KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 243 of 397

Version Date & Revision HistoryDraft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

2010 Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

Convection Oven (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Commercial convection ovens that are ENERGY STAR certified have higher heavy load cooking efficiencies, and lower idle energy rates making them on average about 20 percent more efficient than standard models. Energy savings estimates are for ovens using full size (18" x 36") sheet pans.

Definition of Efficient Equipment

The efficient equipment is assumed to be an ENERGY STAR qualified electric convection oven.

Definition of Baseline Equipment

The baseline equipment is assumed to be a standard convection oven with a heavy load efficiency of 65%.

Deemed Savings for this Measure

Annual kWh Savings	= 3,235 kWh
Summer Coincident Peak kW Savings	= 0.62 kW

Deemed Lifetime of Efficient Equipment 12 years⁵⁸⁶

Deemed Measure Cost The incremental cost for commercial convection ovens is assumed to be \$1,113⁵⁸⁷

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.84⁵⁸⁸

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $kWH = [LB \times E_{FOOD}/EFF + IDLE \times (HOURS_{DAY} - LB/PC - PRE_{TIME} / 60) + PRE_{ENERGY}] \times DAYS$ $\Delta kWh = kWH_{base} - kWh_{eff}$

Where:

kWH _{base}	= the annual energy usage of the baseline equipment calculated using baseline values
kWH _{eff}	= the annual energy usage of the efficient equipment calculated using efficient values
HOURSDAY	= Daily operating hours = 12 ⁵⁸⁹

⁵⁸⁶ Food Service Technology Center (FSTC). Default value from life cycle cost calculator. http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php

⁵⁸⁷ NYSERDA Deemed Savings Database

 ⁵⁸⁸ RLW Analytics. Coincidence Factor Study – Residential and Commercial Industrial Lighting Measures. Spring 2007.
 ⁵⁸⁹ Food Service Technology Center (FSTC), based on assumption that restaurant is open 12 hours a day, 365 days a year.

DAYS	= Days per year of operation
	= 365
PRETIME	= Preheat time (min/day), the amount of time it takes a steamer to reach operating temperature when turned on = 15 min/day ⁵⁹⁰
EFOOD	= ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food = 0.0732 ⁵⁹¹
LB	= Pounds of food cooked per day (lb/day) = 100 ⁵⁹²
EFF	= Heavy load cooking energy efficiency (%). See table below.
IDLE	= Idle energy rate. See table below.
PC	= Production capacity (lbs/hr). See table below.
PREENERGY	= Preheat energy (kWh/day). See table below.

Performance Metrics: Baseline and Efficient Values⁵⁹³

Metric	Baseline Model	Energy Efficient Model
PREENERGY (kWh)	1.5	1
IDLE (kW)	2	1.3594
EFF	65%	74%595
PC (lb/hr)	70	80

Summer Coincident Peak Demand Savings

 $= (\Delta kWh / HOURS) \times CF$ ΔkW

Where:

∆kWh	= Annual energy savings (kWh)	
HOURS	= Equivalent full load hours	
	= 4380	
CF	= Summer Peak Coincidence Factor for measure	
	= 0.84	

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

- 592 Food Service Technology Center (FSTC). Default value from life cycle cost calculator.

⁵⁹⁰ Food Service Technology Center (2002). Commercial Cooking Appliance Technology Assessment. Prepared by Don Fisher.. Chapter 7: Ovens. ⁵⁹¹ American Society for Testing and Materials. Industry Standard for Commercial Ovens.

http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php

⁵⁹⁴ Calculated from list of Energy Star qualified models,

http://www.energystar.gov/ia/products/prod_lists/comm_ovens_prod_list.xls

KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 246 of 397

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

2010 Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

ENERGY STAR Griddle (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

ENERGY STAR qualified commercial griddles have higher cooking energy efficiency and lower idle energy rates than standard equipment. The result is more energy being absorbed by the food compared with the total energy use, and less wasted energy when the griddle is in standby mode.

Definition of Efficient Equipment

The efficient equipment is assumed to be an ENERGY STAR qualified griddle that has a cooking energy efficiency greater than 70%

Definition of Baseline Equipment

The baseline equipment is assumed to be a conventional electric griddle with a cooking energy efficiency of 60%

Deemed Calculations for this Measure

Annual kWh Savings = kWh_{base} - kWh_{eff}

Summer Coincident Peak kW Savings = (Annual kWh Savings / HOURS) x CF

Deemed Lifetime of Efficient Equipment 12 years⁵⁹⁶

Deemed Measure Cost The incremental cost of an ENERGY STAR griddle is assumed to be \$2,090⁵⁹⁷.

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.84⁵⁹⁸

REFERENCE SECTION

Calculation of Savings

kWhoase

Energy Savings

 $kWh_i = [LB \times E_{FOOD} / EFF_i + IDLE_i \times (HOURS_{DAY} - LB / PC_i - PRE_{TEME} / 60) + PRE_{ENERGY_i}] \times DAYS$

 $\Delta kWh = kWh_{base} - kWh_{eff}$

Where:

= the annual energy usage of the baseline equipment calculated using baseline values (where i = base for all instances of the subscript in the equation above).

⁵⁹⁶ Food Service Technology Center (FSTC). Default value from life cycle cost calculator.

http://www.fishnick.com/saveenergy/tools/calculators/egridcalc.php

 ⁵⁹⁷ New York State Energy Research and Development Agency (NYSERDA) Deemed Savings Database, Rev. 12, 2008.
 ⁵⁹⁸ Verification of summer peak coincidence factor is pending further information from the utilities.

kWheff	= the annual energy usage of the efficient equipment calculated using efficient values (where $i = eff$ for all instances of the subscript in the equation above).
LB	= Pounds of food cooked per day = 100
EFOOD	= ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food $= 0.139^{399}$
EFFi	= Heavy Load Cooking Energy Efficiency; see table below for baseline and efficient values.
IDLE	= Idle Energy Rate; see table below for baseline and efficient values.
HOURSDAY	= Daily operating hours = 12 ⁶⁰⁰
PCi	= Production Capacity; see table below for baseline and efficient values.
PRETIME	= Preheat time (min/day), the amount of time it takes a steamer to reach operating temperature when turned on $= 15 \text{ min/day}^{601}$
60	= minutes per hour
PRE _{ENERGY,i} DAYS	 Preheat energy (kWh/day); see table below for baseline and efficient values. Operating Days per year 365

Efficient Griddle Performance Metrics: Baseline and Efficient Values⁶⁰²

Parameter	Baseline Model	Efficient Model
Idle Energy Rate (kW)	2.4	0.92
Production Capacity (lb/h)	35	46
PREENERGY	4	2
Heavy Load Cooking Energy Efficiency	60%	75%

Summer Coincident Peak Demand Savings

 $\Delta kW = (\Delta kWh / HOURS) \times CF$

Where:

∆kWh	= Annual energy savings (kWh)	
HOURS	= annual operating hours	
	= HOURSDAY * DAYS = 12 * 365 = 4380	
CF	= Summer Peak Coincidence Factor for measure	
	= 0.84	

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

⁵⁹⁹ American Society for Testing and Materials. Industry Standard.

⁶⁰⁰ Food Service Technology Center (FSTC), based on assumption that restaurant is open 12 hours a day, 365 days a year.

⁶⁰¹ FSTC (2002). Commercial Cooking Appliance Technology Assessment. Chapter 3: Griddles.

