ATTACHMENT 44 Groundwater Monitoring Plan Special Waste Landfill Permit Big Sandy Plant – Ash Pond Closure Lawrence County, Kentucky

A Groundwater Monitoring Plan meeting the requirements of 401 KAR 45:110 and KAR 45:160, was created based on the findings in the *Hydrogeological Site Investigation (HSI)* in Attachment 39. A network of seven monitoring wells installed in 2012 and five previously existing wells were used as part of the HSI (Attachment 30).

REPORT Groundwater Monitoring Plan

AEP BIG SANDY HORSEFORD CREEK

Prepared for:

American Electric Power 1 Riverside Plaza Columbus, OH 43215

Prepared by:

525 Vine St. Suite 1800 Cincinnati, OH 45202 (513) 651-3440

June 14, 2013

CONTENTS

SECTION	ON		PAGE
1.0	INTROI 1.1 1.2	DUCTION PLAN OBJECTIVES PLAN ELEMENTS	1
2.0	BACKG 2.1 2.2 2.3 2.4 2.5 2.6	ROUND FACILITY DESCRIPTION PREVIOUS INVESTIGATIONS PHYSICAL SETTING GEOLOGICAL SETTING HYDROGEOLOGICAL SETTING WATER QUALITY	1 2 2 3 3
3.0	GROUN 3.1 3.2 3.3 3.4 3.5 3.6	NDWATER MONITORING PROGRAM SAMPLING AND ANALYSIS AND QUALITY ASSURANCE PROJECT PLA (SAP/QAPP) SCHEDULE GROUNDWATER MONITORING SYSTEM WELL ABANDONMENT BASELINE CHARACTERIZATION DETECTION MONITORING	N 5 6 7 8
4.0	DATA E 4.1 4.2 4.3	EVALUATION, ASSESSMENT, AND CORRECTIVE ACTION DATA EVALUATION GROUNDWATER ASSESSMENT CORRECTIVE ACTION	8 8
5.0	SYSTE	M CLOSURE	10
6.0	REFER	ENCES	11

TABLES

1	GROUNDWATER MONITORING PLAN MONITORING WELL SPECIFICATIONS AND
	ELEVATIONS

- 2 GROUNDWATER MONITORING PLAN BASELINE MONITORING ANALYSIS SUMMARY
- 3 GROUNDWATER MONITORING PLAN DETECTION MONITORING ANALYSIS SUMMARY

FIGURES

- 1 SITE MAP
- 2 BORING AND WELL LOCATIONS MAP
- 3 GEOLOGIC CROSS-SECTION B-B'
- 4 POTENTIOMETRIC SURFACE MAP, OCTOBER 15, 2012

APPENDICES

- A BORING LOGS
- B SAMPLING AND ANALYSIS PLAN AND QUALITY ASSURANCE PROJECT PLAN (SAP/QAPP)

1.0 INTRODUCTION

This groundwater monitoring plan (GMP) serves as the controlling document for the site closure groundwater monitoring program at the Horseford Creek site (referred to as the Site) near Louisa, Kentucky (Figure 1).

1.1 Plan Objectives

The purpose of the GMP is to establish the procedures for groundwater monitoring of the site during and after closure.

1.2 Plan Elements

This plan provides the Site background, schedule, sampling and laboratory methods, data evaluation procedures necessary to effectively monitor groundwater conditions, and the procedures to implement corrective action should an exceedance occur. The plan is divided into five sections and two appendices, as follows:

- 1. **INTRODUCTION** Defines plan objectives.
- BACKGROUND Summarizes the facility descriptions and physical setting of the site based on previous investigations. References Appendix A – Existing Data: Existing Boring Logs and Well Construction.
- GROUNDWATER MONITORING PROGRAM Identifies the monitoring system and the proposed monitoring parameters. References Appendix B – Sampling and Analysis Plan and Quality Assurance Project Plan (SAP/QAPP).
- 4. DATA EVALUATION, GROUNDWATER ASSESSMENT, AND CORRECTIVE ACTION Describes the methods to be used to evaluate data significance, to assess potential impact, and to prepare for corrective action.
- 5. **REFERENCES** Lists references cited.

2.0 BACKGROUND

2.1 Facility Description

The Horseford Creek site is located approximately 3,000 feet west of the Big Sandy power plant entrance as illustrated in Figure 1. The site is a reservoir created by a dam across the Horseford Creek valley and is generally bounded by hillsides located on the north, west, and south sides. Horseford Creek, prior to construction of the reservoir, occupied the center of the valley flowing generally southeast then east before turning north and draining to Blaine Creek (Figure 2).

Disposal of coal combustion products (CCPs) (including fly ash and bottom ash) sluiced from the Big Sandy power station began in 1970. The reservoir, as currently configured, occupies approximately 130 acres of the Site between approximately 670 and 685 feet above mean sea level (msl), and consists of approximately 30 acres of open water and 100 acres of exposed or vegetated ash deposits.

The property surrounding the Site is owned by Kentucky Power Company (KPC), a subsidiary of American Electric Power, Co., Inc. (AEP). The property is generally undeveloped with the exception of dirt or gravel access roads. Nearby facilities include an asphalt manufacturing facility located south of the site in the adjacent Burke Branch valley, and the Big Sandy power plant located roughly 3,000 feet to the southeast of the east edge of the reservoir.

2.2 **Previous Investigations**

The earliest identified investigation of the Site was a siting study consisting primarily of site reconnaissance and geotechnical borings performed for AEP in 2005 by Fuller Mossbarger Scott and May Engineers (FMSM). Additional investigation was completed between 2010 and 2011 by Geosyntec resulting in a Feasibility Evaluation Technical Memorandum provided to AEP on April 4, 2011.

The first permanent groundwater wells at the Site were MW-1007 through MW-1011, installed by AEP in 2010. Seven more groundwater wells (MW-1201 through MW-1207) were installed by URS Corporation (URS) on behalf of AEP in 2012. Groundwater samples from the monitoring wells were submitted for a suite of analyses including the parameters set forth in 401 Kentucky Administrative Regulation (KAR) 45:160 Section 7 (2). This regulation lists the parameters to be monitored to establish the baseline conditions "for special waste landfills used solely for coal combustion by-products."

2.3 Physical Setting

The Site is mapped within the Cumberland Plateau section of the Appalachian Plateaus physiographic province (Davis, 1924). The Cumberland Plateau is described as an area of intricately dissected rocks of Pennsylvanian age in eastern Kentucky bounded to the west by the

Pottsville (or Cumberland) Escarpment formed by resistant beds of sandstone and conglomerate in the lower part of the Pennsylvanian strata. The mountain slopes are carved by ravines eroded through thick, flat-lying sequences of (Pennsylvanian age) coal-bearing units.

According to United States Geological Survey [USGS] (Lloyd and Lyke, 1995), the average mean air temperature for the site vicinity is approximately 55 degrees Fahrenheit (°F) with the warmest month generally occurring in July (average high mid to upper 80s) and the coolest month generally occurring in January (average highs in the low to mid 40s). The average annual precipitation is approximately 44 inches with monthly totals averaging between a low of approximately 3.0 inches in October and January to a high of approximately 5.5 inches in July.

2.4 Geological Setting

The Site is mapped within the Kentucky Geological Survey (KGS) geologic quadrangle map for Fallsburg, Kentucky-West Virginia (GQ-584). The regional geology consists of relatively flatlying, Pennsylvanian-age bedrock underlying the upland areas, with relatively thin deposits of Quaternary-age alluvium typically consisting of unconsolidated deposits of silt, sand, and gravel filling in portions of the deeper stream valleys up to 50 feet thick (Lloyd and Lyke, 1995). A relatively thin layer of residual soils generally consisting of clay derived from the weathering of underlying bedrock is typically present at higher elevations. Within the confines of the site exists siltstones, sandstones, shales, and coal measures of the Monongahela, Conemaugh, and Breathitt formations, which comprise the bedrock stratigraphy.

The Monongahela is present at elevations generally greater than 910 feet, msl. This formation is underlain by the Conemaugh to an approximate elevation of 700 feet, msl with the Breathitt occupying elevations below this interval. A cross-section incorporating information from the KGS geologic quadrangle map with lithologic information derived from onsite borings is provided as Figure 3.

2.5 Hydrogeological Setting

The primary source of groundwater in the region is identified as the Appalachian Plateaus aquifer system (Lloyd and Lyke, 1995). The lithology of this aquifer is described as primarily shale associated with the Conemaugh Formation grading with increasing occurrences of sandstone, siltstone, and some coal measures associated with the Breathitt Formation. Groundwater within this Pennsylvanian aquifer is primarily stored within fractures recharged by precipitation. Coal seam underclays and other low permeability lithologic units may serve as

barriers to downward migration of groundwater. As a result, groundwater in the area will travel laterally on top of these units until commonly expressed as groundwater-fed streams, springs, and seeps at locations where these lower permeability lithologic units occur at or near the ground surface.

Uppermost groundwater at the Site is typically encountered relatively near the ground surface (generally within 40 feet) in the porosity of the residual soil, the weathered bedrock, and/or the somewhat deeper fractured bedrock, depending on the local dynamics of groundwater recharge and discharge. Figure 4 presents the measured groundwater elevations and inferred groundwater flow conditions for October 2012. Groundwater in this environment generally flows in a direction parallel to the topographic slope toward the valley bottoms, and may be observed at the ground surface as surface seeps or small springs where resistant beds direct groundwater flow laterally.

Discussed below are quantitative and qualitative constraints applicable to the fundamental aquifer characteristic parameters for groundwater flow at the Site.

- **Type of aquifer** <u>Unconfined</u>: Conclusion based on the hydraulic testing conducted at five of the seven monitoring wells installed at the site in 2012. Exceptions occur at MW-1206 and MW-1207, both of which exhibited confined aquifer characteristics.
- Hydraulic conductivity (K) Uppermost aquifer range between 10⁻³ and 10⁻⁷ centimeters per second [cm/sec] with 2.2 x 10⁻⁵ cm/sec from MW-1205 selected as the most representative value. Hydraulic conductivity was assessed through recovery tests conducted at seven wells installed in the Spring of 2012.
- Effective porosity (n) 25 percent No direct measurement available for baseline flow through fractured rock at the Site. Porosity in fractured rock can range between 2-15 percent. The percentage assigned also accounts for potential flow of groundwater at the unconsolidated deposit/bedrock interface and through highly weathered fissile shales.
- Hydraulic gradient (i) 0.145 Hydraulic gradient was estimated using the potentiometric elevation measured at MW-1202 relative to the elevation measured at MW-1203 and MW-1204 in May, July and October 2012.
- Flow rate (V) 0.0361 feet/day The estimated flow rate (V) for uppermost groundwater at the Site was calculated by multiplying hydraulic conductivity by the hydraulic gradient and divided by effective porosity.

2.6 Water Quality

The general chemistry of the Site groundwater and surface water was evaluated through the hydrogeologic site investigation (HSI) conducted in 2012. The following discussion summarizes the findings of the HSI report.

The general chemistry of natural waters can be divided into four general chemistry categories: sodium + carbonate waters, calcium + carbonate waters, calcium + sulfate waters and sodium + chloride. The variations in groundwater quality characteristics are often a function of the groundwater residence time with and the chemical composition of the host rock.

Dissolved metals detected above the drinking water quality standard maximum contaminant levels (MCLs) in groundwater for the 2012 events were limited to arsenic and mercury. Arsenic was detected above its MCL in one or more wells in each of the reporting events but at concentrations that are likely to represent ambient conditions because of the relatively low level of the MCL (0.01 mg/L), the abundance of naturally occurring arsenic in the local soil and rock units, and the potential for soil particles to be entrained in the groundwater assessment samples. Anomalous mercury concentrations detected during the HSI in July 2012 were not confirmed with subsequent sampling conducted in October 2012, so the MCL exceedances for mercury were dismissed as potential laboratory or sampling interferences.

Surface water samples from the Site reported dissolved metals concentrations greater than MCLs for antimony and thallium in two of the three events conducted. Neither of these dissolved metals was detected above their respective MCL in any of the groundwater samples. Neither compound is typically associated with the waste material, so their origin is currently attributed to ambient conditions.

3.0 GROUNDWATER MONITORING PROGRAM

The components of the groundwater monitoring program are summarized below:

3.1 Sampling and Analysis and Quality Assurance Project Plan (SAP/QAPP)

Each sampling event will be conducted in accordance with the procedures specified in the SAP/QAPP (Appendix B). This plan includes:

 Procedures and techniques designed to accurately measure groundwater quality and groundwater elevation at monitoring wells;

- Methods for sample collection, preservation, and shipment;
- Laboratory analytical methods; and
- Quality assurance/quality control (QA/QC) and chain-of-custody protocols for the field activities and laboratory analysis.

All project activities will be conducted in accordance with the Site-specific Health and Safety Plan (HASP) to be prepared by the contractor(s).

3.2 Schedule

Implementation of the GMP will commence prior to implementation of the selected remedy with sampling events conducted during the first and third quarter each year. Reporting of the data to Kentucky Department for Environmental Protection (KDEP) from each event will occur in the second and fourth quarters respectively.

3.3 Groundwater Monitoring System

The groundwater monitoring system will consist of seven 2-inch inner diameter monitoring wells and one spring as listed below. Groundwater levels will be measured at each of the seven monitoring wells for each monitoring event prior to sampling.

Monitoring Well ID	Monitoring Position
MW-1202	Upgradient
MW-1204	Upgradient
SP-2	Upgradient
MW-1207	Downgradient
MW-1007	Downgradient
MW-1008	Downgradient
MW-1009	Downgradient
MW-1301 (Proposed)	Downgradient

If accessible and in proper condition, the groundwater level in each of the remaining monitoring wells at the site (MW-1010, MW-1011, MW-1201, MW-1203, MW-1205, MW-1206) will also be measured. These monitoring wells are not proposed to be repaired or replaced. As such, if damaged or otherwise deemed unsuitable for use they will be decommissioned.

Kentucky regulation 401 KAR 45:160 Section 3 (2) (b) requires monitoring well casings to have a diameter of 4 or more inches, unless otherwise approved by KDEP in writing. Therefore, written approval to use the existing monitoring wells, all of which were installed with 2-inch diameter casings, will need to be obtained from KDEP prior to implementation of this plan.

Two monitoring wells (MW-1202 and MW-1204) and one spring (SP-2) will be sampled to assess uppermost groundwater upgradient of the Site before coming into contact with the reservoir. Five monitoring wells (MW-1007, MW-1008, MW-1009, MW-1207 and proposed MW-1301) will be sampled to assess uppermost groundwater downgradient of the Site. The monitoring wells selected will provide adequate representative samples to evaluate water quality of the uppermost groundwater prior to entering and exiting the Site.

Specifications of the monitoring locations, including reference elevation, total depth, and screened interval (if applicable) are presented in Table 1.

3.4 Well Abandonment

Monitoring wells determined to be no longer suitable for their intended purpose are to be abandoned by a driller certified in the Commonwealth of Kentucky within 30 days of determination, but no sooner than 10 working days after KDEP has been notified, in accordance with 401 KAR 6:350 Section 11. A summary of the procedures in this regulation follows:

- Remove all components of the monitoring well including bollards, well pad, surface casing, monitoring well casing, well screen, filter pack, bentonite, and cement.
- Plug the borehole by introducing grout via tremmie pipe from the bottom to approximately 2 feet below ground surface (bgs).
- Plug the top 2 feet with material consistent with the surrounding ground surface.
- The driller is to submit a record of the abandonment to KDEP within 60 days of completion.

The regulation includes the option to request a variance to the abandonment procedure from KDEP for wells where removal of the well casing is not practical. The variance must be approved by KDEP prior to implementation.

3.5 Baseline Characterization

Baseline characterization monitoring will be conducted semiannually until the remedy (closure of the pond) is in place, and then for at least two semiannual events after its completion. The parameters to be analyzed include all those listed in 401 KAR 45:160 Section 7 (2) as provided in Table 2.

3.6 Detection Monitoring

Detection monitoring will be conducted semiannually following discontinuation of the baseline monitoring program. The parameters to be analyzed include those listed in 401 KAR 45:160 Section 8 (2) as provided in Table 3.

401 KAR 45:160 Section 8 (2) (c) states that monitoring for additional parameters may be required by KDEP based on a significant increase from the baseline characterization.

4.0 DATA EVALUATION, ASSESSMENT, AND CORRECTIVE ACTION

The data evaluation, assessment and corrective action procedures are summarized below:

4.1 Data Evaluation

The data evaluation procedures will be implemented in accordance with the Kentucky regulations for Special Waste Landfills 401 KAR 45:160 Section 4. Analytical results are to be evaluated within 48 hours of receipt from the laboratory. If the results do not indicate potential contamination, they are to be provided to KDEP on a form provided by KDEP. This form is to be provided within 60 days of sampling or 15 days after completion of the analyses, whichever comes first, unless otherwise approved by KDEP. If potential indications of contamination are identified, KDEP is to be notified within this same 48-hour period and arrangements are to be made to split a sample with KDEP no later than 10 days after receipt of the results.

4.2 Groundwater Assessment

401 KAR 45:160 Section 5 provides the following decision path if data evaluation per Section 4.1 above suggests the presence of one or more of the parameters listed in 40 CFR 302.4 Appendix A in one or more public or private water supplies or site monitoring well.

• The well(s) in question will be resampled (with split samples collected by KDEP, if requested) within 10 days.

- If resampling indicates, to the satisfaction of KDEP, that contamination is not present, then monitoring will resume on a semiannual basis, as required for detection-mode monitoring in 401 KAR 45:160 Section 8 (2).
- If resampling indicates contamination may be present, then a Groundwater Assessment Plan (GAP) will be prepared and submitted to KDEP within 30 days of the receipt of KDEP's judgment on the results (401 KAR 45;160 Section 5 (4)).

The GAP will propose specific methods for evaluating the existence, quality, quantity, areal extent, and depth of groundwater contamination, as well as the rate and direction of contaminant migration. The plan will be prepared by a qualified professional in the field of hydrogeology and will be implemented within 60 days of approval by KDEP. The plan will specify an implementation schedule and will include the following information:

- The number, location, size, casing type, and depth of wells, borings, springs, sedimentation basins, and other assessment structures or devices that may be utilized.
- Sampling and analytical methods to be used during the assessment.
- Data evaluation procedures that will be utilized to determine the concentration, rate, and extent of groundwater degradation from the Site.
- If a public or private water supply well(s) may have been adversely affected a detailed hydrogeologic study addressing the potential effect on the water supply is required to be included in the GAP.

A Groundwater Assessment Report (GAR) is to be submitted within 90 days of approval of the assessment by KDEP. The GAR will present the results of the GAP and provide recommendations on the necessity of corrective action (401 KAR 45:160 Section 5 (7)).

4.3 Corrective Action

If the GAR indicates the need for corrective action for the protection of human health and the environment at potential offsite receptor locations, a Remedial Action Plan (RAP) will be developed (401 KAR 45:160 Section 5 (9)). The RAP will be developed within 90 days of KDEP approval of the GAR, but no later than one (1) year after the event specified.

The RAP will specify corrective actions to be utilized to abate the existing groundwater contamination as well as measures to prevent further groundwater contamination. In addition, if local, public, or private water supplies are adversely affected by the contamination, the RAP will include a description of the means by which such water supplies will be restored or replaced. If

necessary, the plan will be modified to include additional measures deemed necessary by KDEP to protect human health and the environment.

5.0 SYSTEM CLOSURE

Groundwater monitoring of the Site will continue for a period of no less than 5 years after implementation of the remedy. Upon completion, a certification that the closure and postclosure period is complete is to be provided by AEP to KDEP. The components of the procedures are summarized below:

- AEP will provide certification to KDEP that all closure and post-closure period requirements have been achieved.
- KDEP will review certification including a site visit.
- If no deficiencies are identified, KDEP will acknowledge system closure to AEP within 180 days of receipt of the certification.
- Abandonment of all program monitoring wells will be completed after KDEP acknowledgement of system closure.

The certification shall meet the requirements in 401 KAR 45:110 Section 5 and 401 KAR 30:031 (Environmental Performance Standards). These performance standards are summarized as follows:

- Floodplains: Site does not restrict the flow of a 100-year floodplain, reduce temporary water storage capacity of the floodplain, or be placed in a manner to likely release waste that may pose a hazard to human health, wildlife, land or water resources.
- Endangered Species: No cause or contribute to any endangered, threatened or candidate species (Endangered Species Act, 1983)
- Surface waters: No discharge of pollutants into the waters of the Commonwealth (KRS Chapter 224 or 401 KAR Chapter 10, 401 KAR Chapter 8.
- Fill materials: No discharge of materials to waters of the Commonwealth (Section 404 of the Clean Water Act of 1977, as amended)
- Groundwater: No contamination of an underground drinking water beyond the point of compliance in excess of the MCL (401 KAR Chapter 8)

If all requirements have been met at the conclusion of the 5-year post-closure monitoring the owner or operator shall submit certification that the closure and post-closure is complete. KDEP will review the certification, permit records, and conduct a site visit to determine if the site

closure criteria have been achieved. If no deficiencies are identified KDEP is to acknowledge the certification of closure within 180 days of receipt of the certification.

6.0 REFERENCES

KGS, 1967; <u>Geologic Map of the Fallsburg Quadrangle, Kentucky-West Virginia and the</u> <u>Pritchard Quadrangle in Kentucky (GQ-584)</u>; prepared by Sharps, Joseph A., in cooperation with the U.S. Geological Survey, Kentucky Geological Survey and University of Kentucky.

Lloyd, Jr., O.B., and Lyke, W.L., 1995. <u>Ground Water Atlas of the United States, Segment 10:</u> <u>Illinois, Indiana, Kentucky, Ohio, Tennessee</u>. Hydrologic Investigations Atlas 730-K. U. S. Geological Survey, Reston, VA.

URS, 2013; Hydrogeologic Site Investigation Report, dated June 14, 2013

TABLE 1

GROUNDWATER MONITORING PLAN MONITORING LOCATION SPECIFICATIONS AND ELEVATIONS

AEP BIG SANDY, HORSEFORD CREEK SITE LOUISA, KENTUCKY

Monitoring Well I.D. Site I.D. AKGV	g Well I.D. AKGWA	Hydraulic Position (Upgradient/ Downgradient)	Top of Inner Casing Elevation (feet, msl)	Ground Surface Elevation (feet, msl)	Total Well Depth (feet)	Monitored Interval (feet, msl)	Groundwater Elevation** (feet, msl)
MW-1202*	8006-5305	Upgradient	852.24	849.59	44.90	814.7 - 804.7	818.48
MW-1204*	8006-5307	Upgradient	723.88	721.28	34.64	696.6 - 686.6	696.91
SP-2		Upgradient	NA	770.00	NA	NA NA	NA
MW-1207	8006-5301	Downgradient	697.61	695.02	530.02	175.5 - 165.5	611.41
MW-1007		Downgradient	711.31	708.93	77	661.9 - 631.9	668.44
MW-1008		Downgradient	721.60	719.09	100	659.1 - 619.1	637.90
MW-1009		Downgradient	713.01	710.50	85	645.5 - 625.5	653.59
<u>Proposed</u> MW -1301		Downgradient		550 (Est)	25 (Est)	535 (Est) - 525 (Est)	

AKGWA = Assembled Kentucky Groundwater Database

msl = Mean sea level

Survey Coordinates and elevations were measured on January 12, 2011, May 17, 2012 and May 21, 2012.

Northing and Easting values correspond to NAD 83 - Kentucky State Plane - North Zone. *Monitoring well installed by Mr. Dave Schrencengost of Frontz Drilling (Kentucky Certified Driller Number 0302-0534-00)

**= Measured October 15, 2012

TABLE 2

GROUNDWATER MONITORING PLAN BASELINE MONITORING - ANALYSIS SUMMARY

AEP BIG SANDY, HORSEFORD CREEK SITE LOUISA, KENTUCKY

Parameter	KDEP		Method*	Reporting Limit µg/L	MCL µg/L	Container	Preservation	Holding Time
Indicator Parameters:								
Bicarbonate	х	1	SM20 4500-CO2D	5,000	NS	Plastic	-	14 days
Carbonate	х	1	SM20 2320B	5,000	NS	Plastic	-	14 days
Chemical Oxygen Demand	х	1	SM20 5220D	5,000	NS	Plastic	H2SO4, pH<2	28 days
Total Dissolved Solids	х	1	SM20 2540C	20,000	500,000**	Plastic	-	7 days
Total Organic Carbon	х	1	SM20 5310C	20	NS	Glass	H2SO4, pH<2	28 days
Chloride	х	2	EPA 300.1	100	250,000**	Plastic	-	28 days
Sulfate	х	2	EPA 300.1	400	NS	Plastic	-	28 days
Metals								
Calcium	х	3	EPA 200.7	20	NS	Plastic	-	6 months
Iron	х	3	EPA 200.8	10	300**	Plastic	HNO3, pH<2	6 months,
Magnesium	х	3	EPA 200.7	50	NS	Plastic	-	6 months
Potassium	х	3	EPA 200.7	50	NS	Plastic	-	6 months
Sodium	х	3	EPA 200.7	50	NS	Plastic	-	6 months
Zinc	х	3	EPA 200.8	0.5	5,000**	Plastic	HNO3, pH<2	6 months,
Specific Conductance	х		Field	NS	NS	Field	-	Field
pH	х		Field	NS	NS	Field	-	Field
Hazardous Constituents								
Metals								
Arsenic	х	3	EPA 200.8	0.1	10	Plastic	HNO3, pH<2	6 months,
Cadmium	х	3	EPA 200.8	0.05	5	Plastic	HNO3, pH<2	6 months,
Copper	х	3	EPA 200.8	0.05	1,300	Plastic	HNO3, pH<2	6 months,
Lead	х	3	EPA 200.7	0.01	15	Plastic	HNO3, pH<2	6 months,
Nickel	х	3	EPA 200.8	0.2	NS	Plastic	HNO3, pH<2	6 months,
Selenium	х	3	EPA 200.8	0.5	5	Plastic	HNO3, pH<2	6 months,
Mercury	х	3	EPA 245.2	2	2	Plastic	HNO3, pH<2	6 months,

* Method SW-846 refers to Test Methods for Evaluating Solid Waste, Physical/Chemical Methods

** Secondary Standard

KDEP = Kentucky Department for Environmental Protection parameters per 401 KAR 45:160 Section 7 (2)

1 Standard Methods for the Examination of Water & Wastewater, 20 th edition, 1998

2 EPA/815-R-00-014: Methods for the Determination of Organic and Inorganic Compounds in Drinking Water, Vol 1, Aug 2000

3 EPA/600/R-94/111: Methods for the Determination of Metals in Environmental Samples, Supplement 1, May 1994

Note: All samples to be stored and shipped chilled at 4°C. MCL = US EPA Maximum Contaminant Level H2SO4 = Sulfuric acid HNO3 = Nitric acid NS = Not specified

TABLE 3

GROUNDWATER MONITORING PLAN DETECTION MONITORING - ANALYSIS SUMMARY

AEP BIG SANDY, HORSEFORD CREEK SITE LOUISA, KENTUCKY

Parameter	KDEP	Method*	Reporting Limit µg/L	MCL µg/L	Container	Preservation	Holding Time
indicator r arameters.							
Chemical Oxygen Demand	х	1 SM20 5220D	5,000	NS	Plastic	H2SO4, pH<2	28 days
Total Dissolved Solids	х	1 SM20 2540C	20,000	500,000**	Plastic	-	7 days
Total Organic Carbon	х	1 SM20 5310C	20	NS	Glass	H2SO4, pH<2	28 days
Chloride	х	2 EPA 300.1	100	250,000**	Plastic	-	28 days
Sulfate	х	2 EPA 300.1	400	NS	Plastic	-	28 days
Specific Conductance	х	Field	NS	NS	Field	-	Field
рН	х	Field	NS	NS	Field	-	Field
Hazardous Constituents							
Metals Copper	x	3 EPA 200.8	0.05	1,300	Plastic	HNO3, pH<2	6 months,

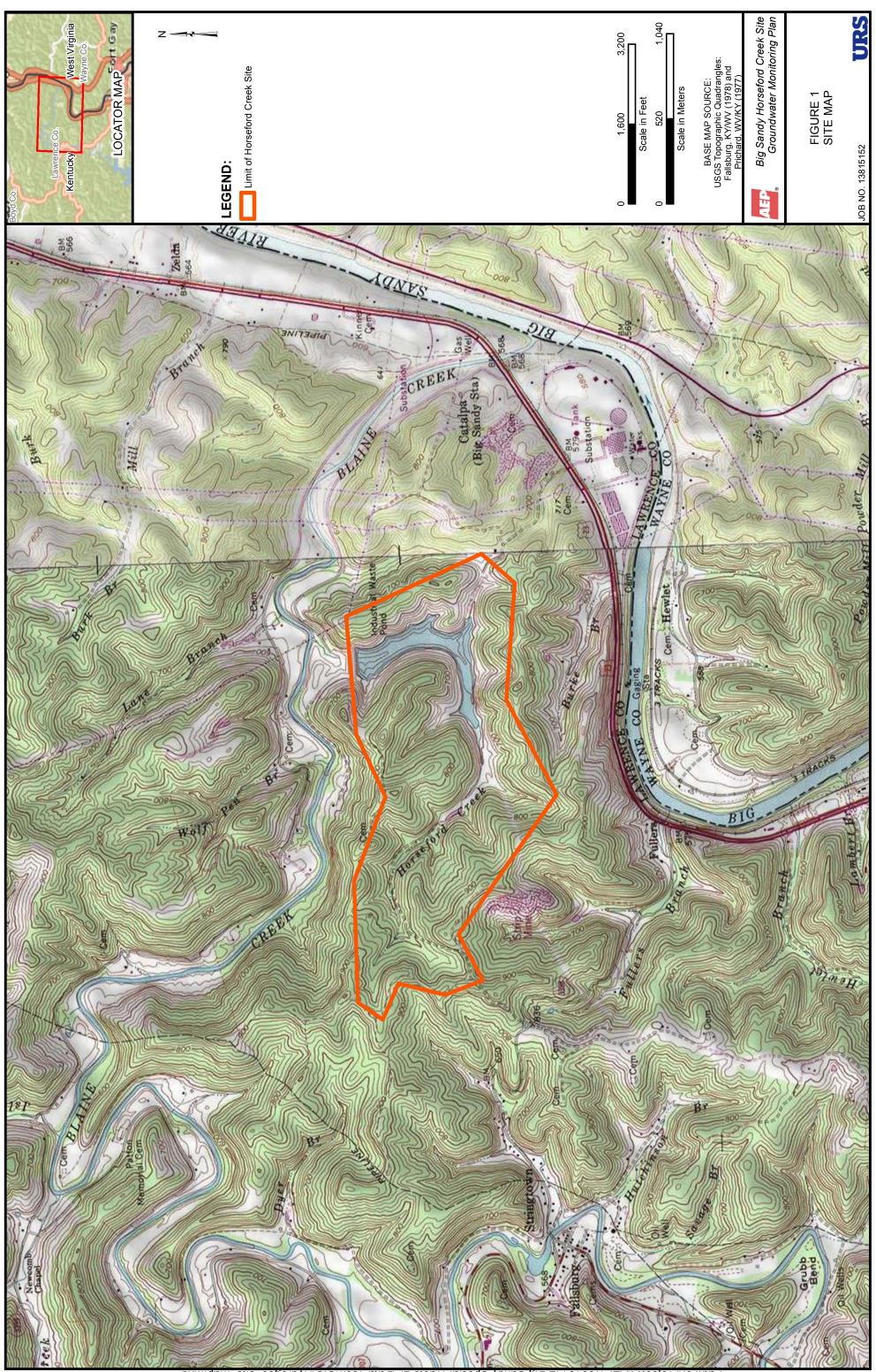
* Method SW-846 refers to Test Methods for Evaluating Solid Waste, Physical/Chemical Methods

** Secondary Standard

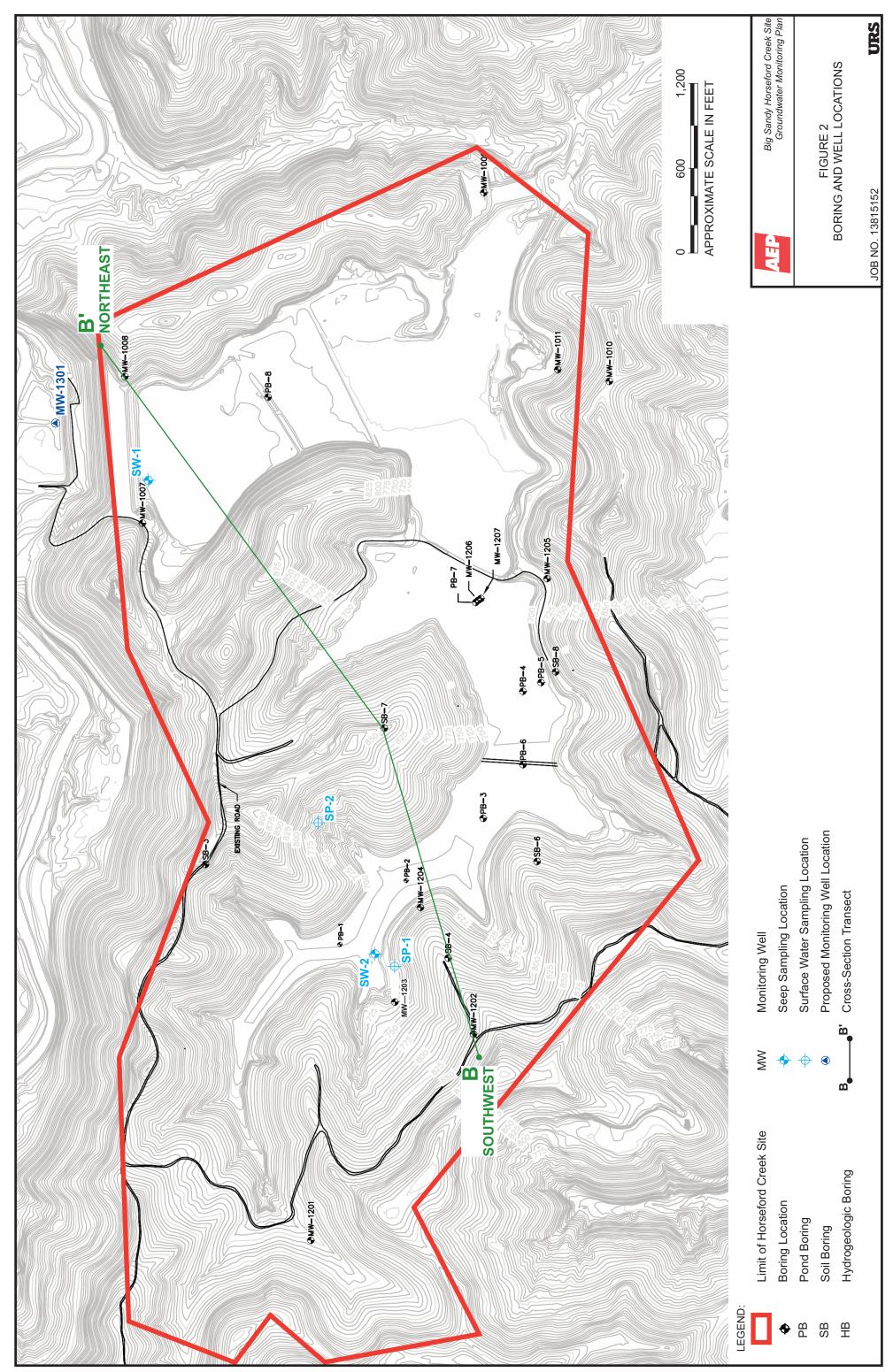
KDEP = Kentucky Department for Environmental Protection parameters per 401 KAR 45:160 Section 7 (2)

