COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

IN THE MATTER OF:)
THE APPLICATION OF KENTUCKY-AMERICAN) CASE NO. 2010-00036 WATER COMPANY FOR AN ADJUSTMENT OF) RATES ON AND AFTER MARCH 28, 2010)

DIRECT TESTIMONY OF PATRICK L. BARYENBRUCH
February 26, 2010

1. Q. Please state your name and business address.
A. Patrick L. Baryenbruch, 2832 Claremont Road, Raleigh, North Carolina 27608.
2. Q. Please describe your educational and professional background.
A. I received a Bachelors degree in accounting from the University of WisconsinOshkosh in 1974 and a Masters in Business Administration degree from the University of Michigan in 1979.

I am a financial consultant and a certified public accountant. I am a member of the American Institute of Certified Public Accountants and the North Carolina Association of Certified Public Accountants.

I began my career as a staff accountant with Arthur Andersen \& Company where I performed financial audits of utilities, banks and finance companies. After three years I left to pursue an M.B.A. degree. Upon graduation from business school, I worked with the consulting firms of Theodore Barry \& Associates and Scott, Madden \& Associates.

During my consulting career, I have performed consulting assignments for approximately 50 utilities and 10 public service commissions. I have participated as project manager, lead or staff consultant for 24 commission-ordered management and prudence audits of public utilities. Of these, I have been responsible for evaluating the area of affiliate charges and allocation of corporate expenses in the Commission-ordered audits of Connecticut Light and Power, Connecticut Natural Gas, General Water Corporation (Pennsylvania Operations), Philadelphia Suburban Water Company (now Aqua America) and Pacific Gas \& Electric Company.

My firm has performed the commission-ordered audit of Southern California Edison's 2002, 2003, 2004 and 2005 transactions with its non-regulated affiliate companies.
3. Q. What are your duties and responsibilities in your current position?

KENTUCKY AMERICAN WATER COMPANY

A. I am the President of my own consulting practice, Baryenbruch \& Company, LLC, which was established in 1985. In that capacity, I provide consulting services to utilities and their regulators.

4. Q. Please describe the reason for your testimony in this case.

A. I am presenting the results of my study which evaluated the services provided by American Water Service Company ("Service Company") during the 12 months ended September 30, 2009 to Kentucky American Water (KAWC). This study was undertaken in conjunction with KAWC's rate case and is true to the best of my knowledge and belief. The study is attached as Exhibit PLB-1.

5. Q. What were the objectives of your study?

A. This study was undertaken to answer four questions concerning the services provided by American Water Works Service Company, Inc. ("Service Company") to Kentucky American Water Company ("KAWC"), each of which bears on the reasonableness of those charges as incurred during the 12 months ended September 30, 2009. First, were the Service Company's charges to KAWC during the 12 months ended September 30, 2009 reasonable? Second, was KAWC charged the lower of cost or market for managerial and professional services provided by the Service Company during the 12 months ended September 30, 2009? Third, were the 12 months ended September 30, 2009 costs of the Service Company's customer accounts services, including those of the National Call Centers, comparable to those of other utilities? Fourth, are the services KAWC receives from Service Company necessary?

6. Q . What conclusions were you able to draw concerning question number 1 , whether the Service Company charges to KAWC were reasonable?

KENTUCKY AMERICAN WATER COMPANY

A. The Service Company's 12 months ended September 30, 2009 cost per KAWC customer was very reasonable compared to cost per customer for electric and combination electric/gas service companies. During the 12 months ended September 30, 2009, KAWC was charged \$55 per customer for administrative and general (A\&G)-related services provided by the Service Company. This compares to an average of $\$ 109$ per customer for service companies reporting to the Federal Energy Regulatory Commission (FERC). Only 3 of the 24 utility service companies that filed a FERC Form 60 for 2008 had a lower per customer A\&G cost than KAWC's charges from the Service Company.

7. Q. What conclusions were you able to draw concerning question number 2 , whether KAWC was charged the lower of cost or market services provided by the Service Company?

A. I was able to draw the following conclusions:
(1) KAWC was charged the lower of cost or market for managerial and professional services during the 12 months ended September 30, 2009.
(2) On average, the hourly rates for outside service providers are 21% higher than the Service Company's hourly rates.
(3) The managerial and professional services provided by the Service Company are vital and could not be procured externally by KAWC without careful supervision on the part of KAWC. If these services were contracted entirely to outside providers, KAWC would have to add at least one position to manage activities of outside firms. This position would be necessary to ensure the quality and timeliness of services provided.
(4) If all the managerial and professional services now provided by the Service Company had been out-sourced during the 12-months ended

KENTUCKY AMERICAN WATER COMPANY

September 30, 2009, KAWC and its ratepayers would have incurred an additional $\$ 1,500,000$ in expenses. This amount includes the higher cost of outside providers and the cost of a KAWC position needed to direct the outsourced work.
(5) This study's hourly rate comparison actually understates the cost advantages that accrue to KAWC from its use of the Service Company. Outside service providers generally bill for every hour worked. Service Company managerial and professional personnel, on the other hand, charge a maximum 8 hours per day even when they work more. If the overtime hours of Service Company personnel had been factored into the hourly rate calculation, the Service Company would have had an even greater annual dollar advantage than the $\$ 1,500,000$ cited above.
(6) It would be difficult for KAWC to find local service providers with the same specialized water industry expertise as that possessed by the Service Company staff. Service Company personnel spend substantially all their time serving operating water companies. This specialization brings with it a unique knowledge of water utility operations and regulation that is most likely unavailable from local service providers.
(7) Service Company fees do not include any profit markup. Only its actual cost of service is being recovered from KAWC ratepayers.
8. Q. What conclusions were you able to draw concerning question number 3, whether the 12 months ended September 30, 2009 costs of the Service Company's customer account services, including those of the National Call Centers, were reasonable?

KENTUCKY AMERICAN WATER COMPANY

A. I was able to determine that the cost of the Service Company's customer accounts services, including those provided by the National Call Center, is within a reasonable range of the average of the neighboring electric utility comparison group. As will be explained further herein, this group of companies provides a reasonable proxy group for comparison to a regulated utility of the size and scope of KAWC. During the 12 -months ended September 30, 2009, the customer accounts cost for KAWC customers was $\$ 28.35$ compared to the 2008 average of $\$ 27.07$ for neighboring electric utilities. The highest comparison group per customer cost was $\$ 39.29$ and the lowest $\$ 15.67$.

9. Q . What conclusions were you able to draw concerning question number 4,

 whether the services KAWC receives from the Service Company are necessary?A. I was able to draw the following conclusions:
(1) The services that the Service Company provides are necessary and would be required even if KAWC were a stand-alone water utility.
(2) There is no redundancy or overlap in the services provided by the Service Company to KAWC.

10. Q. Does this complete your testimony?

A. Yes.

Market Cost Comparison of Service Company Charges to Kentucky American Water Company 12-Months Ended September 30, 2009

Baryenbruch \& Company, LLC

Kentucky American Water Company
 Market Cost Comparison of Service Company Charges
 12-Months Ended September 30, 2009

Table of Contents

I - Introduction
Purpose of This Study

Study Results \quad| Page |
| :---: |
| II - Background |
| Overview of American Water Service Company |
| Service Company Expense Categories |
| Charging and Assignment of Service Company Time |
| and Expenses |$\quad 3$

Purpose of This Study

This study was undertaken to answer four questions concerning the services provided by American Water Works Service Company, Inc. (Service Company) to Kentucky American Water Company (KAWC):

1. Were the Service Company's charges to KAWC during the 12 months ended September 30, 2009 reasonable?
2. Was KAWC charged the lower of cost or market for managerial and professional services provided by the Service Company during the 12 months ended September 30, 2009?
3. Were the 12 months ended September 30, 2009 costs of the Service Company's customer accounts services, including those of the National Call Centers, comparable to those of other utilities?
4. Are the services KAWC receives from Service Company necessary?

Study Results

Concerning question 1 , the following conclusion was reached:

- The Service Company's 12 months ended September 30, 2009 cost per KAWC customer was very reasonable compared to cost per customer for electric and combination electric/gas service companies. During the 12 months ended September 30, 2009, KAWC was charged $\$ 55$ per customer for administrative and general (A\&G)-related services provided by the Service Company. This compares to an average of $\$ 109$ per customer for service companies reporting to the Federal Energy Regulatory Commission (FERC). Only 3 of the 24 utility service companies that filed a FERC Form 60 for 2008 had a lower per customer A\&G cost than KAWC's charges from the Service Company.

Concerning question 2, the following conclusions were drawn from this study:

- KAWC was charged the lower of cost or market for managerial and professional services during the 12 months ended September 30, 2009.
- On average, the hourly rates for outside service providers are 21% higher than the Service Company's hourly rates.
- The managerial and professional services provided by the Service Company are vital and could not be procured externally by KAWC without careful supervision on the part of KAWC. If these services were contracted entirely to outside providers, KAWC would have to add at least one position to manage activities of outside firms. This position would be necessary to ensure the quality and timeliness of services provided.
- If all the managerial and professional services now provided by the Service Company had been outsourced during the 12 months ended September 30, 2009, KAWC and its ratepayers would have incurred more than $\$ 1,500,000$ in additional expenses. This amount includes the higher cost of outside providers and the cost of one KAWC positions needed to direct the outsourced work.
- This study's hourly rate comparison actually understates the cost advantages that accrue to KAWC from its use of the Service Company. Outside service providers generally bill
for every hour worked. Service Company exempt personnel, on the other hand, charge a maximum of 8 hours per day even when they work more hours. If the overtime hours of Service Company personnel were factored into the hourly rate calculation, the Service Company would have had an even greater annual dollar advantage than the $\$ 1,500,000$ cited above. For instance, if Service Company overtime is conservatively estimated at 5% (2 hours per week), then that work would have cost an estimated \$70,000 in additional charges from outside providers.
- It would be difficult for KAWC to find local service providers with the same specialized water industry expertise as that possessed by the Service Company staff. Service Company personnel spend substantially all their time serving operating water companies. This specialization brings with it a unique knowledge of water utility operations and regulation that is most likely unavailable from local service providers.
- Service Company fees do not include any profit markup. Only its actual cost of service is being recovered from KAWC ratepayers.

Concerning question 3 , the following conclusion was reached:

- The cost of the Service Company's customer accounts services, including those provided by the National Call Center, is within a reasonable range of the average of the neighboring electric utility comparison group. As will be explained further herein, this group of companies provides a reasonable proxy group for comparison to a regulated utility of the size and scope of the Service Company and KAWC. During the 12 -months ended September 30, 2009, the customer accounts cost for KAWC customers was $\$ 28.35$ compared to the 2008 average of $\$ 27.07$ for neighboring electric utilities. The highest comparison group per customer cost was $\$ 39.29$ and the lowest $\$ 15.67$.

Concerning question 4 , the following conclusions were drawn:

- The services that the Service Company provides are necessary and would be required even if KAWC were a stand-alone water utility.
- Furthermore, there is no redundancy or overlap in the services provided by the Service Company to KAWC. For all of the services listed in Exhibit 11, there was only one entity primarily responsible for the service.

Overview of American Water Works Service Company

American Water's Service Company exists to provide certain shared services to American Water subsidiaries. It follows a service company model used by many utility holding companies that own multiple regulated utilities. By consolidating executive and professional services into a single service company, utility holding companies are able to realize the following benefits for ratepayers:

- Purchasing Economies - Common expenses (e.g., insurance, chemicals, piping) can be procured on a much larger scale thereby providing greater bargaining power for the combined entity compared to individual utility operating companies. A service company facilitates corporate-wide purchasing programs through its procurement and contract administration functions.
- Operating Economies of Scale - A service company is able to deliver services more efficiently because workloads can be balanced across more persons and facilities. For instance, American Water's Service Company is able to maintain one principal data center for the entire corporation. This is much more cost-efficient than each operating utility funding their own data center with its large fixed hardware, software and staffing costs.
- Continuity of Service - Centralizing service company personnel who perform similar services facilitates job cross-training and sharing of knowledge and expertise. This makes it easier to deal with staff turnover and absences and to sustain high levels of service to operating utilities. An individual operating utility might experience considerable disruption if a key professional left and it was necessary to hire outside to fill the vacancy.
- Maintenance of Corporate-Wide Standards - Personnel in American Water's Service Company establish standards for many functions (e.g., engineering designs, operating procedures and maintenance practices). It is easier to ensure these standards are followed by every operating utility because their implementation is overseen by the Service Company.
- Improved Governance - American Water's Service Company provides another dimension of management and financial oversight that supplements local operating utility management. The Service Company facilitates standard planning and reporting that help ensure operating utilities meet the requirements of their customers in a cost effective manner.
- Retention of Personnel - A service company organization provides operating utility personnel with another career path beyond what may be available on a local level. These opportunities tend to improve employee retention.

American Water follows the model for other utility service companies in another important regard. Its services are provided to affiliate operating utilities, like KAWC, at cost. American Water's Service Company is not a profit-making entity. It assigns only its actual expenses to the American Water subsidiaries it services.

The Service Company provides services to American Water operating companies from the following locations:

- Corporate Office - Includes American Water's executive management and personnel from the various corporate support services. American Water's corporate office is located in Voorhees, New Jersey.
- National Call Centers - Perform customer service functions, including: customer call processing, service order processing, correspondence processing, credit and collections. American Water maintains two call centers. One in Alton, Illinois that went into operation in 2001 and a second in Pensacola, Florida that went into operation in 2005. Prior to the establishment of these national call centers, customer service functions were performed by employees of KAWC, which incurred the expense on its books.
- National Shared Services Center - The Shared Services Center, located in Cherry Hill, New Jersey, provides various financial, accounting and treasury functions that had been performed by individual operating companies. This arrangement has improved and streamlined the Company's financial processes and allowed operating companies to focus on providing utility service.
- Regional Offices - Regional offices provide operating companies with certain support services that can be performed more effectively on a regional basis because individual operating company/center workloads are not sufficient to warrant a full-time staff for these activities. At the same time, these services require closer proximity to operating companies served so they are not provided by the National Shared Services Center. Examples of regional office services include rates and revenues, engineering, operations and field resource coordination.
- Belleville Lab - The national trace substance laboratory is located in Belleville, Illinois and performs testing for all American Water operating companies.
- Information Technology Service Centers - American Water's principal data center, located in Hershey, Pennsylvania, supports the IT infrastructure required to run corporate and operating company business applications and the communications systems. IT personnel rotate, as needed, throughout the regional offices and operating companies.

Service Company Expense Categories

The Service Company renders a monthly bill to operating companies. Charges are broken down into the following expense categories:

- Labor - base pay (salaries) of managerial and professional employees
- Labor-Related Overheads - employee benefit costs (payroll taxes, medical coverage, pensions, disability insurance) and other general expenses
- Support - wages and salaries of office support personnel, including secretaries, clerical personnel, telephone operators and mail clerks
- Office Expenses - office rent, equipment leases, telephone, electric, office supplies, property taxes, office maintenance
- Vouchers/Journal Entries - (1) travel expenses incurred by Service Company personnel, (2) other items submitted for reimbursement by employees, including professional association dues, (3) outside service contracts for such things as actuarial
services, and (4) various other expenditures, including data center expenses for software licenses and hardware maintenance.

Service Company expenses are either assigned directly or allocated to operating companies, as shown in the table below.

	Direct Expense Category	Charged	Allocated	Comments
Labor	X	X	Professional personnel working for one or several operating companies	
Labor-Related Overheads	X	X	These are primarily employee benefit costs that relate directly to labor	
Support	X	X	Administrative personnel support the professional staff, thus support costs are allocated on the basis of professional labor	
Office Expense		X	Are all allocated on the basis of professional labor May be either directly in support of one operating company (e.g., an engineer traveling from the Corporate Office to the operating company) or allocated to several operating companies	
Vouchers/Journals	X			

A direct charge occurs when Service Company work or expenses are incurred in support of only one operating company. Direct charge examples include work in support of an operating company's rate case, engineering design work on an operating company's project and the preparation of an operating company's financial statements.

Service Company expenses are allocated when more than one operating company benefits from the underlying work. Examples include assessments of new Federal water quality regulations, development of the company-wide materials procurement contracts and creation of companywide engineering design standards.

Charging and Assignment Of Service Company Time and Expenses

Service Company transactions are assigned with the following information so there is a proper accounting and eventual charging to an operating company:

- Operating company
- Formula number
- Work order (where applicable)
- Authorization number (where applicable)

Charges can originate from the following systems:

- Payroll System
- RVI System (outside vendor payments)
- PCard System (credit card payments)
- Internal Purchase Order System
- Journal entries

The Service Company's time reporting process enables labor and support charges to be assigned to the proper operating company. Labor charges are based on the time reported by managerial and professional Service Company employees. Every week, Service Company professional employees complete an electronic time sheet that shows:

- Formula number (this is linked to operating company within American Water's financial system)
- Employee hours worked
- Account number for non-labor charges

At month-end, time report information is processed and direct and allocated professional labor hours tabulated for each operating company. Dollar charges are then calculated using the hourly rate of each Service Company professional employee based upon their base salary (i.e., an employee's hours times his/her hourly rate of pay).

Support (administrative) personnel charge their time to the activity "General Admin." As described in the table on page 4, their labor charges are allocated to operating companies based upon how their office's professional personnel labor charges are assigned. For instance, if 20% of American Water's Eastern Region's professional labor is assigned to KAWC during a month, then 20% of that office's monthly administrative labor charges also are assigned to the operating company.

The overhead cost category is next assigned based on professional and administrative labor costs. Thus, if 20% of the Eastern Region's accumulated professional and support labor is charged to KAWC during the month, then 20% of that month's overhead expenses will be assigned to KAWC.

Each Service Company location's office expenses are allocated to operating companies based on how professional labor charges for that office have been assigned. For instance, if 2% of professional labor from one Service Company office is assigned to KAWC, then 2% of that office's office expenses would be assigned to KAWC. Thus, office expenses are allocated in the very same way as administrative labor.

Vouchers/journal entries may be charged directly or allocated, depending on who benefits from the expenditure. For instance, the cost of a continuing professional education course taken by a professional in a regional office is allocated to the operating companies served by that office. Travel expenses by that same professional to a rate case proceeding are charged directly to the operating company whose case is being heard.

III - Service Company Cost Comparison Approach

During the 12 months ended September 30, 2009, the Service Company billed KAWC $\$ 7,892,467$ in O\&M-related charges and $\$ 891,627$ in capital-related charges. Included in the O\&M amount are certain non-recurring expenses which are excluded from this market study. As calculated in the table below, net testable Service Company charges of $\$ 8,798,773$ were subjected to a market cost comparison.

	12 Months Ended September 30, 2009	
Mgmt Fee Expense (O\&M)	$\$$	$7,892,467$
Add(Subtract): Non-Recurring Items		
Sarbanes-Oxley	$\$$	14,679
Net O\&M Expenses	$\$$	$7,907,146$
Mgmt Fees - Capital	$\$$	891,627
Total Testable AWWSC Charges	$\$$	$\mathbf{8 , 7 9 8 , 7 7 3}$

For purposes of comparing these charges to certain outside benchmarks, Service Company services were placed into three categories:

- Managerial and Professional Services - Includes such services as management, accounting, legal, human resources, information technology and engineering.
- Customer Accounts Services - Includes customer-related services, such as call center, credit, billing, collection and payment processing.
- Field Resource Coordination Services - Includes the dispatching and oversight of work to operating company field crews.

Total test period Service Company charges break down between management/professional services, customer account services and field resource coordination as follows:

12 Months Ended Sep 30, 2009			
	Amount		Hours
Management and Professional Services	$\$$	$6,816,711$	52,690
Customer Account Services	$\$$	$1,728,850$	47,924
Field Resource Coordination	$\$$	253,212	5,049
Total Service Company Charges	$\mathbf{8}$	$\mathbf{8 , 7 9 8 , 7 7 3}$	$\mathbf{1 0 5 , 6 6 3}$

This study's first question-whether Service Company 12 months ended September 30, 2009 charges were reasonable-was determined by comparing KAWC's A\&G-related Service Company charges per customer to the same charges for utility companies that must file the FERC Form 60 - Annual Report of Service Companies.

The second question-whether Service Company charges during the 12 months ended September 3, 2009 were at the lower of cost or market-was evaluated by comparing the cost per hour for managerial and professional services provided by Service Company personnel to hourly billing rates that would be charged by outside providers of equivalent services. Service Company costs per hour were based on actual charges to KAWC during the 12 months ended September 30, 2009. Outside providers' billing rates came from surveys or other information from professionals that could perform the services now provided by the Service Company.

III - Service Company Cost Comparison Approach

The third question-whether Service Company's 12 months ended September 30, 2009 customer account services charges, including those of the National Call Center costs, were comparable to other utilities-was addressed by comparing KAWC's customer accounts services expenses to those of neighboring electric utilities. This approach was selected because the costs of outside providers of call center services are not publicly available. However, electric utility customer account services expenses can be obtained from the FERC Form 1. The availability and transparency of FERC data adds to the validity of its use in this comparison.

The fourth question-the necessity of Service Company services-was investigated by defining the services provided to KAWC and determining if these services would be required if KAWC were a stand-alone utility.

IV - Question 1 - Reasonableness of Service Company Charges

KAWC's Service Company Cost per Customer

During the 12 months ended September 30, 2009, KAWC was charged $\$ 55$ per customer by the Service Company for A\&G/O\&M-related services. The calculation of this amount, shown in the table below, starts with total net testable Service Company charges and adjusts for capital and non-A\&G functions (engineering, operations and water quality) charges. These adjustments are necessary to develop a per customer cost that is comparable to cost of utility service companies.

	12 Months ended Sep 30, 2009 AWWSC Charges	
Testable Service Company charges	\$	8,798,773
Less: Capital charges	\$	$(891,627)$
Less: Non-A\&G function O\&M charges		
Engineering	\$	$(11,031)$
Operations	\$	$(1,073,526)$
Water Quality	\$	$(260,216)$
Net A\&G/O\&M-related charges	\$	6,562,374
KAWC customers		118,279
KAWC Cost Per Customer	\$	55

Comparison Group Cost Per Customer

Every centralized service company in a holding company system must file a Form 60 in accordance with the Public Utility Holding Company Act of 2005, Section 1270, Section 390 of the Federal Power Act and 18 C.F.R. paragraph 366.23. This report is designed to collect financial information from service companies that are subject to regulation by the FERC.

For 2008, a Form 60 was filed by 24 utility service companies, all of which serve utilities that provide regulated electric and, in some cases, gas service to retail customers. In order to make a valid comparison of this group's costs to those of American Water Works Service Company, it was necessary to isolate expenses that that they have in common. These include A\&G/O\&Mrelated charges associated with the following FERC accounts:

901 - Supervision	921 - Office supplies and expenses
903 - Customer records and collection expenses	923 - Outside services employed
905 - Miscellaneous customer accounts expenses	$926-$ Employee pensions and benefits
907 - Supervision	928 - Regulatory commission expenses
910 - Misc customer service and info expenses	930.2 - Miscellaneous general expenses
911 - Supervision	931 - Rents
920 - Administrative and general salaries	$935-$ Maintenance of structures and equipment

O\&M expenses charged to utility affiliates for the comparison group service companies were obtained from Schedule XVI - Analysis of Charges for Service Associate and Non-Associate Companies (p. 303 to 306) of each entity's FERC Form 60. This schedule shows charges by FERC Account.

Comparison group service company 2008 expenses were also adjusted to remove charges to non-regulated affiliates from the cost pool used to calculate the cost per regulated service customer. This determination was made using information from the FERC Form 60 schedule: Account 457 - Analysis of Billing - Associate Companies.

A\&G expenses per regulated utility customer for the 24 utility companies that file Form 60 for 2008 are calculated below.

Utility Company	2008 Regulated Retail Service Company A\&G Expenses	Regulated Retail Customers	Cost per Customer	
AEP	\$396,340,118	5,213,000	\$	76
Allegheny	\$263,588,707	1,577,873	\$	167
Alliant	\$205,754,832	3,000,000	\$	69
Ameren	\$291,684,710	3,400,000	\$	86
Black Hills	\$20,763,828	759,400	\$	27
Dominion	\$357,718,046	3,588,500	\$	100
Duke	\$923,936,645	4,500,000	\$	205
Energy East	\$113,714,789	2,989,800	\$	38
Entergy	\$432,575,683	2,700,000	\$	160
E-On	\$136,276,177	1,263,000	\$	108
Exelon	\$558,687,014	5,885,000	\$	95
FirstEnergy	\$354,028,109	4,499,000	\$	79
Great Plains	\$15,000,708	820,000	\$	18
Integrys	\$216,364,166	2,157,000	\$	100
Nat Grid	\$1,240,706,398	6,700,000	\$	185
NiSource	\$237,380,009	3,750,000	\$	63
Northeast	\$302,138,730	1,654,000	\$	183
PHI	\$302,463,412	1,910,000	\$	158
Progress	\$242,677,256	3,100,000	\$	78
PNM	\$102,688,385	859,000	\$	120
SCANA	\$191,207,825	1,424,300	\$	134
Southern Co	\$546,498,605	4,402,000	\$	124
Unitil	\$20,341,422	169,600	\$	120
Xcel	\$367,626,617	5,345,000	\$	69
Group Total	\$7,840,162,191	71,666,473	\$	109

Exhibit 1 shows KAWC's 12 months ended September 30, 2009 Service Company cost per customer of $\$ 58$ to be considerably lower than the average of $\$ 109$ per customer for the comparison group service companies. Only 3 of 24 comparison group service companies had a lower cost per customer than KAWC. Based on this result, it is possible to conclude that the Service Company's 12 months ended September 30, 2009 charges to KAWC were reasonable.

Kentucky-American Water Company Comparison of Service Company Annual Costs Per Customer

V - Question 2 - Provision of Services at the Lower of Cost or Market

Methodology

The lower-of-cost-or-market comparison is accomplished by comparing the cost per hour for Service Company managerial and professional services to those of outside service providers to whom these duties could be assigned. Based on the nature of the Service Company services it was determined that the following outside providers could perform the categories of services indicated below:

- Management Consultants - executive and administrative management, risk management services, human resources and communications services
- Attorneys - legal services
- Certified Public Accountants - accounting, financial, information technology and rates and revenues services
- Professional Engineers - engineering, operations and water quality services.

The services provided by the Belleville lab are assumed to be transferable to professional engineers for purposes of this cost comparison. This was done for two reasons. First, there is no readily available survey of hourly billing rates for testing services such as those performed by Belleville. Second, Belleville personnel have similar, scientific educational backgrounds as Service Company engineering personnel. Thus, it is valid to compare the hourly rates of Belleville services to those of outside engineering firms.

Service Company's hourly rate were calculated for each of the four outside service provider categories, based on the dollars and hours charged to KAWC during the 12 months ended September 30, 2009. Hourly billing rates for outside service providers were developed using third party surveys or directly from information furnished by outside providers themselves.

It should be noted that by using the Service Company's hours charged KAWC during the 12 months ended September 30, 2009, its hourly rates are actually overstated because Service Company personnel charge a maximum 8 per day even when they work more. Outside service providers generally bill for every hour worked. If the overtime hours of Service Company personnel had been factored into the hourly rate calculation, Service Company hourly rates would have been lower.

The last step in the market cost comparison was to compare the Service Company's average cost per hour to the average cost per hour for outside providers.

Service Company Hourly Rates

Exhibit 2 (page 14) details the assignment of 12 months ended September 30, 2009 management and professional Service Company charges by outsider provider category. Exhibit 3 (page 15) shows the same assignment for Service Company management and professional hours charged to KAWC during the 12 months ended September 30, 2009.

Certain adjustments to these dollar amounts were necessary to calculate Service Company hourly rates that are directly comparable to those of outside providers. The three categories of adjustments are:

- Contract Services - 12 months ended September 30, 2009 Service Company charges to KAWC include expenses associated with the use of outside professional firms to
perform certain corporate-wide services (e.g., legal, financial audit, actuarial services). These professional fees are excluded from the Service Company hourly rate calculation because the related services have effectively been out-sourced already.
- Travel Expenses - In general, client-related travel expenses are not recovered by outside service providers through their hourly billing rate. Rather, actual out-of-pocket travel expenses are billed to clients in addition to fees for professional services. Thus, it is appropriate to remove these Service Company charges from the hourly rate calculation.
- Information Technology Infrastructure Expenses - Included in the 12 months ended September 30, 2009 Service Company charges to KAWC are leases, maintenance fees and depreciation related to American Water's enterprise mainframe, server and network infrastructure and corporate business applications. An outside provider that would take over operation of this infrastructure would recover these expenses over and above the labor necessary to operate the data center.

Exhibit 4 (page 16) shows how contract services, travel expenses and computer hardware/software-related Service Company charges are assigned among the four outside provider categories.

Based on the assignment of expenses and hours shown in Exhibits 2 and 3 and the excludable items shown in Exhibit 4, the Service Company's equivalent costs per hour for the 12 months ended September 30, 2009 are calculated below.

