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Cash Flow Risk, Discounting Risk,

and the Equity Premium Puzzle

Abstract

This article investigates the impact of cash flow risk and discounting risk on the ag-

gregate equity premium. Our approach is based on the idea that consumption is hard

to measure empirically, so if we substitute out an empirically difficult-to-estimate

marginal utility by a pricing kernel of observables, we can evaluate the empirical per-

formance of an equilibrium asset pricing model in a different way. Once the pricing-

kernel process is specified, we can endogenously solve for the equity premium, the price

of the market-portfolio and the term structure of interest rates within the same under-

lying equilibrium. Embedded in the closed-form solution are compensations for cash

flow risk and discounting risk. With the solution for the risk premium explicitly given,

we then calibrate the model to evaluate its empirical performance. This approach al-

lows us to avoid the impact of the unobservable consumption or market portfolio on

inferences regarding the model’s performance. Our illustrative model is based on the

assumption that aggregate dividend equals a fixed fraction of aggregate earnings plus

noise, and the expected aggregate earnings growth follows a mean-reverting stochastic

process. Moreover, the economy-wide pricing kernel is chosen to be consistent with (i)

a constant market price of aggregate risk and (ii) a mean-reverting interest rate pro-

cess with constant volatility. Estimation results show that the framework can mimic

the observed market equity premium.



1 Introduction

In their seminal contribution, Mehra and Prescott (1985) show that the observed equity

premium on the S&P 500 market index is far too high given the stochastic properties of

aggregate consumption and under plausible assumptions about risk aversion. Furthermore,

equity returns empirically covary little with aggregate consumption growth, implying also

that the average equity premium can only be reconciled through an implausibly large co-

efficient of relative risk aversion. Table 1 in Mehra and Prescott (2003) documents that

the average equity premium in the U.S. is 6.92%, while the real rate of interest is 1.14%,

over the sample period of 1889-2000. Why have stocks delivered an average return of about

7% over risk-free bonds? Why is the observed real rate on Treasuries so low? Why is

the systematic risk, as exemplified by the correlation between consumption growth and

market-index return, so small?

Collectively known as the equity premium puzzle, this set of questions has consumed

financial economists over the past two decades and generated competing explanations rang-

ing from (i) generalizations to state-dependent utility functions (Constantanides (1990),

Epstein and Zin (1991), Benartzi and Thaler (1995), Bakshi and Chen (1996), Campbell

and Cochrane (1999), and Barberis, Huang, and Santos (2001)); (ii) the fear of catastrophic

consumption drops (Reitz (1988)); (iii) the presence of uninsurable and idiosyncratic income

risk (Heaton and Lucas (1996) and Mankiw (1986)); (iv) borrowing constraints (Constan-

tinides, Donaldson, and Mehra (2002)); and (v) measurement errors and poor consumption

growth proxies (Breeden, Gibbons, and Litzenberger (1989), Mankiw and Zeldes (1991), Fer-

son and Harvey (1992), and Äıt-Sahalia, Parker, and Yogo (2004)). Despite the substantial

research efforts, there is controversy whether these explanations can completely explain all

aspects of the equity premium puzzle (Mehra and Prescott (2003)), and the original puzzle

remains unsolved. That is, under plausible parameterizations, existing models can only

generate a small equity premium.

This article expounds on a risk-based explanation without taking a stand on the precise

parametric specification of the marginal utility function. Our approach is based on the

idea that consumption is hard to measure empirically, so if we substitute out an empir-

ically difficult-to-estimate marginal utility by a pricing-kernel function of observables we

can evaluate the empirical performance of an equilibrium asset pricing model in a different

way. That is, once the pricing-kernel process is specified, we can endogenously solve for the

1



equity premium, the current price of the market portfolio and the term structure of interest

rates within the same underlying equilibrium. Embedded in the closed-form solutions are

compensations for cash flow risk and discounting risk. With these solutions for the risk

premium, we can then calibrate the model to evaluate its empirical performance. This ap-

proach allows us to avoid the impact of unobservable consumption on inferences regarding

an asset pricing model’s performance.

We illustrate the potential of this modeling approach by using some simple assumptions.

First, we posit that a fixed proportion of the market-portfolio earnings (plus some noise)

will be paid out as dividends. This assumption allows us to directly link the stock price and

the equity premium to the firm’s earnings, instead of dividends. This modeling feature is

important because dividend-based stock valuation models have not succeeded empirically,

and investors are far more interested in the earnings of a stock rather than its dividends.

Second, we assume some marginal utility function that is consistent with both a constant

market price of aggregate risk and a single-factor Vasicek (1977) term structure of interest

rates. It is further assumed that the market-portfolio earnings-per-share (EPS) obeys a

proportional stochastic process, with its expected growth rate following a mean-reverting

process (under the physical probability measure). Thus, in our equity valuation setting,

there is an embedded stochastic term structure of interest rates, the expected EPS growth

follows a stochastic process, the current market-index level depends on earnings (instead of

dividends), and both cash flow risk and interest rate risk are priced. The rationale for our

assumptions will be discussed in more details shortly.

It is shown that risk aversion implicit in the pricing kernel introduces a wedge between

the physical process and the risk-neutralized process of variables in the economy. Specifi-

cally, the working of risk aversion makes the risk-neutral drift of the interest rate process

higher than its physical counterpart and leads to a heavier discounting of stochastic cash

flow streams. This mechanism generates lower market valuations and a higher equity pre-

mium (even though this effect also raises bond yields).

Risk aversion also affects the risk-neutralized cash flow process: the risk-neutral drifts

for both the earnings and the expected earnings growth processes are lower than their

counterpart under the physical probability measure. Such a mapping is suggestive of a

positive compensation for both earnings risk and expected earnings-growth risk. Overall,

the equity premium is a weighted sum of compensations for risks associated with interest
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rate, earnings, and expected earnings-growth shocks, with the weights dependent on the

state-of-the economy and the structural parameters.

Our empirical implementation provides several insights on how discounting risk and cash

flow risks are reflected and simultaneously priced in the S&P 500 index and default-free

bonds. We find that the interest-rate risk premium is negative and it contributes to a 77.16

basis-point spread between the market-portfolio and the risk-free interest rate. Moreover,

the compensation for expected earnings-growth risk is negligible, and the compensation for

earnings risk is 6.53%. It is the risk premium for earnings uncertainty, and not expected

earnings-growth uncertainty, that largely drives the equity premium. The total model-

derived equity premium is 7.31% and quantitatively robust under perturbations to test

design methods. Overall, our empirical exercise demonstrates that the signs of the risk

premiums are consistent with economic theory and show promise in explaining the behavior

of the average equity premium and the Treasury yield curve. We argue that replacing the

marginal utility by a pricing-kernel function of observables, and sensibly parameterizing the

discounting structure and cash flows, is crucial to achieving a reasonable equity premium

and improved performance.

The purpose of this article is not to test whether a particularly parameterized economic

model would be able to explain the observed equity premium under some reasonable set

of parameter values. Rather, the goal is to show that given the unobservability of key

economic variables (such as consumption and the market portfolio), an alternative approach

to testing an economic model is to rely on its internal equilibrium relations to substitute out

unobservable variables by functions of observable financial market variables. Then, a test on

the resulting equilibrium relations amounts to a test on the economic model itself. Perhaps,

another way to look at the results in this article is that it shows what basic properties an

empirically successful pricing kernel must have in order to be consistent with the observed

equity premium in the U.S. stock market.

In what follows, Section 2 outlines assumptions and develops analytical expressions

for the price of the market portfolio and the equity premium. Section 3 describes the

data on S&P 500 earnings, equity premium, interest rates, and the panel of bond prices.

Section 4 estimates the valuation model and discusses its implication for the equity premium.

Concluding statements are provided in Section 5. The mathematical derivations for the price

of the market portfolio and the equity premium are provided in the Appendix.
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2 Economic Determinants of Equity Premium

This section develops a framework to study the determinants of the time-t price of the

market-portfolio, Pt, for each time t ≥ 0, and the instantaneous market-index risk premium

µt − rt, for short interest rate rt.

Consider a continuous-time, infinite-horizon economy whose underlying valuation stan-

dard is represented by some pricing-kernel process, denoted by Mt. Assume that the market-

portfolio entitles its holder to an infinite dividend stream {Dt : t ≥ 0}. Asset pricing models

under the perfect-markets assumption implies

Pt =
∫

∞

t
Et

[
Mu

Mt

Du

]
du, and, (1)

µt − rt = −Covt

(
dMt

Mt

,
dPt

Pt

)
/dt, (2)

where Et[·] is the time-t conditional expectation operator with respect to the objective

probability measure. All variables in (1)-(2) are in nominal terms. In this framework,

the instantaneous equity premium and the price of the market-portfolio are determined

endogenously and jointly within the same underlying risk-return equilibrium. The basic

model outlined below is adopted from Bakshi and Chen (2005).

2.1 Cash Flow Process

To explicitly solve (1)-(2), assume that the market-portfolio has a constant dividend-payout

ratio (plus noise), α (with 1 ≥ α ≥ 0), that is,

Dt dt = α Yt dt + d Zt, (3)

where Yt is the aggregate earnings-per-share (EPS) flow at t and hence Yt dt is the total

EPS over the interval from t to t + dt, and d Zt is the increment to a martingale process

with zero mean. The existence of d Zt allows the market-portfolio dividends to randomly

deviate from the fixed proportion of its EPS, and it makes Dt and Yt not perfectly sub-

stitutable. Although this temporary deviation could be correlated with recent earnings

and past deviations, incorporating this feature, or the stochastic pay-out ratio feature, into

the assumption would unnecessarily complicate the model (see Lintner (1956), Marsh and
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Merton (1987), Barsky and Delong (1993), and Menzly, Santos, and Venonesi (2004)).

Under the objective probability measure, Yt is assumed to follow a process given below:

dYt

Yt

= Gt dt + σy dW y
t , (4)

d Gt = κg

(
µ∗

g − Gt

)
dt + σg dW g

t , (5)

for constants σy, κg, µ∗

g and σg. The long-run mean for both Gt and actual EPS growth
dYt

Yt
is µ∗

g, and the speed at which Gt adjusts to µ∗

g is reflected by κg. Further, 1
κg

measures

the duration of the firm’s business growth cycle. Volatility for both earnings growth and

changes in Gt is time-invariant.

The cash flow process parameterized in (4) offers enough flexibility to model the level

of the market-portfolio and the instantaneous equity premium (see also Bakshi and Chen

(1997) and Longstaff and Piazzesi (2004)). First, both actual and expected earnings growth

can take either positive or negative values, reflecting business cycles. Second, expected EPS

growth Gt is mean-reverting and has both a permanent component (reflected by µ∗

g) and

a transitory component, so that Gt can be high or low relative to its long-run mean µ∗

g.

Finally, since Yt is observable and Gt can be obtained from analyst estimates, we can learn

about the equity premium based on readily identifiable and observable state variables.

2.2 The Discounting Process

Turning to the pricing kernel, assume, as in Constantinides (1992), that Mt follows an Ito

process satisfying
dMt

Mt

= −rt dt − σm dW m
t , (6)

for a constant σm, where the instantaneous discounting rate, rt, follows the Ornstein-

Uhlenbeck mean-reverting process:

d rt = κr (µ∗

r − rt) dt + σr dW r
t , (7)

for constants κr, µ∗

r and σr. The pricing kernel can be interpreted in the context of the

consumption-based asset pricing model. Suppose Mt = C−γ
t for coefficient of relative risk

aversion γ and aggregate consumption Ct, then Ito’s lemma impies dMt

Mt
= −γ dCt

Ct
+ 1

2
γ(1 +

γ)
(

dCt

Ct

)2
. Thus, we can write risk-return equation (2) as µt − rt = γ Covt

(
dCt

Ct
, dPt

Pt

)
/dt,
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and the equilibrium rt dt = γ Et

(
dCt

Ct

)
− 1

2
(γ)(1 + γ) Et

(
dCt

Ct

)2
. Thus, unlike the traditional

approaches in Mehra and Prescott (1985) and Weil (1989), we independently model the

interest rate dynamics as specified in (7).

Parameter κr measures the speed at which rt adjusts to its long-run mean µ∗

r. The

pricing kernel (6) leads to a single-factor Vasicek (1977) term structure of interest rates,

that is, the τ -period bond-price is: B(t, τ) = exp (−ξ[τ ] − ς[τ ]rt), where ς[τ ] ≡ 1−e−kr τ

kr
,

and ξ(τ) ≡ −1
2
σ2

r

∫ τ
0 ς2[u] du +

(
κr µr + Covt

(
dMt

Mt
, drt

)) ∫ τ
0 ς[u] du. This approach provides

interest rate parameters that can be separately calibrated to the observed Treasury yield

curve.

Notice that shocks to expected growth, W g, may be correlated with both systematic

shocks W m and interest rate shocks W r, with their respective correlation coefficients de-

noted by ρg,m and ρg,r. In addition, the correlations of W y with W g, W m and W r are

respectively denoted by ρg,y, ρm,y and ρr,y. Thus, both actual and expected EPS growth

shocks are priced risk factors. The noise process dZt in (3) is however assumed to be

uncorrelated with Gt, Mt, rt and Yt, and hence it is not a priced risk factor.

2.3 Dynamics of the Market-Portfolio

Substituting assumptions (3)-(7) into (1)-(2), we can see that the conditional expectations

in Pt must be a function of Gt, rt and Yt. Applying Ito’s lemma to Pt and substituting the

resulting expression into risk-return equation (2), we have the partial differential equation

(PDE) for Pt (the details are given in the Appendix):

1

2
σ2

y Y 2 ∂2P

∂Y 2
+ (G − Πy)Y

∂P

∂Y
+ ρg,yσyσg Y

∂2P

∂Y ∂G
+ ρr,yσyσr Y

∂2P

∂Y ∂r
+

ρg,rσgσr

∂2P

∂G∂r
+

1

2
σ2

r

∂2P

∂r2
+ κr (µr − r)

∂P

∂r
+

1

2
σ2

g

∂2P

∂G2

+κg (µg − G)
∂P

∂G
− r P + α Y = 0, (8)

subject to the transversality condition Pt < ∞. The transversality condition states that

the stock price stay bounded for all combinations of the parameters governing cash flows,

discounting, and their risk premiums. In the valuation equation PDE (8) we set,

µg ≡ µ∗

g −
Πg

κg

, (9)
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µr ≡ µ∗

r −
Πr

κr

, (10)

which are, respectively, the long-run means of Gt and rt under the risk-neutral probability

measure defined by the pricing kernel Mt. It can be shown that

Πy ≡ −Covt

(
dMt

Mt

,
dYt

Yt

)
/dt, (11)

Πg ≡ −Covt

(
dMt

Mt

, dGt

)
/dt, (12)

Πr ≡ −Covt

(
dMt

Mt

, drt

)
/dt, (13)

are the risk premium for the earnings shocks, expected earnings growth, and interest rate,

respectively. Conjecture that the solution to the PDE (8) is of the form:

Pt = α Yt

∫
∞

0
p[t, u; G, r] du, (14)

where p[t, u; G, r] can be interpreted as the time-t price of a claim that pays $1 at a future

date t + u. Solving the resulting valuation equation and the associated Ricatti equations

subject to the boundary condition that p[t + u, 0] = 1 yields,

p[t, u; G, r] = exp ( ϕ[u] − ̺[u] rt + ϑ[u] Gt ) , (15)

where

ϕ[u] ≡ −Πy u +
1

2

σ2
r

κ2
r

(
u +

1 − e−2κru

2κr

−
2(1 − e−κru)

κr

)
−

κrµr + σyσrρr,y

κr

(
u −

1 − e−κru

κr

)

+
1

2

σ2
g

κ2
g

(
u +

1 − e−2κgu

2κg

−
2

κg

(1 − e−κgu)

)
+

κgµg + σyσgρg,y

κg

(
u −

1 − e−κgu

κg

)

−
σrσgρg,r

κrκg

(
u −

1

κr

(1 − e−κru) −
1

κg

(1 − e−κgu) +
1 − e−(κr+κg)u

κr + κg

)
, (16)

̺[u] ≡
1 − e−κru

κr

, (17)

ϑ[u] ≡
1 − e−κgu

κg

, (18)
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subject to the transversality condition that

µr − µg >
σ2

r

2 κ2
r

−
σrσyρr,y

κr

−
σgσrρg,r

κgκr

− Πy +
σ2

g

2κ2
g

+
σgσyρg,y

κg

. (19)

Thus, the model price for the market-portfolio or a stock is the summed value of a continuum

of claims that each pay at a future time an amount respectively determined by the earnings

process. The presence of an integral in (14) should not hamper the applicability of the

model as the integral can be computed numerically.

The valuation formula in (14) is not as simple to comprehend as the Gordon dividend

growth model. Realize that the Gordon model is a special case in which both Gt and rt

are constant over time: Gt = g and rt = r, for constants g and r. Consequently, both Mt

and Yt follow a geometric Brownian motion. In this case, we obtain Pt = α Yt

r+Πy−g
provided

r + Πy − g > 0. In our economic setting, valuation is more complex as both discounting

and cash flow forecasts have to be simultaneously assessed at the same time.

2.4 Dynamics of the Equity Premium

In deriving the valuation formula, we relied on a CAPM-like risk-return relation to arrive

at the PDE in (8). In this sense, our model is consistent with and built upon developments

in the risk-return literature. But, as seen, a risk-return equation alone is not sufficient to

determine Pt since assumptions on the cash flow processes are also needed. Based on (2)

and the pricing solution (14), we can show that the equity premium is,

µt − rt ≡ Et

(
dPt

Pt

)
/dt +

α Yt

Pt

− rt,

= −Covt

(
dMt

Mt

,
dPt

Pt

)
/dt,

= Πy

Yt

Pt

∂Pt

∂Yt

+ Πg

1

Pt

∂Pt

∂Gt

+ Πr

1

Pt

∂Pt

∂rt

, (20)

= Πy + Πg

(∫
∞

0 p[t, u; G, r] × ϑ[u] du
∫
∞

0 p[t, u; G, r] du

)
− Πr

(∫
∞

0 p[t, u; G, r] × ̺[u] du
∫
∞

0 p[t, u; G, r] du

)
,(21)

where p[t, u; G, r] is displayed in (15). Equation (20) shows that the equity premium is

a weighted sum of the risk premiums for shocks respectively due to earnings, expected

earnings growth, and interest rate, with weights equal to the sensitivity of the price with
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respect to the respective state-variables.

Equation (21) follows from (20) since Yt

Pt

∂Pt

∂Yt
= 1, ∂Pt

∂Gt
= α Yt

∫
∞

0 p[t, u; G, r]×ϑ[u] du, and
∂Pt

∂rt
= −α Yt

∫
∞

0 p[t, u; G, r] × ̺[u] du. Thus, the equilibrium equity premium is a function

of the time-t interest rate, the expected EPS growth, the firm’s required risk premiums, and

the structural parameters governing the cash flow and interest rate processes. According

to (21), µt − rt is independent of the current level of cash flows and is mean-reverting with

the state of rt and Gt.

The dynamics of the state-variables under the equivalent martingale measure, Q, can

facilitate our understanding of the nature of risk compensation in this economy. Based on

(8), we may write the stock price as,

Pt = α
∫

∞

t
EQ

t

(
e−
∫ u

t
rs ds Yu

)
du, (22)

where the processes for (Yt, Gt, rt) under the Q-measure are:

dYt

Yt

= (Gt − Πy) dt + σy dW̃ y
t , (23)

d Gt = κg

(
[µ∗

g − Πg/κg] − Gt

)
dt + σg dW̃ g

t , (24)

d rt = κr ([µ∗

r − Πr/κr] − rt) dt + σr dW̃ r
t . (25)

Economically, risk-averse investors seek to discount future cash flows more heavily under

the equivalent martingale measure. For instance, we should expect Πr < 0, which makes

the drift of the risk-neutral discounting process higher. Consistent with this effect, a higher

long-run mean µr = µr−Πr/κr will simultaneously reduce the discount bond price and raise

all Treasury yields. Thus, our decomposition in (20) shows that Πr < 0 can be expected to

increase the overall equity premium, because ∂Pt

∂rt
< 0. There is evidence from bond markets

that the interest rate risk premium is non-zero (see, for example, Duffee (2002)).

A similar risk-aversion-based reasoning suggests that investors tend to be less optimistic

about future cash flows under the equivalent martingale measure than under the physical

probability measure. Intuitively, we have Πy > 0 and Πg > 0: the presence of both risk

premiums decreases the drift of the (Yt, Gt) process. The working of both of these forces

reduces the present value of future cash flows and, thus, elevates the market risk premium.

Thus, the earnings risk premium Πy, the expected earnings growth risk premium Πg, and

the discounting risk premium receive positive compensation and contribute separately to
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the total equity premium.

To explore the properties of equity premium derived in (21), we turn to a comparative

statics exercise and study how it responds to any structural parameter. In this example,

κr = 0.23, µ∗

r = 7.8%, σr = 0.012, κg = 1.44, µ∗

g = 0.10, σg = 0.089, σy=0.20, ρg,r= -0.05,

ρg,y = 1, and α = 0.50. We fix the interest rate risk premium Πr = −0.002, the expected

earnings growth risk premium Πg = 0.002, and the earnings risk premium Πy=0.06. In all

calculations rt = 5.68% and Gt = 7.48% which are market observed values as of July 1998

and correspond to S&P 500 index level of 1174.

Our numerical exercise shows that the equity premium is increasing in both Gt and

µ∗

g, but decreasing in both rt and µ∗

r. Therefore, as expected, positive shocks to expected

EPS growth tend to raise the equity premium, whereas positive shocks to interest rates

depress it. However, the equity premium is much more sensitive to µ∗

g (µ∗

r) than to Gt (rt).

Intuitively, these comparative static results hold because current expected EPS growth Gt

may have a transitory component, whereas a change in µg is permanent. Lastly, the model

equity premium increases with EPS growth volatility σy, the volatility of expected EPS

growth σg, and the volatility of the interest rate σr. Risks as measured by these parameters

raise the required compensation to shareholders. Modeling the EPS and the expected EPS

processes explicitly indeed allows us to see how they affect the equity premium.

3 Time-Series Data on S&P 500 EPS, EPS Growth,

and the Interest Rate

For the remainder of the paper we choose the S&P 500 index as the proxy for the market-

portfolio. To explore whether the model equity premium derived in (21) is close to the

sample equity premium requires three data inputs: expected EPS growth Gt, interest rate

rt, current EPS Yt, and the model parameters. For the S&P 500 index, I/B/E/S did not

start collecting analyst EPS estimates until January 1982. Thus, our focus is on the sample

period from January 1982 to July 1998. Pastor and Stambaugh (2001) detect structural

shifts in the equity premium especially over the past two decades. According to Lettau,

Ludvigson, and Watcher (2004), the market price-to-earnings ratio rose sharply over this

period and have argued in favor of the declining ex-ante equity risk premium explanation.

I/B/E/S US History File contains mid-month observations on reported actual earnings-
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per-share and consensus analyst forecasts of future S&P 500 earnings, plus the contempora-

neous price. In implementation, I/B/E/S consensus analyst estimate for current-year S&P

500 EPS (i.e., FY1) is taken to be the proxy for Yt. In any given month, the FY1 estimate

may contain actual quarterly EPS numbers for the passed quarters of the fiscal year, with

the EPS numbers for the remaining quarters being consensus analyst forecasts. Because

firms’ earnings typically exhibit seasonalities, the total EPS over a fiscal year is a natural

proxy for Yt.

Analyst-expected EPS growth from the current (FY1) to the next fiscal-year (FY2) is

the measure for Gt. This choice is reasonable since the year-over-year EPS growth has been

the conventional calculation method in the industry. For instance, quarter-over-quarter and

month-over-month (if available) EPS growth rates would not be better proxies for Gt, as

they would be subject to seasonal biases in earnings and revenue.

Valuation formulas for the market index and the equity premium also depend on interest

rate rt, for which there is no established benchmark. Empirically, movements in the 30-

year Treasury yield are much more closely followed by stock market participants than the

short-term rate, as the long-term yields often co-move strongly with S&P 500 earnings-

yields. To be consistent with theory, however, we use the 3-month Treasury yield or those

implied by the Kalman-filter as candidates for rt in estimation and calibration. The 30-year

Treasury yield is used in a robustness exercise. The source of monthly 3-month interest-rate

is DataStream International, Inc.

To infer the interest rate risk premium independent of the price observations on the

market portfolio, we rely on a panel of Treasury yields. We choose Treasury securities with

constant maturity of 6 months, 2 years, 5 years, and 10 years. The Treasury yields are

gathered from the Federal Reserve Board.

Table 1 reveals that the average equity premium over the sample period is 8.76% and

volatile. Although the average equity premium is somewhat higher than the 7% reported

by Mehra and Prescott (1985, 2003), it is nonetheless of a similar order of magnitude. That

the equity index provides a higher return relative to bonds is also a stylized feature over

our shorter sample.

Forward price-to-earnings ratio (the current price divided by FY1 earnings) has a sample

average of 15.10, with a minimum price-to-earnings ratio of 7.28 and a maximum is 26.47.

As seen, the average expected EPS growth for the S&P 500 index is 10.13% and varies

11



between 0.09% and 26.13%. The average 3-month nominal interest rate is 6.28% with a

standard deviation of 2.44%.

4 Implications of the Model for Equity Premium

The purpose of this section is two-fold. First, we pursue a traditional risk-based explanation

of the equity premium puzzle and present an estimation strategy aimed at recovering each of

the three components of the equity premium in (21). That is, we estimate Πr, Πg, Πy, along

with other model parameters, and judge empirical performance accordingly. Second, we

quantitatively assess whether the risk premium parameterizations, interest rate dynamics,

and cash flow dynamics embedded in the valuation model are capable of generating a

reasonably large equity premium. We conduct these tasks while simultaneously fitting the

Treasury yield curve as close as possible. Hence, our approach circumvents the risk-free

rate puzzle outlined in Weil (1989).

4.1 How Large is the Interest Rate Risk Premium?

We first address the sign and magnitude of the interest rate risk premium by using the

Kalman filtering approach and a panel of Treasury bond yields. This approach (i) enables

the estimation of the interest rate risk premium jointly with the parameters of the interest

rate dynamics in (7) (i.e., κr, µ∗

r, and σr), and (ii) allows us to test whether the interest

rate model is able to generate realistic yield curve movements.

To implement this estimation procedure, we note that the transition equation for the

instantaneous interest rate, rt, can be expressed as (e.g., Bergstrom (1984)):

rt = µ∗

r (1 − e−κr∆t) + e−κr∆t rt−1 + ηt, (26)

where Et−1[ηt] = 0 and Et−1[η
2
t ] = σ2

r∆t, and ηt is a serially uncorrelated disturbance term

that is distributed normal.

Next, let Ψt = (Ψj,t, ..., ΨJ,t)
′ be the month-t observed Treasury yields where J denotes

the number of yields employed in the estimation. As is standard from Babbs and Nowman

(1999) and Chen and Scott (2003), the measurement equation describing observed Treasury
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yields is:

Ψt = Ut + Vt rt + υt, t = 1, ..., T, (27)

where Ut is an N × 1 vector with i-th element ξ[τi]
τi

, Vt is an N × 1 vector with i-th element
ς[τi]
τi

, and υt ∼ N (0,Ht). The normality of υt and ηt allows us to implement a Kalman filter

recursion based on the maximum-likelihood approach described in Harvey (1991).

For this maximum-likelihood estimation, we select Treasury yields with maturity of 6

months, 2 years, 5 years, and 10 years and display the estimation results in Table 2. Panel

A of this table shows that the interest rate parameters are reasonable and the interest-rate

risk premium is in line with economic theory.

Let us discuss these parameter estimates in turn. First, the long-run interest rate, µ∗

r,

is estimated at 7.28% and of an order of magnitude similar to that reported in Babbs and

Nowman (1999) and Chen and Scott (2003). Second, the estimated κr = 0.2313 implies

a half-life of 2.99 years, and indicates slow mean-reversion of the interest rate process.

Third, the reported volatility of interest rate changes, σr = 1.28%, suggests a relatively

stable interest rate process. Finally, the maximized log-likelihood value for the estimation

is 1804.93, and the estimated parameters are several times larger than their standard errors,

suggesting statistical significance.

The estimated interest-rate risk premium, Πr is, as we previously postulated, negative

with a point estimate of -0.00201 (i.e., -20 basis points) and a standard error of 0.0005. Al-

though the estimate appears quantitatively small, it can drive a substantial wedge between

the risk-neutral and the physical interest rate processes. To see this point more clearly,

we compute µr = µ∗

r − Πr/κr = 8.154%, which has the effect of raising the risk-neutral

interest-rate drift by 86.9 basis points (hereafter, bp). Intuitively the risk factor Πr < 0

causes a heavier discounting of future cash flows and theoretically supports the presence of

a positive equity premium as the partial derivative of Pt with respect to the interest rate

is negative in (21). Bonds provide a hedge during periods of stock market declines, which

justifies a negative interest-rate risk premium. We refer the reader to the related work of

Buraschi and Jitsov (2005) on the inflation risk premium and Bakshi and Chen (1996b) on

a general model of inflation and interest rates in a monetary economy.

Goodness-of-fit statistics assessed in Panel B of Table 2 reveal that the interest rate

model provides reasonable fitting-errors as measured by actual minus model-implied yield.
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Across the Treasury yield curve the median absolute errors for 6-month, 2-year, 5-year, and

10-year yields are 37bp, 25bp, 35bp and 50bp, respectively. In sum, the time-series on the

cross section of bond yields provide the desired flexibility in estimating the interest-rate risk

premiums and the interest-rate parameters. Although there is scope for improvement, the

pricing kernel process can realistically mimic both the short and the long end of the yield

curve through time.

4.2 Maximum-Likelihood Estimation of the (Physical) Gt Process

The unavailability of contingent claims written directly on the Gt process precludes a joint

estimation of the expected EPS growth processes in (5) and (24). We propose a two-step

procedure to estimate Πg. First, we exploit the transition density function to estimate the

structural parameters, Θg ≡ {κg, µ
∗

g, σg}, of the Gt process in (5). Second, taking Θg as

given, we estimate Πg, along with other unknown parameters, based on the time-series of

S&P 500 index (the criterion function is specified in Section 4.3), and consequently recover

the risk-neutral Gt process in (24).

Let {Gt : 1, . . . , T} be the monthly time-series on expected earnings growth rate. The

discrete equation corresponding to the Gt process in (5), is:

Gt = µ∗

g + e−κg

(
Gt−1 − µ∗

g

)
+ ζt (28)

where ζt is Gaussian mean-zero and satisfies the condition E(ζtζu) = 0 for t 6= u, and

E(ζ2
t ) =

σ2
g

2 κg

(
1 − e−κg

)
. (29)

Guided by Nowman (1997), we construct the likelihood function as minus twice the loga-

rithmic of the Gaussian likelihood function

max
κg,µ∗

g,σg

T∑

t=1


log

{
σ2

g

2 κg

(
1 − e−κg

)}
+

{
Gt − µ∗

g − e−κg

(
Gt−1 − µ∗

g

)}2

{
σ2

g

2 κg
(1 − e−κg)

}2


 . (30)

Maximizing the log-likelihood function in (30) by the choice of Θg, we report the maximum-
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likelihood parameter estimates below (the standard errors are shown in parenthesis):

κg = 1.4401 (0.4411) (31)

µ∗

g = 0.1024 (0.0153) (32)

σg = 0.0894 (0.0047) (33)

with an average log-likelihood value of 2.29575.

Several observations are relevant to our analysis. First, the point-estimate of long-run

expected earnings growth rate, µ∗

g, is 10.04% and close to the sample average documented

in Table 1. Thus, analysts have been optimistic about S&P 500 index earnings growth.

Second, the volatility of changes in the expected earnings-per-share growth, σg, is 8.94%,

which is considerably more volatile than the interest rate counterpart. Finally, according

to the κg estimates, the S&P 500 expected earnings growth rate is mean-reverting with a

half-life, log(2)/κg, of 6 months. The duration of the expected earnings growth rate cycle is,

thus, much shorter than the interest rate cycle and roughly consistent with stylized business

cycle findings. Realizations of the physical Gt process are devoid of any information about

the pricing measure, so the risk premium for expected earnings growth rate cannot be

recovered through this estimation step.

4.3 Compensation for Cash Flow Risk and the Equity Premium

To estimate the risk premium for expected EPS growth risk, Πg, and the risk premium

for actual EPS growth, Πy, and assess their implications for the equity premium, we make

several choices. First, to reduce the estimation burden, we preset ρg,y = 1, and ρ ≡ ρg,r =

ρr,y. This assumption implies that the actual and expected EPS growth rates are subject

to a common random shock in (4) and (5). Second, we set Θg and {κr, µ
∗

r, σr, Πr} to the

values estimated in Section 4.2 and Table 2, respectively. Thus, we treat these parameter

inputs as representing the true values. Substituting Θg and {κr, µ
∗

r, σr, Πr} into (14)-(19),

we can see that 5 parameters:

Θ ≡ {Πg, Πy, α, σy, ρ}, (34)

are still required to determine the price of the market portfolio, Pt, in (14).
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Observe that the valuation model for the market portfolio does not constitute a set

of moment restrictions on asset prices; rather, it is an exact restriction on the price of the

market portfolio in relation to the contemporaneous EPS, the expected EPS growth, and the

interest rate. For this reason, the generalized method of moments and related econometric

techniques may not be applicable.

Following the lead in fixed-income and option pricing, Θ is estimated using the time-

series of market prices. We follow two estimation methods, one correcting, and the other

not correcting, for the serial correlation of the model errors. Focusing on the first method,

define from (14), the model price-to-earnings ratio as:

pet ≡
Pt

Yt

= α
∫

∞

0
p[t, u; G, r] du, (35)

and let p̃et be the month-t observed price-to-earnings ratio. Our estimation procedure tries

to find a Θ to solve,

RMSE ≡ min
Θ

√√√√ 1

T

T∑

t=1

(
α
∫

∞

0
p[t, u; G, r] du− p̃et

)2

, (36)

subject to the transversality condition in (19). This estimation method seeks to minimize

the sum of squared errors between each observed price-to-earnings ratio and the model-

determined price-to-earnings ratio. The restriction in (19) ensures that Pt does not explode

in each iteration of the minimization routine.

Fitting the price-to-earnings is desirable because Pt/Yt serves as a normalized price that

is comparable across time periods. If the purpose would be to fit the observed price levels as

closely as possible, the estimation procedure would then favor the higher price observations.

The criterion function in (36) fails to account for the serial correlation of the model pricing

errors. However, when we assume a first-order autoregressive process for the model error,

the resulting estimates are similar. Hence, we omit them and focus on the least-squares

method in (36).

The optimized objective function value from (36), RMSE, is zero only if the obtained

Θ estimate leads to a perfect fit of each market price-to-earnings by the model. In general,

the average in-sample price-to-earnings pricing error will not be zero because the objective

in (36) is to minimize the sum of squared errors, but not the average pricing errors.
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In our estimation approach, the estimated risk premiums and parameters reflect the

historical valuation standards applied to the S&P 500 index by the investors. Panel A of

Table 3 reports the parameter estimates of Θ when the 3-month Treasury rate is used as the

proxy for rt. Consistent with how the market has priced the market-portfolio in the past,

the market-implied ρ is negative with a ρ of −0.109. This mildly negative point estimate of

ρ suggests that expected earnings growth rate is likely high when the interest rate is low,

and vice-versa.

Another result worth emphasizing is that the dividend-payout ratio, α, is consistent

with intuition: the estimated α = 0.41 does not depart substantially from the historical

average payout ratios of 44.29%. Table 3 also provides the estimate of σy = 18.17%, with

the conclusion that the cash flow process experiences high volatility.

One central observation from Table 3 is that the market-implied expected-EPS-growth

risk premium, Πg = −0.145%, is surprisingly small relative to the market-implied earnings

risk premium, Πy = 6.531%. For example, the reported Πg, implies that the sample aver-

age of Πg

(∫
∞

0
p[t,u;G,r]×ϑ[u]du∫
∞

0
p[t,u;G,r]du

)
is only 1 bp. This finding indicates that accounting for the

compensation for bearing expected-EPS-growth risk plays virtually no role in explaining

the equity premium puzzle.

If we accept the premise that the market fairly prices the S&P 500 index and correctly

reflects the market price of various risks, then our empirical findings have a straightfor-

ward interpretation: Risk-averse agents may deem it unnecessary to “double-penalize” the

physical drift of (Yt, Gt) process. This may occur since Pt is homogenous of degree 1 in

Yt and has a first-order impact on the stock price. Therefore, a large compensation in

the form of Πy may make it unnecessary to require compensation for Gt risk. To further

explain our reasoning, define G̃t ≡ Gt − λy. Therefore, we may write (23) and (24) as:
dYt

Yt
= G̃t dt + σy dW̃ y

t , where d G̃t =
(
κgµ

∗

g − Πg − κgΠy − κgG̃t

)
dt + σg dW̃ g

t . Thus, the

presence of Πy reduces the level and drift of the G̃t process.

With Πr = −0.002, the sample average of −Πr

(∫
∞

0
p[t,u;G,r]×̺[u]du∫
∞

0
p[t,u;G,r]du

)
is 77.16 bp. This

suggests that accounting for discounting risk can help alleviate the equity premium puzzle.

Based on (21), the overall equity premium can, thus, be calculated as

µt − rt = Πy + Πg

(∫
∞

0 p[t, u; G, r]× ϑ[u] du
∫
∞

0 p[t, u; G, r] du

)
− Πr

(∫
∞

0 p[t, u; G, r] × ̺[u] du
∫
∞

0 p[t, u; G, r] du

)
,

= 6.53% + 0.01% + 0.7716%,
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= 7.31%.

The ability of the model to generate an equity premium of 7.31% is in sharp contrast with the

exercise in Mehra and Prescott (1985) that a standard representative agent model calibrated

to the per-capita consumption data can generate at most a 0.40% equity premium. Thus,

the proper parameterization of both the discounting structure and the cash flow process

is key to improving performance by an asset pricing model and to achieving a reasonable

equity premium. Our exercise in Panel B of Table 3 demonstrates that the equity premium

is virtually insensitive to the choice of the interest rate in the estimation procedure in (36).

Another economic yardstick that can be applied is whether the estimated risk premi-

ums and model parameters provide a “good enough” approximation of the market’s implicit

valuation process. In Table 3, we also present two percentage pricing-error measures, com-

puted by dividing the market-to-model price difference by the market price: (i) the absolute

percentage pricing error, and (ii) the mean percentage pricing error. The mean pricing er-

ror reflects the average pricing performance, while the absolute pricing error reflects the

magnitude of the pricing errors as negative and positive errors do not cancel each other.

According to the pricing-error measures, the model’s fit is reasonable: the average mean

pricing error is -7.22% with a standard deviation of 23.98%, and the absolute pricing error

of the S&P 500’s 18.30%. Given the negative sign of the average errors, the model price is

on average higher than the market price.

In summary, the class of models examined here are not only consistent with the average

equity premium and the term structure of interest rates, but also mimics the time-evolution

of the S&P 500 index. The latter dimension imposes a stringent restriction on the validity

of the pricing framework and differentiates this paper from other studies on the equity

premium.

5 Concluding Remarks and Extensions

The equity premium puzzle advocated by Mehra and Prescott (1985) remains a fascinating

problem awaiting new and novel answers. This paper investigated the impact of cash flow

risk and discounting risk on the aggregate equity premium, the price of the market portfolio,

and the default-free bond prices. Our theoretical approach is based on the observation that

aggregate per-capita consumption is hard to measure empirically. Thus, if we can replace the
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empirically difficult-to-estimate marginal utility by a pricing-kernel function of observables

and then specify both the primitive process for discounting and the exogenous cash flow

stream, we will have an equilibrium asset pricing model based on observable state variables.

Once this is done we can endogenously solve for the equity premium, the price of the market

portfolio and the term structure of interest rates within the same underlying equilibrium.

Embedded in the closed-form solution for the market portfolio and the bond prices

are compensations for cash flow risk and discounting risk. With the solution for the risk

premium explicitly given, we can then estimate the model to evaluate its empirical per-

formance. This approach allows us to avoid the impact of unobservable consumption on

inferences regarding the model’s performance. Our illustrative model is based on the as-

sumption that aggregate dividend equals a fixed fraction of aggregate earnings plus noise,

and the expected aggregate earnings growth follows a mean-reverting stochastic process.

Moreover, the economy-wide pricing kernel is chosen to be consistent with (i) a constant

market price of aggregate risk and (ii) a mean-reverting interest rate process with constant

volatility.

S&P 500 index-based estimation results show that the framework is quantitatively useful

in explaining the observed market equity premium. Specifically, we find that the interest

rate risk premium is negative and the cash flow risk premium is positive. Overall, disen-

tangling the equity premium into its cash flow and discounting components produces an

economically meaningful equity premium of 7.31%.

Our empirical results suggest three possible avenues for theoretical research. First, one

can introduce richer cash flow dynamics and interest rate dynamics that possess stochastic

volatility. Having multi-dimensional structures for the state variables with priced volatility

risks can lead to more realistic models for the market portfolio and the equity premium. Sec-

ond, one can examine alternative risk premium specifications that allow for richer stochastic

variation in the risk premiums. Third, the valuation model can be used to pin down the

sources of market return predictability, as in Menzly, Santos, and Veronesi (2004).

The equity premium puzzle occupies a special place in the theory of finance and eco-

nomics, and more progress is needed to understand the spread of equities over bonds.

Determining the factors that drive the equity premium over time, and across countries, will

likely remain an active research agenda.
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Appendix

To derive the analytical solution to the market portfolio, we note from equations (1)

and (3) that Pt solves,

Pt = α
∫

∞

t
Et

[
Mu

Mt

Yu

]
du, (37)

since dZt is uncorrelated with dMt. We also require by the transversality condition that

Pt < ∞ for all t, which is the condition that the price of the market portfolio remain

bounded for all pricing kernel and cash flow processes.

Inserting the pricing kernel process (6) into (37) and using the earnings process (4)-(5),

we note, by the Markov property, that Pt can only be a function of Yt, rt, and Gt. Write

P [Yt, Gt, rt], where the interest rate process is as specified in (7). Therefore, the dynamics

of the market portfolio, by Ito’s lemma, is given by:

dPt =
1

2

∂2P

∂Y 2
(dY )2 +

∂P

∂Y
dY +

1

2

∂2P

∂G2
(dG)2 +

∂P

∂G
dG +

1

2

∂2P

∂r2
(dr)2 +

∂P

∂r
dr

+
∂2P

∂Y ∂G
dY dG +

∂2P

∂Y ∂r
dY dr +

∂2P

∂G∂r
dr dG. (38)

Substituting (38) into (2) implies that the instantaneous equity premium is,

µt − rt = −Covt

(
dMt

Mt

,
dPt

Pt

)
/dt,

= −Covt

(
dMt

Mt

,
1

Pt

∂P

∂Y
dY +

1

Pt

∂P

∂G
dG +

1

Pt

∂P

∂r
dr

)
/dt, (39)

where the instantaneous expected return is, µt = Et

[
dPt

Pt

]
/dt + αYt

Pt
.

Relying on (38) and taking expectations, we may obtain,

Et

[
dPt

Pt

]
=

1

2

1

Pt

∂2P

∂Y 2
Et[dY 2] +

1

Pt

∂P

∂Y
Et[dY ] +

1

2

1

Pt

∂2P

∂G2
Et[dG]2 +

1

Pt

∂P

∂G
Et[dG]

+
1

2

1

Pt

∂2P

∂r2
Et[dr2] +

1

Pt

∂P

∂r
Et[dr]

+
1

Pt

∂2P

∂Y ∂G
Et[dY dG] +

1

Pt

∂2P

∂Y ∂r
Et[dY dr] +

1

Pt

∂2P

∂G∂r
Et[dr dG]. (40)

Combining the expressions in (39) and (40) and using the definition of the instantaneous
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expected rate of return, we have

1

2

∂2P

∂Y 2
Et[dY 2] +

∂P

∂Y
Et[dY ] +

1

2

∂2P

∂G2
Et[dG]2 +

∂P

∂G
Et[dG] +

1

2

∂2P

∂r2
Et[dr2]

+
∂P

∂r
Et[dr] +

∂2P

∂Y ∂G
Et[dY dG] +

∂2P

∂Y ∂r
Et[dY dr] +

∂2P

∂G∂r
Et[drdG]

−r P dt + α Y dt

= −Covt

(
dMt

Mt

,
∂P

∂Y
dY +

∂P

∂G
dG +

∂P

∂r
dr

)
. (41)

Based on (41), now define the risk premium for the earnings shocks, expected earnings

growth, and interest rate, respectively, as:

Πy ≡ −Covt

(
dMt

Mt

,
dYt

Yt

)
/dt,

Πg ≡ −Covt

(
dMt

Mt

, dGt

)
/dt,

Πr ≡ −Covt

(
dMt

Mt

, drt

)
/dt.