1 Standard Methods for the Examination of Water & Wastewater, 20 th edition, 1998

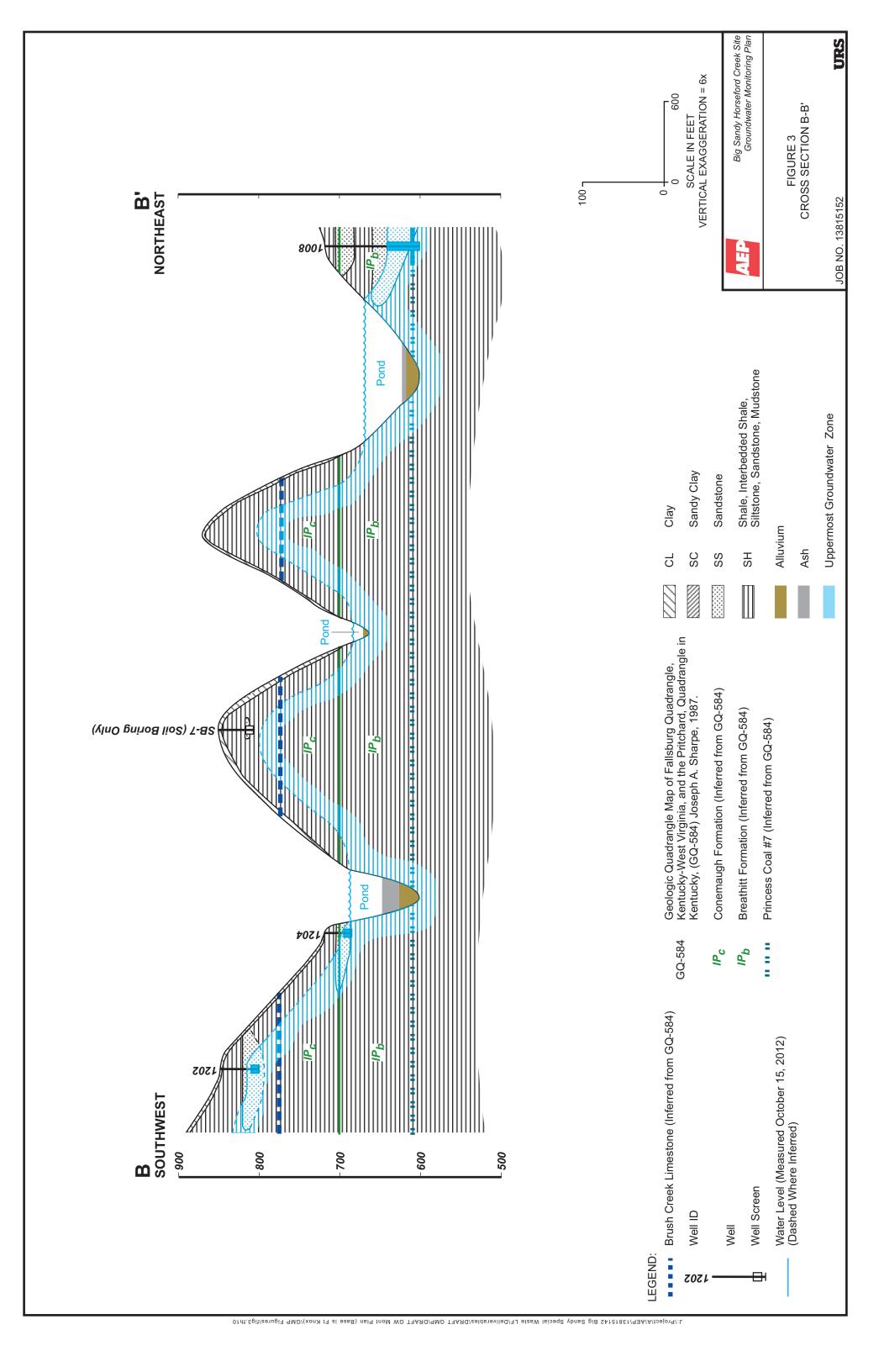
2 EPA/815-R-00-014: Methods for the Determination of Organic and Inorganic Compounds in Drinking Water, Vol 1, Aug 2000

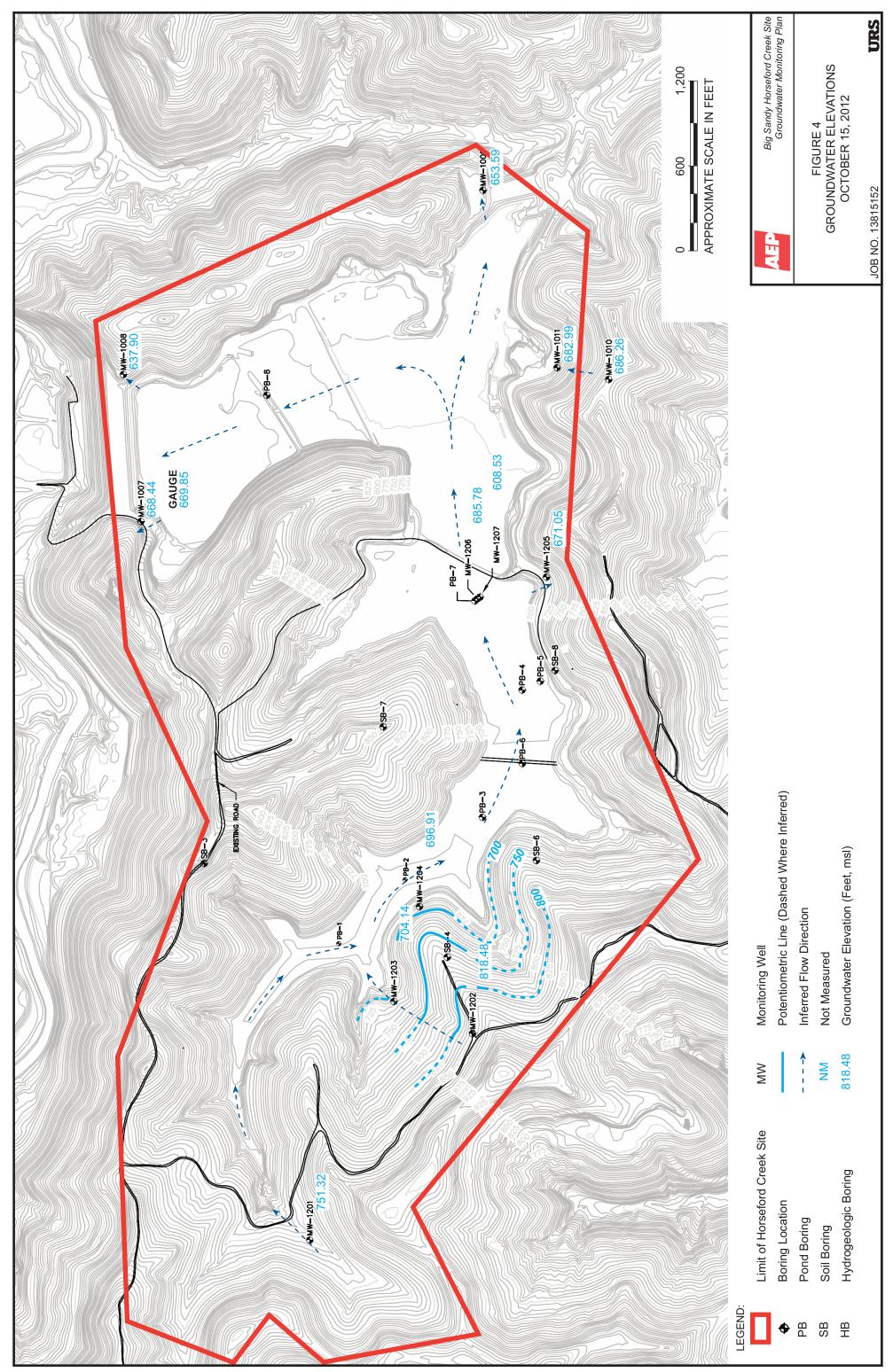

3 EPA/600/R-94/111: Methods for the Determination of Metals in Environmental Samples, Supplement 1, May 1994

Note: All samples to be stored and shipped chilled at 4°C.


MCL = US EPA Maximum Contaminant Level

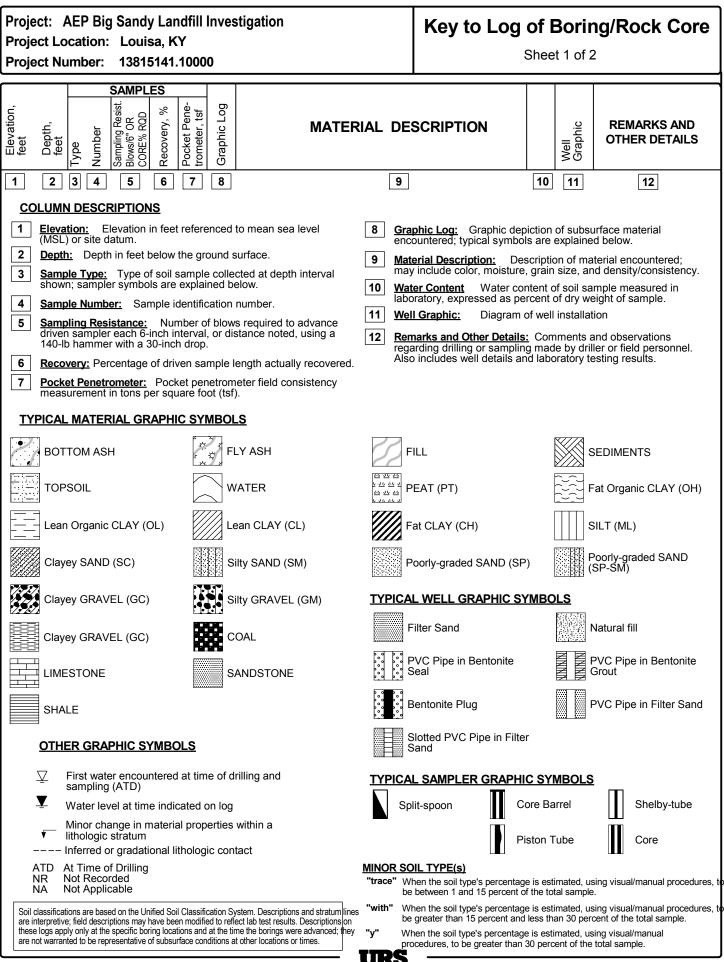
H2SO4 = Sulfuric acid


HNO3 = Nitric acid NS = Not specified



Path: J:\Project/AAP(//S15/142 Big Sandy Special Waste LF/Data-Tech/GIS/Hydrogeo site map.mxd

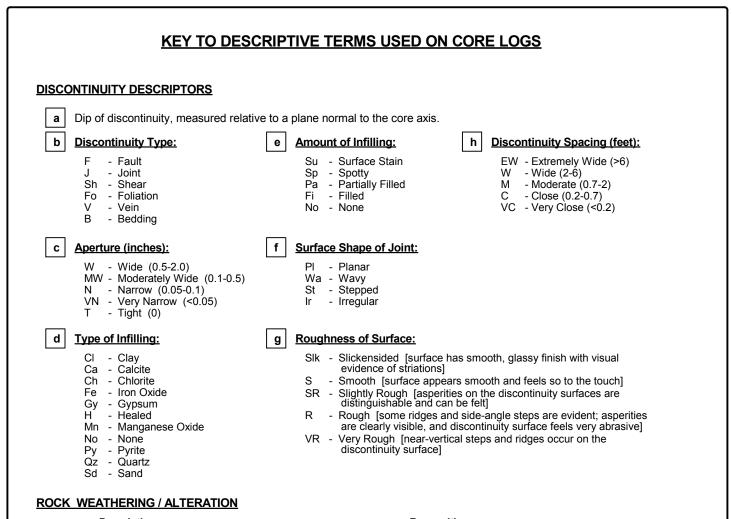
01:ht/sgii/sarugi 9MD/(xon3) fa i asa i and mon WD TAARDRAFT GMP/MAB TAARJas i a ft Knox)/sarugi 5 t Knox)/saru



0rdt.cf.4pit/IT/dc9rfsEr/JasteW lsicege Sandy Spite Stats: Tasta A/A/toject/AA/A/toject/A

APPENDIX A

BORING LOGS


2012 LOGS

Project: AEP Big Sandy Landfill Investigation Project Location: Louisa, KY Project Number: 13815141.10000

Key to Log of Boring

Sheet 2 of 2

Description Recognition **Residual Soil** Original minerals of rock have been entirely decomposed to secondary minerals, and original rock fabric is not apparent; material can be easily broken by hand Completely Weathered/Altered Original minerals of rock have been almost entirely decomposed to secondary minerals, although original fabric may be intact; material can be granulated by hand Highly Weathered/Altered More than half of the rock is decomposed; rock is weakened so that a minimum 2-inch-diameter sample can be broken readily by hand across rock fabric Rock is discolored and noticeably weakened, but less than half is decomposed; a Moderately Weathered/Altered minimum 2-inch-diameter sample cannot be broken readily by hand across rock fabric Slightly Weathered/Altered Rock is slightly discolored, but not noticeably lower in strength than fresh rock Fresh/Unweathered

Rock shows no discoloration, loss of strength, or other effect of weathering/alteration

OCK STRENGTH Description	Recognition	Approximate Uniaxial Compressive Strength (psi)
Extremely Weak Rock	Can be indented by thumbnail	35 - 150
Very Weak Rock	Can be peeled by pocket knife	150 - 700
Weak Rock	Can be peeled with difficulty by pocket knife	700 - 3,500
Medium Strong Rock	Can be indented 5 mm with sharp end of pick	3,500 - 7,200
Strong Rock	Requires one hammer blow to fracture	7,200 - 14,500
Very Strong Rock	Requires many hammer blows to fracture	14,500 - 35,000
Extremely Strong Rock	Can only be chipped with hammer blows	> 35.000

Kev

Project Location: Louisa, KY

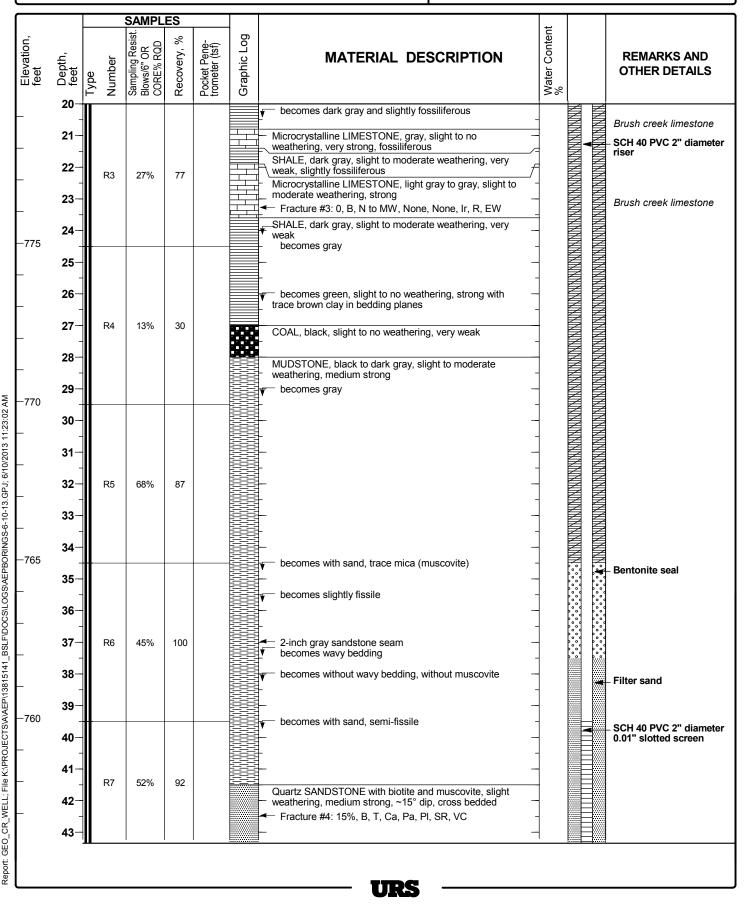
Project Number: 13815141.10000

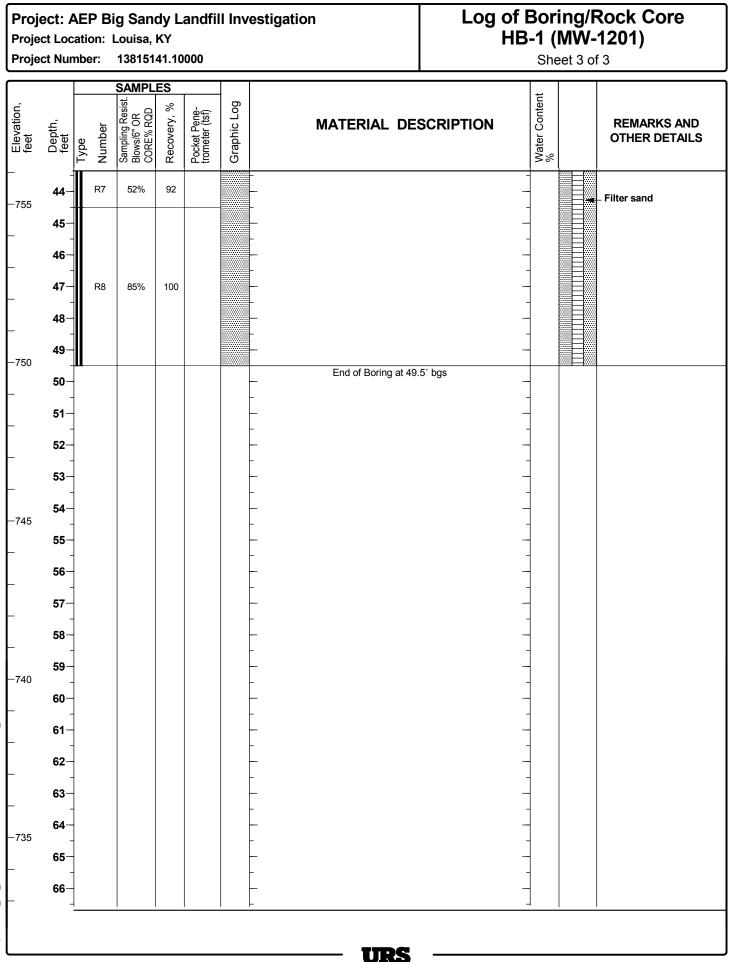
Log of Boring/Rock Core HB-1 (MW-1201)

Sheet 1 of 3

Date(s) Drilled	4/10/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method	HSA, HQ Wireline Core	Drill Bit Size/Type	6 1/4" HSA/6" OD bit with HQ core	Total Depth of Borehole	49.5 ft
Drill Rig Type	CME 55	Drilling Contractor	Frontz Drilling	Surface Elevation	799.4 ft above msl
Borehole	Backfill Borehole finished as monitoring well MW-1201	Sampling Method(s)	Split-spoon, HQ Wireline	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 252,798.0 E 2,099,724.0	Groundwater Level(s)	Not encountered		

				SAMPL	ES							
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	 r_	7	REMARKS AND OTHER DETAILS
_	0 - 1	S	SS-1	WOH 2 2	50	1.0 2.0 2.0		Stiff, moist, brown to reddish brown lean CLAY (CL), trace silt and sand Stiff to very stiff, moist, brown to reddish brown, very fine	-	NNNN		– Grout – SCH 40 PVC 2'' diamete
_	2			2 3 5		2.0 3.25 3.5		sandy lean CLAY (CL) [RESIDUUM] ↓ becomes very stiff to hard	-	NNNNN	WWW	riser
_	3	s	SS-2	5 5 7	50	4.5 3.5 4.5			17.7			PL=17 LL=35 PI=18 %F=67.9
—795 —	4 - 5	s	SS-3	2 2 5 7	63	1.75 3.0 4.0 3.0		→ becomes mottled reddish brown and light gray	-	NNNNNNN	NNNNNNN	
_	6— - 7—	s	SS-4	7 10 11 11	100	3.5 4.5 4.25		Medium dense, moist, dark reddish brown fine to medium clayey SAND (SC) with trace oxidized sandstone gravel, with tan and light gray mottling [RESIDUUM]	-	NNNNNNNN		
- 	8 - 9 -	s	SS-5	3 6 7	92	3.5 >4.5 3.5		Very stiff to hard, moist, light gray to light tan, fat CLAY (CH), trace sand [RESIDUUM] - 1/4" dark red-brown, highly weathered shale seam	-	NNNNNNNN	WWWWWW	
_	10 - 11	s	SS-6	9 2 5 9	92	>4.5 3.75 4.0 4.25		 	-	NNNNNNN	NNNNNN	
_	12	5	SS-7	15 50/5"	8	4.25 >4.5		✓ becomes gray to light gray				
_	13— - 14—		R1	24%	50			Quartz SANDSTONE, gray, slight to no weathering, very strong, slight to moderate HCL reaction (4.5"-6"), grading more flaggy and micaceous at 9" — Fracture #1: 0, B, N, None ,None, Ir, SR, M	-	NNNNNNN	NNNNNN	Auger/spoon refusal a 12.5 ft bgs
-785 -	- 15 -							- -	-	INNNNNN	MNNNNN	
_	16 - 17		R2	30%	50			 	-	NNNNNN		
_	- 18—								-	NNNNN	NNNNNNNNNNNNNNNNNN	
-780	19		D 2	270/	77				-	NNNN		
	20-		R3	27%	11							


Project Location: Louisa, KY


Project Number: 1

13815141.10000

Log of Boring/Rock Core HB-1 (MW-1201)

Sheet 2 of 3

Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:02 AM

Project Location: Louisa, KY

Project Number: 13815141.10000

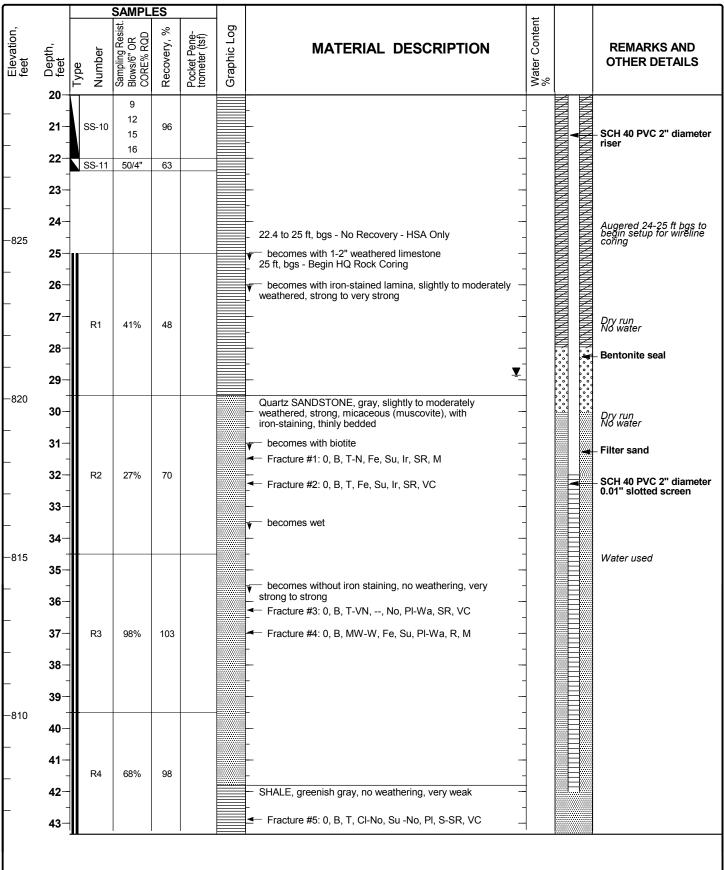
Log of Boring/Rock Core HB-2/SB-1 (MW-1202)

Sheet 1 of 3

Date(s) Drilled	4/13/12	Logged By	S. Becker	Checked By	J. Lach/V. Gautam
Drilling Method	HSA, HQ Wireline Core	Drill Bit Size/Type	6 1/4" HSA/6" OD bit with HQ core	Total Depth of Borehole	44.5 ft
Drill Rig Type	CME 55	Drilling Contractor	Frontz Drilling	Surface Elevation	849.6 ft above msl
Borehole	Backfill Finished as monitoring well MW-1202	Sampling Method(s)	Split-spoon, HQ Wireline	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 254,651.6 E 2,101,180.0	Groundwater Level(s)	Water level @ 28.85 ft bgs		

			SAMPL	ES				L.			
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content			REMARKS AND OTHER DETAILS
_	0	SS-1	2 3 3 3	100	1.5 3.5 2.0 1.5		Loose, moist, brown, sandy CLAY (SC), trace gravel (topsoil) Loose, moist, brown sandy CLAY (SC), trace gravel [RESIDUUM] Loose mottled brown and gray	-	MNNNNN	NNNNNN	– Grout – SCH 40 PVC 2" diameter riser
_	2 3	SS-2	3	83	2.5 2.5 2.75 2.5		Stiff to very stiff, moist, tannish brown and gray mottled lean CLAY (CL), trace sand, trace gravel [RESIDUUM] becomes reddish brown and gray mottled	-	NNNNNNNNN		
845 	4- - 5-	SS-3	2 4 5 6	21			 becomes with weathered brown shale fragments - -	-		MNNNNNNN	
_	6- - 7-	SS-4	4 6 8 9	13	3.25		becomes without shale fragments, hard	-	MNNNNNNN	MNNNNNNN	
_ —840	8- - 9-	SS-5	3 6 9 12	58	3.0 4.5 4.5 3.5		 becomes gray and tan mottled, without sand, dry to moist, without gravel 	- - - 17.7	<u> </u>	INNNNNN	PL=21 LL=45 PI=24 %F=91
-	10- - 11- -	SS-6	3 5 8 11	79	4.25 3.0 2.5		 ✓ becomes light gray ✓ - ✓ becomes brownish red 	-	NNNNNNN	NNNNNNNN	
_	12	SS-7	6 10 13 12	63	4.0 4.5 4.5		→ becomes gray to light gray, without silt	-	NNNNNNNNNNNNNNNNNNNNNNNNNNNN	NNNNNNNN	
-835 -	14- - 15- -	SS-8	6 16 16 24	75	>4.5		SHALE, greenish gray, highly weathered, very to content of the state	-	NNNNNNNN	NNNNNNN	
-	16	SS-9	24 49 50/4"	75			 becomes brownish gray, dry becomes greenish gray - 	-	MMMMMMMMMMMMMMMMMM		
 830	19- 20-						- 	-	WWWWWWWW		18 to 20 ft bgs - No Split Spoon Collected
	20						URS				

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:12 AM


Project Location: Louisa, KY

Project Number: 13

13815141.10000

Log of Boring/Rock Core HB-2/SB-1 (MW-1202)

Sheet 2 of 3

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:12 AM

Project Location: Louisa, KY

Project Number: 13

: 13815141.10000

Log of Boring/Rock Core HB-2/SB-1 (MW-1202)

Sheet 3 of 3

				SAMPL	ES					
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
-	44-		R4	68%	98				-	Filter sand
-805	- 45-							End of Boring at 44.5' bgs		
-	- 46								-	
-	- 47								-	
_	- 48-								_	
-	- 49-								_	
-800	50-								-	
_	- 51-								_	
-	52-								-	
-	53-								_	
_	-								-	
-795	54- -								-	
-	55- -								-	
_	56- -								-	
_	57- -								-	
_	58								-	
-790	59								-	
_	60								-	
_	61-								-	
	62 -								-	
	63- -								-	
-785	64-								-	
	65- -									
	66-									
								URS		

Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:12 AM

Project Location: Louisa, KY

Project Number: 13815141.10000

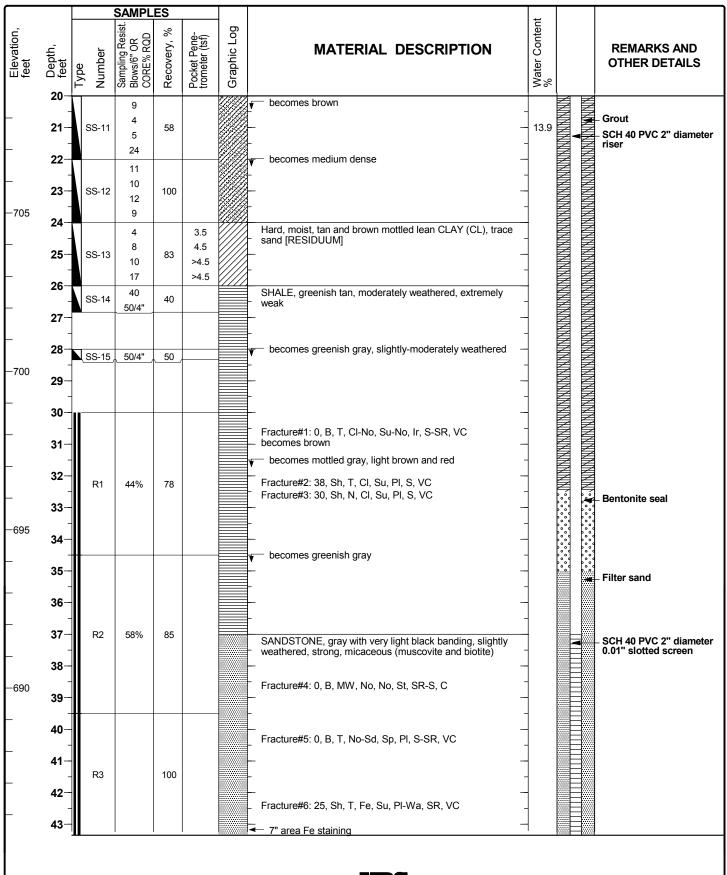
Log of Boring/Rock Core HB-7/SB-2 (MW-1203)

Sheet 1 of 3

Date(s) Drilled	4/16/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method	HSA, HQ Wireline Coring	Drill Bit Size/Type	6 1/4" HSA/6" OD bit with HQ core	Total Depth of Borehole	54.5 ft
Drill Rig Type	CME 55	Drilling Contractor	Frontz Drilling	Surface Elevation	728.7 ft above msl
Borehole	Backfill Finished as monitoring well MW-1203	Sampling Method(s)	Split-spoon/Wireline	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 252,205.1 E 2,101,406.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES				+			
Elevation, feet		Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		7	REMARKS AND OTHER DETAILS
_	0	SS-1	3 2 2 4	50	0.75 1.5		Loose, moist, brown clayey SAND (SC), trace sandstone gravel [FILL]	16.4		NWNNNNN	- Grout PL=18 LL=31 PI=13 %G=8.3 %S=44.5 %F=47.2 - SCH 40 PVC 2" diameter
- 	2 3	SS-2	4 4 5 6	71	3.5 3.0 3.0		Stiff to very stiff, moist, reddish brown, lean CLAY (CL) [FILL] 1" red-brown medium sand seam 2" medium reddish brown sand seam with sandstone fragments	-	WWWWWWW	MNNNNNNN	riser
_	4 - 5	SS-3	3 4 7 7	83	3.5 4.5 4.5 3.5		 becomes with sandstone fragments (gravel) with red-brown sand iron-staining 	16.7	NNNNNNNN	ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	PL=17 LL=31 PI=15
_	6 - 7	SS-4	14 15 17 20	92	4.5 4.5 >4.5 >4.5		Dense, dry to moist, red to brown, clayey SAND (SC) with gravel [ALLUVIUM]	+ - -	NNNNNNNN	WWWWWW	Iron staining on sand and gravel
-720	8 - 9 -	SS-5	7 12 13	100	4.0 4.0 4.5		 becomes mottled brown and orange - -<td>10.4</td><td>NNNNNNN</td><td>MNNNNN</td><td>%G=19.3 %S=49.8 %F=30.9</td>	10.4	NNNNNNN	MNNNNN	%G=19.3 %S=49.8 %F=30.9
-	10 - 11	SS-6	16 5 13 14	100	4.0		- - ▼ — becomes increasing sand and gravel content -	-	INNNNNNNN	NNNNNNN	
	12 - 13	SS-7	12 11 17 27	92	3.5 3.25 3.5		Very stiff to hard, moist red-brown fat CLAY (CH) trace sand and gravel [ALLUVIUM]	17.6	NNNNNNNN	MNNNNNN	
-715 	14 - 15	SS-8	17 3 6 10 8	100	>4.5 1.0 2.0 3.0		4" reddish brown sand layer with trace clay Medium stiff to stiff, moist, red-brown silty, clayey SAND (SC-SM) with weathered sandstone gravel [ALLUVIUM]	-	<u>UNNNNNNNNN</u>	MNNNNNNNN	
_	16	SS-9	8 23 15 13 12	83	3.0 1.0 3.0 2.5 3.5		2" sandstone fragment in spoon	12.2	NNNNNNNNN	WWWWWWWW	PL=15 LL=20 PI=5 %G=16.6 %S=53.6 %F=29.8
—710 —	18 - 19 -	SS-10	4 3 6 6	63	0.0		Loose, moist to wet, red-brown clayey SAND (SC), trace sandstone gravel [ALLUVIUM]	+ - -	NNNNNNNN	NNNNNNNN	
	20-				1	ベトンナメン	URS	1			

