VERIFICATION

The undersigned, John A. Rogness III, being duly sworn, deposes and says he is the Director Regulatory Services for Kentucky Power, that he has personal knowledge of the matters set forth in the forgoing responses for which he is the identified witness and that the information contained therein is true and correct to the best of his/her information, knowledge and belief.

John A. Rogness III

COMMONWEALTH OF KENTUCKY

COUNTY OF FRANKLIN

) Case No. 2015-00271

Subscribed and sworn to before me, a Notary Public in and before said County and State, by John A. Rogness III, this the $// \frac{14}{10}$ day of November, 2015.

)

orquist Votary Public 13,20 My Commission Expires:

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 1 Page 1 of 1

Kentucky Power Company

REQUEST

Please provide all KPC responses to requests for information from all parties and Commission Staff in this proceeding

RESPONSE

The responses will be provided through the Commission's E-Filing system..

Kentucky Power Company

REQUEST

Referring to the Application at 3 and Exhibit 2, please provide updated year-to-date energy and demand savings estimates for 2015, expressed in both kilowatt hours and as a percentage of retail sales. Please also provide updated projected estimates for the entire 2015 year, if available.

RESPONSE

Estimated gross participant energy savings YTD September 2015 at the meter are 22,872,278 kWH (.47% of YTD retail sales through September 2015). Estimated gross participant cumulative demand savings YTD September 2015 at meter is 2,828 KW.

Projected gross participant energy savings for 2015 at the meter are 32,355,956 kWH (.67% of YTD retail sales through September 2015). Projected gross participant cumulative demand savings for 2015 at meter is 3,986 KW.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 3 Page 1 of 1

Kentucky Power Company

REQUEST

Referring to the Application at 3 and Exhibit 2, please provide updated year-to-date total DSM/EE costs for 2015, including total program costs, incentive payments and realized lost revenues and indicating the costs of each of these three categories. Please also provide updated projected estimates for the entire 2015 year, if available.

RESPONSE

YTD DSM Total Cost through September 2015: \$3,758,591. YTD Incentives through September 2015: \$426,662. YTD Lost Revenues through September 2015: \$1,036,366.

Projected 2015 DSM Total Cost: \$5,288,083. Projected 2015 Incentives: \$607,031. Projected 2015 Lost Revenues: \$1,086,072.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 4 Page 1 of 1

Kentucky Power Company

REQUEST

Please state whether the Company expects to meet its DSM spending requirement for 2015, as outlined in the Stipulation and Agreement in Case No. 2012-00578.

RESPONSE

Kentucky Power anticipates meeting its 2015 DSM spending requirement.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 5 Page 1 of 1

Kentucky Power Company

REQUEST

Referring to the Application at 3, please define the term "realized lost revenues" as it is used in paragraph 5. Please also explain how these lost revenues are calculated.

RESPONSE

The realized lost revenue is the product of the number of participating customers, the average net energy savings (kWh) per customer and the net lost revenue (\$/kWh). The program-to-date lost revenues are calculated in accordance with the Sunset Provision contained in the joint application filed September 27, 1995. For information concerning the Sunset Provision, please see the response to Sierra Club 1-10.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 6 Page 1 of 1

Kentucky Power Company

REQUEST

In determining whether it has met its DSM/EE spending obligation as outlined in the Stipulation and Agreement in Case No. 2012-00578, please state whether and how KPC accounts for realized lost revenues (e.g., are realized lost revenues included in the DSM/EE spending estimate?).

RESPONSE

Only direct DSM program expense is used to calculate DSM spending for purposes of meeting the 2015 \$5 million target set out in the July 2, 2013 Stipulation and Settlement Agreement approved by the Commission in Case No. 2012-00578.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 7 Page 1 of 1

Kentucky Power Company

REQUEST

Referring to the Application at 3, please explain why the word "avoided" appears in quotation marks in paragraph 4.

RESPONSE

The use of quotation marks was inadvertent and no significance should be attributed to that.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 8 Page 1 of 1

Kentucky Power Company

REQUEST

Referring to the Application at 3, KPC first presents 2015 year-to-date energy and demand savings estimates without avoided transmission and distribution line losses, and then provides the estimates accounting for these avoided costs in parenthesis. Please explain why the Company presents these savings estimates without avoided transmission and distribution line losses.

RESPONSE

Providing the energy and savings estimates without avoided transmission and distribution line losses presents program savings at the utility meter.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 9 Page 1 of 1

Kentucky Power Company

REQUEST

Regarding the T&D loss savings factor referenced in Exhibit 2 of the Application (pages 1 and 30 of 63):

- a. Please provide the basis for using a 9% T&D loss savings factor when computing annual net energy savings.
- b. Please provide the basis for using a 10% T&D loss savings factor when computing peak demand reductions.
- c. Please describe how these T&D loss savings are computed as a part of total annual energy savings.

RESPONSE

a. and b. Please see attachment KPCO_R_SC_9_Attachment1.pdf.

c. The T&D loss savings are taken from the 2011 Analysis of System Losses. Please see attachment KPCO_R_SC_9_Attachment1.pdf.

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 Page 1 of 33

KENTUCKY POWER COMPANY

2011 Analysis of System Losses

April 2013

Prepared by:

Management Applications Consulting, Inc. 1103 Rocky Drive – Suite 201 Reading, PA 19609 Phone: (610) 670-9199 / Fax: (610) 670-9190

1103 Rocky Drive • Suite 201 • Reading, PA 19609-1157 • 610/670-9199 • fax 610/670-9190 •www.manapp.com

April 17, 2013

Mr. David M. Roush Director Regulatory Pricing & Analysis American Electric Power 1 Riverside Plaza Columbus, OH 43215

Mr. Mark P. Gilbert Director Economic Forecasting American Electric Power 212 East 6th Street Tulsa, OK 74119

RE: 2011 LOSS ANALYSIS

Dear Messrs. Roush and Gilbert:

Transmitted herewith are the results of the 2011 Analysis of System Losses for the Kentucky Power Company's (KPCO) power system. Our analysis develops cumulative expansion factors (loss factors) for both demand (peak/kW) and energy (average/kWh) losses by discrete voltage levels applicable to metered sales data. Our analysis considers only technical losses in arriving at our final recommendations.

On behalf of MAC, we appreciate the opportunity to assist you in performing the loss analysis contained herein. The level of detailed load research and sales data by voltage level, coupled with a summary of power flow data and power system model, forms the foundation for determining reasonable and representative power losses on the KPCO system. Our review of these data and calculated loss results support the proposed loss factors as presented herein for your use in various cost of service, rate studies, and demand analyses.

Should you require any additional information, please let us know at your earliest convenience.

Sincerely,

Paul M. Normand Principal

Enclosure PMN/rjp

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	6
2.		
2.2	2 Electric Power Losses	7
2.		
3.0	METHODOLOGY	9
3.		
3.2	—	
	3.2.1 Bulk, Transmission and Subtransmission Lines 1	
	3.2.2 Transformers 1	
	3.2.3 Distribution System 1	3
	DISCUSSION OF RESULTS	

Appendix A - Results of Kentucky Power Company Total Company 2011 Loss Analysis

Appendix B - Discussion of Hoebel Coefficient

1.0 EXECUTIVE SUMMARY

This report presents Kentucky Power Company's (KPCO) 2011 Analysis of System Losses for the power systems as performed by Management Applications Consulting, Inc. (MAC). The study developed separate demand (kW) and energy (kWh) loss factors for each voltage level of service in the power system for KPCO. The cumulative loss factor results by voltage level, as presented herein, can be used to adjust metered kW and kWh sales data for losses in performing cost of service studies, determining voltage discounts, and other analyses which may require a loss adjustment.

The procedures used in the overall loss study were similar to prior studies and emphasized the use of "in house" resources where possible. To this end, extensive use was made of the Company's peak hour power flow data and transformer plant investments in the model. In addition, measured and estimated load data provided a means of calculating reasonable estimates of losses by using a "top-down" and "bottom-up" procedure. In the "top-down" approach, losses from the high voltage system, through and including distribution substations, were calculated along with power flow data, conductor and transformer loss estimates, and metered sales.

At this point in the analysis, system loads and losses at the input into the distribution substation system are known with reasonable accuracy. However, it is the remaining loads and losses on the distribution substations, primary system, secondary circuits, and services which are generally difficult to estimate. Estimated and actual Company load data provided the starting point for performing a "bottom-up" approach for calculating the remaining distribution losses. Basically, this "bottom-up" approach develops line loadings by first determining loads and losses at each level beginning at a customer's meter service entrance and then going through secondary lines, line transformers, primary lines and finally distribution substation. These distribution system loads and associated losses are then compared to the initial calculated input into Distribution Substation loadings for reasonableness prior to finalizing the loss factors. An overview of the loss study is shown on Figure 1.

Table 1, below, provides the final results from Appendix A for the 2011 calendar year. Exhibits 8 and 9 of Appendix A present a more detailed analysis of the final calculated summary results of losses by segments and delivery voltage of the power system. The following Table 1 cumulative loss expansion factors are applicable only to metered sales at the point of receipt for adjustment to the power system's input level.