	Attorney		Management Consultant		Certified Public Accountant		Professional Engineer		Total	
```Total management, professional \& technical services charges Less:```	\$	334,249	\$	1,710,026	\$	3,561,408	\$	1,211,028	\$	6,816,711
Contract services	\$	20,484	\$	95,374	\$	467,125	\$	14,259	\$	597,241
Travel expenses	\$	2,520	\$	43,997	\$	45,186	\$	73,938	\$	165,640
IT infrastructure expenses	\$	5,573	\$	243,378	\$	217,932	\$	47,913	\$	514,795
Net Service Charges (A)	\$	305,672	\$	1,327,278	\$	2,831,166	\$	1,074,919	\$	5,539,035
Total Hours (B)		4,166		7,038		29,356		12,130		52,690
Average Hourly Rate (A / B)	\$	73	\$	189	\$	96	\$	89		


Analysis of 12 Months Ended September 30, 2009 Service Company Hours By Location And Function

Location	Function	12 Months Ended Septem ber 30, 2009 Service Company Hours				
		Attorney	Management Consultant	Certified Public Accountant	Professional Engineer	Total
Belleville Lab	Water Quality				2,664	2,664
Call Center	Human Resources		493			493
Corporate	Accounting			3,725		3,725
	Administration		269			269
	Audit			254		254
	Communications		156			156
	Finance			827		827
	Human Resources		1,744			1,744
	Information Technology			18		18
	Legal	425				425
	Operations		471		6,534	7,005
	Rates \& Revenue			174		174
	Risk Management		337			337
	Water Quality				787	787
Regional Offices	Accounting			123		123
	Administration		-			-
	Communications		1,348			1,348
	Engineering				16	16
	Finance			5,859		5,859
	Human Resources		166			166
	Legal	3,741				3,741
	Operations		1,501		2,095	3,596
	Risk Management		297			297
	Water Quality				32	32
Information Technology	Information Technology			8,783		8,783
Shared Services	Accounting			7,180		7,180
	Administration		255			255
	Finance			1,382		1,382
	Rates \& Revenue			1,030		1,030
Total Hours Charged		4,166	7,038	29,356	12,130	52,690


$\begin{array}{l}\text { Outside Service Provider } \\ \text { Category }\end{array}$
Certified Public Accountant
Management Consultant
Certified Public Accountant
Management Consultant
Professional Engineer
Certified Public Accountant
Management Consultant
Certified Public Accountant
Attorney
Management Consultant,
Professional Engineer
Certified Public Accountant
Management Consultant
Professional Engineer




## Outside Service Provider Hourly Rates

The next step in the cost comparison was to obtain the average billing rates for each outside service provider. The source of this information and the determination of the average rates are described in the paragraphs that follow.

It should be noted that professionals working for three of the five outside provider categories may be licensed to practice by state regulatory bodies. However, not every professional working for these firms is licensed. For instance, among Kentucky certified public accounting firms, only more experienced staff are predominantly CPAs (see table below). Some Service Company employees also have professional licenses. Thus, it is valid to compare the Service Company's hourly rates to those of the outside professional service providers included in this study.

	Firm Size		
	Small	Medium	Large
Partners/Owners	$97 \%$	$98 \%$	$99 \%$
Directors (11+ years experience)	na	$100 \%$	$86 \%$
Managers (6-10 years experience)	na	$72 \%$	$88 \%$
Sr Associates (4-5 years experience)	na	$25 \%$	$69 \%$
Associates (1-3 years experience)	na	$0 \%$	$24 \%$
New Professionals	na	$8 \%$	$1 \%$

Source: AICPA's National PCPS/TSCPA Management of an Accounting Practice Survey (2008)

## Attorneys

The Kentucky State Bar does not survey its members as to their hourly billing rates. In addition, publicly available billing rate information could not be found for Kentucky attorneys. Therefore, an estimate of Kentucky attorney rates was developed from two surveys conducted by Lawyers Weekly in the states of Michigan and Massachusetts. As presented in Exhibit 5, the average rate for each firm was adjusted for the cost of living differential between its location and Lexington, Kentucky. The Lawyers Weekly surveys included rates in effect at December 31, 2007. Thus, the 2007 average rate was escalated to March 31, 2009—the midpoint of the test year ended September 30, 2009.

## Management Consultants

The cost per hour for management consultants was developed from a 2009 survey performed by the Association of Management Consulting Firms—an industry trade organization. The survey includes rates that were in effect during 2008 for firms throughout the United States. Consultants typically do not limit their practice to any one region and must travel to a client's location. Thus, the U.S. national average is appropriate for comparison.

The first step in the calculation, presented in Exhibit 6, was to determine an average rate by consultant position level. From these rates, a single weighted average hourly rate was calculated based upon the percent of time that is typically applied to a consulting assignment by each consultant position level. The 2008 average rate was escalated to March 31, 2009-the midpoint of the 12 months ended September 30, 2009.

## Certified Public Accountants

The average hourly rate for Kentucky CPAs was developed from a 2008 survey performed by the American Institute of Certified Public Accountants (AICPA). The Kentucky version of this survey was used to develop hourly rates for member firms in Kentucky.

As shown in Exhibit 7, a weighted average hourly rate was developed based on a set of accountant positions and a percent of time that is typically applied to an accounting assignment. This survey includes rate information in effect during 2007. Thus, the data had to be escalated to March 31, 2009—the test year's midpoint.

## Professional Engineers

The Company provided hourly rate information for outside engineering firms that could have been used by KAWC in 2009. As presented in Exhibit 8, an average rate was developed for each engineering position level. Then, using a typical percentage mix of project time by engineering position, a weighted average cost per hour was calculated.

## Kentucky-American Water Company

 Estimated Billing Rates For Kentucky Attorneys Based On Michigan and Massachusetts Attorney Billing Rates| Billing rates as of December 31, 2007 (Note A) |  | Billing Rate Range |  |  |  |  | Average | Cost of <br> Living <br> Adjust <br> (C) | Adjusted Rate |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Of | Associate |  | Partner |  |  |  |  |  |
| Firm | Location | Lawyers | Low | High | Low | High |  |  |  |  |
| Dickinson Wright PLLC | Detroit, Mi | 229 | \$ 170 | \$ 275 | \$ 260 | \$ 530 | \$ 309 | 86\% | \$ | 361 |
| Dykema | Detroit, Mi | 222 | \$ 185 | \$ 390 | \$ 245 | \$ 625 | \$ 361 | 86\% | \$ | 422 |
| Butzel Long | Detroit, Mi | 209 | \$ 165 | \$ 400 | \$ 220 | \$ 550 | \$ 334 | 86\% | \$ | 390 |
| Bodman LLP | Detroit, Mi | 128 | \$ 125 | \$ 215 | \$ 210 | \$ 495 | \$ 261 | 86\% | \$ | 305 |
| Jaffe Raitt Heuer \& Weiss, PC | Southfield, Mi | 100 | \$ 165 | \$ 225 | \$ 225 | \$ 500 | \$ 279 | 98\% | \$ | 285 |
| Trott \& Trott, PC | Bingham Farms, Mi | 64 | \$ 170 | \$ 170 | \$ 235 | \$ 235 | \$ 203 | 127\% | \$ | 160 |
| Brooks Kushman PC | Southfield, Mi | 52 | \$ 160 | \$ 275 | \$ 250 | \$ 505 | \$ 298 | 98\% | \$ | 304 |
| Kemp, Klein, Umphrey, Edelman \& May PC | Troy, Mi | 36 | \$ 150 | \$ 190 | \$ 200 | \$ 340 | \$ 220 | 112\% | \$ | 196 |
| Pepper Hamilton LLP | Detroit, Mi | 33 | \$ 200 | \$ 315 | \$ 340 | \$ 615 | \$ 368 | 86\% | \$ | 430 |
| Hertz, Schram \& Saretsky, PC | Bloomfield Hills, Mi | 29 | \$ 175 | \$ 260 | \$ 275 | \$ 400 | \$ 278 | 140\% | \$ | 198 |
| Strobl \& Sharp, PC | Bloomfield Hills, Mi | 28 | \$ 110 | \$ 210 | \$ 200 | \$ 300 | \$ 205 | 140\% | \$ | 146 |
| Kupelian Ormond \& Magy, PC | Southfield, Mi | 25 | \$ 165 | \$ 195 | \$ 235 | \$ 320 | \$ 229 | 98\% | \$ | 234 |
| Rader, Fishman \& Grauer, PLLC | Bloomfield Hills, Mi | 25 | \$ 130 | \$ 250 | \$ 275 | \$ 495 | \$ 288 | 140\% | \$ | 205 |
| McShane \& Bowie PLC | Grand Rapids, Mi | 22 | \$ 160 | \$ 275 | \$ 250 | \$ 375 | \$ 265 | 97\% | \$ | 273 |
| Edwards Angel Palmer \& Dodge | Boston, Ma | 259 | \$ 144 | \$ 321 | \$ 474 | \$ 474 | \$ 353 | 149\% | \$ | 238 |
| Sullivan \& Worcester | Boston, Ma | 137 | \$ 245 | \$ 530 | \$ 415 | \$ 700 | \$ 473 | 149\% | \$ | 318 |
| Burns \& Levinson | Boston, Ma | 112 | \$ 210 | \$ 350 | \$ 375 | \$ 475 | \$ 353 | 149\% | \$ | 237 |
| Bowditch \& Dewey | Worcester, Ma | 64 | \$ 150 | \$ 300 | \$ 280 | \$ 550 | \$ 320 | 117\% | \$ | 274 |
| Mirick O'Connell | Worcester, Ma | 60 | \$ 160 | \$ 250 | \$ 280 | \$ 400 | \$ 273 | 117\% | \$ | 233 |
| Hinckley, Allen \& Snyder | Boston, Ma | 58 | \$ 200 | \$ 330 | \$ 300 | \$ 480 | \$ 328 | 149\% | \$ | 220 |
| Prince Lobel Glovsky \& Tye | Boston, Ma | 52 | \$ 175 | \$ 265 | \$ 275 | \$ 475 | \$ 298 | 149\% | \$ | 200 |
| Robinson \& Cole | Boston, Ma | 48 | \$ 220 | \$ 375 | \$ 340 | \$ 490 | \$ 356 | 149\% | \$ | 240 |
| Bromberg \& Sunstein | Boston, Ma | 42 | \$ 250 | \$ 450 | \$ 500 | \$ 725 | \$ 481 | 149\% | \$ | 324 |
| Lawson \& Weitzen | Boston, Ma | 35 | \$ 125 | \$ 225 | \$ 225 | \$ 400 | \$ 244 | 149\% | \$ | 164 |
| Murtha Cullina | Boston, Ma | 34 | \$ 165 | \$ 290 | \$ 250 | \$ 500 | \$ 301 | 149\% | \$ | 203 |
| Marcus Errico Emmer \& Brooks | Braintree, Ma | 28 | \$ 250 | \$ 250 | \$ 300 | \$ 360 | \$ 290 | 139\% | \$ | 208 |
| Rich May | Boston, Ma | 25 | \$ 150 | \$ 300 | \$ 300 | \$ 400 | \$ 288 | 149\% | \$ | 194 |
| Keegan Werlin | Boston, Ma | 22 | \$ 150 | \$ 275 | \$ 325 | \$ 475 | \$ 306 | 149\% | \$ | 206 |
| Barron \& Stadfeld | Boston, Ma | 21 | \$ 160 | \$ 230 | \$ 250 | \$ 350 | \$ \$ 248 | 149\% | \$ | 167 |
| Cain Hibbard Myers \& Cook | Pittsfield, Ma | 19 | \$ 150 | \$ 200 | \$ 210 | \$ 235 | \$ 199 | 118\% | \$ | 169 |
|  |  |  |  |  | Overall | Average | 2007 Bil | ng Rate | \$ | 250 |
|  |  | alation | Test Y | ear's Mid | d-Point - | March | 31, 2009 | Note B) |  |  |
|  |  |  |  |  |  | at Dece | ember 31, | 2007 |  | 10.0 |
|  |  |  |  |  |  | CPI at | March 31, | 2009 |  | 12.7 |
|  |  |  |  |  |  | Infla | ation/Esca | alation |  | 1.3\% |
|  |  |  |  | Average | Billing R | Rate At | March 31, | 2009 | \$ | 253 |

Note A: Source is Michigan Lawyers Weekly (April 2008) and Massachusetts Lawyers Weekly (April 2008) Note B: Source is U.S. Bureau of Labor Statistics (ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt)
Note C: Source is Sperling's Best Places (http://www.bestplaces.net/col/col.aspx). This percentage represents the cost of living difference between the Michigan and Massachusetts cities and Lexington, Kentucky. A number over 100\% indicates the Michigan or Massachusetts city's cost of living is higher than Lexington. A number less than 100 \% indicates Lexington's cost of living is higher.

## Kentucky-American Water Company Billing Rates of U.S. Management Consultants

Survey billing rates in effect in 2008 (Note A)
A. Calculation of Average Hourly Billing Rate by Consultant Position

Average Hourly Rates (Note A)												
Entry-Level   Consultant	Associate	Senior   Consultant	Junior   Consultant	Senior   Partner	Partner	$	$	$\$ 147$	$\$ 196$	$\$ 268$	$\$ 295$	$\$ 384$
:---	:---	:---	:---	:---								

B. Calculation of Overall Average Hourly Billing Rate Based on a Typical Distribution of Time on an Engagement

Average Hourly Billing Rate (from above)	Entry-Level   Consultant	Associate Consultant	Senior Consultant	Junior   Partner	Senior   Partner	
	\$ 147	\$196	\$268	\$295	\$384	
Percent of Consulting Assignment	30\%	30\%	20\%	10\%	10\%	Weighted Average \$ 224
	\$ 44	\$ 59	\$ 54	\$ 29	\$ 38	



Note A: Source is "Operating Ratios For Management Consulting Firms, 2009 Edition," Association of Management Consulting Firms
Note B: Source is U.S. Bureau of Labor Statistics (ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt)

## Kentucky-American Water Company

 Estimated Billing Rates Of Kentucky Certified Public Accountants| Survey billing rates were those in effect in 2007 (Note A) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type of Firm | Average Hourly Billing Rate (Note A) |  |  |  |  |
|  | Staff Accountant | Senior Accountant | Manager | Partner |  |
| Average Hourly Rate | \$ 71 | \$ 90 | \$ 120 | \$ 146 |  |
| B. Calculation of Overall Average Accountant Billing Rate Based Upon Typical Distribution of Time on an Engagement |  |  |  |  |  |
| Average Hourly Billing Rate (From Above) <br> Typical Percent of Time Spent on an Accounting Assignment | Staff Accountant | Senior Accountant | Manager | Partner |  |
|  | \$ 71 | \$ 90 | \$ 120 | \$ 146 |  |
|  | 30\% | 30\% | 20\% | 20\% | Weighted Average |
|  | \$ 21 | \$ 27 | \$ 24 | \$ 29 | \$ 101 |
| Escalation to Midpoint of March 31, 2009 Test Period (Note B) |  |  |  |  |  |
| CPI at December 31, 2007210.0 |  |  |  |  |  |
| CPI at March 31, 2009212.7 |  |  |  |  |  |
|  |  |  | Inflation | Escalation | 1.3\% |
| Average Hourly Billing Rate For CPAs At March 31, 2009 |  |  |  |  | \$ 103 |

Note A: Source is AICPA's 2008 National PCPS/TSCPA Management of an Accounting Practice Survey (Kentucky edition)
Note B: source is US Bureau of Labor Statistics (ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.t

## Kentucky-American Water Company Estimated Billing Rates Of Kentucky Engineers

A. Calculation of Average Hourly Rate by Engineer Position

	Average Hourly Billing Rates				
	Technician   Name of Firm	Engineer   Design Engineer   Roject Engineer	Project Manager   Sr. Mgr. Engineer	Officer   Principal Engineer	
Firm \#1	$\$ 77$	$\$ 86$	$\$ 108$	$\$ 175$	
Firm \#2	$\$ 76$	$\$ 84$	$\$ 136$	$\$ 164$	
Firm \#3	$\$ 80$	$\$ 102$	$\$ 162$	$\$ 207$	
Firm \#4	$\$ 55$	$\$ 86$	$\$ 139$	$\$ 190$	

B. Calculation of Overall Average Engineering Hourly Billing Rate

Average Hourly Billing Rate (From Above)	Technician Senior Technician	Engineer Design Engineer Project Engineer	Project Manager   Sr. Mgr. Engineer	Officer Principal Engineer	
	\$72	\$89	\$136	\$184	
Typical Percent of Time on an Engineering Assignment	30\%	35\%	25\%	10\%	Weighted Average
	\$22	\$31	\$34	\$18	\$105

Source: Information provided by American Water Works Service Company

## Service Company versus Outside Provider Cost Comparison

As shown in the table below, Service Company costs per hour are considerably lower than those of outside providers.

Service Provider	12 Months Ended September 30, 2009					
	Service   Company		Outside Provider		Difference--   Service Co.   Greater(Less)   Than Outside	
Attorney	\$	73	\$	253	\$	(180)
Management Consultant	\$	189	\$	227	\$	(38)
Certified Public Accountant	\$	96	\$	103	\$	(7)
Professional Engineer	\$	89	\$	105	\$	(16)

Based on these cost per hour differentials and the number of managerial and professional services hours billed to KAWC during the 12-months ended September 30, 2009, outside service providers would have cost $\$ 1,409,800$ more than the Service Company (see table below). Thus, on average, outside providers' hourly rates are $21 \%$ higher than those of the Service Company (\$1,409,800 / \$6,816,711).

Service Provider	12 Months Ended September 30, 2009			
	Hourly Rate   Difference--   Service Co.   Greater(Less)   Than Outside	Service   Company Hours Charged	Dollar Difference	
Attorney	\$ (180)	4,166	\$	$(748,260)$
Management Consultant	\$ (38)	7,038	\$	$(270,282)$
Certified Public Accountant	\$ (7)	29,356	\$	$(192,538)$
Professional Engineer	(16)	12,130	\$	$(198,720)$
Service Company Les	Than Outside	viders		$(1,409,800)$

It should be noted that the cost differential associated with using outside providers is even greater because Service Company personnel do not charge for more than 8 hours per day even when they work more. Outside providers generally charge clients for all hours worked. If, for instance, Service Company personnel worked $5 \%$ overtime ( 2 hours) per week on KAWC's behalf, that would have amounted to over 2,600 additional hours of work during the 12 months ended September 30, 2009. Based on the hourly rate differentials above, this overtime would have added another $\$ 70,000$ to the cost of using outside providers.

If KAWC were to use outside service providers rather than the Service Company for managerial and professional services, it would incur other additional expenses besides those associated with higher hourly rates. Managing outside firms who would perform over 52,000 hours of work (more than 35 full-time equivalents at 1,500 "billable" hours per FTE per year) would add a significant workload to the existing KAWC management team. Thus, it would be necessary for KAWC to add at least one position to supervise the outside firms and ensure they delivered quality and timely services. The individual that would fill this position would need a good understanding of each profession being managed. He/she must also have management experience and the authority necessary to give them credibility with the outside firms. As calculated in the table below, this position would add almost $\$ 150,000$ per year to KAWC's personnel expenses.

## V - Question 2 - Provision of Services at the Lower of Cost or Market

Cost of Adding 1 Professional Position To KAWC's Staff

	Total	
New Position's Salary	$\$$	100,000
Benefits (at 49.4\%)	$\$$	49,400
Office Expenses (15.2\%)	$\$$	15,200
$\quad$ Cost of One Position	$\$$	149,400

Thus, the total effect on the ratepayers of KAWC of contracting all services now provided by Service Company would be an increase in their costs of \$1,559,200 (\$1,409,800 + \$149,400). Based on the results of this comparison, it is possible to conclude that the Service Company charged KAWC at the lower of cost or market for services provided during the 12 months ended September 30, 2009.

## Background

Customer Accounts Services covers the following utility functions:

- Customer Call Center - customer calls/contact, credit, order taking/disposition, bill collection efforts, outage calls
- Call Center IT - maintenance of phone banks, voice recognition units, call center software applications, telecommunications
- Customer billing - bill printing, stuffing, and mailing
- Remittance processing - processing customer payments received in the mail
- Bill payment centers - locations where customers can pay their bills in person

It is difficult to compare the cost of the Service Company's customer accounts services-related charges to KAWC with outside providers of the same services because survey data is proprietary and expensive to obtain. For this reason, KAWC's charges from the Service Company for customer accounts services are compared to those of neighboring electric utilities because the data necessary to make such comparison is available to the public.

Neighboring electric utility cost information comes from the FERC Form 1 that each utility must file. FERC's chart of accounts is defined in Chapter 18, Part 101 of the Code of Federal Regulations. FERC accounts that contain customer accounts services-related expenses are Account 903 Customer Accounts Expense - Records and Collection Expense and Account 905 Customer Accounts Expense - Miscellaneous Customer Accounts Expense. Exhibit 9 provides FERC's definition of the type of expenses that should be recorded in these accounts.

In addition to the charges in these FERC accounts, labor-related overheads charged to the following FERC accounts must be added to the labor components of Accounts 903 and 905:

- Account 926 Employee Pension and Benefits
- Account 408 Taxes Other Than Income (employer's portion of FICA)


## Comparison Group

Electric utilities included in the comparison group are shown in the table below. These are companies whose FERC Form 1 show amounts for accounts 903 and 905.

Kentucky	$\bullet$	Duke Energy - Kentucky	$\bullet$	Kentucky Utilities
•				
	Kentucky Power	•		
Louisville Gas \& Electric				

VI - Question 3 - Reasonableness of Customer Accounts Services Costs

Tennessee	$\bullet$

## Kentucky-American Water Company FERC Account Descriptions

## 903 - Customer Records and Collection Expenses

This account shall include the cost of labor, materials used and expenses incurred in work on customer applications, contracts, orders, credit investigations, billing and accounting, collections and complaints.
Labor

1. Receiving, preparing, recording and handling routine orders for service, disconnections, transfers or meter tests initiated by the customer, excluding the cost of carrying out such orders, which is chargeable to the account appropriate for the work called for by such orders.
2. Investigations of customers' credit and keeping of records pertaining thereto, including records of uncollectible accounts written off.
3. Receiving, refunding or applying customer deposits and maintaining customer deposit, line extension, and other miscellaneous records.
4. Checking consumption shown by meter readers' reports where incidental to preparation of billing data.
5. Preparing address plates and addressing bills and delinquent notices.
6. Preparing billing data.
7. Operating billing and bookkeeping machines.
8. Verifying billing records with contracts or rate schedules.
9. Preparing bills for delivery, and mailing or delivering bills.
10. Collecting revenues, including collection from prepayment meters unless incidental to meter reading operations.
11. Balancing collections, preparing collections for deposit, and preparing cash reports.
12. Posting collections and other credits or charges to customer accounts and extending unpaid balances.
13. Balancing customer accounts and controls.
14. Preparing, mailing, or delivering delinquent notices and preparing reports of delinquent accounts.
15. Final meter reading of delinquent accounts when done by collectors incidental to regular activities.
16. Disconnecting and reconnecting services because of nonpayment of bills.
17. Receiving, recording, and handling of inquiries, complaints, and requests for investigations from customers, including preparation of necessary orders, but excluding the cost of carrying out such orders, which is chargeable to the account appropriate for the work called for by such orders.
18. Statistical and tabulating work on customer accounts and revenues, but not including special analyses for sales department, rate department, or other general purposes, unless incidental to regular customer accounting routines.
19. Preparing and periodically rewriting meter reading sheets.
20. Determining consumption and computing estimated or average consumption when performed by employees other than those engaged in reading meters.
Materials and expenses
21. Address plates and supplies.
22. Cash overages and shortages.
23. Commissions or fees to others for collecting.
24. Payments to credit organizations for investigations and reports.
25. Postage.
26. Transportation expenses, including transportation of customer bills and meter books under centralized billing procedure.
27. Transportation, meals, and incidental expenses.
28. Bank charges, exchange, and other fees for cashing and depositing customers' checks.
29. Forms for recording orders for services, removals, etc.
30. Rent of mechanical equipment.

## Kentucky-American Water Company

## FERC Account Descriptions

## 905 - Miscellaneous Customer Accounts Expenses

This account shall include the cost of labor, materials used and expenses incurred not provided for in other accounts.
Labor

1. General clerical and stenographic work.
2. Miscellaneous labor.

Materials and expenses
3. Communication service.
4. Miscellaneous office supplies and expenses and stationery and printing other than those specifically provided for in accounts 902 and 903.

## VI - Question 3 - Reasonableness of Customer Accounts Services Costs

## KAWC Cost per Customer

As calculated below, KAWC's 12 months ended September 30, 2009 customer account services expense per customer was $\$ 28.35$. The cost pool used to calculate this average includes charges for Service Company services (e.g., call center, billing, payment processing) and postage and forms expenses, which are incurred directly by KAWC. It was necessary to adjust the National Call Center charges because electric utilities experience an average of 2.50 calls per customer compared to American Water's 1.32 calls per customer. Thus, National Call Center expenses had to be increased, for comparison purposes, to reflect its costs at a 2.50 calls per customer level.

| Kentucky Am erican Cost Per Customer | Year Ended <br> $9 / 30 / 2009$ <br> Service Co | Adjustment <br> Few er <br> Calls For |
| :--- | :--- | :--- | :--- | :--- |
|  | Cost Component |  |

Note A: Adjustment for American Water's few er calls per customer
This adjustment is necessary because water utilities experience few er calls per customer than do electric utilities
Call handling expenses
Eectric utility industry's avg calls/customer
American Water's avg calls/customer

			$90 \%$
Total Adjustment		$\$ 88,295$	

Note B: Estimated customer payment processing expenses
Number of customers 118,279
Number of payments/customer/year 12
Total payments processed/year 1,419,348
Bank charge per item $\begin{array}{rr}\$ & 0.1069 \\ & \$ 151,772\end{array}$
Total estimated annual expense $\$ 151,772$

## Electric Utility Group Cost per Customer

Exhibit 10 shows the actual 2008 customer accounts expense per customer calculation for the electric utility comparison group. All of the underlying data was taken from the utilities' FERC Form 1.

## Summary of Results

As shown in the table below, KAWC's cost per customer within a reasonable range of the average cost of the neighboring electric utility comparison group. It can therefore be concluded that KAWC's 12 months ended September 30, 2009 customer accounts-related expenses, including those of the Alton and Pensacola Call Centers, assigned by the Service Company to KAWC were comparable to those of other utilities.

Average Customer Accounts   Expense Per Customer		
Louisville Gas \& Electric	$\$$	15.67
Interstate Power \& Light	$\$$	15.79
Virginia Electric Power	$\$$	16.15
Monongahela Power	$\$$	16.17
Dayton Power \& Light	$\$$	18.51
Ohio Edison	$\$$	19.13
Cleveland Electric Illuminating	$\$$	20.60
Indianapolis Power \& Light	$\$$	21.64
Union Electric	$\$$	22.95
Illinois Power	$\$$	23.26
Aquila	$\$$	24.53
Toledo Edison	$\$$	24.81
Central Illinois Public Service	$\$$	25.71
Wheeling Power	$\$$	26.12
Duke Energy Indiana	$\$$	26.22
Comparison Group Average	$\$$	27.07
Kansas City Power \& Light	$\$$	27.15
MidAmerican Energy	$\$$	27.66
Kentucky American Water	$\$$	28.35
Kentucky Utilities	$\$$	28.42
Indiana Michigan Power	$\$$	29.17
Duke Energy Kentucky	$\$$	29.65
Central Illinois Light	$\$$	30.33
Northern Indiana Public Service	$\$$	30.72
Duke Energy Ohio	$\$$	31.20
Ohio Power	$\$$	31.70
Appalachian Power	$\$$	32.57
Kingsport Power	$\$$	32.60
Columbus Southern Power	$\$$	35.11
Kentucky Power	$\$$	36.02
Commonwealth Edison	$\$$	39.29

## 0t !!!!! <br> Page 1 of 5

 Kentucky-American Water CompanyComparison Group 2008 Actual Customer Accounts Expense Per Customer

	Kentucky							Virginia			
	Duke Energy Kentucky	Kentucky   Power		Kentucky Utilities		Louisville Gas \& Eectric		Appalachian Pow er		Virginia 日ectric Pow er	
Customer Account Services Cost Pool											
Acct 903 - Customer Records \& Collection (page 322, line 161)	\$ 3,221,753	\$	5,948,209		12,515,610	\$	4,626,491		29,231,353		32,985,338
Acct 905 - Misc Customer Accounts (page 322, line 163)	\$ $(46,234)$	\$	4,229	\$	334,960	\$	336,884		1,894	\$	-
Subtotal	\$ 3,175,519	\$	5,952,438		12,850,570	\$	4,963,375		29,233,247		32,985,338
Add: Employee Benefits \& Employer FICA (not included in above amounts)											
Account 926 - Employee Pension \& Benefits Note A	\$ 574,297	\$	268,710		1,972,749	\$	1,054,370		1,415,185		3,978,170
Account 408 - Taxes Other Than Income (Employer's Portion of FICA) Note B	\$ 243,542	\$	105,032	\$	424,973	\$	262,847	\$	548,440		1,573,799
Total Cost Pool	\$ 3,993,358	\$	6,326,180		15,248,292	\$	6,280,591		31,196,872		38,537,306
Total Customers (page 304, line 43)	134,703		175,646		536,441		400,699		957,875		2,386,208
Customer Account Services Expense per Customer	\$ 29.65	\$	36.02	\$	28.42	\$	15.67	\$	32.57	\$	16.15
Note A: Calculation of Pension \& Benefits Pertaining to Customer Acct Mgmt											
Account 926 - Employee Pension \& Benefits (page 323, line 187)	\$ 6,333,174		4,765,373		24,119,043		22,418,737		23,000,789		124,252,946
Total O\&M Pay roll (page 355, line 65)	\$ 35,107,273	\$	24,348,550		67,918,514	\$	73,056,617		16,519,186		642,556,137
Benefits as Percent of Payroll	18.0\%		19.6\%		35.5\%		30.7\%		19.7\%		19.3\%
Payroll Applicable to Customer Account Services											
Total Payroll Charged to Customer Accounts Function											
Electric (page 354, line 7)	\$ 2,613,424	\$	1,602,234		7,181,104		2,668,667		8,480,076		27,320,711
Gas (page 354, line 37)	\$ 1,559,494	\$	-		-		2,175,749	\$	-	\$	-
Total Payroll Charged to Customer Accounts	\$ 4,172,918		1,602,234		7,181,104		4,844,416		8,480,076		27,320,711
Percent Applicable to Customer Accounts Services (903 and 905):											
Acct 903 - Customer Records \& Collection (page 322, line 161)	\$ 3,221,753	\$	5,948,209		12,515,610	\$	4,626,491		29,231,353		32,985,338
Acct 905 - Misc Customer Accounts (page 322, line 163)	\$ $(46,234)$	\$	4,229		334,960	\$	336,884	\$	1,894	\$	-
Subtotal - Total Charges Applicable to Customer Accounts Services	\$ 3,175,519	\$	5,952,438		12,850,570	\$	4,963,375		29,233,247		32,985,338
Acct 902 - Meter Reading Expenses (page 322, line 160)	\$ 986,864	\$	993,970		3,761,113	\$	2,034,678	\$	5,345,473		10,819,819
Total Charges Applicable to Customer Acccounts Svcs \& Meter Reading	\$ 4,162,383	\$	6,946,408		16,611,683	\$	6,998,053		34,578,720		43,805,157
Percent Applicable to Customer Accounts Services (903 and 905)	76.3\%		85.7\%		77.4\%		70.9\%		84.5\%		75.3\%
Customer Account Services Portion of Total Payroll	\$ 3,183,556	\$	1,372,968		5,555,204	\$	3,435,906	\$	7,169,154		20,572,530
Pension \& Benefits Pertaining to Customer Accounts Services	\$ 574,297	\$	268,710		1,972,749	\$	1,054,370	\$	1,415,185	\$	3,978,170
Note B: Calculation of Employer's FICA Pertaining to Customer Accounts Services Customer Account Services Portion of Total Payroll	\$ 3,183,556	\$	1,372,968		5,555,204	\$	3,435,906	\$	7,169,154		20,572,530
Employer's Portion of FICA (6.20\%) and Medicare (1.45\%)	7.65\%		7.65\%		7.65\%		7.65\%		7.65\%		7.65\%
Estimated Employer's Portion of FICA	\$ 243,542	\$	105,032		424,973	\$	262,847	\$	548,440	\$	1,573,799

## Exhibit 10 Page 2 of 5

## Kentucky-American Water Company <br> Comparison Group 2008 Actual Customer Accounts Expense Per Customer

	Ohio							
	Cleveland Eectric Illum.	Columbus Southern Pw r	Dayton Pow er \& Light	$\begin{gathered} \hline \text { Duke Energy - } \\ \text { Ohio } \end{gathered}$	Ohio Edison	Ohio Pow er		ledo Edison
Customer Account Services Cost Pool FERC Account Balances:								
Acct 903 - Customer Records \& Collection (page 322, line 161)	\$ 14,516,027	\$ 24,640,129	\$ 8,648,983	\$ 17,655,073	\$ 20,713,551	\$ 21,137,257	\$	6,909,201
Acct 905 - Misc Customer Accounts (page 322, line 163)	\$ 531,238	\$ 15,947	\$	\$ $(256,106)$	\$ 579,775	\$ 19,561	\$	213,136
Subtotal	\$ 15,047,265	\$ 24,656,076	\$ 8,648,983	\$ 17,398,967	\$ 21,293,326	\$ 21,156,818	\$	7,122,337
Add: Employee Benefits \& Employer FICA (not included in above amounts)								
Account 926 - Employee Pension \& Benefits Note A	\$ 243,960	\$ 1,169,753	\$ 547,426	\$ 2,836,968	\$ (1,852,176)	\$ 1,008,466	\$	482,226
Account 408 - Taxes Other Than Income (Employer's Portion of FICA) Note B	\$ 280,555	\$ 401,794	\$ 333,017	\$ 1,229,505	\$ 468,076	\$ 387,630	\$	152,465
Total Cost Pool	\$ 15,571,780	\$ 26,227,624	\$ 9,529,426	\$ 21,465,440	\$ 19,909,226	\$ 22,552,914	\$	7,757,028
Total Customers (page 304, line 43)	755,807	747,099	514,882	687,930	1,040,518	711,447		312,642
Customer Account Services Expense per Customer	\$ 20.60	\$ 35.11	\$ 18.51	\$ 31.20	\$ 19.13	\$ 31.70	\$	24.81
Note A: Calculation of Pension \& Benefits Pertaining to Customer Acct Mgmt								
Account 926 - Employee Pension \& Benefits (page 323, line 187)	\$ 2,546,911	\$ 13,054,219	\$ 11,936,626	\$ 34,365,193	\$ (15,395, 255 )	\$ 25,630,628	\$	4,035,809
Total O\&M Payroll (page 355, line 65)	\$ 38,286,937	\$ 58,613,682	\$ 94,920,691	\$194,685,375	\$ 50,858,052	\$128,781,829	\$	16,679,734
Benefits as Percent of Payroll	6.7\%	22.3\%	12.6\%	17.7\%	-30.3\%	19.9\%		24.2\%
Payroll Applic able to Customer Account Services								
Total Payroll Charged to Customer Accounts Function								
Electric (page 354, line 7)	\$ 5,037,050	\$ 6,281,750	\$ 6,306,396	\$ 14,312,049	\$ 8,765,466	\$ 6,394,108	\$	2,665,076
Gas (page 354, line 37)	\$	\$	\$	\$ 7,113,829	\$	\$	\$	-
Total Payroll Charged to Customer Accounts	\$ 5,037,050	\$ 6,281,750	\$ 6,306,396	\$ 21,425,878	\$ 8,765,466	\$ 6,394,108	\$	2,665,076
Percent Applicable to Customer Accounts Services (903 and 905):								
Acct 903 - Customer Records \& Collection (page 322, line 161)	\$ 14,516,027	\$ 24,640,129	\$ 8,648,983	\$ 17,655,073	\$ 20,713,551	\$ 21,137,257	\$	6,909,201
Acct 905 - Misc Customer Accounts (page 322, line 163)	\$ 531,238	\$ 15,947	\$	\$ $(256,106)$	\$ 579,775	\$ 19,561	\$	213,136
Subtotal - Total Charges Applicable to Customer Accounts Services	\$ 15,047,265	\$ 24,656,076	\$ 8,648,983	\$ 17,398,967	\$ 21,293,326	\$ 21,156,818	\$	7,122,337
Acct 902 - Meter Reading Expenses (page 322, line 160)	\$ 5,619,752	\$ 4,833,074	\$ 3,880,743	\$ 5,795,966	\$ 9,211,147	\$ 5,540,885	\$	2,401,739
Total Charges Applicable to Customer Acccounts Svcs \& Meter Reading	\$ 20,667,017	\$ 29,489,150	\$ 12,529,726	\$ 23,194,933	\$ 30,504,473	\$ 26,697,703	\$	9,524,076
Percent Applicable to Customer Accounts Services (903 and 905)	72.8\%	83.6\%	69.0\%	75.0\%	69.8\%	79.2\%		74.8\%
Customer Account Services Portion of Total Payroll	\$ 3,667,381	\$ 5,252,213	\$ 4,353,161	\$ 16,071,965	\$ 6,118,641	\$ 5,067,064	\$	1,993,009
Pension \& Benefits Pertaining to Customer Accounts Services	\$ 243,960	\$ 1,169,753	\$ 547,426	\$ 2,836,968	\$ (1,852,176)	\$ 1,008,466	\$	482,226
Note B: Calculation of Employer's FICA Pertaining to Customer Accounts Services Customer Account Services Portion of Total Payroll	\$ 3,667,381	\$ 5,252,213	\$ 4,353,161	\$ 16,071,965	\$ 6,118,641	\$ 5,067,064	\$	1,993,009
Employer's Portion of FICA (6.20\%) and Medicare (1.45\%)	7.65\%	7.65\%	7.65\%	7.65\%	7.65\%	7.65\%		7.65\%
Estimated Employer's Portion of FICA	\$ 280,555	\$ 401,794	\$ 333,017	\$ 1,229,505	\$ 468,076	\$ 387,630	\$	152,465

Exhibit 10
Page 3 of 5

## Comparison Group 2008 Actual Customer Accounts Expense Per Customer

	Miss ouri						Indiana							
	Aquila		Kansas City Pow er \& Light		Union Đectric		Duke Energy Indiana		Indiana Mich Power		Indianapolis Pow er \& Light		NIPSCo	
rvices														
FERC Account Balances:														
Acct 903 - Customer Records \& Collection (page 322, line 161)	\$	7,452,019		11,197,895		23,468,942		17,986,550		15,734,787		8,284,813	\$	9,129,615
Acct 905 - Misc Customer Accounts (page 322, line 163)	\$	2,347	\$	4,657	\$	308,130		$(233,182)$	\$	142,897	\$	157,521	\$	158,834
Subtotal	\$	7,454,366		11,202,552		23,777,072		17,753,368		15,877,684		8,442,334	\$	9,288,449
Add: Employee Benefits \& Employer FICA (not included in above amounts)														
Account 926 - Employee Pension \& Benefits Note A	\$	1,977,597	\$	2,386,936		2,869,858		2,046,539		799,163	\$	1,360,502	\$	3,381,340
Account 408 - Taxes Other Than Income (Employer's Portion of FICA) Note B	\$	475,084	\$	448,997		799,714		560,144		323,764	\$	329,537	\$	1,347,966
Total Cost Pool	\$	9,907,047		14,038,485		27,446,644		20,360,051		17,000,611		10,132,373	\$	14,017,755
Total Customers (page 304, line 43)		403,879		516,978		1,196,119		776,647		582,769		468,203		456,302
Customer Account Services Expense per Customer	\$	24.53	\$	27.15	\$	22.95	\$	26.22	\$	29.17	\$	21.64	\$	30.72
Note A: Calculation of Pension \& Benefits Pertaining to Customer Acct Mgmt														
Account 926 - Employee Pension \& Benefits (page 323, line 187)		25,845,865		63,342,544		96,460,926		49,637,989		31,291,702		33,892,398		22,891,873
Total O\&M Payroll (page 355, line 65)		81,163,764		155,753,238		351,369,910		177,595,604		165,714,630		107,311,441		119,291,633
Benefits as Percent of Payroll		31.8\%		40.7\%		27.5\%		28.0\%		18.9\%		31.6\%		19.2\%
Payroll Applic able to Customer Account Services														
Total Payroll Charged to Customer Accounts Function														
Electric (page 354, line 7)		6,887,814		8,022,470		14,643,835		10,335,603		5,125,654		7,218,568	\$	8,921,614
Gas (page 354, line 37)		2,645,654	\$	-		3,496,597		-		-	\$	-	\$	14,203,890
Total Payroll Charged to Customer Accounts		9,533,468		8,022,470		18,140,432		10,335,603		5,125,654		7,218,568	\$	23,125,504
Percent Applicable to Customer Accounts Services (903 and 905):														
Acct 903 - Customer Records \& Collection (page 322, line 161)	\$	7,452,019		11,197,895		23,468,942		17,986,550		15,734,787		8,284,813	\$	9,129,615
Acct 905 - Misc Customer Accounts (page 322, line 163)	\$	2,347	\$	4,657		308,130		$(233,182)$		142,897	\$	157,521	\$	158,834
Subtotal - Total Charges Applicable to Customer Accounts Services	\$	7,454,366		11,202,552		23,777,072		17,753,368		15,877,684	\$	8,442,334	\$	9,288,449
Acct 902 - Meter Reading Expenses (page 322, line 160)	\$	3,988,972	\$	4,109,830		17,483,238		7,306,480		3,351,882	\$	5,704,871	\$	2,901,921
Total Charges Applicable to Customer Acccounts Svcs \& Meter Reading		11,443,338		15,312,382		41,260,310		25,059,848		19,229,566		14,147,205	\$	12,190,370
Percent Applicable to Customer Accounts Services (903 and 905)		65.1\%		73.2\%		57.6\%		70.8\%		82.6\%		59.7\%		76.2\%
Customer Account Services Portion of Total Payroll	\$	6,210,247	\$	5,869,246		10,453,784		7,322,142		4,232,208	\$	4,307,675	\$	17,620,471
Pension \& Benefits Pertaining to Customer Accounts Services	\$	1,977,597	\$	2,386,936		2,869,858		2,046,539		799,163	\$	1,360,502	\$	3,381,340
Note B: Calculation of Employer's FICA Pertaining to Customer Accounts Services Customer Account Services Portion of Total Payroll	\$	6,210,247		5,869,246		10,453,784		7,322,142		4,232,208	\$	4,307,675	\$	17,620,471
Employer's Portion of FICA (6.20\%) and Medicare (1.45\%)		7.65\%		7.65\%		7.65\%		7.65\%		7.65\%		7.65\%		7.65\%
Estimated Employer's Portion of FICA	\$	475,084	\$	448,997		799,714		560,144		323,764	\$	329,537	\$	1,347,966

## 0t !!!!! <br> Page 4 of 5

 Kentucky-American Water CompanyComparison Group 2008 Actual Customer Accounts Expense Per Customer

		$$			¢		$\begin{aligned} & \text { Ò } \\ & \underset{\sim}{\circ} \end{aligned}$						$\begin{gathered} \tilde{N} \\ \underset{\sim}{z} \\ \underset{\sim}{n} \\ m \end{gathered}$		M
		$$		$\begin{array}{ll} \infty & 8 \\ N & 8 \\ N & 0 \\ N & 0 \\ N & 1 \\ \infty & \\ \infty \end{array}$	-		$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\sim}{n} \end{aligned}$						$\left\lvert\, \begin{gathered} \substack{y \\ y \\ 0 \\ 0 \\ 0 \\ -i \\ \infty} \end{gathered}\right.$		-
					¢		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{2} \end{aligned}$						$\begin{aligned} & \text { y } \\ & -7 \\ & 0 \\ & -7 \\ & - \\ & - \\ & \infty \end{aligned}$		-
	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \infty \\ & \underset{\sim}{1} \\ & \oplus \end{aligned}$				-		$\underset{\mathrm{m}}{\stackrel{\rightharpoonup}{\mathrm{o}}}$	$\begin{aligned} & \text { N} \\ & \text { O } \\ & \text { O } \\ & \infty \\ & \infty \\ & \infty \\ & \oplus \\ & \oplus \end{aligned}$					$\left\|\begin{array}{c} 9 \\ 0 \\ 2 \\ \underset{y}{c} \\ - \\ \sim \\ \infty \end{array}\right\|$		
		$\begin{aligned} & -2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sigma^{2} \\ & \infty \end{aligned}$			N										
					os	$$	$\begin{aligned} & 0 \\ & 00 \\ & 0 \\ & 0 \\ & \hline-1 \end{aligned}$								¢

Customer Account Services Portion of Total Payroll
Employer's Portion of FICA (6.20\%) and Medicare (1.45\% Estimated Employer's Portion of FICA

Baryenbruch \& Company,

## Exhibit 10 Page 5 of 5


Customer Account Services Cost Pool
FERC Account Balances:
Acct 903 - Customer Records \& Collection (page 322, line 161)
Acct 905 - Misc Customer Accounts (page 322, line 163)
Subtotal

Comparison Group 2008 Actual Customer Accounts Expense Per Customer

Baryenbruch \& Company,

## Analysis of Services

The final aspect of this study was an assessment of whether the services that are provided to KAWC by the Service Company would be necessary if KAWC were a stand-alone water utility. The first step in this evaluation was to determine specifically what the Service Company does for KAWC. Based on discussions with Service Company personnel, the matrix in Exhibit 11 was created showing which entity-KAWC or a Service Company location-is responsible for each of the functions KAWC requires to ultimately provide service to its customers. This matrix was reviewed to determine: (1) if there was redundancy or overlap in the services being provided by the Service Company and (2) if Service Company services are typical of those needed by a stand-alone water utility.

Upon review of Exhibit 12, the following conclusions can be drawn:

- The services that the Service Company provides are necessary and would be required even if KAWC were a stand-alone water utility.
- There is no redundancy or overlap in the services provided by the Service Company to KAWC. For all of the services listed in Exhibit 12, there was only one entity that was primarily responsible for the service.
Exhibit 11
Page 1 of 3


## Kentucky-American Water Company Designation Of Responsibility For Water Utility Functions



[^0]Exhibit 11
Page 2 of 3


Baryenbruch \& Company,
LLC
Exhibit 11
Page 3 of 3


## Governance Practices Associated With Service Company Charges

There are several ways by which KAWC exercises control over Service Company services and charges. The most important of these are described below.

- President of Regulated Operations Oversight - The President of Regulated Operations is on the Executive Management Team (EMT) of American Water. This position is responsible for the overall performance of each operating company in American Water. As part of the EMT, the President of Regulated Operations has equal say with other EMT members in major business decisions of American Water and has the ability to monitor Service Company performance quality and spending. The President of Regulated Operations also has dialogue with each operating company president to address local concerns.
- Divisional Vice President \& Treasurer - The Divisional Vice President and Treasurer of the Eastern Division states is responsible for the financial reporting, performance and internal controls of each of the operating companies in the division. The Vice President and Treasurer monitors the performance and reporting from the Service Company and follows up on instances where the quality and timeliness of services are not as expected. The operating company interacts with the Divisional VP \& Treasurer to discuss any concerns with billings, etc.
- Operating Company Board Oversight - KAWC's board of directors includes members of American Water's EMT, members of the divisional management team and business and community leaders from outside the Company. KAWC's president is Chairman of the KAWC board. This helps ensure that KAWC's needs are a factor in the delivery of Service Company services.
- Service Company Budget Review/Approval - The President of Regulated Operations sits on the Service Company board and that board must formally approve the budget for Service Company charges for the next year. These budgeted charges are consolidated with the operating company's own spending into an overall budget which must be approved by the operating company's board of directors. KAWC's president also sits on the Service Company board.
- Major Project Review And Approval - Major projects undertaken by the Service Company must first be reviewed by American Water's Executive Management Team, which includes the President of Regulated Operations. With input from the local presidents and Divisional Vice President \& Treasurer, they have the ability to impact all new initiatives and projects before they are authorized.
- Service Company Bill Scrutiny - KAWC Finance personnel review the monthly Service Company bill for accuracy and reasonableness on a monthly basis. KAWC's financial manager has dialogue with Shared Services Center office personnel concerning the monthly bill and any mistakes or overcharges are credited on a subsequent billing. The KAWC Finance Manager prepares an actual to budget comparison of management fees each month for use in identifying unusual variances. Service Company actual to budget comparison is included in the monthly FRP. Unusual variances are researched, explanations are provided and any corrections are made, as necessary.
- Service Company Budget Variance Reporting - Each month, a summary variance analysis is prepared that explains differences between budgeted and actual Service Company spending. In addition, a more detailed monthly variance report, called the "Statement of Expenses and Billed Charges," is produced by Service Company location and shows actual spending for the month.
- Operating Company Budget Variance Reporting - The "Budget/Plan Analysis," produced monthly, has a line item for Management Fees (i.e., Service Company charges). In this way, Service Company budget versus actual charges can be monitored


## VI - Question 4 - Need for Service Company Services

for the month and year-to-date. Additional information exists that allows more detailed analysis of "Divisional" and "Corporate" Management Fees.

- Capital Investment Management ("CIM") - CIM is one of American Water's primary business planning processes. It covers capital and asset planning and is employed throughout American Water. CIM provides a full range of governance practices, including a formal protocol for assessing system needs, prioritizing expenditures, managing the capital program, approving project spending, delivering projects and measuring outputs. CIM ensures that:
- Capital expenditure plans are aligned with the strategic intent of the business
- The impact of capital expenditure and income plans are fully reflected in operating expense plans
- The impacts of these plans are understood and affordable, and
- Effective controls are in place over budgets (through business plans) and individual capital projects (through appropriate authorization thresholds, management and reporting processes).
The CIM process was designed to optimize the effectiveness of asset investment. The process is managed at two levels for all American Water companies, including all KAWC Operating Units. Monthly meetings of the CIM are held to review capital spending compared to plan, review new project requests, and review updates or modifications to existing projects. The President of KAWC, VP Finance, and others participate as necessary (e.g. KAWC operations managers and Rates Manager) and provide the data used in the monthly review schedules.


## COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

IN THE MATTER OF: )
THE APPLICATION OF KENTUCKY-AMERICAN ) CASE NO. 2010-00036 WATER COMPANY FOR AN ADJUSTMENT OF ) RATES ON AND AFTER MARCH 28, 2010 )

DIRECT TESTIMONY OF LINDA C. BRIDWELL, P.E.
February 26, 2010

## 1. Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Linda C. Bridwell and my business address is 2300 Richmond Road, Lexington, Kentucky 40502.
2. Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?
A. I am employed by the Kentucky-American Water Company ("KAW") as Manager, Project Delivery, Water Supply.
3. Q. HAVE YOU PREVIOUSLY FILED TESTIMONY BEFORE THIS COMMISSION?
A. Yes.
4. Q. PLEASE STATE YOUR EDUCATIONAL AND PROFESSIONAL BACKGROUND.
A. I received a B.S. degree in Civil Engineering from the University of Kentucky in 1988 and I received a M.S. degree in Civil Engineering from the University of Kentucky in 1992 with an emphasis in water resources. I completed a Masters of Business Administration from Xavier University in Cincinnati, Ohio in 2000. I am a registered Professional Engineer.

I have been employed by American Water Works Company ("AWW") since 1989. I worked as a distribution supervisor for KAW until 1990 when I was promoted to Planning Engineer. In July 1995, I was promoted to Engineering Manager. In January 1998, I was promoted to Director of Engineering. In July 2004, I accepted the position of Project Delivery and Developer Services Manager for the Southeast Region of AWW, responsible for Kentucky, Tennessee, and West Virginia. In 2006, that title was changed to Manager - Engineering, and responsibility for West Virginia was shifted to someone in West Virginia. In November 2007, I shifted to my role as Manager, Project Delivery, Water Supply for KAW, and my focus is entirely on project implementation of our new water treatment plant and transmission main. I am a member of the American Water Works Association (AWWA), served as president of the local chapter and state section of the American Society of Civil Engineering (ASCE), and served as an officer in the local chapter of the National Society of Professional Engineers (NSPE) and as a State officer. I have previously served as an Adjunct Professor at the University of Kentucky in the

Civil Engineering Department, teaching "Water Quality and Pollution Control" and the "Introduction to Environmental Engineering." I serve as a member of the Civil Engineering Industrial Advisory Committee at the University of Kentucky. I served as a Commissioner on the Kentucky Water Resources Development Commission established by Governor Patton and currently serve on the Board of Directors for the Kentucky Infrastructure Authority.

## 5. Q. WHAT ARE YOUR DUTIES AS MANAGER, PROJECT DELIVERY, WATER SUPPLY?

A. My primary responsibility is the coordination and implementation of the new water treatment plant, transmission main and booster station. Since 1997, I have been involved directly as the project manager for the Bluegrass Water Project, and since December 1999 I have served as KAW's representative to the Bluegrass Water Supply Consortium/Commission ("BWSC"). Until June 2008, I was also responsible for the coordination of the Engineering Department at KAW, which included the planning, development, and implementation of all aspects of construction projects. This included working with all new main extensions and developers, water treatment plant upgrades, new construction, and network facilities improvements. I was involved in the development of the 1992 Least Cost/Comprehensive Planning Study ("LC/CPS") for KAW, including coordinating local input, regionalization and data collection, as well as drafting a 1998 update to the LC/CPS. I continue to be responsible for updating the demand projections and monitoring the source of supply for KAW.

## 6. Q. WHAT WILL YOUR TESTIMONY ADDRESS?

A. My testimony will initially describe the calculation of tap fees and progress on our conservation initiative. I will then turn to addressing in some detail the status of the water supply project, including construction progress and the budget.

## 7. Q. DOES KAW PROPOSE AN INCREASE TO ITS TAP FEES?

A. Yes. KAW requested the addition of a tap fee in Case No. 2000-120. The tap fees were modified from the original submission, but approved for all customers in that proceeding. The tap fees at that time were based on a three-year average cost of the installation of new services. New services are installed through a contractor, who
competitively bids on an annual contract for this work. KAW employees oversee the installation of all new service and meter settings. The tap fees were increased in 2004 and again in 2007 and 2008 based on increased contractor and materials pricing.

Since 2008, the cost of installing taps has significantly increased. Because of the unusual economic situation of the last two years, KAW has proposed a slight alteration to its tap fee calculation, using a five-year average of actual construction costs. The proposed new tap fees are:

3/4 x 5/8" meter \$817 (increased from \$702)
$1 "$ meter $\quad \$ 1,569$ (increased from $\$ 1,287$ )
2" meter $\quad \$ 3,536$ (increased from \$3,129)
8. Q. WHY HAVE THE TAP FEES CHANGED IN JUST EIGHTEEN MONTHS?
A. The proposed increase in 2008 was based on a 3-year average of actual costs from 2005-2007. As everyone is aware, there have been significant economic changes in the last two years that have dramatically impacted everyone. The contractor costs have increased per installation. The cost of materials in 2008 increased tremendously, driven mainly by raw material cost increases. Although the cost of materials dropped in 2009, the costs did not drop to the pre-2008 levels. Additionally, there are a number of fixed cost items, including KAW labor and overhead, that are applied to the services. During 2008 and 2009 we saw a sharp drop in the number of new services installed, thereby raising the proportioned costs on each service. KAW has historically seen very gradual increases in service installation pricing that has been similar to inflationary increases. However, the impact of the last two years has been extraordinary. To smooth the impact of the last two years, KAW is proposing to use a five-year average in this instance.

## 9. Q. ARE YOU FAMILIAR WITH KAW'S CONSERVATION PROGRAM?

A. Yes. In 1992, I was in charge of an extensive expansion of KAW's conservation program, which included a number of customer programs and community education. Over the years, it became clear that the most effective efforts were in community education. In 2001, KAW filed a Conservation Initiative Plan with the Public Service Commission (PSC) and initiated an evaluation of our conservation education programs to develop a comprehensive approach to encourage water conservation.

The evaluation led to additional focus on community education in mixed delivery methods with a recognizable slogan. KAW developed the slogan, "Water. It’s Worth Using Wisely." We used other one-time promotions to keep the program fresh while reinforcing television, radio and print messages. The program has been continually reinforced with customer surveys and focus groups as well as partnerships with other entities such as Bluegrass PRIDE and other organizations to promote wise water use among all consumers.

The effectiveness of the program continues to be monitored through surveys and adjusted accordingly. The Company believes the conservation programs have been successful and have contributed to the reduced per customer average usage as discussed in Dr. Edward Spitznagel's direct testimony.

## 10. Q. WHAT WAS INCLUDED IN THE PSC'S ORDER IN CASE NUMBER 2007134 AND WHAT HAS KAW DONE TO MEET THE CONDITIONS IN THAT ORDER?

A. In Case No. 2007-00134, the expert witness for the Attorney General’s office testified that KAW should review its conservation program and compare it to best practices in the water industry. KAW agreed to do so. Accordingly, the PSC ordered KAW to "retain a qualified consultant(s) to assist in developing a water conservation, leakmitigation and demand management plan consistent with the best practices of the water industry. This plan shall include a program (or programs) to cost-effectively reduce non-revenue water."

The PSC also stated, "On November 1, 2008 and the first day of each month thereafter, Kentucky-American shall submit a written report to the Commission on the status of the development and implementation of its water conservation, leakmitigation and demand side management plan and the effects that the implementation of such plan has had on usage."

KAW determined that it should seek two separate consultants, one to look at leak mitigation and the reduction of non-revenue water, and one to review the conservation program and demand management plan. In his testimony, Keith Cartier discusses leak mitigation and non-revenue water. I will address the efforts of the review of the conservation program and demand management plan. KAW retained

Strand Associates, based out of Wisconsin, to perform a review of its conservation and demand side management program for comparison with best practices of the water industry and recommend revisions to the program as necessary. Strand completed this effort and submitted its report, which has been provided to the PSC. Strand identified two challenges in conservation programs: 1) difficulties from relying on the participation of customers and how to encourage that participation; and 2) difficulties in tracking success through reduced water usage. Citing USEPA guidelines, Strand emphasized that because of the low water usage in Kentucky compared to other states and low water costs compared to other states, it has been and will continue to be difficult for KAW to implement many cost effective conservation measures that are utilized in other areas of the United States.

Strand provided thirteen recommendations for Kentucky American Water to improve its Conservation Program in cost effective ways:

1) Establish a Standing Conservation Program as an Ongoing Project Strand recommends that a cross-functional team be established with designated responsibilities for budgeting, performance and tracking to be maintained under the Conservation Program. This team would be responsible for external communications and operational coordination.
2) Develop Annual Report

Strand recommends that the Conservation team develop an annual report on conservation. This report would use the information to educate customers about the program, consider new initiatives, and help track success of the program.
3) Review of Drought Management Appeals Board One responsibility of the Conservation team would be to memorialize the efforts and decisions of the Drought Management Appeals Board to provide consistency over the period between droughts.
4) Annual Report as Press Release

The Conservation team would prepare and publish the annual report similar to an annual Water Quality Report.
5) Water Balance

Strand recommends the completion of the AWWA/IWA Water Balance to help develop tracking of water usage on a more detailed level and identify areas where external conservation programs may be more effective. This Water Balance was also recommended by the NRW report and KAW has begun this effort.
6) Other Performance Indicators

Strand recommends that performance indicators be utilized beyond the water balance to develop benchmarks. These performance indicators go beyond numbers tracked in the water balance such as areas of personnel, quality of service, and economic and financial indicators. Strand recommended that some of these performance indicators be also identified that can help understand operational areas that can be improved to reduce real and apparent losses.
7) Request Similar Information from Wholesale Customers

Strand also recommends that KAW request water balance information from each of its wholesale customers to have a better understanding of customer usage.
8) Pressure Management

Strand recommends that KAW annually assess the value of an in-depth study to reveal areas with high pressure and high leakage.
9) Continue Monthly Billing and Charting Strand acknowledged that KAW was an industry leader in its conversion from quarterly to monthly billing and should highlight this success and continue it.
10) Rate Structures

Strand acknowledged that KAW was an industry leader in its conversion from declining block rates to uniform rates. Strand recommends that KAW highlight this success and continue it.
11) Future Block Rate Structures

Strand recommends that KAW continue to review the potential for increasing block rates.
12) Handouts of Low Flow Fixtures Should Continue on an As-Requested Basis

A number of case studies were reviewed that indicated a low-flow retrofit program is only successful when the customer has a strong intention to change based on personal choice driven from the customer end. Based on the case
studies and KAW's previous experience, Strand recommends continuing to provide fixtures as requested and highlight fixtures that are installed in its annual report.

## 13) Commercial and Industrial Programs

Strand recommends that KAW serve as a conservation resource for its large customers that can have a big impact on water usage and look to partner in the future on other programs.

After receiving the report from Strand, KAW established a task force to review the report and determine the best approach for implementation. An ongoing team was established in January 2010 to lead the implementation of the changes. That team will be responsible for detailing the current program in a concise document at both a local and national level. The team will also prepare an annual report that will heighten awareness among customers and establish program goals. The team will look for opportunities to partner with other agencies, including the LFUCG and Bluegrass Pride. The team will be responsible for implementing any new programs, making additional budget requests as necessary, and continuing to track progress and report on it to the PSC.

## 11. Q. WILL YOU BRIEFLY DESCRIBE THE PURPOSE OF THE WATER SUPPLY AND TREATMENT PROJECT?

A. Yes. Over twenty years ago, KAW identified a problem in meeting the needs of its customers. This water supply deficit was a future deficit, but as efforts progressed through the years and the central Kentucky area grew, it became a very current problem. There are actually two distinct but integrated issues facing KAW: a lack of an adequate quantity of raw water available in its current source of supply, and a capacity deficit in its water treatment facilities. The purpose of the water supply and treatment project is to address both of those problems for current customers and provide adequate facilities through the 2030 planning horizon.

The project consists of a new water treatment plant built on Pool 3 of the Kentucky River. This plant will have a capacity of 20 million gallons per day (mgd) and will supply water through a 42-inch transmission main that is approximately 30 miles long and connects to KAW's distribution system in Fayette County. There is one
intermediate booster pumping station in Franklin County with a 3.0 million gallon ground storage tank located adjacent to the booster station.

The project concept was developed as a result of nearly twenty years of study, working with various stakeholders and regional utilities to determine the best solution for central Kentucky. In 2007, KAW filed an application for a Certificate of Convenience and Necessity with the PSC, which became Case Number 2007-134. For a detailed history of the development of the project, please refer to my direct testimony in that case.
The Certificate Case lasted over a year and incorporated the information provided in 2 previous cases before the PSC related to KAW's water supply and treatment capacity deficits. The case (including the previous cases) provided an exhaustive review of the needs of KAW to supply its customers, alternative solutions to meet those needs, costs associated with those alternatives, details of design, environmental and cultural impacts of construction, and the estimated financial review. After this extensive review and two evidentiary hearings, the PSC granted a Certificate of Public Convenience and Necessity to construct the proposed facilities in a 97-page Order dated April 25, 2008.

## 12. Q. PLEASE DESCRIBE THE WATER SUPPLY AND TREATMENT PROJECT?

A. The project includes three separate construction efforts, each with its own construction contract. The first is for the construction of the raw water intake and treatment plant at Pool 3 of the Kentucky River. The raw water intake and pumping station is located just adjacent to Pool 3 and has three pipes that provide water from the river into the pumping station. The pumping station, with a capacity of 20 mgd , transfers raw water through a 42-inch pipe approximately 1,500 feet to the water treatment process building that sits up a bluff overlooking the river. There are four raw water vertical turbine pumps with space for a future pump in the design. Two of the pumps are rated at 10 mgd with variable frequency drives and two of the pumps are rated at 7 mgd to provide optimal combinations of operations. The variable frequency drives allow the pumps to operate efficiently and at a greater range of flows.

The water treatment process is essentially all housed in one building that has three separate levels. The treatment process is conventional, using modules of 5 mgd flow volumes for flocculation and sedimentation, with five sand filters and two separate clearwells. There are four high service pumps that will draw from the clearwells and transfer water into the high service main. The chemical systems have redundancy and allow for two different coagulation chemicals to be utilized if necessary. There is also space for additional chemical treatment or ultraviolet installation for disinfection. The residuals removed from the water will be processed in two clarifiers and one thickener, then run through a belt press to further dewater the residuals. The decanted water and pressed water will be discharged back to the Kentucky River while residuals will be beneficially reused on the treatment plant site.

The second component of the construction effort is the high service water transmission main. The main is a 42 " ductile iron pipe that generally follows state roads from the treatment plant to the booster station and on to the connection point with KAW's distribution system in Fayette County. Approximately 55\% of the main is in Kentucky Transportation Cabinet right-of-way while the other $45 \%$ of the main is installed in private easements acquired for this project. There are periodic valves to allow the main to shut down for maintenance and periodic air release valves along the route. Additionally, KAW has installed flushing hydrants along the main that can also be utilized for fire protection in Franklin and Scott Counties. The transmission main work was bid as two separate contracts, one from the treatment plant to the booster station, and one from the booster station to the connection point with the existing distribution system in Fayette County. One contractor was the successful bidder on both transmission main bids and the project was combined into one contract.

The third component of the construction effort is the booster station located in Franklin County approximately 12.7 miles from the treatment plant along the pipeline route. The main discharges water into a 3 mg concrete ground storage tank. The adjacent booster pumping station building houses three 10 mgd vertical turbine pumps that will draw water from the tank and push water on to the connection point with KAW’s system in Fayette County.

## 13. Q. WHAT IS THE STATUS OF THE WATER SUPPLY AND TREATMENT PROJECT?

A. Following issuance of the Order in Case No. 2007-134, KAW immediately began work on the project, executing contracts for construction by the end of May 2008, finalizing purchases of plant, intake and booster station property in June, and breaking ground. KAW believes it is critical to have facilities in-service in 2010, and the only way to accomplish that was to begin work immediately. This also locked in construction pricing at bid levels, thus minimizing any potential negative impact to ratepayers.
Moderate weather through the end of 2008 allowed the contractors at the treatment plant, booster station, and along the pipeline route to move on schedule, in some cases even slightly ahead of schedule. In early 2009, however, inclement weather began to slow construction down. The rest of 2009 saw unusually heavy periods of rain, which proved to be challenging for both the treatment plant and pipeline contractors. Nevertheless, the contractors met those challenges and remained on schedule, frequently working late hours and weekends to keep the project on the scheduled completion plan.

In late 2009, KAW was able to acquire the last of the easements necessary to complete the pipeline construction and all of the transmission pipe will be installed by the end of the first quarter 2010. Through the spring/summer of 2010 the contractor will continue work on restoring, reseeding the pipeline areas, pressure testing the pipeline and disinfection of the pipeline. Additionally, the contractor will complete final paving required by the Kentucky Transportation Cabinet in Franklin County. The intermediate booster station building is nearly complete and the contractor has made the connection to supply electricity to the building and will begin testing facilities and equipment during the first quarter of 2010. The tank has been constructed and will be disinfected after the transmission main is fully disinfected. Final grading has occurred, security fencing has been installed, and the drive has been fully paved. Final site clean-up, including landscaping, will continue through the spring/early summer period.

The water treatment plant building remains on schedule. The intake structure is built, including all of the work in the river and the wet well under the raw water pumping structure. However, the roof of the raw water pumping station has not been completed, which must occur before the work on the interior of the building can be finalized and equipment installed. The raw water pipe has been installed between the raw water pumping station and the water treatment process building. The exterior walls of the water treatment process building have been completed and the structure is under roof. Most of the treatment equipment is installed in the flocculation and sedimentation basins. The work on electrical, plumbing, chemical and HVAC systems is ongoing and progressing on schedule. The residuals process tanks have been constructed, as well as the residuals press building. The work remains on schedule.

## 14. Q. WHAT IS THE ESTIMATED FINAL COST OF THE PROJECT?

A. The current estimate of the project is $\$ 163.9$ million. This is slightly higher than the estimate of $\$ 162.3$ million used during the certificate case. The primary driver of this increase is related to additional AFUDC due to a lower amount of CWIP receiving full rate base treatment in the Company's 2008 rate case than anticipated in the certificate filing estimates. The Company proposed in the certificate case that all CWIP at the time of its 2008 rate case filing would be afforded full rate base treatment and that AFUDC would cease from the effective date of the rates approved in the 2008 rate case on that incremental portion of the CWIP.

## 15. Q. WHAT ARE THE EXPENDITURES TO DATE?

A. As of January 31, 2010, the total construction project expenditures are $\$ 140,994,656.00$. This includes accruals for value of work booked but not invoiced to the project and contractor retainage held in a separate account until ready for release. Within the funding project, there have been five separate work orders established to assist in tracking expenditures. Relevant design charges are captured within those individual work orders as well. The five work orders are: 1) the water treatment plant and intake station including high service transmission mains to the edge of the treatment plant property; 2) the booster pumping station and storage tank including transmission main on the booster station site; 3) the total transmission main
from the treatment plant to the booster station and from the booster station to the connection to the distribution system; 4) land acquisition and easement acquisition including engineering, surveying and legal expenses; and 5) the interest expenses for tax-exempt financing bonds since these costs are not part of AFUDC. The expenditures as of the end of January 31, 2010 are listed in Table 1 below by work order.

Table 1	
Work Order	Expenditures as of January 31, 2010
434232 - Water Treatment Plant	$\$ 65,241,317.41$
$434231 ~-~ 3.0 ~ m g ~ s t o r a g e ~ t a n k ~ \& ~ b o o s t e r ~$   pump station	$\$ 10,543,965.96$
434227 - 42" Transmission main	$\$ 56,069,056.30$
50111193 - Land and Easement acquisition	$\$ 4,748,956.98$
455050 - Record Interest from Bonds	$\$ 2,277,251.77$
Funding Project 12020607 Total	$\$ 138,880,548.42$
12012092 - Preliminary Source of Supply   Work (FP 12020204)	$\$ 2,114,107.58$
Project Total	$\$ 140,994,656.00$

## 16. Q. WHAT HAVE BEEN THE SIGNIFICANT CHANGES IN PROJECT CONSTRUCTION COST ESTIMATES TO DATE AND WHY HAVE THEY OCCURRED?

A. On this project, KAW executed construction contracts with three primary contractors, one for the treatment plant and intake facility with Reynolds-Rogers, LLC, one with PAE and Associates for the booster pumping station and 3.0 million gallon storage tank, and one combined contract with Garney Companies, Inc., for both bids on the 42" transmission main, although the contract references two sections as Section A (from the treatment plant to the booster station) and Section B (from the booster station to the connection point to the distribution system).
As of February 2010, there have been five approved change orders on the water treatment plant project. The original contract price was $\$ 65,314,525$ and the current
authorized contract price is $\$ 66,341,982$. The contract time for substantial completion has been extended by 78 days and the contract time for final completion has been extended by 30 days.

## 17. Q. HAVE THERE BEEN CHANGE ORDERS FOR THE TRANSMISSION MAIN CONSTRUCTION CONTRACT?

A. Yes. There have been ten change orders on the pipeline, five on Section A and five on Section B. The original contract price for Section A was $\$ 25,037,475$ and the original contract price for Section B was $\$ 27,289,530$ for a combined total of $\$ 52,327,005$. The current authorized contract price for Section A is $\$ 26,810,336$ and the current authorized contract price for Section B is $\$ 28,803,969$ for a combined total of $\$ 55,614,305$. It should be noted, however, that the pipeline contract is based on unit pricing and may ultimately vary as installed quantities differ from the estimated quantities in the authorized contract. A final change order will be issued to authorize the actual quantities installed.

## 18. Q. WERE THERE CHANGE ORDERS FOR THE BOOSTER STATION AND TANK CONTRACT ON THE PROJECT?

A. Yes. As of the end of January 31, 2010, there have been three approved change orders on the booster pumping station contract. The original contract price was $\$ 8,445,123$ and the current authorized contract price is $\$ 8,683,671$.

## 19. Q. WHAT IS THE PROCESS FOR AUTHORIZING CHANGE ORDERS TO THE CONSTRUCTION CONTRACTS?

A. There are two types of change orders. The first type is initiated as a request by KAW and the second type is initiated by a request from the contractor. Under the first type, KAW may request the change based on additional information from operations personnel, a change based on other contracts, or a request necessary to comply with permit and regulatory requirements or necessary to comply with easement negotiations. Under these types of change orders, KAW alerts the contractor to the necessary change and requests pricing from the contractor. Details regarding the change are developed from either KAW or the construction administration
engineering consultant on the contract and delivered to the contractor. Under the second type, the contractor generally identifies a concern in the contract documents through a request for information to KAW. The request for information is formally reviewed by the construction administration engineering consultant and KAW and a response is provided to the contractor. Based on the information provided, the contractor may then submit a change order request if the contractor believes the information conflicts with the original contract documents. The request is reviewed by the construction administration engineering consultant and KAW. In both types, there is generally substantial negotiation over the change order request. The contractor generally has to substantiate the price within the change order request, providing vendor quotes, labor and equipment pricing, and details as to why the change order request is justified if it has been requested by the contractor. Once an agreement has been reached over the appropriate level of increase or decrease, KAW prepares a change order for execution. The contractor signs five copies and returns them to KAW for execution under its Contract Approval process. Each of the change orders is reviewed to determine the impact on the contract, operations, schedule, and budget of the project. Alternatives are weighed carefully prior to execution. In each of the change orders described above, an extensive review of the information took place by all of the parties involved in the project.

## 20. Q. HAVE THERE BEEN OTHER CHANGES TO THE PROJECT COST ESTIMATES AND WHY HAVE THEY OCCURRED?

A. In the Certificate Case, KAW estimated the land and easement costs to be $\$ 1,968,024$. The original budget at the start of construction anticipated $\$ 3,437,315$ for easement and land acquisition with the increase being offset by a reduction in Omissions and Contingencies. This number was increased in 2009 based on easement acquisition costs exceeding the original estimate, to a current estimated cost of $\$ 4,236,000$. This includes additional costs for surveying, engineering, and legal services in support of the easement and land acquisition efforts. Additional construction administration costs were requested and approved by the: (1) engineering consultant on the booster station as a result of a lengthy investigation into bedrock conditions at the booster tank site; (2) engineering consultant on the
treatment plant for additional design work at the intake station as a result of the riverbank stabilization efforts; and (3) the engineering consultant on the pipeline for construction administration of the numerous alignment changes that resulted from property owner negotiations. The engineering costs have been increased from the original budget of $\$ 942,580$ by $\$ 151,000$.

Additional resident observation costs were requested and approved by the engineering consultant on the booster station as a result of the project completion delays. The original budget estimate of $\$ 343,200$ has been increased by $\$ 36,000$.

The labor charges for KAW and AWW support of the project in the original budget was $\$ 880,000$ and has been revised to $\$ 1,776,660$. This has been offset by a reduction in capitalized overhead on the project. All appropriate personnel, including operations and management team members that are working on the project, are charging labor directly to the project.
The original estimate for Allowance for Funds Used During Construction was $\$ 10,278,033$. An accelerated projection of the cash flow from the contractor resulting from the immediate commencement of work on the pipeline and booster station, along with a reduction of the amount of plant removed from CWIP during the last rate increase meant an increase in AFUDC. This has been partially offset by the availability of tax exempt debt financing for the project. The total AFUDC and interest charges are currently projected at $\$ 12,386,298$. The tax-exempt financing effort will be discussed later in my testimony. Inspection of the building materials during construction at the water treatment plant, including concrete and steel testing, had to be removed from the construction contract per a requirement of KY Building Code and the inspection services have been retained by KAW. This was originally structured as an allowance in the Construction contract that will not be invoiced.

## 21. Q. DID THE COMPANY INCLUDE AN OMMISSIONS AND CONTINGENCIES ALLOWANCE IN ITS ESTIMATE OF THE PROJECT COSTS?

A. Yes. An allowance for omissions and contingencies should always be included in any construction budget for a number of basic reasons. Changes are sometimes required when field conditions are not exactly as anticipated, regulations governing
construction may change, vendors may discontinue specified equipment, items may have been overlooked during design, or the owner may have reasons to make changes based on new information or technology. Generally, the more complex the project, the greater the allowance for omissions and contingencies.

## 22. Q. WAS THE OMMISSION AND CONTINGENCY ALLOWANCE INCLUDED IN THE COMPANY'S PROJECT COST ESTIMATE SUFFICIENT TO COVER THE CHANGES IN CONTRACT SCOPE FOR THE THREE AREAS OF THE PROJECT DISCUSSED PREVIOUSLY?

A. Yes. The omissions and contingency allowance included in the Company's project cost estimate were sufficient to cover all the change orders related to the construction of the facilities, and were sufficient to cover a portion of the additional AFUDC related to the lower CWIP afforded full rate base treatment in the Company's 2008 rate case.

## 23. Q. WHAT HAS KAW DONE TO CONTROL COSTS OF THE PROJECT?

A. The first steps to control project costs were taken during the design and bid efforts by developing a very detailed design and bid package that was reviewed by KAW engineering, AWW engineering, and KAW operations personnel. This review effort was made to determine if there were engineering design elements originally proposed that were different from KAW or AWW normal operations. Contractors were prequalified prior to bidding for experience, financial stability and quality of work. Equipment was specified in the design package to qualify only vendors and manufacturers that offered equipment that KAW would accept for overall operational performance. Pre-bid and pre-construction meetings were held for all three contracts under the construction project and multiple addenda to the bid packages were issued as questions from contractors were clarified.

The second step to control project costs was to utilize standard contract documents prepared by AWW based on the standard documents from the engineering community. These documents are straightforward, thorough and reduce the number of disagreements based on inconsistent or unclear contract language.

## 24. Q. HOW HAS KAW DEALT WITH THE CONTRACTORS TO CONTROL PROJECT COSTS?

A. KAW implemented a partnership approach to the project with all of the contractors to control project costs. AWW has long recognized that performing contracts in a manner that results in an adversarial relationship between the owner and the contractor generally ends in a bad result for everyone, including the ratepayers who are ultimately provided service through the asset constructed. To reduce the adversarial nature of construction contract implementation, this partnership approach is designed to bring all of the contract parties to the table before the project begins and develop formal processes for communications. Differences in the contract are approached as negotiations, and everyone agrees upfront that the goal is to construct a quality project, at the most efficient cost, at a fair price to the contractor and the Company. AWW has found this approach successful on other large complex projects and this approach was embraced by all of the contractors and engineers at the beginning of this project. Using this approach appears to have been successful so far on this project. Change order requests have been thoroughly vetted, reviewed and revised in a professional approach that kept the project moving forward in all cases.

## 25. Q. WHO HAS KAW ASSIGNED TO WORK ON PROJECT ADMINSTRATION?

A. To further control project costs, KAW has dedicated resources for the project administration that allow focus on the project. In addition to my role as project manager, Michael Galavotti from KAW has been assigned as Senior Operations Engineer for the project and has worked closely on technical issues throughout the project. AWW assigned two engineers from the corporate construction group to help with contract administration. H. Tim Mentzer was assigned for the water treatment plant administration and Ryan Ural was assigned for the booster station and transmission main projects. Full-time inspectors with knowledge and construction experience were retained on each of the three construction projects. At one point a second construction inspector was assigned from KAW to assist in the transmission main inspection efforts. Legal counsel has been assigned as necessary to assist on a variety of issues, including questions on easements, permits and contract language. Input has been sought from operations personnel throughout the project for decisions that will impact maintenance and operations. Public Relations personnel from KAW and AWW have worked closely with the construction team to stay familiar with the
project and its process, and to develop material for customers, property owners, employees and the general public. Finance and rate personnel from KAW and AWW have been assigned as necessary to assist in interest estimates, project accounting, and overall budget issues. Finally, KAW has hired Kevin Kruchinksi as the plant supervisor. By hiring Mr. Kruchinski during construction, he has been able to assist in directing the contractor on questions that will impact overall operations of the plant. This level of resource commitment has helped to anticipate challenges before they arise or quickly address them once they are recognized. This has also allowed the construction team to focus its efforts on implementing the project as designed, which is critical to keeping the project on budget and on schedule. Clearly, AWW and KAW have technical, financial and professional resources internally that has allowed KAW to be an active and engaged owner during construction. We believe these resources help provide a better focus during construction and overall a better project for operational and long-term maintenance issues.

Additionally, KAW worked to establish regular communications with the project construction team and KAW senior management to keep decision-making timely and maintain the project schedule and control project costs. During the easement acquisition efforts, KAW retained two consultants to dedicate teams of resources to acquiring easements. These teams scheduled a regular meeting every three weeks to review progress on all easements. This assisted in keeping negotiations consistent and helped anticipate problems and challenges during the acquisition phase. The legal team was regularly updated following those meetings to stay abreast of progress and offer insight as necessary. A formal progress report and map was developed that allowed all interested team members to track progress of easement acquisition compared with construction activities. Each construction team established a regular monthly meeting to discuss the construction project and interim progress conference calls to stay on top of issues that arose during construction. Minutes were taken of each progress meeting with action items assigned and potential completion dates for those items. The meetings were held at the construction site for each project. Additionally, a small group from each contract was combined for start-up discussions and coordinating in-service efforts between each of the three projects. In the spirit of
implementing the partnership efforts, a group meeting was held at the beginning of the project to establish the communications lines with all contractors and subcontractors. A mid-point partnership meeting was held in August 2009 to determine if there were areas that needed to be improved or addressed. A weekly meeting was established with the Vice-President of Operations, Keith Cartier, to keep him abreast of project issues and review budget status. A weekly conference call was established with the communications and external affairs team to review those efforts and provide information regarding the project status. This meeting was utilized to determine potential media coordination and identify communication materials that would be developed as part of the overall project management and education process.

Finally, KAW has maintained a regular presence at each of the construction projects. In addition to the resident observers, Michael Galavotti, Kevin Kruchinski and I have been involved at each of the construction sites almost daily for most of the project. Now in the role of plant supervisor, Mr. Kruchinski occupies office space in the construction trailer at the water treatment plant and is on that site on a daily basis. This effort has allowed the key project administrators to understand the construction issues, see first hand the ongoing progress, and identify challenges as they develop.

## 26. Q. WHAT IS THE TAX EXEMPT FINANCING THAT YOU MENTIONED AND WHY DID KAW ELECT TO PURSUE THE TAX EXEMPT FINANCING?

A. In 2008, KAW applied for and received two different allocations of State Cap Allocation, which ultimately allowed for the issuance of $\$ 71,390,000$ of tax-exempt bonds. Revenues from those bonds are being used to finance the water supply project. Due to the interest savings realized from the tax-exempt nature of the bonds, KAW has saved $\$ 720,731$ in interest, which will be passed on to its customers. KAW witness Michael Miller discusses these savings further in his testimony in this case.

## 27. Q. THERE HAS BEEN A LOT OF PUBLIC INFORMATION REGARDING THE PROJECT INCLUDING TELEVISION AND RADIO SPOTS. ARE THERE PUBLIC RELATIONS COSTS RELATING TO THE PROJECT IN THE PROJECT BUDGET?

A. No. KAW recognized the need to educate consumers regarding the project but determined that the costs of the education should not be included in rates. Therefore,
none of the television or radio costs or other public media efforts are included in the project or in our request for increased revenues in this case. KAW has retained professional photographers and videographers to help document the development of the project, and those costs have been included in the project. These included weekly still photography of the treatment plant construction, video recordings of the trencher operation developed for communications with property owners, and a video recording of the final connection of the two section of pipeline installation. The development of material for communications with property owners and the costs of mailing those communications have also been charged to the project. All other costs for professional services in developing communications materials have not been included in the costs of the project or sought in this rate case.

## 28. Q. WHAT CHALLENGES HAVE BEEN ENCOUNTERED IN IMPLEMENTING THE PROJECT?

A. Easement acquisition presented the first project challenge. Many of the property owners along the pipeline route did not want to execute easements until after the PSC granted the Certificate of Convenience and Necessity for the project. At the same time, KAW had bid pricing that was set to expire while raw material pricing was escalating at unprecedented rates. KAW made the decision to move forward on executing the contract, making the contractor fully aware that not all easements had been acquired. KAW then assembled a team to assist in easement acquisition and negotiations to cover a large number of property owners in a short amount of time. In a couple of instances, the contractor was delayed for a short period while the final negotiations were completed and in one case the construction proceeded past the property and then returned to complete it once the easement was acquired. Eventually, all necessary easements were acquired by agreement.
Second, the Kentucky Transportation Cabinet did not issue the permit for construction in the road right-of way until after the PSC granted the Certificate of Convenience and Necessity for the project. The KY Transportation Cabinet then included items in the permit that had not been originally anticipated. However, in weighing the restrictions and requirements in the permit against the cost and time for additional easement acquisition for up to $55 \%$ of the transmission main installation,

KAW complied with the permit requirements as received and requested only that they be altered to allow for road closings. Closings were necessary in three locations where the safety of the travelling public was at greater risk if one lane of traffic remained open during construction. The KY Transportation Cabinet agreed with this request and allowed full road closures for construction during the summer months when school buses would not be operating.

Third, the weather has been a significant factor for a long period in the project. The fall of 2008 proved to be dry and moderate, allowing construction to progress even ahead of schedule before winter weather set in. However, 2009 proved to be a rainy, cool year with construction hampered from the spring through the end of the year. Construction in the Kentucky River at the intake site was halted in April and equipment moved away from the river because of moderate flooding at the intake site. The wet and muddy conditions required constant maintenance of adjacent roadways so as to not track mud and debris from construction traffic. The cool, wet spring delayed pavement restoration in Franklin County for up to two months and slowed the transmission main construction down that was to be located in the road. The flowable fill would not set up in time to get pavement binder down by the end of the work day. The wet conditions lasted into the summer, and the crossing of the North Elkhorn Creek was delayed due to heavy rains in the fall that had the creek levels at unusually high levels for that time of year. Rain throughout the summer required that erosion and sedimentation control measures be constantly monitored and adjusted. Early winter conditions slowed final masonry and concrete work at the plant as well. Throughout these conditions, however, each of the contractors has worked to find ways to maintain schedules, working evenings and weekends as necessary.

Additionally, coordination with other utilities has been extensive in the area of the transmission main construction. Although KAW and its contractor Garney attempted to communicate regularly with other utilities, request locations of their facilities, and even reimburse them for relocations when necessary, there were short outages for customers in water, phone and electric service at times due to damages to facilities during construction. KAW and Garney worked hard to minimize those outages,
providing assistance if outages occurred and communicating regularly with property owners.

Overall, the project has progressed well and the challenges have been fairly moderate given the size and complexity of the project, allowing the project to stay on schedule and budget.

## 29. Q. WHEN IS THE PROJECT SCHEDULED FOR COMPLETION?

A. It is anticipated that the project will be placed in service in early September 2010. The current contract for the water treatment plant has a required substantial completion date of July 17, 2010 with a final completion date of November 30, 2010. There are extensive testing requirements in the contract on the water treatment plant to determine not only that the equipment works, but that all of the facilities are disinfected and can operate to produce potable water for a full range of flows with all of the automated controls and alarm systems working fully before the plant can be placed in service. It is anticipated that the automated controls and alarm systems will not be completed until late July or early August. Prior to that time, the transmission main will have been completely pressure tested and disinfected, and the booster station and storage tank tested and disinfected.

## 30. Q. HOW WILL THE NEW PLANT OPERATE?

A. KAW expects that the facility will operate 24 hours per day, 7 days per week. The new plant will pump water to the storage tank in Franklin County. The pumps at the booster station have been designed to draw water from the storage tank and deliver it to the KAW distribution system at a variety of flows. The pump pressures have been designed to meet pressure in the distribution system.

The facility can operate at a minimum of 4 mgd, but the optimal pump efficiency will likely be around 6 mgd . Therefore, the operations budget has been developed anticipating a 6 mgd level of operations. Under normal operating conditions, KAW plans reflect the assumption that KRS II production will reduce the demand placed on Kentucky River Station.
There are a number of operating circumstances under which KRS II may produce at higher levels. KAW has long been under restrictions for withdrawal from the Kentucky River at Pool 9 during low flow periods. It is anticipated that during those
periods, KRS II will increase operations as the withdrawal permit at Pool 3 does not have restrictions similar to those of Pool 9. KAW also expects the new plant will be utilized at higher levels when high demand periods occur, when maintenance at either of the other two plants limits capacity, or if there is a power outage that affects only one of the other two plants.

Further, KAW has maintained an effort to transfer water from the Kentucky River to Jacobson Reservoir to keep the reservoir full for operations at the Richmond Road Station during the summer in case a drought should occur. KRS II will enable KAW to reevaluate the degree to which those transfers should occur going forward. Although extensive analysis has gone into the design of the facilities to allow maximum flexibility, the most efficient and cost effective practices of incorporating KRS II into operations are expected to evolve over time based on real operating experience.

## 31. Q. IS KAW STILL WILLING TO CONSIDER REGIONAL PARTNERSHIPS FOR THE PROJECT?

A. Absolutely.

## 32. Q. HOW WILL THE FACILITIES ACCOMMODATE REGIONAL PARTNERSHIPS?

A. KAW has attempted to maintain communications with each of the BWSC utilities to confirm that an opportunity for regional partnerships will continue after the plant has gone into service. Because this facility was constructed at a capacity of only 20 mgd , which KAW identified as the appropriate size to meet the needs of its customers, the facility would need to be expanded to accommodate a regional partnership so the full 20 MGD of plant capacity could remain dedicated to KAW customers' needs when demand dictates that level of plant capacity. However, because the design was developed with expansions anticipated, these expansions could be done very cost effectively and fairly quickly. KAW would negotiate contracts that would allow KAW customers to benefit from a shared plant. KAW hopes that as central Kentucky continues to grow, the concept developed by the efforts of the BWSC is eventually realized.

The cost of these facilities is significant and constitutes the major portion of this rate case. However, the success of this project will result in the continued economic viability of Central Kentucky. I am looking forward to the completion of a successful project and the resolution of water supply deficits that have existed for two decades.

## 33. Q. DOES THIS CONCLUDE YOUR TESTIMONY?

A. Yes.

## COMMONWEALTH OF KENTUCKY <br> BEFORE THE PUBLIC SERVICE COMMISSION

IN THE MATTER OF: )
THE APPLICATION OF KENTUCKY-AMERICAN ) CASE NO. 2010-00036 WATER COMPANY FOR AN ADJUSTMENT OF ) RATES ON AND AFTER MARCH 28, 2010

1. Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
A. My name is Keith Cartier and my business address is 2300 Richmond Road, Lexington, Kentucky 40502.

## 2. Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

A. I am employed by the Kentucky-American Water Company, Inc. (KAW) as the Vice President of Operations.

## 3. Q. HAVE YOU PREVIOUSLY FILED TESTIMONY BEFORE THIS COMMISSION?

A. Yes.
4. Q. PLEASE STATE YOUR EDUCATIONAL AND PROFESSIONAL BACKGROUND.
A. I earned a Bachelor of Science degree in Civil Engineering from the University of Pittsburgh in 1979 and a Masters in Business Administration from the University of Pittsburgh’s Katz School of Business in 1980.

I have worked in the utility industry since 1982, beginning as an Engineer/Commercial Representative at Duquesne Light Company in Pittsburgh, Pennsylvania. I served in a number of positions during my seventeen years at Duquesne, the first seven years in customer service roles, and the last ten in a number of roles primarily focused on improving operational and business performance. During that latter span, I also served for one year as project manager for merger integration planning on the proposed merger of DQE (Duquesne's parent company) and Allegheny Energy. In 1999, I joined UMS Group, an international management consulting firm headquartered in Parsippany, New Jersey. I worked with UMS for nearly three years, providing operational and business performance consulting services to utility clients throughout the United States and Canada. I have been with the American Water family of companies since 2003, first joining Pennsylvania American Water as Superintendent for the Pittsburgh operations, which provides
water service to approximately 140,000 customers in the suburban Pittsburgh area. I moved to Contract Operations Manager with American Water Enterprises (AWE) in 2004 with responsibility for managing operations for a number of client water authorities. My responsibilities expanded in 2005 as I joined American Water Services’ Southeast Region in the role of Director of Business Performance. In that role, I assumed responsibility for helping improve operations of the regulated businesses in American Water's Southeast Region, as well as expanding my responsibilities to include oversight for all water and wastewater contract operations in American Water’s Southeast Region. In February 2008, I joined KAW as Vice President, Operations.

In addition to my role with Kentucky American Water, I was recently appointed by Governor Steve Beshear to serve on the Board of the Kentucky River Authority (KRA). The KRA maintains and manages water resources of the Kentucky River Basin to ensure water supply, water quality and recreational activities associated with the Kentucky River.

## 5. Q. WHAT ARE YOUR RESPONSIBILITIES AS VICE PRESIDENT OF OPERATIONS?

A. My responsibilities encompass all activity related to water production, water distribution and local customer service. I have also provided oversight on the new water treatment plant and pipeline project for Linda Bridwell, KAW's Project Delivery Manager, who is providing testimony regarding that project. I also work closely with KAW's Director of Engineering, Lance Williams, to support planning system improvements and managing capital investments.

## 6. Q. WHAT WILL YOUR TESTIMONY ADDRESS?

A. My testimony will describe the operations of KAW's production and distribution systems. I will address fuel and power costs, chemical costs, staffing, and operational efforts including leak detection, non-revenue water and water quality.

## 7. Q. PLEASE DESCRIBE THE OPERATIONS OF KAW FACILITIES.

A. KAW currently operates three water treatment facilities. The two water treatment facilities in Fayette County provide treated water to retail and bulk water customers in Fayette and surrounding counties. The water treatment facility in Owen County provides treated water to residents of Owen County. The Kentucky River Station I (KRS I) and the Richmond Road Station (RRS) in Fayette County have a combined design treatment capacity of 65 million gallons per day (mgd), with the KRS I rated at 40 mgd capacity and the RRS rated at 25 mgd capacity. The RRS at times, and for short durations, is able to operate at a slightly higher capacity and has demonstrated a temporary operational capacity of 30 mgd , raising the total treatment capacity of these two plants to 70 mgd . The Owen County facility is rated at 1.4 mgd .

KAW withdraws water from Pool 9 of the Kentucky River for KRS I and RRS. An intake pumping facility at river level withdraws water and pumps the raw water up a 380-foot bluff. The raw water is then directed to the KRS I treatment plant and as necessary may also be directed through a pipeline to the RRS or to Jacobson Reservoir. The RRS may utilize raw untreated water supplied directly from the Kentucky River pipeline or withdraw water from Jacobson Reservoir on US 25 south of Lexington or from Lake Ellerslie located on Richmond Road next to the RRS.

For the Owenton plant, KAW withdraws water from Severn Creek, which flows into Pool 2 of the Kentucky River. Raw water is pumped from the Severn Creek intake through a pipeline to the Owenton treatment plant site. The raw water may be directed immediately into the plant or to Lower Thomas Lake. The Owenton plant is capable of accepting water directly from the creek or withdrawing water from Lower Thomas Lake.

KAW's treatment facilities utilize a chemical-mechanical process. The RRS utilizes a conventional coagulation and sedimentation process, followed by filtration through granular activated carbon and sand filters. Both KRS I and Owenton utilize an upflow solid contact process followed by filtration. For KRS I, that process occurs
through mixed media high rate filters; for Owenton, through mixed media in two separate filters. The KRS I and RRS use chloramination to maintain residual disinfectant within the distribution system; the Owenton facility uses fee chlorine but is able to switch to chloramination. Each facility is fully staffed by water treatment plant operators certified by the Kentucky Division of Water. Operations of the KAW treatment facilities meet or exceed all federal and state water quality regulations.

As of the end of 2009, KAW's distribution system contained 1,956 miles of pipeline mains of various materials, ranging in size from 2 to 36 inches. The new transmission pipeline will add 30 miles of 42 " pipe to that total. The system also contains 26 tanks, 25,990 valves, and 8,291 hydrants.

KAW transmits water to bulk water customers from various points in the distribution system. Those customers are Jessamine South Elkhorn Water District, the City of Nicholasville, the Georgetown Municipal Water and Sewer Service, the City of Versailles, the City of Midway, the City of North Middletown, East Clark County Water District and the Harrison County Water Association.

## 8. Q. HOW WILL THE NEW WATER TREATMENT PLANT AND BOOSTER STATION INTEGRATE INTO KAW OPERATIONS?

A. Linda Bridwell addresses the design and operation characteristics of the new Kentucky River Station II plant (KRS II) in her testimony. When KRS II initially comes on line, a minimum of 6 million gallons per day of treated water will be transmitted through the new 42 " transmission pipeline into the central Kentucky distribution system. The new transmission line ties into the existing distribution system near the intersection of Newtown Pike and Iron Works Pike in Fayette County. The Owen County distribution system traverses the plant site road frontage. KAW plans to extend transmission mains to enable KRS II to better support the Owen County distribution system than would be the case by simply connecting to existing facilities directly at the plant site.

## 9. Q. KAW'S LEAK DETECTION HAS BEEN DISCUSSED IN PRIOR CASES. WHAT IS THE CURRENT STATUS OF KAW'S LEAK DETECTION EFFORTS?

A. KAW continues to focus on aggressive leak detection with a comprehensive program that utilizes cutting edge technology. KAW deploys some of the most advanced leak surveying and monitoring equipment the industry has to offer. We currently have 971 permalogs deployed at key locations throughout the distribution system, with an additional 40 that we move to address uncovered or problem areas. These small computerized devices, which listen for leak sounds, afford KAW the ability to monitor areas for leaks with limited manual intervention required. In addition to the permalogs, KAW continues to employ manual leak sounding to survey certain areas of the system and further pinpoint potential leaks identified through the permalog soundings. KAW personnel conducted 26,839 manual soundings on services, hydrants, mains and valves during the past two years. KAW routinely inspects pipelines that cross streams and those in right of ways. KAW's 41 stream crossings were inspected annually the last two years. During that time, KAW also inspected all 60 right of way locations for non-surfacing leaks.

KAW monitors total non-revenue water (NRW) results closely and reports monthly NRW results to the Public Service Commission (PSC). The PSC categorizes NRW into two primary categories - Other Water Used and Water Loss. The "Other Water Used" category includes estimates for water used for system flushing and for fire fighting. The "Water Loss" category is further delineated into water lost from tank overflows, line breaks and other loss, which is comprised of leaks, theft of service, non-metered usage, and any other usage that may not otherwise be known. The PSC report highlights this "Other Loss" category with specific metrics, including Other Loss Percentage, which is the percentage of total water delivered into the system that was lost due to leaks, theft of service, non-metered usage, and any other usage that may not otherwise be known. KAW reported an Other Loss Percentage of $10 \%$ for 2009.

The PSC in its order on Case No. 2007-00134 required KAW to hire an external consultant to review its non-revenue water programs. KAW engaged Gannett Fleming (GF) to assist in an objective evaluation of KAW strategy and practices and to develop recommendations for cost effectively improving the results from KAW activities. The project encompassed six distinct tasks:

## Task Number One - Main Break Analysis and Leak Monitoring

GF analyzed the existing main break database for the Central Division system to determine what correlations may exist between main breaks and location in the distribution system, including considerations of pressure, main age, main size and customer usage. GF also assessed KAW's existing leak monitoring methodology.

## Task Number Two - Sub-Meter Zones and Reduced Pressure Zones

GF evaluated the distribution system to determine the practicality and economic feasibility of establishing sub-metered zones and/or reduced pressure zones in the Central Division.

## Task Number Three - Surge Analysis

GF performed a preliminary evaluation to determine the degree to which pressure surges may contribute to main failures.

## Task Number Four - Large Meter Program

GF evaluated the effectiveness of KAW's current methodology of specifying and testing large meters (i.e., 2 inches and larger).

## Task Number Five - Special Connection, Private Property Loss Analysis

GF analyzed potential losses on private properties served by special connections and the feasibility of metering such connections.

## Task Number Six - Tracking Water Loss - AWWA Audit Methodology

GF evaluated KAW's current water loss tracking methodology and controls.

KAW has begun implementing recommendations contained in the GF report and has reported progress monthly to the PSC as required in its order for Case No. 200700134.

In their report, GF references the water audit methodology developed by the International Water Association (IWA) and the American Water Works Association (AWWA), and points out that this methodology has been identified by AWWA Water Loss Control Committee as a world-best management practice in water loss control. GF also points out that the American Water Works Association Research Foundation (AWWARF) designated the IWA/AWWA Water Audit methodology as the current best practice.

The IWA/AWWA methodology defines a number of industry standard performance indicators, including Unavoidable Annual Real Losses (UARL) and Infrastructure Leakage Index (ILI). IWA/AWWA suggests ILI target ranges based on factors such as availability of water resources for development, and the cost of developing and treating water sources. The various target ranges are intended to address the economic balance of water treatment and infrastructure investment. KAW's ILI, calculated as a ratio of Real Losses to UARL, was reported as 2.51 , within the IWA/AWWA's most stringent target range of $1.0-3.0$.

## 10. Q. IS KAW PROPOSING ANY TARIFF CHANGES IN THIS CASE TO ASSIST IN THE EFFORT TO REDUCE NRW?

A. Yes. In conducting hydrant and fire service maintenance, KAW field personnel have noticed water usage at some fire services unrelated to fire fighting. This usage may be illegal usage, such as irrigation, or it may indicate a leak. KAW has proposed changes to two tariffs that will allow us to meter a fire protection line, if necessary, and charge a usage charge for all flows unrelated to fires.

Further, GF made specific recommendations related to Special Connections where the customer is responsible for maintaining a private water line from the KAW main to
the metering point. Where the customer has fire service connected by a Special Connection, KAW is proposing to charge the cost of metering the connection to the customer if unauthorized usage does not cease after reasonable notice.

## 11. Q. WATER QUALITY CONTINUES TO BE A TOPIC OF MAJOR EMPHASIS WITH ONGOING REGULATIONS. WHAT EFFORTS HAS KAW MADE IN RECENT YEARS REGARDING WATER QUALITY? <br> A. KAW continues to evaluate treatment and distribution processes to stay ahead of regulatory requirements.

KAW has a long history of being an industry leader in water quality, and has been recognized in the Partnership for Safe Water initiative. The Partnership is a voluntary cooperative effort between the USEPA, AWWA and other drinking water organizations, encompassing more than 200 surface water utilities throughout the United States. The Partnership encourages water suppliers to continually improve their treatment plant performance, using enhanced monitoring and stringent contaminant targets to better assure the quality of water delivered to customers. KAW was honored in 2008 by the Partnership, with both KRS I and RRS plants earning the prestigious Ten-Year Directors Award for ongoing commitment to excellence in water quality, consumer safety and regulatory compliance. Those plants have continued to meet the Partnership requirements since the award. Only thirty three water treatment plants from across the country have earned that distinction, out of the 14,000 surface water treatment plants governed by USEPA regulations.

## 12. Q. ARE THERE NEW REGULATIONS THAT KAW IS REQUIRED TO MEET?

A. Yes. There are four new regulations that KAW is required to meet. The regulations are the Stage 2 Disinfection Byproduct Rule ("Stage 2 DBPs"), the Long-Term Enhanced Surface Water Treatment Rule ("LT2"), the Groundwater Rule and the Unregulated Contaminant Monitoring Rule 2 ("UCMR 2"). The new regulations
require detailed evaluations of the treatment and distribution processes, and also require additional water sampling, analysis and reporting.
KAW has been completing analyses and evaluating processes to prepare for meeting the Stage 2 rule. Compliance with new Stage 2 DBP regulations for location running annual average requirements begin in 2012 for the central Kentucky system and in 2013 for the Owen County system. KAW anticipates that process modifications may be necessary in the central Kentucky system and is evaluating a change in the disinfection points at each facility and chemical feed improvements. KAW does not currently anticipate additional process changes will be required for compliance in the Owen County system.

KAW completed monitoring and reporting requirements for the first round of LT2 with no modifications required to meet this rule.

The Groundwater Rule is designed to reduce the risk of illness caused by microbial contamination in groundwater systems. KAW purchases treated groundwater from Gallatin County Water District and from Carroll County Water District to serve a small number of customers in northern Owen County. Beginning December 1, 2009, KAW is required to report detections of microbial contamination (e.g., total coliforms) in areas supplied by a groundwater system within 24 -hours of a positive sample result. KAW is prepared to meet these reporting requirements should the need arise.

The UCMR 2 regulation increases the monitoring and reporting requirements associated with contaminants suspected to be present in drinking water, but that may not have health-based standards established under the SDWA. KAW has completed the initial phase of testing and reporting. KAW plans to include these results in the 2009 Consumer Confidence Reports to be published later this year.

## 13. Q. PLEASE EXPLAIN HOW YOUR FUEL \& POWER AND CHEMICALS ARE DETERMINED FOR THE FORECASTED TEST-YEAR.

A. These expenses are directly related to how much water is forecast to be treated and delivered (i.e., system delivery). The volume of water sales is based on projections determined from the bill analysis for the forecasted test-year as adjusted for the weather normalization factor. System delivery volume is projected directly from this base of forecasted sales volume, adjusted for historical percentages of NRW. This forecasted system delivery is then used to calculate fuel and power expense for the forecasted test-year. This method matches the system delivery to the water sales developed for the forecasted test-year. Total system delivery for the forecast period is 14.635 billion gallons.

Once the production volume is established, an assessment is made of how much volume will be produced at each treatment plant over the course of the year. Anticipated fuel and power costs at each location are then calculated based on the projected power usage to meet the production volume and electric provider tariff pricing for that location. For existing facilities (e.g., KRS I, RRS, Owenton, etc.), the projected power demand and consumption (kwh consumed per million gallons produced) are based on historic usage. For the new water treatment plant (KRS II) and new booster station, the projected power consumption is based on engineering estimates. Kentucky Utilities and Owen Electric are the electric providers to KAW's treatment plants and booster stations. The total fuel and power expense for the forecast period is $\$ 4.38$ million.

KAW expects to use 19 different chemicals in the water treatment process. Chemical expenses for the existing plants are projected based on the most recent five-year average consumption for each chemical (in pounds per million gallons treated), adjusted if warranted based on operating experience. Chemical consumption for the various chemicals used for the new plant (KRS II) is based on KRS I experience, assuming water quality and treatment characteristics will be similar as both draw water from the Kentucky River, albeit in different pools (Pool 9 for KRS I and Pool 3
for KRS II). The pounds per million gallons treated is then applied to the forecasted test-year production at each plant to determine the pounds of each chemical to be used in the forecasted test-year. The pounds of each chemical are then multiplied by the most current contract price (adjusted for expected price increases or decreases through the forecasted test-year) to determine the total chemical expense. Chemicals are purchased by KAW through a national competitive bidding process conducted by American Water's supply chain function. Prices on certain chemicals have fluctuated substantially the past two years. For example, the 2009 price for zinc ortho phosphate (ZOP), which KAW uses as a corrosion inhibitor, had risen from \$0.273 in 2008 to $\$ 1.29$ per pound in 2009, a four fold increase in annual costs for ZOP to approximately $\$ 600,000$. Contract prices in 2010 for ZOP have retreated to $\$ 0.459$ per pound. Contract pricing is in place through December 2010, and KAW has projected a decrease in overall chemical expenses (compared to 2009 actual expenses) based on those contracts. The chemical expense for the forecast period is approximately $\$ 1.8$ million.

## 14. Q. DOES THE WATER TREATEMENT PROCESS GENERATE WASTE MATERIAL?

A. Yes. Source water always contains some amount of solid matter in very small suspended particles that must be removed during the treatment process. The process to remove that suspended matter varies across KAW treatment plants. For example, the RRS and KRS II processes use a coagulation and flocculation process, which helps the solid matter form particles large enough, and heavy enough, to settle out of the water. A chemical coagulant is rapidly mixed into the water to help bind the solid matter together. The water continues though chambers at slowing mix speeds into sedimentation processes that allow these larger particles to fall to the bottom of the chambers. A mechanical piping device is slowly dragged along the bottom of the chambers to extract this solid waste material. The waste is pumped to a separate holding tank where further settling occurs, and the wet sludge that results is run through a filter belt press to squeeze the water from the sludge, resulting in a dryer sludge material. At KRS I, the up-flow clarifiers serve a similar function, but the
final waste product is dewatered in a series of dewatering lagoons as opposed to the use of the filter belt presses used at RRS and KRS II. KAW incurs costs in disposing of this residual material.


#### Abstract

15. Q. PLEASE EXPLAIN HOW KAW'S WASTE DISPOSAL EXPENSE IS DETERMINED FOR THE FORECASTED TEST-YEAR. A. Waste disposal costs are projected based on anticipated routine expenses to operate the waste treatment processes, typical source water conditions and periodic expenses related to sludge removal. KAW has mitigated typical disposal costs with its beneficial use permit-by-rule from the Division of Waste Management that allows the beneficial reuse of residuals on site at KRS I, KRS II and RRS. Waste disposal expenses are projected to be $\$ 340,226$.


## 16. Q. HOW HAS THE PROCESS OF BENEFICIAL REUSE OF RESIDUALS ON SITE BENEFITED KAW? <br> A. Many water facilities around the country experience significant costs associated with transporting residuals and paying to dispose of the material in a permitted landfill. KAW has avoided the costs associated with trucking and landfilling by beneficially reusing these residuals on its property.

## 17. Q. PLEASE EXPLAIN HOW MAINTENACE EXPENSES ARE DETERMINED FOR THE FORECASTED TEST-YEAR.

A. Maintenance expense is projected based on historic trends and anticipated activity. These programs include items such as valve operation, hydrant inspections, hydrant flow testing, flushing dead end mains, maintenance of equipment at treatment plants, and maintenance of building and grounds. KAW projects maintenance related expenses to be $\$ 1.3$ million for the forecast period.

## 18. Q. HYDRANT MAINTENANCE HAS BEEN A TOPIC IN PRIOR PROCEEDINGS. WHAT TYPE OF MAINTENANCE IS ASSOCIATED WITH FIRE HYDRANTS?

A. Generally, each fire hydrant is inspected annually with maintenance performed at that time. Hydrants are tested to ensure that each is operational and to confirm flow rates projected at each hydrant. A KAW technician opens the valve and flows water through the hydrant, as would a fire fighter. The technician visually inspects all parts, checks for leakage, and confirms that the control valve is fully open and operational. The technician also lubricates threads and moving parts and addresses any minor maintenance issue identified during the inspection. Any additional repair not addressed as part of the inspection is reported for follow up and resolution. Any vegetation growing around the hydrant is removed and the hydrant is cleaned. The results from the flow test (measured in gallons per minute) are then documented. KAW has been providing to Lexington Fayette Urban County Government results from these flow tests for those hydrants in the Fayette County.

## 19. Q. HYDRANT PAINTING HAS ALSO BEEN A TOPIC IN PRIOR PROCEEDINGS. PLEASE DESCRIBE THE RECENT HYDRANT PAINTING PROJECT.

A. KAW painted the hydrants in Lexington according to National Fire Protection Association Standard 291. The standard calls for hydrants to be color coded to correspond with the hydrant flow rating. The color coding is intended to aid a fire commander's decision-making process in determining how to best fight a particular fire based on how much water is available at each hydrant near the fire event. The hydrant painting project is being amortized over a five year period, ending May 31, 2014.

## 20. Q. HOW DOES KAW DETERMINE STAFF REQUIREMENTS?

A. There are several factors considered in determining staffing requirements, foremost being the amount of work that must be accomplished. KAW has continued to
experience growth in the number of customers we serve and in facilities installed to serve them, even during the recent economic downturn. KAW assesses whether the work can be absorbed by existing staff through productivity or technology gains, or whether the work has evolved to the degree that requires additional resources. For example, KAW now uses mobile computers installed in field technician vehicles, enabling work to be dispatched electronically and in real time. Field technicians begin working immediately from their homes each day, rather than coming into an office to get their daily work, saving time. Various types of field service work orders and customer appointments are scheduled along the most efficient travel routes, resulting in technicians working more orders per day now than had been the case before mobile computing was in place. The real time capability enables emergency work to be prioritized and reduces rework by ensuring the technician has the most recent information available at the time an order is performed. KAW also assesses whether work might be most effectively performed by KAW staff or by contract vendors. Staff adjustments are made accordingly.

## 21. Q. DOES KAW PROPOSE ANY STAFF CHANGES FROM PRIOR CASES?

A. Yes. KAW staffing has changed as positions have been eliminated and/or added to address evolving work activities, and as a result of transfers between KAW and American Water Service Company (AWSC). The primary driver of staffing changes is the addition of positions to staff the new water treatment plant, with seven new positions associated with KRS II (one supervisor and six production technicians). Two AWSC employees have been transferred to KAW as their roles evolved to support KAW, with one KAW position moving to AWSC. KAW anticipates water related staffing requirements will be 152 employees through the end of the forecast period.

## 22. Q. WHAT HAS KAW DONE TO CONTROL COSTS OF OPERATIONS?

A. KAW routinely reviews expenses as a normal course of business, reviewing expenditures at least monthly, and more often as may be necessary, to ensure that the company is controlling expenses as planned. Technology often plays a role in
enabling work to be completed in a more efficient fashion. Examples of technology that help mitigate costs include KAW's use of permalogs for leak monitoring and Automated Meter Reading (AMR) meters, both of which enable an individual to obtain electronic readings while driving by a location.

KAW has begun implementation of a new computerized maintenance management system (CMMS) to better manage distribution maintenance work orders. CMMS is expected to track any work needed on distribution assets, whether routine reactive activities such as repairing a main break, preventive activities like operating valves or customer initiated activities such as relocating a meter box. KAW expects CMMS to enhance efficiency by reducing duplicative field visits through better work tracking and aggregation of work on a given asset. KAW expects to expand the CMMS program to include production and booster facilities as well. Other efficiency improvement initiatives being considered include expanding the mobile computing capability to include more field operations functions and expanding AMR to replace certain direct read meters.

## 23. Q. DOES THIS CONCLUDE YOUR TESTIMONY?

A. Yes.

## COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION



DIRECT TESTIMONY OF PAUL R. HERBERT
February 26, 2010

# BEFORE THE KENTUCKY PUBLIC SERVICE COMMISSION 

RE: KENTUCKY-AMERICAN WATER COMPANY<br>CASE NO. 2010-00036

DIRECT TESTIMONY OF PAUL R. HERBERT

Line
No.

## QUALIFICATIONS

1. Q. Please state your name and address.
A. My name is Paul R. Herbert. My business address is 207 Senate Avenue, Camp Hill, Pennsylvania.
2. Q. By whom are you employed?
A. I am employed by Gannett Fleming, Inc.
3. Q. What is your position with Gannett Fleming, Inc., and briefly state your general duties and responsibilities.
A. I am President of the Valuation and Rate Division. My duties and responsibilities include the preparation of accounting and financial data for revenue requirement and cash working capital claims, the allocation of cost of service to customer classifications, and the design of customer rates in support of public utility rate filings.
4. Q. Have you presented testimony in rate proceedings before a regulatory agency?
A. Yes. I have testified before the Pennsylvania Public Utility Commission, the New Jersey Board of Public Utilities, the Public Utilities Commission of Ohio, the Public Service Commission of West Virginia, the Kentucky Public Service Commission, the Iowa State Utilities Board, the Virginia State Corporation Commission, the Illinois Commerce Commission, the Tennessee Regulatory Authority, the California Public Utilities Commission, New Mexico Public Regulation Commission, the Delaware Public Service Commission, Arizona Corporate Commission and the Missouri Public Service Commission
concerning revenue requirements, cost of service allocation, rate design and cash working capital claims.

A list of the cases in which I have testified is provided at the end of my direct testimony.
5. Q. What is your educational background?
A. I have a Bachelor of Science Degree in Finance from the Pennsylvania State University, University Park, Pennsylvania.
6. Q. Would you please describe your professional affiliations?
A. I am a member of the American Water Works Association and serve as a member of the Management Committee for the Pennsylvania Section. I am also a member of the Pennsylvania Municipal Authorities Association. In 1998, I became a member of the National Association of Water Companies as well as a member of its Rates and Revenue Committee.
7. Q. Briefly describe your work experience.
A. I joined the Valuation Division of Gannett Fleming Corddry and Carpenter, Inc., predecessor to Gannett Fleming Valuation and Rate Consultants, Inc., in September 1977, as a Junior Rate Analyst. Since then, I advanced through several positions and was assigned the position of Manager of Rate Studies on July 1, 1990. On June 1, 1994, I was promoted to Vice President and on November 1, 2003, I was promoted to Senior Vice President. On July 1, 2007, I was promoted to my current position as President of the Valuation and Rate Division of Gannett Fleming, Inc.

While attending Penn State, I was employed during the summers of 1972, 1973 and 1974 by the United Telephone System - Eastern Group in its accounting department. Upon graduation from college in 1975, I was employed by Herbert Associates, Inc., Consulting Engineers (now Herbert Rowland and Grubic, Inc.), as a field office manager until September 1977.

COST OF SERVICE ALLOCATION
8. Q. What is the purpose of your testimony in this proceeding?
A. My testimony is in support of the cost of service allocation and rate design study conducted under my direction and supervision for the Kentucky-American Water Company, (the "Company").
9. Q. Have you prepared an exhibit presenting the results of your study?
A. Yes. Exhibit No. 36 presents the results of the allocation of the pro forma cost of service to the several customer classifications as of September 30, 2011, and the proposed rate design.
10. Q. Briefly describe the purpose of your cost allocation study.
A. The purpose of the study was to allocate the total cost of service, which is the total revenue requirement, to the several customer classifications. The cost of service includes operation and maintenance expenses, depreciation expense and amortizations, taxes other than income, income taxes and income available for return. In the study, the total costs were allocated to the residential, commercial, industrial, public authority, sales for resale, private fire protection and public fire protection classifications in accordance with generally-accepted principles and procedures. The cost of service allocation results in indications of the relative cost responsibilities of each class of customers. The allocated cost of service is one of several criteria appropriate for consideration in designing customer rates to produce the required revenues.
11. Q. Please describe the method of cost allocation that was used in your study.
A. The base-extra capacity method, as described in the 2000 and prior Water Rates Manuals (M1) published by the American Water Works Association (AWWA), was used to allocate the pro forma costs. The method is a recognized method for allocating the cost of providing water service to customer classifications in proportion to the classifications' use of the commodity, facilities and services. It is generally accepted as a sound method for allocating the cost of water service and has been used by the Company in previous rate cases.
12. Q. Is the method described in Exhibit No. 36?
A. Yes. It is described on pages 3 and 4 of the exhibit.
13. Q. Please describe the procedure followed in the cost allocation study.
A. Each element of cost in the pro forma cost of service was allocated to cost functions and customer classifications through the use of appropriate allocation factors. This allocation is presented in Schedule B on pages 8 through 14 of Exhibit No. 36. The customer classifications include residential, commercial, industrial, public authority, sales for resale and private and public fire protection classifications. The items of cost, which include operation and maintenance expenses, depreciation and amortization expenses, taxes and income available for return, are identified in column 1 of Schedule B. The cost of each item, shown in column 3, is allocated to the several customer classifications based on allocation factors referenced in column 2. The development of the allocation factors is presented in Schedule C of the exhibit.

The four basic cost functions are base, extra capacity, customer and fire protection costs. Base Costs are costs that tend to vary with the quantity of water used, plus costs associated with supplying, treating, pumping and distributing water to customers under average load conditions, without the elements necessary to meet peak demands. Base costs are allocated to customer classifications based on average daily usage.

Extra Capacity Costs are costs associated with meeting usage requirements in excess of average. They include the operating and capital costs for additional plant and system capacity beyond that required for average use. Extra capacity costs were subdivided into costs to meet maximum day extra capacity and maximum hour extra capacity requirements. Extra capacity costs are allocated to customer classifications based on estimated maximum day and hour demands in excess of average use for each classification.

Customer Costs are costs associated with serving customers regardless of their usage or demand characteristics. Customer costs are subdivided into customer facilities costs,
which include meters and services, and customer accounting costs, which include billing and meter reading functions. Customer costs are allocated to classes based on the number and size of meters and the number of bills.

Fire Protection Costs are costs associated with providing the facilities to meet the potential peak demand of fire protection service as well as direct costs such as the cost for fire hydrants. The demand costs for fire protection are subdivided into costs for Private Fire Protection and Public Fire Protection on the basis of relative potential demands.
14. Q. Please provide examples of the cost allocation process.
A. I will use some of the larger cost items to illustrate the principles and considerations used in the cost allocation methodology. Water purchased for resale, purchased electric power, treatment chemicals and sludge handling costs are examples of costs that tend to vary with the amount of water consumed and are considered base costs. Thus, Factor 1 assigns these costs to customer classifications based on average daily usage.

Other source of supply, pumping, purification and transmission costs are associated with meeting usage requirements in excess of the average, generally to meet maximum day requirements. Costs of this nature are allocated partially as base costs, proportional to average daily consumption, partially as maximum day extra capacity costs, in proportion to maximum day extra capacity, and, in the case of certain pumping stations and transmission mains, partially as fire protection costs, through the use of Factors 2 and 3. The development of the allocation factors, referenced as Factors 2 and 3 shown in Schedule C, pages 15 and 17, is based on the system peak day ratio and the potential demand of fire protection.

Costs associated with distribution mains and storage facilities are allocated partly on the basis of average consumption and partly on the basis of maximum hour extra demand, including the demand for fire protection service, because these facilities are designed to meet maximum hour and fire demand requirements. The development of the factors, referenced as Factors 4 and 5, used for these allocations is shown in Schedule C, on pages 19 through 22,
of Exhibit No. 36. Fire demand costs are allocated to public and private fire protection service in proportion to the relative potential demands on the system by public fire hydrants as compared to the demands for private fire services and hydrants. The demand for private fire units is increased by a factor of 1.5 over the public fire units to recognize the greater flow rate required for a fire at a private service than for a public hydrant. This adjustment was accepted by the Commission in a previous case.

Costs associated with pumping facilities are allocated on a combined bases of maximum day, maximum day including fire and maximum hour extra capacity because pumping facilities serve these functions. The relative weightings of Factor 2 (maximum day), Factor 3 (maximum day with fire) and Factor 4 (maximum hour) for pumping facilities were based on the horsepower of the pumps serving these functions. The development of these weighted factors, referenced as Factor 6, is presented on page 23 of Exhibit No. 36.

Operation and maintenance costs for transmission and distribution mains are allocated on a combined basis of Factor 3 (maximum day with fire) for transmission mains and Factor 4 (maximum hour) for distribution mains. The weighting of the factors is based on the footage of mains and is referenced as Factor 7.

Costs associated with meters and services facilities are allocated to customer classifications based on meter and service equivalents using Factors 9 and 10. Billing and collecting costs and meter reading are assigned to customer classifications based on the number of bills using Factors 13 and 14. Uncollectible accounts are allocated based on net write-offs by class (Factor 20). Operating and capital costs associated with public fire hydrants were assigned directly to the public fire protection class (Factor 8).

Administrative and general costs are allocated on the basis of allocated direct costs excluding those costs such as purchased water, power and chemicals, which require little administrative and general expense. The development of factors for this allocation, referenced as Factor 15, is presented on page 31 of Exhibit No. 36. Factor 15A, used to
allocate cash working capital, was based on the allocation of all operation and maintenance expenses.

Annual depreciation accruals are allocated on the basis of the function of the facilities represented by the depreciation expense for each depreciable plant account. The original cost less depreciation of utility plant in service is similarly allocated for the purpose of developing factors, referenced as Factor 18, for allocating items such as income taxes and return. The development of Factor 18 is presented on pages 33 through 35 of Exhibit No. 36.

Factor 18, as well as Factors 15 and 15A discussed earlier, are composite allocation factors. Composite factors are generated internally in the cost allocation program based on the results of allocating other costs. Factors 11, 12, 16, 17 and 19 also are composite factors. Refer to Schedule C of Exhibit No. 36 for a description of the basis of each composite factor.
15. Q. What was the source of the total cost of service data set forth in column 3 of Schedule C of Exhibit No. 36 ?
A. The pro forma costs of service were furnished by the Company, and are set forth in Company Schedules B, D and E.
16. Q. Refer to Factors 2 and 3 and explain what factors were considered in estimating the maximum day extra capacity and maximum hour extra capacity demands used for the customer classifications.
A. The estimated demands were based on judgment which considered field studies of customer class demands conducted for the Company, field observations of the service areas of the Company, the class factors used in the last cost of service study, and generally-accepted customer class maximum day and maximum hour demand ratios.
17. Q. Have you summarized the results of your cost allocation study?
A. Yes. The results are summarized in columns 1,2 and 3 of Schedule A on page 6 of Exhibit No. 36. The total allocated pro forma cost of service as of September 30, 2011, for each customer classification identified in column 1 is brought forward from Schedule B and
shown in column 2. Column 3 presents each customer classification's cost responsibility as a percent of the total cost.

18 Q. Have you compared these cost responsibilities with the proportionate revenue under existing rates for each customer classification?
A. Yes. A comparison of the allocated cost responsibilities and the percentage of revenue under existing rates can be made by comparing columns 3 and 5 of Schedule A of Exhibit No. 36. A similar comparison of the percentage cost responsibilities (relative cost of service) and the percentage of pro forma revenues (relative revenues) under proposed rates can be made by comparing columns 3 and 7 of Schedule A of Exhibit No. 36. The proposed increase and the percent increase by class are shown in columns 8 and 9 , respectfully.

## CUSTOMER RATE DESIGN

19. Q. Are you responsible for the design of the rate schedules proposed by the Company in this proceeding?
A. Yes, I am.
20. Q. Is the proposed rate structure presented in an exhibit?
A. Yes. A comparison of the present and proposed rate schedules is presented in Schedule G on page 41 of Exhibit No. 36.
21. Q. What are the appropriate factors to be considered in the design of the rate structure?
A. In preparing a rate structure, one should consider the allocated costs of service, the impact of radical changes from the present rate structure, the understandability and ease of application of the rate structure, community and social influences, and the value of service. General guidelines should be developed with management to determine the extent to which each of these criteria is to be incorporated in the rate structure to be designed, inasmuch as the pricing of a commodity or service ultimately should be a function of management.
22. Q. Did you discuss rate design guidelines with management?
A. Yes, I did. The guidelines established were: (1) maintain the existing rate structure applicable to all divisions that includes a service charge by meter size applicable to all classes of customers and a separate one-block volumetric charge for each classification, (2) increase public fire service class as indicated by the cost of service, and (3) adjust revenues among the remaining classes in conformity with or toward the indicated cost of service, without increasing any one class by more than $50 \%$.
23. Q. Do the proposed rates comply with the guidelines enumerated in the answer to question 22 ?
A. Yes, they do.
24. Q. Do you support the concept of single-tariff pricing and to maintain the consolidation of the rate divisions achieved in prior cases?
A. Yes, I do.
25. Q. Please explain the development of the service charges.
A. The development of the service charges is set forth on Schedule F on page 40 of the Exhibit. Service charges should recover the cost of customer facilities such as meters and services and the cost of customer accounting including billing and collecting and meter reading costs.

Schedule F shows the cost of service for these cost functions in column 2. These amounts were taken from an analysis of customer costs generated within the cost allocation study. The costs associated with meters are divided by the total $5 / 8$-inch meter equivalents and by 12 months to determine the monthly cost related to a $5 / 8$-inch meter. The costs associated with services are divided by 3/4-inch service equivalents and by 12 months to determine the monthly cost related to a 3/4-inch service. Costs associated with billing and collecting, and meter reading are divided by the number of customers and metered customers, respectively, and by 12 months to determine the monthly cost per customer for these functions. The sum of the monthly costs for a $5 / 8$-inch meter is $\$ 9.14$ which was rounded up to $\$ 9.15$ for the monthly $5 / 8$-inch service charge. The rates for the larger-sized meters are determined by multiplying the meter capacity ratios times the $\$ 9.15$ rate for the $5 / 8$-inch
meter, as shown at the bottom on the schedule. Meter capacity ratios also were used to determine the larger-sized service charges under the existing rate structure.
26. Q. How were the volumetric rates determined?
A. After the proposed service charges were applied to the bill analysis, the existing volumetric rates for each classification were increased so that revenues from each class moved toward the indicated cost of service and that total revenues equaled the proposed revenue requirement.
27. Q. Does that conclude your direct testimony?
A. Yes, it does.

	Year	Jurisdiction	Docket No.	Client/Utility	Subject
1.	1983	Pa. PUC	R-832399	T. W. Phillips Gas and Oil Co.	Pro Forma Revenues
2.	1989	Pa. PUC	R-891208	Pennsylvania-American Water Company	Bill Analysis and Rate Application
3.	1991	PSC of W. Va.	91-106-W-MA	Clarksburg Water Board	Revenue Requirements (Rule 42)
4.	1992	Pa. PUC	R-922276	North Penn Gas Company	Cash Working Capital
5.	1992	NJ BPU	WR92050532J	The Atlantic City Sewerage Company	Cost Allocation and Rate Design
6.	1994	Pa. PUC	R-943053	The York Water Company	Cost Allocation and Rate Design
7.	1994	Pa. PUC	R-943124	City of Bethlehem	Revenue Requirements, Cost Allocation, Rate Design and Cash Working Capital
8.	1994	Pa. PUC	R-943177	Roaring Creek Water Company	Cash Working Capital
9.	1994	Pa. PUC	R-943245	North Penn Gas Company	Cash Working Capital
10.	1994	NJ BPU	WR94070325	The Atlantic City Sewerage Company	Cost Allocation and Rate Design
11.	1995	Pa. PUC	R-953300	Citizens Utilities Water Company of Pennsylvania	Cost Allocation and Rate Design
12.	1995	Pa. PUC	R-953378	Apollo Gas Company	Revenue Requirements and Rate Design
13.	1995	Pa. PUC	R-953379	Carnegie Natural Gas Company	Revenue Requirements and Rate Design
14.	1996	Pa. PUC	R-963619	The York Water Company	Cost Allocation and Rate Design
15.	1997	Pa. PUC	R-973972	Consumers Pennsylvania Water Company Shenango Valley Division	Cash Working Capital
16.	1998	Ohio PUC	98-178-WS-AIR	Citizens Utilities Company of Ohio	Water and Wastewater Cost Allocation and Rate Design
17.	1998	Pa. PUC	R-984375	City of Bethlehem - Bureau of Water	Revenue Requirement, Cost Allocation and Rate Design
18.	1999	Pa. PUC	R-994605	The York Water Company	Cost Allocation and Rate Design
19.	1999	Pa. PUC	R-994868	Philadelphia Suburban Water Company	Cost Allocation and Rate Design
20.	1999	PSC of W.Va.	99-1570-W-MA	Clarksburg Water Board	Revenue Requirements (Rule 42) Cost Allocation and Rate Design
21.	2000	Ky. PSC	2000-120	Kentucky-American Water Company	Cost Allocation and Rate Design
22.	2000	Pa. PUC	R-00005277	PPL Gas Utilities	Cash Working Capital
23.	2000	NJ BPU	WR00080575	Atlantic City Sewerage Company	Cost Allocation and Rate Design
24.	2001	Ia. St Util Bd	RPU-01-4	Iowa-American Water Company	Cost Allocation and Rate Design
25.	2001	Va. St. Corp	PUE010312	Virginia-American Water Company	Cost Allocation and Rate Design
26.	2001	WV PSC	01-0326-W-42T	West-Virginia American Water Company	Cost Allocation And Rate Design
27.	2001	Pa. PUC	R-016114	City of Lancaster	Tapping Fee Study
28.	2001	Pa. PUC	R-016236	The York Water Company	Cost Allocation and Rate Design
29.	2001	Pa. PUC	R-016339	Pennsylvania-American Water Company	Cost Allocation and Rate Design
30.	2001	Pa. PUC	R-016750	Philadelphia Suburban Water Company	Cost Allocation and Rate Design
31.	2002	Va. St. Corp Cm	PUE-2002-00375	Virginia-American Water Company	Cost Allocation and Rate Design
32.	2003	Pa. PUC	R-027975	The York Water Company	Cost Allocation and Rate Design
33.	2003	Tn Reg. Auth	03-	Tennessee-American Water Company	Cost Allocation and Rate Design
34.	2003	Pa. PUC	R-038304	Pennsylvania-American Water Company	Cost Allocation and Rate Design
35.	2003	NJ BPU	WR03070511	New Jersey-American Water Company	Cost Allocation and Rate Design
36.	2003	Mo. PSC	WR-2003-0500	Missouri-American Water Company	Cost Allocation and Rate Design
37.	2004	Va. St. Corp Cm	PUE-200-	Virginia-American Water Company	Cost Allocation and Rate Design
38.	2004	Pa. PUC	R-038805	Pennsylvania Suburban Water Company	Cost Allocation and Rate Design
39.	2004	Pa. PUC	R-049165	The York Water Company	Cost Allocation and Rate Design
40.	2004	NJ BPU	WRO4091064	The Atlantic City Sewerage Company	Cost Allocation and Rate Design
41.	2005	WV PSC	04-1024-S-MA	Morgantown Utility Board	Cost Allocation and Rate Design
42.	2005	WV PSC	04-1025-W-MA	Morgantown Utility Board	Cost Allocation and Rate Design
43.	2005	Pa. PUC	R-051030	Aqua Pennsylvania, Inc.	Cost Allocation and Rate Design
44.	2006	Pa. PUC	R-051178	T. W. Phillips Gas and Oil Co.	Cost Allocation and Rate Design
45.	2006	Pa. PUC	R-061322	The York Water Company	Cost Allocation and Rate Design
46.	2006	NJ BPU	WR-06030257	New Jersey American Water Company	Cost Allocation and Rate Design
47.	2006	Pa. PUC	R-061398	PPL Gas Utilities, Inc.	Cost Allocation and Rate Design


	Year	Jurisdiction	Docket No.	Client/Utility	Subject
48.	2006	NM PRC	06-00208-UT	New Mexico American Water Company	Cost Allocation and Rate Design
49.	2006	Tn Reg Auth	06-00290	Tennessee American Water Company	Cost Allocation and Rate Design
50.	2007	Ca. PUC	U-339-W	Suburban Water Systems	Water Conservation Rate Design
51.	2007	Ca. PUC	U-168-W	San Jose Water Company	Water Conservation Rate Design
52.	2007	Pa. PUC	R-00072229	Pennsylvania American Water Company	Cost Allocation and Rate Design
53.	2007	Ky. PSC	2007-00143	Kentucky American Water Company	Cost Allocation and Rate Design
54.	2007	Mo. PSC	WR-2007-0216	Missouri American Water Company	Cost Allocation and Rate Design
55.	2007	Oh. PUC	07-1112-WS-AIR	Ohio American Water Company	Cost Allocation and Rate Design
56.	2007	II. CC	07-0507	Illinois American Water Company	Customer Class Demand Study
57.	2007	Pa. PUC	R-00072711	Aqua Pennsylvania, Inc.	Cost Allocation and Rate Design
58.	2007	NJ BPU	WR07110866	The Atlantic City Sewerage Company	Cost Allocation and Rate Design
59.	2007	Pa. PUC	R-00072492	City of Bethlehem - Bureau of Water	Revenue Requirements, Cost Alloc.
60.	2007	WV PSC	07-0541-W-MA	Clarksburg Water Board	Cost Allocation and Rate Design
61.	2007	WV PSC	07-0998-W-42T	West Virginia American Water Company	Cost Allocation and Rate Design
62.	2008	NJ BPU	WR08010020	New Jersey American Water Company	Cost Allocation and Rate Design
63.	2008	Va St Corp Com		Virginia American Water Company	Cost Allocation and Rate Design
64.	2008	Tn. Reg. Auth.	08-00039	Tennessee American Water Company	Cost Allocation and Rate Design
65.	2008	Mo PSC	WR-2008-0311	Missouri American Water Company	Cost Allocation and Rate Design
66.	2008	De PSC	08-96	Artesian Water Company, Inc.	Cost Allocation and Rate Design
67.	2008	Pa PUC	R-2008-2032689	Penna. American Water Co.-Coatesville Wastewater	Cost Allocation and Rate Design
68.	2008	AZ Corp. Com.	$\begin{aligned} & \text { W-01303A-08-0227 } \\ & \text { SW-01303A-08-227 } \end{aligned}$	Arizona American Water Co. - Water   - Wastewater	Cost Allocation and Rate Design
69.	2008	Pa PUC	R-2008-2023067	The York Water Company	Cost Allocation and Rate Design
70.	2008	WV PSC	08-0900-W-42T	West Virginia American Water Company	Cost Allocation and Rate Design
71.	2008	Ky PSC	2008-00250	Frankfort Electric and Water Plant Board	Cost Allocation and Rate Design
72.	2008	Ky PSC	2008-00427	Kentucky American Water Company	Cost Allocation and Rate Design
73.	2009	PaPUC	2008-2079660	UGI - Penn Natural Gas	Cost of Service Allocation
74.	2009	PaPUC	2008-2079675	UGI - Central Penn Gas	Cost of Service Allocation
75.	2009	PaPUC	2009-2097323	Pennsylvania American Water Co.	Cost Allocation and Rate Design
76.	2009	la St Util Bd	RPU-09-	Iowa-American Water Company	Cost Allocation and Rate Design
77.	2009	II CC	09-0329	Illinois-American Water Company	Cost Allocation and Rate Design
78.	2009	Oh PUC	09-391-WS-AIR	Ohio-American Water Company	Cost Allocation and Rate Design
79.	2009	PaPUC	R-2009-2132019	Aqua Pennsylvania, Inc.	Cost Allocation and Rate Design
80.	S009	Va St Corp Com	PUC-00059	Aqua Virginia, Inc.	Cost Allocation (only)
81.	2009	Mo PSC	WR-2010-0131	Missouri American Water Company	Cost Allocation and Rate Design

## COMMONWEALTH OF KENTUCKY <br> BEFORE THE PUBLIC SERVICE COMMISSION

IN THE MATTER OF: )
THE APPLICATION OF KENTUCKY-AMERICAN ) CASE NO. 2010-00036 WATER COMPANY FOR AN ADJUSTMENT OF )
RATES ON AND AFTER MARCH 28, 2010

## 1. Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS. <br> A. My name is Michael A. Miller, 1600 Pennsylvania Avenue, Charleston, West Virginia.

2. Q. BY WHOM ARE YOU EMPLOYED AND WHAT POSITION DO YOU HOLD WITH KENTUCKY AMERICAN WATER?
A. I am employed by American Water Works Service Company as the Director of Rates, assigned to the Eastern Region, and in that role I am also the Assistant Treasurer of Kentucky American Water Company ("KAWC" or "Company").

## 3. Q. PLEASE DESCRIBE YOUR PROFESSIONAL EDUCATION AND EXPERIENCE.

A. My resume is attached to this testimony in Appendix A.

## 4. Q. WHAT ARE YOUR RESPONSIBILITIES AS ASSISTANT TREASURER?

A. I am responsible for the rates and revenue functions for the Company, including the filing of rate cases and other matters before the Commission. I also assist in the preparation and review of financial statements, financing plans, budget preparation, and cash management functions. I perform the same duties for West Virginia American, Virginia American and Tennessee American.

## 5. Q. HAVE YOU TESTIFIED BEFORE IN REGULATORY PROCEEDINGS?

A. Yes. I have testified previously on numerous occasions before the utility regulatory agencies in West Virginia, Tennessee, Virginia and the Kentucky Public Service Commission.

## 6. Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. I will address (i) drivers of the need to increase rates of KAWC, (ii) capital structure and the overall cost of capital that includes the return on equity (ROE), which will be addressed by Dr. Vander Weide, (iii) American Water Works Service Company ("AWWSC") costs, (vi) allowance for working capital, (vi) pension expense, (viii) other post employment benefit ("OPEB") costs, (ix) income taxes, and (x) cost allocations.

## GENERAL

## 7. Q. WHAT FACTORS ARE DRIVING THE NEED TO INCREASE RATES AT THIS TIME?

A. The Company's ability to attract capital at reasonable rates is a critical factor in meeting its public service obligation. The Company must replace and construct facilities necessary to meet water quality regulations and maintain its service capabilities, maintain its facilities to maximize their useful life, and provide the employees necessary to carry out those public service obligations. Rates should be set to provide revenue to the utility to cover all prudently incurred operating
and capital costs, including the opportunity to achieve a fair and reasonable return on the investment by the stockholders. It is essential that the Company's rates be set at levels to cover its cost of service if it is to continue to maintain service levels, meet its public service obligations and attract capital at reasonable rates.

The Company's last rate increase was effective June 1, 2009. The rates approved in this filing are not likely to become effective prior to September 28, a period of sixteen months between rate increases. During that time KAWC has continued to make significant investments in utility plant, including commencement of the major construction project related to the new Kentucky River Station II treatment plant ("KRS II") and transmission main. As can be seen on Exhibit MAM-1 attached to this testimony, the Company's achieved ROE has been under the level authorized by the Commission for 2008 and 2009. Without rate relief, the achieved ROE for 2010 is currently forecasted to be $5.41 \%$, and in 2011 (the first full year after rates from this case will be effective), achieved ROE is expected to be $1.12 \%$. The Company does not believe that a $5.41 \%$ or $1.12 \%$ ROE is sufficient to attract the capital necessary to carry out its public service obligations, particularly given the extensive capital invested to complete the KRS II Project. The only reasonable alternative is to seek an increase in rates at this time.

## 8. Q. WHAT ARE THE COMPONENTS OF THE COST OF SERVICE DRIVING THE INCREASE IN RATES?

A. I have provided Exhibit MAM-2 which addresses the rate increase amount by the
major categories of the cost of service that have increased over the levels currently authorized by the Commission: i) Rate Base, ii) Operating Expenses, and iii) Cost of Capital. While the Company's 2008 rate case ended in a settlement to overall revenue requirement, the Company used its judgment to determine the cost of service elements embedded in current rates. As indicated on Exhibit MAM-2, (in both text and graphically), rate base has increased by $\$ 61.343$ million since the Company's last rate case. However, the Company's 2008 rate case included $\$ 102.8$ million of CWIP of which only $\$ 20.2$ million was afforded full rate base treatment instead of the non-cash AFUDC treatment for rate making purposes. In fact, through September 2011, the end of the forecasted test-year in this case, the Company will have invested over $\$ 100$ million in utility plant improvements since June 1, 2009, the effective date of the rates approved in case number 2008-00427.

This significant investment level includes the full investment for the KRS II Project that will be in service in the third quarter of 2010. Increased rate base accounts for $69 \%$ of the rate increase requested in this case. In fact, as shown on Exhibit MAM-2 the cost of service elements strictly related to the KRS II Project account for a rate increase (on a stand-alone basis) of $\$ 23.579$ million or approximately $91 \%$ of the total rate increase requested in this proceeding.

Operations and Maintenance expense has increased by $\$ 5.113$ million from the level currently authorized by the Commission. O\&M expenses represent 20\% of
the increased rates requested in this case and is primarily driven by: i) labor and benefit costs at both the Company and AWWSC, ii) increased production costs, iii) increased uncollectible expense driven by the historical charge-off ratio applied to the rate increase amount requested in this case, and iv) increases in several categories of Miscellaneous Expense. The O\&M expense levels will be fully addressed in the testimony of several Company witnesses. The cost of energy and petroleum products has had a major impact on the O\&M expenses of the Company. Power costs included in this filing have increased $\$ 875,000$ or $25.0 \%$ over the level currently recovered in rates primarily related to fuel adjustment increases from the electric providers. The increase in power costs has been substantially offset by favorable chemical contract prices.

Changes in the cost of capital and capital structure represent $11 \%$ of the requested revenue increase in this case. This area of the case will be covered by Dr. Vander Weide and later in this testimony.

While the Company did include customer growth through the forecasted test-year, those customer growth rates have declined from past years and are not expected to return to prior levels through the end of the forecasted test-year in this case based on current economic conditions. I have allocated the impact on this case from the decline in water sales to the Rate Base and O\&M Expense categories as shown on Exhibit MAM-2.

In his testimony, Dr. Edward Spitznagel will address the weather normalization factors used by the Company in arriving at present rate revenues for this filing. After applying the weather normalization factors recommended by Dr. Spitznagel, the forecasted test-year usage per customer for residential and commercial customers reflects a decline in usage per customer from the level currently approved in rates. This trend is a continuation of the trends seen in past KAWC rate cases and across the country as a result of low flow plumbing devices and smaller family sizes. Moreover, the Company believes the customer communication information used by the Company to stress the importance of water and the value of conservation of water use is impacting this trend.

## COST OF SERVICE STUDY

## 9. Q. DID THE COMPANY PREPARE A COST OF SERVICE STUDY FOR THIS CASE?

A. Yes. The Company contracted with the firm of Gannett/Fleming to provide the cost of service study. The cost of service study is covered in the testimony of Paul Herbert filed in this case.

## 10. Q. WHAT WERE THE RESULTS OF THE STUDY?

A. The Commission approved a "single," company-wide water tariff for KAWC in the 2007 rate case. In that case, the Company recommended there be movement in all customer classifications towards the cost of service. The Company's
approach to move all classes towards the cost of service on a gradual basis was included in the Settlement Agreement for case number 2008-00427, which was approved by the Commission. As described in more detail in Mr. Herbert's testimony, the Company is continuing to recommend movement towards cost of service. The overall increases recommended by customer classification in this case are: residential - 37.1\%, commercial - 42.8\%, industrial - 49.3\%, public authority $-46.5 \%$, sale for resale $-49.0 \%$, private fire $-44.0 \%$, and public fire 31.8\%. This approach, if approved, will have commercial, public authority, sale for resale, private fire, and public fire at the cost of service recommendation, and will continue to move residential, and industrial towards the cost of service.

## CAPITAL STRUCTURE \& OVERALL COST OF CAPITAL

## 11. Q. WHAT CAPITAL STRUCTURE DID THE COMPANY USE IN CALCULATING THE COST OF SERVICE (REVENUE REQUIREMENT) IN THIS CASE?

A. The Company used the capital structure for the thirteen month average of the forecasted test-year ending September 30, 2011. The capital structure proposed by the Company is attached to this testimony as Exhibit MAM-3 and is also included in the filing documents on schedules J-1 thru J-4 of Exhibit 37. Exhibit MAM-3 indicates the thirteen month average capital structure on which the Company based its cost of service and revenue requirement in this case. The proposed capital structure is comprised of 2.315\% Short-term debt, 52.060\% Common Equity.

## 12. Q . IS THE CAPITAL STRUCTURE PROPOSED BY THE COMPANY IN LINE WITH THE CAPITAL STRUCTURES HISTORICALLY APPROVED BY THE COMMISSION FOR SETTING THE COMPANY'S RATES?

A. Yes. The Company has historically maintained its debt capital in the 53-57\% range and its common equity ratio between 40-45\%. The Company believes this mix of debt and equity in the capital structure is in line with rating agency expectations and in line with capital structures previously approved by the Commission. The Company believes a capital structure of $56.027 \%$ debt and preferred stock, and 43.973\% common equity provides a capital structure that enables the Company to attract capital at reasonable costs and balances both the stockholder requirements and the rates paid by the customers as determined in the ratemaking process.

## 13. Q. IN WHAT MANNER DOES THE COMPANY CURRENTLY OBTAIN ITS LONG-TERM AND SHORT-TERM DEBT?

A. The Company utilizes the services of American Water Capital Corp. ("AWCC") to place its long-term ("LT") and short-term ("ST") debt requirements. AWCC is an American Water Company affiliate and was created to consolidate the financing activities of the operating subsidiaries, to effect economies of scale on
debt issuance and legal costs, to attract lower debt interest rates through larger debt issues in the public/private market, and to use more cost effective means of obtaining ST debt (to bridge the gap between permanent debt financings) than the historical bank lines of credit previously used. The Company believes the use of AWCC has permitted the Company to attract capital at lower interest rates and resulted in lower issuance and transaction costs by utilizing the combined size and resources of the entire American Water System.

## 14. Q. HAS THE COMMISSION APPROVED THE COMPANY OBTAINING ITS DEBT THROUGH AWCC?

A. Yes. By Order entered July 21, 2000 in Case No. 2000-189, the Commission authorized the Company to enter into a Financial Services Agreement with AWCC to issue debt securities in the form of notes or debentures periodically for the purpose of placing debt issues to replace ST debt or refinance maturities of existing debt. The Commission reaffirmed in case 2006-00418 the Company's use of AWCC for the placement of the Company debt. In its order in case number 2009-00156, the Commission again authorized the Company's continued use of AWCC to place its LT and ST Debt. As discussed below, the Company is confident the benefits of utilizing AWCC will remain just as strong in the future.

## 15. Q. HAS THE COMPANY BEEN PLEASED WITH THE RESULTS OF ITS RELATIONSHIP WITH AWCC THUS FAR?

A. Yes. The Company and its customers have benefited from the interest savings
resulting from pooling the capital requirements of the American Water subsidiaries. On March 31, 2008, the Company filed with the Commission a "Statement of Best Practices" as required by Condition No. 19 in case number 2002-00317. That filing demonstrated the benefits derived from the affiliations with AWCC for the three LT Debt issues placed since 2001. Attached is Exhibit MAM-4 (updated for the benefits of issuing LT Debt by AWCC through 2009) that recaps the identified benefits regarding the use of AWCC since 2001. The customers have realized cumulative savings of $\$ 650,000$ through 2008 related to these three taxable debt issues.
16. Q. WHAT WAS THE IMPACT OR SAVINGS GENERATED THROUGH THE LONG-TERM DEBT ISSUED IN 2009?
A. In 2009, the Company pursued maximizing the use of tax-exempt debt to fund its KRS II source of supply and treatment capacity solution. The Company was able to obtain State Cap Allocations necessary to issue $\$ 45.390$ million of tax-exempt debt in June 2009 and $\$ 26.0$ million of tax exempt debt in September 2009. As shown on Exhibit MAM-4, in 2009 KAWC was able to generate an additional annual interest savings of $\$ 720,731$ over what the annual interest rate for taxable BBB-rated utility bonds issued at about the same time frames would have been. The 2009 LT Debt financing activities increased the cumulative benefit of using AWCC to $\$ 1.429$ million for 2002-2009.
17. Q. WHAT FACTORS REQUIRE THE COMPANY TO SEEK ADDITIONAL

## CAPITAL?

A. The Company has documented in past rate cases and in this filing that capital improvements to meet the new and changing regulations in the water industry, replace aged treatment and distribution facilities, and provide quality, reliable water service to its customers have driven and will continue to drive the need for new capital. The additional capital required by the Company has been and will continue to be significant through 2010 due to the KRS II Project. In addition, the Company will be required to replace maturing debt series over the coming years. The Company has included two additional LT debt financings for 2010 to replace short-term debt. It is important that the Company maintain a strong financial position to continue to attract this capital at the lowest possible price and to provide service improvements at the least possible cost to its customers.

## 18. Q. WHY IS THE LEVEL OF SHORT-TERM DEBT INCLUDED IN THE COMPANY'S FILING APPROPRIATE FOR SETTING RATES IN THIS CASE?

A. The Company uses ST debt to finance capital improvements. This type of financing is used to bridge the gap between permanent financings. This permits the Company to time permanent financings in a cost-effective manner and to take advantage of the optimum permanent debt market conditions as they occur. The Company believes the capital structure used to set rates should reflect the capital components that will be in place to finance the rate base on which rates will be set in this case. The Company has based the level of ST debt used in its proposed
capital structure in this case on the thirteen month average capital structure for the forecasted test-year ending September 2011. That level of ST debt is reflective of the level that will be utilized to fund the construction and other cash peaking requirements during the forecasted test-year

## 19. Q. WHAT PERMANENT DEBT FINANCINGS ARE INCLUDED IN THIS FILING AND DESCRIBE THOSE PROPOSED FINANCINGS AND THE INTEREST RATES EXPECTED?

A. The Company's proposed capital structure includes $\$ 26.0$ million of new LT debt to be placed in June 2010, and $\$ 25.0$ million of new LT debt to be placed in November 2010. The Company expects to apply for State Cap Allocation required to issue tax-exempt LT Debt of $\$ 26.0$ million in the near future and is hopeful that application will be approved. The Company has used a tax-exempt rate of $5.625 \%$ for this debt, which is the same rate received on the tax exempt debt received by the Company on its $\$ 26.0$ million in September 2009. The Company used an expected taxable interest rate of $6.663 \%$ for the $\$ 25.0$ million LT Debt financing scheduled for November 2010.

## 20. Q. PLEASE EXPLAIN WHY YOU USED A 30-YEAR TERM AND HOW DID YOU ARRIVE AT THE INTEREST RATE OF 6.663\%?

A. The Company continually monitors the market spreads for 10 -year and 30 -year Utility and Corporate Bond rates in comparison with the Treasury Bonds on which permanent debt rates are bid. Attached to this testimony as Exhibit

MAM-5 is a schedule that provides a range of interest rate calculations based on the most recent one, two and four quarter spreads between both "A" and "BBB" rated Utility bonds and 30-year Treasury Bonds, and 10-year A-rated Corporate Bonds to 10-year Treasury Bonds as published by Value Line. Based on the latest information available to the Company, the spreads for 30-Year BBB-rated utility bonds to 30 -year T -bonds are very close to the spreads for 10 -year Corporate Bonds to 10-year T-bonds. At this time the Company believes it will issue 30 year bonds given the market conditions. I believe the estimate of an interest rate on those issues of $6.663 \%$ for 30 -year, BBB-rated utility bonds is reasonable based on the information contained in Exhibit MAM-5. Given the volatility and uncertainty of the current bond markets, the Company will continue to monitor available information concerning 2010 interest rates as this case progresses and will update the interest projections once more current forecasted data is available.

## 21. Q. HOW WAS THE COST RATE FOR SHORT-TERM DEBT DETERMINED?

A. The Company reviewed market forecasts to determine a cost rate for ST debt that will likely be in place during the forecasted rate year. Exhibit MAM-6 indicates that the average ST debt interest rate for the six months ended November 2009 created an average spread over the fed fund rates of 38.47 basis points. That average spread was then applied to the forecasted fed funds rate for 2011 per the Value Line Publication of November 27, 2009. This produced a ST interest rate of $2.0847 \%$, which was used by the Company in its proposed capital structure.

The Company will continue to monitor ST debt rates as the case progresses and will update the ST interest rates as more up to date forecast information becomes available.

## 22. Q. HOW WAS THE WEIGHTED COST OF LONG-TERM DEBT AND PREFERRED STOCK DETERMINED?

A. The face value of each issue was reduced by the unamortized issuance cost and the result was divided by the interest or dividends to arrive at the effective interest rate that will include recovery of the amortization of the issuance costs. This result was then multiplied by the percentage of each issue to the total capital to arrive at the weighted cost for each series. The weighted cost for each series of LT Debt and Preferred Stock was totaled to arrive at the overall weighted cost of LT Debt and Preferred Stock.

## 23. Q. HAS THE COMMISSION PREVIOUSLY ADDRESSED THE METHOD BY WHICH THE WEIGHTED COST OF LONG-TERM DEBT AND PREFERRED STOCK IS DETERMINED?

A. Yes. The method used to determine the weighted cost of LT Debt and Preferred Stock was an issue in the Company's case number 2000-00120. The Commission Order indicates the methodology described in the previous answer (and used historically by the Commission) for setting rates of the Company was appropriate and was approved. This Company has continued to utilize this method in subsequent rate filings.

## 24. Q. WHAT IS THE OVERALL COST OF CAPITAL REQUESTED IN THIS CASE?

A. The overall weighted cost of capital being requested is $8.58 \%$. The Company is requesting the ROE be set at $11.5 \%$, which is within the range of ROE recommended in the testimony of Dr. Vander Weide.

## AMERICAN WATER WORKS SERVICE COMPANY COSTS

## 25. Q. DESCRIBE THE AMERICAN WATER WORKS SERVICE COMPANY

 COSTS INCLUDED IN THE COMPANY'S FILING.A. The Company has included in its forecasted test-year American Water Works Service Company ("AWWSC") costs as determined from the Business Plan. The Company is requesting AWWSC costs of $\$ 9.028$ million in its filing. I will address the increase in AWWSC costs and offsets that have occurred between fully loaded Company labor and AWWSC costs later in this testimony.
26. Q. HAS AWW UNDERGONE REORGANIZATIONS AND REALIGNMENTS OVER THE LAST SEVERAL YEARS THAT IMPACT THE COMPANY?
A. American Water Works ("AWW") has undertaken reorganizations or realignments in several areas since 2002, including the move to the National Call Center and the Shared Services Center. These two change processes were discussed at length by the Company in Case No. 2004-00103. As described in the

Company’s 2004 rate case, AWW consolidated the seven regional offices into four regional offices located in Chula Vista, CA; St. Louis, MO; Hershey, PA; and Haddon Heights, NJ. The Company became part of the SE Region of AWW in early 2004, and changes continued to occur into 2005 and early 2006 to align the operations at the Company and the SE Region Office. The Company, as would any responsible company, continues to modify alignments of the subsidiaries and functions as conditions change to provide the best possible service in the most cost effective manner. In 2007, the SE Region and NE regions of AWW were realigned into the Eastern Region under the leadership of Walter Lynch. Until January 1, 2009 the President of Kentucky American reported to the Senior VP of the Eastern Region. In January 2009, the Eastern Division (as opposed to Region) was created, at which time the former SE Region Companies in KY, WV, TN VA, and MD were combined with the AWW subsidiaries in NY, IN, OH and MI into the new Eastern Division reporting structure. Nick Rowe was promoted to Senior Vice-President of Operations for the Eastern Division, which is headquartered in Lexington, Kentucky.
27. Q. WHAT BENFITS TO THE CUSTOMERS OF THE COMPANY HAVE BEEN ACHIEVED FROM THE REALIGNMENT OF THE REGIONAL OFFICES?
A. These initiatives were and continue to be undertaken to operate as efficiently and cost effectively as possible, while at the same time providing enhanced service to our customers. We believe these realignments have and will continue to permit
service improvements through standardization of processes, increased efficiencies, and improvements to the service provided to the customers of the Company. Later is this testimony I will discuss the overall financial benefits that have resulted from the various reorganizations and flow to the benefit of the customers of the Company in this case.

## 28. Q. THE COMPANY'S CUSTOMER SERVICE AND BILLING FUNCTIONS WERE MOVED TO ALTON, ILLINOIS, AS PART OF AWWSC'S CONSOLIDATED CUSTOMER CALL CENTER IN OCTOBER 2003. PLEASE DESCRIBE THIS MOVE AND ITS BENEFITS.

A. The Company and the other AWW operating companies strive to provide customer service that is highly responsive, provides maximum customer service options, maximizes customer satisfaction, and at the same time generates cost savings wherever possible.

AWW and the Company have as one of its primary goals to be a water industry leader in the service provided to its customers. At the same time, we hope to provide that service at the lowest reasonable cost. The Customer Call Center has helped us meet both of these important goals.

The Customer Call Center provides full customer service on a twenty-four hour, seven days a week basis. There are also enhancements for automated call answering, automated payment options, communications with field operations,
and bill editing processes through significant improvements in the various technologies employed. The individual operating companies could not provide this enhanced service on a cost-effective basis. The Customer Call Center has increased the availability of full service to the customers on an around-the-clock basis and provides the additional services that our customers demand in today's environment.
29. Q. HAVE THERE BEEN OTHER CHANGES IN THE NATIONAL CALL CENTER?
A. Yes. In 2006 AWWSC added a second national call center in Pensacola, Florida. The second call center was installed to provide redundancy to the critical customer service functions if a natural disaster or other emergency should occur. The additional cost of the second call center had little impact on the cost to the customers due to the additional customer base added by the integration of the Elizabethtown Water Company that was eventually merged into New Jersey American Water.
30. Q. DOES THIS MEAN THAT THE COMPANY HAS NO LOCAL PRESENCE FOR CUSTOMER SERVICE?
A. No. The Company continues to maintain its Corporate Office in Lexington, which in addition now houses the Eastern Division headquarters. There remains a small clerical staff dedicated to KAWC to coordinate billing and collections for the entities for which we perform those functions. We continue to provide
customer contact as required; resolve customer issues, whether relayed from Alton or that come directly to the Lexington office, and respond to Commission inquiries. In addition, the field personnel continue to be available to address the needs of our customers. The local payment locations remain unchanged.
31. Q. THE COMPANY MOVED ITS TRANSACTIONAL ACCOUNTING FUNCTIONS TO THE NATIONAL SHARED SERVICES CENTER LOCATED IN MARLTON, NEW JERSEY, EFFECTIVE JANUARY 2002. PLEASE DESCRIBE THIS MOVE AND ITS BENEFITS.
A. As described in case number 2004-00103, AWW and the Company determined it could improve its transactional accounting functions, take advantage of economies of scale where possible, and improve the uniformity of its software applications at the various operating subsidiaries though the use of a Shared Services Center to perform these functions. AWW determined there were economies of scale savings and operational efficiencies to be derived from providing transactional accounting functions on a national level and decided to move these functions to a Shared Services Center. Prior to this transition, the accounting, budgets, and finance functions were being performed by Kentucky American Water employees and the Regional Service Company located in Charleston, WV.
32. Q. DID THE COMPANY DEMONSTRATE THE FINANCIAL SAVINGS FROM THE REORGANIZATION INITIATIVES MENTIONED ABOVE

## IN THE 2004 RATE CASE?

A. Yes. The financial savings were demonstrated in the 2004 rate case as shown on Exhibit MAM-5 attached to my Direct Testimony in that case. The savings from the move to the SE Region office in Hershey, PA, the move to the National Customer Call Center and the Shared Service Center resulted in savings of $\$ 232,268$, which were passed to the customers of the Company in the 2004 rate case.

## 33. <br> Q. YOU MENTIONED EARLIER THAT THE NEWLY CREATED EASTERN DIVISION OFFICE IS NOW HEADQUARTERED IN LEXINGTON, KENTUCKY. WOULD YOU GENERALLY DESCRIBE THIS CHANGE IN THE AWWSC REPORTING STRUCTURE?

A. Yes. Prior to this realignment Kentucky-American reported to the SE Region, which included finance, budgeting, engineering, human resources ("HR"), water quality, legal, risk management, field resources coordination, and rate support from offices located in Hershey, PA, Wilkes Barre, PA, and Charleston, WV. The recent movement of the Eastern Division headquarters to Lexington moved the leadership of those functions to the Lexington office, or in some cases placed that AWWSC support at the regulated subsidiary level. The Eastern Division office in Lexington now includes the Divisional Senior VP, the Divisional VPFinance, the Divisional Director Communications, the Divisional Director of HR, the Divisional Director Customer Relations (who works for the Eastern Division Field Resources Coordination Center or "FRCC") and the Divisional Director

Legal Affairs along with their administrative support staff. This transition also included the creation of the FRCC in Lexington. The FRCC has 33 employees who perform the work previously performed at the Wilkes Barre, PA, and St. Louis, MO FRCC's. The Eastern Division FRCC is responsible for scheduling customer service orders, dispatching and the closing of the service orders in the CIS system for each of the nine states included in the Eastern Division, including KAWC.

## 34. Q. YOU INDICATED EARLIER YOU WOULD DISCUSS THE INCREASE IN SERVICE COMPANY COSTS REQUESTED IN THIS CASE. WOULD YOU PLEASE ADDRESS THAT?

A. As discussed above, there have been a number of reorganization and realignment initiatives by the Company since 2002, and there have also been the acquisitions of the Elk Lake, Tri-Village and Owenton systems. Because of the significant changes brought on by these activities, it is easy to lose focus on what has driven the costs. To determine the overall impact of the reorganizations that have occurred, I believe we must start with a base period prior to the reorganizations, realignments and acquisitions. We should then bring those costs forward to the forecasted test year in this case and compare those costs to the expense levels in this case to determine the impact and savings resulting from the reorganization, realignment activities. I have performed this analysis as shown on the schedules attached to this testimony and identified as Exhibit MAM-7.

## 35. Q. PLEASE DESCRIBE THE INFORMATION ON EXHIBIT MAM-7.

A. Exhibit MAM-7 consists of three pages and the purpose of the Exhibit is to capture the effect of the reorganizations and realignments of AWW, AWWSC and the impact on KAWC operations and costs. I believe the schedules clearly demonstrate there has been an offsetting shift between fully loaded KAWC labor and AWWSC costs. The schedule in column 16 demonstrates that savings from the reorganizations at AWWSC and related changes in processes have resulted in $\$ 632,490$ of savings over the inflated 2001 combined costs at KAWC prior to the realignments described above.

To properly determine the benefits of the shift in Full Time Equivalents ("FTES") between KAWC and AWWSC costs, the analysis must compare fully loaded costs at KAWC to AWWSC costs because, as described in the "1989 Service Company Agreement" between KAWC and AWWSC, AWWSC costs include labor and all overheads. I started my analysis with the level of fully loaded labor costs included in KAWC case 2000-00120, because that period reflects the costs KAWC experienced prior to the reorganizations and realignments mentioned earlier in this testimony. The costs for KAWC's fully loaded labor costs plus AWWSC costs from case number 2000-00120 are shown on page one of Exhibit MAM-7, page 1 of 3 , under the column identified as (1). Column 2 shows adjustments for the labor and benefits at 2001 costs per employee for the 6 employees hired by KAWC in the acquisitions of Elk Lake and Tri-Village.

Column 3 establishes the 2001 base period costs prior to any reorganizations or realignments.

To determine a reasonable expectation of what the total of fully loaded KAWC labor costs plus AWWSC costs would be for the forecasted test-year ended September 2011 if no reorganizations or realignments had occurred, I determined actual cost increase ratios for KAWC in each of the categories of expense. The inflation factors for KAWC labor are shown next to the Labor line on page 1 and reflect the average wage increases granted to salary positions and increases for union employees per the union contracts from 2001 to 2011. The inflation factor for AWWSC costs was determined by using a salary increase ratio of $4 \%$ and a calculated increase ratio for benefit costs that are embedded in the AWWSC costs. The calculations of the cost adjustment factors for KAWC and AWWSC group insurance, pensions, payroll taxes and $401(\mathrm{k})$ are shown on page 2 of Exhibit MAM-7. Exhibit MAM-7 used an inflation factor of $2.5 \%$ for the other category of AWWSC costs.

The next step in my analysis was to inflate (or deflate as the case may be) the costs shown on page 1, column (3) for each year through the end of the forecasted test-year in this case for the cost increase ratios applicable to each category of fully loaded KAWC labor costs and AWWSC costs. The result of this analysis produces $\$ 19,528,256$ for the combination of KAWC fully loaded labor costs plus AWWSC costs as shown in column (14) on page 1 of the Exhibit.

In column (15) I show the various categories of expenses that KAWC included in the forecasted test-year of this filing. Those expenses total $\$ 21,673,873$. As shown on Exhibit MAM-7, page 1, there are reductions of KAWC fully loaded labor costs of $\$ 4.883$ million to offset the increase in AWWSC costs.

## 36. Q. ARE THERE ELEMENTS OF COSTS EMBEDDED IN THE SHIFT OF KAWC COSTS TO AWWSC COSTS THAT HAVE NOT BEEN CONSIDERED AT THIS POINT IN THE ANALYSIS?

A. Yes. I identified four other areas of cost shifts that are not captured by inflating the costs approved in case number 2000-00120. Those four areas and the cost savings or shifts are identified in the following table:

1.	In 2003 the National Procurement function was established at the   Shared Services Center and the savings from that function have been   annually reported to the Commission in compliance with Condition   No. 19 in case number 2002-00317. Those savings are also set forth   at Exhibit MAM-7, page 3 of 3.	$\$ 292$   2.Since 2001 Kentucky American has increased its customer base by   $17,784 . \quad$ The analysis on Exhibit MAM-7 does not capture add’l   employees that would have been added if KAWC continued to   provide customer service and billing locally.


3.	AWWSC capitalized several software programs that are billed   through AWWSC as interest and depreciation expense. Those costs   would have been captured as capital costs if KAWC had paid for   them locally, and, thus, are not accounted for in the analysis.	$\$ 1,535,472$
4.	Savings resulting from the use of AWCC for cash management and   financing activities through 2008. (See Exhibit MAM-4).	$\$ 650,000$
	Total offsetting adjustments in shift to AWWSC costs	$\$ 2,778,107$

When the four adjustments included in the table above are considered, the net savings to KAWC and its customers embedded in this case equal $\$ 632,490$ as shown on Exhibit MAM-7, column 16, page 1 of 3.

## 37. Q. WHAT CONCLUSION DO YOU REACH FROM THE INFORMATION PROVIDED ON EXHIBIT MAM-7?

A. I believe that the information demonstrates that there has been a savings of at least \$632,490 from the reorganizations and realignments of AWW and KAWC and the change in processes associated with those reorganizations and realignments. It is important to note that not only is the Company providing service at a cost lower than it was providing when those services were provided locally, but the level of service has been improved significantly as well. KAWC through AWWSC has access to highly qualified professionals in many areas critical to providing quality water service, including expertise in areas such as: (i) water quality professionals through a nationally recognized central laboratory facility,
(ii) engineering design and construction, (ii) accounting and finance, (iv) income taxes, (v) legal, (vi) employee benefits administration, (vii) procurement through national contracts, (viii) uniform ITS hardware, software and programming support, (ix) operation expertise, (x) access to low cost capital, (xi) regulatory expertise, and many other important functions.

KAWC obtains access to this expertise though the "1989 Service Company Agreement," which provides that KAWC receives those services by direct charges on an as needed basis, or through allocations of costs from the customer based formulas applicable to each type of function provided on an AWW systemwide or regional basis. I do not believe KAWC could obtain the same level of expertise available through AWWSC cost effectively at the local level. Such services as regulatory and rate cases, highly specialized water quality testing, national procurement, cash management and permanent financings, taxes, engineering, and employee benefits administration require specific expertise. KAWC currently has access to that expertise on an allocated basis. To duplicate those services and expertise locally, KAWC would likely have to obtain employees that had expertise in more than one of those functions to equal the FTE'S obtained through AWWSC. That is not practical because employees with expertise and training in multiple disciplines are not common and likely not available at all.

KAWC could not cost effectively duplicate the level of service provided by the Call Center. As demonstrated in case number 2004-00103, KAWC obtained the services from the Call Center for a cost less than KAWC was able to provide when those services were performed locally. In addition, the Call Center is available to customers on a 24/7, 365 days per year basis. When major service problems or natural disasters occur, there is a much larger base of employees available at the Call Center to deal with those emergencies. KAWC was not equipped to handle those types of issues and call volumes with the staffing locally prior to moving to the Call Center. When KAWC provided customer service and billing locally, the office was open from 8:00 AM to 4:30 PM Monday through Friday only and calls were accepted from 8:00 AM to 8:30 PM Monday through Friday only. Customer calls outside the normal working hours were forwarded to an independent call service and service was limited to emergencies only.

In addition, as explained in the testimony and study provided by Pat Baryenbruch filed in this case, KAWC could not obtain these services provided by AWWSC from third party providers at a lower cost.

## RATE BASE

38. Q. HOW DID THE COMPANY DETERMINE THE ALLOWANCE FOR WORKING CAPITAL USED IN ITS RATE BASE REQUESTED IN THIS CASE?
A. The Company prepared a lead/lag study based on revenue and expense information for the twelve months ending November 2009. The Company's calculation of working capital is included in the Company's application as Schedule B-5. The base year and forecasted test year working capital are summarized on Schedule B-5, pages 1 and 2.

## 39. Q. WHAT LEVEL OF WORKING CAPITAL DID THE COMPANY USE FOR THE FORECASTED TEST-YEAR ENDED SEPTEMBER 2011?

A. The Company is requesting an allowance for working capital of $\$ 2,634,000$. The detailed calculation of the allowance for working capital for the forecasted testyear is included in the Company's application as Exhibit 37, Schedule B-5.2, pages 4-6.

## PENSIONS

## 40. Q. WOULD YOU DESCRIBE THE COMPANY'S PENSIONS EXPENSE INCLUDED IN THE RATE FILING?

A. Yes. The Kentucky Commission has historically regulated the Company's pension expense under the accrual or FAS 87 basis. The Company has included the forecasted pension expense for the forecasted test-year using the FAS 87 expense. The Company included FAS 87 pension expense for the forecasted testyear of $\$ 1,267,732$. The pre-capitalized FAS 87 pension expense was obtained from forecasts prepared by AWW's actuary, Towers Perrin, for the years 2010
and 2011. The Company adjusted the Towers Perrin forecasted number to reflect the percentage charged to O\&M expense at 82.66\%.

The defined pension benefit plan just described applies to all non-union employees hired prior to January 1, 2006 and union employees hired prior to January 1, 2001. For those employees not eligible for the defined benefit plan, AWW has established a defined contribution plan. The defined contribution pension plan costs are shown in account 508101.16. Those costs are determined at $5.25 \%$ of qualifying employee's salaries and wages.

OTHER POST EMPLOYMENT BENFITS

## 41. Q. WOULD YOU DESCRIBE THE COMPANY'S OTHER POST EMPLOYMENT BENEFITS EXPENSE INCLUDED IN THE RATE FILING?

A. Yes. The Kentucky Commission has historically regulated the Company’s OPEB expense under the accrual or FAS 106 basis. The Company has included the OPEB expense for the forecasted test year using the FAS 106 expense. The Company included FAS 106 OPEB expense for the forecasted test-year of $\$ 910,407$. The pre-capitalized FAS 106 OPEB expense was obtained from forecasts prepared by AWW's actuary, Towers Perrin, for the years 2010 and 2011. The Company adjusted the Towers Perrin forecasted numbers to reflect the percentage charged to $\mathrm{O} \& \mathrm{M}$ expense at $82.66 \%$.

The defined OPEB benefit plan just described applies to all employees hired prior to January 1, 2006. For those employees not eligible for the defined benefit plan, AWW and KAWC have established a defined contribution plan. The defined contribution OPEB plan costs are shown in account 508102.16. Those costs are determined at $\$ 500$ per eligible employee per year.

## INCOME TAXES

## 42. Q. PLEASE EXPLAIN THE COMPANY'S FORECASTED LEVEL OF INCOME TAXES?

A. The Company's filing is based on a calculation of current federal and state income taxes at the statutory income tax rates of $35 \%$ and $6 \%$, respectively. The $6 \%$ state income tax rate was effective January 1, 2007. The Company has forecasted a level of income taxes for the forecasted test year in the amount of \$1,110,888 at present rates. The current provision for federal and state income taxes of $\$(902,408)$ and $\$(164,573)$ is shown on pages 1 of 2 of Schedules E-1.3 and E-1.4 to Exhibit 37. Deferred federal and state income taxes of \$1,859,367 and $\$ 318,502$ are shown on page 2 of 2 of schedules E-1.3 and E-1.4 of Exhibit 37.

To arrive at the total current provision, forecasted expenses were deducted from operating revenues to arrive at income before income taxes. This was done for
both the federal and state tax calculations. From this number statutory add backs and deductions were made to arrive at the taxable income. These statutory adjustments are shown on pages 1 of 2 of Schedule E-1.3 and E-1.4 of Exhibit 37 and are labeled as reconciling items.

## 43. Q. IS THE CALCULATION OF DEFERRED INCOME TAXES THE SAME METHOD USED IN THE COMPANY'S LAST RATE CASE?

A. Yes. The company has continued to use SFAS 109 in recording deferred income taxes and that method has been recognized for rate recovery in prior Company rate cases.

## 44. Q. HOW DID THE COMPANY CALCULATE THE DEFERRED TAX

 LIABILITY THAT IS SHOWN ON EXHIBIT 37, SCHEDULE B-6, PAGE 2
## OF 2 THAT IS A RATE BASE DEDUCTION?

A. The deferred tax liabilities for Deferred Debits, and Deferred Maintenance are calculated by applying the statutory federal and state income tax rates to the 13month average balance included in rate base. This represents the proper method of calculating the deferred tax liability using SFAS 109.

The amount shown on Exhibit 37, Schedule B-6, page 2 of 2 for Deferred Taxes related to Utility Plant in Service entails analyzing and determining the net change in a number of balance sheet accounts both for book and tax basis. This analysis
includes UPIS, accumulated depreciation reserve, regulatory assets and regulatory liabilities, and Customer Advances and CIAC's.

SFAS 109 is a balance sheet approach to deferred income taxes that requires the deferred income tax provision be shown in total, but also recognizes the regulatory assets and liabilities that will be recovered in rates in future years.

## 45. Q. HOW DID THE COMPANY ADJUST THE PER BOOKS DEFERRED TAX EXPENSE TO DETERMINE THE FORECASTED TEST-YEAR EXPENSE?

A. Beginning with the deferred tax expense at November 2009, adjustments were made to reflect calculations of deferred taxes associated with UPIS through the end of the forecasted test period. This was done for both book and tax basis accounts and incorporated all temporary timing differences through the forecasted test-year. The statutory tax rates were applied to these changes between book and tax basis property to calculate each individual month's deferred tax expense or benefit.

## COST ALLOCATIONS

## 46. Q. NOW THAT SINGLE TARIFF PRICING HAS BEEN AUTHORIZED BY THE COMMISSION, WOULD YOU PLEASE EXPLAIN THE

## REASONING FOR DISTRIBUTING COSTS AMONG KAWC'S REGULATED AND NON-REGULATED BUSINESSES?

A. Certainly. The adoption of Single Tariff Pricing ("STP") has eliminated a considerable level of work historically required of KAWC to prepare water tariff rate cases. In past cases KAWC was required to allocate a number of corporate costs to sewer operations, non-regulated operations, and among the various divisions of water operations. Those allocations have been greatly simplified now to only allocate costs applicable to sewer operations and non-regulated activities. Those entities to which the cost allocations in this case have been applied include:

- Rockwell Village Sewer - regulated and operating in Clark County under a separate tariff, which is included in the Company's general tariffs.
- City of Owenton Sewer - regulated and operating in Owen County under a separate tariff, which is included in the Company's general tariffs.
- Bluegrass Station Division Operation and Maintenance Contract -non-regulated.

KAWC's corporate business units, for which expenses are allocated, include Administration \& General (includes Customer Accounting), Information Systems, Legal, Human Resources, Loss Control, Communications and Government Relations. Other corporate services including finance, audit, regulatory, laboratory, customer relations and various administrative services are provided by

AWWSC and, as such, are included in the AWWSC costs included in this filing. Costs assigned to the above KAWC business units and AWWSC costs are some of the common costs of KAWC. In most cases, these costs are either not specifically identifiable with a particular business unit or are of joint benefit to two or more business units.

## 47. Q. HOW WERE THESE COSTS ALLOCATED?

A. Where applicable, corporate costs for the forecasted test year were distributed among the various business units within KAWC on the basis of the average number of customers within each business unit to the total average number of customers of all business units during the forecasted test year. This method of allocation is easily understandable and reasonable. A similar methodology is used by AWWSC to allocate its costs to the individual operating units that it serves, including KAWC. However, certain costs were not allocated to all business units.

Each cost or cost group to be allocated was analyzed and assigned to prevent, to the extent practicable, redundancy or overlap. As mentioned earlier, KAWC accounts for expenses using a series of business units. These business units are incorporated in the General Ledger account number. Most expenses are directly charged to these business units and generally need no further allocation. It is largely the KAWC Corporate business unit costs that are allocated.

The first step taken in preparing the allocation schedule was to conduct a review of Company employees and select for allocation those employees whose efforts benefit more than just the customers of the regulated water operations of KAWC.

Those employees selected for allocation include:

- Peggy Slone - Executive Assistant to the President
- John-Mark Hack - Manager of Governmental \& Regulatory Affairs
- Mary Money - Manager of Finance
- Rachel Cole - Supervisor /Business Processes
- David Shehee - Supervisor Water Quality
- Shana Carr - Lab Analyst
- Production Manager
- Kenny Roney - Specialist Water Quality/Cross Connections
- Mary Ellen Pugh - Administrative Assistant
- Pamela Buehler - Specialist Human Resources
- Donna Braxton - Manager Human Resources
- Michael Shryock - Sr. Specialist, IT
- Keith Cartier - VP Operations
- Paula Squires - Administrative Assistant
- Manager of External Affairs

Along with the labor forecasted to be charged to operations and maintenance by each of these employees, the cost of office space, and employee benefit payroll overheads were allocated.

Next, other operations and maintenance expenses were analyzed and those that benefit more than the water tariff customers were selected for allocation. These expenses include: customer accounting expenses, including postage, forms, and collection expenses; AWWSC costs; and other operations and maintenance expenses, including company dues and memberships, employee travel, telephone expense, software licensing, training, insurance other than group, customer education expense, and other miscellaneous and general expenses. A detailed list of the expenses allocated can be found on attached Exhibit MAM-8.

## 48. Q. PLEASE EXPLAIN THE DESIGN OF THE SPREADSHEET THAT IS EXHIBIT MAM-8?

A. This schedule is designed to allocate a series of forecasted test year common expense totals among the individual business units within KAWC that derive a benefit from those expenses. These expense totals are contained in the column headed "Test Year Amount." These expenses are allocated among the appropriate business units. For example, Bluegrass Station Division does not derive a benefit from the Customer Service Center. We provide only operations and maintenance services for the water, wastewater and storm water systems at Bluegrass Station Division. Bluegrass Station Division personnel handle all customer relationships
within the development. Accordingly, these expenses are allocated to the water operations and sewer operations that derive a direct benefit from the Customer Service Center. An example of an expense that is allocated to all business units within KAWC is the payroll expense and related cost of Supervisor Business Process Rachel Cole, who is involved in accounting and finance activities for all business units.
49. Q. AS A RESULT OF YOUR ANALYSIS REDARDING COST ALLOCATONS, HOW MUCH OF THE TOTAL COMMON COSTS WERE ALLOCATED TO EACH BUSINESS UNIT WITHIN KENTUCKY AMERICAN WATER?
A. The results are included on Exhibit MAM-8. Total costs allocated were \$14,889,755 These costs have been allocated to the various business units within KAWC as follows:

- Water operations - $\$ 14,799,214$ or $99.4 \%$
- Bluegrass Station Division - \$1,783
- Owenton Sewer - \$77,595 or .5\%
- Rock Lake Village Sewer - $\$ 11,160$ or . $1 \%$


## OTHER TARIFF ISSUES

## 50. Q. OTHER THAN A CHANGE TO METERED TARIFFS, WHAT NEW TARIFFS OR ADJUSTMENT TO TARIFFS IS THE COMPANY

 PROPOSING?A. The Company is proposing revisions to its tap fee tariff that are addressed by Ms. Bridwell. It is also proposing revisions to its fire service tariff that are addressed by Mr. Cartier.
51. Q. DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?
A. Yes.
Note: Forecast for 2010/2011 does not include projection of current rate case result.
(In Thousands)
Net Income Available for Common Stock
Common Equity
ROE Achieved
Authorized ROE by KY PSC
\% of Auth. ROE Achieved
Exhibit MAM-1

## Kentucky-American Water Company Increase In Cost of Service Elements From Current Rates

Rate Base and Related Items (in million dollars):				Increase Related toKRS II	
Increase in rate base of \$61.343 million	\$	13.343		\$	18.001
Property taxes on add'l rate base	\$	1.433		\$	1.337
Depreciation expense on add'I rate basi	\$	2.973		\$	3.884
Total increase attibutable to rate base and related items	\$	17.749	69\% of total increase	\$	23.222
O \& M Expense	\$	5.110	20\% of total increase	\$	0.357
Increase in cost of capital	\$	2.989	11\% of total increase	\$	-



Exhibit MAM-4
Kentucky-American Water Company
Analysis of Interest Rates

		$\begin{aligned} & \text { oे̀ } \\ & \stackrel{1}{0} \end{aligned}$	 	ì̀	No	+io
		$\begin{aligned} & \text { oे } \\ & \stackrel{0}{\circ} \\ & \text { í } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\mathrm{Z}} \\ & \underset{\sim}{-1} \end{aligned}$		
훙 ì		$\begin{aligned} & \text { ஃे } \\ & \stackrel{0}{6} \\ & \text { in } \end{aligned}$		$\circ$ $\stackrel{\circ}{\circ}$ 0 0 0		$\circ$ $\cdots$ $\sim$ $\sim$ $\sim$
		$\begin{aligned} & \text { సे } \\ & \text { Ǹ } \\ & \text { ì } \end{aligned}$		$\begin{gathered} \text { ®े } \\ \text { ल్ల } \end{gathered}$	 	¢े $\stackrel{\text { ¢ }}{\text { ¢ }}$
		$\begin{aligned} & \stackrel{\circ}{\hat{\circ}} \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{2} \end{aligned}$		$\stackrel{\stackrel{\sim}{\mathrm{N}}}{\substack{1}}$		$\circ$ $\substack{\circ \\ \text { ¢ } \\ \text { ¢ }}$
뭉		$\begin{aligned} & \text { oे } \\ & \text { O} \\ & \text { ¢ } \end{aligned}$		$\stackrel{i}{0}$     		20 $\stackrel{1}{\prime}$ $\cdots$
		$\begin{aligned} & \text { ®̀ } \\ & \text { Ǹ } \\ & \text { M } \end{aligned}$	    		-  	Nิ $\sim$ $\sim$
		$\begin{aligned} & \text { ò } \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{1} \end{aligned}$		僉		®̀ $\stackrel{\text { ¢ }}{\text { ¢ }}$
$\begin{aligned} & \text { 뮹 } \\ & \dot{0} 0 \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { Nั } \\ & \text { तु } \\ & \text { in } \end{aligned}$	 	Ò O- - -		$\stackrel{\circ}{\text { ® }}$ $\stackrel{1}{\text { m }}$ -
		$\begin{aligned} & \stackrel{\circ}{N} \\ & \stackrel{\text { N}}{+} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{+} \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{\text { Ǹ }}{\substack{\text { N/ } \\ \text { + }}}$
		$\begin{aligned} & \stackrel{( }{\circ} \\ & \stackrel{\text { O}}{\circ} \\ & \text { in } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \underset{\sim}{7} \end{aligned}$	 	-
			응 응 응 응 응 응 응 ㅇㅇㅇ 응 응   N N N N N N N N N N N N N N          N N N N N N N N N N N N  		응 ㅇㅇㅇ ㅇㅇㅇ ㅇㅇㅇ ㅇㅇㅇ ㅇㅇㅇ ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 시N Nㅔ N N N N N N N N ஹ ○ーㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ N N N N N N N N N N N N  	


						Exhibit MAM-5 Page 2 of 2					
10/16/2009 10/7/2009	5.440\%	4.000\%	1.440\%	5.950\%	4.000\%	1.950\%	5.460\%	3.180\%	2.280\%	0.060\%	0.250\%
10/23/2009 10/14/2009	5.650\%	4.260\%	1.390\%	6.220\%	4.260\%	1.960\%	5.450\%	3.410\%	2.040\%	0.070\%	0.250\%
10/30/2009 10/21/2009	5.530\%	4.210\%	1.320\%	6.160\%	4.210\%	1.950\%	5.480\%	3.390\%	2.090\%	0.060\%	0.250\%
11/6/2009 10/21/2009	5.530\%	4.260\%	1.270\%	6.200\%	4.260\%	1.940\%	5.450\%	3.420\%	2.030\%	0.060\%	0.250\%
11/13/2009 11/4/2009	5.710\%	4.400\%	1.310\%	6.390\%	4.400\%	1.990\%	5.350\%	3.520\%	1.830\%	0.040\%	0.250\%
11/20/2009 11/10/2009	5.640\%	4.410\%	1.230\%	6.320\%	4.410\%	1.910\%	5.260\%	3.470\%	1.790\%	0.060\%	0.250\%
11/27/2009 11/18/2009	5.510\%	4.300\%	1.210\%	6.240\%	4.300\%	1.940\%	5.210\%	3.360\%	1.850\%	0.020\%	0.250\%
12/4/2009 11/24/2009	5.520\%	4.250\%	1.270\%	6.220\%	4.250\%	1.970\%	5.190\%	3.300\%	1.890\%	0.030\%	0.250\%
12/11/2009 12/2/2009	5.580\%	4.250\%	1.330\%	6.250\%	4.250\%	2.000\%	5.260\%	3.310\%	1.950\%	0.040\%	0.250\%
12/18/2009 12/2/2009	5.710\%	4.420\%	1.290\%	6.320\%	4.420\%	1.900\%	5.340\%	3.430\%	1.910\%	0.020\%	0.250\%
12/25/2008 12/16/2009	5.740\%	4.520\%	1.220\%	6.450\%	4.520\%	1.930\%	5.320\%	3.600\%	1.720\%	0.030\%	0.250\%
Quarterly Average	5.596\%	4.298\%	1.298\%	6.247\%	4.298\%	1.949\%	5.343\%	3.399\%	1.944\%	0.045\%	0.250\%
Latest 4 Quarter Average	5.834\%	4.068\%	1.766\%	6.860\%	4.068\%	2.792\%	6.648\%	3.231\%	3.416\%	0.136\%	0.250\%
Latest 2 Quarter Average	5.629\%	4.310\%	1.319\%	6.373\%	4.310\%	2.063\%	5.794\%	3.447\%	2.347\%	0.097\%	0.250\%
Latest 1 Quarter Average	5.596\%	4.298\%	1.298\%	6.247\%	4.298\%	1.949\%	5.343\%	3.399\%	1.944\%	0.045\%	0.250\%


2010 Forecast of Interest Rates:			
Note: Value Line Publication of 11-27-2009	Forecasted 30-year, BBB rated VAWC Bond	Value Line 30-yr. T-bond forecast for Nov-10	Avg. Spread
Based on Latest 4 Quarter Avg. Spread	7.392\%	4.600\%	2.792\%
Based on Latest 2 Quarter Avg. Spread	6.663\%	4.600\%	2.063\%
Based on Latest 1 Quarter Avg. Spread	6.549\%	4.600\%	1.949\%

## Kentucky - American Water Company <br> Analysis of Short-term Interest Rates

## Six Months ended November 2009

	Avg. ST   Int. Rate   Paid by   KAWC	Funds   Month   Fate	$\underline{\text { Spread }}$

Kentucky American Water
Labor \& AWWSC Costs Analysis That Demonstrates the Shift From
Fully Loaded Company Labor to AWWSC Costs
Labor (Avg. Pay Incr.3.5\% 02-03, 4\% for 04-09, 2.5\% 2010

Fully Loaded Labor Cost
AWWSC costs:
Labor
Group Insurance
Other Expenses
Service Company Costs
Total Labor \& AWWSC Costs
Adjustments: 1. Initiation of Procurement Center in 2003 which has resulted in average savings to KAWC as demonstrated on the synergy statements filed at the PSC as part of the conditions in case no. 2002-00018
2. Customer Growth at KAWC handled by the CCC \& SCC is not accounted for in the analysis above. In 2001 KAWC had 26 employees serving 103,172 customers or 3,968 customer per employee.

(1)
Approved
h Kawc
se No.
-00120
ion Yr.
1/30/2001
actual 2001
ad costs
AWWSC
6,004,634
1,303,786
356,713
443,276
85,232
8,193,641
871,980
0
35,671
63,053
350,479
1,321,183
9,514,824

Estimated Savings From Reorganization Activite
FOOTNOTES RELATED TO KAWC COSTS:
Note 1: Adealculationer reader in 2002 to handle increases in customers due to growth
Note 2: Addene metor
Note 3: Added 8 employees from Owenton acquisition
Note 3: Added 8 employees from Owenton acquisition
Note 4: Added 4 utility field employees to handle additional hydrant and valve maintenance work related to customer growth and one Administrative employee to handle sewer billing in 2006
Note 5: Added 1 utility person and one Admin to handle additional requirements for cross connections and 1 production tech for additional water treatment processes Note 5: Added 1 utility person and one Admin to handle additional requirements for cross connections and 1 production tech for additional water treatmen
Note 6: Added 7 employees: VP operations, operations spec., Dir. Eng., Project Mgr., Dir. Govt. Affairs, Mgr. Loss Control, and Mgr. Communications
Note 7: Added 7 employees at KRS II, 1 production supervisor and 6 production technicians
FOOTNOTES RELATED TO AWWSC COSTS:
Footnote 1: Labor is inflated 4\% per year; Other Expe

KAWC Actual Benefit Labor Costs
AVG. \# Employees
Group Insurance
Pensions
Payroll Taxes
401(K)
Fully Loaded Cost

Cost per Employee
Group Insurance
Pensions
Payroll Taxes
401(K)
Fully Loaded Cost per employee

Group Insurance
Pensions
Payroll Taxes
401(K)
Fully Loaded Cost per customer

AWWSC Benefit Costs:
AVG. \# Employees
Pension
OPB's
Group Insurance
Cost per Employee
Pension
OPEB's
Group Insurance

TABLE 1A OF 2007 REPORT KENTUCKY-AMERICAN WATER COMPANY OPERATING EXPENSE SAVINGS FROM RWE PROCUREMENT INITIATIVE

Exhibit MAM-7 Page 3 of 3

	2003	2004	2005	2006	2007 TOTAL	
Accounts Payable Audit Advertising		1,000			13,817	14,817
Bill inserts \& CCR Chemicals		9,000		25,960	2,449	37,409
Field Op's Equipment Facility		30,000		38,338	6,196	74,534
Plumbing Supplies/ Plumbing Supplies		72,000	121,000	151,220	2,505	346,725
Courier Services		2,000	2,000			4,000
Fleet		1,000		984	1,275	3,259
Instrumentation 7 process Control						0
Information Technology (IT)		7,000	2,000	319	18,549	27,868
Laboratory supplies		12,000	20,000	9,859	35	41,894
Maintenance, Repair \& Operations (MRO)	200	13,000	17,000	8,031	29,323	67,554
Equipment		3,000		874	2,236	6,110
Office Supplies	2,400	7,000	6,000	7,688	20,396	43,484
P-Card Rebate	7,000	3,000				10,000
Professional Services		7,000	6,000	272	353	13,625
Professional Services - Lock box		40,000	29,000		29,148	98,148
Tank Rehabilitation					3,092	3,092
Telecommunications		20,000	36,000	3,674	12,580	72,254
Temporary Labor		31,000	40,000	14,894	36,525	122,419
Tires	800	9,000	8,000	15,742		33,542
Travel		7,000	12,000			19,000
Uniforms		5,000	3,000	1,318	17,424	26,742
Chemicals				91,003	29,688	120,691


| TOTAL | $\$ 10,400$ | $\$ 279,000$ | $\$ 302,000$ | $\$ 370,176$ | $\$ 225,591$ | $\$ 1,187,167$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Kentucky American Water
Distribution of Costs
OPERATIONS AND MAINTENANCE EXPENSE：

	Account／Description
570100.15	Uncollectib
575100.15	Bank Servic
575200.15	Collection
575420.15	Forms CA
575660.15	Postage CA
Total	


$\begin{aligned} & \overleftarrow{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	 


8 88＇ 909 ＇T	．	＋0z＇T	2＜દ＇8	2u＇96s＇t	0z＇t＇z9＇t
2L0＇669	．	$8{ }^{8}$	2tז＇$\varepsilon$	عTs＇ 69	220＇L69
TLE＇L兀て	－	ع9¢	عย＇т	SLO＇9tz	TLE＇L̇て
2os＇TL	－	ts	$\varepsilon \iota \varepsilon$	920＇TL	20s＇tL
$000 ' \varepsilon \tau z$	－	09t	оtt＇t	$0 \varepsilon<' \tau \tau 乙$	000＇\＆̌z
ع0t＇LOs	－	088	tog＇z	828＇00	ع0t＇LOS





О รәу дәем	9t＇0to89s
	｜ero
8．18 sfeen	9t＇ts¢g
	9toses ${ }^{\text {cos }}$
0つdxヨ $\mathrm{ddu}^{\text {d }}$	9тてを¢¢く¢
	97．0t\＆s
ıəquәW／senc	9t08zs ${ }^{\text {a }}$
	$1 \times 01$
ue seuntur	9t06ts 2 s
पс әəイо1duヨ	9t＇0z9tos
	$1{ }^{1010}$
	9t＇0006ss
	9t＇0009ss
¢！ uә9 sul $^{\text {a }}$	9t＇000Lss
	${ }^{121001}$
бuక̧urapy	97080SLs
$\forall$ ıado כs． W	9t＇000s ${ }^{\text {c }}$
－－xns пuo	9t＇000s¢s
	9t＇0l9tos
p！＊uoun	9t＇099tos
	9toz9tos
	9t＇ot9tos
әгенөм เәио	9t＇oostos
	$1 \times 101$
8．18 slean	9т＇tceg＜g
exys spen	9tosecss
	9tてをて¢くら
	9t00をs＜s
ıəquew／seno	9t＇08zs ${ }^{\text {c }}$
	${ }^{\text {leal }}$
uәw／sana oo	
7－2ns nuo	9t0008¢s
р४ช әэщ๐	9t0z9sLs
	9toseg ${ }^{\text {cos }}$
juoo dx ${ }^{\text {d }}$ duヨ	9t＇zte¢Ls
dx ${ }^{\text {d }}$ du ${ }^{\text {a }}$	9totecls
	9t＇zoos 1 s
dns pue jew	92000079
17 әremıоs	9t＇stısLs
－－כns nuo	9t＇000¢\＆s
ว วuoudəə」	stot＜gls


120113 CORP－Info System
Customer Accounting：
Miscellaneous：
Maintenance Expense：
120115 corp－Legal
General office：
Miscellaneous：
120118 CoRP－Human Resou
General office：
Miscellaneous：
Miscellaneous：
Miscellaneous：
120121 CorP－Communciati
General office：
Ins Other Than Group：

## COMMONWEALTH OF KENTUCKY

## BEFORE THE PUBLIC SERVICE COMMISSION

IN THE MATTER OF:<br>)<br>\section*{)}<br>THE APPLICATION OF KENTUCKY-AMERICAN )CASE NO. 2010-00036<br>WATER COMPANY FOR AN ADJUSTMENT OF )<br>RATES ON AND AFTER MARCH 28, 2010 )<br>)

DIRECT TESTIMONY OF SHEILA A. MILER
February 26, 2010

# KENTUCKY-AMERICAN WATER COMPANY CASE NO. 2010-00036 <br> Direct Testimony Sheila A. Miller 

1. Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS FOR THE RECORD.
A. My name is Sheila A. Miller and my business address is 1600 Pennsylvania Avenue, Charleston, West Virginia 25302.
2. Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?
A. I am employed by the American Water Service Company, Inc. ("Service Company") as Manager of Rates and Regulation for the Eastern Regional Service Company Office.
3. Q. PLEASE ELABORATE UPON YOUR DUTIES AS MANAGER OF RATES AND REGULATION FOR THE EASTERN REGIONAL SERVICE COMPANY.
A. My responsibilities include the preparation and presentation of rate filings requested by three operating companies comprising a portion of the Eastern Region of American Water. I am also responsible for various accounting duties including account reconciliation and financial statement analysis.
4. Q. HAVE YOU PREVIOUSLY PARTICIPATED IN REGULATORY MATTERS?
A. Yes, I have prepared rate cases and presented testimony before the Kentucky Public Service Commission, Tennessee Regulatory Authority and the State Corporation Commission of Virginia. I have also worked on the preparation of exhibits and data requests for West Virginia American.
5. Q. WOULD YOU PLEASE DESCRIBE YOUR EDUCATIONAL BACKGROUND AND BUSINESS EXPERIENCE?
A. Yes. In 1983, I graduated Summa Cum Laude with a Bachelor of Arts degree from Glenville State College with a major in Accounting and Management, and a minor in Economics. In 1988, I received my Certified Public Accountant license.

I have worked in the American System for 25 years and began my career in December 1984 as a Junior Accountant. In that capacity I worked in the Construction Accounting Department for the Service Company.

I assisted with the system-wide acquisition integration of Citizens Water by serving on the Acquisition Team. I also participated in the set up of the systemwide conversion process for the Shared Services Center by assisting Information Services with reporting processes.

Throughout the years, I have moved through the ranks of the financial side of the business from Accountant in 1985, Construction Accounting Supervisor for the Southeast Region in 1988, Construction Accounting Superintendent for West Virginia American Water Company in 1992, Assistant Director of Accounting for West Virginia American in 1995, Director of Accounting for West Virginia American in 1997, Director of Accounting for the Southeast Region in 2000, and due to the reorganization of the Shared Services Center, I was transferred to Senior Financial Analyst for the Southeast Region in 2002. In 2008 I was promoted to Manager of Rates and Regulation. I have significant knowledge and expertise in accounting and other financial aspects of American Water, including Kentucky American Water.

## 6. Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS CASE?

The purpose of my testimony is to support the Company's adjustments to forecasted Labor, Purchased Water, Group Insurance, Regulatory Expense, Insurance Other than Group, Customer Accounting, Rents, General Office Expense, Miscellaneous Expense, and General Taxes and Revenues. I will discuss the Rate Base for rate recovery and I will also address the Filing Requirements and the General Rate Case Structure.

## 7. Q. WHAT IS THE AMOUNT OF THE REVENUE INCREASE THAT THE COMPANY IS REQUESTING?

A. The Company is requesting an overall revenue increase of $\$ 25,848,286$ or 37.7\%.

## 8. Q. WHAT IS THE TEST PERIOD REFLECTED IN THIS CASE?

A. The Company has used a forecasted test period of the twelve months ending September 30, 2011 and a base period of twelve months ended May 31, 2010. The base period data reflects six months of actual data and six months of forecasted data.
9. Q. MRS. MILLER, WHAT GUIDELINES HAS THE COMPANY FOLLOWED IN ADJUSTING THE BASE PERIOD DATA?
A. The Company has adjusted its base period revenues, expenses, rate base and capitalization to reflect these items based on a forecasted test period ending September 30, 2011. The Company has utilized the same guidelines in developing its forecasted test period as it uses in its budgeting process. These guidelines are designed to reflect, as accurately as possible, the Company's need to operate and maintain its assets, provide quality service to its customers and provide a reasonable return to its stockholder.

## 10. Q. MRS. MILLER, WOULD YOU PLEASE SUMMARIZE THE COMPANY'S RATE FILING? <br> A. Yes. As noted earlier, the Company is filing this application for an increase in rates based upon a fully forecasted test period of 12 months ending September 30, 2011, as currently allowed by 807 KAR 5:001 Section 10(1)(b). The Commission has outlined various filing requirements concerning a forecasted test period. The Company's filing is supported by a series of 37 exhibits. We have allocated direct and indirect costs between the water and sewer operations, which will be discussed in the testimony of Michael Miller.

## 11. Q. MRS. MILLER, ARE THERE ANY EXHIBITS YOU WISH TO COMMENT ON BEFORE YOU CONTINUE?

A. Yes. I would like to briefly discuss Exhibit 37. Exhibit 37 represents the standard schedules required by the Commission when a utility files a general adjustment in rates supported by a forecasted test period. This exhibit contains 14 schedules identified as Schedules A through N. I would like to identify each schedule.

Schedule A is a jurisdictional financial summary for both the base period and the forecasted period, which details how the utility derived the amount of the requested revenue increase.

Schedule B is a jurisdictional rate base summary for the base period and the forecasted period with the supporting schedules, which include detailed analysis of each component of rate base.

Schedule C is a jurisdictional operating income summary for the base period and the forecasted period with supporting schedules that are broken down by major account group and by individual account.

Schedule D is a summary of jurisdictional adjustments to operating income by major account with supporting schedules for individual adjustments and jurisdictional factors.

Schedule E is the jurisdictional federal and state income tax summary for the base period and the forecasted period with supporting schedules of the various components of jurisdictional income taxes.

Schedule F contains summary schedules for the base period and the forecasted period of organization membership dues, initiation fees, expenditures at country clubs, charitable contributions, marketing, sales, and advertising expenditures, professional service expenses, civic and political expenses, expenditures for employee awards functions and outings, employee gift expenses, and rate case expenses.

Schedule G is an analysis of payroll costs including schedules for wages and salaries, employee benefits, payroll taxes, straight time and overtime hours, and executive compensation.

Schedule H is a computation of the gross revenue conversion factor for the forecasted period.

Schedule I provides comparative income statements, revenue statistics and sales statistics for the five most recent calendar years from the application filing date, the base period, the forecasted period, and two calendar years beyond the forecast period.

Schedule J provides a cost of capital summary for both the base period and forecasted period and supporting schedules providing detail on each component of the capital structure.

Schedule K provides comparative financial data and earnings measures with the 10 most recent calendar years, the base period and the forecasted period.

Schedule L provides a narrative explanation of all proposed tariff changes.

Schedule M provides a revenue summary for both the base period and forecasted period with supporting schedules, which provide detailed billing analyses for all customer classes.

Schedule N provides a typical bill comparison of the present and proposed rates for all customer classes.
12. Q. WHAT IS THE SOURCE OF THE INFORMATION CONTAINED ON THE EXHIBITS 1 THROUGH 37 AND SCHEDULES MARKED A THROUGH N UNDER EXHIBIT 37?
A. The information utilized in all exhibits and schedules was taken from the books and records of the Company or from information provided to me and other Company witnesses and by management of the Company. Where appropriate, each schedule refers to a supplementary schedule or work paper, which was used to develop Exhibit 37. Each schedule also identifies a witness or witnesses who will be responsible for responding to questions concerning information on the schedule.

## OPERATION \& MAINTENANCE EXPENSES


#### Abstract

13. Q. HOW DID THE COMPANY CALCULATE THE FORECASTED LABOR EXPENSE?

The Company calculated the labor expense by individual employee. Each employee's wages were adjusted to the wage level that would be paid during the forecasted test period beginning with the actual 2010 wages. Hours were budgeted to O \& M and Capital for a total of 2088 hours and a forecasted number of overtime hours. The hours that employees devote to the sewer operations were eliminated from the filing. A capitalized percentage of $17.34 \%$ was calculated based on the budgeted wages between O \& M and capital. As a result this amount was excluded from O \& M labor expense. Labor expense for the forecasted period is $\$ 8,039,622$.


## 14. Q. PLEASE EXPLAIN THE CALCULATIONS OF THE FORECASTED LEVEL OF PURCHASED WATER EXPENSE.

The Company purchases water from Winchester Municipal Utilities (WMU) for Central Division customers in Clark County. The Agreement with WMU to purchase water expires October 13, 2021. The Company also purchases water from Georgetown Municipal Water and Sewer System (GMWSS) for water sold in Owen County. Additional purchases for the Northern Division are made from Carroll and Gallatin Counties. The forecasted Purchased Water Expense was estimated based on the actual usage during the twelve months ending November 2009 and applying the appropriate cost rate per cubic feet. Purchased water expense for the forecasted test year is $\$ 120,655$.

## 15. Q. HOW DID THE COMPANY CALCULATE ITS GROUP INSURANCE EXPENSE? <br> A. The total group insurance expense for the forecasted test year is $\$ 2,313,543$. This expense is comprised of 1) current group insurance costs for current associates and 2) post retirement employee benefits costs (OPEBs) for both its current employees and its retired employees.

The OPEBs expense is based on projections provided by the actuarial firm of Towers Perrin.

The current group insurance costs reflect the use of the Company's current group insurance premium statement rates in effect as of January 1, 2010. These rates were then applied to the current coverage levels for the full time employees included in the Company's case. The group insurance expense was then reduced by the employees share of the premium cost. Since $17.34 \%$ of the labor expense is capitalized, this same percentage of group insurance expense was eliminated from $O \& M$.

The Company provides its current associates with life insurance, group medical insurance, prescription drug, accidental death, accident, sickness and disability coverage.
16. Q. WHAT ARE REGULATORY COMMISSION EXPENSES?
A. Regulatory expenses are estimated costs incurred for preparing and litigating this case, including studies and investigations. We are requesting a three-year amortization of rate case expense and cost of service study expense and a fiveyear amortization of the depreciation study expense.

## 17. Q. HOW WAS KENTUCKY AMERICAN WATER'S LEVEL OF INSURANCE OTHER THAN GROUP EXPENSE CALCULATED?

A. KAW's level of insurance other than group is based on the Company's actual premiums for 2010 and an estimated cost for the 2011 premiums. Insurance other than group includes payments for insurance to cover such items as excess general liability, property liability, fiduciary liability, commercial crime coverage, flood liability and worker's compensation. The insurance other than group for the forecasted period is $\$ 742,262$.

## 18. Q. PLEASE DISCUSS KENTUCKY AMERICAN WATER'S FORECASTED LEVEL OF CUSTOMER ACCOUNTING EXPENSE.

A. KAW's customer accounting expense includes costs for such items as postage, telephone, forms utilized for customer service and billings, uncollectible accounts and collection agencies. This is not a complete listing but it does represent most of the larger dollar items in this expense. The forecast reflects
