COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF BLUE GRASS ENERGY)COOPERATIVE CORPORATION FOR A CERTIFICATE)OF PUBLIC CONVENIENCE AND NECESSITY TO)CONSTRUCT FACILITIES ACCORDING TO THE)APPLICANT'S 11/01/2010 ~ 10/31/2013 CONSTRUCTION)WORK PLAN)

CASE NO. 2011-00007

APPLICATION

Blue Grass Energy Cooperative Corporation, hereinafter called the Applicant, respectfully advises the Commission that:

1. The applicant is a nonprofit membership cooperative corporation without capital stock, duly organized and existing under K.R.S. Chapter 279, engaged in the sale of electric energy at retail rates to its member-consumers in the Kentucky counties of Anderson, Bourbon, Bracken, Estill, Fayette, Franklin, Garrard, Grant, Harrison, Henry, Jackson, Jessamine, Madison, Mercer, Nelson, Nicholas, Pendleton, Robertson, Scott, Shelby, Spencer, Washington and Woodford.

2. The name of the Applicant is Blue Grass Energy Cooperative Corporation, with a business address of P. 0. Box 990, 1201 Lexington Road, Nicholasville, Kentucky, 40340-0990. {807 KAR 5:001, Section 8(1)}

3. Applicant is a consolidated cooperative corporation whose consolidation was approved in Case No. 2001-246 before the Kentucky Public Service Commission.

The consolidation consisted of Blue Grass Energy Cooperative Corporation and Harrison County Rural Electric Cooperative Corporation.

The Articles of Consolidation of the Applicant are filed in Case No. 2001 246 of the Kentucky Public Service Commission and incorporated by reference herein.
 {807 KAR 5:001, Section 8(3)}

 This application is for a Certificate of Public Convenience and Necessity ("CPCN") to construct electric distribution facilities as set out in the attached 11/01/2010
 ~ 10/31/2013 Construction Work Plan, hereinafter referred to as the CWP.

6. The CPCN for the CWP will permit the Applicant to construct certain improvements and additions to existing distribution plant necessary to provide adequate and dependable electric service to existing and anticipated new members. System improvements recommended within the CWP will not duplicate existing facilities and are needed to correct voltage problems, improve phase balance, reduce system energy losses and provide for improved service reliability.

7. The CWP covers the period of three years between November 1, 2010 and October 31, 2013, and was prepared by the firm of Patterson & Dewar Engineers, Inc., PO Box 2808, Norcross, GA and the Applicant's staff. A copy of the CWP is filed herein and made a part hereof as Exhibit 1 (BGE_cwp_022211.pdf). The CWP was submitted to the Rural Utility Service ("RUS"), for approval, which was granted January 03, 2011; said approval is filed herein and made a part hereof within Exhibit 1.

8. The CWP was approved by the Applicant's Board of Directors on November 18, 2010. Said approval is filed herein and made a part hereof within Exhibit 1.

9. No CWP construction or extensions will require franchises or permits to be filed with the Commission.

10. The CWP and maps filed with this Application provide a description and location of new construction and extensions. All construction and extensions will provide service to retail consuming facilities located in the territory certified to the Applicant for retail electric service under K.R.S. 278.016 ~.018.

11. Total projected expenditures for the three-year CWP are estimated to be \$37,991,700 and summarized as follows:

a) \$12,285,000 ~ New Member Construction Totaling 152 Miles

- b) \$5,118,900 ~ Transformers and Meters
- c) \$778,050 ~ Service Changes and Upgrades
- d) \$300,000 ~ Sectionalizing Equipment and Activities
- e) \$119,800 ~ Capacitor Bank Appurtenances and Controls
- f) \$181,000 ~ Voltage Regulators
- g) \$4,500,000 ~ Pole Replacements
- h) \$2,352,000 ~ Aged Conductor Replacement
- i) \$688,750 ~ Security Light Installations
- j) \$9,113,200 ~ System Improvement Projects
- k) \$200,000 ~ Two-Way Communication
- I) \$2,355,000 ~ DA Backbone

12. The anticipated annual cost of operations, excluding the cost of power, of the proposed facilities is \$4,773,027. Said anticipated cost of operation is filed herein and made a part hereof as Exhibit 2 (BGE_costofoperation_022211.pdf).

13. The Applicant is filing an application with RUS to arrange 100% financing of CWP projects with the RUS treasury rate loan program. Contract and force accounts financed with internally generated funds and a short-term line of credit will be used until all loan approvals are granted. Said RUS financing will reimburse the general funds expended for the initial portion of the CWP and finance the balance of the CWP

14. The current and projected revenues are sufficient to cover any additional operating expenses that may be incurred in relation to the CWP. The addition of new consumers-members should assist in offsetting any additional expenses. The upgraded lines will also reduce system energy losses and assist in offsetting additional expenses.

WHEREFORE, the Applicant now moves the Public Service Commission of the Commonwealth of Kentucky to grant the said Certificate of Public Convenience and Necessity for Applicant's CWP which the Applicant has herein requested and which the Commission has discretion to grant pursuant to KRS 278.020 (1). WITNESS the hand of the Applicant on this the 22nd day of February, 2011, by its authorized representative.

•

BLUE GRASS ENERGY COOPERATIVE CORPORATION

BY:

R. CHRIS BREWER, PE Vice President, Engineering

BY:

RALPH K. COMBS Attorney for Applicant 100 United Drive, Suite 4B Versailles, Kentucky 40383 (859) 873-5427

Case No. 2011-00007

STATE OF KENTUCKY

COUNTY OF WOODFORD

Subscribed, sworn to and acknowledged before me by R. CHRIS BREWER, as Vice President, Engineering of BLUE GRASS ENERGY COOPERATIVE CORPORATION this _ day of February, 2011.

NOTARY PUBLIC, STATE AT LARGE, KY

MY COMMISSION EXPIRES: 10/16/2011

STATE OF KENTUCKY

COUNTY OF WOODFORD

Subscribed, sworn to and acknowledged before me by RALPH K. COMBS, as Attorney for BLUE GRASS ENERGY COOPERATIVE CORPORATION this 22mg day of February, 2011.

NOTARY PUBLIC, STATE AT LARGE, KY

MY COMMISSION EXPIRES: 12/6/201

Case No. 2011-00007

BLUE GRASS ENERGY COOPERATIVE CORPORATION

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

CONSTRUCTION WORK PLAN November 1, 2010 ~ October 31, 2013

November 2010

by:

Gary Grubbs, PE Patterson & Dewar Engineers, Inc. P.O. Box 2808, Norcross, Georgia 30091-2808 850 Center Way, Norcross, Georgia 30071-4844 Phone: 770-453-1410 FAX: 770-453-1411 www.pd-engineers.com

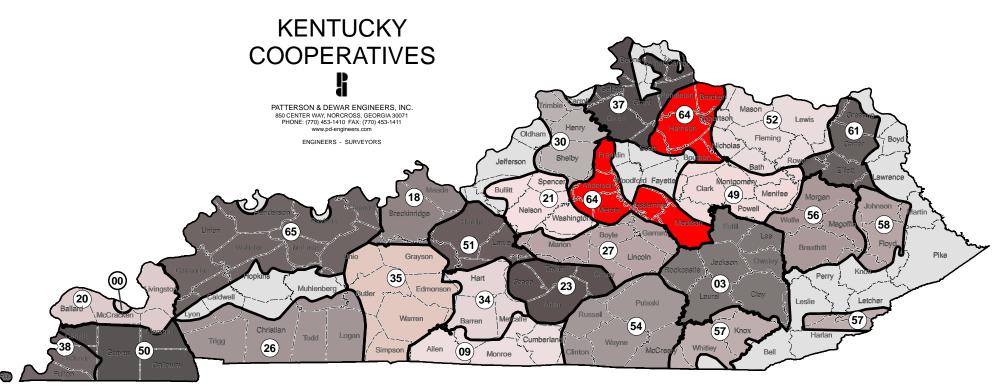
BLUE GRASS ENERGY COOPERATIVE CORPORATION

KENTUCKY 64 NICHOLASVILLE, KENTUCKY

CONSTRUCTION WORK PLAN (CWP)

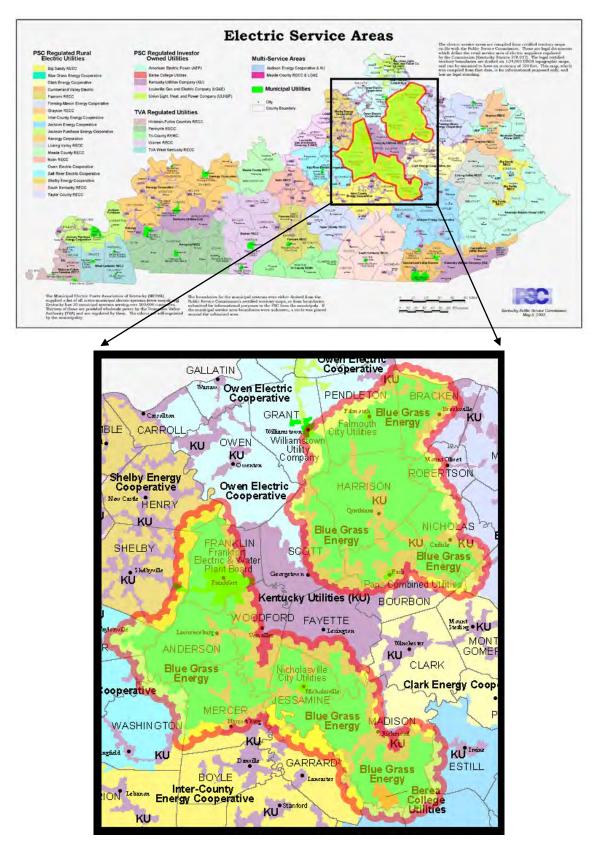
November 1, 2010 – October 31, 2013

ENGINEERING CERTIFICATION


Upon completion of the construction proposed herein, the above indicated electric distribution system can provide adequate and dependable service to approximately 58,528 customers with residential using a monthly average of 1,257 kilowatt-hours per consumer. The peak demand (normal 50%) is estimated to be approximately 289,500 kW in the summer of 2013 and 391,000 kW in the winter of 2013-2014.

I certify that this 2010-2013 Construction Work Plan was prepared by me or under my direct supervision, and that I am a duly registered professional engineer under the laws of the State of Kentucky.

Patterson & Dewar Engineers, Inc.


Gary Grubbs Kentucky P.E. No. 13008

- 0 Paducah Power System Paducah
- 3 Jackson EC McKee
- 18 Meade County RECC Brandenburg
- 20 Jackson Purchase EC Paducah
- 21 Salt River ECC Bardstown
- 23 Taylor County RECC Campbellsville
- 26 Pennyrile Electric Hopkinsville
- 27 Inter-County Energy CC Danville
- 30 Shelby EC Shelbyville
- 34 Farmers RECC Glasgow
- 35 Warren RECC Bowling Green
- 37 Owen EC Owenton

- 38 Hickman-Fulton RECC Hickman
- 49 Clark EC Winchester
- 50 West Kentucky RECC Mayfield
- 51 Nolin RECC Elizabethtown
- 52 Fleming-Mason EC Flemingsburg
- 54 South Kentucky RECC Somerset
- 56 Licking Valley RECC West Liberty
- 57 Cumberland Valley Electric Gray
- 58 Big Sandy RECC Paintsville
- 61 Grayson RECC Grayson
- 64 Blue Grass Energy ECC Nicholasville
- 65 Kenergy Corp Henderson

KENTUCKY MAP WITH BLUE GRASS ENERGY'S SERVICE AREA NOTED

ENGINEERING CERTIFICATION	i
COOPERATIVE LOCATION MAP	ii
TABLE OF CONTENTS	. iii

TEXT

I.	EX	ECUTIVE SUMMARY	1
	A.	PURPOSE, RESULTS AND GENERAL BASIS OF STUDY	1
	B.	SERVICE AREA, DISTRIBUTION SYSTEM AND POWER SUPPLY	
	C.	SYSTEM ORGANIZATION AND OPERATION	
	D.	STATUS OF PREVIOUS WORK PLAN PROJECTS	3
	E.	SUMMARY OF CONSTRUCTION PROGRAM AND COSTS	4
II.	BAS	SIS OF STUDY AND PROPOSED CONSTRUCTION	6
	A.	DESIGN AND OPERATIONAL CRITERIA	6
	B.	HISTORICAL LINE AND EQUIPMENT COSTS	6
	C.	ANALYSIS OF CURRENT SYSTEM STUDIES	6
		1. 2010 Load Forecast Report (LFR)	6
		2. 2004 Long Range System Study (LRSS)	7
		3. 2008 Operations and Maintenance Survey (RUS Form 300)	8
	<i>D</i> .	Historical and Projected System Data	8
		1. Annual Consumer, Load, and Losses Data	8
		2. Special Loads	9
		3. Substation Load Data	9
		4. Circuit Loading and Voltage Conditions	9
		5. System Outages and Reliability	0
III.	RE	QUIRED CONSTRUCTION ITEMS 1	l 1
	A.	SERVICE TO NEW CONSUMERS 1	1
	В.	SERVICE CHANGES TO EXISTING CUSTOMERS	1
	C.	DISTRIBUTION LINES - ADDITIONS AND CHANGES 1	1
	D.	SUBSTATION AND METER POINT ADDITIONS AND CHANGES 1	12
	E.	CAPACITOR EQUIPMENT - ADDITIONS AND CHANGES 1	12
	F.	SECTIONALIZING EQUIPMENT - ADDITIONS AND CHANGES	13
	G.	LINE REGULATORS - ADDITIONS AND CHANGES	13
	H.	ORDINARY REPLACEMENTS (POLES)	13
	I.	ORDINARY REPLACEMENTS (AGED CONDUCTOR)	
	J.	Two-Way Communication Equipment	
	K.	DA COMMUNICATION BACKBONE	
IV.	CO	NCLUSION	

EXHIBITS

EXHIBIT	Α	System Statistical Data and Growth Charts	A
EXHIBIT	В	Historical Cost Data Ending December 31, 2009	B
EXHIBIT	С	Status of Previous 2006-2009 Work Plan Projects	C
EXHIBIT	D	Summary of Distribution Cost Estimates	D
EXHIBIT	Е	Cost Estimate Breakdown for RUS Form 740c and Financial Forecast	E
EXHIBIT	F	Distribution Line Construction and Cost Estimates	F
EXHIBIT	G	Substation and Meter Point Cost Estimates	G
EXHIBIT	Н	Voltage Regulator Recommendations and Cost Estimates	H
EXHIBIT	Ι	Capacitor Recommendations and Cost Estimates	. I
EXHIBIT	J	Sectionalizing Summary and Cost Estimates	. J
EXHIBIT	K	Old Copper Conductor Replacement Summary	K
EXHIBIT	L	System Design and Operational Criteria	L
EXHIBIT	Μ	Operations and Maintenance Survey (RUS Form 300)	M
EXHIBIT	Ν	Economic Conductor Loading	N
EXHIBIT	0	Substation Load Data	0
EXHIBIT	Р	Distribution Line Open Changes	P
EXHIBIT	Q	Summary of Economic Comparisons from Power Supply Study (PSS) & Power Supplier Letter of Concurrence	Q
EXHIBIT	R	Large Power Loads - (December 2005 Data)	.R
EXHIBIT	S	Five-year Outage Report	. S
EXHIBIT	Т	System Improvement Justification Summaries	Т
EXHIBIT	U	Minimum Line Voltage Comparisons	U

MISCELLANEOUS TAB

(For copy of RUS Form 740c, future CWP amendments, etc.)

APPENDICES

APPENDIX	1Primary Analysis Base Winter 2009-10 System
APPENDIX	2Primary Analysis Summer 2009 System
APPENDIX	3Primary Analysis Base System with Winter 2013-14 Loads (Without Improvements)
APPENDIX	4Primary Analysis Future System with Winter 2013-14 Loads (After System Improvements)

MAPS

MAP		it Diagram ~ 2010-2013 Construction Work Plan - Existing Winter -10 System with Recommended System Improvements
MAP		iit Diagram ~ 2010-2013 Construction Work Plan - Proposed Winter -10 System after Improvements
MAP		it Diagram ~ 2010-2013 Construction Work Plan - Existing Winter -10 System voltage drops below 118V (red & green)
MAP		it Diagram ~ 2010-2013 Construction Work Plan - Proposed Winter -14 System voltage drops below 118V (red & green)
MAP	TL Trans	smission Line Map

BLUE GRASS ENERGY COOPERATIVE CORPORATION Kentucky 64 Jessamine Nicholasville, Kentucky

11/10 ~ 10/13 CONSTRUCTION WORK PLAN

November 1, 2010

I. EXECUTIVE SUMMARY

A. Purpose, Results and General Basis of Study

This report documents the Winter 2009-2010 system engineering analysis, and summarizes the proposed construction for Blue Grass Energy Cooperative Corporation's (BGE's) electric distribution system for the three-year period of November 1, 2010 through October 31, 2013.

The proposed construction program is to be financed by the Rural Utilities Service, (RUS) \sim formerly the Rural Electrification Administration (REA), and/or a supplemental lender. This report provides engineering support, in the form of descriptions, costs, and the justification of required new facilities, as required for an RUS loan application.

Upon construction completion of the proposed facilities, the BGE distribution system can provide adequate and dependable service to following approximate customer count:

Classification	Count	Usage kWh/ Month
Residential	55,690	1,257
Small Commercial	2,748	3,666
Large commercial	29	968,166
Total	58,467	~

The 2013 projected number of consumers and total peak system load were taken directly from the Cooperative's 2010 Load Forecast Report (LFR) as approved by RUS. The 20% probability winter extreme highest KW demand was used for the loading conditions for the next three years. This loading level was agreed to by BGE management and the RUS General Field Representative (GFR).

A review of BGE's 2004 Long Range System Study (LRSS), finds the load projections and recommendations to be adequate for the three-year planning period.

The cooperative's Operations and Maintenance Survey (Review Rating Summary - RUS Form 300), was completed on October 21st, 2008. Several items were identified for improvements but no recommendations requiring capital funds were listed.

An analysis of thermal loading, voltage drops, physical conditions and reliability, has been performed on all substations, distribution lines, and major equipment of the existing and base system subjected to the peak winter 2009-2010 conditions. The existing base system model has also been grown to the projected winter 2013-2014 loading to develop a future system model.

The projected future loading is in agreement with the currently approved 2010 LF. The basis of the system analysis is the RUS guidelines and BGE's system design and operating criteria.

The summer 2010 system was also reviewed as portions of BGE's system peak in the summer and not in the winter.

The analyses indicated above utilized Milsoft Utility Solution's (MUS's) WindMil (WM)® software, and the results were used as the basis for determining the capital needs for BGE's electric distribution system. The base system computer model was validated using actual line voltage readings made in the field.

B. Service Area, Distribution System and Power Supply

The corporate office of Blue Grass Energy Cooperative Corporation is located in Nicholasville, KY. BGE consists of four operating districts: Nicholasville, Madison, Fox Creek and Harrison. Electric service is supplied to major portions of the rural areas of the following counties grouped by each district.

The *Nicholasville District* and *Madison District* serve much of the rural area to the south of Lexington, Kentucky and include portions of Fayette, Jessamine and Madison Counties. The Kentucky River divides the service territory. Much of BGE's growth in this area can be contributed to its close proximity to Lexington, which is easily accessible by Highways 68 and 27, and Interstate 75.

The *Fox Creek District* is located to the west of Lexington and around the state capitol of Frankfort. In this district BGE serves most of the rural areas of Anderson County and portions of Woodford, Mercer and Franklin Counties. Much of the growth in this area is attributed to its close proximity to the cities of Lawrenceburg, Versailles and Frankfort; and the Blue Grass Parkway lends easy access to Lexington. Interstate 64 runs along the northern portion of the Fox Creek District and the Blue Grass Parkway traverses the southern portion of the district.

The *Harrison District* is located to the northwest of Lexington. In this district, BGE serves most of the rural areas of Harrison County and portions of Scott, Bourbon, Nicholas, Bracken, Pendleton, Robertson and Grant Counties. Much of the present growth in this district lies east of the city of Georgetown, which has a new residential subdivision and industrial park that will be served by BGE. The local economy is somewhat dependent upon the automotive manufacturing industry present in Georgetown. Highway 27 and 62 intersect in the center of this district.

BGE operates over 4,600 miles of line within the aforementioned four districts. The primary voltage is 7.2/12.47 kV grounded wye for the Nicholasville, Madison and Harrison Districts. The Fox Creek primary system operates presently at two primary voltages: 7.2/12.47 kV and 14.4/25 kV grounded wye. There are a total of 36 distribution substations presently serving the entire BGE system. Six of the substations/transformers are dedicated primarily to industrial with a few small commercial loads.

The following data was taken, or derived, from Blue Grass Energy Cooperative Corporation's December 2009 RUS Form 7:

Number of Consumers	=	54,816
KWh Purchased	=	1,232,818,537
KWh Sold	=	1,173,229,591
KWh Used by Company	=	1,534,430
KWh Unaccounted for	=	58,054,516
KWh losses (%)	=	4.7%
Max. NCP kW Demand	=	362.3
Total Distribution Plant	=	\$172,874,880
Miles of Distribution	=	4,593
Consumers per Mile	=	11.93
Annual Load Factor	=	38.8%

Service is provided to BGE members through 36 delivery points.

BGE's power supplier is East Kentucky Power Cooperative (EKPC); an RUS financed generation and transmission cooperative. EKPC's office headquarters is located in Winchester, Kentucky. As power supplier, EKPC accommodates all the generation, transmission and substation requirements of BGE and other cooperatives located in the central and eastern half of Kentucky.

BGE takes delivery from EKPC at the distribution voltages of 7,200/12,470 and 14,400/24,940-volts.

C. System Organization and Operation

BGE's headquarters as mentioned earlier is located in Nicholasville, Kentucky. The present organization is comprised of the previously separate cooperatives of Blue Grass RECC, Fox Creek RECC and Harrison RECC. Major engineering and management decisions come through the Nicholasville office. The system is operated and maintained under the leadership of a Vice President of Operations and a Vice President of Engineering. Additional support staff of technicians, administrators and aides, compliments the system operations.

BGE utilizes contract staking and construction crews for mainly large system improvement type projects.

BGE's service territory is firmly established by Kentucky statues. Consumers locating within BGE's territorial boundaries are required to be served by BGE.

D. Status of Previous Work Plan Projects

This CWP summarizes the current status of the previous work plan site-specific projects. The status of each project is identified as follows:

- COMP ~ Complete
- CPC ~ Complete Pending Closeout
- DEL ~ Deleted
- NP ~ No Progress
- IP ~ In Progress

BGE currently has approximately 456^1 miles of aged copper single-phase primary conductors and 2^1 miles of aged copper three-phase primary conductors on their system. In addition to the aged copper lines BGE has 109^1 miles of aged three-phase 4 ACSR and $2,073^1$ miles of aged one-phase 4 ACSR lines. Replacement of said conductor is based upon loading and operational criteria. This work plan recommends replacing approximately 160 of these aged lines.

E. Summary of Construction Program and Costs

4

The costs of the recommended distribution plant changes over the next three years have been projected as follows:

2011	\$13,983,850
2012	\$11,024,375
2013	<u>\$12,983,475</u>
Total	\$37,991,700

By comparison, the annual totals for distribution plant additions and replacements during the ten previous years are as follows:

2001	\$6,498,135
2002	\$6,450,032
2003	\$6,740,477
2004	\$10,532,477
2005	\$10,726,097
2006	\$13,918,611
2007	\$10,711,541
2008	\$11,307,921
2009	\$9,697,777
2010	Not Available

This data mentioned above was taken from BGE's five previous year-end *Financial and Statistical Report*, Line 15, page 3 of the RUS Form 7. Capital expenditures projected for this CWP have increased over past plant expenditures due to material price increases and system improvement increases; however, they remain reasonable.

A further breakdown of the construction program cost is summarized as follows:

		<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>Totals</u>
New Construction, etc.	=	\$9,960,250	\$ 8,716,775	\$10,201,475	\$28,878,500
System Improvements	=	\$ 4,023,600	\$ 2,307,600	\$ 2,782,000	\$9,113,200
CWP Totals	=	\$13,983,850	\$11,024,375	\$12,983,475	\$37,991,700

The total amount above is eligible for RUS loan funds. Each capital item recommended herein was reviewed with engineering and management staff prior to inclusion in this CWP. Approximately 76% of the total capital is for new construction and miscellaneous distribution equipment, leaving approximately 24% for system improvements.

¹ The total mileage of each conductor is continually changing due to ongoing replacements.

II. BASIS OF STUDY AND PROPOSED CONSTRUCTION

A. Design and Operational Criteria

Exhibit L presents BGE's System Design and Operational Criteria (SDOC). On November 15, 2010, the Kentucky RUS General Field Representative, (GFR), reviewed and concurred with BGE's criteria. The proposed construction as outlined in this 2010-2013 CWP is necessary for meeting the minimum standards set forth in the system's design and operational criteria.

The criteria presented herein are for use in design and operational guidelines only. System conditions may result in a breach/change of a specific criterion.

B. Historical Line and Equipment Costs

Exhibit B presents the historical and projected unit cost averages for new services and new construction. The cost calculations utilize data encompassing a 24-month period ending December 31, 2009.

Line Construction projects are grouped by project type and the averages are expressed on a cost per mile basis. Several of the projected conversion costs do not have a historical cost to reference. These estimates are tabulated, but the cost utilized is based on other system experiences.

C. Analysis of Current System Studies

2010 Load Forecast (LF) 1.

The 2010 Load Forecast Report was approved by BGE's Board in June 2010. The report was prepared by EKPC in cooperation with BGE's management and staff. The report utilized statistical models to forecast future energy and demand requirements. EKPC provided the economic, demographic, and weather information. BGE personnel provided historical information, system specific assumptions, and large commercial and industrial projections. The EKPC staff developed the LF database and forecasting models, and produced the final report.

The LF projected kilowatt-hour sales as well as non-coincident peak kW demands for the period 2010-2030. A 2.5% per year growth in energy sales was projected for the period. Winter and summer peak kW demands were projected to grow approximately 2.1% and 2.3% per year, respectively. The system annual load factor was expected to remain at the 41.0% level with a slight expectation of an increase in the latter years. The LF offers various projection scenarios for planning purposes and they are as follows:

Winter Peaks	Summer Peaks		
Mild			
Normal	Normal		
Extreme*	Extreme*		
Optimistic	Optimistic		
Pessimistic	Pessimistic		

*With projections of 20%, 10% and 3% probability of occurrence.

Generally, the normal and mild weather LF scenarios mentioned above are used in the preparation of rate studies and financial forecasts to determine realistic revenue projections. The severe or extreme weather scenarios are used for system capacity planning. This is to

assure that adequate capital expenditures are identified for system capacity in order to provide reliable and quality service to the customer. The extreme winter and summer scenarios with a 20% probability of occurrence were used in this work plan for the future system substation loading conditions.

2. 2004 Long Range System Study (LRSS)

Distribution System Solutions, Inc. prepared a ten-year LRSS for BGE's distribution system in April of 2004. RUS's (REA's) approval was granted in the spring of 2004. The system configuration and the loads for the winter of 03/04 form the basis for the LRSS.

The December 2003 non-coincident peak load was 287,722 kW. The LRSS projected the system to grow from the 287,722 kW level in 2003 at the average annual growth rate of approximately 5.7 percent per year to 501,000 kW in the year 2014. Three intermediate load levels were analyzed: Level A ~ The estimated 2006 load of approximately 321 MW, representing a 11.6% increase for the three year growth; Level B ~ The estimated 2010 System load of approximately 401 MW, representing a 39.4% increase for the six year period of growth; and Level C ~ The estimated 2014 System load of approximately 501 MW representing a 74% increase for the 10 year period of growth. These levels were based on projections approved and set by the prior 2002 BGE Power Requirements Study.

A comparison of the currently approved 2010 Load Forecast Report and the LRSS for total consumers and total system kW demands is as follows:

2004 LRSS Load Levels		2010 LF Projections		LRSS	
Level Year		Consumers	MW*	Consumers	MW
Load Level A	2006	NA	NA		321
Load Level B	2010	55,394	379		401
Load Level C	2014	59,745	418	65,700	501

*For Extreme winter (20% probability)

The above projected 2010 demand in the LF reflects a system growing slightly less than projected for 2010 in the LRSS. The current LRSS should be valid for recommendations over the next 3 years ($2010 \sim 2013$ CWP).

The 2010 LF does project a long range kW peak level that is approximately 13.5% lower than the LRSS. This difference is considered acceptable understanding the studies are looking at system conditions more than 10 years in the future. Consideration should be given for a new LRSS prior to next BGE CWP period when the current LRSS will be 10 years old. This time range assumes no other system changes warranting a new study sooner.

The LRSS determined the most economical approach for BGE is to continue voltage conversions in the Fox Creek District and to remain at the 7.2/12.47 kV primary distribution level in the other three districts.

The LRSS also recommends BGE standardize on three-phase line construction using primarily 1/0 ACSR, 336 kcmil and 556 kcmil ACSR conductor sizes. Exhibit N provides a summary of the current Economical Conductor Analysis that agrees with the recommendations of the LRSS.

In summary, the LRSS appears to be valid for the next 3 years including system improvements necessary to satisfy current and projected system needs through the year 2013. Recommendations incorporated in this CWP are in compliance with the current LRSS.

3. 2005 Operations and Maintenance Survey (RUS Form 300)

In October 2008 BEG personnel met with the RUS GFR and conducted a review of BGE's facilities and records. This review included substation monthly reports, monthly outage records, and other equipment maintenance records. This review was used as a basis for completing the RUS Form 300, Review Rating Summary, and is included herein as Exhibit M. This survey is used for identifying maintenance, operational and capital needs necessary for proper operation of the electrical distribution system.

In general, the overhead and underground distribution facilities were found to be in satisfactory condition. Likewise, nearly all of the operations, maintenance and engineering programs were found to be satisfactory with no major capital items identified or recommended.

No items were noted on the O&M Survey which requires corrective action.

Several items were noted for improvement; however, no corrective action was recommended. A summary of those items are given as follows:

- Telephone poles left standing after pole replacement should be removed.
- Cable TV attachments need to be monitored continuously for compliance with the NESC.
- The report of idle services should be reconciled with billing records and report adjusted on the Form 7.
- A more aggressive right-of-way clearing program is recommended. Directional trimming is the recommended approach for yard trees. Trees growing near the transformer pole and non-yard trees in the right-of-way should be removed.

D. Historical and Projected System Data

1. Annual Consumer, Load, and Losses Data

Exhibit A tabulates the annual system data for consumers, system peak demand, losses, and annual load factor. The exhibit provides both data and graphs for the actual conditions for 2000 through 2009 and for the projected years of 2010 through 2019.

The distribution system exhibited a growth in peak demand from 248.4 MW in the winter of 1999 ~ 2000 to 324.8 MW by the winter 2009 ~ 2010. This represents approximately a 2.7 percent per year growth rate.

The system has experienced an annual 1.6% growth in consumers over the last 5 years. There were 50,725 consumers in 2004, increasing to 54,816 in 2009. This growth rate is expected to continue for the long range.

The annual total distribution non-coincident peak (NCP) load factor was 38.8 percent for 2009. BGE's distribution load factor has ranged from a low of 38.8% to a high of 52.1% over the past twenty years depending on the severity of the summer and winter peaks.

The annual distribution system losses were 4.7% for 2009. The 2009 total energy sales for BGE were 1,173,229,591 kWh. With 4,600 miles of distribution line, the 1,000 kWh billed per mile per year ratio calculates to be 255. According to REA Bulletin 45-4, the acceptable loss for this ratio is approximately 8.2 percent. BGE's losses in recent years have averaged 4.6%, which is well within RUS' established guidelines.

2. Special Loads

Several spot loads were accounted for in this Work Plan.

3. Substation Load Data

Exhibit O, pages 1 through 3, summarizes the substation loading and capacities for both existing summer 2010 and winter 2009-2010 system peak conditions. The projected winter 2013-2014 conditions with and without the recommended system improvements are also presented, as well as the peak summer 2013 with and without the recommended system improvements. The exhibit identifies each substation, its voltage levels, winding capacity, percent of full load, percent power factor, and total peak demand. The loading is given in percent of full load rating of the substation transformer as provided by EKPC. All substations are owned and operated by EKPC.

BGE's System Design and Operational Criteria (SDOC), Exhibit L, establishes that a substation's current loading condition is not to exceed 95 percent of its full nameplate KVA capacity without planning its uprating. This criterion also matches EKPC's policy. Currently only one of BGE's substations is loaded over this level.

Adequate and reasonable power factor levels are currently being maintained on all substations on BGE's system. A capacitor study was conducted in conjunction with this Work Plan and projects were developed accordingly.

Specific recommendations concerning substations are presented in Section III D.

4. Circuit Loading and Voltage Conditions

The 2009-2010 non-coincident winter distribution peak for BGE was 305 MW established during January 2010. The corresponding peak kWh consumer billing data was used to develop the base system model for the peak 2009-2010 winter conditions.

During December 2009 the system served approximately 54,823 consumers with each residential consumer averaging 1,250 kilowatt-hours each for the year of 2009.

Appendix 1 presents the primary analysis for the base Winter 2009-2010 system.

The primary analysis provides the following system parameters.

- Circuit loading by substation and by line section.
- Unregulated voltage drops on 120-volt base (by section and accumulated total).
- Annual primary losses in dollars per section.
- Number consumers served through each section, circuit, and substation.

- Circuit primary conductor size and miles from sub.
- Fault current levels by fault types; maximum three-phase, maximum phase-toground, and minimum phase-to-ground.

Map 1 is a circuit diagram of BGE's primary electric system illustrating voltage conditions of the base winter 2009-2010 system.

Similarly, *Appendix 2* presents the primary analysis of the summer 2009 system. BGE's peak loading has generally occurred in the winter. Portions of the system have however, peaked in the summer. That is why the summer conditions have been included herein and were reviewed.

Appendix 3 is a primary analysis of the existing 2009-2010 system configuration with the projected future 2013-2014 peak winter conditions. This analysis provides a picture of the system of the future if no system improvements were accomplished. This analysis was the primary basis for most of the system improvements called for in this work plan.

To show that the recommended improvements are valid, *Appendix 4* is given. It reflects the future 2013-2014 winter system after completion of the system improvements. Map 2 is a circuit diagram picture of what the system will be after completion of this CWP.

Through the use of line voltage regulators and capacitors, adequate system voltages are being maintained for current system conditions. In anticipation of future system loading conditions, some line voltage regulator and capacitor changes will be necessary to maintain adequate voltage.

5. System Outages and Reliability

BGE maintains daily outage reports and prepares monthly and annual summaries. A periodic review of those summaries reveals areas requiring system changes or right-of-way maintenance. Exhibit S presents a summary of the consumer outage hours for the five previous years.

The five year (2005-2009) consumer outage average is 1.98 (10.89 including major storms) hours per consumer per year, which is well below RUS's guideline of 5.0 hours per consumer per year. BGE recently completed work on the recommended components of a newly developed Sectionalizing Study.

III. REQUIRED CONSTRUCTION ITEMS

A. Service to New Consumers

During the 24 month period ending December 31, 2009, BGE added 1,557 underground and overhead services for new consumers. The average line extension cost for each new service is approximately \$5,192 currently. It is estimated that 2,550 new underground and overhead services will be built over the next three years. Extending these costs for underground and overhead services on a per unit basis, it is estimated that over the next three years \$12,285,000 in capital will be required to construct the new lines. This calculates to be an average of \$4,095,000 per year.

Exhibit B summarizes the historical data used in projecting the required capital for the new services. Transformer, meter, and security light quantities and costs are also given in this exhibit. Exhibit D summarizes the costs on an annual basis. <u>Approximately 32.3% of the capital required for this work plan is estimated to be for new consumer services.</u>

B. Service Changes to Existing Customers

For the 24 month period ending December 31, 2009, BGE increased the service wire capacity of 188 consumers. On this basis BGE is expected to upgrade 285 services during the next three years. The average cost for each service upgrade is approximately \$2,730. This yields a capital requirement of \$778,050 for the CWP period.

C. Distribution Lines - Additions and Changes

The recommended CWP line changes and improvements are generally for the following reasons:

- Excessive Voltage Drops
- Excessive Load Currents (or Overloaded Lines)
- Poor Service Reliability

Increasing primary line voltage, increasing conductor size, increasing the number of phases, reducing distances of feed, and installing voltage regulators and capacitors are the methods of correction for excessive voltage drops. Excessive load current is an undesirable situation normally corrected by the same methods used for excessive voltage drops; however, the improvement is recommended in most cases to assure proper coordination of line reclosers or sectionalizing devices.

Right-of-way clearing often results in improved service reliability. However, if specific line components are causing outages, then priority is given to rebuilding the line to replace old and worn-out equipment. Rebuilding a line may include conductor, pole or crossarm replacement, replacing defective insulators, etc. Also the construction of tie-capable lines may improve service reliability. Tie lines shorten the circuit feed distance thereby reducing line exposure and also providing loop feed capability. The loop feed capability is very beneficial during outages and line maintenance.

Reviewing the winter 2009-2010 primary analysis of Appendix 1 and considering the load growth estimates of the winter 2013-2014, the distribution line system improvements are as follows. The three year CWP distribution line construction estimate is \$9,113,200 including line conversions and changes (which does not include copper replacement). No new tie-lines are recommended or required.

Each recommendation of the CWP has been reviewed with BGE's staff prior to inclusion in this report. Exhibit F presents a summary of the distribution line construction recommendations. Please note the following explanation for the construction RUS reference numbers:

XYY.ZZ	=	Construction Item Number
Х	=	RUS Reference Prefix (2 for tie lines; 3 for line conversions)
YY	=	BGE Substation Number
ZZ	=	Consecutive Number Under Each Substation

Exhibit F also presents construction justification codes for each recommendation. For the sake of brevity, quantitative information regarding the system benefits of each construction item is not presented. The computer model output in the appendices provides this information, (e.g., voltage drop improvements, elimination of overloaded conductor, etc.). Exhibit T also summarizes the justification for each project.

D. Substation and Meter Point Additions and Changes

System Design and Operational Criteria (SDOC), Exhibit L, establishes that a substation's projected future loading condition is not to exceed 95 percent of its full nameplate KVA capacity without planning its uprating. This criterion also is in agreement with EKPC's loading policy. A review of the future substation loading conditions in Exhibit O without improvements reveals that only one substations is projected to reach or exceed the 95 percent level in the next three years. The projected overloaded substation is Hickory Plains. Recommendations have been included herein to transfer load and/or add fans to relieve future overloading conditions at this substation.

E. Capacitor Equipment - Additions and Changes

Exhibit I presents the capacitor recommendations for this CWP. They are also included in Map 1 and 2. Recommendations are included to comply with EKPC power factor policy of no less than 90 percent at peak for each cooperative delivery point. Recommendations have been included to maintain approximately 95% during the summer peak conditions if switched banks are not required. If switched banks are required to maintain this level, the power factor is allowed to be lower.

BGE is encouraged to continue the enforcement of its power factor penalty clause in their C&I service contract, hopefully to get C&I to install both fixed and switched capacitor banks to satisfy their needs. If however, this effort is unsuccessful, BGE should install the capacitors on their system to eliminate the penalty charges from EKPC. The monies received from penalizing the C&I customers should be adequate to cover the cost for the capacitor installations.

The cost of the auxiliary equipment (crossarms, cutouts, etc.) and installation costs of the capacitor stations are incurred by BGE. The cost estimate for the new capacitors is \$119,800 with purchases included for the years 2011, 2012 and 2013 (average annual cost of \$39,933). All capacitor recommendations are based on the computer output of the Windmil (WM)® software of Milsoft Utility Solutions, Inc. Capacitor locations and kVAR bank size recommendations were based on circuit loading and minimizing line loss.

The capacitor recommendations included herein conform to the design criteria of Exhibit L.

F. Sectionalizing Equipment - Additions and Changes

A complete line sectionalizing review evaluating device coordination and fault current duty is to be included under separate cover of this work plan. EKPC provided BGE low-side source impedance data so that available fault currents at each substation and delivery point can be determined. Also, any device overloaded conditions and line configuration changes resulting from the system improvements and revisions included in the work plan are to be included in the study.

Preliminary estimates of this sectionalizing review call for a total cost for the work plan, (RUS Code 603 – sectionalizing equipment) to be \$300,000, or an average annual cost of \$100,000. Please refer to the System Design and Operational Criteria, Exhibit L, for additional details concerning the sectionalizing system design criteria.

G. Line Regulators - Additions and Changes

Exhibit H and Maps 1 and 2 present the line voltage regulator changes. The cost of line regulator changes is categorized by RUS reference Code 604 and Exhibit H presents the cost estimate.

A number of line regulators are recommended in this CWP. Excessive voltage drops are projected for some areas; therefore, regulators are included herein. The use of said regulators allows management the greatest flexibility in conducting facility upgrades.

Exhibit H itemizes the location of the new regulators and BGE is recommended to add the regulators only as system problems are field measured and verified. The cost estimate for the new regulators is \$181,000 with purchases included for the years 2011, 2012 and 2013 (average annual cost of \$60,333).

H. Pole Replacements

Numerous system improvements have been made in recent years. However, following the experience of long outages during past severe storms, persistent efforts to locate and replace old and depreciated electric plant is necessary and highly recommended.

BGE's distribution system consists of approximately 80,000 wood poles system wide 4,318 miles of overhead line at approximately 18 poles per mile average). RUS recommends an annual inspection of at least 10 percent of a system's total poles. BGE should therefore have a pole inspection program that includes approximately 8,000 poles annually.

Current estimates for pole replacements can be found in Exhibit B. The present projected cost for pole replacements based on historical data is 1,800 pole change-outs over three years, averaging \$2,500 each for a total cost of \$4,500,000.

I. Other Distribution Items

BGE has approximately 2,721 miles of aged conductor remaining throughout its system.

Approximately \$2,352,000 has been allocated in this CWP for the deteriorated conductor changeout. This represents approximately 45 miles of aged OH conductor in addition to the approximately 117 miles replaced by the system improvement projects. Please refer to the "Deteriorated Conductor Replacement Plan" included within this CWP.

J. Two-Way Communication Equipment

BGE is currently in the initial study process for changes to it's two-way vehicle communication system which will be required by the FCC re-farming of BGE frequencies during the CWP period. Following is an approximate cost associated with the required conversion.

2Way Radio System:

<u>Quantity</u>	Equipment Description	Cost/unit	<u>Total Cost</u>
70	Truck Mobile Radio	\$900	\$63,000
30	Portable handheld Radio	\$800	\$24,000
6	Base Station Repeater	\$10,000	\$60,000
1	Dispatch Center Console	\$20,000	\$20,000
1	System Engineering and FCC Licensing	_	\$33,000
		_	\$200,000

K. DA Backbone Communication

BGE is currently in the process of installing a DA Backbone project for the purpose of precisely controlling switched capacitors, regulating VARs, regulating system voltage, and optimizing system conditions conducive to loss reduction and service quality.

This backbone will cover the entire BGE Distribution System.

Distribution Automation System:

Quantity	Equipment Description	Cost/unit	<u>Total Cost</u>
10	Base Station Gateway	\$66,000	\$660,000
1	Base Station Gateway License	\$13,000	\$13,000
1	Project Management, Setup and Implem.		\$227,000
900	Voltage Monitors	\$1,300	\$1,170,000
900	Voltage Monitors Installation	\$200	\$180,000
50	Capacitor control communication hardware	\$1,600	\$80,000
50	Capacitor control communication installation	\$500	\$25,000
			\$2,355,000

IV. CONCLUSION

The recommendations set forth in this construction work plan will enable *Blue Grass Energy Cooperative Corporation* to serve the projected 2013-2014 peak winter conditions. The construction recommendations are in accordance with RUS prescribed guidelines and other economic criteria established by BGE's Long Range System Study, and related power supply studies. Any questions or comments regarding this report should be directed to Gary Grubbs of Patterson & Dewar Engineers. His email addresses is <u>ggrubbs@pd-engineers.com</u> and phone number is 270-404-5030.

		<u>EXHIBITS</u>	<u>TAB</u>
EXHIBIT	A	System Statistical Data and Growth Charts	A
EXHIBIT	В	Historical Cost Data Ending December 31, 2009	B
EXHIBIT	С	Status of Previous 2007-2009 Work Plan Projects	C
EXHIBIT	D	Summary of Distribution Cost Estimates	D
EXHIBIT	Ε	Cost Estimate Breakdown for RUS Form 740c and Financial Forecast	E
EXHIBIT	F	Distribution Line Construction and Cost Estimates	F
EXHIBIT	G	Substation and Meter Point Cost Estimates	G
EXHIBIT	н	Voltage Regulator Recommendations and Cost Estimates	H
EXHIBIT	Ι	Capacitor Recommendations and Cost Estimates	I
EXHIBIT	J	Sectionalizing Summary and Cost Estimates	J
EXHIBIT	K	Aged Conductor Replacement Summary	K
EXHIBIT	L	System Design and Operational Criteria	L
EXHIBIT	М	Operations and Maintenance Survey (RUS Form 300)	M
EXHIBIT	Ν	Economic Conductor Loading	N
EXHIBIT	0	Substation Load Data	0
EXHIBIT	Р	Distribution Line Open Changes	P
EXHIBIT	Q	Summary of Economic Comparisons from Power Supply Study (PSS) & Power Supplier Letter of Concurrence	Q
EXHIBIT	R	Large Power Loads - (January 2005 Data)	R
EXHIBIT	S	Five-year Outage Report	S
EXHIBIT	Т	System Improvement Justification Summaries	T
EXHIBIT	U	Minimum Line Voltage Comparisons	U
EXHIBIT	V	Vehicle Two-Way Communication with AVL	V
EXHIBIT	W	DA Communication Backbone Communication	W

TABLE OF CONTENTS (cont)

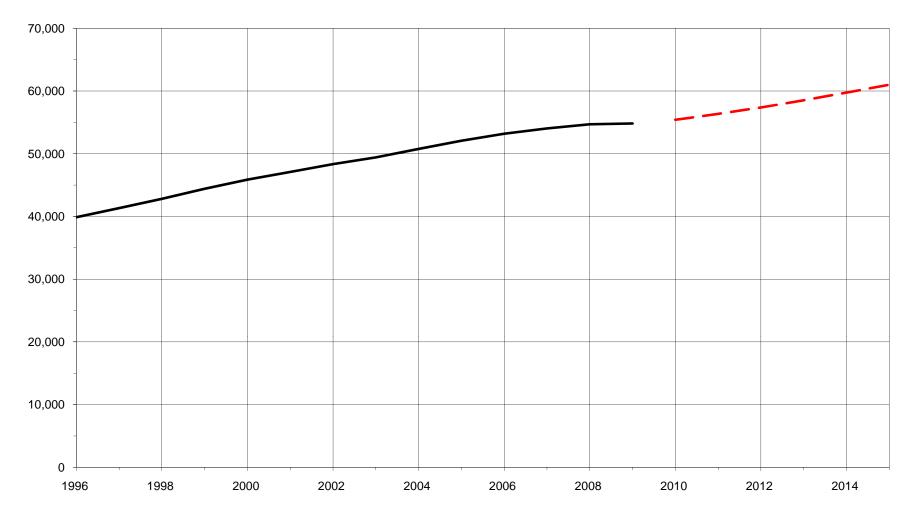
		EXHIBITS	<u>TAB</u>
EXHIBIT	X	EKPC Transmission Map of the BGE Area	X
EXHIBIT	Y	Various BGE Facility Maps	Y

Exhibit A

System Statistical Data and Growth Charts

Pages: 7

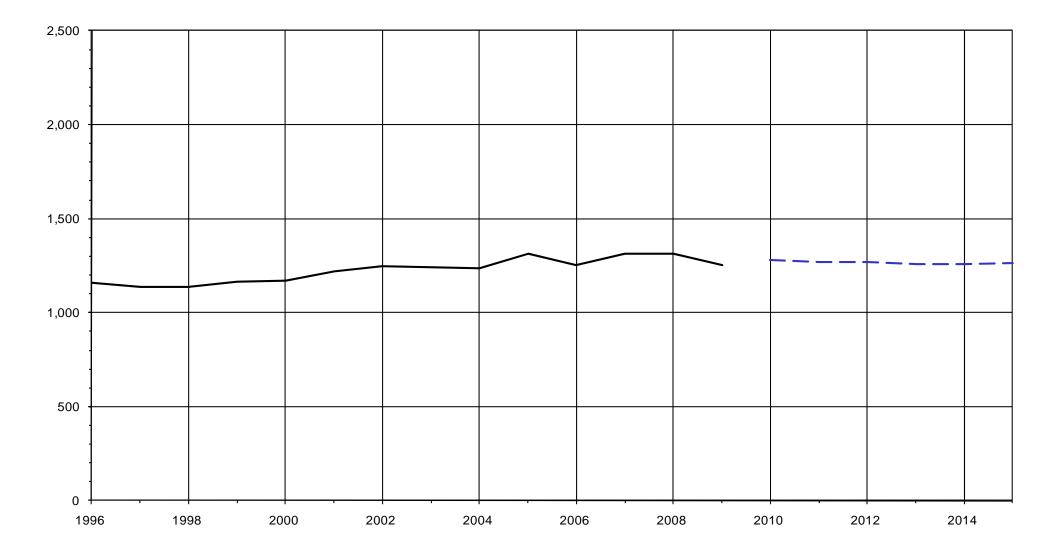
KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY


SYSTEM STATISTICAL DATA*

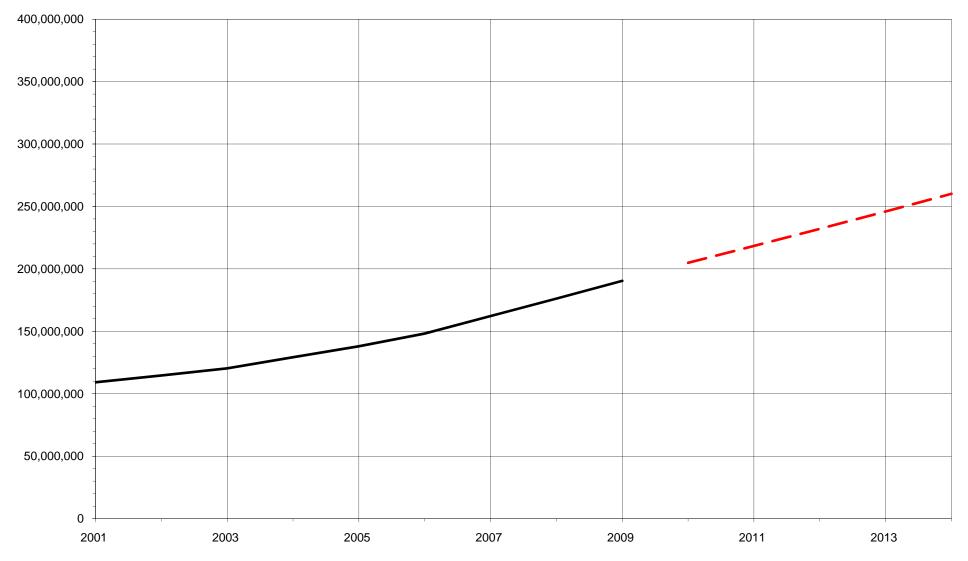
	Total Consumers kWh per Consumer		Net Distribution		Annual		Annual		Total Non-Coincident Peak kW					
			Resid	lential	Plant In	vestment	System	Losses	Load	Factor				
	(Annual	Average)	(Monthly	Average)									Winter Projections	
Year	Actual	Projected	Actual	Projected	Actual	Projected**	Actual	Projected	Actual	Projected	Year	Actual	Probable	Extreme (20%)
1996	39,872		1,160		-		4.54%		43.3%		1996-97	225,500		
1997	41,320		1,138		-		5.53%		44.6%		1997-98	204,197		
1998	42,802		1,139		-		5.30%		51.4%		1998-99	233,406		
1999	44,422		1,164		-		4.80%		47.9%		1999-00	248,400		
2000	45,873		1,171		-		6.53%		48.1%		2000-01	266,200		
2001	47,093		1,218		\$109,220,065		3.17%		45.5%		2001-02	249,300		
2002	48,347		1,246		\$114,658,171		5.72%		52.1%		2002-03	296,500		
2003	49,421		1,243		\$120,308,089		4.66%		43.8%		2003-04	295,900		
2004	50,775		1,238		\$129,215,057		5.32%		45.3%		2004-05	300,274		
2005	52,068		1,313		\$138,021,852		4.38%		47.2%		2005-06	285,389		
2006	53,175		1,252		\$148,210,111		3.14%		48.6%		2006-07	334,299		
2007	54,021		1,314		\$162,224,155		5.49%		44.8%		2007-08	346,161		
2008	54,694		1,316		\$176,229,381		4.84%		43.3%		2008-09	362,276		
2009	54,816		1,250		\$190,440,817		4.71%		38.8%		2009-10	324,789		
2010		55,397		1,279		\$204,863,620		4.80%		44.6%	2010-11		362,220	379,202
2011		56,340		1,271		\$218,352,882		4.80%		40.6%	2011-12		370,400	387,672
2012		57,378		1,267		\$232,054,924		4.80%		40.9%	2012-13		381,130	398,718
2013		58,526		1,257		\$245,975,066		4.80%		40.9%	2013-14		390,980	408,918
2014		59,745		1,261		\$260,118,760		4.80%		41.0%	2014-15		400,020	418,329
2015		60,999		1,264		-		4.80%		41.1%	2015-16		410,360	429,050
2016 2017		62,266		1,271		-		4.80%		41.3%	2016-17 2017-18		420,740	439,815
2017 2018		63,542 64,831		1,277		-		4.80% 4.80%		41.2% 41.3%	2017-18 2018-19		430,530 440,650	449,992
2018		66,130		1,285 1,294		-		4.80% 4.80%		41.3%	2018-19 2019-20		440,650 449,060	460,503 469,307
2019				1,294		-		4.80% 4.80%		41.4%	2019-20		449,060	489,307 480,563
2020		67,436		1,301		-		4.00%		41.0%	2020-21		459,920	400,000

* From 2010 Load Forecast ** From May 2004 Long Range Plan

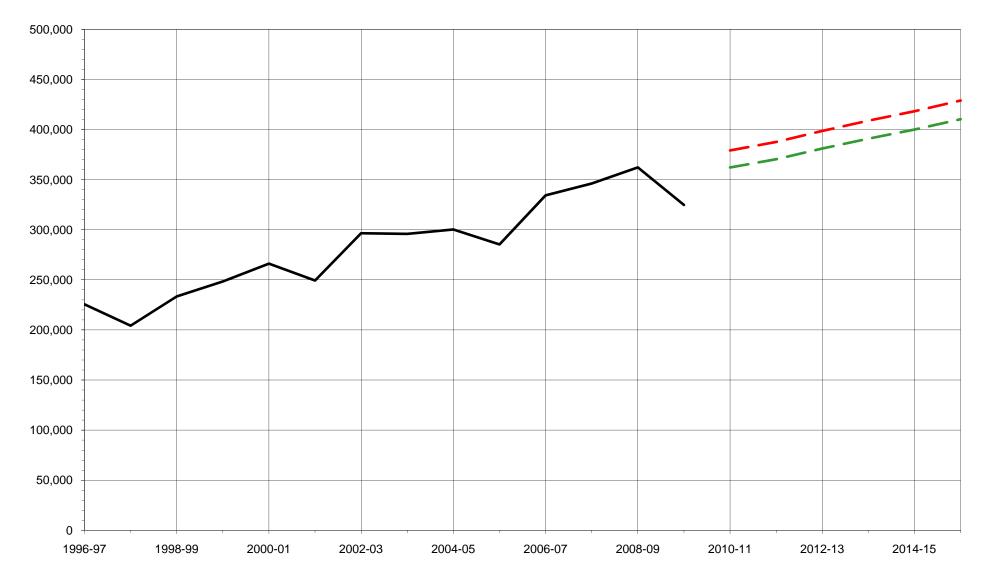
KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY


Total Consumers

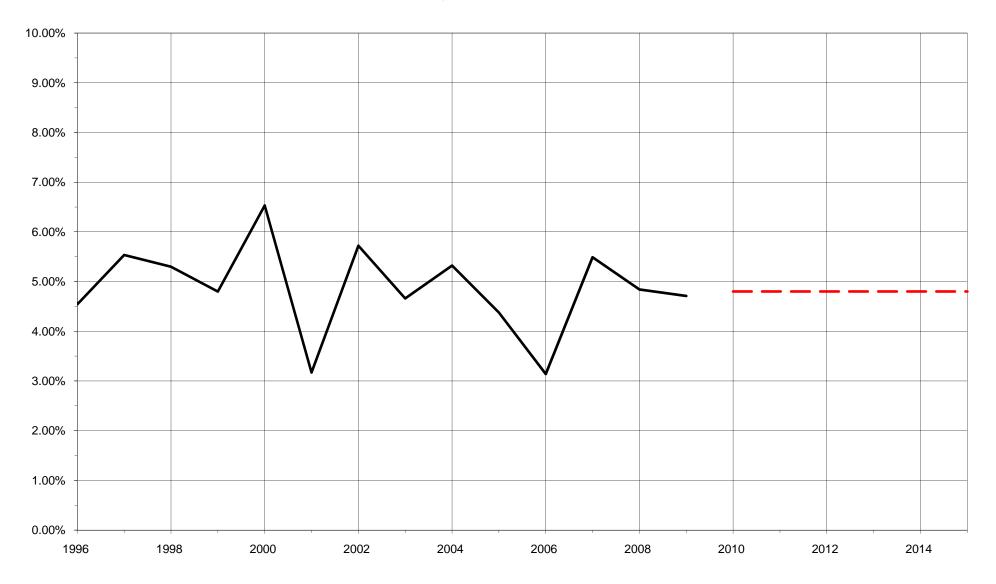
Total Consumers
 Projected Consumers


KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

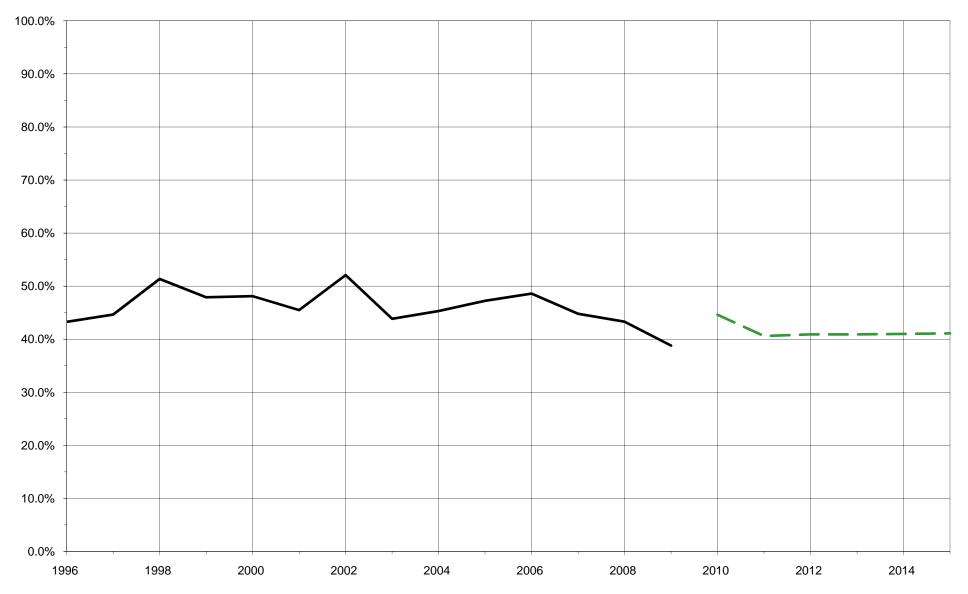
Residential kWh per Consumer (Monthly Average)


KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

Net Distribution Plant (\$ Millions)


KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

Blue Grass Energy Cooperative Corporation (Kentucky 64) Total Non-Coincident Peak kW


KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

Annual System kWH Losses (%)

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

Annual Load Factor

Annual Load Factor - PRS Projections

Exhibit B

Historical Cost Data Ending December 31, 2010

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 ~ 10/1/13 CONSTRUCTION WORK PLAN Historical Cost Data Ending December 31, 2009

DISTRIBUTION	12 Months Ending 12/31/07	12 Months Ending 12/31/08	12 Months Ending 12/31/09	Estimated For 10/10 ~ 10/11	Estimated For 10/11 ~ 10/12	Estimated For 10/12 ~ 10/13	Estimated For 36 Months
100 ~ NEW SERVICES 1							
Overhead and Underground Number Services Total Lineal Feet Average Feet Per Service Total Cost Average Cost Per Service	1,315 ~ ~ \$5,187,486 \$3,945	940 304,811 324 \$4,101,670 \$4,363	617 187,671 304 \$3,203,425 \$5,192	700 219,952 314 \$3,255,000 \$4,650	850 267,084 314 \$4,080,000 \$4,800	1,000 314,217 314 \$4,950,000 \$4,950	2,550 801,253 314 \$12,285,000 \$4,818
200 ~ NEW CONSTRUCTION AND TIE	LINES (none)			\$0	\$0	\$0	\$0
300 ~ LINE CONVERSIONS & CHANG	SES (from Exhibit E)			\$4,023,600	\$2,307,600	\$2,782,000	\$9,113,200
600 ~ MISCELLANEOUS DISTRIBUTIO	ON EQUIPMENT						
601 ~ Transformers and Meters Number of Transformers Total Cost of Transformer Average Cost of Trans. Number of New Meters (<i>I</i> Total Cost of Meters Average Cost of Meters		1,059 \$1,392,158 \$1,315 5,552 \$606,195 \$109	852 \$1,350,161 \$1,585 20 \$6,103 \$305	800 \$1,300,000 \$1,625 700 \$87,500 \$125	950 \$1,591,250 \$1,675 850 \$109,650 \$129	1,100 \$1,897,500 \$1,725 1,000 \$133,000 \$133	2,850 \$4,788,750 \$1,680 2,550 \$330,150 \$129
602 ~ Service Upgrades				<u> </u>	<u> </u>	<u></u>	\$129
Number Work Orders Total Cost Average Cost		99 \$236,423 \$2,388	89 \$256,843 \$2,886	95 \$251,750 \$2,650	95 \$259,350 \$2,730	95 \$266,950 \$2,810	285 \$778,050 \$2,730
603 ~ Sectionalizing Equipment Number Work Orders Total Cost Average Cost		2 \$11,728 \$5,864	5 <u>\$95,305</u> \$19,061	5 \$100,000 \$20,000	5 \$100,000 \$20,000	5 \$100,000 \$20,000	15 \$300,000 \$20,000
604 ~ Line Regulators Number Work Orders Total Cost Average Cost		0 \$0 \$0	0 \$0 \$0	3 \$105,000 \$35,000	1 \$37,000 \$37,000	1 \$39,000 \$39,000	5 \$181,000 \$36,200
605 ~ Capacitors Number Work Orders Total Cost Average Cost (approxima	tely 75% cost to EKPC)	0 \$0 \$0	0 \$0 \$0	30 \$75,000 \$2,500	11 \$28,600 \$2,600	6 \$16,200 \$2,700	47 \$119,800 \$2,549
606 ~ Pole Changes - Replacemer Number of Poles Replace Total Cost Average Cost per Pole		501 \$1,412,926 \$2,820	659 \$1,340,681 \$2,034	600 \$1,455,000 \$2,425	600 \$1,500,000 \$2,500	600 \$1,545,000 \$2,575	1,800 \$4,500,000 \$2,500
607 ~ Conductor Replacement Number Miles of Line Total Cost Average Cost per Mile	ОН ОН ОН	1 \$134,223 \$0	10 \$403,770 \$0	15 \$577,500 \$38,500	15 \$592,500 \$39,500	15 \$615,000 \$41,000	45 \$1,785,000 \$39,667
Number Miles of Line Total Cost Average Cost per Mile	URD URD URD	~~~	~ ~ \$0	3 \$180,000 \$60,000	3 \$189,000 \$63,000	3 \$198,000 \$66,000	9 \$567,000 \$63,000
615 ~ Two Way Communication wi	ith AVL	\$0	\$0	\$0	\$0	\$200,000	\$200,000
700 ~ OTHER DISTRIBUTION							
701 ~ Security Lights Number Work Orders Total Cost Average Cost		550 \$202,243 \$368	400 \$175,996 \$440	475 \$218,500 \$460	475 \$229,425 \$483	475 \$240,825 \$507	1,425 \$688,750 \$483
704 ~ DA Communication Backbor	ne and Volt / VAR Eq.	\$0	\$0	\$2,355,000	\$0	\$0	\$2,355,000
705 ~ AMR Computer Equipment		\$0	\$0	\$0	\$0	\$0	\$0
TOTAL CWP				\$13,983,850	\$11,024,375	\$12,983,475	\$37,991,700

¹ Elevated cost per consumer is mainly due to the over-head costs associated with this type job.