⁶⁰² An average pan width of 3 ft has been assumed based on a survey of available equipment. Baseline values based on assumptions from FSTC life cycle cost calculator. Efficient values reflect averages from a list of qualifying models found on the ENERGY STAR website (accessed June 2010)

KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 249 of 397

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

2010 Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

Spray Nozzles for Food Service (Retrofit)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

All pre-rinse valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. They reduce water consumption, water heating cost, and waste water (sewer) charges. Pre-rinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The spray valves usually have a clip to lock the handle in the "on" position. Pre-rinse valves are inexpensive and easily interchangeable with different manufacturers' assemblies. The primary impacts of this measure will be water savings. Energy savings depend on the facility's water heating fuel - if the facility does not have electric water heating, there are no electric savings for this measure; if the facility does not have fossil fuel water heating, there are no MMBtu savings for this measure.

Definition of Efficient Equipment

The efficient equipment is assumed to be a pre-rinse spray valve with a flow rate of 1.6 gallons per minute, and with a cleanability performance of 26 seconds per plate or less

Definition of Baseline Equipment

The baseline equipment is assumed to be a spray valve with a flow rate of 3 gallons per minute.

Deemed Savings for this Measure

Annual kWh Savings⁶⁰³ = Δ Water x HOT_% x 8.33 x (Δ T) x (1/EFF) x 10⁻⁶

Summer Coincident Peak kW Savings = 0

Annual MMBtu Savings⁶⁰⁴ = Δ Water x HOT_% x 8.33 x (Δ T) x (1/EFF) x 10⁻⁶

Deemed Lifetime of Efficient Equipment 5 years⁶⁰⁵

Deemed Measure Cost The actual measure installation cost should be used (including material and labor).

Deemed O&M Cost Adjustments n/a

Coincidence Factor n/a⁶⁰⁶

REFERENCE SECTION

Calculation of Savings

⁶⁰³ If the facility does not have electric water heating, there are no electric savings for this measure.

⁶⁰⁴ If the facility does not have fossil fuel water heating, there are no MMBtu savings for this measure.

⁶⁰⁵ Federal Energy Management Program (2004), How to Buy a Low-Flow Pre-Rinse Spray Valve. Common assumption across efficiency programs.

⁶⁰⁶ No demand savings are claimed for this measure since there is insufficient peak coincident data.

Energy Savings If water heating is electric-based:

$\Delta kWh = \Delta Water x HOT_{\%} x 8.33 x (\Delta T) x (1/EFF) x 10^{-6}$

∆Water HOT _%	= Water savings (gallons); see calculation in "Water Impact" section below. = The percentage of water used by the pre-rinse spray valve that is heated = $69\%^{607}$
8.33	= The energy content of heated water (Btu/gallon/°F)
ΔΤ	= Temperature rise through water heater (°F) = 70 ⁶⁰⁸
EFF	= Water heater thermal efficiency = 0.97 ⁶⁰⁹
10-6	= Factor to convert Btu to MMBtu

Summer Coincident Peak Demand Savings

ΔkW = 0

Fossil Fuel Impact Descriptions and Calculation If water heating is fossil fuel-based:

 $\Delta MMBtu = \Delta Water x HOT_{\%} x 8.33 x (\Delta T) x (1/EFF) x 10^{-6}$

∆Water	= Water savings (gallons); see calculation in "Water Impact" section below.
HOT _%	= The percentage of water used by the pre-rinse spray valve that is heated = 69%
8.33	= The energy content of heated water (Btu/gallon/°F)
ΔΤ	= Temperature rise through water heater (°F) = 70^{610}
EFF	= Water heater thermal efficiency = 0.58 ⁶¹¹
10-6	= Factor to convert Btu to MMBtu

Water Impact Descriptions and Calculation

∆Water = (FLO_{base} - FLO_{eff}) x 60 x HOURS_{day} x 365

FLObase	= The flow rate of the baseline spray nozzle
	= 3 gallons per minute
FLOeff	= The flow rate of the efficient equipment
	= 1.6 gallons per minute
60	= minutes per hour
365	= days per year
HOURS	= Hours used per day - depends on facility type as below: ⁶¹²

⁶⁰⁷ Measures and Assumptions for DSM Planning (2009). Navigant Consulting. Prepared for the Ontario Energy Board. This factor is a candidate for future improvement through evaluation. ⁶⁰⁸ Engineering judgment; assumes typical supply water temperature of 70°F and a hot water storage tank temperature of 140°F.

⁶⁰⁹ IECC 2006. Performance requirement for electric resistance water heaters.

⁶¹⁰ Engineering judgment; assumes typical supply water temperature of 70°F and a hot water storage tank temperature of 140°F.

⁶¹¹ Baseline gas water heater thermal efficiency. As submitted in the gas utilities' Proposed predetermined values and protocols submitted to the OH PUC 2009. Case no. 09-512-GE-UNC. 612 Hours estimates based on PG&E savings estimates, algorithms, sources (2005). Food Service Pre-Rinse Spray Valves

Facility Type	Hours of Pre-Rinse Spray Valve Use per Day (HOURS)
Full Service Restaurant	4
Other	2
Limited Service (Fast Food) Restaurant	

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #		
Effective date:	Date TRM will become effective		
End date:	Date TRM will cease to be effective (or TBD)		

2010 Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

Refrigerated Case Covers (Time of Sale, New Construction, Retrofit - New **Equipment**)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

By covering refrigerated cases the heat gain due to the spilling of refrigerated air and convective mixing with room air is reduced at the case opening. Continuous curtains can be pulled down overnight while the store is closed, yielding significant energy savings.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a refrigerated case with a continuous cover deployed during overnight periods. Characterization assumes covers are deployed for six hours daily.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a refrigerated case without a cover.

Deemed Calculation for this Measure

Annual kWh Savings

= 346.5 * FEET * COP

Summer Coincident Peak kW Savings =0

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 5 years ⁶¹³.

Deemed Measure Cost

The incremental capital cost for this measure is \$42 per linear foot of cover installed including material and labor⁶¹⁴.

Deemed O&M Cost Adjustments n/a

Coincidence Factor The summer peak coincidence factor for this measure is assumed to be 0⁶¹⁵.

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = (LOAD / 12,000) * FEET * (3.516) * COP * ESF * 8,760$

Where:

⁶¹³ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008. ⁶¹⁴ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation",

California Public Utilities Commission, December 16, 2008

http://deeresources.com/deer0911planning/downloads/DEER2008_Costs_ValuesAndDocumentation_080530Rev1.zip

LOAD	 = average refrigeration load per linear foot of refrigerated case without night covers deployed = 1,500 Btu/h⁶¹⁶ per linear foot
FEET	= linear (horzontal) feet of covered refrigerated case
12,000	= conversion factor - Btu per ton cooling.
3.516	= conversion factor - Coefficient of Performance (COP) to kW per ton.
COP	= Coefficient of Performance of the refrigerated case. = assume 2.2 ⁶¹⁷ , if actual value is unknown.
ESF	 Energy Savings Factor; reflects the percent reduction in refrigeration load due to the deployment of night covers. = 9%⁶¹⁸
8,760	= assumed annual operating hours of the refrigerated case

Summer Coincident Peak Demand Savings

 $\Delta kW = 0^{619}$

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

 ⁶¹⁶ Davis Energy Group, Analysis of Standard Options for Open Case Refrigerators and Freezers, May 11, 2004. Accessed on
 7/7/10 < http://www.energy.ca.gov/appliances/2003rulemaking/documents/case_studies/CASE_Open_Case_Refrig.pdf>
 ⁶¹⁷ Kuiken et al, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, KEMA, March 22, 2010.
 ⁶¹⁸ Effects of the Low Emissivity Shields on Performance and Power Use of a Refrigerated Display Case, Southern California Edison, August 8, 1997. Accessed on 7/7/10. < http://www.sce.com/NR/rdonlyres/2AAEFF0B-4CE5-49A5-8E2C-
 3CE23B81F266/0/AluminumShield_Report.pdf>; Characterization assumes covers are deployed for six hours daily.
 ⁶¹⁹ Assumed that the continuous covers are deployed at night; therefore no demand savings occur during the peak period.