an expense of $\$ 1,712,517$ for customer accounting costs. The uncollectible percentage was calculated by applying the uncollectible account balance for the twelve months ending December 2009 to the total billed revenues for 2009. That percentage was applied to forecasted revenues at present rates.


#### Abstract

19. Q. CAN YOU PLEASE DESCRIBE WHAT ITEMS ARE INCLUDED IN RENT EXPENSE? A. KAW's forecast for rent expense is based upon signed agreements and anticipated agreements. These agreements cover such items as copiers and a postage machine. These items were all included in KAW's previous rate case. The rent expense included in the forecast is $\$ 27,654$. 20. Q. PLEASE EXPLAIN WHAT ITEMS ARE INCLUDED IN THE GENERAL OFFICE CATEGORY. A. Items in this category include dues and memberships, employee travel and meal expenses, office supplies, and general office utility costs. The Company's forecasted expense is $\$ 639,778$. 21. Q. WHAT IS INCLUDED IN THE CATEGORY OF MISCELLANEOUS EXPENSES? A. Included in this category are various expense items that are incurred throughout the year that are a part of carrying out of normal business functions. Included in this category are costs for services such as janitorial, legal, contract services, advertising, employee training programs, uniforms, telephone and some amortizations. Also included are expenditures related to conservation and security services. The Company's forecast for miscellaneous expense is \$3,440,139.


## GENERAL TAXES

22. Q. PLEASE DISCUSS EACH COMPONENT OF THE COMPANY'S	
	FORECASTED LEVEL FOR GENERAL TAXES.

A. The first component that I will discuss is property taxes. The Company's forecasted level of property tax is $\$ 4,429,174$. It is based upon a ratio of the actual 2008 tax payments to the applicable total tax base as of December 31, 2007. The rate of $\$ .9799$ per $\$ 100$ of property was applied to the projected tax base of December 31, 2009 and to the projected tax base of December 31, 2010 to arrive at a forecasted property tax expense for the 12-months ended September 30, 2011.

The second component of General Taxes is the Public Service Commission Fee. The Company has forecasted its Public Service Commission (PSC) fee for the forecasted test period by arriving at an average PSC fee rate of $.1618 \%$. The percent was calculated by dividing the actual tax payments for 2007-2009 by their associated revenues and then calculating a three-year average PSC fee rate. By applying this three-year average PSC fee rate to the total forecasted revenues, less AFUDC, the Company's forecasted level of PSC fee is $\$ 109,826$ at present rates.

The final component of General Taxes is payroll taxes. The Company has forecasted its payroll tax expense based upon the forecasted level of labor costs. For FICA taxes, the rate used was $6.2 \%$ on a base of $\$ 109,564$ and a Medicare tax rate of $1.45 \%$ on all wages. Federal unemployment is calculated based upon a tax rate of $.8 \%$ and a base of $\$ 7,000$. State unemployment tax of $.5 \%$ is calculated on a base of $\$ 8,000$. These tax rates and bases were then applied to the total forecasted level of labor cost with amounts being expensed and capitalized. The Company's total forecasted level of payroll tax expense is \$621,307.

Total forecasted General Taxes is $\$ 5,160,307$ at present rates.

## RATE BASE

## 23. Q. MRS. MILLER, HOW DID THE COMPANY DEVELOP ITS FORECASTED LEVEL OF RATE BASE OF \$362.672 MILLION AS SHOWN ON SCHEDULE B1, PAGE 2 OF 2?

A. The Company developed its rate base by using a 13 -month average for most of the items shown on Schedule B-1, page 2 of 2 . Some of the elements were calculated using a 24 -month average based on the Commission's final order in Case No. 1997-034. Many of the rate base elements shown on this schedule, including utility plant in service, accumulated depreciation, customer advances, etc. were analyzed from actual per books data as of November 30, 2009. Using data and projections for each of the rate base elements, the Company developed a 13-month average for the forecasted test period ending September 30, 2011.

## 24. Q. PLEASE DESCRIBE HOW THE 13-MONTH AVERAGE FOR THE UTILITY PLANT IN SERVICE (UPIS) WAS CALCULATED?

A. The starting point for the calculation of the 13-month average for utility plant in service was the actual level as of November 30, 2009. From that point through the end of the test period, the Company has forecasted capital expenditures by month for investment projects DV through S (normal recurring plant investment) and for special Investment Projects (IP) that are related to larger, specific capital investment projects. These capital expenditures have been approved by the Company's Board of Directors. The forecasted expenditures for all projects were slotted by month based upon the expected cash flow of each project. When the project is complete, all expenditures related to that project will be placed into service. Therefore, the 13-month average of forecasted utility plant in service only reflects the inclusion of projects when they are complete and in service.

The Company also projects utility plant retirements by month. These retirements were deducted from the balance of utility plant in service in the month in which the retirement is expected to occur. Mr. Williams will be discussing in further detail in his testimony the Company's planned capital investment program for 2010 and 2011. Ms. Bridwell will be discussing the details of the source of supply project in her testimony. The total 13-month average forecasted level of Utility Plant in Service is $\$ 566.014$ million.

## 25. Q. PLEASE DISCUSS THE REMAINING RATE BASE ELEMENTS ON SCHEDULE B-1, PAGE 2 OF 2. <br> A. Rate Base - Utility Plant Acquisition Adjustment (UPAA) <br> The next rate base element as shown on Schedule B-1, page 2 of 2 is utility plant acquisition adjustments. The actual balance in the account as of November 30, 2009 was $\$ 18,488$. The UPAA relates to the Acquisition of the Boonesboro Water Association. The Company is using a 10-year amortization based on prior Commission treatment of UPAA for Boonesboro. The level included in the 13month average rate base calculation (net of amortizations) for the UPAA in rate base is $\$ 2,342$, which includes only Boonesboro. This acquisition adjustment is fully amortized as of April 30, 2011.

## Rate Base - Accumulated Depreciation

The next rate base element as shown on Schedule B-1, page 2 of 2 is accumulated depreciation. The accumulated depreciation was developed in the same manner as the utility plant in service. The actual balance as of November, 2009 was used as a starting point. This balance was adjusted for forecasted depreciation expense by month and forecasted retirements by month. The depreciation rates used to develop this item of rate base were those approved in Case Number 2007-00143 through September 2010. The depreciation rates proposed by John Spanos were used in the calculations from October 2010 through September 2011. The accumulated reserve for depreciation was developed by month by account from September 2010 through September 2011, with a 13-month average balance of $\$ 110.085$ million being deducted from rate base. The accumulated depreciation includes an annual amount of unrecovered reserve that KAWC is seeking to amortize over a five year period. The annual amortization totals $\$ 436,492$. Mr. Spanos will discuss this adjustment in more detail in his direct testimony.

## Rate Base - Construction Work in Progress

The next rate base element as shown on Schedule B-1, page 2 of 2 is Construction Work in Progress (CWIP). The Company is proposing to include in
its 13-month average rate base a level of CWIP for the forecasted test period. The 13 -month average is $\$ 9.464$ million. This amount is based on the actual balance as of November 2009, adding forecasted expenditures by month and then deducting amounts transferred to Utility Plant in Service. The forecasted expenditures for all projects were taken from the approved capital expenditures plan and were slotted by month based on expected cash flow. When a project (work order) is complete and in service, the dollars are transferred from CWIP to UPIS.

## 26. Q. MRS. MILLER, THE RATE BASE ELEMENT AS SHOWN ON SCHEDULE B-5, PAGE 2 OF 2 IS THE WORKING CAPITAL ALLOWANCE. WHAT IS WORKING CAPITAL AND WHAT METHOD DID THE COMPANY USE IN CALCULATING ITS WORKING CAPITAL ALLOWANCE IN THE CASE? <br> A. Working capital is a rate base element that recognizes the amount of investor supplied funds that are used to fund the day to day operations of the Company and to recognize the delay in the recovery of certain expenses from the customers. The Company is using a lead/lag study that was prepared in this case and is proposing a working capital allowance of $\$ 2.634$ million. Mr. Miller will discuss the details of the lead/lag study in his direct testimony.

## 27. Q. PLEASE CONTINUE WITH YOUR DISCUSSION OF RATE BASE.

## A. Rate Base - Contributions in Aid of Construction

The next rate base element as shown on Schedule B-1, page 2 of 2 is Contributions In Aid of Construction (CIAC). Again, this element was developed by starting with the actual balance as of November, 2009. The Company has forecasted an increase in these contributions based upon either:

1) Direct contributions from developers, businesses or government agencies.
2) Increases in CIAC as a result of transfers from Customer Advances after 10-year agreements expire.

The 13-month average balance was developed by analyzing the forecasted activity in the CIAC accounts beginning with September, 2010 through

September, 2011 resulting in a forecasted 13-month average balance of $\$ 48.866$ million.

The Company's forecasted CIAC balance includes the impact of the Company's proposed revision to the tap fee tariff. The revised tap fee tariff is found under Exhibit 2 of the Company's filing.

The revised tap fee tariff indicates the Company will collect from developers or other parties $\$ 817$ for residential service, $\$ 1,569$ for 1 " service, and $\$ 3,536$ for 2" service. The tap fee for services over $2 "$ is based on the actual cost of installation.

The Company forecasts collection of CIAC from the revised tap fee tariff of \$1.264 million with the new tap fee becoming effective September 28, 2010. Linda Bridwell will discuss the calculation of the proposed revision to the tap fee tariff in her direct testimony.

## Rate Base - Customer Advances

The next rate base element is customer advances. The 13-month balance for customer advances was developed in the same manner as were CIACs. The Company forecasted receipts and refunds of customer advances and transfer of customer advances to the contributions account by month through the end of the forecasted test period, thus resulting in a 13-month average balance of $\$ 19.089$ million for the forecasted test period. These forecasted receipts are based on management discussions with local developers and refunds are based on a review of historical trends in this category.

## Rate Base - Deferred Income Taxes

Deferred Income Taxes are included in rate base as a reduction to the forecasted 13 -month average rate base. The forecasted amount in rate base is $\$ 40.027$ million. The forecasted amount is shown on Schedule B-1, page 2 of 2 and further detailed on B-6, page 2 of 2 and in the workpapers. There are Deferred Taxes associated with UPIS, Deferred Maintenance, and Deferred Debits. All of these items have been recognized by the Commission in prior cases.

In this rate case the Company has incorporated SFAS 109 - Accounting for Income Taxes. Both the rate base reduction for income taxes and the calculation of forecasted federal and state income tax expense is based on SFAS 109.

## Rate Base - Deferred Investment Tax Credit

The next rate base element is deferred investment tax credit. The Company is currently amortizing its $3 \%$ deferred investment tax credit (pre-1971). The actual balance of the $3 \%$ deferred investment tax credit as of the end of November 2009 was $\$ 87,160$. The forecasted monthly amortization is applied, producing a forecasted test-year, 13-month average balance of $\$ 76,952$, which is being deducted from rate base.

## Rate Base-Deferred Maintenance

The next rate base element is deferred maintenance. The Company has developed a 13 -month average of deferred maintenance projects based upon both actual projects deferred and projects forecasted to be deferred.

These projects include the repainting and repairs of system water storage tanks, and other major repairs of pumps and traveling screens as shown in the workpapers that support Schedule B. New deferred maintenance items include three tank paintings scheduled for completion by September, 2011, one hydrotreator painting, and the KRS I clearwell painting at a total cost of $\$ 1,850,000$. These types of deferred maintenance expenses have been afforded rate base treatment by the Commission in past proceedings. Based upon these actual expenditures and the forecasted expenditures for 2010 thru September 2011, as adjusted for amortizations, the Company has developed a 13-month average of these deferred maintenance items totaling $\$ 2.708$ million.

## Rate Base - Deferred Debits

The Company is requesting a rate base addition of $\$ 1.700$ million for various deferred debit items. These amounts are offset by their applicable deferred taxes discussed earlier. The Company developed its 13 -month average addition to rate base for items both deferred and recognized in prior cases by the Commission.

## 28. Q. MRS. MILLER, PLEASE CONTINUE WITH THE NEXT RATE BASE ELEMENT SHOWN ON SCHEDULE B-1, PAGE 2 OF 2.

A. The next Rate Base element is titled Other Rate Base elements, which is comprised of five items as discussed below:

## Rate Base - Other Rate Base Elements

In Case No. 2004-00103, the Commission reduced rate base for Contract Retentions, Unclaimed Extension Deposit Refunds, Retirement Work in Progress, Deferred Compensation and Accrued Pension. The Company has calculated a rate base reduction of $\$ 2.350$ million for these items consistent with the Commission's Order in Case No. 2004-00103.

## REVENUES

29. Q. HOW DID THE COMPANY ARRIVE AT THE LEVEL OF REVENUES
REFLECTED AT PRESENT RATES IN THE FORECASTED PERIOD?
A. Exhibit 37, Schedule $M$ of the Company's filing contains the bill analysis utilized
to determine the level of revenues for the base year and the bill analysis
containing the adjustments for customer growth, to reflect a 365 day billing
period, and to normalize the forecasted test year for the impacts of weather and
usage trends. These adjustments to the forecasted test-year develop the billing
determinants used to determine the billed revenue at present and proposed
rates for the forecasted test-year period.

## Residential

As stated previously, a bill analysis based upon the twelve months ended May 31, 2010 was utilized as a basis to project forward. The base period was adjusted to reflect 1,440 customers for normal growth through the end of the forecast period. A three year average was utilized to determine the growth for the forecast period. The consumption in the residential class has been adjusted to reflect the recommendations included in the study that was prepared by Dr. Edward Spitznagel. Dr. Spitznagel is recommending a weather normalized level of residential usage per customer of 155.67 gallons per customer per day for the
forecast period. This level of usage per customer per day was applied to the level of customer bills that were reflected in the forecasted period to arrive at gross sales. Current tariffs were then applied to the net billing determinants to arrive at revenues at present rates.

## Commercial

The base period was increased by 46 customers for normal growth through the end of the forecast period. A three year average was utilized to determine customer growth. The consumption in the commercial class has been adjusted to reflect the recommendations included in the study that was prepared by Dr. Spitznagel. Dr. Spitznagel is recommending a weather normalized level of commercial usage per customer of 1,205.1 gallons per customer per day for the forecast period. This level of usage per customer per day was applied to the level of customer bills that were reflected in the forecasted period to arrive at gross sales. Current tariffs were then applied to the associated net billing determinants to arrive at revenue at present rates.

## Industrial

The Company used a bill analysis based upon the twelve months ending December 31, 2009. Using the most current billing information available, the Company believes that there would be no significant changes in the consumption for these customers during the forecast period. Current tariffs were then applied to the billing determinants to arrive at revenues at present rates.

## Other Public Authority

The Company used a bill analysis based upon the twelve months ended December 31, 2009. The Company reviewed the base period data and does not believe there will be any significant changes in the consumption for these customers during the forecast period. Current tariffs were then applied to the billing determinants to arrive at revenues at present rates.

## Sale For Resale

The Company used a bill analysis based upon the twelve months ended December 31, 2009. The Company reviewed the base period data and does
not believe there will be any significant changes in the consumption for these customers during the forecast period. Current tariffs were then applied to the billing determinants to arrive at revenues at present rates.

## Fire Service

Fire service billing determinants for the twelve months ending December 31, 2009 were utilized to calculate growth for the base period through May 31, 2010, as well as, growth for the forecast period. A 13-month average of those billing determinants was used for the forecast period ending September 30, 2011.
29. Q. DOES THIS CONCLUDE YOUR TESTIMONY?
A. Yes, it does.

# COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION 

IN THE MATTER OF: )
THE APPLICATION OF KENTUCKY-AMERICAN ) CASE NO. 2010-00036 WATER COMPANY FOR AN ADJUSTMENT OF ) RATES ON AND AFTER MARCH 28, 2010 )

## DIRECT TESTIMONY OF NICK O. ROWE

February 26, 2010

1. Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
A. My name is Nick O. Rowe, 2300 Richmond Road, Lexington, Kentucky 40502.
2. Q. WHAT IS YOUR POSITION WITH KENTUCKY-AMERICAN WATER COMPANY ("KENTUCKY AMERICAN WATER")?
A. I am President of Kentucky American Water and responsible for its operations in the Commonwealth of Kentucky and Senior Vice-President for the Eastern Division of American Water Works Company, Inc.

## 3. Q. WHO ARE THE OFFICERS OF KENTUCKY AMERICAN WATER?

A. President	Nick O. Rowe
Vice President, Corporate Counsel and Secretary	A. W. Turner, Jr.
Vice President, Operations	Keith Cartier
Treasurer and Comptroller	Deborah A. Degillio
Assistant Treasurer	Mark Chierici
Assistant Treasurer	Michael A. Miller
Assistant Secretary	John Romeo
Assistant Comptroller and Assistant Secretary	Rachel S. Cole
Assistant Comptroller	Sue Cole
Assistant Comptroller	Charles A. Gilbert
Assistant Comptroller	Doneen S. Hobbs
Assistant Comptroller	Donna Grosser

## 4. Q. WHAT ARE YOUR RESPONSIBILITIES AS PRESIDENT OF KENTUCKY AMERICAN WATER?

A. I am responsible for the development, management and operations of Kentucky American Water's system in the Commonwealth of Kentucky. I am responsible for establishing and maintaining the standards of service, directing the preparation of the investment, revenue, operations and maintenance budgets, establishing controls to assure the accomplishment of the approved budgets, assuring that necessary funding is available to carry out all plans, and insuring the safety and integrity of the systems for the protection of the customers, employees and operations.

## 5. Q. PLEASE DESCRIBE YOUR PROFESSIONAL EDUCATION AND EXPERIENCE.

A. I joined the American Water system in 1987 as Management Assistant at West Virginia American Water. Subsequently I was promoted into various management positions with responsibility for the day-to-day operations of American Water facilities in several states, giving me experience in numerous fields of the water industry. My wide variety of involvement in several southeastern states, Virginia, West Virginia, Maryland, Pennsylvania, Kentucky, Tennessee, North Carolina, Georgia, and Florida, has created an array of expertise in small and large water systems. From the fall of 2003 until the summer of 2005 I served as Vice President Business Change and a member of American Water's executive management team. This role was designed to coordinate a set of major business initiatives that were implemented throughout American Water to deliver the vision and strategic objectives, re-engineer the business, and bring about cultural change. From July 2005 through July 2006 I served as the vice president of service delivery operations for the Southeast Region of American Water. My responsibilities included oversight of engineering, network, production, maintenance, risk management, customer relations, environmental management, and contract operations that spanned thirteen states. I became President of Kentucky American Water in August of 2006. Since January 2009 I have had the additional responsibility as Senior Vice-President for the Eastern Division of American Water Works Company, Inc. (KY, IN, MD, MI, NY, OH, TN, VA, WV). My educational background includes a B.S. in Civil Engineering from Western Kentucky University and a Master of Business Administration from Lebanon Valley College. I am also an alumnus of Thames Water's Oxford Leadership Program (April, 2003) and the RWE International Leadership Program, Lausanne, Switzerland (May, 2004). A copy of my resume is attached.

## 6. Q. HAVE YOU PREVIOUSLY TESTIFIED BEFORE STATE UTILITY REGULATORY BODIES?

A. Yes. I have previously testified before the Kentucky Public Service Commission (Cases No. 2000-120 and 2006-00197), have filed direct testimony in Case Nos.

2007-00134, 2007-00143 and 2008-00427, and I have previously testified before the Pennsylvania Public Utility Commission.

## 7. Q. ARE YOU FAMILIAR WITH THE GENERAL FINANCIAL CONDITION OF KENTUCKY AMERICAN WATER?

A. Yes, I am, and its general financial condition is the reason Kentucky American Water has filed this Application to increase its rates.

## 8. Q. PLEASE DESCRIBE THE ACTION SOUGHT BY KENTUCKY AMERICAN WATER IN ITS APPLICATION.

A. Kentucky American Water seeks a rate increase that will produce $\$ 25,848,286$ of additional revenue on an annual basis, or an overall increase of 37.7\%.

## 9. Q. DID YOU PARTICIPATE IN THE COMPANY'S DECISION TO SEEK A RATE ADJUSTMENT?

A. Yes. I reviewed the Application and actively participated by leading discussions in preparation for this filing.

## 10. Q. WHAT ARE THE BASIC FACTORS THAT CAUSE KENTUCKY AMERICAN WATER TO SEEK A RATE INCREASE AT THIS TIME?

A. The last general rate adjustment approved by this Commission for Kentucky American Water was in Case No. 2008-00427. The rate adjustment resulting from that case was effective June 1, 2009. Since that time, Kentucky American Water has continued to invest substantial capital to maintain and upgrade its facilities, including the significant investment required for the construction of Kentucky River Station II and associated facilities that were the subject of Case No. 2007-00134. Without an increase in rates, our forecasted return to common equity for the forecasted test year in this case will clearly be deficient. If Kentucky American Water is to continue to adequately meet its service obligations, construct needed capital improvements, and obtain capital at a reasonable cost, it must have an increase in its revenues. The
integrity of service to our customers must be maintained and that simply cannot be done without adequate capital.

## 11. Q. DOES KENTUCKY AMERICAN WATER ANTICIPATE SIGNIFICANT EXPENDITURES OF CAPITAL IN THE NEAR FUTURE? <br> A. Yes. We propose to spend $\$ 19,368,756$ for system improvements in 2010 (net of customer advances, contributions and refunds), not including the Kentucky River Station II project. As for that project, we have made remarkable progress with the construction of Kentucky River Station II and the associated facilities that were approved by the Commission in Case No. 2007-00134. Ms. Linda Bridwell has detailed information about the project cost estimates and expenditures to date in her testimony. The project continues to be on schedule and is approximately $82 \%$ complete. Construction is expected to be complete in September 2010. The Commission has already determined that construction of Kentucky River Station II facilities is necessary for Kentucky American Water to meet the needs of our customers (Case 2007-00134).

## 12. Q. DOES KENTUCKY AMERICAN WATER OBTAIN BENEFITS BY VIRTUE OF BEING A PART OF THE AMERICAN WATER WORKS COMPANY SYSTEM?

A. Absolutely. As a part of the American Water Works System, the services of our nationally recognized Belleville Laboratory are available to us as well as the services of our Shared Services Center and Customer Service Center. Our allocated costs for these services have increased, but it is important to remember that those services are provided without any profit. I do not believe those services could be obtained in the open market at the same or lower cost. The comparable costs in the open market are addressed in the testimony of Patrick Baryenbruch.

## 13. Q. IS CUSTOMER SERVICE A HIGH PRIORITY FOR KENTUCKY AMERICAN WATER?

A. Absolutely. The Commission's approval of our efforts to augment our source of supply and treatment plant capacity allows us to continue to provide the excellent customer service to which our customers are accustomed. At the present time, we anticipate completion of main replacements on South Limestone, Newtown Pike, North Broadway, and Highland Park Drive in 2010. We will begin and complete main replacements on Maxwell Street, Hanover Court, and New Circle Road @ Eastland Park Drive, and KY 22 in Owen County in 2010. We also will begin main replacement projects on US 25/Georgetown Road in 2010. We will complete the process of flushing our distribution system as a part of our annual effort to maintain excellent water quality for our customers. More details of our capital improvement program are included in the direct testimony of Lance Williams.

Our focus on customer service has not diminished. Our primary objective is to provide excellent customer service and we take pride in meeting that objective.

## 14. Q. WHAT IS THE STATUS OF KENTUCKY AMERICAN WATER'S PARTICIPATION IN THE PARTNERSHIP FOR SAFE WATER ("PARTNERSHIP")?

A. As this Commission is aware, we voluntarily joined this Partnership in 1996.

It was created by the United States Environmental Protection Agency, the American Water Works Association, the National Council of Water Companies, the Association of Safe Drinking Water Administrators, the American Water Works Research Foundation and the Association of Metropolitan Water Agencies. The purpose of the Partnership is to encourage participants to identify processes that will enhance the quality of potable water and to voluntarily implement those processes with minimum capital investment. As an example, Kentucky American Water set as one of its goals filtered water turbidity less than the current regulatory requirement. Through a process of extensive data collection, evaluation and correction, we have met our selfimposed goal, which we believe increases the microbial safety of our water for all of our customers.

In 1998, Kentucky American Water was one of only 20 utilities nationally recognized for completion of the Phase III self-assessment of the Partnership. In 2003 our facilities were recognized as one of only 17 nationally to receive five-year awards for ongoing plant performance excellence. From 2004 through 2006, Kentucky American Water continued to meet Partnership Goals and remains in good standing at both of our Central Division treatment facilities. In 2006, Kentucky American began the Partnership program for our Northern Division. In 2008, Kentucky American Water was awarded the Partnership for Safe Water Ten-Year Directors Award for its commitment to superior water quality at both plants in the Central Division.

As a result of our voluntary participation in the Partnership, we have improved the quality of our potable water and are better prepared to meet new, more stringent water quality regulations as they are adopted.

## 15. Q. DOES THIS CONCLUDE YOUR TESTIMONY?

A. Yes it does.

Nick O. Rowe<br>President, Kentucky American Water Senior Vice President, Eastern Division, American Water

## PROFESSIONAL SUMMARY

Profession:	Water Utility Management
Position in firm:	President, Kentucky American Water   Senior Vice President, Eastern Division, American Water

Nick Rowe joined the American Water system in 1987 as Management Assistant at West Virginia American Water. He was subsequently promoted into various management positions with responsibility for the day-to-day operations of American facilities in several states, giving him experience in numerous fields of the water industry. His wide variety of involvement in Virginia, West Virginia, Maryland, Pennsylvania, Kentucky, Tennessee, North Carolina, Georgia and Florida has created an array of expertise in water systems from small to large facilities. Mr. Rowe's involvement with various regulatory agencies, civic organizations and professional associations provides a broad overview of operations and the industry as a whole.

## EMPLOYMENT HISTORY

2009 - present American Water, Eastern Division Senior Vice President

This position has responsibility for driving operational and financial performance of regulated operations within American Water's Eastern Division, establish consistent best practices, reinforce and strengthen customer, regulatory and local government relationships. The Eastern Division includes regulated operations in nine states: Indiana, Michigan, Kentucky, Ohio, Tennessee, New York, Virginia, Maryland and West Virginia. Rowe also maintains the dual position of president of Kentucky American Water.

2006 - present $\begin{aligned} & \text { Kentucky American Water, Lexington, KY } \\ & \text { President }\end{aligned}$
As president, Mr. Rowe has direct responsibility for production and distribution operations of the company in addition to indirect oversight of other functional areas, including engineering, water quality, security and human resources. Directs the planning and delivery of the operating, maintenance and capital expenditure budgets for the company, and monitors financial performance to ensure that business plan goals are met. Takes the lead in establishing rapport with civic, political and key stakeholders in the community, interfacing with regulatory entities, and representing company positions at regulatory proceedings and hearings. Supports the business development function in the integration of water and wastewater business opportunities in both the regulated and non-regulated markets. Has oversight of business processes to ensure that American Water policies are followed, best practices are implemented, and internal/external reporting requirements are met.

## 2003-2005 American Water, Voorhees, NJ

 Vice President Business ChangeThe Business Change Program played a key role in shaping American Water after its merger with RWE Thames Water in 2003. The Business Change Program designed a coordinated set of major business initiatives inclusive of organization redesign, process re-engineering, and initiative tracking while enabling delivery, all with the purpose of creating sustainable value to the business. In this role, Mr. Rowe served as a member of RWE Thames Water's executive management team for North America.

Mr. Rowe was named Diversity Officer for American Water in March 2005 and served in that capacity to advise the executive management team on strategies for implementing processes and practices to build a business culture that supports diversity and drives their effective implementation.

## 1998-2003 Kentucky American Water, Lexington, KY

 Vice President OperationsManagement responsibility for all operational functions of the company which served 325,000 people in ten counties. Oversight responsibility included production, distribution, water quality and engineering in addition to providing direction in the areas of finance, accounting and information systems, security and risk management.

## 1995-1997 Pennsylvania American Water, Hershey, PA Manager, Eastern Operations

Managed the water operations of a 16-county area of eastern Pennsylvania. Responsible for providing reliable, safe and environmentally responsible water service for over 500,000 people. This service was provided by managing over 205 employees in 11 division offices, 11 water treatment plants, various well stations and over 1,700 miles of distribution system. Responsible for reporting the financial, accounting, safety, water quality and engineering aspects of the company to the company President and Vice President of Operations to help provide an adequate and fair rate of return for investors. Involved in managing the areas of labor and employee relations, and customer service areas.

## 1992-1995 Pennsylvania American Water, Hershey, PA

 Director, Corporate Operations ServicesManaged the day-to-day operations of Pennsylvania American Water with direct reporting to the Vice President of Operations. Responsible for managing over 150 million dollars in construction over three years. Oversaw and directed specific technical areas for more than 20 district offices within Pennsylvania. This included planning, budgeting, forecasting and work force management. Personal involvement with the implementation and development of new policies and procedures for human resources, loss control and operations. Also involvement in the financial review of income statements, balance sheets, and cash forecasting to ensure a solid rate of return for a five hundred million dollar private water utility. Oversaw the engineering, water quality, loss control/risk management, fleet and materials, regulatory studies, and the building management departments.

## 1988-1992 Virginia American Water, Hopewell District, Richmond, VA Operations Manager

Upper level management position with responsibilities which included management of maintenance and capital investment budgets ranging from three million to five million dollars annually, respectively. Accountable for bottom line (profit/loss) margin. Oversaw and directed the five year and fifteen year planning forecast for major improvements at Virginia-American Water Company, Hopewell facility. Responsible for maintaining community, employee, Virginia Department of Health and State Corporation Commission relations. Assisted in labor negotiations of union contract. Promoted the development of service territory through acquisition proposals.

## 1987-1988 West Virginia American Water, Huntington Division, Huntington, WV Management Assistant

Assisted in the day-to-day development, management, and operation of the plant and personnel of the company. Responsibilities included: planning, acquisition, or construction of new facilities; planning and preparing the company budget which ranged from five hundred thousand to one million dollars; controlling construction, operations and maintenance within established budget limitations; maintenance of community and customer relations; employee relations, including labor negotiations; assisted management in the attainment of financial and accounting objectives that related to direct business relations with existing and/or new customers.

## 1981-1987 CSX Railroad Corporation, Huntington, WV Senior Resident Engineer

Responsible for design of mining/rail facilities for various major coal operations throughout West Virginia and Eastern Kentucky. Managed track and survey crews to oversee construction of facilities to serve expansion of various companies.

## EDUCATION

Western Kentucky University - B.S., Civil Engineering, 1981
Lebanon Valley College, Annville, PA - Master of Business Administration, 1994

## PROFESSIONAL AFFILIATIONS I CIVIC INVOLVEMENT

- Kentucky Chamber of Commerce - Board of Directors \& Executive Committee
- Lexington Industrial Foundation - Board of Directors 2007-2009
- Central Bank Advisory Board - 2007-2009
- Commerce Lexington - Board of Directors 2008
- Commerce Lexington - Winners Circle Chairman 2007
- New Century Lexington - Board of Directors
- Greater Lexington Chamber of Commerce - Past Chair/Current Trustee
- American Water Works Association - Member
- National Association of Water Companies - Member
- U.S. Magistrate Judge Selection Panel - Fall 2005
- RWE International Leadership Program, Lausanne, Switzerland - May 2004
- Thames Water Oxford Leadership Program - April 2003
- Leadership Bluegrass - Class of 1998
- First Security Bank - Former Board Member
- United Way of the Bluegrass - Former Board Member
- Governor's Higher Education Nominating Committee - Former Chairman
- YMCA, Beaumont Branch - Former Board Member


## PROFESSIONAL PRESENTATIONS

- Served as expert witness on various operational/finance issues before the Kentucky and Pennsylvania Public Service Commissions.
- Served on various AWWA (American Water Works Association) state committees and panels discussing water-related issues.
- Presented updates on "Water Supply" to numerous city councils and officials at weekly and monthly meetings.
- "Drought Management" - presented updates to various city council members, civic and large user groups, police and fire officials during the 1999 Central Kentucky drought.
- Liaison to Pennsylvania Governor's office on "Emergency Power Management" of Pennsylvania-American facilities during rolling blackout period (1996).


## COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

IN THE MATTER OF: )
THE APPLICATION OF KENTUCKY-AMERICAN WATER COMPANY FOR AN ADJUSTMENT OF RATES ON AND AFTER MARCH 28, 2010

DIRECT TESTIMONY OF JOHN J. SPANOS
February 26, 2010

## TABLE OF CONTENTS

## PAGE

A. WITNESS INTRODUCTION ..... 1
B. OVERVIEW ..... 6
C. ESTIMATION OF SERVICE LIFE AND NET SALVAGE ..... 7
D. CALCULATION OF DEPRECIATION ..... 10
E. DESCRIPTION OF REPORT ..... 11
F. RECOMMENDATION ..... 13

## 1. Q. Please state your name and address.

A. John J. Spanos. My business address is 207 Senate Avenue, Camp Hill, Pennsylvania.
2. Q. With what firm are you associated?
A. I am associated with the firm of Gannett Fleming, Inc.
3. Q. How long have you been associated with Gannett Fleming?
A. I have been associated with the firm since college graduation in June 1986.
4. Q. What is your position in the firm?
A. I am Vice President of the Valuation and Rate Division.
5. Q. What is your educational background?
A. I have Bachelor of Science degrees in Industrial Management and Mathematics from Carnegie-Mellon University and a Master of Business Administration from York College of Pennsylvania.
6. Q. Are you a member of any professional societies?
A. Yes. I am a member of the Society of Depreciation Professionals and the American Gas Association/Edison Electric Institute Industry Accounting Committee.
7. Q. Have you taken the certification examination for depreciation professionals?
A. Yes. I passed the certification examination of the Society of Depreciation Professionals in September 1997 and was recertified in August 2003 and February 2008.
8. Q. Will you outline your experience in the field of depreciation?
A. In June 1986, I was employed by Gannett Fleming Valuation and Rate Consultants, Inc. as a Depreciation Analyst. During the period from June 1986 to December 1995, I took part in the preparation of numerous depreciation and original cost studies for utility companies in various industries. Depreciation studies of telephone companies were performed for United Telephone of Pennsylvania, United Telephone of New Jersey and Anchorage Telephone Utility. My work in the railroad industry included depreciation studies for Union Pacific Railroad, Burlington Northern Railroad and Wisconsin Central Transportation Corporation.

Assignments in the electric industry included depreciation studies for Chugach Electric Association, The Cincinnati Gas and Electric Company, The Union Light, Heat \& Power Company, Northwest Territories Power Corporation and the City of Calgary - Electric System. Pipeline industry assignments included studies for TransCanada Pipelines Limited, Trans Mountain Pipe Line Company Ltd., Interprovincial Pipe Line Inc., Nova Gas Transmission Limited and Lakehead Pipeline Company.

My work for the gas industry included depreciation studies for Columbia Gas of Pennsylvania, Columbia Gas of Maryland, The Peoples Natural Gas Company, T. W. Phillips Gas \& Oil Company, The Cincinnati Gas and Electric Company, The Union Light, Heat \& Power Company, Lawrenceburg Gas Company and Penn Fuel Gas, Inc. Assignments in the water industry included depreciation studies for Indiana-American Water Company, Consumers Pennsylvania Water Company and The York Water Company; and depreciation and original cost studies for Philadelphia

Suburban Water Company and Pennsylvania-American Water Company.
My participation in each of the above studies included assembly and analysis of historical and simulated data, field reviews, the development of preliminary estimates of service life and net salvage, calculations of annual depreciation, and the preparation of reports for submission to state or provincial public utility commissions or federal regulatory agencies. I performed these studies under the general direction of William M. Stout, P.E., the President of Gannett Fleming Valuation and Rate Consultants, Inc.

In January 1996, I was assigned to the position of Supervisor of Depreciation Studies. In July 1999, I was promoted to the position of Manager, Depreciation and Valuation Studies. In December 2000, I was promoted to my current position as Vice President of Gannett Fleming Valuation and Rate Consultants, Inc., now the Valuation and Rate Division of Gannett Fleming, Inc. I am responsible for all depreciation, valuation and original cost studies, including the preparation of final exhibits and responses to data requests for submission to the appropriate regulatory body.

Since January 1996, I have conducted depreciation studies similar to those previously listed including assignments for Pennsylvania-American Water Company; Aqua Pennsylvania; Kentucky-American Water Company; Virginia-American Water Company; Indiana-American Water Company; Hampton Water Works Company; Omaha Public Power District; Enbridge Pipe Line Company; Inc.; Columbia Gas of Virginia, Inc.; Virginia Natural Gas Company National Fuel Gas Distribution Corporation - New York and Pennsylvania Divisions; The City of Bethlehem - Bureau of Water; The City of

Coatesville Authority; The City of Lancaster - Bureau of Water; Peoples Energy Corporation; The York Water Company; Public Service Company of Colorado; Enbridge Pipelines; Enbridge Gas Distribution, Inc.; Reliant Energy-HLP; Massachusetts-American Water Company; St. Louis County Water Company; Missouri-American Water Company; Chugach Electric Association; Alliant Energy; Oklahoma Gas \& Electric Company; Nevada Power Company; Dominion Virginia Power; NUI-Virginia Gas Companies; Pacific Gas \& Electric Company; PSI Energy; NUI - Elizabethtown Gas Company; Cinergy Corporation - CG\&E; Cinergy Corporation - ULH\&P; Columbia Gas of Kentucky; SCANA, Inc.; Idaho Power Company; El Paso Electric Company; Central Hudson Gas \& Electric; Centennial Pipeline Company; CenterPoint Energy-Arkansas; CenterPoint Energy - Oklahoma; CenterPoint Energy - Entex; CenterPoint Energy - Louisiana; NSTAR Boston Edison Company; Westar Energy, Inc.; United Water Pennsylvania; PPL Electric Utilities; PPL Gas Utilities; Wisconsin Power \& Light Company; TransAlaska Pipeline; Avista Corporation; Northwest Natural Gas; Allegheny Energy Supply, Inc.; Public Service Company of North Carolina; South Jersey Gas Company; Duquesne Light Company; MidAmerican Energy Company; Laclede Gas; Duke Energy Company; E.ON U.S. Services Inc.; Elkton Gas Services; Anchorage Water and Wastewater Utility; Kansas City Power and Light; Duke Energy North Carolina; Duke Energy South Carolina; Duke Energy Ohio Gas; Duke Energy Kentucky; Duke Energy Indiana; Northern Indiana Public Service Company; Tennessee-American Water Company; Columbia Gas of Maryland; Bonneville Power Administration; NSTAR Electric
and Gas Company; EPCOR Distribution, Inc.; B. C. Gas Utility, Ltd; Entergy Arkansas; Entergy Texas; Entergy Mississippi; Entergy Louisiana and Entergy Gulf States Louisiana. My additional duties include determining final life and salvage estimates, conducting field reviews, presenting recommended depreciation rates to management for its consideration and supporting such rates before regulatory bodies.

## 9. Q. Have you submitted testimony to any regulatory commissions on the subject of utility plant depreciation?

A. Yes. I have submitted testimony to the Pennsylvania Public Utility Commission; the Commonwealth of Kentucky Public Service Commission; the Public Utilities Commission of Ohio; the Nevada Public Utility Commission; the Public Utilities Board of New Jersey; the Missouri Public Service Commission; the Massachusetts Department of Telecommunications and Energy; the Alberta Energy \& Utility Board; the Idaho Public Utility Commission; the Louisiana Public Service Commission; the State Corporation Commission of Kansas; the Oklahoma Corporate Commission; the Public Service Commission of South Carolina; the Railroad Commission of Texas Gas Services Division; the New York Public Service Commission; the Illinois Commerce Commission; the Indiana Utility Regulatory Commission; the California Public Utilities Commission; the Federal Energy Regulatory Commission ("FERC"); the Arkansas Public Service Commission; the Public Utility Commission of Texas; the Maryland Public Service Commission; the Washington Utilities and Transportation Commission; the Tennessee Regulatory Commission; the District of Columbia Public Service Commission;
the Mississippi Public Service Commission; the Regulatory Commission of Alaska; and the North Carolina Utilities Commission.
10. Q. What is the extent of your formal instruction with respect to utility plant depreciation?
A. I have completed the "Techniques of Life Analysis", "Techniques of Salvage and Depreciation Analysis", "Forecasting Life and Salvage", "Modeling and Life Analysis Using Simulation" and "Managing a Depreciation Study" programs conducted by Depreciation Programs, Inc. Also, I have completed the "Introduction to Public Utility Accounting" program conducted by the American Gas Association.

## 11. Q. What is the purpose of your testimony?

A. My testimony is in support of the depreciation study conducted under my direction and supervision for Kentucky American Water Company (the "Company"). Based upon that study, I am recommending that new depreciation accrual rates be adopted by the Company.

## OVERVIEW

12. Q. Please describe what you mean by the term "depreciation".
A. "Depreciation" refers to the loss in service value not restored by current maintenance, incurred in connection with the consumption or prospective retirement of utility plant in the course of service from causes which can be reasonably anticipated or contemplated, against which the Company is not protected by insurance. Among the causes to be given consideration are wear and tear, decay, action of the elements, inadequacy, obsolescence, changes in the art, changes in demand, and the requirements of public
authorities. Depreciation accrual rates are used to allocate, for accounting purposes, the cost of assets over their service lives.

In the study that I performed and that is the basis for my testimony, I used the straight line whole life method of depreciation, with the average service life procedure to develop recommended depreciation accrual rates. In addition, I calculated the amount required to amortize the variance between the book depreciation reserve and the calculated accrued depreciation. The total annual depreciation is based on a system of depreciation accounting which aims to distribute the cost of fixed capital assets over the estimated useful life of the unit, or group of assets, in a systematic and rational manner.

For General Plant Accounts 340.1, 340.21, 340.22, 340.23, 340.3, 340.32. $340.33,340.5,342,343,344,346.1,346.19,346.2,347$ and 348 ; I used the straight line method of amortization. The annual amortization is based on amortization accounting which distributes the unrecovered cost of fixed capital assets over the remaining amortization period selected for each account and vintage.
13. Q. Have you prepared an exhibit presenting the results of your study?
A. Yes. The report titled, "Depreciation Study - Calculated Annual Depreciation Accruals Related to Utility Plant as of November 30, 2009" which has been marked Exhibit No. JJS-1 sets forth the results of my study.

## 14. Q. How did you determine the recommended annual depreciation accrual rates?

A. The determination of annual depreciation accrual rates consists of two phases. In the first phase, service life and net salvage characteristics are
estimated for each depreciable group, that is, each plant account or subaccount identified as having similar characteristics. In the second phase, the annual depreciation accrual rates are calculated based on the service life and net salvage estimates determined in the first phase.

## ESTIMATION OF SERVICE LIFE AND NET SALVAGE

15. Q . Please describe the first phase of the study, that is, the manner in which you estimated the service life and net salvage characteristics for each depreciable group.
A. The service life and net salvage study consisted of compiling historical data from records related to the Company's plant; analyzing these data to obtain historical trends of survivor and salvage characteristics; obtaining supplementary information from management and operating personnel concerning the Company's practices and plans as they relate to plant operations; and interpreting the above data to form judgments of average service life and net salvage characteristics.
16. Q. What historical data did you analyze for the purpose of estimating the service life characteristics of the Company's plant?
A. The data consisted of the entries made by the Company to record plant transactions from 1995 through November 2009. The transactions included additions, retirements, transfers and the related balances. The Company, in accordance with my instructions, classified the data by depreciable group, type of transaction, the year in which the transaction took place, and the year in which the plant was installed. The data included surviving plant balances as of December 31, 1994.

## 17. Q. What method did you use to analyze this service life data?

A. I used the retirement rate method. That method is the most appropriate when aged retirement data are available, because it develops the average rates of retirement actually experienced during the period of study. Other methods of life analysis infer the rates of retirement based on a selected type survivor curve.
18. Q. Please describe the results of your use of the retirement rate method.
A. Each retirement rate analysis resulted in a life table which, when plotted, formed an original survivor curve. Each original survivor curve as plotted from the life table represents the average survivor pattern experienced by the several vintage groups during the experience band studied. Inasmuch as this survivor pattern does not necessarily describe the life characteristics of the property group, interpretation of the original curves is required in order to use them as valid considerations in service life estimation. lowa type survivor curves were used in these interpretations.
19. Q. Please explain briefly what an "lowa-type survivor curve" is and how you use it in estimating service life characteristics for each depreciable group.
A. The range of survivor characteristics usually experienced by utility and industrial properties is encompassed by a system of generalized survivor curves known as the lowa type curves. The lowa curves were developed at the Iowa State College Engineering Experiment Station through an extensive process of observation and classification of the ages at which industrial property had been retired.

Iowa type curves are used to smooth and extrapolate original survivor curves determined by the retirement rate method. The lowa curves and truncated lowa curves were used in this study to describe the forecasted rates of retirement based on the observed rates of retirement and the outlook for future retirements.

The estimated survivor curve designations for each depreciable group indicate the average service life, the family within the lowa system and the relative height of the mode. For example, the lowa $75-\mathrm{R} 3$ indicates an average service life of seventy-five years; a right-moded, or R, type curve (the mode occurs after average life for right-moded curves); and a moderate height, 3 , for the mode (possible modes for R type curves range from 1 to 5 ).

## 20. Q. What historical data did you analyze for the purpose of estimating net

 salvage characteristics?A. The data consisted of the entries made by the Company to record retirements, cost of removal and gross salvage during the period 1980 through November 2009.

## 21. Q. What method did you use to analyze this net salvage data?

A. The net salvage data were analyzed by expressing the net salvage and its two components, cost of removal and gross salvage, as percents of the original cost retired on annual, three-year moving average and most recent five-year average bases. The use of averages smooth the annual fluctuations and assists in identifying underlying trends.

## 22. Q. Please describe the manner in which you used the analyses of net salvage to estimate net salvage percents.

A. The results of the net salvage analyses provided indications of historical net salvage levels. The judgments of net salvage incorporated these historical indications and consideration of estimates made for other water companies.

## CALCULATION OF DEPRECIATION

23. Q. Please describe the second phase of the process that you used, that is, the calculation of annual depreciation accrual rates.
A. After I estimated the service life and net salvage characteristics for each depreciable group, I calculated annual depreciation accrual rates for each group in accordance with the straight line remaining life method, using the average service life procedure.
24. Q. What group procedure is being used in this proceeding for depreciable accounts?
A. The average service life procedure is used in the current proceeding for all depreciable accounts and installation years. The average service procedure also was used in the Company's last rate proceeding.
25. Q. Please describe briefly the amortization of certain General Plant accounts.
A. General Plant Accounts 340.1, 340.21, 340.22, 340.23, 340.3, 340.32, $340.33,340.5,342,343,344,346.1,346.19,346.2,347$ and 348 include a very large number of units, but represent approximately four percent of depreciable utility plant. Depreciation accounting is difficult for these assets, inasmuch as periodic inventories are required to properly reflect plant in service. In amortization accounting, units of property are capitalized in the
same manner as they are in depreciation accounting. However, retirements are recorded when a vintage is fully amortized rather than as the units are removed from service. That is, there is no dispersion of retirement. All units are retired when the age of the vintage reaches the amortization period.

DESCRIPTION OF REPORT

## 26. Q. Please outline the contents of your report.

A. My report is presented in three parts. Introduction includes statements related to the scope and basis of the depreciation study. Methods Used in the Estimation of Depreciation includes descriptions of the estimation of survivor curves and net salvage and the calculation of annual depreciation accrual rates.

Results of Study presents a description of the results, summaries of the depreciation calculations, graphs and tables which relate to the service life and net salvage studies, and the detailed depreciation calculations.

The table on pages III-4 through III-8 presents the estimated survivor curve, the net salvage percent, the original cost as of November 30, 2009, the calculated annual depreciation accrual amount and rate, book reserve, future accruals and the composite remaining life for each account or subaccount. The section beginning on page III-9 presents the results of the retirement rate analyses prepared as the historical bases for the service life estimates. The section beginning on page III-83 presents the results of the analyses of historical net salvage data. The section beginning on page III-121 presents the depreciation calculations related to surviving original cost as of November 30, 2009.
27. $Q$. Please use an example to illustrate the manner in which the study is presented in the report.
A. I will use Account 331, Mains and Accessories, as my example, inasmuch as it is a large depreciable group and is representative of the presentation.

The retirement rate method was used to analyze the survivor characteristics of this group. The life table for the 1995-2009 experience band is presented on pages III-59 through III-61 of the report. The life table, or original survivor curve, is plotted along with the estimated smooth survivor curve, the $75-\mathrm{R} 3$ on page III-58. The net salvage analysis for the period 1980 through November 2009 is presented on pages III-104 and III-105.

The calculation of the annual depreciation accrual rate related to the original cost at November 30, 2009, for each subaccount of utility plant is presented on pages III-153 through III-155. The calculation is based on the 75-R3 survivor curve, negative fifteen percent net salvage and the attained age. The tabulation sets forth the installation year, the original cost, calculated accrued depreciation, allocated book reserve, future accruals, remaining life and annual accrual amount. The totals are brought forward to the table on page III-5.

## RECOMMENDATION

## 28. Q. What is your recommendation regarding annual depreciation accrual rates for the Company?

A. I recommend that the Company use a composite annual depreciation accrual rate for each account or subaccount. My recommended depreciation accrual rates, based on the depreciation study, are set forth for each account in
column 8 of Table 1 on pages III-4 through III-8 of Exhibit JJS-1. In my opinion, these are reasonable and appropriate depreciation accrual rates for the Company.
29. Q. Are your recommended depreciation accrual rates reasonable for plant added subsequent to November 30, 2009 ?
A. Yes. The annual depreciation accrual rates calculated as of November 30, 2009, can reasonably be applied to the total balance including new plant additions during the next several years.
30. Does this complete your direct testimony?
A. Yes, it does.

## KENTUCKY AMERICAN WATER COMPANY

Lexington, Kentucky

DEPRECIATION STUDY<br>\section*{CALCULATED ANNUAL DEPRECIATION ACCRUALS} RELATED TO UTILITY PLANT AT NOVEMBER 30, 2009

GANNETT FLEMING, INC.

Ladies and Gentlemen:
Pursuant to your request, we have conducted a depreciation study related to the utility plant of Kentucky American Water Company as of November 30, 2009. The attached report presents a description of the methods used in the estimation of depreciation, the summary of annual and accrued depreciation, the statistical support for the life and net salvage estimates and the detailed tabulations of annual and accrued depreciation.

Respectfully submitted,
GANNETT FLEMING, INC.


JJS:krm

## CONTENTS

## PARTI. INTRODUCTION

Scope ..... I-2
Plan of Report ..... I-2
Basis of Study ..... I-3
Depreciation ..... I-3
Survivor Curve Estimates ..... 1-3
Calculation of Depreciation ..... 1-4
PART II METHODS USED IN THE ESTIMATION OF DEPRECIATION
Depreciation ..... II-2
Service Life and Net Salvage Estimation ..... II-2
Average Service Life ..... II-2
Survivor Curves ..... II-3
lowa Type Curves ..... II-3
Retirement Rate Method of Analysis ..... II-7
Schedules of Annual Transactions in Plant Records ..... II-10
Schedule of Plant Exposed to Retirement ..... II-14
Original Life Table ..... II-16
Smoothing the Original Survivor Curve ..... Il-18
Service Life Considerations ..... II-23
Salvage Analysis ..... II-24
Net Salvage Considerations ..... II-24
Calculation of Annual and Accrued Depreciation ..... II-26
Single Unit of Property ..... II-27
Group Depreciation Procedures ..... II-27
Remaining Life Annual Accruals ..... II-27
Average Service Life Procedure ..... II-28
Calculation of Annual and Accrued Amortization ..... II-28
PART III. RESULTS OF STUDY
Qualification of Results ..... III-2
Description of Statistical Support ..... III-2
Description of Depreciation Tabulations ..... III-3

CONTENTS, cont.
PART III. RESULTS OF STUDY, cont.
Estimated Survivor Curve, Net Salvage, Original Cost, Book Depreciation Reserve, and Calculated Annual Depreciation Accruals Related to Utility Plant at November 30, 2009 ..... III-4
Service Life Statistics ..... III-9
Net Salvage Statistics ..... III-83
Depreciation Calculations ..... III-121

# KENTUOKY AMERICAN WATER COMPANY <br> DEPRECIATION STUDY <br> CALCULATED ANNUAL DEPRECIATION ACCRUALS <br> RELATED TO UTILITY PLANT <br> AT NOVEMBER 30, 2009 <br> PARTI. INTRODUCTION 

## SCOPE

This report presents the results of the depreciation study prepared for the Kentucky American Water Company as applied to utility plant in service as of November 30, 2009. It relates to the concepts, methods, and basic judgments which underlie recommended annual depreciation accrual rates related to current utility plant in service.

The service life and net salvage estimates resulting from the study were based on informed judgment which incorporated analyses of historical plant retirement data as recorded through November 2009; a review of Company practice and outlook as they relate to plant operation and retirement; and consideration of current practice in the water industry, including knowledge of service life and salvage estimates used for other water properties.

## PLAN OF REPORT

Part I, Introduction, includes brief statements of the scope and basis of the study. Part II presents descriptions of the methods used in the service life and salvage studies and the methods and procedures used in the calculation of depreciation. Part III presents the results of the study, including summary tables, survivor curve charts and life tables resulting from the retirement rate method of analysis, tabular results of the historical
net salvage analyses, and detailed tabulations of the calculated remaining lives and annual accruals.

## BASIS OF STUDY

## Depreciation

For most accounts, the annual depreciation was calculated by the straight line method, using the average service life procedure and the remaining life basis. For certain General Plant accounts, the annual depreciation was based on amortization accounting. The calculated remaining lives and annual depreciation accrual rates were based on attained ages of plant in service and the estimated service life and salvage characteristics of each depreciable group.

## Survivor Curve Estimates

The procedure for estimating survivor curves, which define service lives and remaining lives, consisted of compiling historical service life data for the plant accounts or other depreciable groups, analyzing the historical data base through the use of accepted techniques, and forecasting the survivor characteristics for each depreciable account or group. These forecasts were based on interpretations of the historical data analyses and the probable future. The combination of the historical data and the estimated future trend yields a complete pattern of life characteristics, i.e., a survivor curve, from which the average service life and remaining service life are derived.

The historical data analyzed for life estimation purposes were compiled through November 2009 from the Company's plant accounting records. Such data included plant additions, retirements, transfers and other activity recorded by the Company for each of its plant accounts and subaccounts.

The estimates of net salvage incorporated a review of experienced costs of removal and salvage related to plant retirements, and considerations of trends exhibited by the historical data. Each component of net salvage, i.e, cost of removal and salvage was stated in dollars and as a percent of retirement for purposes of estimating average future levels of the components, as well as of net salvage.

An understanding of the function of the plant and information with respect to the reasons for past retirements and the expected causes of future retirements was obtained through field trips and discussions with operating and management personnel. The supplementalinformation obtained in this manner was considered in the interpretation and extrapolation of the statistical analyses.

## Calculation of Depreciation

The depreciation accrual rates were calculated using the straight line method, the remaining life basis, and the average service life depreciation procedure. The life span technique was used for major structures. In this technique, an average date of final retirement was estimated for each plant location, and the estimated survivor curves applied to each vintage were truncated at ages coinciding with the dates of final retirement.

The change to amortization accounting for certain accounts is recommended because of the disproportionate plant accounting effort required when compared to the minimal original cost of the large number of items in these accounts. An explanation of the calculation of annual and accrued amortization is presented on page II-28 of the report.

PART II. METHODS USED IN

# PART II. METHODS USED IN THE ESTIMATION OF DEPRECIATION 

## DEPRECIATION

Depreciation, in public utility regulation, is the loss in service value not restored by current repairs or covered by insurance.

Depreciation as used in accounting is a method of distributing fixed capital costs, less net salvage, over a period of time by allocating annual amounts to expense. Each annual amount of such depreciation expense is part of that year's total cost of providing utility service. Normally, the period of time over which the fixed capital cost is allocated to the cost of service is equal to the period of time over which an item renders service, that is, the item's service life. The most prevalent method of allocation is to distribute an equal amount of cost to each year of service life. This method is known as the straight line method of depreciation.

The calculation of annual depreciation based on the straight line method requires the estimation of average life and salvage. These subjects are discussed in the sections which follow.

## SERVICE LIFE AND NET SALVAGE ESTIMATION

## Average Service Life

The use of an average service life for a property group implies that the various units in the group have different lives. Thus, the average life may be obtained by determining the separate lives of each of the units, or by constructing a survivor curve by plotting the number of units which survive at successive ages. A discussion of the general concept of survivor curves is presented. Also, the lowa type survivor curves are reviewed.

## Survivor Curves

The survivor curve graphically depicts the amount of property existing at each age throughout the life of an original group. From the survivor curve, the average life of the group; the remaining life expectancy, the probable life, and the frequency curve can be calculated. In Figure 1 a typical smooth survivor curve and the derived curves are illustrated. The average life is obtained by calculating the area under the survivor curve, from age zero to the maximum age, and dividing this area by the ordinate at age zero. The remaining life expectancy at any age can be calculated by obtaining the area under the curve, from the observation age to the maximum age, and dividing this area by the percent surviving at the observation age. For example, in Figure 1 the remaining life at age 30 years is equal to the crosshatched area under the survivor curve divided by 29.5 percent surviving at age 30 . The probable life at any age is developed by adding the age and remaining life. If the probable life of the property is calculated for each year of age, the probable life curve shown in the chart can be developed. The frequency curve presents the number of units retired in each age interval and is derived by obtaining the differences between the amount of property surviving at the beginning and at the end of each interval.
lowa Type Curves. The range of survivor characteristics usually experienced by utility and industrial properties is encompassed by a system of generalized survivor curves known as the lowa type curves. There are four families in the lowa system, labeled in accordance with the location of the modes of the retirements in relationship to the average life and the relative height of the modes. The left moded curves, presented in Figure 2, are those in which the greatest frequency of retirement occurs to the left of, or prior to, average service life. The symmetrical moded curves, presented in Figure 3, are those in which the greatest frequency of retirement occurs at average service life. The right moded curves,


Figure 2. Left Modal or "L" lowa Type Survivor Curves

Figure 3. Symmetrical or "S" lowa Type Survivor Curves
presented in Figure 4, are those in which the greatest frequency occurs to the right of, or after, average service life. The origin moded curves, presented in Figure 5, are those in which the greatest frequency of retirement occurs at the origin, or immediately after age zero. The letter designation of each family of curves ( $L, S, R$ or $O$ ) represents the location of the mode of the associated frequency curve with respect to the average service life. The numbers represent the relative heights of the modes of the frequency curves within each family.

The lowa curves were developed at the lowa State College Engineering Experiment Station through an extensive process of observation and classification of the ages at which industrial property had been retired. A report of the study which resulted in the classification of property survivor characteristics into 18 type curves, which constitute three of the four families, was published in 1935 in the form of the Experiment Station's Bulletin 125. These type curves have also been presented in subsequent Experiment Station bulletins and in the text, "Engineering Valuation and Depreciation." ${ }^{2}$ In 1957 , Frank V. B. Couch, Jr., an lowa State College graduate student, submitted a thesis ${ }^{3}$ presenting his development of the fourth family consisting of the four O type survivor curves.

## Retirement Rate Method of Analysis

The retirement rate method is an actuarial method of deriving survivor curves using the average rates at which property of each age group is retired. The method relates to

[^1]
Figure 4. Right Modal or "R" lowa Type Survivor Curves

Figure 5. Origin Modal or "O" lowa Type Survivor Curves
property groups for which aged accounting experience is available or for which aged accounting experience is developed by statistically aging unaged amounts and is the method used to develop the original stub survivor curves in this study. The method (also known as the annual rate method) is illustrated through the use of an example in the following text, and is also explained in several publications, including "Statistical Analyses of Industrial Property Retirements," ${ }^{44}$ "Engineering Valuation and Depreciation," ${ }^{5}$ and "Depreciation Systems." ${ }^{6}$

The average rate of retirement used in the calculation of the percent surviving for the survivor curve (life table) requires two sets of data: first, the property retired during a period of observation, identified by the property's age at retirement; and second, the property exposed to retirement at the beginnings of the age intervals during the same period. The period of observation is referred to as the experience band, and the band of years which represent the installation dates of the property exposed to retirement during the experience band is referred to as the placement band. An example of the calculations used in the development of a life table follows. The example includes schedules of annual aged property transactions, a schedule of plant exposed to retirement, a life table, and illustrations of smoothing the stub survivor curve.

Schedules of Annual Transactions in Plant Records. The property group used to illustrate the retirement rate method is observed for the experience band 2000-2009 during which there were placements during the years 1995-2009. In order to illustrate the summation of the aged data by age interval, the data were compiled in the manner

[^2]presented in Tables 1 and 2 on pages II-12 and II-13. In Table 1, the year of installation (year placed) and the year of retirement are shown. The age interval during which a retirement occurred is determined from this information: In the example which follows, $\$ 10,000$ of the dollars invested in 1995 were retired in 2000 . The $\$ 10,000$ retirement occurred during the age interval between $41 / 2$ and $51 / 2$ years on the basis that approximately one-half of the amount of property was installed prior to and subsequent to July 1 of each year. That is, on the average, property installed during a year is placed in service at the midpoint of the year for the purpose of the analysis. All retirements also are stated as occurring at the midpoint of a one-year age interval of time, except the first age interval which encompasses only one-half year.

The total retirements occurring in each age interval in a band are determined by summing the amounts for each transaction year-installation year combination for that age interval. For example, the total of $\$ 143,000$ retired for age interval $41 / 2-51 / 2$ is the sum of the retirements entered on Table 1 immediately above the stairstep line drawn on the table beginning with the 2000 retirements of 1995 installations and ending with the 2009 retirements of the 2004 installations. Thus, the total amount of 143 for age interval $41 / 2-51 / 2$ equals the sum of:

$$
10+12+13+11+13+13+15+17+19+20
$$

In Table 2, other transactions which affect the group are recorded in a similar manner. The entries illustrated include transfers and sales. The entries which are credits to the plant account are shown in parentheses. The items recorded on this schedule are
Experience Band 2000-2009

Placement Band 1995-2009
$\begin{gathered}\text { Age } \\ \text { Interval }\end{gathered}$
$(13)$
$131 / 2-141 / 2$
$121 / 2-131 / 2$
 $91 / 2-101 / 2$

N
$\substack{\text { N } \\ \text { N } \\ \\ \\ \hline}$

 ले
ले
ले No
No
No
No
 $\underset{\sim}{\text { N }}$
 $\stackrel{8}{9}$

$\stackrel{9}{-}$

$\stackrel{\infty}{\infty}$

## Total

TABLE 2. OTHER TRANSACTIONS FOR EACH YEAR 2000-2009
6002-9661 pueg fuawiojeld



...
刺比
SUMMARIZED BY AGE INTERVAL

Year Placed	During Year									
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1995	-	-	-	-	-	-	$60^{\text {a }}$	-	-	-
1996	-	$-$	-	-	$\cdots$	$\cdots$	-	-	-	-
1997	-	--	-	-	-	-	-	-	-	-
1998	-'	$\cdots$	-	-	-	-	-	(5) ${ }^{\text {b }}$	-	-
1999	-	-	-	-	-	$-$	-	$6^{\text {a }}$	-	-
2000		-	-	-	-	-	-	-	-	-
2001		-	-	-	-	-	$\sim$	-	-	-
2002			-	-	-	-	-	-	-	-
2003				-	-	$\cdots$	-	(12)	-	-
2004					-	-	$\cdots$	-	$22^{\text {a }}$	-
2005						-	-	$(19)^{\text {b }}$	-	-
2006							-	-	-	-
2007								-	-	$(102)^{\text {c }}$
2008									-	-
2009	-	-	-	--	-	-	-	-	$\cdots$	-
Total	$\pm$	$\underline{\square}$	$\underline{\square}$	$\pm$	$\bigcirc$	$\stackrel{-}{-}$	$\underline{60}$	(30)	22	(102)

${ }^{a}$ Transfer Affecting Exposures at Beginning of Year
${ }^{\circ}$ Transfer Affecting Exposures at End of Year
Experience Band 2000-2009

$$
\begin{aligned}
& \text { Year } \\
& \frac{\text { Placed }}{(1)}
\end{aligned}
$$

1996 1998
2001
2002
2003
2004
2005
2006
2007
2008
2009
Total
Parentheses denote Credit amount.
not totaled with the retirements but are used in developing the exposures at the beginning of each age interval,

Schedule of Plant Exposed to Retirement. The development of the amount of plant exposed to retirement at the beginning of each age interval is illustrated in Table 3 on page 11-15.

The surviving plant at the beginning of each year from 2000 through 2009 is recorded by year in the portion of the table headed "Annual Survivors at the Beginning of the Year." The last amount entered in each column is the amount of new plant added to the group during the year. The amounts entered in Table 3 for each successive year following the beginning balance or addition are obtained by adding or subtracting the net entries shown on Tables 1 and 2. For the purpose of determining the plant exposed to retirement, transfers-in are considered as being exposed to retirement in this group at the beginning of the year in which they occurred, and the sales and transfers-out are considered to be removed from the plant exposed to retirement at the beginning of the following year. Thus, the amounts of plant shown at the beginning of each year are the amounts of plant from each placement year considered to be exposed to retirement at the beginning of each successive transaction year. For example, the exposures for the installation year 2005 are calculated in the following manner:

Exposures at age $0=$ amount of addition	$=\$ 750,000$
Exposures at age $1 / 2=\$ 750,000-\$ 8,000$	$=\$ 742,000$
Exposures at age $11 / 2=\$ 742,000-\$ 18,000$	$=\$ 724,000$
Exposures at age $21 / 2=\$ 724,000-\$ 20,000-\$ 19,000$	$=\$ 685,000$
Exposures at age $31 / 2=\$ 685,000-\$ 22,000$	$=\$ 663,000$

For the entire experience band 2000-2009, the total exposures at the beginning of an age interval are obtained by summing diagonally in a manner similar to the summing

Year Placed	Exposures, Thousands of Dollars										Total at Beginning of Age Interval	Age Interval
	Annual Survivors at the Beginning of the Year											
	2000	2001	$\underline{2002}$	$\underline{2003}$	$\underline{2004}$	$\underline{2005}$	$\underline{2006}$	$\underline{2007}$	2008	$\underline{2009}$		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
1995	255	245	234	222	209	195	239	216	192	167	167	131/2-141/2
1996	279	268	256	243	228	212	194	174	153	131	323	121/2-131/2
1997	307	296	284	271	257	241	224	205	184	162	531	$111 / 2-121 / 2$
1998	338	330	321	311	300	289	276	262	242	226	823	101/2-111/2
1999	376	367	357	346	334	321	307	297	280	261	1,097	91/2-101/2
2000	$420^{\circ}$	416	407	397	386	374	361	347	332	316	1,503	$81 / 2-91 / 2$
2001		$460^{\text {a }}$	455	444	432	419	405	390	374	356	1,952	$71 / 2-81 / 2$
2002			$510^{\text {a }}$	504	492	479	464	448	431	412	2,463	$61 / 2-71 / 2$
2003				$580{ }^{\text {a }}$	574	561	546	530	501	482	3,057	$51 / 2-61 / 2$
2004					$660^{\text {a }}$	653	639	623	628	609	3,789	41/2-51/2
2005						$750^{\text {a }}$	742	724	685	663	4,332	$31 / 2-41 / 2$
2006							$850^{\text {a }}$	841	821	799	4955	21/2-31/2
2007								$960^{\text {a }}$	949	926	5,719	$11 / 2-21 / 2$
2008									1,080 ${ }^{\text {a }}$	1,069	6,579	1/2-11/2
2009		$\cdots$	$\underline{-}$	$\bigcirc$	-	-	-			1,220	7,490	$0-1 / 2$
Total	$\underline{1.975}$	$\underline{2,382}$	2.824	$\underline{3,318}$	$\underline{3,872}$	4,494	5,247	6.017	6,852	7.799	$\underline{44,780}$	

[^3]of the retirements during an age interval (Table 1). For example, the figure of 3,789 , shown as the total exposures at the beginning of age interval $41 / 2-51 / 2$, is obtained by summing:
$$
255+268+284+311+334+374+405+448+501+609
$$

Original Life Table. The original life table, illustrated in Table 4 on page II-17, is developed from the totals shown on the schedules of retirements and exposures, Tables 1 and 3, respectively. The exposures at the beginning of the age interval are obtained from the corresponding age interval of the exposure schedule, and the retirements during the age interval are obtained from the corresponding age interval of the retirement schedule. The retirement ratio is the result of dividing the retirements during the age interval by the exposures at the beginning of the age interval. The percent surviving at the beginning of each age interval is derived from survivor ratios, each of which equals one minus the retirement ratio. The percent surviving is developed by starting with $100 \%$ at age zero and successively multiplying the percent surviving at the beginning of each interval by the survivor ratio, ie, one minus the retirement ratio for that age interval. The calculations necessary to determine the percent surviving at age $5 \frac{1}{2}$ are as follows:

Percent surviving at age $41 / 2$	$=88.15$
Exposures at age $41 / 2$	$=3,789,000$
Retirements from age $41 / 2$ to $51 / 2=143,000$	
Retirement Ratio	$=143,000 \div 3,789,000=0.0377$
Survivor Ratio	$=1.000-0.0377=0.9623$
Percent surviving at age $51 / 2$	$=(88.15) \times(0,9623)=84.83$

The totals of the exposures and retirements (columns 2 and 3) are shown for the purpose of checking with the respective totals in Tables 1 and 3. The ratio of the total retirements to the total exposures, other than for each age interval, is meaningless.

TABLE 4. ORIGINAL LIFE TABLE CALCULATED BY THE RETIREMENT RATE METHOD
(Exposure and Retirement Amounts are in Thousands of Dollars)

Age at Beginning of Interval	Exposures at Beginning of Age Interval	Retirements During Age Interval	Retirement Ratio	Survivor Ratio	Percent Surviving at Beginning of Age Interval
(1)	(2)	(3)	(4)	(5)	(6)
0.0	7,490	80	0.0107	0.9893	100.00
0.5	6,579	153	0.0233	0.9767	98.93
1.5	5,719	151	0.0264	0.9736	96.62
2.5	4,955	150	0.0303	0.9697	94.07
3.5	4,332	146	0.0337	0.9663	91.22
4.5	3,789	143	0.0377	0.9623	88.15
5.5	3,057	131	0.0429	0.9571	84.83
6.5	2,463	124	0.0503	0.9497	81.19
7.5	1,952	113	0.0579	0.9421	77.11
8.5	1,503	105	0.0699	0.9301	72.65
9.5	1,097	93	0.0848	0.9152	67.57
10.5	823	83	0.1009	0.8991	61.84
11.5	531	64	0.1205	0.8795	55.60
12.5	323	44	0.1362	0.8638	48.90
13.5	167	26	0.1557	0.8443	42.24
					35.66
Total	44,780	1,606			

Column 2 from Table 3, Column 12, Plant Exposed to Retirement.
Column 3 from Table 1, Column 12, Retirements for Each Year.
Column $4=$ Column 3 divided by Column 2.
Column $5=1.0000$ minus Column 4.
Column $6=$ Column 5 multiplied by Column 6 as of the Preceding Age Interval.

The original survivor curve is plotted from the original life table (column 6, Table 4). When the curve terminates at a percent surviving greater than zero, it is called a stub survivor curve. Survivor curves developed from retirement rate studies generally are stub curves.

Smoothing the Original Survivor Curve. The smoothing of the original survivor curve eliminates any irregularities and serves as the basis for the preliminary extrapolation to zero percent surviving of the original stub curve. Even if the original survivor curve is complete from $100 \%$ to zero percent, it is desirable to eliminate any irregularities as there is still an extrapolation for the vintages which have not yet lived to the age at which the curve reaches zero percent. In this study, the smoothing of the original curve with established type curves was used to eliminate irregularities in the original curve.

The lowa type curves are used in this study to smooth those original stub curves which are expressed as percents surviving at ages in years. Each original survivor curve was compared to the lowa curves using visual and mathematical matching in order to determine the better fitting smooth curves: In Figures 6,7 , and 8 the original curve developed in Table 4 is compared with the $L, S$, and $R$ lowa type curves which most nearly fit the original survivor curve. In Figure 6 the L1 curve with an average life between 12 and 13 years appears to be the best fit. In Figure 7 the S0 type curve with a 12-year average life appears to be the best fit and appears to be better than the $L 1$ fitting. In Figure 8 the R1 type curve with a 12-year average life appears to be the best fit and appears to be better than either the L1 or the S0. In Figure 9 the three fittings, $12-\mathrm{L} 1,12-\mathrm{SO}$, and 12-R1 are drawn for comparison purposes. It is probable that the $12-\mathrm{R} 1$ lowa curve would be selected as the most representative of the plotted survivor characteristics of the group, assuming no contrary relevant factors external to the analysis of historical data.

## Service Life Considerations

The service life estimates were based on judgment which considered a number of factors. The primary factors were the statistical analyses of data; current company policies and outlook as determined during field reviews of the property and other conversations with management and the survivor curve estimates from previous studies of this company and other water companies.

For most of the mass plant accounts and subaccounts, the statistical analyses resulted in good to excellent indications of significant survivor patterns. These accounts represent 69 percent of depreciable plant. Generally, the information external to the statistics led to no significant departure from the indicated survivor curves for the accounts listed below,

Account No.
304.2 \& $304.3 \quad$ Structures and Improvements
$311.2,311,3,311.4$
311.52, \& 311.54
320.11

331
333
335
341.1
341.2
341.3
341.4

## Account Description

Pumping Equipment
Purification System - Equipment
Mains and Accessories - All Mains
Services
Fire Hydrants
Transportation Equipment - Light Duty Trucks
Transportation Equipment - Heavy Duty Trucks
Transportation Equipment - Autos
Transportation Equipment - Other

Accounts 331, Mains and Accessories, is used to illustrate the manner in which the study was conducted for the accounts in the preceding list. Aged plant accounting data have been compiled for the years through November 2009. These data have been coded according to account or property group, type of transaction, year in which the transaction took place, and year in which the utility plant was placed in service. The retirements, other plant transactions and plant additions were analyzed by the retirement rate method.

The survivor curve estimate for this account is the $75-\mathrm{R} 3$ and is based on the statistical indication for the period 1995 through 2009. The $75-\mathrm{R} 3$ is a good fit of the significant portion of the original survivor curve as set forth on page III-58, is consistent with management outlook for a continuation of the historical experience and is within the typical service life range of 75 to 100 years for water mains.

Amortization accounting is proposed for certain General Plant accounts that represent numerous units of property, but a small portion of the depreciable plant in service. These accounts represent approximately 4 percent of total utility plant. A discussion of the basis for the amortization periods is presented in the section "Calculation of Annual and Accrued Amortization".

Generally, the estimates for the remaining accounts which comprise 27 percent of the total depreciable plant in service were based on judgments which considered the nature of the plant and equipment, the previous estimate for this company and a general knowledge of service lives for similar equipment in other water companies.

## Salvage Analysis

The estimates of net salvage were based in part on historical data compiled for the years 1980 through 2009. Cost of removal and salvage were expressed as percents of the original cost of plant retired, both on annual and three-year moving average bases. The most recent five-year average also was calculated for consideration. The net salvage estimates are expressed as a percent of the original cost of plant retired.

## Net Salvage Considerations

The estimates of salvage were based primarily on judgment which considered a number of factors. The primary factors were the analyses of historical data; a knowledge of management's plans and operating policies and net salvage estimates from previous studies of this company and other water companies. The accounts for which the historical
analyses were representative of expectations for future net salvage levels represent 93 percent of the depreciable plant balance and are presented below:

304.2 \& 304.3	Structures and Improvements
304.4	Structures and Improvements - Trans. \& Dist.
304.6	Structures and Improvements - Office Buildings
304.8	Structures and Improvements - Miscellaneous
309	Supply Mains
$311.2,311.3,311.4$,	
$311.52 \& 311.54$	Pumping Equipment
$320.1 \& 320.11$	Purification System
330.1	Elevated Tanks and Standpipes
331	Mains and Accessories - All Mains
333	Services
$334.1,334.11,334.12$,	
$334.13,334.2 \& 334.3$	Meters and Meter Installations
335	Fire Hydrants
341.1	Transportation Equipment - Light Duty Trucks
341.2	Transportation Equipment - Heavy Duty Trucks
341.3	Transportation Equipment - Autos
345	Power Operated Equipment

Account 335, Fire Hydrants, is used to illustrate the manner in which the study was conducted for the accounts in the preceding list. Depreciation reserve accounting data were compiled for the years 1980 through 2009. These data include the retirements, cost of removal and gross salvage.

The net salvage estimate for this account is negative 25 percent and is based on the trends in cost of removal and salvage percents as shown in the tabulation on pages III-110 and III-111. Cost of removal as a percent of the original cost retired has fluctuated during the experience and most recently decreased as a percentage of plant retired. The overall and most recent five-year bands averaged 27 and 15 percent removal cost, respectively. Gross salvage has been sporadic, averaging 26 percent for the 30 -year period, but trending to 0 percent in recent years. The negative 25 percent net salvage estimate is based primarily on the overall cost of removal and gross salvage percent.

Amortization accounting is proposed for certain General Plant accounts which represent 4 percent of depreciable property. Future gross salvage and removal cost for these accounts will be recorded against the oldest vintage being retired. Inasmuch as there will be minimal to no depreciation reserve entries related to salvage, the estimate of net salvage for accounts subject to amortization is zero percent.

Generally, the net salvage estimates for the remaining accounts, which comprise 3 percent of the total depreciable plant in service, were based on judgments which considered the nature of the plant and equipment, reviews of available historical data, and a general knowledge of net salvage percents for similar equipment in other water companies.

## CALCULATION OF ANNUAL AND ACCRUED DEPRECIATION

After the survivor curve and salvage are estimated, the annual depreciation accrual rate can be calculated. In the average service life procedure, the annual accrual rate is computed by the following equation:

$$
\text { Annual Accrual Rate, Percent }=\frac{(100 \%-\text { Net Salvage, Percent })}{\text { Average Service Life }}
$$

The calculated accrued depreciation for each depreciable property group represents that portion of the depreciable cost of the group which will not be allocated to expense through future depreciation accruals, if current forecasts of life characteristics are used as a basis for straight line depreciation accounting.

The accrued depreciation calculation consists of applying an appropriate ratio to the surviving original cost of each vintage of each account, based upon the attained age and the estimated survivor curve. The accrued depreciation ratios are calculated as follows;

$$
\text { Ratio }=\left(1-\frac{\text { Average Remaining Life Expectancy }}{\text { Average Service Life }}\right)(1-\text { Net Salvage, Percent })
$$

The application of these procedures is described for a single unit of property and a group of property units. Salvage is omitted from the description for ease of application.

## Single Unit of Property

The calculation of straight line depreciation for a single unit of property is straightforward. For example, if a $\$ 1,000$ unit of property attains an age of four years and has a life expectancy of six years, the annual accrual over the total life is:

$$
\frac{\$ 1,000}{(4+6)}=\$ 100 \text { per year. }
$$

The accrued depreciation is:

$$
\$ 1,000\left(1-\frac{6}{10}\right)=\$ 400
$$

## Group Depreciation Procedures

When more than a single item of property is under consideration, a group procedure for depreciation is appropriate because normally all of the items within a group do not have identical service lives, but have lives that are dispersed over a range of time. There are two primary group procedures, namely, average service life and equal life group.

Remaining Life Annual Accruals. For the purpose of calculating remaining life accruals as of November 30,2009 , the depreciation reserve for each plant account is allocated among vintages in proportion to the calculated accrued depreciation for the account. Explanations of remaining life accruals and calculated accrued depreciation follow. The detailed calculations as of November 30, 2009, are set forth in the Results of Study section of the report.

Average Service Life Procedure. In the average service life procedure, the remaining life annual accrual for each vintage is determined by dividing future book accruals (original cost less book reserve) by the average remaining life of the vintage. The average remaining life is a directly weighted average derived from the estimated future survivor curve in accordance with the average service life procedure.

The calculated accrued depreciation for each depreciable property group represents that portion of the depreciable cost of the group which would not be allocated to expense through future depreciation accruals, if current forecasts of life characteristics are used as the basis for such accruals. The accrued depreciation calculation consists of applying an appropriate ratio to the surviving original cost of each vintage of each account, based upon the attained age and service life. The straight line accrued depreciation ratios are calculated as follows for the average service life procedure:

$$
\text { Ratio }=1-\frac{\text { Average Remaining Life }}{\text { Average Senvice Life }}
$$

## CALCULATION OF ANNUAL AND ACCRUED AMORTIZATION

Amortization is the gradual extinguishment of an amount in an account by distributing such amount over a fixed period, over the life of the asset or liability to which it applies; or over the period during which it is anticipated the benefit will be realized. Normally, the distribution of the amount is in equal amounts to each year of the amortization period.

The calculation of annual and accrued amortization requires the selection of an amortization period. The amortization periods used in this report were based on judgment which incorporated a consideration of the period during which the assets will render most
of their service, the amortization period and service lives used by other utilities, and the service life estimates previously used for the asset under depreciation accounting.

Amortization accounting is proposed for certain General Plant accounts that represent numerous units of property, but a very small portion of depreciable utility plant in service. The accounts and their amortization periods are as follows:
AmortizationPeriod,
Account
Years
Office Furniture and Equipment
340.10 Furniture ..... 20
340.21 Mainframe ..... 5
340.22 Personal Computers ..... 5
340.23 Peripheral - Other ..... 5
340.30 Computer Software ..... 5
340.32 Computer Software - Personal ..... 5
340.33 Computer Software - Other ..... 5
340.50 Other ..... 15
342.00 Stores Equipment ..... 25
343.00 Tools, Shop \& Garage Equipment ..... 20
344.00 Laboratory Equipment ..... 15
346.10 Communication Equip. - Non-Telephone ..... 15
346.19 Communication Equip. - Remote Control and Instrumentation ..... 15
346.20 Communication Equip. - Telephone ..... 15
347.00 Miscellaneous Equipment ..... 20
348.00 Other Tangible Property ..... 20

The calculated accrued amortization is equal to the original cost multiplied by the ratio of the vintage's age to its amortization period. The annual amortization amount is determined by dividing the original cost by the period of amortization for the account.

## PART III. RESULTS OF STUDY

## QUALIFICATION OF RESULTS

The calculated annual depreciation accrual rates are the principal results of the study. Continued surveillance and periodic revisions are normally required to maintain continued use of appropriate annual depreciation accrual rates. An assumption that accrual rates can remain unchanged over a long period of time implies a disregard for the inherent variability in service lives and salvage and for the change of the composition of property in service. The annual accrual rates were calculated in accordance with the straight line remaining life method of depreciation using the average service life procedure based on estimates which reflect considerations of current hisforical evidence and expected future conditions.

The annual depreciation accrual rates are applicable specifically to the water plant in service as of November 30, 2009. For most plant accounts, the application of such rates to future balances that reflect additions subsequent to November 30, 2009, is reasonable for a period of three to five years.

## DESCRIPTION OF STATISTICAL SUPPORT

The service life and salvage estimates were based on judgment which incorporated statistical analyses of retirement data, discussions with management and consideration of estimates made for other water utility companies. The results of the statistical analyses of service life are presented in the section titled "Service Life Statistics".

The estimated survivor curves for each account are presented in graphical form. The charts depict the estimated smooth survivor curve and original survivor curve(s), when
applicable, related to each specific group. For groups where the original survivor curve was plotted, the calculation of the original life table is also presented.

The analyses of salvage data are presented in the section titled, "Net Salvage Statistics". The tabulations present annual cost of removal and salvage data, three-year moving averages and the most recent five-year average. Data are shown in dollars and as percentages of original costs retired.

## DESCRIPTION OF DEPRECIATION TABULATIONS

A summary of the results of the study, as applied to the original cost of utility plant at November 30, 2009, is presented on pages III-4 through III-8 of this report. The schedule sets forth the original cost, the book depreciation reserve, future accruals, the calculated annual depreciation rate and amount, and the composite remaining life related to utility plant.

The tables of the calculated annual depreciation accruals are presented in account sequence in the section titled "Depreciation Calculations." The tables indicate the estimated survivor curve and salvage percent for the account and set forth for each installation year the original cost, the calculated accrued depreciation, the allocated book reserve, future accruals, the remaining life and the calculated annual accrual amount.

察 ल ले筞 NはT N

	$\begin{gathered} \mathrm{N} \\ \end{gathered}$	$\stackrel{9}{\dot{\sim}}$	8	NOD	俞	$\stackrel{\infty}{\sim}$	$\begin{aligned} & 48 \\ & \sim \end{aligned}$	$\stackrel{\mathscr{N}}{\dot{N}}$	Nio	$\bar{ल}$	लुष्\％   －तN	लNलN	－		N
	$\begin{aligned} & 9 \\ & \stackrel{9}{6} \\ & \mathbf{C}_{0}^{6} \end{aligned}$	哲告	$\begin{aligned} & \infty \\ & \stackrel{\infty}{4} \\ & \stackrel{\circ}{8} \end{aligned}$			$\begin{aligned} & \text { é } \\ & \stackrel{0}{*} \\ & \stackrel{y}{*} \end{aligned}$		$\begin{gathered} \mathrm{of} \\ \text { of } \\ \text { of } \end{gathered}$	$\infty$   $\infty$   $\infty$   $\infty$				$\begin{aligned} & \text { 僉 } \\ & \stackrel{m}{5} \end{aligned}$		\％


DEPRECIABLE GROUP		VIVOR CURV EPRECIATIO	ORIGINAL ACCRUALS	TT BOOK DEPRECIATI ATED TO UTILITY PLA	RESERVE AND CA AT NOVEMBER 30	ULATED   09
		$\begin{array}{c}\text { SURVIVOR } \\ \text { CURVE }\end{array}$   $(2)$	$\begin{gathered} \text { NET } \\ \text { SALVAGE } \\ \hline \end{gathered}$	OBIGINAL COST AT NOVEMBER 30,2009	BOOK   DEPRECIATION   RESERVE   $(5)$	FUTURE ACCRUALS
	（1）	（2）	（3）	（4）		（6）
$\begin{aligned} & \begin{array}{l} 304: 10 \\ 304: 20 \end{array} \end{aligned}$	STRUCTURES AND IMPROVEMENTS					
	SOURCEOF SUPPLY	35－51．5	（5）	2，673，341，00	177，274	2；628．735
	POWER AND PUMPING STRUCTURES					
	KENTUCKY RIVER STATION	60－R2； 5	（20）	3，312，283，48	1，078；367	2：896，374
	OTHER STRUGTURES	60：R2：5	（20）	1，903，638，58	427，693	1，856，672．
	TOTAL ACCOUNT 304．20			5；215，922．06	1，506，060．	4，753，046
30430	WATER TREATMENT					
	KENTUCKY RIVER STATION	60－R2．5．	＊（20）	4，737，792．69	680.519	5，004，832
	RICHMONO ROAD STATION TREATMENT PLANT	60－R2：5	＊（20）	3，155，429，377	492，400．	3294,115
	OTHER STRUCTURES	60－R2．5	（20）	2，003，710．24	115，428	2，289，024
	TOTALACCOUNT 30430			9，896，932 20	1，288，347	10，587，971
304.40304.60	TRANSMISSION AND DISTRIBUTION	30－52	（5）	1；029，339，68	498.903	581；904．
	OFFICE BUIUINGS					
	MAIN OFFICE	55－R2．5．	－（6）	3023.40501	590，924	2，583，651
	OTHER STRUGTURES	55－R2．5：	（5）	$3,166,549,16$	454，608	$2870 ; 269$
	TOTALACCOUNT 304.60			6．4899954．17	1，045；532	5，453，920．
3047030480	STORE SHOP AND GARAGE SIRUCTURES	50－R2．5	0.	1，729，151，96	271，636	$1.457,514$
	MISCELLANEOUS STRUCTTURES	25－R2	（10）	1，923，367．3．4	$309,708$.	1，805，997
	TOTAL ACCOUNT 304			28，658，008，41	5，097，460	27，270，087
30500	COLLECTING AND IMPOUNDING RESERVOIRS，	75－R4	0	1，005，085，91	351.752	$6533_{5} 334$
3060.00	LAKE RIVER AND OTHER INTAKES	50－S1	0	537，097，97	51，660	485；438
310.10	SUPPLYMAINS	65－52．6	（10）	5，143，914．92	1， 152.774	4，505，535．
	OTHER POWER GENERATION EQUIPMENT	35．\＄2．5．	0	935，700．43	272，615	663,085
	PUMPING EQUIPMENT					
31120	ELECTRIC	50－R3	（20）	9，389，884，23	4．830：584	6．437．280
31130	DIESEL	50－R3	（20）	718，476．09	333．440	528，733
31140	HYORAULLC	50－R3	（20）	840501	1，557	8，529
311.52	SOURCE OFSUPPLY	50－R3	（20）	8，386，157．45	144,165	$9,919,225$
31154	TRANS AND DISTR PUMPING EQUIPMENT	50－R3	（20）	176,34111	8，997	202，612
	TOTALACCOUNT 311			18.679 .26389	5，318，744	17，096，379
820.10	PURIFICATION SYSTEM－STRUCTURES					
	KENTUCKY RIVER STATION＇	60－R3	＊（20）	8，568，723：98	6，274，344	4，008，127
	RUGHMOND ROAD STATION TREATMENTPLANT	60 R 3	＊（20）	7，492，81999	3，004，727	5，986，662
	OTHER STRUGTURES	60－R3	（20）	2，286，435：90	636，270	2，107，453
	TOTALACCOUNT 320.10			18，347，979．87	3，915，341	12：102；242

ESTIMATED SURVIVOR CURVE，ORIGINAL COST，BOOKDEPRECIATION RESERVE AND GALCULATED ANNUÄL DEPRECIATION ACCRUALS RELATED TO UTLLITY PLANT AT NOVEMBER 30， 2009

COMPOSITE
REMAINING
LIFE

ले $\stackrel{\circ}{\sim}$ $\underset{\sim}{6}$ $\stackrel{4}{4}$ －8
M M Wion $\bar{\circ}$




$\qquad$ 0 $\stackrel{\circ}{\circ}$ ，


	$\stackrel{\theta}{\mathrm{N}}$	$\begin{aligned} & 8 \\ & \stackrel{B}{4} \\ & \hline \end{aligned}$		－	$0$	$\stackrel{\infty}{\mathrm{N}} \mathrm{~N} \underset{\mathrm{~N}}{\mathrm{~N}}$	$\underset{\sim}{\infty}$	\&og if	$8$	－	$$	m
	$\begin{aligned} & \text { M } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \text { \% } \\ & \text { \% } \\ & \text { N } \end{aligned}$		$\circ$   8   8   8	$\begin{aligned} & \widetilde{0} \\ & \stackrel{\sim}{0} \\ & \stackrel{\sim}{\sim} \end{aligned}$		\％



	$\begin{aligned} & 8 \\ & \stackrel{8}{9} \\ & \stackrel{8}{6} \\ & 4 \end{aligned}$								$\begin{aligned} & \text { g 강 } \\ & \text { 合会 } \end{aligned}$	$\stackrel{\text { ¢ }}{\stackrel{\circ}{\text { i }}}$		



$\stackrel{4}{4} \frac{5}{4}$		0 気00	용	8089	¢600	$\bigcirc$	$\bigcirc$
						\％	8


	DEPRECIABLE GROUP	
	（1）	
	320.11	PURIFICATION SYSTEM－EQUIFMENT
	32020	PURIFICATION SYSTEM－FLTER MEDIA
		TOTAL ACGOUNT 320
	33000	DISTRIBUTION RESERVOIRS AND STANDPIPES
	330.10	ELEVATED TANKS AND STANDPIPES
	33020	GROUND LEVEL FACILITIES
	33040	CLEARWELLS
		TOTAL AGGOUNT 330
	33100	MAINS AND ACCESSORIES
	33300	SERVICES
$\bar{G}$		METERS
	33410	METERS
	334.11	bronzecase
	$\begin{array}{r} 334.12 \\ 334.13 \end{array}$	PLASTIC CASE
		OTHER
		TOTAL ACCOUNT 334.1
	334：20：	METER INSTALLATIONS
	334：30	METER VAULTS
	\＄35．00：	FIRE HYDRANTS
	33910	OTRER SOURCE OF SUPPLY PLANT：
	－33960	OTHER PRE COMPANY PLANNING STUDY
	34010	OFFICE FURNITURE AND EQUIFPMENT
		FURITURE：
		FULY MACCRUED
		AMORTIEED
		Total account 340 10
	340.21	MAINFRAME
		FUlly accrued
		AMORTIZED
		TOTAL ACCOUNT 340.21

KENTUCKY AMERICAN WATER COMPANY
ESTIMATED SURVIVOR CURVE，ORIGINAL COST，BOOK DEPREGIATION RESERVE AND CALCULATED ANNUAL DEPRECIATION ACCRUALS RELATED TO UTILITY PLANT AT NOVEMBER 30,2009 COMPOSITE
REMAINING

	$8$	$\underset{\sim}{\mathrm{N}}$	$8$	$\stackrel{\ddot{0}}{\stackrel{\ddot{0}}{\underset{\sim}{0}}}$	$\begin{array}{r} 8 \\ 08 \\ 0 \end{array}$	$\stackrel{m}{n}$	$\begin{array}{r} 8 \\ .8 .8 \\ \end{array}$	$\begin{aligned} & \underset{\sim}{\omega} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	品	$\stackrel{5}{6}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\infty}$	$\stackrel{\sim}{\infty}$	合	（ N ，m	C
	$\begin{array}{r}0.8 \\ 0 \\ \hline 8 \\ \hline\end{array}$	$\begin{aligned} & 0.0 \\ & 8 . \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$	$0 \stackrel{0}{0}$	$\begin{aligned} & \stackrel{e}{c} \\ & \stackrel{y}{\mathrm{y}} \\ & \stackrel{y y}{c} \end{aligned}$	－8\％	$\begin{aligned} & \frac{5}{8} \\ & \stackrel{9}{7} \\ & \hline \end{aligned}$	\％ 8	$\begin{aligned} & \text { O} \\ & \hline \circ \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$$	雩	$\begin{array}{cc} 0 & 8 \\ 4 \\ 4 \\ 4 \\ \\ \\ \hline \end{array}$	$\stackrel{8}{+}$	$\begin{aligned} & \text { 等 } \\ & \stackrel{+}{+} \end{aligned}$		－


DEPRECIABLE GROUP		ESTIMATED SURVIVOR CURVE，ORIGINAL COST，BOOK DEPRECIATION RESERVE AND CALCULATED ANNUAL DEPRECIATION ACCRUALS RELATED TO UTILITY PLANT AT NOVEMBER 30,2009				
		SURVIVOR CURVE	$\begin{aligned} & \text { NET } \\ & \text { SALVAGE } \\ & \hline \end{aligned}$	ORIGINAL COST AT NOVEMBER $30: 2009$	BOOK DEPRECIATION RESERVE	FUTURE ACCRUALS
	（1）	（2）	（3）：	（4）	（5）	（6）
340．22	PERSONAL COMPUTERS					
	Fully accrued			$461,455.29$	461.455	0
	AMORTIZED	5．SQ	0	400，086：01	218，027	182，059
	FOTAL ACCOUNT 340.22			861，541，30：	679，482	182，059
340．23：	PERIPHERALOTHER				101975	0
	FULLYACGRUED AMORTIZED	5－SQ	0	$\begin{aligned} & 101,975 ; 12 \\ & 176 ; 607,48 \end{aligned}$	57.761	1188847
	TOTAL ACCOUNT 340.23			278．582．50－	159，736：	148847
$340: 30$	COMPUTER SOFTWARE FULLY ACCRUED			3， 976.525 .37	3，9766525．	0
	AMORTIZED	5SSQ	0	570，993 22	455，618	115，375
	TOTAL ACCOUNT 34030			4，547．518．59：	4，432，143	115375
340：32	COMPUTER SOFTWARE－PERSONAL FULLYACCRUED			40000	400	0
	AMORTIZED	5－SQ	0	100，330：19	46，494	53：836
	TOTAL ACCOUNT 34032			100，73019	46；894：	53，836
340.33	GOMPUTER SOFTWARE－OTHER FUlly ACGRUED			527，873，70	527；874	0
	AMORTIEED	5 SQ	0	4，470，43	2，163	2307
	TOTALACGOUNT 34033			5323344．13	530，037	2，307
34050	OTHER					0
	Fullyacgrued AMORTIZED	15：SO	0	$\begin{array}{r} 48,81575 \\ 69,553,41 \\ \hline \end{array}$	42，553	27，001
	TOTAL ACCOUNT 34050			88，369：16：	61，369	27,001
	TOTAL ACCOUNT 340			7，234，720．88	6，461，484	770．236
	TRANSPORTATION EQUIPMENT					
34170	HGht duty trueks	13． 52.5	20	1，890，068．72	16988.556 892930	（186， 293,866
341.20	HEAVY DUTY TRUCKS	14.52	15	$1.160,937$ ，05	692，930	293，866
34130	Autos	10.53	15	207．856．84	297923	（121，245）
381.40	OTHER	16－L3	0	416，326．20	116；005	300， 323
	TOTALACCOUNT 341			3：675；188：78	2，805，414	286，444




$$
\stackrel{\rightharpoonup}{2}
$$

$$
\stackrel{N}{\mathrm{~N}} \quad \stackrel{\tilde{0}}{\mathrm{E}}
$$

$$
\stackrel{r}{\stackrel{\rightharpoonup}{c}}
$$

$$
\frac{a}{y}
$$

$$
\stackrel{\infty}{\sigma} \underset{\sim}{\infty}
$$

$$
\stackrel{\circ}{2}
$$

$$
\underset{\sim}{\infty}
$$






先






[^4]KENTUCKY AMERICAN WATER COMPANY
ESTIMATED SURVIVOR CURVE ORIGINAL COST, BOOK DEPRECIATION RESERVE AND GALCULATED ANNUAL DEPRECIATION ACCRUALS RELATED TO UTILITY PLANT AT NOVEMBER 30,2009

1 $\because 1414$


(436,492)
$\vdots$
$6,729,623$


ESTIMATED SURVIVOR CURVE, ORIGINAL COST, BOOK DEPRECIATION RESERVE AND CALCULATED ANNUAL DEPRECIATION ACCRUALS RELATED TO UTLITY PLANT AT NOVEMBER 30,2009						
	DEPRECIABLE GROUP		$\begin{aligned} & \text { NET } \\ & \text { SALVAGE } \end{aligned}$	ORIGINAL COST AT NOVEMBER $30 ; 2009$	BOOK DEPRECIATION RESERVE	FUTURE ACCRUALS
	(1)	(2)	(3)	(4)	(5)	(6)
340.50	OTHER				21.130	
342.00	STORES EQUPMENT				3:340	
343,00	TOOLS SHOP AND GARAGE EQUIPMENT				$156 ; 200$	
344,00	LABORATORY EQUIPMENT				174,850	
346.10	COMMUNICATION EOUIPMENT NON-TELEPHONE				(507;300)	
346.19	REMOTE CONTROL AND INSTRUMENTATION				(355)	
:346:20	COMMUNICATION EQUIPMENT -TELEPHONE				(6,700)	
34700:	MISCELLANEOUS EQUIPMENT				(32;500)	
34800	OTHER TANGIBLE PROPERTY				246,300	
	TOTAL UNRECOVERED RESERVE TO BE AMORTIZED				2,182,458	

TOTAL UNRECOVERED RESERVE TO BE AMORTIZED

## NONDEPRECIABLE PLANT

FRANGHISES AND CONSENTS
FRANGFISES AND CONSENTS
LAND - SOURCE OF SUPPLY


* LIFESPAN PROCEDURE WAS USED. CURVE SHOWN IS INTERIM SURVIVOR CURVE.
* NEW ADOITIONS WILL HAVE A DEPRECIATION ACCRUAL RATE AS FOLLOWS * NEW ADDITIONS WIL HAVE A DEPRECIATION ACCRUAL RATEAS FOLLOWS
$\begin{array}{ll}\text { ACCOUNT } & \text { RATE } \\ 34110 & 615 \\ 34.130 & 8.50\end{array}$


## TOTAL NONDEPRECIABLE PLANT

TOTAL PLANT


[^5]$\begin{array}{r}291,857,202 \\ \hline\end{array}$
$816^{\circ} 055^{\prime} 98$



111-10

ACCOUNT 304.10 STRUCTURES \& IMPROVEMENTS - SOURCE OF SUPPLY

## ORIGINAL LIFE TABLE

PLACEMENT BAND $1962-2008$
EXPERIENCE BAND 1995-2009

## AGE AT EXPOSURES AT BEGIN OF BEGINNING OF <br> INTERVAL AGE INTERVAL

RETIREMENTS DURING AGE RETMT SURV

PCT SURV BEGIN OF INTERVAL:

0.0	$2,611,531$
0.5	$2,611,531$
1.5	$2,536,311$
2.5	$2,522,860$
3.5	891,020
4.5	887,021
5.5	869,833
6.5	396,821
7.5	121,835
8.5	82,953
9.5	82,953
10.5	86,153
11,5	78,410
12.5	77,426
13.5	77,426
14.5	77,426
15.5	77,426
16.5	77,426
17.5	77,426
18.5	46,650
19.5	46,650
20.5	6,089
21.5	3,556
22.5	3,556
23.5	3,556
24.5	3,556
25.5	356
26.5	356
27.5	356
28.5	356
29.5	356
30.5	356
31.5	356
32.5	11,832
33.5	11,698
34.5	11,698
35.5	11,477
36.5	11,477
37.5	11,4777
38.5	


	0.0000	1.0000	100.00
9,152	0.0035	0.9965	100.00
11,676	0.0046	0.9954	99.65
6,621	0.0026	0.9974	99.19:
	0.0000	1.0000	98.93
	0.0000	1.0000	98.93
	0.0000	1.0000	98.93
	0.0000	1.0000	98.93
	0.0000	1.0000	98.93
	0.0000	1.0000	98.93
	0.0000	1. 0000	98.93
	0.0000	1.0000	98.93
	0.0000	1.0000	98.93
	0.0000	1.0000	98.93
	0.0000	1.0000	98.93
54,118.	0.6990	0.3010	98.93
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1. 0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
	0.0000	1.0000	29.78
I, 100	0.0958	0.9042	29.78

## KENTUCKY AMERICAN WATER COMPANY

ORIGINAL LIFE TABLE, CONT,					
- PLACEMENT	BAND $1962-2008$		EXPERIEN	CE BAND	1995-2009
AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OE	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAL
39.5	11,477		0.0000	1.0000	26.93
40.5	11,477		0.0000	1.0000	26.93
41.5	11,477		0.0000	1.0000	26.93
42.5	11,477		0.0000	1.0000	26.93
43.5	11,477		0.0000	1.0000	26.93
44.5	11,477		0.0000	1.0000	26.93
45.5	11,477		0.0000	1.0000	26.93
46.5	11,477		0.0000	1.0000	26.93
47.5					26.93


$\mathrm{III}-13$

## KENIUCKY AMERICAN WATER COMPANY

ACCOUNTS 304.20 AND 304.30 STRUCTURES AND IMPROVEMENTS

## ORIGINAL LIFE TABEE

PLACEMENT BAND $1912-2009$
EXPERIENCE BAND 1995-2009
$\begin{array}{cl}\text { AGE AT } & \text { EXPOSURES AT } \\ \text { BEGIN OF } & \text { BEGINNING OF } \\ \text { INTERVAL } & \text { AGE INTERVAL }\end{array}$

| RETIREMENTS |  | PCT SURV |
| :--- | :--- | :--- | :--- |
| DURING AGE |  |  |
| RETMT | SURV BEGIN OF |  |
| INTERE | RATTO | RATIO INTERVAL |


0.0	8,257,560		0.0000	1.0000	100.00
0.5	8,209,451.		0.0000	1.0000	100.00
1.5	9,079,259		0.0000	1.0000	100.00
2.5	9,905,800		0.0000	1. 0000	100.00
3.5	8,821,595		0.0000	1.0000	100.00
4.5	8,687,869	20,472	0.0024	0.9976	100.00
5.5	8,967,692		0.0000	1.0000	99.76
6.5	10,609,291	40,546	0.0038	0.9962	99.76
7.5	10,937,731.	6,141	0.0006	\%. 9994	99.38
8.5	$10,538,977$	1. 898	0.0002	0.9998	99.32
9.5	9,979,596	82,731	0.0083	0.9917	99.30
10.5	8,991,593		0.0000	1. 0000	98. 48
11.5	$8,970,996$	86.130	0.0096	0.9904	98.48
12.5	$8,436,894$	17,677	0.0021	0.9979	97.53
13.5	5,974,048	5.017	0.0008	0.9992	97.33
14.5	$5,922,720$		0.0000	1.0000	97.25
15.5	$5,912,332$	12,626	0.0021	0.9979	97.25
16.5	$5,040,812$	11,906	0.0024	0.9976	97.05
17.5	$3,114,339$	18,221	0.0059	0.9941	96.82
18.5	$2,897,371$		0.0000	1.0000	96.25
19.5	2,803,952	6.161	0.0022	0.9978	96.25
20.5	$2,247,514$	775	0.0003	0.9997	96.04
21.5	767,576	1,180	0.0015	0.9985	96.01
22.5	729,819		0.0000	1.0000	95.87
23.5	831,173	3,250	0.0039	0.9961	95.87
24.5	923,507		0.0000	1. 0000	95.50
25.5	$1,030,623$		0.0000	1.0000	95.50
26.5	1,033,083	3,152	0.0031	0.9969	95.50
27.5	951,159	8,597	0.0090	0.9910	95.20
28.5	974,641	20,971	0.0215	0.9785	94.34
29.5	950,221	6,110	0.0064	0.9936	92.31
30.5	944,249		0.0000	1.0000	91.72
31.5	940,842	1.142	0.0012	0.9988	91.72
32.5	891,569	6,075	0.0068	0.9932	91.61
33.5	883,816	4.800	0.0054	0.9946	90.99
34.5	853,291	480	0.0006	0.9994	90.50
35.5	891,463	218,730	0.2454	0.7546	90.45
36.5	705,364	3.602	0.0051	0.9949	68.25
37.5	696,300		0.0000	1.0000	67.90
38.5	596,154	24	0.0000	1.0000	67.90

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNTS 304.20 AND 304.30 STRUCTURES AND IMPROVEMENTS
ORIGINAL LIFE TABLE, CONT.
PLACEMENT BAND 191242009
EXPERIENCE BAND 1995-2009

## AGE AT EXPOSURES AT BEGIN OF BEGINNING OF INTERVAL AGE INTERVAL

RETIREMENTS
DURING AGE RETMT SURV

PCT SURV
BEGIN OF INTERVAI.

39.5	507,628		0.0000	1.0000	67.90
40.5	392,848	17,195	0.0438	0.9562	67.90
41.5	374,743	2,098	0.0056	0.9944	64.93
42.5	298,216	7,158	0.0240	0.9760	64.57
43.5	271,236	4,639	0.0171	0.9829	63.02
44.5	266,598		0.0000	1.0000	61.94
45.5	266,916		0.0000	1.0000	61.94
46.5	266,726		0.0000	1.0000	61.94
47.5	263,883	5,900	0.0224	0.9776	61.94
48.5	257,008		0.0000	1,0000	60.55
49.5	251,852	51,589	0.2048	0.77952	60.55
50.5	141,957		0.0000	1.0000	48.15
51.5	115,797	2,600	0.0225	0.9775	48.15
52.5	20,718		0.0000	1.0000	47.07
53.5	21,488		0.0000	1.0000	47.07
54.5	15,283		0.0000	1.0000	47.07
55.5	21,062		0.0000	1.0000	47.07
56.5	29,787		0.0000	1.0000	47.07
57.5	29,787		0.0000	1.0000	47.07
58.5	20,908		0.0000	1.0000	47.07
59.5	20,908	290	0.0139	0.9861	47.07
60.5	48,190		0.0000	1.0000	46.42
61.5	45,916		0.0000	1.0000	46.42
62.5	44,542		0.0000	1.0000	46.42
63.5	$44 ; 542$		0.0000	1.0000	46.42
64.5	44,542		0.0000	1.0000	46.42
65.5	45,212		0.0000	1.0000	46.42
66.5	45,112	283	0.0063	0.9937	46.42
67.5	44,727		0.0000	1. 0000	46.13
68.5	45,897		0.0000	1.0000	46.13
69.5	58,163		0.0000	1.0000	46.13
70.5	51,248		0.0000	1.0000	46.13
71.5	42,523		0.0000	1.0000	46.13
72.5	$42 \times 523$	12.	0.0003	0.9997	46.13
73.5	42,511		0.0000	1.0000	46.12
74.5	42,511.	15	0.0004	0.9996	46.12
75.5	14,777		0.0000	1.0000	46.10
76.5	14,777		0.0000	1.0000	46.10
77.5	14,777		0.0000	1.0000	46.10
78.5	14,777		0.0000	1.0000	46.10

## KENTUCKY AMERICAN WATER COMPANY

ORIGINAL LIFE TABLE, CONT.					
PLIACEMENT	BAND 1912-2009		EXPERIEN	CE BAND	1995-2009
AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	AGE INTERVAI	INTERVAL	RATIO	RATIO	INTERVAL
79.5	14,777	7	0.0005	0.9995	46.10
80.5	14,206		0.0000	1.0000	46.08
81.5	14.206		0.0000	1.0000	46.08
82.5	15,049	28	0.0019	0.9981	46.08
83.5	13,081		0.0000	1.0000	45.99
84.5	843		0.0000	1.0000	45.99
85.5	843		0.0000	1.0000	45.99
86.5	843		0.0000	1.0000	45.99
87.5	843		0.0000	1.0000	45.99
88.5	843		0.0000	1.0000	45.99
89.5	843		0.0000	1.0000	45.99
90.5	843		0.0000	1.0000	45.99
91.5	843		0.0000	1.0000	45.99
92.5	843	843	1.0000	0.0000	45.99
93.5					0.00



111-17

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 304.40 STRUCTURES \& IMPROVEMENTS - TRANS. AND DISTR.
ORIGINAL LIFE TABLE
PLACEMENT BAND $1954-2009$
EXPERIENCE BAND 1995-2009

AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	AGE INTERVAL	INTERVAI.	RATIO	RATIO	INTERVAL
0.0	610,284		0.0000	1.0000	100.00
0.5	392,870		0.0000	1.0000	100.00
1.5	367,483		0.0000	1.0000	100.00
2.5	781,989		0.0000	1.0000	100.00
3,5	734,948	708	0.0010	0.9990	100.00
4. 5	722,670		0.0000	1.0000	99.90
5.5	723.870	2,822	0.0039	0.9961	99.90
6.5	721,048		0.0000	1.0000	99.51
7.5	699,884		0.0000	1.0000	99.51
8.5	699,884	10,340	0.0148	0.9852	99.51
9.5	681,265	20,000	0.0294	0.9706	98.04
10. 5	609,270		0.0000	1.0000	95.16
11.5	470,164	4.340	0.0092	0.9908	95.16
12.5	467,218		0.0000	1.0000	94.28
13.5	459,992		0.0000	1.0000	94.28
14.5	459,992		0.0000	1.0000	94.28
15.5	459,992	1,527	0.0033	0.9967	94.28
16.5	458,465	1,200	0.0026	0.9974	93.97
17.5	44,286		0.0000	1.0000	93.73
18.5	I, 420		0.0000	1.0000	93.73
19.5	1,420		0.0000	1.0000	93.73
20.5	1, 42.0.		0.0000	1.0000	93.73
21.5	1, 420		0.0000	1.0000	93.73
22.5	1,420		0.0000	1.0000	93.73
23.5	1,420		0.0000	1.0000	93.73
24.5	1, 420		0.0000	1.0000	93.73
25.5	1,420		0.0000	1.0000	93.73
26.5	1,420		0.0000	1.0000	93.73
27.5					93.73

29.5
30.5
31.5
32.5
33.5
34.5
35.5
36.5
37.5
38.5

III-18

KENTUCKX AMERICAN WATER COMPANY
ACCOUNT 304.40 STRUCTURES \& IMPROVEMENTS - TRANS. AND DISTR.
ORIGINAL LIFE TABLE, CONT.

PLIACEMENT	BAND 1954-200	EXPERIENCE		BAND	1995-2009
AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	surv	BEGIN OF
INTERVAL	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAE
39.5					
40.5	1,100		0.0000		
41.5	1,100		0.0000		
42.5	1,100		0.0000		
43.5	1,100		0.0000		
44.5	1, 100		0.0000		
45.5	1,100		0.0000		
46.5	1,100		0.0000		
47.5	I, 100		0.0000		
48.5	1,100		0.0000		
49.5	1.100		0.0000		
50.5	1, 100		0.0000		
51.5	1.100	1,100	1.0000		
52.5					



## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.60 STRUCTURES \& IMPROVEMENTS - OFEICE BUTLDINGS

## ORIGINAL LIFE TABLE

PLACEMENT BAND 1965-2009 EXPERIENCE BAND 1995-2009

AGE AT	EXPOSURES AT
BEGIN OF	BEGINNING OF
INTERVAI	AGE INTERVAL



PGT SURV BEGIN OF INTERVAI

0.0	5, 237,349		0.0000	1.0000	100.00
0.5	$5,254,614$		0.0000	1.0000	100.00
1. 5	2,944,252		0.0000	1.0000	100.00
2.5	2,869,667		0.0000	1.0000	100.00
3.5	2,813,216	33,675	0.0120	0.9880	100.00
4.5	$2,751,595$		0.0000	1.0000	98.80
5.5	2,789,263		0.0000	1. 0000	98.80
6.5	2,871,104		0.0000	1.0000	98.80
7.5	$3,021,041$		0.0000	1.0000	98.80
8.5	$2,998,532$		0.0000	1.0000	98.80
9.5	$2,999,771$		0.0000	1.0000	98.80
10.5	2,833,685		0.0000	1.0000	98.80
11.5	2,607,562	13,257	0.0051	0,9949	98.80
12.5	565,183		0.0000	1.0000	98.30
13.5	553,963		0.0000	1.0000	98.30
14.5	527,906	4,303	0.0082	0.9918	98.30
15.5	503,017		0.0000	1.0000	97.49
16.5	503.017	2,525	0.0050	0.9950	97.49
17.5	488,830	487	0.0010	0.9990	97.00
18.5	486,306	$4 \times 184$	0.0086	0.9914	96.90
19.5	449,468	32,709	0.0728	0.9272	96.07
20.5	364,583	1,413	0.0039	0.9961	89.08
21.5	270,594	5,864	0.0217	0.9783	88.73
22.5	144,413		0.0000	1. 0000	86.80
23.5	121,692		0.0000	1.0000	86.80
24.5	827.795	989	0.0012	0.9983	86.80
25.5	824,920	937	0.0011	0.9989	86.70
26.5	823,983	814	0.0010	0.9990	85.60
27.5	750,272		0.0000	1. 0000	86.51
28.5	750.272	36,134	0.0482	0.9518	86.51
29.5	723,093		0.0000	1.0000	82.34
30.5	717,995		0.0000	1.0000	82,34
31.5	717,995	1,229	0.0017	0.9983	82.34
32.5	711,821		0.0000	1.0000	82.20
33.5	711,821		0.0000	1.0000	82.20
34.5	711,821		0.0000	1.0000	82.20
35.5	711,221	926	0.0033	0.9987	82.20
36.5	705,886		0.0000	1.0000	82.09
37.5	685,989	484	0.0007	0.9993	82.09
38.5	681,896		0.0000	1.0000	82.03

## KENTUCKY AMERTCAN WATER COMPANY

ACCOUNT 304.60 STRUCTURES \& IMPROVEMENTS - OFFICE BUILDTNGS
ORIGINAL LIFE TABLE, CONT.

PLACEMENT	BAND 1965-200	EXPERTENCE BAND			1995-2009
AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGTN OF
INTERVAL	AGE INTERVAL	INTERVAJ	RATIO	RATIO	INTERVAI
39.5	8,955		0.0000	1.0000	82.03
40.5	8,955		0.0000	1. 0000	82.03
41.5	8,955		0.0000	1.0000	82.03
42.5	8,955	1,813	0.2025	0.7975	82.03
43.5	7.142		0.0000	1.0000	65.42
44.5					65.42



III-23

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.70 STRUCTURES \& IMPROVEMENTS - SHOP \& GARAGE
ORIGINAL LIFE TABLE
PLACEMENT BAND 1957-2009
EXPERIENCE BAND 1995-2009

AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAI	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAI
0.0	1,074,751		0.0000	1.0000	100.00
0.5	335,256		0.0000	1.0000	100,00
1.5	881,358		0.0000	1.0000	100.00
2.5	881,358		0.0000	1.0000	100.00
3.5	881,358		0.0000	1.0000	100.00
4.5	898,583		0.0000	1.0000	100.00
5.5	898,583	29,115	0.0324	0.9676	100.00
6.5	911,994		0.0000	1. 0000	96.76
7.5	898,632		0.0000	1.0000	96.76
8.5	883,382		0.0000	1.0000	96.76
9.5	883,382		0.0000	1.0000	96.76
10.5	809,244		0.0000	1.0000	96.76
11.5	809,244		0.0000	1.0000	96.76
12.5	809,244		0.0000	1.0000	96.76
13.5	661,990		0.0000	1.0000	96.76
14.5	661,990		0.0000	1.0000	96.76
15.5	661,990		0.0000	1.0000	96.76
16.5	115,888		0.0000	1.0000	96.76
17.5	121,538		0.0000	1.0000	96.76
18.5	121,538		0.0000	1.0000	96.76
19.5	101,695		0.0000	1. 0000	96.76
20.5	101,695		0.0000	1.0000	96.76
21.5	59,169		0.0000	1.0000	96.76
22.5	6,399		0.0000	1.0000	96.76
23.5	7,123		0.0000	1. 1.0000	96.76
24.5	7,123		0.0000	1.0000	96.76
25.5	7,123		0.0000	1.0000	96.76
26.5	7,123		0.0000	1.0000	96.76
27.5	7,123		0.0000	1.0000	96.76
28.5	7,123		0.0000	1.0000	96.76
29.5	7,123		0.0000	1.0000	96.75
30.5	7.123		0.0000	1.0000	96.76
31.5	7,123		0.0000	1.0000	96.76
32.5	1, 473		0.0000	1.0000	96.76
33.5	1,473		0.0000	1.0000	96.76
34.5	2,181		0.0000	1.0000	96.76
35.5	2,181		0.0000	1.0000	96.76
36.5	2,181		0.0000	1.0000	96.76
37.5	15,126		0.0000	1.0000	96.76
38.5	14,402		0.0000	1.0000	96.76




## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.80 STRUCTURES \& IMPROVEMENTS - MISCELLANEOUS

## ORIGINAL LIFE TABLE

PLACEMENT BAND 1934-2007
EXPERIENCE BAND 1995-2009


0.0	$1,764,826$
0.5	$1,767,972$
1.5	$1,772,713$
2.5	$1,689,115$
3.5	$1,374,172$
4.5	929,027
5.5	972,023
6.5	245,090
7.5	227,869
8.5	199,614
9.5	236,670
10.5	235,970
11.5	180,346
12.5	171,847
13.5	171,847
14.5	169,904
15.5	165,019
16.5	159,044
17.5	152,531
18.5	143,233
19.5	128,657
20.5	55,296
21.5	55,296
22.5	30,266
23.5	31,199
24.5	2,199
25.5	2,199
26.5	2,199
27.5	2,199
28.5	2,205
29.5	2,205
30.5	2,205
31.5	939
32.5	239
33.5	339
34.5	339
35.5	329
36.5	21,219
37.5	28
38.5	2


RETIREMENTS			PCT SURV
DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	RATIO	RATIO	INTERVAL


	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1. 0000 :	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
60.337	0.2462	0.7538	100.00
	0.0000	1.0000	75.38
	0.0000	1.0000	75.38
700	0.0030	0.9970	75.38
20,629	0.0874	0.9126	75.15
5,551	0.0308	0.9692	68.58
	0.0000	1.0000	66.47
50	0.0003	0.9997	66.47
56,276	0.3312	0.6688	66.45
3,200	0.0194	0.9806	44.44
	0.0000	1.0000	43.58
1,300	0.0085	0.9915	43. 58
	0.0000	1.0000	43.21
6,000	0.0466	0.9534	43.21
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1.0000	41.20
	0.0000	1. 0000	41.20
	0.0000	1.0000	41.20
600	0.6390	0.3610	41.20
	0.0000	1.0000	14.87
	0.0000	1.0000	14.87
	0.0000	1.0000	14.87
	0.0000	1.0000	14.87
	0.0000	1.0000	14.87
	0.0000	1.0000	14,87

ORIGINATY LIFE TABUE, CONT.
PLACEMENT BAND 1934-2007

EXPERTENCE BAND
1995-2009

RETIREMENTS
DURENG AGE RETMT SURV
INTERVAL RATIO RATIO

PCT SURV BEGIN OF INTERVAL

39.5	21,885	0.0000	1.0000	14.87
40.5	21,885	0.0000	1.0000	14.87
41.5	21,885	0.0000	1.0000	14.87
42.5	21,885	721	0.0329	0.9671
43.5	21,159	0.0000	1.0000	14.87
44.5	21,159	0.0000	1.0000	14.38
45.5	21,159	0.0000	1.0000	14.38
46.5	21,159	0.0000	1.0000	14.38
47.5	21,159	0.0000	1.0000	14.38
48.5	21,159	0.0000	1.0000	14.38
49.5	21,159			
50.5	21,159		0.0000	1.0000
51.5				14.38
5.				14.38

52.5
53.5
54.5
$55: 5$
56.5
57. 5
58.5
59.5
60.5
61.5

291
291
52.5

291
63.5
64.5
65.5
66.5
67.5
68.5
69.5
70.5
71.5
72.5
73.5
$74 \cdot 5$
291
291
291
291
291
291

291
291
291
291.

291
75.5

291
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 305.00 COLLECTING AND IMPOUNDING RESERVOERS

ORIGLNAL LIFE TABLE

PIACEMENT BAND 1913-2005
EXPERIENCE BAND 1995-2009


0.0	5,534
0.5	75,873
1. 5	79,459
2.5	92,707
3.5	106,720
4.5	103,437
5.5	105,721
6.5	869,482
7.5	869,482
8.5	869,482
9.5	869,482
10.5	869.482
11.5	869,482
12.5	869,482
13:5	867.230
14.5	867.230
15.5	796,892
16.5	789,209
17.5	785,210
18.5	771,197
19.5	771,197
20.5	768.913
21.5	28,593
22.5	33,659
23.5	33,659
24, 5	33,659
25.5	33,659
26.5	33,659
27.5	33,659
28.5	33,659
29.5	33,659
30.5	33,659
31.5	34,050
32.5	28.898
33.5	28,898
34.5	28,898
35.5	28,898
36:5	5,458
37.5	392
38.5	392


RETIREMENTS		PCT SURV	
DURING AGE		RETMT SURV	BEGIN OF
INTERVAL	RATIO RATIO	INTERVAL	


	0.0000	1.0000	100.00
	0.0000	1. 0000	100.00
	0.0000	1. 0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100,00
	0.0000	1.0000	100.00
	0.0000	1. 0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1. 0000	100.00
4,096	0.0051	0.9949	100.00
	0.0000	1.0000	99.49
	0.0000	1.0000	99.49

$0.0000 \quad 1.0000 \quad 99.49$

0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49


0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49
0.0000	1.0000	99.49

## KENTUCKY: AMERTCAN WATER COMPANY

ACCOUNT 305.00 COLEECTING AND IMPOUNDING RESERVOIRS
ORIGINAL LIFE TABEE, CONT.

PLACEMENT BAND 1913-2005
EXPERIENCE BAND 1995-2009


RETTREMENTS
DURING AGE RETMT SURV BEGIN OF INTERVAL RATIO RATIO INTERVAL

39.5	392		0.0000	1.0000	99.49
40.5	392		0.0000	1.0000	99.49
41.5	574		0.0000	1.0000	99.49
42.5	574		0.0000	1.0000	99.49
43.5	574		0,0000	1.0000	99.49
44.5	574		0.0000	1.0000	99.49
45.5	574		0.0000	1.0000	99.49
46.5	182		0.0000	1.0000	99.49
47.5	182		0.0000	1.0000	99.49
48.5	182		0.0000	1.0000	99.49
49.5	182		0.0000	1.0000	99.49
50.5	182		0.0000	1.0000	99.49
51.5	182		0.0000	1.0000	99.49
52.5	182		0.0000	1.0000	99.49
53.5	182		0.0000	1. 0000	99.49
54.5	722		0.0000	1.0000	99.49
55.5	722		0.0000	1.0000	99.49
56.5	540		0.0000	1.0000	99.49
57.5	540		0.0000	1.0000	99.49
58.5	540		0.0000	1.0000	99,49
59.5	540		0.0000	1.0000	99.49
60.5	36.342		0.0000	1.0000	99.49
61.5	36,342		0.0000	1.0000	99.49
62.5	36,342		0.0000	1.0000	99.49
63.5	36,342		0.0000	1.0000	99.49
64.5	36,342		0.0000	1.0000	99.49
65.5	36,342		0.0000	1.0000	99.49
66.5	36,342		0.0000	1.0000	99.49
67. 5	36,342		0.0000	1.0000	99.49
68.5	36,342		0.0000	1.0000	99.49
69.5	35,802		0,0000	1.0000	99.49
70.5	35,802		0.0000	1.0000	99.49
71.5	35,802		0.0000	1.0000	99.49
72.5	35,302		0.0000	1.0000	99.49
73.5	35,802	7,372	0.2059	0.7941	99.49
74.5	28,430		0.0000	1.0000	79.01
75.5					79.01
76.5					
77.5					
78.5					

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 305.00 COLIECTING AND IMPOUNDING RESERVOIRS

ORIGINAT LIEE TABLE, CONT.

PLACEMENT	BAND 1913-200	EXPERIENCE BAND 1995-2009			
AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVA	AGE INTERVAT	INTERVAL	RATIO	RATIO	INTERVAL

79.5
80.5
81.5
82.5
83.5
84.5
85.5
86.5
87.5
88.5
89.5
90.5
91.5
92.5
93.5
94.5
95.5
96.5

73,214
73,214
73,214
73,214
73,214
73,214
73,214
73,214
73,214
73,214
73, 214
73,214
73,214
73,214
73,214
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


ACCOUNT 306.00 LAKE, RIVER AND OTHER INTAKES
ORIGINAL LIFE TABLE

PLACEMENT BAND 1958-2007

AGE AT	EXPOSURES AT
BEGIN OF	BEGINNING OF
INTERVAL	AGE INTERVAL


0.0	282,506
0.5	282,676
1.5	289,661
2.5	327,705
3.5	492,826
4.5	498,605
5.5	494,939
6.5	494,939
7.5	249,645
8.5	249,645
9.5	229,820
10.5	229,820
11.5	229,820
12.5	226,454
13.5	226,454
14.5	205,954
15.5	205,784
16.5	198,799
17.5	176,498
18.5	11,377
19.5	5,598
20.5	5,598
21.5	5,598
22.5	5,648
23.5	28,746
24.5	57,580
25.5	57,580
26.5	57,580
27.5	57,580
28.5	77,112
29.5	77,112
30.5	77,112
31.5	77,112
32.5	77,727
33.5	77,727
34.5	77,727
35.5	82,916
36.5	82,866
37.5	59,768
38.5	



$111-36$

ACCOUNT 309.00 SUPDLY MATNS
ORIGINAI LIFE TABEE
PLACEMENT BAND 1934-2008
EXPERIENCE BAND 1995-2009

## AGE AT BEGIN OF <br> INTERVAL AGE INTERVAL

0.0	99,767	0.0000	1.0000	100.00
0.5	129,098	0.0000	1. 0000	100.00
1.5	128,705	0.0000	1.0000	100.00
2.5	1,840,140	0.0000	1.0000	100.00
3.5	1,849,470	0.0000	1. 0000	100.00
4.5	1,849,470	0.0000	1.0000	100.00
5.5	3,825,699	0.0000	1.0000	100.00
6.5	3,925,890	0.0000	1.0000	100.00
7.5	4,007,440	0.0000	1.0000	100.00
8.5	4,007,440	0.0000	1.0000	100.00
9.5	3,982, 178	0.0000	1,0000	100.00
10.5	3,996, 341	0.0000	1.0000	100.00
11.5	3,996,700	0.0000	1.0000	100.00
12.5	4,049,854	0.0000	1.0000	100.00
13.5	4,052,222	0.0000	1.0000	100.00
14.5	4,055,720	0.0000	1. 0000	100.00
15.5	4,026,389	0.0000	1.0000	100.00
16.5	4,020,914	0.0000	1.0000	100.00
17.5	2,255,362	0.0000	1.0000	100.00
18.5	2,373,817	0.0000	1.0000	100.00
19.5	2,373,817	0.0000	1.0000	100.00
20.5	397,588	0.0000	1.0000	100.00
21.5	297,397	0.0000	1.0000	100.00
22.5	212,001	0.0000	1.0000	100.00
23.5	212,001	0.0000	1.0000	100.00
24.5	215,227	0.0000	1.0000	100.00
25.5	201,063	0.0000	1.0000	100.00
26.5	206,634	0.0000	1.0000	100.00
27.5	1,56,357	0.0000	1.0000	100.00
28.5	153,987	0.0000	1.0000	100.00
29.5	590,979	0.0000	1.0000	100.00
30.5	590,979	0.0000	1.0000	100.00
31.5	590,979	0.0000	1.0000	100.00
32.5	590,979	0.0000	1. 00000	100.00
33.5	463,194	0.0000	1.0000	100.00
34.5	463,194	0.0000	1.0000	100.00
35.5	572,925	0.0000	1.0000	100.00
36.5	572,925	0.0000	1.0000	100.00
37.5	562,252	0.0000	1.0000	100.00
38.5	622,134	0.0000	1.0000	100.00

ACCOUNT 309.00 SUPPLY MATNS
ORIGINAL LIFE TABLE, CONT.

PIACEMENT BAND 1934-2008
EXPEREENCE BAND 1995-2009

AGE AT	EXPOSURES AT	RETIREMENTS			PCI SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAI	AGE INTERVAL	INTERVAL	RATTO	RATIO	INTERVAL
39.5	618,908		0.0000	1.0000	100.00
40.5	618,908		0.0000	1.0000	100.00
41.5	614,875		0.0000	1. 00000	100.00
42.5	612,000		0.0000	1.0000	100.00
43.5	612,218		0.0000	1.0000	100.00
44.5	171.727		0.0000	1.0000	100.00
45.5	171.727		0.0000	1.0000	100.00
46.5	171,727		0.0000	1.0000	100.00
47.5	171, 727		0.0000	1.0000	100.00
48.5	171.727		0.0000	1.0000	100.00
49.5	171.727		0.0000	1.0000	100.00
50.5	62,039		0,0000	1.0000	100.00
51.5	62,039		0.0000	1.0000	100.00
52.5	62,053		0.0000	1.0000	100.00
53.5	2,604		0.0000	1.0000	100.00
54.5	3,107		0.0000	1. 0000	100.00
55.5	3,107		0.0000	7.0000	100.00
56.5	1,211		0.0000	1.0000	100.00
57.5	1., 211		0.0000	1.0000	100.00
58.5	993		0.0000	1.0000	100.00
59.5	993		0.0000	1.0000	100.00
60. 5	226,183		0.0000	1.0000	100.00
61.5	226,183		0.0000	1. 0000	100.00
62.5	226, 183		0.0000	1.0000	100.00
63.5	226. 283		0.0000	1.0000	100.00
64.5	226,183		0.0000	1. 0000	100.00
65.5	226,141	49	0.0002	0.9998	100.00
66.5	226,092		0.0000	1.0000	97.98
67.5	226,077		0.0000	1.0000	99.98
68.5	225,644		0.0000	1.0000	99.98
69.5	225,140		0.0000	1.0000	99.98
70.5	225,140		0.0000	1.0000	99.98
71.5	225.140		0.0000	1.0000	99.98
72.5	225,140		0.0000	1.0000	99.98
73.5	225.140	412	0.0018	0.9982	99.98
74.5	224,729		0.0000	1.0000	99.80
75.5					99.80



## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 310.10 OTHER POWER GENERATION EQUIPMENT

ORIGINAL LIEE TABLE
PLACEMENT BAND $1963 \div 2009$

AGE AT EXPOSURES AT BEGTN OF BEGINNTNG OF INTERVAE AGE INTERVAL

RETIREMENTS
DURING AGE RETMT INTERVAE RATIO

0.0	608,951		0.0000	1.0000	100.00
0.5	576,891		0.0000	1.0000	100.00
1. 5	427,245		0.0000	1.0000	100.00
2.5	231,204		0.0000	1. 00000	100.00
3.5	231,204		0.0000	1.0000	100.00
4. 5	231,204		0.0000	1.0000	100.00
5.5	298,389		0.0000	1.0000	100.00
6.5	484,717		0.0000	1.0000	100.00
7. 5	476,776		0.0000	1.0000	100.00
8.5	476,776		0.0000	1.0000	100.00
9. 5	476,776		0.0000	1.0000	100.00
10.5	476,776		0.0000	1. 0000	100.00
11.5	476,776		0.0000	1.0000	100.00
12.5	476,776		0.0000	1.0000	100.00
13.5	336,218	9,442	0.0281	0.9719	100.00
14.5	326,776	27	0.0001	0.9999	97.19
15.5	326,749		0.0000	1.0000	97.18
16.5	326,749		0.0000	1.0000	97.18
17.5	326,749		0.0000	1.0000	97.18
18.5	326,749		0.0000	1.0000	97.18
19.5	326,749		0.0000	1.0000	97.18
20.5	259,564		0.0000	1.0000	97.18
21.5	68,594		0.0000	1.0000	97.18
22.5	68,594		0.0000	1.0000	97.18
23.5	68,594		0.0000	1.0000	97.18
24.5	68,594		0.0000	1.0000	97.18
25.3	68,594		0.0000	1.0000	97.18
26.5	68,594		0.0000	1.0000	97.18
27.5	68,594		0,0000	1.0000	97.18
28.5					97.18

14,502
14,501
14,501
14,501
14,501
14,501

PCT SURV BEGIN OF INTERVAL

EXPERIENCE BAND 1995-2009
97.18
97.18
97.18
97.18
97.18
97.18
97.18
97.18
97. 18

37.5	14,501
38.5	14,501

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
'KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 310. 10 OTHER POWER GENERATTON EQUIPMENT
ORIGINAL LIFE TABLE, CONT.
PLACEMENT BAND 1963-2009 EXPERIENCE BAND 1995-2009
AGE AT EXPOSURES AT RETIREMENTS PCT SURVBEGIN OF BEGINNING OF DURING AGE RETMT SURV BEGIN OFINTERVAL AGE INTERVAL INTERVAL RATIO RATIO INTERVAL

39.5	14,501	0.0000
40.5	14,501	0.0000
41.5	14,501	0.0000
42.5	14,501	0.0000
43.5	14,501	0.0000
44.5	14,501	0.0000
45.5	14,501	14,501
46.5	1.0000	

46.5
14,501
14,501 1. 0000


## KENTUCKY AMERICAN WATER COMPANY

ACCOUNTS 311.20 THRU 311.54 PUMPING EQUTPMENT
ORIGINAL LIEE TABLE

PTACEMENT BAND 1900-2009
EXPERTENCE BAND 1995-2009

AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAL
0.0	11, 148,046		0.0000	1.0000	100.00
0.5	$7,514,007$	500	0.0001	0.9999	100.00
1.5	3,844,914		0.0000	1. 0000	99.99
2.5	6,992,065		0.0000	1.0000	99.99
3.5	6,853,704	4,035	0.0006	0.9994	99.99
4.5	6,985,185	18,147	0.0026	0.9974	99.93
5.5	7,484,376	10.691	0.0014	0.9986	99.67
6.5	8,009,588	1,000	0.0001	0.9999	99.53
7.5	8,436,294	2,256	0.0003	0.9997	99.52
8.5	$8,406,564$		0.0000	1.0000	99.49
9.5	8,209,942		0.0000	1.0000	99.49
10.5	7, 854,857	28,310	0.0036	0.9964	99.49
11.5	7,514,948	3,343	0.0004	0.9996	99.13
12.5	6,709,703		0.0000	1.0000	99.09
13.5	$6,905,918$	9. 241	0.0013	0.9987	99.09:
14.5	6,864,415	5.466	0.0008	0.9992	98.96
15.5	6,860,894	1,500	0.0002	0.9998	98.88
16.5	6,582,577		0.0000	1.0000	98.86
17.5	2,491, 167	11, 460	0.0046	0.9954	98.86
18.5	2,650,009	13,887	0.0052	0.9948	98.47
19.5	$2,435,904$		0.0000	1.0000	97.90
20.5	1,961,889	12.220	0.0062	0.9938	97.90
21.5	1,302,683	24,212	0.0186	0.9814	97.29
22.5	761,729	20,807	0.0273	0.9727	95.48
23.5	667,446		0.0000	1.0000	92.87
24.5	759,087	4,278	0.0056	0.9944	92.87
25.5	732,981	17, 353:	0.0237	0,9763	92.35
26.5	730,924		0.0000	1.0000	90.16
27.5	777,523		0.0000	1.0000	90.16
28.5	581,395	12,551	0.0216	0.9784	90.16
29.5	602,923		0.0000	1.0000	88.21
30.5	600,978		0.0000	1.0000	88.21
31.5	600,978	944	0.0016	0.9984	88.21
32.5	601,926	14,228	0.0236	0.9764	88.07
33.5	434,544		0.0000	1.0000	85.99
34.5	434,544		0.0000	1. 0.000	85.99
35.5	460,732		0.0000	1.0000	85.99
36.5	494,057		0.0000	1.0000	85.99
37.5	493,084	29,938	0.0607	0.9393	85.99
33.5	486,055	54,390	0.1119	0.8881	80.77

KENTUCKY AMERICAN WATER COMPANY
ACCOUNTS 311.20 THRU 311.54 PUMPING EQUIPMENT
ORIGINAL LIFE TABLE, CONT.
PLACEMENT BAND 1900-2009
EXPERIENCE BAND 1995-2009

AGE AT EXPOSURES AT BEGIN OF BEGINNING OF INTERVAL AGE INTERVAL

RETIREMENTS
DURING AGE RETMT INTERVAL RATIO

PCT SURV
SURV RATIO

BEGLN OF INTERVAI.

39.5	430,311	3,435	0.0080	0.9920	71.73
40.5	425,475		0.0000	1.0000	71.16
41.5	426.169		0.0000	1.0000	71.16
42.5	357,024		0.0000	1.0000	71.16
43.5	341,787	12,589	0.0368	0.9632	71.16
44.5	295,586		0.0000	1.0000	68.54
45.5	312,509		0.0000	1.0000	68.54
46.5	321,022		0,0000	1.0000	68.54
47.5	315,949		0.0000	1.0000	68.54
48.5	315,664		0.0000	1.0000	68.54
49.5	315,887	50,529	0.1600	0.8400	68.54
50.5	211,960	1,762	0.0083	0.9917	57.57
51.5	177,544	5,150	0.0290	0.9710	57.09
52.5	172,364		0.0000	1.0000	55.43
53.5	142,880		0.0000	1.0000	55.43
54.5	27,209	196	0.0072	0.9928	55.43
55.5	41,963		0.0000	1.0000	55.03
56.5	48,757		0.0000	1.0000	55.03
57.5	48,757		0.0000	1.0000	55.03
58. 5	48,757		0.0000	1.0000	55.03
59.5	48,292		0.0000	1.0000	55.03
60.5	52,836		0.0000	1.0000	55.03:
61.5	46,082		0.0000	1.0000	55.03
62.5	45,762		0.0000	3.0000	55.03
63.5	45,762	6,475	0,1415	0.8585	55.03
64.5	39,063	1,022	0.0262	0.9738	47.24
65.5	38,041		0.0000	1.0000	46.00
66.5	38,041		0.0000	1.0000	46.00
67.5	38,041		0.0000	1.0000	46.00
68.5	38,027		0.0000	1.0000	46.00
69.5	35,689		0.0000	1.0000	46.00
70.5	27,001		0.0000	1.0000	46.00
71.5	19,935		0.0000	1.0000	46.00
72.5	19,935		0.0000	1.0000	46.00
73.5	19,935		0.0000	1.0000	46.00
74.5	19,935		0.0000	1.0000	46.00
75.5	422	422	1.0000	0.0000	46.00
76.5					0.00
77.5					
78.5					

RENTUCKY AMERICAN WATER COMPANY
ACCOUNTS 311.20 THRU 311.54 PUMPING EQUIEMENT
ORIGENAL HIFE TABLE, CONT.

PLACEMENT	BAND 1900-2009	EXPERIENCE BAND			1995-2009
Age At	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAT	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAL

79.5
80.5
81.5
82.5
83.5
84.585.5

$$
86.5
$$

$$
87.5
$$

$$
88.5
$$

$$
89.5
$$

$$
90.5
$$

$$
91.5
$$

$$
92.5
$$

$$
93.5
$$

$$
94.5
$$

$$
53.177
$$

$$
0.0000
$$

$$
95.5
$$

$$
53,177
$$

$$
0.0000
$$

$$
96.5
$$

$$
53,177
$$

$$
0.0000
$$

$$
97.5
$$

$$
53,177
$$

$$
0.0000
$$

$$
98.5
$$53,1770.0000

99.553, 177

$$
0.0000
$$

$$
100.5
$$

$$
53,177
$$

$$
0.0000
$$

$$
101.5 \quad 53,177
$$

$$
0.0000
$$

$$
102.5
$$

$$
53,177
$$

$$
0.0000
$$

$$
103.5
$$

$$
53,177
$$

$$
0.0000
$$

$$
104.5
$$

$$
53,177
$$

$$
0.0000
$$

$$
105.5
$$

$$
53,177
$$

$$
106.5
$$

$$
53,177
$$

$$
107.5
$$



## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 320.10 PURIFICATION SYSTEM - STRUCTURES

## ORIGINAL LIFE TABLE

PLACEMENT BAND 1900-2009
EXPERIENCE BAND 1995-2009

## AGE AT EXPOSURES AT BEGIN OF BEGINNING OF INTERVAI AGE INTERVAL

RETIREMENTS
$\begin{array}{cll}\text { DURING AGE } & \text { RETMT } & \text { SURV } \\ \text { INTERVAL } & \text { RATIO } & \text { RATIO }\end{array}$

PCT SURV BEGIN OF INTERVAL

0.0	6,574,038		0.0000	1.0000	100.00
0.5	6,435,671		0.0000	1.0000	100.00
1.5	5,121,720		0.0000	1.0000	100.00
2.5	4,604,814		0.0000	1.0000	100.00
3.5	4,595,777		0.0000	1. 0000	100.00
4.5	4,590,087		0.0000	1.0000	100.00
5.5	4,638,738	1,935	0.0004	0.9996	100.00
6.5	9,060,650		0.0000	1.0000	99.96
7.5	8,246,373		0.0000	1.0000	99.96
8.5	10,195,762		0.0000	1.0000	99.96
9.5	$10,195,762$		0.0000	1.0000	99.96
10.5	10, 185,799		0.0000	1.0000	99.96
11.5	$10,185,799$	10,624	0.0010	0.9990	99.96
12.5	9, 485,774		0.0000	1.0000	99.86
13.5	7,136,740		0.0000	1.0000	99.86
14.5	7,025,210		0.0000	1.0000	99.86
15.5	7,016,027		0.0000	1.0000	99.85
16.5	7,042,290		0.0000	1.0000	99.86
17.5	$7,585,366$		0.0000	1.0000	99.86
18.5	7,584,680	124,424	0.0164	0.9836	99.86
19.5	7.452 .687		0.0000	1. 0000	98.22
20.5	$7,443,750$	7,318	0.0010	0.9990	98.22
21.5	3,196,129		0.0000	1.0000	98.12
22.5	2,983,613	169,119	0.0567	0.9433	98.12
23.5	871,418		0.0000	1.0000	92.56
24.5	1,323,284		0.0000	1.0000	92.56
25.5	1,321,465		0.0000	1.0000	92.56
26.5	1,326,730		0.0000	1.0000	92.56
27.5	1,241,626		0.0000	1. 0000	92.56
28.5	2,275,888		0.0000	1.0000	92.56
29.5	2,275,888		0.0000	1. 0000	92.56
30.5	2,279,930		0.0000	1.0000	92.56
31.5	$2,234,276$		0.0000	1.0000	92.56
32.5	1,741,420		0.0000	1.0000	92.56
33.5	1,740,883		0.0000	1.0000	92.56
34.5	1,752,70.4		0.0000	1.0000	92.56
35.5	2,265,478		0.0000	1.0000	92.56
36.5	4,163,421		0.0000	1.0000	92.56
37.5	4,151,597		0.0000	1.0000	92.56
38.5	$4,145,28$ 星		0.0000	1.0000	92.56

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 320.10 PURTFICATION SYSTEM - STRUCTURES

ORTGINAT, IUEE TABLE, CONT.

PLACEMENT BAND 1900-2009
EXPERIENCE BAND 1995-2009

## AGE AT BEGIN OF INTERVAL AGE INTERVAL

RETIREMENTS DURING AGE RETMT

PCT SURV
BEGIN OF INTERVAI,

39.5	3,695,288		0.0000	I. 0000	92.56
40.5	3,695,288		0.0000	1. 0000	92.56
41.5	3, 712,814		0.0000	1.0000	92.56
42.5	$3,712,814$		0.0000	1.0000	92.56
43.5	$2,560,644$		0.0000	1.0000	92.56
44.5	$2,588,402$		0.0000	1.0000	92.56
45.5	$2,578,161$		0.0000	I. 0000	92.56
46.5	$2,590,706$		0.0000	1.0000	92.56
47.5	$2,586,486$		0.0000	1. 0000	92.56
48.5	$2,586,009$		0.0000	1.0000	92.56
49.5	$2,574,188$		0.0000	1. 0000	92.56
50.5	2,021,700		0.0000	1.0000	92.56
51.5	64,963		0.0000	1.0000	92.56
52.5	64,963		0.0000	1.0000	$92 \cdot 56$
53.5	65,128		0.0000	1.0000	92.56
54.5	63,258		0.0000	1.0000	92.56
55.5	63,433		0.0000	1. 0000	92.56
56.5	40,782		0.0000	1.0000	92.56
57.5	40,782		0.0000	1.0000	92.56
58.5	41,124		0.0000	1.0000	92.56
59.5	13,365		0.0000	1. 00000	92.56
60.5	14,871	102	0.0069	0.9931	92.56
61.5	2,327		0.0000	1.0000	91.92
62.5	2,327		0.0000	1.0000	91.92
63.5	2,327		0.0000	1.0000	91.92
64.5	2,327		0.0000	1.0000	91.92
65.5	5,903		0.0000	1.0000	91.92
66.5	5,903:		0.0000	1.0000	91.92
67.5	5,903		0.0000	1.0000	91.92
68.5	5.737		0.0000	1.0000	91.92
69.5	5,737		0.0000	1. 0000	91.92
70.5	5,563		0.0000	1. 0000	91.92
71.5	5,424		0.0000	1.0000	91.92
72.5	5,424		0.0000	1.0000	91.92
73.5	5,082		0.0000	1.0000	91.92
74.5	5,082		0.0000	1. 0000	91.92
75.5	3,576		0.0000	1.0000	91 m 92
76.5	3,576		0.0000	1.0000	91.92
77.5	3,576		0.0000	1. 0000	91.92
78.5	3,576	1.355	0.3789	0.6211	91.92

KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 320.10 PURIFTCATION SYSTEM - STRUCTURES

ORIGINAL LEFE TABLE, CONT.

PLACEMENT	BAND 1900-2009	EXPERIENCE BAND			995-2009
AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OE
INTERVAI	AGE INTERVAL	INTERVA	RATIO	RATTO	INTERVAL
79.5	2,221		0.0000	1.0000	57.09
80.5					57.09
81.5					
82.5					
83.5					
84.5					
85.5					
86.5					
87.5					
88.5					
89.5					
90.5					
91.5					
92.5					
93.5					
94.5	11,753		0.0000		
95.5	11,753		0.0000		
96.5	11,753		0.0000		
97.5	11,753		0.0000		
98.5	11.753		0.0000		
99.5	11.753		0.0000		
100.5	11,753		0.0000		
101.5	11,753		0.0000		
102.5	11,753		0.0000		
103.5	11,753		0.0000		
104.5	11,753		0.0000		
105.5	11,753		0.0000		
106.5	11.753		0.0000		
107.5	11.753		0.0000		
108.5	11,753		0.0000		
109.5					



ACCOUNT 320.11 PURIFICATION SYSTEM - EQUIPMENT

## ORIGINAL LIFE TABEE

PLACEMENT BAND 1958-2009
EXPERIENCE BAND 1995-2009

AGE AT EXPOSURES AT BEGIN OF BEGTNNING OF INTERVAI, AGE INTERVAL

RETIREMENTS
DURING AGE RETM INTERVAL RATIO RATIO

PCT SURV BEGIN OF INTERVAI,

0.0	5,912,369		0.0000	1.0000	100.00
0.5	5,823,686	2,000	0.0003	0.9997	100.00
1.5	6,226,558	14,500	0.0023	0.9977	99.97
2.5	$4,958,889$		0.0000	1.0000	99.74
3.5	5,597,036		0.0000	1.0000	99.74
4.5	5,822,114		0.0000	1.0000	99.74
5.5	6,009,987	7,983	0.0013	0.9987	99.74
6.5	7,642,135	6,092	0.0008	0.9992	99.61
7.5	7,151, 384		0.0000	1.0000	99.53
8.5	7,609,567	9,921.	0.0013	0.9987	99.53
9.5	$7,013,880$	23,226	0.0033	0.9967	99.40
10.5	6,001,282	31,594	0.0053	0.9947	99.07
11.5	$5,887,655$	8,204	0.0014	0.9986	98.54
12.5	$5,866,674$	.89.211	0.0152	0.9848	98.40
13.5	6,274,686	1,565	0.0002	0.9998	96.90
14.5	6,257,193	12,323	0.0020	0.9980	96.88
15.5	6,209,180	55,702	0.0090	0.9910	96.69
16.5	5,508,507	50,750	0.0092	0.9908	95.82
17.5	4,846,414	41,303	0.0085	0.9915	94.94
18.5	$4,117.521$	106,600	0.0259	0.9741	94.13
19.5	3,700,054	40,767	0.0110	0.9890	91.69
20.5	3,518,376	29,501	0.0084	0.9916	90.68
21.5	1,908,223	6,614	0.0035	0.9965	89.92
22.5	1,748,197	8,000	0.0046	0.9954	89.61
23.5	1, 184,504		0.0000	1.0000	89.20
24.5	1,465,739		0.0000	1.0000	89.20
25.5	1,446,703		0.0000	1.0000	89.20
26.5	$1,433,989$	16,440	0.0115	0.9885	89.20
27.5	$1,414,362$		0.0000	1.0000	88.17
28.5	534,466	34.295	0.0642	0.9358	88.17
29.5	499,662	10,903	0.0218	0.9782	82.51
30.5	483,095		0.0000	1.0000	80.71
31.5	480,850		0.0000	1.0000	80.71
32.5	475,498		0.0000	1.0000	80.71
33.5	456,564	57, 749	0.1265	0.8735	80.71
34.5	399.250		0.0000	1.0000	70.50
35.5	456,629		0.0000	1.0000	70.50
36.5	480,534		0.0000	1.0000	70.50
37.5	480,291		0.0000	1. 0000	70.50
38.5	480,213		0.0000	1.0000	70.50

KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 320.11 PURIFTCATION SYSTEM - EQUIPMENT

ORIGTNAT LTEE TABLE, CONT.

PLACEMENT	BAND 1958-2009	EXPERIENCE BAND			$1995-2009$
AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNTNG OF	DURING AGE	RETMT	SURV	BEGIN OF
HNTERVAI.	AGE INTERVAL	TNTERVAL	RATIO	RATIO	INTERVAL
39.5	220,213	13,000	0.0590	0.9410	70.50
40.5	207,213	60,700	0.2929	0.7071	66.34
41.5	146,513		0.0000	1. 0000	46.91
42.5	146,513		0.0000	1.0000	46.91
43.5	32,941		0.0000	1.0000	46.91
44.5	32,941		0.0000	1.0000	46.91
45.5	32,422		0.0000	1.0000	46.91
46.5	32,422		0.0000	1.0000	46.91
47.5	32,422	21,000	0.6477	0.3523	46.91
48.5	11,422		0.0000	1. 0000	16.53
49.5	10,987		0.0000	1.0000	16.53
50.5	10,987		0.0000	1.0000	16.53
51.5					16.53



KENTUCKY AMERICAN WATER COMPANY					
ACCOUNT 320.20 PURIFICATTON SYSTEM - FILTER MEDIA					
ORIGINAL LIFE TABLE					
PLACEMENT	BAND 2007-20	FXPERIENCE BAND 2007-2009			
AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMM	SURV	BEGTN OF
INTERVAL	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAI
0.0	168,569		0.0000	1.0000	100.00
0.5	27,968		0.0000	1.0000	100.00
1.5	27,968		0.0000	1.0000	100.00
2.5					100.00



ACCOUNTS 330.00 THRU 330.40 DISTR. RESERVOIRS AND STANDPIPES

## ORIGINAL ITFE TABLE

PLACEMENT BAND 1949-2009
EXPERIENCE BAND 1995-2009

AGE AT EXPOSURES AT BEGIN OF BEGINNING OF INTERVAT AGE INTERVAT

0.0	8,432,099
0.5	8,349,093
1.5	8,313,999
2.5	$8,177,366$
3.5	8,029,968
4.5	5,384,420
5.5	$4,800,560$
6.5	$4,811,740$
7.5	$5,514,776$
8.5	$4,605,790$
9.5	4,589,403
10.5	3,784,731
11.5	3,665,316
12.5	3,663,426
13.5	$2,641,867$
14.5	2,632,835
15.5	2,606,215
16.5	2,606,215
17.5	$2,605,494$
18.5	$2,584,183$
19.5	2,022,636
20.5	976,304
21.5	966,373
22.5	196,398
23.5	196,398
24.5	178,314
25.5	178,314
26.5	352,518
27.5	352,518
28.5	353,987
29.5	707.827
30.5	707,827
31.5	707,827
32.5	701,848
33.5	691,077
34.5	575,031
35.5	549,843
36.5	545,758
37.5	544,597
38.5	735,277

RETIREMENTS
DURING AGE
TNTERVAE:

PCT SURV BEGIN OF INTERVAL


ACCOUNTS 330.00 THRU 330,40 DISTR. RESERVOTRS AND STANDEIPES
ORIGINAL LIFE TABLE, CONT:
PHACEMENT BAND 1949-2009
EXPERIENCE BAND 1995-2009

AGE AT	EXPOSURES AT	REPIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAL
39.5	734,718		0.0000	1.0000	97.08
40.5	821,088		0.0000	1.0000	97.08
41.5	646,448		0.0000	1.0000	97.08
42.5	646,915		0.0000	1.0000	97.08
43.5	645,446		0.0000	1.0000	97.08
44.5	307,602	1,213	0.0039	0.9961	97.08
45.5	336,254		0.0000	1.0000	96.70
46.5	336,254		0.0000	1.0000	96.70
47.5	336,254		0.0000	1.0000	96.70
48.5	336,195	2,000	0.0059	0.9941	96.70
49.5	334, 195	200	0.0006	0.9994	96.13
50.5	333,995		0.0000	1.0000	96.07
51.5	333,995		0.0000	1. 1.0000	96.07
52.5	333,995		0.0000	1.0000	96.07
53.5	146,529		0.0000	1.0000	96.07
54.5	146,392		0.0000	1. 0000	96.07
55.5	60,221		0.0000	1.0000	96.07
56.5	60,159		0.0000	1.0000	96.07
57.5	59,692		0.0000	1.0000	96.07
58.5	59,692		0.0000	1.0000	96.07
59.5	29,865		0.0000	1.0000	96.07
60.5					96.07



III-58

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 331.00 MAINS AND ACCESSORIES - ALT MAINS

## ORIGINAL LIFE TABLE

PLACEMENT BAND 1900-2009
EXPERIENCE BAND 1995-2009

## AGE AT BEGIN OF INTERVAL

EXPOSURES AT BEGINNING OF AGE INTERVAL

101, 149.451.

0.0	$101,149,451$
0.5	$104,565,680$
1.5	$98,460,505$
2.5	$69,304,887$
3.5	$66,535,151$
4.5	$68,191,961$
5.5	$70,137,908$
6.5	$72,748,478$
7.5	$77,950,542$
8.5	$72,732,501$


9.5	$71,402,616$
10.5	$66,327,865$
11.5	$61,334,127$
12.5	$55,458,867$
13.5	$50,433,972$
14.5	$47,569,861$
15.5	$42,191,750$
16.5	$40,108,354$
17.5	$37,646,949$
18.5	$36,385,323$

$19.5 \quad 34,017,536$
$20.5 \quad 33,766,325$
$21.5 \quad 29,245,392$
$22.5 \quad 22,715,758$
$23.5 \quad 21,502,625$
$24.5 \quad 16,803,292$
$25.5 \quad 15,752,193$
$26.5 \quad 15,711,917$
$27.5 \quad 16,056,028$
$28.5 \quad 20,100,926$
$29.5 \quad 19,577,168$
$30.5 \quad 18,474,360$
$31.5 \quad 17,597,818$
$32.5 \quad 16,495,818$
$33.5 \quad 15,888,197$
$34.5 \quad 15,633.069$
35.5 12.984.513
$36.5 \quad 12,732,994$
$37.5 \quad 11,529.392$
$38.5 \quad 12,054,365$

RETIREMENTS
DURING AGE RETMT SURV BEGIN OF INTERVAL RATIO RATIO INTERVAL

	0.0000	1.0000	100.00
21,339	0.0002	0.9998	100.00
99,505	0.0010	0.9990	99.98
95,478	0.0014	0.9986	99.88
369,044	0.0055	0.9945	99.74
70,589	0.0010	0.9990	99.19
7,418	0.0001	0.9999	99.09
56,232	0.0008	0.9992	99.08
67,004	0.0009	0.9991	99.00
43,491	0.0006	0.9994	98.91
49,949	0.0007	0.9993	98.85
11,136	0.0002	0.9998	98.78
35,980	0.0006	0.9994	98.76
37,863	0.0007	0.9993	98.70
125,471	0.0025	0.9975	98.63
123,607	0.0026	0.9974	98.38
41,494	0.0010	0.9990	98.12
17,055	0.0004	0.9996	98.02
122,095	0.0032	0.9968	97.98
10,106	0.0003	0.9997	97.67
56,610	0.0017	0.9983	97.64
43,247	0.0013	0.9987	9.7 .47
10,648	0.0004	0.9996	97.34
42,965	0.0019	0.9981	97.30
11,797	0.0005	0.9995	97.12
19,488	0.0012	0.9988	97.07
81,894	0.0052	0.9948	96.95
14,138	0.0009	0.9991	96.45
4,378	0.0003	0.9997	96,36
8,081	0.0004	0.9996	96.33


76,495	0.0039	0.9961	96.29
18,185	0.0010	0.9990	95.91
106,353	0.0060	0.9940	95.81
76,043	0.0046	0.9954	95.24
30,918	0.0019	0.9981	94.80
15,226	0.0010	0.9990	94.62
56,027	0.0043	0.9957	94.53
3,731	0.0003	0.9997	94.12
9,065	0.0008	0.9992	94.09
31,412	0.0026	0.9974	94.01

KENTUCKY AMERTCAN WATER COMPANY
ACCOUNT 331.00 MAINS AND ACCESSORIES - ALL MAINS
ORIGINAL LIFE TABLE, CONT.
PLACEMENT BAND $1900-2009$
EXPERTENCE BAND 1995-2009

AGE AT EXPOSURES AT BEGIN OF BEGINNING OF INTERVAI AGE INTERVAL

RETIREMENTS
DURING AGE INTERVAL.

PCT SURV BEGIN OF INTERVAI,

9.036	0.0007	0.9993	93.77
54,247	0.0047	0.9953	93.70
53,530	0.0047	0.9953	93.26
7.916	0.0007	0.9993	92.82
16,646	0.0026	0.9974	92.76
6,142	0.0010	0.9990	92.52
81,305	0.0144	0.9856	92.43
3,894	0.0007	0.9993	91.10
9,754	0.0019	0.9987	91.04
18,463	0.0038	0.9962	90.87
39.143	0.0088	0.9912	90.52
1,431	0.0004	0.9996	89.72
13,623	0.0042	0.9958	89.68
28,431	0.0101	0.9899	89.30
	0.0000	1. 0.0000	88.40
802	0.0007	0.9993	88.40
4,783	0.0045	0.9955	88.34
11,365	0.0153	0.9847	87.94
11,654	0.0166	0.9834	86.59
2,753	0.0040	0.9960	85.15
725	0.0012	0.9988	84.81
19,692	0.0197	0.9803	84.71
21.051	0.0231	0.9769	83.04
572	0.0007	0.9993	81.12
458	0.0006	0.9994	81.06
684	0.0008	0.9992	81.01
4,500	0.0055	0.9945	80.95
2,816	0.0035	0.9965	80.50
13,355	0.0167	0.9833	80.22
2,948	0.0038	0.9962	78.88
5,712	0.0076	0.9924	78.58
2,103	0.0029	0.9971	77.98
4,607	0.0065	0.9935	77.75
2,250	0.0039	0.9961	77.24
2.940	0.0054	0.9946	76.94
564	0.0012	0.9988	76.52
128	0.0025	0.9975	76.43
			76.24


| PLACEMENT BAND 1900-2009 |  | EXPERIENCE BAND $1995-2009$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AGE AT | EXPOSURES AT | RETIREMENTS |  | PCT SURV |
| BEGIN OF | BEGINNING OF | DURING AGE RETMT SURV | BEGIN OF |  |
| INTERVAI | AGE INTERVAL | INTERVAI |  |  |

    79.5
    80.5
    81.5
    82.5
    83. 5
    84.5
    85.5
    86.5
    87.5
    \(88.5 \quad 30 \quad 0.0000\)
    89.5
        30
        0.0000
        90.530
        91.5
        92.5
        30
        30
        30
        93.5
    94.5
                    2,194
        0.0000
        DURTNG AGE
    SURV BEGIN OF
    INTERVAI AGE INTERVAL INTERVAI RATIO RATIO INTERVAL
95.5
2,194
0.0000
0.0000
0.0000
0.0000
0.0000
96.5
2,194
0.0000
2,194
0.0000
97.5
$2+194$
98.5
2,194
0.0000
99.5
2,194
0.0000
100.5
2,194
0.0000
101.5
2,194
0.0000
102.5
2,194
0.0000
103.5
104.5
2,164
0.0000
2,164
0.0000
105.5
2,164
0.0000
1.0000
106.5
2,164
107.5


III-62

## ACCOUNT 333.00 SERVICES

ORIGINAC IIFE TABLE

PLACEMENT BAND 1934-2009
EXPERIENCE BAND 1995-2009

AGE AT BEGIN OF INTERVAL

EXPOSURES AT
BEGINNING OF
AGE INTERVAL.

RETIREMENTS
$\begin{array}{cll}\text { DURTNG AGE } & \text { RETMT } & \text { SURV } \\ \text { INTERVAI } & \text { RATIO RATTO }\end{array}$

PCT SURV BEGLN OF INTERVAE

0.0	$30,580,346$
0.5	27,581,819
1.5	25,801, 080
2.5	25,548,489
3.5	25,079,135
4.5	25,039,711
5.5	25,244, 864
6.5	25,303,884
7.5	$25,282,547$
8.5	$15,561,806$
9.5	$14,088,426$
10.5	12,738,445
11.5	11,470,645
12.5	10,652,958
13.5	9,785,891
14.5	9,088,807
15.5	$8,532,525$
16.5	8,114,065
17.5	$7,492,250$
18.5	6,955,807
19.5	$6,312,648$
20.5	$5,772,745$
21.5	$5,153,543$
22.5	4,658,047
23.5	$4,198,543$
24.5	$3,797,384$
25.5	3,539,721
26.5	3,350,785
27.5	3,138,875
28.5	3,111,905
29.5	2,941,413
30.5	$2,704,043$
31.5	$2,455,665$
32.5	2,249,592
33.5	$2,076,843$
34.5	1.999 .456
35.5	1,779,778
36.5	$1,747,089$
37.5	$1,580,458$
38.5	$1,500,520$


	0.0000	1.0000	100.00
23,020	0.0008	0.9992	100.00
23,517	0.0009	0.9991	99.92
20,089	0.0008	0.9992	99.83
7,999	0.0003	0.9997	99.75
19,945	0.0008	0.9992	99.72
8,181	0.0003	0.9997	99.64
16,001	0.0006	0.9994	99.61
39,317	0.0016	0.9984	99.55
3,604	0.0002	0.9998	99.39
94,636	0.0067	0.9933	99.37
104,115	0.0082	0.9918	98.70
7,356	0.0006	0.9994	97.89
14,461	0.0014	0.9986	97.83
2, 485	0.0003	0.9997	97.69
43,101	0.0047	0.9953	97.66
3,694	0.0004	0.9996	97.20
11,574	0.00014	0.9986	97.16
7,975	0.0011	0.9989	97.02
52,183	0.0075	0.9925	96.91
3,777	0.0006	0.9994	96.18
15,774	0.0027	0.9973	96.12
6,100	0.0012	0.9988	95.86
21,474	0.0046	0.9954	95.74
51,269	0.0122	0.9878	95.30
14,196	0.0037	0.9963	94.14
55,544	0.0157	0.9843	93.79
95,260	0.0284	0.9716	92.32
14,271	0.0045	0.9955	89.70
2,467	0.0008	0.9992	89.30
3,660	0.0012	0.9988	89.23
8,350	0.0031	0.9969	89.12
12,797	0.0052	0.9948	88.84
32,991	0.0147	0.9853	88.38
10,873	0.0052	0.9948	87.08
36,070	0.0180	0.9820	86.63
11,215	0.0063	0.9937	85.07
3.585	0.0021	0.9979	84.53
869	0.0005	0.9995	84.35
648	0.0004	0.9996	84.31

## ACCOUNT 333.00 SERVICES

ORIGINAL TIFE TABLE, CONT.

PLACEMENT BAND 1934-2009

EXPERTENGE BAND 1995-2009

RETIREMENTS		PCT SURV	
DURING AGE	RETMT	SURV	BEGTN OP
INTERVAL	RATIO	RATIO	INTERVAI


39.5	1,428,413	4,200	0.0029	0.9971	84.28
40.5	1,322,363	30,124	0.0228	0.9772	84.04
41.5	$1,193,552$	1,410	0.0012	0.9988	82.12
42.5	1,069,339	731	0.0007	0.9993	82.02
43.5	962,055	733	0.0008	0.9992	81.96
44.5	866,708	15,484	0.0179	0.9821	81.89
45.5	783,268	5,949	0.0076	0.9924	80.42
46.5	697,398	16,983	0.0244	0.9756	79.81
47.5	594,226	653	0.0011	0.9989	77.86
48.5	544,355	17,833	0.0328	0.9672	77.77
49.5	463,804	11.737	0.0253	0.9747	75.22
50.5	395,309	35,830	0.0906	0.9094	73.32
51.5	295,179	32,412	0.1098	0.8902	66.68
52.5	253,312	3,064	0.0121	0.9879	59.36
53.5	248,724	2,516	0.0101	0.9899	58.64
54.5	216,503	1,827	0.0084	0.9916	58.05
55.5	196,676	8,302	0.0422	0.9578	57.56
56.5	177,734	2.260	0.0127	0.9873	55.13
57.5	159,393	7,259	0.0455	0.9545	54.43
58.5	140,848	3,378	0.0240	0.9760	51.95
59.5	124,143	1.556	0.0125	0.9875	50.70
60.5	206,283	8,658	0.0420	0.9580	50.07
61.5	173,308	3,583	0.0207	0.9793	47.97
62.5	162,339	561	0.0035	0.9965	46.98
63.5	158,984	959	0.0060	0.9940	46.82
64.5	156,918	1,035	0.0066	0.9934	46.54
65.5	155,828	5,143	0.0330	0.9670	46.23
66.5	150,638	9,582	0.0636	0.9364	44.70
67.5	139,794	4,307	0.0308	0.9692	47.86
68.5	130,370	9,360	0.0718	0.9282	40.57
69.5	120.252	1,660	0.0138	0.9862	37.65
70.5	116.884		0.0000	1. 0000	37.14
71.5	134,374	777	0.0068	0.9932	37.14
72.5	113,047	15,572	0.1377	0.8623	36.89
73.5	91,728	7,565	0.0825	0.9175	31.81
74.5	74,092	975	0.0132	0.9868	29.19
75.5					28.80



III-65

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNTS 334.00 THRU 334.30 METERS
ORIGINAT ITFE TABLE
PLACEMENT EAND 1934-2009
EXPERIENCE BAND 1995-2009


0.0	$23,840,099$
0.5	21,285,590
1. 5	18,322,785
2.5	18, 401, 116
3.5	15,877,224
4.5	15,081,558
5.5	13,820,489
6.5	12,442,992
7.5	11,507,206
8.5	$10,278,462$
9.5	9,740,503
10.5	9,026,294
11.5	8,379,407
12.5	$7,612,314$
13.5	$6,981,881$
14.5	$6,619,732$
15.5	$6,216,255$
16.5	5,686,230
17.5	$5,174,578$
18.5	$4,703,818$
19.5	4,317,592
20.5	3,910,962
21.5	3,543,976
22.5	3,167,005
23.5	$2,850,565$
24.5	$2,425,706$
25.5	$2,138,442$
26.5	1,967,107
27.5	1, 829,478
28.5	1,724,822
29.5	1,589,511
30.5	4, 454, 325
31.5	1,298,470
32.5	$1,271,681$
33.5	1, 096,593
34.5	1,043,099
35.5	905,435
36.5	853,806
37.5	796,487
38.5	756,021

RETIREMENTS
DURING AGE RETMT INTERVAE RATIO RATIO

PCT SURV BEGIN OF INTERVAI,

588	0.0000	1.0000	100.00
398,777	0.0187	0.9813	100.00
35,424	0.0019	0.9981	98.13
64,660	0.0035	0.9965	97.94
93,055	0.0059	0.9941	97.60
78,641	0.0052	0.9948	97.02
57,001	0.0041	0.9959	96.52
69,916	0.0056	0.9944	96.12
129,651	0.0113	0.9887	95.58
90,199	0.0088	0.9912	94.50


103,487	0.0106	0.9894	93.67
126,230	0.0140	0.9860	92.68
103,010	0.0123	0.9877	91.38
147,768	0.0194	0.9806	90.26
98,471	0.0141	0.9859	88.51
116,651	0.0176	0.9824	87.26
204,862	0.0330	0.9670	85.72
98,838	0.0174	0.9826	82.89
121,977	0.0236	0.9764	81.45
82,601	0.0176	0.9824	79.53

78.13
78.00
77.79
77.53
77.34
76.42
76.25
76.12
75.85
75.11
74.97
74.70
74.35
$74 \cdot 12$
73.88
73.67
73.55
73.41
73.32
73.20

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNTS 334.00 THRU 334.30 METERS

ORIGINAL HIFE TABLE, CONT.
PLACEMENT BAND $1934-2009$

AGE AT EXPOSURES AT BEGIN OF BEGINNTNG OF INTERVAL AGE INTERVAL

39.5	719,336
40.5	690,106
41.5	650,735
42.5	$575: 919$
43.5	508,936
44.5	433,091
45.5	383,609
46.5	351,235
47.5	325,283
48.5	290,820
49.5	248,606
50.5	231,509
51.5	$207 \times 313$
52.5	174,062
53.5	152,672
54.5	130,348
55.5	110,491
56.5	94,195
57.5	77,628
58.5	69.474
59.5	70,363
60.5	91,225
61.5	69,828
62.5	$62 \times 341$
63.5	61,648
64.5	61.325
65.5	60,442
66.5	59,388
67.5	57,627
68.5	52,958
69.5	49,384
70.5	46,991
71.5	43,657
72,5	39,485
73.5	35,600
74.5	32,247
75.5	

RETIREMENTS
DURING AGE RETMT SURV INTERVAL RATIO RATIO INTERVAI.

3.557	0.0049	0.9951	72.08
3,186	0.0046	0.9954	71.73
24.304	0.0373	0.9627	71.40
2.304	0.0040	0.9960	68.74
644	0.0013	0.9987	68.47
754	0.0017	0.9983	68.38
553	0.0014	0.9986	68.26
1,583	0.0045	0.9955	68.16
532	0.0016	0.9984	67.85
5.338	0.0184	0.9816	67.74


549	0.0022	0.9978	66.49
652	0.0028	0.9972	66.34
930	0.0045	0.9955	66.15
842	0.0048	0.9952	65.85
90	0.0006	0.9994	65.53
883	0.0068	0.9932	65.49
435	0.0039	0.9961	65.04
211	0.0022	0.9978	64.79
21	0.0003	0.9997	64.65
500	0.0072	0.9928	64.63

$180 \quad 0.0026 \quad 0.9974 \quad 64.16$
$287 \quad 0.0031 \quad 0.9969 \quad 63.99$
$864 \quad 0.0124 \quad 0.9876 \quad 63.79$

78	0.0013	0.9987	63.00

$430.0007 \quad 0.9993 \quad 62.92$
$756 \quad 0.0123 \quad 0.9877 \quad 62.88$
$1.014 \quad 0.0168 \quad 0.9832 \quad 62.11$
$696 \quad 0.0117 \quad 0.9883 \quad 61.07$
$823 \quad 0.0143 \quad 0.9857 \quad 60.36$
$1.833 \quad 0.0346 \quad 0.9654 \quad 59.50$

306	0.0062	0.9938	57.44
509	0.0108	0.9892	57.08
3.217	0.0737	0.9263	56.46
2.926	0.0741	0.9259	52.30
296	0.0083	0.9917	48.42
584	0.0181	0.9819	48.02
			47.15



ACCOUNT 335.00 FIRE HYDRANTS

## ORIGINAL LIEE TABLE

PLACEMENT BAND 1934-2009
EXPERIENCE BAND 1995-2009
$\begin{array}{ll}\text { AGE AT } & \text { EXPOSURES AT } \\ \text { BEGTN OF BEGINNUNG OF }\end{array}$
INTERVAL AGE INTERVAI

RETIREMENTS
DURING AGE RETMT SURV INTERVAL RATIO RATIO

PCT SURV BEGIN OF INTERVAT.

0.0	7,132,271		0.0000	1.0000	100.00
0.5	$6,934,408$	1,295	0.0002	0.9998	100.00
1. 5	$6,656,751$	4,728	0.0007	0.9993	99.98
2.5	$6,297,219$	7,209	0.0011	0.9989	99.91
3.5	$5,502,441$	5,490	0.0010	0.9990	99.80
4.5	$5,088,929$	12,595	0.0025	0.9975	99.70
5.5	4,744,502	1,707	0.0004	0.9996	99.45
6.5	4,415,808	4,898	0.0011	0.9989	99.41
7.5	4,159,034	8,365	0.0020	0.9980	99.30
8.5	3,874,321	731	0.0002	0.9998	99.10
9.5	$3,783,999$	1,415	9.0004	0.9996	99.08
10.5	3,580,125	2,191	0.0006	0.9994	99.04
11.5	3,367,623		0.0000	1. 0000	98.98
12.5	3,184,912	2,281	0.0007	0.9993	98.98
13.5	2,937,459	69	0.0000	1.0000	98.91
14.5	$2,856,547$	723	0.0003	0.9997	98.91
15.5	2,734,304	734	0.0003	0.9997	98.88
16.5	$2,648,740$	$1 \times 429$	0.0005	0.9995	98.85
17.5	$2,444,369$	1.810	0.0007	0.9993	98.80
18.5	2,313,967	5,043	0.0022	0.9978	98.73
19.5	2,069,552	3.853	0.0019	0.9981	98.51
20.5	2,212,479	2,838	0.0013	0.9987	98.32
21.5	2,129,913	8, 174	0.0038	0.9962	98.19
22.5	1,979,132	2,490	0.0013	0.9987	97.82
23.5	1,927,115	4, 105	0.0021	0.9979	97.69
24.5	1,827,450	1,358	0.0007	0.9993	97.48
25.5	1,729,072	1,370	0.0008	0.9992	97.41
26.5	$1,737,347$	3.459	0.0020	0.9980	97.33
27.5	1,720,433	469	0.0003	0.9997	97. 14
28.5	1,755,846	1,176	0.0007	0.9993	97.11
29.5	1,683,799	1,646	0.0010	0.9990	97.04
30.5	+,577,208	3;512	0.0022	0.9978	96.94
31.5	$1,463,252$	2,132	0.0015	0.9985	96.73
32.5	], 387,492	2,775	0.0020	0.9980	96.58
33.5	1,337,403	5,246	0.0039	0.9961	96.39
34.5	1,255,584	10,917	0.0087	0.9913	96.01
35.5	916,286	I. 559	0.0017	0.9983	95.17
36.5	793,059	1,884	0.0024	0.9976	95.01
37.5	734,254	1,148	0.0016	0.9984	94.78
38.5	692,882	3,318	0.0048	0.9952	94.63

III-69

ACCOUNT 335.00 FIRE HYDRANTS
ORIGINAL LIFE TABLE, CONT.
PLACEMENT BAND $1934-2009$
EXPERTENCE BAND 1995-2009


RETIREMENTS
DURING AGE RETMT SURV TNTERVAL RATIO RATIO TNTERVAT

39.5	642,948	219	0.0003	0.9997	94.18
40.5	589.276	930	0.0016	0.9984	94.15
41.5	530,460	964	0.0018	0.9982	94.00
42.5	471,700	1,158	0.0025	0.9975	93.83
43.5	365,633	1,003	0.0027	0.9973	93.60
4.4 .5	309,155	550	0.0018	0.9982	93.35
45.5	267,233	1,068.	0.0040	0.9960	93.18
46.5	240,625	2,325	0.0097	0.9903	92.81
47.5	194,105	236	0.0012	0.9988	91.91
48.5:	166,204	1,231	0.0074	0.9926	91.80
49.5	141,127	278	0.0020	0.9980	91.12
50.5	103.424	627	0.0061	0.9939	90.94
51.5	85.470	3.45	0.0040	0.9960	90.39
52.5	64,858	141	0.0022	0.9978	90.03
53.5	49,519	123	0.0025	0.9975	89.83
54.5	30,021	242	0.0081	0.9919	89.61
55.5	25,499		0.0000	1.0000	88.88
56.5	15,983	324	0.0203	0.9797	88.88
57.5	11,596	98:	0.0085	0.9915	87.08
58.5	9.925	103	0.0104	0.9896	86.34
59.5	8.024	200	0.0249	0.9751	85.44
60.5	15,125		0.0000	1.0000	83.31
61.5	13,189		0.0000	1.0000	83.31
62.5	12,711		0.0000	1.0000	83.31
63.5	11,764		0.0000	1.0000	83.31
64.5	11.749	46	0.0039	0.9961	83.31
65.5	11,703	57	0.0049	0.9951	82.99
66.5	11,645	841	0.0722	0.9278	82. 58
67.5	10,658		0.0000	1.0000	76.62
68.5	9,982	45	0.0045	0.9955	76.62
69.5	9,583		0.0000	1.0000	76.28
70.5	8,900	977	0.1098	0.8902	76.28
$71 \times 5$	7,805		0.0000	1.0000	67.90
72.5	7,653	267	0.0349	0.9651	67.90
73.5	7,360	38	0.0052	0.9948	65.53
74.5	7,132	131	0.0184	0.9816	65.19
75.5					63.99



ACCOUNT 341.10 TRANSPORTATION EQUTEMENT - IIGHT DUTY TRUCKS
ORIGINAL LIFE TABLE

PLACEMENT BAND 1974-2008
EXPERIENCE BAND 1995-2009

## AGE AT EXPOSURES AT BEGIN OF BEGINNING OF INTERVAL AGE INTERVAL

RETIREMENTS
DURING AGE RETMT SURV
INTERVAI RATIO RATIO

PCT SURV
BEGIN OF INTERVAI

0.0	2, 234,546
0.5	2,276,846
1.5	$2,114,004$
2.5	$1.866,554$
3.5	$1,431,311$
4.5	1,480,763
5.5	$1,587,595$
6.5	$1,632,407$
7.5	1,444,866
8.5	1,088,162
9.5	$1,003,005$
10.5	647,300
11.5	465,578
12.5	277,936
13.5	234,625
14.5	134,870
15.5	134,870
16.5	116,597
17.5	83,733
18.5	76,661
19.5	52,348
20.5	40,614
21.5	31,669
22.5	30,102
23.5	30,102
24.5	30,102
25.5	20,885
26.5	20,885
27.5	739
28.5	739
29.5	739
30.5	739
31.5	739
32.5	739
33.5	739
34.5	739
35.5	


	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
11.741	0.0056	0.9944	100.00
	0.0000	1.0000	99.44
	0.0000	1.0000	99.44
	0.0000	1.0000	99.44
7,445	0.0047	0.9953	99.44
53,805	0.0330	0.9670	98.97
211,676	0.1465	0.8535	95.70
34,956	0.0321	0.9679	81.68
183,493	0.1829	0.8171	79.06
85,718	0.1324	0.8676	64.60
79,801	0.1714	0.8286	56.05
43,311	0.1558	0.8442	46.44
26,718	0.1139	0.8861	39.20
	0.0000	1.0000	34.74
18.273	0.1355	0.8645	34.74
20,292	0.1740	0.8260	30.03
	0.0000	1.0000	24.80
	0.0000	1. 0000	24.80
	0.0000	1.0000	24.80
	0.0000	1.0000	24.80
	0.0000	1.0000	24.80
	0.0000	I. 0000	24.80
	0.0000	1.0000	24.80
9,217	0.3062	0.6938	24.80
	0.0000	1.0000	17.21
	0.0000	1.0000	17.21
	0.0000	1.0000	17.21
	0.0000	1.0000	17.21
	0.0000	1.0000	17.21
	0.0000	1.0000	17.21
	0.0000	1. 0000	17.21
	0.0000	1.0000	17.21
	O. 0000	+.0000	17.21
	0.0000	1.0000	17.21
			17.21


$111-73$

## KENTUCKY AMERTCAN WATER COMPANY

ACCOUNT 341.20 TRANSPORTATION EQUIPMENT - HEAVY DUTY TRUCKS

## ORIGTNAT LIFE TABLE

PHACEMENT BAND 1979-2008
EXPERIENCE BAND 1995-2009

AGE AT	EXPOSURES AT	RETIREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAT
0.0	1.211,794		0.0000	1.0000	100.00
0.5	1,228,486		0.0000	1.0000	100.00
1.5	924,015		0.0000	1.0000	100.00
2.5	770,880		0.0000	1. 0000	100.00
3.5	795,342		0.0000	1.0000	100.00
4.5	632,320		0.0000	1.0000	100.00
5.5	632,320	47.324	0.0748	0.9252	100.00
6.5	647,970		0.0000	1.0000	92.52
7.5	647,970	46, 172	0.0713	0.9287	92.52
8.5	501,843	43,500	0.0867	0.9133	85.92
9.5	414,854	18,235	0.0440	0.9560	78.47
10.5	311,912	18,568	0.0595	0.9405	75.02
11.5	293,345	62,456	0.2129	0.7871	70.56
12.5	107,792		0.0000	1.0000	55.54
13.5	107.792		0.0000	+. 0000	55.54
14.5	107,792	42,659	0.3958	0.6042	55.54
15.5	65.865		0.0000	1.0000	33.56
16.5	65,865		0.0000	1.0000	33.56
17.5	65,865		0.0000	1.0000	33.56
18.5	36,964		0.0000	1.0000	33.56
19.5	36,964		0.0000	1. 0000	33.56
20.5	36,964		0.0000	1. 0000	33.56
21.5	17,424		0.0000	1.0000	33.56
22.5	17,424		0.0000	1.0000	33.56
23.5	17,424		0.0000	1.0000	33.56
24.5	17,424		0.0000	1.0000	33.56
25.5	17,424		0.0000	1.0000	33.56
26.5	17,424	5,000	0.2870	0.7130	33.56
27.5	12,424		0.0000	1.0000	23.93
28.5	12,424		0.0000	1.0000	23.93
29.5	12,424		0.0000	1.0000	23.93
30.5					23.93



KENTUCKY AMERICAN WATER COMPANY

## ACCOINT 341. 30 TRANSPORTATION EQUIPMENT - AUTOS

## ORIGINAL LIFE TABLE

Placement	BAND 1988-200	EXPERIENCE BAND			1995-2009
AGE AT	EXPOSURES AT	RETIREMENTS			PCTS SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVA	AGE INTERVAL	INTERVAL	RATIO	RATIO	INTERVAL
0.0	223,934		0.0000	1.0000	100.00
0.5	223,934		0.0000	1. 0.000	100.00
1. 5	189,626		0.0000	1.0000	100.00
2.5	146,487		0.0000	1.0000	100.00
3.5	139,564		0.0000	1.0000	100.00
4.5	218,797	7,185	0.0328	0.9672	100.00
5.5	257,166		0.0000	1.0000	96.72
6.5	312,836	33,902	0.1084	0.8916	96.72
7.5	278,934	85,317	0.3059	0.6941	86.24
8.5	193,617	30,159	0.1558	0.8442	59.86
9.5	163,458	11,515	0.0704	0.9296	50.53
10.5	135,018	36,700	0.2718	0.7282	46.97
11.5	97,584	30.915	0.3168	0.6832	34.20
12.5	46,114		0.0000	1.0000	23.37
13.5	46,114		0.0000	1.0000	23.37
14.5	46,114		0.0000	1.0000	23.37
15.5	46, 114		0.0000	1.0000	23.37
16.5	4.6, 11.4		0.0000	1.0000	23.37
17.5	33,215		0.0000	1.0000	23.37
18.5	33,215		0.0000	1.0000	23.37
19.5					23.37



KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 341.40 TRANSPORTATION EQUIPMENT - OTHER
ORIGINAL LIFE TABLE

## BIACEMENT BAND 1956-2009

EXPERIENCE BAND 1995-2009

AGE AT	EXPOSURES AT	RETIREMENT			PCT SURV
BEGIN OE	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF
INTERVAL	AGE INTERVAI.	INTERVAL	RATIO	RATIO	INTERVAL
0.0	414,452		0.0000	1.0000	100.00
0.5	400,244		0.0000	1.0000	100.00
1.5	224,123		0.0000	1.0000	100.00
2.5	131,372	972	0.0074	0.9926	100.00
3.5	83,287		0.0000	1.0000	99.26
4.5	83,287		0.0000	1.0000	99.26
5.5	23,950		0.0000	1.0000	99.26
6.5	23,950		0.0000	1.0000	99.26
7.5	7,846		0.0000	1.0000	99.26
8.5	2,626		0.0000	1.0000	99.26
9.5	5,619		0,0000	1.0000	99.26
10.5	5,619		0.0000	1.0000	99.26
11.5	5,619	2,993	0.5327	0.4673	99.26
12.5	2,626		0.0000	1.0000	46.38
13.5	2,626		0.0000	1.0000	46.38
14.5	2,626		0.0000	1.0000	46.38
15.5	2,626		0.0000	1.0000	46.38
16.5	2,626		0.0000	1.0000	46.38
17.5	2,625		0.0000	1.0000	46.38
18.5					46.38

19.5
20.5
21.5
22.5
23.5
24.5
25.5
26.5
27.5
28.5
29.5
30.5
31.5
32.5
33.5
34.5
35.5
36.5
37.5
38.5

440
0.0000

## III-78




EXPERIENCE BAND 1995-2009

## AGE AT BEGIN OF

 INTERVAIEXPOSURES AT BEGINNING OF AGE INTERVAT:

RETIREMENTS DURING AGE RETMT SURV BEGIN OF INTERVAL RATIO RATIO INTERVAI


	0.0000	1. 0000	100.00
	0.0000	1. 0000	100.00
	0,0000	1.0000	100.00
	0.0000	1.0000	100.00:
	0.0000	1.0000	100.00
	0.0000	1. 0000	100.00
	0.0000	1.0000	100.00
	0,0000	1.0000	100.00
	0.0000	1. 0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
	0.0000	1.0000	100.00
51,092	0.1327	0.8673	100.00
48,734	0.1460	0.8540	86.73
	0.0000	I. 0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	3.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
	0.0000	I. 0000	74.07
	0.0000	1.0000	74.07
	0.0000	1.0000	74.07
			74.07

III-81

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 345 POWER OPERATED EQUIPMENT

ORIGINAL LIEE TABLE, CONT.

PLACEMENT	BAND 1941-200	EXPERIENCE BAND			1995-2009
AGE AT	EXPOSURES AT	RETTREMENTS			PCT SURV
BEGIN OF	BEGINNING OF	DURING AGE	RETMT	SURV	BEGIN OF'
INTERVAL	AGE INTERVAL	INTERVAL	RATHO	RATIO	INTERVAL

39.5
40.5
41.5
42.5
43.5
44.5
45.5
46.5
47.5
48.5
49.5
50.5
51.5
52. 5
53.5
5,387
0.0000
54.5
5,387
0.0000
55.5
5, 387
0.0000
56.5
5,387
0.0000
57.5
5,387
0.0000
58.5
5,387
0.0000
59.5
5, 387
0.0000
60.5
5,387
0.0000
61.5
5,387
0.0000
62.5
5,387
0.0000
63.5
5,387
0.0000
64.5
5,387
0.0000
65.5
5,387
0.0000
66.5
5,387
0.0000
67.5
5,387
0.0000

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.10 STRUCTURES \& IMPROVEMENTS - SOURCE OF SUPPLY

YEAR


1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
24,347
87,305359
$38,923 \quad 115,482297$
2005
2006
1,100
0
0
0
9,215
9,215
$5: 311$
3,050
450
450

2008
2009

GROSS
SALVAGE
AMOUNT PCT

0
87. $305-359-$

0

0
0
0

TOTAL
91,928
221,217241
$0 \quad 9.215-$
0
9,215-

$$
9.215
$$

0 115.482-297-

0

0
0

THREE-YEAR MOVING AVERAGES

$87-89$	300	6,143		0	$6,143-$	
$88-90$	150	3,072	0	0	$3,072-$	
$89-91$	1,770		0	0	0	
$90-92$	1,770		0	0	0	0
$91-93$	2,787		0	0	0	0
$92-94$	1,017			0	0	
$93-95$	1,017					
$94-96$						
$95-97$						
$96-98$						
$97-99$						
$99-01$						

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 304.10 STRUCTURES \& IMPROVEMENTS - SOURCE OF SUPPLY

SUMMARY OF BOOK SALVAGE
REGULAR
YEAR RETIREMENTS

COST OF REMOVAI AMOUNT PCT

GROSS SAIVAGE AMOUNT PCT

NET SALVAGE AMOUNT PCT

THREE-YEAR MOVING AVERAGES

$00-02$			
$01-03$	8,116	29,102	359
$02-04$	21,090	67,596	321
$03-05$	21,090	67,596	321
$04-06$	13,341	38,494	289
$05-07$	367		0
$06-08$	4,259		0
$07-09$	6,099		0

FIVE-YEAR AVERAGE
$05-09$
3,879
0
0
0

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNTS 304.20 AND 304.30 STRUCTURES AND IMPROVEMENTS
SUMMARY OF BOOK SALVAGE

	REGULAR	COST OF REMOVAL		$\begin{aligned} & \text { GROSS } \\ & \text { SALVAGE } \end{aligned}$		NET SALVAGE
YEAR	RETIREMENTS	AMOUNT	PCI			
1982	119		0		0	0
1983	3.903	1,034	26		0	1.034-26-
1984	4,200		0		0	0
1985	4,215		0			0
1986	13.945		0		${ }^{\circ}$	-
1987	9,195	1,628	18		0	1,628-18-
1988	45,747	13,140	29		0	13,140-29-
1989					0	3,615-13-
1990	27,910	3,615	1.3		0	19,652-25-
1991	79,308	19,652	25		0	5,727-20-
1992	28,738	8,163:	28	2,436.	8	5,727-20-
1993	4,601	825	18		0	825-18-
1994	500		0		0	
1995						
1996						
1997						
1998					0	7.900-46-
1999	17,195	7,900	46		0	38,325-41-
2000	92,575	38,325	41.		0	38,325-41-
2001	35,834	5,500	15		0	70,552-412
2002	17,127	70,552	412		0	70,552-412-
2003	105	1,378:			0	1,378-
2004	200		0		0	-
2005	5,347	5,943	1 il 1		0	$5,943-111$
2006	24,500	25	-0		0	25
2007	5,991.		0		0	0
2008	391,632		0		0	44-
2009	90,566	45	0	1	0	44-
TOTAL	903,453	177,675	20	2,437	0	175,238-19-

## THREE-YEAR MOVTNG AVERAGES

82-84	2.741	345	13	0	345-13-
83-85	4,105	345	8	0	345-8-
84-86	7,453		0	0	- ${ }^{\circ}$
85-87	9,118	543	6	0	$543-6-$
86-88	22,962	4,923	21	0	4,923-217
87-89	18,314	4,923	27	0	4.923-27-
88-90	24.552	5,585	23	0	5,585-23-
89-91	35,739	7,755	22	0	7.756-22-

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNTS 304.20 AND 304.30 STRUCTURES AND IMPROVEMENTS
SUMMARY OF BOOK SAIVAGE

## YEAR

	COST OE
REGULAR	REMOVAI
RETIREMENTS	AMOUNT PCT

GROSS SALVAGE
AMOUNT PCT

NET SALVAGE AMOUNT PCT

THREE-YEAR MOVING AVERAGES

$90 \div 92$	45,319	10,477	23	812	2	9,665-21-
91-93	37,549	9,547	25	812	2	8,735-23-
92-94	11,280	2,996	27	812	7	$2,184-19-$
93-95	1,700	275	16		0	275-16-
94-96	167		0		0	0
95-97						
96-98						
97-99	5.732	2,633	46		0	$2,633-46-$
98-00	36,590	15,408	42		0	$15,408=42-$
99-01	48,534	17,242	36		0	17,242-36-
00-02	48,512	38,126	79		0	38,126-79-
01-03	17.689	25.810	146		0	25,810-146-
02-04	5,811	23,977	413		0	23,977-413-
03-05	1,884	2,441	130		0	$2,441-130-$
04-06	10,016	1,973	20		0	$1,973-20-$
05-07	11,946	1.973	17		0	$1,973-17$
06-08	140,708	8	0		0	80
07-09	162,730	15	0		0	$15 \cdots$

FIVE-YEAR AVERAGE

| $05-09$ | 103,607 | 193 |
| :---: | :---: | :---: |$\quad 0 \quad 1,193-1-$

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.40 STRUCTURES \& IMPROVEMENTS - TRANS. AND DISTR.
SUMMARY OF BOOK SALVAGE

	REGULAR	COST OF REMOVAL	GROSS SALVAGE	NET   SALVAGE
YEAR	RETIREMENTS	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT
2006	2,300	0	0	0
2007				
2008	39,028	0	0	0
2009	708	1.556220	0	1,556-220-
TOTAL	42,036.	1,556 4	0	1,556

## THREE-YEAR MOVING AVERAGES

$06-08$	13,776		0	0	0
$07-09$	13,245	519	4	0	$519-4-$

FIVE-YEAR AVERAGE
05-09 8, 407
3214
0
311-4-

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 304.60 STRUCTURES \& TMPROVEMENTS - OFFICE BUIUDINGS

SUMMARY OF BOOK SALVAGE

	REGUILAR	$\cos$ T OF REMOVAE		$\begin{gathered} \text { GROSS } \\ \text { SALVAGE } \end{gathered}$		NET SALVAGE	
YEAR	RETIREMENTS	AMOUNT	PCT	AMOUNT	PCT	AMOUNT	PCT
1980	5,388	2,244	42	9,131	169	6,887	128
1981							
1982	46,850	9,646	21	50	0	9,596	20-
1983	385		0		0		0
1984							
1985	660		0		0		0
1986							
1987	16,089	2.000	12		0	2,000-	$12-$
1988	34,846	2,675	8	3,500	10	825	2
1989							
1990	17,631	7,406	42		0	7,406-	42-
1991	28,515-		0		0		0
1992	5,155	300	6	4,196	81	3,896	76
1993	2,903	361	12	50	2	317-	11-
1994	6,294	502	8		0	502-	8-
1995							
1996							
1997							
1998							
1999	46.016		0		0		0
2000	1,901.	551	29		0	$551=$	29
2001 -							
2002							
2003	33,675		0		0		0
2004							
2005							
2006							
2007	6.099		0		0		0
2008	40,837		0		0		0
2009	13,217		0		0		0
TOTAL	249,431	25,685	10	16.927	7	8,758-	4-

## THREE-YEAR MOVING AVERAGES

$80-82$	17,413	3,963	23	3,060	18	$903-$	$5 *$
$81-83$	15,745	3,215	20	17	0	$3,298-20-$	
$82-84$	15,745	3,215	20	17	0	$3,196-20-$	
$83-85$	348	220		0	0		0
$84-86$	5,583	667	12		0	0	0
$85-87$		$667-12-$					

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 304.60 STRUCTURES \& IMPROVEMENTS - OFFICE BUILDINGS
SUMMARY OF BOOK SALVAGE

REGULAR
YEAR RETIREMENTS AMOUNT PCT THREE-YEAR MOVING AVERAGES

86-88	16,978	1,558	9	1,167	7	391-	$2-$
87-89	15,978	1,558	9	1,167	7	391:-	$2-$
88-90	17,492	3,360	19	1,167	7	2,193-	$13-$
89-91	3,628-	2,469	68-		0	2,469-	68
90-92	1.910-	2,569	$135-$	1,399	73-	1,170-	61
91-93	$6,819-$	220	$3-$	1,415	21.	1,195	18
92-94	4,784	388	8	1,415	30	1,027	21
93-95	3,066	288	9	17	1	$271-$	$9-$
94-96	2,098	167	8		0	167 -	$8-$
95-97							
96-98							
97-99	15,339		0		0		0
98-00	15,972	184	1		0	184	1-
99-01	15,972	184	1		0	184-	1-
00-02	634	184	29		0	184-	29-
01-03	11,225		0		0		0
02-04	11,225		0		0		0
03-05	11,225		$\theta$		0		0
04-06							
05-07	2.033				0		-
06-08	15,645		0		0		0
07-09	20,051		0		0		0

FIVE-YEAR AVERAGE

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.70		UCIURES \&	VEMENTS -	¢ GARAGE
		SUMMARY OF BOOK SALVAGE		
YEAR	REGULAR RETIREMENTS	COST OF   REMOVAI   AMOUNT PCT	```GROSS SALVAGE AMOUNT PCT```	NET   SALVAGE   AMOUNT PCT
2008	29,115	0	0	0
2009				
TOTAL	29.115	0	0	0
FIVE-YEAR AVERAGE				
05-09	5,823	0	0	0

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.80 STRUCTURES \& IMPROVEMENTS - MISCELLANEOUS
SUMMARY OF BOOK SALVAGE:

	REGULAR	$\begin{aligned} & \text { COST } \\ & \text { REMOV } \end{aligned}$		GROSS SALVAGE	$\begin{gathered} \text { NET } \\ \text { SALVAGE } \end{gathered}$
YEAR	RETIREMENTS	AMOUNT	PCT	AMOUNT PCT	AMOUNT PCT
2001	721		0	0	0
2002	7,539	17,616	234	0	17,616-234-
2003	5,250		0	0	0
2004	109,674	239	0	0	239-0
2005	6,000		0	0	0
2006					
2007					
2008	20,629		0	0	0
2009	5,551		0	0	0
TOTAL	155,364	17,355	11	0	17.855-11-

## THREE-YEAR MOVING AVERAGES

$01-03$	4,503	$5,872,130$	0	$5,872-130-$
$02-04$	40,821	5,952	15	0
$03-05$	40,308	80	0	0
$04-06$	38,558	80	0	0
$05-07$	2,000	0	0	$80-15-$
$06-08$	6,876	0	0	$00-0$
$07-09$	8,726	0	0	0
0		0	0	0

FIVE-YEAR AVERAGE
05-09
6,436

0
0
KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 305.00 COLEECTING AND TMPOUNDING RESERVOIRS
SUMMARY OF BOOK SALVAGE

		COST OF	GROSS	NET
YEAR	REGULAR	REMOVAL	SALVAGE	SATVAGE
2008	11,467	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT
2009		0	0	0
TOTAL	11,467			

FIVE YEAR AVERAGE
05-09 2,293 0 0 ..... 0

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 306.00 LAKE, RIVER AND OTHER INTAKES
SUMMARY OF BOOK SALVAGE

	REGULAR	COST OE REMOVAL	GROSS SALVAGE	NET SALVAGE
YEAR	RETIREMENTS	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT
2002	5,189	99, 254	0	99,254
2003				
2004				
2005				
2006	20,500	72,600 354	0	$72,600-354$
2007	3,666	0	0	- 0
2008				
2009				
TOTAL	29,355	171,854 585	0	171,854-585-

THREE-YEAR MOVING AVERAGES

$02-04$	1,730	33,085	0	$33,085-$
$03-05$			0	$24,200-354-$
$04-06$	6,833	24,200354	0	$24,200-300-$
$05-07$	8,055	24,200300	0	$24,200-300-$
$06-08$	8,055	24,200300	0	0

FIVE-YEAR AVERAGE
$\begin{array}{lll}05-09 & 4,833 & 14,520 \quad 300\end{array}$
$0 \quad 14,520-300-$

KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 309.00 SUPPLY MAINS
SUMMARY OF BOOK SALVAGE

YEAR
1980
1981
1982
1983
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

PEGULAR RETIREMENTS

COST OF REMOVAL AMOUNT PCT

GROSS SALVAGE AMOUNT PCT

3,756163
5,618 393
$727 \quad 15$
2,069271
2,519 54
1,205 343
3,166 70
4,189156
2,686 210
191,01769
747
I, 486 406
$15,413 \quad 281$
5,485
45
366
2,299
1,428
4,924
763
4, 660 351
4,522
2,692
1,277
275,533
2,425

1
0

NET
SALVAGE AMOUNT PCT

$$
\begin{aligned}
& 3,756-163- \\
& 5,618-393 \\
& 4,722 \\
& 2,069-271- \\
& 2,204-47- \\
& 1,205-343- \\
& 3,166-70 \\
& 4,052-151 \\
& 2,686-210- \\
& 12,325
\end{aligned}
$$

$747-$ 1,486-406-
$10,534-192-$

$$
49
$$

3.000

0

0
62
29
$23,447-\quad 8-$

## THREE-YEAR MOVING AVERAGES

$80-82$	2,884	3,367117	1,816	63	$1,551-54-$	
$81-83$	2,372	2,805118	1,816	77	$989-42-1$,	
$82-84$	3,449	1,772	51	1,921	56	149
$83-85$	1,925	$1,931,100$	105	5	$1,826-95-$	
$84-86$	3,178	2,297	72	105	3	$2,192-69-$
$85-37$	2,522	2,853113	46	2	$2,807-111-$	

KENTUCEY AMERICAN WATER COMPANY
ACCOUNT 309.00 SUPPLY MATNS
SUMMARY OF BOOK SAIVAGE

		COST OF	GROSS	NET
REGULAR	REMOVAL	SALVAGE	SALVAGE	
YEAR RETIREMENTS	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT	

THREE-YEAR MOVING AVERAGES

86-88	2,830	3.347	118	46	2	3,301-117-
87-89	93,167	65.964	71	67,826	73	1.862 2
88-90.	91; 462	64,568	71	67,781	74	3,213 4
89-91	91,051	63,921	70	67,781	74	3,860 4
90-92	671-	744	111-		0	744-111
91-93	137	744	543		0	744-543-
92-94	1,950	5,633	289	1,626	83	4,007-205 $=$
93-95	1,828	5,138	281	1,626	89	3,512-192-
94-96	1,828	5,138	281	1,626	89	3,512-192-
95-97.						
96-98						
97-99						
98-00	16	1,000			0	1,000-
99-01	16	1,000			0	1,000-
00-02	16	1,000			0	1,000
01-03						
02-04						
03-05						
04-06						
05-07						
06-08	137		0		0	0
07-09	137	11	8	21	15	10

## FIVE-YEAR AVERAGE

| $05-09$ | 82 | 7 | 9 | 12 | 15 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



THREE-YEAR MOVING AVERAGES

02-04	3,156	10	0	0	$10-0$
03-05	9		0	0	0
04-06					
05-07					
06-08		17,966			17.966-
07-09	4,834	17,966	372	0	17,966-372

FIVE-YEAR AVERAGE
05-09
2,900
$10.780 \quad 372$
0
$10,780-372=$

## ACCOUNTS 311.20 THRU 311. 54 PUMPING EQUIPMENT

SUMMARY OF BOOK SAUVAGE

YEAR	REGULAR RETIREMENTS	Cost OF REMOVAL		GROSS   SAlVAGE		$\begin{gathered} \text { NET } \\ \text { SALVAGE } \end{gathered}$
		AMOUNT	PCT	AMOUNT	PCT	AMOUNT PCT
1980	6,846	581.	8		0	581- 8-
1981	111,666	6,609	6		0	6,609-6-
1982	20, 804		0		0	-0
1983	8,641	7.893	91		0	7.893-91-
1984	15,402	28,100	182		0	28,100-182-
1985	25,509		0		0	0
1986	35,582	1,265	4		0	1,265 4-
1987	65,960		0		0	0
1988	117,243	37,346	32		0	37,346-32-
1989						
1990	53,741	19,720	37		0	19,720-37-
1991	142,027	1,100	1		0	1,100- 1-
1992	1,502,228	87,842	6	2,000	0	85,842- 5-
1993	83,349	7,243	9		0	7 7 243 - 9-
1994	$54 \times 193$	6,368	12		0	6,368-12-
1995						
1996						
1997						
1998						
1999	51,242	18,591	36		0	18,591-36-
2000	6,563	265	4		0	265- $4-$
2001	47,961		0		0	0
2002	17,353	5,905	34.	3,459	20	2,446-14-
2003	65,459	11,758	18	133	0	11,625-18-
2004				1,829		1,829
2005				5,191		5,191
2006	10,400	21,530	207	12,361-	$119-$	33,891-326-
2007	111,566		0		0	0
2008	124,691	168,362	135		0	168,362-135-
2009	278		0		0	0
TOTAL	2,678,704	430,478	16.	251	0	430,227-16-

THREE-YEAR MOVING AVERAGES

$80-82$	46,439	2,397	5	0	$2,397-5-$	
$81-83$	47,037	4,834	10	0	$4,834-10-$	
$82-84$	14,949	11,998	80	0	$11,998-80-$	
$83-85$	16,517	11,998	73	0	$11,998-73-$	
$84-86$	25,498	9,788	38	0	0	$9,788-38-$
$85-87$	42,350	422	1	$422-1-$		

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNTS 311.20 THRU 311.54 PUMPING EQUIPMENT

## SUMMARY OF BOOK SALVAGE

		COST OF	GROSS	NET
REGULAR	REMOVAL	SALVAGE	SALVAGE	
YEAR RETIREMENTS	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT	

## THREE-YEAR MOVING AVERAGES

86-88	72.928	12,870	18		0	12,870-18-
87-89	61,068	12,449	20		0	12,449-20-
88-90	56,995	19,022	33		0	19,022-33-
89-91	65,256	6,940	11		0	6,940-11-
90-92	565,999	36,221	6	667	-	35,554-6-
91-93	575,868	32,062	6	667	0	31,395- 5-
92-94	546,590	33,818	6	667	0	33,151-6-
93-95	45,847	4,537	10			4,537-10-
94-96	18,064	2,123	12		0	2,123-12-
95-97						
96-98						
97-99	17,081	6.197	36		0	6,197-36-
98-00	19,268	6,285	33		0	6,285-33-
99-01	35,255	6,285	18		0	6,285 - 18
00-02	23,959	2,057	9	1,153	5	904-4-
01-03	43,591	5,888	14	1,197	3	4,693-11-
02-04	27,604	5,888	21	1,807	7	4,081-15-
03-05	21,820	3,919	18	2,384	12	1,535-7-
04-0.6	3,467	7. 177	207	1, 780-	51-	8,957-258-
05-07	40,655	7,177	18	2,390-	6 -	9,567-24-
06.08	82,219	63,297	77	4,120-	5.	67,417-82-
07-09	78,845	56,121	71		0	56,121-71-

## FIVE-YEAR AVERAGE

05-09
49,387
$37,978 \quad 77$
1,434 - $3-$
$39.412-80-$

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNTS 320.10 AND 320.11 PURIFICATION SYSTEM
SUMMARY OF BOOK SALVAGE

	REGULAR	$\operatorname{COST}$ OF REMOVAL		GROSS   SALVAGE		NET SALVAGE AMOUNT PCT
YEAR	RETIREMENTS	AMOUNT	PCT			
1980		7,727				$7,727=$
1981	26,783	29,727	111		$\bigcirc$	29,727-111-
1982	42,186	23,427	56		0	23.427-56-
1983	22,018		0		0	0
1984	1,400		0		0	7,000-
1985	69,458	7,000	10		0	7,000-10-
1986	147,206		16		1	
1987	22,470	3,622	16	226	1	$\begin{array}{r} 3,396-15- \\ 175,800-72- \end{array}$
1988	245,366	175,800	7.2		0	176,258-12-
1989	132,745	16,258	12		0	29,899-15-
1990	201,156	30,074	15	175 820	0	31,953-10-
1991	317,893	32,773	10	820	0	$83,640-64-$
1992	131,590	83,640	64 8	1.068	O	18,117-7-
1993	253,125 359,656	19,185 3,997	8 1	1,068	0	3,997-
1995						
1996						
1997						
1998						
1999	84.970	2.423	3		0	25,431-8-
2000	298,470	25,131	8		0	25,131- 8-
2001	26,267	3,765	14		0	3,765-14-
2002	15,797	2,234	14		0	2,234- 14-
2003	36,944	10,965	30		0	10,965-30-
2004						
2005	22,500		0		0	4 797- 4-
2005	122,300	4,797	4		0	4,797- 4 -
2007	231,024	4,933	3		0	4,933-2-
2008	174,737	110,000	63		0	110,000-63-
2.009	61,811		0		0	0
TOTAL	3,047,872	597.478	20	2.289	0	595,189-20-

## THREE-YEAR MOVING AVERAGES

80-82	22,990	20,294	88		0	$20,294-88-$
81-83	30,329	17,718	58		0	17,718-58-
82-84	21,868	7,809	36		0	7,809-36-
83-85	30,959	2,333	8		0	2,333- 8-
84-86	72,688	2,333	3		0	2,333- 3 -
85-87	79,711	3.541	4	75	0	3,466-

## SUMMARY OF BOOK SALVAGE

$\left.\begin{array}{cccc} & & \text { COST OF } & \text { GROSS }\end{array}\right]$ NET

## THREE-YEAR MOVING AVERAGES

86-88	138,347.	59,807	43	75	0	59,732-43-
87-89	133,527	65,227	49	75	0	65,152-49-
88-90	193,089	74,0.44	38	58	0	73,986-38-
89-91	217,265	26,368	12	332	0	26,036-12-
90-92	216,880	48,829	23	332	0	48,497-22-
91-93	234,203	45,199	19	629	0	44,570-19-
92-94	248,124	35,607	14	356	0	35,251-14,
$93-95$	204,260	7.727	4	356	0	7,371- 4
94-96	119,885	1,332	1		0	1,332-
95-97						
96-98						
97-99	28,323	808	3		0	808-3-7
98-00	127,813	9,185	7		0	9,185-7-
99-01	136,569	10,440	8		0	10,440- 8-
00-02	113,511	10,377	9		0	10,377- $9-$
01-03	26,336	5,655	21		0	5,655-21-
02-04	17,580	4,400	25		0	4,400-25-
03-05	19,815	3,655	18		0	3,655-18-
04-06	48,267	1,599	3		0	1.599- 3-
05-07	125,275	3,243	3		0	3,243- 3
06-08	176,020	39,910	23		0	39,910-23-
07-09	155,857	38,311	25		0	38,311- 25-

EIVE-YEAR AVERAGE

| $05-09$ | 23.946 | 20 | 0 | $0.946-20-$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 330.10 ELEVATED TANKS AND STANDPIPES
SUMMARY OE BOOK SALVAGE

	REGULAR	$\operatorname{cost} 0 \mathrm{~F}$ REMOVAI		$\begin{gathered} \text { GROSS } \\ \text { SALVAGE } \end{gathered}$	NET   SALVAGE	
YEAR	RETIREMENTS	AMOUNT	PCT	AMOUNT PCT	AMOUNT	PCT
1980	68,079		0	0		0
1981						
1982	1,509		0	0		0
1983						
1984						
1985						
1986	18,937	8,012	42	0	8,012	42
19.87	2,755		0	0		0
1988	200	200	100	0	200-1	$100-$
1989	48,379	21,509	44	0	21,509	4.4
1990	11,850	1.100	9	0	1,100\%	9
1991	2,000	490	25	0	$490-$	25
1992	7,676	249	3	0	249	$3-$
1993	1,060		0	0		0
1994	1,890	285	15	0	285-	15-
1995						
1996						
1997						
1998						
1999						
2000	4,223	712	17	0	712	$17-$
2001	5,938		0	0		0
2002		3,550			3,550.	
2003	29,652	16,831	57	0	16,831,	57-
2004	200	67	34	0	67.	$34-$
2005	2,000		0	0		0
2006						
2007						
2008.	10,495	99-	1	0	99	1
2009	9,283		0	0		0
TOTAL	226,126	52,906	23	0	52,906	23-

## THREE-YEAR MOVING AVERAGES

$80-82$	23,196	503	0	0
$81-83$	503	0	0	0
$82-84$		0	0	0
$83-85$	5,312	2,671	42	0
$84-86$	7,231	2,671	37	$2,671-42-$
85	2,87	0	$2,671-37$	

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 330.10 ELEVATED TANKS AND STANDPIPES

## SUMMARY OF BOOK SALVAGE

	COST OR	GROSS	NET
YEAR	REGUEAR	REMOVAL	SALVAGE


86-88	7,297	2,737	38	0	2,737-38-
87-89	17,1主1	7,236	42	0	7,236-42-
88-90	20,143	7,603	38	0	7,603-38
89-91	20,743	7,700	37	0	7,700-37-
90-92	7,175	613	9	0	613-9-
91-93	3,579	246	7	0	$246-7-$
92-94	3,542	178	5	0	178
93-95	983	95	10	0	$95-10-$
94-96	630	95	15	0	95-15-
95-97					
96-98					
$97-99$					
98-00	1,408	237	17	0	237-17-
99-01	3,387	237	7	0	237-7-
00-02	3,387	1,421	42	0	1,421-42-
01-03	11,864	6,794	57	0	6,794-57-
02-04	9,951	6,816	68	0	6, 816-68-
03-05	10,617	5,633	53	0	5,633-53-
0.4-06	733	22	3	0	22-3-
05-07	667		0	0	0
06-08	3,498	33-	$1-$	0	33 1.
07-09	6,593	33-	王-	0	33 I

FIVE-YEAR AVERAGE
$05-09$
4,356
$20-0$
0
20
0

KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 331.00 MAINS AND ACCESSORIES - ALI MAINS

## SUMMARY OF BOOK SALVAGE



## THREE-YEAR MOVING AVERAGES

$80-82$	40,059	15,326	38	43,532109	28,206	70	
$81-83$	17,010	14,303	84	28,435167	$14,1,32$	83	
$82-84$	51,146	19,946	39	23,412	46	3,466	7
$83-85$	48,481	17,439	36	46,416	96	28,977	60
$34-86$	86,081	18,325	21	44,719	52	26,394	31
$85-87$	118,166	18,168	15	42,726	36	24,558	21

KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 331.00 MAINS AND ACCESSORIES - ALE MAINS

SUMMARY OF BOOK SALVAGE

		COST OF	GROSS	NET
	REGULAR	REMOVAL	SALVAGE	SALVAGE
YEAR RETEREMENTS	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT	

THREE-YEAR MOVING AVERAGES

86-88	253:128	23,254	9	26,984	11	3,730	1
$87-89$	252,060	30,072	12	23,569	9	6.503	3-
88-90	251,130	39,521	16	13,362	5	26,159	10 -
89-91	144,780	48,719	34	9,650	7	39,069	27-
90-92	131,260	55,978	43	7,760	6	48,218	37-
91-93	100,044	63,378	63	10,676	11	52,702	53-
92-94	93,279	61,117	66	15,179	16	45,938	$49=$
93-95	65,147	41, 919	64	14,504	22	27,415	$42-$
94-96	25,854	15,013	58	9.593	37	5.420	21-
$95-97$							
96-98							
97-99	78,410	20,080	26	1. 096	1	18,984	24-
98-00	176,577	38,682	22	1,263	1	37.419	21.
99-01	201,560	46,105	23	1,263	1	44,842	22-
00-02	265,171	51,106	19	167	0	50.939	$19-$
01-03	183,052	51,741	28		0	51,741	28-
02-04	199,270	58,763	29		0	58,763	29-
03-05	141,994	53,052	37		0	53,052	37\%
04-0.6	136,536	33,957	25	2,072	2	31,885	23-
05-07	32.075	19,983	62	2,072	6	17,911	$56-$
06-08	226.373	9,524	4	2.072	1	7,452	3
07-09	240,077	17,058	7	1,125	0	15,933	$7-$

PIVE-YEAR AVERAGE
05-09 201,248 21.942 11. $2.919 \quad 1 \quad 20.023-10-$

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 333.00 SERVICES
SUMMARY OF BOOK SALVAGE

	REGULAR	COST OF   REMOVAL	GROSS   SALIVAGE	SALVAGE   AMOUNT PCT	AMOUNT PCT
YEAR	RETIREMENTS	AMOUNT PCT			

## THREE-YEAR MOVING AVERAGES

$80-82$	12,672	30,508241	1,461	12	$29,047-229-$
$81-83$	9,452	34,867369	419	4	$34,448-364-$
$82-84$	11,061	34,829315	2,120	19	$32,709-296-$
$83-85$	9,677	27,871288	1,993	21	$25,878-267-$
$84-86$	10,311	22,228216	1,917	19	$20,311-197-$
$85-87$	8,919	18,501207	254	3	$18,247-205-$

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 333.00 SERVICES

SUMMARY OF BOOK SALVAGE

REGULAR	COST OF
YEAR	REMOVAL
RETIREMENTS	AMOUNT PCT


GROSS	NET
SALVAGE	SALVAGE
AMOUNT PCT	AMOUNT PCT

THREE-YEAR MOVING AVERAGES

86-88	12,938	19,815	153	558	4	19,257-149-
87-89	20,509	21,540	105	408	2	21,132-103-
88-90	27.371	38,272	140	304	1	37,968-139-
89-91	36,385	55,010	151		0	55,01.0-151-
90-92	42,111	64,621	153		0	64,621-153--
91-93	46,673	58,041	124		0	58,041-124-
92-94	31,938	35:719	112		0	35,719-112-
93-95	15,227	17,585	115		0	17,585-115-
94-96	818	2,753	337		0	2,753-337-
95-97						
96-98						
97-99	20,806	18,131	87		0	18, 131-87-
98-00	43,341	50,488	116		0	$50,488-115-$
99-01	54,889	128,099	233		0	128,099-233-
00-02	60,448	169.545	280		0	169,545-280-
01-03	51,318	176,077	343		0	176,077-343-
02-04	40,710	139.451	343		0	139,451-343-
03--05	19,395	104.782	540		0	104,782-540-
04-06	7,284	80,168			0	80,168-
05-07	104,869	43,226	41		0	43,226-41-
06-08	289,972	49,940	17		0	49,940-17-
07-09	290,863	56,354	19	2,422	1	53,932- 19-

FIVE YEAR AVERAGE
05-09
178,325
$57.322 \quad 32$
1,453
1
55,869-
$31-$

## KENTUCKY AMERICAN WATER COMDANY

## ACCOUNTS 334.00 THRU 334.30 METERS

SUMMARY OF BOOK SALVAGE

YEAR	REGULAR RETIREMENTS	COST OF REMOVAL		$\begin{aligned} & \text { GROSS } \\ & \text { SALVAGE } \end{aligned}$		$\begin{aligned} & \text { NET } \\ & \text { SALVAGE } \end{aligned}$	
		AMOUNT	PCT	AMOUNT	PCT	AMOUNT	PCT
1980	79,366	1,639	2	11,758	15	10.119	13
1981	107,531	3,502	3	22,687	21	19,185	18
1982	187,562	7,768	4	37,747	20	29,979	16
1983	99,321	11,131	11.	13,400	13	2,269	2
1.984	87,166	8.975	10	11,775	14	2,800	3
1985	92, 668	5,544	6	12.228	13	6,684	7
1986	74,228	7,556	10	2,477	3	5,079	7
1987	123,691	2,332	2	8,519	7	6,187	5
1988	136,124	4,017	3	13,175	10	9,158	7
1989	122,229	3,724	3	16,085	13	12,361	10
1990	133,683	9,475	7	10,960	8	1,485	1
1991	152,174	10,199	7	5,989	4	4,210-	$3-$
1992	153,973	6.203	4	13,473	9	7,270	5
1993	120,966	9.754	8	93,364	77	83,610	69
1994	1,227	2,796	228		0	2,796	228-
1995							
1996							
1997							
1998							
1999	90.023	46,996	52	80.4	1	46.192-	- 51-
2000	84,881	66,757	79	3,265	4	63,492-	- 75-
2001	59,456	52,230	88	173	0	$52,057-$	-88-
2002	108,243	54,749	51		0	54,749-	- 51-
2003	578,028	40,090	7		0	40,090-	- 7-
2004	84.261	72,000	85		0	$72,000-$	-85-
2005	116,511	58,223	50	$460=$	0	58,683-	- $50-$
2006	184,704	60,264	33	22.491	12	37.773-	- $20-$
2007	496,453	26,955	5	1,869	0	25,086-	- 5-
2008	610,344	3,486-	1.		0	3,486	
2009	19,750	61,193	310	100,345	508	39,152	198
TOTAL	4,104,573	630,586	15	402, 124:	10	228.462-	- $6-$

THREE-YEAR MOVING AVERAGES

$80-82$	124,820	4,303	3	24,064	19	19,761	16
8,83	131,471	7,467	6	24,611	19	17,144	13
$82-84$	124,683	9,291	7	20,974	17	11,683	9
$83-85$	93,052	8,550	9	12,468	13	3,918	4
$84-86$	84,687	7,358	9	0,827	10	1,469	2
$85-87$	96,862	5,144	5	7,741	8	2,597	3

KENTUCEY AMERTCAN WATER COMPANY
ACCOUNTS 334.00 THRU 334.30 METERS
SUMMARY OF BOOK SALVAGE

		COST OF	GROSS	NET
	REGULAR	REMOVAT	SALVAGE	SALVAGE
YEAR	RETTREMENTS	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT

## THREE-YEAR MOVING AVERAGES

86-88	111,348	4,635	4	8,057	7	3,422 3
87-89	127,348	3,358	3	12,593	10	$9.235 \quad 7$
88-90	130,679	5,739	4	13,407	10	7,668 6
89-91	136,029	7,799	6	11,011	8	$3,212 \quad 2$
90-92	146,610	8.626	6	10,141	7	1,515 1
91-93	142,371	8.719	6	37,609	26	$28,890 \quad 20$
92-94	92,055	6.251	7	35,612	39	$29,361 \quad 32$
93-95	40,731	4,183	10	31, 121.	76	26,93866
94-96	409	932	228		0	932-228-
95-97						
96-98						
97-99	30,008	15,665	52	268	1	15,397-51-
98-00	58,302	37,918	65	1,356	2	36,562-63-
99-01.	78,124	55,328	71	1, 414	2	53,914-69-
00-02	84,197	57,912	69	1, 146	1	56,766-67-
$01-03$	248,579	49,023	20	58	0	48,965-20-
02-04	256,844	55,613	22		0	55,613-22-
03-05	259,600	56,771	22	153-	0	56,924-22-
04-06	128,492	63,496	49	7,344	6	$56,152-44$
05-07	265,889	48,481	18	7,967	3	40,514-15-
06-08	430,500	27,911.	6	8,120	2	19,791-5-
07-09	375,515	28,220	8	34,071	9	5,851 2

FIVE-YEAR AVERAGE
05-09 $285,552 \quad 40,630 \quad 14 \quad 24,849 \quad 9 \quad 15,781-\quad 6-$

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 335.00 EIRE HYDRANTS
SUMMARY OF BOOK SALVAGE

	REGUAAR	COST OF		$\begin{aligned} & \text { GROSS } \\ & \text { SALVAGE } \end{aligned}$		NET   SADVAGE	
YEAR	RETIREMENTS	AMOUNT	PCT	AMOUNT	PCT	AMOUNT	CT
1980	12,294	2,498	20	9,619	78	7,121	58
1981	7,347	4.205	57	6,633	90	2,428	33
1982	8,316	4,213	51	7,109	85	2,896	35
1983	5,859	5,083	87	5,315	91	232	4
1984	9,155	15,650	171	8,870	97	6,780-	74-
1985	5,260	4,828	92	5,692	108	864	16
1986	4,060	6,489	160	6,416	158	73 -	$2-$
1987	5,248	16,989	324	14,128	269	2,861	55-
1988	15,368	7,826	51	1,174	8	6,652-	43-
1989	14,725	13,734	93	5.723	39	8,011-	$54-$
1990	15,761	20,197	128	3,281	21	16,916-	107.
1991	15,953	11,036	69	5,221	33	5,815	36
1992	60,190	28,345	47	1,943	3	26.402	
1993	12,448	10,199	82	2.098	17	8.101	
1994	5,440	5,777	106	2,610	48	3,167	$58-$
1995							
1996							
1997							
1998						1.146	
1999	6,437	1,831	28			2.122	
2000	8,303	2,385	29	263	3	$2 \times 122$	
2001	11,529	5,833	51		0	$5 \times 833$ 846	
2002	19,766	846	4		0	846	${ }^{4}$
2003	4,262		0		0		0
2004	10,660		0		0		16.
2005	13,469	2,091	16		0	2,091	
2006	17,275	898	5		0	898	
2007	1,716	16	1.		0	16	
2008	35,914	1,770	5		0	1,770	
2009	11,376	6,961	61		0	6.961	61.
TOTAL	338,131	179,700	53	86.780	26	92.920	27

## THREE-YEAR MOVING AVERAGES

$80-82$	9,319	3,639	39	7,787	84	4,148	45
$81-83$	7,174	4,500	63	6,352	89	1,852	26
$82-84$	7,777	$8,315,107$	7,098	91	$1,217-16-1,89-28$		
$83-85$	6,758	8,520126	6,626	98	$1,894-2$,		
$84-86$	6,158	8,989146	6,993	114	$1,996-32-1$		
$85-87$	4,856	9,435	194	8,745180	$690-14-$		

# KENTUCKY AMERICAN WATER COMPANY 

ACCOUNT 335.00 FIRE HYDRANTS

SUMMARY OF BOOK SALVAGE

		COST OF	GROSS	NET
	REGULAR	REMOVAL	SALVAGE	SALVAGE
YEAR RETIREMENTS	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT	

THREE-YEAR MOVING AVERAGES


FIVE-YEAR AVERAGE
05-09 $\quad 15.950$
$2,347 \quad 15$
0
$2,347-15-$

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 341.10 TRANSPORTATION EQUIPMENT - LIGHT DUTY TRUCKS
SUMMARY OF BOOK SATVAGE

	REGULAR	COST OF REMOVAL		$\begin{aligned} & \text { GROSS } \\ & \text { SALVAGE } \end{aligned}$		NET SALVAGE	
YEAR	RETIREMENTS	AMOUNT P		AMOUNT	PCT	AMOUNT	
1982		140		12,200		12,060	
1983	32,127	100	0	8,100	25	8,000	25
1984	9,205		0	7,500	81	7.500	81
1985	87,029	31.5	0	17,700	20	17.385	20
1986	33,598.		0	6,444	19	6,444	19
1987	53,418	11	0	10,875	20	10,864	20
1988	46,179	60	0	8,550	19	8, 490	18
1989	50,554		0	22,509	45	22,509	45
1990	96,067	1,393	1	27,637	29	26,244	27
1991	118,677		0	36.945	31.	36,945	31
1992	96,153		0	32,236	34	32,236	34
1993	72,282		0	23,220	32	23,220	32
1994	60,343	1,498	2	17,716	29	16,218	27
1995							
1996							
1997							
1998					26	8,825	20
1999	44,574	2,850	6	11,675	18	11,289	12
2000	94,444	5,440	6.	16,729	18	11,289.	,
2001	90,536		0		0		
2002		7.629		13,321		22,311	23
2003	52,861	1,010	2	13,321	25	12.31.	0
2004	27,211		0		0		0
2005	18,273		0		0		6
2006	197,839	11,832-	6		0	11,832	0
2007	54,895		0		-		20
2008	130,678		0	26,576	20	26,576	20
2009	75,134		0	9,596	13	9,596	13
TOTAL	1,542,077	8,614	1	339,529	22	330,975	21

## THREE-YEAR MOVING AVERAGES

$82-84$	13,777	80	1	9,267	67	9,187	67
$83-85$	42,787	138	0	11,100	26	10,962	26
$84-86$	43,277	105	0	10,548	24	10,443	24
$85-87$	58,015	109	0	11,673	20	11,564	20
$86-88$	44,398	24	0	8,623	19	8,599	19
$87-89$	50,050	24	0	13,978	28	13,954	28
$88-90$	64,267	484	1	19,565	30	19,081	30
$89-91$	88,433	464	1	29,030	33	28,566	32

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 341. 10 TRANSPORTATION EQUIPMENT - LIGHT DUTY TRUCKS
SUMMARY OF BOOR SALUAGE

		COST OF	GROSS	NET
YEAR	REGULAR	REMOVAL	SALVAGE	SALVAGE
YETREMENTS	AMOUNT PCT	AMOUNT PCT	AMOUNT PCT	

THREE-YEAR MOVING AVERAGES

90-92	103,632	464	0	32,273	31	31,809	31
91-93	95,704		0	30,800	32	30,800	32
92-94	76,259	499	1.	24,391	32	23,892	31
93-95	44,208	499	1.	13,645	31	13,146	30
94-96	20,114	499	2	5.905	29	5,406	27
95-97							
96-98							
97-99	14,858	950	6	3,892	26	2,942	20
98-00	46,340	2.763	6	9,468	20	6.705	14
99-01	76,518	2,763	4	9,468	12	6,705	9
00-02	61,660	4;356	7.	15,576	25	11,220	18.
01-03	47.799	2,880	6	14, 440	30	11,560	24
02-04	26.691	2, 880.	11.	14,440	54.	11,560	43
03-05	32,782	337	1	4,440	14	4,103	13
04-06	81,108	3,944-	$5-$		0	3,944	5
05-07	90,335	3,944-	4.-		0	3,944	4
06-08	127,804	3,944-	3-	8,859	7	12,803	10
07-09	86,902		0	$12 \% 057$	14	12,057	14

FTVE YEAR AVERAGE
05-09 $95,364 \quad 2,366-2-\quad 7,234 \quad 8,600 \quad 10$

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 341.20 TRANSPORTATION EQUIPMENT - HEAVY DUTY TRUCKS

SUMMARY OF BOOK SALVAGE

	REGULAR	COST OF   REMOVAL		GROSS SALVAGE		$\begin{gathered} \text { NET } \\ \text { SALVAGE } \end{gathered}$	
YEAR	RETIREMENTS	AMOUNT	PCT	AMOUNT	PCT	AMOUNT	PCT
1986	13,756		0	1,900	14	1,900	14
1987	41,200		0	7,300	18	7,300	18
1988	9,955		0	3,200	32	3,200	32
1989	41.315		0	19,767	48	19,767	48
1990							
1991	58,941		0	11,440	19	11,440	19
1992	79,570		0	17,458	22	17.458	22
1993	13,415		0	2,000	15	2,000	15
1994	25,100		0	5,500	22	5,500	22
1995							
1996							
1997							
1998							
1999							
2000	89,605	5,830	7	19,045	21	13,215	15
2001	18,235		0		0		0
2002		3,340		6,102		2,762	
2003							
2004							
2005							
2006	47,659	1,060-	2		0	1,060	2
2007	65,892		0		0		0
2008				8,613		8,613	
2009	62,521		0	3,870	6	3.870	6
TOTAL	567,164	8,110	1	106,195	19	98,085	17

THREE-YEAR MOVING AVERAGES

$86-88$	21,637	0	4,133	19	4,133	19
$87-89$	30,823	0	10,089	33	10,089	33
$88-90$	17,090	0	7,656	45	7,656	45
$89-91$	33,419	0	10,402	31	10,402	31
$90-92$	46,170	0	9,633	21	9,633	21
$91-93$	50,642	0	10,299	20	10,299	20
$92-94$	39,362	0	8,319	21	8,319	21
$93-95$	12,838	0	2,500	19	2,500	19
$94-96$	8,367	0	1,833	22	1,833	22

95-97
96-98
97-99

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 341.20 TRANSPORTATION EQUTPMENT - HEAVY DUTY TRUCKS
SUMMARY OF BOOK SALVAGE

YEAR	REGULAR RETIREMENTS	COST OF REMOVAL		$\begin{aligned} & \text { GROSS } \\ & \text { SAEVAGE } \end{aligned}$		NET SALVAGE AMOUNT PCT	
		AMOUNT	PCT	AMOUNT			
THREE-YEAR MOVING AVERAGES							
98-00	29,868	1,943	7	6.348	21	4,405	15
99-01	35,947	1,943	5	6,348	18	4.405	12
00-02	35,947	3,057	9	8,382	23	5,325	15
01-03	6,078	1,113	18	2,034	33	921	15
02-04		1,113		2,034		921	
03-05					0	353	2
04-06	15,886	353-			0	353	1
05-07	37,850	353-	1		0	3,224	9
06-08	37,850	353-		2,8161	10		
07-09	42,804		0	4,161.	10	4,161	10

FIVE-YEAR AVERAGE
05-09 35.215
212- 1-
$2,497 \quad 7$
2,709
8

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 341.30 TRANSPORTATION EQUIPMENT - AUTOS
SUMMARY OF BOOK SALVAGE

YEAR	REGULAR   RETIREMENTS	COST OF REMOVAS		$\begin{aligned} & \text { GROSS } \\ & \text { SALVAGE } \end{aligned}$		$\begin{gathered} \text { NET } \\ \text { SAVAGE } \end{gathered}$	
		AMOUNT	PCT	AMOUNT	PCT	AMOUNT	PCT
				4,400	13	4,280	12
1982	34,922	120	0	4.400 7.900	23	7.775	23
1983	33,905	125	0	7,900	23	$7: 77$	
1984						7,425	19
1985	39,613	175	0	7.600	19	1,416	4
1986	38,712		0	1,416 16,125	42	16,125	32
1987	49,853		0	16,125	32	10,900	23
1988	46,956		0	10,900	23 40	22,997	40
1989	57,313	50	0	23,047 13,824	40 46	22,927 13,824	46
1990	30,101		0	13,824 1,000	46 10	13,824 1,000	10
1991	9,700		0	1.000	43	4,893	43
1992	11,500		0	$4,893$.	43.	4,893	0
1993	12,323		0		0	241	1-
1994	36,024	241	1		0	241	+-
1995					0		0
1996	42,288		0		0		0
1997	84,116		0		0		0
1998					17	5,300	17
1999	32,082		0	5,300	17	51300	17.
2000							
2001						700	
2002	12,116	700	6		0	100-	
2003	2,900		0		0		
2004							
2005							
2006					0		0
2007	15,016-		0		,		12
2008	61,308		0	7,589	12	$7 \times 58$	12
2009	15,899		0	125	1	125	1
TOTAL	636,615	1,411	0	104,119	16	102,708	16

THREE- YEAR MOVING AVERAGES

$82-84$	22,942	82	0	4,100	18	4,018	18
$83-85$	24,506	100	0	5,167	21	5,067	21
$34-86$	26,108	58	0	3,005	12	2,947	11
$85-87$	42,726	58	0	8,380	20	8,322	19
$86-88$	45,474		0	9,480	21	9,480	21
$87-89$	51,374	17	0	16,691	32	16,674	32
$88-90$	44,790	17	0	15,924	36	15,907	36
$89-91$	32,371	17	0	12,624	39	12,607	39

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 341.30 TRANSPORTATION EQUTPMENT - AUTOS
SUMMARY OE BOOK SALVAGE

		COST OF	GROSS	NET
	REGUEAR	REMOVAL	SALVAGE	SALVAGE
YEAR RETIREMENTS	AMOUNT FCT	AMOUNT PCT	AMOUNT PCT	

THREE-YEAR MOVING AVERAGES

90-92	17.100		0	6.572	38	6,572	38
91-93	11, 174		0	1,964	18	1,964	18
92-94	19,949	80	0	1,631	8	1,551	8
93-95	16,116	80	0		0	$80-$	0
94-96	26,104	80	0		0	80 -	0
95-97	42,135		0		0		0
96-98	42,135		0		0		0
97-99	38,733		0	1.767	5	1,767	5
98-00	10,694		0	1.767	17	1,767	17
99-01	10,694		0	1,767	17	1,767	17
00-02	4,039	233	6		0	233 -	6
01-03	5,005	233	5		0	233-	5
02-04	5,005	233	5		0	233-	$5-$
03-05	967		0		0		0
04-06							
05-07	5,005		0		0		0
06-08	15,431		0	2,530	16	2,530	16
07-09	20,730		0	2,571	12	2,571	12

FIVE-YEAR AVERAGE
05-09
12,438
0
$1,543 \quad 12$
1,543
12


## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 345 POWER OPERATED EQUIPMENT

SUMMARY OF BOOK SAIVAGE

	REGULAR	COSTi OF REMOVAL		$\begin{aligned} & \text { GROSS } \\ & \text { SALVAGE } \end{aligned}$		$\begin{gathered} \text { NET } \\ \text { SALVAGE } \end{gathered}$	
YEAR	RETIREMENTS	AMOUNT	PCT	AMOUNT	PCT	AMOUNT	PCT
1980	13,957	20	0	10,100	72	10,080	72
1981							
1982	4,745		0		0		0
1983	369-		0		0		0
1984							
1985	34,721	35	0	18,612	54	18,577	54
1986	3,106		0		0		0
1987							
1988	7,922		0		0		0
1989							
1990	479-		0		0		0
1991	65,103		0	8,554	13	8,554	13
1992	10,550		0		0		0
1993	4,132		0	152	4	152	4
1994	22,762		0	2,000	9	2,000	9
1995							
1996							
1997							
1998							
1999							
2000							
2001							
2002							
2003							
2004							
2005							
2006							
2007							
2008							
2009	99,826		0	8,510	9	8,510	9
TOTAL.	265,976	55	0	47,928	18	47,873	18

THREE-YEAR MOVENG AVERAGES

$80-82$	6,234	7	0	3,367	54	3,360	54
$81-83$	1,459		0	0	0	0	
$82-84$	1,459		0		0	0	6,192
$83-85$	11,451	12,609	12	0	6,204	54	6,204
$84-86$	12,609	12	0	49	6,192	49	
$85-87$	12,204	49	6,192	49			

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 345 POWER OPERATED EQUIPMENT

## SUMMARY OF BOOK SALVAGE

	COST OF	GROSS	NET
REGULAR	REMOVAL	SALVAGE	SALVAGE
YEAR	RETIREMENTS	AMOUNT PCT	AMOUNT PCT

## THREE-YEAR MOVING AVERAGES

86-88	3,676	0		0		0
87-89	2,641	0		0		0
88-90.	2,481	0		0		0
89-91	21,541	0	2,851	13	2,851	13
$90-92$	25,058	0	2,851	11	2,851	11
91-93	26,595	0	2,902	11	2,902	11
92-94	12,481	0	717	6	717	6
93-95	8,965	0	717	8	717	8
94-96	7,587	0	667	9	667	9
95-97						
96-98						
97-99						
$98-00$						
99-01						
00-02						
01-03						
02-04						
03-05						
04-06						
05-07						
06-08		0	2,837	9	2,837	9
07-0.9	3.3 r. 27.					

FIVE-YEAR AVERAGE
05-09 19,965
0 1,702 9 1,702 9

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.10 STRUCUURES F TMPROVEMENTS - SOURCE OF SUPPTR

CALCUIATED REMAINING LIFE DEPRECLATION ACCRUAL RELATED TO ORTGTNAL COST AT NOVEMBEP 30, 2009

| YEAR | COST | ACCRUED | RESERVE | ACCRUALS | LIFE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ |

SURVIVOR CURVE IOWA 35-S1.5 NET SALVAGE PERCENT: - 5

1962	11.476 .53	10,022	4,525	7.525	5.89	1.278
1974	221.53	167	75	158	9.89	16
1976	13400	98	4.4	97	10.70	9
1984	3,200.00	1,966	888	2,472	14.52	170
1988	$2,533.00$	I. 378	622	2,038	16.86	121
1989	40.782 .95	21,411	9,667	33,155	17:50	1,895
1991	30,910,25	14,985	6.765	25,691	18.84	1,364
1997	983.90	342	154	879	23.40	38
1998	$7,742.48$	2,501	1, 129	$7_{1} 001$	24.23	289
2001	$38,882.00$	9.484	4.282	36,544	26.87	1,360
2002	$274,986,64$	59,480	26,854	261,882	27.79	9,424
2003	$475,545.09$	89.578	40,442	458,880	28.72	15,978
2004	57.970 .66	9.270	4.285	56,684	29.67	1,910
2005	3.999 .15	524	237	3,962	30.63	129
2006	1,656,129.06	168,503	76,075	1, 662,861	31.61	52,606
2007	1.775 .08	128	58	1,806	32.59	55
2008	66,068,68	2,817	1.272	68,100	33.58	2,028
	$2,673,341,00$	392,654	177,274	$2,629,735$		88,670

COMPOSTTE REMATNTNG LIFE AND ANNUAT, ACCRUAL RATE, PCT. 29.7 .32

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304,20 STRUCTURES E IMPROVEMENTS - POWER AND PUMPENG

CALCULATED REMATNING LTFE DEPRECIATION ACCRUAL RELATED TO ORIGTNAY COST AT NOVEMBER 30,2009

	ORIGINAL	CALCULATED	ALIOC BOOK	FUT' BOOK	REM.	FNNUAL
YEAR	$\cos T$	ACCRUED	RESERVE	ACCRUALS	LIFE	ACCRUAL
(1)	(2)	(3)	(4)	(5)	(6)	(7)

KENTUCKY REVER STATION
INTERIM SURVIVOR CURVE. IOWA 60-R2. 5
PROEABLE RETIREMENT YEAR. 6-2037
NET SALVAGE PERCENT $-\therefore 20$

1934	1.498 .45	1, 534	1,193	605	8.82	69
1951	8.710 .85	7,950	6,183	4,270	14.26	299
1954	741.84	659	513	377	15.42	24
1957	$92,039.85$	79,324	61,693	48,755	16.59	2,939
1958	$25,756.94$	21.973	17,089	13.819	16.98	814
1959	$51,381.05$	43,370	33,730	27.927	17.37	I 6.608
1964	138.59	111	86	80	19.25	4
1966	$2,267.68$	1,767:	1,374	1.347	19.95	68
1967	$74,428.89$	57.277	44,546	44,769	20.29	2206
1968	99.58	76	59.	60	20.62	3
1969:	221,46	166	129	137	20.94	7
1970	$80,648.01$	59,712	46,440	50,338	21.25	2,369
1971	17.572 .79	12,838	9,985	11,102	21.55	515
1972	$13,262, \pm 2$	9.555	7,431	8,484	21.84	388
1973	3,602.44	2,560	1,991	2,332	22.11	105
1974	6.749 .68	4.727	3,676	4,424	22.38	198
1978	$6,162,43$	4,053	3,152	4,243	23.34	182
1980	$3,449.81$	2,191	1,704	2,436	23.76	103
1985	743,96	427	332	561	24.65	23
1986	418.99	235	183	320	24.81	13
1988	20,588.96	10,962	8,526	16,181	25.09	645
1989	$11,127.35$	5.756	4.477	8,876	25.23	352
1990	$8,602.65$	4,321	3,361	6,962	25.35	275
1991	32, 248.00.	15,676	12,192	26,506	25.48	I. 040
1992	1.958,914.33	919,828.	715,382	1,635,315	25.59	63,904
1993	$21,577.08$	9,761:	7,591	18,301	25.70	712
1995	1.752 .80	728	566	1,537	25.91	59
1996	$5,317.98$	2,105	1. 63.7	4,745	26.00	183
2005	$6,250,40$	2,040	809	6.691	26.66	251
2006	$754,698,54$	100,073	77,831	827,807	26.72	30, 981
2007	$3,208.80$	312	243	3,608	26.77	135
2008	$89,918,76$	5,320	4.137	103,766	25.82	3,869
2009	$8,182+42$	162	126	9,693	26.87	361
	$3,312,283.48$	$1,386,549$	1.078, 367	$2,896,374$		114.704

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT $304.20:$ STRUCTURES 5 IMPROVEMENTS - POWER AND PUMPTNG

CALCUIFTED REMAINING LIEE DEPRECTATION ACCRUAE RELATED TO ORIGENAL COST AT NOVEMBER 30, 2009

	ORFGINAL	CALCULATED ALLOC. BOOK FUT, BOOK	REM.	ANNUAL		
YEAR	COST	ACCRUED	RESERVE	ACCRUALS	LIFE	ACCRUAL
$(1)$	$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

OTHER STRUCTURES
SURVIVOR CURVE. . IOWA $60-\mathrm{R} 2.5$
NET SALVAGE PERCENT. . - 20

1934	26,220.50	26,824	20,862	10,603	8.85	1,198
1939	6,915.01	6,871	5,344	2,954.	10.32	286
1941	400.28	392	305	175	10.98	16
1942	102.95	100	78	46	11.33	4
1948	2,274.24	2,106	1. 538	1,091	13.70	80
1949	456.97	419	326	222	14.15	16
1951	167.69	151	117	84.	15.08	6
1954	394.47	342	266	207	16.59	12
1955	$6,204.43$	5,321	4.138	3,307	17.12	193
1957	542.33	453	352	299	18.23	16
1958	402.83	332	258	225	18.80	12
1962	$4,217.13$	3,272	2,545	2,516	21.21	119
1963	2,755.27	2,102	1,635	1,671.	21. 85	76
1966	7,073.51.	5,120	3.982	4.506	23.81	189
1969	207.00	141	110	138	25.87	5
1970	392.85	263	205	266	26.57	10
1971	$10,030.76$	6.,564	5,105	6,932	27.28	254
1972	$43,588.13$	27, 889	21,690	30,616	28.01	1.093
1974	1.039 .00	634	493	754	29.48	26
1975	24,999.57	14.986	11,577	18.422	30.23	609
1987	266, 561.62	107,638	83,714	236.160	39.81	5,932
1988	$14,555.05$	5,630	4,379	13,088	40.66	322
1989	$447,765.79$	165,602	128,794	408,525	41.51	9.842
1990	40.40	1.4	11	37	$42 \times 36$	1
1997	1., 948.81	447	348	1,991	48.52	41
1998	21.873 .51	4,628	3.599	22,649	49.42	458
1999	778.890 .09	150,668	117,180	817,488	50.33	16,243
2001	1,508.80:	237	184	1,627	52.15	31
2005	3,297.98	274	213	3,745	55.85	67
2006	24,142.95	1.556	1,210	27,762	56.78	489
2007	189,396.76	8,636	6,717	220,559	57.72	3,821
2008	15.270 .90	409	318	18,007	58.66	307
	1,903.638.58	549,921	427.693	$1,856,672$		41.774
	$5,215,922.06$	1,936,470	$1,506,060$	4,753,046		156,478

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.30 STRUCTURES \& IMPROVEMENTS - WATER TREATMENT
CALCULATED REMAINING LIEE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30,2009

YEAR
(1)
ORIGINAL
COST
(2)

CALCULATED ALEOC. BOOK FUT. BOOK
ACCRUED
(3)

RESERVE
(4)

REM. ANNUAL
IIFE $A C C R U A L$
(6)

## KENTUCKY RIVER STATION

 INTERTM SURVIVOR CURVE. IOWA 60-R2.5 PROBABLE RETIREMENT YEAR.. 6-2037 NET SALVAGE PERCENT . - 20| 1925 | 7,081.54 | $7 \times 66$ | 2,795 | 5.703 | 6.62 | 861 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1959 | $6,925.11$ | 5,845 | 2,161 | 6,149 | 17.37 | 354 |
| 1960 | 3.833 .51 | 3,200 | 1.183 | 3,417 | 17.76 | 192 |
| 1961 | 974.98 | 805 | 298 | 872. | 18.14 | 48 |
| 1966 | 19,358.74 | 15,084 | 5,577 | 17.653 | 19.95 | 885 |
| 1968 | 810.88 | 616 | 228 | 745 | 20.62 | 36 |
| 1969 | 118,087.90 | 88,594 | 32.753 | 108,952 | 20.94 | 5,203 |
| 1970 | 13,665.34 | 10,1188 | 3.741 | 12,657 | 21.25 | 596 |
| 1971 | 67,377.02 | 49,223 | 18, 198 | 62,654. | 21.55 | 2,907 |
| 1972 | 1,158.61 | 835 | 309 | 1,081 | 21.84 | 49 |
| 1973 | $5,501.25$ | 3,909 | 1,445 | 5,157 | 22.11 | 233 |
| 1974 | 474.00 | 332 | 123 | 446 | 22.38 | 20 |
| 1975 | 723.00 | 499 | 184 | 684 | 22.63 | 30 |
| 1976 | 1,114.00 | 757 | 280 | 1,057 | 22.88 | 46 |
| 1977 | 1,434.51 | 959 | 355 | 1,365 | 23.11 | 59 |
| 1982 | 153.190.64 | 93,698 | 34.640 | 149,189 | 24.14 | 6,180 |
| 1984 | 11.400,01 | 6,688 | 2,473 | 11,207 | 24.49 | 458 |
| 1986 | 3,643.80 | 2,042 | 755 | 3,618 | 24.83 | 146 |
| 1987 | 102,491.44 | 56,034 | 20.71 .6 | 702,274 | 24.95 | 4,099 |
| 1988 | 58,997.94 | 31,413 | 11,613 | 59, 185 | 25.09 | 2,359 |
| 1989 | 58.912 .65 | 30,477 | 11,267 | 59,428 | 25.23 | 2,355 |
| 1990 | 114,656.40 | 57,594 | 21,293 | 116,295 | 25.35 | 4,588 |
| 1991 | $62,459.04$ | 30,363 | 11.225 | 63,726 | 25.48 | 2,501 |
| 1992 | 8,000,00, | 3,756 | 1,389 | 8,211 | 25.59 | 321 |
| 1993 | 843,479.45 | 381,590 | 141.074 | 871.101 | 25.70 | 33,895 |
| 1995 | 48,008:53 | 19,94.5 | 7.374 | 50,236 | 25.91 | 1.939 |
| 1996 | 1,396,484.89 | 552,840 | 20.4,384 | 1,471,398 | 26.00 | 56,592 |
| 1997 | 6,903.44 | 2. 590 | 958 | 7.326 | 26.09 | 281 |
| 1999 | 131, 923.48 | 43,364 | 16,032 | 141.196 | 26.26 | 5,377 |
| 2000 | $532,132.37$ | 163,471 | 60,435 | 578,124 | 26.33 | 21,957 |
| 2001 | 153,164.99 | 43,174 | 15,961 | 167,837 | 26.41 | 6,355 |
| 2002 | 11,650.51. | 2,975 | 1,100 | 12,881 | 26.48 | 486 |
| 2.003 | 11,333.94 | 2,579 | 953 | 12,648 | 26.54 | 477 |
| 2004 | 281,236.17 | 55,516 | 20,524 | 316,959 | 25:61 | 11,911 |
| 2005 | 247,778.20 | 41.210 | 15.236 | 282,098 | 26.65 | 10,581 |
| 2006 | 223,795.95 | 29,675 | 10,971 | 257,584 | 26.72 | 9, 640 |

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.30 STRUCTURES \& IMPROVEMENTS - WATER TREATMENT
CALCULATED REMAINTNG LIEE DEPRECTATION ACCRUAL RELATED TO ORIGINAE COST AT NOVEMBER 30,2009

	ORIGINAL	CALCULATED	ALLOC. BOOK	FUT. BOOK	REM.	ANNUAL
YEAR	COST	ACCRUED	RESERVE	ACCRUALS	LIFE	ACCRUAL
$(1)$	$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

KENTUCKY RIVER STATION
INTERIM SURVIVOR CURVE. . IOWF 60-R2.5
PROBABLE RETTREMENT XEAR.. 6-2037
NET SAMVAGE PERCENTT. -20

2008	$21,152.39$	1,251	462	24,921	26.82	929
2009	$7,376.03$	1.46	54	8,797	26.87	327
	$4,737,792.59$	$1,840,728$	680,519	$5,004,832$		195,273

RICHMOND ROAD STATION TREATMENT PLANT INTERTM SURVIVOR CURVE. IOWA $60-\mathrm{R} 2.5$ PROBABLE RETIREMENT YEAR. 6-2038 NET SAEVAGE PERCENT. . - 20

1925	5.156 .56	5,505	2,035	4,153	6.62	627
1926	$1 \times 939.94$	2,062	762	1,566	6.86	228
1929	563.66	591	218	458	7.57	61
1938	8,725.23.	8,735	3,229	7.241	9.94	728
1941	369.39	363	134	309	10.84	29
1947	1,374.13	1,294	478	1,171	12.87	91.
1960	1,321.79	+ 4.098	406	1,180	18.01	66
1971	$5,166.23$	3,740	1,383	4,816	22.02	219
1972	$42,389.94$	30,246	11,182	39,686	22.33	1,777
1973	68.550 .57	48,205	27,821	64.440	22.63	2,848
2974	14,784.38	10,244	3,787	13,954.	22.91	609
1977	$50,913.14$	33,627	12.432	48,664	23.71	2,052
1983	1,276.58	754.	279	1,253	25.01	50
1988	1. $482,689.92$	775,210	286,597	I, 492,631	25.86	57,720
1989	63,725.94	32,386	11.973	64,498	26.00	2,481.
1991	106,693.61	50,893	18,815	109,217	26.27	4,157
1994	$10,388.09$	4,418	1,633	10,833	26.63	407
1997	580.879 .73	213,090	78.781	618,275	26.94	22.950
1999	$10,008.73$	3,230	1,194	10,816	27.13	399
2001	227:402.06	62,463	23,093	249,789	27.29	9,153
2003	19,988.05	4,421	1,634	22,352	27.44	815
2005	6.719 .98	1,084	401.	7,663	27.57	278
2006	24,82I.65	3,196	1, 182	28,604	27:63	1,035
2007	330,949,59	31.055	12,481	385,659	27.69	13,928
2008	59,873.34	3.427	1,267	70.581	27.74	2,544
2009	28,757.16	549	203	34,306	27.79	1,234
	$3,755,429,37$	1,331.887	492,400	$3,294,115$		126,486

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 304.30 STRUCTURES \& IMPROVEMENTS - WATER TREATMENT

CALCUTAATED REMATNING LTFE DEPRECIATION ACCRUAL REIATED TO ORIGINAL COST AT NOVEMBER 30, 2009.

	ORIGINA	ACCRUED	RESERVE	ACCRUALS	LIEE	ACCRUAL
YEAR	COST	ACC				
(1)	$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

OTHER STRUCTURES SURVIVOR CURVE: IOWA 60-R2.5 NET SALVAGE PERCENT - - 20

1974	1., 607.00	981.	363	1. 565	29,48	53
1975	158.02	94	35	155	30.23	5
1976	士.539.04	893	330	1,517	30.98	49
1996	1, $043,366.07$	258,171	95,446	1,156,593	47.63	24,283
1997	12,571.95	2,886	1,067	14,019	48.52	289
2001	15,780.21	2,477	916	18.020	52.15	346
2006	272,796.29	17,579	6,499	320,857	56.78	5,651
2007	$628,598.19$	28,664	10,597	743,721	57.72	12,885
2008	13,112.31	351.	130	15,605	58.66	266
2009	14.181 .16	123	45	16,972	59:57	285
	2,003,710.24	312,219	115,428	2,289,024		44,112
	9,896,932.20	$3 \cdot 484,834$	$1,288,347$	$10,587.971$		365,871

COMPOSITE REMAINING LIFE AND ANNUAI ACGRUAT RATE, PCT: 28.9

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.40 STRUCTURES \& IMPROVEMENTS - TRANS. AND DISTR.						
CALCULATED REMAINING LIFE DEPRECTATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009						
YEAR   (1)	ORIGINAL $\cos T$   (2)	CALCULATED ACCRUED   (3)	ALLOC. BOOK RESERVE   (4)	EUT. $B O O K$ ACCRUALS (5)	REM.   LIFE   (6)	ANNUAL ACCRUAL (7)
SURVIVOR CURVE : IOWA 30-S2						
NET SALVAGE PERCENT... -5						
1982	1. 420.00	1, 060	1,491			
1991	42,865,79	24,620	34.720	10,289	13.59	757
1992	$412,979.52$	227,351	320,621	113,007	14.27	7,919
1996	$7,226.03$	3,215	4,534	3, 053	17.29	177
1997	26.54	11	16	32	18.12	1
1998	$139,105.41$	53.648	75,657	70,404	18.98	3,709
1999	$51,995.27$	18,453	26,023	28,572	19.86	1,439
2000	8,279.36	2,675	3,772	4,921	20.77	237
2002	21,163.70	5,438	7,669	14, 553	22.66	642
2005	$11,570.17$	1,786	2,519	9,630	25.59	376
2006	89,907.46	10.762	15,177	79,226	26.58	2,981
2008	25,387.15	1,261	1.778	24,879	28.58	871
2009	217.413.28	3.493	$4 \times 926$	223,358	29.54	7,561
	,029,339.68	353,773	498,903	581,904		26,670

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 304.60 STRUCTURES \& IMPROVEMENTS - OFFICE BUTEDINGS
CALCULATED REMAINTNG LIFE DEPRECIATTON ACCRUAI: RETATED TO ORIGINAI COST AT NOVEMBER 30, 2009

|  | ORIGINAI | CALCULATED ALLOC BOOK FUT. BOOK | REM | ANNUAL |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | COST | ACCRUED | RESERVE | ACCRUALS | LIFE | ACCRUAL |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ |

## MATN OFFICE

INTERIM SURVIVOR CURVE, - IOWA 55-R2. 5
PROBABLE RETIREMENT YEAR. $\quad 6-2043$
NET SALVAGE PERCENT. -5

1965	7,142.07	4,997	3,921	3,578	18.18	197
1970	672,941.10	434,552	340,964	$365 ; 624$	20.76	17,612
1971	$3,608.72$	2,291	1,798	1,991	21.26	94
1972	19,896.38	12,409	9,736	11.155	21.76	513
1973	5,009,31	3,068	2,407	2,853	22.25	128
1977	4,946.00	2,803	2,199	2,994	24.13	124
1979	5,098.00	2.770	2,173	3,180	25.00	127
1982	72.896 .87	36.970	29,008	47.534	26.21	1.814
1984	1.886 .00	91.0	714	1.266	26.94	47
1985	$1,224.56$	575	451	835	27.29	31
1986	27,739.44	12,676	9,946	19.180	27.62	694
1987	$141,027.26$	62,578	49,101	98,978	27.94	3,543
1988	96,348,48	41,438	32,514	68,652	28.25	2,430
1989	$44,800.88$	18,656	14,638	32,403	28.54	1,135
1990	32,653.68	13,142	10,312	23,974	28.81	832
1991	3,265.27	1.267	994	2,435	29.08	84
1992	$16,608.13$	6,198	4,863	12,576	29.33	429
1994.	$27,097.92$	9,273	7,276	21,177	29.80	711
1995	26,056.54	8,492	6,663	20.696	30.02	689
2008	$1,813,158.40$	78,056	61,246	1, 842,570	32.01	57.562
	3,023,405.01	753.121	590.924	$2,583,651$		88,796

OTHER STRUCTURES
SURVIVOR CURVE = IOWA $55-R 2 \times 5$
NET SALVAGE PERCENT. . -5

1985	$1,748.00$	724	568	1,267	33.29	38
1988	$2,173.52$	798	626	1,656	35.77	46
1989	$7,375.00$	2,590	2,032	5,712	36.61	156
1996	$11,220.54$	2,644	2,075	9,707	42.66	228
1997	$2,103,494.75$	459,845	360,810	$1,847,859$	43.55	42,431
1998	$226,122.80$	45,539	35,731	201,698	44,45	4,538
1999	$167,972.15$	30,953	24,287	152,084	45,35	3,354
2000	$1,733.16$	290	228	1,592	46.25	34
2001	$55,334.12$	8,279	6,496	51,605	47.16	1,094

ACCOUNT 304.60 STRUCTURES \& IMPROVEMENTS - ORFICE BULLDINGS

YEAR
(1)

CALCULATED REMATNING LTEE DEPRECTATION ACCRUAI
RETATED TO OREGINAE COST AT NOVEMBER 30,2009
CALCULATED REMAINING LTEE DEPRECTATION ACCRUAI
REIATED TO ORIGINAE COST AT NOVEMBER 30,2009 $\begin{array}{cccccc}\text { ORIGINAI } & \text { CAICULATED } & \text { AITOC. BOOK FUT. BOOK } & \text { REM: } & \text { ANNUAL } \\ \text { COST } & \text { ACCRUED } & \text { RESERVE } & \text { ACCRUALS } & \text { LIEE } & A C C R U A L ~ \\ (2) & (3) & (4) & (5) & (6) & (7)\end{array}$

OTHER STRUCHURES SURVIVOR CURVE. IOWA $55-\mathrm{R} 2.5$ NET SAHVAGE PERCENT: - 5

2003	$53,573.71$	6,137	4,815	57,437	49.00	1.050
2004	$14,508.35$	1.408	1,105	14,129	49.92	283
2005	$60,598.88$	4,804	3;769	$59 \times 860$	50.85	1. 177
2006	$59,716.30$	3,668	2,878	59.824	51.78	1, 155
2007	93,718.41	4,084	3,204	95,200	52.72	I, 806
2008	293.123 .40	7.510	5,893	301,887	53.66	5,626
2009	$14,136.07$	116	91	14,752	54.57	270
	$3,166,549.16$	579,389	454,608	2,870,269		63.286
	$6,189,954.17$	332,510	1,045,532	$5,453,920$		152,082

COMPOSITE REMAINING LIFE AND ANNUAT ACCRUAL RATE, PCT: $35.9 \quad 2.46$

## KEIVTUCKY AMERICAN WAEER COMPANY

ACCOUNT 304.70 STRUCTURES \& TMPROVEMENTS -- SHOP \& GARAGE

CALCULATED REMAINING LIFE DEPRECTATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009						
YEAR   (I)	$\begin{gathered} \text { ORIGINAL } \\ \text { COST } \\ (2) \end{gathered}$	CALCULATED ACCRUED (3)	ALLOC. BOOK RESERVE (4)	FUT. BOOK ACCRUALS (5)	REM.   LIFE   (6)	ANNUAL ACCRUAL (7)
SURVIVOR CURVE. IOWA 50-R2, 5						
NET SALVAGE PERCENT. . 0						
1957	13,694.36	10,712	9.993	3,701	10.89	340
1960	708.06	535	499	209	12.22	17
1971	723.87	458	42.7	297	18.37	16
1972	749.00	464	433	316	19.02	17
1977	5,650.00	3, 113	2,904	2, 7.46	22.45	122
1987	$53,519.17$	21,311	19,881.	33,538	30.09	1,118
1988	$42,525.48$	16,245	15,155	27,370	30.90	886
1990	19,843.29	6, 921	6,457	13,386	32.56	411
1993	54.6,102.20	162,738	151,817	394,285	35.10	11,233
1996	147,253.93	36, 195	33,765	113.488	37.71	3,009
1999	$74,138.37$	14,279	13,321	60,817	40.37	1,506
2001	15,249.20	2,385	2,225	13,024	42.18	309
2002	66,881.08	9,243	8,623	58,258	43.09	1,352
2005	$2,618.00$	217	202	2,416	45.86	53
2009	739.495 .95	6,360	5,933	733,563	49.57	14,790
	1,729,151,96	291,176	271,636	1,457,514		35,188

COMPOSTTE REMATNING LIFE AND ANNUAL ACCRUAY RATE, PCT: 41.4 2.03

## KENGUCKY AMERICAN WATER COMPANY

ACCOUNT 304.80 STRUCTURES \& IMPROVEMENTS - MISCELLANEOUS
CALCULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009

ORIGINAL
CAFCULATED AETOC. BOOK FUT. BOOK ACCRUED
(2)
(3)

RESERVE
(4)

REM. ANNUAI. LIFE ACCRUAE
(6)

SURVIVOR CURVE. IOWA 25-R2
NET SALVAGE PERCENT, - 10

1934	291.39	321	321			
1958	21.159 .37	23,275	23.275			
1966	5.31	6	6			
1971	333.59	335	205	162	2.19	74
1978	1,265.76	1,151	70.4	688	4.33	159
1985	29,000,00	22,713	13,895	18,005	7.20	2,501
1987	25,030.07	18,480	11,305	16,228	8.22	1,974
1989	67,361.16	46,415	28.394	45.703	9.34	4,893
1990	14,575.53	9,658	5,908	10,125	9.94	1.019
1991	7,998.00	5,085	3,111	5,687	10.55	539
1992	6,513.58	3,958	2, 421	4,744	11.19	424
1993	4,040.72	2,338	1,430	3,015	11.85	254
1994	3.145.91	1,726	1,056	2,405	12.53	192
1995	1,893.23	981	600	1,483	13.22	112
1997	2,948.35	1,340	820	2,423	14.67	165
1958	34,995.42	14,751	9. 024	29,471	15.42	1.911
2000	$9,043.98$	3,195	1,955	7,993	16.97	471
2001	28,255.39	8.989	5.499	25,582	17.77	1,440
2002	$41,389.73$	11,692	7.153	38,376	18.58	2,065
2003	$726,932.51$	179,116	109,574	690,052	19.40	35,570
2004	24.414 .98	5,113	3,128	23,728	20.24	1,172
2005	$459,721.06$	78,888	48,259:	457,434	21.10	21.679
2006	$322,940.93$	43.197	26,426	328,809	21.96	14,973
2007.	90, 211.37	8,564	5,239	93,884	22.84	4,111
	1,923,367.34	491,287	309,708	1,805,997		95,698

COMPOSITE REMAINING LIFE AND ANNUAL ACCRUALI RATE, PCT: 18:9
4.98

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 305.00 COLLECTING AND IMPOUNDING RESERVOIRS

CALCULATED REMAINING GIFE DEPRECIATION ACCRUAL RELATED TO ORIGTNAI COST AT NOVEMBER 30,2009

YEAR
(1)

ORIGINAL CALCULATED	ALLOC. BOOK FUT. BOOK	REM. ANMUAL			
COST	ACCRUED	RESERVE	ACCRUALSS	LIFE	ACCRUAI
$(2)$	$(3)$	$(4)$	$(5)$	$(5)$	$(7)$

SURVIVOR CURVE. TOWA 75-R4
NET SALVAGE PERCENT - 0

1913	73.214 .21	69,268	69,850	3,364	4.04	833
193.4	28,430.15	24,345	24,550	3.880	10.78	360
1940	540.35	440	444	95	13.91	7
1953	182.14	127	128	54	22.67	2
1963	391.61	232	234	158	30.58	5
1972	5,066.11	2.468	2,489	2,577	38.47	67
1973	23,440.73	11, 130	11,223	12,218	39.39	310
1977	5,152.00	2,191	2,209	2,943	43.11	68
1988	$763,760.75$	216,679	218,500	545,261	53.72	10,150
1989	2,284.00	618:	623	1,661	54.70	30
1991	$14,013.00$	3,425	3,454	10,559	56.67	186
1992	9,151.62	2,116	2,134	7,018	57.66	122
1993	3,586.34	782	789	2,797	58.65	48
1994	70.338 .87	14.405	14,525	55,814	59.64	936
1996	2,251.73	402	405	1,847	61.62	30
2005	3.282 .30	193	195	3,087	70.59	44
	$1,005,085.91$	348,821	351,752	653,334		13,198

[^6]ACCOUNT 306.00 LAKE, RIVER AND OTHER INTAKES
CALCULATED REMAINING IIFE DEPRECHATION ACCRUAI: RELATEQ TO ORIGINAT COST AT NOVEMBER 30 . 2009

	ORIGINAI	CALCUIATED	ALIOC. BOOK	FUT. BOOK	REM.	ANNUAL
YEAR	COST	ACCRUED	RESERVE	ACCRUALS	ITFE	ACCRUAI
(1)	$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

SURVIVOR CURVE. . IOWA 50-S1
NET SALVAGE PERCENT: O

1961	449.15	299	103	346	16.72	21
1962	165.61	109	38	228	17.15	7
1966	$19,532.24$	12,133	4, 182	15.350	18.94	810
1970	34,431.98	20,081	6, 922	27.510	20.84	1,320
1971	$23,098.06$	13,240	4,564	18,534	21.34	869
1972	50.00	28	10	40	25.85	2
1985	$5 \times 597.95$	2,309	796	4,802	29.38	163
1990	$5,779.41$	1,982	683	5,096	32.85	155
1997	$165,120.57$	54,193	18,680	146,441	33.59	4,360
1992	22,301.43	6,985	2,408	19,893	34.34	579
1993	$6,985.00$	2,080.	717	6,268	35.11	179
1994	169.67	48	17	153	35.90	4
1997	3,365.94	784.	270	3,096	38.36	8.1
2002	245, 293.78	35,371	12,191	233,103	42.79	5,4.48
2007	4,757.18	229	79	4,678	47.59:	98
	537.097.97	149,871	51, 660	485,438		14,096

## KENTUCKY AMERICAN WATER COMPANY

## ACCOUNT 309.00 SUPPLI MAINS

## CALCUEATED REMATNTNG LIFE DEPRECIATION ACCRUAL

 RELATED TO ORIGINAI COST AT NOVEMBER 30, 2009|  | ORIGINAL | CALCULATED | ALLOC. BOOK | FUT. BOOK | REM. | ANNUAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | $\operatorname{CosT}$ | ACCRUED | RESERVE | ACCRUALS | LIFE | ACCRUAL |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) |

SURVIVOR CURVE.. IOWA 65-S2.5
NET SALVAGE PERCENT. . - 10

1934	224, 7.28 .69	204, 609	116,119	131.083	11.20	11,704
1940	503.19	442	251	303	13.08	23
1941	433.53	378	215	262	13.42	20
1942	14.30	12	7	9	13.77	1
1944	41.85	36	20	26	14.50	2
1951	218.11	176	100	140	17.39	8
1953	$1,895.90$	1,498	850	1,235	18.32	67
1956	59,882,73	45,787	25,985	39,886	19.82	2.012
1959	109,730.59	80,896	45.910	74,794	21.44	3,489
1965	440,490.69	297,604	168.896	315,644	25.08	12.585
1967	2, 375.37	1. 877	1,065	2,098	26.42	79
1968	5,929.02	3, 802	2,158	4,364	27.11	161
1970	$3,226.09$	1,990	1,129	2,420	28.54	85
1972	10,673.26	6,316	3,584	8,157	30.03	272
1976	127.784.70	68,792	39,041	101,522	33.19	3,059
7980	3,498.25	1, 683	955	2,893	36.57	79
1981	2,370.70	1,106	628	1,980	37.44	53
1982	$53,151.82$	23.989	13,614	44,853	38.33	1.170
1983:	358.65	156	89	306	39.23	8
1984	14,163.31	5,959	3,382	12.198	40.14	304
1987	96,069.30	35,898	20,373	85,303	42.92	1,987
1988	100,191.76	35,841	20,340	89,871	43.86	2.049
1989	1,976,228.33	675,198	383,187	1,790,664	44.81	39,961
1991	9,330.23	2,885	1,637	8,626	46.73	185
1992	1,765,551.22	516,989	293,400	$1,648,706$	47.70	34,564
1993	5,475.01	1,513	859	5,164	48.67	106
1994	29,331,77	7,621.	4,325	27,940	49.65	563
2000	25,261.98	4,024	2,284	25,504	55.59	459
2002	14,520.00	1 , 824	1,035	14,937	57.58	259
2007	54,115.96	2,214	1,255	58,272	62.58	931
2008	5.868 .67	141	80	6,375	63.58	100
	5,143,914.92	$2,031,256$	1, 152, 774	$4,505,535$		116,345

COMPOSITE REMAINING IIFE AND ANNUAL ACCRUAL RATE, PCT.. $38.7 \quad 2.26$

KENTUCKY AMERTCAN WATER COMPANY						
ACCOUNT 310.10 OTHER POWER GENERATION EQUIPMENT						
CALCULATED REMAINING LIFE DEPRECTATION ACCRUAL						
	ORIGINAL	CALCUHATED	ALHOC. BOOK	FUT. BOOK	REM -	ANNUAL
YEAR	Cost	ACCRUED	RESERVE	ACCRUALS	LIFE	ACCRUAL
(1)	(2)	(3)	(4)	(5)	(6)	(7)

SURVIVOR CURVE. IOWA $35-52.5$ NET SAIVAGE PERCENT. . 0

1981	$68,593.89$	47,330	43,804	24,790	10.85	2,285
1988	$290,970.08$	107,879	99,842	91,128	15.23	5,983
1989	$67,185.43$	36,529	33,808	33,377	15.97	2,090
1996	$209,251.84$	78,516	72,667	136,485	21,86	6,244
2002	$7,940.96$	1,679	1,554	5,387	27,60	231
2003	$14,111.02$	2,584	2,391	11,720	28.59	410
2007	$196,041.20$	13,546	12,537	183,504	32.58	5,632
2008	$149,645.91$	6,076	5,623	144,023	33.58	4,289
2009	$32,060.10$	420	389	31,671	34.54	917
	$935,700.43$	294,559	272,615	653,085		28,081

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 311.20 ELECTRIC PUMPING EQUIPMENT
CALCULATED REMAINING LTFE DEPRECIATION ACCRUAE RELATED TO ORIGINAI COST AT NOVEMBER 30,2009

	ORIGINAL CALCULAAED ALLOC BOOK FUT BOOR BEM	ANNUAL				
YEAR	COST	ACCRUED	RESERVE	ACCRUALS	LIFE ACCRUAL	
$(1)$	$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

SURVIVOR CURVE IOWA 50-R3
NET SAUVAGE PERCENTT. - -20

1934	$19,513.03$	22,390	23,416			
1938	$7,488.29$	8,409	8,986			
1939	$8,687.30$	9,701	10,425			
1940	2,338,33	2,597	2,806			
1941	14.39	16	17			
1945	222.90	241	267			
1947	282.63	301	339			
1948	$6,754.31$	7,155	8,105			
1949	15,991.09	16,829	19,189			
1950	465.46	486	559			
1953	694.17	709	833			
1954	212.25	215	255			
1955	118,009.63	118,416	141,612			
1956	1, 094.13	1.087	1,313			
1957	30.39	30	36			
1958	32,653.41	31,786	39,137	47	9.44	5
1959	53.397 .77	51,403	63,290	787	9.89	0
1962	5,393,17	5,001	6,258	314	11.36	28
1965	11,420.61	10,142	12,487	1.218	13.00	94
1966	64,313.07	56,199	69,195	7,981	13.59	587
1967	69.144 .44	59,425	73,167	9,806	14.19	691
1969	1.613 .04	1,338	1,647	289	15.44	19.
1970	128, 359.61	104,464	128,622	25,410	16.09	1,579
1971.	$6,590.22$	5,259	6,475	1,433	16.75	86
1973	4,998.98	3.825	4,710	1. 289	18.12	71
1974	34,238.18	25,613	31,536	9,550	18.83	507
1976	153,438.04	109.444	134,753	49,373	20.28	2.435
1977	659.56	459	565	225	21.03	11
1979	1,944.95	1,281	2.577	757	22.55	34
1981	169.137.91	105,055	129,349	73,616	24.12	3,052
1982	$23,778.00$	14,312	17,622	10,912	24.92	438
1983	38,571.60	22,467	27,663	18,623	25.73	24
1984	24,908.51	14,019	17,261	12,629	26.55	476
1985	86,486,08	46,952	57.810	45,973	27.38	1,679
1986	80,067. 10	41,853	51, 532	44.549	28.22	1,579
1987	414.931 .99	208,429	256,629	247,289	29.07	8,300
1988	650,875.45	313,514	386,015	395,036	29.93	13,199
1989	$466,216.17$	214,832	264,513	294.946	30.80	9,576

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 311.20 ELECTRIC PUMPTNG EQUIPMENT

CALCULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009

YEAR
(1)

CALCULATED ALLOC. BOOK EUT. BOOK

ORIGINAI	CALCULATED	ALLOC. BOOK	EUT. BOOR	REM.	ANNUAL
COST	ACCRUED	RESERVE	ACCRUALS	IIFE	ACCRUAI.
$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

SURVIVOR CURVE. . IOWA 50-R3
NET SALVAGE PERCENT, -20

1990	$132,717.97$	58,385	71,887	87,375	31.67	2,759
1991	$8,221.11$	3,441	4,237	5,628	32.56	173
1992	$4,096,910.59$	$1,627,293$	$2,003,610$	$2,912,683$	33.45	87,076
1993	$65,415,97$	24,570	30,252	48,247	34.35	1,405
1995	$32,734,00$	10,658	13,123	25,438	36,18	703
1996	$74,745.51$	23,141	28,492	61,203	37,10	1,650
1997	$825,680.53$	237,202	292,056	698,761	38.03	18,374
1998	$350,770.72$	92,697	114,134	306,071	38,97	7,854,
1999	$380,271.26$	92,086	113,381	342,945	39.91	8,593
2000	$263,607.92$	57,825	71,197	245,133	40.86	5,999
2001	$133,332.70$	26,208	32,269	127,730	41.81	3,055
2002	$102,260.30$	17,744	21,847	100,865	42,77	2,358
2003	$117,282.28$	17,649	21,737	119,008	43.73	2,721
2004	$3,145.15$	400	492	3,282	44.70	73
2005	$75,949.01$	7,893	9,719	81,420	45.67	1,783
2006	$23,103.04$	1,857	2,286	25,438	46.65	545

$9,389,884,23 \quad 3,934,703 \quad 4,830,584 \quad 6,437,280 \quad 190,371$

COMPOSITE REMAINING LIFE AND ANNUAL ACCRUAL RATE, PCT. 33.8
2.03

## KENTUCKI AMERICAN WATER COMPANX

## ACCOUNT 311.30 DIESES PUMPTNG EQUIPMENT

CALCUEATED REMATNING LTFE DEPRECTATION ACCRUAL RELATED TO ORTGINAL COST AT NOVEMBER 30,2009						
	ORIGINAL	CALCULATED	ALEOC. BOOK		REM.   UTFE	GNNUAL ACCRUAL
YEAR   (1)	$\begin{aligned} & \cos \mathrm{T} \\ & (2) \end{aligned}$	$\begin{gathered} \text { ACCRUED } \\ (3) \end{gathered}$	RESERVE   (4)	ACCRUALS   (5)	LIFE $(6)$	(7)

SURVIVOR CURVE - IOWA 50-R3
NET SALVAGE PERCENT. - 20

1956	$28,404.29$	28,229	30,640	3,445	8.59	401
1961	284.69	267	290	52	10.85	5
1965	$22,657.13$	20,120	21,839	5,350	13.00	412
1972	$1,003.12$	200.83	784	150	851	353
1974	$2,841.30$	1,975	$2,14.43$	20		
1977	$95,017.92$	59,018	64,059	49,963	24.12	2,071
1981	$102,813.48$	51,645	56,056	67,320	29.07	2,316
1987	$1,109.18$	534	580	751	29.93	25
1988	$42,237.49$	19,463	21,125	29,560	30.80	960
1989	$67,499.90$	29,695	32,231	48,769	31.67	1,540
1990	$13,075.00$	5,473	5,940	9,750	32.56	299
1991	$211,401.71$	79,402	86,184	167,498	34.35	4,876
1993	$129,930.05$	10,446	11,338	144,578	46.65	3,099
2006						
	$718,476.09$	307,201	333,440	528,733	16,088	

COMPOSITE REMATNING LIEE AND ANNUAL ACCRUAE RATE, PCT. $32.9 \quad 2.24$

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 311.52 SOURCE OF SUPPLY PUMPING EQUIPMENT
CALCULATED REMATNING LIEE DEPRECTATION ACCRUALRELATED TO ORIGINAL COST AT NOVEMBER 30, 2009
ORIGINAL CALCUTATED ALLOC. BOOK FUT. BOOK REM. ANNUAL COST ACCRUED RESERVE ACCRUALS LTEE ECCRUAL ..... (2) (3)
(5)
ACCRUAL
(7)

2007	$806,707.11$	46,079	30,487	937,562	47.62	19,688
2008	$3,945,410.44$	132,566	87,710	$4,646,783$	48.60	95,613
2009	$3,634,039.90$	39,248	25,968	$4,334,880$	49.55	87,485
	$8,386,257,45$	217,893	144,165	$9,919,225$		202,786