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 ~ 10/1/13 CONSTRUCTION WORK PLAN Historical Cost Data Ending December 31, 2009

Historical Cost Data Summary of RUS Code 300 Projects

	Costs	Per Mile	
Construction Type	Historical	Projected	
	Costs*	Costs	
1ø 2 ACSR	~	\$38,500	
1ø 1/0 ACSR	\$36,700	\$44,000	
2ø 1/0 ACSR	\$56,231	\$62,000	
3ø 1/0 ACSR	\$55,554	\$69,000	
3ø 336 ACSR	\$74,278	\$89,000	
3ø 336 ACSR DC	\$125,914	\$132,000	
3ø 556 ACSR	~	\$125,000	
3ø 336 ACSR DC (Bundled)	\$199,633	~	
3ø 336 ACSR TC (Bundled)	~	~	
Add 3ø 336 ACSR (Bundled)	~	~	
1ø 1/0 UG	~	~	
3ø 1/0 UG	~	~	
3ø 500 MCM UG (Sub Exits	\$103,355	\$150,000	
1ø 14.4kV reinsulate	~	~	
3ø 25kV reinsulate	~	~	

* Based on actual project costs

Exhibit C

Status of Previous 2007 – 2009 Work Plan Projects

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 ~ 10/1/13 CONSTRUCTION WORK PLAN Status of Previous CWP Projects

CWP Source Legend	
1 = 2007-2009 CWP	
2 = 2004-2005 CWP	
AM(x) = amendment	

Status Legend
COM = Completed
DEL = Deleted
IP = In Progress
NP = No Progress
CPC = Complete Pending Close-out

Construction Item No.	CWP Source	Line Section(s)	Construction Description	Length (miles)	CWP Costs	Actual Costs	% Actual to CWP Costs	Status
New Construction an	d Tie Lines (Cod	e 200 Items)						
200	None							
ine Conversions an		· · ·	0		A	057.004	500/	
302-01	1	1513069	3ø 1/0 ACSR	0.96	\$115,500	\$57,921	50%	COM
302-02	1	1513076 - 1513067	3ø 1/0 ACSR	1.02	\$55,000	\$55,269	100%	COM
302-03	1	1513120 & 1513117	3ø 1/0 ACSR	2.10	\$38,500	\$101,747	264%	COM
302-04	1	1414494	2ø 1/0 ACSR		\$28,000		-	IP
303-01	1	1613053 & 1613054	3ø 1/0 ACSR		\$27,500		-	NP
303-02	1	1514476 - 1514451	Underbuild		\$252,000		-	DEL
304-01	2	Shopping Center	3ø 336 ACSR	0.57	\$80,000	\$59,897	75%	COM
305-01	1	1416036 & 1416022	3ø 1/0 ACSR		\$44,000		-	NP
305-02	2	Sub Exits	(3) 3ø 1000 MCM		\$75,000		-	NP
306-01	2	Sub Exits	(3) 3ø 1000 MCM		\$50,000		-	NP
307-01	1	1717069 & 1717070	3ø 336 ACSR		\$88,000		-	IP
307-02	1	1715052 - 1715053	2ø 1/0 ACSR	3.07	\$92,000	\$201,603	219%	COM
307-03	1	1716080 - 1716085	3ø 1/0 ACSR	2.85	\$82,500	\$222,262	269%	COM
308-01	1		3ø 336 ACSR	2.93	\$216,000	\$260,540	121%	COM
309-01	2	1918264 - 1918265	3ø 336 ACSR	3.07	\$152,000	\$177,056	116%	COM
309-02	2	2018121 - 2018221	3ø 1/0 ACSR		\$44,000		0%	COM
309-03	1	2018114	3ø 1/0 ACSR	1.13	\$38,500	\$57,759	150%	COM
309-04	2	2018198 & 2018200	3ø 1/0 ACSR	1.65	\$27,500	\$121,668	442%	COM
309-05	2	2018184	3ø 1/0 ACSR	1.78	\$115,500	\$123,933	107%	COM
313-01	1	1918238	3ø 1/0 ACSR	0.84	\$38,500	\$59,420	154%	COM
313-02	2	1918270	3ø 336 ACSR		\$160,000		0%	COM
313-03	1	1919096 & 1919097	3ø 1/0 ACSR	1.26	\$55,000	\$118,041	215%	COM
313-04	2	1919061	3ø 1/0 ACSR	1.95	\$82,500	\$90,697	110%	COM
314-01	1	1614172 - 1614174	3ø 336 ACSR	1.90	\$200,000	\$239,236	120%	COM
314-02	1	1714059 - 1714060	3ø 1/0 ACSR		\$44,000		-	NP
314-03	2	1714094 - 1714095	2ø 1/0 ACSR	0.99	\$49,500	\$68,331	138%	COM
314-04	1	1714085 - 1714108	3ø 1/0 ACSR	1.75	\$55,000	\$94,648	172%	COM
314-05	1	1714067 - 1714069	3ø 1/0 ACSR	2.08	\$77,000	\$83,487	108%	COM
314-06	2	1615066 - 1615069	3ø 1/0 ACSR	2.19	\$77,000	\$146,872	191%	COM
314-07	1	1615108 - 1615107	3ø 1/0 ACSR		\$71,500		-	CPC
314-08	1	1614196 - 1614217	3ø 336 ACSR	1.06	\$24,000	\$105,072	438%	COM
314-09	1	sub - 1614154	3ø 336 ACSR DC	2.08	\$220,500	\$415,036	188%	COM
315-01	1	1616132 - 1617045	3ø 336 ACSR		\$216,000		-	IP
315-02	1		3ø 1/0 ACSR	3.42	\$115,500	\$218,093	189%	COM
315-03	AM(3)		3ø 336 ACSR		\$176,000		-	IP
317-01	2	Sub Exits	3ø 336 ACSR TC	4.15	\$154,000	\$241,108	-	DEL
317-02	2	Sub Exits	3ø 336 ACSR DC	0.02	\$75,600	\$32,773	-	DEL
317-03	2	Sub Exits	3ø 500 MCM URD		\$187,500		-	DEL
321-01	- 1	1009009	3ø 1/0 ACSR		\$110,000		-	IP
321-02	1	1210090	3ø 336 ACSR	0.23	\$16,000	\$16,802	105%	COM
322-02	2	1311034	1ø 2 ACSR 14.4 kV	0.20	\$77,000	\$10,00Z	-	NP
322-01	2	1311046 - 1411119	3ø 336 ACSR		\$416,000		-	IP
322-02	1	1210094 & 1210095	3ø 336 ACSR		\$136,000		- 0%	COM
	1		3ø 30 ACSR 3ø 1/0 ACSR	2.72		\$211.057		COM
323-01		1409042 - 1509053		3.73	\$192,500	\$211,857	110%	
323-02	1	1508068	3ø 1/0 ACSR		\$93,500		-	IP
323-03	1	1608022 - 1608057	3ø 1/0 ACSR		\$93,500		-	IP
323-04	1	1608024 - 1608011	3ø 1/0 ACSR	1	\$93,500		-	IP

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

Construction Item No.	CWP Source	Line Section(s)	Construction Description	Length (miles)	CWP Costs	Actual Costs	% Actual to CWP Costs	Status
323-06	2	1408059 - 1407026	3ø 336 ACSR	5.56	\$336,000	\$486,726	145%	COM
323-07	1	1408069 - 1408070	3ø 1/0 ACSR	0.99	\$33,000	\$55,471	168%	COM
324-01	1	1611043 - 1611044	3ø 1/0 ACSR	3.71	\$181,500	\$180,356	99%	COM
324-02	1	1611046	3ø 1/0 ACSR		\$110,000		-	IP
324-03	1	1711047	3ø 1/0 ACSR	2.49	\$99,000	\$100,740	102%	COM
324-04	1	1610046	3ø 1/0 ACSR		\$55,000		-	NP
324-05	1	1710062	3ø 1/0 ACSR		\$44,000		-	NP
324-06	1	1710063 - 1710065	3ø 1/0 ACSR	1.58	\$44,000	\$90,456	206%	COM
324-07	1	1510058 - 1510078	3ø 1/0 ACSR	4.18	\$209,000	\$208,062	100%	COM
324-08	1	1510089 - 1410070	3ø 1/0 ACSR		\$115,500		-	DEL
324-09	2	1610061 - 1609051	3ø 1/0 ACSR	7.61	\$170,500	\$359,419	211%	COM
324-10	1	1610085	3ø 1/0 ACSR	3.72	\$115,500	\$218,601	189%	COM
326-01	2	1411160 & 1411145	3ø 1/0 ACSR	6.85	\$110,000	\$351,329	319%	COM
326-02	2		2ø 1/0 ACSR	2.14	\$68,000	\$114,909	169%	COM
326-03	1	1512020 & 1512022	3ø 1/0 ACSR		\$137,500		0%	COM
326-04	1	1410049	3ø 1/0 ACSR	2.79	\$115,500	\$194,828	169%	COM
326-05	2	1511085 & 1510103	3ø 1/0 ACSR	2.14	\$88,000	\$129,522	147%	COM
328-01	2	1309036 - 1309038	3ø 1/0 ACSR	2.16	\$110,000	\$116,426	106%	COM
328-02	2	Sub Exits	3ø 500 MCM URD		\$150,000	····	0%	COM
328-03	2	1309060 - 1309049	3ø 1/0 ACSR	2.14	\$88,000	\$111,897	127%	COM
331-01	2	0318020 - 0319040	2ø 2 ACSR	3.02	\$32,000	\$102,617	321%	COM
331-02	2	0219010	3ø 1/0 ACSR		\$38,500	***=,***	-	NP
331-03	1	0419047 - 0419040	3ø 336 ACSR		\$144,000		-	IP
332-01	1	0617052 - 0617032	3ø 336 ACSR	2.50	\$352,000	\$378,142	107%	COM
332-02	2	0616047 - 0419040	3ø 336 ACSR	8.70	\$408,000	\$592,280	145%	COM
333-01	1	417065	3ø 1/0 ACSR	0.10	\$55,000	\$002,200	-	NP
333-02	1	0517061 - 0618054	3ø 1/0 ACSR	3.62	\$121,000	\$211,019	174%	COM
333-03	2	517073	3ø 1/0 ACSR	0.02	\$44,000	φ211,010	-	DEL
333-04	1	0618052 - 0618054	3ø 336 ACSR		\$200,000		-	IP
333-04	AM(4)	0010002 0010004	3ø 336 ACSR		\$408,000		-	IP
334-01	1	0815064	3ø 1/0 ACSR		\$44,000		-	 NP
334-02	2	0815053	3ø 1/0 ACSR		\$55,000		0%	COM
334-03	2	0715046	3ø 1/0 ACSR	7.11	\$104,500	\$461,694	442%	COM
334-03	1	0816066 - 0716049	3ø 336 ACSR	6.21	\$104,500	\$465,810	442 <i>%</i> 116%	COM
334-04	1	0916068	3ø 336 ACSR	0.21	\$400,000	ψ-100,010	-	IP
335-01	1	817131	3ø 336 ACSR	0.46	\$75,000	\$53,931	- 72%	COM
335-01	1	0818056 _ 0818059	3ø 336 ACSR	2.52	\$168,000	\$196,636	117%	COM
335-02	1	0817078 - 0816055	3ø 336 ACSR	7.86	\$108,000	\$358,706	136%	COM
336-01	1	Sub Exits	3ø 336 ACSR	0.49	\$204,000	\$98,476	123%	COM
336-02	1	820035	3ø 1/0 ACSR	0.49	\$49,500	φ30,470	-	NP
336-02	AM(2)	020000	3ø 336 ACSR	2.80	\$82,500	\$154,821	188%	COM
338-01	1	1020066	3ø 336 ACSR	8.89	\$160,000	\$146,133	91%	COM
339-01	1	0916078 - 0916080	3ø 336 ACSR	0.03	\$176,000	ψ1-0,100	-	IP
339-01	1	1017038	3ø 336 ACSR	3.94	\$170,000	\$218,770	- 137%	COM
339-02	1	1017029	3ø 1/0 ACSR	3.94	\$160,000	φ210,77U	13/70	DEL
340-01	1	1017029	3ø 336 ACSR	2.97	\$44,000	\$135,010	- 105%	COM
340-01	1	1015007 - 1015091	3ø 336 ACSR	2.91	\$128,000	\$133,010	103%	NP

New Substations (Code 400 Items)

400	2	Powell Taylor Substation	11.2 MVA	-	By EKPC	-	COM
400	2	South Point Substation	11.2 MVA	-	By EKPC	-	COM

Substation Changes and Modifications (Code 500 Items)

500	2	West Berea Substation upgrade	Upgrade with West Berea 2 - 11.2 MVA	-	By EKPC	-	ON HOLD	
Miscellaneous Distri	bution Equipmer	nt (Code 600 items)						
600	None							

Exhibit D

Summary of Distribution Cost Estimates

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 ~ 10/1/13 CONSTRUCTION WORK PLAN Summary of Distribution Cost Estimates

		Cost Year A	Cost Year B	Cost Year C	Total CWP
740c REF 100: Line Co	onstruction for New Services	2011 \$3,255,000	2012 \$4,080,000	2013 \$4,950,000	Costs \$12,285,000
740c REF 200: New Co	onstruction and Tie Lines	\$0	\$0	\$0	\$0
740c REF 300: Conver	sions and Line Changes	\$4,023,600	\$2,307,600	\$2,782,000	\$9,113,200
740c REF 400: New Su	ubstations, Metering Points, etc	\$0	\$0	\$0	\$0
740c REF 500: Substa	tion and Meter Point Changes	\$0	\$0	\$0	\$0
740c REF 600: Miscell	aneous Distribution Equipment				
Code 601	Transformers & Meters	\$1,387,500	\$1,700,900	\$2,030,500	\$5,118,900
Code 602	Increased Service Capacity	\$251,750	\$259,350	\$266,950	\$778,050
Code 603	Sectionalizing Equipment	\$100,000	\$100,000	\$100,000	\$300,000
Code 604	Line Voltage Regulators	\$105,000	\$37,000	\$39,000	\$181,000
Code 605	Line Capacitors	\$75,000	\$28,600	\$16,200	\$119,800
Code 606	Pole Replacement	\$1,455,000	\$1,500,000	\$1,545,000	\$4,500,000
Code 607	Conductor Replacement	\$757,500	\$781,500	\$813,000	\$2,352,000
Code 615	Two Way Communication with AVL	\$0	\$0	\$200,000	\$200,000
740c REF 700: Other D	Distribution Items				
Code 701	Security Lights	\$218,500	\$229,425	\$240,825	\$688,750
Code 704	Distribution Automation (DA)	\$2,355,000	\$0	\$0	\$2,355,000
Code 705	AMR System and Equipment	\$0	\$0	\$0	\$0
	Total CWP Requirements :	\$13,983,850	\$11,024,375	\$12,983,475	\$37,991,700

Exhibit E

Cost Estimate Breakdown for RUS Form 740c and Financial Forecast

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 ~ 10/1/13 CONSTRUCTION WORK PLAN

Cost Estimate Breakdown For Loan Application and Financial Forecast (RUS Form 740c Format)

1. DISTRIBUTION

1. DISTRIBU	JTION							
a. 740c Ref.	Code 100:	New Line (Ex	cluding Tie-Lines)	Total Consumers	Average Cost	Cost Year A 10/10 ~ 10/11	Cost Year B 10/11 ~ 10/12	Cost Year C 10/12 ~ 10/13
100	ОН	& URD		2,550 TOTAL CODE 100 COSTS:	\$4,818	= \$3,255,000	\$4,080,000	\$4,950,000 \$12,285,000
b. 740c Ref	Code 200:	New Construc	ction and Tie-Lines	(No Code 200 Projects in this CWP)		\$0	\$0	\$0
c. 740c Ref	Code 300: I	Line Conversi	ons and Changes	(See Exhibit F for further details)				
RUS Ref. Nos.	Priority Code	Miles	Existing Construction	Proposed Construction	\$ / Mile	Cost Year A 10/10 ~ 10/11	Cost Year B 10/11 ~ 10/12	Cost Year C 10/12 ~ 10/13
302-01*	A	0.6	1PH 4 ACSR	2PH 1/0 ACSR	\$62,000	\$37,200		
303-01*	С	0.5	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000		\$ 00,000	\$34,500
303-02 304-01	B A	1.0 0.1	1PH 1/0 ACSR (1) 3PH 350 MCM	2PH 1/0 ACSR (1) 3PH 500 MCM	\$62,000 \$150,000	\$15,000	\$62,000	
304-02	В	1.1	1PH 2 ACSR	3PH 1/0 ACSR	\$69,000	\$10,000	\$75,900	
304-03	A	0.8	2PH 1/0 URD	2PH 1/0 URD	\$100,000	\$80,000	••••••	
305-01*	С	0.7	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000			\$48,300
305-02*	A	0.3	(3) 3PH 350 MCM	(3) 3PH 500 MCM	\$150,000	\$45,000		
306-01*	A	0.4	(4) 3PH 350 MCM	(4) 3PH 500 MCM	\$150,000	\$60,000		
307-01* 307-02	A B	0.5 0.1	3PH 1/0 ACSR 1PH 1/0 ACSR	3PH 336 ACSR 2PH 1/0 ACSR	\$89,000 \$62,000	\$44,500	\$6,200	
308-01	C	1.1	3PH 1/0 ACSR	3PH 336 ACSR	\$89,000		ψ0,200	\$97,900
309-01	В	1.0	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000		\$69,000	\$ 01,000
309-02	В	0.1	1PH 4 ACSR	2PH 1/0 ACSR	\$62,000		\$6,200	
309-03	В	1.4	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000		\$96,600	
309-04	В	0.1	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000		\$6,900	* ~~ ~ ~~
313-01 313-02	с с	0.3 0.1	1PH 6 CU 1PH 1/0 ACSR	3PH 1/0 ACSR 3PH 1/0 ACSR	\$69,000 \$69,000			\$20,700 \$6,900
314-01*	A	1.4	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000	\$96,600		40,300
315-01*	A	2.3	3PH 1/0 ACSR	3PH 336 ACSR	\$89,000	\$204,700		
315-02+	Α	2.2	3PH 1/0 ACSR	3PH 336 ACSR	\$89,000	\$195,800		
315-03	В	1.1	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$75,900	
315-04	C	1.8	3PH 1/0 ACSR	3PH 336 ACSR	\$89,000			\$160,200
321-01* 322-01*	A B	2.0 2.9	1PH 4 ACSR Various	3PH 1/0 ACSR	\$69,000 \$69,000	\$138,000	\$200,100	
322-01	A	5.0	3PH 4 ACSR	3PH 1/0 ACSR 3PH 336 ACSR	\$89,000	\$445,000	\$200,100	
322-03	В	0.5	1PH 6 CU	2PH 1/0 ACSR	\$62,000	φ++0,000	\$31,000	
322-04	В	3.0	1PH 6 CU~7.2kV	1PH 1/0 ACSR~14.4kV	\$44,000		\$132,000	
323-01*	A	2.4	1PH 6 CU	3PH 1/0 ACSR	\$69,000	\$165,600		
323-02*	A	2.2	1PH 8 CU	3PH 1/0 ACSR	\$69,000	\$151,800		
323-03	A B	2.3	3PH 2 ACSR	3PH 336 ACSR	\$89,000	\$204,700	\$207 000	
323-04 323-05	C	3.0 0.3	1PH 6 CU 1PH 4 ACSR	3PH 1/0 ACSR 3PH 1/0 ACSR	\$69,000 \$69,000		\$207,000	\$20,700
323-06	A	2.0	1PH 8 CU	3PH 1/0 ACSR	\$69,000	\$134,600		φ20,700
323-07	В	2.0	3PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$138,000	
324-01*	A	1.7	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000	\$117,300		
324-02*	A	1.2	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000	\$82,800		
326-01 326-02	B C	3.3 0.6	1PH 4 ACSR 1PH 6 CU & 4 ACSR	3PH 336 ACSR 3PH 1/0 ACSR	\$89,000 \$69,000		\$293,700	\$41,400
328-01*	В	0.0	1PH & 2PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$13,800	φ 4 1,400
328-02	c	3.8	1PH 6 CU	3PH 1/0 ACSR	\$69,000		\$10,000	\$262,200
331-01	С	9.4	3PH 4 ACSR	3PH 336 ACSR	\$89,000			\$836,600
331-02*	A	0.7	1PH 6 CU	3PH 1/0 ACSR	\$69,000	\$48,300		
331-03*	A	1.8	3PH 4 ACSR	3PH 336 ACSR	\$89,000	\$160,200		
332-01 332-02	A A	4.0 2.2	1PH & 2PH 4 ACSR 1PH & 2PH 4 ACSR	3PH 1/0 ACSR 3PH 1/0 ACSR	\$69,000 \$69,000	\$276,000 \$151,800		
333-01*	A	2.5	3PH 4 ACSR	3PH 336 ACSR	\$89,000	\$222,500		
333-02*	A	3.7	3PH 4 ACSR	3PH 336 ACSR	\$89,000	\$329,300		
333-03	С	5.9	3PH 6 CU & 4 ACSR	3PH 1/0 ACSR	\$69,000			\$407,100
334-01*	В	1.1	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$75,900	
334-02*	A	1.3	3PH 4 ACSR	3PH 336 ACSR	\$89,000	\$115,700		
334-03 334-04	A A	1.1 4.0	3PH 3/0 ACSR (DC) 3PH 1/0 ACSR	3PH 336 ACSR (DC) 3PH 336 ACSR	\$132,000 \$89,000	\$145,200 \$356,000		
334-04	ĉ	2.9	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000	\$330,000		\$200,100
334-06	С	1.3	1PH 6 & 8 CU	3PH 1/0 ACSR	\$69,000			\$89,700
335-01	В	1.8	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$124,200	
335-02	С	3.3	1PH & 2 PH 4 ACSR	3PH 336 ACSR	\$89,000			\$293,700
336-01*	В	1.5	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$103,500	
336-02	В	4.0	3PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$278,200	\$105 000
339-01* 340-01*	C B	2.2 3.5	3PH 4 ACSR KU Route	3PH 336 ACSR 3PH 336 ACSR	\$89,000 \$89,000		\$311,500	\$195,800
340-01	C	0.6	1PH 4 ACSR	3PH 330 ACSR 3PH 1/0 ACSR	\$69,000		φ311,300	\$41,400
340-03	č	0.4	1PH 1/0 ACSR	2PH 1/0 ACSR	\$62,000			\$24,800
		112.6				\$4,023,600	\$2,307,600	\$2,782,000
				TOTAL CODE 300 COSTS:				\$9,113,200

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 ~ 10/1/13 CONSTRUCTION WORK PLAN

		10/1/10 ~ 10/1/	13 CONSTR	UCTION WOR	K PLAN			
(RUS Form 7	te Breakdown For Loan Application and Financial Forecast 40c Format) Code 400: New Substations, Metering Points	(No Code 400 F	Projects in this	CWP)		\$0	\$0	\$0
e. 740c Ref	Code 500: Substation, Metering Point Changes	(No Code 500 F	Projects in this	CWP)		\$0	\$0	\$0
f. 740c Ref 0	Code 600: Miscellaneous Distribution Equipment							
RUS Ref. Nos.	Miscellaneous Equipment	Total Units	Units Per Year	Average Cost	Costs Year A 10/10 ~ 10/11	Cost Year B 10/11 ~ 10/12	Cost Year C 10/12 ~ 10/13	Total
601	Transformers & Meters (OH & URD) Transformers Meters	2,850 2,550	950 850	\$1,680 \$129	\$1,300,000 \$87,500 \$1,387,500	\$1,591,250 \$109,650 \$1,700,900	\$1,897,500 \$133,000 \$2,030,500	\$4,788,750 \$330,150 \$5,118,900
602	Service Wires for Increased Capacity	285	95	\$2,730	\$251,750	\$259,350	\$266,950	\$778,050
603	Sectionalizing Equipment (See Exhibit J for breakdown)				\$100,000	\$100,000	\$100,000	\$300,000
604	Line Regulators (See Exhibit H for Breakdown)	15	5	\$36,200	\$105,000	\$37,000	\$39,000	\$181,000
605	Line Capacitors (See Exhibit I for Breakdown)	47	16	\$2,549	\$75,000	\$28,600	\$16,200	\$119,800
606	Pole Replacement	1,800	600	\$2,500	\$1,455,000	\$1,500,000	\$1,545,000	\$4,500,000
607	Conductor Replacement ~ OH ~ URD	45 9	15 3	\$38,500 \$60,000	\$577,500 \$180,000 \$757,500	\$592,500 \$189,000 \$781,500	\$615,000 \$198,000 \$813,000	\$1,785,000 \$567,000 \$2,352,000
615	Two Way Communication with AVL	(See Exhibit K i			\$0	\$0	\$200,000	\$200,000
g. 740c Ref	Code 700: Other Distribution		TOTAL COD	E 600 COSTS:	\$4,131,750	\$4,407,350	\$5,010,650	\$13,549,750
701	Security Lights	1,425	475	\$460	\$218,500	\$229,425	\$240,825	\$688,750
704	Distribution Automation (DA)	(See Exhibit L f	or further deta	ils)	\$2,355,000	\$0	\$0	\$2,355,000
705	AMR System and Equipment	(See Exhibit J f		ils) E 700 COSTS:	\$0 \$2,573,500	\$0 \$229,425	\$0 \$240,825	\$0 \$3,043,750

TOTAL DISTRIBUTION =

\$13,983,850 \$11,024,375 \$12,983,475 **\$37,991,700**

Exhibit F

Distribution Line Construction and Cost Estimates

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 - 10/1/13 CONSTRUCTION WORK PLAN Distribution Line Construction Recommendations

DC - Denotes double circuit construction * Denotes Construction Items carried-over from previous 2007-2009 work plan. † Denotes Construction Items added to CWP by way of Amendment. (V) Denotes proposed construction insulated for 25KV

1. Overload Single-Phase Line	 Area Voltage Conversion to 25KV
Overload Multi-phase Line	Aged Conductor Replacement
Excessive Voltage Drop	Establish Tie Capability Between Subs
 Balance Phase Loading 	 Highway Relocation Project
Improve Service Reliability	Economical Conductor Loading
New Substation Feeders	Deteriated URD (Direct Burial)
New Load Development	14. ?

RUS Ref. #	Priority Code	Line Section	Miles	District	Existing Construction	Proposed Construction	\$ / Mile	"A" Cost 10/10 ~ 10/11	"B" Cost 10/11 ~ 10/12	"C" Cost 10/12 ` 10/13	Construction Justification
			Subst	ation 1 ~ Nichol	asville						
N/A											
							Subtotals =	\$0	\$0	\$0	
			Subst	ation 2 ~ Hollow	vay						
302-01*	A	PC-112812	0.6	Nicholasville	1PH 4 ACSR	2PH 1/0 ACSR	\$62,000	\$37,200			1, 5
							Subtotals =	\$37,200	\$0	\$0	.,, =
			Subst	ation 3 ~ West I							
303-01*	С	PC-94248	0.5	Nicholasville	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000			\$34,500	1, 5
303-02	В	PC-99960	1.0	Nicholasville	1PH 1/0 ACSR	2PH 1/0 ACSR	\$62,000		\$62,000		1, 5
							Subtotals =	\$0	\$62,000	\$34,500	
			Subst	ation 4 ~ Davis							
304-01	A	Sub Exit	0.1	Nicholasville	(1) 3PH 350 MCM	(1) 3PH 500 MCM	\$150,000	\$15,000			2, 5
304-02	В	PC-110310	1.1	Nicholasville	1PH 2 ACSR	3PH 1/0 ACSR	\$69,000		\$75,900		1, 5
304-03	A	PC-155760	0.8	Nicholasville	2PH 1/0 URD	2PH 1/0 URD	\$100,000	\$80,000	A75.005	0-	13, 5
							Subtotals =	\$95,000	\$75,900	\$0	
			Subst	ation 5 ~ Fayett	e # 1						
305-01*	С	PC-157969	0.7	Nicholasville	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000			\$48,300	1, 5
305-02*	Α	(3) Sub Exits	0.3	Nicholasville	(3) 3PH 350 MCM	(3) 3PH 500 MCM	\$150,000	\$45,000			2, 5
							Subtotals =	\$45,000	\$0	\$48,300	
			Subst	ation 6 ~ Fayett	e # 2						
306-01*	Α	(3) Sub Exits	0.4	Nicholasville	(4) 3PH 350 MCM	(4) 3PH 500 MCM	\$150,000	\$60,000			2, 5
							Subtotals =	\$60,000	\$0	\$0	
			Subst	ation 7 ~ Newby	,						
307-01*	Α	PC-93554	0.5	Madison	3PH 1/0 ACSR	3PH 336 ACSR	\$89,000	\$44,500			2, 5
307-02	В	PC-102046	0.1	Madison	1PH 1/0 ACSR	2PH 1/0 ACSR	\$62,000		\$6,200	_	1, 5
							Subtotals =	\$44,500	\$6,200	\$0	
			Subst	ation 8 ~ West I	Berea						
308-01	С	PC-182353	1.1	Madison	3PH 1/0 ACSR	3PH 336 ACSR	\$89,000			\$97,900	2, 5
							Subtotals =	\$0	\$0	\$97,900	
			Subst	ation 9 ~ Hickor	y Plains						
309-01	В	PC-101932	1.0	Madison	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000		\$69,000		1, 5
309-02	В	PC-181376	0.1	Madison	1PH 4 ACSR	2PH 1/0 ACSR	\$62,000		\$6,200		1, 5
309-03	В	PC-95326	1.4	Madison	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000		\$96,600		1, 5
309-04	В	PC-91897	0.1	Madison	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000 Subtotala -	¢0	\$6,900	¢0.	1, 5
							Subtotals =	\$0	\$178,700	\$0	
Substation 10 ~ Alcan #1 & #2											
No Construc	ction						Subtotals =	\$0	\$0	\$0	
							Subiolais =	ψŪ	ψ	ψŪ	
			Subst	ation 11 ~ PPG							
No Construc	ction						Subtotals =	\$0	\$0	\$0	
							ousidiais =	ΨV	Ψ	Ψ	

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 - 10/1/13 CONSTRUCTION WORK PLAN Distribution Line Construction Recommendations

DC - Denotes double circuit construction * Denotes Construction Items carried-over from previous 2007-2009 work plan. † Denotes Construction Items added to CWP by way of Amendment. (V) Denotes proposed construction insulated for 25KV

 Overload Single-Phase Line 	 Area Voltage Conversion to 25KV
Overload Multi-phase Line	Aged Conductor Replacement
Excessive Voltage Drop	 Establish Tie Capability Between Subs
 Balance Phase Loading 	 Highway Relocation Project
Improve Service Reliability	Economical Conductor Loading
New Substation Feeders	Deteriated URD (Direct Burial)
New Load Development	14. ?

RUS Ref. #	Priority Code	Line Section	Miles District Existing Construction		Proposed Construction	\$ / Mile	"A" Cost 10/10 ~ 10/11	"B" Cost 10/11 ~ 10/12	"C" Cost 10/12`10/13	Construction Justification	
			Subst	ation 12 ~ Sout	h Elkhorn						
No Constru	ction										
							Subtotals =	\$0	\$0	\$0	
			Subst	ation 13 ~ Croo	ksville						
313-01	С	PC-182152	0.3	Madison	1PH 6 CU	3PH 1/0 ACSR	\$69,000			\$20,700	1, 5, 9
313-02	С	PC-102889	0.1	Madison	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000		A 2	\$6,900	1, 5
					Subtotals =	\$0	\$0	\$27,600			
			Subst	ation 14 ~ Sout							
314-01*	A	PC-103212	1.4	Nicholasville	1PH 1/0 ACSR	3PH 1/0 ACSR	\$69,000	\$96,600			1, 5
							Subtotals =	\$96,600	\$0	\$0	
			Subst	ation 15 ~ North	n Madison						
245.04*	A	PC-161265	2.3	Headquarters	¢00.000	\$204,700			2.5		
315-01* 315-02†	A	PC-161265 PC-160649	2.3	Headquarters	3PH 1/0 ACSR 3PH 1/0 ACSR	3PH 336 ACSR 3PH 336 ACSR	\$89,000 \$89,000	\$204,700 \$195,800			2, 5 2, 5
315-03	В	PC-160956	1.1	Headquarters	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$75,900	\$100.00T	1, 5
315-04	С	PC-161609	1.8	Headquarters	3PH 1/0 ACSR	3PH 336 ACSR	\$89,000 Subtotals =	\$400,500	\$75,900	\$160,200 \$160,200	2, 5
					E distortano =	\$100,000	<i></i>	\$100,200			
			Subst	ation 17 ~ Sout	hpoint						
No Constru	ction						Subtotals =	\$0	\$0	\$0	
							Subtotals =	\$0	\$0	\$0	
			Subst	ation 21 ~ Bridg	jeport						
321-01*	A	PC-124196	2.0	Fox Creek	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000	\$138,000		1	1, 5
							Subtotals =	\$138,000	\$0	\$0	
			Subst	ation 22 ~ Nine	vah						
322-01*	В	PC-181527	2.0	Fox Crook	Various	3PH 1/0 ACSR	000 032		\$200,100		1.5
322-01	A	PC-181527 PC-118926	2.9 5.0	Fox Creek Fox Creek	3PH 4 ACSR	3PH 336 ACSR	\$69,000 \$89,000	\$445,000	\$200,100		1, 5 2, 5
322-03	В	PC-121782	0.5	Fox Creek	1PH 6 CU	2PH 1/0 ACSR	\$62,000		\$31,000		1, 5, 9
322-04	В	PC-174168	3.0	Fox Creek	1PH 6 CU~7.2kV	1PH 1/0 ACSR~14.4kV	\$44,000 Subtotals =	\$445,000	\$132,000 \$363,100	\$0	9
								••••			
			Subst	ation 23 ~ Sinia							
323-01*	A	PC-108945	2.4	Fox Creek	1PH 6 CU	3PH 1/0 ACSR	\$69,000	\$165,600			1, 5, 9
323-02* 323-03	A A	PC-172351 PC-116977	2.2 2.3	Fox Creek Fox Creek	1PH 8 CU 3PH 2 ACSR	3PH 1/0 ACSR 3PH 336 ACSR	\$69,000 \$89,000	\$151,800 \$204,700			1, 5, 9 5
323-03	B	PC-1121809	3.0	Fox Creek	1PH 6 CU	3PH 336 ACSR 3PH 1/0 ACSR	\$69,000	\$204,700	\$207,000		1, 5, 10
323-05	C	PC-116034	0.3	Fox Creek	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000	\$404.00C		\$20,700	1,5
323-06 323-07	A B	PC-108945 PC-118848	2.0 2.0	Fox Creek Fox Creek	1PH 8 CU 3PH 4 ACSR	3PH 1/0 ACSR 3PH 1/0 ACSR	\$69,000 \$69,000	\$134,600	\$138,000		1, 5 1, 5
							Subtotals =	\$656,700	\$345,000	\$20,700	., •
			Subst	ation 24 ~ Van	Arsdoll						
			Subst	auon 24 ~ van /	N SUEII						
324-01*	A	PC-152695	1.7	Fox Creek	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000	\$117,300			1,5
324-02*	A	PC-103077	1.2	Fox Creek	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000 Subtotals =	\$82,800 \$200,100	\$0	\$0	1, 5
					<i> </i>	ΨŬ	ΨŬ				
Substation 25 ~ Mercer County											
No Construe	ction						Subtotals =	\$0	\$0	\$0	
							Subiolais =	ψŪ	ψυ	ψυ	
			Subst	ation 26 ~ Clay	Lick						
326-01	В	PC-110067	3.3	Fox Creek	1PH 4 ACSR	3PH 336 ACSR	\$89,000		\$293,700		2, 10
326-02	С	PC-112351	0.6	Fox Creek	1PH 6 CU & 4 ACSR	3PH 1/0 ACSR	\$69,000 Subtotals =	¢c.	£200 700	\$41,400	1, 5, 9
							Subiolais =	\$0	\$293,700	\$41,400	

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 - 10/1/13 CONSTRUCTION WORK PLAN Distribution Line Construction Recommendations

DC - Denotes double circuit construction * Denotes Construction Items carried-over from previous 2007-2009 work plan. † Denotes Construction Items added to CWP by way of Amendment. (V) Denotes proposed construction insulated for 25KV

1. Overload Single-Phase Line	 Area Voltage Conversion to 25KV
Overload Multi-phase Line	Aged Conductor Replacement
Excessive Voltage Drop	 Establish Tie Capability Between Subs
 Balance Phase Loading 	 Highway Relocation Project
Improve Service Reliability	Economical Conductor Loading
New Substation Feeders	Deteriated URD (Direct Burial)
New Load Development	14. ?

RUS Ref. #	Priority Code	Line Section	Construction		Proposed Construction	\$ / Mile	"A" Cost 10/10 ~ 10/11	"B" Cost 10/11 ~ 10/12	"C" Cost 10/12 ` 10/13	Construction Justification	
			Subst	ation 27 ~ Chap	lin	•	•				
No Construe	ction										
							Subtotals =	\$0	\$0	\$0	
			Subst								
328-01*	В	PC-162070	0.2	Fox Creek	1PH & 2PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$13,800		1, 5
328-02	С	PC-122831	3.8	Fox Creek	1PH 6 CU	3PH 1/0 ACSR	\$69,000 Subtotals =	\$0	¢40.000	\$262,200	1, 5, 9
							Subtotals =	\$0	\$13,800	\$262,200	
			Subst	ation 31 ~ Brac	ken County						
331-01	С	PC-151619	9.4	Harrison	3PH 4 ACSR	3PH 336 ACSR	\$89,000			\$836,600	5, 10
331-02*	A	PC-157753	0.7	Harrison	1PH 6 CU	3PH 1/0 ACSR	\$69,000	\$48,300			1, 5, 9
331-03*	Α	PC-154707	1.8	Harrison	3PH 4 ACSR	3PH 336 ACSR	\$89,000 Subtotals =	\$160,200 \$208,500	\$0	\$836,600	2, 5
							Subiolais =	\$206,500	\$U	\$030,000	
			Subst	ation 32 ~ Colei	nansville						
332-01	А	PC-177337	4.0	Harrison	1PH & 2PH 4 ACSR	3PH 1/0 ACSR	\$69,000	\$276,000			1, 5
332-02	Α	PC-141409	2.2	Harrison	1PH & 2PH 4 ACSR	3PH 1/0 ACSR	\$69,000	\$151,800			1, 5, 9
							Subtotals =	\$427,800	\$0	\$0	
			Subst	ation 33 ~ Four	Oaks						
333-01*	А	PC-171292	2.5	Harrison	3PH 4 ACSR	3PH 336 ACSR	\$89,000	\$222,500			2, 5
333-02*	A	PC-146827	3.7	Harrison	3PH 4 ACSR	3PH 336 ACSR	\$89,000	\$329,300			2,5
333-03	С	PC-164178	5.9	Harrison	3PH 6 CU & 4 ACSR	3PH 1/0 ACSR	\$69,000			\$407,100	9
							Subtotals =	\$551,800	\$0	\$407,100	
			Subst	ation 34 ~ Lees	Lick						
334-01*	В	PC-137819	1.1	Harrison	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000		\$75,900		1, 5
334-02*	A	PC-131690	1.1	Harrison	3PH 4 ACSR	3PH 336 ACSR	\$89,000	\$115,700	\$75,500		2, 5
334-03	A	PC-141307	1.1	Harrison	3PH 3/0 ACSR (DC)	3PH 336 ACSR (DC)	\$132,000	\$145,200			2, 5
334-04	A	PC-130158	4.0	Harrison	3PH 1/0 ACSR	3PH 336 ACSR	\$89,000	\$356,000			2, 5
334-05 334-06	C C	PC-132870 PC-134048	2.9 1.3	Harrison Harrison	1PH 4 ACSR 1PH 6 & 8 CU	3PH 1/0 ACSR 3PH 1/0 ACSR	\$69,000 \$69,000			\$200,100 \$89,700	1, 5 1, 5, 9
334-00	U	FC-134046	1.3	Hamson	IFROCOCO	JEH I/U AUJK	Subtotals =	\$616,900	\$75,900	\$289,800	1, 5, 9
			Subst	ation 35 ~ Cynt	lana		Cubicitaio -	\$010,000	\$10,000	\$200,000	
335-01 335-02	BC	PC-167816 PC-141942	1.8 3.3	Harrison Harrison	1PH 4 ACSR 1PH & 2 PH 4 ACSR	3PH 1/0 ACSR 3PH 336 ACSR	\$69,000 \$89,000		\$124,200	\$293,700	1, 5 1, 5
335-02	U	FG-141942	3.3	namson	IFTI & Z PTI 4 AGSR	3PH 330 AUSR	Subtotals =	\$0	\$124,200	\$293,700	1, 5
			Subst	ation 36 ~ Head	quarters		Captolaio -	\$	¢121,200	\$200,100	
							-				
336-01* 336-02	B	PC-130682 PC-131253	1.5 4.0	Harrison Harrison	1PH 4 ACSR 3PH 4 ACSR	3PH 1/0 ACSR 3PH 1/0 ACSR	\$69,000 \$69,000		\$103,500 \$278,200		1, 5 2, 5
330-02	D	FG-131253	4.0	namson	JPH 4 AUSK	SPH 1/0 ACSR	Subtotals =	\$0	\$278,200 \$381,700	\$0	2, 5
							040101410 -	ψŪ	<i>\$001,700</i>	ΨŪ	
			Subst	ation 37 ~ 3M							
No Construe	ction						Cubtotolo	¢0.	¢0	\$0	
			Quilt i				Subtotals =	\$0	\$0	\$0	
			Subst	ation 38 ~ Mille	spurg						
No Construe	ction						Subtotals =	\$0	\$0	\$0	
			Subst	ation 39 ~ Jack	sonville						
339-01*	С	PC-130158	2.2	Harrison	3PH 4 ACSR	3PH 336 ACSR	\$89,000			\$195,800	2, 5
							Subtotals =	\$0	\$0	\$195,800	

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 - 10/1/13 CONSTRUCTION WORK PLAN Distribution Line Construction Recommendations

DC - Denotes double circuit construction * Denotes Construction Items carried-over from previous 2007-2009 work plan. † Denotes Construction Items added to CWP by way of Amendment. (V) Denotes proposed construction insulated for 25KV

 Overload Single-Phase Line 	Area Voltage Conversion to 25KV
Overload Multi-phase Line	Aged Conductor Replacement
Excessive Voltage Drop	 Establish Tie Capability Between Subs
 Balance Phase Loading 	 Highway Relocation Project
Improve Service Reliability	Economical Conductor Loading
New Substation Feeders	Deteriated URD (Direct Burial)
New Load Development	14. ?

RUS Ref. #	Priority Code	Line Section	Miles	District	Existing Proposed Construction Construction \$ / Mile		"A" Cost 10/10 ~ 10/11	"B" Cost 10/11 ~ 10/12	"C" Cost 10/12 ` 10/13	Construction Justification	
			Subst	ation 40 ~ Oxfo							
340-01*	В	PC-159717	3.5	Harrison	KU Route	3PH 336 ACSR	\$89,000		\$311,500		5, 10
340-02	С	PC-175065	0.6	Harrison	1PH 4 ACSR	3PH 1/0 ACSR	\$69,000			\$41,400	1, 5
340-03	С	PC-123699	0.4	Harrison	1PH 1/0 ACSR	2PH 1/0 ACSR	\$62,000			\$24,800	1, 5
							Subtotals =	\$0	\$311,500	\$66,200	
		Total Miles:	116.6								
					"A" Cost 10/10~10/11	"B" Cost 10/11~10/12	"C" Cost 10/12~10/13	Totals			
				Distribution Lir	e Construction Totals =			\$4,023,600	\$2,307,600	\$2,782,000	\$9,113,200

Exhibit G

Substation and Meter Point Cost Estimates

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 ~ 10/1/13 CONSTRUCTION WORK PLAN Substation and Meter Point Cost Estimates

CODE 400: NEW SUBSTATIONS AND METER POINTS

POWER SUPPLIER CHANGES RECOMMENDED:

None

BGE CHANGES RECOMMENDED:

None

CODE 500: SUBSTATION AND METER POINT CHANGES

POWER SUPPLIER CHANGES RECOMMENDED:

None

BGE CHANGES RECOMMENDED:

None

Exhibit H

Voltage Regulator Recommendations and Cost Estimates

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

20% r 20% CONSTRUCTION WORK PLAN Voltage Regulator Recommendations and Cost Estimates RUS Reference Code 604

BGE presently uses line voltage regulators to increase voltage on circuits where the combination of conductor size, load current and distance from the substation produce voltage below acceptable limits. The placement of said regulators will be adjusted as system improvement projects are completed. The additional regulators needed through the end of this CWP are as follows:

Substation	Circuit	Regulators Proj #	#	Size (A)
Bracken County	114	604-01	3	150
	114	604-02	1	100
Clay Lick	124	604-03	1	50
Colemansville	104	604-04	3	219
	104	604-05	3	100
	114	604-06	1	50
Headquarters	144	604-07	3	219
Lee's Lick	104	604-08	3	219
	134	604-09	3	150
Millersburg	104	604-10	2	100
Sinai	134	604-11	3	150
Van Arsdell	114	604-12	3	219
	114	604-13	3	219

RUS Reference Code 604: \$181,000

<u>Exhibit I</u>

Capacitor Recommendations and Cost Estimates

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

20% r 20% CONSTRUCTION WORK PLAN Capacitor Recommendations and Cost Estimates RUS Reference Code 605

The capacitor study conducted in conjunction with the primary analysis indicates the need for installation of approximately 30 - 600 KVAR, 28 - 300 KVAR, and 2 - 100 KVAR capacitors banks to improve power factor, lower system losses and improve system voltage. Said capacitors are to be installed as CWP system improvement projects are completed and as the load increases during the Work Plan period.

BGE's G&T (East Kentucky Power Cooperative) supply the actual needed capacitors and racks. BGE must supply the additional equipment and install the units. The estimated cost per installed bank is \$1,997.

RUS Reference Code 605: \$119,800

SUB	СКТ #	CAPACITOR PROJECT #	#	BANK KVAR	TYPE
Bracken	104	605-01	3	300	F
Clay Lick	124	605-02	3	300	F
	134	605-03	3	300	F
	134	605-04	3	600	S
	144	605-05	3	600	S
Colemansville	114	605-06	3	600	F
	124	605-07	1	100	F
Crooksville	114	605-08	3	600	S
	114	605-09	3	600	S
Cynthiana	164	605-10	3	300	F
Four Oaks	124	605-11	3	300	F
	124	605-12	3	600	S
	134	605-13	3	300	F
	134	605-14	3	600	S
Headquarters	134	605-15	3	300	F
	144	605-16	3	300	F
	144	605-17	3	600	S
Hickory Plains	134	605-18	3	300	F
	134	605-19	3	300	F
	134	605-20	3	300	F
	144	605-21	3	600	F
	154	605-22	3	300	F
Holloway	104	605-23	3	600	F
	104	605-24	3	600	S
	114	605-25	3	300	F
	124	605-26	3	300	F
Jacksonville	114	605-27	3	300	F
	114	605-28	3	600	S
Lee's Lick	104	605-29	3	600	F
	104	605-30	3	300	F
	114	605-31	3	300	F

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

SUB	CKT #	CAPACITOR PROJECT #	#	BANK KVAR	TYPE
Lee's Lick (cont)	114	605-32	3	300	F
	134	605-33	3	300	F
Nicholasville	124	605-34	3	300	F
	124	605-35	3	600	S
North Madison	114	605-36	3	600	S
	114	605-37	3	300	F
Oxford	104	605-38	3	600	S
	104	605-39	3	600	S
Powell Taylor	114	605-40	3	600	S
Sinai	114	605-41	3	600	S
South Jessamine	134	605-42	3	300	F
	134	605-43	3	600	S
	134	605-44	3	300	F
	134	605-45	3	600	S
Van Arsdell	114	605-46	3	300	F
	114	605-47	3	600	S
	114	605-48	3	600	S
	124	605-49	3	600	S
	134	605-50	3	600	S
	134	605-51	3	600	S
	144	605-52	3	300	F
West Berea	104	605-53	3	300	F
	124	605-54	3	300	F
	124	605-55	3	600	S
West Nicholasville	124	605-56	3	300	F
	124	605-57	3	600	S
	124	605-58	1	100	F
	134	605-59	3	600	S
	134	605-59	3	600	S
				26,600 KVAR	

<u>Exhibit J</u>

Sectionalizing Summary and Cost Estimates

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

20% 'r '20% CONSTRUCTION WORK PLAN Capacitor Recommendations and Cost Estimates RUS Reference Code 605

Blue Grass Energy has completed a system wide Sectionalizing Program over the past 24 months and will need only to make changes / additions to it as System Improvement projects, etc are conducted during this CWP. It is estimated that it will cost about \$100,000 per year to make the capital changes needed to keep the Sectionalizing Program up to date.

RUS Reference Code 605: \$300,000

Exhibit K

Aged Conductor Replacement Summary

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

2010-2013 CONSTRUCTION WORK PLAN Deteriorated Conductor Replacement Plan RUS Reference Code 607

Introduction

The following table shows the miles of line on the BGE system of conductor that is subject to deterioration and targeted for replacement in the future. It should be noted that a good portion of this conductor has not given problems to date, much of it is not heavily loaded, and it is not expected to be a problem in the near future. BGE's goal is to strategically replace the conductor by using a plan that will target the worst cases first.

Conductor	1PH (mi)	2PH (mi)	3PH (mi)
4 ACSR	2,073	31	109
6A CWC	456	0	2
8A CWC	50	0	0

Conductor Replacement Plan Guidelines:

- Review outage and operating reports to determine where aged conductor may be a problem.
- Interview key field employees from all districts who have knowledge of actual field conditions.
- Target changing the conductor via system improvements in CWPs for voltage drop, loading, and other CWP items (Code 300). (Note: Approximately 75% of such items will replace targeted conductor.)
- Target specific areas in each CWP specifically for old conductor replacement (Code 607).
- Adjust the plan on an ongoing basis as needed.

Specific Plans and Goals:

- Historically, approximately 30 miles per year is replaced via Code 300 CWP items (system improvements for load, voltage drop, etc.). BGE expects this will continue in future years.
- BGE plans to increase the number of miles in each future CWP which are specifically targeted for old conductor replacement (Code 607). The new goal will be 10-15 miles per year.
- This will be a total of approximately 45 miles per year through CWP items.
- Of the 2,721 miles of conductor identified, we feel that 50% will not give any problems in the next 30 years. Therefore, we will target the other half (1,360 miles) in the first 30 years.
- 45 miles per year for 30 years = 1,350 miles of conductor replaced. This accomplishes the goal, and with targeting the worst conductor first it should keep BGE from experiencing any serious problems.
- BGE also plans on changing out all of the remaining 6A CWC 3-phase conductors in the 2011 ~ 1013 CWP. The only 3-phase lines remaining with old conductor will be 4 ACSR. We expect that the majority of the remaining 3-phase 4 ACSR would be replaced in the next 5 ~ 10 years with the exception being 3-phase lines that serve less than 25 customers which would remain in service unless it is causing significant problems.

RUS Reference Code 607: \$2,352,000

Exhibit L

System Design and Operational Criteria

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY 2010 ~ 2013 CONSTRUCTION WORK PLAN System Design Criteria

Each of the criteria items listed below was reviewed and concurred by the RUS General Field Representative ('GFR') for Blue Grass Energy Cooperative Corporation ('BGE') on November 15th, 2010.

Construction proposed in this construction work plan (CWP) is required to meet the following minimum standards of adequacy for voltages, thermal loading, safety and reliability on the system. Note that references to future conditions imply the current CWP projections.

It is further understood that the criteria given herein is considered to be a guideline and not a mandate. Oftentimes system conditions will occur which may result in a breach of a specific criteria. Such a condition is considered to be only temporary and is not intended for long range operations.

I. SYSTEM DESIGN CRITERIA

- 1. New primary conductor sizes are to be determined on a case by case basis using the Economic Conductor Analysis computer program along with local input based upon specific system conditions. A minimum of 1/0 ACSR is to be used on main three-phase lines and a minimum of 2 ACSR is to be used on tap lines.
- 2. Primary conductors are not to be loaded for long periods of time, over 50% of their thermal rating for summer loading, or 65% for winter. Operating capacity is defined as the manufacturer's conductor ratings at the conductor's maximum operating temperature of 75° C (or 167° F), with a 25° C or (77° F) ambient temperature and a 2 mph wind. Major tie lines between substations can be loaded to 100% of operating capacity during back feed or emergency situations.
- 3. The maximum voltage drop from the substation on primary distribution lines is normally not to exceed 8 volts unregulated, 16 volts with one bank of line voltage regulators, and 24 volts with two banks of line voltage regulators.
- 4. Single-phase taps will be considered for multi-phasing if conditions are present that meet all of the following criteria:
 - Serve more than 60 consumers @ 7.2/12.47 kV or 120 @ 14.4/5 kV.
 - Have a projected future load over 250 to 360 kW @ 7.2/12.47 kV (35 to 50 amps) or equivalent at 14.4/25 kV.
 - The tap serves an area that is growing.
- 5. Conductors are to be considered for replacement if found to be in poor condition and have contributed to multiple line outages.

Exhibit M

Operations and Maintenance Survey (RUS Form 300)

United States Department of Agriculture

Rural Economic and Community Development Rural Utilities Service Washington, DC 20250

October 21, 2008

SUBJECT: OPERATIONS AND MAINTENANCE SURVEY

TO: DAN BREWER, PRESIDENT & CEO BLUE GRASS ENERGY COOPERATIVE

In accordance with 7 CFR 1730-1, a review and evaluation of your electric system and facilities as related to system operation and maintenance was made on October 21, 2008.

The objectives of this review are to carry out RUS's responsibility for loan security and to assure that your electric plant is being operated and maintained in a safe and satisfactory condition and that you are providing an acceptable quality of service.

My review has indicated that your facilities are being adequately operated and maintained and you have an effective O & M program supported by proper records. There are several comments and recommendations for further improvements.

We observed several telephone poles left standing next to electric poles which need to be removed. According to your staff cable TV attachments require constant follow-up to ensure code compliance.

The report of idle services should be reconciled with billing records and the report adjusted on the Form 7.

A more aggressive right-of-way clearing program is recommended. Directional trimming is the recommended approach for yard trees. Trees growing on the transformer pole and non-yard trees should be removed.

114 K / Xam

MIKE NORMAN RUS FIELD REPRESENTATIVE

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

According to the Paperwork Reduction Act of 1995, an agency may not conduct or sponsor, and a person is not required to respond to a collection of information unless it displays a valid OMB control number. The valid OMB control number for this information collection is 0572-0025. The time required to complete this information collection is estimated to average 4 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the evidence of information collection is 0572-0025.