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:25 AM

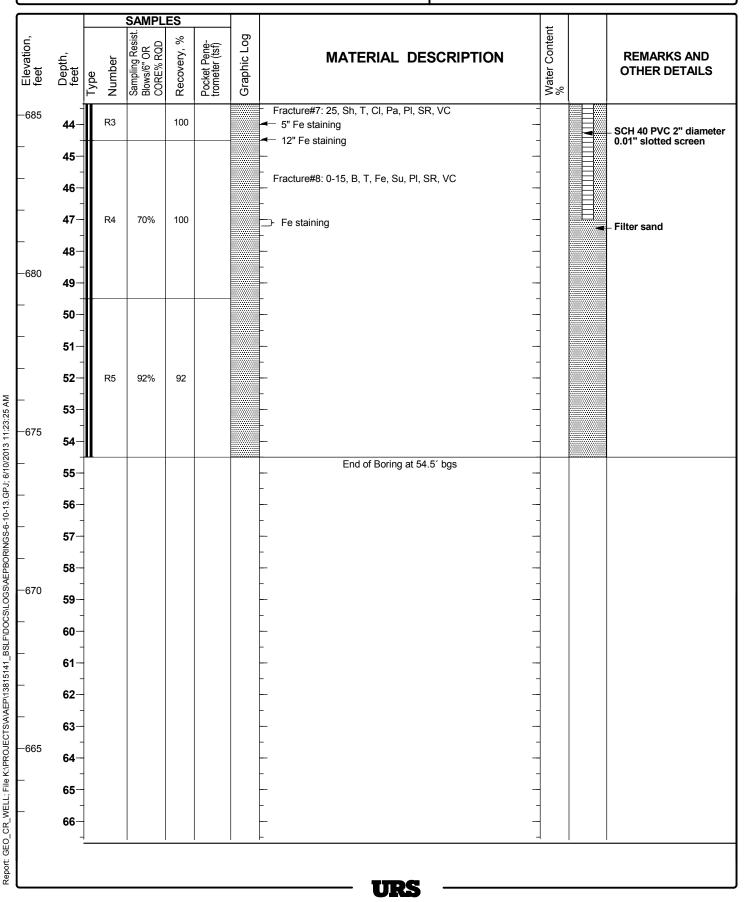

Project Location: Louisa, KY

Project Number: 1

13815141.10000

Log of Boring/Rock Core HB-7/SB-2 (MW-1203)

Sheet 2 of 3


Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:25 AM

Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring/Rock Core HB-7/SB-2 (MW-1203)

Sheet 3 of 3

Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring/Rock Core HB-4/SB-5 (MW-1204)

Sheet 1 of 2

Date(s) 4/18/12	Logged By	J. Lach	Checked By	V. Gautam
Drilling Method HSA, HQ Wireline Coring	Drill Bit Size/Type	6 1/4" HSA, 6" OD bit with HQ core	Total Depth of Borehole	35.0 ft
Drill Rig Type CME 550 Truck	Drilling Contractor	Frontz Drilling	Surface Elevation	721.3 ft above msl
Borehole Backfill Finished as monitoring well MW-1204	Sampling Method(s)	Split-spoon, HQ Wireline	Hammer Data	140#/30" Drop Auto
Boring Location N 252,025.3 E 2,102,075.0	Groundwater Level(s)	Not encountered	•	

_				SAMPL			4 1		цт.			
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		7	REMARKS AND OTHER DETAILS - 2.5 ft stickup
F	0	Π		6				Light brown, heavily weathered sandstone (access road)			4	- Grout 20% mix ~30
	1-			22	86	>4.5		Hard, dry, light brown, lean CLAY (CL) [RESIDUUM OR				gallons used
-720	· ·			42				FILL]				
	2-			50/3				- Heavily weathered SANDSTONE, light brown, with some -				SCH 40 PVC 2" diameter riser
F	-	-						lean clay, dry (Auger Cuttings)				
L	3-											No recovery - HSA
	-											No recovery - HSA cuttings cohsist of mixtu of lean clay and heavily weathered sandstone fragments - all dry
╞	4											fragments - all dry
	5	.						-		X		
╞	.							Fine to medium grained SANDSTONE, brown, moderately				Auger refusal at 5.0 ft bo
	6-							- MUDSTONE, greenish brown, moderately weathered, -				
-715	-							_ weak Fracture #1: 0, B, No, W, VN, PI, SR				
L	7							- Fracture #2: 0, B, No, W, VN, PI, SR -				
	-		R1	18%	70							
	8											
	9											
\vdash	9-						ĒĒ					
	10-	₩						Fracture #3: 0, B, No, W, VN, PI, SR				
F	-							 becomes lightly weathered, extremely weak, micaceous, with iron staining 				
740	11-									X		
-710	-											
	12-											Driller reported constant down pressure Little to no H20 loss
	-		R2	22%	23							Little to no H20 loss
-	13-											
	14-							Micaceous SANDSTONE, greenish gray, strong				
F								whoese of the provide strategy of the provide stra				
	15	╢						becomes greenish gray, very strong –				
-	-							becomes brown, slightly weathered		N.		Bentonite Hydrated
-705	16-							 ⊮ becomes greenish gray, micaceous, cross-bedded, very			0.00	,
715 710 705 	-							weak				
\mathbf{F}	17-		D 2	8E0/	00			– Fracture #4: 0, B, No, W, VN, PI, SR –				
	- 18		R3	85%	90							
\vdash	- 10							becomes mottled with partial brown iron staining and				_ #5 filter sand
	19-							greenish gray, strong in brown stained portions				
_	20-							→ → → → → → → → → → → → → → → → → → →				

Project Location: Louisa, KY

Project Number: 13815141.10000

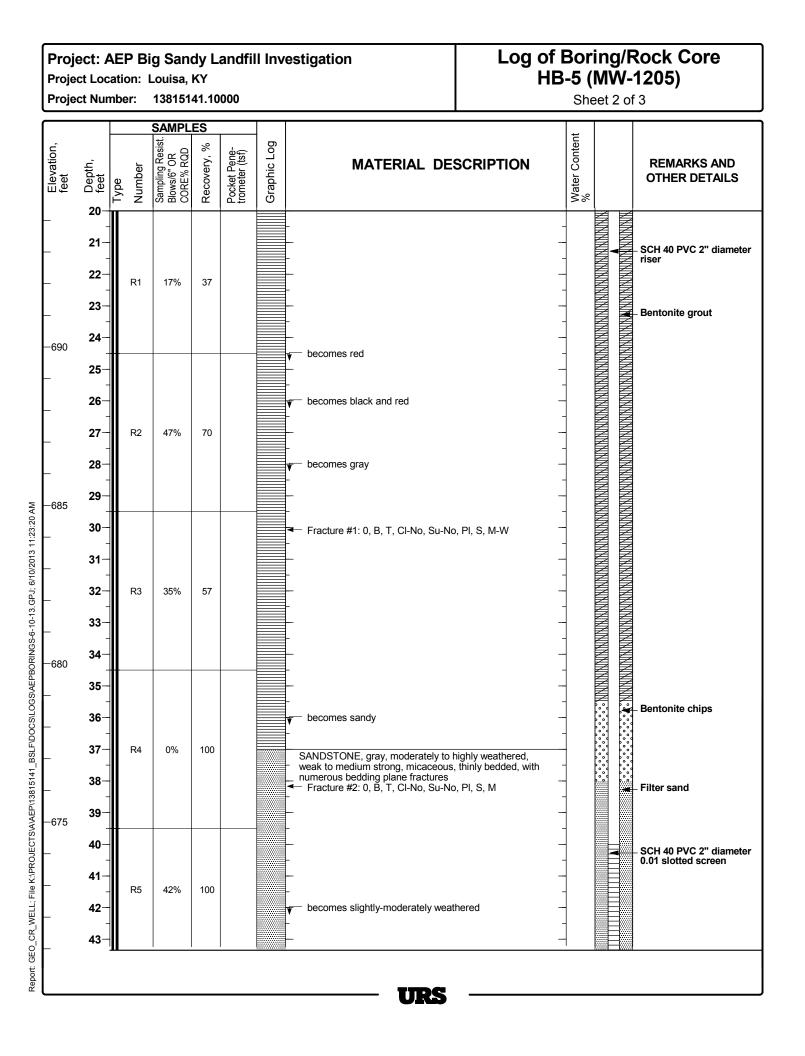
Log of Boring/Rock Core HB-4/SB-5 (MW-1204)

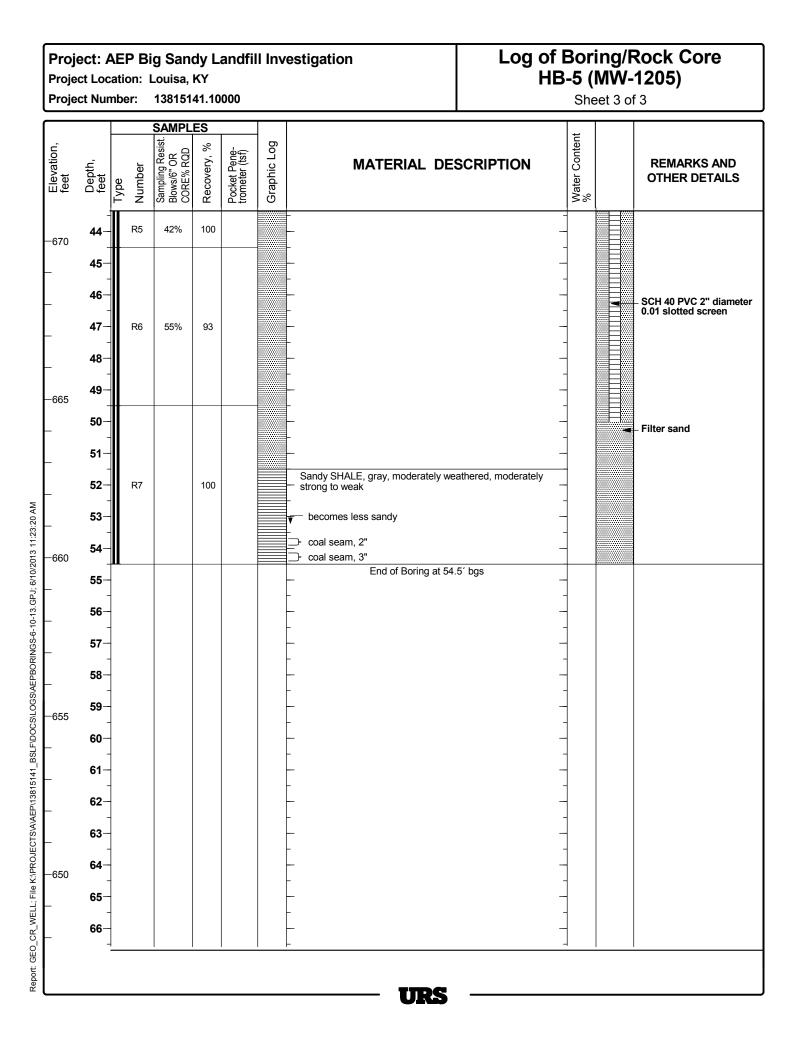
Sheet 2 of 2

			SAMPL	ES						
Elevation, feet	− Dept h, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
-	20						becomes greenish gray, micaceous, weak	_		SCH 40 PVC 2" diameter 0.1" slotted screen
—700 — —	21- 22- 23- 24- 25-	R4	65%	82			 Fracture #5: 0, B, No, W, VN, PI, SR becomes brown, coarse, very strong, micaceous becomes greenish gray, strong, very micaceous, wet, coarse grained becomes brown, coarse, very strong becomes dark brown, moderately weathered, strong becomes light gray, coarse, very strong with some sections of slight weathering, brown 			#5 filter sand
 -695 -	23 26- 27- 28- 29- 30-	R5	80%	100			 becomes gray, coarse-grained, micaceous, weak with stained sections (strong where stained) Fracture #6: 90, J, Su, W, VN, Ir, VR Fracture #7: 0, B, No, W, VN, PI, SR 			
 690 	31- 32- 33- 33- 34-	R6	75%	88			- SHALE, gray, fissile, strong - MUDSTONE, gray, very weak, slightly fissile		-	2" diameter sump
 685 	35						End of Boring at 35' bgs			
_ _ _680	39- 40- - 41- - 42- -									
-	43–						URS			

Report: GEO_CR_WELL; File K:\PROJECTS\A\AEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:17 AM

Project Location: Louisa, KY


Project Number: 13815141.10000


Log of Boring/Rock Core HB-5 (MW-1205)

Sheet 1 of 3

Date(s) Drilled 4/19/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method HSA, HQ Wireline Coring	Drill Bit Size/Type	6 1/4" HSA/6" OD bit with HQ core	Total Depth of Borehole	54.5 ft
Drill Rig Type CME 55	Drilling Contractor	Frontz Drilling	Surface Elevation	714.3 ft above msl
Borehole Backfill Finished as monitoring well MW-1205	Sampling Method(s)	Split-spoon, HQ Core	Hammer Data	140#/30" Drop Auto
Boring Location N 251,131.0 E 2,104,397.0	Groundwater Level(s)	Not encountered	•	

				SAMPL	ES				t			
Elevation, feet	D epth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		_	REMARKS AND OTHER DETAILS
╞	0			2			•	Very loose, moist, black bottom ash, trace gravel [BOTTOM ASH]		MNN		Bentonite grout
_	1	SS	5-1	1 2 1	100				-	NNNNN	WWW	SCH 40 PVC 2" diameter riser
L	2-			2			•					
_	- 3	SS	5-2	1 3	33				-	NNNN		
	4			4		2.0		Medium stiff to very stiff, moist, brown to tan lean CLAY — (CL) with sand and trace gravel [RESIDUUM]	-			
-710	-			9 5		2.75 1.0		-	-			
-	5	SS	5-3	5 8 8	100	1.0 2.75 1.5			15.8	NNNN	NNNN	PL=17 LL=33 PI=16 %F=47.6 Shelby tube sample 5-7' bgs Down pressure (psi) = 200-600 psi
L	6			9		2.0		ightarrow becomes stiff to very stiff, reddish-brown, trace sand $ ightarrow$	-			Down pressure (psi) = 200-600 psi
Ļ	7	s	6-4	6 7	83	1.75 3.5		- 	16.1			PL=16 LL=32 PI=16 %F=49.5
	8-			8		>4.5		-	-		M	
F	_			8 15				SHALE, tan, moderate to highly weathered, weak to extremely weak, dry to moist	-			
-705	9	SS	8-5	15	75						NNN	
	10-			12				- y → becomes dry -			M	
F	-			4				-	-			
-	11-	ss	5-6	17 23 19	100					UNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUN	MMM	
L	12			21					-			
Γ	-			21				-	-			
\vdash	13-	SS	5-7	29	83							
	14-			35							MN	
-700				11				-	4		NN	
	15	s	5-8	20 21	100			becomes white/gray -	-		MN	
Γ	-			20				-	1		M	
F	16-	L SS	S-9		100 ,			becomes greenish gray	1	K		Outside of spoon wet
	17-]		NN	
F	"							-	_			
	18-								-	N	M	
F	-							-	-			
-695	19-								-	NNNNNNNNNNNNNNNNNN	NNNNN	
	-	F	21	17%	37			becomes gray, slight weathering, very weak to extremely weak	1		NN	Auger to 19.5 ft to begin coring.
	20–								-			
								URS				

Project Location: Louisa, KY

Project Number: 13815141.10000

Log of Boring HB-3 (MW-1206)

Sheet 1 of 6

Date(s) Drilled	4/23/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method	Rotosonic (No vibration), Wireline	Drill Bit Size/Type	8.0" ID steel casing, 4.0" ID core barrel	Total Depth of Borehole	124.5 ft
Drill Rig Type	Versa-Sonic	Drilling Contractor	Frontz Drilling	Surface Elevation	695.4 ft above msl
Borehole	Backfill Finished as monitoring well MW-1206	Sampling Method(s)	Rotosonic Core Barrel	Hammer Data	Not Applicable
Boring Lo	ocation N 251,617.9 E 2,104,243.0	Groundwater Level(s)	Not encountered		

				SAMPL	ES							
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		_	REMARKS AND OTHER DETAILS
-695	• -	-						See log for PB-7 from 0-111 ft bgs	-		NNN	Bentonite chips
	1-	-							-			
	2-										MMMMMMM	
_								-	-		NN	
_	3-								-			SCH 40 PVC 2" diamete
	4-										NNN	riser
_	-							-	-			
-690	5-								-			
	6-								-			
_	-							-	-		NNN	
_	7											
	8-	-							-			
_	- 9–							-		NNN	NNN	
_	.							-	-			
-685	10-								-		NNN	
000	- 11								_		NNN	
_	-	-						-	-			
_	12-											
	13-								_			
_	-							-	-		NN	
L	14-								_			
	15-								-	ŃN	NN	
-680	- 16-							-	-			
L	-01							-	_	NNN	NNN	
	17-	-							-	NNN	NNN	
	- 18-									NNN	NN	
–	-							-	-	INN	INN	
L	19-	-							-	MNNNNNNNNNNNNNNNNNNNNN	NNNNNNNNNNNNNNNNNNNN	
	20-							-	1			
								URS				

	ct Loc	ation	: L	g San _ouisa, 138151	KY		l Inv	estigation		Lo HB-	-3 (of B MW eet 2	/-'	ring 1206) ₆
				SAMPL	ES							1		
Elevation, feet	D epth, feet	Type	NUMBER	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION		Water Content %	1		REMARKS AND OTHER DETAILS
—675 —	- 21 -							-		-				Bentonite chips
_	22- - 23-							-		-				SCH 40 PVC 2" diameter riser
_	24— 							-		-		NNNNNNN		11561
—670 —	26 - 27							-		-		NNNNNN		
_	27- - 28- -							-		-				
_ 665	29— _ 30—									-				
_	- 31- - 32-							-		-				
_	33— -							-		-		INNNNNN		
— —660	34— - 35—									-		UNININININININININININININININININININI	URH ARARAN BARANANAN ARANANAN KANANANANANANANANANANANANAN	
_	36— 	-						-		-		NNNNNN		
_	- 38— -							-		-		NNNNNNN		
-	39- - 40-									-		NNNNNN		
—655 —	- 41 -							-		-		NNNNNNN		
_	42- - 43-							-		-		NNNNNN		

Project: AEP Big Sandy Landfill Investigation Project Location: Louisa, KY

Project Number:

Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:14 AM

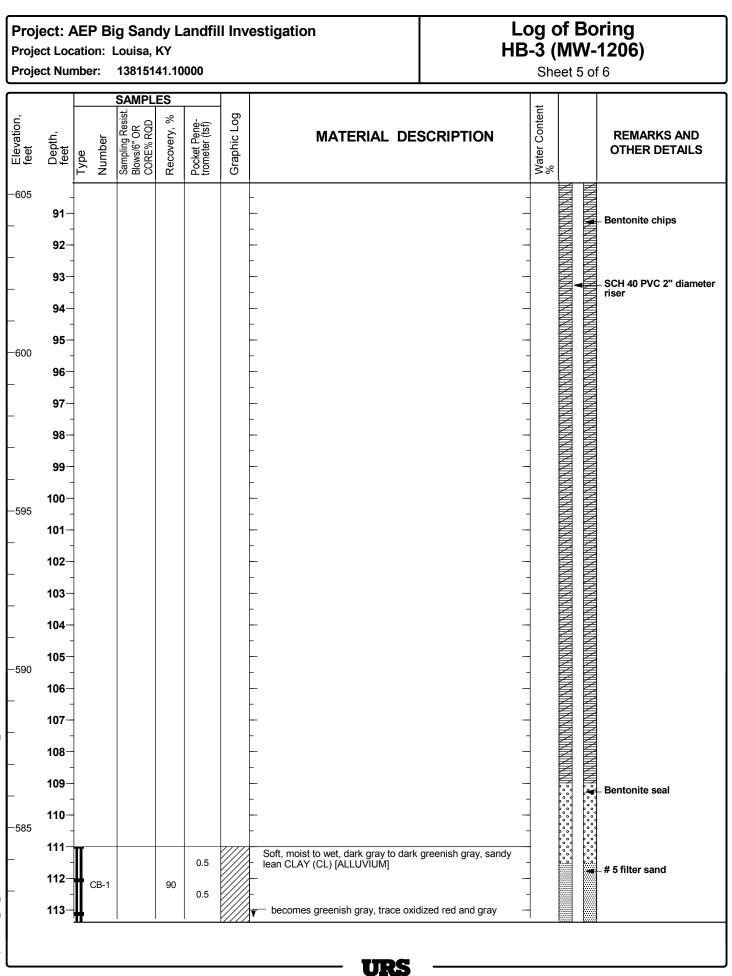
13815141.10000

Log of Boring HB-3 (MW-1206)

Sheet 3 of 6

			S	SAMPL	ES							
Elevation, feet	Depth, feet	Type	INULIDE	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content	0/		REMARKS AND OTHER DETAILS
F	44-										NNN	
-	-							-	-		NNN	
-650	45-								_		NNNNNNNNNNNNN	Bentonite chips
	46-								-			
	- 47							-	_			
-	-							-	-			SCH 40 PVC 2" diameter riser
_	48-								_		NNN	
	49-								-	NNN	NNN	
Γ	- 50											
-645	-							-	-		MM	
L	51-								_			
	52-								-		NNN	
	53-								_		NNN	
╞	-							-	-		NNN	
L	54-								_		NNN	
	55								-		MM	
-640	- 56							-	_		NNN	
╞	-							-	-			
L	57-								_		NNN	
	58-								-		NNN	
	- 59–							-		NN	NNN	
╞	-							-	-		NNN	
-635	60-										NNN	
	61-								-			
Γ	- 62										INN	
╞	-							-	-			
L	63-										INNN	
	64-								-		MM	
	- 65-										MNN	
-630	-							-	-		NNN	
F	66-											
								TTDC				
								URS				

Project Location: Louisa, KY

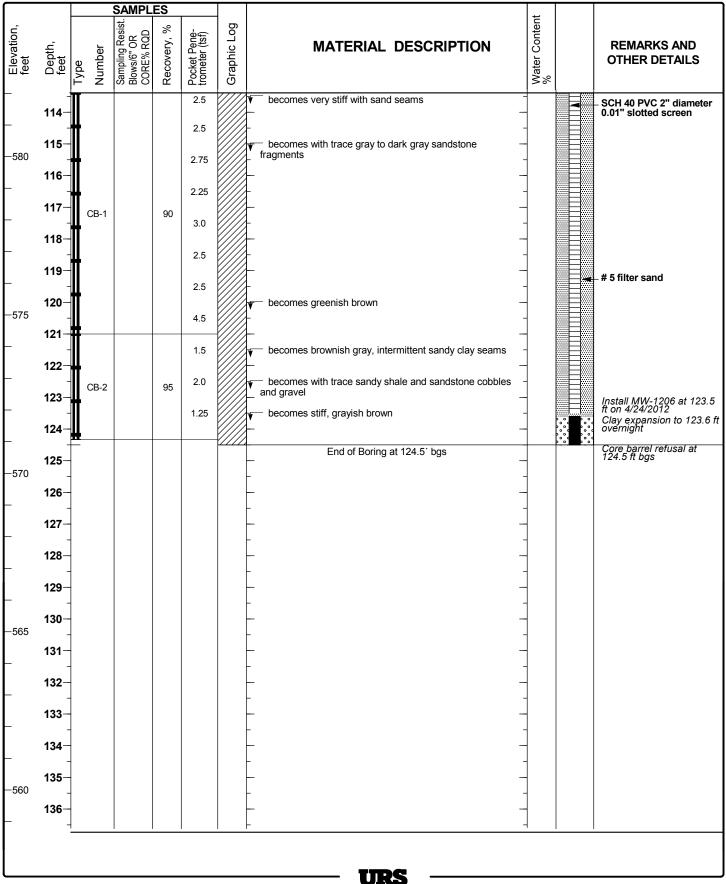

Project Number: 1

13815141.10000

Log of Boring HB-3 (MW-1206)

Sheet 4 of 6

			SAMPL	ES						J
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
	67-									Bentonite chips
	68-							-		
	69-							-		SCH 40 PVC 2" diameter iser
-625	70-							-		1301
	71-							-	NNNN	
	72							-	NNNN	
	73							-	NNNN	
	- 74						-			
-620	- 75						-	-		
020	76						-	-		
	- 77						-	-	NNNNN	
	- 78						-	-		
	- 79						-	-	NNNN	
	- 80						-	-	NNNN	
-615	- 81							-		
	- 82							-		
	- 83—						- 	-	NNNNN	
	- 84						- 	-		
F	- 85—						-	-	NNNNN	
-610	- 86—						-	-	NNNNN	
F	- 87—						- 	-	NNNNN	
F	- 88-						-	-	NNNN	
F	- 89–						- 	-	UNIN MANANANA MANANANA MANANANA MANANA MANANANAN	
F	- 90-						-	-	ANNNN ANNNN	
<u>ــــــ</u>							URS)


Project Location: Louisa, KY

Project Number: 1

13815141.10000

Log of Boring HB-3 (MW-1206)

Sheet 6 of 6

Project Location: Louisa, KY

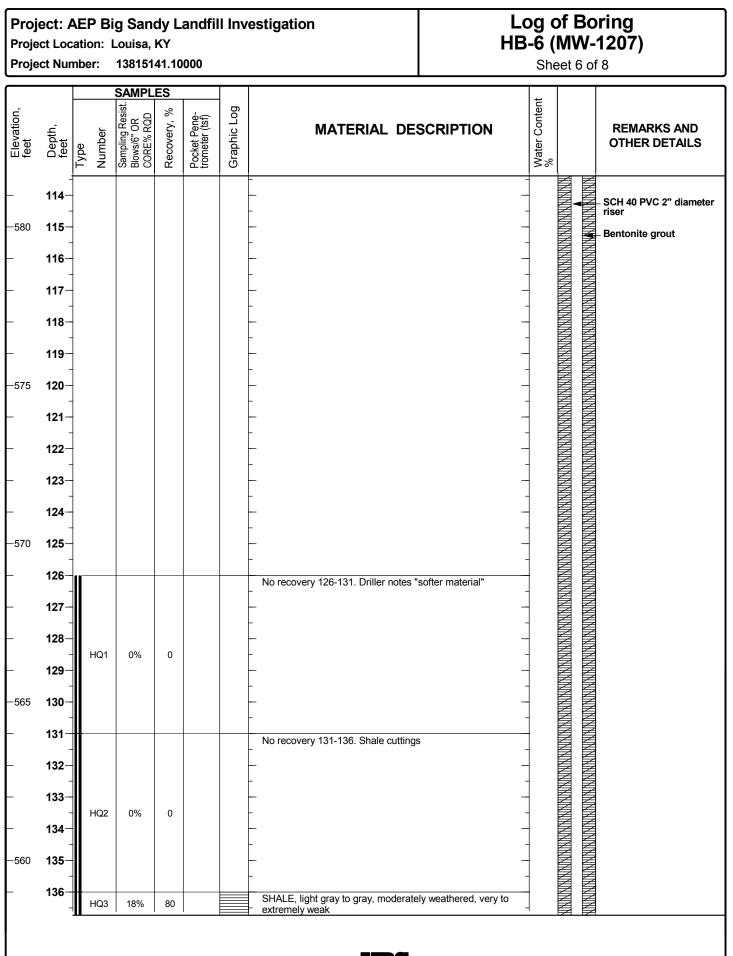
Project Number: 13815141.10000

Log of Boring HB-6 (MW-1207)

Sheet 1 of 8

Date(s) Drilled	4/24/12	Logged By	S. Becker	Checked By	J. Lach
Drilling Method	Rotosonic (No vibration), Wireline HQ	Drill Bit Size/Type	8" ID steel casing, 6" OD bit HQ Wireline	Total Depth of Borehole	166.0 ft
Drill Rig Type	Vibra-Sonic	Drilling Contractor	Frontz Drilling	Surface Elevation	695.0 ft above msl
Borehole	Backfill Finished as monitoring well MW-1207	Sampling Method(s)	HQ Wireline	Hammer Data	Not applicable
Boring Lo	ocation N 251,598.3 E 2,104,256.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES					t			
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL D	ESCRIPTION	Water Content %		- 1	REMARKS AND OTHER DETAILS
-695	0-						See log for boring PB-7			NNNN		Bentonite grout
_	1- - 2-						- -	-			\prec	- SCH 40 PVC 2" diameter riser
-	- 3						-	-				Augered to 126 ft without sampling
-	4 -						- -	-		INNNN		
-690	5 - 6						-	-		NNNN	NNNN	
	6 - 7						-	-		NUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNU		
-	- 8						- 	-				
-	9						-	-		NNNN	NNNN	
685 	10 - 11						-	-		NNNN		
-	12-						-	-		NNNNN	MMM	
-	- 13 -						- -	-		NNNN		
	14- -						-	-				
680 	15 - 16						-	-				
$\left \right $	- 17-						-	-		NNNNN	NNNN	
	- 18 -						- -	-		INNNNNNNNNNNNNNNNNNNNN		
-675	19						-	-				
	20						URS					

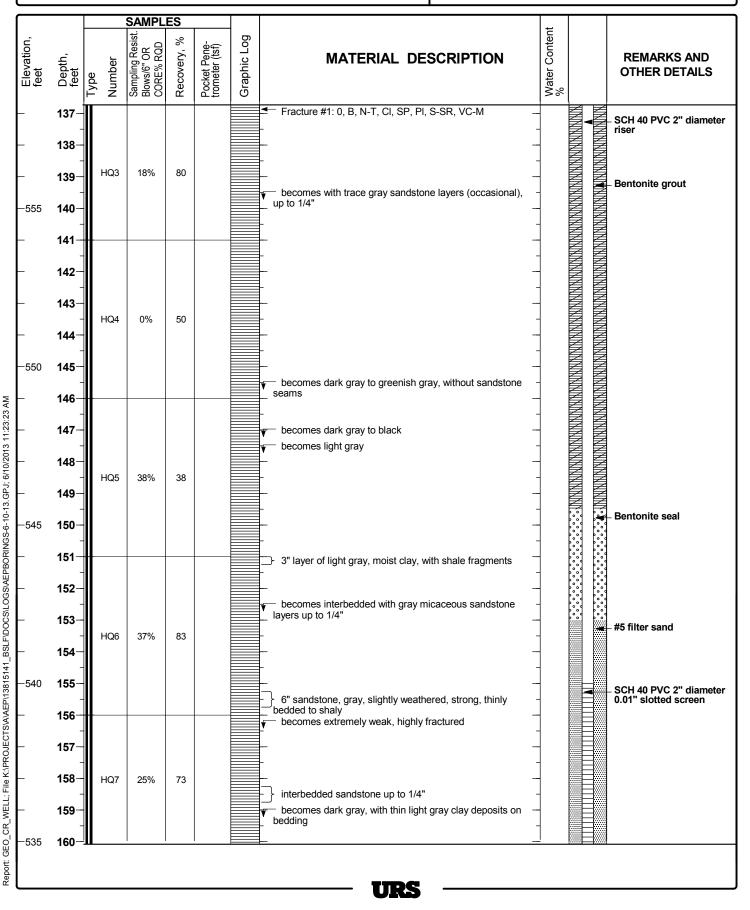

Projec	t Loc	ation: I	Louisa,	KY		l Inv	estigation	L HE	B-6 (of Bo (MW- eet 2 of	1207)
			SAMPL	FS							
Elevation, feet	Depth , feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
010							-		-		
_	21-						-		_		SCH 40 PVC 2" diameter riser
_	22-						_		-		Bentonite grout
_	23-						-		-	NNN	Ũ
	24-						-		_	NNNN	
	-						-		-	NNN	
-670	25-						-		_		
_	26-						_		_		
_	27-						-		_	NNN	
_	_ 28—						-		_		
_	_ 29—						-		-	NNNN	
	-						-		-		
-665	30-						-		-		
_	31-						_		_		
_	32-						_		_		
_	33-						-		_	NNNN NNNN	
_	- 34						-		_		
	-						-		-		
-660	35						-		_	NNNN NNNN	
_	36-						_		_	NNN	
-	37-						_		_	XINNN NNNN	
_	- 38						-		_	NNN	
	 39—						-		_	<u>NNNN NNNN NNNN NNNN NNNN NNNN NNNN NN</u>	
	-						-		-		
-655	40						-		-	NNNN NNNN	
-	41-						-		_	NNNN	
-	42-						-		_	UNININININININININININININININININININI	
-	43-								_		
							URS				

-	ct Loc	atior	n: L	g San ₋ouisa, 138151	KY		ll Inv	estigation	Lo HB	-6 (of Bo (MW- eet 3 c	57ing - 1207) of 8
<u> </u>				SAMPL	ES	1				1 te		
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
_	- 44 -							-	- 	-		SCH 40 PVC 2" diameter riser
-650	45							-	-	-	NNNN	
-	46							-	-	-	NNNNN NNNNN	Bentonite grout
-	47 -							-	-	-	NNNN	
-	48 -							-	-	-	<u>NNNNN</u> NNNNN	
_	49 -							-	-	-	NNNN	
-645	50— -							-	-	-	NNNN	
-	51							-	-		<u>NNNNN</u> NNNNN	
_	52 -							-	-		NNNN	
	53— -							-	-		NNNN	
640	54— - 55—							-	- -		NNNNN NNNNN	
	- - 56-							-			NNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
L	- 57-							-	-	-		
_	- 58							_	_	-	NNNNN NNNNN	
_	- 59							-	-	-	NNNN	
-635	- 60							-	-	-	NNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUN	
_	- 61							-	-	-	NNNNN WWWW	
_	- 62							-	-		<u>NNNNN</u>	
_	- 63—							-	_		<u>NNNNN</u>	
-	- 64							-	-		NNNNN NNNNN	
-630	65							-	-		<u>NNNNN</u>	
_	- 66							-	-		NNNN	
								URS				

	ct Loc	atio	n: I	g San Louisa, 138151	KY		ll Inv	estigation	н	Log c IB-6 (I _{She}	of Bo MW- eet 4 of	1207)
				SAMPL	ES							
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
-	67-	-						-			INNNN INNNN	SCH 40 PVC 2" diameter riser
_	68- -	-						-		-	NNNNN NNNNN	
-	69-							-		-	NNNNN NNNNN	Bentonite grout
—625 	70- - 71-							-		_	NNNNN	
_	71 - 72-							-		_	NNNNN NNNNN	
_	- 73-	-						-		-	NNNNN	
_	- 74-	-						-		-	NNNNN VNNNNN	
-620	75-							-		_	NNNNN NNNNN	
_	76- -							-		_	NNNNN NNNNN	
_	77-	-						-		-	NNNNN	
_	78- -	-						-		_	NNNNN NNNNN	
— —615	79- - 80-							-			NNNNN NNNNN	
_	81-	-						-		_	NNNNN NNNNN	
_	- 82-	-						-		_	NNNNN	
_	83-							-			NNNNN VNNNN	
-	84-							-			UMINIMIMIMIMIMIMIMIMIMIMIMIMIMIMIMIMIMIM	
—610	85-							-			NNNNN NNNNN	
-	86- -	-						-			NNNNN	
	87- - 88-							-			NNNNN NNNNN	
_	- 89-	-						-			NNNNN NNNNN	
-605	-90 90							-		-	NNNN	

