II. Residential Market Sector

Residential ENERGY STAR Compact Fluorescent Lamp (CFL) (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Efficient Products, Lighting End Use)

Description

A low wattage ENERGY STAR qualified compact fluorescent screw-in bulb (CFL) is purchased through a retail outlet in place of an incandescent screw-in bulb. The incremental cost of the CFL compared to the incandescent light bulb is offset via either rebate coupons or via upstream markdowns. Assumptions are based on a time of sale purchase, not as a retrofit or direct install installation.

This characterization assumes that the CFL is installed in a residential location. Where the implementation strategy does not allow for the installation location to be known and absent verifiable evaluation data to support an appropriate residential v commercial split, it is recommended to use this residential characterization for all purchases to be appropriately conservative in savings assumptions.

Definition of Efficient Equipment

In order for this characterization to apply, the high-efficiency equipment must be a standard ENERGY STAR qualified compact fluorescent lamp.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be an incandescent light bulb.

Deemed Calculation for this Measure

Annual kWh Savings	= (CFL _{Watts} * 3.25) * 0.957
Summer Coincident Peak kW Savings	= (CFL _{Watts} * 3.25) * 0.000114
Annual MMBtu Increase	= (CFL _{Watts} * 3.25) * 0.001908

Note: the delta watts multiplier of 3.25 will be adjusted in accordance with table presented below:

CFL Wattage	Delta Watts Multiplier ²				
	2009 - 2011	2012	2013	2014 and Beyond	
15 or less	3.25	3.25	3.25	2.05	
16-20	3.25	3.25	2.00	2.00	
21W+	3.25	2.06	2.06	2.06	

Adjustment to annual savings within life of measure:

CFL Wattage	e Savings as	Savings as Percentage of Base Year Savings				
	2009 - 2011	2012	2013	2014 and Beyond		
15 or less	100%	100%	100%	63%		

² Calculated by finding the new delta watts after incandescent bulb wattage reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W in 2014).

CFL Wattage	Savings as Percentage of Base Year Savings			
	2009 - 2011	2012	2013	2014 and Beyond
16-20	100%	100%	62%	62%
21W+	100%	63%	63%	63%

Deemed Lifetime of Efficient Equipment

The expected lifetime of the measure is 9.18 years³.

Deemed Measure Cost

The incremental cost for this measure is assumed to be \$3⁴.

Deemed O&M Cost Adjustments

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below:

	NPV	of baseline	e Replacem	ent Costs
CFL wattage	2010	2011	2012	2013 on
21W+	\$4.48	\$4.28	\$4.28	\$4.28
16-20W	\$3.57	\$4.48	\$4.28	\$4.28
15W and less	\$3.81	\$3.57	\$4.48	\$4.28

Coincidence Factor

The summer peak coincidence factor for this measure is 0.11^5 .

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = ((\Delta Watts) / 1000) * ISR * HOURS * WHFe$

Where:

∆Watts

= Compact Fluorescent Watts * 3.25⁶

³ Calculated using average rated life of compact fluorescent bulbs of 8000 hours (8000/1011 = 8 years), based on average for Energy Star CFLs (http://www.energystar.gov/index.cfm?c=cfls.pr_crit_cfls), plus assuming 57% of the 20% not installed in the first year replace CFLs (based on 32 out of 56 respondents purchased as spares; Nexus Market Research, RLW Analytics, October 2004; "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs", table 6-4). Measure life is therefore calculated as 8 + (8 * 0.57 * (0.2/0.77)) = 9.18. Note, a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 humens per watt, in essence making the CFL baseline. Therefore after 2011 the measure life will have to be reduced each year to account for the number of years remaining to 2020.

⁴ Based on review of TRM assumptions from Vermont, New York, New Jersey and Connecticut.

⁵ Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009"

⁶ Average wattage of compact fluorescent from Duke Energy, June 2010; "Ohio Residential Smart Saver CFL Program" study was 15.47W, and the replacement incandescent bulb was 65.8W (note only data from responses who reported both wattage removed and wattage replaced are used). This is a ratio of 4.25 to 1, and so the delta watts is equal to the compact fluorescent bulb multiplied by 3.25.

Note: The multiplier should	ld be adjusted according to the table below to account for the change i	n
baseline stemming from the Energy	y Independence and Security Act of 2007 discussed below:	

CFL Wattage	Delta Watts Multiplier'				
	2009 - 2011	2012	2013	2014 and Beyond	
15 or less	3.25	3.25	3.25	2.05	
16-20	3.25	3.25	2.00	2.00	
21W+	3.25	2.06	2.06	2.06	

= In Service Rate or percentage of units rebated that get installed. $= 0.86^8$ = Average hours of use per year HOURS = 1040 (2.85 hrs per day)

WHFe

ISR

= Waste Heat Factor for Energy to account for cooling savings from efficient lighting. = 1.07

For example, a 20watt CFL bulb installed in 2010:

 $\Delta kWh = ((20 * 3.25)/1000) * 0.86 * 1040 * 1.07$

$$= 62.2 \,\mathrm{kWh}$$

Baseline Adjustment

Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs¹¹. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the first year annual savings for this measure must be reduced for 100W equivalent bulbs (21W+ CFLs) in 2012, for 75W equivalent bulbs (16-20W CFLs) in 2013 and for 60 and 40W equivalent bulbs (15W or less CFLs) in 2014. To account for this adjustment the delta watt

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005 tables/hc6airconditioningchar/pdf/tablehc12.6.pdf). 11 http://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf

⁷ Calculated by finding the new delta watts after incandescent bulb wattage reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W in 2014).

⁸ Starting with a first year ISR of 0.77 and a lifetime ISR of 0.97 from Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation. January 20, 2009", and assuming 43% of the remaining 20% not installed in the first year replace incandescents (24 out of 56 respondents not purchased as spares; Nexus Market Research, RLW Analytics, October 2004; "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs", table 6-4). ISR is therefore calculated as 0.77 + (0.43*0.2) = 0.86.

Based on weighted average daylength adjusted hours from Duke Energy, June 2010; "Ohio Residential Smart Saver

CFL Program" ¹⁰ Waste heat factor for energy to account for cooling savings from efficient lighting. The value is estimated at 1.07 (calculated as 1 + (0.64*(0.35 / 3.1)). Based on cooling loads decreasing by 35% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes), assuming typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP) and assuming 64% of homes have central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey;

multiplier is adjusted as shown above. In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. For example, for 100W equivalent bulbs (21W+ CFLs) installed in 2010, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life.

The appropriate adjustments as a percentage of the base year savings for each CFL range are provided below¹²:

CFL	Savings as Percentage of Base Year Savings				
Wattage	2009 - 2011	2012	2013	2014 and Beyond	
15 or less	100%	100%	100%	63%	
16-20	100%	100%	62%	62%	
21W+	100%	63%	63%	63%	

Summer Coincident Peak Demand Savings

$$\Delta kW = ((\Delta Watts) / 1000) * ISR * WHFd * CF$$

Where:

WHFd

CF

= Waste Heat Factor for Demand to account for cooling savings from efficient
lighting
$=1.21^{13}$
= Summer Peak Coincidence Factor for measure
= 0.11

For example, a 20watt CFL bulb installed in 2010:

 $\Delta kW = ((20*3.25) / 1000) * 0.86 * 1.21 * 0.11$ = 0.0074 kW

Fossil Fuel Impact Descriptions and Calculation

AMMBTUWH	= (((ΔWatts) /1000) * ISR * HOURS	* 0.003413 * HF) / nHea	t
----------	-----------------------------	-----------------	-------------------------	---

Where:

AMMBTUWH	= gross customer annual heating MMBTU fuel increased usage for the measure
	from the reduction in lighting heat.
0.003413	= conversion from kWh to MMBTU
HF	= Heating Factor or percentage of light savings that must be heated

¹² Calculated by finding the percentage reduction in change of delta watts, for example change in 100W bulb: (72-23.5)/(100-23.5) = 63.4%¹³ Waste heat factor for demand to account for cooling savings from efficient lighting. The value is estimated at 1.21

¹³ Waste heat factor for demand to account for cooling savings from efficient lighting. The value is estimated at 1.21 (calculated as 1 + (0.64 / 3.1)). Based on typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP), and 64% of homes having central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey).