			TES DEPART			JRE	BORROWER DESIGNATION KY 64				
	I	REVIE	W RATI	NG SUI	MMAR	Y	DATE PREPARED October 21, 2008				
Ratings on f	form are:		0: Unsatisfac	tory No R	Records	2: Accept	table, but Should be Improved See Attached Recommendations				
	Not Applic	able	1: Corrective	Action Nee	eded	3: Satisfac	ctory No Additional Action Required at this Time				
				PART I. T	RANSMISS	SION and D	DISTRIBUTION FACILITIES				
			Distribution)			(Rating)	4. Distribution - Underground Cable	(Rating)			
	Clearance, C					NA	a. Grounding and Corrosion Control	3			
			Major Equipme	nt, Appeara	nce	NA	b. Surface Grading, Appearance c. Riser Pole: Hazards, Guying, Condition	3			
	tion Records ill Prevention		tation			NA	c. Riser Pole. Hazarus, Guying, Condition				
u. On Spi	III Flevention						5. Distribution Line Equipment: Conditions and Records				
2. Transmi	ssion Lines						a. Voltage Regulators	2			
-14 12 2 2 4 2 5 4 2 5 4 2 5 5		ing, Erosion	, Appearance, I	ntrusions		NA	b. Sectionalizing Equipment	2			
			onductor, Guyin			NA	c. Distribution Transformers	3			
c. Inspecti	ion Program	and Records				NA	d. Pad Mounted Equipment				
							Safety: Locking, Dead Front, Barriers	3			
	tion Lines - (2	Appearance: Settlement, Condition				
	ion Program			C1		3	Other e. Kilowatt-hour and Demand Meter				
b. Compli	ance with Sa	tety Codes:		Clearances Foreign Stru	uctures	2	Reading and Testing	3			
1				Attachment		2					
c. Observe	ed Physical C	Condition fro	m Field Checki			-					
0.9650				Right-of-W	ay	2					
				Other							
				DADTI	OPERATI	ONS and M	IAINTENANCE				
6 Tine Mai	intonanco an	d Work Or	der Procedure		UPERATI	(Rating)	8. Power Quality	(Rating)			
	lanning & Sc		del l'iocedure	3		3	a. General Freedom from Complaints	3			
b. Work B		incouning	Right-of-Way	Maintenanc	e	3					
			Poles			3	9. Loading and Load Balance				
			Retirement of	Idle Service	s	2	a. Distribution Transformer Loading	3			
			Other				b. Load Control Apparatus	<u>NA</u> 3			
	nterruptions						c. Substation and Feeder Loading	3			
		1	er by Cause (Cor			5 years)	10 Marcard Direct Derende				
PREVIOUS	POWER	MAJOR	SCHEDULED	ALL	TOTAL		10. Maps and Plant Records a. Operating Maps: Accurate and Up-to-Date	3			
5 YEARS	SUPPLIER	STORM b.	с.	OTHER d.	e.	(Rating)	b. Circuit Diagrams	3			
(Year) 2003	a. 0.14	17.18	0.01	1.70	19.03	2	c. Staking Sheets	3			
2003	1.16	2.45	0.02	2.05	5.68	2					
2004	0.30		0.05	1.62	1.97	3					
2006	0.01		0.04	2.02	2.07	3					
2007	0.07		0.14	2.19	2.40	3	_				
b. Emerge	ency Restorat	tion Plan				3					
					PART III.	ENGINEE	RING				
11. System	Load Condi	tions and L	osses			(Rating)	13. Load Studies and Planning	(Rating)			
	System Loss			5.50%		3	a. Long Range Engineering Plan	3			
b. Annual Load Factor 44.8%							b. Construction Work Plan	3			
c. Power Factor at Monthly Peak							c. Sectionalizing Study	3			
d. Ratios o	of Individual	Substation A	Annual Peak kW	to kVA		3	d. Load Data for Engineering Studies				
							e. Load Forecasting Data	3			
 Voltage a. Voltage 	Conditions					3					
		ner Output	Voltage Spread			3					
			and a second second								

RUS Form 300 (Rev. 4-02) (V1, 4/2002)

PAGE 1 OF 2 PAGES

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

			ERATION AND MAINTH	ENANCE BUDGETS		
and the	For Previous 2 Years		For Present Year	For Future 3 Years		
YEAR	2006	2007	2008	2009	2010	2011
	Actual	Actual	Budget	Budget	Budget	Budget
	\$ Thousands	\$ Thousands	\$ Thousands	\$ Thousands	\$ Thousands	\$ Thousands
Jormal Operation	2,370	2,765	2,742	2,824	2,909	2,996
lormal faintenance	3,524	4,366	4,735	4,877	5,023	5,174
Additional Deferred) Maintenance						
otal	5,894	7,131	7,477	7,701	7,932	8,170
. Budgeting:	Adequacy of Budgets for Ne	eded Work	3	(Rating)		
5. Date Discuss	ed with Board of Directors		11/13/2008	(Date)		
			EXPLANATORY NOT	TES		
ITEM NO.			СОММ	ENTS		
			Comm			
5a. 5b. 6b. 7a.	A maintenance program is The report of idle services There was a severe ice sto	should be reconciled wit	h billing records and adjuste	ed.		
				TIT	ïLE	DATE
ATED BY:	Chris .	meene	3	VP ENGI	NEERING	10/21/08
EVIEWED BY:	alle	h	len	PRESIDE	NT & CEO	10/21/08
EVIEWED BY:	miky 1	Ron		RUS	GFR	10/21/08

RUS Form 300 (Rev. 4-02) (V1, 4/2002)

PAGE 2 OF 2 PAGES

Exhibit N

Economic Conductor Loading

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

CONDUCTOR LIFE CYCLE ANALYSIS (NEW CONSTRUCTION LEGEND AND INPUT VALUES)

0.00%		Total fixed cost. This is an optional replacement for O & M + TAX + DEP + INS.					
**	5.37%	O & M Operations and Maintenance Expense as a percentage of Average Net Distribution Plant calculated using RUS Bulletin 1724D-101A <i>Electric System Long-Range</i> <i>Planning Guide</i> based on <i>RUS Fixed Charge Calculation Guide</i>					
	0.00%	TAX Property tax: annual Form 7, last year Part A, line 13(b) Plant the taxes were paid on: annual Form 7, 2 years ago, Part C, line 5 + line 22 Tax Rate: (Property tax / Plant) x 100, or estimated future tax rate					
	3.89%	DEP Most Owners use straight-line depreciation where the depreciation rate is the reciprocal of the asset's life. Use annual rate for Coop, for classes of plant					
	0.00%	Depreciation rate on RUS Form 7 Part E Lines 5(f) and line 6(f) Insurance as a percentage of Net Distribution Plant. Calculating the cost of insurance as a percentage of investment is difficult, and the result makes little difference; therefore, it can be ignored for most applications.					
2.00%	INF	The annual inflation rate.					
35	m	The loan amortization period in years.					
7.2 & 14.4	κν	Line to ground voltage in kV.					
99.00%	PF	Peak month power factor.					
7.18%	INT	Cost of Capital (Calculated using RUS Fixed Charge Guide) used for Present Worth Calculation					
3.06%	LGR	The annual rate of growth projected for the peak demand. (Use latest PRS)					
30	ULC	Useful Life of Conductor					
\$0.00	\$/KW	Monthly demand charge in dollars per kW per month. If \$/KW is zero the following dependant inputs will also be zero:					
	0.00%	KWI Demand charge inflation rate.					
	0.00%	CF Coincidence factor - This factor represents the coincidence between the					
		non coindedent peak for the line and billing demand.					
	0.000	RMO The number of months the metered demand exceeds the minimum biling demand.					
	0.000	RAT The annual demand ratchet expressed as a decimal.					
	0.000	N The ratio of the average of the squares of the monthly kW demands for the					
		months when the metered demand exceeds the minimum billing demand to the square of the peak month demand.					
\$0.0508	\$/KWH	Energy charge in dollars per kWH per month.					
2.00%	- KWHI	Energy charge inflation rate.					
47.20%		Annual load factor					

47.20% LF Annu

Annual load factor.

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

CONDUCTOR LIFE CYCLE ANALYSIS (NEW CONSTRUCTION LEGEND AND INPUT VALUES)

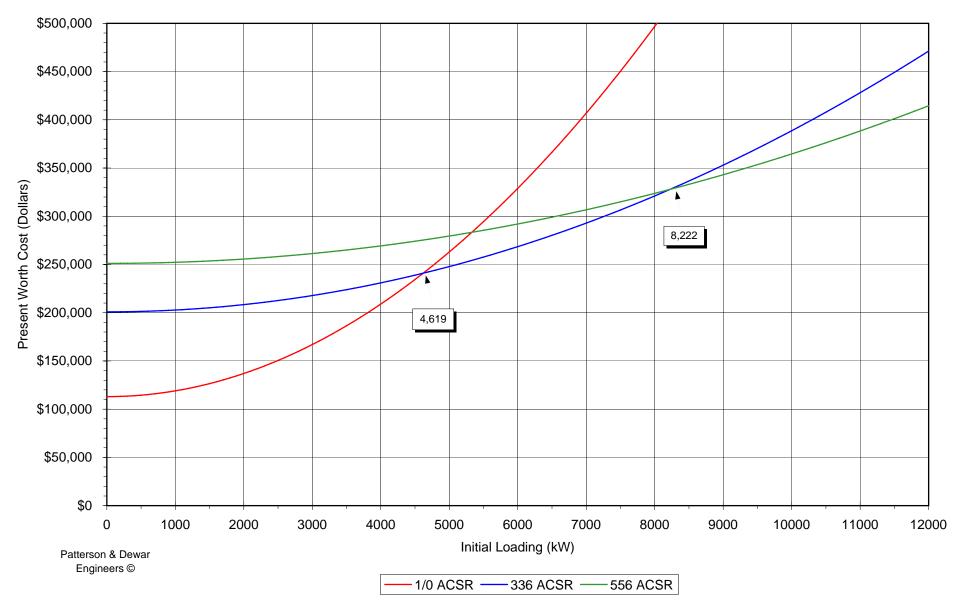
0.00%		Total fixed cost. This is an optional replacement for O & M + TAX + DEP + INS.
	5.37%	O & M Operations and Maintenance Expense as a percentage of Average Net Distribution Plant calculated using RUS Bulletin 1724D-101A <i>Electric System Long-Range</i>
	0.00%	Plant the taxes were paid on: annual Form 7, 2 years ago, Part C, line 5 + line 22
	3.89%	Tax Rate: (Property tax / Plant) x 100, or estimated future tax rate DEP Most Owners use straight-line depreciation where the depreciation rate is the reciprocal of the asset's life. Use annual rate for Coop, for classes of plant
	0.00%	Depreciation rate on RUS Form 7 Part E Lines 5(f) and line 6(f) INS Insurance as a percentage of Net Distribution Plant. Calculating the cost of insurance as a percentage of investment is difficult, and the result makes little difference, therefore, it can be ignored for most applications.
2.00%	INF	The annual inflation rate.
35	m	The loan amortization period in years.
14.4	- KV	Line to ground voltage in kV.
99.00%	PF	Peak month power factor.
7.18%	INT	Cost of Debt (Calculated using RUS Fixed Charge Guide)
3.06%	LGR	The annual rate of growth projected for the peak demand. (Use latest PRS)
30	ULC	Useful Life of Conductor
\$0.00	\$/KW	Monthly demand charge in dollars per kW per month. If \$/KW is zero the following dependant inputs will also be zero:
	0.00%	KWI Demand charge inflation rate. CF Coincidence factor - This factor represents the coincidence between the non coindedent peak for the line and billing demand.
	0.000	RMO The number of months the metered demand exceeds the minimum biling demand.
	0.000	RAT The annual demand ratchet expressed as a decimal.
	0.000	N The ratio of the average of the squares of the monthly kW demands for the months when the metered demand exceeds the minimum billing demand to the square of the peak month demand.
\$0.0508	\$/KWH	Energy charge in dollars per kWH per month.
2.00%	- KWHI	Energy charge inflation rate.
47.20%	LF	Annual load factor.

Conductor Size and Cost

	Phase	s	Size	Cost/Mile
Cond-1	3	Ø	1/0 ACSR	\$45,000
Cond-2	3	Ø	336 ACSR	\$80,000
Cond-3	3	Ø	556 ACSR	\$100,000
Cond-4	0	Ø	0	\$0
Cond-5	0	Ø	0	\$0
Cond-6	0	Ø	0	\$0

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

CONDUCTOR LIFE CYCLE ANALYSIS (NEW CONSTRUCTION LEGEND AND INPUT VALUES)


0.00%	TOTAL	Total fixed cost. This is an optional replacement for O & M + TAX + DEP + INS.
	5.37%	O & M Operations and Maintenance Expense as a percentage of Average Net Distribution Plant calculated using RUS Bulletin 1724D-101A <i>Electric System Long-Range</i> <i>Planning Guide</i> based on <i>RUS Fixed Charge Calculation Guide</i>
	0.00%	
	3.89%	DEP Tax Rate: (Property tax / Plant) x 100, or estimated future tax rate DEP Most Owners use straight-line depreciation where the depreciation rate is the reciprocal of the asset's life. Use annual rate for Coop, for classes of plant
	0.00%	Depreciation rate on RUS Form 7 Part E Lines 5(f) and line 6(f)
2.00%	INF	The annual inflation rate.
35	m	The loan amortization period in years.
7.2	KV	Line to ground voltage in kV.
99.00%	PF	Peak month power factor.
7.18%	INT	Cost of Debt (Calculated using RUS Fixed Charge Guide)
3.06%	LGR	The annual rate of growth projected for the peak demand. (Use latest PRS)
30	ULC	Useful Life of Conductor
\$0.00	\$/KW	Monthly demand charge in dollars per kW per month. If \$/KW is zero the following dependant inputs will also be zero:
	0.00%	KWI Demand charge inflation rate.
	0.00%	CF Coincidence factor - This factor represents the coincidence between the non coindedent peak for the line and billing demand.
	0.00%	RMO The number of months the metered demand exceeds the minimum biling demand.
	0.00%	
	0.00%	N The ratio of the average of the squares of the monthly kW demands for the
		months when the metered demand exceeds the minimum billing demand to the square of the peak month demand.
\$0.0508	\$/KWH	Energy charge in dollars per kWH per month.
2.00%	- KWHI	Energy charge inflation rate.
47.20%	LF	Annual load factor.

Conductor Size and Cost

	Phases		Size	Cost/Mile
Cond-1	3	Ø	1/0 ACSR	\$45,000
Cond-2	3	Ø	336 ACSR	\$80,000
Cond-3	3	Ø	556 ACSR	\$100,000
Cond-4	0	Ø	0	\$0
Cond-5	0	Ø	0	\$0
Cond-6	0	Ø	0	\$0

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

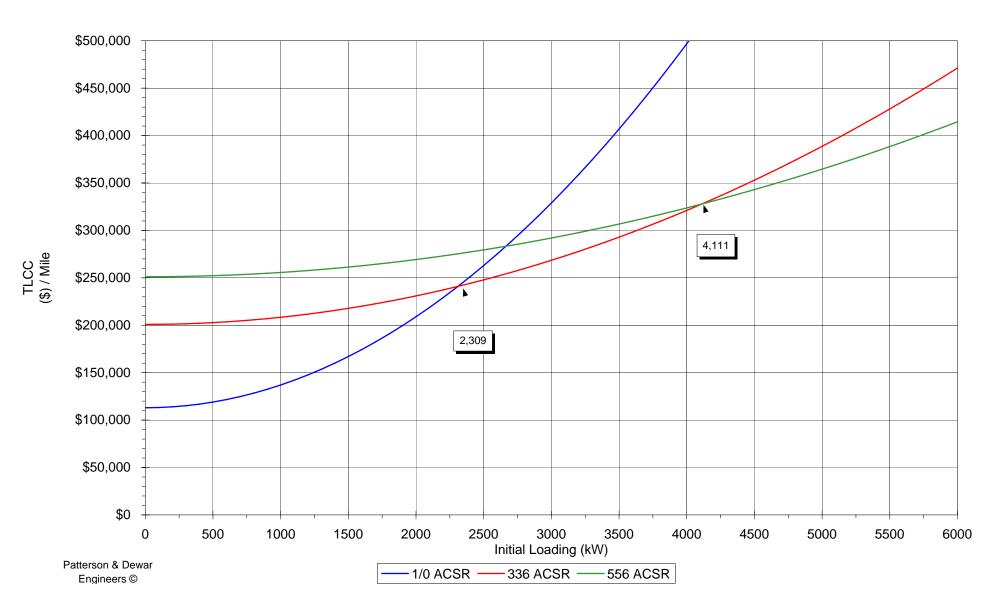
Conductor Life Cycle Analysis Total Life Cycle Cost - Three Phase 14.4 kV

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

Conductor Life Cycle Analysis

14.4 kV Summary

						Future Loa	ding ba	sed on a
	Initial	Loading	_			3.06% LGR	for	30 Years
For loads below	4,619	kW use			1/0 ACSR			kW
For loads between	4,619	kW and	8,222	kW use	336 ACSR		11,409	kW
For loads over	8,222	kW use			556 ACSR		20,309	kW


Construction Costs

	Construction	00313			
Conductor	Cost Per Mile	<u>Ohms Per Mile †</u>	Conducto 50%	r Operating C 100%	apacity*
3 Ø 1/0 ACSR	\$45,000	0.888	4,255	8,511	kW
3 Ø 336 ACSR	\$80,000	0.278	9,024	18,048	kW
3 Ø 556 ACSR	\$100,000	0.168	12,552	25,105	kW

- † Resistance based on condutor operating temperature of 75° C (167° F), with a 25° C (77° F) ambient temperature and a 2 ft./sec wind, frequency = 60 Hz. Per Westinghouse T&D Reference Book, East Pittsburg, PA (4th Edition: Eleventh Printing), 1950
- * Operating Capacity is defined as the manufacturer's rating at a maximum recommended continuous operating temperature of 75° C (167° F), with a 40° C (104° F) ambient temperature and a 2 ft./sec wind.

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

Conductor Life Cycle Analysis Total Life Cycle Cost - Three Phase 7.2 kV

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

Conductor Life Cycle Analysis

7.2 kV Summary

						Future Load	ding bas	ed on a
	Initia	Loading	_		-	3.06% LGR	for	30 Years
For loads below	2,309	kW use			1/0 ACSR			kW
For loads between	2,309	kW and	4,111	kW use	336 ACSR		5,703	kW
For loads over	4,111	kW use			556 ACSR		10,154	kW

Construction Costs

Conductor	Cost Per Mile	<u>Ohms Per Mile</u>	Conducto 50%	r Operating Ca 100%	pacity*
3 Ø 1/0 ACSR	\$45,000	0.888	2,128	4,255	kW
3 Ø 336 ACSR	\$80,000	0.278	4,512	9,024	kW
3 Ø 556 ACSR	\$100,000	0.168	6,276	12,552	kW

- Resistance based on condutor operating temperature of 75° C (167° F), with a 25° C (77° F) ambient temperature and a 2 ft./sec wind, frequency = 60 Hz. Per Westinghouse T&D Reference Book, East Pittsburg, PA (4th Edition: Eleventh Printing), 1950
- * Operating Capacity is defined as the manufacturer's rating at a maximum recommended continuous operating temperature of 75° C (167° F), with a 40° C (104° F) ambient temperature and a 2 ft./sec wind.

Exhibit O

Substation Loading Data

Pages: 3

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

"&\$%"r '&\$% Construction Work Plan

Substation Load Data Winter 2010 System

			Winter		Winding		Total
	Substation	Voltage	EKPC Rating	%	Load	Power	Demand
No.	Name	κν	(KVA)	Loaded	(KVA)	Factor	(KW)
1	Nicholasville	69-12.5	18,144	45%	8,251	99.0%	8,168
2	Holloway	69-12.5	18,144	64%	11,611	98.0%	11,379
3	West Nicholasville #1	69-12.5	31.050	55%	17,121	98.0%	16,779
4	Davis	69-12.5	15,725	65%	10,143	100.0%	10,143
5	Favette #1	69-12.5	15,725	79%	12,401	99.0%	12,277
6	Fayette #2	69-12.5	18,144	47%	8,605	99.0%	8,519
7	Newby	69-12.5	15,725	78%	12,286	98.0%	12,040
8	West Berea	69-12.5	21,060	71%	15,018	99.0%	14,868
9	Hickory Plains	69-12.5	25,920	81%	21,053	98.0%	20,632
10	Alcan #1	69-12.5	18,144	25%	4,477	94.0%	4,208
11	PPG	69-12.5	15,725	33%	5,116	95.0%	4,860
12	South Elkhorn	69-12.5	25,920	36%	9,434	99.0%	9,340
13	Crooksville	69-12.5	15,725	59%	9,332	98.0%	9,145
14	South Jessamine	69-12.5	31,050	57%	17,791	97.0%	17,257
15	N. Madison	69-12.5	15,720	55%	8,706	98.0%	8,532
16	Alcan #2	69-12.5	18,144	71%	12,931	89.0%	11,509
17	South Point	69-12.5	18,144	10%	1,734	96.0%	1,665
18	West Nicholasville #2	69-12.5	21,060	40%	8,523	95.0%	8,097
21	Bridgeport	69-25.0	31,050	49%	15,253	100.0%	15,253
22	Ninevah	69-12.5	15,725	46%	7,210	98.0%	7,066
23	Sinai	69-12.5	18,144	51%	9,164	99.0%	9,072
24	Van Arsdell	69-12.5	18,144	73%	13,184	98.0%	12,920
25	Mercer Co. Ind. Park	69-12.5	15,725	26%	4,035	88.0%	3,551
26	Clay Lick	69-12.5	15,725	54%	8,516	99.0%	8,431
27	Chaplin	69-4.2	7,020	17%	1,221	90.0%	1,099
28	Powell-Taylor	69-12.5	15,725	41%	6,391	98.0%	6,263
31	Bracken County District	69-12.5	15,725	37%	5,794	99.0%	5,736
32	Colemansville	69-12.5	18,144	46%	8,360	99.0%	8,276
33	Four Oaks	69-12.5	15,725	46%	7,247	98.0%	7,102
34	Lees Lick	69-12.5	18,144	61%	10,981	97.0%	10,652
35	Cynthiana	69-12.5	18,144	71%	12,864	98.0%	12,607
36	Headquarters	69-12.5	15,725	37%	5,853	99.0%	5,794
37	3-M Company	69-12.5	15,725	51%	7,980	86.0%	6,863
38	Millersburg	69-12.5	7,862	65%	5,136	99.0%	5,085
39	Jacksonville	138-12.5	24,840	20%	4,879	98.0%	4,781
40	Oxford	69-12.5	15,725	31%	4,869	99.0%	4,820
			<u> </u>				1
			Syster	m Totals =	333,470	97.4%	324,789

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

"&\$%"r '&\$% Construction Work Plan

Substation Load Data Winter 2013/14 System ~ Existing System

			Winter		Winding		Total		
	Substation	Voltage	EKPC Rating	%	Load	Power	Demand		
No.	Name	ΚV	(KVA)	Loaded	(KVA)	Factor	(KW)		
1	Nicholasville	69-12.5	18,144	55%	9,903	98.7%	9,771		
2	Holloway	69-12.5	18,144	86%	15,629	97.4%	15,221		
3	West Nicholasville #1	69-12.5	31,050	68%	21,235	97.6%	20,728		
4	Davis	69-12.5	15,725	81%	12,749	100.0%	12,747		
5	Fayette #1	69-12.5	15,725	84%	13,233	99.0%	13,105		
6	Fayette #2	69-12.5	18,144	50%	9,017	99.0%	8,927		
7	Newby	69-12.5	15,725	88%	13,903	97.8%	13,600		
8	West Berea #1	69-12.5	21,060	93%	19,652	98.6%	19,380		
9	Hickory Plains	69-12.5	25,920	104%	27,005	97.7%	26,395		
10	Alcan #1	69-12.5	18,144	29%	5,241	92.3%	4,839		
11	PPG	69-12.5	15,725	35%	5,431	95.3%	5,177		
12	South Elkhorn	69-12.5	25,920	47%	12,237	98.8%	12,085		
13	Crooksville	69-12.5	15,725	76%	11,981	97.8%	11,714		
14	South Jessamine	69-12.5	31,050	76%	23,714	96.2%	22,808		
15	N. Madison	69-12.5	15,725	76%	11,876	97.6%	11,590		
16	Alcan #2	69-12.5	18,144	93%	16,820	88.5%	14,886		
17	South Point	69-12.5	18,144	12%	2,229	95.9%	2,137		
18	West Nicholasville #2	69-12.5	21,060	52%	11,007	94.9%	10,447		
21	Bridgeport	69-25.0	31,050	61%	18,954	100.0%	18,951		
22	Ninevah	69-12.5	15,725	68%	10,642	97.2%	10,343		
23	Sinai	69-12.5	18,144	62%	11,294	98.7%	11,142		
24	Van Arsdell	69-12.5	18,144	94%	17,005	97.4%	16,570		
25	Mercer Co. Ind. Park	69-12.5	15,725	31%	4,839	87.3%	4,225		
26	Clay Lick	69-12.5	15,725	75%	11,724	98.3%	11,525		
27	Chaplin	69-4.2	7,020	23%	1,584	90.6%	1,436		
28	Powell-Taylor	69-12.5	15,725	53%	8,272	97.9%	8,099		
31	Bracken County District	69-12.5	15,725	47%	7,447	98.7%	7,349		
32	Colemansville	69-12.5	18,144	57%	10,385	98.7%	10,252		
33	Four Oaks	69-12.5	15,725	59%	9,290	97.3%	9,044		
34	Lees Lick	69-12.5	18,144	80%	14,528	96.7%	14,043		
35	Cynthiana	69-12.5	18,144	86%	15,565	97.6%	15,188		
36	Headquarters	69-12.5	15,725	47%	7,455	98.8%	7,369		
37	3-M Company	69-12.5	15,725	61%	9,534	86.8%	8,272		
38	Millersburg	69-12.5	7,862	79%	6,207	98.9%	6,140		
39	Jacksonville	138-12.5	24,840	26%	6,381	97.4%	6,212		
40	Oxford	69-12.5	15,725	43%	6,775	98.5%	6,674		
	1		11				L		
			Syster	m Totals =	420,744	97.1%	408,387		
	System Totals = <u>420,744</u> 97.1% <u>408,387</u>								

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

2010 ~ 2013 Construction Work Plan

Substation Load Data Winter 2013/14 System - After Improvements

			Winter		Winding		Total
	Substation	Voltage	EKPC Rating	%	Load	Power	Demand
No.	Name	KV	(KVA)	Loaded	(KVA)	Factor	(KW)
1	Nicholasville	69-12.5	18,144	62%	11,184	99.3%	11,109
2	Holloway	69-12.5	18,144	84%	15,246	99.4%	15,159
3	West Nicholasville #1	69-12.5	31,050	68%	21,005	98.9%	20,765
4	Davis	69-12.5	15,725	72%	11,260	100.0%	11,259
5	Fayette #1	69-12.5	15,725	84%	13,233	99.0%	13,105
6	Fayette #2	69-12.5	18,144	50%	9,009	99.0%	8,918
7	Newby	69-12.5	15,725	88%	13,895	97.9%	13,600
8	West Berea ¹	69-12.5	21,060	93%	19,482	99.0%	19,297
9	Hickory Plains ²	69-12.5	25,920	99%	25,635	99.0%	25,371
10	Alcan #1	69-12.5	18,144	29%	5,241	92.3%	4,839
11	PPG	69-12.5	15,725	35%	5,431	95.3%	5,177
12	South Elkhorn	69-12.5	25,920	47%	12,237	98.8%	12,085
13	Crooksville	69-12.5	15,725	83%	13,053	99.0%	12,927
14	South Jessamine	69-12.5	31,050	75%	23,245	97.8%	22,741
15	N. Madison	69-12.5	15,725	73%	11,405	99.0%	11,287
16	Alcan #2 ³	69-12.5	18,144	93%	16,821	88.5%	14,886
17	South Point	69-12.5	18,144	12%	2,230	95.9%	2,137
18	West Nicholasville #2	69-12.5	21,060	52%	11,007	94.9%	10,447
21	Bridgeport	69-25.0	31,050	61%	18,953	100.0%	18,950
22	Ninevah	69-12.5	15,725	67%	10,611	97.2%	10,314
23	Sinai	69-12.5	18,144	62%	11,288	99.3%	11,213
24	Van Arsdell 4	69-12.5	18,144	93%	16,803	100.0%	16,797
25	Mercer Co. Ind. Park	69-12.5	15,725	31%	4,840	87.3%	4,225
26	Clay Lick	69-12.5	15,725	75%	11,717	99.8%	11,688
27	Chaplin	69-4.2	7,020	23%	1,585	90.6%	1,436
28	Powell-Taylor	69-12.5	15,725	52%	8,166	99.0%	8,087
31	Bracken County District	69-12.5	15,725	47%	7,322	99.6%	7,295
32	Colemansville	69-12.5	18,144	62%	11,173	99.5%	11,115
33	Four Oaks	69-12.5	15,725	55%	8,572	99.9%	8,564
34	Lees Lick	69-12.5	18,144	66%	11,978	99.7%	11,940
35	Cynthiana	69-12.5	18,144	81%	14,765	98.1%	14,488
36	Headquarters	69-12.5	15,725	52%	8,106	100.0%	8,103
37	3-M Company	69-12.5	15,725	61%	9,534	86.8%	8,272
38	Millersburg	69-12.5	7,862	76%	5,967	99.5%	5,935
39	Jacksonville	138-12.5	24,840	25%	6,129	99.5%	6,100
40	Oxford	69-12.5	15,725	52%	8,218	99.8%	8,205
							•
			Syster	m Totals =	416,346	98.0%	407,837

¹ Fans can be installed to achieve 24.00/31.05 MVA S/W rating.

² Fans can be installed to achieve 24.00/31.05 MVA S/W rating.

³ Loading will be monitored monthly to better develop load projections..... Will most likely not grow to this level.

⁴ Load transfer to the Mercer County sub can be considered pending industrial loads.

Exhibit P

"NOT USED IN THIS CWP PACKAGE"

Exhibit Q

"NOT USED IN THIS CWP PACKAGE"

Exhibit R

Large Power Loads (January 200 Data)

Pages: 1

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

10/1/10 - 10/1/13 CONSTRUCTION WORK PLAN Large Power Loads

Neme		Loostion #	Winter 2010		
Name	Business Type	Location #	KW	kWh	
3M	Factory	1603004	6,592	3,528,000	
Tokico	Factory	23230070	6,221	3,290,400	
Novelis	Alum. Recycler	23230064	6,091	2,800,800	
PPG	Factory	23230050	4,860	2,826,000	
McKechnie	Factory	9160057	3,727	1,922,400	
Adcom	Factory	3860001	3,346	1,483,200	
NACCO	Factory	23230049	2,725	925,200	
Bay West	Factory	120768015	2,639	1,688,400	
Jackson Plast.	Factory	9260251	1,288	364,800	
Donaldson	Factory	3850301	1,262	403,200	
Madison Sthrn.	School campus	23340083	1,138	432,000	
Marathon	Oil Pump	110663018	1,099	676,800	
Harr. Hosp.	Hospital	1284005	898	492,000	
KI-USA	Factory	23130069	886	356,400	
McClane	Food Distr.	3670007	822	380,160	
South. Chr. Ch.	Church campus	3250369	751	210,000	
Jessamine Co.	School campus	227348001	615	140,400	
Jessamine Co.	School campus	3970040	598	234,000	
Sarg. & Green	Factory	9160017	589	188,160	
Wal-Mart	Retail store	3770050	564	360,576	
Wal-Mart	Retail store	280243001	554	336,240	
Jessamine Co.	School campus	3840013	515	189,600	
Jessamine Co.	School campus	3840060	506	187,800	
Lowe's	Home Ctr.	231336007	465	202,368	
Anderson Co.	School campus	284242001	365	64,512	
King middle	School campus	120778013	362	108,288	
Hammer Co.	Factory	472030	358	81,600	
Kroger	Grocery	3151143	356	216,800	
P K Tool	Factory	17340003	319	77,184	
Berea Municipal Utilities	Main Plant	23140031	317	136,320	
Richmond Sew.	Sewer plant	10890226	307	165,888	
Jessamine Co.	School campus	3850302	283	76,800	
Harrison Co.	School campus	1294015	264	87,120	
North. Lex. Health	Health Care Ctr.	4231999	246	118,464	
Act Inc.	Factory	9160063	236	44,687	
St. Joseph Jessamine	Hospital	231339011	229	124,032	
Cedar Ridge	Health Care Ctr.	1274030	190	84,320	
Richmond Sew.	Sewer plant	17830021	184	96,000	
Scott Co. BOE	School campus	2012001	183	52,320	
Food Lion	Grocery	1293005	180	104,800	
St. Elizabeth	Church/school	4241022	177	68,640	
Arcadian Assisted Living	Health Care Ctr.	162426003	176	57,920	
The Grand Theater	Movie Theater	251353003	161	69,120	
Fayette Co.	School campus	4240854	160	61,080	
Silver Creek School	School campus	23250639	152	33,600	

Exhibit S

Five-Year Outage Report

Pages: 1

<u>Exhibit T</u>

System Improvement Justification Summaries

Pages:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 302.01* Estimated Cost: \$37,200

Description of Proposed Construction:

Re-conductor 0.6 miles of single phase 4 ACSR with two phase 1/0 ACSR. Replace poles and equipment as necessary

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Holloway	PC-112812	0.6	1PH 4 ACSR	2PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 303-01* Estimated Cost: \$34,500

Description of Proposed Construction:

Upgrade 0.5 miles of single phase 1/0 ACSR to three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
W Nicholasville	94248	0.5	1PH 1/0 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 303-02 Estimated Cost: \$62,000

Description of Proposed Construction:

Upgrade 1.0 miles of single phase 1/0 ACSR to two phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
W Nicholasville	PC-99960	1.0	1PH 1/0 ACSR	2PH 1/0ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

304-01

Estimated Cost: \$15,000

.

Description of Proposed Construction:

Re-conductor 0.1 miles of three phase underground from 350 MCM to three phase 3PH 500 MCM.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Davis	Sub Exit	0.1	(1) 3PH 350 MCM	(1) 3PH 500 MCM

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: **304-02** Estimated Cost: **\$75,000**

Description of Proposed Construction:

Re-conductor 1.1 miles of single phase 2 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Davis	PC-110310	1.1	1PH 2 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

304-03

Estimated Cost:

\$80,000

Description of Proposed Construction:

Replace 0.8 miles of failing underground primary cable.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Davis	PC-155760	0.8	2PH 1/0 URD	2PH 1/0 URD

Reason for Proposed Construction:

Failing underground primary cable

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:**305-01***Estimated Cost:**\$48,300**

Description of Proposed Construction:

Re-conductor 0.7 miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Fayette #1	PC-157969	0.7	1PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

305-02*

Estimated Cost:

\$60,000

Description of Proposed Construction:

Re-conductor four underground substation exits totaling 0.4 miles from three phase 350 MCM to three phase 500 MCM conductor.

Substation	Line Section	<u>Miles</u>	Existing Phase Wire	Proposed Phase Wire
Fayette #1	(4) Sub Exits	0.4	(4) 3PH 350 MCM	(4) 3PH 500 MCM

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

306-01*

Estimated Cost:

\$45,000

Description of Proposed Construction:

Re-conductor three underground substation exits totaling 0.3 miles from three phase 350 MCM to three phase 500 MCM conductor.

Substation	Line Section	<u>Miles</u>	Existing Phase Wire	Proposed Phase Wire
Fayette #2	(3) Sub Exits	0.3	3PH 350 MCM	3PH 500 MCM

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 307-

307-01*

Estimated Cost: \$44,500

Description of Proposed Construction:

Re-conductor 0.5 miles of three phase 1/0 ACSR to three phase 336 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Newby	PC-93554	0.5	3PH 1/0 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 307-02 Estimated Cost: \$6,200

Description of Proposed Construction:

Convert 0.1 miles of single phase 1/0 ACSR to two phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Newby	PC-102046	0.1	1PH 1/0 ACSR	2PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 308-01 Estimated Cost: \$97,900

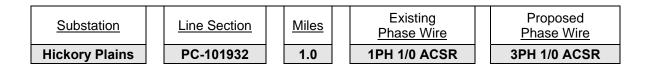
Description of Proposed Construction:

Re-conductor 1.1 miles of three phase 1/0 ACSR to three phase 336 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
West Berea	PC-182353	1.1	3PH 1/0 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justificaion Codes 2 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

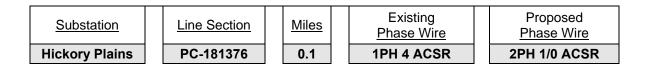
CFR Code and CWP Item Number: 309-01 Estimated Cost: \$69,000

Description of Proposed Construction:

Convert 1.0 miles of single phase 1/0 ACSR to three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: **309-02** Estimated Cost: **\$6,200**

Description of Proposed Construction:

Re-conductor 0.1 miles of sinle phase 4 ACSR with two phase 1/0 ACSR. Change poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

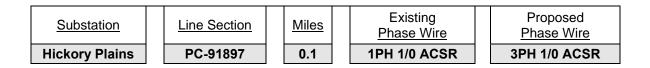
CFR Code and CWP Item Number: **309-03** Estimated Cost: **\$96,600**

Description of Proposed Construction:

Convert 1.4 miles of single phase 1/0 ACSR to three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: **309-04** Estimated Cost: **\$6,900**

Description of Proposed Construction:

Convert 0.1 miles of single phase 1/0 ACSR to three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 313-01 Estimated Cost: \$20,700

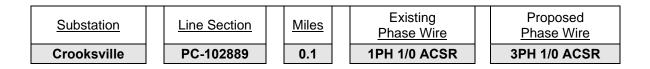
Description of Proposed Construction:

Re-conductor 0.3 miles of single phase 6 CU to three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Crooksville	PC-182152	0.3	1PH 6CU	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1,5, and 9)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

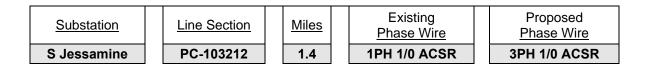
CFR Code and CWP Item Number: 313-02 Estimated Cost: \$6,900

Description of Proposed Construction:

Convert 0.1 miles of single phase 1/0 ACSR to three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

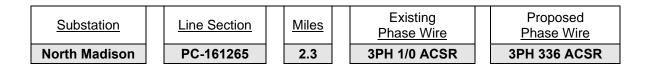
CFR Code and CWP Item Number: 314-01* Estimated Cost: \$96,600

Description of Proposed Construction:

Convert 1.4 miles of single phase 1/0 ACSR to three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 315-01* Estimated Cost: \$204,700

Description of Proposed Construction:

Re-conductor 2.3 miles of three phase 1/0 ACSR to three phase 336 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 2 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 315-02† Estimated Cost: \$195,800

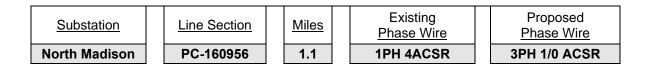
Description of Proposed Construction:

Re-conductor 2.2 miles of three phase 1/0 ACSR with three phase 336 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:


No other alternatives were considered.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

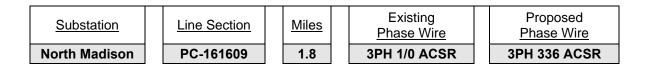
CFR Code and CWP Item Number: 315-03 Estimated Cost: \$75,900

Description of Proposed Construction:

Re-conductor 1.1 miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 315-04 Estimated Cost: \$160,200

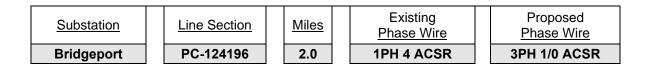
Description of Proposed Construction:

Re-conductor 1.8 miles of three phase 1/0 ACSR with three phase 336 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:


No other alternatives were considered.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

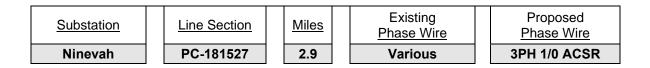
CFR Code and CWP Item Number: 321-01* Estimated Cost: \$138,000

Description of Proposed Construction:

Re-conductor 2.0 Miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

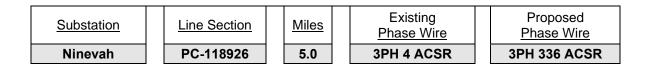
CFR Code and CWP Item Number: 322-01* Estimated Cost: \$200,100

Description of Proposed Construction:

Re-conductor 2.9 miles of various conductors with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 322-02* Estimated Cost: \$445,000

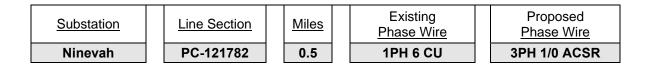
Description of Proposed Construction:

Reconductor 5.0 miles of three phase 4 ACSR with 3 Phase 336 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:


No other alternatives were considered.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 322-03 Estimated Cost: \$34,500

Description of Proposed Construction:

Re-conductor 0.5 miles of single phase 6 CU with three phase 1/0 ACSR.

Reason for Proposed Construction:

(Justification Codes 1, 5, and 9)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 322-04 Estimated Cost: \$132,000

Description of Proposed Construction:

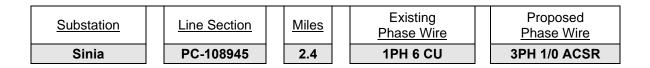
Reconductor 3.0 miles of single phase 6 CU to single phase 1/0 ACSR and convert from 7.2 kV to 14.4 kV. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing Phase Wire	Proposed Phase Wire
Ninevah	PC-174168	3.0	1PH 6 CU 7.2kV	1PH 1/0 ACSR 14.4 kV

Reason for Proposed Construction:

(Justification Codes 8 and 9)

Alternate Corrective Plans Investigated:


No other alternatives were considered.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 323-01* Estimated Cost: \$165,600

Description of Proposed Construction:

Re-conductor 2.7 miles of single phase 6 CU with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1, 5, and 9)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 323-02* Estimated Cost: \$172,500

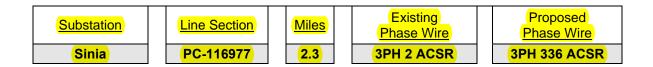
Description of Proposed Construction:

Re-conductor 2.5 miles of single phase 8 CU with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Sinia	PC-172351	2.5	1PH 8 CU	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1,5, and 9)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 323-03 Estimated Cost: \$204,700

Description of Proposed Construction:

Re-conductor 2.3 miles of three phase 2 ACSR with 3 phase 336 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 5 and 10)

Alternate Corrective Plans Investigated:

No other alternatives were considered.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 323-04 Estimated Cost: \$207,000

Description of Proposed Construction:

Re-conductor 3.0 miles of single phase 6 CU with 3 phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Sinia	PC-121809	3.0	1PH 6 CU	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1,5, and 10)

Alternate Corrective Plans Investigated:

Considered the possibility of using a larger conductor since this was a tie between substations.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:**323-05**Estimated Cost:**\$20,700**

Description of Proposed Construction:

Re-conductor 0.3 miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Sinia	PC-116034	0.3	1PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:**323-06**Estimated Cost:**\$117,300**

Description of Proposed Construction:

Re-conductor 1.7 miles of single phase 8 CU with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Sinia	PC-108945	1.7	1PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 323-07 Estimated Cost: \$138,000

Description of Proposed Construction:

Re-conductor 2.0 miles of three phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Sinia	PC-118848	2.0	3PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 3 and 5)

Alternate Corrective Plans Investigated:

No other alternatives were considered.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

324-01*

Estimated Cost: \$117,300

Description of Proposed Construction:

Re-conductor 1.7 miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing Phase Wire	Proposed Phase Wire
Van Arsdell	PC-152695	1.7	1PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

324-02*

Estimated Cost: \$82,800

Description of Proposed Construction:

Re-conductor 1.2 miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Van Arsdell	PC-103077	1.2	1PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 326

326-01

Estimated Cost: \$293,700

Description of Proposed Construction:

Re-conductor 3.3 miles of single phase 4 ACSR with three phase 336 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Clay Lick	PC-110067	3.3	1PH 4 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 10)

Alternate Corrective Plans Investigated:

No other alternatives were considered.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

326-02

Estimated Cost: \$41

\$41,400

Description of Proposed Construction:

Re-conductor 0.6 miles of mixed sizes of old single phase conductor with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Clay Lick	PC-112351	0.6	Mixed 1PH	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1,5, and 9)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

328-01*

Estimated Cost: 13,800

Description of Proposed Construction:

Re-conductor 0.2 miles of single phase various conductors with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Powell Taylor	PC-162070	0.2	Various 1PH	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

328-02

Estimated Cost:

\$262,200

Description of Proposed Construction:

Re-conductor 3.8 miles of single phase 6 CU with three phase 1/0 ACSR.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Powell Taylor	PC-122831	3.8	1PH 6 CU	3PH 1/0 ACSR

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:**331-01**Estimated Cost:**\$836,600**

Description of Proposed Construction:

Re-conductor 9.4 miles of three phase 4 ACSR with three phase 336 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	Miles	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Bracken County	PC-151619	9.4	3PH 4 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justification Codes 3,5,9 and 10)

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 331-02* Estimated Cost: \$48,300

Description of Proposed Construction:

Re-conductor 0.7 miles of single phase 6 CU with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Bracken County	PC-151753	0.7	1PH 6 CU	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1, 5, and 9)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:**331-03***Estimated Cost:**\$160,200**

Description of Proposed Construction:

Re-conductor 1.8 miles of three phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equioment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Bracken County	PC-154707	1.8	3PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 332-01 Estimated Cost: \$276,000

Description of Proposed Construction:

Re-conductor 4.0 miles of mixed single and two phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	Miles	Existing <u>Phase Wire</u>	Proposed Phase Wire
Colemansville	PC-177337	4.0	1PH & 2PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:**332-02**Estimated Cost:**\$151,800**

Description of Proposed Construction:

Re-conductor 2.2 miles of mixed single and two phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing Phase Wire	Proposed Phase Wire
Colemansville	PC-141409	2.2	1PH & 2PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1, 5, and 9)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 333-01* Estimated Cost: \$222,500

Description of Proposed Construction:

Re-conductor 2.5 miles of three phase 4 ACSR with three phase 336 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Four Oaks	PC-171292	2.5	3PH 4 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justification Codes 2 and 5)

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 333-02* Estimated Cost: \$329,300

Description of Proposed Construction:

Re-conductor 3.7 miles of three phase 4 ACSR with three phase 336 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	Miles	Existing <u>Phase Wire</u>	Proposed Phase Wire
Four Oaks	PC-146827	3.7	3PH 4 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justification Codes 2 and 5)

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

333-03

Estimated Cost: \$407,100

ψ407,100

Description of Proposed Construction:

Re-conductor 5.9 miles of three phase mixed old conductors with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Four Oaks	PC-164178	5.9	3PH mixed old conductors	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Code 9)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 334-01*

Estimated Cost:

\$75,900

Description of Proposed Construction:

Re-conductor 1.1 miles of single phase 4 ACSR with three phase 1/0 ACSR.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Lees Lick	PC-137819	1.1	1PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 3:

334-02*

Estimated Cost:

\$115,700

Description of Proposed Construction:

Re-conductor 1.3 miles of three phase 4 ACSR with three phase 336 ACSR.

Substation	Line Section	<u>Miles</u>	Existing Phase Wire	Proposed Phase Wire
Lees Lick	PC-131690	1.3	3Ph 4 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justification Codes 2 and 5)

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

334-03

Estimated Cost: \$145,200

Description of Proposed Construction:

Reconductor 1.1 miles of three phase 3/0 ACSR Double Circuit with three phase 336 ACSR Double Circuit. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Lees Lick	PC-141307	1.1	3PH 3/0 ACSR DC	3PH 336 ACSR DC

Reason for Proposed Construction:

(Justification Codes 2 and 5)

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number:

334-04

Estimated Cost:

\$356,000

Description of Proposed Construction:

Re-conductor 4.0 miles of three phase 1/0 ACSR with three phase 336 ACSR.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Lees Lick	PC-130158	4.0	3PH 1/0 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justification Codes 2 and 5)

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 334-05 Estimated Cost: \$200,100

Description of Proposed Construction:

Re-conductor 2.9 miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed <u>Phase Wire</u>
Lees Lick	PC-132870	2.9	1PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 3:

334-06

Estimated Cost: \$

\$89,700

Description of Proposed Construction:

Re-conductor 1.3 miles of single phase 6 & 8 CU with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Lees Lick	PC-134048	1.3	1PH 6 & 8 CU	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1,5, and 9)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 335-01 Estimated Cost: \$124,200

Description of Proposed Construction:

Re-conductor 1.8 miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Substation	Line Section	<u>Miles</u>	Existing <u>Phase Wire</u>	Proposed Phase Wire
Cynthiana	PC-167816	1.8	1PH 4 ACSR	3PH 1/0 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 335-02 Estimated Cost: \$293,700

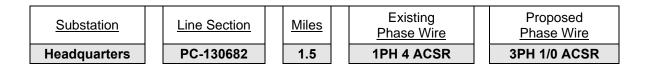
Description of Proposed Construction:

Re-conductor 3.5 miles of mixed single phase and two phase 4 ACSR with three phase 336 ACSR.

Substation	Line Section Miles		Existing Phase Wire	Proposed Phase Wire
Cynthiana	PC-141942	3.3	1PH & 2PH 4 ACSR	3PH 336 ACSR

Reason for Proposed Construction:

(Justification Codes 1 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 336-01 Estimated Cost: \$103,500

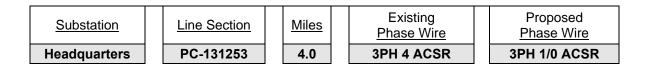
Description of Proposed Construction:

Re-conductor 1.5 miles of single phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:


Since 1/0 ACSR is the minimum conductor used for multiphase lines, no other conductor size was evaluated.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 336-02 Estimated Cost: \$276,000

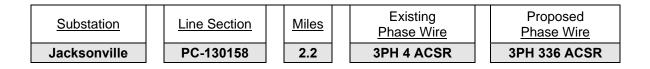
Description of Proposed Construction:

Re-conductor 4.3 miles of three phase 4 ACSR with three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 2 and 5)

Alternate Corrective Plans Investigated:


Since 1/0 ACSR is the minimum conductor used for multiphase lines, no other conductor size was evaluated.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

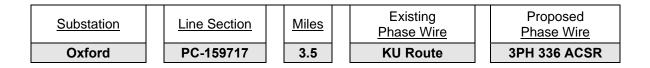
CFR Code and CWP Item Number: 339-01 Estimated Cost: \$195,800

Description of Proposed Construction:

Re-conductor 2.2 miles of three phase 4 ACSR with three phase 336 ACSR.

Reason for Proposed Construction:

(Justification Codes 2 and 5)


Alternate Corrective Plans Investigated:

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 340-01 Estimated Cost: \$311,500

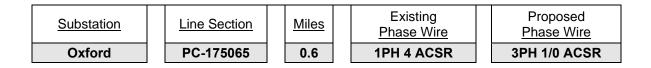
Description of Proposed Construction:

Build 3.5 miles of 3 phase 336 ACSR.

Reason for Proposed Construction:

(Justification Codes 5 and 10)

Alternate Corrective Plans Investigated:


No other alternatives were considered.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 340-02 Estimated Cost: \$41,400

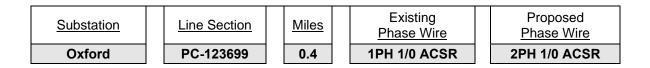
Description of Proposed Construction:

Re-conductor 0.6 miles of single phase 4 ACSR with three phase 1/0 ACSR.

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:


Since 1/0 ACSR is the minimum conductor used for multiphase lines, no other conductor size was evaluated.

DISTRIBUTION LINE CONSTRUCTION PROJECT REVIEW

CFR Code and CWP Item Number: 340-03 Estimated Cost: \$24,800

Description of Proposed Construction:

Convert 0.4 miles of single phase 1/0 ACSR to three phase 1/0 ACSR. Replace poles and equipment as necessary.

Reason for Proposed Construction:

(Justification Codes 1 and 5)

Alternate Corrective Plans Investigated:

Since 1/0 ACSR is the minimum conductor used for multiphase lines, no other conductor size was evaluated.

Exhibit U

"NOT USED IN THIS CWP PACKAGE"

Exhibit V

Two-Way Vehicle Communication with AVL

Pages: 1

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

2010-2013 CONSTRUCTION WORK PLAN Two Way Communication with AVL¹ RUS Reference Code 615

BGE is currently undergoing a study of its two-way voice radio communication system due in part to an approaching FCC deadline to vacate the existing licensed frequencies. At preset the deadline is in 2014 and the implementation of the new / revised system will begin within this CWP. To allow for such the following estimated costs are being included within this CWP.

2Way Radio System

Quantity	Equipment Description	Cost/unit	Total Cost
70	Truck Mobile Radio	\$900	\$63,000
30	Portable handheld Radio	\$800	\$24,000
6	Base Station Repeater	\$10,000	\$60,000
1	Dispatch Center Console	\$20,000	\$20,000
	System Engineering and FCC Licensing		\$33,000
		Project Total	\$200,000

Chris Brewer, PE VP, Engineering Blue Grass Energy Cooperative 1201 Lexington Rd Nicholasville, KY 40340

RUS Reference Code 615: \$200,000

¹ Automatic Vehicle Locating

Exhibit W

DA Communication Backbone

Pages: 1

KENTUCKY 64 JESSAMINE NICHOLASVILLE, KENTUCKY

2010-2013 CONSTRUCTION WORK PLAN Distribution Automation (DA) Communication Backbone and Volt / VAR Equipment RUS Reference Code 704

BGE is currently in the process of installing a DA Backbone project for the purpose of precisely controlling switched capacitors, regulating VARs, regulating system voltage, and optimizing system conditions conducive to loss reduction and service quality.

This backbone will cover the entire BGE Distribution System.

<u>Distributi</u>	on Automation System		
Quantity	Equipment Description	<u>Cost/unit</u>	Total Cost
10	Base Station Gateway	\$66,000	\$660,000
1	Base Station Gateway License	\$13,000	\$13,000
	Project Management, Setup and Implementation		\$227,000
900	Voltage Monitors	\$1,300	\$1,170,000
900	Voltage Monitors Installation	\$200	\$180,000
50	Capacitor control communication hardware	\$1,600	\$80,000
50	Capacitor control communication hardware installation		\$25,000
	Project Total:		\$2,355,000

RUS Reference Code 704: \$2,355,000

Exhibit X

EKPC Transmission Map of the BGE Area

Pages: 1

Exhibit Y

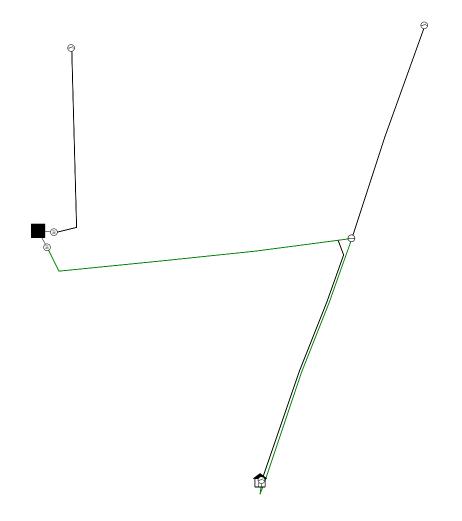

Various BGE Facility Maps

Pages:

1	4.4	1 /	25	KV	=	RED
7.2	/	12.	47	KV	=	Black

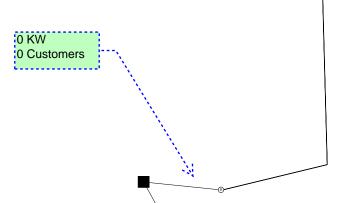
Underground Primary = RED Overhead Primary = BLACK

Primary Conductor of 6 ACWC 8 ACWC = RED

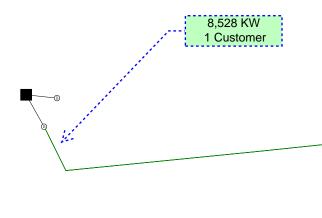

BLUE GRASS ENERGY SUB & CIRCUITS (Click item below for selection)

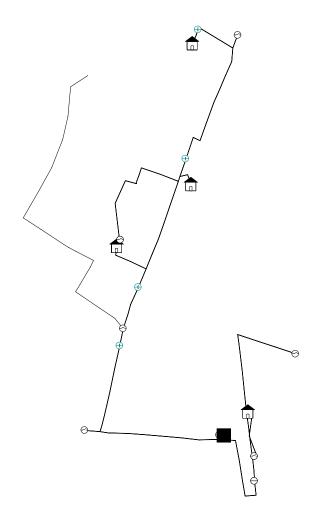
BGE System Map Nicholasville Area Map Fox Creek Area Map Harrison Area Map Madison Area Map **3M SUB** ~ (37) • 104 114 • **ALCAN 1 SUB** ~ (10) • 114 124 **ALCAN 2 SUB** ~ (10) • 144 • 145 BRACKEN COUNTY SUB ~ (31) • 104 114 **BRIDGEPORT SUB** ~ (21) 114 • 124 • 134 • • 144 CHAPLIN SUB ~ (27) • 114 CLAY LICK SUB ~ (26) 114 • 124 • 134 • 144 • **COLEMANSVILLE SUB** ~ (32) 104 • 114 • • 124 • 134 **CROOKSVILLE SUB** ~ (13) • 114 124 • • 144 CYNTHIANA SUB ~ (35) 104 • 114 • 124 • 134 • 154 • 164 • **DAVIS SUB** ~ (4) 104 • • 114 124 • 134 FAYETTE 1 SUB ~ (5) 144 164 • 174 • FAYETTE 2 SUB ~ (6) 104 • 114 124 • 134 •

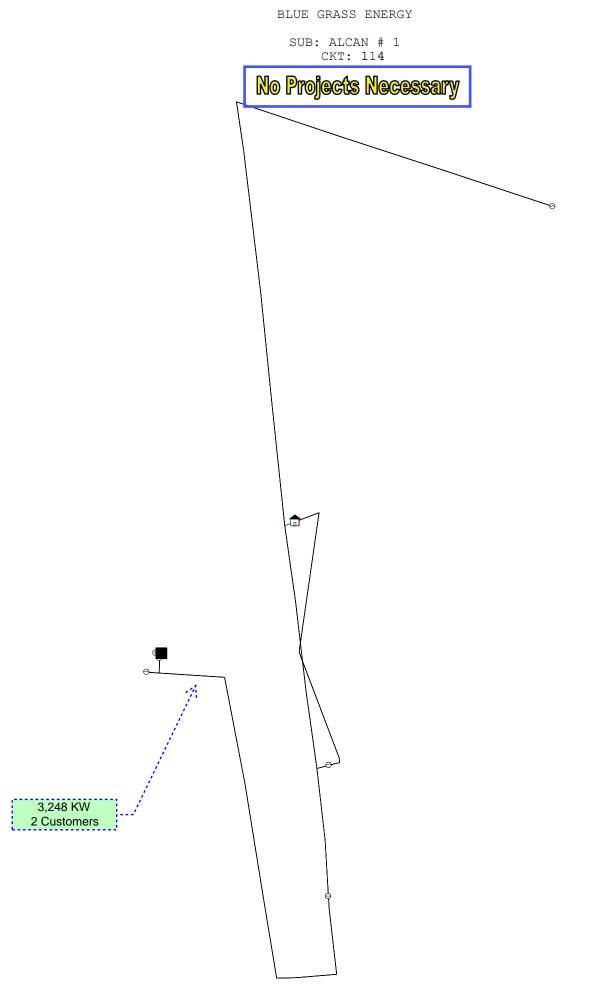
FOUR OAKS SUB ~ (33) • 114 124 -134 • 144 • **HEADOUARTERS SUB ~ (36)** 104 • 114 • 124 • 134 • • 144 HICKORY PLAINS SUB ~ (9) 104 • 124 134 • 144 • 154 • • 164 HOLLOWAY SUB ~ (2) • 104 114 124 • 134 • **JACKSONVILLE SUB** ~ (39) 104 • 114 • 124 • LEE'S LICK SUB ~ (34) • 104 114 • 124 • 134 • • 144 MERCER COUNTY SUB ~ (25) 104 • 134 • 144 • MILLERSBURG SUB ~ (38) 104 • 114 124 • **NEWBY SUB** ~ (7) 104 • 114 124 • 134 • 144 • 154 • NICHOLASVILLE SUB ~ (1) 104 • 114 • 124 • 134 • 144 • NINEVAH SUB ~ (22) • 104 114 • 134 • • 144

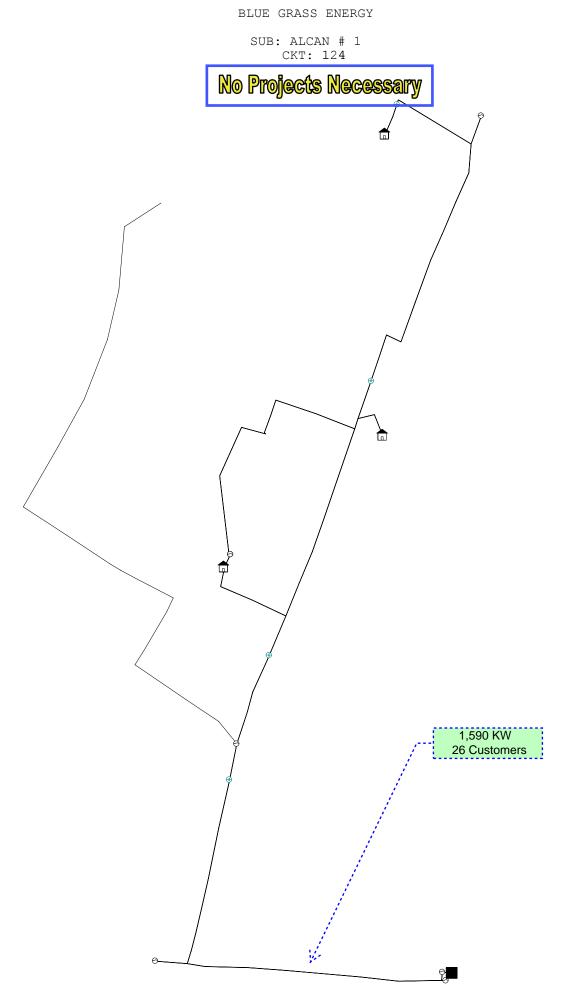

NORTH MADISON SUB (15) • 104 114 • 124 134 • OXFORD SUB ~ (40) 104 • 114 • 124 • **POWELL TAYLOR SUB** ~ (28) • 427 428 • 429 430 • PPG SUB (11) • 104 SINAI SUB ~ (23) 104 • 114 • 124 • 134 144 • **SOUTH ELKHORN SUB** (12) • 104 • 114 124 • 134 • **SOUTH JESSAMINE SUB (14)** 124 • 134 144 • **SOUTH POINT SUB** ~ (17) 434 ٠ ? • -9 VAN ARSDELL SUB ~ (24) 104 • 114 • • 124 134 • 144 • WEST BEREA SUB (8) 104 • 114 124 134 • 144 • **WEST NICHOLASVILLE SUB (3)** 104 • 114 • 124 134 • 144 • 154 164 •

