$\Delta kWh = BHP / \eta_{motor} x HOURS x ESF$

Where:

BHP = The brake horsepower of the motor. To be collected with the application.

 η_{meter} = Efficiency of the motor that is driven by the VFD. To be collected with the application.

HOURS = The hours of operation for the motor. Default hours shown in table below.

Application	HOURS
Hot water pump	6000
Chilled Water pump	1,852
Fans	3,985

ESF = Energy Savings Factor. See table in reference section.

For example, a VFD on a 5 BHP chilled water pump with 95% efficiency would see energy savings of: $\Delta kWh = (5 / 0.95 * 1.852 * 0.432)$

= 4,211 kWh

Summer Coincident Peak Demand Savings

 $\Delta kW = BHP / \eta_{matter} x DSF$

Where:

DSF = Demand Savings Factor. See table in reference section

For example, a VFD on a 5 BHP chilled water pump with 95% efficiency would see peak demand savings of: $\Delta kW = (5 / 0.95 * 0.299)$ = 1.57 kW

Baseline Adjustment

There are no expected code changes in the future.

Fossil Fuel Impact Descriptions and Calculation There are no expected fossil fuel impacts for this measure.

Deemed O&M Cost Adjustment Calculation There are no expected O&M savings associated with this measure.

Reference Tables

HVAC Fan VFD Savings Factors⁵¹⁷

Baseline	ESF	DSF
Constant Volume	0.535	0.348
Air foil / backward inlet	0.354	0.26
Air foil inlet guide vanes	0.227	0.13
Forward curved	0.179	0.136
Forward curved inlet guide vanes	0.092	0.03

⁵¹⁶ CL&P and UI Program Savings Documentation for 2008 Program Year. Average of hours across all building types.
⁵¹⁷ Ibid.

HVAC Pump VFD Savings Factors⁵¹⁸

System	ESF	DSF
Chilled water pump	0.432	0.299
Hot water pump	0.482	0

Ohio VFD Cost Analysis

HP	Altiver 61 (3- phase, 208- 240 VAC, 50/60 Hz)	Altivar 61 (3- phase, 400- 480 VAC, 50/60 Hz)	AC Adjustable- Frequency Drive (3- phase, 200- 230 VAC, 60/50 Hz)	AC Adjustable- Prequency Drive (3- phase, 380- 460 VAC, 60/50 Hz)	AF-300 P11 G-phase, 200- 230 VAC, 60/50 Hz)	AF-300 P11 (3-phase, 380, 480 VAC, 60/50 Hz)	Altiver 31 (3-phase, 208-240 VAC, 50/60 Hz)	Altiver 31 (3- phase, 400- 460 VAC, 50/60 Hz)	Average VFD Cost	Labor Hours	Labor Cost	Tetal Installed Cost*
5	States and Second States	1021	621	1022	1067	1369	637	675	\$ 916	10	413.62	\$ 1,330
75		1146	101	1297	1116	1521	104.5	100 13 5 mill	5 1.1281	11.94	493.17	1.622
10	10000	1392	1342	165	1414	1.55	993	1032	5 1,404	1194	1 493.17	5 1,898
15	1647	1530	1649	2125	1800	2310		1359	\$ 1,774	17.978	15 743.61	\$ 2,518
20	2067	1901	2200	240	2407	1000	NAMES OF A DOLL	137	\$ 2315	MAN	15 743761	\$ 3,059
25	2410	2213	266	3450	3038	3170		ALCO LANDA	\$ 2,961	23.81	\$ 987.77	\$ 3,948

cs: Grateger 2008 Catalog pp. 285-289 np in price at 15 stems from the RSMean ire 2 electricians for installation. a that VFDs of this size and gr * 30 ill -

Source: R.S.Lamu Machan	aleas Cost
Labor Rate	45.55 S/hr
Ohio Average City	
Location Factor	90.8
Columbus	89.2
Marian	853
Toledo	101
Zmesville	84.5
Steubenville	93.5
Lomin	95A
Cleveland	104.2
Akma	96.2
Youngstown	91.8
Hamilton	87
Cincinnati	89
Dayton	88.1
Springfield	88.2
Chillicothe	94.2
Afhens	77.6
Lima	87.7
Average	90.8

Analysis prepared by M.Socks, Optimal Energy Inc. Jul-10

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

518 Ibid.

Cool Roof (Retrofit - New Equipment)

Official Measure Code (Measure Number: X-X-X-X (Efficient Products, Lighting End Use)

Description

This section covers installation of "cool roof" roofing materials in commercial buildings. The cool roof is assumed to have a solar absorptance of 0.3⁵¹⁹ compared to a standard roof with solar absorptance of 0.8⁵²⁰. Energy and demand saving are realized through reductions in the building cooling loads. The approach utilizes DOE-2.2 simulations on a series of commercial prototypical building models. Energy and demand impacts are normalized per thousand square feet of roof space.

Definition of Efficient Equipment

The efficient condition is a roof with a solar absorptance of 0.30.

Definition of Baseline Equipment

The baseline condition is a roof with a solar absorptance of 0.80

Deemed Calculation for this Measure

Annual kWh Savings = SF / 1000 * AkWhese

Summer Coincident Peak kW Savings = SF / 1000 * AkWher x 0.74

Annual MMBtu Increase = SF / 1000 * AMMBtuksF

Deemed Lifetime of Efficient Equipment

The expected lifetime of the measure is 15 years⁵²¹.

Deemed Measure Cost

The full installed cost for retrofit applications is \$8,454.67 per one thousand square feet (kSF)⁵²².

Deemed O&M Cost Adjustments

There are no expected O&M cost adjustments for this measure.

Coincidence Factor

The coincidence factor is 0.74⁵²³.

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = SF / 1000 * \Delta kWh_{SF}$

⁵¹⁹ Maximum value to meet Cool Roof standards under California's Title 24

⁵²⁰ Itron. 2004-2005 Database for Energy Efficiency Resources (DEER) Update Study. December 2005.

^{521 2008} Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008 522 2005 Database for Energy-Efficiency Resources (DEER), Version 2005.2.01, "Technology and Measure Cost Data",

California Public Utilities Commission, October 26, 2005

⁵²³ Coincidence factor supplied by Duke Energy for the commercial HVAC end-use. Pending verification based on information from the utilities.

Where:

 $SF = The square footage of the roof. To be collected with the incentive form. \\ \Delta kWh_{kSF} = unit energy savings per 100 square feet of roof. See lookup table below.$

For example, an assembly building in Dayton with 1,000 square feet of roof:

 $\Delta kWh = 1,000 / 1,000 * 184$ = 192 kWh

Summer Coincident Peak Demand Savings

$$\Delta kW = SF / 1000 * \Delta kW_{kSF} \times CF$$

Where:

AkWkSF	= unit demand savings per 1,000 square foot of roof area.	This can be found in the table
	below.	
CF	= The summer coincident peak factor, or 0.74.	

For example, an assembly building in Dayton with 1,000 square feet of roof: $\Delta kW = 1,000 / 1,000 * 0.165 * 0.74$ = 0.122 kW

Baseline Adjustment There are no expected future code changes to affect this measure.

