COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF LOUISVILLE GAS AND)ELECTRIC COMPANY TO MODIFY ITS)CERTIFICATE OF PUBLIC CONVENIENCE)AND NECESSITY AS TO THE MILL CREEK)UNIT 3 FLUE-GAS DESULFURIZATION UNIT)

CASE NO. 2012-00469

APPLICATION

Louisville Gas and Electric Company ("LG&E"), pursuant to KRS 278.020(1), KRS 278.183, and 807 KAR 5:001, Sections 8 and 9, hereby petitions the Kentucky Public Service Commission ("Commission") by application to issue an order modifying the Certificate of Public Convenience and Necessity granted by the Commission in Case No. 2011-00162 to permit LG&E to construct a new wet flue gas desulfurization system ("WFGD") to serve Unit 3 at the Mill Creek Generating Station instead of rehabilitating the existing WFGD at Unit 4.

LG&E consulted with all of the interveners in Case No. 2011-00162 concerning this proposal. The Attorney General, the Kentucky Industrial Utility Customers, Inc., The Kroger Company, Department of Defense and Other Federal Executive Agencies, and the Metropolitan Housing Coalition have authorized LG&E to state that they do not object to the proposal in this Application.

In support of this Application, LG&E states as follows:

1. <u>Address</u>: The applicant's full name and post office address is: Louisville Gas and Electric Company, 220 West Main Street, Post Office Box 32010, Louisville, Kentucky 40202.

2. <u>Articles of Incorporation</u>: A certified copy of LG&E's Articles of Incorporation are on file with the Commission in Case No. 2010-00204, *In the Matter of: Joint Application of*

PPL Corporation, E.ON AG, E.ON U.S. Investments Corp., E.ON U.S. LLC, Louisville Gas and Electric Company, and Kentucky Utilities Company for Approval of an Acquisition of Ownership and Control of Utilities, filed on May 28, 2010, and is incorporated by reference herein pursuant to 807 KAR 5:001, Section 8(3).

3. LG&E is a public utility, as defined in KRS 278.010(3)(a), engaged in the electric and gas business. LG&E generates and purchases electricity, and distributes and sells electricity at retail in Jefferson County and portions of Bullitt, Hardin, Henry, Meade, Oldham, Shelby, Spencer, and Trimble Counties. LG&E also purchases, stores, and transports natural gas and distributes and sells natural gas at retail in Jefferson County and portions of Barren, Bullitt, Green, Hardin, Hart, Henry, Larue, Marion, Meade, Metcalfe, Nelson, Oldham, Shelby, Spencer, Trimble, and Washington Counties.

Background of the Certificates of Public Convenience and Necessity Awarded in Case No. 2011-00162 for the Mill Creek Units

4. In Case No. 2011-00162, *In the Matter of: Application of Louisville Gas and Electric Company for Certificates of Public Convenience and Necessity and Approval of Its 2011 Compliance Plan for Recovery by Environmental Surcharge*, LG&E sought the Commission's approval of certain Certificates of Public Convenience and Necessity ("Certificates"), which included Certificates for projects related to its Mill Creek generating station.

5. In its Final Order in Case No. 2011-00162, the Commission granted Certificates for LG&E to: build two WFGD units (one to serve both Mill Creek Units 1 and 2, another to serve Mill Creek Unit 4); to tie Mill Creek 3 into the existing (but rehabilitated) Mill Creek Unit 4 WFGD, and then to remove the existing WFGDs on Mill Creek Units 1, 2, and 3. These new and rehabilitated facilities continue to be needed to comply with the one-hour SO₂ National

Ambient Air Quality Standard ("NAAQS") and the Mercury and Toxic Air Standards ("MATS") Rule (formerly known as the Hazardous Air Pollutants ("HAPs") Rule).¹

<u>Request to Modify the Existing Certificate of Public Convenience and Necessity for the</u> <u>Existing Unit 4 WFGD</u>

6. The 2010 Black & Veatch Study, which LG&E utilized to develop its 2011 Environmental Compliance Plan, recommended new WFGDs for all units at Mill Creek, including Unit 3. At the time LG&E filed its application in Case No. 2011-00162, based on preliminary information it believed a viable compliance option and a more cost effective solution would be to rehabilitate the existing WFGD at Unit 4, and therefore did not include a new Unit 3 WFGD as part of its Plan. Instead, LG&E sought and obtained approval to rehabilitate the existing WFGD at Unit 4, then tie Unit 3 into the rehabilitated facility.

7. <u>Statement of Need (807 KAR 5:001 § 9(2)(a)</u>): The reasons supporting LG&E's need to provide rehabilitated or new WFGD facilities for Mill Creek Unit 3 remain unchanged from LG&E's application in Case No. 2011-00162, as LG&E must comply with all applicable environmental rules and regulations. In particular, LG&E requires rehabilitated or new WFGD facilities for Mill Creek Unit 3 to comply with the impacts of the tightened National Ambient Air Quality Standards ("NAAQS") 1-hour SO2 requirement that will establish a lower stack emission rate from all Mill Creek units by 2017 as a part of the State Implementation Plan ("SIP") for the non-attainment status of Jefferson County, Kentucky. This requirement is independent of the Cross-State Air Pollution Rule ("CSAPR"), which the U.S. Court of Appeals for the D.C. Circuit vacated on August 21, 2012.² In this application, LG&E seeks only an

¹ With the issuance of the final standards on December 16, 2011, the US EPA began using the phrase Mercury and Toxic Air Standards ("MATS") Rule instead of HAPs. *See* 77 FR 9304, Feb. 16, 2012 (available at http://www.epa.gov/mats/actions.html).

² Order available at <u>http://www.scribd.com/doc/103461023/EME-Homer-City-Generation-v-EPA-No-11-1302-</u> <u>Striking-Down-EPA-Transport-Rule</u>. The predecessor rule to CSAPR, the Clean Air Interstate Rule ("CAIR"),

amendment to its Certificate authority in order to utilize a more cost effective manner of compliance.

There are no utilities, corporations, or persons with whom the proposed new construction is likely to compete.

8. <u>Permits or Franchises (807 KAR 5:001 § 9(2)(b))</u>: LG&E submitted to the Louisville Metro Air Pollution Control District ("LMAPCD") requests to construct the proposed Mill Creek WFGD in June 2011. The LMAPCD issued a draft construction permit in May 2012, and issued a final air permit on June 18, 2012, with an effective date of June 15, 2012, allowing construction to commence. LG&E will also seek any additional applicable construction permits and an updated Title V operating permit.

9. Description of Proposed Construction (807 KAR 5:001 § 9(2)(c)): Since the Commission issued the Certificates in Case No. 2011-00162, LG&E, in accordance with prudent practices and competitive bid policies, has proceeded with further engineering assessment beyond the conceptual stages, updated, monitored, and re-evaluated the costs associated with the WFGDs. As part of this ongoing evaluation, LG&E has determined that the total current estimated costs associated with rehabilitating the existing WFGD at Mill Creek Unit 4 for an additional twenty-plus-year life, which, through a tie-in, would serve Mill Creek Unit 3, exceed the costs of constructing a new WFGD to serve Mill Creek Unit 3. To complete the environmental compliance projects in the most cost effective manner, LG&E is requesting the Commission modify its Certificate with regard to rehabilitating the existing WFGD at Mill Creek Unit 3. LG&E is also proposing to demolish the existing WFGD at Unit 4 to provide space for the new WFGD.

remains in effect. *Id.* at 60 ("EPA must continue administering CAIR pending the promulgation of a valid replacement.").

10. When LG&E proposed rehabilitating the existing WFGD at Unit 4, it had preliminary information from Babcock Power Environmental Inc. ("Babcock") regarding the costs to increase the WFGD SO₂-removal efficiency via rehabilitation and replacement of equipment and components of the existing WFGD based upon an engineering study completed in February 2011. Those costs were combined with structural steel estimates provided by Black and Veatch in their Phase II report and thought to be the most cost-effective approach at the time. While Case No. 2011-00162 was proceeding, LG&E began receiving bids for the projects it had proposed. As part of that process, on December 2, 2011, Babcock presented to LG&E the Mill Creek Unit 4 WFGD Upgrade Study developed after a detailed internal component inspection during an outage of Unit 4 and its WFGD, a copy of which is attached to the testimony of John N. Voyles as Exhibit JNV-1. That report identified more significant levels of repair were necessary beyond the components of the WFGD that affected sulfur dioxide removal performance that the initial conceptual study contemplated. After this later report, a comprehensive inspection and estimate were developed to identify all existing components of the existing Unit 4 WFGD that would need refurbished or replaced to provide a twenty-plus year life as that of a new WFGD. The rehabilitation cost estimates were revised to reflect these process improvement and infrastructure modification determinations. Based upon further engineering assessments and revised rehabilitation costs, which are approximately \$161 million, LG&E began evaluating the cost of building a new WFGD instead of rehabilitating the existing Unit 4 WFGD. LG&E contacted Zachry Holdings, Inc. ("Zachry") in July 2012 to obtain an estimate of the total expected construction costs to construct a new WFGD for Unit 3 similar to what was contracted to them to construct for Units 4 and the combined WFGD for Units 1 and 2, as well as the cost to demolish the existing WFGD at Unit 4. Zachry is performing the majority of the

other environmental compliance projects at Mill Creek. As set forth in Exhibit JNV-2, on September 11, 2012, Zachry provided its estimated cost to complete these projects, which is approximately \$132 million, roughly \$29 million less than the updated cost from Babcock to rehabilitate the existing WFGD at Mill Creek Unit 4. This estimate is consistent with the cost for the other two WFGDs which Zachry is contracted for at Mill Creek, both of which are significantly lower than the estimated cost in the 2011 filing. The refurbished and new WFGD option values represent the installed cost with a Level I engineering accuracy.

11. <u>Area Maps (807 KAR 5:001 § 9(2)(d))</u>: The required area maps showing the location of the proposed construction for the new WFGD is attached as Application Exhibit 1.

12. <u>Financing Plans (807 KAR 5:001 § 9(2)(e))</u>: LG&E proposes to finance the proposed new WFGD for Mill Creek Unit 3 in the manner described in the testimony of Lonnie E. Bellar. LG&E does not propose any changes to the method of financing the construction from that presented in Case No. 2011-00162.

13. Estimated Cost of Operation (807 KAR 5:001 § 9(2)(f)): LG&E closely examined, by line item, the estimates Babcock and Zachry provided, in order to assess its overall confidence in the expected accuracy of the costs. An updated analysis of the retire/retrofit decision made in the 2011 Environmental Compliance Plan utilizing these costs was performed and a copy of the document LG&E prepared that illustrates this analysis is included in Exhibit JNV-3. After completing this review, LG&E determined that constructing a new WFGD for Unit 3 and demolishing the existing WFGD at Unit 4 was a more cost-effective method of compliance if an amendment to its Certificate could be obtained expeditiously from the Commission. The estimated annual cost of operating the new WFGD is also set forth in Exhibit JNV-3.

14. Although the total estimated capital cost for all of the compliance projects on Mill Creek Unit 3 has increased from the 2011 Environmental Compliance Plan estimate by approximately \$21 million, the anticipated fixed and variable operating expenses have decreased largely because of the lower-than-expected cost of operating the baghouse, including the lower cost of sorbent injection for mercury and sulfuric acid. When the 2011 Environmental Compliance Plan was developed, LG&E based its projected baghouse operating costs on the Black &Veatch studies for high-sulfur coal applications and its limited experience with operating a similar facility at Trimble County Unit 2. As its experience has developed, LG&E has further revised the projected costs, resulting in a reduction in operating expenses. As such, the decision to construct a new WFGD, even at a higher capital cost than contained in the 2011 Environmental Compliance Plan, does not affect the fiscal prudency of LG&E's decision to retrofit, instead of retire, Mill Creek Unit 3.

15. In fact, the Net Present Value of Revenue Requirements ("NPVRR") savings associated with retrofitting Mill Creek Unit 3, which were initially projected to be \$756 million, can be maximized even if LG&E rehabilitates the existing WFGD at Mill Creek Unit 4. To maximize the NPVRR savings to customers, however, approval to modify the Certificate to permit LG&E to construct a new WFGD must be obtained by January 18, 2013. This should allow LG&E to complete the new WFGD by April 2016, which is the date it must be in compliance with the MATS Rule (with a one year extension being granted). Under this scenario, the NPVRR savings to retrofit Mill Creek Unit 3 are \$820 million, which is a \$64 million increase (eight percent) over the projected savings in the 2011 Environmental Compliance Plan. Under this scenario, Commission approval as requested should ensure construction can be commenced and be completed in a timely manner. If Commission approval to modify LG&E's

Certificate is not obtained as requested, constructing a new WFGD will not meet the compliance deadline and will no longer maximize NPVRR savings; instead based on this analysis, rehabilitating the existing WFGD at Unit 4 as planned would be more cost effective to customers, as the NPVRR savings for rehabilitating the WFGD results in \$794 million in savings.

16. If LG&E constructs a new WFGD, but is unable to complete construction prior to the April 2016 compliance date or obtain a second year extension of the MATS Rule compliance date, the savings steadily decline because LG&E will no longer be able to operate Mill Creek Unit 3 and thus will have to purchase power from a third party to replace its capacity.³ For example, if the new WFGD is not completed until October 2016, a six-month delay, the NPVRR savings decline to \$782 million, based on estimated costs to purchase power from a third party. These analyses demonstrate there is a short window of opportunity for LG&E to maximize NPVRR savings under the new construction option.

17. LG&E supports its request for a Certificate modification with the verified testimony and exhibits of the following persons:

- Lonnie E. Bellar, Vice President State Regulation and Rates
- John N. Voyles, Vice President Transmission and Generation Services

18. Prior to filing this Application, LG&E discussed its plan to seek a modification of the Certificate in the manner herein described with the intervenors to Case No. 2011-00162. The Office of the Attorney General, Utility Rate Intervention Division; Kentucky Industrial Utility Customers, Inc.; The Kroger Co.; Metropolitan Housing Coalition; and the United States Department of Defense and Other Federal Executive Agencies have authorized counsel for

³ It is not clear that LG&E will be able to obtain a second year extension.

LG&E to represent in this Application that they have no objection to LG&E's Application or the relief requested herein.

WHEREFORE, Louisville Gas and Electric Company respectfully asks the Commission to enter an order by January 18, 2013 modifying the Certificate awarded in Case No. 2011-00162 to permit it to construct a new WFGD to serve Mill Creek Unit 3.

Dated: October 25, 2012

Respectfully submitted,

Kendrick R. Riggs W. Duncan Crosby III Monica H. Braun Stoll Keenon Ogden PLLC 2000 PNC Plaza 500 West Jefferson Street Louisville, Kentucky 40202 Telephone: (502) 333-6000

Allyson K. Sturgeon Senior Corporate Attorney LG&E and KU Services Company 220 West Main Street Louisville, Kentucky 40202 Telephone: (502) 627-2088

Counsel for Louisville Gas and Electric Company

CERTIFICATE OF COMPLIANCE

In accordance with Ordering Paragraph No. 10 of the Commission's October 25, 2012 Order, this is to certify that Louisville Gas and Electric Company's October 25, 2012 electronic filing is a true and accurate copy of the documents being filed in paper medium; that the electronic filing has been transmitted to the Commission on October 25, 2012; that there are currently no parties that the Commission has excused from participation by electronic means in this proceeding; and that an original and one copy of the filing will be hand-delivered to the Commission on October 26, 2012. There are currently no other parties to this proceeding.

Counsel for Louisville Gas and Electric Company

Application Exhibit 1

Mill Creek Maps

PPL companies

Parallel scale at 38°N 0°E

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

)

)

)

)

In the Matter of:

THE APPLICATION OF LOUISVILLE GAS AND ELECTRIC COMPANY TO MODIFY ITS **CERTIFICATE OF PUBLIC CONVENIENCE** AND NECESSITY AS TO THE MILL CREEK **UNIT 3 FLUE-GAS DESULFURIZATION UNIT**)

CASE NO. 2012-00469

TESTIMONY OF LONNIE E. BELLAR VICE PRESIDENT, STATE REGULATION AND RATES LOUISVILLE GAS AND ELECTRIC COMPANY

Filed: October 25, 2012

1

Q.

Please state your name, position and business address.

A. My name is Lonnie E. Bellar. I am the Vice President, State Regulation and Rates for
Kentucky Utilities Company ("KU") and Louisville Gas and Electric Company
("LG&E"). I am employed by LG&E and KU Services Company, which provides
services to KU and LG&E (collectively "the Companies"). My business address is
220 West Main Street, Louisville, Kentucky 40202. A complete statement of my
education and work experience is attached to this testimony as Appendix A.

8 Q. Have you previously testified before the Kentucky Public Service Commission?

- 9 A. Yes. I have testified before the Commission numerous times, including the
 10 Companies' most recent base rate cases.¹ Also, I testified in the Companies' 2011
 11 Environmental Compliance Plan cases.²
- 12 Q. What is the purpose of your testimony?

A. The purpose of my testimony is to describe the savings customers will experience if the Commission modifies the Certificate of Public Convenience and Necessity ("Certificate") the Commission issued in LG&E's 2011 Environmental Compliance Plan case. Specifically, LG&E asks the Commission to modify the Certificate related to Mill Creek Unit 3 to permit LG&E to build a new wet flue-gas-desulfurization system ("WFGD") for Mill Creek Unit 3 rather than rehabilitating the existing Mill Creek Unit 4 WFGD to serve Mill Creek Unit 3.

¹In the Matter of: Application of Kentucky Utilities Company for an Adjustment of Its Base Rates, Case No. 2012-00221; In the Matter of: Application of Louisville Gas and Electric Company for an Adjustment of Its Electric and Gas Base Rates, a Certificate of Public Convenience and Necessity, Approval of Ownership of Gas Service Lines and Risers, and a Gas Line Surcharge, Case No. 2012-00222.

²Case Nos. 2011-00161 (KU 2011 Environmental Compliance Plan), 2011-00162 (LG&E 2011 Environmental Compliance Plan).

I will also describe the views of those interveners from LG&E's 2011
 Environmental Compliance Plan case who have authorized LG&E to report their
 position to the Commission.

- 4 Q. How will building a new WFGD for Mill Creek Unit 3 be more economical than
 5 refurbishing the existing Mill Creek Unit 4 WFGD to serve Mill Creek Unit 3?
- A. As John N. Voyles explains in greater detail in his testimony, since the Commission
 issued its final order in LG&E's 2011 Environmental Compliance Plan case, LG&E
 has obtained further engineering studies and cost estimates showing that rehabilitating
 the existing Mill Creek Unit 4 WFGD to serve Mill Creek Unit 3 will be significantly
 more expensive than initially estimated: \$161 million in estimated capital cost rather
 than \$74 million. Building a new WFGD for Mill Creek Unit 3 will have an
 estimated capital cost of \$132 million.
- Q. If the WFGD-related estimated capital costs for Mill Creek Unit 3 are higher
 than LG&E expected, is it still true that building environmental-compliance
 equipment for the unit is more economical than retiring and replacing it?
- 16 A. Yes. As Mr. Voyles explains more fully in his testimony, other reduced estimated 17 capital costs and lower anticipated operating costs have more than offset the effect of 18 the higher estimated WFGD capital cost. In fact, the Net Present Value of Revenue 19 Requirement ("NPVRR") savings associated with retrofitting Mill Creek Unit 3 rather 20 than retiring it, which were initially projected to be \$756 million, can be maximized 21 even if LG&E rehabilitates the existing WFGD at Mill Creek Unit 4. But to 22 maximize the NPVRR savings to customers as shown in the table below, LG&E must 23 receive approval to modify the Mill Creek Unit 3 Certificate by January 18, 2013:
- 24
- Table 1: NPVRR Savings of WFGD Options for Mill Creek Unit 3

		2011 ECR Plan	Updated Rehab	New FGD	New FGD with Delay
1	Retrofit Savings (NPVRR, 2011 \$M)	756	794	820	782

2 Timely approval should allow LG&E to complete the new WFGD by April 3 2016, which is the date it must be in compliance with the Mercury and Air Toxics 4 Rule ("MATS Rule") (with a one year extension being granted). If Commission approval to modify LG&E's Certificate is not obtained as requested, constructing a 5 6 new WFGD will not meet the compliance deadline and will no longer maximize 7 NPVRR savings; instead, based on this analysis rehabilitating the existing WFGD at 8 Unit 4 as planned would be more cost effective to customers, as the NPVRR savings 9 for rehabilitating the WFGD results in \$794 million in savings.

10 Q. How does LG&E plan to finance construction of the new Mill Creek Unit 3 11 WFGD?

12 A. LG&E expects to finance the costs of the new facility with a combination of new debt 13 and equity. The mix of debt and equity used to finance the project will be determined 14 so as to allow LG&E to maintain its strong investment-grade credit rating. To the 15 extent that tax-exempt financing may be available for these projects, the Companies 16 anticipate using such opportunities to the extent that they are reasonably cost-17 This is the same financing approach LG&E proposed to finance effective. rehabilitating the Mill Creek Unit 4 WFGD to serve Mill Creek Unit 3 in LG&E's 18 19 2011 Environmental Compliance Plan case.

Q. Has LG&E communicated with the interveners in LG&E's 2011 Environmental Compliance Plan case concerning this proposal?

1 A. Yes. LG&E reached out to all of the interveners in LG&E's 2011 Environmental 2 Compliance Plan case concerning this proposal, inviting them to attend an informal conference at the Commission's offices on October 10, 2012. LG&E subsequently 3 4 followed up with the interveners to ask about their position on LG&E's proposal to 5 build a new WFGD for Mill Creek Unit 3. The Attorney General, the Kentucky Industrial Utility Customers, Inc., The Kroger Company, the Department of Defense 6 7 and Other Federal Agencies, and the Metropolitan Housing Coalition informed 8 LG&E that they do not object to the proposal and authorized LG&E to make the 9 Commission aware of the same.

10

Q. What is your recommendation to the Commission?

11 I recommend that the Commission issue an order by January 18, 2013 modifying the A. 12 Certificate the Commission issued in LG&E's 2011 Environmental Compliance Plan 13 case related to Mill Creek Unit 3 to permit LG&E to build a new WFGD to serve the 14 unit and to demolish rather than rehabilitate the existing Mill Creek Unit 4 WFGD. 15 This will result in lower costs for customers, less SO₂ emissions (as Mr. Voyles describes in his testimony), and is not opposed by most of the interveners to LG&E's 16 17 2011 Environmental Compliance Plan case.

- 18 **Does this conclude your testimony?** 0.
- 19 A. Yes, it does.

VERIFICATION

COMMONWEALTH OF KENTUCKY SS:) **COUNTY OF JEFFERSON**)

The undersigned, Lonnie E. Bellar, being duly sworn, deposes and says that he is Vice President, State Regulation and Rates for Louisville Gas and Electric Company and an employee of LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and that the answers contained therein are true and correct to the best of his information, knowledge and belief.

Subscribed and sworn to before me, a Notary Public in and before said County and State, this A day of 2012.

(SEAL)

Notary Public

My Commission Expires: SHERIL CARDNER Notion, Weiner, State at Large, KY My commission expires Dec. 24, 2013

APPENDIX A

Lonnie E. Bellar

LG&E and KU Energy LLC 220 West Main Street Louisville, Kentucky 40202

Education

Bachelors in Electrical Engineering; University of Kentucky, May 1987
Bachelors in Engineering Arts; Georgetown College, May 1987
E.ON Academy, Intercultural Effectiveness Program: 2002-2003
E.ON Finance, Harvard Business School: 2003
E.ON Executive Pool: 2003-2007
E.ON Executive Program, Harvard Business School: 2006
E.ON Academy, Personal Awareness and Impact: 2006

Professional Experience

E.ON U.S. LLC

2006 Aux 2007
2000 – Aug. 2007
2005 – Sept. 2006
2003 – April 2005
2000 – Feb. 2003
1998 – Feb. 2000
1998 – Sept. 1998
1995 – May 1998
993 – Sept. 1995
1987 – Jan. 1993
1

Professional Memberships

IEEE

Civic Activities

E.ON U.S. Power of One Co-Chair – 2007 Louisville Science Center – Board of Directors – 2008 – Present Chairman of Louisville Science Center Board beginning June 2012 Metro United Way Campaign – 2008 UK College of Engineering Advisory Board – 2009 – Present

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF LOUISVILLE GAS)	
AND ELECTRIC COMPANY TO MODIFY ITS)	
CERTIFICATE OF PUBLIC CONVENIENCE)	CASE NO. 2012-00469
AND NECESSITY AS TO THE MILL CREEK)	
UNIT 3 FLUE-GAS DESULFURIZATION UNIT)	

TESTIMONY OF JOHN N. VOYLES, JR. VICE PRESIDENT, TRANSMISSION AND GENERATION SERVICES LOUISVILLE GAS AND ELECTRIC COMPANY

Filed: October 25, 2012

1

Q.

Please state your name, position and business address.

A. My name is John N. Voyles, Jr. I am the Vice President of Transmission and
Generation Services for Kentucky Utilities Company ("KU") and Louisville Gas and
Electric Company ("LG&E"), and I am an employee of LG&E and KU Services
Company, which provides services to LG&E and KU (collectively "the Companies").
My business address is 220 West Main Street, Louisville, Kentucky 40202. A
complete statement of my education and work experience is attached to this testimony
as Appendix A.

9 **C**

16

Q. Have you previously testified before this Commission?

10 A. Yes. I testified in the Companies' 2011 and 2009 environmental compliance plan 11 cases,¹ and I testified in a number of earlier proceedings, including LG&E's original 12 application for recovery of its 1995 Environmental Compliance Plan.²

13 Q. Are you sponsoring any exhibits?

14 A. Yes. I am sponsoring the following exhibits:

15 Exhibit JNV-1: Babcock Power Environmental Inc. Mill Creek Unit 4 Upgrade

Study

- 17 Exhibit JNV-2: Zachry New WFGD Estimate for Mill Creek Unit 3
- 18 Exhibit JNV-3: Update to Mill Creek 3 Retire/Retrofit Decision, October 2012
- 19 **Q.** What is the purpose of your testimony?
- 20 A. The purpose of my testimony is to describe the analysis LG&E recently undertook
- 21 concerning its Commission-approved plan to rehabilitate the existing wet flue-gas-

¹ Case Nos. 2011-00161 (KU 2011 Environmental Compliance Plan), 2011-00162 (LG&E 2011 Environmental Compliance Plan), 2009-00197 (KU 2009 Environmental Compliance Plan), and 2009-00198 (LG&E 2009 Environmental Compliance Plan).

² In the Matter of: The Application of Louisville Gas and Electric Company for Approval of Compliance Plan and to Assess a Surcharge Pursuant to KRS 278.183 to Recover Costs of Compliance With Environmental Requirements For Coal Combustion Wastes and By-Products, Case No. 93-332.

1 desulfurization system ("WFGD") for Mill Creek Unit 4 for Mill Creek Unit 3's future use. The analysis shows (1) retrofitting Mill Creek Unit 3 with environmental 2 controls remains a lower-cost alternative than retiring the unit, (2) building a new 3 WFGD to serve Mill Creek Unit 3 will be lower-cost than rehabilitating the existing 4 Mill Creek Unit 4 WFGD, and (3) delaying the construction of a new WFGD for Mill 5 6 Creek Unit 3 by even six months could cause that option to become higher-cost than rehabilitating the existing Mill Creek Unit 4 WFGD. In other words, the cost-saving 7 opportunity of building a new WFGD for Mill Creek Unit 3 is the reason LG&E 8 9 requests expedited action by the Commission to approve the modification to the existing Certificate of Public Convenience and Necessity ("Certificate") the 10 Commission issued in LG&E's 2011 Environmental Compliance Plan case. LG&E 11 therefore asks the Commission to issue an order by January 18, 2013, granting a 12 Certificate modification authorizing LG&E to build a new WFGD for Mill Creek 13 Unit 3. 14

15

16

O.

- its 2011 Environmental Compliance Plan case?
- 17 A. As I explained in my testimony in that proceeding:

LG&E proposes to build two new FGDs (one to serve both Mill Creek Units 1 and 2, another to serve Mill Creek Unit 4), to tie Mill Creek Unit 3 into the existing (but upgraded) Mill Creek Unit 4 FGD, and then to remove the current FGDs on Mill Creek Units 1, 2, and 3. These new and upgraded facilities are necessary to comply with the 1-hour SO₂ NAAQS [National Ambient Air Quality Standards], under which Jefferson County is expected to be declared a non-attainment area and would require SO₂ emission reductions

Why did LG&E seek a CPCN for an upgraded WFGD for Mill Creek Unit 3 in

1		at Mill Creek. These projects also support compliance with the proposed
2		reductions on the emission of SO ₂ from the [Cross-State Air Pollution Rule
3		("CSAPR")]. ³
4		LG&E witness Gary H. Revlett further explained in his testimony the SO ₂ NAAQS
5		and its impact on Mill Creek:
6		[T]he EPA finalized a new 1-hour SO ₂ NAAQS in June 2010, which required
7		state and local air pollution control agencies to develop implementation plans
8		for any non-attainment area. Jefferson County has already begun recording
9		SO_2 levels in excess of the new 1-hour NAAQS. According to the CAAA for
10		NAAQS, the LMAPCD [Louisville Metro Air Pollution Control District] must
11		declare the county to be in "non-attainment" of the standard, which the EPA
12		must confirm within 1 year. After that, the LMAPCD must file, and the EPA
13		must approve, a plan to bring the county back into attainment. Emission
14		sources must then take actions to reduce SO_2 emissions consistent with the
15		approved plan. As the largest SO_2 emitter in Jefferson County, the Mill Creek
16		Station will need to reduce its SO ₂ emissions, which has been true of all the
17		previous SO_2 non-attainment plans developed by the LMAPCD. ⁴
18	Q.	Please briefly explain the role and purpose of LMAPCD.
19	A.	For over sixty years, LMAPCD or its predecessors have studied and worked to
20		improve the air quality in Jefferson County, Kentucky. In 1952, the Kentucky

21

legislature passed KRS Chapter 77 authorizing the formation of county air pollution

³ In the Matter of: Application of Louisville Gas and Electric Company for Certificates of Public Convenience and Necessity and Approval of Its 2011 Compliance Plan for Recovery by Environmental Surcharge, Case No. 2011-00162, Testimony of John N. Voyles at 6-7 (June 1, 2011). ⁴ In the Matter of: Application of Louisville Gas and Electric Company for Certificates of Public Convenience

⁴ In the Matter of: Application of Louisville Gas and Electric Company for Certificates of Public Convenience and Necessity and Approval of Its 2011 Compliance Plan for Recovery by Environmental Surcharge, Case No. 2011-00162, Testimony of Gary H. Revlett at 3-4 (June 1, 2011).

control districts. The same year, the Air Pollution Control District of Jefferson
County was created and staffed with air quality professionals to study and improve air
quality in Louisville. LMAPCD is governed by the Air Pollution Control Board,
which includes seven members appointed by the Mayor of Louisville and approved
by the Louisville Metro Council.

Among other things, LMAPCD, as the only local air pollution control agency 6 in Kentucky, is responsible for developing the Jefferson County portion of the State 7 Implementation Plan ("SIP"). In addition, LMAPCD monitors and measures 8 9 throughout Jefferson County the concentration of pollutants under the NAAQS, including ozone (O_3) , carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide 10 (NO₂) and nitric oxide (NO), inhalable particulates (PM10), fine particulates (PM2.5) 11 and lead (Pb). Most of LMAPCD's monitoring is currently conducted at seven air 12 monitoring sites. To insure national consistency in air monitoring data, EPA requires 13 14 that all sites meet certain criteria and that monitors are operated using approved procedures. LMAPCD develops and submits its network plans to EPA for review and 15 approval. 16

Q. Have portions of Jefferson County been designated by LMAPCD as non attainment areas under the 1-hour SO2 NAAQS?

A. Yes. In a letter dated June 2, 2011, Kentucky recommended to U.S. EPA Region 4
that all counties, except Jefferson County, be classified as attainment and Jefferson
County be designated as nonattainment. Following further discussions with staff at
U.S. EPA Region 4, LMAPCD performed further analysis to more precisely define
the area of Jefferson County to be designated nonattainment. On December 20, 2011,
Kentucky provided the results of U.S. EPA Region 4 analysis to EPA Region 4,

1		expressed its concurrence LMAPCD's review, and requested a specific boundary for
2		SO ₂ nonattainment be established which includes the Mill Creek Generation Station.
3	Q.	What is the status of CSAPR?
4	A.	The U.S. Court of Appeals for the D.C. Circuit vacated CSAPR on August 21, 2012. ⁵
5		The predecessor rule to CSAPR, the Clean Air Interstate Rule ("CAIR"), remains in
6		effect. ⁶
7	Q.	Does a rehabilitated or new WFGD for Mill Creek Unit 3 continue to be
8		necessary even though CSAPR has been vacated?
9	A.	Yes. LG&E requires rehabilitated or new WFGD facilities for Mill Creek Unit 3 to
10		comply with the impacts of the tightened NAAQS 1-hour SO ₂ requirement that will
11		establish a lower stack emission rate from all Mill Creek units by 2017 as a part of the
12		State Implementation Plan ("SIP") for the non-attainment status of Jefferson County,
13		Kentucky. This requirement is independent of CSAPR.
14	Q.	Why is LG&E asking the Commission to modify the Certificate it granted
15		LG&E concerning the WFGD to serve Mill Creek Unit 3?
16	A.	In LG&E's most recent Environmental Compliance Plan case, LG&E sought, and the
17		Commission granted, Certificates related to a number of 2011 Environmental
18		Compliance Plan projects. ⁷ Among the Certificates the Commission granted was one
19		authorizing LG&E to rehabilitate the existing Mill Creek Unit 4 WFGD and to tie
20		Mill Creek Unit 3 into it. Upgraded scrubbing ability is necessary for Mill Creek Unit
21		3 to comply with the impacts of the 1-hour SO_2 National Ambient Air Quality

 ⁵ Order available at <u>http://www.scribd.com/doc/103461023/EME-Homer-City-Generation-v-EPA-No-11-1302-Striking-Down-EPA-Transport-Rule</u>.
 ⁶ Id. at 60 ("EPA must continue administering CAIR pending the promulgation of a valid replacement.").
 ⁷ In the Matter of: Application of Louisville Gas and Electric Company for Certificates of Public Convenience

and Necessity and Approval of Its 2011 Compliance Plan for Recovery by Environmental Surcharge, Case No. 2011-00162, Order (Dec. 15, 2011).

1 Standard ("NAAQS"). At the time of LG&E's application and the Commission's 2 approval, LG&E's conceptual engineering information indicated that an option of 3 rehabilitating the existing Mill Creek Unit 4 WFGD for Mill Creek Unit 3's use 4 would be the lowest-reasonable-cost means to achieve additional SO₂ reductions from 5 Mill Creek Unit 3's flue gas.⁸

Since the Commission issued the Certificate related to Mill Creek Unit 3 in 6 Case No. 2011-00162, LG&E, in accordance with prudent practices and competitive 7 bid policies, has proceeded with further engineering assessment beyond the 8 9 conceptual stages, updated, monitored, and re-evaluated the costs associated with the WFGDs. As part of this ongoing evaluation, LG&E has determined that the total 10 current estimated costs associated with rehabilitating the existing WFGD at Mill 11 Creek Unit 4 for an additional twenty-plus-year life, which, through a tie-in, would 12 serve Mill Creek Unit 3, exceed the costs of constructing a new WFGD to serve Mill 13 14 Creek Unit 3. To complete the environmental compliance projects in the most costeffective manner, LG&E asks the Commission to modify its Certificate with regard to 15 rehabilitating the existing WFGD at Mill Creek Unit 4 and instead permit LG&E to 16 17 construct a new WFGD to serve Unit 3. LG&E is also proposing to demolish the existing WFGD at Unit 4 to provide space for the new WFGD. 18

Q. Please describe in greater detail how LG&E has reached the conclusion that
building a new WFGD for Mill Creek Unit 3 will be more economical than
rehabilitating the existing Mill Creek Unit 4 WFGD to serve Mill Creek Unit 3.
A. When LG&E proposed rehabilitating the existing WFGD at Unit 4, it had preliminary

23 information from Babcock Power Environmental Inc. ("Babcock") regarding the

⁸ This compared favorably to the 2010 Black & Veatch report for constructing a new WFGD for Mill Creek Unit 3. *See* Case No. 2011-00162, Testimony of John N. Voyles Exh. JNV-2 Appx. A (June 1, 2011).

1 costs to increase the WFGD SO2-removal efficiency via rehabilitation and replacement of equipment and components of the existing WFGD based upon an 2 engineering study completed in February 2011. Those costs were combined with 3 structural steel estimates provided by Black and Veatch in their Phase II report and 4 thought to be the most cost-effective approach at the time. While Case No. 2011-5 6 00162 was proceeding, LG&E began receiving bids for the projects it had proposed. As part of that process, on December 2, 2011, Babcock presented to LG&E the Mill 7 Creek Unit 4 WFGD Upgrade Study developed after performing detailed internal 8 9 component inspection during an outage of Unit 4 and its WFGD after the filing in June 2011, a copy of which is attached as Exhibit JNV-1. That report identified more 10 significant levels of repair were necessary beyond the components of the WFGD that 11 affected sulfur dioxide removal performance than the initial conceptual study 12 contemplated. After this later report, a comprehensive inspection and estimate were 13 14 developed to identify all existing components of the existing Unit 4 WFGD that would need refurbished or replaced to provide a twenty-plus year life as that of a new 15 The rehabilitation cost estimates were revised to reflect these process 16 WFGD. 17 improvement and infrastructure modification determinations. Based upon further engineering assessments and revised rehabilitation costs, which are approximately 18 \$161 million, LG&E began evaluating the cost of building a new WFGD instead of 19 20 rehabilitating the existing Unit 4 WFGD. LG&E contacted Zachry Holdings, Inc. ("Zachry") in July 2012 to obtain an estimate of the total expected construction costs 21 22 to construct a new WFGD for Unit 3 similar to what was contracted to them to 23 construct for Units 4 and the combined WFGD for Units 1 and 2, as well as the cost to demolish the existing WFGD at Unit 4. Zachry is performing the majority of the 24

other environmental compliance projects at Mill Creek. As set forth in Exhibit JNV-1 2, on September 11, 2012, Zachry provided its estimated cost to complete these 2 projects, which is approximately \$132 million, roughly \$29 million less than the 3 updated cost from Babcock to rehabilitate the existing WFGD at Mill Creek Unit 4. 4 This estimate is consistent with the cost for the other two WFGDs which Zachry is 5 6 contracted for at Mill Creek, both of which are significantly lower than the estimated cost in the 2011 filing. The refurbished and new WFGD option values represent the 7 installed cost with a Level I engineering accuracy. 8

9 LG&E closely examined, by line item, the estimates Babcock and Zachry provided, to assess its overall confidence in the expected accuracy of the costs. An 10 updated analysis of the retire/retrofit decision made in the 2011 Environmental 11 Compliance Plan utilizing these costs was performed and a copy of the document 12 LG&E prepared that illustrates this analysis is attached as Exhibit JNV-3. After 13 14 completing this review, LG&E determined that constructing a new WFGD for Unit 3 and demolishing the existing WFGD at Unit 4 was a more cost-effective method of 15 compliance if an amendment to its Certificate could be obtained expeditiously from 16 17 the Commission. The estimated annual cost of operating the new WFGD is also set forth in the attached Exhibit JNV-3. 18

Q. If the WFGD-related capital costs for Mill Creek Unit 3 are higher than LG&E expected, is it still true that building environmental-compliance equipment for the unit is more economical than retiring and replacing it?

A. Yes. Although the total estimated capital cost for all of the compliance projects for
 Mill Creek Unit 3 has increased from the 2011 Environmental Compliance Plan
 estimate by approximately \$21 million, the anticipated fixed and variable operating

1 expenses have decreased largely because of the lower-than-expected cost of operating the baghouse, including the lower cost of sorbent injection for mercury and sulfuric 2 acid. When the 2011 Environmental Compliance Plan was developed, LG&E based 3 its projected baghouse operating costs on the Black &Veatch studies for high sulfur 4 coal applications and its limited experience with operating a similar facility at 5 6 Trimble County Unit 2. As its experience has developed, LG&E has further revised the projected costs, resulting in a reduction in operating expenses. As such, the 7 decision to construct a new WFGD, even at a higher capital cost than contained in the 8 9 2011 Environmental Compliance Plan, does not affect the prudency of LG&E's decision to retrofit, instead of retire, Mill Creek Unit 3. 10

In fact, the Net Present Value of Revenue Requirement ("NPVRR") savings associated with retrofitting Mill Creek Unit 3 rather than retiring it, which were initially projected to be \$756 million, can be maximized even if LG&E rehabilitates the existing WFGD at Mill Creek Unit 4. But to maximize the NPVRR savings to customers as shown in the table below, LG&E must receive approval to modify the Mill Creek Unit 3 Certificate by January 18, 2013:

17

Table 1: NPVRR Savings of WFGD Options for Mill Creek Unit 3

2011 Pla	in Rehab	New FGD	New FGD with Delay
Retrofit Savings (NPVRR, 2011 \$M) 75	6 794	820	782

Timely approval should allow LG&E to complete the new WFGD by April
20 2016, which is the date it must be in compliance with the Mercury and Air Toxics
21 Rule ("MATS Rule") (with a one year extension being granted). Under this scenario,

1 the NPVRR savings to retrofit Mill Creek Unit 3 are \$820 million, which is a \$64 million increase (eight percent) over the projected savings in the 2011 Environmental 2 Compliance Plan. Under this scenario, Commission approval as requested should 3 ensure construction can be commenced and be completed in a timely manner. If 4 Commission approval to modify LG&E's Certificate is not obtained as requested, 5 6 constructing a new WFGD will not meet the compliance deadline and will no longer maximize NPVRR savings; instead, based on this analysis rehabilitating the existing 7 WFGD at Unit 4 as planned would be more cost effective to customers, as the 8 9 NPVRR savings for rehabilitating the WFGD results in \$794 million in savings.

Q. Why is it important for the Commission to approve expeditiously LG&E's proposal?

A. If LG&E constructs a new WFGD but is unable to complete construction prior to the 12 April 2016 compliance date or obtain a second year extension of the MATS Rule 13 compliance date, the savings steadily decline because LG&E will no longer be able to 14 operate Mill Creek Unit 3 and thus will have to purchase power from a third party to 15 replace its capacity.⁹ For example, if the new WFGD is not completed until October 16 17 2016, a six-month delay, the NPVRR savings decline to \$782 million, based on estimated costs to purchase power from a third party. These analyses demonstrate 18 there is a short window of opportunity for LG&E to maximize NPVRR savings under 19 20 the new construction option.

Q. For the sake of clarity, please state what would be the cost of delaying an approval of LG&E's proposal and how LG&E will proceed if it does not receive a timely approval.

⁹ It is not clear that LG&E will be able to obtain a second year extension.

1 A. The cost to LG&E's customers of not receiving an order by January 18, 2013, approving the requested Certificate modification would be \$26 million in NPVRR 2 terms. Table 1 above shows that the value to customers of pursuing a new WFGD for 3 Mill Creek Unit 3 rather than rehabilitating Mill Creek Unit 4's WFGD disappears 4 after that time due to the need to purchase replacement capacity (most likely in the 5 6 form of a power-purchase agreement). Therefore, this analysis suggests LG&E should proceed within its current Certificate authority to rehabilitate the Mill Creek 7 Unit 4 WFGD if the Commission does not approve the requested Certificate 8 9 modification as requested.

Q. Do the NPVRR savings of building a new Mill Creek Unit 3 WFGD remain under different fuel-price projections less favorable to retrofitting existing coal units?

A. Yes, these savings hold true even under fuel-cost projections generally less favorable
to coal units, such as those from the Cambridge Energy Research Associates
("CERA") the Companies included in their analyses from the 2011 Environmental
Compliance Plan cases, as shown in Table 2 below:

17

Table 2: NPVRR Savings of WFGD Options for Mill Creek Unit 3

	2011 ECR Plan	Updated Rehab	New FGD	New FGD with Delay
Retrofit Savings (NPVRR, 2011 \$M)	338	376	402	370

19 Current base fuel-price projections remain within the ranges the Companies studied in 20 their 2011 Environmental Compliance Plan cases, so these results remain valid and 21 continue to support retrofitting Mill Creek Unit 3 generally, as well as specifically 22 supporting building a new WFGD for the unit.

Q. In addition to the savings associated with LG&E's proposal, what would be the
 environmental benefits of building a new WFGD for Mill Creek Unit 3 rather
 than rehabilitating the existing Mill Creek Unit 4 WFGD to serve Mill Creek
 Unit 3?

Both WFGD solutions will significantly improve the control of Mill Creek Unit 3's 5 A. 6 SO₂ emissions, but one of the significant benefits of building a new WFGD for Mill Creek Unit 3 is that it would remove at least 25% more of the likely SO₂ emissions 7 from a rehabilitated Mill Creek Unit 4 WFGD. The Babcock study indicated the 8 9 rehabilitated WFGD could remove up to 98% of the SO₂, increasing from the current 10 levels of up to 90% removal. A new WFGD would have a guaranteed removal rate of 98.5% with expected removal rates of 99% or higher, which would remove over three 11 hundred more tons of SO₂ emissions at Mill Creek Unit 3's forecasted 60% capacity 12 factor than would a rehabilitated WFGD, as shown in Figure 1 below: 13

Figure 1: Mill Creek 3 SO₂ Emissions at Forecasted 60% Capacity Factor

The company's experience with the same WFGD technology recently installed and operating at the KU Ghent and E.W. Brown stations have shown performance can exceed the guaranteed value of 98.5%. Thus, a new WFGD would deliver greater environmental benefits while reducing customers' energy costs. To deliver this win-win solution LG&E requests the Commission to approve the Certificate modification on an expedited basis.

1

8 Q. Is there a contracting advantage to committing soon to put in place a new
9 WFGD?

A. Yes. LG&E is currently contracting for the other WFGD work at Mill Creek, making
it important to act soon to increase the possibility of obtaining pricing similar to the

- 1 excellent pricing that has been obtained for the Unit 4 and combined Unit 1 and 2
- 2 WFGDs, as well as making it possible to lock in the pricing discussed herein.

3 Q. Does this conclude your testimony?

4 A. Yes, it does.
VERIFICATION

COMMONWEALTH OF KENTUCKY) SS:)) **COUNTY OF JEFFERSON**

The undersigned, John N. Voyles, Jr., being duly sworn, deposes and says that he is Vice President, Transmission and Generation Services for Louisville Gas and Electric Company and an employee of LG&E and KU Services Company, and that he has personal knowledge of the matters set forth in the foregoing testimony, and that the answers contained therein are true and correct to the best of his information, knowledge and belief.

John N. Voyles, Jr

Subscribed and sworn to before me, a Notary Public in and before said County and State, this 2012. day of

SEAL)

Notary Public

My Commission F Notary Public, State at Large, KY My commission expires Dec. 24, 2013

APPENDIX A

John N. Voyles, Jr.

Vice President, Transmission and Generation Services Louisville Gas and Electric Company and Kentucky Utilities Company 220 West Main Street Louisville, Kentucky 40202 (502) 627-4762

Education

Rose-Hulman Institute of Technology, B.S. in Mechanical Engineering - 1976

Previous Positions

E.ON U.S. LLC

June 2008 - Present -Vice President, Transmission and Generation Services 2003 - 2008 -Vice President, Regulated Generation

LG&E Energy Corp.

February - May 2003 -- Director, Generation Services

Louisville Gas and Electric Company

1998 - 2003 -- General Manager, Cane Run, Ohio Falls and Combustion Turbines
1996 -1998 -- General Manager, Jefferson County Operations
1991 - 1995 -- Director, Environmental Excellence
1989 - 1991 -- Division Manager, Power Production, Mill Creek
1984 - 1989 -- Assistant Plant Manager, Mill Creek
1982 - 1984 -- Technical and Administrative Manager, Mill Creek
1976 - 1982 -- Mechanical Engineer

Professional Development

Emory Business School -- Management Development Program Center for Creative Leadership (La Jolla, CA) University of Louisville -The Effective Executive Harvard Business School - Finance for the Non-Financial Manager MIT - Leading Innovation & Growth: Managing the International Energy Co.

Board/Committee Memberships

Fund for the Arts - Board Member Ohio Valley Electric Co. (OVEC) - Board member and Executive Committee member Electric Energy, Inc. - Board member Edison Electric Institute (EEI) - Committee member Energy Supply Executive Advisory Committee and the Environment Executive Advisory Committee Electric Power Research Institute (EPRI) - Chairman, Research Advisory Committee

Exhibit JNV-1

Babcock Power Environmental Inc. Mill Creek Unit 4 Upgrade Study

LG&E and KU Services Company Mill Creek Station WFGD Performance Upgrade Study

Feasibility Assessment Mill Creek Unit 3 Gas Being Diverted to Unit 4 WFGD System Upgrades

December 2, 2011

LG&E and KU Services Company

Mill Creek Station Unit 4 Upgrade Analysis WFGD System Upgrade

December 2, 2011

December 2, 2011

Mr. Larry Van Gansbeke LG&E and KU Services Company Project Engineering 820 West Broadway Louisville, KY 40202

RE: Mill Creek Station FGD System Upgrade Analysis Mill Creek Station, 14660 Dixie Highway, Louisville, KY 40272

Dear Mr. Van Gansbeke:

Babcock Power Environmental Inc. (BPEI) has conducted an in-depth condition survey and evaluation of the existing Unit 4 Wet Flue Gas Desulfurization (WFGD) System at Louisville Gas and Electric and KU Services Company's (LG&E and KU's) Mill Creek Generating Station. The purpose of the evaluation was to perform an Upgrade Analysis of Unit 4 WFGD System to service boiler Unit 3 while maintaining high (+98%) SO₂ removal at both 12,500 ppm¹ and 50,000 ppm chlorides.