Door Heater Controls for Cooler or Freezer (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

By installing a control device to turn off door heaters when there is little or no risk of condensation, one can realize significant energy savings. There are two commercially available control strategies that achieve "on-off" control of door heaters based on either (1) the relative humidity of the air in the store or (2) the "conductivity" of the door (which drops when condensation appears). In the first strategy, the system activates your door heaters when the relative humidity in your store rises above a specific setpoint, and turns them off when the relative humidity falls below that setpoint. In the second strategy, the sensor activates the door heaters when the door conductivity falls below a certain setpoint, and turns them off when the conductivity rises above that setpoint.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a door heater control on a commercial glass door cooler or refrigerator utilizing humidity or conductivity control.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline condition is assumed to be a commercial glass door cooler or refrigerator with a standard heated door with no controls installed.

Deemed Calculation for this Measure

Annual kWh Savings	= kWbase * NUMdoors * ESF * BH
Summer Coincident Peak kW Savings	= 0

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 12 years 620.

Deemed Measure Cost

The incremental capital cost for a humidity-based control is \$300 per circuit regardless of the number of doors controlled. The incremental cost for conductivity-based controls is \$200⁶²¹.

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 0%⁶²².

REFERENCE SECTION

Calculation of Savings

Energy Savings

 ⁶²⁰ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.
 ⁶²¹ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February,

⁶²¹ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010

⁶²² Based on the assumption that humidity levels will most likely be relatively high during the peak period, reducing the likelihood of demand savings from door heater controls.

	ΔKWH	= KW base * NUM doors * ESF * BF
Where:		
	kWbase ⁶²³	= connected load kW for typical reach-in refrigerator or freezer door and frame with a heater.
	MIRAdoom	= If actual kWbase is unknown, assume 0.195 kW for freezers and 0.092 kW for coolers.
	NOMOUS	= Actual installed
	ESF ⁶²⁴	= Energy Savings Factor; represents the percentage of hours annually that the door heater is powered off due to the controls.
	BF ⁶²⁵	= assume 55% for humidity-based controls, 70% for conductivity-based controls = Bonus Factor; represents the increased savings due to reduction in cooling load inside
		the cases, and the increase in cooling load in the building space to cool the additional heat generated by the door heaters.
		= assume 1.36 for low-temp, 1.22 for medium-temp, and 1.15 for high-temp applications

Summer Coincident Peak Demand Savings

AkW626 = 0

Fossil Fuel Impact Descriptions and Calculation

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision HistoryDraft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

⁶²³ A review of TRM methodologies from Vermont, New York, Wisconsin, and Connecticut reveals several different sources for this factor. Connecticut requires site-specific information, whereas New York's characterization does not explicitly identify the kWbase. Connecticut and Vermont provide values that are very consistent, and the simple average of these two values has been used for the purposes of this characterization.

⁶²⁴ A review of TRM methodologies from Vermont, New York, Wisconsin, and Connecticut reveals several different estimates of ESF. Vermont is the only TRM that provides savings estimates dependent on the control type. Additionally, these estimates are the most conservative of all TRMs reviewed. These values have been adopted for the purposes of this characterization.

⁶²⁵ Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010

⁶²⁶ Based on the assumption that humidity levels will most likely be relatively high during the peak period, reducing the likelihood of demand savings from door heater controls.

ENERGY STAR Ice Machine (Time of Sale, New Construction)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the installation of a new ENERGY STAR qualified commercial ice machine. The ENERGY STAR label applied to air-cooled, cube-type machines including ice-making head, self-contained, and remotecondensing units. This measure could relate to the replacing of an existing unit at the end of its useful life, or the installation of a new system in a new or existing building.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a commercial ice machine meeting the minimum ENERGY STAR efficiency level standards.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a commercial ice machine meeting federal equipment standards established January 1, 2010.

Deemed Calculation for this Measure

Annual kWh Savings

= [(kWhbase - kWhee) / 100] x (0.40 * H) x 365

Summer Coincident Peak kW Savings

= Annual kWh Savings / (8760 x 0.40) x 0.772

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 9 years⁶²⁷.

Deemed Measure Cost

The incremental capital cost for this measure is provided below. 628

Harvest Rate (H)	Incremental Cost
100-200 lb ice machine	\$296
201-300 lb ice machine	\$312
301-400 lb ice machine	\$559
401-500 lb ice machine	\$981
501-1000 lb ice machine	\$1,485
1001-1500 lb ice machine	\$1,821
>1500 lb ice machine	\$2,194

Deemed O&M Cost Adjustments n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 77.2%⁶²⁹.

⁶²⁷ The following report estimates life of a commercial ice-maker at 7-10 years: Energy Savings Potential for Commercial Refrigeration Equipment, Arthur D. Little, Inc., 1996. ⁶²⁸ These values are from electronic work papers prepared in support of San Diego Gas & Electric's "Application for Approval of

⁶²⁸ These values are from electronic work papers prepared in support of San Diego Gas & Electric's "Application for Approval of Electric and Gas Energy Efficiency Programs and Budgets for Years 2009-2011", SDGE, March 2, 2009. Accessed on 7/7/10 http://www.sdge.com/regulatory/documents/ee2009-2011 Workpapers/SW-

ComB/Food%20Service/Food%20Service%20Electic%20Measure%20Workpapers%2011-08-05.DOC>.

⁶²⁹ Assumes that the summer peak coincidence factor for commercial ice machines is consistent with that of general commercial refrigeration equipment. Characterization assumes a value of 77.2% adopted from the Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010, until a region specific study is conducted.

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWH = [(kWh_{trace} - kWh_{ee}) / 100] * (DC * H) * 365$

Where:

kWhoase

= maximum kWh consumption per 100 pounds of ice for the baseline equipment = calculated as shown in the table below using the actual Harvest Rate (H) of the efficient equipment.

kWhæ

= maximum kWh consumption per 100 pounds of ice for the efficient equipment = calculated as shown in the table below using the actual Harvest Rate (H) of the efficient equipment.