ηHeat = 0.45¹⁴ = average heating system efficiency = 0.72¹⁵

For example, a 20watt CFL bulb installed in 2010:

 $\Delta MMBTU_{WH} = (((20 * 3.25)/1000) * 0.86 * 1040 * 0.003413 * 0.45) / 0.72$

= 0.12 MMBtu

Deemed O&M Cost Adjustment Calculation

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see <u>CFL baseline savings shift.xls</u>). The key assumptions used in this calculation are documented below:

	Standard Incandescent	Efficient Incandescent
Replacement Cost	\$0.50	\$2.00
Component Life (years) (based on lamp life / assumed annual run hours)	116	317

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below:

	NPV of baseline Replacement Costs					
CFL wattage	2010	2011	2012	2013 on		
21W+	\$4.48	\$4.28	\$4.28	\$4.28		
16-20W	\$3.57	\$4.48	\$4.28	\$4.28		
15W and less	\$3.81	\$3.57	\$4.48	\$4.28		

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Referenced Documents:

On the following page is an embedded Excel worksheet showing the calculation for the levelized annual replacement cost savings. Double click on the worksheet to open the file and review the calculations.

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc4spaceheating/pdf/tablehc12.4.pdf()

(0.4*0.92) + (0.6*0.8) * (1-0.15) = 0.72

 ¹⁴ I.e. heating loads increase by 45% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes),
 ¹⁵ This has been estimated assuming that natural gas central furnace heating is typical for Ohio residences (65% of East

¹⁵ This has been estimated assuming that natural gas central furnace heating is typical for Ohio residences (65% of East North Central census division has a Natural Gas Furnace (based on Energy Information Administration, 2005 Residential Energy Consumption Survey:

In 2000, 40% of furnaces purchased in Ohio were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process for residential heating equipment). Furnaces tend to last up to 20 years and so units purchased 10 years ago provide a reasonable proxy for the current mix of furnaces in the State. Assuming typical efficiencies for condensing and non condensing furnaces and duct losses, the average heating system efficiency is estimated as follows:

¹⁶ Assumes rated life of incandescent bulb of approximately 1000 hours.

¹⁷ VEIC best estimate of future technology.

Calculation of O&M Impact for Baseline

							Bulb Ass	mptions			
	Measure Life 9						Inc	Halogen			
Real Disc	count Rate (RDI 5.00%	Les March		Com	ponent 1 Li	fe (years)	211	3			
			c	omponent	1 Replacen	nent Cost	\$0.50	\$2.00			
2010		Year NPV	2010	2011	2012	2013	2014	2015	2016	2017	2018
21W+	Baseline Replacement Costs	\$5.21	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
16-20W	Baseline Replacement Costs	\$4.15	\$0.00	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
15W and less	Baseline Replacement Costs	\$4.43	\$0.00	\$0.50	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
2011		Year NPV	2011	2012	2013	2014	2015	2016	2017	2018	2019
21W+	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
16-20W	Baseline Replacement Costs	\$5.21	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
15W and less	Baseline Replacement Costs	\$4.15	\$0.00	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
2012		Year NPV	2012	2013	2014	2015	2016	2017	2018	2019	2020
21₩+	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
16-20W	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
15W and less	Baseline Replacement Costs	\$5.21	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00

States and The	NPV of baseline Replacement Costs						
CFL wattage	2010	2011	2012	2013 on			
21W+	\$5.21	\$4.97	\$4.97	\$4.97			
16-20W	\$4.15	\$5.21	\$4.97	\$4.97			
15W and less	\$4.43	\$4.15	\$5.21	\$4.97			

Multiply by 0.86 ISR

NPV of baseline Replacement Costs 2011 2012 2013 on CFL wattage 21W+ 2010 \$4.48 \$4.28 \$4.28 \$4.28 16-20W 15W and less \$3.57 \$4.48 \$4.28 \$4.28 \$3.81 \$3.57 \$4.48 \$4.28

2010 Ohio Technical Reference Manual - August 6, 2010 Vermont Energy Investment Corporation 16

KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 16 of 397

Residential Direct Install - ENERGY STAR Compact Fluorescent Lamp (CFL) (Early Replacement)

Official Measure Code (Measure Number: X-X-X-X (Existing Homes, Lighting End Use)

Description

A low wattage ENERGY STAR qualified compact fluorescent screw-in bulb is installed by an auditor, contractor or member of utility staff, in a residential location in place of an existing incandescent screw-in bulb through a Direct Install program. The characterization assumes protocols are implemented that guide installation of the bulb in to high use locations in the home. The CFL is provided at no cost to the end user.

Definition of Efficient Equipment

In order for this characterization to apply, the high-efficiency equipment must be an ENERGY STAR qualified compact fluorescent lamp.

Definition of Baseline Equipment

In order for this characterization to apply, the existing baseline equipment is assumed to be an incandescent light bulb.

Deemed Calculation for this Measure

= (CFL _{Watts} * 3.25) * 0.901
= (CFL _{Watto} * 3.25) * 0.000108
= (CFL _{Watts} * 3.25) * 0.0018

Note: the delta watts multiplier of 3.25 will be adjusted in accordance with table presented below:

CFL Wattage	Delta Watts Multiplier ¹⁸						
Self Contract	2009 - 2011	2012	2013	2014 and Beyond			
15 or less	3.25	3.25	3.25	2.05			
16-20	3.25	3.25	2.00	2.00			
21W+	3.25	2.06	2.06	2.06			

Adjustment to annual savings within life of measure:

CFL	Savings as Percentage of Base Year Savings						
Wattage	2009 - 2011	2012	2013	2014 and Beyond			
15 or less	100%	100%	100%	63%			
16-20	100%	100%	62%	62%			
21W+	100%	63%	63%	63%			

Deemed Lifetime of Efficient Equipment

The expected lifetime of the measure is 8 years¹⁹.

¹⁸ Calculated by finding the new delta watts after incandescent bulb wattage reduced (from 100W to 72W in 2012, 75W to 53W in 2013 and 60W to 43W in 2014). ¹⁹ Calculated using average rated life of compact fluorescent bulbs of 8000 hours (8000/1011 = 8 years), based on

average for Energy Star CFLs (http://www.energystar.gov/index.cfm?c=cfls.pr crit cfls).

Deemed Measure Cost

The full cost for this measure should be equal to the actual cost for implementation and installation (i.e. the cost of product and the labor for its installation).

Deemed O&M Cost Adjustments

The calculated levelized annual replacement cost savings for CFL type and installation year are presented below:

	NPV of baseline Replacement Costs					
CFL wattage	2010	2011	2012	2013 on		
21W+	\$3.12	\$4.03	\$4.03	\$4.03		
16-20W	\$3.36	\$3.12	\$4.03	\$4.03		
15W and less	\$3.59	\$3.36	\$3.12	\$4.03		

Coincidence Factor

The summer peak coincidence factor for this measure is 0.11²⁰.

REFERENCE SECTION

Calculation of Savings

Energy Savings

$\Delta kWh = ((\Delta Watts) / 1000) * ISR * HOURS * WHFe$

Where:

= Compact Fluorescent Watts * 3.25²¹ **∆Watts**

Note: The multiplier should be adjusted according to the table below to account for the change in baseline stemming from the Energy Independence and Security Act of 2007 discussed below:

CFL Wattage	Delta Watts Multiplier ²²						
	2009 - 2011	2012	2013	2014 and Beyond			
15 or less	3.25	3.25	3.25	2.05			
16-20	3.25	3.25	2.00	2.00			
21W+	3.25	2.06	2.06	2.06			

ISR

= In Service Rate or percentage of units rebated that get installed. $= 0.81^{23}$

Note, a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore after 2014 the measure life will have to be reduced each year to account for the number of years remaining to 2020. ²⁰ Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown

Impact Evaluation, January 20, 2009"

²¹ Average wattage of compact fluorescent from Duke Energy, June 2010; "Ohio Residential Smart Saver CFL Program" study was 15.47W, and the replacement incandescent bulb was 65.8W (note only data from responses who reported both wattage removed and wattage replaced are used). This is a ratio of 4.25 to 1, and so the delta watts is equal to the compact fluorescent bulb multiplied by 3.25. ²² Calculated by finding the new delta watts after incandescent bulb wattage reduced (from 100W to 72W in 2012,

75W to 53W in 2013 and 60W to 43W in 2014).

