0.003413	= conversion from kWh to MMBTU
HF	= Heating Factor or percentage of light savings that must be heated $= 0.45^{103}$
ηHeat	= average heating system efficiency = 0.72 ¹⁰⁴
AMMBTU_{WH}	= ((45.7 / 1000) * 1.0 * 869 * 0.003413 * 0.45) / 0.72
	= 0.085 MMBtu

Deemed O&M Cost Adjustment Calculation

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see CFL Table Lamp baseline savings shift.xls). The key assumptions used in this calculation are documented below:

	Standard Incandescent	Efficient Incandescent
Replacement Cost	\$0.50	\$2.00
Component Life (years) (based on lamp life / assumed annual run hours)	1105	3105

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below:

	NPV of baseline Replacement Costs					
CFL wattage	2010	2011	2012	2013 on		
21W+	\$3.86	\$4.97	\$4.97	\$4.97		
16-20W	\$4.15	\$3.86	\$4.97	\$4.97		
15W and less	\$4.43	\$4.15	\$3.86	\$4.97		

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Referenced Documents:

On the following page is an embedded Excel showing the calculation for the levelized annual replacement cost savings. Double click on the worksheet to open the file and review the calculations.

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005 tables/hc4spaceheating/pdf/tablehc12.4.pdf))

In 2000, 40% of furnaces purchased in Ohio were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process). Assuming typical efficiencies for condensing and non condensing furnace and duct losses, the average heating system efficiency is estimated as follows: $(0.4^{\circ}0.92) + (0.6^{\circ}0.8)^{\circ} (1-0.15) = 0.72$

Assumes rated life of incandescent bulb of approximately 1000 hours.

¹⁰⁶ VEIC best estimate of future technology.

¹⁰³ Le. heating loads increase by 45% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes), ¹⁰⁴ This has been estimated assuming that natural gas central furnace heating is typical for Ohio residences (65% of

Bast North Central census division has a Natural Gas Furnace (based on Energy Information Administration, 2005 **Residential Energy Consumption Survey:**

Calculation of O&M Impact for Baseline

						Г	Bulb Ass	umptions		
	Measure Life 8						Inc	Halogen		
Real D	iscount Rate (RD 5.00%			Com	ponent 1 Li	fe (years)	1	3		
			C	omponent	1 Replacen	nent Cost	\$0.50	\$2.00		
2010		Year NPV	2010	2011	2012	2013	2014	2015	2016	2017
21W+	Baseline Replacement Costs	\$3.86	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
6-20W	Baseline Replacement Costs	\$4.15	\$0.00	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
5W and less	Baseline Replacement Costs	\$4.43	\$0.00	\$0.50	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00
011		Year NPV	2011	2012	2013	2014	2015	2016	2017	2018
:1W+	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
6-20W	Baseline Replacement Costs	\$3.86	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
5W and less	Baseline Replacement Costs	\$4.15	\$0.00	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
012		Year NPV	2012	2013	2014	2015	2016	2017	2018	2019
:1W+	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
6-20W	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
5W and less	Baseline Replacement Costs	\$3.86	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
	The second second	NPVo	f baseline Re	placement	Costs					
	CFL wattage	2010	2011	2012	2013 on					P
	21W+	\$3.86	\$4.97	\$4.97	\$4.97					age
	16-20W	\$4.15	\$3.86	\$4.97	\$4.97					47 0
	15W and less	\$4.43	\$4.15	\$3.86	\$4.97					f 35

Ceiling Fan with ENERGY STAR Light Fixture (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure describes the installation of an ENERGY STAR ceiling fan that uses a high efficiency motor and contains compact fluorescent bulbs in place of a standard fan with integral incandescent bulbs.

Definition of Efficient Equipment

The efficient equipment must be an ENERGY STAR certified ceiling fan with integral CFL bulbs.

Definition of Baseline Equipment

The baseline equipment is assumed to be a standard fan with integral incandescent bulbs.

Deemed Savings for this Measure

	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings per unit
2010 - 2013	167	0.019	- 0.33	n/a
2014 on	97	0.012	- 0.19	n/a

Adjustment to annual savings within life of measure of 58% at 2014.

Deemed Lifetime of Efficient Equipment

The measure life is assumed to be 10 years¹⁰⁷.

Deemed Measure Cost

The incremental cost for the ENERGY STAR ceiling fan is \$86¹⁰⁷.

Deemed O&M Cost Adjustments

The calculated net present value of the baseline replacement costs minus the CFL replacement cost for each installation year are presented below. Note this is per fan (i.e. 3 bulbs):

NPV of baseline Replacement Costs - CFL Replacement Costs					
2010	2011	2012	2013 on		
\$5.82	\$8.85	\$8.17	\$7.45		

Coincidence Factor

The summer peak coincidence factor for this measure is 0.11¹⁰⁸.

REFERENCE SECTION

Calculation of Savings

¹⁰⁷ ENERGY STAR Ceiling Fan Savings Calculator

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavines_calc/Ceiling_Fan_Savines_Calculator_Consumer.x

ls) ¹⁰⁸ Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009"

Energy Savings		
ΔkWh	= ((% _{low} * (LowKW _{base} - LowKW _{ee}) + % _{med} * (MedKW _{base} - * (HighKW _{base} - HighKW _{ee})) * HOURS _{fm}) + ((IncKW - CFL * WHFe)	MedKW _{ee}) + % _{high} KW) * HOURS _{light}
Where ¹⁰⁹ :		
%	= Percent of time on Low Speed	= 40%
%omed	= Percent of time on Medium Speed	= 40%
9'ohish	= Percent of time on High Speed	= 20%
LowWatthase	= Low speed baseline ceiling fan wattage	= 0.0152 kW
LowWattee	= Low speed ENERGY STAR ceiling fan wattage	=0.0117kW
MedWattbase	= Medium speed baseline ceiling fan wattage	= 0.0348kW
MedWattee	= Medium speed ENERGY STAR ceiling fan wattage	= 0.0314kW
HighWatt base	= High speed baseline ceiling fan wattage	= 0.0725 kW
HighWatte	= High speed ENERGY STAR ceiling fan wattage	= 0.0715kW
HOURS	= Typical fan operating hours (2.8/day ¹¹⁰ , 365 days per year)	= 1022 hours
IncWatt	= Incandescent bulb kW (assumes 3 * 60W bulb)	= 0.180kW
CFLWatt	= CFL bulb kW (assumes 3 * 20W bulb)	= 0.060 kW
HOURStight	= Typical lighting operating hours (3.5/day, 365 days per year	r = 1277.5 hours
WHFe	= Waste Heat Factor for Energy to account for cooling saving	s from efficient
	lighting.	$= 1.07^{111}$
ΔkWh	=((0.4 * (0.0152 - 0.0117) + 0.4 * (0.0348 - 0.0314) + 0.2 *	(0.0725 - 0.0715))

- * 1022) + ((0.18 0.06) * 1277.5 * 1.07)
- = 167 kWh

Baseline Adjustment

Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, first year annual savings for this measure must be reduced beginning in 2014. This measure assumes 60W baseline bulbs, which in 2014 will become 43W and so the annual savings beginning in 2014 should therefore be:

 $\Delta kWh = ((0.4 * (0.0152 - 0.0117) + 0.4 * (0.0348 - 0.0314) + 0.2 * (0.0725 - 0.0715))$ * 1022) + ((0.129 - 0.06) * 1277.5 * 1.07)

ls) 110 For East North Central location.

¹¹¹ Waste heat factor for energy to account for cooling savings from efficient lighting. The value is estimated at 1.07 (calculated as $1 + (0.64^{\circ}(0.35/3.1))$). Based on cooling loads decreasing by 35% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes), assuming typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP) and assuming 64% of homes have central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey;

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005 tables/hc6airconditioningchar/pdf/tablehc12.6.pdf).

¹⁰⁹ All data points (unless otherwise noted) come from the ENERGY STAR Ceiling Fan Savings Calculator (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Ceiling_Fan_Savings_Calculator_Consumer.g

= 97 kWh

In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. Therefore, for bulbs installed in 2010, the full savings (167kWh) should be claimed for the first four years, but the reduced annual savings (97kWh) claimed for the remainder of the measure life. The savings adjustment is therefore equal to 97/167 = 58%.