Proje	ct Loc	ation: I	g Sano Louisa, 138151	KY		l Inv	estigation	Log of Boring HB-6 (MW-1207) Sheet 5 of 8				
			SAMPL	ES					L L			
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DE	SCRIPTION	Water Content %		REMARKS AND OTHER DETAILS	
-	- 91						-		-	NNNNNNN ANNNNNNN	– SCH 40 PVC 2" diameter riser	
_	92 - 93						-		-	NNNNNNNN	– Bentonite grout	
_	- 94— -						- -		-	NNNNNNN		
—600 —	95— _ 96—						-		-	NNNNNNN NNNNNNNN		
_	- 97 -						-		-	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN		
_	98- - 99-						-		-	NNNNNN		
-595	100-						-		-	<u> </u>		
_	101- - 102-						-		-	NNNNNNNNNNN		
_	103-						-		-	UNNNNNNNNN UNNNNNNNNNNNNNNNNNNNNNNNNNN		
— —590	104— 105—									<u>NNNNNNN</u>		
-	- 106 - 107						-		-	NNNNNNN		
_	107— - 108—						-			NNNNNNN NNNNNNNN		
 	109 - 110						-		-	<u>ANNNNNN ANNNNN ANNNNNN ANNNNNNNN ANNNNNN</u>		
-303	110- - 111-						-			NNNNNNN		
	- 112— -						-		-	NINUMARIANINA MARANA MANANA MANANA MANANA MANANA MANANA MANANANA NINA MANANA MANANA MANANA MANANA MANANA MANANA MANANA MANANANA MANA		
	113-								1			

URS


Project Location: Louisa, KY

Project Number: 13

13815141.10000

Log of Boring HB-6 (MW-1207)

Sheet 7 of 8

Project Location: Louisa, KY

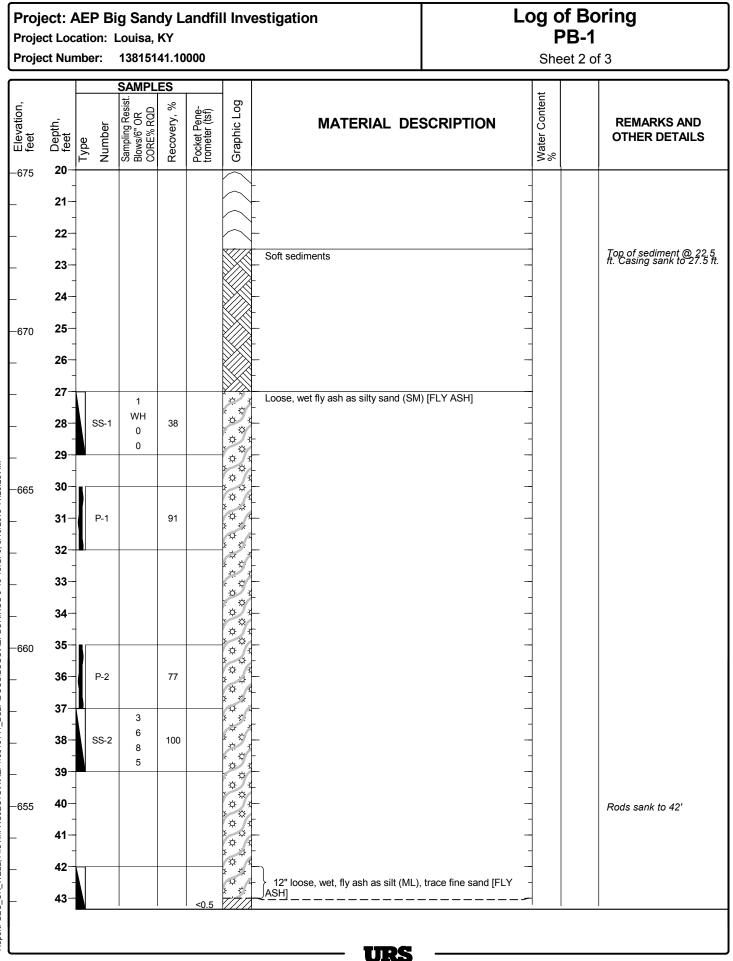
Project Number: 13815141.10000

Log of Boring HB-6 (MW-1207)

Sheet 8 of 8

			SAMPL	ES					
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
	-	HQ7	25%	73				_	
-	161						SANDSTONE, gray, moderately weathered medium strong to very strong, flaggy, with thinly interbedded shale, micaceous		SCH 40 PVC 2" diameter 0.01" slotted screen
F	162-						_ micaceous	-	
L	163-						 Fracture #2: 0, B, T-VN, CI, SP, PI, S-SR, VC-M 	-	_ #5 filter sand
	_ 164—	HQ8	42%	100					
	-								
-530	165								
F	166						End of Boring at 166' bgs		
\vdash	167-								
	- 168-								
	-							-	
-	169-							-	
-525	170-								
-	171-							_	
	- 172-								
	173-							-	
Γ	-								
F	174-								
-520	175-							-	
-	176-								
_	177-								
	-							-	
F	178-								
-	179								
-515	180-							-	
L	- 181-								
L	-							_	
	182-							-	
F	183-							-	
L							URS		

Project Location: Louisa, KY


Project Number: 13815141.10000

Log of Boring PB-1

Sheet 1 of 3

Date(s) Drilled	4/18/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method	Rotary/Water	Drill Bit Size/Type	4"	Total Depth of Borehole	57.0 ft
Drill Rig Type	Acker	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	Top of water el. 695.1 ft above msl
Borehole	Backfill Cement Bentonite Grout	Sampling Method(s)	Piston tube/Split-spoon	Hammer Data	140#/30" Manual drop
Boring Lo	ocation 38°10'57.4" N 83°38'41.3" W	Groundwater Level(s)	0' bgs		

				SAMPL	ES							T	
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log		MATERIAL	DESCRI	PTION ⊽	Water Content %	REMARKS AND OTHER DETAILS
-695	0	ŀ						Water			<u> </u>		Barge drilling- water @ 695.1.
	1-						\frown				_		
	-	-						-			-		
	2							_			-		
	3-	-									_		
	4-	1					\frown	_			_		
	-	-					\frown	-			-		
-690	5]						-			-		
	6	-									_		
_	7						\square				-		
	- 8						\square	-			-		
_	ō]						_			-		
_	9												
-685	10-	-					\frown	_			_		
	- 11-							-			-		
_	-	-						_			-		
	12						\frown	_					
_	13-	-					\frown				_		
_	- 14	1						-			-		
	-	-						-			_		
-680	15]					\square	-					
_	16-						\square	-					
_	17	-						_			_		
	- 18							-			_		
-	-	-						-			-		
_	19 -							-					
	20-						r N						
									— U F	ls —			

Project Location: Louisa, KY

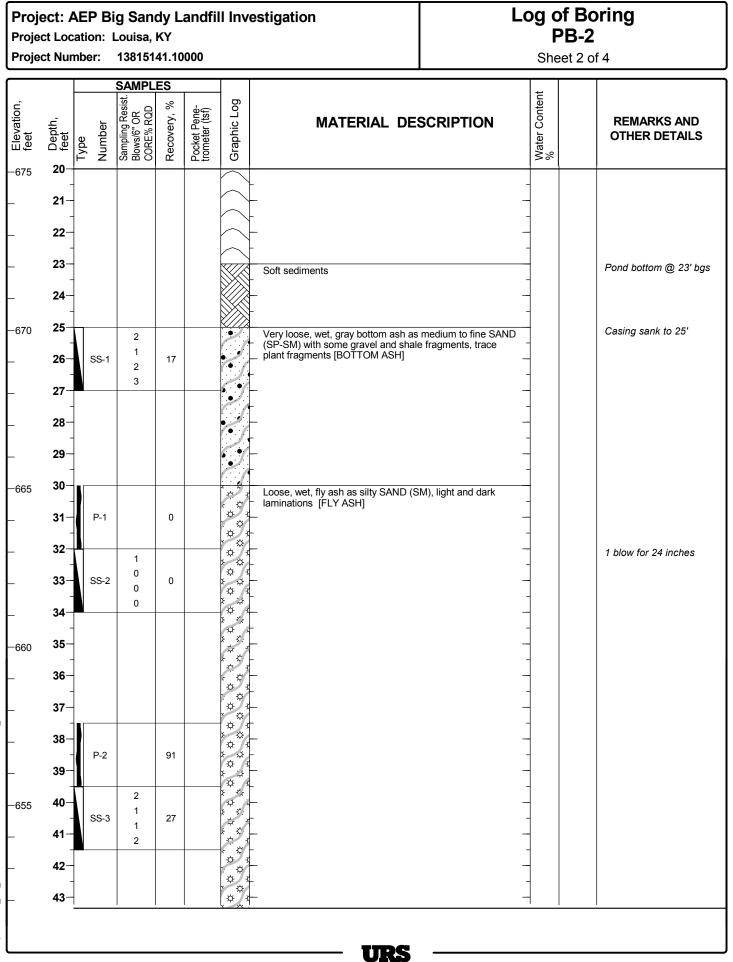
Project Number: 13815141.10000

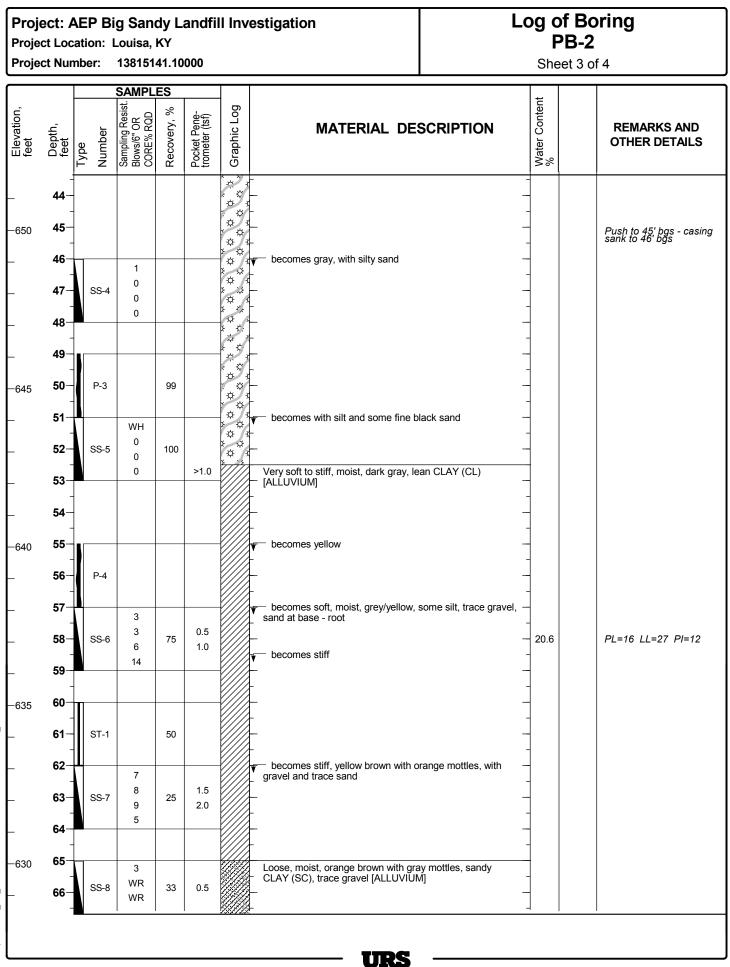
Log of Boring PB-1

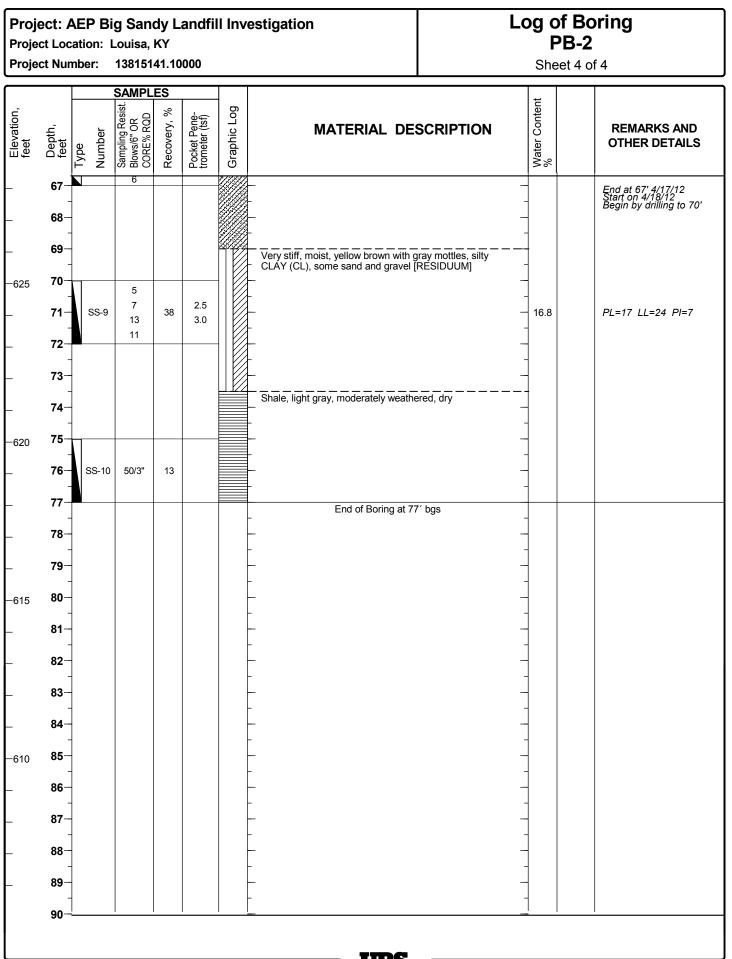
Sheet 3 of 3

			SAMPL	ES					
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
	44-				2.0		Soft, moist, dark gray, lean CLAY (CL) [ALLUVIUM] ⊈ becomes stiff, yellow, some sand, trace gravel		
 -650 	45- 46- 47-	SS-3	3 3 4 5	38	2.5		 becomes very stiff, yellow brown with orange iron staining, with sand, trace gravel 	-	
_	47 48- - 49-							-	
-645 	50 - 51 - 52	SS-4	6 7 12 12	33	1.0 2.5		 becomes stiff to very stiff, sandy, trace gravel - -	-	
-	- 53- - 54- - 55-						Shale, gray, dry, crushed	-	Drilling change encountered @ 53.5 ft bgs
—640 — —	56- 57-	SS-5	45 50/2"	33			End of Boring at 57' bgs	-	
_	58- - 59- -							-	
-635 	60 - 61 - 62							-	
_	- 63- - 64- -							-	
—630 —	65 - 66 -							-	
							URS		

Project Location: Louisa, KY


Project Number: 13815141.10000

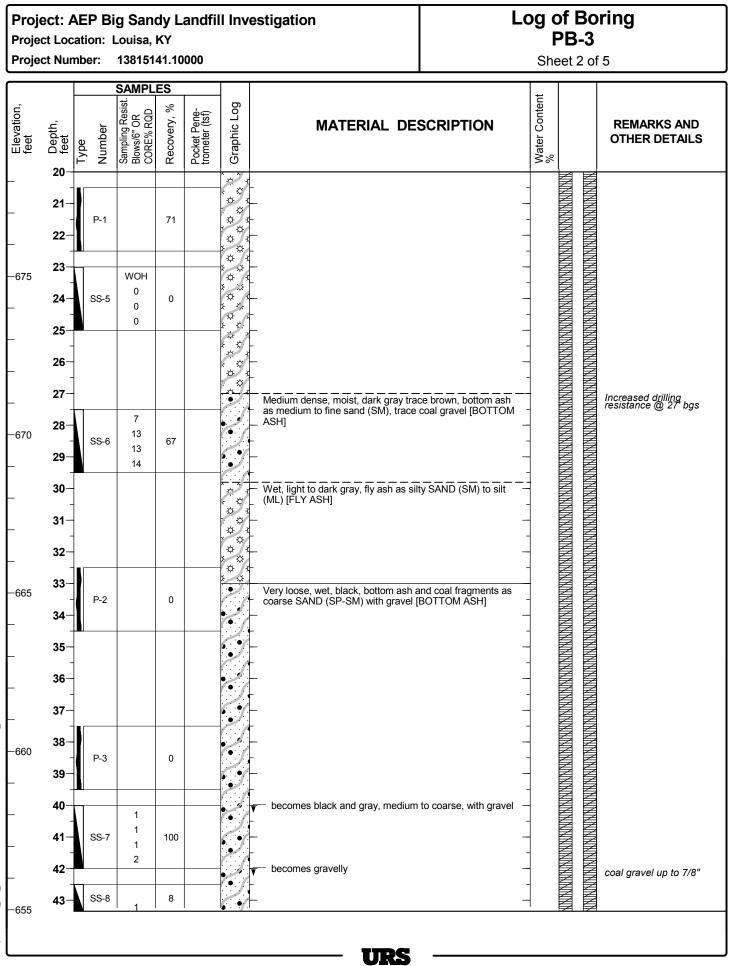

Log of Boring PB-2

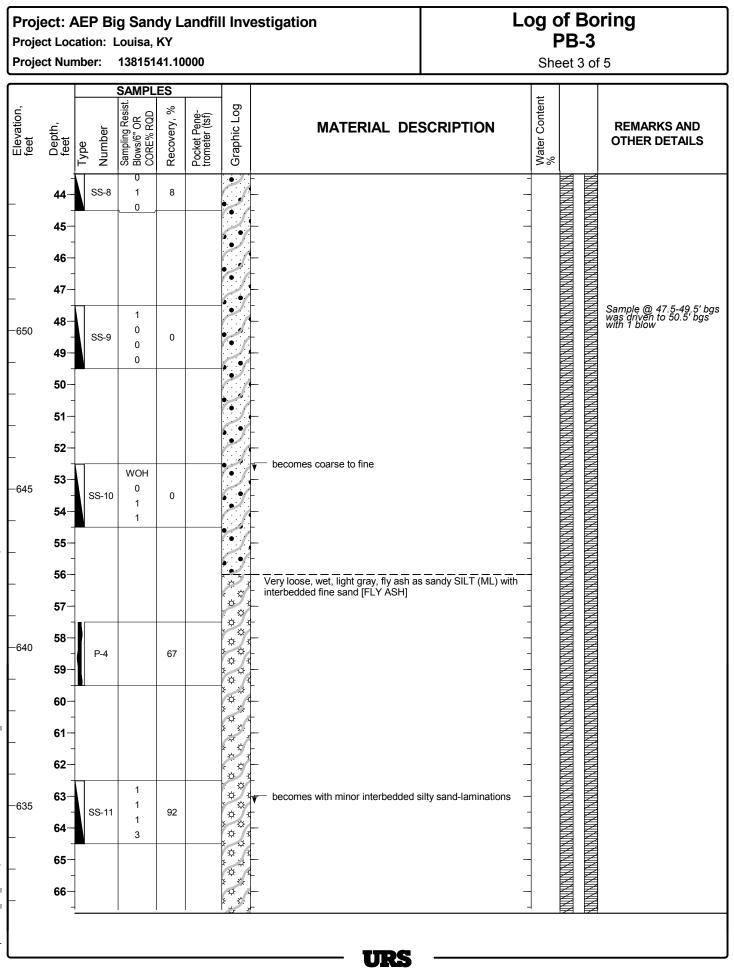

Sheet 1 of 4

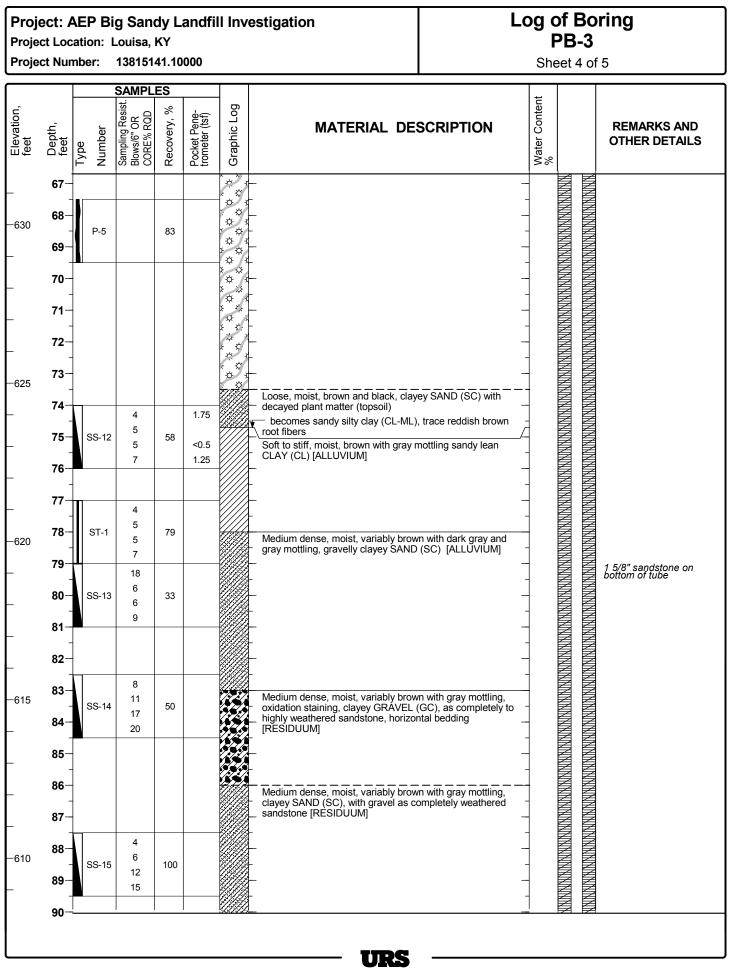
Date(s) Drilled	4/17/12-4/18/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method	Rotary/Water	Drill Bit Size/Type	4"	Total Depth of Borehole	77.0 ft
Drill Rig Type	Acker	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	Top of water el. 695.1 ft above msl
Borehole	Backfill Bentonite chips	Sampling Method(s)	Piston/Split-spoon/Shelby-tube	Hammer Data	140#/30" Manual drop
Boring Lo	ocation 38°10'52.5" N 83°33'35.2" W	Groundwater Level(s)	0 ft bgs		

				SAMPL	ES					t	
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log		MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
-695	0-		2	0, 11 0	ш.			Water		20	Pond elevation - 695.
_	1-]					\frown	-		_	
	-						\frown	_		_	
-	2-						\bigcirc			_	
_	3-	-								_	
	- 4						\square	-		_	
_	-	-					\square	-		_	
-690	5						\bigcirc			_	
_	6-	-								_	
	- 7-						\square	_		_	
-	-						\square	-		_	
-	8-	-					\frown			_	
_	9-]					\bigcirc	-			
	-							-		_	
-685	10- -						$\left \right\rangle$	-		_	
-	11-	-					\frown			_	
_	12-							_			
	-	-						-		_	
-	13-							-		_	
-	14-	-					$\left \right\rangle$	_		_	
-680	- 15	1					\square	-			
	-	-					\square	-		-	
-	16- -	1						-		_	
-	17-	-					\square			_	
_	- 18	1					$\left \right\rangle$	-		_	
	-	-						_		-	
-	19- -							-		-	
	20-										
									— URS ——		

Project Location: Louisa, KY


Project Number: 13815141.10000


Log of Boring PB-3


Sheet 1 of 5

Date(s) Drilled	4/9/12-4/10/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method	HSA, Mud rotary with recirculated mud	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricore mud-rotary	Total Depth of Borehole	93.0 ft
Drill Rig Type	CME 55 Track Mounted and ATV-remote control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	698.3 ft above msl
Borehole	Backfill Finished as 2" PVC riser pipe set w/ grout	Sampling Method(s)	Split-spoon/Piston/Shelby-tube	Hammer Data	140#/30" Drop Auto
	ocation N 251,582.4 E 2,102,704.0	Groundwater Level(s)	4' ATD		

		SAMPLES								t		
Elevation, feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION		Water Content %		REMARKS AND OTHER DETAILS 2.5' stickup
_	0-		_	ол <u>ш</u> о	_		•	Bottom ash access road [BOTTOM ASH]				-
_	- 1 -							-				SCH 40 PVC 2" diameter riser
	2 - 3							- - -	-		NNNNNNN AMARANA	N N N N Augered to 6' without sampling
-095	- 4 -						\mathcal{I}	- 	- 		NNNNNN	z sampling
_	5 - 6								-		NNNNNN	
_	- 7	s	S-1	1 2 WOH 1	63		, , , , , , , , , , , , , , , , , , ,	Very loose, wet, fly ash as interbedded light and dark sandy SILT (ML) and silty SAND (SM), trace root fibers [FLY ASH]			UNIN NA MANANA MANA Manana manana	
-690 -	8— - 9— -	s	S-2	1 2 1			* * * * * * * * *	-	-		NNNNNNNN	
_	10 - 11			1			ĬŤŤ ŤŤ ŤŤ	-			NNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	
_	- 12						ઌ ઌ ઌ ઌ ઌ ઌ ઌ ઌ ઌ	-			NNNNNN	
-685	13- - 14-	s	S-3	WOH 0	79		☆ ☆ ☆ ☆ ☆ ☆	✓ becomes without root fibers			NNNNNN	
-	15-			0 0			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-	-		<u>NNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</u>	
-	16 - 17						***** *****	-	-			
 680	17 18-			WOR			τ. τ. Φ. τ. Φ. τ. Φ.	-	-			
_	- 19 -	s	S-4	0 0 1	75		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-				
	20			I		I	ŀ►(>	URS				μ μ

Project Location: Louisa, KY

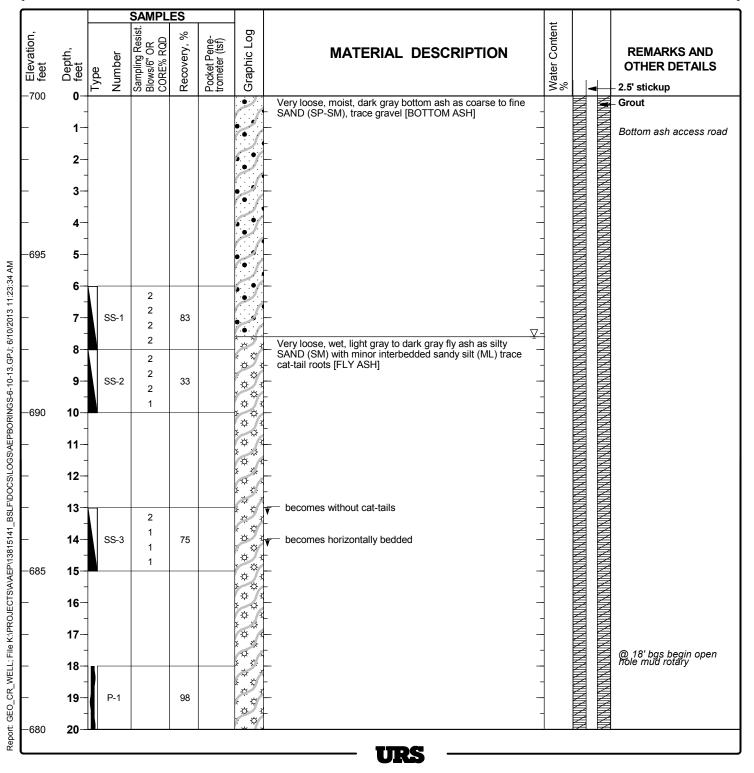
Project Number: 138

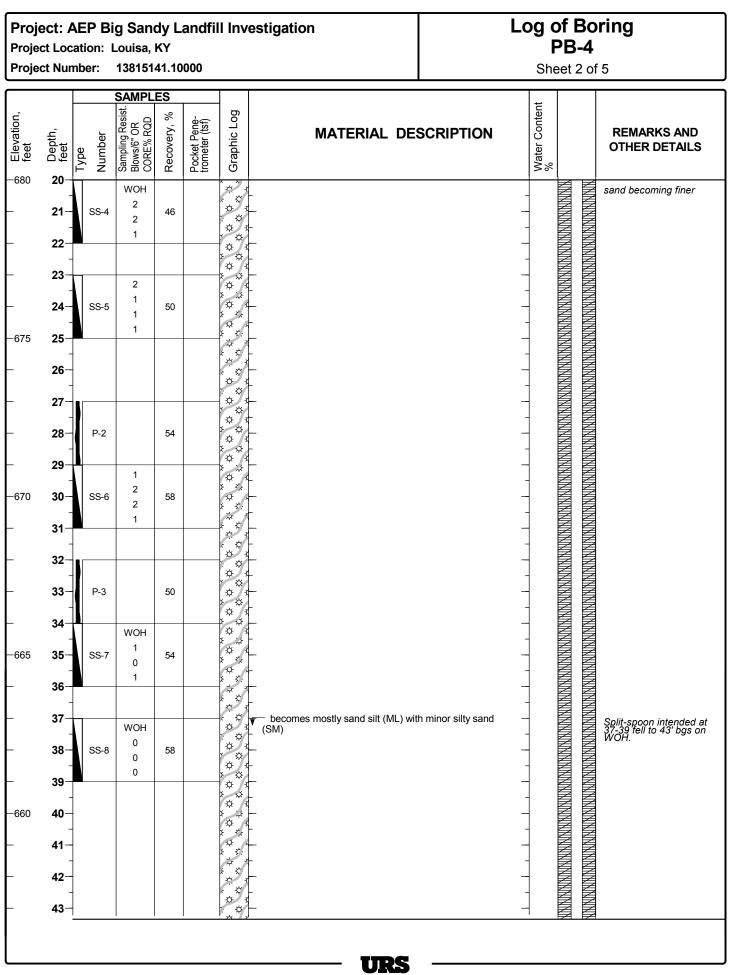
13815141.10000

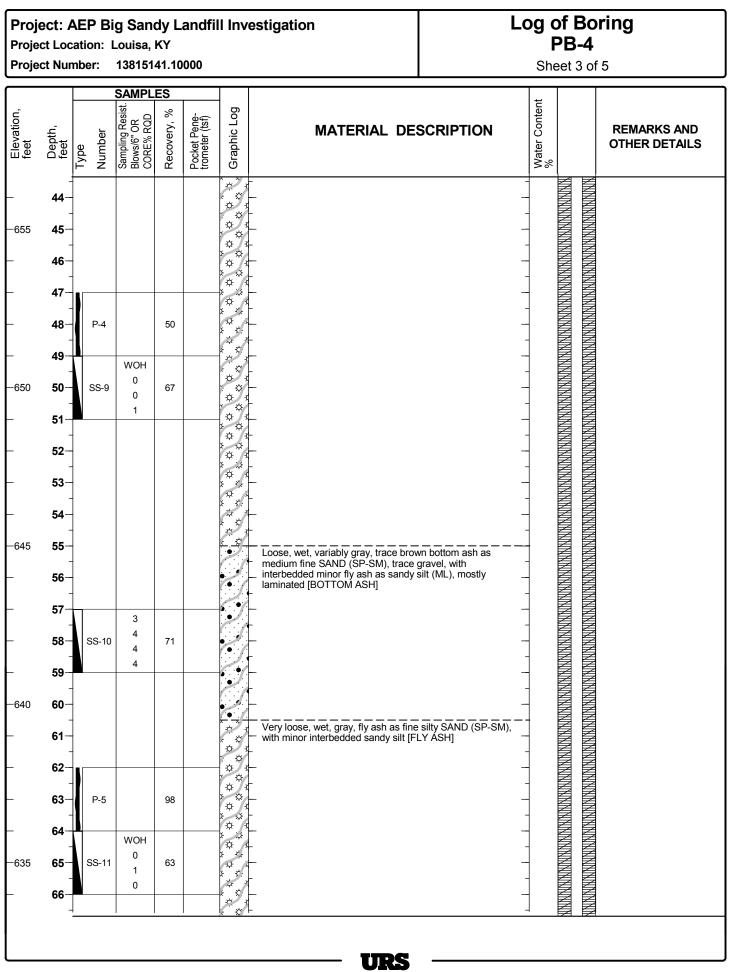
Log of Boring PB-3

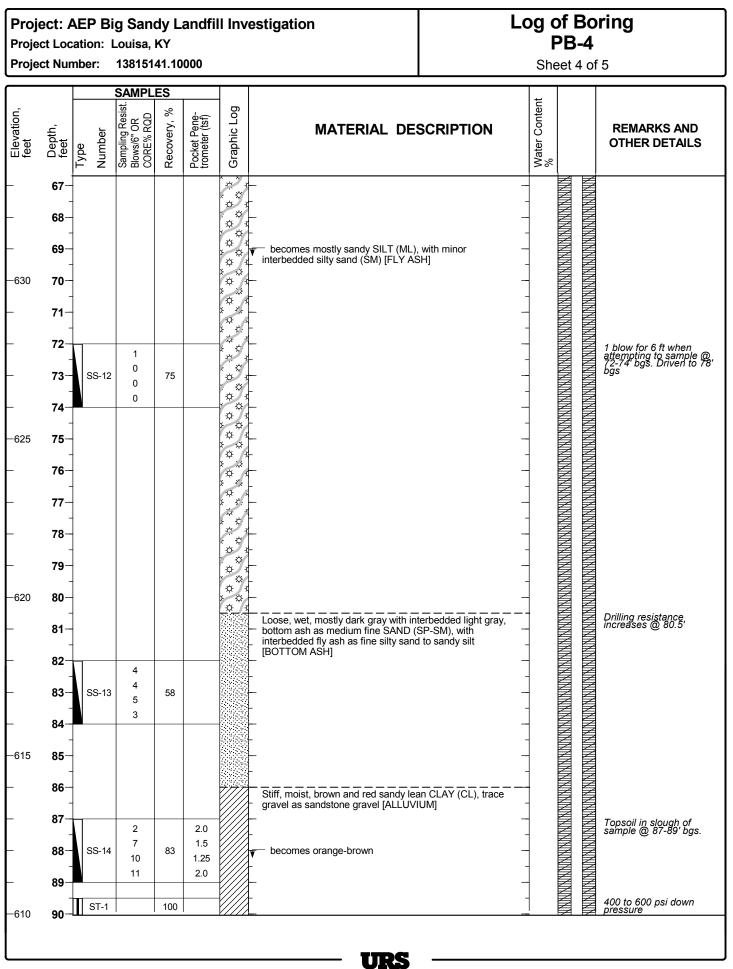
Sheet 5 of 5

			SAMPL	ES				+			
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %			REMARKS AND OTHER DETAILS
_	- 91 - 92						Sandy silty shale, gray with oxidation staining, moderately weathered, weak		NNNNNNNNNNNN	MMMMMMMMMMMM	
-	-	SS-16	50/4.5"	100					NNN		
-605	93-						End of Boring at 93' bgs			F	Set PVC casing at 93' bgs. Cement-bentonite grout placed using tremie pipe
╞	94-										pipe '
F	95-										
L	96-										
	97-										
-600	98-										
	99-										
	100-										
	101-										
	- 102						 				
	- 103-										
-595	- 104-										
-	- 105										
_	106-										
_	100 - 107										
-	-										
-590	108-										
-	109										
-	110-										
-	111-										
_	112-										
-585	113-										
L							URS				