SUB: <mark>3M</mark>

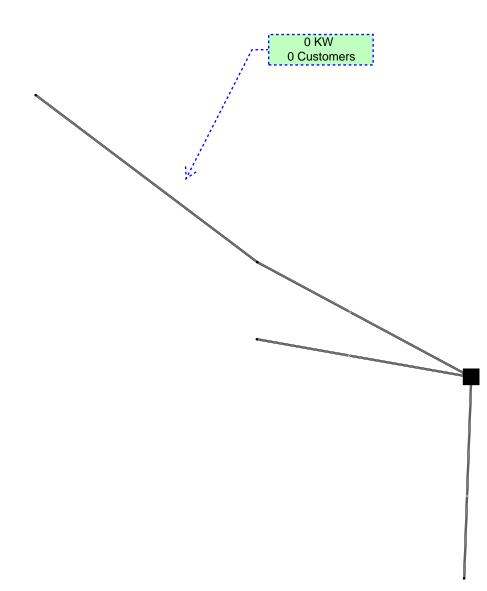

SUB: 3M CKT: 104

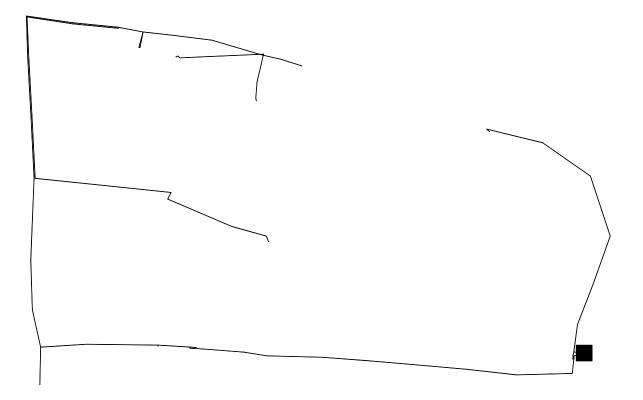



SUB: 3M CKT: 114


No Projects Necessary

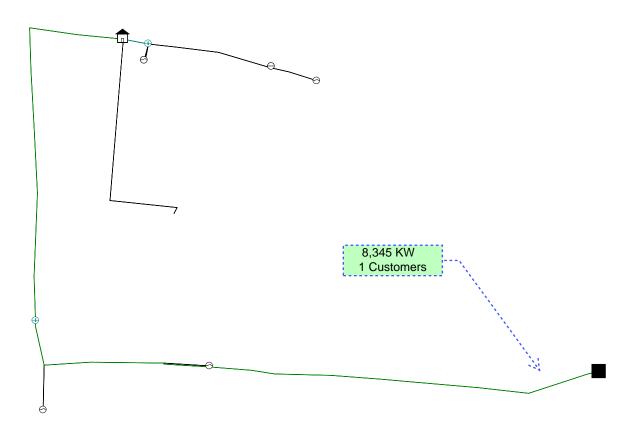
SUB: Alcan 1



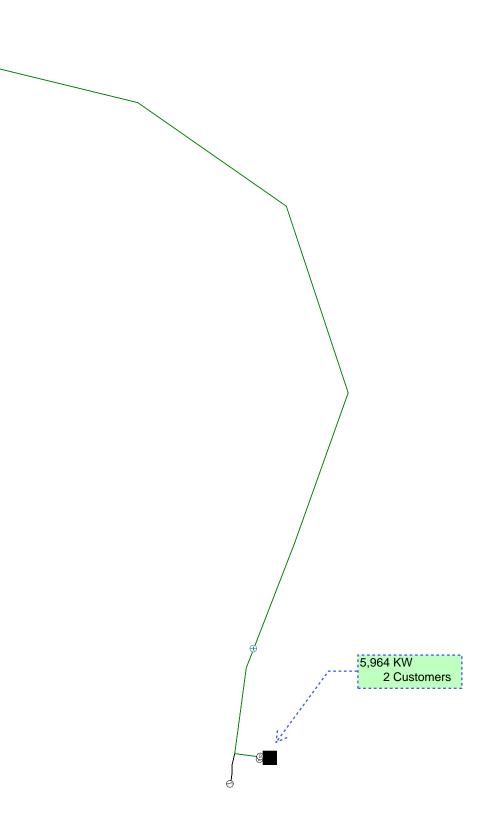

BGE CIRCUITS Page 6

SUB: ALCAN # 1 CKT: 1241

No Projects Necessary

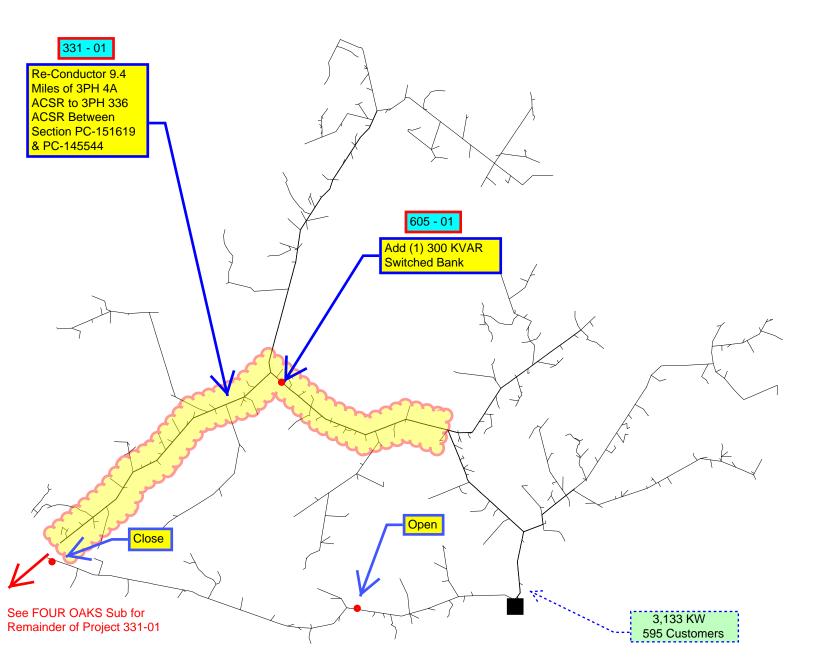


SUB: ALCAN # 2

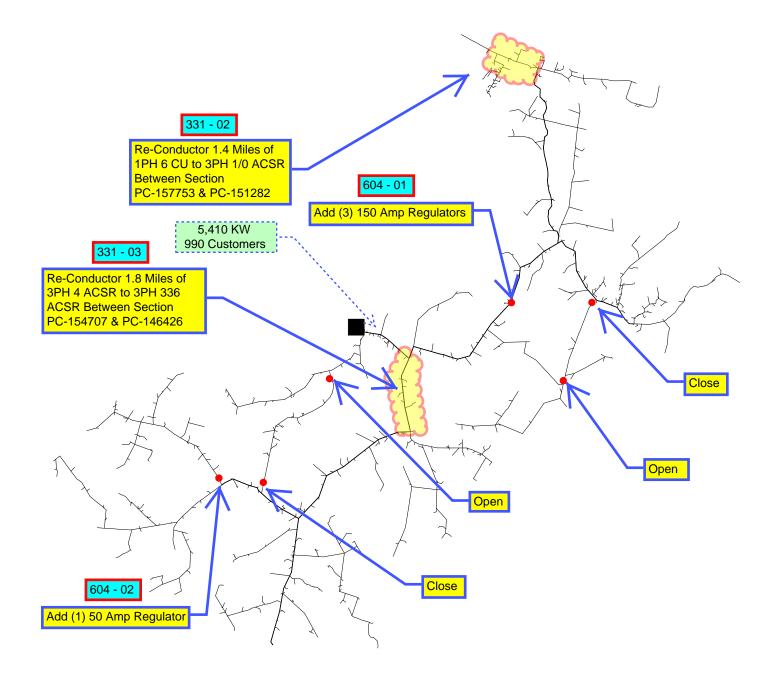

SUB: Alcan 2 CKT: 144

No Projects Necessary

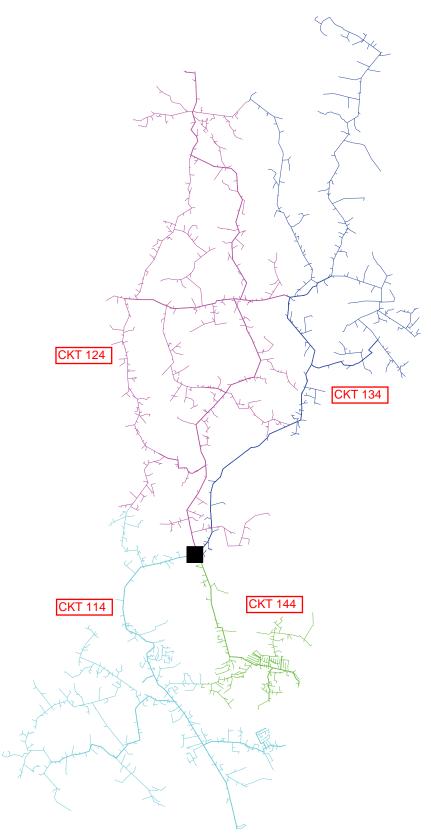
SUB: Alcan 2 CKT: 154



BGE CIRCUITS Page 10

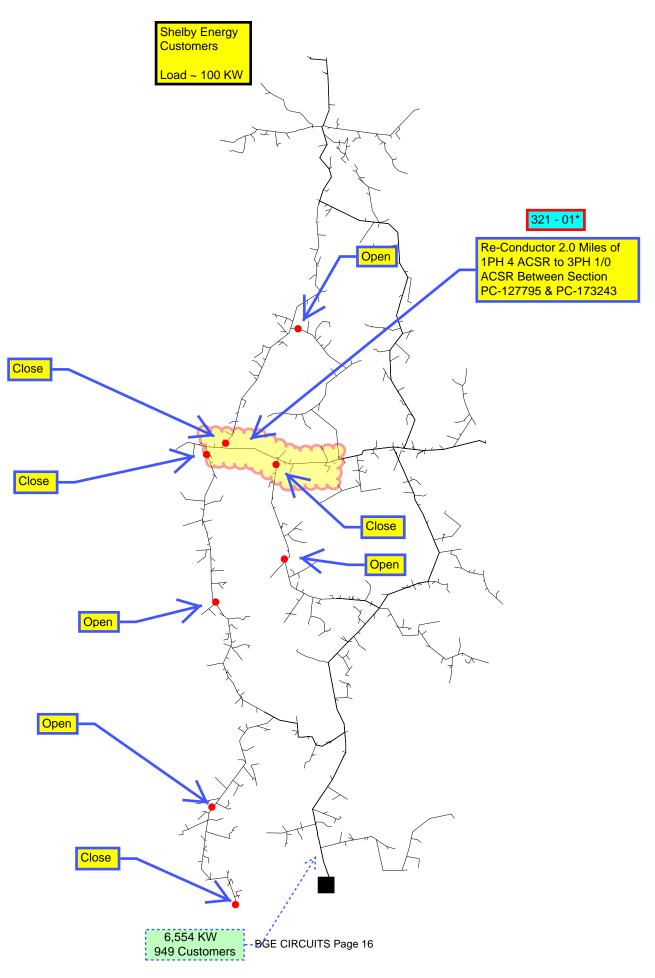

CKT 104 CKT 114

SUB: BRACKEN COUNTY


SUB: BRACKEN COUNTY CKT: 104

SUB: BRACKEN COUNTY CKT: 114

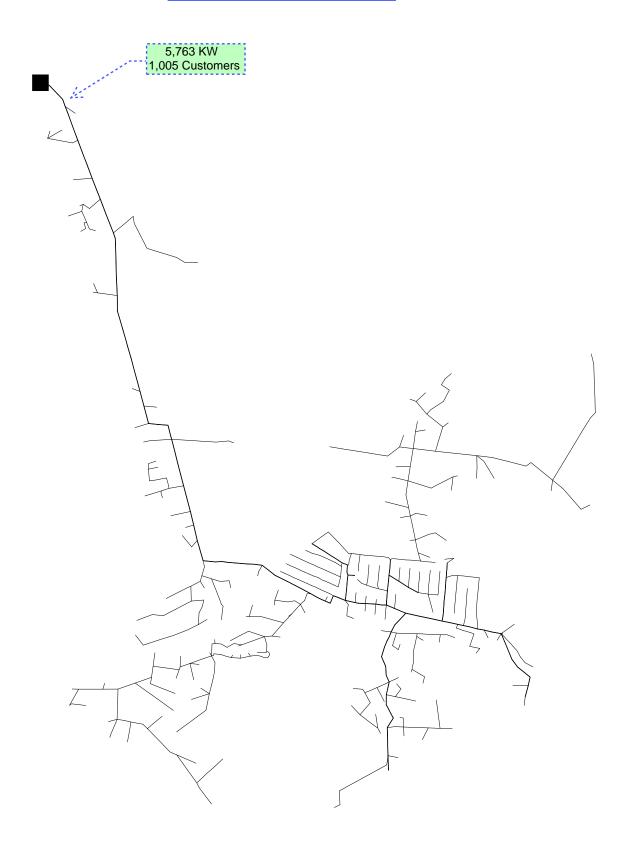
SUB: BRIDGEPORT



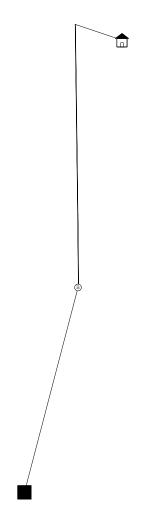
BGE CIRCUITS Page 14

SUB: BRIDGEPORT CKT: 114

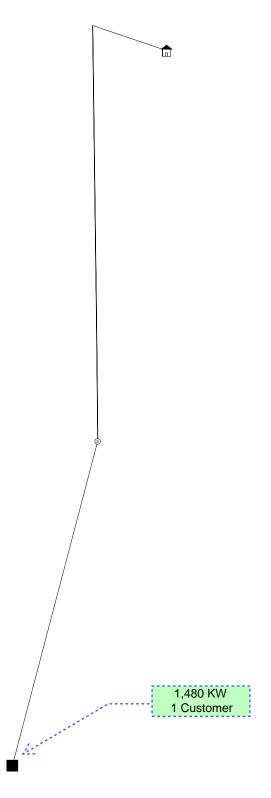
SUB: BRIDGEPORT CKT: 124



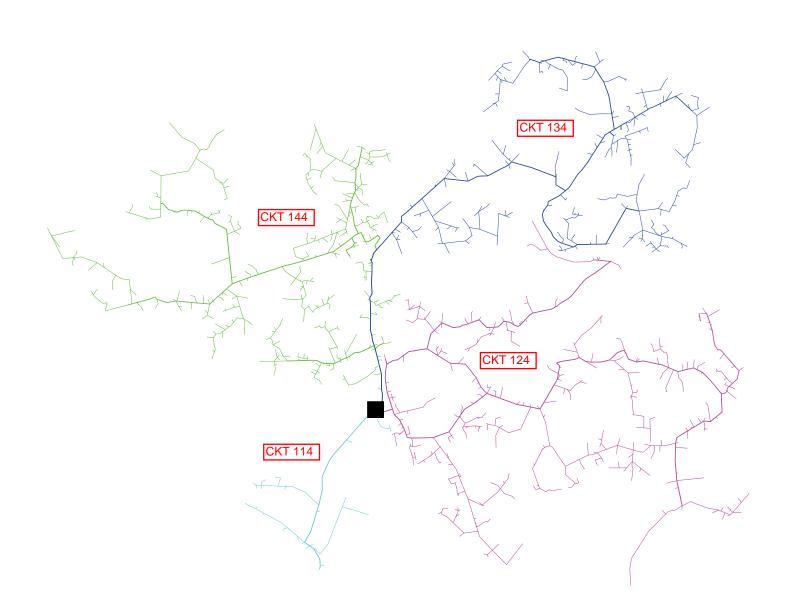
SUB: BRIDGEPORT CKT: 134

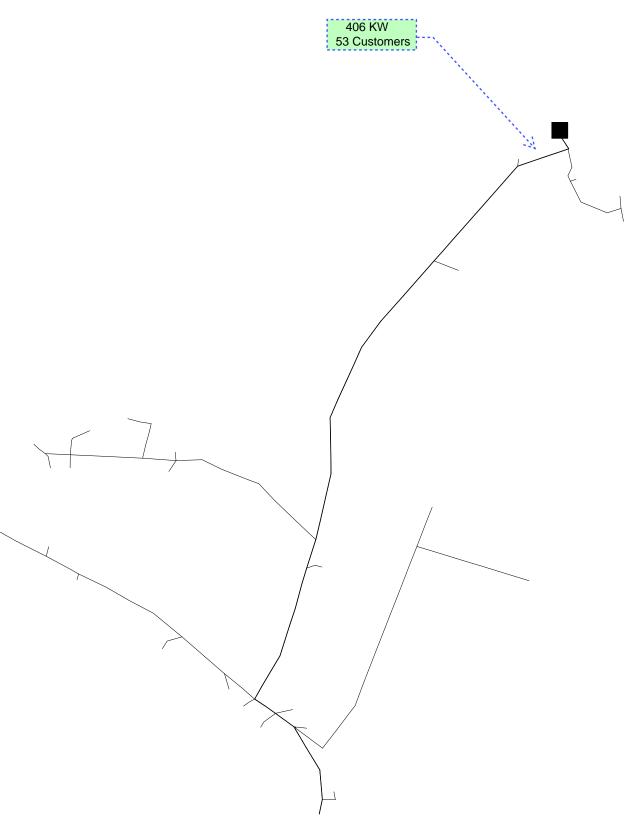

No Projects Necessary

SUB: BRIDGEPORT CKT: 144

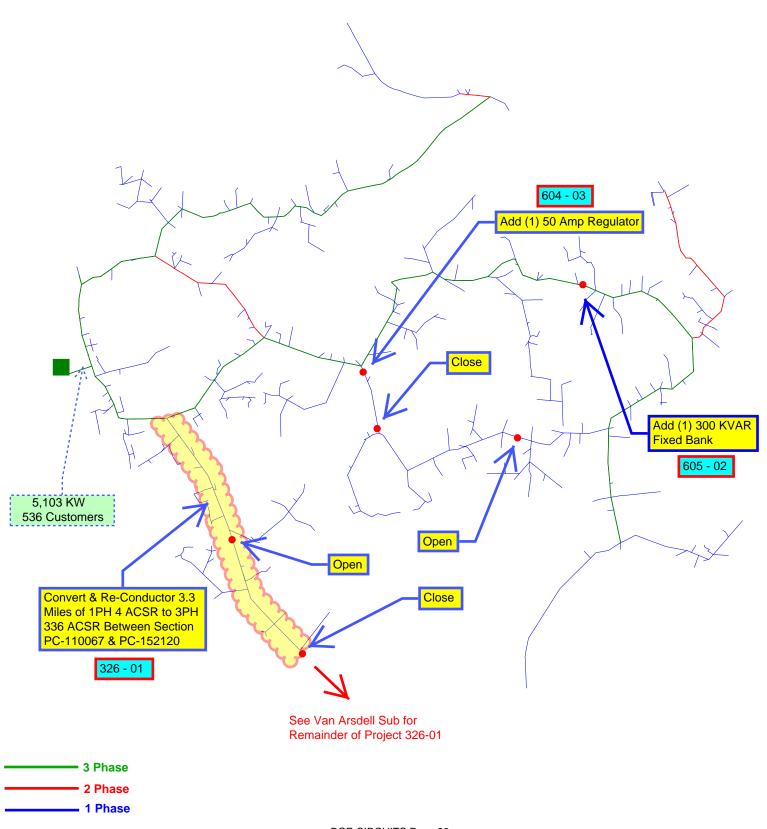


SUB: Chaplin

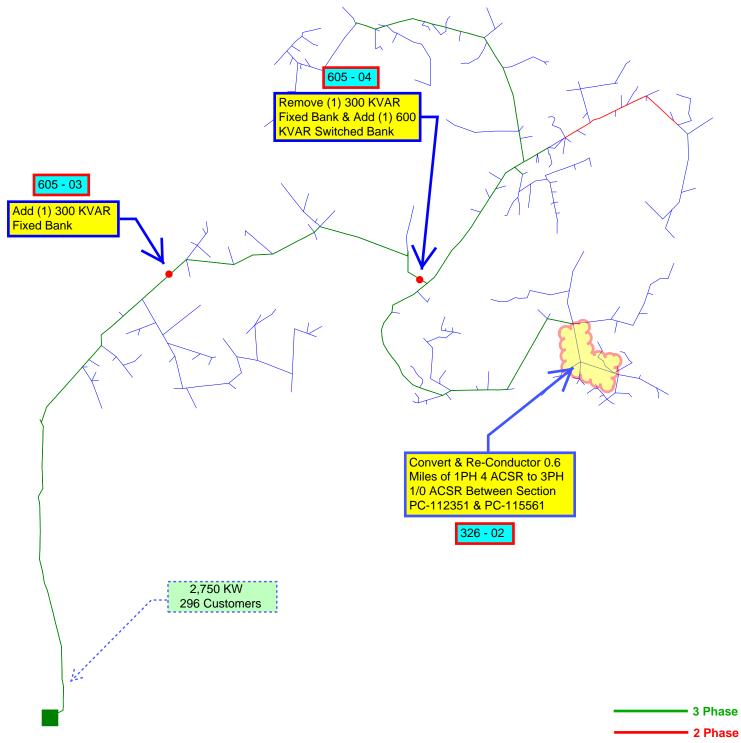

SUB: Chaplin CKT: 114


BGE CIRCUITS Page 20

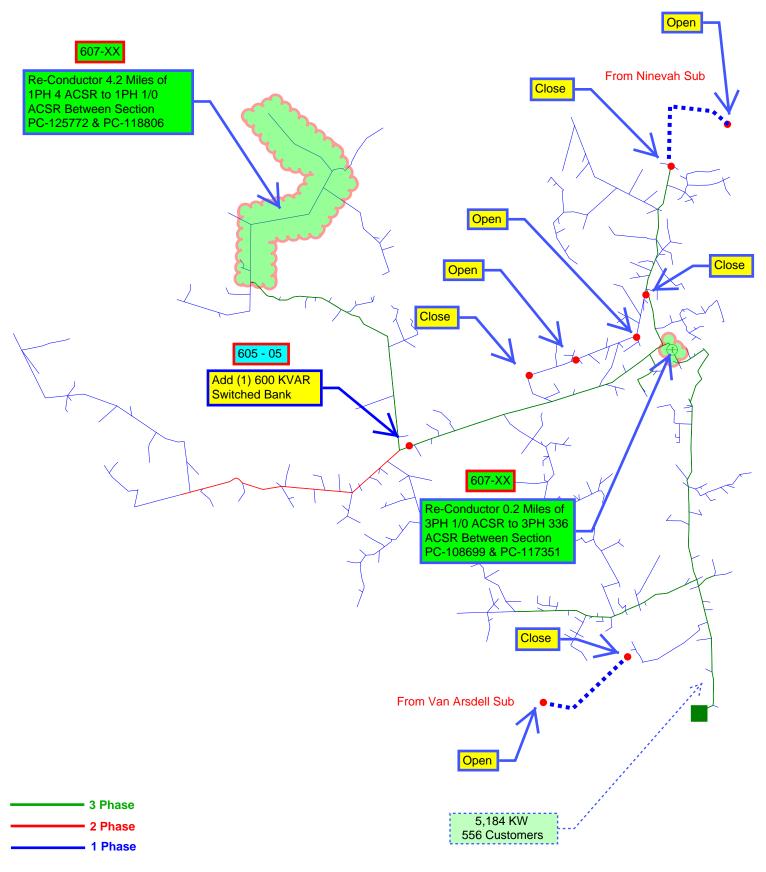
SUB: CLAY LICK


SUB: CLAY LICK CKT: 114

No Projects Necessary

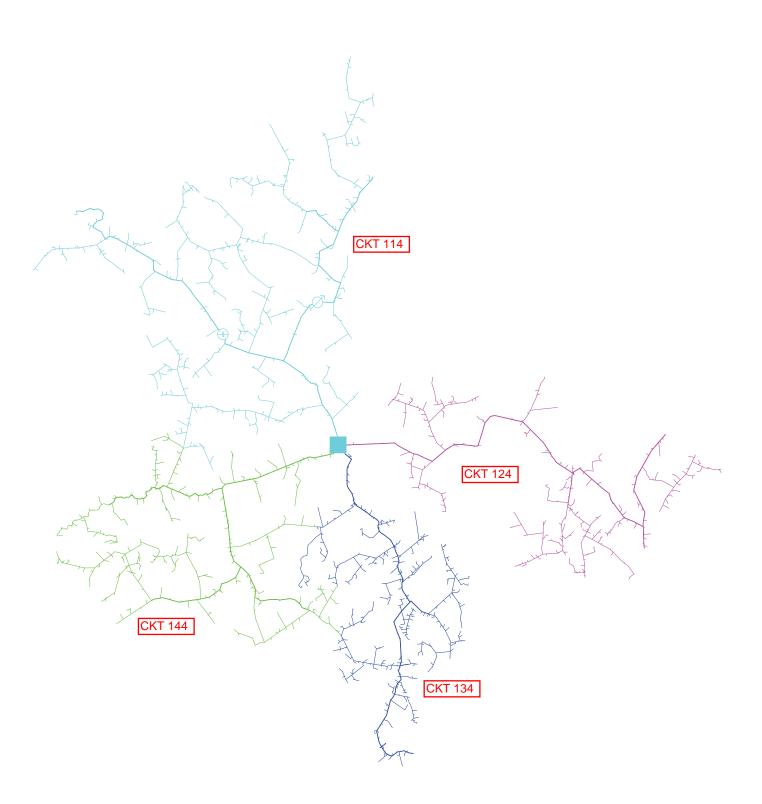

BGE CIRCUITS Page 22

SUB: CLAY LICK CKT: 124

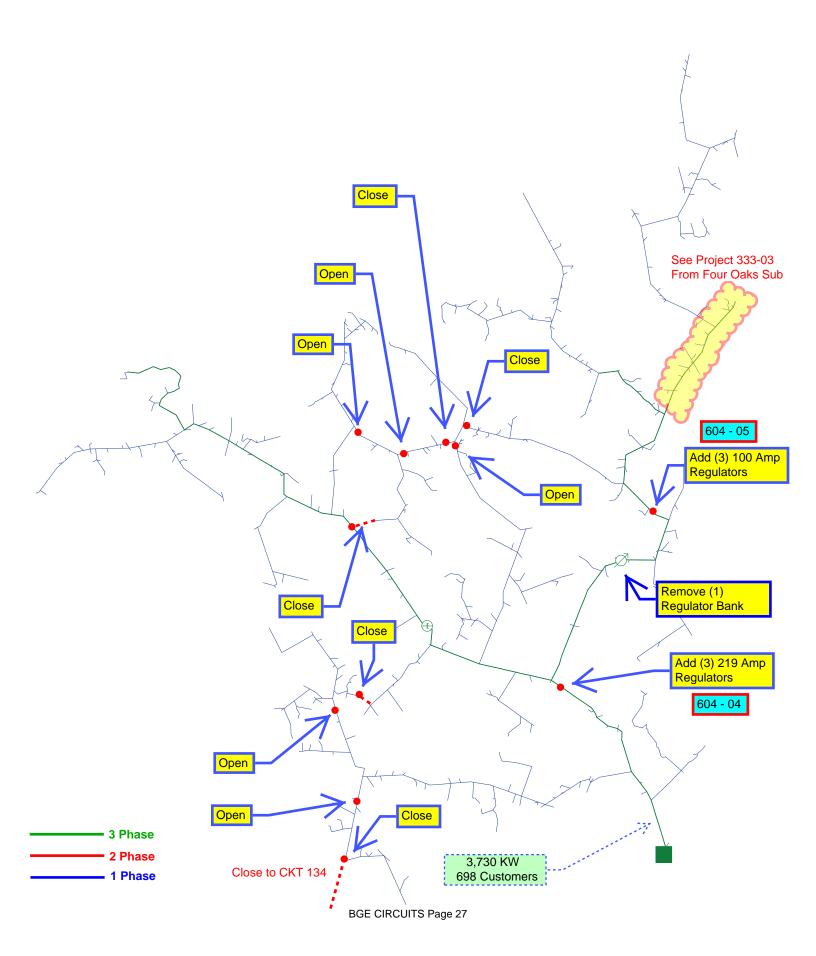


BGE CIRCUITS Page 23

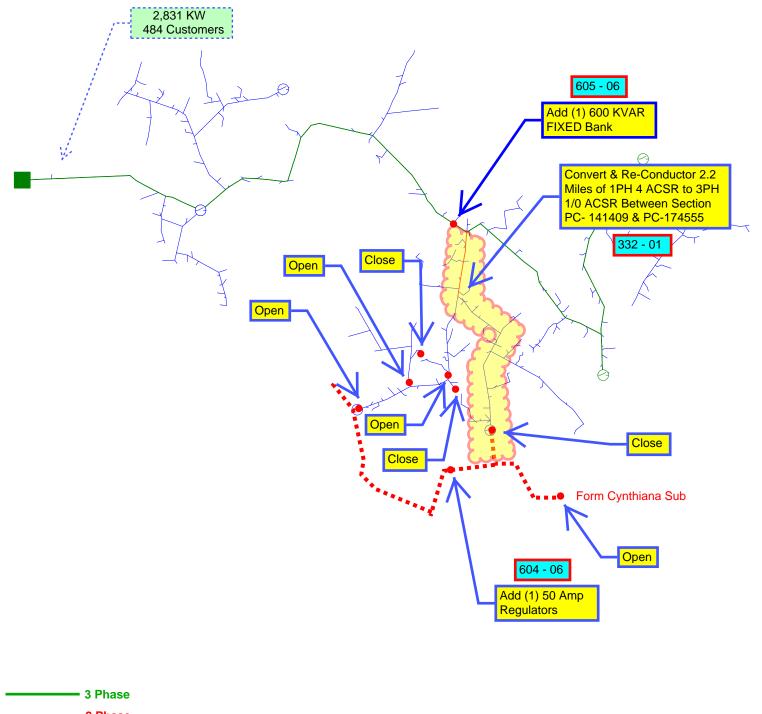
SUB: CLAY LICK CKT: 134



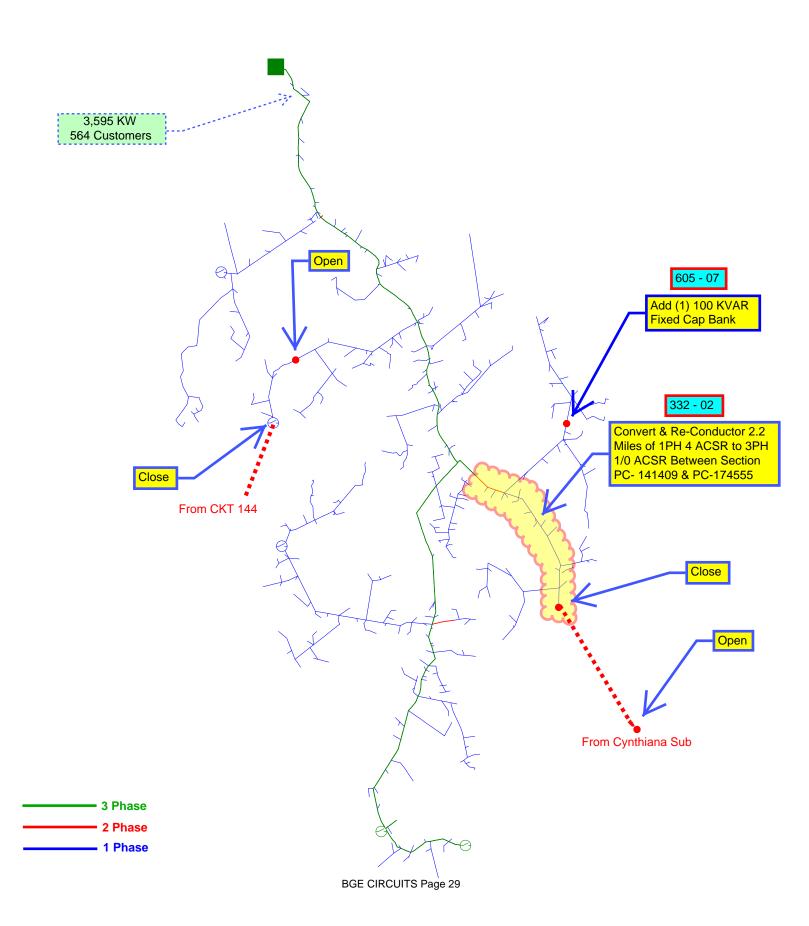
SUB: CLAY LICK CKT: 144

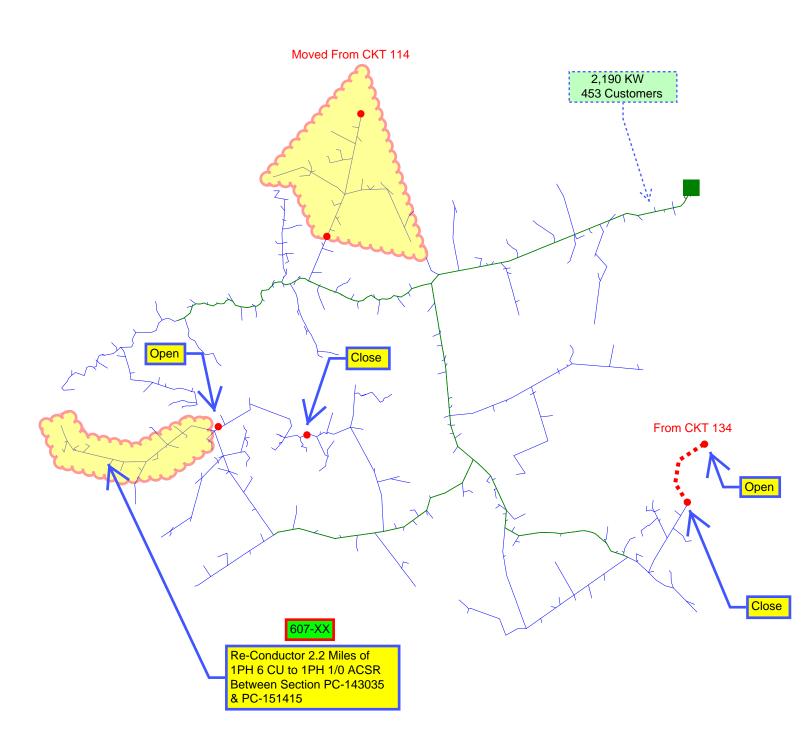


BGE CIRCUITS Page 25

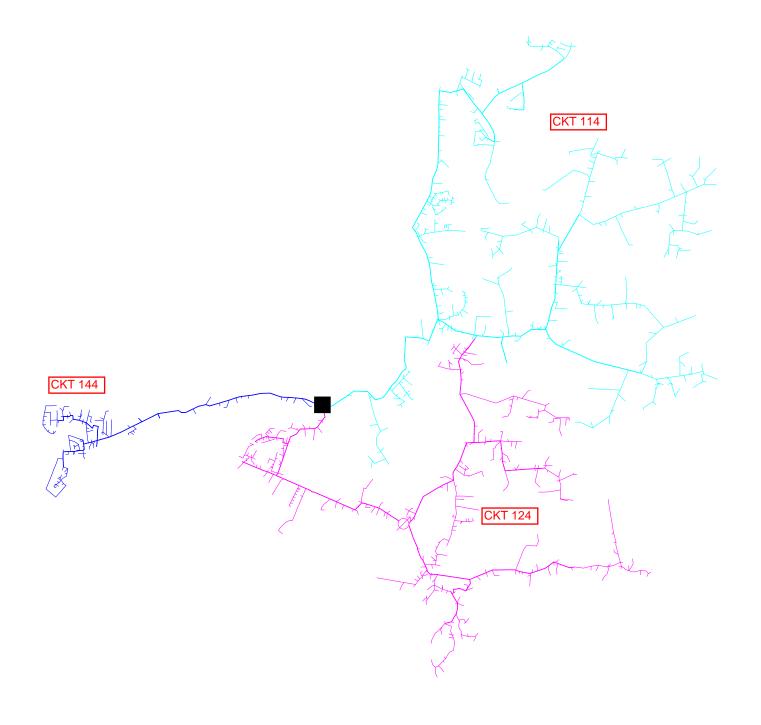

SUB: COLEMANSVILLE

SUB: COLEMANSVILLE CKT: 104

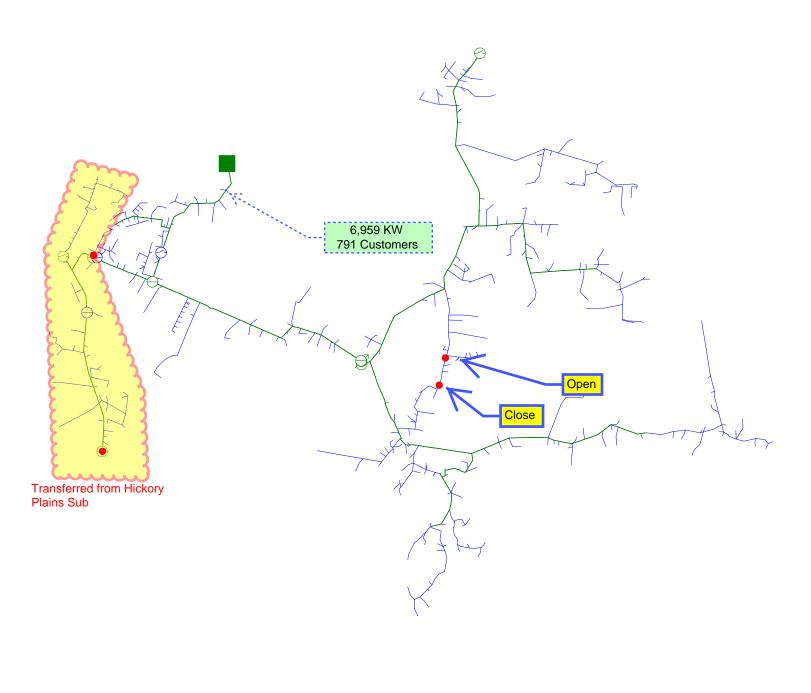

SUB: COLEMANSVILLE CKT: 114


2 Phase

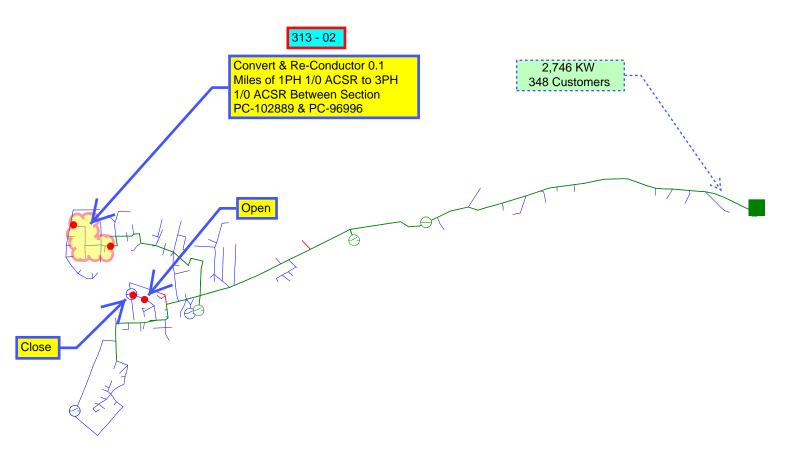
1 Phase


SUB: COLEMANSVILLE CKT: 124

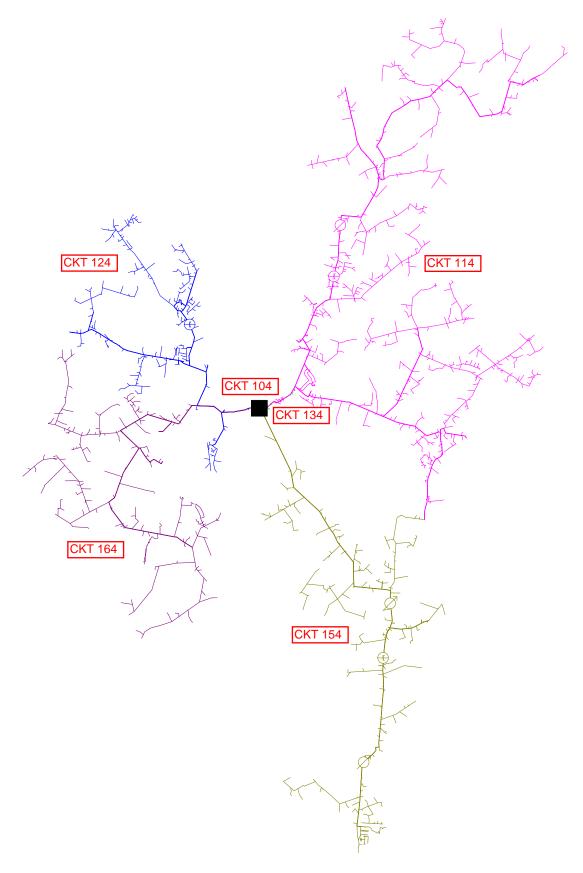
SUB: COLEMANSVILLE CKT: 134


SUB: CROOKSVILLE

SUB: CROOKSVILLE CKT: 114

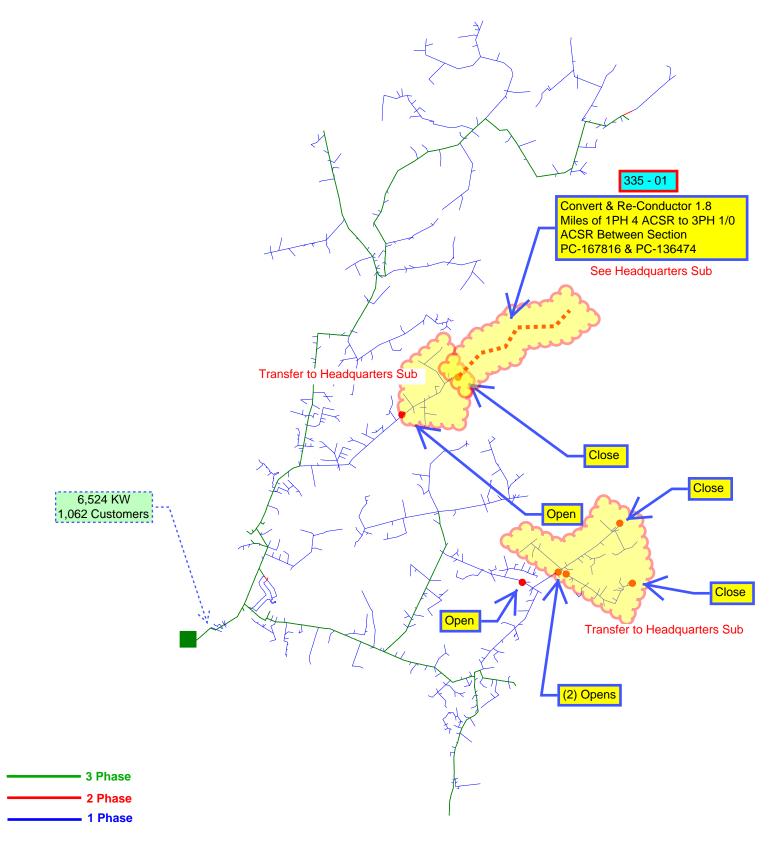


SUB: CROOKSVILLE CKT: 124

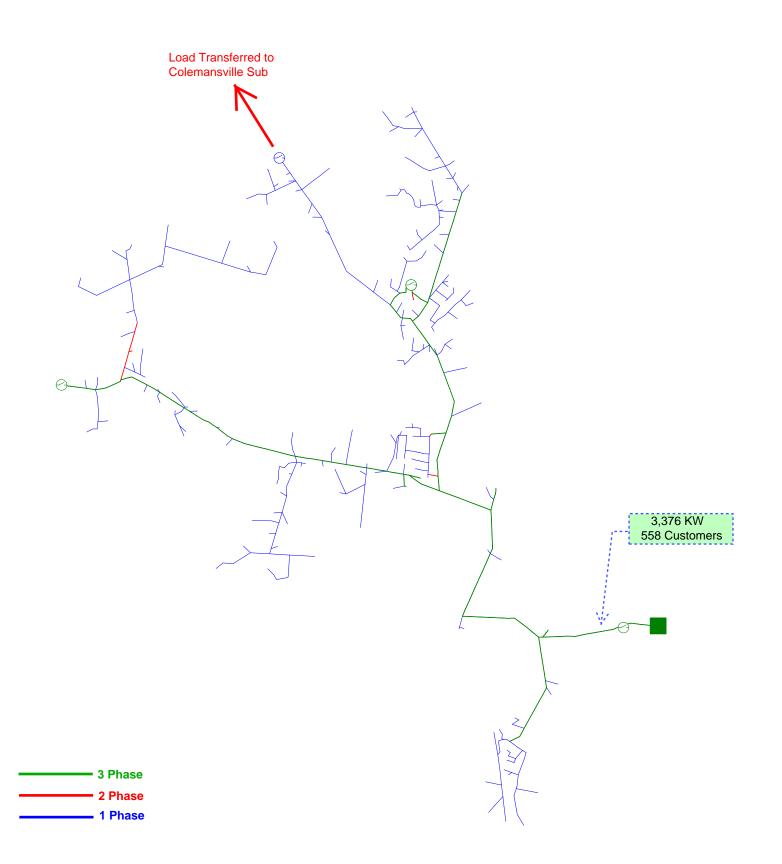


SUB: CROOKSVILLE CKT: 144

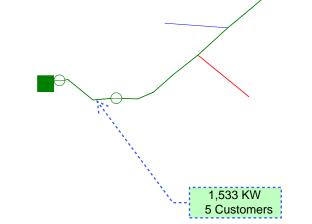
SUB: CYNTHIANA



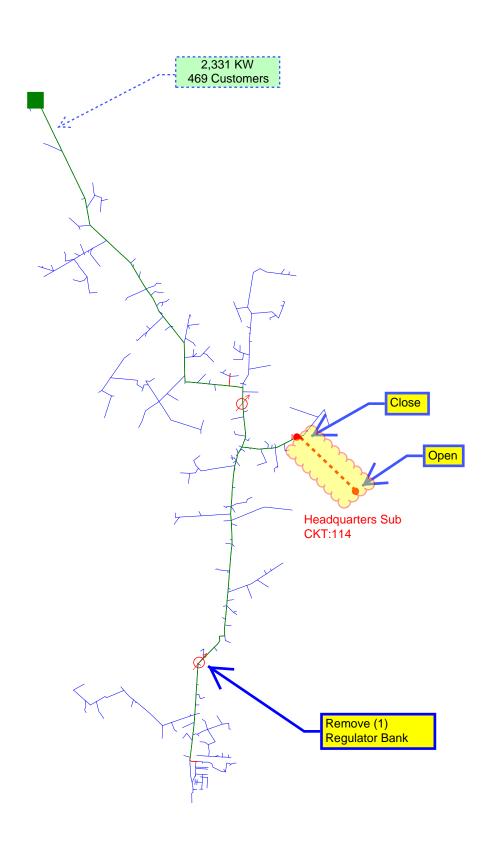
SUB: CYNTHIANA CKT: 104

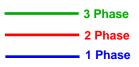


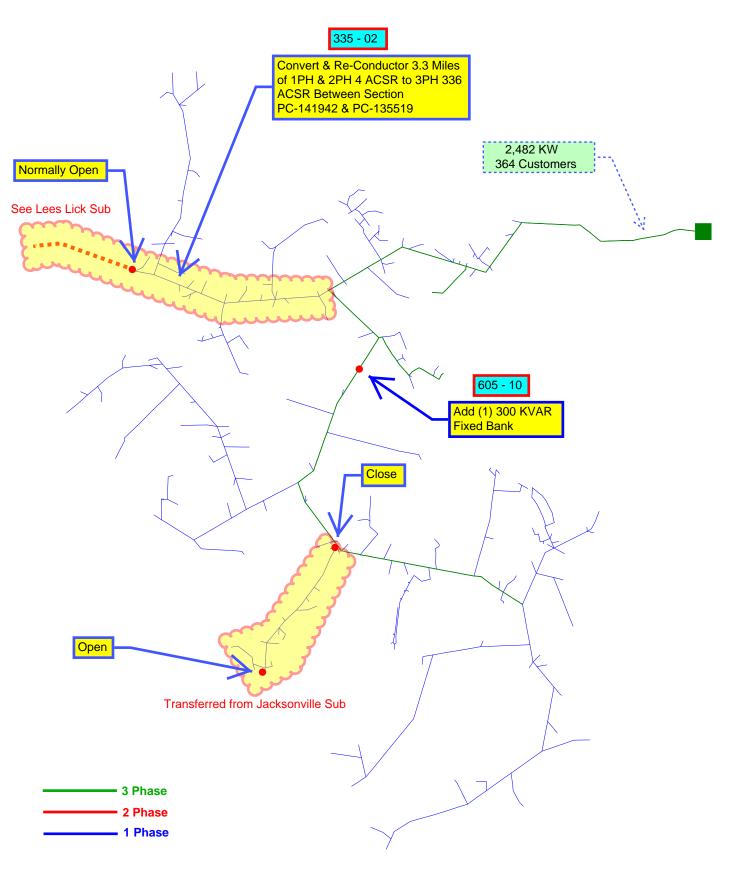
SUB: CYNTHIANA CKT: 114

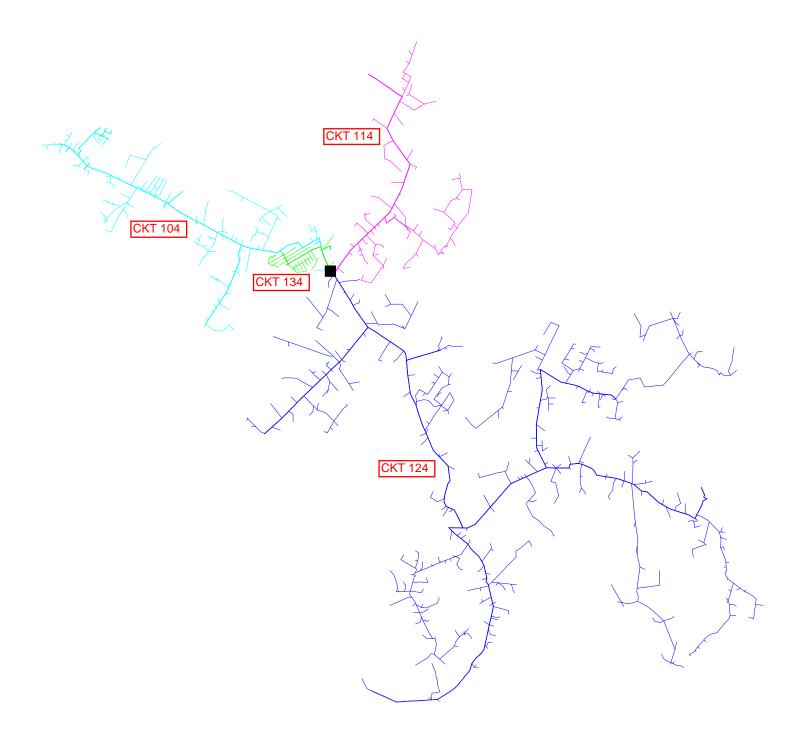


SUB: CYNTHIANA CKT: 124


SUB: CYNTHIANA CKT: 134

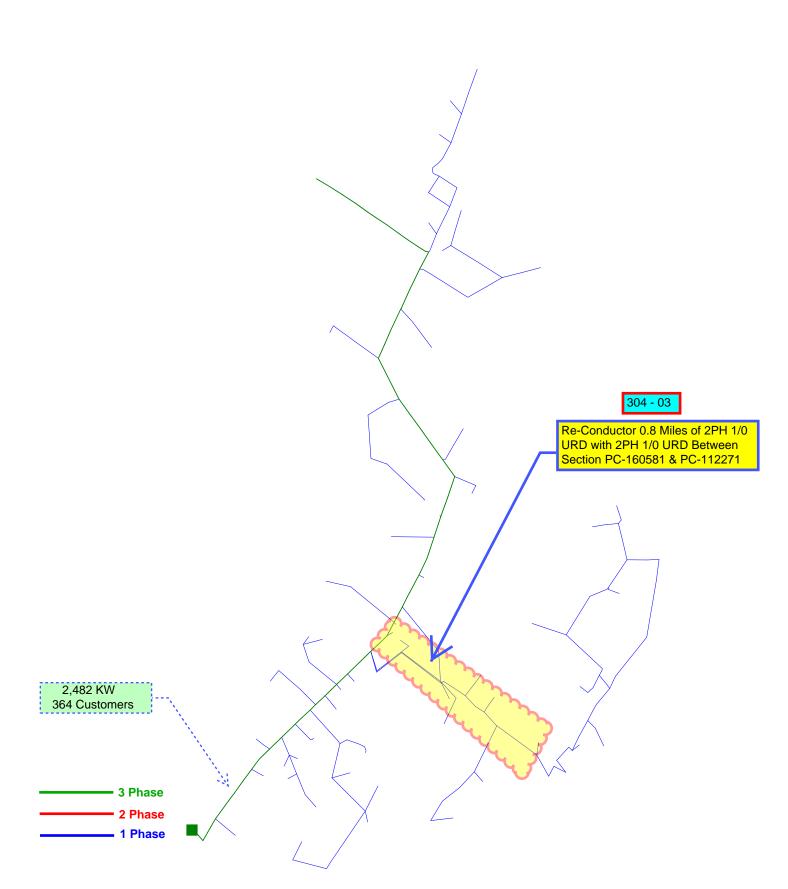



SUB: CYNTHIANA CKT: 154

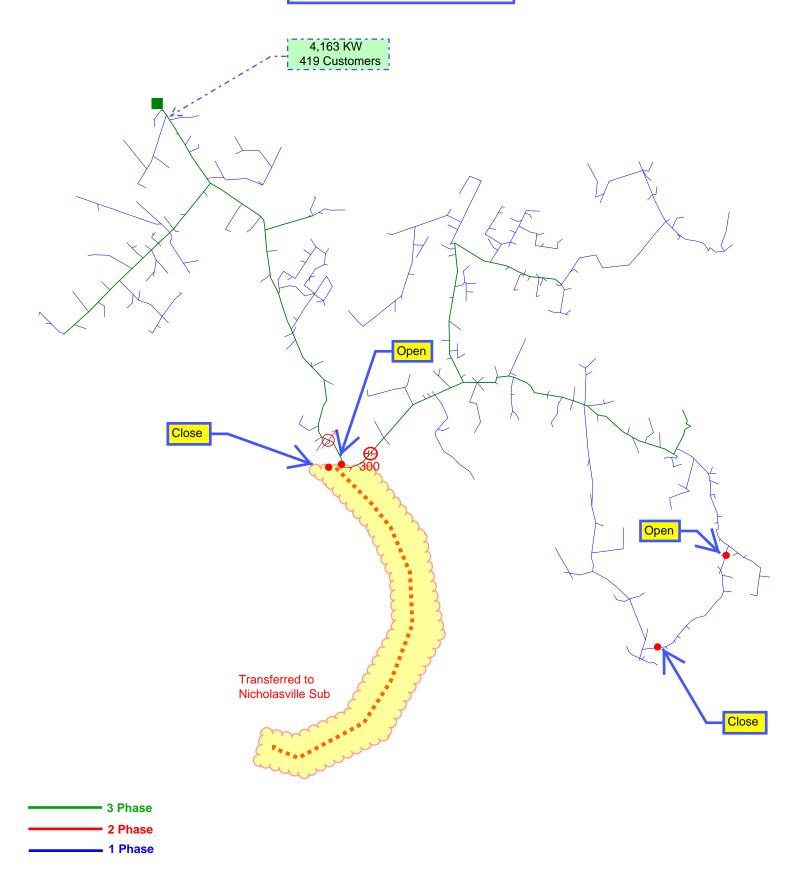


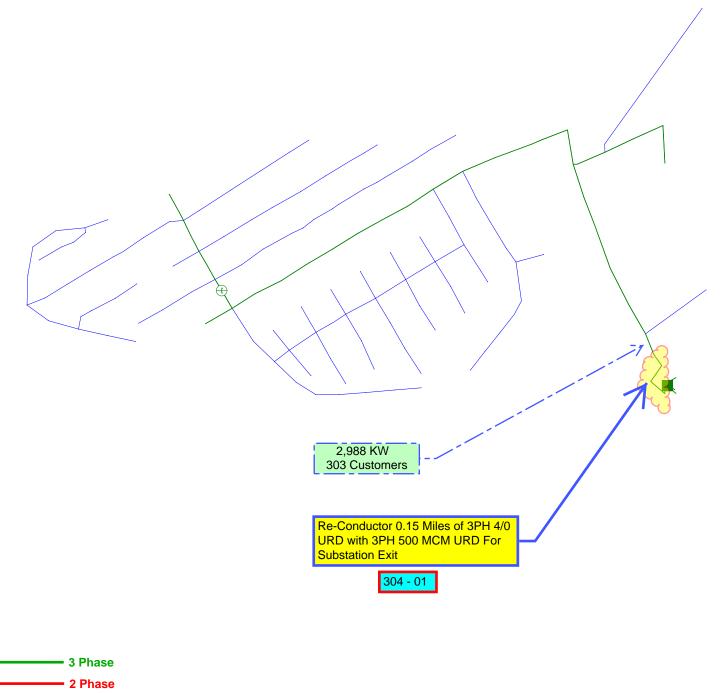
SUB: CYNTHIANA CKT: 164

SUB: DAVIS

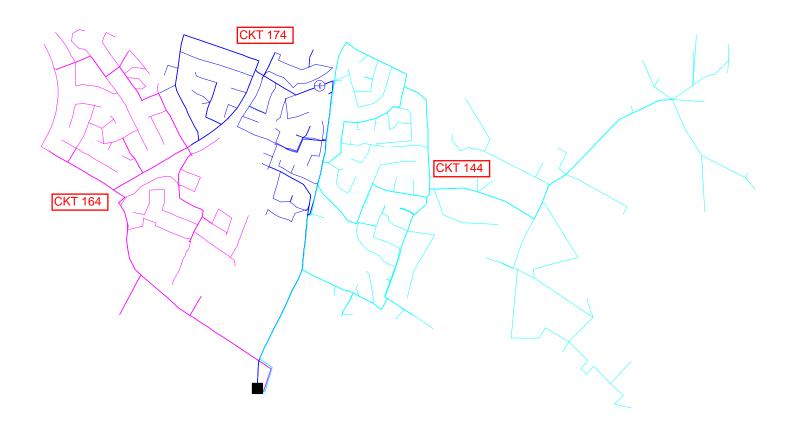


SUB: DAVIS CKT: 104


No Projects Necessary


3 Phase 2 Phase 1 Phase SUB: DAVIS CKT: 114

SUB: DAVIS CKT: 124



SUB: DAVIS CKT: 134

_____ 1 Phase

SUB: FAYETTE #1

SUB: FAYETTE #1 CKT: 144

335 - 01*

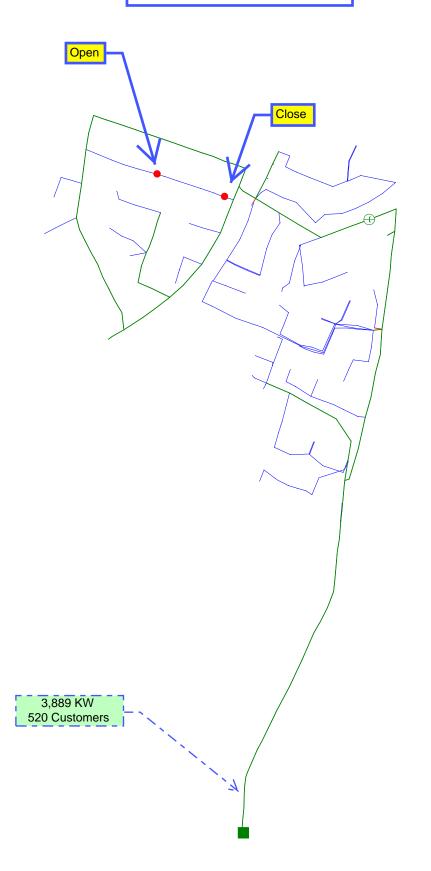
Convert & Re-Conductor 0.7 Miles of 1PH 4 ACSR (and some 1/0 URD) to 3PH 1/0 ACSR Between Section PC-157969 & PC-114711

3 Phase 2 Phase

_____ 1 Phase

5,654 KW 676 Customers

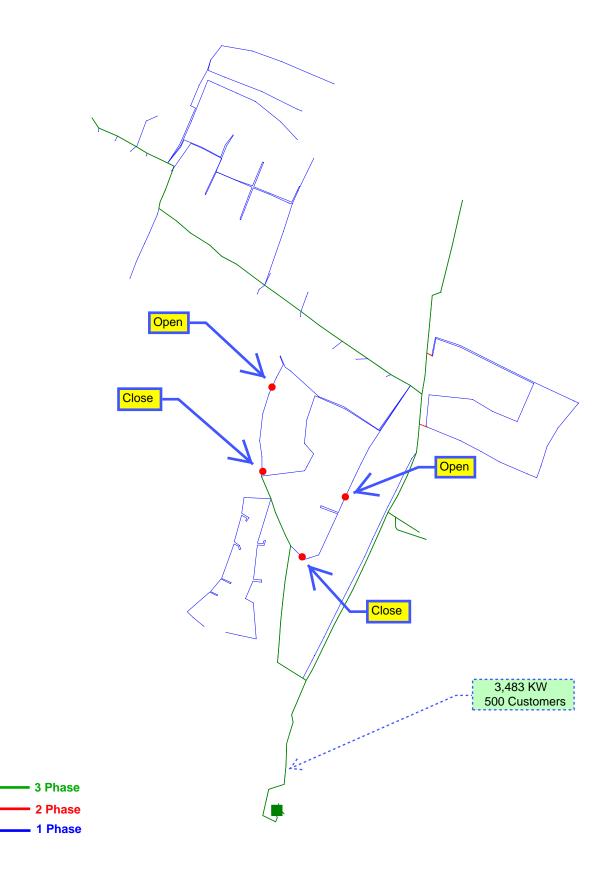
> Re-Conductor (3) 0.15 Miles 3PH 350 MCM URD to 500 MCM URD Sub Exit