```
 KENTUCKY AMERTCAN WATER COMPANY
 ACCOUNT 3I1.54 TRANS. AND DISTR. PUMPING EQUIPMENT
 CALCULATED REMAINING LTFE DEPRECIATION ACCRUAL,
 RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009
 ORIGINAL CALCUEATED ALLOC, BOOK FUT: BOOK REM. ANNUAE
YEAR COST ACCRUED RESERVE ACCRUALS LIEB ACCRUAL
 (I)
 (2)
 (3)
 (4)
 (5)
 (6)
 SURVIVOR CIRVE, IOWA 50-R3
 NET SALVAGE PERCENT. - -20
\begin{tabular}{lllllll}
2006 & \(5,609.22\) & 451 & 398 & 6,333 & 46.65 & 136
\end{tabular}
2007 170,731.89 9.752 10, 8,599 196,279 47.62
176,341.11 10,203 2,997 202,612 4,258
COMPOSITE REMAINING ITEE AND ANNUAL ACCRUAL RATE, PCT, 47.6 2.41
```


## KENTUCKY: AMERICAN WATER COMPANY

ACCOUNT 320.10 PURIFICATION SYSTEM - STRUCTURES
CALCULATED REMAINING: LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009

YEAR
(I)

ORIGINAI: CALCULATED	ALLOC BOOK	FUT. BOOK	REM. ANNUAL		
COST	ACCRUED	RESERVE	ACCRUALS	LIFE	ACCRUAL
$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

KENTUCKY RIVER STATION
INTERIM SURVIVOR CURVE. . IOWA $60-\mathrm{R} 3$ PROBABLE RETIREMENT YEAR. 6-2037
NET SALYAGE PERCENT. . -20

1958	1,956,736.65	1,721,615	1,860,056	488,028	15.84	30,810
1959	1,552,488.60	480,532	519,173	143,813	16.30	8,823
1961	476.73	405	438	134	17.23	8
1962	4,219.69	3.540	3,825	I. 239	17.68	70
1964	6,746.31	5,521	5,965	2,131	18.56	115
1966	$1,150,696,48$	917.703	991.499	389,337	19.41	20,059
1968	724.66	563	608	262	20. 22	13.
1970	451.865 .93	341,285	368,729	173.510	20.97	8,274
1972	493.92	362	391	202	21.67	0
1976	1.013.11	699	755	461.	22.91	1
1977	$496,852.35$	337,283	364.405	231.818	23.18	10,001
1978	747.80	499	539	358	23.44	5
1979	6.198 .57	4, 0.64	4,391	3,047	23.69:	129
1981.	117,907.49	74.522	80,515	60,974	24..14	2,526
1982	85, 103.93	52.737	56,978	45,147	24.35	1,854,
1984	1, 818.96	1, 080	1.167	1,016	24.74	1
1986	1,949,388.90	1,105,304	1,194,185	1,145,082	25.09	45,639
1987	224,340.46	123,971	133,940	135,269	25.26	5,355
1988	$787,219.90$	423,493	457, 547	487,117	25.41	19, 170
1989	$35,434.08$	18,535	20,025	22,496	25.55	88
1990	7,568.73	3,839	4.148	4,934	25.69	192
1991	509.01	250	270	347	25.82	13
1992	40,905.39	19,399	20,959	28,127	25.94	1,084
1993	19,390.91	8.852	9,564	13,705	26.06	26
1994.	6,517.26	2,855	3,085	4,736	26.17	81
1996	204,724.75	81,710	88,280	157,390	26.37	5,969
1997	108,441.59	41, 017	44,316	85,814	26.46	3,243
1999	9,193.35	3,069	3,316	7,716	26.62	90
2002	56.860.87	14,622	15,798	52,435	26.84	1.954
2003	3,474.74	796	860	3,310	26.90	123
2007	15,505.81	1,513	1,635	16.972	27.11	6.26
2008	265,157.05	15,719	16,982	301,206	27.15	11,094
	8,568,723.98	$5,807,354$	6,274,344	4,008, 127		179,106

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 320.10 PURIEICATION SYSTEM - STRUCIURES

CALCULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009

	ORIGINAL CALCULATED ALIOC. BOOF	FUT. BOOK	REM. ANNUAL			
YEAR	COST	ACCRUED	RESERVE	ACCRUALS	IIFE	ACCRUAL
$(1)$	$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

RICHMOND ROAD STATION TREATMENT PLANT INTERIM SURVIVOR CURVE. IOWA 60-R3 PROBABLE RETIREMENT YEAR. . $6-2038$
NET SALVAGE PERCENT: - -20

1900	11,752.52	14,303	14, 103			
1929	2,220,78	2,434	2,631	34	5.21.	7
1934	1,506.01	1,610	1,740	67	6.54	10
1936	342.12	362	391	20.	7.11	3
1938	138.71.	145	157	9	7.71	1
1939	174.71	182	197	13	8.03	2
1941	165.26	170	184	14	8.69	2
1948	12,442.37	12,097	13,075	1, 856	11.38	163
1950	27,758.17	26,505	28,647	4,663	12.24	381
1953	22,789.91	21, 132	22,840	4,508:	13.60	331
1955	1,870.44	I,698	1.835	420	14.54	28
1960	11,820.88	10,127	10,945	3,240	16.95	191
1964	3,494.94	2,846	3,076	1,118	18.83	59
1966	1,473.00	1, 168	1,262	506	19.72	26
1968	4,540.05	3,501	3,784	1,664.	20.58	81
1971	6,312.96	4,663	5,040	2,536	21.76	117
1972	11,330.58	8,244	8.910	4,687	22.13	212
1973	$58,793.29$	42;127	45,532	25,020	22.48	1.113
1974	39,714.75	28,018:	30.283	17,375	22.82	761
1978	44,906.27	29,617	32,011	21,877	24.04	910
1988	3,511,877.18	1,857,643	2,007,784	2,206,469.	26.18	84, 281
1989	13,217.44	6,790	7,339	8,522	26.34	324
1991	1,190.30	574	620	808	26.63	30
1992	82, 213, 87	38,220	4i, 309	57,348	26.77	2, 142
1994	8,864.67	3,806	4.114	6.524	27.01	242
1995	111,529.71	45,745	49,442	84,394	27.13	3,111
1997	666,063.49	246,417	266,333	532,943	27.33	19,500
1997	2,588.14	842	910	2,196	27.52	80
2002	981.756.84	246,225	266,126	911,982	27.75	32,864
2003	3,517.11.	783	846	3,375	27.82	121
2007	624.519 .59	59.055	63,828	685,596	28.05	24,442
2008	I, 068,184,71	61.271	66,223	1,215,599	28.10	43,260
2009	153,749.22	2,970	3,210	181,289	28.14	6,442
	$7.492,819.99$	$2,781,090$	$3,004,727$	$5,986,662$		221.237



ACCOUNT 320.11 PURIEICATION SYSTEM - EQUIPMENT

CALCULATED REMAINING LIEE DEPRECIATION ACCRUAL RELATED TO ORIGTNAL COST AT NOVEMBER 30, 2009

| YEAR | COST | ACCRUED | RESERVE | ACCRUALS | LIFE | ACCRUAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ |

SURVTVOR CURVE: IOWA $45-\mathrm{R} 2,5$ NET SAEVAGE PERCENT. . - 20

1958	10,986,98	10,782	11,649	1,535	8.20	187
1960	434.81	418	452	70	8.91	8
1964	519.35	477	51.5	108	10.56	10
1966	113,572.09	101,452	109,610	26,677	11.50	2,320
1970	260,000.36	217,652	235,154	76,846	13.61	5.646
1971	77.18	63.	68	25	14.18	2
1972	243.07	196	212	80	14.77	5
1973	8,082.02	6,384	6.897	2,801	15.38	182
1974	3,321.59	2,569	2.776	1, 210	16.00	76
1976	18,933.34	13,991	15, 116	7,604	17.29	440.
1977	5,352.35	3,861	4,171	2,25.2	17.95	125
1978	$2,245.29$	1,579	1,706	988	18.63	53
1979	$6,182.39$	4,232	4,572	2,847	19.33	147
1980	509.39	339	366	245	20.03	12
1981	1,064,216.19	688,207	743.549	533,510	20.75	25,711
1982	3,186.41	1,999	2,160	1, 66.4.	21.48	77
1983	12.714 .26	7.723	8,344	6,913	22.22	311
1984	19,035.54	11,184,	12,083	10,760	22.97	468
1985	23,964.25	13,593:	14.686	14,071	23.73	593
1986	$555,769.32$	303.850	328,284	338,639	24.50	13,822
1987	153,655.89	80, 762	87.256	97,131.	25.29	3,841
1988	1,588,733.35	801, 484	865,935	1,040,545	26.08	39,898
1989	144, 233.28	69.699	75, 304	97.776:	26.88	3.638
1990	$310,867.57$	143,397	154,928	218,113	27.70	7,874
1991	$706,523.33$	310,475	335,441	512,387	28.52	17,965
1992	$616,694.91$	257,384	278,081	461,953	29.35	15,739:
1993	$647,216.26$	255,599	276,153	500,507	30.19	16,579
1994	41,871.54	15,586:	16,839	33,407	31.04	1,076
1995	$16,438.25$	5,742	6.204	13,522	31.90	424
1996	$607,357.81$	198,242	214,183	514,646	32.76	15,710
1997	50, 713.82	15,360	16,595	44,262	33.64	1,316
1998	94,747.90	26.480	28,609	85,088	34.52	2,465
1999	$1,008,407.50$	258,112	278,868	931,221.	35.40	26,306
2000	$507,556,75$	117.733	127,201	481,867	36. 30	13.275
2007	104, 199.55	21.669	23,412	101,627	37.20	2,732
2002	$675,094.53$	124.028	134,001	676.112	38.11	$17 \% 741$
2003	101,277.61	16,152	17,451.	104,082	39.02	2,667
2004	26,691.92	3,600	3,88.9	26, 141	39.94	705

## KENTUCKY AMERICAN WATEF COMPANY

ACCOUNT 320.11 PURIFICATION SYSTEM - EQUIPMENT						
CALCULATED REMAINING LIFE DERRECIATION ACCRUAL RELATED TO ORIGINAI COST AT NOVEMBER 30, 2009						
$\begin{aligned} & \text { YEAR } \\ & \text { (I) } \end{aligned}$	ORIGINAL COST   (2)	CALCULATED ACCRUED (3)	ALEOC. BOOK RESERVE   (4)	FUT. BOOK ACCRUALS (5)	REM.   LIFE   (6)	ANNUAL ACCRUAL (7)
SURVIVOR CURVE. IOWA 45-R2.5 NET SALVAGE PERCENT, - -20						
2005	90,667.97	10,010	10,815	97,987	40.86	2,398
2006	$70,008.21$	5,990	6,472	77,538	41.79	1,855
2007	1,945;822.70	118,384	127,904	2,207,083	42.72	51,664
2008	300.277 .30	10,738	11,601	348,732	43.66	7,987
2009	135,540.13	1,561	1,687	160,961	44.57	3,611
	12,053,944,26	$4.258,738$	$4,601,199$	9,863,533		307,662
COMPOSITE REMAINING LIEE AND ANNUAL ACCRUAL RATE, PCT. 32.1 2.55						

