KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143 ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 1 of 312

Witness: Dr. James H. Vander Weide

1. RE: Vander Weide Direct Testimony. With respect to page 2, lines 12-14, please provide a list of the articles and books authored by Dr. James H. Vander Weide.

Response:

A list of Dr. Vander Weide’s articles and books is shown below.
"The Lock-Box Location Problem: a Practical Reformulation," Journal of Bank Research, Summer, 1974, pp. 92C96 (with S. Maier). Reprinted in Management Science in Banking, edited by K. J. Cohen and S. E. Gibson, Warren, Gorham and Lamont, 1978.
"A Finite Horizon Dynamic Programming Approach to the Telephone Cable Layout Problem," Conference Record, 1976 International Conference on Communications (with S. Maier and C. Lam).
"A Note on the Optimal Investment Policy of the Regulated Firm," Atlantic Economic Journal, Fall, 1976 (with D. Peterson).
"A Unified Location Model for Cash Disbursements and Lock-Box Collections," Journal of Bank Research, Summer, 1976 (with S. Maier). Reprinted in Management Science in Banking, edited by K. J. Cohen and S. E. Gibson, Warren Gorham and Lamont, 1978. Also reprinted in Readings on the Management of Working Capital, edited by K. V. Smith, West Publishing Company, 1979.
"Capital Budgeting in the Decentralized Firm,' Management Science, Vol 23, No. 4, December 1976, pp. 433-443 (with S. Maier).
"A Monte Carlo Investigation of Characteristics of Optimal Geometric Mean Portfolios," Journal of Financial and Quantitative Analysis, June, 1977, pp. 215-233 (with S. Maier and D. Peterson).
"A Strategy which Maximizes the Geometric Mean Return on Portfolio Investments," Management Science, June, 1977, Vol 23, No. 10, pp. 1117-1123 (with S. Maier and D. Peterson).
"A Decision Analysis Approach to the Computer Lease-Purchase Decision," Computers and Operations Research, Vol. 4, No. 3, September, 1977, pp. 167-172 (with S. Maier).
"A Practical Approach to Short-run Financial Planning," Financial Management, Winter, 1978 (with S. Maier). Reprinted in Readings on the Management of Working Capital, edited by K. V. Smith, West Publishing Company, 1979.
"Effectiveness of Regulation in the Electric Utility Industry,' Journal of Economics and Business, May, 1979 (with F. Tapon).
"On the Decentralized Capital Budgeting Problem Under Uncertainty," Management Science, September 1979 (with B. Obel).
"Expectations Data and the Predictive Value of Interim Reporting: A Comment," Journal of Accounting Research, Spring 1980 (with L. D. Brown, J. S. Hughes, and M. S. Rozeff).
"Deregulation and Oligopolistic Price-Quality Rivalry," American Economic Review, March 1981 (with J. Zalkind).
"Incentive Considerations in the Reporting of Leveraged Leases," Journal of Bank Research, April 1982 (with J. S. Hughes).
"Forecasting Disbursement Float," Financial Management, Spring 1981 (with S. Maier and D. Robinson).
"Recent Developments in Management Science in Banking," Management Science, October 1981 (with K. Cohen and S. Maier).
"General Telephone's Experience with a Short-run Financial Planning Model," Cash Management Forum, June 1980, Vol. 6, No. 1 (with J. Austin and S. Maier).
"An Empirical Bayes Estimate of Market Risk," Management Science, July 1982 (with S. Maier and D. Peterson).
"The Bond Scheduling Problem of the Multi-subsidiary Holding Company," Management Science, July 1982 (with K. Baker).
"A Decision-Support System for Managing a Short-term Financial Instrument Portfolio," Journal of Cash Management, March 1982 (with S. Maier).
"Deregulation and Locational Rents in Banking: a Comment," Journal of Bank Research, Summer 1983.
"What Lockbox and Disbursement Models Really Do," Journal of Finance, May 1983 (with S. Maier).
"Financial Management in the Short Run," Handbook of Modern Finance, edited by Dennis Logue, published by Warren, Gorham, \& Lamont, Inc., New York, 1984.
"Measuring Investors' Growth Expectations: the Analysts versus Historical Growth Extrapolation," The Journal of Portfolio Management, Spring 1988 (with W. Carleton).
"Entry Auctions and Strategic Behavior under Cross-Market Price Constraints," International Journal of Industrial Organization, 20 (2002) 611-629 (with J. Anton and N. Vettas).

Managing Corporate Liquidity: an Introduction to Working Capital Management, John Wiley and Sons, 1984 (with S. Maier).

For electronic version, refer to KAW_R_AGDR1\#1_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 2 of 312

Witness: Dr. James H. Vander Weide

2. RE: Vander Weide Direct Testimony. With respect to page 5, lines 9-10, please indicate how equity investors define and measure "comparable risk."

Response:

Each equity investor has his own definition of comparable risk. Whatever the definition and measurement, however, an investor will demand the same expected return on investments of comparable risk. For the purposes of my testimony, I have defined investments of comparable risk as being investments in publicly-traded water companies and publicly-traded natural gas distribution companies.

For electronic version, refer to KAW_R_AGDR1\#2_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Witness: Dr. James H. Vander Weide

3. RE: Vander Weide Direct Testimony. With respect to page 16 , lines $1-17$, and Appendix 1, please provide copies of all theoretical and empirical studies known to Dr. Vander Weide that compare and contrast the quarterly and annual DCF models.

Response:

My use of the quarterly DCF model is based on the theoretical discussion contained in Appendix 1 of my direct testimony. Although I did not rely on any other studies that compare quarterly and annual DCF models, I am aware of several articles that discuss the use of quarterly versus annual DCF models. Please see the attached articles.

For electronic version, refer to KAW_R_AGDR1\#3_061807.pdf

Estimation Biases in Discounted Cash Flow Analyses of Equity Capital Cost In Rate Regulation

Charles M. Linke and J. Kenton Zumwalt

Professors Linke and Zumwalt both teach at the University of Illinois at Champaign-Urbana

I. Introduction

The discounted cash flow (DCF) valuation models commonly found in public utility rate regulation testimony generate biased estimates of a utility's cost of equity capital. These biases typically range in magnitude from 50 to over 200 basis points. Such biases are not trivial. A 100 basis point bias could alter a utility's request for increased total revenues by ten to fifteen percent. ${ }^{\text {. This paper examines three of the most com- }}$ mon sources of estimation biases in DCF equity cost estimates.

Section II illustrates the DCF implementation problem that arises when quarterly dividend payments are forced, unadjusted, into an annual DCF framework. ${ }^{2} \mathrm{~A}$ simple solution to eliminate this systematic underesti-

[^0]mation of equity capital cost is proposed. Section III demonstrates that a regulatory body's rate-year/ratebase practices generally require that the market-determined DCF equity cost estimate be adjusted to a regulatory allowed rate of return in order to estimate a utility's required quantity of earnings and revenues. An adjustment procedure is developed that avoids misstating a utility's required earnings and revenues. Section IV considers the practice of some rate of return analysts of converting a DCF market determined annual rate of return to a continuously compounded rate of return. It is shown that the frequency of compounding is irrelevant if the lower continuously compounded rate of return is implemented employing a rate base

[^1]construct that is consistent with continuous compounding

II. The Quarterly Dividend Problem

The DCF model envisions the value of an asset as being determined by the cash flows expected from the asset and investors' required return which is determined by the time value of money and the required risk premium. Thus, for common stock the value or price today is the present value of all future dividends expected, including any liquidating dividend or sale price. That is,

$$
\begin{gather*}
P_{0}=\frac{D_{1}}{(1+k)}+\frac{D_{2}}{(1+k)^{2}}+\frac{D_{3}}{(1+k)^{3}}+\ldots+ \\
\frac{D_{x}}{(1+k)^{x}}=\sum_{t=1}^{\infty} \frac{D_{1}}{(1+k)^{1}} \tag{1}
\end{gather*}
$$

where D_{1} is the dividend paid at the end of period t, k is the required rate of return of investors or the market cost of equity capital, and P_{0} is the current price of the stock If dividends are expected to grow at a constant rate g for the indefinite future and $\mathrm{g}<\mathrm{k}$, Equation (1) can be rewritten as,

$$
\begin{gathered}
P_{0}=\frac{D_{0}(1+g)}{(1+k)}+\frac{D_{0}(1+g)^{2}}{(1+k)^{2}}+\frac{D_{0}(1+g)^{3}}{(1+k)^{3}} \\
+\ldots+\frac{D_{0}(1+g)^{x}}{(1+k)^{x}}
\end{gathered}
$$

This formula reduces to the familiar Gordon Model,

$$
\begin{equation*}
P_{0}=\frac{D_{1}}{k-g} \text { or } k=\frac{D_{1}}{P_{0}}+g \tag{2}
\end{equation*}
$$

These equations describe a generalized DCF model that may be used to analyze any periodic (annual, quarterly, monthly, etc.) cash flow.

Problems arise when using the annual version of the model unless recognition is given to the fact that the quarterly dividends have an opportunity cost. Most firms pay dividends quarterly, and the price of the stock reflects both the timing and amount of the dividends. The typical application of the annual DCF model ignores the time value of quarterly dividends ${ }^{3}$ Quarterly versions of Equations (1) and (2) resolve the time value of quarterly dividends problem, but create a new problem related to the size of the dividends.

[^2]
Problems with the Annual Growth Model

DCF analyses of stock values should give recognition to the fact that firms commonly pay dividends quarterly and that firms change their quarterly dividend rate only periodically. It is shown below that failure to adjust the quarterly dividend for the time value of money will cause the annual DCF model's estimate of the cost of equity capital to be understated.

Consider, for example, a firm that paid a $\$ 9432^{4}$ annual dividend per share (quarterly dividends of $\$.2358$ per share) during the fiscal year just ended Dividends are expected to increase 6.0 percent per annum or to $\$.25$ per share each quarter in the next fiscal year. The share price is $\$ 8.00$ The time configuration of the expected dividends is presented in Exhibit I. The implied annual dividends associated with the Equations (1) and (2) annual models are also shown The typical cost of equity capital estimate using the annual mode of Equations (1) or (2) is 18.5 percent,

$$
\begin{aligned}
\$ 800= & \frac{4(\$ 25)}{(1+185)}+\frac{4 \mid(\$.25)(1+06)]}{(1+185)^{2}} \\
& +\ldots+\frac{4\left[(\$ 25)(1+06)^{x}\right]}{(1+.185)^{x}} \\
\text { or } \quad k= & \frac{\$ 1.00}{\$ 8.00}+06=185=18.5 \%
\end{aligned}
$$

This formulation is correct only if the entire annual dividend is paid at year end as shown in the second row of Exhibit 1 . But the present value of four quarterly dividends is greater than the present value of one yearend dividend. Indeed, the cost of equity capital is 19.375 percent when the timing and amount of dividends embodied in the market price of the stock are considered. That is, 19375 percent is the iterative solution ${ }^{5}$ to

[^3]Exhibit 1. Expected Dividends Versus the Dividends Implied by the Annual and Quarterly Growth Models (annual growth rate $=6 \%$; quarterly growth rate $=1.46738 \%$)

	$\begin{gathered} \mathrm{t}_{0} \\ \text { Fiscal } \\ \text { Year End } \end{gathered}$	Fiscal Ycar ! =				Fiscal Year $1=2$			
		Dividend an End of				Dividend at End of			
Annual Model									
Expected Quarterly Dividends	\$ 2358**	\$ 250	\$ 250	\$ 250	\$ 250	\$ 265	\$ 265	\$ 265	\$ 265
Implied Annual Dividends \dagger	\$9432				\$100				\$1.06
Quarterly Model									
Implied Quarterly Dividend \ddagger if analysis date is									
$4_{4} . \mathrm{Q}_{4}$	\$ 2358*	\$ 239	\$ 243	\$ 246	\$250				
1. Q_{1}		\$250*	\$ 254	\$ 257	\$ 261	\$265			
1. Q_{2}			\$ 250 *	\$ 254	\$. 257	\$ 261	\$. 265		
1. Q_{3}				\$250*	\$.254	\$ 257	\$ 261	\$. 265	

*Actual dividend in quarter preceding anulysis
tTotal manal dividend ($4 \times$ Quarterly Dividend)
łlmplied four quarterly dividends are underlined

$$
\begin{align*}
& \$ 8.00= \\
& \sum_{=1}^{4} \frac{\$ 25}{(1+.19375)^{250}} \\
&+ \sum^{4}=1(1+.19375)^{1+250}+\ldots \tag{1a}\\
&= \sum_{1=0}^{\infty} \sum_{Q}^{4} \frac{\$ 25(1+06)^{1}}{(1+19375)^{1+250}}
\end{align*}
$$

The same equity cost estimate is obtained from the reduced form Equation (2) DCF annual model if the D_{1} measure is adjusted for the time value of dividends. As shown later, the D_{1} value called for in the reduced form annual model is $\$ 106998 \mid \$ 1.06998=\sum_{\mathrm{Q}=1}^{4} \$ 25$ $\left.(1+, 19375)^{1-250}\right]$ with a 19.375 percent opportunity cost to shareholders. The cost of equity after adjusting for the time value of dividends is

$$
k=\frac{1.06998}{\$ 8.00}+.06=.19375 \text { or } 19.375 \%
$$

Hence, the customary use of the annual DCF growth model understates the cost of equity capital for this firm by 88 basis points $119.375 \%-1850 \%=$ 0.875%] because the time value of money associated with the quarterly dividends and embodied in the market price of the stock is ignored.

Problems with the Quarterly Growth Model

As indicated above, one method of considering the liming of the quarterly dividends is to use the Equation (1) model in a quarterly mode. This formulation eliminates the time value of money problem associated with
the unadjusted annual growth model Unfortunately, common usage of a quarterly DCF model introduces a dividend bias since quarterly DCF models typically are formulated as

$$
\begin{equation*}
P_{0}=\sum_{Q=1}^{\infty} \frac{D_{Q-1}\left(1+g_{4}\right)^{0}}{\left(1+k_{4}\right)^{0}}, \tag{3}
\end{equation*}
$$

where $Q=$ number of quarters,
$g_{4}=$ quarterly dividend growth rate, and
$\mathrm{k}_{4}=$ quarterly cost of equity rate.
This reduces to

$$
\begin{equation*}
P_{0}=\frac{D_{1}}{k_{4}-g_{4}}=\frac{D_{0}\left(1+g_{4}\right)}{k_{4}-g_{4}} \tag{4}
\end{equation*}
$$

These formulations assume dividends are increased quarterly rather than periodically (typically annually). Thus, the quarterly dividend model correctly handles the time value of dividends but the quarterly dividend growth may cause the cost of equity capital to be understated or overstated

The data in Exhibit 1 indicate clearly the reason for the bias in the quarterly model's equity cost estimates. The bottom four rows of Exhibit I present the implied quarterly dividends associated with a six percent annual dividend growth rate. The dividend stream denoted t_{10}, Q_{4} assumes the analysis occurs at $t=0$ or fiscal year end; stream t_{1}, Q_{1} assumes the analysis is made after the first quarterly dividend, etc. The top row of Exhibit 1 shows the quarterly dividends actually expected. The discrepancies between the expected quarterly dividends (top row) and the dividends implied by the quarterly growth model (bottom four rows) depend upon
when the DCF analysis is made relative to the fiscal year dividend policy change For example, if the analysis is made immediately following the fiscal yearend, t_{0}, Q_{4}, the implied quarterly dividend is less than the actual dividend in three of the four quarters. However, if the analysis is made at the end of the first quarter, the implied quarterly dividend will be greater than the expected dividend in three of the four quarters. Similar discrepancies occur if the analysis is performed at the end of Q_{2} or Q_{3}

A Proposed Solution

Investors are fully aware of the quarterly payment schedule of dividends. Thus, the price, P_{0}, reflects the timing of the dividends as well as the amount of the dividends. If (D_{1-101}), (D_{1-102}), (D_{t-103}), and ($D_{1-1.010}$) represent the quarterly dividend payments at the end of the quarters in the year preceding the $\left(t_{0}\right)$ date of analysis, ${ }^{6}$ and dividends are expected to grow at an annual rate g, then P_{0} can be written as

$$
\begin{align*}
P_{0}= & \frac{\left(D_{1-1.01}\right)(1+g)}{(1+k)^{25}}+\frac{\left(D_{1-1.02}\right)(1+g)}{(1+k)^{5 n}} \\
+ & \frac{\left(D_{1-1.03}\right)(1+g)}{(1+k)^{75}}+\frac{\left(D_{1-1.04}\right)(1+g)}{(1+k)} \\
& +\sum_{t=1 Q}^{\infty} \sum_{=1}^{4} \frac{D_{1.0}(1+g)}{(1+k)^{2+250}} \tag{5}
\end{align*}
$$

This equation can be simplified to the $\left[k=\left(D_{1} / P_{0}\right)+\right.$ g] annual model,

$+g$.
Equation (6) shows that the DCF model expressed in an annual mode must include a time value of money adjustment to dividends when applied to the real world where dividends are paid quarterly rather than once a year. ${ }^{7}$ Applying the Equation (6) annual model to the

[^4]firm discussed earlier shows that investors' required rate of return is correctly assessed as 19.375 percent,

when quarterly dividends are adjusted to reflect the time value of money. This adjustment raises the estimate of the example firm's cost of equity some 88 basis points or from 18.50% to 19.375 percent. Thus, the time value of money adjustment to dividends is not trivial.

III. Market Required Rate of Return Vs. Allowed Return on Equity Rate Base

It is common practice in rate regulation to determine a utility's required quantity of earnings as the product of the DCF cost of equity measure and an equity rate base. The appropriateness of this procedure revolves around the rate year/rate base practices of regulatory agencies. This section demonstrates that a regulatory body's rate year/rate base practices may require that the market determined DCF equity cost estimate $\left[k_{\text {nokl }}\right]$ be adjusted to a regulatory allowed return $\left[k_{\text {tep }}\right]$ in order to estimate a utility's required quantity of earnings

A review of the example firm discussed earlier will make clear why the ($k_{\text {mix }}$) estimate may need to be adjusted before using it to estimate the required quantity of earnings. Recall that the example firm had the following characteristics

$$
\begin{aligned}
& \mathrm{P}_{0}=\$ 8.00 \stackrel{\mathrm{t}_{0}}{\stackrel{\mathrm{D}_{\mathrm{O} 1}}{\longmapsto}=\$.25 \mathrm{D}_{\mathrm{Q2}}=\$.25} \\
& \mathrm{t}_{1} \\
& \mathrm{D}_{\mathrm{Q} 3}=\$.25 \mathrm{D}_{\mathrm{Q4}}=\$.25 \\
& \mathrm{P}_{1}=\$ 8.48
\end{aligned}
$$

and

$$
\begin{gathered}
k_{m k 1}=19375 \text { or }\left[\$ 8.00=\left(\sum_{i=1}^{4} \frac{D_{0_{1}}}{1(1+19375)^{1 / 4}}\right)\right. \\
\left.+\frac{\$ 8.48}{(1+19375)}\right]
\end{gathered}
$$

For expository convenience, the $t=0$ share price $\left(P_{v}\right)$ is assumed to be equal to book value per share ($B V_{0}$), or
$P_{0}=B V_{0}=\$ 800 .{ }^{*}$ Were a regulatory body to estimate the quantity of required eamings as
Required Earnings $=\left(k_{\text {mak }}\right)\left(B V_{0}\right)=(.19375)(\$ 8.00)=\$ 1.55$ then equity investors will realize the 19.375 percent required market return only if the utility (1) retains all earnings and the share price increases in line with book value $\{\$ 8.00=(\$ 8.00+\$ 1.55) /(1+.19375)]$, or (2) retains no earnings and pays out only a year-end $\$ 1.55$ annual dividend $\left[\$ 8.00=\frac{\$ 155}{(1+.19375)}+\right.$ $\$ 8.00$
$\overline{(1+.19 .375)}$
of the before-tax dividend irrelevance proposition.
But if the utility pays quarterly dividends, then the $\left[\mathrm{k}_{\text {mix }} \| B V_{0}\right]$ product will overestimate the earnings requirement and, therefore, overestimate required revenues. ${ }^{9}$ Consider the example firm once again. Assuming non-seasonal earnings and a share price equal to book value, the $\$ 1.55$ earnings requirement estimate will allow equity investors to achieve a 20.29 percent return $\left[\$ 8.00=\sum_{\mathrm{t}=1}^{4} \frac{\$.25}{(1+.2029)^{1 / 4}}+\frac{\$ 8.55}{(1+2029)}\right]$ which exceeds the market required return of 19.375 percent by over 90 basis points. The source of this anomaly is well known in the finance literature It revolves around the reinvestment assumptions inherent in yield or internal rate of return analyses.

The confounding elements of the reinvestment problem can be easily handled, however, by explicitly introducing reinvestment assumptions. For example, the discrepancy between the realized and required returns disappears in the example above if the utility's aftertax earnings requirement is calculated as follows:

Step 1: Estimate the n period compounded equivalent of the annual market determined rate of return by

$$
\begin{equation*}
\left.k_{\text {nik } 1 n}=11+k_{\text {mit annuat }}\right]^{\frac{1}{n}-1} \tag{8}
\end{equation*}
$$

where $n=$ number of compounding periods (if quarterly, $n=4$).

[^5]Step 2: Use the rate of return from Step 1 and the beginning of each future period's equity rate base to calculate the eamings requirement for the year,

$$
\begin{aligned}
& \text { Earnings Requirement } \\
& \text { in Year Beginning at } \\
& \text { Time of Analyses }
\end{aligned}=\sum_{t=0}^{n-1}\left[k_{m k 1 . n}\right]\left[\left(B V_{n}\right)\right] \text {, (9) }
$$

where $\left(B V_{n}\right)_{1}=$ the equity book value at the beginning of each compounding period in the year following the analysis date.
Step 3: The regulatory allowed rate of return can be calculated by relating the equity eamings requirement (in year t) calculated in Step 2 to the (beginning of year t) rate base construct mandated by a regulatory commission.

$$
\begin{equation*}
\mathrm{k}_{\mathrm{rg}}=\frac{\text { Equity Earnings Requirement }}{\text { Equity Rate Base Measure }} \tag{10}
\end{equation*}
$$

Exhibit 2 shows that the appropriate annual aftertax eamings requirement for the example utility emerges as the product of the beginning of quarter equity rate bases and the annual DCF equity capital cost (19 375 percent) restated in its quarterly compounded equivalent (4.52697 percent). The resulting $\$ 1.48$ earnings requirement will provide equity investors the 19.375 required market retum $[\$ 8.00=$ $\left.\left(\sum_{t=1}^{4} \frac{\$ 25}{(1+.19375)^{1 / 4}}\right)+\frac{\$ 8.48}{(1+.19375)}\right)$

Assuming the appropriate n in Equations (8) and (9) is four, the $\$ 1.48$ earnings requirement can be used to calculate $k_{\text {reg }}$ for rate base measures other than a beginning of the year rate base $\left(B V_{0}\right)$. For example, $k_{\text {rcg }}$ is 17.720522 (\$1.48/\$8 .3519) percent if a year end rate base is used, and 18.24413 percent if a mid-test year rate base is employed ($\$ 1.48 / \$ 8$. 1122). And, of course, $\mathrm{k}_{\text {rgg }}$ will be greater for an expanding utility than $k_{\text {mat }}$ if a historical rate base test year is employed.
It is worth noting that $k_{\text {rgg }}$ is 18.50 percent ($\$ 1.48 /$ $\$ 800)$ when a beginning of the year rate base $\left(B V_{0}\right)$ is used to estimate a utility's required quantity of earnings. This was the same rate obtained using the traditional annual DCF model uncorrected for the receipt of dividends received quarterly rather than a single yearend dividend payment. This fact should not be interpreted to mean that there really is no problem with the traditional annual growth DCF model. Rather, this equality is a unique happenstance that will occur if and

Exhibit 2. Required Earnings for Example Firm

Quarter	Book Value Beginning of Quarter	$\begin{gathered} \text { Earnings } \\ \text { in Quarter }: \\ (.0452697)\left(B V_{O_{1}}\right) \\ \hline \end{gathered}$	Dividends in Quanter 1 ($\$.25 /$ quarter)	Retained Earnings in Quarter 1 $\left(\mathrm{RE}_{\mathrm{t}}=\mathrm{EPS}_{1}=\mathrm{DPS}_{1}\right)$	Book Value End of Quanter t $\left(B V_{0 . t-1}+R E_{1}\right)$
1	\$80000	\$ 3622	\$ 2500	\$. 1122	\$8 1122
2	81122	3672	2500	. 1172	8.2294
3	8.2294	3725	2500	1225	83519
4	8.3519	3781	2500	1281	8.4800
		\$1.4800			

only if: (1) the n variable in Equations (8) and (9) is equal to the frequency with which dividends are paid each year; (2) demand-revenues-earnings are non-seasonal; (3) the analysis occurs immediately following an ex-dividend date; and (4) the next n dividends are equal ${ }^{10}$ If any of these conditions are not met, then only a market determined equity cost measure [$k_{\text {makt }}$] estimated via Equations (6) or (7) and converted to a regulatory allowed return on equity $\left[k_{\text {ret }}\right]$ via Equations (8), (9) and (10) will correctly estimate a utility's level of required earnings. Unless the $\left[\mathrm{k}_{\text {mix1 }}\right]$ estimate is converted to a regulatory allowed return [$k_{\text {reg }}$], the allowed return on equity may be misstated by 100 to 200 basis points. ${ }^{11}$

IV. The Irrelevance of the Frequency of Compounding

In recent years, some rate of return analysts have begun to argue that a DCF market determined annual rate of return should be converted to a continuously compounded rate. Such an adjustment causes the rate of return recommended to be $100-175$ basis points lower, and leads to an understatement of the needed allowed return given the rate base constructs generally employed by regulatory commissions. However, use of a continuously compounded rate will not alter the estimate of a utility's required earnings and revenues if it is implemented employing a rate based construct

[^6]consistent with continuous compounding.
The logic of why the frequency of compounding is irrelevant can be easily shown using the example firm. Recall that the beginning $\$ 8.00$ price ($P_{0}={B V_{0}}_{0}=$ $\$ 800$) emerges from investors' expectations that a $\$ 25$ dividend will be received at the end of each quarter and that the price at the end of the year will be $\left.\$ 848 \mid \mathrm{P}_{1}=\mathrm{BV}=\$ 8.48=\$ 8.00(1+\mathrm{g})\right]$. This dividend-price configuration will provide investors with their required 19.375 percent annual holding period return. Whatever rate base-required return combination is used, the utility's required quantity of earnings is $\$ 148$ during the year $[4(\$ 25$ quarterly dividend) + ($\$.48$ increment to retained earnings)]. As shown in Exhibit 2, this means a utility must earn 4.52697 percent on its beginning of the quarter equity rate bases. Alternatively, using Equation (8), the allowed return can be stated on a monthly compounded basis or 1.48677 percent and used in conjunction with the beginning of the month equity rate bases. And, of course, the continuously compounded equivalent of shareholders' required 19.375 percent return or 17.70996 percent can be used but it must be applied to a rate base which increases continuously. That is,
$$
\ln (1.19375)=.1770996128=r_{c}
$$
where r_{c} refers to the continuous compound rate. That the continuous compound rate of return generates the same $\$ 1.48$ required quantity of eamings when the proper rate base measure is used, is shown in Exhibit 3. And shareholders realize their required 19.375 percent annual return since,
\[

$$
\begin{aligned}
\$ 8.00 & =\frac{\$ 25}{e^{23_{r_{\mathrm{r}}}}}+\frac{\$ 25}{\mathrm{e}^{3 \mathrm{fr}_{\mathrm{c}}}}+\frac{\$ 25}{\mathrm{e}^{73_{\mathrm{r}_{\mathrm{c}}}}}+\frac{\$ 25}{\mathrm{e}^{r_{\mathrm{c}}}}+\frac{\$ 848}{\mathrm{e}^{r_{\mathrm{c}}}} \\
& =\frac{\$ 25}{(1+19375)^{25}}+\frac{\$ 25}{(1+19375)^{50}} \\
& +\frac{\$.25}{(1+.19375)^{75}}+\frac{\$.25}{(1+.19375)} \\
& +\frac{\$ 25}{(1+.19375)}
\end{aligned}
$$
\]

Exhibit 3. Required Earnings for Example Firms Using Continuous Compounding

Quarter	Beginning of Period BV	$\times \mathrm{e}^{25 \mathrm{r}_{\mathrm{c}}}$	$=$	End of Period $\mathrm{BV}_{\mathrm{O} .1}$ Before Dividends	$\begin{gathered} \text { Quarterly } \\ \text { Eamings } \\ \left(B V_{Q, T}-B V_{Q, t-1}\right) \end{gathered}$		Quarterly Dividend	$=$	Retuined Eamings in Quarter :
1	\$8.0000	$\times \mathrm{e}^{25 \mathrm{~F}_{\mathrm{c}}}$	$=$	\$8.3622	\$3622	-	\$ 2500	=	\$. 1122
2	8.1122	$\times \mathrm{e}^{25 \mathrm{rc}}$	$=$	84794	3672	-	2500	$=$. 1172
3	8.2294	$\times \mathrm{e}^{25 \mathrm{ra}_{\mathrm{c}}}$	$=$	8.6019	3725	-	2500	=	1225
4	8.3519	$\times e^{25 \mathrm{r}} \mathrm{c}$	$=$	8.7300	3781	-	2500	$=$	1281
5	8.4800								
					\$1.4800		\$1.0000		\$4800
		$\text { Required Earnings }=\$ 148=\frac{\$ 1.0000}{\text { Dividends }}+\begin{gathered} \$ 0.4800 \\ \text { Capital Gain } \\ \text { or } \Delta B V(\Delta P) \end{gathered}$							

Thus, the frequency of compounding is irrelevant as long as the rate base construct employed in calculating a utility's required earnings is consistent with the assumptions inherent in the rate of return employed

V. Summary

The annual DCF models typically encountered in financial texts, rate hearings, and empirical financial research do not treat correctly the timing of dividends. Also, the market determined DCF cost of equity estimate must generally be adjusted before it can be applied to a regulatory rate base This paper illustrates the bias arising from conventional DCF analyses and presents a simple adjustment to the DCF model which eliminates the timing of dividend problem. In addition, the appropriate procedure for adjusting a market determined rate of return to a regulatory allowed rate of return is presented Finally, the frequency of compounding used in a DCF analysis is shown to be irrelevant.