TABLE 1
Loss Factors at Sales Level, Calendar Year 2011

Voltage Level of Service	Total <u>KPCO</u>	Distribution <u>Only</u>
Demand (kW)		
Transmission ¹	1.04223	_
Subtransmission	1.06139	1.01838
Primary Lines	1.07358	1.03008
Secondary	1.10354	1.05883
Energy (kWh)		
Transmission ¹	1.03482	_
Subtransmission	1.04720	1.01197
Primary Lines	1.05535	1.01985
Secondary	1.08761	1.05102
Losses – Net System Input ²	6.31%MWh	
	8.20%MW	
Losses – Net System Output ³	6.73%MWh	
	8.93%MW	

Composite Loss Factors at Metered Sales Level

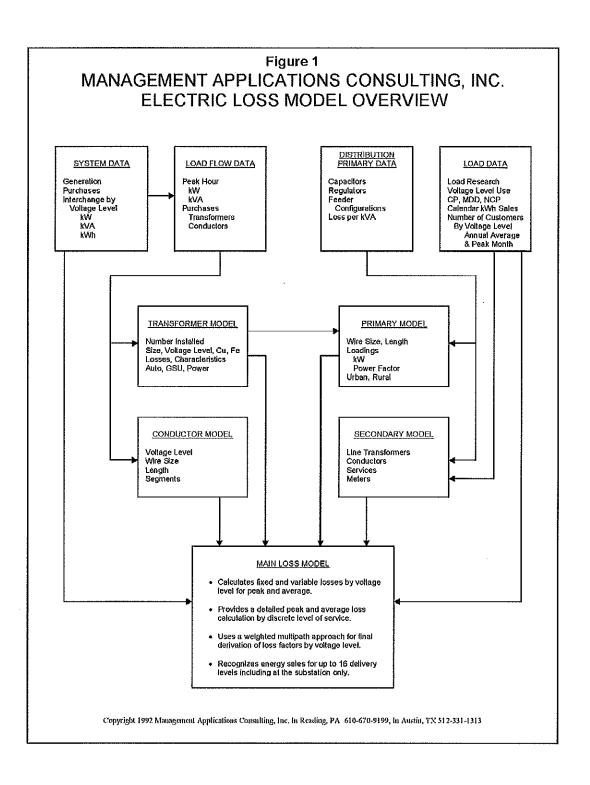
	$\mathbf{M}\mathbf{W}$	<u>MWH</u>
Retail	1.08990	1.06774
Wholesale	1.04797	1.03845

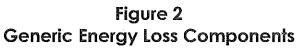
The loss factors presented in the Delivery Only column of Table 1 are the Total KPCO loss factors divided by the transmission loss factor in order to remove these losses from each service level loss factor. For example, the secondary distribution demand loss factor of 1.05883 includes the recovery of all remaining non-transmission losses from the subtransmission, distribution substation, primary lines, line transformers, secondary conductors and services.

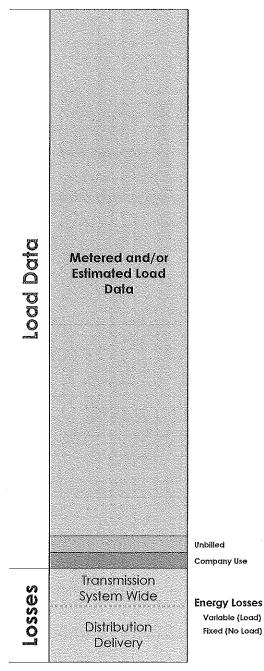
The net system input shown in Table 1 represents the MWh losses of 6.31% for the total KPCO load using calculated losses divided by the associated input energy to the system. The 6.73% represents the same losses using system output instead of input as a reference. The net system output reference shown in Table 1 represents MWh losses of 6.73% and MW losses of 8.93%. These results use the appropriate total losses for each but are divided by system output or sales. These calculations are all based on the data and results shown on Exhibits 1, 7 and 9 of the study.

³ Net system output uses losses divided by output or sales data as a reference.

¹ Reflects results for 765 kV, 345 kV 161 kV, and 138 kV.


² Net system input equals firm sales plus losses, Company use less non-requirement sales and related losses. See Appendix A, Exhibit 1, for their calculations.


Due to the very nature of losses being primarily a function of equipment loadings, the loss factor derivations for any voltage level must consider both the load at that level plus the loads from lower voltages and their associated losses. As a result, cumulative losses on losses equates to additional load at higher levels along with future changes (+ or -) in loads throughout the power system. It is therefore important to recognize that losses are multiplicative in nature (future) and not additive (test year only) for all future years to ensure total recovery based on prospective fixed loss factors for each service voltage.


The derivation of the cumulative loss factors shown in Table 1 have been detailed for all electrical facilities in Exhibit 9, page 1 for demand and page 2 for energy. Beginning on line 1 of page 1 (demand) under the secondary column, metered sales are adjusted for service losses on lines 3 and 4. This new total load (with losses) becomes the load amount for the next higher facilities of secondary conductors and their loss calculations. This process is repeated for all the installed facilities until the secondary sales are at the input level (line 45). The final loss factor for all delivery voltages using this same process is shown on line 46 and Table 1 for demand. This procedure is repeated in Exhibit 9, page 2, for the energy loss factors.

The loss factor calculation is simply the input required (line 45) divided by the metered sales (line 43).

An overview of the loss study is shown on Figure 1 on the next page. Figure 2 simply illustrates the major components that must be considered in a loss analysis.

2.0 INTRODUCTION

This report of the 2011 Analysis of System Losses for the Kentucky Power Company provides a summary of results, conceptual background or methodology, description of the analyses, and input information related to the study.

2.1 Conduct of Study

Typically, between five to ten percent of the total kWh requirements of an electric utility is lost or unaccounted for in the delivery of power to customers. Investments must be made in facilities which support the total load which includes losses or unaccounted for load. Revenue requirements associated with load losses are an important concern to utilities and regulators in that customers must equitably share in all of these cost responsibilities. Loss expansion factors are the mechanism by which customers' metered demand and energy data are mathematically adjusted to the generation or input level (point of reference) when performing cost and revenue calculations.

An acceptable accounting of losses can be determined for any given time period using available engineering, system, and customer data along with empirical relationships. This loss analysis for the delivery of demand and energy utilizes such an approach. A microcomputer loss model⁴ is utilized as the vehicle to organize the available data, develop the relationships, calculate the losses, and provide an efficient and timely avenue for future updates and sensitivity analyses. Our procedures and calculations are similar with prior loss studies, and they rely on numerous databases that include customer statistics and power system investments.

Company personnel performed most of the data gathering and data processing efforts and checked for reasonableness. MAC provided assistance as necessary to construct databases, transfer files, perform calculations, and check the reasonableness of results. A review of the preliminary results provided for additions to the database and modifications to certain initial assumptions based on available data. Efforts in determining the data required to perform the loss analysis centered on information which was available from existing studies or reports within the Company. From an overall perspective, our efforts concentrated on five major areas:

- 1. System information concerning peak demand and annual energy requirements by voltage level,
- 2. High voltage power system power flow data and associated loss calculations,
- 3. Distribution system primary and secondary loss calculations,
- 4. Derivation of fixed and variable losses by voltage level, and
- 5. Development of final cumulative expansion factors at each voltage for peak demand (kW) and annual energy (kWh) requirements at the point of delivery (meter).

⁴Copyright by Management Applications Consulting, Inc.

2.2 Electric Power Losses

Losses in power systems consist of primarily technical losses with a much smaller level of non-technical losses.

Technical Losses

Electrical losses result from the transmission of energy over various electrical equipment. The largest component of these losses is power dissipation as a result of varying loading conditions and are oftentimes called load losses which are proportional to the square of the current (I^2R). These losses can be as high as 75% of all technical losses. The remaining losses are called no-load and represent essentially fixed (constant) energy losses throughout the year. These no-load losses represent energy required by a power system to energize various electrical equipment regardless of their loading levels. The major portion of no-load losses consists of core or magnetizing energy related to installed transformers throughout the power system.

Non-Technical Losses

These are unaccounted for energy losses that are related to energy theft, metering, non-payment by customers, and accounting errors. Losses related to these areas are generally very small and can be extremely difficult and subjective to quantify. Our efforts generally do not develop any meaningful level as appropriate because we assume that improving technology and utility practices have minimized these amounts.

2.3 Description of Model

The loss model is a customized applications model, constructed using the Excel software program. Documentation consists primarily of the model equations at each cell location. A significant advantage of such a model is that the actual formulas and their corresponding computed values at each cell of the model are immediately available to the analyst.

A brief description of the three (3) major categories of effort for the preparation of each loss model is as follows:

• Main sheet which contains calculations for all primary and secondary losses, summaries of all conductor and transformer calculations from other sheets discussed below, output reports and supporting results.

- Transformer sheet which contains data input and loss calculations for each distribution substation and high voltage transformer. Separate iron and copper losses are calculated for each transformer by identified type.
- Conductor sheet containing summary data by major voltage level as to circuit miles, loading assumptions, and kW and kWh loss calculations. Separate loss calculations for each line segment were made using the Company's power flow data by line segment and summarized by voltage level in this model.

Appendix A presents a detailed loss study result which derives the loss factors for the Company's system-wide power system. Appendix A, Exhibits 8 and 9, presents the final detailed summary results of the demand and energy losses for each major portion of the total KPCO power system.

3.0 METHODOLOGY

3.1 Background

The objective of a Loss Study is to provide a reasonable set of energy (average) and demand (peak) loss expansion factors which account for system losses associated with the transmission and delivery of power to each voltage level over a designated period of time. The focus of this study is to identify the difference between total energy inputs and the associated sales with the difference being equitably allocated to all delivery levels. Several key elements are important in establishing the methodology for calculating and reporting the Company's losses. These elements are:

- Selection of voltage level of services,
- Recognition of losses associated with conductors, transformations, and other electrical equipment/components within voltage levels,
- Identification of customers and loads at various voltage levels of service,
- Review of generation or net power supply input at each level for the test period studied, and
- Analysis of kW and kWh sales by voltage levels within the test period.

The three major areas of data gathering and calculations in the loss analysis were as follows:

- 1. System Information (monthly and annual)
 - MWH generation and MWH sales.
 - Coincident peak estimates and net power supply input from all sources and voltage levels.
 - Customer load data estimates from available load research information, adjusted MWH sales, and number of customers in the customer groupings and voltage levels identified in the model.
 - System default values, such as power factor, loading factors, and load factors by voltage level.

