\$169,590	\$163,028	\$156,648	\$150,298	\$143,948
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	14,009	67,244	67,244	67,244	67,244	67,244	67,244	67,244	67,244	67,244
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	3,858	3,758	3,657	3,556	3,455	3,354	3,253	3,152	3,052
Total OE	\$14,009	\$71,102	\$71,001	\$70,901	\$70,800	\$70,699	\$70,598	\$70,497	\$70,396	\$70,295
Total E(m) - Project	219,725	269,091	261,534	254,227	247,151	240,289	233,625	227,145	220,694	214,244

			roject so	- NU						
	October									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent 2										
Project 38 - Supplemental Mercury Control (Ghent 2)	\$2,704,694	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694
Book Depreciation rate, per year	1.460%	1.460%	1.460%	1.460%	1.460%	1.460%	1.460%	1.460%	1.460%	1.460%
Tax Depreciation rate, per year	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%	4.462%	4.461%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	539,326	561,806	581,451	598,482	613,086	625,453	635,744	644,120	652,183	660,241
Book Accumulated Depreciation Balance	8,227	47,715	87,204	126,692	166,181	205,669	245,158	284,647	324,135	363,624
Unrecovered Investment Book	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694
Book Depreciation	8,227	39,489	39,489	39,489	39,489	39,489	39,489	39,489	39,489	39,489
Unrecovered Investment Tax total	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694
Bonus Tax Depreciation	1,352,347	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation	50,713	97,626	90,296	83,534	77,260	71,472	66,103	61,153	60,342	60,328
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	8,227	39,489	39,489	39,489	39,489	39,489	39,489	39,489	39,489	39,489
Tax expense total	1,403,060	97,626	90,296	83,534	77,260	71,472	66,103	61,153	60,342	60,328
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	539,326	22,479	19,645	17,031	14,605	12,367	10,291	8,377	8,063	8,058
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(8,227)	(47,715)	(87,204)	(126,692)	(166,181)	(205,669)	(245,158)	(284,647)	(324,135)	(363,624)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(539,326)	(561,806)	(581,451)	(598,482)	(613,086)	(625,453)	(635,744)	(644,120)	(652,183)	(660,241)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	2,157,141	2,095,173	2,036,039	1,979,520	1,925,427	1,873,572	1,823,793	1,775,927	1,728,376	1,680,829
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$215,527	\$209,336	\$203,427	\$197,780	\$192,376	\$187,195	\$182,221	\$177,439	\$172,688	\$167,937
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	8,227	39,489	39,489	39,489	39,489	39,489	39,489	39,489	39,489	39,489
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	4,045	3,985	3,926	3,867	3,808	3,749	3,689	3,630	3,571
Total OE	\$8,227	\$43,533	\$43,474	\$43,415	\$43,356	\$43,296	\$43,237	\$43,178	\$43,119	\$43,059
Total E(m) - Project	223,754	252,869	246,901	241,195	235,731	230,491	225,458	220,617	215,806	210,997

		•	. Ojoot oo	110						
	October									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent 3										
Project 38 - Supplemental Mercury Control (Ghent 3)	\$2,704,694	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694	\$2,704,694
Book Depreciation rate, per year	2.000%	2.000%	2.000%	2.000%	2.000%	2.000%	2.000%	2.000%	2.000%	2.000%
Tax Depreciation rate, per year	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%	4.462%	4.461%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	538,150	554,982	568,980	580,363	589,321	596,040	600,683	603,413	605,828	608,239
Book Accumulated Depreciation Balance	11,270	65,363	119,457	173,551	227,645	281,739	335,833	389,927	444,021	498,115
Unrecovered Investment Book	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694
Book Depreciation	11,270	54,094	54,094	54,094	54,094	54,094	54,094	54,094	54,094	54,094
Unrecovered Investment Tax total	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694
Bonus Tax Depreciation	1,352,347	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation	50,713	97,626	90,296	83,534	77,260	71,472	66,103	61,153	60,342	60,328
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	11,270	54,094	54,094	54,094	54,094	54,094	54,094	54,094	54,094	54,094
Tax expense total	1,403,060	97,626	90,296	83,534	77,260	71,472	66,103	61,153	60,342	60,328
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	538,150	16,832	13,998	11,384	8,957	6,719	4,643	2,730	2,416	2,411
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694	2,704,694
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(11,270)	(65,363)	(119,457)	(173,551)	(227,645)	(281,739)	(335,833)	(389,927)	(444,021)	(498,115)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(538,150)	(554,982)	(568,980)	(580,363)	(589,321)	(596,040)	(600,683)	(603,413)	(605,828)	(608,239)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	2,155,275	2,084,349	2,016,257	1,950,780	1,887,728	1,826,915	1,768,178	1,711,355	1,654,845	1,598,341
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$215,341	\$208,254	\$201,451	\$194,909	\$188,609	\$182,533	\$176,665	\$170,987	\$165,341	\$159,696
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	11,270	54,094	54,094	54,094	54,094	54,094	54,094	54,094	54,094	54,094
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	4,040	3,959	3,878	3,797	3,716	3,634	3,553	3,472	3,391
Total OE	\$11,270	\$58,134	\$58,053	\$57,972	\$57,891	\$57,809	\$57,728	\$57,647	\$57,566	\$57,485
Total E(m) - Project	226,610	266,388	259,504	252,881	246,500	240,343	234,393	228,634	222,907	217,180

		•	. Ojoot oo	110						
	October									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent 4										
Project 38 - Supplemental Mercury Control (Ghent 4)	\$2,075,317	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$2,075,317	\$2,075,317	\$2,075,317	\$2,075,317	\$2,075,317	\$2,075,317	\$2,075,317	\$2,075,317	\$2,075,317	\$2,075,317
Book Depreciation rate, per year	2.310%	2.310%	2.310%	2.310%	2.310%	2.310%	2.310%	2.310%	2.310%	2.310%
Tax Depreciation rate, per year	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%	4.462%	4.461%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	412,405	422,833	431,086	437,333	441,718	444,386	445,462	445,068	444,434	443,796
Book Accumulated Depreciation Balance	9,987	57,927	105,867	153,807	201,747	249,687	297,626	345,566	393,506	441,446
Unrecovered Investment Book	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317
Book Depreciation	9,987	47,940	47,940	47,940	47,940	47,940	47,940	47,940	47,940	47,940
Unrecovered Investment Tax total	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317
Bonus Tax Depreciation	1,037,658	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation	38,912	74,909	69,284	64,096	59,281	54,840	50,721	46,923	46,300	46,290
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	9,987	47,940	47,940	47,940	47,940	47,940	47,940	47,940	47,940	47,940
Tax expense total	1,076,570	74,909	69,284	64,096	59,281	54,840	50,721	46,923	46,300	46,290
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	412,405	10,428	8,253	6,247	4,385	2,668	1,075	(393)	(634)	(638)
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317	2,075,317
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(9,987)	(57,927)	(105,867)	(153,807)	(201,747)	(249,687)	(297,626)	(345,566)	(393,506)	(441,446)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(412,405)	(422,833)	(431,086)	(437,333)	(441,718)	(444,386)	(445,462)	(445,068)	(444,434)	(443,796)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	1,652,924	1,594,557	1,538,364	1,484,177	1,431,852	1,381,244	1,332,229	1,284,682	1,237,376	1,190,074
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$165,149	\$159,317	\$153,703	\$148,289	\$143,061	\$138,005	\$133,107	\$128,357	\$123,630	\$118,904
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	9,987	47,940	47,940	47,940	47,940	47,940	47,940	47,940	47,940	47,940
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	3,098	3,026	2,954	2,882	2,810	2,738	2,667	2,595	2,523
Total OE	\$9,987	\$51,038	\$50,966	\$50,894	\$50,822	\$50,750	\$50,678	\$50,606	\$50,534	\$50,463
Total E(m) - Project	175,137	210,355	204,669	199,183	193,883	188,755	183,786	178,963	174,165	169,367

		•	TOJECT 33	- INO						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Green River CCR										
Project 39 - Surface Impoundment Closure (Green River Main Ash Pond Cap	\$1,159,500	\$7,979,000	\$10,647,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$1,159,500	\$9,138,500	\$19,785,500	\$19,785,500	\$19,785,500	\$19,785,500	\$19,785,500	\$19,785,500	\$19,785,500	\$19,785,500
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	(5,005,803)	(7,374,779)	(8,712,145)	(14,166,281)	(14,166,281)	(14,166,281)	(14,166,281)	(14,166,281)	(14,166,281)	(14,166,281)
Book Accumulated Depreciation Balance	14,105,766	28,211,532	42,317,298	56,423,064						
Unrecovered Investment Book										
Book Depreciation	14,105,766	14,105,766	14,105,766	14,105,766						
Unrecovered Investment Tax total	1,159,500	9,138,500	19,785,500	19,785,500	19,785,500	19,785,500	19,785,500	19,785,500	19,785,500	19,785,500
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	14,105,766	14,105,766	14,105,766	14,105,766	0	0	0	0	0	0
Tax expense total	1,159,500	7,979,000	10,647,000	0	0	0	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	(5,005,803)	(2,368,975)	(1,337,366)	(5,454,135)	0	0	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	1,159,500	9,138,500	19,785,500	19,785,500	19,785,500	19,785,500	19,785,500	19,785,500	19,785,500	19,785,500
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(14,105,766)	(28,211,532)	(42,317,298)	(56,423,064)	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	5,005,803	7,374,779	8,712,145	14,166,281	14,166,281	14,166,281	14,166,281	14,166,281	14,166,281	14,166,281
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	(7,940,463)	(11,698,253)	(13,819,653)	(22,471,284)	33,951,781	33,951,781	33,951,781	33,951,781	33,951,781	33,951,781
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$(793,358)	\$(1,168,811)	\$(1,380,768)	\$(2,245,181)	\$3,392,235	\$3,392,235	\$3,392,235	\$3,392,235	\$3,392,235	\$3,392,235
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	14,105,766	14,105,766	14,105,766	14,105,766	0	0	0	0	0	0
Annual Property Tax expense	0	(19,419)	(28,610)	(33,798)	(54,956)	29,678	29,678	29,678	29,678	29,678
Total OE	\$14,105,766	\$14,086,347	\$14,077,156	\$14,071,968	\$(54,956)	\$29,678	\$29,678	\$29,678	\$29,678	\$29,678
Total E(m) - Project	13,312,408	12,917,535	12,696,389	11,826,788	3,337,279	3,421,914	3,421,914	3,421,914	3,421,914	3,421,914

		-	,							
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Green River CCR										
Project 39 - Surface Impoundment Closure (Green River ATB #2 Capping)	\$1,698,000	\$8,854,000	\$10,884,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$1,698,000	\$10,552,000	\$21,436,000	\$21,436,000	\$21,436,000	\$21,436,000	\$21,436,000	\$21,436,000	\$21,436,000	\$21,436,000
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	656,549	4,080,036	8,288,444	8,288,444	8,288,444	8,288,444	8,288,444	8,288,444	8,288,444	8,288,444
Book Accumulated Depreciation Balance	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Book	1,698,000	10,552,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000
Book Depreciation	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Tax total	1,698,000	10,552,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	0	0	0	0	0	0	0	0
Tax expense total	1,698,000	8,854,000	10,884,000	0	0	0	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	656,549	3,423,488	4,208,407	0	0	0	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	1,698,000	10,552,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000	21,436,000
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	0	0	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(656,549)	(4,080,036)	(8,288,444)	(8,288,444)	(8,288,444)	(8,288,444)	(8,288,444)	(8,288,444)	(8,288,444)	(8,288,444)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	1,041,451	6,471,964	13,147,556	13,147,556	13,147,556	13,147,556	13,147,556	13,147,556	13,147,556	13,147,556
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$104,055	\$646,635	\$1,313,616	\$1,313,616	\$1,313,616	\$1,313,616	\$1,313,616	\$1,313,616	\$1,313,616	\$1,313,616
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	2,547	15,828	32,154	32,154	32,154	32,154	32,154	32,154	32,154
Total OE	\$0	\$2,547	\$15,828	\$32,154	\$32,154	\$32,154	\$32,154	\$32,154	\$32,154	\$32,154
Total E(m) - Project	104,055	649,182	1,329,444	1,345,770	1,345,770	1,345,770	1,345,770	1,345,770	1,345,770	1,345,770

	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Green River CCR										
Project 39 - Surface Impoundment Closure (Green River SO2 Pond)	\$872,000	\$5,170,000	\$9,147,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$872,000	\$6,042,000	\$15,189,000	\$15,189,000	\$15,189,000	\$15,189,000	\$15,189,000	\$15,189,000	\$15,189,000	\$15,189,000
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	337,168	2,336,200	5,872,979	5,872,979	5,872,979	5,872,979	5,872,979	5,872,979	5,872,979	5,872,979
Book Accumulated Depreciation Balance	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Book	872,000	6,042,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000
Book Depreciation	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Tax total	872,000	6,042,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	0	0	0	0	0	0	0	0
Tax expense total	872,000	5,170,000	9,147,000	0	0	0	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	337,168	1,999,032	3,536,779	0	0	0	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	872,000	6,042,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000	15,189,000
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	0	0	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(337,168)	(2,336,200)	(5,872,979)	(5,872,979)	(5,872,979)	(5,872,979)	(5,872,979)	(5,872,979)	(5,872,979)	(5,872,979)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	534,832	3,705,800	9,316,021	9,316,021	9,316,021	9,316,021	9,316,021	9,316,021	9,316,021	9,316,021
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$53,437	\$370,259	\$930,795	\$930,795	\$930,795	\$930,795	\$930,795	\$930,795	\$930,795	\$930,795
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	1,308	9,063	22,784	22,784	22,784	22,784	22,784	22,784	22,784
Total OE	\$0	\$1,308	\$9,063	\$22,784	\$22,784	\$22,784	\$22,784	\$22,784	\$22,784	\$22,784
Total E(m) - Project	53,437	371,567	939,858	953,578	953,578	953,578	953,578	953,578	953,578	953,578