```
 KENTUCKY AMERICAN WATER COMPANY
 ACCOUNT 320.20 PURIFICATION SYSTEM - FILTER MEDIA
 CALCULATED REMAINING LIEE DEPRECIATION ACCRUAL
 RELATED TO ORIGINAL COST AT NOVEMBER 3O, 2009
 ORIGINAL CALCULATED ALLOC. BOOK FUT. BOOK REM. ANNUAL:
YEAR COST ACCRUED RESERVE ACCRUALS LIFE ACCRUAI
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 SURVIVOR CURVE.. IOWA 5-L2.5
 NET SALVAGE PERCENT,. 0
\begin{tabular}{rrrrrrr}
2007 & \(27,968.19\) & 12,362 & 1,082 & 26,886 & 2.79 & 9,637 \\
2009 & \(140,600.74\) & 12,935 & 1,132 & 139,469 & 4,54 & 30,720 \\
& \(168,568.93\) & 25,297 & 2,214 & 166,355 & & 40,357
\end{tabular}
COMPOSITE REMAINING ITFE AND ANNUAI ACCRUAL RATE, PCT.. 4.1 23.94
```


## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 330.00 DISTRTBUTION RESERVOIRS AND STANDPIP   CALCULATED REMAINING LTFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009						
YEAR   (I)	ORIGINAL $\cos \mathrm{T}$   (2)	CALCULATED ACCRUED (3)	ALLOC. BOOK RESERVE   (4)	FUT, BOOK   ACCRUALS   (5)	REM.   LTEE   (6)	ANNUAL: ACCRUAL (7)
SURVIVOR CURVE. IOWA 60-S2.5 NET SALVAGE PERCENT.. 0						
2004	1, 656. 899.71	149.618	192,568	1,464,332	54.58	26,829
2008	11,716.56	278	358	11,359	58.58	194
	1,668,616.27	149,896	192,926	$1,475,691$		27,023

## KENTYCKY AMERECAN WARER COMPANY

ACCOUNT 330.10 ELEVATED TANKS AND STANOPTPES

CALCULATED RENAINING ITFE DEPRECIATION ACCRUAI RELATED TO ORIGINAL COST AT NOVEMBER 30; 2009


SURVIVOR CURVE. IOWA 60-S2.5
NET SAGVAGE PERCENT:- -25

1949	$29,865.15$	29,014	31,246	6,085	13.37	455
1950	29,826.67	28,738	30.949	6,334	13.75	461
1952	467.23	442	476	108	14.55	7
1953	62.09	58	62	16	14.96	+ 1
1954	86.170 .71	80,085	86.247	$21 \times 466$	15.39	1,395
1955	136.78	126	136	35	15.83	${ }^{2}$
1956	187,466.86	170,759	183,897	50,437	16.28	3,098
1961	58.06	50	54	19	18.76.	1
1965	367.671 .17	298,595	321,569	138,020	21.02	6,566
1966	$1,469.03$	1.174	1, 264	572	21.63	26
1968	174.702.28	135,110	145.505	72.873	22.88	3.185
1970	695.98	519	559	311	24.21	13.
1972	$1,161,38$	832	896	556	25.60	22
1973	1, 249.84	877	944	618	. 26.32	23
1974	23.368 .00	16,036	17,270	11.940	27.06	441
1975	116.046 .57	77,824	83.812	61,246	27.81	2.202
1976	10,828.67	7,086	7,631	5,905	28.59	$0 \cdot 7$
1977	$5,027.00$	3,208	3,455	2,829	29.37	96
1980	18,486.15	10,854	11,689	11.419	31.82	359
1985	18,779.50	9,319	10,036	13,438	36.18	371
1987	771,137.18	353,277	380,458	583,463	38.01	
1988	11, 180.11	4,905	5,282	8.693	38.94	223
1989	1,071,150.38	449.214	483,777	855,161.	39.87	27,449
1990	$668,310.29$	267.073	287,622	547,766	40.82	13,419
1991	21,644.73	8,220	8,852	18,204	41.77	436
1992	5,748.09	2,068	2,227	4,958	42.73	116
1994	26,620.29	8,502	9,156	24,119	44.67	540
1995	27,518.25	8,228	8,861	25,537	45.65	559
1996	1,021,559,19	284,504	306,394	970,555	46.63	20,814
1998	119,414.51	28,331	30,511	118,757	48:61	2,443
1999	804.672 .52	174,312	187, 724	818,117	49.60	16.494
2000	35,166.41	6,893	7,423	36,535	50.59	722
2001	908,985.58	159,300	171.557	964,675	51.59	78,699
2002	68,101.56	10,530	11,340	73,787	52.58	1,403
2005	$3,333,636.69$	307,111.	330,740	3,836,306	55.58	69.023
2006	169,043.00	12,044:	12,971	198,333	56.58	3,505
2008	23,377.89	693	746	28,476	58.58	486
2009	109,626.23	1,055	1, 136	135,897	59.54	2,282
	$10,270,432.02$	2,956,966	3,284,474	$9,653,566$		206,894

KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 330.20 GROUND LEVEL FACIETTIES
CALCULATED REMAINTNG LIFE DEPRECHATION ACCRUAT
REIATED TO ORIGINAL COST AT NOVEMBER 30, 2009ORIGENAL CALCULATED ALLOC. BOOK FUT. BOOK REM. ANNUAEYEAR COST ACCRUED RESERVE ACCRUALS LIFE ACCRUAL(1)(2)
(5) (6)
SURVIVOR CURVE. . IOWA 60-S2.5
NET SALVAGE PERCENT. . O
$2007 \quad 112,146.89 \quad 4,520 \quad 23.342 \quad 88,805 \quad 57.58 \quad 1,542$

| $12,246.89$ | 23,520 | 23.32 | 1,542 |
| :--- | :--- | :--- | :--- | :--- |


TUCKY AMERICAN WATER COMPANY						
ACCOUNT 330.40 CLEARWELLS						
CAICULATED REMA.INING LIFE DEPRECIATION ACCRUAT RELATED TO ORIGINAL COST AT NOVEMBER 30,2009						
YEAR   (1)	ORIGINAL $\operatorname{Cos} T$   (2)	CALCULATED ACCRUED   (3)	ALLOC. BOOK RESERVE   (4)	FUT: BOOK   ACCRUALS   (5)	REM.   LIFE   (6)	ANNUAL ACCRUAL (7)
SURVIVOR CURVE. . IOWA 60-S2.5 NET SALVAGE PERCENT.. 0						
2007	581.91	23.	278	3.04	57.58	5
	581.91	23.	278	304		5
COMPOSITE REMAINING IIFE AND ANNUAL ACCRUAL RATE, PCT. 60.8 0.86						

## KENTUCKY AMERICAN WATER COMPANY

ACCOUNT 331.00 MAINS AND ACCESSORIES - ALI MATNS
CALCULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30,2009

	ORIGINAL	CALCULATED	ALEOC. BOOK	FUT. BOOK	REM.	ANNUAL
YEAR	COST	ACCRUED	RESERVE	ACCRUALS	ITFE	ACCRUAL
$(1)$	$(2)$	$(3)$	$(4)$	$(5)$	$(6)$	$(7)$

SURVIVOR CURVE. IOWA 75-R3
NET SALVAGE PERCENT - -15

1906	30.00	32	23	12	5.77	2
1933	$51,103.04$	47, 420	33,969	24,799	14.48	1.713
1934	438.252 .01	403,595	289.115	214,875	14.94	14,383
1935	$48,765.65$	44.556	31,918	24,162	15.41	1,568
1936	37, 687. 79	34,157	24,468	18,873	15.89	1,188
1937	122, 404.82	110,008	78,804	61,962	16.39	3,780
1938	16,879.43	15,032	10,768	8,633	16.89	511
1939	20,212.62	17,845	12,783	10,462	1.7 .42	601.
1940	16,104-95	14,089:	10,093	8,428	17.95	470
1941	14,399.34	12,474	8; 93.6	7,623	18.50	412
1942	1.841 .93	1,580	1. 132	986	19.06	52
1943	$2,346.40$	1,992	1.427	1.271	19.63	65
1944	734.38	617	442	403	20.21	20
1945	9,664.23	8,032	5,754	5,360	20.80	258
1946	14,467.49	11,888	8,516	8.122	21.41	379
1947	49,900.68	40,532	29,035	28,351	22.03	1,287
1948	121.336.66	97,397	69.770	69,767	22.65	3,080
1949	88, 385.11	70,083	50.204	51,439	23.29	2,209
1950	128,586-40	100,673	72,117	75,757	23.94	3,164
1951.	35,826,20	27,686	19.833	21,367	24.60	869
1952	152,032.15	115,934	83.049	91,788	25.27	3,632
1953	331,463.41	249,294	178.581	202,602	25.95	7,807
1954	150,572,77	111,653	79,982	93,177	26.64	3,498
1955	580,064.92	423,993	303,727	363,348	27.33	13,295
2956	1,047, 809.37	754,438	$540,44 \mathrm{~L}$	6.64,540	28.04	23,700
1957	$445,412.59$	315, 889	226,287	285,937	28.75	9.946
1958	650,710.99	$454 \times 154$	325,333	422 ;985	29.48	14,348
1959	471,980,65	$324 ; 147$	232,202	310,576	30.21	10,281
1960	434,706.63	293,599	210,319	289,594	30.95	9, 357
1961	242,900.55	161,260	115,518	163,818	31.70	5,168
1962	$324,960,83$	212,003	157.868	221, 837	32.45	6,836
1963	334,043,58	$214 \% 010$	153,306	230,844	33.22	6.949
1964	$441,083.50$	277,362	198,688	308,558	33.99	9,078
1965	490,215.44	302,451	216,660	347,088:	34.76	9,985
1966	4,351,764.88	2,632,020	1, 8851444	3,118,396	35.55	87,719
1967	732.378 .20	434.172	311,019	531,216	36.34	14.618
1968	589,332.21	342 ,119	245,077	432,655	37.14	11,649
1969	784, 024.30	445,404	319,065	582,563	37.95	15,351

## KENTUCKY AMERICRN WATER COMPANY

ACCOUNT 331.00 MAINS AND ACCESSORIES - ALL MAINS

CALCULATED REMATNING LIFE DEPRECTATION ACCRUAL REIATED TO ORIGINAL COST AT NOVEMBER 30, 2009

YEAR   (1)	ORIGINAT $\operatorname{cost}$ (2)	CALCULATED ACCRUED (3)	ALLOC. BOOK RESERVE (4)	FUT. BOOK ACCRUALS   (5)	REM   LIFE   (6)	ANNUAT. ACCRUAL (7)
SURVIVOR CURVE . IOWA 75-R3						
N	SALVAGE PERCEM	$-15$				
1970	440,981,01	245,044	175.537	331.591	38.76	8.555
1971	586,026.57	318,297	228,012	445,919	39.58	11,266
1972	$1,648,593.30$	874,434	626:400	1,269,597	40.41	31,418
1973	864, 139,64	447,292	320,417	673,344	41.24	16,327
1974	3,116,282.13	1, 572,897	$1,126,743$	$2,456,981$	42.08	58,388
1975	666.102 .47	327,549	234,639	531,379	42.93	12.378
1976	789,608,16	378,021	270,795	637,254	43.78	14,556
1977	1,330,843,26	619,534	443,802	$1,086,668$	44.64	24,343
1978	1,196,922.44	547, 224.	387,705	988.756	45.51	21,726
1979	1,471,555.92	645,778	462,602	1,229,687	46.38	26,513
1980	1,011,216.92	430,273	308,226	854,673	47.25	18,088
1981	502,695,78	207,018	148,297	429,803	48.14	8,928
1982	$417,624.76$	166,317	119,141	361,127	49.03	7,365
1983	$555,440.67$	213,600	153,012	485,745	49.92	9.730
1984	1,824,308.10	676,380	484,524	$1,613,430$	50. 82	31,748
1985	$5,130,040.00$	1., 831,219	1, 311, 791	4, 587,755	51.72	88,704
1986	$1,768,139.83$	606,552	434,503	1,598,858	52.63	30,379
1987	8,230,951.34	2,708,106	1, 939,948	7,525,646	53.54	140,561
1988	$5,357,880,62$	1,687,652	1,208,947	$4.952,616$	54.46	90,940
1989	$3,496,669.58$	1,051,536	753,267	3,267,903	55.39	58,998
1990	3,120,218.96	894,192	640,553	2,947,699	56.31	52,348
1991	$1,934,511.66$	526,584	377.218	2,847,470	57.25	32,270
1992	3,783,076.51	975,826	699,032	3,651,506	58.18	62.762
1993	$3,248,833.69$	790,945	566,592	3,169,567	59.12	53,612
1994	6,763,158.60	1,548,527	1,109,285	6,668,347	60.07	111,010
1995	$3,757,213.33$	805,828	577,254	3,743,54I	61.01	61,359
1996	$5,495,538.89$	1.097,761	786,380	5,533,490	61.97	89,293
1997	$6,258,954.19$	$\mathrm{I}_{7} 159,565$	830,654	6,367, 143	62.92	101,194
1998	$5,538,762.26$	944,608	676,670	5,692,907	63.88	89,119
1999	6,903,561.35	1,075:747	770,611	$7,168,485$	64.84	110,557
2000	$6,531,985.94$	921,696	660,257	$6,851,527$	65.80	104,127
2001	6,933,362.85	874,678	626,575	7,346,792	66.77	110\%.03I
2002	$3,170,416.50$	352,931	252,822	3,393,157	67.74	50,091
2003	$2,774,701.87$	267,717	191.779	2,999,128	68.71	43,649
2004	1, 496,235,41	121,823.	87,268	1,633,403	69.69	23,438
2005	1, 213, 985.25	80,833	57,905:	1, 338,178	70.66	18,938
2006	4, 627,965,07	238,433	170.801	$5,151,359$	71.64	71,906
2007	$32,855,714.22$	2.197,755	858,011	$36,926,050$	72.62	508.483