References

1. E. F. Brigham, Financial Management Theory and Pracfice, 3rd edition, New York, Dryden Press, Inc , 1982
2. T E Copeland and J F Weston, Financial Theory and

Corporate Policy, 2nd cdition, Reading. MA, AddisonWesley Publishing Company, 1983
3. D. W. Glenn and R. H Litzenberger, "An Interindustry Approach to Econometric Cost of Capital Estimation," Research in Finance (1979), pp. 53-75
4 R. C. Higgins, "Growth, Dividend Policy and Capital Costs in the Electric Utility Industry." Journal of Finance (September 1974), pp. 1189-1201
5. Illinois Commerce Commission Illinois Bell Telephone Company. Prepared testimony, R H Litzenberger III C. C. Docket No 81-0478, 1981.
6. Maine Public Utility Commission. New England Telephone Company. Prepared testimony. Willard T Carleton. Maine W. C. Docket no 82-124, 1982
7 D R. Mchta, E. A. Moses, B. Dischamps, and M C. Walker. "The Influence of Dividends, Growth, and Leverage on Share Prices in the Electric Utility Industry: An Econometric Study," Journal of Financial and Quantitative Analysis (December 1980), pp. 1163-1196
8 Pennsylvania Public Utility Commission. The Bell Telephone Company of Pennsylvania Prepared testimony, 1 Friend. Rate Investigation Docket No. 1819. 1981
9. Texas Public Utility Commission Southwestem Bell Telephone Company. Prepared testimony. C. M Linke, Rate Investigation Docket No. 3340, 1980
10 I. C. Van Home, Financial Management and Policy, 5ih edition, Englewood Cliffs, Prentice-Hall, Inc . 1980

Copyright of Financial Management is the property of Financial Management Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Copyright of Financial Management (1972) is the property of Financial Management Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

The Irrelevance of Compounding Frequency in Determining a Utility's Cost of Equity

Charles M. Linke and J. Kenton Zumwalt

Charles M. Linke is a member of the faculty at the University of Illinois - Urbana-Champaign. J. Kenton Zumwall is a member of the faculty at Colorado State University.

I. Introduction

The relevance of the frequency of compounding in utility rate regulation is often misunderstood. Increasingly, analysts have advocated that the allowed retum on equity capital should be the quarterly or continuously compounded equivalent of the market determined annual rate of return estimate emerging from a discounted cash flow (DCF) analysis. Of course, restating an annual rate of return in terms of its quarterly or continuously compounded equivalent creates a lower return measure. If this lower return were applied to an unchanged rate base, the resulting estimates of the utility's eamings and revenue requirements would also be lower. However, the use of a quarterly or continuously compounded rate will not alter the estimate of a utility's annual earnings requirement as long as it is implemented with a rate base construct that is consistent with quarterly or continuous compounding. That

[^7]is, regardless of the frequency of compounding, the allowed rate of return and, hence, service rates must be set at levels that are expected to generate the quarterly dividends and growth in investment (share price) required by investors.

Linke-Zumwalt [1] and Siegel [2] have explored the effect on capital cost estimation when recognition is given to the fact that firms commonly pay dividends quarterly but change the dividend amount only periodically. Both articles demonstrated that the market return estimate based on quarterly dividends is higher than the traditional DCF model $\left[k_{c}=\left(D P S, 1 P_{0}\right)+g_{d p s}\right]$ return estimate when DPS is $^{\text {is a simple sum of the next }}$ four quarterly dividends. Linke and Zumwalt (L-Z) also showed that the market determined DCF equity cost estimate should be adjusted to a regulatory allowed return in order to estimate a utility's required amounts of earnings and revenues.
$\mathrm{L}-\mathrm{Z}$ went on to argue that this required adjustment is independent of the frequency of compounding (annual, monthly, quarterly or continuous) assumption embodied in the return estimate. Siegel, on the other

Exhibit I. Siegel's Example Utility Data

hand, argued that the earnings requirement for common equity ". . . must be discounted at the continously compounded rate of return rather than the discrete, per period return" [2, p. 51]. This article reconciles the apparent differences in these conclusions and demonstrates that, when the proper rate base construct is used, the frequency of compounding is irrelevant in utility rate regulation.

II. Irrelevance of the Frequency of Compounding

Siegel's conclusion that continuous compounding must be used by regulators emerges from his assumption that the earnings of a utility are received continuously over time. However, the time configuration of earnings does not dictate that regulators must employ continuous compounding to estimate the annual earnings requirement for a utility. This is not to say that continuous compounding is an inappropriate method. Rather, the point is that annual, quarterly, monthly or continuously compounded rates equivalent to investors' annual required return will provide the same estimate of the annual earnings requirement for a utility if the compounding assumptions of the rate of return measure and the rate base measure are consistent. This can be easily shown using Siegel's example utility data (see Exhibit 1)

The example utility provides shareholders with $\$ 6.00$ of dividends and $\$ 4.00$ price appreciation and, therefore, a market determined DCF annual required return of 21.57892% ' This is equivalent to a discrete quarterly rate of return of 5.00611% and a continuously compounded annual rate of return (r_{c}^{2}) of $19.53934 \% .^{2}$ Siegel indicates the continuously com-

$$
\$ 5000=\sum_{q=0}^{3} \frac{1.50}{(12157892)^{0254}}+\frac{\$ 5400}{(12157892)}
$$

pounded rate of return should be used to calculate the example utility's annual earnings requirement (R^{e}) as shown in his Equation (1.3),

$$
R^{\mathrm{a}}=r_{c} \mathrm{P}_{0}=(0.1953934)(\$ 50)=\$ 9.769671 .^{3}
$$

This estimate of R^{a}, the annual earnings requirement of the example utility, is too small to provide shareholders their $\$ 6.00$ of dividends and $\$ 4.00$ price (book value) appreciation during year one. However, if earnings on reinvested earnings are included, the $\$ 9.769671$ estimate is, in fact, too large. ${ }^{4}$ The earnings
${ }^{2}$ The continuous annual rate (r a that is equivalent to the 0.2157892 discrete annual rate of return ($\mathrm{r}_{\mathrm{d}}^{\mathrm{d}}$) is

$$
r_{c}^{a}=\ln \left(1+r_{d}^{d}\right)=\ln (12157892)=01953934
$$

The discrete quarterly rate of retum is

$$
\mathrm{r}_{\mathrm{d}}^{\mathrm{g}}=\left(1+\mathrm{r}_{\mathrm{d}}^{\mathrm{a}}\right)^{0.25}-1=(1.2157892)^{0.25}-1=00500611
$$

while the continuous quarterly rate is

$$
\mathrm{r}_{\mathrm{c}}^{\mathrm{q}}=\ln \left(1+\mathrm{r}_{\mathrm{d}}^{\mathrm{q}}\right)=\ln (10500611)=00488484
$$

${ }^{3}$ In his footnote 9 , Siegel offers a second calculating procedure when eamings of the utility are assumed to grow at a continuous rate (g_{c}) Specifically,

$$
\begin{aligned}
R^{\mathrm{a}} & =\mathrm{R}_{0} \mathrm{e}^{\left(g_{c}\right)(1)} \\
& =\left[\left(\left(_{\mathrm{c}}^{\mathrm{s}}-\mathrm{g}_{\mathrm{c}}^{\mathrm{g}}\right) \mathrm{P}_{0}\right]\left[\mathrm{e}^{\left(\mathrm{g}_{\mathrm{c}}\right)(1)}\right]\right. \\
& =[(0.19539341-0.076961) \$ 50]] 108] \\
& =\$ 63955
\end{aligned}
$$

Using this formulation, the earnings requirement for Siegel's example utility would be only $\$ 6.3955$, drastically short of the $\$ 10.00$ needed if shareholders are to receive their $\$ 6.00 /$ share of dividends and $\$ 4.00$ price (book value) per share appreciation

This calculating procedure would appear to be applicable to Siegel's example utility which is assumed to experience an 80% annual growth in its equity rate base and camings. This altemative calculation is incorrect because there is no earnings growth that Siegel has not fully considered in his Equation (13) estimation procedure

[^8]Exhibit 2. Earnings on Beginning Rate Base and Reinvested Earnings for Example Utility (Continuous Compounding)

*Details may not sum to totals due to rounding.
\dagger The beginning of-period equity rate base is $\$ 48.50$ inasmuch as the $\$ 5000$ (price) book value per share is reduced to $\$ 48.50$ when the $\$ 150$ beginning of-quarter 1 dividend is paid. The term "excess earnings in quarter" refers to camings during a quarter in excess of the end-of-quarter dividend
data shown in Exhibit 2 for the example utility reveal why this is so.

The upper panel of Exhibit 2 shows the quarter-byquarter and annual earnings requirement of the example utility using continuous compounding. ${ }^{5}$ As can be

[^9] these earnings instantancously at $\stackrel{r}{c}_{\text {a }}$
seen, the $\$ 10.00$ of earnings generated over the year provide shareholders with $\$ 6.00$ of dividends and a $\$ 4.00$ increase in price (book value per share).

The lower panel of Exhibit 2 decomposes the $\$ 10.00$ annual earnings requirement into (i) earnings on the beginning-of-period rate base or the rate base implicit in a DCF analysis, and (ii) earnings on reinvested earnings. Row A shows the quarterly earnings associated with the $\$ 48.50$ beginning-of-period rate base. Row B shows the earnings generated during a quarter due to the reinvestment during that quarter of the continuously generated earnings. Rows C, D, and E identify the earnings in subsequent quarters due to the reinvestment of previous quarters' earnings after payment of quarterly dividends.

These reinvested earnings must earn shareholders'

Exhibit 3. Earnings on Beginning Rate Base and Reinvested Earnings for Example Utility (Quarterly Compounding)

Quanter	Beginning of Quarter Book Value (1)	$\begin{array}{cc} & \text { Be } \\ \text { Dividend Paid } \\ \text { at Beginning of } \\ \text { Quarter } \\ \text { Qivid } \\ \text { (2) } & \text { (3) } \end{array}$	Beginning of Quarter Book Value after Dividend Paymen $(3)=(1)-(2)$	Earnings in Quarter (4) $=(3) \times\left(\mathrm{r}_{\mathrm{d}}\right)$		Value at End of Quarter $(5)=(3)+(4)$	
1	\$50.0000	\$1.50	\$48.5000	\$ 2.4280		\$50.9280	
2	50.9280	1.50	49.4280	2.4744		51.9024	
3	51.9024	1.50	50.4024	25232		52.9256	
4	52.9256	1.50	51.4256	2.5744		540000	
		\$6.00		\$10.0000			
Composition of Eamings		Earnings in Quarter $\mathrm{q}\left(\mathrm{E}_{4}\right)^{*}$				$\begin{aligned} & \text { Iotal } \\ & \left(\Sigma E_{y}\right) \end{aligned}$	
		E_{1}	E_{2}	E_{3}	E_{4}		
Earnings during Quarter on $\$ 48.50 \dagger$ Beginning of Period							
Rate Base		\$2.4280	- \$2.4280	\$2.4280		\$ 9.7120	
Earnings during Quarters 2, 3 and							
4 on Quarter 1's Excess Earnings \ddagger			0.0464	0.0488	00512	0.1464	
Earnings during Quarters 3 and 4 on Quarter 2's Excess Earnings \ddagger							
				00464	0.0488	00952	
Earnings during Quarter 4 on							
Quarter 3's Excess Earnings \ddagger					00464	0.0464	
\$2.4280			0 \$2.4744	\$2.5232	\$2.5744	\$10.0000	

${ }^{*} \mathrm{E}_{\mathrm{q}}=$ ($\mathrm{r} q$ or 005006115) (beginning-of-quarter investment)
The beginning-of-period equity rate base is $\$ 48.50$ inasmuch as the $\$ 50.00$ (price) book value per share is reduced to $\$ 48.50$ when the $\$ 150$ beginning-of-quarter 1 dividend is paid
\ddagger The tenn "excess earmings in quarter" refers to earnings during a quarter in excess of the end-of-quarter dividend
required return in order to generate the necessary $\$ 1000$ of annual earnings. The earnings data reveal that the utility requires service rates that provide it the opportunity to earn only $\$ 9.4766$ from the sale of services generated by its beginning-of-period rate base. The $\$ 0.5234$ difference between the $\$ 10.00$ annual earnings requirement and the $\$ 9.4766$ earnings from the sale of services generated by the $\$ 48.50$ beginning-of-period rate base comes from earnings on reinvested earnings.

Altemative rate-of-return measures that are equivalent to investors' annual required return will provide estimates of the utility's quarter-by-quarter and annual earnings requirement that are identical to the estimates obtained using continuous compounding. The upper and lower panels of Exhibit 3 show the calculation of the $\$ 10.00$ earnings requirement using quarterly compounding for both the rate-base measure and investors' required return. As can be seen, the application of the quarterly equivalent of the 21.57892% annual required return measure to the beginning-of-quarter rate base
values provides for the four $\$ 150$ quarterly dividends and the $\$ 54.00$ ending book value (price). Also, as in the continuous compounding calculations shown in Exhibit 2, the payout ratio is 60% and the growth in book value (price) conforms to the 8.0% annual growth rate assumption.

As shown in Exhibits 2 and 3, and in the L-Z article, the quarter-by-quarter and annual eamings requirements of the example utility are identical whether the estimates are based on annual, quarterly or continuous compounding. Thus, it is not necessary that the annual earnings requirement for a utility's common equity be estimated using continuous compounding.

Note, however, that when specifying his R^{n} calculating procedure, Siegel altered his working definition of R^{a} so as to exclude earnings on reinvested earnings. He then separated the proportion of the annual $\$ 1000$ earnings requirement that customers must provide through the prices they pay for service generated by the beginning-of-period equity rate base from the proportion of the annual earnings requirement that will be
earned on reinvested earnings. ${ }^{6}$ If, as Siegel assumed, the utility receives its revenues and earnings continuously over the year and can instantaneously reinvest earnings at r_{c}^{r}, then customers need to pay service prices that provide only $\$ 9.4766$ (see row A of lower panel of Exhibit 2) of earnings on the generating capacity in place at the beginning of the period. If it is believed, on the other hand, that the utility will only be able to invest earnings in excess of dividends quarter$l y$, rather than instantaneously, then customers need to pay prices for the service generated by beginning-ofperiod capacity that will provide $\$ 9.7120$ (see Exhibit 3) in earnings over the year And, of course, if it is judged by the regulatory body that the utility will only be able to reinvest its earnings annually at investors' required return, then customers must pay prices that will provide the entire $\$ 10.00$ of required earnings. ${ }^{\text {? }}$

III. Concluding Observations

Setting the allowed rate of equity return in public utility regulation requires that two very different rate of

[^10]return concepts be distinguished - the required market (economic) return and the regulatory allowed (accounting) return. Investors' annual required rate of return is a market determined return that reflects both the amount and timing of expected cash flows from dividends and price appreciation to the beginning-ofperiod investment (price). The regulatory allowed rate of return is a percentage accounting return that emerges when the required quantity of earnings a utility needs to eam, if shareholders are to realize their expected market return, is related to a historical or future test year equity rate base.

Rate of return analysts' DCF estimates of the market required return must be converted into a regulatory allowed return if a utility's earnings requirement is to be correctly estimated. This article has shown that the estimation of a utility's annual earnings requirement is not affected by the frequency of compounding assumed in a DCF analysis. As long as the investment or rate base construct used to estimate the required quantity of earnings is consistent with the compounding assumption implicit in the rate of return measure, the estimated required quantity of earnings and, thus, the regulatory allowed return [(required quantity of earnings)/(regulatory rate base)] are identical whether a continuous or a discrete compounding analysis is undertaken.

References

1. C. M. Linke and J. K. Zumwalt, "Estimation Biases in Discounted Cash Flow Analyses of Equity Cost in Rate Regulation," Financial Management (Autumn 1984), pp. 15-21.
2. J. J. Siegel, "The Application of the DCF Methodology for Determining the Cost of Equity Capital," Financial Management (Spring 1985), pp. 46-53.

ARES ANNUAL MEETING

The Fourt Annual Meeting of the American Real Estate Society (ARES) will be held April 13-16, 1988 in San Francisco. For program details and further information, interested persons should contact:

Theron R Nelson
College of Business
Dept. of Management
University of North Dakota
Grand Forks, ND 58202-5085

(701) 777-3631

Copyright of Financial Management is the property of Financial Management Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

Copyright of Financial Management (1972) is the property of Financial Management Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

An N-Stage, Fractional Period, Quarterly Dividend Discount Model

Robert Brooks and Billy Helms*

Abstract

This paper develops a dividend discount model that will allow as many growth stages as desired. The model is directly applicable to most common stocks in that quarterly dividends are assumed and you need not be on a dividend payment date. The equation is easily programmed into a computer and is computationally very fast. The Newton-Rhapson algorithm is suggested as a means for estimating the required rate of return.

Introduction

The development of dividend discount models (DDMs) beyond the constant growth model has been limited to the two- and three-stage models. The two-stage model was developed by Malkiel [13], and the threestage model was developed by Molodovsky [14]. The primary reason for not going further than three stages has been the difficulty of estimating the appropriate parameters. (See, for example, Elton and Gruber [5].) Another reason for limiting the development of the DDMs to three or fewer stages is the computational difficulty. The literature related to DDMs is vast. A brief summary includes [$1,3,6-10,15,16$].

The purpose of this paper is to provide a simple analytical equation that can handle as many stages as the analyst will brave to estimate. Thus, the analyst can decide the limits with regard to the number of stages rather than being constrained by the model. Also, the model presented here is directly applicable to actual stock price data as it assumes quarterly dividends and fractional periods.
*The University of Alabama, Tuscaloosa, AL 35487. The authors gratefully acknowledge the helpful comments of Richard Taylor.

The Model

The N-stage model presented is based on the assumption that the stages are of the Malkiel type [13] and not of the Molodovsky type [14]. That is, within each stage, dividends grow at a constant rate. The N-stage model is also based on the assumption that dividends are adjusted once a year with the first adjustment beginning h quarters from now, and quarterly compounding as opposed to annual compounding is assumed.

If dividends are paid quarterly, it is imperative that quarterly compounding be used in any model. Therefore, if annual rate k is used, the appropriate rate on a quarterly basis is

$$
r=(1+k)^{1 / 4}-1 .
$$

The errors associated with using $k / 4$ instead of r are well documented by Chew and Clayton [2], Horvath [11], and Lindley, Helms, and Haddad [12]. That is, if k is indeed the annual rate of return, large errors result from not using a model that assumes quarterly compounding.

The N-stage, fractional period, quarterly dividend discount model is as follows: (The derivation of this model is available from the authors upon request.)

$$
\begin{equation*}
P=Q\left(D F^{-f}\right)\left[T+\left(D F^{h}\right) Z\left\{\sum _ { m = 1 } ^ { N } \left({\left.\left.\left.\left.\left.\underset{j=1}{m-1} B_{j}^{n_{j}}\right) S_{m}\right\}\right] .\right] .\right] .}\right.\right.\right. \tag{1}
\end{equation*}
$$

where
$Q=$ last quarterly dividend paid,

$$
D F=\underset{\text { quarter) }}{1 /(1+k)^{1 / 4} \text { (the discount factor for one }}
$$

where
$k=$ required rate of return (annual),
$f=$ fraction of current quarter elapsed since last dividend payment,
$T=\left(1-D F^{h}\right) /\left[(1+k)^{1 / 4}-1\right]$,
$h=$ number of quarters until a change in dividend policy,
$N=$ number of growth stages,
$Z=D F^{-3}+D F^{-2}+D F^{-1}+1$,
$B_{j}=\left(1+g_{j}\right) D F^{4}=\left(1+g_{j}\right) /(1+k)$,

$$
\begin{aligned}
g_{j}= & \text { growth rate of dividends for stage } j, j=1, \\
& 2, \ldots, N, \\
n_{j}= & \text { number of years for the } j \text { th stage growth rate, } \\
S_{N}= & \left(1+g_{N}\right) /\left(k-g_{N}\right) \\
S_{m}= & n_{m} I\left(B_{m}=1.0\right)+N E_{m} I\left(B_{m} \neq 1.0\right) \text { for } m= \\
& 1,2, \ldots, N-1,
\end{aligned}
$$

where $I(\cdot)$ is an indicator function-if the statement within the parentheses is true, then $I=1.0$, otherwise $I=0.0$,

$$
N E_{m}=\left(1-B_{m}^{n_{m}}\right)\left(1+g_{m}\right) /\left(k-g_{m}\right) .
$$

0
Also, assume $\pi_{j=1} B_{j}^{n}=1.0$.
If $N=0$, then dividends will remain constant, and thus $h=\infty$ and $D F^{h}=0.0$. Therefore, equation (1) reduces to

$$
\begin{aligned}
& P=Q\left(D F^{-f}\right) T \\
& P=Q\left(D F^{-\Upsilon}\right) /\left[(1+k)^{1 / 4}-1\right]
\end{aligned}
$$

If $N=1$, then $k>g_{1}$ (or else the price is infinite), and $n_{1}=\infty$; thus $S_{1}=N E_{1}=\left(1+g_{1}\right) /\left(k-g_{1}\right)$ and equation (1) reduces to

$$
\begin{aligned}
& P=Q\left(D F^{-f}\right)\left[T+\left(D F^{\prime \prime}\right) Z\left(S_{1}\right)\right] \\
& P=Q\left(D F^{-r}\right)\left[T+\left(D F^{\prime \prime}\right) Z\left(1+g_{1}\right) /\left(k-g_{1}\right)\right] .
\end{aligned}
$$

If $N=2$, then $k>g_{2}$, thus $S_{2}=\left(1+g_{2}\right) /\left(k-g_{2}\right)$ and
$P=Q\left(D F^{-f}\right)\left[T+\left(D F^{h}\right) Z\left\{S_{1}+B_{1}\left(1+g_{2}\right) /\left(k-g_{2}\right)\right\}\right]$.
For $N>2$, then $k>g_{N}$, and equation (1) can be applied.

The Required Rate of Return

When implementing this model, the current market price is easily observable. In this section, we sketch the methodology for estimating k (the annual required rate of return) using the standard Newton-Rhapson method. The Newton-Rhapson method (see Ellis [4]) is an iterative technique that is easily programmable. The following is an outline of the Newton-Rhapson approach to solving for k in our model.

Step 1. Estimate $k_{i}=(4 Q / P)+g_{N}$, which is the first estimate of k where $i=1$ (i is a counter). Any rea-
sonable estimate of k is acceptable. This estimate assures $k_{1}>g_{N}$.
Step 2. Calculate $P\left(k_{i}\right)$, the price based on k_{i}.
Step 3. Calculate

$$
\left.\frac{d P}{d k}\right|_{k=k_{1}} \equiv P^{\prime}\left(k_{i}\right)
$$

which is the first derivative of price with respect to k and evaluated at k_{i}. The appropriate derivative is given in equation (2) below.
Step 4. Calculate $k_{i+1}=k_{i}-\left(\left(P\left(k_{i}\right)-P\right) / P^{\prime}\left(k_{i}\right)\right)$, an improved estimate of k.
Step 5. Test to make sure $k_{i+1}>0$ for $N=0$ and k_{i+1} $>g_{N}$ for $N>0$, a rational estimate of k. The NewtonRhapson method works well as long as the price based on k_{i+1} is not too small or too large.
Step 6. Calculate $P\left(k_{i+1}\right)$, the price based on k_{i+1} and test accuracy of k_{i+1} to compute the observed price. That is,

$$
\begin{aligned}
& \text { IF }\left(\left|P\left(k_{i+1}\right)-P\right|<\epsilon\right) \text { THEN } \\
& \left.k=k_{i+1} \text { and quit for acceptable } \epsilon \text { (say } \epsilon=0.001\right) .
\end{aligned}
$$

Step 7. If k_{i+1} is not precise enough, then set $i=i+$ 1 and go to Step 3.