		Г	-roject 39	- NO						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Pineville CCR										
Project 39 - Surface Impoundment Closure (Pineville Ash Pond Capping)	\$323,000	\$155,000	\$2,705,000	\$4,826,000	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$323,000	\$478,000	\$3,183,000	\$8,009,000	\$8,009,000	\$8,009,000	\$8,009,000	\$8,009,000	\$8,009,000	\$8,009,000
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	(649,299)	(1,363,556)	(1,091,831)	0	(0)	(0)	(0)	(0)	(0)	(0)
Book Accumulated Depreciation Balance	2,002,250	4,004,500	6,006,750	8,009,000						
Unrecovered Investment Book										
Book Depreciation	2,002,250	2,002,250	2,002,250	2,002,250						
Unrecovered Investment Tax total	323,000	478,000	3,183,000	8,009,000	8,009,000	8,009,000	8,009,000	8,009,000	8,009,000	8,009,000
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	2,002,250	2,002,250	2,002,250	2,002,250	0	0	0	0	0	0
Tax expense total	323,000	155,000	2,705,000	4,826,000	0	0	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	(649,299)	(714,258)	271,725	1,091,831	0	0	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	323,000	478,000	3,183,000	8,009,000	8,009,000	8,009,000	8,009,000	8,009,000	8,009,000	8,009,000
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(2,002,250)	(4,004,500)	(6,006,750)	(8,009,000)	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	649,299	1,363,556	1,091,831	0	0	0	0	0	0	0
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	(1,029,951)	(2,162,944)	(1,731,919)	(0)	8,009,000	8,009,000	8,009,000	8,009,000	8,009,000	8,009,000
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$(102,906)	\$(216,107)	\$(173,042)	\$(0)	\$800,206	\$800,206	\$800,206	\$800,206	\$800,206	\$800,206
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	2,002,250	2,002,250	2,002,250	2,002,250	0	0	0	0	0	0
Annual Property Tax expense	0	(2,519)	(5,290)	(4,236)	(0)	12,014	12,014	12,014	12,014	12,014
Total OE	\$2,002,250	\$1,999,731	\$1,996,960	\$1,998,014	\$(0)	\$12,014	\$12,014	\$12,014	\$12,014	\$12,014
Total E(m) - Project	1,899,344	1,783,624	1,823,918	1,998,014	800,206	812,219	812,219	812,219	812,219	812,219

		•	TOJECT 33	- 110						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Tyrone CCR										
Project 39 - Surface Impoundment Closure (Tyrone Ash Pond Capping)	\$920,000	\$403,000	\$7,293,000	\$4,487,000	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$920,000	\$1,323,000	\$8,616,000	\$13,103,000	\$13,103,000	\$13,103,000	\$13,103,000	\$13,103,000	\$13,103,000	\$13,103,000
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	(897,635)	(1,995,174)	(428,625)	52,956	52,956	52,956	52,956	52,956	52,956	52,956
Book Accumulated Depreciation Balance	3,241,510	6,483,021	9,724,531	12,966,042						
Unrecovered Investment Book										
Book Depreciation	3,241,510	3,241,510	3,241,510	3,241,510						
Unrecovered Investment Tax total	920,000	1,323,000	8,616,000	13,103,000	13,103,000	13,103,000	13,103,000	13,103,000	13,103,000	13,103,000
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	3,241,510	3,241,510	3,241,510	3,241,510	0	0	0	0	0	0
Tax expense total	920,000	403,000	7,293,000	4,487,000	0	0	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	(897,635)	(1,097,538)	1,566,549	481,581	0	0	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	920,000	1,323,000	8,616,000	13,103,000	13,103,000	13,103,000	13,103,000	13,103,000	13,103,000	13,103,000
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(3,241,510)	(6,483,021)	(9,724,531)	(12,966,042)	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	897,635	1,995,174	428,625	(52,956)	(52,956)	(52,956)	(52,956)	(52,956)	(52,956)	(52,956)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	(1,423,875)	(3,164,847)	(679,906)	84,002	13,050,044	13,050,044	13,050,044	13,050,044	13,050,044	13,050,044
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$(142,264)	\$(316,210)	\$(67,932)	\$8,393	\$1,303,873	\$1,303,873	\$1,303,873	\$1,303,873	\$1,303,873	\$1,303,873
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	3,241,510	3,241,510	3,241,510	3,241,510	0	0	0	0	0	0
Annual Property Tax expense	0	(3,482)	(7,740)	(1,663)	205	19,655	19,655	19,655	19,655	19,655
Total OE	\$3,241,510	\$3,238,028	\$3,233,770	\$3,239,848	\$205	\$19,655	\$19,655	\$19,655	\$19,655	\$19,655
Total E(m) - Project	3,099,246	2,921,818	3,165,839	3,248,241	1,304,079	1,323,528	1,323,528	1,323,528	1,323,528	1,323,528

			Project 40	- NU						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent CCR										
Project 40 - CCR Rule Compliance Construction (ATB #1 Capping)	\$1,089,476	\$4,025,000	\$1,329,000	\$6,160,000	\$5,402,000	\$25,909,000	\$22,277,000	\$0	\$0	\$0
Accumulated Expenditures	\$1,089,476	\$5,114,476	\$6,443,476	\$12,603,476	\$18,005,476	\$43,914,476	\$66,191,476	\$66,191,476	\$66,191,476	\$66,191,476
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	(3,953,739)	(6,772,429)	(10,633,554)	(12,626,725)	(14,912,984)	(9,270,006)	(5,031,378)	(9,406,374)	(13,781,370)	(18,156,366)
Book Accumulated Depreciation Balance	11,314,841	22,629,681	33,944,522	45,259,362	56,574,203	67,889,043	79,203,884	90,518,724	101,833,565	113,148,406
Unrecovered Investment Book										
Book Depreciation	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841
Unrecovered Investment Tax total	1,089,476	5,114,476	6,443,476	12,603,476	18,005,476	43,914,476	66,191,476	66,191,476	66,191,476	66,191,476
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841
Tax expense total	1,089,476	4,025,000	1,329,000	6,160,000	5,402,000	25,909,000	22,277,000	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	(3,953,739)	(2,818,690)	(3,861,125)	(1,993,171)	(2,286,259)	5,642,978	4,238,629	(4,374,996)	(4,374,996)	(4,374,996)
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	1,089,476	5,114,476	6,443,476	12,603,476	18,005,476	43,914,476	66,191,476	66,191,476	66,191,476	66,191,476
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(11,314,841)	(22,629,681)	(33,944,522)	(45,259,362)	(56,574,203)	(67,889,043)	(79,203,884)	(90,518,724)	(101,833,565)	(113,148,406)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	3,953,739	6,772,429	10,633,554	12,626,725	14,912,984	9,270,006	5,031,378	9,406,374	13,781,370	18,156,366
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	(6,271,625)	(10,742,776)	(16,867,491)	(20,029,161)	(23,655,743)	(14,704,561)	(7,981,030)	(14,920,874)	(21,860,719)	(28,800,563)
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$(626,619)	\$(1,073,347)	\$(1,685,287)	\$(2,001,180)	\$(2,363,524)	\$(1,469,182)	\$(797,411)	\$(1,490,794)	\$(2,184,177)	\$(2,877,560)
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841	11,314,841
Annual Property Tax expense	0	(15,338)	(26,273)	(41,252)	(48,984)	(57,853)	(35,962)	(19,519)	(36,491)	(53,463)
Total OE	\$11,314,841	\$11,299,503	\$11,288,568	\$11,273,589	\$11,265,857	\$11,256,987	\$11,278,879	\$11,295,322	\$11,278,350	\$11,261,377
Total E(m) - Project	10,688,222	10,226,156	9,603,281	9,272,409	8,902,333	9,787,806	10,481,467	9,804,528	9,094,172	8,383,817

			i i Ojcot 40	110						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent CCR										
Project 40 - CCR Rule Compliance Construction (ATB #2 Capping)	\$2,191,098	\$10,327,000	\$9,843,000	\$7,020,000	\$21,478,000	\$26,476,000	\$11,099,000	\$0	\$0	\$0
Accumulated Expenditures	\$2,191,098	\$12,518,098	\$22,361,098	\$29,381,098	\$50,859,098	\$77,335,098	\$88,434,098	\$88,434,098	\$88,434,098	\$88,434,098
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	847,210	4,840,248	8,646,142	11,360,495	19,665,179	29,902,389	34,193,928	34,193,928	34,193,928	34,193,928
Book Accumulated Depreciation Balance	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Book	2,191,098	12,518,098	22,361,098	29,381,098	50,859,098	77,335,098	88,434,098	88,434,098	88,434,098	88,434,098
Book Depreciation	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Tax total	2,191,098	12,518,098	22,361,098	29,381,098	50,859,098	77,335,098	88,434,098	88,434,098	88,434,098	88,434,098
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	0	0	0	0	0	0	0	0
Tax expense total	2,191,098	10,327,000	9,843,000	7,020,000	21,478,000	26,476,000	11,099,000	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	847,210	3,993,038	3,805,894	2,714,353	8,304,683	10,237,210	4,291,539	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	2,191,098	12,518,098	22,361,098	29,381,098	50,859,098	77,335,098	88,434,098	88,434,098	88,434,098	88,434,098
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	0	0	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(847,210)	(4,840,248)	(8,646,142)	(11,360,495)	(19,665,179)	(29,902,389)	(34,193,928)	(34,193,928)	(34,193,928)	(34,193,928)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	1,343,888	7,677,850	13,714,956	18,020,602	31,193,919	47,432,709	54,240,170	54,240,170	54,240,170	54,240,170
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$134,272	\$767,120	\$1,370,307	\$1,800,498	\$3,116,688	\$4,739,160	\$5,419,316	\$5,419,316	\$5,419,316	\$5,419,316
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	3,287	18,777	33,542	44,072	76,289	116,003	132,651	132,651	132,651
Total OE	\$0	\$3,287	\$18,777	\$33,542	\$44,072	\$76,289	\$116,003	\$132,651	\$132,651	\$132,651
Total E(m) - Project	134,272	770,406	1,389,084	1,834,040	3,160,760	4,815,449	5,535,319	5,551,967	5,551,967	5,551,967

			TOJCCL TO	110						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent CCR										
Project 40 - CCR Rule Compliance Construction (Gypsum Stack)	\$2,718,274	\$20,663,000	\$16,221,000	\$23,675,000	\$9,874,000	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$2,718,274	\$23,381,274	\$39,602,274	\$63,277,274	\$73,151,274	\$73,151,274	\$73,151,274	\$73,151,274	\$73,151,274	\$73,151,274
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	1,051,048	9,040,603	15,312,615	24,466,791	28,284,672	28,284,672	28,284,672	28,284,672	28,284,672	28,284,672
Book Accumulated Depreciation Balance	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Book	2,718,274	23,381,274	39,602,274	63,277,274	73,151,274	73,151,274	73,151,274	73,151,274	73,151,274	73,151,274
Book Depreciation	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Tax total	2,718,274	23,381,274	39,602,274	63,277,274	73,151,274	73,151,274	73,151,274	73,151,274	73,151,274	73,151,274
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	0	0	0	0	0	0	0	0
Tax expense total	2,718,274	20,663,000	16,221,000	23,675,000	9,874,000	0	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	1,051,048	7,989,556	6,272,012	9,154,176	3,817,881	0	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	2,718,274	23,381,274	39,602,274	63,277,274	73,151,274	73,151,274	73,151,274	73,151,274	73,151,274	73,151,274
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	0	0	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(1,051,048)	(9,040,603)	(15,312,615)	(24,466,791)	(28,284,672)	(28,284,672)	(28,284,672)	(28,284,672)	(28,284,672)	(28,284,672)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	1,667,226	14,340,671	24,289,659	38,810,483	44,866,603	44,866,603	44,866,603	44,866,603	44,866,603	44,866,603
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$166,578	\$1,432,824	\$2,426,861	\$3,877,685	\$4,482,772	\$4,482,772	\$4,482,772	\$4,482,772	\$4,482,772	\$4,482,772
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	4,077	35,072	59,403	94,916	109,727	109,727	109,727	109,727	109,727
Total OE	\$0	\$4,077	\$35,072	\$59,403	\$94,916	\$109,727	\$109,727	\$109,727	\$109,727	\$109,727
Total E(m) - Project	166,578	1,436,902	2,461,933	3,937,088	4,577,688	4,592,499	4,592,499	4,592,499	4,592,499	4,592,499

		r	Project 40	- KU						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent CCR										
Project 40 - CCR Rule Compliance Construction (Secondary Pond Cleanout)	\$132,615	\$347,000	\$582,000	\$2,092,000	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$132,615	\$479,615	\$1,061,615	\$3,153,615	\$3,153,615	\$3,153,615	\$3,153,615	\$3,153,615	\$3,153,615	\$3,153,615
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	51,277	185,448	410,484	1,219,377	1,219,377	1,219,377	1,219,377	1,219,377	1,219,377	1,219,377
Book Accumulated Depreciation Balance	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Book	132,615	479,615	1,061,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615
Book Depreciation	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Tax total	132,615	479,615	1,061,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	0	0	0	0	0	0	0	0
Tax expense total	132,615	347,000	582,000	2,092,000	0	0	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	51,277	134,171	225,036	808,893	0	0	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	132,615	479,615	1,061,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615	3,153,615
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	0	0	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(51,277)	(185,448)	(410,484)	(1,219,377)	(1,219,377)	(1,219,377)	(1,219,377)	(1,219,377)	(1,219,377)	(1,219,377)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	81,338	294,167	651,131	1,934,238	1,934,238	1,934,238	1,934,238	1,934,238	1,934,238	1,934,238
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$8,127	\$29,391	\$65,057	\$193,256	\$193,256	\$193,256	\$193,256	\$193,256	\$193,256	\$193,256
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	199	719	1,592	4,730	4,730	4,730	4,730	4,730	4,730
Total OE	\$0	\$199	\$719	\$1,592	\$4,730	\$4,730	\$4,730	\$4,730	\$4,730	\$4,730
Total E(m) - Project	8,127	29,590	65,776	194,849	197,987	197,987	197,987	197,987	197,987	197,987

			roject 40	- NU						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Ghent CCR										
Project 40 - CCR Rule Compliance Construction (Reclaim Pond Cleanout)	\$178,570	\$487,000	\$303,000	\$2,800,000	\$620,000	\$620,000	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$178,570	\$665,570	\$968,570	\$3,768,570	\$4,388,570	\$5,008,570	\$5,008,570	\$5,008,570	\$5,008,570	\$5,008,570
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	69,046	257,349	374,507	1,457,155	1,696,885	1,936,614	1,936,614	1,936,614	1,936,614	1,936,614
Book Accumulated Depreciation Balance	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Book	178,570	665,570	968,570	3,768,570	4,388,570	5,008,570	5,008,570	5,008,570	5,008,570	5,008,570
Book Depreciation	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Tax total	178,570	665,570	968,570	3,768,570	4,388,570	5,008,570	5,008,570	5,008,570	5,008,570	5,008,570
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	0	0	0	0	0	0	0	0
Tax expense total	178,570	487,000	303,000	2,800,000	620,000	620,000	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	69,046	188,303	117,158	1,082,648	239,729	239,729	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	178,570	665,570	968,570	3,768,570	4,388,570	5,008,570	5,008,570	5,008,570	5,008,570	5,008,570
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	0	0	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	(69,046)	(257,349)	(374,507)	(1,457,155)	(1,696,885)	(1,936,614)	(1,936,614)	(1,936,614)	(1,936,614)	(1,936,614)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	109,524	408,221	594,063	2,311,415	2,691,686	3,071,957	3,071,957	3,071,957	3,071,957	3,071,957
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$10,943	\$40,787	\$59,355	\$230,941	\$268,935	\$306,929	\$306,929	\$306,929	\$306,929	\$306,929
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	268	998	1,453	5,653	6,583	7,513	7,513	7,513	7,513
Total OE	\$0	\$268	\$998	\$1,453	\$5,653	\$6,583	\$7,513	\$7,513	\$7,513	\$7,513
Total E(m) - Project	10,943	41,055	60,353	232,394	274,588	313,512	314,442	314,442	314,442	314,442