Ice Machine Type	kWhbase 630	kWh _{et} ⁶³¹
Ice Making Head (H < 450)	10.26 - 0.0086*H	9.23 - 0.0077*H
Ice Making Head (H ≥ 450)	6.89-0.0011*H	6.20 - 0.0010*H
Remote Condensing Unit, without remote compressor (H < 1000)	8.85 - 0.0038*H	8.05 - 0.0035*H
Remote Condensing Unit, without remote compressor ($H \ge 1000$)	5.1	4.64
Remote Condensing Unit, with remote compressor (H < 934)	8.85 - 0.0038*H	8.05 - 0.0035*H
Remote Condensing Unit, with remote compressor ($H \ge 934$)	5.3	4.82
Self Contained Unit (H < 175)	18 - 0.0469*H	16.7 - 0.0436*H
Self Contained Unit (H \geq 175)	9.8	9.11

100	= conversion factor to convert kWhbase and kWhee into maximum kWh consumption per pound of ice.
DC	= Duty Cycle of the ice machine = 0.40^{632}
H	= Harvest Rate (pounds of ice made per day) = Actual installed
365	= days per year

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh / (HOURS * DC) * CF$

⁶³⁰ Baseline reflects federal standards which apply to units manufactured on or after January 1, 2010

<http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div6&view=text&node=10:3.0.1.4.17.8&idno=10>.

⁶¹ ENERGY STAR Program Requirements for Commercial Ice Machines, Partner Commitments, U.S. Environmental Protection Agency, Accessed on 7/7/10 http://www.energystar.gov/ia/partners/product_specs/program_reqs/ice_machine_prog_req.pdf ⁶³² Duty cycle varies considerably from one installation to the next. TRM assumptions from Vermont, Wisconsin, and New York vary from 40 to 57%, whereas the ENERGY STAR Commercial Ice Machine Savings Calculator <

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Cakc_Ice_Machines.xls> assumes a value of 75%. A field study of eight ice machines in California indicated an average duty cycle of 57% ("A Field Study to Characterize Water and Energy Use of Commercial Ice-Cube Machines and Quantify Saving Potential", Food Service Technology Center, December 2007). Furthermore, a report prepared by ACEEE assumed a value of 40% (Nadel, S., Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, December 2002). For conservatism, this characterization assumed a value of 40%.

Where:

HOURS	= annual operating hours = 8760 ⁶³³
CF	= Summer Peak Coincidence Factor for measure = 0.772^{634}

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation

While the ENERGY STAR labeling criteria require that certified commercial ice machines meet certain "maximum potable water use per 100 pounds of ice made" requirements, such requirements are intended to prevent equipment manufacturers from gaining energy efficiency at the cost of water consumptions. A review of the AHRI Certification Directory⁶³⁵ indicates that approximately 81% of air-cooled, cube-type machines meet the ENERGY STAR potable water use requirement. Therefore, there are no assumed water impacts for this measure.

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #		
Effective date:	Date TRM will become effective		
End date:	Date TRM will cease to be effective (or TBD)		

⁶³³ Unit is assumed to be connected to power 24 hours per day, 365 days per year.

⁶³⁴ Assumes that the summer peak coincidence factor for commercial ice machines is consistent with that of general commercial refrigeration equipment. Characterization assumes a value of 77.2% adopted from the Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010, until a region specific study is conducted. 63 AHRI Certification Directory, Accessed on 7/7/10. http://www.ahridirectory.org/ahridirectory/pages/home.aspx

Commercial Solid Door Refrigerators & Freezers (Time of Sale, New Construction)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the installation of a new reach-in commercial refrigerator or freezer meeting ENERGY STAR efficiency standards. ENERGY STAR labeled commercial refrigerators and freezers are more energy efficient because they are designed with components such as ECM evaporator and condenser fan motors, hot gas anti-sweat heaters, or high-efficiency compressors, which will significantly reduce energy consumption. This measure could relate to the replacing of an existing unit at the end of its useful life, or the installation of a new system in a new or existing building.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a solid or glass door refrigerator or freezer meeting the minimum ENERGY STAR efficiency level standards.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a solid or glass door refrigerator or freezer meeting the minimum federal manufacturing standards as specified by the Energy Policy Act of 2005.

Deemed Calculation for this Measure

Annual kWh Savings

= (kWhbase - kWhee) * 365

Summer Coincident Peak kW Savings

= Annual kWh Savings / HOURS * CF

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 12 years 636.

Deemed Measure Cost

The incremental capital cost for this measure is provided below⁶³⁷.

Туре	Refrigerator Incremental Cost	Freezer Incremental Cost
Solid or Glass Door		
0 <v<15< td=""><td>\$143</td><td>\$142</td></v<15<>	\$143	\$142
15≤V<30	\$164	\$166
$30 \le V \le 50$	\$164	\$166
V≥50	\$249	\$407

⁶³⁶ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁶³⁷ Estimates of the incremental cost of commercial refrigerators and freezers varies widely by source. Nadel, S., Packaged Commercial Refrigeration Equipment: A Briefing Report for Program Planners and Implementers, ACEEE, December 2002, indicates that incremental cost is approximately zero. Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010, assumed incremental cost ranging from \$75 to \$125 depending on equipment volume. ACEEE notes that incremental cost ranges from 0 to 10% of the baseline unit cost

http://www.aceee.org/ogeece/ch5_reach.htm>. For the purposes of this characterization, assume and incremental cost adder of 5% on the full unit costs presented in Goldberg et al, State of Wisconsin Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs: Incremental Cost Study, KEMA, October 28, 2009.

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 100%638.

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = (kWhbase - kWhee) * 365$

Where:

kWhbase

= baseline maximum daily energy consumption in kWh = calculated using actual chilled or frozen compartment volume (V) of the efficient unit as shown in the table below.

Туре	kWhbase ⁶³⁹
Solid Door Refrigerator	0.10 * V + 2.04
Glass Door Refrigerator	0.12 * V + 3.34
Solid Door Freezer	0.40 * V + 1.38
Glass Door Freezer	0.75 * V + 4.10

kWhee⁶⁴⁰

= efficient maximum daily energy consumption in kWh

= calculated using actual chilled or frozen compartment volume (V) of the efficient unit as shown in the table below.

Туре	Refrigerator kWhee	Freezer kWhee	
Solid Door			
0 < V < 15	$\leq 0.089V + 1.411$	≤ 0.250V + 1.250	
15≤V<30	≤ 0.037V + 2.200	≤ 0.400V - 1.000	
30≤V<50	≤ 0.056V + 1.635	≤ 0.163V + 6.125	
V≥50	≤ 0.060V + 1.416	≤0.158V + 6.333	
Glass Door		2000年代,1948年1月1日) 1949年代 - 1948年1月1日日)	
0 < V < 15	≤0.118V + 1.382	≤ 0.607V + 0.893	
15≤V<30	≤0.140V + 1.050	≤ 0.733V - 1.000	
30≤V<50	≤ 0.088V + 2.625	≤ 0.250V + 13.500	
V≥50	≤ 0.110V + 1.500	≤0.450V + 3.500	

v

= the chilled or frozen compartment volume (ft³) (as defined in the Association of Home Appliance Manufacturers Standard HRF1-1979)

- = Actual installed
- 365 = days per year

⁶³⁸ The Summer Peak Coincidence Factor is assumed to equal 1.0, since the annual kWh savings is divided by the total annual hours (8760), effectively resulting in the average kW reduction during the peak period. ⁶³⁹ Energy Policy Act of 2005. Accessed on 7/7/10. http://www.epa.gov/oust/fedlaws/publ_109-058.pdf>

⁶⁴⁰ ENERGY STAR Program Requirements for Commercial Refrigerators and Freezers Partner Commitments Version 2.0, U.S. Environmental Protection Agency, Accessed on 7/7/10. <

http://www.energystar.gov/ia/partners/product_specs/program_reqs/commer_refrig_glass_prog_req.pdf>

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kW / HOURS * CF$

Where:

HOURS	= equipment is assumed to operate continuously, 24 hours per day, 365 days per year. = 8760
CF	= Summer Peak Coincidence Factor for measure = 1.0 ⁶⁴¹

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

⁶⁴¹ The Summer Peak Coincidence Factor is assumed to equal 1.0, since the annual kWh savings is divided by the total annual hours (8760), effectively resulting in the average kW reduction during the peak period.