The only problem in implementing the NewtonRhapson method is solving for $P^{\prime}\left(k_{i}\right)$.

$$
\begin{align*}
& \frac{d P}{d k}=\left[Q f\left(D F^{4 \cdot f}\right) / 4\right]\left[T+\left(D F^{n}\right) Z\left\{\sum_{n=1}^{N}\left(\begin{array}{c}
m-1 \\
m, i-1 \\
n=1
\end{array}\right) S_{m}\right\}\right] \\
& +Q\left(D F^{-\gamma}\right)\left[\left\{h\left(D F^{4-4}\right)\left[(1+k)^{1 / 4}-1\right]\right.\right. \\
& \left.-\left(1-D F^{*}\right)(1+k)^{-14}\right] /\left(4\left[(1+k)^{14}-1\right]^{2}\right) \\
& -\left(h\left(D F^{s, 4}\right) / 4\right) Z \sum_{m=1}^{N}\left(\prod_{j=1}^{m-1} B_{j^{j}}\right) S_{m} \\
& -\left(D F^{n}\right)\left(D F^{*} / 4\right)\left(3 D F^{2}+2 D F+1\right) \sum_{m=1}^{N}\left(\begin{array}{c}
m-1 \\
\prod_{1-1}-1 \\
\beta_{j}^{\prime}
\end{array}\right) S_{m} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& +\left(D F^{n}\right) Z\left(\sum_{m=1}^{N}\left(\begin{array}{c}
m-1 \\
m_{1-1} \\
m
\end{array}(1+g)^{n_{j}}\right)\right. \\
& \times\left\{-\left(\sum_{i=1}^{m=1} n_{i}\right)(1+k)^{-\left(\sum_{i=1}^{m-1} n_{i}\right)-1} S_{m}\right. \\
& +(1+k)^{-\left(\sum_{i=1}^{\prime} n_{2}\right)-1\left[O I\left(B_{m}=1.0\right)\right.} \\
& +\left(1+g_{n}\right)\left\{n_{m} B_{m_{m}}^{n_{m}:}(1+k)^{-2}(k-g)\right. \\
& \left.\left.\left.\left.-\left(1-B_{n n^{m}}^{n^{m}}\right\}\left(k-g_{m}\right)^{2} I\left(B_{m} \neq 1.0\right\rangle\right]\right\}\right)\right] .
\end{aligned}
$$

Example

Consider the case of Commonwealth Edison Company (CWE), which supplies electricity to an estimated population of $8,000,000$ in an 11,525 square mile area in northern Illinois. Approximately 33 percent of sales are derived from the Chicago area with 77 percent of the power generated by nuclear and 22 percent by coal. (See Valueline, April 21, 1989). CWE has paid quarterly dividends of $\$ 0.75$ since 1982 . The closing price on June 9 , 1989, was $375 / 8$, the last dividend was paid on May 1, 1989, and the next dividend will be paid on August 1, 1989. (See Barron's, June 12, 1989.)

Three estimates are made of the required rate of return to illustrate the advantage of the dividend discount model presented here: (a) annual dividends, no fractional periods; (b) quarterly dividends, no fractional periods; and (c) quarterly dividends, fractional periods (the model presented here).

Case 1: No Growth. If we assume that CWE will only be able to maintain their $\$ 3.00$ per year dividend and thus no growth in dividends is anticipated, the required rates of return are as follows: (Note that $f=39$ / $92, Q=\$ 0.75$, and $P=\$ 375 / 8$.)

Compound Period	Fractional Periods?		Required Rate of Return
		No	
(a) Annual		7.973%	
(b) Quarterly	No		8.215%
(c) Quarterly	Yes		8.287%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

Thus, we see that by assuming annual periods and ignoring the fractional period, we produce an estimate of the required rate of return that is off by 31.4 basis points ($(8.287-7.973) \times 100)$. Assuming quarterly compounding but ignoring the fractional period produced an error of 7.2 basis points $((8.287-8.215) \times 100)$. This error is not that great partly due to being only 39 days through the quarter.

Case 2: Constant Growth. If we assume that CWE's dividends will grow at 3 percent per year ($g=0.03$) after year end ($h=2$), then we have the following required rates of return:

Compound Period	Fractional Periods?	Required Rate of Return
(a) Annual	No	
(b) Quarterly No	11.213% (c) Quarterly	Yes

Again, we see the downward bias of ignoring quarterly compounding as well as fractional periods. The exact downward bias of more complex cases is a function of the parameters selected.

Summary

The dividend discount model developed incorporates quarterly dividends, fractional periods, and N stages. This model alleviates the need to use a one- or two-stage model to estimate future dividends for the more realistic cases where expected changes in dividend policy do not occur at convenient annual time periods and dividend policy is expected to change more than once or twice. The N-stage, fractional period, quarterly dividend discount model presented provides greater precision and more flexibility than previous models. In addition, an efficient procedure is given for estimating the required rate of return.

References

[1] Bing, Ralph. "Survey of Practitioners' Stock Evaluation Methods." Financial Analysts Journal 27(May/June 1971):55-69.
[2] Chew, 1 Keong, and Ronnie J Clayton. "Bond Valuation: A Clarification." The Financial Review 18(May 1983):234-236.
[3] Donelly, Barbara "The Dividend Discount Model Comes into Its Own." Institutional Investor 19 (March 1985):77-82.
[4] Ellis, Robert, and Denny Gulick. Calculus with Analytic Geometry 2d ed. New York: Harcourt Brace Jovanovich, 1982.
[5] Elton, Edwin J, and Martin J. Gruber. Modern Portfolio Theory and Investment Analysis. 2d ed. New York: Wiley, 1984.
[6] Ferguson, Robert "A Monograph for Valuing Growth Stocks." Financial Analysts Journal 17(May/June 1961):29-34
[7] Fuller, Russell J., and Chi-Cheng Hsia. "A Simplified Common Stock Valuation Model." Financial Analysts Journal 40(September/October 1984):49-56.
18] Gordon, Myron. The Investment, Financing and Valuation of the Corporation. Homewood, IL: Richard D. Irwin, 1962
[9] Gordon, M. J., and E. Shapiro. "Capital Equipment Analysis: The Required Rate of Profit." Management Science 3(October 1956):104-106
[10] Hayes, Douglas A., C.F.A. "Some Reflections on Techniques for Appraising Growth Rates." Financial Analysts Journal 20(July/ August 1964):96-101
[11] Horvath, Philip A. "A Pedagogic Note on Intra-Period Compounding and Discounting." The Financial Review 20(February 1985):116-118.
[12] Lindley, James T., Billy P. Helms, and Mahmoud Haddad. "A Measurement of Errors in Intra-Period Compounding and Bond Valuation." The Financial Review 22(February 1987):33-51
[13] Malkiel, Burton G. "Equity Yields, Growth and Structure of Share Prices." American Economic Review 53(December 1963):1004-1031.
[14] Molodovsky, Nicholas, C. May, and S Chottinger. "Common Stock Valuation." Financial Analysts Journal 20(March/April 1965):104-123.
[15] Walter, James E. "Dividend Policy and Common Stock Prices." Journal of Finance 11(March 1956):29-42.
[16] Williams, John Burr. The Theory of Investment Value. Amsterdam, Netherlands: North-Holland, 1938

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Item 4 of 312

Witness: Dr. James H. Vander Weide

4. RE: Vander Weide Direct Testimony. With respect to page 18, lines 10-16, please indicate:
(a) Why Dr. Vander Weide has chosen to use the earnings forecasts reported by I/B/E/S and not another service like Zack's or First Call?,
(b) How does the analysts coverage of $\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ compare to the analysts coverage of the other major earnings reporting services?, and
(c) Are the I/B/E/S earnings forecasts available free of charge on the Internet and, if so, where?

Response:

a) I chose to use the $I / B / E / S$ earnings growth forecasts rather than those of another service such as Zack's or First Call because: (1) I have performed statistical studies that demonstrate that the I/B/E/S growth estimates are highly correlated with companies' stock prices; (2) in my experience over the past 25 years, the I/B/E/S forecasts have superior availability of historical coverage, estimates for more companies, and more contributing analysts' estimates; (3) the I/B/E/S data have been more widely studied in the academic literature; and (4) I/B/E/S also provides other financial information such as revenue/sales, net income, pre-tax profit, and operating profit. I did not include Zack's or First Call in addition to I/B/E/S because there is considerable overlap in the analysts contributing to the I/B/E/S, Zack's, and First Call surveys, and because I/B/E/S and First Call are now owned by the same firm, Thomson Financial; thus, I/B/E/S and First Call long-term growth estimates should be identical.
b) The I/B/E/S data represents a consensus of annual and long-term forecasts collected from 60 data researchers and 9,000 contributing analysts, and the I/B/E/S data contain historical earnings estimates for more than 35,000 companies worldwide, with U.S. data beginning in 1976 and international data beginning in 1987. Detailed First Call consensus estimate data is confined to U.S. and Canadian companies. I have been unable to find current information from Zack's on the numbers of analysts' providing long-term earnings growth forecasts.
c) Yahoo Finance reports earnings estimates free of charge that it lists as being obtained from Thomson/First Call. However, these data do not include detailed information
relating to whether the estimates are means or medians; the time the estimates were supplied; the number of or identity of the analysts contributing to the estimates; the value of each analyst's estimate; or the standard deviation or coefficient of variation among the estimates.

For electronic version, refer to KAW_R_AGDR1\#4_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY
 CASE NO. 2007-00143
 ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 5 of 312

Witness: Dr. James H. Vander Weide

5. RE: Vander Weide Direct Testimony. With respect to page 19, lines 3-8, please provide of all studies known to Dr. Vander Weide which indicate that "I/B/E/S growth rates are widely used by institutional and other investors."

Response:

My use of analysts' forecasts to estimate the growth component of the DCF model is based on the results of my own studies rather than on the results of studies reported in the literature. As a result, I have not attempted to find all studies that indicate that investors use analysts' forecasts to estimate future eamings growth. However, I am aware of several articles that investigate the relationship between analysts' forecasts and stock prices. The strong correlation between analysts' forecasts and stock prices found in these articles indicates that investors use the analysts' growth forecasts to estimate future earnings growth. See the attached. See also, Cragg, John G. and Burton G. Malkiel, Expectations and the Structure of Share Prices, National Bureau of Economic Research, University of Chicago Press, 1982.

For electronic version, refer to KAW_R_AGDR1\#5_061807.pdf

THE CONSENSUS AND ACCURACY OF SOME PREDICTIONS OF THE GROWTH OF CORPORATE EARNINGS

J. G. Cragg* and Burton G. Malkiel*

For years economists have emphasized the importance of expectations in a variety of problems. ${ }^{1}$ The extent of agreement on the significance of expectations is almost matched, however, by the paucity of data that can be considered even reasonable proxies for these forecasts. One area in which expectations are highly important is the valuation of the common stock of a corporation. The price of a share is-or should be-determined primarily by investors' current expectations about the future values of variables that measure the relevant aspects of corporations' performance and profitability, particularly the anticipated growth rate of earnings per share. ${ }^{2}$ This theoretical emphasis is matched by efforts in the financial community where security analysts spend considerable effort in forecasting the future earnings of companies they study. These forecasts are of particular interest because one can observe divergence of opinion among different individuals dealing with the same quantities. This paper is devoted to the analysis of a small sample of such predictions and certain related variables obtained from financial houses. ${ }^{3}$

I. Nature and Sources of Data

The principal data used in this study consisted of figures representing the expected growth of earnings per share for 185 corporations ${ }^{4}$ as of the end of 1962 and 1963. These data were collected from five investment firms. The participants were recruited through requests to two organizations. One was a group of firms who used computers for financial analysis and who met periodically to discuss mutual problems, the other was the New York Society of

[^11]
The Journal of Finance

Financial Analysts. As a result, eleven firms agreed to participate in the proposed study. From the original eleven, however, only five were able to supply comparable sets of long-term earnings forecasts for use in this study. ${ }^{8}$ Even among these five there was not complete overlap in the corporations for which predictions were available. One of them had no data for 1962. For only two were data available for the full set of 185 companies.

Of the five participating firms, two are large New York City banks heavily involved in trust management, one is an investment banker and investment adviser doing mainly an institutional brokerage business, one is a mutual fund manager, and the remaining firm does a general brokerage and investment advisory business. We would not argue that these estimates give an accurate picture of general market expectations. It would, however, seem reasonable to suggest that they are representative of opinions of some of the largest professional investment institutions and that they may not be wholly unrepresentative of more general expectations. Since investors consult professional investment institutions in forming their own expectations, individuals' expectations may be strongly influenced-and so reflect-those of their advisers. ${ }^{6}$ Also, insofar as investors follow the same sorts of procedures as those used by security analysts in forming expectations, the investors' expectations would resemble those of the analysts. It should be noted, however, that security analysts are not limited to published data in forming their expectations. They frequently visit the companies they study and discuss the corporations' prospects with their executives.

Each growth-rate figure was reported as an average annual rate of growth expected to occur in the next five years. At first thought, such a rate of growth depends on what earnings are expected to be in five years' time and on the base-year earnings figures. However, this dependence need not be very great if the growth rate is regarded more as a parameter of the process determining earnings than as an arithmetic quantity linking the current value to the expected future value. Discussion with the suppliers of the data indicated that all firms were attempting to predict the same future figure, the long-run average ("normalized") earnings level, abstracting from cyclical or special circumstances. The bases used were less clear. Some firms explicitly used their estimates of "normalized" earnings during the year in which the prediction was made. Others provided different figures as bases: in one case the firm estimated actual earnings, in another a prediction of earnings four years in the future was furnished. These differences did not seem to be reffected in the growth rates, however, șince attempts to adjust the rates for differences in
5. We are deeply grateful to the participating firms, who wish to remain anozymous, Not all voluntcers were able to supply data useful to this study, either because the actual supply of data would bave been too burdensome (being kept for internal records in a form that made their extraction dificult) or because the data supplied were not comparable to data used bere (either being of a short-term nature or being made at different dates). Because one of our main objectives is to examine differences and similarities in predictions of the same quantities, such data were not used in the present paper.
6. That several of our participating firms find it worthwhile to publish these projections and provide them to their customers provides prima facio evidence that a certain segment of the market places some reliance on such information in forming its own expectations.
base figures introduced rather than removed disparities among the predictions.
The grôwth rates were given as single numbers for each corporation. No indication was provided of the confidence with which these point estimates were held: One firm did provide an instability index of earnings which represented a measure of the past variability of earnings (around trend) adjusted by the security analyst to indicate potential future variability. Morèover, two firms provided quality ratings, which classified companies into three or four quality categories.

Two of the firms provided estimates of past growith rates as well as predictions. The figures represented perceived growth over the past $8-10$ years, the past 4-5 years; the past 6 years; and the last year. It may seem unnecessary to rely on the participating firms for estimates of historic growith rates. However, the past growth of a company's earnings is not; in any meaningfül sense, a well-defined concept. Earnings-being basically a small difference between two large quantities-can exhibit large year-to-year fluctuations. They also can be negative, which creates problems for most méchanical calculations. In addition, the accounting definition of earnings is not an exact conformity with the economically relevant concept of profits or return on investors' capital. For these reasons, calculated growth rates are sensitive to the particular method employed and the period chosen for the calculation: Consequently, such calculations may be a poor reflection of what growth is generally considered to have been, and may not be useful in assessing the past performance of corporations. Furthermore, it may be supposed that in assessing security analysts' predictions of growth their own estimates of past giowth are more likely to be relevant than objectively calculated rates. The extent of agreement among the two types of measures is among the subjects considered in the next section.

Our participating firms also supplied an industrial classification. While other classifications are available, the concept of industry is not really precise enough to get a fixed, unquestionable assignment of corporations to industries. Particular problems are presented by conglomerate companies. Perceived indústry may be more relevant than any other grouping when investigating anticipations. The clássification we use represents à consénsius about industry am̄ō̄̆g our participants. Where disagreements occurred (as was often the case with conglomerates), the corporation was simply classified as "miscellaneous." The classification represented considerable aggregation over finer classifications and only eight industries were distinguished. These were:

1) Electricals and Electronics
2) Electric Utilities
3) Metals
4) Oils
5) Drugs and Specialty Chemicals
6) Foods and Stores
7) "Cyclical"-inciuding companies such as automobile and aircraft manufacturers, and meat packers
8) "Miscellaneous"

II. Agreement among Predictors

The agreement among the growth-rate projections is described and summarized in this section. In the course of this description, the extent of agreement about base-earnings figures and the closeness of the projections to past, perceived, and calculated growth rates are also considered.

A. Comparisons of Predictions of Future Growth Rates,

The extent of agreement among the predictors about future growth rates is summarized in Table 1. Of the five predictors, the correlations among predictors A, B, C and E were all roughly of the same orders of magnitude. ${ }^{7}$ Predictor D showed some tendency towards lower agreement. (Predictor D also had the highest average growth forecast and standard deviation for the companies for which it and others made forecasts.) Over-all agreement among

TABLE 1
Agreement Among Growth-Rate Predictions*

III. Proportions of Total Variance Due to Variance in Average Predictions

	Predictors	$(\mathrm{A}, \mathrm{B}, \mathrm{C})$	$(\mathrm{A}, \mathrm{B}, \mathrm{D})$	$(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$	$(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$
1962		.87	.70	${ }^{7} 79$	
1963	.85	.68	.83	.87	

[^12]$$
1962
$$

1963

	A	B	C		A	B	C	D
B	$\mathbf{1 8 5}$			B	185			
C	60			C	62	62		
D	178	178	38	D	182	182	61	

For other comparisons, the number of observations is the minimum of the numbers of observations used to compute the correlations.
7. The analysis is presented mainly for the raw growth figures, but very similar impressions would be obtained from examining their logarithms.
the predictors is further summarized in the second and third parts of Table 1, which show the values of Kendall's coefficient of concordance and the proportion of total variance of the predictions that can be accounted for by differences in the mean prediction among companies. ${ }^{8}$ It may be remarked that the entries in Table 1 are based on different numbers of observations. In each case, we used the maximum number of observations (companies) for which a comparison could be made. The impressions to be gained from Table 1 would be little changed, however, by basing all calculations only on the set for which all predictors provided data.
Though Table 1 suggests considerable agreement, the lack of agreement it also reveals can bardly be considered negligible. In addition to the lack of correlation, there were also some systematic differences among the predictors. For the matched set of observations the means and the standard deviations were of roughly the same sizes. However, the differences among the central tendencies were significant according to both parametric and nonparametric tests.

B. Analysis of Predictions Within Industrial Classifications.

One might suspect that the correlations among the predictors reflect little more than consensus about the industries that are expected to grow most rapidly rather than agreement about the relative rates of growth of firms within industries. This possibility was investigated by decomposing the correlation coefficients into two parts, one due to correlation within industries (r_{w}) and one due to correlation among the industry means (r_{n}).

$$
r=r_{w}+r_{a}
$$

where

$$
r_{w}=\frac{\sum_{j=1}^{y} \sum_{i=1}^{N_{j}}\left(x_{i j}-\bar{x}_{j}\right)\left(y_{i j}-\bar{y}_{j}\right)}{\sqrt{\sum_{j=1}^{J} \sum_{i=1}^{N_{j}}\left(x_{j}-\bar{x}\right)^{2} \sum_{j=1}^{J} \sum_{i=1}^{N_{j}}\left(y_{j j}-\bar{y}\right)^{2}}}
$$

and

$$
r_{n}=\frac{\sum_{j=1}^{J} N_{j}\left(\bar{x}_{j}-\bar{x}\right)\left(\bar{y}_{j}-\bar{y}\right)}{\sqrt{\sum_{j=1}^{3} \sum_{i=1}^{N_{j}}\left(x_{y}-\bar{x}\right)^{2} \sum_{j=1}^{J} \sum_{i=1}^{N_{j}}\left(y_{i j}-\bar{y}\right)^{2}}}
$$

with
8. The values shown in all parts of Table 1 are significant well beyond the conventionally used levels of significance. We may note that Tukey's test for interaction in a two-way analysis of variance [11, pp. 129-37]-the typical model in which the breakdown of variance used in Part 3 of Table 1 is employed-indicated a small but highly "significant" proportion of variance attributable to interaction. However, the usual analysis-of-varlance model does not seem appropriate for this data, not only because of interictions, but also because of possible lack of homogeneity of variance.
$x_{1 j}, y_{i f}$ being the $\mathrm{i}^{\text {th }}$ observations in the j^{th} class (industry),
N_{1} being the number of observations in the $j^{\text {th }}$ class,
I being the number of classes,
\bar{x}_{j}, \bar{y}_{3} being the averages within the classes, and
\bar{x}, \bar{y} being the over-all averages.
This decomposition indicated that agreement concerning industry growth rates is not the major factor accounting for the correlations among the forecasts. The first part of Table 2 shows the values of r_{n} using the industrial classification obtained from the participating firms. As comparison with Table 1 shows, only a small part of the correlations among the predictions are due to correlations among the industry means. Further light can be shed on this question by calculating the partial correlations between the predictions, holding industry classification constant. The second panel of Table 2 reveals

TABLE 2
Industral Classipication and Agreement Among Predictors

that these partial correlations tended to be only slightly less than the simple correlations and, in the case of Predictor D, the partial correlations were actually higher.

It is also interesting to examine the extent to which the correlations among predictors' forecasts varied over the different industry groups. This should indicate whether certain industry groups are more difficult to forecast in an ex ante sense. The correlations among forecasters tended to be lowest in the oil and cyclical industry groups, and highest for electric utility companies. These differences were significant for all pairs of predictions considered. Ranking the correlations over industries, and then comparing these ranks among pairs of predictors, showed substantial concordance over the ordering of the correlations. ${ }^{9}$
9. The test for individual pairs of predictions was the likelihood-ratio test. Note that the ranking comparison is not based on independent observations so a statistical test of the concordance is not appropriate. This suggests that the "significance" of the over-all correlations mentioned carlier should really be treated only as descriptive indications of their sizes. The hypothesis that

C. Comparisons of Predictions and Past Growth Rates.

The extent of agreement among the predictors can usefully be evaluated by comparisons of the predicted growth rates with earlier predictions and with the past growth rates of earnings. The correlations of the 1963 predictions with the 1962 ones were: $.94, .95, .96$, and .88 for predictors A through D respectively. All of these are considerably higher than the correlations of the predictions with each other. On the other hand, changes in expected growth rates were not highly correlated among predictors. ${ }^{10}$

TABLE 3
Predictions and Past Growth Rates*
(Correlations of Predicted with Past Growti Rates)

	1962				1963				
	A	B	C	D	A	B	C	D	E
g_{pl}	. 78	. 68	. 75	. 41	. 85	. 73	. 84	. 56	. 67
${ }_{p p}$. 75	. 67	. 72	. 51	. 79	. 69	. 80	. 58	. 76
$\mathrm{gab}_{\mathrm{pB}}$. 77	. 71	. 82	. 61	. 75	. 72	. 79	. 70	. 74
g_{pf}	. 34	. 37	. 59	. 44	. 33	. 45	. 70	. 75	. 58
gcl	. 55	. 46	. 65	. 32	. 63	. 52	. 61	. 30	. 58
$\mathrm{gc}_{\mathrm{c} 2}$. 67	. 60	. 68	. 18	. 72	. 58	. 73	. 20	. 56
$\mathrm{Bcs}^{\text {c }}$. 75	. 63	. 73	. 17	.79	. 66	. 76	. 17	. 57
8 ct	. 82	. 68	. 79	. 24	. 83	. 69	. 79	. 29	. 60

* $\mathrm{g}_{\mathrm{p} 1}$ is $8-10$ year historic growth rate supplied by A
$\mathrm{g}_{\mathrm{p} 2}$ is $4-5$ year historic growth rate supplied by A
B_{ps} is 6 year historic growth rate supplied by D
$\mathrm{g}_{\mathrm{p} 4}$ is preceding 1 year growth rate supplied by D
$\mathrm{g}_{\mathrm{c} 1}$ is log-regression trend fitted to last 4 years
$\mathrm{g}_{\mathrm{c} 2}$ is \log-regression trend fitted to last 6 years
g_{cB} is log-regression trend fitted to last 8 years
8_{of} is \log-regression trend fitted to last 10 years.
Correlations of the predictions with eight past growth gigures are shown in Table 3. Four of these past growth rates were supplied by the participating firms and represent the firms' perceptions of the growth of earnings per share that had occurred in different preceding periods. The others were calculated as the coefficient in the regression of the logarithms of earnings per share on time over the past 4, 6, 8, and 10 years. These correlations generally are not much lower than those found in comparing the predictions with each other. Among the perceived past growth rates, the correlations are apt to be lowest with the growth rates over the most recent year. With the calculated growth rates, there

[^13]10. These correlations, ior the participants supplying data in both years were:

	A	B	C
B	.19		
C	.04	.04	.29
D	.07	.11	

Only the two largest of these correlations would be ignificant at the .05 level.
was a tendency for the correlations to increase with the length of period over which the calculations were made. ${ }^{11}$

These comparisons of past with predicted growth rates suggest that the apparent agreement among the predictors may reflect little more than use by all of them of the historic figures. In investigating this possibility, the partial correlations among the predictions, holding constant past perceived growth rates, holding constant past calculated growth rates, and holding both sets constant were calculated. The first two sets of partial correlations were not much smaller than the simple correlations. Holding both sets constant produced the partial correlations shown in Table 4. These are considerably

TABLE 4
Partini. Corpelations of Predictions
Holding Past Growth Rates Constant

1962					1963			
	A	B	C		A	B	C	D
B	. 49			B	. 49			
C	. 49	. 18		C	. 25	. 03		
D	.35	. 39	. 22	D	. 56	. 46	. 40	
				E	. 56	. 62	-. 11	. 51
				Obse	IoNs			
		962						
	A	B	C		A	B	C	D
B	111			B	112			
C	49	49		C	50	50		
D	111	111	49	D	112	112	50	
				E	78	78	36	78

smaller than the simple correlations, though all but the four smallest entries would be significant beyond the .05 level. Thus, while a substantial part of the agreement among predictors appears to result from their use of historic growth figures, there is also evidence that security analysts tend to make similar adjustments to the past growth rates. ${ }^{12}$

Examination of the correlations among past growth rates help both to evaluate the correlations among the predictions and to indicate the sensitivity of measurements of growth rates to the methods by which they were calculated. Table 5 presents correlations between 13 such past growth rates for our 1962 data. The correlations between the different measures of past growth are fairly low. When exactly the same data are used in the calculations, however, the

[^14]correlations among the growth rates calculated by different methods are relatively high, though probably not so high that the choice of method of calculation would be a matter of no importance. Finally, the perceived growth rates furnished by the security firms tend to be more highly correlated with the growth rates calculated over longer periods. The increase in correlation coefficients did not continue, however, when calculations over more than ten years were made and, as shown in Table 5, it stopped before ten years in some cases. Correlations for other periods and for the 1963 data were of about the same magnitude as those in Table 5.