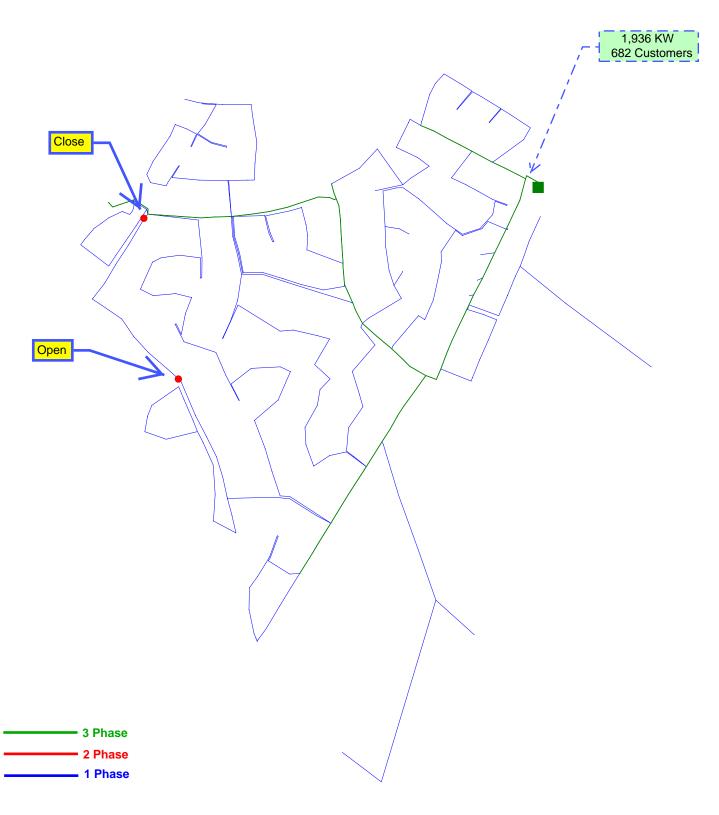

> > 305 - 02

SUB: FAYETTE #1 CKT: 164



SUB: FAYETTE #1 CKT: 174



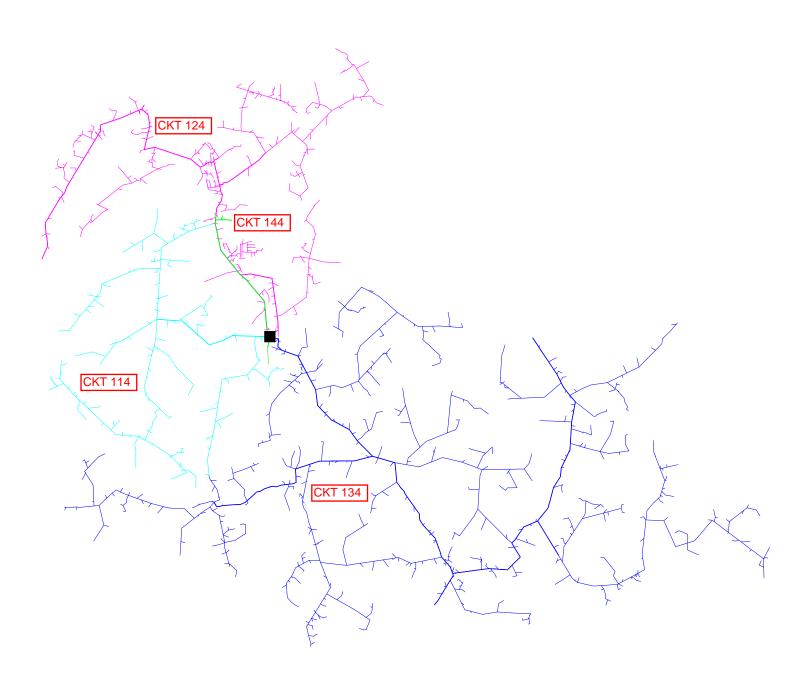

SUB: FAYETTE #2

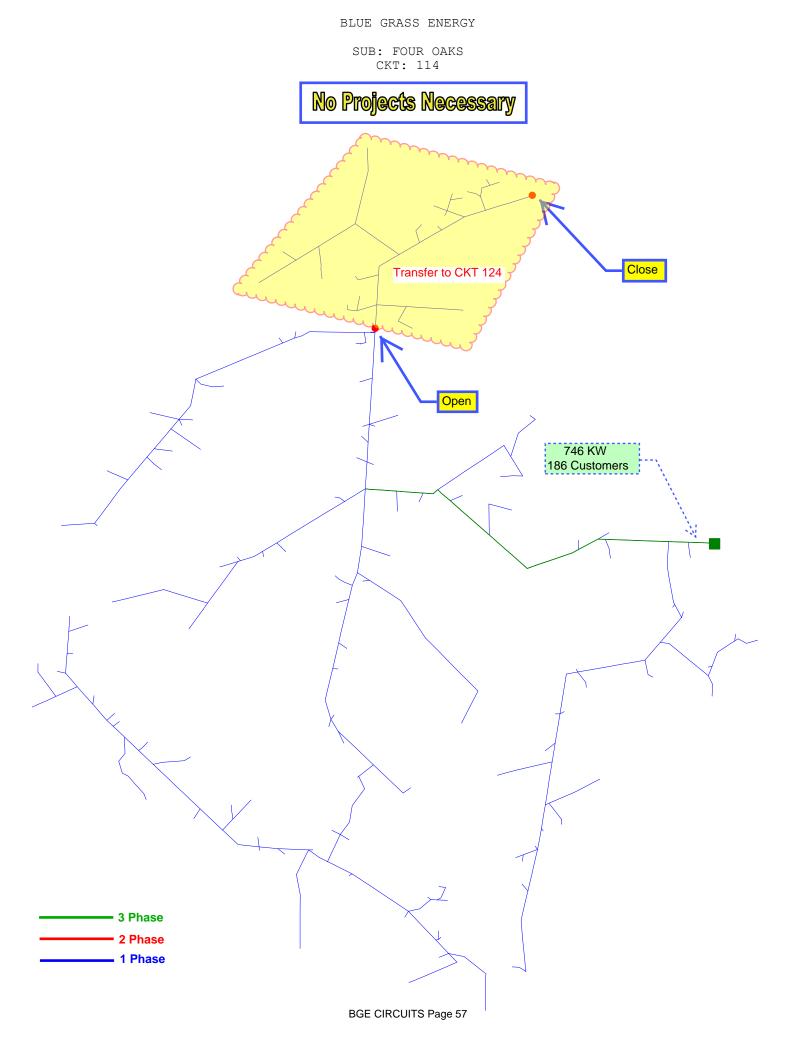
SUB: FAYETTE #2 CKT: 104

SUB: FAYETTE #2 CKT: 114

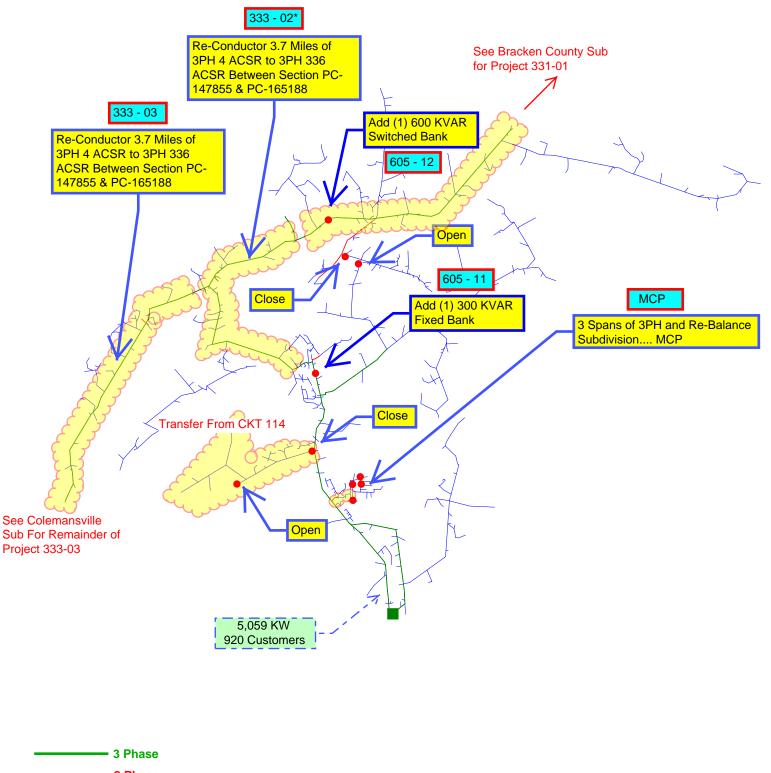
SUB: FAYETTE #2 CKT: 124

No Projects Necessary

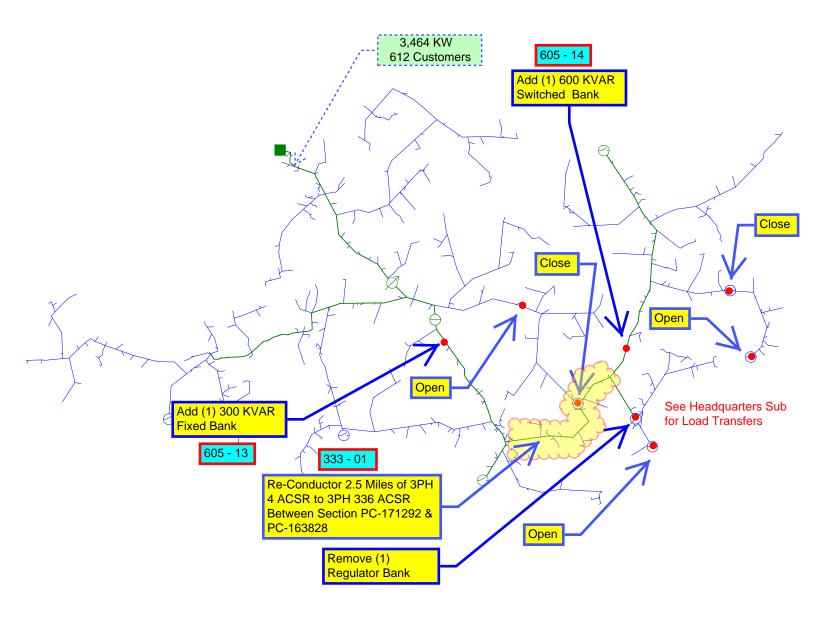

4,181 KW 1,102 Customers

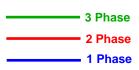

SUB: FAYETTE #2 CKT: 134

No Projects Necessary



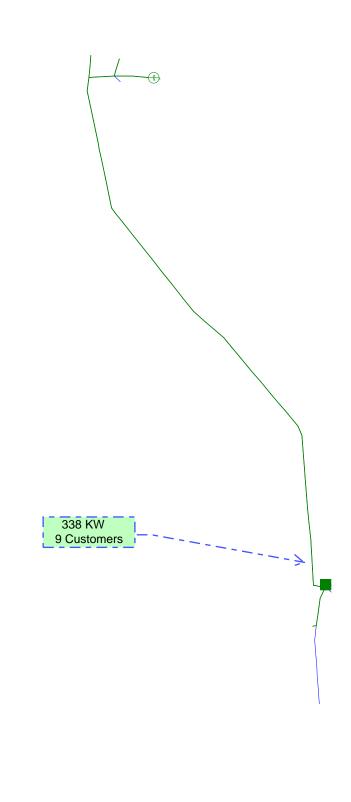
3 Phase 2 Phase 1 Phase SUB: FOUR OAKS


SUB: FOUR OAKS CKT: 124

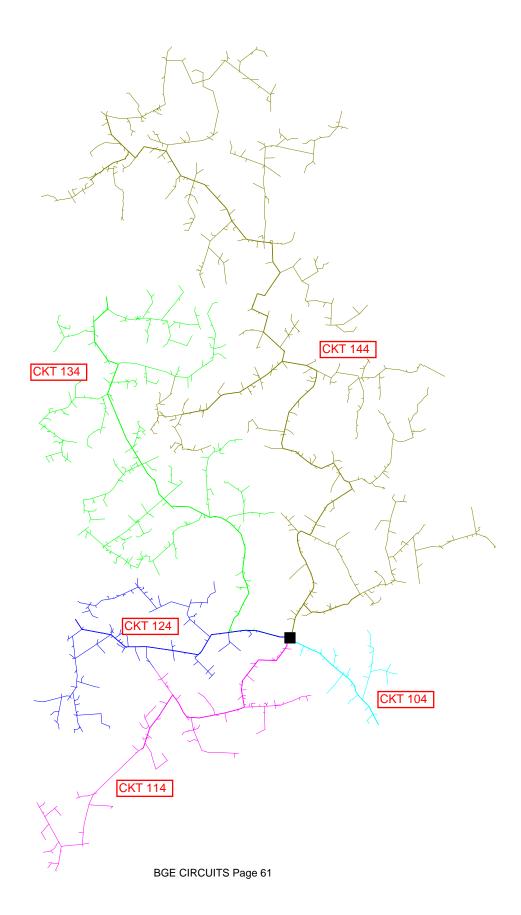


2 Phase

1 Phase


SUB: FOUR OAKS CKT: 134

SUB: FOUR OAKS CKT: 144

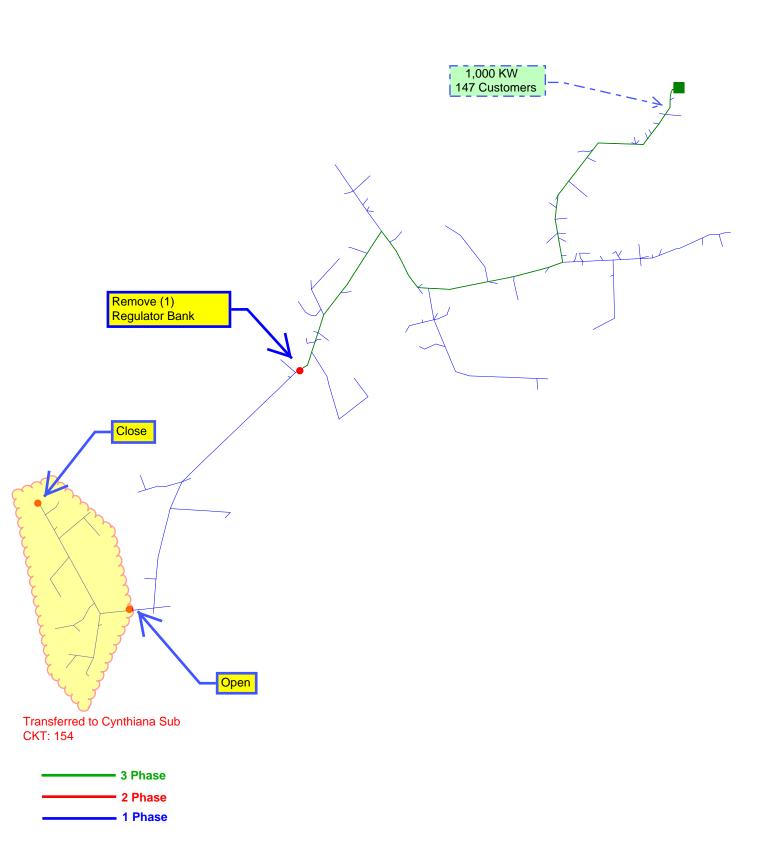

No Projects Necessary

BGE CIRCUITS Page 60

3 Phase
2 Phase
1 Phase

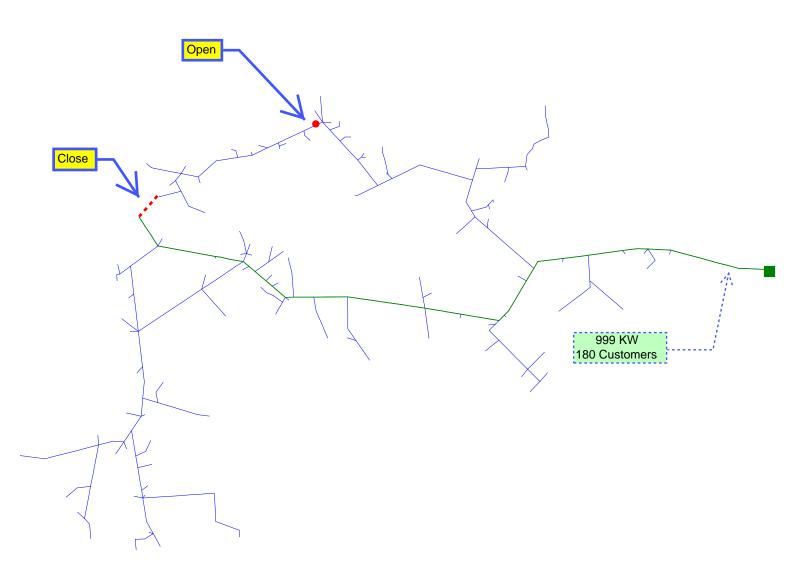
SUB: HEADQUARTERS

SUB: HEADQUARTERS CKT: 104

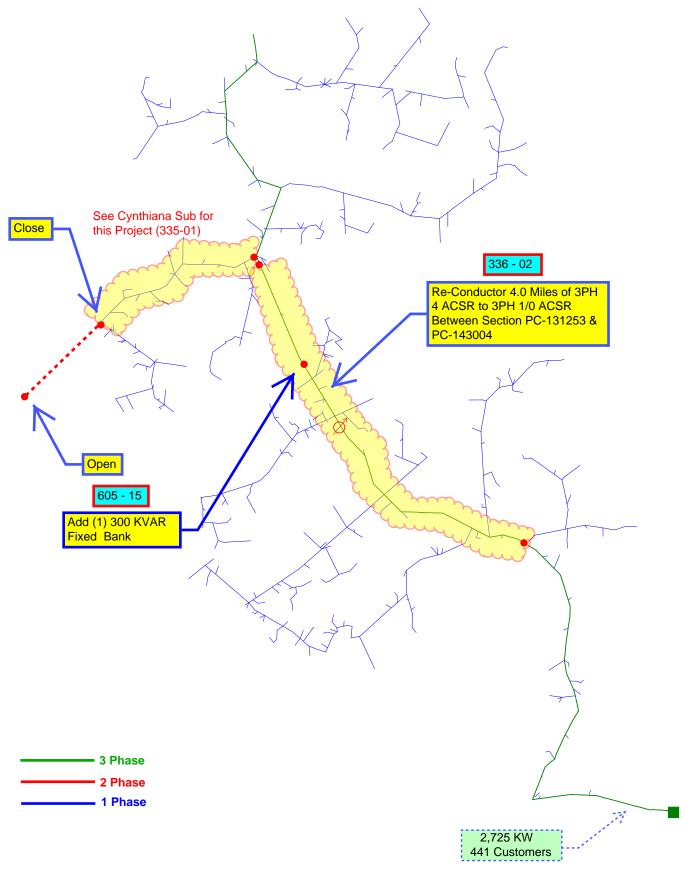

No Projects Necessary

428 KW 75 Customers

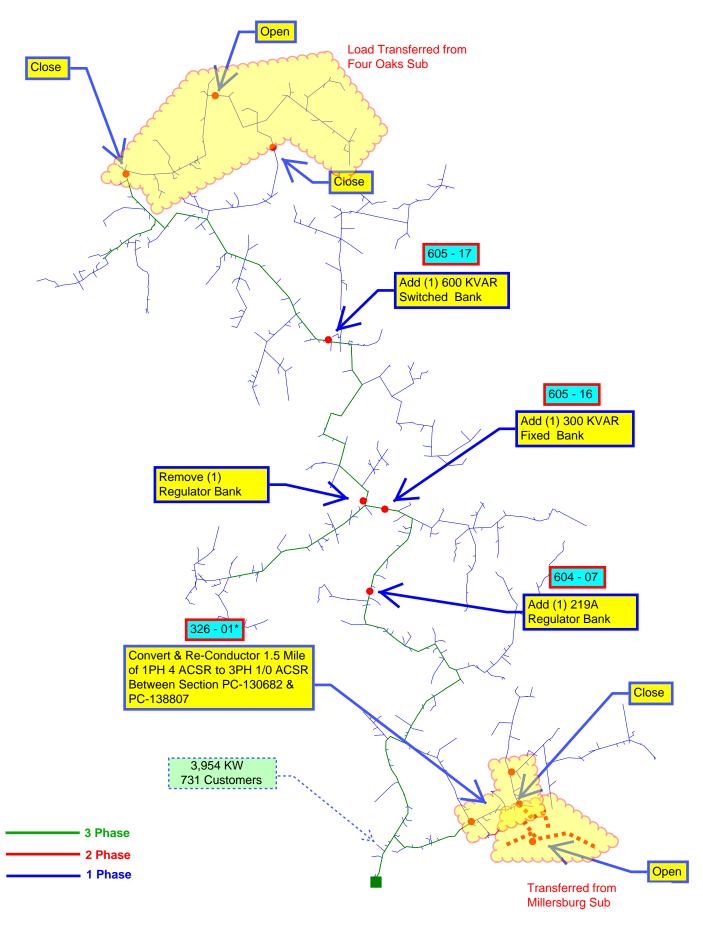
3 Phase 2 Phase 1 Phase

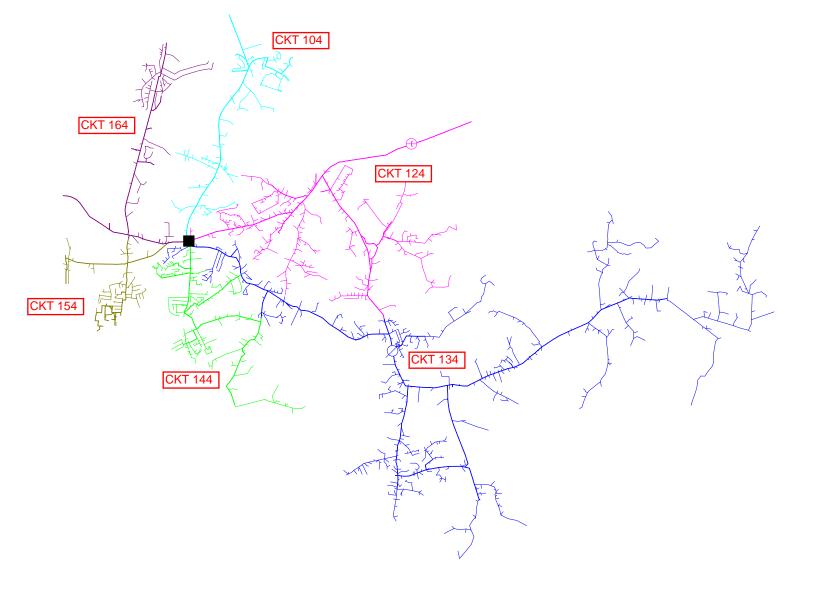

SUB: HEADQUARTERS CKT: 114


No Projects Necessary


SUB: HEADQUARTERS CKT: 124

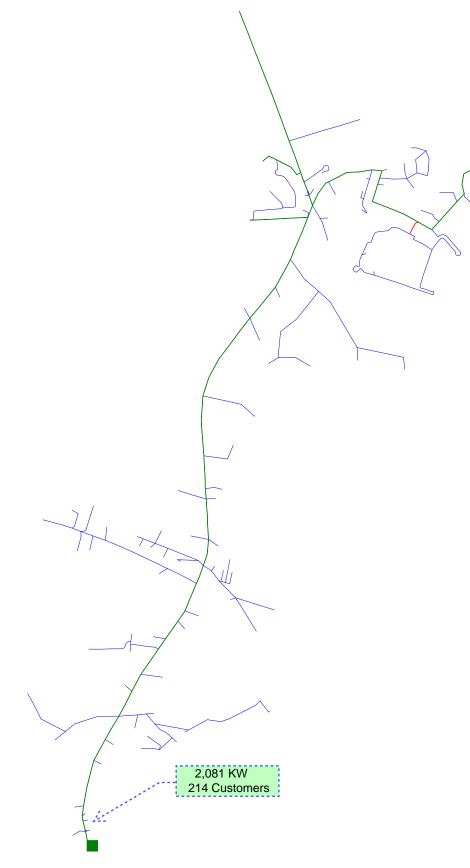
No Projects Necessary




SUB: HEADQUARTERS CKT: 134

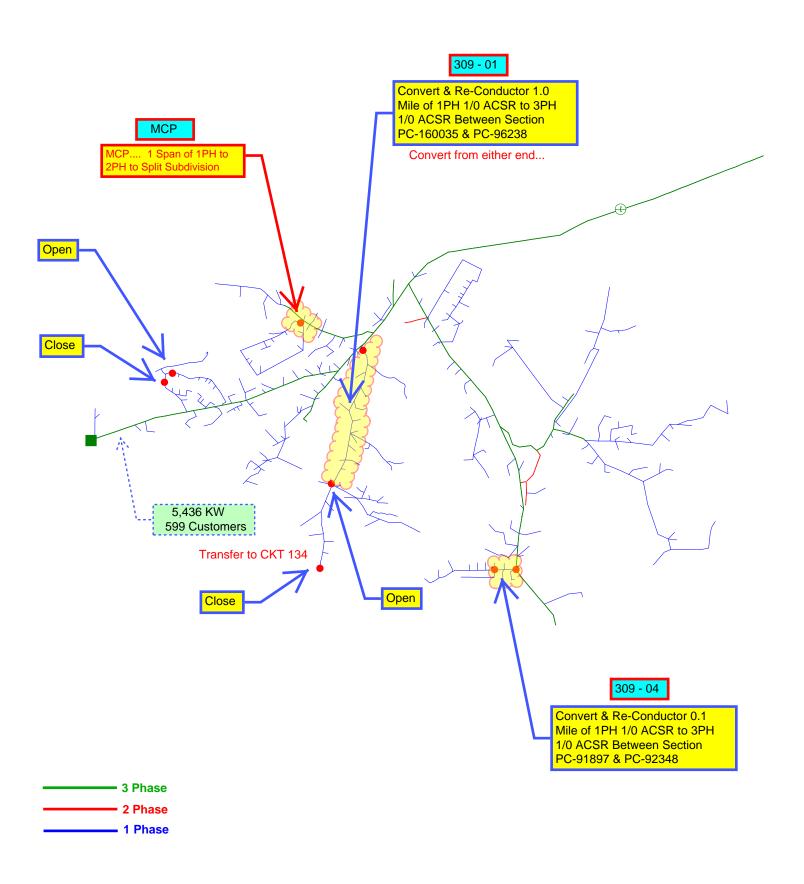
BGE CIRCUITS Page 65

SUB: HEADQUARTERS CKT: 144

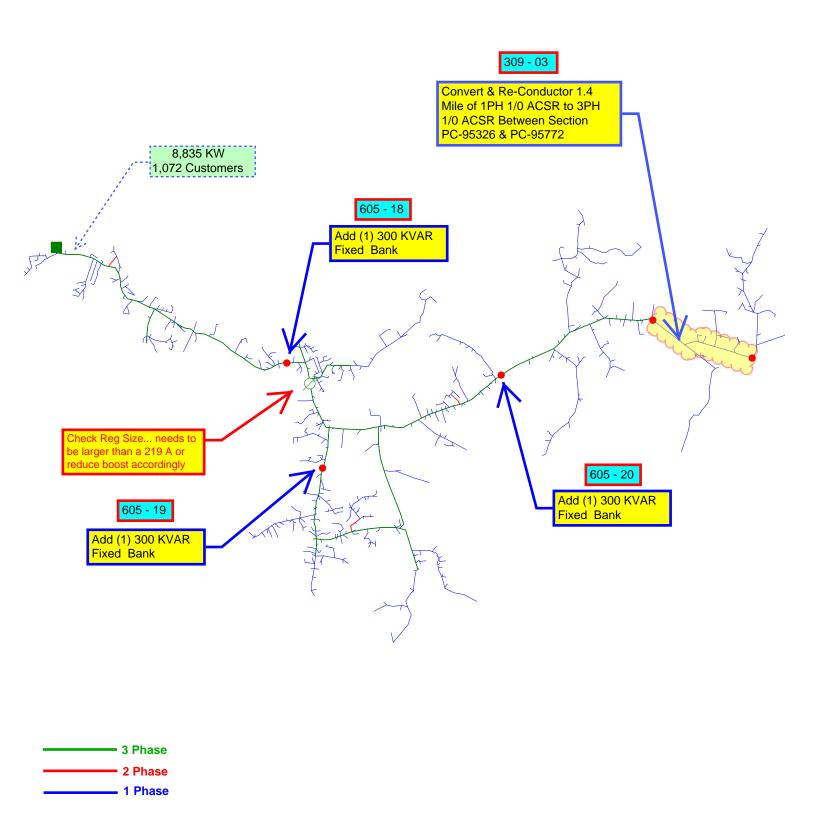

BGE CIRCUITS Page 67

SUB: HICKORY PQNØSU

BLUE GRASS ENERGY

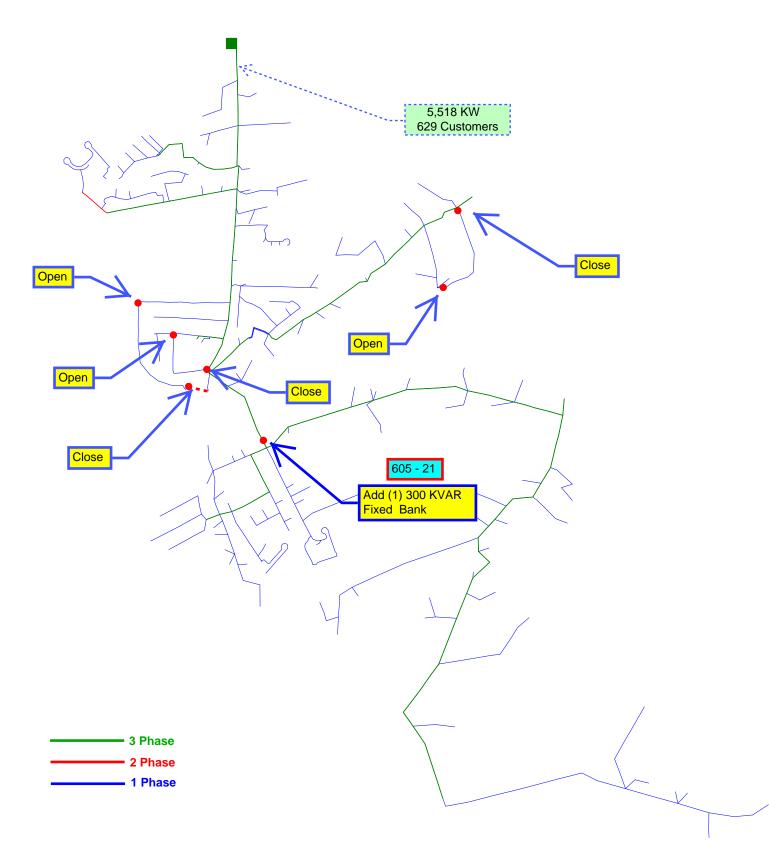

SUB: HICKORY PLAINS CKT: 104

No Projects Necessary

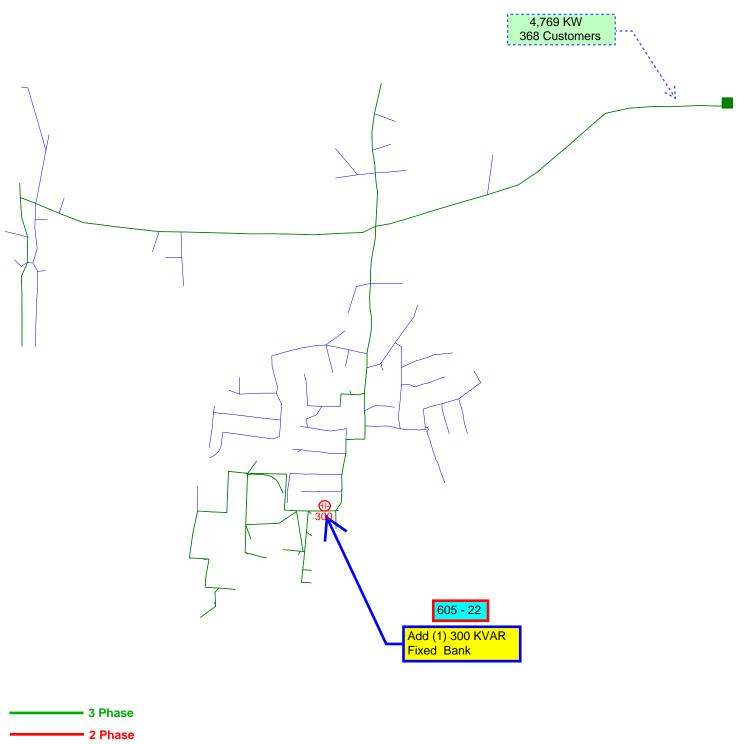


BGE CIRCUITS Page 68

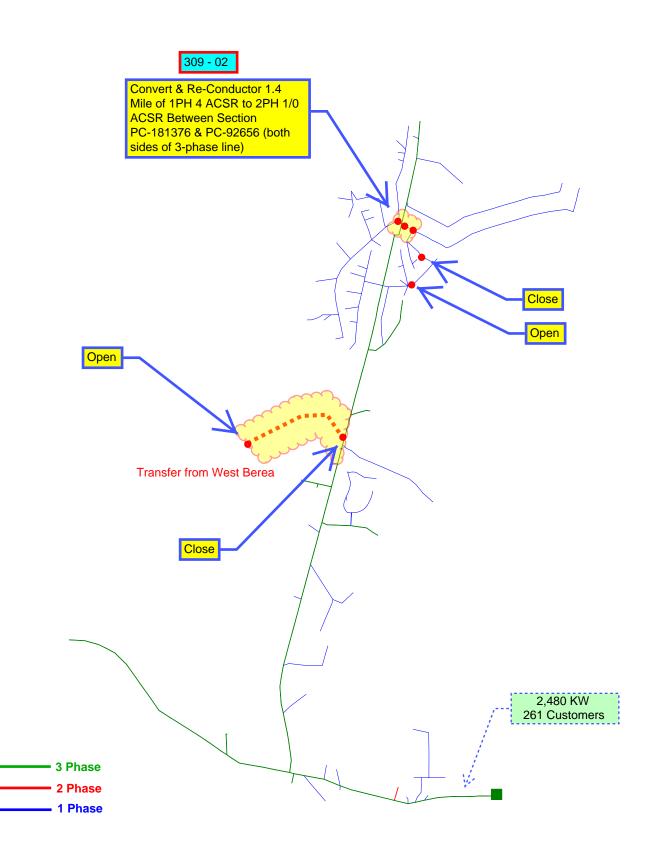
SUB: HICKORY PLAINS CKT: 1G4



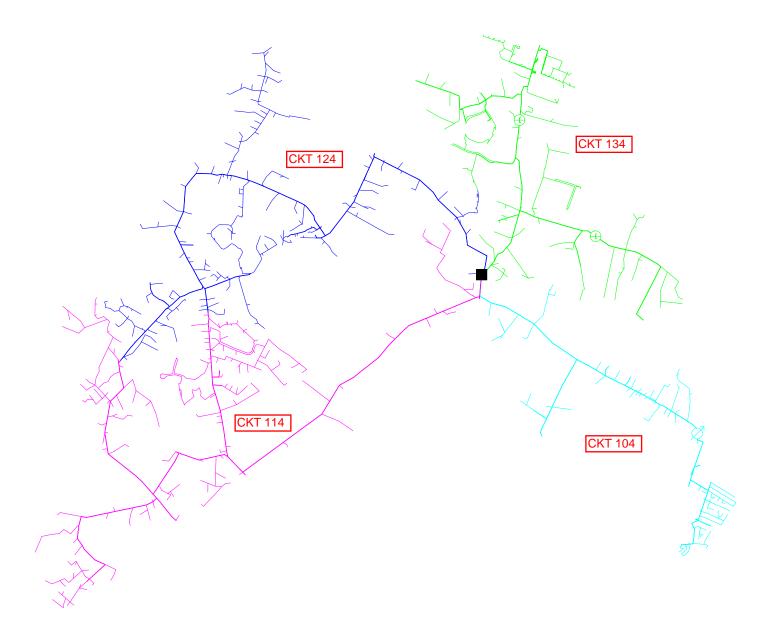
SUB: HICKORY PLAINS CKT: 134


SUB: HICKORY PLAINS CKT: 144

No Projects Necessary

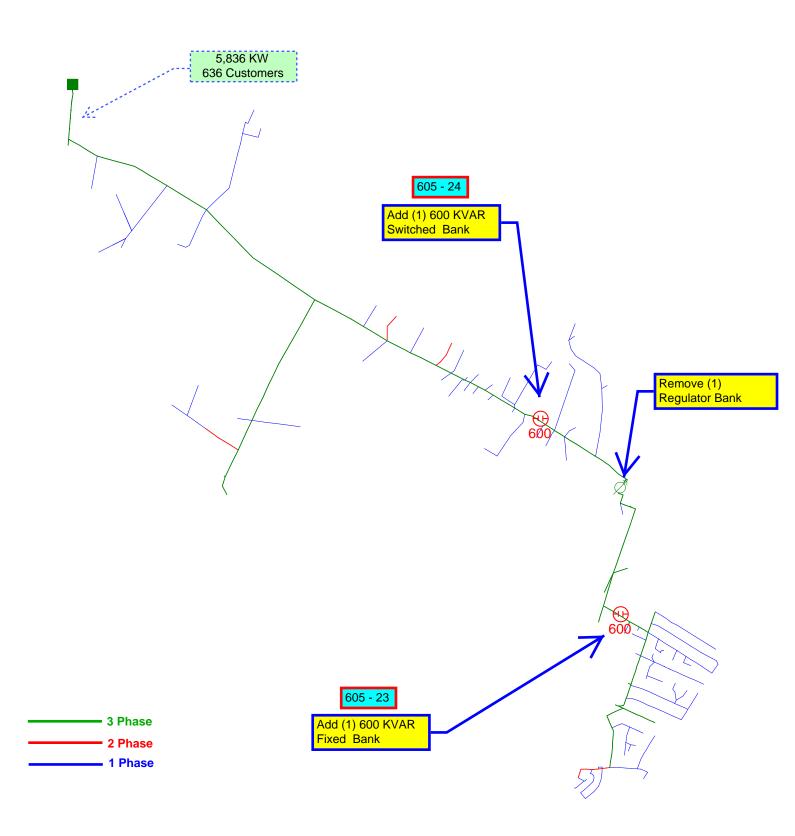

SUB: HICKORY PLAINS CKT: 154

No Projects Necessary

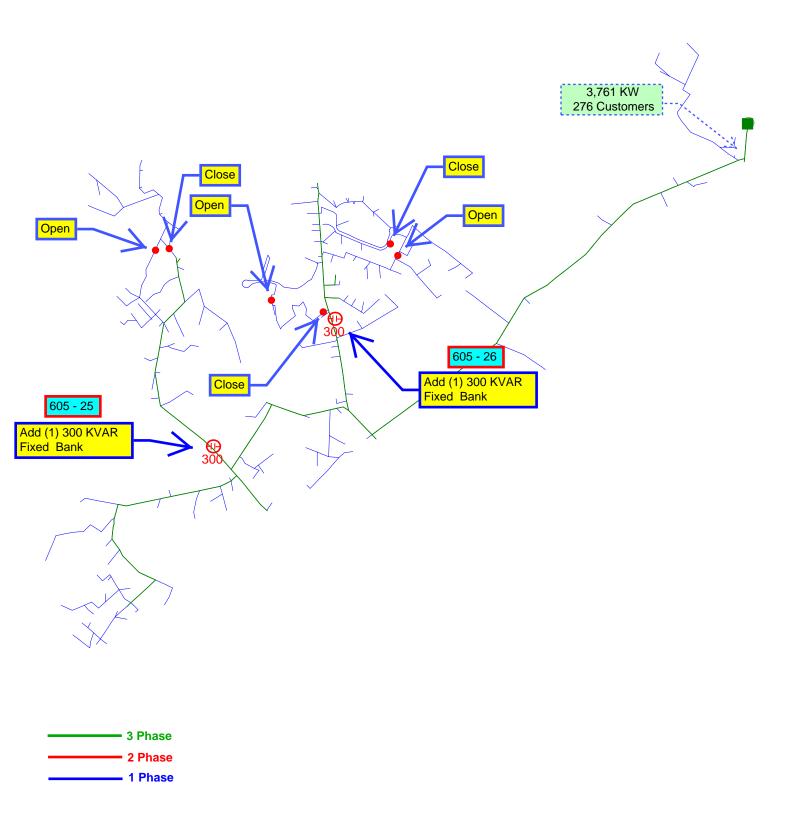


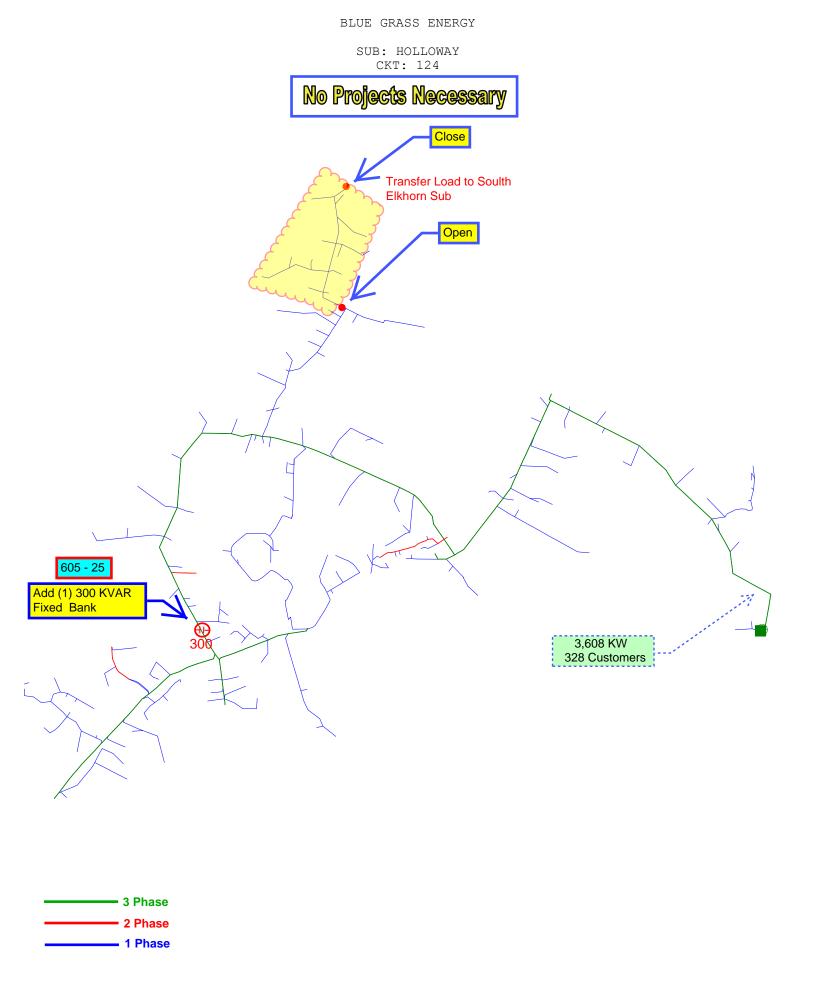
_____ 1 Phase

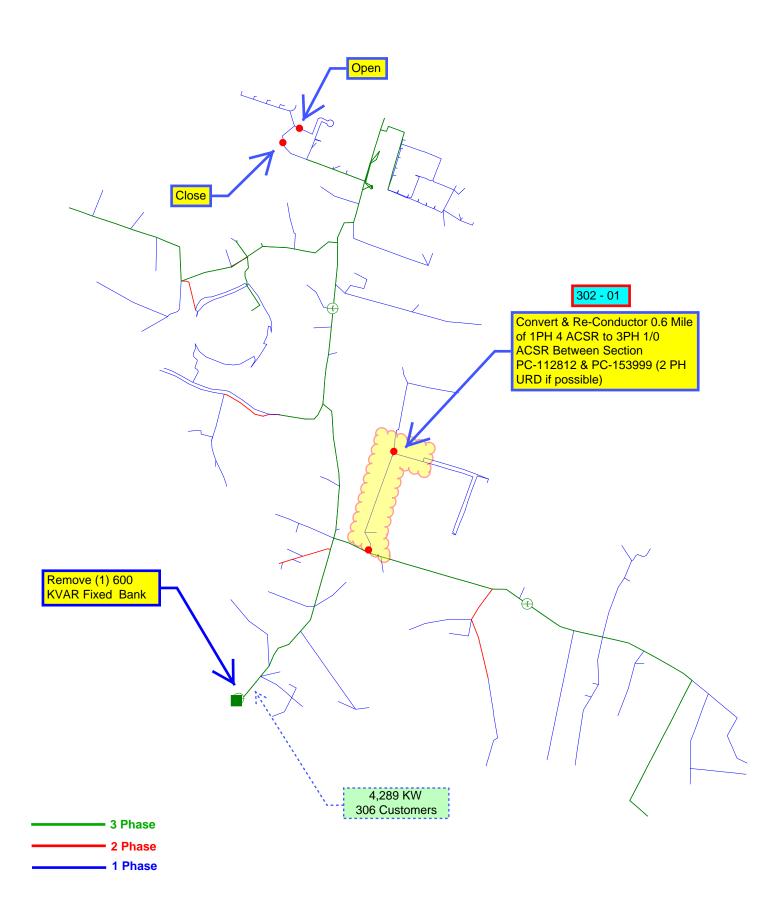
SUB: HICKORY PLAINS CKT: 164



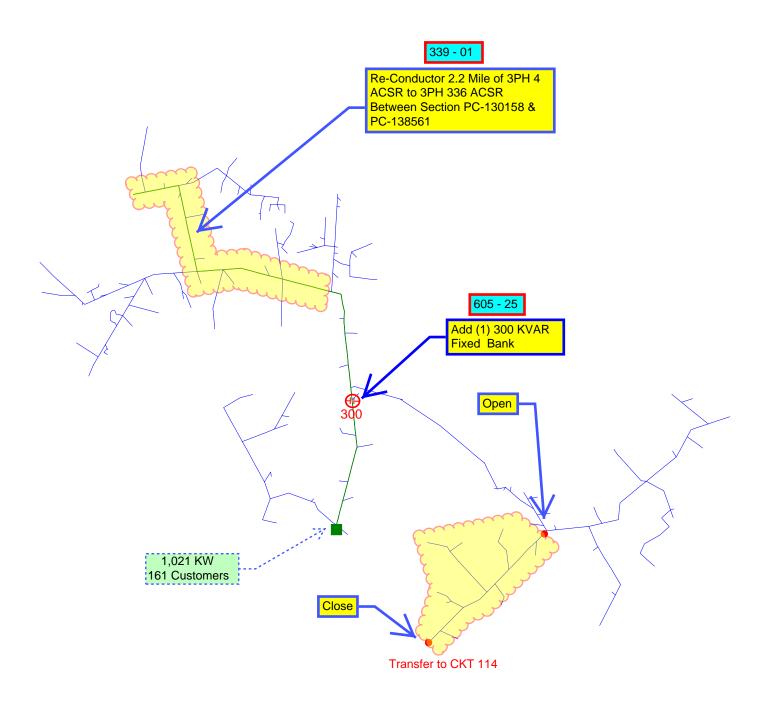
SUB: HOLLOWAY

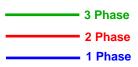

SUB: HOLLOWAY CKT: 104


No Projects Necessary