Strip Curtain for Walk-in Coolers and Freezers (New Construction, Retrofit – New Equipment, Retrofit – Early Replacement)

Official Measure Code (Measure Number: X-X-X (Program name, End Use)

Description

This commercial measure pertains to the installation of infiltration barriers (strip curtains) on walk-in coolers or freezers. Strip curtains impede heat transfer from adjacent warm and humid spaces into walk-ins when the main door is opened, thereby reducing the cooling load. As a result, compressor run time and energy consumption are reduced. The engineering assumption is that walk-in door is open 2.5 hours per day every day, and the strip curtain covers the entire door frame. Eligible applications include new construction and retrofit.

Definition of Efficient Equipment

The efficient equipment is a polyethylene strip curtain added to a walk-in cooler or freezer.

Definition of Baseline Equipment

The baseline assumption is a walk-in cooler or freezer that previously had either no strip curtain installed or an old, ineffective strip curtain installed.

Deemed Savings for this Measure

Annual kWh Savings ⁶⁴²	= 2,974 for freezers = 422 for coolers
Summer Coincident Peak kW Savings	= 0.34 for freezers = 0.05 for coolers

Deemed Lifetime of Efficient Equipment The expected measure life is assumed to be 6 years⁶⁴³.

Deemed Measure Cost

The incremental capital cost for this measure is \$10.22 per square foot of door opening (includes material and labor)

Deemed O&M Cost Adjustments n/a

Coincidence Factor The summer peak coincidence factor for this measure is 100%⁶⁴⁵.

 ⁶⁴² Values based on analysis prepared by ADM for FirstEnergy utilities in Pennsylvania, provided via personal communication with Diane Rapp of FirstEnergy on June 4, 2010. Based on a review of deemed savings assumptions and methodologies from Oregon and California, the values from Pennsylvania appear reasonable and are the most applicable to the Ohio climate.
 ⁶⁴³ M. Goldberg, J. Ryan Barry, B. Dunn, M. Ackley, J. Robinson, and D. Deangelo-Woolsey, KEMA. "Focus on Energy: Business Programs – Measure Life Study", August 2009.

⁶⁴⁴ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation", California Public Utilities Commission, December 16, 2008

⁶⁴⁵ The summer coincident peak demand reduction is assumed as the total annual savings divided by the total number of hours per year, effectively assuming the average demand reduction is realized during the peak period. This is a reasonable assumption for refrigeration savings.

		REFERENCE SECTION	
Calculation of Sav	ings		
Energy Savings			
Δ	kWh	= 2,974 for freezers = 422 for coolers	
Summer Coincide	nt Peak Demand Savin	gs	
Δ	kW	$= \Delta k W h / 8760 * CF$	
		= 0.35 for coolers	
Where:			
8760	= hours per year		
CF	= Summer Peak = 1.0	Coincidence Factor for the measure	
Fossil Fuel Impact n/a	Descriptions and Calc	ulation	
Water Impact Des	criptions and Calculat	lon	

n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Motors (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Three phase Open Drip Proof (ODP) and Totally Enclosed Fan-Cooled (TEFC) motors of at least 1 horsepower (HP) and less than or equal to 200 HP.

Definition of Efficient Equipment

The efficient equipment is motors meeting the minimum efficiency levels of NEMA premium efficiency motors.

Definition of Baseline Equipment

For 2010, the baseline equipment assumes motors that meet the minimum efficiency allowed under the Federal Energy Policy Act of 1992 (EPACT). While EPACT generally reflects the floor of efficiencies available, most manufacturers produce models just meeting EPACT, and these are the most commonly purchased among customers not choosing high efficiency. Refer to the table of Baseline Motor Efficiencies in the reference table section.

For 2011, NEMA premium efficiency motors are becoming the new baseline. The Energy Independence and Security Act of 2007 (EISA) requires that general purpose motors (subtype I) manufactured after Dec. 19, 2010, from 1 to 200 HP, inclusive, shall have a nominal full-load efficiency that is not less than as defined in NEMA MG 1-2006 Table 12-12 ("NEMA Premium" efficiency levels)⁶⁴⁶, Therefore, , it is not anticipated that time-of-sale NEMA premium efficient motors will provide savings in 2011.

Deemed Savings for this Measure

Annual kWh Savings

= 0.746 x [(hpbase X RLFbase)/nbase - (hpee X RLFee)/nee]

Summer Coincident Peak kW Savings $= \Delta kW \times CF$

Deemed Lifetime of Efficient Equipment 16 years⁶⁴⁷

Deemed Measure Cost See 'Incremental Costs for Efficient Motors' in the Reference Table section below

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.38

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = \Delta kW \times EFLH$

⁶⁴⁶ NEMA Premium Efficiency Levels Adopted as Federal Motor Efficiency Performance Standards, NEMA press release, March 27, 2008, http://www.nema.org/media/pr/20080327a.cfm, accessed on August 5, 2010.

⁶⁴⁷ PA Consulting Group, Inc. (2009). Business Programs: Measure Life Study. Prepared for State of Wisconsin Public Service Commission

Where:

EFLH = Equivalent Full Load Hours

= site specific variable, either collected on a per unit basis, or calculated using building type and location

Summer Coincident Peak Demand Savings

ΔkW	= 0.746 x [(hpbase X RLFbase)/nbase - (hpee X RLFee)/nee]
kW	$= \Delta \mathbf{k} \mathbf{W} \mathbf{x} \mathbf{C} \mathbf{F}$

Where:

hpee	= Rated horsepower of the efficient motor
hp _{base}	= Rated horsepower of baseline motor = same as the efficient motor
RLF _{base} = Rated	load factor of baseline motor = 0.75^{648}
RLFee	= Rated load factor of efficient motor = Nameplate
Ŋbase	= Efficiency of baseline motor = see 'Baseline Motor Efficiencies (EPACT)' below
Net	= Efficiency of efficient motor = namenlate must meet or exceed efficiency levels in table 'Efficient Motor Efficiencies
	(NEMA Premium)' found below
0.746	= the conversion factor kW/hp
CF	= Peak coincidence factor = 0.38 ⁶⁴⁹

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Reference Tables

	Open Drip Proof (ODP) # of Poles			Totally Enclosed Fan- Cooled (TEFC)			
Size HP	6	4	2	6	4	2	
	Sp	Speed (RPM)			Speed (RPM)		
	1/200	1800	3600	1200	1800	3600	
1	80.0%	82.5%	75.5%	80.0%	82.5%	75.5%	
1.5	84.0%	84.0%	82.5%	85.5%	84.0%	82.5%	
2	85.5%	84.0%	84.0%	86.5%	84.0%	84.0%	
3	86.5%	86.5%	84.0%	87.5%	87.5%	85.5%	
5	87.5%	87.5%	85.5%	87.5%	87.5%	87.5%	
7.5	88.5%	88.5%	87.5%	89.5%	89.5%	88.5%	
10	90.2%	89.5%	88.5%	89.5%	89.5%	89.5%	

Baseline Motor Efficiencies (EPACT)