Fossil Fuel Impact Descriptions and Calculation

 $\Delta MMBtu = SF / 1000 * \Delta MMBtu_{SF}$

Where:

AMMBtuksF

= unit gas savings per 1000 square feet of roof space. See lookup table below.

For example, an assembly building in Dayton with 1,000 square feet of roof:

ΔMMBtu = 1,000 / 1,000 * -1.54 = -1.54 MMBtu

Deemed O&M Cost Adjustment Calculation There are no expected O&M costs or savings associated with this measure.

Reference Tables

Cool Roof"						
Building Type	City	AkWhese	AkWhese	AMMBtukst		
Assembly	Akron	150	0.091	-1.54		
Sal M. K. Sana It.	Cincinnati	199	0.141	-1.47		
	Cleveland	153	0.044	-1.56		
Le difficient de la company	Columbus	176	0.050	-1.87		

⁵²⁴ Unit energy, demand, and gas savings data is based on a series of prototypical small commercial building simulation runs. The prototypes are based on the California DEER study prototypes, modified for local construction practices. Simulations were run using TMY3 weather data for each of the cities listed. Building prototypes used in the energy modeling are described in Appendix A - Prototypical Building Energy Simulation Model Development.

Building Type	City	AkWhest	AkWhest	AMMBtuks
	Dayton	184	0.165	-1.54
	Mansfield	143	0.029	-1.59
	Toledo	155	0.021	-1.62
	Akron	149	0.098	-1.06
	Cincinnati	184	0.124	-0.99
	Cleveland	147	0.093	-1.08
Big Box Retail	Columbus	173	0.120	-1.21
	Dayton	174	0.112	-1.01
	Mansfield	145	0.112	-1.11
	Toledo	159	0.099	-1.12
	Akron	141	0.100	-2.10
	Cincinnati	183	0.050	-2.40
	Cleveland	137	0.050	-2.55
Fast Food Restaurant	Columbus	164	0.000	-2.35
	Dayton	163	0.100	-2.25
	Mansfield	136	0.100	-2.20
	Toledo	140	0.050	-2.70
	Akron	191	0.175	-1.75
	Cincinnati	145	0.150	-1.85
	Cleveland	145	0.075	-1.85
Full-Service Restaurant	Columbus	171	0.125	-1.93
	Dayton	171	0.175	-1.85
	Mansfield	136	0.125	-1.88
	Toledo	158	0.150	-1.93
Contraction of the second s	Akron	95	0.116	-1.69
	Cincinnati	126	0.083	-1.78
	Cleveland	99	0.078	-1.69
Light Industrial	Columbus	106	0.085	-1.91
	Dayton	108	0.101	-1.83
	Mansfield	84	0.146	-1.74
	Toledo	105	0.105	-1.73
	Akron	206	0.500	-2.86
	Cincinnati	322	0.668	-3.00
	Cleveland	230	0.502	-2.96
Primary School	Columbus	241	0.570	-3.30
	Dayton	284	0.508	-3.00
	Mansfield	189	0.324	-3.09
	Toledo	237	0.456	-3.01
	Akron	148	0.080	-0.98
	Cincinnati	190	0.100	-0.94
	Cleveland	148	0.060	-1.02
Small Office	Columbus	175	0.080	-1.06
	Davton	173	0.020	-0.98
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mansfield	143	0.080	-1.06
	Toledo	166	0.080	-1 00
Small Retail	Akron	173	0.141	-1 50
	Cincinnati	173	0141	-1 50
A CONTRACT OF A DESCRIPTION OF A DESCRIP	- according to the		VIA TA	4

Building Type	City	AkWhest	AkWhest	AMMBtuks
	Cleveland	169	0.078	-1.53
	Columbus	190	0.109	-1.77
	Dayton	194	0.156	-1.64
이 집에 집 같았다.	Mansfield	154	0.094	-1.67
	Toledo	178	0.109	-1.69

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

Commercial Window Film (Retrofit – New Equipment)

Official Measure Code (Measure Number: X-X-X-X (Efficient Products, HVAC End Use)

Description

This section covers installation of reflective window film in commercial buildings. The baseline condition is assumed to be double pane clear glass with a solar heat gain coefficient (SHGC) of 0.73 and U-value of 0.72 Btu/hr-SF-deg F. The window film is assumed to provide a SHGC of 0.40 or less. Energy and demand savings are realized through reductions in the building cooling loads. The approach utilizes DOE-2.2 simulations on a series of commercial prototypical building models. The commercial simulation models are adapted from the California Database for Energy Efficiency Resources (DEER), with changes to reflect Ohio climate and building practices. Energy and demand impacts are normalized per 100 square feet of window.

Definition of Efficient Equipment

The efficient condition is double pane clear glass windows with a standard window film. The standard window film will lower the SHGC to 0.40.

Definition of Baseline Equipment

The baseline condition is double pane clear glass windows without any window film, with a U-value of 0.72, and a SHGC of 0.73.

Deemed Calculation for this Measure

Annual kWh Savings = SF / 100 * AkWhimsF

Summer Coincident Peak kW Savings = SF / 100 * AkW 1005F * 0.74

Annual MMBtu Increase = SF / 100 * AMMBtu100SF

Deemed Lifetime of Efficient Equipment

The expected lifetime of the measure is 10 years⁵²⁵.

Deemed Measure Cost

This is a retrofit only measure. Actual installed cost should be use, but for analysis purposes, the full installed cost including labor is assumed as \$267 per 100 square feet of window⁵²⁶.

Deemed O&M Cost Adjustments

There are no expected O&M savings associated with this measure

Coincidence Factor

The summer peak coincidence factor for this measure is 74%⁵²⁷.

²⁰⁰⁸ Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008 526 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation",

California Public Utilities Commission, December 16, 2008 ⁵²⁷ Coincidence factor supplied by Duke Energy for the commercial HVAC end-use. Pending verification based on information

from the utilities.

REFERENCE SECTION

Calculation o	of Savings	
Energy Savin	ngs	
$\Delta kWh = SF/$	100 * ∆kWh _{100SF}	
Where:		
SF		= glazing surface area of installed window film, not including frame (square feet)
ΔkW	7h1005F	= unit energy savings per 100 square feet of window film. See lookup table below.
Summer Coi	ncident Peak Demai	nd Savings
$\Delta \mathbf{k} \mathbf{W} = \mathbf{S} \mathbf{F} / 1$	00 * ∆kW _{100SF} * CF	
Where:		
ΔkW	100SF	= unit demand savings per 100 square feet of window film. See lookup table below.
CF		= summer coincident peak factor = 0.74

Baseline Adjustment

Since this is a retrofit measure that only applies to existing buildings with clear, double pane windows, future code adjustments should not affect projected savings.

Fossil Fuel Impact Descriptions and Calculation

AMMBtu = SF / 100 * AMMBtu100SF

Where:

AMMBtu 100SF

= unit heating energy savings per 100 square feet of window film. See lookup table above.

Deemed O&M Cost Adjustment Calculation

There are no expected O&M savings or costs associated with this measure.