			December							
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service			1	2	3	4	5	6	7	8
Ghent 4										
Project 40 - Construction of New Process Water Systems	\$5,034,437	\$48,018,000	\$50,935,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$5,034,437	\$53,052,437	\$103,987,437	\$103,987,437	\$103,987,437	\$103,987,437	\$103,987,437	\$103,987,437	\$103,987,437	\$103,987,437
Book Depreciation rate, per year	0.000%	0.000%	2.310%	2.310%	2.310%	2.310%	2.310%	2.310%	2.310%	2.310%
Tax Depreciation rate, per year	0.000%	0.000%	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	0	0	16,949,088	17,761,848	18,443,853	19,005,234	19,454,676	19,800,865	20,051,279	20,213,397
Book Accumulated Depreciation Balance	0	0	100,088	2,502,198	4,904,307	7,306,417	9,708,527	12,110,637	14,512,747	16,914,856
Unrecovered Investment Book	5,034,437	53,052,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437
Book Depreciation	0	0	100,088	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110
Unrecovered Investment Tax total	5,034,437	53,052,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437
Bonus Tax Depreciation	0	0	41,594,975	0	0	0	0	0	0	0
MACRS Tax Depreciation	0	0	2,339,717	4,504,112	4,165,945	3,853,982	3,564,481	3,297,442	3,049,744	2,821,387
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	100,088	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110
Tax expense total	0	0	43,934,692	4,504,112	4,165,945	3,853,982	3,564,481	3,297,442	3,049,744	2,821,387
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	0	0	16,949,088	812,760	682,004	561,381	449,443	346,189	250,414	162,118
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	5,034,437	53,052,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437	103,987,437
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	(100,088)	(2,502,198)	(4,904,307)	(7,306,417)	(9,708,527)	(12,110,637)	(14,512,747)	(16,914,856)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	0	0	(16,949,088)	(17,761,848)	(18,443,853)	(19,005,234)	(19,454,676)	(19,800,865)	(20,051,279)	(20,213,397)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	5,034,437	53,052,437	86,938,261	83,723,391	80,639,277	77,675,786	74,824,234	72,075,935	69,423,411	66,859,183
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$503,007	\$5,300,646	\$8,686,291	\$8,365,083	\$8,056,939	\$7,760,846	\$7,475,938	\$7,201,347	\$6,936,324	\$6,680,124
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	100,088	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110	2,402,110
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	7,552	79,579	155,831	152,228	148,625	145,022	141,418	137,815	134,212
Total OE	\$0	\$7,552	\$179,667	\$2,557,941	\$2,554,338	\$2,550,734	\$2,547,131	\$2,543,528	\$2,539,925	\$2,536,322
Total E(m) - Project	503,007	5,308,197	8,865,958	10,923,024	10,611,276	10,311,581	10,023,070	9,744,875	9,476,249	9,216,445

Project 41 - KU										
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Trimble CCR KU										
Project 41 - CCR Rule Compliance Construction (Ash Pond Capping - Net, 48	\$0	\$979,149	\$3,278,520	\$3,709,440	\$9,631,080	\$7,365,600	\$11,907,000	\$10,611,720	\$0	\$0
Accumulated Expenditures	\$0	\$979,149	\$4,257,669	\$7,967,109	\$17,598,189	\$24,963,789	\$36,870,789	\$47,482,509	\$47,482,509	\$47,482,509
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	(459,863)	(541,128)	266,681	1,241,111	4,505,201	6,893,321	11,037,419	14,680,684	14,220,821	13,760,958
Book Accumulated Depreciation Balance	1,189,321	2,378,642	3,567,963	4,757,284	5,946,605	7,135,927	8,325,248	9,514,569	10,703,890	11,893,211
Unrecovered Investment Book										
Book Depreciation	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321
Unrecovered Investment Tax total	0	979,149	4,257,669	7,967,109	17,598,189	24,963,789	36,870,789	47,482,509	47,482,509	47,482,509
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321
Tax expense total	0	979,149	3,278,520	3,709,440	9,631,080	7,365,600	11,907,000	10,611,720	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	(459,863)	(81,265)	807,810	974,429	3,264,091	2,388,120	4,144,098	3,643,265	(459,863)	(459,863)
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	0	979,149	4,257,669	7,967,109	17,598,189	24,963,789	36,870,789	47,482,509	47,482,509	47,482,509
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(1,189,321)	(2,378,642)	(3,567,963)	(4,757,284)	(5,946,605)	(7,135,927)	(8,325,248)	(9,514,569)	(10,703,890)	(11,893,211)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	459,863	541,128	(266,681)	(1,241,111)	(4,505,201)	(6,893,321)	(11,037,419)	(14,680,684)	(14,220,821)	(13,760,958)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	(729,458)	(858,365)	423,024	1,968,714	7,146,382	10,934,541	17,508,122	23,287,256	22,557,798	21,828,340
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$(72,883)	\$(85,762)	\$42,266	\$196,701	\$714,019	\$1,092,506	\$1,749,295	\$2,326,707	\$2,253,825	\$2,180,942
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321	1,189,321
Annual Property Tax expense	0	(1,784)	(2,099)	1,035	4,815	17,477	26,742	42,818	56,952	55,168
Total OE	\$1,189,321	\$1,187,537	\$1,187,222	\$1,190,356	\$1,194,136	\$1,206,798	\$1,216,063	\$1,232,139	\$1,246,273	\$1,244,489
Total E(m) - Project	1,116,438	1,101,775	1,229,488	1,387,056	1,908,155	2,299,305	2,965,358	3,558,847	3,500,098	3,425,431

		•	TOJCCL 41	110						
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Trimble CCR KU										
Project 41 - CCR Rule Compliance Construction (Gypsum Pond Capping - Ne	\$0	\$622,912	\$1,384,920	\$7,854,120	\$3,505,320	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$0	\$622,912	\$2,007,832	\$9,861,952	\$13,367,272	\$13,367,272	\$13,367,272	\$13,367,272	\$13,367,272	\$13,367,272
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	0	240,855	776,348	3,813,222	5,168,590	5,168,590	5,168,590	5,168,590	5,168,590	5,168,590
Book Accumulated Depreciation Balance	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Book	0	622,912	2,007,832	9,861,952	13,367,272	13,367,272	13,367,272	13,367,272	13,367,272	13,367,272
Book Depreciation	0	0	0	0	0	0	0	0	0	0
Unrecovered Investment Tax total	0	622,912	2,007,832	9,861,952	13,367,272	13,367,272	13,367,272	13,367,272	13,367,272	13,367,272
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	0	0	0	0	0	0	0	0
Tax expense total	0	622,912	1,384,920	7,854,120	3,505,320	0	0	0	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	0	240,855	535,493	3,036,874	1,355,367	0	0	0	0	0
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	0	622,912	2,007,832	9,861,952	13,367,272	13,367,272	13,367,272	13,367,272	13,367,272	13,367,272
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	0	0	0	0	0	0	0	0
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	0	(240,855)	(776,348)	(3,813,222)	(5,168,590)	(5,168,590)	(5,168,590)	(5,168,590)	(5,168,590)	(5,168,590)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	0	382,057	1,231,484	6,048,730	8,198,683	8,198,683	8,198,683	8,198,683	8,198,683	8,198,683
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$0	\$38,173	\$123,042	\$604,349	\$819,158	\$819,158	\$819,158	\$819,158	\$819,158	\$819,158
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	0	934	3,012	14,793	20,051	20,051	20,051	20,051	20,051
Total OE _	\$0	\$0	\$934	\$3,012	\$14,793	\$20,051	\$20,051	\$20,051	\$20,051	\$20,051
Total E(m) - Project	0	38,173	123,976	607,361	833,951	839,209	839,209	839,209	839,209	839,209

			December							
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service			1	2	3	4	5	6	7	8
Trimble 2NPC KU										
Project 41 - Construction of New Process Water Systems (Net, 48%)	\$0	\$19,471,691	\$21,618,720	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$0	\$19,471,691	\$41,090,411	\$41,090,411	\$41,090,411	\$41,090,411	\$41,090,411	\$41,090,411	\$41,090,411	\$41,090,411
Book Depreciation rate, per year	0.000%	0.000%	2.100%	2.100%	2.100%	2.100%	2.100%	2.100%	2.100%	2.100%
Tax Depreciation rate, per year	0.000%	0.000%	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	0	0	6,698,786	7,053,311	7,356,168	7,611,362	7,822,323	7,992,484	8,124,799	8,222,224
Book Accumulated Depreciation Balance	0	0	35,954	898,853	1,761,751	2,624,650	3,487,549	4,350,447	5,213,346	6,076,245
Unrecovered Investment Book	0	19,471,691	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411
Book Depreciation	0	0	35,954	862,899	862,899	862,899	862,899	862,899	862,899	862,899
Unrecovered Investment Tax total	0	19,471,691	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411
Bonus Tax Depreciation	0	0	16,436,164	0	0	0	0	0	0	0
MACRS Tax Depreciation	0	0	924,534	1,779,790	1,646,164	1,522,893	1,408,497	1,302,977	1,205,100	1,114,865
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	35,954	862,899	862,899	862,899	862,899	862,899	862,899	862,899
Tax expense total	0	0	17,360,699	1,779,790	1,646,164	1,522,893	1,408,497	1,302,977	1,205,100	1,114,865
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	0	0	6,698,786	354,525	302,857	255,193	210,961	170,161	132,315	97,425
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	0	19,471,691	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411	41,090,411
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	(35,954)	(898,853)	(1,761,751)	(2,624,650)	(3,487,549)	(4,350,447)	(5,213,346)	(6,076,245)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	0	0	(6,698,786)	(7,053,311)	(7,356,168)	(7,611,362)	(7,822,323)	(7,992,484)	(8,124,799)	(8,222,224)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	0	19,471,691	34,355,671	33,138,247	31,972,491	30,854,399	29,780,540	28,747,480	27,752,266	26,791,942
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$0	\$1,945,481	\$3,432,590	\$3,310,953	\$3,194,478	\$3,082,766	\$2,975,473	\$2,872,256	\$2,772,821	\$2,676,872
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	35,954	862,899	862,899	862,899	862,899	862,899	862,899	862,899
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	0	29,208	61,582	60,287	58,993	57,699	56,404	55,110	53,816
Total OE	\$0	\$0	\$65,162	\$924,480	\$923,186	\$921,892	\$920,597	\$919,303	\$918,009	\$916,714
Total E(m) - Project	0	1,945,481	3,497,751	4,235,433	4,117,664	4,004,657	3,896,070	3,791,559	3,690,830	3,593,586

Project 42 - KU										
	January									
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service	1	2	3	4	5	6	7	8	9	10
Brown CCR										
Project 42 - CCR Rule Compliance Construction (Aux Pond Capping)	\$0	\$694,771	\$466,000	\$3,797,000	\$3,439,000	\$3,626,000	\$9,926,000	\$10,179,000	\$0	\$0
Accumulated Expenditures	\$0	\$694,771	\$1,160,771	\$4,957,771	\$8,396,771	\$12,022,771	\$21,948,771	\$32,127,771	\$32,127,771	\$32,127,771
Book Depreciation rate, per year	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Tax Depreciation rate, per year	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%	100.000%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	(1,100,586)	(1,932,532)	(2,852,934)	(2,485,372)	(2,256,234)	(1,954,791)	782,610	3,617,836	3,143,888	2,669,940
Book Accumulated Depreciation Balance	2,846,392	5,692,784	8,539,176	11,385,568	14,231,960	17,078,352	19,924,744	22,771,136	23,996,885	25,222,634
Unrecovered Investment Book										
Book Depreciation	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	1,225,749	1,225,749
Unrecovered Investment Tax total	0	694,771	1,160,771	4,957,771	8,396,771	12,022,771	21,948,771	32,127,771	32,127,771	32,127,771
Bonus Tax Depreciation	0	0	0	0	0	0	0	0	0	0
MACRS Tax Depreciation										
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	1,225,749	1,225,749
Tax expense total	0	694,771	466,000	3,797,000	3,439,000	3,626,000	9,926,000	10,179,000	0	0
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	(1,100,586)	(831,946)	(920,402)	367,562	229,138	301,443	2,737,401	2,835,226	(473,948)	(473,948)
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	0	694,771	1,160,771	4,957,771	8,396,771	12,022,771	21,948,771	32,127,771	32,127,771	32,127,771
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	(2,846,392)	(5,692,784)	(8,539,176)	(11,385,568)	(14,231,960)	(17,078,352)	(19,924,744)	(22,771,136)	(23,996,885)	(25,222,634)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	1,100,586	1,932,532	2,852,934	2,485,372	2,256,234	1,954,791	(782,610)	(3,617,836)	(3,143,888)	(2,669,940)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	(1,745,806)	(3,065,481)	(4,525,471)	(3,942,425)	(3,578,955)	(3,100,790)	1,241,417	5,738,799	4,986,998	4,235,197
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$(174,429)	\$(306,282)	\$(452,155)	\$(393,901)	\$(357,585)	\$(309,810)	\$124,034	\$573,382	\$498,268	\$423,153
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense on CCR Project	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392	2,846,392
Annual Property Tax expense	0	(4,270)	(7,497)	(11,068)	(9,642)	(8,753)	(7,583)	3,036	14,035	12,196
Total OE	\$2,846,392	\$2,842,122	\$2,838,895	\$2,835,324	\$2,836,750	\$2,837,639	\$2,838,809	\$2,849,428	\$2,860,427	\$2,858,588
Total E(m) - Project	2,671,963	2,535,840	2,386,740	2,441,424	2,479,165	2,527,829	2,962,843	3,422,811	3,358,695	3,281,741