648 Efficiency Vermont Technical Reference User Manual (TRM) Measure Savings Algorithms and Cost Assumptions, February, 19, 2010 649 JCP&L metered data

2010 Ohio Technical Reference Manual - August 6, 2010 **Vermont Energy Investment Corporation**

	Open Drip Proof (ODP) # of Poles			Totally Enclosed Fan- Cooled (TEFC)			
Size HP	6	4	2	6	4	2	
· ···································	S	eed (RP	M)	S	Speed (RPM)		
talla birdin	1200	1800	3600	1200	1800	3600	
15	90.2%	91.0%	89.5%	90.2%	91.0%	90.2%	
20	91.0%	91.0%	90.2%	90.2%	91.0%	90.2%	
25	91.7%	91.7%	91.0%	91.7%	92.4%	91.0%	
30	92.4%	92.4%	91.0%	91.7%	92.4%	91.0%	
40	93.0%	93.0%	91.7%	93.0%	93.0%	91.7%	
50	93.0%	93.0%	92.4%	93.0%	93.0%	92.4%	
60	93.6%	93.6%	93.0%	93.6%	93.6%	93.0%	
75	93.6%	94.1%	93.0%	93.6%	94.1%	93.0%	
100	94.1%	94.1%	93.0%	94.1%	94.5%	93.6%	
125	94.1%	94.5%	93.6%	94.1%	94.5%	94.5%	
150	94.5%	95.0%	93.6%	95.0%	95.0%	94.5%	
200	94.5%	95.0%	94.5%	95.0%	95.0%	95.0%	

Efficient Motor Efficiencies (NEMA Premium)

	Open Drip Proof (ODP) # of Poles			Totally Enclosed Fan- Cooled (TEFC) # of Poles		
Parsing St.						
Size	2	4	6	2	4	6
HP	Speed (RPM)			Speed (RPM)		
	1200	1800	3600	1200	1800	3600
1	82.50%	85.50%	77.00%	82.50%	85.50%	77.00%
1.5	86.50%	86.50%	84.00%	87.50%	86.50%	84.00%
2	87.50%	86.50%	85.50%	88.50%	86.50%	85.50%
3	88.50%	89.50%	85.50%	89.50%	89.50%	86.50%
5	89.50%	89.50%	86.50%	89.50%	89.50%	88.50%
7.5	90.20%	91.00%	88.50%	91.00%	91.70%	89.50%
10	91.70%	91.70%	89.50%	91.00%	91.70%	90.20%
15	91.70%	93.00%	90.20%	91.70%	92.40%	91.00%
20	92.40%	93.00%	91.00%	91.70%	93.00%	91.00%
25	93.00%	93.60%	91.70%	93.00%	93.60%	91.70%
30	93.60%	94.10%	91.70%	93.00%	93.60%	91.70%
40	94.10%	94.10%	92.40%	94.10%	94.10%	92.40%
50	94.10%	94.50%	93.00%	94.10%	94.50%	93.00%
60	94.50%	95.00%	93.60%	94.50%	95.00%	93.60%
75	94.50%	95.00%	93.60%	94.50%	95.40%	93.60%
100	95.00%	95.40%	93.60%	95.00%	95.40%	94.10%
125	95.00%	95.40%	94.10%	95.00%	95.40%	95.00%
150	95.40%	95.80%	94.10%	95.80%	95.80%	95.00%
200	95.40%	95.80%	95.00%	95.80%	96.20%	95.40%

	Open Drip- Proof (ODP)	Totally Enclosed Fan-Cooled (TEFC)
Size HP	Incremental Cost	Incremental Cost
1	\$52	\$52
1.5	\$60	\$60
2	\$61	\$61
3	\$54	\$54
5	\$63	\$63
7.5	\$123	\$123
10	\$116	\$116
15	\$115	\$115
20	\$115	\$115
25	\$201	\$201
30	\$231	\$231
40	\$249	\$249
50	\$273	\$273
60	\$431	\$431
75	\$554	\$554
100	\$658	\$658
125	\$841	\$841
150	\$908	\$908
200	\$964	\$964

Incremental Costs for Efficient Motors⁶⁵⁰

Version Date & Revision History

Draft: Effective date: End date: Portfolio # Date TRM will become effective Date TRM will cease to be effective (or TBD)

650 Xenergy (2001). Motor Up! Program Evaluation and Market Assessment

High Efficiency Pumps and Pumping Efficiency Improvements (Retrofit)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Pump improvements can be done to optimize the design and control of water pumping systems. The measurement of energy and demand savings for commercial and industrial applications will vary with the type of pumping technology, operating hours, efficiency and current and proposed controls. Depending on the specific application, slowing the pump, trimming or replacing the impeller, or replacing the pump may suitable options for improving pumping efficiency.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be an optimized pumping system meeting applicable program efficiency requirements.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a non-optimized existing pumping system.

Deemed Calculation for this Measure

Annual kWh Savings⁶⁵¹ = (HP_{motor} * LF * 0.746 / η_{motor}) * HOURS * (ESF/ η_{motor})

Summer Coincident Peak kW Savings = (HPmotor * LF * 0.746 / nmotor) * (ESF/nmmm) * CF

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 10 years⁶⁵².

Deemed Measure Cost

The incremental capital cost for this measure can vary considerably depending upon the strategy employed to achieve the required efficiency levels and should be determined on a site-specific basis.

Deemed O&M Cost Adjustments n/a

Coincidence Factor The summer peak coincidence factor for this measure is assumed to be 38%⁶⁵³.

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = (HP_{motor} * LF * 0.746 / \eta_{motor}) * HOURS * (ESF/\eta_{pump})$

Where:

 ⁶⁵¹ Improving Pumping System Performance: A Sourcebook for Industry, Second Edition, U.S. Department of Energy, May 2006
 ⁶⁵² Martin, N. et al., Emerging Energy-Efficient Industrial Technologies: New York State Edition, American Council for an Energy Efficient Economy (ACEEE), March 2001

⁶³³ Summer Peak Coincidence Factor has been preserved from the "Technical Reference Manual (TRM) for Ohio Senate Bill 221 Energy Efficiency and Conservation Program and 09-512-GE-UNC", October 15, 2009. This is likely a conservative estimate, but is recommended for further study.

HPmotor	= nameplate motor horsepower
	= Actual installed
LF	= Load Factor; Ratio of the peak running load to the nameplate rating of the motor. If unknown, assume a value of 80% ⁶⁵⁴ .
0.746	= conversion factor from horse-power to kW (kW/hp)
Denster	= Motor efficiency: if actual motor efficiency at typical pump operating conditions is

= Motor efficiency; if actual motor efficiency at typical pump operating conditions is unknown, assume the federal minimum efficiency requirements as below:

	Open Drip Proof (ODP) # of Poles			Totally Enclosed Fan- Cooled (TEFC)		d Fan- FC)
Size HP	6	4	2	6	4	2
·哈马马尔	Speed (RPM)		Speed (RPM)			
	1200	1800	3600	1200	1800	3600
1	80.0%	82.5%	75.5%	80.0%	82.5%	75.5%
1.5	84.0%	84.0%	82.5%	85.5%	84.0%	82.5%
2	85.5%	84.0%	84.0%	86.5%	84.0%	84.0%
3	86.5%	86.5%	84.0%	87.5%	87.5%	85.5%
5	87.5%	87.5%	85.5%	87.5%	87.5%	87.5%
7.5	88.5%	88.5%	87.5%	89.5%	89.5%	88.5%
10	90.2%	89.5%	88.5%	89.5%	89.5%	89.5%
15	90.2%	91.0%	89.5%	90.2%	91.0%	90.2%
20	91.0%	91.0%	90.2%	90.2%	91.0%	90.2%

HOURS

ESF

ησοπο

= annual operating hours of the pump

= Actual installed

= Energy Savings Factor; assume a value of 15%655.