Reference Tables

Table 10: Window Film⁵²⁸

Building Type	City	AkWhigest	AkW100SF	AMMBtu anst
Assembly	Akron	309	0.16	-4.4
	Cincinnati	404	0.14	-4.0
	Cleveland	347	0.15	-4.2
	Columbus	316	0.05	-5.1
	Dayton	349	0.16	-4.7

⁵²⁸ Unit energy, demand, and gas savings data is based on a series of prototypical small commercial building simulation runs. The prototypes are based on the California DEER study prototypes, modified for local construction practices. Simulations were run using TMY3 weather data for each of the cities listed. Building prototypes used in the energy modeling are described in Appendix A - Prototypical Building Energy Simulation Model Development.

Building Type	City	AkWh100SF	AkWHORSE	AMMBtu 1005
	Mansfield	292	0.05	-4.8
	Toledo	285	0.04	-5.4
and the second second	Akron	298	0.19	-3.2
	Cincinnati	350	0.15	-3.3
	Cleveland	310	0.16	-3.2
Big Box Retail	Columbus	304	0.12	-3.6
	Dayton	333	0.18	-3.5
	Mansfield	287	0.17	-4.1
	Toledo	303	0.14	-3.8
	Akron	240	0.19	-5.2
	Cincinnati	292	0.14	-5.4
	Cleveland	254	0.14	-5.1
Fast Food Restaurant	Columbus	259	0.07	-5.1
	Dayton	272	0.15	-5.2
	Mansfield	235	0.17	-5.7
	Toledo	237	0.12	-6.0
	Akron	220	0.19	-7.5
	Cincinnati	281	0.17	-7.1
	Cleveland	236	0.19	-6.9
Full Service Restaurant	Columbus	255	0.17	-6.6
	Dayton	264	0.19	-7.2
	Mansfield	222	0.19	-7.3
	Toledo	227	0.19	-7.9
	Akron	197	0.20	-4.1
	Cincinnati	225	0.14	-4.6
	Cleveland	222	0.07	-3.9
Light Industrial	Columbus	160	0.14	-4.6
	Davton	230	0.14	-4.1
	Mansfield	172	0.23	-4.4
	Toledo	181	0.14	-4.4
	Akron	345	0.18	-7.2
	Cincinnati	452	0.20	-7.8
	Cleveland	399	0.17	-7.2
Primary School	Columbus	352	0.17	-7.6
	Dayton	416	0.20	-7.7
	Mansfield	329	0.06	-8.0
	Toledo	357	0.15	-7.8
	Akron	245	0.14	-2.7
	Cincinnati	304	0.14	-2.5
	Cleveland	258	0.12	-2.7
Small Office	Columbus	271	0.12	-2.6
	Dayton	282	0.09	-2.7
	Mansfield	247	0.13	-3.0
	Toledo	264	0.13	-3.0
Small Retail	Akron	259	0.17	-4.6
	Cincinnati	311	0.15	-45
	Class 1 1	0(0	0.16	1.0

Building Type	City	AkWh loost	AkW100SF	AMMBtuleest
	Columbus	277	0.14	-4.6
	Dayton	286	0.18	-4.9
	Mansfield	252	0.18	-5.1
	Toledo	262	0.16	-5.3

Version Date & Revision History

Draft: Effective date: End date:

Portfolio # Date TRM will become effective TBD

Roof Insulation (Retrofit – New Equipment)

Official Measure Code (Measure Number: X-X-X-X (Efficient Products, Lighting End Use)

Description

This section covers improvements to the roof insulation in commercial buildings. Roof insulation R-value is assumed to increase to R-18 from the baseline level assumed for each building type. Energy and demand saving are realized through reductions in the building heating and cooling loads. The approach utilizes DOE-2.2 simulations on a series of commercial prototypical building models. The commercial simulation models are adapted from the California Database for Energy Efficiency Resources (DEER) study, with changes to reflect Ohio climate and building practices. Energy and demand impacts are normalized per thousand square feet of installed insulation.

Definition of Efficient Equipment

The efficient condition is R-18 insulation on the roof.

Definition of Baseline Equipment

The baseline condition by building type is shown in the table below:

Building Type	Baseline R-Value		
Assembly	R-12		
Big Box Retail	R-13.5		
Fast Food	R-13.5		
Full Service Restaurant	R-13.5		
Light Industrial	R-12		
School	R-13.5		
Small Office	R-13.5		
Small Retail	R-13.5		

Deemed Calculation for this Measure

Annual kWh Savings

= SF / 1000 * Δk Whese

Summer Coincident Peak kW Savings = SF / 1000 * AkWkSF * 0.74

Annual MMBtu Increase =

= SF / 1000 * AMMBtuksF

Deemed Lifetime of Efficient Equipment

The expected lifetime of the measure is 20 years⁵²⁹.

Deemed Measure Cost

The full installed cost for retrofit applications is \$1.36 per square foot⁵³⁰.

Deemed O&M Cost Adjustments

There are no expected O&M cost adjustments for this measure.

Coincidence Factor

The coincidence factor is 0.74531.

 ⁵²⁹ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.
 ⁵³⁰ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation",

 ³³⁹ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation", California Public Utilities Commission, December 16, 2008.
 ³³¹ Coincidence factor supplied by Duke Energy for the commercial HVAC end-use. Pending verification based on information

³³⁴ Coincidence factor supplied by Duke Energy for the commercial HVAC end-use. Pending verification based on information from the utilities.

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = SF / 1000 * \Delta kWh_{kSF}$

Where:

 SF
 = The square footage of the roof. To be collected with the incentive form.

 ΔkWh_{kSF}
 = the kWh savings per thousand square feet of roof area. This depends on the building type and region in Ohio, and can be found in the lookup table below.

Summer Coincident Peak Demand Savings

$$\Delta kW = SF / 1000 * \Delta kW_{kSF} * CF$$

Where:

AkWkSF	= the kW savings per thousand square feet of roof area. This depends on the building
	type and region in Ohio, and can be found in the lookup table below.
CF	= The summer coincident peak factor, or 0.74.

Baseline Adjustment

There are no expected future code changes to affect this measure.

Fossil Fuel Impact Descriptions and Calculation

△MMBtu = SF / 1000 * △MMBtussF

Where:

AMMBtuks

= unit gas savings per thousand square feet of roof space. See lookup table below.

Deemed O&M Cost Adjustment Calculation

There are no expected O&M costs or savings associated with this measure.

Reference Tables

Roof Insulation ³³⁷				
Building Type	City	AkWhese	AKW	AMMBtukst
and the contract of the second second	Akron	28	0.047	3.5
	Cincinnati	34	0.065	2.7
Assembly	Cleveland	26	0.021	2.9
	Columbus	36	0.024	3.2
	Dayton	36	0.076	3.5
	Mansfield	31	0.012	3.3
	Toledo	41	0.018	5.0

⁵³² Unit energy, demand, and gas savings data is based on a series of prototypical small commercial building simulation runs. The prototypes are based on the California DEER study prototypes, modified for local construction practices. Simulations were run using TMY3 weather data for each of the cities listed. Building prototypes used in the energy modeling are described in Appendix A - Prototypical Building Energy Simulation Model Development.