- 2. High Voltage System
 - Conductor information was summarized from a database by the Company which reflects the transmission system by voltage level. Extensive use was made of the Company's power flow data with the losses calculated and incorporated into the final loss calculations.
 - Transformer information was developed in a database to model transformation at each voltage level. Substation power, step-up, and auto transformers were individually identified along with any operating data related to loads and losses.
 - Power flow data of peak condition was the primary source of equipment loadings and derivation of load losses in the high voltage loss calculations.
- 3. Distribution System
 - Distribution Substations Data was developed for modeling each substation as to its size and loading. Loss calculations were performed from this data to determine load and no load losses separately for each transformer.
 - Primary lines Line loading and loss characteristics for several representative primary circuits were obtained from the Company. These loss results developed kW loss per MW of load and a composite average was calculated to derive the primary loss estimate.
 - Line transformers Losses in line transformers were based on each customer service group's size, as well as the number of customers per transformer. Accounting and load data provided the foundation with which to model the transformer loadings and to calculate load and no load losses.
 - Secondary network Typical secondary networks were estimated for conductor sizes, lengths, loadings, and customer penetration for residential and small general service customers.
 - Services Typical services were estimated for each secondary service class of customers identified in the study with respect to type, length, and loading.

The loss analysis was thus performed by constructing the model in segments and subsequently calculating the composite until the constraints of peak demand and energy were met:

- Information as to the physical characteristics and loading of each transformer and conductor segment was modeled.
- Conductors, transformers, and distribution were grouped by voltage level, and unadjusted losses were calculated.
- The loss factors calculated at each voltage level were determined by "compounding" the per-unit losses. Equivalent sales at the supply point were obtained by dividing sales at a specific level by the compounded loss factor to determine losses by voltage level.
- The resulting demand and energy loss expansion factors were then used to adjust all sales to the generation or input level in order to estimate the difference.
- Reconciliation of kW and kWh sales by voltage level using the reported system kW and kWh was accomplished by adjusting the initial loss factor estimates until the mismatch or difference was eliminated.

3.2 Calculations and Analysis

This section provides a discussion of the input data, assumptions, and calculations performed in the loss analysis. Specific appendices have been included in order to provide documentation of the input data utilized in the model.

3.2.1 Bulk, Transmission and Subtransmission Lines

The transmission and subtransmission line losses were calculated based on a modeling of unique voltage levels identified by the Company's power flow data and configuration for the entire integrated KPCO Power System. Specific information as to length of line, type of conductor, voltage level, peak load, maximum load, etc., were provided based on Company records and utilized as data input in the loss model.

Actual MW and MVA line loadings were based on KPCO's peak loading conditions. Calculations of line losses were performed for each line segment separately and combined by voltage levels for reporting purposes as shown in the Discussion of Results (Section 4.0) of this report. The loss calculations consisted of determining a circuit current value based on MVA line loadings and evaluating the I²R results for each line segment.

۱.,

After system coincident peak hour losses were identified for each voltage level, a separate calculation was then made to develop annual average energy losses based on a loss factor approach. Load factors were determined for each voltage level based on system and customer load information. An estimate of the Hoebel coefficient (see Appendix B) was then used to calculate energy losses for the entire period being analyzed. The results are presented in Section 4.0 of this report.

3.2.2 Transformers

The transformer loss analysis required several steps in order to properly consider the characteristics associated with various transformer types; such as, step-up, auto transformers, distribution substations, and line transformers. In addition, further efforts were required to identify both iron and copper losses within each of these transformer types in order to obtain reasonable peak (kW) and average energy (kWh) losses. While iron losses were considered essentially constant for each hour, recognition had to be made for the varying degree of copper losses due to hourly equipment loadings.

Standardized test data tables were used to represent no load (fixed) and full load losses for different types and sizes of transformers. This test data was incorporated into the loss model to develop relationships representing copper and iron losses for the transformer loss calculation. These results were then totaled by various groups, as identified and discussed in Section 4.0.

The remaining miscellaneous losses considered in the loss study consisted of several areas which do not lend themselves to any reasonable level of modeling for estimating their respective losses and were therefore lumped together into a single loss factor of 0.10%. The typical range of values for these losses is from 0.10% to 0.25%, and we have assumed the lower value to be conservative at this time. The losses associated with this loss factor include bus bars, unmetered station use, and grounding transformers.

3.2.3 Distribution System

The load data at the substation and customer level, coupled with primary and secondary network information, was sufficient to model the distribution system in adequate detail to calculate losses.

Primary Lines

Primary line loadings take into consideration the available distribution load along with the actual customer loads including losses. Primary line loss estimates were prepared by the Company for use in this loss study. These estimates considered loads per substation, voltage levels, loadings, total circuit miles, wire size, and single- to three-phase investment estimates. All of these factors were considered in calculating the actual demand (kW) and energy (kWh) for the primary system.

Line Transformers

Losses in line transformers were determined based on typical transformer sizes for each secondary customer service group and an estimated or calculated number of customers per transformer. Accounting records and estimates of load data provided the necessary database with which to model the loadings. These calculations also made it possible to determine separate copper and iron losses for distribution line transformers, based on a table of representative losses for various transformer sizes.

Secondary Line Circuits

A calculation of secondary line circuit losses was performed for loads served through these secondary line investments. Estimates of typical conductor sizes, lengths, loadings and customer class penetrations were made to obtain total circuit miles and losses for the secondary network. Customer loads which do not have secondary line requirements were also identified so that a reasonable estimate of losses and circuit miles of these investments could be made.

Service Drops and Meters

Service drops were estimated for each secondary customer reflecting conductor size, length and loadings to obtain demand losses. A separate calculation was also performed using customer maximum demands to obtain kWh losses. Meter loss estimates were also made for each customer and incorporated into the calculations of kW and kWh losses included in the Summary Results.

4.0 DISCUSSION OF RESULTS

A brief description of each Exhibit provided in Appendix A follows:

Exhibit 1 - Summary of Company Data

This exhibit reflects system information used to determine percent losses and a detailed summary of kW and kWh losses by voltage level. The loss factors developed in Exhibit 7 are also summarized by voltage level.

Exhibit 2 - Summary of Conductor Information

A summary of MW and MWH load and no load losses for conductors by voltage levels is presented. The sum of all calculated losses by voltage level is based on input data information provided in Appendix A. Percent losses are based on equipment loadings.

Exhibit 3 - Summary of Transformer Information

This exhibit summarizes transformer losses by various types and voltage levels throughout the system. Load losses reflect the copper portion of transformer losses while iron losses reflect the no load or constant losses. MWH losses are estimated using a calculated loss factor for copper and the test year hours times no load losses.

Exhibit 4 - Summary of Losses Diagram (2 Pages)

This loss diagram represents the inputs and output of power at system peak conditions. Page 1 details information from all points of the power system and what is provided to the distribution system for primary loads. This portion of the summary can be viewed as a "top down" summary into the distribution system.

Page 2 represents a summary of the development of primary line loads and distribution substations based on a "bottom up" approach. Basically, loadings are developed from the customer meter through the Company's physical investments based on load research and other metered information by voltage level to arrive at MW and MVA requirements during peak load conditions by voltage levels.

Exhibit 5 - Summary of Sales and Calculated Losses

Summary of Calculated Losses represents a tabular summary of MW and MWH load and no load losses by discrete areas of delivery within each voltage level. Losses have been identified and are derived based on summaries obtained from Exhibits 2 and 3 and losses associated with meters, capacitors and regulators.

Exhibit 6 - Development of Loss Factors, Unadjusted

This exhibit calculates demand and energy losses and loss factors by specific voltage levels based on sales level requirements. The actual results reflect loads by level and summary totals of losses at that level, or up to that level, based on the results as shown in Exhibit 5. Finally, the estimated values at generation are developed and compared to actual generation to obtain any difference or mismatch.

Exhibit 7 - Development of Loss Factors, Adjusted

The adjusted loss factors are the results of adjusting Exhibit 6 for any difference. All differences between estimated and actual are prorated to each level based on the ratio of each level's total load plus losses to the system total. These new loss factors reflect an adjustment in losses due only to the kW and kWh mismatch.

Exhibit 8 - Adjusted Losses and Loss Factors by Facility

These calculations present an expanded summary detail of Exhibit 7 for each segment of the power system with respect to the flow of power and associated losses from the receipt of energy at the meter to the generation for the KPCO power system.

Exhibit 9 - Summary of Losses by Delivery Voltage

These calculations present a reformatted summary of losses presented in Exhibits 7 and 8 by power system delivery segment as calculated by voltage level of service based on reported metered sales.