BPEI's current evaluation of the existing Unit 4 WFGD is built on the Feasibility Assessment completed on March 16, 2011. By working with LG&E Engineering and the Mill Creek plant, BPEI has conducted a comprehensive assessment of existing conditions and has defined the upgrades required to meet the Basis of Design specification and Project goals. The Basis of Design and goals are as follows:

0	Fuel:	6.3lb SO2/mmBtu
0	Operating Chloride limit:	12,500 ppm & 50,000 ppm
0	SO2 Removal Efficiency:	+98.0%

BPEI and LG&E/KU have a long and very successful history of contracting and delivering multiple AQC Systems for your generating stations. We are confident this Upgrade Analysis will prove to further enhance our relationship as well as save LG&E/KU substantial capital compared to the cost of completely replacing the existing Mill Creek 4 Scrubber. Should you have any questions regarding our report please do not hesitate to contact me at (508) 854-3964, or via email: doleary@babcockpower.com

Very truly yours,

Daniel O'Leary Project Manager

¹ Chloride content of 12,500 ppm and 15,000 ppm has been used interchangeably in this report. They represent the same upgrade solution.

Cc: Eileen Saunders, LG&E and KU – Project Engineering Harry Culberson – BPEI Mike Kelly - BPEI

LG&E and KU Services Company Contract No. 843037 Mill Creek Unit 4 WFGD System Upgrade Analysis to Service Boiler Unit #3

Table of Contents

- A. Letter of Transmittal
- 1. EXECUTIVE SUMMARY
- 2. INSPECTION AND EVALUATION OF EXISTING WFGD SYSTEM
- 2.1 Absorbers
- 2.2 Inlet Duct
- 2.3 Recycle Spray Header
- 2.4 Recycle Spray Pumps
- 2.5 Mist Eliminator
- 2.6 Oxidation Air System
- 2.7 Limestone Slurry Feed
- 2.8 Absorber Bleed System
- 2.9 Primary Dewatering and Chloride Purge
- 3. MATERIAL BALANCE CHLORIDE PURGE EVALUATION
 - 3.1 Design Basis
 - 3.2 Original Design Basis with Filtrate Return
 - 3.2.1 Maintaining 8,000 ppm Chloride in Unit 3 WFGD System
 - 3.2.2 Maintaining 15,000 ppm or 50,000 ppm Chloride in Unit 3 WFGD system
 - 3.3 Revised Design Basis without Filtrate Return
 - 3.3.1 Maintaining 8,000 ppm Chloride in Unit 3 WFGD System
 - 3.3.2 Maintaining 15,000 ppm or 50,000 ppm Chloride in Unit 3 WFGD system
 - 3.4 Existing Dewatering System
- 4. PROCESS UPGRADES FOR EXISTING UNIT 4 WFGD SYSTEM
 - 4.1 Existing Absorber Modules
 - 4.2 Absorber Inlet and Awning above Absorber Inlet
 - 4.3 Recycle Spray Headers
 - 4.4 Spray Nozzles
 - 4.5 Wall Rings
 - 4.6 Recycle Pumps
 - 4.7 Agitators and Oxidation Air Lances
 - 4.8 Mist Eliminators and Mist Eliminator Wash
 - 4.9 Process Chemistry and Controls
 - 4.10 Absorber Vent and Overflow
 - 4.11 Bleed Pumps
 - 4.12 Hydrocyclones and Underflow Tank and Pumps
 - 4.13 Physical Flow Modeling
- 5. PROJECT PLAN

- 5.1 Basis of Design
- 5.2 Project Schedule
- 5.3 Outage Schedule
- 5.4 Work Scope and Construction Materials
 - 5.4.1 General Work 2012 to 2014
 - 5.4.2 Unit 4 4 week Outage 4/16/2012 to 5/7/2012
 - 5.4.3 Unit 4 1 week Outage 5/13/2013 and 1 week Outage 11/11/2013
 - 5.4.4 Unit 4 8 weeks Outage 9/29/2014 to 11/17/2014
- 6. Estimated Pricing

Attachments

General Arrangement Drawings Material Balances - Second Design Basis – no filtrate return

- First Design Basis - filtrate return via Clearwell Pond

Design Basis

Water Flow Schematic

Budget Engineering and Procurement Estimate

Work Scope

Schedule (high level)

1. EXECUTIVE SUMMARY

Babcock Power Environmental Inc. (BPEI) conducted an in-depth condition survey and evaluation of the existing Unit 4 Wet Flue Gas Desulfurization (WFGD) System at Louisville Gas and Electric and KU Services Company's (LG&E and KU's) Mill Creek Generating Station. The purpose of the evaluation was to perform an Upgrade Analysis of Unit 4 WFGD System to service boiler Unit 3, while maintaining high (+98%) SO₂ removal and high system reliability at both 12,500 ppm¹ and 50,000 ppm chlorides while burning a 6.3 lb SO₂/MMBtu coal.

Inspection

An inspection of Unit 4 WFGD absorbers was conducted by BPEI on September 27-28, 2011 during a short unit outage. The purpose of the inspection was to better understand the conditions and capability of the existing Unit 4 absorbers in order to develop a comprehensive scope of work to retrofit this unit to treat Unit 3 flue gas and reliably achieve high SO₂ removals.

The inspection revealed a number of issues that need to be corrected to achieve the high SO_2 removal efficiency specified while processing Unit 3 flue gas at design coal conditions. These findings include:

- Significant evidence of corrosion on the unit and support steel.
- Absorber flue gas inlet is shorter, and has a larger surface area, than typical new absorber designs.
- Quench water is run daily to prevent solids build up at the inlet. The use of quench water in this manner is not typical of a well configured system.
- In a high efficiency scrubber, the distance between spray levels and the distance between the tray and spray levels are ≥5 ft. In Unit 4 this spacing is only 3 ft.
- First spray header is only 3.25 ft above the top of the absorber inlet, as compared to a minimum of 6.5 ft in a new scrubber.
- Current spray nozzles provide little spray coverage along the absorber wall and between the absorber nozzles.
- Spray zone in Unit 4 is 11'7" as compared to high efficiency open spray towers which would typically have a spray zone of 20'.
- Use of reclaim water for ME washing often leads to scaling on the ME elements rather than washing off the solids. Scaling was evident on the chevron style Mist Eliminator (ME) in Unit 4. A clean water source should be used for this service
- Bleed pump performance is not optimal in terms of either pump wear and tear or power consumption without an orifice on the bleed return to the reaction tank.
- The hydrocyclone assembly is of an older design.

¹ Chloride content of 12,500 ppm and 15,000 ppm has been used interchangeably in this report. The materials required to maintain a 12,500 ppm chlorides level is also suitable to allow the system to operate at 15,000 ppm chlorides.

Design Basis

The design basis coal has a sulfur content of $6.3 \text{ lb } \text{SO}_2/\text{MMBtu}$. Material balances were created for Unit 4 allowing the scrubber slurry to cycle up to 8,000 ppm chlorides (current operation) and to levels of 15,000 ppm and 50,000 ppm chlorides assuming material upgrades in the absorbers.

Process Upgrades

A number of process upgrades are recommended for the existing Unit 4 WFGD system to be able to treat Unit 3 flue gas maintaining high (+98%) SO₂ removal and chloride concentrations of 15,000 ppm and 50,000 ppm:

- Replace existing WFGD Absorber modules with new high grade alloy materials and upgraded design.
- Replace and extend the absorber inlet and replace the absorber inlet awning
- Replace recycle spray headers and space 5' apart above the tray.
- Stagger spray nozzles layout and increase spray nozzle density
- Replace nozzles with dual-flow nozzles and add wall rings to spray levels 2 and 3.
- Replace recycle pumps with pumps suitable for high chloride service.
- Install five (5) new agitators and oxidation air lances on each reactor tank
- Install new DV210 Mist Eliminators.
- Provide a source of clean water for the ME wash system.
- Optimize process operating ranges and control logic.
- Redirect reaction tank vent into the absorber and add a seal pot to the overflow.
- Replace bleed pumps and primary dewatering hydrocyclones.
- Complete physical model to evaluate new ductwork layout and inlet duct design.

Project Plan

Babcock Power Environmental, Inc. has developed a preliminary Project Plan that capitalizes on its engineering, product fabrication, installation, and startup expertise to provide LG&E-KU Services Company with an efficient retrofit design that provides a low project cost and a short outage schedules.

The fully upgraded Unit 4 absorbers will be finished and available for service on November 17, 2014 at the completion of an 8-week outage on Unit 4. Flue gas from Unit 3 can be processed in the upgraded Unit 4 absorber once the blank off plate is removed during a one-week outage on Unit 3 scheduled in the Fall of 2014.

There are six outages, of various lengths, scheduled on Units 3 and 4 starting with a four (4) week outage on Unit 4 beginning April 16, 2012. Babcock Power needs to receive full notice to proceed by 1/1/2012 in order to place orders with vendors, perform detailed engineering and materials fabrication for this outage. BPEI plans to replace the absorber reaction tank tile lining as required, replace the reaction tank roof, replace the floor and install agitator mounting boxes and nozzles during this first outage. Scope of work assigned to the other outages was scheduled based on the lead time to engineer, procure and deliver vendor supplied equipment.

General work that can take place while the unit is operating has been scheduled throughout the period of 2012 to 2014. The general work includes replacement of the recycle pumps and oxidation air piping.

Part of the general work includes structural steel improvements and an interconnecting duct between Unit 3 and 4. These activities are critical for the upgrade of Unit 4, but are in LG&E-KU's scope of work. BPEI has included them in the project schedule to ensure the project can be completed in the available time.

Materials of construction were identified for two chloride levels: 12,500 ppm and 50,000 ppm. These two cases require the selection of different materials to address the condition in the absorber. The schedule for installing this equipment is not however affected by the required material.

Estimated Pricing

The estimated Engineering and Procurement cost of the retrofit improvements for the Mill Creek Unit 4 WFGD upgrade are shown below. This cost is based on current 2011 dollars without escalation. The accuracy is +25% to -10%. The pricing is for engineering and procurement only. No allowances have been made for BOP work, construction or maintenance upgrades to the WFGD structure. Additional details of this estimate are available in the attachments.

	Engineering		
Description	<u>Labor</u>	Materials	<u>Total</u>
Case 1:Alloy 27–7MO Unit 4	\$7,800,000	\$24,700,000	\$32,500,000
(12,500 ppm chlorides)			
Case 2: Alloy C-276 Unit 4	\$7,800,000	\$27,400,000	\$35,200,000
(50,000 ppm chlorides)			

Budget Engineering and Procurement Estimate

Conclusion

Flue gas from Unit 3 can be processed in an upgraded Unit 4 while maintaining high (+98%) SO_2 removal and high reliability at both 12,500 ppm and 50,000 ppm chlorides. These removal efficiencies can be achieved with quality, well proven, reliable and cost effective technology that has been successfully applied at multiple installations throughout the United States.

The Unit 4 upgrade can be completed and the Unit 3 flue gas stream tied-in by November, 2014 through the effective use of six outages, of various lengths, scheduled for Units 3 and 4.

EPC cost to upgrade Unit 4 WFGD System is extremely cost competitive to the cost of new construction. To fully evaluate cost, the cost of existing infrastructure and BOP upgrades should be added to the estimated cost provided in this report.

2. INSPECTION AND EVALUATION OF EXISTING WFGD SYSTEM

A walk down and inspection of Unit 4 absorbers was completed in September on the 27^{th} and 28^{th} during a short unit outage. The reaction tanks were not drained during this outage and, therefore, were not available for inspection. The purpose of the inspection was to better understand the capability of the Unit 4 absorbers in order to develop a comprehensive scope of work to retrofit this unit to treat Unit 3 flue gas and achieve high SO₂ removals. A previous evaluation of the Mill Creek system was completed earlier this year and the results were summarized in a report issued to LG&E-KU in March of 2011.

2.1 Absorbers

Unit 4 Boiler System is currently configured with two 50% ID Fans. Flue gas from ID Fan A is directed to two absorber towers where recycle slurry is supplied from a common reaction tank. Flue gas from ID Fan B is directed to two additional absorber towers where recycle slurry is supplied from a common reaction tank servicing these two absorber towers. Both reaction tanks are Stebbins tile lined. These reaction tanks are relatively small for a forced oxidation WFGD system. The reaction tanks and absorber overflows vent to atmosphere. Figure 1 shows photos of the existing reaction tank vent and overflow line.

Figure 1. Absorber Reaction Tank Vent and Overflow

Each absorber tower has a single tray level and four recycle spray levels. Each reaction tank has four recycle pumps each providing slurry to two recycle spray levels, one on the 'A' and one on the 'B' towers, for a total of 8 recycle pumps feeding 16 recycle spray levels. Oxidation air is introduced thru a sparger type system. The sparger is arranged as a single header located above the floor introducing air evenly throughout the absorber.

Flue gas flows vertically through the four spray levels, interacting with the slurry sprayed from the recycle spray headers. Above the first spray header, LG&E has installed a perforated plate or

tray for the purpose of providing even flue gas distribution. Flue gas exits the absorbers through the mist eliminators to the stack. Figures 2 and 3 show the general arrangements of the existing Unit 4 absorbers.

Figure 2. General Arrangement – South Elevation

Figure 3. General Arrangement – East Elevation

All scrubber internals are some degree of stainless steel. Hastelloy or 317LMN wallpaper has been applied at various locations in the scrubber and outlet duct. Reheaters, originally installed in the outlet duct of the scrubber towers, have been removed. There was significant evidence of corrosion on the unit and support steel. Main contributors to the corrosion are believed to be flue gas leakage from the ductwork and pinhole leaks in the absorber shell. Figure 4 shows a few of the areas of corrosion.

Figure 4. Areas of Corrosion on Unit 4

2.2 Inlet Duct

The absorber flue gas inlet is shorter and has a larger surface area than is typical for new absorber designs. The length, shape, and angle of a typical absorber inlet are designed to minimize splash back of absorber slurry into the carbon steel ductwork. Flue gas velocity in the absorber is controlled with the size of the absorber inlet to evenly distribute flue gas prior to the first spray level, to eliminate any reverse flow in the duct, and to maintain the wet/dry interface in the absorber area. Otherwise, a large, shallow absorber inlet may result in corrosion of the ductwork upstream of the absorber. Flow modeling can determine if the installed tray offsets the

negative impact of the current absorber inlet design or if modifications are required to the absorber inlet and/or the size of the awning (rain hood) installed to prevent slurry from entering the absorber inlet duct.

There is an emergency quench water system installed at the absorber inlet that is operated daily to reduce the solids buildup at the absorber inlet. The use of quench water in this manner is not typical of a well configured system and is an indication of issues with the existing inlet design and spray header layout.

2.3 Recycle Spray Header

The spray levels and tray are closely spaced together (approximately 3 ft apart) compared to high efficiency scrubber designs (\geq 5 ft apart). When the tray was added to the absorbers between spray levels 1 and 2, the spray nozzles installed on spray level 2 were directed to spray up to prevent erosion issues on the tray.

Dual-spray nozzles are designed to produce a finer mist without sacrificing pressure drop. However, dual-spray nozzles on the first spray level would have to remain downward-only spray because of the tray installed directly above the spray header. Likewise, the dual-spray nozzles on the second spray level would have to remain upward-only spray. As a result, if there are no modifications completed to the existing spray header arrangement, dual-spray, bi-directional spray nozzles could only be installed on the third spray header. The total spray zone is also very small, only 11'7". High efficiency open spray towers of this size would normally have a spray zone that is closer to 20' in length, almost twice the height of the existing spray header arrangement. Figure 5 shows the existing spray zone on the Unit 4 absorber compared to a high-efficiency designed absorber.

Figure 5. Absorber Spray Zone Height

Internal inspection determined that only the second and third recycle spray level piping is 316L stainless steel where it was previously thought all 4 spray-levels were stainless steel. The piping in the first and fourth recycle spray levels is FRP and is showing signs of stress and fatigue. The location of the first spray level is much closer to the absorber inlet than recommended in new scrubber designs. The spray header is only 3.25' above the top of the absorber inlet. There might be additional issues of splash back into the carbon steel section of the ductwork upstream of the absorber inlet as a result. New scrubber designs utilize at least 6.5' between the top of the absorber inlet and the first spray header. Figure 6 shows photos of the existing spray headers.

Figure 6. Existing Absorber Spray Headers

The high-flow, hollow-cone spray nozzles currently installed in the Mill Creek absorber are designed to produce small droplets with a spray pressure of 10 psig at a spray angle of 120°. Figure 7 shows the spray coverage with this spray header and nozzle configuration and clearly shows there is very little spray coverage along the absorber wall and between the absorber nozzles. The four spray headers are identical in layout such that some channeling of the flue gas through the absorber likely occurs. Installing wall rings at spray levels 2 and 3 could help prevent flue gas sneakage in the corners and along the walls of the absorber.

Figure 7. Typical Spray Coverage at Mill Creek

LG&E-KU requested that BPEI estimate the SO₂ removal efficiency from the currently configured absorber with upgrades similar to the Trimble County and also asked what fuel sulfur level would be needed to achieve 98% removal with these same modifications. The scrubbing efficiency of the currently configured absorber could be improved with the addition of wall rings and dual flow spray nozzles², similar to Trimble County. However, an upgrade limited to these modifications is not recommended as these upgrades will not address all of Mill Creek's concerns, namely: meeting high SO₂ removal efficiencies, eliminating corrosion issues, increasing reliability, and allowing operation at 12,500 or 50,000 ppm chlorides. A very short spray zone and the inability to install dual-orifice, bi-directional spray nozzles on all lower spray headers are the prime factors that limit SO₂ removal from the current Unit 4. The performance capability of the currently configured Unit 4 absorber with the addition of wall rings and dual-flow spray nozzles is limited as follows:

- An SO₂ removal efficiency of 95% and as high as potentially 96% can be maintained at the design coal conditions
- An SO₂ removal efficiency of 98% if the sulfur content of the coal is reduced by 50%, or to approximately 3.2 lb SO₂/MMBtu

² As mentioned previously, only spray level 3 would have up/down dual flow nozzles installed. The other three spray levels would have single direction dual flow nozzles installed in the absorber as currently configured.

2.4 Recycle Spray Pumps

Unit 4 recycle pumps were replaced in the mid 1990s and appear to be adequately sized to provide a high L/G ratio of 162 gal/macf when treating Unit 3 flue gas. However, SO_2 removal will be limited because of the poor spray coverage and the limited spray zone height.

2.5 Mist Eliminator

The lower mist eliminator (ME) wash water header piping is FRP while the middle wash water header piping is alloy. The mist eliminator section contains baffles that are used to direct the air flow. It is not clear why the baffles are necessary or the exact geometry of the ME section.

The chevron style MEs showed scaling/buildup in some areas as well as some plugged wash nozzles. The plant reported that the Clearwell Pond is the source of wash water for the ME wash system and that this pond receives filtrate return from dewatering. Reclaim water is not recommended for ME wash. The high calcium, magnesium, and sulfate concentrations and any fines in the water result in hard water scaling in piping, wash nozzle pluggage, and erosion of wash valves. These components can also introduce a source of alkalinity at the ME section in the absorber. This alkalinity will remove a fraction of the remaining SO₂ exiting in the flue gas resulting in precipitation of solids in the ME section. Reclaim water often ends up causing scaling on the ME elements instead of washing solids off the ME elements. Figure 8 are photos showing scaling evident during the inspection.

Figure 8. Photos of Existing Unit 4 Mist Eliminator Elements

2.6 Oxidation Air System

There are no agitators installed on the reaction tanks. Mixing and absorber chemistry is maintained with oxidation air. Oxidation air is injected by a sparge system in a ring installed several feet off the absorber reaction tank floor. A fraction of the oxidation air is also used to maintain agitation in the area sump. There is a quench system on the oxidation header at each reaction tank. There are two quench nozzles installed at each location spraying approximately 100 gpm of quench water. Adequate quench can be maintained with less than 10 gpm at each location. The air sparger ring is also a source of high unreliability in the absorber system causing

forced unit outages whenever the oxidation air system is out of service longer than 30 minutes due to sparger ring pluggage.

Oxidation is supplied by 2 of 3 air compressors. The control logic is such that there is a lead blower that is base loaded and the second blower in service follows to maintain oxidation air supply pressure set point. The standby compressor will automatically start if one of the compressors in service trips.

2.7 Limestone Slurry Feed

Limestone slurry feed is based on maintaining absorber slurry pH between 4.7 and 5.8. The pH set point is adjusted by the control room operator based on unit load and SO₂ removal. Gypsum purity is maintained above 90% in the absorber and is measured by the on site lab. Figure 9 is a photo of the limestone slurry control valve on top of the reaction tank.

Figure 9. Limestone Slurry Control Valve and Bypass

2.8 Absorber Bleed System

Absorber density is maintained between 10-12% solids. A pair of bleed pumps (1 operating + 1 spare) on each reaction tank maintains absorber density. Bleed from each pair of pumps is directed to a dedicated hydrocyclone assembly. There are no orifices installed on the bleed return to the reaction to balance the pressure losses between bleeding to the hydrocyclone assembly and bleeding back to the reaction tank. The existing bleed pumps are not variable speed. Without orifices, the pumps must operate on different parts of the pump curve when bleeding to dewatering at high solids versus returning bleed to the reaction tank at low solids. This is not optimal for pump performance in terms of either pump wear and tear or power consumption. There is no flush on the bleed piping, slurry gravity drains back to reaction tank.

2.9 Primary Dewatering and Chloride Purge

At the high absorber slurry density set point, bleed is directed to primary dewatering hydrocyclones. Underflow from the hydrocyclones gravity drains to an underflow storage tank and is pumped to gypsum slurry storage at a common dewatering area. Overflow from the hydrocyclones is gravity fed back to the absorber. A fraction of the overflow can be directed to an area sump and purged from the absorber system to maintain chloride concentration and remove fines from the process to maintain gypsum quality and dewatering operation.

The hydrocyclone assembly is an older design with several cyclones (28 total cyclones for Unit 4 as compared to 10, plus 2 spare, cyclones proposed for the new Unit 4 WFGD system). There is no supply pressure indication to monitor hydrocyclone performance online. Monitoring hydrocylone supply pressure can help determine if there are pluggage issues that need to be addressed. The lab monitors overflow and underflow solids concentration to ensure the hydrocyclone assembly does not have any buildup, pluggage, or wear issues. Photos of the existing hydrocyclone assemblies at Mill Creek and Brown are in Figure 10.

Figure 10. Photos of Hydrocyclone Assemblies at Mill Creek and Brown

3. MATERIAL BALANCE – CHLORIDE PURGE EVALUATION

3.1 Design Basis

The original design basis submitted for the new absorbers systems on Units 1/2 and 4 was used to re-model the material balance for Unit 3 operation through Unit 4 absorbers. This design utilizes coal with a sulfur content of 6.0 lb SO₂/MMBtu and a reclaim stream from the Clearwell Pond that contains filtrate from dewatering. Table 1 is a summary of the coal used to develop the flue gas properties for this evaluation. The previous evaluation, in the March 2011 report, was completed using slightly higher coal sulfur content, 6.3 vs. 6.0 lb SO₂/MMBtu.

Tuble It Design Cour Conditions								
Coal Analysis	Design							
Carbon	61.20%							
Hydrogen	4.28%							
Sulfur	3.36%							
Nitrogen	1.27%							
Chlorine	0.16%							
Oxygen	6.89%							
Ash	12.00%							
Moisture	11.00%							
Higher Heating Value	11,200 Btu/lb							
Filtrate Return	Yes							

Table 1. Design Coal Conditions

A new design basis was submitted (4-Nov-11) for the new absorber systems on Units 1/2 and 4. This new design basis utilizes a coal with the higher sulfur content of 6.3 lbSO₂/MMBtu and a higher chlorine content of 0.35%. Also LG&E-KU reported that no filtrate will be returned through the Clearwell Pond. Table 2 is a summary of the revised coal. Material balances were completed for all cases as it is unclear which case is the appropriate design basis for Mill Creek current and future operation. The conflicting design conditions impact calculated purge rates, but do not impact the proposed absorber upgrades identified in this report.

Coal Analysis	Design
Carbon	60.00%
Hydrogen	4.00%
Sulfur	3.45%
Nitrogen	1.30%
Chlorine	0.35%
Oxygen	5.90%
Ash	14.00%
Moisture	11.00%
Higher Heating Value	10,900 Btu/lb
Filtrate Return	No

Table 2. Revised Design Coal Conditions

3.2 Original Design Basis with Filtrate Return

Chloride concentration is maintained by purging a fraction of the hydrocyclone overflow from the WFGD process. This purge rate was evaluated, for the original design basis (Table 1), assuming that the Unit 3³ WFGD system was designed for 8,000 ppm, 15,000 ppm and 50,000 ppm chlorides. These evaluations assumed that the filtrate containing chloride is returned to the WFGD systems via Clearwell Pond. Figure 11 is a schematic of the water streams leaving and returning to Unit 3 WFGD system. Section 3.3 describes a scenario when this filtrate is not returned to the system.

Figure 11. Schematic of Water Flow – Filtrate Returns to WFGD System

3.2.1 Maintaining 8,000 ppm Chloride in Unit 3 WFGD System

The system currently consists of materials of construction that allow the scrubber slurry to cycle up to 8,000 ppm chloride concentration. Chloride concentration is maintained by purging a fraction of the hydrocyclone overflow from the WFGD process. Based on the design coal and

³ Please note: reference to Unit 3 in this section refers to the flue gas from Unit 3 treated in the existing (or upgraded) Unit 4.

full load conditions, the average purge rate required to maintain a chloride concentration of 8,000 ppm when directing Unit 3 flue gas to the existing Unit 4 WFGD system is 136 gpm.

New WFGD systems are being proposed for Units 1/2 and 4. Units 1 and 2 flue gas streams will be combined to one absorber island and Unit 4 will have a dedicated absorber island. The materials of construction proposed for these new WFGD systems are designed to operate at chloride concentrations up to 50,000 ppm. The slurry from all the absorber systems is directed to a common dewatering system. It was reported by the plant that filtrate from dewatering eventually ends up in the Clearwell Pond and reclaimed as makeup to all the absorber systems. This reclaim will contain higher chlorides once the new WFGD systems start up. As a result, higher purge rates will be required to maintain Unit 3 operation at 8,000 ppm. Multiple material balances were completed to determine the purge rate required to maintain the existing materials of construction on the old Unit 4 absorbers when treating Unit 3 flue gas. These results are summarized in Table 3.

Water B	alance	Preliminary Purge Rates, gpm						
U1/U2 & U4 U3		U1/U2	U4	U3	Total			
8,000 ppm 8,000 ppm		211	168	136	515			
15,000 ppm	8,000 ppm	99 79		227	405			
50,000 ppm	8,000 ppm	12	10	680*	702			
Direct Unit 3 Purge to Units 1/2 & 4								
15,000 ppm	8,000 ppm	166	133	**	299			
50,000 ppm	8,000 ppm	73	58	**	131			

1	Table 3.	Prelim	ninary	Purge	Rates	for l	Existing	Material	s of	Constru	ction

* Require additional 14 gpm additional fresh water makeup

** Purge redirected to Units 1, 2, and 4

The new WFGD design calls for two specific design conditions, 15,000 ppm⁴ Cl and 50,000 ppm Cl. If Units 1/2 and Unit 4 WFGD systems operate at 15,000 ppm chloride, the purge rate for Unit 3 increases from 136 gpm to 227 gpm. If Mill Creek decides to operate the new WFGD systems at the design chloride concentration of 50,000 ppm to minimize purge from those WFGD processes, the purge from Unit 3 increases substantially, up to 680 gpm. To maintain this high of a purge rate, 100% of the overflow from the primary dewatering hydrocyclones will be directed to purge. Plus, reclaim makeup would have to be restricted by a small volume and additional (14 gpm) low-chloride service water makeup would be required to maintain 8,000 ppm chloride in the Unit 3 absorbers. At 50,000 ppm to 702 gpm because of the high purge rates required for Unit 3 operation.

Additional cases were completed to consider directing purge from Unit 3 to Units 1/2 and Unit 4 WFGD systems to decrease the overall purge from the WFGD system by cycling up the

 $^{^4}$ The material balances were prepared at chloride levels of 15,000 ppm and 50,000 ppm which are equivalent to the design values for the new Units 1/2 and 4. The material required to maintain 12,500 ppm chlorides is also suitable to allow the system to operate at 15,000 ppm.

chlorides leaving with the purge from Unit 3 in Unit 1/2 and 4 absorbers. Under this scenario, the chloride purge is directed toward Unit 1/2 and 4 rather than going to the Ash Pond. If 15,000 ppm is maintained on Units 1/2 and Unit 4, the overall purge rate can be reduced from 405 gpm to 299 gpm by directing Unit 3 purge to the other two absorber systems. If 50,000 ppm is maintained on Units 1/2 and 4, the overall purge rate can be reduced from 702 gpm to 131 gpm by directing Unit 3 purge to the other two absorber systems.

3.2.2 Maintaining 15,000 ppm or 50,000 ppm Chloride in Unit 3 WFGD system

Additional material balances were completed to determine Unit 3 purge rates if the materials of construction were upgraded to higher grades of alloy. These cases are summarized in Table 4. If the materials of construction are upgraded to handle 15,000 ppm Cl^5 , Unit 3 purge rate can be reduced from 136 gpm to 64 gpm. However, if the new WFGD systems operation at a chloride concentration of 50,000 ppm, the purge from Unit 3 increases up to 335 gpm. If 50,000 ppm is maintained on Units 1/2 and 4, the overall purge rate can be reduced from 357 gpm to 76 gpm by directing Unit 3 purge to the other two absorber systems. If the materials of construction on Unit 3 are upgraded to handle 50,000 ppm Cl, Unit 3 purge rate can be reduced to 8 gpm.

Water B	alance	Preliminary Purge Rates, gpm						
U1-U2 & U4 U3		U1&2	U4	U3	Total			
8,000 ppm	8,000 ppm	211	168	136	515			
15,000 ppm	15,000 ppm	99	79	64	242			
50,000 ppm	15,000 ppm	12	10	335	357			
50,000 ppm	50,000 ppm	12	10	8	30			
Direct Unit 3 Purge to Units 1, 2, & 4								
50,000 ppm	15,000 ppm	42	34	**	76			

Fable 4.	Preliminary	Purge R	lates for I	[]ngrade]	Materials of	Construction
	1 I Chimman y	IUISCI		opgiaue		Constituction

** Purge redirected to Units 1, 2, and 4

3.3 Revised Design Basis without Filtrate Return

The purge rates were evaluated with the revised design basis (Table 2) assuming that Unit 3 WFGD system had a chloride concentration of 8,000 ppm, 15,000 ppm, and 50,000 ppm. These evaluations assume that the filtrate containing chloride is not returned to the WFGD system as shown in the schematic in Figure 12. When filtrate containing chloride is not returned to the WFGD systems, the purge rates from the absorber systems decrease under constant fuel conditions. However it should be noted, the overall purge from the plant also includes filtrate if it is not reclaimed through the absorbers.

⁵ Identical materials required to maintain 12,500 ppm Cl

Figure 12. Schematic of Water Flow – Filtrate Does Not Return to WFGD System

3.3.1 Maintaining 8,000 ppm Chloride in Unit 3 WFGD System

Based on the revised design coal with a higher chlorine content and full load conditions, the average purge rate required to maintain a chloride concentration of 8,000 ppm is 185 gpm when directing Unit 3 flue gas to the existing Unit 4 WFGD system.

Since no filtrate is returned from the common dewatering system, Unit 3 water balance is not impacted by water balances maintained on Units 1/2 and 4. The overall absorber purge rate decreases when higher chlorides are maintained in the new WFGD absorber systems. These results are summarized in Table 5. This table provides the total water purged from the system which is a combination of the chloride purge entering the Ash Pond and common filtrate entering "E" Pond.

Water B	Balance	Preliminary Purge Rates, gpm				Filtrate	Total		
U1-U2 &	U3	U1&2	U4	U3	Total	Loss,	Water		
U4						gpm	Purge, gpm		
8,000 ppm	8,000 ppm	293	229	185	707	1,074	1,781		
15,000 ppm	8,000 ppm	40	30	185	255	1,104	1,359		
50,000 ppm	8,000 ppm	0	0	185	185	1,109	1,294		
Direct Unit 3 Purge to Units 1, 2, & 4									
15,000 ppm	8,000 ppm	95	74	**	169	1,104	1,273		
50,000 ppm	8,000 ppm	0	0	**		1,109	1,109		

Table 5. Preliminary Purge Rates for Existing Materials of Construction

** Purge redirected to Units 1, 2, and 4

While no purge is required for chlorides at the 50,000 ppm operating condition for Units 1/2 and 4, some purge may be required to remove fines from the process to maintain dewatering operation.

Additional cases were completed to consider directing purge from Unit 3 to Units 1-2 and Unit 4 WFGD systems to decrease the overall purge from the WFGD system. If 15,000 ppm is maintained on Units 1/2 and Unit 4, the overall purge rate can be reduced from 255 gpm to 169 gpm by directing Unit 3 purge to the other two absorber systems. If 50,000 ppm is maintained on Units 1-2 and 4, the overall purge rate can be reduced from 185 gpm to 0 gpm by directing Unit 3 purge to the other systems. Again, there may be purge requirements to remove fines for dewatering operation.

3.3.2 Maintaining 15,000 ppm or 50,000 ppm Chloride in Unit 3 WFGD system

Additional material balances were completed to determine Unit 3 purge rates if the materials of construction were upgraded to higher grades of alloy. These cases are summarized in Table 6. If the materials of construction are upgraded to handle 15,000 ppm Cl, Unit 3 purge rate can be reduced from 185 gpm to 25 gpm. If 50,000 ppm is maintained on Units 1-2 and 4, the overall purge rate can be reduced from 25 gpm to 0 gpm by directing Unit 3 purge to the other two absorber systems. If the materials of construction on Unit 3 are upgraded to handle 50,000 ppm Cl, Unit 3 purge rate can be reduced to 0 gpm.

Water I	Balance	Preli	minary P	urge Rate	Filtrate	Total			
U1-U2 &	U3	U1&2	U4	U3	Total	Loss,	Water		
U4						gpm	Purge, gpm		
8,000 ppm	8,000 ppm	293	229	185	707	1,074	1,781		
15,000 ppm	15,000 ppm	40	30	25	95	1,115	1,210		
50,000 ppm	15,000 ppm	0	0	25	25	1,119	1,144		
50,000 ppm	50,000 ppm	0	0	0	0	1,122	1,122		
Direct Unit 3 Purge to Units 1, 2, & 4									
50,000 ppm	15,000 ppm	0	0	**	0	1,119	1,119		
	10,000 ppin				0	1,117	1,117		

Table 6. Preliminary Purge Rates for Upgrade Materials of Construction

** Purge redirected to Units 1, 2, and 4

3.4 Existing Dewatering System

BPEI recommends an evaluation of the balance of plant regarding operation at higher chloride concentrations. Specifically the dewatering and reclaim water system materials of construction, valves, and instrumentation should be reviewed

4. PROCESS UPGRADES FOR EXISTING UNIT 4 WFGD SYSTEM

The following upgrades are recommended for the existing Unit 4 WFGD system to be able to treat Unit 3 flue gas maintaining high (+98%) SO₂ removal and higher chloride concentrations.

- Replace existing WFGD Absorber modules with new upgraded design
- Replace absorber inlet
- Replace awning over absorber inlet
- Replace recycle spray headers and space 5' apart above the tray
- Stagger spray header layout
- Increase spray density by increasing the number of nozzles per spray level from 36 to 52
- Change spray level 1,2 & 3 nozzles to dual-flow, up-down nozzles
- Change spray level 4 nozzles to dual-flow, double-down nozzles
- Add wall rings to spray levels 2 and 3
- Replace recycle pumps with equipment suitable for high chloride service
- Install five (5) new agitators and five (5) new oxidation air lances on each reactor tank (total of 10 lances) and add external distribution ring above normal liquid level to supply air to the individual lances.
- Install new DV210 Mist Eliminators
- Provide a source of clean water for the ME wash system
- Optimize process operating ranges and control logic
- Redirect reaction tank vent to the absorber
- Add a seal pot to the reaction tank overflow
- Replace bleed pumps
- Replace primary dewatering hyrdocyclones
- Complete physical model to evaluate new ductwork layout and inlet duct design

BPEI's recommended equipment vendors and justification for these vendor selections are included in the sections below.

4.1 Existing Absorber Modules

Replace existing 317LMN alloy absorber modules with higher grade alloy materials to handle higher chloride concentrations. For the same reason, all valves and instrumentation will have to be replaced on slurry and reclaim water lines to handle the higher chloride concentrations.

4.2 Absorber Inlet and Awning above Absorber Inlet

Since the inlet ductwork is going to be modified to accept flue gas from Unit 3 and the absorber modules replaced to handle higher chlorides, it is recommended to replace the absorber inlet. The new absorber inlet will be longer with a surface area designed to maintain flue gas velocity between 50 and 60 ft/sec. The awning design above absorber inlet will be evaluated and redesigned to minimize the potential for carryover into the inlet ductwork. Figure 13 are typical absorber inlet duct and awning drawings.

Figure 13. Typical Absorber Inlet Awning

4.3 Recycle Spray Headers

The stainless steel headers will require new materials of construction to handle the higher chlorides, also the existing FRP headers show excessive signs of stress and deterioration and need to be replaced. BPEI proposes new FRP spray headers redesigned to produce a denser spray pattern and a staggered layout pattern. Spray nozzle location and spacing on the spray headers is an important design consideration, which must take into account relative locations of adjacent nozzles on alternate levels to take full advantage of the interaction between nozzle spray cones. Staggering nozzle layout between spray headers minimizes the potential of gas channeling or 'laning' through paths of low liquid flow. Increasing the spray density also has the potential additional benefits of increasing the removal of particulate and acid gas (SO₃) in the absorber. Increasing spray density will have some impact on pressure drop across the absorber.

The current arrangement of the tray and spray headers is less than optimal for maximum SO_2 removal. The spray headers are spaced closely together and the tray is installed between spray levels 1 and 2. The present nozzle arrangement is identical on all spray levels which results in flue gas channeling ("laning") through the absorber, reducing SO_2 removal potential.

Historically, trays were installed in open spray towers with a spray header installed below the tray to quench the flue gas and minimize scaling on the tray. This issue primarily affected natural oxidation systems. Research has since been completed which demonstrates that a quench spray header is not necessary for limestone, forced-oxidation systems. BPEI proposes leaving the installed tray at its existing elevation and spacing the spray headers in the newly designed absorber module so that they are all located above the tray.

The spray headers will be relocated 5 ft apart to match current design practices for high efficiency absorbers. To create the extra space required in the spray zone section, BPEI is utilizing the abandoned re-heater section and relocating the mist eliminator section in this unused area. This concept for spray header spacing allows the use of bi-directional nozzles on all but the top-level spray header. Further, this combination of spray header spacing and nozzle selection provides uniform distribution of slurry to the entire spray zone and enhanced droplet collision and retention which increases SO_2 removal efficiency by promoting more intimate contact between SO_2 molecules and slurry droplets. Figure 14 shows the staggered pattern for the spray headers to provide better spray coverage and Figure 15 shows the spray pattern with the modified spray header layout.

Figure 14: Modified Spray Header Layout with 5' Spacing

Figure 15. Modified Nozzle Arrangement

4.4 Spray Nozzles

BPEI proposes installing dual-orifice nozzles on all four spray levels. Spray level 4 will use dualorifice 'double-down' style nozzles while spray levels 1, 2, and 3 will use dual-orifice 'up-down' style nozzles. Installing dual-orifice nozzles on all four spray levels maximizes surface area available for liquid to gas contact. Dual-orifice spray nozzles increase the number of droplets and the number of droplet collisions (when measured against single-orifice nozzles) by increasing the amount of spray area from the same total nozzle flow. Increasing the number of droplet

collisions results in smaller droplets and a significant improvement in SO_2 removal efficiency due to increased intimate contact between flue gas and slurry droplet.

Up-down nozzles have the additional benefit of increasing the residence time of droplets in the absorber by doubling the slurry spray height. Spray level 4 utilizes double-downward nozzles to minimize carryover into the mist eliminator section. Figure 16 is an example of a bi-directional spray nozzle being tested.

Figure 16. Bi-directional Spray Nozzle Testing

4.5 Wall Rings

There is a physical limit to the degree of spray coverage along the wall of the absorbers especially in the corners of square reactor modules. Increased flue gas flow is expected along the wall because of the decreased resistance from this reduced coverage. BPEI will add wall rings to deflect flue gas from the absorber wall into the interior of the absorber where there is a greater chance of interaction with recycle spray droplets. This also promotes more thorough mixing of the flue gas, ensuring no areas of high SO_2 concentration along the walls are allowed to bypass the effective spray zones. Figure 17 shows a typical wall ring installation in a circular, tile-lined vessel.

Wall rings will be added at spray levels 2 and 3 to maximize the benefit of contacting flue gas with the slurry spray while minimizing the impact on pressure drop across the absorber. Preliminarily, the pressure drop increase is expected to be minimal. Figure 18 is a graphic representation of the wall rings proposed for Mill Creek absorbers.

Figure 18: Proposed Wall Ring, Typical Arrangement

4.6 Recycle Pumps

Two options were considered for the recycle pumps. The first is to replace the current equipment with pumps appropriate for operation up to 50,000 ppm chlorides. This alternative will require new foundations for the pumps plus new electrical and (spray header) piping. A

second option is to rebuild the pumps. This second option would allow the foundations, electrical and riser pipes to be reused. However, the allowable chloride level of the rebuilt pumps will be 5,000 ppm as discussed below.

4.6.1 New Recycle Pumps

As discussed earlier, the L/G ratio on Unit 4 absorber treating Unit 3 flue gas is more than adequate for high removal efficiency, once modifications are completed to increase the spray zone and spray coverage. Increasing the spray header elevation raises the recycle system resistance increasing in the total dynamic head (TDH) required. The new recycle pumps will be similar to the existing direct drive recycle pumps except they will be designed to handle higher chloride concentrations and increased TDH requirements. Figure 19 contains photos of recycle pumps designed for high chloride operation on smaller units.

Figure 19. Recycle Pumps

The recycle pumps are important to this project because they are utilized to pump a mixture of ground limestone slurry and gypsum crystals from the reservoir of the flue gas absorbers to a series of manifolds, from which the slurry is sprayed in the top of the absorber so as to combine with flue gas for the purpose of reducing the sulfur content of the gas. The flow rate and head of the slurry, plus resistance to abrasion and corrosion by the slurry, are the primary performance characteristics of interest in the recycle pumps.

The critical performance parameters for the Mill Creek pumps are head and flow, with consideration for required Net Positive Suction Head (NPSH). Babcock Power is planning to supply Duchting recycle pumps for the LG&E-KU Mill Creek Project.

The Duchting pump has an iron shell with a cast-in-place liner and impeller made of a composite of silicon carbide grains with an epoxy binder. The Duchting cast composite liner has been reported to provide excellent service at KU Brown Station, Alcoa Warrick Station and in a number of European installations. BPEI has had 26 Duchting pumps in service for the past 3 years with very good performance. The Duchting ceramic/epoxy has the highest protection against erosion but would tend to be less resistant to corrosion and erosion should pH level drop or chloride level increase beyond the warrantee limits.

Duchting Pumpen has been building and selling gypsum slurry service pumps since 1992. They have well over a thousand pumps in service throughout Europe and Asia. There are about 135 gypsum slurry service pumps of the same size (or larger) than those required for the Mill Creek project in service around the world. The pump-wetted parts are a cast silicon carbide material in an epoxy matrix binder. Wear characteristics are claimed to be several times that of abrasion resistant metals. The Duchting pumps would be serviced in this country by Duchting Pumps North America out of Middleton, MA.

The existing recycle piping is 36" in diameter. The slurry velocity of 8.7 ft/sec is within the limits of 5 to 10 ft/sec recommended by BPEI. When the recycle piping splits between the two absorbers the slurry velocity increases to 9.8 ft/sec. The slurry piping can be replaced in kind. Effort will be made to minimize the number of bends. Figure 20 is a photo of the existing Unit 4 spray header.

Figure 20. Spray Header

4.6.2 Rebuilt Recycle Pumps

LG&E-KU requested that BPEI evaluate the existing recycle pump for use with an upgraded absorber. Unfortunately, based on discussions with the recycle pump supplier, the pump materials of construction are designed to handle 5,000 ppm chlorides and would therefore be unworkable for high chloride operation. A summary of the pump materials, as received from the supplier, is outlined on Table 7. There is no data available to indicate that these materials of construction have been changed since the original pump installation. From a capacity standpoint, BPEI's preliminary review indicated that new gear boxes and a pump rpm increase of less than 10% would provide the necessary flow rate at the higher TDH required with the upgraded absorber.

	Table 7. T2 Commercial Specification								
I. SCOPE:									
ASTM A532-III	A Abrasi	on resis	stant cast	iron for	use wh	ere corro	sion as	well as a	brasion
resistance is im	portant.	Use at	Svedala-	Thomas	include	s but is	not lin	nited to	Pumps,
Impellers, and S	ide Line	rs, A th	ermal tre	atment i	is used t	o obtain	optimu	n wear r	esistant
properties.									
II. CHEMICAL CO	MPOSIT	ION:							
		С	Mn	Si	Cr	Mo	Ni	S	Р
ASTM A532-IIIA	Min:	2.0	0	0	23	0	0	0	0
	Max:	3.3	2.0	1.5	30	3.0	2.5	0.06	0.10
III. PROPERTIES:									
A. Metallurgical	:								
A chemistry i	s chosen	within t	he above	limits tl	hat is mi	d-range i	n carbor	and Chr	omium
with enough l	nardenabi	ility (i.e.	Mn, Ni,	and Mo) to prod	uce a mi	crostruc	ture of	
approximatel	y 30% M	7C3 car	bides hel	d in plac	e by a n	atrix of	Martensi	ite and R	etained
Austenite.									
B. Mechanical:									
1. Hardness: >650 BHN (i.e. > 58.6Rc or 712 VPH)									
2. Tensile stre	ngth 90 ⁶ :	- 110 K	SI (i.e. 6	600-750]	MPa)				
3. Fracture To	ughness ⁶	: 23 - 30) KSI-IN	^1/2 (i.e	. 25 - 33	MN/m^2	2/3)		

4.7 Agitators and Oxidation Air Lances

Poor mixing of injected oxidation air and absorber slurry can reduce the performance of the absorber. The oxidation air sparger ring currently installed requires higher oxygen to SO_2 (O:SO₂) ratios to provide enough excess air to complete the reaction of SO_2 removed by the absorber to gypsum. BPEI recommends adding agitator and air lance assemblies which will reduce the O:SO₂ requirements, increase agitation in the absorber allowing the absorber to be maintained at design solids concentration, improve reactivity by decreasing excess limestone in the absorber, and most importantly, improve reliability of the WFGD system. Oxidation air lances will be between 8" and 10" in diameter, which will eliminate issues with pluggage even if the oxidation air blower is out of service for several hours. Figure 21 show a photo of agitators and oxidation air lances on a Stebbins tile-line reaction tank. Figure 22 is a graphical representation of the agitator air-lance assembly. Agitators will be appropriately spaced from the recycle pumps to avoid entraining air in the recycle pump suction and causing cavitation. The

⁶ The most useful properties of abrasion resistant cast iron are its hardness and carbide content. Carbide content is established by Carbon and Chromium values. Hardness is usually the only property that is determined in practice. The determination of tensile strength and toughness is very difficult, and has little bearing on the intended use of the castings other than obvious ones (i.e. absence of fracture). These facts are generally recognized in standards of abrasion resistant cast iron. Tensile strength and Toughness are not part of this specification and are given for information only.

number and size of agitators and air lances required is a function of the reaction tank diameter, absorber slurry level in the reaction tank, and volume of oxidation air required to maintain full oxidation.

Figure 21: Oxidation Air Lances and Agitator Impellers in Tile-Line Tank

Figure 22. Agitator Air Lance Assembly

The oxidation air piping is designed that if the oxidation air blowers do trip out of service, slurry will not back up into the air sparger system because the oxidation air distribution ring is physically located above the reaction tank slurry level. Figure 23 is a photo of the oxidation air distribution ring at Brown Station.