TABLE 5
Past Growth Correlations, 1962*

	g_{pI}	$\mathrm{g}_{\mathrm{p} 2}$	$\mathrm{g}_{\mathrm{p} 8}$	$\mathrm{g}_{\mathrm{p} 4}$	$\mathrm{gcl}_{\text {c }}$	$\mathrm{g}_{\mathrm{c} 2}$	$\mathrm{g}_{\mathrm{c} \text { B }}$	$\mathrm{g}_{\mathrm{c} 4}$	ges	g_{cb}	$\mathrm{B}_{\mathrm{c} 7}$	$\mathrm{g}_{\mathrm{c} 8}$
$\mathrm{g}_{\mathrm{p} 2}$. 70											
g_{p}	. 82	. 87										
$\mathrm{g}_{\mathrm{p} 4}$. 49	. 39	. 37									
8 ct	. 34	. 47	. 48	. 15								
Be 2	. 68	. 74	. 76	. 05	. 62							
gc_{c}	. 81	. 89	. 97	. 15	. 49	. 90						
ged	. 93	. 80	. 87	. 27	. 41	. 75	. 93					
$\mathrm{gcs}^{\text {c }}$. 14	. 19	. 25	. 39	. 38	. 24	. 16	. 15				
$\mathrm{g}_{\mathrm{c}} 8$. 34	. 46	. 47	. 14	.96	. 59	. 45	. 37	. 53			
Bc_{7}	. 92	. 67	. 78	. 32	. 48	. 67	. 83	. 95	. 33	. 46		
ges_{8}	. 36	. 56	. 49	. 23	. 99	. 63	. 50	. 43	. 40	. 90	. 51	
$\mathrm{geg}_{\text {c }}$. 87	. 75	. 88	. 18	. 46	. 77	. 93	. 99	. 17	. 40	. 91	. 43

* $g_{p 1}-g_{p 4}, g_{c 1}-\mathrm{g}_{\mathrm{c} 4}$ as defined in footnote to Table 3
$\mathrm{B}_{\mathrm{c} 5}$ is 1 year growth rate calculated from first differences of logarithm
g_{cg} is 4 year growth rate calculated from average of first differences of logs
$\mathrm{g}_{\mathrm{c} 7}$ is 10 year growth rate calculated from average of first differences of logs
E_{cs} is 4 year growth rate calculated from regression of eamings on time
$\mathrm{g}_{\mathrm{c} \mathrm{\theta}}$ is 10 year growth rate calculated from regression of earnings on time
D. Comparisons of Predictions with Price-Earnings Ratios.

Finally, we may examine the extent of agreement among predictors by comparing their forecasts with the price-earnings ratios of the corresponding securities. By utilizing a normative valuation model (see e.g., [4] or [8]) it is possible to calculate an implicit growth rate from the market-determined earnings multiple of a security. Thus, comparisons of the predictions with price-earnings ratios may be interpreted as examinations of the relationship between the forecasts and market-expected growth rates. Correlations with two versions of the price-earnings ratio are shown in Table 6. The prices used were the closing prices for the last day of the year. The earnings were either the actual earnings or the average of the base-earnings figures supplied by A and B for their growth rates. These latter figures represent "normalized" or trend-earnings figures. Specifically, they represent an attempt to estimate what earnings would be in the absence of cyclical or special factors. The correlation coefficients in the table are about the same as those obtained when the forecasts were compared with each other. Since price-earnings ratios are

TABLE 6
Correlations of Predictions with Price-Earnings
Ratioṣ*

1962					
	A	8	C	-	
P/E	. 76	. 80	. 86	. 56	
P/NE	. 82	. 83	. 83	. 55	
1963					
	A	B	C	D	E
P/E	. 77	. 74	. 86	. 67	. 85
P/NE	. 81	. 76	. 80	. 60	. 85

* P / E is the price/earnings ratio. P / NE is price/average of base (normalized) earnings of A and B.
affected by several variables other than expected growth rates, this exercise underscores the extent of disagreement among the forecasters.

III. Accuracy of Predictions

In assessing the forecasting abilities of the predictors, we encountered one major difficulty. The five years in the future for which the forecasts were made have not yet elapsed. As a result, we were forced to compare the forecasts with the realized growth of actual and normalized earnings (as estimated by Predictors A and B) through 1965. Since the latter figures represent what earnings are thought to be on their long-run growth path, perhaps not too much violence is done to the intentions of the forecasters by making these a standard of comparison.

A. Method of Evaluation.

The forecasts were evaluated by the use of simple correlations and by the inequality coefficient, ${ }^{18}$

$$
\begin{equation*}
\mathrm{U}^{2}=\frac{\Sigma\left(\mathrm{P}_{1}-\mathrm{R}_{1}\right)^{2}}{\Sigma \mathrm{R}_{1}^{2}} \tag{1}
\end{equation*}
$$

where P_{1} is the predicted and R_{1} the realized growth rates for the $i^{\text {th }}$ company. It will be noticed that the inequality coefficient, in effect, gives a comparison between perfect prediction ($\mathrm{U}^{2}=0$) and a naive prediction of zero growth for all corporations ($\mathrm{U}^{2}=1$).

We also investigated the extent to which errors in predictions were related to 1) errors in predicting the average over-all earnings growth of the sample firms; 2) errors in predicting the ayerage growth rate of particular industries; and 3) errors in predicting the growth rates of firms within industries. To accomplish this, we decomposed the numerator of (1) into three parts. The first comes from the average prediction for all companies not being equal to the average realization. The second part arises from differences among the
13. Note that this is similar to the inequality coefficient introduced by Thell [14].
average industry predictions not being equal to the corresponding differences in industry realizations. The third arises from the differences in predictions for the corporations within an industry not being the same as the differences in realization. ${ }^{14}$ The proportions of U^{2} arising from these three sources will be called $\mathrm{U}^{\mathrm{SI}} ; \mathrm{U}^{\mathrm{BI}}$, and U^{wi} respectively for mean errors, between-industry errors, and within-industry errors:

B. Over-all Accuracy of the Foreciasts.

Statistics summarizing the forecasting abilities of the predictors and the success of using perceived past growth rates to predict the future are presented in Table 7. By and large, the correlations of predicted and realized growth rates are low, though most of them are significantly greater than zero, and the inequality coefficients are large. The miajor excéeption to this is Predićtor C's forecasts. However, this apparent superiority is largely illusory since C tended to concentrate on large, relatively stable companies and, we suspect, predictions werre made only when there was a priori reason to believe that the forecasts would be reliable. That this conjecture has some validity is borne out by the fact that the set of companies for which C made forecasts had a lower average instability index than did our twhole sample. Möreover, all the other forecasts, including the perceived past growth rates, did better for this set of companies than for the larger set. ${ }^{25}$

Severfal additional points about the over-all accuracy of the forècasts are worth mentioning. First, the forecasts bäsed on perceived past growth rätes, including evën growth over the most recent year, do not perform much differently from the predictions. There seems to be no clear-cut forecasting advantage to the careful and involved procedures our predictors employed over their perceptions of past growth rates either in terms of correlation or of the inequality coefficient.
 each company. However, it is possible to find a single growth rate that would yield lower mean square errors than any of the predictions. This is a result of the average realized growth rates being considerably higher than the average
14. Leetting $P_{k j}$ and $R_{k j}$ be the predicted and realized growth tates for theie $\mathrm{k}^{\text {th }}$ companty ($k=$ $1, \ldots, N_{j}$) in the $j^{\text {th }}$ Industry ($j \equiv 1, \ldots, J$, wãe cañ wörite thẽ numerator of (1) as:

$$
\begin{aligned}
\sum_{j=1}^{J} \sum_{k=1}^{N_{j}}\left(P_{k j}-R_{k j}\right)^{2} & =\left[\sum_{j=1}^{J} N_{j}(\bar{P}-\bar{R})^{2}\right]+\left[\sum_{j=1}^{J} N_{j}\left\{\left(\bar{P}_{j}-\bar{P}\right)-\left(\bar{R}_{j}=\bar{R}\right)\right\}^{2}\right] \\
& +\left[\sum_{j=j i}^{J} \sum_{t=1}^{N_{j}}\left\{\left(P_{k j}-\bar{P}_{j}\right)-\left(R_{k j}-\bar{R}_{j}\right)\right\}^{2}\right],
\end{aligned}
$$

when $\overline{\mathrm{P}}_{j}, \overline{\mathrm{R}}_{\mathrm{j}}$ are the everages for the j th industry and $\overline{\mathrm{P}}^{\text {and }} \overline{\mathrm{R}}_{\text {are }}$ the overall meanis. The three terms in squate bracketg are the ones referred to in the text:
15. For this smaller group of companies, the differences among predictors was far less than
 index than the others in 1962 (with D ä very close sêcoiid), buit botli D ánd E wërie slightly better on the matched set in 1963;

TABLE 7
Accuracy of Predictions

I. 1962 Predictions Compared with Growth of Actual Earnings 1962-1965								
Predictor	A	B	C	D	g_{pl}	$\mathrm{B}_{\mathrm{p} 2}$	g_{p}	$\mathrm{g}_{\mathrm{p} 4}$
Correlation	. 07	. 16	. 66	. 45	. 22	-. 01	. 23	. 16
U	. 80	. 78	. 57	. 67	. 74	. 88	. 74	. 78
$\mathrm{U}^{\text {m }}$. 31	. 32	. 20	. 24	. 17	. 12	. 10	. 20
$\mathrm{U}^{\text {BI }}$. 11	. 10	. 08	. 06	. 11	. 04	. 04	. 12
$\mathrm{U}^{\text {w }}$. 58	. 58	. 71	. 70	. 73	. 84	. 75	. 68
Number of Observations	185	185	60	178	168	140	140	145
II. 1962 Predictions Compared with Growth of Normalized Errnings 1962-1965								
Correlation	. 26	. 32	. 68	. 45	. 23	. 16	. 38	. 09
U	. 74	. 72	. 57	. 62	. 72	. 80	. 67	. 76
$\mathrm{U}^{\text {M }}$. 25	. 25	. 08	. 13	. 09	. 12	. 09	. 19
$\mathrm{U}^{\text {a }}$. 07	. 06	. 06	. 08	. 08	. 07	. 05	. 08
Uwr	. 68	. 69	. 86	. 79	. 83	. 80	. 86	. 73
Number of Observations	180	180	59	175	164	136	138	142

III. 1963 Predictions Compared with Growth of Actual Earnings

IV. 1963 Predictions Compared with Growth of Normalized Earnings 1963-1965

Correlation	.27	.29	.70	.34	.49	.36	.52	.41	.32
$U^{\text {M }}$.78	.78	.61	.70	.74	.69	.64	.67	.69
$U^{\text {Br }}$.35	.35	.22	.23	.40	.22	.33	.23	.12
$\mathrm{U}^{\text {WI }}$.07	.06	.08	.09	.09	.08	.09	.05	.06
Number of Observations	$\mathbf{1 8 0}$.59	.70	.68	.50	.70	.57	.72	.82

expectation of each predictor. This may simply indicate a failure to anticipate the continuation of the expansion through the period considered, but it may also reflect the underestimation of change frequently found in investigating forecasts. ${ }^{16}$

Third, with the exception of the past growth rate in the year immediately preceding the forecast date, all predicted and perceived past growth rates were better at predicting the average normalized growth rates than the actual ones. However, whether this is because normalized earnings gave a better picture
16. See, for example, Zarnowitz [16]. Since almost all the actual growth rates were positive, we do not know whether underestimation of change would also characterize predictions when earnings were generally declining. No forecasters predicted a negative rate of growth.
of the true growth of corporations or because normalized earnings calculations are influenced by past growth-rate forecasts is open to question.

C. Analysis of the Forecasts by Industrial Categories.

Turning to the industry breakdown of the forecasts, we find that failure to forecast industry means (U^{Br}) accounted for only a very small proportion of the inequality coefficient. The main sources of inequality were the withinindustry errors.

Looking at the correlations of predictions with future growth rates within industries permits us to assess which industries were most difficult to forecast in an ex post sense. The extent to which forecasters found the various indus-

TABLE 8
Rans Scores of Correlations of Predictions and Realizations Summed over Predictors*

	1962-65 Growth of Actual Earnings	$1962-65$ Growth of Normalized Earnings	1963. 65 Growth of Actual Earnings	$1963-65$ Growth of Normalized Earnings	Total
Industry					
1)	20	23	20	28	91
2)	18	22	14	25	79
3)	9	11	24	14	58
4)	10	10	8	7	35
5)	5	7	24	26	62
6)	8	5	5	10	28
7)	14	15	20	20	69
8)	24	15	29	14	82
Kendall's W	.76	.74	. 72	. 65	. 32

* Entries are sums of ranks over predictors for correlations of predictions with growth rates indicated in column headings.
tries difficult to predict is indicated in Table 8. To calculate the table, we first ranked each predictor's correlation coefficients between his forecasts and realizations over the eight industry groups. The industry for which the predictor had the most difficulty (worst correlation) was given a rank of one. In Table 8, we present the sums of the ranks for each industry over the four predictors. ${ }^{17}$ If the difficulty ranking for all predictors was identical, the rank totals would be 4 for the most difficult industry (in 1963 when there are four predictors compared), 8 for the next most difficult, etc., and the coefficient of concordance (Kendall's W) would be unity. For each of the sets presented, the values of Kendall's W are significant (beyond the 05 level) as were the differences between industries for the correlation coefficients for each predictor. ${ }^{18}$ Correlation coefficients between forecasts and realizations tended to

[^15]bè highiest in indüstries (1) electricalŝ and electionoìcs; (8) "miscêllaneous," and (2) electric utilities; they were lowest in (6) foods and stores and (4) oils. Industry (5) drugs, showed very low correlations for the 1962 predictions and high ones for the 1963 predictions. Similar patterns emerged, though more weakly, when perceptions of past growith rates over more than one year were used as forecasts. It is interesting to note that certain industries which wére "difficult to forecast" in an ex ante sense (see Section II. B) actually turned out to be difficult to predict, ex post. For example, there was high (low) agreement among predictors concerning the growth rates for the electric utilities (oils) and also high (low) correlation between predictions and realizations:

In general, we had little success in associating forecasting success with any industry or company characteristics: Thē differences between industries in forecasting success were onily moderatëly rèatated either to the average growth rates to be realized or to the variances of the realized growth rates. Two of the industries where the highest correlations were found, industries (1) and (2), had respectivély the highëst and the löwest avèrage growth rates and variances. The third industry where succeses öccurred, (8), fell in the middle range for both quantities. The rank-totals of the last column of Table 8 had a rank correlation with the rank-totals for average growth rates of 14 and of .37 with the rank-totals for the variances.

To further investigate how forecasting ability was related to company characteristics, the corporations were classified according to the quality ratings supplied by two of the predicting firms. There was a tendency for the correlations to be lowest (and negative) in the poorest-quality grouping, but they did not get systematically higher with quality, the highest correlations tending to occur in the middle classes. Similarly, classifying by high, low, or medium values of the instability index showed no pronounced differences in performance. The forecasting performances were again worst for the lowest-quality corporations and best in the middle category. When the corporations were claśsified by high, medium; or low piric̄ē-eärnings multiplé; or past gröwth rate of earnings, or future growth ratès of earnings; sales or assëts, no pronounced or significant patterns emerged.

IV. An Appraisal of the Forecasts

Thë rather poor over-all forecasting performäncès of the predictors and the fact that their past perceptions of growth rates were about as reliable forecasts as their explicit predictions raisés two queéstions: 1) Doés any naive forecästing devicé based on historic data yield as good forecasts às the painstaking éforts of security analysts? 2) Is it the basisically volatile natire of earnings that explains our fesults and would the predictions appear more accürăte if they wère taken to be forecásts of móore stablè méasurés of the growth of corporations?

To investigate the first of these questions, past growth rates calculated on the basis of arithmetic and logarithmic regressions and on the geometric means of first ratios, calculated over periods up to 14 years; were compared with

TABLE 9
Correlations of Calculated Past Growth Rates on Reayizations*

I. Correlations				
	Growth of Actual Earnings 1962-65	Growth of Normalized Earnings 1962-65	Growth of Actual Earnings 1963-65	Growth of Normalized Earnings 1963-65
gal	. 03	42	01	:26
8 ca	--. 15	:19	- 15	. 06
ges	-. 13	. 15	$-.16$. 02
ges	-. 10	. 09	- 11	-. 02
$\mathrm{gcs}^{\text {ct }}$. 22	. 62	. 18	. 46
$\mathrm{gco}^{\text {c }}$. 12	. 51	. 06	. 34
$\mathrm{ger}^{\text {r }}$. 01	. 24	-. 01	. 12
$\mathrm{gcB}^{\text {c }}$	-. 02	. 37	-. 03	. 23
Bc_{c}	-. 12	. 09	$-.14$	$\cdots-.01$
II. Inequality Coefficients				
810	. 93	. 79	. 93	. 85
$\mathrm{g}_{\mathrm{c} 2}$	1.03	. 95	1.01	. 96
gcs	. 95	. 88	. 96	. 91
gem_{4}	. 88	. 82	. 90	. 86
g_{co}	1.27	1.22	1.11	1.08
$\mathrm{BCB}^{\text {c }}$. 89	. 73	. 90	. 80
Bc_{7}	. 83	. 75	. 86	. 80
$\mathrm{g}_{\mathrm{c}} \mathrm{B}$. 98	. 85	. 96	. 87
$\mathrm{g}_{\mathrm{cc}} 9$. 89	. 83	, 91	. 86

* For definition of g's see footnote to Table 5.
the realized growth rates through 1965. A selection of these comparisons based on data ending in 1962 is found in Table $9 .{ }^{19}$
It is interesting to note first that the calculated growth rates tend to be more closely correlated with the growth rates of normalized earnings than with the growth rates of actual earnings. This is an even more pronounced feature of the calculated growth rates than of the data considered earlier. Second, while the correlations of the calculated growth rates with the realized growth rates tended to be lower than those found for the predictions and perceptions, and feewer of them differed significantly from zero, these differences are not pronounced. However, unlike the earlier data, the calculations seem to have almost no forecasting ability, a finding similar to that of I. M. D. Little [7] for British corporations. Among the calculated rates, those for shorter periods of time tend to be somewhat better in terms of correlation than those for longer ones, a feature highlighted by the strong showing of the growth rates calculated over only one year (gcv). Third, while one would have expected that extrapolations using as the last year for the calculation the same year that is used for the first year in calculation of the realization would have a lower correlation than extrapolations where the data ended a year earlier, in

19. The figures there are typical both of what was found when other periods were used and of the comparisons of calculations ending in 1961 and 1963 with the perceived growth after 1962 and 1963 respectively.
fact the reverse tendency manifested itself. Finally, among the possible ways of calculating growth rates, those based on the geometric means of the first ratios surpassed those based on regressions.
The superiority of the past perceived growth rates over the calculated ones should not be taken too seriously, however, for it was largely due to the fact that negative perceived growth rates were not reported by our participants. The survey respondents only indicated that the rates were negative. As a result, companies for which this was true had to be dropped from the sample when correlations of realized with perceived past growth rates were made. When we dropped the companies whose past calculated growth rates were negative (in order to put the calculated and perceived growth rates on a similar basis), the correlation coefficients of the calculated with the realized growth rates were raised. For example, with this change the first row of Table 9 would read

$$
\begin{array}{llll}
.30 & .53 & .17 & .42
\end{array}
$$

which compares favorably with the data in Table 7. Similar improvements occurred using the other types of calculated growth rates.
The possibilities of obtaining useful forecasts from simple extrapolation were also examined by calculating growth rates over the four preceding years ${ }^{20}$ for (1) earnings plus depreciation, (2) earnings before taxes, (3) sales, (4) assets, and (5) share prices. The correlations of these growth rates calculated to the end of 1962, both with 1962-1965 and 1963-1965 earnings growth and the growth rates of the same variables, are shown in the first five rows of Table 10. It will be noticed that both the levels and the variation of these correlation coefficients are quite similar to those found for the predictions and perceptions of past growth and the equivalently calculated past growth rates of earnings. There was also no marked tendency for the extrapolations to do better at predicting their own growth rates than the growth rates of normalized earnings, but they tended to be better at predicting their own rates than the growth of actual earnings.
The last two rows of Table 10 show the correlations of the price-earnings ratio and the price-to-normalized-earnings ratio with the actual future growth of earnings. As mentioned earlier, these ratios have implicit in them a forecast of the rate of growth anticipated by the market. We find that, in terms of correlation, the market-determined earnings multiples perform no differently from the other predictors we have considered.
A similar picture emerged when the predictions and perceptions of growth rates of earnings were used to predict the growth that would occur in these same variables through the end of 1965 . With the exception of the growth of price, the performance of the predictions and perceptions were about the same in terms of correlation as those shown when they were used to forecast the growth of normalized earnings. The inequality coefficients were, if anything, slightly lower. For price growth, however, these forecasts had virtually

[^16]TABLE 10
Extrapolations from Oteer Sertes as Predictors of Earnings and Own Growth Rates*
(Correlation Coeppicients)

	Growth of Actual Earnings 1962-65	Growth of Normalized Earnings 1962-65	Growth of Actual Earnings 1963-65	Growth of Normalized Earnings 1963-65	Growth Rate of Corresponding Variable 1962-65	Growth Rate of Corresponding Variable 1963-65
gel	. 11	. 39	. 05	. 27	. 28	. 20
gea^{2}	. 29	. 21	. 42	. 30	. 24	38
$\mathrm{gea}^{\text {a }}$. 23	. 37	. 15	. 29	. 39	. 31
ges	. 29	. 46	. 47	. 60	. 63	. 27
Esb	. 04	. 34	$\cdots .03$. 20	-. 06	. 05
P/E	. 21	. 25	. 13	. 18	-	-
P/NE	. 14	. 35	. 08	. 21	-	-

* g_{eI} is growth of earnings plus depreciation
$\mathrm{g}_{\mathrm{e} 2}$ is growth of earnings plus taxes
g_{oB} is growth of sales
g_{04} is growth of assets
g_{e} is growth of price of stock
P / E is price-earnings ratio at end of 1962
P/NE is price-normalized earmings ratio at end of 1962
The period used for the calculations of the growth rates was 1958-62 and the rates were calculated as

$$
g=\sqrt[4]{V_{62} / V_{58}} \text { where } V_{62} \text { and } V_{88} \text { are the values of the variables. }
$$

no merit, with even poorer performance than they had for the growth of actual earnings.

V. Conclusion

In this paper, we have examined the characteristics of a small sample of security analysts' predictions of the long-run earnings growth of corporations. The extent of agreement among the different predictors was considered and their forecasting abilities assessed. Evidence has recently accumulated [7] that earnings growth in past periods is not a useful predictor of future earnings growth. The remarkable conclusion of the present study is that the careful estimates of the security analysts participating in our survey, the bases of which are not limited to public information, perform little better than these past growth rates. Moreover, the market price-earnings ratios themselves were not better than either the analysts' forecasts or the past growth rates in forecasting future earnings growth.

We must be cautious, however, in overgeneralizing these results. We did not have data to investigate directly whether the performance of the predictions of growth in the period considered were atypical of the usual forecasting abilities of such forecasts. The question is important, however, since it can be argued that the peculiarities of the expansion that occurred after the date of the forecasts made the period especially difficult to forecast. Moreover, our work is hampered by the fact that only a few firms were able to participate in our survey. It may also be that shorter-term earnings predictions are con-
siderably more successful relative to naive forecasting methods. Fortunately, we are presently collecting additional data that will help shed light on these conjectures and permit a study of the generation of earnings forecasts and their usefulness in security evaluation.

REFERENCES

1. John W. Buckiman, The Reliability of Earnings Forecosts, prepared for the Trust Investment Committee of the Continental Illhois Bank (Chicago: September 13, 1963), mimeographed.
2. John M. Culbertson. "The Terin Structure of Interest Rates," Quarterly Journal of Economict, November, 1957, 485-517.
3. Benjamin Graham, David L. Dodd and Sjdney Cottle. Security Analysis, Principles and Technique, 4th ed. (New York! McGraw-Hill, 1962).
4. Myron J. Gordon. The Investmient, Financing, and Valuation of the Corporation (Homewood: Richard D. Irwin, 1962).
5. C. C. Holt. "The Infitence of Growth Duration on Share Pices," Journal of Finance, Septemm ber, 1962, 465-75.
6. Reuben Kessel. The Cyclical Behavior of the Term Structure of Interest Rates (New York: National Bureau of Economic Research, 1962).
7. I. M. D. Little. "Higgledy Piggledy Growth," Oxjord Institute of Statistics Bulletin, November, 1962, 387-412.
8. Burton G. Malkiel. "Equity Yields, Growth, and the Structure of Share Prices," American Economic Review, December, 1963, 1004-31.
9. David Meiselman. The Term Structure of Interest Rates (Englewood Cliffs: Previcice-Hall, 1962).
10. Franco Modiglinni and Richard Sutch "Mnnovations in Intèrest Rate Policy," Americans Economic Review: Papers and Proceeditigs, May 1966, 178-197.
11. Henry Scheffe. The Andysis of Voriance (Nèw York: John Wiley \& Sons, 1959).
12. Short-Term Economic Forecasting. Studies in Income and Wealth (Princeton: Princeton University Press for NBER, 1955).
13. The Quality and Economic Significance of Anticipations Data (Princeton: Princeton University Press for NBER, 1960).
14. Henri Theil. Applied Economic Forecasting (Chicago: Rand McNally, 1966).
15. J. B. Williams. The Theory of Investment Value (Cambridge: Harvard University Press, 1938).
16. Victor Zarnowitz. An Apprasal of Short-Term Ecoñomic Forecasts (New York: National Bureau of Economic Research, 1967).

Copyright of Journal of Finance is the property of Blackwell Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

EXPECTATIONS AND SHARE PRICES*

EDWIN I. ELTON, \dagger MARTIN J GRUBER \dagger AND MUSTAFA GULTEKIN \dagger

It is generally believed that security prices are deternined by expectations conceming firm and economic variables. Despite this beliet here is very litle research examining expectational data. In this paper we examine how expectations concerning earning per share effect share price. We lirst show that knowledge conceming analyst's forecasts of earnings per share cannot by itself lead to excras relurns. Any information contained in the consensus estimate of earnings per share is already included in thare price Investors or managers who buy high growth stocks where high growth is determined by consensus beliefs should not earn an excess return This is not due to earnings having no effect upon share price since knowledge of actual earnings leads to excess return. Much larger excess returns are earned if one is able to detemine those stocks for which analysts wost underestimate return. Finally, the largest returns can be enaraed by knowing which stocks for which analysts will moke the grealest revision in their estimates. This pattern of results suggests that share price is affected by expectations about earnings per share Given any degree of forecasting ability managers can obtain best results by acting on the dilferentes between their forecasts and concensus forecasis.
(FINANCE; FINANCE-INVESTMENT)

1. Introduction

A central theme of modern investment theory is that expectations about firm characteristics are incorporated into security prices. This theme can be found in most investment texts and is utilized in much of the current research in finance. Not only does this belief pervade academia it is commonly held by the financial community.

Surprisingly, in light of the strength of this belief, there is very little empirical evidence to support it. Almost all research which attempts to measure the impact of expectations utilizes not expectational data but historical extrapolations of past data that the authors hope will serve as a proxy for expectational data. This is true for most tests of valuation models as well as almost all tests in the efficient markets literature.

The purpose of this article is to examine the importance of expectations conceming one variable, earnings per share, in the determination of share price. Earnings per share is considered a key variable in determining share price and has been studied extensively in the efficient markets literature. In almost all studies, expectations of future earnings per share are formulated as an extrapolation of past eamings. ${ }^{\text {. }}$ Justification for using historical extrapolation is sometimes found in tests of the accuracy of extrapolated data in forecasting future earnings.