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 Page 19 of 33

Kentucky Power Company 2011 Analysis of System Losses

Appendix A

Results of 2011 KPCO Integrated Power System Loss Analysis

KENTUCKY POWER 2011 LOSS ANALYSIS

KENTUCKY POWER

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 Page 20 of 33 EXHIBIT 1

SUMMARY OF COMPANY DATA

ANNUAL PEAK	1,531 MW
ANNUAL SYSTEM INPUT	7,591,389 MWH
ANNUAL SALES OUTPUT	7,112,397 MWH
SYSTEM LOSSES @ INPUT SYSTEM LOSSES @ OUTPUT	478,992 or 6.31% 478,992 or 6.73%
SYSTEM LOAD FACTOR	56.6%

SUMMARY OF LOSSES - OUTPUT RESULTS

SERVICE	KV	N	IW Input	% TOTAL	MWH Input	% TOTAL
TRANS	765,345 161,138	52.9	3.45%	42.15%	211,400 2.78%	44.13%
SUBTRANS	69,46,34	20.8	1.36%	16.54%	68,753 <u>0.91%</u>	14.35%
PRIMARY	34,12,1	22.2	1.45%	17.67%	57,725 0.76%	12.05%
SECONDARY	120/240,to,477	7 29.7	1.94%	23.64%	141,114 1.86%	29.46%
TOTAL		125.5	8.20%	100.00%	478,992 6.31%	100.00%

SUMMARY OF LOSS FACTORS

SERVICE	KV		LATIVE SALES D (Peak)	EXPANSION FA	
		d	1/d	e	1/e
TOT TRANS	765,345 161,138	1.04223	0.95948	1.03482	0.96636
SUBTRAN	69,46,34	1.06139	0.94216	1.04720	0.95492
PRIMARY	34,12,1	1.07358	0.93146	1.05535	0.94755
SECONDARY	120/240,to,477	1.10354	0.90617	1.08761	0.91944

Г

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 EXHPatj621 of 33

---- MWH LOSSES ----LOAD NO LOAD TOTAL

KENTUCKY POWER 2011 LOSS ANALYSIS

SUMMARY OF CONDUCTOR INFORMATION

DESCRIPTION			CIRCUIT	L	OADING	—- M	NLOSSES	
			MILES	%	RATING	LOAD	NO LOAD	TOTAL
bth t/	705 101	00.000						
BULK	765 KV	OR GREAT	IER ———					
TIE LINES			0.0)	0.00%	0.000	0.000	0.000
BULK TRANS			257.5		0.00%	<u>11.777</u>	2.844	<u>14.621</u>
SUBTOT			257.5	5		11.777	2.844	14.621
TRANS	138 KV	то	765.00	кv				<u></u>
TIE LINES				0	0.00%	0.000	0.000	0.000
TRANS1	161 KV		56.5	5	0.00%	4.361	0.040	4.402
TRANS2	<u>138 KV</u>		338.0)	0.00%	<u>27.416</u>	0.166	27.582
SUBTOT			394.6	5		31.777	0.207	31.984
SUBTRANS	35 KV	TO	138	ĸv				
TIE LINES				0	0.00%	0.000	0,000	0.000
SUBTRANS1	69 KV		425.0		0.00%	13.669	0.000	13.669
SUBTRANS2	46 KV		167.3		0.00%	3.794	0.000	3,794
SUBTRANS3	<u>35 KV</u>		<u>3.2</u>		0.00%	<u>0.010</u>	<u>0,006</u>	<u>0.016</u>
SUBTOT			595.4	ł		17.473	0.006	17.479
PRIMARY LINES			8,180)		13,136	0.000	13,136
SECONDARY LINES			2,367	,		4.736	0.000	4.736
SERVICES			3,147	,		5.622	0.364	5,985
TOTAL			14,941			84.521	3.420	87.941

-			
	0 <u>71,988</u> 71,988	0 <u>24,912</u> 24,912	0 <u>96,900</u> 96,900
	0	0	0
	14,202 <u>80,948</u> 95,150	352 <u>1,458</u> 1,810	14,553 <u>82,406</u> 96,960
			0
	40,500 11,243 <u>30</u>	0 0 54	40,500 11,243 83
	51,772 25.107	<u>54</u> 54	51,826
	25,107 9,354	0	25,107 9,354
	11,969	3,184	15,153
	265,340	29,960	295,300

KPCO 2011 LOSS B

4/17/2013

12:46 PM

KPSC	Case	No.	2015-00271
	1-1-33	-10	

					KE	NTUCKY POWER 20	11 LOSS ANALY	SIS			Sier	ra Club's Initia	No. 2015-0027 al Data Reque ctober 28, 201 Item No.
				SI	JMMARY OF T	RANSFORMERI	VFORMATION					E	Attachment X바람들 <u>32 of</u> 3
DESCRIPTION		KV CAPA VOLTAGE	CITY MVA	NUMBER TRANSFMR	AVERAGE SIZE	LOADING %	MVA LOAD	LOAD	MW LOSSES - NO LOAD	TOTAL	N LOAD	IWH LOSSES NO LOAD	TOTAL
BULK STEP-UP		765	1,500.0	3	500.0	3.39%	51	0.010	0.662	0.672	30	5,795	5,824
BULK - BULK		404	0.0	o	0.0	0.00%	0	0	0,000 0,000	0.000	0	D	0
BULK - TRANS1 BULK - TRANS2		161 138	0.0 0.0	0 0	0.0 0,0	0.00% 0.00%	0	0.000 0.000	0,000	0.000 0.000	0 0	0 0	0 0
TRANS1 STEP-UP		161	950.0	1	950.0	85.71%	814	1.599	0.448	2.047	4,433	3,672	8,105
FRANS1 - TRANS2		138	735.0	4	183.8	77.68%	571	0,589	0.606	1.195	1,745	5,313	7,058
RANS1-SUBTRANS1		69	54.0	1	54.0	116.02%	63	0,131	0.056	0.187	716	487	1,204
RANS1-SUBTRANS2 RANS1-SUBTRANS3		46 35	0.0 0.0	0 0	0,0 0,0	0.00% 0,00%	0	0.000 0.000	0.000 0.000	0.000 0.000	0 0	0	0
RANS2 STEP-UP		138	354.0	3	118.0	87.60%	310	1.057	0.328	1.385	3,004	2,743	5,747
RANS2-SUBTRANS1		69	849.0	15	56,6	95,50%	811	1.262	0.888	2,150	8,326	7,781	16,107
RANS2-SUBTRANS2		46	75.0	2	37.5	97.14%	73	0.286	0.081	0.367	815	708	1,524
RANS2-SUBTRANS3	3	35	57.0	2	28,5	24.35%	14	0.021	0.062	0.083	42	544	586
SUBTRAN1 STEP-UP		69	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
UBTRAN2 STEP-UP		46	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	D
SUBTRAN3 STEP-UP		35	0.0	0	0.0	0.00%	0	0.000	0.000	0,000	0	0	0
SUBTRAN1-SUBTRAN		46	24.0	2	12.0	82.91%	20	0.073	0.031	0.104	221	275	496
SUBTRAN1-SUBTRAN		35 35	0.0 0.0	0	0.0 0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN2-SUBTRAN	4.5	30	0.0	U						0.000	U	U	0
						DI	STRIBUTION S	UBSTATIONS					
(RANS1 -	161	33	24.0	2	12.0	88.25%	21	0.084	0.031	0.116	175	275	451
RANS1 -	161	12	0.0	0	0.0	0.00%	0	0.000	0.000	· 0.000	0	0	0
FRANS1 -	161	1	0.0	0	0.0	0.00%	0	0.000	0.000	0,000	0	0	0
RANS2 -	138	33	285.0	12	23.8	66.92%	191	0.534	0.332	0.865	1,113	2,906	4,019
RANS2 -	138	12	67.0	4	16.8	80.87%	54	0.179	0.083	0.261	373	724	1,097
RANS2 -	138	1	0.0	0	0.0	0.00%	0	0.000	0.000	0.000	0	0	0
SUBTRAN1-	69	33	209.0	12	17.4	82.33%	172	0,558	0,257	0,816	1,165	2,252	3,417
SUBTRAN1-	69	12	620,5	54	11.5	76.80%	477	1.786	0.825	2.611	3,725	7,230	10,955
UBTRAN1-	69	1	15.0	2	7.5	10.79%	2	0.001	0.024	0.025	2	209	211
SUBTRAN2-	46	33	87.0	4	21.8	80.83%	70	0.207	0.102	0.309	432	893	1,325
SUBTRAN2-	46	12	139,3	13	10.7	63.91%	89	0,335	0.191	0.526	699	1,676	2,375
UBTRAN2-	46	1	1.0	1	1.0	23,98%	0	0,000	0,002	0.002	1	18	18
SUBTRAN3- SUBTRAN3-	35 35	33 12	0.0 5.0	0 1	0.0 5,0	0.00% 116.20%	0 6	0.000 0.042	0.000 0.009	0.000 0.051	0 88	0 77	0 165
SUBTRAN3-	35	12	5.0 0.0	0	5.0 0.0	0.00%	0	0.042	0.000	0.001	0	0	105
RIMARY - PRIMARY			21.3	4	5.3	54,60%	12	0.042	0.037	0,079	88	321	408
INE TRANSFRMR			3,179.4	98,137	32.4	33.22%	1,056	4.227	10,149	14.376	6,931	88,902	95,833
		==					-,=						,
TOTAL			9,251	98,279		_		13.024	15.204	28.228	34,123	132,801	166,925