Figure 23: Oxidation Air Distribution Ring and Agitators

Oxidation air rate required for the high sulfur, high SO_2 removal is 14,000 scfm with a supply pressure of 7.2 psig. The existing air compressors are capable of maintaining adequate airflow. The piping system will include an adjustment valve on each air lance to evenly distribute airflow. Quench requirements are much reduced compared to the quench rates currently maintained (10 gpm vs. 100 gpm). A quench system will be installed at each ring header with 1 operating and 2 spare quench nozzles.

Physical modeling is recommended to verify mixing and ensure the oxidation air can be dispersed in the reaction tanks to complete oxidation. The upgraded Unit 4 may require a higher $O:SO_2$ ratio than is typical for WFGDs because of the small reaction tanks, but preliminarily, the blower appears to have the capacity to accommodate higher air flows if necessary.

Agitator design is as much an art as it is a science. While agitators appear as relatively simple science, their operational parameters are complex and difficult to theoretically model. Further, agitators are one of the most critical components in the oxidizing WFGD absorber. If the agitators' operation is even marginal, serious operational problems will develop in areas including: gypsum quality, absorber efficiency, scaling and slurry settling. In the case of the Mill Creek WFGD program with reliability requirements being extremely important, design conservatism is requisite. Ekato is the clear leader in successful agitator experience for WFGD service that disperses oxidation air (mass transfer) to the slurry.

The WFGD oxidizing absorber agitator characteristics: mixing, erosion and corrosion resistance, mass transfer capability, resistance to flooding, torque and horsepower are the primary performance characteristics of interest. These key technical parameters were evaluated for Mill

Creek Unit 4. On all of these key performance parameters, Ekato emerges as the clear leader because:

- Mixing: Torque is key to adequate mixing. Ekato has the highest torque values as compared to the other vendors and is capable of provide the highest comparable level of mixing.
- Erosion Resistance: Erosion resistance is a function of impeller blade tip speed and impeller design. Ekato has low blade tip speeds as well as their proprietary "Wingjet" blade tip designed to minimize erosion.
- Mass Transfer Capability: A larger impeller is greatly preferred over high RPM for mass transfer. Ekato has the largest impellers as compared to the other manufacturers.
- Resistance to Flooding: Larger and lower RPM impellers have the best flooding resistance. Ekato has the largest impellers with comparative low RPM operation.
- Torque and Horsepower: These factors are related to mass transfer and mixing, the larger these figures are the better. Ekato has the highest operational torque and horsepower values.

In addition to the primary performance parameters, Ekato offers the following features that are a factor in critical operational parameters and experience issues:

- Ekato has more experience in oxidizing scrubber absorber agitator technology than any other manufacturer.
- Ekato has the most experience with mechanical seals in FGD operation.
- Ekato has a robust agitator shaft assembly
- The Ekato Impeller is a one piece monolithic cast design
- Ekato mounts their agitator about 2-2.5 impeller diameters off of the floor of the absorber, reducing risk of being locked in slurry during start-up.
- Ekato's proprietary "WingJet" impeller is designed to provide more efficient mixing and mass transfer (oxidation air dispersion) with less erosion.

4.8 Mist Eliminators and Mist Eliminator Wash

Munter's DV210 Mist Eliminators are an alternative to traditional flat mist eliminator arrangements and is the only known ME that will provide the de-misting and particulate removal performance BPEI demands. Figure 24 is a photo of a DV210 installation. The installation of a single layer benefits installation time and requires only one layer of support beams instead of two. Figure 25 is a graphic of the ME design typical in open spray tower systems.

Figure 24: DV210 Mist Eliminators

The purpose of the Mist Eliminators (ME) in a WFGD system is to remove the slurry mist entrained in the flue gas. If not removed, the mist can lead to the buildup of solids and liquid in the downstream ductwork and stack; corrosion of downstream equipment, ducts, and stack liner; and stack "rain" (emission of liquid, solids or slurry) to the area surrounding the plant. The physical and chemical environments in which the MEs operate require that the ME system (including the wash system) be carefully designed to ensure the reliability of the FGD system.

The critical performance parameters for the design and selection of the mist eliminators are: the ability to successfully remove mist from the flue gas stream (to the required droplet size), the spray wash system effectiveness, pressure drop across the ME, liquid drainage capability and reentrainment, corrosion resistance, design (flat versus peaked) and expected life.

Munters has significant empirical data for the DV210 including third party engineering and testing analysis. Fisia, Licensor of BPEI WFGD Technology, has amassed significant data on the combined scrubber and DV210 performance for the collection of fly ash particulate.

The Munters DV210 peaked design adds an additional margin of performance not possible with traditional flat "pancake" type mist eliminator designs. Their angled design and multi-pass configuration traps wash water on their surface longer as it migrates to the lower inverted peak of the first pass stage. This makes the wash water more effective on a volumetric quantity basis and allows a longer coalescing path for the mist. The slower migration of the water down the profile of the blades is more effective at limiting re-entrainment of the water into the gas stream than other mist eliminator types. Further, these blades remain wetted longer (between wash cycles); provide an effective capture surface using the adhesive properties of water to more effectively capture particulate matter as compared to other designs. This, coupled with historical operational data, is the primary reason for specifying the Munters DV210.

The support structure for the Munters DV210 Mist Eliminator is a single level support. The "diamond" design of the DV210 extends with the lower ME section below the support structure and the upper section placed on top of the support structure. This is in contrast to the standard flat ME design where each stage requires a dedicated level of support. The DV210 (2-stage) can provide full ME capabilities in a 6' vertical section of the absorber whereas the flat 2-stage design requires 9' and is less efficient at coalescing the mist. The DV210 design provides savings over the flat ME design in two ways: first, a lesser quantity of exotic metal is used to support the ME and secondly, the vessel height can be reduced by the amount of ME depth difference between the two design types. This is an approximate 3' savings in absorber structure as well as foundation and structural steel costs.

Maintenance requirements for the Munters DV210 mist eliminator are minimal and consist of periodic inspections as long as it is operated within the specified design constraints and is spray washed in accordance with the manufacturer's recommendations. The Munters DV210, when operated in accordance with the manufacturer's guidelines, should provide an operational life of about 15 years. This expected life is in contrast to typical flat designs with life expectancies anywhere from 5 to 15 years.

As explained earlier in section 2.5, BPEI highly recommends evaluating the source of water used for ME wash. There are several papers to support the conclusion that utilizing water that has even a fraction process liquor or filtrate causes scaling issues in the ME wash piping and on ME elements. Scaling of ME elements increases pressure drop and the potential of carryover into the outlet ductwork. ME elements can also scale to the degree that they fall through supports in the reaction tank causing pluggage in recycle slurry piping and spray nozzles. Clean, filtered water should be used. BPEI recommends an automatic, self-cleaning filter to handle the relatively high solids normally associated with Ohio River water.

The ME wash logic should be reviewed to ensure adequate ME wash is maintained while minimizing fresh water makeup to the WFGD system. The control logic will adjust wash frequency based on minimum requirements from the manufacturer and unit load. Clearwell Pond water can still be used to control absorber level by directly adding water to the absorber reaction tanks. It is also recommended to use clean service water for oxidation air quenching and for the emergency quench system.

4.9 **Process Chemistry and Controls**

The control logic will be revised as necessary to maintain appropriate ME wash frequency, maintain absorber level, maintain absorber density, and maintain SO_2 removal. ME wash frequency will be reviewed to maintain appropriate wash cycles but minimize excessive service water usage. Absorber level and density will be optimized to maximize liquid and solids residence times to maximize limestone utilization and gypsum quality. The logic for SO_2 removal will include feed forward logic with feedback trims to optimize SO_2 removal control and limestone slurry feed.

4.10 Absorber Vent and Overflow

The absorber reaction tanks will be modified to accommodate side-mounted agitators coupled with oxidation air lances. The reaction tank top will be replaced to eliminate any flue gas discharge from the reaction tank. The vent from the reaction tank will be re-routed to the absorber instead of venting to atmosphere. It is recommended to vent the reaction tank to the absorber to make sure there is no liquid carryover into the outlet duct. The absorber overflow will be redesigned so that the overflow is directed to a seal pot to prevent flue gas venting out of this line.

4.11 Bleed Pumps

BPEI recommends improving the reliability of the absorber bleed system so that absorber slurry density can be maintained within higher controlled limits to maintain 15-18% slurry density in the absorber reaction tank. Improving the reliability of the bleed system to operate at higher solids concentration will improve limestone utilization as a result of increasing the solids residence time in the reaction tank. Besides replacing the bleed pumps and control valves to handle the higher chlorides, BPEI recommends installing orifice(s) on the bleed return line to the reaction tank. The purpose of the orifice(s) is to keep the pump running on the same part of the pump curve by evening the pressure drop between bleeding to the hydrocyclones and bleeding

back to the reaction tank. When the bleed pump is designed to run on the same part of the pump curve, power consumption and pump performance is optimized. Figure 26 is a photo of bleed pumps installed at Brown Station.

Figure 26. Bleed Pumps at Brown Station

The Duchting pump was evaluated over other pumps and determined to be the technologically superior choice. Some of the more significant issues supporting the selection of the Duchting pump include:

- Lowest operating noise levels
- Exceptional chemical and corrosion resistance
- Erosion resistant SiCast construction
- Low operating speeds
- Best power efficiency
- Motor direct coupled to pump
- Same pump supplier as recycle pumps

The Duchting pump is a SiCast (Silicon Carbide cast in an epoxy matrix) construct that is well proven in other components for absorber slurry service. Both the pump casing and impeller are constructed of this SiCast material. This material is similar to the material used in absorber spray nozzles which experience little to no detectable wear. The proprietary SiCast product used by Duchting differs from the standard nozzle type silicon carbide type materials in that the ratio of silicon carbide to epoxy for the Duchting SiCast is considerably greater at an 80% to 20% average ratio. Typical spray nozzles have only a 50% to 60% silicon carbide concentration. This higher SiCast content product is more resistant to erosion than products with a lesser silicon

carbide percentage. Even though the velocities in the Duchting pump are the lowest, it probably matters little in that the SiCast material is far more resistant to abrasion and erosion than either of the other manufacturers' materials. From this, it is reasonable to conclude that the life of the Duchting pumps in these applications may significantly exceed the life of other types of pumps.

Strainers should be added in the suction line to the bleed pumps to screen any solid scale that may be present in the absorber reaction tank. The strainers will increase the life of the bleed pump impellers and reduce the potential for pluggage in the hydrocyclone assembly.

4.12 Hydrocyclones and Underflow Tank and Pumps

BPEI recommends replacing the hydrocyclone assembly with an assembly that has bigger vortexes and apexes. This will reduce the amount of pluggage without a negative impact on performance or increased bleed pump TDH. The assembly will have the proper instrumentation to monitor performance remotely from the DCS and be designed to handle the higher chloride concentrations. Figure 27 is a photo of hydrocyclone assemblies for a smaller WFGD system (< 500 MW).

Figure 27. Hydrocyclone Assemblies

The hydrocyclone absorber overflow will still be directed to an overflow tank where a purge stream can be maintained to control chloride concentration. The remaining fraction will be directed back to the reaction tank. At the reaction tank the return line will include a section of

piping that drops below the normal slurry level to prevent any off-gassing through the overflow return when they hydrocyclone assembly is not in service.

A state of the art design hydrocyclone similar to the Krebs unit installed at the KU Brown WFGD system is recommended for this absorber upgrade.

No issues were brought up regarding the underflow tank and pumps. However, they probably require replacement to accommodate the higher chloride design.

4.13 Physical Flow Modeling

BPEI recommends physical modeling of planned modifications. Changes to ductwork (Unit 3 into Unit 4 Scrubber) can result in unforeseen gas dynamics that could be detrimental to the process if the appropriate internal flow control devices are not installed. BPEI makes extensive use of modeling technology for retrofit modifications such as those proposed for Mill Creek Generating Station. Some of the applications of this modeling are as follows:

- Prediction of gas distribution at the absorber inlet and into the first spray level
- Prediction of gas distribution and slurry spray distribution within the absorber spray zone
- Prediction of absorber sump recirculation for agitator performance as it relates to both suspension of solids and distribution of oxidation air for maximum effectiveness

Typical physical models are scaled for geometry and operate at full gas velocity, with the mist eliminators modeled in full scale. For this type of model, BPEI is able to analyze gas flow behavior at the gas inlet, entering, within the absorber, leaving the spray zone, and entering and leaving the mist eliminators. The results of these model tests are incorporated into the actual absorber design (ductwork layout, spray header layout, nozzle spacing, etc.) to ensure controlled gas behavior, uniform gas flow, high liquid-gas contact for maximum efficiency with installed components, and uniform gas flow to the mist eliminators for consistent mist elimination from the flue gas. Figure 28 shows examples of physical models constructed to test flue gas distribution, absorber inlet design, and mist eliminator performance.

Figure 28. Examples Physical Models Tested on other BPEI Projects

5. **PROJECT PLAN**

Babcock Power Environmental, Inc. has developed a preliminary Project Plan that capitalizes on its engineering, product fabrication, installation, and startup expertise to provide LG&E-KU Services Company with an efficient retrofit design that provides a low project price and a short outage schedule.

The fully upgraded Unit 4 absorbers will be finished and available for service on November 17, 2014 at the completion of an 8-week outage on Unit 4. Flue gas from Unit 3 can be processed in the upgraded Unit 4 absorber once the blank off plate is removed during a one-week outage on Unit 3 scheduled in the Fall of 2014.

5.1 Basis of Design

The Basis of Design for this Project Plan is to remove of 98% SO₂ at either 12,500 ppm or 50,000 ppm chlorides. It is this design basis that dictates the materials of selection for Babcock Power to offer LG&E-KU Services. Babcock Power's Project Plan has been set up to match the materials of construction, the vendor lead times, and the LG&E-KU outage schedule.

5.2 **Project Schedule**

The major milestones for the proposed schedule are shown on Table 8 including engineering, procurement, fabrication & delivery, construction and unit outages. A more detailed description of the activities can be found in the high level schedule in the attachments. Commissioning of the upgraded Unit 4 WFGD system should be completed by 13-Feb-15, but additional general work is scheduled to complete by mid-June. The ongoing general work does not require a unit outage.

	Duration		
Activity Name	(days)	Start	Finish
Engineering	175	2-Jan-12	31-Aug-12
Procurement	214	20-Jan-12	14-Nov-12
Fabrication & Delivery	640	23-Jan-12	04-Jul-14
Unit 4 2012 Outage (4 week)	16	16-Apr-12	07-May-12
Unit 4 2013 Outage (1 week - May)	6	13-May-13	20-May-13
Unit 4 2013 Outage (1 week - Nov)	5	11-Nov-13	15-Nov-13
Unit 3 2013 Outage (6 week - approximate)	5	01-Nov-13	07-Nov-13
Unit 4 2014 Outage (8 week)	30	29-Sep-14	07-Nov-14
Unit 3 2014 Outage (1 week - approximate)	11	03-Nov-14	17-Nov-14
Construction (general work between outages)	901	2-Jan-12	15-Jun-15
Start Up & Commissioning	75	03-Nov-14	13-Feb-15
Mill Creek Unit 4 WFGD Upgrade	901	2-Jan-12	15-Jun-15

Table 8. Project Schedule – Major Milestones

Babcock Power has developed its project plan to match KU's outage schedule. Table 9 shows how the proposed work scope has been matched to the outage schedules. The first outage date occurs in April 2012 and will require that Babcock Power be released by 1/1/2012 in order to place orders with vendors and do engineering and fabrication.

Outage Schedule	Work Scope
General Work – 2012 to 2014 (ongoing)	Engineer, supply and install recycle pumps
	Engineer, supply and install oxidation air
	piping
Unit 4 – 4 weeks 4/16/2012 to 5/7/2012	Evaluate absorber reaction tank walls
	Install agitator wall boxes
	Install prefabricated roof panels
	Install raised floor
	Install oxidation pipes and supports in the
	sump
Unit 4 – 1 week outage 5/13/2013 and 1	Install all valves and instruments
week outage 11/11/2013	Install bleed pumps
	Install hydrocyclone
	Install FRP piping for Bleed/hydrocyclone
	Install agitators
Unit 3 – 6 weeks 2013 outage date fall (no	Install Unit 3 outlet duct blank-off plate
info available)	
Unit 4 – 8 weeks 9/29/2014 to 11/17/2014	Replace absorber vessel and internals:
	 Spray headers
	 Spray nozzles
	• Wall rings
	 Mist Eliminator
	Install recycle pipes
	Install outlet ducts
	Install inlet duct
	Install inlet & outlet expansion joints
	Install analyzers Sox
	Install knife gate valves suction and
	discharge
	Install emergency quench system
Unit 3 – 1 week 2014 outage date fall (no	Remove Unit 3 blank off plate in the
info available)	ductwork

Table 9. Work Scope vs. Outage Schedule

5.4 Work Scope and Construction Materials

This section provides further details about the Work Scope outlined above and the materials of construction required for both a 12,500 ppm and 50,000 ppm chlorides case.

5.4.1 General Work 2012 to 2015

General Work is the work that can be done while the Unit 4 is operating. The general work involves replacing accessible equipment that has spares and also work to prepare components for an upcoming outage. The components of the planned general work are described below. There are approximately four months of general work that is scheduled after the upgraded Unit 4 is commissioned.

5.4.1.1 <u>Recycle Pumps</u>

Babcock Power is planning to remove one recycle pump from service and replace new, one recycle pump at a time with the unit in operation. With the recycle pump out of service, the pump will be disassembled and its foundation removed. BPEI will have a new foundation and wiring system designed and ready to be installed. The first pump will come off line on March 1, 2013 to be retrofitted. The reason the first pump does not start until 2013 is because the pump, foundation and wiring systems will need to be designed and the vendor released to fabricate as shown on Table 10.

	Basis: Q1 CY2011		
LEAD TIMES are from date BPI issues Purchase Order to its Suppliers			
	Material Lead Time	Fabrication Lead Time	Total Lead Time
Commodity Description			
Recycle Pump (SiCast Lined)	Included	42 Wks	42 Wks

Table 10. Lead Time for General Work Material

The SiCast-lined recycle pump has a current lead-time, from the date of order placement to shipment, of 42 weeks. This lead-time is based on BPEI's experience with quoting and requisitioning this equipment. BPEI will be ready to begin changing the recycle pumps out March 1, 2013 after engineering has been completed and the pumps can be delivered. BPEI plans to remove and replace one pump per month starting in March of 2013 and ending in November 2013. This schedule leaves one (1) month of float to replace eight recycle pumps

As BPEI replaces the recycle pump foundations we will also set up and pour a new foundation for the bleed pumps. The bleed pumps will be discussed later in section 5.4.3.

5.4.1.2 Oxidation Air Piping

The oxidation air piping will also be installed during general work. BPEI is planning to reuse the existing Mill Creek oxidation air blowers. BPEI will modify the existing oxidation air piping external to the sump to accommodate a ring header for distribution of oxidation air to all lances. The oxidation air piping will be 20" carbon steel piping for the ring header and 8" drops from the header down to the oxidation air lances external to the sump. BPEI estimates it will use 120 hangers attached to the existing tank. This work is scheduled to take place from June 2012 to June of 2013. This work does not need to be completed until the November 2013 outage.

5.4.1.3 <u>Structural Steel</u>

BPEI has not included structural steel in this Mill Creek Unit 4 study. However, we have included the scheduling of the steel repair and or replacement. This work will take place from May 2012 to December 2014. This work is considered general work, which will take place between outages. The anticipated scope of structural steel work will include cover plating, replacement, sand blasting and painting of structural, handrail and grating.

5.4.1.4 Duct Between Unit 3 and Unit 4

This study does not include the ductwork between Unit 3 and Unit 4 that will transfer the flue gas. However, the study does set up a time frame for the owner to install this ductwork. It is anticipated that the ductwork will be installed from May 2013 to August 2013. This time frame will allow the owner or BPEI to engineer, fabricate and ship to the site modules for installation. By installing the support steel and ductwork in May to August of 2013, this will support BPEI in its planning for the eight week 2014 major outage.

5.4.1.5 *Piping*

The removal and replacement of random sections of piping and tubing is also part of general work and will support new valves and instruments that will be replaced in the two one-week outages in 2013. This random replacement of pipe and tubing will take place while the scrubber is on line and is scheduled from May 2013 to August 2013. Wherever possible, BPEI will replace valves and instruments while the unit is on line.

5.4.1.6 Grating

The final general work activity identified by BPEI is the replacement of the grating around the reactors through which the recycle piping passes. This grating cannot be replaced until the new recycle-piping configuration is developed. The schedule for this work is from April 2014 to August 2014.

5.4.2 Unit 4 – 4 weeks 4/16/2012 to 5/7/2012

Given that this 4 week outage is so close to the Notice to Proceed date of 1/1/2012, BPEI will be unable to engineer, procure and deliver vendor equipment. BPEI is planning to use this fourweek outage to work the absorber reaction tanks. A purchase order will be issued to Stebbins to evaluate the tile lining, replace the floor and install agitator mounting boxes and nozzles. The mounting boxes and nozzles will be constructed of C-276 material for either the 12,500 or 50,000-ppm chloride option. The C-276 will be purchased from Corrosion Metals due to the short lead-time.

While Stebbins is repairing the wall tiles and possibly installing a new raised floor, BPEI will be designing and procuring precast concrete ceiling tiles for the new absorber reaction tank roof. The current reaction tank roof has many leaks, which allow the slurry gas to escape and corrode the steel supports.

During this outage, BPEI is planning to install new oxidation air lances and air lance supports. BPEI will install one air lance per agitator (5 per sump for a total of 10). These air lances will be

constructed of C-276 material 8" in diameter. The air lance supports will also be constructed of C-276 high alloy material.

BPEI will purchase the C-276 alloy steel plate direct from the manufacturer and/or distributor and free issue the plate material to a fabricator to make agitator mounting boxes and air lances. The purchase order will include plate thicknesses, lengths and widths as specified by BPEI's engineering calculations and drawings.

BPEI plans to use C-276 for the Mill Creek Unit 4 absorber reaction tank internals in either the 12,500 or 50,000-ppm cases. C-276, a nickel-molybdenum-chromium-tungsten alloy, was selected due to its excellent general corrosion resistance and ease of fabrication. This alloy is appropriate for use in environments where resistance to hot contaminated mineral acids, organic and inorganic chloride-contaminated media, chlorine, formic and acetic acids, acetic, acetic anhydride, sea water and brine solutions is desired. The elemental comparison of C-276 is given on Table 11.

Element	Min	Max
Molybdenum	15.0	17.0
Chromium	14.5	16.5
Iron	4.00	7.00
Tungsten	3.00	4.50
Cobalt		2.50
Carbon		0.01
Silicon		0.08
Manganese		1.00
Vanadium		0.35
Phosphorus		0.04
Sulfur		0.03
Nickel	Remainder	

Table 11. C-276 Elemental Composition DATA

C-276 has resisted the formation of grain boundary precipitates in the weld heat-affected zone, making it a candidate for most chemical and petrochemical processing applications in the as-welded condition. The alloy has resisted both general and localized corrosion, including pitting, crevice corrosion, and stress corrosion cracking. C-276 is readily fabricated by welding, using methods similar to those utilized for nickel-based alloys.

5.4.3 Unit 4 – 1 week outage 5/13/2013 and 1 week outage 11/11/2013

There are two one-week outages on Unit 4 during 2013: one in May and the other in November. During the May 2013 outage BPEI is planning the following work:

- Remove and Replace Valves and Instruments
- Install a new Bleed Pump
- Install new Agitators in the Absorber Reaction Tank

During the November outage BPEI is planning to do the following work:

- Remove and Replace Instruments not replaced during May
- Remove and Replace the Hydrocyclone
- Remove and Replace FRP piping for the Bleed Pump and the Hydrocyclone

The work listed above is planned for 2013 due to engineering, procurement and fabrication lead times. The commodity lead-time chart, on Table 12, clarifies why this work must be planned for 2013.

	Basis: Q1 CY2011			
LEAD TIMES are from date BPI issues Purchase Order to its Suppliers				
	Material Lead Time	Fabrication Lead Time	Total Lead Time	
Commodity Description				
Absorber Agitators	Included	38 Wks	38 Wks	
Piping (FRP)	Included	16-23 Wks	16-23 Wks	
Bleed Pumps	Included	30 Wks	30 Wks	
Misc. Valves & Instruments	8-10 Wks	10 Wks	18-20 Wks	

 Table 12. Lead Times for 2013 One-Week Outages

5.4.3.1 Instruments and Valves

The replacement of valves and instruments will be planned during the 2012 engineering phase. At this time, each valve and instrument will be identified based on the current P&IDs and BPEIs new design. Once the valves and instruments have been identified both BPEI and LG&E-KU will jointly review and select the vendors. BPEI will place a purchase order in 2012 so that work can begin during the general work phase between the outages. BPEI would like to replace as many valves and instruments as possible with the unit in operation. Any valves and instruments that can't be replaced with the unit in operation will be replaced in the May 2013 one-week outage. Any valves and instrument replacement not completed during the May 2013 outage will be completed during the November 2013 outage.

5.4.3.2 Bleed Pumps

BPEI is planning to replace the bleed pumps that pump directly to the hydocyclones. It is BPEIs plan to have four pumps, two per reaction tank. One pump will be operating the second will be a spare. Orifice plate(s) will be installed on the bleed return line to the reactor tank to improve pump performance. The bleed pumps will be sent from the vendor to a skid fabricator for assembly then shipment to the Mill Creek site for installation on the foundation installed before the outage. BPEI has chosen Duchting pumps because they meet both the 12,500 and 50,000-ppm chlorides cases.

5.4.3.3 <u>Agitators</u>

BPEI plans to install (5) side mounted absorber agitators per sump for a total of (10). The new sump penetrations will be installed during the first outage in 2013 as discussed in section 5.4.2. The plan is to install the agitators during the May 2012 one-week outage. BPEI is planning to design and purchase Ekato agitators for the 12,500-ppm chloride option. The agitator blades for the 50,000 ppm chloride case will be a high alloy material with a coating.

5.4.3.4 <u>Hydrocyclones</u>

The last task in this outage is the removal and replacement of the hydrocyclone system with a new state of the art design similar to the Krebs unit installed at the KU Brown WFGD system.

5.4.3.5 *FRP Piping*

The plan calls for installation of new FRP piping for the Hydocyclone and Bleed systems during the November 2013 outage. Further information about FRP is included in section 5.4.4.2 below.

5.4.4 Unit 4 – 8 weeks 9/29/2014 to 11/17/2014 Outage

Up to this point in the discussion of outage work, BPEI has been using the same equipment for either 12,500 ppm or 50,000 ppm of chloride due to the selection of Duchting pumps, which are good for either 12,500 or 50,000 ppm chlorides. BPEI is planning to rework the following items the 8-week outage between September 29, 2014 and November 7, 2014:

- Replace absorber vessel and internals:
 - Spray headers
 - Spray nozzles
 - Wall rings
 - o Mist Eliminator
- External Recycle Pipes
- Outlet Ducts (by owner)
- o Inlet Duct
- Inlet & Outlet Expansion Joints
- Analyzers SOx
- Knife Gate Valves Suction and Discharge
- Emergency Quench System

The lead times for the materials required for this outage are shown on Table 13.

LEAD TIMES are from date BPI issues Purchase Order to its Suppliers		Ba	11	
		Material Lead Time	Fabrication Lead Time	Total Lead Time
Commodity Description				
Large Recycle Isolation Valves - Knife Gate		Included	46 Wks	46 Wks
Alloy Absorber/Ductwork (Alloy)		8-10 Wks	24 Wks	32-34 Wks
External Recycle Piping (FRP)		Included	16-23 Wks	16-23 Wks
Recycle Internal Spray Headers - FRP		Included	26 Wks	26 Wks
Recycle Internal Spray Header Supports-Alloy		8-10 Wks	10 Wks	18-20 Wks
Mist Eliminator		Included	26 Wks	26 Wks
Spray Nozzles		Included	26-30 Wks	26-30 Wks
Mist Eliminator Support Steel-Alloy		8-10 Wks	14 Wks	18-20 Wks

Table 13. Lead Times for 2014 8-week Outage

5.4.4.1 Absorber Vessel

The plan is to replace the absorber vessels and internals during the 8-week outage. In order for BPEI to guarantee 98% SO2 removal with either 12,500 ppm or 50,000-ppm chloride, the absorber vessel needs a material upgrade. In the 12,500-ppm chloride level Babcock Power recommends using Incoloy alloy 27-7MO. The chemical composition of this material is given in Table 14.

Element	Min	Max
Molybdenum	6.5	8.0
Chromium	20.5	23.0
Iron	Balaı	nce
Copper	0.5	1.5
Nitrogen	0.3	0.4
Carbon		0.020
Silicon		0.50
Manganese		3.00
Phosphorus		0.03
Sulfur		0.01
Nickel	26.0	28.0

Table 14. Alloy 27-7MO Elemental Composition DATA

Babcock Power recommends INCOLOY nickel-chromium-molybdenum alloy 7MO (UNSS31277) due to its high strength, ease of fabrication, and outstanding corrosion resistance at an economic price.

The second material choice for the absorber is C-276, which is good for 50,000-ppm chlorides. The composition of C-276 was shown previously on Table 11.

The INCONEL alloy C-276 (UNS N10276/W.Nr 2.4819) is known for its corrosion resistance in a wide range of aggressive media. The high molybdenum content imparts resistance to localized corrosion such as pitting. The low carbon minimizes carbide precipitation during welding to maintain resistance to intergranular attack in heat-affected zones of welded joints. It is used in chemical processing, pollution control, pulp and paper production; industrial and municipal waste treatment and the recovery of "sour" natural gas. Applications in air pollution control include stack liners, ducts, dampers, scrubbers, stack-gas re-heaters, fans and fan housings.

The BPEI plan, with either the Alloy 7MO or C-276 option is to fabricate the four absorbers and ship them to the site in two pieces each. Once at the site, the contractor will set up the two-absorber pieces on the ground and install the new spray headers, nozzles and DV210 mist eliminator. The tray and wall rings will come installed in the modules being sent from the shop. The tray and wall rings will be fabricated out of the same material as the absorber modules.

5.4.4.2 Absorber Vessel Internals

The FGD spray headers and recycle pipe for Unit 4 at the Mill Creek Plant will be constructed of fiberglass reinforced plastic (FRP). This material is being selected based on its compatibility with the application.

FRP is widely used in the chemical and utility industries primarily due to its excellent chemical and erosion resistance. In an Ashland application paper, it was reported that FRP made with epoxy vinyl ester resin has equal-to, or better than, corrosion resistance than alloy C-276 with another paper showing it suitable for use on 70% sulfuric acid up to 108 deg F or saturated chlorine in water up to 210 deg F. As for erosion resistance, one FRP vendor reports the erosion resistance of the FRP liner is actually better than Alloy 2205.

There are no appreciable differences between the FRP offered by the major vendors. All use epoxy vinyl ester resin with either a C-glass (glass fiber) or Nexus (synthetic) veil. There are minor differences between the additives used for the erosion liners with some vendors having proprietary additives and the others using Silicon Carbide (SiC).

Slurry nozzles must be designed to provide not only the desired slurry flow rate, spray angle, and droplet size but they must also survive the abrasive and corrosive environment within the absorber. The nozzles are subjected to erosive slurry on both their internal and external surfaces and may be exposed to high chloride concentrations. Several materials have been used to make slurry nozzles, but by far the material of choice is silicon carbide (SiC). With a Mohs hardness of 9-10, SiC has excellent thermal and abrasion resistance properties and is offered by all the major slurry nozzle vendors.

The Emergency Quench Water System is used to protect the Absorber spray nozzle piping, mist eliminators and mist eliminator wash piping when the Absorber inlet or outlet flue gas

temperature is high, or when the number and placement of operating recycle spray levels is not adequate. The quench water system is located in the Absorber inlet and water is supplied via the plant fire protection system. The environment in this location consists of unscrubbed flue gas at 300-350 degrees Fahrenheit.

During a temperature excursion, where the flue gas exceeds 400 degreed Fahrenheit, the Absorber outlet temp may exceed 350 degrees F. When this occurs, the quench water system is activated to protect the equipment referenced above. The fire protection system supplies water to the quench system and quickly cools and flushes the piping. During normal operating conditions the piping is empty and flue gas can migrate through the spray nozzles, up the individual pipes. This operating condition necessitates the use of corrosion resistant materials in the construction of the quench water system. Alloy C-276 has been selected as the appropriate material for the internal ductwork piping.

The recycle pump isolation valves are used to isolate flow to the pump from entering through the suction pipe. The suction valves are located between the absorber sump and the recycle pump. There is not currently a scheduled outage long enough to remove the knife gate valves and send them to the manufacturer for refurbishment, so it is BPEI's recommendation to install new valves into the system. The plan is to make use Tyco in-line gate valves.

6. ESTIMATED PRICING

The rough order of magnitude (ROM) price of the retrofit improvements for the Mill Creek Unit 4 WFGD upgrade is summarized on Table 15. This is based on current 2011 dollars without escalation and has an accuracy of +25% to -10%.

Table 15. Budget Engineering and Procurement Estimate

	Engineering		
Description	<u>Labor</u>	Materials	<u>Total</u>
Case 1:Alloy 27–7MO Unit 4	\$7,800,000	\$24,700,000	\$32,500,000
(12,500 ppm chlorides)			
Case 2: Alloy C-276 Unit 4	\$7,800,000	\$27,400,000	\$35,200,000
(50,000 ppm chlorides)			

The scope of pricing is limited to the Engineering and Procurement of the retrofit improvements. There are no allowances for BOP work, construction or maintenance upgrades to the WFGD structure. Additional details of this estimate are available in the attachments.

ATTACHMENTS

GENERAL ARRANGEMENT DRAWINGS

MATERIAL BALANCES

PREPARED BY

APPROVED BY

MATERIAL BALANCE WET FLUE GAS DESULFURIZATION

PROJECT NUMBER	100585		
CUSTOMER NAME	Louisville Gas & Electric (LG&E)		
PROJECT NAME Mill Creek Unit 3			
LOCATION - CITY, STATE	Louisville, KY		
	CASE: Design, 8,000 ppm CI, no filtrate return		
DESCRIPTION	LOAD: 100% MCR		
	FUEL: High Sulfur Bituminous Coal		
	SO ₂ Removal Efficiency: 98.5%		
	REAGENT: Limestone		
	WATER: Clearwell Pond Water		
PREPARED	NAME		
FILLFARED			

FREFARED	DATE
CHECKED	NAME
	DATE
APPROVED	NAME
	DATE

REVISION HISTORY

1		
2	 	
3	 	
4	 	
5	 	
6	 	
7	 . <u> </u>	
8	 	
9	 	
10	 	
10		

DISTRIBUTION LIST

1	6
2	7
3	8
4	9
5	10

This document and the information, design and material contained and/or illustrated therein (hereinafter "proprietary material"), is the property of BABCOCK POWER Inc., P.O. Box 15040, Worcester, MA 01615-0040, and is submitted, lent and furnished to recipient in strict confidence with the express understanding that the recipient shall not reproduce, copy, loan, dispose of, or disclose to anyone outside recipient's organization, directly or indirectly, or use said proprietary material for any purpose other than that for which it is furnished and submitted. Recipient by receiving said proprietary material agrees not to use the same in any way injurious to the interest or BABCOCK POWER Inc., and agrees to return same upon request. Copyright © BABCOCK POWER Inc., 2011.

BABCOCK POWER ENVIRONMENTAL INC.

Mill Creek Unit 3

MATERIAL BALANCE

GAS PATH STREAMS

Stream Number		11	13	15	16		
Notes							
Description		FLUE GAS	FLUE GAS	OXIDATION	OXIDATION		
		ABSORBER	ARSORBER	BLOWER			
Mass Flow	lb/hr, wet	4,959,500	5,321,479	110,824	115,803		
	lb/hr, dry	4,726,452	4,774,738	107,080	107,080		
Volume Flow	acfm, wet	1,656,934	1,362,302	44,249	17,558		
	scfm, wet	1,082,405	1,206,906	25,305	12,786		
	scim, dry	999,348	1,012,098	23,308	23,308		
Molecular Weight	lb/lb-mole, wet	29.37	28.27	27.95	27.31		
	lb/lb-mole, dry	30.31	30.24	28.50	28.50		
Density	lb/ft ³	0.050	0.065	0.042	0.110		
Temperature	°F	357	131	327	158		
Pressure	iwg	TBD	TBD		-		
	psig			TBD	TBD		
N.	lb/br	3 529 510	3 578 132	02 378	02 378		
Ω ₂	lb/hr	3,329,310	350 433	92,378	92,378		
CO ₂	lb/hr	826.212	845.358	29	29		
SO ₂	lb/hr	26.222	393	0	0		
SO3	lb/hr	553	277	0	0		
HCI	lb/hr	1,332	13	0	0		
HF	lb/hr	77	1	0	0		
H ₂ O	lb/hr	233,048	546,605	3,744	7,574		
Entrained Moisture	lb/hr	0	136	0	1,149		
Fly Ash	lb/hr	128	130	0	0		
SO, Concentration	nomy dry @ actual O.	2 630					
SO ₂ Concentration	ppmy, dry @ actual O ₂	2,000	22	0	0		
HCI Concentration	ppmv, dry @ actual O ₂	235	2	0	0		
HF Concentration	ppmv, dry @ actual O2	25	0	0	0		
Dust Loading	gr/dscf @ actual O2	0.015	0.015	0.000	0.000		
Stream Number							
Stream Number Notes							
Stream Number Notes Description							
Stream Number Notes Description					[]		
Stream Number Notes Description							
Stream Number Notes Description Mass Flow	lb/hr, wet						
Stream Number Notes Description Mass Flow	lb/hr, wet lb/hr, dry						
Stream Number Notes Description Mass Flow Volume Flow	ib/hr, wet Ib/hr, dry acfm, wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ft ⁻³						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/lb-ft ³						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, dry Ib/lb-mole, dry Ib/lb ³ °F						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry ib/lb-mole, wet lb/lb-mole, dry lb/ft ³ °F iwg psig						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ft ³ °F iwg psig						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/tt ³ °F ivg psig lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 Q2 Q2	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/lb-mole, dry lb/lb-mole, dry lb/lb-mole, dry lb/hra lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 CO2 SO3	Ib/hr, wet Ib/hr, dy acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/hb-mole, dry Ib/hr ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry ib/lb-mole, wet Ib/lb-mole, dry Ib/lb-mole, dry Ib/hr %F iwg psig Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3 HCI	ib/hr, wet ib/hr, dry acfm, wet scfm, wet scfm, dry ib/lb-mole, wet ib/lb-mole, dry ib/h ² ⁹ F ivg psig 						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, dry lb/hb-mole, dry lb/ht ³ °F iwg psig lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure V2 O2 CO2 SO3 HCI HF H2O	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/lb-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3 HCI HF H2O Entrained Moisture	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/hb-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N ₂ O ₂ CO ₂ SO ₂ SO ₃ HCI HF H ₂ O Entrained Moisture Fly Ash	ib/hr, wet ib/hr, dry acfm, wet scfm, wet scfm, dry ib/lb-mole, wet ib/lb-mole, dry ib/h ² ⁹ F ivg psig 						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash	ib/hr, wet ib/hr, dry acfm, wet scfm, wet scfm, dry ib/lb-mole, wet ib/lb-mole, dry ib/ht ³ ^o F ivg psig bi/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration	Ib/hr, wet Ib/hr, dy acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/lb-mole, dry Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration SO3 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, wet scfm, wet ib/lb-mole, wet Ib/lb-mole, dry Ib/hr I						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration HCI Concentration HCI Concentration	ib/hr, wet ib/hr, wet scfm, wet scfm, wet scfm, wet scfm, wet scfm, dry ib/lb-mole, dry ib/lb-mole, dry ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr jb/hr i						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 02 CO2 SO2 SO3 HCI HF H2 CO2 Entrained Moisture Fly Ash SO2 Concentration SO3 Concentration HCI Concentration HCI Concentration Dust Loading	ib/hr, wet ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry ib/lb-mole, dry ib/lb-mole, dry ib/h ² ⁹ F ivg psig ⁹ F ib/hr						
Mill Creek Unit 3

MATERIAL BALANCE

Stream Number		20	23	30	31	32
Notes						
Description		TOTAL	LIMESTONE	BLEED	PRIMARY	PRIMARY
		RECYCLE	SLURRY TO	FROM	HC	HC
		FLOW	ABSORBER	ABSORBER	OVERFLOW	UNDERFLOW
Mass Flow	lb/hr	120,899,868	276,858	562,764	419,051	143,713
Volume Flow	gpm	220,000	494	1,024	820	204
Specific Gravity		1.098	1.120	1.098	1.021	1.405
Density	lb/ft3	68.51	69.94	68.51	63.73	87.70
Temperature	°F	131	94	131	131	131
Mass Flow Liquid	lb/hr	102,765,198	228,732	478,351	406,494	71,857
CI ⁻	lb/hr	822,122	12.6	3,827	3,252	575
SO4	lb/hr	435,763	21.4	2,028	1,724	306
SO3-	lb/hr	26,725	0.0	124	106	19
Ca ⁺⁺	lb/hr	178,439	32.5	831	706	125
Mg ⁺⁺	lb/hr	283,229	14.8	1,318	1,120	199
Na ⁺	lb/hr	17,393	13.1	81	69	12
H ₂ O	lb/hr	101,001,528	228,638	470,141	399,518	70,621
Mass Flow Solids	lb/hr	18,134,670	48,127	84,413	12,556	71,850
CaSO ₄ .2H ₂ O	lb/hr	15,953,069	0.0	74,258	7,426	66,827
CaCO ₃	lb/hr	999,220	43,911	4,651	1,861	2,788
Inert	lb/hr	761,656	1,328	3,545	2,838	711
CaSO ₃ .1/2H ₂ O	lb/hr	108,808	0.0	506	403	101
MgCO ₃	lb/hr	311,916	2,887.6	1,451.9	28.9	1,422.8
Ca(OH) ₂	lb/hr	0	0.0	0.0	0.0	0.0
Mg(OH) ₂	lb/hr	0	0.0	0.0	0.0	0.0
CaO	lb/hr	0	0.0	0.0	0.0	0.0
MgO	lb/hr	0	0.0	0.0	0.0	0.0
Total Suspended Solids	wt.%, wet	15.0		15.0	3.0	50.0
CI ⁻ Concentration	ppm	8,000	55	8,000	8,000	8,000
pН		5 to 7	> 7	5 to 7	5 to 7	5 to 7

Stream Number		35	38	44	45	47	
Notes							
Description		CHLORIDE	HC	CLEARWELL POND	CLEARWELL POND	CLEARWELL POND	
		PURGE	OVERFLOW	WATER TO	WATER TO	WATER TO	
			TO ABSORBER	ME WASH	OXIDATION	ABSORBER	
Mass Flow	lb/hr	94,518	324,532	77,814	4,980	173,348	
Volume Flow	gpm	185	635	156	10.0	346	
Specific Gravity		1.021	1.021	0.995	0.995	0.998	
Density	lh/ft3	63 73	63 73	62.08	62.08	62.30	
Temperature	°F	131	131	95	95	95	
Mass Flow Liquid	lb/hr	91,686.2	314,808.3	78,098	4,980	173,061	
C	lb/hr	733.5	2.518.5	4.3	0.3	10	
SO4	lb/hr	388.8	1,334.9	7.3	0.5	16	
SO3	lb/hr	23.8	81.9	0.0	0.0	0	
Ca ⁺⁺	lb/hr	159.2	546.6	11.1	0.7	24	
Ma ⁺⁺	lb/hr	252.7	867.6	5.0	0.3	11	
Na ⁺	lb/hr	15.5	53.3	4.5	0.3	10	
H ₂ O	lb/hr	90,112.6	309,405.5	78,066	4,978	172,990	
Mass Flow Solids	lb/hr	2,832.1	3,973.3	1.1	0.1	2.4	
CaSO ₄ .2H ₂ O	lb/hr	1,674.9	0.0	0.0	0.0	0.0	
CaCO ₃	lb/hr	419.7	1,441.1	0.0	0.0	0.0	
Inert	lb/hr	640.0	2,197.7	1.1	0.1	2.4	
CaSO ₃ .1/2H ₂ O	lb/hr	90.9	312.1	0.0	0.0	0.0	
MgCO ₃	lb/hr	6.5	22.4	0.0	0.0	0.0	
Ca(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
Mg(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
CaO	lb/hr	0.0	0.0	0.0	0.0	0.0	
MgO	lb/hr	0.0	0.0	0.0	0.0	0.0	
Total Suspended Solids	wt.%, wet	3.0	1.2	0.0	0.0	0.0	
Cl ⁻ Concentration	ppm	8,000	8,000	55	55	55	
pН		5 to 7	5 to 7	6 to 8	6 to 8	6 to 8	

Mill Creek Unit 3

MATERIAL BALANCE

FUEL DATA, BOILER DATA, AND NOTES

Unit Rating	MWg	425
Boiler Heat Input	MBtu/hr	4,208
Fuel Feed Rate	lb/hr	386,068
SO ₂ Inlet Loading	Ib SO ₂ /MBtu	6.32
SO ₂ Removal Efficiency	%	98.5
Excess Air	%	20.0
Air Heater Leakage	%	10.0
Oxygen at FGD Inlet	vol.%, dry	6.95
Site Elevation	ft above MSL	460
Ambient Pressure	in H ₂ O	14.45
Ambient Temperature	°F	-23.1 - 105.4
Coal Analysis		
Coal		Performance Fue
Carbon	wt.%, wet	60.00
Hydrogen	wt.%, wet	4.00
Nitrogen	wt.%, wet	1.30
Oxygen	wt.%, wet	5.90
Sulfur	wt.%, wet	3.45
Chlorine	wt.%, wet	0.35
Fluorine	wt.%, wet	0.02
Ash	wt.%, wet	14.00
Moisture	wt.%, wet	11.00
Higher Heating Value (HHV)	BTU/lb	10,900
Limestone Analysis		Note 4
Total CaCO ₃	wt.%, dry	94.6
Reactive CaCO ₃	%	91.3
Total MgCO ₃	wt.%, dry	2.4
Reactive MgCO ₃	%	
Inerts	wt.%, dry	3.0
Gypsum Quality (at HC Underflow)		
Free Moisture	wt.%	
CaSO ₄ -2H ₂ O	wt.%, dry	93
CaSO ₃ -1/2H ₂ O	wt.%, dry	0.14
CaCO ₃	wt.%, dry	3.88
Inerts	wt.%, dry	0.99
MgCO ₃	wt.%, dry	2.0
Fly Ash	wt.%, dry	
Maximum Chloride Content	ppmvd	8,000
Total Suspended Solids (TSS)	wt.%	
Total Disolved Solids (TDS)	mg/L	
Average Particle Diameter	microns	

Notes: 1. For stream references see Process Flow Diagram, document number 502718-103000100. 2. Values provided represent time-averaged values and do not necessarily represent equipment capacity or actual continuous operation. 3. Emergency Quench flow normally 0 gpm. 4. Assumes 96.5% CaCO₃ availability on total CaCO₃.

PREPARED BY

APPROVED BY

MATERIAL BALANCE WET FLUE GAS DESULFURIZATION

PROJECT NUMBER	100585
CUSTOMER NAME	Louisville Gas & Electric (LG&E)
PROJECT NAME	Mill Creek Unit 3
LOCATION - CITY, STATE	Louisville, KY
	CASE: Design - 15,000 ppm Cl, no filtrate return
DESCRIPTION	LOAD: 100% MCR
	FUEL: High Sulfur Bituminous Coal
	SO ₂ Removal Efficiency: 98.5%
	REAGENT: Limestone
	WATER: Clearwell Pond Water
PREPARED	NAME

FREFARED	DATE
CHECKED	NAME
	DATE
APPROVED	NAME
	DATE

REVISION HISTORY

1		
2	 	
3	 	
4	 	
5	 	
6	 	
7	 . <u> </u>	
8	 	
9	 	
10	 	
10		

DISTRIBUTION LIST

1	6
2	7
3	8
4	9
5	10

This document and the information, design and material contained and/or illustrated therein (hereinafter "proprietary material"), is the property of BABCOCK POWER Inc., P.O. Box 15040, Worcester, MA 01615-0040, and is submitted, lent and furnished to recipient in strict confidence with the express understanding that the recipient shall not reproduce, copy, loan, dispose of, or disclose to anyone outside recipient's organization, directly or indirectly, or use said proprietary material for any purpose other than that for which it is furnished and submitted. Recipient by receiving said proprietary material agrees not to use the same in any way injurious to the interest or BABCOCK POWER Inc., and agrees to return same upon request. Copyright © BABCOCK POWER Inc., 2011.