While tests such as those found in [3], [4], and [5] provide some evidence of the relative eccuracy of historical extrapolation versus expectational data as forecasts of the future, they do not address the question of the role of expectations in share price formation. The purpose of this paper is to directly address this question. More
*Aceepied by Vijay S Bawa, Fommer Departmental Editor; received September 20, 1979. This paper has been with the authors 4 months for 3 revisions.

New York University.
${ }^{1}$ Malkiel and Crage [B] used expectational datn on earnings growth in a valuation model. However their sample of expectational data was very limited.
specifically, we will address the question of the role of actual future changes in earnings on stock returns, the role of expected changes in earnings, and finally the role of changes in expectations.
: In addition to examining the importance of expectations and earnings, we briefly explore the issuc of the scale of relums that can be eamed by being "more accurate" than average forecasts, If market prices reflect average expectations, then superior forecasting ability should be rewarded with excess returns. We will explore both the size of these returns and the timing of their occurrence.

2. Overview: Variables Examined and Sample Design

The testing of the impact of eamings expectations has awaited the development of a broad consistent data base., L.yneh, Jones and Ryan have constructed a data base which contains one and two-year consensus earnings estimates on all corporations followed by one or more analysts at most major brokerage firms, ${ }^{2}$ Lynch, Jones, and Ryan define the consensus carnings estimate for any stock as a simple arithmetic average of the estimates prepared by all of the analysts following that stock. Given this data bose, a study can be made of the role of average expectations in price formation and in particular the importance of earnings expectations in determining share price.

In order to study the role of expectations, we need some measure of the excess retums that can be earned from knowledge concerning future earaings To examine this, we analyzed the actual growth rate in carnings. The actual growth rate was defined as actual carnings for the forecast year minus actual earnings in the previous fiscal year, divided by actual earnings in the previous fiscal year. This variable is computed only for those firms for which the denominator is positive. This does not bias the results of our tests as the denominator is known at the time this variable is formulated. However, the population of stocks to which our tests apply is restricted. Letting G, stand for the growth rate in earnings,

$$
\begin{equation*}
G_{t}=\frac{E_{t}-E_{t-1}}{E_{t-1}} \text { for } E_{t-1}>0 \tag{l}
\end{equation*}
$$

where E_{t} is reported enraings per share at time t.
Anticipating our results for a moment, we will find that knowledge of actual growth will allow a significant risk adjusted excess return to be earned. This indicates that growth in earnings is an importan! variable affecting share price, and that expectations concerning this varinble are worth studying.

If expectations determine share price, then knowledge of the average value of these expectations should already be incorporated in the share price, and buying on the basis of average expectations should not lead to excess returns. Thus, the second variable we examined was the consensus forecast of the growth rate in per share

[^17]earnings. We call this the forecasted growth rate. It is formulated as the consensus forecast of fiscal year earnings minus the actual eamings in the previous fiscal year divided by the actual carnings that occurred in the previous fiscal year. Since this measure cannot be interpreted for a negative denominator, it is computed only for those companies for which the denominator is positive. To be more explicit, let
\[

$$
\begin{equation*}
F G_{1}=\frac{C_{2}-E_{t-1}}{E_{t-1}} \quad \text { for } E_{t-1}>0 \tag{2}
\end{equation*}
$$

\]

where C_{i} is the consensus forecosts of the eamings per share that will occur at time t, and $F G_{1}$ is the consensus forecast of the growth rate in eamings per share.

If expectations are important and are incorporated in present prices, then one should observe larger excess returns by having knowledge coneerning the error in the growth estimate, than by knowing actual growth itself. Investment in a firm with high actual growth should not necessarily lead to excess returns unless investors were forecasting low growth. Thus, if expectations are important, knowledge concerning differences between actual growth and forecasted growth should lead to higher excess returns than knowledge concerning growth itself. Thus, the third variable we examine is actunl growth minus forecasted growth. This differential growth can be expressed as

$$
\begin{equation*}
D G_{t}=G_{t}-F G_{t} \tag{3}
\end{equation*}
$$

Since the effect of differences between expectations and realizations is the key phenomena that we wish to study, we have measured this phenomena in two additional ways. The first is the error in the carnings forecast defined as the actual earnings in the forecast year minus the forecast earnings. If we denote this variable by $M_{\text {, for }}$ misestimate in consensus forecast of earnings, then

$$
\begin{equation*}
M_{1}=E_{1}-C_{1} \tag{4}
\end{equation*}
$$

The second is the percentage forecast error, which is measured as the actunl carnings in the forecast year minus the forecast earnings divided by the absolute value of the actual carnings. If we use \% M_{i} to stand for the percentage, then

$$
\begin{equation*}
\% M_{t}=\frac{E_{t}-C_{t}}{\left|E_{t}\right|} \tag{5}
\end{equation*}
$$

While most of our analysis consists of an examination of one year forecasts, we decided to take a brief look at the excess returns associnted with errors in two year forecasts. We duplicated the one-year measures and examined the error in earnings forecast for two years and the percentage error in carnings forecast for two years.

If consensus forecasts are more important than the actunl level of future earnings in determining prices, then one should be able to do a better job of selecting stocks by knowing the change in consensus forecasts than by knowing actual earnings. To test this hypothesis, a variable measuring the percentage adjustment in forecasts over time was used. This variable is formulated as negative of the following quantity: the forecast of earnings prepared for the next (as opposed to this) fiscal year minus the forecast of eamings for the same liscal year made one year later divided by this latter number. To better understand this variable, let,$-{ }_{a} C_{7}$ stand for the consensus forecast for earnings at time t which are produced at time $t-a$, and $(r-n+12) C_{\text {, }}$ stands for the forecast for time f which is produced 12 months later. Then the forecrast revision
denoled by $F R$, can be represented as

$$
\begin{equation*}
F R_{\mathrm{f}}=-\frac{(t-\mathrm{a}) C_{t}-(t-a+12) C_{t}}{(t-a+12) C_{i}} \tag{6}
\end{equation*}
$$

3n The Sample

The raw dath consisted of a monthly file of one and two-year earnings forecasts prepared in the years 1973, 1974, and 1975. We limited our sample of data in several ways. First, the sample was restricted to firms having fiscal years ending on December 31. By confining our sample to firms with fiscal years ending on the same date, forecasts prepared a certain number of months (e.g., nine) in advance of the end of the fiscal year, fall on the same calnodar date. This procedure assures that the same general economic influences (eg, the economy, the market, etc.) were available to all forecasters at the time forecasts were prepared. The date of December 31 was selected because more companies had fiscal years ending on that date than on any other.

Second, forecasts are restricted to two forecast dates, March and September March was selected because it is the earliest date on which financial data for the previous fiscal year would be reported by most companies. September was selected as a month that is far enough from the first forecast and far enough into the fiscal year that significant evidence on companies' performance during the year should be availableYet it is not so far into the year that earnings are known with certainty. Both dates are used for all variables involving one-year forecasts. However, so few two-year forecasts were available in March that only the September date could be used when examining two-year forecasts.

Finally, because we are interested in the impact of consensus forecasts, the sample was restricted to companies which were followed by three or more analysts. The consensus prepared from less than three forecasts could be idiosyncratic and not typical of broad feelings about the stock.

The final sample consisted of a total of 919 one-year forecasts of the fiscal years 1973, 1974, and 1975 and a total of 710 two-year forecasts of fiscal years 1974, 1975, and 1976. Because of negative earnings, some firms had to be eliminated over several measures. This caused the sample size to fall to as low as 913 and 696 for one and two-year forecasts, respectively, As discussed earlier L.ynch, Jones and Ryan survey most large brokerage firms. Since we have included all stocks followed by three or more analysts, the group of stocks in our sample can be considered a universe of all stocks with important analyst interest. Since brokerage firms are interested in providing information to their customers, our sample should include most stocks of major institutional interest.

4. Methodology

The first step in our procedure was for each time period studied (March and September) and for each year to rank all stocks on each variable and to divide the stocks into deciles by each variable. For example, we formed deciles for the forecasted growth rates made in September 1973 with the first decile containing the 10% of the stocks with the highest forecasted growth rate. For each decile, we calculated the average value of the variable being studied (in this case, forecasted growth),

In order to determine whether certain types of information lead to excess returns, it is necessary to have a measure of what return is expected. If we have a measure of
expected return, then excess return is the difference between actunl return and expected return. In order to measure expected return, we use the market model. The market model is a relationship between the return on a security and the retum on a market index.

Let

1. r_{1} be the return on portiolio i in period t_{n}
2. $r_{\text {mut }}$ be the return on the market in period t.
3. α_{i} and β_{i} be parameters for portfolio i.
4. e_{t}, be deviations from the model.

The market model is:

$$
r_{t t}=\alpha_{t}+\beta_{i} r_{n t}+e_{t}
$$

Using the market model leads to expected returns being determined by the security's normal relationship with the market (β_{l}), the market return in the period (r_{m}) and the security's average nonmarket return (α_{i}) Using the market model excess return is

$$
r_{t}-\left(\alpha_{i}+\beta_{i} r_{m s}\right)
$$

Although the market model is frequently used in finance, there are some problens with ils use that can lead to biased tests. First there is measurement error in the coefficients and if this varies systematically with the test statistic, it can lead to an appearance of a relationship when none exists. This was guarded against in several ways.
First we calculated the market model for the deciles discussed carlier. Using grouped data is one way of reducing the measurement error. The one variable where measurement error can be especially bothersome is beta. As Blume [1] has shown the error in measuring beta varies systematically with its difference from one. The use of grouped data helps. In addition, we examined the individunl betas on the groups. There was no systematic pattern, nor did any group beta differ very much from one (the range was 0.93 to I.09). Given this result, we judged that any further adjustment in beta was unnecessary, In the original CAPM tests grouping data was common. Litzenberger and Ramaswamy [7] and Ross and Roll [9] have criticized this on the grounds that the CAPM is a theory of the pricing of single assets and as such has to be shown to explain differences in asset returns. Our purpose here is not to test CAPM but rather to cxamine the effect of expectations on share price. Hence grouping is a reasonable procedure for dealing with measurement error-

The second problem in the use of the market model is its difference from a capital asset pricing model. There are numerous general cquilibrium models that have been derived. If one of these ultimately is shown to be correct, then better estimates of returns should be obtained by using that model rather than the market model. Brennan [2] has shown that the use of alternative models can make some difference. However, in this study the magnitude of the results, the grouping techniques, and the spread in the β_{i} 's should mean that there is minimal chance of this source of potential bias explaining the results. ${ }^{3}$ For example, assuming that the beta for each group was equal to one would not change any of our conclusions.

[^18]The market model was estimated by treating each decile as an equally weighted portfolio of the stocks which composed it and estimating the market model parameters for each decile. The market index we used was the Standard and Poor's index adjusted for dividends. The parameters of the model yere estimated in each case using 60 monthly observations on retums up to and including the forecast month. The data dissemination procedure followed by Lynch Jones and Ryan means that forecasts are in the hands of the subseriber by the end of the month. The estimated parameters of the market model were then used in conjunction with actual market returns to forecast normal risk adjusted returns for each of the deciles during each of the 24 months after the forecast month. The risk adjusted retums in each month were close to but not exactly equal to zero. This should not be surprising to the reader. The sum of the residuals in any one month should equal zero only if they are weighted in market proportions and include all stocks in the index. Oor sample meets neither of these conditions. We adjusted our residuals to have a mean (across all deciles) of zero for ease of presentation. Our primary statistical lest is a rank correlation test, subtracting a constant from each entry can not effect the rank. Thus our adjustment had very litue effect on the numbers reported and had no effect on their statistical significance or on our conclusions.

As discussed earier, we calculated risk adjusted excess returns for each of the deciles for each of the variables for the 24 months after the forecast month. In the case of the March data we calculated risk adjusted excess returns from April on and in the case of September from October on. This was done for each of the three years for which we had data. We combined these years and have reported the average risk adjusted return across the three years for each decile.

To aid in understanding the results, we report the sum of the risk adjusted excess retums from the month after the forecast month to the month under consideration, rather than reporting the risk adjusted excess returns in any one month ${ }^{4}$ Thus, for March forecasts, the entry in month 3 is the sum of the risk adjusted excess returns earned in April, May, and June. This allows the reader to more easily deternine the cumulative effect of any influence.

After examining the data we determined that there were no further effects after month 15 for March data and month 9 for September data. Thus, we have not reported results beyond these dates.

In reporting results we have combined the deciles in two ways. First, we report the cumulative risk adjusted excess returns in the upper 30%, middle 40%, and lowest 30% of firms ranked on each variable. Second, we report the cumulative risk adjusted excess returns in the upper 50%. Since the risk adjusted excess returns add to zero, across all deciles the risk adjusted excess return in the upper 50% is the negative of the lowest 50%. We chose to present the data in this way since using the ungrouped deciles increases the size of the tables substantially without providing additional insights.
The reader can judge the economic significance of the results by examining the cumulative residuals in Tables 1 through 4. These excess returns are reported before
${ }^{4}$ Many authors aceumulate residuals by calcuiating the product of one plus the recidualy. The justifieation for this is that return over N periods is the product of the N oae period returns. There is a difficulify with this procedure The null hypotheis is that the residuals nverage zero. If this hypothesis is true, it is easy to show that the product of one plas the one period residuals minus one becomes negative and significuntly so as N gets large The sum of the residuals is zero under the null hypothesis and devintions from zero are indications of real effects.
table 2
Time Series of Cumulative Exceur Returnx for the

	1	2	3	4	5	6	7	8	9
Upper									
30\%	0.0187	0.0272	0.0421	0.0429	0.0466	0.0506	0.0518	0.0638	0.0680
Middle									
40\%	0.0100	0.0092	0.0014	-0.0035	-0.0036	-0.0045	-0.0069	-0,0065	-0.0034
Lower									
30\%	-0.0318	-0.0394	-0,0441	-0.0384	-0.0421	-0.0445	-0.0526	-0.0550	-0.0635
Rank									
Corre-	$0.77 *$	$0.88{ }^{*}$	0.84*	$0.88 *$	0.99*	0.92*	0.95*	0.94*	0.85*
bation ${ }^{\text {a }}$									

*Rank correlation cotflicients are computed across deciles.

- Indicates signilicance at t\% level.
*"Indicates significance a! 5 石 level.

TABLE 3
Exress Returns for Months 7 and 13 March Dota

*Rank Correiation coelficients are computed across deciles.

- Indicates aignificance at the 1% level.
"Indicates siknifiennee al the 5% level.
Reproduced with permission of the copyight owner Futher reproduction prohibited withoul permisston
table 4

	Fortantid Orowlh Equalion (1)	 Crowth Equation (2)	Error in Crowth Equatos (3)	Etror th Foremst (One Year) Equation (4)	Erma In Forcous: (Ons Ycar Equation (5)	Eftor in Forezent (Two Yeant) Equation (4)	Errar is Forcoss (Twa Yeans) Equastion (5)	Fonteas Revition Equation (6)
Uppet 307	0.0135	0.0399	0.0618	0.0367	a.0.52	0.0773	00192	0.8889
Middte 403	-0.0.0779	-0.0161	- 0.00089	-0.0053	-0.0084	-0.0023	-0.0062	-0.0141
Luwer 308	-0.0023	-0.citc	- 0.0526	- 00497	- 0.0851	-0.0741	-0.0711	- 1 2070
Upper 50%	0.0073	0.0245	aches	0.0102	0.0409	0.0496	0.0498	0.0512
Rasik Certation'	0.37	0.53	0.95*	0.95*	0.39*	0.56	0.98 ${ }^{\text {- }}$	0.83*

- Rank carriation coetricienta are computed scrons decilics.
- Jodionta aguilicasce it the it fevel.

TABLE 5
Mean Valuer for Each Variable

	Equnt (1) Forecatird Orowlh	Еqши (2) Actux] Orowh	텨unt (1) Etrot to Orowth	Equit. (4) Fortins Emor (1 yn)	Equat 15) Perezatuse Format Ensor (1 yz)	Equat (4) Forecat Entis (2 yTs)	Equati (5) Factonlage Forecast Extor (2 yan)	Equat. (5) Ferceats Revidion
Afarch Data								
Upper 10\%	56614	10743\%	63.878	1.05\%	26.24\%			
Madtie 40\%	63	277	135	0.01	--0.32			
Lowte 30\%	-9.18	- $\mathcal{H} .95$	-36. 38	l.0s	- 159.26			
Sept. Data								
Upper 30\%	818	98.03\%	26.36\%	051\%	14.72%	0.13%	26.74\%	43.76\%
Ntidalc 403	934	132	-0.17	-0.07	-0.13	-0.08	-3.75	1.19
Lower 203	-15.75	-3205	-27.02	-0.67	-94,0!	$-\mathrm{t} .64$	-153.79	-2734

transaction costs. While estimates of round trip transaction costs differ, a reasonable estimate is in the range of two to four percent, Thus, cumulative residuals in excess of 4\% can be accepted as of economic significance.

It is also logical to examine whether the relationship between any of the variables under study and excess return is stntistically significant. This was examined by computing Spearman rank order correlation coefficient between the decile and the rank order of the cumulative excess return for each decile A statistically significant rank order correlation cocificient would indicate that there was a significant relationship between the variable under study and cumulative excess returns. Furthermore, by using a nomparametric test this statement is free of any distributional assumptions (across deciles) about the pattern of excess returns and/or the variables under study. Note that when we compute, the statistical signilicance of the cumulated residuals in successive periods these tests are not independent.

Table 5 presents the average values for each variable studied in this paper.

5. Results

The first question to analyze is: Can an investor eam excess retums by selecting stocks on the basis of the conseasus growth rate forccasted by security analysts (Equation (2))? The answer is no. There is no discernable pattern in the cumulative excess returns, In some months the stocks for which high growth was forecasted had positive risk adjusted cumulative excess returns; in other months they had negative ones. As a further check we perfonmed a rank order correlation test on the deciles in
each month. The rank order correlation between forecasted growth and risk adjusted cumulative excess return was never significantly different from zero at the 1% level and only significantly different from zero from the 5% level in two months. In the months it was significant it was negative, which is opposite to what one would expect if growth estimates contained information which was not incorporated in stock prices. The lack of a pattern was even more evident in the September data. In no month was the cumulative excess return significantly different from zero at even the 5% level and the average cumulative excess return varied frequently from positive to negative. The results for each individual month is not reported in the paper but the results for selected months can be seen by examining Tables 3 and 4

This lack of risk adjusted excess returns occurs even though the analysts were projecting some very large growth rates. In September the analysts were projecting that the average growth mate for the top decile would be over 100% and the growth rate in the second decile would be 33%. In contrast the earnings of stacks in the last decile were expected to decline by 34%.

A number of financial institutions purchase growth stocks as an investment strategy. In the three years we examined, pursuing such a strategy based on consensus estimates would not have led to superior returns, growth forecasts were already incorporated in the security prices. This is what one would expect if expectations are incorporated into security price.

On the other hand, our results show that growth is an important determinant of security returns. Investors with perfect forecasting ability could make risk adjusted excess returns. The results for individual months are not reported. However, the results for selected months, can be seen by examining Tables 3 and 4 . From month 4 on, the rank order of excess returns for the deciles is significant at the 1% level. The excess return builds up to 7.23% for the upper 30% of all stocks by month 9 . It then declines and builds up again to over 7\%. A similar but less distinct pattera can be seen by examining the lowest 30%.

The risk adjusted excess returns from possessing perfect forecasting ability in September are much lower than they were from possessing perfect forecasting ability in March. Furthermore in most months the rank order of the deciles is insignificant at the 1% level (although it's still sometimes significant at the 5% level). This is what one would expect. By September investors have a much better idea of actual growth than they do in March.

If prices reflect consensus forecasts, then knowing the error in the consensus estimate of growth should lead to larger profits than just knowing actual growth. How large is the mis-estimate of actual growth by the analysts? In March, the average error for the 30% of the companics for which earnings growth was most underestimated was 63.6%, while the average error for the 30% of the companies for which growth was most overestimated was 38.9%. The corresponding numbers for September forceasts are 26.4% and 20.3%. It is apparent that while there are still large size errors in the September forecasts, the size of the crror has decreased markedly between March and September. Analysts can improve the accuracy of their forecasts as interim earnings reports or as other information comes out and more information is available on company performance.

Tables I and 2 show the time series of cumulative risk adjusted excess return for the errors in the March and September estimates (Equation (3)). The rank order of the deciles is significant from the first month for both the September and March estimates.

The risk adjusted excess returns build up very quickly in both cases. For the March forecasts, the risk adjusted excess returns are close to 7% by month 6 (September), the major increase occurring in month 5 . Once again, the risk adjusted excess retums have a temporary peak in month 9 and then increase to a global peak in month 13. This rapid build-up is consistent with information about true earnings growth being disseminated over time and the market correctiy incorporating the information

Even in September investors with a better estimate of growth than the consensus had an opportunity for excess profits. Notice that while knowledge of the forecast error as of September allows an excess profit to be eamed, perfect forecast ability did not allow an excess profit to be eamed. This suggests that on average forecasts are accurate enough in September that excess profits can be carned only by isolating those cases where forecasted growth is very much different than actual
The time pattern for all variables is very similar with March forecasts producing excess returns which level out after month 13 and September forecasts producing excess returns which level out after month 7 . Consequenlly, we shall only report results for these months. The cumulated excess returns in these months are reported in Table 3 and Table 4 . In addition, in Table 3 we show the risk adjusted cumulative excess relurns 7 months after the March forecasts for comparison with the effect 7 months after the September forecast.

Note that among the variables discussed so far for both March and September forecasts, the risk adjusted excess return was highest for the error in the growth rate, next highest for actual growth and close to zero for the forccasted growth. What an investor desirous of making excess profits should be most concerned with is finding securities where his forecasts are not only good in the sense of being right but where they are both accurate and different from the consensus.

The same conclusion can be reached by examining errors in the earnings estimates. Tables 3 and 4 present the analysis of excess returns for the error in forecast earnings and the percentage error in earnings forecasts for one year forecasts as of March and September and two-year forecasts as of September. In each case the excess returns appear to be sufficient to cover transaction costs and the rank order correlation coefficient is significant at the 1% level.

Furthermore, the amount of excess returns that can be earned vary with the magnitude of the forecast error. The two-year estimates made in September and the one-year estimates made in March were considerably less accurate than the one-year forecast made in September. They also produced higher risk adjusted excess returns. However, even in September there is a considerable forecast error in year-end earnings. In September, the percentage forecast error was 26% for the top decile, 11.6% in the next decile, and 6.3% in the next. These crrors, while lower, were still significant enough to lead to an excess risk adjusted retum.

We have now examined evidence that consensus lorecasts are incorporated into price. Further, we have seen that the ability to forecast with more accuracy than the consensus forecast can lead to an excess risk adjusted return. If consensus forecasts play a major role in price determination, then the ability to forecast consensus forecasts themselves should lead to a superior retum. Since we have estimates of the earnings for each company made 15 months in advance (the two-year forecast as of September) and estimates of the same carnings made 12 months later (one-year forecast made in September of the following year), we can mensure the impact of being able to forecast the change in the estimate (Equation (6)). As shown in Table 4, the

TABLE 6
Error in Growth*
(Forecast-actual)

Percentage of Firms eliminated	Excess return if completely accurate	Excess reium if 50% error	Excess return it 90\% error
0%	0	0	0
10\%	1.56	0.78	0.16
20\%	2.88	1.44	029
30\%	3.07	1.53	0.31
40\%	4.32	2.16	0.43
50%	5.77	2.88	0.58
60\%	7.35	3.67	0.74
70\%	9.08	454	0.91
80\%	9.90	4.95	0.99
90\%	10.42	5.21	1.04

- Forecass of one year growth rates prepared in March Cumblative returns calculated as of April of the following year
retums from being able to estimate forecast revision are substantion. In fact, the return from forecasting future forecasts themselves is higher than the return from being able to forecast actual eamings. This is consistent with our other evidence that it is consensus forecasts which determine security prices.
All of the results presented in this section could be used to analyze the amount of accuracy necessary to earn excess returns. Assume the analysts can identify firms that are in various deciles with respect to the error in estimated earnings. For example, suppose he could identify the 10% of the firms with the largest forecast error. Column 2 of Table 6 shows the cumulative excess return he would carn. Columns 3 and 4 assumes that he identifies the members of a decile with error Column 3 assumes that 50% of the time he identifies a firm as a member of a decile he is randomly selecting from among all firms and 50% of the time he is accurate. Column 4 assumes that 90% of the time he is randomly selecting from all firms.
For example, if an analyst is attempting to select from among the 30% of the firms for which the consensus forecast most underestimate true earnings, and he is right 50% of the lime, he will earn an excess risk adjusted return of 4.54%.

As can be seen from an examination of the table, a little bit of information leads to substantial cumulative excess returns. These kinds of excess returns provide some justification for the effort undertaken by many organizations to forecast earnings.

6. Conclusions

In this study we present evidence in support of the hypothesis that expectations are incorporated into security prices. In addition, we have analyzed the timing and size of returns from forecasts which are more accurate than the consensus. Since prices reflect consensus forecasts, the payoff from being accurate in forecasting is increased markedly as the consensus forecast becomes inaccurate. Finally, we have demonstrated that the payoff from being able to forecast the consensus estimate is higher than the payoff from being able to forecast earnings. The market reacts to expectational data. But despite this, or rather because of it Lord Keynes [6] appears to have been right when he likened professional investing to participating in a newspaper contest on a beauty
contest, where ". . each competitor has to pick, not those faces which he himself
finds prettiest, but those which he thinks likeliest to catch the fancy of other
competitors, all of whom are looking at the contest from the same point of view."
References

1. Blune, Marshall, "Betas and their Regression Tendencies," J. Finance (June, 1975).
2. Braman, M., "The Sensitivity of the Efficient Market Hypothesis to Alternative Specifications of the

 5. Elton, B. J. AND Grumer, M. J., "Earnings Estimate and the Aceuracy of Expectations Data," 6. Kernes M, The Genenal Theory of Enployment, Interest, and Mangy, Harcourt, Brace and World, New
York, 1964, p. 156. 7. Lizesiberger, Robert and Ramaswayry, K., "The Effects of Personal Taxes and Dividends on 8. Malxiel, B. and Cragg, J., "Expectations and the Structure of Shate Prices," Amer. Econom Rev., 9. Rous, Richard and Ross, Strve, "An Empirical Investigation of Abbitrage Pricing Theory," J. 10. Warts, R. L., "Systematic "Abnormal' Returns After Quarteriy Savags Announcements," I. Financiai Eronom (1978), pp. 127-150.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Choice among methods of estimating share yield

Abstract

The search for the growth component in the discounted cash flow model.

David A. Gordon, Myron J. Gordon, and Lawrence I. Gould

 also called its expected return or required return, is an important statistic in finance. Firms use it in choosing among investment opportunities and financing alternatives, and investors use it in making portfolio decisions. Nevertheless, the yield at which a share is selling is a difficult quantity to measure, which has limited its use in the practice of finance. This paper develops and tests a basis for choice among alternative methods of estimating a share's yield

A share's yield, like a bond's yield, is the discount rate that equates its expected future payments with its current price. A bond's yield is easy to measure under the common practice of ignoring default risk, as the future payments are then known with certainty. The future payments on a share, however, are dividends and market price, and these payments are uncertain.