KPCO 2011 LOSS B

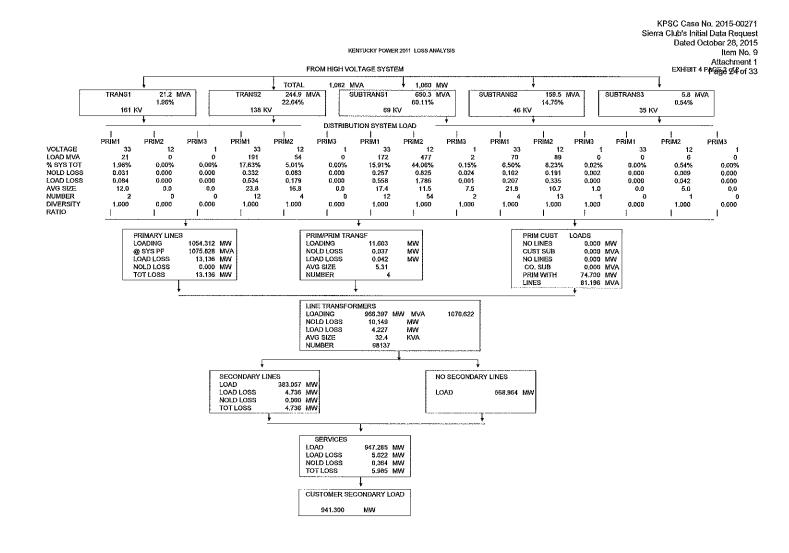
4/17/2013

12:46 PM

KENTUCKY POWER 2011 LOSS ANALYSIS

SUMMARY OF LOSSES DIAGRAM - DEMAND MODEL - SYSTEM PEAK 1530,76 MW

BULK THE LINES BULK LINES BULK STEP UP BULK-BULK LOAD LOAD LOSS NOLD LOSS 0.00% MW LOADING NO LOAD LOAD AVG SIZE LOADING NO LOAD LOAD AVG SIZE 0.00% 0 MW 0 MW 0 MVA LOADING 0.00% 3,39% 0.662 MW 0.010 MW 500 MVA 0.000 MW LOAD LOSS NOLD LOSS 11.777 MW 2.844 MW NUMBER 3 NUMBER a Ŧ TRANS TIE LINES LOAD TRAN1-TRAN2 STEP DOWN BULK-TRANS1 STEP DOWN BULK-TRANS2 STEP DOWN LOADING NO LOAD LOAD AVG SIZE NUMBER 0.00% 0.000 MW 0.000 MW 0.000 MW LOADING NO LOAD LOAD AVG SIZE 77,68% 0.606 MW 0.589 MW 183,75 MVA LOADING NO LOAD LOAD AVG SIZE 0.00% 0.008 MW 0.000 MW 0.000 MW 0.00% MW LOAD LOSS NOLD LOSS 0.000 MW 0.000 MW ß NUMBER NUMBER Ó 4 ŧ ł TRANS 1&2 STEP UPS TRANS1 161.0 KV TRANS2 138.0 KV TRANS CUST 85.71% 0.776 MW 2.656 MW 950.0 MVA LOADING LOAD LOSS NOLD LOSS 0.00% 4.361 MW 0.040 MW LOADING LOAD LOSS NOLD LOSS 0,00% 27.416 MW 0.166 MW 0.000 MW 0.000 MVA MW LDNG TR1SU SUBS NOLOAD1&2 LOAD 1&2 AVSIZ TR1SU LINES MVA NUMBER 1 Ţ 1 SUBTRANS TIE LINES TRANS182-SUBTRANS1 SUBTR182-SUBTRANS283 TRANS1&2- SUBTRANS2 TRANS1&2-SUBTRANS3 0.00% MW 0.000 MW 0.000 MW IRANST&2-SU LDNG TR2-ST NO LOAD LOAD AVSIZ TR2 NUMBER 95.50% 0.944 MW 1.393 MW 56.6 MVA SUBTRIE LOADING NO LOAD LOAD AVG SIZE NUMBER 0.00% 0.031 MW 0.073 MW 0.073 MW LONG TR2-ST NO LOAD LOAD AVSIZ TR2-ST 97.14% 97.081 MW 0.286 MW 37.50 MVA LONG TR2-SU LONG TR2-ST2 NO LOAD LOAD 24.35% 0.06 0.02 LOAD LOAD LOSS NOLD LOSS AVSIZ TR2-ST2 NUMBER 28,50 NUMBER 16 2 - 2 ł SUBTRANS1.2.&3 STEP UPS SUBTRANS1 35 KV 0.00% 0.010 MW 0.006 MW 69 KV SUBTRANS2 LOADING 46 KV SUBTRANS2 SUBTRANS CUST SUBTRANS1,2 LDNG ST1SU NO LOAD LOAD AVSIZ ST2 NUMBER 0.00% 0.000 MW 0.000 MW 0.00% 13,669 MW 0.000 MW 0.00% 3.794 MW 0.000 MW LOADING LOAD LOSS NOLD LOSS SUBS - MW MVA LINES- MW 0,000 0.000 LOADING LOAD LOSS NOLD LOSS LOAD LOSS NOLD LOSS 0.0 MVA MVA 0 TO DISTRIBUTION SYSTEM TOTAL 1081.7 MVA 1060,1 MW 21.2 MVA 1,96% SUBTRANS1 TRANS1 TRANS2 244.9 MVA 650.3 MVA SUBTRANS2 159,5 MVA 5.8 MVA 0,64% SUBTRANS3 22.64% 60.11% 14.75% 161 KV 138 KV 69 KV 46 KV 35 KV


KPCO 2011 LOSS B

4/17/2013

12:46 PM

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015

Item No. 9 Attachment 1 EXHIBIT 4 Ptologie 23 of 33

KPCO 2011 LOSS B

4/17/2013

12:46 PM

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 EX**FIB**d 25 of 33

KENTUCKY POWER 2011 LOSS ANALYSIS

SUMMARY of SALES and	CALCULATED LOSSES
opumment of others and	

		NO1045 -	LOAD	TOTLOSS	EVE	0.111			1040	TOT 1 000	EV(D)	
LOSS # AND LEVEL	MWLOAD	NO LOAD +	LOAD =	TULLOSS	EXP FACTOR	CUM EXP FAC	MWH LOAD	NO LOAD +	LQAD ≃	TOT LOSS	EXP FACTOR	CUM
1 BULK XFMMR		0.00	0.00	0.00				0				EXP FAC
	0.0	0.00		0.00	0.000000	0.000000	0	-	0	0	0	0
2 BULK LINES	49,9	3.51	11.79	15.29	1.441882	1.441882	244,789	30,707	72,018	102,725	1.7230845	1.7230845
3 TRANS1 XFMR	0.0	0.00	0.00	0.00	0.000000	0.000000	0	0	0	0	0.0000000	0,0000000
4 TRANS1 LINES	798,0	0.49	5.96	6,45	1.008147	1.008147	4,562,176	4,024	18,634	22,658	1.0049913	1.0049913
5 TRANS2TR1 SD	559.5	0.61	0.59	1.20	1.002141	1.010305	2,744,683	5,313	1,745	7,058	1.0025780	1.0075822
6 TRANS2BLK SD	0.0	0.00	0.00	0.00	0.000000	0.000000	0	0	0	0	0,0000000	0.0000000
7 TRANS2 LINES	1,213.4	0.49	28.47	28.97	1.024457	1.029325	5,920,714	4,201	83,952	88,153	1.0151140	1.0186820
TOTAL TRAN	1,305.0	5.09	46.81	51.90	1.041421	1.041421	6,283,446	44,244	176,349	220,594	1.0363845	1.0363845
8 STR1BLK SD												
9 STR1T1 SD	61.4	0.06	0.13	0.19	1.003049	1.044596	301,204	487	716	1,204	1.0040123	1.0405428
10 SRT1T2 SD	794.6	0.89	1.26	2.15	1.002713	1.044247	3,897,990	7,781	8,326	16,107	1.0041494	1.0406848
11 SUBTRANS1 LINES	981.0	0,00	13.67	13.67	1.014130	1.056136	5,199,194	0	40,500	40,500	1.0078508	1.0445209
12 STR2T1 SD	0,0	0.00	0.00	0.00	0,000000	0,000000	0	D	0	0	0.0000000	0.0000000
13 STR2T2 SD	71.4	0.08	0.29	0.37	1.005164	1.046799	350,260	708	815	1,524	1.0043692	1.0409126
14 STR2S1 SD	19.5	0.03	0.07	0.10	1.005385	1.061823	95,659	275	221	496	1.0052158	1.0499690
15 SUBTRANS2 LINES	160,9	0.00	3.79	3.79	1.024152	1.066573	695,919	0	11,243	11,243	1.0164204	1.053402
16 STR3T1 SD	0.0	0.00	0.00	0.00	0.000000	0.000000	0	D	0	0	0.0000000	0.0000000
17 STR3T2 SD	13.6	0.06	0.02	0.08	1.006146	1.047821	66,716	544	42	586	1,0088600	1.0455668
18 STR3S1 SD	0.0	0.00	0.00	0.00	0.000000	0.000000	0	0	0	0	0.0000000	0.0000000
19 STR3S2 SD	0.0	0.00	0.00	0.00	0.000000	0.000000	Ō	Ō	Ō	ō	0.0000000	0,0000000
20 SUBTRANS3 LINES	13.6	0.01	0.01	0.02	1.001187	1.042657	66,716	54	30	83	1.0012492	1.0376792
21 SUBTRANS TOTAL	1,150.0	1.12	19.25	20.37	1.018033	1.060201	5,811,708	9,850	61,893	71,743	1.0124989	1.049338
DISTRIBUTION SUBST												
TRANS1	20.8	0.03	0.08	0.12	1.005598	1.047251	83,968	275	175	451	1.0053984	1.0419793
TRANS2	240.0	0.41	0.71	1.13	1.004717	1,046333	970,949	3,630	1,486		1.0052971	1.0418743
SUBTR1	637.3	1.11	2.35	3.45	1.005446	1.061888	2,577,918	9,691	4,892		1.0056891	1.0504633
SUBTR2	156.4	0.30	0.54	0.84	1.005387	1.072319	632,521	2,587	1,132		1.0059134	1.0596314
SUBTR3	5.7	0.01	0.04	0.05	1.009001	1.052042	23.033	77	88		1.0072010	1.0451515
WEIGHTED AVERAGE	1,060,1	1.86	3,73	5.58	1.005294	1.059565	4,288,389	16,260	7,773		1.0056358	1,0496762
PRIMARY INTRCHINGE	0.0	1,00	0.70	0.00	0.000000		-,200,000	.0,200	7,170	21,000	0.0000000	
PRIMARY LINES	1,054.3	0.00	13.18	13.18	1.012658	1.072977	4,264,267	0	25,194	25,194	1.0059434	1.0559148
LINE TRANSF	966.4	10.15	4.23	14.38	1.015101	1.089180	3,722,774	88,902	6,931		1.0264225	1.0838147
SECONDARY	952.0	0.00	4.74	4.74	1.004999	1.094625	3.626.941	00,002	9.354		1.0025858	1.0866172
SERVICES	947.3	0.36	5.62	5.99	1.006358	1.101585	3,617,587	3,184	11,969		1.0042063	1.0911879
							:					
TOTAL SYSTEM		18.59	97.55	116.13				162,441	299,463	461,904		