Mill Creek Unit 3

MATERIAL BALANCE

GAS PATH STREAMS

Stream Number		11	13	15	16		
Notes Description		FLUE GAS BEFORE ABSORBER	FLUE GAS AFTER ABSORBER	OXIDATION AIR AFTER BLOWER	OXIDATION AIR AFTER HUMIDIFCATION		
Mass Flow	lb/hr, wet	4,959,500	5,321,518	110,824	115,803		
Volume Flow	lb/hr, dry acfm, wet	4,726,452	4,774,738	107,080 44 249	107,080 17,558		
volume r low	scfm, wet	1,082,405	1,206,921	25,305	12,786		
	scfm, dry	999,348	1,012,098	23,358	23,358		
Molecular Weight	lb/lb-mole, wet	29.37	28.27	27.95	27.31		
	lb/lb-mole, dry	30.31	30.24	28.50	28.50		
Density	lb/ft ³	0.050	0.065	0.042	0.110		
Pressure	"F iwa	TBD	TBD	327			
Trobbaro	psig			TBD	TBD		
 N ₂	lb/hr	3.529.510	3.578.114	92.378	92.378		
O ₂	lb/hr	342,417	350,438	14,673	14,673		
CO ₂	lb/hr	826,212	845,372	29	29		
SO ₂	lb/hr	26,222	393	0	0		
	ID/NF	1 333	2//	0	0		
HF	lb/hr	77	13	0	0		
H ₂ O	lb/hr	233,048	546,645	3,744	7,574		
Entrained Moisture	lb/hr	0	136	0	1,149		
Fly Ash	lb/hr	128	130	0	0		
SO ₂ Concentration	ppmv, dry @ actual O ₂	2,630	39	0	0		
SO ₃ Concentration	ppmv, dry @ actual O ₂	44	22	0	0		
HF Concentration	ppmv, dry @ actual O ₂	255	0	0	0		
Dust Loading	gr/dscf @ actual O2	0.015	0.015	0.000	0.000		
Stream Number Notes Description							
Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet						
Molecular Weight	lb/lb-mole, wet						
Donaity	lb/lb-mole, dry						
Temperature	°F						
Pressure	iwg						
	psig						
N ₂	lb/hr						
0 ₂	lb/hr						
CO ₂	lb/hr						
SO ₃	lb/hr						
HCI	lb/hr						
HF	lb/hr						
H ₂ O	lb/hr						
Fly Ash	lb/hr						
SO ₂ Concentration SO ₃ Concentration HCI Concentration HF Concentration Dust Loading	$\begin{array}{l} ppmv, dry @ actual O_2\\ gr/dscf @ actual O_2\\ \end{array}$						

Mill Creek Unit 3

MATERIAL BALANCE

Stream Number			20	23	30	31	32
Notes			20	20	00	0.	02
Description			TOTAL	LIMESTONE	BLEED	PRIMARY	PRIMARY
			RECYCLE	SLURRY TO	FROM	HC	HC
			FLOW	ABSORBER	ABSORBER	OVERFLOW	UNDERFLOW
Mass Flow	lb/hr	-	122,210,764	240,920	600,348	451,121	149,252
Volume Flow	gpm		220,000	421	1,081	870	210
Specific Gravity		-	1.109	1.142	1.109	1.035	1.417
Density	lb/ft3		69.26	71.29	69.25	64.61	88.42
Temperature	°F		131	94	131	131	131
Mass Flow Liquid	lb/hr	-	103,872,211	192,793	510,271	435,670	74,626
Cl	lb/hr		1,558,083	10.6	7,654	6,535	1,119
SO4	lb/hr		575,635	18.0	2,828	2,414	420
SO3	lb/hr		32,728	0.0	161	137	24
Ca ⁺⁺	lb/hr		234,012	27.4	1,150	982	171
Mg ⁺⁺	lb/hr		533,624	12.4	2,621	2,238	389
Na ⁺	lb/hr		27,878	11.0	137	117	20
H ₂ O	lb/hr		100,910,251	192,714	495,720	423,247	72,483
Mass Flow Solids	lb/hr	-	18,338,553	48,126	90,086	15,451	74,626
CaSO ₄ .2H ₂ O	lb/hr		15,529,368	0.0	76,286	7,628	68,656
CaCO ₃	lb/hr		1,056,195	43,910	5,188	2,075	3,112
Inert	lb/hr		1,257,899	1,328	6,179	4,941	1,239
CaSO ₃ .1/2H ₂ O	lb/hr		198,037	0.0	973	777	194
MgCO ₃	lb/hr		297,055	2,887.6	1,459.3	29.4	1,425.4
Ca(OH) ₂	lb/hr		0	0.0	0.0	0.0	0.0
Mg(OH) ₂	lb/hr		0	0.0	0.0	0.0	0.0
CaO	lb/hr		0	0.0	0.0	0.0	0.0
MgO	lb/hr	_	0	0.0	0.0	0.0	0.0
Total Suspended Solids	wt.%, wet		15.0	20.0	15.0	3.4	50.0
CI [°] Concentration	ppm		15,000	55	15,000	15,000	15,000
pН			5 to 7	> 7	5 to 7	5 to 7	5 to 7

Stream Number		35	38	44	45	47	
Notes Description		CHLORIDE PURGE	HC OVERFLOW TO ABSORBER	CLEARWELL POND WATER TO ME WASH	CLEARWELL POND WATER TO OXIDATION	CLEARWELL POND WATER TO ABSORBER	
Mass Flow	lb/hr	12,781	438,340	77,814	4,980	133,103	
Volume Flow	gpm	25	846	156	10.0	266	
Specific Gravity		1.035	1.035	0.995	0.995	0.998	
Density	lb/ft3	64.61	64.61	62.08	62.08	62.30	
Temperature	°F	131	131	95	95	95	
Mass Flow Liquid	lb/hr	12,343.2	423,326.9	78,107	4,980	132,807	
Cl	lb/hr	185.1	6,349.9	4.3	0.3	7	
SO4	lb/hr	68.4	2,346.0	7.3	0.5	12	
SO3	lb/hr	3.9	133.4	0.0	0.0	0	
Ca ⁺⁺	lb/hr	27.8	953.7	11.1	0.7	19	
Mg ⁺⁺	lb/hr	63.4	2,174.8	5.0	0.3	8	
Na ⁺	lb/hr	3.3	113.6	4.5	0.3	8	
H ₂ O	lb/hr	11,991.3	411,255.6	78,075	4,978	132,753	
Mass Flow Solids	lb/hr	437.8	7,601.3	1.1	0.1	1.9	
CaSO ₄ .2H ₂ O	lb/hr	216.2	0.0	0.0	0.0	0.0	
CaCO ₃	lb/hr	58.8	2,016.3	0.0	0.0	0.0	
Inert	lb/hr	140.0	4,801.3	1.1	0.1	1.9	
CaSO ₃ .1/2H ₂ O	lb/hr	22.0	755.2	0.0	0.0	0.0	
MgCO ₃	lb/hr	0.8	28.5	0.0	0.0	0.0	
Ca(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
Mg(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
CaO	lb/hr	0.0	0.0	0.0	0.0	0.0	
MgO	lb/hr	0.0	0.0	0.0	0.0	0.0	
Total Suspended Solids	wt.%, wet	3.4	1.7	0.0	0.0	0.0	
Cl ⁻ Concentration	ppm	15,000	15,000	55	55	55	
pН		5 to 7	5 to 7	6 to 8	6 to 8	6 to 8	

Mill Creek Unit 3

MATERIAL BALANCE

FUEL DATA, BOILER DATA, AND NOTES

Unit Rating	MWg	425
Boiler Heat Input	MBtu/hr	4,208
Fuel Feed Rate	lb/hr	386,068
SO ₂ Inlet Loading	lb SO ₂ /MBtu	6.32
SO ₂ Removal Efficiency	%	98.5
Excess Air	%	20.0
Air Heater Leakage	%	10.0
Oxygen at FGD Inlet	vol.%, dry	6.95
Site Elevation	ft above MSL	460
Ambient Pressure	in H ₂ O	14.45
Ambient Temperature	°F	-23.1 - 105.4
Coal Analysis		
Coal		Performance Fue
Carbon	wt.%, wet	60.00
Hydrogen	wt.%, wet	4.00
Nitrogen	wt.%, wet	1.30
Oxygen	wt.%, wet	5.90
Sulfur	wt.%, wet	3.45
Chlorine	wt.%, wet	0.35
Fluorine	wt.%, wet	0.02
Ash	wt.%, wet	14.00
Moisture	wt.%, wet	11.00
Higher Heating Value (HHV)	BTU/lb	10,900
Limestone Analysis		Note 4
Total CaCO ₃	wt.%, dry	94.6
Reactive CaCO ₃	%	91.3
Total MgCO ₃	wt.%, dry	2.4
Reactive MgCO ₃	%	
Inerts	wt.%, dry	3.0
Gypsum Quality (at HC Underflow)		
Free Moisture	wt.%	
CaSO ₄ -2H ₂ O	wt.%, dry	92
CaSO ₃ -1/2H ₂ O	wt.%, dry	0.26
CaCO ₃	wt.%, dry	4.17
Inerts	wt.%, dry	1.66
MgCO ₃	wt.%, dry	1.9
Fly Ash	wt.%, dry	
Maximum Chloride Content	ppmvd	15,000
Total Suspended Solids (TSS)	wt.%	
Total Disolved Solids (TDS)	mg/L	
Average Particle Diameter	microns	
-		

Notes: 1. For stream references see Process Flow Diagram, document number 502718-103000100. 2. Values provided represent time-averaged values and do not necessarily represent equipment capacity or actual continuous operation. 3. Emergency Quench flow normally 0 gpm. 4. Assumes 96.5% CaCO₃ availability on total CaCO₃.

PREPARED BY

APPROVED BY

MATERIAL BALANCE WET FLUE GAS DESULFURIZATION

PROJECT NUMBER	100585
CUSTOMER NAME	Louisville Gas & Electric (LG&E)
PROJECT NAME	Mill Creek Unit 3
LOCATION - CITY, STATE	Louisville, KY
	CASE: Design - 50,000 ppm CI - no filtrate return
DESCRIPTION	LOAD: 100% MCR
	FUEL: High Sulfur Bituminous Coal
	SO ₂ Removal Efficiency: 98.5%
	REAGENT: Limestone
	WATER: Clearwell Pond Water
PREPARED	NAME
INCLARED	

FREFARED	DATE
CHECKED	NAME
CHECKED	DATE
	NAME
AFFROVED	DATE

REVISION HISTORY

1		
2		
3	 	
4	 	
5	 	
6	 	
7	 	
<u>م</u>	 	
ů.	 	
9	 	
10		

DISTRIBUTION LIST

1	6
2	7
3	8
4	9
5	10

This document and the information, design and material contained and/or illustrated therein (hereinafter "proprietary material"), is the property of BABCOCK POWER Inc., P.O. Box 15040, Worcester, MA 01615-0040, and is submitted, lent and furnished to recipient in strict confidence with the express understanding that the recipient shall not reproduce, copy, loan, dispose of, or disclose to anyone outside recipient's organization, directly or indirectly, or use said proprietary material for any purpose other than that for which it is furnished and submitted. Recipient by receiving said proprietary material agrees not to use the same in any way injurious to the interest or BABCOCK POWER Inc., and agrees to return same upon request. Copyright © BABCOCK POWER Inc., 2011.

Mill Creek Unit 3

MATERIAL BALANCE

GAS PATH STREAMS

Stream Number		11	13	15	16		
Notes				OVIDATION	OVIDATION		
Description		BEFORE	AFTER				
		ABSORBER	ABSORBER	BLOWER	HUMIDIFCATION		
Mass Flow	lb/hr, wet	4,959,500	5,321,532	110,824	115,803		
Volumo Flow	acfm wet	4,720,402	4,774,738	107,080	107,080		
Volume Flow	scfm wet	1,030,934	1,302,324	25 305	12,336		
	scfm, drv	999.348	1.012.098	23,358	23.358		
Molecular Weight	lb/lb-mole, wet	29.37	28.27	27.95	27.31		
	lb/lb-mole, dry	30.31	30.24	28.50	28.50		
Density	lb/ft ³	0.050	0.065	0.042	0.110		
Temperature	°F	357	131	327	158		
Pressure	IWg	IBD	IBD				
	psig				IBD		
N ₂	lb/hr	3.529.510	3.578.108	92.378	92.378		
0 ₂	lb/hr	342,417	350,440	14,673	14,673		
CO ₂	lb/hr	826,212	845,376	29	29		
SO ₂	lb/hr	26,222	393	0	0		
SO3	lb/hr	553	277	0	0		
HCI	lb/hr	1,332	13	0	0		
HF	lb/hr	77	1	0	0		
H ₂ O	lb/hr	233,048	546,658	3,744	7,574		
Entrained Moisture	lb/hr	128	136	0	1,149		
		120					
SO ₂ Concentration	ppmv, dry @ actual O ₂	2,630	39	0	0		
SO ₃ Concentration	ppmv, dry @ actual O2	44	22	0	0		
HCI Concentration	ppmv, dry @ actual O2	235	2	0	0		
HF Concentration	ppmv, dry @ actual O2	25	0	0	0		
Dust Loading	gr/dscf @ actual O2	0.015	0.015	0.000	0.000		
Stream Number Notes Description]			
Stream Number Notes Description	lb/br.wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/fb-mole, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/lb [*] F						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ft ³ °F iwg						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ft ³ °F iwg psig						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/ht ² °F iwg psig						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N ₂ O ₂	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/h ² °F ivg psig Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 O2	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ht ³ °F iwg psig lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO2	Ib/hr, wet Ib/hr, dry acfm, wet scfm, dry scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/ht iwg psig Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/lb-mole, dry Ib/hr %F iwg psig Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3 HCI	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry ib/lb-mole, wet lb/lb-mole, dry lb/ht bb/ft ² °F ivg psig bb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 CO2 SO3 HCI HF	lb/hr, wet lb/hr, wet scfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/hf ³ °F iwg psig lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O	Ib/hr, wet Ib/hr, dry acfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3 HCI HF H2O Entrained Moisture	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/hr- ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry ib/lb-mole, wet lb/lb-mole, dry lb/hr ib/hr ib/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 02 CO2 SO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Coccentration	ib/hr, wet ib/hr, wet scfm, wet scfm, wet scfm, wet scfm, dry ib/h-mole, wet ib/h-mole, dry ib/h ² °F wg psig b/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration SO2 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure O2 CO2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration SO3 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration HCI Concentration HCI Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/Ib-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3 HCI HF H2 CO2 SO3 SO3 HCI HF H2 SO2 Cocentration SO3 Concentration HCI Concentration HCI Concentration HCI Concentration HCI Concentration	ib/hr, wet ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry ib/lb-mole, wet ib/lb-mole, dry ib/hr						

Mill Creek Unit 3

MATERIAL BALANCE

Stream Number		20	23	30	31	32
Notes						,
Description		TOTAL	LIMESTONE	BLEED	PRIMARY	PRIMARY
		RECYCLE	SLURRY TO	FROM	HC	HC
		FLOW	ABSORBER	ABSORBER	OVERFLOW	UNDERFLOW
Mass Flow	lb/hr	122,629,370	235,586	607,403	458,198	150,145
Volume Flow	gpm	220,000	411	1,090	881	211
Specific Gravity		1.113	1.145	1.113	1.039	1.421
Density	lb/ft3	69.49	71.50	69.49	64.87	88.76
Temperature	°F	131	94	131	131	131
Mass Flow Liquid	lb/hr	104,219,432	187,459	516,224	442,092	75,072
CI	lb/hr	1,797,806	10.3	8,905	7,626	1,295
SO4	lb/hr	617,178	17.5	3,057	2,618	453
SO3	lb/hr	34,701	0.0	172	147	25
Ca ⁺⁺	lb/hr	250,497	26.6	1,241	1,063	184
Mg ⁺⁺	lb/hr	615,163	12.1	3,047	2,609	451
Na ⁺	lb/hr	31,294	10.7	155	133	23
H ₂ O	lb/hr	100,872,793	187,382	499,648	427,896	72,641
Mass Flow Solids	lb/hr	18,409,937	48,131	91,187		75,072
CaSO ₄ .2H ₂ O	lb/hr	15,457,279	0.0	76,562	7,657	68,909
CaCO ₃	lb/hr	1,063,988	43,915	5,270	2,107	3,161
Inert	lb/hr	1,375,085	1,328	6,811	5,447	1,359
CaSO ₃ .1/2H ₂ O	lb/hr	219,056	0.0	1,085	868	218
MgCO ₃	lb/hr	294,530	2,887.6	1,458.9	29.0	1,426.4
Ca(OH) ₂	lb/hr	0	0.0	0.0	0.0	0.0
Mg(OH) ₂	lb/hr	0	0.0	0.0	0.0	0.0
CaO	lb/hr	0	0.0	0.0	0.0	0.0
MgO	lb/hr	0	0.0	0.0	0.0	0.0
Total Suspended Solids	wt.%, wet	15.0	20.4	15.0	3.5	50.0
Cl ⁻ Concentration	ppm	17,250	55	17,250	17,250	17,250
pН		5 to 7	> 7	5 to 7	5 to 7	5 to 7

Stream Number		35	38	44	45	47	
Notes							
Description		CHLORIDE	HC	CLEARWELL POND	CLEARWELL POND	CLEARWELL POND	
		PURGE	OVERFLOW	WATER TO	WATER TO	WATER TO	
			TO ABSORBER	ME WASH	OXIDATION	ABSORBER	
Mass Flow	lb/hr	1,483	456,715	77,814	4,980	127,130	
Volume Flow	gpm	3	877	156	10.0	254	
Specific Gravity		1.039	1.039	0.995	0.995	0.998	
Density	lb/ft3	64.88	64.88	62.08	62.08	62.30	
Temperature	°F	131	131	95	95	95	
Mass Flow Liquid	lb/hr	1,430.4	440,661.2	78,096	4,980	126,846	
CI	lb/hr	24.7	7,601.4	4.3	0.3	7	
SO₄ [™]	lb/hr	8.5	2,609.5	7.3	0.5	12	
SO3	lb/hr	0.5	146.7	0.0	0.0	0	
Ca ⁺⁺	lb/hr	3.4	1,059.1	11.1	0.7	18	
Mg ⁺⁺	lb/hr	8.4	2,601.0	5.0	0.3	8	
Na ⁺	lb/hr	0.4	132.3	4.5	0.3	7	
H ₂ O	lb/hr	1,384.4	426,511.2	78,064	4,978	126,794	
Mass Flow Solids	lb/hr	52.0	8,423.4	1.1	0.1	1.7	
CaSO ₄ .2H ₂ O	lb/hr	24.7	0.0	0.0	0.0	0.0	
CaCO ₃	lb/hr	6.8	2,099.8	0.0	0.0	0.0	
Inert	lb/hr	17.6	5,429.4	1.1	0.1	1.7	
CaSO ₃ .1/2H ₂ O	lb/hr	2.8	865.3	0.0	0.0	0.0	
MgCO ₃	lb/hr	0.1	28.9	0.0	0.0	0.0	
Ca(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
Mg(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
CaO	lb/hr	0.0	0.0	0.0	0.0	0.0	
MgO	lb/hr	0.0	0.0	0.0	0.0	0.0	
Total Suspended Solids	wt.%, wet	3.5	1.8	0.0	0.0	0.0	
CI ⁻ Concentration	ppm	17,250	17,250	55	55	55	
pН		5 to 7	5 to 7	6 to 8	6 to 8	6 to 8	

Mill Creek Unit 3

MATERIAL BALANCE

FUEL DATA, BOILER DATA, AND NOTES

Unit Rating	MWg	425
Boiler Heat Input	MBtu/hr	4,208
Fuel Feed Rate	lb/hr	386,068
SO ₂ Inlet Loading	Ib SO ₂ /MBtu	6.32
SO ₂ Removal Efficiency	%	98.5
Excess Air	%	20.0
Air Heater Leakage	%	10.0
Oxygen at FGD Inlet	vol.%, dry	6.95
Site Elevation	ft above MSL	460
Ambient Pressure	in H ₂ O	14.45
Ambient Temperature	°F	-23.1 - 105.4
Coal Analysis		
Coal		Performance Fue
Carbon	wt.%, wet	60.00
Hydrogen	wt.%, wet	4.00
Nitrogen	wt.%, wet	1.30
Oxygen	wt.%, wet	5.90
Sulfur	wt.%, wet	3.45
Chlorine	wt.%, wet	0.35
Fluorine	wt.%, wet	0.02
Ash	wt.%, wet	14.00
Moisture	wt.%, wet	11.00
Higher Heating Value (HHV)	BTU/lb	10,900
Limestone Analysis		Note 4
Total CaCO ₃	wt.%, dry	94.6
Reactive CaCO ₃	%	91.3
Total MgCO ₃	wt.%, dry	2.4
Reactive MgCO ₃	%	
Inerts	wt.%, dry	3.0
Gypsum Quality (at HC Underflow)		
Free Moisture	wt.%	
CaSO ₄ -2H ₂ O	wt.%, dry	91.79
CaSO ₃ -1/2H ₂ O	wt.%, dry	0.29
CaCO ₃	wt.%, dry	4.21
Inerts	wt.%, dry	1.81
MgCO ₃	wt.%, dry	1.9
Fly Ash	wt.%, dry	
Maximum Chloride Content	ppmvd	17,250
Total Suspended Solids (TSS)	wt.%	
Total Disolved Solids (TDS)	mg/L	
Average Particle Diameter	microns	

Notes: 1. For stream references see Process Flow Diagram, document number 502718-103000100. 2. Values provided represent time-averaged values and do not necessarily represent equipment capacity or actual continuous operation. 3. Emergency Quench flow normally 0 gpm. 4. Assumes 96.5% CaCO₃ availability on total CaCO₃.

PREPARED BY

APPROVED BY

MATERIAL BALANCE WET FLUE GAS DESULFURIZATION

PROJECT NUMBER	100585			
CUSTOMER NAME	Louisville Gas & Electric (LG&E)			
PROJECT NAME	Mill Creek Unit 3			
LOCATION - CITY, STATE	Louisville, KY			
	CASE: Design - 8,000 ppm CI - filtrate return via Clearwell Pond			
DESCRIPTION	LOAD: 100% MCR			
	FUEL: High Sulfur Bituminous Coal			
	SO ₂ Removal Efficiency: 98.5%			
	REAGENT: Limestone			
	WATER: Clearwell Pond Water + Service Water for ME Wash			

PPEPAPED	NAME
FREFARED	DATE
CHECKED	NAME
CHECKED	DATE
	NAME
AFFROVED	DATE

REVISION HISTORY

1		
2	2	
3	3	
4	4	
5	5	
6	<u></u>	
7		
8	3	
9		
10	0	

DISTRIBUTION LIST

1	6
2	7
3	8
4	9
5	10

This document and the information, design and material contained and/or illustrated therein (hereinafter "proprietary material"), is the property of BABCOCK POWER Inc., P.O. Box 15040, Worcester, MA 01615-0040, and is submitted, lent and furnished to recipient in strict confidence with the express understanding that the recipient shall not reproduce, copy, loan, dispose of, or disclose to anyone outside recipient's organization, directly or indirectly, or use said proprietary material for any purpose other than that for which it is furnished and submitted. Recipient by receiving said proprietary material agrees not to use the same in any way injurious to the interest or BABCOCK POWER Inc., and agrees to return same upon request. Copyright © BABCOCK POWER Inc., 2011.

Mill Creek Unit 3

MATERIAL BALANCE

GAS PATH STREAMS

Stream Number		11	13	15	16	 	
Notes			15	15	10		
Description		FLUE GAS BEFORE ABSORBER	FLUE GAS AFTER ABSORBER	OXIDATION AIR AFTER BLOWER	OXIDATION AIR AFTER HUMIDIFCATION		
Mass Flow	lb/hr, wet	4,942,271	5,298,295	110,824	115,779		
	lb/hr, dry	4,704,921	4,750,980	105,361	107,276		
Volume Flow	acfm, wet	1,652,827	1,357,500	44,249	17,550		
	scfm, wet	1,079,723	1,202,285	25,305	12,781		
	scfm, dry	995,132	1,007,273	23,358	23,358		
Molecular Weight	lb/lb-mole wet	29.34	28.25	27.96	27.31		
wolcoular weight	lb/lb-mole, dry	30.30	30.23	27.50	28.48		
Density	lb/ft ³	0.050	0.065	0.042	0.110		
Temperature	°F	357	131	327	158		
Pressure	iwa	TBD	TBD		-		
	psig		-	TBD	TBD		
N ₂	lb/hr	3,517,078	3,562,873	93,341	93,341		
O ₂	lb/hr	340,973	348,764	13,907	13,907		
CO ₂	lb/hr	820,682	838,573	28	28		
SO ₂	lb/hr	24,853	373	0	0		
SO3	lb/hr	522	261	0	0		
HCI	lb/hr	609	6	0	0		
HF	lb/hr	77	1	0	0		
H ₂ O	lb/hr	237,349	547,180	3,548	7,360		
Entrained Moisture	lb/hr	0	135	0	1,143		
Fly Ash	lb/hr	128	130	0	0		
SO ₂ Concentration	ppmv, dry @ actual O ₂	2,503	37	0	0		
SO ₃ Concentration	ppmv, dry @ actual O ₂	42	21	0	0		
HCI Concentration	ppmv, dry @ actual O2	108	1	0	0		
HF Concentration	ppmv, dry @ actual O ₂	25	0	0	0		
Dust Loading	gr/dscf @ actual O2	0.015	0.015	0.000	0.000		
Stream Number Notes Description							
Stream Number Notes Description	liv/br wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/tb3						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ti ³ °F						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, dry lb/lb-mole, dry lb/ti ³ °F ivg psig						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N ₂	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, dry lb/lb-mole, dry lb/ti ³ °F ivg psig						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/hr b/ft ³ °F iwg psig lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/lb-mole, dry Ib/hr ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N ₂ O ₂ CO ₂ CO ₂ SO ₂	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry lb/lb-mole, dry lb/lb-mole, dry lb/lb-mole, dry lb/hr ³ °F iwg psig lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/tt ³ °F ivg psig Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/lb-mole, dry Ib/hr ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N ₂ O ₂ CO ₂ SO ₂ SO ₂ SO ₃ HCI HF	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/lb ³ °F iwg psig lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3 HCI HF H2O	Ib/hr, wet Ib/hr, dy acfm, wet scfm, wet scfm, dy Ib/lb-mole, dy Ib/lb-mole, dry Ib/tr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 V2 SO3 HCI HF H2O Entrained Moisture	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/hr-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/ht Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry ib/lb-mole, wet Ib/lb-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N ₂ O ₂ CO ₂ SO ₃ SO ₃ HCI HF H ₂ O Entrained Moisture Fly Ash SO ₂ Concentration SO ₃ Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/Ib-mole, dry Ib/Ib ² ⁹ F iwg psig Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration HCI Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, dry Ib/lb-mole, dry Ib/lb-mole, dry Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration HCI Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, dry Ib/lb-mole, dry Ib/hr Ib						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration SO3 Concentration HCI Concentration HCI Concentration HCI Concentration HCI Concentration HCI Concentration Dust Loading	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/Ib-mole, dry prig Schwarz, dry actual O2 ppmv, dry @ actual O2 prdscf @ actual O2						

Mill Creek Unit 3

MATERIAL BALANCE

Stream Number		20	23	30	31	32
Notes						
Description		TOTAL	LIMESTONE	BLEED	PRIMARY	PRIMARY
		RECYCLE	SLURRY TO	FROM	HC	HC
		FLOW	ABSORBER	ABSORBER	OVERFLOW	UNDERFLOW
Mass Flow	lb/hr	122,166,700	243,545	541,971	405,578	136,392
Volume Flow	gpm	220,000	431	976	784	192
Specific Gravity		1.109	1.129	1.109	1.034	1.416
Density	lb/ft3	69.23	70.52	69.22	64.52	88.38
Temperature	°F	131	94	131	131	131
Mass Flow Liquid	lb/hr	103,839,217		460,672	392,476	68,196
CI	lb/hr	830,714	10.9	3,685	3,140	546
SO4	lb/hr	1,346,198	18.6	5,972	5,088	897
SO3	lb/hr	62,661	0.0	278	237	42
Ca ⁺⁺	lb/hr	93,342	28.2	414	353	62
Mg ⁺⁺	lb/hr	572,363	12.8	2,539	2,163	381
Na ⁺	lb/hr	30,742	11.3	136	116	20
H ₂ O	lb/hr	100,903,197	198,394	447,647	381,379	66,248
Mass Flow Solids	lb/hr	18,327,484	45,070	81,307	13,102	68,203
CaSO ₄ .2H ₂ O	lb/hr	15,807,707	0.0	70,128	7,012	63,116
CaCO ₃	lb/hr	1,006,078	40,739	4,463	1,785	2,680
Inert	lb/hr	1,090,376	1,627	4,837	3,870	968
CaSO ₃ .1/2H ₂ O	lb/hr	115,452	0.0	512	407	102
MgCO ₃	lb/hr	307,871	2,704.2	1,365.8	27.5	1,336.6
Ca(OH) ₂	lb/hr	0	0.0	0.0	0.0	0.0
Mg(OH) ₂	lb/hr	0	0.0	0.0	0.0	0.0
CaO	lb/hr	0	0.0	0.0	0.0	0.0
MgO	lb/hr	0	0.0	0.0	0.0	0.0
Total Suspended Solids	wt.%, wet	15.0		15.0	3.2	50.0
CI ⁻ Concentration	ppm	8,000	55	8,000	8,000	8,000
pН		5 to 7	> 7	5 to 7	5 to 7	5 to 7

Stream Number		35	38	44	45	47	
Notes Description		CHLORIDE PURGE	HC OVERFLOW TO ABSORBER	SERVICE WATER WATER TO ME WASH	SERVICE WATER WATER TO OXIDATION	CLEARWELL POND RETURN TO ABSORBER	
Mass Flow	ib/nr	70,617	334,961	77,814	4,955	158,207	
	gpin						
Specific Gravity		1.034	1.034	0.995	0.995	1.005	
Density	lb/ft3	64.53	64.53	62.08	62.08	62.72	
Temperature	°F	131	131	95	95	131	
Mass Flow Liquid	lb/hr	68,335.9	324,140.2	78,088	4,955	158,198	
Cl	lb/hr	546.7	2,593.1	4.3	0.3	490	
SO4	lb/hr	885.9	4,202.2	7.3	0.5	795	
SO3-	lb/hr	41.2	195.6	0.0	0.0	37	
Ca ⁺⁺	lb/hr	61.4	291.4	11.1	0.7	68	
Mg ⁺⁺	lb/hr	376.7	1,786.7	5.0	0.3	340	
Na ⁺	lb/hr	20.2	96.0	4.5	0.3	24	
H ₂ O	lb/hr	66,403.8	314,975.3	78,055	4,953	156,444	
Mass Flow Solids	lb/hr	2,281.3	10,820.9		0.1	8.2	
CaSO ₄ .2H ₂ O	lb/hr	1,221.0	5,791.4	0.0	0.0	6.3	
CaCO ₃	lb/hr	310.7	1,473.8	0.0	0.0	0.3	
Inert	lb/hr	673.9	3,196.5	1.1	0.1	1.4	
CaSO ₃ .1/2H ₂ O	lb/hr	70.9	336.5	0.0	0.0	0.0	
MgCO ₃	lb/hr	4.8	22.7	0.0	0.0	0.1	
Ca(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
Mg(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
CaO	lb/hr	0.0	0.0	0.0	0.0	0.0	
MgO	lb/hr	0.0	0.0	0.0	0.0	0.0	
Total Suspended Solids	wt.%, wet	3.2	3.2	0.0	0.0	0.0	
Cl ⁻ Concentration	ppm	8,000	8,000	55	55	3,099	
pH		5 to 7	5 to 7	6 to 8	6 to 8	6 to 8	

Mill Creek Unit 3

MATERIAL BALANCE

FUEL DATA, BOILER DATA, AND NOTES

Unit Rating	MWg	425
Boiler Heat Input	MBtu/hr	4,208
Fuel Feed Rate	lb/hr	386,068
SO ₂ Inlet Loading	Ib SO ₂ /MBtu	6.32
SO ₂ Removal Efficiency	%	98.5
Excess Air	%	20.0
Air Heater Leakage	%	10.0
Oxygen at FGD Inlet	vol.%, dry	6.95
Site Elevation	ft above MSL	460
Ambient Pressure	in H ₂ O	14.45
Ambient Temperature	°F	-23.1 - 105.4
Coal Analysis		
Coal		Performance Fue
Carbon	wt.%, wet	60.00
Hydrogen	wt.%, wet	4.00
Nitrogen	wt.%, wet	1.30
Oxygen	wt.%, wet	5.90
Sulfur	wt.%, wet	3.45
Chlorine	wt.%, wet	0.35
Fluorine	wt.%, wet	0.02
Ash	wt.%, wet	14.00
Moisture	wt.%, wet	11.00
Higher Heating Value (HHV)	BTU/lb	10,900
Limestone Analysis		Note 4
Total CaCO ₃	wt.%, dry	94.6
Reactive CaCO ₃	%	91.3
Total MgCO ₃	wt.%, dry	2.4
Reactive MgCO ₃	%	
Inerts	wt.%, dry	3.0
Gypsum Quality (at HC Underflow)		
Free Moisture	wt.%	
CaSO ₄ -2H ₂ O	wt.%, dry	91.79
CaSO ₃ -1/2H ₂ O	wt.%, dry	0.29
CaCO ₃	wt.%, dry	4.21
Inerts	wt.%, dry	1.81
MgCO ₃	wt.%, dry	1.9
Fly Ash	wt.%, dry	
Maximum Chloride Content	ppmvd	17,250
Total Suspended Solids (TSS)	wt.%	
Total Disolved Solids (TDS)	mg/L	
Average Particle Diameter	microns	

Notes: 1. For stream references see Process Flow Diagram, document number 502718-103000100. 2. Values provided represent time-averaged values and do not necessarily represent equipment capacity or actual continuous operation. 3. Emergency Quench flow normally 0 gpm. 4. Assumes 96.5% CaCO₃ availability on total CaCO₃.

PREPARED BY

APPROVED BY

MATERIAL BALANCE WET FLUE GAS DESULFURIZATION

PROJECT NUMBER	100585				
CUSTOMER NAME	Louisville Gas & Electric (LG&E)				
PROJECT NAME	Mill Creek Unit 3				
LOCATION - CITY, STATE	Louisville, KY				
	CASE: Design - 15,000 ppm CI and filtrate return via Clearwell Pond				
DESCRIPTION	LOAD: 100% MCR				
	FUEL: High Sulfur Bituminous Coal				
	SO ₂ Removal Efficiency: 98.5%				
	REAGENT: Limestone				
	WATER: Clearwell Pond Water and Service Water for ME wash				

PREPARED	NAME
	DATE
CHECKED	NAME
CHECKED	DATE
APPROVED	NAME
	DATE

REVISION HISTORY

1		
2	2	
3	3	
4	4	
5	5	
6	<u></u>	
7		
8	3	
9		
10	0	

DISTRIBUTION LIST

1	6
2	7
3	8
4	9
5	10

This document and the information, design and material contained and/or illustrated therein (hereinafter "proprietary material"), is the property of BABCOCK POWER Inc., P.O. Box 15040, Worcester, MA 01615-0040, and is submitted, lent and furnished to recipient in strict confidence with the express understanding that the recipient shall not reproduce, copy, loan, dispose of, or disclose to anyone outside recipient's organization, directly or indirectly, or use said proprietary material for any purpose other than that for which it is furnished and submitted. Recipient by receiving said proprietary material agrees not to use the same in any way injurious to the interest or BABCOCK POWER Inc., and agrees to return same upon request. Copyright © BABCOCK POWER Inc., 2011.

Mill Creek Unit 3

MATERIAL BALANCE

GAS PATH STREAMS

Stream Number		11	13	15	16		
Notes				· · · · · · · · · · · · · · · · · · ·		·	 I
Description		FLUE GAS BEFORE	FLUE GAS AFTER	OXIDATION AIR AFTER	OXIDATION AIR AFTER		
		ABSORBER	ABSORBER	BLOWER	HUMIDIFCATION		
Mass Flow	lb/hr. wet	4.942.271	5.298.376	110.824	115.779		
	lb/hr, dry	4,704,921	4,750,981	105,361	107,276		
Volume Flow	acfm, wet	1,652,827	1,357,532	44,249	17,550		
	scfm, wet	1.079.723	1.202.313	25,305	12,781		
	scfm, dry	995,132	1,007,273	23,358	23,358		
Molecular Weight	lb/lb-mole, wet	29.34	28.25	27.96	27.31		
	lb/lb-mole, dry	30.30	30.23	27.97	28.48		
Density	Ib/ft ^o	0.050	0.065	0.042	0.110		
Temperature	°F	357	131	327	158		
Pressure	nsia			TBD	TBD		
	F**3						
N ₂	lb/hr	3,517,078	3,562,836	93,341	93,341		
O ₂	lb/hr	340,973	348,775	13,907	13,907		
CO ₂	lb/hr	820,682	838,599	28	28		
SO ₂	lb/hr	24,853	373	0	0		
SO3	lb/hr	522	261	0	0		
HCI	lb/hr	609	6	0	0		
HF	lb/hr	77	1	0	0		
H ₂ O	lb/hr	237,349	547,260	3,548	7,360		
Entrained Moisture	lb/hr	0	135	0	1,143		
Fly Ash	lb/hr	128	130	0	0		
SO ₂ Concentration	ppmv, dry @ actual O ₂	2.503	37	0	0		
SO ₃ Concentration	ppmv, dry @ actual O2	42	21	0	0		
HCI Concentration	ppmv, dry @ actual O2	108	1	0	0		
HF Concentration	ppmv, dry @ actual O2	25	0	0	0		
Dust Loading	gr/dscf @ actual O2	0.015	0.015	0.000	0.000		
Stream Number Notes Description							
Stream Number Notes Description Mass Flow	lb/hr, wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight	lb/hr, wet lb/hr, dry acfm, wet scfm, dry scfm, dry lb/lb-mole, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ft ²						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/lb ⁺ r						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ft ³ °F iwg psig						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/ft ³ °F iwg psig						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O ₂	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, dry lb/hb-mole, dry lb/ft ² °F iwg psig lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/Ib-mole, dry Ib/It ³ °F iwg psig Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO2	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/ft ² °F iwg psig Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, dry lb/hb-mole, dry lb/hf ² °F iwg psig lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3 HCI	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ht ³ °F iwg psig lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3 HCI HF	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/Ib ⁻ role, dry Ib/It ² °F iwg psig b/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 CO2 SO3 HCI HF H2O	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/ho-mole, wet Ib/ho-mole, dry Ib/ho-mole, dry Ib/ho-mole, dry Ib/hr ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3 HC1 HF H2O Entrained Moisture	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/hf ³ °F iwg psig lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Wolecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3 HCI HF H2O Entrained Moisture Fly Ash	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/Ib ⁻ rmole, dry Ib/Ir ³ [©] F iwg psig Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2 Entrained Moisture Fly Ash SO2 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/h² °F iwg psig Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 02 C02 S03 HCI HF H20 Entrained Moisture Fly Ash S02 Concentration S03 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/Ht ³ °F iwg psig Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration HCI Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/hr Ib/hr <						
Stream Number Notes Description Mass Flow Volume Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration SO3 Concentration HCI Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/h-mole, wet Ib/h-mole, dry Ib/hr						

Mill Creek Unit 3

MATERIAL BALANCE

Stream Number		20	23	30	31	32
Notes					<u> </u>	
Description		TOTAL	LIMESTONE	BLEED	PRIMARY	PRIMARY
		RECYCLE	SLURRY TO	FROM	HC	HC
		FLOW	ABSORBER	ABSORBER	OVERFLOW	UNDERFLOW
Mass Flow	lb/hr		77 225,728	559,851	420,960	138,891
Volume Flow	gpm	220,0	<mark>00</mark> 395	987	794	193
Specific Gravity		1.1	 33 1.141	1.133	1.058	1.439
Density	lb/ft3	70.	71 71.26	70.71	66.08	89.79
Temperature	°F	1	31 94	131	131	131
Mass Flow Liquid	lb/hr		95 180,658	475,849	406,404	69,445
CI	lb/hr	1,590,8	59 9.9	7,138	6,096	1,042
SO4	lb/hr	2,376,1	18 16.9	10,661	9,105	1,615
SO3-	lb/hr	109,1	66 0.0	490	418	74
Ca ⁺⁺	lb/hr	95,6	19 25.6	429	366	65
Mg ⁺⁺	lb/hr	1,094,6	12 11.7	4,911	4,194	744
Na ⁺	lb/hr	53,7	61 10.3	241	206	37
H ₂ O	lb/hr	100,737,1	61 180,584	451,979	386,017	65,869
Mass Flow Solids	lb/hr	18,720,1	81 45,070	83,994	14,558	69,452
CaSO ₄ .2H ₂ O	lb/hr	15,823,8	80 0.0	70,998	7,101	63,904
CaCO ₃	lb/hr	1,046,5	63 40,739	4,696	1,879	2,819
Inert	lb/hr	1,394,7	93 1,627	6,258	5,006	1,250
CaSO ₃ .1/2H ₂ O	lb/hr	151,6	49 0.0	680	544	139
MgCO ₃	lb/hr	303,2	97 2,704.2	1,360.8	27.7	1,340.3
Ca(OH) ₂	lb/hr		0 0.0	0.0	0.0	0.0
Mg(OH) ₂	lb/hr		0 0.0	0.0	0.0	0.0
CaO	lb/hr		0 0.0	0.0	0.0	0.0
MgO	lb/hr		0 0.0	0.0	0.0	0.0
Total Suspended Solids	wt.%, wet	15	5.0 20.0	15.0	3.5	50.0
CI ⁻ Concentration	ppm	15,0	00 55	15,000	15,000	15,000
pН		5 to	>7 >7	5 to 7	5 to 7	5 to 7

Stream Number		35	38	44	45	47	
Notes Description		CHLORIDE PURGE	HC OVERFLOW TO ABSORBER	SERVICE WATER WATER TO ME WASH	SERVICE WATER WATER TO OXIDATION	RECLAIM WATER RETURN TO ABSORBER	
Mass Flow	lb/hr	33,811	387,149	77,814	4,955	150,557	
Volume Flow	gpm	64	730	156	10.0	297	
Specific Gravity		1.058	1.058	0.995	0.995	1.016	
Density	lb/ft3	66.07	66.07	62.08	62.08	63.45	
Temperature	°F	131	131	95	95	131	
Mass Flow Liquid	lb/hr	32,642.0	373,761.6	78,124	4,955	150,549	
CI	lb/hr	489.6	5,606.4	4.3	0.3	931	
SO4	lb/hr	731.3	8,373.8	7.3	0.5	1,391	
SO3	lb/hr	33.6	384.7	0.0	0.0	64	
Ca ⁺⁺	lb/hr	29.4	337.0	11.1	0.7	68	
Ma ⁺⁺	lb/hr	336.9	3,857.5	5.0	0.3	643	
Na ⁺	lb/hr	16.5	189.5	4.5	0.3	36	
H ₂ O	lb/hr	31,004.6	355,012.7	78,091	4,953	147,416	
Mass Flow Solids	lb/hr	1,169.2	13,388.7	1.2	0.1	8.2	
CaSO ₄ .2H ₂ O	lb/hr	570.3	6,530.3	0.0	0.0	6.3	
CaCO ₃	lb/hr	150.9	1,728.3	0.0	0.0	0.3	
Inert	lb/hr	402.1	4,603.9	1.2	0.1	1.4	
CaSO ₃ .1/2H ₂ O	lb/hr	43.7	500.7	0.0	0.0	0.0	
MgCO ₃	lb/hr	2.2	25.4	0.0	0.0	0.1	
Ca(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
Mg(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
CaO	lb/hr	0.0	0.0	0.0	0.0	0.0	
MgO	lb/hr	0.0	0.0	0.0	0.0	0.0	
Total Suspended Solids	wt.%, wet	3.5	3.5	0.0	0.0	0.0	
CI ⁻ Concentration	ppm	15,000	15,000	55	55	6,183	
pН		5 to 7	5 to 7	6 to 8	6 to 8	6 to 8	

Mill Creek Unit 3

MATERIAL BALANCE

FUEL DATA, BOILER DATA, AND NOTES

Unit Rating	MWg	425
Boiler Heat Input	MBtu/hr	4,208
Fuel Feed Rate	lb/hr	386,068
SO ₂ Inlet Loading	Ib SO ₂ /MBtu	6.32
SO ₂ Removal Efficiency	%	98.5
Excess Air	%	20.0
Air Heater Leakage	%	10.0
Oxygen at FGD Inlet	vol.%, dry	6.95
Site Elevation	ft above MSL	460
Ambient Pressure	in H ₂ O	14.45
Ambient Temperature	°F	-23.1 - 105.4
Coal Analysis		
Coal		Performance Fue
Carbon	wt.%, wet	60.00
Hydrogen	wt.%, wet	4.00
Nitrogen	wt.%, wet	1.30
Oxygen	wt.%, wet	5.90
Sulfur	wt.%, wet	3.45
Chlorine	wt.%, wet	0.35
Fluorine	wt.%, wet	0.02
Ash	wt.%, wet	14.00
Moisture	wt.%, wet	11.00
Higher Heating Value (HHV)	BTU/lb	10,900
Limestone Analysis		Note 4
Total CaCO ₃	wt.%, dry	94.6
Reactive CaCO ₃	%	91.3
Total MgCO ₃	wt.%, dry	2.4
Reactive MgCO ₃	%	
Inerts	wt.%, dry	3.0
Gypsum Quality (at HC Underflow)		
Free Moisture	wt.%	
CaSO ₄ -2H ₂ O	wt.%, dry	91.79
CaSO ₃ -1/2H ₂ O	wt.%, dry	0.29
CaCO ₃	wt.%, dry	4.21
Inerts	wt.%, dry	1.81
MgCO ₃	wt.%, dry	1.9
Fly Ash	wt.%, dry	
Maximum Chloride Content	ppmvd	17,250
Total Suspended Solids (TSS)	wt.%	
Total Disolved Solids (TDS)	mg/L	
Average Particle Diameter	microns	

Notes: 1. For stream references see Process Flow Diagram, document number 502718-103000100. 2. Values provided represent time-averaged values and do not necessarily represent equipment capacity or actual continuous operation. 3. Emergency Quench flow normally 0 gpm. 4. Assumes 96.5% CaCO₃ availability on total CaCO₃.

PREPARED BY

APPROVED BY

MATERIAL BALANCE WET FLUE GAS DESULFURIZATION

PROJECT NUMBER	100585				
CUSTOMER NAME	Louisville Gas & Electric (LG&E)				
PROJECT NAME	Mill Creek Unit 3				
LOCATION - CITY, STATE	Louisville, KY				
	CASE: Design - 50,000 ppm CI - filtrate return via Clearwell Pond				
DESCRIPTION	LOAD: 100% MCR				
	FUEL: High Sulfur Bituminous Coal				
	SO ₂ Removal Efficiency: 98.5%				
	REAGENT: Limestone				
	WATER: Clearwell Pond Water & Service Water (ME wash)				

PREPARED	NAME
	DATE
CHECKED	NAME
	DATE
APPROVED	NAME
	DATE

REVISION HISTORY

1		
2	2	
3	3	
4	4	
5	5	
6	<u></u>	
7		
8	3	
9		
10	0	

DISTRIBUTION LIST

1		6
2	·	7
3		8
4		9
5	1	0

This document and the information, design and material contained and/or illustrated therein (hereinafter "proprietary material"), is the property of BABCOCK POWER Inc., P.O. Box 15040, Worcester, MA 01615-0040, and is submitted, lent and furnished to recipient in strict confidence with the express understanding that the recipient shall not reproduce, copy, loan, dispose of, or disclose to anyone outside recipient's organization, directly or indirectly, or use said proprietary material for any purpose other than that for which it is furnished and submitted. Recipient by receiving said proprietary material agrees not to use the same in any way injurious to the interest or BABCOCK POWER Inc., and agrees to return same upon request. Copyright © BABCOCK POWER Inc., 2011.