			December							
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
In-Service			1	2	3	4	5	6	7	8
Brown 3										
Project 42 - Construction of New Process Water Systems	\$0	\$31,000,529	\$35,136,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Accumulated Expenditures	\$0	\$31,000,529	\$66,136,529	\$66,136,529	\$66,136,529	\$66,136,529	\$66,136,529	\$66,136,529	\$66,136,529	\$66,136,529
Book Depreciation rate, per year	0.000%	0.000%	2.350%	2.350%	2.350%	2.350%	2.350%	2.350%	2.350%	2.350%
Tax Depreciation rate, per year	0.000%	0.000%	3.750%	7.219%	6.677%	6.177%	5.713%	5.285%	4.888%	4.522%
Income tax rate	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%	38.67%
Deferred Tax Balance	0	0	10,779,278	11,285,969	11,709,498	12,056,310	12,331,929	12,541,878	12,690,914	12,783,793
Book Accumulated Depreciation Balance	0	0	64,759	1,618,967	3,173,176	4,727,384	6,281,592	7,835,801	9,390,009	10,944,218
Unrecovered Investment Book	0	31,000,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529
Book Depreciation	0	0	64,759	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208
Unrecovered Investment Tax total	0	31,000,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529
Bonus Tax Depreciation	0	0	26,454,611	0	0	0	0	0	0	0
MACRS Tax Depreciation	0	0	1,488,072	2,864,638	2,649,562	2,451,152	2,267,028	2,097,189	1,939,652	1,794,416
Allowed Rate of Return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Book Depreciation expense total	0	0	64,759	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208
Tax expense total	0	0	27,942,683	2,864,638	2,649,562	2,451,152	2,267,028	2,097,189	1,939,652	1,794,416
Annual Property Tax Rate	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%	0.1500%
Deferred Tax Activity	0	0	10,779,278	506,691	423,529	346,812	275,619	209,949	149,036	92,879
Revenue Recovery on Capital Expenditure to date										
Eligible Plant, cumulative capital expenditures	0	31,000,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529	66,136,529
Less: Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Accumulated Depreciation	0	0	(64,759)	(1,618,967)	(3,173,176)	(4,727,384)	(6,281,592)	(7,835,801)	(9,390,009)	(10,944,218)
Plus: Accumulated Depreciation on Retired Plant	0	0	0	0	0	0	0	0	0	0
Less: Deferred Tax Balance	0	0	(10,779,278)	(11,285,969)	(11,709,498)	(12,056,310)	(12,331,929)	(12,541,878)	(12,690,914)	(12,783,793)
Plus: Deferred Tax Balance on Retired Plant	0	0	0	0	0	0	0	0	0	0
Environmental Compliance Rate Base	0	31,000,529	55,292,492	53,231,593	51,253,855	49,352,834	47,523,007	45,758,850	44,055,606	42,408,518
Rate of return	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%	9.99%
Return on Environmental Compliance Rate Base	\$0	\$3,097,366	\$5,524,457	\$5,318,546	\$5,120,943	\$4,931,006	\$4,748,182	\$4,571,919	\$4,401,742	\$4,237,176
Operating Expenses	0	0	0	0	0	0	0	0	0	0
Annual Depreciation expense	0	0	64,759	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208	1,554,208
Less depreciation on retired plant	0	0	0	0	0	0	0	0	0	0
Annual Property Tax expense	0	0	46,501	99,108	96,776	94,445	92,114	89,782	87,451	85,120
Total OE	\$0	\$0	\$111,259	\$1,653,316	\$1,650,985	\$1,648,653	\$1,646,322	\$1,643,991	\$1,641,660	\$1,639,328
Total E(m) - Project	0	3,097,366	5,635,716	6,971,862	6,771,928	6,579,659	6,394,504	6,215,910	6,043,402	5,876,505

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:	
APPLICATION OF KENTUCKY UTILITIES COMPANY FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY APPROVAL OF ITS 2016 COMPLIANCE PLAN FOR RECOVERY BY ENVIRONMENTAL SURCHARGE))) CASE NO. 2016-00026))
DIRECT TESTIN	MONY OF
JOHN J. SPA	ANOS
ON BEHAL	FOF
KENTUCKY UTILITI	ES COMPANY

Filed: January 29, 2016

TABLE OF CONTENTS

		PAGE
I.	INTRODUCTION AND PURPOSE	- 1 -
II.	DEPRECIATION RATES FOR ASH PONDS	- 2 -
III.	CONCLUSION	- 6 -

1 I. INTRODUCTION AND PURPOSE 2 Q. PLEASE STATE YOUR NAME AND ADDRESS. 3 A. My name is John J. Spanos. My business address is 207 Senate Avenue, Camp Hill, 4 Pennsylvania. 5 ARE YOU ASSOCIATED WITH ANY FIRM? Q. 6 A. Yes. I am associated with the firm of Gannett Fleming Valuation and Rate Consultants, 7 LLC ("Gannett Fleming"). 8 Q. HOW LONG HAVE YOU BEEN ASSOCIATED WITH GANNETT FLEMING? 9 A. I have been associated with the firm since college graduation in June, 1986. 10 WHAT IS YOUR POSITION WITH THE FIRM? Q. 11 I am a Senior Vice President. A. 12 WHAT IS YOUR EDUCATIONAL BACKGROUND? Q. 13 A. I have Bachelor of Science degrees in Industrial Management and Mathematics from 14 Carnegie-Mellon University and a Master of Business Administration from York College. 15 O. PLEASE OUTLINE YOUR EXPERIENCE IN THE FIELD OF DEPRECIATION. 16 I have extensive experience in the field of depreciation, including conducting depreciation A. 17 studies for many utilities throughout the United States and submitting testimony to 18 regulatory utility commissions on the subject of utility plant depreciation. My experience 19 is more fully detailed in my curriculum vitae, which is attached to my testimony as Exhibit

WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS PROCEEDING?

20

21

0.

JJS-1.

1	A.	I sponsor the depreciation rates for ash ponds recovery for Kentucky Utilities Company
2		("KU"), and to demonstrate the KU has recovered only a minimal amount of terminal net
3		salvage cost in base rates for the ask ponds.

II. <u>DEPRECIATION RATES FOR ASH PONDS</u>

5 Q. PLEASE DEFINE THE CONCEPT OF DEPRECIATION.

4

- A. Depreciation refers to the loss in service value not restored by current maintenance,
 incurred in connection with the consumption or prospective retirement of utility plant in
 the course of service from causes which can be reasonably anticipated or contemplated,
 against which the Company is not protected by insurance. Among the causes to be given
 consideration are wear and tear, decay, action of the elements, inadequacy, obsolescence,
 thanges in the art, changes in demand and the requirements of public authorities.
- 12 Q. DID YOU DETERMINE THE DEPRECIATION RATES FILED BY KENTUCKY

13 UTILITIES COMPANY IN THIS PROCEEDING?

14 A. Yes. I determined the depreciation rates for ash pond recovery by KU with its filing in this
15 proceeding. My analyses set forth the depreciation rates to be utilized by KU in order to
16 recover the costs to close the ash ponds at various generating sites.

17 Q. CAN YOU EXPLAIN THE DEVELOPMENT OF DEPRECIATION RATES FOR

18 THE RECOVERY OF ASH PONDS?

- 19 A. Yes. There were two specific components of the analyses. The first phase was to
 20 determine the original cost and accumulated depreciation expense as of September 30,
 21 2015 for each ash pond site. The second phase included recovering the remaining net plant
 22 as well as the future cost of removal for each site over its remaining life.
- 23 Q. PLEASE EXPLAIN THE FIRST PHASE OF THE CALCULATION.

- 1 Α. The initial step included identification within the property records of the age and surviving 2 original cost as of September 30, 2015 of each ash pond site. Additionally, the 3 corresponding accumulated depreciation for each asset was based on the age and approved 4 depreciation parameters for each ash pond by location. 5 WERE THERE ANY OTHER COSTS TO BE DETERMINED? Q. 6 A. Yes. In addition to the net plant (original cost minus accumulated depreciation as of 7 September 30, 2015), there are future removal costs for each ash pond to be determined. 8 These costs totaled \$423,231,000 for all KU sites and were established by engineering 9 studies. Each site was assigned a specific removal cost. PLEASE EXPLAIN THE SECOND PHASE OF THE CALCULATION. 10 Q. 11 Once the remaining net plant and future removal costs for each ash pond site were A. 12 established, then depreciation rates and expense were determined to recover the full service 13 value of the ash ponds over the remaining life. The remaining life for each site is the time 14 from September 30, 2015 to the probable retirement date of the related generating facility which was approved in the 2012 base rate case¹. 15
- 16 Q. HAVE YOU PREPARED AN EXHIBIT THAT SETS FORTH RECOVERY OF
 17 THE ASH PONDS COSTS?
- 18 A. Yes. Exhibit JJS-2 sets forth the recovery of the remaining ash pond costs over the remaining life of each site.
- 20 Q. CAN YOU USE AN EXAMPLE TO ILLUSTRATE THE DEPRECIATION
 21 RECOVERY?

¹ In the Matter of: Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates, Case No. 2012-00221 (Dec. 2012).

1	A.	Yes. I will use the ash ponds for Ghent Unit 4 for KU. The ash ponds for Ghent Unit 4
2		were placed in Account 312, in 1994 and 2004. The surviving original cost as of
3		September 30, 2015 is \$32,692,663.85 with an associated accumulated depreciation of
1		\$13,338,503. This produces a net plant \$19,354,161 (\$32,692,664 minus \$13,338,503) as
5		of September 30, 2015. Based on the engineering study, the costs of removal for the Ghent
5		Unit 4 ash ponds are \$217,401,690. Therefore, the full recovery of the Ghent Unit 4 ash
7		ponds over their remaining life is \$236,760,375.

The remaining life is 22.7 years which is the time between September 30, 2015 and the probable retirement date (2038) of Ghent Unit 4, based on the two vintages of the ash ponds. The weighted remaining life is 22.7 years. Therefore, the future service value of \$236,760,375 should be recovered equally over 22.7 years or \$10,407,050 annually.

12 Q. IS IT REASONABLE TO RECOVER THE ASH POND COSTS THROUGH THE 13 REMAINING LIFE OF THE FACILITY?

14 A. Yes. The overall costs of the ash ponds and their closure should be recovered over the life 15 of the associated generating facility as the ash pond life is associated with the generating 16 facilities. This is consistent with the concept of group depreciation.

17 Q. ARE THESE ADDED COSTS CONSIDERED TERMINAL NET SALVAGE?

18 A. Yes.

8

9

10

11

19 Q. HAS KU RECOVERED SOME OF THE TERMINAL NET SALVAGE COSTS

20 **PREVIOUSLY?**

21 A. Only a very small amount. KU had not been approved to accrue for terminal net salvage

1		until the 2012 base rate case, ² which those rates went into effect on January 1, 2013. The			
2		approved terminal net salvage was 2 percent. Therefore, all generating facilities and			
3		associated ash ponds have accrued for terminal net salvage for 21 months at a 2 percent			
4		level of the associated plant value. The total accrued terminal net salvage for all plants is			
5		\$5,348 and the amount for Ghent Unit 4 is \$1,717. Therefore, only \$1,717 of the			
6		\$236,760,375 for Ghent Unit 4 has been recovered as of September 30, 2015 for the ash			
7		ponds.			
8	Q.	HAVE YOU PREPARED AN EXHIBIT THAT SETS FORTH THE HISTORICAL			
9		TERMINAL NET SALVAGE RECOVERED TO DATE?			
10	A.	Yes. Exhibit JJS-3 sets forth the ash pond reserve into the two components as of			
11		September 30, 2015 and calculates the portion associated with terminal net salvage as			
12		recorded since January 1, 2013.			
13	Q.	WHY HAS KU NOT RECORDED MORE TERMINAL NET SALVAGE TO			
14		DATE?			
15	A.	The Public Service Commission of Kentucky had not approved recovery of a terminal net			
16		salvage component for any assets until the 2012 base rate case. Additionally, the level of			
17		required tasks to cap ash ponds was not specifically identified until the Coal Combustion			
18		Residual Rule ("CCR Rule") was established.			
19	Q.	WERE THERE ANY ASH PONDS RECOVERED DIFFERENTLY THAN THE			
20		METHODS DESCRIBED ABOVE?			
21	A.	Yes. There are three generating sites which have been retired during 2015. The facilities			

² In the Matter of: Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates, Case No. 2012-00221 (Dec. 2012).

- are Green River, Tyrone and Pineville. Given these facilities have high ash pond removal
 which cannot be recovered by the generating station retirement, the Company is proposing
 to recover the ash pond costs over a four-year period of time which coincides with the
 needed ash pond capping project costs.
- 5 III. CONCLUSION
- 6 Q. DOES THIS CONCLUDE YOUR TESTIMONY?
- 7 A. Yes, it does.

1296660

VERIFICATION

COMMONWEALTH OF PENNSYLVANIA)	
)	SS:
COUNTY OF CUMBERLAND)	

The undersigned, **John J. Spanos**, being duly sworn, deposes and says that he is Senior Vice President, for Gannett Fleming Valuation and Rate Consultants, LLC, that he has personal knowledge of the matters set forth in the foregoing testimony and exhibits, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

John J. Spanos

Subscribed and sworn to before me, a Notary Public in and before said County and

Commonwealth, this AGH day of _______

2016.