KPCO 2011 LOSS B

4/17/2013

12:46 PM

KENTUCKY POWER 2011 LOSS ANALYSIS

DEVELOPMENT of LOSS FACTORS UNADJUSTED

LOSS FACTOR LEVEL	•••••	CALC LOSS TO LEVEL	SALES MW @ GEN	CUM PEAK EX FACTORS	PANSION
	а	b	c	d	1/d
BULK LINES	0.0	0.0	0.0	0.00000	0.00000
TRANS SUBS	0.0	0.0	0.0	0.00000	0.00000
TRANS LINES	73.0	3.0	76.0	1.04142	0.96023
TOTAL TRANS	0.0	0.0	0.0	0.00000	0.00000
SUBTRANS	316.3	19.0	335.3	1.06020	0.94322
PRIM SUBS	0.0	0.0	0.0	0.00000	0.00000
PRIM LINES	74.7	5.5	80.2	1.07298	0.93199
SECONDARY	<u>941.3</u>	<u>95.6</u>	<u>1,036.9</u>	1.10158	0.90778
TOTALS	1,405.3	123.1	1,528.4		

DEVELOPMENT of LOSS FACTORS UNADJUSTED ENERGY

LOSS FACTOR LEVEL		ALC LOSS O LEVEL	SALES MWH @ GEN	CUM ANNUAL FACTORS	EXPANSION
	а	b	c	d	1/d
BULK LINES	0	0	0	0.00000	0.00000
TRANS SUBS	0	0	0	0.00000	0.00000
TRANS LINES	526,918	19,172	546,090	1.03638	0.96489
TOTAL TRANS	0	0	0	0.00000	0.00000
SUBTRANS	2,466,746	121,705	2,588,451	1.04934	0.95298
PRIM SUBS	0	0	0	0.00000	0.00000
PRIM LINES	516,299	28,869	545,168	1.05591	0.94705
SECONDARY	<u>3,602,434</u>	<u>328,498</u>	3,930,932	1.09119	0.91643
TOTALS	7,112,397	498,243	7,610,640		

ESTIMATED VALUES AT GENERATION

LOSS FACTOR AT		
VOLTAGE LEVEL	MW	MVVH
BULK LINES	0.00	· 0
TRANS SUBS	0.00	0
TRANS LINES	76.02	546,090
SUBTRANS SUBS	0.00	0
SUBTRANS LINES	335.34	2,588,451
PRIM SUBS	0.00	0
PRIM LINES	80.15	545,168
SECONDARY	1,036.92	3,930,932
SUBTOTAL	1,528.44	7,610,640
ACTUAL ENERGY	1,530.76	7,591,389
MISSMATCH	(2.32)	19,251
% MISSMATCH	-0.15%	0.25%

KPCO 2011 LOSS B

KENTUCKY POWER 2011 LOSS ANALYSIS

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 EXHBGE 27 of 33

DEVELOPMENT of LOSS FACTORS ADJUSTED DEMAND

LOSS FACTOR	CUSTOMER	SALES	CALC LOSS	SALES MW	CUM PEAK EXP	ANSION
LEVEL	SALES MW	ADJUST	TO LEVEL	@ GEN	FACTORS	
	а	b	C	d	e	f=1/e
BULK LINES	0.0	0.0	0.0	0.0	0.00000	0.00000
TRANS SUBS	0.0	0.0	0.0	0.0	0.0000	0.0000
TRANS LINES	73.0	0.0	3.1	76.1	1.04223	0.95948
TOTAL TRANS	0.0	0.0	0.0	0.0	0.0000	0.00000
SUBTRANS	316.3	0.0	19.4	335.7	1.06139	0.94216
PRIM SUBS	0.0	0.0	0.0	0.0	0.00000	0.00000
PRIM LINES	74.7	0.0	5.5	80.2	1.07358	0.93146
SECONDARY	941.3	0.0	97.5	1,038.8	1.10354	0.90617
			125.5			
TOTALS	1,405.3	0.0	125.5	1,530.8		

DEVELOPMENT of LOSS FACTORS ADJUSTED ENERGY

LOSS FACTOR	CUSTOMER	SALES	-	ALC LOSS	SALES MWH	CUM ANNUAL E	XPANSION
LEVEL	SALES MWH	ADJUST		TO LEVEL	@ GEN	FACTORS	
	а	b		С	d	е	f=1/e
BULK LINES	0	1	0	0	0	0.00000	0.00000
TRANS SUBS	0	1	0	0	0	0.0000	0.00000
TRANS LINES	526,918	I	0	18,345	545,263	1.03482	0.96636
TOTAL TRANS	0	I	0	0	0	0.0000	0.00000
SUBTRANS	2,466,746	1	0	116,440	2,583,186	1.04720	0.95492
PRIM SUBS	0	1	0	0	0	0.00000	0.00000
PRIM LINES	516,299	1	0	28,579	544,878	1.05535	0.94755
SECONDARY	3,602,434		0	315,620	3,918,054	1.08761	0.91944
				478,983			
TOTALS	7,112,397	I	0	478,992	7,591,380		

ESTIMATED VALUES AT GENERATION

LOSS FACTOR AT		
VOLTAGE LEVEL	MW	MWH
BULK LINES	0.00	0
TRANS SUBS	0.00	0
TRANS LINES	76.08	545,263
SUBTRANS SUBS	0.00	0
SUBTRANS LINES	335.72	2,583,186
PRIM SUBS	0.00	0
PRIM LINES	80.20	544,878
SECONDARY	1,038.77	3,918,054
	1,530.76	7,591,380
ACTUAL ENERGY	1,530.76	7,591,389
MISSMATCH	0.00	(9)
	0.000/	0.000/
% MISSMATCH	0.00%	0.00%

KENTUCKY POWER 2011 LOSS ANALYSIS

Adjusted Losses and Loss Factors by Facility

EXHIBIT 8

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 Page 28 of 33

Unadjusted Loss					
	MW	Unadjusted	MWH	Unadjusted	
Service Drop Losses	5.99	6.94	15,153	18,400	
Secondary Losses	4.74	5,49	9,354	11,359	
Line Transformer Losses	14.38	16.67	95,833	116,370	
Primary Line Losses	13.18	15.28	25,194	30,594	
Distribution Substation Losses	5,58	6.47	24,033	29,183	
Subtransmission Losses	20.37	20.37	71,743	71,743	
Transmission System Losses	<u>51.90</u>	51,90	<u>220,594</u>	220,594	
Total	116.13	123.14	461,904	498,243	
Mismatch Allocati	on by Segmer MW	nt	MWH		Note adjusting
Service Drop Losses	-0.13		632		632
Secondary Losses	-0,10		390		390
Line Transformer Losses	-0.31		3,994		3,994
Primary Line Losses	-0,29		1,050		1,050
Distribution Substation Losses	-0.12		1,002		1,002
Subtransmission Losses	-0.38		2,990		2,990
Transmission System Losses	-0,98		9,194		9,194
Total	-2.32		19,251		19,251 19,251
Adjusted Losse					13,231
	MW	% of Total	MWH	% of Total	
Service Drop Losses	7.07	5.6%	17,769	3.7%	
Secondary Losses	5,60	4.5%	10,969	2.3%	
Line Transformer Losses	16.99	13.5%	112,376	23.5%	
Primary Line Losses	15.57	12.4%	29,544	6.2%	
Distribution Substation Losses	6.60	5.3%	28,182	5.9%	
Subtransmission Losses	20.75	16.5%	68,753	14.4%	
Transmission System Losses	52,88	42.2%	211,400	44.1%	
Total	125.46	100.0%	478,992	100.0%	
Loss Factors by Segment	MW		MWH		
Retail Sales from Service Drops	941.30		3,602,434		
Adjusted Service Drop Losses	<u>7.07</u>		<u>17,769</u>		
Input to Service Drops	948.37		3,620,203		
Service Drop Loss Factor	1.00751		1.00493		
Output from Secondary	948.37		3,620,203		
Adjusted Secondary Losses	<u>5.60</u>		<u>10,969</u>		
Input to Secondary	953.97		3,631,172		
Secondary Conductor Loss Factor	1.00590		1.00303		
Output from Line Transformers	953.97		3,631,172		
Adjusted Line Transformer Losses	<u>16.99</u>		<u>112,376</u>		
Input to Line Transformers	970.95		3,743,548		
Line Transformer Loss Factor	1.01781		1.03095		
Secondary Composite	1.03150		1.03917		
Retail Sales from Primary	74.70		516,299		
Req. Whis Sales from Primary	0.00		0		
Input to Line Transformers	<u>970,95</u>		<u>3,743,548</u>		
Output from Primary Lines	1045.65		4,259,847		
Adjusted Primary Line Losses	<u>15.57</u>		<u>29,544</u>		
Input to Primary Lines	1061.23		4,289,391		
Primary Line Loss Factor	1.01489		1.00694		
Out TO PR from Distribution Substations	1061.23		4,289,391		
Req. Whis Sales from Substations	0.00		0		
Retail Sales from Substations	0.00		0		
TotalOutput from Distribution Substations	1061.23		4,289,391		
Adjusted Distribution Substation Losses	<u>6,60</u>		28,182		
Input to Distribution Substations Distribution Substation Loss Factor	1067.82 1.00622		4,317,572 1.00657		
Retail Sales at from SubTransmission	310.10		2,438,725		
Req. Whis Sales from SubTransmission	6.20		28,021		
Input to Distribution Substations Output from SubTransmission	<u>799,30</u>		3,233,472		
	1129.25		5,742,955		
Adjusted SubTransmission System Losses Input to SubTransmission	<u>20.75</u> 1150.00		<u>68,753</u> 5,811,708		
SubTransmission Loss Factor	1.01838		1.01197		
OUT DISTR SUBS					
	260.77		1,054,917		
Retail Sales at from Transmission	58.50 14.50		459,332		
Req. Whis Sales from Transmission	14.50 018.35		67,586		
Input Subtransmission Output from Transmission	918.35 1252.12		4,490,212 6,072,046		
Adjusted Transmission System Losses	52,88		6,072,046 211,400		
Input to Transmission	1305.00		6,283,446		
Transmission Loss Factor	1.04223		1.03482		

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 Page 29 of 33

ł

.