Project Location: Louisa, KY


Project Number: 13815141.10000


Log of Boring PB-4


Sheet 1 of 5

Date(s) 4/11/12-4/13/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricone bit	Total Depth of Borehole	112.2 ft
Drill Rig Type CME 55 Rubber Track ATV, Remote control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	700.0 ft above msl
Borehole Backfill 2" PVC riser pipe set with grout	Sampling Method(s)	Piston/Split-spoon/Shelby-tube	Hammer Data	140#/30" Drop Auto
Boring Location N 251,302.5 E 2,103,601.0	Groundwater Level(s)	Encountered at 7.6' bgs ATD		

Project Location: Louisa, KY

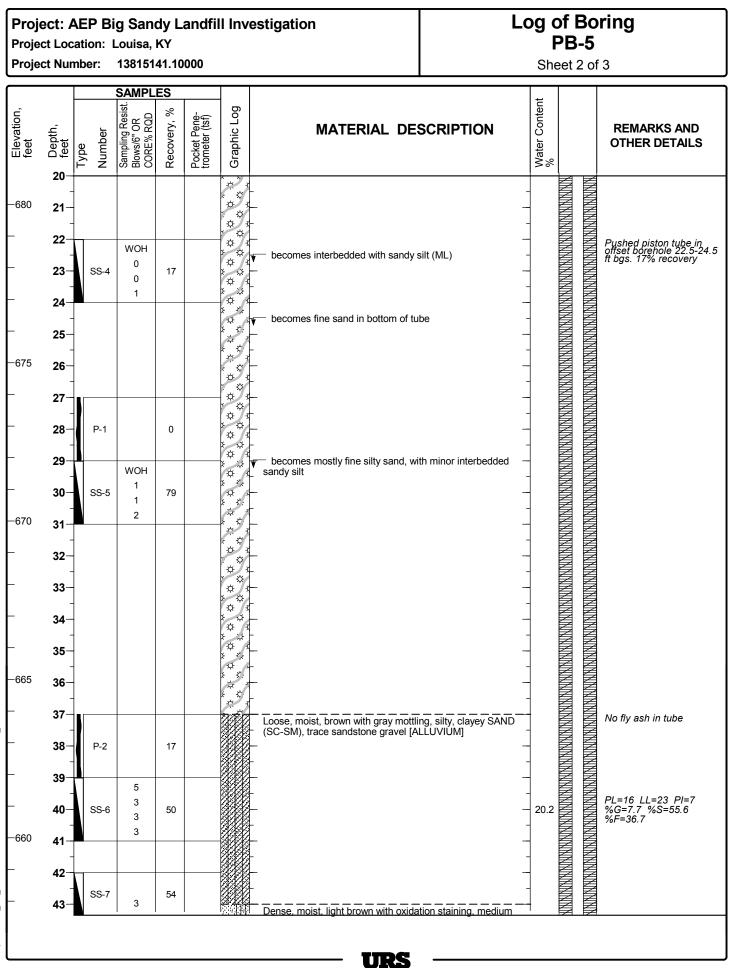
Project Number: 13

13815141.10000

Log of Boring PB-4

Sheet 5 of 5

\square			SAMPL	ES						
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS
-	91-	ST-1		100	2.5				NNNNNN	
_	92— 93— 94—	SS-15	10 7 7 12	63	2.0 0.75 1.0		Medium dense, moist, variably orange-brown with trace black and gray mottling, clayey SAND (SC) to sandy lean clay (CL), trace weathered sandstone gravel, trace coal particles [ALLUVIUM]			
—605 —	95- 96-						· · · · · · · · · · · · · · · · · · ·		NNNNNNNNNNN	
_	97— - 98—	SS-16	WOH 0	100	0.75 0.75		 becomes brownish-gray Medium stiff, moist, gray with black peat particles, organic CLAY (OH), trace sand seams [ALLUVIUM] 		MNNNNNN N	
-	- 99		14 5		0.5	年	Medium stiff, moist, dark brownish-gray fibrous PEAT (PT) with interbedded clayey SAND (SC), trace undecayed stems [ALLUVIUM]		NNNNNN	NT NT NT 150 to 300 psi down
-600 -	100- - 101-	ST-2		100	0.5	在	 · -		NNNNNNN	150 to 300 psi down pressure
-	- 102 -		WOH 0		0.75		Medium stiff, moist, brown, organic lean CLAY (OL) with greenish-gray sand seams, trace peat particles [ALLUVIUM]		NNNNNN	
_	103— - 104—	SS-17	3 7	83	0.75 0.75				NNNNNNN	
-595	105-									
	106— _ 107—		11				Medium dense, moist, greenish-gray with brown oxidation staining, clayey SAND (SC) with horizontally bedded sandstone gravel [RESIDUUM]		NNNNNN	Increased drilling resistance @ 106' bgs.
F	- 108- -	SS-18	11 9 11	38			· · · · · · · · · · · · · · · · · · ·	12.0	NNNNNN	PL=15 LL=25 PI=10 %G=24.8 %S=35.3 %F=39.9
— —590	109— - 110—									
-	- 111-						Sandstone, medium to fine, gray, slightly weathered, medium strong		INNNNNN	Increased drilling resistance @ 111' bgs.
_	112— - 113—	SS-19	50/1/2"	100			End of Boring at 112.15' bgs			Set PVC casing at 112' Cement-bentonite grout placed using tremie pipe.
							URS			


Project Location: Louisa, KY

Project Number: 13815141.10000

Sheet 1 of 3

Date(s) Drilled	4/13/12,4/16/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method	HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricone bit	Total Depth of Borehole	57.1 ft
Туре	CME 55 Rubber Track ATV, Remote control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	700.9 ft above msl
Borehole Backfill 2" SCH 40 PVC riser grouted in place		Sampling Method(s)	Piston/Split-spoon	Hammer Data	140#/30" Drop Auto
Boring Location N 251,174.1 E 2,103,663.0 Groundwater Level(s) Encountered 8' bgs ATD, W.L. @ 10.5' bgs on 4/16/12					/12

Project Location: Louisa, KY

Project Number: 13

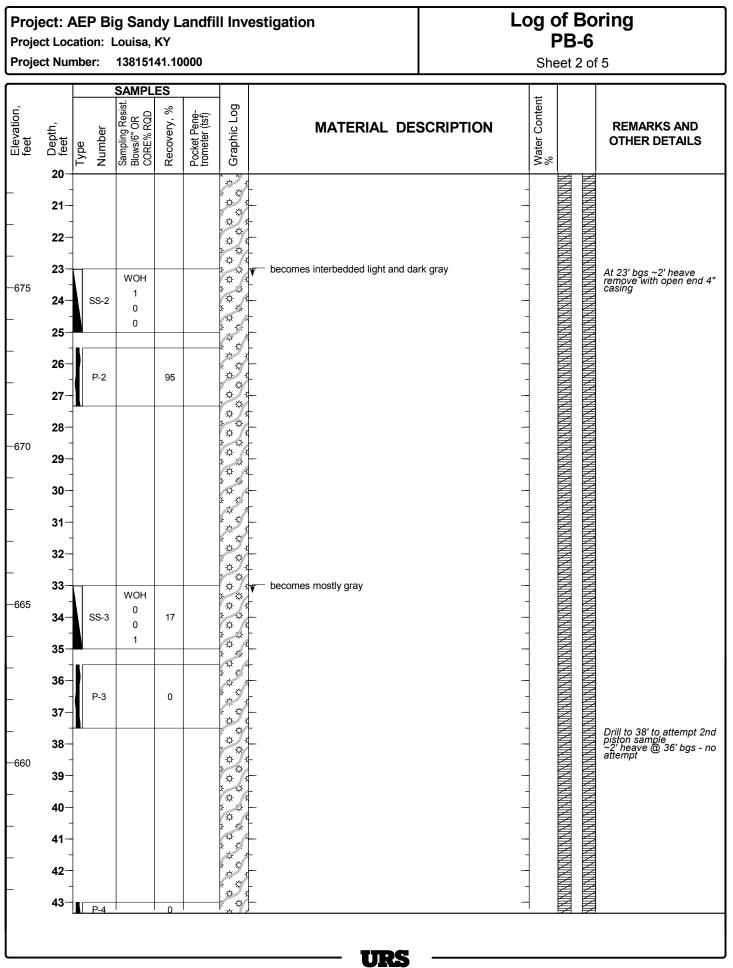
: 13815141.10000

Log of Boring PB-5

Sheet 3 of 3

			SAMPL	ES							
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %			REMARKS AND OTHER DETAILS
_	44-	SS-7	5 25 22	54			 to fine SAND (SP-SM), with completely weathered sandstone gravel [ALLUVIUM] 	_	NNNN		
-	45- -							-	NNNN	NNNNNN	Lose mud return between 42-47' bgs
655 	46						Loose, moist, dark brown, clayey SAND (SC) to sandy lean CLAY (CL) with decayed plant matter [ALLUVIUM]	-			42-41' bgs
Ļ	47 - 48-	SS-8	3 4 5	75			Loose, moist, light brown, medium to fine SAND (SP-SM) with gravel as completely weathered sandstone	-			
_	49-		10				_ [ALLŪVIUM]	-	INNNNN		
-	50-						- 	-	NNNNN		
—650 	51-						Very dense, moist, brown with gray mottling, oxidation staining, silty SAND (SM) as completely to highly weathered sandstone [RESIDUUM]	-			
_	52	SS-9	22 38	85				-	NNNN	NNNNN	%G=4.0 %S=56.6 %F=39.4
-	54-		46 					-	NNNN	NNNN	70Г-39.4
-	55-						Sandstone, fine to medium, gray, slightly weathered to	-	NNNN	NNNN	
-645	56							-			
	57	SS-10	50/1/4"	100			End of Boring at 57.1 [°] bgs	-			Set PVC casing at 57' bgs. Cement-bentonite grout placed using tremie pipe
-	59-						-	-			F F -
-	60-						- 				
-640	61-							-			
_	62-							-			
	63 - 64							-			
_	65-							-			
-635	66-						- 				
	-										
<u>ــــــــــــــــــــــــــــــــــــ</u>							URS				

Project Location: Louisa, KY


Project Number: 13815141.10000

Log of Boring PB-6

Sheet 1 of 5

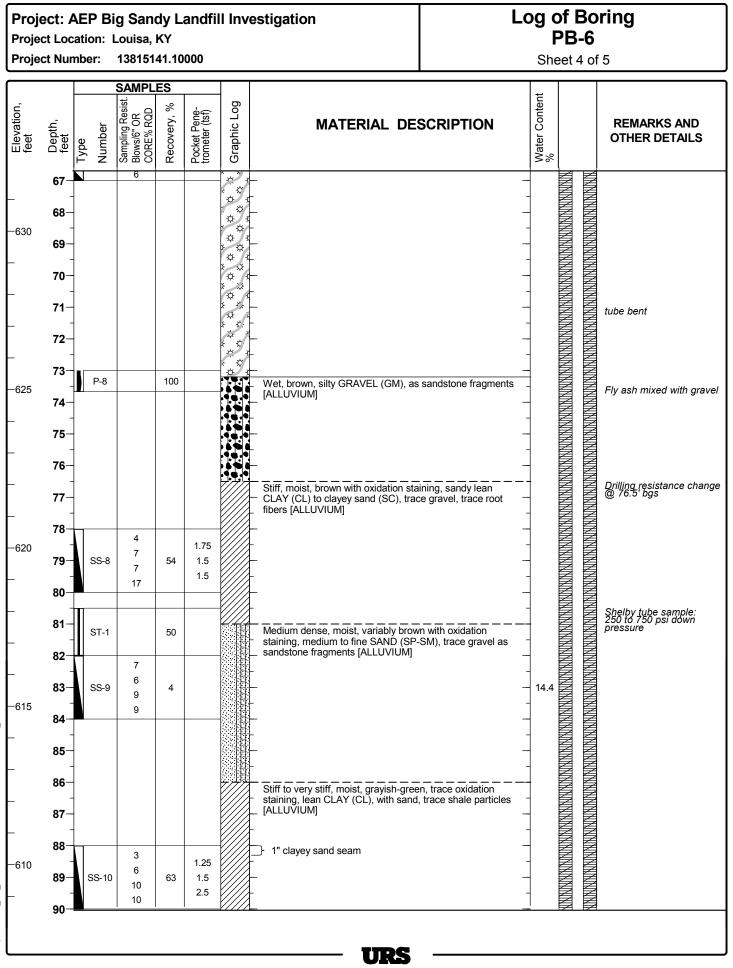
Date(s) Drilled	4/2/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method	HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricone bit	Total Depth of Borehole	100.0 ft
Drill Rig Type	CME 55 Track Mounted Remote-control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	698.6 ft above msl
Borehole	Backfill 2" SCH 40 PVC riser grouted in place	Sampling Method(s)	Piston/Split-spoon/Shelby-tube	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 251,301.0 E 2,103,083.0	Groundwater Level(s)	Not encountered		

Г					SAMPL	ES								
Flevation	feet	Depth, feet	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content	%			REMARKS AND OTHER DETAILS - 2.6' stickup
		0-			0, 8 0	-		•	Bottom ash access road [BOTTOM ASH]					Grout
-		- 1- - 2-								-		NNNNNNN		Drilled without sampling to 13' bgs.
L		-							-	_	NIN N	NN		
-6	695	3- - 4-							-	-		NININININ A		2" SCH 40 PVC riser pipe
		-							_	_		INN		
		5 - 6							-	_		NNNNNNN	NANANANANANANANANANANANANANANANANANANA	
		Ŭ_							_		NN	NNN		
		7							-	_		NNNNN		
		8-						•	-	-		NN		
-0	690	9							-			NNNNN	NNNNN	
		10— -							-	_	NNNN	NNNNN		
_		11							-	_		NNNNN	NNNN	
_		12 - 12							-	-	NINININI	NNNN	INNN	
	205	13-			1				Very loose, wet, gray with dark gray streaks fly ash as fine silty SAND (SM) [FLY ASH]		UN N	NN		
	685	14 -	5	SS-1	2 1 2	25		, ¢ , ¢ , ¢ , ¢		_		NNNNN	NNNN	
-		15 - 16						¢	-	-	NINININ			
$\left \right $		10- - 17-		P-1		75		* * * *	-	-		NNNNN	NNNNNNNNNNNNNNNNNNNN	
-		- 18						\$* * *: * *	-	_	NINININ	NNNN	WWW	
· – 6	680	- 19 -						* * * * * *	-			NNNNN	NNNN	
		20-						. ф ж ,				NN		
									URS					

Report: GEO_CR_WELL; FIIe KAPROJECTSIAIAEP113815141_BSLFIDOCSILOGSIAEPBORINGS-6-10-13. GPJ; 6/10/2013 11:23:39 AM

Project Location: Louisa, KY

Project Number: 13


13815141.10000

Log of Boring PB-6

Sheet 3 of 5

			SAMPL	ES						
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content	R	REMARKS AND OTHER DETAILS
—655 —	- 44 - 45	P-4		0			Very loose, wet, dark gray and black sandy coal as GRAVEL (GM)	-	NNNNNNNN NNNNNNNNN	
_	46 - 47	P-5		88			Loose, wet, light and dark gray fly ash as fine silty SAND (SM) [FLY ASH]	-	NNNNNNNNNNN NNNNNNNNNNNN	
 650	- 48 -	SS-4	3 3 4 3	33		; ¢ ; ¢ ; ¢ ; ¢ ; ; ; ;	 ∳ becomes mostly sandy silt (ML) with interbedded silty clay (CL-ML) [FLY ASH] 	-		
_	49— - 50— -					*		-	UNIN UN	
_	51- - 52					\$ * * * * * * * * * * * * * * * * * * *		-		
-645	53- - 54-	P-6		73			-	-	NINNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNN	
_	55— - 56—	SS-5	WOH 0 0	0			← - • becomes mostly silty SAND (SM), trace decayed root fibers [FLY ASH]	-		
-	57— - 58—	SS-6	0 WOH 1 2	92			3/4" brown and gray mottled/layered lean clay (CL) ▼ becoming coarser ash particles	-	NININININININININININININININININININI	
-640 -	- 59- - 60-		3				-	-		
_	- 61 - 62						- -	-	NINNNNNNNN	
- 635	63- - - 64-	P-7		96			- ▼ becomes light gray 	-	NINININ'IN'IN'IN'IN'IN'IN'IN'IN'IN'IN'IN	
_	- 65 -	SS-7	23	96			 12" loose, wet, gray fly ash as sandy silt 	_	NNNNNNNNN NNNNNNNNNN	
_	66— -	00-1	5			* * * * * *	<pre></pre>		NNNN	

URS

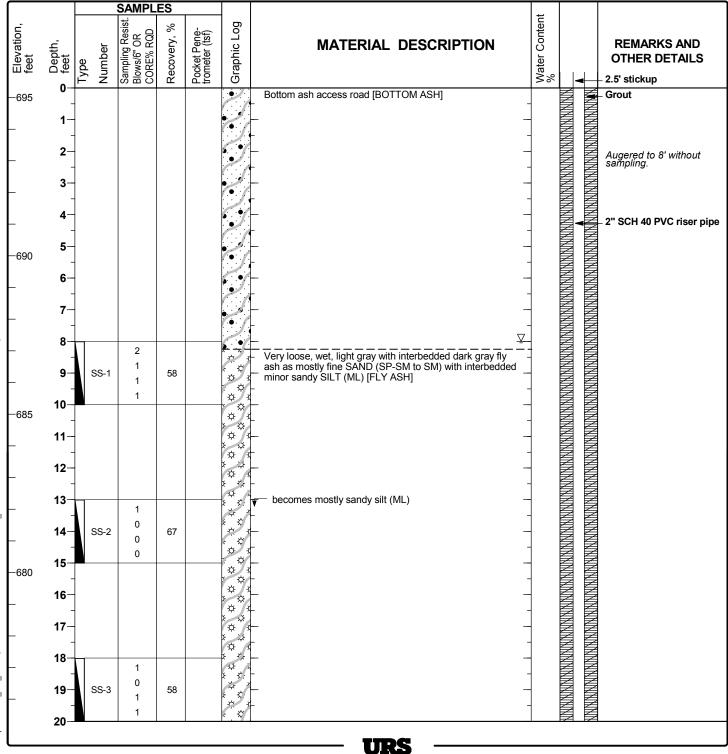
Project Location: Louisa, KY

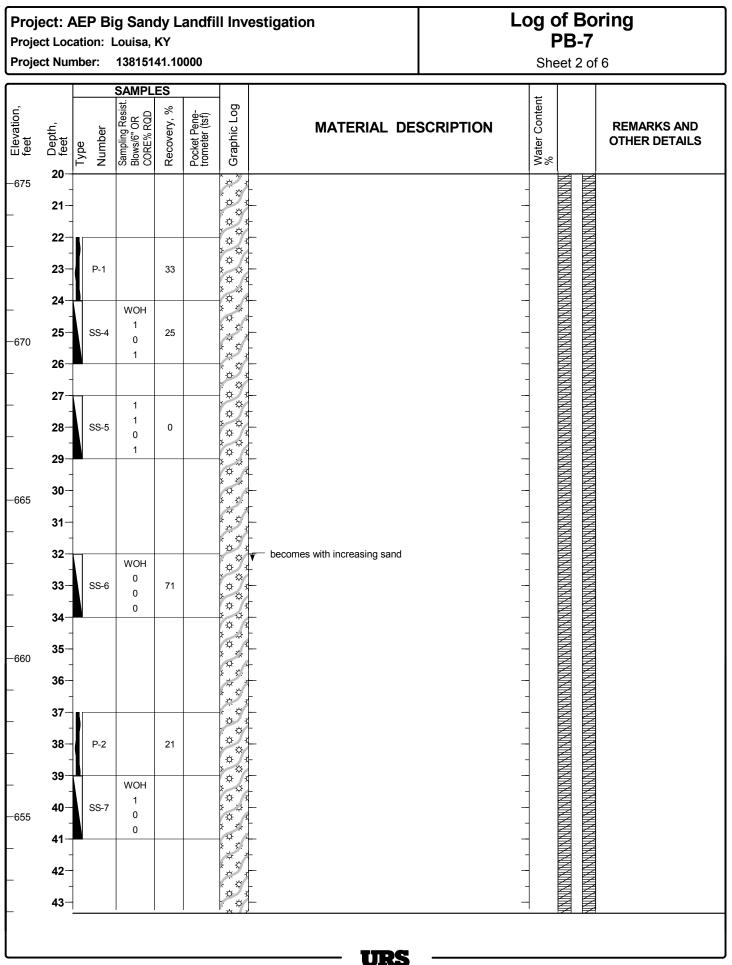
Project Number: 13815141.10000

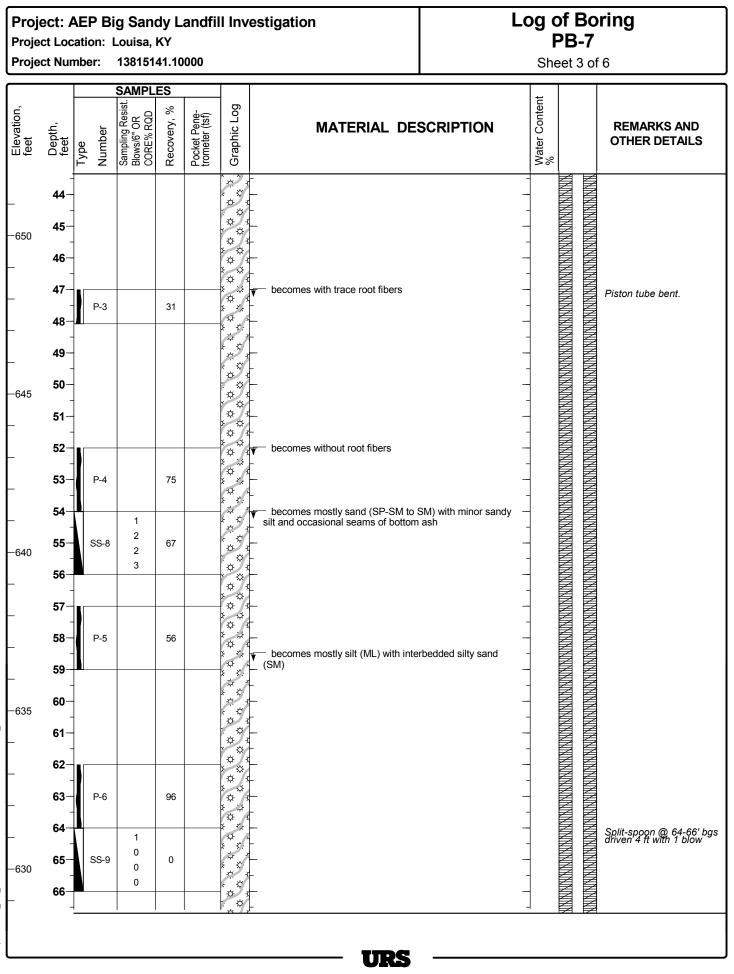
Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:39 AM

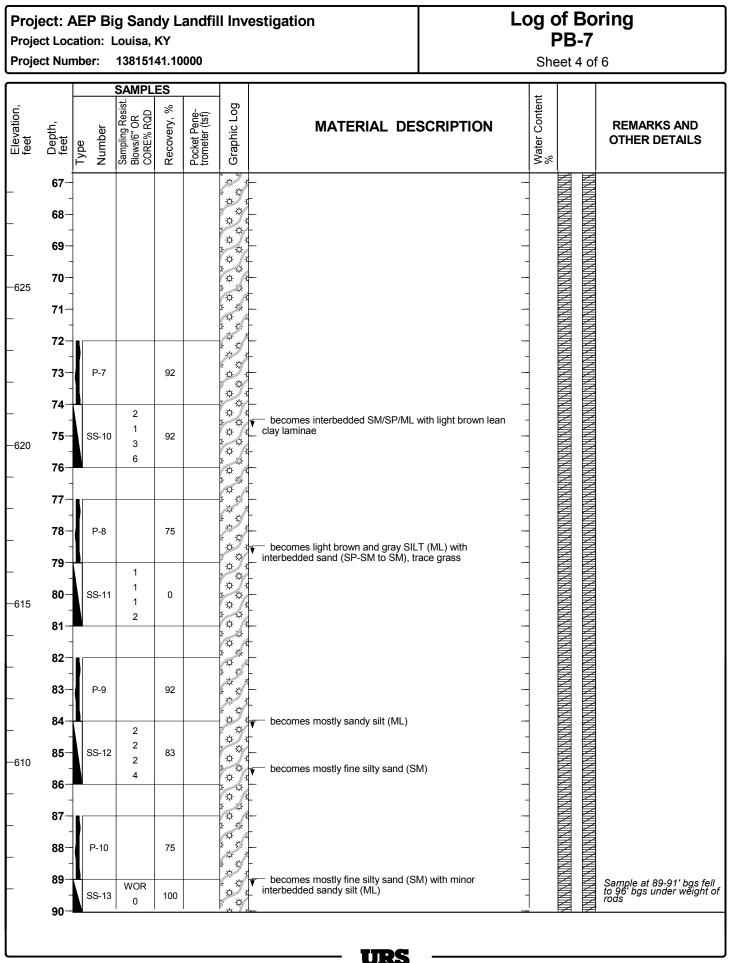
Log of Boring PB-6

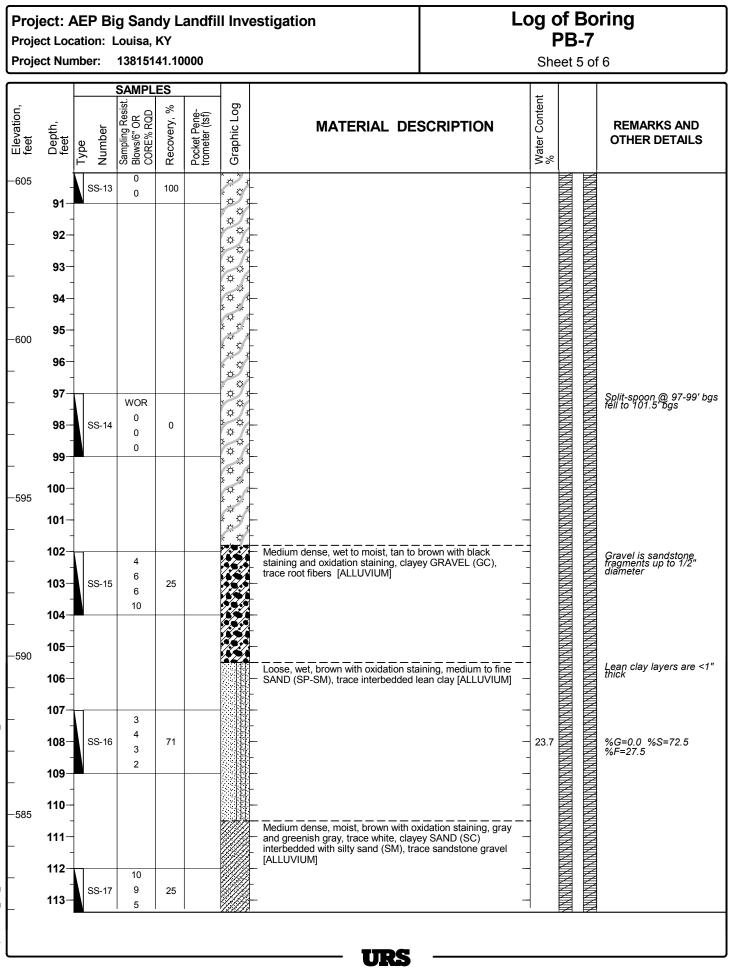
Sheet 5 of 5


Project Location: Louisa, KY


Project Number: 13815141.10000


Log of Boring **PB-7**


Sheet 1 of 6


Date(s) 4/17/12-4/19/12	Logged By	T. George	Checked By	V. Gautam
Drilling Method HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricore mud-rotary	Total Depth of Borehole	127.0 ft
Drill Rig Type CME 55 Tracked ATV	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	695.3 ft above msl
Borehole Backfill 2" SCH 40 PVC riser grouted in place	Sampling Method(s)	Piston/Split-spoon	Hammer Data	140#/30" Drop Auto
Boring Location N 251,635.0 E 2,104,228.0	Groundwater Level(s)	Encountered 8' ATD		

Project Location: Louisa, KY

Project Number: 13

Report: GEO_CR_WELL; File K:\PROJECTS\AAEP\13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:42 AM

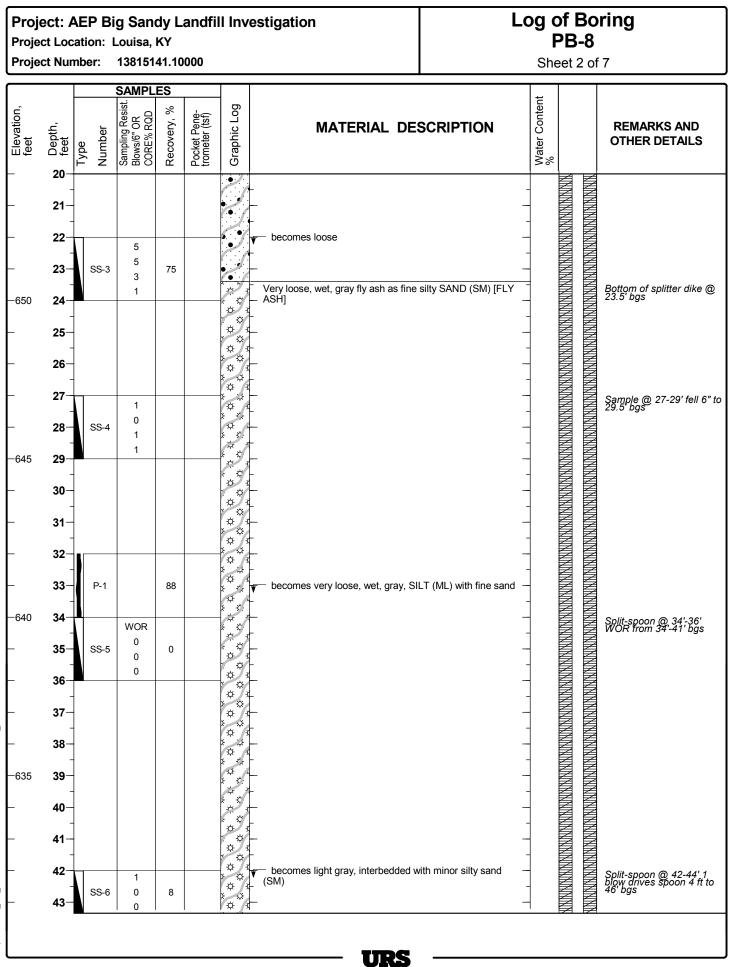
13815141.10000

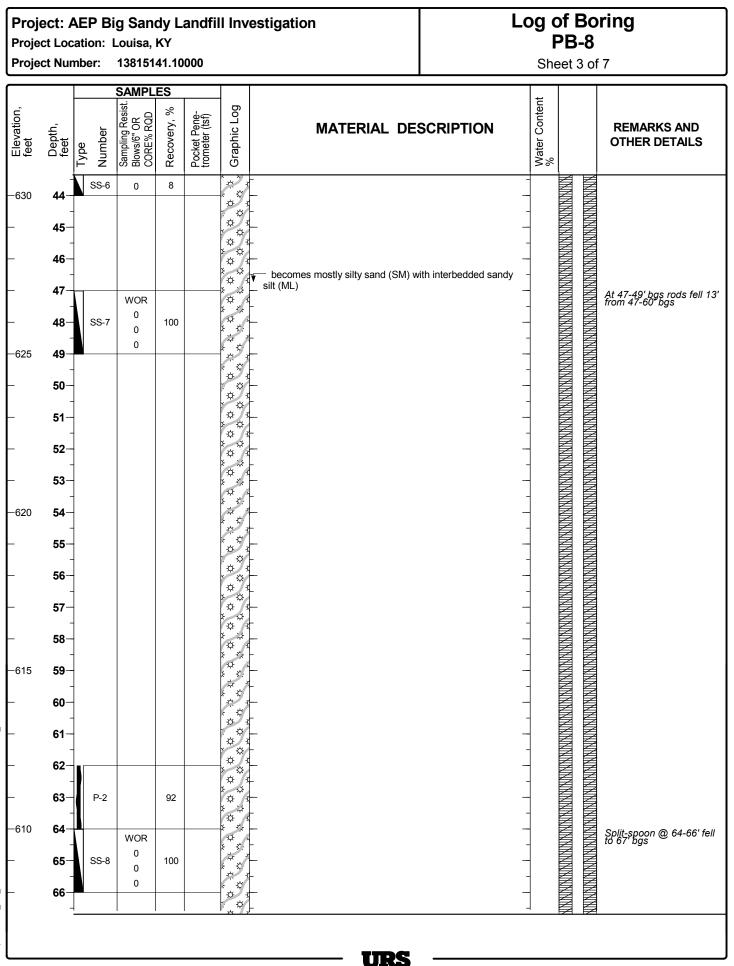
Log of Boring PB-7

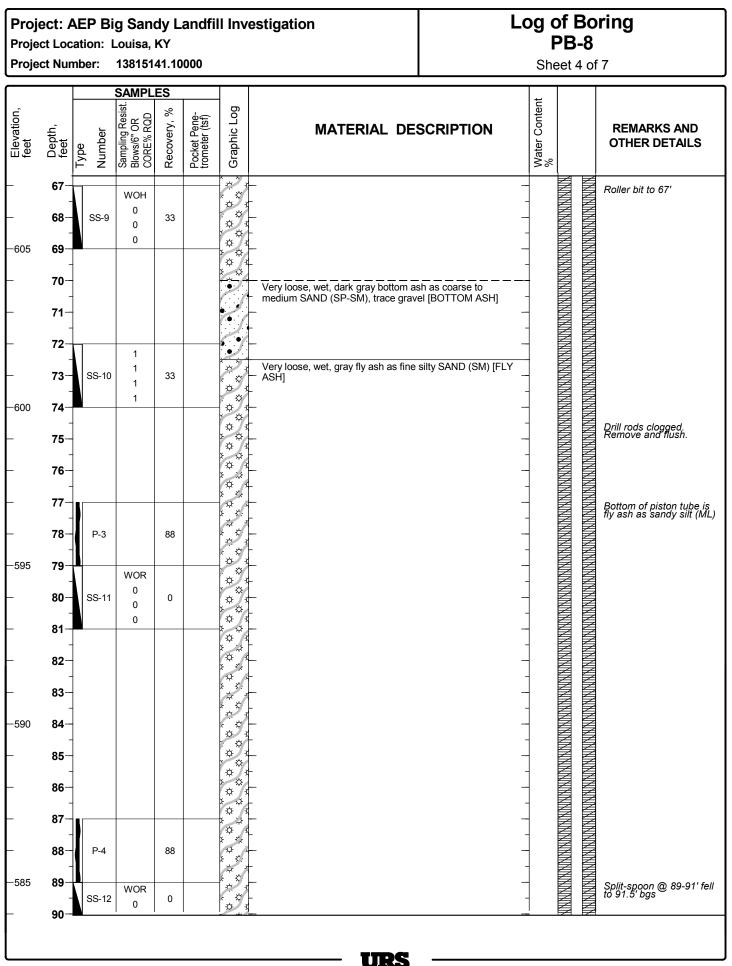
Sheet 6 of 6

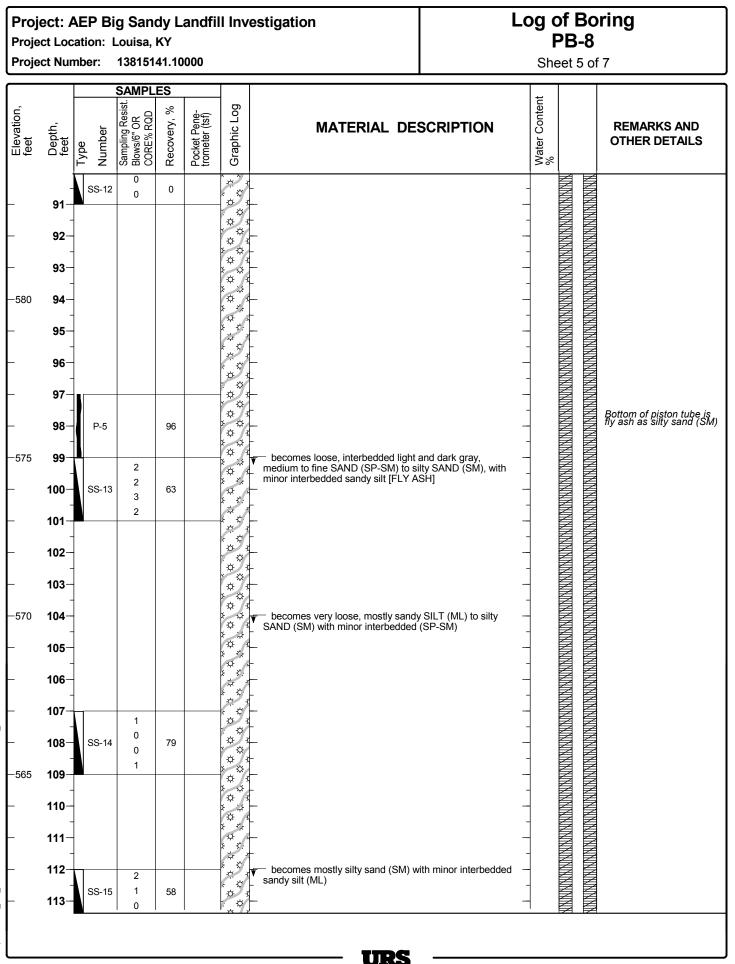
			SAMPL	ES				+		
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	1	REMARKS AND OTHER DETAILS
580 	114 115 115 116 117 117 117 117 117 119 120 121 122 123 124 124 125 124 125 126 126	SS-17 SS-18 SS-19	4 12 11 11 11 11 30 33 50/11/2"	25 54 71			becomes all clayey sand (SC) with sandstone gravel Very stiff, moist, gray to dark brown and greenish gray lean CLAY (CL) with sand, trace sandstone gravel [ALLUVIUM] Very dense, moist, variably brown with gray mottling, with oxidation staining, medium to fine SAND (SP-SM), with gravel as sandstone fragments [RESIDUUM] Gray and dark gray shale, moderately weathered, weak	15.1	UNIN NKIKIKIKI KUKIKIKI KUKIK TIMI KUKIKIKIKI KUKIKIKIKI KUKIKIKIKI KUKIKIKI KUKIKIKI KUKIKIKIKI	%G=11.8 %S=53.3 %F=34.9
-	- 127- - 128- - 129-	SS-20	50/1⁄2"	100			becomes silty, dark gray, fresh, medium strong End of Boring at 127´ bgs	-		Set PVC casing at 127' bgs. Cement-bentonite grout placed using tremie pipe.
 	130- - 131- - 132-							-		
_	132 133- - 134- - 135-						- 	-		
—560 —	136— -						URS	_		