(SEAL)

Notary Public

My Commission Expires:

COMMONWEALTH OF PENNSYLVANIA

NOTARIAL SEAL
Cheryl Ann Rutter, Notary Public
East Pennsboro Twp., Cumberland County
My Commission Expires Feb. 20, 2019
MEMPER, PENNSYLVANIA ASSOCIATION OF NOTARIES

JOHN SPANOS

DEPRECIATION EXPERIENCE

- Q. Please state your name.
- A. My name is John J. Spanos.
- Q. What is your educational background?
- A. I have Bachelor of Science degrees in Industrial Management and Mathematics from Carnegie-Mellon University and a Master of Business Administration from York College.
- Q. Do you belong to any professional societies?
- A. Yes. I am a member and past President of the Society of Depreciation Professionals and a member of the American Gas Association/Edison Electric Institute Industry Accounting Committee.
- Q. Do you hold any special certification as a depreciation expert?
- A. Yes. The Society of Depreciation Professionals has established national standards for depreciation professionals. The Society administers an examination to become certified in this field. I passed the certification exam in September 1997 and was recertified in August 2003, February 2008 and January 2013.
- Q. Please outline your experience in the field of depreciation.
- A. In June, 1986, I was employed by Gannett Fleming Valuation and Rate Consultants, Inc. as a Depreciation Analyst. During the period from June, 1986 through December, 1995, I helped prepare numerous depreciation and original cost studies for utility companies in various industries. I helped perform depreciation studies for the following telephone companies: United Telephone of Pennsylvania, United Telephone of New Jersey, and Anchorage Telephone Utility. I helped perform depreciation studies for the following

companies in the railroad industry: Union Pacific Railroad, Burlington Northern Railroad, and Wisconsin Central Transportation Corporation.

I helped perform depreciation studies for the following organizations in the electric utility industry: Chugach Electric Association, The Cincinnati Gas and Electric Company (CG&E), The Union Light, Heat and Power Company (ULH&P), Northwest Territories Power Corporation, and the City of Calgary - Electric System.

I helped perform depreciation studies for the following pipeline companies:

TransCanada Pipelines Limited, Trans Mountain Pipe Line Company Ltd.,

Interprovincial Pipe Line Inc., Nova Gas Transmission Limited and Lakehead Pipeline

Company.

I helped perform depreciation studies for the following gas utility companies: Columbia Gas of Pennsylvania, Columbia Gas of Maryland, The Peoples Natural Gas Company, T. W. Phillips Gas & Oil Company, CG&E, ULH&P, Lawrenceburg Gas Company and Penn Fuel Gas, Inc.

I helped perform depreciation studies for the following water utility companies: Indiana-American Water Company, Consumers Pennsylvania Water Company and The York Water Company; and depreciation and original cost studies for Philadelphia Suburban Water Company and Pennsylvania-American Water Company.

In each of the above studies, I assembled and analyzed historical and simulated data, performed field reviews, developed preliminary estimates of service life and net salvage, calculated annual depreciation, and prepared reports for submission to state public utility commissions or federal regulatory agencies. I performed these studies under the general direction of William M. Stout, P.E.

In January, 1996, I was assigned to the position of Supervisor of Depreciation Studies. In July, 1999, I was promoted to the position of Manager, Depreciation and Valuation Studies. In December, 2000, I was promoted to the position as Vice-President of Gannett Fleming Valuation and Rate Consultants, Inc. and in April 2012, I was promoted to my present position as Senior Vice President of the Valuation and Rate Division of Gannett Fleming Inc. (now doing business as Gannett Fleming Valuation and Rate Consultants, LLC). In my current position I am responsible for conducting all depreciation, valuation and original cost studies, including the preparation of final exhibits and responses to data requests for submission to the appropriate regulatory bodies.

Since January 1996, I have conducted depreciation studies similar to those previously listed including assignments for Pennsylvania-American Water Company; Aqua Pennsylvania; Kentucky-American Water Company; Virginia-American Water Company; Indiana-American Water Company; Hampton Water Works Company; Omaha Public Power District; Enbridge Pipe Line Company; Inc.; Columbia Gas of Virginia, Inc.; Virginia Natural Gas Company National Fuel Gas Distribution Corporation - New York and Pennsylvania Divisions; The City of Bethlehem - Bureau of Water; The City of Coatesville Authority; The City of Lancaster - Bureau of Water; Peoples Energy Corporation; The York Water Company; Public Service Company of Colorado; Enbridge Pipelines; Enbridge Gas Distribution, Inc.; Reliant Energy-HLP; Massachusetts-American Water Company; St. Louis County Water Company; Missouri-American Water Company; Chugach Electric Association; Alliant Energy; Oklahoma Gas & Electric Company; Nevada Power Company; Dominion Virginia Power; NUI-Virginia Gas Companies; Pacific Gas & Electric Company; PSI Energy; NUI - Elizabethtown Gas

Company; Cinergy Corporation – CG&E; Cinergy Corporation – ULH&P; Columbia Gas of Kentucky; South Carolina Electric & Gas Company; Idaho Power Company; El Paso Electric Company; Aqua North Carolina; Aqua Ohio; Aqua Texas, Inc.; Ameren Missouri; Central Hudson Gas & Electric; Centennial Pipeline Company; CenterPoint Energy-Arkansas; CenterPoint Energy – Oklahoma; CenterPoint Energy – Entex; CenterPoint Energy - Louisiana; NSTAR - Boston Edison Company; Westar Energy, Inc.; United Water Pennsylvania; PPL Electric Utilities; PPL Gas Utilities; Wisconsin Power & Light Company; TransAlaska Pipeline; Avista Corporation; Northwest Natural Gas; Allegheny Energy Supply, Inc.; Public Service Company of North Carolina; South Jersey Gas Company; Duquesne Light Company; MidAmerican Energy Company; Laclede Gas; Duke Energy Company; E.ON U.S. Services Inc.; Elkton Gas Services; Anchorage Water and Wastewater Utility; Kansas City Power and Light; Duke Energy North Carolina; Duke Energy South Carolina; Monongahela Power Company; Potomac Edison Company; Duke Energy Ohio Gas; Duke Energy Kentucky; Duke Energy Indiana; Northern Indiana Public Service Company; Tennessee-American Water Company; Columbia Gas of Maryland; Bonneville Power Administration; NSTAR Electric and Gas Company; EPCOR Distribution, Inc.; B. C. Gas Utility, Ltd; Entergy Arkansas; Entergy Texas; Entergy Mississippi; Entergy Louisiana; Entergy Gulf States Louisiana; the Borough of Hanover; Louisville Gas and Electric Company; Kentucky Utilities Company; Madison Gas and Electric; Central Maine Power; PEPCO; PacifiCorp; Minnesota Energy Resource Group; Jersey Central Power & Light Company; Cheyenne Light, Fuel and Power Company; United Water Arkansas; Central Vermont Public Service Corporation; Green Mountain Power; Portland General Electric Company; Atlantic City Electric; Nicor Gas Company; Black Hills Power; Black Hills Colorado

Gas; Black Hills Kansas Gas; Black Hills Service Company; Black Hills Utility Holdings; Public Service Company of Oklahoma; City of Dubois; Peoples Gas Light and Coke Company; North Shore Gas Company; Connecticut Light and Power; New York State Electric and Gas Corporation; Rochester Gas and Electric Corporation and Greater Missouri Operations. My additional duties include determining final life and salvage estimates, conducting field reviews, presenting recommended depreciation rates to management for its consideration and supporting such rates before regulatory bodies.

- Q. Have you submitted testimony to any state utility commission on the subject of utility plant depreciation?
- A. Yes. I have submitted testimony to the Pennsylvania Public Utility Commission; the Commonwealth of Kentucky Public Service Commission; the Public Utilities Commission of Ohio; the Nevada Public Utility Commission; the Public Utilities Board of New Jersey; the Missouri Public Service Commission; the Massachusetts Department of Telecommunications and Energy; the Alberta Energy & Utility Board; the Idaho Public Utility Commission; the Louisiana Public Service Commission; the State Corporation Commission of Kansas; the Oklahoma Corporate Commission; the Public Service Commission of South Carolina; Railroad Commission of Texas – Gas Services Division; the New York Public Service Commission; Illinois Commerce Commission; the Indiana Utility Regulatory Commission; the California Public Utilities Commission; the Federal Energy Regulatory Commission ("FERC"); the Arkansas Public Service Commission; the Public Utility Commission of Texas; Maryland Public Service Commission; Washington Utilities and Transportation Commission; The Tennessee Regulatory Commission; the Regulatory Commission of Alaska; Minnesota Public Utility Commission; Utah Public Service Commission; District of Columbia Public Service

Commission; the Mississippi Public Service Commission; Delaware Public Service Commission; Virginia State Corporation Commission; Colorado Public Utility Commission; Oregon Public Utility Commission; South Dakota Public Utilities Commission; Wisconsin Public Service Commission; Wyoming Public Service Commission; Maine Public Utility Commission; Iowa Utility Board; Connecticut Public Utilities Regulatory Authority; New Mexico Public Regulation Commission and the North Carolina Utilities Commission.

Q. Have you had any additional education relating to utility plant depreciation?

A. Yes. I have completed the following courses conducted by Depreciation Programs, Inc.:

"Techniques of Life Analysis," "Techniques of Salvage and Depreciation Analysis,"

"Forecasting Life and Salvage," "Modeling and Life Analysis Using Simulation," and

"Managing a Depreciation Study." I have also completed the "Introduction to Public

Utility Accounting" program conducted by the American Gas Association.

Q. Does this conclude your qualification statement?

A. Yes.

LIST OF CASES IN WHICH JOHN J. SPANOS SUBMITTED TESTIMONY

Exhibit JJS-1 Page 7 of 13

	<u>Year</u>	<u>Jurisdiction</u>	Docket No.	Client Utility	<u>Subject</u>
01.	1998	PA PUC	R-00984375	City of Bethlehem – Bureau of Water	Original Cost and Depreciation
02.	1998	PA PUC	R-00984567	City of Lancaster	Original Cost and Depreciation
03.	1999	PA PUC	R-00994605	The York Water Company	Depreciation
04.	2000	D.T.&E.	DTE 00-105	Massachusetts-American Water Company	Depreciation
05.	2001	PA PUC	R-00016114	City of Lancaster	Original Cost and Depreciation
06.	2001	PA PUC	R-00017236	The York Water Company	Depreciation
07.	2001	PA PUC	R-00016339	Pennsylvania-American Water Company	Depreciation
08.	2001	OH PUC	01-1228-GA-AIR	Cinergy Corp – Cincinnati Gas & Elect Co.	Depreciation
09.	2001	KY PSC	2001-092	Cinergy Corp – Union Light, Heat & Power Co.	Depreciation
10.	2002	PA PUC	R-00016750	Philadelphia Suburban Water Company	Depreciation
11.	2002	KY PSC	2002-00145	Columbia Gas of Kentucky	Depreciation
12.	2002	NJ BPU	GF02040245	NUI Corporation/Elizabethtown Gas Co.	Depreciation
13.	2002	ID PUC	IPC-E-03-7	Idaho Power Company	Depreciation
14.	2003	PA PUC	R-0027975	The York Water Company	Depreciation
15.	2003	IN URC	R-0027975	Cinergy Corp – PSI Energy, Inc.	Depreciation
16.	2003	PA PUC	R-00038304	Pennsylvania-American Water Co.	Depreciation
17.	2003	MO PSC	WR-2003-0500	Missouri-American Water Co.	Depreciation
18.	2003	FERC	ER-03-1274-000	NSTAR-Boston Edison Company	Depreciation
19.	2003	NJ BPU	BPU 03080683	South Jersey Gas Company	Depreciation
20.	2003	NV PUC	03-10001	Nevada Power Company	Depreciation
21.	2003	LA PSC	U-27676	CenterPoint Energy – Arkla	Depreciation
22.	2003	PA PUC	R-00038805	Pennsylvania Suburban Water Company	Depreciation
23.	2004	AB En/Util Bd	1306821	EPCOR Distribution, Inc.	Depreciation
24.	2004	PA PUC	R-00038168	National Fuel Gas Distribution Corp (PA)	Depreciation
25.	2004	PA PUC	R-00049255	PPL Electric Utilities	Depreciation
26.	2004	PA PUC	R-00049165	The York Water Company	Depreciation
27.	2004	OK Corp Cm	PUC 200400187	CenterPoint Energy – Arkla	Depreciation
28.	2004	OH PUC	04-680-El-AIR	Cinergy Corp. – Cincinnati Gas and Electric Company	Depreciation
29.	2004	RR Com of TX	GUD#	CenterPoint Energy – Entex Gas Services Div.	Depreciation
30.	2004	NY PUC	04-G-1047	National Fuel Gas Distribution Gas (NY)	Depreciation
31.	2004	AR PSC	04-121-U	CenterPoint Energy – Arkla	Depreciation

Exhibit JJS-1 Page 8 of 13 Subject

	<u>Year</u>	<u>Jurisdiction</u>	Docket No.	<u>Client Utility</u>	Subjec
32.	2005	IL CC	05-	North Shore Gas Company	Depreciation
33.	2005	IL CC	05-	Peoples Gas Light and Coke Company	Depreciation
34.	2005	KY PSC	2005-00042	Union Light Heat & Power	Depreciation
35.	2005	IL CC	05-0308	MidAmerican Energy Company	Depreciation
36.	2005	MO PSC	GF-2005	Laclede Gas Company	Depreciation
37.	2005	KS CC	05-WSEE-981-RTS	Westar Energy	Depreciation
38.	2005	RR Com of TX	GUD#	CenterPoint Energy – Entex Gas Services Div.	Depreciation
39.	2005	FERC		Cinergy Corporation	Accounting
40.	2005	OK CC	PUD 200500151	Oklahoma Gas and Electric Co.	Depreciation
41.	2005	MA Dept Tele- com & Ergy	DTE 05-85	NSTAR	Depreciation
42.	2005	NY PUC	05-E-934/05-G-0935	Central Hudson Gas & Electric Co.	Depreciation
43.	2005	AK Reg Com	U-04-102	Chugach Electric Association	Depreciation
44.	2005	CA PUC	A05-12-002	Pacific Gas & Electric	Depreciation
45.	2006	PA PUC	R-00051030	Aqua Pennsylvania, Inc.	Depreciation
46.	2006	PA PUC	R-00051178	T.W. Phillips Gas and Oil Co.	Depreciation
47.	2006	NC Util Cm.		Pub. Service Co. of North Carolina	Depreciation
48.	2006	PA PUC	R-00051167	City of Lancaster	Depreciation
49.	2006	PA PUC	R00061346	Duquesne Light Company	Depreciation
50.	2006	PA PUC	R-00061322	The York Water Company	Depreciation
51.	2006	PA PUC	R-00051298	PPL GAS Utilities	Depreciation
52.	2006	PUC of TX	32093	CenterPoint Energy – Houston Electric	Depreciation
53.	2006	KY PSC	2006-00172	Duke Energy Kentucky	Depreciation
54.	2006	SC PSC		SCANA	
55.	2006	AK Reg Com	U-06-6	Municipal Light and Power	Depreciation
56.	2006	DE PSC	06-284	Delmarva Power and Light	Depreciation
57.	2006	IN URC	IURC43081	Indiana American Water Company	Depreciation
58.	2006	AK Reg Com	U-06-134	Chugach Electric Association	Depreciation
59.	2006	MO PSC	WR-2007-0216	Missouri American Water Company	Depreciation
60.	2006	FERC	ISO82, ETC. AL	TransAlaska Pipeline	Depreciation
61.	2006	PA PUC	R-00061493	National Fuel Gas Distribution Corp. (PA)	Depreciation
62.	2007	NC Util Com.	E-7 SUB 828	Duke Energy Carolinas, LLC	Depreciation