	D	EMAND WW			SUMMAR	Y OF LOSSES	AND LOSS	FACTORS BY	DELIVERY VOL	TAGE	EXHIBIT 9
	SERVICE LEVEL			SALES MW	LOSSES	SECONDARY	PRIMARY	SUBSTATION	SUBTRANS	TRANSMISSION	PAGE 1 of 2
1 2 3 4 5	Services Sales Losses Input Expansion	N FACTOR	1.00751	941.30	7.1	941.3 7.1 948.4					
6 7 8 9 10	Secondar Sales Losses Input Expansion		1.00590		5.6	5.6 954.0					
11 12 13 14 15	LINE TRAN SALES LOSSES INPUT EXPANSION		1.01781		17.0	17.0 971.0					
16 17 18 19 20 21	PRIMARY SECONDAR SALES LOSSES INPUT EXPANSION		1.01489	74.70	15,6	971.0 14.5	74.7 1.1				
22 23 24 25 26 27	SUBSTATIC PRIMARY SALES LOSSES INPUT EXPANSION		1.00622	0.0	6.6	985.4 6.1 991.5	75.8 0.5 76.3				
28 29 30 31 32 33	SUB-TRANS DISTRIBUTI SALES LOSSES INPUT EXPANSION	ON SUBS	1.01838	316.30	20,8	724.3 13.3 737.6	75.0 1.4 76.4		316.3 5.8 322.1		
34 35 36 37 38 39 40	TRANSMISS SUBTRANS DISTRIBUTI SALES LOSSES INPUT EXPANSION	MISSION ON SUBS	1.04223	73.00	52.9	523.7 259.5 33.1 817.6	54.2 1.3 2.3 57.9		322.1 13.6 335.7	73.0 3.1 76.1	l
41 42	TOTALS	LOSSES % OF TOTAL	CALCULAT SCALED	EÐ	125.5 125.5 100%	96.6 97.5 77.69%	5.3 5.5 4.38%		19.4 19.4 15.48%	3.1 3.1 2.46%	l
43 44		SALES % OF TOTAL		1,405.3 100.00%		941.3 66.98%	74.7 5,32%		316.3 22.51%	73.0 5.19%)
45		INPUT		1,530,8		1,038.8	80.2		335.7	76,1	I
46		IVE EXPANSIO		TORS		1.10354	1.07358	NA	1.06139	1.04223	5

(from meter to system input)

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 Page 30 of 33

	E	NERGY MWH		SUMMARY	OF LOSSE	S AND LOSS	FACTORS B	Y DELIVERY V	OLTAGE	EXHIBIT 9
	SERVICE LEVEL		SALES	LOSSES S	SECONDARY	PRIMARY	SUBSTATION	SUBTRANS	TRANSMISSION	PAGE 2 of 2
1 2 3 4 5	Services Sales Losses Input Expansion	I FACTOR	3,602,434 1.00493	17,769	3,602,434 17,769 3,620,203	l .				
6 7 8 9 10	Secondar Sales Losses Input Expansion		1.00303	10,969	10,969 3,631,172					
11 12 13 14 15	LINE TRAN SALES LOSSES INPUT EXPANSION		1.03095	112,376	112,376 3,743,548					
16 17 18 19 20 21	PRIMARY SECONDAR SALES LOSSES INPUT EXPANSION		516,299.000 1 .00694	29,544	3,743,548 25,963	516,299				
22 23 24 25 26 27	SUBSTATIC PRIMARY SALES LOSSES INPUT EXPANSION		1.006 5 7) 28,182	3,769,511 24,766 3,794,277	3,416	i i			
28 29 30 31 32 33	SUB-TRANS DISTRIBUTI SALES LOSSES INPUT EXPANSION	ON SUBS	2,466,746 1.01197	68,753	3,173,472 37,992 3,211,464	718	l.	2,466,746 29,531 2,496,277		
34 35 36 37 38 39 40	TRANSMISS SUBTRANS DISTRIBUTI SALES LOSSES INPUT EXPANSION	MISSION ON SUBS	526,918 1.03482	211,400	1,926,879 591,621 87,682 2,606,182	463,295	i 1	2,496,277 86,908 2,583,186	526,918 18,345	5
41 42	TOTALS	LOSSES % OF TOTAL	Calculated Scaled	478,992 478,983 100%	317,517 315,620 66.29%	28,579	I	116,440 116,440		5
43 44		SALES % OF TOTAL	7,112,397 100.00%		3,602,434 50,65%	516,299		2,466,746 34.68%	526,918	3
45		INPUT	7,591,380	ł	3,918,054	544,878		2,583,186	545,263	5
46		IVE EXPANSIO	N LOSS FACTORS		1.08761	1.05535	NA	1.04720	1.03482	2

(from meter to system input)

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 Page 31 of 33

Kentucky Power Company 2011 Analysis of System Losses

Appendix B

Discussion of Hoebel Coefficient

KPSC Case No. 2015-00271 Sierra Club's Initial Data Request Dated October 28, 2015 Item No. 9 Attachment 1 Page 32 of 33

COMMENTS ON THE HOEBEL COEFFICIENT

The Hoebel coefficient represents an established industry standard relationship between peak losses and average losses and is used in a loss study to estimate energy losses from peak demand losses. H. F. Hoebel described this relationship in his article, "Cost of Electric Distribution Losses," <u>Electric Light and Power</u>, March 15, 1959. A copy of this article is attached.

Within any loss evaluation study, peak demand losses can readily be calculated given equipment resistance and approximate loading. Energy losses, however, are much more difficult to determine given their time-varying nature. This difficulty can be reduced by the use of an equation which relates peak load losses (demand) to average losses (energy). Once the relationship between peak and average losses is known, average losses can be estimated from the known peak load losses.

Within the electric utility industry, the relationship between peak and average losses is known as the loss factor. For definitional purposes, loss factor is the ratio of the average power loss to the peak load power loss, during a specified period of time. This relationship is expressed mathematically as follows:

	where: F _{LS}	=	Loss Factor
(1) F_{LS} . A_{LS}) P_{LS}	A_{LS}	Ξ	Average Losses
	P_{LS}	\equiv	Peak Losses

The loss factor provides an estimate of the degree to which the load loss is maintained throughout the period in which the loss is being considered. In other words, loss factor is the ratio of the actual kWh losses incurred to the kWh losses which would have occurred if full load had continued throughout the period under study.

Examining the loss factor expression in light of a similar expression for load factor indicates a high degree of similarity. The mathematical expression for load factor is as follows:

	where: $F_{LD} =$	Load Factor
(2) F_{LD} . A_{LD}) P_{LD}	$A_{LD} =$	Average Load
	$P_{LD} =$	Peak Load

This load factor result provides an estimate of the degree to which the load loss is maintained throughout the period in which the load is being considered. Because of the similarities in definition, the loss factor is sometimes called the "load factor of losses." While the definitions are similar, a strict equating of the two factors cannot be made. There does exist, however, a relationship between these two factors which is dependent upon the shape of the load duration curve. Since resistive losses vary as the square of the load, it can be shown mathematically that the loss factor can vary between the extreme limits of load factor and load factor squared. The relationship between load factor and loss factor has become an industry standard and is as follows:

	where: F _{LS}	=	Loss Factor
(3) F_{LS} . $H^*F_{LD}^2$ + (1-H) F_{LD}	F_{LD}	—	Load Factor
	Н	<u> </u>	Hoebel Coeff

As noted in the attached article, the suggested value for H (the Hoebel coefficient) is 0.7. The exact value of H will vary as a function of the shape of the utility's load duration curve. In recent years, values of H have been computed directly for a number of utilities based on EEI load data. It appears on this basis, the suggested value of 0.7 should be considered a lower bound and that values approaching unity may be considered a reasonable upper bound. Based on experience, values of H have ranged from approximately 0.85 to 0.95. The standard default value of 0.9 is generally used.

Inserting the Hoebel coefficient estimate gives the following loss factor relationship using Equation (3):

(4) F_{LS} . $0.90*F_{LD}^2 + 0.10*F_{LD}$

Once the Hoebel constant has been estimated and the load factor and peak losses associated with a piece of equipment have been estimated, one can calculate the average, or energy losses as follows:

|--|

here: A _{LS}	=	Average Losses
P_{LS}	=	Peak Losses
Η -	=	Hoebel Coefficient
F_{LD}	=	Load Factor

Loss studies use this equation to calculate energy losses at each major voltage level in the analysis.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 10 Page 1 of 2

Kentucky Power Company

REQUEST

Regarding the savings and lost revenue calculations discussed in Exhibit 2 of the Application (pages 1 and 30 of 63):

- a. Please provide the referenced Sunset Provision.
- b. Please explain the term "initial values" as it is used in the following sentence on p. 30 of 63: "The individual DSM lost revenue, efficiency incentive and maximizing incentives as of June 30, 1997 are calculated based on the initial values from Exhibit E in the joint application, filed September 27, 1995."
- c. Please provide the Exhibit E referenced in the sentence quoted above in subpart (b).

RESPONSE

a. Per Kentucky Power's September 27, 1995 DSM filing in Case No. 95-427, the Company stated on Page 93 of the filing:

If, in fact, KPCo files a base rate case and begins collecting new base rates that recognize the revenues lost as a result of DSM programs, then the lost kWh associated with these DSM programs would theoretically be reflected in the billing determinants used to establish those new base rates. Under those circumstances, continued surcharge recovery of net lost revenues would result in a double collection. Therefore, coincident with the implementation of new base rates, net lost revenues for the existing participants of KPCo's DSM programs will cease to be collected through the surcharge. However, if during the three-year period, there is no change in Kentucky Power's base rates, the Collaborative has agreed to a sunset provision with respect to net lost revenues. The sunset provision provides that the first year's net lost revenues will no longer be recovered in Year 4 absent a base rate case. The second year's net lost revenues would cease to be recovered in Year 5 absent a base rate case, and so forth. b-c. The phrase "initial values" when discussing Exhibit E represents the first values the Company used in the Company's initial DSM filing in Case No. 95-427. Please see KPCo_R_SC_10_Attachment1.pdf for a copy of Exhibit E from Case No. 95-427.