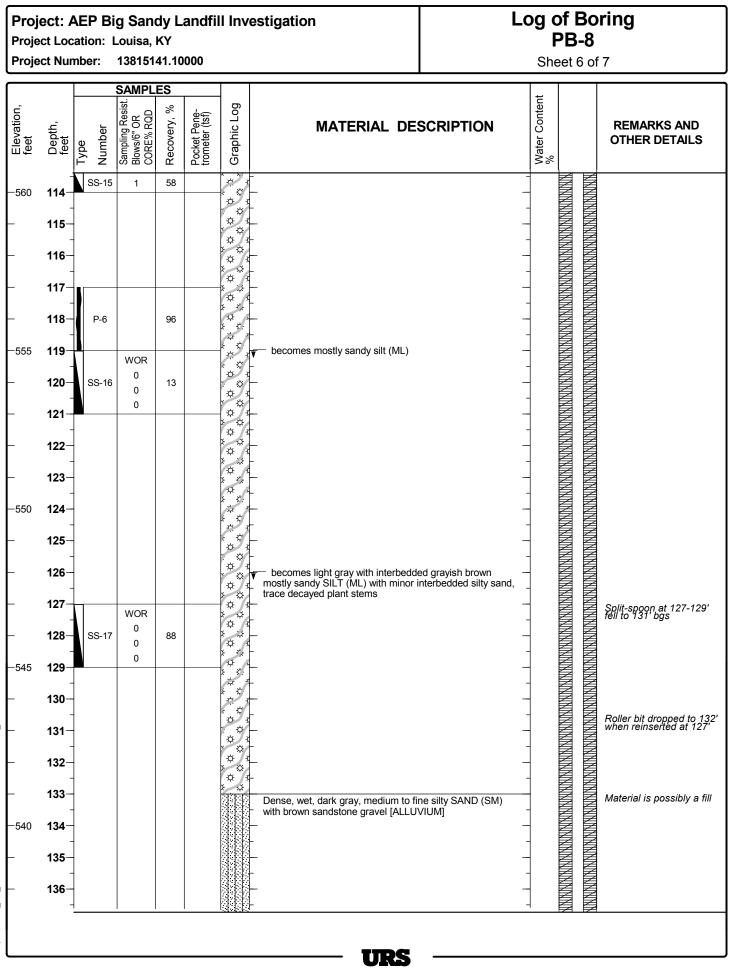
Project Location: Louisa, KY

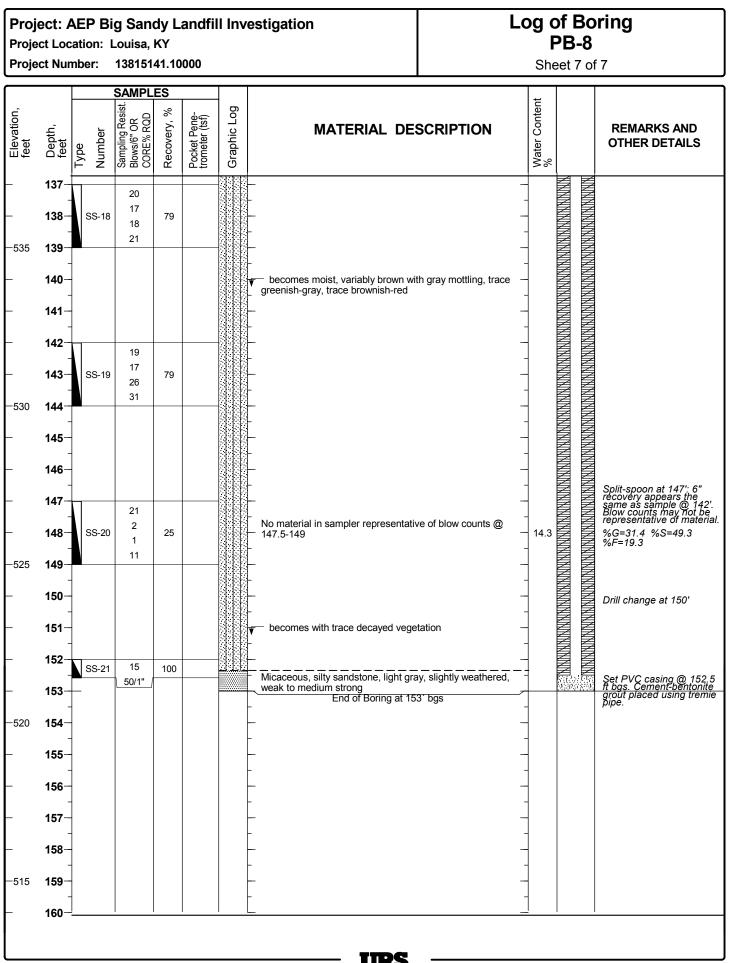

Project Number: 13815141.10000

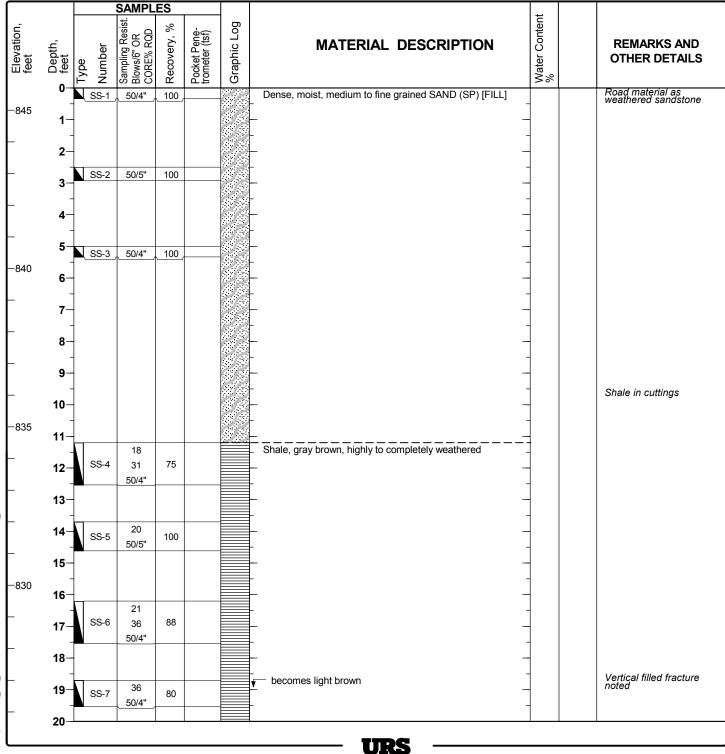

Log of Boring PB-8

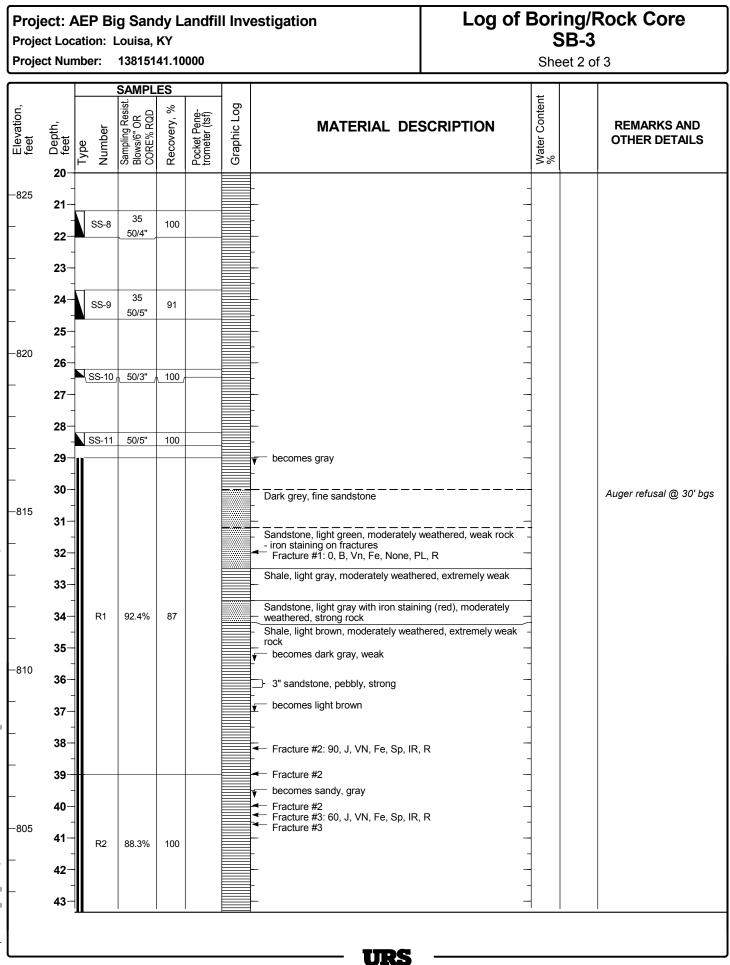

Sheet 1 of 7

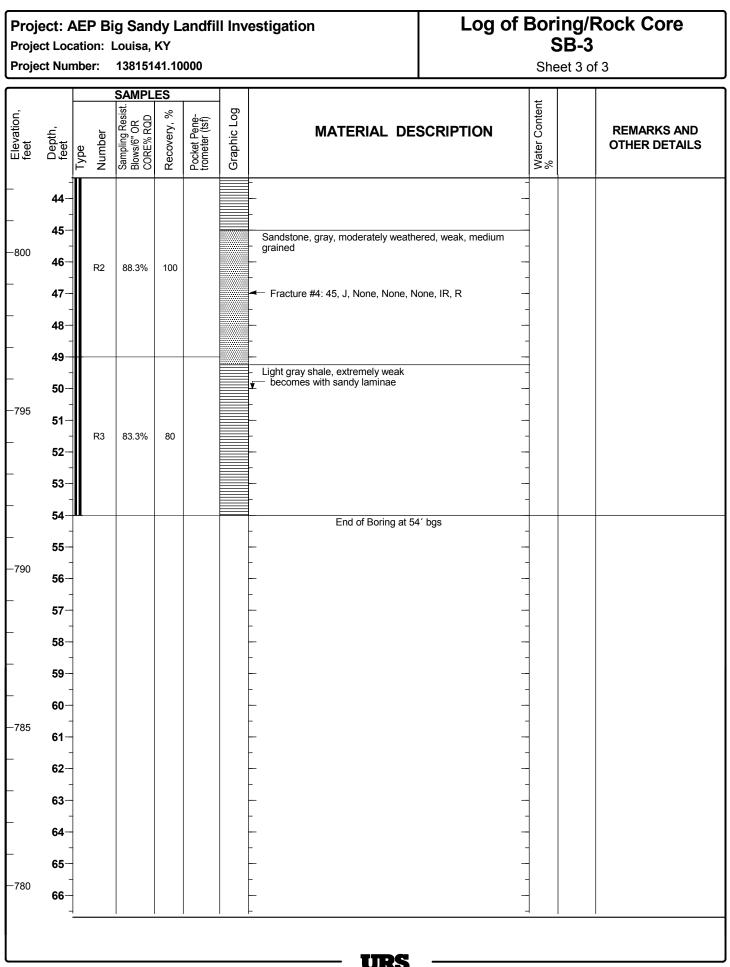

Date(s) Drilled	4/20/12,4/23/12-4/25/12	Logged By	T. George	Checked By	
Drilling Method	HSA, Mud rotary	Drill Bit Size/Type	4 1/4" ID/8" OD HSA, 4" tricore mud-rotary	Total Depth of Borehole	153.0 ft
Туре	CME 55 Rubber Track ATV, Remote control	Drilling Contractor	Pennsylvania Drilling	Surface Elevation	674.0 ft above msl
Borehole	Backfill 2" SCH 40 PVC riser grouted in place	Sampling Method(s)	Piston/Split-spoon	Hammer Data	140#/30" Drop Auto
Boring Lo	ocation N 253,100.3 E 2,105,679.0	Groundwater Level(s)	3.1 ft ATD		


ſ			SAMPL	ES						
	Type	Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %		REMARKS AND OTHER DETAILS — 3.0' stickup
-	0					•	Bottom ash splitter dike [BOTTOM ASH]			Grout
	1-						-	-		2
	2-					•	-			
- :	3-					\mathcal{C}		-		SCH 40 PVC 2" diameter riser Drilled to 13' bgs without sampling Split-spoon @ 13' driven With 1 blow to 16' Bottom ash splitter dike
-670	4-					$\mathbf{\mathcal{I}}$	_	-		
F	5						-	-		
	-					\mathcal{I}	-	-		
-	6-						-	1		
-	7-						_	-		
	_					\bigcirc	-	-		
-	8-						-			
-665	9-						_	-	NNN	NNN
							-	-		
	0 -						-	_		
- 1	1-						-	-		
	- 2						-			
	-						-	-		
- 1	3		1				Very loose, wet, dark gray, bottom ash as coarse to fine SAND (SP-SM) trace gravel [BOTTOM ASH]	+		Split-spoon @ 13' driven with 1 blow to 16'
-660 1	s	S-1	0	100			 SAND (SP-SM) trace gravel [BOTTOM ASH]]		Bottom ash splitter dike
	-		0				-	-		
- 1	5						-	1	NNN	X X X X X X X X X X X X X X X X X X X
<u> </u>	6						-	-		Ź
	-						-	-		
	7						-			
- 1	8		1				_	-		NUNNINN ~6" heave noted
-655 1	- 9 S	S-2	0	100		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	-			
			1 0				-	-		
- 2	20									4
\square							URS			




Project Location: Louisa, KY

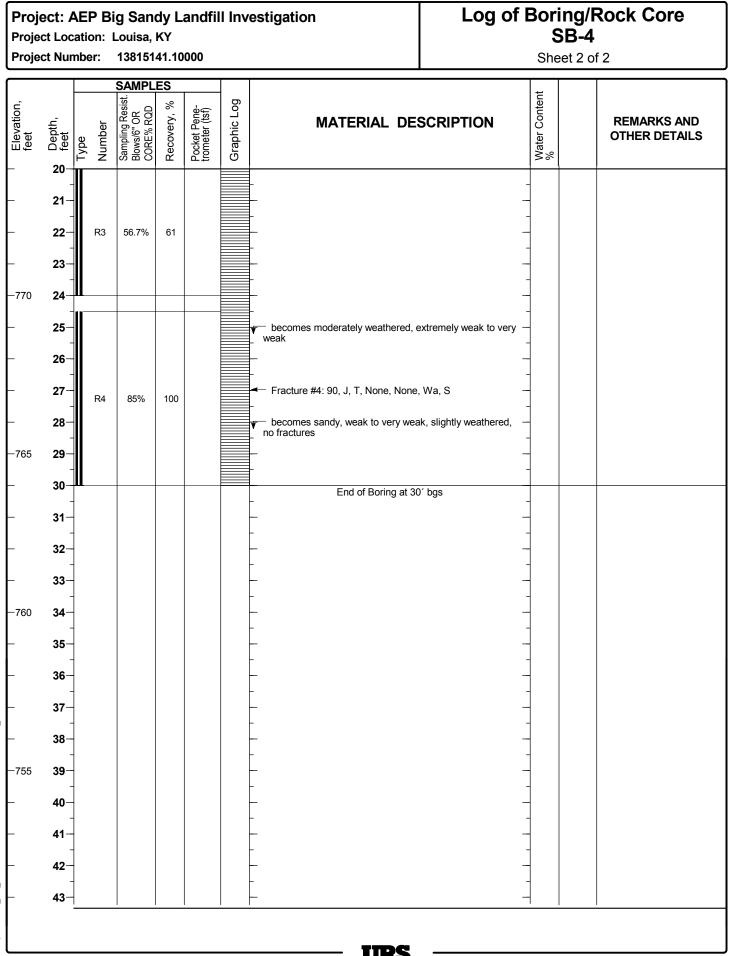

Project Number: 13815141.10000


Log of Boring/Rock Core SB-3

Sheet 1 of 3

Date(s) 4/11/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA/NX Core	Drill Bit Size/Type	3 1/4" HSA/2" Core	Total Depth of Borehole	54.0 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	845.7 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 253,542.1 E 2,102,379.0	Groundwater Level(s)	Not encountered	•	

Project Location: Louisa, KY


Project Number: 13815141.10000

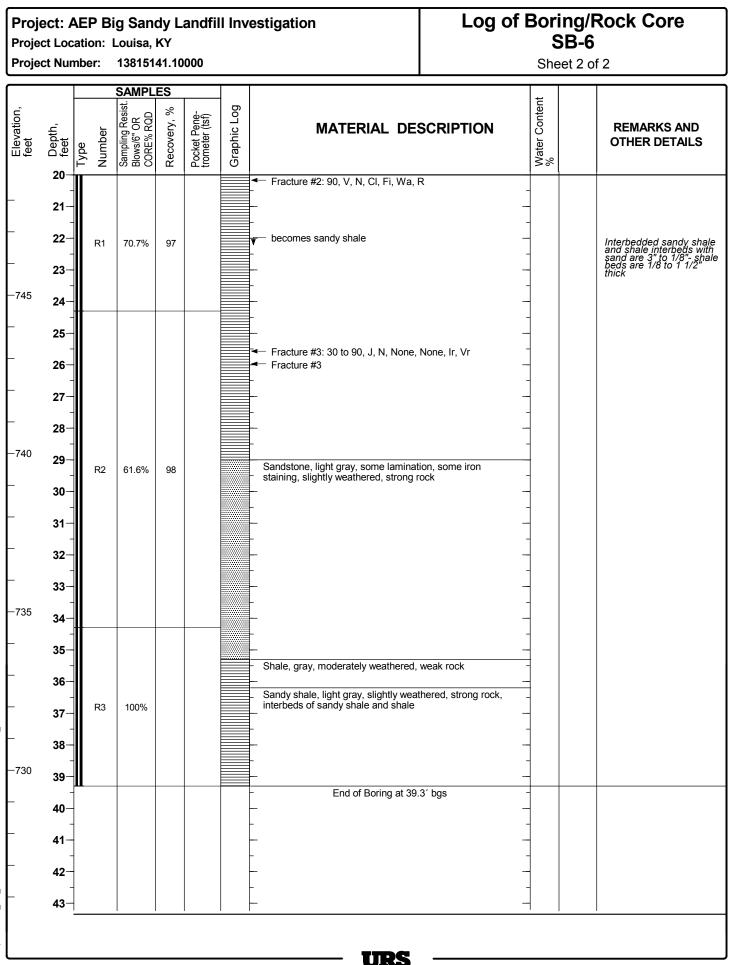
Log of Boring/Rock Core SB-4

Sheet 1 of 2

Date(s) 4/10/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA	Drill Bit Size/Type	3 1/4" HSA/NX Core	Total Depth of Borehole	30.0 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	794.0 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 251,829.7 E 2,101,718.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES					
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
-	- 1- 2-	SS-1	3	21			Stiff, moist, light brown with gray mottling lean CLAY (CL) [RESIDUUM] - - - -	23.8	
_ _790	- 3- - 4-	SS-2	4 6 10 22	67			↓ becomes very stiff with no mottling	- 20.2	PL=23 LL=45 PI=22 %F=96.5
11:23:50 AM	5 - 6 - 7	SS-3	5 15 26 50/1"	89			 becomes with gray mottling becomes buff to tan, sandy Sandstone, light brown to tan, moderately weathered, strong, mica on split surfaces 	12.6	
IGS-6-10-13. GPJ; 6/10/20 	- 8— - 9— -	R1	84.7%	100			 Fracture #1: 0, B, VN, CL, Sn, Wa, S, C Shale, brown, extremely weak ✓ Fracture #2: 90, J, VN, Fe, Fi 	-	
Report GEO_CR_WELL; File K:\PROJECTS\AMEPr13815141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:50 AM - <td< td=""><td>10- - 11- 12- - 13- - 14- - - 15-</td><td>R2</td><td>50%</td><td>60</td><td></td><td></td><td> Fracture #2. 50, 50, 50, 50, 70, 10, 10 becomes orange-stained 1" sandstone, strong becomes with iron staining, orange to gray, extremely weak Sandstone, dark brown, strong, quartz crystal lined, iron stained Fracture #1 Fracture #3: 90, B, VN, Fe, Pa, Ir becomes fine-grained, iron staining </td><td></td><td></td></td<>	10- - 11- 12- - 13- - 14- - - 15-	R2	50%	60			 Fracture #2. 50, 50, 50, 50, 70, 10, 10 becomes orange-stained 1" sandstone, strong becomes with iron staining, orange to gray, extremely weak Sandstone, dark brown, strong, quartz crystal lined, iron stained Fracture #1 Fracture #3: 90, B, VN, Fe, Pa, Ir becomes fine-grained, iron staining 		
: GEO_CR_WELL; File Ki, PROJECTSIAME	- 16- - 17- - 18- - 19-	R3	56.7%	61			 becomes fine-grained, iron staining Fracture #1 Fracture #3 Fracture #3 Shale, gray to black, extremely weak - 		
Report	20		1				URS		

Project Location: Louisa, KY


Project Number: 13815141.10000

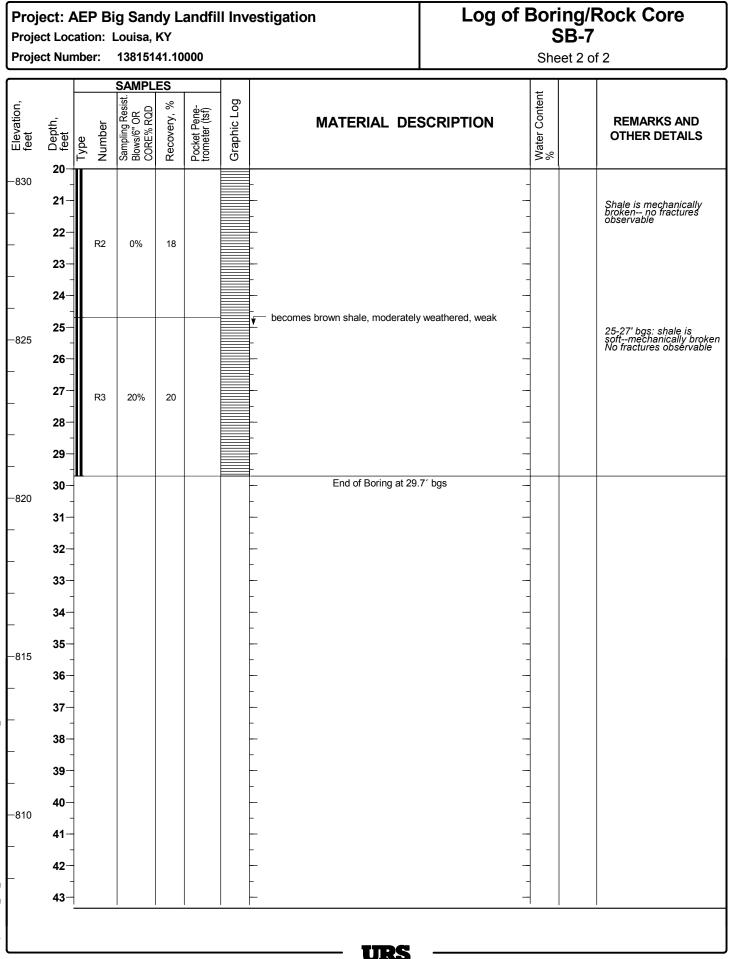
Log of Boring/Rock Core SB-6

Sheet 1 of 2

Date(s) 4/12/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA/NX Core	Drill Bit Size/Type	3 1/4" HSA/2" Core	Total Depth of Borehole	39.3 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	768.8 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 251,202.5 E 2,102,399.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES				L	
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
	0 - 1	SS-1	4 3	38	2.25		1" dark brown topsoil Stiff, moist, light brown with trace dark brown mottling, fat CLAY (CH) [RESIDUUM]		
_	- 2-		7 6	00	2.20		- 2" sandstone gravel	-	
_	3-		2 3		2.25 to		- ☞ becomes stiff to very stiff, with brown mottles -	-	PL=23 LL=62 PI=37
-765	4-	SS-2	5 11	58	3.25		- → 2" cemented shale with red/orange iron stains	- 26.3	%F=89.6
-	5-		3				v → becomes hard -	-	
	6-	SS-3	5 9 22	83	>4.5		v → becomes black -	- 29.5	PL=30 LL=59 PI=29
	7		19				- ·	-	
-760	8- - 9-	SS-4	25 21	96	>4.5		● 9" coal seam ● becomes with coal	-	
-	0 10-		38					-	
-	- 11-	SS-5	12 21 27	100	2.5		 J 1/2" coal seam ★ becomes stiff, black and gray → 2 1/2" coal seam 	-	
-	12-		50/3"				becomes with black coal	-	
- 	13-	SS-6	30 50/5"	100			 → 3" coal seam → 3" shale, light gray, very weathered → 3" coal seam 	-	
	14-						Shale, gray with some black partings	-	
_	15- - 16-	SS-7	49 	100				-	
_	17-							-	Back of spoon wet Auger refusal @ 17.2' bgs
╞	18-						_ ᇴ── becomes light gray, moderately weathered, weak	-	Auger rerusal @ 17.2 bgs
-750	19-	R1	70.7%	97			- ◄─ Fracture #1: 60, V, N, Cl, Fi, Wa, R -		
F	20						URS		

Project Location: Louisa, KY


Project Number: 13815141.10000

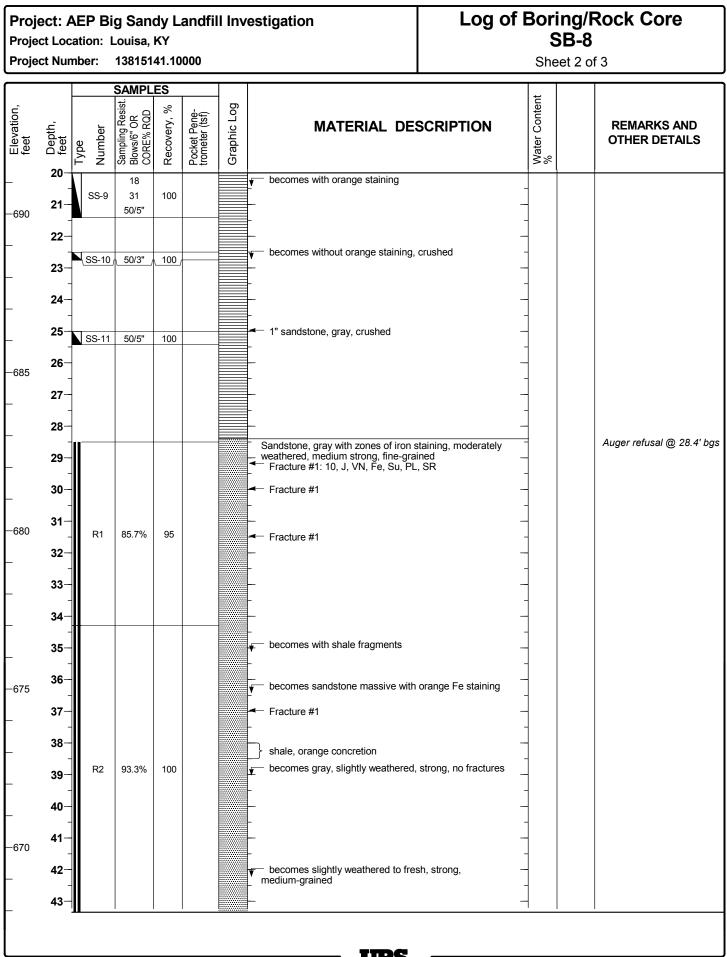
Log of Boring/Rock Core SB-7

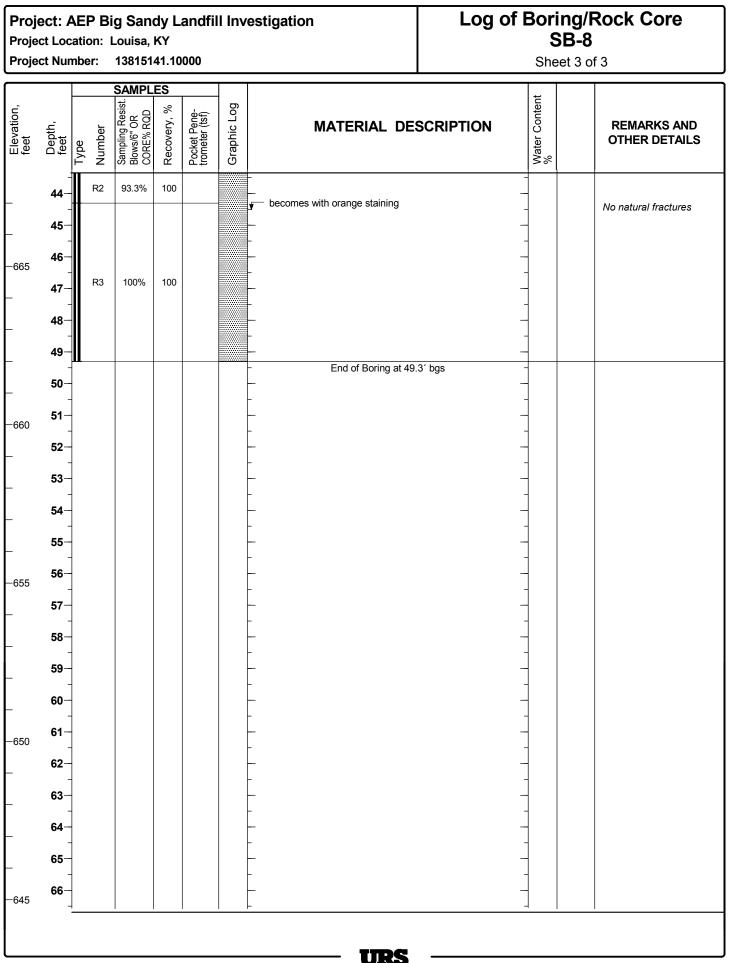
Sheet 1 of 2

Date(s) 4/10/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA/Core	Drill Bit Size/Type	3 1/4" HSA/3" Core	Total Depth of Borehole	29.7 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	850.4 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 252,280.4 E 2,103,342.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES					
Elevation, feet	o Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
-850	0		4		1		Medium stiff, moist, brown, lean CLAY (CL) (topsoil)		
-	1- - 2-	SS-1	3 3 8	38	2.0		becomes stiff, trace brown mottles [RESIDUUM]	-	
_	- 3- - 4-	SS-2	3 5 8 15	42	3.5 to 4.5		- ┳── becomes very stiff to hard, light brown with red mottles 	-	
WP -845 9353	5— - 6—	SS-3	10 22 40 50/3"	86	3.5 >4.0		 w becomes dark red w becomes with red mottles 	10.4	PL=19 LL=39 PI=20 %F=71.7
/2013	7-							-	
Report. GEO_CR_WELL; File K:\PROJECTS\AAEP\1315141_BSLF\DOCS\LOGS\AEPBORINGS-6-10-13.GPJ; 6/10/2013 11:23:53 AM I <td< td=""><td>8 9 10 11 12 -</td><td>R1</td><td>15%</td><td>29</td><td></td><td></td><td>- Shale, sandy, light brown, moderately weathered, weak</td><td></td><td></td></td<>	8 9 10 11 12 -	R1	15%	29			- Shale, sandy, light brown, moderately weathered, weak		
P\13815141_BSLF\	13— - 14— -						↓	-	
K:\PROJECTSAAE	15 - 16 - 17							-	
GEO_CR_WELL; File	- 18— - 19— -	R2	0%	18			 8" sandstone fragments, brown with iron staining, strong, - but fractured vertically and horizontal 	-	
Report	20		1	1	1		URS	1	