	<u>Year</u>	<u>Jurisdiction</u>	Docket No.	Client Utility	<u>Subjec</u>
63.	2007	OH PSC	08-709-EL-AIR	Duke Energy Ohio Gas	Depreciation
64.	2007	PA PUC	R-00072155	PPL Electric Utilities Corporation	Depreciation
65.	2007	KY PSC	2007-00143	Kentucky American Water Company	Depreciation
66.	2007	PA PUC	R-00072229	Pennsylvania American Water Company	Depreciation
67.	2007	KY PSC	2007-0008	NiSource – Columbia Gas of Kentucky	Depreciation
68.	2007	NY PSC	07-G-0141	National Fuel Gas Distribution Corp (NY)	Depreciation
69.	2008	AK PSC	U-08-004	Anchorage Water & Wastewater Utility	Depreciation
70.	2008	TN Reg Auth	08-00039	Tennessee-American Water Company	Depreciation
71.	2008	DE PSC	08-96	Artesian Water Company	Depreciation
72.	2008	PA PUC	R-2008-2023067	The York Water Company	Depreciation
73.	2008	KS CC	08-WSEE1-RTS	Westar Energy	Depreciation
74.	2008	IN URC	43526	Northern Indiana Public Service Co.	Depreciation
75.	2008	IN URC	43501	Duke Energy Indiana	Depreciation
76.	2008	MD PSC	9159	NiSource – Columbia Gas of Maryland	Depreciation
77.	2008	KY PSC	2008-000251	Kentucky Utilities	Depreciation
78.	2008	KY PSC	2008-000252	Louisville Gas & Electric	Depreciation
79.	2008	PA PUC	2008-20322689	Pennsylvania American Water CoWastewater	Depreciation
80.	2008	NY PSC	08-E887/08-00888	Central Hudson	Depreciation
81.	2008	WV TC	VE-080416/VG-8080417	Avista Corporation	Depreciation
82.	2008	IL CC	ICC-09-166	Peoples Gas, Light and Coke Co.	Depreciation
83.	2009	IL CC	ICC-09-167	North Shore Gas Company	Depreciation
84.	2009	DC PSC	1076	Potomac Electric Power Company	Depreciation
85.	2009	KY PSC	2009-00141	NiSource – Columbia Gas of Kentucky	Depreciation
86.	2009	FERC	ER08-1056-002	Entergy Services	Depreciation
87.	2009	PA PUC	R-2009-2097323	Pennsylvania American Water Co.	Depreciation
88.	2009	NC Util Cm	E-7, Sub 090	Duke Energy Carolinas, LLC	Depreciation
89.	2009	KY PSC	2009-00202	Duke Energy Kentucky	Depreciation
90.	2009	VA St. CC	PUE-2009-00059	Aqua Virginia, Inc.	Depreciation
91.	2009	PA PUC	2009-2132019	Aqua Pennsylvania, Inc.	Depreciation
92.	2009	MS PSC	09-	Entergy Mississippi	Depreciation
93.	2009	AK PSC	09-08-U	Entergy Arkansas	Depreciation
94.	2009	TX PUC	37744	Entergy Texas	Depreciation
95.	2009	TX PUC	37690	El Paso Electric Company	Depreciation

Exhibit JJS-1 Page 10 of 13 Subject

	<u>Year</u>	<u>Jurisdiction</u>	<u>Docket No.</u>	Client Utility	<u>Subje</u>
96.	2009	PA PUC	R-2009-2106908	The Borough of Hanover	Depreciation
97.	2009	KS CC	10-KCPE-415-RTS	Kansas City Power & Light	Depreciation
98.	2009	PA PUC	R-2009-	United Water Pennsylvania	Depreciation
99.	2009	OH PUC		Aqua Ohio Water Company	Depreciation
100.	2009	WI PSC	3270-DU-103	Madison Gas & Electric Co.	Depreciation
101.	2009	MO PSC	WR-2010	Missouri American Water Co.	Depreciation
102.	2009	AK Reg Cm	U-09-097	Chugach Electric Association	Depreciation
103.	2010	IN URC	43969	Northern Indiana Public Service Co.	Depreciation
104.	2010	WI PSC	6690-DU-104	Wisconsin Public Service Corp.	Depreciation
105.	2010	PA PUC	R-2010-2161694	PPL Electric Utilities Corp.	Depreciation
106.	2010	KY PSC	2010-00036	Kentucky American Water Company	Depreciation
107.	2010	PA PUC	R-2009-2149262	Columbia Gas of Pennsylvania	Depreciation
108.	2010	MO PSC	GR-2010-0171	Laclede Gas Company	Depreciation
109.	2010	SC PSC	2009-489-E	South Carolina Electric & Gas Co.	Depreciation
110.	2010	NJ BD OF PU	ER09080664	Atlantic City Electric	Depreciation
111.	2010	VA St. CC	PUE-2010-00001	Virginia American Water Company	Depreciation
112.	2010	PA PUC	R-2010-2157140	The York Water Company	Depreciation
113.	2010	MO PSC	ER-2010-0356	Greater Missouri Operations Co.	Depreciation
114.	2010	MO PSC	ER-2010-0355	Kansas City Power and Light	Depreciation
115.	2010	PA PUC	R-2010-2167797	T.W. Phillips Gas and Oil Co.	Depreciation
116.	2010	PSC SC	2009-489-E	SCANA – Electric	Depreciation
117.	2010	PA PUC	R-2010-22010702	Peoples Natural Gas, LLC	Depreciation
118.	2010	AK PSC	10-067-U	Oklahoma Gas and Electric Co.	Depreciation
119.	2010	IN URC		Northern Indiana Public Serv. Co NIFL	Depreciation
120.	2010	IN URC		Northern Indiana Public Serv. Co Kokomo	Depreciation
121.	2010	PA PUC	R-2010-2166212	Pennsylvania American Water Co - WW	Depreciation
122.	2010	NC Util Cn.	W-218,SUB310	Aqua North Carolina, Inc.	Depreciation
123.	2011	OH PUC	11-4161-WS-AIR	Ohio American Water Company	Depreciation
124.	2011	MS PSC	EC-123-0082-00	Entergy Mississippi	Depreciation
125.	2011	CO PUC	11AL-387E	Black Hills Colorado	Depreciation
126.	2011	PA PUC	R-2010-2215623	Columbia Gas of Pennsylvania	Depreciation
127.	2011	PA PUC	R-2010-2179103	Lancaster, City of – Bureau of Water	Depreciation
128.	2011	IN URC	43114 IGCC 4S	Duke Energy Indiana	Depreciation
129.	2011	FERC	IS11-146-000	Enbridge Pipelines (Southern Lights)	Depreciation

Exhibit JJS-1 Page 11 of 13 Subject

	<u>Year</u>	<u>Jurisdiction</u>	Docket No.	Client Utility	Subje
130.	2011	II CC	11-0217	MidAmerican Energy Corporation	Depreciation
131.	2011	OK CC	201100087	Oklahoma Gas & Electric Co.	Depreciation
132.	2011	PA PUC	2011-2232243	Pennsylvania American Water Company	Depreciation
133.	2011	FERC	2011-2232243	Carolina Gas Transmission	Depreciation
134.	2012	WA UTC	UE-120436/UG-120437	Avista Corporation	Depreciation
135.	2012	AK Reg Cm	U-12-009	Chugach Electric Association	Depreciation
136.	2012	MA PUC	DPU 12-25	Columbia Gas of Massachusetts	Depreciation
137.	2012	TX PUC	40094	El Paso Electric Company	Depreciation
138.	2012	ID PUC	IPC-E-12	Idaho Power Company	Depreciation
139.	2012	PA PUC	R-2012-2290597	PPL Electric Utilities	Depreciation
140.	2012	PA PUC	R-2012-2311725	Hanover, Borough of – Bureau of Water	Depreciation
141.	2012	KY PSC	2012-00222	Louisville Gas and Electric Company	Depreciation
142.	2012	KY PSC	2012-00221	Kentucky Utilities Company	Depreciation
143.	2012	PA PUC	R-2012-2285985	Peoples Natural Gas Company	Depreciation
144.	2012	DC PSC	Case 1087	Potomac Electric Power Company	Depreciation
145.	2012	OH PSC	12-1682-EL-AIR	Duke Energy Ohio (Electric)	Depreciation
146.	2012	OH PSC	12-1685-GA-AIR	Duke Energy Ohio (Gas)	Depreciation
147.	2012	PA PUC	R-2012-2310366	Lancaster, City of – Sewer Fund	Depreciation
148.	2012	PA PUC	R-2012-2321748	Columbia Gas of Pennsylvania	Depreciation
149.	2012	FERC	ER-12-2681-000	ITC Holdings	Depreciation
150.	2012	MO PSC	ER-2012-0174	Kansas City Power and Light	Depreciation
151.	2012	MO PSC	ER-2012-0175	KCPL Greater Missouri Operations Co.	Depreciation
152.	2012	MO PSC	GO-2012-0363	Laclede Gas Company	Depreciation
153.	2012	MN PUC	G007,001/D-12-533	Integrys – MN Energy Resource Group	Depreciation
153.	2012	TX PUC		Aqua Texas	Depreciation
155.	2012	PA PUC	2012-2336379	York Water Company	Depreciation
156.	2013	NJ BPU	ER12121071	PHI Service Co. – Atlantic City Electric	Depreciation
157.	2013	KY PSC	2013-00167	Columbia Gas of Kentucky	Depreciation
158.	2013	VA St CC	2013-00020	Virginia Electric and Power Co.	Depreciation
159.	2013	IA Util Bd	2013-0004	MidAmerican Energy Corporation	Depreciation
160.	2013	PA PUC	2013-2355276	Pennsylvania American Water Co.	Depreciation
161.	2013	NY PSC	13-E-0030, 13-G-0031, 13-S-0032	Consolidated Edison of New York	Depreciation
162.	2013	PA PUC	2013-2355886	Peoples TWP LLC	Depreciation

Client Utility Year Jurisdiction Docket No. 2013 163. TN Reg Auth 12-0504 Tennessee American Water Depreciation 164. 2013 ME PUC 2013-168 Central Maine Power Company Depreciation 165. 2013 DC PSC Case 1103 PHI Service Co. - PEPCO Depreciation WY PSC 166. 2013 2003-ER-13 Cheyenne Light, Fuel and Power Co. Depreciation 167. 2013 **FERC** ER13- -0000 **Kentucky Utilities** Depreciation ER13- -0000 MidAmerican Energy Company 168. 2013 **FERC** Depreciation 169. 2013 **FERC** ER13- -0000 **PPL Utilities** Depreciation 170. PA PUC R-2013-2372129 2013 **Duquesne Light Company** Depreciation 171. 2013 NJ BPU ER12111052 Jersey Central Power and Light Co. Depreciation 172. PA PUC Bethlehem, City of – Bureau of Water 2013 R-2013-2390244 Depreciation 173. 2013 OK CC UM 1679 Oklahoma, Public Service Company of Depreciation 174. 2013 IL CC 13-0500 Nicor Gas Company Depreciation 175. WY PSC 20000-427-EA-13 2013 **PacifiCorp** Depreciation 176. UT PSC **PacifiCorp** 2013 13-035-02 Depreciation 177. 2013 **PacifiCorp** OR PUC UM 1647 Depreciation 178. PA PUC 2013 2013-2350509 Dubois, City of Depreciation 179. 2014 IL CC 14-0224 North Shore Gas Company Depreciation 180. 2014 **FERC** FR14-Duquesne Light Company Depreciation 181. 2014 SD PUC EL14-026 Black Hills Power Company Depreciation WY PSC 182. 2014 20002-91-ER-14 Black Hills Power Company Depreciation 183. 2014 PA PUC 2014-2428304 Hanover, Borough of – Municipal Water Works Depreciation 184. 2014 PA PUC 2014-2406274 Columbia Gas of Pennsylvania Depreciation 185. 2014 IL CC 14-0225 Peoples Gas Light and Coke Company Depreciation 186. 2014 MO PSC ER-2014-0258 Ameren Missouri Depreciation 187. KS CC 2014 14-BHCG-502-RTS Black Hills Service Company Depreciation 188. 2014 KS CC 14-BHCG-502-RTS Black Hills Utility Holdings Depreciation 189. 2014 KS CC Black Hills Kansas Gas 14-BHCG-502-RTS Depreciation 190. 2014 PA PUC 2014-2418872 Lancaster, City of – Bureau of Water Depreciation 191. 2014 **WV PSC** 14-0701-E-D First Energy – MonPower/PotomacEdison Depreciation 192 2014 VA St CC PUC-2014-00045 Agua Virginia Depreciation 193. 2014 VA St CC PUE-2013 Virginia American Depreciation 194. 2014 OK CC PUD201400229 Oklahoma Gas and Electric Depreciation 195. OR PUC Portland General Electric Depreciation 2014 UM1679 196. 2014 IN URC Cause No. 44576 Indianapolis Power & Light Depreciation