Mill Creek Unit 3

MATERIAL BALANCE

GAS PATH STREAMS

Stream Number		11	13	15	16		
Notes							
Description		FLUE GAS BEFORE	FLUE GAS AFTER	OXIDATION AIR AFTER	OXIDATION AIR AFTER		
		ABSORBER	ABSORBER	BLOWER	HUMIDIFCATION		
Mass Flow	lb/hr, wet	4,942,271	5,298,824	110,824	115,779		
	lb/hr, dry	4,704,921	4,750,981	105,361	107,276		
Volume Flow	acfm, wet	1,652,827	1,357,712	44,249	17,550		
	scfm, wet	1,079,723	1,202,473	25,305	12,781		
	scfm, dry	995,132	1,007,273	23,358	23,358		
Molecular Weight	lb/lb-mole, wet	29.34	28.25	27.96	27.31		
	lb/lb-mole, dry	30.30	30.23	27.97	28.48		
Density	lb/ft ³	0.050	0.065	0.042	0.110		
Temperature	°F	357	131	327	158		
Pressure	iwg	TBD	TBD				
	psig			TBD	TBD		
N ₂	lb/hr	3,517,078	3,562,767	93,341	93,341		
O ₂	lb/hr	340,973	348,795	13,907	13,907		
CO ₂	lb/hr	820,682	838,648	28	28		
SO ₂	lb/hr	24,853	373	0	0		
SO3	lb/hr	522	261	0	0		
HCI	lb/hr	609	6	0	0		
HF	lb/hr	77	1	0	0		
H ₂ O	lb/hr	237,349	547,708	3,548	7,360		
Entrained Moisture	lb/hr	0	135	0	1,143		
Fly Ash	lb/hr	128	130	0	0		
SO ₂ Concentration	ppmv, dry @ actual O ₂	2,503	37	0	0		
SO ₃ Concentration	ppmv, dry @ actual O ₂	42	21	0	0		
HCI Concentration	ppmv, dry @ actual O2	108	1	0	0		
HF Concentration	ppmv, dry @ actual O2	25	0	0	0		
Dust Loading	gr/dscf @ actual O2	0.015	0.015	0.000	0.000		
Stream Number Notes Description							
Stream Number Notes Description	lh/br wat						
Stream Number Notes Description Mass Flow	lb/hr, wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet						
Stream Number Notes Description Mass Flow Volume Flow	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ft ³						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature	lb/hr, wet lb/hr, dry ac/m, wet sc/m, wet sc/m, wet sc/m, dry lb/lb-mole, wet lb/lb-mole, dry lb/lt ²						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure	lb/hr, wet lb/hr, dry acfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/lt ³ °F						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/lb-mole, wet Ib/lb-mole, dry Ib/ft ³ °F iwg psig						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N ₂	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/ft ² °F iwg psig						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ft ³ °F iwg psig lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 O2 O2	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/lt ² °F iwg psig lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N ₂ O ₂ CO ₂ SO ₂	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/ft ² °F iwg psig Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/hr ³ °F iwg psig lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO2 SO3 HCI	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/lt ² °F iwg psig lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 Q2 CQ2 SQ2 SQ3 HCI HF	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/hr ³ °F iwg psig lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 SO3 HCI HF H2O Entrained Moisture	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry lb/lb-mole, wet lb/lb-mole, dry lb/ht ² ^o F iwg psig b/hr lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, wet scfm, wet lb/lb-mole, wet lb/lb-mole, dry lb/lt ² °F iwg psig b/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr lb/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, wet scfm, dry Ib/h-mole, wet Ib/h-mole, dry Ib/h² °F iwg psig Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration SO2 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/h-mole, wet Ib/h-mole, dry Ib/h² °F iwg psig Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration SO3 Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/ho-mole, wet Ib/ho-mole, dry Ib/hr ² °F iwg psig Di/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration HCI Concentration HCI Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/It ² ⁹ F iwg psig Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 O2 CO2 SO3 HCI HF H2O Entrained Moisture Fly Ash SO2 Concentration HCI Concentration HCI Concentration	Ib/hr, wet Ib/hr, dry acfm, wet scfm, wet scfm, wet scfm, dry Ib/Ib-mole, wet Ib/Ib-mole, dry Ib/hr ² [°] F iwg psig Ib/hr						
Stream Number Notes Description Mass Flow Volume Flow Molecular Weight Density Temperature Pressure N2 02 C02 S03 HCI HF H2 0 Entrained Moisture Fly Ash S02 concentration HC Concentration HC Concentration Dust Loading	lb/hr, wet lb/hr, dry acfm, wet scfm, wet scfm, wet scfm, wet scfm, dry lb/h-mole, wet lb/h-mole, dry lb/hr ² [°] F iwg psig b/hr lb						

Mill Creek Unit 3

MATERIAL BALANCE

Stream Number		20	23	30	31	32
Notes						
Description		TOTAL	LIMESTONE	BLEED	PRIMARY	PRIMARY
		RECYCLE	SLURRY TO	FROM	HC	HC
		FLOW	ABSORBER	ABSORBER	OVERFLOW	UNDERFLOW
Mass Flow	lb/hr	139,263,429	211,823	577,926	437,101	141,069
Volume Flow	gpm	220,000	367	913	733	181
Specific Gravity		1.264	1.152	1.264	1.191	1.560
Density	lb/ft3	78.92	71.92	78.91	74.34	97.43
Temperature	°F	131	94	131	131	131
Mass Flow Liquid	lb/hr	118,363,340	166,753	491,194	420,910	70,534
CI	lb/hr	5,915,421	9.2	24,548	21,042	3,526
SO4	lb/hr	7,902,605	15.6	32,795	28,086	5,503
SO3	lb/hr	414,952	0.0	1,722	1,475	289
Ca ⁺⁺	lb/hr	156,643	23.7	650	557	109
Mg ⁺⁺	lb/hr	3,969,002	10.8	16,471	14,110	2,765
Na ⁺	lb/hr	180,594	9.5	749	642	126
H ₂ O	lb/hr	99,824,123	166,685	414,258	354,998	58,217
Mass Flow Solids	lb/hr	20,900,089	45,069	86,733		70,541
CaSO ₄ .2H ₂ O	lb/hr	17,273,923	0.0	71,685	7,168	64,504
CaCO ₃	lb/hr	1,174,585	40,743	4,874	1,954	2,934
Inert	lb/hr	1,920,718	1,623	7,971	6,369	1,594
CaSO ₃ .1/2H ₂ O	lb/hr	202,731	0.0	841	672	169
MgCO ₃	lb/hr	328,131	2,704.2	1,361.7	27.5	1,340.2
Ca(OH) ₂	lb/hr	0	0.0	0.0	0.0	0.0
Mg(OH) ₂	lb/hr	0	0.0	0.0	0.0	0.0
CaO	lb/hr	0	0.0	0.0	0.0	0.0
MgO	lb/hr	0	0.0	0.0	0.0	0.0
Total Suspended Solids	wt.%, wet	15.0	21.3	15.0	3.7	50.0
CI ⁻ Concentration	ppm	49,977	55	49,977	49,992	49,992
pН		5 to 7	> 7	5 to 7	5 to 7	5 to 7

Stream Number		35	38	44	45	47	
Notes Description		CHLORIDE PURGE	HC OVERFLOW TO ABSORBER	SERVICE WATER WATER TO ME WASH	SERVICE WATER WATER TO OXIDATION	CLEARWELL POND RETURN TO ABSORBER	
Mass Flow	lb/hr	4,819	432,282	77,814	4,955	144,689	
Volume Flow	gpm	8	725	156	10.0	272	
Specific Gravity		1.191	1.191	0.995	0.995	1.082	
Density	lb/ft3	74.36	74.36	62.08	62.08	67.54	
Temperature	°F	131	131	95	95	131	
Mass Flow Liquid	lb/hr	4.640.3	416.269.7	78.112	4.955	144.681	
CI	lb/hr	232.0	20.810.1	4.3	0.3	3,139	
SO.	lb/hr	309.6	27,776.6	7.3	0.5	4,191	
SO2	lb/hr	16.3	1.458.5	0.0	0.0	220	
Ca ⁺⁺	lb/hr	6.1	551.3	11.1	0.7	95	
Ma ⁺⁺	lb/hr	155.6	13,954.1	5.0	0.3	2,107	
Na ⁺	lb/hr	7.1	634.9	4.5	0.3	100	
H ₂ O	lb/hr	3,913.6	351,084.2	78,080	4,953	134,829	
Mass Flow Solids	lb/hr	178.6	16,012.4	1.0	0.1	8.2	
CaSO ₄ .2H ₂ O	lb/hr	79.1	7,088.7	0.0	0.0	6.5	
CaCO ₃	lb/hr	21.6	1,932.7	0.0	0.0	0.3	
Inert	lb/hr	70.3	6,299.3	1.0	0.1	1.3	
CaSO ₃ .1/2H ₂ O	lb/hr	7.4	664.5	0.0	0.0	0.0	
MgCO ₃	lb/hr	0.3	27.2	0.0	0.0	0.1	
Ca(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
Mg(OH) ₂	lb/hr	0.0	0.0	0.0	0.0	0.0	
CaO	lb/hr	0.0	0.0	0.0	0.0	0.0	
MgO	lb/hr	0.0	0.0	0.0	0.0	0.0	
Total Suspended Solids	wt.%, wet	3.7	3.7	0.0	0.0	0.0	
CI ⁻ Concentration	ppm	49,992	49,992	55	55	21,695	
pН		5 to 7	5 to 7	6 to 8	6 to 8	6 to 8	

Mill Creek Unit 3

MATERIAL BALANCE

FUEL DATA, BOILER DATA, AND NOTES

Unit Rating	MWg	425
Boiler Heat Input	MBtu/hr	4,208
Fuel Feed Rate	lb/hr	386,068
SO ₂ Inlet Loading	Ib SO ₂ /MBtu	6.32
SO ₂ Removal Efficiency	%	98.5
Excess Air	%	20.0
Air Heater Leakage	%	10.0
Oxygen at FGD Inlet	vol.%, dry	6.95
Site Elevation	ft above MSL	460
Ambient Pressure	in H ₂ O	14.45
Ambient Temperature	°F	-23.1 - 105.4
Coal Analysis		
Coal		Performance Fue
Carbon	wt.%, wet	60.00
Hydrogen	wt.%, wet	4.00
Nitrogen	wt.%, wet	1.30
Oxygen	wt.%, wet	5.90
Sulfur	wt.%, wet	3.45
Chlorine	wt.%, wet	0.35
Fluorine	wt.%, wet	0.02
Ash	wt.%, wet	14.00
Moisture	wt.%, wet	11.00
Higher Heating Value (HHV)	BTU/lb	10,900
Limestone Analysis		Note 4
Total CaCO ₃	wt.%, dry	94.6
Reactive CaCO ₃	%	91.3
Total MgCO ₃	wt.%, dry	2.4
Reactive MgCO ₃	%	
Inerts	wt.%, dry	3.0
Gypsum Quality (at HC Underflow)		
Free Moisture	wt.%	
CaSO ₄ -2H ₂ O	wt.%, dry	91.79
CaSO ₃ -1/2H ₂ O	wt.%, dry	0.29
CaCO ₃	wt.%, dry	4.21
Inerts	wt.%, dry	1.81
MgCO ₃	wt.%, dry	1.9
Fly Ash	wt.%, dry	
Maximum Chloride Content	ppmvd	17,250
Total Suspended Solids (TSS)	wt.%	
Total Disolved Solids (TDS)	mg/L	
Average Particle Diameter	microns	

Notes: 1. For stream references see Process Flow Diagram, document number 502718-103000100. 2. Values provided represent time-averaged values and do not necessarily represent equipment capacity or actual continuous operation. 3. Emergency Quench flow normally 0 gpm. 4. Assumes 96.5% CaCO₃ availability on total CaCO₃.

DESIGN BASIS

Flue Gas Desulfurization Design Basis Spreadsheet

Project Number:	100585
Revision Number:	Rev. 0
Customer Name:	LG&E Energy
Project Name:	Mill Creek Unit 3
Location, City, State	Kosmodale, KY
Description	WFGD Upgrade
Report Title (shown on printed sheets)	

Email changes to			
Prepared	Name	Suzette Puski	
Prepared	Date	11/13/11	
Checked	Name		
Checked	Date		
Customer Signed	Name		
Customer Signed	Date		
Remarks:			

This technical data is proprietary technology of BPEI, Inc. P.O. Box 15040, Worcester, MA 01615-0040, and is submitted, lent and furnished to recipient in strict confidence with the express understanding that the recipient shall not reproduce, copy, loan, dispose of or disclose to anyone outside recipient's organization, directly or indirectly, or use said proprietary material for any purpose other than that for which it is furnished and submitted. Recipient by receiving said proprietary material agrees not to use the same in any way injurious to the interest of BPEI, Inc., and agrees to return same upon request.

Copyright BPEI, Inc. 2011.

BabcockPower	Mill Creek Unit 3	
EINVIKOINVIENTAL	Spreadshoot	
FGD Design Basis		
Plant Name:		
Plant Location		
	U3 No Change to Spray Header Location	U3 High Removal
Flue Gas Path		
Equipment for Partical Removal		
Equipment for Draft System		
Inlet Duct Modifications	X	X
Install Wall Rings on Spray Levels 2 and 3	8 Wall Rings	8 Wall Rings
Install Up/Down Interior Spray Nozzles	128	336
Install Up/Down Interior Wall Ring Nozzles	160	288
Install Double-Down Interior Spray Nozzles	128	112
Install Double-Down Wall Ring Spray Nozzles	160	96
Replace Recycle Pumps Replace Recycle Pump Pining		
Replace Recycle Pump Gear Boxes		8 Pumps
Add Agitators and Air Lances	10	10
Equipment for SO3 Removal		
Equipment for Hg Removal		
Equipment for NOx Removal		
Replace MF Section w/ DV/210		x
other		A
Waste Water Treatment		
Utilities		
Reagent		
Equipment for Reagant Unloading		
Equipment for Reagent Day Storage		
Equipment for Reagent Slurry Preparation		
Increase Limestone Grind		May be Required
Organic Acid		
Add organic food system to Units 1 and 2		
Byproduct		
Equipment for Byproduct Treatment		
Equipment for Byproduct Storage		
Equipment for Byproduct Loading		
Fly Ash		
Equipment for Flyash Treatment		
Equipment for Flyash Storage		
Equipment for Flyash Loading		
Delever of Direct		
Balance of Plant		
Service Air Supply		
Instrument Air Supply		
Cooling Water Supply		
Dragona Control		
Evaluate revising control logic for SO2 removal	¥	Y
Electrical Equipment	~	~
Structural Steel		
05.4		
Construction		
Process Equipment		
Balance of Plant Equipment		
Process Control incl. Wiring	ļ	
Electrical Equipment Incl. Wiring		
Civil	1	
	1	
Commissioning		Yes
Derfermence Test		
Penormance Lest		NO

BabcockPower	FGD Design Basis	Mill Creek Unit 3
ENVIRONMENTAL	Spreadsheet	Rev. 0
Plant Data Sheet	Units	DESIGN
Plant Name:		Mill Creek Unit 3
Plant Location		Kosmodale, KY
Site Conditions		
Seismic Zone		(Av/Aa) 0.09/0.07
Design Ambient Temp	°F	68
Maximum Summer Ambient Temp	°F	105.4
Minimum Winter Ambient Temp	°F	-23.1
Indoor Temperature Design / Range	°F	36-76
Plant Elevation @ Grade	ft	460
Elevation @ Absorber Inlet	ft above TOC	28
Atmospheric Pr. @ Absorber Inlet Elevation	psia	14.44
Absolute Humidity Average	%	60
Average Rainfall	inches/year	44.5
Wind Speed CRM 780 section 1611.0	MPH	90
Snow Load CMR 780 Section 1610.0	lb/sf	15
Earthquake Loads CMR 780 Section 1612.0		
FGD Operation		
Mode	Part/Continuous	Continuous
Months of FGD operation/yr - Design	Mon/yr	12
Months of FGD operation/yr - Future	Mon/yr	12
Number of Boilers served by one Scrubber	#	Unit has a dedicated 4 module absorber system
Bypass Operation required	Yes / No	No Bypass Allowed
Equipment Installation Indoor/Outdoor		Indoor

BabcockPower	FGD Design Basis	Mill Creek Unit 3
ENVIRONMENTAL	Spreadsheet	Rev. 0
Boiler Data Sheet	Units	
		Unit 3
LOAD	% MCR	100
Nominal Rating	MW, Gross	410
	MW, Net	386
Boiler Manufacturer	-	Babcock & Wilcox
Fuel Fired		Coal
MCR Steam Flow (Design)	Dry Bol/Wet Bol/Cyclone	3 144 000
Boiler Type	Balanced Draft/Pressurized	Balanced Draft
Plant Capacity Factor	Percent of Year	74.9 Gross/ 73.6 Net
Hours of operation per year	Hours	in 2000 7447 hrs
Number of Cold Starts per year	Target/Actual	2 actual
Number of Hot Restarts per year	Target / Actual	22 actual
Ignition Fuel Fired	Oil/Gas	Oil
Ignition Fuel Fired	Hours/Year	800,000 gal
Minimum Load for FGD Operation	MWnet	193 MW net
	Υ/Ν	N
SCR Reactor - Number Installed		2
Catalyst Type		Litachi Plate
NOx inlet / outlet	lbs/Mbtu	0.347 / 0.035
NH3 Slip	ppmdv @ ref O2	< 2.0 @ the End of Life
Air Heater		
Air Heater - Number Installed	-	2
Air Heater Type	Rotary/Tubualr	Ljungstrom Rotary
Air Heater Orientation	V-Shaft or H-S	V-Shaft
Will Air Heater be changed?	Y/N & to what?	N
Air Heater Surface configuration	Model Numbers & Materials	29-VI-54
Air Heater Cleaning Device	-	Steam Soot Blowers
All Heater Leakage	Percent	8 @ as-round condition Baseline rest
ESP's - Number Installed	Number	2
ESP Info - Configuration	Single layer or Stacked	TBD by LG&E
ESP Info - Location	Cold or Hot	Cold
ESP Dust Loading @ ESP Temp	grains/ACF @℉	3.375 @ 300 °F
Dust Loading @ Eco. Out Temp	grains/ACF @F	2.294 @ 64 8°F
ESP Info - Outlet Dust Loading	grains/ACF @F	TBD by LG& E
ESP Efficiency	%	TBD by LG&E
WFGD		
WFGD - Original Supplier	Name	American Filter
WFGD - Number Absorbers Operating / Installed	Number	4/4
WFGD Into - Type	Single Loop or Double Loop	Single
WEGD Into - Spray Configuration		
WEGD Into - Spray Level Conliguration	Lime or Limestone	Limestone
WEGD Info - Original Design SO2 Loading	lbs/Mbtu	6.3
WFGD Info - SO2 Removal Efficiency	%	Phase 1: 96. Phase 2: 98+
Other		
Ash Reinjection	Yes or No	No
Draft System		
FD Fan, Existing	Number	2 / American Standard (595 rpm @ 110°F)
Design Pressure	IWG	, , , , , , , , , , , , , , , , , , ,
Fan HP	HP	
ID Fan, Existing	Number	2 / American Standard (834,950 cfm @ 300°F)
Design Pressure	IWG	45
Fan HP	HP	
ID Booster Fan, Existing	Number	N/A
Design Pressure	IWG	N/A
BOOSTER FAN HP	HP	N/A

BabcockPower	FGD Design Basis	LG&E Mill Creek			
ENVIRONMENTAL	Spreadsheet	Rev. 0			
FGD Load Data Sheet	Units				
Load Name		Unit 4	Unit 3	Unit 3	
Load	MW	525	425	425	
Fuel Flow Rate	lb/hr				
Firing Rate	Gross10^6 BTU/Hr				
Excess Air	%				
In-Leakage	%				
				Ratio to U4	
Flue Gas Conditions @ Inlet Scope of Supply			SCR Test	Design Basis	
Flow Basis	per Absorber	1	1 of 4	1 of 4	
Flue Gas Flow Rate	lbs/h wet	6,126,411	1,418,869	1,239,869	
Flue Gas Flow Rate	lbs/h dry	5,838,557	1,356,591	1,181,613	
Flue Gas Flow Rate	scfm wet	1,337,090	289,144	270,602	
Flue Gas Flow Rate	scfm dry	1,234,489	268,459	249,837	
Flue Gas Flow Rate	actm	2,046,801	463,259	414,234	
Flue Gas Temperature	F IWC	307	313	357.0	
		60	7.0	6.0	
		12.1	11.0	12.1	
Flue Gas H2O	% vol. wet	77	7.1	7.7	
Flue Gas reference 02	% vol dry	6.0	6.0	6.0	
Flue Gas SO2 *)	ppmdy @ act Q2 / lbs/MBTu	2.630/6.33	2.395/6.3	2,630/6,33	
Flue Gas SO3 *)	ppmdy @ act O2 / lbs/MBTu	44	8	44	
Flue Gas HCI *)	ppmdv @ act O2 / lbs/MBTu	235	44	235	
Flue Gas HF*)	ppmdv @ act O2 / lbs/MBTu	25	9	25	
Flue Gas NOx *)	ppmdv @ act O2 / lbs/MBTu				
Flue Gas NH3 *)	ppmdv @ act O2 / lbs/MBTu				
Flue Gas Dust *)	grains/ dcfm lbs/MBTU	0.015/0.03	0.07 / 0.41	0.015/0.03	
Flue Gas Hg *)	ppmdv @ act O2 / lbs/MBTu				
Flue Gas Cd *)	ppmdv @ act O2 / lbs/MBTu				
Flue Gas Heavy Metals *)	ppmdv @ act O2 / lbs/MBTu				
*) Concentration range is independent of the boiler	load				
Flue Gas Conditions @ outlet Scope of Supply	expected values				
Flue Gas Flow Rate	lbs/h wet	10,356,857	1,518,574	1,467,221	
Flue Gas Flow Rate	lbs/h dry	8,704,210	1,276,255	1,233,096	
Flue Gas Flow Rate	scim wet	2,184,799	320,346	309,513	
Flue Gas Flow Rate	scimaly	1,801,975	273,012	203,780	
Flue Gas Flow Rate		2,024,304	304,709	129	
Flue Gas Pressure		14.62	120	120	
Flue Gas O2	% vol wet	11.02	11 1	11 1	
Flue Gas CO2	% vol wet	8	8	8	
Flue Gas H2O	% vol wet	14.8	14.8	14.8	
Flue Gas SO2 *)	ppmdv @ act O2 / lbs/MBTu	52/0.14	47 / 0.13	47 / 0.13	
Flue Gas SO3 *)	ppmdv @ act O2 / lbs/MBTu	8	2	2	
Flue Gas HCI *)	ppmdv @ act O2 / lbs/MBTu	0	0	0	
Flue Gas HF*)	ppmdv @ act O2 / lbs/MBTu	0	0	0	
Flue Gas NOx *)	ppmdv @ act O2 / lbs/MBTu				
Flue Gas Dust *)	grains/ dcfm lbs/MBTU	0.02 / 0.12	0.02 / 0.12	0.02 / 0.12	
Flue Gas Hg *)	ppmdv @ act O2 / lbs/MBTu				
Flue Gas Cd *)	ppmdv @ act O2 / lbs/MBTu				
Flue Gas Heavy Metals *)	ppmdv @ act O2 / lbs/MBTu				
*) Concentration range is independent of the boiler	load				
					<u> </u>
	I				

BabcockPower	FGD Design Basis	LG&E Mill	LG&E Mill Creek			
ENVIRONMENTAL	Spreadsheet	Rev. 0				
Coal & Reagent Data Sheet	Units	Unit 3	Unit 3	Unit 3		
Design Coal Name	Must be filled in					
Coal Source:	Coal Mine	2009	Original	Revised		
Date Sample Taken:	Date	Average	Design	Design		
Coal Ultimate Analysis	As Received					
Carbon (C)	Wt%	61.61	61.20	60.00		
Hydrogen (H)	Wt%	4.22	4.28	4.00		
Oxygen (O ₂)	Wt%	7.01	6.89	5.90		
Nitrogen (N ₂)	Wt%	1.28	1.27	1.30		
Sulfur (S)	Wt%	3.02	3.36	3.45		
Chlorine (Cl)	Wt%	0.06	0.16	0.35		
Fluorine (FI)	Wt%	0.01		I		
Moisture (Water H ₂ O)	Wt%	11.43	11.00	11.00		
Ash	Wt%	11.36	12.00	14.00		
Total	Wt%	100.00	100.16	100.00		
Wt. % Volatile	Wt%	35.68				
Wt % Fixed Carbon	Wt%	41.54				
Higher Heating Value	Btu/lb, As Recvd	11,115	11,200	10,900		
Reagent Name:						
Reagent Source:						
Date Sample Taken:						
Reagent Analysis						
CaCO3	wt.%					
reactive CaCO3	wt.%					
CaO	wt.%					
Ca(OH)2	wt.%					
Fe2O3	wt.%					
AI2O3	wt.%					
SiO2	wt.%					
MgCO3	wt.%					
MgO	wt.%					
Mg(OH)2	wt.%					
Chlorine (Cl)	ppm					
Fluorine (Fl)	ppm			ļ	ļ	ļ
Moisture	wt%					
Inert	wt%					

BabcockPower	FGD Design Basis	Mill Creek Unit 3		
ENVIRONMENTAL	Spreadsheet	Rev. 0	-	-
Process Water Data Sheet	Units	Design	Min	Max
Mist Eliminator Wash Water Analysis				
рН				
Conductivity	mS/m			
Total hardness	mg/l			
Carbonate hardness	mg/l	526		
Temperature	۴			
Suspended solids	mg/l			
Calcium as CaCO ₃	mg/l	142		
Magnesium as CaCO3	mg/l	64		
Sodium as CaCO3	mg/l	57		
Chloride as CaCO3	mg/l	55		
Sulphate as CaCO3	mg/l	94		
Sulphite as CaCO3	mg/l			
Make-Up Water Analysis				
рН				
Conductivity	mS/m			
Total hardness	mg/l			
Carbonate hardness	mg/l	526		
Temperature	۴			
Suspended solids	mg/l			
Calcium as CaCO ₃	mg/l	142		
Magnesium as CaCO3	mg/l	64		
Sodium as CaCO3	mg/l	57		
Chloride as CaCO3	mg/l	55		
Sulphate as CaCO3	mg/l	94		
Sulphite as CaCO3	mg/l			
Reclaim Water Analysis				
рН				
Conductivity	mS/m			
Total hardness	mg/l			
Carbonate hardness	mg/l	526		
Temperature	۴			
Suspended solids	mg/l			
Calcium as CaCO ₃	mg/l	142		
Magnesium as CaCO3	mg/l	64		
Sodium as CaCO3	mg/l	57		
Chloride as CaCO3	mg/l	55		
Sulphate as CaCO3	mg/l	94		
Sulphite as CaCO3	mg/l			
Service Water Analysis				
pH		7.70		
Conductivity	mS/m			
Total hardness	mg/l			
Carbonate hardness	mg/l	444		
Temperature	۴			
Suspended solids	mg/l	13		
Calcium as CaCO ₃	mg/l	119		
Magnesium as CaCO3	mg/l	55		
Sodium as CaCO3	mg/l	48		
Chloride as CaCO3	mg/l	48		
Sulphate as CaCO3	mg/l	76		
Sulphite as CaCO3				

BabcockPower	FGD Design Basis	Mill Creek Unit 3 Rev. 0		
ENVIRONMENTAL	Spreadsheet			
Gypsum Slurry Data Sheet	Units	U3 No Change to Spray Header Location	U3 High Removal	
Recycle Slurry Analysis				
Mass Flow Rate, per pump	lb/hr	15,000,000	15,000,000	
Volume Flow rate, per pump	gpm	27,500	27,500	
Estimated TDH				
Spray Level 1	ft, H2O	56.4	59.7	
Spray Level 2	ft, H2O	61.2	64.7	
Spray Level 3	ft, H2O	64.6	69.7	
Spray Level 4	ft, H2O	68.0	74.7	
Specific Gravity		1.08-1.11	1.08-1.11	
Density	lb/ft ³	66.8-69.3	66.8-69.3	
Temperature	۴	125-135	125-135	
рН		5 to 6	5 to 6	
Chloride as Cl-	mg/l	5,000	5,000	
Viscosity	ср	7.00	7.00	
Solids Content	wt.%	14-18	14-18	
Solids Stream				
Gypsum	wt.% dry	85-95	85-95	
Limestone	wt.% dry	1-3	1-3	
Inert	wt.% dry	5-15	5-15	
Special Notes:		Compressed air is injected in the reaction tank to complete oxidation reaction Pump TDH calculations are preliminary for cost estimate purposes only		

WATER FLOW SCHEMATIC

Schematic of Water Flow – Filtrate Returns to WFGD System

Schematic of Water Flow – Filtrate Does Not Returns to WFGD System

BUDGET ENGINEERING AND PROCUREMENT ESTIMATE

LG&E-KU Services Company Contract No. 843037 Mill Creek Unit 4 WFGD Performance Upgrade Analysis

Budget Engineering and Procurement Estimate

December 2, 2011

Description	<u>Labor</u>	<u>Materials</u>	<u>Total</u>	
Case 1: Alloy 27–7MO Unit 4	\$7 832 901	\$24 688 994	\$32 521 895	
(12,500 ppm chlorides)	ψ 7,052,701	φ <u>2</u> 1,000,221	ψ <i>52,52</i> 1,0 <i>9</i> 5	
Case 2: Alloy C-276 Unit 4	\$7,832,901	\$27,369,596	\$35,202,498	
(50,000 ppm chlorides)				

Note: The estimate for the Mill Creek Unit 4 WFGD Performance Upgrade Analysis is a ROM (rough order of magnitude) estimate. The accuracy is based on +25% to -10%. The pricing is based on current 2011 dollars with no escalation.

The scope of pricing for the Mill Creek Unit 4 WFGD Performance Upgrade Analysis is limited to the Engineering and Procurement of the retrofit improvements. There are no allowances for BOP work, construction or maintenance upgrades to the WFGD structure.

LG&E - KU Services Company Mill Creek Unit 3 gas to Unit 4 WFGD Systems Upgrade ROM Price Estimate Revision 0 Alloy 27-7MO

Absorber Recycle Pumps\$2,584,891Recycle Pumps8 pcsRecycle Pumps - Special Tools1 lotRecycle Pumps - First Fill Lubricants8 pcsRecycle Pumps - NPSH,Noise, Vibration Test1 lotRecycle Pumps - Performance Test1 lotRecycle Pumps - Performance Test1 lotRecycle Pumps - Exp.Jt. Non- Matalic @ recycle suction8 pcsRecycle Pumps - Exp.Jt. Non- Matalic @ recycle discharge8 pcsAbsorber Vessel\$6,573,740Absorber Free Issue Plate - 32,000 sq ft plate (4) units336,000 lbsAbsorber Fabrication2,100 lbsAwning - Fabrication20 pcsAbsorber Vessel Wall Rings20 pcsAbsorber Vessel Wall Rings8 pcsWall Rings Support Clips - freight1 lotWall Rings Support Clips - freight1 lotWall Rings Support Clips - freight1 lotAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - Study Clips - freight1 lotAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - Mdg Field Service5 days
Absorber Kecycle Pumps8 pcsRecycle Pumps8 pcsRecycle Pumps - Special Tools1 lotRecycle Pumps - Special Tools1 lotRecycle Pumps - First Fill Lubricants8 pcsRecycle Pumps - NPSH,Noise, Vibration Test1 lotRecycle Pumps - Performance Test1 lotRecycle Pumps - Performance Test1 lotRecycle Pumps - MFG Field Service5 daysRecycle Pumps - Exp.Jt. Non- Matalic @ recycle suction8 pcsRecycle Pumps - Exp.Jt. Non- Matalic @ recycle discharge8 pcsAbsorber Vessel\$6,573,740Absorber Vessel\$6,573,740Absorber Fabrication336,000 lbsAwning - Free Issue Plate - 32,000 sq ft plate (4) units336,000 lbsAwning - Free Issue Materials2,100 lbsAwning - Fabrication20 pcsAbsorber Vessel Wall Rings8 pcsWall Rings Support Clips600 lbsWall Rings Support Clips - freight1 lotMall Rings Support Clips - freight1 lotAbsorber Agitators & Sump Tank\$2,748,186Absorber Agitators - S% LOC / Surety Guarantee1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mifg Field Service5 days
Recycle PumpsSpecial Tools1 lotRecycle Pumps - First Fill Lubricants8 pcsRecycle Pumps - NPSH,Noise, Vibration Test1 lotRecycle Pumps - NPSH,Noise, Vibration Test1 lotRecycle Pumps - Performance Test1 lotRecycle Pumps - Special Service5 daysRecycle Pumps - Exp.Jt. Non- Matalic @ recycle suction8 pcsRecycle Pumps - Exp.Jt. Non- Matalic @ recycle discharge8 pcsAbsorber Vessel\$6,573,740Absorber Vessel\$6,573,740Absorber Free Issue Plate - 32,000 sq ft plate (4) units336,000 lbsAbsorber Fabrication2,100 lbsAwning - Free Issue Materials2,100 lbsAwning - Fabrication20 pcsAbsorber Vessel Wall Rings8 pcsWall Rings Support Clips600 lbsWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mig Field Service5 days
Recycle Pumps - Special roots 1 lot Recycle Pumps - First Fill Lubricants 8 pcs Recycle Pumps - NPSH, Noise, Vibration Test 1 lot Recycle Pumps - Performance Test 1 lot Recycle Pumps - MFG Field Service 5 days Recycle Pumps - Exp.Jt. Non- Matalic @ recycle suction 8 pcs Absorber Vessel \$6,573,740 Absorber Vessel \$6,573,740 Absorber Free Issue Plate - 32,000 sq ft plate (4) units 336,000 lbs Absorber Fabrication 2,100 lbs Awning - Free Issue Materials 2,100 lbs Awning - Fabrication 20 pcs Absorber Vessel Wall Rings \$428,081 Wall Rings Support Clips 600 lbs Wall Rings Support Clips - freight 1 lot Agitators & Sump Tank \$2,748,186 Absorber Agitators - Model Study Test 1 lot Absorber Agitators - 5% LOC / Surety Guarantee 1 lot Absorber Agitators - 5% LOC / Surety Guarantee 1 lot Absorber Agitators - 5% LOC / Surety Guarantee 1 lot
Recycle Pumps - First Pint Lubricantsa pussRecycle Pumps - NPSH, Noise, Vibration Test1 lotRecycle Pumps - Performance Test1 lotRecycle Pumps - MFG Field Service5 daysRecycle Pumps - Exp.Jt. Non- Matalic @ recycle suction8 pcsAbsorber Vessel\$6,573,740Absorber Vessel\$6,573,740Absorber Free Issue Plate - 32,000 sq ft plate (4) units336,000 lbsAbsorber Fabrication336,000 lbsAwning - Free Issue Materials2,100 lbsAwning - Free Issue Materials2,100 lbsAwning - Free Issue Materials2,000 sq ftMagnet Exp.Stream\$428,081Wall Rings Support Clips600 lbsWall Rings8 pcsWall Rings Support Clips - freight1 lotAgitators & Support Clips - freight1 lotAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - S% LOC / Surety Guarantee1 lotAbsorber Agitators - Mig Field Service5 days
Recycle Pumps - Nr Sn, Nose, Vibration Test1 lotRecycle Pumps - Performance Test1 lotRecycle Pumps - Exp.Jt. Non- Matalic @ recycle suction8 pcsRecycle Pumps - Exp.Jt. Non- Matalic @ recycle discharge8 pcsAbsorber Vessel\$6,573,740Absorber Vessel336,000 lbsAbsorber Free Issue Plate - 32,000 sq ft plate (4) units336,000 lbsAbsorber Fabrication2,100 lbsAwning - Free Issue Materials2,100 lbsAwning - Fabrication20 pcsAbsorber Vessel Wall Rings600 lbsWall Rings Support Clips600 lbsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mig Field Service5 days
Recycle Pumps - MFG Field Service5 daysRecycle Pumps - Exp.Jt. Non- Matalic @ recycle suction8 pcsRecycle Pumps - Exp.Jt. Non- Matalic @ recycle discharge8 pcsAbsorber Vessel\$6,573,740Absorber Vessel\$6,573,740Absorber Fabrication336,000 lbsAwning - Free Issue Plate - 32,000 sq ft plate (4) units336,000 lbsAwning - Free Issue Materials2,100 lbsAwning - Fabrication20 pcsAbsorber Vessel Wall Rings600 lbsWall Rings Support Clips600 lbsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Recycle Pumps - Kir G Field ServiceS daysRecycle Pumps - Exp.Jt. Non- Matalic @ recycle suction8 pcsRecycle Pumps - Exp.Jt. Non- Matalic @ recycle discharge8 pcsAbsorber Vessel\$6,573,740Absorber Vessel\$6,573,740Absorber Free Issue Plate - 32,000 sq ft plate (4) units336,000 lbsAbsorber Fabrication336,000 lbsAwning - Free Issue Materials2,100 lbsAwning - Fabrication20 pcsAbsorber Vessel Wall Rings600 lbsWall Rings Support Clips600 lbsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAbsorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Recycle Pumps - Exp.Jt. Non- Matalic @ recycle solution8 pcsRecycle Pumps - Exp.Jt. Non- Matalic @ recycle discharge8 pcsAbsorber Vessel\$6,573,740Absorber Free Issue Plate - 32,000 sq ft plate (4) units336,000 lbsAbsorber Fabrication336,000 lbsAwning - Free Issue Materials2,100 lbsAwning - Fabrication20 pcsAbsorber Vessel Wall Rings600 lbsWall Rings Support Clips600 lbsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAbsorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Absorber Vessel\$6,573,740Absorber Vessel\$6,573,740Absorber Fabrication336,000 lbsAwning - Free Issue Materials2,100 lbsAwning - Fabrication20 pcsAbsorber Vessel Wall Rings20 pcsAbsorber Vessel Wall Rings600 lbsWall Rings Support Clips600 lbsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators - Model Study Test1 lotAbsorber Agitators - S% LOC / Surety Guarantee1 lotAbsorber Agitators - Mit Field Service5 days
Absorber Free Issue Plate - 32,000 sq ft plate (4) units 336,000 lbs Absorber Fabrication 336,000 lbs Awning - Free Issue Materials 2,100 lbs Awning - Fabrication 2,100 lbs Imtec Doors 20 pcs Absorber Vessel Wall Rings \$\u00ef{Absorber Vessel Wall Rings} & \$\u00ef{428,081} & \$\\u00ef{428,081} & \$\\u00ef{428,081} & \$\\u00ef{428,08
Absorber Fabrication 336,000 lbs Awning - Free Issue Materials 2,100 lbs Awning - Fabrication 2,100 lbs Imtec Doors 20 pcs Absorber Vessel Wall Rings \$2,000 sq it plate (4) difts 2,100 lbs Imtec Doors 2,100 lbs Imtec Doors 8 20 pcs Absorber Vessel Wall Rings \$2,000 lbs Wall Rings Support Clips \$600 lbs Wall Rings \$600 lbs \$2,748,186 Absorber Agitators \$600 lbs \$2,748,186 Absorber Agitators - Model Study Test 1 lot Absorber Agitators - 5% LOC / Surety Guarantee 1 lot Absorber Agitators - Mfg Field Service 5 days
Awning - Free Issue Materials2,100 lbsAwning - Fabrication2,100 lbsImtec Doors20 pcsAbsorber Vessel Wall Rings20 pcsAbsorber Vessel Wall Rings600 lbsWall Rings Support Clips600 lbsWall Rings8 pcsWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Awning - Fabrication2,100 lbsAwning - Fabrication2,100 lbsImtee Doors20 pcsAbsorber Vessel Wall Rings\$428,081Wall Rings Support Clips600 lbsWall Rings8 pcsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - S% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Awning - Fabrication2,100 lbsImtec Doors20 pcsAbsorber Vessel Wall Rings\$428,081Wall Rings Support Clips600 lbsWall Rings8 pcsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Absorber Vessel Wall Rings20 pcsAbsorber Vessel Wall Rings\$428,081Wall Rings Support Clips600 lbsWall Rings8 pcsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mig Field Service5 days
Wall Rings Support Clips600 lbsWall Rings600 lbsWall Rings8 pcsWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Wall Rings8 pcsWall Rings1 lotWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Wall Ringso posWall Rings - freight1 lotWall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Wall Rings Support Clips - freight1 lotAgitators & Sump Tank\$2,748,186Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Agitators & Sump Tank\$2,748,186Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Absorber Agitators10 pcsAbsorber Agitators - Model Study Test1 lotAbsorber Agitators - 5% LOC / Surety Guarantee1 lotAbsorber Agitators - Mfg Field Service5 days
Absorber Agitators - Model Study Test 1 lot Absorber Agitators - 5% LOC / Surety Guarantee 1 lot Absorber Agitators - Mfg Field Service 5 days
Absorber Agitators - 5% LOC / Surety Guarantee 1 lot Absorber Agitators - Mfg Field Service 5 days
Absorber Agitators - Mfg Field Service 5 days
Absolute Agriators - Iving Field Del Vice 5 days
Absorber Agitators - freight 10 pcs
Agitator Metal Boxes for Mounting - 94 sq ft x 10 pcs = 940 sq ft 10 pcs
Absorber Sump Pumps 2 ncs
Absorber Sump Pumps Driver 2 pcs
Absorber Sump Aditators 1 ncs
Sump Covers and Bridges 2 ea
Ox Air Nozzles 10 pca 10"/ea approximately 6' lg per ea 60 lf
Supply ERP Nozzles for Roof of Tank 60" x 4 pcs 4
Stebbins - Engineering for Agitator Boxes 10 pcs
Stebbins - Engineering to Evaluate the Tile Lined Tank 1 lot
Stebbins - Engineering to Design a New Concrete Roof 1 lot
Stebbins - Material Supply New Concrete Roof - prefab 6400 soft
Stebbins - Engineering for Nozzles 12 pcs 10"/ea 12 pcs
Stebbins - Engineer large roof nozzles 60" times 4 pcs 4 pcs

LG&E - KU Services Company Mill Creek Unit 3 gas to Unit 4 WFGD Systems Upgrade ROM Price Estimate Revision 0 Alloy 27-7MO

	Labor			Total Sell
Materials / Subcontracts	Hours	Qty's	Units	Price
Internal & External Recycle Pipe				\$5,474,463
Internal Spray Headers - FRP		16	pcs	
Internal Spray Headers - Recycle Spray Nozzles - 4"		832	pcs	
Internal Spray Headers - Flanges 4" - 150#		832	pcs	
Internal Spray Headers - Alloy Trusses		16	pcs	
Internal Spray Headers - Freight		1	lot	
External Recycle Piping		2000	lf	
External Recycle Piping - Stress Analysis		1	lot	
External Recycle Piping - Bolt & Gasket Sets		1	lot	
External Recycle Piping - Anchors, Hangers & Supports		1	lot	
External Recycle Piping - Freight		1	lot	
External Recycle Piping - Temp Strainers		3	pcs	
External Recycle Piping - Exp. Jts		32	pcs	
External Recycle Piping - Freight		1	lot	
Recycle Valves - Suction		8	pcs	
Recycle Valves - Discharge		8	pcs	
Recycle Valves - Mfg Field Service		1	pcs	
Recycle Valves - Hydraulic Unit		1	pcs	
Recycle Valves - Freight		1	lot	
Bleed Pump System				\$106,639
Slurry Bleed Pumps		2	DCS	. ,
Slurry Bleed Pumps Driver		2	DCS	
Slurry Bleed Pump - Expansion Joint		4	DCS	
Structural Steel			1	\$0
Sump CS Plate		Not Incl.		•
Grating - Replacement		Not Incl.		
Cover Plating Steel		Not Incl.		
Railing		Not Incl.		
Ladders		Not Incl.		
Safety Gates		Not Incl.		
Valves & Piping				\$2.277.636
Replace all Manual Values		1	lot	, , , , , , , , , ,
Replace all Actuated Valves		1	lot	
Piping Specialties		1	lot	
Large Bore Piping w/Hanger & Supports		1	lot	
Misc. Hangers		1	lot	
Nuts. Bolts & Gaskets CS		1	lot	
Nuts, Bolts & Gaskets Allov		1	lot	
Oxidation Air Lances		10	DCS	
Oxidation Air Lances - boltups		10	DCS	
Oxidation Air Lances - Structural Steel Supports		10	DCS	
Reactor to Sump FRP Piping		4	DCS	
Sump Overflow FRP Piping		2	DCS	
Sump Vent Piping Connected to the Ductwork		2	ncs	
Bleed Piping		1	lot	
Knife Gate Valves - Hydraulic Piping		1	lot	
Emergency Quench Piping Header (Internal to Duct) Alloy		1	lot	
Emergency Quench - Nozzles		70	ncs	
Emergency Quench - Expansion Joints		.0	pcs	

LG&E - KU Services Company Mill Creek Unit 3 gas to Unit 4 WFGD Systems Upgrade ROM Price Estimate Revision 0 Alloy 27-7MO

	Labor			Total Sell
Materials / Subcontracts	Hours	Qty's	Units	Price
Instruments & Controls				\$504,560
Analyzer - Sox		1	lot	
Instruments & Controls		1	lot	
Misc Tubing, Fittings & Hangers		1	lot	
Performance Test				\$222,006
Physical Flow Model		1	lot	
Performance Testing		1	lot	
Subcontractors				\$261,184
BOP Electrical Design		1	lot	
BOP Instrument Design		1	lot	
Ductwork & Expansion Joints				\$517,112
Absorber Outlet Expansion Joints		180	lf	
Absorber Outlet Expansion Joints - freight		4	pcs	
Absorber Inlet Expansion Joints		256	lf	
Absorber Inlet Expansion Joints - Freight		2	pcs	
Inlet Duct - Replace plate with Alloy 16' x 16' x 12'		26,112	lbs	
Inlet Duct - Fabrication		26,112	lbs	
Inlet Duct - Stiffeners		39,014	lbs	
Imtec Access Doors Inlet Duct		4	pcs	
Mist Eliminator & Supports				\$953,907
Mist Eliminator - FRP DV 210		4	sets	
Mist Eliminator - Wash System		1	lot	
Mist Eliminator - Installation Supervision		1	lot	
Mist Eliminator - Alloy Supports		1	lot	
Mist Eliminator - Water Wash Tank 40' x 40'		1	рс	
Mist Eliminator - Water Wash Pumps		2	pcs	
Mist Eliminator - Water Wash Pump Drivers		2	pcs	
Oxidation Air System				\$0
Site Work & Foundation Design				\$59,360
Foundation Design		1	lot	
Secondary Hydrocyclone System				\$1,710,109
Primary Hydroclone		2	ea	
Primary Hydroclone Feed Tank 48' x 51'		2	ea	
Primary Hydroclone Pumps Expansion Joints		4	ea	
Primary Hydroclone Underflow Feed Tank Agitator		2	ea	
Primary Hydroclone - Feed Pumps		2	ea	
Primary Hydroclone - Feed Pumps		2	ea	
Cloride Purge Pumps		2	ea	
Underflow Tanks FRP 5' x 5'		2	ea	
Engineering Total	22,604			\$2,824,907
Project Management Total	18,861			\$2,583,247
Field Service Total	2,108			\$361,466
Site Engineer Total	8,431			\$1,590,775
Misc. Items				\$267,120
BPEI Travel Expense				\$472,506
Materials / Subcontracts				\$32,521,895

\$32,521,895

LG&E - KU Services Company Mill Creek Unit 3 gas to Unit 4 WFGD Systems Upgrade ROM Price Estimate Revision 0 C-276 Materials

	Labor			Total
Matorials / Subcontracts		Otvie	Unite	Sell
Absorber Recycle Pumps	nours	QLY S	Units	\$2 584 891
Recycle Pumps		8	ncs	φ2,504,051
Recycle Pumps - Special Tools		1	lot	
Recycle Pumps - First Fill Lubricants		8	ncs	
Recycle Pumps - NPSH Noise Vibration Test		1	lot	
Recycle Pumps - Performance Test		1	lot	
Recycle Pumps - MEG Field Service		5	davs	
Recycle Pumps - Exp. It Non-Matalic @ recycle suction		8	ncs	
Recycle Pumps - Exp. It. Non- Matalic @ recycle discharge		8	ncs	
Absorber Vessel		0	200	\$9.254.343
Absorber Free Issue Plate - 32,000 sq ft plate (4) units		336.000	lbs	<i>•••,=•</i> .,• .•
Absorber Fabrication		336,000	lbs	
Awning - Free Issue Materials		2,100	lbs	
Awning - Fabrication		2 100	lbs	
Intec Doors		20	DCS	
Absorber Vessel Wall Rings		20	P 00	\$428,081
Wall Rings Support Clips		600	lbs	¢ 120,001
Wall Rings		8	DCS	
Wall Rings - freight		1	lot	
Wall Rings Support Clips - freight		1	lot	
Agitators & Sump Tank				\$2,748,186
Absorber Agitators		10	DCS	<i> </i>
Absorber Agitators - Model Study Test		1	lot	
Absorber Agitators - 5% LOC / Surety Guarantee		1	lot	
Absorber Agitators - Mfg Field Service		5	davs	
Absorber Agitators - freight		10	DCS	
Agitator Metal Boxes for Mounting - 94 sq ft x 10 pcs = 940 sq ft		10	pcs	
Absorber Sump Pumps		2	DCS	
Absorber Sump Pumps Driver		2	DCS	
Absorber Sump Agitators		1	DCS	
Sump Covers and Bridges		2	ea	
Ox Air Nozzles 10 pca 10"/ea approximately 6' lg per ea.		60	lf	
Supply FRP Nozzles for Roof of Tank 60" x 4 pcs		4	DCS	
Stebbins - Engineering for Agitator Boxes		10	DCS	
Stebbins - Engineering to Evaluate the Tile Lined Tank		1	lot	
Stebbins - Engineering to Design a New Concrete Roof		1	lot	
Stebbins - Material Supply New Concrete Roof - prefab		6400	saft	
Stebbins - Engineering for Nozzles 12 pcs 10"/ea		12	pcs	
Stebbins - Engineer large roof nozzles 60" times 4 pcs		4	pcs	

LG&E - KU Services Company Mill Creek Unit 3 gas to Unit 4 WFGD Systems Upgrade ROM Price Estimate Revision 0 C-276 Materials