Building Type	City	AkWh ksr	AKW	
	Akron	-6	0.025	2.5
	Cincinnati	-5	0.039	1.9
	Cleveland	-4	0.028	2.5
Big Box Retail	Columbus	-1	0.034	2.6
	Dayton	-2	0.032	2.5
	Mansfield	-8	0.030	2.8
	Toledo	2	0.023	3.0
	Akron	37	0.050	3.6
	Cincinnati	49	0.000	3.1
E	Cleveland	43	0.000	3.6
Past rood	Columbus	39	0.000	3.3
Restautant	Dayton	45	0.050	3.4
	Mansfield	36	0.050	3.7
	Toledo	43	0.000	3.8
	Akron	74	0.050	5.1
	Cincinnati	77	0.050	4.3
D.11 C '	Cleveland	78	0.025	5.3
Full-Service	Columbus	63	0.050	4.3
Restaurant	Dayton	69	0.075	4.4
	Mansfield	71	0.050	5.3
	Toledo	84	0.050	5.6
10000	Akron	57	0.028	4.3
	Cincinnati	68	0.018	3.6
Light Industrial	Cleveland	64	0.012	4.2
	Columbus	51	0.023	3.6
	Dayton	63	0.028	4.1
	Mansfield	60	0.029	4.5
	Toledo	53	0.021	4.4
	Akron	115	-0.008	4.4
장애 방법 김 집	Cincinnati	131	0.150	3.9
	Cleveland	117	0.106	4.4
Primary	Columbus	109	0.054	4.0
SCHOOL	Dayton	126	0.034	4.2
I marked to be	Mansfield	113	0.056	4.7
and the second	Toledo	116	0.108	4.6
Small Office	Akron	21	0.020	2.1
	Cincinnati	26	0.040	1.6
	Cleveland	27	0.020	2.1
	Columbus	21	0.040	1.7
	Dayton	26	0.000	1.9
1. 416 246	Mansfield	20	0.040	2.2
14th Autor	Toledo	23	0.020	2.1
Small Retail	Akron	51	0.047	3.4
	Cincinnati	52	0.047	2.8
X CARLES	Cleveland	53	0.031	3.4
	Columbus	43	0.031	2.9
	Dayton	53	0.047	32

Building Type	City	AkWhese	AKW	AMMBtuks
	Mansfield	48	0.047	3.6
and the second sec	Toledo	52	0.031	3.8

Version Date & Revision History

Portfolio #

Effective date: End date:

Draft:

Date TRM will become effective

Date TRM will cease to be effective (or TBD)

High Performance Glazing (Retrofit – Early Replacement)

Official Measure Code (Measure Number: X-X-X-X (Efficient Products, Lighting End Use)

Description

This section covers installation of high performance glazing in commercial buildings. The baseline condition is assumed to be double pane clear glass with a solar heat gain coefficient of 0.73 and U-value of 0.72 Btu/hr-SF-deg F. The efficient glazing must have a solar heat gain coefficient of 0.40 or less and U-value of 0.57 Btu/hr-SF-deg F or less. Energy and demand saving are realized through reductions in the building heating and cooling loads. The approach utilizes DOE-2.2 simulations on a series of commercial prototypical building models. The commercial simulation models are adapted from the California Database for Energy Efficiency Resources (DEER) study, with changes to reflect Ohio climate and building practices. Energy and demand impacts are normalized per 100 square feet of window.

Definition of Efficient Equipment

The efficient condition is a window with a U-value of 0.57 and a solar heat gain coefficient of 0.4.

Definition of Baseline Equipment

The baseline condition is a window with a U-value of 0.72 and a solar heat gain coefficient of 0.73.

Deemed Calculation for this Measure

Annual kWh Savings	$= SF / 100 * (\Delta k Wh_{100SF})$

Summer Coincident Peak kW Savings = SF / 100 * (\(\Delta kW_{100SF}) * 0.74)

Annual MMBTU Increase = SF / 100 * (Δ MMBtu_{100SF})

Deemed Lifetime of Efficient Equipment

The expected lifetime of the measure is 20 years⁵³³.

Deemed Measure Cost

The full installed cost for retrofit applications is \$54.82 per square foot of window⁵³⁴.

Deemed O&M Cost Adjustments

There are no expected O&M cost adjustments for this measure.

Coincidence Factor

The coincidence factor is 0.74535

REFERENCE SECTION

Calculation of Savings

^{533 2008} Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008. 534 Efficiency Vermont Technical Reference User Manual (IRM) Measure Savings Algorithms and Cost Assumptions, February,

^{19, 2010.} Value derived from Efficiency Vermont project experience and conversations with suppliers.

⁵³³ Coincidence factor supplied by Duke Energy for the commercial HVAC end-use. Pending verification based on information from the utilities.

Energy Savings

 $\Delta kWh = SF / 100 * (\Delta kWh_{100SF})$

Where:

AkWh Inst

SF

= glazing surface area of installed window, not including frame (square feet).
 = the kWh savings per 100 square feet of window space. See lookup table below.

Summer Coincident Peak Demand Savings

 $\Delta kW = SF / 100 * (\Delta kW_{100SF}) * CF$

Where:

AkW100SF CF

= the kW savings per 100 square feet of window space. See lookup table below. = The summer coincident peak factor, or 0.74.

Baseline Adjustment

There are no expected future code changes to affect this measure.

Fossil Fuel Impact Descriptions and Calculation

 $\Delta MMBtu = SF / 100 * (\Delta MMBtu_{100SF})$

Where:

AMMBtu 100SF

= unit gas savings per 100 square feet of window space. See lookup table below.

414

Deemed O&M Cost Adjustment Calculation

There are no expected O&M costs or savings associated with this measure.

Reference Tables

Building Type	City	AlWhar	ALWIOOSE	AMMRtu
Parton Artific	Akma	269	0 152	-0.28
	Cincinnati	358	0.138	-0.86
	Cleveland	300	0.143	-0.75
Assembly	Columbus	278	0.052	-0.63
	Dayton	312	0.157	-0.43
	Mansfield	262	0.052	-0.26
	Toledo	264	0.038	-0.03
Big Box Retail	Akron	267	0.203	-0.35
	Cincinnati	315	0.158	-1.23
	Cleveland	281	0.169	-0.51
	Columbus	278	0.124	-0.91
	Dayton	301	0.180	-1.04
	Mansfield	263	0.180	-0.56

³³⁶ Unit energy, demand, and gas savings data is based on a series of prototypical small commercial building simulation runs. The prototypes are based on the California DEER study prototypes, modified for local construction practices. Simulations were run using TMY3 weather data for each of the cities listed. Building prototypes used in the energy modeling are described in Appendix A - Prototypical Building Energy Simulation Model Development.