KPSC Case No. 2015-00271 Sierra Club's Initiał Data Requests Dated October 28, 2015 Ilem No. 10 Attachment 1 Page 1 of 1

EXBIBIT E

KENTUCKY POWER COMPANY DERIVATION FOR THREE-YEAR DSM EXPERIMENT COLLABORATIVE AGREED UPON INITIAL VALUES

PROGRAM DESCRIPTIONS	EFFICIENCY INCENTIVE \$/PARTICIPANT *	MAXIMIZING <u>Incentive ##</u>	NET LOST REVENUE/YEAR KWH/PARTICIPANT **	NET LOST Revenues \$/KWB #	
RESIDENTIAL					
Energy Fitness	78.22	N/A	2,690	0.03114	
Turgeted Energy Efficiency - All Electric - Non All Electric	0.00 9.71	SEE ## N/A	5,570 680	0.03113 0.03124	
Compact Fluorescent Bulb	1.58	N/A	62	0,03097	
High-Efficiency Heat Pump - Resistance Heat - Non Resistance Heat	19.73 16.69	N/A H/A	2, 275 813	0.03112 0.03114	
High-Efficiency Heat Pump - Mobile Rome	38.86	N/A	2,160	0.03111	
Nabile Home New Construction	N/A	SEE ##	N/A	N/A	
Connercial					
SMART Audit Class 1 SMART Audit Class 2	N/A N/A	SEE ## SEE ##	H/A N/A	N/A N/A	
SMART Financing Existing Building SMART Financing New Building	596.34 50.33	N/A N/A	22,000 30,600	0.04267 0.04267	
Industrial					
SMART Audit Cless 1 SMART Audit Cless 2	N/A N/A	SEE ## SEE ##	R/A N/A	N/A N/A	
SMART Financing General SMART Financing Compressed Air System	178.65 4,850.21	N/A N/A	28,200 164,800	0.04108	

 Efficiency incentive defined as 15% of estimated net savings based on the TRC test.

Net lost revenues per kWh where net revenues are defined as gross revenues minus variable costs based on the company's current rates in effect.

** These annual kim per participant values reflect (exclude) the estimated effects of freeriders in each program.

The maximizing incentive is defined as 5% of actual program costs.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 11 Page 1 of 1

Kentucky Power Company

REQUEST

Please provide the projected incremental energy savings for each of the years 2016 through 2018, expressed in both kilowatt hours and as a percentage of retail sales, for each program in KPC's DSM plan and for the plan as a whole

RESPONSE

Please see KPCO R SC 11 Attachment1.xls for this response.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 12 Page 1 of 1

Kentucky Power Company

REQUEST

.

For each existing program that KPC proposes to continue (either in existing or modified form), please provide the energy savings projections for 2016 and 2017, expressed in both kilowatt hours and as a percentage of retail sales, that KPC made at the time it applied for approval in Case No. 2014-00271.

RESPONSE

Energy savings projections for 2016 and 2017 were not available when the Company was seeking approval in Case No. 2014-00271. The requested information was developed following the receipt of the July 30, 2015 Market Potential Assessment prepared for Kentucky Power by Applied Energy Group, Inc. *See e.g.*, the Company's October 10, 2014 response to SC 1-6 in Case No. 2014-00271.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 13 Page 1 of 1

Kentucky Power Company

REQUEST

Please provide the projected incremental demand savings for each of the years 2016 through 2018, for each program in KPC's DSM plan and for the plan as a whole.

RESPONSE

Please see KPCO R SC 13 Attachment1.xls for this response.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 14 Page 1 of 1

Kentucky Power Company

REQUEST

For each existing program that KPC proposes to continue (either in existing or modified form), please provide the demand savings projections for 2016 and 2017 that KPC made at the time it applied for approval in Case No. 2014-00271.

RESPONSE

Demand savings projections for 2016 and 2017 were not available when the Company was seeking approval in Case No. 2014-00271. The requested information was developed following the receipt of the July 30, 2015 Market Potential Assessment prepared for Kentucky Power by Applied Energy Group, Inc. *See e.g.*, the Company's October 10, 2014 response to SC 1-7 in Case No. 2014-00271.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 15 Page 1 of 1

Kentucky Power Company

REQUEST

Please provide the provide the participant forecast for each program the Company proposes to offer (both existing/modified and new) for each of the years 2016 through 2018, for each program in KPC's DSM plan and for the plan as a whole.

RESPONSE

Please see KPCO_R_SC_15_Attachment1.xls for this response.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 16 Page 1 of 1

Kentucky Power Company

REQUEST

For existing programs that KPC proposes to continue (either in existing or modified form), please provide the participant forecast for each of the years 2016 and 2017 that KPC made at the time it applied for approval in Case No. 2014-00271.

RESPONSE

Participant forecasts for 2016 and 2017 were not available when the Company was seeking approval in Case No. 2014-00271. The requested information was developed following the receipt of the July 30, 2015 Market Potential Assessment prepared for Kentucky Power by Applied Energy Group, Inc. *See e.g.*, the Company's October 10, 2014 response to SC 1-5 in Case No. 2014-00271.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 17 Page 1 of 1

Kentucky Power Company

REQUEST

Please explain how the Company plans to evaluate the School Energy Manager Program and what criteria will be used

RESPONSE

The program will be included with the process evaluation for the DSM portfolio expected to begin Fall 2016. In addition to the process evaluation, this program will include an impact evaluation to determine savings and performance.

KPCO plans to perform both process and impact evaluations on the School Energy Manager Program. The primary objective of a process evaluation is to help program designers and managers structure their programs to achieve cost-effective savings while maintaining high levels of customer satisfaction. To achieve these goals, the process evaluation gathers information from a variety of sources including program staff, market actors and program participants. An impact evaluation verifies measure installations, identifies key energy assumptions and provides the research necessary to calculate defensible and accurate savings attributable to the program.

WITNESS: John A Rogness

.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 18 Page 1 of 1

Kentucky Power Company

REQUEST

For each of the Companies' existing DSM programs that it seeks to continue (either in existing or modified form), please provide the Companies' most recent EM&V report or assessment.

RESPONSE

The August 10, 2015 "Kentucky Power Company (KPCo) Demand Side Management Program Plan" attached as Exhibit 6 to the Company's application, represents the most recent assessment of existing programs with the exception of the Community Outreach and Energy Education for Students programs. Please see KPCO_R_SC_18_Attachment1.pdf for the "Kentucky Power Company 2012-2013 Demand Side Management Portfolio Evaluation – Process, Market and Impact Evaluations – July 2014," submitted with Case 2014-00271 as Exhibit 2 for the most recent Community Outreach and Student Energy Education program assessments.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 19 Page 1 of 1

Kentucky Power Company

REQUEST

For each of the following programs, please provide the expected change in demand and energy savings for each program from 2015 to 2016:

a. Residential Efficient Products

b. Appliance Recycling Program

c. Targeted Energy Efficiency Program

d. Energy Education for Students

e. Community Outreach CFL Program

RESPONSE

Please see KPCO_R_SC_19_Attachment1.xlsx for the requested information.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 20 Page 1 of 1

Kentucky Power Company

REQUEST

Referring to the Application at page 14, please explain why the New Construction Program is not available to industrial customers and builders.

RESPONSE

Expected customer participation levels, attendant program costs were selected at the Mid Scenario level and the DSM surcharge was designed for the commercial customer class only. The Company's selection of the Mid Scenario participation level reflects the fact that industrial customers have chosen to opt out of participating in the Company's DSM programs. Please also see the Company's response to KPSC 1-30.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 21 Page 1 of 1

Kentucky Power Company

REQUEST

Please explain what, if any, DSM programs would be available to KPC's industrial customers if the Company's proposed plan is approved. If none, please explain why.

RESPONSE

The practical effect of KRS 278.285(3), which permits industrial customers to "opt-out" of industrial DSM programs under certain circumstances, has been to eliminate or significantly restrict its industrial customers' interest in Company-sponsored DSM programs. Moreover, even in the absence of "opt-out" provisions such as KRS 278.285(3), participation in DSM programs is voluntary. Kentucky Power's industrial customers have not demonstrated an interest in participating in, or having the Company establish pursuant to KRS 278.285, industrial DSM programs.

There are no DSM programs available to industrial customers in the Company's proposed program plan. The specific commercial program services and rates have been designed for that class of customers. Please also see the Company's response to KPSC 1-30.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 22 Page 1 of 1

Kentucky Power Company

REQUEST

Referring to the Direct Testimony of Mr. Rogness at page 15, lines 10-13, please state whether it is Mr. Rogness's belief that the existence of the industrial opt out means that it is unrealistic to expect any industrial customer participation in DSM/EE programs. If this is not Mr. Rogness's belief, please explain what this portion of the testimony suggests in terms of industrial customer participation.

RESPONSE

Please see the Company's response to SC 1-21 and KSPC 1-30.

KPSC Case No. 2015-00271 Sierra Club's Initial Set of Data Requests Dated October 28, 2015 Item No. 23 Page 1 of 1

Kentucky Power Company

REQUEST

Referring to the Direct Testimony of Mr. Rogness at page 16, lines 14-9, does the "robust customer participation levels" referenced in the testimony reflect the participation levels in AEG's High Scenario customer participation level. If not, please explain what the term represents.

RESPONSE

No. The adjective robust was intended to refer to participation levels at the mid scenario level.