Summer Coinci	dent Pe	ak Demand Savings
	∆kW	= (‰ _{low} * (LowKW _{base} - LowKW _{ce}) + ‰ _{med} * (MedKW _{base} - MedKW _{ce}) + ‰ _{high} * (HighKW _{base} - HighKW _{ce})) + ((IncKW - CFLKW) * WHFd) * CF
Where:		
WHFd		= Waste Heat Factor for Demand to account for cooling savings from efficient lighting = 1.21 ¹¹²
CF		= Summer Peak Coincidence Factor for measure = 0.11
	∆kW	= ((0.4 * (0.0152 - 0.0117) + 0.4 * (0.0348 - 0.0314) + 0.2 * (0.0725 - 0.0715)) + ((0.18 - 0.06) * 1.21) * 0.11
	∆kW	= 0.019kW
After 2014, this	vill be r	educed to:
	∆kW	= ((0.4 * (0.0152 - 0.0117) + 0.4 * (0.0348 - 0.0314) + 0.2 * (0.0725 - 0.0715)) + ((0.129 - 0.06) * 1.21) * 0.11
	ΔkW	= 0.012kW
Fossil Fuel Imp	act Desc	riptions and Calculation
MMBT	Uwh	= (((ΔWatts) /1000) * HOURS * 0.003413 * HF) / ηHeat
Where:		
AMMB'	TUWH	= gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413		= conversion from kWh to MMBTU
HF		= Heating Factor or percentage of light savings that must be heated = 0.45^{113}
ηHeat		= average heating system efficiency = 0.72^{114}

¹¹² Waste heat factor for demand to account for cooling savings from efficient lighting. The value is estimated at 1.21 (calculated as 1 + (0.64 / 3.1)). Based on typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP), and 64% of homes having central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey).

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005 tables/hc4spaceheating/pdf/tablehc12.4.pdf))

¹¹³ Le. heating loads increase by 45% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes),

¹¹⁴ This has been estimated assuming that natural gas central furnace heating is typical for Ohio residences (65% of East North Central census division has a Natural Gas Furnace (based on Energy Information Administration, 2005 Residential Energy Consumption Survey:

$\mathbf{MMBTU}_{\mathbf{WH}} = (((120/1000) * 1277.5 * 0.003413 * 0.45) / 0.72)$

= 0.33 MMBtu

After 2014, this will be reduced to:

 $MMBTU_{WH} = (((69/1000) * 1277.5 * 0.003413 * 0.45) / 0.72)$

= 0.19 MMBtu

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see <u>CFL Ceiling Fan baseline savings</u> shift.xls). The key assumptions used in this calculation are documented below:

	Standard Incandescent	Efficient Incandescent
Replacement Cost	\$0.50	\$2.00
Component Life (years) (based on lamp life / assumed annual run hours)	1115	3110

The calculated net present value of the baseline replacement costs minus the CFL replacement cost for each installation year are presented below. Note this is per fan (i.e. 3 bulbs):

NPV of	baseline Ra Replac	eplacement ement Costs	Costs - CFL
2010	2011	2012	2013 on
\$5.82	\$8.85	\$8.17	\$7.45

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Referenced Documents:

On the following page is an embedded Excel worksheet showing the calculation for the levelized annual replacement cost savings. Double click on the worksheet to open the file and review the calculations.

In 2000, 40% of furnaces purchased in Ohio were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non condensing furnaces and duct losses, the average heating system efficiency is estimated as follows: $(0.4^{+}0.92) + (0.6^{+}0.8) * (1-0.15) = 0.72$

¹¹⁵ Assumes rated life of incandescent bulb of approximately 1000 hours.

¹¹⁶ VEIC best estimate of future technology.

Calculation of O&M Impact for Baseline

							Bult	Assumptio	ns			
	Measure Life 10						Inc	Halogen	CFL			
	Real Discount Rate (RD 5.00%)			Com	ponent 1 Li	fe (years)	1 20	3	8			
			G	omponent	1 Replacen	nent Cost	\$0.50	\$2.00	\$3.50			
2010	N	Year PV	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
60W	Baseline Replacement Costs	\$4743	\$0.00	\$0.50	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
	CFL Replacement Costs Net replacement cost	\$2.49 \$1.94	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$3.50	\$0.00	\$0.00
2011	N	Year PV	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
60W	Baseline Replacement Costs	\$5.44	\$0.00	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
	CFL Replacement Costs	\$2.49	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$3.50	\$0.00	\$0.00
	Net replacement cost	\$2.95	Manna .		- Sector and							
2012	N	Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
60W	Baseline Replacement Costs	\$5.21	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
	CFL Replacement Costs	\$2.49	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$3.50	\$0.00	\$0.00
	Net replacement cost	\$2.72										
2013	N	Year PV	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
60W	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
	CFL Replacement Costs	\$2.49	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$3.50	\$0.00	\$0.00
	Net replacement cost	\$2.48	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200-1			1		1 N		

NPV of base	ine Replac	ement Cos	ts - CFL
E States	Replacemen	t Costs	
2010	2011	2012	2013 on
\$1.94	\$2.95	\$2.72	\$2.48

* 3 bulbs

NPV of bas	eline Replac	ement Cos	ts - CFL
	Replacemen	t Costs	Just New -
2010	2011	2012	2013 on
\$5.82	\$8.85	\$8.17	\$7.A5

2010 Ohio Technical Reference Manual - August 6, 2010 Vermont Energy Investment Corporation KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 52 of 397

Efficient Refrigerator – ENERGY STAR and CEE TIER 2 (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the purchase and installation of a new refrigerator meeting either ENERGY STAR or CEE TIER 2 specifications (defined as requiring $\geq 20\%$ or $\geq 25\%$ less energy consumption than an equivalent unit meeting federal standard requirements respectively). This is a time of sale measure characterization.

Definition of Efficient Equipment

The efficient condition is a new refrigerator meeting either the ENERGY STAR or CEE TIER 2 efficiency standards.

Definition of Baseline Equipment

The baseline condition is a new refrigerator meeting the minimum federal efficiency standard for refrigerator efficiency.

Deemed Savings for this Measure

Efficiency Level	Refrigerator Configuration	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings per unit
ENTERCY	Bottom Freezer	119	0.021		n/a
STAD	Top Freezer	100	0.018	n/a	
SIAK	Side by Side	142	0.025		
OFF	Bottom Freezer	149	0.026		
TTEP 2	Top Freezer	124	0.022	n/a	n/a
ILER 2	Side by Side	177	0.031		

Deemed Lifetime of Efficient Equipment

The measure life is assumed to be 17 Years 117.

Deemed Measure Cost

The incremental cost for this measure is assumed to be \$30¹¹⁸ for an ENERGY STAR unit and \$140¹¹⁹ for a CEE Tier 2 unit.

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

A coincidence factor is not used to calculate peak demand savings for this measure. See discussion below.

http://www.energystar.gov/ia/business/bulk purchasing/bosavings calc/Consumer Residential Refrig Sav Calc.xls Based on weighted average of units participating in Efficiency Vermont program and retail cost data provided in Department of Energy, "TECHNICAL REPORT: Analysis of Amended Energy Conservation Standards for Residential Refrigerator-Freezers", October 2005;

http://www1.eere.energy.gov/buildings/appliance standards/pdfs/refrigerator report 1.pdf

¹¹⁷ Consistent with Efficiency Vermont and New Jersey TRMs

¹¹⁸ From ENERGY STAR calculator:

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = UEC_{BASE} - UEC_{EE}$

Where:

UECBASE	= Annual Unit E	inergy Consumption of baseline unit ¹²⁰
	Bottom Freezer	= 596 kWh
	Top Freezer	= 497 kWh
	Side by Side	= 706 kWh
UECEE	= Annual Unit E	nergy Consumption of ENERGY STAR unit (20% less)
	Bottom Freezer	= 477 kWh
	Top Freezer	= 397 kWh
	Side by Side	= 564 kWh
Or	= Annual energy	consumption of CEE Tier 2 unit (25% less)
	Bottom Freezer	= 447 kWh
	Top Freezer	= 373 kWh
	Side by Side	= 529 kWh
AkWHENERGY :	STAR	
	Bottom Freezer	= 596 - 477
		= 119 kWh
	Top Freezer	= 497 - 397

= 100 kWh

= 706 - 564= 142 kWh

AkWHCEE TER 2

Bottom Freezer	= 596 - 447
	= 149 kWh
Top Freezer	= 497 - 373
	= 124 kWh
Side by Side	= 706 - 529
	= 177 kWh

Summer Coincident Peak Demand Savings $\Delta kW = (\Delta kWh/8760) * TAF * LSAF$

Where:

TAF	= Temperature Adjustment Factor = 1.30 ¹²¹
LSAF	= Load Shape Adjustment Factor = 1.18 ¹²²

Side by Side

 ¹²⁰ KWh assumptions for base condition are based on the average federal standard baseline usage for the range of efficient units purchased through the Efficiency Vermont's Residential Refrigerator program during 2009.
 ¹²¹ Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential

Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47). It assumes 64% of Ohio homes have central air conditioning.