LaborSellInternal & External Recycle PipeFriceInternal Spray Headers - FRP16 pcsInternal Spray Headers - Recycle Spray Nozzles - 4*832 pcsInternal Spray Headers - Recycle Spray Nozzles - 4*832 pcsInternal Spray Headers - Freight1 lotInternal Spray Headers - Freight1 lotExternal Recycle Piping - Stress Analysis1 lotExternal Recycle Piping - Stress Analysis1 lotExternal Recycle Piping - Stress Analysis1 lotExternal Recycle Piping - Achors, Hangers & Supports1 lotExternal Recycle Piping - Freight1 lotExternal Recycle Piping - Freight1 lotExternal Recycle Piping - Ero, Jts32 pcsExternal Recycle Piping - Ero, Jts32 pcsExternal Recycle Piping - Ero, Jts32 pcsExternal Recycle Piping - Eroight1 lotExternal Recycle Piping - Eroight1 lotExternal Recycle Piping - Ero, Jts32 pcsExternal Recycle Piping - Eroight1 lotExternal Recycle Piping - Eroight1 lotExternal Recycle Piping - Eroight1 lotExternal Recycle Piping - Eroight1 lotSurg Bleed Pumps Stem2 pcsSurg Bleed Pumps Stem2 pcsSurg Bleed Pumps Stem50Surg Bleed Pumps Stem1 lotSurg B					Total
Materials / Subcortracts Hours Qty's Units Price Internal Spray Headers - FRP 16 pcs \$\$,774,463 Internal Spray Headers - Reycle Spray Nozzies - 4" 832 pcs \$\$ Internal Spray Headers - Flanges 4" - 150# 832 pcs \$\$ Internal Spray Headers - Flanges 4" - 150# 832 pcs \$\$ Internal Spray Headers - Freight 1 lot \$\$ External Recycle Piping - Stress Analysis 1 lot \$\$ External Recycle Piping - Stress Analysis 1 lot \$\$ External Recycle Piping - Freight 1 lot \$\$ Becycle Valves - Discharge \$ \$ \$		Labor			Sell
Internal & External Recycle Pipe 16 pcs 15,474,463 Internal Spray Headers - Recycle Spray Nozzles - 4" 832 pcs Internal Spray Headers - Fielph 21,000 If 2000	Materials / Subcontracts	Hours	Qty's	Units	Price
Internal Spray Headers - FRP 16 pcs Internal Spray Headers - Recycle Spray Nozzles - 4" 832 pcs Internal Spray Headers - Version Spray Nozzles - 4" 832 pcs Internal Spray Headers - Freight 101 External Recycle Piping - Stress Analysis 101 External Recycle Piping - Anchors, Hangers & Supports 101 External Recycle Piping - Terejs th 101 External Recycle Piping - Terejs th 101 External Recycle Piping - Freight 101 Recycle Valves - Suction 8 pcs Recycle Valves - Suction 8 pcs Recycle Valves - Suction 8 pcs Recycle Valves - Suction 101 Recycle Valves - Hydraulic Unit 101 Bied Pump System 101 Stury Bleed Pumps 2 pcs Stury Bleed Pumps 2 pcs Stury Bleed Pumps Driver 2 pcs Stury Bleed Pumps Driver 2 pcs Stury Bleed Pumps Driver 2 pcs Stury Bleed Pumps Capacity 101 Recycle Valves - Not Incl. Cover Plating Steel Not Incl. Recycle Valves - Not Incl. Recycle Valves - Not Incl. Recycle Valves - Not Incl. Cover Plating Steel Not Incl. Recycle Valves - Not Incl. Recycle Valves - Suction 8 pcs Replace all Annual Values 1 lot Replace all Annual Values 2 lot Replace all Annual Values 1 lot Replace all Annual Values 2 lot	Internal & External Recycle Pipe				\$5,474,463
Internal Spray Headers - Recycle Spray Nozzles - 4" 832 pos Internal Spray Headers - Finight 832 pos Internal Spray Headers - Anoy Trusses 16 pos Internal Spray Headers - Freight 101 External Recycle Piping - Stress Analysis 101 External Recycle Piping - Stress Analysis 101 External Recycle Piping - Dot & Gasket Sets 101 External Recycle Piping - Tenight 101 External Recycle Piping - Freight 101 External Recycle Piping - Freight 101 Recycle Valves - Suction 8 pos Recycle Valves - Freight 101 Bied Pump System 101 Sumy Bleed Pump Spriver 2 pos Surury Bleed Pump Spriver 2 pos Surury Bleed Pump Spriver 2 pos Surury Bleed Pump Striver 101 Cover Plating Steel Not Incl. Cover Plating Steel Not Incl. Cover Plating Steel Not Incl. Cover Plating Steel Not Incl. Surg Structural Steel 5 Surury Bleed Pump Steel Not Incl. Cover Plating Steel Not Incl. Cover Plating Steel Not Incl. Surg Structural Steel 1101 Piping Specialties 1101 Piping Specialties 1101 Replace all Manual Values 1101 Nuts, Bolts & Gaskets CS 100 Oxidation Air Lances - Structural Steel Supports 100 pos Oxidation Air Lances - Structural Steel Supports 100 pos Oxidation Air Lances - Structural Steel Supports 100 pos Covidation Air Lances - Structural Steel Supports 100 pos	Internal Spray Headers - FRP		1	6 pcs	
Internal Spray Headers - Flanges 4' - 150# 625 Internal Spray Headers - Flanges 4' - 150# 167 Internal Spray Headers - Freight 1 167 External Recycle Piping - Stress Analysis 1 167 External Recycle Piping - Stress Analysis 1 167 External Recycle Piping - Stress Analysis 1 167 External Recycle Piping - Fort & Gasket Sets 1 167 External Recycle Piping - Freight 8 Supports 2 pcs External Recycle Piping - Freight 8 Supports 2 pcs External Recycle Piping - Freight 1 167 Recycle Valves - Discharge 8 pcs Recycle Valves - Piping VIII 00 I 167 External Recycle Piping - Freight 1 167 External Recycle Piping - Freight 1 167 Recycle Valves - Discharge 8 pcs Recycle Valves - Discharge 8 pcs Recycle Valves - Discharge 8 pcs Recycle Valves - Piping VIII 00 I 167 I	Internal Spray Headers - Recycle Spray Nozzles - 4"		83	2 pcs	
Internal Spray Headers - Alloy Trusses 16 pcs Internal Spray Headers - Freight 1 lot External Recycle Piping - Stress Analysis 1 lot External Recycle Piping - Anchors, Hangers & Supports 1 lot External Recycle Piping - Anchors, Hangers & Supports 3 pcs External Recycle Piping - Temp Strainers 3 pcs External Recycle Piping - Temp Strainers 3 pcs External Recycle Piping - Freight 1 lot Recycle Valves - Suction 8 pcs Recycle Valves - Suction 8 pcs Recycle Valves - Suction 8 pcs Recycle Valves - Mtg Field Service 1 pcs Recycle Valves - Freight 1 lot Sturry Bleed Pumps 2 pcs Sturry Bleed Pump Expansion Joint 4 pcs Sturry Bleed Pump Siver 2 pcs Sturry Bleed Pump Siver 3 pcs Recycle Valves - Nt Incl. Grating - Replacement Not Incl. Grating - Replacement Not Incl. Replace all Annual Values 1 lot Replace all Annual Values 1 lot Replace all Annual Values 1 lot Nuts, Botts & Gaskets CS I lot Nuts, Botts & Gaskets CS I lot Nuts, Rotts & Supports I lot Reactor to Sump FRP Piping I lot Reactor to Sump FRP Piping I lot I lot Recycle Valve FRP Piping I lot Nuts, Rotts & Caskets CS I lot Nuts, Rotts	Internal Spray Headers - Flanges 4" - 150#		83	2 pcs	
Internal Spray Headers - Freight 1 lot External Recycle Piping - Stress Analysis 1 lot External Recycle Piping - Both & Gasket Sets 1 lot External Recycle Piping - Both & Gasket Sets 1 lot External Recycle Piping - Anchors, Hangers & Supports 1 lot External Recycle Piping - Freight 1 lot External Recycle Piping - Freight 2 gos External Recycle Piping - Freight 1 lot External Recycle Piping - Freight 1 lot External Recycle Piping - Freight 1 lot Recycle Valves - Suction 8 pcs Recycle Valves - Discharge 8 pcs Recycle Valves - Bischarge 8 pcs Recycle Valves - Hydraulic Unit Bleed Pump System 1 lot Bleed Pump System 2 pcs Slurry Bleed Pumps Driver 2 pcs Slurry Bleed Pumps Driver 2 pcs Slurry Bleed Pumps Driver 3 pcs Structural Steel 8 Not Incl. Grating - Replacement Not Incl. Radius - Replacement Not Incl. Realers Not Incl. Realers 1 lot Realers 1 lot Realers 1 lot Realers 2 lots 1 lot Realers 1 lot Realers 1 lot Structural Steel 1 lot Sump CS Plate 1 lot Realers 1 lot Replace all Manual Values 1 lot Replace all Actuated Valves 1 lot Not Incl. Realers 1 lot Nutis, Bolts & Gaskets CS	Internal Spray Headers - Alloy Trusses		1	6 pcs	
External Recycle Piping Stress Analysis 1 lot External Recycle Piping - Stress Analysis 1 lot External Recycle Piping - Anchors, Hangers & Supports 1 lot External Recycle Piping - Freight 1 lot External Recycle Piping - Temp Strainers 3 pcs External Recycle Piping - Exp. Jts 32 pcs External Recycle Piping - Freight 1 lot Recycle Valves - Suction 8 pcs Recycle Valves - Suction 8 pcs Recycle Valves - Suction 7 pcs Recycle Valves - Suction 7 pcs Recycle Valves - Mig Field Service 1 pcs Recycle Valves - Freight 1 lot Bleed Pump System 2 pcs Sturry Bleed Pumps 2 pcs Sturry Bleed Pumps 2 pcs Sturry Bleed Pumps Priver 2 pcs Sturry Bleed Pumps	Internal Spray Headers - Freight			1 lot	
External Recycle Piping - Stress Analysis 1 lot External Recycle Piping - Stress Analysis 1 lot External Recycle Piping - Treight 1 lot External Recycle Piping - Treight 3 pcs External Recycle Piping - Treight 3 pcs External Recycle Piping - Treight 3 pcs External Recycle Piping - Freight 1 lot Recycle Valves - Suction 8 pcs Recycle Valves - Discharge 8 pcs Recycle Valves - Discharge 7 pcs Recycle Valves - Myfareliu Cunit 1 pcs Recycle Valves - Hyfareliu Cunit 2 pcs Slurry Bleed Pumps 2 pcs Slurry Bleed Pumps Priver 2 pcs Slurry Bleed Pumps Driver 2 pcs Slurry Bleed Pumps Driver 3 pcs Surry Bleed Pumps Driver 4 pcs Surry Bleed Pumps Expansion Joint 4 pcs Surry Bleed Pumps (Stell 1 lot Structural Stel 5 pcs Surry Bleed Pumps P Expansion Joint 4 pcs Surry Bleed Pumps P Expansion Joint 5 pcs Recycle Valves - Hyfareliu Cunit 1 pcs Recycle Valves - Hyfareliu Cunit 2 pcs Surry Bleed Pumps P Expansion Joint 4 pcs Surry Sleed Pumps P Expansion Joint 5 pcs Surry Bleed Pumps P Expansion Joint 5 pcs Surry Bleed Pumps P Expansion Joint 5 pcs Surry Bleed Pumps P Expansion Joint 1 pcs Replace all Actuated Valves 1 lot Railing Not Incl. Safety Gates Not Incl. Safety Gates 1 lot Piping Specialties 1 lot Piping Specialties 1 lot Misc. Hangers 1 lot Misc. Hangers 1 lot Misc. Hangers 1 lot Misc. Hangers 1 lot Nuts, Bolts & Gaskets CS 1 lot	External Recycle Piping		200	0 If	
External Recycle Piping - Bolt & Gasket Sets 1 lot External Recycle Piping - Freight 1 lot External Recycle Piping - Terng Strainers 3 pcs External Recycle Piping - Terng Strainers 32 pcs External Recycle Piping - Freight 1 lot Recycle Valves - Suction 8 pcs Recycle Valves - Suction 8 pcs Recycle Valves - Suction 1 lot Recycle Valves - Hydraulic Unit 1 pcs Recycle Valves - Hydraulic Unit 1 pcs Recycle Valves - Freight 1 lot Bleed Pump System \$106,639 Slurry Bleed Pumps Driver 2 pcs Slurry Bleed Pumps Driver 2 pcs Slurry Bleed Pump System \$0 Structural Steel \$0 Surry Bleed Pump System \$0 Surry Bleed Pump Steel Not Incl. Cover Plating Steel Not Incl. Cover Plating Steel Not Incl. Replace all Manual Values 1 lot Piping Specialties	External Recycle Piping - Stress Analysis			1 lot	
External Recycle Piping - Anchors, Hangers & Supports1 lotExternal Recycle Piping - Temp Strainers3 pcsExternal Recycle Piping - Temp Strainers32 pcsExternal Recycle Piping - Exp. Jts32 pcsExternal Recycle Piping - Freight1 lotRecycle Valves - Suction8 pcsRecycle Valves - Suction1 pcsRecycle Valves - Straft1 lotRecycle Valves - Straft1 lotRecycle Valves - Freight1 lotBleed Pump System2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pump Driver2 pcsSlurry Bleed Pump S Driver50Slurry Bleed Pump S Expansion Joint4 pcsSturry Bleed Pump S Priver50Surg Catal SteelNot Incl.Cover Plating SteelNot Incl.Cover Plating SteelNot Incl.Replace all Actuated Valves1 lotSafety GatesNot Incl.Safety Gates1 lotValves & Piping1 lotPiping Specialties1 lotStarge Sore Stury Bleed Valves1 lotSump Catal SteelNot Incl.Cover Plating SteelNot Incl.Cover Plating Steel1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotPiping Specialties1 lotSupports1 lotNuts. Rots & Gaskets CS1 lotNuts. Rots & Gaskets CS1 lotNuts. Rots & Gaskets Alloy1 lotOxidation Air Lancees - boltups0 pcs <td>External Recycle Piping - Bolt & Gasket Sets</td> <td></td> <td></td> <td>1 lot</td> <td></td>	External Recycle Piping - Bolt & Gasket Sets			1 lot	
External Recycle Piping - Freight 1 lot External Recycle Piping - Exp. Jts 3 pcs External Recycle Piping - Exp. Jts 32 pcs External Recycle Piping - Freight 1 lot Recycle Valves - Suction 8 pcs Recycle Valves - Discharge 8 pcs Recycle Valves - Mig Field Service 1 pcs Recycle Valves - Hydraulic Unit 1 pcs Recycle Valves - Freight 1 lot Bleed Pump System 2 pcs Sturry Bleed Pumps Driver 2 pcs Stury Bleed Pumps Driver 1 p	External Recycle Piping - Anchors, Hangers & Supports			1 lot	
External Recycle Piping - Temp Strainers3 pcsExternal Recycle Piping - Exp. Jts32 pcsExternal Recycle Piping - Freight1 lotRecycle Valves - Suction8 pcsRecycle Valves - Suction1 pcsRecycle Valves - Mig Field Service1 pcsRecycle Valves - Freight1 lotBleed Pump System2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pump - Expansion Joint4 pcsStructural SteelNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.Relating SteelNot Incl.Related Valves & Piping\$2,277,636Replace all Manual Values1 lotReplace all Manual Values1 lotReplace all Manual Values1 lotLarge Bore Piping w/Hanger & Supports1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bo	External Recycle Piping - Freight			1 lot	
External Recycle Piping - Exp. Jts32 pcsExternal Recycle Piping - Freight1 lotRecycle Valves - Suction8 pcsRecycle Valves - Discharge8 pcsRecycle Valves - Structural1 pcsRecycle Valves - Hydraulic Unit1 pcsRecycle Valves - Hydraulic Unit1 lotBleed Pump System1 lotSlurry Bleed Pumps2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pumps Expansion Joint4 pcsStructural Steel50Sump CS PlateNot Incl.Cover Plating SteelNot Incl.Relaces A PipingNot Incl.Safet CatesNot Incl.Safet CatesNot Incl.Safet Cates1 lotSafet Cates1 lotSafet Cates1 lotSafet Cates1 lotSafet Cates1 lotSafet Cates1 lotSafet Cates1 lotReplace all Manual Values1 lotLarge Bore Piping w/Hanger & Supports1 lotMust, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsRecycle Cate Nutrue TDP. Divisity0 pcsOxidation Air Lances - Structural Steel Supports10 pcsRecycle Cate Nutrue TDP. Divisity0 pcsOxidation Air Lances - Structural Steel Supports10 pcs<	External Recycle Piping - Temp Strainers			3 pcs	
External Recycle Piping - Freight1 lotRecycle Valves - Suction8 pcsRecycle Valves - Discharge8 pcsRecycle Valves - Mig Field Service1 pcsRecycle Valves - Hydraulic Unit1 pcsRecycle Valves - Freight1 lotBleed Pump System2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pumps Driver2 pcsSturry Bleed Pump Suptem50Sturry Bleed Pump Suptem9Sturry Bleed Pumps Expansion Joint4 pcsSturry Bleed Pump Suptem50Sump CS PlateNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.RadiersNot Incl.Safety GatesNot Incl.Valves & Piping1 lotPiping Specialties1 lotIping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets CS10 pcsOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances - Structural Steel Supports10 pcsRepare New Piping4 pcsStructural Steel Supports10 pcsStruc	External Recycle Piping - Exp. Jts		3	2 pcs	
Recycle Valves - Suction8 pcsRecycle Valves - Discharge8 pcsRecycle Valves - Mfg Field Service1 pcsRecycle Valves - Hydraulic Unit1 pcsRecycle Valves - Freight1 lotBleed Pump System\$106,639Slurry Bleed Pumps2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pump - Expansion Joint4 pcsStructural SteelNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.Replace all Actuated ValvesNot Incl.Safety GatesNot Incl.Valves & Piping\$2,277,636Replace all Actuated Valves1 lotPiping Specialties1 lotPiping Sheds & Supports1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReplace or Supports10 pcsOxidation Air Lances - Structural Steel Supports10 pcsRecot of Support - Supports10 pcsNuts, Bolts & Gaskets Alloy1 lotNuts, Bolts & Gaskets Priping4 pcsOxidation Air Lances - Structural Steel Supports10 pcsRecot Oxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsSupport Support Supports10 pcsReactor to Support Support	External Recycle Piping - Freight			1 lot	
Recycle Valves - Discharge8 pcsRecycle Valves - Mtg Field Service1 pcsRecycle Valves - Hydraulic Unit1 pcsRecycle Valves - Freight1 lotBleed Pump System2 pcsSlurry Bleed Pumps Driver2 pcsSlury Bleed Pump - Expansion Joint4 pcsStructural SteelNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.Rafter Safety GatesNot Incl.Safety Gates1 lotValves & Piping1 lotPiping Specialties1 lotPiping Specialties1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets CS	Recycle Valves - Suction			8 pcs	
Recycle Valves - Mfg Field Service1 pcsRecycle Valves - Hydraulic Unit1 pcsRecycle Valves - Freight1 lotBleed Pump System\$106,639Slurry Bleed Pumps Driver2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pump - Expansion Joint4 pcsStructural SteelNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.RailingNot Incl.Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotPiping Sceilties1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances -	Recycle Valves - Discharge			8 pcs	
Recycle Valves - Hydraulic Unit 1 pcs Recycle Valves - Freight 1 lot Bleed Pump System 1 lot Bleed Pump System 2 pcs Slurry Bleed Pumps Driver 2 pcs Slurry Bleed Pump - Expansion Joint 4 pcs Structural Steel Not Incl. Grating - Replacement Not Incl. Cover Plating Steel Not Incl. Rating Not Incl. Safety Gates Not Incl. Valves & Piping 1 lot Piping Specialties 1 lot Piping Specialties 1 lot Large Bore Piping w/Hanger & Supports 1 lot Must, Bolts & Gaskets CS 1 lot Nuts, Bolts & Gaskets Alloy 1 lot Oxidation Air Lances - Structural Steel Supports 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs	Recycle Valves - Mfg Field Service			1 pcs	
Recycle Valves - Freight1 lotBleed Pump System\$106,639Slurry Bleed Pumps2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pump - Expansion Joint4 pcsStructural SteelNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.RailingNot Incl.LaddersNot Incl.Safety GatesNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances - Doltups0 pcsOxidation Air Lances - Doltups0 pcsOxidation Air Lances - Deltups0 pcsOxidation Air	Recycle Valves - Hydraulic Unit			1 pcs	
Bleed Pump System\$106,639Slurry Bleed Pumps2 pcsSlurry Bleed Pumps Driver2 pcsSlurry Bleed Pump - Expansion Joint4 pcsStructural SteelNot Incl.Structural SteelNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.RailingNot Incl.LaddersNot Incl.Safety GatesNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Dit Dupper10 pcsOxidation Air Lances - boltups10 pcs <td>Recycle Valves - Freight</td> <td></td> <td></td> <td>1 lot</td> <td></td>	Recycle Valves - Freight			1 lot	
Slury Bleed Pumps 2 pcs Slury Bleed Pumps Driver 2 pcs Slury Bleed Pump - Expansion Joint 4 pcs Structural Steel 0 Sump CS Plate Not Incl. Grating - Replacement Not Incl. Cover Plating Steel Not Incl. Railing Not Incl. Ladders Not Incl. Safety Gates Not Incl. Valves & Piping \$2,277,636 Replace all Manual Values 1 lot Piping Specialties 1 lot Large Bore Piping w/Hanger & Supports 1 lot Must, Bolts & Gaskets CS 1 lot Nuts, Bolts & Gaskets Alloy 1 lot Oxidation Air Lances 10 pcs Oxidation Air Lances - boltups 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs	Bleed Pump System				\$106,639
Slurry Bleed Pumps Driver 2 pcs Slurry Bleed Pump - Expansion Joint 4 pcs Structural Steel Not Incl. Grating - Replacement Not Incl. Cover Plating Steel Not Incl. Railing Not Incl. Ladders Not Incl. Safty Gates Not Incl. Valves & Piping \$2,277,636 Replace all Manual Values 1 lot Replace all Actuated Valves 1 lot Piping Specialties 1 lot Large Bore Piping w/Hanger & Supports 1 lot Nuts, Bolts & Gaskets CS 1 lot Nuts, Bolts & Gaskets Alloy 1 lot Oxidation Air Lances - boltups 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs Reactor to Sump FRP Piping 4 pcs	Slurry Bleed Pumps			2 pcs	
Slurry Bleed Pump - Expansion Joint 4 pcs Structural Steel \$0 Sump CS Plate Not Incl. Grating - Replacement Not Incl. Cover Plating Steel Not Incl. Railing Not Incl. Ladders Not Incl. Safety Gates Not Incl. Valves & Piping \$2,277,636 Replace all Manual Values 1 lot Replace all Manual Values 1 lot Piping Specialties 1 lot Large Bore Piping w/Hanger & Supports 1 lot Misc. Hangers 1 lot Nuts, Bolts & Gaskets CS 1 lot Nuts, Bolts & Gaskets Alloy 1 lot Oxidation Air Lances 10 pcs Oxidation Air Lances - structural Steel Supports 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs	Slurry Bleed Pumps Driver			2 pcs	
Structural Steel\$0Sump CS PlateNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.RailingNot Incl.LaddersNot Incl.Safety GatesNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances - Deliping4 pcsOver for VERD Piping4 pcs	Slurry Bleed Pump - Expansion Joint			4 pcs	
Sump CS PlateNot Incl.Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.RailingNot Incl.LaddersNot Incl.LaddersNot Incl.Safety GatesNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotMust, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - Structural Steel Supports10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcs	Structural Steel			•	\$0
Grating - ReplacementNot Incl.Cover Plating SteelNot Incl.RailingNot Incl.LaddersNot Incl.LaddersNot Incl.Safety GatesNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsOurse Ourse Function0 pcsReactor to Sump FRP Piping4 pcs	Sump CS Plate		Not Incl.		
Cover Plating SteelNot Incl.RailingNot Incl.LaddersNot Incl.Safety GatesNot Incl.Valves & PipingNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotMisc. Hangers1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcs	Grating - Replacement		Not Incl.		
RailingNot Incl.LaddersNot Incl.Safety GatesNot Incl.Valves & PipingNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotMisc. Hangers1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsNutar Honding2 pcs	Cover Plating Steel		Not Incl.		
LaddersNot Incl.Safety GatesNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotMisc. Hangers1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsNuts FDD Diring2 pcs	Railing		Not Incl.		
Safety GatesNot Incl.Valves & Piping\$2,277,636Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotMisc. Hangers1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsNuts FDP Diping2 pcs	Ladders		Not Incl.		
Valves & Piping\$2,277,636Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotMisc. Hangers1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcs	Safety Gates		Not Incl.		
Replace all Manual Values1 lotReplace all Actuated Valves1 lotPiping Specialties1 lotLarge Bore Piping w/Hanger & Supports1 lotMisc. Hangers1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcs	Valves & Piping				\$2.277.636
Replace all Actuated Valves1Piping Specialties1Large Bore Piping w/Hanger & Supports1Misc. Hangers1Nuts, Bolts & Gaskets CS1Nuts, Bolts & Gaskets Alloy1Oxidation Air Lances10Oxidation Air Lances - boltups10Oxidation Air Lances - Structural Steel Supports10Presenter to Sump FRP Piping4Presenter to Sump FRP Piping2Presenter to Sump F	Replace all Manual Values			1 lot	<i>,,,,</i>
Piping Specialties1Large Bore Piping w/Hanger & Supports1Misc. Hangers1Misc. Hangers1Nuts, Bolts & Gaskets CS1Nuts, Bolts & Gaskets Alloy1Oxidation Air Lances10Oxidation Air Lances - boltups10Oxidation Air Lances - Structural Steel Supports10Presenter to Sump FRP Piping4Presenter to Sump FRP Piping2Presenter to Sump FRP Piping3Presenter to Sump FRP Piping3Presenter to Sump FRP Piping3Presenter to Sump FRP Piping3Presenter to Sump FRP Piping	Replace all Actuated Valves			1 lot	
Large Bore Piping w/Hanger & Supports1 lotMisc. Hangers1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsOuts of the FRP Piping2 pcs	Piping Specialties			1 lot	
Misc. Hangers1 lotNuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcs	Large Bore Piping w/Hanger & Supports			1 lot	
Nuts, Bolts & Gaskets CS1 lotNuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsOurse flow2 pcs	Misc. Hangers			1 lot	
Nuts, Bolts & Gaskets Alloy1 lotOxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsOurse flow2 pcs	Nuts. Bolts & Gaskets CS			1 lot	
Oxidation Air Lances10 pcsOxidation Air Lances - boltups10 pcsOxidation Air Lances - Structural Steel Supports10 pcsReactor to Sump FRP Piping4 pcsOver flow FRP Diagona2 pcs	Nuts, Bolts & Gaskets Allov			1 lot	
Oxidation Air Lances - boltups 10 pcs Oxidation Air Lances - Structural Steel Supports 10 pcs Reactor to Sump FRP Piping 4 pcs Over flow 2 pcs	Oxidation Air Lances		1	0 pcs	
Oxidation Air Lances - Structural Steel Supports 10 pcs Reactor to Sump FRP Piping 4 pcs Overflow 2 pcs	Oxidation Air Lances - boltups		1	0 pcs	
Reactor to Sump FRP Piping 4 pcs	Oxidation Air Lances - Structural Steel Supports		1	0 pcs	
	Reactor to Sump FRP Piping			4 pcs	
SUMD UVERIOW FRP PIDIDO Z DCS	Sump Overflow FRP Pining			2 pcs	
Sump Vent Piping Connected to the Ductwork 2 pcs	Sump Vent Pining Connected to the Ductwork			2 pcs	
Sland Pining Connected is the Bastronk 2 pos	Bleed Pining			2 poo 1 lot	
Knife Gate Valves - Hydraulic Pining 1 lot	Knife Gate Valves - Hydraulic Pining			1 lot	
Emergency Quench Pining Header (Internal to Duct) Alloy 1 lot	Emergency Quench Pining Header (Internal to Duct) Alloy			1 lot	
Emergency Quench - Nozzles 70 pcs	Emergency Quench - Nozzles		7	0 ncs	
Emergency Quench - Expansion Joints 6 pcs	Emergency Quench - Expansion Joints		,	6 pcs	

11/30/11

LG&E - KU Services Company Mill Creek Unit 3 gas to Unit 4 WFGD Systems Upgrade ROM Price Estimate Revision 0 C-276 Materials

	1 - 1			Total
Materials / Subcontracts	Labor	Otvio	Unito	Sell
Instruments & Controls	Hours	Qtys	Units	\$504 560
Analyzer - Sox		1	lot	4304,300
Instruments & Controls		1	lot	
Misc Tubing, Fittings & Hangers		1	lot	
Performance Test			101	\$222.006
Physical Flow Model		1	lot	ΨΖΖΖ,000
Performance Testing		1	lot	
Subcontractors			101	\$261 184
BOP Electrical Design		1	lot	Ψ 2 01,104
BOP Instrument Design		1	lot	
Ductwork & Expansion Joints				\$517,112
Absorber Outlet Expansion Joints		180	lf	<i>won,nz</i>
Absorber Outlet Expansion Joints - freight		4	ncs	
Absorber Inlet Expansion Joints		256	lf	
Absorber Inlet Expansion Joints - Freight		200	ncs	
Inlet Duct - Replace plate with Allov 16' x 16' x 12'		0	lbs	
Inlet Duct - Fabrication		26 112	lbs	
Inlet Duct - Stiffeners		39 014	lbs	
Intec Access Doors Inlet Duct		4	DCS	
Mist Eliminator & Supports			P 00	\$953.907
Mist Fliminator - FRP DV 210		4	sets	<i>4</i> 00001
Mist Eliminator - Wash System		1	lot	
Mist Eliminator - Installation Supervision		1	lot	
Mist Eliminator - Allov Supports		1	lot	
Mist Eliminator - Water Wash Tank 40' x 40'		1	DC	
Mist Eliminator - Water Wash Pumps		2	DCS	
Mist Eliminator - Water Wash Pump Drivers		2	pcs	
Oxidation Air System			•	\$0
Site Work & Foundation Design				\$59,360
Foundation Design		1	lot	. ,
Secondary Hydrocyclone System				\$1,710,109
Primary Hydroclone		2	ea	
Primary Hydroclone Feed Tank 48' x 51'		2	ea	
Primary Hydroclone Pumps Expansion Joints		4	ea	
Primary Hydroclone Underflow Feed Tank Agitator		2	ea	
Primary Hydroclone - Feed Pumps		2	ea	
Primary Hydroclone - Feed Pumps		2	ea	
Cloride Purge Pumps		2	ea	
Underflow Tanks FRP 5' x 5'		2	ea	
Engineering Total	22,604		MHS	\$2,824,907
Project Management Total	18,861		MHS	\$2,583,247
Field Service Total	2,108		MHS	\$361,466
Site Engineer Total	8,431		MHS	\$1,590,775
Misc. Items		1	lot	\$267,120
BPEI Travel Expense		1	lot	\$472,506
Materials / Subcontracts	52,004			\$35,202,498

11/30/11

WORK SCOPE

Mill Creek Unit 4 WFGD Work Scope <u>11/8/2011</u>

Unit 4	 Sump Walls – (Agitators)
• Year 1	 Sump Roof
2012 (4wks)	Oxidation Air (Sump Internals)
4/16-5/07	
Unit 4	Replace All Valves & Instruments
Year 2	Replace Bleed Pumps
2013 (2wks)	Replace Hydrocyclone
5/13 & 11/11	Replace FRP Piping for Bleed/Hydrocyclone
	Agitators
Unit 3	 Install U3 Outlet Duck Blank off Plate
• Year 2	
2013 (6wks) Fall	
	Replace Absorber vessel with Internals
• Year 3	- Spray Hors
2014 (OWKS) Fall 9/29-11/17	- Spray Nozzies - Mist Eliminator
	– Wall Rings
	– Trusses (if required)
	Nox Analyzers
	Knife gate Valves suction/discharge
	Rework Recycle Pipes to feed Hdrs
	Emergency Quench System
	Replace Scrubber Outlet Duct
	Replace Inlet Duct 4 places
	 Inlet/Outlet expansion joints
Unit 3	Remove U3 Blank off Plate in Ductwork
• Year 3	
2014 (1wk)	
Fall	
General Work	Run Oxidation Air Piping
• 2012	 Structural Steel/Walkways (Clean/Paint or
	Replace)
• 2013	Continue Structural Steel/Walkways
	(Clean/Paint or Replace)
	Recycle Pumps & Foundation Replace (1)
	per month
	Run duct work Unit 3 to Unit 4 & Steel
	Supports
	 Replace Required Pipe & Tubing for Valve & Instrument Replacement in the outage.
• 2014	Continue Structural Steel/Walkways
	(Clean/Paint or Replace)
	 Replace Walkways for Recycle Pipe Changes

SCHEDULE (HIGH LEVEL)

Activity ID	Activity Name	Rem	Start	Finish	%			201	12					2	013					2014					2015	
		Dur				Jan Feb	Mar Apr May	y Jun	Jul Aug S	Sep C	Oct Nov	Dec Jan F	eb Mar Ap	r May Ju	n Jul Aug	Sep Oct	Nov Dec	Jan Feb Ma	r Apr M	ay Jun Ju	I Aug Sep Oc	t Nov De	ec Jan F	⁻ eb Mar	Apr May J	un Jul ^u g
Mill Creek	Unit 4 WFGD Conversion Study	901	02-Jan-12	15-Jun-15																						•
Major Mile	stones	901	02-Jan-12	15-Jun-15																						▼
A1168	Construction	901	02-Jan-12*	15-Jun-15	0%																					-
A1165	Engineering	175	02-Jan-12	31-Aug-12	0%			1 1																		
A1166	Procurement	214	20-Jan-12*	14-Nov-12	0%										.i										LL	
A1167	Fabrication & Delivery	640	23-Jan-12*	04-Jul-14	0%																					
A1169	Outages Unit 4 (2012)	16	16-Apr-12*	07-May-12	0%																					
A1170	Outage Unit 4 (2013)	6	13-May-13*	20-May-13	0%																					
A1171	Outage Unit 3 (2013) (Approximately)	5	01-Nov-13*	07-Nov-13	0%												0									
A1172	Outage Unit 4 (2014)	30	29-Sep-14*	07-Nov-14	0%																	-				
A1173	Outage Unit 3 (2014) (Approximately)	11	03-Nov-14*	17-Nov-14	0%																					
General W	ork Performed Between Outages	901	02-Jan-12	15-Jun-15							1															▼
A1176	Miscellaneous Work to be Done	901	02-Jan-12*	15-Jun-15	0%																		<u> </u>			
A1304	Rework Existing Structural Steel	684	01-May-12*	12-Dec-14	0%			· ·			1								: :							
A1175	Run Oxidation Air Piping & Hangers	261	01-Jun-12*	31-May-13	0%				i i 			i i	i i													
A1177	Recycle Pumps & Foundations Replace (1) per Month	196	01-Mar-13*	29-Nov-13	0%									·-¦}				+++								
A1179	Replace Random Sec. of Pipe & Tubing on Valves & Instruments	120	01-Mar-13*	15-Aug-13	0%										<u> </u>											
A1178	Run New Ductwork Unit 3 Outlet to Unit 4 & Support Steel	77	01-May-13*	15-Aug-13	0%																				,	
A1180	Replace Reworked Platforms for Recycle Pipe Relocation	109	01-Apr-14*	29-Aug-14	0%																					
Engineerir	ng	175	02-Jan-12	31-Aug-12				<u> </u>		,																
A1183	BPEI Recieves Notice to Proceed	1	02-Jan-12	02-Jan-12	0%																					
A1184	Design Calculations	20	02-Jan-12	27-Jan-12	0%																					
A1185	Conduct Physical Modeling	40	06-Feb-12	30-Mar-12	0%																					
A1186	Develop Equipment D&R Sheets	25	12-Mar-12	13-Apr-12	0%																					
A1187	Develop Mechanical Drawings	125	12-Mar-12	31-Aug-12	0%			<u> </u>																		
Procureme	ent	214	20-Jan-12	14-Nov-12		V									-+			<u>+</u> <u>+</u>						·		
A1201	Issue P.O. Oxidation Air System	12	20-Jan-12*	06-Feb-12	0%																					
A1190	Issue P.O. Recycle Pumps	10	20-Feb-12	02-Mar-12	0%																					
A1192	Issue P.O. Wall Rings	10	01-Mar-12	14-Mar-12	0%																					
A1193	Issue P.O. Agitators	10	20-Apr-12*	03-May-12	0%																					
A1191	Issue P.O. Absorber Vessel	10	01-Jun-12	14-Jun-12	0%																				,	
A1196	Issue P.O. Instruments & Controls	10	20-Jun-12	03-Jul-12	0%																					
A1197	Issue P.O. Inlet/ Outlet Expansion Joints	10	20-Jun-12	03-Jul-12	0%																					
A1198	Issue P.O. Inlet Duct Sections	10	20-Jun-12	03-Jul-12	0%																				,	
A1199	Issue P.O. Manual & Automatic Valves	10	20-Jun-12	03-Jul-12	0%																					
A1200	Issue P.O. Mist Eliminator System	10	20-Jun-12	03-Jul-12	0%																					
A1194	Issue P.O. Analyzer SOX	10	02-Jul-12*	13-Jul-12	0%																					
A1195	Issue P.O. Bleed Pump System	10	01-Aug-12*	14-Aug-12	0%																					
A1202		10	01-Oct-12*	12-Oct-12	0%					_																
A1202		10	01-00t-12	12-00(-12	0%																				, ,	
A1203		10	01-00-12	12-00-12	0%																					
A1204		10	01-Oct-12	12-Oct-12	0%																					
A1205	Issue P.O. Recycle External Piping	10	01-Nov-12*	14-Nov-12	0%																					
A1206	Issue P.O. Recycle Suction & Discharge Valves	10	01-Nov-12	14-Nov-12	0%																					
A1207	Issue P.O. Emergency Quench System	10	01-Nov-12	14-Nov-12	0%																					
Early Early	y Bar						100585	LG&	E - KU	Mill	Creek							ck								
Critic	cal Remaining Work					WFGI) Retrofit	Perf	ormano	e I Ir	ograde	Study					20	10	Г	1	212	1	Т	2	1 . 1 .	
♦ Miles	stone								2		.9.440	cludy					33	1 0	F	al	CO	C		10	M	er
V V Sum	mary														page	e 1		Inc.	-	- LA				U		UL.
		1																								

Activity ID	Activity Name	Rem	Start	Finish	%	2012 2013	
1		Dur				Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb	o Mai
Fabrication	and Delivery	640	23-Jan-12	04-Jul-14	00/		
A1221	Pablicate Oxidation Air System	/1	23-Jan-12	30-Apr-12	0%		
A1239		8	01-May-12	10-May-12	0%		
A1210		152	04-May-12"	03-Dec-12	0%		
A1213	Fabricate Agitators	125	04-May-12	25-Oct-12	0%		
A1216	Fabricate Instruments & Controls	60	04-Jul-12	25-Sep-12	0%		
A1231	Deliver Agitators	10	26-Oct-12	08-Nov-12	0%		
A1219	Fabricate Manual & Automatic Valves	87	15-Nov-12*	15-Mar-13	0%		
A1228	Deliver Recycle Pumps	10	04-Dec-12	17-Dec-12	0%		
A1215	Fabricate Bleed Pump System	84	10-Dec-12*	04-Apr-13	0%		
A1222	Fabricate Hydrocyclone System	157	28-Dec-12*	05-Aug-13	0%		
A1237	Deliver Manual & Automatic Valves	21	18-Mar-13	15-Apr-13	0%		
A1233	Deliver Bleed Pump System	10	05-Apr-13	18-Apr-13	0%		
A1234	Deliver Instruments & Controls	55	15-Jul-13*	27-Sep-13	0%		
A1240	Deliver Hydrocyclone System	10	06-Aug-13	19-Aug-13	0%		
A1226	Fabricate Recycle Suction & Discharge Valves	158	07-Oct-13*	14-May-14	0%		+
A1211	Fabricate Absorber Vessel	140	15-Nov-13	29-May-14	0%		
A1212	Fabricate Wall Rings	150	15-Nov-13	12-Jun-14	0%		-
A1217	Fabricate Inlet/ Outlet Expansion Joints	123	25-Nov-13*	14-May-14	0%		÷
A1218	Fabricate Inlet Duct Sections	123	25-Nov-13*	14-May-14	0%		÷
A1220	Fabricate Mist Eliminator System	95	25-Nov-13*	04-Apr-14	0%		+
A1223	Fabricate Recycle Spray Headers	87	25-Nov-13*	25-Mar-14	0%		
A1224	Fabricate Recycle Spray Nozzles	95	25-Nov-13*	04-Apr-14	0%		-
A1225	Fabricate Recycle External Piping	87	25-Nov-13*	25-Mar-14	0%		÷
A1227	Fabricate Emergency Quench System	71	02-Dec-13*	10-Mar-14	0%		÷.
A1214	Fabricate Analyzer SOX	85	01-Jan-14*	29-Apr-14	0%		+
A1245	Deliver Emergency Quench System	10	11-Mar-14	24-Mar-14	0%		
A1243	Deliver Recycle External Piping	10	26-Mar-14	08-Apr-14	0%		
A1235	Deliver Inlet/ Outlet Expansion Joints	13	15-May-14	02-Jun-14	0%		
A1236	Deliver Inlet Duct Sections	13	15-May-14	02-Jun-14	0%		
A1244	Deliver Recycle Suction & Discharge Valves	10	15-May-14	28-May-14	0%		
A1232	Deliver Analyzer SOX	8	22-May-14*	02-Jun-14	0%		
A1238	Deliver Mist Eliminator System	8	22-May-14*	02-Jun-14	0%		
A1242	Deliver Recycle Spray Nozzles	8	22-May-14*	02-Jun-14	0%		
A1241	Deliver Recycle Spray Headers	7	23-May-14*	02-Jun-14	0%		
A1229	Deliver Absorber Vessel	8	25-Jun-14*	04-Jul-14	0%		
A1230	Deliver Wall Rings	8	25-Jun-14*	04-Jul-14	0%		
Constructio	on (General Work Between Outages)	901	02-Jan-12	15-Jun-15			-
A1249	Mobilize Construction	8	02-Jan-12	11-Jan-12	0%		
A1252	Replace Recycle Pumps & Foundations (1) at a time	457	01-Mar-12*	29-Nov-13	0%		
A1254	Replace Pipe and Tubing for Valves & Instruments	381	01-Mar-12*	15-Aug-13	0%		
A1251	Repair Structural Steel and Walkways	684	01-May-12*	12-Dec-14	0%		
A1253	Install Duct work Unit 3 to Unit 4 and Steel Supports	338	01-May-12*	15-Aug-13	0%		
				-			<u> </u>

Early Bar	100585 LG&E - KU Mill Creek
Critical Remaining Work	WEGD Retrofit Performance Ungrade Study
 ♦ Milestone 	Wild heron i enormance opgrade olddy
▼ Summary	page 2

Activity ID	Activity Name	Rem	Start	Finish	%	2012 2013	
		Dur				an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan F	Feb Ma
A1255	Install New Bleed Pump Foundation	338	01-May-12*	15-Aug-13	0%		
A1250	Run Oxidation Air Piping (Outside Sump)	305	01-Jun-12*	01-Aug-13	0%		
A1257	Ground Fab Absorber Vessels	64	17-Feb-14*	15-May-14	0%		
A1314	General Work and Miscellaneous Activities	184	01-Oct-14*	15-Jun-15	0%		
A1256	Replace Platforms for new Recycle Piping	32	10-Nov-14*	23-Dec-14	0%		
Unit 4 2012	Outage (4 Weeks) 4/16 to 5/7	16	16-Apr-12	07-May-12			
A1260	Repair Sump walls and Floor	16	16-Apr-12*	07-May-12	0%		
A1261	Install new Sump Nozzles	16	16-Apr-12	07-May-12	0%		
A1262	Install new Concrete Panel Roof on Sump	16	16-Apr-12	07-May-12	0%		
A1263	Install Agitator Wall Boxes	16	16-Apr-12	07-May-12	0%		
A1264	Install Oxidation Air (Sump Internals)	16	16-Apr-12	07-May-12	0%		
Unit 4 2013	Outage (2 Weeks) 5/13 & 11/11	135	13-May-13	15-Nov-13			
A1267	Remove & Replace all Manual & Actuated Valves	6	13-May-13*	20-May-13	0%		
A1269	Install a New Bleed Pump System	5	13-May-13*	17-May-13	0%		
A1272	Install New Agitators	6	13-May-13*	20-May-13	0%		
A1268	Remove & Replace all Instruments	5	11-Nov-13*	15-Nov-13	0%		
A1270	Remove & Replace the Hydrocyclone	5	11-Nov-13*	15-Nov-13	0%		
A1271	Install New FRP Piping for Bleed/Hydrocyclone	5	11-Nov-13*	15-Nov-13	0%		
Unit 3 2013	Outage (6 Weeks) 9/29 & 11/7	5	01-Nov-13	07-Nov-13		₩ V	
A1275	Install Unit 3 Outlet Duck Blank Off Plate	5	01-Nov-13*	07-Nov-13	0%		
Unit 3 2014	Outage (1 Week) November	5	03-Nov-14	07-Nov-14			
A1291	Remove Unit 3 Blank Off Plate in Ductwork	5	03-Nov-14*	07-Nov-14	0%		
Unit 4 2014	Outage (8 Weeks) 9/29 & 11/7	30	29-Sep-14	07-Nov-14			
A1277	Unit 4 2014 Outage (8 wks) 9/29 to 11/7	30	29-Sep-14*	07-Nov-14	0%		
A1278	Replace Absorber Vessels (4)	30	29-Sep-14	07-Nov-14	0%		
A1279	Absorber Vessels Incl: Spray Headers	30	29-Sep-14	07-Nov-14	0%		
A1280	Absorber Vessels Incl: Spray Nozzles	30	29-Sep-14	07-Nov-14	0%		
A1281	Absorber Vessels Incl: Mist Eliminator	30	29-Sep-14	07-Nov-14	0%]	
A1282	Absorber Vessels Incl: Wall Rings	30	29-Sep-14	07-Nov-14	0%		
A1283	Anaylzers SOX	30	29-Sep-14	07-Nov-14	0%		
A1284	Knifegate Valves Suction/Discharge	30	29-Sep-14	07-Nov-14	0%		
A1285	Emergency Quench System	30	29-Sep-14	07-Nov-14	0%	1	
A1286	External Recycle Pipies	30	29-Sep-14	07-Nov-14	0%	1	
A1287	Scrubber Inlet Duct	30	29-Sep-14	07-Nov-14	0%		
A1288	Scrubber Inlet/Outlet Expansion Joints	30	29-Sep-14	07-Nov-14	0%	1	
Start Up & 0	Commissioning	75	03-Nov-14	13-Feb-15			
A1294	Start Up & Commissioning	75	03-Nov-14*	13-Feb-15	0%]	

Early Bar

Critical Remaining Work

Milestone

▼-

Summary

100585 LG&E - KU Mill Creek

Cock Power Per Inc.

page 3

WFGD Retrofit Performance Upgrade Study

Exhibit JNV-2

Zachry New WFGD Estimate for Mill Creek Unit 3

LG&E Mill Creek Environmental Compliance Project

New Unit 3 WFGD – Scope description and Budget Estimate < September 11, 2012 >

Budget estimates for the following Unit 3 WFGD options are included:

- Option A = Stebbins Absorber Vessel Base DOR [Absorber internals by EPC / Zachry]
- Option B = Solid C276 Absorber Vessel Base DOR [Absorber internals by EPC / Zachry]
- Option C = Solid C276 Absorber Vessel Modified DOR [Absorber Vessel by WFGD / Babcock]

The following information is included:

- Scope Summary 6 pp.
- Preliminary Schedule [Options A ~ C] 3 pp.
- Budget Estimate Comparison Summary 2 pp.
- Budget Estimate Detail [Options A ~ C] 6 pp.
- Babcock Budget Estimates [Options A ~ C] 6 pp.

Demolition

The major demolition for Unit 3 is the ductwork on the outlet of the existing electrostatic precipitators (ESP). The ductwork from the discharge of the existing ESP will be replaced with new ductwork. The existing Unit 3 WFGD system will be abandoned in place. The existing ID fans will be removed and replaced.

We have also included the cost for a subcontractor to demolish the existing Unit 4 WFGD down to the anchor bolts, and we plan to self perform the demolition of the existing concrete foundation.

Quantity Basis

Please refer to Attachment A for Estimated Quantities.

Civil Site Work

Work will include the design and construction of all surveys, clearing, dewatering, grading, import and export of materials, as required, excavation, filling, trenching, shoring, backfilling, and paving, seeding, or other surfacing.

The EPC Contractor (Contractor) will establish and maintain benchmarks and control points, as required, to provide measurement control and to verify location of completed Work within the site coordinate system.