2010 Ohio Technical Reference Manual - August 6, 2010 **Vermont Energy Investment Corporation**

HOURS	= Average hours of use per year
	$= 1040 (2.85 \text{ hrs per day})^{24}$
WHFe	= Waste Heat Factor for Energy to account for cooling savings from efficient
	lighting.
	$= 1.07^{25}$

For example, a 20watt CFL bulb installed in 2010:

 $\Delta kWh = ((20 * 3.25) / 1000) * 0.81 * 1040 * 1.07$

 $= 58.6 \,\mathrm{kWh}$

Baseline Adjustment

Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs²⁶. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the first year annual savings for this measure must be reduced for 100W equivalent bulbs (21W+ CFLs) in 2012, for 75W equivalent bulbs (16-20W CFLs) in 2013 and for 60 and 40W equivalent bulbs (15W or less CFLs) in 2014. To account for this adjustment the delta watt multiplier is adjusted as shown above. In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. For example, for 100W equivalent bulbs (21W+ CFLs) installed in 2010, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life.

The appropriate adjustments as a percentage of the base year savings for each CFL range are provided below²⁷:

CFL	Savings as Percentage of Base Year Savings					
Wattage	2009 - 2011	2012	2013	2014 and Beyond		
15 or less	100%	100%	100%	63%		
16-20	100%	100%	62%	62%		

²³ Megdal & Associates, 2003; "2002/2003 Impact Evaluation of LIPA's Clean Energy Initiative REAP Program". Note this is not adjusted upwards since those people removing bulbs after being installed in Direct Install program are likely to do so because they dislike them, not to use as replacements. ²⁴ Based on weighted average daylength adjusted hours from Duke Energy, June 2010; "Ohio Residential Smart Saver

²⁵ Waste heat factor for energy to account for cooling savings from efficient lighting. The value is estimated at 1.07 (calculated as $1 + (0.64^{\circ}(0.35/3.1))$). Based on cooling loads decreasing by 35% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes), assuming typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP) and assuming 64% of homes have central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey;

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc6airconditioningchar/pdf/tablehc12.6.pdf). ²⁶ http://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf

²⁷ Calculated by finding the percentage reduction in change of delta watts, for example change in 100W bulb: (72-23.5)/(100-23.5) = 63.4%

²⁴ Based on weighted average daylength adjusted hours from Duke Energy, June 2010; "Ohio Residential Smart Saver CFL Program" ²⁵ Waste heat factor for energy to account for cooling provides for efficient Victorian Terrational States of the second states of

CFL	Savings as Percentage of Base Year Savings						
Wattage	2009 - 2011	2012	2013	2014 and Beyond			
21W+	100%	63%	63%	63%			

Summer Coincident Peak Demand Savings

$$\Delta kW = ((\Delta Watts) / 1000) * ISR * WHFd * CF$$

Where:

WHFd	= Waste Heat Factor for Demand to account for cooling savings from efficient
	lighting
	$= 1.21^{28}$
CF	= Summer Peak Coincidence Factor for measure
	= 0.11

For example, a 20watt CFL bulb, installed in 2010:

= ((20 * 3.25) / 1000) * 0.81 * 1.21 * 0.11 ΔkW

= 0.0070 kW

Fossil Fuel Impact Descriptions and Calculation

 $= (((\Delta Watts) / 1000) * ISR * HOURS * 0.003413 * HF) / \eta Heat$ AMMBTUWH

Where:

AMMBTUWH	= gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
0.003413	= conversion from kWh to MMBTU
HF	= Heating Factor or percentage of light savings that must be heated $= 0.45^{29}$
ηHeat	= average heating system efficiency = 0.72^{30}

For example, a 20watt CFL bulb, installed in 2010:

²⁸ Waste heat factor for demand to account for cooling savings from efficient lighting. The value is estimated at 1.21 (calculated as 1 + (0.64 / 3.1)). Based on typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP), and 64% of homes having central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey).

²⁹ I.e. heating loads increase by 45% of the lighting savings (average result from REMRate modeling of several

different configurations and OH locations of homes), ³⁰ This has been estimated assuming that natural gas central furnace heating is typical for Ohio residences (65% of East North Central census division has a Natural Gas Furnace (based on Energy Information Administration, 2005 **Residential Energy Consumption Survey:**

http://www.eia.doc.gov/emeu/recs/recs2005/hc2005_tables/hc4spaceheating/pdf/tablehc12.4.pdf()

In 2000, 40% of furnaces purchased in Ohio were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process). Assuming typical efficiencies for condensing and non condensing furnace and duct losses, the average heating system efficiency is estimated as follows: (0.4*0.92) + (0.6*0.8) * (1-0.15) = 0.72

$\Delta MMBTU_{WH} = (((20 * 3.25)/1000) * 0.81 * 1040 * 0.003413 * 0.45) / 0.72$

= 0.12 MMBtu

Deemed O&M Cost Adjustment Calculation

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see <u>CFL baseline savings shift.xls</u>). The key assumptions used in this calculation are documented below:

	Standard Incandescent	Efficient Incandescent
Replacement Cost	\$0.50	\$2.00
Component Life (years) (based on lamp life / assumed annual run hours)	131	332

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below:

	NPV of baseline Replacement Costs				
CFL wattage	2010	2011	2012	2013 on	
21W+	\$3.12	\$4.03	\$4.03	\$4.03	
16-20W	\$3.36	\$3.12	\$4.03	\$4.03	
15W and less	\$3.59	\$3.36	\$3.12	\$4.03	

Version Date & Revision History

Draft:	Portfolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

Referenced Documents:

On the following page is an embedded Excel worksheet showing the calculation for the levelized annual replacement cost savings. Double click on the worksheet to open the file and review the calculations.

 ³¹ Assumes rated life of incandescent bulb of approximately 1000 hours.
 ³² VEIC best estimate of future technology.

Calculatio	h of O&M	Impact [®]	for Baseline
------------	----------	---------------------	--------------

						[Buib Ass	umptions		
	Measure Life 8						Inc	Halogen		
Real D	biscount Rate (RD 5.00%			Com	ponent 1 Li	fe (years)		3		
			C	omponent	1 Replacer	nent Cost	\$0.50	\$2.00		
2010		Year NPV	2010	2011	2012	2013	2014	2015	2016	2017
21 W+	Baseline Replacement Costs	\$3.88	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
16-20W	Baseline Replacement Costs	\$4.15	\$0.00	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
15W and less	Baseline Replacement Costs	\$4.43	\$0.00	\$0.50	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00
2011		Year NPV	2011	2012	2013	2014	2015	2016	2017	2018
21W+	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
16-20W	Baseline Replacement Costs	\$3.86	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00
15W and less	Baseline Replacement Costs	\$4.15	\$0.00	\$0.50	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00
2012		Year	2012	2013	2014	2015	2016	2017	2018	2019
21W+	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
16-20W	Baseline Replacement Costs	\$4.97	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00	\$2.00
15W and less	Baseline Replacement Costs	\$3.88	\$0.00	\$0.50	\$2.00	\$0.00	\$0.00	\$2.00	\$0.00	\$0.00

	NPV of baseline Replacement Costs				
CFL wattage	2010	2011	2012	2013 on	
21W+	\$3.86	\$4.97	\$4.97	\$4.97	
16-20W	\$4.15	\$3.86	\$4.97	\$4.97	
15W and less	\$4.43	\$4.15	\$3.86	\$4.97	

Multiply by 0.81 ISR

	NPV.of/baseline Replacement Costs				
CFL wattage	2010	2011	2012	2013 on	
21W+	\$3.12	\$4.03	\$4.03	\$4.03	
16-20W	\$3.36	\$3.12	\$4.03	\$4.03	
15W and less	\$3.59	\$3.36	\$3.12	\$4.03	

2010 Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

Refrigerator and/or Freezer Retirement (Early Retirement)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure involves the removal of an existing inefficient refrigerator or freezer from service, prior to its natural end of life (early retirement)³³. The program should target units with an age greater than 10 years, though it is expected that the average age will be greater than 20 years based on other similar program performance. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Definition of Efficient Equipment

n/a

Definition of Baseline Equipment

In order for this characterization to apply, the existing inefficient unit must be in working order and be removed from service.