¹²² Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 48, extrapolated by taking the

AkWENERGY STAR			
	Bottom Freezer	= 119/8760 *	1.3 * 1.18
		= 0.021 kW	
	Top Freezer	= 100/8760 *	1.3 * 1.18
		= 0.018 kW	
	Side by Side	= 142/8760 *	1.3 * 1.18
		= 0.025 kW	

AkWCEE TIER 2

Bottom Freezer	= 149/8760 * 1.3 * 1.18
	= 0.026 kW
Top Freezer	= 124/8760 * 1.3 * 1.18
	= 0.022 kW
Side by Side	= 177/8760 * 1.3 * 1.18
	= 0.031 kW

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

ratio of existing summer to existing annual profile for hours ending 16 through 18, and multiplying by new annual profile).

Refrigerator Replacement (Low Income, Early Replacement)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure describes the early removal of an existing inefficient refrigerator from service, prior to its natural end of life, and replacement with a new ENERGY STAR qualifying unit. This measure is suitable for a Low Income or Home Performance program. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Definition of Efficient Equipment

The efficient condition is a new replacement refrigerator meeting the ENERGY STAR efficiency standard (defined as requiring $\geq 20\%$ less energy consumption than an equivalent unit meeting federal standard requirements).

Definition of Baseline Equipment

The baseline condition is the existing inefficient refrigerator for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new refrigerator meeting the minimum federal efficiency standard.

Deemed Savings for this Measure

	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings per unit
Remaining life of existing unit (1 st 8 years)	976	0.156	n/a	n/a
Remaining measure life (next 9 years)	100	0.018	n/a	n/a

Deemed Lifetime of Efficient Equipment

The measure life is assumed to be 17 Years 123.

Deemed Lifetime of Replaced (Existing) Equipment (for early replacement measures only) The assumed remaining useful life of the existing refrigerator being replaced is 8 Years ¹²⁴.

Deemed Measure Cost

The actual measure cost for removing the existing unit and installing the new should be used.

Deemed O&M Cost Adjustments

The net present value of the deferred replacement cost (the cost associated with the replacement of the existing unit with a standard unit that would have had to have occurred in 8 years, had the existing unit not been replaced) is calculated as \$490.73¹²⁵.

Coincidence Factor

A coincidence factor is not used to calculate peak demand savings for this measure. See discussion below.

¹²⁵ Determined by calculating the Net Present Value (with a 5% discount rate) of the annuity payments from years 9 to 17 of a deferred replacement of a standard efficiency unit costing \$1150 (from ENERGY STAR calculator: http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Refrig_Sav_Calc.xls).

¹²³ Consistent with Efficiency Vermont and New Jersey TRMs

¹²⁴ KEMA "Residential refrigerator recycling ninth year retention study", 2004

²⁰¹⁰ Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

REFERENCE SECTION

Calculation of Savings

Energy Savings

 ΔkWh for remaining life of existing unit (1st 8 years) = UEC_{existing} - UEC_{ES}

= UECbase - UECES ΔkWh for remaining measure life (next 9 years)

Where:

UECenisting	= Unit Energy Consumption of existing refrigerator = 1,376 kWh ¹²⁶
UECES	= Unit Energy Consumption of new Energy Star refrigerator = 400 kWh ¹²⁷
UECbase	= Unit Energy Consumption of new baseline refrigerator = 500 kWh ¹²⁸

 ΔkWh for remaining life of existing unit (1st 8 years) = 1376 - 400

	= 976 kWh
∆kWh for remaining measure life (next 9 years)	= 500 - 400
	= 100 kWh

To incorporate this baseline shift, multiply annual savings by a Savings Adjustment of 10% after 8 years,

Summer Coincident Peak Demand Savings = (ΔkWh/8760) * TAF * LSAF ΔkW

Where:

TAF	= Temperature Adjustment Factor = 1.30 ¹²⁹
LSAFexist	= Load Shape Adjustment Factor for existing unit = 1.074 ¹³⁰
LSAFnew	= Load Shape Adjustment Factor for new unit = 1.18 ¹³¹

¹²⁶ Based on regression-based savings estimates and incorporating the part-use factors, from Navigant Consulting, "AEP Ohio Energy Efficiency/Demand Response Plan Year 1 (1/1/2009-12/31/2009) Program Year Evaluation Report: Appliance Recycling Program", March 9, 2010, and multiplied by in situ factor of 0.85 as discussed in Refrigetarot Retirement measure. ¹²⁷ Approximate average consumption of typical ENERGY STAR refrigerator;

http://www.energystar.gov/index.cfm?fuseaction_refrig.display_products_excel

Approximate average consumption of typical baseline refrigerator at federal standard efficiency levels; http://www.energystar.gov/index.cfm?fuseaction_refrig.display_products_excel

Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47). It assumes 64% of Ohio homes have central air conditioning. ¹³⁰ Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential

Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 48, using the average Existing Units Summer Profile for hours ending 16 through 18)¹³¹ Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential

Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 48, extrapolated by taking the

	ΔkW for remaining life of existing unit (1 st 8 years)	= (1376/8760 * 1.3 * 1.074) - (400/8760 * 1.3 * 1.18)	
		= 0.149 kW	
	∆kW for remaining measure life (next 9 years)	= 100/8760 * 1.3 * 1.18	
		= 0.018 kW	
Da	ct Descriptions and Calculation		

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation

The net present value of the deferred replacement cost (the cost associated with the replacement of the existing unit with a standard unit that would have had to have occurred in 8 years, had the existing unit not been replaced) is calculated as \$490.73¹³².

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

profile. ¹³² Determined by calculating the Net Present Value (with a 5% discount rate) of the annuity payments from years 9 to 17 of a deferred replacement of a standard efficiency unit costing \$1150 (from ENERGY STAR calculator: http://www.energystar.gov/ia/business/bulk_purchasing/bpsayings_calc/Consumer_Residential_Refrig_Sav_Calc.xls).

ratio of existing summer to existing annual profile for hours ending 16 through 18, and multiplying by new annual profile.

Clothes Washer - ENERGY STAR and CEE TIER 3 (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the purchase (time of sale) and installation of a clothes washer exceeding either the ENERGY STAR or CEE TIER 3 minimum qualifying efficiency standards presented below:

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
Federal Standard	>= 1.26	No requirement
ENERGY STAR (as of Jan 1, 2011)	>= 2.0	<= 6.0
CEE TIER 3	>= 2.20	<= 4.5

The modified energy factor (MEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity; the higher the number, the greater the efficiency.

The Water Factor is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Definition of Efficient Equipment

The efficient condition is a clothes washer meeting either the ENERGY STAR or CEE TIER 3 efficiency criteria presented above.

Definition of Baseline Equipment

The baseline condition is a clothes washer at the minimum federal baseline efficiency presented above.

Deemed Savings for this Measure

	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings (gal) per unit
ENERGY STAR	202	0.028	0.447 (NGas), 0.02 (Oil), 0.013 (LP)	6,265
CEE TIER 3	233	0.033	0.516 (NGas), 0.023 (Oil), 0.015 (LP)	7,160

Deemed Lifetime of Efficient Equipment

The measure life is assumed to be 11 years¹³³.

Deemed Measure Cost

The incremental cost for this measure is assumed to be \$258¹³⁴ for an ENERGY STAR unit and \$372 for a CEE TIER 3 unit¹³⁵.

Deemed O&M Cost Adjustments

n/a

¹³³ ENERGY STAR calculator

⁽http://www.energystar.gov/index.cfm?fuseaction-find_a_product.showProductGroup&pgw_code=CW)

¹³⁴ ENERGY STAR calculator (as above)

¹³⁵ Based on an Efficiency Vermont market field study of incremental clothes washer cost between non-energy star and Tier 3 units, finding an average incremental cost to Tier 3 of \$371.63.

Coincidence Factor The coincidence factor for this measure is assumed to be 0.045¹³⁶.

REFERENCE SECTION

Calculation of Savings

Energy Savings

Savings are determined using Modified Energy Factor assumptions, applying the proportion of consumption used for water heating, clothes washer and clothes dryer operation and then to the mix of domestic hot water heating fuels and dryer fuels. Savings from reduced water usage are also factored in.