The common practice is to represent these future dividend payments with estimates of two numbers: One is the coming dividend, and the other is a growth rate. The latter can be an estimate of the longrun growth rate in the dividend or of the growth rate in price over the coming period. In the latter case, the estimate is called the expected holding-period return (EHPR); in the former case, it is called the discounted cash flow yield (DCFY). ${ }^{1}$ In either case, the estimate of a share's yield reduces to the sum of its dividend yield and a future growth rate, with the latter inferred in some way from historical data.

There is a wide variety of acceptable methods
for using historical data to estimate future growth This variation in method is illustrated in the testimony of expert witnesses before public utility commissions on the fair return for a public utility. In these cases, the estimates and the methods used are a matter of public record. Some idea of the various methods can be found in Morin (1984) and Kolbe, Read, and Hall (1984). The performance of alternative estimating methods has been examined in Gordon (1974), Kolbe, Read, and Hall (1984), Brigham, Shome, and Vinson (1985), and Harris (1986)

We have derived our basis for comparing the accuracy of alternative methods for estimating the DCFY on a share from the generally accepted propositions that yield should vary according to risk, and that beta is the best estimate of risk. Hence, the DCFY should vary among shares with beta, and, between two methods for estimating growth, the superior method is the one for which the variation in yield among shares is explained better by the variation in beta among the shares.

First we present simple, plausible, and objective measurement rules for implementing four popular and/or attractive methods for estimating the DCFY. We then describe how sample statistics may be used to judge the accuracy of each method. We also describe how the CAPM model has been used to estimate share yield and explain why we do not compare it with the various DCFY methods. The following section carries out the comparison with samples of utility and industrial shares, and the last section pre-
sents the conclusions that may be drawn from the findings.

ALTERNATIVE MEASUREMENT
 RULES FOR A SHARE'S YIELD

Under the DCF method or model for estimating the expected return on a stock, the yield for the jth stock is:

$$
\begin{equation*}
\mathrm{DCFY}_{\mathrm{i}}=\mathrm{DYD}_{\mathrm{k}}+\mathrm{GR}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
D C F Y_{i} & =\text { DCF yield on the } j \text { th stock at time } t, \\
D Y D_{13} & =\text { dividend yield on the } j \text { th stock at time } t, \\
& \text { and }
\end{aligned}
$$

$\mathrm{GR}_{\mathrm{jt}}=$ long-run growth rate in the dividend on the jth stock that investors expect at time t.

In what follows, we omit the time and firm subscripts on the variables when they are not required. Also, DCFY will refer to the unknown true yield on a share.

The difficult problem in arriving at the DCFY is estimation of the long-run growth rate that investors expect. Four estimates of that quantity are:
$E G R=$ rate of growth in earnings per share over a prior time period, usually the last five years;
DGR $=$ rate of growth in dividend per share over a prior time period, usually the last five years;
FRG $=$ consensus among security analyst forecasts of the growth rate in earnings, over the next five years; and
$B R G=$ an average over the prior five years of the product of the retention rate b and rate of return on common equity r on a stock.

The estimate of share yield that incorporates each of these estimates of growth is denoted KEGR, KDGR, KFRG, and KBRG, respectively.

A case can be made for each of the four methods for estimating growth KEGR, KDGR, and KBRG have been widely used in public utility testimony and in research on stock valuation models. The rationale for KEGR is the belief that the past growth rate in earnings is the best predictor of future growth in earnings and dividends. The rationale for KDGR is that the future growth rate in dividends is the statistic we want to estimate, and the past dividend record is free of the noise in past earnings. ${ }^{2}$ The rationale for KBRG is that all variables will grow at this rate if the firm earns r and retains b. Furthermore, as Gordon and Gould (1980) show, KEGR and KDGR will be biased in one direction or another if r and b have changed over the last five years. As for KFRG, security analysts
are professionals employed to forecast future performance; their forecasts are widely accepted by investors. The IBES collection of forecast growth rates of security analysts compiled by Lynch, Jones, and Ryan has increased the popularity of this estimate

As stated earlier, we may also take the yield on a share as the sum of the dividend yield and the expected rate of growth in price over the coming period. This estimate of a share's yield is widely used in testing the CAPM, with the average HPR over the prior five years commonly used in such empirical work. On the other hand, this estimate of a share's yield varies so widely among firms and over time as to be patently in error as an estimate of share yield. ${ }^{3}$

BASIS OF COMPARISON

To compare the accuracy of the four estimates of the DCFY stated above, we regress the data under each estimate on beta for a sample of shares. If KEGR is the estimate,

$$
\begin{equation*}
\operatorname{KEGR}_{i}=\alpha_{\theta}+\alpha_{i} \text { BETA }_{i}+\epsilon_{i} \tag{2}
\end{equation*}
$$

The rationale for this expression lies in the risk premium theory of share yield, where the share yield is equal to the interest rate plus a risk premium that varies with the share's relative risk. Hence, if BETA is an error-free index of relative risk, α_{0} is equal to the interest rate, and α_{1} is the risk premium on the market portfolio or standard share. ${ }^{\text {4 }}$

The higher the correlation between KEGR and BETA, assuming that α_{1} is positive, the greater the confidence we may have in KEGR as an estimate of DCFY. We cannot rely solely on the correlation, though, in selecting among the methods for estimating DCFY. Errors in KEGR as a basis for estimating the DCFY on the jth share have random and systematic components. The former is ϵ_{i}, and its average value can be taken as the root mean square error of the regression (MSE). The larger the root MSE of the regression, the less attractive KEGR is as an estimate of share yield, because the error makes the problem of choice between $K E G R_{i}$ and KEGR $_{i}-\epsilon_{i}$ more acute (That problem will be discussed shortly.)

The systematic error is the difference between the unknown true yield on the j th share, DCFY ${ }_{j}$, and the value predicted by Equation (2). There is no obvious measure of the systematic error, as we do not know DCFY ${ }_{i}$, but sample values of α_{0} may provide information on its average value. The difference between α_{0} and the interest rate is an indicator of systematic error, because the difference is zero under the risk premium theory. Error in the measurement of BETA biases α_{0} upward, but, with the same BETA for each share used in all four regressions, differences in α_{0} are indicators of systematic error ${ }^{5}$

In addition to regression statistics, the sample mean and standard deviation of KEGR is a source of information on its accuracy as a method for the estimation of DCFY. If the mean departs radically from the long-term bond rate, or if the standard deviation indicates an unreasonable range of variation among shares, the accuracy of the method is open to question. Also, the sample mean may be a source of information on the systematic error for a method of estimation. Hence, sample values for the mean, standard deviation, correlation, root MSE, and constant term all contribute to a judgment on a method's accuracy for estimating the DCFY on a share. Unfortunately, there is no simple criterion for choice among the alternatives.

Once a conclusion is reached on the most accurate method for estimating DCFY - say, KEGR we then have the problem of choice between KEGR; and $\mathrm{KEGR}_{\mathrm{j}}-\epsilon_{\mathrm{i}}$ for the j th share. If the random error in $\mathrm{KEGR}_{\mathrm{j}}$ is due to error in its measurement for the jth share; we simply use the value predicted by Equation (2), which is $\mathrm{KEGR}_{\mathrm{j}}-\epsilon_{\mathrm{i}}$. On the other hand, KEGR and DCFY may vary among shares with other (omitted) variables as well as BETA, in which case ϵ_{i} is also due to the omitted variables, and $\mathrm{KEGR}_{;}$may be the better estimate of DCFY. Unfortunately, we have no basis for choice among these two hypotheses, and the smaller the root MSE the less troublesome the problem of choice between them.

A more favorable tax treatment of capital gains over dividends should make investors prefer capital gains to dividends. As Brennan (1973) has shown, the yield investors require on a share would then vary with the excess of its dividend yield over the interest rate. To recognize this, Equation (2) becomes

$$
\begin{equation*}
\mathrm{KEGR}=\alpha_{0}+\alpha_{1} \mathrm{BETA}_{1}+\alpha_{2} \mathrm{DMI}_{4}+\epsilon_{i} \tag{3}
\end{equation*}
$$

with DMI_{1} the excess of the dividend yield over the interest rate for the j th firm. Although the tax effect should make α_{2} positive, its information in DMI on share risk would tend to make α_{2} negative. That is, dividend yield varies inversely with expected growth, and we would find α_{2} negative insofar as growth is risky. To the extent that these two influences of the dividend yield offset each other, α_{2} will tend toward zero.

The CAPM theory of how expected return varies among shares has been proposed as an alternative to the DCF model for measuring yield. Its value for the jth stock is

$$
\begin{equation*}
\mathrm{EHPR}_{\mathrm{t}}=\mathrm{INTR}+\mathrm{BETA}_{1}\left[\mathrm{EHPR}_{m}-\mathrm{INTR}\right]_{1} \tag{4}
\end{equation*}
$$

where:
$\begin{aligned} E H P R\end{aligned}=\underset{ }{ } \begin{aligned} & \text { expected holding-period return on the } \\ & j \text { share, }\end{aligned}$

INTR = one-period risk-free interest rate,
$E H P R_{r n}=$ expected holding-period return on the market portfolio.

There is an important difference between this CAPM model of share yield and the DCF model represented by Equation (1). The latter is merely an instrument for measuring share yield: There is nothing in the DCF model that explains the variation in yield among shares. The CAPM, on the other hand, is a theory on why and how yield varies among shares, but one must go outside of the theory to estimate the variables on the right-hand side of Equation (4). Given rules for estimating the variables, EHPR and BETA, empirical work then provides a joint test of the theory and the estimating rules, such as we are carrying out here. ${ }^{6}$

The CAPM nonetheless has been used to estimate share yield in testimony before regulatory commissions by assigning numbers to each of the quantities on the right-hand side of Equation (4) For INTR, a long-term bond yield is sometimes used instead of a one-period rate. BETA is estimated by conventional methods.

The big problem is the expected return on the market portfolio. Here the practice has been to use the average realized risk premium over a period of about fifty years as the estimate of $\mathrm{EHPR}_{m}-$ INTR in Equation (4). Although the implicit assumption is that the risk premium is a constant over time, we would expect the premium to change from one period to the next for various reasons, among them changes in the interest rate, the risk premium on the market portfolio, and the relative taxation of interest and share income Hence, this estimate of share yield is more or less in error at any particular time, but we have no way of estimating this error and comparing the method with the others.

COMPARATIVE PERFORMANCE

We carried out our empirical work with a sample of 75 large electric and gas utility firms and a sample of 244 firms that includes 169 industrial firms drawn from the S\&P 400. We obtained share yield under the four methods for estimating it as of the start of the year for the years 1984, 1985, and 1986

For the explanatory variables, BETA for each share on each date was obtained by regrossing the monthly HPRs for the share on the monthly HPRs for the S\&P 500 over the prior five years. DMI for a share is its dividend yield less the interest rate on the onemonth Treasury bill at the start of each year. EGR and $D G R$ are the growth rates in earnings and in dividends per share, respectively, over the prior five years as reported on the Value Line Tape, BRG is a weighted
average of the retention growth rates over the prior five years, ${ }^{7}$ and FRG is the average of forecast growth rates in earnings over the next five years reported by IBES. The corresponding estimates of share yield were obtained by adding the dividend yield at the start of each year to the estimate of growth.

Table 1 presents the statistics that we obtained with KBRG and KFRG as the estimates of DCFY for the sample of utility shares and of all shares. The means of KBRG for the utility shares seems reasonable, with the interest rate on ten-year government bonds the standard of comparison, the latter being $11.67 \%, 10.43 \%$, and 9.19% at the start of 1984, 1985, and 1986, respectively. ${ }^{8}$ The standard deviations for KBRG are small enough to make its range of variation well within the bounds of reason. The lower means for all shares reveal that the means for industrial shares are below the means for utility shares. ${ }^{9}$ This casts doubt on the accuracy of KBRG as a basis for estimating the DCFY on industrial shares, because industrials are riskier than utility shares.

The beta model explains none of the variation in KBRG among utility shares, but the two-factor
model is a substantial improvement. The DMI coefficient, α_{2}, is positive and significant in every year, meaning that the unfavorable tax effect of a high dividend yield dominates the favorable risk effect. The coefficient on BETA is positive and significant in two of the three years. The only disturbing feature of the data is the sharp fall in R^{2} and the corresponding rise in the root MSE relative to the standard deviation of KBRG as we go from 1984 to 1986.

The KBRG statistics for all shares are substantially inferior to the utility share statistics. This forces the unhappy conclusion that, for industrial shares, BETA is a poor measure of risk, or KBRG is a poor measure of DCFY, or both.

The KFRG statistics for the utility sample are superior to the KBRG statistics. The means are reasonable under the two criteria of being above the interest rate and moving with it The range of variation of KFRG suggested by its standard deviations seems reasonable. The statistics for the beta model are a slight improvement on the corresponding statistics for KBRG. Furthermore, the two-factor model does a good job of explaining the variation in KFRG among

TABLE 1
Sample and Regression Statistics for KBRG and KFRG, Utility Shares and All Shares, 1984, 1985, and 1986

	KBRG			KFRG		
	1984	1985	1986	1984	1985	1986
	UTHLITY SHARES (75)					
Mean	1484	1438	12.93	1564	14.56	12.93
Standard Deviation	251	187	180	226	1.43	142
Beta Model α_{0}	1426	1396	13.05	1514	13.48	12.74
α_{1}	144	1.21	-0.28	125	309	0.42
t-statistic	(097)	(12)	(0.19)	(093)	(414)	(037)
Root MSE	252	187	1.81	226	129	1.43
R^{2}	0013	0017	0.001	0012	0.190	0.002
Two-Factor Model α_{0}	12.45	1275	12.42	1330	12.46	1197
α_{1}	3.45	211	0.11	328	3.85	089
${ }_{\text {t-statistic }}$	(313)	(2.19)	(0.08)	(3.83)	(6.33)	(088)
α_{2}	068	045	034	068	0.38	041
t-statistic	(822)	(488)	(281)	(10 73)	(6.52)	(4.65)
Root MSE	1.82	163	1.73	141	103	126
R^{2}	0491	0262	0.100	0620	0491	0.232
	ALL SHARES (244)					
Mean	1298	13.19	11.86	16.17	1587	1431
Standard Deviation	386	321	3.52	2.60	2.32	2.30
Beta Model α_{0}	1500	1471	13.90	15.56	14.50	12.57
a_{1}	-247	-191	-2.40	074	1.72	2.05
t-5tatistic	(423)	(4 15)	(4.25)	(1.83)	(5.29)	(570)
Root MSE	373	3.10	3.40	259	2.20	216
R^{2}	0069	0066	0.069	0014	0.104	0.118
Two-Factor Model α_{0}	14.34	14.42	1395	1540	14.61	12.75
α_{1}	0.09	-1.18	-251	137	1.44	161
t-statistic	(013)	(2.04)	(3 45)	(2.69)	(3.52)	(3 49)
α_{2}	048	017	-002	012	-0.06	-0.10
t-statistic	(6.04)	(209)	(0.24)	(201)	(1.12)	(153)
Root MSE	349	308	3.41	2.57	2.20	216
R^{2}	0191	0.083	0.070	0.030	0.108	0127

utility shares. The $R^{2} s$ are higher here than for KBRG in every year. Finally, α_{2} is positive and significant in every year, and α_{1} is not significant only in 1986

The implicit means of KFRG for the industrial shares seem high but not beyond reason. On the other hand, the regression statistics for the all-shares sample are not good, which leads to the same unhappy conclusion for industrial shares as we reached for KBRG

Table 2 presents the statistics that we obtained using KEGR and KDGR as estimates of the DCFY on the shares in our samples. Comparison of the regression statistics with those in Table 1 reveals that KEGR and KDGR, particularly the former, fall short by a wide margin of the performance of KBRG and KFRG as estimates of the DCFY on a share.

CONCLUSION

We have compared the accuracy of four methods for estimating the growth component of the discounted cash flow yield on a share: past growth rate in earnings (KEGR), past growth rate in dividends (KDGR), past retention growth rate (KBRG), and fore-
casts of growth by security analysts (KFRG). Criteria for the comparison were the reasonableness of sample means and standard deviations and the success of beta and dividend yield in explaining the variation in DCF yield among shares. For our sample of utility shares, KFRG performed well, with KBRG, KDGR, and KEGR following in that order, and with KEGR a distant fourth. If we had used past growth in price, it would have been an even more distant fifth. Nevertheless, none of the four estimates of growth performed well under the criteria for a sample that included industrial shares.

Before closing, we have three observations to make. First, the superior performance by KFRG should come as no surprise All four estimates of growth rely upon past data, but in the case of KFRG a larger body of past data is used, filtered through a group of security analysts who adjust for abnormalities that are not considered relevant for future growth. We assume this is done by any analyst who develops retention growth estimates of yield for a firm. If we had done this for all seventy-five firms in our utility sample, it is likely that the correlations

TABLE 2
Sample and Regression Statistics for KEGR and KDGR,
Utility Shares and All Shares, 1984, 1985, and 1986

	KEGR			KDCR		
	1984	1985	1986	1984	1985	1986
	UTILIIY SHARES (75)					
Mean	1616	032	14.91	1649	1576	14.13
Standard Deviation	331	3.47	466	312	2.41	2.21
Beta Model α_{0}	1545	1618	0.51	15.75	1453	1230
α_{1}	175	040	-787	183	3.53	399
t-statistic	(0) 89)	(0.20)	(216)	(099)	(2.64)	(232)
Root MSE	3.32	3.49	455	312	232	215
R^{2}	0.010	0.001	0060	0.013	0.087	0069
Two-Factor Model α_{0}	1420	1583	18.76	1410	13.56	1264
a_{1}	313	0.66	-8.03	365	425	3.78
t-statistic	(1.66)	(0.32)	(2.18)	(2.23)	(326)	(220)
α_{3}	0.47	0.13	-0.13	061	035	-0.18
t-statistic	(3 32)	(0.66)	(0.42)	(5.02)	(286)	(1.21)
Root MSE	311	350	4.58	2.70	221	214
R^{2}	0142	0.007	0063	0.269	0180	0.087
	ALL SHARES (244)					
Mean	11.14	942	7.88	15.08	13.63	11.35
Standard Deviation	10.67	1167	1145	6.08	630	6.71
Beta Model α_{0}	15.96	18.28	1955	1515	004	1539
α	-5.90	-1116	-13.70	-009	-1.78	-4.74
t-statistic	(3.62)	(707)	(8.10)	(009)	(192)	(41)
Root MSE	1041	10.65	1018	609	627	6.47
R^{2}	0.051	0.171	0213	0.000	0.015	0074
Two-Factor Model α_{0}	1484	18.01	19.91	14.31	1411	14.79
α_{1}	-156	-1049	-14.62	317	063	-3.25
t-statistic	(077)	(5.27)	(672)	(2.73)	(055)	(236)
α_{2}	081	015	-0.21	0.61	0.55	0.34
t-statistic	(351)	(0.55)	(0.67)	(457)	(3.47)	(172)
Root MSE	1018	1067	10.19	586	613	6.45
R^{2}	0.097	0.172	0215	0080	0.062	0.085

would have been as good or better than those obtained with the analyst forecasts of growth.

Second, we examined shares and not portfolios, because our objective is to estimate the DCFY for shares and not for portfolios As common practice in testing the CAPM has been to execute tests on portfolios instead of shares, we classified our population of shares into ten portfolios on the basis of their beta values. Regression statistics were substantially unchanged, except that correlations increased dramatically

Finally, we must acknowledge that we have no basis for estimating the expected HPR or DCF yield for industrial shares with any confidence. Theories on financial decision-making in industrial corporations that rely on that statistic have a weak empirical foundation
${ }^{1}$ The EHPR is a one-period return, while the DCFY is a yield to maturity measure. The two may differ in actuality because of measurement problems, but they also may differ in theory That is, they may differ in the same way that interest rates on bonds of different maturities may differ See Gordon and Gould (1984a). This source of difference between EHPR and DCFY will be ignored here.
${ }^{2}$ A widely accepted hypothesis is that dividends contain information on earnings, because management sets the dividend to pay out a stable fraction of normal or permanent earnings.
${ }^{3}$ Over a five-year period, there may even be a negative rate of growth in price for a large number of firms Furthermore, this negative growth rate may be larger in absolute value than the dividend yield, which leads to the conclusion that investors are holding such shares to earn a negative return. The frequency of negative rates of growth in price is reduced as the prior time period used in its calculation increases in length. As that takes place, however, the estimate of the expected return for a firm approaches a constant or a constant plus the dividend yield. The expected return on a share is one statistic for which it is an error to assume that expectations are on average realized.
${ }^{4}$ Equation (2) is similar to the CAPM according to Sharpe, Lintner, and Mossin. They arrived at this expression under very rigorous assumptions. The heuristic risk premium model is adequate for our purposes
${ }^{5}$ It may be thought that Theil's (1966) decomposition of the difference between the actual and predicted values of a variable can be used here, but in fact that decomposition applies to a different problem It assumes that the observed (actual) past values of a variable are free of error, and it decomposes the error in a model that is employed to explain the past values. The purpose of Theil's decomposition is to cast light on the possible error in using the model to predict future values of the dependent variable. Our problem is to determine which set of observed values is closest to the true values, with the risk premium theory of share yield and BETA as the source of information on the true values. Theil's method would be appropriate for decomposing the difference between the actual and predicted values of the realized holding-period return on a share. The actual values here can be observed without error
${ }^{6}$ There is an enormous volume of empirical work devoted to discovering whether the theory is true, but this empirical work does not provide useful estimates of the EHPR on a share To test the truth of Equation (4), the practice has been to regress EHPR on BETA for a sample of firms with the average realized HPR over the prior five or so years used as an estimate of the EHPR Because of the large error in the realized HPR over a prior time period, as noted earlier, neither the actual values of the dependent variable nor the values predicted by the model are usable as estimates of share yield See Fama and MacBeth (1973) and Friend, Westerfield, and Granito (1978)
${ }^{7}$ BRG for a year is earnings less dividend divided by the end-of-year book value. The estimate of the expected value as of the start of 1986 is 0.3 BRG $85+0.25$ BRG $84+0.20 \mathrm{BRG} 83$ $+0.15 B R G 83+0.10 \mathrm{BRG} 82$. If any value of BRG was negative, it was set equal to zero.
${ }^{3}$ We expect the yields on shares to be above the risk-free interest rate, bul with a high enough interest rate the more favorable tax treatment of shares can reduce the yield below the interest rate. lnterest rates were not that high in these years. See Gordon and Gould (1984b)
" The statistics reported for all shares and for utility shares were also obtained for industrial shares All methods of estimation performed so poorly for industrial shares, however, as to suggest no confidence can be placed in any of them. To save space, we do not present statistics for the industrial shares. Whatever we want to know about them can be deduced by comparing the data for all shares and utility shares

REFERENCES

Brennan, MJ J "Taxes, Market Valuation and Corporate Financial Policy " National Tax Journal. 23 (1973), pp 417-427.
Brigham, E., D Shome, and 5 Vinson. "The Risk Premium Approach to Measuring a Utility's Cost of Equity "Financial Management, Spring 1985, pp 33-45.
Fama, E, and ID MacBeth "Risk. Return and Equilibrium: Empirical Tests." Journal of Political Economy, 81 (May 1973), pp 607. 636
Friend. 1., R Westerfield, and M. Granito. "New Evidence on the Capital Asset Pricing Model " Journal of Finance. 33 (lune 1978), pp 903-917.
Gordon, M. J. The Cost of Capital to a Public Utility East Lansing, Michigan: Michigan State University, 1974
Gordon, M. J, and L. 1. Gould "Comparison of the DCF and HPR Measures of the Yield on Common Shares "Financial Management, Winter 1984a, pp 40-47.
-., "The Nominal Yield and Risk Premium on the TSE-300, 19561982" Canadian journal of Administrative Sciences, 1 (1984b), pp 5060.

Testimony Before the Federal Communications Commission in the Matter of American Telephone and Telegraph Company. FCC Docket No 79-63, April 1980
Harris, R.S "Using Analysts' Growth Forecasts to Estimate Shareholder Required Rates of Return "Financial Management, Spring 1986, pp 58-67.
Kolbe, A L, I A Read, and G.R Hall. The Cost of Capital: Estimating the Rate of Return for Public Ulilities Cambridge, MA: MIT Press, 1984
Morin, R.A Utilities Cost of Capital Arlington, VA: Public Utilities Reports, Inc, 1984.
Theil. H Applitd Economic Forecasting Chicago: North Holland, 1966.

INVESTOR GROWTH EXPECTATIONS

A study done by Vander Weide and Carleton in 1988^{\prime} suggests that consensus analysts' forecast of future growth is superior to historically oriented growth measures in stock valuation process for domestic companies. We worked with one of the original authors of the study, Dr. James H. Vander Weide, and closely followed his suggestions and methodology to investigate whether the results still hold in more recent times (2001-2003).

We used the following equation to determine which estimate of future growth (g) best predicts the firm's P / E ratio when combined with the dividend payout ratio, D / E, and risk variables, B , Cov, Stb, and Sa .
$P / E=a_{0}(D / E)+a_{1} g($ Growth $)+a_{2} B(B e t a)+a_{3} C o v($ Interest Coverage Ratio $)+a_{4} S t b($ Stability $)+a_{5} S a(S t d$ Dev $)+e$

Data Description

Earnings Per Share: IBES consensus analyst estimate of the firm's earnings for the unreported year.
Price/Earnings Ratio: Closing stock price for the year divided by the consensus analyst earnings per share for the forthcoming year.

Dividends: Ratio of common dividends per share to the consensus analyst earnings forecast for the forthcoming fiscal year (D/E).

Historical Growth measures

$$
\left.\begin{array}{ll}
\text { EPS Growth Rate: } & \begin{array}{l}
\text { Determined by a log-linear least squares regression for the latest year, } \\
\text { two years, three years, ..., and ten years. }
\end{array} \\
\text { Dividend per Share } & \begin{array}{l}
\text { Determined by a log-linear least squares regression for the latest year, } \\
\text { two years, three years, ..., and ten years. }
\end{array} \\
\text { Growth Rate: }
\end{array} \quad \begin{array}{l}
\text { Book Value per Share }
\end{array} \begin{array}{l}
\text { Common equity divided by the common shares outstanding. } \\
\text { Growth Rate: }
\end{array} \quad \begin{array}{l}
\text { Determined by a log-linear least squares regression for the latest year, } \\
\text { two years, three years, .., and ten years. }
\end{array}\right]
$$

Consensus Analysts' Forecasts

Five-Year Earnings Per Share Growth: Mean analysts' forecast compiled by IBES.

[^19]
Risk Variables

B: Beta, the firm's beta versus NYSE from Value Line.
Cov: The firm's pretax interest coverage ratio from Compustat.
Stb: Five-year historical earnings per share stability. Average absolute percentage difference between actual reported EPS and a 5yr historical EPS growth trend line from IBES.
Sa: The standard deviation of earnings per share estimate for the fiscal year from IBES.
We set five restrictions on the companies included in the study in order to be consistent with the original study and to obtain more meaningful results.

- Excluded all firms that IBES did not follow.
- Eliminated companies with:
- Negative EPS during any of the years 1991-2003.
- No dividend during any one of the years 1991-2003.
- P/E ratio greater than 60 in years 2001-2003.
- Less than five years of operating history.