Exhibit JJS-1 Page 13 of 13 Subject

	<u>Year</u>	<u>Jurisdiction</u>	<u>Docket No.</u> <u>Client Utility</u>		<u>Subjec</u>
197.	2014	MA DPU	DPU. 14-150	NSTAR Gas	Depreciation
198.	2014	CT PURA	14-05-06	Connecticut Light and Power	Depreciation
199.	2014	MO PSC	ER-2014-0370	Kansas City Power & Light	Depreciation
200.	2014	KY PSC	2014-00371	Kentucky Utilities Company	Depreciation
201.	2014	KY PSC	2014-00372	Louisville Gas and Electric Company	Depreciation
202.	2015	PA PUC	R-2015-2462723	United Water Pennsylvania Inc.	Depreciation
203.	2015	PA PUC	R-2015-2468056	Columbia Gas of Pennsylvania	Depreciation
204.	2015	NY PSC	15-E-0283/15-G-0284	New York State Electric and Gas Corporation	Depreciation
205.	2015	NY PSC	15-E-0285/15-G-0286	Rochester Gas and Electric Corporation	Depreciation
206.	2015	MO PSC	WR-2015-0301/SR-2015-0302	Missouri American Water Company	Depreciation
207.	2015	OK CC	PUD 201500208	Oklahoma, Public Service Company of	Depreciation
208.	2015	WV PSC	15-0676-W-42T	West Virginia American Water Company	Depreciation
209.	2015	PA PUC	2015-2469275	PPL Electric Utilities	Depreciation
210.	2015	IN URC	Cause No. 44688	Northern Indiana Public Service Company	Depreciation
211.	2015	OH PSC	14-1929-EL-RDR	First Energy-Ohio Edison/Cleveland Electric/ Toledo Edison	Depreciation
212.	2015	NM PRC	15-00127-UT	El Paso Electric	Depreciation
213.	2015	TX PUC	PUC-44941; SOAH 473-15-5257	El Paso Electric	Depreciation
214.	2015	WI PSC	3370-DU-104	Madison Gas and Electric Company	Depreciation
215.	2015	OK CC	PUD 201500273	Oklahoma Gas and Electric	Depreciation

KENTUCKY UTILITIES ASH POND RECOVERY

SUMMARY OF FUTURE RECOVERY PARAMETERS CALCULATED AS OF SEPTEMBER 30, 2015

		SURVIVOR	NET SALVAGE	ORIGINAL	BOOK DEPRECIATION	FUTURE	CALCULATE	D ANNUAL ACCRUAL	COMPOSITE REMAINING
	ACCOUNT	CURVE	PERCENT	COST	RESERVE	ACCRUALS	AMOUNT	RATE	LIFE
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)=(7)/(4)	(9)=(6)/(7)
	DEPRECIABLE PLANT								
	STEAM PRODUCTION PLANT								
311.00	STRUCTURES AND IMPROVEMENTS								
	TRIMBLE COUNTY UNIT 2	100-S4	* **	4,562,600.30	2,148,119	33,759,545	673,709	14.77	50.1
	GHENT UNIT 1 SCRUBBER	100-S4	* **	39,480.55	34,420	2,503,785	133,535	338.23	18.8
	GHENT UNIT 1	100-S4	* **	322,828.55	304,586	5,015,629	267,500	82.86	18.8
	TOTAL ACCOUNT 311 - STRUCTURES AND IMPROVEMENTS			4,924,909.40	2,487,125	41,278,959	1,074,744	21.82	38.4
312.00	BOILER PLANT EQUIPMENT								
	TRIMBLE COUNTY UNIT 2	100-S4	* **	4,610,665.23	676,102	35,287,087	695,449	15.08	50.7
	BROWN UNIT 1	100-S4	* **	13,208,176.67	10,854,880	15,429,392	1,990,889	15.07	7.8
	BROWN UNIT 3	100-S4	* **	19,802,080.26	6,026,115	33,380,025	1,690,128	8.54	19.7
	GHENT UNIT 1	100-S4	* **	1,777,792.39	1,464,285	12,811,388	684,735	38.52	18.7
	GHENT UNIT 4	100-S4	* **	32,692,663.85	13,338,503	236,760,375	10,407,050	31.83	22.7
	GHENT UNIT 2 SCRUBBER	100-S4	* **	1,901,133.18	1,908,524	12,483,054	665,763	35.02	18.7
	TOTAL ACCOUNT 312 - BOILER PLANT EQUIPMENT			73,992,511.58	34,268,409	346,151,321	16,134,014	21.80	21.5
	TOTAL DEPRECIABLE PLANT			78,917,420.98	36,755,534	387,430,280	17,208,758	22.85	21.8
	RETIRED PLANT								
	STEAM PRODUCTION PLANT								
312.00	BOILER PLANT EQUIPMENT								
	TYRONE 3		**	575,455.75	575,456	13,103,000	3,275,750	***	4.0
	GREEN RIVER 3		**	1,831,840.98	1,831,841	56,829,000	14,207,250	***	4.0
	PINEVILLE 3		**	91,265.89	91,266	8,009,000	2,002,250	***	4.0
	TOTAL ACCOUNT 312 - BOILER PLANT EQUIPMENT			2,498,562.62	2,498,563	77,941,000	19,485,250		4.0
	TOTAL RETIRED PLANT			2,498,562.62	2,498,563	77,941,000	19,485,250		
	TOTAL COSTS TO BE RECOVERED			81,415,983.60	39,254,097	465,371,280	36,694,008		

^{*} LIFE SPAN PROCEDURE IS USED. CURVE SHOWN IS INTERIM SURVIVOR CURVE
** TERMINAL NET SALVAGE FACTOR WHICH IS BASED ON VINTAGE AND FUTURE COSTS
*** ACCRUAL CALCULATED USING 4 YEAR AMORTIZATION

Kentucky Utilities

Ash Pond Recovery for ECR Filing

			As of Septemb	er 30. 2015		COR Accruals	Terminal
Account (1)	Location (2)	Ash Pond Original Cost (3)	Reserve For Ash Pond (4)	Life Reserve (5)	Cost of Removal Reserve (6)	Since Last Case was Approved (7)*	Net Salvage Since 1/1/2013 (8)
311	Trimble County 2	4,562,600.30	2,148,119	1,897,004	251,115	14,372	287
311	Ghent 1 FGD	39,480.55	34,420	31,952	2,468	35	1
311	Ghent 1	322,828.55	304,586	285,854	18,732	56	1
312	Trimble County 2	4,610,665.23	676,102	582,935	93,167	20,172	403
312 312	Brown 1 Brown 1	9,299,115.00 3,909,061.67	7,068,828 3,786,052	6,241,775 3,343,084	827,053 442,968	26,038 10,945	521 219
312	Brown 3	19,802,080.26	6,026,115	5,697,089	329,026	48,515	970
312	Ghent 1	1,777,792.39	1,464,285	1,292,671	171,614	5,289	106
312	Ghent 4	16,544,368.66	8,003,055	7,199,548	803,507	43,429	869
312	Ghent 4	16,148,295.19	5,335,448	4,799,769	535,679	42,389	848
312	Ghent 2 FGD	1,901,133.18	1,908,524	1,708,511	200,013	4,658	93
312	Tyrone 3	575,455.72	575,456	517,910	57,546	2,920	58
312	Green River 3	1,831,840.98	1,831,841	1,025,125	806,716	7,053	141
312 312	Pineville 3 Pineville 3	50,117.00 41,148.89	50,117 41,149	47,516 39,013	2,601 2,136	0 0	0 0

^{*} In the Matter of; Application of Kentucky Utilities Company for an Adjustment of its Electric Rates, Case No. 2012-00221 (Dec. 2012).

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

•	41	Th. /	r 44	r
In	thΔ	11/	[atter	vt.
			4	171.

THE APPLICATION OF KENTUCKY UTILITIES)	
COMPANY FOR CERTIFICATES OF PUBLIC)	
CONVENIENCE AND NECESSITY AND)	CASE NO. 2016-00026
APPROVAL OF ITS 2016 COMPLIANCE PLAN)	
FOR RECOVERY BY ENVIRONMENTAL)	
SURCHARGE)	

DIRECT TESTIMONY OF CHRISTOPHER M. GARRETT DIRECTOR, ACCOUNTING AND REGULATORY REPORTING KENTUCKY UTILITIES COMPANY

Filed: January 29, 2016

Q. Please state your name, position and business address.

1

15

20

23

A. My name is Christopher M. Garrett. I am the Director of Accounting and Regulatory Reporting for LG&E and KU Services Company, which provides services to Kentucky Utilities Company ("KU") and Louisville Gas and Electric Company ("LG&E") (collectively, "the Companies"). My business address is 220 West Main Street, Louisville, Kentucky, 40202. A statement of my education and work experience is attached to this testimony as Appendix A.

8 Q. Have you previously testified before this Commission?

9 A. Yes. I have submitted testimony to the Kentucky Public Service Commission
10 ("KPSC") in KU's environmental surcharge mechanism review Case No. 201511 00020, answered requests for information on regulatory accounting issues in
12 multiple and various proceedings before the KPSC, presented on regulatory
13 accounting topics and informal conferences at the KPSC and otherwise have
14 extensive work experience with regulatory accounting issues.

Q. Will you soon assume a new position with the Companies?

16 A. Yes. On February 1, 2016, I will assume the position of Director of Rates for the
17 Companies. I will continue to be an employee of LG&E and KU Services
18 Company in my new role. Also, I will continue to testify and participate in this
19 proceeding, and do not anticipate having another witness adopt my testimony.

Q. Are you sponsoring any exhibits?

21 A. Yes. I am sponsoring one exhibit, identified as Exhibit CMG-1, CCR Closure 22 Costs Journal Entries.

Q. What is the purpose of your testimony?

1 A. The purpose of my testimony is to explain the proposed regulatory accounting treatment for coal combustion residuals ("CCR") storage closure activities 2 required as a result of the Coal Combustion Residual Rule ("CCR Rule") and 3 state regulations applicable to KU's power plants and the disposal of CCR, to 4 review KU's reporting and accounting for the operation and maintenance 5 expenses associated with the pollution control projects in their 2016 6 Environmental Compliance Plan ("2016 Plan"), to demonstrate that the 7 environmental compliance costs KU proposes to recover through its surcharge are 8 9 not already included in existing base rates, and to discuss the deferred and property tax treatment included in the filing. 10

Regulatory Accounting Treatment - CCR Rule and Related State Regulations

11

12

- Q. Briefly describe the proposed regulatory accounting treatment regarding CCR Rule and related state regulations closure costs.
- A. KU adopted Statement of Financial Accounting Standard ("SFAS") No. 143,

 Accounting for Asset Retirement Obligations as of January 1, 2003. Consistent

 with this accounting directive, KU has recognized asset retirement obligations of

 \$357 million as of September 30, 2015. Of this amount, \$334 million is

 associated with CCR closure activities included in the 2016 Plan. These amounts

 will be updated as necessary on a quarterly basis in KU's Form 10-Qs or 10Ks.

¹ The guidance in SFAS No. 143 is now contained in Financial Accounting Standards Board Accounting Standards Codification Topic 410, Asset Retirement and Environmental Obligations, effective September 15, 2009.

² PPL Corp., Quarterly Report (Form 10-Q) (Oct. 30, 2015) at 71 (available at http://www.sec.gov/Archives/edgar/data/55387/000092222415000089/form10q.htm).

Consistent with the ratemaking treatment in every KU base rate case since 2003,³ the impact of the accounting for asset retirement obligations under SFAS No. 143 is being eliminated for ratemaking purposes in this case.⁴

Therefore, KU is proposing in this case that for ratemaking purposes the CCR storage closure costs are accounted for as cost of removal and charged to the accumulated provision for depreciation reserve. An example of the journal entries to be recorded for the proposed cost of removal ratemaking treatment along with the associated asset retirement obligation journal entries is shown in Exhibit CMG-1.

The costs associated with constructing the new process water systems (e.g. tanks and basins) will be capitalized to Federal Energy Regulatory Commission's ("FERC") Account No. 107, Construction work in progress as they will continue to serve on-going operations.

Q. Why is this accounting treatment for closure costs appropriate?

A. The assets being retired as a result of the issuance of the CCR Rule and related state regulations were utilized for the production of energy from coal at various electric generating plant sites. Accordingly, these closure costs should be considered costs of removal and accounted for in the manner prescribed by FERC's Electric Plant Instruction 10 of the Code of Federal Regulations 18 CFR.

³ In the Matter of: An Adjustment of the Electric Rates, Terms, and Conditions of Kentucky Utilities Company, Case No. 2003-00434, Order (June 30, 2004); In the Matter of: Kentucky Utilities Company for an Adjustment of Base Rates, Case No. 2008-00251, Order (Feb. 5, 2009); In the Matter of: Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates, Case No. 2009-00548 (July 30, 2010); In the Matter of: Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates, Case No. 2012-00221 (Dec. 20, 2012); In the Matter of: Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates, Case No. 2014-00371 (June 30, 2015).

⁴ In the Matter of: Application of Kentucky Utilities Company for an Order Approving an Accounting Adjustment to be Included in Earning Sharing Mechanism Calculations for 2003, Case No. 2003-00427, Order (Dec. 23, 2003).

- As such, the accounting treatment for the retirement of these assets should be handled in the same manner as all other generating assets.
- Q. Will any changes to the monthly ECR Forms filed with the Commission be necessary to reflect the inclusion of removal costs?
- Yes. An additional column is proposed to be added to Environmental Surcharge
 Monthly Report, ES Form 2.10, "CCR Rule Compliance Construction Costs" to
 reflect the increase in rate base associated with the CCR storage facility closure
 expenditures. The ECR Forms are discussed in greater detail in the testimony of
 Derek A. Rahn.

Costs Not Already Included in Existing Base Rates

10

11

12

13

14

15

16

17

18

19

20

21

2.2

0.

A.

- Should KU be allowed to earn a return on closure costs charged to accumulated depreciation (cost of removal) in this proceeding?
- Yes. Per KRS 278.183, KU is entitled to earn a return on the closure costs charged to accumulated depreciation. Recovery of the reasonable rate of return on compliance-related capital expenditures is clearly permissible through the ECR mechanism. In addition, under the FERC Uniform System of Accounts, costs incurred as a result of asset retirement obligations sustained during construction are recognized as a component of construction costs.⁵ Robert M. Conroy's testimony discusses the reasonable rate of return for this ECR Plan. The costs to close the CCR storage facilities under the new CCR Rule and related state regulations will require both investment in and the associated carrying charge with the closures of these facilities.

⁵ The FERC Uniform System of Accounts, Electric Plant Instructions, <u>Asset retirement costs</u>, states: "The costs recognized as a result of asset retirement obligations incurred during the construction and testing of utility plant shall constitute a component of construction costs."

It is KU's position that the costs of complying with the new CCR Rule and state regulations applicable to KU's power plants and the disposal of CCR were never considered in the development of KU's depreciation rates; and therefore, the vast majority of the closure costs are not already included in existing depreciation rates and thus existing base rates. The costs of complying with the new CCR Rule and related state regulations thus have not been recovered from customers.

8 Q. What is the accumulated cost of removal reserve for KU associated with the 9 CCR storage facilities?

A.