Building Type	City	AkWhigest	∆k₩100SF	
	Toledo	276	0.135	-0.59
	Akron	253	0.189	-0.29
	Cincinnati	301	0.155	-0.84
	Cleveland	269	0.138	-0.31
Fast Food	Columbus	260	0.069	-0.86
Restaurant	Dayton	280	0.155	-0.65
	Mansfield	251	0.172	-0.43
	Toledo	253	0.120	-0.79
	Akron	268	0.193	-0.55
	Cincinnati	313	0.166	-1.30
1000	Cleveland	281	0.193	-0.47
Full-Service	Columbus	265	0.166	-1.63
Restaurant	Davton	294	0.193	-1.22
	Mansfield	259	0.193	-0.86
	Toledo	273	0.193	-1.02
	Akron	218	0.136	-2.21
	Cincinnati	188	0.203	-1.47
	Cleveland	220	0.068	-1.40
Light	Columbus	159	0.136	-2.21
Industrial	Dayton	236	0.136	-1.47
	Mansfield	186	0.226	-1.56
	Toledo	185	0.136	-1.81
	Akron	398	0.189	-2.53
	Cincinnati	493	0.204	-3.50
Sec. March	Cleveland	443	0.181	-2.63
Primary	Columbus	386	0.172	-3.41
SCHOOL	Dayton	456	0.198	-3.35
그 같은 것이 물어?	Mansfield	384	0.065	-3.10
	Toledo	400	0.157	-3.08
	Akron	241	0.144	-0.38
이 지난 가지?	Cincinnati	294	0.144	-0.60
	Cleveland	257	0.122	-0.41
Small Office	Columbus	259	0.118	-0.68
	Dayton	273	0.083	-0.52
Base Parts	Mansfield	241	0.131	-0.52
	Toledo	258	0.127	-0.59
and the second	Akron	272	0.177	-0.77
Star I have b	Cincinnati	315	0.158	-1.32
1. 21. A. S.	Cleveland	283	0.158	-0.75
Small Retail	Columbus	277	0.149	-1.42
Det and	Dayton	296	0.177	-1.23
	Mansfield	266	0.186	-0.95
ie foer het en de	Toledo	274	0158	-1 28

KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 225 of 397

Version Date & Revision HistoryDraft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

Engineered Nozzles (Time of Sale, Retrofit - Early Replacement)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Engineered nozzles use compressed air to entrain and amplify atmospheric air into a stream, thus increasing pressure with minimal compressed air use. They are able to induce a large airflow entrainment while still using a smaller volume of air than open jets. The velocity of the resulting airflow is reduced, but the mass flow of the air is increased, thus increasing the cooling and drying effect. Energy savings result due to a decrease in compressor work that is required to provide the nozzles with compressed air. Engineered nozzles have the added benefits of noise reduction and improved safety in systems with greater than 30 psig.

Definition of Efficient Equipment

The efficient condition assumes an engineered nozzle is equipped to the end of a pneumatic tool.

Definition of Baseline Equipment

The baseline condition assumes an open copper tube or an air gun with an open end.

Deemed Savings for this Measure

Annual kWh Savings

= 0.0145 x (FLOW_{baseline} - FLOW_{eng}) X HOURS

Summer Coincident Peak kW Savings

= 0.0109 x (FLOW_{baseline} - FLOW_{eng})

Deemed Lifetime of Efficient Equipment 15 years⁵³⁷

Deemed Measure Cost \$14⁵³⁸

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.75⁵³⁹

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = (FLOW_{baseline} - FLOW_{ens}) \times kW_{scfm} \times %USE \times HOURS$

Where:

kWscfm

= the average amount of electrical demand needed to produce one cubic foot of air at 100 PSI
 = 0.29⁵⁴⁰

539 PG&E 1996, RLW Schools, RLW CF, SDG&E Time of Use Surveys. Based on 4p-5p peak

⁵³⁷ PA Consulting Group (2009). Business Programs: Measure Life Study. Prepared for State of Wisconsin Public Service Commission

⁵³⁸ See "Compressed Air Analysis.xls" for cost details

⁵⁴⁰ See "Compressed Air Analysis.xls" for more detail

FLOW_{baseline} FLOW_{eng}

= The flow rate of compressed air from an open end (SCFM)

= The flow rate of compressed air from an engineered nozzle (SCFM)

= Depending on size of nozzle:

	Open Flow (SCFM) ⁵⁴¹ FLOW _{baseline}	Engineered Nozzle (SCFM) ⁵⁴² FLOW _{max}	ASCFM	
1/8" Nozzle	21	6	15	
1/4" Nozzle	58	11	47	

%USE

= percent of the compressor total operating hours that the nozzle is in use (5% for 3 seconds of use per minute) = 0.05^{543}

HOURS

= annual operating hours of the compressed air system

= If site specific value is unknown, assume vales based on number of facility shifts as below:

No. of Shifts	HOURS	Description
Single Shift(8/5)	1976	7am - 3pm, weekdays, minus holidays and scheduled downtime
2-Shift	3952	7am - 11pm, weekdays, minus holidays and scheduled downtime
3-Shift	5928	24 hours per day, weekdays, minus holidays and scheduled downtime
4-Shift	8320	24 hours per day, 7 days a week minus holidays and scheduled downtime

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh / HOURS x CF$

Where:

AkWh= Energy Savings, caculated aboveHOURS = Operating Hours, see aboveCF= Peak coincidence factor= 0.75

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

⁵⁴¹ Machinery's Handbook 25th Edition.

⁵⁴² Survey of Engineered Nozzle Suppliers

⁵⁴³ Assumes 50% handheld air guns and 50% stationary air nozzles. Manual air guns tend to be used less than stationary air nozzles, and a conservative estimate of 1 second of blow-off per minute of compressor run time is assumed. Stationary air nozzles are commonly more wasteful as they are often mounted on machine tools and can be manually operated resulting in the possibility of a long term open blow situation. An assumption of 5 seconds of blow-off per minute of compressor run time is used.

Insulated Pellet Dryers (Retrofit)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Resin pellets used in injection molders and extruders are typically dried using electrically heated and desiccant dried air. Flexible ducts in the 3" to 8" diameter size range circulate the drying air. Air temperatures usually range from 160°F to 200°F. Un-insulated duct heat loss must be replaced by electric resistance heaters. Most facilities have pellet dryers running constantly to maintain pellet dryness at all times.

Definition of Efficient Equipment

The efficient condition is a pellet dryer with insulation on the heat ducts.

Definition of Baseline Equipment

The baseline condition is pellet dryer with un-insulated heat ducts.

Deemed Savings for this Measure

Annual kWh Savings

= L x (kWhaseline-kWeff) x HOURS

Summer Coincident Peak kW Savings

= L x (kWbsseline-kWeff) x CF

Deemed Lifetime of Efficient Equipment 5 years⁵⁴⁴

Deemed Measure Cost

Incremental costs are based on linear feet and diameter of heating ducts.

Incremental Capital Cost545

Diameter of Pipe (in.)	Incremental Cost of Insulation (\$/ft.)	
3"	\$33	
4"	\$43	
5 ⁿ	\$54	
6"	\$65	
8"	\$86	

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.75⁵⁴⁶

REFERENCE SECTION

Calculation of Savings

⁵⁴⁴ Engineering Judgment

⁵⁴⁵ Based on a review of available manufacturer pricing information

⁵⁴⁶ PG&E 1996, RLW Schools, RLW CF, SDG&E Time of Use Surveys.

Energy Savings

 $\Delta k Wh = L x (k W_{baseline} - k W_{eff}) x HOURS$ Where: $\Delta k Wh = non-coincident demand savings$ L = Length of pipe to be insulated (ft.) $k W_{baseline} = maximum hourly demand at technology level without insulation$ = See table below $k W_{eff} = maximum hourly demand at technology level with pipe insulation$ = See table belowHOURS = annual operating hours $= 4962^{547}$

Summer Coincident Peak Demand Savings

 $\Delta kW = L x (kW_{baseline}-kW_{eff}) x CF$

Where:

CF

= Summer Coincident Peak Factor = 0.75⁵⁴⁸

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

 ⁵⁴⁷ State of Wisconsin Public Service Commission of Wisconsin, Focus on Energy Evaluation, Business Programs: Deemed Savings Parameter Development. August 2009. PA Consulting Group Inc.
 ⁵⁴⁸ PG&E 1996, RLW Schools, RLW CF, SDG&E Time of Use Surveys.