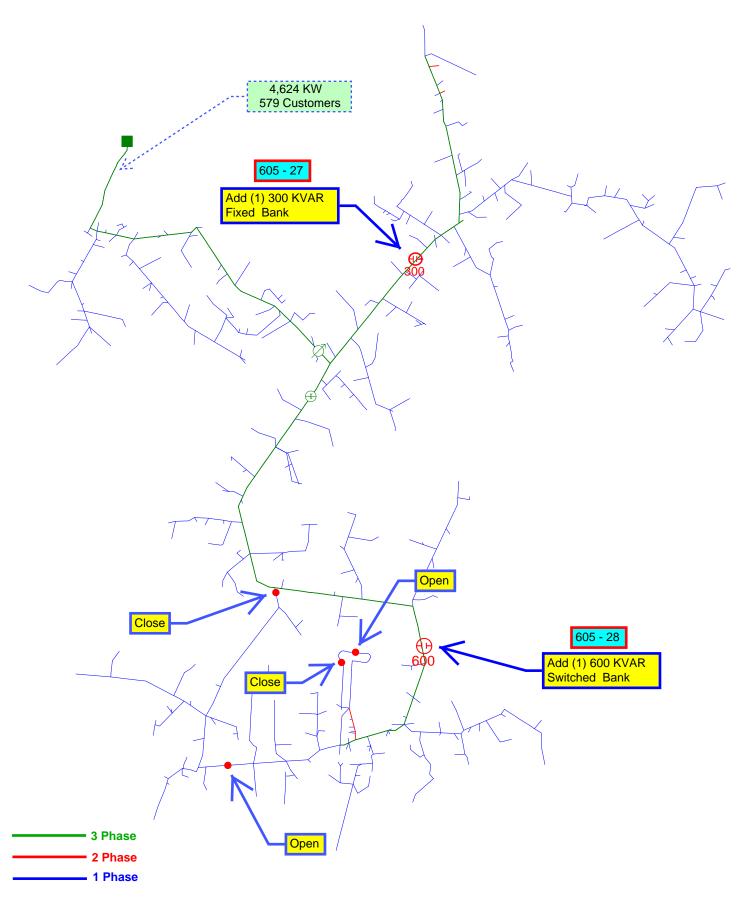

SUB: HOLLOWAY CKT: 114

No Projects Necessary

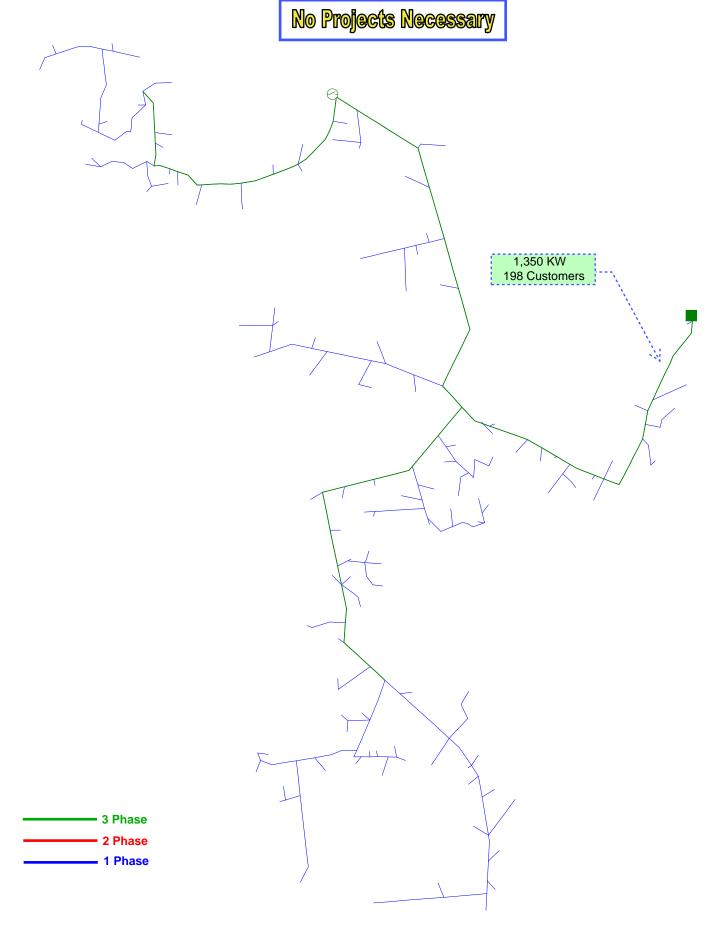

SUB: HOLLOWAY CKT: 134

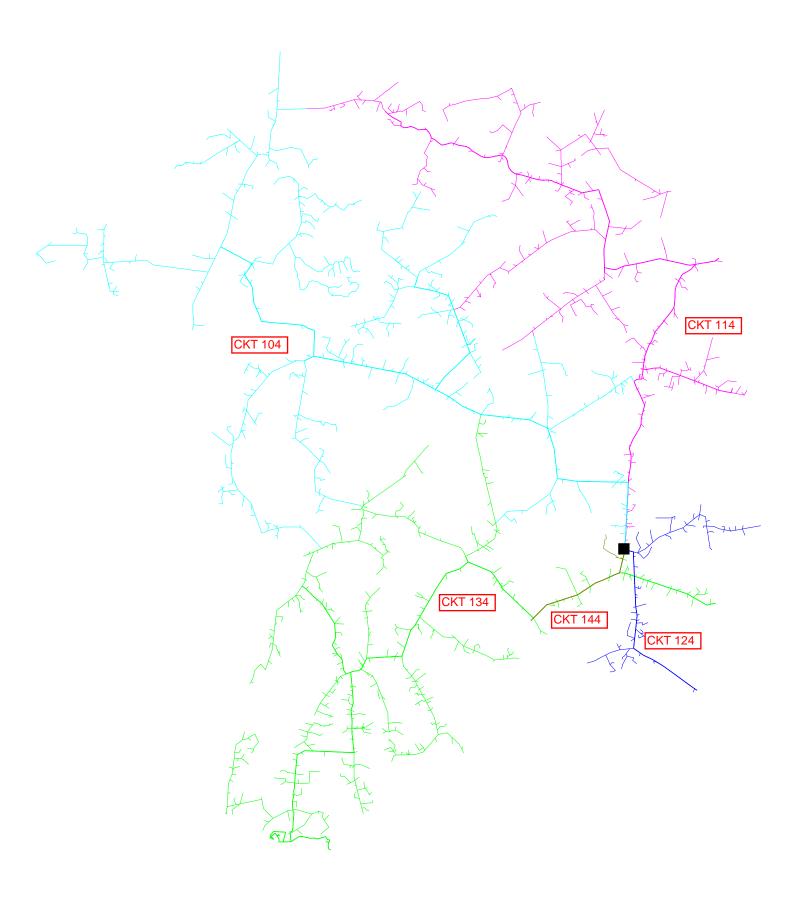


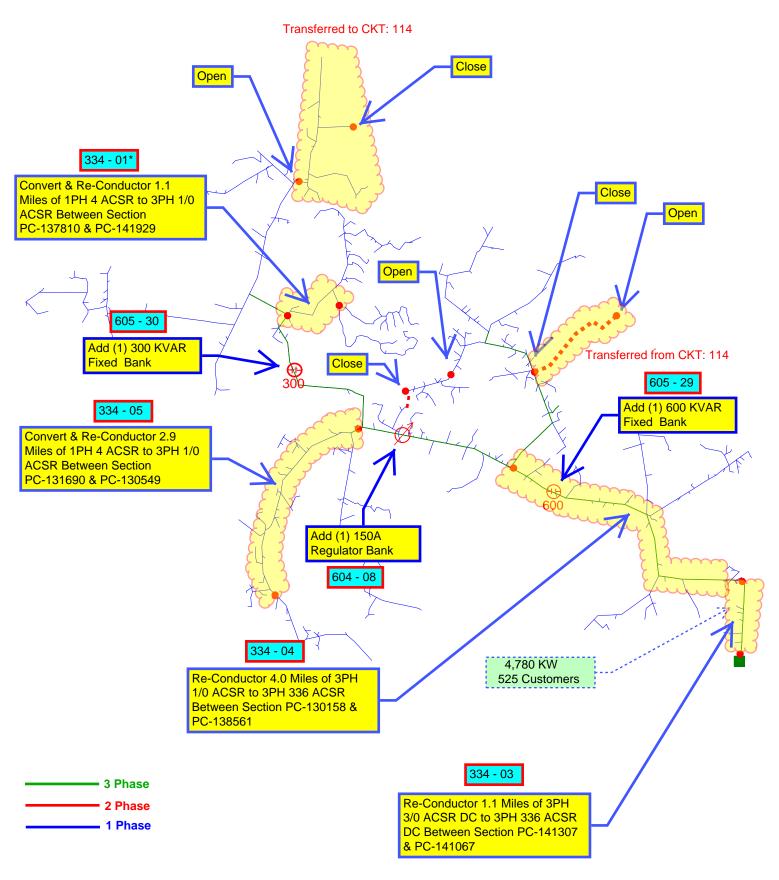
SUB: JACKSONVILLE


CKT 104 CKT 124 T CKT 114

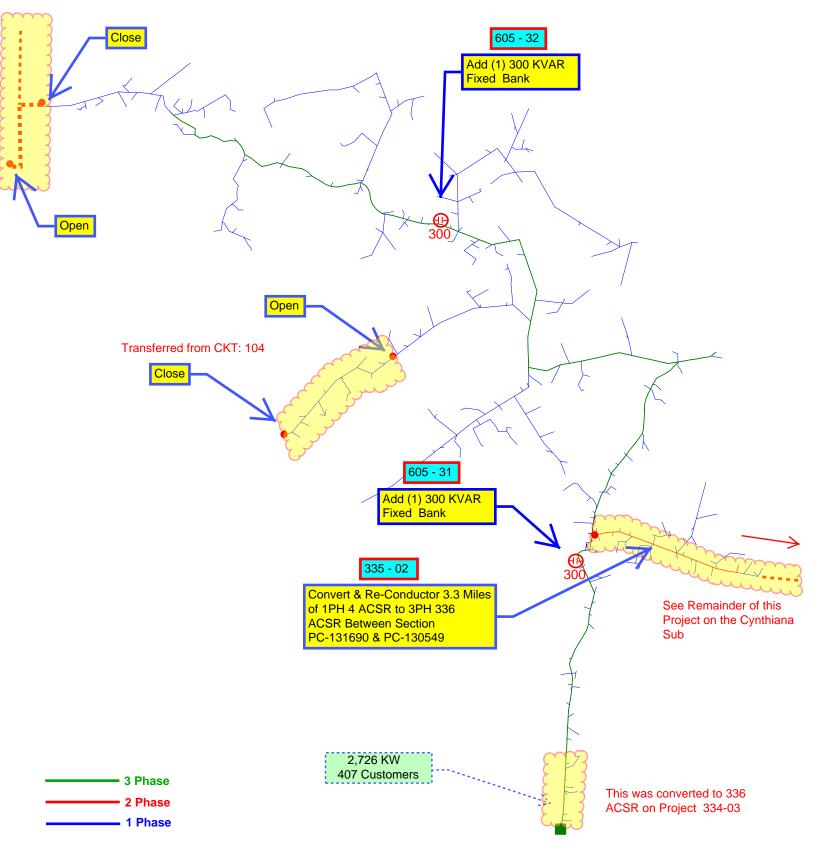
SUB: JACKSONVILLE CKT: 104

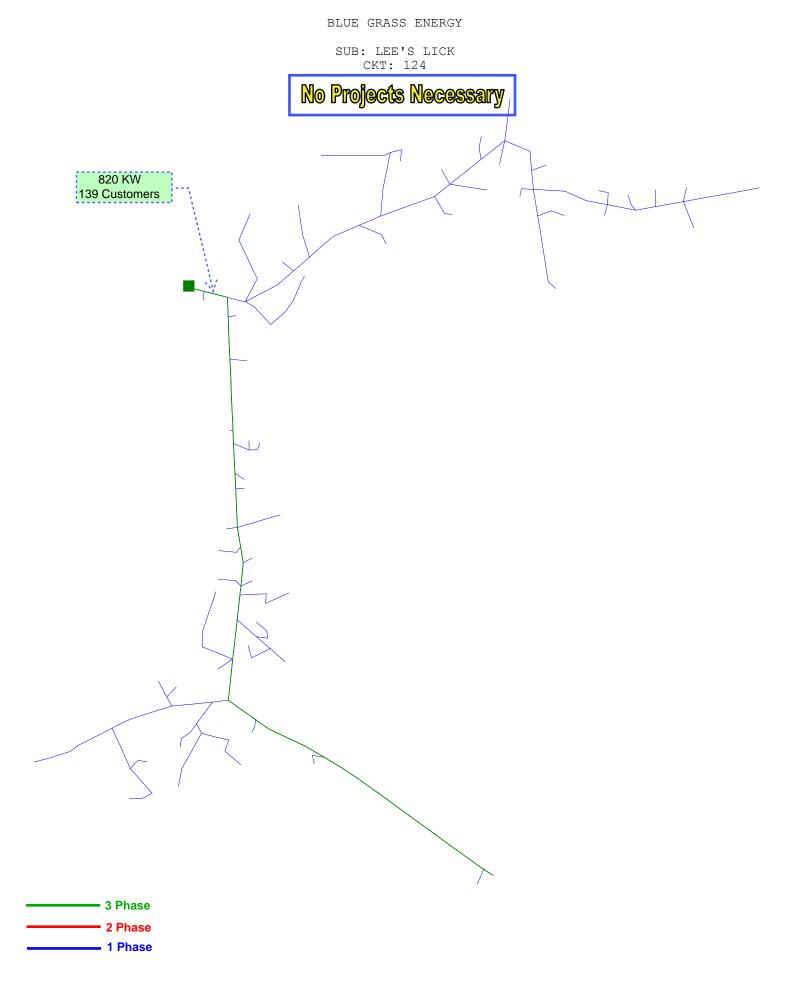



SUB: JACKSONVILLE CKT: 114

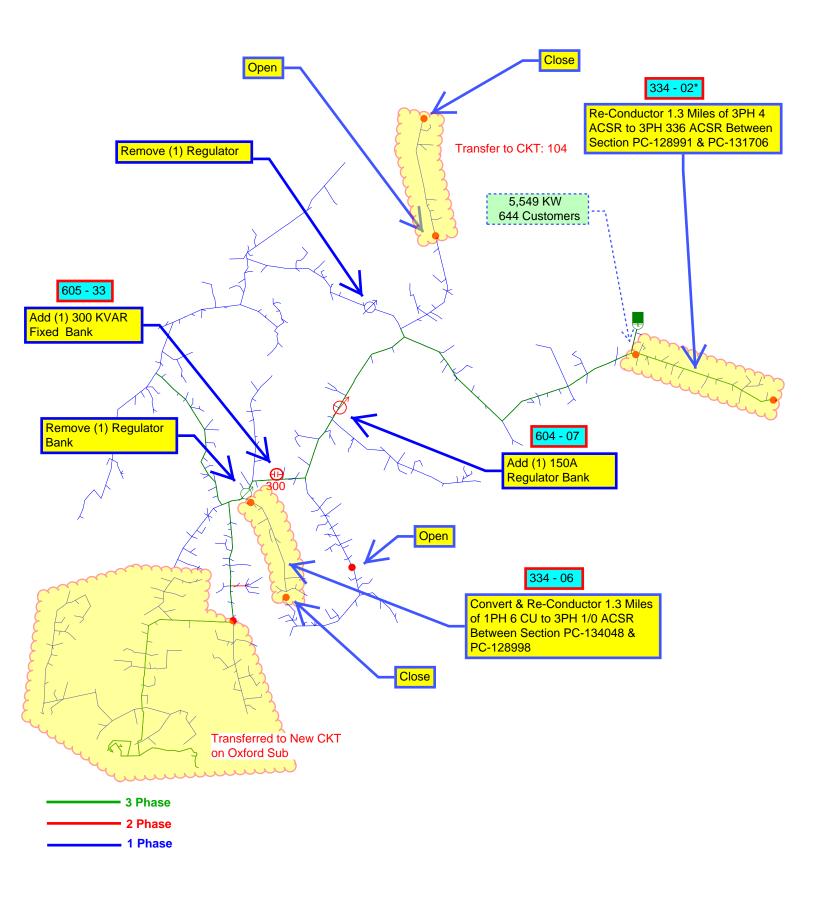

SUB: JACKSONVILLE CKT: 124

SUB: LEE'S LICK


SUB: LEE'S LICK CKT: 104

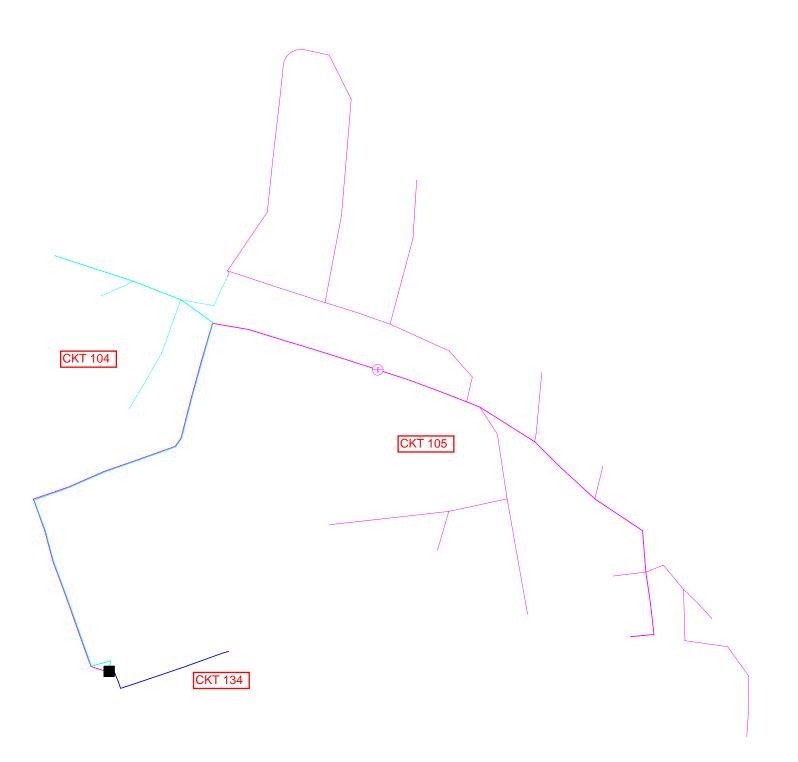


BGE CIRCUITS Page 84

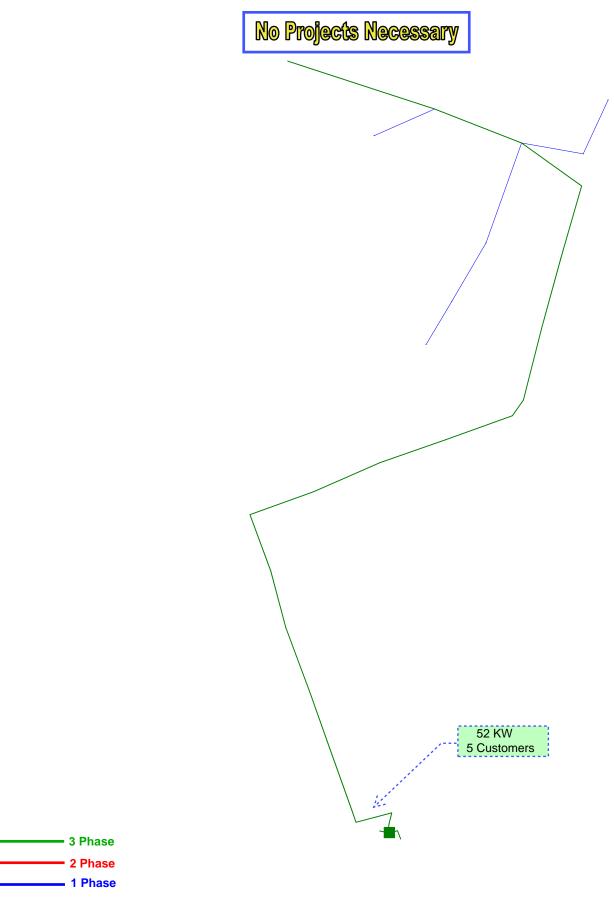

SUB: LEE'S LICK CKT: 114

Transferred from CKT: 104

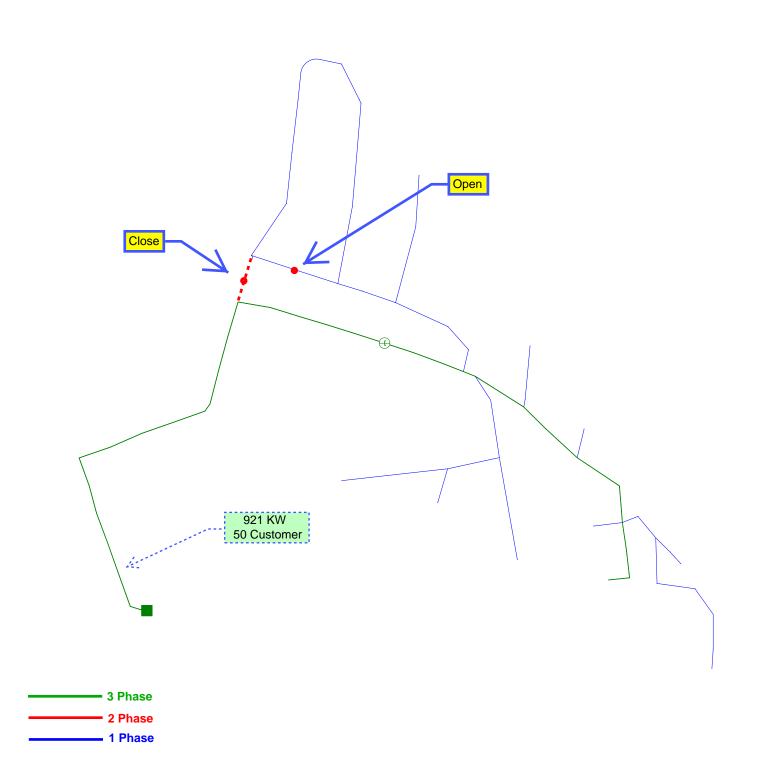
SUB: LEE'S LICK CKT: 134



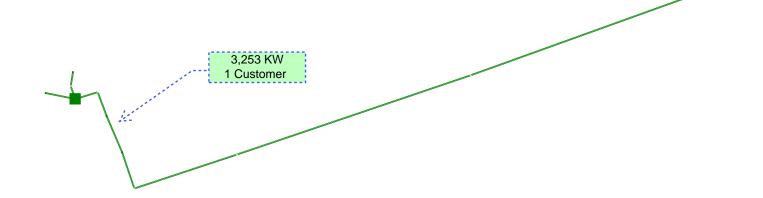
SUB: LEE'S LICK CKT: 144

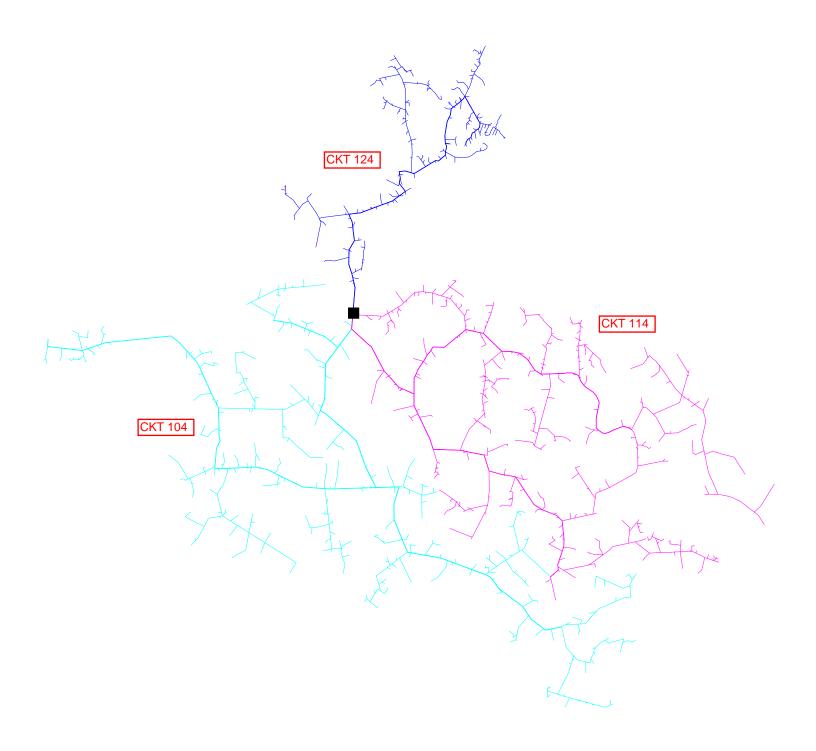

No Projects Necessary

SUB: MERCER COUNTW

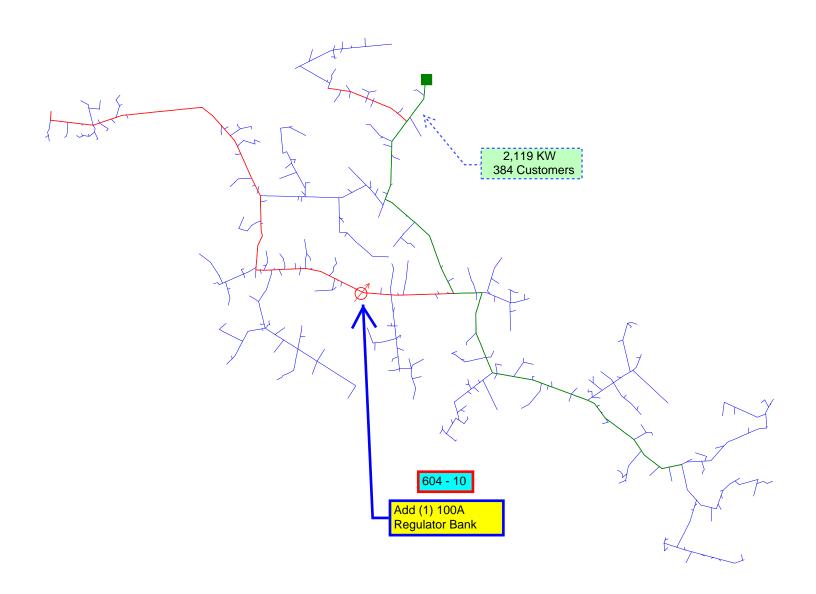


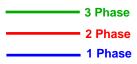
SUB: MERCER COUNTY CKT: 104


SUB: MERCER COUNTY CKT: 105

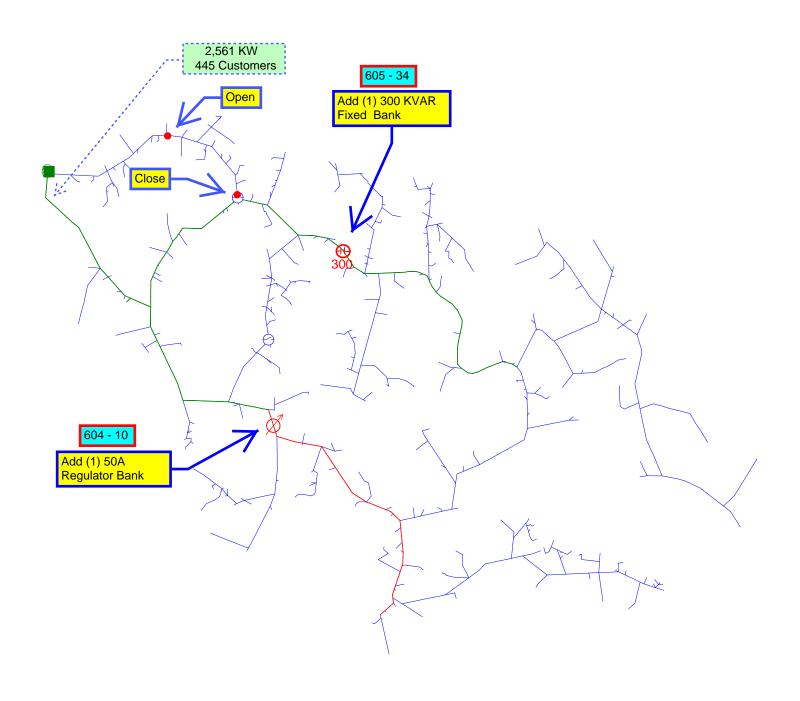


SUB: MERCER COUNTY CKT: 134

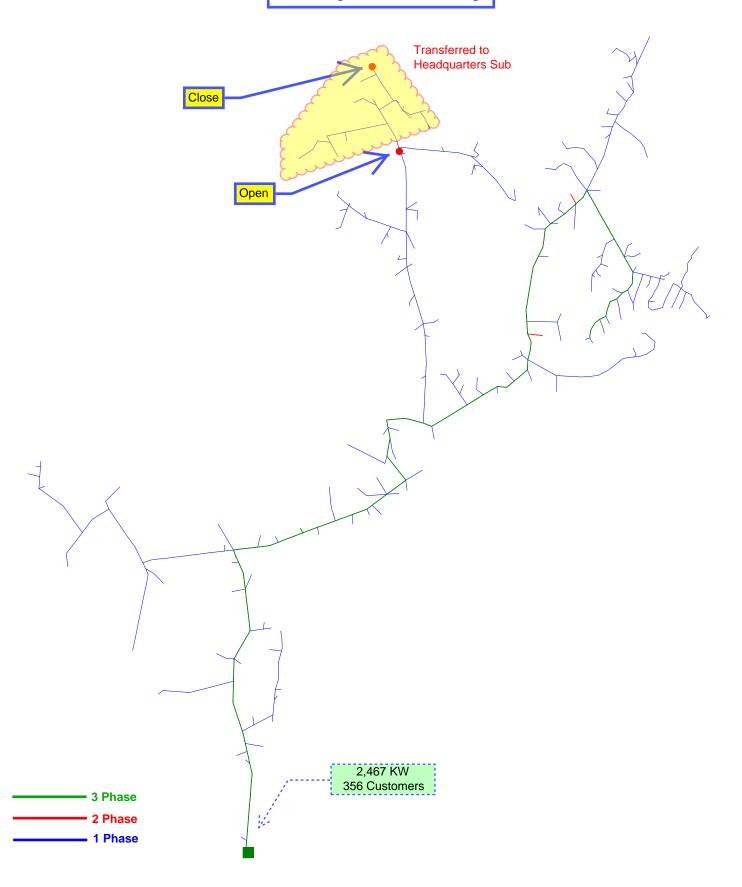

No Projects Necessary

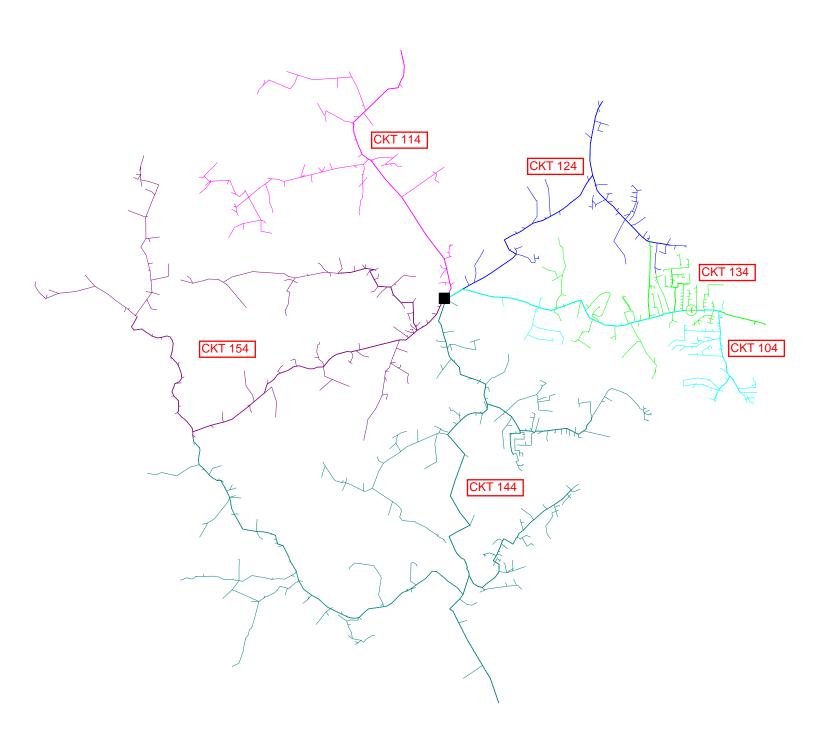


3 Phase 2 Phase 1 Phase SUB: MILLERSBURG



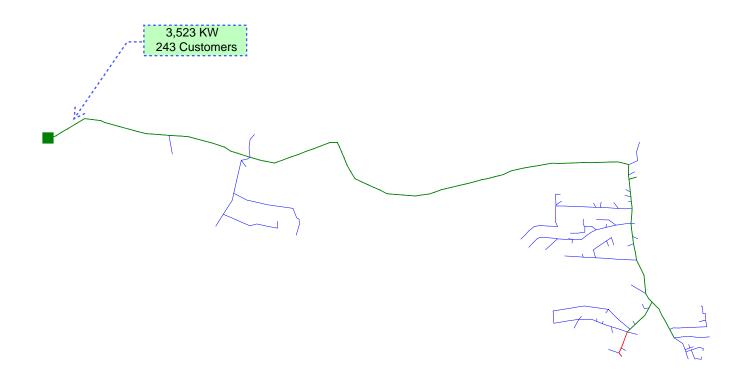
SUB: MILLERSBURG CKT: 104


SUB: MILLERSBURG CKT: 114

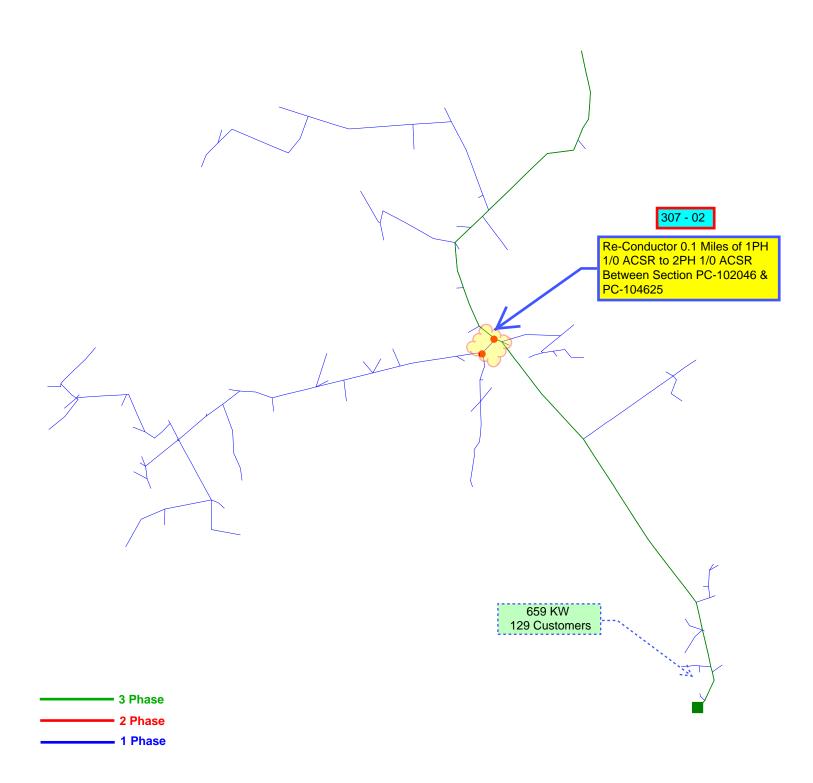

------ 3 Phase ------ 2 Phase ------ 1 Phase

SUB: MILLERSBURG CKT: 124

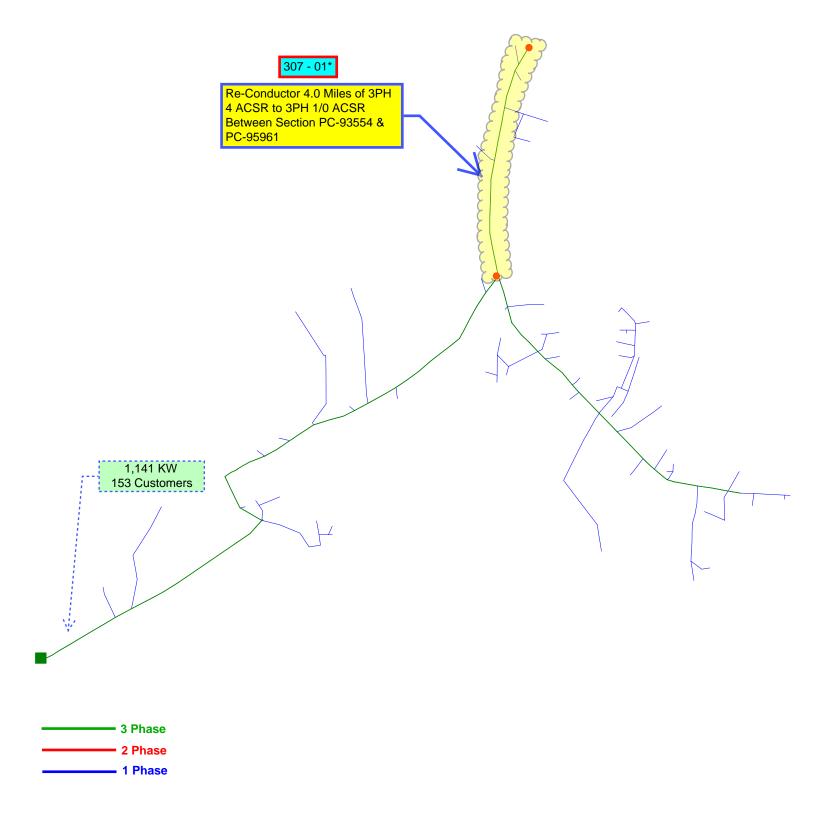
No Projects Necessary



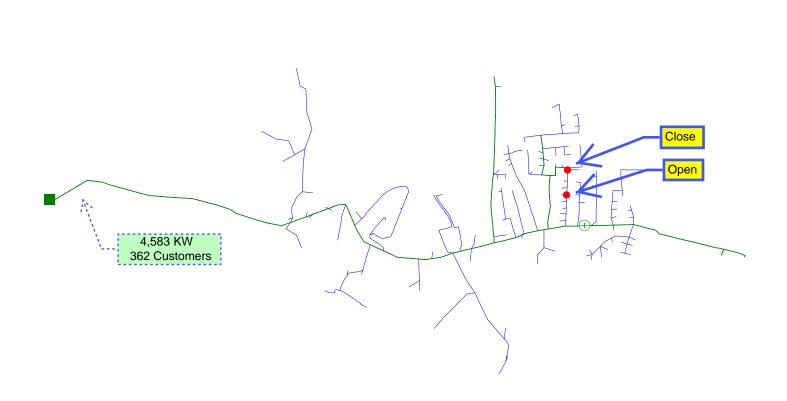
SUB: NEWBY



SUB: NEWBY CKT: 104

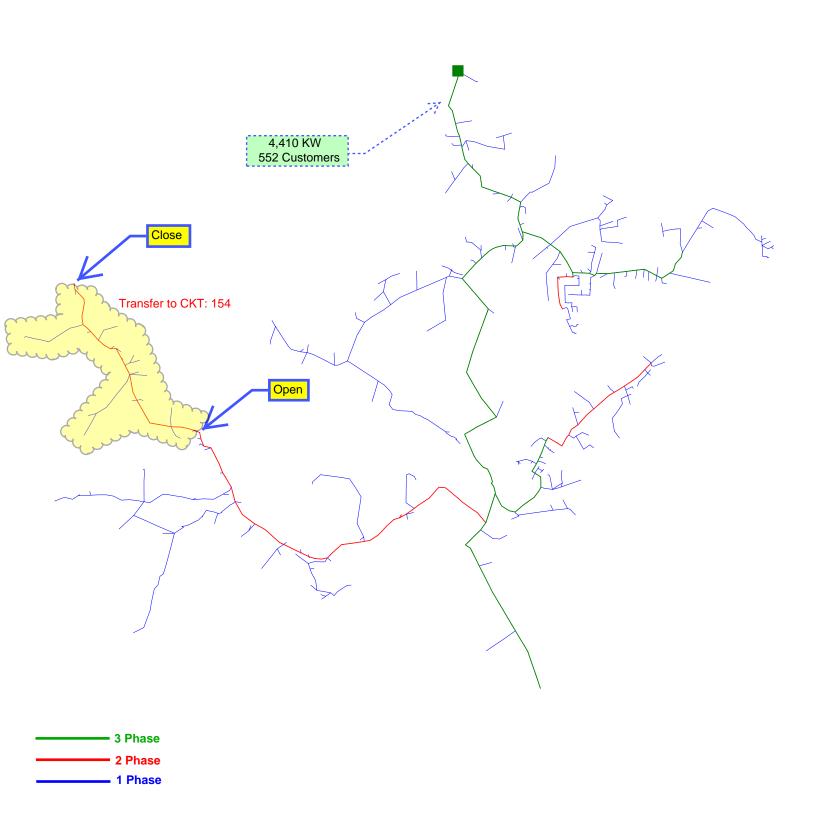

No Projects Necessary

3 Phase 2 Phase 1 Phase SUB: NEWBY CKT: 114

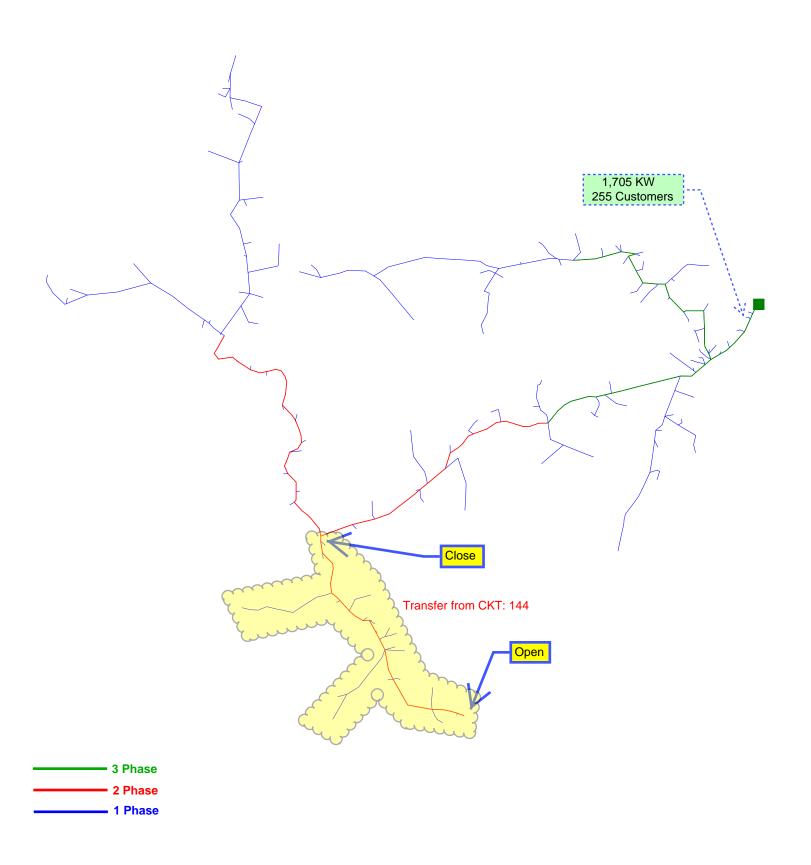


SUB: NEWBY CKT: 124

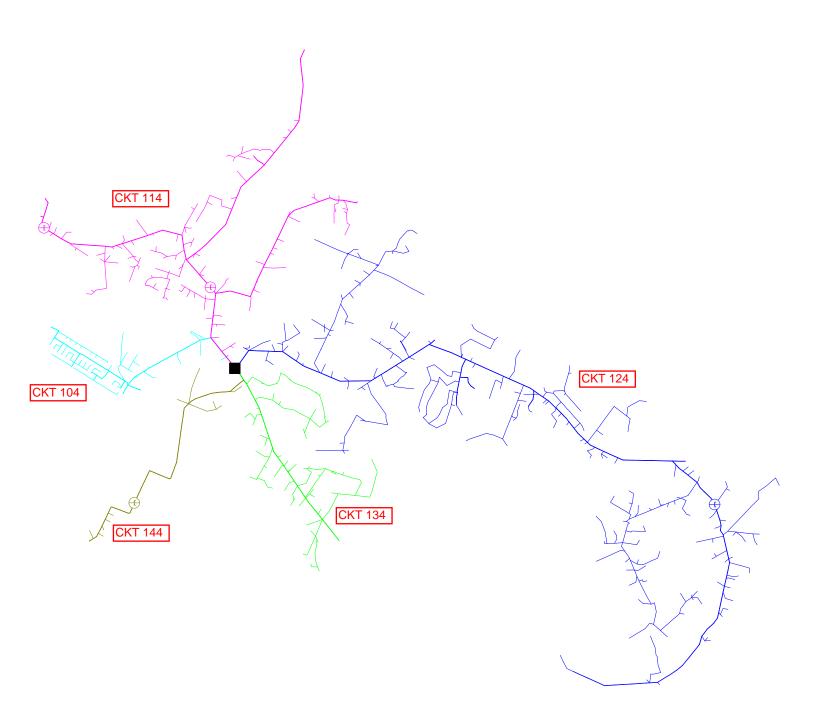
SUB: NEWBY CKT: 134


No Projects Necessary

3 Phase 2 Phase 1 Phase

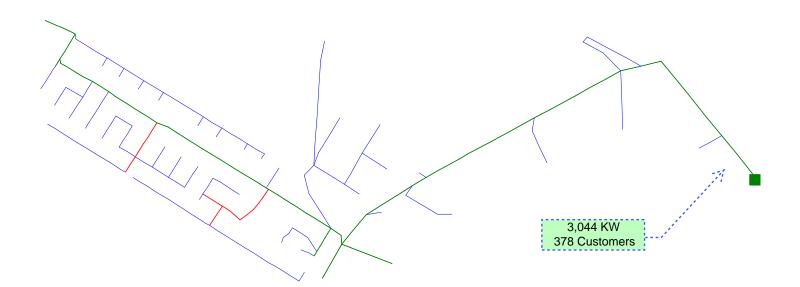

SUB: NEWBY CKT: 144

No Projects Necessary



SUB: NEWBY CKT: 154

No Projects Necessary

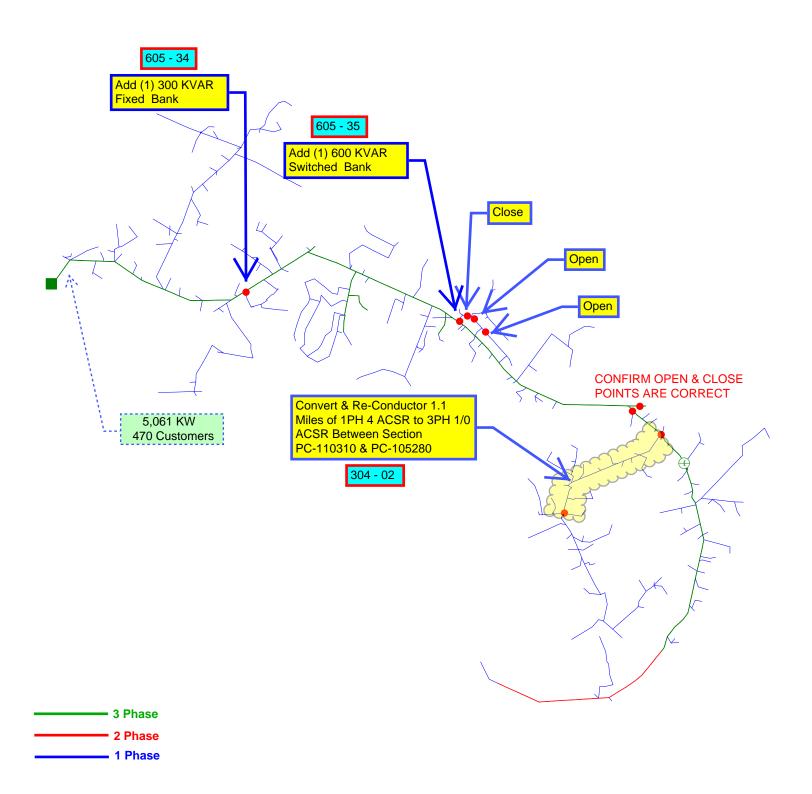

SUB: NICHOLASVILLE

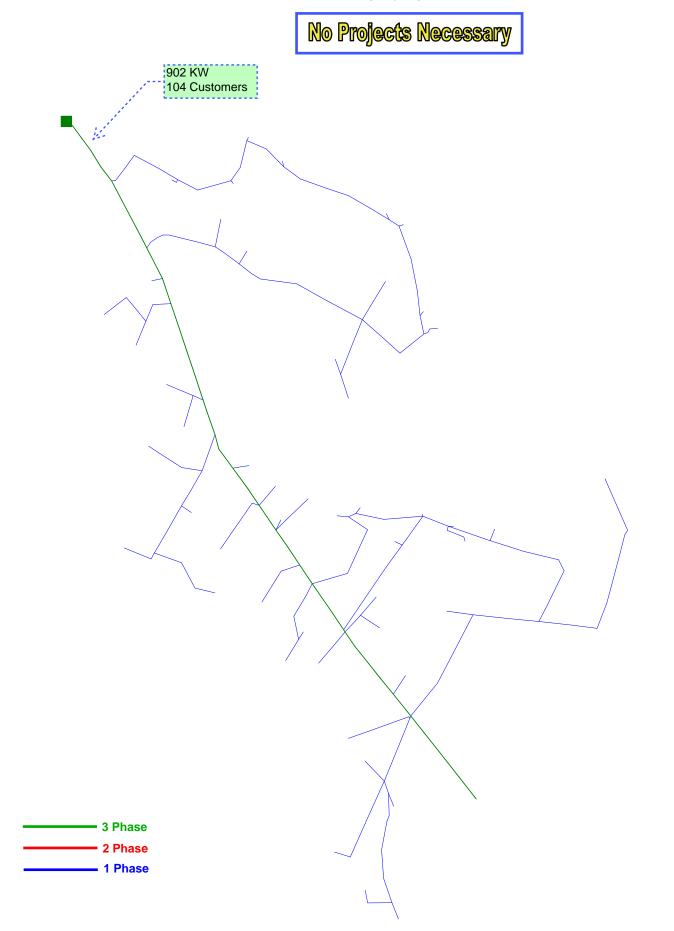
SUB: NICHOLASVILLE CPT: 104

No Projects Necessary

CONFIRM OPEN POINTS ARE AS INDICATED BELOW.....