```
 KENTUCKY AMERICAN WATER COMPANY
 ACCOUNT 331.00 MATNS AND ACCESSORIES - ALL MANS
 CALCULATED REMAINTNG LIFE DEPRECIATION ACCRUAL
 RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009
ORIGINAE CALCULATED ALLOC. BOOK FUT. BOOK REM. FNNUAL
YEAR COST ACCRUED RESERVE ACCRUAYS ITFE ACCRUAI
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
(7)
```


## SURVIVOR CURVE. . IOWA 75-R3

```
NET SALVAGE PERCENT . - -15
\begin{tabular}{rrrrrrr}
2008 & \(9,346,488.23\) & 200,996 & 143,983 & \(10,604,478\) & 73.60 & 144,083 \\
2009 & \(3,358,586.47\) & 23,174 & 16,601 & \(3,845,773\) & 74,55 & 51,586 \\
9999 & \(34,344,734.27-\) & \(7,682,917-\) & \(5,503,655-33,992,789\) & \(573,557-\)
\end{tabular}
\(138,948,436,68 \quad 31,089,015 \quad 22,270,577 \quad 137,520,127 \quad 2,326,438\)

\section*{KENTUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 333.00 SERVICES}

CALCUIATED REMATNING LIFE DEPRECLATION ACCRUAL REIATED TO ORIGINAL COST AT NOVEMBER 30, 2009

TEAR
(1)
\begin{tabular}{cccccc}
ORIGINAL & CALCULATED & ALIOC - BOOK FUT. BOOK & REM. & ANNUAL. \\
COST & ACCRUED & RESERVE & ACCRUALS & IIFE & ACCRUAL \\
\((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

NET SALVAGE PERCENT. - -100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 193.4 & 73, 117.38 & 124,665 & 146.235 & & & \\
\hline 1935 & 10,070.92 & 17,076 & 20,142 & & & \\
\hline 1936 & 5,746.16 & 9,690 & 11.492 & & & \\
\hline 1937 & 550.20 & 922 & 1,100 & & & \\
\hline 1938 & 2,510.28 & 4,183 & 5,021 & & & \\
\hline 1939 & 1.707.41 & 2,827 & 3,415 & & & \\
\hline 1940 & 757.76 & 1,247: & 1,516 & & & \\
\hline 1941 & 5,117.27 & 8, 362 & 10,235 & & & \\
\hline 1942 & 1.261.22 & 2,046 & 2,522 & & & \\
\hline 1943 & 47.58 & 77 & 95 & & & \\
\hline 1944 & 54.92 & 88 & 110 & & & \\
\hline 1945 & I, 106.07 & I, 753 & 2,212: & & & \\
\hline 1946 & \(2,794.50\) & 4,392 & 5,589 & & & \\
\hline 1947 & 7.386 .75 & 11,506 & 14,774 & & & \\
\hline 1948 & 24.316 .12 & 37,529 & 48,632 & & & \\
\hline 1949 & 19,014.78 & 29,062 & 38,030 & & & \\
\hline 1950 & 23,712.05 & 35,876 & 47,135 & 289 & & \\
\hline 1951 & 20,888.89 & 31.279 & 41,095 & 683. & 15.08 & 45 \\
\hline 1952 & \(16,631.90\) & 24, 532 & 32,362 & 902 & 15.57 & 58 \\
\hline 1953 & 21,833.28 & 31,973 & 42,007 & 1,660 & 16.07 & 103 \\
\hline 1954 & 24, 208.10 & 35.029 & 46,022 & 2,394 & 16.59 & 14.4 \\
\hline 1955 & 39,038.03 & \(55 ; 801\) & 73.313 & 4,763 & 27.12 & 278 \\
\hline 1956 & \(7 \times 267.41\) & 10,254 & 13,472 & 1,063 & 17.67 & 60 \\
\hline 1957 & 11. 643.77 & 16.213 & 21,301 & 1,987 & 18.23 & 109 \\
\hline 1958 & 64,768.16 & 88,953 & 116.869 & 12,667. & 18.80 & 674 \\
\hline 1959 & \(58,094.78\) & 78,660 & 103, 345 & 12,845 & 19.38 & 663 \\
\hline 1960 & 63,917.75 & 85.266 & 112,025 & 15,811. & 19.98 & 791. \\
\hline 1961 & 55,626.50 & 73.071 & 96,002 & 15,251 & 20.59 & 741 \\
\hline 1962 & 102,636.00 & 132,708 & 174,355 & 30,917 & 21.21 & 1,458 \\
\hline 1963 & 106.020,62 & 134,816 & 177,124 & 34, 917 & 21.85 & 1,598 \\
\hline 1964 & 90,715.15 & 113,430 & 149,027 & 32,403 & 22.49 & 1,441 \\
\hline 1965 & 126.207.85 & 155.059 & 203.720 & 48,696 & 23.14 & 2,104 \\
\hline 1966 & \(131+325.89\) & 158.432 & 208, 152 & 54,500 & 23.81 & 2,289 \\
\hline 1967 & \(148,558.06\) & 175,893 & 231,092 & 66,024 & 24.48 & 2,697 \\
\hline 1968 & \(123,213.67\) & 143,051 & 187.944 & 58,483 & 25.12 & 2,324 \\
\hline 1969 & 129,018.59 & 146, 772 & 192.833 & 65,204 & 25.87 & 2,520 \\
\hline 1970 & \(113,877.47\) & 125,905 & 166.731 & 61.024 & 26.57 & 2,297 \\
\hline 1971 & 117.635.96 & 128,294 & 168,556 & 66,716 & 27.28 & 2,446 \\
\hline
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 333.00 SERVICES}

CALCULATED REMAINTNG LIFE DEPRECIATION ACCRUAI RELATED TO ORIGINAL COST AT NOVEMBER 30,2009

YEAR
(1)

\section*{ORIGINAL} COST
(2)

CALCULATED ALIOC. BOOK FUT. BOOK
ACCRUED
RESERVE
(3)
(4)

REM \(\quad\) ANNOAE LIFE ACCRUAI (6)

SURVIVOR CURVE - IOWA 60-R2. 5 NET SALVAGE PERCENT.-100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1972 & 216.893.26 & 231,295 & 303,881 & 129,906 & 28.01 & 4,638 \\
\hline 1973 & 95,843.15 & 99,869 & 131,210 & 60,476 & 28.74 & 2,104 \\
\hline 1974 & \(255,900.65\) & 260,353 & 342,058 & 169,743 & 29.48 & 5,758 \\
\hline 1975 & 137,023,50 & 135,982 & 178,656 & 95,391 & 30.23 & 3,156 \\
\hline 1976 & 211,623.57 & 204,725- & 268,973 & 154,274. & 30.98 & 4,980 \\
\hline 1977 & 301,255.81 & 283,662 & 372,682 & 229,830 & 31.75 & 7,239 \\
\hline 1978 & \(347,453.29\) & 318,267 & 418,147 & 276,760 & 32.52 & 8,510. \\
\hline 1979 & 334, 451.43 & 297.662 & 391,075 & 277,828 & 33.30 & 8,343 \\
\hline 1980 & 296,023.56 & 255,646 & 335,874 & 256,173 & 34.09 & 7,515 \\
\hline 1981 & 174,082.29 & 145,707 & 191,433 & 156,732 & 34.89 & 4,492 \\
\hline 1982 & 272,261, 84 & 220,641 & 289,883 & 254,641. & 35.69 & 7.135 \\
\hline 1983 & 261,441.23 & 204,813 & 269,088 & 253,794, & 36.50 & 6,953 \\
\hline 1984 & 374,274.94 & 282,952 & 371.749 & 376,801. & 37.32 & 10,096 \\
\hline 1985 & 464.635 .68 & 338,534 & 444.774 & 484,497 & 38.14 & 12,703 \\
\hline 1986 & 558,052.12 & 391,195 & 513,961 & 602,143 & 38.97 & 15,451. \\
\hline 1987 & 720.904.31 & 485,169 & 637,427 & 804,382 & 39.81 & 20,206 \\
\hline 1988 & \(742,927.19\) & 478,891 & 629,179 & 856,675 & 40.66 & 21,069 \\
\hline 1989 & \(796,887.93\) & 491,202 & \(645 \times 353\) & 948,423 & 47.51 & 22,848 \\
\hline 1990 & \(768,713.30\) & 452,003 & 593,851 & 943,576 & 42.36 & 22,275 \\
\hline 1991 & \(756,785.63\) & 423,043 & 555,803 & 957,768 & 43.23 & 22,155 \\
\hline 1992 & \(929,879.08\) & 492,836 & 647,498 & 1,212,260 & 44.10 & 27,489 \\
\hline 1993 & \(772,840.35\) & 387,193 & 508,702 & \(1,036.979\) & \(44: 97\) & 23,059 \\
\hline 1994 & 860, 174.12: & 405,658 & 532,962 & 1, 187,386 & 45.85 & 25,897 \\
\hline 1995 & 1,018,644.69 & 450.228 & 591,519 & 1,445,710 & 46.74 & 30,931 \\
\hline 1996 & \(1,133,959.65\) & 467,645 & 614,402 & \(1,653,517\) & 47.63 & 34,716 \\
\hline 1997. & \(1,118,610,02\) & 427,980 & 562,289 & 1,674,931 & 48.52 & 34,520 \\
\hline 1998 & \(1,445,789.90\) & 509,786 & 669,768 & 2,221,812 & 49.42 & 44,958 \\
\hline 1999 & 1,665,976.47 & 537.111 & 705,668 & 2,626,285 & 50.33 & 52,18 \\
\hline 2000 & \(1,945,889.64\) & 568, 200 & 746,513 & 3,145,266 & 51.24 & 61,387 \\
\hline 2001 & 10, 242,312.37 & \(2,679,389\) & 3,520,238 & 16,964,387 & 52.15 & 325,300 \\
\hline 2002 & \(735,830.12\) & 169,977 & 223,319 & 1,248,341 & 53.07 & 23,523 \\
\hline 2003 & \(704,374.60\) & 141,157 & 185,455 & 1,223,294 & 53.99 & 22,658 \\
\hline 2004 & 604,391.29 & 102,384 & 134,514 & 1,074,269 & 54.92 & 19,561 \\
\hline 2005 & 802,649.81. & 111,087 & 145,948 & 1,459,352 & 55.85 & 26,130 \\
\hline 2006 & 1,214,020.44. & 130,386 & 171,304 & 2,256,737 & 56.78 & 39,745 \\
\hline 2007 & 1,164,702.15 & 88.517 & 116.295 & 2,213,109 & 57.72 & 38,342 \\
\hline 2008 & \(2,533,487.90\) & 112,994 & 148,454 & 4,918,522 & 58.66 & 83,84 \\
\hline 2009 & 3, 915, 867,89 & 56,388 & 74,084 & 7,757,652 & 59.57 & 130,22 \\
\hline
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 333.00 SERVICES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
YPAR \\
(1)
\end{tabular}} & \multicolumn{6}{|c|}{CALCULATED REMAINING LIFE DEPRECTATION ACCRUAL RELATED TO ORIGINAI COST AT NOVEMBER 30, 2009} \\
\hline & \begin{tabular}{l}
ORLGINAL CosT \\
(2)
\end{tabular} & CALCULATED ACCRUED (3) & ALLOC BOOK RESERVE (4) & \begin{tabular}{l}
FUT BOOK \\
ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
REM. \\
LIFE \\
(6)
\end{tabular} & ANNUAL ACCRUAI (J) \\
\hline \multicolumn{7}{|l|}{SURVIVOR CURVE.. IOWA \(60-\mathrm{R} 2.5\) NET SALVAGE PERCENT . -100} \\
\hline \multirow[t]{2}{*}{9999} & \(23.035,342.81\) & 8,684, 324 & 11,409,647~ & 34,661,039- & & \(695 ; 667-\) \\
\hline & 19,613,861.46 & 7,393,995 & 9,689,944 & 29.537 .782 & & 591,287 \\
\hline \multicolumn{2}{|l|}{COMPOSTTE REMAINING} & LIFE AND AN & JAL ACCRUAL & ATE: PCT. & 50.0 & 3.01 \\
\hline
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANY}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & ACCOUN & 334.10 METER & & & \\
\hline & \[
\begin{aligned}
& \text { CALCUL } \\
& \text { RELATE }
\end{aligned}
\] & ED REMAINI TO ORIGINA & LIFE DEPRE
COST AT NOV & ATION ACC IBER 30, 2 & & \\
\hline & \begin{tabular}{l}
ORIGINAL \\
COST
\end{tabular} & \begin{tabular}{l}
CALCUEATED \\
ACCRUED
\end{tabular} & ALLOC. BOOK RESERVE & FUT. BOOK ACCRUALS & \begin{tabular}{l}
REM. \\
LIFE
\end{tabular} & ANNUAL ACCRUAI \\
\hline (1) & (2) & (3) & \[
(4)
\] & & (6) & \[
(7)
\] \\
\hline
\end{tabular}

SURVIVOR CURVE. IOWA \(40-\mathrm{RI}\)
NET SAEVAGE PERCENT, - -10
\begin{tabular}{rrrrrrr}
1986 & \(1,458,98\) & 645 & 1,442 & 163 & 23.93 & 7 \\
1988 & \(2,096.80\) & 854 & 1,909 & 397 & 25.19 & 16 \\
2002 & \(56,623.00\) & 8,359 & 18,688 & 43,597 & 34.63 & 1,259 \\
2003 & \(30,783.47\) & 3,945 & 8,820 & 25,042 & 35.34 & 709 \\
2006 & \(14,424.07\) & 995 & 2,225 & 13,641 & 37.49 & 364 \\
2008 & \(189,372.24\) & 5,458 & 12,203 & 196,106 & 38.95 & 5,035 \\
2009 & \(1,383,090.70\) & 12,932 & 28,912 & \(1,492,488\) & 39.66 & 37,632 \\
& \(1,677,849.26\) & 33,188 & 74,199 & \(1,771,434\) & & 45,022
\end{tabular}

COMPOSTME REMAINING LIFE AND ANNUAL ACCRUAL RATE, PCT. 39.3 2.68

ACCOUNT 334.11 METERS - BRONZE CASE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{CALCULATED RENATNING: LTEE DEPRECTATION ACCRUAT RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009} \\
\hline \begin{tabular}{l}
YEAR \\
(1)
\end{tabular} & \begin{tabular}{l}
ORIGINAL COST \\
(2)
\end{tabular} & \begin{tabular}{l}
CALCULATED ACCRUED \\
(3)
\end{tabular} & \begin{tabular}{l}
ALLOC. BOOK RESERVE \\
(4)
\end{tabular} & \begin{tabular}{l}
FUT: BOOK \\
ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
REM. \\
ITFE \\
(6)
\end{tabular} & ANNUAL ACCRTJAL (7) \\
\hline
\end{tabular}

SURVTVOR CURVE . IOWA \(40-\mathrm{RL}\)
NET SAEVACE PERCENT, -10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1963 & 131.76 & 102 & 129 & 16 & 11.74 & A \\
\hline 1971 & 7.069 .74 & 4,769 & 6,019 & 1.758 & 15.47 & 114 \\
\hline 2006 & 37.862 .01 & 2,611 & 3.295 & 38,353 & 37.49 & 1,023 \\
\hline 2007 & \(483,417,38\) & 23,663 & 29,863 & 501.896 & 38.22 & 13,132 \\
\hline 2008 & \(2,849,373.88\) & 82,119 & 103,637 & \(3,030,674\) & 38.95 & 77,809 \\
\hline 2009 & 269,121.17 & 2.516 & 3,175 & 292,858 & 39.66 & 7,384 \\
\hline & \(3,646,975,94\) & 115,780 & 146, 118 & \(3,865,555\) & & 99,463 \\
\hline
\end{tabular}

COMPOSTTE: REMATNING LIFE: AND ANNUAT: ACCRUAT: RATE, PCT: 38.9 2.73

KENTUCKY AMERTCAN WATER COMPANY

\section*{ACCOUNT 334.12 METERS - PLASTIC CASE}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{CALCULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009} \\
\hline & ORIGINAL & CAICULATED & ALLOC BOOK PFSPRTE & \begin{tabular}{l}
FUT. BOOK \\
ACCPURTS
\end{tabular} & \begin{tabular}{l}
REM, \\
LTFE
\end{tabular} & ANNUAL ACCRUAI \\
\hline \begin{tabular}{l}
YEAR \\
(I)
\end{tabular} & \[
\begin{gathered}
\cos T \\
(2)
\end{gathered}
\] & \begin{tabular}{l}
ACCRUED \\
(3)
\end{tabular} & \[
\begin{gathered}
\text { RESERYE } \\
(4)
\end{gathered}
\] & \begin{tabular}{l}
ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
LIFE \\
(6)
\end{tabular} & \begin{tabular}{l}
ACCRUAL \\
(7)
\end{tabular} \\
\hline
\end{tabular}

SURVIVOR CURVE. IOWA \(40-R 1\)
NET SALVAGE PERCENT.: -10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1972 & 47,23 & 31 & 37 & 21 & 15.97 & 1 \\
\hline 1974 & 1,108.53 & 701 & 696 & 523 & 17.01 & 31 \\
\hline 1976 & 403.13 & 243 & 241 & 202 & 18.07 & 11 \\
\hline 1977 & I. 218.00 & 716 & 711 & 629 & 18.62 & 34 \\
\hline 1978 & 1,466.17 & 839 & 833 & 780 & 19.18 & 41 \\
\hline 1979 & 6,279.61 & 3.499 & 3,475 & 3.433 & 19,74 & 174 \\
\hline 1980 & 404.24 & 219 & 277 & 228 & 20.32 & 11 \\
\hline 1981 & 5,217+28 & 2.740 & 2,721 & 3,018 & 20.90 & 144 \\
\hline 1983 & 42,035.84 & 20,701 & 20,558 & 25.681 & 22.09 & 1,163 \\
\hline 1984: & 54, 132.47 & 25.765 & 25,586 & 33.960 & 22.69 & 1.497 \\
\hline 1985 & 43,718.71 & 20,063 & 19,924. & 28, 167 & 23.31 & I, 208 \\
\hline 1986 & 1.094.32 & 484 & 481. & 723 & 23.93 & 30 \\
\hline 1987 & \(8,737,25\) & 3.710 & 3,684 & 5,927 & 24.56 & 241 \\
\hline 1988 & 43.792 .11 & 17,833 & 17,709: & 30,462 & 25.19 & I. 209 \\
\hline 1989 & \(38,593.21\) & 15.028 & 14.924 & 27,529 & 25.84 & 1,065 \\
\hline 1990 & 38,506.65 & 14,317 & 14,218 & 28, 139 & 26.48 & 1,063 \\
\hline 1991. & \(51,857.52\) & 18, 339 & 18, 212 & 38,831 & 27.14 & 1,431 \\
\hline 1992 & \(48,383.82\) & 16.233 & 16,120 & 37,102 & 27.80 & 1,335 \\
\hline 1993 & 57,457.41 & 18,234 & 18,108 & 45.095 & 28.46 & 1,585 \\
\hline 1994 & 67.639 .04 & 20,215 & 20,075 & 54.328 & 29.13 & 1. 865 \\
\hline 1995 & 100, 113.50 & 28,049 & 27, 8.55 & 82.270 & 29.81 & 2,760 \\
\hline 1997 & 9,316.26 & 2, 262 & 2,246 & 8,002 & 31.17 & 257 \\
\hline 2001 & 282, 416.70 & 47.127 & 46.800 & 263,858 & 33.93 & 7,777 \\
\hline 2007 & 6,542.94 & 320 & 318 & 6,879 & 38.22 & 180 \\
\hline & 910,481.94 & 277,668 & 275,743 & 725,787 & & 25,113 \\
\hline
\end{tabular}

COMPOSITE REMAINTNG LIFE AND ANNUAL ACCRUAL RATE. PCT: 28.9

\section*{KENTUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 334-13 METERS - OTHFR}

CALCUBAEED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAE COST AT NOVEMBER 30, 2009
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & ORIGINAL & CALCULATED & ALLOC. BOOK & FUT', BOOK & REM & ANNUAE \\
\hline YEAR & \(\cos\) T & ACCRUED & RESERVE & ACCRUALS & LIFE & ACCRUAE \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline
\end{tabular}

SURVIVOR CURVE. . IOWA \(40-\mathrm{RI}\) NET SALTAGE PERCENT. . - 10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1934 & 1.096 .08 & 1,156 & 727 & 479 & 1.66 & 289 \\
\hline 1935 & 317.50 & 332 & 209 & 140 & 2.00 & 70 \\
\hline 1936 & 184.20 & 191 & 120 & 83 & 2.32 & 36 \\
\hline 1937 & 954.77 & 981 & 617 & 433 & 2.63 & 165 \\
\hline 1939 & 69.91 & 71 & 45 & 32 & 3.22 & 10 \\
\hline 1940 & 126.80 & 12.7 & 80 & 59 & 3.52 & 17 \\
\hline 1941 & 411.17 & 409 & 257 & 195 & 3.82 & 51 \\
\hline 19.44 & 126.81 & 123 & 77 & 62 & 4.73 & 13 \\
\hline 1946 & 166.54 & 159 & 100 & 83 & 5.36 & 15 \\
\hline 1949 & 21.51 & 20 & 13 & 11 & 6.35 & 2 \\
\hline 1950 & 63.27 & 58 & 36 & 34 & 6.70 & 5 \\
\hline 1951 & 768.50 & 696 & 438 & 407 & 7.05 & 58 \\
\hline 1952 & 56.86 & 51 & 32 & 31 & 7.40 & 4 \\
\hline 1953 & 888.22 & 787 & 495 & 482 & 7.76 & 62 \\
\hline 1954 & 628.72 & 551 & 346 & 346 & 8.13 & 43 \\
\hline 1956 & 1,671.24 & 1. 430 & 899 & 939 & 8.88 & 106 \\
\hline 1957 & 566.29 & 479 & 301 & 322 & 9.27 & 35 \\
\hline 1958 & 94.99 & 79 & 50 & 54 & 9.66 & 6 \\
\hline 1959 & 828.81 & 682 & 429 & 483 & 10.06 & 48 \\
\hline 1960 & 1.132 .35 & 919 & 578 & 668 & 10.47 & 64 \\
\hline 1961 & 782.01 & 626 & 394 & 466 & 10.89 & 43 \\
\hline 1962 & 333.51 & 263 & 165 & 202 & 11.31 & 18 \\
\hline 1963 & 1,615.14 & 1,255 & 789 & 988 & 11.74 & 84 \\
\hline 1964 & \(1,232.54\) & 943 & 593 & 763 & 12. 18 & 63 \\
\hline 1965 & 3. 869.15 & 2, 913 & 1,831 & 2,425 & 12. 62 & 192 \\
\hline 1966 & 4.154 .23 & 3,075 & 1, 933 & 2,637 & 13.08 & 202 \\
\hline 1967 & 3,381.70 & 2, 461 & 1,547 & 2,173 & 13.54 & 160 \\
\hline 1969 & 1,452.26 & 1,019 & 64.1 & 956 & 14.49 & 66 \\
\hline 1971 & 1, 120.46 & 7.56 & 475 & 758 & 15.47 & 49 \\
\hline 1974 & \(4,132.36\) & 2,612 & 1.642 & 2,904 & 17.01 & 171 \\
\hline 1977 & 594.85 & 350 & 220 & 434 & 18.62 & 23 \\
\hline 1978 & 2,329,73 & 1,334 & 839 & 1.724 & 19.18 & 90 \\
\hline 1980 & \(1,774.76\) & 961 & 604 & 1,348 & 20.32 & 66 \\
\hline 1981 & 2.808 .79 & 1, 475 & 927 & 2,163 & 20.90 & 103 \\
\hline 1982 & 7,628.38 & 3, 883 & 2,441 & 5,950 & 21.49 & 277 \\
\hline 1983 & 376.27 & 185 & 116 & 298 & 22.09 & 13 \\
\hline 1984 & 5,938.07 & 2,826 & 1,777 & 4.755 & 22.69 & 210 \\
\hline 1985 & 10.870 .72 & 4,989 & 3,136 & 8,822 & 23.31 & 37.8 \\
\hline
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 334. 13 METERS - OTHER}

CAICULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009

YEAR
(1)
\begin{tabular}{cccccc}
& ORIGINAL & CALCULATED & \(A L L O C . ~ B O O K ~ F U T . ~ B O O K ~\) & REM. & ANNUAL. \\
COST & ACCRUED & RESERVE & ACCRUALS & IIFE & ACCRUAL \\
\((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

SURVIVOR CURVE. . IONA 40-RI NET SALVAGE PERCENT. - 10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1986 & 8.085 .38 & 3,573 & 2.246 & 6. 648 & 23.93 & 278 \\
\hline 1987 & +157.20 & 67 & 42 & 131 & 24.56 & 5 \\
\hline 1988 & \(2{ }_{2} .180 .02\) & 888 & 558 & 1,840 & 25.19 & 73 \\
\hline 1989 & \(6,433.87\) & 2.505 & 1,575 & 5,502 & 25.84 & 213 \\
\hline 1990 & 3.578.24 & 1. 330 & 836 & 3,100 & 26.48 & 11. \\
\hline 1992 & 12,596.71 & 3,891 & 2,446 & 10,310 & 27 & 391 \\
\hline 1993 & 9,288.99 & 2,948 & 1,853 & 8,365 & 28.46 & 294 \\
\hline 1994. & 10,008.78 & 2,991 & 1,880 & 9,130 & 29.13 & 3 \\
\hline 1995 & \(9,026.06\) & 2.529 & + 590 & 8,339 & 29.81 & 80 \\
\hline 1996 & 186,288,21 & 48,770 & 30,660 & 174,257 & 30.48 & \\
\hline 1997 & 194,714.60 & 47,271 & 29,718 & 184,468 & 31.17 & 5,918 \\
\hline 1998 & 227.926 .45 & 51, 071 & 32,107 & 218,612 & 31.85 & 6,864 \\
\hline 1999 & 207,430.64 & 42,554 & 26,753 & 201,421 & 32.54 & 6.190 \\
\hline 2000 & \(367,107.35\) & 68,245 & 42,904 & 360,914 & 33.24 & 10,858 \\
\hline 2001 & \(963,762.06\) & 160,823: & 101, 105 & 959,033 & 33.93 & 8,265 \\
\hline 2002 & \(832,583.35\) & 122,906 & 77,268 & 838,574 & 34.63 & 24.215 \\
\hline 2003 & \(1,016,025.83\) & 130,204 & 81,856 & 1,035,772 & 35.34 & 29,309 \\
\hline 2004 & \(1,180,860.80\) & 128,206 & 80,600 & 1,218,347 & 36.05 & 33,796 \\
\hline 2005 & \(451,622.80\) & 40,091 & 25,204 & 471,581 & 36.77 & 12,825 \\
\hline 2006 & 1,754,095.83 & 120,980 & 76,056 & 1,853,449 & 37.49 & 49,438 \\
\hline 2007 & 62,355.61 & 3,052 & 1,919 & 66,672 & 38.22 & 1.744 \\
\hline 2008 & \(26,645.66\) & 768 & 483 & 28,827 & 38.95 & - \\
\hline 2009 & 193,889.84 & I, 813 & 1.140 & 212,139 & 39.66 & \\
\hline 9999 & 619,053.92- & 81.777 & 51,411- & \(629.548=\) & & 18,014- \\
\hline & \(7,171,179.83\) & 946,926 & 595,307 & \(74.292,992\) & & 208,465 \\
\hline
\end{tabular}

COMPOSTTE REMAINING पIPE AND ANNUAZ ACCRUAL RATE; PCT. 35.0

\section*{KENTUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 334.20 METER INSTALLATIONS}

CALCULATED REMAINING LIFE DEPRECIATION ACCRUAI. RELATED TO ORIGINAL COST AT NOVEMBER \(30 \% 2009\)
\begin{tabular}{ccccccc}
& ORIGINAL: CAICUIATED ALLOC. BOOK FUT. BOOK & REM. & ANNUAL \\
YEAR & COST & ACCRUED & RESERVE & ACCRUALS & LIFE & ACCRUAL \\
(1) & \((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

SURVIVOR CURVE . TOWA 40-R1
NET SALUAGE PERCENT. - -10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1934 & 30, 566.78 & 32,228 & 31,150 & 2,473 & 1.66 & 12490 \\
\hline 1935 & \(2,738.58\) & 2,862 & 2,766 & 246 & 2.00 & 123 \\
\hline 1936 & 775.64 & 804 & 777 & 76 & 2.32 & 33 \\
\hline 1938 & 2,825.46 & 2, 981 & 2,785 & 323 & 2.92 & 111 \\
\hline 1939 & 2,017.17 & 2, 040 & 1,972 & 24.7 & 3.22 & 77 \\
\hline 1940 & 1.614 .22 & 1,619 & 1.565 & 211 & 3.52 & 60 \\
\hline 1947 & 3.434 .95 & 3.418 & 3, 304 & 474 & 3.82. & 124. \\
\hline 1942 & 1,064.55 & 1,050 & 1,015 & 156 & 4.12 & 38 \\
\hline 1943 & 39.59 & 39 & 38 & 6 & 4.42 & 1 \\
\hline 1945 & 280,47 & 27. & 261. & 48 & 5.04 & 10 \\
\hline 1946 & 448.62 & 427 & 413 & 80 & 5.36 & 15 \\
\hline 1947 & 6.623 .74 & 6.249 & 6,040 & 1,246 & 5.69. & 219 \\
\hline 1948 & 21,009.66 & 19,632 & 18,975 & 4,236 & 6.02 & 687 \\
\hline 1949 & 20.132 .24 & 18,629 & 18,006 & 4,139 & 6.35 & 652 \\
\hline 1950 & 2,277.52 & 2,086 & 2,016 & 489 & 6.70 & 73 \\
\hline 1951 & \(8,985.34\) & 8,141 & 7,869 & 2,015 & 7.05 & 286 \\
\hline 1952 & 17.950 .65 & 16.093 & 15,555 & 4.191. & 7.40 & 56.6 \\
\hline 1953 & \(19,638.24\) & 17,411 & 16,828 & 4,774 & 7.76 & 615 \\
\hline 1954 & \(20,592.16\) & 18,046 & 17,442 & 5,209 & 8.13 & 641 \\
\hline 1955 & 24.329 .02 & 21,075 & 20,370 & 6,392 & 8.50 & 752 \\
\hline 1956 & 22.829 .18 & 19,537 & 18,883 & 6,229 & 8.88 & 701 \\
\hline 1957 & 33,189.72 & 28,046 & 27,108 & 9, 401. & 9.27 & '1. 014 \\
\hline 1958 & 23.694 .07 & 19,769 & 19,1.08 & 6,955 & 9.66 & 720 \\
\hline 1959 & 16,240.22 & 13,371 & 12,924 & 4,940 & 10.06 & 491 \\
\hline 1960 & 36,024,13 & 29,252 & 28,273 & 11,354 & 10.47 & 1.084 \\
\hline 1961 & \(33,938.17\) & 27,166 & 26,257 & 11,075 & 10.89 & 1.017 \\
\hline 1962 & 31,149.88 & 24,575 & 23,753 & 10,.512 & 11.31 & 929 \\
\hline 1963 & \(51,370.76\) & 39,923 & 38,587 & 17,921 & 11.74 & 1,526 \\
\hline 1964 & 68,245.24 & 52,211 & 50, 464 & 24,606 & 12.18 & 2,020 \\
\hline 1965 & \(73,731.57\) & 55,516 & 53,658 & 27.447 & 12.62 & 2,175 \\
\hline 1966 & 71, 241,50 & 52,740 & 50,975 & 27,391 & 13.08 & 2,094 \\
\hline 1967 & \(65,501.82\) & 47.662 & 46,067 & 25,985 & 13.54 & 1.919 \\
\hline 1968 & \(57,662.65\) & 41,210 & 39,831 & 23,598 & 14.01 & 1.684 \\
\hline 1969 & 45,769.46 & 32,106 & 31.032 & 19,314 & 14.49 & 1,333 \\
\hline 1970 & \(50,185.37\) & 34,541 & 33,385 & 21,819 & 14.97 & 1.458 \\
\hline 1971 & \(56,695.26\) & 38,242 & 36,962 & 25,403 & 15.47 & 1,642 \\
\hline 1972 & 96,187.68 & 63,558 & 61.431 & 44,375 & 15.97 & 2,779 \\
\hline 1973 & \(74,319.24\) & 48,070 & 46,462 & 35.289 & 16.48 & 2,141 \\
\hline
\end{tabular}

\section*{KENIUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 334.20 METER INSTALLATIONS}

CALCULATED REMAINING LIFE DEPREGIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30,2009

YEAR
(1)

\author{
ORIGINAT:
}
(2)

CALCULAT
ACCRUE
(3)

FUT. BOOK ACCRUALS
(5)

REM LIFE
(6)

ANNUAL ACCRUAL
(7)

SURVIVOR CURVE. IOWA 40-R1 NET SALVAGE PERCENT. . -10
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1974 & 149,361.38 & 94,422. & 91,263 & 73.035 & 17.01 & 4.294 \\
\hline 1975 & 88,402.52 & 54,602 & 52,775 & \(44 \times 468\) & 17. 54 & 2,535 \\
\hline 1976 & 106,254.23 & 64,079 & 61,935 & 54,956 & 18.07 & 3,041 \\
\hline 1977 & 152.810.13 & 89, 84.4 & 86,839 & 81,252 & 18.62 & 4, 364 \\
\hline 1978 & 201, 335.06 & 115.274 & 111,417 & 110.052 & 19.18 & 5,738 \\
\hline 1979 & 208, 758.91 & 116,310 & 112,418 & 117, 217 & 19.74 & 5,938 \\
\hline 1980 & \(213,139.42\) & 115,351 & 111.491 & 122,962 & 20.32 & 6,051 \\
\hline 1981 & 169,999.49 & 89,292 & 86,304 & 100,694 & 20.90 & 4,818 \\
\hline 1982 & 200,777.09 & 102,190 & 98,771 & 122,084 & 21.49 & 5,681. \\
\hline 1983 & 183,597.83 & 90.416 & \(87 \times 391\) & 114,567 & 22-09 & 5,186 \\
\hline 1984 & \(272,996.53\) & 129,938 & 125,590 & 174,706 & 22.69 & 7.700 \\
\hline 1985 & 386,914.19 & 177,563 & 171,621 & 253,985 & 23.31 & 10,896 \\
\hline 1986 & 366.628 .21 & 162,002 & 156,581 & 246,710 & 23.93 & 10,310 \\
\hline 1987 & \(454,790.35\) & 193,104 & 186,642 & 313,627 & 24.56 & 12,770 \\
\hline 1988 & \(386,524.89\) & 157,401 & 152, 134 & 273,043 & 25.19 & 10.839 \\
\hline 1989 & \(512,183.54\) & 199,444 & 192,770 & 370,632 & 25.84 & 14,343 \\
\hline 1990 & 353,665,90 & 131,493 & 127,093 & 261,939 & 26.48 & 9,892 \\
\hline 1991 & \(408,485.45\) & 144,461 & 139,627 & 309,707 & 27.14 & 11, 111 \\
\hline 1992 & 519.151 .59 & 174,175 & 168,347 & 4.02,720. & 27.80 & 14,486 \\
\hline 1993 & 490.162 .24 & 155,553 & 150,348 & 388,830 & 28.46 & 13.662 \\
\hline 1994 & 429,065.08 & 128,235 & 123,944 & 348,028 & 29.13 & 11,94? \\
\hline 1995 & 383,277.95 & 107, 383 & 103,790 & 317,816 & 29.81 & 10,661 \\
\hline 1996 & 491,246.97 & 128,608 & 124.305 & 416,067 & 30.48 & 13,650 \\
\hline 1997 & 698,596.55 & 169,598 & 163, 223 & 604,533 & 31.17 & 19,395 \\
\hline 1998 & 527,028.10 & 118,091 & 174,139 & 465,592 & 37.85 & 14,618 \\
\hline 1999 & 756,093.39 & 155,113 & 149,923 & 681,780 & 32.54 & 20.952 \\
\hline 2000 & 541,983.78 & 100,755 & 97,384 & 498,798 & 33.24 & 15.006 \\
\hline 2001 & 243,153.56 & 40,575 & 39,217 & 228,252 & 33.93 & 6,727 \\
\hline 2002 & 541,068,58 & 79.873 & 77.200 & 517.975 & 34.63 & 14,957 \\
\hline 2003 & \(781,916.62\) & 100,203 & 96,850 & 763,258 & 35.34 & 21,598 \\
\hline 2004 & 691,031.06 & 75.025 & 72,515 & 687,619 & 36.05 & 19,074 \\
\hline 2005 & 818,293.89 & 72,640 & 70,209 & 829,914 & 36.77 & 22,570 \\
\hline 2006 & 1, \(228,246.81\) & 84, 71.2 & 81, 878 & 1,269,193 & 3.7 .49 & 33,854 \\
\hline 2007 & 171,803.62 & 8,410 & 8,128 & 180,856 & 38.22 & 4.732 \\
\hline 2008 & \(130,814.41\) & 3,770 & 3,644 & 140,252 & 38.95 & 3,601 \\
\hline 2009 & 1,205,452.82 & 11,271 & 10,894 & 1,315,104 & 39.60 & 33,159 \\
\hline & 16,560,341.65 & 4,783;672 & 4, 623,607 & 13,592,768 & & 463.756 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{KENTUCKY AMERICAN WATER COMPANY} \\
\hline \multicolumn{7}{|c|}{ACCOUNT 334.30 METER VAUETS} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009} \\
\hline \begin{tabular}{l}
YEAR \\
(I)
\end{tabular} & \begin{tabular}{l}
ORIGINAL COST \\
(2)
\end{tabular} & CALCULATED ACCRUED (3) & \begin{tabular}{l}
ALLOC: BOOK RESERVE \\
(4)
\end{tabular} & \begin{tabular}{l}
FUT. BOOK \\
ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
REM. \\
LIFE \\
(6)
\end{tabular} & \begin{tabular}{l}
ANNUAL ACCRUAL \\

\end{tabular} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{SURVIVOR CURVEI. . IOWA \(40-R I\) NET SAEVAGE PERCENT. - -10}} \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 2008 \\
& 2009
\end{aligned}
\]} & 38,974.21 & 1,123 & 2,660 & 40,212 & 38.95 & 1,032 \\
\hline & \(103,307.07\) & 966 & 2,289 & 111.349 & 39.66 & 2,808 \\
\hline \multicolumn{2}{|r|}{142,281.28} & 2,089 & \multicolumn{2}{|l|}{4.949 151,561} & & 3,840 \\
\hline COMP & E REMATNING & LIEE AND ANM & UAL ACCRUAL & ATE, PCT. & 39.5 & \(2 \cdot 70\) \\
\hline
\end{tabular}

\section*{KENTUCKX AMERICAN WATER COMPANY}

\section*{ACCOUNT 335.00 FIRE HYDRANTS}

CALCULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAE COST AT NOVEMBER 30,2009
\begin{tabular}{ccccccc}
& ORFGINAL CALCULATED AELOC. BOOK FUT. BOOK & REM. ANNULL \\
YEAR & COST & ACCRUED & RESERVE & ACCRUALS & HIFE ACCRUAL \\
\((1)\) & \((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

SURVIVOR CURVE. . TOWA 80-R3
NET SALVAGE PERCENT . . 25
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1934 & 7.001.92 & 6.737 & 8,420 & 332 & 18.42 & 18 \\
\hline 1935 & 189.90 & 181 & 226 & 11. & 18.95 & 1. \\
\hline 1936 & 26.06 & 25 & 31 & 2 & 19.49 & \\
\hline 1937 & 151.72 & 142 & 177 & 13 & 20.04 & 1. \\
\hline 1938 & 117.38 & 109 & 136 & 1.1 & 20.67 & 1. \\
\hline 1939 & 683.31 & 628 & 785 & 69 & 21.18 & 3 \\
\hline 1940 & 354.86 & 323 & 404 & 40 & 21.77 & 2 \\
\hline 1941 & 675.03 & 608. & 760 & 84 & 22.37 & 4 \\
\hline 1942 & 147.02 & 131 & 164 & 20 & 22.98 & 1 \\
\hline 1945 & 15.82 & 14. & 17 & 3 & 24;86 & \\
\hline 19.46 & 946.38 & 806 & 1,007 & 176 & 25.51 & 7 \\
\hline 1947 & 478.45 & 402 & 502 & 96 & 26.17 & 5 \\
\hline 1948 & 1,935.58 & 1.608 & 2,010 & 409 & 26.84 & 5 \\
\hline 1949 & 1, 872.49 & 1,536 & 1,920 & 421. & 27.51 & \% \\
\hline 1950 & 2,032.11 & 1,645 & 2,056 & 484 & 28.20 & 17 \\
\hline 1951 & 1,697:22 & 1,355 & 1,693: & 429. & 28.89 & 15 \\
\hline 1952 & 4,301,90 & 3,388 & 4,234 & 1,143 & 29.60 & 9 \\
\hline 1953 & 9,633.30 & 7,479 & 9,347 & 2,695 & 30.31 & 89 \\
\hline 1954 & 4,963.31. & 3,798 & 4.747 & 1, 457 & 31.03 & 47 \\
\hline 1955 & 19,730.37 & 14.874 & 18,589 & 6,074 & 31.75 & 191 \\
\hline 1956 & 15,939.21 & 11,833 & 14,789 & 5,135 & 32.49 & 158 \\
\hline 1957 & 20,413.63 & 14,917 & 18,643 & 6,874 & 33.23 & 207 \\
\hline 1958 & 17, 327.50 & 12,458 & 15,570 & 6,089 & 33.98 & 179 \\
\hline 1959 & \(37,425,48\) & 26,464 & 33,074 & 13,708 & 34.74 & 395 \\
\hline 1960 & 23,861.09 & 16,589 & 20,732 & 9,094 & 35.50 & 256 \\
\hline 1961 & 28,795.28 & 19,674 & 24,588 & 11,406 & 36.27 & 314 \\
\hline 1962 & 44,672,89 & 29.981 & 37,469 & 18,372 & 37.05 & 496 \\
\hline 1963 & 27, 876.45 & 18,364 & 22,951. & 11.895 & 37.84 & 31.4 \\
\hline 1964 & 43,343.08 & 28,016 & 35,014 & 19,165 & 38.63 & 496 \\
\hline 1965 & 57,506.94 & 36,452 & 45.557 & 26,327 & 39.43 & 668 \\
\hline 1966 & 106,648.92 & 66,269 & 82,821 & 50,490 & 40.23 & 1,255 \\
\hline 1967 & 62.318,25 & 37.936 & 47.411 & 30,487 & 41. 04 & 743 \\
\hline 1968 & 67,519,39 & 40,233 & 50,282 & 34,117 & 41.86 & 8.15 \\
\hline 1969 & \(59,019.25\) & 34,408 & 43,002 & 30.772 & 42.69 & 721 \\
\hline 1970 & 68,095.43 & 3.8,814 & 48,509 & 36,610 & 43.52 & 841 \\
\hline 1971 & \(56,582.29\) & 31,516 & 39.388 & 31,340 & 44.35 & 707 \\
\hline 1972 & 77.836 .25 & 42,323 & 52,894 & 44,401 & 45.20 & 98.2 \\
\hline 1973 & 139.353 .54 & 73,944 & 92,413 & 81,779 & 46.04 & ,776 \\
\hline
\end{tabular}