²⁰¹⁰ Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

Reference Tables

Temperature (°F)	Duct Diameter (in)	KW baseline	KW energyefficientmethod	AKW
	3	0.03/ft	0.01/ft	0.02/ft
	4	0.04/ft	0.01/ft	0.03/ft
160	5	0.05/ft	0.01/ft	0.04/tt
	6	0.06/ft	0.01/ft	0.05/ft
	8	0.09/ft	0.01/ft	0.08/ft
	3	0.03/ft	0.01/R	0.03/ft
	4	0.05/ft	0.01/ft	0.04/ft
170	5	0.06/ft	0.01/ft	0.05/ft
	6	0.07/ft	0.01/ft	0.06/ft
	8	0.10/ft	0.01/ft	0.09/ft
2007 200	3	0.04/ft	0.01/ft	0.03/ft
	4	0.05/ft	0.01/ft	0.04/ft
180	5	0.07/ft	0.01/ft	0.06/ft
	6	0.08/ft	0.01/ft	0.07/ft
	8	0.11/ft	0.01/ft	0.10/ft
190	3	0.04/ft	0.01/ft	0.04/ft
	4	0.06/ft	0.01/ft	0.05/ft
	5	0.07/ft	0.01/ft	0.06/ft
	6	0.09/ft	0.01/ft	0.08/ft
	8	0.13/1	0.02/ft	0.11/ft
	3	0.05/ft	0.01/ft	0.04/ft
	4	0.07/ft	0.01/ft	0.06/ft
200	5	0.08/ft	0.01/ft	0.07/ft
	6	0.10/ft	0.01/ft	0.09/ft
	8	0.14/ft	0.02/ft	0.12/ft

Electric Demand for Load Temperatures and Duct Diameters

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Injecting Molding Barrel Wrap (Retrofit - New Equipment)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Removable insulated blankets enclose the cylindrical barrels of an injection molding machine. Surface temperatures of the barrels range from 300°F to 600°F, depending on the resins processed. Barrels are heated either with electric resistance band heaters or by friction from the mechanical screw which shears plastic material in the barrel generating frictional heat. Insulated blankets minimize the use of resistance heating without affecting temperature control of the resin. Barrel wraps are held in place by straps. Blankets are available either in standard sizes or can be custom manufactured.

Definition of Efficient Equipment

The efficient condition is assumed to be an injection molding machine with an insulating blanket or vest wrapped around the barrel.

Definition of Baseline Equipment

The baseline condition is assumed to be an injection molding machine with no added insulation.

Deemed Savings for this Measure

Annual kWh Savings = $(\Delta E_{Loss} * LEN_{Barrel} * D_{Barrel} * \pi) / 1000 * HOURS$

Summer Coincident Peak kW Savings = $(\Delta E_{Loss} * LEN_{Barrel} * D_{Barrel} * \pi) / 1000$

Deemed Lifetime of Efficient Equipment 5 years⁵⁴⁹

Deemed Measure Cost The actual measure installation cost should be used (including material and labor).

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.75⁵⁵⁰

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = (\Delta E_{Loss} * LEN_{Barrel} * D_{Barrel} * \pi) / 1000 * HOURS$

Where:

AELoss

= The difference in heat loss (measured in watts/ ft^2 needed to replace lost heat) between an injection molding barrel with insulation compared to an injection molding barrel without insulation. This is dependent on the operating temperature (site specific) and the

549 Engineering judgment

⁵⁵⁰ PG&E 1996, RLW Schools, RLW CF, SDG&E Time of Use Surveys. Pending verification based on information to be provided by the utilities.

	thickness of the insulation (site specific). See the table "Calculating Barrel Heat Loss" in the reference table section for associated values.
LENBarrel	= The length of the barrel
	= Actual installed
DBarnel	= The diameter of the barrel
	= Actual installed
π	= 3.14159
1000	= conversion factor for watts to kilowatts
HOURS	= Annual operating hours
	= If actual operating hours are unknown, assume 3952 ⁵⁵¹ .

Summer Coincident Peak Demand Savings

ΔkW = $(\Delta E_{\text{Loss}} * \text{LEN}_{\text{Barrel}} * D_{\text{Barrel}} * \pi) / 1000 * \text{CF}$

Where:

CF

= Summer Peak Coincidence Factor = 0.75

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Reference Tables

Calculating Barrel Heat Loss⁵⁵²

Operating Temperature (°F)	No Insulation (Watts/ ft ²)	1" Insulation (Watts/ft ²)	1.5" Insulation (Watts/ft ²)
300	180	18.6	12.4
325	210	20.9	14
350	243	23.4	15.6
375	275	26	17.3
400	313	29	19
425	350	31.5	21
450	387	34.3	22.9
475	425	37.2	24.8
500	465	40.1	25.8
525	505	43.2	26.9
550	550	46.5	28.3
575	605	49.9	29.9
600	660	54.1	32.1

⁵⁵¹ Default annual operating hours estimate assumes equipment operates continuously on a typical 2-shift operation (7am - 11pm, weekdays, minus some holidays and scheduled down time). ⁵³² Industrial Modeling Supplies (2009). Reference/Conversion Chart.

http://www.imscompany.com/pdf/Tech%20Tips%20&%20Conversion%20and%20Reference%20Charts.pdf

KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 233 of 397

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

ENERGY STAR Hot Food Holding Cabinet (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Commercial insulated hot food holding cabinet models that meet program requirements incorporate better insulation, reducing heat loss, and may also offer additional energy saving devices such as magnetic door electric gaskets, auto-door closures, or dutch doors. The insulation of the cabinet also offers better temperature uniformity within the cabinet from top to bottom. This means that qualified hot food holding cabinets are more efficient at maintaining food temperature while using less energy.

Definition of Efficient Equipment

The efficient equipment is assumed to be an ENERGY STAR qualified hot food holding cabinet with an idle energy rate of 0.04kW/ft³

Definition of Baseline Equipment

The baseline equipment is assumed to be a standard hot food holding cabinet with an idle energy rate of 0.1kW/ft³

Deemed Savings for this Measure

a manual do dans de la cab de de la manufactura	Annual	kWh	Savings	
---	--------	-----	---------	--

Full Size	Three-Quarter Size	Half Size
5,256	2,847	1,862

Summer Coincident Peak kW Savings =

Full Size	Three-Quarter Size	Half Size	-
0.80	0.44	0.29	

Deemed Lifetime of Efficient Equipment 12 years⁵⁵³

Deemed Measure Cost

The incremental cost for Energy Star hot food holding cabinet is assumed to be \$1,110⁵⁵⁴

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.84⁵⁵⁵

REFERENCE SECTION

Calculation of Savings

Energy Savings

554 NYSERDA Deemed Savings Database

⁵⁵³ Food Service Technology Center (FSTC). Default value from life cycle cost calculator. http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php

⁵⁵⁵ RLW Analytics. Coincidence Factor Study - Residential and Commercial Industrial Lighting Measures. Spring 2007.