Contractor will design, furnish, and install temporary and permanent erosion and sediment controls for the Work.

Contractor will design and construct all excavation, trenching, and backfill and also design, furnish, install and maintain dewatering systems and/or shoring systems, as required. Contractor will design, furnish and install final surfacing, including concrete and/or asphalt pavement, aggregate surfacing, and/or seeding, as required. Grade finished surfaces to drain without ponding.

Structural Work

Contractor will design, furnish, and install all required foundations, including deep foundation elements such as piling or caissons for structures and equipment, including:

- 1 PJFF(2-50%);
- WFGD system
- 2 ID fans located between the PJFF and the WFGD;
- Variable Frequency Drives (VFD) equipment and enclosures for the ID fans;
- PAC storage silos, associated transfer systems and buildings;
- SAMM storage silos, associated transfer systems, and buildings;
- Electrical transformers. These foundations will incorporate permanent construction for containing spills of oil, contaminated fire protection water and rainwater; and
- Any and all additional equipment identified as required during the execution of this Work.
- Contractor will design, furnish, and install all ductwork, associated supports, slide bearing assemblies, ductwork stiffeners (for both new and existing duct being reused), connections to existing ductwork, access doors, access platforms, stairs, ladders, handrails, and lifting lugs including:
- Gas ducts with, sampling, cleanout, instrumentation, and test ports, including turning vanes, as required, and flow straightening devices, as required, by the air flow model study, from the ESP outlet to the inlet of the PJFF;

• Gas ducts including duct from the PJFF outlet to the ID fans inlets, and test ports, including turning vanes, as required, and flow straightening devices, as required, by the air flow model study, and dampers;

• Gas ducts from the ID fans outlets to and including the inlet duct to the WFGD, and test ports, including turning vanes, as required, and flow straightening devices, as required, by the air flow model study, and dampers; and

• Gas duct from the WFGD outlet to the existing Unit 4 chimney breeching.

o Gas ducting includes 0.050 inch stainless steel type 304, 4x1 box rib Alclad conventional screwed system for duct roofs.

o Contractor assumes existing ESP outlet duct is structurally sound and no stiffening is required.

Contractor will design, furnish, and install all required structural steel for support of equipment and ductwork, including:

• Support of 2 – 50% PJFF structures for Unit 3. The structure will include stairs,

platforms and vertical access elements provided by the PJFF supplier;

• Elevated concrete platform with support steel up to the equipment baseline under the PJFF.

- Support of the WFGD equipment building and all associated equipment provided by the WFGD supplier;
- Support of 2 PAC silos and all associated equipment and structures;
- Support of 2 SAMM silos and all associated equipment and structures;
- Support of the complete ash handling system provided by the Contractor;
- Support for new ductwork and re-support of modified existing ductwork;

• Miscellaneous steel structures for support of piping, raceway, and other utilities as may be required; and

• Miscellaneous steel structures and platforms for maintenance access to installed equipment, valves, and instruments;

o Contractor has assumed modifications to existing pipe racks are not required and that structure capacity is adequate for increased utility loadings;

o Contractor assumes existing building steel, isobus support steel, and concrete deck can be used to support the new isobus sections and cable bus.

Contractor will design, furnish, and install foundations, including deep foundation elements such as piling, required for the support of buildings and structures, including:

- PJFF support structure;
- WFGD absorber building, and associated equipment (including elevator);
- Electrical equipment building;
- PAC silos and equipment building;
- SAMM silos and equipment building;
- Ash handling equipment and building; and
- Miscellaneous yard structures for pipe, cable tray and other utility supports.

Miscellaneous Work – Installation of Buyer-Furnished Equipment

Contract will include designing of all necessary interfaces, receiving, unloading, inventorying, inspecting, storing, maintaining, removing from storage, protecting, handling, rigging, installing,

field adjusting, aligning, commissioning, and testing of all of the following Buyer furnished equipment:

• PJFFs – Two 50% self-supporting PJFF modules furnished for control of particulates including:

o Casing, roof, hoppers, tube sheet, and appurtenances from the gas inlet manifolds to the gas outlet manifolds including flanges, access doors, struts;

o Structural steel framing up from foundations for support of slide bearing assemblies, all integrated with PJFF Vendor requirements and recommendations.

o Structural and miscellaneous steel for all permanent access platforms, both internal and external, including walkways, floor plated areas, stairways, ladders, and handrail (guard rail) from equipment baseline to the top equipment elevation of the PJFF, including access to fly ash removal equipment;

- o Filter bags and cages;
- o Filter bag cleaning system;

o Compressed air system including compressors, dryers, receivers, building enclosure and air distribution system required for filter bag cleaning and actuation of equipment;

- o Weather enclosure;
- o Gas flow distribution vanes and baffles;
- o Compartment isolation dampers and actuators;
- o Casing bypass dampers and actuators;
- o Rain gutters and drains to grade;
- o Electric hoists and trolleys,
- o Access doors;

o Fly ash hoppers and nozzles including ash level detectors, outlet connections, pounding anvil, hopper vibrators, poke holes, anti-sneak baffles, electric hopper heaters, and insulation panels;

- o All electrical equipment and motors; and
- o Instruments, final control elements, and connections necessary to effectively control and monitor all equipment and systems for a complete and operable PJFF.
- PAC injection system for mercury control, including:
- o Two storage silos including accessories;
- o Reagent feeders for metering material;
- o Conditioning equipment;
- o Conveying equipment; and
- o Flow monitoring and injection equipment.
- SAMM injection system for sulfuric acid and acid mist control, including:
- o Two storage silos including accessories;
- o Reagent feeders for metering material;
- o Conditioning equipment;
- o Conveying equipment; and
- Flow monitoring and injection equipment.
- Per the information received from Riley, the existing Unit 4 Oxidation Blowers will be reused for the new Unit 3 WFGD. We have included the cost to remove the existing pipe, and then re-pipe the oxidation air over to the new WFGD. It is assumed that the blowers, building, electrical, and controls, will be let untouched therefore not requiring any additional costs.

Miscellaneous Work – Installation of Contractor-Furnished Equipment

Contract will include designing all necessary interfaces, receiving, unloading, inventorying, inspecting, storing, maintaining, removing from storage, protecting, handling, rigging, installing, field adjusting, aligning, commissioning, and testing of all of the following below listed Contractor-furnished equipment.

• Expansion joints – furnish and install flue gas ductwork expansion joints at all necessary locations;

- Ductwork;
- Dampers;
- Fly ash conveying and storage system;
- Compressed air system;
- Service water;
- Potable water;
- Fire protection system;
- Wastewater system;
- Lube oil system; and
- ID fans (2X50%).

AQCS Power Supply Systems

Refer to Attachment B – Preliminary One lines for an overview of the electrical system. Contractor will design, furnish, install, and commission new AC power supply systems (120v, 208v, 480v, 4160v, 13.8kV), 125 DC power supply system, and new uninterruptible power supply (UPS) system. All electrical equipment necessary will be included to provide a complete power supply system including isolated phase bus duct, non-segregated bus duct, transformers, cable bus, switchgear, motor control centers, variable frequency drives, panelboards, batteries, battery chargers, UPS systems, cable, raceway, etc. Equipment will include everything needed to tie into the existing plant system at agreed terminal points.

Protective relaying for unit aux transformers, 138kV to 13.8kV, and 13.8kV to 4,160V swithgear will be microprocessor based relays with primary differential protection and backup overcurrent protection. Breakers will be operated from DCS.

Contractor assumes the existing plant Diesel Generator is large enough to accommodate all changes/additions, a new Diesel Generator is not required

Communication

Contractor will extend the existing plant paging communications system to all new and /or replaced plant buildings and process areas as described herein. The scope of supply will include designing, furnishing, and installing all new equipment and system related components and interfacing with the existing plant page/party system. Contractor will design, furnish, and install raceway and space provisions for telephone/LAN equipment

Lighting

Contractor will design, furnish, and install permanent lighting in all new buildings and enclosures as well as outdoor areas as described herein. The lighting system will include convenience receptacles, power receptacles suitable for plant welding equipment, transformers, panelboards, cable, contactors, conduit, etc.

PJFF supplier shall supply lights and receptacles. Contractor will provide raceway, cable, power distribution panels and transformers as needed.

Grounding and Lightning Protection

Contractor will design, furnish, and install the grounding and lightning protecting system to tie into the existing plant ground grid and limit surface step potential values to the required level.

Cathodic Protections and Freeze Protection

Contractor will design, furnish and install the cathodic protection system for all underground metallic piping, underground steel tanks, and pad-mounted steel tanks and other critical above or below grade steel items for which corrosion is a significant concern.

Contractor will design, furnish, and install an electrical heat tracing system for freeze protection and process temperature maintenance for size 6-inch and smaller piping. This will include power feeder circuits, self-regulating heat trace devices, dry type distribution transformers, distribution panelboards, contactors, monitor panels, thermostats, raceway systems, and all materials required for powering and monitoring the heat tracing system.

Instrumentation and Control Work

Contractor will provide a complete and functional instrumentation and control system to satisfy the control and monitoring requirements of the Mill Creek AQCS systems.

Contractor shall not provide continuous monitoring systems as required by the specification and meeting the requirements of 40 CFR 75. This equipment was removed from the scope during negotiations. Contractor will provide CEM's building foundation, power, instrument air, umbilical cord, cables to the monitors on the monitoring platform, and installation of the CEMS shelter.

Contractor will obtain the services of the DCS original equipment manufacturer for all AQCS DCS engineering and design work such as DCS configuration and implementation. Contractor will be responsible for furnishing all control logics, control narratives, and system descriptions associated with the AQCS project.

Contractor will develop the master instrument and I/O lists to forward to the Buyer and/or DCS OEM to allow for I/O partitioning and DCS equipment sizing. The I/O list will be approved by the Buyer prior to partitioning.

Contractor will provide vibration Monitoring on all MV driven equipment and will wire vibration equipment provided by OEMs

The new Honeywell Experion PKS system will be integrated into the existing Plant Honeywell DCS. The new system shall incorporate a true distribution of controls by locating I/O equipment in the vicinity of the field equipment. Control System Architecture drawing will provide the DCS layout. DCS will be installed and commissioned per Honeywell's recommendations and best practices.

Control system Performance and sizing will incorporate a design to achieve maximum efficiency, operability, reliability, and availability.

Hardware:

- o Unit 3 Controller Subsystem & Marshaling
- o 20% spare I/O and Record Drawings

Engineering Summary:

Configuration of IO¬ Experion HTML Graphics (Static¬ & Dynamic)

- Static Shape Library
- Pop-ups / faceplates
- System Diagnostic displays

Control System Database

Logic configuration for AQCS upgrade¬

Third Party Interfaces-

For the WFGD - use of Existing Unit # 4 DCS¬ controller for Unit #3. This includes software configuration, tag name changes and connection to existing unit #3 DCS. It is assumed that no new Honeywell DCS hardware is required to convert U #4 WFGD to U#3 and there are enough spares available in case of any additions.

Factory Acceptance Test-

Site Acceptance Test

_

New Historian Tags to be added to existing – Experion PKS Historian for Historical data storage & Retrieval

Fiber – & Ethernet interface to the existing DCS

Other considerations taken;

- The PJFF has been rotated 90 degrees to facilitate better future access behind Unit 3
- We have included the additional cost for the piling and concrete foundation for the PJFF
- We have included the additional BOP electrical, piping, and controls that was not originally included
- We have utilized the schedules received from Riley for the three separate WFGD options, when looking at this additional cost please remember that the project has to be extended past our original demobilization date
- We have included the additional cost to remove the two 1280 D tower cranes at the end of the project, originally this was not required, but now because of the new location of the PJFF and new WFGD, we cannot access these tower cranes for removal, per our original plan

					Mill Creek - L	Init 3 Preil	iminary Schedule			3 11 00		
ID		Task Name	Duration	Start	Finish	r 1	Quarter 2	2015 Quarta	r 3	Quarter 4	Quarter 5	Quartar 6
	0						Quarter 2	Quarte	13			Quarter o
1		Unit 4 - Outage	40 days	Mon 9/29/14	Sun 11/23/14							
2		Unit 3 - Outage	30 days	Mon 9/21/15	Sun 11/1/15							
3		Winter Months	80 days	Fri 9/26/14	Thu 1/15/15							
4		Unit 3 New	510 days	Mon 9/29/14	Fri 9/9/16							
5		Demolition	70 days	Mon 9/29/14	Fri 1/2/15							
6		Unit 4 - WFGD Demolition Absorber (above grade)	50 days	Mon 9/29/14	Fri 12/5/14		₽.					
7		Unit 4 - WFGD Demolition Absorber Foundations	30 days	Mon 11/24/14	Fri 1/2/15							
8		Unit 4 - WFGD Demolition of hydrocclone and tank	20 days	Mon 9/29/14	Fri 10/24/14							
9		Unit 4 - WFGD Demolition oxidation air building	15 days	Mon 10/27/14	Fri 11/14/14							
10		Unit 4 - WFGD Demolition fly ash transfer tank	20 days	Mon 11/17/14	Fri 12/12/14							
11		WFGD	452 days	Thu 12/18/14	Fri 9/9/16							
12		Piling	49 days	Thu 12/18/14	Tue 2/24/15							
13		Unit 3 - Piling WFGD absorver tower Foundation	22 days	Thu 12/18/14	Fri 1/16/15							
14		Unit 3 - Piling WFGD building Foundation	15 days	Mon 1/19/15	Fri 2/6/15			Í	Ь			
15		Unit 3 - Piling WFGD underflow tank Foundation	12 days	Mon 2/9/15	Tue 2/24/15				Ĭ.			
16		Foundation	83 days	Mon 1/19/15	Wed 5/13/15							
17		Unit 3 - WFGD - Place absorber foundation	30 days	Mon 1/19/15	Fri 2/27/15				┶╟─┐			
18		Unit 3 - WFGD - Place absorver building foundation	30 days	Mon 2/16/15	Fri 3/27/15							
19		Unit 3 - WFGD - Place underflow tank foundation	23 days	Mon 3/2/15	Wed 4/1/15							
20		Unit 3 - WFGD - place area foundations	30 days	Thu 4/2/15	Wed 5/13/15							
21		Mechanical	380 days	Fri 3/27/15	Fri 9/9/16	-						
22		Unit 3 - WFGD - Release foundation for Stebbins mobilization	0 days	Fri 3/27/15	Fri 3/27/15	-				3/27		
23		Unit 3 - WFGD - Erect absorber shell (SUB)	10 mons	Mon 3/30/15	Thu 12/31/15	-					i	i
24		Unit 3 - WFGD - Install floor & linner (SUB)	2 mons	Fri 5/20/16	Thu 7/14/16	-						
25		Unit 3 - WFGD - Release exclusion zone An absorber erection	0 days	Thu 12/31/15	Thu 12/31/15	-						
26		Unit 3 - WFGD - Install mechanical & piping	9 mons	Fri 1/1/16	Thu 9/8/16	-						
27		Unit 3 - WFGD - Tie into chimney (Existing)	25 days	Wed 3/2/16	Fri 9/9/16	-						
28		Electrical	140 days	Fri 2/26/16	Thu 9/8/16							
30		Fans	171 days	Wed 2/25/15	Wed 10/21/15	-						
39		PJFF	459 days	Fri 10/3/14	Tue 7/5/16	-			•			•
59		Duct	388 days	Fri 12/12/14	Mon 6/6/16	-	~					
70		Unit 3 - Proposed New Unit 3 tie-in outage	AU dave	Eri 0/0/16	Thu 11/3/16	-		•				

 Project: Mill Creek Unit 3 WFGD option Date: Tue 9/11/12
 Task Split
 Progress Milestone
 Summary
 External Tasks
 Deadline
 Comparison

 Project: Summary
 Project Summary
 Project Summary
 Project Summary
 External Milestone
 Deadline
 Project Summary

					Mill	Creek - Unit 3 Pre	eliminary Schedu	le - Optio	n "B" - (2276 - Inte	rnals insta	alled by EP	0			_
ID	-	Task Name			Duration	Start	Finish	014		Qtr 4. 2014	1	2015 Qtr 1. 20	15	Qtr 2. 2015		
1	0	Linit 4 - Outage			40 days	Mon 9/29/14	Sun 11/23/14	A	S	0 1	N D	J	F M	A M	J	1
2		Unit 3 - Outage			30 days	Mon 9/21/15	Sun 11/1/15									
3		Winter Months			80 days	Eri 9/26/1/	Thu 1/15/15	-								
3					442 days	Mar 0/20/14	Man 4/05/40	-								
4					412 days	Won 9/29/14	WION 4/25/16	_								-
5	_	Demolition			70 days	Mon 9/29/14	Fri 1/2/15	_								
6		Unit 4 - V	WFGD Demolition Absorber (abo	ove grade)	50 days	Mon 9/29/14	Fri 12/5/14									
7		Unit 4 - \	WFGD Demolition Absorber Fou	ndations	30 days	Mon 11/24/14	Fri 1/2/15				▶					
8		Unit 4 - \	WFGD Demolition of hydrocclon	e and tank	20 days	Mon 9/29/14	Fri 10/24/14		ب د	<u>h</u>						
9		Unit 4 -	WFGD Demolition oxidation air	building	15 days	Mon 10/27/14	Fri 11/14/14									
10		Unit 4 - \	WFGD Demolition fly ash transfe	er tank	20 days	Mon 11/17/14	Fri 12/12/14	-								
11		WFGD			337 days	Thu 12/18/14	Thu 3/31/16									
12	_	Piling			49 days	Thu 12/18/14	Tue 2/24/15	-								
13	-	Uni	t 3 - Piling WFGD absorver towe	r Foundation	22 days	Thu 12/18/14	Fri 1/16/15	-								
14		Uni	t 3 - Piling WFGD building Found	dation	15 days	Mon 1/19/15	Fri 2/6/15	-								
15	-	Unit	t 3 - Piling WFGD underflow tanl	k Foundation	12 days	Mon 2/9/15	Tue 2/24/15	-								
16		Foundat	tion		83 days	Mon 1/19/15	Wed 5/13/15									
17		Unit	: 3 - WFGD - Place absorber fou	Indation	30 days	Mon 1/19/15	Fri 2/27/15	-								
18	_	Unit	: 3 - WFGD - Place absorver bui	Iding foundation	30 days	Mon 2/16/15	Fri 3/27/15	-								
19	_	Unit	: 3 - WFGD - Place underflow ta	ank foundation	23 days	Mon 3/2/15	Wed 4/1/15	-					-			
20		Unit	3 - WFGD - place area foundat	ions	30 days	Thu 4/2/15	Wed 5/13/15									
21		Mechan	ical		265 days	Fri 3/27/15	Thu 3/31/16	-								
22		Unit	3 - WFGD - Release foundation	n for Sub mobilization	0 days	Fri 3/27/15	Fri 3/27/15	-					-	3/27		
23	-	Unit	: 3 - WFGD - Erect absorber she	ell (Sub)	4.5 mons	Mon 3/30/15	Fri 7/31/15	-								
24		Unit	: 3 - WFGD - Erect turret and tra	nsition (Sub)	60 days	Mon 9/28/15	Fri 12/18/15	-								
25	_	Unit	: 3 - WFGD - Install Internals EP	С	40 days	Mon 8/3/15	Fri 9/25/15	-								
26		Unit	3 - WFGD - Release exclusion	zone - absorber erection	0 days	Fri 7/31/15	Fri 7/31/15									
27		Unit	3 - WFGD - Install remaining m	echanical & piping EPC	8 mons	Mon 8/3/15	Thu 3/10/16									
28		Unit	: 3 - WFGD - Tie into chimney (E	Existing)	15 days	Fri 3/11/16	Thu 3/31/16	-								
29		Electric	al		135 davs	Mon 9/28/15	Thu 3/31/16	-								
30		Unit	3 - WFGD - Install Electrical		135 days	Mon 9/28/15	Thu 3/31/16	-								
31		Fans			171 days	Wed 2/25/15	Wed 10/21/15	-								
40		PJFF			397 days	Fri 10/3/14	Fri 4/8/16						•			
60	-	Duct			358 days	Fri 12/12/14	Mon 4/25/16	-								
71		Unit 3 - Proposed	New Unit 3 tie-in outage		40 days	Fri 4/1/16	Thu 5/26/16	-			•					
		•														
Project	: Mill Cree	k Unit 3 WFGD optio	Task	Progress		Summ	ary			Exterr	al Tasks			Deadline	J	
Date. 1			Split	Milestone	•	Projec	t Summary			Exterr	nal Milesto	one 🔶				
								Page 1								

			Mill Creek - Unit 3 Preliminary Schedule - Option "C" - C276 "OPTION" - Internals installe by Babcock											
ID	_	Task Name	Duration	Start	Finish	2015 014 Qtr 4, 2014 Qtr 1, 2015 Qtr 2, 2015	Q							
1	0	Unit 4 - Outage	40 days	Mon 9/29/14	Sun 11/23/14	A S O N D J F M A M J								
2		Unit 3 - Outage	30 davs	Mon 9/21/15	Sun 11/1/15									
3		Winter Months	80 days	Fri 9/26/14	Thu 1/15/15									
			412 days	Mon 9/29/14	Mon 4/25/16									
		Demolitien	412 udys	Man 0/20/44	F=: 4/0/45									
5			70 days	Mon 9/29/14	Fri 1/2/15									
6		Unit 4 - WFGD Demolition Absorber (above grade)	50 days	Mon 9/29/14	Fri 12/5/14									
7		Unit 4 - WFGD Demolition Absorber Foundations	30 days	Mon 11/24/14	Fri 1/2/15									
8		Unit 4 - WFGD Demolition of hydrocclone and tank	20 days	Mon 9/29/14	Fri 10/24/14									
9		Unit 4 - WFGD Demolition oxidation air building	15 days	Mon 10/27/14	Fri 11/14/14									
10		Unit 4 - WFGD Demolition fly ash transfer tank	20 days	Mon 11/17/14	Fri 12/12/14									
11		WFGD	337 days	Thu 12/18/14	Thu 3/31/16									
12		Piling	49 days	Thu 12/18/14	Tue 2/24/15									
13		Unit 3 - Piling WFGD absorver tower Foundation	22 days	Thu 12/18/14	Fri 1/16/15									
14		Unit 3 - Piling WFGD building Foundation	15 days	Mon 1/19/15	Fri 2/6/15									
15		Unit 3 - Piling WFGD underflow tank Foundation	12 days	Mon 2/9/15	Tue 2/24/15									
16		Foundation	83 days	Mon 1/19/15	Wed 5/13/15									
17		Unit 3 - WFGD - Place absorber foundation	30 days	Mon 1/19/15	Fri 2/27/15									
18		Unit 3 - WFGD - Place absorver building foundation	30 days	Mon 2/16/15	Fri 3/27/15									
19		Unit 3 - WFGD - Place underflow tank foundation	23 days	Mon 3/2/15	Wed 4/1/15									
20		Unit 3 - WFGD - place area foundations	30 days	Thu 4/2/15	Wed 5/13/15									
21		Mechanical	265 days	Fri 3/27/15	Thu 3/31/16									
22		Unit 3 - WFGD - Release foundation for Sub mobilization	0 davs	Fri 3/27/15	Fri 3/27/15	3/27								
23		Unit 3 - WEGD - Frect absorber shell and internals(Sub)	4.5 mons	Mon 3/30/15	Fri 7/31/15									
24		Linit 3 - WEGD - Erect turret and transition (Sub)	65 days	Mon 8/3/15	Fri 10/30/15									
27			0 days	Eri 7/21/15	Eri 7/21/16									
25			0 days	FII 7/31/13	Thu 0/40/40									
26		Unit 3 - WFGD - Install remaining mechanical & piping EPC	8 mons	Mon 8/3/15	Thu 3/10/16									
27		Unit 3 - WEGD - Lie into chimney (Existing)	15 days	Fri 3/11/16	Thu 3/31/16									
28		Electrical	135 days	Mon 9/28/15	Thu 3/31/16									
29		Unit 3 - WFGD - Install Electrical	135 days	Mon 9/28/15	Thu 3/31/16									
30		Fans	171 days	Wed 2/25/15	Wed 10/21/15		-							
39		PJFF	397 days	Fri 10/3/14	Fri 4/8/16		_							
59		Duct	358 days	Fri 12/12/14	Mon 4/25/16									
70		Unit 3 - Proposed New Unit 3 tie-in outage	40 days	Fri 4/1/16	Thu 5/26/16									
Drois st	Mill Oreact	List 2 WECD option Task Progress		Summ	ary 🛡	External Tasks Deadline								
Date: Tu	ue 9/11/12	Split Milestone	•	Project	Summary	External Milestone	Ň							
			•	•	- •	Page 1								

LG&E Scheduled Outage	Fall 2016			Spring 2016	Spring 2016					
		А		В		С				
	BPI									
BPI Base	\$	43,249,807	\$	50,647,803	\$	52,548,520				
Other Site Conditions	\$	1,374,303	\$	1,178,197	\$	1,178,197				
Bpi Total Number	\$	44,624,110	\$	51,826,000	\$	53,726,717				
		ZII Internals		ZII Internals		BPI Internals				
BPI Pt-Pt Duration		12 months		9 months		7 months				
					2 m	nonths not critica				
Remove Internals from ZHI Sco	ре					(21,037)				
Assumed average rate for ZHI r	edu	iction			\$	63.60				
Resultant price to remove from	пВс	case for ZHI nui	nbe	er	\$	<mark>(1,337,867)</mark>				
ZHI Number	\$	67,556,264	\$	61,497,958	\$	60,160,091				
ZHI Fee on BPI	\$	1,380,000	\$	1,603,000	\$	1,662,000				
Total ZHI Number	\$	68,936,264	\$	63,100,958	\$	61,822,091				
TOTAL	\$	113,560,374	\$	114,926,958	\$	115,548,808				
Incremental Delta	Pre	vious Base	\$	1,366,584	\$	621,850				
increase increase										
BPI add for internals analysis					\$	1,900,717				

LG Mill Creek Unit 3 WFGD Comparison

ZACHRY

		6/25/2012		9/11/2012	6/25/2012		9/11/2012	6/25/2012		9/11/2012	6/25/2012		9/11/2012	6/25/2012		9/11/2012	6/25/2012		9/11/2012	6/25/2012		9/11/2012
Description	Quantity UM	LABOR HOURS	Delta	LABOR HOURS	LABOR AMOUNT	Delta	LABOR AMOUNT	MAT AMOUNT	Delta	MAT AMOUNT	CONST EQUIP	Delta	CONST EQUIP	SUB AMOUNT	Delta	SUB AMOUNT	SUP AMOUNT	Delta	SUP AMOUNT	TOTAL AMOUNT	Delta	TOTAL AMOUNT
WFGD Pipe	8,390 LF		26,160	26,160		\$876,802	\$876,802		\$743,203	\$743,203											\$1,620,006	\$1,620,006
WFGD Demolition	1 EA		1,050	1,050		\$31,138	\$31,138					\$4,518	\$4,518	\$321,939	(\$3,390)	\$318,549				\$321,939	\$32,266	\$354,205
WFGD Site Improvments	600 SY		65	65		\$1,925	\$1,925		\$3,469	\$3,469		\$2,710	\$2,710		\$9,613	\$9,613					\$17,717	\$17,717
WFGD U/G Utility Excavation/Backfill	2,000 CY		550	550		\$16,180	\$16,180		\$1,000	\$1,000		\$11,390	\$11,390		\$13,571	\$13,571		\$250	\$250		\$42,391	\$42,391
WFGD Structural Excavation & Backfill	6,215 CY	2,416	(269)	2,147	\$79,013	(\$9,500)	\$69,514	\$13,572	(\$3,367)	\$10,205	\$13	\$30,458	\$30,471	\$33,164	(\$5,341)	\$27,823				\$125,762	\$12,249	\$138,012
WFGD Piling - Load Bearing	454 EA	1,786	(559)	1,227	\$56,351	(\$17,588)	\$38,763							\$2,959,248	(\$1,942,357)	\$1,016,891				\$3,015,599	(\$1,959,945)	\$1,055,654
WFGD Structural Concrete	3,960 CY	25,398	(2,616)	22,781	\$802,094	(\$81,695)	\$720,399	\$796,533	(\$86,001)	\$710,532				\$38,462	(\$4,292)	\$34,170	\$49,650	(\$10,248)	\$39,402	\$1,686,738	(\$182,236)	\$1,504,503
WFGD Structural Steel - UNIT 3 (W/YE	697 TN	24,772	6,759	31,531	\$866,397	\$236,435	\$1,102,832	\$2,934,202	\$716,492	\$3,650,695				. ,			\$76,331	(\$5,523)	\$70,808	\$3,876,931	\$947,404	\$4,824,335
WFGD Buildings	1 SF													\$3,022,807	(\$466,248)	\$2,556,559				\$3,022,807	(\$466,248)	\$2,556,559
WFGD U4 Fire Protection & Detection	1 PC													\$279,028	\$134,618	\$413,646				\$279,028	\$134,618	\$413,646
WFGD Mechanical Equipment Unit # 3	808 TN	91,566	(12,838)	78,728	\$3,106,923	(\$434,779)	\$2,672,143	\$3,977,235	\$44,267,016	\$48,244,251				\$904,706	\$446,944	\$1,351,650	\$26,250		\$26,250	\$8,015,114	\$44,279,180	\$52,294,294
WFGD Electrical	1 EA		36,163	36,163		\$1,220,156	\$1,220,156		\$1,388,335	\$1,388,335					\$239,700	\$239,700		\$6,521	\$6,521		\$2,854,711	\$2,854,711
WFGD Instrumentation	165 EA	2,927	673	3,600	\$108,040	\$23,702	\$131,742	\$1,373,862	(\$803,517)	\$570,345										\$1,481,902	(\$779,816)	\$702,087
WFGD Other Piping Insulation U3	1 LS													\$211,050	\$250,400	\$461,450				\$211,050	\$250,400	\$461,450
WFGD 3 Field Finish Painting	16,774 SF		4,253	4,253		\$136,318	\$136,318		\$12,513	\$12,513											\$148,831	\$148,831
WFGD Special Coatings	9,648 SF														\$400,142	\$400,142					\$400,142	\$400,142
12 - PJFF U/G Utility Excavation/Backfi	1,175 LF		41	41		\$1,237	\$1,237					\$748	\$748								\$1,985	\$1,985
13 - PJFF Structural Excavation & Back	3,600 CY		1,482	1,482		\$48,640	\$48,640		\$10,205	\$10,205		\$21,282	\$21,282		\$19,982	\$19,982					\$100,109	\$100,109
18 - PJFF Structural Concrete	1,371 CY		8,704	8,704		\$276,673	\$276,673		\$258,784	\$258,784					\$12,682	\$12,682		\$25,200	\$25,200		\$573,339	\$573,339
18 - PJFF Piling - Load Bearing	66 EA														\$1,187,643	\$1,187,643					\$1,187,643	\$1,187,643
20 - PJFF Structural Steel	490 TN		8,862	8,862		\$299,678	\$299,678		\$1,193,707	\$1,193,707											\$1,493,384	\$1,493,384
23 - Architectural Demo	1 EA														(\$239,604)	(\$239,604)					(\$239,604)	(\$239,604)
26 - PJFF-Mechanical	1 EA		(4,819)	(4,819)		(\$157,765)	(\$157,765)		(\$387,581)	(\$387,581)											(\$545,346)	(\$545,346)
42 - PJFF Electrical	1 EA		31,782	31,782		\$1,065,779	\$1,065,779		\$814,281	\$814,281					\$28,800	\$28,800					\$1,908,860	\$1,908,860
52 - PJFF Insulation U3	(17,000) SF									*					(\$267,750)	(\$267,750)					(\$267,750)	(\$267,750)
54 - PJFF Field Finish Painting	11,750 SF		2,441	2,441		\$78,233	\$78,233		\$7,619	\$7,619											\$85,852	\$85,852
50 - Instrumentation	1 LS		3,640	3,640		\$119,912	\$119,912		\$65,975	\$65,975											\$185,887	\$185,887
12 - Other U/G Utility Excavation/Backfi	485 LF		16	16		\$495	\$495		***	<u> </u>		\$299	\$299		AT 000	AT 000					\$794	\$794
42 - Other Electrical	1 EA	500	6,888	6,888	* 00.050	\$222,838	\$222,838		\$697,265	\$697,265					\$7,200	\$7,200				\$00.050	\$927,303	\$927,303
Craft Start Up Assistance	100 PC	500		500	\$22,252	\$23	\$22,275	* •••••	<u> </u>	^	.	A- <i>i i a a</i>	A- 1 1 1 0	A = ==0 +0 +	(* (= = 0.0.0)	A- - - - - - - - - -	* / = 0 000	<u> </u>	* + • • • • • •	\$22,252	\$23	\$22,275
Sub Total Direct Cost		149,364	118,427	267,791	\$5,041,071	\$3,954,836	\$8,995,906	\$9,095,404	\$48,899,396	\$57,994,800	\$13	\$71,406	\$71,419	\$7,770,404	(\$177,688)	\$7,592,716	\$152,230	\$16,200	\$168,430	\$22,059,122	\$52,764,150	\$74,823,272
Construction Equipment Owned & 3rd	1 S		1 628	1 628		\$51 402	\$51 402				\$2 988 816	\$3 366 216	\$6 355 032					\$270 665	\$270 665	\$2,988,816	\$3 688 283	\$6 677 099
Direct Labor Unallocated Supplies	115		.,020	.,020		<i>\\</i> 01,102	¢01,102				<i>_</i> ,000,010	\$0,000,210	\$0,000,002				\$205 247	\$220,633	\$425,880	\$205 247	\$220,633	\$425,880
Scaffolding Supplies	115																\$45,750	\$101 250	\$147,000	\$45,750	\$101 250	\$147,000
Small Tools	1 LS											\$73,439	\$73,439				\$900.608	(\$640,608)	\$260.000	\$900,608	(\$567,170)	\$333,439
Craft Per Diem	1 LS				\$972.600	\$646.800	\$1.619.400					* -/	,				\$972.600	\$646.800	\$1.619.400	\$1,945,200	\$1,293,600	\$3.238.800
Construction Staff & Expenses	1 LS	20,510	108,976	129,486	\$694,609	\$3,776,027	\$4,470,636										\$913,470	\$1,237,219	\$2,150,689	\$1,608,079	\$5,013,246	\$6,621,325
Sales Tax	1 EA		,	,		. , ,											\$94,533	\$79,467	\$174,000	\$94,533	\$79,467	\$174,000
Indirect Sundries	1 LS																	\$34,535	\$34,535		\$34,535	\$34,535
Home Office Support	1 LS		3,513	3,513		\$108,847	\$108,847											\$170,166	\$170,166		\$279,013	\$279,013
Engineering Liason & Expenses	1 LS		2,080	2,080		\$174,510	\$174,510											\$48,500	\$48,500		\$223,010	\$223,010
Engineering	1 LS		•											\$2,000,000	\$3,740,866	\$5,740,866				\$2,000,000	\$3,740,866	\$5,740,866
Enterprise Start Up & Commissioning	1 LS													\$1,512,100	(\$990,512)	\$521,588		\$230,457	\$230,457	\$1,512,100	(\$760,055)	\$752,045
Builders Risk	1 EA																	\$300,000	\$300,000		\$300,000	\$300,000
JV 6000 Joint Venture Indirects	1 LS		1,442	1,442		\$243,031	\$243,031										\$38,578	\$894,202	\$932,780	\$38,578	\$1,137,233	\$1,175,811
Escalation	1 LS					\$30,000	\$30,000					\$87,000	\$87,000				\$535,000	\$3,826,280	\$4,361,280	\$535,000	\$3,943,280	\$4,478,280
General & Administrative	1 LS																\$2,644,000	\$2,085,000	\$4,729,000	\$2,644,000	\$2,085,000	\$4,729,000
Fee	1 LS																\$1,190,000	\$2,217,000	\$3,407,000	\$1,190,000	\$2,217,000	\$3,407,000
Sub Total Indirect Cost		20,510	117,639	138,149	\$1,667,209	\$5,030,618	\$6,697,827				\$2,988,816	\$3,526,655	\$6,515,471	\$3,512,100	\$2,750,354	\$6,262,454	\$7,539,786	\$11,721,565	\$19,261,351	\$15,707,911	\$23,029,192	\$38,737,103
Total Project		169,874	236,066	405,939	\$6,708,280	\$8,985,454	\$15,693,733	\$9,095,404	\$48,899,396	\$57,994,800	\$2,988,829	\$3,598,061	\$6,586,889	\$11,282,504	\$2,572,667	\$13,855,171	\$7,692,016	\$11,737,764	\$19,429,781	\$37,767,033	\$75,793,342	\$113,560,374

Zachry Industrial Incorporated Estimate Detail Option "A" Stebbins Tower Estimate: PFAQ12042 A Zachry Industrial Inc. Custom Report

Code	Description	Quantity	UM	LABOR WORKHOURS	LABOR AMOUNT	MATERIAL AMOUNT	EQUIPMENT AMOUNT	SUBCONTRT AMOUNT	SUPPLIES AMOUNT	TOTAL AMOUNT
2	New Unit 3 WFGD									
2.1	WFGD Pipe	8.390	EA	26.160	\$876.802	\$743.203				\$1.620.006
2.2	WFGD Demolition	1	EA	1.050	\$31,138	+ -,	\$4.518	\$318.549		\$354.205
2.3	WFGD Site Improvments	600	SY	65	\$1,925	\$3.469	\$2,710	\$9.613		\$17,717
2.4	WFGD U/G Utility Excavation/Backfill	2.000	CY	550	\$16,180	\$1.000	\$11,390	\$13.571	\$250	\$42,391
2.5	WFGD Structural Excavation & Backfill	5,000	CY	2,147	\$69,514	\$10,205	\$30,471	\$27,823	•	\$138,012
2.6	WFGD Piling - Load Bearing	281	ĒΑ	1,227	\$38,763	+ -,	+ ,	\$1,016,891		\$1,055,654
2.7	WFGD Structural Concrete	3,694	CY	22,781	\$720,399	\$710,532		\$34,170	\$39,402	\$1,504,503
2.8	WFGD Structural Steel - UNIT 3 (W/YE	1.426	ΤN	31,531	\$1,102,832	\$3,650,695		. ,	\$70.808	\$4.824.335
2.9	WFGD Buildings	, 1	SF	-)	+) -)	<i> </i>		\$2,556,559	+ -,	\$2,556,559
2.10	WFGD U3 Fire Protection & Detection	1	PC					\$413.646		\$413.646
2.11	WFGD Mechanical Equipment Unit # 3	321	ΤN	78,728	\$2,672,143	\$48,244,251		\$1,351,650	\$26,250	\$52,294,294
2.12	WFGD Electrical	1	EA	36,163	\$1,220,156	\$1,388,335		\$239,700	\$6,521	\$2,854,711
2.13	WFGD Instrumentation	165	EA	3,600	\$131,742	\$570,345		. ,		\$702,087
2.14	Other Piping Insulation U3	23,499	SF	,	. ,	. ,		\$461,450		\$461,450
2.15	WFGD 3 Field Finish Painting	21,093	SF	4,253	\$136,318	\$12,513				\$148,831
2.16	WFGD Special Coatings	9,648	SF	,	. ,	. ,		\$400,142		\$400,142
3	Unit 3 PJFF Modifications							. ,		. ,
3.1	12 - PJFF U/G Utility Excavation/Backfi	1,175	LF	41	\$1,237		\$748			\$1,985
3.2	13 - PJFF Structural Excavation & Back	3,600	CY	1,482	\$48,640	\$10,205	\$21,282	\$19,982		\$100,109
3.3	18 - PJFF Structural Concrete	1,371	CY	8,704	\$276,673	\$258,784		\$12,682	\$25,200	\$573,339
3.4	18 - PJFF Piling - Load Bearing	66	EA					\$1,187,643		\$1,187,643
3.5	20 - PJFF Structural Steel	490	ΤN	8,862	\$299,678	\$1,193,707				\$1,493,384
3.6	23 - Architectural Demo	1	ΕA					(\$239,604)		(\$239,604)
3.7	26 - PJFF-Mechanical	1	ΕA	(4,819)	(\$157,765)	(\$387,581)				(\$545,346)
3.8	42 - PJFF Electrical	1	ΕA	31,782	\$1,065,779	\$814,281		\$28,800		\$1,908,860
3.9	52 - PJFF Insulation U3	(17,000)	SF					(\$267,750)		(\$267,750)
3.10	54 - PJFF Field Finish Painting	11,750	SF	2,441	\$78,233	\$7,619				\$85,852
3.11	50 - Instrumentation	1	EA	3,640	\$119,912	\$65,975				\$185,887
4	Other Common Modifications									
4.1	12 - Other U/G Utility Excavation/Backfi	485	LF	16	\$495		\$299			\$794
4.2	42 - Other Electrical	1	EA	6,888	\$222,838	\$697,265		\$7,200		\$927,303
5	Remainder of Construction									
5.1	Craft Start Up Assistance	100	PC	500	\$22,275					\$22,275
6.1	Craft Inefficiency - Schedule Related	1	LS							
7.1	Craft Inefficiency - Special Conditions	1	LS							
8.1	Construction Equipment Owned & 3rd F	100	LS	1,628	\$51,402		\$6,354,523		\$270,665	\$6,676,590
9.1	Direct Labor Unallocated Supplies	1	LS						\$425,880	\$425,880
10.1	Scaffolding Supplies	1	LS						\$147,000	\$147,000
11.1	Small Tools	1	LS				\$73,439		\$260,000	\$333,439
12.1	Craft Per Diem	1	LS						\$1,619,400	\$1,619,400
17.1	Pre Construction Costs	1	LS							
18.1	Mobilization Cost	1	LS	1,016	\$32,931				\$252,567	\$285,498
18.2	Demobilization Cost	1	LS	100	\$3,289				\$573	\$3,862

Zachry Industrial Incorporated Estimate Detail Option "A" Stebbins Tower Estimate: PFAQ12042 A Zachry Industrial Inc. Custom Report

				LABOR	LABOR	MATERIAL	EQUIPMENT	SUBCONTRT	SUPPLIES	TOTAL
Code	Description	Quantity	UM	WORKHOURS	AMOUNT	AMOUNT	AMOUNT	AMOUNT	AMOUNT	AMOUNT
20.1	Construction Staff & Expenses	1	LS	94,875	\$4,433,744				\$1,645,050	\$6,078,794
22.1	Support Labor & Indirect Supplies	1	LS	33,495	\$1,000,672		\$10,566		\$1,252,499	\$2,263,737
23.1	Sales Tax	1	Each						\$174,000	\$174,000
24.1	Indirect Sundries	1	LS						\$34,535	\$34,535
25.1	Home Office Support	1	LS	3,513	\$108,847				\$170,166	\$279,013
26.1	Engineering Liason & Expenses	1	LS	2,080	\$174,510				\$48,500	\$223,010
27.1	Cost Based Adjustments	1	LS							
28.1	Engineering	1	LS					\$5,740,866		\$5,740,866
29.1	Enterprise Start Up & Commissioning	1	LS					\$130,930	\$230,457	\$361,387
31.1	Builders Risk	1	EA						\$300,000	\$300,000
32.1	JV 6000 Joint Venture Indirects	1	LS	2,253	\$243,031				\$932,780	\$1,175,811
33.1	Escalation	1	LS		\$30,000		\$87,000		\$4,361,280	\$4,478,280
34.1	Contingency	1	LS							
35.1	General & Administrative	1	LS						\$4,729,000	\$4,729,000
36.1	Fee	1	LS						\$3,407,000	\$3,407,000
	Extended Totals by Category			406,750	\$15,074,333	\$57,994,800	\$6,596,947	\$13,464,513	\$20,429,781	\$113,560,374

Zachry Industrial Incorporated Estimate Details Option "B" Alloy Tower Estimate: PFAQ12042 B Zachry Industrial Inc. Custom Report

Code Description Quantity UM WORKHOURS AMOUNT AMO
2 New Unit 3 WFGD 2.1 WFGD Pipe 8,390 EA 26,160 \$876,802 \$743,203 \$1,620,0 2.2 WFGD Demolition 1 EA 1,050 \$31,138 \$4,518 \$318,549 \$354,2 2.3 WFGD Site Improvments 600 SY 65 \$1,925 \$3,469 \$2,710 \$9,613 \$17,7 2.4 WFGD U/G Utility Excavation/Backfill 2,000 CY 550 \$16,180 \$1,000 \$11,390 \$13,571 \$250 \$42,30
2.1 WFGD Pipe 8,390 EA 26,160 \$876,802 \$743,203 \$1,620,(2.2 WFGD Demolition 1 EA 1,050 \$31,138 \$4,518 \$318,549 \$354,2 2.3 WFGD Site Improvments 600 SY 65 \$1,925 \$3,469 \$2,710 \$9,613 \$17,7 2.4 WFGD U/G Utility Excavation/Backfill 2,000 CY 550 \$16,180 \$1,000 \$11,390 \$13,571 \$250 \$423
2.2 WFGD Demolition 1 EA 1,050 \$31,138 \$4,518 \$318,549 \$354,2 2.3 WFGD Site Improvments 600 SY 65 \$1,925 \$3,469 \$2,710 \$9,613 \$17,7 2.4 WFGD U/G Utility Excavation/Backfill 2,000 CY 550 \$16,180 \$1,000 \$11,390 \$13,571 \$250 \$42,3 5.5 WFGD Demolition 8 Destrict 5 000 OV 0.447 \$20,514 \$10,005 \$12,020 \$42,3
2.3 WFGD Site Improvments 600 SY 65 \$1,925 \$3,469 \$2,710 \$9,613 \$17,7 2.4 WFGD U/G Utility Excavation/Backfill 2,000 CY 550 \$16,180 \$1,000 \$11,390 \$13,571 \$250 \$42,3 0.5 WFGD Structured Excavation/Backfill 5.000 \$14 \$100 \$13,571 \$250 \$42,3
2.4 WFGD U/G Utility Excavation/Backfill 2,000 CY 550 \$16,180 \$1,000 \$11,390 \$13,571 \$250 \$42,3
$0 \in M \in OD[OL] = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $
2.5 WFGD Structural Excavation & Backfill 5,000 CY 2,147 \$69,514 \$10,205 \$30,471 \$27,823 \$138,0
2.6 WFGD Piling - Load Bearing 281 EA 1,227 \$38,763 \$1,016,891 \$1,055,63
2.7 W FGD Structural Concrete 3,694 CY 22,781 \$720,399 \$710,532 \$34,170 \$39,402 \$1,504,5
2.8 WFGD Structural Steel - UNIT 3 (W/YE 1,426 IN 31,531 \$1,102,832 \$3,650,695 \$70,808 \$4,824,3
2.9 WFGD Buildings 1 SF \$2,556,559 \$2,556,5
2.10 WFGD U3 Fire Protection & Detection1 PC\$413,646\$413,646
2.11 WFGD Mechanical Equipment Unit # 3 321 TN 70,187 \$2,378,595 \$55,446,141 \$1,351,650 \$26,250 \$59,202,6
2.12 WFGD Electrical 1 EA 36,163 \$1,220,156 \$1,388,335 \$239,700 \$6,521 \$2,854,7
2.13 WFGD Instrumentation 165 EA 3,600 \$131,742 \$570,345 \$702,0
2.14 Other Piping Insulation U3 23,499 SF \$461,450 \$461,450
2.15 WFGD 3 Field Finish Painting 21,093 SF 4,253 \$136,318 \$12,513 \$148,8
2.16 WFGD Special Coatings 9,648 SF \$400,142 \$400,1
3 Unit 3 PJFF Modifications
3.1 12 - PJFF U/G Utility Excavation/Backfi 1,175 LF 41 \$1,237 \$748 \$1,5
3.2 13 - PJFF Structural Excavation & Back 3,600 CY 1,482 \$48,640 \$10,205 \$21,282 \$19,982 \$100,1
3.3 18 - PJFF Structural Concrete 1,371 CY 8,704 \$276,673 \$258,784 \$12,682 \$25,200 \$573,5
3.4 18 - PJFF Piling - Load Bearing 66 EA \$1,187,643 \$1,187,643
3.5 20 - PJFF Structural Steel 490 TN 8,862 \$299,678 \$1,193,707 \$1,493,3
3.6 23 - Architectural Demo 1 EA (\$239,604) (\$239,604)
3.7 26 - PJFF-Mechanical 1 EA (4,819) (\$157,765) (\$387,581) (\$545,3
3.8 42 - PJFF Electrical 1 EA 31,782 \$1,065,779 \$814,281 \$28,800 \$1,908,6
3.9 52 - PJFF Insulation U3 (17,000) SF (\$267,750) (\$267,750)
3.10 54 - PJFF Field Finish Painting 11,750 SF 2,441 \$78,233 \$7,619 \$85,6
3.11 50 - Instrumentation 1 EA 3,640 \$119,912 \$65,975 \$185,8
4 Other Common Modifications
4.1 12 - Other U/G Utility Excavation/Backfi 485 LF 16 \$495 \$299 \$7
4.2 42 - Other Electrical 1 EA 6,888 \$222,838 \$697,265 \$7,200 \$927,3
5 Remainder of Construction
5.1 Craft Start Up Assistance 100 PC 500 \$22,275 \$22,275
6.1 Craft Inefficiency - Schedule Related 1 LS
7.1 Craft Inefficiency - Special Conditions 1 LS
8.1 Construction Equipment Owned & 3rd F 100 LS 1,138 \$35,838 \$4,736,337 \$200,527 \$4,972,7
9.1 Direct Labor Unallocated Supplies 1 LS \$404,355 \$404,355
10.1 Scaffolding Supplies 1 LS \$136,500 \$136,5
11.1 Small Tools 1 LS \$43,987 \$250,000 \$293,9
12.1 Craft Per Diem 1 LS \$1,567,700 \$1,567,70
17.1 Pre Construction Costs 1 LS
18.1 Mobilization Cost 1 LS 1,016 \$32,931 \$236,967 \$269,8
18.2 Demobilization Cost 1 LS 100 \$3,289 \$573 \$3,6