Deemed Savings for this Measure

	Average Annual KWH Savings per unit	Average Summer Coincident Peak kW Savings per unit	Average Annual Fossil Fuel heating fuel increased usage (MMBTU) per unit	Average Annual Water savings per unit
Refrigerator	1376	0.22	n/a	n/a
Freezer	1244	0.20	n/a	n/a

Deemed Measure Life

The remaining useful life of the retired unit is assumed to be 8 Years ³⁴.

Deemed Measure Cost

The incremental cost for this measure will be the actual cost associated with the removal and recyling of the retired unit.

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

A coincidence factor is not used to calculate peak demand savings for this measure. See discussion below.

REFERENCE SECTION

Calculation of Savings

³³ This measure assumes a mix of primary and secondary units will be replaced (and the savings are reduced accordingly). By definition, the refrigerator in a household's kitchen that satisfies the majority of the household's demand for refrigeration is the primary refrigerator. One or more additional refrigerators in the household that satisfy supplemental needs for refrigeration are referred to as secondary refrigerators. ³⁴ KEMA "Residential refrigerator recycling ninth year retention study", 2004

∆kWh = UEC_{retired} * ISAF Where: UECretired = Average in situ Unit Energy Consumption of retired unit, adjusted for part use = 1,619 kWh 35 Refrigerator = 1,464 kWh³⁶ Freezer ISAF = In Situ Adjustment Factor $= 0.85^{37}$ Refrigerator AkWh = 1619 * 0.85 $= 1376 \, kWh$ = 1464 * 0.85 Freezer AkWh $= 1244 \, kWh$ **Summer Coincident Peak Demand Savings**

> $= (\Delta kWh/8760) * TAF * LSAF$ ∆kW

Where:

Energy Savings

TAF	= Temperature Adjustment Factor				
	$= 1.30^{-38}$				
LSAF	= Load Shape Adjustment Factor = 1.074 ³⁹				
	Refrigerator ∆kW	= 1376/8760 * 1.30 * 1.074			
		= 0.22 kW			
	Freezer ∆kW	= 1244/8760 * 1.30 * 1.074			
		= 0.20 kW			

³⁵ Based on regression-based savings estimates and incorporating the part-use factors, from Navigant Consulting, "AEP Ohio Energy Efficiency/Demand Response Plan Year 1 (1/1/2009-12/31/2009) Program Year Evaluation Report: Appliance Recycling Program", March 9, 2010. ³⁶ Ibid.

³⁷ A recent California study suggests that in situ energy consumption of refrigerators is lower than the DOE test procedure would suggest (The Cadmus Group et al., "Residential Retrofit High Impact Measure Evaluation Report", prepared for the California Public Utilities Commission, February 8, 2010). The magnitude of the difference estimated as 6% lower for one California utility, 11% lower for a second, and 16% lower for a third - was a function of whether the recycled appliance was a primary or secondary unit, the size of the household and climate (warmer climates show a small difference between DOE test procedure estimated consumption and actual consumption; cooler climates had lower in situ consumption levels). Ideally, such an adjustment for Ohio should be computed using Ohio program participant data. However, such a calculation has not yet been performed for Ohio. In the absence of such a calculation, a 15% downward adjustment, which is near the high end of the range found in California, is assumed to be reasonable for Ohio given its cooler climate (relative to California). ³⁸ Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential

Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47). It assumes 64% of Ohio homes have central air conditioning.

³⁹ Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 48, using the average Existing Units Summer Profile for hours ending 16 through 18)

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

2010 Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

Residential HVAC Maintenance/Tune Up (Retrofit)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure involves the measurement of refrigerant charge levels and airflow over the central air conditioning or heat pump unit coil, correction of any problems found and post-treatment re-measurement. Measurements must be performed with standard industry tools and the results tracked by the efficiency program.

Savings from this measure are developed using a reputable Wisconsin study. It is recommended that future evaluation be conducted in Ohio to generate a more locally appropriate characterization.

Definition of Efficient Equipment

n/a

Definition of Baseline Equipment

This measure assumes that the existing unit being maintained is either a residential central air conditioning unit or an air source heat pump.

Deemed Calculation for this Measure

Annual kWh Savings (central air conditioning)

= FLHcool * BtuH * $(1/SEER_{CAC})$ * 5 * 10⁻⁵

Annual kWh Savings (air source heat pump)

= (FLHcool * BtuH * (1/SEER_{ASHP}) * $5 * 10^{-5}$) + (FLHheat * BtuH * (1/HSPF_{ASHP})) * $5 * 10^{-5}$)

= BtuH * (1/EER)) * 1.0 * 10⁻⁵

Summer Coincident Peak kW Savings

Deemed Lifetime of Efficient Equipment The measure life is assumed to be 5 years⁴⁰.

Deemed Measure Cost

If the implementation mechanism involves delivering and paying for the tune up service, the actual cost should be used. If however the customer is provided a rebate and the program relies on private contractors performing the work, the measure cost should be assumed to be \$175⁴¹.

Deemed O&M Cost Adjustments n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 0.5^{42} .

⁴¹ Based on personal communication with HVAC efficiency program consultant Buck Taylor or Roltay Inc., 6/21/10,

who estimated the cost of tune up at \$125 to \$225, depending on the market and the implementation details. ⁴² Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32

⁴⁰ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

REFERENCE SECTION

Calculation of Savings

Energy Savings

AkWhCentral AC	= (FLHcool * BtuH * (1/SEER _{CAC}))/1000 * MFe
∆kWhAir Source Heat Pump	= ((FLHcool * BtuH * (1/SEER _{ASHP}))/1000 * MFe) + (FLHheat * BtuH * (1/HSPF _{ASHP}))/1000 * MFe)

Where:

FLHcool

= Full load cooling hours

Location	Run Hours ⁴
Akron	476
Cincinnati	664
Cleveland	426
Columbus	552
Dayton	631
Mansfield	474
Toledo	433
Youngstown	369

BtuH	= Size of equipment in Btuh (n = Actual	ote 1 ton = $12,000$ Btuh)	
SEERCAC	= SEER Efficiency of existing maintenence = Actual ⁴⁴	central air conditioning u	nit receiving
MFe	= Maintenance energy savings = 0.05 ⁴⁵	factor	
SEERASHP	= SEER Efficiency of existing = Actual ⁴⁶	air source heat pump unit	receiving maintenence
FLHheat	= Full load heating hours Dependent on location as below	v:	
	Location	Run Hours47	
	Akron	1576	
	Cincinnati	1394	
	Cleveland	1567	

1272

1438

Columbus

Dayton

512-GE-UNC"

⁴³ Based on Full Load Hour assumptions taken from the ENERGY STAR calculator

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) and reduced by 33% due to assumption that the average air conditioning is oversized by 50% (Neme, Proctor, Nadal, 1999; "National Energy Savings Potential From Addressing Residential HVAC Installation Problems"). Note this approach results in full load hour estimates within 10% of measured estimates from the Energy Center of Wisconsin, May 2008 study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research."