Where:

kWawe

= the difference in connected load between the baseline and the efficient equipment (before the coincidence factor is applied) HOURS = Annual operating hours = 5475^{550}

Summer Coincident Peak Demand Savings

$$kW_{save} = (W_{floot base} - W_{floot eff}) \times VOLUME \times 1000$$

$$\Delta kW = kW \times CF$$

Where:

kWsave	= the difference in connected load between the baseline and the efficient equipment
	(before the coincidence factor is applied)
Wfoot base =	the electrical demand per cubic foot of the baseline equpiment
Wower	= the electrical demand per cubic foot of the efficient equipment

TOOLCIL		
VOLUME	= the internal volume of the holding cabinet (ff	3

1,000

= conversion of W to kW

Parameter	Full Size	Three-Quarter Size	Half Size
VOLUME ⁵⁵⁷	20	12	8
Wfoot base	70	70	70
Wfpoteff	22	27	29
kWsave	0.96	0.52	0.34

CF

= Summer Peak Coincidence Factor = 0.84

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Reference Tables n/a

Version Date & Revision History

Draft:	Portfolio #	
Effective date:	Date TRM will become effective	
End date:	Date TRM will cease to be effective (or TBD)	

 ⁵⁵⁶ Food Service Technology Center (FSTC), based on assumption that restaurant is open 15 hours a day, 365 days a year.
 ⁵⁵⁷ Sizes are from ENERGY STAR calculator

Steam Cookers (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Energy efficient steam cookers that have earned the ENERGY STAR offer shorter cook times, higher production rates, and reduced heat loss due to better insulation and more efficient steam delivery system. Energy usage calculations are based on 12 hours a day, 365 days per year, with one preheat and cooking 100 pounds per day of food.

Definition of Efficient Equipment

The efficient condition assumes the installation of an ENERGY STAR qualified steam cooker.

Definition of Baseline Equipment

The baseline condition assumes a conventional boiler-style steam cooker meeting minimum federal standards for electricity and water consumption.

Deemed Calculations for this Measure

Annual kWh Savings

= kWHbase - kWheff

Summer Coincident Peak kW Savings

= (Annual kWh Savings / HOURS) x CF

Deemed Lifetime of Efficient Equipment 12 years⁵⁵⁸

Deemed Measure Cost The incremental cost of an ENERGY STAR steam cooker is \$2,000⁵⁵⁹

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.84⁵⁶⁰

REFERENCE SECTION

Calculation of Savings

Energy Savings

kWH = [LB x $E_{FOOD}/EFF + IDLE x$ (HOURS_{DAY} - LB/PC - PRE_{TIME} /60) + PRE_{ENERGY}] x DAYS

AkWh = kWHhere - kWhere

Where:

kWHbase	= the annual energy usage of the baseline equipment calculated using baseline values
kWHeff	= the annual energy usage of the efficient equipment calculated using efficient values
HOURSDAY	= Daily operating hours

⁵⁵⁸ Food Service Technology Center (FSTC). Default value from life cycle cost calculator. http://www.fishnick.com/saveenergy/tools/calculators/esteamercalc.php

⁵⁵⁹ NYSERDA Deemed Savings Database

⁵⁶⁰ RLW Analytics. Coincidence Factor Study - Residential and Commercial Industrial Lighting Measures. Spring 2007.

	$= 12^{501}$
PRETIME	= Preheat time (min/day), the amount of time it takes a steamer to reach operating temperature when turned on $= 15 \text{ min/day}^{562}$
PREENERGY	= Preheat energy (kWh/day) = 1.5 kWh/day ⁶⁰³
EFOOD	= ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food = 0.038 ⁵⁶¹
DAYS	= Operating days per year = 365

The following variables are dependent on the pan capacity of efficient equipment which is a site specific variable. See the 'Reference Tables' section for the associated values

FF	= Heavy load cooking energy efficiency (%)
DLE	= Idle energy rate
C	= Production capacity (lbs/hr)
В	= Pounds of food cooked per day (lb/day)
B	= Pounds of food cooked per day (lb/da

Summer Coincident Peak Demand Savings

$$\Delta kW = (\Delta kWh / HOURS) \times CF$$

Where:

 AkWh
 = Annual energy savings (kWh)

 HOURS = Equivalent full load hours
 = 4380

 CF
 = Summer Peak Coincidence Factor for measure

 = 0.84
 = 0.84

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation

$$\Delta Water = (Rate_{base} - Rate_{eff}) \times EFLH$$

= 30 x EFLH

Where

∆Water	= Annual water savings (gal)
Ratebase	= Water consumption rate (gal/h) of baseline equipment = 40^{565}
Rateer	= Water consumption rate (gal/h) of baseline equipment = 10^{566}
EFLH	= Equivalent full load hours = 4380

Ses Ibid.

 ⁵⁶¹ Food Service Technology Center (FSTC), based on assumption that restaurant is open 12 hours a day, 365 days a year.
 ⁵⁶² FSTC (2002). Commercial Cooking Appliance Technology Assessment. Chapter 8: Steamers.

⁵⁶⁴ American Society for Testing and Materials. Industry Standard.

 ⁵⁶⁵ FSTC (2002). Commercial Cooking Appliance Technology Assessment. Chapter 8: Steamers.
 ⁵⁶⁶ Ibid.

Deemed O&M Cost Adjustment Calculation n/a

Reference Tables

Values for ASTM parameters for baseline and efficient conditions (unless otherwise noted) were determined by FSTC according to ASTM F1484, the Standard Test Method for Performance of Steam Cookers. These parameters include the three of the four listed below: Idle Energy Rate, Production Capacity, and Heavy Load Cooking Efficiency. Pounds of Food Cooked per Day based on the default value for a 3 pan steam cooker (100 lbs from FSTC) and scaled up based on the assumption that steam cookers with a greater number of pans cook larger quantities of food per day. It is not known which specific models were tested but the values presented are thought to be the averages of tested models.

# of Pans	Parameter	Baseline Model	Efficient Model
A REAL PROPERTY AND THE REAL	Idle Energy Rate (kW) ³⁰⁷	1	0.24
3	Production Capacity (lb/h)	70	50
and the second	Pounds of Food Cooked per Day	100	100
A set a set of	Heavy Load Cooking Energy Efficiency ³⁰⁸	20%	59%
The second second second second	Idle Energy Rate (kW)	1.325	0.27
4	Production Capacity (lb/h)	87	67
	Pounds of Food Cooked per Day	128	128
	Heavy Load Cooking Energy Efficiency	20%	52%
5	Idle Energy Rate (kW)	1.675	0.24
	Production Capacity (lb/h)	103	83
	Pounds of Food Cooked per Day	160	160
	Heavy Load Cooking Energy Efficiency	20%	62%
6	Idle Energy Rate (kW)	2	0.31
	Production Capacity (lb/h)	120	100
	Pounds of Food Cooked per Day	192	192
	Heavy Load Cooking Energy Efficiency	20%	62%

Parameters that vary with number of pans:

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

 ⁵⁶⁷ Efficient values calculated from a list of ENERGY STAR qualified products. See "ES Steam Cooker Analysis.xls" for details.
 ⁵⁶⁸ Ibid.