For the full calculation see <u>Clothes Washer Work Sheet</u>, but the key assumptions and their sources are provided below:

Washer Volume	= 3.23 cubic feet ¹³⁷
Baseline MEF	= 1.26
ENERGY STAR MEF	= 2.0
CEE TIER 3 MEF	= 2.2
Number of cycles per year	$= 320^{138}$

% energy consumption for water heating, CW operation, Dryer operation = 26%, 7%, 67% 139

Water savings per load 140 ENERGY STAR = 19.6 gallons = 22.4 gallons CEE TIER 3

Community/Municipal Water and Wastewater pump kWh savings per gallon water saved = 0.0039kWh per gallon of water save¹⁴¹

Ohio DHW fuel mix¹⁴²;

Fuel	% of Homes
Electric	27%
Natural Gas	63%
Oil	6%
Propane	4%

¹³⁶ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York and adjusted for OH peak definitions.

(http://www.eia.doe.gov/emeu/recs/recs2005/hc2005 tables/hc8waterheating/pdf/tablehc12.8.pdf)

Average unit size from Efficiency Vermont program.

¹³⁸ Weighted average of 2005 Residential Energy Consumption Survey (RECS) for East North Central Census **Division**:

⁽http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc10homeappliaceindicators/pdf/tablehc12.10.pdf)

Based on the Clothes Washer Technical Support Document, Chapter 4, Engineering Analysis, Table 4.1, Page 4-5 http://www.eere.energy.gov/buildings/appliance_standards/residential/pdfs/chapter_4_engineering.pdf 140 Determined starting from gallons per load assumption from the ENERGY STAR calculator, dividing by water factor

⁽gallons per cubic foot) to get cubic feet assumption and multiplying by each efficient case water factor. ^[4] Efficiency Vermont analysis of Community/Municipal Water and Wastewater pump energy consumption showed

^{0.0024} kWh pump energy consumption per gallon of water supplied, and 0.0015 kWh consumption per gallon for waste water treatment. ¹⁴² 2005 Residential Energy Consumption Survey (RECS) for East North Central Census Division:

Ohio Dryer fuel mix¹⁴³:

Fuel	% of Homes
Electric	66%
Natural Gas	34%

AkWHENERGY STAR	$= 202 \mathrm{kWh}$
the states a second	

∆kWH_{CEE TIER 3} = 233 kWh

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

Hours	= Assumed 1 = 320^{-144}	= Assumed Run hours of Clothes Washer = 320 ¹⁴⁴		
CF = Summer Peak Co = 0.033 ¹⁴⁵		eak Coincidence Factor for measure		
	AkW ENERGY STAR	= 202 / 320 * 0.045		
		= 0.028 kW		
	AkWGEE THER 3	= 233 / 320 * 0.045		
		= 0.033 kW		

Fossil Fuel Impact Descriptions and Calculation

For calculation see <u>Clothes Washer Work Sheet</u>. Savings are based on the mix of domestic hot water heating fuels and Dryer fuels.

ENERGY STAR unit:	
MMBtu Savings Natural Gas	= 0.447 MMBtu
MMBtu Savings Oil	= 0.02 MMBtu
MMBtu Savings Propane	= 0.013 MMBtu
CEE TIER 3 unit:	
MMBtu Savings Natural Gas	= 0.516 MMBtu
MMBtu Savings Oil	= 0.023 MMBtu
MMRtu Savinos Pronane	= 0.015 MMBtu

Water Impact Descriptions and Calculation

For calculation see Clothes Washer Work Sheet.

 ¹⁴³ 2005 Residential Energy Consumption Survey (RECS) for East North Central Census Division: (<u>http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc9homeappliance/pdf/tablehc12.9.pdf</u>)
 ¹⁴⁴ Based on assumption of 1 hour average per cycle. # cycles based on weighted average of 2005 Residential Energy

¹⁴⁴ Based on assumption of 1 hour average per cycle. # cycles based on weighted average of 2005 Residential Energy Consumption Survey (RECS) for East North Central Census Division (see CW Work Sheet).

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005 tables/hc10homeappliaceindicators/pdf/tablehc11.10.pdf ¹⁴⁵ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York and adjusted for OH peak definitions.

ENERGY STAR unit:	
Water Savings	= 6,265 gallons
CEE TIER 3 unit	

Water Savings = 7,160 gallons

Deemed O&M Cost Adjustment Calculation n/a

Reference Tables

On the following page is the embedded Clothes Washer calculation spreadsheet. Double click on the window to open the Excel worksheet and follow the formulae.

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Clothes Washer Work Sheet - ENERGY STAR 3	and CEE TIER i	3
---	----------------	---

1. Calculate kW h savings per year per machine:

kWh Savings per machine = Washer Volume* (1/BaseMEF - 1/EFFMEF) * # Cycles

ENERGY STAR	303.2
CEE TIER 3	350.1

Where: Washer Volume **Base MEF** ESTAR MEF CEE TIER 3 MEF # Cycles

1.26 Federal Standard

2 Energy Star minimum standard (as of Jan 1 2011)

3.23 Average of Efficiency Vermont program

2.2 CEE Tier 3 Standard

Source:

320 Weighted average of 2005 Residential Energy Consumption Survey (RECS) for East North Centrel Census Division http://www.eia.doa.gov/emeu/reca/recs2005/hc2005_tablea/hc10homeappliaceindicators/pdf/tablehc12.10.pdf

2. Divide savings by end use for washer and dryer operation:

		ENERGY STAR				HEE TLER	3	Sources:
E lectricity Consumption by End Use for Washer/Dryer Operation	E lectricity C onsumption Percent by End Use	Electric	Gas	OH	Electric	Gas	OII	1.www.eere.energy.gowbuildings/appliance_sta ndards/residential/tiwash_0000html 2.Chapter 4, Engineering Analysis, Table 4.1, Pane 4.6
Water Heating	26%	78.8	0.34	0.34	91.0	0.39	0.39	www.eere.energy.gov/buildings/applian ce_stand
CW Machine Operation		21.2	n/a	n/a	24.5	n/a	n/a	ards/residen tal/pdfs/chapter_4_engineering.pdf
Dryer	67%	203.1	0.69	n/a	234.6	0.80	n/a	
Total	100%	slok 2	and the second second		1 550.1	2.74		

3. Calculate Water Pump Savings

	ENERGY STAR	CEE TIER	
Annual Water Savings/load	19.6	22.4	Gal
Annual Gallons saved	6265	7160	Gal
Annual CCF	8.4	9.6	CCF
Water Pump Savings	24.4	27.9	kWh

Calculated based on ENERGY STAR calculator (http://www.energystar.gov/la/business/bulk_purchasing/bps Calculated

Calculated

0.0039kWh savings per gallon saved - based on Efficiency Vermont analysis of community/municipal water :

TIER 3

4. Multiply savings by DHW and Dryer Fuel Mix

Ohio assumed DHW fuel n	nix	Ohio assumed Dryer mix	and state of the s	STAR	CEE TIEF
Electric	27%	Electric 66%	kWh Savings	202.0	233.0
Natural Gas	63%	Natural Gas 34%	Natural Gas	0.447	0:516
OI	6%		01	0.020	0.023
Propane	4%		LP	0.013	0.015
the state of the s	second	and Araba			

("other" fuel category is split proportionately between fuels)

http://www.ela.doe.gov/emeu/recs/recs2005/hc2005_tables/hc8waterheating/odf/tablehc12.8.pdf http://www.ela.doe.gov/emeu/recs/recs2005/hc2005 tablas/hc9homeappliance/odfitablahc12.9.odf

DHW Fuel	Million homes	% of homes
Electric	5.1	27%
Natural Gas	11.0	83%
Oll	1.1	6%
Propane	0.7	4%
	18.8	and the second sec

Dryer Fuel	Million homes	% of homes
Electric	9.9	66%
Natural Gas	5	34%
	14.9	

ENERGY STAR Dehumidifier (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

A dehumidifier meeting the minimum qualifying efficiency standard established by ENERGY STAR on 10/1/2006 is purchased and installed in a residential setting in place of a unit that meets the minimum federal standard efficiency.