The final universe consisted of 411 US firms, fifty-nine of which are utility companies.

Results

The study was performed in two stages.

Stage 1

In order to determine which historically oriented growth measure is most highly correlated with each firm's end-of-year P/E ratio, we computed spearman (rank) correlations between all fortytwo historically oriented future growth measures and P/E.

The result of the stage 1 study is displayed in Table 1. Three-year plowback ratio has the highest correbtion with P/E in 2001 and 2002, and five-year EPS growth rate has the highest correlation with P / E in 2003.

Table 1
Stage1 Results for Utility and Non-Utility Companies Combined

Current Year	Correlations between Historically Based Growth Estimates by Year with P/E								y9	$\bigcirc 10$
	$\checkmark 1$	y^{2}	y 3	14	γ_{5}	$\nu 6$	y 7	γ^{8}		
EPS	0232	0210	0145	0122	0059	0034	-0 007	-0 076	-0 117	-0154
DPS	-0243	-0 297	-0296	. 0293	-0313	-0316	-0336	-0 334	-0 329	-0333
1 BVPS	0059	-0017	-0098	-0138	-0150	-0 182	-0219	-0 259	-0 271	-0273
2001 CFPS	0092	0092	0087	0042	-0 063	-0102	.0141	-0193	-0 237	.0262
plowback	0203									
plowback3	0308									
EPS	-0007	0147	0076	0080	0083	0050	0030	-0018	-0060	-0089
DPS	-0126	-0 202	. 0251	-0 224	-0 215	-0 239	-0 232	-0 233	-0 211	-0198
2002 BVPS	-0036	-0036	-0078	-0 115	-0 114	-0 127	-0 152	-0 162	-0175	-0 171
2002 CFPS	0056	0045	0017	0021	0030	-0024	-0050	-0 080	-0125	-0 162
plowback	0093									
plowback3	0180									
EPS	0073	0084	0214	0231	0244	0228	0182	0158	0104	0049
DPS	0120	0054	-0001	-0078	-0090	-0 126	-0152	. 0165	-0183	-0185
2003 BVPS	0097	0076	0067	0036	-0045	-0 062	-0 063	-0 083	-0 105	-0 131
2003 CFPS	0146	0196	0243	0239	0206	0178	0107	0089	0039	-0022
plowback	-0017									
plowback 3	0038									

We also independently examined utility and non-utility firms. Table 2 shows the result for the fifty-nine utility firms. Two-year growth in EPS has the highest correlation with P/E in 2001, four-year EPS has the highest correlation in 2002, and six-year EPS has the highest correlation in 2003.

Table 3 exhibits the result for the remaining non-utility firms. EPS one-year growth, two-year growth, and five-year growth has the highest correlation with P/E in 2001, 2002, and 2003, respectively.

Table 2
Stage1 Results for Utility Companies

Correlations between Historically Based Growth Estimates by Year with P/E										
Current Year	41	$\checkmark 2$	y^{3}	y 4	${ }_{4} 5$	16	y 7	18	$\times 9$	Y10
EPS	0305	0330	0305	0319	0238	0157	0129	0107	0079	0048
DPS	-0215	-0 321	-0 302	-0 294	-0316	-0281	-0 332	-0414	-0.435	-0429
2001 BVPS	0164	0137	0147	-0 027	-0072	-0135	-0117	-0 104	-0 106	-0 140
2001 CFPS	0194	0135	0020	-0018	-0 122	-0157	-0 135	-0134	-0 103	-0219
plowback	-0 143									
plowback3	-0027									
EPS	-0065	0044	0069	0119	0071	0004	-0 038	-0 069	-0061	-0 070
DPS	-0 333	-0 327	-0278	.0 313	-0280	-0 321	-0 277	-0 226	-0203	.0210
2002 BVPS	.0325	-0239	-0 182	-0 177	-0 230	-0237	-0 250	-0 247	-0235	-0 235
2002 CFPS	-0205	-0132	-0 172	-0166	-0.216	-0289	-0285	-0265	-0227	-0218
plowback	-0 151									
plowback3	-0133									
EPS	0010	0136	0186	0263	0365	0367	0344	0343	0309	0302
DPS	0151	-0 029	-0014	-0 022	-0 054	-0 117	-0 142	-0 137	-0 105	-0 092
2003 BVPS	0212	0060	0047	0019	0003	0040	0022	0005	0003	-0002
2003 CFPS	0222	-0046	0173	0115	0165	0100	0017	0077	0057	0077
plowback	-0365									
plowback3	.0403									

Table 3
Stage1 Results for Non-Utility Companies
Correlations between Historically Based Growth Estimates by Year with P/E

ations between Historically Based Growth Estimates by Year with P/E											
Curren	nt Year	y 1	χ^{2}	y^{3}	V4	Y5	y6	χ^{7}	$y 8$	$y 9$	Y10
2001	EPS	0.1643	01660	01293	01218	00873	00829	00618	00106	-00194	-00412
	DPS	-0 2036	-0 2211	-02042	-01935	-02098	-0 2066	-0 2186	-0 2155	-02046	-0 1975
	BVPS	00757	00084	-00791	-0 0997	-00916	-01146	-0 1388	-0 1783	- 01866	-0 1823
	CFPP	00864	00710	00956	00704	-0 0033	-0 0162	-00366	-0.0747	-01186	-0 1325
	plowback	00781									
	plowback3	01781									
2002	EPS	00762	0.1767	00755	00817	00936	00757	00708	00316	-00011	-0 0254
	DPS	-0 0804	-0 1693	-0 2103	-0 1672	-0 1519	-0 1720	-0 1645	-0 1636	-0 1394	-0 1226
	BVPS	00527	00236	-0 0363	-00777	-00710	-00753	-0 0953	-01019	-01118	-0 1061
	CFPP	00905	00488	00143	00237	00563	00246	00097	-00079	-00458	-0 0821
	plowback	00634									
	plowback3	01306									
2003	EPS	01254	01783	02788	02689	02791	02622	02219	02039	01569	01090
	DPS	01810	01290	00655	-00128	-0 0101	-00400	-0 06330	-0 0772	-0 0930	-0 0952
	BVPS	01555	01740	01534	01056	00127	-00069	-00054	-00218	-00416	-00636
	CFPS	01479	02200	02512	02429	02004	01839	01349	01286	00892	00388
	plowback	-01109									
	plowback3	-0 0402									

Stage 2

We compared the multiple regression model of historical growth rate with the highest correlation to the P / E ratio from stage 1 to the five-year earnings per share growth forecast.

$$
P / E=a_{0}(D / E)+a_{1} g+a_{2} B+a_{3} C o v+a_{4} S t b+a_{5} S a+e
$$

The regression results are displayed in table 4. The results show that the consensus analysts' forecast of future growth better approximates the firm's P/E ratio, which is consistent with the results found by Vander Weide and Carleton In both regressions, R^{2} in the regression with the consensus analysts' forecast is higher than the R^{2} in the regression with the historical growth.

Table 4
Stage2 Results for Utility and Non-Utility Companies Combined
Multiple Regression Results
$P / E=a 0+a 1 D / E+a 2 g+a 3 B+a 4$ Cov $+a 5 S t b+a 6 S a$
Historical

Historical									
	a0	11	a2	a3	a4	a5	a6	Rsq	F Ratio
2001	1043	846	1079	679	002	-003	-18.83	020	1390
	473	5.53	293	354	305	-306	-332		
2002	12.36	760	666	101	000	001	-3248	015	946
	721	6.18	261	066	157	1.48	-4.04		
2003	1334	596	987	5.27	001	-001	-2046	024	1761
	729	404	295	339	362	-131	-4.25		
Analysts' Forecasts									
	a0	a1	a2	a3	14	a5	96	Rsq	FRatio
2001	-126	1614	14475	-064	001	-003	-1076	047	4800
	-062	1163	1322	-0.38	307	-404	-229		
2002	337	1337	10607	-360	000	001	-2185	035	2973
	193	1097	1059	-257	125	150	. 305		
2003	477	1276	6193	438	001	000	-1941	033	2638
	265	9.48	725	301	245	-081	-433		

For utility companies shown in table 5, consensus analysts' forecast of future growth is superior to historically oriented growth in 2002 and 2003, R^{2} is lower in the regression with the consensus analysts' forecast in 2001. For nor-utility companies, we found that consensus analysts' forecast of future growth is superior to the alternative in all three years (table 6).

Table 5

Stage2 Results for Utility Companies

Multiple Regression Results
$P / E=a 0+a 1 D / E+a 2 g+a 3 B+a 4 \mathrm{Cov}+a 5 \mathrm{Stb}+a 6 \mathrm{Sa}$
Historical

	a0	a1	a2	a3	34	a5	a6	Rsq	FRatio
2001	790	1107	-11 19	-300	029	000	-9 37	044	638
	218	4.80	-571	-0.86	088	0.64	. 151		
2002	1387	700	-380	-689	056	000	-2989	038	511
	402	3.54	-066	-201	148	0.42	-270		
2003	1129	774	-165	-140	0.32	000	-569	025	268
	322	330	-0.23	-0.43	105	-073	-075		

Analysts' Forecasts

	a 0	11	a2	a3	a4	a5	96	Rsq	FRatio
2001	961	920	6661	-7.92	0.50	-0 01	-1283	027	295
	231	3.45	368	-1.86	131	-133	-176		
2002	1243	786	5074	-961	050	000	-2494	048	756
	389	5.29	310	-294	150	017	-241		
2003	581	1106	10112	-169	-0 19	000	-475	050	781
	189	6.32	480	-0.58	.074	-022	-074		

Table 6

Stage2 Results for Non-Utility Companies

Multiple Regression Results
$P / E=a 0+a 1 D / E+a 2 g+a 3 B+a 4 C o v+a 5 S t b+a 6 S a$
Historical

	a0	a1	a2	a3	a4	a5	a6	Rsq	F Ratio
2001	1590	8.39	282	353	002	-003	-2105	021	1245
	657	413	196	168	297	-214	-3.40		
2002	1776	846	602	-306	000	0.02	-3697	027	1678
2003	939	519	328	-188	137	252	-431		
	1424	986	885	346	0.01	000	-1900	030	1989
	749	5.89	249	211	323	-015	-373		

Analysts' Forecasts

	a0	a1	a2	a3	34	a5	26	Rsq	F Ratio
2001	-051	1728	140.84	-106	0.01	-0 03	-863	044	3600
	-022	1121	1073	0.59	288	-262	-163		
2002	505	1567	9122	-406	000	002	-2293	038	2765
	248	1123	766	-2.74	+18	233	-287		
2003	725	1447	4560	347	001	000	-1909	033	2230
	356	9.42	468	220	236	-0 12	-3.89		

This material is for your private information The views expressed are the views of Anita Xu and Ami Teruya only through the period ended July 26,2004 and are subject to change based on market and other conditions The opinions expressed may differ from those with different investment philosophies The information we provide does not constitute investment advice and it should not be relied on as such It should not be considered a solicitation to buy or an offer to sell a security It does not take into account any investor's particular investment objectives, strategies, tax status or investment horizon We encourage you to consult your tax or financial advisor. All material has been obtained from sources believed to be reliable, but its accuracy is not guaranteed There is no representation nor warranty as to the current accuracy of, nor liability for, decisions based on such information. Past performance is no guarantee of future results.

Investor growth expectations: Analysts vs. history

Analysts' growth forecasts dominate past trends in predicting stock prices.

James H. Vander Weide and Willard T. Carleton

 counted Cash Flow (DCF) cost of equity model, the analyst must know which growth estimate is embodied in the firm's stock price. A study by Cragg and Malkiel (1982) suggests that the stock valuation process embodies analysts' forecasts rather than historically based growth figures such as the ten-year historical growth in dividends per share or the fiveyear growth in book value per share. The Cragg and Malkiel study is based on data for the 1960 s, however, a decade that was considerably more stable than the recent past.

As the issue of which growth rate to use in implementing the DCF model is so important to applications of the model, we decided to investigate whether the Cragg and Malkiel conclusions continue to hold in more recent periods. This paper describes the results of our study.

STATISTICAL MODEL

The DCF model suggests that the firm's stock price is equal to the present value of the stream of dividends that investors expect to receive from owning the firm's shares Under the assumption that investors expect dividends to grow at a constant rate, g, in perpetuity, the stock price is given by the following simple expression:

$$
\begin{equation*}
P_{s}=\frac{D(1+g)}{k-g} \tag{1}
\end{equation*}
$$

where:
$P_{5}=$ current price per share of the firm's stock;
$D=$ current annual dividend per share;
$\mathrm{g}=$ expected constant dividend growth rate; and
k = required return on the firm's stock
Dividing both sides of Equation (1) by the firm's current earnings, E, we obtain:

$$
\begin{equation*}
\frac{P_{5}}{E}=\frac{D}{E} \cdot \frac{(1+g)}{k-g} \tag{2}
\end{equation*}
$$

Ihus, the firm's price/earnings (P / E) ratio is a nonlinear function of the firm's dividend payout ratio (D/ $E)$, the expected growth in dividends (g), and the required rate of return.

To investigate what growth expectation is embodied in the firm's current stock price, it is more convenient to work with a linear approximation to Equation (2). Thus, we will assume that:

$$
\begin{equation*}
P / E=a_{0}(D / E)+a_{1} g+a_{2} k \tag{3}
\end{equation*}
$$

(Cragg and Malkiel found this assumption to be reasonable throughout their investigation)

Furthermore, we will assume that the required

JAMES H. VANDER WEIDE is Research Professor at the Fuqua School of Business at Duke University in Durham (NC 27706) WILLARD T. CARLETON is Kan Eller Professor of Finance at the University of Arizona in Tucson (AZ 85721). Financial support for this project was provided by BellSouth and Pacific Telesis The authors wish to thank Paul Blalock at BellSouth, Mohan Gyani at Pacific Telesis, Bill Keck at Southern Bell, and John Canlson, their programmer, for help with this project
rate of return, k, in Equation (3) depends on the values of the risk variables B, Cov, Rsq, and Sa, where B is the firm's Value Line beta; Cov is the firm's pretax interest coverage ratio; Rsq is a measure of the stability of the firm's five-year historical EPS; and $S a$ is the standard deviation of the consensus analysts' fiveyear EPS growth forecast for the firm. Finally, as the linear form of the P / E equation is only an approximation to the true P/E equation, and B, Cov, Rsq, and Sa are only proxies for k, we will add an error term, e, that represents the degree of approximation to the true relationship.

With these assumptions, the final form of our P/E equation is as follows:

$$
\begin{align*}
P / E= & a_{6}(D / E)+a_{1} g+a_{2} B+ \\
& a_{3} C o v+a_{4} R s q+a_{3} S a+e \tag{4}
\end{align*}
$$

The purpose of our study is to use more recent data to determine which of the popular approaches for estimating future growth in the Discounted Cash Flow model is embodied in the market price of the firm's shares

We estimated Equation (4) to determine which estimate of future growth, g, when combined with the payout ratio, D / E, and risk variables $B, C o v$, Rsq, and Sa , provides the best predictor of the firm's P / E ratio. To paraphrase Cragg and Malkiel, we would expect that growth estimates found in the best-fitting equation more closely approximate the expectation used by investors than those found in poorer-fitting equations.

DESCRIPTION OF DAIA

Our data sets include both historically based measures of future growth and the consensus analysts' forecasts of five-year earnings growth supplied by the Institutional Brokers Estimate System of Lynch, Jones \& Ryan (IBES). The data also include the firm's dividend payout ratio and various measures of the firm's risk. We include the latter items in the regression, along with earnings growth, to account for other variables that may affect the firm's stock price.

The data include:
Earnings Per Share. Because our goal is to determine which earnings variable is embodied in the firm's market price, we need to define this variable with care. Financial analysts who study a firm's financial results in detail generally prefer to "normalize" the firm's reported earnings for the effect of extraordinary items, such as write-offs of discontinued operations, or mergers and acquisitions. They also attempt, to the extent possible, to state earnings for different firms using a common set of accounting conventions.

We have defined "earnings" as the consensus analyst estimate (as reported by IBES) of the firm's earnings for the forthcoming year ' This definition approximates the normalized earnings that investors most likely have in mind when they make stock purchase and sell decisions. It implicitly incorporates the analysts' adjustments for differences in accounting treatment among firms and the effects of the business cycle on each firm's results of operations. Although we thought at first that this earnings estimate might be highly correlated with the analysts' five-year earnings growth forecasts, that was not the case. Thus, we avoided a potential spurious correlation problem. Price/Earnings Ratio. Corresponding to our definition of "earnings," the price/earnings ratio (P / E) is calculated as the closing stock price for the year divided by the consensus analyst earnings forecast for the forthcoming fiscal year.
Dividends. Dividends per share represent the common dividends declared per share during the calendar year, after adjustment for all stock splits and stock dividends) The firm's dividend payout ratio is then defined as common dividends per share divided by the consensus analyst estimate of the earnings per share for the forthcoming calendar year (D/E). Although this definition has the deficiency that it is obviously biased downward - it divides this year's dividend by next year's earnings - it has the advantage that it implicitly uses a "normalized" figure for earnings. We believe that this advantage outweighs the deficiency, especially when one considers the flaws of the apparent alternatives Furthermore, we have verified that the results are insensitive to reasonable alternative definitions (see footnote 1)
Growth. In comparing historically based and consensus analysts' forecasts, we calculated forty-one different historical growth measures. These included the following: 1) the past growth rate in EPS as determined by a \log-linear least squares regression for the latest year, ${ }^{2}$ two years, three years, , and ten years; 2) the past growth rate in DPS for the latest year, two years, three years, ..., and ten years; 3) the past growth rate in book value per share (computed as the ratio of common equity to the outstanding common equity shares) for the latest year, two years, three years, . , and ten years; 4) the past growth rate in cash flow per share (computed as the ratio of pretax income, depreciation, and deferred taxes to the outstanding common equity shares) for the latest year, two years, three years, ..., and ten years; and 5) plowback growth (computed as the firm's retention ratio for the current year times the firm's latest annual return on common equity).

We also used the five-year forecast of earnings
per share growth compiled by IBES and reported in mid-January of each year. This number represents the consensus (i.e., mean) forecast produced by analysts from the research departments of leading Wall Street and regional brokerage firms over the preceding three months. IBES selects the contributing brokers "because of the superior quality of their research, professional reputation, and client demand" (IBES Monthly Summary Book)
Risk Variables. Although many risk factors could potentially affect the firm's stock price, most of these factors are highly correlated with one another. As shown above in Equation (4), we decided to restrict our attention to four risk measures that have intuitive appeal and are followed by many financial analysts: 1) B, the firm's beta as published by Value Line; 2) Cov, the firm's pretax interest coverage ratio (obtained from Standard \& Poor's Compustat); 3) Rsq, the stability of the firm's five-year historical EPS (measured by the R^{2} from a log-linear least squares regression); and 4) Sa , the standard deviation of the consensus analysts' five-year EPS growth forecast (mean forecast) as computed by IBES.

After careful analysis of the data used in our study, we felt that we could obtain more meaningful results by imposing six restrictions on the companies included in our study:

1. Because of the need to calculate ten-year historical growth rates, and because we studied three different time periods, 1981, 1982, and 1983, our study requires data for the thirteen-year period 1971-1983. We included only companies with at least a thirteen-year operating history in our study
2. As our historical growth rate calculations were based on log-linear regressions, and the logarithm of a negative number is not defined, we excluded all companies that experienced negative EPS during any of the years 1971-1983.
3. For similar reasons, we also eliminated companies that did not pay a dividend during any one of the years 1971-1983.
4. To insure comparability of time periods covered by each consensus earnings figure in the P/E ratios, we eliminated all companies that did not have a December 31 fiscal year-end.
5. To eliminate distortions caused by highly unusual events that distort current earnings but not expected future earnings, and thus the firm's price/ earnings ratio, we eliminated any firm with a price/ earnings ratio greater than 50 .
6. As the evaluation of analysts' forecasts is a major part of this study, we eliminated all firms that IBES did not follow.

Our final sample consisted of approximately
sixty-five utility firms ${ }^{3}$

resurts

To keep the number of calculations in our study to a reasonable level, we performed the study in two stages. In Stage 1, all forty-one historically oriented approaches for estimating future growth were correlated with each firm's P/E ratio. In Stage 2, the historical growth rate with the highest correlation to the P/E ratio was compared to the consensus analyst growth rate in the multiple regression model described by Equation (4) above. We performed our regressions for each of three recent time periods, because we felt the results of our study might vary over time

First-Stage Correlation Study

Table 1 gives the results of our first-stage correlation study for each group of companies in each of the years 1981, 1982, and 1983. The values in this table measure the correlation between the historically oriented growth rates for the various time periods and the firm's end-of-year P/E ratio.

The four variables for which historical growth rates were calculated are shown in the left-hand column: EPS indicates historical earnings per share growth, DPS indicates historical dividend per share growth, BVPS indicates historical book value per share growth, and CFPS indicates historical cash flow per share growth. The term "plowback" refers to the product of the firm's retention ratio in the currennt year and its return on book equity for that year. In all, we calculated forty-one historically oriented growth rates for each group of firms in each study period.

The goal of the first-stage correlation analysis was to determine which historically oriented growth rate is most highly correlated with each group's year-end P/E ratio Eight-year growth in CFPS has the highest correlation with P/E in 1981 and 1982, and ten-year growth in CFPS has the highest correlation with yearend P/E in 1983 In all cases, the plowback estimate of future growth performed poorly, indicating that contrary to generally held views - plowback is not a factor in investor expectations of future growth

Second-Stage Regression Study

In the second stage of our regression study, we ran the regression in Equation (4) using two different measures of future growth, g: 1) the best historically oriented growth rate $\left(\mathrm{g}_{\mathrm{n}}\right)$ from the first-stage correlation study, and 2) the consensus analysts' forecast $\left(g_{0}\right)$ of five-year EPS growth. The regression results, which are shown in Table 2, support at least

TABLE 1
Correlation Coefficients of All Historically Based Growth Estimates by Group and by Year with P/E
Historical Growth Rate Period in Years

Current Year	1	2	3	4	5	6	7	8	9	10
1981										
EPS	-002	007	003	001	003	012	008	009	009	009
DPS	0.05	018	01.4	015	014	015	019	023	023	023
BVPS	001	011	013	013	016	018	015	015	0.15	015
CFPS	-005	0.04	013	0.22	028	031	030	031	-057	-054
Plowback	019									
1982										
EPS	-010	-013	-006	-002	-002	-001	-003	-003	000	000
DPS	-019	-010	0.03	0.05	0.07	0.08	009	011	013	0.13
BVPS	007	008	0.11	011	009	010	011	011	009	009
CFPS	-0.02	-008	0.00	010	0.16	019	023	025	024	007
Plowback	004									
1983										
EPS	-006	-025	-025	-024	-016	-011	-005	0.00	002	002
DPS	0.03	-010	-003	008	015	021	0.21	021	022	024
BVPS	0.03	010	004	0.09	015	016	0.19	021	022	021
CFPS	-008	0.01	0.02	008	020	029	035	038	040	042
Plowback	-0.08									

two general conclusions regarding the pricing, of equity securities

First, we found overwhelming evidence that the consensus analysts' forecast of future growth is superior to historically oriented growth measures in predicting the firm's stock price. In every case, the R^{2} in the regression containing the consensus analysts' forecast is higher than the R^{2} in the regression containing the historical growth measure. The regression
coefficients in the equation containing the consensus analysts' forecast also are considerably more significant than they are in the alternative regression. These results are consistent with those found by Cragg and Malkiel for data covering the period 1961-1968. Our results also are consistent with the hypothesis that investors use analysts' forecasts, rather than historically oriented growth calculations, in making stock buy-and--sell decisions.

IABLE 2
Regression Results Model I
Part A: Historical
$P / E=a_{n}+a_{1} D / E+a_{2} g n+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{4} S a$

Year	a_{0}	A_{1}	\hat{a}_{2}	W_{3}	$\dot{3}^{\text {a }}$	A_{5}	a_{b}	R^{2}	F Ratio
1981	-6.42*	1031^{*}	7.67*	324	$054 *$	1.42^{*}	5743	083	4649
	(5 50)	(1479)	(220)	(286)	(250)	(285)	(407)		
1982	-290*	$932 *$	8.49^{*}	285	045^{*}	-042	363	086	6553
	(275)	(1852)	(418)	(283)	(260)	(0.05)	(026)		
1983	-596*	10.20^{*}	$1978{ }^{*}$	485	0.44^{*}	033	3249	082	4526
	(370)	(12 20)	(4.83)	(295)	(1.89)	(050)	(129)		

Part B: Analysis
$P / E=a_{0}+a_{1} D / E+a_{2} g_{t}+a_{3} B+a_{4} \operatorname{Cov}+a_{5} R s q+a_{n} S a$

Year	\hat{a}_{0}	3_{1}	\dot{a}_{2}	\dot{a}_{1}	$\dot{a}_{\text {a }}$	$\dot{a}_{\text {, }}$	\hat{s}_{6}	R^{2}	Fratio
1981	-497*	$106{ }^{*}$	54 85*	-061	$033 *$	$0.63 *$	434	091	10310
	(623)	(2157)	(8.56)	(068)	(228)	(174)	(037)		
1982	-216*	$947{ }^{*}$	$5071 *$	-107	$036{ }^{*}$	-031	11905°	090	9762
	(259)	(22.46)	(931)	(114)	(2.53)	(1.09)	(160)		
1983	-847*	$11.96 *$	79 054	216	$056{ }^{*}$	020	-34 43	0.87	6981
	(7.07)	(16 48)	(7.84)	(1.55)	(308)	(0)38)	(1 44)		

[^20]Second, there is some evidence that investors tend to view risk in traditional terms. The interest coverage variable is statistically significant in all but one of our samples, and the stability of the operating income variable is statistically significant in six of the twelve samples we studied. On the other hand, the beta is never statistically significant, and the standard deviation of the analysts' five-year growth forecasts is statistically significant in only two of our twelve samples. This evidence is far from conclusive, however, because, as we demonstrate later, a significant degree of cross-correlation among our four risk variables makes any general inference about risk extremely hazardous

Possible Misspecification of Risk

The stock valuation theory says nothing about which risk variables are most important to investors. Therefore, we need to consider the possibility that the risk variables of our study are only proxies for the "true" risk variables used by investors. The inclusion of proxy variables may increase the variance of the parameters of most concern, which in this case are the coefficients of the growth variables. ${ }^{4}$

To allow for the possibility that the use of risk proxies has caused us to draw incorrect conclusions concerning the relative importance of analysts' growth forecasts and historical growth extrapolations, we have also estimated Equation (4) with the risk variables excluded. The results of these regressions are shown in Table 3.

Again, there is overwhelming evidence that the consensus analysts' growth forecast is superior to the historically oriented growth measures in predicting the firm's stock price. The R^{2} and t-statistics are higher in every case.

CONCLUSION

The relationship between growth expectations and share prices is important in several major areas of finance. The data base of analysts' growth forecasts collected by Lynch, Jones \& Ryan provides a unique opportunity to test the hypothesis that investors rely more heavily on analysts' growth forecasts than on historical growth extrapolations in making security buy-and-sell decisions. With the help of this data base, our studies affirm the superiority of analysts' forecasts over simple historical growth extrapolations in the stock price formation process. Indirectly, this finding lends support to the use of valuation models whose input includes expected growth rates.