\section*{KENTUCKI AMERICAN: WATER COMPANY}

\section*{ACCOUNT 335.00 FERE HYDRANTS}

CAICULATED REMATNING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30,2009
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & ORIGTNAE & CALCUFATED & ALLOC. BOOK & FUT. BOOK ACCPUALS & \begin{tabular}{l}
REM. \\
THFE
\end{tabular} & ANNUAL ACCRUA \\
\hline YEAR
(I) & \begin{tabular}{l}
\(\cos T\) \\
(2)
\end{tabular} & \begin{tabular}{l}
ACCRUED \\
(3)
\end{tabular} & \begin{tabular}{l}
RESERVE \\
(4)
\end{tabular} & (5) & (6) & (7) \\
\hline
\end{tabular}

SURVIVOR CURVE-: IOWA 80-R3
NET SALIVAGE PERCENT.- -25
\begin{tabular}{lrrrrrr}
& & 189,528 & 236,866 & 221,264 & 46,90 & 4,718 \\
1974 & \(366,503,61\) & 50,771 & 63,452 & 62,530 & 47,76 & 1,309 \\
1975 & \(100,785.47\) & 35,234 & 44,034 & 45,804 & 48.62 & 942 \\
1976 & \(71,870.25\) & 60,333 & 75,402 & 82,786 & 49.49 & 1,673 \\
1977 & \(126,550.47\) & 64,332 & 80,400 & 93,282 & 50,37 & 1,852 \\
1978 & \(138,945.41\) & 67,083 & 83,838 & 102,815 & 51,25 & 2,006 \\
1979, & \(149,322.58\) & 56,155 & 70,181 & 91,092 & 52.14 & 1,747 \\
1980 & \(129,018,54\) & \(72,840.50\) & 30,693 & 38,359 & 52,692 & 53,03
\end{tabular}
```

                    KENTUCKY' AMERICAN WATER COMPANY
            ACCOUNT 339.10 OTHER SOURCE OF SUPELY RLANT
            CALCULATED REMATNTNG LIFE DEPRECIATION ACCRUAL
            RELATED TO ORIGINAL COST AT NOVEMBER 30. 2009
                ORIGINAL CALCULATED ALLOC. BOOR FUT: BOOK REM. ANNUAL
                    COST ACCRUED RESERVE ACCRUALS LIFE ACCRUAL
                        (2)
                            (3)
                            (4)
                            (5)
                            (6)(7)
    | YEAR | COST | ACCRUED | RESERVE | ACCRUALS | LIFE ACCRUAL |  |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ |

SURVIVOR CURVE . 5-SQUARE
NET SALVAGE PERCENT:- 0

2007	$8,374.81$	4,053	5,059	3,316	2.58	1,285
	$8,374.81$	4,053	5,059	3,316	1,285	

COMPOSITE REMATNING LTFE AND ANNUAL ACCRUAL RATE, PCT: $2,6 \quad 15.34$

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{KENTUCKY AMERICAN WATER COMPANY} \\
\hline \multicolumn{7}{|c|}{ACCOUTN 339.60 OTHER \(\mathrm{E} / \mathrm{E}\) COMPANY PLANNING STUDY} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMAINING LIFE DERRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30,2009} \\
\hline \begin{tabular}{l}
YEAR \\
(I)
\end{tabular} & \[
\begin{gathered}
\text { ORIGINAI, } \\
\text { COST } \\
(2)
\end{gathered}
\] & CALCULATED ACCRUED (3) & \begin{tabular}{l}
ALLOC. BOOK RESERVE \\
(4)
\end{tabular} & \begin{tabular}{l}
FUT. BOOK ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
REM. \\
ITEE \\
(6)
\end{tabular} & ANNUAL ACCRUAL (7) \\
\hline \multicolumn{7}{|l|}{SURVIVOR CURVE - IO-SQUARE} \\
\hline \multicolumn{7}{|l|}{NET SAEVAGE PERCENT. . 0} \\
\hline 2007 & 63,554.70 & 15,380 & 17,706 & 45.849 & 7.58 & 6,049 \\
\hline 2008 & \(31,736,46\) & 4.507 & 5,189 & 26,547 & 8.58 & 3,094 \\
\hline \multirow[t]{2}{*}{2009} & \(140,244.29\) & 6,457 & 7,426 & 132,818 & 9.54 & 13,922 \\
\hline & 235,535.45 & 26,338 & 30,321. & 205,214 & & 23,065 \\
\hline COMPO & REMAINING & LIFE AND AND & UAL ACCRUAL & ATE, PCT. & 8.9 & 2.79 \\
\hline
\end{tabular}

\section*{KENTUCKY AMERTCAN WATER COMPANY}

ACCOUNT 340.10 OFFICE FURNITURE AND EQUIQMENT FURNTTURE

CAYCULATED REMAINING LIFE DEPRECTATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009
\begin{tabular}{rcccccc}
& ORIGINAL & CALCULATED & ALIOC. BOOK & FUT. BOOR & REM. & ANNUAL \\
YEAR & COST & ACCRUED & RESERVE & ACCRUALS & LIFE & ACCRUAL \\
\((1)\) & \((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

\section*{FULLY ACCRUED}

NET SAIVAGE PERCENT. . 0
\begin{tabular}{rrrr}
1985 & \(13,328.13\) & 13,328 & 13,328 \\
1986 & \(4,204.57\) & 4,205 & 4,205 \\
1987 & \(73,736.59\) & 73,737 & 73,737 \\
1988 & \(38,777.51\) & 38,778 & 38,778 \\
1989 & \(64,982.83\) & 64,983 & 64,982 \\
& \(195,029.63\) & 195,031 & 195,030
\end{tabular}

AMORTIZED
SURVIVOR OURVE: 20-SQUARE
NET SALVAGE PERCENT. 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1990 & 62,045.01 & 60,246 & 59,493 & \(2 \times 552\) & 0.58 & 2,552 \\
\hline 1991 & 16,969,33 & 15,629 & 15,434. & 1,535 & 1.58 & 972 \\
\hline 1992 & 15,664.85 & 13,644 & \(13 \% 44\) & 2,191 & 2.58 & 849 \\
\hline 1993 & 31.687 .21 & 26,015 & 25,690 & 5,997 & 3.58 & 1, 675 \\
\hline 1994 & \(16,095.12\) & 12,409: & 12,254 & 3,841 & 4.58 & 839 \\
\hline 1995 & 19,715.35 & 14,215 & 14.037 & 5,678 & 5.58 & 1.018 \\
\hline 1996 & \(16,689.34\) & 11,199 & 17.059: & 5,630 & 6.58 & 856 \\
\hline 1997 & 3,242.18 & 2,013 & 1,988 & 1,254 & 7.58 & 165 \\
\hline 1998 & 188,662.31 & 107,726 & 106,380 & 82,282 & 8.58 & 9,590 \\
\hline 1999 & 22,561.83 & 11,755 & 11,608 & 10,954 & 9.58 & 1,143 \\
\hline 2000 & \(1,453.20\) & 684 & 675 & 778 & 10.58 & 74 \\
\hline 2001 & 12,147.12 & 5,114 & 5,050 & 7.097 & 11.58 & 613 \\
\hline 2002 & 1.169.72 & 434 & 429 & 741 & 12.58 & 59 \\
\hline 2003 & 7,390.01. & 2,372 & 2,342 & 5,048 & 13.58 & 372 \\
\hline 2004 & 6,504.78 & 1,763 & 1,741 & 4,764 & 14.58 & 327 \\
\hline 2005 & 14,130.29 & 3,123 & 3,084 & 11.046 & 15.58 & 709 \\
\hline 2006 & \(22,626.63\) & 3,869 & 3.821 & 18,806 & 16.58 & 1, 1.34 \\
\hline 2007 & 59.479 .26 & 7.197 & 7, 107 & 52,372 & 17.58 & 2,979 \\
\hline 2008 & 20,089.99 & 1,426 & 1,408 & 18,682 & 18.58 & 1,005 \\
\hline & 538, 323.53 & 300,833 & 297,074. & 241,248 & & 26,931 \\
\hline & \(733,353.16\) & 495,864 & 492,104 & 241,248 & & 26.931 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{GENTUCKY AMERICAN WATER COMPANY} \\
\hline \multicolumn{7}{|c|}{ACCOUNT 340.21 OFFICE FURNITURE AND EQUIPMENT - MAINERAME} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMAINTNG ETFE DEPRECIATION ACCRUAL RELATED TO ORIGINAE COST AT NOVEMBER 30 r 2009} \\
\hline \begin{tabular}{l}
YEAR \\
(1)
\end{tabular} & ORIGINAL CosT (2) & \begin{tabular}{l}
CALCUEATED \\
ACCRUED \\
(3)
\end{tabular} & \begin{tabular}{l}
ALHOC: BOOK RESERVE \\
(4)
\end{tabular} & \begin{tabular}{l}
FUT. BOOK \\
ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
REM. \\
LIFE \\
(6)
\end{tabular} & \begin{tabular}{l}
ANNUAL ACCRUAL \\
(7)
\end{tabular} \\
\hline \multicolumn{7}{|l|}{FULEY ACCRUED} \\
\hline \multicolumn{7}{|l|}{NET SALUAGE PERCENT... 0} \\
\hline 1992 & 15,773.28 & 15.773 & 15,773 & & & \\
\hline \multirow[t]{2}{*}{1996} & 11,522.24 & 11.522 & 11,523 & & & \\
\hline & 27,295.52 & 27.295 & 27.296 & & & \\
\hline \multicolumn{7}{|l|}{AMORTELED} \\
\hline \multicolumn{7}{|l|}{SURVIVOR CURVE. 5-SQUARE} \\
\hline \multicolumn{7}{|l|}{NET SALVAGE PERCENT. . 0} \\
\hline 2006 & 42.968 .95 & 29,391. & 29,395 & 13,574 & 1.58 & 8,591 \\
\hline 2008 & \(6,658.85\) & 1,891 & I, 8 891 & 4,768 & 3. 58 & 1,332 \\
\hline \multirow[t]{3}{*}{2009} & 12,358.43 & 1,137 & 1,137 & 11,221 & 4.54 & \(2,47.2\) \\
\hline & 61.986.23 & 32,419 & 32,423 & 29,563 & & 12.395 \\
\hline & 89.281 .75 & 59,714 & 59.719 & 29,563 & & 12,395 \\
\hline Compo & REMAIMING & LIFE AND ANI & UAL ACCRUAL & ATE, PCT. & 2.4 & 13.88 \\
\hline
\end{tabular}

ACCOUNT 340.22 OFFTCE FURNITURE AND EQUIPMENT - PERSONAL
CALCULATED REMAINENG LIEE DEPRECIATION ACCRUAT RETATED TO ORIGINAT COST AT NOVEMBER 30. 2009

YEAR
(1.)
\begin{tabular}{cccccc}
ORIGTNAL & CALCULATED & ALLOC. BOOK & FUT. BOOK & REM. & ANNUAL \\
COST & ACCRUED & RESERVE & ACCRUALS & LIFE & ACCRUAL \\
\((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

FULLY ACCRUED
NET SALVAGE PERCENT.- 0
\begin{tabular}{rrrr}
1992 & \(15,652.95\) & 15,653 & 15,653 \\
1993 & \(18,955.37\) & 18,955 & 18,955 \\
1995 & \(35,043.42\) & 35,043 & 35,043 \\
1996 & \(50,099.99\) & 50,100 & 50,100 \\
1997 & \(7,797.53\) & 7,798 & 7,798 \\
1992 & \(189,128.75\) & 189,129 & 189,129 \\
2000 & \(4,809.72\) & 4,810 & 4,810 \\
2001 & \(64,058,65\) & 64,059 & 64,059 \\
2002 & \(16,727,17\) & 16,727 & 16,727 \\
2004 & \(59,181.74\) & 59,182 & 59,181 \\
& & & \\
& \(451,455,29\) & 461,456 & 461,455
\end{tabular}

\section*{AMORTIEED}

SURVIVOR CURVE. . S-SQUARE
NET SALVAGE RERCENT: 0
\begin{tabular}{rrrrrrr}
2005 & \(148,835.29\) & 131,570 & 122,113 & 26,722 & 0.58 & 26,722 \\
2006 & \(23,828.32\) & 16,299 & 15,127 & 8,701 & 1,58 & 5,507 \\
2007 & \(143,367.01\) & 71,810 & 66,649 & 81,718 & 2,58 & 31,674, \\
2008 & \(41,457.82\) & 11,774 & 10,928 & 30,530 & 3.58 & 8,528 \\
2009 & \(37,597.57\) & 3,459 & 3,210 & 34,388 & 4.54 & 7,574 \\
& \(400,086.01\) & 234,912 & 218,027 & 182,059 & & 30,005 \\
& & & & & & \\
& \(861,541.30\) & 696,368 & 679,482 & 182,059 & 80,005
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 340.23 OFFICE FURNITURE AND EQUIPMENT - PERIPH OHHER \\ CALCULATED REMAINING ITFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009}

EULLY ACCRUED
NET SALTAGE EERCENT . . 0
\begin{tabular}{rrrr}
1990 & \(5,510.50\) & 5,511 & 5,511 \\
1993 & \(10,024.91\) & 10,025 & 10,025 \\
1995 & \(1,246.04\) & 1,246 & 1,246 \\
1996 & \(5,733.92\) & 5,734 & 5,734 \\
1997 & \(7,682.12\) & 7,682 & 7,682 \\
1999 & \(53,548.55\) & 53,549 & 53,549 \\
2000 & \(8,264.01\) & 8,264 & 8,264, \\
2002 & \(1,985.91\) & 1,986 & 1,986 \\
2004 & \(7,979.16\) & 7,979 & 7,978 \\
& & & \\
& \(101,975.12\) & 101,976 & 101,975
\end{tabular}

AMORTIZED
SURUIVOR CURVE... 5-SQUARE
NET SALVAGE PERCENT. . O
\begin{tabular}{rrrrrrr}
2005 & \(13,752.68\) & 12,157 & 11,711 & 2,042 & 0.58 & 2,042 \\
2006 & \(17,701.62\) & 12,108 & 11,664 & 6,038 & 1.58 & 3,822 \\
2007 & \(36,050.33\) & 17,448 & 16,808 & 19,242 & 2.58 & 7,458 \\
2008 & \(42,757,78\) & 12,143 & 11,698 & 31,060 & 3.58 & 8,676 \\
2009 & \(66,345,07\) & 6,104 & 5,880 & 60,465 & 4.54 & 13,318 \\
& \(176,607.48\) & 59,960 & 57,761 & 118,847 & & 35,316 \\
& \(278,582.60\) & 161,936 & 159,736 & 118,847 & & 35,316
\end{tabular}

COMPOSITE REMATNING IIFE AND ANNUAL ACCRUAL RATE, PCT: \(\quad 3.4 \quad 12.68\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{KENTUCKY AMERICAN WATER COMPANY} \\
\hline \multicolumn{7}{|c|}{ACCOUNT 340.30 OFFICE FURNITURE \& EQUIPMENT - COMP SOFTWARE} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMAINING LTEE DEPRECIATION ACCRUAS QEEATED TO DRIGINAL COST AT NOVEMBER 30, 2009} \\
\hline \begin{tabular}{l}
YEAR \\
(1)
\end{tabular} & \begin{tabular}{l}
ORIGINAL COST \\
(2)
\end{tabular} & \begin{tabular}{l}
CALCULATED ACCRUED \\
(3)
\end{tabular} & \begin{tabular}{l}
ALLOC: BOOK RESERVE \\
(4)
\end{tabular} & FUT. BOOK ACCRUALS (5) & \begin{tabular}{l}
REM. \\
EIFE \\
(6)
\end{tabular} & ANNUAL ACCRUAI: (7) \\
\hline \multicolumn{7}{|l|}{FULILY ACCRUED} \\
\hline \multicolumn{7}{|l|}{NET SALUAGE PERCENT. 0} \\
\hline 1993 & \(48,583.72\) & 48,584 & 48,584 & & & \\
\hline 1996 & 2,000.42 & 2,000 & 2,000 & & & \\
\hline 1997 & 29,274.67 & 29,275 & 29,275 & & & \\
\hline 1999 & \(712,217.90\) & 712,218 & 712,218 & & & \\
\hline 2003 & 3,774,231.95 & 3,774,232 & 3,174,232 & & & \\
\hline 2004. & \(10,216.71\) & 10,217 & 10,216 & & & \\
\hline & \(3,976,525.37\) & \(3,976,526\) & \(3,976,525\) & & & \\
\hline \multicolumn{7}{|l|}{AMORTILEE} \\
\hline \multicolumn{7}{|l|}{SURVIVOR CURZE. 5-SQUARE} \\
\hline \multicolumn{7}{|l|}{NET SAEVAGE PERCENT . 0} \\
\hline 2005 & 562,532,11 & 497278 & 450,377 & 112, 55 & 0.58 & 112,155 \\
\hline \multirow[t]{3}{*}{2006} & 8,461.11 & 5,787 & 5.244 & 3,220 & 1.58 & 2,038 \\
\hline & \(570,993.22\) & 503.065 & 455,618 & 115,375 & & 114.193 \\
\hline & \(4,547,518.59\) & 4,479,591 & 4.432 .143 & \(115 \times 375\) & & 114.193 \\
\hline COMP & SITE REMAINING & LIFE AND ANi & UAL: ACCRUAL & ATE, PCT. & 1.0 & 2.51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ACCOUNT 340.32 OFFICE FURNITURE \& EQUIP - COMP SOFT PERSONAL} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMATNING LIFE DEPRECTATION ACCRUAE RELATED TO ORIGINAT COST AT NOVEMBER 30, 2009} \\
\hline \begin{tabular}{l}
YEAR \\
(1)
\end{tabular} & \begin{tabular}{l}
ORIGINAI. CosT \\
(2)
\end{tabular} & \begin{tabular}{l}
CALCULATED \\
ACCRUE \\
(3)
\end{tabular} & \begin{tabular}{l}
ALLOC. BOOK RESERVE \\
(4)
\end{tabular} & FUT. BOOK ACCRUALS (5) & \begin{tabular}{l}
REM. \\
LIFE \\
(6)
\end{tabular} & \begin{tabular}{l}
ANNUAL ACCRUAL \\
(7)
\end{tabular} \\
\hline \multicolumn{7}{|l|}{NET SALVAGE PERCENT. . 0} \\
\hline 1993 & 400.00 & 400 & 400 & & & \\
\hline \multicolumn{7}{|l|}{AMORTIZED} \\
\hline \multicolumn{7}{|l|}{SUPVIVOR CURVE.. 5-SQUARE} \\
\hline \multicolumn{7}{|l|}{NET SALVAGE PERCENT. . 0} \\
\hline 2007 & 92,626.36 & 44,831 & 44,825 & 47,801 & 2.58 & 18,528 \\
\hline 20.08 & 5,000.00 & 1, 420 & 1,420 & 3,580 & 3.58 & 1,000 \\
\hline 2009 & 2,703.83 & 249 & 249 & 2,455 & 4.54 & 541 \\
\hline & 100,330.19 & 46,500 & 46,494 & 53,836 & & 20,069 \\
\hline & 100,73019 & 46,900 & 46,894 & 53.836 & & 20,069 \\
\hline \multicolumn{7}{|l|}{COMPOSITE REMAINING LIFE AND ANNUAL ACCRUAL RATE, PCT. 2.7 (79.92} \\
\hline
\end{tabular}
```

                    KENTUCEY AMERICAN WATER COMPANY
            ACCOUNT 340.33 OFFICE FURNITURE AND EQUIP - SOFTWARE OTHER
                CALCUILATED REMAINING LIFE DEPRECIATION ACCRUAL
                RELATED TO ORIGINAI COST AT NOVEMBER 30, 2009
                ORIGINAL CALCULATED ALLOC: BOOK FUT: BOOK REM, ANNUAL.
                    COST ACCRUED
                        (2)
                            (3)
    ```

RESERVE (4)

REN: ANNUAE LTFE ACCRUAL (6)
(7)
(1)
\(\cos \mathrm{T}\)
(2)
```

(3) ACCRUALS
(5)
FULIY ACCRUED
NET SALVAGE PERCENT: 0

| 1993 | $1,603.58$ | 1,604 | 1,604 |
| ---: | ---: | ---: | ---: |
| 1994 | $3,024.78$ | 3,025 | 3,025 |
| 1995 | $1,298.90$ | 1,299 | 1,299 |
| 1996 | $14,161.58$ | 14,162 | 14,162 |
| 1997 | $34,911.43$ | 34,911 | 34,911 |
| 1999 | $44,917.16$ | 44,917 | 44,917 |
| 2000 | $9,351.59$ | 9,352 | 9,352 |
| 2001 | $5,906.95$ | 5,907 | 5,907 |
| 2002 | $412,697.73$ | 412,698 | 412,697 |
|  |  |  |  |
|  | $527,873,70$ | 527,875 | 527,874 |

AMORTLZED
SURVIVOR CURVE. : 5-SQUARE
NET SALVAGE PERCENT:- 0
2007
$4,470.43$
2.164
2,163
$2,307 \quad 2.58$
894
$532,344.13 \quad 530,039 \quad 530,037 \quad 2,307$
COMPOSITE REMAINING LIFE AND ANNUAI ACCRUAL RATE, PCT. 2.6
0.17

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 340.50 OFFICE FURNITURE AND EQUIPMENT - OTHER} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMAINTNG LTFE DEPRECIATION ACCRUAL RELATED TO ORIGINAT COST AT NOVEMBER 30, 2009} \\
\hline \begin{tabular}{l}
YEAR \\
(1)
\end{tabular} & \begin{tabular}{l}
ORIGINA. \(\cos \mathrm{T}\) \\
(2)
\end{tabular} & CALCULATED ACCRUED (3) & \begin{tabular}{l}
ALIOC, BOOK RESERVE \\
(4)
\end{tabular} & \begin{tabular}{l}
FUT. BOOK ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
REM. \\
LIFE \\
(6)
\end{tabular} & ANNUAL ACCRUAL (7) \\
\hline \multicolumn{7}{|l|}{FULLX ACCRUED} \\
\hline \multicolumn{7}{|l|}{NET SALVAGE PERCENT.. 0} \\
\hline 1990 & 3,811,41 & 3,811 & 3,811 & & & \\
\hline \(\pm 991\) & 1,066.45 & 1,066 & 1,066 & & & \\
\hline 1992 & 9,653.06 & 9,653 & 9,653 & & & \\
\hline 1993 & 1,326.09 & 1,326 & 1,326 & & & \\
\hline 1994 & 2,958.74 & 2,959 & 2,960 & & & \\
\hline & \(18,815.75\) & 18,815 & 18,816 & . & & \\
\hline \multicolumn{7}{|l|}{AMORTIZED} \\
\hline \multicolumn{7}{|l|}{SURVIVOR CURVA. - 15-SQUARE} \\
\hline \multicolumn{7}{|l|}{NET SALVAGE PERCENT. . 0} \\
\hline 1995 & 5,934.08 & 5,704 & 5,634 & 300 & 0.58 & 300 \\
\hline 1996 & 106.75 & 96 & 95 & 12 & 1.58 & 8 \\
\hline 1997 & 5,592,90 & 4,631 & 4,574 & 1,019 & 2.58 & 395 \\
\hline 1998 & 5,250.49 & 3.997 & 3,948 & 1,302 & 3.58 & 364 \\
\hline 1999 & 17,296.77 & 12,016 & 11,868 & 5,4.29 & 4.58 & 1,185 \\
\hline 2000 & 1,008.57 & 633 & 625 & 384 & 5.58 & 69 \\
\hline 2001 & 23,187.91 & 13,015 & 12,856 & 10,332 & 6.58 & 1,570 \\
\hline 2002 & 665.20 & 329 & 325 & 340 & 7.58 & 45 \\
\hline 2005 & \(3,965.82\) & 1.169 & 1,155 & 2, 817 & 10.58 & 266 \\
\hline \multirow[t]{3}{*}{2006} & 6,544.92 & 1,492 & 1,473 & 5,072 & 11.58 & 438 \\
\hline & 69,553.41 & 43,082 & 42,553 & 27,007 & & 4,640 \\
\hline & 88,369.16 & 61,897 & 61,369 & 27,001 & & 4.640 \\
\hline \multicolumn{7}{|l|}{COMPOSITE REMAINING LIFE AND ANNUAL ACCRUAL RATE, PCT. 5.08} \\
\hline
\end{tabular}

\section*{KENTUCKY AMERTCAN WATER COMPANY}

ACCOUNT 341.10 TRANSPORTATION EQUIRMENT - LIGHT DUTY TRUCKS
CALCULATED REMATNING LIFE DEPRECIATION ACCRUAI RELATED TO ORIGTNAL COST AT NOVEMBER 30, 2009

YEAR
(1)
\(\square\) ORIGINAL CALCULATED ALLOC. BOOK FUT. BOOK REM. ANNUAL COST ACCRUED RESERVE
(2)
(3)
(4) ACCRUALS
(5)

LIFE ACCRUAL
(6) (7)

SURVIVOR CURVE. . IOWA 13-S2.5
NET SALVAGE PERCENT: +20
\begin{tabular}{rrrrr}
1974 & 738.63 & 591 & 1,501 & \(910-\) \\
1982 & \(20,145,98\) & 16,117 & 40,935 & \(24,818-\) \\
1987 & \(1,567.00\) & 1,190 & 3,022 & \(1,768-\) \\
1988 & \(8,945.47\) & 6,688 & 16,987 & \(9,831-\) \\
1989 & \(12,472.57\) & 9,180 & 23,316 & \(13,338-\) \\
1990 & \(24,313.11\) & 17,610 & 44,727 & \(25,277-\) \\
1991 & \(16,288.41\) & 11,597 & 29,455 & \(16,424-\) \\
1992 & \(12,572.73\) & 8,782 & 22,305 & \(12,247-\) \\
1995 & \(73,036.90\) & 47,462 & 120,548 & \(62,118-\) \\
1997 & \(127,987.18\) & 77,499 & 196,833 & \(94,448-\) \\
1998 & \(96,005,13\) & 55,537 & 141,057 & \(64,253-\) \\
1999 & \(172,210.90\) & 94,316 & 239,551 & \(101,782-\) \\
2000 & \(50,201.90\) & 25,703 & 65,283 & \(25,121-\) \\
2001 & \(145,027.88\) & 68,453 & 173,862 & \(57,840-\) \\
2002 & \(145,690.46\) & 62,216 & 158,021 & \(41,469-\) \\
2006 & \(510,346.96\) & 106,765 & 271,171 & 137,107 \\
2007 & \(291,500.91\) & 43,235 & 109,811 & 123,390 \\
2008 & \(181,016.60\) & 15,814 & 40,166 & 104,647 \\
& & & & \\
& \(1,890,068.72\) & 668,755 & \(1,698,556\) & \(186,500-\)
\end{tabular}

COMPOSITE REMAINENG TIFE AND ANNUAI ACCRUAL RATE, PCT\% 0.0 0.00

\section*{KENTUCKY AMERICAN WATER COMPANY}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{CALCULATED REMAINING LIFE DEPRECTATION ACCRUAZ RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009} \\
\hline \begin{tabular}{l}
YEAR \\
(1)
\end{tabular} & ORIGINAL \(\operatorname{cost}\) (2) & CALCULATED ACCRUED (3) & \begin{tabular}{l}
ALIOC. BOOK RESERVE \\
(4)
\end{tabular} & FUT. BOOK ACCRUALS (5) & \begin{tabular}{l}
REM, \\
LIEE \\
(6)
\end{tabular} & ANNUAL ACCRUAL (7) \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
SURVIVOR CURVE.. IOWA 14-S2 \\
NET SAMVAGE PERCENTL. +15
\end{tabular}} \\
\hline 1979 & 12,423.75 & 10,560 & 10,560 & & & \\
\hline 1988 & 19,540.47 & 15,043 & 16,609 & & & \\
\hline 1991 & 28,900.31 & 20.915 & 24,565 & & & \\
\hline 1994 & 16, 692.38 & 11, 128 & 14 \% 189 & & & \\
\hline 1997 & 123,096.63 & 73,096 & 104,632 & & & \\
\hline 1999 & \(84,706.37\) & 45,101 & 72,000 & & & \\
\hline 2000 & 43, 489.19 & 21.599 & 36,966 & & & \\
\hline 2001 & 99,956.06 & 45,761 & \(8.4,963\) & & & \\
\hline 2005 & 163,022.19 & 42,859 & 126,023 & 12,546 & 9.67 & 1.297 \\
\hline 2006 & 65,331.82 & 13,444 & 39,531. & 16,001. & 10.61 & 1, 508 \\
\hline 2007 & 199.307.32 & 29,156 & 85,730 & 83, 681 & 11.59 & 7,220 \\
\hline \multirow[t]{2}{*}{2008} & \(304,470.54\) & 26,242 & 77,162 & 181,638 & 12.58 & 14,439 \\
\hline & 160.937 .05 & 354,904 & 692,930 & 293,866 & & \(24_{74} 464\) \\
\hline
\end{tabular}

COMPOSITE REMATNING LIFE AND ANNUAL ACCRUAL RATE, PCT, 12.0 2.11

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{KENTUCKY AMERICAN WATER COMPANY} \\
\hline \multicolumn{7}{|c|}{ACCOUNT 341:40 TRANSPORTATION EQUIPMENT OTHER} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMATNING LIEE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30; 2009} \\
\hline \[
\begin{aligned}
& \text { YEAR } \\
& \text { (1) }
\end{aligned}
\] & \begin{tabular}{l}
ORIGINAL cost \\
(2)
\end{tabular} & \begin{tabular}{l}
CAECULATED \\
ACCRUED \\
(3)
\end{tabular} & \begin{tabular}{l}
ALLOC. BOOK RESERVE \\
(4)
\end{tabular} & \begin{tabular}{l}
FUT. BOOK \\
ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
REM. \\
LTEE \\
6)
\end{tabular} & \begin{tabular}{l}
ANNUAL ACCRUAL \\
(7)
\end{tabular} \\
\hline \multicolumn{7}{|l|}{SURVIVOR CURVE.. IOWA 16-L3} \\
\hline \multicolumn{7}{|l|}{NET SALVAGE PERCENT. 0} \\
\hline 1956 & 220.10 & 220 & 220 & & & \\
\hline 1991 & 2,626.00 & 1,907 & 2,626 & & & \\
\hline 2001 & 5,219.99 & 2,584 & 4,173 & I, 047 & 8.08 & 130 \\
\hline 2002 & 16,103.89 & 7.145 & 11.538 & 4,566 & 8.90 & 513 \\
\hline 2004 & 59,336.84 & 19,694 & 37, 802 & 27,535 & 10.69 & 2,576 \\
\hline 2006 & 49,739,50 & 10,599 & 17,115 & 32,625 & 12.59 & 2,591 \\
\hline 2007 & 92,750.78 & 14,024 & 22,646 & 70,705 & 13.58 & 5,162 \\
\hline 2008 & 176.121.58 & 15,622 & 25,226 & 150,896 & 14.58 & 10,350 \\
\hline 2009 & 14,207.52 & 408 & 659 & 13,549 & 15.54 & 872 \\
\hline & 416,326.20 & 72,203 & 116,005 & 300,323 & & 22,194 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{KENTUCKY AMERICAN WATER COMPANY} \\
\hline \multicolumn{7}{|c|}{ACCOUNT 342 STORES EQUIPMENT} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMATNING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30. 2009} \\
\hline \begin{tabular}{l}
YEAR \\
(1)
\end{tabular} & \begin{tabular}{l}
ORIGINAL \(\cos\) t \\
(2)
\end{tabular} & \begin{tabular}{l}
CALICUIATED ACCRUED \\
(3)
\end{tabular} & \begin{tabular}{l}
ALIOC BOOK RESERVE \\
(4)
\end{tabular} & FUT. BOOK ACCRUALS (5) & \begin{tabular}{l}
REM. \\
LIFE \\
(6)
\end{tabular} & \begin{tabular}{l}
ANNUAL ACCRUAL \\
(7)
\end{tabular} \\
\hline \multicolumn{7}{|l|}{FULIY ACCRUED} \\
\hline \multicolumn{7}{|l|}{NET SALVAGE PERCENT. 0} \\
\hline 1971 & 590.73 & 591 & 591 & & & \\
\hline 1972 & 1,677.10 & 1,677 & 1, 677 & & & \\
\hline & 2,267.83 & 2,268 & 2,268 & & & \\
\hline \multicolumn{7}{|l|}{AMORTEZED} \\
\hline \multicolumn{7}{|l|}{SURVIVOR CURVE, 25-SQUARE} \\
\hline \multicolumn{7}{|l|}{NET SALTAGE PERCENT. - 0} \\
\hline 1985 & 550, 20 & 537 & 537 & 13 & 0.58 & 13 \\
\hline 1986 & 330.23 & 309 & 309 & 21. & 1.58 & \(\begin{array}{r}13 \\ \hline 10\end{array}\) \\
\hline 1987 & 27,616.12 & 24,766 & 24,747 & 2.869 & 2.58 & 1,112 \\
\hline \multirow[t]{3}{*}{1997} & 3,762,25 & 1.571 & 1,570 & 1,592 & 12.58 & 127 \\
\hline & 31,658.80 & 27.183 & 27,163 & 4,495 & & 1,265 \\
\hline & 33,926.63 & 29,451 & 29,431 & 4,495 & & 1,265 \\
\hline COMPO & REMAINING & LIEE AND ANN & UA\% ACCRUAL & RATE, PCT. & 3.6 & 3.73 \\
\hline
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANX}

ACCOUNT 343 TOOLS SHOP AND GARAGE EQUTPMENT

CALCULATED REMAINING LTFE DEPRECIATION ACCRUAL: RELATED TO ORIGINAL COST AT NOVEMBER 30,2009
\begin{tabular}{ccccccc}
& ORIGINAL & CALCUIATED & ALIOC. BOOK & FUT. BOOK & REM. & ANNUAL \\
YEAR & COST & ACCRUED & RESERVE & ACCRUALS & LTFE & ACCRUAL \\
(1) & \((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

FULLI ACCRUED
NET SAIVAGE PERCENT: - 0
\begin{tabular}{rrrr}
1933 & \(3,604.69\) & 3,605 & 3,605 \\
1961 & 461,04 & 461 & 461 \\
1964 & 242.66 & 243 & 243 \\
1966 & 94.49 & 94 & 94 \\
1968 & 345.64 & 346 & 346 \\
1969 & 698.97 & 699 & 699 \\
1970 & \(1,516.38\) & 1,516 & 1,516 \\
1971 & \(1,576.22\) & 1,576 & 1,576 \\
1972 & \(1,663.72\) & 1,664 & 1,664 \\
1973 & 582.77 & 583 & 583 \\
1974 & \(4,306.67\) & 4,307 & 4,307 \\
1976 & \(4,532.74\) & 4,533 & 4,533 \\
1977 & \(5,553.15\) & 5,553 & 5,553 \\
1978 & \(5,046.54\) & 5,047 & 5,047 \\
1979 & \(2,916.15\) & 2,916 & 2,916 \\
1980 & \(1,698.74\) & 1,699 & 1,699 \\
1982 & \(14,283.29\) & 14,283 & 14,283 \\
1983 & \(3,029.86\) & 3,030 & 3,030 \\
1984 & \(11,794.34\) & 11,794 & 11,794 \\
1985 & \(5,402.39\) & 5,402 & 5,402 \\
1986 & \(26,123.53\) & 26,124 & 26,124 \\
1987 & \(29,491.25\) & 29,491 & 29,491 \\
1988 & \(16,774.64\) & 16,775 & 16,775 \\
1989 & \(25,390.59\) & \(25,391\). & 25,389
\end{tabular}

AMORTIZED
SURVIVOR CURVE. . 20-SQUARE
NET SALVAGE PERCENT: 0
\begin{tabular}{rrrrrrr}
1990 & \(20,980.71\) & 20,372 & 20,284 & 697 & 0.58 & 697 \\
1991 & \(42,931.59\) & 39,540 & 39,369 & 3,563 & 1.58 & 2,255 \\
1992 & \(33,381.41\) & 29,075 & 28,949 & 4,432 & 2.58 & 1,718 \\
1993 & \(17,504.80\) & 14,371 & 14,309 & 3,196 & 3.58 & 893 \\
1994 & \(25,135.75\) & 19,380 & 19,296 & 5,840 & 4.58 & 1,275 \\
1995 & \(62,049.81\) & 44,738 & 44,545 & 17,505 & 5,58 & 3,137
\end{tabular}

AMORTIZED
SURVIVOR CURVE - 20-SQUARE
NET SALVAGE PERCENT. : 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1996 & 35,091.84 & 23,547 & 23.445 & 11,647 & 6.58 & 1,770 \\
\hline 1997 & \(79,116.83\) & 49,132 & 48,920 & 30,197 & 7.58 & 3,984 \\
\hline 1998 & 48,588.70 & 27,744: & 27,624 & 20,964 & 8.58 & 2,443 \\
\hline 1999 & 34,231.29 & 43,885 & 43,695 & 40,536 & 9.58 & 4,231 \\
\hline 2000 & \(89,130.06\) & 41,980 & 41,798 & 47.332 & 10.58 & 4,474 \\
\hline 2001 & 46, 735.28 & 19.676 & 19,591 & 27.144 & 11.58 & 2,344 \\
\hline 2002 & \(5,440.16\) & 2,018 & 2,009 & 3,431 & 12.58 & 273 \\
\hline 2004 & 4.144 .40 & 1,123 & 1,118 & 3,026 & 14.58 & 208 \\
\hline 2005 & 127,524.66 & 28,183 & 28,061 & \(99 \times 464\) & 15.58 & 6,384 \\
\hline 2006 & 633,358,10 & 108,304 & 107,836 & 525,522 & 16.58 & 31, 696 \\
\hline 2007 & 238,682.81 & 28.881 & 28,757 & 209,926 & 17.58 & 11.941 \\
\hline 2008 & 117.147.48 & 8,317 & 8,281 & 108,866 & 18.58 & 5.859 \\
\hline 2009 & 27,452.41 & 631 & 628 & 26,824 & 19.54 & 1,373 \\
\hline & \(1,738,627.49\) & 550,897 & 548,515 & 1,790,112 & & 86,955 \\
\hline & 1,905,757.95 & 718.029 & 715,645 & \(1,190,112\) & & 86,955 \\
\hline
\end{tabular}

COMPOSITE REMAINTNG LIEE AND ANNUAL ACCRUAL RATE, PCT. 13.7
4.56

\section*{KENIUCKY AMERTCAN WATER COMPANY}

\section*{ACCOUNT 344 LABORATORY EQUIPMENT}

CALCULATED REMAINING EIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30,2009
\begin{tabular}{ccccccc}
& ORIGINAL & CALCULATED & ALLOC. BOOK & FUT. BOOK & REM. & ANNUAL \\
YEAR & COST & ACCRUED & RESERVE & ACCRUALS & LTFE & ACCRUAL \\
\((1)\) & \((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

FULLY ACCRUED
NET SALVAGE PERCENT: 0
\begin{tabular}{rrrr}
1972 & 340.13 & 340 & 340 \\
1976 & \(1,273.80\) & 1,274 & 1,274 \\
1978 & \(2,032.80\) & 2,033 & 2,033 \\
1982 & \(2,906.99\) & 2,907 & 2,907 \\
1983 & \(3,221.40\) & 3,221 & 3,221 \\
1984 & \(3,950.78\) & 3,951 & 3,951 \\
1985 & 571,20 & 571 & 571 \\
1986 & \(1,918.14\) & 1,918 & 1,918 \\
1987 & \(31,608.39\) & 31,608 & 31,608 \\
1989 & \(2,514.10\) & 2,514 & 2,514 \\
1990 & \(8,173.99\) & 8,174 & 8,174 \\
1991 & \(46,577.09\) & 46,577 & 46,577 \\
1992 & \(19,592.64\) & 19,593 & 19,593 \\
1993 & \(7,880.14\) & 7,880 & 7,880 \\
1994 & \(17,835.02\) & 17,835 & 17,836
\end{tabular}
\(150,396.61 \quad 150,396 \quad 150,397\)

AMORTIZED
SURVTVOR CURVE. . \(15-\) SQUARE
NET SALVAGE PERCENT . 0
\begin{tabular}{rrrrrrr}
1995 & \(11,661.75\) & 11,210 & 11,162 & 500 & 0.58 & 500 \\
1996 & \(10,432.54\) & 9,334 & 9,294 & 1,139 & 1.58 & 721 \\
1997 & \(22,524.63\) & 18,650 & 18,571 & 3,954 & 2.58 & 1,533, \\
1998 & \(40,722.08\) & 31,002 & 30,871 & 9,851 & 3.58 & 2,752 \\
1999 & \(69,710.61\) & 48,428 & 48,223 & 21,488 & 4,58 & 4,692 \\
2000 & \(198,389.55\) & 124,589 & 124,061 & 74,329 & 5.58 & 13,321 \\
2001 & \(212,735.92\) & 119,409 & 118,903 & 93,833 & 6.58 & 14,260 \\
2002 & \(60,915.26\) & 30,135 & 30,007 & 30,908 & 7,58 & 4,078 \\
2006 & \(3,520.19\) & 803 & 800 & 2,720 & 11.58 & 235 \\
2007 & \(20,766.18\) & 3,253 & 3,239 & 16,927 & 12.58 & 1,346 \\
2008 & \(20,257.76\) & 1,918 & 1,910 & 18,347 & 13.58 & 1,351, \\
2009 & \(6,594.63\) & 202 & 201 & 6,394 & 14,54 & 440 \\
& & & & & & \\
& \(677,630.50\) & 398,933 & 397,242 & 280,390 & & 45,229
\end{tabular}

\section*{KENTUCEY AMERICAN WATER COMPANY}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ACCOUNT 345 POWER OPERATED EQUIPMENT} \\
\hline \multicolumn{7}{|c|}{CALCULATED REMAINTNG LIFE DEPRECIATION ACCRUAL RELATED TO ORIGTNAL COST AT NOVEMBER 30,2009} \\
\hline & \begin{tabular}{l}
ORIGINAL \\
COST
\end{tabular} & \begin{tabular}{l}
CALCULATED \\
ACCRUED
\end{tabular} & ALLOC. BOOK RESERVE & FUT. BOOK ACCRUALS & \begin{tabular}{l}
REM. \\
TEF
\end{tabular} & ANNUAI ACCRUTAL \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline
\end{tabular}

SURVIVOR CURVE. IOWA 18-L4
NET SAIVVAGE PERCENT: +15
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1941 & \(5,386,77\) & 4,579 & 4, 579 & & & \\
\hline 1978 & 12,962.26 & 10,314 & 11,018 & & & \\
\hline 1979 & 1,617.00 & 1.275 & 1,374 & & & \\
\hline 1985 & 10.177.50 & 7,517 & 8.651 & & & \\
\hline 1986 & 1,652.04 & 1;203 & 1, 404 & & & \\
\hline 1987 & 4,500.00 & 3,230 & 3,825 & & & \\
\hline 1988 & 59,533.98 & 42,143 & 50,604 & & & \\
\hline 1989 & 18,388.76 & 12,861 & 15,630 & & & \\
\hline 1990 & 47.797.49 & 33,087 & 40,628 & & & \\
\hline 1997 & 33,312,89 & 22,842 & 28,316 & & & \\
\hline 1992 & 4,439.80 & 3, 008 & 3,774 & & & \\
\hline 1993 & 11,703.75 & 7,787 & 9,948 & & & \\
\hline 1994 & \(37,806,05\) & 24,458 & 32,135 & & & \\
\hline 1995 & \(55,860.83\) & 34,742 & 47.482 & & & \\
\hline 1997 & \(70,631.94\) & 39,288 & 60,037 & & & \\
\hline 1999 & \(55,639.33\) & 26,669 & 47.293 & & & \\
\hline 200.1 & \(45,456.79\) & 17.924 & 38,032 & 606 & 9.65 & 63 \\
\hline 2003 & 20,754.79 & 6. 282 & 13,330 & 4,312 & 11.59 & 372 \\
\hline 2005 & 992,362.64 & 207.166 & 439 , 576 & 403,932 & 13.58 & 29,745 \\
\hline 2008 & \(31,893.02\) & 2.139 & 4,539 & 22,570 & 1.6. 58 & 1,361 \\
\hline 2009 & \(4,156,88\) & 90 & 191 & 3, 3.42 & 17.54 & 191 \\
\hline & 1,526,034.51 & 508,604 & 862,366 & 434.762 & & 31,732 \\
\hline
\end{tabular}

COMPOSITE REMAINING LIFE AND ANNUAL ACCRUAI RATE, PCT.. 13.7 2.08

\section*{KENTUCKY AMERICAN WATER COMPANY}

ACCOUNT 346.10 COMMUNICATION EQUIPMENT - NON TELEPHONE
CALCULATED REMAINING LIFE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30, 2009

YEAR
(1)
\begin{tabular}{cccccc}
ORTGINAL CALCULATED & ALIOC. BOOK & FUT. BOOK & REM. & ANNUAE \\
COST & ACCRUED & RESERVE & ACCRUALS & IHFE & ACCRUAI. \\
\((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

FULLI ACCRUED
NET SATVAGE PERCENT. . O
\begin{tabular}{rrrr}
1968 & 65,92 & 66 & 66 \\
1972 & \(38,739.35\) & 38,739 & 38,739 \\
1976 & \(1,361,65\) & 1,362 & 1,362 \\
1977 & \(1,566.05\) & 1,566 & 1,566, \\
1983 & \(4,698,67\) & 4,699 & 4,699 \\
1985 & \(4,452.50\) & 4,453 & 4,453 \\
1986 & \(16,294.66\) & 16,295 & 16,295 \\
1987 & \(22,247,66\) & 22,248 & 22,248 \\
1988 & \(33,798.43\) & 33,798 & 33,798 \\
1989 & \(38,765.32\) & 38,765 & 38,765 \\
1990 & \(12,871.59\) & 12,872 & 12,872 \\
1991, & \(4,416,26\) & 4,416 & 4,416 \\
1992 & \(2,598,00\) & 1,598 & 1,598 \\
1993 & \(12,195.94\) & 12,196 & 12,196 \\
1994 & \(36,776.17\) & 36,776 & 36,775 \\
& & & 229,849
\end{tabular}

\section*{AMORTIZED}

SURVIVOR CURVE. : 15 SQUARE
NET SALVAGE PERCENT. . 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1995 & 162,902.94: & 156.599 & 154,762 & 8,14] & 0.58 & 8, 141 \\
\hline 1996 & 36,117.75 & 32.315 & 31,936 & 4.182 & 1.58 & 2,647 \\
\hline 1997 & 274,365.78 & 227.175 & 224,509 & 49.857 & 2.58 & 19,324 \\
\hline 1998 & \(66,638.95\) & 50,732 & 50,137 & 16,502 & 3.58 & 4,609 \\
\hline 1999 & 204,301.60 & 141.928 & 140, 263 & 64,039 & 4.58 & 13,982 \\
\hline 2000 & 592.411 .63 & 372,035 & 367,669 & 224,743 & 5.58 & 40,277 \\
\hline 2001 & 194,793.82 & 109.338 & 108,055 & 86,739 & 6.58 & 13,182 \\
\hline 2002 & 32,924.97 & 16,288 & 16,097 & 16,828 & 7.58 & 2,220 \\
\hline 2003 & 45,153.44 & 19,326 & 19.099 & 26,054 & 8.58 & 3,037 \\
\hline 2004 & \(8,683.27\) & 3,137 & 3, 100 & 5,583 & 9.58 & 583 \\
\hline 2005 & 64.700 .85 & 19,067 & 18, 844 & 45.857 & 10.58 & 4,334 \\
\hline 2006 & 8,645.09 & 1.971 & I, 948 & 5.697 & 11.58 & 578 \\
\hline 2008 & 599.38 & 57 & 56 & 543. & 13.58 & 40 \\
\hline & 1,692,239.47 & 1,149,968 & \(1,136,475\) & 555,765 & & 112,954 \\
\hline & 1.922,087,64 & \(1,379.817\) & 1, 366,323 & 555,765 & & 112,954 \\
\hline
\end{tabular}
KENTUCKY AMERICAN WATER COMPANY
ACCOUNT 346.19 REMOTE CONTROL AND INSTRUMENTATION
CALCULATED REMATNING LIFE DEPRECIATION ACCRUALRELAATED TO ORIGINAL COST AT NOVEMBER 30, 2009
\begin{tabular}{ccccccc}
ORIGINAL CALCULATED & ALIOC. BQOK & FUT. BOOK & REM. ANNUAL \\
COST & ACCRUED & RESERVE & ACCRUALS & EIFE ACCRUAL \\
\((2)\) & \((3)\) & (4) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}
(2)
(3)
(4)
(5)
(6)
(7)
SURVIVOR CURVE - \(15-\) SQUARE
NET SALVAGE PERCENT. : 0
2008
\(22,310.63\)
2,113
2,107
\(20,204 \quad 13.58\)
1,488
22,310.63
2,113
2,107
20,204
1,488
COMPOSITE REMAINING LIFE AND ANNUAL ACCRUAL RATE, PCT. 13.6 6.67
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{KENTUCKY ÄMERICAN WATER COMPANY} \\
\hline \multicolumn{7}{|c|}{ACCOUNT 346.20 COMMUNICATION EQUIPMENT \(=\) TELEPHONE} \\
\hline \multicolumn{7}{|c|}{CALCUIATED REMAINING IIFE DEPRECEATION ACCRUAL REIATED TO ORIGINAD COST AT NOVEMBER 30,2009} \\
\hline \begin{tabular}{l}
YEAR \\
(1)
\end{tabular} & \begin{tabular}{l}
ORIGINAL Cost \\
(2)
\end{tabular} & \begin{tabular}{l}
CALCULATED \\
ACCRUED \\
(3)
\end{tabular} & \begin{tabular}{l}
ALIOC: BOOK RESERVE \\
(4)
\end{tabular} & \begin{tabular}{l}
FUT: BOOK \\
ACCRUALS \\
(5)
\end{tabular} & \begin{tabular}{l}
REM. \\
LIFE \\
(6)
\end{tabular} & ANNUAL ACCRUAL (7) \\
\hline \multicolumn{7}{|l|}{SURVIVOR CURVE. - 15-SCUARE} \\
\hline \multicolumn{7}{|l|}{NET SAIVAGE PERCENT. . 0} \\
\hline \multirow[t]{3}{*}{2008
2009} & 240,675.02 & 22.792 & 22.777 & 217.898 & 13.58 & 16,046 \\
\hline & 125.00 & 4 & 4 & 121 & 14.54 & 8 \\
\hline & 240,800.02 & 22,796 & 22.781 & 218,019 & & 16,054 \\
\hline
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANY}

\section*{ACCOUNT 347.00 MISCELTANEOUS EQUIEMENT}

CALCULATED REMATNING LIEE DEPRECIATION ACCRUAL RELATED TO ORIGINAL COST AT NOVEMBER 30,2009

YEAR
(1)

ORIGINAL CALCULATED ALLOC. BOOK FUT. BOOK \(\cos T\)
(2)

ACCRUED
(3)

RESERVE ACCRUATS
(4)

REM. ANNUAL IIFE ACCRUAL (6)

FULLY ACCRUED
NET SAIVAGE PERCENT.. 0
\begin{tabular}{rrrr}
& & & 69 \\
1956 & 69.30 & 59 & 73 \\
1957 & 73.00 & 73 & 116 \\
1958 & 116.20 & 116 & 78 \\
1959 & 77.52 & 78 & 36 \\
1960 & 35.54 & 36 & 33 \\
1963 & 33.48 & 33 & 50 \\
1966 & 49.96 & 50 & 503 \\
1972 & 502.78 & 503 & 616 \\
1973 & 615.88 & 616 & 1,419 \\
1974 & \(1,419.23\) & 1,419 & 530 \\
1976 & 530.25 & 530 & 14,000 \\
1977 & \(14,000.00\) & 14,000 & 1,364 \\
1979 & \(1,363.70\) & 1,364 & 1,510 \\
1981 & \(1,510.17\) & 1,510 & 5,272 \\
1982 & \(5,272.16\) & 5,272 & 9,211 \\
1983 & \(9,211.49\) & 9,211 & 3,359 \\
1984 & \(3,358.88\) & 3,359 & 4,533 \\
1985 & \(4,532.74\) & 4,533 & 9,225 \\
1986 & \(9,225.30\) & 9,225 & 16,476 \\
1987 & \(16,476.38\) & 16,476 & 20,652 \\
1988 & \(20,651.55\) & 20,652 & 26,838 \\
1989 & \(26,837.20\) & 26,837 & \\
& & & 115,962
\end{tabular}

AMORTIZED
SURVIVOR CURVE - 20-SQUARE
NET SALUAGE PERCENT. . 0
\begin{tabular}{rrrrrrr}
1990 & \(33,258.66\) & 32,294 & 31,941 & 1,318 & 0.58 & 1,318 \\
1991 & \(4,481.09\) & 4,127 & 4,082 & 399 & 1.58 & 253 \\
1992 & \(6,094.17\) & 5,308 & 5,250 & 844 & 2.58 & 327 \\
1993 & \(2,501.94\) & 2,054 & 2,032 & 470 & 3.58 & 133 \\
1994 & \(5,381,89\) & 4,149 & 4,104 & 1,278 & 4,58 & 279 \\
1995 & \(4,370.33\) & 3,151 & 3,117 & 1,253 & 5.58 & 225 \\
1996 & \(6,733.50\) & 4,578 & 4,469 & 2,265 & 6.58 & 344 \\
1997 & \(18,394.58\) & 11,423 & 11,298 & 7,097 & 7.58 & 936
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANY}

ACCOUNT 347.00 MISCELLANEOUS EQUIPMENT

CALCUIATED REMAINING LIFE DEPRECIATION ACCRUAI REI.ATED TO ORIGINAT COST AT NOVEMBER 30,2009

YEAR
(1)
\begin{tabular}{cccccc}
& CRIGINAL & CALCULATED & ALIOC. BOOK FUT. BOOK & REM. & ANNUAL \\
COST & ACCRUED & RESERVE & ACCRUALS & LIFE & ACCRUAL \\
\((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

AMORTIZED
SURVIVOR CURVE: \(20-S Q U A R E\)
NET SALVAGE PERCENT. 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1998 & \(42,103.37\) & 24,041 & 23,778 & 18,325 & 8.58 & 2,136
4,610 \\
\hline 1999 & \(91,111.14\) & 47,469 & 46,950 & 44,161 & 9.58 & \\
\hline 2001 & \(27,827.48\) & 11,715 & 11,587 & 16,240 & 11.58 & 1.402 \\
\hline 2001 & \(91,113.68\) & 33,803 & 33,434 & 57,680 & 12.58 & 4,585 \\
\hline 2002
2003 & 77.970 .14 & 25,028 & 24,754 & 53,216 & 13.58 & 3,919 \\
\hline 2004 & \(24,723.93\) & 6.700 & 6,627 & 18,097 & 14.58 & 1,241 \\
\hline 2005 & \(642,306,45\) & 141,950 & 140,399 & 501,907 & 15.58 & 32,215 \\
\hline 2006 & \(29,888.24\) & 5,111 & 5,055 & 24.833 & 16.58 & 1,498 \\
\hline 2006 & 29,888.24 & & 1, 507 & 11,089 & 17.58 & 631 \\
\hline 2007 & \(12,596.30\) & 1.524 & 1,507
193 & 2,561 & 18.58 & 138 \\
\hline 2008 & \(2,753.50\) & 195 & 19.3 & & & 570 \\
\hline 2009 & 11.393 .29 & 262 & 259 & 11,134 & & \\
\hline & \(1,135,003.68\) & 364,822 & 360,836 & 774,167 & & 56,758 \\
\hline & \(1,250,966.39\) & 480,784 & 476,799 & 774,167 & & 56,758 \\
\hline
\end{tabular}

COMPOSITE REMAINING IIFE AND ANNUAT ACCRUAL RATE, PCT. 13.6

\section*{KENTWCKY AMERICAN WATER COMPANY}

ACCOUNT 348.00 OTHER TANGIBLE PROPERTY
CALCULATED REMAINING LIFE DEPRECTATION ACCRUAL: RELATED TO ORIGINAT COST AT NOVEMBER 30, 2009

YEAR

\section*{(I)}
\begin{tabular}{cccccc}
ORIGINAE CALCULATED ALLOC. BOOK FUT. BOOK & REM. ANRUAL \\
COST & ACCRUED & RESERVE & ACCRUALS & LIFE ACCRUAT \\
\((2)\) & \((3)\) & \((4)\) & \((5)\) & \((6)\) & \((7)\)
\end{tabular}

SURVIVOR CURVE. \(20-\) SQUARE
NET SALVAGE PERCENT… O
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1991 & \(10,638 \cdot 34\) & 9,798 & 9,800 & \(\begin{array}{r}838 \\ \hline 6.030\end{array}\) & 1.58
8.58 & 530
5.365 \\
\hline 1998 & \(107,321.54\) & 61,281 & 61,292 & 46,030 & 8. 58 & 5,365 \\
\hline 2001 & 9,718.30 & 4,091 & 4,092 & 5.626 & 12.58: & 486 \\
\hline 2002 & 500.00 & 186 & 186 & 314 & 12.58 & 25 \\
\hline 2003 & \(5,603.90\) & 1.799 & 1,799 & 3,805 & 13.58 & 80 \\
\hline 2005 & 4,702,50 & 1.039 & 1,039 & 3,664 & 5.5 & \\
\hline & 138,484.58 & 78, 194 & 78.208 & 60.277 & & 6.921 \\
\hline
\end{tabular}

COMPOSITE REMATNING LIFE AND ANNUAL ACCRUAL RATE; PCT. \(\quad 8.7 \quad 5.00\)

\title{
COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION
}

IN THE MATTER OF:)
THE APPLICATION OF KENTUCKY-AMERICAN) CASE NO. 2010-00036 WATER COMPANY FOR AN ADJUSTMENT OF) RATES ON AND AFTER MARCH 28, 2010)

DIRECT TESTIMONY OF EDWARD L. SPITZNAGEL, JR.
FEBRUARY 26, 2010
1. Q. Please state your name, business address, and employer.
A. My name is Edward L. Spitznagel, Jr., and my business address is Campus Box 1146, One Brookings Drive, St Louis, Missouri 63130. I am employed by Washington University.
2. Q. What is your present position?
A. I am Professor of Mathematics in the College of Arts and Sciences at Washington University. I also hold a joint appointment in the Division of Biostatistics of the Washington University School of Medicine.

\section*{3. Q. Please review your educational background and work experience.}
A. I hold a Bachelor of Science, summa cum laude, in mathematics, awarded in 1962 by Xavier University, Cincinnati, Ohio. I hold a Master of Science (1963) and Ph.D. (1965) in mathematics awarded by the University of Chicago. I have served on the Faculty of Arts and Sciences of Washington University since 1969. I have held a joint appointment in the Division of Biostatistics since 1978. From 1965 to 1969 I was on the faculty of Northwestern University.

Attached to my testimony is Appendix A, which provides a more detailed listing of my education and qualifications in the area of mathematics and statistics.

\section*{4. Q. What is the purpose of your testimony in this case?}
A. I have been employed by Kentucky American Water Company to make weathernormalized predictions of water utilization by residential and commercial customers for the period October 2010 to September 2011, from ten years of monthly consumption data spanning January 2000 to December 2009.
5. Q. Please describe the consumption data.
A. The data were extracted from the national system in the form of total monthly consumption and bill days, from which gallons per customer day were computed separately for residential and commercial customer classes. A small number of
records had bill days greater than 35 , meaning the consumption spanned more than a normal month. Since my weather normalization is on a month-by-month basis, I did not use them in the normalization calculations, but accounted for them after normalization.

\section*{6. Q. What is weather normalization?}
A. From one year to the next, variations in temperature and precipitation lead to changes in water consumption. More water will generally be used during hotter, drier periods. The regulatory question is how to reflect those weather-related differences when setting rates.

For ratemaking purposes, revenues need to be set to as "normal" a level as possible, factoring out the potential or actual results of unusual weather conditions. This can be accomplished by building statistical models that predict water utilization from meteorological data and other possible predictors. An estimate of future utilization can then be made by using a long-term average of meteorological data (since there is no better way to forecast next year's weather than as an average) and known values of the other predictors.

\section*{7. Q. What are examples of these other, non-meteorological predictors?}
A. One is the year itself. Since 1993, the Environmental Protection Agency has required all new toilets manufactured in the United States to use at most 1.6 gallons per flush, which is a reduction of over \(50 \%\) from the previous 3.5 gallons per flush. In addition, new faucets, showerheads, clothes washing machines, and dishwashers have all been redesigned to use less water. It appears that the introduction of these toilets, other plumbing fixtures, and appliances in new construction and replacement in old construction has led to a gradual decline in water consumption over time for both residential and commercial customer classes.

Another is the month of the year. While water utilization increases during the warmer summer months, analysis of variance shows that month as a categorical
variable is a powerful predictor even after temperature and moisture have been included in the model.

\section*{8. Q. What model for water utilization did you employ?}
A. In a case before this Commission in 1997, I screened a large number of candidate predictors by examining data from sixteen different operating companies in five states, Kentucky, Missouri, Ohio, Tennessee, and Virginia.

I used as candidate predictors only those variables that correlated consistently with utilization for most or all of these operating companies.

I then fitted the surviving candidates in a multivariate model to predict utilization for Kentucky American Water Company. I found that calendar month was a strong predictor even in the presence of heat and moisture variables. Therefore I included month as a categorical variable. With month included, I added drought severity index, temperature, and calendar year as potential numeric predictors. In that investigation I found that temperature was not a useful additional predictor in the presence of the drought index, the calendar month, and calendar year.

Since eleven years had elapsed between that original investigation and the previous case, 2008-00427, I re-screened for KAWC the original list of candidate variables. I found drought severity index, month, and year still to be useful predictors, each one adding to the predictive value of the others. In addition, I found a measurement of temperature called cooling degree days to be a useful predictor in the presence of the other three.

These four variables are useful predictors in the present case as well. The evidence for the usefulness of these four variables, drought severity index, month, year, and cooling degree days can be found in the multivariate analyses in Appendix B.

\section*{9. Q. What are cooling degree days?}
A. Cooling degrees are a daily measure of the amount by which the average daily temperature exceeds 65 degrees Fahrenheit. For example, if the average temperature on a summer day is 84 degrees, the cooling degrees for that day are 84 \(-65=19\). If the average temperature on a winter day is 54 degrees, the cooling degrees for that day are 0 . The primary use of cooling degrees is to aid in estimating the amount of electricity that will be used for air conditioning on a given day. Cooling degree days are the sum of cooling degrees over a given time period, such as a month, which is the form in which NOAA reports them. For water consumption, cooling degrees can act as an additional factor explaining outside water usage.

\section*{10. Q. What is the drought severity index?}
A. There are a total of four drought severity indices provided by NOAA. They are reported on a monthly basis from 1895 to the present. They are: the Palmer Drought Severity Index (PDSI), the Modified Palmer Drought Severity Index (PMDI), the Palmer Hydrological Drought Index (PHDI), and the Palmer "Z" Index (ZNDX). The PDSI and PMDI are very similar to each other, differing only when the weather transitions between wet and dry spells. In my original investigations, both PDSI and PMDI turned out to be excellent predictors, much better than PHDI or ZNDX. Because PDSI worked slightly better than PMDI, I used PDSI in all weather normalizations prior to 2008. In the previous and present cases, however, PMDI gave predictive models that fitted the data slightly better, so I have shifted over to using PMDI rather than PDSI.

\section*{11. Q. Although PMDI is referred to as a drought severity index, low values of PMDI are associated with higher water consumption. Why is that? \\ A. PMDI and the other three variants are actually measures of available moisture, so high positive values indicate relative abundance of moisture rather than absence of moisture. Thus, people will be induced to use more outside water when PMDI is low, and particularly when it is negative.}

\section*{12. Q. To summarize, in your weather normalization, what variables were found to predict utilization?}
A. The calendar year, the month of the year (as a categorical variable), the Modified Palmer Drought Severity Index (PMDI), and cooling degree days (CDD). For commercial customers, the month of the year was found to interact with PMDI, meaning that the effect of PMDI on consumption varies by month. I therefore accounted for this interaction by running separate models for each month. In these separate models I omitted PMDI for the months of January through April, due to there being no weather-driven consumption during these months. I omitted CDD for the months of November through April because its value is essentially zero during those six months. These separate models are found in Appendix C.
13. Q. Once you had estimated the coefficients in these monthly models, how did you project weather-normalized utilization for October 2010 through September 2011?
A. I put the coefficients from the monthly regressions into Excel spreadsheets, one for each of the two customer classes. I then calculated the monthly mean PMDI and CDD over the 30 year period from January 1980 to December 2009. These spreadsheets are given in Appendix D.
14. Q. Having inserted the mean drought severity indices in the spreadsheets, how did you proceed?
A. I then projected an average daily utilization for each month under average weather. I then computed a weighted average of the 12 projected daily utilizations from October 2010 through September 2011, using as weights the number of days from the preceding month. Using the days from the preceding month allows for the fact that bills in March, for example, March include utilization from the latter part of February.

\section*{15. Q. What are your projections of daily utilization under average weather for the two customer classes?}
A. For residential customers: 155.67 gallons / customer / day

For commercial customers: 1,184.00 gallons / customer / day
16. Q. These values are based on all records for which the bill days were no greater than 35. What adjustments can be made to take the rest of the consumption into account?
A. For commercial utilization in which bill days exceeded 35, the total bill days per month followed a pattern in 2009 similar to that of earlier years. I calculated a weighted average of the weather-normalized GCD consumption for the bill days less than or equal to 35 with the unnormalized GCD consumption for the year 2009. The weights are the total bill days for each group. This should be slightly conservative (i.e., produce overestimates) since the unnormalized consumption is not adjusted for a decrease over time. These calculations are shown in Appendix E. For residential consumption in which bill days exceeded 35, the total bill days per month in 2009 followed a pattern very different from that of earlier years. This suggests that the pattern in 2009 is not likely to repeat in the future, so a similar adjustment for residential customers cannot be justified. My final estimates are:

For residential customers: 155.67 gallons / customer / day (unchanged)
For commercial customers: 1,205.10 gallons / customer / day

\section*{17. Q. Does this conclude your testimony?}
A. Yes, it does.

\section*{Edward L. Spitznagel, Jr.}

Born: Cincinnati, Ohio, September 4, 1941.

\section*{Education:}

Xavier University, 1959-1962
Awarded Bachelor of Science Degree (Summa cum Laude), 1962
University of Chicago, 1962-1965
Awarded Master of Science Degree, 1963
Awarded Ph.D. in Mathematics, 1965
Scholarships and Fellowships:
Xavier University, 1959-1962
Honorary Woodrow Wilson Fellow, 1962-1963
National Science Foundation Fellow, 1962-1965
Positions:
Assistant Professor of Mathematics
Northwestern University, 1965-1969
Associate Professor of Mathematics
Washington University, 1969-1980
Professor of Mathematics
Washington University, 1980-present
Joint appointment, Division of Biostatistics,
Washington University School of Medicine, 1978-present

\section*{Consulting Experience:}

Litton Industries (USACDCEC, Fort Ord, CA)
Price Waterhouse (Advanced Auditing Methods, NY)
Mallinckrodt, Inc.
St. Louis County Juvenile Court
Monsanto Company
American Red Cross
Carboline Corporation
Regional Justice Information Service
Harris-Stowe State College
Equal Employment Opportunity Commission
American Optometric Association
Petrolite Corporation
U.S. Army Atmospheric Sciences Laboratory (White Sands, NM)

St. Louis County Water Company
Gateway Medical Research, Inc.
MasterCard
Simmons Market Research Bureau
Transactional Data Solutions
Missouri-American Water Company
Capital City Water Company
Kentucky-American Water Company
Tennessee-American Water Company
Iowa-American Water Company
New Jersey-American Water Company
Anheuser-Busch, Inc.
Partek, Inc.
Santa Clara County Mental Health Administration (San Jose, CA) and many law firms

\section*{Publications:}
1. New impedance method for determining viscoelastic constants. Rev. Sci. Inst. 35, 582-586 (1964). (With Potzick and Catanese).
2. Hall subgroups of certain families of finite groups. Math. Z. 97, 259-290 (1967).
3. A new look at the fifteen puzzle. Math. Mag. 40, 171-174 (1967).
4. Terminality of the maximal unipotent subgroups of Chevalley groups. Math. Z. 103, 112-116 (1968).
5. Note on the alternating group. Amer. Math. Monthly 75, 68-69 (1968).
6. A computer study of the orders of finite simple groups. Math. Comp. 22, 669-671 (1968). (With Szygenda)
7. Density of finite simple group orders. Math. Z. 106, 175-177 (1968). (With Dornhoff)
8. An experimental approach in the teaching of probability. The Mathematics Teacher 61, 565-568 (1968).
9. Structure and terminality of the maximal unipotent subgroups of Steinberg groups. Illinois J. Math. 13, 400-405 (1969).
10. Poisson integrals: rigor or mortis? Amer. J. Phys. 38, 266-267 (1970). (With Hart)
11. An elementary proof that primes are scarce. Amer. Math. Monthly 77, 396-397 (1970).
12. Selected topics in mathematics. Holt, Rinehart and Winston (1971).
13. Lognormal model for ascorbic acid requirements in man. Bioscience 21, 981-984 (1971).
14. The uses of computing in a modernized probability and statistics course. Proceedings of the Second Annual Conference on Computers in the Undergraduate Curricula, 217-222 (1971).
15. Properties of a game based on Euclid's algorithm. Math. Mag. 46, 87-92 (1973).
16. Use of a questionnaire-oriented research project in teaching undergraduate statistics. Proceedings of the Fourth Annual Conference on Computers in the Undergraduate Curricula, 352-357 (1973).
17. An inexpensive computer assist in teaching large enrollment mathematics courses. Proceedings of Symposia in Applied Mathematics (American Mathematical Society) 20, 175-179 (1974).
18. Use of SAS in teaching a first course in statistics. Proceedings of the First Annual Conference of SAS Users Group International, 85-89 (1976).
19. Maintenance and analysis of anesthesia/surgery data with SAS. Proceedings of the Third Annual Conference of SAS Users Group International, 74-76 (1978). (With Owens)
20. K.W.I.C. indexes with SAS. Proceedings of the Third Annual Conference of SAS Users Group International, 267-270 (1978).
21. The use of loglinear and multivariate logistic models to assess the associations between HLA antigen responses and disease. Proceedings of the 1978 American Statistical Association Section on Statistical Computing, 271-275 (1978). (With Miller and Kass)
22. ASA physical status classifications: a study of consistency of ratings. Anesthesiology 49, 239-243 (1978). (With Owens and Felts)
23. Interfacing SAS with Mark IV. Proceedings of the Fourth Annual Conference of SAS Users Group International, 41-44 (1979).
24. SAS as a management tool for course registration and grading. Proceedings of the Fourth Annual Conference of SAS Users Group International, 158-161 (1979).
25. Tally of ASA classification responses. Anesthesiology 51, 181 (1979). (With Owens and Felts)
26. Outcome studies of anesthesia - Washington University. in Health Care Delivery In Anesthesia, edited by R. A. Hirsh, W. H. Forrest, Jr., F. K. Orkin, and H. Wollman. George F. Stickley Co. 67-72 (1980). (With Owens)
27. Morphological and biochemical studies in the development of cholinergic properties in cultured sympathetic neurons I. Correlative changes in choline acetyltransferase and synaptic vesicle cytochemistry. J. Cell Biology 84, 680-691 (1980). (With Johnson et al.)
28. Letter to the editor regarding the Mahoney, Bird and Cooke article: Annual clinical examination - the best available screening test for breast cancer (N. Engl. J. Med. 301, 315-316 (1979)). New England Journal of Medicine 302, 60 (1980). (With Gohagan et. al.)
29. Anesthetic side effects and complications: An overview. in Anesthetic Side Effects and Complications: Seeking, Finding, and Treating, edited by W. D. Owens. Little, Brown and Company. 1-9 (1980). (With Owens)
30. A SAS macro for computing the kappa statistic to assess reliability. Proceedings of the Fifth Annual Conference of SAS Users Group International, 159-163 (1980). (With Rice and Helzer)
31. Computer generated repeatable examinations. Proceedings of the Fifth Annual Conference of SAS Users Group International, 438-442 (1980).
32. Shaded map reports. Proceedings of the Fifth Annual Conference of SAS Users Group International, 475481 (1980).
33. Individual and combined effectiveness of palpation, thermography, and mammography in breast cancer screening. Preventive Medicine 9, 713-721 (1980). (With Gohagan et al.)
34. Effect of pedaling rate on submaximal exercise responses of competitive cyclists. J. Appl. Physiol. 51, 447-451 (1981). (With Hagberg et al.)
35. Simulation of population genetics models with SAS. Proceedings of the Sixth Annual Conference of SAS Users Group International, 605-606 (1981).
36. Optimal strategies for breast cancer detection. in Systems Science in Health Care, edited by C. Tilquin. Pergamon Press. 321-330 (1981). (With Gohagan et al.)
37. Computer graphics in selection of screening strategies. Proceedings of the Seventh Annual Conference of SAS Users Group International, 167-170 (1982). (With Gohagan)
38. Optimal stratified sampling, with an application to auditing. Proceedings of the Seventh Annual Conference of SAS Users Group International, 415-417 (1982).
39. Early Detection of Breast Cancer: Risk, Detection Procedures, and Therapeutic Implications. Praeger Publishers (1982). (With Gohagan et al.)
40. Plasma epinephrine and norepinephrine levels during anesthesia - enflurane- \(\mathrm{N}_{2} \mathrm{O}-\mathrm{O}_{2}\) compared with fentanyl\(\mathrm{N}_{2} \mathrm{O}-\mathrm{O}_{2}\). Anesth. Anal. 61, 366-370 (1982). (With Brown et al.)
41. Heterogeneity in schizophrenia - a cluster-analytic approach. Psychiat. R. 8, 1-12 (1983). (With Farmer and McGuffin)
42. SAS methods for balanced repeated replications. Proceedings of the Eighth Annual Conference of SAS Users Group International, 844-847 (1983).
43. Breast self examination as a screening procedure. Third International Conference on System Science in Health Care, 455-458 (1984). (With Gohagan et al.)
44. ROC analysis of mammography alone and in combination with clinical palpation for breast screening. Third International Conference on System Science in Health Care, 463-466 (1984). (With Gohagan et al.)
45. Experimental design for the evaluation of nuclear magnetic resonance imaging in clinical medicine. Third International Conference on System Science in Health Care, 881-884 (1984). (With Gohagan et al.)
46. Graphic representation of logistic regression models. Proceedings of the Ninth Annual Conference of SAS Users Group International, 870-873 (1984). (With Gohagan et al.)
47. Utilization patterns of health maintenance organization disenrollees. Medical Care 22, 827-833 (1984). (With Griffith and Baloff)
48. ROC analysis of mammography and palpation for breast screening. Invest Radiol 19, 587-592 (1984). (With Gohagan et al.)
49. A proposed solution to the base rate problem in the kappa statistic. Arch Gen Psychiatry 42, 725-728 (1985). (With Helzer)
50. A comparison of clinical and Diagnostic Interview Schedule diagnoses: Physician reexamination of layinterviewed cases in the general population. Arch Gen Psychiatry 42, 657-666 (1985). (With Helzer et al.)
51. A mouse embryo culture system for quality control testing of human in vitro fertilization and embryo transfer media and fetal cord sera. Gamete Research 11, 411-419 (1985). (With Cheung et al.)
52. Comparison of variance estimation methods for complex sample designs under extreme conditions. Proceedings of the Tenth Annual Conference of SAS Users Group International, 1084-1088 (1985).
53. Sampling the household population. in Epidemiologic Field Methods in Psychiatry: The NIMH Epidemiologic Catchment Area Program, edited by W. Eaton and L. Kessler. Academic Press. 23-48 (1985). (With Holzer et al.)
54. Sampling: The institutional survey. in Epidemiologic Field Methods in Psychiatry: The NIMH Epidemiologic Catchment Area Program, edited by W. Eaton and L. Kessler. Academic Press. 49-66 (1985). (With Leaf et al.)
55. Statistical methods for estimating and extrapolating disease prevalence and incidence rates from a multisite study. in Epidemiologic Field Methods in Psychiatry: The NIMH Epidemiologic Catchment Area Program, edited by W. Eaton and L. Kessler. Academic Press. 351-373 (1985). (With Manton et al.)
56. Staging parameters for cancers of the head and neck: a multi-factorial analysis. Laryngoscope 95, 1378-1381 (1985). (With Jacobs and Sessions)
57. Radiogenic breast cancer effects of mammographic screening. Journal of the National Cancer Institute 77, 71-76 (1986). (With Gohagan et al.)
58. Difficult-to-recruit respondents and their effect on prevalence estimates in an epidemiologic survey. American Journal of Epidemiology 125, 329-339 (1987). (With Cottler et al.)
59. Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proc Natl Acad Sci USA 84, 561-563 (1987). (With Early et al.)
60. Multispectral analysis of MR images of the breast. Radiology 163, 703-707 (1987). (With Gohagan et al.)
61. The predictive validity of lay Diagnostic Interview Schedule diagnoses in the general population. Arch Gen Psychiatry 44, 1069-1077 (1987). (With Helzer and McEvoy)
62. The effect of medication compliance on the control of hypertension. Journal of General Internal Medicine 2, 298-305 (1987). (With Eisen et al.)
63. Teaching biostatistics with an emphasis on reading the medical literature. Proceedings of the 1987 American Statistical Association Section on Statistical Education, 111-115 (1987). (With Schechtman)
64. Evidence that the biliary migrating myoelectric complex (MMC) is preserved after feeding. Gastroenterology 95, 894 (1988). (With Zenilman et al.)
65. Scheduling mammograms for asymptomatic women. Preventive Medicine 17, 155-172 (1988). (With Gohagan et al.)
66. Increased fentanyl requirement in patients receiving long-term anticonvulsant therapy. Anesthesiology Review 15, 54-55 (1988). (With Tempelhoff and Modica)
67. Accelerated train of four recovery from atracurium in patients receiving long-term anticonvulsant therapy. Anesthesiology Review 15, 55-56 (1988). (With Modica and Tempelhoff)
68. Antimicrobial misuse in patients with positive blood cultures. The American Journal of Medicine 87, 253-259 (1989). (With Dunagan et al.)
69. Exclusion of chromosomal mosaicism in amniotic-fluid cultures: efficacy of insitu versus flask techniques. Prenatal Diagnosis 10, 41-57 (1990). (With Cheung et al.)
70. Anticonvulsant therapy increases fentanyl requirements during anesthesia for craniotomy. Can J Anaesth 37, 327-332 (1990). (With Tempelhoff and Modica)
71. Nitrous oxide, nausea, and vomiting after outpatient gynecologic surgery. J Clin Anesth 2, 168-171 (1990). (With Felts and Poler)
72. The relation of ulcerative colitis to psychiatric factors: a review of findings and methods. Am J Psychiatry 147, 974-981 (1990). (With North et al.)
73. Clinical classification and staging for primary malignancies of the maxillary antrum. Laryngoscope 100, 11061111 (1990). (With Zamora et al.)
74. Time-series analysis of myoelectric cycling of sphincter of Oddi: evidence of cycling during fed state. Am J Physiology259, 511-517 (1990). (With Zenilman et al.)
75. The effect of prescribed daily dose frequency on patient medication compliance. Arch Intern Med 150, 18811884 (1990). (With Eisen et al.)
76. Resistance to atracurium-induced neuromuscular blockade in patients with intractable seizure disorders treated with anticonvulsants. Anesthesia and Analgesia 71, 665-669 (1990). (With Tempelhoff et al.)
77. California Mental Health Needs 1, 1-182. California Department of Mental Health (1990). (With Meinhardt and Jerrell).
78. California Mental Health Needs 2, 1-467. California Department of Mental Health (1990). (With Meinhardt and Jerrell).
79. Comments on psychiatric aspects of ulcerative colitis - reply. Am J Psychiatry 148, 688 (1991). (With North et al.)
80. Do life events or depression exacerbate inflammatory bowel disease? Annals of Internal Medicine 114, 381-386 (1991). (With North et al.)
81. Antibiotic misuse in two clinical situations - positive blood culture and administration of aminoglycosides. Reviews of Infectious Diseases 13, 405-412 (1991). (With Dunagan et al.)
82. Agreement between DSM-III and III-R substance use disorders. Drug and Alcohol Dependence 29, 17-25 (1991). (With Cottler et al.)
83. New methods in cross-cultural psychiatry: Psychiatric illness in Taiwan and the United States. Am J Psychiatry 148, 1697-1704 (1991). (With Compton et al.)
84. Surgical pathology of cancer of the oral cavity and oropharynx. Laryngoscope 101, 1175-1197 (1991). (With Sessions et al.)
85. Sensitivity of chromosomal mosaicism detected by different tissue-culture methods. Prenatal Diagnosis 11, 927928 (1991). (With Cheung et al.)
86. Are hard-to-interview street dwellers needed in assessing psychiatric disorders in homeless men? International Journal of Methods in Psychiatric Research 1, 69-78 (1991). (With Smith and North)
87. Gender differences in sociopathy and somatization in men and women with homosexual experience.

International Journal of Methods in Psychiatric Research 1, 89-99 (1991). (With North et al.)
88. Anticoagulant effects of nonionic versus ionic contrast-media in angiography syringes. Investigative Radiology 27, 185 (1992).
89. Posttraumatic stress disorder among substance users from the general population. Am J Psychiatry 149, 664-670 (1992). (With Cottler et al.)
90. A systematic study of mental illness, substance abuse, and treatment in 600 homeless men. Annals of Clinical Psychiatry 4, 111-120 (1992). (With Smith and North)
91. Clinical staging for primary malignancies of the supraglottic larynx. Laryngoscope 103, 69-77 (1993). (With Zamora et al.)
92. Symptomatic cytomegalovirus infection in renal transplant recipients given either Minnesota antilymphoblast globulin (MALG) or OKT3 for rejection prophylaxis. American Journal of Kidney Diseases 21, 196-201 (1993). (With Bailey et al.)
93. Alcohol, drugs, and psychiatric comorbidity among homeless women. J Clin Psychiatry 54, 82-87 (1993). (With Smith and North)
94. Is antisocial personality a valid diagnosis among the homeless? Am J Psychiatry 150, 578-583 (1993). (With North and Smith)
95. Post-traumatic stress in survivors of three disasters. Journal of Social Behavior and Personality 8, 353-368 (1993). (With Smith and North)
96. Cytomegalovirus infection and pneumonitis. Am Rev Respir Dis 147, 1017-1023 (1993). (With Ettinger et al.)
97. Epidermoid carcinoma of the oral cavity and oropharynx: validity of the current AJCC staging system and new statistical tools for the prediction of subclinical neck disease. Otolaryngology and Head and Neck Surgery 108, 225-232 (1993). (With Ghouri et al.)
98. Results of a rubella screening program for hospital employees: a five-year review (1986-1990). American Journal of Epidemiology 138, 756-764 (1993). (With Fraser et al.)
99. Subjective reports of withdrawal among cocaine users: recommendations for DSM-IV. Drug and Alcohol Dependence 33, 97-104 (1993). (With Cottler et al.)
100.Posttraumatic stress disorder in survivors of a mass shooting. Am J Psychiatry 151, 82-88 (1994). (With North and Smith)
101.Violence and the homeless: an epidemiologic study of victimization and aggression. Journal of Traumatic Stress 7, 95-110 (1994). (With North and Smith)
102. On-site PT, aPTT and platelet count: A comparison between whole blood and laboratory assays with coagulation factor analysis in patients presenting for cardiac surgery. Anesthesiology 80, 338-351 (1994). (With Despotis et al.)
103. Prospective evaluation and clinical utility of on-site coagulation monitoring in patients undergoing cardiac operation. J Thorac Cardiovasc Surg 107, 271-279 (1994). (With Despotis et al.)
104.Two-compartment pharmacokinetics. Proceedings of the Fifth Annual International Conference on Technology in Collegiate Mathematics, edited by L. Lum. Addison-Wesley Publishing Company. 417-420 (1994).
105.Inhalant use: characteristics and predictors. American Journal on Addictions 3, 263-272 (1994). (With Compton et al.)
106.Prediction of occult neck disease in laryngeal cancer by means of a logistic regression statistical model. Laryngoscope 104, 1280-1284 (1994). (With Ghouri et al.)
107. Comparison of activated coagulation time and whole blood heparin measurements to laboratory plasma anti-Xa heparin concentration in cardiac surgical patients. J Thorac Cardiovasc Surg 108, 1076-1082 (1994). (With Despotis et al.)
108.GAP: groups, algorithms, and programming (review). Notices Amer Math Soc 41, 780-782 (1994).
109.Prediction of subclinical neck disease in laryngeal cancer patients using a logistic regression statistical model. in Laryngeal Cancer: Proceedings of the 2nd World Congress on Laryngeal Cancer, Sydney, 20-24 February 1994, edited by R. Smee and G.P. Bridger. Elsevier Science B.V. 570-573 (1994). (With Ghouri et al.)
110.Predictors of mortality in alcoholic women: a 20-year follow-up study. Alcoholism, Clinical and Experimental Research 18, 1177-1186 (1994). (With Smith et al.)
111.Improvement in user performance following development and routine use of an expert system. Medinfo 8, 10641067 (1994). (With Kahn et al.)
112. Exclusion of chromosomal mosaicism in amniotic fluid cultures \(\}\) determination of number of colonies needed for accurate analysis. Prenatal Diagnosis 14, 1009-1017 (1994). (With Featherstone et al.)
113.Adult offspring of alcoholic women as family history informants. Alcoholism, Clinical and Experimental Research 18, 1354-1360 (1994). (With Smith et al.)
114.The impact of heparin concentration and activated clotting time monitoring on blood conservation: A prospective, randomized evaluation in patients undergoing cardiac operation. J Thorac Cardiovasc Surg 110, 4654 (1995). (With Despotis et al.)
115.Risk factors for a positive tuberculin skin test among employees of an urban, midwestern teaching hospital. Annals of Internal Medicine 122, 580-585 (1995). (With Bailey et al.)
116.Predictors of mortality in alcoholic men: a 20-year follow-up study. Alcoholism, Clinical and Experimental Research 19, 984-991 (1995). (With Lewis et al.)
117.Complaints of constipation in obsessive-compulsive disorder. Annals of Clinical Psychiatry 7, 65-70 (1995). (With North et al.)
118.Is there a relationship between "heavy drinking" and HIV high risk sexual behaviors among general population subjects? The International Journal of the Addictions 30, 1453-1478 (1995). (With Shillington et al.)
119. Assessing gender interactions in the prediction of mortality in alcoholic men and women: a 20-year follow-up study. Alcoholism, Clinical and Experimental Research 19, 1162-1172 (1995). (With Lewis et al.)
120.Factors associated with excessive postoperative blood loss and hemostatic transfusion requirements - a multivariate analysis in cardiac surgical patients. Anesthesia and Analgesia 82, 13-21 (1996). (With Despotis et al.)
121.Comparing assessments of DSM-IV substance dependence disorders using CIDI-SAM and SCAN. Drug and Alcohol Dependence 41, 179-187 (1996). (With Compton et al.)
122.Effects of gender and comorbidity on problem drinking in a community sample. Alcoholism, Clinical and Experimental Research 20, 466-476 (1996). (With Lewis et al.)
123. Response of kaolin ACT to heparin: evaluation with an automated assay and higher heparin doses. Ann Thorac Surg 61, 795-799 (1996). (With Despotis et al.)
124.Gastrointestinal symptoms and psychiatric disorders in the general population - findings from the NIMH epidemiologic catchment area project. Digestive Diseases and Sciences 41, 633-640 (1996). (With North et al.)
125.Aprotinin prolongs activated and nonactivated whole blood clotting time and potentiates the effect of heparin in vitro. Anesthesia and Analgesia 82, 1126-1131 (1996). (With Despotis et al.)
126. Are the mentally ill homeless a distinct homeless subgroup? Annals of Clinical Psychiatry 8, 117-128 (1996). (With North et al.)
127.Increasing brain tumor rates: Is there a link to aspartame? Journal of Neuropathology and Experimental Neurology 55, 1115-1123 (1996). (With Olney et al.)
128.Structured and semi-structured assessment of ICD-10 substance dependence disorders: CIDI-SAM vs. SCAN. International Journal of Methods in Psychiatric Research 6, 285-293 (1996). (With Compton et al.)
129.Evaluation of a new point-of-care test that measures PAF-mediated acceleration of coagulation in cardiac surgical patients. Anesthesiology 85, 1311-1323 (1996). (With Despotis et al.)
130.More effective suppression of hemostatic system activation in patients undergoing cardiac surgery by heparin dosing based on heparin blood concentrations rather than ACT. Thrombosis and Haemostasis 76, 902908 (1996). (With Despotis et al.)
131.The effects of cytomegalovirus serology on graft and recipient survival in cadaveric renal transplantation: implications for organ allocation. American Journal of Kidney Diseases 29, 428-434 (1997). (With Schnitzler et al.)
132.Predictors of achieving stable housing in a mentally ill homeless population. Psychiatric Services 48, 528-530 (1997). (With Pollio et al.)
133.Antithrombin III during cardiac surgery: effect on response of activated clotting time to heparin and relationship to markers of hemostatic activation. Anesthesia and Analgesia 85, 498-506 (1997). (With Despotis et al.)
134.Nonpsychotic thought disorder: objective clinical identification of somatization and antisocial personality in language patterns. Compr Psychiatry 38, 171-178 (1997). (With North et al.)
135. Changes in HIV/AIDS risk behaviors in drug users in St. Louis: applications of random regression models. \(J\) Drug Issues 27, 399-416 (1997). (With Gallagher et al.)
136. Whole blood heparin concentration measurements by automated protamine titration agree with plasma anti-Xa measurements. J Thorac Cardiovasc Surg 113, 611-613 (1997). (With Despotis et al.)
137.Impact of cytomegalovirus serology on graft survival in living related kidney transplantation: implications for donor selection. Surgery 121, 563-568 (1997). (With Schnitzler et al.)
138.Homeless street people report conservative sexual attitudes yet anticipate risky behavior. Psychiatric Rehabilitation Journal 20, 75-79 (1997). (With Song et al.)
139.One-year follow-up of survivors of a mass shooting. Am J Psychiatry 154, 1696-1702 (1997). (With North and Smith)
140.Cytomegalovirus and HLA-A, B, and DR locus interactions: impact on renal transplant graft survival. American Journal of Kidney Diseases 30, 766-771 (1997). (With Schnitzler et al.)
141.A comparison of clinical and structured interview diagnoses in a homeless mental health clinic. Community Mental Health Journal 33, 531-543 (1997). (With North et al.)
142. Cocaine users with antisocial personality improve HIV risk behaviors as much as those without antisocial personality. Drug and Alcohol Dependence 49, 239-247 (1998). (With Compton et al.)
143.The association of psychiatric diagnosis with weather conditions in a large urban homeless sample. Soc Psychiatry Psychiatr Epidemiol 33, 206-210 (1998). (With North et al.)
144.Agreement between DSM-III and DSM-III-R substance use disorders. in DSM-IV Sourcebook: Volume 4, edited by T.A. Widiger et al. American Psychiatric Association. 29-42 (1998). (With Cottler et al.)
145.Taking chances: problem gamblers and mental health disorders-results from the St. Louis Epidemiologic Catchment Area Study. Am J Public Health 88, 1093-1096 (1998). (With Cunningham-Williams et al.)
146.Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 280, 1055-1060 (1998). (With Grubb et al.)
147. Correlates of early onset and chronicity of homelessness in a large urban homeless sample. J Nerv Ment Dis 186, 393-400 (1998). (With North et al.)
148.Enrollment predictors of the special education outcome for students with SED. Behavioral Disorders 23, 243-256 (1998). (With Mattison and Felix)
149.Substance abuse as a predictor of VA mental health care utilization among Vietnam veterans. J Behav Health Serv Res 26, 126-139 (1999). (With Virgo et al.)
150.Long-term stability of Child Behavior Checklist profile types in a child psychiatric clinic population. J Am Acad Child Adolesc Psychiatry 38, 700-707 (1999). (With Mattison)
151. Use of point-of-care test in identification of patients who can benefit from desmopressin during cardiac surgery: a randomized controlled trial. Lancet 354, 106-110 (1999). (With Despotis et al.)
152. A randomized trial of povidone-iodine compared with iodine tincture for venipuncture site disinfection: effects on rates of blood culture contamination. Am J Med 107, 119-125 (1999). (With Little et al.)
153.Psychiatric disorders among survivors of the Oklahoma City bombing. JAMA 282, 755-762 (1999). (With North et al.)
154.Adverse events in platelet apheresis donors: A multivariate analysis in a hospital-based program. Vox Sang 77, 24-32 (1999). (With Despotis et al.)
155.Development of a new staging system for recurrent oral cavity and oropharyngeal squamous cell carcinoma. Cancer 86, 1387-1395 (1999). (With Lacy and Piccirillo)
156.The effects of psychiatric comorbidity on response to an HIV prevention intervention. Drug and Alcohol Dependence 58, 247-257 (2000). (With Compton et al.)
157.Applying artificial neural network models to clinical decision making. Psychological Assessment 12, 40-51 (2000). (With Price et al.)
158. The effect of epsilon-aminocaproic acid on HemoSTATUS and kaolin-activated clotting time measurements. Anesthesia and Analgesia 90, 1281-1285 (2000). (With Saleem et al.)
159.Substance dependence and other psychiatric disorders among drug dependent subjects: race and gender correlates. American Journal on Addictions 9, 113-125 (2000). (With Compton et al.)
160.Psychiatric disorders among drug dependent subjects: are they primary or secondary? American Journal on Addictions 9, 126-134 (2000). (With Compton et al.)
161.Evidence for the involvement of two different MHC class II regions in susceptibility or protection in allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol 106, 723-729 (2000). (With Chauhan et al.)
162. Service use over time and achievement of stable housing in a mentally ill homeless population. Psychiatric Services 51, 1536-1543 (2000). (With Pollio et al.)
163.Problem gambling and comorbid psychiatric and substance use disorders among drug users recruited from drug treatment and community settings. Journal of Gambling Studies 16, 347-376 (2000). (With CunninghamWilliams et al.)
164.Longitudinal use of the Teacher's Report Form in tracking outcome for students with SED. Journal of Emotional and Behavioral Disorders 9, 94-105 (2001). (With Mattison)
165.Effect of extended coverage of immunosuppressive medication by Medicare on the survival of cadaveric renal transplants. American Journal of Transplantation 1, 69-73 (2001). (With Woodward et al.)
166.The association of irritable bowel syndrome and somatization disorder. Ann Clin Psychiatry 13, 25-30 (2001). (With Miller et al.)
167.Remission from drug abuse over a 25-year period: patterns of remission and treatment use. Am J Public Health 91, 1107-1113 (2001). (With Price et al.)
168.Laboratory screening prior to ECT. The Journal of ECT 17, 158-165 (2001). (With Lafferty et al.)
169. Validation of a comorbidity education program. Journal of Registry Management 28, 125-131 (2001). (With Johnston et al.)
170.A prospective study of coping after exposure to a mass murder episode. Ann Clin Psychiatry 13, 81-87 (2001). (With North and Smith)
171.Twenty-five year mortality of US servicemen deployed in Vietnam: predictive utility of early drug use. Drug and Alcohol Dependence 64, 309-318 (2001). (With Price et al.)
172.Photic and circadian expression of luciferase in MPeriod1-luc transgenic mice invivo. Proc Natl Acad Sci USA 99, 489-494 (2002). (With Wilsbacher et al.)
173.Psychiatric disorders in rescue workers after the Oklahoma City bombing. Am J Psychiatry 159, 857-859 (2002). (With North et al.)
174.Multivariate analysis to assess treatment effectiveness in advanced head and neck cancer. Arch Otolaryngol Head Neck Surg 128, 497-503 (2002). (With Patel and Piccirillo.)
175.The specificity of family history of alcohol and drug abuse in cocaine abusers. Am J Addict 11, 85-94 (2002). (With Compton et al.)
176.Coping, functioning, and adjustment of rescue workers after the Oklahoma City bombing. J Trauma Stress 15, 171-175 (2002). (With North et al.)
177.Three-year follow-up of survivors of a mass shooting episode. J Urban Health 79, 383-391 (2002). (With North et al.)
178.Test of the plausibility of adolescent substance use playing a causal role in developing adulthood antisocial behavior. J Abnorm Psychol 111, 144-155 (2002). (With Ridenour et al.)
179.Development of a new head and neck cancer-specific comorbidity index. Arch Otolaryngol Head Neck Surg 128, 1172-1179 (2002). (With Piccirillo et al.)
180.The clinical picture of depression in preschool children. J Am Acad Child Adolesc Psychiatry 42, 340-348 (2003). (With Luby et al.)
181.Personality and depressive symptoms: a multi-dimensional analysis. J Affect Disord 74, 123-130 (2003). (With Grucza et al.)
182. The role of psychiatric disorders in predicting drug dependence treatment outcomes. Am J Psychiatry 160, 890895 (2003). (With Compton et al.)
183.Is there a progression from abuse disorders to dependence disorders? Addiction 98, 635-644 (2003). (With Ridenour et al.)
184. Modification of DSM-IV criteria for depressed preschool children. Am J Psychiatry 160, 1169-1172 (2003). (With Luby et al.)
185.Improved glucose tolerance with lifetime diet restriction favorably affects disease and survival in dogs. J Nutr 133, 2887-2892 (2003). (With Larson et al.)
186.Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 19, 5676-5684 (2003). (With Tan et al.)
187. Alterations in stress cortisol reactivity in depressed preschoolers relative to psychiatric and no-disorder comparison groups. Arch Gen Psychiatry 60, 1248-1255 (2003). (With Luby et al.)
188. Incorporation of gene-specific variability improves expression analysis using high-density DNA microarrays. BMC Biol 1, 1 (2003). (With Budhraja et al.)
189.Modeling service access in a homeless population. J Psychoactive Drugs 35, 487-495 (2003). (With Pollio et al.)
190.Functioning mediates between symptoms and provider assessment. Ment Health Serv Res 5, 155-171 (2003). (With Striley and Stiffman)
191. Are rates of psychiatric disorders in the homeless population changing? Am J Public Health 94, 103-108 (2004). (With North et al.)
192. Comparison of comorbidity indexes for patients with head and neck cancer. Med Care 42, 482-486 (2004). (With Piccirillo et al.)
193.Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA 291, 2441-2447 (2004). (With Piccirillo et al.)
194.The Preschool Feelings Checklist: a brief and sensitive screening measure for depression in young children. J Am Acad Child Adolesc Psychiatry 43, 708-717 (2004). (With Luby et al.)
195.Use of mental health services among older youths in foster care. Psychiatric Services 55, 811-817 (2004). (With McMillen et al.)
196.Differential prognostic impact of comorbidity. J Clin Oncol 22, 3099-3103 (2004). (With Read et al.)
197.The Homeless Supplement to the Diagnostic Interview Schedule: test-retest analyses. Int J Methods Psychiatr Res 13, 184-191 (2004). (With North et al.)
198. The presentation of irritable bowel syndrome in the context of somatization disorder. Clin Gastroenterol Hepatol 2, 787-795 (2004). (With North et al.)
199.Improving treatment services for substance abusers with comorbid depression. Am J Addict 13, 295-304 (2004). (With Womack et al.)
200.A multistate trial of pharmacy syringe purchase. J Urban Health 81, 661-670 (2004). (With Compton et al.)
201.The course of posttraumatic stress disorder in a follow-up study of survivors of the Oklahoma City bombing. Ann Clin Psychiatry 16, 209-215 (2004). (With North et al.)
202. Characteristics of depressed preschoolers with and without anhedonia: evidence for a melancholic depressive subtype in young children. Am J Psychiatry 161, 1998-2004 (2004). (With Luby et al.)
203. The course of PTSD, major depression, substance abuse, and somatization after a natural disaster. J Nerv Ment Dis 192, 823-829 (2004). (With North et al.)
204.Analysis of costs, length of stay, and utilization of emergency department services by frequent users: implications for health policy. Acad Emerg Med 11, 1311-1317 (2004). (With Ruger et al.)
205.Post-traumatic stress disorder, drug dependence, and suicidality among male Vietnam veterans with a history of heavy drug use. Drug Alcohol Depend 76, S31-43 (2004). (With Price et al.)
206.A meta-analysis of soyfoods and risk of breast cancer in women. Int J Cancer Prevention 1, 281-293 (2004). (With Yan)
207.Prevalence of psychiatric disorders among older youths in the foster care system. J Am Acad Child Adolesc Psychiatry 44, 88-95 (2005). (With McMillen et al.)
208. Influence of lifetime food restriction on causes, time, and predictors of death in dogs. J Am Vet Med Assoc 226, 225-231 (2005). (With Lawler et al.)
209.Preoperative use of enoxaparin increases the risk of postoperative bleeding and re-exploration in cardiac surgery patients. J Cardiothorac Vasc Anesth 19, 4-10 (2005). (With McDonald et al.)
210.Comparison of post-disaster psychiatric disorders after terrorist bombings in Nairobi and Oklahoma City. Br J Psychiatry 186, 487-493 (2005). (With North et al.)
211.Prevalence and predictors of pathological gambling: results from the St. Louis personality, health, and lifestyle (SLPHL) study. J Psychiatr Res 39, 377-390 (2005). (With Cunningham-Williams et al.)
212.The role of organizational characteristics in determining patterns of utilization of services for substance abuse, mental health, and shelter by homeless people. J Drug Issues 35, 575-591 (2005). (With North et al.)
213.Meta-analysis of soy food and risk of prostate cancer in men. Int J Cancer 117, 667-669 (2005). (With Yan)
214.Factors associated with the transition from abuse to dependence among substance abusers: Implications for a measure of addictive liability. Drug Alcohol Depend 80, 1-14 (2005). (With Ridenour et al.)
215.Primary and secondary transcriptional effects in the developing Down syndrome brain and heart. Genome Biol 6, R107.1-R107.20 (2005). (With Mao et al.)
216. An observational analysis of behavior in depressed preschoolers: further validation of early-onset depression. \(J\) Am Acad Child Adolesc Psychiatry 45, 203-212 (2006). (With Luby et al.)
217.Modulation of canine immunosenescence by life-long caloric restriction. Vet Immunol Immunopathol 111, 287299 (2006). (With Greeley et al.)
218. A comparison of agency-based and self-report methods of measuring services across an urban environment by a drug-abusing homeless population. Int J Methods Psychiatr Res 15, 46-56 (2006). (With Pollio et al.)
219. Should aprotinin continue to be used during cardiac surgery? Nat Clin Pract Cardiovasc Med 3, 360-361 (2006). (With Levy and Despotis)
220.The effects of childhood trauma on sex trading in substance using women. Arch Sex Behav 35, 451-459 (2006). (With Vaddiparti et al.)
221. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol 24, 4539-4544 (2006). (With Govindan et al.)
222.Risperidone in preschool children with autistic spectrum disorders: an investigation of safety and efficacy. \(J\) Child Adolesc Psychopharmacol 16, 575-587 (2006). (With Luby et al.)
223.Interrater reliability and coding guide for nonpsychotic formal thought disorder. Percept Mot Skills 103, 395-411 (2006). (With North et al.)
224.Risk factors for preschool depression: the mediating role of early stressful life events. J Child Psychol Psychiatry 47, 1292-1298 (2006). (With Luby and Belden)
225.Relief of idiopathic subjective tinnitus: is gabapentin effective? Arch Otolaryngol Head Neck Surg 133, 390-397 (2007). (With Piccirillo et al.)
226.Preschoolers' contribution to their diagnosis of depression and anxiety: uses and limitations of young child selfreport of symptoms. Child Psychiatry Hum Dev 38, 321-328 (2007). (With Luby et al.)
227.Racial/ethnic variation in the reliability of DSM-IV pathological gambling disorder. J Nerv Ment Dis 195, 551559 (2007). (With Cunningham-Williams et al.)
228.Legal status, emotional well-being, and subjective health status of Latino Immigrants. J Natl Med Assoc 99, 1126-1131 (2007). (With Cavazos-Rehg and Zayas)
229.The temporal limits of cognitive change from music therapy in elderly persons with dementia or dementia-like cognitive impairment: a randomized controlled trial. J Music Ther 44, 308-328 (2007). (With Bruer and Cloninger)
230.The relationship between alcohol problems and dependence, conduct problems and diagnosis, and number of sex partners in a sample of young adults. Alcohol Clin Exp Res 31, 2046-2052 (2007). (With Cavazos-Rehg et al.)
231.A comparison study of psychiatric and behavior disorders and cognitive ability among homeless and housed children. Community Ment Health 44, 1-10 (2008). (With Yu et al.)
232.Distinguishing distress and psychopathology among survivors of the Oakland/Berkeley firestorm. Psychiatry 71, 35-45 (2008). (With North et al.)
233.The association between gambling pathology and personality disorders. J Psychiatr Res 42, 1122-1130 (2008). (With Sacco et al.)
234.The changing prevalence of comorbidity across the age spectrum. Crit Rev Oncol Hematol 67, 35-45 (2008). (With Piccirillo et al.)
235.Older Youth Leaving the Foster Care System: Who, What, When, Where, and Why? Child Youth Serv Rev 30, 735-745 (2008). (With McCoy et al.)
236. The clinical significance of preschool depression: impairment in functioning and clinical markers of the disorder. J Affect Disord 112, 111-119 (2009). (With Luby et al.)
237.Escitalopram for older adults with generalized anxiety disorder: a randomized controlled trial. JAMA 301, 295303 (2009). (With Lenze et al.)
238. Towards DSM-V: considering other withdrawal-like symptoms of pathological gambling disorder. Int J Methods Psychiatr Res 18, 13-22 (2009). (With Cunningham-Williams et al.)
239. Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr 4, 1155-1163 (2009). (With Yan)
240. Shame and guilt in preschool depression: evidence for elevations in self-conscious emotions in depression as early as age 3. J Child Psychol Psychiatry 50, 1156-1166 (2009). (With Luby et al.)
241.Age of sexual debut among US adolescents. Contraception 80, 158-162 (2009). (With Cavazos-Rehg et al.)
242.Risky sexual behaviors and sexually transmitted diseases: a comparison study of cocaine-dependent individuals in treatment versus a community-matched sample. AIDS Patient Care STDS 23, 727-734 (2009). (With CavazosRehg et al.)
243.Preschool depression: homotypic continuity and course over 24 months. Arch Gen Psychiatry 66, 897-905 (2009). (With Luby et al.)
244. Alcohol use among older adults in the National Epidemiologic Survey on Alcohol and Related Conditions: a latent class analysis.. J Stud Alcohol Drugs 70, 829-838 (2009). (With Sacco and Bucholz)
245.Exposure to bioterrorism and mental health response among staff on capitol hill. Biosecur Bioterror 7, 148-158 (2009). (With North et al.)
246. Soy consumption and colorectal cancer risk in humans: a meta-analysis. Cancer Epidemiol Biomarkers Prev 19, 148-158 (2010). (With Yan and Bosland.)
247.Number of Sexual Partners and Associations with Initiation and Intensity of Substance Use. AIDS Behav DOI 10.1007/s10461-010-9669-0 [Epub ahead of print] (2010). (With Cavazos-Rehg al.)
```

Check Correlations between Weather Variables and Consumption
The GLM Procedure
Class Level Information
Class Levels Values
month 12 1 2 3 3 4 5 6 7 8 9 9 10
Data for Analysis of residential
Number of Observations Read 120
Number of Observations Used 120
Data for Analysis of commercial
Number of Observations Read 120
Number of Observations Used 119

```

NOTE: Variables in each group are consistent with respect to the presence or absence of missing values.
```

Check Correlations between Weather Variables and Consumption

```
 The GLM Procedure
Dependent Variable: residential
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & DF & Sum of Squares & Mean Square F & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 36 & 0.07345481 & 0.00204041 & 21.90 & <.0001 \\
\hline Error & 83 & 0.00773179 & 0.00009315 & & \\
\hline Corrected Total & 119 & 0.08118660 & & & \\
\hline R -Square & Coeff Var & Root MSE & residential & Mean & \\
\hline 0.904765 & 5.714427 & 0.009652 & 0.16 & 68899 & \\
\hline Source & DF & Type I SS & Mean Square F & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline pmdi & 1 & 0.00539985 & 0.00539985 & 57.97 & \(<.0001\) \\
\hline cdd & 1 & 0.04855281 & 0.04855281 & 521.21 & <.0001 \\
\hline year & 1 & 0.00425506 & 0.00425506 & 45.68 & \(<.0001\) \\
\hline month & 11 & 0.01291507 & 0.00117410 & 12.60 & \(<.0001\) \\
\hline pmdi*month & 11 & 0.00204841 & 0.00018622 & 2.00 & 0.0386 \\
\hline year*month & 11 & 0.00028362 & 0.00002578 & 0.28 & 0.9886 \\
\hline Source & DF & Type III SS & Mean Square F & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline pmdi & 1 & 0.00207994 & 0.00207994 & 22.33 & <. 0001 \\
\hline cdd & 1 & 0.00169830 & 0.00169830 & 18.23 & <.0001 \\
\hline year & 1 & 0.00401923 & 0.00401923 & 43.15 & <.0001 \\
\hline month & 11 & 0.00358251 & 0.00032568 & 3.50 & 0.0005 \\
\hline pmdi*month & 11 & 0.00205423 & 0.00018675 & 2.00 & 0.0380 \\
\hline year*month & 11 & 0.00028362 & 0.00002578 & 0.28 & 0.9886 \\
\hline
\end{tabular}

Page 2

\section*{ELS Appendix B}
```