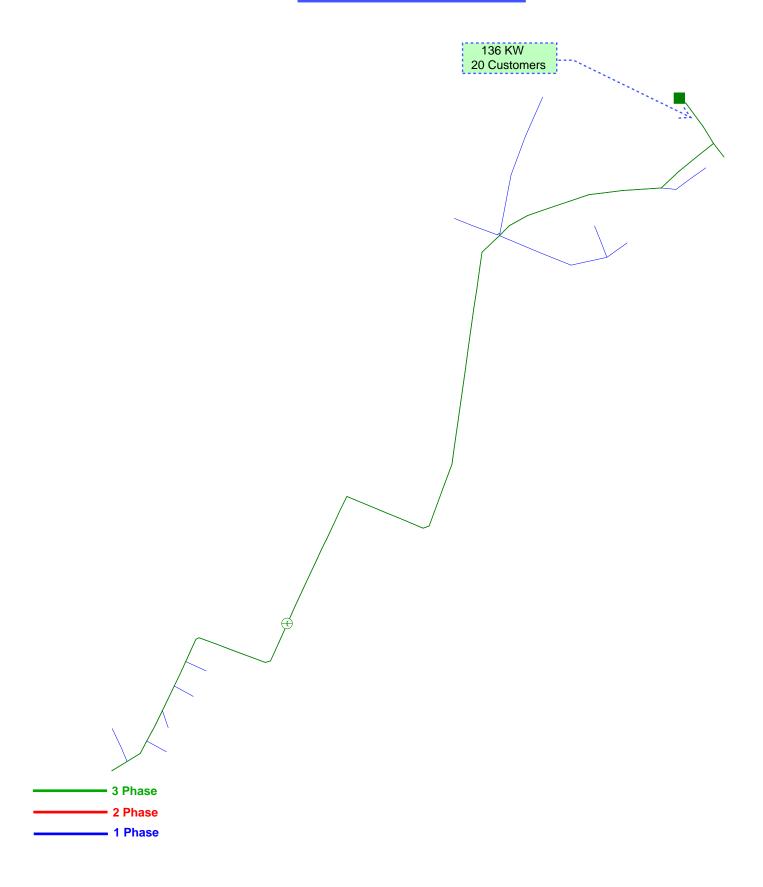
SUB: NICHOLASVILLE CPT: 114


No Projects Necessary

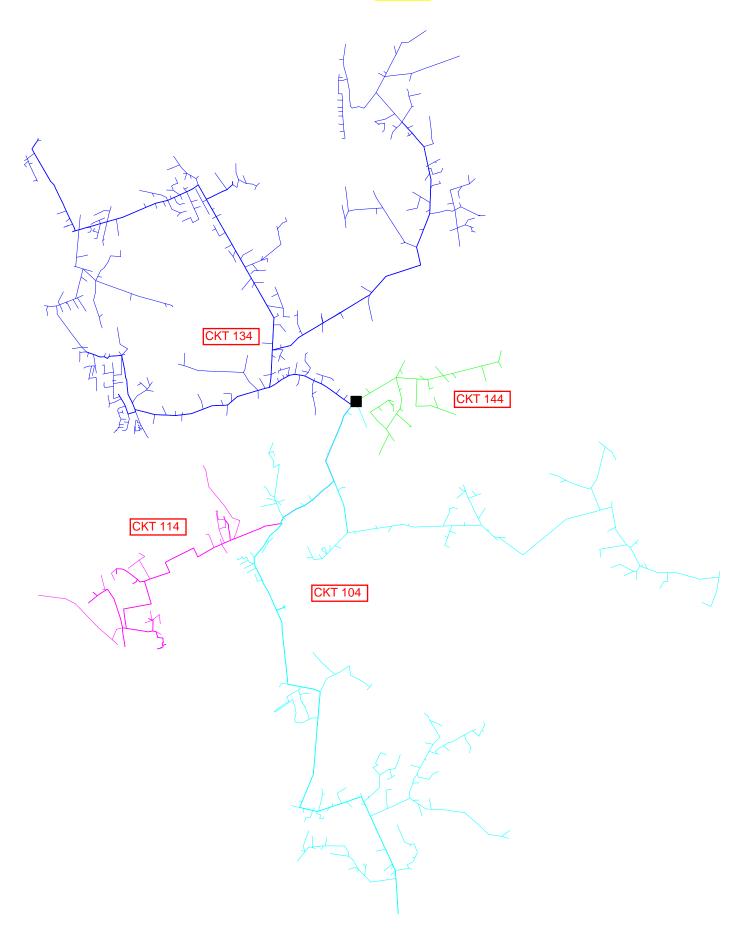

3,043 KW

206 Customers

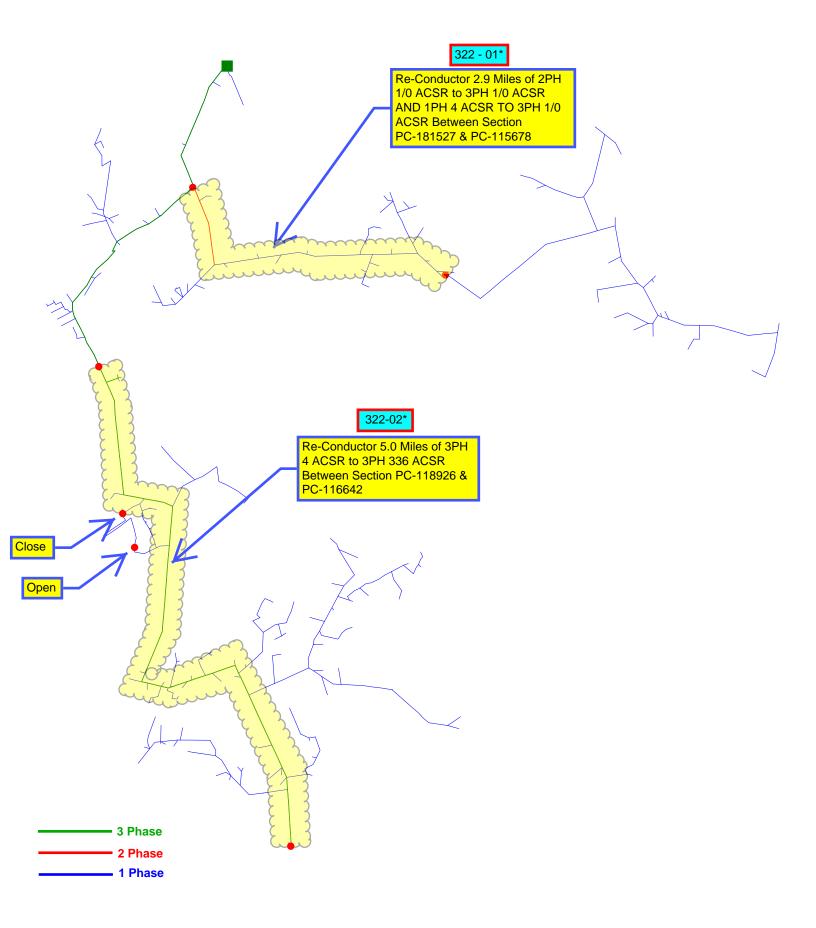
SUB: NICHOLASVILLE CPT: 124



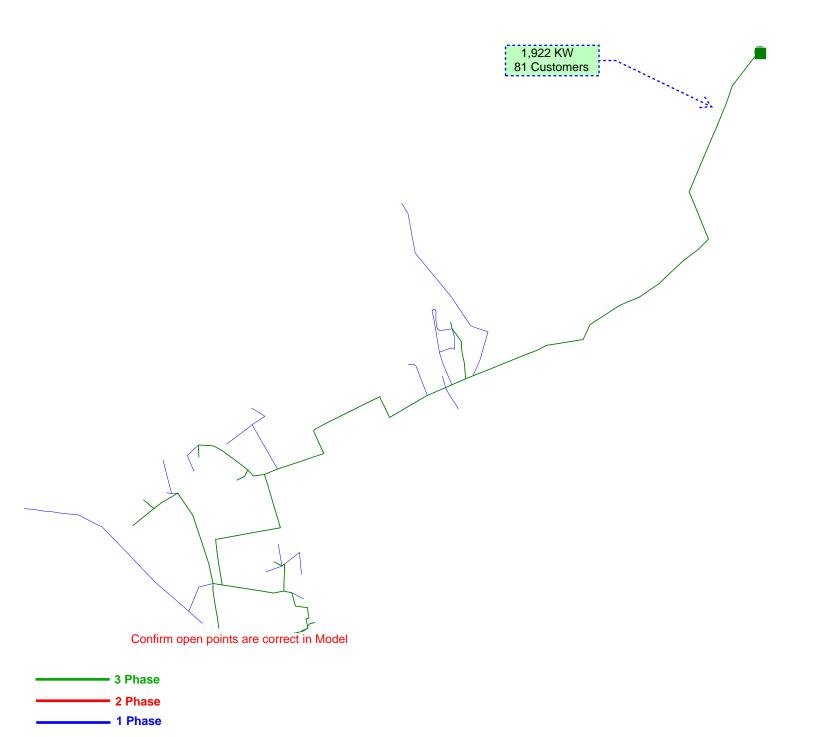
SUB: NICHOLASVILLE CPT: 134



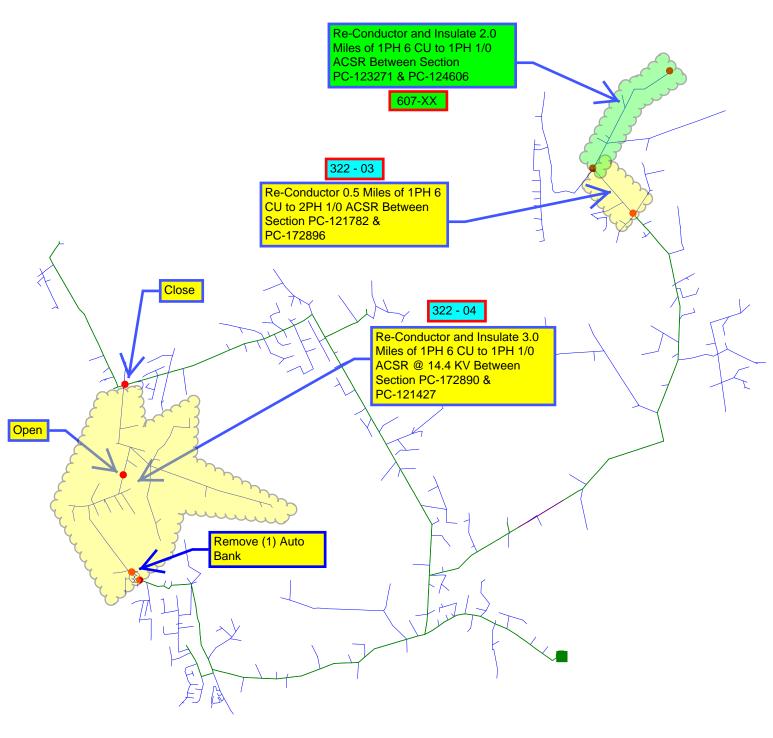
SUB: NICHOLASVILLE CPT: 144


No Projects Necessary

SUB: NINEVAH

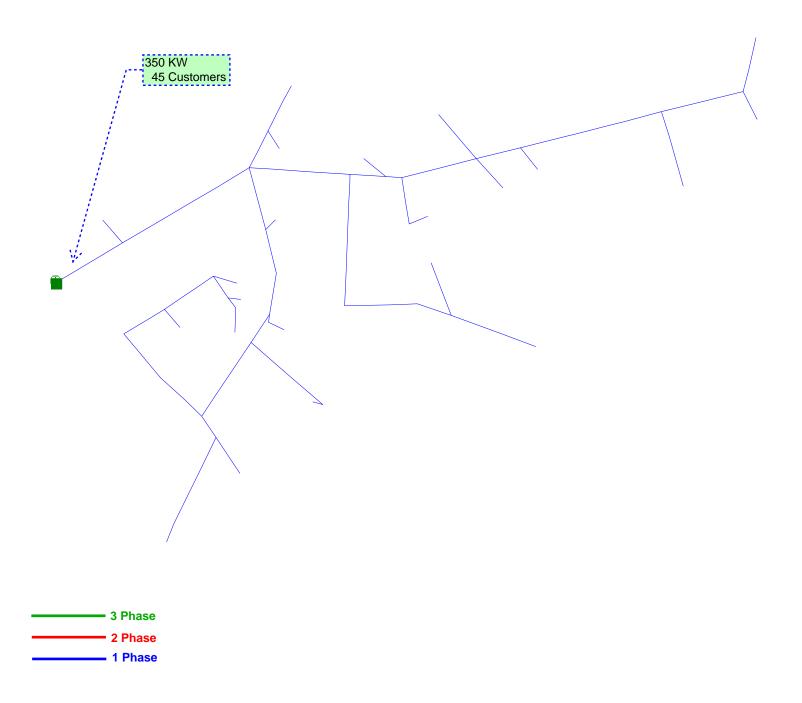


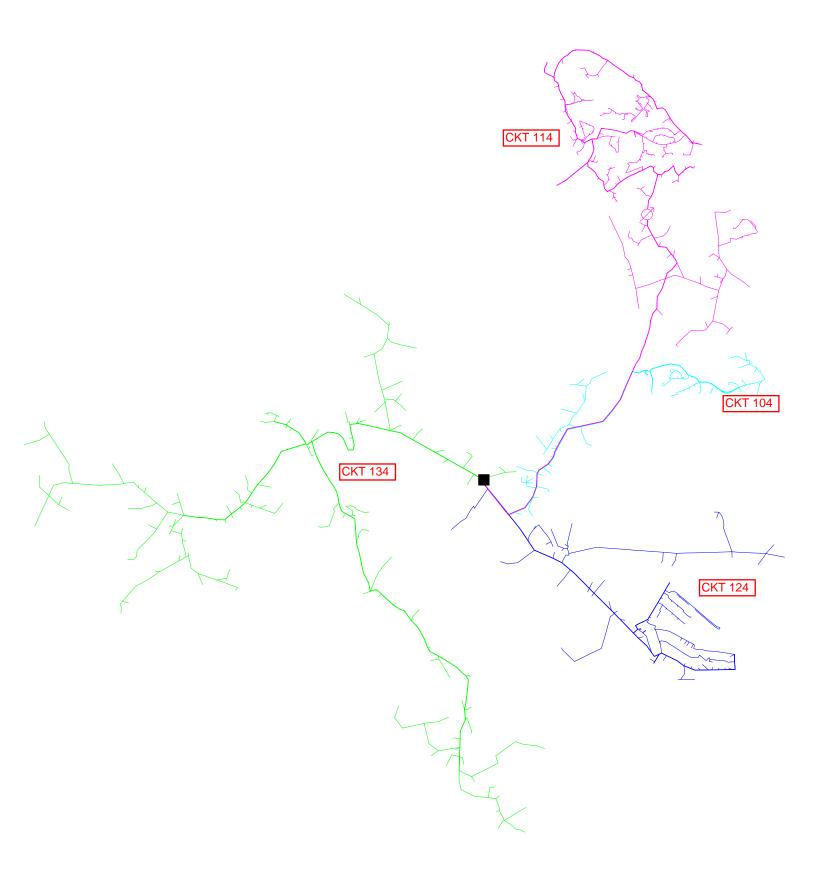
SUB: NINEVAH CKT: 104



SUB: NINEVAH CKT: 114

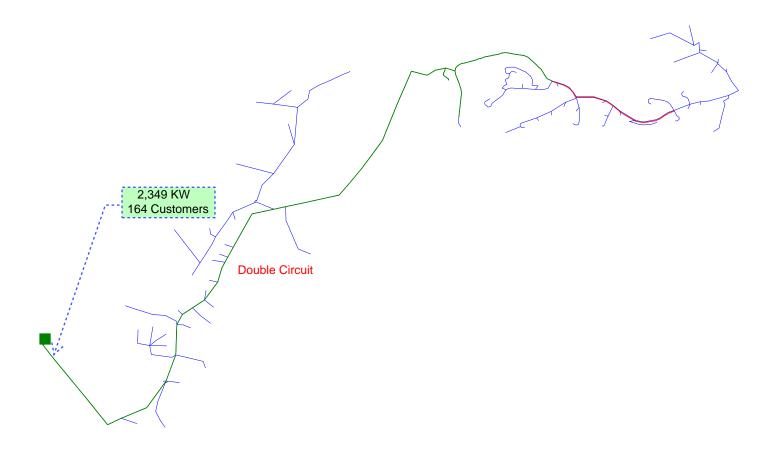
No Projects Necessary


SUB: NINEVAH CKT: 134

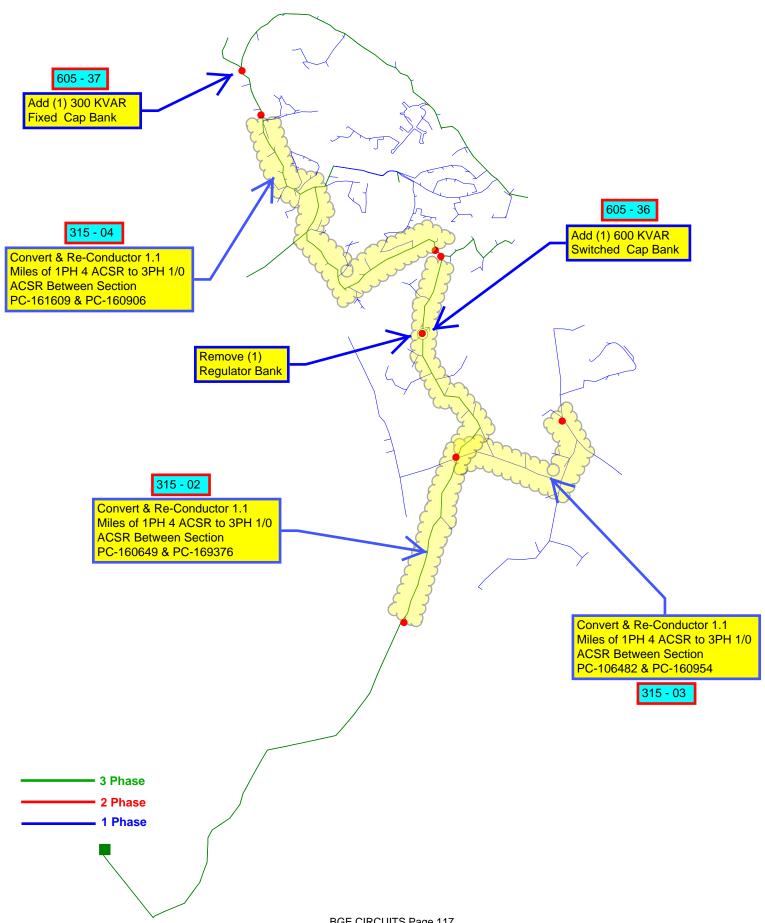

3 Phase 2 Phase 1 Phase

SUB: NINEVAH CKT: 144

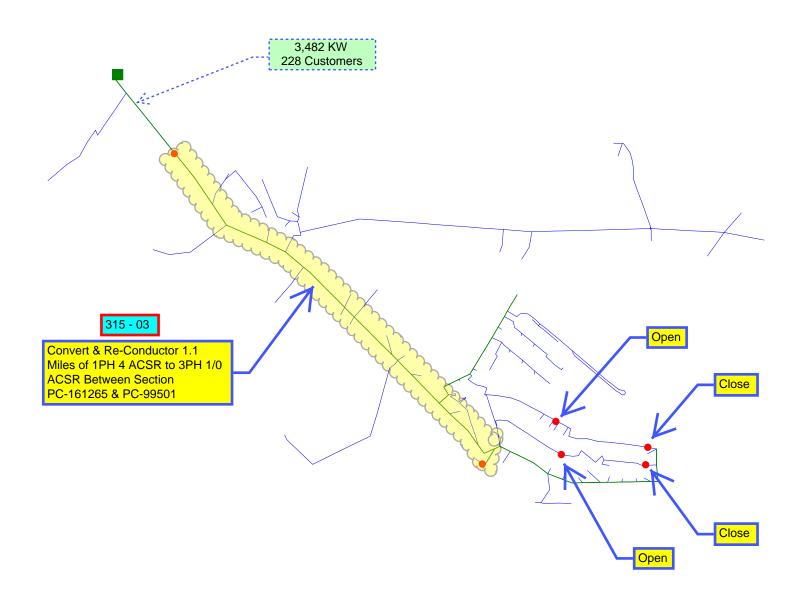
No Projects Necessary



SUB: NORTH MADISON

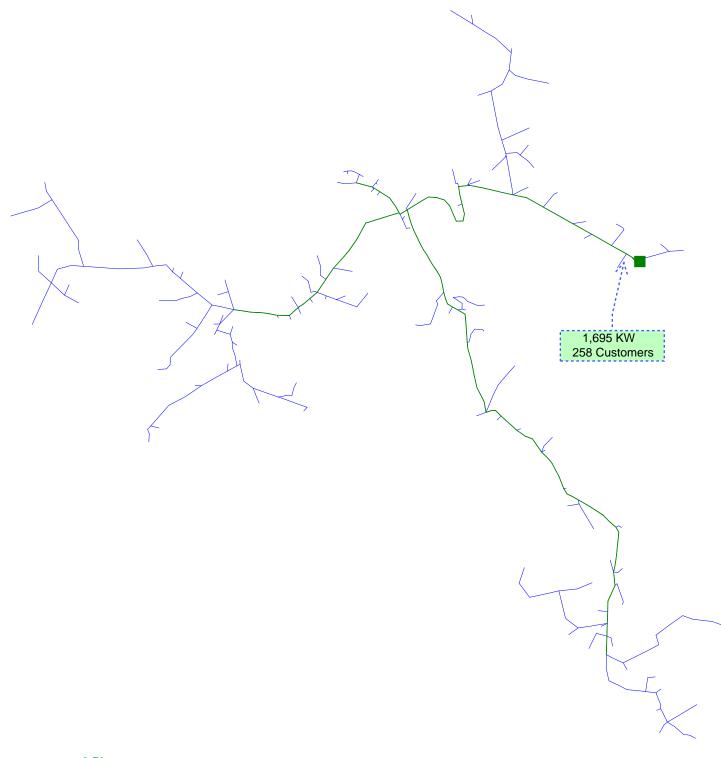

SUB: NORTH MADISON CKT:104

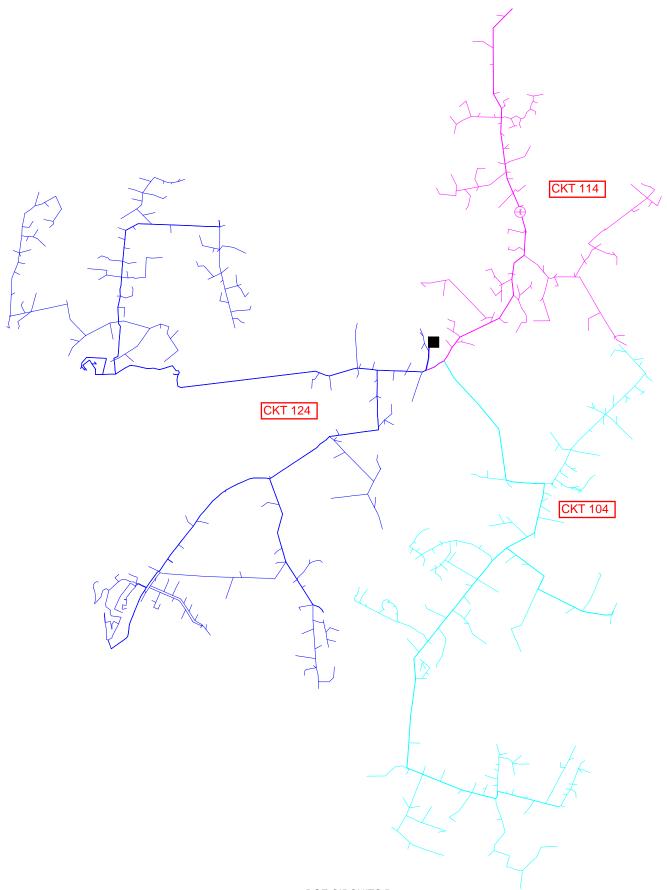
No Projects Necessary

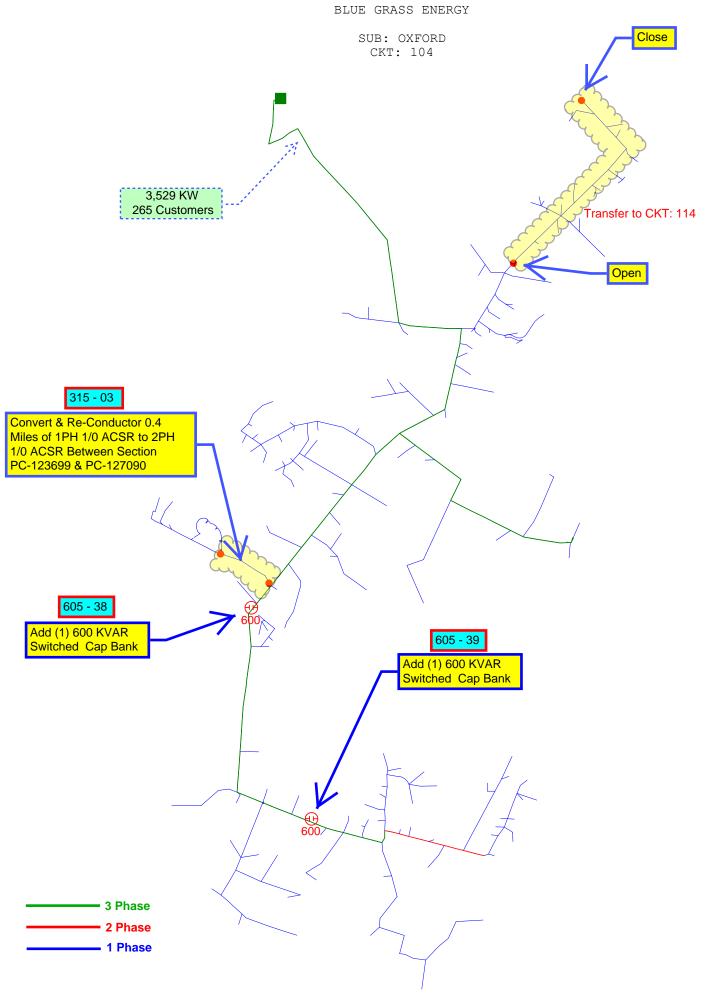


3 Phase 2 Phase 1 Phase

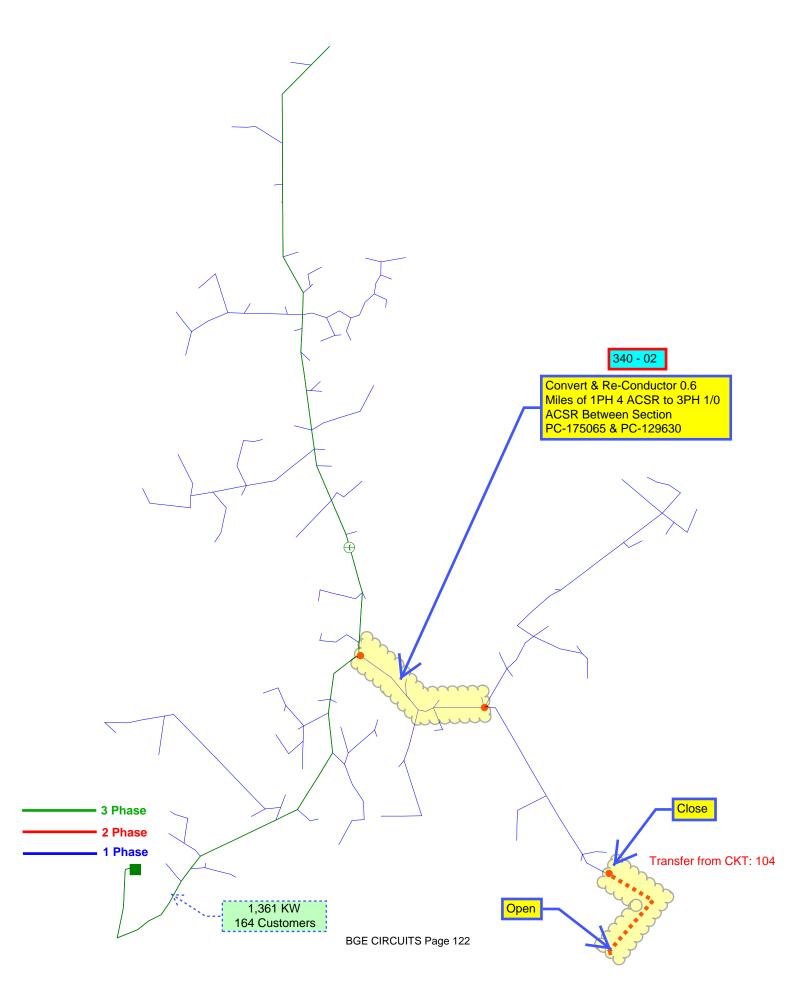
SUB: NORTH MADISON CKT:114

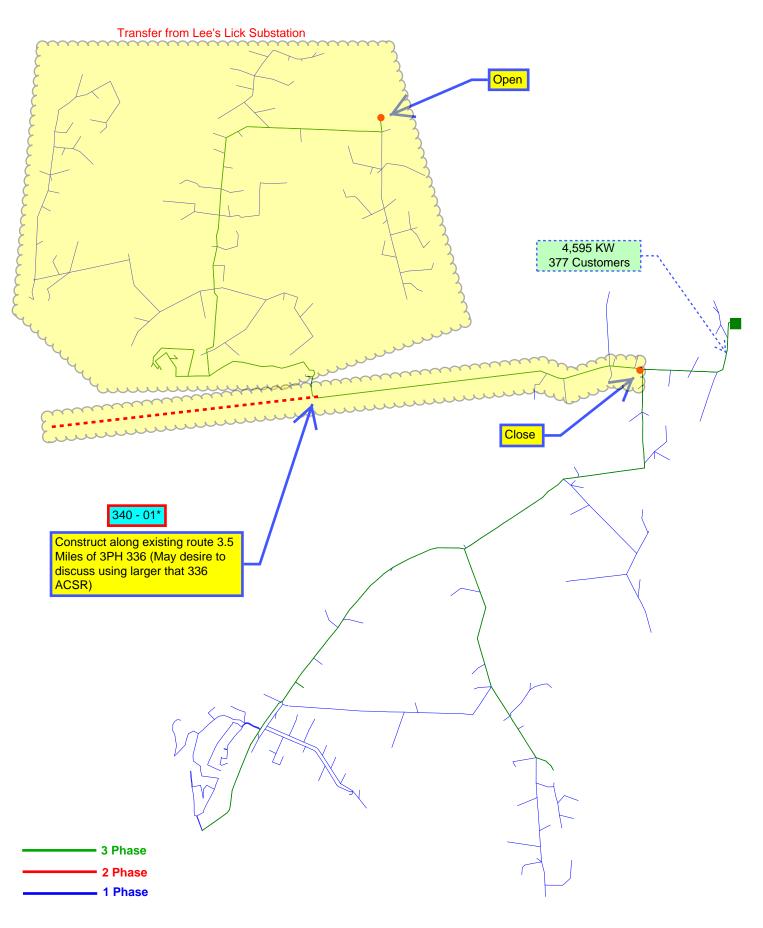

SUB: NORTH MADISON CKT:124



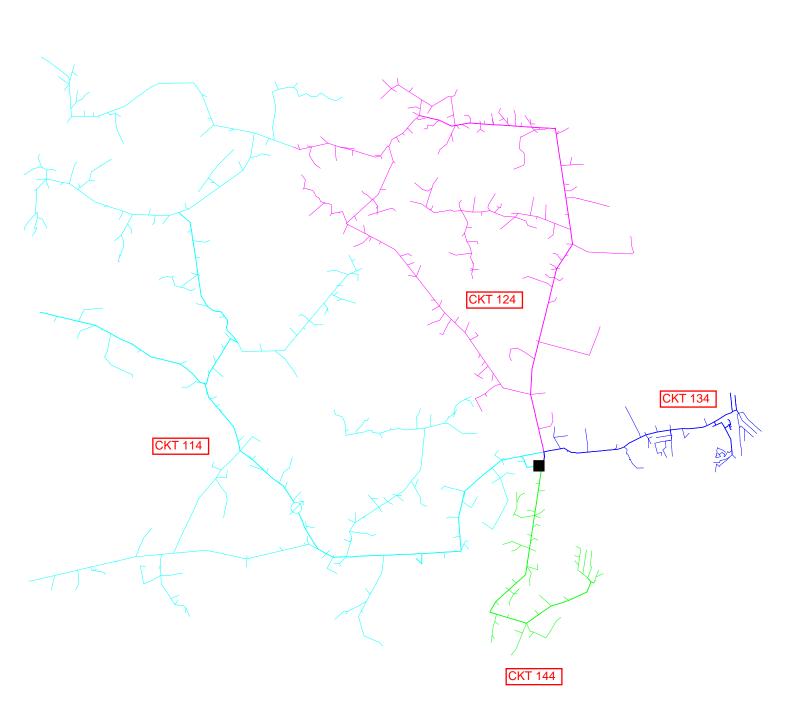

SUB: NORTH MADISON CKT:134

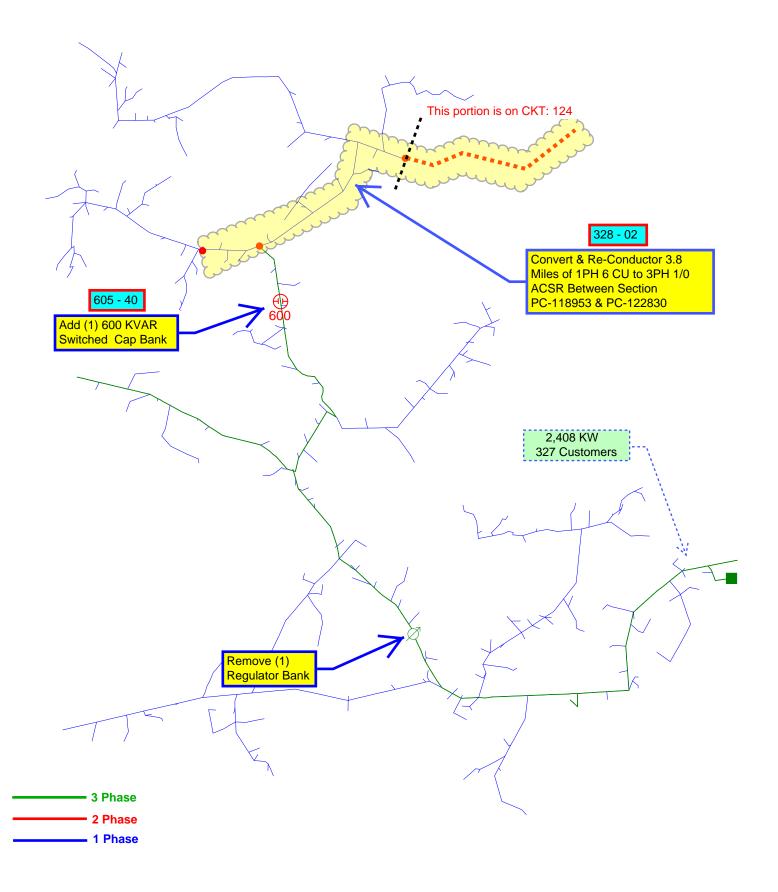
No Projects Necessary

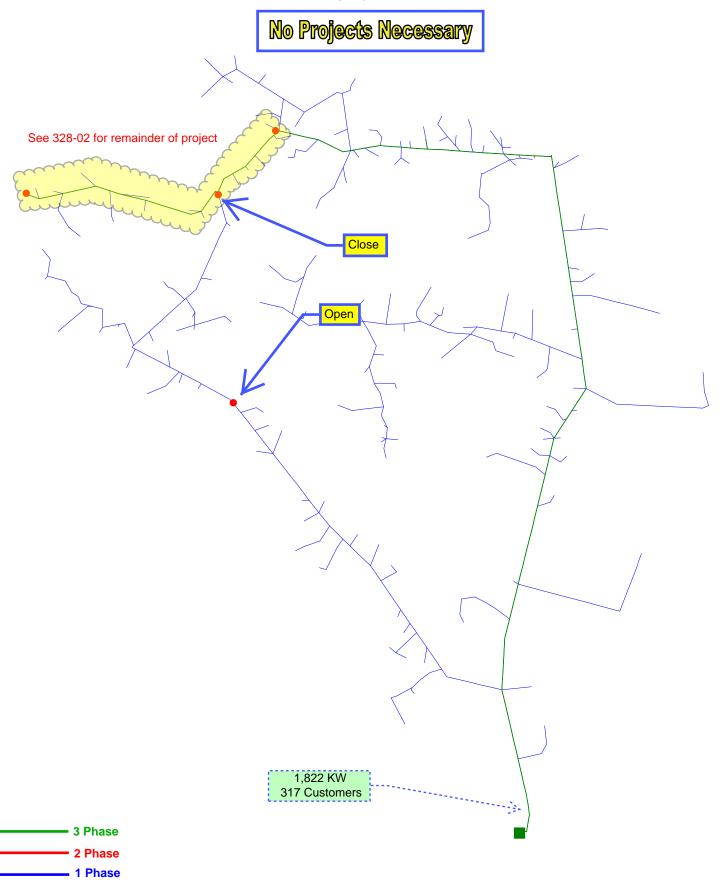

3 Phase 2 Phase 1 Phase SUB: OXFORD

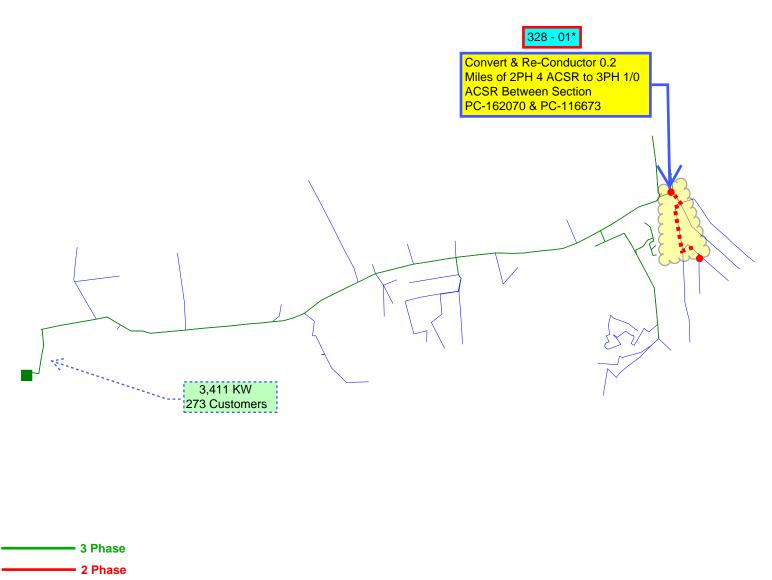


BGE CIRCUITS Page 121

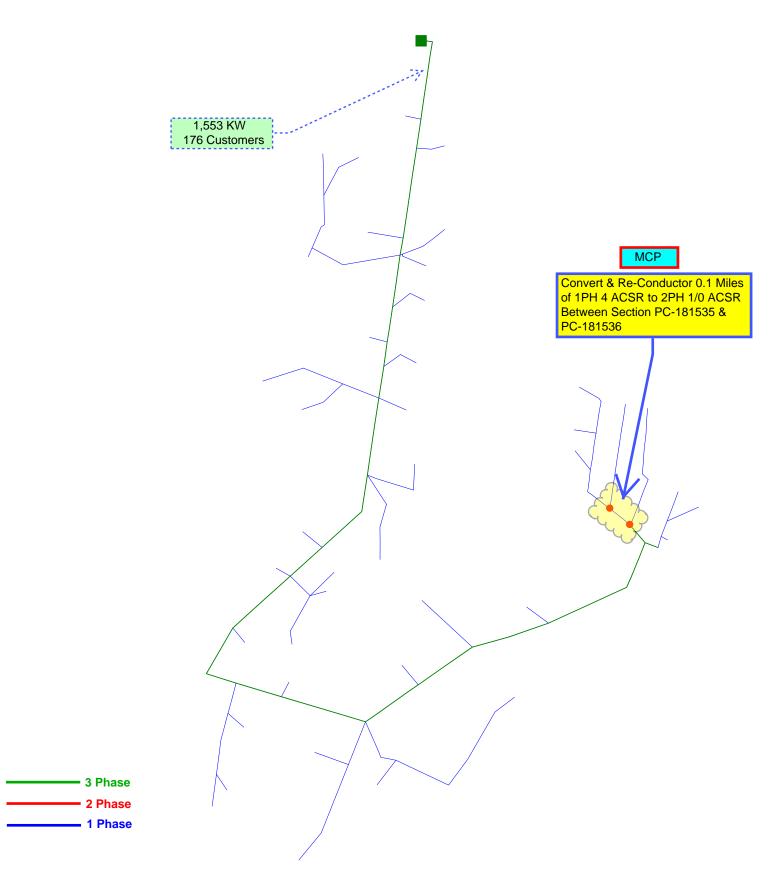

SUB: OXFORD CKT: 114


SUB: OXFORD CKT: 124

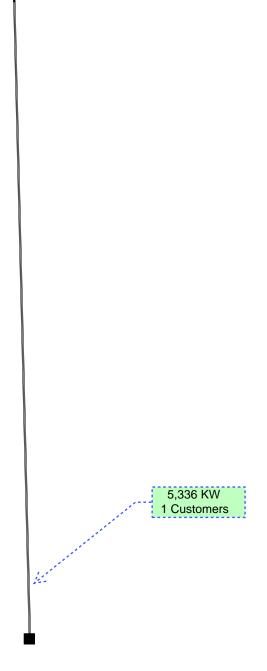

SUB: POWELL TAYLOR


SUB: POWELL TAYLOR CKT: 114

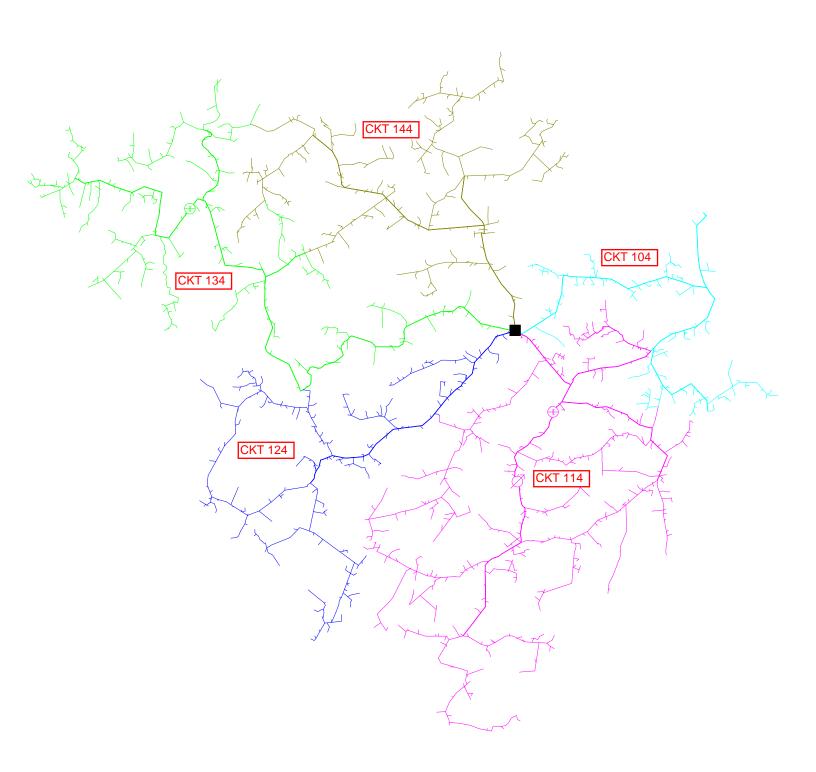
SUB: POWELL TAYLOR CKT: 124



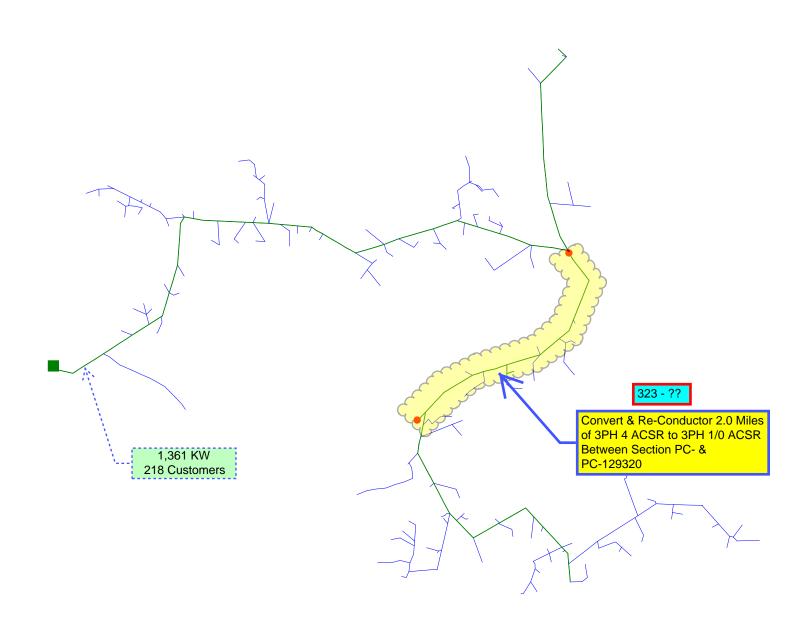
SUB: POWELL TAYLOR CKT: 134


_____ 1 Phase

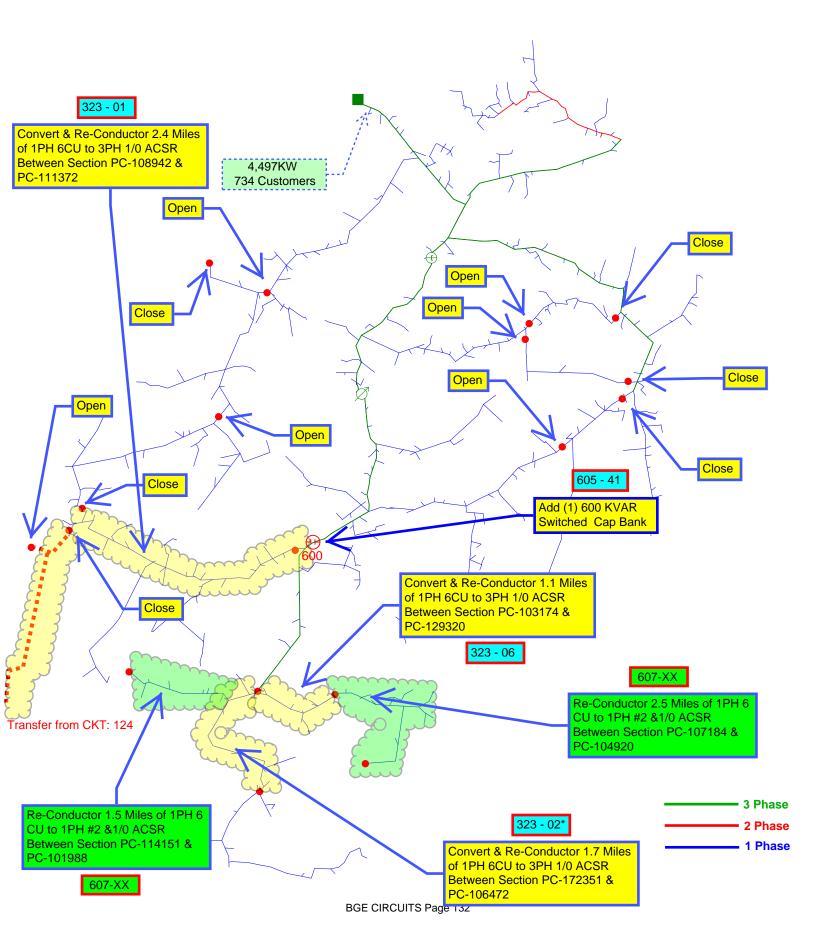
SUB: POWELL TAYLOR CKT: 144



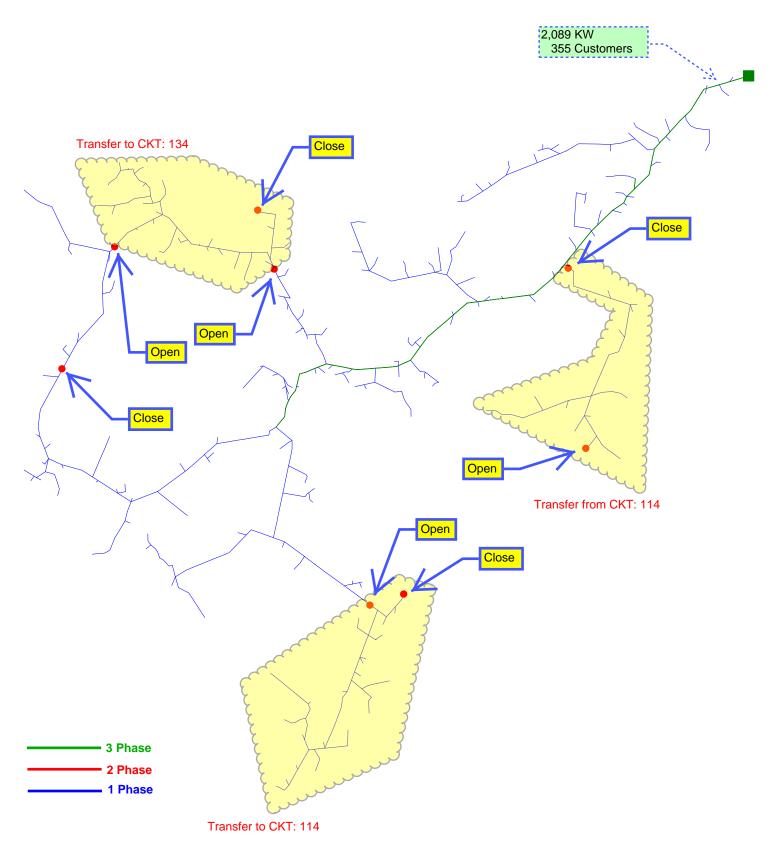
SUB: PPG


No Projects Necessary

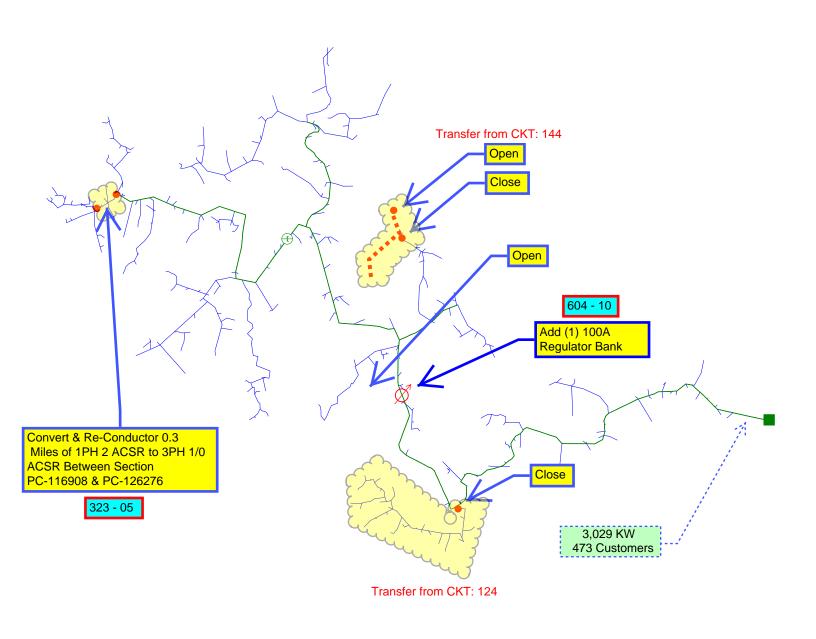
SUB: SINAI

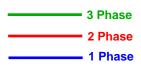


SUB: SINAI CKT: 104

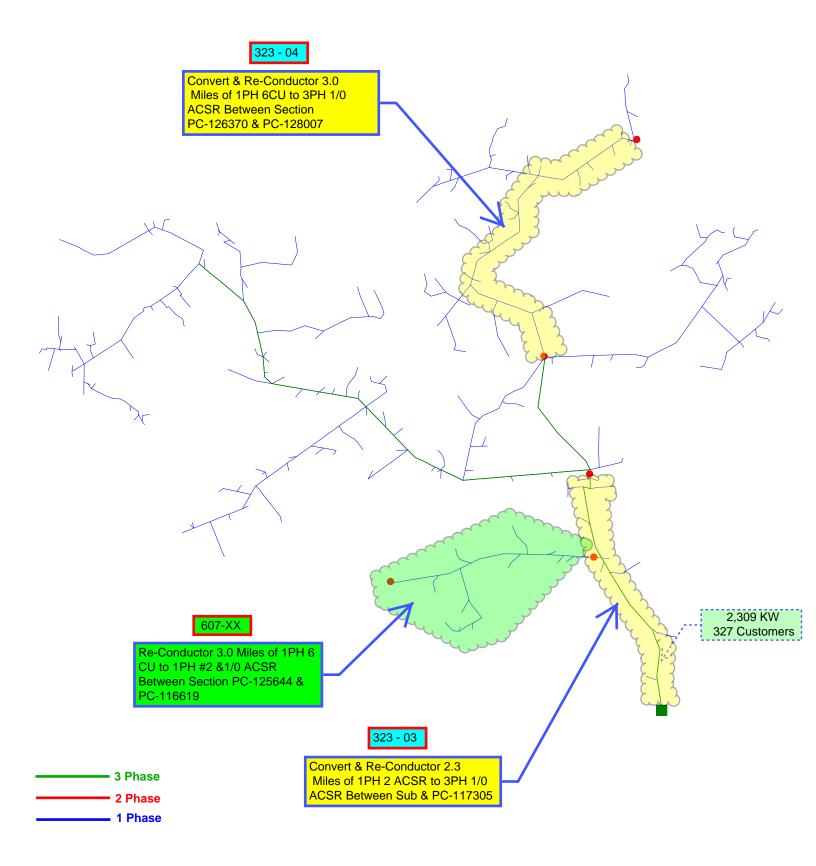


SUB: SINAI CKT: 114

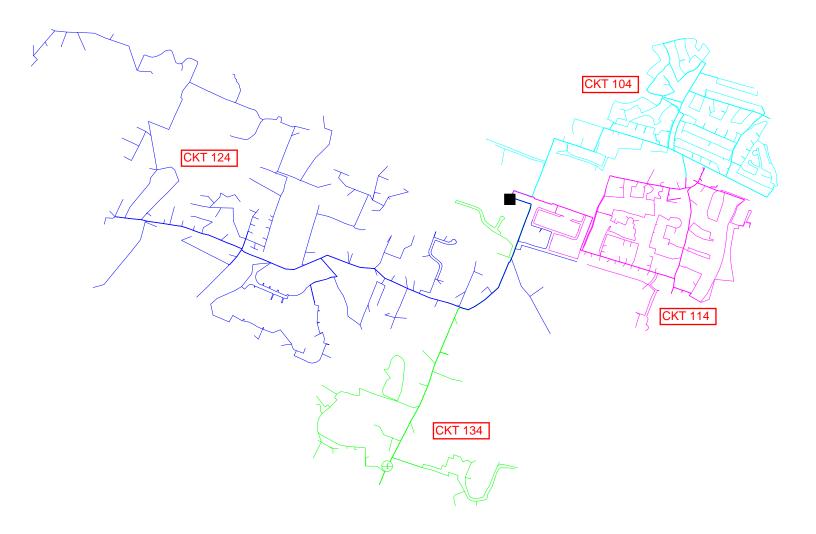



SUB: SINAI CKT: 124

No Projects Necessary



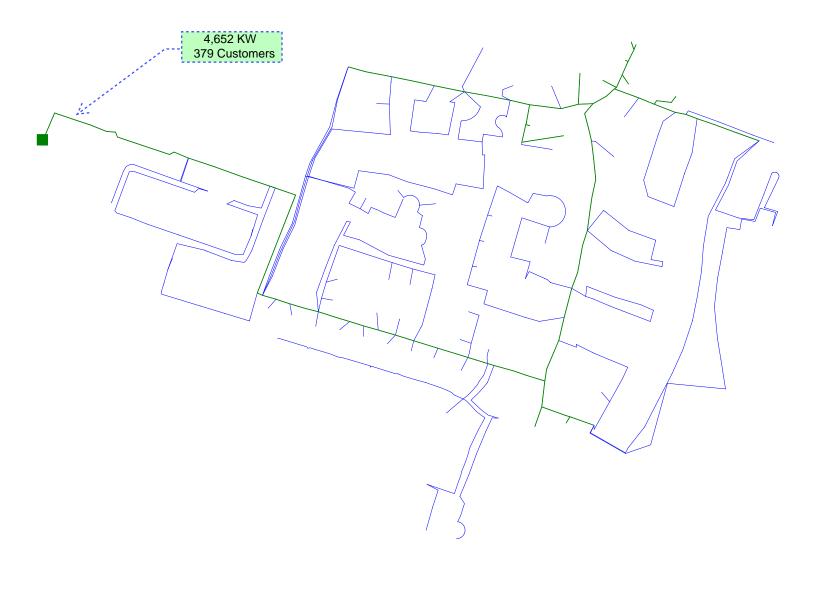
SUB: SINAI CKT: 134



SUB: SINAI CKT: 144

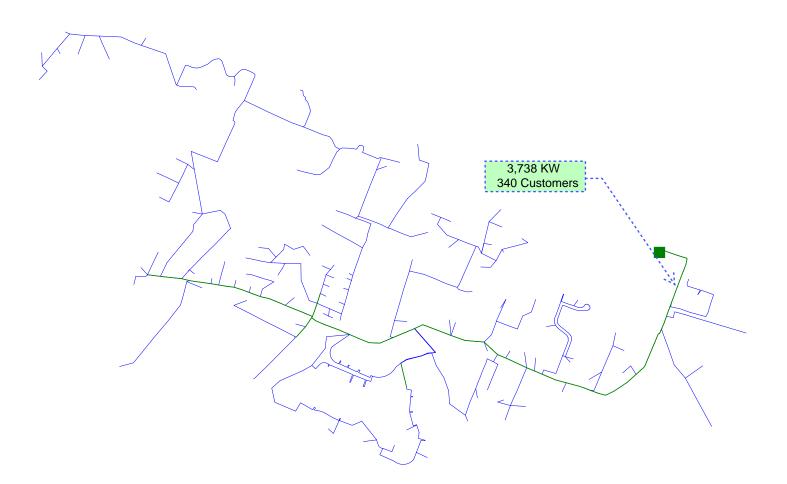
SUB: SOUTH ELKHORN

BGE CIRCUITS Page 136


SUB: SOUTH ELKHORN CKT: 104

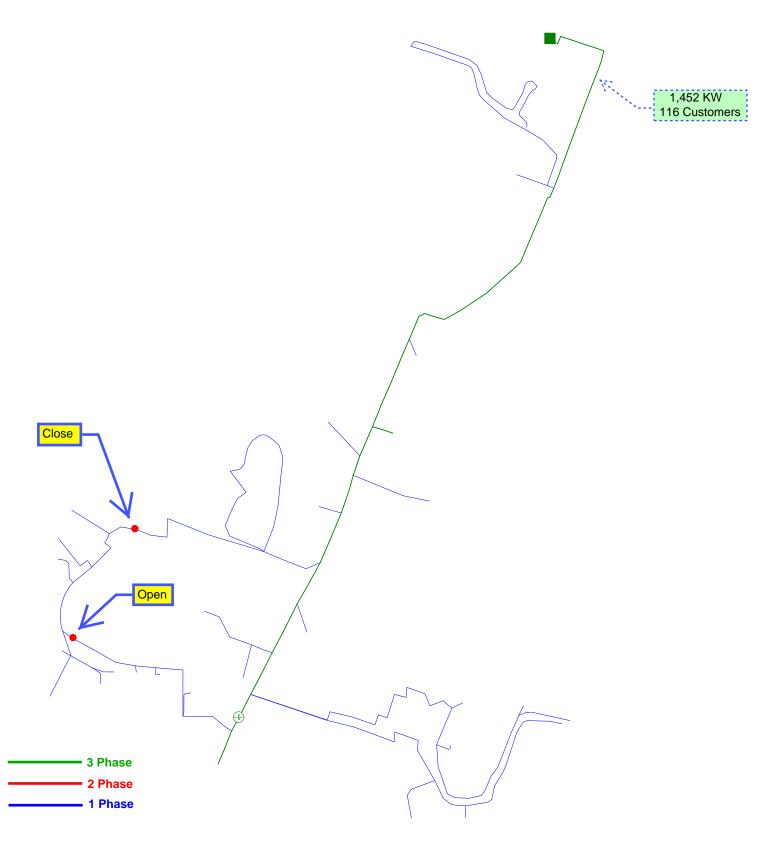
No Projects Necessary

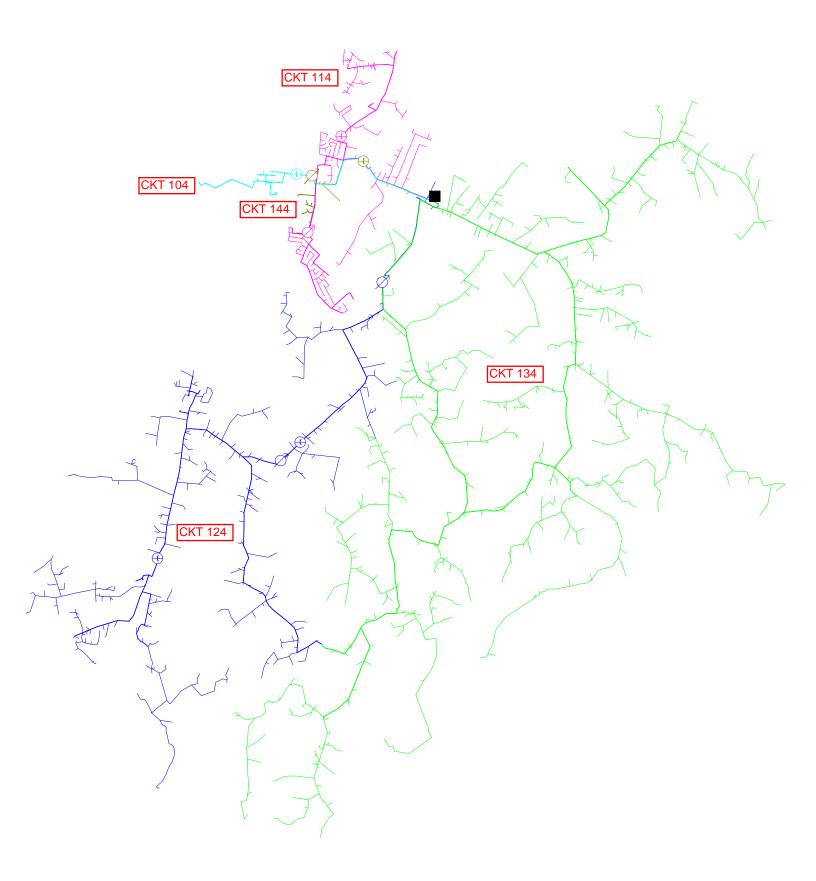
SUB: SOUTH ELKHORN CKT: 114


No Projects Necessary

3 Phase 2 Phase 1 Phase

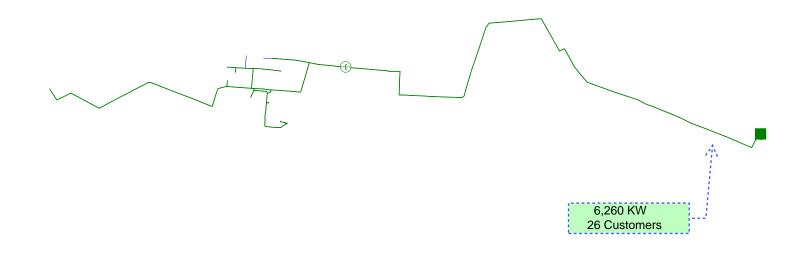
SUB: SOUTH ELKHORN CKT: 124


No Projects Necessary


3 Phase 2 Phase 1 Phase

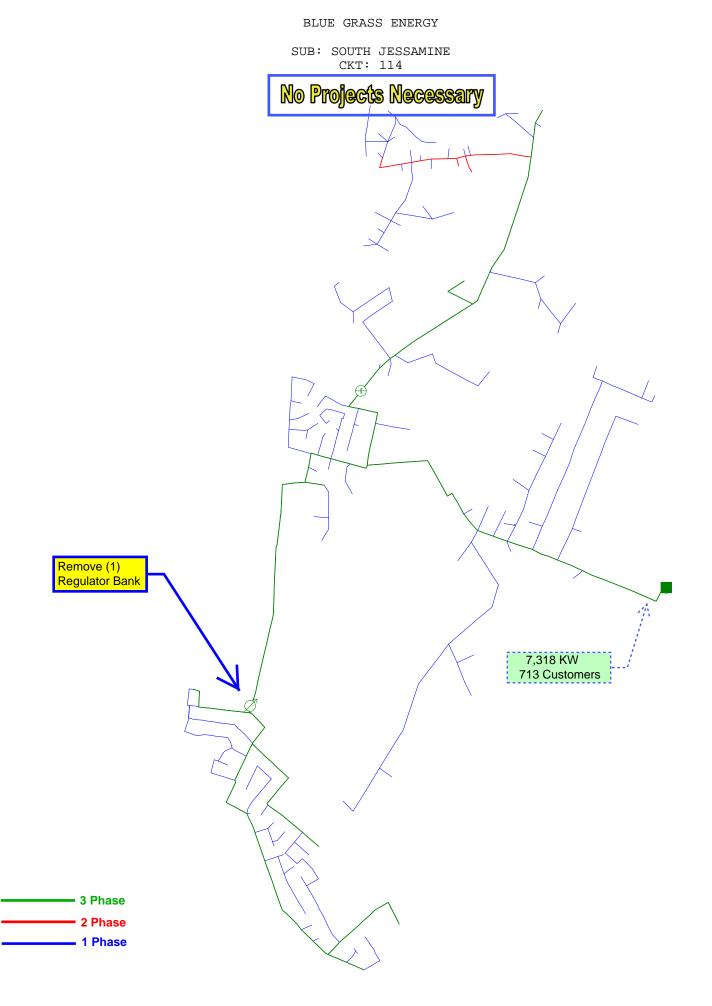
SUB: SOUTH ELKHORN CKT: 134

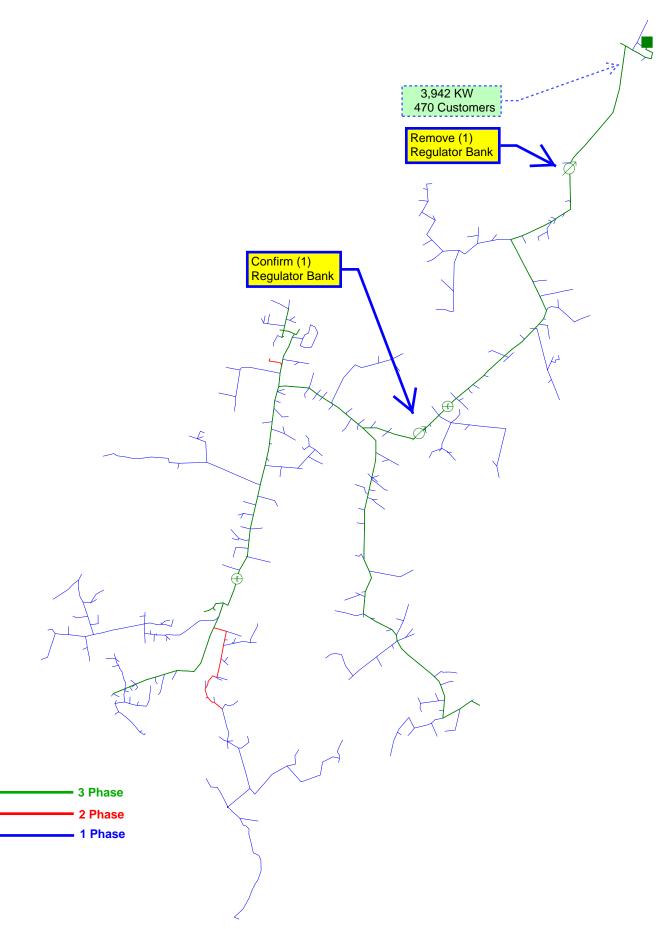
No Projects Necessary

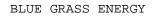


SUB: SOUTH JESSAMINE

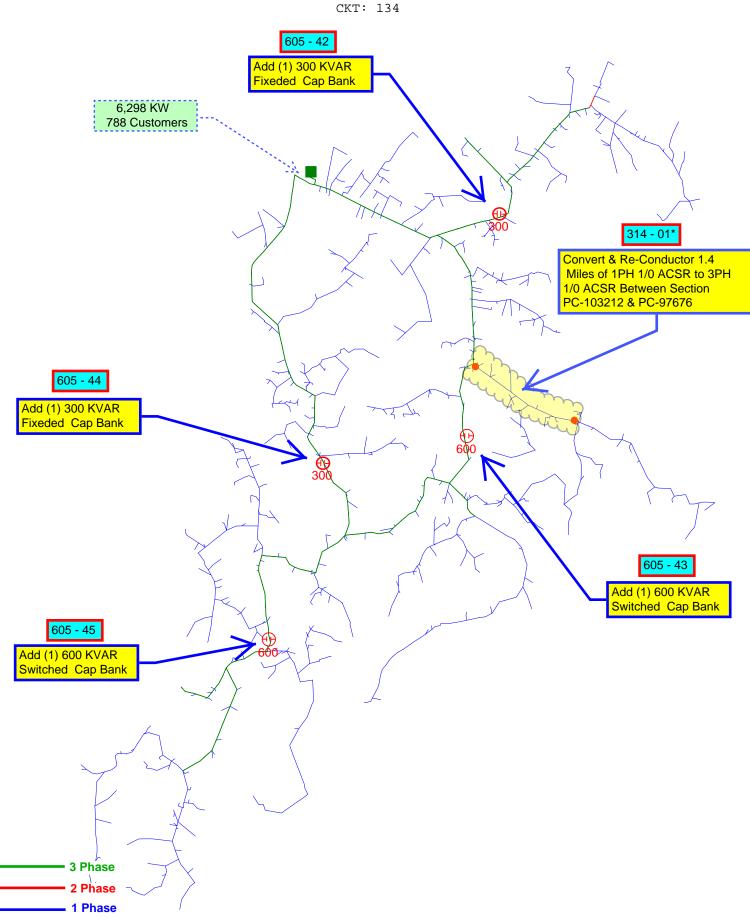
SUB: SOUTH JESSAMINE CKT: 10H


No Projects Necessary

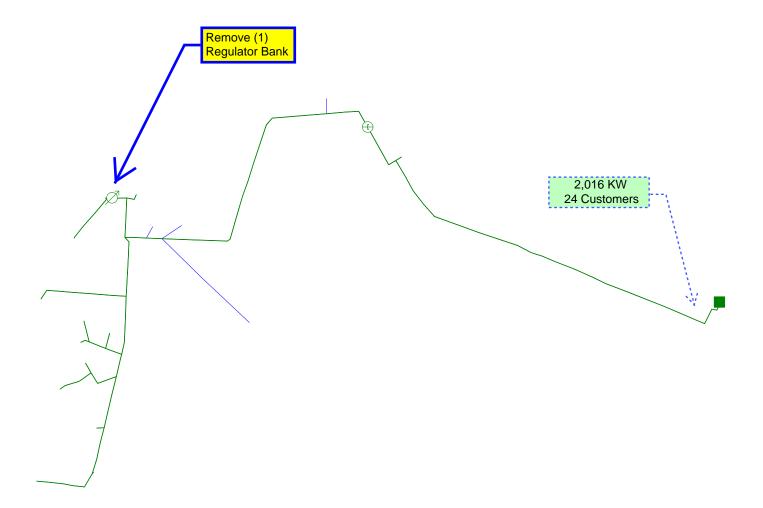

3 Phase


2 Phase

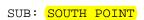
1 Phase



SUB: SOUTH JESSAMINE CKT: 124

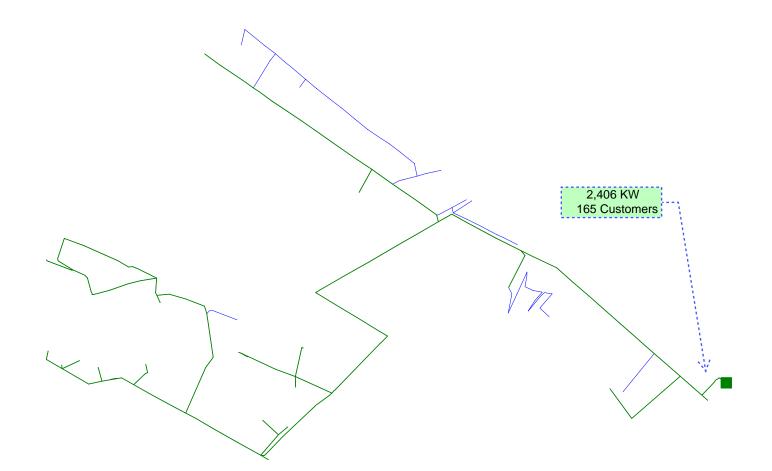


SUB: SOUTH JESSAMINE CKT: 134



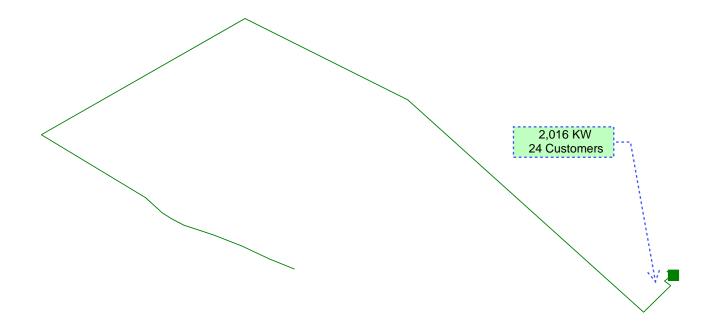
SUB: SOUTH JESSAMINE CKT: 144

No Projects Necessary


------ 3 Phase ------ 2 Phase ------ 1 Phase

CKT 124 CKT 104

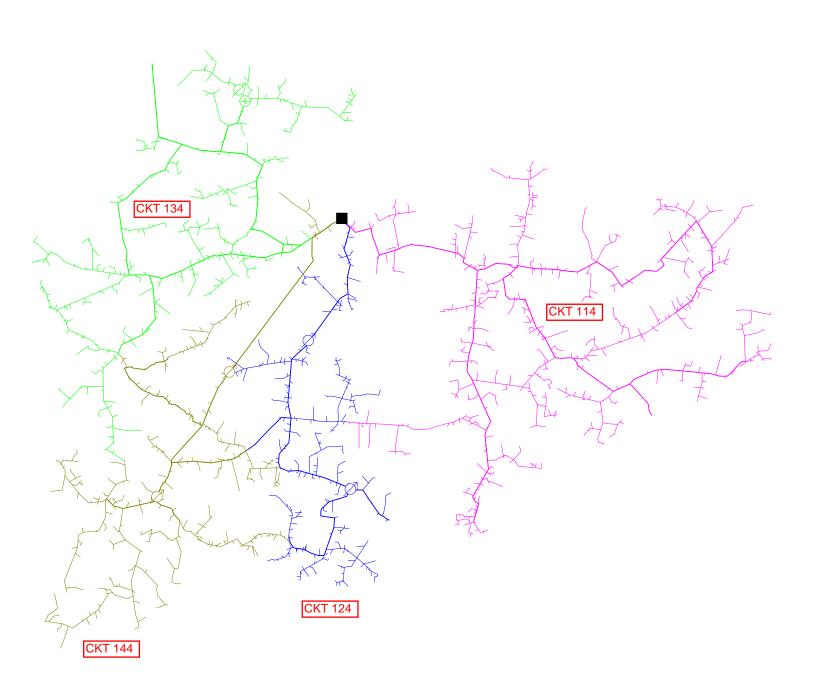
SUB: SOUTH POINT OPÚ: 124

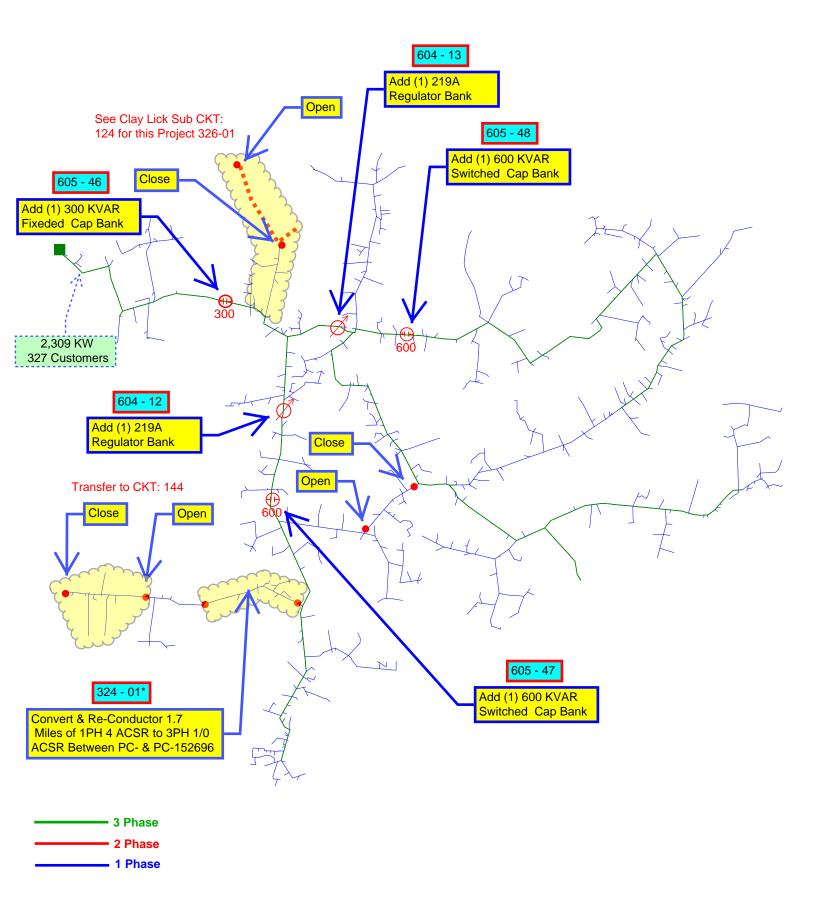

No Projects Necessary

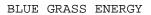
3 Phase 2 Phase 1 Phase

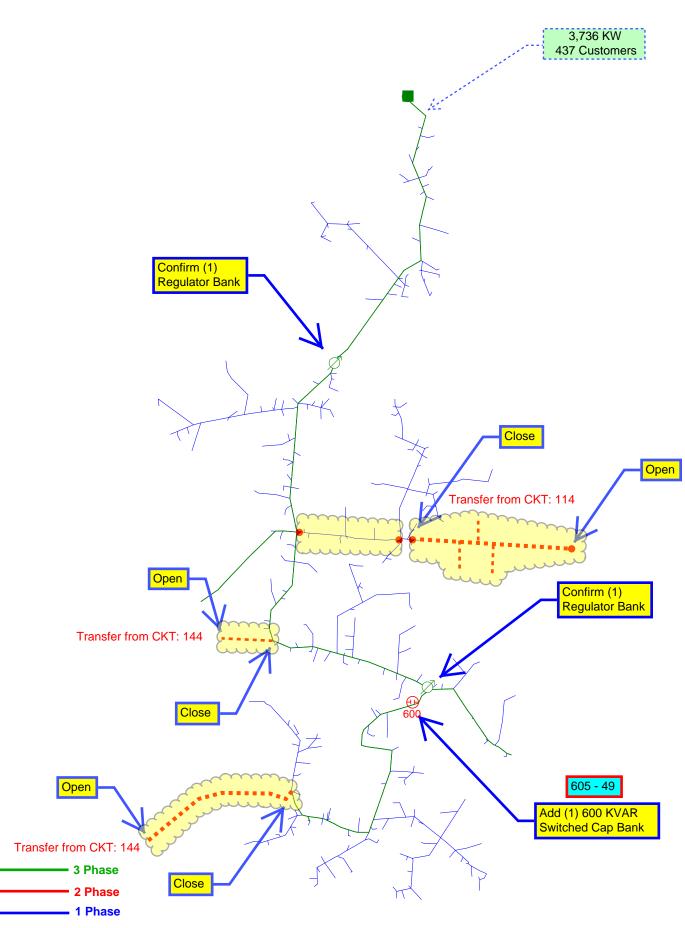
SUB: SOUTH POINT CKT: D102458

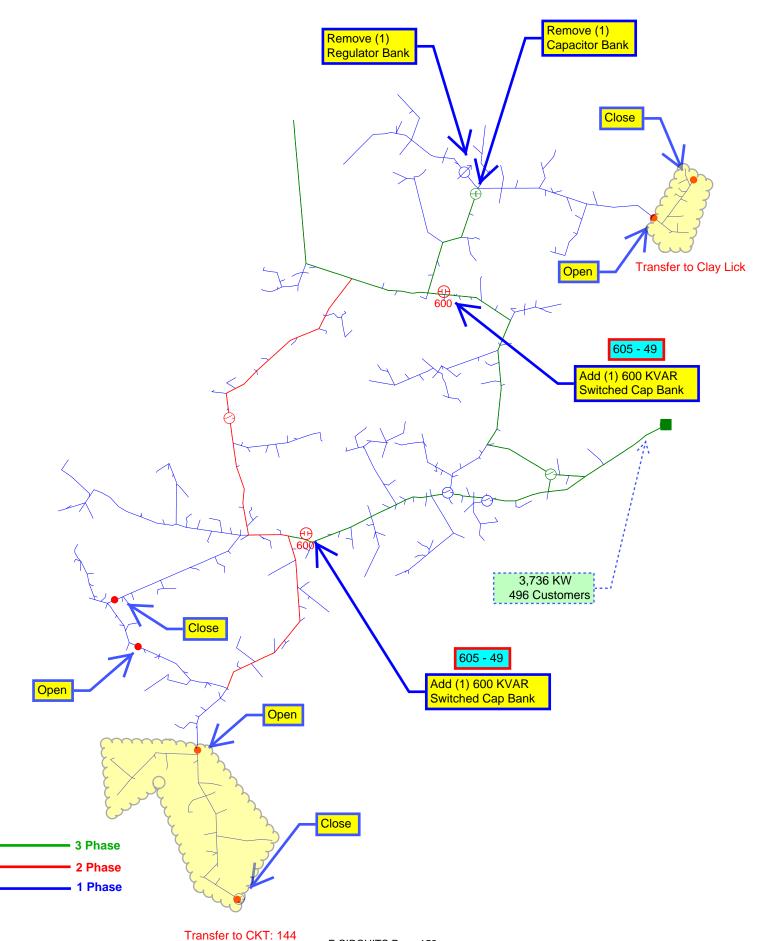
No Projects Necessary

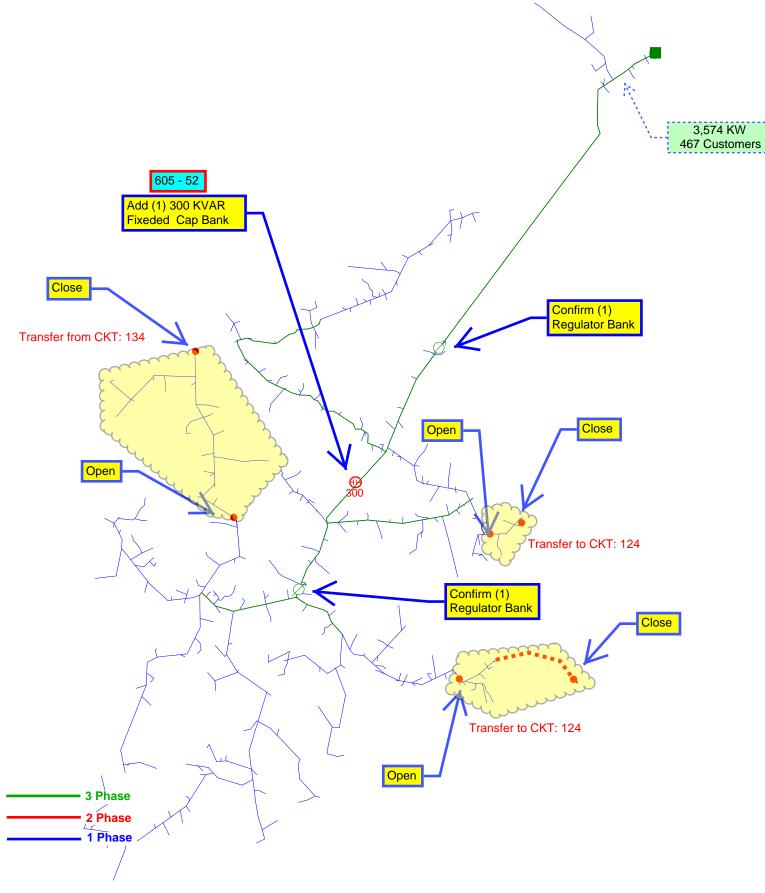


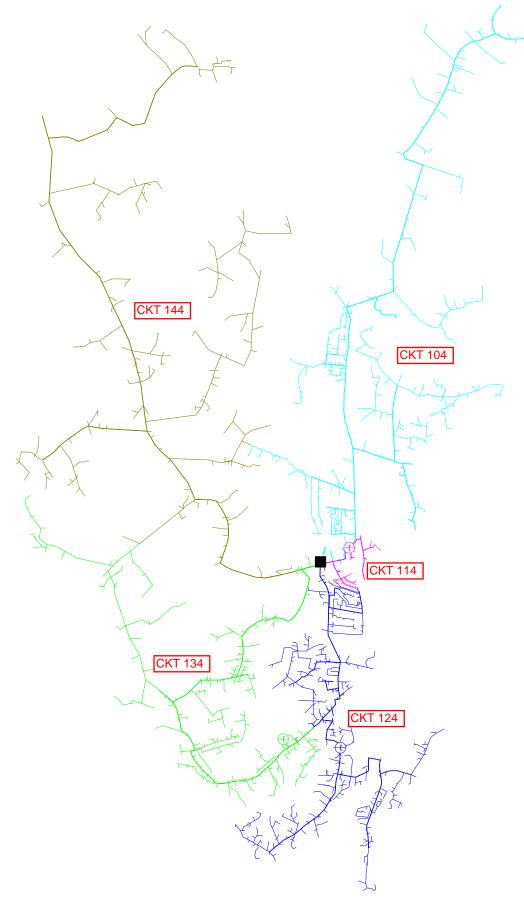

------ 3 Phase

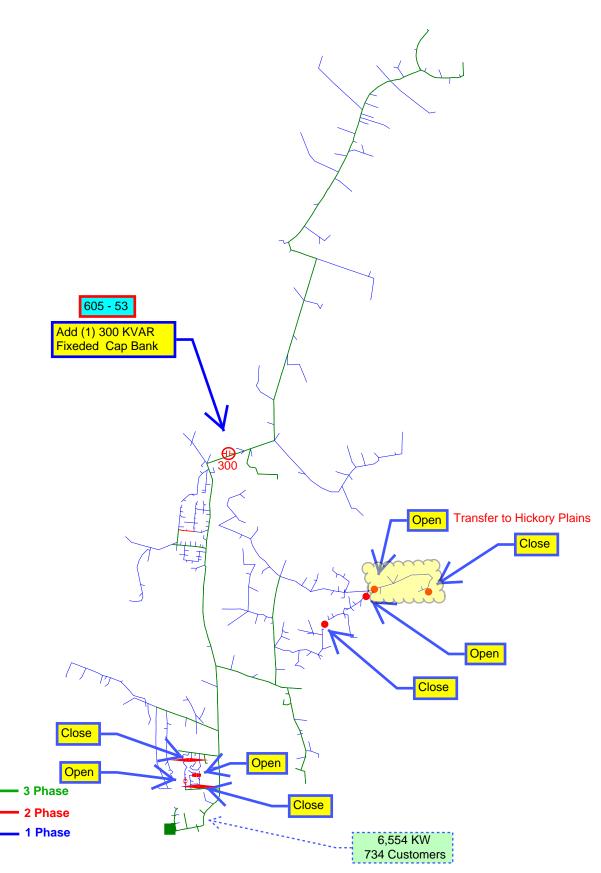

2 Phase


1 Phase

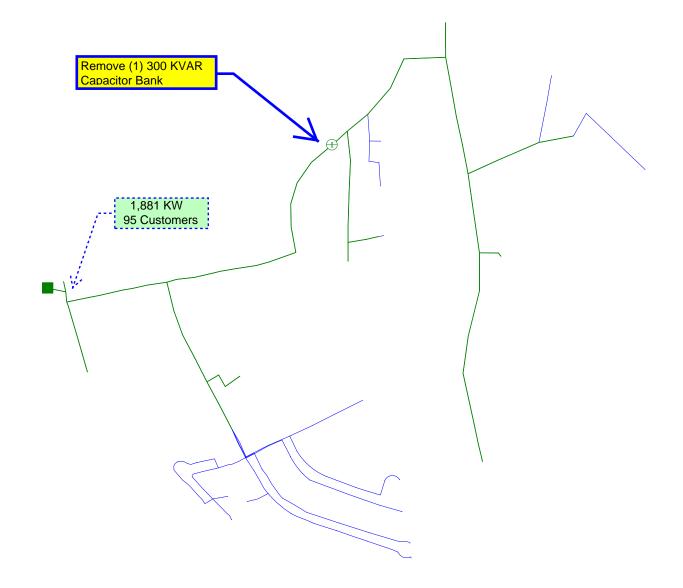

SUB: VAN ARSDELL







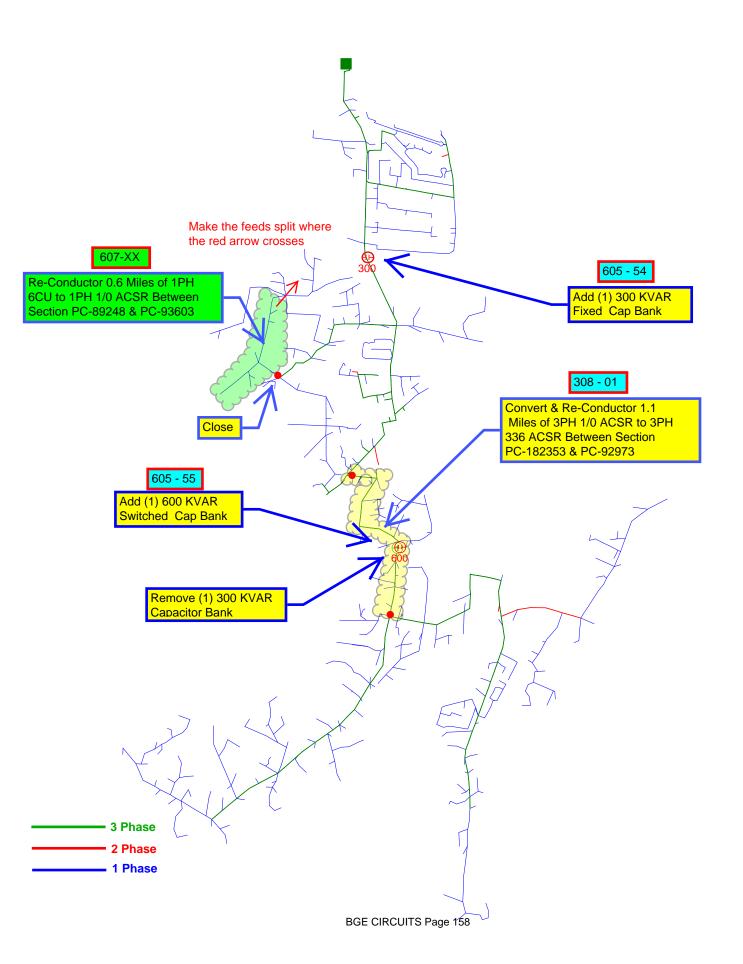
SUB: WEST BEREA


SUB: WEST BEREA CKT: 104

BGE CIRCUITS Page 156

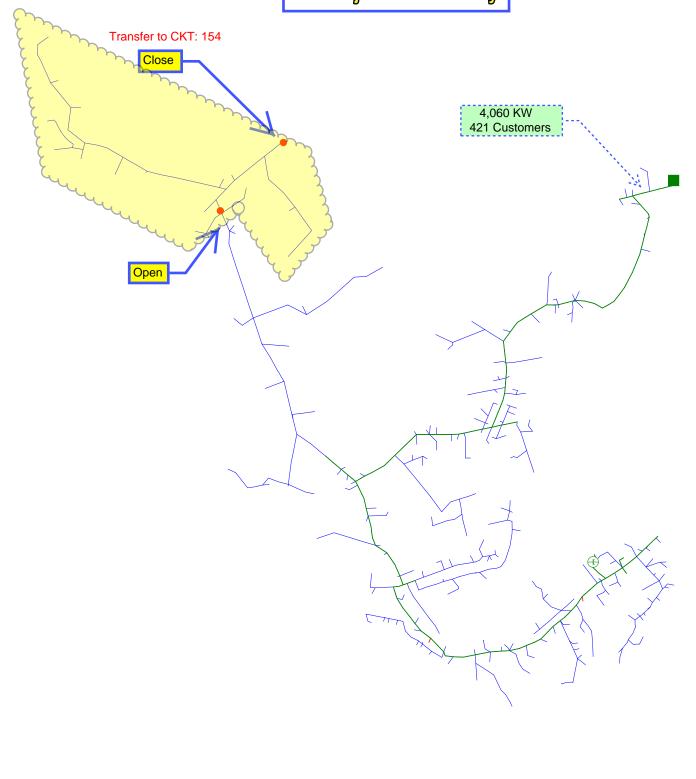
SUB: WEST BEREA CKT: 114

No Projects Necessary

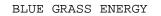


3 Phase

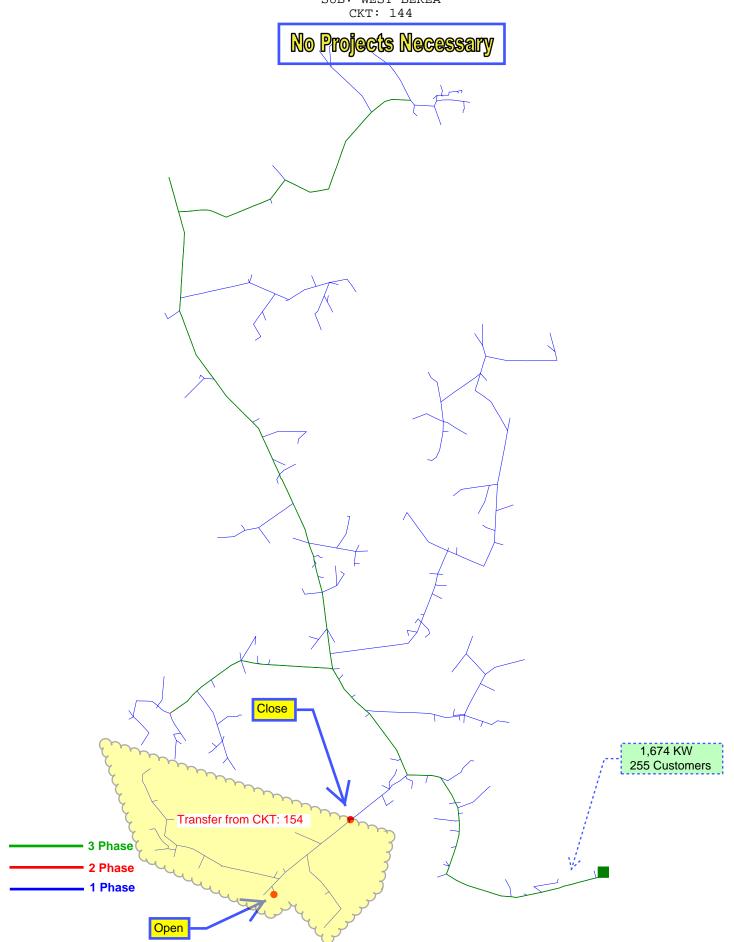
2 Phase

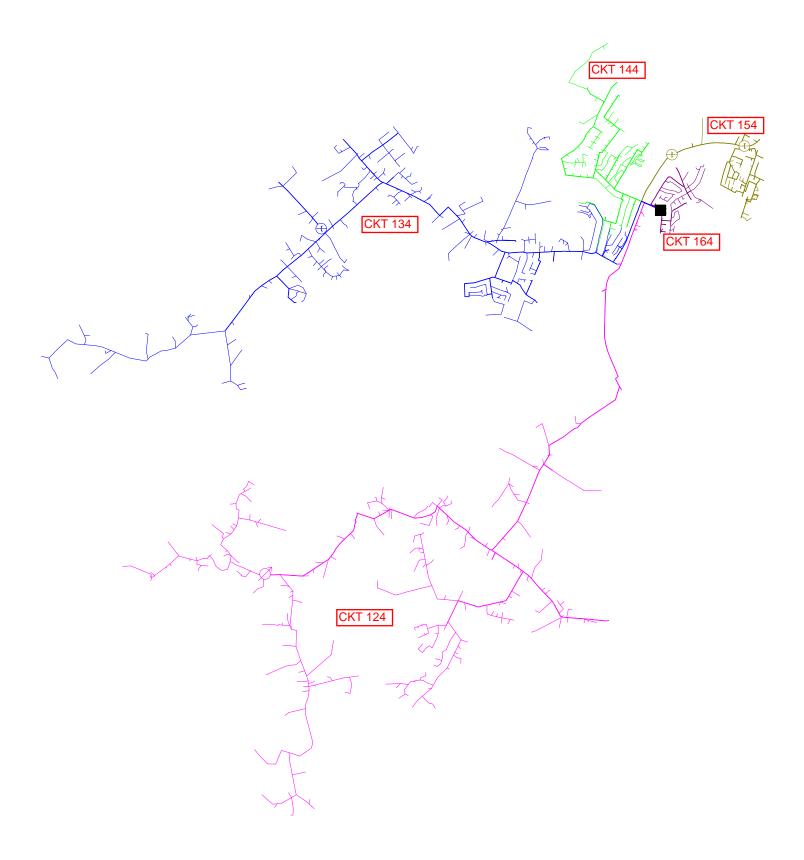

1 Phase

SUB: WEST BEREA CKT: 124

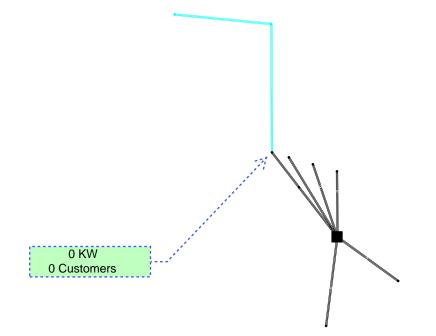


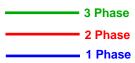
SUB: WEST BEREA CKT: 134

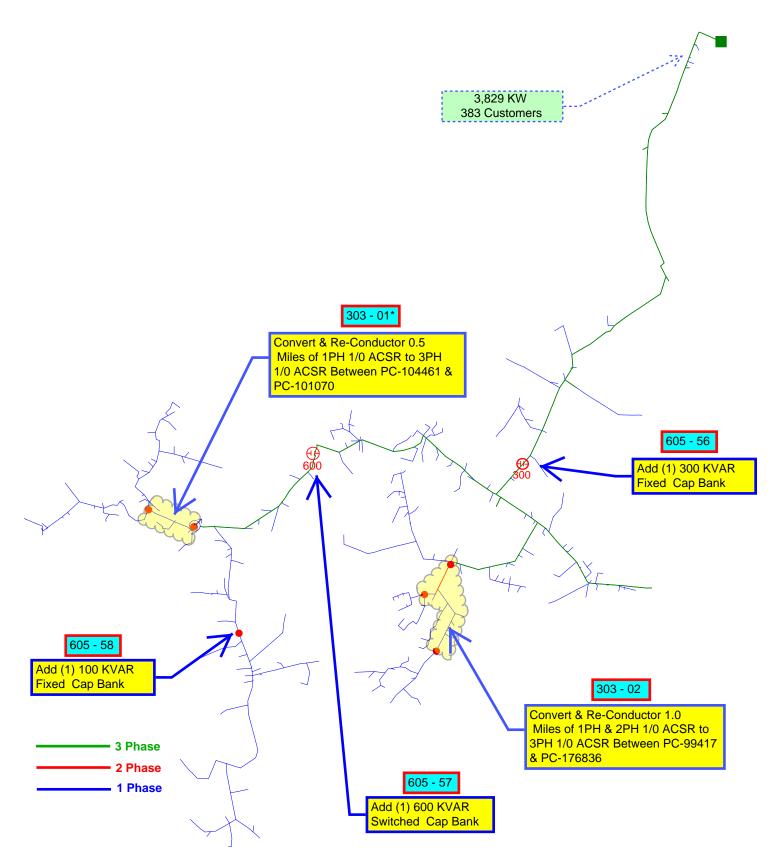

No Projects Necessary

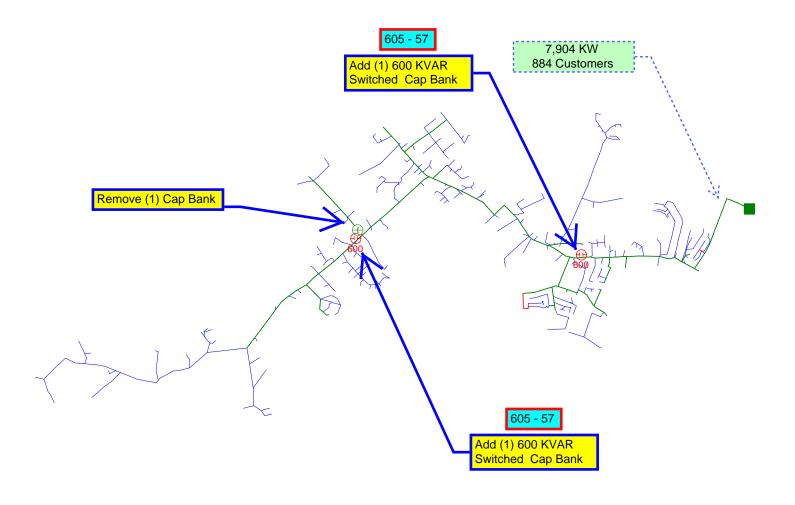


3 Phase 2 Phase 1 Phase


SUB: WEST BEREA

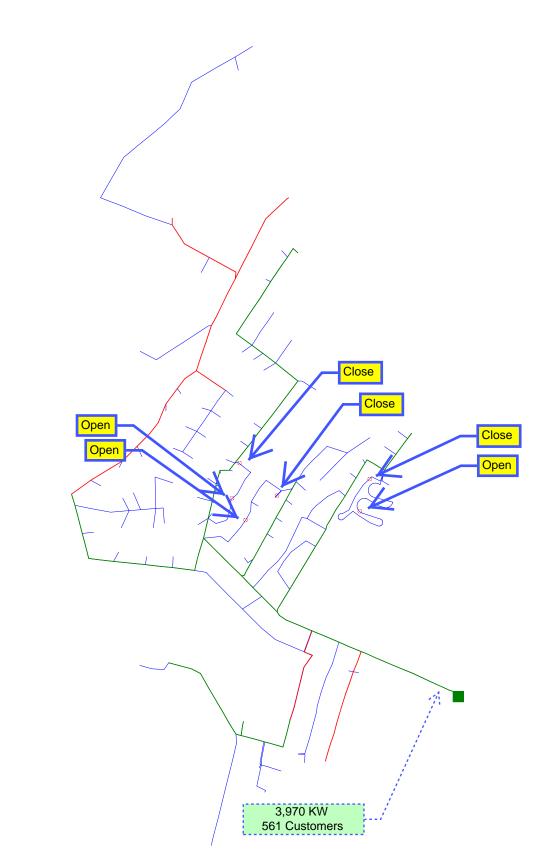



SUB: WEST NICHOLASVILLE CKT: 104


SUB: WEST NICHOLASVILLE CKT: 124

BGE CIRCUITS Page 163

SUB: WEST NICHOLASVILLE CKT: 134


No Projects Necessary

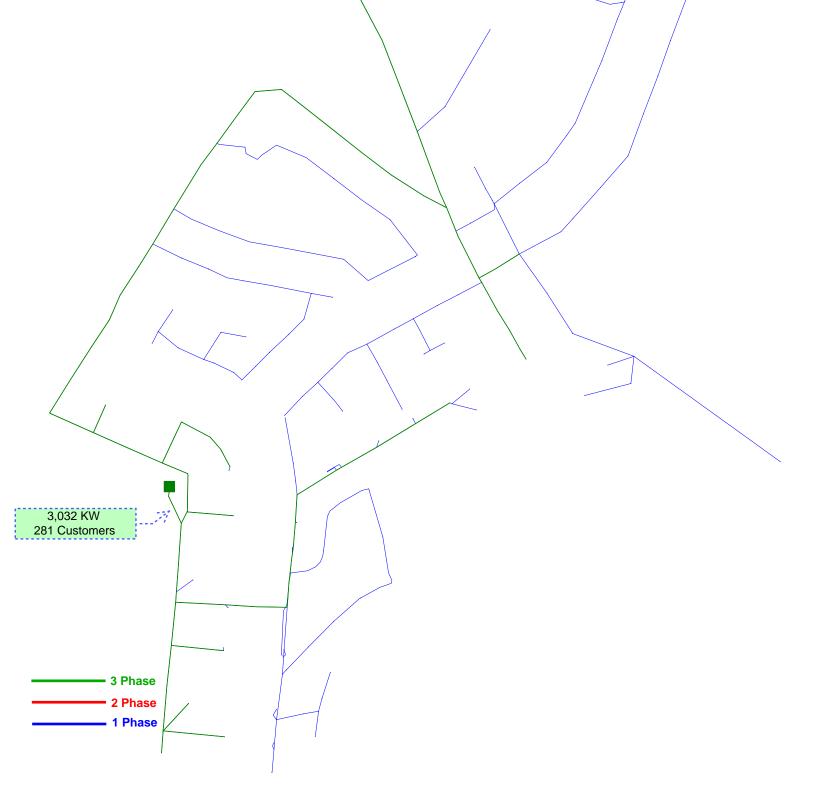
SUB: WEST NICHOLASVILLE CKT: 144

No Projects Necessary

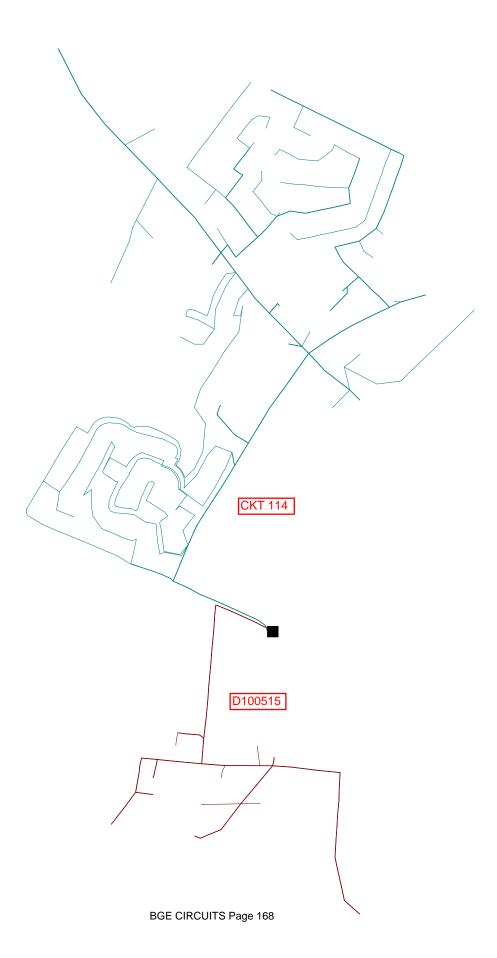
3 Phase 2 Phase 1 Phase

SUB: WEST NICHOLASVILLE CKT: 154

No Projects Necessary

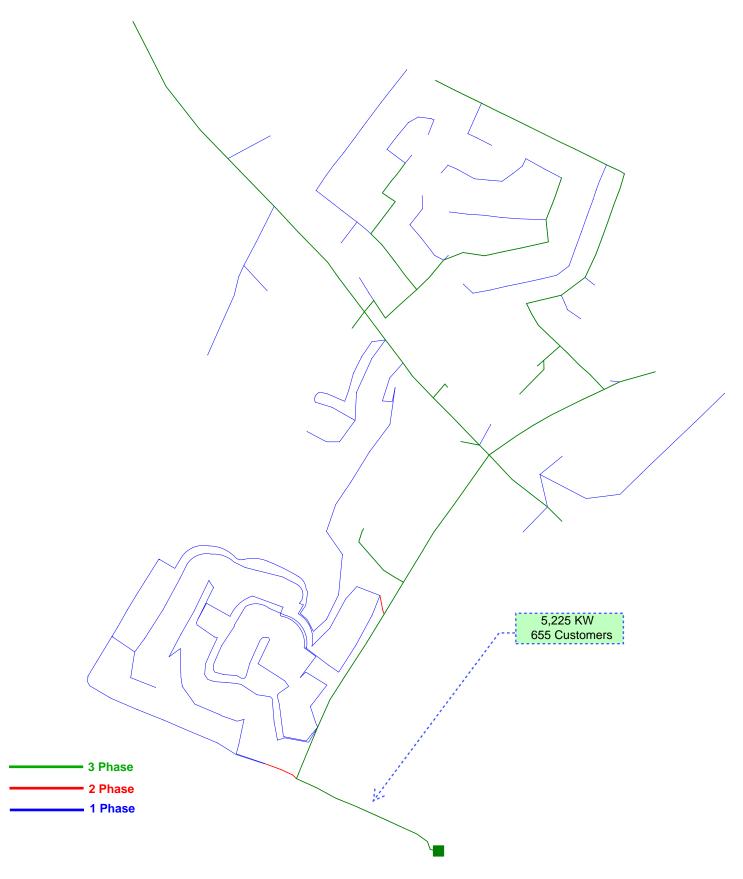

k

Æ


4,683 KW 733 Customers

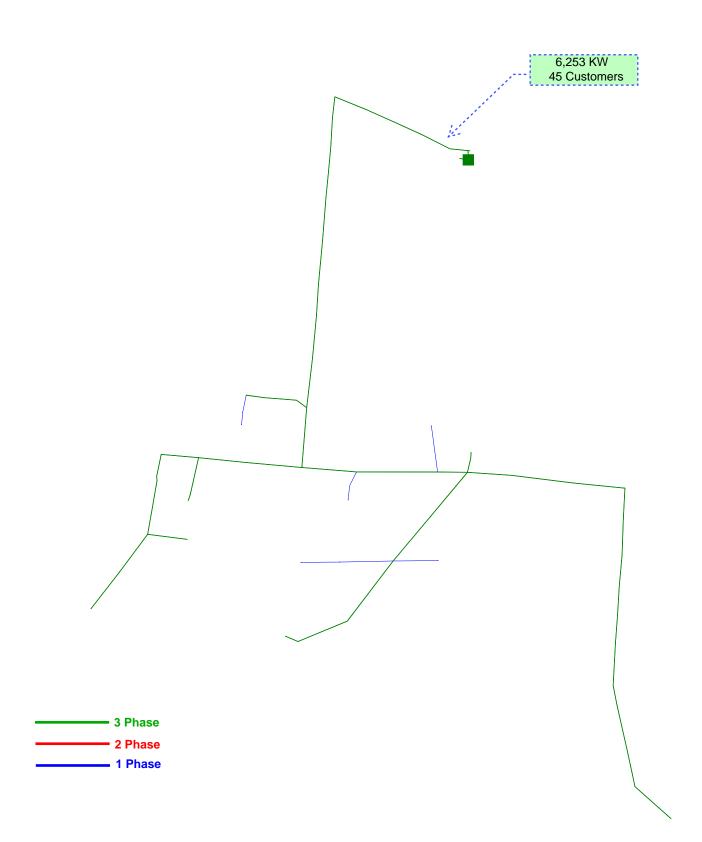
SUB: WEST NICHOLASVILLE CKT: 164

No Projects Necessary



SUB: WEST NICHOLASVILLE #2

SUB: WEST NICHOLASVILLE #2 CKT: 114



BGE CIRCUITS Page 169

SUB: WEST NICHOLASVILLE #2 CKT: D100515

No Projects Necessary

P.O. Box 990 • 1201 Lexington Road • Nicholasville, Kentucky 40340-0990 Phone: 888-546-4243 • Fax: 859-885-2854 • www.bgenergy.com

EXCERPT FROM MINUTES DATED November 18, 2010

RESOLUTION

"WHEREAS, a Three-Year Construction Work Plan dated 2010-2013 in the amount of \$37,991,700 has been prepared by Patterson & Dewar Engineers, Inc.

"NOW, THEREFORE, BE IT RESOLVED, that the Board of Directors of Blue Grass Energy Electric Cooperative Corporation hereby approves the 2010-2013 Work Plan as a plan of action, to be followed, or until amended with the approval of RUS."

CERTIFICATE OF SECRETARY

I, Paul L. Tucker, Secretary of Blue Grass Energy Electric Cooperative Corporation hereby certify that the foregoing is a true and correct copy of an excerpt taken from the minutes of a regular meeting of the Board of Directors held on November 18, 2010.

Signatúre of Secretary

KY64 2010 ~ 2013 CONSTRUCTION WORK PLAN

740c (ENVIROMENTAL CHECKLIST) 15-Nov-10

			Was project approved in a previous CWP or Amendment? If yes, provide status if no provide anticipated classification (per 7CFR1794)		For substations, will the new disturbance be <1 acre, <5 acres, or >5 acres? For lines, provide the voltage, length and ROW width.	Impact Statement? If yes, the environmental work must be