Project Location: Louisa, KY

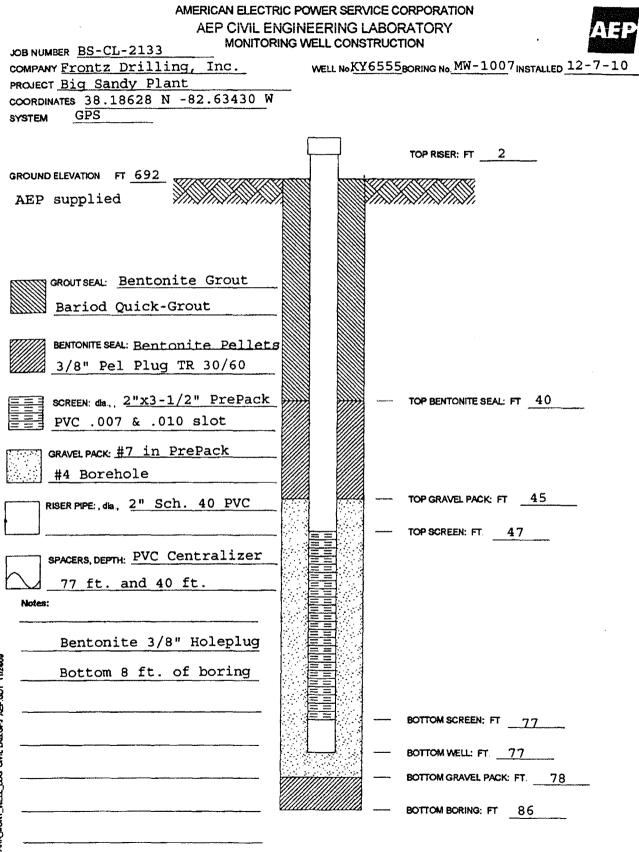

Project Number: 13815141.10000


Log of Boring/Rock Core SB-8

Sheet 1 of 3

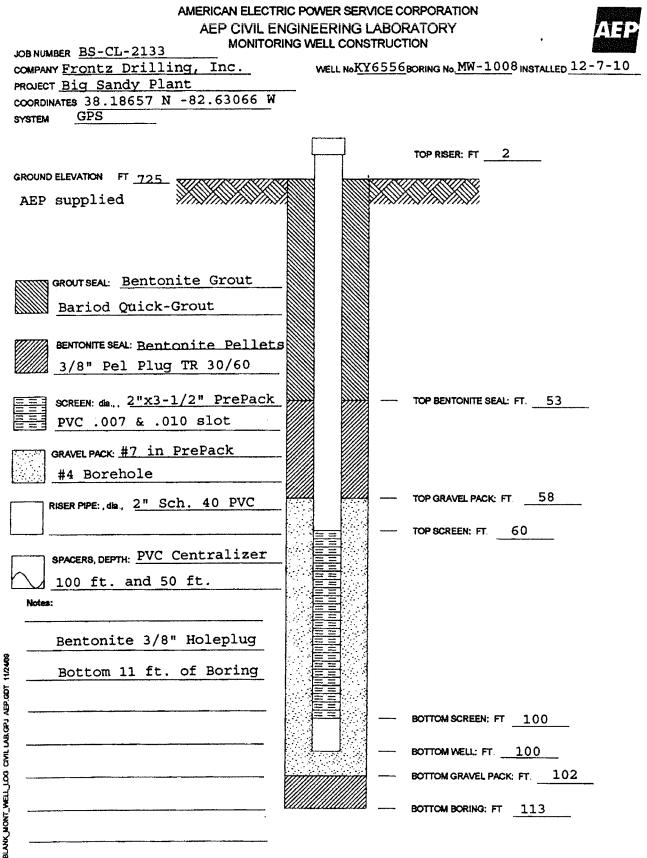
Date(s) 4/12/12	Logged By	J. Ristow	Checked By	V. Gautam
Drilling Method HSA	Drill Bit Size/Type	3 1/4" HSA/NX Core	Total Depth of Borehole	49.3 ft
Drill Rig Type D-120	Drilling Contractor	AEP	Surface Elevation	711.3 ft above msl
Borehole Backfill Bentonite grout	Sampling Method(s)	Split-spoon/NX Core	Hammer Data	140#/30" Drop Auto
Boring Location N 251,071.0 E 2,103,738.0	Groundwater Level(s)	Not encountered		

			SAMPL	ES				1	
Elevation, feet	Depth, feet	Type Number	Sampling Resist. Blows/6" OR CORE% RQD	Recovery, %	Pocket Pene- trometer (tsf)	Graphic Log	MATERIAL DESCRIPTION	Water Content %	REMARKS AND OTHER DETAILS
_ _710	- 1- - 2-	SS-1	4 3 5 15	58	3.25 to 3.5		 3" Bottom ash (road fill) Very stiff, moist, light yellow/brown, lean CLAY (CL) [RESIDUUM] Shale, light yellow brown, with orange red iron oxidation staining, completely to moderately weathered 		
_	3- - 4-	SS-2	9 6 8 13	13			- · · · · · · · · · · · · · · · · · · ·	-	
— —705	5	SS-3	9 19 31 34	96				-	
705 	8 9	SS-4	11 21 32 50	58			 without iron oxidation - -<	-	
-	10- - 11-	SS-5	10 18 47	76			 ✓ becomes with red mottle staining ✓ becomes red with gray mottles 	-	
—700 —	- 12		47 				- → 2" crushed chert nodules	-	
_	13- - 14-	SS-6	49 	80			 becomes gray with red mottles to light gray - 	-	
 695	15- 16-	SS-7	15 18 50/3"	80			→ becomes gray with some red mottles -	- -	
	- 17- - 18-	SS-8	12	100			- 	-	
-	- 19 -		50/5"				- ·	-	
	20–						URS		· · · ·

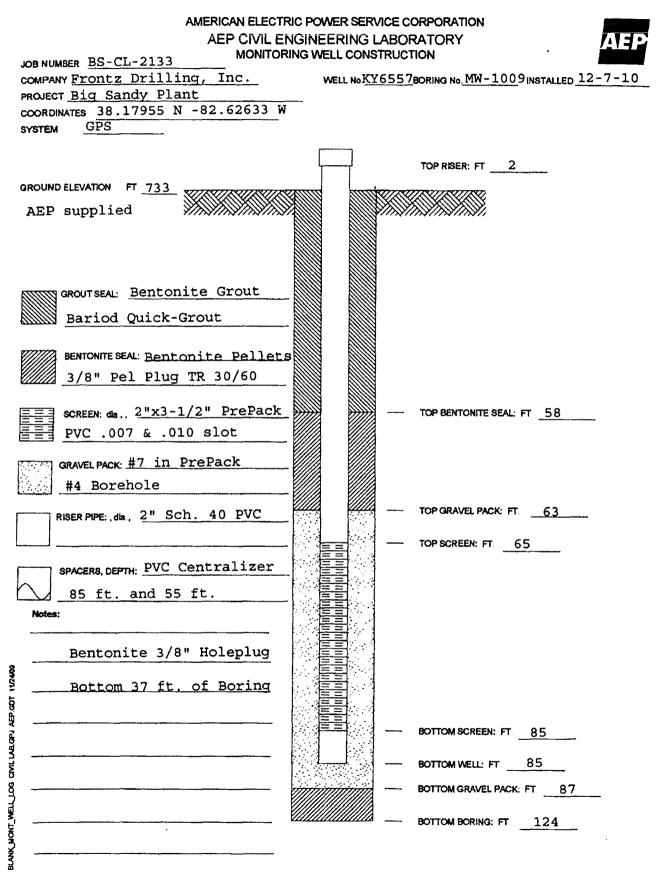


2010 LOGS

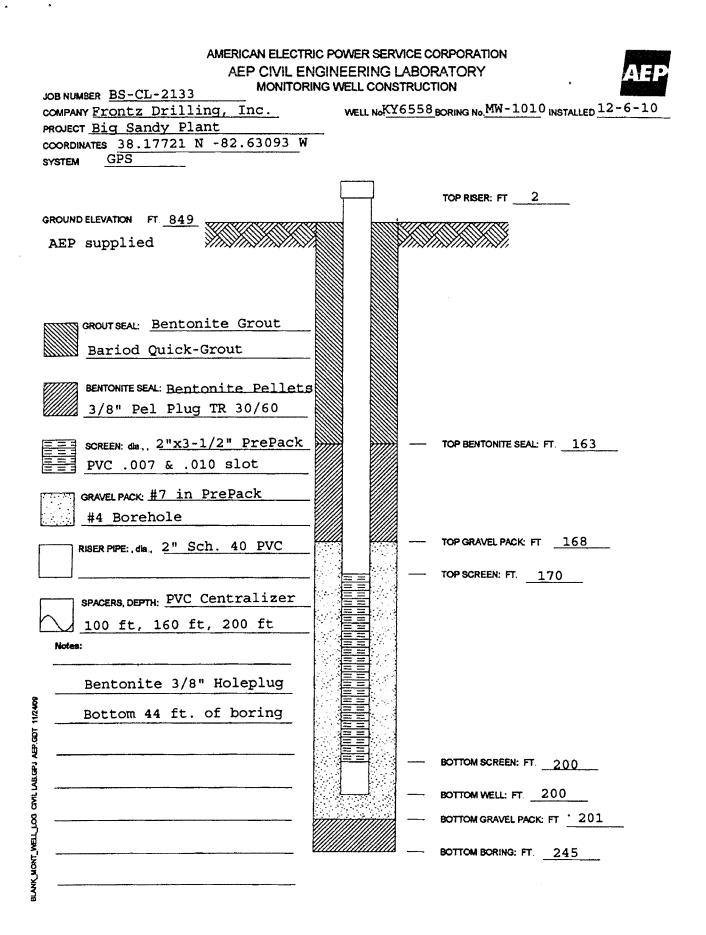
$\left \right $		YN.		77	Frontz Drilling, Inc. 2031 Millersburg Road		Soil Boring Log
			TER, OH		Wooster, Ohio 44691 330-263-5301		Boring No: B-1007 Page 1 of 2
Date: Client:	11/19/2010		Proj. No.:	E10028	Project: Location:	Big Sandy	
Drilling	Company: By: Larry	Frontz Drillin	ng, Inc.		Driller:	ethod: Air Rotary	······································
Surface	Elevation:	692'			Top of Cas	ing Elevation:	
Comme	epth: <u>90'</u> nts:		_ Diameter	:	- Samping r	Aethod:	<u></u>
Depth	REC /	Sample #	Lithology		·	Description/Soil Cl	assification
(feet)	RQD		L Instituted		(Color, Texts	are, Moisture, Structures)	
- 10.0 -							
				Yellow brown Sandstor	ne		
- 20.0			A A A A A A A A A A A A A A A A A A A				
		S1					
- 30.0 -			202120100				
		S2					
- 40.0 -		S3 -	district of the second				
		₩ ^{S4}		V 11			the second state of the se
50.0		▼ S5			carse sandstone, minor limonite (added water when groundwa	ter encountered at approximatley 49' bgs
		S6		color to light gray			
- 60.0 -	ł	S7		color to yellow brown			
		88	Laplace Guine Laplace Guine Advances and Western Carlo Western Carlo Wes				
- 70.0 -		89 -		color to light gray			
		S10					
- 80.0 -		S11		Current Carl (h			
		S12		Gray Shale and Coal (0	lack sheen in return water)		
- 90.0 -							
			╇┤┝╴				
100.0 -			+ $+$				
			+				
- 110.0-			-+-				
- 120.0-			T				
			╉┥┝┥				
- 130.0 -			- 				
- 140.0 -			╋┥┝				
			++ -				
150.0							


FS	woost			Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1007 Page 2 of 2			
ate: <u>11/23/2010</u> lient: <u>AEP</u> orilling Company: ogged By: <u>Larry</u> urface Elevation: otal Depth; <u>200</u> comments:	Frontz Drillin Retz	· · · · ·	<u>E10028</u>	Project: Big Sandy Location: Louiza, Ky Driller: Drilling Method: Sonic/HQ core Top of Casing Elevation: Sampling Method:				
epth Teet)	Sample #	Lithology		Descripti (Color, Texture, Moisture, St	on/Soil Classification			
60.0-			Medium gray medium	to very coarse Sandstone				
- 70.0 <i>-</i>								
80.0-								
 90.0								
- 00.0-								
-								
20.0-								
-								
-								
-								
-								
-								

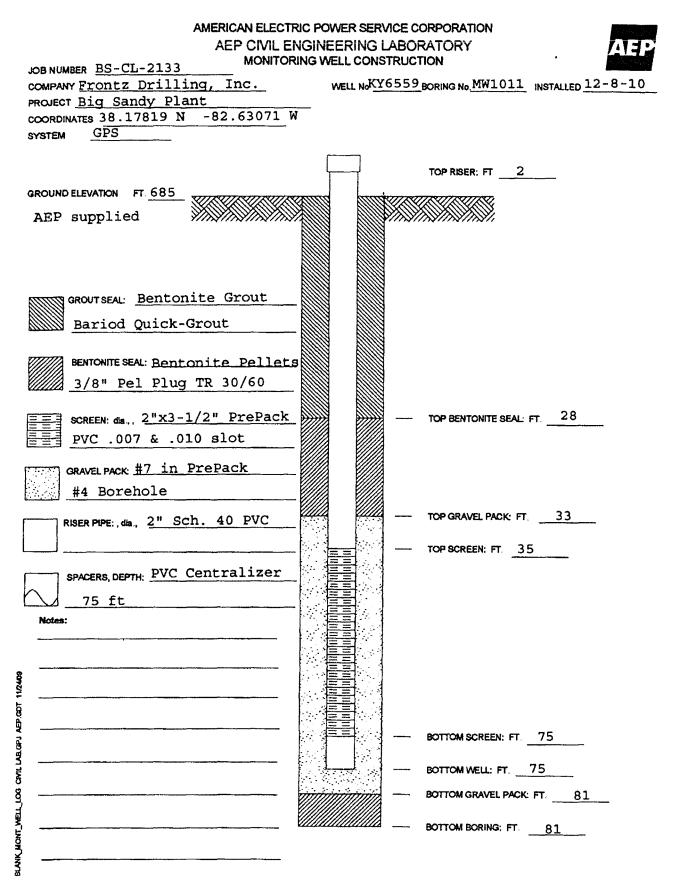
BLANK MONT_WELL LOG OVIL LAB OP LAP. COT 11/2409


	FE		TER, D		Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1008 Page 1 of 2
lient: rilling ogged urface	Company: By: Larry I Elevation: epth: 120	Frontz Drillin Reitz	Proj. No.: ng, Inc. Diamete		Project: <u>Big Sandy</u> Location: Driller: Drilling Method: <u>Air F</u> Top of Casing Elevation: Sampling Method:	
epth	REC /	Sample #	Lithology			ption/Soil Classification
leet)	RQD			Yellow brown silty C	(Color, Texture, Moisture,	Structures)
- 10.0 -		\$1 \$2 \$3		color to yellow gray	ay	
0.0		¥ 85		color to yellow browr Groundwater encount	a Sandstone tered at approximately 25' bgs	
i0.0 -		S6 S7				
40.0 -		58 59		Medium gray Shale		
50.0 -		S10		Same as above with f	ine sand	
50.0 -		\$12 \$13		Medium gray Sandsto	one	
70.0 -		\$14 \$15				
30.0 - -		S16 S17				
- 0.0		S18 S19				
00.0- -		S20 S21		color to light gray Sar Medium gray Shale		
10.0-		S22 S23		Possible coal (black s	neen in feuth water)	
20.0-						
- 30.0-						
-						
40.0- -						
50.0-			+			

R	R		T	Z	Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691	Soil Boring Log Boring No: B-1008
		TLC voost	ER, OH		330-263-5301	Page 2 of 2
Date: <u>11/23/2</u> Client: <u>AEP</u> Drilling Compa		ntz Drilling	Proj. No.:	<u>E10028</u>	Project: Big Sandy Location: Louiza, Ky Driller:	
Logged By: Surface Elevat Total Depth:	Larry Retz ion:			: <u>6"-15"</u>	Drilling Method: <u>Sonic</u> Top of Casing Elevation: Sampling Method:	/HQ core
epth	Sar	nple #	Lithology			ption/Soil Classification
(feet)		upre #		Medium gray medium	(Color, Texture, Moisture, to very coarse Sandstone	Structures)
160.0-						
_						
170.0-			-			
180.0-			_			
-			\dashv			
190.0-						
4		-	-			
200.0-			4			
-						
210.0-						
1						
220.0-						
230.0-						
250.0-						
1						
1			1			
1						
1			1 -			
-1			┥ ┝╴			
1			┥ ├-			
1			- -			
-						
-			-			
4			- -			
-		-	-			
4		-	_ -			
4		-	- -			
4						


	F		J.		Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691	Soil Boring Log Boring No: B-1009
		woos	TER, OH	110	330-263-5301	Page 1 of 2
Date: Client:	11/18/2010 AFP		Proj. No.:	E10028	Project: Big Sandy	
Drilling	Company: By: Larry	Frontz Drillin Reitz	g, Inc.		Driller: Drilling Method: Air Rotary	
Surface	Elevation: epth: 124		Diameter		Top of Casing Elevation: Sampling Method:	······································
Comme		····.		•	Samping Menou.	
Depth	REC /	Sample #	Lithology			oil Classification
(feet)	RQD				(Color, Texture, Moisture, Structu	ires)
+ +			e ili in i din e ili in i din tratti adan tratti adan tratti tratti adan tratti adan tratti tratti adan tratti tratti adan tratti adan tr			
- 10.0 -				Yellow brown Sandstor		
╞╴┨		S1 -		renow brown Sandstor	e	
- 20.0		s2	La di a contra di contra di contra di a contra di a contra di a contra di a co			
╞╶┨		S3				
- 30.0 -						
┠┤		S4				
- 40.0 -		85 86		Gray Shale		
				Yellow brown Sandston	e	
- 50.0 -		57		Gray Shale		
- 1		50				
- 60.0 -						
		V _{S11}		Water encountered at ap	proximately 68' bgs; (added water, black sheen in return	n)
- 70.0 -		S12		Possible coal		
		S13	A STATE AND A STATE A S			
- 80.0 -		S14		Light gray Sandstone		
90.0		S15				
		S16	A consider a second sec	Color grades to medium	дтау	
- 100.0-		\$17	↓	Possible coal		
		S18	\parallel	Medium gray Shale		
- 110.0-		S19				
		S20				
F 1						
- 120.0 -		S21 S22	┨┋╴			
┡ ┨			┞┤──┝			
130.0-						
1.20.0						
F 1			T			
- 140.0 -			╊┤┝─			
			\downarrow \vdash			
- 150.0 -						

ſ		STER, O		Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1009 Page 2 of 2
Date: <u>11/23/201</u> Client: <u>AEP</u> Dritting Company		Proj. No.:	E10028	Project: <u>Big Sandy</u> Location: Louiza, Ky Driller:	
Logged By: La	rry Retz	ng, me.		Drilling Method: Sonic/	HQ core
Surface Elevation Total Depth: 20		Diamete	·: <u>6</u> "-15"	Top of Casing Elevation: Sampling Method:	
Comments:					
Depth	Sample #	Lithology			ion/Soil Classification
(feet)				(Color, Texture, Moisture, S	tructures)
			Medium gray mediun	n to very coarse Sandstone	
80.0 -		++ -			
		╉┥┝╴			
-1		+			
1					
-		+ -			
		╇			
-		╋			
-		+ +			
1					
			2 2 2		
-		╶╂┤╞╌			
-		+			
1		+1 F			
-		41 -			
1		TI			
-		-+			
1					
4		<u></u> ++			
1		\square			
4		╉┤╞╴			
1		\Box			
4		+			
1					
4		╉┤┝			
1		\uparrow			


			TER, OF		Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	Soil Boring Log Boring No: B-1010 Page 1 of 2
Date:	1 CD		Proj. No.:	E10028	Project: <u>B</u> Location:	ig Sandy
Client: 7 Drilling	Company:	Frontz Drillin	g, Inc.		Driller:	
Logged	By: Larry Elevation:	Reitz			Drilling Meth Top of Casin	od: <u>Air Rotary</u>
fotal De	pth: 200		Diamete	r:	Sampling Me	
Commer	nts:					
epth	REC /	Sample #	Lithology			Description/Soil Classification
(feet)	RQD		MALLARD T		(Color, Texture	e, Moisture, Structures)
-				-		
10.0 -						
	1	S1		Red gray Sandstone		
1	I	S2]		
20.0	1	\$3		1		
-		S4		1		
30.0 -			$H \equiv -$	Medium gray Shale		
-		85		-		
40.0 -	l	S6	╄ -	Coal		
		S7		Medium gray Shale		
50.0 -		S8				
50.0 -		89				
-		\$10				
60.0 -						
-		S11				
70.0 -		S12	┦┋╴			
_		\$13		-		
80.0 -		S14				
		S15		Coal with carbonaceou	us Shale	
		S16		Medium gray Shale		
90.0 -		\$17]		
-1		\$18		1		
00.0-				Same as above with so	ome sand	
-		S19	┨┣╴	1		
10.0-		\$20		4		
		S21				
-				1		
20.0-		S22		-		
		S23				
-1				1		
30.0-		\$24	$\downarrow \blacksquare$	4		
		S25				
1						
40.0-		S26		-		
		\$27		Medium gray Shale		
- 1						
50.0		S28		1		
	- 1					

F					Frontz Drilling, I 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301	nc.	Soil Boring Log Boring No: B-1010 Page 2 of 2
Date: Client: <u>AEP</u> Drilling Comp Logged By: Surface Elevat Fotal Depth: Comments:	Larry Retz	Drilling	Proj. No.: , Inc. Diameter		Dritter Drittin Top of	on: Louiza, Ky	
)epth feet)	Samp	le #	Lithology		(Color, 2	Description/Soil Fexture, Moisture, Structure	
160.0-		29 30			(2007, 2	i catare, mostare, structure	
_		31					
170.0-		32		Gray Sandstone Gray Shale			
		33 34		Gray Shale			
180.0 -	e	35					
-		36					
190.0-		37 38		Same as above with	some sand		
200.0 -							
-			-				
210.0-		-	-				
-							
4			_				
-		Н	-				
-							
1							
-		-					
-		H					
-			- -				
-							
]							
			_				
-							

Date: 11/ Client: AEI Drilling Co Logged By: Surface Ele Total Dept	P ompany: y: Larry		Droi No :			
Drilling Co Logged By: Surface Ele Total Dept	ompany: y: Larry		1101.110.	E10028		Big Sandy Ash pond (south)
Surface Ele Total Dept		Frontz Drilling Reitz	g, Inc.		Driller: Drilling M	
		685'	Diameter			ing Elevation:
Comments:			•	<u></u>		
· · ·	REC / RQD	Well Construction	Lithology			Description/Soil Classification Sample Number are, Moisture, Structures)
(icci) 1	NQD			Fill	(COM), TEXH	
- 1	ł		Ħ ∭ −	Mottled very light gray an	d red Clay n and light gray weathered Sha	le
- 5.0 -			 <u></u>		nite stains and yellow brown ve	
- 1			Ħ ∭─			
- 10.0			Ħ 📰	Gray brown very fine San	d, some yellow brown clay	
	r /		† ∭⁻	Light yellow brown silty (Clay; medium gray shale with li	monite beds
- 15.0 - /	0%			Dark gray green Shale pie	ces	
20.0						
- 20.0 -	l			Dark gray green wethered	Shale	
25.0 8	8' /					
[] <	50%					
- 30.0 -						
				Grades to medium gray m	edium to coarse Sandstone	
- 35.0 - 8.4	.8 51%					
	51%		A CONTRACTOR			
- 40.0 -						
				Same as above with limon	nite staining	
- 45.0 - 8.4	.4'					
- 50.0 -	1					
				Madium gray fina to com	es Sandetana: fina interhaddad	medium gray shale and medium to coarse sandstone
- 55.0 - 10	0' 71%			incoloni gray file to coals	se candatone, mie mieroedded	meaning of share and meaning of coarse satistione
			El Alta de La composition de la composition de la composition de l			
- 60.0 -				Meduim gray coarse to ve Carbonaceous lens at 62.6		
				Carbonaccous iens at 02.0		
- 65.0 - 9.9	.9'					
/	55%		CATHORNEY ITTE CATALAN HITTE CATALAN HITTE CATALAN CATHORNEY CATHORNEY CATHORNEY CATHORNEY CATHORNEY CATHORNEY CATHORNEY	Medium gray medium to c	coarse Sandstone, grades to ver	y coarse Sandstone
70.0			Contraction of the second seco			
- 70.0 -						
\vdash						
- 75.0 - 9.1	<i>T</i> /					
	47%			Dark gray Shale lens		

		woost			Frontz Drilling, Inc. 2031 Millersburg Road Wooster, Ohio 44691 330-263-5301		Soil Boring Log Boring No: 1011 Page 2 of 2
Client: Drilling	Company:	Frontz Drillin	Proj. No.: g, Inc.	E10028	Location: Driller:	Big Sandy Louiza, Ky	· · · · · · · · · · · · · · · · · · ·
Surface	By: Larry Elevation: Depth: 200' ents:	<u></u>	Diameter	r: <u>6"-15</u> "	Top of Cas Sampling M	ethod: Sonic/HQ core ing Elevation: Aethod:	
Depth (feet)		Well Construction	Lithology			Description/Soil Classificatio are, Moisture, Structures)	on Sample Number
(1000)	9.7 [.] 47%			Medium gray medium t	o very coarse Sandstone		
- 80.0 -							
-							
					i.		
				-			

APPENDIX B

SAMPLING AND ANALYSIS PLAN AND QUALITY ASSURANCE PROJECT PLAN (SAP/QAPP)

SAMPLING AND ANALYSIS PLAN

AEP BIG SANDY HORSEFORD CREEK

JOB NO.: 13815152 June 12, 2013

URS Corporation 525 Vine Street, Suite 1800 Cincinnati, Ohio 45202 Tel: 513.651.3440 Fax: 877.660.7727

CONTENTS

PAGE

SECT	ION	
1.0		1
2.0	 PROJECT DESCRIPTION AND ORGANIZATION 2.1 PROJECT DESCRIPTION 2.2 PROJECT ORGANIZATION 2.3 DATA QUALITY OBJECTIVES 	1 1
3.0	FIELD SAMPLING PLAN 3.1 FIELD DOCUMENTATION 3.2 SAMPLING SCOPE 3.3 QA/QC SAMPLES 3.4 SAMPLING EQUIPMENT 3.5 INSTRUMENT CALIBRATION 3.5.1 pH Calibration 3.5.2 Thermometer Calibration 3.5.3 Conductivity Meter Calibration 3.5.4 Dissolved Oxygen (DO) Meter Calibration 3.5.5 Oxidation-Reduction Potential (ORP) Calibration 3.5.6 Turbidity Calibration	2 3 3 4 4 5 5 5
4.0	SAMPLING 4.1 WELL LEVEL MEASUREMENT 4.2 WELL PURGING AND SAMPLING 4.2.1 Low-Flow Purging Method 4.2.2 Purge and Sample Option 4.2.3 Low Yielding Wells 4.2.4 Disposal of Purge Water 4.2.5 Decontamination of Equipment 4.3 SAMPLE COLLECTION 4.4 SAMPLE DOCUMENTATION AND COC	6 7 7 7 8 8 8 8
5.0	SAMPLE PACKING AND SHIPMENT	
6.0	ANALYTICAL METHODS AND LABORATORY QA/QC 6.1 DATA VALIDATION	

APPENDICES

- B-1 DOLAN LABORATORY QUALITY ASSURANCE MANUAL (QAM)
- B-2 FIELD DOCUMENTATION
- B-3 STANDARD OPERATION PROCEDURES (SOPs)

1.0 INTRODUCTION

The following presents the combined Sampling and Analysis Plan and Quality Assurance Project Plan (SAP/QAPP) for the American Electric Power (AEP) / Kentucky Power Company (KPC) Big Sandy Plant's Horseford Creek site in Lawrence County, Kentucky. The combined plan describes the sampling and analysis and quality assurance/quality control (QA/QC) procedures involved in the implementation of the groundwater monitoring plan (GMP) to which this document is appended.

2.0 PROJECT DESCRIPTION AND ORGANIZATION

2.1 **Project Description**

AEP operates a coal combustion power plant (Big Sandy) adjacent to the Big Sandy River approximately 4.5 miles (7.2 kilometers) north-northwest of Louisa, Kentucky. The coal combustion products (CCPs) generated at Big Sandy are sluiced to a reservoir constructed at the nearby Horseford Creek site, hereafter referred to as the "Site", as shown on Figure 1 of the GMP.

On behalf of AEP, URS Corporation (URS) conducted a hydrogeologic site investigation (HSI) and developed a groundwater monitoring plan (GMP) in preparation for closure of the Site (pond closure). The purpose of the SAP/QAPP is to formalize the sampling analysis and quality assurance (QA) procedures involved in the implementation of the GMP.

2.2 **Project Organization**

AEP will retain overall responsibility for implementation and management of the GMP. The AEP Dolan Laboratory in Groveport, Ohio or a qualified laboratory selected by AEP, will serve as the primary analytical laboratory for analysis of the collected samples. AEP will report findings to the Kentucky Department for Environmental Protection (KDEP) which will be the regulating authority.

Overall management of the groundwater monitoring project will be the responsibility of AEP Environmental Services in Columbus, Ohio. Laboratory analyses will be conducted by the AEP Dolan Laboratory. The management staffing is listed below by position.

QA Officer—AEP holds the prime contract, so the QA officer will be an employee of AEP's Environmental Services Division in Columbus, Ohio. The AEP Project Manager for this project is Guy Cerimele.

Contractor QA Manager— QA management of the program will be performed by a contractor selected by AEP's Environmental Services Division in Columbus, Ohio. The contractor QA manager will have overall responsibility for ensuring that the data collected meet the defined data quality objectives (DQOs) including review of field documentation provided by EHS Support, Inc. (EHS), and validation of analytical data provided by Dolan Laboratories (See Section 6.1). The contractor QA manager will report to the QA officer.

Laboratory QA Organization and Responsibility— The AEP Dolan Laboratory's QA organization and responsibility are summarized in Section 4.0 of the attached laboratory QAPP (Appendix B-1).

2.3 Data Quality Objectives

The groundwater data obtained from the site will need to meet the DQOs under United States Environmental Protection Agency (U.S. EPA) standards, as referenced in *Data Quality Objectives for Remedial Response Activities, EPA/540/R-93/071.* The standards require that groundwater samples will be analyzed using the appropriate U.S. EPA analytical methods found in *Test Methods for Evaluating Solid Wastes, SW-846, Third Edition, November 1986* (SW-846). The methods may be the same as, or similar to, those specified by the Contract Laboratory Program (CLP), achieving similar detection limits, but without providing the high level of QA/QC document assembly and presentation required by CLP.

3.0 FIELD SAMPLING PLAN

The field sampling plan (FSP) details the number and location of groundwater samples to be collected, the type and quantity of QA/QC samples, equipment needs, sampling methods, and sample handling/chain-of-custody (COC) procedures. Examples of the various forms to be completed during implementation of the field components of this plan are provided as Appendix B-2.

3.1 Field Documentation

Field activities will be documented (using indelible ink) on a daily field memorandum or dedicated field log book. This log will document the event name, date, general weather conditions, site conditions, safety observations, names of sampling crew and visitors. The log will also record any other useful observations such as deterioration of access roads and well maintenance needs. Groundwater level measurements, as well as comments regarding the well condition or factors that may affect the validity of the measurements collected will be

documented on a Measurement of Groundwater Levels form. Monitoring well specific information collected during sampling such as well condition, water levels, water quality parameters, and visual/olfactory observations will be recorded on a well-by well basis on individual Groundwater Sampling Data Sheets.

3.2 Sampling Scope

Water levels for potentiometric evaluation will be collected from up to 12 existing monitoring wells at the Site. The groundwater sampling scope shall consist of the collection of representative samples from up to seven monitoring wells and one spring as identified on Table 1 of the GMP. Groundwater samples will be collected for either baseline monitoring or detection monitoring depending on the closure status of the site. Tables B-1 and B-2 provide a summary of the parameters to be analyzed for baseline monitoring or detection monitoring respectively. A summary listing of the number of samples, duplicates, and QA samples per event is provided as Table B-3. Depending upon the outcome of the proposed Federal Coal Combustion Residuals (CCR) rule, parameters may be added or removed from these lists.

3.3 QA/QC Samples

QA/QC samples will include 10 percent field duplicates and 5 percent matrix spike/matrix spike duplicates (MS/MSDs) on select analyses. Although only five monitoring wells will be sampled, at least one of each QA/QC sample type (i.e., duplicate, MS/MSD) will be tested. One monitoring well will be selected for collection of a field duplicate sample for each event. The laboratory shall randomly select one sample for MS/MSD analysis from the samples submitted for each event.

3.4 Sampling Equipment

Monitoring wells are equipped with dedicated 2-inch diameter bladder pumps that are positioned within the screened interval of the monitoring well to withdraw groundwater from the waterproducing zone. The discharge and air supply tubing were cut to fit the well depth and are permanently attached to a well seal, which is secured to the top of the inner casing. The well seals are designed with ports at the top to eliminate the need for removing the cap.