Definition of Efficient Equipment

To qualify for this measure, the new dehumidifier must meet the ENERGY STAR standards as of 10/1/2006 as defined below:

Capacity (pints/day)	ENERGY STAR Criteria (L/kWb)
\$25	≥1.20
> 25 to ≤35	≥1.40
> 35 to ≤45	≥1.50
> 45 to ≤ 54	≥1.60
> 54 to ≤ 75	≥1.80
> 75 to ≤ 185	≥2.50

Definition of Baseline Equipment

The baseline for this measure is defined as a new dehumidifier that meets the Federal Standard efficiency standards as defined below:

Capacity (pints/day)	Federal Standard Criteria (L/kWb)	
\$25	≥1.10	
> 25 to ≤35	≥1.20	
> 35 to ≤45	≥1.20	
> 45 to ≤ 54	≥1.23	
> 54 to ≤ 75	≥1.55	
> 75 to ≤ 185	≥1.90	

Deemed Savings for this Measure

Capacity Range (pints/day)	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings per unit
\$25	54	0.012		
> 25 to ≤35	117	0.027		
> 35 to ≤45	213	0.048		-
> 45 to ≤ 54	297	0.068	11/8	IVa
> 54 to ≤ 75	185	0.042		
> 75 to ≤ 185	374	0.085	to and the states of the second	

Deemed Lifetime of Efficient Equipment The assumed lifetime of the measure is 12 years¹⁴⁶

Deemed Measure Cost

The assumed incremental capital cost for this measure is \$45¹⁴⁷

Deemed O&M Cost Adjustments n/a

Coincidence Factor The coincidence factor is assumed to be 0.37¹⁴⁸

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWH = (Av Capacity * 0.473) / 24 * Hours / L/kWh$

Where:

0.473	= Constant to convert Pints to Liters
Hours	$= \mathbf{Run hours per year}$ $= 1620^{149}$
L/kWh	= Liters of water per kWh consumed = As provided in tables above

Annual kWh calculation results for each capacity class presented below:

		A State State	nnual kWh	
Capacity Range	Pints/day used	ENERGY STAR	Federal Standard	Savings
≤25	22.4	596	650	54
> 25 to ≤35	30	684	802	117
> 35 to ≤45	40	851	1064	213
> 45 to ≤ 54	49.5	988	1285	297
> 54 to ≤ 75	64.5	1144	1329	185
> 75 to ≤ 185	92.8	1185	1559	374

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

CF

= Summer Peak Coincidence Factor for measure = 0.37 150

http://www.enersystar.gov/ia/business/bulk_murchasins/bosavings_calc/CalculatorConsumerDehumidifier.xls 65

¹⁴⁶ ENERGY STAR Dehumidifier Calculator

http://www.energystar.gov/ia/business/bulk_purchasing/bosavings_calc/CalculatorConsumerDehumidifier.xls 147 Based on available data from the Department of Energy's Life Cycle Cost analysis spreadsheet:

http://wwwi.cere.energy.gov/buildings/appliance_standards/residential/docs/loc_dehumidifier.xls 148 Assume usage is evenly distributed day vs night, weekend vs weekday and is used between April through the end of September (4392 possible hours). 1620 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1620/4392 = 36.9%

¹⁴⁹ ENERGY STAR Dehumidifier Calculator

		Annual kW		
Capacity Range	Pints/day used	ENERGY STAR	Federal Standard	Savings
≤25	22.4	0.136	0.148	0.012
> 25 to ≤35	30	0.156	0.182	0.027
> 35 to ≤45	40	0.194	0.242	0.048
> 45 to ≤ 54	49.5	0.225	0.293	0.068
> 54 to ≤ 75	64.5	0.261	0.303	0.042
>75 to ≤185	92.8	0.270	0.355	0.085

Summer coincident peak demand calculation results for each capacity class presented below:

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

¹⁵⁰ Assume usage is evenly distributed day vs night, weekend vs weekday and is used between April through the end of September (4392 possible hours). 1620 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1620/4392 = 36.9%

ENERGY STAR Room Air Conditioner (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the purchase and installation of a room air conditioning unit that meets either the ENERGY STAR or CEE TIER 1 minimum qualifying efficiency specifications, in place of a baseline unit meeting minimum Federal Standard efficiency ratings presented below:

Product Class (BtuH)	Federal Standard	ENERGY STAR	CEE TIER 1
	(EER)	(EER)	(EER)
8,000 to 13,999	>= 9.8	>= 10.8	>= 11.3

Definition of Efficient Equipment

To qualify for this measure the new room air conditioning unit must meet either the ENERGY STAR of CEE TIER 1 efficiency standards presented above.

Definition of Baseline Equipment

The baseline assumption is a new room air conditioning unit that meets the current minimum federal efficiency standards presented above.

Deemed Savings for this Measure

	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings per unit
ENERGY STAR	18.7	0.024	n/a	n/a
CEE TIER 1	26.8	0.035	n/a	n/a

Deemed Lifetime of Efficient Equipment

The measure life is assumed to be 12 years ¹⁵¹.

Deemed Measure Cost

The incremental cost for this measure is assumed to be \$40 for an ENERGY STAR unit and \$80 for a CEE TIER 1 unit 152

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

The coincidence factor for this measure is assumed to be 0.3^{153} .

REFERENCE SECTION

Calculation of Savings

¹⁵¹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf 132 Based on field study conducted by Efficiency Vermont

¹⁵³ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%20Res% 20RAC.pdf)

Enon	Cordinar	
cuergy	∆kWH	= (Hours * BtuH * (1/EERbase - 1/EERee))/1000
Where.		
W HELC.	Hours	= Full Load Hours of room air conditioning unit = 233^{154}
	BtuH	= Average size of rebated unit = 8500^{155}
	EERbase	= Efficiency of baseline unit = 9.8^{156}
	EERee	= Efficiency of ENERGY STAR unit = 10.8 ¹⁵⁷
	Or	= Efficiency of CEE Tier 1 unit = 11.3 ¹⁵⁸
	AkWHENERGY STA	R
		= (233 * 8500 * (1/9.8 – 1/10.8)) / 1000 = 18.7 kWh
	AkWHCEE TIER 1	= (233 * 8500 * (1/9.8 - 1/11.3)) / 1000 = 26.8 kWh
Summe	r Coincident Pea	k Demand Savings
	ΔkW	= BtuH * (1/EERbase - 1/EERee))/1000 * CF
Where:		
	CF	= Summer Peak Coincidence Factor for measure = 0.3^{159}
	AkWENERGY STAR	
		= (8500 * (1/9.8 - 1/10.8)) / 1000 * 0.3 = 0.024 kW
	∆kWcee tier 1	= (8500 * (1/9.8 - 1/11.3)) / 1000 * 0.3 = 0.035 kW

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%20Res% 20RAC.pdf) to FLH for Central Cooling for the same location (provided by AHRI:

http://www.energystar.gov/ia/business/bulk nurchasing/bosavings calc/Calc CAC.xls) is 31%. This factor was applied to the FLH for Central Cooling provided for OH cities and averaged to come up with the assumption for FLH for Room AC. ¹³⁵ Based on maximum capacity average from the RLW Report: Final Report Coincidence Factor Study Residential Room

¹⁵⁴ The average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008:

Air Conditioners, June 23, 2008. ¹³⁶ Minimum Federal Standard for capacity range

¹⁵⁷ Minimum qualifying standard for ENERGY STAR.

¹⁵⁸ Minimum qualifying standard for CEE Tier 1.

¹⁵⁹ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

⁽http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res% 20RAC.pdf)

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

ENERGY STAR Room Air Conditioner Replacement (Low Income, Early Replacement)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure describes the early removal of an existing inefficient Room Air Conditioner unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR qualifying unit. This measure is suitable for a Low Income or a Home Performance program. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

Definition of Efficient Equipment

The efficient condition is a new replacement room air conditioning unit meeting the ENERGY STAR efficiency standard (i.e. with an efficiency rating greater than or equal to 10.8EER).

Definition of Baseline Equipment

The baseline condition is the existing inefficient room air conditioning unit for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new replacement unit meeting the minimum federal efficiency standard (i.e. with an efficiency rating greater than or equal to 9.8EER).

Deemed Savings for this Measure

	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings per unit
Remaining useful life of existing unit (3 years)	73.8	0.095	n/a	n/a
Remaining Measure Life (next 9 years)	18.7	0.024	D/a	n/a

Deemed Lifetime of Efficient Equipment

The measure life is assumed to be 12 Years¹⁶⁰.

Deemed Lifetime of Replaced (Existing) Equipment (for early replacement measures only) The assumed remaining useful life of the existing room air conditioning unit being replaced is 3 years¹⁶¹.

Deemed Measure Cost

The actual measure cost for removing the existing unit and installing the new should be used.

Deemed O&M Cost Adjustments

The net present value of the deferred replacement cost (the cost associated with the replacement of the existing unit with a standard unit that would have had to have occurred in 3 years, had the existing unit not been

 ¹⁶⁰ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.
 http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.ndf
 ¹⁶¹ Based on Connecticut TRM; Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for

¹⁶¹ Based on Connecticut TRM; Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year

²⁰¹⁰ Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

replaced) should be calculated as (Actual Cost of ENERGY STAR unit - \$50 (incremental cost of ENERGY STAR unit over baseline unit¹⁶²) * 69%¹⁶³.