⁴⁴ Use actual SEER rating where it is possible to measure or reasonably estimate. When unknown use SEER 10 (VEIC estimate of existing unit efficiency, based on minimum federal standard between the years of 1992 and 2006)
⁴⁵ Energy Center of Wisconsin, May 2008; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field

 ⁴⁵ Energy Center of Wisconsin, May 2008; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research."
 ⁴⁶ Use actual SEER rating where it is possible to measure or reasonably estimate. When unknown use SEER 10 (VEIC

⁴⁰ Use actual SEER rating where it is possible to measure or reasonably estimate. When unknown use SEER 10 (VEIC estimate of existing unit efficiency, based on minimum federal standard between the years of 1992 and 2006)
⁴⁷ Heating EFLH extracted from simulations conducted for Duke Energy, OH Joint Utility TRM, October 2009;

[&]quot;Heaning EPLH extracted from simulations conducted for Duke Energy, OH Joint Unity TRM, October 2009; "Technical Reference Manual (TRM) for Ohio Senate Bill 221Energy Efficiency and Conservation Program and 09-

Location	Run Hours ⁴⁷
Mansfield	1391
Toledo	1628

HSPFbase

= Heating Season Performance Factor of existing air source heat pump unit receiving maintenence = Actual⁴⁸

For example, maintenance of a 3-ton, SEER 10 air conditioning unit in Cincinnati:

=(657 * 36000 * (1/10))/1000 * 0.05 AkWhcac = 118.3 kWh

For example, maintenance of a 3-ton, SEER 10, HSPF 6.8 air source heat pump unit in Cincinnati:

∆kWh _{ASHP}	= ((657 * 36000 * (1/10))/1000 * (1/6.8))/1000 * 0.05)	* 0.05) + (1394 * 36000 *
	= 487.3 kWh	

Summer Coincident Peak Demand Savings

ΔkW	= BtuH * (1/EER)/1000	* MFd * CF
-----	------------	-------------	------------

Where:

EER	= EER Efficiency of existing unit receiving maintenence
	= Calculate using Actual SEER
	$=(SEER * 0.9)^{49}$
MFd	= Maintenance demand savings factor = 0.02 ⁵⁰
CF	= Summer Peak Coincidence Factor for measure = 0.5 ⁵¹

For example, maintenance of 3-ton, SEER 10 (equals EER 9.0) unit:

ΔkW = 36000 * (1/(9.0)/1000 * 0.02 * 0.5

 $= 0.04 \, kW$

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation Conservatively not included

⁴⁸ Use actual HSPF rating where it is possible to measure or reasonably estimate. When unknown use HSPF 6.8 (Minimum Federal Standard between 1992 and 2006). ⁴⁹ If SEER is unknown, default EER would be (10 * 0.9) = 9.0. Calculation based on prior VEIC assessment of industry

equipment efficiency ratings. ⁵⁰ Based on June 2010 personal conversation with Scott Pigg, author of Energy Center of Wisconsin, May 2008;

[&]quot;Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research" suggesting the average WI unit system draw of 2.8kW under peak conditions, and average peak savings of 50W. ⁵¹ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A

Compilation of Recent Field Research", p32

Version Date & Revision HistoryDraft:Portfolio #Effective date:Date TRM will beck

End date:

Date TRM will become effective Date TRM will cease to be effective (or TBD)

2010 Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

Central Air Conditioning (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the installation of a new Central Air Conditioning ducted split system meeting ENERGY STAR efficiency standards presented below. This measure could relate to the replacing of an existing unit at the end of its useful life, or the installation of a new system in an existing home (i.e. time of sale).

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be a ducted split central air conditioning unit meeting the minimum ENERGY STAR efficiency level standards; 14.5 SEER and 12 EER.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be a ducted split central air conditioning unit meeting the Federal Standard efficiency level; 13 SEER and 11 EER.

Deemed Calculation for this Measure

Annual kWh Savings =

= (Hours * BtuH * (1/13 - 1/SEERce))/1000

Summer Coincident Peak kW Savings

= (BtuH * (1/11 - 1/EERee))/1000 * 0.5

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 18 years ⁵².

Deemed Measure Cost

The incremental capital cost for this measure is provided below⁵³.

Efficiency Level	Cost per Ton
SEER 14	\$119
SEER 15	\$238
SEER 16	\$357
SEER 17	\$476
SEER 18	\$596
SEER 19	\$715
SEER 20	\$834
SEER 21	\$908

Deemed O&M Cost Adjustments n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 0.5⁵⁴.

⁵² Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁵³ DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com)

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWH = (FLHcool * BtuH * (1/SEERbase - 1/SEERee))/1000$

Where:

FLHcool

= Full	lload	COO	ing	hours
	-		B	

Dependent on location as below:

Location	Run Hours ³⁵
Akron	476
Cincinnati	664
Cleveland	426
Columbus	552
Dayton	631
Mansfield	474
Toledo	433
Youngstown	369
 Size of equipment in Btuh (not Actual installed SEER Efficiency of baseline was a selected of the selec	ote 1 ton = 12,000Btuh) unit Y STAR unit
	Location Akron Cincinnati Cleveland Columbus Dayton Mansfield Toledo Youngstown = Size of equipment in Btuh (no = Actual installed = SEER Efficiency of baseline to = 13 = SEER Efficiency of ENERGY = Actual installed

For example, a 3 ton unit with SEER rating of 14.5, in Dayton:

 $\Delta kWH = (631 * 36000 * (1/13 - 1/14.5)) / 1000$

 $= 180.8 \, kWh$

Summer Coincident Peak Demand Savings

 $\Delta kW = (BtuH * (1/EERbase - 1/EERee))/1000 * CF$

Where:

EERbase	= EER Efficiency of baseline unit = 11^{57}
EERee	= EER Efficiency of ENERGY STAR unit
	= Actual installed
CF	= Summer Peak Coincidence Factor for measure

⁵⁴ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32 55 Based on Full Load Hour assumptions taken from the ENERGY STAR calculator

(http://www.energystar.gov/ia/business/buik purchasing/bpsavings calc/Calc CAC.xls) and reduced by 33% due to assumption that the average air conditioning is oversized by 50% (Neme, Proctor, Nadal, 1999; "National Energy Savings Potential From Addressing Residential HVAC Installation Problems"). Note this approach results in full load hour estimates within 10% of measured estimates from the Energy Center of Wisconsin, May 2008 study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research." ...

⁵⁶ Minimum Federal Standard

⁵⁷ Minimum Federal Standard

2010 Ohio Technical Reference Manual - August 6, 2010 **Vermont Energy Investment Corporation**

KyPSC Case No. 2014-00280 STAFF-DR-01-028 Attachment Page 32 of 397

= 0.5 58

For example, a 3 ton unit with EER rating of 12:

$$\Delta kW = (36000 * (1/11 - 1/12)) / 1000 * 0.5$$

= 0.14 kW

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

Draft:Portfolio #Effective date:Date TRM will become effectiveEnd date:Date TRM will cease to be effective (or TBD)

⁵⁸ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32

Air Source Heat Pump (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure relates to the installation of a new Air Source Heat Pump system meeting ENERGY STAR efficiency standards presented below. This measure could relate to the replacing of an existing unit at the end of its useful life, or the installation of a new system in an existing home (i.e. time of sale).

Definition of Efficient Equipment

In order for this characterization to apply, the efficient equipment is assumed to be an Air Source Heat Pump unit meeting the minimum ENERGY STAR efficiency level standards; 14.5 SEER, 12 EER and 8.2 HSPF.

Definition of Baseline Equipment

In order for this characterization to apply, the baseline equipment is assumed to be an Air Source Heat Pump unit meeting the Federal Standard efficiency level; 13 SEER and 11 EER.

Deemed Calculation for this Measure

Annual kWh Savings	= (FLHcool * BtuH * (1/13 - 1/SEERee))/1000
	+ (FLHheat * BtuH * (1/7.7 - 1/HSPFee))/1000

Summer Coincident Peak kW Savings

= (BtuH * (1/11 - 1/EERee))/1000 * 0.5

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 18 years ⁵⁹.