The sampling team will arrive at each well location with the following equipment:

- Site-specific Health and Safety Plan prepared by the contractor
- Personal protective equipment [PPE] (see Site-specific Health and Safety Plan)

- Field forms (Field Memorandum or Log, Measurement of Groundwater Levels, Groundwater Sampling Data Sheet, Calibration Log)
- Laboratory-supplied sample coolers, bottles, preservatives, chain-of-custody forms, labels, custody seals, shipping placards, permanent markers and pens.
- Portable air compressor, or compressed air supply and bladder pump controller.
- Dedicated or new single-use pump discharge hoses (maintained by contractor)
- Electronic water-level indicator
- Water quality meter with flow-through cell (temperature, pH, conductivity, dissolved oxygen (DO), turbidity and oxidation-reduction potential (ORP)).
- Calibration standards for pH, conductivity and turbidity.
- 5-gallon containers
- Graduated cylinder or similar calibrated water volume measuring device
- Disposable in-line filters (0.45 micron)
- Ice for sample preservation.
- Shipping materials: resealable plastic bags, packing tape, bubble wrap or similar inert materials used to secure sample container positions in cooler.
- Decontamination supplies including non-phosphate detergent, dilute nitric acid (~5%), distilled or deionized water, brushes, and buckets.

3.5 Instrument Calibration

Field calibrations and checks using calibration solutions will be conducted at the beginning of each work shift and as needed throughout each shift based on instrument response to correct any drift or other error in instrument response that may occur during the shift. All field checks and calibrations will be documented on a Calibration Log (Appendix B-2). The actual steps to be performed for calibrating these meters will vary between manufacturers. General procedures for field calibration of each instrument are presented below.

3.5.1 pH Calibration

The pH meter will be calibrated with standard buffer solutions prior to each groundwater sampling event. For this FSP calibration of pH will include three buffer solutions at least three

pH units apart to encompass the expected pH of the groundwater at the Site. The pH calibration standards typically used in calibration are pH-4, pH-7, and pH-10.

The procedures for pH calibration on most hand-held water quality multimeters are menu driven and vary from instrument to instrument. Therefore, the calibration procedure is to be performed according to instrument-specific manufacturer's instructions.

3.5.2 Thermometer Calibration

Typically, water quality multimeters cannot be calibrated for temperature in the field so calibration will not be required for this FSP. Temperature readings can be checked by testing a liquid of known temperature, such as ice water that has reached equilibrium. However, this method will only provide an approximate temperature that may vary a few degrees due to minor influences on the temperature of the liquid such as the level of impurities in the water and air pressure. Record of any temperature checks shall be included in the calibration log (Appendix B-2).

3.5.3 Conductivity Meter Calibration

Most water quality multimeters have an on screen menu that allows the calibration of conductivity to be performed in the field using an established calibration solution, and documented on the calibration log (Appendix B-2). The conductivity cell of the meter will be cleaned and checked against a known conductivity standard. If the check indicates the need for calibration, the meter will be calibrated according to instrument manufacturer's instructions.

3.5.4 Dissolved Oxygen (DO) Meter Calibration

The DO probe is recommended to only be used with meters equipped with flow-through cells. Calibration of this parameter is typically not performed in the field. As such, a record of the calibration documentation provided by the supplier should be maintained. DO response can be evaluated in the field to verify reasonable response from the instrument. Record of any DO checks shall be included in the calibration log (Appendix B-2). The process involves filling the instrument calibration cup with distilled or deionized water, and threading the cup loosely onto the meter making sure the probe is not submerged. Let the instrument sit for 15 to 20 minutes in a room at room temperature (approximately 20 degrees Celsius [°C]) to allow the air within the calibration cup to become fully saturated with moisture. The DO probe is expected to measure approximately 9.1 milligrams per liter (mg/L) and the DO saturation percentage is expected to be near 100 percent. If the recorded measurements are not within approximately

10% of the expected value, the probe membrane will be replaced in accordance with manufacturer instructions or the meter replaced by the instrument supplier.

3.5.5 Oxidation-Reduction Potential (ORP) Calibration

The ORP probe calibration is performed by the instrument supplier prior to issuance and is rarely attempted in the field. According to manufacturer's specifications, the instrument is expected to hold its ORP calibration for a period of time significantly greater than the duration of any groundwater monitoring event. As such, calibration for this parameter is not required for this FSP. An ORP standard of 200-275 mV, sometimes referred to as "Zobell's Solution", can be used to evaluate ORP response in the field to provide a rough validation of the factory calibration.

3.5.6 Turbidity Calibration

The turbidity meter will be calibrated daily using a three point calibration following manufacturer instructions. The calibration procedure will involve setting the low, middle, and high range of the instrument using calibration standards of known turbidity. The lowest standard typically consists of distilled or deionized water with an expected response of 0 Nephrometric Turbidity Unit (NTU). The remaining two standards are typically 10 to 20 NTU for mid-range and 40 NTU or greater.

4.0 SAMPLING

Groundwater sampling methods will involve groundwater level measurement, well purging, sample collection, and documentation.

4.1 Well Level Measurement

The depth-to-water (DTW) in monitored wells will be measured to the nearest hundredth of a foot using an electronic water level indicator at the beginning of each event as well as prior to and during purging (when using the low-flow purging method) following the Standard Operating Procedure (SOP) for Well Inspection and Depth to Water measurement presented in Appendix B-3. The bottom of the monitoring wells will not be readily accessible due to the presence of the bladder pumps. As such the total depth (TD) of the well will be a reported depth provided on the well construction log. All depth-to-water measurements collected for an event will be recorded on a Measurement of Groundwater Levels form provided in Appendix B-2.

4.2 Well Purging and Sampling

The SOP for well purging and sampling is provided in Appendix B-3. Purging will be completed using the dedicated bladder pumps installed in each of the five monitoring wells. All field parameter measurements and depth-to-water measurements for each well collected during purging and sampling will be recorded on a groundwater sampling data sheet (Appendix B-2)

4.2.1 Low-Flow Purging Method

Groundwater purging and sampling using the low-flow sample method as defined in Puls and Barcelona, 1996 will be the primary sampling method employed at the Site. This method is designed to passively draw groundwater from the formation with minimal mixing of stagnant water associated with casing storage by drawing groundwater from the well at a purge rate of between approximately 50 to 200 milliliters per minute (mL/min) such that drawdown of water level of no more than 4 inches from static depth to water as measured by a water level indicator probe.

Field parameters will be measured using a multimeter equipped with a flow-through cell equipped to test DO, pH, specific conductance, temperature, turbidity, and ORP. Low-flow purging will continue until the field parameters for temperature, pH, and specific conductance (at a minimum) have attained the appropriate stabilization range as follows:

Field Parameter	Stabilization Range
Temperature	±1.0 °F
pH	±0.1 Standard Units
Specific conductance	±3%
Turbidity	±□□10%
ORP	±10mV
DO	±□□10%

If the water level cannot be maintained within 4 inches of static due to lack of recharge the well will be purged using the purge and sample option discussed below.

4.2.2 Purge and Sample Option

The purge and sample method involves the removal of at least three well volumes of water from the well to obtain a representative sample. This volume is well-specific as determined by the height of the static water column as determined by subtracting the measured DTW from reported TD. The height of the static water column is then multiplied by 0.5 (for 2-inch inner diameter wells) to calculate the three well volumes to be purged.

Purging will be conducted using the same equipment as the low-flow method. The purge and sample method requires the removal of a minimum three well volumes of water and stabilization of groundwater quality parameters for temperature, specific conductance, and pH have been reached.

If field parameter stabilization does not occur after three well volumes, the purging will be continued for up to a fourth well volume. If parameter stabilization has not occurred after four well volumes the sample will be collected and the discrepancy noted in the field log and on the well sampling form (Appendix B-2).

4.2.3 Low Yielding Wells

If the yield in a monitoring well is insufficient to conduct purging by low-flow or purge and sample methods, it will be purged dry a minimum of two times prior to sample collection. The measured field parameters, calculated purge volume and actual purge volume will be recorded on the well sampling data sheet (Appendix B-2).

4.2.4 Disposal of Purge Water

Water purged from the monitoring wells at this site is considered to be non-hazardous and should be disposed to ground surface downgradient of the well. However, if analytical data of the corresponding groundwater samples reports a compound at or above the U.S. EPA Maximum Contaminant Levels [MCLs], the procedure for the disposal of purge water should be reviewed for possible amendment for subsequent sampling events.

4.2.5 Decontamination of Equipment

All reusable equipment that will or may come into contact with groundwater must be decontaminated prior to use following the SOP (Appendix B-3).

4.3 Sample Collection

Groundwater samples will be collected upon completion of purging for either baseline monitoring or detection monitoring depending on the closure status of the Site, as described in Section 3 of the GMP. A water sample from each monitored well will be submitted for laboratory analysis of the parameters in either Table 1 (Baseline) or Table 2 (Detection). The purging procedures prior to sampling will be similar for both types of monitoring events. However, the number of sample bottles to be filled and the preservatives to be added at each sampling

location may be different depending on laboratory requirements to fulfill the different analysis requirements.

The SOPs for sample collection are provided in Appendix B-3. Groundwater samples will be collected using either single-use, dedicated, or decontaminated equipment only. All water quality meters must be removed from the discharge train prior to dispensing the sample to the laboratory-supplied containers. The samples will be collected immediately after purging is completed, or in the case of low-yielding wells, when sufficient recovery allows sampling to commence.

QA/QC samples:

- One duplicate will be collected as a split sample in the field during each monitoring event.
- Bottles specifically for MS/MSD analysis will <u>NOT</u> be collected in the field. This QA/QC sample will be selected at random by the laboratory from the samples submitted.

All filled sample bottles will be affixed with a label containing the project name, well number, date and time, preservation, analysis, and sampling crew initials. This information will be entered on a laboratory-supplied COC form after sample collection is complete and before mobilizing to the next location. (See Section 4.4 for further details on Chain-of-Custody procedures).

4.4 Sample Documentation and COC

Custody of the samples will be recorded on a COC form after securing the samples in the cooler, and before mobilizing to the next sampling location. This form will remain with the cooler and provide an accurate record of all samples the cooler contains. The COC will be unique to each cooler and contain information describing all of the samples contained within. The information to be recorded on the COC includes the following:

- Client, project name, project number.
- Name of the sampler and project manager.
- The sample identification, date, time for every sample in the cooler.
- The number, type and preservation of containers.
- The requested analyses for every sample.

5.0 SAMPLE PACKING AND SHIPMENT

The SOP for sample packing and shipment is provided as Appendix B-3. The sampler (or custodian) who relinquishes the samples will do so by signing the COC(s). This individual will be responsible for the verifying the samples are properly secured, chilled and labeled to minimize the potential loss of sample(s) due to damage, inadequate preservation or preventable shipping delay. A copy of each relinquished COC and shipping tracking number will be placed in the field project file, and the laboratory will be contacted the following morning to confirm the cooler(s) arrived in good condition.

Upon receipt of the sample cooler, the laboratory will accept custody by signing the COC form as "Received by" and will log in the samples. The log-in procedure will include measuring the cooler temperature using a temperature blank sample that accompanied the cooler. The laboratory will immediately contact the project manager regarding any problems with sample breakage, chain-of-custody, or other discrepancy, so that corrections or replacements can be made as necessary.

6.0 ANALYTICAL METHODS AND LABORATORY QA/QC

Groundwater sample analyses for the monitoring events will follow Federal Register approved methods referenced on Table B-1 and Table B-2. The methods will be stated on the COC. nformation regarding the data analysis procedures and reporting requirements for each analytical method is presented in the Dolan Chemical Laboratory Quality Assurance Manual (QAM) Revision 18, Effective Date, December 1, 2012 included here as Appendix B-1. The laboratory QAM details the following:

- Personnel Descriptions and Responsibilities (Section 16)
- Technical Requirements for Equipment (Section 19)
- Procedure for Test Methods and Validation (Section 18)
- Technical Requirements for Sample Handling (Section 22)
- Technical Requirements for Calibration and Reference Standards and Reagents (Section 20)
- Technical Requirements for Reporting, Validation and Documentation (Section 24)
- Technical Requirements for QA (Section 23)
- Procedure for Records Control (Section 13)
- Procedure for Laboratory Audits (Section 14)

6.1 Data Validation

All analytical data will undergo a data review to assess validity. Validation procedures for this groundwater monitoring program are outlined in the following U.S. EPA guidance document:

U.S. EPA Contract Laboratory Program, National Functional Guidelines for Inorganic Data Review (U.S. EPA, January 2010).

The laboratory deliverable will include, at a minimum, the sample COC forms, analytical results, and QC summaries. The contractor QA manager will evaluate the overall completeness of the data package. Completeness checks will be administered on all data to determine whether deliverables specified in this SAP and QA/QC Plan are present. The reviewer will determine whether all required items are present and request copies of missing deliverables.

APPENDIX B-1

DOLAN LABORATORY QUALITY ASSURANCE MANUAL (QAM) APPENDIX B-2

FIELD DOCUMENTATION

MEASUREMENT OF GROUNDWATER LEVELS

ob Number:				Date: By:				
wner:	AEP - Big	g Sandy						
ocation:	Horseford	l Creek Site			Instrument:			
					Serial #:			
Well ID Number	Time	Reference Point	Elevation of Reference	Depth to Water (DTW)	Total Depth (TD)	Water Elevation		

AEP - Ken	water Sampli itucky Power Cor Creek Site			lant	Date:			
101361010	Oreek Oile			Field Technician/Sampler(s)				
Well Ident	ification:			Monitoring Wel	I Tag Number:			
Well Diam	eter:	2-ir	nch	Well Depth (ft):		Water Level:		
Height Wa	ater Column (ft.)			Well Volume:		Three Well V	olumes:	
Start Purg	e Time:			Method of Purg	ing Well:			
End Purge	e Time:			Total Purge Am	iount (gals.)			
Well Purgi	ing Comments:							
Instrument pH buffers	t calibration used used	d prior to pui pH 4 pH 7	ging:	Conductivity Sta Other standards				
		pH 10						
Date &	Turbidity	pН	Conductivity	er Chemistry Pu Temperature	ORP	DO	Gallons	
Time	(NTU)	(s.u.)	(mhos/cm)	(°C)	(mV)	(mg/L)	Purged	
	rel Depth (ft.): Date (Start): (End):		Ground	water Sampling Method of Sam Sampling Time	ple Collection:			
Instrument	· · · ·		malinau		(Lind).			
Instrument calibration used pH buffers used		pH 4 pH 7 pH 10		Conductivity Sta Other standard				
Date	Time	рН (s.u.)	Conductivity (mhos/cm)	Temperature (°C)	Dissolved O ₂ (mg/L)	ORP (mV)	Others/Comments	
Motol 51	ation:			and there is	<u> </u>	<u> </u>	<u> </u>	
Metal Filtra Comments		start time:		end time:				
						D :		
Signed:						Date:		

	FIELD ME	EMORANDUM	NAME:				
			TO (FILE/PM):				
CLIENT:	EP Big Sandy	SITE: Horseford Creek Site	PROJECT #.				
SUBJECT:		I					
-							
-							
12							
15							
0							
1							
-							
<u> </u>							
<u></u>							
-							
1							
1							

DATE:

PAGE

OF

.

			Cha	ain-of-C	ustody	y Reco	rd and A	Analysis Re	quest Fo	orm		AMERICAN [®]	
Form COC-2												ELECTRIC POWER	
Rev. 4, 09/16/11											Paş	ge of	
Location: (District, Region, Plant, etc.)	Big S	andy Pl	ant										
Program/Project:													
(If applicable)	Grou	ndwater	Monito	ring									
Submitted/Requested By	:					Phone	e/Fax/E-ma	il:				285-1416	
Sample(s) Origin - * Sam	ple Source a	nd Desc	rintion:										
(NPDES Permit, Outfall No., etc.)	pie source u	nu Dese	i iption.										
Additional Information:													
(Site Description, Sample Type, etc	.)												
Analyses Requested:													
(Attach information if necessary)								7 144 A 66	<i></i> 0				
Results Turnaround: (Select One ☑)	Routi	ne Pri	iority	Rush	Date By:	:	Weather (Conditions Affe	cting Samp	ling:			
(Please Date Non-Routine)													
					Units of	f Flow 🗹		1	<u> </u>	G			
Bottle or	Preservatives and Filtering (Codes/Colors)		uantity	<u> </u>					Select One Per Line COMPOSITE GRAB				
Analysis ID's			of the Sample	mgd gpr Other		gpm	Sampler(s) Initials	Flow	Date/Time	mL Added	GRAB Date/Time		
	(· · · ·	Sample		Other	-		Tintiais	FIOW	Date/Time	IIIL Audeu	Date/Time	
				Pres	ervatives	s and Fil	tering						
				(Codes)			{Colors}						
				(A) Not			{White}						
				(B) Coo (C) Na			{Blue} {Yellow}						
				(C) Ha			{Red}						
				(E) 1:1		pH < 2	{Green}		1				
				(F) Filt			{Pink}						
				(G) 1:1	_		{Gray}						
				(H) Zin	c Acetat	e	{Black}						
				(I) Otł	ner								
				Sa	mplers l	Initials (Code						
				Initials	-		of Person						
									1				
				* Sample Co	ollector Info)							
				Name		-							
				Mailing									
				Address Phone									
				Thone	-								
Relinquished By: (Sampling supervisor or personnel):									Date/Time	:			
Transportation: 🗹	Employee		louvion.		PS	Fed-Ex] [Other (Name):	*Date of S	hipment to Lab:			
Received By Transporter:	Employee	AEP C	ourier	U	rs	Fed-Ex		Otner (Name):	Date/Time	:			
Relinquished By Transporter	:								Date/Time	2:			
Received By Laboratory:													
(Testing laboratory receiving personnel)	Date/Time: * Dolan Chemical Laboratory												
61									1	4001 Bix		,	
Receipt Notes:										Groveport, Ohio 43125			
	Phone: 614-836-4211												
										Fax: 614-			
		A P	ROPERL	Y FILLED OU	Т СОРУ О	F THIS FO	ORM MUST AG	COMPANY EACH	SET OF SAM	PLES SENT TO THE V	VATER TESTING	LABORATORY.	

ALSO, A TAG ON THE SAMPLE OR CONTAINER IS NECESSARY FOR THE SAMPLE(S) TO BE PROPERLY PROCESSED.

FEDERAL REGULATIONS REQUIRE THAT THIS INFORMATION BE RETAINED FOR AT LEAST THREE YEARS.

LABORATORY DATA FOR THESE SAMPLES SHOULD BE FILED WITH THIS CHAIN-OF-CUSTODY RECORD.

* NOTE: For PCB analysis must complete: sample collector name, mailing address & phone; quantity of the sample; sample source & description; date of shipment to lab.

AEP DOLAN CHEMICAL LAB CHAIN OF CUSTODY RECORD - INSTRUCTIONS

FORM COC-02

GENERAL

- 1 All applicable information must be completed optional entries are noted in these instructions.
- 2 COC forms must be completed legibly and in permanent ink.
- 3 Any errors must be corrected by a single line through the mistake, and the date and initials of the individual making the correction.
- 4 Shaded areas of the chain of custody (COC) are for laboratory use only.

RECORD COMPLETION

- **1 Page Numbering:** Enter the page number of each individual page and the total number of pages.
- **2** Location: Enter the location or applicable AEP operating company district, region, plant, etc.
- 3 Program/Project Name: Enter the name of the program, project or site where the samples originated.
- 4 **Contact Person:** Print the name of the person to receive the final analytical results.
- **5 Contact Information:** Enter the phone number, fax number, and email of the person to receive the final analytical results.
- 6 Sample(s) Origin Source & Description: Describe the sample for identification purposes.
- This could be a company or serial number for equipment, an outfall number, NPDES permit, or other source.
- * This is required for shipment of samples for PCB analysis.
- 7 Additional Information: Include site description, sample type, and any information that may be useful.
- 8 Analyses Requested: Clearly state which analyses are requested and any specific reference method or test methodology that is required. (Attach information, if necessary)
- 9 Results Turnaround: Select one of the following turnaround times routine, priority or rush.
- If Non-Routine turnaround is selected, indicate the requested date of results.
- 10 Weather Conditions Affecting Sampling: Describe weather conditions encountered during sampling event(s).
- 11 SAMPLE INFORMATION It is the intent of this record that each sample container is entered on a different line
 - a. Bottle or Analysis ID(s): Enter an ID number that matches the ID on the sample container label.
 - b. **Preservatives and Filtering (Codes/Colors):** Indicate the preservative(s) added to the sample and/or filtering performed on the sample using the Codes (A through I) and Colors defined in the center box.
 - c. Quantity of the Sample: Enter the volume of the sample.
 - You may use the sample container volume measurement as the quantity of the sample.
- * This is required for shipment of samples for PCB analysis.
 - d. Units of Flow: Select the units of flow from those listed, or select "other" and state the units of flow used.
 - e. Sampler(s) Initials: The sampler(s) initials as defined in the bottom, center box.
 - f. Flow: The flow rate of sample collection, if known.
 - g. **Composite/Grab:** The sampling technique (composite or grab sample).
 - Indicate the date and time the sample was collected under the appropriate header- Composite or Grab. Additionally, indicate the volume of sample added during composite sampling.
 - h. Samplers Initial Code: List the initials and the printed name of the sample collector(s).
- i. Sample Collector Information: Print the name, mailing address, and phone number of the sample collector.
- * This is required for shipment of samples for PCB analysis.

12 IDENTIFICATION AND SIGNATURES FOR CUSTODY PURPOSES -

- Two sections are provided to show transfer and receipt of samples from the sample collector(s)/site personnel, to the transporter, to the final destination in the laboratory.
- a. **Relinquished By (Sign, Date, Time):** Signature of the person turning the sample(s) over to another person (such as the sample collector, supervisor, or other coworker).
- b. **Transportation: Select** which carrier was used for shipment employee, AEP courier, UPS, Fed-Ex, other. If "other" is selected, indicate the name.
- c. Date of Shipment to Lab: Enter the date the sample(s) is shipped to the lab.
- *This is required for shipment of samples for PCB analysis.
- d. **Received By Transporter (Sign, Date, Time):** Signature of the Transporter personnel receiving the sample(s) as they are relinquished.
- e. **Relinquished By Transporter (Sign, Date, Time):** Signature of the Transporter personnel turning the sample(s) over to another person (at the laboratory).
- f. Received By Laboratory (Sign, Date, Time): Signature of the laboratory personnel receiving the samples as they are relinquished.
- g. Receipt Notes: Include pertinent observations and comments in relation to receiving the sample(s).

CALIBRATION LOG

Project Name: <u>AEP Big Sandy – Horseford Creek Site</u> Project #:_____

Instrument Type:_____ Serial #_____

DATE	INSTRUMENT	PARAMETER	CALIBRATION STANDARD(S) Unit(s) or Concentration(s)			CALIBRATED BY	REMARKS

APPENDIX B-3

STANDARD OPERATING PROCEDURES (SOPs)

STANDARD OPERATING PROCEDURE (SOP) WELL INSPECTION AND DEPTH TO WATER MEASUREMENT

- Scope: This procedure describes acceptable methodologies for well inspection, collecting Depth-to-Water (DTW) measurements.
- Purpose: The purpose of describing this procedure is to create a uniform method of well inspection and DTW procedures between field personnel and between measurement events.
- Equipment: Electronic water level probe, field forms including a Field Memo, groundwater level measurements, personal protective equipment [PPE] (Level D, hard hat, cut resistant and nitrile or equivalent gloves). Decontamination equipment will include distilled water and non-phosphate detergent.

Procedure:

- 1. Identify and locate each monitoring well to be measured for DTW and total depth.
- 2. Approach each monitoring well to be measured and complete a visual inspection of the condition of the procasing, bollards, and pad. Note any damage or degradation in condition such as rust, cracks, worn hinges, chipped or faded paint etc.
- 3. Remove the lock using the appropriate key and procasing lid. Inspect the interior for properly functioning well cap and signs of wildlife (insects, nests etc.). Remove signs of wildlife from the interior if observed and can be done safely.
- 4. Remove the locking well cap and lower the probe down the well until the probe responds indicating top of water.
- 5. Measure the DTW from the reference mark on the Top of Inner Casing (TOIC). Raise and the probe a few inches at above and below the top of water to confirm. Record measurement on the appropriate field forms (Well Data Sheet form). Note: Total Depth (TD) measurement will not be performed due to bladder pump obstruction. A report TD from the well construction for each monitoring well will be used to calculate purge volume.
- 6. Decontaminate probe and cable with non-phosphate detergent and distilled or Deionized (DI) water solution followed by distilled or DI water rinse before proceeding to the next well.

STANDARD OPERATING PROCEDURE (SOP) MONITORING WELL SAMPLING

- Scope: This procedure describes acceptable methodologies for purging and sampling monitoring wells so that representative samples can be obtained.
- Purpose: The purpose of describing this procedure is to create a uniform method of sampling between field personnel in order to provide representative samples of the saturated unit while maintaining proper quality control (QC) practices.

Equipment

Needed: Bladder pump controller, discharge elbow, air and discharge tubing, air compressor, water quality multimeter with flow-through-cell, calibration standards (3-point pH, 3-point turbidity and conductivity), electronic water level indicator, plastic sheeting, two or more 5-gallon buckets, personal protective equipment [PPE] (see contractor specific Health and Safety Plan), chemically resistant gloves, laboratory supplied, coolers bottles, preservatives, labels and chain of custodies.

Procedure: Initial Setup

- 1) Locate and identify monitoring well to be sampled and inspect for evidence of possible damage or tampering.
- 2) Place plastic sheeting around the well, and unlock protective casing and remove the cap.
- 3) Measure the depth-to-water (DTW)

(See SOP Well Inspection-Water Level/Total Depth (TD)

Measurement)

- 4) Calculate of the purge volume requirements by subtracting measured DTW from the reported TD and multiplying by 0.5 (for 2-inch well).
- 5) Attach discharge elbow and connect air supply tubing from controller to the pump and connect air tubing from compressor to the controller.
- 6) Connect flow-through-cell of a calibrated water quality meter to well discharge tubing. (Note: Calibration for pH, Specific Conductivity and Turbidity required daily at a minimum)
- 7) Put on new single use chemical resistant gloves and continue with either **Low-Flow** or **Purge and Sample** method.

STANDARD OPERATING PROCEDURE (SOP) FOR MONITORING WELL SAMPLING (CONTINUED)

Low-Flow Procedure

- 8) Start the compressor and adjust the controller per instruction manual such that purge rate is <u>approximately 50 millimeters per minute</u> (ml/min).
- 9) Measure the DTW and increase purge rate up to a maximum of <u>approximately 200 ml/min</u> keeping drawdown to less than 4 inches from static as measured in Step 4. (NOTE: If drawdown cannot be maintained at 4 inches or continue purging via the purge and sample method below)
- 10) Continue purging and record DTW and field parameter readings on the Groundwater Sample Data Sheet at roughly 5 minute intervals adjusting purge rate as needed such that drawdown does not exceed four inches.
- 11) Once field parameters for ph, Specific Conductance and Temperature (minimum) have stabilized the well is ready to sample.

Field Parameter	Stabilization Range
ORP	±10mV
Dissolved oxygen	
рН	±0.1 Standard Units
Specific conductance	±3%
Temperature	±1.0 °F
Turbidity	

- 12) Label a set of sample containers (provided by the lab) the Project name, Well ID, sample date, sample time, analysis requested, preservative, and sampler initials.
- 13) Remove the discharge line from the flow-through-cell and fill all appropriate laboratory supplied sample containers.
- 14) **Duplicate QA Sample:** When a duplicate sample is to be collected the containers for the primary and duplicate samples will be filled alternately such that the two containers are filled simultaneously. Special care should be taken to minimize differences between the two samples, especially in sediment content.
- 15) Add preservatives per laboratory instructions to appropriate filled containers and secure the samples in a cooler chilled with wet ice to between 2 to 4 degrees Celsius (°C).
- 16) Shutdown the air compressor.

STANDARD OPERATING PROCEDURE (SOP) FOR MONITORING WELL SAMPLING (CONTINUED)

- 17) Record the sample identification, date, time, analysis, and preservation information on a Chain of Custody.
- 18) Complete the Groundwater Sampling Data sheet recording any additional observations. (i.e. color, odor, air bubbles in discharge etc.).
- 19) Disconnect all sampling equipment, secure locking well cap and procasing lid and lock back on the well. Place all disposable equipment such as gloves, plastic sheeting and non-dedicated tubing used for sample collection into a trash bag for proper disposal.
- 20) Decontaminate water level probe and flow-through-cell in accordance with the SOP-C.

Purge and Sample Procedure

- 8) Start the compressor and adjust the controller per instruction manual such that the purge rate is roughly equivalent to the maximum sustainable yield of the well.
- 9) Continue purging and record DTW and parameter readings on the Groundwater Sample Data Sheet at roughly 5 minute intervals.
- 10) Once field parameters for pH, Specific Conductance and Temperature (minimum) have stabilized the well is ready to sample.

Field Parameter	Stabilization Range
ORP	□10 mV
Dissolved oxygen	Ē
рН	□0.1 Standard Units
Specific conductance	□3%
Temperature	□ı°F
Turbidity	Ē

- 11) Label a set of sample containers (provided by the lab) the Project name, Well ID, sample date, sample time, analysis requested, preservative, and sampler initials.
- 12) Remove the discharge line from the flow-through-cell and fill all appropriate laboratory supplied sample containers.
- 13) **Duplicate QA Sample:** When a duplicate sample is to be collected the containers for the primary and duplicate samples will be filled alternately such that the two containers are filled simultaneously. Special care should be taken to minimize differences between the two samples, especially in sediment content.

STANDARD OPERATING PROCEDURE (SOP) FOR MONITORING WELL SAMPLING (CONTINUED)

- 14) Add preservatives per laboratory instructions to appropriate filled containers, and secure the samples in a cooler chilled with wet ice to between 2 to 4 °C.
- 15) Shutdown the air compressor.
- 16) Record sample identification, date, time, analysis, and preservation information on a Chain of Custody.
- 17) Complete the Groundwater Sampling Data sheet recording any additional observations. (i.e. color, odor, air bubbles in discharge etc.).
- 18) Disconnect all sampling equipment, secure locking well cap and procasing lid and lock back on the well. Place all disposable equipment such as gloves, plastic sheeting and non-dedicated tubing used for sample collection into a trash bag for proper disposal.
- 19) Decontaminate the water level probe and flow-through-cell in accordance with the procedures described in the decontamination SOP.

STANDARD OPERATING PROCEDURE (SOP) DECONTAMINATON

- Scope: This procedure describes acceptable methodologies for decontamination of non-dedicated sampling equipment.
- Purpose: The purpose of describing this procedure is to create a uniform method for decontamination of reusable equipment that will come into contact with the a well or sample such as water level probes and flow-cells as well as equipment that may be used such as submersible pumps.

Equipment

Needed: Two 5-gallon buckets, one scrub brush, potable water, non-phosphate detergent, spray bottle filled with dilute nitric acid (~5%) labeled "Dilute Nitric Acid", spray bottle filled with distilled or deionized water and a roll of paper towels. Note: Label the spray bottle containing dilute nitric acid

Procedure:

- 1. Mix 2 to 3 gallons of potable water. (Distilled or deionized water can be used) with approximately one table spoon of non-phosphate detergent in one of the 5-gallon buckets.
- 2. Decontaminate for solids: Place the portion of the equipment to be decontaminated in the 5-gallon bucket to soak and scrub the exposed surfaces with the brush to remove deposits.
- 3. Remove the equipment from the bucket and place over the empty 5-gallon bucket.
- 4. Decontaminate for metals: Using the dilute nitric acid bottle, spray all portions of the equipment being decontaminated making sure to capture the liquid in the 5-gallon bucket.
- 5. Rinse all portions of the equipment that have been decontaminated using the spray bottle containing only distilled or deionized water.
- 6. Dry the equipment using a new single use sheet or sheets of paper towels.
- 7. Store the now decontaminated equipment until ready for use at the next sampling location.

STANDARD OPERATING PROCEDURE (SOP) SAMPLE PACKING AND SHIPMENT

- Scope: This procedure describes acceptable methodology for packaging and shipping environmental samples to an analytical laboratory for chemical analyses.
- Purpose: The purpose of this procedure is to provide a uniform and documented means of securely transporting environmental samples to the laboratory and to preserve the integrity and quality of the sample(s).

Required

Supplies: Packaging tape, paper towels, mailing labels, chain-of-custody forms, chain-of-custody seals, shipping forms, packaging material, and ice.

Procedures:

- 1. Assemble all sample containers from the completed sampling event.
- 2. Locate, identify and record all types of containers from each well identification on a chain-of-custody form.
- 3. Subtotal the number of containers of similar types and then add them all together for a total bottle count. Check bottle counts of similar bottle types and total bottle counts with the filled samples present in the sample coolers.
- 4. Check that sample containers were properly labeled.
- 5. Secure glass bottles in protective packaging material (i.e., bubble wrap).
- 6. Place plastic bag large enough to enclose all samples, packing materials and ice in each cooler. This will serve as a form of secondary containment should a leak occur during shipping.
- 7. Place protective packaging material in the bottom of each cooler to prevent direct contact of the glass bottles with the bottom of the cooler.
- 8. Arrange sample bottles in cooler to minimize movement. Plastic bottles may be placed between glass bottles when possible as an added protective measure.
- 9. Place ice (contained in resealable bags) into each cooler adequate to keep samples chilled at approximately 4 degrees Celsius (°C) until arriving at the laboratory.

STANDARD OPERATING PROCEDURE (SOP) FOR SAMPLE PACKING AND SHIPMENT (CONTINUED)

- 10. Close and tie off the large plastic bag such that all samples, packing material and ice are inside. Then place the top copy (original) of the chain-of-custody in a resealable plastic bag on top of this bag.
- 11. Close lid of cooler and seal with packing tape at a minimum of two locations. Encircle the cooler at least three times per location. Place custody seals over the lid opening on the front right and back left of the cooler and cover with clear tape. This custody seal should be initialed and dated by the custodian prior to placing on the cooler.
- 12. Properly complete an address/shipping form and affix to the cooler lid with "This Side Up[↑]", "Fragile" and "Glass" labels on two sides of each cooler. Samples will be delivered via overnight courier to arrive at the laboratory the next morning.
- 13. Deliver to an appropriate manned overnight shipper drop-off station.
- 14. File a copy of the chain-of-custody form and the shipping form in the project file.
- 15. Contact laboratory the next morning to confirm arrival and condition of samples.