= Pump efficiency at design point; if actual pump efficiency is unknown, assume program compliance efficiency as below:

HP	Minimum Pump Efficiency at Design Point (J _{pamp})
1.5	65%
2	65%
3	67%
5	70%
7.5	73%
10	75%
15	77%
20	77%

Summer Coincident Peak Demand Savings

 $\Delta kW = (HP_{motor} * LF * 0.746 / \eta_{motor}) * (ESF/\eta_{pump}) * CF$

Where:

CF

= Summer Peak Coincidence Factor for measure = 0.38⁶⁵⁶

⁶³⁶ Summer Peak Coincidence Factor has been preserved from the "Technical Reference Manual (TRM) for Ohio Senate Bill 221 Energy Efficiency and Conservation Program and 09-512-GE-UNC", October 15, 2009. This is likely a conservative estimate, but is recommended for further study.

⁶³⁴ In many applications, the pump/motor assembly is oversized. For analysis purposes, a typical 80% load factor is assumed; however, this assumption should be verified through evaluation if significant savings are realized through prescriptive pumping efficiency improvements.

⁶³³ Published estimates of typical pumping efficiency improvements range from 10 to 20%. For analysis purposes, assume 15%. Martin, N. et al., Emerging Energy-Efficient Industrial Technologies: New York State Edition, American Council for an Energy Efficient Economy (ACEEE), March 2001.

KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 271 of 397

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

 Draft:
 Portfolio #

 Effective date:
 Date TRM will become effective

 End date:
 Date TRM will cease to be effective (or TBD)

Efficient Air Compressors (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the installation of an air compressor with a variable frequency drive, load/no load controls, or variable displacement controls. Baseline compressors choke off the inlet air to modulate the compressor output, which is not efficient. Efficient compressors use less energy at part load conditions. Demand curves are as per DOE data for a Variable Speed compressor versus a Modulating compressor. This measure could relate to the replacing of an existing unit at the end of its useful life, or the installation of a new system in a new building (i.e. time of sale).

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be an air compressor with a variable frequency drive, load/no load controls⁶⁵⁷, or variable displacement controls.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a modulating air compressor with blow down.

Deemed Calculation for this Measure

Annual kWh Savings = BHP * 0.746 / number x HOURS x ESF

Summer Coincident Peak kW Savings = Annual kWh Savings / HOURS * CF

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 15 years 658.

Deemed Measure Cost

The incremental capital costs for this measure should be determined on a case-by-case basis. For analysis purposes, assume the incremental costs specified below:

Compressor Type	Incremental Cost
Load/No Load	\$200/hp
Variable Displacement	\$250/hp
Variable Frequency Drive	\$300/hp

Deemed O&M Cost Adjustments n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 38%⁶⁶⁰.

⁶³⁹ Incremental cost estimates have been maintained from the "Technical Reference Manual (TRM) for Ohio Senate Bill 221 Energy Efficiency and Conservation Program and 09-512-GE-UNC", October 15, 2009, and appear reasonable. However, future study of these estimates is recommended as published estimates of incremental costs for efficient air compressors are scarce. ⁶⁶⁰ Summer Peak Coincidence Factor has been preserved from the "Technical Reference Manual (TRM) for Ohio Senate Bill 221 Energy Efficiency and Conservation Program and 09-512-GE-UNC", October 15, 2009. This is likely a conservative estimate, but is recommended for further study.

⁶⁵⁷ For analysis purposes, it is assumed that the compressed air system with load / no load controls utilizes an air receiver with a storage capacity of 5 gallons per cubic foot per minute of compressor capacity.

⁶³⁸ Based on a review of TRM assumptions from Vermont, New Hampshire, Massachusetts, and Wisconsin. Estimates range from 10 to 15 years.

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = BHP * 0.746 / \eta_{motor} x HOURS x ESF$

Where:

BHP	= compressor motor full load brake horse-power
	= Actual installed
0.746	= conversion factor from horse-power to kW (kW/hp)
Uniter	= compressor motor nameplate efficiency
	= Actual installed (if actual efficiency in unknown, assume 90% ⁶⁶¹)
HOURS	= compressor total hours of operation
	= Actual installed
ESF	= Energy Savings Factor; dependent on compressor control type as below:

Control Type	Energy Savings Factor (ESF) ⁶⁰²
Load/No Load	10%
Variable Displacement	17%
Variable Frequency Drive	26%

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh / HOURS * CF$

Where:

CF

= Summer Peak Coincidence Factor for measure = 0.38⁶⁶³

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Referenced Documents: "BHP Weighted Compressed Air Load Profiles - OH TRM.xls"

⁶⁶¹ Improving Compressed Air System Performance: A Sourcebook for Industry, U.S. Department of Energy, November 2003.

 ⁶⁶² Energy Savings Factors were developed using U.S. Department of Energy part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors. See "BHP Weighted Compressed Air Load Profiles – OH TRM.xls" for source data and calculations.
 ⁶⁶³ Summer Peak Coincidence Factor has been preserved from the "Technical Reference Manual (TRM) for Ohio Senate Bill 221

⁶⁶³ Summer Peak Coincidence Factor has been preserved from the "Technical Reference Manual (TRM) for Ohio Senate Bill 221 Energy Efficiency and Conservation Program and 09-512-GE-UNC", October 15, 2009. This is likely a conservative estimate, but is recommended for further study.

Vending Machine Occupancy Sensors (Time of Sale, New Construction, Retrofit – New Equipment)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the installation of new controls on refrigerated beverage vending machines, non-refrigerated snack vending machines, and glass front refrigerated coolers. Controls can significantly reduce the energy consumption of vending machine and refrigeration systems. Qualifying controls must power down these systems during periods of inactivity but, in the case of refrigerated machines, must always maintain a cool product that meets customer expectations. This measure relates to the installation of a new control on a new or existing unit. This measure should not be applied to ENERGY STAR qualified vending machines, as they already have built-in controls.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a standard efficiency refrigerated beverage vending machine, non-refrigerated snack vending machine, or glass front refrigerated cooler with a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a standard efficiency refrigerated beverage vending machine, non-refrigerated snack vending machine, or glass front refrigerated cooler without a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

Deemed Calculation for this Measure

Annual kWh Savings	= 8760 x WATTSbase / 1000 x ESF
Summer Coincident Peak kW Savings	= 0

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 5 years 664.

Deemed Measure Cost

The actual measure installation cost should be used (including material and labor), but the following can be assumed for analysis purposes⁶⁶⁵:

Refrigerated Vending Machine: \$215.50 Non-Refrigerated Vending Machine: \$108.00

Deemed O&M Cost Adjustments n/a

Coincidence Factor The summer peak coincidence factor for this measure is assumed to be 0⁶⁶⁶.

Measure Life Study, prepared for the Massachusetts Joint Utilities, Energy & Resource Solutions, November 2005.