Deemed Measure Cost

The incremental capital cost for this measure is provided below⁶⁰.

Efficiency Level	Cost per Ton
SEER 14	\$137
SEER 15	\$274
SEER 16	\$411
SEER 17	\$548
SEER 18	\$685

Deemed O&M Cost Adjustments

n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 0.5⁶¹.

⁵⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁶⁰ DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com)

⁶¹ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32

REFERENCE SECTION

Calculation of Savings

Energy Savings

ΔkWH = (FLHcool * BtuH * (1/SEERbase - 1/SEERee))/1000 + (FLHheat * BtuH * (1/HSPFbase - 1/HSPFee))/1000

Where:

FLHcool

= Full	load	cool	ing	hours

Dependent on location as below:

	Location	Run Hours ⁶²
	Akron	476
	Cincinnati	664
	Cleveland	426
	Columbus	552
	Dayton	631
	Mansfield	474
	Toledo	433
	Youngstown	369
FLHheat	= Actual installed = Full load heating hours Dependent on location as below:	
	Location	Run Hours ⁶⁴
	Akron	1576
	Cincinnati	1394
	Cleveland	1567
	Columbus	1272
	Dayton	1438
	Mansfield	1391
	Toledo	1628

HSPFbase

= Heating Season Performance Factor for baseline unit $= 7.7^{65}$

⁶² Based on Full Load Hour assumptions taken from the ENERGY STAR calculator

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) and reduced by 33% due to assumption that the average air conditioning is oversized by 50% (Neme, Proctor, Nadal, 1999; "National Energy Savings Potential From Addressing Residential HVAC Installation Problems"). Note this approach results in full load hour estimates within 10% of measured estimates from the Energy Center of Wisconsin, May 2008 study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research.".

⁶³ Minimum Federal Standard; Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.

⁶⁴ Heating EFLH extracted from simulations conducted for Duke Energy, OH Joint Utility TRM, October 2009;

[&]quot;Technical Reference Manual (TRM) for Ohio Senate Bill 221Energy Efficiency and Conservation Program and 09-512-GE-UNC"

⁶⁵ Minimum Federal Standard; Federal Register, Vol. 66, No. 14, Monday, January 22, 2001/Rules and Regulations, p. 7170-7200.

HSPFee = Heating Season Performance Factor for efficient unit = Actual Installed

For example, a 3 ton unit with SEER rating of 14.5 and HSPF of 8.2 in Dayton:

 $\Delta kWH = (631 * 36000 * (1/13 - 1/14.5)) / 1000 + (1438 * 36000 * (1/7.7 - 1/8.2)) / 1000$

= 590.7 kWh

Summer Coincident Peak Demand Savings

$$\Delta kW = BtuH * (1/EERbase - 1/EERee))/1000 * CF$$

Where:

EERbase	= EER Efficiency of baseline unit = 11^{66}
EERee	= EER Efficiency of ENERGY STAR unit
	= Actual installed
CF	= Summer Peak Coincidence Factor for measure
	= 0.5 **

For example, a 3 ton unit with EER rating of 12:

$$\Delta kW = (36000 * (1/11 - 1/12)) / 1000 * 0.5$$

=0.14 kW

Fossil Fuel Impact Descriptions and Calculation n/a

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

 Version Date & Revision History

 Draft:
 Portfolio #

 Effective date:
 Date TRM will become effective

 End date:
 Date TRM will cease to be effective (or TBD)

⁶⁶ Minimum Federal Standard

⁶⁷ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32

Attic/Roof/Ceiling Insulation (Retrofit)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

This measure characterization is for the installation of new additional insulation in the attic/roof/ceiling of a residential building. The measure assumes that an auditor, contractor or utility staff member is on location, and will measure and record the existing and new insulation depth and type (to calculate R-values), the surface area of insulation added, and the efficiency of the heating system used in the home.

Definition of Efficient Equipment

The new insulation should meet any qualification criteria required for participation in the program. The new insulation R-value should include the total attic floor /roof assembly and include any existing insulation that is left in situ.

Definition of Baseline Equipment

The existing insulation R-value should include the total attic floor / roof assembly. An R-value of 5 should be assumed for the roof assembly plus the R-value of any existing insulation⁶⁸.

Deemed Calculation for this Measure

Air conditioning Savings Annual kWh Savings	= ((1/Rexist – 1/Rnew) * CDH * 0.75 * Area) / 1000 / ηCool

Summer Coincident Peak kW Savings

 $= \Delta kWh / FLHcool * 0.5$

Space Heating Savings:

MMBTU Savings (fossil fuel heating) = ((1/Rexist - 1/Rnew) * HDD * 24 * Area) / 1,000,000 / nHeat

Annual kWh Savings (electric heating) = (((1/Rexist - 1/Rnew) * HDD * 24 * Area) / 1,000,000 / nHeat) * 293.1

Deemed Lifetime of Efficient Equipment The measure life is assumed to be 25 years⁶⁹.

Deemed Measure Cost The actual insulation installation measure cost should be used.

Deemed O&M Cost Adjustments n/a

Coincidence Factor

The summer peak coincidence factor for this measure is assumed to be 0.5^{70} .

⁶⁸ The R-5 assumption for roof assembly is based on J.Neymark & Associates and National Renewable Energy Laboratory, June 2009; "BESTEST-EX Interim Test Procedure" p27. The attic floor and roof should be modeled as a system including solar gains and attic ventilation, and R-5 is the standard assumption for the thermal resistance of the whole attic/roof system.

⁶⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁷⁰ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32

	REFERENCE SECTION					
Calculation of Savin	ngs					
Energy Savings						
ΔkWh	= ((1/Rexist - 1/Rnew) * CDH	[* DUA * Area) / 1000 / ηCool				
Where:						
Rexist	= existing effective whole-asso	embly thermal resistance value or R-valu	ie ⁷¹			
Rnew	= new total effective whole-as	sembly thermal resistance value or R-val	lue7			
CDH	= actual recorded					
CDH	Dependent on location:					
	Location	Cooling Degree Hours				
	a start and a start and a start	(75°F set point)				
	Akron	3,986				
	Cincinnati	7,711				
	Cleveland	5,817				
	Columbus	4,367				
	Dayton	5,934				
	Toledo	4,401				
	Youngtown	3,689				
Area	 always operate their air conditing reater than 75°F = 0.75⁷⁴ = Square footage of insulated at a school recorded = Efficiency of Air Conditionity 	ioning system when the outside temperat	ure			
1/CODI	= actual recorded	nk ednihmens				

For example, insulating 1000 square feet of an attic floor from R-5 to R-30, in a Cincinnati home with AC SEER 10:

ΔkWh	= ((1/Rexist – 1/Rnew) * CDH * DUA * Area) / 1000 / η Cool
	= ((1/5 - 1/30) * 7711 * 0.75 * 1000) / 1000 / 10
	= 96 kWh

Summer Coincident Peak Demand Savings

 $\Delta kW = \Delta kWh / FLHcool *CF$

Where:

FLHcool = Full load cooling hours

2010 Ohio Technical Reference Manual – August 6, 2010 Vermont Energy Investment Corporation

⁷¹ If uninsulated assembly assume R-5.

⁷² Include the R-value for the assembly and any existing insulation remaining.