1. DISTRIB	BUTION		10110101			
100	• New Lines (Evoluting Tig Lines)					
100	a. New Line: (Excluding Tie-Lines) Construction Consumers	Miles				
	Underground	Miles	NA	NA		
	Overhead		NA	NA		
	Total Consum 0 Total Miles	0	NA	NA		
200	b. New Tie-Lines					
	Line Designation	Miles	27.1		1	1
			NA			
			NA			
	·		NA NA			
	·		NA			J
				Existing ROW - Yes		
300	c. Conversion and Line Changes			SHPO - NA		
500	Line Designation	Miles		T&E Species - NA		
	(301-340) Line Conversions	116.3	No	Federal lands, floodplains, wetlands - NA		
	(501 540) Ene conversions	110.5		rederar lands, rioodplains, wettands - 141	1	1
400	d. New Substations, Switching Stations, N	Aetering Points, etc.				
	Station Designation kVA	kV to kV				
	<u>Station Benghation</u> <u>attra</u>	<u>art to art</u>				
	·		NA			I
			NA			
			NA			
500	e. Substation, Switching Station, Meterin	ng Point Changes				
	Station Designation Description of	of Changes				
			NA			
			NA			
			NA			
			NA			
			NA			
600	f. Miscellaneous Distribution Equipment					
6				1	1	1
	C <u>Transformers</u>		NA			
	Underground		NA			
	Overhead		NA			
	Subtotal code 601 (included in	n total of all 600 codes belo	w)			
			27.1		1	1
	02 (2) Sets of Service Wires to increase C 03 (3) Sectionalizing Equipment		NA NA			
	04 (4) Regulators		NA			
	05 (5) Capacitors		NA			
	06 (6) Pole Replacements		NA			
0	(b) The Replacements		11A	E-istine DOW - V		
				Existing ROW - Yes SHPO - NA		
				T&E Species - NA		
6	08 (8) Conductor Replacements - 54 miles	8	No	Federal lands, floodplains, wetlands - NA		
700	g. Other Distribution Items				r	n
70			NA			
	02 (2) Security Lights		NA		l	
	03 (3) Reimbursement of General Funds (see attached)	NA		l	
70	04 (4) AMR		NA		L	<u> </u>
2. TRAN	SMISSION					
000	- Nous Line					
800	 New Line 					

a. New Line
Line Designation
Wire Size

NA		
NA		

900 b. New Substations, Switching Stations, etc.

000	c. Line and Station Changes
000	
100	d. Other Transmission Items
	(1) R/W Procurement
	(2) Engineering Fees
	(3) Reimbursement of General Funds (see schedule)
	(4)

NA		
NA		
NA		
NA		

NA		
NA		
NA		
NA		

NA		
NA		
NA		
NA		

3.

e Rating	NA		
	NA		

4. HEADQUARTERS FACILITIES

1300	a. New or additional Facilities	NA		
	b	NA		
1400	5. ACQUISITIONS			
	a. Consumers Miles	NA		
	b	NA		
1500	6. ALL OTHER			
	a.	NA		
	b.	NA		

United States Department of Agriculture Rural Development

JAN 3 2011

Mr. Daniel W. Brewer President and CEO Blue Grass Energy Cooperative Corporation P.O. Box 990 Nicholasville, Kentucky 40340-0990

Dear Mr. Brewer:

The USDA Rural Utilities Service (RUS) has reviewed the Environmental Report (ER) covering the facilities recommended in Blue Grass Energy Cooperative Corporation's 2010-2013 Construction Work Plan (CWP). In accordance with 7 CFR Part 1794, Environmental Policies and Procedures, as amended, all projects proposed in the CWP are Categorical Exclusions (§1794.21[b][7] and [15]). No additional environmental information needs to be submitted for review, provided there are no extraordinary circumstances and the projects do not change from what has been described in the CWP/ER.

Blue Grass Energy Cooperative Corporation now has environmental approval for all projects in the CWP. Blue Grass Energy Cooperative Corporation is responsible for acquiring the necessary permits for construction and operation of the proposed projects and for ensuring that any environmental commitments made in the CWP/ER are fulfilled.

Thank you for your assistance and cooperation in helping us fulfill our environmental review requirements. If you have any questions, please contact me at (202) 720-1994 or Ms. Lauren McGee, Environmental Scientist, at <u>lauren.mcgee@wdc.usda.gov</u> or (202) 720-1482.

Sincerely,

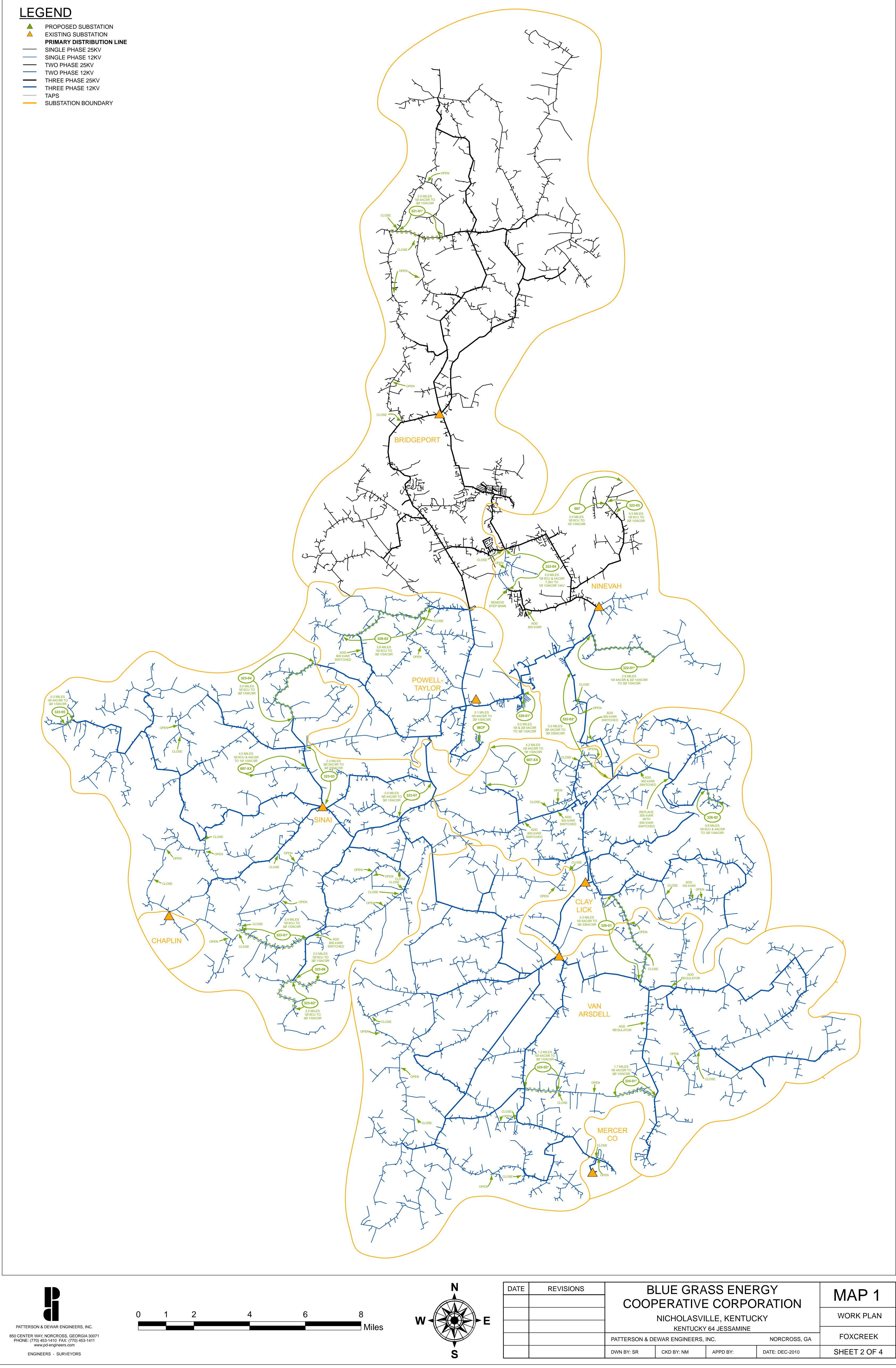
CHARLES M. PHILPOTT Chief, Engineering Branch Northern Regional Division USDA Rural Utilities Service

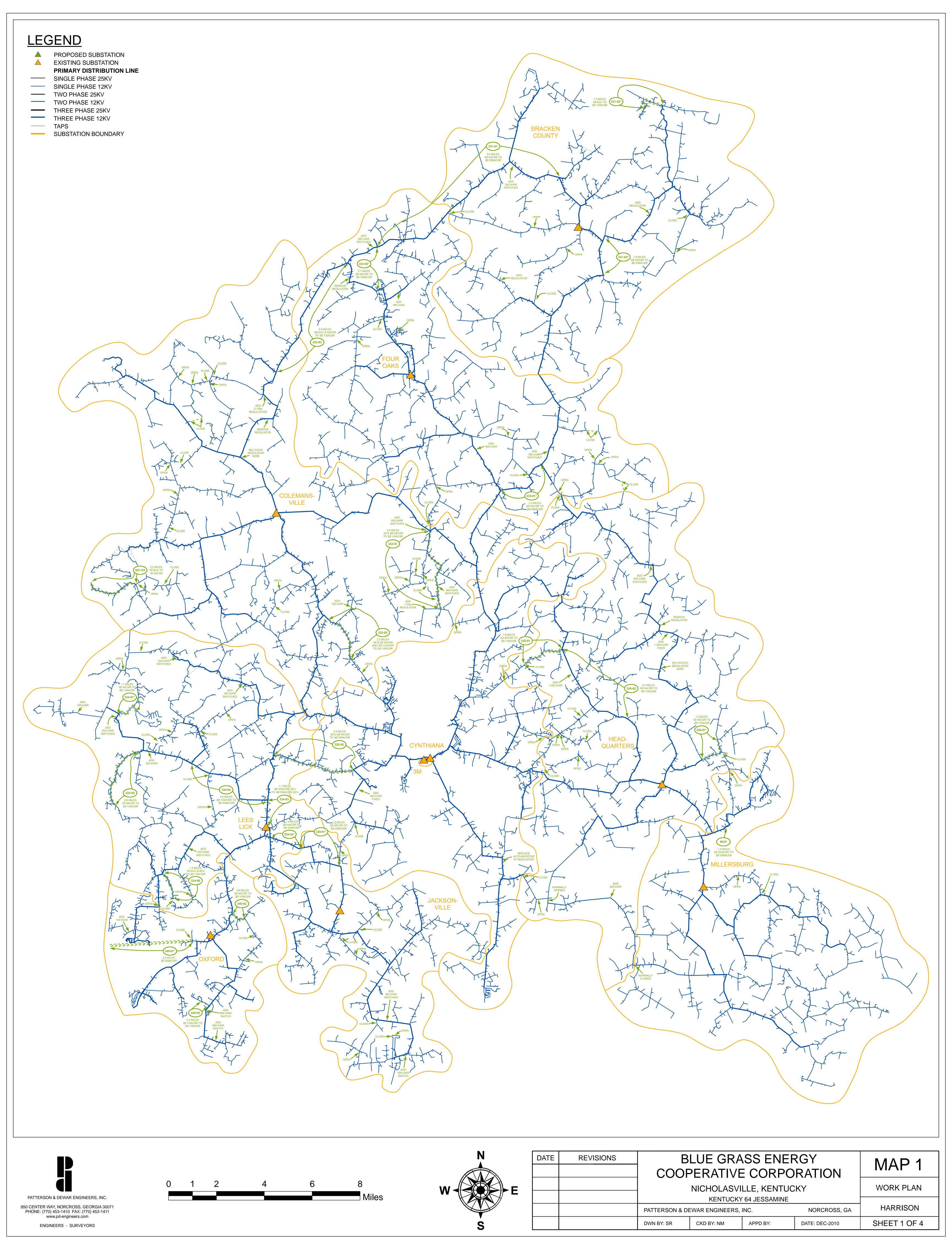
1400 Independence Ave, S.W. · Washington DC 20250-0700 Web: http://www.rurdev.usda.gov

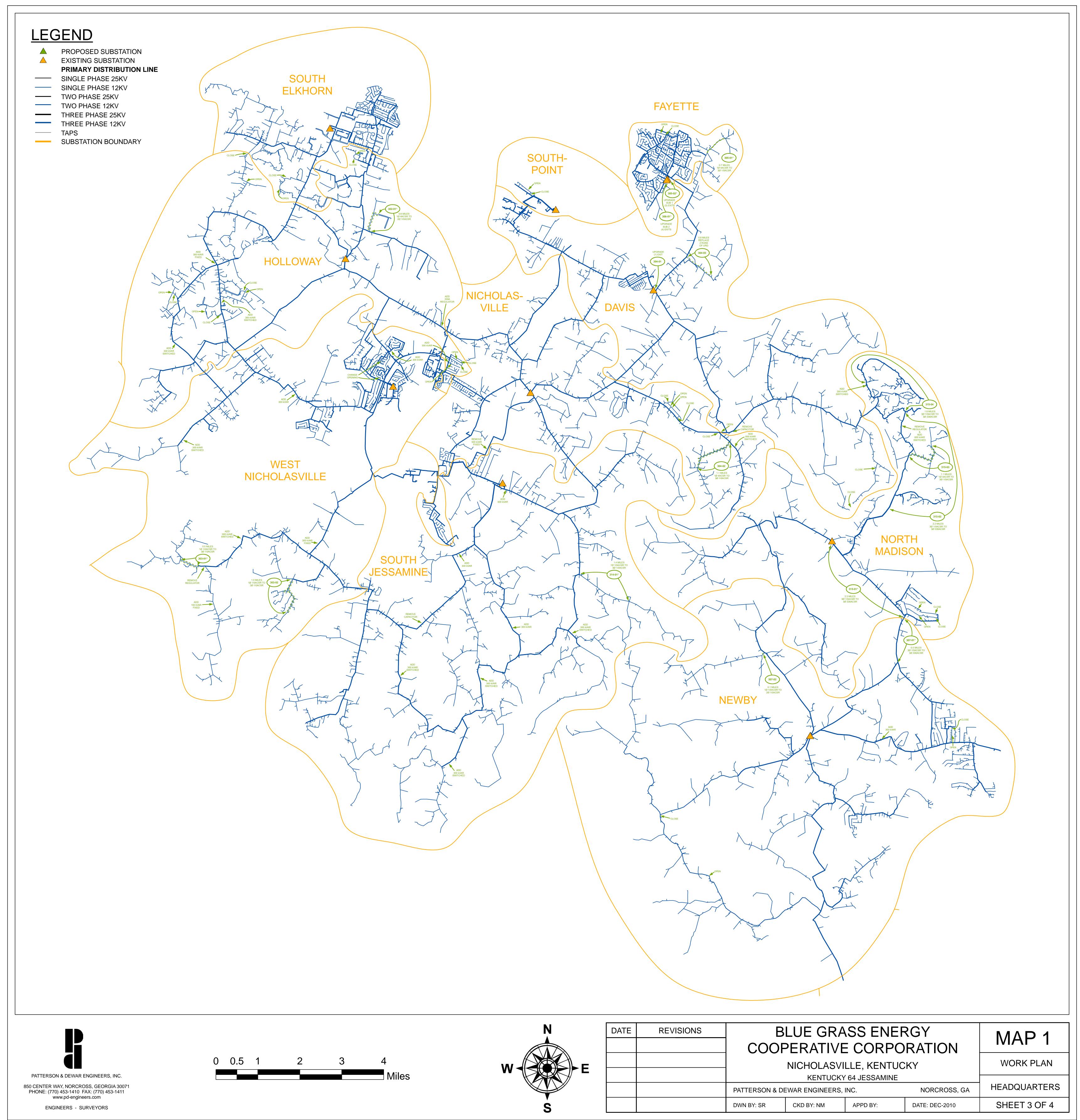
Committed to the future of rural communities.

"USDA is an equal opportunity provider, employer and lender." To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, DC 20250-9410 or call (800) 795-3272 (Voice) or (202) 720-6382 (TDD).

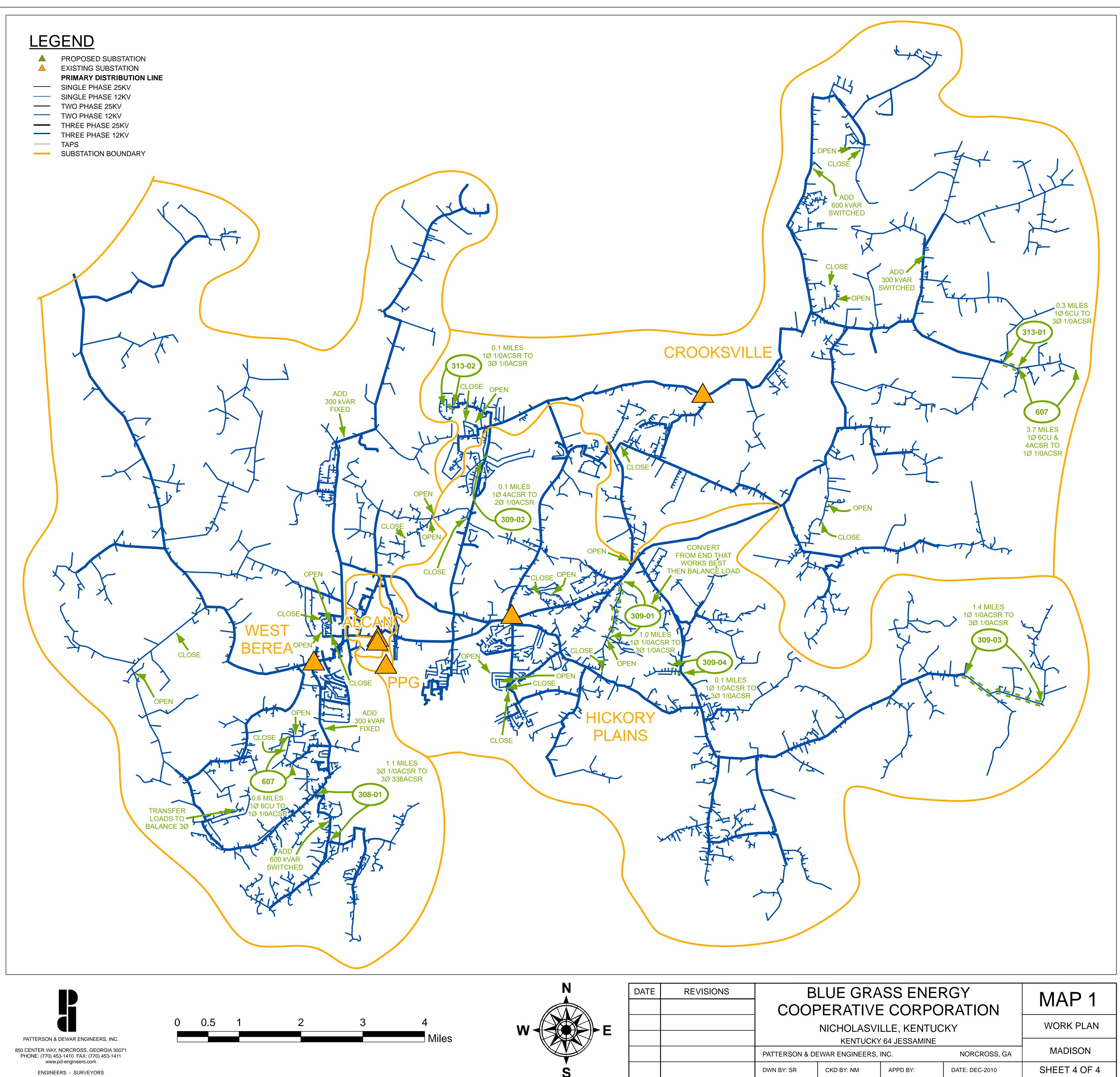
Anticipated Annual Additional Cost of Operation After Completion of all CWP Projects:

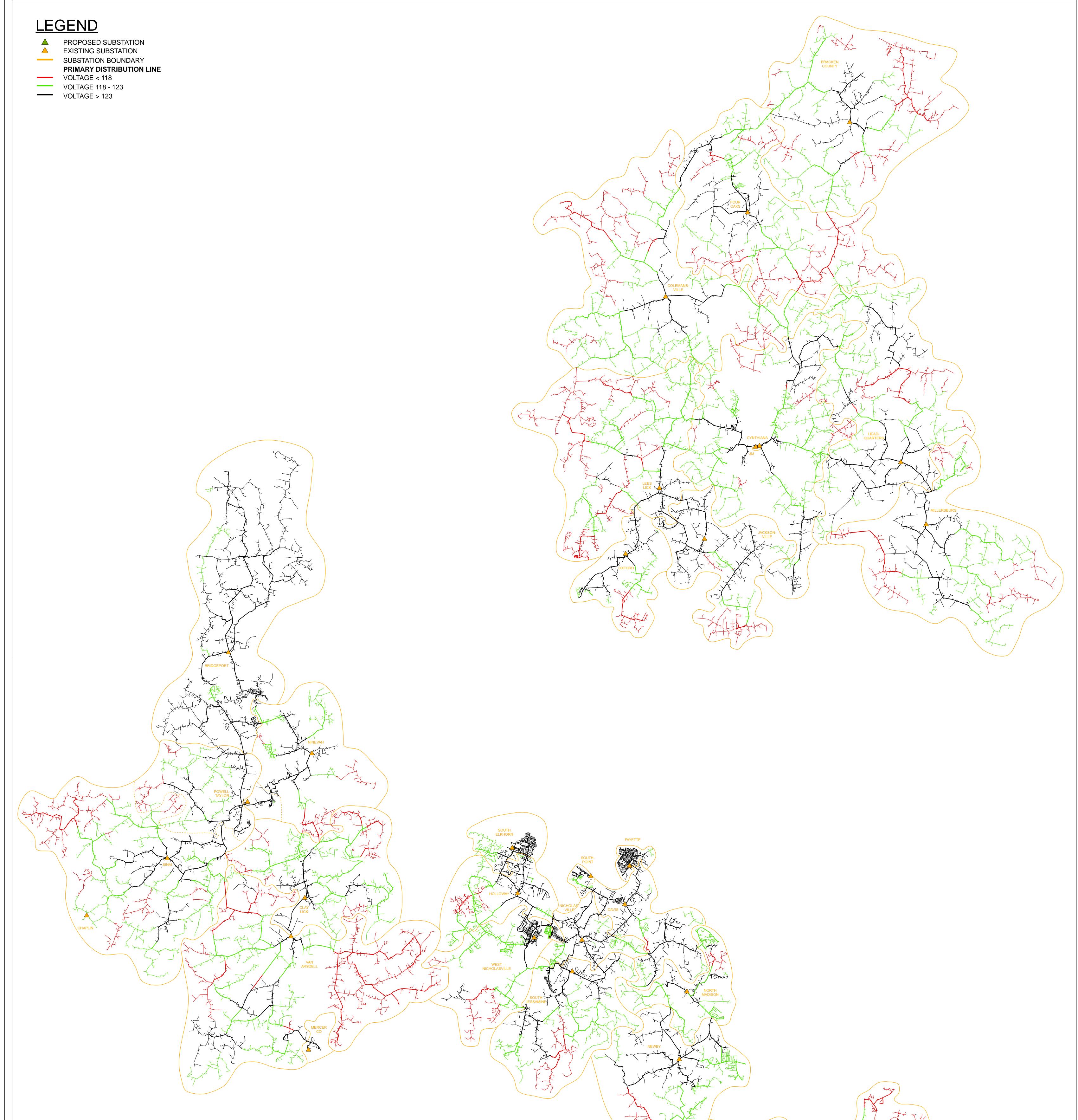

Estimated Depreciation:

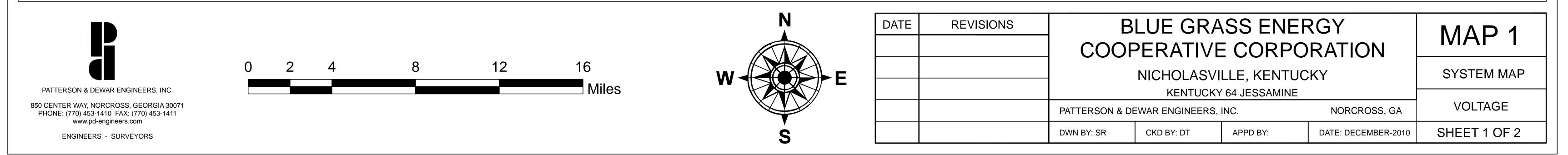

Account No.	Balance 12/31/2010	Monthly Rate X 12	Depreciation	Percent of Total	Estimated Capitalization	Estimated Depreciation		
36200	\$1,660,932.86	2.95%	\$48,997.52	0.87%	\$328,839	\$9,701		
36400	\$52,239,365.70	3.50%	\$1,828,377.80	32.30%	\$12,270,866	\$429,480		
36500	\$46,088,416.58	2.55%	\$1,175,254.62	20.76%	\$7,887,534	\$201,132		
36700	\$11,696,448.64	2.65%	\$309,955.89	5.48%	\$2,080,220	\$55,126		
36800	\$30,339,001.59	2.85%	\$864,661.55	15.27%	\$5,803,038	\$165,387		
36900	\$26,780,109.08	3.35%	\$897,133.65	15.85%	\$6,020,970	\$201,702		
37000	\$6,560,055.87	3.15%	\$206,641.76	3.65%	\$1,386,843	\$43,686		
37100	\$4,745,158.26	4.15%	\$196,924.07	3.48%	\$1,321,625	\$54,847		
37300	\$2,658,382.16	5.00%	\$132,919.11	2.35%	\$892,065	\$44,603		
39000						\$0		
	\$182,767,870.74		\$5,660,865.97	100.00%	\$37,992,000	\$1,205,664		
Estimated Property Taxes:								
2009	Property		Average		Work Plan	Estimated		
Taxes	@ 12/31/09		Rate		Amount	Taxes		
\$1,603,843	\$147,171,999		1.09%		\$37,992,000	\$414,027		
Estimated Interest Expense:								
	Plant		Estimated Interest Rate			Estimated Interest Expense		
	\$37,992,000		4.00%			\$1,519,680		
Estimated Operation and Maintenance Expense:								
	Plant		Estimated O&M %			Estimated O&M Expense		
	\$37,992,000		4.30%			\$1,633,656		


Estimated cost of operation after the proposed facilities are completed:

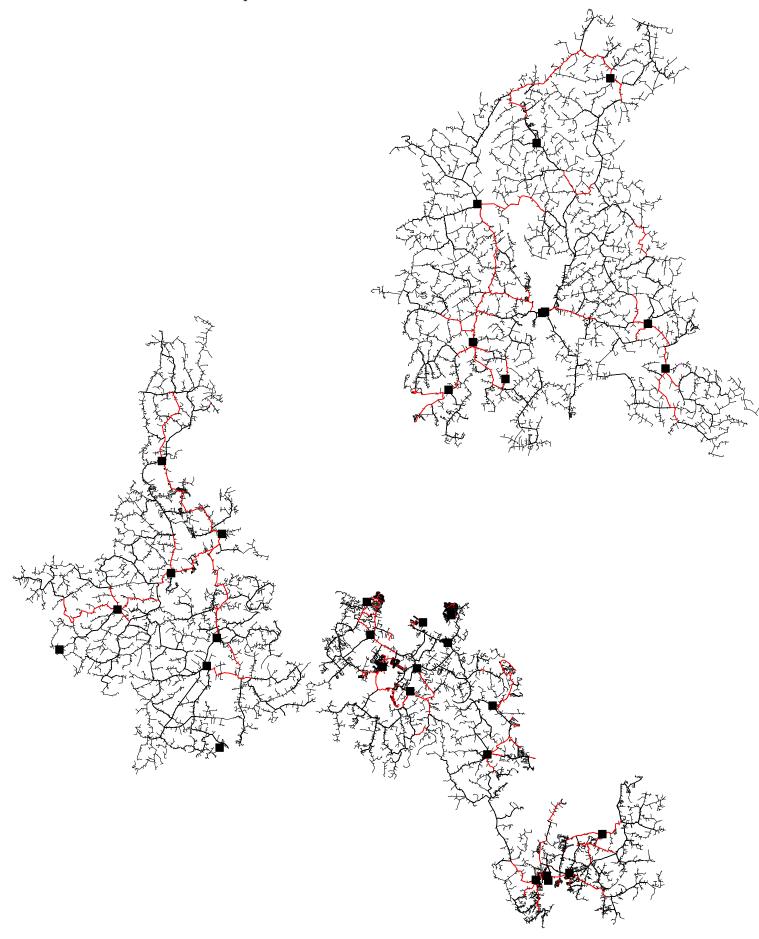
\$4,773,027


- \land

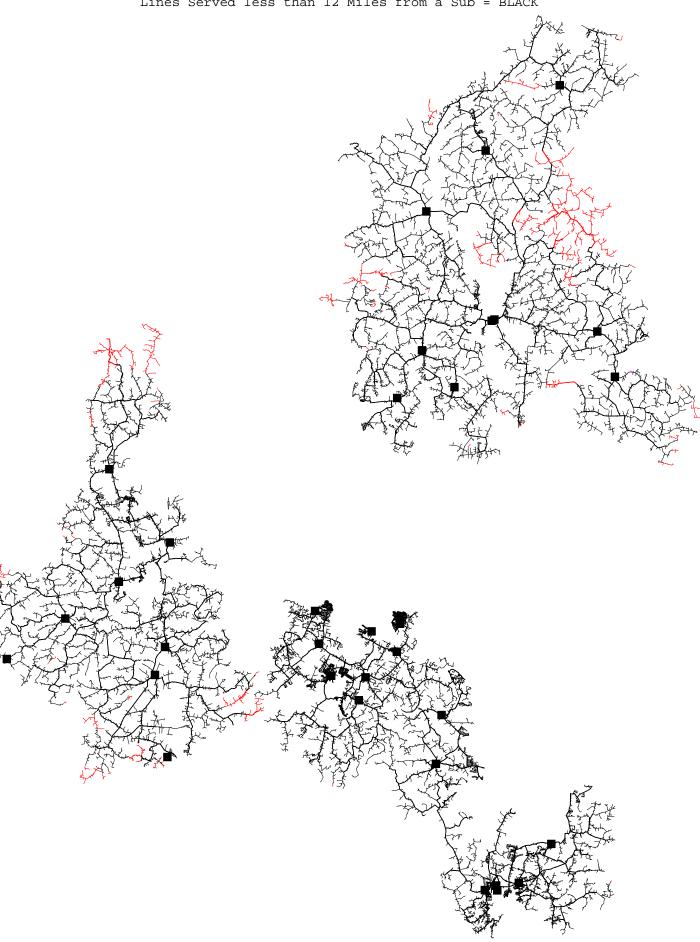




2010 - 2012 **CONSTRUCTION WORK PLAN** SYSTEM VOLTAGE EXISTING DECEMBER 2010 SYSTEM



CROOKSVII


Primary Conductor of 6 ACWC _8 ACWC = RED

Primary Conductor of 336.4 ACSR = RED Primary Conductor Smaller than 336.4 ACSR = BLACK

Lines Served 12 Miles and Greater from a Sub = RED Lines Served less than 12 Miles from a Sub = BLACK

Underground Primary = RED Overhead Primary = BLACK

1	4.4	. /	25	KV	=	RED
7.2	/	12.	47	KV	=	Black