Coincidence Factor

The coincidence factor for this measure is assumed to be 0.3^{164} .

REFERENCE SECTION

Calculation of Savings

Energy Savings

 ΔkWh for remaining life of existing unit (1st 3 years) = (Hours * BtuH * (1/EERexist - 1/EERee))/1000

 Δk Wh for remaining measure life (next 9 years) = (Hours * BtuH * (1/EERbase - 1/EERee))/1000

Where:

Hours	= Full Load Hours of room air conditioning unit	
	$= 233^{103}$	
BtuH	= Average size of rebated unit = 8500^{160}	
EERexist	= Efficiency of baseline unit = 7.7^{167}	
EERbase	= Efficiency of baseline unit = 9.8 ¹⁶⁸	
EERee	= Efficiency of ENERGY STAR unit = 10.8 ¹⁶⁹	
ΔkW	Th for remaining life of existing unit $(1^{st} 3 \text{ years})$	
	=(233 + 8500 + (1/7.7 - 1/10.8))/1000	

= 73.8 kWh

AkWh for remaining measure life (next 9 years) = (233 * 8500 * (1/9.8 - 1/10.8)) / 1000

http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/CalculatorConsumerRoomAC.xls)

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res% 20RAC.pdf) to FLH for Central Cooling for the same location (provided by AHRI:

¹⁶² From ENERGY STAR calculator (ENERGY STAR - \$220, Baseline - \$170);

^{69%} is the ratio of the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit costing \$170, divided by the standard efficiency unit cost (\$170). The calculation is done in this way to allow the use of the known ENERGY STAR replacement cost to calculate an appropriate baseline replacement cost.

¹⁶⁴ Consistent with coincidence factors found in:

⁽http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%20Res% 20RAC.pdf) ¹⁸³ The average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential

Room Air Conditioners, June 23, 2008:

http://www.energystar.gov/ia/business/balk nurchasing/bpsayings calc/Calc CAC.xls) is 31%. This factor was applied to

the FLH for Central Cooling provided for OH cities and averaged to come up with the assumption for FLH for Room AC. ¹⁶⁶ Based on maximum capacity average from the RLW Report; "Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008."

¹⁶⁷ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

⁸ Minimum Federal Standard for capacity range

¹⁶⁹ Minimum qualifying standard for ENERGY STAR.

KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 72 of 397

= 18.7 kWh

Summer Coincident Peak Demand Savings

AkW for remaining life of existing unit (1st 3 years) = (BtuH * (1/EERexist - 1/EERee))/1000 * CF

∆kW for remaining measure life (next 9 years) = (BtuH * (1/EERbase - 1/EERee))/1000 * CF

Where:

CF

= Summer Peak Coincidence Factor for measure = 0.3170

 ΔkW for remaining life of existing unit (1st 3 years) =(8500 * (1/7.7 - 1/10.8)) / 1000 * 0.3 $= 0.095 \, kW$

∆kW for remaining measure life (next 9 years) = (8500 * (1/9.8 - 1/10.8)) / 1000 * 0.3 $= 0.024 \, kW$

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation

The net present value of the deferred replacement cost (the cost associated with the replacement of the existing unit with a standard unit that would have had to have occurred in 3 years, had the existing unit not been replaced) should be calculated as (Actual Cost of ENERGY STAR unit - \$50 (incremental cost of ENERGY STAR unit over baseline unit¹⁷¹) * 69%¹⁷².

Version Date & Revision History

Draft: Portfolio # Date TRM will become effective Effective date: End date: Date TRM will cease to be effective (or TBD)

(http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117 RLW CF%20Res% 20RAC.pdf) ¹⁷⁷ From ENERGY STAR calculator (ENERGY STAR - \$220, Baseline - \$170);

http://www.energystar.gov/ia/business/bulk_purchasing/opsavings_calc/CalculatorConsumerRoomAC.xis) 172 69% is the ratio of the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit costing \$170, divided by the standard efficiency unit cost (\$170). The calculation is done in this way to allow the use of the known ENERGY STAR replacement cost to calculate an appropriate baseline replacement cost.

¹⁷⁰ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

ENERGY STAR Room Air Conditioner Recycling (Early Retirement)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure describes the savings resulting from running a drop off service taking existing inefficient Room Air Conditioner units from service, prior to their natural end of life. This measure assumes that a percentage of these units will be replaced with a baseline standard efficiency unit (note that if it is actually replaced by a new ENERGY STAR qualifying unit, the savings increment between baseline and ENERGY STAR will be recorded in the Efficient Products program).

Definition of Efficient Equipment

n/a. This measure relates to the retiring of an existing inefficient unit.

Definition of Baseline Equipment

The baseline condition is the existing inefficient room air conditioning unit.

Deemed Savings for this Measure

Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings per unit
103.6	0.906	n/a	n/a

Deemed Lifetime of Replaced (Existing) Equipment (for early replacement measures only) The assumed remaining useful life of the existing room air conditioning unit being retired is 3 Years.

Deemed Measure Cost

The actual implementation cost for recycling the existing unit plus the cost for the replacement of some of the units of \$129¹⁷³.

Deemed O&M Cost Adjustments

The net present value of the deferred replacement cost (the cost associated with the replacement of those units that would be replaced, with a standard unit that would have had to have occurred in 3 years, had the existing unit not been replaced) is calculated as \$89.36¹⁷⁴.

Coincidence Factor

The coincidence factor for this measure is assumed to be 0.3¹⁷⁵.

http://www.energystar.gov/ja/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls)
¹⁷⁵ Consistent with coincidence factors found in:

¹⁷³ This is calculated by multiplying the percentage assumed to be replaced – 76% (from Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report") by the assumed cost of a standard efficiency unit of \$170 (ENERGY STAR calculator; <u>http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls</u>). 0.76 * 170 = \$129.2.
¹⁷⁴ Determined by calculating the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of

^{1/*} Determined by calculating the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit costing \$170 multiplied by the 76%, the percentage of units being replaced (i.e. 0.76 * \$170 = \$129.2. Baseline cost from ENERGY STAR calculator;

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res% 20RAC.pdf)

REFERENCE SECTION

Calculation of Savings

Energy Savings

Δk

 $\Delta kWh = kWh_{exist} - (%replaced * kWh_{newtose})$

= ((Hours * BtuH * (1/EERexist))/1000) - (%replaced * ((Hours * BtuH * (1/EERnewbase))/1000)

Where:

Hours	= Full Load Hours of room air conditioning unit = 233 ¹⁷⁶
BtuH	= Average size of rebated unit = 8500 ¹⁷⁷
EERexist	= Efficiency of baseline unit = 7.7^{178}
%replaced	= Percentage of units dropped off that are replaced = $76\%^{179}$
EERbase	= Efficiency of baseline unit = 9.8^{180}

 $\Delta kWh = ((233 * 8500 * (1/7.7)) / 1000) - (0.76 * ((233 * 8500 * (1/9.8)) / 1000)$

 $= 103.6 \, kWh$

Summer Coincident Peak Demand Savings

 $\Delta kW = (kW_{exist} - (%replaced * kW_{pestage})) * CF$

= ((BtuH * (1/EERexist))/1000) - (%replaced * ((BtuH * (1/EERnewbase))/1000) * CF

Where:

CF

= Summer Peak Coincidence Factor for measure = 0.3¹⁸¹

http://www.energystar.gov/ia/business/bulk ourchasing/bpsavings_calc/Calc_CAC_xls) is 31%. This factor was applied to the FLH for Central Cooling provided for OH cities and averaged to come up with the assumption for FLH for Room AC.

¹⁷⁶ The average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008:

http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res% 20RAC.pdf) to FLH for Central Cooling for the same location (provided by AHRI:

 ¹⁷⁷ Based on maximum capacity average from the RLW Report; "Final Report Coincidence Factor Study Residential Room
 Air Conditioners, June 23, 2008."
 ¹⁷⁸ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the

 ¹⁷⁸ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."
 ¹⁷⁹ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the

¹⁹ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report." Report states that 63% were replaced with ENERGY STAR units and 13% with non-ENERGY STAR. However this formula assumes all are non-ENERGY STAR since the increment of savings between baseline units and ENERGY STAR would be recorded by the Efficient Products program when the new unit is purchased.

¹⁸⁰ Minimum Federal Standard for capacity range

¹⁸¹ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.sov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res% 20RAC.pdf)

$\Delta kW = ((8500 * (1/7.7)) / 1000) - (0.76 * ((8500 * (1/9.8)) / 1000) * 0.3$

= 0.906 kW

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation

The net present value of the deferred replacement cost (the cost associated with the replacement of those units that would be replaced, with a standard unit that would have had to have occurred in 3 years, had the existing unit not been replaced) is calculated as \$89.36¹⁸².

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

¹⁸² Determined by calculating the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit costing multiplied by the 76%, the percentage of units being replaced (i.e. 0.76 * \$170 = \$129.2. Baseline cost from ENERGY STAR calculator;

Smart Strip Power Strip (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to Controlled Power Strips (or Smart Strips) which are multi-plug power strips with the ability to automatically disconnect specific connected loads depending upon the power draw of a control load, also plugged into the strip. Power is disconnected from the switched (controlled) outlets when the control load power draw is reduced below a certain adjustable threshold, thus turning off the appliances plugged into the switched outlets. By disconnecting, the standby load of the controlled devices, the overall load of a centralized group of equipment (i.e. entertainment centers and home office) can be reduced. Uncontrolled outlets are also provided that are not affected by the control device and so are always providing power to any device plugged into it. This measure characterization provides savings for a 5-plug strip and a 7-plug strip.

Definition of Efficient Equipment

The efficient case is the use of a 5 or 7-plug smart strip.

Definition of Baseline Equipment

The assumed baseline is a standard power strip that does not control connected loads.

Deemed Savings for this Measure

	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel savings (MMBTU) per unit	Average Annual Water savings per unit
5- Plug	56.5	0.0063	n/a	n/a
7- Phug	102.8	0.012	n/a	n/a

Deemed Lifetime of Efficient Equipment

The assumed lifetime of the smart strip is 4 years¹⁸³.

Deemed Measure Cost

The incremental cost of a smart strip over a standard power strip with surge protection is assumed to be \$16 for a 5-plug and \$26 for a 7-plug¹⁸⁴.

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 0.8¹⁸⁵.

REFERENCE SECTION

Calculation of Savings

184 Price survey performed in NYSERDA Measure Characterization for Advanced Power Strips, p4

¹⁸³ David Rogers, Power Smart Engineering, October 2008; "Smart Strip electrical savings and usability", p22.

¹⁸⁵ Efficiency Vermont coincidence factor for smart strip measure --in the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

Energy Savings 186

∆kWh _{5-Phug}	$= 56.5 \mathrm{kWh}$
∆kWh7-Phug	= 102.8 kWh

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours	= Annual number of hours during which the controlled standby loads are turned off by the Smart Strip. = $7 \ 129^{187}$
CF	= Summer Peak Coincidence Factor for measure = 0.8 ¹⁸⁸
∆kW _{5-Plug}	= 56.5 / 7129 * 0.8
	= 0.0063 kW
∆kW _{7-Plug}	= 102.8 / 7129 * 0.8
	= 0.012 kW

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Strips ¹⁸⁸ Efficiency Vermont coincidence factor for smart strip measure --in the absence of empirical evaluation data, this was based on assumptions of the typical run pattern for televisions and computers in homes.

2010 Ohio Technical Reference Manual - August 6, 2010

Vermont Energy Investment Corporation

¹⁸⁶ Based on: NYSERDA Measure Characterization for Advanced Power Strips

¹⁸⁷ Average of hours for controlled TV and computer from; NYSERDA Measure Characterization for Advanced Power Strips

Central Air Conditioning (Early Replacement)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure describes the early removal of an existing inefficient Central Air Conditioning unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR qualifying unit. Savings are calculated between existing unit and efficient unit consumption during the remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a ducted split central air conditioning unit meeting the minimum ENERGY STAR efficiency level standards; 14.5 SEER and 12 EER.

Definition of Baseline Equipment

The baseline condition is the existing inefficient central air conditioning unit for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new replacement unit meeting the minimum federal efficiency standard (i.e. 13 SEER and 11 EER).

Deemed Calculation for this Measure

Annual kWh Savings for remaining life of existing unit (1st 5 years) = (FLHcool * BtuH * (1/SEERexist - 1/SEERee))/1000

Annual kWh Savings for remaining measure life (next 13 years) = (FLHcool * BtuH * (1/13 - 1/SEERee))/1000

Summer Coincident Peak kW Savings for remaining life of existing unit (1st 5 years) = (BtuH * (1/EERexist - 1/EERee))/1000 * 0.5

Summer Coincident Peak kW Savings for remaining measure life (next 13 years) = (BtuH * (1/11 - 1/EERee))/1000 * 0.5

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 18 years 189.

Deemed Lifetime of Replaced (Existing) Equipment (for early replacement measures only) The assumed remaining useful life of the existing central air conditioning unit being replaced is 5 years¹⁹⁰.

Deemed Measure Cost

The actual measure cost for removing the existing unit and installing the new should be used.

Deemed O&M Cost Adjustments

The net present value of the deferred replacement cost (the cost associated with the replacement of the existing unit with a standard unit that would have had to have occurred after 5 years, had the existing unit not been replaced) should be calculated as (Actual Cost of ENERGY STAR unit - incremental cost of ENERGY STAR unit over baseline unit from table below¹⁹¹) * 63%¹⁹².

190 VEIC estimate

¹⁸⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

¹⁹¹ DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

 ¹⁹² 63% is the ratio of the Net Present Value (with a 5% discount rate) of the annuity payments from years 6 to 18 of a deferred replacement of a standard efficiency unit costing \$2857, divided by the standard efficiency unit cost (\$2857). The 2010 Ohio Technical Reference Manual - August 6, 2010
 78
 Vermont Energy Investment Corporation

Efficiency Level	Cost per Ton
SEER 14	\$119
SEER 15	\$238
SEER 16	\$357
SEER 17	\$476
SEER 18	\$596
SEER 19	\$715
SEER 20	\$834
SEER 21	\$908

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 0.5^{193} .

REFERENCE SECTION

Calculation of Savings

Energy Savings

AkWh for remaining life of existing unit (1st 5 years) = (FLHcool * BtuH * (1/SEERexist - 1/SEERee))/1000

AkWh for remaining measure life (next 13 years) = (FLHcool * BtuH * (1/SEERbase - 1/SEERee))/1000

Where:

FLHcool

= Full load cooling hours Acres in Landson at

Dependent on location as below	 A set of the set of
Location	Run Hours ¹⁹⁴
Akron	476
Cincinnati	664
Cleveland	426
Columbus	552
Dayton	631
Mansfield	474
Toledo	433
Youngstown	369
	State of the second state of the

BtuH

= Size of equipment in Btuh (note 1 ton = 12,000Btuh) = Actual

calculation is done in this way to allow the use of the known ENERGY STAR replacement cost to calculate an appropriate baseline replacement cost. Standard unit cost from ENERGY STAR calculator;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls

193 Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32 ¹⁹⁴ Based on Full Load Hour assumptions taken from the ENERGY STAR calculator

(http://www.energystar.gov/ia/business/bulk purchasing/bpsavings calc/Calc CAC.xls) and reduced by 33% due to assumption that the average air conditioning is oversized by 50% (Neme, Proctor, Nadal, 1999; "National Energy Savings Potential From Addressing Residential HVAC Installation Problems"). Note this approach results in full load hour estimates within 10% of measured estimates from the Energy Center of Wisconsin, May 2008 study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research." ...

SEERexist	= SEER Efficiency of existing unit
	= Actual ¹⁹⁵
SEERce	= SEER Efficiency of ENERGY STAR unit
	= Actual installed
SEERbase	= SEER Efficiency of baseline unit
	= 13 ¹⁹⁶

For example, replacing a 3 ton SEER 10 unit with a new SEER 14.5 unit, in Dayton:

 ΔkWh for remaining life of existing unit (1st 5 years) = (631 * 36000 * (1/10 - 1/14.5)) / 1000

= 705 kWh

AkWh for remaining measure life (next 13 years) = (631 * 36000 * (1/13 - 1/14.5)) / 1000

 $= 180.8 \, kWh$

Summer Coincident Peak Demand Savings

 ΔkW for remaining life of existing unit (1st 5 years) = (BtuH * (1/EERexist - 1/EERee))/1000 * CF

AkW for remaining measure life (next 13 years) = (BtuH * (1/EERbase - 1/EERee))/1000 * CF

11/	hora
VV J	LUCIC.

EERexist	= EER Efficiency of existing unit
	= Calculate using Actual SEER
	$= (SEER * 0.9)^{197}$
EERbase	= EER Efficiency of baseline unit
	$= 11^{198}$
EERce	= EER Efficiency of ENERGY STAR unit
	= Actual installed
CF	= Summer Peak Coincidence Factor for measure
	$= 0.5^{199}$

For example, replacing a 3 ton SEER 10 unit (EER 9) with a new SEER 14.5, EER 12 unit, in Dayton:

 ΔkW for remaining life of existing unit (1st 5 years) =(36000 * (1/9 - 1/12)) / 1000 * 0.5

$= 0.5 \, kW$

¹⁹⁵ Use actual SEER rating where it is possible to measure or reasonably estimate. When unknown use SEER 10 (VEIC estimate of existing unit efficiency, based on minimum federal standard between the years of 1992 and 2006) ¹⁹⁶ Minimum Federal Standard

¹⁹⁷ If SEER is unknown, default EER would be (10 * 0.9) = 9.0. Calculation based on prior VEIC assessment of industry equipment efficiency ratings. ¹⁹⁸ Minimum Federal Standard

¹⁹⁹ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32

²⁰¹⁰ Ohio Technical Reference Manual - August 6, 2010 **Vermont Energy Investment Corporation**

$\Delta kW \text{ for remaining measure life (next 13 years)} = (36000 * (1/11 - 1/12)) / 1000 * 0.5$

$= 0.14 \, \text{kW}$

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

Ground Source Heat Pumps (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the installation of a new Ground Source Heat Pump system meeting ENERGY STAR efficiency standards presented below. This measure relates to the installation of a new system in an existing home (i.e. time of sale).

The Trequirements (Lat	ccuve December 1,	2003)
Product Type	EER	COP
Water-to-air		
Closed Loop	14.1	3.3
Open Loop	16.2	3.6
Water-to-Water	Jones Shares	
Closed Loop	15.1	3
Open Loop	19.1	3.4
DGX	15	3.5

Tier 11	Requirements	Effective December	1.2009)

Product Type	EER	COP
Water-to-air		
Closed Loop	16.1	3.5
Open Loop	18.2	3.8
Water-to-Water		1 1214 20
Closed Loop	15.1	3
Open Loop	19.1	3.4
DGX	16	3.6

Tier 2 Requirements (Effective January 1, 2011)

Tier 3 Req	uirements (Effective Jan	uary 1.	, 2012)
------------	-------------	---------------	---------	---------

Product Type	EER	COP
Water-to-air		and the second second
Closed Loop	17.1	3.6
Open Loop	21.1	4.1
Water-to-Water	and a children and	
Closed Loop	16.1	3.1
Open Loop	20.1	3.5
DGX	16	3.6

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment must be a Ground Source Heat Pump unit meeting the minimum ENERGY STAR efficiency level standards effective at the time of installation as detailed above.

Definition of Baseline Equipment

The baseline equipment is assumed to be an Air Source Heat Pump meeting the Federal Standard efficiency level; 13 SEER and 11 EER.

Deemed Calculation for this Measure

Annual kWh Savings	= (FLHcool * BtuH * (1/13 - (1/(EERee * 1.02))/ + (FLHheat *
	BtuH * (1/7.7 - (1/COPee * 3.412))/1000

Summer Coincident Peak kW Savings = BtuH * (1/11 - 1/((ERee * 1.02) * 0.37) + 6.43))/1000 * 0.5

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 18 years 200.

Deemed Measure Cost

The actual installed cost of the Ground Source Heat Pump should be used, minus the assumed installation cost of a 3 ton standard baseline Air Source Heat Pump of \$3,609²⁰¹.

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 0.5^{202} .

REFERENCE SECTION

Calculation of Savings

FLHcool

Energy Savings

 $\Delta kWH = (FLHcool * BtuH * (1/SEERbase - (1/(EERee * 1.02))/1000)$ + (FLHheat * BtuH * (1/HSPFbase - (1/COPee * 3.412))/1000

Where:

= Full load cooling hours

Dependent on location as below:

Location	Run Hours ²⁰³
Akron	476

²⁰⁰ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. http://www.cisavesenency.org/files/Measure%20Life%20Report%202007.pdf

(http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC_xis) and reduced by 33% due to assumption that the average air conditioning is oversized by 50% (Neme, Proctor, Nadal, 1999; "National Energy Savings Potential From Addressing Residential HVAC Installation Problems"). Note this approach results in full load hour estimates within 10% of measured estimates from the Wisconsin study.

Based on DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com). Material cost of 13 SEER AC is \$796 per ton, and labor cost of \$407 per ton. For a 3 ton unit this would be (796+407) *3 = \$3609. ²⁰² Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A

Compilation of Recent Field Research", p32 ²⁰³ Based on Full Load Hour assumptions taken from the ENERGY STAR calculator

	Cincinnati	664	
	Cleveland	426	
	Columbus	552	
	Dayton	631	
	Mansfield	474	
	Toledo	433	
	Youngstown	369	
BtuH SEERbase	= Size of equipment in Btuh (n = Actual installed = SEER Efficiency of baseline	ote 1 ton = 12,000Btuh) unit	
EERce	= 13 = EER Efficiency of efficient u = Actual installed	nit	
1.02	= Constant used to estimate the	SEER based on the efficie	ent unit's EFR ²⁰⁵
FL Hheat	= Full load heating hours		bis whit 5 Lille .
	Dependent on location as below		
	Location	Run Hours ²⁰⁶	
	Akron	1576	
	Cincinnati	1394	
	Cleveland	1567	
	Columbus	1272	
	Dayton	1438	
	Mansfield	1391	
	Toledo	1628	
	and the second		
HSPFbase	=Heating Season Performance =7.7 ²⁰⁷	Factor for baseline unit	
COPee	= Coefficient of Performance o = Actual Installed	f efficient unit	
3.413	= Constant to convert the COP HSPF).	of the unit to the Heating	Season Performance Factor

For example, a 3 ton unit with EER rating of 16 and COP of 3.5 in Dayton:

ΔkWH = (FLHcool * BtuH * (1/SEERbase – (1/(EERee * 1.02))/1000 + (FLHheat * BtuH * (1/HSPFbase – (1/COPee * 3.412))/1000

 $\Delta kWH = (631 * 36000 * (1/13 - 1/(16*1.02))) / 1000 + (1438 * 36000 * (1/7.7 - 1/(3.5*3.412)) / 1000$

= 2744 kWh

Summer Coincident Peak Demand Savings

 $\Delta kW = BtuH * (1/EERbase - 1/(((EERee * 1.02) * 0.37) + 6.43))/1000 * CF$

²⁰⁰ Note that EERs of GSHPs are measured differently than EERs of air source heat pumps (focusing on entering water temperatures rather than ambient air temperatures). The equivalent SEER of a GSHP can be estimated by multiplying EER by 1.02, based on VEIC extrapolation of manufacturer data.
 ²⁰⁶ Heating EFLH extracted from simulations conducted for Duke Energy, OH Joint Utility TRM, October 2009; "Technical

 ²⁰⁶ Heating EFLH extracted from simulations conducted for Duke Energy, OH Joint Utility TRM, October 2009; "Technical Reference Manual (TRM) for Ohio Senate Bill 221Energy Efficiency and Conservation Program and 09-512-GE-UNC"
 ²⁰⁷ Minimum Federal Standard; Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.

 ²⁰⁴ Minimum Federal Standard; Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.
 ²⁰⁵ Note that EERs of GSHPs are measured differently than EERs of air source heat pumps (focusing on entering water

Where:		
	EERbase	= EER Efficiency of baseline unit = 11^{208}
	EERee	= EER Efficiency of ENERGY STAR unit
		= Actual installed
	1.02	= Constant used to estimate the unit's equivalent air conditioning SEER based on the GSHP unit's EER ²⁰⁹ .
		This is then converted to the unit's equivalent air conditioning EER to enable comparisons to the baseline unit using the following algorithm: $EER = (SEER + 0.37) + 6.42^{210}$
	CE	= Summer Back Chineidance Easter for measure
	Cr	$= 0.5^{211}$

For example, a 3 ton unit with EER rating of 16:

 $\Delta kW = (36000 * (1/11 - 1/(((16 * 1.02) * 0.37) + 6.43)) / 1000 * 0.5$

 $= 0.2 \, \mathrm{kW}$

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

 Draft:
 Portfolio #

 Effective date:
 Date TRM will become effective

 End date:
 Date TRM will cease to be effective (or TBD)

²⁰⁸ Minimum Federal Standard; as above.

²⁰⁹ Note that EERs of GSHPs are measured differently than EERs of air source heat pumps (focusing on entering water temperatures rather than ambient air temperatures). The equivalent SEER of a GSHP can be estimated by multiplying EER by 1.02, based on VEIC extrapolation of manufacturer data.
²¹⁰ Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate

²¹⁰ Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software". This formulaic relationship was derived from 1861 unique combinations of data, from nearly 200,000 ARI-rated residential central air conditioners.

²¹¹ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32