Check Correlations between Weather Variables and Consumption
The GLM Procedure

```
Dependent Variable: commercial
\begin{tabular}{lrrrrr}
Source & DF & \begin{tabular}{rlrl}
Sum of \\
Squares
\end{tabular} & Mean Square & F Value & Pr \(>\) F \\
Model & 36 & 4.27025548 & 0.11861821 & 31.80 & \(<.0001\) \\
Error & 82 & 0.30591405 & 0.00373066 &
\end{tabular}
\begin{tabular}{lrrr}
R-Square & Coeff Var & Root MSE & commercial Mean \\
0.933151 & 4.487882 & 0.061079 & 1.360979
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & DF & Type I SS & Mean Square & F Value & \(\operatorname{Pr}>\mathrm{F}\) \\
\hline pmdi & 1 & 0.14735008 & 0.14735008 & 39.50 & \(<.0001\) \\
\hline cdd & 1 & 2.10969775 & 2.10969775 & 565.50 & \(<.0001\) \\
\hline year & 1 & 0.77658232 & 0.77658232 & 208.16 & \(<.0001\) \\
\hline month & 11 & 1.13581885 & 0.10325626 & 27.68 & \(<.0001\) \\
\hline pmdi*month & 11 & 0.08068388 & 0.00733490 & 1.97 & 0.0425 \\
\hline year*month & 11 & 0.02012260 & 0.00182933 & 0.49 & 0.9042 \\
\hline Source & DF & Type III SS & Mean Square & F Value & Pr \(>\mathrm{F}\) \\
\hline pmdi & 1 & 0.03585944 & 0.03585944 & 9.61 & 0.0026 \\
\hline cdd & 1 & 0.02962276 & 0.02962276 & 7.94 & 0.0061 \\
\hline year & 1 & 0.77754885 & 0.77754885 & 208.42 & \(<.0001\) \\
\hline month & 11 & 0.40675526 & 0.03697775 & 9.91 & \(<.0001\) \\
\hline pmdi*month & 11 & 0.07028175 & 0.00638925 & 1.71 & 0.0849 \\
\hline year*month & 11 & 0.02012260 & 0.00182933 & 0.49 & 0.9042 \\
\hline
\end{tabular}

Page 3

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, JANUARY

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 1 & 318.98744 & 318.98744 & 5.40 & 0.0487 \\
\hline Error & 8 & 472.75811 & 59.09476 & & \\
\hline Corrected Total & 9 & 791.74555 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrll}
Root MSE & 7.68731 & R-Square & 0.4029 \\
Dependent Mean & 149.62930 & Adj R-Sq & 0.3283 \\
Coeff Var & 5.13757 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & Parameter Estimate & Standard Error & t Value & Pr > |t| \\
\hline Intercept & 1 & 158.47785 & 4.51825 & 35.08 & \(<.0001\) \\
\hline since_2000 & 1 & -1.96635 & 0.84635 & -2.32 & 0.0487 \\
\hline
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, FEBRUARY

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, MARCH

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{lrrrrrr}
& \multicolumn{4}{c}{ Analysis of Variance } \\
& & Sum of & Mean & & \\
Source & DF & Squares & Square & F Value & Pr \(>\) F \\
Model & 1 & 173.94960 & 173.94960 & 18.27 & 0.0027 \\
Error & 8 & 76.15228 & 9.51903 & & \\
Corrected Total & 9 & 250.10188 & & &
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 3.08529 & R-Square & 0.6955 \\
Dependent Mean & 147.00780 & Adj R-Sq & 0.6575 \\
Coeff Var & 2.09873 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & Parameter Estimate & Standard Error & t Value & \(\operatorname{Pr}>|t|\) \\
\hline Intercept & 1 & 153.54207 & 1.81339 & 84.67 & \(<.0001\) \\
\hline since_2000 & 1 & -1.45206 & 0.33968 & -4.27 & 0.0027 \\
\hline
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, APRIL

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Source} & \multicolumn{3}{|c|}{Analysis of Variance} & \multirow[b]{2}{*}{F Value} & \multirow[b]{2}{*}{\(\mathrm{Pr}>\mathrm{F}\)} \\
\hline & DF & Sum of Squares & Mean Square & & \\
\hline Model & 1 & 373.36189 & 373.36189 & 52.64 & <.0001 \\
\hline Error & 8 & 56.73907 & 7.09238 & & \\
\hline Corrected Total & 9 & 430.10096 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 2.66315 & R-Square & 0.8681 \\
Dependent Mean & 146.26740 & Adj R-Sq & 0.8516 \\
Coeff Var & 1.82074 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & \begin{tabular}{l}
Parameter \\
Estimate
\end{tabular} & Standard Error & t Value & Pr > |t| \\
\hline Intercept & 1 & 155.84045 & 1.56528 & 99.56 & \(<.0001\) \\
\hline since_2000 & 1 & -2.12735 & 0.29320 & -7.26 & <. 0001 \\
\hline
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009
Residential Model, MAY
The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 1436.05195 & 478.68398 & 4.43 & 0.0577 \\
\hline Error & 6 & 648.70667 & 108.11778 & & \\
\hline Corrected Total & , & 2084.75862 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 10.39797 & R-Square & 0.6888 \\
Dependent Mean & 162.14680 & Adj R-Sq & 0.5333 \\
Coeff Var & 6.41269 & &
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{6}{c}{ Parameter Estimates } \\
& & Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>\) |t| \\
Intercept & 1 & 172.00225 & 11.85075 & 14.51 & \(<.0001\) \\
pmdi & 1 & -1.31798 & 1.60441 & -0.82 & 0.4428 \\
cdd & 1 & 0.05782 & 0.09565 & 0.60 & 0.5677 \\
since_2000 & 1 & -3.41776 & 1.23312 & -2.77 & 0.0324
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, JUNE

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 2678.33486 & 892.77829 & 12.48 & 0.0055 \\
\hline Error & 6 & 429.13697 & 71.52283 & & \\
\hline Corrected Total & 9 & 3107.47183 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 8.45712 & R-Square & 0.8619 \\
Dependent Mean & 181.70560 & Adj R-Sq & 0.7929 \\
Coeff Var & 4.65430 & &
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, JULY

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 3730.02207 & 1243.34069 & 8.55 & 0.0138 \\
\hline Error & 6 & 872.32164 & 145.38694 & & \\
\hline Corrected Total & 9 & 4602.34370 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 12.05765 & R-Square & 0.8105 \\
Dependent Mean & 203.48200 & Adj R-Sq & 0.7157 \\
Coeff Var & 5.92566 & &
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{6}{c}{ Parameter Estimates } \\
& Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr > |t| \\
Intercept & 1 & 174.93276 & 26.29527 & 6.65 & 0.0006 \\
pmdi & 1 & -5.09229 & 2.30905 & -2.21 & 0.0696 \\
cdd & 1 & 0.12779 & 0.07568 & 1.69 & 0.1422 \\
since_2000 & 1 & -2.35875 & 1.45539 & -1.62 & 0.1562
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, AUGUST

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 3041.36891 & 1013.78964 & 3.19 & 0.1054 \\
\hline Error & 6 & 1907.21476 & 317.86913 & & \\
\hline Corrected Total & 9 & 4948.58366 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 17.82888 & R-Square & 0.6146 \\
Dependent Mean & 202.69810 & Adj R-Sq & 0.4219 \\
Coeff Var & 8.79578 & &
\end{tabular}
\begin{tabular}{lrrrrr}
& \multicolumn{6}{c}{ Parameter Estimates } \\
& Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>\) |t| \\
& & & & & \\
Intercept & 1 & 196.84424 & 35.04664 & 5.62 & 0.0014 \\
pmdi & 1 & -6.01842 & 4.62863 & -1.30 & 0.2412 \\
cdd & 1 & 0.05135 & 0.10340 & 0.50 & 0.6371 \\
since_2000 & 1 & -2.58293 & 1.97177 & -1.31 & 0.2381
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, SEPTEMBER

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & Pr \(>\mathrm{F}\) \\
\hline Model & 3 & 3116.55272 & 1038.85091 & 6.30 & 0.0277 \\
\hline Error & 6 & 990.13860 & 165.02310 & & \\
\hline Corrected Total & 9 & 4106.69132 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 12.84613 & R-Square & 0.7589 \\
Dependent Mean & 195.72740 & Adj R-Sq & 0.6383 \\
Coeff Var & 6.56328 & &
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{6}{c}{ Parameter Estimates } \\
& & Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>\) |t| \\
& & & & & \\
Intercept & 1 & 169.36768 & 17.95074 & 9.44 & \(<.0001\) \\
pmdi & 1 & -2.30716 & 2.79132 & -0.83 & 0.4401 \\
cdd & 1 & 0.24971 & 0.12470 & 2.00 & 0.0921 \\
since_2000 & 1 & -2.45925 & 1.56953 & -1.57 & 0.1682
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, OCTOBER

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 1670.31278 & 556.77093 & 2.95 & 0.1201 \\
\hline Error & 6 & 1131.58616 & 188.59769 & & \\
\hline Corrected Total & 9 & 2801.89894 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 13.73309 & R-Square & 0.5961 \\
Dependent Mean & 180.41350 & Adj R-Sq & 0.3942 \\
Coeff Var & 7.61201 & &
\end{tabular}
\begin{tabular}{lrrrrr}
& \multicolumn{6}{c}{ Parameter Estimates } \\
& Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>\) |t| \\
Intercept & 1 & 193.95841 & 11.88013 & 16.33 & \(<.0001\) \\
pmdi & 1 & -4.84769 & 1.90295 & -2.55 & 0.0436 \\
cdd & 1 & -0.10577 & 0.34771 & -0.30 & 0.7713 \\
since_2000 & 1 & -1.36117 & 1.51697 & -0.90 & 0.4041
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, NOVEMBER

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10

Page 11

Run regressions by month: Lexington, JAN2000-DEC2009 Residential Model, DECEMBER

The REG Procedure
Model: MODEL1
Dependent Variable: residential
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 2 & 633.63910 & 316.81955 & 42.57 & 0.0001 \\
\hline Error & 7 & 52.10221 & 7.44317 & & \\
\hline Corrected Total & 9 & 685.74130 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 2.72822 & R-Square & 0.9240 \\
Dependent Mean & 149.53220 & Adj R-Sq & 0.9023 \\
Coeff Var & 1.82450 & &
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{6}{c}{ Parameter Estimates } \\
& Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>\) |t| \\
Intercept & 1 & 162.46667 & 1.64988 & 98.47 & \(<.0001\) \\
pmdi & 1 & -0.63689 & 0.34736 & -1.83 & 0.1094 \\
Since_2000 & 1 & -2.72416 & 0.30040 & -9.07 & \(<.0001\)
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, JANUARY

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 1 & 52294 & 52294 & 21.08 & 0.0018 \\
\hline Error & 8 & 19844 & 2480.50546 & & \\
\hline Corrected Total & 9 & 72138 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 49.80467 & R-Square & 0.7249 \\
Dependent Mean & 1157.26910 & Adj R-Sq & 0.6905 \\
Coeff Var & 4.30364 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & \begin{tabular}{l}
Parameter \\
Estimate
\end{tabular} & Standard Error & t Value & \(\operatorname{Pr}>|t|\) \\
\hline Intercept & 1 & 1270.56391 & 29.27289 & 43.40 & \(<.0001\) \\
\hline since_2000 & 1 & -25.17662 & 5.48331 & -4.59 & 0.0018 \\
\hline
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, FEBRUARY

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, MARCH

The REG Procedure
Model: MODEL1
Dependent Variable: commercial

Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 1 & 32744 & 32744 & 42.09 & 0.0002 \\
\hline Error & 8 & 6223.09386 & 777.88673 & & \\
\hline Corrected Total & 9 & 38967 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 27.89062 & R-Square & 0.8403 \\
Dependent Mean & 1217.77590 & Adj R-Sq & 0.8203 \\
Coeff Var & 2.29029 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & \begin{tabular}{l}
Parameter \\
Estimate
\end{tabular} & Standard Error & t Value & \(\operatorname{Pr}>|t|\) \\
\hline Intercept & 1 & 1307.42602 & 16.39282 & 79.76 & \(<.0001\) \\
\hline since_2000 & 1 & -19.92225 & 3.07066 & -6.49 & 0.0002 \\
\hline
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, APRIL

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & \begin{tabular}{l}
Mean \\
Square
\end{tabular} & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 1 & 50745 & 50745 & 21.29 & 0.0017 \\
\hline Error & 8 & 19069 & 2383.65079 & & \\
\hline Corrected Total & 9 & 69815 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 48.82265 & R-Square & 0.7269 \\
Dependent Mean & 1220.11240 & Adj R-Sq & 0.6927 \\
Coeff Var & 4.00149 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & \begin{tabular}{l}
Parameter \\
Estimate
\end{tabular} & Standard Error & t Value & Pr > |t| \\
\hline Intercept & 1 & 1331.71742 & 28.69570 & 46.41 & \(<.0001\) \\
\hline since_2000 & 1 & -24.80112 & 5.37520 & -4.61 & 0.0017 \\
\hline
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009
Commercial Model, MAY

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & \begin{tabular}{l}
Mean \\
Square
\end{tabular} & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 110638 & 36879 & 19.11 & 0.0018 \\
\hline Error & 6 & 11580 & 1929.93995 & & \\
\hline Corrected Total & 9 & 122218 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 43.93108 & R-Square & 0.9053 \\
Dependent Mean & 1319.62360 & Adj R-Sq & 0.8579 \\
Coeff Var & 3.32906 & &
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{6}{c}{ Parameter Estimates } \\
& & Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>|t|\) \\
Intercept & 1 & 1388.91223 & 50.06905 & 27.74 & \(<.0001\) \\
pmdi & 1 & 6.43417 & 6.77858 & 0.95 & 0.3792 \\
cdd & 1 & 0.86552 & 0.40412 & 2.14 & 0.0760 \\
since_2000 & 1 & -32.05394 & 5.20988 & -6.15 & 0.0008
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009
Commercial Model, JUNE
The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 111123 & 37041 & 19.58 & 0.0017 \\
\hline Error & 6 & 11352 & 1891.91948 & & \\
\hline Corrected Total & 9 & 122474 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 43.49620 & R-Square & 0.9073 \\
Dependent Mean & 1424.96430 & Adj R-Sq & 0.8610 \\
Coeff Var & 3.05244 & &
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{6}{c}{ Parameter Estimates } \\
& & Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>|t|\) \\
Intercept & 1 & 1417.18902 & 71.49721 & 19.82 & \(<.0001\) \\
pmdi & 1 & -17.72572 & 7.56463 & -2.34 & 0.0576 \\
cdd & 1 & 0.63420 & 0.31562 & 2.01 & 0.0912 \\
since_2000 & 1 & -30.48543 & 5.08248 & -6.00 & 0.0010
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009
Commercial Model, JULY
The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 155553 & 51851 & 10.76 & 0.0079 \\
\hline Error & 6 & 28923 & 4820.41682 & & \\
\hline Corrected Total & 9 & 184475 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 69.42922 & R-Square & 0.8432 \\
Dependent Mean & 1557.55430 & Adj R-Sq & 0.7648 \\
Coeff Var & 4.45758 & &
\end{tabular}
\begin{tabular}{lrrrrr}
& \multicolumn{6}{c}{ Parameter Estimates } \\
& & Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>\) |t| \\
Intercept & 1 & 1642.28074 & 151.41093 & 10.85 & \(<.0001\) \\
pmdi & 1 & -19.50687 & 13.29576 & -1.47 & 0.1927 \\
cdd & 1 & 0.23614 & 0.43576 & 0.54 & 0.6074 \\
since_2000 & 1 & -34.94072 & 8.38029 & -4.17 & 0.0059
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, AUGUST

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & \begin{tabular}{l}
Mean \\
Square
\end{tabular} & F Value & \(\mathrm{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 136839 & 45613 & 6.75 & 0.0238 \\
\hline Error & 6 & 40559 & 6759.81741 & & \\
\hline Corrected Total & 9 & 177398 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 82.21811 & R-Square & 0.7714 \\
Dependent Mean & 1625.21220 & Adj R-Sq & 0.6571 \\
Coeff Var & 5.05892 & &
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{6}{c}{ Parameter Estimates } \\
& & Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>|t|\) \\
Intercept & 1 & 1642.25795 & 161.61797 & 10.16 & \(<.0001\) \\
pmdi & 1 & -21.43001 & 21.34496 & -1.00 & 0.3541 \\
cdd & 1 & 0.36764 & 0.47681 & 0.77 & 0.4700 \\
since_2000 & 1 & -31.02046 & 9.09284 & -3.41 & 0.0143
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, SEPTEMBER

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analysis of Variance} \\
\hline Source & DF & Sum of Squares & Mean Square & F Value & \(\operatorname{Pr}>\mathrm{F}\) \\
\hline Model & 3 & 114444 & 38148 & 5.33 & 0.0395 \\
\hline Error & 6 & 42904 & 7150.73179 & & \\
\hline Corrected Total & 9 & 157349 & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrr}
Root MSE & 84.56200 & R-Square & 0.7273 \\
Dependent Mean & 1563.50730 & Adj R-Sq & 0.5910 \\
Coeff Var & 5.40848 & &
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{6}{c}{ Parameter Estimates } \\
& & Parameter & Standard \\
Variable & DF & Estimate & Error & t Value & Pr \(>|t|\) \\
Intercept & 1 & 1504.23439 & 118.16400 & 12.73 & \(<.0001\) \\
pmdi & 1 & -10.41050 & 18.37435 & -0.57 & 0.5915 \\
cdd & 1 & 1.27253 & 0.82085 & 1.55 & 0.1721 \\
since_2000 & 1 & -29.27078 & 10.33175 & -2.83 & 0.0298
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, OCTOBER

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 9
Number of Observations with Missing Values 1
\begin{tabular}{lrrrrr}
& \multicolumn{3}{c}{ Analysis of Variance } \\
& & Sum of & Mean & & \\
Source & DF & Squares & Square & F Value & Pr \(>\) F \\
Model & 3 & & & & \\
Error & 5 & 145401 & 48467 & 3.61 & 0.1004 \\
Corrected Total & 8 & 67128 & 13426 & &
\end{tabular}
\begin{tabular}{lrlr}
Root MSE & 115.86857 & R-Square & 0.6841 \\
Dependent Mean & 1520.72200 & Adj R-Sq & 0.4946 \\
Coeff Var & 7.61931 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & Parameter Estimate & Standard Error & t Value & Pr > |t| \\
\hline Intercept & 1 & 1680.16657 & 102.45477 & 16.40 & \(<.0001\) \\
\hline pmdi & 1 & -26.73212 & 16.33704 & -1.64 & 0.1627 \\
\hline cdd & 1 & 0.48539 & 2.93372 & 0.17 & 0.8751 \\
\hline since_2000 & 1 & -31.29661 & 13.04371 & -2.40 & 0.0617 \\
\hline
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, NOVEMBER

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10

\begin{tabular}{lrlr}
Root MSE & 55.07949 & R-Square & 0.8263 \\
Dependent Mean & 1338.74530 & Adj R-Sq & 0.7767 \\
Coeff Var & 4.11426 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & \begin{tabular}{l}
Parameter \\
Estimate
\end{tabular} & Standard Error & t Value & Pr > |t| \\
\hline Intercept & 1 & 1499.23064 & 33.22682 & 45.12 & \(<.0001\) \\
\hline pmdi & 1 & -15.96346 & 6.31450 & -2.53 & 0.0393 \\
\hline since_2000 & 1 & -32.45298 & 6.07678 & -5.34 & 0.0011 \\
\hline
\end{tabular}

Run regressions by month: Lexington, JAN2000-DEC2009 Commercial Model, DECEMBER

The REG Procedure
Model: MODEL1
Dependent Variable: commercial
Number of Observations Read 10
Number of Observations Used 10

\begin{tabular}{lrlr}
Root MSE & 29.51938 & R-Square & 0.9461 \\
Dependent Mean & 1186.99260 & Adj R-Sq & 0.9307 \\
Coeff Var & 2.48690 & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Parameter Estimates} \\
\hline Variable & DF & \begin{tabular}{l}
Parameter \\
Estimate
\end{tabular} & Standard Error & t Value & Pr > |t| \\
\hline Intercept & 1 & 1354.47713 & 17.85171 & 75.87 & \(<.0001\) \\
\hline pmdi & 1 & -6.59608 & 3.75847 & -1.75 & 0.1227 \\
\hline since_2000 & 1 & -35.66357 & 3.25033 & -10.97 & <. 0001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{8}{|l|}{Projections of Residential Water Utilization, Gallons per Day, Kentucky-American} & & \\
\hline & Slope of & Slope of & Slope of & & 30-yr Avg & 30-yr Avg & Days & 2009 & 2010 & 2011 & 2012 \\
\hline Month & PMDI & CDD & SINCE_2000 & Intercept & PMDI & CDD & & Gal/Day & Gal/Day & Gal/Day & Gal/Day \\
\hline Jan & 0 & 0 & -1.96635 & 158.4779 & 0.06433 & 1.333 & 31 & 140.78 & 138.81 & 136.85 & 134.88 \\
\hline Feb & 0 & 0 & -2.35625 & 161.6716 & -0.00200 & 0.000 & 31 & 140.47 & 138.11 & 135.75 & 133.40 \\
\hline Mar & 0 & 0 & -1.45206 & 153.5421 & -0.25600 & 5.133 & 28 & 140.47 & 139.02 & 137.57 & 136.12 \\
\hline Apr & 0 & 0 & -2.12735 & 155.8405 & -0.26700 & 6.867 & 31 & 136.69 & 134.57 & 132.44 & 130.31 \\
\hline May & -1.31798 & 0.05782 & -3.41776 & 172.0023 & 0.14867 & 87.567 & 30 & 146.11 & 142.69 & 139.27 & 135.86 \\
\hline Jun & -4.52566 & 0.25819 & -1.56323 & 130.2913 & 0.20100 & 219.467 & 31 & 171.98 & 170.41 & 168.85 & 167.29 \\
\hline Jul & -5.09229 & 0.12779 & -2.35875 & 174.9328 & -0.05133 & 336.367 & 30 & 196.95 & 194.59 & 192.23 & 189.87 \\
\hline Aug & -6.01842 & 0.05135 & -2.58293 & 196.8442 & -0.26500 & 309.233 & 31 & 191.07 & 188.49 & 185.91 & 183.32 \\
\hline Sep & -2.30716 & 0.24971 & -2.45925 & 169.3677 & -0.33600 & 138.567 & 31 & 182.61 & 180.15 & 177.69 & 175.23 \\
\hline Oct & -4.84769 & -0.10577 & -1.36117 & 193.9584 & 0.21933 & 19.900 & 30 & 178.54 & 177.18 & 175.82 & 174.46 \\
\hline Nov & -2.27152 & 0 & -1.87539 & 167.6097 & 0.29800 & 0.200 & 31 & 150.05 & 148.18 & 146.30 & 144.43 \\
\hline Dec & -0.63689 & 0 & -2.72416 & 162.4667 & 0.31933 & 0.400 & 30 & 137.75 & 135.02 & 132.30 & 129.57 \\
\hline & & & & Annual proj & ections: & & & 159.55 & 157.36 & 155.17 & 152.94 \\
\hline KAWC2009.XLS & & & Projection & : Oct 2010 to & Sep 2011 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{8}{|l|}{Projections of Commercial Water Utilization, Gallons per Day, Kentucky-American} & & \\
\hline & Slope of & Slope of & Slope of & & 30-yr Avg & 30-yr Avg & Days & 2009 & 2010 & 2011 & 2012 \\
\hline Month & PMDI & CDD & SINCE_2000 & Intercept & PMDI & CDD & & Gal/Day & Gal/Day & Gal/Day & Gal/Day \\
\hline Jan & 0 & 0 & -25.17662 & 1270.564 & 0.06433 & 1.333 & 31 & 1,043.97 & 1,018.80 & 993.62 & 968.44 \\
\hline Feb & 0 & 0 & -21.95696 & 1314.046 & -0.00200 & 0.000 & 31 & 1,116.43 & 1,094.48 & 1,072.52 & 1,050.56 \\
\hline Mar & 0 & 0 & -19.92225 & 1307.426 & -0.25600 & 5.133 & 28 & 1,128.13 & 1,108.20 & 1,088.28 & 1,068.36 \\
\hline Apr & 0 & 0 & -24.80112 & 1331.717 & -0.26700 & 6.867 & 31 & 1,108.51 & 1,083.71 & 1,058.91 & 1,034.10 \\
\hline May & 6.43417 & 0.86552 & -32.05394 & 1388.912 & 0.14867 & 87.567 & 30 & 1,177.17 & 1,145.12 & 1,113.07 & 1,081.01 \\
\hline Jun & -17.72572 & 0.63420 & -30.48543 & 1417.189 & 0.20100 & 219.467 & 31 & 1,278.44 & 1,247.96 & 1,217.47 & 1,186.99 \\
\hline Jul & -19.50687 & 0.23614 & -34.94072 & 1642.281 & -0.05133 & 336.367 & 30 & 1,408.25 & 1,373.30 & 1,338.36 & 1,303.42 \\
\hline Aug & -21.43001 & 0.36764 & -31.02046 & 1642.258 & -0.26500 & 309.233 & 31 & 1,482.44 & 1,451.42 & 1,420.40 & 1,389.38 \\
\hline Sep & -10.41050 & 1.27253 & -29.27078 & 1504.234 & -0.33600 & 138.567 & 31 & 1,420.63 & 1,391.36 & 1,362.08 & 1,332.81 \\
\hline Oct & -26.73212 & 0.48539 & -31.29661 & 1680.167 & 0.21933 & 19.900 & 30 & 1,402.29 & 1,371.00 & 1,339.70 & 1,308.40 \\
\hline Nov & -15.96346 & 0 & -32.45298 & 1499.231 & 0.29800 & 0.200 & 31 & 1,202.40 & 1,169.94 & 1,137.49 & 1,105.04 \\
\hline Dec & -6.59608 & 0 & -35.66357 & 1354.477 & 0.31933 & 0.400 & 30 & 1,031.40 & 995.74 & 960.07 & 924.41 \\
\hline & & & & Annual proj & ections: & & & 1,233.97 & 1,204.85 & 1,175.74 & 1,146.41 \\
\hline & & & & & & & & & & & \\
\hline KAWC2009.XLS & & & Projection & : Oct 2010 to & Sep 2011 & & & & 1,18 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & F & G \\
\hline 1 & \multicolumn{7}{|l|}{Adjustment of Commercial Consumption to Reflect Bills with Days Greater than 35} \\
\hline 2 & \multicolumn{7}{|l|}{Calculation of Gallons per Day for Customers with Bills Covering More Than 35 Days:} \\
\hline 3 & Bill Month & Bill Year & Total Consumption (1000 gals) & Total Bill Days & & & \\
\hline 4 & 1 & 2009 & 17,626 & 14,097 & & & \\
\hline 5 & 2 & 2009 & 6,721 & 2,027 & & & \\
\hline 6 & 3 & 2009 & 1,821 & 1,965 & & & \\
\hline 7 & 4 & 2009 & 5,617 & 2,615 & & & \\
\hline 8 & 5 & 2009 & 2,504 & 1,505 & & & \\
\hline 9 & 6 & 2009 & 9,278 & 2,955 & & & \\
\hline 10 & 7 & 2009 & 12,464 & 3,797 & & & \\
\hline 11 & 8 & 2009 & 12,493 & 3,155 & & & \\
\hline 12 & 9 & 2009 & 9,484 & 1,556 & & & \\
\hline 13 & 10 & 2009 & 17,006 & 1,851 & & & \\
\hline 14 & 11 & 2009 & 7,854 & 1,650 & & & \\
\hline 15 & 12 & 2009 & 14,177 & 4,792 & & & \\
\hline 16 & & & & & & & \\
\hline 17 & & Totals: & 117,042 & 41,965 & (sums of & \(4: \mathrm{C} 15\) and & :D15) \\
\hline 18 & & & & & & & \\
\hline 19 & \multicolumn{2}{|l|}{Gallons per customer day:} & 2789.04 & \multicolumn{2}{|l|}{(=C17/D17*1000)} & & \\
\hline 20 & & & & & & & \\
\hline 21 & & & & & & & \\
\hline 22 & \multicolumn{6}{|l|}{Calculation of Bill Days for Customers with Bills Covering 35 Days or Less:} & \\
\hline 23 & & & & & & & \\
\hline 24 & 1 & 2009 & & 280,483 & & & \\
\hline 25 & 2 & 2009 & & 253,255 & & & \\
\hline 26 & 3 & 2009 & & 243,511 & & & \\
\hline 27 & 4 & 2009 & & 270,721 & & & \\
\hline 28 & 5 & 2009 & & 252,640 & & & \\
\hline 29 & 6 & 2009 & & 262,369 & & & \\
\hline 30 & 7 & 2009 & & 276,210 & & & \\
\hline 31 & 8 & 2009 & & 270,504 & & & \\
\hline 32 & 9 & 2009 & & 263,915 & & & \\
\hline 33 & 10 & 2009 & & 261,328 & & & \\
\hline 34 & 11 & 2009 & & 249,607 & & & \\
\hline 35 & 12 & 2009 & & 265,916 & & & \\
\hline 36 & & & & & & & \\
\hline 37 & & Total: & & 3,150,459 & (sum of D & 4:D35) & \\
\hline 38 & & & & & & & \\
\hline 39 & \multicolumn{2}{|l|}{Gallons per customer day:} & 1184.00 & \multicolumn{3}{|l|}{(From Appendix D, Page 2)} & \\
\hline 40 & & & & & & & \\
\hline 41 & \multicolumn{6}{|l|}{Adjusted Gallons per Day, Obtained as an Average of 2789.04 and 1184.00,} & \\
\hline 42 & \multicolumn{3}{|l|}{Weighted by Total Bill Days:} & & & & \\
\hline 43 & \multicolumn{5}{|l|}{\((2789.04 \times 41956+1184.00 \times 3150459) /(41965+3150459)=\)} & 1,205.10 & \\
\hline
\end{tabular}

\section*{COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION}
\(\begin{array}{ll}\text { IN THE MATTER OF: } & \text {) } \\ & \\ \text { THE APPLICATION OF KENTUCKY-AMERICAN } & \text {) } \\ \text { WATER COMPANY FOR AN ADJUSTMENT OF } & \text { () } \\ \text { RATES ON AND AFTER MARCH 28, } 2010 & \text {) }\end{array}\)

DIRECT TESTIMONY OF JAMES H. VANDER WEIDE
February 26, 2010

\section*{TABLE OF CONTENTS}
I. Witness Identification 1
II. Purpose of Testimony 2
III. Economic and Legal Principles 5
IV. Business and Financial Risks in the Water Utility Industry 10
V. Cost of Equity Estimation Methods 11
VI. Discounted Cash Flow (DCF) Approach 12
VII. Risk Premium Approach 29
A. Ex Ante Risk Premium Approach 29
B. Ex Post Risk Premium Approach 32
VIII. Capital Asset Pricing Model 38
IX. Fair Rate of Return on Equity 44

\section*{I. WITNESS IDENTIFICATION}

\section*{Q. 1 What is your name and business address?}
A. 1 My name is James H. Vander Weide. I am Research Professor of Finance and Economics at Duke University, the Fuqua School of Business. I am also President of Financial Strategy Associates, a firm that provides strategic and financial consulting services to business clients. My business address is 3606 Stoneybrook Drive, Durham, North Carolina.
Q. 2 Would you please describe your educational background and prior academic experience?
A. 2 I graduated from Cornell University with a Bachelor's Degree in Economics and from Northwestern University with a Ph.D. in Finance. After joining the faculty of the School of Business at Duke University, I was named Assistant Professor, Associate Professor, and then Professor. I have published research in the areas of finance and economics and taught courses in corporate finance, investment management, and management of financial institutions at Duke for more than 35 years. My research publications and teaching experience are described in Appendix 1. I am now retired from my teaching duties at Duke.
Q. 3 Have you previously testified on financial or economic issues?
A. 3 Yes. As an expert on financial and economic theory and practice, I have participated in more than 400 regulatory and legal proceedings
before the U.S. Congress, the Canadian Radio-Television and Telecommunications Commission, the Federal Communications Commission, the National Telecommunications and Information Administration, the Federal Energy Regulatory Commission, the National Energy Board (Canada), the public service commissions of 43 states and three Canadian provinces, the insurance commissions of five states, the lowa State Board of Tax Review, the National Association of Securities Dealers, and the North Carolina Property Tax Commission. In addition, I have prepared expert testimony in proceedings before the U.S. District Court for the District of Nebraska; the U.S. District Court for the District of New Hampshire; the U.S. District Court for the District of Northern Illinois; the U.S. District Court for the Eastern District of North Carolina; the U.S. District Court for the Northern District of California; Montana Second Judicial District Court, Silver Bow County; the Superior Court, North Carolina; the U.S. Bankruptcy Court for the Southern District of West Virginia; and the U.S. District Court for the Eastern District of Michigan.

\section*{II. PURPOSE OF TESTIMONY}

\section*{Q. 4 What is the purpose of your testimony?}
A. 4 I have been asked by Kentucky American Water Company (KAWC) to prepare an independent appraisal of its cost of equity capital and to recommend a rate of return on equity that is fair, that allows KAWC to
attract capital on reasonable terms, and that allows KAWC to maintain its financial integrity.

\section*{Q. 5 How do you estimate KAWC's cost of equity?}
A. 5 I estimate KAWC's cost of equity by applying several standard cost of equity estimation techniques, including the discounted cash flow (DCF) model, the risk premium method, and the Capital Asset Pricing Model (CAPM) to groups of comparable risk companies.
Q. 6 Do you generally give equal weight to the results of these standard cost of equity methods?
A. 6 I generally give equal weight to the results of these standard cost of equity methods when the average Value Line beta for the proxy companies is relatively close to 1.0 , and the average company in my proxy group has a relatively large market value capitalization. If the average Value Line beta for the proxy companies is significantly less than 1.0, as it is in this present case, and/or the average market value capitalization for the proxy companies is relatively small, I generally give little or no weight to the results of the application of the CAPM.
Q. 7 Why do you give little or no weight to the result of the CAPM when the average Value Line beta is significantly less than 1.0 ?
A. 7 I give little or no weight to the result of the CAPM when the average Value Line beta is significantly less than 1.0 because financial research provides strong support for the conclusion that the CAPM underestimates the cost of equity for companies whose betas are
significantly less than 1.0. I present a summary of this research in the CAPM section of my testimony.
Q. 8 Why is it appropriate to give less weight to the result of the CAPM when the companies in the proxy group have small market capitalization?
A. 8 It is appropriate to give less weight to the result of the CAPM in this case because financial research also supports the conclusion that the CAPM underestimates the cost of equity for small market capitalization companies.
Q. 9 What cost of equity do you find for your comparable companies in this proceeding?
A. 9 I find that the cost of equity for my comparable companies is in the range 10.8 percent to 12.1 percent. Because the average beta of my proxy companies is significantly less than 1.0, my conclusion is based on the results of my DCF and risk premium studies.
Q. 10 What is your recommendation regarding KAWC's cost of equity?
A. 10 I conservatively recommend that KAWC be allowed a fair rate of return on common equity in the range 10.8 percent to 12.1 percent. My recommended return on equity is conservative in that I use: (1) the lower simple average DCF result for the proxy water companies, even though a market-value weighted average is generally more appropriate for estimating the cost of equity; and (2) the lower average result for the LDC proxy group obtained by eliminating outlier low and high results.
Q. 11 Do you have an exhibit to accompany your testimony?
A. 11 Yes. I have an Exhibit__(JVW-1), consisting of eight schedules and five appendices that were prepared by me or under my direction and supervision.

\section*{III. ECONOMIC AND LEGAL PRINCIPLES}
Q. 12 How do economists define the required rate of return, or cost of capital, associated with particular investment decisions such as the decision to invest in water treatment, storage, and distribution facilities?
A. 12 Economists define the cost of capital as the return investors expect to receive on alternative investments of comparable risk.
Q. 13 How does the cost of capital affect a firm's investment decisions?
A. 13 The goal of a firm is to maximize the value of the firm. This goal can be accomplished by accepting all investments in plant and equipment with an expected rate of return greater than or equal to the cost of capital. Thus, a firm should continue to invest in plant and equipment only so long as the return on its investment is greater than or equal to its cost of capital.
Q. 14 How does the cost of capital affect investors' willingness to invest in a company?
A. 14 The cost of capital measures the return investors can expect on investments of comparable risk. The cost of capital also measures the investor's required rate of return on investment because rational
investors will not invest in a particular investment opportunity if the expected return on that opportunity is less than the cost of capital. Thus, the cost of capital is a hurdle rate for both investors and the firm.

\section*{Q. 15 Do all investors have the same position in the firm?}
A. 15 No. Debt investors have a fixed claim on a firm's assets and income that must be paid prior to any payment to the firm's equity investors. Since the firm's equity investors have a residual claim on the firm's assets and income, equity investments are riskier than debt investments. Thus, the cost of equity exceeds the cost of debt.

\section*{Q. 16 What is the economic definition of the cost of equity?}
A. 16 As I noted above, the cost of equity is the return investors expect to receive on alternative equity investments of comparable risk. Since the return on an equity investment of comparable risk is not a contractual return, the cost of equity is more difficult to measure than the cost of debt. However, as I have already noted, the cost of equity is greater than the cost of debt. The cost of equity, like the cost of debt, is both forward looking and market based.
Q. 17 How do economists measure the percentages of debt and equity in a firm's capital structure?
A. 17 Economists measure the percentages of debt and equity in a firm's capital structure by first calculating the market value of the firm's debt and the market value of its equity. Economists then calculate the percentage of debt by the ratio of the market value of debt to the
combined market value of debt and equity, and the percentage of equity by the ratio of the market value of equity to the combined market values of debt and equity. For example, if a firm's debt has a market value of \$25 million and its equity has a market value of \(\$ 75\) million, then its total market capitalization is \(\$ 100\) million, and its capital structure contains 25 percent debt and 75 percent equity.

\section*{Q. 18 Why do economists measure a firm's capital structure in terms of the market values of its debt and equity? \\ A. 18 Economists measure a firm's capital structure in terms of the market values of its debt and equity because: (1) the weighted average cost of capital is defined as the return investors expect to earn on a portfolio of the company's debt and equity securities; (2) investors measure the expected return and risk on their portfolios using market value weights, not book value weights; and (3) market values are the best measures of the amounts of debt and equity investors have invested in the company on a going forward basis.}
Q. 19 Why do investors measure the expected return and risk on their investment portfolios using market value weights rather than book value weights?
A. 19 Investors measure the expected return and risk on their investment portfolios using market value weights because market values are the best measure of the amounts the investors currently have invested in each security in the portfolio. From the point of view of investors, the
historical cost or book value of their investment is irrelevant to the current risk and required return on their portfolios because if they were to sell their investments, they would receive market value, not historical cost. Thus, the return can only be measured in terms of market values.
Q. 20 Is the economic definition of the weighted average cost of capital consistent with regulators' traditional definition of the average cost of capital?
A. 20 No. The economic definition of the weighted average cost of capital is based on the market costs of debt and equity, the market value percentages of debt and equity in a company's capital structure, and the future expected risk of investing in the company. In contrast, regulators have traditionally defined the weighted average cost of capital using the embedded cost of debt and the book values of debt and equity in a company's capital structure.

\section*{Q. 21 Does the required rate of return on an investment vary with the risk of that investment?}
A. 21 Yes. Since investors are averse to risk, they require a higher rate of return on investments with greater risk.
Q. 22 Are these economic principles regarding the fair return for capital recognized in any Supreme Court cases?
A. 22 Yes. These economic principles, relating to the supply of and demand for capital, are recognized in two United States Supreme Court cases: (1) Bluefield Water Works and Improvement Co. v. Public Service

Comm'n.; and (2) Federal Power Comm'n v. Hope Natural Gas Co. In the Bluefield Water Works case, the Court states:

A public utility is entitled to such rates as will permit it to earn a return upon the value of the property which it employs for the convenience of the public equal to that generally being made at the same time and in the same general part of the country on investments in other business undertakings which are attended by corresponding risks and uncertainties, but it has no constitutional right to profits such as are realized or anticipated in highly profitable enterprises or speculative ventures. The return...should be reasonably sufficient to assure confidence in the financial soundness of the utility, and should be adequate, under efficient and economical management, to maintain and support its credit, and enable it to raise the money necessary for the proper discharge of its public duties. [Bluefield Water Works and Improvement Co. v. Public Service Comm'n. 262 U.S. 679, 692 (1923)].

The Court clearly recognizes here that: (1) a regulated firm cannot remain financially sound unless the return it is allowed an opportunity to earn on the value of its property is at least equal to the cost of capital (the principle relating to the demand for capital); and (2) a regulated firm will not be able to attract capital if it does not offer investors an opportunity to earn a return on their investment equal to the return they expect to earn on other investments of the same risk (the principle relating to the supply of capital).

In the Hope Natural Gas case, the Court reiterates the financial soundness and capital attraction principles of the Bluefield case:

From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock... By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises having corresponding risks. That return,
moreover, should be sufficient to assure confidence in the financial integrity of the enterprise, so as to maintain its credit and to attract capital. [Federal Power Comm'n v. Hope Natural Gas Co., 320 U.S. 591, 603 (1944)]

\section*{IV. BUSINESS AND FINANCIAL RISKS IN THE WATER UTILITY INDUSTRY}

\section*{Q. 23 What are the major factors that affect business risk in the water utility industry?}
A. 23 Business risk in the water utility industry is affected by the following economic factors:
1. High Operating Leverage. The water utility business requires a large commitment to fixed costs in relation to variable costs, a situation called high operating leverage. The relatively high degree of fixed costs in the water utility business arises because of the average water company's large investment in fixed, longlived water treatment, storage, and distribution facilities. High operating leverage causes the average water company's net income to be highly sensitive to sales fluctuations.
2. Demand Uncertainty. The business risk of the water utility business is increased by the high degree of demand uncertainty in the industry. Demand uncertainty is caused primarily by: (i) wide fluctuations in average temperature and rainfall from year to year; (ii) the state of the economy; and (iii) customer growth in the service territory.
3. Supply Uncertainty. The risk of the water utility business is further increased by the need to assure a safe and reliable supply of
water to meet customer needs on any given day of the year. The Safe Drinking Water Act Amendments of 1996 authorize the Environmental Protection Agency (EPA) to periodically test the drinking water for impurities and to issue regulations requiring water utilities to reduce drinking water contaminants to an acceptable level. The EPA has exercised its authority by requiring the water utilities to meet increasingly stringent drinking water standards over time. The rising costs and uncertainty of meeting ever more stringent drinking water standards is a major risk facing the water utilities.

\section*{V. COST OF EQUITY ESTIMATION METHODS}

\section*{Q. 24 What methods do you use to estimate the cost of common equity capital for KAWC?}
A. 24 I review the results of three generally accepted methods for estimating the cost of common equity. These are the Discounted Cash Flow (DCF), the risk premium method, and the Capital Asset Pricing Model (CAPM). The DCF method assumes that the current market price of a firm's stock is equal to the discounted value of all expected future cash flows. The risk premium method assumes that the investor's required return on an equity investment is equal to the interest rate on a longterm bond plus an additional equity risk premium to compensate the investor for the risks of investing in equities compared to bonds. The CAPM assumes that the investor's required rate of return on equity is
equal to a risk-free rate of interest plus the product of a companyspecific risk factor, beta, and the expected risk premium on the market portfolio.

\section*{VI. DISCOUNTED CASH FLOW (DCF) APPROACH}

\section*{Q. 25 Please describe the DCF model.}
A. 25 The DCF model is based on the assumption that investors value an asset on the basis of the future cash flows they expect to receive from owning the asset. Thus, investors value an investment in a bond because they expect to receive a sequence of semi-annual coupon payments over the life of the bond and a terminal payment equal to the bond's face value at the time the bond matures. Likewise, investors value an investment in a firm's stock because they expect to receive a sequence of dividend payments and, perhaps, expect to sell the stock at a higher price sometime in the future.

A second fundamental principle of the DCF approach is that investors value a dollar received in the future less than a dollar received today. A future dollar is valued less than a current dollar because investors could invest a current dollar in an interest earning account and increase their wealth. This principle is called the time value of money.

Applying the two fundamental DCF principles noted above to an investment in a bond leads to the conclusion that investors value their investment in the bond on the basis of the present value of the bond's future cash flows. Thus, the price of the bond should reflect the timing, magnitude, and relative risk of the expected cash flows. Algebraically this can be expressed as:

EQUATION 1
\[
P_{B}=\frac{C}{(1+i)}+\frac{C}{(1+i)^{2}}+\cdots+\frac{C+F}{(1+i)^{n}}
\]
where:
\[
\begin{array}{ll}
\mathrm{P}_{\mathrm{B}} & = \\
\mathrm{C} & \text { Bond price; } \\
= & \text { Cash value of the constant coupon payment (assumed } \\
& \text { for notational convenience to occur annually rather than } \\
& \text { semi-annually); }
\end{array}
\]

Applying these same principles to an investment in a firm's stock
suggests that the price of the stock should be equal to:

\section*{EQUATION 2}
\[
P_{s}=\frac{D_{1}}{(1+k)}+\frac{D_{2}}{(1+k)^{2}}+\cdots+\frac{D_{n}+P_{n}}{(1+k)^{n}}
\]
where:
\(\mathrm{P}_{\mathrm{S}} \quad=\) Current price of the firm's stock;
\(D_{1}, D_{2} \ldots D_{n}=\) Expected annual dividend per share on the firm's stock;
\(P_{n} \quad=\) Price per share of stock at the time the investor expects to sell the stock; and
\(\mathrm{k} \quad=\) Return the investor expects to earn on alternative investments of the same risk, i.e., the investor's required rate of return.

Equation (2) is frequently called the annual discounted cash flow model of stock valuation. Assuming that dividends grow at a constant annual rate, \(g\), this equation can be solved for \(k\), the cost of equity. The resulting cost of equity equation is \(k=D_{1} / P_{s}+g\), where \(k\) is the cost of equity, \(D_{1}\) is the expected next period annual dividend, \(P_{s}\) is the current price of the stock, and \(g\) is the constant annual growth rate in earnings, dividends, and book value per share. The term \(D_{1} / P_{s}\) is called the dividend yield component of the annual DCF model, and the term \(g\) is called the growth component of the annual DCF model. As in the case of the price of a bond, the price of a stock is related to the timing, magnitude, and relative risk of the expected cash flows.

\section*{Q. 26 Are you recommending that the annual DCF model be used to estimate KAWC's cost of equity?}
A. 26 No. The DCF model assumes that a company's stock price is equal to the present discounted value of all expected future dividends. The annual DCF model is only a correct expression for the present discounted value of future dividends if dividends are paid annually at the end of each year. Since the companies in my proxy group all pay dividends quarterly, the current market price that investors are willing to pay reflects the expected quarterly receipt of dividends. Therefore, a quarterly DCF model must be used to estimate the cost of equity for these firms. The quarterly DCF model differs from the annual DCF model in that it expresses a company's price as the present discounted
value of a quarterly stream of dividend payments. A complete analysis of the implications of the quarterly payment of dividends on the DCF model is provided in Exhibit_(JVW-1), Appendix 2. For the reasons cited there, I employed the quarterly DCF model throughout my calculations.

\section*{Q. 27 Please describe the quarterly DCF model you used.}
A. 27 The quarterly DCF model I used is described on Exhibit__(JVW-1), Schedule 1 and in Appendix 2. The quarterly DCF equation shows that the cost of equity is: the sum of the future expected dividend yield and the growth rate, where the dividend in the dividend yield is the equivalent future value of the four quarterly dividends at the end of the year, and the growth rate is the expected growth in dividends or earnings per share.
Q. 28 In Appendix 2, you demonstrate that the quarterly DCF model provides the theoretically correct valuation of stocks when dividends are paid quarterly. Do investors, in practice, recognize the actual timing and magnitude of cash flows when they value stocks and other securities?
A. 28 Yes. In valuing long-term government or corporate bonds, investors recognize that interest is paid semi-annually. Thus, the price of a longterm government or corporate bond is simply the present value of the semi-annual interest and principal payments on these bonds. Likewise, in valuing mortgages, investors recognize that interest is paid monthly.

Thus, the value of a mortgage loan is simply the present value of the monthly interest and principal payments on the loan. In valuing stock investments, stock investors correctly recognize that dividends are paid quarterly. Thus, a firm's stock price is the present value of the stream of quarterly dividends expected from owning the stock.
Q. 29 When valuing bonds, mortgages, or stocks, would investors assume that cash flows are received only at the end of the year, when, in fact, the cash flows are received semi-annually, quarterly, or monthly?

A 29 No. Assuming that cash flows are received at the end of the year when they are received semi-annually, quarterly, or monthly would lead investors to make serious mistakes in valuing investment opportunities. No rational investor would make the mistake of assuming that dividends or other cash flows are paid annually when, in fact, they are paid more frequently.
Q. 30 How do you estimate the growth component of the quarterly DCF model?
A. 30 I use both the average analysts' estimates of future earnings per share (EPS) growth reported by I/B/E/S Thomson Reuters (I/B/E/S) and the estimate of future earnings per share growth reported by Value Line.
Q. 31 Do you generally rely on EPS growth estimates from both I/B/E/S and Value Line?
A. 31 In applying the DCF model, I generally rely on the analysts' estimates reported by \(I / B / E / S\). However, as I discuss in this testimony, the water companies have such small market capitalization that there are generally only one or two I/B/E/S analysts' long-term growth forecasts available. To supplement the available I/B/E/S growth forecasts, I therefore also rely on the earnings growth forecasts reported by Value Line for American States, Aqua America, California Water, Connecticut Water, Middlesex Water, SJW, and York.

\section*{Q. 32 What are the analysts' estimates of future EPS growth?}
A. 32 As part of their research, financial analysts working at Wall Street firms periodically estimate EPS growth for each firm they follow. The EPS forecasts for each firm are then published. Investors who are contemplating purchasing or selling shares in individual companies review the forecasts. These estimates represent five-year forecasts of EPS growth.

\section*{Q. 33 What is I/B/E/S?}
A. \(33 \mathrm{I} / \mathrm{B} / E / \mathrm{S}\) is a division of Thomson Reuters that reports analysts' EPS growth forecasts for a broad group of companies. The forecasts are expressed in terms of a mean forecast and a standard deviation of forecast for each firm. Investors use the mean forecast as an estimate of future firm performance.

\section*{Q. 34 Why do you use the I/B/E/S growth estimates?}
A. 34 The I/B/E/S growth rates: (1) are widely circulated in the financial community, (2) include the projections of reputable financial analysts who develop estimates of future EPS growth, (3) are reported on a timely basis to investors, and (4) are widely used by institutional and other investors.
Q. 35 Why do you rely on analysts' projections of future EPS growth in estimating the investors' expected growth rate rather than looking at historical growth rates?
A. 35 I rely on analysts' projections of future EPS growth because there is considerable empirical evidence that investors use analysts' forecasts to estimate future earnings growth.
Q. 36 Have you performed any studies concerning the use of analysts' forecasts as an estimate of investors' expected growth rate, \(\mathbf{g}\) ?
A. 36 Yes, I prepared a study in conjunction with Willard T. Carleton, Professor Emeritus of Finance at the University of Arizona, on why analysts' forecasts are the best estimate of investors' expectation of future long-term growth. This study is described in a paper entitled "Investor Growth Expectations and Stock Prices: the Analysts versus History," published in the Spring 1988 edition of The Journal of Portfolio Management.

\section*{Q. 37 Please summarize the results of your study.}
A. 37 First, we performed a correlation analysis to identify the historically oriented growth rates which best described a firm's stock price. Then
we did a regression study comparing the historical growth rates with the average analysts' forecasts. In every case, the regression equations containing the average of analysts' forecasts statistically outperformed the regression equations containing the historical growth estimates. These results are consistent with those found by Cragg and Malkiel, the early major research in this area (John G. Cragg and Burton G. Malkiel, Expectations and the Structure of Share Prices, University of Chicago Press, 1982). These results are also consistent with the hypothesis that investors use analysts' forecasts, rather than historically oriented growth calculations, in making stock buy and sell decisions. They provide overwhelming evidence that the analysts' forecasts of future growth are superior to historically oriented growth measures in predicting a firm's stock price.

\section*{Q. 38 Has your study been updated to include more recent data?}
A. 38 Yes. Researchers at State Street Financial Advisors updated my study using data through year-end 2003. Their results continue to confirm that analysts' growth forecasts are superior to historically-oriented growth measures in predicting a firm's stock price.

\section*{Q. 39 What price do you use in your DCF model?}
A. 39 I use a simple average of the monthly high and low stock prices for each firm for the three-month period ending December 2009. These high and low stock prices were obtained from Thomson Reuters.

\section*{Q. 40 Why do you use the three-month average stock price in applying the DCF method?}
A. 40 I use the three-month average stock price in applying the DCF method because stock prices fluctuate daily, while financial analysts' forecasts for a given company are generally changed less frequently, often on a quarterly basis. Thus, to match the stock price with an earnings forecast, it is appropriate to average stock prices over a three-month period.
Q. 41 Do you include an allowance for flotation costs in your DCF analysis?
A. 41 Yes. I include a five percent allowance for flotation costs in my DCF calculations.
Q. 42 Please explain your inclusion of flotation costs.
A. 42 All firms that have sold securities in the capital markets have incurred some level of flotation costs, including underwriters' commissions, legal fees, printing expense, etc. These costs are withheld from the proceeds of the stock sale or are paid separately, and must be recovered over the life of the equity issue. Costs vary depending upon the size of the issue, the type of registration method used and other factors, but in general these costs range between three and five percent of the proceeds from the issue [see Lee, Inmoo, Scott Lochhead, Jay Ritter, and Quanshui Zhao, "The Costs of Raising Capital," The Journal of Financial Research, Vol. XIX No 1 (Spring 1996), 59-74, and

Clifford W. Smith, "Alternative Methods for Raising Capital," Journal of Financial Economics 5 (1977) 273-307]. In addition to these costs, for large equity issues (in relation to outstanding equity shares), there is likely to be a decline in price associated with the sale of shares to the public. On average, the decline due to market pressure has been estimated at two to three percent [see Richard H. Pettway, "The Effects of New Equity Sales Upon Utility Share Prices," Public Utilities Fortnightly, May 10, 1984, 35-39]. Thus, the total flotation cost, including both issuance expense and market pressure, could range anywhere from five to eight percent of the proceeds of an equity issue. I believe a combined five percent allowance for flotation costs is a conservative estimate that should be used in applying the DCF model in this proceeding.

\section*{Q. 43 Does KAWC issue equity in the capital markets?}
A. 43 No. Although KAWC does not issue equity in the capital markets, its parent must issue equity to provide KAWC the necessary financing to make investments in its water supply operations. If the parent is not able to recover its flotation costs through KAWC's rates, it will have no incentive to invest in KAWC.
Q. 44 Is a flotation cost adjustment only appropriate if a company issues stock during the test year?
A. 44 No. As described in Exhibit_(JVW-1), Appendix 3, a flotation cost adjustment is required whether or not a company issued new stock
during the test year. Previously incurred flotation costs have not been recovered in previous rate cases; rather, they are a permanent cost associated with past issues of common stock. Just as an adjustment is made to the embedded cost of debt to reflect previously incurred debt issuance costs (regardless of whether additional bond issuances were made in the test year), so should an adjustment be made to the cost of equity regardless of whether additional stock was issued during the test year.

\section*{Q. 45 How do you apply the DCF approach to obtain the cost of equity capital for KAWC?}
A. 45 I apply the DCF approach to the publicly-traded water companies shown on Exhibit__(JVW-1), Schedule 1 and the publicly-traded natural gas distribution companies (LDCs) shown on Exhibit__(JVW-1), Schedule 2.

\section*{Q. 46 How do you select your group of publicly-traded water companies?}
A. 46 I select all the water companies included in the Value Line Investment Survey that: (1) pay dividends; (2) did not decrease dividends during any quarter of the past two years; (3) have at least one analyst's longterm growth forecast; and (4) have not announced a merger. In addition, all of the companies included in my group, with the exception of Southwest Water, have a Value Line Safety Rank of 3, where 3 is the
average Safety Rank of the Value Line universe of companies. The Value Line Safety Rank for Southwest Water is 4.
Q. 47 Why do you eliminate companies that have either decreased or eliminated their dividend in the past two years?
A. 47 The DCF model requires the assumption that dividends will grow at a constant rate into the indefinite future. If a company has either decreased or eliminated its dividend in recent years, an assumption that the company's dividend will grow at the same rate into the indefinite future is questionable.
Q. 48 Why do you eliminate companies that do not have any analyst's long-term growth forecasts?
A. 48 As noted above, my studies indicate that the analysts' growth forecasts best approximate the growth forecasts used by investors in making stock buy and sell decisions; and thus, the average of the analysts' growth forecasts is the best available estimate of the growth term in the DCF Model. In my opinion, it is difficult to apply the DCF model to companies that do not have any analysts' long-term growth estimates.
Q. 49 Are the Value Line water companies widely followed by analysts in the investment community?
A. 49 No. As a result of their small size and low investor turnover, the water companies are generally followed by very few analysts. The number of analysts' estimates for each of the Value Line water companies is shown below in Table 1:

\section*{Table 1}

\section*{NUMBER OF LONG-TERM GROWTH FORECASTS FOR WATER COMPANIES}
\begin{tabular}{|r|l|c|c|c|}
\hline \begin{tabular}{l}
Line. \\
No.
\end{tabular} & Company & \begin{tabular}{c}
I/B/E/S \\
Analysts' \\
Estimates
\end{tabular} & \begin{tabular}{c}
Value \\
Line \\
Estimate
\end{tabular} & \begin{tabular}{c}
Value \\
Line \\
Edition
\end{tabular} \\
\hline 1 & Amer. States Water & 1 & 1 & Standard \\
\hline 2 & Amer. Water Works & 3 & 0 & Standard \\
\hline 3 & Aqua America & 3 & 1 & Standard \\
\hline 4 & Artesian Res. 'A' & 1 & 0 & Plus \\
\hline 5 & California Water & 2 & 1 & Standard \\
\hline 6 & Connecticut Water & NA & 1 & Plus \\
\hline 7 & Middlesex Water & 1 & 1 & Plus \\
\hline 8 & Pennichuck & NA & 0 & Plus \\
\hline 9 & SJW Corp. & NA & 1 & Plus \\
\hline 10 & Southwest Water & 1 & 0 & Standard \\
\hline 11 & York Water & 1 & 1 & Plus \\
\hline
\end{tabular}
Q. 50 Do you normally include companies in your proxy groups that have only one or two analysts' long-term growth forecasts?
A. 50 No. I normally include a company in my proxy group only if there are at least three analysts' estimates of long-term growth. On the basis of my professional judgment, I believe that cost of equity estimates based on three or more analysts' estimates are more reliable than cost of equity estimates based on just one or two forecasts.
Q. 51 Recognizing the greater uncertainty associated with DCF results based on just one or two analysts' forecasts, do you supplement your DCF results for the water companies with a DCF analysis of an additional proxy group?
A. 51 Yes. Given the greater uncertainty in applying the DCF model to companies with only one or two analysts' growth forecasts, as noted above, I also apply the DCF model to an additional proxy group
consisting of natural gas distribution companies ("LDCs"), and each of the companies in the LDC proxy group has at least two analysts' estimates of long-term growth.

\section*{Q. 52 You note above that you also eliminate from your proxy groups companies that have announced mergers. Why do you eliminate companies that have announced mergers that are not yet completed?}
A. 52 A merger announcement can sometimes have a significant impact on a company's stock price because of anticipated merger-related cost savings and new market opportunities. Analysts' growth forecasts, on the other hand, are necessarily related to companies as they currently exist, and do not reflect investors' views of the potential cost savings and new market opportunities associated with mergers. The use of a stock price that includes the value of potential mergers in conjunction with growth forecasts that do not include the growth enhancing prospects of potential mergers produces DCF results that tend to distort a company's cost of equity.
Q. 53 Please summarize the result of your application of the DCF model to your water company proxy group.
A. 53 As shown in Exhibit_(JVW-1), Schedule 1, my application of the DCF model to the Value Line water companies produces a market-weighted average DCF result of 13.2 percent and a simple average DCF result of 12.1 percent.
Q. 54 Is it generally more appropriate to use a market-weighted average DCF result or a simple average DCF result to estimate a company's cost of equity?
A. 54 It is generally more appropriate to refer to a market value weighted average result, as I do in reporting the average result for the proxy group of LDCs. However, two companies in the water company group, American Water Works and Aqua America, represent two-thirds of the market value of all companies in the water company group. Thus, referring to a market-weighted average result would effectively cause a market-weighted average result to depend primarily on the result for two companies, American Water Works and Aqua America, which, in this case, have higher than average DCF results than the smaller companies. I therefore conservatively use the 12.1 percent simple average rather than the 13.2 percent market-weighted average DCF result for the water companies to arrive at my recommendation in this proceeding.
Q. 55 You note above that you also apply your DCF method to a proxy group of LDCs. Why do you apply your DCF model to a proxy group of LDCs?
A. 55 I apply my DCF model to a proxy group of LDCs because: (1) the companies in the water company group are generally followed by only one or two analysts; (2) the LDCs are a conservative proxy for the risk of investing in water companies; and (3) it is useful to examine the cost
of equity results for a larger group of companies of similar risk that have a wider following in the investment community in order to test the reasonableness of the results obtained by applying cost of equity methodologies to the small group of publicly-traded water companies. Financial theory does not require that companies be in exactly the same industry to be comparable in risk.

\section*{Q. 56 How do you select your proxy group of LDCs?}
A. 56 I select all the companies in Value Line's natural gas industry groups that: (1) are in the business of natural gas distribution; (2) paid dividends during every quarter of the last two years; (3) did not decrease dividends during any quarter of the past two years; (4) have at least two analysts included in the I/B/E/S consensus growth forecast; \({ }^{1}\) and (5) have not announced a merger. In addition, all of the LDCs included in my group have an investment grade bond rating and a Value Line Safety Rank of 1, 2, or 3. The LDCs in my DCF proxy group and the average DCF result are shown on Exhibit__(JVW-1), Schedule 2.

\section*{Q. 57 How are the LDCs similar to KAWC?}
A. 57 Like KAWC, the LDCs are regulated public utilities that: (1) invest primarily in a capital-intensive physical network that connects the

\footnotetext{
1
As I note above, on the basis of my professional judgment, I normally specify that the I/B/E/S long-term earnings growth forecast must include the forecasts of at least three analysts. However, in December 2009 there are only five natural gas companies with growth forecasts from at least three analysts. In this study, therefore, I also include results for companies that have growth forecasts based on two analysts' growth forecasts.
}
customer to the source of supply; and (2) sell their products and services at regulated rates to customers whose demand is primarily dependent on weather and the state of the economy.

\section*{Q. 58 Does your LDC proxy group meet the standards of the Hope and Bluefield cases you cite above?}
A. 58 Yes. The Hope and Bluefield standard states that a public utility should be allowed to earn a return on its investment that is commensurate with the returns investors are able to earn on investments having similar risk. The LDCs are a group of companies that meet the standards of the Hope and Bluefield cases because they are a conservative proxy for the risk of investing in KAWC.
Q. 59 Do you have any empirical evidence that the LDCs in your proxy group are a conservative proxy for KAWC?
A. 59 Yes. The average Value Line Safety Rank for my proxy group of LDCs is approximately 2 , on a scale where 1 is the most safe and 5 is the least safe, whereas the water companies have an average Value Line Safety Rank of 3.
Q. 60 Please summarize the results of your application of the DCF method to the LDC proxy group.
A. 60 My application of the DCF method to the LDC proxy group produces a market-weighted average result of 11.8 percent, which is reduced to 11.4 percent when the 5.0 percent DCF result for Energen and the high 17.6 percent DCF result for MDU Resources are eliminated from the
sample, as shown on Exhibit__(JVW-1), Schedule 2. I conservatively rely on the 11.4 percent result obtained from eliminating these outlier highest and lowest results.

\section*{VII. RISK PREMIUM APPROACH}
Q. 61 Please describe the risk premium approach to estimating KAWC's cost of equity.
A. 61 The risk premium approach is based on the principle that investors expect to earn a return on an equity investment in KAWC that reflects a "premium" over and above the return they expect to earn on an investment in a portfolio of long-term bonds. This equity risk premium compensates equity investors for the additional risk they bear in making equity investments versus bond investments.
Q. 62 How do you measure the required risk premium on an equity investment in KAWC?
A. 62 I use two methods to estimate the required risk premium on an equity investment in KAWC. The first is called the ex ante risk premium method and the second is called the ex post risk premium method.

\section*{A. Ex Ante Risk Premium Approach}
Q. 63 Please describe your ex ante risk premium approach for measuring the required risk premium on an equity investment in KAWC.
A. 63 My ex ante risk premium method is based on studies of the DCF expected return on a comparable group of natural gas distribution
companies, which I compared to the interest rate on Moody's A-rated utility bonds. Specifically, for each month in my study period, I calculate the risk premium using the equation,
\[
R P_{P R O X Y}=D C F_{P R O X Y}-I_{A}
\]
where:
\(\mathrm{RP}_{\mathrm{PROXY}}=\quad\) the required risk premium on an equity investment in the proxy group of companies;

DCF \(_{\text {PROXY }}=\) average DCF estimated cost of equity on a portfolio of proxy companies; and
\(\mathrm{I}_{\mathrm{A}} \quad=\quad\) the yield to maturity on an investment in A-rated utility bonds.

I then perform a regression analysis to determine if there is a relationship between the calculated risk premium and interest rates. Finally, I use the results of the regression analysis to estimate the investors' required risk premium. To estimate the cost of equity, I then add the required risk premium to the interest rate on A-rated utility bonds. A detailed description of my ex ante risk premium studies is contained in Appendix 4, and the underlying DCF results and interest rates are displayed in Exhibit__(JVW-1), Schedule 3.

\section*{Q. 64 Why do you apply your ex ante risk premium study to LDCs rather than to water companies?}
A. 64 I apply my ex ante risk premium approach to LDCs rather than to water companies because the LDCs are similar in risk to the water companies and there is sufficient data to apply the DCF method to the sample companies over a relatively long period of time. In contrast, as discussed above, the water companies are generally followed by only
one or two analysts, and there are relatively few companies with consistent data extending back for a reasonably long study period.

\section*{Q. 65 What estimated risk premium do you obtain from your ex ante risk premium method?}
A. 65 As described in Appendix 4, my analyses produce an estimated risk premium over the yield on A-rated utility bonds equal to 4.9 percent.
Q. 66 What cost of equity result do you obtain from your ex ante risk premium study?
A. 66 To estimate the cost of equity using the ex ante risk premium method, one may add the estimated risk premium over the yield on A-rated utility bonds to the forecasted yield to maturity on A-rated utility bonds. \({ }^{2}\) The forecasted yield to maturity on A-rated utility bonds, 6.3 percent, is obtained by adding Value Line's forecasted 50-basis point increase in the yield on AAA-rated corporate bonds over the period Q4 2009 to Q4 2010 to the 5.8 percent average yield on Moody's A-rated utility bonds in December 2009. \({ }^{3}\) My analyses produce an estimated risk premium over the yield on A-rated utility bonds equal to 4.9 percent. Adding an estimated risk premium of 4.9 percent to the 6.3 percent yield to maturity on A-rated utility bonds produces a cost of equity estimate of 11.2 percent using the ex ante risk premium method (see Appendix 4).

One could use the yield to maturity on other debt investments to measure the interest rate component of the risk premium approach as long as one uses the yield on the same debt investment to measure the expected risk premium component of the risk premium approach. I choose to use the yield on A-rated utility bonds because it is a frequently-used benchmark for utility bond yields.
Value Line Selection \& Opinion, November 27, 2009, p. 3182.

\section*{B. Ex Post Risk Premium Approach}

\section*{Q. 67 Please describe your ex post risk premium approach for measuring the required risk premium on an equity investment in KAWC.}
A. 67 I first perform a study of the comparable returns received by bond and stock investors over the 72 years of my study. I estimate the returns on stock and bond portfolios using stock price and dividend yield data on the S\&P 500 and bond yield data on Moody's A-rated utility bonds. My study consists of investing one dollar in the S\&P 500 and Moody's Arated utility bonds at the beginning of 1937 and reinvesting the principal plus return each year to 2009. The return associated with each stock portfolio is the sum of the annual dividend yield and capital gain (or loss) which accrue to this portfolio during the year(s) in which it is held. The return associated with the bond portfolio, on the other hand, is the sum of the annual coupon yield and capital gain (or loss) which accrue to the bond portfolio during the year(s) in which it is held. The resulting annual returns on the stock and bond portfolios purchased in each year between 1937 and 2009 are shown on Exhibit_(JVW-1), Schedule 4. The average annual return on an investment in the S\&P 500 stock portfolio is 10.8 percent, while the average annual return on an investment in the Moody's A-rated utility bond portfolio is 6.3 percent. The risk premium on the S\&P 500 stock portfolio is, therefore, 4.5 percent.

I also conduct a second study using stock data on the S\&P Utilities rather than the S\&P 500. The S\&P Utility stock portfolio shows an average annual return of 10.5 percent per year. Thus, the return on the S\&P Utility stock portfolio exceeded the return on the Moody's A-rated utility bond portfolio by 4.2 percent (see Exhibit_(JVW-1), Schedule 5).

\section*{Q. 68 Why is it appropriate to perform your ex post risk premium analysis using both the S\&P 500 and the S\&P Utility Stock indices?}
A. 68 I perform my ex post risk premium analysis on both the S\&P 500 and the S\&P Utilities because I believe utilities today face risks that are somewhere in between the average risk of the S\&P Utilities and the S\&P 500 over the years 1937 to 2009. Thus, I use the average of the two historically-based risk premiums as my estimate of the required risk premium in my ex post risk premium method. I note that the spread between the average risk premium on the S\&P 500 and the average risk premium on the S\&P Utilities is just 30 basis points.

\section*{Q. 69 Why do you analyze investors' experiences over such a long time frame?}
A. 69 Because day-to-day stock price movements can be somewhat random, it is inappropriate to rely on short-run movements in stock prices in order to derive a reliable risk premium. Rather than buying and selling frequently in anticipation of highly volatile price movements, most
investors employ a strategy of buying and holding a diversified portfolio of stocks. This buy-and-hold strategy will allow an investor to achieve a much more predictable long-run return on stock investments and at the same time will minimize transaction costs. The situation is very similar to the problem of predicting the results of coin tosses. I cannot predict with any reasonable degree of accuracy the result of a single, or even a few, flips of a balanced coin; but I can predict with a good deal of confidence that approximately 50 heads will appear in 100 tosses of this coin. Under these circumstances, it is most appropriate to estimate future experience from long-run evidence of investment performance.

\section*{Q. 70 Would your study provide a different ex post risk premium if you started with a different time period?}
A. 70 Yes, the ex post risk premium results vary somewhat depending on the historical time period chosen. My policy is to go back as far in history as I can get reliable data. I believe it is most meaningful to begin after the passage and implementation of the Public Utility Holding Company Act of 1935. This Act significantly changed the structure of the public utility industry. Since the Public Utility Holding Company Act of 1935 was not implemented until the beginning of 1937, I feel that numbers taken from before this date are not comparable to those taken after. (The repeal of the 1935 Act does not have a material impact on the structure of the public utility industry; thus, the Act's repeal does not have any impact on my choice of time period.)
Q. 71 Why is it necessary to examine the yield from debt investments in order to determine the investors' required rate of return on equity capital?
A. 71 As previously explained, investors expect to earn a return on their equity investment that exceeds currently available bond yields because the return on equity, being a residual return, is less certain than the yield on bonds and investors must be compensated for this uncertainty. Second, investors' current expectations concerning the amount by which the return on equity will exceed the bond yield will be influenced by historical differences in returns to bond and stock investors. For these reasons, we can estimate investors' current expected returns from an equity investment from knowledge of current bond yields and past differences between returns on stocks and bonds.
Q. 72 Has there been any significant trend in the ex post equity risk premium over the 1937 to 2009 time period of your study?
A. 72 No. Statisticians test for trends in data series by regressing the data observations against time. I have performed such a time series regression on my two data sets of historical risk premiums. As shown below in Tables 2 and 3, there is no statistically significant trend in my risk premium data. Indeed, the coefficient on the time variable is insignificantly different from zero (if there were a trend, the coefficient on the time variable should be significantly different from zero).

TABLE 2
REGRESSION OUTPUT FOR RISK PREMIUM ON S\&P 500
\begin{tabular}{|c|l|c|c|c|c||}
\hline \begin{tabular}{c}
Line \\
No.
\end{tabular} & Intercept & Time & \begin{tabular}{c}
Adjusted R \\
Square
\end{tabular} & F \\
\hline 1 & Coefficient & 3.096 & \((0.002)\) & 0.023 & 2.66 \\
\hline 2 & T Statistic & 1.654 & \((1.630)\) & & \\
\hline
\end{tabular}

TABLE 3
REGRESSION OUTPUT FOR RISK PREMIUM ON S\&P UTILITIES
\begin{tabular}{|c|l|c|c|c|c||}
\hline Line No. & & Intercept & Time & \begin{tabular}{c}
Adjusted R \\
Square
\end{tabular} & F \\
\hline 1 & Coefficient & 1.383 & \((0.001)\) & -0.006 & 0.56 \\
\hline 2 & T Statistic & 0.776 & \((0.751)\) & & \\
\hline
\end{tabular}
Q. 73 Is your conclusion that there is no significant trend in the equity risk premium supported in the financial literature?
A. 73 Yes. Ibbotson \({ }^{\circledR}\) SBBI \(^{\circledR} 2009\) Valuation Edition Yearbook Stocks, Bonds, Bills, and Inflation® ("lbbotson \({ }^{\circledR}\) SBBI \({ }^{\circledR \eta}\)) published by Morningstar, Inc., contains an analysis of "trends" in historical risk premium data. lbbotson \({ }^{\circledR}\) SBBI \(^{\circledR}\) uses correlation analysis to determine if there is any pattern or "trend" in risk premiums over time. This analysis also demonstrates that there are no trends in risk premiums over time.
Q. 74 Why is it significant that historical risk premiums have no trend or other statistical pattern over time?
A. 74 The significance of this evidence is that the average historical risk premium is a reasonable estimate of the future expected risk premium. As noted in Ibbotson® SBBI®:

The significance of this evidence is that the realized equity risk premium next year will not be dependent on the realized equity risk premium from this year. That is, there is no discernable pattern in the realized equity risk premium-it is virtually impossible to forecast next year's realized risk premium based on the premium of the previous year. For example, if this
year's difference between the riskless rate and the return on the stock market is higher than last year's, that does not imply that next year's will be higher than this year's. It is as likely to be higher as it is lower. The best estimate of the expected value of a variable that has behaved randomly in the past is the average (or arithmetic mean) of its past values. [lbbotson \(®\) SBBI®, page 61.]

\section*{Q. 75 What conclusions do you draw from your ex post risk premium analyses about the required return on an equity investment in KAWC?}
A. 75 My studies provide strong evidence that investors today require an equity return of approximately 4.2 to 4.5 percentage points above the expected yield on A-rated utility bonds. The forecasted yield on A-rated utility bonds at 2010 is 6.3 percent. As described above, this forecasted yield to maturity on A-rated utility bonds is obtained by adding Value Line's forecasted 50-basis point increase in the yield on AAA-rated corporate bonds over the period Q4 2009 to Q4 2010 to the 5.8 percent average yield on Moody's A-rated utility bonds in December 2009. Adding a 4.2 to 4.5 percentage point risk premium to a yield of 6.3 percent on A-rated utility bonds, I obtain an expected return on equity in the range 10.5 percent to 10.8 percent, with a midpoint of 10.6 percent. Because the ex post methodology does not reflect flotation costs, I add a 19 basis-point allowance for flotation costs, which I determine by calculating the difference in my DCF results with and without a flotation cost allowance. Adding a 19 basis-point allowance for flotation costs, I obtain an estimate of 10.8 percent as the cost of equity for KAWC using the ex post risk premium method.

\section*{VIII. CAPITAL ASSET PRICING MODEL}

\section*{Q. 76 What is the CAPM?}
A. 76 The CAPM is an equilibrium model of the security markets in which the expected or required return on a given security is equal to the risk-free rate of interest, plus the company equity "beta," times the market risk premium:

Cost of equity \(=\) Risk-free rate + Equity beta x Market risk premium The risk-free rate in this equation is the expected rate of return on a risk-free government security, the equity beta is a measure of the company's risk relative to the market as a whole, and the market risk premium is the premium investors require to invest in the market basket of all securities compared to the risk-free security.
Q. 77 How do you use the CAPM to estimate the cost of equity for your proxy companies?
A. 77 The CAPM requires an estimate of the risk-free rate, the companyspecific risk factor or beta, and the expected return on the market portfolio. For my estimate of the risk-free rate, I use the forecast yield to maturity on 20-year Treasury bonds \({ }^{4}\) of 4.7 percent, using data from

\footnotetext{
4
}

I use the 20-year Treasury bond to estimate the risk-free rate because SBBI estimates the risk premium using 20-year Treasury bonds and the analyst should use the same maturity to estimate the risk-free rate as is used to estimate the risk premium on the market portfolio.

Value Line. \({ }^{5}\) For my estimate of the company-specific risk, or beta, I use the average Value Line beta of 0.73 for my proxy companies. For my estimate of the expected risk premium on the market portfolio, I use two approaches. First, I use the Ibbotson \({ }^{\circledR}\) SBBI \(^{\circledR} 6.5\) percent risk premium on the market portfolio, which is measured from the difference between the arithmetic mean return on the S\&P 500 (11.7 percent) and the income return on 20-year Treasury bonds (5.2 percent), as reported by Ibbotson \({ }^{\circledR}\) SBBI \(^{\circledR}\) (11.7-5.2 = 6.5). Second, I estimate the risk premium on the market portfolio from the difference between the DCF cost of equity for the S\&P 500 (13.1 percent) and the forecast yield to maturity on 20-year Treasury bonds, (4.70 percent). My second approach produces a risk premium equal to 8.4 percent (13.1-4.7 = 8.4).

\section*{Q. 78 Why do you recommend that the risk premium on the market portfolio be estimated using the arithmetic mean return on the S\&P 500?}
A. 78 As explained in Ibbotson \({ }^{\circledR}\) SBBI \({ }^{\circledR}\), the arithmetic mean return is the best approach for calculating the return investors expect to receive in the future:

The equity risk premium data presented in this book are arithmetic average risk premia as opposed to geometric

Value Line Investment Survey, Selection \& Opinion, November 27, 2009, p. 3182. Value Line projects a 30-basis point increase in long-term Treasury bond yields over the period Q4 2009 to Q4 2010. Adding 30 basis points to the 4.4 percent average yield on 20-year Treasury bonds at December 2009 produces a forecasted yield of 4.7 percent.
average risk premia. The arithmetic average equity risk premium can be demonstrated to be most appropriate when discounting future cash flows. For use as the expected equity risk premium in either the CAPM or the building block approach, the arithmetic mean or the simple difference of the arithmetic means of stock market returns and riskless rates is the relevant number. This is because both the CAPM and the building block approach are additive models, in which the cost of capital is the sum of its parts. The geometric average is more appropriate for reporting past performance, since it represents the compound average return. [SBBI, p. 59.]
A discussion of the importance of using arithmetic mean returns in the context of CAPM or risk premium studies is contained in Schedule 6.

\section*{Q. 79 Why do you recommend that the risk premium on the market portfolio be estimated using the income return on 20-year Treasury bonds rather than the total return on these bonds?}
A. 79 As discussed above, the CAPM requires an estimate of the risk-free rate of interest. When Treasury bonds are issued, the income return on the bond is risk free, but the total return, which includes both income and capital gains or losses, is not. Thus, the income return should be used in the CAPM because it is only the income return that is risk free.
Q. 80 What CAPM result do you obtain when you estimate the expected return on the market portfolio from the arithmetic mean difference between the return on the market and the yield on 20-year Treasury bonds?
A. 80 I obtain a CAPM estimate of 9.6 percent [see Schedule 7].
Q. 81 What CAPM result do you obtain when you estimate the risk premium on the market portfolio by applying the DCF model to the S\&P 500?
A. 81 I obtain a CAPM result of 11.0 percent [see Schedule 8].
Q. 82 Can a reasonable application of the CAPM produce higher cost of equity results than you have just reported?
A. 82 Yes. The CAPM tends to underestimate the cost of equity for small market capitalization companies such as my water companies. \({ }^{6}\)
Q. 83 Does the finance literature support an adjustment to the CAPM equation to account for a company's size as measured by market capitalization supported in the finance literature?
A. 83 Yes. For example, Ibbotson \({ }^{\circledR} \mathrm{SBBI}^{\circledR}\) supports such an adjustment. Their estimates of the size premium required to be added to the basic CAPM cost of equity are shown below in Table 4.

TABLE 4
IBBOTSON \({ }^{\circledR}\) ESTIMATES OF PREMIUMS FOR COMPANY SIZE \({ }^{7}\)
\begin{tabular}{|l|r|c|}
\hline Size & \begin{tabular}{r}
Smallest Mkt. Cap. \\
(\$Millions)
\end{tabular} & Premium \\
\hline Large-Cap (No Adjustment) & \(>7,360.271\) & -- \\
\hline Mid-Cap & \(1,849.950\) & \(0.94 \%\) \\
\hline Low-Cap & 453.398 & \(1.74 \%\) \\
\hline Micro-Cap & 1.575 & \(3.74 \%\) \\
\hline
\end{tabular}
Q. 84 Are there other reasons to believe that the CAPM may produce cost of equity estimates at this time that are unreasonably low?

\footnotetext{
\(6 \quad\) In addition, as discussed above, these estimates, based on current interest rates rather than forecasted rates, are conservative. If one were to use a forecasted interest rate on Treasury bonds, the CAPM cost of equity estimates would be significantly higher. 7 Ibbotson \({ }^{\circledR}\) SBBI \(^{\circledR} 2009\) Valuation Yearbook.
}
A. 84 Yes. There is considerable evidence in the finance literature that the CAPM tends to underestimate the cost of equity for companies whose equity beta is less than 1.0 and to overestimate the cost of equity for companies whose equity beta is greater than 1.0. \({ }^{8}\)
Q. 85 Can you briefly summarize the evidence that the CAPM underestimates the required returns for securities or portfolios with betas less than 1.0 and overestimates required returns for securities or portfolios with betas greater than 1.0?
A. 85 Yes. The CAPM conjectures that security returns increase with increases in security betas in line with the equation
\[
E R_{i}=R_{f}+\beta_{i}\left\lfloor E R_{m}-R_{f}\right\rfloor,
\]
where \(E R_{i}\) is the expected return on security or portfolio \(i, R_{f}\) is the riskfree rate, \(E R_{m}-R_{f}\) is the expected risk premium on the market portfolio, and \(\beta_{i}\) is a measure of the risk of investing in security or portfolio \(i\). If the CAPM correctly predicts the relationship between risk and return in the marketplace, then the realized returns on portfolios of securities and the corresponding portfolio betas should lie on the solid straight line with intercept \(R_{f}\) and slope \(\left[R_{m}-R_{f}\right]\) shown below.

8
See, for example, Fischer Black, Michael C. Jensen, and Myron Scholes, "The Capital Asset Pricing Model: Some Empirical Tests," in Studies in the Theory of Capital Markets, M. Jensen, ed. New York: Praeger, 1972; Eugene Fama and James MacBeth, "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy 81 (1973), pp. 607-36; Robert Litzenberger and Krishna Ramaswamy, "The Effect of Personal Taxes and Dividends on Capital Asset Prices: Theory and Empirical Evidence," Journal of Financial Economics 7 (1979), pp. 163-95.; Rolf Banz, "The Relationship between Return and Market Value of Common Stocks," Journal of Financial Economics (March 1981), pp. 3-18; and Eugene Fama and Kenneth French, "The Cross-Section of Expected Returns," Journal of Finance (June 1992), pp. 427-465.

Ave. Portfolio Return

Figure 1
Average Returns Compared to Beta for Portfolios Formed on Prior Beta

Financial scholars have found that the relationship between realized returns and betas is inconsistent with the relationship posited by the CAPM. As described in Fama and French (1992) and Fama and French (2004), the actual relationship between portfolio betas and returns is shown by the dotted line in the figure above. Although financial scholars disagree on the reasons why the return/beta relationship looks more like the dotted line in the figure than the solid line, they generally agree that the dotted line lies above the solid line for portfolios with betas less than 1.0 and below the solid line for portfolios with betas greater than 1.0. Thus, in practice, scholars generally agree that the CAPM underestimates portfolio returns for companies with betas less than 1.0, and overestimates portfolio returns for portfolios with betas greater than 1.0.
Q. 86 What conclusions do you reach from your review of the literature on the CAPM to predict the relationship between risk and return in the marketplace?
A. 86 I conclude that the financial literature strongly supports the proposition that the CAPM underestimates the cost of equity for companies such as public utilities with betas less than 1.0. I also conclude that the results of the CAPM should be given little or no weight in this proceeding because the average beta for my proxy group of water companies is significantly less than 1.0.

\section*{IX. FAIR RATE OF RETURN ON EQUITY}
Q. 87 Please summarize your findings concerning KAWC's cost of equity.
A. 87 Based on my application of several cost of equity methods to my comparable companies, I conclude that my comparable companies' cost of equity is in the range 10.8 percent to 12.1 percent.

TABLE 5
COST OF EQUITY MODEL RESULTS
\begin{tabular}{||l|c||}
\hline METHOD & MODEL RESULT \\
\hline DCF--Water & \(12.1 \%\) \\
\hline DCF--LDC & \(11.4 \%\) \\
\hline Ex Ante Risk Premium & \(11.2 \%\) \\
\hline Ex Post Risk Premium & \(10.8 \%\) \\
\hline Range of Results & \(10.8 \%-12.1 \%\) \\
\hline
\end{tabular}
Q. 88 What is your recommendation as to a fair rate of return on common equity for KAWC?
A. 88 I conservatively recommend that KAWC be allowed a fair rate of return on common equity in the range 10.8 percent to 12.1 percent. My recommended return on equity is conservative in that I use: (1) the lower simple average DCF result for the proxy water companies, even though a market-value weighted average is generally more appropriate for estimating the cost of equity; and (2) the lower average result for the LDC proxy group obtained by eliminating outlier low and high results.
Q. 89 Does this conclude your testimony?
A. 89 Yes, it does.

\section*{LIST OF SCHEDULES AND APPENDICES}
\begin{tabular}{|c|c|}
\hline Schedule 1 & Summary of Discounted Cash Flow Analysis for Water Companies \\
\hline Schedule 2 & Summary of Discounted Cash Flow Analysis for Natural Gas Companies \\
\hline Schedule 3 & Comparison of the DCF Expected Return on an Investment in Natural Gas Companies to the Interest Rate on Moody's A-Rated Utility Bonds \\
\hline Schedule 4 & Comparative Returns on S\&P 500 Stock Index and Moody's A-Rated Bonds 1937-2009 \\
\hline Schedule 5 & Comparative Returns on S\&P Utility Stock Index and Moody's A-Rated Bonds 1937-2009 \\
\hline Schedule 6 & Using the Arithmetic Mean to Estimate the Cost of Equity Capital \\
\hline Schedule 7 & Calculation of Capital Asset Pricing Model Cost of Equity Using the Ibbotson \({ }^{\circledR}\) SBBI \(^{\circledR}\) 6.5 Percent Risk Premium \\
\hline Schedule 8 & Calculation of Capital Asset Pricing Model Cost of Equity Using DCF Estimate of the Expected Rate of Return on the Market Portfolio \\
\hline Appendix 1 & Qualifications of James H. Vander Weide \\
\hline Appendix 2 & Derivation of the Quarterly DCF Model \\
\hline Appendix 3 & Adjusting for Flotation Costs in Determining a Public Utility's Allowed Rate of Return on Equity \\
\hline Appendix 4 & Ex Ante Risk Premium Method \\
\hline Appendix 5 & Ex Post Risk Premium Method \\
\hline
\end{tabular}

\section*{KENTUCKY AMERICAN WATER COMPANY EXHIBIT__(JVW-1) SCHEDULE 1 SUMMARY OF DISCOUNTED CASH FLOW ANALYSIS FOR PROXY WATER COMPANY COMPANIES}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LINE NO. & COMPANY & \(\mathrm{D}_{4}\) & 3-MO. AVE. PRICE & \begin{tabular}{l}
I/B/E/S \\
GROWTH
\end{tabular} & VALUE LINE FORECASTED OR REPORTED EPS GROWTH & AVERAGE GROWTH & MARKET VALUE & \[
\begin{gathered}
\text { COST } \\
\text { OF } \\
\text { EQUITY }
\end{gathered}
\] \\
\hline 1 & Amer. States Water & 0.250 & 34.367 & 4.00\% & 9.50\% & 6.8\% & 581 & 10.1\% \\
\hline 2 & Amer. Water Works & 0.210 & 20.783 & 9.88\% & & 9.9\% & 3,278 & 14.7\% \\
\hline 3 & Aqua America & 0.145 & 16.528 & 7.00\% & 10\% & 8.5\% & 2,803 & 12.5\% \\
\hline 4 & Artesian Res. 'A' & 0.187 & 16.938 & 5.00\% & & 5.0\% & 104 & 9.9\% \\
\hline 5 & California Water & 0.295 & 37.225 & 10.00\% & 9\% & 9.5\% & 938 & 13.3\% \\
\hline 6 & Connecticut Water & 0.228 & 23.383 & & 9.00\% & 9.0\% & 197 & 13.6\% \\
\hline 7 & Middlesex Water & 0.180 & 16.175 & 8.00\% & 7.50\% & 7.8\% & 228 & 13.0\% \\
\hline 8 & Pennichuck & 0.175 & 22.650 & 9.00\% & & 9.0\% & 85 & 12.7\% \\
\hline 9 & SJW Corp. & 0.165 & 22.173 & 10.00\% & 10\% & 10.0\% & 542 & 13.6\% \\
\hline 10 & Southwest Water & 0.050 & 5.728 & 5.00\% & & 5.0\% & 87 & 7.5\% \\
\hline 11 & York Water & 0.126 & 14.463 & 8.00\% & 7.50\% & 7.8\% & 134 & 11.9\% \\
\hline 12 & Average \({ }^{9}\) & & & & & & & 12.1\% \\
\hline 13 & Market-weighted Average & & & & & & & 13.2\% \\
\hline
\end{tabular}

Notes:
\(\mathrm{d}_{0}\) \(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}\)
\(\mathrm{P}_{0} \quad=\quad\) Average of the monthly high and low stock prices during the three months ending December 2009 per Thomson Reuters.
FC \(\quad=\quad\) Flotation costs expressed as a percent of gross proceeds.
\(g \quad=\) Average of I/B/E/S and Value Line forecasts of future earnings growth December 2009.
\(\mathrm{k} \quad=\) Cost of equity using the quarterly version of the DCF model shown by the formula below:
\[
k=\frac{d_{1}(1+k)^{.75}+d_{2}(1+k)^{.50}+d_{3}(1+k)^{.25}+d_{4}}{P_{0}(1-F C)}+g
\]
\({ }^{9}\) It is generally more appropriate to refer to a market value weighted average result, as I do in reporting the average result for the proxy group of LDCs. However, two companies in the water company group, American Water Works and Aqua America, represent two-thirds of the market value of all companies in the water company group. Thus, referring to a market-weighted average result would effectively cause a market-weighted average result to depend primarily on the result for two companies, American Water Works and Aqua America, which, in this case, have higher than average DCF results than the smaller companies. I therefore conservatively use the 12.1 percent simple average rather than the 13.2 percent market-weighted average DCF result for the water companies to arrive at my recommendation in this proceeding.

\section*{KENTUCKY AMERICAN WATER COMPANY EXHIBIT__(JVW-1) SCHEDULE 2 SUMMARY OF DISCOUNTED CASH FLOW ANALYSIS FOR NATURAL GAS DISTRIBUTION COMPANIES}

Notes:

\section*{KENTUCKY AMERICAN WATER COMPANY \\ EXHIBIT__(JVW-1) \\ SCHEDULE 3 COMPARISON OF DCF EXPECTED RETURN ON AN EQUITY INVESTMENT IN NATURAL GAS DISTRIBUTION COMPANIES TO THE INTEREST RATE ON A-RATED UTILITY BONDS}
\begin{tabular}{|r|l|l|l|r|}
\hline \begin{tabular}{r}
Line \\
No.
\end{tabular} & Date & DCF & \multicolumn{1}{l|}{\begin{tabular}{l}
Bond \\
Yield
\end{tabular}} & \begin{tabular}{r}
Risk \\
Premium
\end{tabular} \\
\hline 1 & Jun-98 & 0.1154 & 0.0703 & 0.0451 \\
\hline 2 & Jul-98 & 0.1186 & 0.0703 & 0.0483 \\
\hline 3 & Aug-98 & 0.1234 & 0.0700 & 0.0534 \\
\hline 4 & Sep-98 & 0.1273 & 0.0693 & 0.0580 \\
\hline 5 & Oct-98 & 0.1260 & 0.0696 & 0.0564 \\
\hline 6 & Nov-98 & 0.1211 & 0.0703 & 0.0508 \\
\hline 7 & Dec-98 & 0.1185 & 0.0691 & 0.0494 \\
\hline 8 & Jan-99 & 0.1195 & 0.0697 & 0.0498 \\
\hline 9 & Feb-99 & 0.1243 & 0.0709 & 0.0534 \\
\hline 10 & Mar-99 & 0.1257 & 0.0726 & 0.0531 \\
\hline 11 & Apr-99 & 0.1260 & 0.0722 & 0.0538 \\
\hline 12 & May-99 & 0.1221 & 0.0747 & 0.0474 \\
\hline 13 & Jun-99 & 0.1208 & 0.0774 & 0.0434 \\
\hline 14 & Jul-99 & 0.1222 & 0.0771 & 0.0451 \\
\hline 15 & Aug-99 & 0.1220 & 0.0791 & 0.0429 \\
\hline 16 & Sep-99 & 0.1226 & 0.0793 & 0.0433 \\
\hline 17 & Oct-99 & 0.1233 & 0.0806 & 0.0427 \\
\hline 18 & Nov-99 & 0.1240 & 0.0794 & 0.0446 \\
\hline 19 & Dec-99 & 0.1280 & 0.0814 & 0.0466 \\
\hline 20 & Jan-00 & 0.1301 & 0.0835 & 0.0466 \\
\hline 21 & Feb-00 & 0.1344 & 0.0825 & 0.0519 \\
\hline 22 & Mar-00 & 0.1344 & 0.0828 & 0.0516 \\
\hline 23 & Apr-00 & 0.1316 & 0.0829 & 0.0487 \\
\hline 24 & May-00 & 0.1292 & 0.0870 & 0.0422 \\
\hline 25 & Jun-00 & 0.1295 & 0.0836 & 0.0459 \\
\hline 26 & Jul-00 & 0.1317 & 0.0825 & 0.0492 \\
\hline 27 & Aug-00 & 0.1290 & 0.0813 & 0.0477 \\
\hline 28 & Sep-00 & 0.1257 & 0.0823 & 0.0434 \\
\hline 29 & Oct-00 & 0.1260 & 0.0814 & 0.0446 \\
\hline 30 & Nov-00 & 0.1251 & 0.0811 & 0.0440 \\
\hline 31 & Dec-00 & 0.1239 & 0.0784 & 0.0455 \\
\hline 32 & Jan-01 & 0.1261 & 0.0780 & 0.0481 \\
\hline 33 & Feb-01 & 0.1261 & 0.0774 & 0.0487 \\
\hline 34 & Mar-01 & 0.1275 & 0.0768 & 0.0507 \\
\hline & Apr-01 & 0.1227 & 0.0794 & 0.0433 \\
\hline & & & & \\
\hline 10
\end{tabular}
\begin{tabular}{|r|l|l|l|r|}
\hline \begin{tabular}{l}
Line \\
No.
\end{tabular} & Date & DCF & \multicolumn{1}{l|}{\begin{tabular}{l}
Bond \\
Yield
\end{tabular}} & \begin{tabular}{r}
Risk \\
Premium
\end{tabular} \\
\hline 36 & May-01 & 0.1302 & 0.0799 & 0.0503 \\
\hline 37 & Jun-01 & 0.1304 & 0.0785 & 0.0519 \\
\hline 38 & Jul-01 & 0.1338 & 0.0778 & 0.0560 \\
\hline 39 & Aug-01 & 0.1327 & 0.0759 & 0.0568 \\
\hline 40 & Sep-01 & 0.1268 & 0.0775 & 0.0493 \\
\hline 41 & Oct-01 & 0.1268 & 0.0763 & 0.0505 \\
\hline 42 & Nov-01 & 0.1268 & 0.0757 & 0.0511 \\
\hline 43 & Dec-01 & 0.1254 & 0.0783 & 0.0471 \\
\hline 44 & Jan-02 & 0.1236 & 0.0766 & 0.0470 \\
\hline 45 & Feb-02 & 0.1241 & 0.0754 & 0.0487 \\
\hline 46 & Mar-02 & 0.1189 & 0.0776 & 0.0413 \\
\hline 47 & Apr-02 & 0.1159 & 0.0757 & 0.0402 \\
\hline 48 & May-02 & 0.1162 & 0.0752 & 0.0410 \\
\hline 49 & Jun-02 & 0.1170 & 0.0741 & 0.0429 \\
\hline 50 & Jul-02 & 0.1242 & 0.0731 & 0.0511 \\
\hline 51 & Aug-02 & 0.1234 & 0.0717 & 0.0517 \\
\hline 52 & Sep-02 & 0.1260 & 0.0708 & 0.0552 \\
\hline 53 & Oct-02 & 0.1250 & 0.0723 & 0.0527 \\
\hline 54 & Nov-02 & 0.1221 & 0.0714 & 0.0507 \\
\hline 55 & Dec-02 & 0.1216 & 0.0707 & 0.0509 \\
\hline 56 & Jan-03 & 0.1219 & 0.0706 & 0.0513 \\
\hline 57 & Feb-03 & 0.1232 & 0.0693 & 0.0539 \\
\hline 58 & Mar-03 & 0.1195 & 0.0679 & 0.0516 \\
\hline 59 & Apr-03 & 0.1162 & 0.0664 & 0.0498 \\
\hline 60 & May-03 & 0.1126 & 0.0636 & 0.0490 \\
\hline 61 & Jun-03 & 0.1114 & 0.0621 & 0.0493 \\
\hline 62 & Jul-03 & 0.1127 & 0.0657 & 0.0470 \\
\hline 63 & Aug-03 & 0.1139 & 0.0678 & 0.0461 \\
\hline 64 & Sep-03 & 0.1127 & 0.0656 & 0.0471 \\
\hline 65 & Oct-03 & 0.1123 & 0.0643 & 0.0480 \\
\hline 66 & Nov-03 & 0.1089 & 0.0637 & 0.0452 \\
\hline 67 & Dec-03 & 0.1071 & 0.0627 & 0.0444 \\
\hline 68 & Jan-04 & 0.1059 & 0.0615 & 0.0444 \\
\hline 69 & Feb-04 & 0.1039 & 0.0615 & 0.0424 \\
\hline 70 & Mar-04 & 0.1037 & 0.0597 & 0.0440 \\
\hline 71 & Apr-04 & 0.1041 & 0.0635 & 0.0406 \\
\hline 72 & May-04 & 0.1045 & 0.0662 & 0.0383 \\
\hline 73 & Jun-04 & 0.1036 & 0.0646 & 0.0390 \\
\hline 74 & Jul-04 & 0.1011 & 0.0627 & 0.0384 \\
\hline 75 & Aug-04 & 0.1008 & 0.0614 & 0.0394 \\
\hline & & & \\
\hline 4
\end{tabular}
\begin{tabular}{|r|l|l|l|r|}
\hline \begin{tabular}{l}
Line \\
No.
\end{tabular} & Date & DCF & \multicolumn{1}{l}{\begin{tabular}{l}
Bond \\
Yield
\end{tabular}} & \begin{tabular}{r}
Risk \\
Premium
\end{tabular} \\
\hline 76 & Sep-04 & 0.0976 & 0.0598 & 0.0378 \\
\hline 77 & Oct-04 & 0.0974 & 0.0594 & 0.0380 \\
\hline 78 & Nov-04 & 0.0962 & 0.0597 & 0.0365 \\
\hline 79 & Dec-04 & 0.0970 & 0.0592 & 0.0378 \\
\hline 80 & Jan-05 & 0.0990 & 0.0578 & 0.0412 \\
\hline 81 & Feb-05 & 0.0979 & 0.0561 & 0.0418 \\
\hline 82 & Mar-05 & 0.0979 & 0.0583 & 0.0396 \\
\hline 83 & Apr-05 & 0.0988 & 0.0564 & 0.0424 \\
\hline 84 & May-05 & 0.0981 & 0.0553 & 0.0427 \\
\hline 85 & Jun-05 & 0.0976 & 0.0540 & 0.0436 \\
\hline 86 & Jul-05 & 0.0966 & 0.0551 & 0.0415 \\
\hline 87 & Aug-05 & 0.0969 & 0.0550 & 0.0419 \\
\hline 88 & Sep-05 & 0.0980 & 0.0552 & 0.0428 \\
\hline 89 & Oct-05 & 0.0990 & 0.0579 & 0.0411 \\
\hline 90 & Nov-05 & 0.1049 & 0.0588 & 0.0461 \\
\hline 91 & Dec-05 & 0.1045 & 0.0580 & 0.0465 \\
\hline 92 & Jan-06 & 0.0982 & 0.0575 & 0.0407 \\
\hline 93 & Feb-06 & 0.1124 & 0.0582 & 0.0542 \\
\hline 94 & Mar-06 & 0.1127 & 0.0598 & 0.0529 \\
\hline 95 & Apr-06 & 0.1100 & 0.0629 & 0.0471 \\
\hline 96 & May-06 & 0.1056 & 0.0642 & 0.0414 \\
\hline 97 & Jun-06 & 0.1049 & 0.0640 & 0.0409 \\
\hline 98 & Jul-06 & 0.1087 & 0.0637 & 0.0450 \\
\hline 99 & Aug-06 & 0.1041 & 0.0620 & 0.0421 \\
\hline 100 & Sep-06 & 0.1053 & 0.0600 & 0.0453 \\
\hline 101 & Oct-06 & 0.1030 & 0.0598 & 0.0432 \\
\hline 102 & Nov-06 & 0.1033 & 0.0580 & 0.0453 \\
\hline 103 & Dec-06 & 0.1035 & 0.0581 & 0.0454 \\
\hline 104 & Jan-07 & 0.1013 & 0.0596 & 0.0417 \\
\hline 105 & Feb-07 & 0.1018 & 0.0590 & 0.0428 \\
\hline 106 & Mar-07 & 0.1018 & 0.0585 & 0.0433 \\
\hline 107 & Apr-07 & 0.1007 & 0.0597 & 0.0410 \\
\hline 108 & May-07 & 0.0967 & 0.0599 & 0.0368 \\
\hline 109 & Jun-07 & 0.0970 & 0.0630 & 0.0340 \\
\hline 110 & Jul-07 & 0.1006 & 0.0625 & 0.0381 \\
\hline 111 & Aug-07 & 0.1021 & 0.0624 & 0.0397 \\
\hline 112 & Sep-07 & 0.1014 & 0.0618 & 0.0396 \\
\hline 113 & Oct-07 & 0.1080 & 0.0611 & 0.0469 \\
\hline 114 & Nov-07 & 0.1083 & 0.0597 & 0.0486 \\
\hline 115 & Dec-07 & 0.1084 & 0.0616 & 0.0468 \\
\hline & & & & \\
\hline 9
\end{tabular}
\begin{tabular}{|c|l|l|l|r|}
\hline \begin{tabular}{l}
Line \\
No.
\end{tabular} & Date & DCF & \begin{tabular}{l}
Bond \\
Yield
\end{tabular} & \begin{tabular}{r}
Risk \\
Premium
\end{tabular} \\
\hline 116 & Jan-08 & 0.1113 & 0.0602 & 0.0511 \\
\hline 117 & Feb-08 & 0.1139 & 0.0621 & 0.0518 \\
\hline 118 & Mar-08 & 0.1147 & 0.0621 & 0.0526 \\
\hline 119 & Apr-08 & 0.1167 & 0.0629 & 0.0538 \\
\hline 120 & May-08 & 0.1069 & 0.0627 & 0.0442 \\
\hline 121 & Jun-08 & 0.1062 & 0.0638 & 0.0424 \\
\hline 122 & Jul-08 & 0.1086 & 0.0640 & 0.0446 \\
\hline 123 & Aug-08 & 0.1123 & 0.0637 & 0.0486 \\
\hline 124 & Sep-08 & 0.1130 & 0.0649 & 0.0481 \\
\hline 125 & Oct-08 & 0.1213 & 0.0756 & 0.0457 \\
\hline 126 & Nov-08 & 0.1221 & 0.0760 & 0.0461 \\
\hline 127 & Dec-08 & 0.1162 & 0.0654 & 0.0508 \\
\hline 128 & Jan-09 & 0.1131 & 0.0639 & 0.0492 \\
\hline 129 & Feb-09 & 0.1155 & 0.0630 & 0.0524 \\
\hline 130 & Mar-09 & 0.1198 & 0.0642 & 0.0556 \\
\hline 131 & Apr-09 & 0.1146 & 0.0648 & 0.0498 \\
\hline 132 & May-09 & 0.1225 & 0.0649 & 0.0576 \\
\hline 133 & Jun-09 & 0.1208 & 0.0620 & 0.0588 \\
\hline 134 & Jul-09 & 0.1145 & 0.0597 & 0.0548 \\
\hline 135 & Aug-09 & 0.1109 & 0.0571 & 0.0538 \\
\hline 136 & Sep-09 & 0.1109 & 0.0553 & 0.0556 \\
\hline 137 & Oct-09 & 0.1146 & 0.0555 & 0.0592 \\
\hline 138 & Nov-09 & 0.1148 & 0.0564 & 0.0584 \\
\hline 139 & Dec-09 & 0.1123 & 0.0579 & 0.0544 \\
\hline
\end{tabular}

Notes: A-rated utility bond yield information from the Mergent Bond Record. DCF results are calculated using a quarterly DCF model as follows:
\(\mathrm{D}_{0} \quad=\quad\) Latest quarterly dividend per Value Line.
\(\mathrm{P}_{0} \quad=\) Average of the monthly high and low stock prices for each month from Thomson Reuters.
FC \(\quad=\quad\) Flotation costs expressed as a percent of gross proceeds.
\(\mathrm{g} \quad=1 / B / E / S\) forecast of future earnings growth for each month.
\(\mathrm{k} \quad=\) Cost of equity using the quarterly version of the DCF model shown by the formula below:
\[
k=\left[\frac{d_{0}(1+g)^{\frac{1}{4}}}{P_{0}}\right]^{4}-1
\]

\title{
KENTUCKY AMERICAN WATER COMPANY EXHIBIT__(JVW-1) \\ SCHEDULE 4 \\ COMPARATIVE RETURNS ON S\&P 500 STOCK INDEX AND MOODY'S A-RATED BONDS 1937-2008
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line No. & Year & \begin{tabular}{l}
S\&P 500 \\
Stock \\
Price
\end{tabular} & \begin{tabular}{l}
Stock \\
Dividend Yield
\end{tabular} & Stock Return & A-rated Bond Price & Bond Return \\
\hline 1 & 2009 & 865.58 & 0.0310 & & \$68.43 & \\
\hline 2 & 2008 & 1,380.33 & 0.0211 & -35.19\% & \$72.25 & 0.24\% \\
\hline 3 & 2007 & 1,424.16 & 0.0181 & -1.27\% & \$72.91 & 4.59\% \\
\hline 4 & 2006 & 1,278.72 & 0.0183 & 13.20\% & \$75.25 & 2.20\% \\
\hline 5 & 2005 & 1,181.41 & 0.0177 & 10.01\% & \$74.91 & 5.80\% \\
\hline 6 & 2004 & 1,132.52 & 0.0162 & 5.94\% & \$70.87 & 11.34\% \\
\hline 7 & 2003 & 895.84 & 0.0180 & 28.22\% & \$62.26 & 20.27\% \\
\hline 8 & 2002 & 1,140.21 & 0.0138 & -20.05\% & \$57.44 & 15.35\% \\
\hline 9 & 2001 & 1,335.63 & 0.0116 & -13.47\% & \$56.40 & 8.93\% \\
\hline 10 & 2000 & 1,425.59 & 0.0118 & -5.13\% & \$52.60 & 14.82\% \\
\hline 11 & 1999 & 1,248.77 & 0.0130 & 15.46\% & \$63.03 & -10.20\% \\
\hline 12 & 1998 & 963.35 & 0.0162 & 31.25\% & \$62.43 & 7.38\% \\
\hline 13 & 1997 & 766.22 & 0.0195 & 27.68\% & \$56.62 & 17.32\% \\
\hline 14 & 1996 & 614.42 & 0.0231 & 27.02\% & \$60.91 & -0.48\% \\
\hline 15 & 1995 & 465.25 & 0.0287 & 34.93\% & \$50.22 & 29.26\% \\
\hline 16 & 1994 & 472.99 & 0.0269 & 1.05\% & \$60.01 & -9.65\% \\
\hline 17 & 1993 & 435.23 & 0.0288 & 11.56\% & \$53.13 & 20.48\% \\
\hline 18 & 1992 & 416.08 & 0.0290 & 7.50\% & \$49.56 & 15.27\% \\
\hline 19 & 1991 & 325.49 & 0.0382 & 31.65\% & \$44.84 & 19.44\% \\
\hline 20 & 1990 & 339.97 & 0.0341 & -0.85\% & \$45.60 & 7.11\% \\
\hline 21 & 1989 & 285.41 & 0.0364 & 22.76\% & \$43.06 & 15.18\% \\
\hline 22 & 1988 & 250.48 & 0.0366 & 17.61\% & \$40.10 & 17.36\% \\
\hline 23 & 1987 & 264.51 & 0.0317 & -2.13\% & \$48.92 & -9.84\% \\
\hline 24 & 1986 & 208.19 & 0.0390 & 30.95\% & \$39.98 & 32.36\% \\
\hline 25 & 1985 & 171.61 & 0.0451 & 25.83\% & \$32.57 & 35.05\% \\
\hline 26 & 1984 & 166.39 & 0.0427 & 7.41\% & \$31.49 & 16.12\% \\
\hline 27 & 1983 & 144.27 & 0.0479 & 20.12\% & \$29.41 & 20.65\% \\
\hline 28 & 1982 & 117.28 & 0.0595 & 28.96\% & \$24.48 & 36.48\% \\
\hline 29 & 1981 & 132.97 & 0.0480 & -7.00\% & \$29.37 & -3.01\% \\
\hline 30 & 1980 & 110.87 & 0.0541 & 25.34\% & \$34.69 & -3.81\% \\
\hline 31 & 1979 & 99.71 & 0.0533 & 16.52\% & \$43.91 & -11.89\% \\
\hline 32 & 1978 & 90.25 & 0.0532 & 15.80\% & \$49.09 & -2.40\% \\
\hline 33 & 1977 & 103.80 & 0.0399 & -9.06\% & \$50.95 & 4.20\% \\
\hline 34 & 1976 & 96.86 & 0.0380 & 10.96\% & \$43.91 & 25.13\% \\
\hline 35 & 1975 & 72.56 & 0.0507 & 38.56\% & \$41.76 & 14.75\% \\
\hline 36 & 1974 & 96.11 & 0.0364 & -20.86\% & \$52.54 & -12.91\% \\
\hline 37 & 1973 & 118.40 & 0.0269 & -16.14\% & \$58.51 & -3.37\% \\
\hline 38 & 1972 & 103.30 & 0.0296 & 17.58\% & \$56.47 & 10.69\% \\
\hline 39 & 1971 & 93.49 & 0.0332 & 13.81\% & \$53.93 & 12.13\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line No. & Year & \begin{tabular}{l}
S\&P 500 \\
Stock \\
Price
\end{tabular} & Stock Dividend Yield & Stock Return & A-rated Bond Price & Bond Return \\
\hline 40 & 1970 & 90.31 & 0.0356 & 7.08\% & \$50.46 & 14.81\% \\
\hline 41 & 1969 & 102.00 & 0.0306 & -8.40\% & \$62.43 & -12.76\% \\
\hline 42 & 1968 & 95.04 & 0.0313 & 10.45\% & \$66.97 & -0.81\% \\
\hline 43 & 1967 & 84.45 & 0.0351 & 16.05\% & \$78.69 & -9.81\% \\
\hline 44 & 1966 & 93.32 & 0.0302 & -6.48\% & \$86.57 & -4.48\% \\
\hline 45 & 1965 & 86.12 & 0.0299 & 11.35\% & \$91.40 & -0.91\% \\
\hline 46 & 1964 & 76.45 & 0.0305 & 15.70\% & \$92.01 & 3.68\% \\
\hline 47 & 1963 & 65.06 & 0.0331 & 20.82\% & \$93.56 & 2.61\% \\
\hline 48 & 1962 & 69.07 & 0.0297 & -2.84\% & \$89.60 & 8.89\% \\
\hline 49 & 1961 & 59.72 & 0.0328 & 18.94\% & \$89.74 & 4.29\% \\
\hline 50 & 1960 & 58.03 & 0.0327 & 6.18\% & \$84.36 & 11.13\% \\
\hline 51 & 1959 & 55.62 & 0.0324 & 7.57\% & \$91.55 & -3.49\% \\
\hline 52 & 1958 & 41.12 & 0.0448 & 39.74\% & \$101.22 & -5.60\% \\
\hline 53 & 1957 & 45.43 & 0.0431 & -5.18\% & \$100.70 & 4.49\% \\
\hline 54 & 1956 & 44.15 & 0.0424 & 7.14\% & \$113.00 & -7.35\% \\
\hline 55 & 1955 & 35.60 & 0.0438 & 28.40\% & \$116.77 & 0.20\% \\
\hline 56 & 1954 & 25.46 & 0.0569 & 45.52\% & \$112.79 & 7.07\% \\
\hline 57 & 1953 & 26.18 & 0.0545 & 2.70\% & \$114.24 & 2.24\% \\
\hline 58 & 1952 & 24.19 & 0.0582 & 14.05\% & \$113.41 & 4.26\% \\
\hline 59 & 1951 & 21.21 & 0.0634 & 20.39\% & \$123.44 & -4.89\% \\
\hline 60 & 1950 & 16.88 & 0.0665 & 32.30\% & \$125.08 & 1.89\% \\
\hline 61 & 1949 & 15.36 & 0.0620 & 16.10\% & \$119.82 & 7.72\% \\
\hline 62 & 1948 & 14.83 & 0.0571 & 9.28\% & \$118.50 & 4.49\% \\
\hline 63 & 1947 & 15.21 & 0.0449 & 1.99\% & \$126.02 & -2.79\% \\
\hline 64 & 1946 & 18.02 & 0.0356 & -12.03\% & \$126.74 & 2.59\% \\
\hline 65 & 1945 & 13.49 & 0.0460 & 38.18\% & \$119.82 & 9.11\% \\
\hline 66 & 1944 & 11.85 & 0.0495 & 18.79\% & \$119.82 & 3.34\% \\
\hline 67 & 1943 & 10.09 & 0.0554 & 22.98\% & \$118.50 & 4.49\% \\
\hline 68 & 1942 & 8.93 & 0.0788 & 20.87\% & \$117.63 & 4.14\% \\
\hline 69 & 1941 & 10.55 & 0.0638 & -8.98\% & \$116.34 & 4.55\% \\
\hline 70 & 1940 & 12.30 & 0.0458 & -9.65\% & \$112.39 & 7.08\% \\
\hline 71 & 1939 & 12.50 & 0.0349 & 1.89\% & \$105.75 & 10.05\% \\
\hline 72 & 1938 & 11.31 & 0.0784 & 18.36\% & \$99.83 & 9.94\% \\
\hline 73 & 1937 & 17.59 & 0.0434 & -31.36\% & \$103.18 & 0.63\% \\
\hline 74 & \multicolumn{2}{|l|}{S\&P 500 Return 1937--2009} & 10.8\% & & & \\
\hline 75 & \multicolumn{2}{|l|}{A-rated Utility Bond Return} & 6.3\% & & & \\
\hline 76 & Risk Premium & & 4.5\% & & & \\
\hline
\end{tabular}

Note: See Appendix 4 for an explanation of how stock and bond returns are derived and the source of the data presented.

\section*{KENTUCKY AMERICAN WATER COMPANY EXHIBIT__(JVW-1) \\ SCHEDULE 5 \\ COMPARATIVE RETURNS ON S\&P UTILITY STOCK INDEX AND MOODY'S A-RATED BONDS 1937-2008}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line No. & Year & S\&P Utility Stock Price & Stock Dividend Yield & Stock Return & A-rated Bond Yield & Bond Return \\
\hline 1 & 2009 & & & & \$68.43 & \\
\hline 2 & 2008 & & & -25.90\% & \$72.25 & 0.24\% \\
\hline 3 & 2007 & & & 16.56\% & \$72.91 & 4.59\% \\
\hline 4 & 2006 & & & 20.76\% & \$75.25 & 2.20\% \\
\hline 5 & 2005 & & & 16.05\% & \$74.91 & 5.80\% \\
\hline 6 & 2004 & & & 22.84\% & \$70.87 & 11.34\% \\
\hline 7 & 2003 & & & 23.48\% & \$62.26 & 20.27\% \\
\hline 8 & 2002 & & & -14.73\% & \$57.44 & 15.35\% \\
\hline 9 & & & & & & \\
\hline 10 & 2002 & 243.79 & 0.0362 & & \$57.44 & \\
\hline 11 & 2001 & 307.70 & 0.0287 & -17.90\% & \$56.40 & 8.93\% \\
\hline 12 & 2000 & 239.17 & 0.0413 & 32.78\% & \$52.60 & 14.82\% \\
\hline 13 & 1999 & 253.52 & 0.0394 & -1.72\% & \$63.03 & -10.20\% \\
\hline 14 & 1998 & 228.61 & 0.0457 & 15.47\% & \$62.43 & 7.38\% \\
\hline 15 & 1997 & 201.14 & 0.0492 & 18.58\% & \$56.62 & 17.32\% \\
\hline 16 & 1996 & 202.57 & 0.0454 & 3.83\% & \$60.91 & -0.48\% \\
\hline 17 & 1995 & 153.87 & 0.0584 & 37.49\% & \$50.22 & 29.26\% \\
\hline 18 & 1994 & 168.70 & 0.0496 & -3.83\% & \$60.01 & -9.65\% \\
\hline 19 & 1993 & 159.79 & 0.0537 & 10.95\% & \$53.13 & 20.48\% \\
\hline 20 & 1992 & 149.70 & 0.0572 & 12.46\% & \$49.56 & 15.27\% \\
\hline 21 & 1991 & 138.38 & 0.0607 & 14.25\% & \$44.84 & 19.44\% \\
\hline 22 & 1990 & 146.04 & 0.0558 & 0.33\% & \$45.60 & 7.11\% \\
\hline 23 & 1989 & 114.37 & 0.0699 & 34.68\% & \$43.06 & 15.18\% \\
\hline 24 & 1988 & 106.13 & 0.0704 & 14.80\% & \$40.10 & 17.36\% \\
\hline 25 & 1987 & 120.09 & 0.0588 & -5.74\% & \$48.92 & -9.84\% \\
\hline 26 & 1986 & 92.06 & 0.0742 & 37.87\% & \$39.98 & 32.36\% \\
\hline 27 & 1985 & 75.83 & 0.0860 & 30.00\% & \$32.57 & 35.05\% \\
\hline 28 & 1984 & 68.50 & 0.0925 & 19.95\% & \$31.49 & 16.12\% \\
\hline 29 & 1983 & 61.89 & 0.0948 & 20.16\% & \$29.41 & 20.65\% \\
\hline 30 & 1982 & 51.81 & 0.1074 & 30.20\% & \$24.48 & 36.48\% \\
\hline 31 & 1981 & 52.01 & 0.0978 & 9.40\% & \$29.37 & -3.01\% \\
\hline 32 & 1980 & 50.26 & 0.0953 & 13.01\% & \$34.69 & -3.81\% \\
\hline 33 & 1979 & 50.33 & 0.0893 & 8.79\% & \$43.91 & -11.89\% \\
\hline 34 & 1978 & 52.40 & 0.0791 & 3.96\% & \$49.09 & -2.40\% \\
\hline 35 & 1977 & 54.01 & 0.0714 & 4.16\% & \$50.95 & 4.20\% \\
\hline 36 & 1976 & 46.99 & 0.0776 & 22.70\% & \$43.91 & 25.13\% \\
\hline 37 & 1975 & 38.19 & 0.0920 & 32.24\% & \$41.76 & 14.75\% \\
\hline 38 & 1974 & 48.60 & 0.0713 & -14.29\% & \$52.54 & -12.91\% \\
\hline 39 & 1973 & 60.01 & 0.0556 & -13.45\% & \$58.51 & -3.37\% \\
\hline 40 & 1972 & 60.19 & 0.0542 & 5.12\% & \$56.47 & 10.69\% \\
\hline 41 & 1971 & 63.43 & 0.0504 & -0.07\% & \$53.93 & 12.13\% \\
\hline 42 & 1970 & 55.72 & 0.0561 & 19.45\% & \$50.46 & 14.81\% \\
\hline 43 & 1969 & 68.65 & 0.0445 & -14.38\% & \$62.43 & -12.76\% \\
\hline 44 & 1968 & 68.02 & 0.0435 & 5.28\% & \$66.97 & -0.81\% \\
\hline 45 & 1967 & 70.63 & 0.0392 & 0.22\% & \$78.69 & -9.81\% \\
\hline 46 & 1966 & 74.50 & 0.0347 & -1.72\% & \$86.57 & -4.48\% \\
\hline 47 & 1965 & 75.87 & 0.0315 & 1.34\% & \$91.40 & -0.91\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line No. & Year & S\&P Utility Stock Price & Stock Dividend Yield & Stock Return & A-rated Bond Yield & Bond Return \\
\hline 48 & 1964 & 67.26 & 0.0331 & 16.11\% & \$92.01 & 3.68\% \\
\hline 49 & 1963 & 63.35 & 0.0330 & 9.47\% & \$93.56 & 2.61\% \\
\hline 50 & 1962 & 62.69 & 0.0320 & 4.25\% & \$89.60 & 8.89\% \\
\hline 51 & 1961 & 52.73 & 0.0358 & 22.47\% & \$89.74 & 4.29\% \\
\hline 52 & 1960 & 44.50 & 0.0403 & 22.52\% & \$84.36 & 11.13\% \\
\hline 53 & 1959 & 43.96 & 0.0377 & 5.00\% & \$91.55 & -3.49\% \\
\hline 54 & 1958 & 33.30 & 0.0487 & 36.88\% & \$101.22 & -5.60\% \\
\hline 55 & 1957 & 32.32 & 0.0487 & 7.90\% & \$100.70 & 4.49\% \\
\hline 56 & 1956 & 31.55 & 0.0472 & 7.16\% & \$113.00 & -7.35\% \\
\hline 57 & 1955 & 29.89 & 0.0461 & 10.16\% & \$116.77 & 0.20\% \\
\hline 58 & 1954 & 25.51 & 0.0520 & 22.37\% & \$112.79 & 7.07\% \\
\hline 59 & 1953 & 24.41 & 0.0511 & 9.62\% & \$114.24 & 2.24\% \\
\hline 60 & 1952 & 22.22 & 0.0550 & 15.36\% & \$113.41 & 4.26\% \\
\hline 61 & 1951 & 20.01 & 0.0606 & 17.10\% & \$123.44 & -4.89\% \\
\hline 62 & 1950 & 20.20 & 0.0554 & 4.60\% & \$125.08 & 1.89\% \\
\hline 63 & 1949 & 16.54 & 0.0570 & 27.83\% & \$119.82 & 7.72\% \\
\hline 64 & 1948 & 16.53 & 0.0535 & 5.41\% & \$118.50 & 4.49\% \\
\hline 65 & 1947 & 19.21 & 0.0354 & -10.41\% & \$126.02 & -2.79\% \\
\hline 66 & 1946 & 21.34 & 0.0298 & -7.00\% & \$126.74 & 2.59\% \\
\hline 67 & 1945 & 13.91 & 0.0448 & 57.89\% & \$119.82 & 9.11\% \\
\hline 68 & 1944 & 12.10 & 0.0569 & 20.65\% & \$119.82 & 3.34\% \\
\hline 69 & 1943 & 9.22 & 0.0621 & 37.45\% & \$118.50 & 4.49\% \\
\hline 70 & 1942 & 8.54 & 0.0940 & 17.36\% & \$117.63 & 4.14\% \\
\hline 71 & 1941 & 13.25 & 0.0717 & -28.38\% & \$116.34 & 4.55\% \\
\hline 72 & 1940 & 16.97 & 0.0540 & -16.52\% & \$112.39 & 7.08\% \\
\hline 73 & 1939 & 16.05 & 0.0553 & 11.26\% & \$105.75 & 10.05\% \\
\hline 74 & 1938 & 14.30 & 0.0730 & 19.54\% & \$99.83 & 9.94\% \\
\hline 75 & 1937 & 24.34 & 0.0432 & -36.93\% & \$103.18 & 0.63\% \\
\hline 76 & Return 1937-2009 & Stocks & 10.5\% & & & \\
\hline 77 & & Bonds & 6.3\% & & & \\
\hline 78 & Risk Premium & & 4.2\% & & & \\
\hline
\end{tabular}

See Appendix 5 for an explanation of how stock and bond returns are derived and the source of the data presented. Standard \& Poor's discontinued its S\&P Utilities Index in December 2001 and replaced its utilities stock index with separate indices for electric and natural gas utilities. In this study, the stock returns beginning in 2002 are based on the total returns for the EEI Index of U.S. shareholder-owned electric utilities, as reported by EEI on its website.
http://www.eei.org/industry issues/finance and accounting/finance/research and analysis/EEI Stock Index

\section*{KENTUCKY AMERICAN WATER COMPANY \\ EXHIBIT__(JVW-1) \\ SCHEDULE 6 \\ USING THE ARITHMETIC MEAN TO ESTIMATE THE COST OF EQUITY CAPITAL}

Consider an investment that in a given year generates a return of 30 percent with probability equal to .5 and a return of -10 percent with a probability equal to .5 . For each one dollar invested, the possible outcomes of this investment at the end of year one are:
\begin{tabular}{cc}
Ending Wealth & Probability \\
\(\$ 1.30\) & 0.50 \\
\(\$ 0.90\) & 0.50
\end{tabular}

At the end of year two, the possible outcomes are:
\begin{tabular}{clcc}
Ending Wealth & & Probability & Value \(\times\) Probability \\
\((1.30)(1.30)\) & \(=\$ 1.69\) & 0.25 & 0.4225 \\
\((1.30)(.9)\) & \(=\$ 1.17\) & 0.50 & 0.5850 \\
\((.9)(.9)\) & \(=\$ 0.81\) & 0.25 & 0.2025 \\
Expected Wealth & \(=\) & & \(\$ 1.21\)
\end{tabular}

The expected value of this investment at the end of year two is \(\$ 1.21\). In a competitive capital market, the cost of equity is equal to the expected rate of return on an investment. In the above example, the cost of equity is that rate of return which will make the initial investment of one dollar grow to the expected value of \(\$ 1.21\) at the end of two years. Thus, the cost of equity is the solution to the equation:
\[
\begin{gathered}
1(1+k)^{2}=1.21 \text { or } \\
k=(1.21 / 1)^{5}-1=10 \% .
\end{gathered}
\]

The arithmetic mean of this investment is:
\((30 \%)(.5)+(-10 \%)(.5)=10 \%\).
Thus, the arithmetic mean is equal to the cost of equity capital.
The geometric mean of this investment is:
\([(1.3)(.9)]^{5}-1=.082=8.2 \%\).
Thus, the geometric mean is not equal to the cost of equity capital.
The lesson is obvious: for an investment with an uncertain outcome, the arithmetic mean is the best measure of the cost of equity capital.

\section*{KENTUCKY AMERICAN WATER COMPANY EXHIBIT__(JVW-1) SCHEDULE 7}

CALCULATION OF CAPITAL ASSET PRICING MODEL COST OF EQUITY USING THE IBBOTSON \({ }^{\circledR}\) SBBI \({ }^{\circledR} 7.1\) PERCENT RISK PREMIUM
\begin{tabular}{||l|r|l||}
\hline Risk-free Rate & \(4.70 \%\) & -Long-term Treasury bond yield \\
\hline Beta & 0.73 & Average Beta Comparable Water Companies \\
\hline Risk Premium & \(6.50 \%\) & Long-horizon SBBI risk premium \\
\hline Beta x Risk Premium & \(4.75 \%\) & \\
\hline Flotation & \(0.19 \%\) & \\
\hline CAPM cost of equity & \(9.6 \%\) & \\
\hline
\end{tabular}

Ibbotson SBBI risk premium from 2009 Ibbotson \({ }^{\circledR}\) SBBI \({ }^{\circledR}\) Stocks, Bonds, Bills, and Inflation \({ }^{\circledR}\) Valuation Yearbook; Value Line beta for comparable companies from Value Line December 2009. Forecast 20year Treasury bond yield from Value Line Selection \& Opinion, November 27, 2009.

\section*{COMPARABLE COMPANY BETAS}
\begin{tabular}{|r|l|c|c|}
\hline \begin{tabular}{c}
Line \\
No.
\end{tabular} & Company & \begin{tabular}{c}
Value \\
Line Beta
\end{tabular} & \begin{tabular}{c}
Market \\
Value
\end{tabular} \\
\hline 1 & Amer. States Water & 0.80 & 581 \\
\hline 2 & Amer. Water Works & NA & 3,278 \\
\hline 3 & Aqua America & 0.65 & 2,803 \\
\hline 4 & Artesian Res. 'A' & 0.60 & 104 \\
\hline 5 & California Water & 0.75 & 938 \\
\hline 6 & Connecticut Water & 0.85 & 197 \\
\hline 7 & Middlesex Water & 0.80 & 228 \\
\hline 8 & Pennichuck & 0.55 & 85 \\
\hline 9 & SJW Corp. & 0.95 & 542 \\
\hline 10 & Southwest Water & 1.10 & 87 \\
\hline 11 & York Water & 0.65 & 134 \\
\hline 12 & Average & 0.77 & \\
\hline 13 & Market-weighted Average & 0.73 & \\
\hline
\end{tabular}

Data from Value Line December 2009.

\section*{KENTUCKY AMERICAN WATER COMPANY}

EXHIBIT_(JVW-1)
SCHEDULE 8

\section*{CALCULATION OF CAPITAL ASSET PRICING MODEL COST OF EQUITY USING DCF ESTIMATE OF THE EXPECTED RATE OF RETURN ON THE MARKET PORTFOLIO}
\begin{tabular}{|c|l|r|l|}
\hline Line No. & & & \\
\hline 1 & Risk-free Rate & \(4.40 \%\) & 20-year Treasury Bond Yield \\
\hline 2 & Beta & 0.73 & Average Beta Comparable Water Companies \\
\hline 3 & DCF S\&P 500 & \(13.1 \%\) & DCF Cost of Equity S\&P 500 (see following) \\
\hline 4 & Risk Premium & \(8.40 \%\) & \\
\hline 5 & Beta * Risk Premium & \(6.13 \%\) & \\
\hline 6 & Flotation cost & \(0.19 \%\) & \\
\hline 7 & Cost of Equity & \(11.0 \%\) & \\
\hline
\end{tabular}

Value Line beta for comparable companies from Value Line December 2009. Forecast 20-year Treasury bond yield from Value Line Selection \& Opinion, November 27, 2009.

\section*{KENTUCKY AMERICAN WATER COMPANY EXHIBIT__(JVW-1) \\ SCHEDULE 8 (CONTINUED) \\ CALCULATION OF CAPITAL ASSET PRICING MODEL COST OF EQUITY USING DCF ESTIMATE OF THE EXPECTED RATE OF RETURN ON THE MARKET PORTFOLIO SUMMARY OF DISCOUNTED CASH FLOW ANALYSIS FOR S\&P 500 COMPANIES}
\begin{tabular}{|c|c|c|c|c|}
\hline COMPANY & \(\mathrm{P}_{0}\) & \(\mathrm{D}_{0}\) & GROWTH & COST OF EQUITY \\
\hline 3M & 77.26 & 2.04 & 11.30\% & 14.3\% \\
\hline ABERCROMBIE \& FITCH & 36.05 & 0.70 & 11.21\% & 13.4\% \\
\hline AETNA & 28.76 & 0.04 & 14.00\% & 14.2\% \\
\hline AIR PRDS.\& CHEMS. & 80.82 & 1.80 & 9.47\% & 11.9\% \\
\hline AIRGAS & 47.16 & 0.72 & 12.31\% & 14.0\% \\
\hline ALLERGAN & 58.53 & 0.20 & 14.40\% & 14.8\% \\
\hline AMERICAN EXPRESS & 37.79 & 0.72 & 10.25\% & 12.4\% \\
\hline AMERISOURCEBERGEN & 23.88 & 0.32 & 11.50\% & 13.0\% \\
\hline APPLIED MATS. & 12.86 & 0.24 & 12.00\% & 14.1\% \\
\hline ASSURANT & 30.70 & 0.60 & 11.25\% & 13.4\% \\
\hline AT\&T & 26.72 & 1.68 & 7.17\% & 14.1\% \\
\hline AVERY DENNISON & 37.18 & 0.80 & 9.00\% & 11.4\% \\
\hline BANK OF NEW YORK MELLON & 27.52 & 0.36 & 10.83\% & 12.3\% \\
\hline BAXTER INTL. & 56.24 & 1.16 & 12.30\% & 14.6\% \\
\hline BECTON DICKINSON & 72.21 & 1.48 & 12.67\% & 15.0\% \\
\hline BEMIS & 28.13 & 0.90 & 9.50\% & 13.0\% \\
\hline BEST BUY & 40.79 & 0.56 & 12.64\% & 14.2\% \\
\hline BURL.NTHN.SANTA FE C & 88.92 & 1.60 & 12.86\% & 14.9\% \\
\hline CA & 22.18 & 0.16 & 11.60\% & 12.4\% \\
\hline CAPITAL ONE FINL. & 38.36 & 0.20 & 11.00\% & 11.6\% \\
\hline CATERPILLAR & 56.60 & 1.68 & 11.50\% & 14.8\% \\
\hline CHESAPEAKE ENERGY & 25.48 & 0.30 & 11.33\% & 12.6\% \\
\hline CHUBB & 50.10 & 1.40 & 10.00\% & 13.1\% \\
\hline CINTAS & 28.47 & 0.47 & 10.83\% & 12.7\% \\
\hline CLOROX & 59.86 & 2.00 & 9.75\% & 13.5\% \\
\hline COCA COLA & 55.86 & 1.64 & 8.21\% & 11.4\% \\
\hline COLGATE-PALM. & 81.34 & 1.76 & 10.40\% & 12.8\% \\
\hline COMCAST 'A' & 15.51 & 0.38 & 12.42\% & 15.2\% \\
\hline CORNING & 16.33 & 0.20 & 13.00\% & 14.4\% \\
\hline COSTCO WHOLESALE & 58.73 & 0.72 & 13.07\% & 14.5\% \\
\hline DANAHER & 70.98 & 0.16 & 12.25\% & 12.5\% \\
\hline DEERE & 49.66 & 1.12 & 9.00\% & 11.5\% \\
\hline DENTSPLY INTL. & 34.25 & 0.20 & 13.80\% & 14.5\% \\
\hline DOMINION RES. & 36.09 & 1.75 & 8.16\% & 13.5\% \\
\hline EATON & 62.78 & 2.00 & 9.00\% & 12.5\% \\
\hline ECOLAB & 45.22 & 0.62 & 12.78\% & 14.3\% \\
\hline ELI LILLY & 35.22 & 1.96 & 5.93\% & 12.0\% \\
\hline ENTERGY & 79.68 & 3.00 & 10.42\% & 14.6\% \\
\hline EQT & 42.81 & 0.88 & 11.67\% & 14.0\% \\
\hline ESTEE LAUDER COS. 'A' & 45.11 & 0.55 & 11.00\% & 12.4\% \\
\hline EXELON & 48.71 & 2.10 & 8.44\% & 13.2\% \\
\hline FAMILY DOLLAR STORES & 29.09 & 0.54 & 11.80\% & 13.9\% \\
\hline FEDERATED INVRS.'B' & 26.57 & 0.96 & 9.33\% & 13.3\% \\
\hline FIRSTENERGY & 44.44 & 2.20 & 9.33\% & 14.8\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline COMPANY & \(\mathrm{P}_{0}\) & \(\mathrm{D}_{0}\) & GROWTH & COST OF EQUITY \\
\hline FLOWSERVE & 100.43 & 1.08 & 10.17\% & 11.4\% \\
\hline FORTUNE BRANDS & 41.22 & 0.76 & 10.00\% & 12.0\% \\
\hline FPL GROUP & 52.32 & 1.89 & 9.73\% & 13.7\% \\
\hline FRANKLIN RESOURCES & 107.68 & 0.88 & 10.50\% & 11.4\% \\
\hline GAP & 21.87 & 0.34 & 12.00\% & 13.8\% \\
\hline GENERAL DYNAMICS & 66.57 & 1.52 & 9.00\% & 11.5\% \\
\hline GENERAL ELECTRIC & 15.51 & 0.40 & 9.50\% & 12.4\% \\
\hline GENUINE PARTS & 36.87 & 1.60 & 8.26\% & 13.0\% \\
\hline H\&R BLOCK & 19.85 & 0.60 & 11.75\% & 15.2\% \\
\hline HARLEY-DAVIDSON & 26.40 & 0.40 & 10.00\% & 11.7\% \\
\hline HASBRO & 29.35 & 0.80 & 9.00\% & 12.0\% \\
\hline HEWLETT-PACKARD & 49.13 & 0.32 & 12.50\% & 13.2\% \\
\hline HOME DEPOT & 27.03 & 0.90 & 9.75\% & 13.4\% \\
\hline HONEYWELL INTL. & 38.46 & 1.21 & 10.00\% & 13.5\% \\
\hline ILLINOIS TOOL WORKS & 47.29 & 1.24 & 10.42\% & 13.3\% \\
\hline IMS HEALTH & 18.20 & 0.12 & 11.67\% & 12.4\% \\
\hline INTERNATIONAL BUS.MCHS. & 125.53 & 2.20 & 11.00\% & 13.0\% \\
\hline INTL.GAME TECH. & 19.30 & 0.24 & 13.60\% & 15.0\% \\
\hline INVESCO & 22.29 & 0.41 & 12.00\% & 14.1\% \\
\hline ITT & 51.93 & 0.85 & 13.00\% & 14.9\% \\
\hline JOHNSON \& JOHNSON & 62.02 & 1.96 & 8.24\% & 11.7\% \\
\hline KELLOGG & 51.88 & 1.50 & 9.33\% & 12.5\% \\
\hline KIMBERLY-CLARK & 63.09 & 2.40 & 7.67\% & 11.8\% \\
\hline KRAFT FOODS & 26.93 & 1.16 & 9.15\% & 13.9\% \\
\hline L3 COMMUNICATIONS & 78.72 & 1.40 & 10.67\% & 12.7\% \\
\hline LOWE'S COMPANIES & 21.56 & 0.36 & 11.25\% & 13.1\% \\
\hline MARSH \& MCLENNAN & 23.26 & 0.80 & 8.67\% & 12.5\% \\
\hline MATTEL & 19.68 & 0.75 & 9.00\% & 13.2\% \\
\hline MCDONALDS & 60.68 & 2.20 & 9.38\% & 13.4\% \\
\hline MCKESSON & 61.10 & 0.48 & 12.38\% & 13.3\% \\
\hline MEDTRONIC & 39.97 & 0.82 & 12.32\% & 14.6\% \\
\hline METLIFE & 35.23 & 0.74 & 11.64\% & 14.0\% \\
\hline MICROSOFT & 28.68 & 0.52 & 10.06\% & 12.1\% \\
\hline MOLSON COORS BREWING 'B' & 46.90 & 0.96 & 11.33\% & 13.6\% \\
\hline MORGAN STANLEY & 31.64 & 0.20 & 11.26\% & 12.0\% \\
\hline NIKE 'B' & 63.99 & 1.08 & 13.00\% & 14.9\% \\
\hline NOBLE ENERGY & 68.23 & 0.72 & 10.67\% & 11.8\% \\
\hline NORDSTROM & 34.11 & 0.64 & 10.50\% & 12.6\% \\
\hline NORFOLK SOUTHERN & 49.46 & 1.36 & 10.72\% & 13.8\% \\
\hline NORTHERN TRUST & 51.54 & 1.12 & 11.83\% & 14.3\% \\
\hline PACCAR & 37.50 & 0.36 & 11.75\% & 12.8\% \\
\hline PARKER-HANNIFIN & 54.75 & 1.00 & 12.67\% & 14.7\% \\
\hline PENNEY JC & 31.16 & 0.80 & 11.50\% & 14.4\% \\
\hline PEOPLES UNITED FINANCIAL & 16.32 & 0.61 & 11.00\% & 15.2\% \\
\hline PEPSICO & 61.19 & 1.80 & 8.88\% & 12.1\% \\
\hline PERKINELMER & 19.59 & 0.28 & 13.00\% & 14.6\% \\
\hline PG\&E & 42.45 & 1.68 & 7.20\% & 11.5\% \\
\hline PLUM CREEK TIMBER & 33.70 & 1.68 & 7.67\% & 13.1\% \\
\hline POLO RALPH LAUREN 'A' & 78.47 & 0.40 & 13.75\% & 14.3\% \\
\hline PRAXAIR & 81.84 & 1.60 & 12.37\% & 14.6\% \\
\hline PRINCIPAL FINL.GP. & 25.79 & 0.50 & 10.33\% & 12.5\% \\
\hline PROCTER \& GAMBLE & 60.21 & 1.76 & 10.00\% & 13.3\% \\
\hline PROGRESS ENERGY & 38.88 & 2.48 & 5.96\% & 12.9\% \\
\hline QUEST DIAGNOSTICS & 57.52 & 0.40 & 13.17\% & 14.0\% \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline COMPANY & \(\mathrm{P}_{0}\) & \(\mathrm{D}_{0}\) & GROWTH & COST OF EQUITY \\
\hline QWEST COMMS.INTL. & 3.80 & 0.32 & 3.20\% & 12.2\% \\
\hline RANGE RES. & 50.01 & 0.16 & 13.92\% & 14.3\% \\
\hline ROPER INDS.NEW & 51.89 & 0.38 & 14.20\% & 15.0\% \\
\hline RYDER SYSTEM & 42.10 & 1.00 & 11.53\% & 14.2\% \\
\hline SCRIPPS NETWORKS INTACT. 'A' & 39.31 & 0.30 & 10.47\% & 11.3\% \\
\hline SEALED AIR & 21.09 & 0.48 & 10.67\% & 13.2\% \\
\hline SNAP-ON & 37.90 & 1.20 & 10.67\% & 14.2\% \\
\hline SOUTHERN & 32.46 & 1.75 & 5.59\% & 11.4\% \\
\hline SOUTHWEST AIRLINES & 9.49 & 0.02 & 11.00\% & 11.2\% \\
\hline STANLEY WORKS & 47.79 & 1.32 & 10.00\% & 13.1\% \\
\hline STAPLES & 23.13 & 0.33 & 13.57\% & 15.2\% \\
\hline STATE STREET & 44.24 & 0.04 & 11.07\% & 11.2\% \\
\hline T ROWE PRICE GP. & 50.14 & 1.00 & 11.64\% & 13.9\% \\
\hline TARGET & 48.19 & 0.68 & 12.55\% & 14.1\% \\
\hline TECO ENERGY & 14.80 & 0.80 & 7.68\% & 13.6\% \\
\hline TEXTRON & 19.26 & 0.08 & 12.75\% & 13.2\% \\
\hline TIFFANY \& CO & 41.25 & 0.68 & 11.33\% & 13.2\% \\
\hline TIME WARNER & 28.94 & 0.70 & 10.33\% & 13.0\% \\
\hline TJX COS. & 38.10 & 0.48 & 13.17\% & 14.6\% \\
\hline TOTAL SYSTEM SERVICES & 16.66 & 0.28 & 12.13\% & 14.0\% \\
\hline TRAVELERS COS. & 50.59 & 1.32 & 9.67\% & 12.6\% \\
\hline UNITED TECHNOLOGIES & 65.78 & 1.54 & 10.00\% & 12.6\% \\
\hline UNITEDHEALTH GP. & 27.71 & 0.03 & 11.63\% & 11.8\% \\
\hline UNUM GROUP & 20.13 & 0.33 & 10.00\% & 11.8\% \\
\hline V F & 73.73 & 2.40 & 10.40\% & 14.0\% \\
\hline VERIZON COMMUNICATIONS & 30.93 & 1.90 & 6.34\% & 13.0\% \\
\hline WAL MART STORES & 52.12 & 1.09 & 11.45\% & 13.8\% \\
\hline WALGREEN & 38.39 & 0.55 & 12.50\% & 14.1\% \\
\hline WESTERN UNION & 18.95 & 0.06 & 12.42\% & 12.8\% \\
\hline WISCONSIN ENERGY & 45.60 & 1.35 & 9.36\% & 12.6\% \\
\hline WW GRAINGER & 95.81 & 1.84 & 11.73\% & 13.9\% \\
\hline XCEL ENERGY & 20.03 & 0.98 & 6.87\% & 12.2\% \\
\hline XL CAP.'A' & 17.61 & 0.40 & 11.00\% & 13.5\% \\
\hline XTO EN. & 43.26 & 0.50 & 10.88\% & 12.2\% \\
\hline YUM! BRANDS & 34.40 & 0.84 & 11.82\% & 14.6\% \\
\hline Market-weighted Average & & & & 13.1\% \\
\hline
\end{tabular}

Notes: In applying the DCF model to the S\&P 500, I included in the DCF analysis only those companies in the S\&P 500 group which pay a dividend, have a positive growth rate, and have at least three analysts' long-term growth estimates. To be conservative, I also eliminated those \(25 \%\) of companies with the highest and lowest DCF results.
\(\mathrm{D}_{0} \quad=\quad\) Current dividend per Thomson Reuters.
\(\mathrm{P}_{0} \quad=\quad\) Average of the monthly high and low stock prices during the three months ending December 2009 per Thomson Reuters.
\(g \quad=\quad \mathrm{I} / \mathrm{B} / E / \mathrm{S}\) forecast of future earnings growth December 2009
\(=\) Cost of equity using the quarterly version of the DCF model shown below:
\[
k=\left[\frac{d_{0}(1+g)^{\frac{1}{4}}}{P_{0}}\right]^{4}-1
\]

\title{
APPENDIX 1 \\ QUALIFICATIONS OF JAMES H. VANDER WEIDE, PH.D.
}

\author{
3606 Stoneybrook Drive \\ Durham, NC 27705 \\ Tel. 919.383.6659 \\ jim.vanderweide@,duke.edu
}

James H. Vander Weide is Research Professor of Finance and Economics at Duke University, the Fuqua School of Business. Dr. Vander Weide is also founder and President of Financial Strategy Associates, a consulting firm that provides strategic, financial, and economic consulting services to corporate clients, including cost of capital and valuation studies.

\section*{Educational Background and Prior Academic Experience}

Dr. Vander Weide holds a Ph.D. in Finance from Northwestern University and a Bachelor of Arts in Economics from Cornell University. He joined the faculty at Duke University and was named Assistant Professor, Associate Professor, Professor, and then Research Professor of Finance and Economics.

Since joining the faculty at Duke, Dr. Vander Weide has taught courses in corporate finance, investment management, and management of financial institutions. He has also taught courses in statistics, economics, and operations research, and a Ph.D. seminar on the theory of public utility pricing. In addition, Dr. Vander Weide has been active in executive education at Duke and Duke Corporate Education, leading executive development seminars on topics including financial analysis, cost of capital, creating shareholder value, mergers and acquisitions, real options, capital budgeting, cash management, measuring corporate performance, valuation, short-run financial planning, depreciation policies, financial strategy, and competitive strategy. Dr. Vander Weide has designed and served as Program Director for several executive education programs, including the Advanced Management Program, Competitive Strategies in Telecommunications, and the Duke Program for Manager Development for managers from the former Soviet Union.

\section*{Publications}

Dr. Vander Weide has written a book entitled Managing Corporate Liquidity: An Introduction to Working Capital Management published by John Wiley and Sons, Inc. He has also written a chapter titled, "Financial Management in the Short Run" for The Handbook of Modern Finance; a chapter for The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques, "Principles for Lifetime Portfolio Selection: Lessons from Portfolio Theory," and written research papers on such topics as portfolio management, capital budgeting, investments, the effect of regulation on the performance of public utilities, and cash management. His articles have been published in American Economic Review, Financial Management, International Journal of Industrial Organization, Journal of Finance, Journal of Financial and Quantitative Analysis, Journal of Bank Research, Journal of Porffolio Management, Journal of Accounting Research, Journal of Cash Management, Management Science, Atlantic Economic Journal, Journal of Economics and Business, and Computers and Operations Research.

Professional Consulting Experience
Dr. Vander Weide has provided financial and economic consulting services to firms in the electric, gas, insurance, telecommunications, and water industries for more than 25 years. He has testified on the cost of capital, competition, risk, incentive regulation, forward-looking economic cost, economic pricing guidelines, depreciation,
accounting, valuation, and other financial and economic issues in more than 400 cases before the United States Congress, the Canadian Radio-Television and Telecommunications Commission, the Federal Communications Commission, the National Energy Board (Canada), the National Telecommunications and Information Administration, the Federal Energy Regulatory Commission, the Alberta Utilities Board (Canada), the public service commissions of 43 states and the District of Columbia, the insurance commissions of five states, the Iowa State Board of Tax Review, the National Association of Securities Dealers, and the North Carolina Property Tax Commission. In addition, he has testified as an expert witness in proceedings before the United States District Court for the District of New Hampshire; United States District Court for the Northern District of California; United States District Court for the Northern District of Illinois, United States District Court for the District of Nebraska; United States District Court for the Eastern District of North Carolina; Superior Court of North Carolina, the United States Bankruptcy Court for the Southern District of West Virginia; and United States District Court for the Eastern District of Michigan. With respect to implementation of the Telecommunications Act of 1996, Dr. Vander Weide has testified in 30 states on issues relating to the pricing of unbundled network elements and universal service cost studies and has consulted with Bell Canada, Deutsche Telekom, and Telefónica on similar issues. He has also provided expert testimony on issues related to electric and natural gas restructuring. He has worked for Bell Canada/Nortel on a special task force to study the effects of vertical integration in the Canadian telephone industry and has worked for Bell Canada as an expert witness on the cost of capital. Dr. Vander Weide has provided consulting and expert witness testimony to the following companies:
\begin{tabular}{||l|l||}
\hline Telecommunications Companies & \\
\hline ALLTEL and its subsidiaries & Ameritech (now AT\&T new) \\
\hline AT\&T (old) & Verizon (Bell Atlantic) and subsidiaries \\
\hline Bell Canada/Nortel & BellSouth and its subsidiaries \\
\hline Centel and its subsidiaries & Cincinnati Bell (Broadwing) \\
\hline Cisco Systems & Citizens Telephone Company \\
\hline Concord Telephone Company & Contel and its subsidiaries \\
\hline Deutsche Telekom & GTE and subsidiaries (now Verizon) \\
\hline Heins Telephone Company & Lucent Technologies \\
\hline JDS Uniphase & Tellabs, Inc. \\
\hline Minnesota Independent Equal Access Corp. & NYNEX and its subsidiaries (Verizon) \\
\hline Pacific Telesis and its subsidiaries & Phillips County Cooperative Tel. Co. \\
\hline Pine Drive Cooperative Telephone Co. & Roseville Telephone Company (SureWest) \\
\hline Siemens & SBC Communications (now AT\&T new) \\
\hline Sherburne Telephone Company & Southern New England Telephone \\
\hline The Stentor Companies & Sprint/United and its subsidiaries \\
\hline Telefónica & Union Telephone Company \\
\hline Woodbury Telephone Company & United States Telephone Association \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline U S West (Qwest) & Valor Telecommunications (Windstream) \\
\hline \multicolumn{2}{|l|}{Electric, Gas, Pipeline, and Water Companies} \\
\hline Alcoa Power Generating, Inc. & NOVA Gas Transmission Ltd. \\
\hline Alliant Energy & North Shore Gas \\
\hline AltaLink, L.P. & PacifiCorp \\
\hline Ameren & PG\&E \\
\hline American Water Works & Peoples Energy and its subsidiaries \\
\hline Atmos Energy & The Peoples Gas, Light and Coke Co. \\
\hline Central Illinois Public Service & Progress Energy \\
\hline Citizens Utilities & Public Service Company of North Carolina \\
\hline Consolidated Natural Gas and its subsidiaries & PSE\&G \\
\hline Dominion Resources & Sempra Energy \\
\hline Duke Energy & South Carolina Electric and Gas \\
\hline Empire District Electric Company & Southern Company and subsidiaries \\
\hline EPCOR Distribution \& Transmission Inc. & Tennessee-American Water Company \\
\hline EPCOR Energy Alberta Inc. & Trans Québec \& Maritimes Pipeline Inc. \\
\hline FortisAlberta Inc. & United Cities Gas Company \\
\hline Interstate Power Company & Union Gas \\
\hline \multicolumn{2}{|l|}{Iowa-American Water Company} \\
\hline \multicolumn{2}{|l|}{Iowa-Illinois Gas and Electric} \\
\hline \multicolumn{2}{|l|}{Iowa Southern} \\
\hline \multicolumn{2}{|l|}{Kentucky American Water Company} \\
\hline \multicolumn{2}{|l|}{Kentucky Power Company} \\
\hline \multicolumn{2}{|l|}{Kinder Morgan Energy Partners} \\
\hline \multicolumn{2}{|l|}{MidAmerican Energy and its subsidiaries} \\
\hline \multicolumn{2}{|l|}{Nevada Power Company} \\
\hline \multicolumn{2}{|l|}{NICOR} \\
\hline \multicolumn{2}{|l|}{North Carolina Natural Gas} \\
\hline \multicolumn{2}{|l|}{Northern Natural Gas Company} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Insurance Companies} \\
\hline \multicolumn{2}{|l|}{Allstate} \\
\hline North Carolina Rate Bureau & \\
\hline
\end{tabular}
\begin{tabular}{||l|l||}
\hline United Services Automobile Association (USAA) & \\
\hline The Travelers Indemnity Company & \\
\hline Gulf Insurance Company & \\
\hline
\end{tabular}

\section*{Other Professional Experience}

Dr. Vander Weide conducts in-house seminars and training sessions on topics such as creating shareholder value, financial analysis, competitive strategy, cost of capital, real options, financial strategy, managing growth, mergers and acquisitions, valuation, measuring corporate performance, capital budgeting, cash management, and financial planning. Among the firms for whom he has designed and taught tailored programs and training sessions are ABB Asea Brown Boveri, Accenture, Allstate, Ameritech, AT\&T, Bell Atlantic/Verizon, BellSouth, Progress Energy/Carolina Power \& Light, Contel, Fisons, GlaxoSmithKline, GTE, Lafarge, MidAmerican Energy, New Century Energies, Norfolk Southern, Pacific Bell Telephone, The Rank Group, Siemens, Southern New England Telephone, TRW, and Wolseley Plc. Dr. Vander Weide has also hosted a nationally prominent conference/workshop on estimating the cost of capital. In 1989, at the request of Mr. Fuqua, Dr. Vander Weide designed the Duke Program for Manager Development for managers from the former Soviet Union, the first in the United States designed exclusively for managers from Russia and the former Soviet republics.

In the 1970's, Dr. Vander Weide helped found University Analytics, Inc., which at that time was one of the fastest growing small firms in the country. As an officer at University Analytics, he designed cash management models, databases, and software packages that are still used by most major U.S. banks in consulting with their corporate clients. Having sold his interest in University Analytics, Dr. Vander Weide now concentrates on strategic and financial consulting, academic research, and executive education.

\section*{PUBLICATIONS} JAMES H. VANDER WEIDE

The Lock-Box Location Problem: a Practical Reformulation, Journal of Bank Research, Summer, 1974, pp. 92-96 (with S. Maier). Reprinted in Management Science in Banking, edited by K. J. Cohen and S. E. Gibson, Warren, Gorham and Lamont, 1978.

A Finite Horizon Dynamic Programming Approach to the Telephone Cable Layout Problem, Conference Record, 1976 International Conference on Communications (with S. Maier and C. Lam).

A Note on the Optimal Investment Policy of the Regulated Firm, Atlantic Economic Journal, Fall, 1976 (with D. Peterson).

A Unified Location Model for Cash Disbursements and Lock-Box Collections, Journal of Bank Research, Summer, 1976 (with S. Maier). Reprinted in Management Science in Banking, edited by K. J. Cohen and S. E. Gibson, Warren Gorham and Lamont, 1978. Also reprinted in Readings on the Management of Working Capital, edited by K. V. Smith, West Publishing Company, 1979.

Capital Budgeting in the Decentralized Firm,' Management Science, Vol. 23, No. 4, December 1976, pp. 433-443 (with S. Maier).

A Monte Carlo Investigation of Characteristics of Optimal Geometric Mean Portfolios, Journal of Financial and Quantitative Analysis, June, 1977, pp. 215-233 (with S. Maier and D. Peterson).

A Strategy which Maximizes the Geometric Mean Return on Portfolio Investments, Management Science, June, 1977, Vol. 23, No. 10, pp. 1117-1123 (with S. Maier and D. Peterson).

A Decision Analysis Approach to the Computer Lease-Purchase Decision, Computers and Operations Research, Vol. 4, No. 3, September, 1977, pp. 167-172 (with S. Maier).

A Practical Approach to Short-run Financial Planning, Financial Management, Winter, 1978 (with S. Maier). Reprinted in Readings on the Management of Working Capital, edited by K. V. Smith, West Publishing Company, 1979.

Effectiveness of Regulation in the Electric Utility Industry,' Journal of Economics and Business, May, 1979 (with F. Tapon).

On the Decentralized Capital Budgeting Problem Under Uncertainty, Management Science, September 1979 (with B. Obel).

Expectations Data and the Predictive Value of Interim Reporting: A Comment, Journal of Accounting Research, Spring 1980 (with L. D. Brown, J. S. Hughes, and M. S. Rozeff).

General Telephone’s Experience with a Short-run Financial Planning Model, Cash Management Forum, June 1980, Vol. 6, No. 1 (with J. Austin and S. Maier).

Deregulation and Oligopolistic Price-Quality Rivalry, American Economic Review, March 1981 (with J. Zalkind).
Forecasting Disbursement Float, Financial Management, Spring 1981 (with S. Maier and D. Robinson).
Recent Developments in Management Science in Banking, Management Science, October 1981 (with K. Cohen and S. Maier).

Incentive Considerations in the Reporting of Leveraged Leases, Journal of Bank Research, April 1982 (with J. S. Hughes).

A Decision-Support System for Managing a Short-term Financial Instrument Portfolio, Journal of Cash Management, March 1982 (with S. Maier).

An Empirical Bayes Estimate of Market Risk, Management Science, July 1982 (with S. Maier and D. Peterson).

The Bond Scheduling Problem of the Multi-subsidiary Holding Company, Management Science, July 1982 (with K. Baker).

Deregulation and Locational Rents in Banking: a Comment, Journal of Bank Research, Summer 1983.

What Lockbox and Disbursement Models Really Do, Journal of Finance, May 1983 (with S. Maier).
Financial Management in the Short Run, Handbook of Modern Finance, edited by Dennis Logue, published by Warren, Gorham, \& Lamont, Inc., New York, 1984.

Measuring Investors' Growth Expectations: Analysts vs. History, The Journal of Portfolio Management, Spring 1988 (with W. Carleton).

Entry Auctions and Strategic Behavior under Cross-Market Price Constraints, International Journal of Industrial Organization, 20 (2002) 611-629 (with J. Anton and N. Vettas).

Principles for Lifetime Portfolio Selection: Lessons from Portfolio Theory, Handbook of Porffolio Construction: Contemporary Applications of Markowiť, Techniques, John B. Guerard, (Ed.), Springer, 2009.

Managing Corporate Liquidity: an Introduction to Working Capital Management, John Wiley and Sons, 1984 (with S. Maier).

The simple DCF Model assumes that a firm pays dividends only at the end of each year. Since firms in fact pay dividends quarterly and investors appreciate the time value of money, the annual version of the DCF Model generally underestimates the value investors are willing to place on the firm's expected future dividend stream. In this appendix, we review two alternative formulations of the DCF Model that allow for the quarterly payment of dividends.

When dividends are assumed to be paid annually, the DCF Model suggests that the current price of the firm's stock is given by the expression:
\[
\begin{equation*}
P_{0}=\frac{D_{1}}{(1+k)}+\frac{D_{2}}{(1+k)^{2}}+\ldots+\frac{D_{n}+P_{n}}{(1+k)^{n}} \tag{1}
\end{equation*}
\]
where
\begin{tabular}{lll}
\(P_{0}\) & \(=\) & current price per share of the firm's stock, \\
\(D_{1}, D_{2}, \ldots, D_{n}\) & \(=\) & \begin{tabular}{l}
expected annual dividends per share on the firm's stock, \\
\(P_{n}\)
\end{tabular} \\
\(k\) & \(=\quad\)\begin{tabular}{l}
stock, and \\
return investors expect to earn on alternative investments of the \\
same risk, i.e., the investors' required rate of return.
\end{tabular} \\
\(k\) &
\end{tabular}

Unfortunately, expression (1) is rather difficult to analyze, especially for the purpose of estimating \(k\). Thus, most analysts make a number of simplifying assumptions. First, they assume that dividends are expected to grow at the constant rate \(g\) into the indefinite future. Second, they assume that the stock price at time n is simply the present value of all dividends expected in periods subsequent to \(n\). Third, they assume that the investors' required rate of return, k , exceeds the expected dividend growth rate g . Under the above simplifying assumptions, a firm's stock price may be written as the following sum:
\[
\begin{equation*}
P_{0}=\frac{D_{0}(1+g)}{(1+k)}+\frac{D_{0}(1+g)^{2}}{(1+k)^{2}}+\frac{D_{0}(1+g)^{3}}{(1+k)^{3}}+\ldots \tag{2}
\end{equation*}
\]
where the three dots indicate that the sum continues indefinitely.
As we shall demonstrate shortly, this sum may be simplified to:
\[
P_{0}=\frac{D_{0}(1+g)}{(k-g)}
\]

First, however, we need to review the very useful concept of a geometric progression.

\section*{Geometric Progression}

Consider the sequence of numbers \(3,6,12,24, \ldots\), where each number after the first is obtained by multiplying the preceding number by the factor 2. Obviously, this sequence of numbers may also be expressed as the sequence \(3,3 \times 2,3 \times 2^{2}, 3 \times 2^{3}\), etc. This sequence is an example of a geometric progression.

Definition: A geometric progression is a sequence in which each term after the first is obtained by multiplying some fixed number, called the common ratio, by the preceding term.

A general notation for geometric progressions is: \(a\), the first term, \(r\), the common ratio, and n , the number of terms. Using this notation, any geometric progression may be represented by the sequence:
\[
a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1}
\]

In studying the DCF Model, we will find it useful to have an expression for the sum of \(n\) terms of a geometric progression. Call this sum \(S_{n}\). Then
\[
\begin{equation*}
S_{n}=a+a r+\ldots+a r^{n-1} . \tag{3}
\end{equation*}
\]

However, this expression can be simplified by multiplying both sides of equation (3) by \(r\) and then subtracting the new equation from the old. Thus,
\[
r S_{n}=a r+a r^{2}+a r^{3}+\ldots+a r^{n}
\]
and
\[
S_{n}-r S_{n}=a-a r^{n},
\]
or
\[
(1-r) S_{n}=a\left(1-r^{n}\right)
\]

Solving for \(S_{n}\), we obtain:
\[
\begin{equation*}
S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \tag{4}
\end{equation*}
\]
as a simple expression for the sum of \(n\) terms of a geometric progression. Furthermore, if \(|r|<1\), then \(S_{n}\) is finite, and as \(n\) approaches infinity, \(S_{n}\) approaches a \(\div(1-r)\). Thus, for a geometric progression with an infinite number of terms and \(|r|<1\), equation (4) becomes:
\[
\begin{equation*}
S=\frac{a}{1-r} \tag{5}
\end{equation*}
\]

\section*{Application to DCF Model}

Comparing equation (2) with equation (3), we see that the firm's stock price (under the DCF assumption) is the sum of an infinite geometric progression with the first term
\[
a=\frac{D_{0}(1+g)}{(1+k)}
\]
and common factor
\[
r=\frac{(1+g)}{(1+k)}
\]

Applying equation (5) for the sum of such a geometric progression, we obtain
\[
S=a \bullet \frac{1}{(1-r)}=\frac{D_{0}(1+g)}{(1+k)} \bullet \frac{1}{1-\frac{1+g}{1+k}}=\frac{D_{0}(1+g)}{(1+k)} \bullet \frac{1+k}{k-g}=\frac{D_{0}(1+g)}{k-g}
\]
as we suggested earlier.

\section*{Quarterly DCF Model}

The Annual DCF Model assumes that dividends grow at an annual rate of \(\mathrm{g} \%\) per year (see Figure 1).

\section*{Figure 1}

\section*{Annual DCF Model}
\(\square\)
0
Year
\(\mathrm{D}_{0}=4 \mathrm{~d}_{0}\)
\(D_{1}=D_{0}(1+g)\)

\section*{Figure 2}

\section*{Quarterly DCF Model (Constant Growth Version)}
\(\mathrm{d}_{0}\)
\(\mathrm{d}_{1}\)
\(\mathrm{d}_{2}\)
\(\mathrm{d}_{3}\)
\(\mathrm{D}_{1}\)

0
Year
\[
\begin{aligned}
& \mathrm{d}_{1}=\mathrm{d}_{0}(1+\mathrm{g})^{.25} \\
& \mathrm{~d}_{3}=\mathrm{d}_{0}(1+\mathrm{g})^{.75}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{d}_{2}=\mathrm{d}_{0}(1+\mathrm{g})^{.50} \\
& \mathrm{~d}_{4}=\mathrm{d}_{0}(1+\mathrm{g})
\end{aligned}
\]

In the Quarterly DCF Model, it is natural to assume that quarterly dividend payments differ from the preceding quarterly dividend by the factor \((1+g)^{.25}\), where \(g\) is expressed in terms of percent per year and the decimal .25 indicates that the growth has
only occurred for one quarter of the year. (See Figure 2.) Using this assumption, along with the assumption of constant growth and \(\boldsymbol{k}>\boldsymbol{g}\), we obtain a new expression for the firm's stock price, which takes account of the quarterly payment of dividends. This expression is:
\[
\begin{equation*}
P_{0}=\frac{d_{0}(1+g)^{\frac{1}{4}}}{(1+k)^{\frac{1}{4}}}+\frac{d_{0}(1+g)^{\frac{2}{4}}}{(1+k)^{\frac{2}{4}}}+\frac{d_{0}(1+g)^{\frac{3}{4}}}{(1+k)^{\frac{3}{4}}}+\ldots \tag{6}
\end{equation*}
\]
where \(d_{0}\) is the last quarterly dividend payment, rather than the last annual dividend payment. (We use a lower case \(d\) to remind the reader that this is not the annual dividend.)

Although equation (6) looks formidable at first glance, it too can be greatly simplified using the formula [equation (4)] for the sum of an infinite geometric progression. As the reader can easily verify, equation (6) can be simplified to:
\[
\begin{equation*}
P_{0}=\frac{d_{0}(1+g)^{\frac{1}{4}}}{(1+k)^{\frac{1}{4}}-(1+g)^{\frac{1}{4}}} \tag{7}
\end{equation*}
\]

Solving equation (7) for \(k\), we obtain a DCF formula for estimating the cost of equity under the quarterly dividend assumption:
\[
\begin{equation*}
k=\left[\frac{d_{0}(1+g)^{\frac{1}{4}}}{P_{0}}+(1+g)^{\frac{1}{4}}\right]^{4}-1 \tag{8}
\end{equation*}
\]

\section*{An Alternative Quarterly DCF Model}

Although the constant growth Quarterly DCF Model [equation (8)] allows for the quarterly timing of dividend payments, it does require the assumption that the firm increases its dividend payments each quarter. Since this assumption is difficult for some analysts to accept, we now discuss a second Quarterly DCF Model that allows for constant quarterly dividend payments within each dividend year.

Assume then that the firm pays dividends quarterly and that each dividend payment is constant for four consecutive quarters. There are four cases to consider, with each case distinguished by varying assumptions about where we are evaluating the firm in relation to the time of its next dividend increase. (See Figure 3.)

Figure 3

\section*{Quarterly DCF Model (Constant Dividend Version)}

\section*{Case 1}

\section*{Case 2}

\[
\mathrm{d}_{2}=\mathrm{d}_{3}=\mathrm{d}_{4}=\mathrm{d}_{0}(1+\mathrm{g})
\]

Figure 3 (continued)

\section*{Case 3}

\section*{Case 4}

0
1
Year
\[
\begin{gathered}
d_{1}=d_{2}=d_{3}=d_{0} \\
d_{4}=d_{0}(1+g)
\end{gathered}
\]

If we assume that the investor invests the quarterly dividend in an alternative investment of the same risk, then the amount accumulated by the end of the year will in all cases be given by
\[
\mathrm{D}_{1}^{*}=\mathrm{d}_{1}(1+\mathrm{k})^{3 / 4}+\mathrm{d}_{2}(1+\mathrm{k})^{1 / 2}+\mathrm{d}_{3}(1+\mathrm{k})^{1 / 4}+\mathrm{d}_{4}
\]
where \(d_{1}, d_{2}, d_{3}\) and \(d_{4}\) are the four quarterly dividends. Under these new assumptions, the firm's stock price may be expressed by an Annual DCF Model of the form (2), with the exception that
\[
\begin{equation*}
D_{1}^{*}=d_{1}(1+k)^{3 / 4}+d_{2}(1+k)^{1 / 2}+d_{3}(1+k)^{1 / 4}+d_{4} \tag{9}
\end{equation*}
\]
is used in place of \(D_{0}(1+g)\). But, we already know that the Annual DCF Model may be reduced to
\[
P_{0}=\frac{D_{0}(1+g)}{k-g}
\]

Thus, under the assumptions of the second Quarterly DCF Model, the firm's cost of equity is given by
\[
k=\frac{D_{1}^{*}}{P_{0}}+g(10)
\]
with \(D_{1}{ }^{*}\) given by (9).
Although equation (10) looks like the Annual DCF Model, there are at least two very important practical differences. First, since \(D_{1}{ }^{*}\) is always greater than \(D_{0}(1+g)\), the estimates of the cost of equity are always larger (and more accurate) in the Quarterly Model (10) than in the Annual Model. Second, since \(D_{1}{ }^{*}\) depends on \(k\) through equation (9), the unknown " \(k\) " appears on both sides of (10), and an iterative procedure is required to solve for \(k\).

\section*{APPENDIX 3 \\ ADJUSTING FOR FLOTATION COSTS IN DETERMINING \\ A PUBLIC UTILITY'S \\ ALLOWED RATE OF RETURN ON EQUITY}

\section*{Introduction}

Regulation of public utilities is guided by the principle that utility revenues should be sufficient to allow recovery of all prudently incurred expenses, including the cost of capital. As set forth in the 1944 Hope Natural Gas Case [Federal Power Comm'n v. Hope Natural Gas Co. 320 U. S. 591 (1944) at 603], the U. S. Supreme Court states:

From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock....By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises having corresponding risks.

Since the flotation costs arising from the issuance of debt and equity securities are an integral component of capital costs, this standard requires that the company's revenues be sufficient to fully recover flotation costs.

Despite the widespread agreement that flotation costs should be recovered in the regulatory process, several issues still need to be resolved. These include:
1. How is the term "flotation costs" defined? Does it include only the out-of-pocket costs associated with issuing securities (e. g., legal fees, printing costs, selling and underwriting expenses), or does it also include the reduction in a security's price that frequently accompanies flotation (i. e., market pressure)?
2. What should be the time pattern of cost recovery? Should a company be allowed to recover flotation costs immediately, or should flotation costs be recovered over the life of the issue?
3. For the purposes of regulatory accounting, should flotation costs be included as an expense? As an addition to rate base? Or as an additional element of a firm's allowed rate of return?
4. Do existing regulatory methods for flotation cost recovery allow a firm full recovery of flotation costs?

In this paper, I review the literature pertaining to the above issues and discuss my own views regarding how this literature applies to the cost of equity for a regulated firm.

\section*{Definition of Flotation Cost}

The value of a firm is related to the future stream of net cash flows (revenues minus expenses measured on a cash basis) that can be derived from its assets. In the process of acquiring assets, a firm incurs certain expenses which reduce its value. Some of these expenses or costs are directly associated with revenue production in one period (e. g., wages, cost of goods sold), others are more properly associated with revenue production in many periods (e. g., the acquisition cost of plant and equipment). In either case, the word "cost" refers to any item that reduces the value of a firm.

If this concept is applied to the act of issuing new securities to finance asset purchases, many items are properly included in issuance or flotation costs. These include: (1) compensation received by investment bankers for underwriting services, (2) legal fees, (3) accounting fees, (4) engineering fees, (5) trustee's fees, (6) listing fees, (7) printing and engraving expenses, (8) SEC registration fees, (9) Federal Revenue Stamps, (10) state taxes, (11) warrants granted to underwriters as extra compensation, (12) postage expenses, (13) employees' time, (14) market pressure, and (15) the offer discount. The finance literature generally divides these flotation cost items into three categories, namely, underwriting expenses, issuer expenses, and price effects.

\section*{Magnitude of Flotation Costs}

The finance literature contains several studies of the magnitude of the flotation costs associated with new debt and equity issues. These studies differ primarily with regard to the time period studied, the sample of companies included, and the source of data. The flotation cost studies generally agree, however, that for large issues, underwriting expenses represent approximately one and one-half percent of the proceeds of debt issues and three to five percent of the proceeds of seasoned equity issues. They also agree that issuer expenses represent approximately 0.5 percent of both debt and equity issues, and that the announcement of an equity issue reduces the company's stock price by at least two to three percent of the proceeds from the stock issue. Thus, total flotation costs represent approximately two percent \({ }^{10}\) of the proceeds from debt issues, and five and one-half to eight and one-half percent of the proceeds of equity issues.

Lee et. al. [14] is an excellent example of the type of flotation cost studies found in the finance literature. The Lee study is a comprehensive recent study of the underwriting and issuer costs associated with debt and equity issues for both utilities and non-utilities. The results of the Lee et. al. study are reproduced in Tables 1 and 2. Table 1 demonstrates that the total underwriting and issuer expenses for the 1,092 debt issues in their study averaged 2.24 percent of the proceeds of the issues, while the total underwriting and issuer costs for the 1,593 seasoned equity issues in their study averaged 7.11 percent of the proceeds of the new issue. Table 1 also demonstrates that the total underwriting and issuer costs of seasoned equity offerings, as a percent of proceeds, decline with the size of the issue. For issues above \(\$ 60\) million, total underwriting and issuer costs amount to from three to five percent of the amount of the proceeds.

Table 2 reports the total underwriting and issuer expenses for 135 utility debt issues and 136 seasoned utility equity issues. Total underwriting and issuer expenses for utility bond offerings averaged 1.47 percent of the amount of the proceeds and for seasoned utility equity offerings averaged 4.92 percent of the amount of the proceeds. Again, there are some economies of scale associated with larger equity offerings. Total underwriting and issuer expenses for equity offerings in excess of 40 million dollars generally range from three to four percent of the proceeds.

The results of the Lee study for large equity issues are consistent with results of earlier studies by Bhagat and Frost [4], Mikkelson and Partch [17], and Smith [24]. Bhagat and Frost found that total underwriting and issuer expenses average approximately four and one-half percent of the amount of proceeds from negotiated utility offerings during the period 1973 to 1980, and approximately three and one-half percent of the amount of the proceeds from competitive utility offerings over the

\footnotetext{
10 The two percent flotation cost on debt only recognizes the cost of newly-issued debt. When interest rates decline, many companies exercise the call provisions on higher cost debt and reissue debt at lower rates. This process involves reacquisition costs that are not included in the academic studies. If reacquisition costs were included in the academic studies, debt flotation costs could increase significantly.
}
same period. Mikkelson and Partch found that total underwriting and issuer expenses average five and one-half percent of the proceeds from seasoned equity offerings over the 1972 to 1982 period. Smith found that total underwriting and issuer expenses for larger equity issues generally amount to four to five percent of the proceeds of the new issue.

The finance literature also contains numerous studies of the decline in price associated with sales of large blocks of stock to the public. These articles relate to the price impact of: (1) initial public offerings; (2) the sale of large blocks of stock from one investor to another; and (3) the issuance of seasoned equity issues to the general public. All of these studies generally support the notion that the announcement of the sale of large blocks of stock produces a decline in a company's share price. The decline in share price for initial public offerings is significantly larger than the decline in share price for seasoned equity offerings; and the decline in share price for public utilities is less than the decline in share price for non-public utilities. A comprehensive study of the magnitude of the decline in share price associated specifically with the sale of new equity by public utilities is reported in Pettway [19], who found the market pressure effect for a sample of 368 public utility equity sales to be in the range of two to three percent. This decline in price is a real cost to the utility, because the proceeds to the utility depend on the stock price on the day of issue.

In addition to the price decline associated with the announcement of a new equity issue, the finance literature recognizes that there is also a price decline associated with the actual issuance of equity securities. In particular, underwriters typically sell seasoned new equity securities to investors at a price lower than the closing market price on the day preceding the issue. The Rules of Fair Practice of the National Association of Securities Dealers require that underwriters not sell shares at a price above the offer price. Since the offer price represents a binding constraint to the underwriter, the underwriter tends to set the offer price slightly below the market price on the day of issue to compensate for the risk that the price received by the underwriter may go down, but can not increase. Smith provides evidence that the offer discount tends to be between 0.5 and 0.8 percent of the proceeds of an equity issue. I am not aware of any similar studies for debt issues.

In summary, the finance literature provides strong support for the conclusion that total underwriting and issuer expenses for public utility debt offerings represent approximately two percent of the amount of the proceeds, while total underwriting and issuer expenses for public utility equity offerings represent at least four to five percent of the amount of the proceeds. In addition, the finance literature supports the conclusion that the cost associated with the decline in stock price at the announcement date represents approximately two to three percent as a result of a large public utility equity issue.

\section*{TIME PATTERN OF FLOTATION COST RECOVERY}

Although flotation costs are incurred only at the time a firm issues new securities, there is no reason why an issuing firm ought to recognize the expense only in the current period. In fact, if assets purchased with the proceeds of a security issue produce revenues over many years, a sound argument can be made in favor of recognizing flotation expenses over a reasonably lengthy period of time. Such recognition is certainly consistent with the generally accepted accounting principle that the time pattern of expenses match the time pattern of revenues, and it is also consistent with the normal treatment of debt flotation expenses in both regulated and unregulated industries.

In the context of a regulated firm, it should be noted that there are many possible time patterns for the recovery of flotation expenses. However, if it is felt that flotation expenses are most
appropriately recovered over a period of years, then it should be recognized that investors must also be compensated for the passage of time. That is to say, the value of an investor's capital will be reduced if the expenses are merely distributed over time, without any allowance for the time value of money.

\section*{ACCOUNTING FOR FLOTATION COST IN A REGULATORY SETTING}

In a regulatory setting, a firm's revenue requirements are determined by the equation:

\section*{Revenue Requirement \(=\) Total Expenses + Allowed Rate of Return x Rate Base}

Thus, there are three ways in which an issuing firm can account for and recover its flotation expenses: (1) treat flotation expenses as a current expense and recover them immediately; (2) include flotation expenses in rate base and recover them over time; and (3) adjust the allowed rate of return upward and again recover flotation expenses over time. Before considering methods currently being used to recover flotation expenses in a regulatory setting, I shall briefly consider the advantages and disadvantages of these three basic recovery methods.
Expenses. Treating flotation costs as a current expense has several advantages. Because it allows for recovery at the time the expense occurs, it is not necessary to compute amortized balances over time and to debate which interest rate should be applied to these balances. A firm's stockholders are treated fairly, and so are the firm's customers, because they pay neither more nor less than the actual flotation expense. Since flotation costs are relatively small compared to the total revenue requirement, treatment as a current expense does not cause unusual rate hikes in the year of flotation, as would the introduction of a large generating plant in a state that does not allow Construction Work in Progress in rate base.

On the other hand, there are two major disadvantages of treating flotation costs as a current expense. First, since the asset purchased with the acquired funds will likely generate revenues for many years into the future, it seems unfair that current ratepayers should bear the full cost of issuing new securities, when future ratepayers share in the benefits. Second, this method requires an estimate of the underpricing effect on each security issue. Given the difficulties involved in measuring the extent of underpricing, it may be more accurate to estimate the average underpricing allowance for many securities than to estimate the exact figure for one security.

Rate Base. In an article in Public Utilities Fortnightly, Bierman and Hass [5] recommend that flotation costs be treated as an intangible asset that is included in a firm's rate base along with the assets acquired with the stock proceeds. This approach has many advantages. For ratepayers, it provides a better match between benefits and expenses: the future ratepayers who benefit from the financing costs contribute the revenues to recover these costs. For investors, if the allowed rate of return is equal to the investors' required rate of return, it is also theoretically fair since they are compensated for the opportunity cost of their investment (including both the time value of money and the investment risk).

Despite the compelling advantages of this method of cost recovery, there are several disadvantages that probably explain why it has not been used in practice. First, a firm will only recover the proper amount for flotation expenses if the rate base is multiplied by the appropriate cost of capital. To the extent that a commission under or over estimates the cost of capital, a firm will under or over recover its flotation expenses. Second, it is may be both legally and psychologically difficult for commissioners to include an intangible asset in a firm's rate base. According to established legal doctrine, assets are to be included in rate base only if they are
"used and useful" in the public service. It is unclear whether intangible assets such as flotation expenses meet this criterion.

Rate of Return. The prevailing practice among state regulators is to treat flotation expenses as an additional element of a firm's cost of capital or allowed rate of return. This method is similar to the second method above (treatment in rate base) in that some part of the initial flotation cost is amortized over time. However, it has a disadvantage not shared by the rate base method. If flotation cost is included in rate base, it is fairly easy to keep track of the flotation cost on each new equity issue and see how it is recovered over time. Using the rate of return method, it is not possible to track the flotation cost for specific issues because the flotation cost for a specific issue is never recorded. Thus, it is not clear to participants whether a current allowance is meant to recover (1) flotation costs actually incurred in a test period, (2) expected future flotation costs, or (3) past flotation costs. This confusion never arises in the treatment of debt flotation costs. Because the exact costs are recorded and explicitly amortized over time, participants recognize that current allowances for debt flotation costs are meant to recover some fraction of the flotation costs on all past debt issues.

\section*{EXISTING REGULATORY METHODS}

Although most state commissions prefer to let a regulated firm recover flotation expenses through an adjustment to the allowed rate of return, there is considerable controversy about the magnitude of the required adjustment. The following are some of the most frequently asked questions: (1) Should an adjustment to the allowed return be made every year, or should the adjustment be made only in those years in which new equity is raised? (2) Should an adjusted rate of return be applied to the entire rate base, or should it be applied only to that portion of the rate base financed with paid-in capital (as opposed to retained earnings)? (3) What is the appropriate formula for adjusting the rate of return?

This section reviews several methods of allowing for flotation cost recovery. Since the regulatory methods of allowing for recovery of debt flotation costs is well known and widely accepted, I will begin my discussion of flotation cost recovery procedures by describing the widely accepted procedure of allowing for debt flotation cost recovery.

\section*{Debt Flotation Costs}

Regulators uniformly recognize that companies incur flotation costs when they issue debt securities. They typically allow recovery of debt flotation costs by making an adjustment to both the cost of debt and the rate base (see Brigham [6]). Assume that: (1) a regulated company issues \(\$ 100\) million in bonds that mature in 10 years; (2) the interest rate on these bonds is seven percent; and (3) flotation costs represent four percent of the amount of the proceeds. Then the cost of debt for regulatory purposes will generally be calculated as follows:
\[
\begin{aligned}
\text { Cost of Debt } & =\frac{\text { Interest expense }+ \text { Amortization of flotation costs }}{\text { Principal value }- \text { Unamortized flotation costs }} \\
& =\frac{\$ 7,000,000+\$ 400,000}{\$ 100,000,000-\$ 4,000,000} \\
& =7.71 \%
\end{aligned}
\]

Thus, current regulatory practice requires that the cost of debt be adjusted upward by approximately 71 basis points, in this example, to allow for the recovery of debt flotation costs. This example does not include losses on reacquisition of debt. The flotation cost allowance would increase if losses on reacquisition of debt were included.

The logic behind the traditional method of allowing for recovery of debt flotation costs is simple. Although the company has issued \(\$ 100\) million in bonds, it can only invest \(\$ 96\) million in rate base because flotation costs have reduced the amount of funds received by \(\$ 4\) million. If the company is not allowed to earn a 71 basis point higher rate of return on the \(\$ 96\) million invested in rate base, it will not generate sufficient cash flow to pay the seven percent interest on the \(\$ 100\) million in bonds it has issued. Thus, proper regulatory treatment is to increase the required rate of return on debt by 71 basis points.

\section*{Equity Flotation Costs}

The finance literature discusses several methods of recovering equity flotation costs. Since each method stems from a specific model, (i. e., set of assumptions) of a firm and its cash flows, I will highlight the assumptions that distinguish one method from another.

Arzac and Marcus. Arzac and Marcus [2] study the proper flotation cost adjustment formula for a firm that makes continuous use of retained earnings and external equity financing and maintains a constant capital structure (debt/equity ratio). They assume at the outset that underwriting expenses and underpricing apply only to new equity obtained from external sources. They also assume that a firm has previously recovered all underwriting expenses, issuer expenses, and underpricing associated with previous issues of new equity.

To discuss and compare various equity flotation cost adjustment formulas, Arzac and Marcus make use of the following notation:
\(\mathrm{k}=\quad\) an investors' required return on equity
\(r=\quad\) a utility's allowed return on equity base
\(\mathrm{S}=\quad\) value of equity in the absence of flotation costs
\(\mathrm{S}_{\mathrm{f}} \quad=\quad\) value of equity net of flotation costs
\(\mathrm{K}_{\mathrm{t}}=\) equity base at time t
\(E_{t}=\) total earnings in year \(t\)
\(\mathrm{D}_{\mathrm{t}} \quad=\quad\) total cash dividends at time t
\(b \quad=\quad\left(E_{t}-D_{t}\right) \div E_{t}=\) retention rate, expressed as a fraction of earnings
\(h \quad=\quad\) new equity issues, expressed as a fraction of earnings
\(\mathrm{m}=\) equity investment rate, expressed as a fraction of earnings, \(\mathrm{m}=\mathrm{b}+\mathrm{h}<1\)
\(\mathrm{f}=\mathrm{flotation}\) costs, expressed as a fraction of the value of an issue.
Because of flotation costs, Arzac and Marcus assume that a firm must issue a greater amount of external equity each year than it actually needs. In terms of the above notation, a firm issues \(\mathrm{hE}_{\mathrm{t}} \div\) (1-f) to obtain \(h E_{t}\) in external equity funding. Thus, each year a firm loses:

\section*{Equation 3}
\[
L=\frac{h E_{t}}{1-f}-h E_{t}=\frac{f}{1-f} \times h E_{t}
\]
due to flotation expenses. The present value, V , of all future flotation expenses is:

\section*{Equation 4}
\[
V=\sum_{t=1}^{\infty} \frac{f h E_{t}}{(1-f)(1+k)^{t}}=\frac{f h}{1-f} \times \frac{r K_{0}}{k-m r}
\]

To avoid diluting the value of the initial stockholder's equity, a regulatory authority needs to find the value of \(r\), a firm's allowed return on equity base, that equates the value of equity net of flotation costs to the initial equity base \(\left(\mathrm{S}_{\mathrm{f}}=\mathrm{K}_{0}\right)\). Since the value of equity net of flotation costs equals the value of equity in the absence of flotation costs minus the present value of flotation costs, a regulatory authority needs to find that value of \(r\) that solves the following equation:
\[
S_{f}=S-L .
\]

This value is:

\section*{Equation 5}
\[
r=\frac{k}{1-\frac{f h}{1-f}}
\]

To illustrate the Arzac-Marcus approach to adjusting the allowed return on equity for the effect of flotation costs, suppose that the cost of equity in the absence of flotation costs is 12 percent. Furthermore, assume that a firm obtains external equity financing each year equal to 10 percent of its earnings and that flotation expenses equal 5 percent of the value of each issue. Then, according to Arzac and Marcus, the allowed return on equity should be:
\[
r=\frac{.12}{1-\frac{(.05) \cdot(.1)}{.95}}=.1206=12.06 \%
\]

Summary. With respect to the three questions raised at the beginning of this section, it is evident that Arzac and Marcus believe the flotation cost adjustment should be applied each year, since continuous external equity financing is a fundamental assumption of their model. They also believe that the adjusted rate of return should be applied to the entire equity-financed portion of the rate base because their model is based on the assumption that the flotation cost adjustment mechanism will be applied to the entire equity financed portion of the rate base. Finally, Arzac and Marcus recommend a flotation cost adjustment formula, Equation (3), that implicitly excludes recovery of financing costs associated with financing in previous periods and includes only an allowance for the fraction of equity financing obtained from external sources.

Patterson. The Arzac-Marcus flotation cost adjustment formula is significantly different from the conventional approach (found in many introductory textbooks) which recommends the adjustment equation:

\section*{Equation 6}
\[
r=\frac{D_{t}}{P_{t-1}(1-f)}+g
\]
where \(P_{t-1}\) is the stock price in the previous period and \(g\) is the expected dividend growth rate. Patterson [18] compares the Arzac-Marcus adjustment formula to the conventional approach and reaches the conclusion that the Arzac-Marcus formula effectively expenses issuance costs as they are incurred, while the conventional approach effectively amortizes them over an assumed infinite life of the equity issue. Thus, the conventional formula is similar to the formula for the recovery of debt flotation costs: it is not meant to compensate investors for the flotation costs of future issues, but instead is meant to compensate investors for the flotation costs of previous issues. Patterson argues that the conventional approach is more appropriate for rate making purposes because the plant purchased with external equity funds will yield benefits over many future periods.

Illustration. To illustrate the Patterson approach to flotation cost recovery, assume that a newly organized utility sells an initial issue of stock for \(\$ 100\) per share, and that the utility plans to finance all new investments with retained earnings. Assume also that: (1) the initial dividend per share is six dollars; (2) the expected long-run dividend growth rate is six percent; (3) the flotation cost is five percent of the amount of the proceeds; and (4) the payout ratio is 51.28 percent. Then, the investor's required rate of return on equity is \([k=(D / P)+g=6\) percent +6 percent \(=12\) percent \(]\); and the flotation-cost-adjusted cost of equity is [6 percent (1/.95) +6 percent \(=12.316\) percent].

The effects of the Patterson adjustment formula on the utility's rate base, dividends, earnings, and stock price are shown in Table 3. We see that the Patterson formula allows earnings and dividends to grow at the expected six percent rate. We also see that the present value of expected future dividends, \(\$ 100\), is just sufficient to induce investors to part with their money. If the present value of expected future dividends were less than \(\$ 100\), investors would not have been willing to invest \(\$ 100\) in the firm. Furthermore, the present value of future dividends will only equal \(\$ 100\) if the firm is allowed to earn the 12.316 percent flotation-cost-adjusted cost of equity on its entire rate base.

Summary. Patterson's opinions on the three issues raised in this section are in stark contrast to those of Arzac and Marcus. He believes that: (1) a flotation cost adjustment should be applied in every year, regardless of whether a firm issues any new equity in each year; (2) a flotation cost adjustment should be applied to the entire equity-financed portion of the rate base, including that portion financed by retained earnings; and (3) the rate of return adjustment formula should allow a firm to recover an appropriate fraction of all previous flotation expenses.

\section*{CONCLUSION}

Having reviewed the literature and analyzed flotation cost issues, I conclude that:
Definition of Flotation Cost: A regulated firm should be allowed to recover both the total underwriting and issuance expenses associated with issuing securities and the cost of market pressure.

Time Pattern of Flotation Cost Recovery. Shareholders are indifferent between the alternatives of immediate recovery of flotation costs and recovery over time, as long as they are fairly compensated for the opportunity cost of their money. This opportunity cost must include both the time value of money and a risk premium for equity investments of this nature.

Regulatory Recovery of Flotation Costs. The Patterson approach to recovering flotation costs is the only rate-of-return-adjustment approach that meets the Hope case criterion that a regulated company's revenues must be sufficient to allow the company an opportunity to recover all prudently incurred expenses, including the cost of capital. The Patterson approach is also the only rate-of-return-adjustment approach that provides an incentive for investors to invest in the regulated company.

Implementation of a Flotation Cost Adiustment. As noted earlier, prevailing regulatory practice seems to be to allow the recovery of flotation costs through an adjustment to the required rate of return. My review of the literature on this subject indicates that there are at least two recommended methods of making this adjustment: the Patterson approach and the Arzac-Marcus approach. The Patterson approach assumes that a firm's flotation expenses on new equity issues are treated in the same manner as flotation expenses on new bond issues, i. e., they are amortized over future time periods. If this assumption is true (and I believe it is), then the flotation cost adjustment should be applied to a firm's entire equity base, including retained earnings. In practical terms, the Patterson approach produces an increase in a firm's cost of equity of approximately thirty basis points. The Arzac-Marcus approach assumes that flotation costs on new equity issues are recovered entirely in the year in which the securities are sold. Under the Arzac-Marcus assumption, a firm should not be allowed any adjustments for flotation costs associated with previous flotations. Instead, a firm should be allowed only an adjustment on future security sales as they occur. Under reasonable assumptions about the rate of new equity sales, this method produces an increase in the cost of equity of approximately six basis points. Since the ArzacMarcus approach does not allow the company to recover the entire amount of its flotation cost, I recommend that this approach be rejected and the Patterson approach be accepted.

\section*{BIBLIOGRAPHY}
1. Armknecht, Raymond, Fred Grygiel and Patrick Hess, "Market Pressure: The Sales of New Common Equity and Rate of Return Regulation, "Proceedings of the Business and Economic Statistics Section of the American Statistical Association, 1974, pp. 80-91.
2. Arzac, E. R., and M. Marcus, "Flotation Cost Allowance in Rate of Return Regulation: A Note," Journal of Finance, December 1981, pp. 1199—1202.
3. Barclay, M. J. and R. H. Litzenberger, 1988, "Announcement Effects of New Equity Issues and the Use of Intraday Price Data," Journal of Financial Economics 21, 71-99.
4. Bhagat, S. and P. A. Frost, 1986, "Issuing Costs to Existing Shareholders in Competitive and Negotiated Underwritten Public Utility Equity Offerings," Journal of Financial Economics 15, 233-59.
5. Bierman, H., and J. E. Hass, "Equity Flotation Cost Adjustments in Utilities' Cost of Service," Public Utilities Fortnightly, March 1, 1983, pp.46-49.
6. Bowyer, Jr., John W., and Jess B. Yawitz, "The Effect of New Equity Issues on Utility Stock Prices," Pubic Utilities Fortnightly, May 22, 1980.
7. Brigham, Eugene F., Dana Aberwald, and Louis C. Gapenski, "Common Equity Flotation Costs and Rate Making," Public Utilities Fortnightly, May 2, 1985, pp. 28-26.
8. Calomiris, C. W. and D. M. G Raff, 1995, "The Evolution of Market Structure, Information, and Spreads in American Investment Banking," in M. B. Bordo and R. Sylla, eds., Anglo-American Finance: Financial Markets and Institutions in \(20^{\text {th }}\) Century North America and the U. K. (Business One-Irwin Homewood, IL), 103-60.
9. Dunbar, C. G., 1995, "The Use of Warrants as Underwriter Compensation in Initial Public Offerings," Journal of Financial Economics 38, 59-78.
10. Evans, Robert E., "On the Existence, Measurement, and Economic Significance of Market Pressure in the Pricing of New Equity Shares," unpublished dissertation, University of Wisconsin, 1978.
11. Howe, K. M., "Flotation Cost Allowance in Rate of Return Regulation: Comment," Journal of Finance, March 1984, pp. 289-290.
12. Howe, K. M., "Flotation Cost Allowance for the Regulated Firm: A Comparison of Alternatives," unpublished working paper, School of Business, lowa State University.
13. Ibbotson, R. C., "Price Performance of Common Stock New Issues," Journal of Financial Economics, 1975, pp. 235-272.
14. Lee, Inmoo, Scott Lochhead, Jay Ritter, and Quanshui Zhao, "The Costs of Raising Capital," The Journal of Financial Research, Vol XIX No 1 (Spring 1996), 59—74
15. Logue, D. E., "On the Pricing of Unseasoned Equity Offerings: 1965-1969," Journal of Financial and Quantitative Analysis, January 1973, pp. 91-103.
16. McDonald, J. G. and A. K. Fisher, "New Issue Stock Price Behavior," Journal of Finance, March 1972, pp. 97102.
17. Mikkelson, Wayne H. and M. Megan Partch, "Valuation Effects of Security Offerings and the Issuance Process," Journal of Financial Economics 15 (1986), pp. 31-60.
18. Patterson, C. S., "Flotation Cost Allowance in Rate of Return Regulation: Comment," Journal of Finance, September 1983, pp. 1335—1338.
19. Pettway, R. H., "The Effects of New Equity Sales Upon Utility Share Prices," Public Utilities Fortnightly, May 10, 1984, pp. 35-39.
20. Reilly, F. K. and K. Hatfield, "Investor Experience with New Stock Issues," Financial Analysts' Journal, September--October 1969, pp. 73—80.
21. Richter, P. H., "The Ever Present Need for an Underpricing Allowance," Public Utilities Fortnightly, February 18, 1982, pp. 58-61.
22. Scholes, M., "The Market for New Securities: Substitution versus Price Pressure and the Effects of Information on Share Prices," Journal of Business, April 1972, pp. 179—211.
23. Securities and Exchange Commission, Report of Special Study on Securities Markets, U. S. Government Printing Office, Washington, D. C. 1963.
24. Smith, Clifford W. Jr., "Alternative Methods for Raising Capital," Journal of Financial Economics 5 (1977) 273-307.

Table 1

\section*{Direct Costs as a Percentage of Gross Proceeds} for Equity (IPOs and SEOs) and Straight and Convertible Bonds Offered by Domestic Operating Companies 1990—1994 \({ }^{11}\)

Equities
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{IPOs} & \multicolumn{4}{|c|}{SEOs} \\
\hline Proceeds (\$ in millions) & & \begin{tabular}{l}
Gross \\
Spreads
\end{tabular} & Other
Direct
Expenses & Total Direct Costs & & Gross Spreads & \begin{tabular}{|c|}
\hline Other \\
Direct \\
Expenses
\end{tabular} & Total Direct Costs \\
\hline 2-9.99 & 337 & 9.05\% & 7.91\% & 16.96\% & 167 & 7.72\% & 5.56\% & 13.28\% \\
\hline 10-19.99 & 389 & 7.24\% & 4.39\% & 11.63\% & 310 & 6.23\% & 2.49\% & 8.72\% \\
\hline 20-39.99 & 533 & 7.01\% & 2.69\% & 9.70\% & 425 & 5.60\% & 1.33\% & 6.93\% \\
\hline 40-59.99 & 215 & 6.96\% & 1.76\% & 8.72\% & 261 & 5.05\% & 0.82\% & 5.87\% \\
\hline 60-79.99 & 79 & 6.74\% & 1.46\% & 8.20\% & 143 & 4.57\% & 0.61\% & 5.18\% \\
\hline 80-99.99 & 51 & 6.47\% & 1.44\% & 7.91\% & 71 & 4.25\% & 0.48\% & 4.73\% \\
\hline 100-199.99 & 106 & 6.03\% & 1.03\% & 7.06\% & 152 & 3.85\% & 0.37\% & 4.22\% \\
\hline 200-499.99 & 47 & 5.67\% & 0.86\% & 6.53\% & 55 & 3.26\% & 0.21\% & 3.47\% \\
\hline 500 and up & 10 & 5.21\% & 0.51\% & 5.72\% & 9 & 3.03\% & 0.12\% & 3.15\% \\
\hline Total/Average & 1,767 & 7.31\% & 3.69\% & 11.00\% & 1,593 & 5.44\% & 1.67\% & 7.11\% \\
\hline
\end{tabular}

\section*{Bonds}
\begin{tabular}{|c|r|r|c|c|r|r|r|r|}
\hline & \multicolumn{4}{|c|}{ Convertible Bonds } & \multicolumn{3}{c|}{ Straight Bonds } \\
\hline \begin{tabular}{c}
Proceeds \\
(\$ in millions)
\end{tabular} & \begin{tabular}{c}
No. \\
of \\
Issues
\end{tabular} & \begin{tabular}{c}
Gross \\
Spreads
\end{tabular} & \begin{tabular}{c}
Other \\
Direct \\
Expenses
\end{tabular} & \begin{tabular}{c}
Total \\
Direct \\
Costs
\end{tabular} & \begin{tabular}{c}
No. \\
of \\
Issues
\end{tabular} & \begin{tabular}{c}
Gross \\
Spreads
\end{tabular} & \begin{tabular}{c}
Other \\
Direct \\
Expenses
\end{tabular} & \begin{tabular}{c}
Total \\
Direct \\
Costs
\end{tabular} \\
\hline \(2-9.99\) & 4 & \(6.07 \%\) & \(2.68 \%\) & \(8.75 \%\) & 32 & \(2.07 \%\) & \(2.32 \%\) & \(4.39 \%\) \\
\hline \(10-19.99\) & 14 & \(5.48 \%\) & \(3.18 \%\) & \(8.66 \%\) & 78 & \(1.36 \%\) & \(1.40 \%\) & \(2.76 \%\) \\
\hline \(20-39.99\) & 18 & \(4.16 \%\) & \(1.95 \%\) & \(6.11 \%\) & 89 & \(1.54 \%\) & \(0.88 \%\) & \(2.42 \%\) \\
\hline \(40-59.99\) & 28 & \(3.26 \%\) & \(1.04 \%\) & \(4.30 \%\) & 90 & \(0.72 \%\) & \(0.60 \%\) & \(1.32 \%\) \\
\hline \(60-79.99\) & 47 & \(2.64 \%\) & \(0.59 \%\) & \(3.23 \%\) & 92 & \(1.76 \%\) & \(0.58 \%\) & \(2.34 \%\) \\
\hline \(80-99.99\) & 13 & \(2.43 \%\) & \(0.61 \%\) & \(3.04 \%\) & 112 & \(1.55 \%\) & \(0.61 \%\) & \(2.16 \%\) \\
\hline \(100-199.99\) & 57 & \(2.34 \%\) & \(0.42 \%\) & \(2.76 \%\) & 409 & \(1.77 \%\) & \(0.54 \%\) & \(2.31 \%\) \\
\hline \(200-499.99\) & 27 & \(1.99 \%\) & \(0.19 \%\) & \(2.18 \%\) & 170 & \(1.79 \%\) & \(0.40 \%\) & \(2.19 \%\) \\
\hline 500 and up & 3 & \(2.00 \%\) & \(0.09 \%\) & \(2.09 \%\) & 20 & \(1.39 \%\) & \(0.25 \%\) & \(1.64 \%\) \\
\hline Total/Average & \(\mathbf{2 1 1}\) & \(\mathbf{2 . 9 2 \%}\) & \(\mathbf{0 . 8 7 \%}\) & \(\mathbf{3 . 7 9 \%}\) & \(\mathbf{1 , 0 9 2}\) & \(\mathbf{1 . 6 2 \%}\) & \(\mathbf{0 . 6 2 \%}\) & \(\mathbf{2 . 2 4 \%}\) \\
\hline
\end{tabular}

Notes:
Closed-end funds and unit offerings are excluded from the sample. Rights offerings for SEOs are also excluded. Bond offerings do not include securities backed by mortgages and issues by Federal agencies. Only firm commitment offerings and non-shelfregistered offerings are included.
Gross Spreads as a percentage of total proceeds, including management fee, underwriting fee, and selling concession.
Other Direct Expenses as a percentage of total proceeds, including management fee, underwriting fee, and selling concession. Total Direct Costs as a percentage of total proceeds (total direct costs are the sum of gross spreads and other direct expenses).

\footnotetext{
\({ }^{11}\) Inmoo Lee, Scott Lochhead, Jay Ritter, and Quanshui Zhao, "The Costs of Raising Capital," Journal of Financial Research Vol 19 No 1 (Spring 1996) pp. 59-74.
}

Table 2
Direct Costs of Raising Capital 1990—1994
Utility versus Non-Utility Companies \({ }^{12}\)
Equities
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Non-Utilities & \multicolumn{3}{|c|}{IPOs} & \multicolumn{3}{|c|}{SEOs} \\
\hline Proceeds (\$ in millions) & \[
\begin{gathered}
\text { No. } \\
\text { of Issues }
\end{gathered}
\] & Gross Spreads & Total Direct Costs & No. Of Issues & Gross Spreads & Total Direct Costs \\
\hline 2-9.99 & 332 & 9.04\% & 16.97\% & 154 & 7.91\% & 13.76\% \\
\hline 10-19.99 & 388 & 7.24\% & 11.64\% & 278 & 6.42\% & 9.01\% \\
\hline 20-39.99 & 528 & 7.01\% & 9.70\% & 399 & 5.70\% & 7.07\% \\
\hline 40-59.99 & 214 & 6.96\% & 8.71\% & 240 & 5.17\% & 6.02\% \\
\hline 60-79.99 & 78 & 6.74\% & 8.21\% & 131 & 4.68\% & 5.31\% \\
\hline 80-99.99 & 47 & 6.46\% & 7.88\% & 60 & 4.35\% & 4.84\% \\
\hline 100-199.99 & 101 & 6.01\% & 7.01\% & 137 & 3.97\% & 4.36\% \\
\hline 200-499.99 & 44 & 5.65\% & 6.49\% & 50 & 3.27\% & 3.48\% \\
\hline 500 and up & 10 & 5.21\% & 5.72\% & 8 & 3.12\% & 3.25\% \\
\hline Total/Average & 1,742 & 7.31\% & 11.01\% & 1,457 & 5.57\% & 7.32\% \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Utilities Only} \\
\hline 2-9.99 & 5 & 9.40\% & 16.54\% & 13 & 5.41\% & 7.68\% \\
\hline 10-19.99 & 1 & 7.00\% & 8.77\% & 32 & 4.59\% & 6.21\% \\
\hline 20-39.99 & 5 & 7.00\% & 9.86\% & 26 & 4.17\% & 4.96\% \\
\hline 40-59.99 & 1 & 6.98\% & 11.55\% & 21 & 3.69\% & 4.12\% \\
\hline 60-79.99 & 1 & 6.50\% & 7.55\% & 12 & 3.39\% & 3.72\% \\
\hline 80-99.99 & 4 & 6.57\% & 8.24\% & 11 & 3.68\% & 4.11\% \\
\hline 100-199.99 & 5 & 6.45\% & 7.96\% & 15 & 2.83\% & 2.98\% \\
\hline 200-499.99 & 3 & 5.88\% & 7.00\% & 5 & 3.19\% & 3.48\% \\
\hline 500 and up & 0 & & & 1 & 2.25\% & 2.31\% \\
\hline Total/Average & 25 & 7.15\% & 10.14\% & 136 & 4.01\% & 4.92\% \\
\hline
\end{tabular}

\footnotetext{
\({ }^{12}\) Lee et al, op. cit.
}

Table 2 (continued)
Direct Costs of Raising Capital 1990—1994
Utility versus Non-Utility Companies \({ }^{13}\)
Bonds
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Non- Utilities & \multicolumn{3}{|c|}{Convertible Bonds} & \multicolumn{3}{|c|}{Straight Bonds} \\
\hline Proceeds (\$ in millions) & No. of Issues & Gross Spreads & Total Direct Costs & No. of Issues & Gross Spreads & Total Direct Costs \\
\hline 2-9.99 & 4 & 6.07\% & 8.75\% & 29 & 2.07\% & 4.53\% \\
\hline 10-19.99 & 12 & 5.54\% & 8.65\% & 47 & 1.70\% & 3.28\% \\
\hline 20-39.99 & 16 & 4.20\% & 6.23\% & 63 & 1.59\% & 2.52\% \\
\hline 40-59.99 & 28 & 3.26\% & 4.30\% & 76 & 0.73\% & 1.37\% \\
\hline 60-79.99 & 47 & 2.64\% & 3.23\% & 84 & 1.84\% & 2.44\% \\
\hline 80-99.99 & 12 & 2.54\% & 3.19\% & 104 & 1.61\% & 2.25\% \\
\hline 100-199.99 & 55 & 2.34\% & 2.77\% & 381 & 1.83\% & 2.38\% \\
\hline 200-499.99 & 26 & 1.97\% & 2.16\% & 154 & 1.87\% & 2.27\% \\
\hline 500 and up & 3 & 2.00\% & 2.09\% & 19 & 1.28\% & 1.53\% \\
\hline Total/Average & 203 & 2.90\% & 3.75\% & 957 & 1.70\% & 2.34\% \\
\hline & & & & & & \\
\hline Utilities Only & & & & & & \\
\hline 2-9.99 & 0 & & & 3 & 2.00\% & 3.28\% \\
\hline 10-19.99 & 2 & 5.13\% & 8.72\% & 31 & 0.86\% & 1.35\% \\
\hline 20-39.99 & 2 & 3.88\% & 5.18\% & 26 & 1.40\% & 2.06\% \\
\hline 40-59.99 & 0 & & & 14 & 0.63\% & 1.10\% \\
\hline 60-79.99 & 0 & & & 8 & 0.87\% & 1.13\% \\
\hline 80-99.99 & 1 & 1.13\% & 1.34\% & 8 & 0.71\% & 0.98\% \\
\hline 100-199.99 & 2 & 2.50\% & 2.74\% & 28 & 1.06\% & 1.42\% \\
\hline 200-499.99 & 1 & 2.50\% & 2.65\% & 16 & 1.00\% & 1.40\% \\
\hline 500 and up & 0 & & & 1 & 3.50\% & \(n \mathrm{a}^{14}\) \\
\hline Total/Average & 8 & 3.33\% & 4.66\% & 135 & 1.04\% & 1.47\% \\
\hline
\end{tabular}

Notes:
Total proceeds raised in the United States, excluding proceeds from the exercise of over allotment options.
Gross spreads as a percentage of total proceeds (including management fee, underwriting fee, and selling concession).
Other direct expenses as a percentage of total proceeds (including registration fee and printing, legal, and auditing costs).

\footnotetext{
\({ }^{13}\) Lee et al, op. cit.
\({ }^{14}\) Not available because of missing data on other direct expenses.
}

Table 3
Illustration of Patterson Approach to Flotation Cost Recovery
\begin{tabular}{|c|c|c|c|c|c|}
\hline Time Period & \begin{tabular}{l}
Rate \\
Base
\end{tabular} & \[
\begin{gathered}
\text { Earnings } \\
@ \\
12.32 \% \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Earnings } \\
@ \\
12.00 \% \\
\hline
\end{gathered}
\] & Dividends & Amortization Initial FC \\
\hline 0 & 95.00 & & & & \\
\hline 1 & 100.70 & 11.70 & 11.40 & 6.00 & 0.3000 \\
\hline 2 & 106.74 & 12.40 & 12.08 & 6.36 & 0.3180 \\
\hline 3 & 113.15 & 13.15 & 12.81 & 6.74 & 0.3371 \\
\hline 4 & 119.94 & 13.93 & 13.58 & 7.15 & 0.3573 \\
\hline 5 & 127.13 & 14.77 & 14.39 & 7.57 & 0.3787 \\
\hline 6 & 134.76 & 15.66 & 15.26 & 8.03 & 0.4015 \\
\hline 7 & 142.84 & 16.60 & 16.17 & 8.51 & 0.4256 \\
\hline 8 & 151.42 & 17.59 & 17.14 & 9.02 & 0.4511 \\
\hline 9 & 160.50 & 18.65 & 18.17 & 9.56 & 0.4782 \\
\hline 10 & 170.13 & 19.77 & 19.26 & 10.14 & 0.5068 \\
\hline 11 & 180.34 & 20.95 & 20.42 & 10.75 & 0.5373 \\
\hline 12 & 191.16 & 22.21 & 21.64 & 11.39 & 0.5695 \\
\hline 13 & 202.63 & 23.54 & 22.94 & 12.07 & 0.6037 \\
\hline 14 & 214.79 & 24.96 & 24.32 & 12.80 & 0.6399 \\
\hline 15 & 227.67 & 26.45 & 25.77 & 13.57 & 0.6783 \\
\hline 16 & 241.33 & 28.04 & 27.32 & 14.38 & 0.7190 \\
\hline 17 & 255.81 & 29.72 & 28.96 & 15.24 & 0.7621 \\
\hline 18 & 271.16 & 31.51 & 30.70 & 16.16 & 0.8078 \\
\hline 19 & 287.43 & 33.40 & 32.54 & 17.13 & 0.8563 \\
\hline 20 & 304.68 & 35.40 & 34.49 & 18.15 & 0.9077 \\
\hline 21 & 322.96 & 37.52 & 36.56 & 19.24 & 0.9621 \\
\hline 22 & 342.34 & 39.77 & 38.76 & 20.40 & 1.0199 \\
\hline 23 & 362.88 & 42.16 & 41.08 & 21.62 & 1.0811 \\
\hline 24 & 384.65 & 44.69 & 43.55 & 22.92 & 1.1459 \\
\hline 25 & 407.73 & 47.37 & 46.16 & 24.29 & 1.2147 \\
\hline 26 & 432.19 & 50.21 & 48.93 & 25.75 & 1.2876 \\
\hline 27 & 458.12 & 53.23 & 51.86 & 27.30 & 1.3648 \\
\hline 28 & 485.61 & 56.42 & 54.97 & 28.93 & 1.4467 \\
\hline 29 & 514.75 & 59.81 & 58.27 & 30.67 & 1.5335 \\
\hline 30 & 545.63 & 63.40 & 61.77 & 32.51 & 1.6255 \\
\hline Present Value@12\% & & 195.00 & 190.00 & 100.00 & 5.00 \\
\hline
\end{tabular}

\section*{APPENDIX 4}

EX ANTE RISK PREMIUM APPROACH
My ex ante risk premium method is based on studies of the DCF expected return on proxy companies compared to the interest rate on Moody's A-rated utility bonds. Specifically, for each month in my study period, I calculate the risk premium using the equation,
\[
R P_{P R O X Y}=D C F_{P R O X Y}-I_{A}
\]
where:
\(\mathrm{RP}_{\mathrm{PROXY}}=\) the required risk premium on an equity investment in the proxy group of companies,
\(D C F_{\text {PROXY }}=\) average DCF estimated cost of equity on a portfolio of proxy companies; and
\(I_{A} \quad=\quad\) the yield to maturity on an investment in A-rated utility bonds.

For my ex ante risk premium analysis, I begin with my comparable group of natural gas companies shown in Schedule 2. Previous studies have shown that the ex ante risk premium tends to vary inversely with the level of interest rates, that is, the risk premium tends to increase when interest rates decline, and decrease when interest rates go up. To test whether my studies also indicate that the ex ante risk premium varies inversely with the level of interest rates, I perform a regression analysis of the relationship between the ex ante risk premium and the yield to maturity on A-rated utility bonds, using the equation,
\[
\mathrm{RP}_{\mathrm{PROXY}}=\mathrm{a}+\left(\mathrm{b} \times \mathrm{I}_{\mathrm{A}}\right)+\mathrm{e}
\]
where:
\(\mathrm{RP}_{\mathrm{PROXY}}=\) risk premium on proxy company group;
\(\mathrm{I}_{\mathrm{A}} \quad=\) yield to maturity on A-rated utility bonds;
e \(\quad=\) a random residual; and
\(\mathrm{a}, \mathrm{b} \quad=\) coefficients estimated by the regression procedure.
Regression analysis assumes that the statistical residuals from the regression equation are random. My examination of the residuals reveals that there is a significant probability that the residuals are serially correlated (non-zero serial correlation indicates that the residual in one time period tends to be correlated with the residual in the previous time period). Therefore, I make adjustments to my data to correct for the possibility of serial correlation in the residuals.

The common procedure for dealing with serial correlation in the residuals is to estimate the regression coefficients in two steps. First, a multiple regression analysis is used to estimate the serial correlation coefficient, r. Second, the estimated serial correlation coefficient is used to transform the original variables into new variables whose serial correlation is approximately zero. The regression coefficients are then reestimated using the transformed variables as inputs in the regression equation. Based on my knowledge of the statistical relationship between the yield to maturity on A-rated utility bonds and the required risk premium, my estimate of the ex ante risk premium on an investment in my proxy natural gas company group as compared to an investment in A-rated utility bonds is given by the equation:
\[
\begin{equation*}
\mathrm{RP}_{\mathrm{PROXY}} \quad=\quad 0.712 \quad-\quad-.3579 \times \mathrm{I}_{\mathrm{A} .5} \tag{9.13}
\end{equation*}
\]
[15] The \(t\)-statistics are shown in parentheses.

Using a 6.29 percent forecasted yield to maturity on A-rated utility bonds at December \(2010,{ }^{16}\) the regression equation produces an ex ante risk premium based on the natural gas proxy group equal to 4.87 percent \((0.0712-.3579 \times 6.29=4.87)\).

To estimate the cost of equity using the ex ante risk premium method, one may add the estimated risk premium over the yield on A-rated utility bonds to the forecasted yield to maturity on A-rated utility bonds. As described above, my analyses produce an estimated risk premium over the yield on A-rated utility bonds equal to 4.9 percent. Adding an estimated risk premium of 4.9 percent to the 6.3 percent forecasted yield to maturity on A-rated utility bonds produces a cost of equity estimate of 11.2 percent using the ex ante risk premium method.

\footnotetext{
\({ }^{16}\) As described in the testimony, the forecasted yield to maturity on A-rated utility bonds, 6.3 percent, is obtained by adding Value Line's forecasted 50-basis point increase in the yield on AAA-rated corporate bonds over the period Q4 2009 to Q4 2010 to the 5.8 percent average yield on Moody's A-rated utility bonds in December 2009.
}

\section*{APPENDIX 5 \\ RISK PREMIUM APPROACH}

\section*{Source}

Stock price and yield information is obtained from Standard \& Poor's Security Price publication. Standard \& Poor's derives the stock dividend yield by dividing the aggregate cash dividends (based on the latest known annual rate) by the aggregate market value of the stocks in the group. The bond price information is obtained by calculating the present value of a bond due in 30 years with a \(\$ 4.00\) coupon and a yield to maturity of a particular year's indicated Moody's A-rated Utility bond yield. The values shown on Schedules 4 and 5 are the January values of the respective indices.

\section*{Calculation of Stock and Bond Returns}

Sample calculation of "Stock Return" column:

Stock Return (2008) \(=\left[\frac{\text { Stock Price (2009) }- \text { Stock Price (2008) }+ \text { Dividend (2008) }}{\text { Stock Price (2008) }}\right]\)
where Dividend (2008) = Stock Price (2008) x Stock Div. Yield (2008)

Sample calculation of "Bond Return" column:

Bond Return (2008) \(=\left[\frac{\text { Bond Price (2009) }- \text { Bond Price (2008) }+ \text { Interest (2008) }}{\text { Bond Price (2008) }}\right]\)
where Interest \(=\$ 4.00\).

\section*{COMMONWEALTH OF KENTUCKY \\ BEFORE THE PUBLIC SERVICE COMMISSION}

IN THE MATTER OF:)
THE APPLICATION OF KENTUCKY-AMERICAN) CASE NO. 2010-00036 WATER COMPANY FOR AN ADJUSTMENT OF) RATES ON AND AFTER MARCH 28, 2010)

\section*{DIRECT TESTIMONY OF LANCE E. WILLIAMS, P.E.}

February 26, 2010
1. Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
A. My name is Lance E. Williams and my business address is 2300 Richmond Road, Lexington, Kentucky 40502.

\section*{2. Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?}
A. I am employed by the Kentucky-American Water Company ("KAW") as Director of Engineering.
3. Q. HAVE YOU PREVIOUSLY FILED TESTIMONY BEFORE THIS COMMISSION?
A. No.
4. Q. PLEASE STATE YOUR EDUCATIONAL AND PROFESSIONAL BACKGROUND.

I received a B.S. degree in Civil Engineering from the West Virginia Institute of Technology (West Virginia University Institute of Technology) in 1990. I am a registered Professional Engineer in Kentucky and West Virginia. I worked for Howard K. Bell, Consulting Engineers Inc. ("HKB") from 1990 - 2003. While working for HKB I was responsible for various projects, including water and wastewater treatment, distribution, collection and landfill design. In 2003, I went to work for BridgeTek, Inc. (which was later purchased by CONTECH, Construction Products) as the Region Manager for Kentucky.

\section*{5. Q. HOW LONG HAVE YOU HELD THE POSITION OF DIRECTOR OF} ENGINEERING FOR KENTUCY AMERICAN WATER?
A. I have held this position since June 2008.

\section*{6. Q. WHAT ARE YOUR DUTIES AS DIRECTOR OF ENGINEERING?}
A. I am responsible for the coordination of the Engineering Department at KAW, which includes the planning, development, and implementation of all aspects of construction
projects. This includes working with all new main extensions and developers, water treatment plant upgrades, new construction, and network facilities improvements. I coordinate the provision of technical assistance to all other company departments as needed and oversee the capital budget development and implementation.

\section*{7. Q. WHAT WILL YOUR TESTIMONY ADDRESS?}
A. My testimony will describe the preparation of the investment plan and detail the information for the construction projects as submitted in this case.

\section*{8. Q. PLEASE DESCRIBE THE FACTORS USED IN THE PREPARATION OF THE FORECAST PERIOD DATA AS IT RELATES TO THE CAPITAL CONSTRUCTION.}
A. The Company's capital investment plan can be divided into three distinct areas: 1) Developer Projects (DV), 2) recurring projects (RP), 3) major projects identified as investment projects (IP). Normal recurring construction includes water main installation for new development, smaller main projects for reinforcement and replacement, service line and meter setting installation, meter purchases and the purchase of tools, furniture, equipment and vehicles.

Recurring construction costs are trended from historical and forecasted data. Estimates are prepared for the installation of new mains, service lines, meter settings and the purchase of new meters based on preliminary plats from the appropriate governmental planning agencies and consultations with developers, homebuilders and engineering firms.

Purchase of tools, furniture, equipment and vehicles are based on needs. KAW reviews each item independently and prepares an itemized list of expenditures. Estimates are made based on current year pricing.

The intent of the planning process is to provide a broad and comprehensive review of facility needs that will allow us then to establish a general guide for needed
improvements over the planning horizon. These improvements will enable KAW to provide safe, adequate and reliable service to its customers to meet their domestic, commercial and industrial needs; provide flows adequate for fire protection; and satisfy all regulatory requirements. The plan provides a general scope of each project along with a preliminary design. The criteria for evaluating the various system components are: engineering requirements; consideration of national, state and local trends; environmental impact evaluations; and water resource management.

KAW uses engineering criteria based on accepted engineering standards and practices that provide adequate capacity and appropriate levels of reliability to satisfy residential, commercial, industrial, and public authority needs, and provide flows for fire protection. The criteria are developed from regulations, professional standards and company engineering policies and procedures. KAW uses demand projections based on historical data and usage trends to evaluate future system needs.

Sources of supply are evaluated based on quantity and quality. There must be sufficient quantity to supply the system's needs. There must be sufficient quality to provide, through treatment, finished water that meets or exceeds all federal and state regulations. Sources of supply must also have sufficient allocation rights to enable average and maximum demands to be met.

Treatment and pumping facilities are designed to meet projected maximum day needs reliably. Storage facilities are designed to provide the recommended volume to equalize the plant's pumping rate on a maximum demand day. With this approach treatment facilities need only be designed to meet the projected maximum day demand, although during that day hourly demands will exceed the treatment capacity's maximum rate. Storage facilities are also designed to provide the volume of water necessary for fire protection up to the maximum flow and duration addressed in the most recent Insurance Services Office (ISO) municipal grading schedule and the volume necessary for reliability.

Pipelines are designed to meet two conditions of service. They are expected to deliver projected peak hour customer demands while maintaining system pressures at 30 psi or greater in accordance with the Public Service Commission (PSC) regulations and to provide adequate fire flow identified by the ISO while maintaining distribution system pressure at 20 psi or greater.

\section*{9. Q. DOES KAW FOCUS ON COST CONTROL OF CAPITAL EXPENDITURES IN ITS NORMAL DAY-TO-DAY ACTIVITIES?}
A. Yes. All significant construction work done by independent contractors and significant purchases are completed pursuant to a bid solicitation process. We maintain a list of qualified bidders and we believe that our construction costs are very reasonable. American Water annually takes competitive bids for material and supplies that are either manufactured or distributed regionally and nationally through its centralized procurement group. We have the advantage of being able to purchase these materials and supplies on an as-needed basis at favorable prices. In the past seven years, American Water also has undertaken a number of procurement initiatives for services and materials to reduce costs through either streamlined selection or utilization of large volume purchasing power. Some of these initiatives that have directly impacted capital expenditures include the use of master services agreements with pre-qualified engineering consultants, national vehicle fleet procurement, and national preferred vendor identification.

\section*{10. Q. HOW DOES KAW MANAGE THE IMPLEMENTATION OF ITS CAPITAL PLAN?}
A. Since 2003, the entire American Water system has used a process for developing and reviewing capital expenditures that incorporates some of the best practices implemented at KAW. This process includes a regional Capital Investment Management Committee ("CIMC") to ensure capital expenditure plans meet the strategic intent of the business including introducing new technology and process efficiency, assuring that capital expenditure plans are integrated with operating
expense plans, and providing more effective controls on budgets and individual capital projects.

The CIMC includes the KAW President, KAW Vice President-Operations, KAW Director of Engineering, and VP of Finance-Eastern Division. The CIMC receives capital expenditure plans from project managers and approves them for submission to the Corporate CIMC. Once budgets are approved the CIMC meets monthly to review capital expenditures compared to budgeted levels. The process includes five stages of project review: 1) a Preliminary Need Identification defining the project at an early stage; 2) a Project Implementation Proposal that confirms all aspects of the project are in a position to begin work; 3) Project Change Requests, if needed (if the cost change is more than \(5 \%\) or \(\$ 100,000\)); 4) a Post Project Review; and 5) Asset Management. KAW personnel handle all of the stages, with oversight by the CIMC. All projects, including normal recurring items, have an identified project manager responsible for processing the stages of the project. The CIMC allows KAW to be more flexible with changes that inevitably occur during the course of implementation of large construction projects.

As an added level of coordination, a "Functional Sign-Off" Committee meets monthly to give final approval on projects. This committee includes the KAW Vice President-Operations; the KAW Director of Engineering; and the appropriate Operations supervisors and project managers. The purpose of the committee is to review projects that are moving forward in the next step of approval or that require a change. This process allows the project manager and operational area supervisors to communicate about the project on a monthly basis and help coordinate projects from initial development through in-service.

\section*{11. Q. PLEASE EXPLAIN THE MAJOR PROJECTS PROPOSED FOR 2010//2011.}
A. A brief description of the projects listed in Exhibit 13 of the Application in this case follows.

Item DV (Projects Funded by Others) - This investment plan item is for the installation of new mains, valves and hydrants that are funded entirely by others. This investment plan item may also include the replacement of existing components of water supply, water treatment, water pumping, water storage, and water pressure regulation facilities not funded by company expenditures. The majority of these expenditures are made through deposit agreements and as nonrefundable contributions. The projected expenditure amount is developed through discussions with homebuilders and developers as well as a review of plats. Developers deposit projected expenditures based on average pipe installation costs from the previous year pursuant to our on-site main extension agreement. This item also includes fire services that are paid by the requesting new customer, at the cost of installation.

Item A - This investment plan item is for new water mains, valves, and other appurtenances that are necessary to perform the work that is funded by the company, including upsizing of developer initiated extensions; company initiated and funded new mains that are not related to immediate growth, such as new mains that eliminate existing dead ends or provide new transmission capacity; and new customer initiated extensions in accordance with tariffs that may include some customer contribution (customer funded portion under abovementioned Item DV). This item may also include new mains that parallel existing mains to increase transmission capacity, provide reliability, or establish an additional pressure gradient.

Item B - This investment plan item is for the scheduled replacement, renewal or improvement of existing water mains including valves and other appurtenances that are necessary to perform the work. This investment line item now includes replacement of services in conjunction with those projects, which was previously budgeted in the cost of service replacements.
Item C - This investment plan item is for the unscheduled replacement or restoration of existing water mains, including valves and other appurtenances that are
necessary to perform the work. This item is primarily used for emergency replacements.
Item \(\mathbf{D}\) - This investment plan item is for the relocation of existing water mains, including valves and other appurtenances that are necessary to perform the work, as required by municipal or state agencies. This investment line item now includes replacement of services in conjunction with these projects, which was previously budgeted in the cost of service replacements. These costs are not reimbursable.

Item \(\mathbf{E}\) - This investment plan item is for the installation of new hydrants, including hydrant assemblies and valves that are installed on existing mains or installed in conjunction with main extension projects, which are company funded. This item generally includes all public hydrants.

Item F - This investment plan item is for the replacement of leaking, failed or obsolete hydrants, including hydrant assemblies and valves that are company funded.

Item G - This investment plan item is for the installation of new water services or improvements, including corporation stops and shut-off valves.

Item \(\mathbf{H}\) - This investment plan item is for the replacement of water services or improvements, including the replacement of corporation stops, or shut-off valves. This budget item shows a reduction from previous years because services previously scheduled in conjunction with scheduled main replacement projects are now budgeted along with the main replacement project in Item \(\mathrm{B}, \mathrm{C}\) or D .

Item I - This investment plan item is for the installation of new meters and meter settings.

Item \(\mathbf{J}\) - This investment plan item is for the replacement or improvement of existing customer meters and meter settings with or without technology changes. Again, the cost of replacing the meter setting in conjunction with a main replacement project that may have been previously budgeted separately is now budgeted under Item B, C or D.

Item K - This investment plan item is for the replacement of existing Information Technology System Equipment and systems due to failure or obsolescence and new items to achieve efficiency or address new requirements.
Item \(\mathbf{L}\) - This investment item is for the installation or replacement of existing SCADA Equipment and Systems. The acronym SCADA can be defined in several slightly different ways, but KAW generally prefers the definition as System Control and Data Acquisition, which is the computerized system for monitoring and operating the treatment plants and network facilities. We believe it more appropriate to subdivide these important investment costs from general Information Technology Equipment costs.

Item M - This investment item is a division for Security Equipment and Systems. This may include fencing, alarm systems, cameras, barricades, electronic detection or locking systems, software, or other assets related directly to Security.
Item \(\mathbf{N}\) - This investment plan item is for the replacement or improvement of building systems, equipment or furnishings for offices and operations centers, including copy machines, fax machines, and phone systems.
Item \(\mathbf{O}\) - This investment plan item is for replacement of vehicles, including utility trucks, cars and light and medium trucks and accessories.

Item P - This investment plan item is for the replacement or purchase of construction, shop, garage, meter reading, and storeroom equipment.

Item \(\mathbf{Q}\) - This investment plan item is for the new purchase or replacement of existing components of water supply, treatment, pumping, storage, and pressure regulation facilities, including associated building components and equipment. Replacements may be planned or made because of failure, or may include improvements. This item now also includes laboratory equipment and replacement of filter media used in the treatment process if capitalized.

Item R - This investment plan item is for capitalized tank painting and tank rehabilitation. However, KAW does not capitalize tank painting, and this line is used strictly for capital improvements at the tanks as necessary.
Item S - This investment item is for preliminary engineering studies primarily used for planning purposes. At the initiation of a project, these capital dollars are
transferred to the appropriate construction project. If no project is developed as a result of the study, the expenditures are then transferred from CWIP.

\section*{Investment Projects}

These projects are for facilities that are substantial in dollar amount. Projects approved in the immediate investment plan are identified by two types of numbers. The first is a hyphenated numerical system, the first number being the originating subsidiary and district of the project and the second number being the number of the project. Projects were previously assigned an 8-digit business unit where the first two digits identify the subsidiary, the second two digits identify the District within each Division, and the final four digits are the numerical project number. KAW's company number is (12) and the central division is (02) while the northern division is divided into districts of the former Tri-Village (30), Owenton (32) and former Elk Lake System (03). For sewer assets, Owenton is district 33 and the former Boonesboro wastewater network and treatment plant is district 50 . If the project is proposed but has not yet been approved it will be identified only by its description.

IP 12020204 Source of Supply Development Project and IP 12020607 KRS II, Transmission Main and Booster Station -- This project is for the preliminary design and professional services costs that have been incurred since 2004 for the development of a solution for the Source of Supply deficit, and the final design and construction of the new water treatment facility on Pool 3 of the Kentucky River near Monterey on the Owen/Franklin County line. Linda Bridwell will discuss this project in detail in her testimony.

IP 1202-5 North Broadway Main Replacement - This project is for the design and construction of a replacement main from Short Street to Louden Avenue. The current main was installed in the late 1800s and is a 6 -inch cast iron main. Fire flows available in the area are very limited. When maintenance is required, we are frequently unable to completely shut the valves, thus making repairs very difficult. The total project began in 2008 and will be completed in 2010. The
expenditures in 2008 were \(\$ 299,376.80\) and \(\$ 1,264,105.24\) in 2009. The proposed expenditures in 2010 are \(\$ 1,515,928.69\) for a total project of \(\$ 2,715,410.73\).

IP 1202-6 Install 34,000' of \(\mathbf{1 6}\) " along Carrick Pike - This project is the installation of a 16 -inch pipe along Carrick Pike in the northeastern portion of the Central Division service area to distribute flows better from the Russell Cave Road tank. The tank was constructed to provide additional storage in the northern section and was located on Russell Cave Road to allow the Muddy Ford tank in Scott County to be removed from service for maintenance, if necessary. Although the tank currently operates well, it cannot solely replace the Muddy Ford tank because of constricted distribution system mains. The expenditures for the project were \(\$ 62,505.52\) in 2008 and \(\$ 25,590.42\) in 2009. The proposed expenditures are, \(\$ 1,000,000\) in 2011, and \(\$ 1,612,000\) in 2012 for a total project cost of \$2,700,095.94.

IP 1202-9 Install 22,700’ of 12" along Todds and Cleveland Road - This project is the installation of a 12 -inch pipe along Todds and Cleveland Road which will replace an existing 4 -inch and 6 -inch pipeline. The new 12 -inch line will better serve the pumping needs of the Winchester Road Booster pump station and current demands of the system. The proposed expenditure for 2011 is \(\$ 50,000\) and the total project cost is \(\$ 2,450,000\).

IP 1202-19 Leestown Road - This project is for the design and replacement of existing 8 -inch cast iron mains in conjunction with highway improvements along Leestown Road between New Circle Road and Masterson Station Park in Fayette County. The replacement will be approximately 7,800 LF of 16-inch ductile iron pipe. The proposed expenditure for the project is \(\$ 1,500,000\), which will occur in 2011.

IP 1202-22 KRS Raw Water Transfer - This project is for the installation of a 24inch venture meter to more accurately meter the water being transferred to the Jacobson Reservoir. Currently the raw water main from KRS discharges to the reservoir by "back-flowing" through the intake. The proposed expenditures are \$200,000 in 2011.

IP 1202-17 South Limestone Replacement - This project is for the design and replacement of existing 6 -inch and 8 -inch mains that date back to the early 1900's, over 100 years old, along Limestone Street through the University of Kentucky Campus between Virginia Avenue and Avenue of Champions. The replacement will be approximately 3,100 linear feet ("LF") of 12-inch ductile iron pipe along Limestone Street. This project will strengthen the service provided to the University of Kentucky as well as downtown Lexington, which is undergoing numerous redevelopment projects. The proposed expenditures are \(\$ 532,854\) in 2010.

IP 1202-18 US 25 Relocation - This project is for the design and replacement of existing 6-inch mains in conjunction with highway improvements along US 25/Georgetown Road between Ironworks Pike and Etter Lane in Scott County. The replacement will be approximately 4,800 LF of 12-inch, 7,500 LF of 16-inch, and 3,500 LF of 24 -inch ductile iron pipe and will tie-in to the new 42-inch transmission main. The proposed expenditures, all in 2010, are \(\$ 3,200,000\). KAW estimates that \(\$ 450,000\) will be reimbursed by the Kentucky Transportation Cabinet ("KTC") in 2010.

IP 1202-31 KRS Raw Water Access (KRS Incline Car) - This project is the development of a system to provide reliable access to the Raw Water Intake from the treatment plant at the Kentucky River Station 1. The access, which parallels a steep staircase, must cover a 380-foot vertical elevation change up a bluff. The existing system was originally installed in 1957 and has periodically been out of service for repair. Further, the existing system has a weight limit of 1250 pounds. A replacement system will be designed for greater reliability and higher weight limits. A proposed \(\$ 50,000\) is scheduled for 2010, with an additional \(\$ 950,000\) proposed in 2011 for a total project cost of \(\$ 1,000,000\). The project is expected to be completed in 2011.

IP 1202-32 Lexington Operations Facility - This project covers the design and construction of a new Operation Facility. The facility will be approximately 20,000 square feet with areas designated for both offices and garages. Currently all utility trucks are outside in the weather, which will shorten the life of the
vehicle as well as lengthen our response time during inclement weather. The office portion of the facility will provide offices, cubes, meeting rooms, and men's and women's locker rooms. The total project cost is \(\$ 2,000,000\) and is expected to be completed in 2010.

IP 1232-3 Northern Division Connection - This project is the installation of 14 miles of 12-inch main along US 127 from the Pool 3 WTP to the intersection of KY 22/US127 in Owenton. This project would require a booster station and storage tank. This project would connect to the existing 8 -inch supply mains in the City of Owenton which then branch out and supply the rural areas of Owen County. This project will enable KAW to better serve our existing customers with a backup supply. The current distribution system has minimum connections to other water systems which would limit the amount of water KAW could purchase if needed during an emergency. The proposed expenditure for 2011 is \(\$ 4,700,000\) and the total project cost is \(\$ 7,000,000\).

\section*{12. Q. DOES THIS CONCLUDE YOUR TESTIMONY?}
A. Yes.```

[^0]: Note A: KAWC provides in-person customer contact while Service Company call centers provide customer phone contact Baryenbruch \& Company,

[^1]: 'Winfrey, Robley. Statistical Analyses of Industrial Property Retirements. lowa State College, Engineering Experiment Station, Bulletin 125. 1935.
 ${ }^{2}$ Marston, Anson, Robley Winfrey and Jean C. Hempstead. Engineering Valuation and Depreciation, 2nd Edition. New York, McGraw-Hill Book Company. 1953.
 ${ }^{3}$ Couch, Frank V. B., Jr. "Classification of Type O Retirement Characteristics of Industrial Property." Unpublished M.S. thesis (Engineering Valuation). Library, lowa State College, Ames Iowa. 1957.

[^2]: ${ }^{4}$ Winfrey, Robley, Supra Note 1.
 ${ }^{5}$ Marston, Anson, Robley Winfrey, and Jean C. Hempstead, Supra Note 2.
 ${ }^{6}$ Wolf, Frank K. and W. Chester Fitch. Depreciation Systems. Iowa State University Press. 1994

[^3]: ${ }^{\text {a }}$ Additions during the year.

[^4]: UNRECOVERED RESERVE TO BE AMORTIZED FURNITURE：

 MAINSONAL COMPUTERS
 34030 COMPUTER SOFTWARE
 340.32 COMPUTER SOFTWAREPERSONAL
 34033 COMPUTER SOFTWARE－OTHER

[^5]: 303:40 LAND-WATER TREATMENT
 303.50 LANO-TRANSMISSION \& DISTRIBUTION

[^6]: COMPOSTTE REMAINTNG LIFE AND ANNUAL ACCRUALL RATE, PCT. 49.5
 1.31