⁷³ Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used) each hour of the year. Hourly temperature data obtained from TMY3 data (http://redc.nrel.gov/solar/)

⁷⁴ Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31

Dependent on location as below:

Location	Run Hours	
Akron	476	
Cincinnati	664	
Cleveland	426	
Columbus	552	
Dayton	631	
Mansfield	474	
Toledo	433	
Youngstown	369	

CF

= Summer Peak Coincidence Factor for measure = 0.5^{76}

For example, insulating 1000 square feet of an attic floor from R-5 to R-30, in a Cincinnati home with AC SEER 10:

$$\Delta kW = \Delta kWh / FLHcool *CF$$

= 129 / 657 * 0.5

= 0.1 kW

Space Heating Savings Calculation

AMMBTU

= ((1/Rexist - 1/Rnew) * HDD * 24 * Area) / 1,000,000 / nHeat

Where:

IND	Treating Depres Days (00	othe competition of tot location		
	Location	Heating Degree Days (60°F base temperature)		
	Akron	4,848		
	Cincinnati	3,853		
	Cleveland	4,626		
	Columbus	4,100		
	Dayton	4,430		
	Toledo	4,482		
	Youngtown	4,887		

HDD = Heating Degree Days (60° base temperature) for location⁷⁷

nHeat = Average Net Heating System Efficiency (Equipment Efficiency * Distribution Efficiency)⁷⁸

⁷⁸ The System Efficiency can be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table

⁷⁵ Based on Full Load Hour assumptions taken from the ENERGY STAR calculator

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) and reduced by 33% due to assumption that the average air conditioning is oversized by 50% (Neme, Proctor, Nadal, 1999; "National Energy Savings Potential From Addressing Residential HVAC Installation Problems"). Note this approach results in full load hour estimates within 10% of measured estimates from the Energy Center of Wisconsin, May 2008 study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research."

 ⁷⁶Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p32
 ⁷⁷ The 10 year average annual heating degree day value, using a balance point for heating equipment use of 60 degrees

⁷⁷ The 10 year average annual heating degree day value, using a balance point for heating equipment use of 60 degrees was calculated for each location based on data obtained from http://www.enar.udayton.edu/weather/. The 60 degrees balance point is used based on personal communication with Michael Blasnik, consultant to Columbia gas in May 2010, and derived from a billing analysis of approximately 600,000 Columbia Gas residential single family customers in Ohio.

= actual recorded

Note for homes with electric heat (resistance or heat pump), follow the MMBTU formula above and convert to kWh by multiplying by 293.1. For heat pumps the equipment efficiency used in the above algorithm should be the Coefficient Of Performance or COP (i.e., divide HSPF by 3.412; e.g., HSPF 7.7 is COP of 2.26).

For example, insulating 1000 square feet of an attic floor from R-5 to R-30, in a Cincinnati home with a gas heating system with efficiency of 70%:

ΔMMBTU = ((1/Rexist - 1/Rnew) * HDD * 24 * Area) / 1,000,000 / ηHeat

= ((1/5 - 1/30) * 3,853 * 24 * 1,000) / 1,000,000 / 0.7

= 22 MMBtu

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation n/a

Version Date & Revision History

 Draft:
 Portfolio #

 Effective date:
 Date TRM will become effective

 End date:
 Date TRM will cease to be effective (or TBD)

such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

If there are more than one heating systems, the weighted (by consumption) average efficiency should be used. If the heating system or distribution is being upgraded within a package of measures together with the insulation upgrade, the new average heating system efficiency should be used.

ENERGY STAR Torchiere (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Program name, End Use)

Description

A high efficiency ENERGY STAR fluorescent torchiere is purchased in place of a baseline mix of halogen and incandescent torchieres and installed in a residential setting. Assumptions are based on a time of sale purchase, not as a retrofit or direct install installation.

Definition of Efficient Equipment

To qualify for this measure the fluorescent torchiere must meet ENERGY STAR efficiency standards.

Definition of Baseline Equipment

The baseline is based on a mix of halogen and incandescent torchieres.

Deemed Savings for this Measure

	Average Annual	Average Summer	Average Annual Fossil Fuel	Average Annual	
	KWH Savings per	Coincident Peak kW	heating fuel savings	Water savings per	
	unit	Savings per unit	(MMBTU) per unit	unit	
Residential	128.9	0.015	- 0.257	n/a	

Deemed Lifetime of Efficient Equipment

The lifetime of the measure is assumed to be 8 years⁷⁹.

Deemed Measure Cost

The incremental cost for this measure is assumed to be \$5.00⁸⁰.

Deemed O&M Cost Adjustments

The annual O&M Cost Adjustment savings is calculated as \$2.52.

Coincidence Factor

The summer peak coincidence factor for this measure is 0.11⁸¹.

REFERENCE SECTION

Calculation of Savings

Energy Savings

$\Delta kWH = ((\Delta Watts_{Tarch} / 1000) * ISR * HOURS * WHFe$

Where:

∆WattsTorch

= Average delta watts per purchased ENERGY STAR torchiere = 115.8⁸²

⁷⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

⁸⁰ DEER 2008 Database Technology and Measure Cost Data (<u>www.deeresources.com</u>) and consistent with Efficiency Vermont TRM.

⁸¹ Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009"

	ISR		= In Service Rate or percentage of units rebated that get installed. = 0.95 ⁸³
	HOUR	S	= Average hours of use per year = $1095 (3.0 \text{ hrs per day})^{34}$
	WHFe		= Waste Heat Factor for Energy to account for cooling savings from efficient lighting. = 1.07 ⁸⁵
		∆kWH	= (115.8 /1000) * 0.95 * 1095 * 1.07
			= 128.9 kWh
Summe	r Coinci	dent Pea	k Demand Savings
		ΔkW	= (\[Watts_Torch /1000] * ISR * WHFd * CF
Where:			
	WHFd		= Waste Heat Factor for Demand to account for cooling savings from efficient lighting = 1.21 ⁸⁶
	CF		= Summer Peak Coincidence Factor for measure
			$= 0.11^{87}$
		∆kW	= (115.8 /1000) * 0.95 * 1.21 * 0.11
			= 0.015 kW
Fossil F	uel Imp	act Desci	riptions and Calculation

ΔMMBTU_{WH} = ((ΔWatts_{Torch} /1000) * ISR * HOURS * 0.003413 * HF) / ηHeat

⁸² Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 43 (Table 4-9)

⁸³ Nexus Market Research, RLW Analytics "Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs" table 6-3 on p63 indicates that 86% torchieres were installed and a further 9% were to be installed. Table6-7 on p67 shows that none are purchased as spares so we assume that all are installed in first year. (http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtreportfinal100104.pdf)

⁵⁴ Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 104 (Table 9-7)

⁸⁵ Waste heat factor for energy to account for cooling savings from efficient lighting. The value is estimated at 1.07 (calculated as $1 + (0.64^{\circ}(0.35/3.1))$). Based on cooling loads decreasing by 35% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes), assuming typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP) and assuming 64% of homes have central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey;

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005 tables/hc6airconditioningchar/pdf/tablehc12.6.pdf).

³⁶⁵ Waste heat factor for demand to account for cooling savings from efficient lighting. The value is estimated at 1.21 (calculated as 1 + (0.64 / 3.1)). Based on typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP), and 64% of homes having central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey).

⁸⁷ Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009"

Where:		
	AMMBTUWH	= gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.
	0.003413	= conversion from kWh to MMBTU
	HF	= Heating Factor or percentage of light savings that must be heated = 0.45^{88}
	ŋHeat	= average heating system efficiency = 0.72 ⁸⁹
	AMMBTUWH	=((115.8/1000) * 0.95 * 1095 * 0.003413 * 0.45) / 0.72
		= 0.257 MMBtu

Water Impact Descriptions and Calculation n/a

Deemed O&M Cost Adjustment Calculation

The annual O&M Cost Adjustment savings is calculated as \$2.52, based on the following component costs and lifetimes90

	Efficient	Measure	Baseline Measures		
Component	Cost	Life (yrs)	Cost	Life (yrs)	
Lamp	\$7.50	8.87 years ⁹¹	\$6.00	1.83 years ⁹²	

Version Date & Revision History

Draft:	Portiolio #
Effective date:	Date TRM will become effective
End date:	Date TRM will cease to be effective (or TBD)

⁸⁸ I.e. heating loads increase by 45% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes), ⁸⁹ This has been estimated assuming that natural gas central furnace heating is typical for Ohio residences (65% of East

North Central census division has a Natural Gas Furnace (based on Energy Information Administration, 2005 **Residential Energy Consumption Survey:**

http://www.cia.doe.gov/emeu/recs/recs2005/hc2005 tables/hc4spaceheating/pdf/tablebc12.4.pdf))

In 2000, 40% of furnaces purchased in Ohio were condensing (based on data from GAMA, provided to Department of Energy during the federal standard setting process). Assuming typical efficiencies for condensing and non condensing furnace and duct losses, the average heating system efficiency is estimated as follows:

^{(0.4*0.92) + (0.6*0.8) * (1-0.15) = 0.72} ⁶⁰ Cost data derived from Efficiency Vermont TRM.