 ⁶⁶³ 2005 Database for Energy-Efficiency Resources (DEER), Version 2005.21. "Cost Data for Supporting Documents."
 ⁶⁶⁶ Assumed that the peak period is coincident with periods of high traffic diminishing the demand reduction potential of occupancy based controls.

REFERENCE SECTION

Calculation of Savings

Energy Savings

AkWh = WATTSbase / 1000 * HOURS * ESF

Where:

WATTSbase

= connected kW of the controlled equipment; see table below for default values by connected equipment type:

Equipment Type	WATTSbase ⁶⁵⁷
Refrigerated Beverage Vending Machines	400
Non-Refrigerated Snack Vending Machines	85
Glass Front Refrigerated Coolers	460

1000

= conversion factor (W/kW)

HOURS

= operating hours of the connected equipment; assumed that the equipment operates 24 hours per day, 365 days per year = 8760

ESF

= Energy Savings Factor; represents the percent reduction in annual kWh consumption of the equipment controlled; see table below for default values:

Equipment Type	Energy Savings Factor (ESF)
Refrigerated Beverage Vending Machines	46%
Non-Refrigerated Snack Vending Machines	46%
Glass Front Refrigerated Coolers	30%

Summer Coincident Peak Demand Savings

 $\Delta k W^{669} = 0$

Fossii Fuel Impact Descriptions and Calculation

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

⁶⁶⁷ USA Technologies Energy Management Product Sheets, July 2006; cited September 2009. http://www.usatech.com/energy_management/energy_productsheets.php
 ⁶⁶⁸ Ibid.

⁶⁶⁹ Assumed that the peak period is coincident with periods of high traffic diminishing the demand reduction potential of occupancy based controls.

Heat Pump Water Heaters (New Construction, Retrofit)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the installation of a heat pump water heater (HPWH) in place of a standard electric water heater. HPWHs can be added to existing domestic hot water (DHW) systems to improve the overall efficiency. HPWHs utilize refrigerants (like an air source heat pump) and have much higher coefficients of performance (COP) than standard electric water heaters. HPWHs remove waste heat from surrounding air sources and preheat the DHW supply system. HPWHs come in a variety of sizes and the size of HPWH will depend on the desired temperature output and amount of hot water needed by application. The savings from water heater heat pumps will depend on the design, size (capacity), water heating requirements, building application and climate. This measure could relate to either a retrofit or a new installation.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a heat pump water heater with or without an auxiliary water heating system.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a standard electric storage tanktype water heater with a thermal efficiency of 98%. This measure does not apply to natural gas-fired water heaters.

Deemed Calculation for this Measure

Annual kWh Savings = $(GPD * 365 * 8.33 * \Delta T_s) / (3413) * [(1/E_{these}) - (1/COP)]$

Summer Peak Coincident kW Savings = (GPH * 8.33 * ΔT_s)/(3413) * [(1/E_{tbase}) - (1/COP)] * CF

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 10 years⁶⁷⁰.

Deemed Measure Cost

Due to the complexity of heat pump water heater systems, incremental capital costs should be determined on a caseby-case basis. High capacity heat pump water heaters will typically have a supplemental heating source such as an electric resistance heater. For new construction applications, the incremental capital cost for this measure should be calculated as the difference in installed cost of the entire heat pump water heater system including any auxiliary heating systems and a standard electric storage tank water heater of comparable capacity. For retrofit applications, the total installed cost of heat pump water heater should be used.

Deemed O&M Cost Adjustments n/a

Coincidence Factor The summer peak coincidence factor for this measure is assumed to be 6%⁶⁷¹.

⁶⁷⁰ Estimates of measure life from utilities in the Northeast and the U.S. Department of Energy vary from 10 to 15 years. Assume 10 years as a conservative estimate.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁶⁷¹ "Technical Reference Manual (TRM) for Ohio Senate Bill 221 Energy Efficiency and Conservation Program and 09-512-GE-UNC", October 15, 2009. Based on Ohio utility supply profiles.

REFERENCE SECTION

Calculation of Savings

Frances	Contingo	
rueryy	SHAIR?	$\Delta kWH = (GPD * 365 * 8.33 * \Delta T_s) / (3413) * [(1/E_{t,base}) - (1/COP)]$
Where:		
	GDP	= average daily water consumption (gallons/day); determined from site-specific data.
	365	= conversion factor (days/year)
	8.33	= conversion factor (Btu/gallon-°F)
	ΔTs	= average temperature difference between the supply cold water temperature and the hot water delivery temperature (°F); determined from site-specific data.
	3413	= conversion factor (Btu/kWh)
	Ethase	= baseline water heater thermal efficiency; characterization assumes a value of 98%.
	COP	 Coefficient of Performance of the heat pump water heater system, including any auxiliary water heating systems. Actual installed
0	0.1-12	and Death Demond Southers
summe	er Coincid	ent reak bemand savings

$$\Delta kW = (GPH * 8.33 * \Delta T_s) / (3413) * [(1/E_{these}) - (1/COP)] * CI$$

Where:

GPH	= hourly water consumption (gallons/day); determined from site-specific data.
CF	= Summer Peak Coincidence Factor for measure
	$= 0.06^{0/2}$

Fossil Fuel Impact Descriptions and Calculation n/a^{573}

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

 ⁶⁷² "Technical Reference Manual (TRM) for Ohio Senate Bill 221 Energy Efficiency and Conservation Program and 09-512-GE-UNC", October 15, 2009. Based on Ohio utility supply profiles.
 ⁶⁷³ The interactive effects between space heating and cooling requirements and heat pump water heaters have been neglected for

⁶⁷³ The interactive effects between space heating and cooling requirements and heat pump water heaters have been neglected for this characterization but are candidates for future study. Heat pumps remove waste heat from surrounding air sources which can reduce cooling loads and increase heating loads if the heat pump water heater is located within a conditioned space.

Commercial Clothes Washer (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

High-efficiency commercial washers are intended for purchase and installation in laundromats, multi-family buildings and institutions. These high-efficiency washers are nearly identical to residential models available in retail outlets, with minor engineering changes, such as the addition of a coin box. High-efficiency commercial washers typically save up to 50 percent of energy costs and use about 30 percent less water.

Definition of Efficient Equipment

The efficient equipment is defined as a commercial-grade clothes washer meeting the minimum efficiency standards for ENERGY STAR (MEF ≥ 1.8)⁶⁷⁴. Also, for this characterization to apply the facility where the equipment is installed must have an electric water heater.

Definition of Baseline Equipment

The baseline equipment for this measure is a commercial grade clothes washer that meets federal manufacturing standards (MEF \ge 1.26).

Deemed Calculations for this Measure

Annual kWh Savings

= AkWhLoad x 950

Summer Coincident Peak kW Savings = n/a

Deemed Lifetime of Efficient Equipment The effective measure life for commercial-grade clothes washers is 10 years⁶⁷⁵

Deemed Measure Cost

\$347 per unit ENERGY STAR/CEE Tier1, \$475 per unit CEE Tier 2, \$604 per unit CEE Tier 3676

Deemed O&M Cost Adjustments n/a

Coincidence Factor n/a

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = \Delta kWh_{Load} \times Loads_{Year}$

Where:

AkWhLoad

= The difference in electricity consumption per load of laundry between baseline equipment and efficient equipment

= Dependent on energy source for washer⁶⁷⁷:

⁶⁷⁴ Beginning in 2011 the criteria will be raised to MEF > 2.0

 ⁶⁷⁵ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values",
 ⁶⁷⁶ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation",