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Estimating the Ex Ante Equity Premium

Abstract

We find that the true ex ante equity premium very likely lies within 50 basis points of 3.5%.
This estimate is similar to values obtained in some recent studies but is considerably more precise.
In addition to narrowing the range of plausible ex ante equity premia, we also find that equity
premium models that allow for time-variation, breaks, and/or trends are the models that best
match the experience of US markets and are the only models not rejected by our specification tests.
This suggests that time-variation, breaks, and/or trends are critical features of the equity premium
process. Our approach involves simulating the distribution from which interest rates, dividend
growth rates, and equity premia are drawn and determining the prices and returns consistent with
these distributions. We achieve the narrower range of ex ante equity premium values and the
narrower set of plausible models by comparing statistics that arise from our simulations with key
financial characteristics of the US economy, including the mean dividend yield, return volatility,
and mean return. Our findings are achieved in part with the imposition of more structure than is
typically exploited in the literature. In order to mitigate the potential for misspecification with this
additional structure, we consider a broad collection of models that variously do or do not incorporate
features such as an adjustment in dividend growth rates to account for recently increased share
repurchase activity, sampling uncertainty in generating model parameters, and cross-correlation
between interest rates, dividend growth rates, and equity premia.



Estimating the Ex Ante Equity Premium

Financial economic theory is often concerned with the premium that investors demand ex ante,

when they first decide whether to purchase risky stocks instead of risk-free debt. In contrast,

empirical tests of the equity premium often focus on the return investors received ex post.1 It

is well known that estimates of the ex ante equity premium based on ex post data can be very

imprecise; such estimates have very wide margins of error, as wide as 1000 basis points in typical

studies and 320 basis points in some recent studies. This fact makes it challenging to employ the

equity premium estimates for common practical purposes, including evaluating the equity premium

puzzle, performing valuation, and conducting capital budgeting. The imprecision of traditional

equity premium estimates also makes it difficult to determine if the equity premium has changed

over time. Our goals, therefore, are to develop a more precise estimate of the ex ante equity premium

and to determine what kind of equity premium model can be supported by the experience of US

markets. We accomplish these goals by employing simulation techniques that identify a range of

models of the equity premium and the values of the ex ante equity premium that are consistent with

values of several key financial statistics that are observed in US market data, including dividend

growth rates, interest rates, Sharpe ratios, price-dividend ratios, volatilities, and of course the ex

post equity premium.

Our results suggest that the mean ex ante equity premium lies within 50 basis points of 3.5%.

These results stand even when we allow for investors’ uncertainty about the true state of the

world. The tightened bounds are achieved in part with the imposition of more structure than has

been commonly employed in the equity premium literature. In order to mitigate the potential

for misspecification with this additional structure, we consider a broad collection of models that

variously do or do not incorporate features such as a conditionally time-varying equity premium, a

downward trend in the equity premium, a structural break in the equity premium, an adjustment

in dividend growth rates to account for increased share repurchase activity in the last 25 years,

sampling uncertainty in generating model parameters, a range of time series models, and cross-

correlation between interest rates, dividend growth rates, and equity premia. We also find that

1The equity premium literature is large, continuously growing, and much too vast to fully cite here. For re-
cent work, see Bansal and Yaron (2004), Graham and Harvey (2005), and Jain (2005). For excellent surveys see
Kocherlakota (1996), Siegel and Thaler (1997), Mehra and Prescott (2003), and Mehra (2003).
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equity premium models that allow for time-variation, breaks, and/or trends in the equity premium

process are the models that best match the experience of US markets and are the only models not

rejected by our specification tests. This suggests that time-variation, breaks, and/or trends are

critical features of the equity premium process, itself an important finding.

We draw on two relatively new techniques in order to provide a more precise estimate of the

equity premium than is currently available. The first technique builds on the fundamental val-

uation dividend discounting method of Donaldson and Kamstra (1996). This technique permits

the simulation of fundamental prices, returns, and return volatility for a given ex ante equity pre-

mium. Donaldson and Kamstra find that if we allow dividend growth rates and discount rates to

be time-varying and dependent, as well as cross-correlated, the fundamental prices and returns that

come out of dividend discounting match observed prices and returns, even during extreme events

like stock market crashes. The second technique is simulated method of moments (SMM).2 An

attractive feature of SMM is that the estimation of parameters requires only that the model, with

a given set of parameters, can generate data. SMM forms estimates of model parameters by using

a given model with a given set of parameter values to simulate moments of the data (for instance

means or volatilities), measuring the distance between the simulated moments and the actual data

moments, and repeating with new parameter values until the parameter values that minimize the

(weighted) distance are found.3 The parameter estimates that minimize this distance are consistent

for the true values, are asymptotically normally distributed, and display the attractive feature of

permitting tests that can reject misspecified models. The SMM technique has been described as

“estimating on one group of moments, testing on another.” See Cochrane (2001, Section 11.6). We

use SMM rather than GMM because, as we show below, the economic model we use is nonlinear in

the parameters and cannot be solved without the use of SMM.

We exploit the dividend discounting method of Donaldson and Kamstra to generate simulated

fundamental prices, dividends, returns, and derivative moments such as the mean ex post equity

2Simulated method of moments was developed by McFadden (1989) and Pakes and Pollard (1989), and a helpful
introduction to the technique is provided in Carrasco and Florens (2002). Examples of papers that employ SMM in
an asset pricing context are Duffie and Singleton (1993) and Corradi and Swanson (2005).

3The typical implementation of SMM is to weight the moments inversely to their estimated precision; that is
minimize the product of the moments weighted by the inverse of the covariance matrix of the moments. This is the
approach we adopt.
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premium, mean dividend yield, and return volatility for a given ex ante equity premium. We

minimize (by choice of the ex ante equity premium) the distance between the simulated moments

that the model produces and the moments observed in US stock markets over the past half century.

That is, given various characteristics of the US economic experience (such as low interest rates and

a high ex post equity premium, high Sharpe ratios and low dividend yields, etc.), we determine the

range of values of the ex ante equity premium and the set of equity premium models that are most

likely to have generated the observed collection of sample moments.

To undertake our study, we consider a broad collection of models, including models with and

without conditional time-variation in the equity premium process, with and without trends in the

equity premium, with and without breaks in the equity premium, with and without breaks in the

dividend growth rate, as well as various autoregressive specifications for dividend growth rates,

interest rates, and the equity premium. Virtually every model we consider achieves a minimum

distance between the simulated moments and the actual data moments by setting the ex ante

equity premium between 3% and 4%, typically very close to 3.5%. That is, the equity premium

estimate is very close to 3.5% across our models. Further, the range of ex ante equity premium

values that can be supported by the US data for a given model is typically within plus or minus

50 basis points of 3.5%. Our models of fundamentals, which capture the dynamics of actual US

dividend and interest rate data, imply that the true ex ante equity premium is 3.5% plus or minus 50

basis points. Simpler models of fundamental valuation, such as the Gordon (1962) constant dividend

growth model, are overwhelmingly rejected by the data. Models of the equity premium which do

not allow time-variation, trends, or breaks are also rejected by the SMM model specification tests.

While we restrict our attention to a stock market index in this study, the technique we employ is

more broadly applicable to estimating the equity premium of an individual firm.

In the literature to date, empirical work investigating the equity premium has largely consisted

of a series of innovations around a common theme: producing a better estimate of the mean ex

ante equity premium. Recent work in the area has included insights such as exploiting dividend

yields or earnings yields to provide new, more precise estimates of the return to holding stocks (see

Fama and French, 2002, and Jagannathan, McGrattan, and Scherbina, 2000), looking across many

countries to account for survivorship issues (see Jorion and Goetzmann, 1999), looking across many
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countries to decompose the equity premium into dividend growth, price-dividend ratio, dividend

yield, and real exchange rate components (see Dimson, Marsh, and Staunton, 2007), modeling equity

premium structural breaks in a Bayesian econometric framework (see Pástor and Stambaugh, 2001),

or computing out-of-sample forecasts of the distribution of excess returns, allowing for structural

breaks which are identified in real time (see Maheu and McCurdy, 2007). Most of this work estimates

the ex ante equity premium by considering one moment of the data at a time, typically the mean

difference between an estimate of the return to holding equity and a risk free rate, though Maheu

and McCurdy (2007) consider higher-order moments of the excess return distribution and Pástor

and Stambaugh (2001) incorporate return volatility and direction of price movements through their

use of priors.

Unfortunately, the equity premium is still estimated without much precision. Pástor and Stam-

baugh (2001), exploiting extra information from return volatility and prices, narrow a two standard

deviation confidence interval around the value of the ex ante equity premium to plus or minus

roughly 280 basis points around a mean premium estimate of roughly 4.8% (a range that spans 2%

to 7.6%) and determine that the data strongly support at least one break in the equity premium

in the last half century. Fama and French (2002), based on data from 1951 to 2000, provide point

estimates of the ex post equity premium of 4.32% (based on earnings growth rate fundamentals)

plus or minus roughly 400 basis points (again, two standard deviations) and of 2.55% (based on

dividend growth rate fundamentals) plus or minus roughly 160 basis points: a range of approxi-

mately 0.95% to 4.15%. That is, the plausible range of equity premia that emerge from Fama and

French’s study occupy a confidence bound with a width of anywhere from 320 to 800 basis points.

Claus and Thomas (2001), like Fama and French (2002), make use of fundamental information to

form lower estimates of the ex post equity premium, but their study covers a shorter time period

relative to the Fama and French study – 14 years versus 50 years – yielding point estimates that

are subject to at least as much variability as the Fama and French estimates.

Not only are the point estimates from the existing literature imprecisely estimated in terms of

their standard error, there is also less of an emerging consensus than one would hope. Fama and

French (2002) produce point estimates of 2.55% (using dividend yields) and 4.78% (using earnings

yields), Pástor and Stambaugh (2001) estimate the equity premium at the end of the 1990s to
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be 4.8%, and Claus and Thomas (2001) estimate the equity premium to be no more than 3%.

Welch (2000), surveying academic financial economists, estimates the consensus equity premium

to be between 6% and 7% (depending on the horizon). Based on a survey of US CFOs, Graham

and Harvey (2005) estimate the ten-year equity premium to be 3.66%. We believe that the lack

of consensus across the literature is intimately tied to the imprecision of techniques typically used

to estimate the equity premium, such as the simple average excess return. That is, the various

estimates cited above all fall within two standard errors of the sample mean estimate of the equity

premium, based on US data. Further, the studies that provide these estimates do not explicitly

consider which models of the equity premium process can be rejected by actual data, though Pástor

and Stambaugh’s analysis strongly supports a model that incorporates breaks in the equity premium

process.

The remainder of our paper proceeds as follows. The basic methodology of our simulation

approach to estimating equity premia is presented in Section 1, along with important details on

estimating the equity premium. (Appendices to the paper provide detailed explanations of the

technical aspects of our simulations, including calibration of key model parameters.) In Section 2 we

compare univariate financial statistics that arise in our simulations with US market data, including

dividend yields, Sharpe ratios, and conditional moments including ARCH coefficients. Our results

confirm that the simulations generate data broadly consistent with the US market data and, taken

one-at-a-time, these financial statistics imply that the ex ante equity premium lies in a range much

narrower than between 2% and 8%. We determine how much narrower in Section 3 by exploiting

the full power of the simulation methodology. We compare joint multivariate distributions of our

simulated data with observed US data, yielding a very precise estimate of the ex ante equity premium

and providing strong rejections of models of the equity premium process that fail to incorporate

time variation, breaks, and/or trends. We find the range of ex ante equity premium values is very

narrow: 3.5% plus or minus 50 basis points. Our consideration of a broad collection of possible

data generating processes and models lends confidence to the findings. Section 4 concludes.
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I Methodology

Consider a stock for which the price Pt is set at the beginning of each period t and which pays a

dividend Dt+1 at the end of period t. The return to holding this stock (denoted Rt) is defined as

Rt =
Dt+1 + Pt+1 − Pt

Pt
.

The risk-free rate, set at the beginning of each period, is denoted rt,f . The ex ante equity

premium, π, is defined as the difference between the expected return on risky assets, E {Rt}, and

the expected risk-free rate, E {rt,f}:4

π ≡ E {Rt} − E {rt,f} . (1)

We do not observe this ex ante equity premium. Empirically, we only observe the returns that

investors actually receive ex post, after they have purchased the stock and held it over some period

of time during which random economic shocks impact prices. Hence, the ex post equity premium

is typically estimated using historical equity returns and risk-free rates. Define R as the average

historical annual return on the S&P 500 and rf as the average historical return on US T-bills. Then

we can calculate the estimated ex post equity premium, π̂, as follows:

π̂ ≡ R − rf . (2)

Given that the world almost never unfolds exactly as one expects, there is no reason to believe

that the stock return we estimate ex post is exactly the same as the return investors anticipated ex

ante. It is therefore difficult to argue that just because we observe a 6% ex post equity premium in

the US data, the premium that investors demand ex ante is also 6% and thus a puzzling challenge

to economic theory. So we ask the following question: If investors’ true ex ante premium is π, what

is the probability that the US economy could randomly produce an ex post premium of at least

6%? The answer to this question has implications for whether or not the 6% ex post premium

4See, for instance, Mehra and Prescott (1985), Equation (14). We will consider time-varying equity premium
models below.
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observed in the US data is consistent with various ex ante premium values, π, with which standard

economic theory may be more compatible. We also ask a deeper question: If investors’ true ex

ante premium is π, what is the probability that we would observe the various combinations of key

financial statistics and yields that have been realized in the US, such as high Sharpe ratios and

low dividend yields, high return volatility and a high ex post equity premium, and so on? The

analysis of multivariate distributions of these statistics allows us to narrow substantially the range

of equity premia consistent with the US market data, especially relative to previous studies that

have considered univariate distributions.

Because the empirical joint distribution of the financial statistics we wish to consider is difficult

or impossible to estimate accurately, in particular the joint distribution conditional on various

ex ante equity premium values, we use simulation techniques to estimate this distribution. The

simulated joint distribution allows us to conduct formal statistical tests that a given ex ante equity

premium could have produced the US experience. Most of our models employ a time-varying ex

ante equity premium, so that a simulation described as having an ex ante equity premium of 2.75%

actually has a mean ex ante equity premium of 2.75%, while period-by-period the ex ante equity

premium can vary somewhat from this mean value. In what follows we refer to the ex ante equity

premium and the mean ex ante equity premium interchangeably.

A Matching Moments

Consider the valuation of a stock. Define 1+ rt as the gross rate investors use to discount payments

received during period t. The price of the stock is then given by Equation (3),

Pt = Et

{
Dt+1 + Pt+1

1 + rt

}
, (3)

where Et is the conditional expectations operator incorporating information available to the market

when Pt is formed, up to but not including the beginning of period t (i.e., information from the end

of period t − 1 and earlier).

Assuming the usual transversality conditions, we can derive Equation (4) by recursively substi-

tuting out for future prices in Equation (3):
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Pt = Et

⎧⎨
⎩

∞∑
j=0

(
Πj

i=0

1

1 + rt+i

)
Dt+j+1

⎫⎬
⎭ . (4)

Defining the growth rate of dividends over the period t as gt ≡ (Dt+1 − Dt)/Dt, we can re-write

Equation (4) as

Pt = DtEt

⎧⎨
⎩

∞∑
j=0

(
Πj

i=0

[
1 + gt+i

1 + rt+i

])⎫⎬
⎭ . (5)

Hence we can re-write Equation (1) as

π ≡ E

⎧⎨
⎩

Dt+1 + Dt+1Et+1

{∑∞
j=0 Πj

i=0
1+gt+1+i

1+rt+1+i

}
− DtEt

{∑∞
j=0 Πj

i=0
1+gt+i

1+rt+i

}
DtEt

{∑∞
j=0 Πj

i=0
1+gt+i

1+rt+i

} − rt,f

⎫⎬
⎭ (6)

or

π ≡ E

⎧⎨
⎩

(1 + gt)
(
1 + Et+1

{∑∞
j=0 Πj

i=0
1+gt+1+i

1+rt+1+i

})
− Et

{∑∞
j=0 Πj

i=0
1+gt+i

1+rt+i

}
Et

{∑∞
j=0 Πj

i=0
1+gt+i

1+rt+i

} − rt,f

⎫⎬
⎭ . (7)

In the case of a constant equity premium π and a possibly time-varying risk-free interest rate we

can re-write Equation (7) as

π ≡ E

⎧⎪⎨
⎪⎩

(1 + gt)
(
1 + Et+1

{∑∞
j=0 Πj

i=0
1+gt+1+i

1+π+rt+1+i,f

})
− Et

{∑∞
j=0 Πj

i=0
1+gt+i

1+π+rt+i,f

}
Et

{∑∞
j=0 Πj

i=0
1+gt+i

1+π+rt+i,f

} − rt,f

⎫⎪⎬
⎪⎭ . (8)

Under interesting conditions, such as risk-free rates and dividend growth rates that conditionally

time-vary and covary (we consider, for instance, ARMA models and correlated errors for dividend

growth rates and interest rates), the individual conditional expectations in Equation (8) are ana-

lytically intractable. The difference between the sample mean return and the sample mean risk-free
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interest rate provides a consistent estimate of π, as shown by Mehra and Prescott (1985), but un-

fortunately the sample mean difference is very imprecisely estimated, even based on more than 100

years of data.

We note that another consistent estimator of π is one that directly exploits the method of

Donaldson and Kamstra (1996), hereafter referred to as the DK method. The DK method uses

(ARMA) models for dividend growth rates and interest rates to simulate the conditional expecta-

tions Et

{∑∞
j=0 Πj

i=0
1+gt+i

1+π+rt+i,f

}
and Et+1

{∑∞
j=0 Πj

i=0
1+gt+1+i

1+π+rt+1+i,f

}
. The DK method allows us, for a

given ex ante equity premium (or time-varying equity premium process), to simulate the conditional

expectations in Equation (8) as well as related (unconditional) moments, including the expected

dividend yield, return volatility, ex post equity premium, and Sharpe ratio. Our estimate of π is

produced by finding the value of π that minimizes the distance between the collection of simulated

moments (produced by the DK procedure) and the analogous sample moments (from the US ex-

perience over the last half century). The estimation of these expectations relies on the exact form

of the conditional models for dividend growth rates and interest rates, that is, the parameters that

characterize these models. A joint estimation of these models’ parameters and π (i.e. minimizing

the distance between simulated and sample moments by varying all the model’s parameters and π

at once) would be computationally very difficult. We utilize a two-step procedure in which first, for

a given ex ante equity premium, we jointly estimate the parameters that characterize the evolution

of dividend growth rates and interest rates. We use these models to simulate data to compare with

realized S&P 500 data. Second, we do a grid search over values of the ex ante equity premium to

find our SMM estimate of π.

It is helpful to consider some examples of estimators based on our simulation technique. The

simplest estimator would have us considering only the ex ante equity premium moment, π = E [Rt]−
E [rf,t], ignoring other potentially informative moments of the data, such as the dividend yield and

return volatility. Exploiting the DK procedure, we would find that the π in Equation (8) which

matches the ex post equity premium (the sample moment analogue of Equation (8)) is the sample

estimate of the ex post equity premium, roughly 6%. That is, in this simplest case, when we

minimize the distance between the sample moment and the simulated moment and find that the

estimate of the ex ante equity premium is the ex post equity premium, we do so by construction. If
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the DK method is internally consistent, and if we are fitting only the ex post equity premium sample

moment, then the difference must be zero at the value of π equal to the ex post equity premium.

This DK estimator of π, considering only one moment of the data, would offer no advantage over the

ex post equity premium, which is the traditional estimate of the ex ante equity premium. Adding

a second moment to our estimation procedure, say the dividend yield, and minimizing the distance

between the simulated and sample moments for the ex post equity premium and the dividend yield

jointly, would likely lead to a somewhat different ex ante equity premium estimate. Furthermore,

the estimate would be more precisely estimated (i.e., with a smaller standard error) since two

moments are exploited to estimate the ex ante equity premium, not just one moment, at least if the

extra moment of the data provided some unique information about the value of the parameter π.

The DK method provides simulated dividend yields, ex post equity premia, and any other

statistic that is derivative to returns and prices, such as return volatility, resulting in a broad

collection of simulated moments with which to compare moments of the actual US data in order

to derive an estimator. The large collection of available moments makes it likely that our analysis

can provide a tighter bound on the value of the ex ante equity premium than has been achieved

previously.

B The Simulation

To estimate the joint distribution of the financial quantities of interest, we consider models calibrated

to the US economy. (We calibrate to US data over 1952 through 2004, with the starting year of

1952 motivated by the US Federal Reserve Board’s adoption of a modern monetary policy regime

in 1951.) We provide specific details on the nature of the models we consider and how we conduct

our simulations in Appendices 1 and 2. Our entire procedure can be generally summarized in the

following five steps:

Step 1: Specify assumptions about the ex ante equity premium demanded by investors.

Is the premium constant or time-varying? If constant, what value does it take? If time-varying, how

does the value change over time? Are there any structural breaks in the equity premium process

over time? Pástor and Stambaugh (2001), among others, provide evidence that the equity premium

has been trending downward over the sample period we study, finding a modest downward trend of
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roughly 0.80% in total since the early 1950s. Pástor and Stambaugh (2001) also find fairly strong

support for there having been a structural break over the 1990s which led to a 0.5% drop in the

equity premium.5

Once the process driving the ex ante equity premium is defined, we can specify the discount rate

(which equals the risk-free rate plus the equity premium) that an investor would rationally apply

to a forecasted dividend stream in order to calculate the present value of a dividend-paying stock.

Note that if the equity premium varies over time, then the models generated in the next step are

calibrated to mimic the degree of covariation between interest rates, dividend growth rates, and

equity premia observed in the US data.

Step 2: Estimate econometric models for the time-series processes driving actual dividends

and interest rates in the US economy, allowing for autocorrelation and covariation as observed in

the US data. These models will later be used to Monte-Carlo simulate a variety of potential paths

for US dividends and interest rates. The simulated dividend and interest rate paths are of course

different in each of these simulated economies because different sequences of random innovations are

applied to the common stochastic processes in each case. However, the key drivers of the simulated

economies themselves are all still identical to those of the US economy since all economies share

common stochastic processes fitted to US data.

Some of the models we consider assume that all cashflows received by investors come in the

form of dividends (the standard assumption). Another set of models we consider embed higher

cashflows and cashflow growth rates than observed in the US S&P 500 dividend data, to account

for the observation of Bagwell and Shoven (1989), Fama and French (2002), and others, that divi-

dends under-report total cashflows to shareholders. As reported by these authors, firms have been

increasingly distributing cash to shareholders via share repurchases instead of via dividends, a phe-

nomenon commonly known as disappearing dividends, a practice adopted widely beginning in the

late 1970s. Fama and French find evidence that the disappearance of dividends is in part due to an

increase in the inflow of new listing to US stock exchanges, representing mostly young companies

5A falling equity premium is thought to come from several sources, including the declining cost of diversifying
through mutual funds over the last half century, the infeasibility before the advent of mutual funds to hold fully
diversified portfolios (hence higher returns required by investors to hold relatively undiversified positions), and the
broader pool of investors now participating in equity ownership, sharing in the market risk and presumably lowering
the required rate of return to risky assets. See Siegel (1999) and Diamond (2000).
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with the characteristics of firms that would not be expected to pay dividends, and in part due to a

decline in the propensity of firms to pay dividends.

Thus, for some models in our simulations, we adopt higher cashflows than would be indicated by

considering US dividend data alone. On a broad set of data, Grullon and Michaely (2002) find that

total payouts to shareholders have remained fairly flat, not growing over the period we consider.

To the extent that this is true of the S&P 500 data, the models we consider with upward-trending

dividend growth are overly aggressive, but as we show below, the higher dividend growth rate only

widens the range of plausible ex ante equity premia, meaning our estimate of the precision of our

approach is conservative.

Step 3: Allow for the possibility of estimation error in the parameter values for the

dividend growth rate, interest rate, and equity premium time-series models. That is, incorporate

into the simulations uncertainty about the true parameter values. This allows for some models with

more autocorrelation in the dividend growth, interest rate, and equity premium series, some with

less, some with more correlation between the processes, some with less, some with a higher variance

or mean of dividend growth and interest rates, some with less, and so on. This uncertainty is

measured using the estimated covariance of the parameter estimates from our models generated in

Steps 1 and 2, and the procedure to randomly select parameters from the estimated joint distribution

of the parameters is detailed in Appendix 1. We also account for investor uncertainty about the

true fundamental processes underlying prices and returns by performing tests insensitive to this

uncertainty and its impact on prices and returns, as we describe below.

Further details about Steps 1 through 3 are contained in Appendix 1. Before continuing with

summarizing Steps 4 and 5 of our methodology, it is worth identifying some models that emerge

from various combinations of the assumptions embedded in Steps 1 through 3. The key models we

consider in this paper are shown in Table I. The first column of Table I indicates numbering that

we assign to the models. The second column specifies the time-series process used to generate the

interest rate and dividend growth rate series, corresponding to Step 2. The next three columns

relate to Step 1 above, indicating whether or not the ex ante equity premium process incorporates

a downward trend over time (and if so, how much the mean ex ante equity premium in 1952 differs

from the value in 2004), whether or not there is a structural break (consisting of a 50 basis point
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drop) in the equity premium consistent with the findings of Pástor and Stambaugh (2001), and

whether or not there is a break in the dividend growth rate process, consistent with the Bagwell

and Shoven (1989) and Fama and French (2002) finding of an increase in share repurchases from

the late 1970s onward.6 The last column corresponds to Step 3, showing which models incorporate

uncertainty in generating parameters. We consider a selection of 12 representative models, ranging

from a simple model with no breaks or trends in the equity premium process (Model 1) to very

complex models.7 Each model is fully explored in the sections that follow. We now continue

describing the two final steps of our basic methodology.

Table I goes about here.

Step 4: Calculate the fundamental stock returns (and hence ex post equity premia)

that arise in each simulated economy, using a discounted-dividend-growth-rate model and based on

assumptions about the ex ante equity premium from Step 1, the dividend growth rate and interest

rate processes specified in Step 2, and the possible parameter uncertainty specified in Step 3. The

model is rolled out to produce 53 annual observations of returns, prices, dividends, interest rates,

and so on, mimicking the 53 years of annual US data available to us for comparison. Keep in mind

the fact that the assumptions made in Steps 1 through 3 are the same for all simulated economies

in a given experiment. That is, all economies in a given experiment have the same ex ante equity

premium model (for instance a constant ex ante equity premium, or perhaps an ex ante equity

premium that time-varies between a starting and ending value) and yet all economies in the set of

simulations have different ex post equity premia. Given the returns and ex post equity premia for

each economy, as well as the means of the interest rates and dividend growth rates produced for each

economy, we are able to calculate various other important characteristics, including return volatility,

6In each case where we consider model specifications intended to capture real-world features like breaks and trends
in rates and premia, we adopt parameterizations that bias our results to be more conservative (i.e. to produce a
wider confidence interval for the ex ante equity premium). This allows us to avoid over-stating the gains in precision
possible with our technique. For example, while Pástor and Stambaugh (2001) find evidence that there was a break
in the equity premium process across several years in the 1990s, we concentrate the entire break into one year (1990).
Allowing the break to be spread across several years would lead to a narrower bound on the ex ante equity premium
than we find. See Appendix 1 for more details.

7For the sake of brevity, the Gordon (1962) constant dividend growth model is excluded from the set of models
we explore in this paper. We did analyze the Gordon model and found it to perform very poorly. The model itself is
rejected at every value of the ex ante equity premium, even more strongly than any other simple model considered
in this paper is rejected.
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dividend yields, and Sharpe ratios. There is nothing in our experimental design to exclude (rational)

market crashes and dramatic price reversals. Indeed our simulations do produce such movements

on occasion. The details of Step 4 are provided in Appendix 2.

Step 5: Examine the distributions of variables of interest, including ex post equity

premia, Sharpe ratios, dividend yields, and regression coefficients (from estimating AR(1) and

ARCH models for returns) that arise conditional on various mean values and various time-series

characteristics of the ex ante equity premia. Comparing the performance of the US economy with

various univariate and multivariate distributions of these quantities and conducting joint hypothesis

tests allows us to determine a narrow range of equity premia consistent with the US market data.

That is, only a small range of mean ex ante equity premia and time-varying equity premium models

could have yielded the outcome of the past half century of high mean return and return standard

deviation, low dividend yield, high ex post equity premium, etc.

A large literature makes use of similar techniques in many asset pricing applications, directly

or indirectly simulating stock prices and dividends under various assumptions to investigate price

and dividend behavior.8 However, these studies typically employ restrictions on the dividend and

discount rate processes in order to obtain prices from some variant of the Gordon (1962) model

and/or some log-linear approximating framework. For instance, the present value (price, defined

as P0) of an infinite stream of expected discounted future dividends can be simplified under the

Gordon model as

P0 = D1/(r − g), (9)

where D1 is the coming dividend, r is the constant discount rate, and g is the constant dividend

growth rate. That is, by assuming constant r and g, one can analytically solve for the price. If,

however, discount rates or dividend growth rates are in fact conditionally time-varying, then the

infinite stream of expected discounted future dividends in Equation (5) cannot be simplified into

Equation (9), and it is difficult or impossible to solve prices analytically without imposing other

simplifying assumptions.

8See, for example, Scott (1985), Kleidon (1986), West (1988a,b), Campbell (1991), Gregory and Smith (1991),
Mankiw, Romer, and Shapiro (1991), Hodrick (1992), Timmermann (1993, 1995), and Campbell and Shiller (1998).
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Rather than employ approximations to solve our price calculations analytically, we instead

simulate the dividend growth and discount rate processes directly, and evaluate the expectation

through Monte Carlo integration techniques, adopting the DK method.9 In the setting of time-

varying dividend growth rates and interest rates which conditionally covary, this technique allows

us to evaluate prices, returns, and other financial quantities without approximation error.10 We

also take extra care to calibrate our models to the time-series properties of actual market data.

For example, annual dividend growth is strongly autocorrelated in the S&P 500 stock market

data, counter to the assumption of a logarithmic random walk for dividends sometimes employed

for tractability in other applications. Furthermore, interest rates are autocorrelated and cross-

correlated with dividend growth rates. Thus we incorporate these properties in our 12 models

(shown in Table I), which we use to produce our simulated dividend growth rates, interest rates,

and, ultimately, our estimate of the ex ante equity premium.

We estimated each of the 12 models over a grid of discrete values of the ex ante equity premium,

with the grid as fine as an eighth of a percent in the vicinity of a 3.5% equity premium, and no

coarser than 100 basis points for equity premium values exceeding 5%. The entire exercise was

conducted using distributed computing across a grid of 30 high-end, modern-generation computers

over the course of a month. On a modern stand-alone computer, estimation of a single model for a

single assumed value of the ex ante equity premium would take roughly one week to estimate (and,

as stated above, we consider many values of the ex ante equity premium for each of our models).

II Univariate Conditional Distributions For Model 1

All of the results in this section of the paper are based on Model 1, as defined in Table I. Model 1

incorporates interest rates that follow an AR(1) process and dividend growth rates that follow a

MA(1) process. The ex ante equity premium in Model 1 follows an AR(1) process (that emerges

from Merton’s (1980) conditional CAPM, as detailed in Appendix 1), with no trends or breaks

in either the equity premium process or dividend growth rate process. We start with this “plain

9The Dondaldson and Kamstra (1996) method nests other fundamental dividend-discounting valuation methods
as special cases. For instance, in a Gordon (1962) world of constant dividend growth rates and interest rates, the
DK method produces the Gordon model price, albeit through numerical integration rather than analytically.

10There is still Monte Carlo simulation error, but that is random, unlike most types of approximation error, and
it can also be measured explicitly and controlled to be very small, which we do, as explained in Appendix 2.
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vanilla” model because it provides a good illustration of how well dividend-discounting models that

incorporate time-varying autocorrelated dividend growth and discount rate processes can produce

prices and returns that fit the experience of the last half century in the US. This model also

provides a good starting point to contrast with models employing breaks and trends in equity

premium and dividend growth processes. We consider more complex and arguably more realistic

models incorporating trends and breaks later in the paper.

It is well known that the ex ante equity premium is estimated with error. See, for instance,

Merton (1980), Gregory and Smith (1991), and Fama and French (1997). Any particular realization

of the equity premium is drawn from a distribution, implying that given key information about the

distribution (such as its mean and standard deviation), one can construct a confidence interval of

statistically similar values and determine whether a particular estimate is outside the confidence

interval. As mentioned above, an implication of this estimation error is that most studies have

produced imprecise estimates of the mean equity premium. For instance, a typical study might

yield an 800 basis point 95% confidence interval around the ex ante equity premium.11 Studies

including Fama and French (2002) have introduced innovations that make it possible to narrow the

range. One of our goals is to further sharpen the estimate of the mean ex ante equity premium.

We first consider what we can learn by looking at the univariate statistics that emerge from our

simulations. We can use the univariate distributions to place loose bounds on plausible values of

the mean ex ante equity premium. While the analysis in this section based on univariate empirical

distributions is somewhat casual, in Section III we conduct formal analysis based on χ2 statistics

and the joint distributions of the data, yielding very tight bounds on plausible values of the mean ex

ante equity premium and identifying plausible models of the equity premium process, representing

our main contributions.

Consider the following: conditional on a particular value of the ex ante equity premium, how

unusual is an observed realization of the ex post equity premium? How unusual is an observed

realization of the mean dividend yield? Each simulated economy produces a set of financial statis-

tics based on the simulated annual time-series observations, and these financial statistics can be

11This particular range is based on the simple difference between mean realized equity returns and the average
riskfree rate based on the last 130 years of data, as summarized in Table I of Fama and French (2002).
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compared and contrasted with the US experience of the last half century. By considering not

only the mean of a financial statistic across simulated economies, such as the mean ex post equity

premium, but also conditional moments and higher moments including the standard deviation of

excess returns produced in our simulations, we can determine with high refinement the ability of

our simulated data to match characteristics of the US economy. For instance, market returns, to be

discussed below, are volatile. Thus it is interesting to examine the degree to which our simulations

are able to produce volatile returns and to look at the distribution of return variance as we vary

the mean ex ante equity premium in our simulated economies.

We can compare any financial statistic from the last half century to our simulated economies

provided the statistic is based on returns or dividends or prices, as these are data that the simulation

produces. We could also consider moments based on interest rates or dividend growth rates, but

since we calibrate our models to interest rates and dividend growth rates, all our simulations should

(and do) fit these moments well by construction. We choose moments based on two considerations.

First, the moments should be familiar and the significance of the moments to economic theory

should be obvious. Second, the moments should be precisely estimated; if the moments are too

“noisy,” they will not help us narrow the range of ex ante equity premia. For instance, return

skew and kurtosis are very imprecisely estimated with even 50 years of data, so that these moments

are largely uninformative. The moments must also be well-defined; moments must be finite, for

instance. The expected value of the price of equity is undefined, but we can use prices in concert

with a cointegrated variable like lagged price (to form returns) or dividends (to form dividend

yields).

Rather than presenting copious volumes of tabled results, we summarize the simulation results

with concise plots of probability distributions of the simulated data for various interesting financial

statistics. This permits us to determine if a particular ex ante equity premium produces financial

statistics similar to what has been seen over the last half century in the US.

Figure 1 contains four panels, and in each panel we present the probability distribution function

for one of various financial statistics (ex post equity premia, dividend yield, Sharpe ratio, and

return volatility) based on each of four different ex ante equity premium settings. We also indicate

the realized value for the actual US data. Comparison of the simulated distribution with realized
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values in these plots permits a very quick, if casual, first assessment of how well the realized US data

agree with the simulated data, and which assumed values of the ex ante equity premium appear

inconsistent with the experience of the last half century of US data.

Panels A through D of Figure 1 contain probability distribution functions (PDFs) corresponding

to the mean ex post equity premium, the mean dividend yield, the Sharpe ratio, and return volatility

respectively, based on assumed mean ex ante equity premia of 2.75%, 3.75%, 5%, and 8%. For the

sake of clarity, the dotted lines depicting the PDFs in Figure 1 are thinnest for the 2.75% case

and become progressively thicker for the 3.75%, 5%, and 8% cases. The actual US realized data is

denoted in each panel with a solid vertical line.

The actual US mean equity premium, displayed in Panel A, is furthest in the right tail of the

distribution corresponding to a 2.75% ex ante equity premium, and furthest in the left tail for the

ex ante premium of 8%. The wide range of the distribution of the mean ex post equity premia

for each assumed value of the ex ante equity premium is consistent with the experience of the last

half century in the US, in which the mean ex post equity premium has a 95% confidence interval

spanning plus or minus roughly 4% or 5%. The actual dividend yield of 3.4%, displayed in Panel B,

is unusually low for the 5% and 8% ex ante equity premium cases, but it is near the center of the

distribution for the ex ante premium values of 2.75% and 3.75%. In Panel C, only the Sharpe ratios

generated with an ex ante equity premium of 8% appear inconsistent with the US experience of the

last half century. The return volatility, displayed in Panel D, clearly indicates that the experience

of the US over the last half century is somewhat unusual for all ex ante equity premia considered,

though least unusual for the lowest ex ante equity premium. Casual observation, based on only

the evidence in these univariate plots, implies that the ex ante equity premium which could have

generated the actual high ex post equity premium and low dividend yield of the last half century

of the US experience likely lies above 2.75% and below 5%.

Figure 1 goes about here.

We constructed similar plots for the mean return and for conditional moments, including the

return first order autocorrelation coefficient estimate (the OLS parameter estimate from regressing

returns on lagged returns and a constant, i.e., the AR(1) coefficient), the return first order au-
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toregressive conditional heteroskedasticity coefficient estimate (the OLS parameter estimate from

regressing squared residuals on lagged squared residuals and a constant, i.e., the ARCH(1) co-

efficient), and the price-dividend ratio’s first order autocorrelation coefficient estimate (the OLS

parameter estimate from regressing the price-dividend ratio on the lagged price-dividend ratio and

a constant). The mean return distributions are similar to the ex post equity premium distributions

shown in Figure 1, and all choices of the ex ante equity premium produce returns and price-dividend

ratios that have conditional time-series properties matching the US data, so these results are not

presented here.

Figure 1 has two central implications of interest to us. First, the financial variable statistics

produced in our simulations are broadly consistent with what has been observed in the US economy

over the past five decades. Most simulated statistics match the magnitudes of financial quantities

from the actual US data, even though we do not calibrate to prices or returns.12 Second, the

results suggest that the 2.75% through 8% interval we present here likely contains the ex ante

equity premium consistent with the US economy. Univariate results for Models 2 through 10 are

qualitatively very similar to those presented for Model 1. Univariate results for Models 11 and 12,

in contrast, are grossly rejected by the experience of the US economy. Detailed univariate results

for Models 2 through 12 are omitted for the sake of brevity, but the poor performance of Models 11

and 12 will be evident in multivariate results reported below.

To narrow further the range of plausible ex ante equity premium values, we need to exploit the

full power of our simulation procedure by considering the joint distributions of statistics that arise

in our simulations and comparing them to empirical moments of the observed data. We consider

the multivariate distributions of several moments of the data, including ex post equity premia,

dividend yields, and return volatility. This exercise allows for inference that is not feasible with the

univariate analysis conducted above, and it leads to a very precise estimate of the ex ante equity

premium. We turn to this task in the next section, where we also broaden the class of models we

consider.

12This in itself is noteworthy, as analytically tractable models, such as the Gordon (1962) growth model, typically
imply constant or near-constant dividend yields and very little return volatility. In contrast, dividend yields observed
in practice vary considerably over time and are strongly autocorrelated, and returns exhibit considerable volatility.
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III Model Extensions, Multivariate Analysis, and Tests

The central focus in this section is on joint distributions of the financial statistics that emerge

from our simulations: combinations of the returns, ex post equity premia, Sharpe ratios, dividend

yields, etc., and tests on the value of the ex ante equity premium using these joint distributions. We

focus primarily on three moments of the data: the mean ex post equity premium, the excess return

volatility, and the mean dividend yield. These three moments have the advantage of being the

most precisely estimated and hence most informative for the value of the ex ante equity premium.

Other moments that we could have considered are either largely redundant (such as the Sharpe

Ratio which is a direct function of excess returns and the excess return standard deviation), or

are so imprecisely estimated (for example, the ARCH(1) or AR(1) coefficients) that they would

not help sharpen our estimates of the ex ante equity premium. Of course, we also do not consider

the distributions of financial variables to which we calibrate our simulations (interest rates and

dividend growth rates), as the simulated mean, variance, and covariance of these variables are, by

construction, identical to the corresponding moments of the actual data to which we calibrate.

Our purpose in considering joint distributions is two-fold. First, multivariate tests are used to

form a tight confidence bound on the true value of the ex ante equity premium. These tests strongly

reject our models if the ex ante equity premium is outside of a narrow range around 3.5%. This

range is not sensitive to even fairly substantial changes in the model specification, which suggests

that the 3.5% finding is robust. Second, this analysis leads us to reject model specifications that

fail to incorporate certain features, such as trends and breaks in the equity premium. Interestingly,

even when a model specification is rejected, we find the most plausible ex ante equity premium still

lies in the same range as the rest of our models, very near 3.5%.

Up to this point we have considered detailed results for Model 1 exclusively. The Model 1 sim-

ulation incorporates some appealing basic features, such as parameter uncertainty and calibrated

time-series models for equity premia, interest rates, and dividend growth rates. It does not, how-

ever, incorporate some features of the equity premium process that have been indicated by other

researchers. One omitted feature is a gradual downward trend in the equity premium, as docu-

mented in many studies, including Jagannathan, McGrattan, and Scherbina (2000), Pástor and
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Stambaugh (2001), Bansal and Lundblad (2002), and Fama and French (2002). Another is a struc-

tural break in the equity premium process over the early 1990s, as shown by Pástor and Stambaugh

(2001). An increase in the growth rate of cashflows (but not dividends) to investors starting in

the late 1970s, as documented by Bagwell and Shoven (1989), Fama and French (2001) and others,

is also a feature that Model 1 fails to incorporate. Therefore, in this section we consider models

which incorporate one, two, or all three of these features, as well as different time-series models for

interest rates and equity premia. We also consider stripped-down models to assess the marginal

contribution of model features such as parameter uncertainty and the specification of the time-series

process used to model dividend growth rates and interest rates.

In Figures 2 through 8 (to be fully discussed below), we present χ2 test statistics for the null

hypothesis that the US experience during 1952 through 2004 could have been a random draw from

the simulated distribution of the mean ex post equity premium, the excess return volatility, and

the mean dividend yield.13

A significant test statistic, in this context, suggests that the combination of financial statistics

observed for the US economy is significantly unusual compared to the collection of simulated data,

leading us to reject the null hypothesis that the given model and assumed ex ante equity premium

value could have generated the US data of the last half century. It is possible to reject every ex ante

equity premium value if we use models of the equity premium that are misspecified (the rejection

of the null hypothesis can be interpreted as a rejection of the model). It is also possible that a very

wide range of ex ante equity premium values are not rejected for a collection of models, thwarting

our efforts to provide a precise estimate of the ex ante equity premium or a small range of allowable

equity premium models.

As it happens, models that ignore breaks and trends in the equity premium are rejected for

13The χ2 tests are based on joint normality of sample estimates of moments of the simulated data, which follow
an asymptotic normal distribution based on a law of large numbers (see White, 1984, for details). In the case of the
excess return volatility, we consider the cube root of the return variance, which is approximately normally distributed
(see page 399 of Kendall and Stuart, 1977, for further details). We also estimate the probability of rejection using
bootstrapped p-values, to guard against deviations from normality. These bootstrapped values are qualitatively
identical to the asymptotic distribution p-values. Finally, when performing tests that include the dividend yield
moment, if the simulation includes a break in dividends corresponding to an increase in cash payouts starting in
1978 in the US data (again, see Fama and French, 2001), we also adjust the US data to reflect the increase in mean
payout levels. This makes for a small difference in the mean US payout ratio and no qualitative change to our results
if ignored.

21



virtually every value of the ex ante equity premium we consider. But for a group of sophisticated

models that incorporate trends and breaks in the equity premium, we cannot reject a narrow range

of ex ante equity premia, roughly between 3% and 4%. We also find that models tend to be rejected

if the impact on cashflows to shareholders from share repurchases are ignored. We begin with

some simple models, then consider models that are arguably more realistic as they incorporate

equity premium and cashflow trends and breaks, and finish by considering a host of related issues,

including the impact of parameter estimation error and, separately, investor uncertainty about the

fundamental value of equities.

A Simple (One-at-a-Time) Model Extensions

We now consider extensions to Model 1, each extension adding a single feature to the base model.

Recall that the features of each model are summarized in Table I. For Model 2, an 80 basis point

downward trend is incorporated in the equity premium process. For Model 3, a 50 basis point drop

in year 39 of the simulation (corresponding to 1990 for the S&P 500 data) is incorporated in the

equity premium process. For Model 4, the dividend growth rate process is shifted gradually upward

a total of 100 basis points, starting in year 27 of the simulation (corresponding to 1978 for the

S&P 500 data) and continuing for 20 years at a rate of 5 basis points per year. These one-at-a-

time feature additions help us evaluate if one or another feature documented in the literature can

markedly improve model performance over the simple base model.

Panel A of Figure 2 and Panel A of Figure 3 display plots of the value of joint χ2 tests on three

moments of the data, the mean ex post equity premium, the excess return volatility, and the mean

dividend yield, for Models 1 though 4, and shows how the test statistic varies as the ex ante equity

premium varies from 2.25% to 8% in increments as small as an eighth of a percent toward the lower

end of that range. Panels B through D of Figures 2 and 3 display the univariate Student t-test

statistics for each of these three moments of the data, again showing how the test statistic varies

with the assumed value of the ex ante equity premium. The values of the ex ante equity premia

indicated on the horizontal axis represent the ending values of the ex ante equity premium in each

set of simulations. For models which incorporate a downward trend or a structural break in the

equity premium, the ending value of the ex ante equity premium differs from the starting value.
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So, for instance, Model 2 has a starting ex ante equity premium that is 80 basis points higher than

that displayed in Figure 2, as Model 2 has an 80 basis point trend downward in the ex ante equity

premium. For Model 1 the value of the ex ante equity premium is the same at the end of the

53-year simulation period as it is at the start of the 53-year period, as Model 1 does not incorporate

a downward trend or structural break in the equity premium process. Critical values of the test

statistics corresponding to statistical significance at the 10%, 5%, and 1% levels are indicated by

thin dotted horizontal lines in each panel, with the lowest line indicating significance at the 10%

level and the highest line the 1% significance level.

Figures 2 and 3 go about here.

Consider now specifically Panel A of Figures 2 and 3. (Note that we use a log scale for the

vertical axis of the plots in Panel A of Figures 2 through 8 for clarity of presentation. Note as well

that we postpone further discussion of Panels B through D until after we have introduced results

for all the models, 1 through 12.) On the basis of Panel A of Figures 2 and 3, we see that only

in the case of Model 4 do we observe χ2 test statistics lower than the cutoff value implied by a

10% significance level (again, indicated by the lowest horizontal dotted line in the plot). The test

statistics dip (barely) below the 10% cutoff line only for values of the ex ante equity premium within

about 25 basis points of 4%. Models 1-3, in contrast, are rejected at the 10% level for every ex

ante equity premium value. If we allow fairly substantial departures of the S&P 500 data from the

expected distribution, say test statistics that are unusual at the 1% level of significance (the upper

horizontal dotted line in the plot), then all the models indicate ranges of equity premia that are

not rejected, in each case centered roughly between 3.5% and 4%. Recall that the equity premium

plotted is the ending value, so if the model has a downward trend or decline because of a break in

the equity premium, its ending value is below its average ex ante equity premium.

One conclusion to draw from the relative performance of these four competing models is that

each additional feature over the base model, the dividend growth acceleration in the late 1970s and

the trends and breaks in the equity premium, lead to better performance relative to the base model,

but each in isolation is still inadequate. The model most easily rejected is clearly that which does

not account for trends and breaks in the equity premium and cashflow processes.
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B Further Model Extensions (Two or More at a Time)

We turn now to joint tests based on Models 5 though 10. These models incorporate the basic

features of Model 1, including time-varying and dependent dividend growth and interest rates,

parameter uncertainty, and, with the exception of Model 10, an equity premium process derived

from the Merton (1980) conditional CAPM (detailed in Appendix 1). These models also permit

trends and/or breaks in the equity premium and dividend growth rate processes two or more at-

a-time and incorporate alternative time-series models for the interest rate and the equity premium

processes. Models 1 through 4 demonstrate that it is not sufficient to model the equity premium

as an autoregressive time-varying process, and that one-at-a-time augmentation with trends or

breaks in the equity premium process is also not sufficient, though the augmentations do lead to

improvements over the base model in our ability to match sample moments from the US experience

of the last half century. Models 5 through 10 allow us to explore questions like: do we need a

conditionally time-varying equity premium model built on the Merton conditional CAPM model,

or is it sufficient to have an equity premium that simply trends downward with a break? If we have

a break, a trend, and time-variation in the equity premium process, is it still essential to account for

the disappearing dividends of the last 25 years? Are our results sensitive to the time-series model

specifications we employ in our base model?

Model 5 is the base model, Model 1, augmented to include an 80 basis point gradual downward

trend in the equity premium and a 100 basis point gradual upward trend in the dividend growth

rate. Model 6 is the base model adjusted to incorporate a 30 basis point gradual downward trend

in the equity premium, a 50 basis point abrupt decline in the equity premium, and a 100 basis

point gradual upward trend in the dividend growth rate. Model 7 is the best model as indicated

by the Bayesian Information Criterion (BIC),14 augmenting the equity premium process with a 30

basis point gradual downward trend and a 50 basis point abrupt decline and adding a 100 basis

point gradual upward trend in the dividend growth rate. Model 8 takes the second-best BIC model

14For Models 7 and 8 we employ the BIC to select the order of the ARMA model driving each of the interest rate,
equity premium, and dividend growth rate processes. The order of each AR process and each MA process for each
series is chosen over a (0, 1, 2) grid. The BIC has been shown by Hannan (1980) to provide consistent estimation of
the order of linear ARMA models. We employ the BIC instead of alternative criteria because it delivers relatively
parsimonious specifications and because it is widely used in the literature (e.g., Nelson, 1991, uses the BIC to select
EGARCH models).
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and incorporates a 30 basis point gradual downward trend in the equity premium, a 50 basis point

abrupt decline in the equity premium, and a 100 basis point gradual upward trend in the dividend

growth rate. Model 9 is the base model adjusted to incorporate a 30 basis point gradual downward

trend in the equity premium and a 50 basis point abrupt decline in the equity premium. Model 10

has the equity premium model following a deterministic downward trend with a 50 basis point

structural break, interest rates following an AR(1), and dividend growth rates following an MA(1).

Given the existing evidence in support of a gradual downward trend in the equity premium, a

structural break in the equity premium process over the early 1990s, and an increase in the growth

rate of non-dividend cashflows to investors (such as share repurchases) starting in the late 1970s,

we believe Models 6, 7, and 8 to be the best calibrated and therefore perhaps the most plausible

among all the models we consider, and Model 5 to be a close alternative.

In Panel A of Figures 4, 5, and 6 we present plots of the χ2 test statistics on three moments

of the data, the mean ex post equity premium, the excess return volatility, and the mean dividend

yield. Again, we consider Panels B through D later. We see in Panel A of Figures 4 and 5 that

for Models 5 through 8 we cannot reject a range of ex ante equity premium values at the 5%

level. These models produce test statistics that drop well below even the 10% critical value (recall

that Panel A’s scale is logarithmic, and thus compressed). These models all embed the increased

cashflow feature and either an eighty basis point downward trend in the equity premium, or both a

break and a trend in the equity premium, adding to an eighty basis point decline over the last half

century. The range of ex ante equity premia supported (not rejected) is narrowest for Model 7 (the

best model indicated by BIC) and Model 8 (the second best model indicated by BIC) with a range

less than 75 basis points at the 10% level. The range is slightly wider for Models 5 and 6, roughly

75 to 100 basis points. In each case, the ex ante equity premium that yields the minimum joint test

statistic, corresponding to our estimate of π, is centered between 3.25% and 3.75%.

For the models which exclude the cashflow increase, Models 9 and 10, displayed in Figure 6, we

see that we can reject at the 10% level all ex ante equity premium values. Model 9 is best compared

to Model 6, as it is equivalent to Model 6 with the sole difference of excluding the cashflow increase.

We see from Panel A of Figures 4 and 6 that excluding the cashflow increase flattens the trough of

the plot of χ2 statistics, and approximately doubles the test statistic value, from a little over 3 for
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Model 6 in Figure 4 to a little over 6 for Model 9 in Figure 6 (recall that the scale is compressed in

Panel A as we use a log scale). Model 10 is identical to Model 9 apart from the sole difference that

Model 10 excludes the Merton CAPM conditionally-varying equity premium process. Exclusion of

this conditional time variation (modeled as a first order autoregressive process) worsens the ability

of the model to match moments to the US experience at every value of the ex ante equity premium.

The difference in performance leads us to reject a model excluding a conditionally-varying equity

premium.

Figures 4, 5, and 6 go about here.

On the basis of our most plausible models, Models 6, 7, and 8, we can conservatively conclude

that the ex ante equity premium is within 50 basis points of 3.5%. We can also conclude that

models that allow for breaks and/or trends in the equity premium process are the only models that

are not rejected by the data. Simple equity premium processes, those that rule out any one of a

downward break and/or trend or a Merton (1980) CAPM conditionally-varying equity premium

process, cannot easily account for the observed low dividend yields, high returns, and high return

volatility. Ignoring the impact of share repurchases on cashflows to investors over the last 25 years

also compromises our ability to match the experience of US prices and returns of the last half

century.

C Is Sampling Variability (Uncertainty) in Generating Parameters Im-
portant?

All of the models we have considered so far, Models 1-10, incorporate parameter value uncertainty.

This uncertainty is measured using the estimated covariance of the parameter estimates from our

models. We generate model parameters by randomly drawing values from the joint distribution of

the parameters, exploiting the asymptotic result that our full information maximum likelihood pro-

cedure produces parameter estimates that are jointly normally distributed, with an easily computed

variance-covariance structure.

Now we consider two models that have no parameter sampling variability built into them, Models

11 and 12. In these models the point estimates from our ARMA estimation on the S&P 500 data are

used for each and every simulation. Ignoring uncertainty about the true values for the parameters
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of the ARMA processes for interest rates, dividend growth rates, and the equity premium should

dampen the variability of the generated financial statistics from these simulations, and potentially

understate the range of ex ante equity premia supported by the last half century of US data.

Model 11 is the base model augmented to incorporate a 30 basis point gradual downward trend

in the equity premium, a 50 basis point abrupt decline in the equity premium, and a 100 basis

point gradual upward trend in the dividend growth rate, with no parameter uncertainty. (Model 11

is identical to Model 6 apart from ignoring parameter uncertainty.) Model 12 is the base model,

Model 1, with no parameter uncertainty.

Figure 7 goes about here.

In Panel A of Figure 7 we present plots of the χ2 test statistics on three moments of the data,

the mean ex post equity premium, the excess return volatility, and the mean dividend yield. Again,

we consider Panels B through D later. We see in Panel A that both Models 11 and 12 are rejected

for all values of the ex ante equity premium, though Model 11, which allows for trends and breaks,

performs better than Model 12. The log scale for the vertical axis compresses the values, but the

minimum χ2 statistic for Model 12 is close to 30, indicating very strong rejection of the model, while

the minimum χ2 statistic for Model 11 is roughly 10. In each case, the ex ante equity premium

that yields the minimum joint test statistic, corresponding to our estimate of π, is centered around

3%. It is apparent that parameter uncertainty is an important model feature. Ignoring parameter

uncertainty leads to model rejection, even at the ex ante equity premium setting that corresponds

to the minimum test statistic.

D The Moments That Matter

An interesting question that arises with regard to the joint tests is, where does the test power

come from? That is, which variables give us the power to reject certain ranges of the ex ante

equity premium in our joint χ2 tests? An examination of the ranges of the ex ante equity premium

consistent with the individual moments can shed some light on the source of the power of the joint

tests. Panels B, C, and D of Figures 2 through 7 display plots of the univariate t-test statistics

based on each of the variables we consider in the joint tests plotted in Panel A of these figures.

Panel B of each figure plots t-test statistics on the ex post equity premium, Panel C of each figure
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plots t-test statistics on the excess return volatility, and Panel D of each figure plots t-test statistics

on the price-dividend ratio.

Consider first Panel B of Figures 2 through 7. Virtually all of the models have a minimum t-test

statistic at a point that is associated with an ex ante equity premium close to 6%.15 Because our

method involves minimizing the distance between the ex post equity premium based on the actual

S&P 500 value (which is a little over 6%) and the ex post equity premium estimate based on the

simulated data, it is not surprising that the minimum distance is achieved for models when they

are set to have an ex ante equity premium close to 6%. The t-test on the mean ex post equity

premium rises linearly as the ex ante equity premium setting departs from 6% for each model, but

does not typically reject ex ante equity premium values at the 10% level until they deviate quite

far from the ex ante value at which the minimum t-test is observed. For example, in Panel B of

Figure 4 the ending ex ante equity premium must be as low as 2.25% or as high as 7% before we

see a rejection at the 10% level. This wide range reflects the imprecision of the estimate of the ex

post equity premium which is also evident in the actual S&P 500 data.

The t-tests on the excess return volatility, presented in Panel C of Figures 2 through 7, indicate

that lower ex ante equity premium values lead to models that are better able to match the S&P 500

experience of volatile returns.16 Note that as the ex ante equity premium decreases, the volatility

of returns increases, so high ex ante equity premia lead to simulated return volatilities that are

much lower than the actual S&P 500 return volatility we have witnessed over the last half century.

The test statistic, however, rises slowly as the ex ante equity premium grows larger, in contrast to

the joint test statistics plotted in Panel A of Figures 2 through 7, in which the χ2 test statistic

15Recall that the ex ante equity premium values shown on the horizontal axes are ending values, so if the model
has a downward trend or break in the equity premium process, its ending value is below the mean equity premium.
For instance, Model 11 has a data generating process that incorporates trends and breaks that lead to an ending
equity premium lower than the starting value. Accordingly, for this model we observe (in Panel B of Figure 7) a
minimum t-test at an ending value of the ex ante equity premium which is below the 6% average equity premium.
The coarseness of the grid of ex ante equity premium values around 6% prevents this feature from being more obvious
for some of the other models.

16The intuition behind this result is easiest to see by making reference to the Gordon (1962) constant dividend
growth model, shown above in Equation 9. As the discount rate, r, declines in magnitude, the Gordon price increases.
The variable r equals the risk-free rate plus the equity premium in our simulations, so low values of the equity premium
lead to values of the discount rate that are closer to the dividend growth rate, resulting in higher prices. When the
value of the equity premium is low, small increases in the dividend growth rate or small decreases in the risk-free
rate lead to large changes in the Gordon price. In our simulations (where the conditional mean dividend growth rate
and conditional mean risk-free rate change over time), when the value of the equity premium is low, small changes
in the conditional means of dividend growth rates or risk-free rates also lead to large prices changes, i.e. volatility.
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rises sharply as the ex ante equity premium grows larger (recall that the Panel A vertical axis has a

compressed log scale in Figures 2 through 7). Given these contrasting patterns, the return volatility

moment is unlikely, by itself, to be causing the sharply rising joint test statistic.

Consider now the t-test statistics on the price-dividend ratio, plotted in Panel D of Figures 2

through 7. Notice that in all cases the t-test on the price-dividend ratio jumps up sharply as the ex

ante equity premium rises above 3%. Thus the sharply increasing χ2 statistics we saw in Panel A

of the three figures are likely due in large part to information contained in the price-dividend ratio.

However, return volatility reinforces and amplifies the sharp rejection of premia above 4% that the

dividend yield also leads us to. In terms of the three moments we have considered in the joint χ2 and

univariate t-test statistics, it is evident that the upper range of ex ante equity premia consistent

with the experience of the last half century in the US is limited by the high average S&P 500

price-dividend ratio (or equivalently, the low average S&P 500 dividend yield) together with the

high volatility of returns. This result is invariant to the way we model dividend growth, interest

rates, or the equity premium process. Even an ex ante equity premium of 5% produces economies

with price-dividend ratios and return volatilities so low that they are greatly at odds with the high

return volatility and high average price-dividend ratio observed over the past half century in the

US.

D.1 Sensitivity to Declining Dividends Through Use of the Price-Dividend Ratio

To ensure that our results are not driven by a single moment of the data, in particular a moment of

the data possibly impacted by declining dividend payments in the US, we perform two checks. First,

in Models 4 through 8 we incorporate higher dividends and dividend growth rates than observed

in US corporate dividends. This is to adjust for the practice, adopted widely beginning in the late

1970s, of US firms delivering cashflows to investors in ways (such as share repurchases) which are

not recorded as corporate dividends. As we previously reported, Models 4 through 8 (the models

that incorporate higher cashflows to investors than recorded by S&P 500 dividend payments, i.e.,

the models that use cashflows including share repurchases) are best able to account for the observed

US data. Reassuringly, the estimate of the equity premium emerging from Models 4 through 8 is

virtually identical to that produced by the models that exclude share repurchases.
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Our second check is to perform joint tests excluding the price-dividend ratio. Any sensitivity to

mismeasurement of the price-dividend ratio should be mitigated if we consider joint test statistics

that are based only the ex post equity premium and return volatility, excluding the price-dividend

ratio. These (unreported) joint tests confirm two facts. First, when the joint tests exclude the

price-dividend ratios, the value of the χ2 statistic rises less sharply for values of the ex ante equity

premium above 4%. Essentially, this indicates that using two moments of the data (excluding the

price-dividend ratio) rather than all three makes it more difficult to identify the minimum test

statistic value and thus more difficult to identify our estimate of the ex ante equity premium. This

confirms our earlier intuition that the price-dividend ratio is instrumental in determining the steep

rise of the joint test statistic in Panel A of Figures 2 through 7. Second, and most importantly, the

minimum test statistic is still typically achieved for models with an ex ante equity premium value

between 3% and 4%. For some of the models, the minimum test statistic is 25 or 50 basis points

lower than that found when basing joint tests on the full set of three moments. For a few models,

the minimum test statistic is 25 or 50 basis points higher. Again Models 1 through 3 are rejected

for every value of the ex ante equity premium, and again for Models 4 through 8 the range of ex

ante equity premia that are not rejected is narrow.

E Investors’ Model Uncertainty

We have been careful to explore the impact of estimation uncertainty by simulating from the

sampling distribution of our model parameters, and to explore the impact of model specification

choice (and implicitly model misspecification) by looking at a variety of models for interest rates,

dividend growth rates, and equity premium, ranging from constant rate models to various ARMA

specifications, with and without trends and breaks in the equity premium and dividend growth

rates. Comparing distributions of financial statistics emerging from this range of models to the

outcome observed in the US over the last half century leads us to the conclusion that the range of

true ex ante equity premia that could have generated the US experience is fairly narrow, under 100

basis points, centered roughly on 3.5%. We have not yet addressed, however, the impact of investor

uncertainty regarding the true fundamental value of the assets being priced. Up to this point, all

simulated prices and returns have been generated with knowledge of the (fundamental) processes
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generating interest rates and dividends.

It is impossible to be definitive in resolving the impact of investor uncertainty on prices and

returns. To do so we would have to know what (incorrect) model of fundamental valuation investors

are actually using. We can nonetheless focus our attention on procedures likely to be less affected

by investor uncertainty than others. Up to this point, the joint tests we have used to identify

the plausible range of ex ante equity premia have employed the observed return volatility over

the last half century in the US and the volatility of returns produced in our simulated economies.

However, investor uncertainty could cause market prices to over- and under-shoot fundamental

prices, impacting return volatility, perhaps significantly. A joint test statistic based on only the

mean equity premium and the mean price-dividend ratio, however, should be relatively immune to

the impact of investor uncertainty. (In the absence of extended price bubbles, mean yields should

not be impacted greatly by temporary pricing errors.) Thus we now consider the joint χ2 test

statistic based on only the mean return and the mean price-dividend ratio. Figure 8, Panel A plots

the test statistics for Models 1, 2, and 3, Panel B plots the test statistics for Models 4, 5, and 6,

Panel C plots the test statistics for Models 7, 8, and 9, and Panel D plots the test statistics for

Models 10, 11, and 12, with a log scale for the vertical axis in all cases.

Figure 8 goes about here.

First consider results for Models 1 through 4, shown in Panels A and B of Figure 8. These are

the base model with no trends or breaks, and models which incorporate only one feature (trend

or break in the equity premium or dividend growth rate) at a time. We see again that Model 1 is

rejected outright for every value of the ex ante equity premium, at the 10% level of significance,

and we see again that adding trends or breaks, even one-at-a-time, improves performance. Now

Model 2 (incorporating an 80 basis point downward trend in the equity premium) and Model 4

(incorporating the increased cashflow growth rate) are not rejected over narrow ranges at the 10%

significance level. We find that Models 5, 6, 7, and 8, all incorporating trends and breaks in the

equity premium and dividend growth rate processes and shown in Panels B and C of Figure 8,

deliver a wide range of ex ante equity premia which cannot be rejected at any conventional level

of statistical significance. We also see that Model 9 in Panel C, incorporating a trend (of 30 basis
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points) and a break (of 50 basis points) in the equity premium, performs similarly to Model 2, which

has only a trend of 80 basis points (neither model incorporates a cashflow change). In Panel D we

see Model 10 which has a deterministic equity premium with trends and breaks. This model’s

performance is also similar to Model 2, but slightly worse, rejected at the 10% level at every ex

ante equity premium. Also in Panel D we see that Models 11 and 12, which do not incorporate

parameter estimation uncertainty, are almost everywhere rejected. (In contrast to the joint test

shown in Panel A of Figure 7, based on all three moments, we find that Model 11 is not rejected

only for the 3% value of the ex ante equity premium.)

Overall, the value of the ex ante equity premium at which the joint test statistic is minimized

(i.e., our estimate of the ex ante equity premium) is not particularly affected by our having based

the joint tests on two moments of the data rather than the original three, nor is our selection of

plausible models for the equity premium process. Across the models, the highest estimate of the ex

ante equity premium is roughly 4% (for Model 4) and the lowest is 3% (for Models 11 and 12). With

the joint tests based on two moments, all models support (i.e., do not reject) broader ranges of the

ex ante equity premium, with the range widest for Models 4 through 8 (now spanning roughly 200

basis points for any given model, from ex ante equity premium values as low as 2.25% for Model 7 to

values as high as 4.5% for Model 4). This widening of the range of plausible ex ante equity premia

is consistent with a decline in the power of our joint test, presumably from omitting an important

moment of the data, the return volatility. The widening of the range of plausible ex ante equity

premia is also consistent with investors being uncertain about the true fundamental value of the

assets being priced. The last half century of data from the US will be less informative as investor

uncertainty about the processes governing fundamentals exaggerates the volatility of returns and

hence reduces the precision of estimates of the ex ante equity premium.

To the extent that market prices are set in an efficient market dominated by participants with

models of dividend growth rates and interest rates that reflect reality, these ranges of plausible ex

ante equity premia based on only the two-moment joint test are overly wide. Still these ranges are

useful for putting a loose bound on the likely range of the ex ante equity premium.
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F Bootstrapped Test Statistics

Up to this point, all of our test statistics have relied on asymptotic distribution theory for critical

values. The asymptotic distributions should be reliable both because we are looking at averages over

independent events (our simulations are by construction independent) and because we have many

simulations over which to average (2,000). Nonetheless, it is straightforward to use our simulated

test statistics to bootstrap the distribution of the test statistics, thus we do so. While use of the

bootstrap produces small quantitative changes to our results, our main findings remain unchanged.

The best estimate of the mean ex ante equity premium and the range of plausible ex ante equity

premia and equity premium models do not budge.

IV Conclusions

The equity premium of interest in theoretical models is the extra return investors anticipate when

purchasing risky stock instead of risk-free debt. Unfortunately, we do not observe this ex ante

equity premium in the data. We only observe the returns that investors actually receive ex post,

after they purchase the stock and hold it over some period of time during which random economic

shocks impact prices. US stocks have historically returned roughly 6% more than risk-free debt. Ex

post estimates provided by recent papers suggest the US equity premium may be falling in recent

years. However, all of these estimates are imprecise, and there is little consensus emerging about

the true value of the ex ante equity premium. The imprecision and lack of consensus both hamper

efforts to use equity premium estimates in practice, for instance to conduct valuation or to perform

capital budgeting. The imprecision of equity premium estimates also complicates resolution of the

equity premium puzzle and makes it difficult to determine if the equity premium changes over time.

In order to determine the most plausible value of the ex ante equity premium and the most

plausible restrictions on how the equity premium evolves over time, we have exploited information

not just on the ex post equity premium and the precision of this estimate, but also on related

financial statistics that define the era in which this ex post equity premium was estimated. The

idea of looking at related fundamental information in order to improve the estimate of the mean ex

ante equity premium follows recent work on the equity premium which has also sought improvements
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through the use fundamental information like the dividend and earnings yields (Fama and French,

2002, and Jagannathan, McGrattan, and Scherbina, 2000), higher-order moments of the excess

return distribution (Maheu and McCurdy, 2007) and return volatility and price movement directions

(Pástor and Stambaugh, 2001).

Our central insight is that the knowledge that a low dividend yield, high ex post equity premium,

high return volatility, and high Sharpe ratio all occurred together over the last five decades tells us

something about the mean ex ante equity premium and the likelihood that the equity premium is

time-varying with trends and breaks. Certainly, if sets of these financial statistics are considered

together, we should be able to estimate the equity premium more accurately than if we were to

look only at the ex post equity premium. This insight relies on the imposition of some structure

from economic models, but our result is quite robust to a wide range of model structures, lending

confidence to our conclusions.

We employ the simulated method of moments technique and build on the dividend discounting

method of fundamental valuation of Donaldson and Kamstra (1996) to estimate the ex ante equity

premium. We reject as inconsistent with the US experience all but a narrow range of values of the

mean ex ante equity premium and all but a small number equity premium time-series models. We

do so while incorporating model estimation uncertainty and allowing for investor uncertainty about

the true state of the world. The range of ex ante equity premia that is most plausible is centered

very close to 3.5% for virtually every model we consider. The models of the equity premium not

rejected by our model specification tests – that is, consistent with the experience of the US over

the last half century – incorporate substantial autocorrelation, a structural break, and/or a gradual

downward trend in the equity premium process. For these models, the range of ex ante equity

premia supported by our tests is very narrow, plus or minus 50 basis points around 3.5%. All

together, our tests strongly support the notion that the equity premium process over the last half

century in the US was very unlikely to have been constant, was likely to have demonstrated at least

one sharp downward break, and was likely to have demonstrated a gradual downward trend.
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Appendices

Appendix 1: Models for Generating Data

In creating distributions of financial variables modeled on the US economy, we must generate

the fundamental factors that drive asset prices: dividends and discount rates (where the discount

rate is defined as the risk-free rate plus a possibly time-varying equity premium). Thus we must

specify time-series models for dividend growth, interest rates, and ex ante equity premia so that our

Monte Carlo simulations will generate dividends and discount rates that share key features with

observed S&P 500 dividends and US discount rates. We consider a range of models to generate

data in our simulations, as outlined in Table I. Each model incorporates specific characteristics that

define the way we generate interest rates and dividend growth rates, and each model makes specific

assumptions about the way the ex ante equity premium evolves over time, if indeed it does evolve

over time. In providing further information about these defining aspects of our models, we consider

each model feature from Table I in turn, starting with the time-series processes for interest rates,

dividend growth rates, and the ex ante equity premium.

A1.1 Processes for the Interest Rate, Dividend Growth Rate and the Ex Ante Equity

Premium

The interest rate and dividend growth rate series we generate are calibrated to the time-series

properties of data observed in the US over the period 1952 to 2004. We considered the ability

of various time-series models to eliminate residual autocorrelation and ARCH (evaluated with LM

tests for residual autocorrelation and for ARCH, both using 5 lags), and we evaluated the log

likelihood function and Bayesian Information Criterion (BIC) across models. Although we will

describe the process of model selection one variable at-a-time, our final models were chosen using

a Full Information Maximum Likelihood (FIML) systems equation estimation and a joint-system

BIC optimization.

Economic theory admits a wide range of possible processes for the risk-free interest rate, from

constant to autoregressive and highly non-linear heteroskedastic forms. We find that in practice,

both AR(1) and ARMA(1,1) models of the logarithm of interest rates, based on the model of Hull

(1993, page 408), perform well in capturing the time-series properties of observed interest rates. We
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also find the AR(1) and ARMA(1,1) specifications perform comparably to one another, markedly

dominating the performance of other specifications including higher order models like ARMA(2,2).

An attractive feature of modeling the log of interest rates is that doing so restricts nominal interest

rates to be positive. Finally, we find standard tests for normality of the error term (and hence

conditional log-normality of interest rates) do not reject the null of normality.

Since dividend growth rates have a minimum value of -100% and no theoretical maximum, a

natural choice for their distribution is the log-normal. Thus we model the log of 1 plus the dividend

growth rate, and we find that both a MA(1) and an AR(1) specification fit the data well, removing

evidence of residual autocorrelation and ARCH at five lags. These specifications are preferred on

the basis of the same criteria used to choose the specification for modeling interest rates. As with

the interest rate data, we find standard tests for normality of the error term (and hence conditional

log-normality of dividend growth rates) do not reject the null of normality.

Most of our models incorporate an ex ante equity premium that follows an ARMA process

emerging from Merton’s (1980) conditional CAPM. Merton’s conditional CAPM is expressed in

terms of returns in excess of the risk-free rate, or, in other words, the period-by-period equity

premium. For the ith asset,

Et(ri,t) = λ covt−1(ri,trm,t), (10)

where ri,t are excess returns on the asset, rm,t are excess returns on the market portfolio, covt−1

is the time-varying conditional covariance between excess returns on the asset and on the market

portfolio, and Et is the conditional-expectations operator incorporating information available to the

market up to but not including the beginning of period t. λ is a parameter of the model, described

below.

For the expected excess market return, (10) becomes

Et(rm,t) = λ vart−1(rm,t) (11)
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where vart−1 is the market time-varying conditional variance. Merton (1980) argues that λ in (11)

is the weighted sum of the reciprocal of each investor’s coefficient of relative risk aversion, with the

weight being related to the distribution of wealth among individuals.

Equation (11) defines a time-varying equity premium but has the equity premium varying only

as a function of time-varying conditional variance. Following Bekaert and Harvey (1995), it is

possible to allow λ in Equation (11) to vary over time by making it a parametric function of

conditioning variables (indicated below as Zt−1). The functional form Bekaert and Harvey employ

(in Equation (12) of their paper) is exponential, restricting the price of risk to be positive:

λt−1 = exp (δ′Zt−1) . (12)

Shiller (1984), Rozeff (1984), Campbell and Shiller (1988), Hodrick (1992), and Bekaert and

Harvey (1995) all document the usefulness of dividend yields to predict returns, so we use lagged

dividend yields as our conditioning variable. We make use of a simple ARCH specification to model

vart−1(rm,t). Once again we calibrate to the S&P 500 over 1952 to 2004, estimating the following

model:

rm,t = λt−1 vart−1(rm,t) + em,t (13)

vart−1(rm,t) = ω + αe2
m,t−1 (14)

λt−1 = exp

(
δ0 + δ1

Dt−1

Pt−1

)
. (15)

The values of estimated parameters are δ0 = −3.93, δ1 = 0.277, ω = 0.0194, and α = 0.542. The

R2 of this model is 2.8%.

For our simulations, we model the time-series process of the ex ante time-varying equity premium

(denoted πt) by using the excess return as a proxy for the equity premium:

π̂t = λ̂t−1 ˆvart−1(rm,t), (16)
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where λ̂t−1 = exp
(
−3.93 + 0.277Dt−1

Pt−1

)
, ˆvart−1(rm,t) = 0.0194 + 0.542ê2

m,t−1, and êm,t−1 = rm,t−1 −
π̂t−1. The time-varying equity premium we estimate here, π̂t, follows a strong AR(1) time-series

process, similar to that of the risk-free interest rate,17 so that when the equity premium is pertur-

bated it reverts to its mean slowly. This permits slightly more volatile returns in our simulations

than would otherwise be the case. The best way to see the impact of this slow mean reversion of

the equity premium on our simulations is to compare Models 9 and 10. Model 9 has a conditionally

time-varying equity premium (together with a trend and break in the premium) while Model 10 is

identical except the equity premium does not conditionally vary. We find standard tests for nor-

mality of the error term (and hence conditional log-normality of the equity premium) show some

evidence of non-normality when estimated as a single equation, but less or no evidence if estimated

in a system of equations with the interest rate and dividend growth rate equations.

Hence we generate the ex ante equity premia, interest rate, and dividend growth rate series as

autocorrelated series with jointly normal error terms, calibrated to the degree of autocorrelation

observed in the US data. The processes we simulate also mimic the covariance structure between

the residuals from the time-series models of equity premia, interest rates, and dividend growth

rates as estimated using US data. We adjust the mean and the standard deviation of these log-

normal processes to generate the desired level and variability for each when they are transformed

back into levels. The coefficients and error covariance structure are estimated with FIML (very

similar results are obtained using iterative GMM and Newey and West, 1987, heteroskedasticity

and autocorrelation consistent covariance estimation).

To give a sense for what our estimated models for interest rates, dividend growth rates, and

the equity premium look like, we present in Table A.I the estimated parameters of Model 1, which

incorporates an AR(1) model for interest rates (r), a MA(1) model for dividend growth rates (g),

and an AR(1) model for the ex ante equity premium (π).

17The mean of the estimated equity premium from this model is 5.8% and its standard deviation is 2.2%. An
AR(1) model of the natural logarithm of the equity premium has a coefficient of 0.79 on the lagged equity premium,
with a standard error of 0.050 and an R2 of 0.83.
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Table A.I
Estimated Parameters of Model 1

log(rt) = −0.214 +0.929 log(rt−1) +εr,t

(0.262) (0.086 )
log(1 + gt) = 0.0516 +0.454 εg,t−1 +εg,t

(0.0063) (0.084)
log(π̂t) = −0.562 +0.851 log(π̂t−1) +επ,t

(0.230) (0.070)

In Table A.I, standard errors of the estimated coefficients are shown in parentheses. The covariance

of εr,t and εg,t equals 0.00240, the covariance of εr,t and επ,t equals -0.0117, and the covariance of

εg,t and επ,t equals 0.0018. The variance of εr,t equals 0.0890, the variance of εg,t equals 0.000986,

and the variance of επ,t equals 0.0648. The adjusted R2 for the interest rate equation is 72.9%, the

adjusted R2 for the dividend growth rate equation is 30.0%, and the adjusted R2 for the equity

premium equation is 79.5%.

A1.2 Allowing a Downward Trend in the Ex Ante Equity Premium Process

Pástor and Stambaugh (2001), among others, provide evidence that the equity premium has

been trending downward over the sample period we study, finding a modest downward trend of

roughly 0.80% in total since the early 1950s, with much of the difference coming from a steep

decline in the 1990s. Their study of the equity premium has the premium fluctuating between

about 4% and 6% since 1834. Given this evidence and the fact that we calibrate to data starting

in the 1950s, we investigate a 0.80% trend in the equity premium, and when modeling a trend with

a break we limit ourselves to a 0.30% trend with an additional 50 basis point break, as discussed

below. This is accomplished in conjunction with setting the ex ante equity premium to follow an

AR(1) process.

A1.3 Allowing a Structural Break in the Equity Premium Process

Pástor and Stambaugh (2001) estimate the probability of a structural break in the equity pre-

mium over the last two centuries. They find fairly strong support for there having been a structural

break over the 1990s which led to a 0.5% drop in the equity premium. An aggressive interpretation

of their results would have the majority of the drop in the equity premium over the 1990s occurring

at once. We decide to adopt a one-time-drop specification because doing so makes our results more
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conservative (i.e. produces a wider confidence interval for the ex ante equity premium). Spreading

the drop in the premium across several years serves only to narrow the range of ex ante equity

premium consistent with the US returns data over the last 50 years, which would only bolster our

claims to provide a much tighter confidence interval about the estimate of the ex ante equity pre-

mium. Thus we incorporate an abrupt 50 basis point drop in the equity premium in some of the

models we consider. We time the drop to coincide with 1990, 39 years into our simulation period.

This feature of the equity premium process can be accomplished with or without incorporating

other features discussed above.

A1.4 Allowing for Sampling Variability in Generating Parameters

Our experiments are motivated by the large sampling variability of the ex post equity premium,

but when we produce our simulations we have to first estimate the parameter values for the time-

series models of dividend growth rates, interest rates, and ex ante equity premia. These estimates

themselves incorporate sampling variability. Fortunately, estimates of the sampling variability are

available to us through the covariance matrix of our parameters, so we can incorporate uncertainty

about the true values of these parameters into our simulations. We estimate our system of equations

(the dividend growth rate, interest rate, and the ex ante equity premium equation) jointly with

FIML, and generate for each simulation an independent set of parameters drawn randomly from

the joint limiting normal distribution of these parameter estimates (including the variance and

covariance of the equation residuals) subject to some technical considerations18 and data consistency

checks.19 This process accounts for possible variability in the true state of the world that generates

dividends, interest rates, and ex ante equity premia.

To illustrate, for Model 1 reported in Table A.I,

18The time-series models must exhibit stationarity, the growth rate of dividends must be strictly less than the
discount rate, and the residual variances must be greater than zero.

19The parameters must generate mean interest rates, dividend growth rates, and ex post equity premia that lie
within three standard deviations of the US data sample mean. Also, the limiting price-dividend ratio must be within
50 standard deviations of the mean US price-dividend ratio. This last consistency check rules out some extreme
simulations generated when the random draw of parameters leads to near unit root behavior. The vast majority of
simulations do not exhibit price-dividend ratios that are more than a few standard deviations from the mean of the
US data.
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log(rt) = αr +ρr log(rt−1) +εr,t

log(1 + gt) = αg +θg εg,t−1 +εg,t

log(π̂t) = απ +ρπ log(π̂t−1) +επ,t,

the estimated covariance matrix of the parameter estimates is shown in Table A.II.

Table A.II
Estimated Covariance Matrix for Model 1 Parameters

αr ρr αg θg απ ρπ

αr 0.068705 0.022307 -.000051933 .000226443 -0.012165 -0.003511
ρr 0.022307 0.007436 -.000040346 .000114831 -0.004730 -0.001401
αg -0.000052 -0.000040 0.000039674 .000025651 0.000153 0.000031
θg 0.000226 0.000115 0.000025651 .007086714 0.001699 0.000454
απ -0.012165 -0.004730 0.000153376 .001699151 0.052664 0.015791
ρπ -0.003511 -0.001401 0.000031495 .000453874 0.015791 0.004844

The top-left element of Table A.II, equal to 0.068705, is the variance of the parameter estimate of

αr. The entry below the top-left element, equal to 0.022307, is the covariance between the estimate

of αr and ρr, and so on. The estimated covariance matrix of the equation residual variances is

shown in Table A.III. (The variances themselves are reported in Section A1.1, as are the parameter

estimates of the mean.)

Table A.III
Estimated Covariance Matrix of Model 1 Residual Variances

ε2
r εrεg εrεπ ε2

g εgεπ ε2
π

ε2
r 0.0000944 1.9729·10−6 -8.351·10−7 -1.902·10−7 -1.564·10−6 -1.69·106

εrεg 1.9729·10−6 8.5163·10−7 1.0437·10−6 4.3066·10−8 -1.602·10−7 9.1448·10−7

εrεπ -8.351·10−7 1.0437·10−6 0.0000797 1.8827·10−7 5.001·10−6 -0.000044
ε2
g -1.902·10−7 4.3066·10−8 1.8827·10−7 4.8337·10−8 9.6885·10−8 1.3458·10−6

εgεπ -1.564·10−6 -1.602·10−7 5.001·10−6 9.6885·10−8 3.5567·10−6 0.0000203
ε2
π -1.69·10−6 9.1448·10−7 -0.000044 1.3458·10−6 0.0000203 0.0005009

The top-left element, equal to 0.0000944, is the variance of ε2
r . The entry below the top-left element,

equal to -1.9729·10−6, is the covariance between the estimate of ε2
r and the product of εr and εg,

and so on.

Exploiting block diagonality of the parameters of the mean and variance, and asymptotic normal-

ity of all the estimated parameters, we generate two sets of normally distributed random variables.
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Each set is independent of the other, the first set of six having the covariance matrix from Table A.II

with means equal to the parameter estimates listed in Table A.I, and the second set of six having

the covariance matrix from Table A.III, with means equal to the equation residual covariances listed

in Section A1.1. This set of 12 random variables is then used to simulate interest rates, dividend

growth rates, and equity premia, subject to the consistency checks footnoted earlier.

A1.5 Allowing for Disappearing Dividends

An issue with our calibration to dividends is the impact of declining dividend payments in the

US. This phenomenon is a result of a practice adopted widely beginning in the late 1970s, whereby

US firms have been increasingly delivering cashflows to investors in ways not recorded as corporate

dividends, such as share repurchases. Fama and French (2001) document the widespread decline

of regular dividend payments starting in 1978, consistent with evidence provided by Bagwell and

Shoven (1989) and others. Fama and French find evidence that the disappearance of dividends is

in part due to an increase in the inflow of new listing to US stock exchanges, representing mostly

young companies with the characteristics of firms that would not be expected to pay dividends, and

in part due to a decline in the propensity of firms to pay dividends. Fama and French find only a

small decline in the probability to pay dividends among the firms that we calibrate to, those in the

S&P 500 index.

Consistent with Fama and French, we find no evidence of a break in our data on dividend

growth rates. Though dividend yields on the S&P 500 index have dropped dramatically over time,

dividend growth rates have not. The decline in yields has been a function of prices rising faster than

dividends since 1978, not dividends declining in any absolute sense. From 1952 through 1978, the

year Fama and French document as the year of the structural break in dividend payments, dividend

growth rates among the S&P 500 firms have averaged 4.9% with an annual standard deviation of

3.9%, and from 1979 to 2000 the dividend growth rates have averaged 5.5% with an annual standard

deviation of 3.8%, virtually indistinguishable from the pre-1979 period. Time series properties pre-

and post-1978 are also very similar across these two periods. Consistent with this stability of

dividend growth pre- and post-1978 and Bagwell and Shoven’s documentation of increased share

repurchases in the 1980s, earnings growth rates of firms in the S&P 500 index have accelerated since
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the 1952-1978 period, from 6.8% pre-1979 to 7.8% post-1978. Similar to the dividend growth rate

data, the time-series properties of the earnings growth rate data did not change.

In order to determine the sensitivity of our experiments to mismeasurement of cashflows to

investors, we consider a dividend growth rate process with a structural break 27 years into the time

series to correspond to a possible break in our dividend data for the S&P 500 data after 1978. We

calibrate to the S&P 500 earnings data mean growth rate increase over 1979-2000, an upward shift

of 100 basis points, to proxy for the increase in total cashflows to investors. That is, we increase the

growth rate of dividends by 5 basis points a year for 20 years, starting in year 27 of the simulation

(corresponding to 1978 for the S&P 500 data), to increase the mean growth rate of our dividend

growth series 100 basis points, mimicking the proportional increase in earnings growth rates.

Appendix 2: Further Details on the Simulations

A2.1 Fundamentals

We define Pt as a stock’s beginning-of-period-t price and Et as the expectations operator condi-

tional on information available up to but not including the beginning of period t. The discount rate

(rt, which equals the risk-free rate plus the equity premium) is the rate investors use to discount

payments received during period t (i.e., from the beginning of period t to the beginning of period

t + 1). Recall that investor rationality requires that the time t market price of a stock, which will

pay a dividend Dt+1 one period later and then sell for Pt+1, satisfy Equation (3):

Pt = Et

{
Pt+1 + Dt+1

1 + rt

}
. (3)

Invoking the standard transversality condition that the expected present value of the stock price

Pt+i falls to zero as i goes to infinity, and defining the growth rate of dividends during period t as

gt ≡ (Dt+1 − Dt)/Dt , allows us rewrite Equation (3) as:

Pt = DtEt

{ ∞∑
i=0

(
Πi

k=0

[
1 + gt+k

1 + rt+k

])}
. (5)
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One attractive feature of expressing the present value stock price as in Equation (5), in terms of

dividend growth rates and discount rates, is that this form highlights the irrelevance of inflation,

at least to the extent that expected and actual inflation are the same. Notice that working with

nominal growth rates and discount rates, as we do, is equivalent to working with deflated nominal

rates (i.e., real rates). That is, 1+([gt−It]/[1+It])
1+([rt−It]/[1+It])

= (1+gt)
(1+rt)

, where It is inflation. Working with nominal

values in our simulations removes a potential source of measurement error associated with attempts

to estimate inflation.

Properties of prices and returns produced by Equation (5) depend in important ways on the

modeling of the dynamics of the dividend growth, interest rate, and equity premium processes. For

instance, the stock price would equal a constant multiple of the dividend level and returns would

be very smooth over time if dividend growth and interest rates were set equal to constants plus

independent innovations. However, using models that capture the serial dependence of dividend

growth rates, interest rates, and equity premia observed in the data, as we do, would typically lead

to time-varying price-dividend ratios and variable returns of the sort we observe in observed stock

market data.

A2.2 Numerical Simulation

We now provide details on the numerical simulation which comprises Step 4 of the 5-step pro-

cedure outlined in Section I above. That is, we detail for the nth economy the formation of the

prices (P n
t ), returns (Rn

t ), ex post equity premia (π̂n), etc. (where n = 1, · · · , N and t = 1, · · · , T ),

given dividends, dividend growth rates, risk-free interest rates, and the equity premium of the nth

economy: Dn
t , gn

t−1, and rn
t−1 = rn

f,t−1 + π.20 For simplicity, we illustrate our methodology by as-

suming fixed parameters (no parameter uncertainty), a constant ex ante equity premium, and an

AR(1) model for interest rates. Further, to illustrate the procedure required for a moving average

error model, we assume a MA(1) process for dividend growth rates. Relaxing these assumptions

(the assumptions to incorporate parameter uncertainty, ARMA(1,1) processes for interest rates and

dividend growth rates, and a time-varying equity premium) complicates the procedure outlined

below only slightly. Note that in our actual simulations we set the initial dividend growth rate and

20We set the number of economies, N , at 2,000. This is a sufficiently large number of replications to produce
results with very small simulation error.
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interest rate to their unconditional means, innovations to zero, and dividends to $1, then simulate

the economies out for 50 periods. At period 51 we start our calculation of market prices, returns,

etc. (to avoid contaminating the simulations with the initial conditions). For simplicity, we do not

include this detail in the description below but for concreteness we describe a similar prototypical

simulation.

In terms of timing and information, recall that P n
t is the stock’s beginning-of-period-t price, rn

t

is the rate used to discount payments received during period t and is known at the beginning of

period t, Dn
t is paid at the beginning of period t, gn

t is defined as (Dn
t+1 −Dn

t )/Dn
t and is not known

at the beginning of period t since it depends on Dn
t+1, and Et {·} is the conditional expectation

operator, with the conditioning information being the set of information available to investors up

to but not including the beginning of period t. Finally, recall Equation (5), rewritten to correspond

to the nth economy:

P n
t = Dn

t Et

{ ∞∑
i=0

(
Πi

k=0

[
1 + gn

t+k

1 + rn
t+k

])}
. (17)

Returns are constructed as Rn
t = (P n

t+1 +Dn
t+1 −P n

t )/P n
t , and π̂n = R

n − rn
f where R

n
= 1

T

∑T
t=1 Rn

t

and rn
f = 1

T

∑T
t=1 rn

f,t.

Based on Equation (17), we generate prices by generating a multitude of possible streams of

dividends and discount rates, present-value discounting the dividends with the discount rates, and

averaging the results, i.e., by conducting a Monte Carlo integration.21 Hence we produce prices

(P n
t ), returns (Rn

t ), ex post equity premia (π̂n), and a myriad of other financial quantities, utilizing

only dividend growth rates and discount rates. The exact procedure by which we conduct this

numerical simulation is described below and summarized in Figure A.1. (These steps, labeled

Steps 4A through 4C, collectively constitute Step 4 of the 5-step procedure outlined in Section I

above.)

21According to Equation (17), the stream of dividends and discount rates should be infinitely long, however
truncating the stream at a sufficiently distant point in time denoted I leads to a very small approximation error. We
discuss this point more fully below.
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︸ ︷︷ ︸
J Possible Paths of Economy n

Figure A.1 Diagram of a Simple Market Price Calculation for the tth Observation
of the nth Economy (Steps 4A and 4B)

Step 4A: In forming P n
t , the most recent fundamental information available to an investor

would be gn
t−1, Dn

t , and rn
t−1. Thus gn

t−1, Dn
t , and rn

t−1 must be generated directly in our simulations,

whereas P n
t is calculated based on these g, D, and r. The objective of Steps 4A(i)-(iii) outlined

below is to produce dividend growth and interest rates that replicate real-world dividend growth and

interest rate data. That is, the simulated dividend growth and interest rates must have the same

mean, variance, covariance, and autocorrelation structure as observed S&P 500 dividend growth

rates and US interest rates. In terms of Figure A.1, Step 4A forms gn
t−1, Dn

t , and rn
t−1 only.

Step 4A(i): Note that since, as described above, the logarithm of one plus the dividend growth

rate is modeled as a MA(1) process, log(1 + gn
t ) is a function of only innovations, labeled εn

g . Note

also that since the logarithm of the interest rate is modeled as an AR(1) process, log(rn
f,t) is a

function of log(rn
f,t−1) and an innovation labeled εn

r . Set the initial dividend, Dn
1 , equal to the

total S&P 500 dividend value for 1951 (observed at the end of 1951), and the lagged innovation

of the logarithm of the dividend growth rates εn
g,0 to 0. To match the real-world interest rate

data, set log(rn
f,0) = −2.90 (the mean value of log interest rates required to produce interest rates

matching the mean of observed T-bill rates). Then generate two independent standard normal

random numbers, ηn
1 and νn

1 (note that the subscript on these random numbers indicates time, t),

and form two correlated random variables, εn
r,1 = 0.319(0.25ηn

1 +(1− .252).5νn
1 ) and εn

g,1 = 0.0311ηn
1 .

These are the simulated innovations to the interest rate and dividend growth rate processes, formed

to have standard deviations of 0.319 and 0.0311 respectively to match the data, and to be correlated

with correlation coefficient 0.25 as we find in the S&P 500 return and T-bill rate data. Next, form

49



log(1+gn
1 ) = 0.049+0.64εn

g,0+εn
g,1 and log(rn

f,1) = −0.35+0.88log(rn
f,0)+εn

r,1 to match the parameters

estimated on the S&P 500 index data 1952-2004 of these models (using Full Information Maximum

Likelihood).22 Also form Dn
2 = Dn

1 (1 + gn
1 ).

Step 4A(ii): Produce two correlated normal random variables, εn
r,2 and εn

g,2 as in Step 4A(i) above,

and conditioning on εn
g,1 and log(rn

f,1) from Step 4A(i) produce log(1 + gn
2 ) = 0.049 + 0.64εn

g,1 + εn
g,2,

log(rn
f,2) = −0.35 + 0.88log(rn

f,1) + εn
r,2, and Dn

3 = Dn
2 (1 + gn

2 ).

Step 4A(iii): Repeat Step 4A(ii) to form log(1 + gn
t ), log(rn

f,t), and Dn
t for t = 3, 4, 5, · · · , T and

for each economy n = 1, 2, 3, · · · , N . Then calculate the dividend growth rate gn
t and the discount

rate rn
t (which equals rn

f,t plus the ex ante equity premium).

Step 4B: For each time period t = 1, 2, 3, · · · , T and economy n = 1, 2, 3, · · · , N we calculate

prices, P n
t . In order to do this we must solve for the expectation of the infinite sum of discounted

future dividends conditional on time t−1 information for economy n. That is, we must produce a set

of possible paths of dividends and interest rates that might be observed in periods t, t + 1, t + 2, · · ·
given what is known at period t−1 and use these to solve the expectation of Equation (17). We use

the superscript j to index the possible paths of future economies that could possibly evolve from

the current state of the economy. In Step 4B(iv) below, we describe how we are able to solve for

the expectation of an infinite sum using a finite stream of future dividends.

Step 4B(i): Set εj,n
g,t−1 = εn

g,t−1 and log(rj,n
f,t−1) = log(rn

f,t−1) for j = 1, 2, 3, · · · , J .23 Generate

two independent standard normal random numbers, ηj,n
t and νj,n

t , and form two correlated random

variables εj,n
r,t = 0.319(0.25ηj,n

t + (1 − .252).5νj,n
t ) and εj,n

g,t = 0.0311ηj,n
t for j = 1, 2, 3, · · · , J .24 These

22Note that by construction these parameters do not match those reported for the system reported in Appendix 1
as this system does not incorporate a time-varying equity premium.

23We choose J to lie between 1,000 and 100,000, as needed to ensure the Monte Carlo simulation error in calculating
prices and returns is controlled to be less than 0.20%. For the typical case the simulation error is far less than
0.20%. To determine the simulation error, we conducted a simulation of the simulations. Unlike some Monte Carlo
experiments (such as those estimating the size of a test statistic under the null) the standard error of the simulation
error for most of our estimates (returns, prices, etc.) are themselves analytically intractable, and must be simulated.
In order to estimate the standard error of the simulation error in estimating market prices, we estimated a single
market price 2,000 times, each time independent of the other, and from this set of prices computed the mean and
variance of the price estimate. If the experiment had no simulation error, each of the price estimates would be
identical. With the number of possible paths, J , equal to no less than 1,000 we find that the standard deviation of
the simulation error is less than 0.20% of the price, which is sufficiently small as not to be a source of concern for
our study. The number of simulations has to be substantially greater than 1,000 for some cases depending on the
model specification and the ex ante equity premium.

24For our random number generation we made use of a variance reduction technique, stratified sampling. This
technique has us drawing pseudo-random numbers ensuring that q% of these draws come from the qth percentile, so
that our sampling does not weight any grouping of random draws too heavily.
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are the simulated innovations to the interest rate and dividend growth rate processes, respectively.

Form log(1 + gj,n
t ) = 0.049 + 0.64εj,n

g,t−1 + εj,n
g,t and log(rj,n

f,t ) = −0.35 + 0.88log(rj,n
f,t−1) + εj,n

r,t .

Step 4B(ii): Produce two correlated normal random variables εj,n
r,t+1 and εj,n

g,t+1 as in Step 4B(i)

above, and conditioning on εj,n
g,t and log(rj,n

f,t ) from Step 4B(i) produce log(1 + gj,n
t+1) = 0.049 +

0.64εj,n
g,t + εj,n

g,t+1 and log(rj,n
f,t+1) = −0.35 + 0.88log(rj,n

f,t ) + εj,n
r,t+1 for j = 1, 2, 3, · · · , J .

Step 4B(iii): Repeat Step 4B(ii) to form log(1 + gj,n
t+i) and log(rj,n

t+i) for i = 2, 3, 4, · · · , I, j =

1, 2, 3, · · · , J , and economies n = 1, 2, 3, · · · , N .

Step 4B(iv): The discounted present value of each of the individual J streams of dividends is

now taken in accordance with Equation (17), with the jth present value price noted as P j,n
t . Finally,

the price for the nth economy in period t is formed: P n
t = 1

J

∑J
j=1 P j,n

t .

In considering these prices, note that according to Equation (17) the stream of discount rates

and dividend growth rates should be infinitely long, while in our simulations we extend the stream

for only a finite number of periods, I. Since the ratio of gross dividend growth rates to gross

discount rates are less than unity in steady state, the individual product elements in the infinite

sum in Equation (17) eventually converge to zero as I increases. (Indeed, this convergence to

zero is exactly what is required for the standard transversality condition that the expected present

value of the stock price Pt+i falls to zero as i goes to infinity.) We therefore set I large enough

in our simulations so that the truncation does not materially effect our results. We find that

setting I = 1, 000 years is sufficient in all cases we studied. That is, the discounted present value

of a dividend payment received 1,000 years in the future is essentially zero. Also note that the

steps above are required to produce P n
t , Dn

t , gn
t , and rn

t for n = 1, · · · , N and t = 1, · · · , T ; the

intermediate terms superscripted with a j are required only to perform the numerical integration

that yields P N
t . Note that the length of the time series T is chosen to be 53 to imitate the 53 years

of annual data we have available for the S&P 500 from 1952 to 2004.

Step 4C: After performing Steps 4A(i)-(iii) and 4B(i)-(iv) for t = 1, · · · , T , rolling out N

independent economies for T periods, we construct the market returns for each economy, Rn
t =

(P n
t+1 + Dn

t+1 − P n
t )/P n

t , and the ex post equity premium that agents in the nth economy would

observe, π̂n, estimated from Equation (1) as the mean difference in market returns and the risk-free

rate.
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Table I
Characteristics of Simulated Models

Here we present the 12 models we consider, identifying the characteristics of their underlying data generating
processes. The column titled “Processes for r, g, & π” indicates the nature of the time-series models used to generate
the interest rates, dividend growth rates, and equity premium. See Appendix 1 for details on how this set of models
was chosen and a description of how the equity premium series is produced. The column titled “Downward Trend
in Equity Premium Process,” identifies whether the ex ante equity premium trends downward over the course of
the 53-year experiment, and if it does, provides the amount of the downward trend. The next column, “Structural
Break in Equity Premium Process,” indicates whether the model incorporates a sudden 50 basis point (bps) drop
in the value of the ex ante equity premium. The column “Structural Break in Dividend Growth Process,” indicates
whether the model incorporates a gradual 100 basis point increase in the growth rate of the dividend growth rate.
The final column indicates that all the models except Models 11 and 12 incorporate sampling variability in generating
parameters. Additional model details are as follows. Parsimonious Model: interest rates follow an AR(1), dividend
growth rates follow a MA(1), the equity premium follows an AR(1). Deterministic π Model: interest rates follow an
AR(1), dividend growth rates follow a MA(1), the equity premium follows a deterministic downward trend with a 50
bps structural break. Best BIC Model:† interest rates follow an ARMA(1,1), dividend growth rates follow a MA(1),
the equity premium follows an AR(1). Second-Best BIC Model:† interest rates follow an ARMA(1,1), dividend
growth rates follow a MA(1), the equity premium follows an ARMA(1,1). Further details about each model feature
are provided in Appendix 1.

Downward Structural Structural Sampling
Trend in Break in Break in Variability
Equity Equity Dividend in

Premium Premium Growth Generating
Model Processes for r, g, & π Process Process Process Parameters

1 Parsimonious Model No No No Yes
2 Parsimonious Model with Yes No No Yes

π Trend (80 bps)
3 Parsimonious Model with No Yes No Yes

π Break (50 bps)
4 Parsimonious Model with No No Yes Yes

Dividend Growth Trend
5 Parsimonious Model with Yes No Yes Yes

π Trend and Dividend Growth Trend (80 bps)
6 Parsimonious Model with Yes Yes Yes Yes

π Break, π Trend, and Dividend Growth Trend (30 bps) (50 bps)
7 Best BIC Model† with Yes Yes Yes Yes

π Break, π Trend, and Dividend Growth Trend (30 bps) (50 bps)
8 Second-Best BIC Model† with Yes Yes Yes Yes

π Break, π Trend, and Dividend Growth Trend (30 bps) (50 bps)
9 Parsimonious Model with Yes Yes No Yes

π Break and π Trend (30 bps) (50 bps)
10 Deterministic π Model with Yes Yes No Yes

π Break and π Trend (30 bps) (50 bps)
11 Parsimonious Model with Constant Parameters Yes Yes Yes No

π Break, π Trend, and Dividend Growth Trend (30 bps) (50 bps)
12 Parsimonious Model with Constant Parameters No No No No

† For Models 7 and 8 we employ the Bayesian Information Criterion (BIC) to select the order of the ARMA model
driving each of the interest rate, equity premium, and dividend growth rate processes. The order of each AR process
and each MA process for each series is chosen over a (0, 1, 2) grid.



Figure 1: Probability Distribution Functions of Simulated Ex Post Equity
Premia, Dividend Yields, Sharpe Ratios, and Return Standard Deviations

This figure contains probability distribution functions (PDFs) for various financial statistics generated in 2,000
simulated economies based on Model 1 from Table I. Each panel contains a PDF for each of four different assumed
values of the ex ante equity premium: 2.75%, 3.75%, 5%, and 8%. Panel A shows the distribution of the ex post equity
premium (mean return minus mean interest rate), Panel B shows the mean dividend yield distribution (dividend
divided by price), Panel C shows the Sharpe ratio distribution (excess return divided by the standard deviation of
the excess return), and Panel D shows the distribution of the standard deviation of excess returns. In each panel, a
vertical line indicates the US data realized over 1952-2004, the value of the estimated ex post equity premium, mean
dividend yield, mean Sharpe ratio, and excess return standard deviation, respectively. The simulated statistics are
estimated on 53 years of generated data for each economy, mimicking the data period we used to estimate the actual
US results.



Figure 2: Joint and Individual Tests Statistics
for Models 1 and 2

This figure contains plots of test statistics for Models 1 and 2. Panel A plots joint χ2 tests based on a set of three
variables (the ex post equity premium, the mean dividend yield, and the excess return volatility) for various ending
values of the ex ante equity premium for each model. In Panel A the vertical axis is plotted on a log scale. The
remaining panels contains t-test values corresponding to tests on the individual variables for each of the models: the
ex post equity premium in Panel B, the excess return volatility in Panel C, and price-dividend ratio in Panel D. In
each panel the critical values of the test statistics corresponding to test significance at the 10%, 5%, and 1% levels
are indicated by horizontal lines.



Figure 3: Joint and Individual Tests Statistics
for Models 3 and 4

This figure contains plots of test statistics for Models 3 and 4. Panel A plots joint χ2 tests based on a set of three
variables (the ex post equity premium, the mean dividend yield, and the excess return volatility) for various ending
values of the ex ante equity premium for each model. In Panel A the vertical axis is plotted on a log scale. The
remaining panels contains t-test values corresponding to tests on the individual variables for each of the models: the
ex post equity premium in Panel B, the excess return volatility in Panel C, and price-dividend ratio in Panel D. In
each panel the critical values of the test statistics corresponding to test significance at the 10%, 5%, and 1% levels
are indicated by horizontal lines.



Figure 4: Joint and Individual Tests Statistics
for Models 5 and 6

This figure contains plots of test statistics for Models 5 and 6. Panel A plots joint χ2 tests based on a set of three
variables (the ex post equity premium, the mean dividend yield, and the excess return volatility) for various ending
values of the ex ante equity premium for each model. In Panel A the vertical axis is plotted on a log scale. The
remaining panels contains t-test values corresponding to tests on the individual variables for each of the models: the
ex post equity premium in Panel B, the excess return volatility in Panel C, and price-dividend ratio in Panel D. In
each panel the critical values of the test statistics corresponding to test significance at the 10%, 5%, and 1% levels
are indicated by horizontal lines.



Figure 5: Joint and Individual Tests Statistics
for Models 7 and 8

This figure contains plots of test statistics for Models 7 and 8. Panel A plots joint χ2 tests based on a set of three
variables (the ex post equity premium, the mean dividend yield, and the excess return volatility) for various ending
values of the ex ante equity premium for each model. In Panel A the vertical axis is plotted on a log scale. The
remaining panels contains t-test values corresponding to tests on the individual variables for each of the models: the
ex post equity premium in Panel B, the excess return volatility in Panel C, and price-dividend ratio in Panel D. In
each panel the critical values of the test statistics corresponding to test significance at the 10%, 5%, and 1% levels
are indicated by horizontal lines.



Figure 6: Joint and Individual Tests Statistics
for Models 9 and 10

This figure contains plots of test statistics for Models 9 and 10. Panel A plots joint χ2 tests based on a set of three
variables (the ex post equity premium, the mean dividend yield, and the excess return volatility) for various ending
values of the ex ante equity premium for each model. In Panel A the vertical axis is plotted on a log scale. The
remaining panels contains t-test values corresponding to tests on the individual variables for each of the models: the
ex post equity premium in Panel B, the excess return volatility in Panel C, and price-dividend ratio in Panel D. In
each panel the critical values of the test statistics corresponding to test significance at the 10%, 5%, and 1% levels
are indicated by horizontal lines.



Figure 7: Parameter Estimation Certainty:
Joint and Individual Tests Statistics for Models 11 and 12

This figure contains plots of test statistics for Models 11 and 12. Panel A plots joint χ2 tests based on a set of three
variables (the ex post equity premium, the mean dividend yield, and the excess return volatility) for various ending
values of the ex ante equity premium for each model. In Panel A the vertical axis is plotted on a log scale. The
remaining panels contains t-test values corresponding to tests on the individual variables for each of the models: the
ex post equity premium in Panel B, the excess return volatility in Panel C, and price-dividend ratio in Panel D. In
each panel the critical values of the test statistics corresponding to test significance at the 10%, 5%, and 1% levels
are indicated by horizontal lines.



Figure 8: Investors’ Model Uncertainty
Joint Tests Based on a Subset of Moments for Models 1-12

This figure contains plots of joint χ2 tests based on a set of two variables, the ex post equity premium and the mean
dividend yield, for various ending values of the ex ante equity premium for each model. Panel A presents the test
statistics for Models 1, 2, and 3, Panel B presents the test statistics for Models 4, 5, and 6, Panel C presents the test
statistics for Models 7, 8, and 9, and Panel D presents the test statistics for Models 10, 11, and 12. The vertical axis
of each plot is on a log scale. In each panel the critical values of the test statistics corresponding to test significance
at the 10%, 5%, and 1% levels are indicated by horizontal lines.