⁹¹ Calculated using assumed average rated life of Energy Star compact fluorescent torchiere bulbs of 9710 hours (9710/1095= 8.87 years) (http://downloads.energystar.gov/bi/golist/fixtures_prod_list.xls). ⁹² Based on VEIC assumption of baseline bulb (mix of incandescent and halogen) average rated life of 2000 hours.

Dedicated Pin Based Compact Fluorescent Lamp (CFL) Table Lamp (Time of Sale)

Official Measure Code (Measure Number: X-X-X-X (Efficient Products, Lighting End Use)

Description

A dedicated pin based low wattage compact fluorescent (CFL) table lamp is purchased through a retail outlet in place of an equivalent incandescent bulb lamp. The incremental cost of the CFL lamp compared to an incandescent lamp is offset via either rebate coupons or via upstream markdowns. Assumptions are based on a time of sale purchase, not as a retrofit or direct install installation. This characterization assumes that the CFL is installed in a residential location.

Definition of Efficient Equipment

In order for this characterization to apply, the high-efficiency equipment must be dedicated pin based low wattage compact fluorescent (CFL) table lamp.

Definition of Baseline Equipment

The baseline equipment is an incandescent table lamp.

Deemed Savings for this Measure

	Average Annual	Average Summer	Average Annual Fossil Fuel	Average Annual
	KWH Savings per	Coincident Peak kW	heating fuel savings	Water savings per
	unit	Savings per unit	(MMBTU) per unit	unit
Residential	42.5	0.0061	- 0.085	n/a

Adjustment to annual savings within life of measure:

CFL	Savings as Percentage of Base Year Savings			
Wattage	2009 - 2011	2012	2013	2014 and Beyond
15 or less	100%	100%	100%	63%
16-20	100%	100%	62%	62%
21W+	100%	63%	63%	63%

Deemed Lifetime of Efficient Equipment

The expected lifetime of the measure is 8 years⁹³.

Deemed Measure Cost

The incremental cost for this measure is assumed to be \$894.

Deemed O&M Cost Adjustments

The calculated levelized annual replacement cost savings for CFL type and installation year are presented below:

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁹³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

^{*} Average table lamp measure in DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

The second second	NPV of baseline Replacement Costs			
CFL wattage	2010	2011	2012	2013 on
21W+	\$3.86	\$4.97	\$4.97	\$4.97
16-20W	\$4.15	\$3.86	\$4.97	\$4.97
15W and less	\$4.43	\$4.15	\$3.86	\$4.97

Coincidence Factor

The summer peak coincidence factor for this measure is 0.1195.

REFERENCE SECTION

Calculation of Savings

Energy Savings

 $\Delta kWh = ((\Delta Watts) / 1000) * ISR * HOURS * WHFe$

Where:

∆Watts		= Difference in wattage between CFL and incandescent bulb = 45.7^{96}
	ISR	= In Service Rate or percentage of units rebated that get installed. = 1.0^{97}
	HOURS	= Average hours of use per year = 869 ⁹⁸
	WHFe	 Waste Heat Factor for Energy to account for cooling savings from efficient lighting. 1.07⁹⁹
	∆kWh	= (45.7 / 1000) * 1.0 * 869 * 1.07

 $= 42.5 \, kWh$

Summer Coincident Peak Demand Savings

= $((\Delta Watts) / 1000) * ISR * WHFd * CF$ ΔkW

Where:

http://www.eia.doe.gov/emeu/recs/recs2005/bc2005_tables/hc6airconditioningchar/pdf/tablehc12.6.pdf).

⁹⁵ Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009" ⁹⁶ Based on RLW Analytics, New England Residential Lighting Markdown Impact Evaluation, January 20, 2009.

⁹⁷ VEIC is not aware of any evaluations that evaluate In Service Rates of table lamps, but feel it is appropriate to assume that those people purchasing a table lamp will install and use it.

⁹⁸ Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009", p50.

⁹⁹ Waste heat factor for energy to account for cooling savings from efficient lighting. The value is estimated at 1.07 (calculated as 1 + (0.64*(0.35/3.1))). Based on cooling loads decreasing by 35% of the lighting savings (average result from REMRate modeling of several different configurations and OH locations of homes), assuming typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido. Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP) and assuming 64% of homes have central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey;

WHFd		= Waste Heat Factor for Demand to account for cooling savings from efficient lighting = 1.21^{100}
CF		= Summer Peak Coincidence Factor for measure = 0.11
	ΔkW	= (45.7 / 1000) * 1.0 * 1.21 * 0.11
		= 0.0061 kW
 . A Manufacture		

Baseline Adjustment

Federal legislation stemming from the Energy Independence and Security Act of 2007 will require all general-purpose light bulbs between 40 and 100W to be approximately 30% more energy efficient than current incandescent bulbs, in essence beginning the phase out of standard incandescent bulbs¹⁰¹. In 2012 100W incandescents will no longer be manufactured, followed by restrictions on 75W in 2013 and 60W in 2014. The baseline for this measure will therefore become bulbs (improved incandescent or halogen) that meet the new standard.

To account for these new standards, the first year annual savings for this measure must be reduced for 100W equivalent bulbs (21W+ CFLs) in 2012, for 75W equivalent bulbs (16-20W CFLs) in 2013 and for 60 and 40W equivalent bulbs (15W or less CFLs) in 2014. To account for this adjustment the delta watt multiplier is adjusted as shown above. In addition, since during the lifetime of a CFL, the baseline incandescent bulb will be replaced multiple times, the annual savings claim must be reduced within the life of the measure. For example, for 100W equivalent bulbs (21W+ CFLs) installed in 2010, the full savings (as calculated above in the Algorithm) should be claimed for the first two years, but a reduced annual savings claimed for the remainder of the measure life.

The appropriate adjustments as a percentage of the base year savings for each CFL range are provided below¹⁰²:

CFL	Savings as Rercentage of Base Year Savings				
Wattage	2009 - 2011	2012	2013	2014 and Beyond	
15 or less	100%	100%	100%	63%	
16-20	100%	100%	62%	62%	
21W+	100%	63%	63%	63%	

Fossil Fuel Impact Descriptions and Calculation

 $\Delta MMBTU_{WH} = (((\Delta Watts) / 1000) * ISR * HOURS * 0.003413 * HF) / \eta Heat$

Where:

AMMBTUWH

= gross customer annual heating MMBTU fuel increased usage for the measure from the reduction in lighting heat.

¹⁰⁰ Waste heat factor for demand to account for cooling savings from efficient lighting. The value is estimated at 1.21 (calculated as 1 + (0.64/3.1)). Based on typical cooling system operating efficiency of 3.1 COP (starting from standard assumption of SEER 11 central AC unit, converted to 10.5 EER using algorithm EER = (SEER * 0.37) + 6.43 (based on Roberts and Salcido, Architectural Energy Corporation, Feb 2008; "Peak Electric Demand Calculations in the REM/Rate Home Energy Rating Software and REM/Design Home Energy Analysis Software"), converted to COP = EER/3.412 = 3.1COP), and 64% of homes having central cooling (East North Central census division from Energy Information Administration, 2005 Residential Energy Consumption Survey).

¹⁰¹ http://www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf

¹⁰² Calculated by finding the percentage reduction in change of delta watts, for example change in 100W bulb: (72-23.5)/(100-23.5) = 63.4%