- As shown in Exhibit JJS-3 of John J. Spanos' testimony, approximately \$4.5 million for KU is associated with the retirement of these CCR storage facilities as of September 30, 2015. These amounts represent a reduction in utility capitalization and thus base rates.
- Q. Why is the accumulated cost of removal reserve for these facilities so small given the expected magnitude of the closure costs as a result of the new CCR Rule and related state regulations?
- As discussed in the testimony of Mr. Spanos, a terminal net salvage rate was not recognized in the depreciation rates for KU until the 2012 base rate case. The 2012 base rate case established through an approved settlement agreement a 2% terminal salvage rate, but this rate is not remotely adequate to address the costs associated with the retirement of the CCR storage facilities as supported by the amounts provided in Mr. Spanos' testimony.

⁶ In the Matter of; *Application of Kentucky Utilities Company for an Adjustment of Its Electric Rates*, Case No. 2012-00221 (Dec. 2012).

Furthermore, because there was no legal requirement to close the facilities
under the new CCR Rule, the previous depreciation rates did not factor in a
closure or terminal net salvage component. Therefore, KU is proposing to
implement new depreciation rates to address the current accumulated depreciation
reserve shortfall in this case.

Q. To the extent that removal costs have been recovered from customers through existing base rates, have customers received a corresponding benefit?

1

2

3

4

5

- 9 A. Yes, customers have received a benefit from the collection of the net salvage (cost of removal) component of accumulated depreciation. The recovery of retirement costs through the cost of removal component of book depreciation discussed above has resulted in a lower utility capitalization which has resulted in lower base rates.
- Q. Is KU proposing new depreciation rates for the closure of the CCR storage
 facilities under the CCR Rule and related state regulations?
- 16 A. Yes. The testimony of Mr. Spanos presents his analysis and recommendations for
 17 specific depreciation rates associated with each of the ECR projects involving the
 18 CCR storage facilities. The existing depreciation rates approved in the 2012 base
 19 rate cases were not developed to address the costs associated with the closure of
 20 CCR storage facilities under the new CCR Rule and related state regulations and
 21 are not adequate for the recovery of this cost.
 - Q. Do you agree with Mr. Spanos' recommended depreciation rates?

1	A.	Yes. KU has reviewed Mr. Spanos' recommended depreciation rates and has
2		accepted them for purposes of this application.
3		In developing the revenue requirements for the 2016 Plan, KU has reduced
4		the depreciation expense to be recovered from customers by the amounts included
5		in base rates to avoid any form of double recovery.
6	Q.	How will KU address an accumulated depreciation reserve imbalance should
7		actual closure costs be higher or lower than expected, or a change in the
8		closure timing occur?
9	A.	KU proposes to address future accumulated depreciation reserve imbalances
10		through either a base rate case or depreciation rate filing or a combination of both.
11	Q.	Are any of the capital expenditures for the surface-impoundment-related
12		construction projects, excluding the new process water systems, in the 2016
13		Plan already included in existing base rates?
14	A.	The total capital expenditures for these projects included in the 2016 Plan filing
15		have been reduced for the amounts included in the most recent base rate case.

The calculation is shown on the following page:

6

7

8

KU ECR Projects ⁷		Number of	Total Estimated	Spend in	Estimated ECR	
		Projects	Capital	Base Rates	Spend	
39	Retired Plant Impoundment	5	\$77.9 M	\$0.4 M	\$77.5 M	
	Closure					
40	CCR Rule Compliance	5	\$249.9 M	\$24.3 M	\$225.6 M	
	Construction Costs and					
	Construction of New Process					
	Water Systems at Ghent					
41	CCR Rule Compliance	2	\$62.7 M	\$3.4 M	\$59.3 M	
	Construction Costs and					
	Construction of New Process					
	Water Systems at Trimble County					
	(Net, 48%)					
42	CCR Rule Compliance	1	\$32.7 M	\$3.0 M	\$29.7 M	
	Construction Costs and					
	Construction of New Process					
	Water Systems at Brown					

2 Q. Is KU proposing to recover the costs associated with the 30-year monitoring

- program of these projects discussed in Gary H. Revlett's testimony?
- 4 A. Yes. This cost will be charged to the accumulated depreciation reserve similarly
- 5 to other closure costs discussed above.

Other ECR Projects Including New Process Water Systems

- Q. Is KU seeking recovery of operation and maintenance expenses associated with some of the projects included in its proposed 2016 Plan?
- 9 A. Yes. As discussed in the testimony of R. Scott Straight, KU is seeking the
 10 authority to recover operating and maintenance ("O&M") expenses for Project 38,
 11 which involves the installation of low-cost and economical supplemental control
 12 technologies to reduce mercury re-emissions that will keep the Ghent units in
 13 compliance, and provide operational flexibility in maintaining compliance, with

⁷ Excludes new construction for process water systems. See the table at page 11 for those costs.

the Mercury and Air Toxics Standards ("MATS Rule") for mercury. As discussed in the testimony of Mr. Conroy, the projected annual O&M cost of these facilities presented on the second page of Exhibit JNV-1 is shown as zero for all years. That is not because the systems installed through Project 38 will have no O&M cost, particularly with respect to the cost of the additives to be injected and applied; rather, the cost of such additives will correspondingly offset Powdered Activated Carbon ("PAC") costs currently being recovered through the O&M expense shown in KU's monthly ECR reports for Project 35 (approved as part of KU's 2011 Plan). Therefore, the zero-O&M costs shown in Exhibit JNV-1 represent the expectation that the O&M costs of Project 38 will be less than or equal to corresponding O&M costs currently being reported for Project 35.

12 Q. How will KU identify the O&M expenses associated with these projects in its 13 2016 Plan?

A. KU's accounting system permits the tracking of costs in accordance with FERC's's Uniform System of Accounts. KU intends to use FERC Account No. 506, Miscellaneous steam power expenses, to identify and track the O&M expenses associated with these projects. KU will use subaccounts to track specific expenses (e.g. organo-sulfide and halogenated liquid chemicals vs. PAC) and location codes to track expenses by unit.

Q. Has similar accounting proven to be successful in previous ECR cases?

A. Yes, tracking the costs using this accounting methodology has proven to be successful in the past. The costs in these accounts will be clearly detailed in the

1		Environmental Surcharge Monthly Report, ES Form 2.50. The ECR Forms are
2		discussed in greater detail in the testimony of Mr. Rahn.
3	Q.	What book depreciation rates will be used in the calculation of the
4		depreciation expense for the new capital projects, including new process
5		water systems?
6	A.	The book depreciation rates to be used for the new capital projects at all existing
7		units will be the existing depreciation rates for that group of assets. The
8		Commission approved these rates in the 2012 base rate cases.
9	Q.	Are any of the capital expenditures for the other ECR Projects including new
10		process water systems in the 2016 Plan already included in existing base
11		rates?
12	A.	Base rates only reflect part of the cost of one of the six remaining ECR projects.
13		The total capital expenditure for Project 36 has been reduced for the amounts
14		included in the most recent base rate case. The calculation is shown on the
15		following page:

KU ECR Projects ⁸		Number of	Total Estimated	Spend in	Estimated ECR	
		Projects	Capital	Base Rates	Spend	
36	Brown	1	\$11.9 M	\$6.6 M	\$5.3 M	
	Landfill (Phase II)					
37	Ghent 2 WFGD Improvements	1	\$7.0 M	\$0	\$7.0 M	
38	Supplemental Mercury Related	4	\$10.1 M	\$0	\$10.1 M	
	Control Systems					
40	CCR Rule Compliance	1	\$114.3 M	\$0	\$114.3 M	
	Construction Costs and					
	Construction of New Process Water					
	Systems at Ghent					
41	CCR Rule Compliance	1	\$42.6 M	\$0	\$42.6 M	
	Construction Costs and					
	Construction of New Process Water					
	Systems at Trimble County (Net,					
	48%)					
42	CCR Rule Compliance	1	\$68.6 M	\$0	\$68.6 M	
	Construction Costs and					
	Construction of New Process Water					
	Systems at Brown					

- This chart also shows that the costs for KU's ECR Projects 37, 38, 40, 41 and 42 are not already included in existing base rates.
- 4 Q. Are any of the O&M expenses associated with Project No. 38 in the 2016
 5 Plan already included in existing base rates?
- 6 A. No, the O&M expenses associated with the use of organo-sulfide and halogenated
 7 liquid chemicals are not included in base rates.
- Will the installation of the new pollution control facilities in KU's 2016 Plan
 replace or cause existing facilities to be removed from service?
- 10 A. Yes. The additions of Project Nos. 40, 41 and 42 to the Ghent, Trimble County
 11 and Brown generation stations will result in the removal from service of some
 12 existing facilities associated with the piping for the water treatment facilities. The

⁸ Includes new construction for process water systems.

exact amount cannot be readily identified with reasonable accuracy until construction is complete.

A.

The process for accounting for and removal of such costs from the environmental surcharge, previously approved by the Commission in prior proceedings, will continue to be used by KU with the approval of the 2016 Plan.

Deferred and Property Tax Considerations

Q. What deferred income taxes are associated with these pollution control facilities?

Deferred income taxes are recorded for all book-versus-tax temporary timing differences. The new capital projects are eligible for accelerated tax depreciation and amortization. These assets will be eligible for bonus tax depreciation⁹ and will also generally fall into a 20-year Modified Accelerated Cost Recovery System life. Some of these assets may also be considered pollution control equipment eligible for 5 year or 7 year rapid amortization treatment under section 169 of the Internal Revenue Code.

CCR closure costs charged to the accumulated depreciation reserve are deductible in the year incurred. This tax treatment results in the recording of a deferred tax liability which serves as a reduction to rate base. This deferred tax liability will reverse through book depreciation once the closure costs are included in the new depreciation rates.

⁹ In December 2015, the "Protecting Americans from Tax Hikes Act of 2015" was passed into law. The new law extends the 50% bonus rate to the years 2015-17 and then phases the bonus rate down to 40% for 2018 and 30% for 2019.

- Q. Please explain how property taxes associated with the new facilities are calculated?
- 3 A. Pollution control facilities in Kentucky are generally categorized as
- 4 manufacturing machinery. This class of property is exempt from local property
- tax and is taxed at the state property tax rate of \$0.15 per \$100 of assessed value.
- 6 Q. Will you please provide a summary of the conclusions in your testimony?
- 7 A. Yes. The conclusions to be drawn from my testimony are:
- 8 1. KU should be allowed for ratemaking purposes to account for the CCR
- 9 closure costs as cost of removal and charged to the accumulated provision for
- depreciation.
- 11 2. KU should be allowed to earn a recovery of and a return on the CCR
- closure costs and other capital projects included in the 2016 Plan.
- The depreciation rates for the CCR closure costs provided by Mr. Spanos
- should be approved for purposes of calculating the ECR beginning with the
- expense month of July, 2016.
- 4. KU should be allowed to recover through the ECR surcharge the operating
- 17 costs associated with the use of organo-sulfide and halogenated liquid chemicals.
- 18 Q. Does this conclude your testimony?
- 19 A. Yes.

VERIFICATION

COMMONWEALTH OF KENTUCKY)	aa
)	SS
COUNTY OF JEFFERSON)	

The undersigned, **Christopher M. Garrett**, being duly sworn, deposes and says that he is Director – Accounting and Regulatory Reporting for LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and that the answers contained therein are true and correct to the best of his information, knowledge and belief.

Christopher M. Garrett

Subscribed and sworn to before me, a Notary Public in and before said County and State, this 44 day of 42016.

Jaloly Schoole (SEAL)

My Commission Expires:

JUDY SCHOOLER
Notary Public, State at Large, KY
My commission expires July 11, 2018
Notary ID # 512743

APPENDIX A

Christopher M. Garrett

Director, Accounting and Regulatory Reporting LG&E and KU Services Company 220 West Main Street Louisville, Kentucky 40202 (502) 627-3328

Previous Positions:

Director, Financial Planning & Controlling	Feb 2010 – Nov 2012
Manager, Financial Planning	Nov 2007 – Feb 2010
Manager, Corporate Accounting	Jan 2006 – Oct 2007
Manager, Utility Tax	May 2002 – Jan 2006
Tax Analyst, various positions	Aug 1995 – May 2002

Education:

Eastern Kentucky University, Bachelor of Business Administration - Accounting, 1995 Graduated Magna Cum Laude Certified Public Accountant, Kentucky, 1999

Professional Memberships:

American Institute of Certified Public Accountants (AICPA) Kentucky Society of Certified Public Accountants (KSCPA)

Civic Activities:

St. Joseph School Board Member

	Account No.	ry Accounting Treatment for Ratemaking (e.g. Cost of Removal A <u>Description</u>	DR	CR
	Account No.	_	<u>DR</u>	<u>CR</u>
	100	Accumulated provision for depreciation of electric utility	3/3/3/	
A	108	plant	XXX	
	131	Cash		XXX
		Record capital expenditures for closure activities		
В	403	Depreciation expense	XXX	
		Accumulated provision for depreciation of electric utility		
	108	plant		XXX
		Record depreciation expense associated with CCR closure		
		activities		
		ADO Association Eliminated for Determining		
	Account No.	ARO Accounting - Eliminated for Ratemaking Description	DR	CR
A	101	Electric Plant in Service	XXX	<u>CR</u>
A			ΛΛΛ	vvv
	230	Asset retirement obligations		XXX
		To record the asset retirement obligation for the CCR		
		closure activities		
В	403.1	Depreciation expense for asset retirement costs	XXX	
		Accumulated provision for depreciation of electric utility		
	108	plant		XXX
		To record depreciation expense for the ARO asset through		
		expected settlement date		
C	411.10	Accretion expense	XXX	
	230	Asset retirement obligations		XXX
		To record accretion expense for the asset retirement		
		obligation through expected settlement date		
D	182.3	Other regulatory assets	XXX	
	403.1	Depreciation expense for asset retirement costs		XXX
	411.10	Accretion expense		XXX
		To offset depreciation expense and accretion expense		21212
		recorded in B and C above so that ARO accounting is		
		income neutral		
		исоте пешти		
Е	230	Asset retirement obligations	XXX	
		Accumulated provision for depreciation of electric utility		
	108	plant	XXX	
	101	Electric Plant in Service		XXX
		Other regulatory assets		XXX
	102.5	onto regulatory appets		21/1/
	182.3	Other regulatory assets		

To settle the ARO obligation for CCR closure expenditures