ENERGY STAR Fryers (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

Commercial fryers that have earned the ENERGY STAR offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Frypot insulation reduces standby losses resulting in a lower idle energy rate. Fryers that have earned the ENERGY STAR are up to 30% more efficient than standard models. Energy savings estimates are based on a 15" fryer.

Definition of Efficient Equipment

The efficient equipment is assumed to be an ENERGY STAR qualified electric fryer

Definition of Baseline Equipment

The baseline equipment is assumed to be a standard electric fryer with a heavy load efficiency of 75%.

Deemed Savings for this Measure

Annual kWh Savings	= 982.71 kWh/yr	
Summer Coincident Peak kW Savings	= 0.22 kW	

Deemed Lifetime of Efficient Equipment 12 years⁵⁶⁹

Deemed Measure Cost The incremental cost for commercial combination ovens is assumed to be \$500⁵⁷⁰

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.84⁵⁷¹

REFERENCE SECTION

Calculation of Savings

Energy Savings

kWH = [LB x EFOOD/EFF + IDLE x (HOURSDAY - LB/PC - PRETIME /60) + PREENERGY] x DAYS

 $\Delta kWh = kWH_{base} - kWh_{eff}$

Where:

kWHbase	= the annual energy usage of the baseline equipment calculated using baseline values
kWHeff	= the annual energy usage of the efficient equipment calculated using efficient values
HOURSDAY	= Daily operating hours
	$=16^{572}$

⁵⁶⁹ Food Service Technology Center (FSTC). Default value from life cycle cost calculator. http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php

⁵⁷⁰ NYSERDA Deemed Savings Database

⁵⁷¹ RLW Analytics. Coincidence Factor Study - Residential and Commercial Industrial Lighting Measures. Spring 2007.

PRETME	= Preheat time (min/day), the amount of time it takes a fryer to reach operating temperature when turned on $= 15 \text{ min/day}^{573}$
EFOOD	= ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food $= 0.167^{574}$
LB	= Pounds of food cooked per day (lb/day) = 150 ⁵⁷⁵
DAYS	= 365
EFF	= Heavy load cooking energy efficiency (%)
IDLE	= Idle energy rate
PC	= Production capacity (lbs/hr)
PREENERGY	= Preheat energy (kWh/day)

Performance Metrics: Baseline and Efficient Values⁵⁷⁶

Metric	Baseline Model	Energy Efficient Model
PREENERGY	2.3	1.7
IDLE	1.05	0.84
EFF	75%	84%
PC	65	70

Summer Coincident Peak Demand Savings

 $\Delta kW = (\Delta kWh / HOURS) \times CF$

Where:

 ΔkWh
 = Annual energy savings (kWh)

 HOURS = Equivalent full load hours
 = 4380

 CF
 = Summer Peak Coincidence Factor for measure

 = 0.84
 = 0.84

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

572 Food Service Technology Center (FSTC), based on assumption that restaurant is open 16 hours a day, 365 days a year.

573 FSTC (2002). Commercial Cooking Appliance Technology Assessment. Chapter 7: Fryers.

⁵⁷⁴ American Society for Testing and Materials. Industry Standard for Commercial Ovens.

⁵⁷⁵ Food Service Technology Center (FSTC). Default value from life cycle cost calculator.

http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php

⁵⁷⁶ Baseline values based on assumptions from FSTC life cycle cost calculator. Efficient values reflect averages from a list of qualifying models found on the ENERGY STAR website (accessed June 2010)

Combination Oven (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

A combination oven is a convection oven that includes the added capability to inject steam into the oven cavity and typically offers at least three distinct cooking modes.

Definition of Efficient Equipment

The efficient equipment is assumed to be an electric combination oven with a heavy load cooking energy efficiency of at least 60%.

Definition of Baseline Equipment

The baseline equipment is assumed to be a typical low-efficiency oven with a heavy load efficiency of 44%.

Deemed Savings for this Measure

Annual kWh Savings	= 18,432 kWh
Summer Coincident Peak kW Savings	= 3.53 kW

Deemed Lifetime of Efficient Equipment 12 years⁵⁷⁷

Deemed Measure Cost The incremental cost for commercial combination ovens is assumed to be \$2,125⁵⁷⁸

Deemed O&M Cost Adjustments n/a

Coincidence Factor 0.84⁵⁷⁹

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $kWH = [LB \times E_{FOOD}/EFF + IDLE \times (HOURS_{DAY} - LB/PC - PRE_{TIME} / 60) + PRE_{ENERGY}] \times DAYS$ $\Delta kWh = kWH_{base} - kWh_{eff}$

Where:

kWHbase	= the annual energy usage of the baseline equipment calculated using baseline values
kWHeff	= the annual energy usage of the efficient equipment calculated using efficient values
HOURSDAY	= Daily operating hours
	$= 12^{380}$

⁵⁷⁷ Food Service Technology Center (FSTC). Default value from life cycle cost calculator. http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php

⁵⁷⁸ NYSERDA Deemed Savings Database

⁵⁷⁹ RLW Analytics. Coincidence Factor Study – Residential and Commercial Industrial Lighting Measures. Spring 2007. ⁵⁸⁰ Food Service Technology Center (FSTC), based on assumption that restaurant is open 12 hours a day, 365 days a year.

DAYS	= Days per year of operation = 365
PRETIME	= Preheat time (min/day), the amount of time it takes a steamer to reach operating temperature when turned on = 15 min/day ^{S81}
EFOOD	= ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food $= 0.0732^{SE2}$
LB	= Pounds of food cooked per day (lb/day) = 200 ⁵⁸³
EFF	= Heavy load cooking energy efficiency (%)
IDLE	= Idle energy rate
PC	= Production capacity (lbs/hr)
PREENERGY	= Preheat energy (kWh/day)

Performance Metrics: Baselin	ne and Emicient	Values
------------------------------	-----------------	--------

Metric	Baseline Model	Energy Efficient Model
PREENERGY (kWh)	3	1.5
IDLE (kW)	7.5	3
EFF	44%	60%
PC (lb/hr)	80	100

Summer Coincident Peak Demand Savings

 $= (\Delta kWh / HOURS) \times CF$ ΔkW

Where:

∆kWh	= Annual energy savings (kWh)
HOURS	= Equivalent full load hours
	= 4380
CF	= Summer Peak Coincidence Factor for measure
	= 0.84

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation The water savings for commercial combination ovens are assumed to be 87,600 gallons per year⁵⁸⁵

Deemed O&M Cost Adjustment Calculation n/a

⁵⁸¹ Food Service Technology Center (2002). Commercial Cooking Appliance Technology Assessment. Prepared by Don Fisher.. Chapter 7: Ovens. S82 American Society for Testing and Materials. Industry Standard for Commercial Ovens.

⁵⁸³ Food Service Technology Center (FSTC). Default value from life cycle cost calculator.

http://www.fishnick.com/saveenergy/tools/calculators/ecombicalc.php

⁵⁸⁴ Ibid.

⁵⁸⁵ Food Service Technology Center (FSTC). Based on assumption that baseline ovens use water at an average rate of 40 gal/h while efficient models use water at an average rate of 20 gal/h