Zachry Industrial Incorporated Estimate Details Option "B" Alloy Tower Estimate: PFAQ12042 B Zachry Industrial Inc. Custom Report

		_		LABOR	LABOR	MATERIAL	EQUIPMENT	SUBCONTRT	SUPPLIES	TOTAL
Code	Description	Quantity	UM	WORKHOURS	AMOUNT	AMOUNT	AMOUNT	AMOUNT	AMOUNT	AMOUNT
20.1	Construction Staff & Expenses	1	LS	59,143	\$2,740,101				\$1,047,350	\$3,787,451
22.1	Support Labor & Indirect Supplies	1	LS	34,083	\$1,075,726		\$6,126		\$1,470,247	\$2,552,100
23.1	Sales Tax	1	Each						\$178,980	\$178,980
24.1	Indirect Sundries	1	LS						\$23,592	\$23,592
25.1	Home Office Support	1	LS	2,343	\$76,438				\$167,826	\$244,264
26.1	Engineering Liason & Expenses	1	LS	1,040	\$87,255				\$24,300	\$111,555
27.1	Cost Based Adjustments	1	LS							
28.1	Engineering	1	LS					\$5,380,866		\$5,380,866
29.1	Enterprise Start Up & Commissioning	1	LS					\$130,930	\$230,457	\$361,387
31.1	Builders Risk	1	EA						\$300,000	\$300,000
32.1	JV 6000 Joint Venture Indirects	1	LS	1,387	\$149,616				\$812,480	\$962,096
33.1	Escalation	1	LS		\$15,000		\$59,000		\$3,817,050	\$3,891,050
34.1	Contingency	1	LS							
35.1	General & Administrative	1	LS						\$4,305,000	\$4,305,000
36.1	Fee	1	LS						\$3,448,000	\$3,448,000
	Extended Totals by Category			359,499	\$12,918,552	\$65,196,690	\$4,916,870	\$13,104,513	\$18,790,334	\$114,926,958

Zachry Industrial Incorporated Estimate Details Option "C" Alloy Tower Estimate: PFAQ12042 C Zachry Industrial Inc. Custom Report

				LABOR	LABOR	MATERIAL	EQUIPMENT	SUBCONTRT	SUPPLIES	TOTAL
Code	Description	Quantity	UM	WORKHOURS	AMOUNT	AMOUNT	AMOUNT	AMOUNT	AMOUNT	AMOUNT
2	New Unit 3 WFGD									
2.1	WFGD Pipe	8,390	ΕA	26,160	\$876,802	\$743,203				\$1,620,006
2.2	WFGD Demolition	1	ΕA	1,050	\$31,138		\$4,518	\$318,549		\$354,205
2.3	WFGD Site Improvments	600	SY	65	\$1,925	\$3,469	\$2,710	\$9,613		\$17,717
2.4	WFGD U/G Utility Excavation/Backfill	2,000	CY	550	\$16,180	\$1,000	\$11,390	\$13,571	\$250	\$42,391
2.5	WFGD Structural Excavation & Backfill	5,000	CY	2,147	\$69,514	\$10,205	\$30,471	\$27,823		\$138,012
2.6	WFGD Piling - Load Bearing	281	ΕA	1,227	\$38,763			\$1,016,891		\$1,055,654
2.7	WFGD Structural Concrete	3,694	CY	22,781	\$720,399	\$710,532		\$34,170	\$39,402	\$1,504,503
2.8	WFGD Structural Steel - UNIT 3 (W/YE	1,426	ΤN	31,531	\$1,102,832	\$3,650,695			\$70,808	\$4,824,335
2.9	WFGD Buildings	1	SF					\$2,556,559		\$2,556,559
2.10	WFGD U3 Fire Protection & Detection	1	PC					\$413,646		\$413,646
2.11	WFGD Mechanical Equipment Unit # 3	321	ΤN	49,150	\$1,655,606	\$57,346,858		\$1,351,650	\$26,250	\$60,380,364
2.12	WFGD Electrical	1	ΕA	36,163	\$1,220,156	\$1,388,335		\$239,700	\$6,521	\$2,854,711
2.13	WFGD Instrumentation	165	ΕA	3,600	\$131,742	\$570,345				\$702,087
2.14	Other Piping Insulation U3	23,499	SF					\$461,450		\$461,450
2.15	WFGD 3 Field Finish Painting	21,093	SF	4,253	\$136,318	\$12,513				\$148,831
2.16	WFGD Special Coatings	9,648	SF					\$400,142		\$400,142
3	Unit 3 PJFF Modifications									
3.1	12 - PJFF U/G Utility Excavation/Backfi	1,175	LF	41	\$1,237		\$748			\$1,985
3.2	13 - PJFF Structural Excavation & Back	3,600	CY	1,482	\$48,640	\$10,205	\$21,282	\$19,982		\$100,109
3.3	18 - PJFF Structural Concrete	1,371	CY	8,704	\$276,673	\$258,784		\$12,682	\$25,200	\$573,339
3.4	18 - PJFF Piling - Load Bearing	66	ΕA					\$1,187,643		\$1,187,643
3.5	20 - PJFF Structural Steel	490	ΤN	8,862	\$299,678	\$1,193,707				\$1,493,384
3.6	23 - Architectural Demo	1	ΕA					(\$239,604)		(\$239,604)
3.7	26 - PJFF-Mechanical	1	ΕA	(4,819)	(\$157,765)	(\$387,581)				(\$545,346)
3.8	42 - PJFF Electrical	1	ΕA	31,782	\$1,065,779	\$814,281		\$28,800		\$1,908,860
3.9	52 - PJFF Insulation U3	(17,000)	SF					(\$267,750)		(\$267,750)
3.10	54 - PJFF Field Finish Painting	11,750	SF	2,441	\$78,233	\$7,619				\$85,852
3.11	50 - Instrumentation	1	ΕA	3,640	\$119,912	\$65,975				\$185,887
4	Other Common Modifications									
4.1	12 - Other U/G Utility Excavation/Backfi	485	LF	16	\$495		\$299			\$794
4.2	42 - Other Electrical	1	ΕA	6,888	\$222,838	\$697,265		\$7,200		\$927,303
5	Remainder of Construction									
5.1	Craft Start Up Assistance	100	PC	500	\$22,275					\$22,275
6.1	Craft Inefficiency - Schedule Related	1	LS							
7.1	Craft Inefficiency - Special Conditions	1	LS							
8.1	Construction Equipment Owned & 3rd F	100	LS	1,138	\$35,838		\$4,736,337		\$200,527	\$4,972,703
9.1	Direct Labor Unallocated Supplies	1	LS						\$351,330	\$351,330
10.1	Scaffolding Supplies	1	LS						\$126,000	\$126,000
11.1	Small Tools	1	LS				\$43,987		\$230,000	\$273,987
12.1	Craft Per Diem	1	LS						\$1,440,600	\$1,440,600
17.1	Pre Construction Costs	1	LS							
18.1	Mobilization Cost	1	LS	1,016	\$32,931				\$235,267	\$268,198
18.2	Demobilization Cost	1	LS	100	\$3,289				\$573	\$3,862

Zachry Industrial Incorporated Estimate Details Option "C" Alloy Tower Estimate: PFAQ12042 C Zachry Industrial Inc. Custom Report

				LABOR	LABOR	MATERIAL	EQUIPMENT	SUBCONTRT	SUPPLIES	TOTAL
Code	Description	Quantity	UM	WORKHOURS	AMOUNT	AMOUNT	AMOUNT	AMOUNT	AMOUNT	AMOUNT
20.1	Construction Staff & Expenses	1	LS	59,143	\$2,740,101				\$1,047,350	\$3,787,451
22.1	Support Labor & Indirect Supplies	1	LS	32,157	\$1,011,071		\$6,126		\$1,384,271	\$2,401,469
23.1	Sales Tax	1	Each						\$170,100	\$170,100
24.1	Indirect Sundries	1	LS						\$23,180	\$23,180
25.1	Home Office Support	1	LS	2,343	\$76,438				\$167,826	\$244,264
26.1	Engineering Liason & Expenses	1	LS	1,040	\$87,255				\$24,300	\$111,555
27.1	Cost Based Adjustments	1	LS							
28.1	Engineering	1	LS					\$5,380,866		\$5,380,866
29.1	Enterprise Start Up & Commissioning	1	LS					\$130,930	\$230,457	\$361,387
31.1	Builders Risk	1	EA						\$300,000	\$300,000
32.1	JV 6000 Joint Venture Indirects	1	LS	1,387	\$149,616				\$812,480	\$962,096
33.1	Escalation	1	LS		\$14,000		\$59,000		\$3,709,420	\$3,782,420
34.1	Contingency	1	LS							
35.1	General & Administrative	1	LS						\$4,211,000	\$4,211,000
36.1	Fee	1	LS						\$3,467,000	\$3,467,000
	Extended Totals by Category			336,536	\$12,129,908	\$67,097,407	\$4,916,870	\$13,104,513	\$18,300,110	\$115,548,808

Kehm, Charles

From:	doleary@babcockpower.com
Sent:	Tuesday, September 11, 2012 12:49 PM
То:	Wheat, T.W.
Cc:	Brumage, Mike; Gappa, Rob (Contract); Gipson, John; Hecker, Thomas; Kehm, Charles;
	Pryor, Jennifer; Schmidt, Adam; Traphagan, Doug
Subject:	RE: LG&E MC AQCS / FW: Mill Creek Unit 3 Budget Price (Riley)

Sorry, my oversight. The Turret will be installed by BPEI's contractor in option B and C.

Dan O'Leary Project Manager Riley Power Inc. 5 Neponset Street Worcester, MA 01606

T: 508-854-3964 F: 508-852-7122

doleary@babcockpower.com http://www.babcockpower.com

 From:
 "Wheat, T.W." <wheattw@zhi.com>

 To:
 "Kehm, Charles" <kehmc@zhi.com>, "Gappa, Rob (Contract)" <GappaR@zhi.com>, "Hecker, Thomas" <heckert@zhi.com>, "Schmidt, Adam"

 <schmidta@zhi.com>, <doleary@babcockpower.com>
 Cc:

 Cc:
 "Brumage, Mike" <BrumageM@zhi.com>, "Pryor, Jennifer" <pryorj@zhi.com>, "Gipson, John" <gipsonj@zhi.com>, "Traphagan, Doug"

 09/11/2012 11:36 AM
 Subject:
 RE: LG&E MC AQCS / FW: Mill Creek Unit 3 Budget Price (Riley)

I was under the assumption that the roof and turret would be installed by BPI for option B & C, the roof and turret are not mentioned in the scope of work for option B, Dan can you clarify this for me?

Thanks, TW Wheat

This e-mail may contain confidential and privileged material for the sole use of the intended recipient. Any review, use, distribution or disclosure by others is

LG&E Air Quality Compliance Program Mill Creek Unit 3 WFGD System

Budget Estimate September 10, 2012

A) Base	Bid - Stebbins Absorber (No Internals)	
	Base Stebbins Absorber Island Scope	\$43,249,807
	Additional Site Conditions	\$1,374,303
•	Schedule – 12 months	
		Total Price\$44,624,110
B) Base	Bid - Solid C276 Absorber (No Internals)	
	Base Solid C276 Absorber Island Scope	\$50,647,803
	Additional Site Conditions	\$1,178,197
	Schedule – 9 months (Note)	
		Total Price\$51,826,000
C) Opti-	on Bid – Solid C276 Absorber (With Intern	als)
	Option Solid C276 Absorber Island Scop	\$52,548,520
	Additional Site Conditions	\$1,178,197
	Schedule – 7 months	14203 2
		Total Price\$53,726,717

Note: Zachry has added two months for the installation of internals. BPEI's Construction schedule is seven months.

LG&E Air Quality Compliance Program Mill Creek Unit 3 WFGD System

Scope Description September 10, 2012

The scope of work included in Item A, Base Bid; Stebbins Absorber with No Internals is as follows:

- Engineering and Project Labor
- Model Study
- Stebbins Absorber
- Oxidation Lances/Trusses/Turret
- Agitators
- Mist Eliminator System
- Recycle Spray Headers
- Spray Nozzles
- Recycle Pumps
- Mist Eliminator Wash System
- Structural Steel
- Piping Systems/ Valves and specialties
- Recycle External Piping
- Quench Water System
- Instruments and Controls
- Hoists and Cranes
- Hydroclone system
- Bleed Pumps

The Additional, site conditions for the Base Bid, Stebbins Absorber is as follows:

- Larger Concrete Pump Truck
- Material Reloading and Unloading Remote to the work area.
- Additional Hydraulic Yard Crane
- Crane Operator
- Additional Support & Supervision
- Additional Small tools & Consumables

The work included in Item B; Base Bid, Solid C276 Absorber with no Internals includes all Item Listed in Item A expect as follows:

- Remove Stebbins Absorber
- Replace with Solid C276 Absorber
- Field Construction of Solid C276 Absorber
- Inlet Duct Solid C686

The additional site conditions for the Base Bid, Solid C276 Absorber without Internals is as follows:

- Remote Lay down Labor
- Hydraulic Yard Crane
- Crane Operator
- Additional Support & Supervision
- Additional Small tools and Consumables
- Inefficiency due to two Construction Companies working in the same erection space.

The work included in Item C; Option Bid for the Solid C276 Absorber with the internals installed by BPEI. The work scope is the same as Item B. Plus the following Items:

- Oxidation Air Lances C276
- Oxidation Air Lance Supports C276
- Outlet Duct Seal
- Mist Eliminator and Spray Header Trusses
- Outlet Turret Solid C276
- Agitators
- Mist Eliminator & Wash System (inside vessel)
- Recycle Spray Headers
- Spray Nozzles
- Quench Piping and Nozzles

The additional site conditions are the same as Item B, Solid C276 Absorber without Internals.

LG&E Air Quality Compliance Program Mill Creek Unit 3 WFGD System

Estimating Assumptions Stebbins Absorber September 10, 2012

- 1. Oxidation Air Blowers have not been included; the plan is to reuse the existing Atlas Copco Blowers.
- 2. The underflow tank agitator will be carbon steel rubber lined.
- 3. All vendors will be the same as unit's 1/2 & 4 where possible.
- 4. All Hasleloy Studs will have two nuts, one on either end.
- 5. Escalation Risk Cap:
 - a. Freight-Stebbins has included 4% per annum through completion of the project, and will place the threshold risk cap at 5% on all truckloads. (2012 basis \$125,000)
 - b. Rebar Stebbins has allowed 4% per annum to procure late 2014, and will place the threshold risk cap at 5% on 700,000lbs of rebar. (2012 basis value \$0.45/lb)
 - c. Concrete Stebbins has allowed 4% per annum, and will place the threshold risk cap at 5% on 2500CT, (2012 basis value \$120/CY)
 - d. Resinous Materials Stebbins has allowed 4% per annum to procure late 2014, and will place the threshold risk cap at 5% (2012 basis value \$130,000).
 - e. Field Labor Stebbins has allowed 4% per annum, and will place the threshold risk cap at 5% on 42,000 manhours. (2012 basis value \$3,225,000)
- 6. BPEI is supporting Stebbins by fast tracking engineering, to support Stebbins procurement of major items starting no later than March 2013.
- BPEI will Purchase all C276 at FNTP. This will lock in the lowest possible price for the Mill Creek Project.
- 8. FRP material has been escalated at 6% per year.
- Please note that the C276 price is subject to a ceiling LME spot price for nickel of \$7.83/lb.

LG&E Air Quality Compliance Program Mill Creek Unit 3 WFGD System

Estimating Assumptions Solid C276 Absorber September 10, 2012

- 1. Oxidation Air Blowers have not been included; the plan is to reuse the existing Atlas Copco Blowers.
- 2. The underflow tank agitator will be carbon steel rubber lined.
- 3. All vendors will be the same as unit's 1/2 & 4 where possible.
- 4. All Hasteloy Studs will have two nuts, one on either end.
- 5. BPEI will purchase all C276 at FNTP.
- 6. Please note that the C276 price is subject to a ceiling LME spot price for nickel of \$7.83/lb. The unit price for C276 alloy on Units 1, 2 & 4 is \$15.24, Stebbins option. The offer from Special Metals for an Alloy Vessel is \$15.00 per pound. This offer is valid till 1/15/2013 or until Nickel exceeds \$7.83 / LB which ever come first.

Exhibit JNV-3

Update to Mill Creek 3 Retire/Retrofit Decision, October 2012

Update to Mill Creek 3 Retire/Retrofit Decision

PPL companies

Generation Planning & Analysis October 2012

Table of Contents

Summary	. 2
Updated Assumptions	. 2
Capital Costs	. 2
Operating Expenses	. 3
In-Service Dates	. 3
Updated Analysis	. 3
Conclusion	. 5
Appendix – Annual Revenue Requirements	. 6
	Summary Updated Assumptions Capital Costs Operating Expenses In-Service Dates Updated Analysis Conclusion Appendix – Annual Revenue Requirements

1.0 Summary

On December 15, 2011, the Kentucky Public Service Commission ("KPSC") approved the unanimous settlement agreement in the 2011 environmental cost recovery ("ECR") case for LG&E and KU, which included refurbished wet flue gas desulfurization ("WFGD") equipment, a baghouse, and sulfuric acid mist ("SAM") mitigation/economizer modifications for Mill Creek 3. The cost assumptions included in the ECR filing for these projects were based on an engineering study completed in March 2011. In December 2011 and July 2012, more detailed engineering studies were prepared with updated estimates for capital and operating costs. Based on these studies, a new WFGD is more economical than a refurbished WFGD for Mill Creek 3. Since building a new WFGD requires a modified Certificate for Public Convenience and Necessity ("Certificate") and KPSC approval, the Companies updated their 2011 ECR analysis to confirm that retrofitting Mill Creek 3 (versus retiring the unit) is still the most economical option and that the least-cost retrofit option includes a new WFGD.

2.0 Updated Assumptions

2.1 Capital Costs

The 2011 Air Compliance Plan was developed in anticipation of the Companies' 2011 ECR filing and includes the analysis supporting the decision to retrofit Mill Creek 3. Additional analyses related to Mill Creek 3 were presented in the proceedings to the 2011 ECR case. The capital and operating costs for these analyses were taken from a March 2011 study prepared by Black & Veatch, which included preliminary information from a February 2011 study prepared by Babcock Power Environmental, Inc. ("Babcock"). The WFGD costs in this study (\$74 million) reflected the estimated cost to refurbish the existing WFGD equipment on Mill Creek 4 and connect it to Mill Creek 3, replacing the existing WFGD on Mill Creek 3.

In December 2011, a more detailed engineering study was completed for the Mill Creek 3 projects by Babcock. Based on this study, the capital cost estimate for the Mill Creek 3 WFGD project increased to \$161 million while the capital cost estimate for the baghouse decreased from \$140 million to \$113 million. In addition, the scope of the new baghouse estimate now includes the SAM mitigation/economizer modifications that were previously included as a separate project in the 2011 ECR Plan. In total, the new capital cost estimate for the Mill Creek 3 projects is \$49 million higher than the estimate in the 2011 filing (see Table 1).

Equipment	2011 ECR Plan	2012 Update	Difference
WFGD	74	161	86
Baghouse	140	113	-27
SAM Mitigation/Economizer Modifications	10	-	-10
Total	225	274	49

Table 1 – Capital Costs with Refurbished WFGD (Nominal \$M)

Because of the increase in the Mill Creek 3 WFGD capital costs, the Companies evaluated the cost of building a new WFGD as an alternative to retrofitting the existing Mill Creek 4 WFGD. According to a September 2012 engineering study by Zachry Holdings, Inc., the capital cost for building a new WFGD at

Mill Creek 3 is estimated to be \$132 million. With a new WFGD, the total capital cost of the Mill Creek 3 environmental projects is only \$21 million higher than the estimates in the 2011 ECR filing (see Table 2).

•			
Equipment	2011 ECR Plan	2012 Update	Change
WFGD	74	132	58
Baghouse	140	113	-27
SAM Mitigation/Economizer Modifications	10	-	-10
Total	225	245	21

Table 2 – Capital Costs with New WFGD (Nominal \$M)

2.2 Operating Expenses

Since the 2011 Air Compliance Plan was developed, the estimated operating expenses for the Mill Creek 3 baghouse have decreased (see Table 3; operating expenses for other Mill Creek projects are unchanged). When the 2011 Air Compliance Plan was developed, the Companies had limited operating experience with the Trimble County 2 baghouse. The updated operating expense estimates are based on almost two years of experience operating the Trimble County 2 baghouse.

Table 3 – Baghouse	• Operating Expenses	(2011 \$)
--------------------	----------------------	-----------

Operating Expenses	2011 ECR Plan	2012 Update	Change
Variable O&M (\$/MWh)	2.76	1.45	-1.31
Fixed O&M (\$M/yr)	1.2	0.6	-0.6

2.3 In-Service Dates

The schedule for completing the ECR projects at Mill Creek 3 has also changed due to the available space to construct the new Unit 3 WFGD requires the demolition of Unit 4's current WFGD to make the available space. This results in demolition of the existing Unit 4 WFGD beginning in the fall of 2014 when the tie-in outage of Unit 4 to its new WFGD and PJFF occur. Table 4 summarizes these changes.

Equipment	2011 ECR Plan	2012 Update
WFGD	11/2014	4/2016
Baghouse	10/2015	4/2016
SAM Mitigation	4/2013	4/2016

Table 4 – Project In-Service Dates

3.0 Updated Analysis

Table 5 summarizes the net present value of revenue requirements ("NPVRR") for two generation portfolios used in the proceedings to the 2011 ECR case to evaluate the decision to retire or retrofit Mill Creek 3. The total NPVRR differences in Table 5 are taken from the 2011 Air Compliance Plan and Supplemental Analysis. In the 'Retrofit Mill Creek 3' portfolio, Mill Creek 3 is retrofitted per the schedule summarized in Table 4. In the 'Retire Mill Creek 3' portfolio, Mill Creek 3 is retired in

December 2015. In the Base and CERA fuel price scenarios, the NPVRR savings associated with retrofitting Mill Creek 3 are \$756 and \$338 million, respectively.

Fuel	NPVRR								
Price	Retrofit Mill Creek 3			Retire Mill Creek 3			Dif	ference	
Scenario	Prod Cost	Capital	Total	Prod Cost	Capital	Total	Prod Cost	Capital	Total
Base	26,152	6,634	32,786	26,848	6,693	33 <i>,</i> 542	696	60	756
CERA	24,276	6,634	30,910	24,562	6,686	31,247	286	52	338

Table 5 – NPVRR from 2011 ECR Filing: Mill Creek 3 Retire/Retrofit Decision (2011 \$M)

As discussed above, the updated capital and operating cost estimates for the Mill Creek 3 baghouse project have decreased while the capital cost estimate for the Mill Creek 3 WFGD project has increased. In the Base fuel price scenario, increasing the WFGD capital cost from \$74 to \$132 million increases NPVRR by \$43 million, while the reductions in baghouse capital and operating expenses reduce NPVRR by \$107 million. Clearly, the reductions in revenue requirements associated with the lower baghouse capital and operating expenses more than offset the increase in revenue requirements associated with the higher WFGD capital cost.

Table 6 summarizes the NPVRR of the two generating portfolios with updated cost estimates and project in-service dates. The NPVRR values in Table 6 reflect the cost of the new WFGD (\$132 million) since this alternative is less expensive than the updated cost of the refurbished WFGD (\$161 million). All other assumptions from the 2011 ECR filing are unchanged.¹ Based on the updated cost estimates (and despite the increase in the WFGD capital cost), the savings associated with retrofitting Mill Creek 3 are greater than the savings evaluated in the 2011 ECR filing.

Fuel	NPVRR								
Price	Retrofit Mill Creek 3			Retire Mill Creek 3			Dif	ference	
Scenario	Prod Cost	Capital	Total	Prod Cost	Capital	Total	Prod Cost	Capital	Total
Base	26,085	6,637	32,722	26,848	6,693	33,542	763	57	820
CERA	24,209	6,637	30,846	24,562	6,686	31,247	353	49	402

Table 6 – Updated Mill Creek 3 Retire/Retrofit Decision (2011 \$M)

A modified Certificate and KPSC approval are required to proceed with the least-cost plan to construct a new WFGD for Mill Creek 3. However, due to project lead times, KPSC approval must be received on an expedited basis to place the WFGD in-service by the April 2016 compliance deadline for the Mercury and Air Toxics Standard. If KPSC approval is not received as requested, the Companies must either (a) proceed with the original more-costly plan to refurbish the Mill Creek 4 WFGD and connect it to Mill Creek 3 or (b) wait for KPSC approval and plan to place Mill Creek 3 on inactive reserve after April 2016 until the new WFGD can be commissioned.

To identify the least-cost way forward in the event of a delayed KPSC decision, the Companies' compared the revenue requirements of the 'Refurbished WFGD' option to a 'New WFGD – Delayed In-Service Date' option. In the latter option, the in-service date for the new WFGD is delayed by 6 months, during which the Companies enter into a power purchase agreement ("PPA") for capacity and energy to

¹ Please see Appendix A in the 2011 Air Compliance Plan for a summary of these assumptions.

replace Mill Creek 3. The cost of the PPA is assumed to be 58/kW-year or 19 million (in 2016).² Based on the results in Table 7 and

Table **8**, if the Companies do not receive approval on an expedited basis, the least-cost way forward is to proceed with the plan to refurbish the Mill Creek 4 WFGD and connect it to Mill Creek 3.

Fuel		NPVRR								
Price	Retrofit Mill Creek 3			Retire Mill Creek 3			Dif	ference		
Scenario	Prod Cost	Capital	Total	Prod Cost	Capital	Total	Prod Cost	Capital	Total	
Base	26,085	6,662	32,748	26,848	6,693	33,542	763	31	794	
CERA	24,209	6,662	30,872	24,562	6,686	31,247	353	23	376	

Table 7 – NPVRR of 'Refurbished WFGD' Option (2011 \$M)

Table 8 – NPVRR	of 'New WFGD -	Delaved In-Service	Date' Option (2011 SM)
		Delayea	

Fuel	NPVRR								
Price	Retrofit Mill Creek 3			Retire Mill Creek 3			Dif	ference	
Scenario	Prod Cost	Capital	Total	Prod Cost	Capital	Total	Prod Cost	Capital	Total
Base	26,122	6,638	32,760	26,848	6,693	33,542	727	55	782
CERA	24,240	6,638	30,878	24,562	6,686	31,247	322	48	370

Annual revenue requirements for all of the options considered in this analysis are included in the Appendix.

4.0 Conclusion

Table 9 summarizes the NPVRR savings for all options considered. Based on updated capital and operating cost estimates, the NPVRR savings associated with retrofitting Mill Creek 3 are greater than the savings presented in the 2011 ECR filing. Provided that the companies receive a modified Certificate on an expedited basis, a new WFGD is more economical for Mill Creek 3 than a refurbished WFGD.

		2012 Update					
		Least-Cost Option Delay Options					
		New WFGD Refurbished		New WFGD			
Gas Price	2011 ECR Plan	4/2016	WFGD 4/2016	10/2016 with PPA			
Base Case	756	820	794	782			
2011 CERA	338	402	376	370			

Table 9 – NPVRR Savings Associated with Retrofitting Mill Creek 3 (2011 \$M)

² The cost of the PPA includes the cost of firm gas transportation and 330 MW of simple-cycle combustion turbine ("SCCT") capacity. Approximately 330 MW is needed to maintain a 16% reserve margin. The cost of SCCT capacity is based on a response to the Companies' December 2010 RFP for generating capacity and energy.

Appendix Table 1 – 2011 ECR Plan; Base Fuel Price Scenario (\$M)										
	Retrof	it Mill Cree	ek 3	Retire	e Mill Cree	k 3	Dif	Difference		
Year	Prod Costs	Capital	Total	Prod Costs	Capital	Total	Prod Costs	Capital	Total	
2011	1,142	7	1,148	1,142	7	1,148	0	0	0	
2012	1,222	48	1,270	1,222	46	1,269	0	-1	-1	
2013	1,264	129	1,393	1,262	125	1,387	-2	-4	-6	
2014	1,353	274	1,627	1,349	296	1,645	-4	23	19	
2015	1,449	427	1,876	1,442	474	1,915	-8	47	40	
2016	1,586	554	2,140	1,608	585	2,193	22	30	53	
2017	1,623	582	2,204	1,604	578	2,182	-19	-4	-22	
2018	1,682	601	2,283	1,706	563	2,269	23	-37	-14	
2019	1,765	597	2,362	1,818	556	2,374	54	-41	12	
2020	1,834	584	2,418	1,916	586	2,502	82	2	84	
2021	1,938	576	2,513	2,048	618	2,667	111	43	153	
2022	2,070	605	2,675	2,125	638	2,763	55	33	88	
2023	2,143	639	2,783	2,164	633	2,797	21	-6	14	
2024	2,148	662	2,809	2,236	616	2,852	88	-46	43	
2025	2,247	662	2,909	2,363	612	2,976	117	-50	66	
2026	2,382	651	3,033	2,535	651	3,187	153	1	154	
2027	2,389	640	3,029	2,525	694	3,220	137	54	191	
2028	2,494	634	3,128	2,595	720	3,316	102	86	188	
2029	2,543	683	3,225	2,615	725	3,340	72	42	115	
2030	2,683	735	3,419	2,730	715	3,445	47	-20	27	
2031	2,657	765	3,422	2,771	700	3,471	115	-65	49	
2032	2,715	771	3,486	2,851	699	3,551	136	-71	65	
2033	2,829	756	3,584	2,973	730	3,703	144	-25	118	
2034	2,887	743	3,630	3,052	765	3,817	165	22	187	
2035	2,987	740	3,727	3,079	788	3 <i>,</i> 867	92	48	140	
2036	3,062	735	3,797	3,157	773	3,929	95	38	132	
2037	3,116	737	3,854	3,223	752	3,975	107	15	121	
2038	3,239	668	3,907	3,357	667	4,024	118	-1	117	
2039	3,257	654	3,912	3,393	662	4,054	135	7	143	
2040	3,401	631	4,032	3,524	647	4,171	123	15	138	
NPVRR	26,152	6,634	32,786	26,848	6,693	33,542	696	60	756	

5.0 Appendix – Annual Revenue Requirements

	Retrof	it Mill Cree	ek 3	Retire Mill Creek 3			Difference		
Year	Prod Costs	Capital	Total	Prod Costs	Capital	Total	Prod Costs	Capital	Total
2011	1,142	7	1,148	1,142	7	1,148	0	0	0
2012	1,207	48	1,254	1,207	46	1,253	0	-1	-1
2013	1,251	129	1,381	1,249	125	1,374	-2	-4	-6
2014	1,290	274	1,563	1,286	296	1,582	-4	23	19
2015	1,366	427	1,793	1,359	474	1,833	-8	47	40
2016	1,493	554	2,047	1,504	585	2,089	12	30	42
2017	1,502	582	2,083	1,476	578	2,054	-26	-4	-29
2018	1,590	601	2,190	1,593	563	2,156	3	-37	-34
2019	1,602	597	2,200	1,632	556	2,188	30	-41	-12
2020	1,648	584	2,232	1,695	586	2,281	47	2	50
2021	1,752	576	2,328	1,824	618	2,442	72	43	114
2022	1,868	605	2,473	1,878	638	2,516	10	33	43
2023	1,921	639	2,560	1,901	633	2,534	-20	-6	-26
2024	1,879	662	2,541	1,908	616	2,524	29	-46	-17
2025	1,955	662	2,617	2,001	605	2,607	47	-57	-10
2026	2,051	651	2,702	2,129	602	2,731	78	-49	29
2027	2,118	640	2,758	2,191	615	2,806	73	-25	48
2028	2,159	634	2,793	2,231	663	2,894	72	29	101
2029	2,253	683	2,936	2,324	717	3,041	71	34	105
2030	2,389	735	3,125	2,388	752	3,140	-1	17	16
2031	2,408	765	3,174	2,447	750	3,197	39	-15	23
2032	2,499	771	3,269	2,549	741	3,290	50	-29	21
2033	2,620	756	3,376	2,675	734	3,409	55	-22	33
2034	2,721	743	3,464	2,787	764	3,551	66	21	87
2035	2,832	740	3,571	2,895	799	3,694	63	59	122
2036	2,951	735	3,686	2,970	810	3,780	19	74	94
2037	3,040	737	3,778	3,068	800	3,869	28	63	91
2038	3,180	668	3,848	3,207	705	3,912	27	37	64
2039	3,254	654	3,909	3,299	677	3,977	45	23	68
2040	3,412	631	4,043	3,464	648	4,112	52	17	69
NPVRR	24,276	6,634	30,910	24,562	6,686	31,247	286	52	338

Appendix Table 2 – 2011 ECR Plan; CERA Fuel Price Scenario (\$M)

	Retrof	Retrofit Mill Creek 3			Retire Mill Creek 3			Difference		
Year	Prod Costs	Capital	Total	Prod Costs	Capital	Total	Prod Costs	Capital	Total	
2011	1,142	7	1,148	1,142	7	1,148	0	0	0	
2012	1,222	47	1,269	1,222	46	1,269	0	-1	-1	
2013	1,262	123	1,385	1,262	125	1,387	0	2	2	
2014	1,349	265	1,614	1,349	296	1,645	0	32	32	
2015	1,442	420	1,862	1,442	474	1,915	0	54	54	
2016	1,578	556	2,134	1,608	585	2,193	30	29	59	
2017	1,618	585	2,203	1,604	578	2,182	-14	-7	-21	
2018	1,677	604	2,281	1,706	563	2,269	28	-41	-12	
2019	1,760	600	2,360	1,818	556	2,374	59	-45	14	
2020	1,829	587	2,415	1,916	586	2,502	87	-1	86	
2021	1,932	578	2,511	2,048	618	2,667	116	40	156	
2022	2,065	608	2,672	2,125	638	2,763	61	30	91	
2023	2,138	642	2,780	2,164	633	2,797	26	-9	17	
2024	2,142	665	2,806	2,236	616	2,852	94	-48	46	
2025	2,241	665	2,906	2,363	612	2,976	122	-53	70	
2026	2,376	653	3,029	2,535	651	3,187	159	-2	157	
2027	2,383	642	3,025	2,525	694	3,220	142	53	195	
2028	2,487	636	3,123	2,595	720	3,316	108	85	193	
2029	2,536	684	3,220	2,615	725	3,340	78	41	119	
2030	2,677	737	3,413	2,730	715	3,445	53	-21	32	
2031	2,650	767	3,417	2,771	700	3,471	121	-67	54	
2032	2,708	772	3,480	2,851	699	3,551	143	-72	71	
2033	2,822	757	3,579	2,973	730	3,703	151	-27	124	
2034	2,880	745	3,624	3,052	765	3,817	172	21	193	
2035	2,981	741	3,722	3,079	788	3,867	99	47	145	
2036	3,054	736	3,791	3,157	773	3,929	102	36	139	
2037	3,109	738	3,848	3,223	752	3,975	114	14	127	
2038	3,231	669	3,900	3,357	667	4,024	125	-2	124	
2039	3,250	656	3,906	3,393	662	4,054	143	6	149	
2040	3,393	633	4,026	3,524	647	4,171	131	13	145	
NPVRR	26,085	6,637	32,722	26,848	6,693	33,542	763	57	820	

Appendix Table 3 – New WFGD 4/2016; Base Fuel Price Scenario (\$M)

	Retrof	Retrofit Mill Creek 3			Retire Mill Creek 3			Difference		
Year	Prod Costs	Capital	Total	Prod Costs	Capital	Total	Prod Costs	Capital	Total	
2011	1,142	7	1,148	1,142	7	1,148	0	0	0	
2012	1,207	47	1,254	1,207	46	1,253	0	-1	-1	
2013	1,249	123	1,373	1,249	125	1,374	0	2	2	
2014	1,286	265	1,551	1,286	296	1,582	0	32	32	
2015	1,359	420	1,779	1,359	474	1,833	0	54	54	
2016	1,485	556	2,041	1,504	585	2,089	19	29	48	
2017	1,497	585	2,082	1,476	578	2,054	-21	-7	-28	
2018	1,585	604	2,189	1,593	563	2,156	8	-41	-32	
2019	1,598	600	2,198	1,632	556	2,188	34	-45	-10	
2020	1,643	587	2,229	1,695	586	2,281	53	-1	52	
2021	1,747	578	2,326	1,824	618	2,442	77	40	117	
2022	1,862	608	2,470	1,878	638	2,516	16	30	46	
2023	1,915	642	2,558	1,901	633	2,534	-14	-9	-23	
2024	1,873	665	2,538	1,908	616	2,524	35	-48	-13	
2025	1,949	665	2,614	2,001	605	2,607	53	-60	-7	
2026	2,045	653	2,698	2,129	602	2,731	84	-51	33	
2027	2,112	642	2,754	2,191	615	2,806	79	-27	52	
2028	2,152	636	2,788	2,231	663	2,894	79	27	106	
2029	2,247	684	2,931	2,324	717	3,041	77	33	110	
2030	2,383	737	3,119	2,388	752	3,140	6	15	21	
2031	2,402	767	3,169	2,447	750	3,197	45	-17	29	
2032	2,492	772	3,264	2,549	741	3,290	57	-31	26	
2033	2,613	757	3,371	2,675	734	3,409	61	-23	38	
2034	2,714	745	3,458	2,787	764	3,551	73	20	93	
2035	2,825	741	3,566	2,895	799	3,694	69	58	128	
2036	2,943	736	3,680	2,970	810	3,780	27	73	100	
2037	3,033	738	3,771	3,068	800	3,869	35	62	97	
2038	3,172	669	3,841	3,207	705	3,912	35	36	71	
2039	3,246	656	3,902	3,299	677	3,977	53	21	74	
2040	3,403	633	4,037	3,464	648	4,112	60	15	76	
NPVRR	24,209	6,637	30,846	24,562	6,686	31,247	353	49	402	

Appendix Table 4 – New WFGD 4/2016; CERA Fuel Price Scenario (\$M)

	Retrofit Mill Creek 3		Retire Mill Creek 3			Difference			
Year	Prod Costs	Capital	Total	Prod Costs	Capital	Total	Prod Costs	Capital	Total
2011	1,142	7	1,148	1,142	7	1,148	0	0	0
2012	1,222	47	1,269	1,222	46	1,269	0	-1	-1
2013	1,262	123	1,385	1,262	125	1,387	0	2	2
2014	1,349	265	1,614	1,349	296	1,645	0	31	31
2015	1,442	422	1,863	1,442	474	1,915	0	52	52
2016	1,578	560	2,138	1,608	585	2,193	30	25	55
2017	1,618	589	2,207	1,604	578	2,182	-14	-11	-25
2018	1,677	607	2,285	1,706	563	2,269	28	-44	-16
2019	1,760	604	2,364	1,818	556	2,374	59	-48	11
2020	1,829	590	2,418	1,916	586	2,502	87	-4	83
2021	1,932	582	2,514	2,048	618	2,667	116	37	153
2022	2,065	611	2,675	2,125	638	2,763	61	27	88
2023	2,138	645	2,783	2,164	633	2,797	26	-12	14
2024	2,142	667	2,809	2,236	616	2,852	94	-51	43
2025	2,241	668	2,908	2,363	612	2,976	122	-55	67
2026	2,376	655	3,031	2,535	651	3,187	159	-4	155
2027	2,383	644	3,027	2,525	694	3,220	142	51	193
2028	2,487	638	3,125	2,595	720	3,316	108	83	191
2029	2,536	686	3,222	2,615	725	3,340	78	39	117
2030	2,677	739	3,415	2,730	715	3,445	53	-23	30
2031	2,650	769	3,419	2,771	700	3,471	121	-69	52
2032	2,708	774	3,482	2,851	699	3,551	143	-74	69
2033	2,822	759	3,581	2,973	730	3,703	151	-28	122
2034	2,880	746	3,626	3,052	765	3,817	172	19	191
2035	2,981	742	3,723	3,079	788	3,867	99	45	144
2036	3,054	738	3,792	3,157	773	3,929	102	35	137
2037	3,109	740	3,849	3,223	752	3,975	114	12	126
2038	3,231	670	3,902	3,357	667	4,024	125	-3	122
2039	3,250	657	3,907	3,393	662	4,054	143	4	147
2040	3,393	635	4,027	3,524	647	4,171	131	12	143
NPVRR	26,085	6,662	32,748	26,848	6,693	33,542	763	31	794

Appendix Table 5 – Refurbished WFGD 4/2016; Base Fuel Price Scenario (\$M)

••	Retrofit Mill Creek 3		Retire Mill Creek 3			Difference			
Year	Prod Costs	Capital	Total	Prod Costs	Capital	Total	Prod Costs	Capital	Total
2011	1,142	7	1,148	1,142	7	1,148	0	0	0
2012	1,207	47	1,254	1,207	46	1,253	0	-1	-1
2013	1,249	123	1,373	1,249	125	1,374	0	2	2
2014	1,286	265	1,551	1,286	296	1,582	0	31	31
2015	1,359	422	1,781	1,359	474	1,833	0	52	52
2016	1,485	560	2,045	1,504	585	2,089	19	25	44
2017	1,497	589	2,086	1,476	578	2,054	-21	-11	-32
2018	1,585	607	2,192	1,593	563	2,156	8	-44	-36
2019	1,598	604	2,201	1,632	556	2,188	34	-48	-14
2020	1,643	590	2,232	1,695	586	2,281	53	-4	49
2021	1,747	582	2,329	1,824	618	2,442	77	37	114
2022	1,862	611	2,473	1,878	638	2,516	16	27	43
2023	1,915	645	2,560	1,901	633	2,534	-14	-12	-26
2024	1,873	667	2,540	1,908	616	2,524	35	-51	-16
2025	1,949	668	2,616	2,001	605	2,607	53	-62	-10
2026	2,045	655	2,700	2,129	602	2,731	84	-53	31
2027	2,112	644	2,756	2,191	615	2,806	79	-29	50
2028	2,152	638	2,790	2,231	663	2,894	79	25	104
2029	2,247	686	2,933	2,324	717	3,041	77	31	108
2030	2,383	739	3,121	2,388	752	3,140	6	14	19
2031	2,402	769	3,170	2,447	750	3,197	45	-19	27
2032	2,492	774	3,266	2,549	741	3,290	57	-32	25
2033	2,613	759	3,372	2,675	734	3,409	61	-25	36
2034	2,714	746	3,460	2,787	764	3,551	73	18	91
2035	2,825	742	3,567	2,895	799	3,694	69	57	126
2036	2,943	738	3,681	2,970	810	3,780	27	72	99
2037	3,033	740	3,773	3,068	800	3,869	35	60	96
2038	3,172	670	3,842	3,207	705	3,912	35	35	70
2039	3,246	657	3,904	3,299	677	3,977	53	20	73
2040	3,403	635	4,038	3,464	648	4,112	60	14	74
NPVRR	24,209	6,662	30,872	24,562	6,686	31,247	353	23	376

Appendix Table 6 – Refurbished WFGD 4/2016; CERA Fuel Price Scenario (\$M)

	Retrof	Retrofit Mill Creek 3			Retire Mill Creek 3			Difference		
Year	Prod Costs	Capital	Total	Prod Costs	Capital	Total	Prod Costs	Capital	Total	
2011	1,142	7	1,148	1,142	7	1,148	0	0	0	
2012	1,222	47	1,269	1,222	46	1,269	0	-1	-1	
2013	1,262	123	1,385	1,262	125	1,387	0	2	2	
2014	1,349	265	1,614	1,349	296	1,645	0	31	31	
2015	1,442	420	1,862	1,442	474	1,915	0	54	54	
2016	1,629	554	2,183	1,608	585	2,193	-20	31	10	
2017	1,618	586	2,204	1,604	578	2,182	-14	-8	-22	
2018	1,677	604	2,281	1,706	563	2,269	28	-41	-13	
2019	1,760	601	2,361	1,818	556	2,374	59	-45	14	
2020	1,829	587	2,416	1,916	586	2,502	87	-1	86	
2021	1,932	579	2,511	2,048	618	2,667	116	39	155	
2022	2,065	608	2,673	2,125	638	2,763	61	30	90	
2023	2,138	642	2,780	2,164	633	2,797	26	-10	17	
2024	2,142	665	2,807	2,236	616	2,852	94	-49	45	
2025	2,241	665	2,906	2,363	612	2,976	122	-53	69	
2026	2,376	653	3,029	2,535	651	3,187	159	-2	157	
2027	2,383	642	3,025	2,525	694	3,220	142	52	194	
2028	2,487	636	3,123	2,595	720	3,316	108	84	192	
2029	2,536	684	3,221	2,615	725	3,340	78	41	119	
2030	2,677	737	3,414	2,730	715	3,445	53	-22	32	
2031	2,650	767	3,417	2,771	700	3,471	121	-67	54	
2032	2,708	772	3,480	2,851	699	3,551	143	-73	70	
2033	2,822	757	3,579	2,973	730	3,703	151	-27	124	
2034	2,880	745	3,625	3,052	765	3,817	172	20	193	
2035	2,981	741	3,722	3,079	788	3,867	99	47	145	
2036	3,054	737	3,791	3,157	773	3,929	102	36	139	
2037	3,109	739	3,848	3,223	752	3,975	114	13	127	
2038	3,231	669	3,901	3,357	667	4,024	125	-2	124	
2039	3,250	656	3,906	3,393	662	4,054	143	5	148	
2040	3,393	634	4,026	3,524	647	4,171	131	13	144	
NPVRR	26,122	6,638	32,760	26,848	6,693	33,542	727	55	782	

Appendix Table 7 – New WFGD 10/2016; Base Fuel Price Scenario (\$M)

	Retrof	Retrofit Mill Creek 3			Retire Mill Creek 3			Difference		
Year	Prod Costs	Capital	Total	Prod Costs	Capital	Total	Prod Costs	Capital	Total	
2011	1,142	7	1,148	1,142	7	1,148	0	0	0	
2012	1,207	47	1,254	1,207	46	1,253	0	-1	-1	
2013	1,249	123	1,373	1,249	125	1,374	0	2	2	
2014	1,286	265	1,551	1,286	296	1,582	0	31	31	
2015	1,359	420	1,779	1,359	474	1,833	0	54	54	
2016	1,527	554	2,081	1,504	585	2,089	-23	31	8	
2017	1,497	586	2,083	1,476	578	2,054	-21	-8	-29	
2018	1,585	604	2,189	1,593	563	2,156	8	-41	-33	
2019	1,598	601	2,198	1,632	556	2,188	34	-45	-11	
2020	1,643	587	2,230	1,695	586	2,281	53	-1	52	
2021	1,747	579	2,326	1,824	618	2,442	77	39	116	
2022	1,862	608	2,470	1,878	638	2,516	16	30	46	
2023	1,915	642	2,558	1,901	633	2,534	-14	-10	-24	
2024	1,873	665	2,538	1,908	616	2,524	35	-49	-14	
2025	1,949	665	2,614	2,001	605	2,607	53	-60	-7	
2026	2,045	653	2,698	2,129	602	2,731	84	-51	33	
2027	2,112	642	2,754	2,191	615	2,806	79	-27	51	
2028	2,152	636	2,788	2,231	663	2,894	79	27	106	
2029	2,247	684	2,931	2,324	717	3,041	77	32	110	
2030	2,383	737	3,120	2,388	752	3,140	6	15	21	
2031	2,402	767	3,169	2,447	750	3,197	45	-17	28	
2032	2,492	772	3,264	2,549	741	3,290	57	-31	26	
2033	2,613	757	3,371	2,675	734	3,409	61	-24	38	
2034	2,714	745	3,458	2,787	764	3,551	73	20	93	
2035	2,825	741	3,566	2,895	799	3,694	69	58	127	
2036	2,943	737	3,680	2,970	810	3,780	27	73	100	
2037	3,033	739	3,772	3,068	800	3,869	35	61	97	
2038	3,172	669	3,841	3,207	705	3,912	35	36	71	
2039	3,246	656	3,903	3,299	677	3,977	53	21	74	
2040	3,403	634	4,037	3,464	648	4,112	60	15	75	
NPVRR	24,240	6,638	30,878	24,562	6,686	31,247	322	48	370	

Appendix Table 8 – New WFGD 10/2016; CERA Fuel Price Scenario (\$M)