This immediately implies that,

1

2

∂2P

∂Y 2
Et[dY 2] +

∂P

∂Y
Et[dY ] +

1

2

∂2P

∂G2
Et[dG]2 +

∂P

∂G
Et[dG] +

1

2

∂2P

∂r2
Et[dr2]

+
∂P

∂r
Et[dr] +

∂2P

∂Y ∂G
Et[dY dG] +

∂2P

∂Y ∂r
Et[dY dr] +

∂2P

∂G∂r
Et[drdG] − r P dt + α Y dt

=
∂P

∂Y
Y Πy dt +

∂P

∂G
Πg dt +

∂P

∂r
Πr dt. (42)

Simplifying this equation and using the dynamics for Yt, Gt and rt, leads to the following

partial differential equation for Pt:

1

2
σ2

y Y 2 ∂2P

∂Y 2
+ (G − Πy)Y

∂P

∂Y
+ ρg,yσyσg Y

∂2P

∂Y ∂G
+ ρr,yσyσr Y

∂2P

∂Y ∂r
+

ρg,rσgσr

∂2P

∂G∂r
+

1

2
σ2

r

∂2P

∂r2
+ κr (µr − r)

∂P

∂r
+

1

2
σ2

g

∂2P

∂G2

+ κg (µg − G)
∂P

∂G
− r P + α Y = 0, (43)

and must be solved subject the restriction that Pt < ∞. In the valuation partial differential

21



equation (43) we have set, µg = µ∗

g−
Πg

κg
and µr ≡ µ∗

r −
Πr

κr
. Consider the following candidate

solution,

Pt = α
∫

∞

0
p̂[t, u; Y, G, r] du. (44)

Clearly, p̂[t + u, 0; Y, G, r] = Yt+u. Thus, we have the partial differential equation for

p̂[t, u; Y, G, r] as,

(G − Πy) Y
∂p̂

∂Y
+ ρg,yσyσg Y

∂2p̂

∂Y ∂G
+ ρr,yσyσr Y

∂2p̂

∂Y ∂r
+

ρg,rσgσr

∂2p̂

∂G∂r
+

1

2
σ2

r

∂2p̂

∂r2
+ κr (µr − r)

∂p̂

∂r
+

1

2
σ2

g

∂2p̂

∂G2

+ κg (µg − G)
∂p̂

∂G
− r p̄ −

∂p̂

∂u
= 0. (45)

Suppose p̂[t, u; G, r] = Yt exp (ϕ[u] − ̺[u] rt + ϑ[u] Gt ). Taking the required partial deriva-

tives with respect to Yt, Gt and rt and solving the valuation equations lead to a set of

ordinary differential equations. Solving the ordinary differential equations subject to the

boundary conditions ϕ[0] = 0, ̺[0] = 0 and ϑ[0] = 0 yields (14)-(15). The transversality

condition (19) ensures that the restriction ϕ[0] = 0 is satisfied. 2
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Table 1: Equity Premium for S&P 500 Index (January 1982 to July 1998)

The sample period is January 1982 to July 1998 with 199 monthly observations. The expected

earnings-per-share growth for S&P 500 index, Gt, is the consensus earnings-per-share forecast for

FY2 divided by FY1, minus 1. The price-to-earnings ratio, P/E, is the current S&P 500 index

level normalized by FY1 earnings-per-share. We report the average, the standard deviation, the

maximum, and the minimum. The computation of the monthly equity premium is based on the

3-month interest rate. The earnings and price on S&P 500 is collected from I/B/E/S and the

interest rates are from the Federal Reserve Board.

Average Std. Max. Min.

Price-to-Earnings Ratio 15.10 4.13 26.47 7.28

Expected Earnings Growth 10.13% 5.31% 26.13% 0.09%

Interest Rate 6.98% 2.13% 14.68% 5.68%

Monthly Equity Premium 0.0073 0.040 0.162 -0.200
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Table 2: Interest Rate Risk Premium Based on Kalman Filtering Estimation

The reported parameters of the interest rate process and the interest rate risk premium are based

on Kalman filtering. We specify the interest rate process under the physical probability measure

as:

drt = (κr µr − κr rt ) dt + σr dW r
t ,

and under the equivalent martingale measure as

drt = (κr µr − Πr − κr rt ) dt + σr dW̃ r
t ,

The estimation uses a monthly time-series of treasury yields with maturity of 6-months, 2-years,

5-years and 10-years. The asymptotic standard errors are in parenthesis, and based on the outer-

product of the log-likelihood function. Maximized log-likelihood function is reported as Log-Lik.

Panel B reports the median absolute pricing errors (in bp), and the root mean squared pricing

errors (in bp).

Panel A: Parameter Estimates

Parameter κr σr µ∗

r Πr Log-Lik

rt 0.2313 0.0128 0.0728 -0.0020 1804.93

process (0.0135) (0.0008) (0.0022) (0.0005)

Panel B: Fitting Errors for Bonds

6-months 2-years 5-years 10-years

Median Absolute Pricing Errors (bp) 37 25 35 50

Squared-root of Mean Squared Errors (bp) 48 33 44 59
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Table 3: Estimation of Risk Premiums for Earnings Growth and Expected

Earnings Growth Rate: Implications for Equity Premium

Estimation of the risk premiums is based on S&P 500 index observations from January 1982 to July 1998

(199 observations). We minimize the distance between the model price-to-earnings ratio and the market

price-to-earnings ratio denoted by p̃et:

RMSE ≡ min
Θ

√√√√ 1

T

T∑

t=1

(
α

∫
∞

0

p[t, u; G, r] du − p̃et

)2

,

subject to the transversality condition µr − µg >
σ2

r

2 κ2
r

+
σ2

g

2κ2
g

+
σgσyρg,y

κg

− σrσyρr,y

κr

− σgσrρg,r

κgκr

− Πy. In this

estimation κr = 0.2313, σr = 0.0128, µ∗

r = 0.0728 and λr = −0.00201 which are based on the results

in Table 2, and ρg,y = 1, and ρ ≡ ρg,r = ρr,y. Parameters governing the dynamics of the expected

earnings growth rate are fixed to κg = 1.4401, µ∗

g = 0.1024, and σg = 0.089. We compute the model error

ǫt ≡ Yt

(
α
∫
∞

0 p[t, u; G, r] du − p̃et

)
, and report the average pricing errors and the average absolute pricing

errors. The standard deviations are shown as Std(.). Each month we compute the model equity premium

as µt − rt = Πy + Πg

(∫
∞

0

p[t,u;G,r]×ϑ[u]du∫
∞

0

p[t,u;G,r]du

)
− Πr

(∫
∞

0

p[t,u;G,r]×̺[u]du∫
∞

0

p[t,u;G,r]du

)
, and report the sample average as

Mean(µt − rt), All calculations in Panel A are done using the 3-month treasury rate as a proxy for the

interest rate, and repeated in Panel B using the 30-year treasury rate.

Panel A: Estimation Based on 3-Month Treasury Rate

Πg Πy α σy ρ RMSE Mean(ǫt) Mean(|ǫt|) Mean(µt − rt)

{Std(ǫt)} {Std(|ǫt|)}

0.001450 0.06531 0.4100 0.1817 -0.109 3.2293 -7.22% 18.30% 7.312%

{23.98%} {17.63}

Panel B: Estimation Based on 30-Year Treasury Yield

Πg Πy α σy ρ RMSE Mean(ǫt) Mean(|ǫt|) Mean(µt − rt)

{Std(ǫt)} {Std(|ǫt|)}

0.001145 0.06379 0.4744 0.1513 -0.074 3.1351 -7.62% 19.05% 7.213%

{23.66%} {15.92}
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