[^21] As our results were insensitive to reasonable alternative

IABLE 3
Regression Results Model II

Part A: Historical

Year	$\dot{5}_{0}$	a_{1}	\dot{a}_{2}	$\mathrm{R}^{\text { }}$	F Ratio
1981	-105	959	2120	0.73	8295
	(161)	(12.13)	(705)		
1982	054	892	1218	083	16797
	(138)	(17 73)	(695)		
1983	-075	892	1218	0.77	10782
	(113)	(1238)	(794)		

Part B: Analysis

Year	i_{4}	3_{1}	5^{3}	R^{2}	F Raino
1981	396	1007	60.53	090	27416
	(831)	(8.31)	(2091)	(1579)	
1982	-175	919	4492	088	24636
	(400)	(400)	(21 35)	(1106)	
1983	-497	1095	8202	083	16828
	(693)	(693)	(1593)	(11 02)	

Notes:

* Coefficient is significant at the 5% level (using a one-tailed test) and has the correct sign 1 -statistic in parentheses
definitions of "earnings" we report only the results for the IBES consensus.
${ }^{2}$ For the latest year, we actually employed a point-to-point growth calculation because there were only two available observations
"We use the word "approximately," because the set of available firms varied each year. In any case, the number varied only from zero to three firms on either side of the figures cited here.
-See Maddala (1977)

heferences

Bower, R. S., and D H. Bower. 'Risk and the Valuation of Common Slock." lournal of Political Economy. May-June 1969, pp 349362
Cragg, J G. and Malkiel, B. G "The Consensus and Accuracy of Some Predictions of the Growth of Corporate Earnings. " lournal of Finance. March 1968, pp 67-84
Cragg, J G, and Malkiel, B G Expectations and the Struture of Share Priccs Chicago: University of Chicago Press, 1982.
Eltor, E.J.M. J Gruber, and Mustava N. Gultekin "Expectations and Share Prices " Mantrgement Science. September 1981. pp 975 987
Federal Communications Commission Notice of Proposed Rutemaking CC. Docket No 84-800. August 13, 1984
IBES Monthly Summary Book New York: Lynch, Jones \& Ryan, various issues
Maddala, G E Econometrics New York: McGraw-Hill Book Company. 1977
Malkiel. B G "The Valuation of Public Utility Equities "Boll journal of Economics and Management Science, Spring 1970, pp 143-160
Peterson, D., and P Peterson "The Effect of Changing Expectations upon Stock Returns " Journal of Financial and Quantilative Anal" ysis. September 1982, pp. 799-813
Theil. H Principtes of Econometrics New York; John Wiley \& Sons. 1971

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143 ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 6 of 312

Witness: Dr. James H. Vander Weide

6. RE: Vander Weide Direct Testimony. With respect to page 19, lines 15-20, please provide a copy of the article written by Dr. Vander Weide from the Journal of Portfolio Management.

Response:

A copy of the requested article is provided in response to this Request for Information No. 5. Please refer to electronic file KAW_R_AGDR1\#5_061807.pdf (bookmarked as attachment 4).

For electronic version of this response, refer to KAW_R_AGDR1\#6_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 7 of 312

Witness: Dr. James H. Vander Weide

7. RE: Vander Weide Direct Testimony. With respect to page 20, lines 20-22 please provide a copy of the updated study by State Street Financial Advisers.

Response:

A copy of the requested article is provided in response to this Request for Information No. 5. Please refer to electronic file KAW_R_AGDR1\#5_061807.pdf (bookmarked as attachment 5).

For electronic version of this response, refer to KAW_R_AGDR1\#7_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 8 of 312

Witness: Michael Miller

8. RE: Vander Weide Direct Testimony. With respect to page 21, lines 15-23, please provide:
(a) Estimates of the floatation costs (direct expenses as well as market pressure costs) of the equity issued by KAWC and/or its parent over the past five years, and
(b) The prospectuses for all equity issues by KAWC and/or its parent over the past five years.

Response:

(a) None.
(b) Not applicable.

For electronic version, refer to KAW_R_AGDR1\#8_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 9 of 312

Witness: Dr. James H. Vander Weide

9. RE: Vander Weide Direct Testimony. With respect to page 24, lines 7-17, please indicate what water companies were eliminated by each of the screens applied to the companies listed in the Value Line Investment Survey.

Response:

Connecticut Water Services was eliminated because it did not have at least one analyst's long-term growth forecast. No other Value Line water company was eliminated.

For electronic version, refer to KAW_R_AGDR1\#9_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION
Item 10 of 312

Witness: Dr. James H. Vander Weide

10. RE: Vander Weide Direct Testimony. With respect to page 26, lines 1-2 (Table), please provide copies of the I/B/E/S analyst research reports for the water companies in the proxy group.

Response:

I/B/E/S surveys analysts in the investment community and publishes the average of analysts’ growth forecasts for individual companies. I/B/E/S itself does not prepare research reports on individual companies. The average analysts’ growth forecast for each of the companies in Dr. Vander Weide's comparable water company group is shown in Exhibit JVW-1, Schedule 1.

For electronic version, refer to KAW_R_AGDR1\#10_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 11 of 312

Witness: Dr. James H. Vander Weide

11. RE: Vander Weide Direct Testimony. With respect to page 28, lines 1-10, please provide copies of all studies performed by Dr. Vander Weide which indicates that the LDCs are similar in business and financial risk to:
(a) KAWC, and
(b) The proxy group of water companies.

Response:

(a \& b) As Dr. Vander Weide has testified, there are very few publicly-traded water companies that are followed by the investment community. Given the relatively small sample of water companies that are suitable as reasonable proxies for the purposes of estimating KAWC's cost of equity, Dr. Vander Weide believes that the public service commission should consider cost of equity results for additional companies in other regulated industries. From Dr. Vander Weide’s experience over the last 30 years as an expert on regulated industries, he believes that the LDCs are the most reasonable companies to include as an additional proxy group to the water company proxy group. The reasons for Dr. Vander Weide’s belief that LDCs are similar to KAWC are stated in response to Question 56, page 29, of his direct testimony. Dr. Vander Weide has not conducted quantitative studies that compare the risks of LDCs to water companies. He notes, however, that his DCF results for the LDCs are similar to the DCF results for the water companies.

For electronic version, refer to KAW_R_AGDR1\#11_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY
 CASE NO. 2007-00143
 ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 12 of 312

Witness: Dr. James H. Vander Weide

12. RE: Vander Weide Direct Testimony. With respect to page 28, lines 11-21, please indicate what gas companies were eliminated by each of the screens applied to the companies listed in the Value Line Investment Survey.

Response:

The following table identifies the Value Line companies that were not included in Dr. Vander Weide's DCF study and the reasons why each company was not included:
$\left.\begin{array}{l|lcll}\hline \text { Company } & \begin{array}{l}\text { Decrease or } \\ \text { No Dividend }\end{array} & \begin{array}{c}\text { Fewer than 3 I/B/E/S } \\ \text { Growth Estimates } \\ \text { (No. of Estimates) }\end{array} & \text { Merger } & \begin{array}{l}\text { Low Safety } \\ \text { Rank and/or } \\ \text { Bond Rating }\end{array} \\ \hline \text { Cascade Nat.Gas } & & 0 & \begin{array}{l}\text { Merger with } \\ \text { KDU }\end{array} & \\ \text { Keyspan } & 1 & \begin{array}{l}\text { To be } \\ \text { acquired by }\end{array} & \\ \begin{array}{l}\text { Laclede Gp.Hldg. } \\ \text { NICOR } \\ \text { (Integrys) Peoples }\end{array} & & 1 & \text { National Grid }\end{array}\right]$

For electronic version, refer to KAW_R_AGDR1\#12_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY
 CASE NO. 2007-00143
 ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 13 of 312

Witness: Dr. James H. Vander Weide

13. RE: Vander Weide Direct Testimony. With respect to page 29, lines 14-18 please provide:
(a) The exact methodology employed by Value Line in developing its 'Safety Rank,'
(b) How Value Line’s 'Safety Rank' compares to other measures of risk employed by Dr. Vander Weide,
(c) The number and percentage of companies followed by Value Line that have a safety rank of 1,2 , and 3 , and
(d) Copies of all studies known to Dr. Vander Weide that evaluate Value Line’s 'Safety Rank.'

Response:

(a) Value Line describes its "Safety Rank" as:
a measurement of potential risk associated with individual common stocks. The Safety Rank is computed by averaging two other Value Line indexes, the Price Stability Index and the Financial strength Rating. Safety Ranks range from 1 (Highest) to 5 (Lowest). Conservative investors should try to limit their purchases to equities ranked 1 (Highest) and 2 (Above Average) for Safety. [From Value Line Investment Analyzer]

In addition, Value Line states:
The Value Line Safety ${ }^{\mathrm{TM}}$ Rank measures the total risk of a stock. It is derived from the stock's Index of Price Stability relative to the 1700 other stocks and from the Financial Strength rating of the company. Safety ranks are also given on a scale from 1 (safest) to 5 (riskiest) as follows:

Rank 1 (Highest): This stock is probably one of the safest, most stable, and least risky stock market investments.
Rank 2 (Above Average): This stock is safer and less risky than most.
Rank 3 (Average): This stock is of average risk and safety.
Rank 4 (Below Average): This stock is riskier and less safe than most.

Rank 5 (Lowest): This stock is probably one of the riskiest and least safe. [From How to Invest in Common Stocks: A Guide to Using the Value Line Investment Survey]
(b) With the exception of the capital structure data shown on Schedule 9, Dr. Vander Weide did not use other measures of risk.
(c) In the data set contained in The Value Line Investment Analyzer at June 1, 2007, out of 1,667 companies that have a Value Line Safety Rank, 1,403 have a ranking of 1,2 , or 3 .

Safety Rank	No. of Companies	\% of Total
1	110	7%
2	228	14%
3	1,065	64%
Total No. of Cos.	1,667	

(d) I am aware of Value Line's own study, which provides data on the returns during periods of market declines on stocks which it ranks with a Safety Rank of 1 or 2. The Value Line data indicate that stocks with a Safety Rank of 1 or 2 fall less than the market as a whole when stock prices drop. See Table below, which is reproduced from How to Invest in Common Stocks: A Guide to Using the Value Line Investment Survey:

Results of Safety Ranks in Major Market Declines

Safety	$2 / 11 / 66-$	$12 / 13 / 68-$	$4 / 14 / 72-$	$6 / 17 / 87-$	$8 / 26 / 87-$	$7 / 13 / 90-$	$4 / 22 / 98-$	$5 / 22 / 01-$	$4 / 16 / 02-$
Rank	$10 / 7 / 66$	$7 / 2 / 70$	$9 / 11 / 74$	$12 / 4 / 87$	$12 / 4 / 87$	$11 / 2 / 90$	$10 / 08 / 98$	$9 / 21 / 01$	$10 / 9 / 02$
1	-15.6%	-28.6%	-40.5%	-10.5%	-24.7%	-19.0%	-6.1%	-11.5%	-20.8%
2	-18.2	-29.6	-39.9	-16.2	-28.7	-15.5	-14.0	-14.0	-23.8
3	-24.0	-41.1	-47.2	-25.2	-36.0	-24.9	-29.7	-23.4	-33.1
4	-26.5	-57.0	-53.3	-33.6	-40.7	-33.2	-41.7	-41.7	-55.2
5	-29.2	-64.8	-70.0	-31.4	-46.9	-33.1	-37.8	-34.3	-51.7

For electronic version, refer to KAW_R_AGDR1\#13_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 14 of 312

Witness: Dr. James H. Vander Weide

14. RE: Vander Weide Direct Testimony. With respect to page 29, lines 21-23, please provide copies of the I/B/E/S analyst research reports for the gas companies in the proxy group.

Response:

I/B/E/S surveys analysts in the investment community and publishes the average analysts' growth forecasts for individual companies. I/B/E/S itself does not prepare research reports on individual companies. The average analysts’ growth forecast for each of the companies in Dr. Vander Weide's comparable gas company group is shown in Exhibit JVW-1, Schedule 2.

For electronic version, refer to KAW_R_AGDR1\#14_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 15 of 312

Witness: Dr. James H. Vander Weide

15. RE: Vander Weide Direct Testimony. With respect to page 32, lines 8-18, and Schedule 3 of Exhibit __(JVW-1), please provide:
(a) Copies of all work papers used in Dr. Vander Weide's ex ante risk premium study,
(b) An electronic version (Microsoft Excel) of the data used in the analysis, with all data and equations left intact, and
(c) Copies of the regressions run on the data.

Response:

The requested data are supplied with Dr. Vander Weide's work papers that are attached in response to this Request for Information No. 20. Please refer to electronic version KAW_R_AGDR1\#20_061807.xls.

For electronic version of this response, refer to KAW_R_AGDR1\#15_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 16 of 312

Witness: Dr. James H. Vander Weide

16. RE: Vander Weide Direct Testimony. With respect to page 33, line 1 to page 39, line 11, and Schedule 4 of Exhibit __(JVW-1), please provide:
(a) Copies of all work papers used in Dr. Vander Weide's ex post risk premium study using the S\&P 500,
(b) The sources of the data items employed,
(c) An electronic version (Microsoft Excel) of the data used in the analysis, with all data and equations left intact, and
(d) Copies of the regressions run on the data.

Response:

The requested data are supplied with Dr. Vander Weide’s work papers that are attached in response to this Request for Information No. 20. Please refer to electronic version KAW_R_AGDR1\#20_061807.xls.

For electronic version, refer to KAW_R_AGDR1\#16_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 17 of 312

Witness: Dr. James H. Vander Weide

17. RE: Vander Weide Direct Testimony. With respect to page 41, line 1 to page 42, line 8, and Schedule 5 of Exhibit __(JVW-1), please provide
(a) All work papers used in Dr. Vander Weide's ex post risk premium study using the S\&P Utilities Stock Index,
(b) The sources of the data items employed, and
(c) An electronic version (Microsoft Excel) of the data used in the analysis, with all data and equations left intact.

Response:

The requested data are supplied with Dr. Vander Weide's work papers that are attached in response to this Request for Information No. 20. Please refer to electronic version KAW_R_AGDR1\#20_061807.xls.

For electronic version, refer to KAW_R_AGDR1\#17_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION
Item 18 of 312

Witness: Dr. James H. Vander Weide

18. RE: Vander Weide Direct Testimony. With respect to page 42, line 9 to page 43, line 10, and Schedule 8 of Exhibit __(JVW-1), for each company listed in the S\&P 500, please provide:
(a) The number of analysts providing an EPS growth rate forecast as well as the market capitalization weight used for each company,
(b) The company names and growth rates for those companies with negative expected growth rates,
(c) The company names, dividend, price, expected growth, cost of equity, and market cap for all companies, including the 25% highest and lowest DCF results, and
(d) An electronic version (Microsoft Excel) of the data used in the analysis, with all data and equations left intact.

Response:

The requested data are attached. For excel version of S\&P 500 data, please refer to KAW_R_AGDR1\#18_061807.xls.

For electronic version of this document, refer to KAW_R_AGDR1\#18_061807.pdf

COMPANY NAME(DS)
3M
ABBOTT LABS
ACE
ADC TELECOM
ADOBE SYSTEMS
ADVANCED MICRO DEVC
AES
AETNA
AFFILIATED CMP SVS ' A^{\prime}
AFLAC
AGILENT TECHS
AIR PRDS \& CHEMS
ALCOA
ALLEGHENY EN
ALLEGHENY TECHS
ALLERGAN
ALLIED WASTE INDS
ALLSTATE
ALLTEL
ALTERA
ALTRIA GROUP INCO
AMAZON COM
AMBAC FINANCIAL
AMER.ELEC PWR
AMER STANDARD
AMEREN
AMERICAN EXPRESS
AMERICAN INTL GP
AMERIPRISE FINL
AMERISOURCEBERGEN
AMGEN
ANADARKO PETROLEUM
ANALOG DEVICES
ANHEUSER-BUSCH COS
AON
APACHE
APARTMENT INV MAN ' A '
APOLLO GP 'A'
APPLE
APPLERA APPD BIOS
73,391
$6 \quad 5,573$

APPLIED MATS	13	25,042
ARCHER-DANLS -MIDL	5	22,030
ARCHSTONE SMITH TST	1	11,972
ASHLAND	\#NA	4,152
AT\&T	9	227,340
AUTODESK	11	9,219
AUTOMATIC DATA PROC	10	26,788
AUTONATION	6	4,535
AUTOZONE	9	8,660
AVALONBAY COMMNS	2	9,795
AVAYA	10	5,490
AVERY DENNISON	5	7,127
AVON PRODUCTS	7	16,204
BAKER HUGHES	4	20,736
BALL	4	4,695
BANK OF AMERICA	14	224,579
BANK OF NEW YORK CO.	13	29,931
BARD CR	6	8,078
BARR PHARMACEUTICALS	7	5,302
BAUSCH \& LOMB	3	2,750
BAXTER INTL.	4	31,951
$B B \& T$	12	22,541
BEAR STEARNS	7	17,665
BECTON DICKINSON	10	18,313
BED BATH \& BEYOND	16	11,208
BEMIS	3	3,448
BEST BUY	19	22,337
BIGLOTS	2	2,636
BIOGENIDEC	10	14,951
BIOMET	8	10,336
BJ SVS	4	7,759
BLACK \& DECKER	5	5,436
BMC SOFTWARE	7	6,111
BOEING	12	68,818
BOSTON PROPS	2	13,672
BOSTON SCIENTIFIC	5	23,569
BRISTOL MYERS SQUIBB	10	53,355
BROADCOM 'A'	11	15,493
BROWN-FORMAN 'B'	3	4,254
BRUNSWICK	8	2,918
BURL NTHN SANTA FEC	6	27,830
CA	7	13,442
CAMPBELL SOUP	11	15,487
CAPITAL ONE FINL	12	23,399
CARDINAL HEALTH	10	27,849
CAREMARK RX	11	26,035
CARNIVAL	8	28,642
CATERPILLAR	4	41,010
CB RICHARD ELLIS GP	3	7,337
CBS 'B'	6	21,249
CELGENE	8	18,080
CENTERPOINT EN	4	5,475
CENTEX	3	5,505
CENTURYTEL	6	5,125
CH ROBINSON WWD	6	8,703
CHARLES SCHWAB	7	22,963
CHESAPEAKE ENERGY	5	13,751
CHEVRON	5	145,601

CHI MERC EX.HDG	5	18,808
CHUBB	9	20,846
CIENA	8	2,302
CIGNA	10	14,463
CINCINNATI FIN.	2	7,408
CINTAS	9	6,285
CIRCUIT CITY STORES	18	3,107
CISCO SYSTEMS	10	152,813
CIT GP.	5	10,789
CITIGROUP	13	245,536
CITIZENS COMMS	7	4,764
CITRIX SYS	10	5,645
CLEAR CHL COMMS	5	17,867
CLOROX	10	9,514
CMS ENERGY	5	3,797
COACH	16	17,642
COCA COLA	7	106,249
COCA COLA ENTS	7	9,586
COGNIZANT TECH SLTN 'A'	12	12,404
COLGATE-PALM	11	34,219
COM BANC	11	6,144
COMCAST 'A'	7	52,213
COMERICA	9	9,443
COMPASS BANCSHARES	7	8,722
COMPUTER SCIS	10	8,893
COMPUWARE	3	3,174
CONAGRA FOODS	6	12,331
CONOCOPHILLIPS	1	106,751
CONSOLEN	4	6,385
CONSOLIDATED EDISON	5	12,347
CONSTELLATION BRANDS 'A'	7	4,104
CONSTELLATION EN	4	14,006
CONVERGYS	9	3,450
COOPERINDS	7	8,269
CORNING	8	31,755
COSTCO WHOLESALE	16	25,217
COUNTRYWIDE FINL	9	22,992
COVENTRY HLTHCR.	11	8,661
CSX	4	15,799
CUMMINS	5	7,020
CVS	6	25,613
DRHORTON	7	7,943
DANAHER	12	21,600
DARDEN RESTAURANTS	16	5,777
DEAN FOODS NEW	6	6,291
DEERE	7	23,930
DELL	14	52,656
DEVON ENERGY	5	28,487
DILLARDS 'A'	7	2,469
DOLLAR GENERAL	11	5,124
DOMINION RES	5	30,066
DONNELLEY R R \& SONS	4	7,771
DOVER	3	9,632
DOW CHEMICALS	4	40,630
DOW JONES \& CO	8	2,231
DTE ENERGY	3	8,300
DU PONTEIDE NEMOURS	6	46,289
DUKE ENERGY	4	24,421

DYNEGY 'A'	1	3,230
E TRADE FINL.	5	9,688
EASTMAN CHEMICALS	3	4,817
EASTMAN KODAK	4	6,805
EATON	9	11,880
EBAY	17	42,980
ECOLAB	7	10,395
EDISON INTL	2	15,414
EL.PASO	4	9,770
ELECTRONIC ARTS	10	15,223
ELECTRONIC DATA SYSTEMS	3	14,255
ELI LILLY	13	58,582
EMBARQ	3	7,981
EMC	9	29,865
EMERSON ELECTRIC	7	34,133
ENSCOINTL	7	7,430
ENTERGY	4	19,910
EOG RES	6	16,050
EQUIFAX	8	4,721
EQUITY RESD TST PROPS SHBI	\#NA	14,300
ESTEE LAUDER COS ${ }^{\text {' }}$ ' ${ }^{\prime}$	10	5,693
EXELON	4	43,037
EXPRESS SCRIPTS 'A'	12	9,960
EXXON MOBLL	4	408,332
FAMILY DOLLAR STORES	12	4,355
FANNIE MAE	5	53,482
FEDERATED DEPT STRS	8	23,239
FEDERATED INVRS 'B'	8	3,707
FEDEX	7	34,551
FIDELITY NAT INFO.SVS	8	12,979
FIFTH THIRD BANCORP	10	22,317
FIRST DATA	12	18,614
FIRST HORIZON NATIONAL	9	5,356
FIRSTENERGY	6	19,679
FISERV	14	8,843
FLUOR	4	7,536
FORD MOTOR	2	13,799
FOREST LABS	16	16,163
FORTUNE BRANDS	6	12,061
FPL GROUP	6	23,455
FRANK RES	8	29,034
FREDDIE MAC	6	43,155
FREEPORT-MCMOR CPR \& GD ' ${ }^{\text {' }}$	2	10,758
GANNETT	7	14,176
GAP	13	14,915
GENERAL DYNAMICS	10	30,534
GENERAL ELECTRIC	11	359,443
GENERAL MILLS	7	19,156
GENERAL MOTORS	1	17,319
GENUINE PARTS	4	8,215
GENWORTH FINANCIAL	9	15,845
GENZYME	7	16,013
GILEAD SCIENCES	10	32,390
GOLDMAN SACHS GP	9	80,491
GOODRICH	10	6,049
GOODYEAR TIRE \& RUB	\#NA	4,901
GOOGLE 'A'	16	97,995
GRAINGER W W	8	6,518

H\& R BLOCK	6	6,946
HALLIBURTON	5	31,151
HARLEY-DAVIDSON	9	16,424
HARMAN INTL INDS	7	6,386
HARRAHS ENTM	9	15,665
HARTFORD FINL SVS GP	8	30,174
HASBRO	4	4,571
HEINZ HJ	7	14,899
HERCULES	1	2,189
HESS	4	14,457
HEWLETT-PACKARD	13	105,214
HILTON HOTELS	10	13,493
HOME DEPOT	13	79,614
HONEYWELL INTL	8	36,725
HOSPIRA	4	6,089
HUDSON CITY BANC	5	7,540
HUMANA	11	9,955
HUNTINGTON BCSH	5	5,353
IACINTERACTIVECORP	6	10,158
ILLINOIS TOOL WKS	11	28,444
IMS HEALTH	6	5,571
INGERSOLL-RAND	9	13,115
INTEGRYS ENERGY GROUP	2	4,112
INTEL.	15	110,822
INTERNATIONAL BUS MACH.	9	136,927
INTERPUBLIC GP	7	5,435
INTL. FLAV \& FRAG	1	4,132
INTL GAME TECH	8	13,564
INTLPAPER	2	15,947
INTUIT	8	10,153
ITT	3	10,615
JABIL CIRCUIT	8	5,594
JANUS CAPITAL GP	9	4,065
JDS UNIPHASE	4	3,231
JOHNSON \& JOHNSON	5	179,288
JOHNSON CONTROLS	5	18,779
JONES APPAREL GROUP	9	3,518
JP MORGAN CHASE \& CO	9	167,169
JUNIPER NETWORKS	14	10,410
KB HOME	6	4,412
KELLOGG	10	19,596
KEYCORP	11	15,099
KEYSPAN	1	7,148
KIMBERLY-CLARK	8	30,692
KIMCO REALTY	1	11,810
KINDER MORGAN KANS	2	14,170
KING PHARMS	3	4,483
KLA TENCOR	10	9,968
KOHLS	17	23,304
KROGER	8	17,947
L3 COMMUNICATIONS	8	10,605
LABORATORY CORP OF AM HDG	8	8,572
LEGG MASON	7	13,067
LEGGETT\&PLATT	4	4,272
LEHMAN BROS HDG	8	37,931
LENNAR 'A'	7	6,200
LEXMARK INTL GP A	9	5,746
LIMITED BRANDS	16	10,472

LINCOLN NAT	12	18,768
LINEAR TECH	14	9,602
LIZ CLAIBORNE	6	4,509
LOCKHEED MARTIN	9	40,457
LOEWS	\#NA	23,415
LOWE'S COMPANIES	16	48,638
LSILOGIC	2	3,990
M\&T BK.	6	13,090
MANOR CARE	7	3,862
MARATHON OIL	4	31,370
MARRIOTT INTL 'A'	11	18,447
MARSH \& MCLENNAN	6	16,170
MARSHALL \& ILSLEY	12	12,123
MASCO	7	11,400
MATTEL	4	10,380
MAXIM INTEGRATED PRDS	13	10,127
MBIA	6	8,955
MCCORMICK \& CONV	7	4,428
MCDONALDS	13	54,009
MCGRAW-HILL	5	22,722
MCKESSON	8	16,143
MEADWESTVACO	1	5,447
MEDCO HEALTH SLITN	14	19,193
MEDIMMUNE	3	7,394
MEDTRONIC	11	56,578
MELLON FINL	12	17,625
MERCK \& CO	10	95,937
MEREDITH	4	2,232
MERRILL LYNCH \& CO.	7	72,441
METLIFE	10	47,499
MGIC INVT	7	4,786
MICRON TECHNOLOGY	10	8,929
MICROSOFT	16	271,835
MILLIPORE	5	3,834
MOLEX	7	2,831
MOLSON COORS BREWING 'B'	6	5,407
MONSANTO	6	27,675
MONSTER WORLDWIDE	15	5,877
MOODYS	7	18,495
MORGAN STANLEY	9	78,275
MOTOROLA	12	45,062
MURPHY OIL	4	9,501
MYLAN LABORATORIES	5	4,383
NABORS INDS	3	8,727
NAT CITY	7	24,082
NATIONAL OILWELL VARCO	3	12,053
NATIONAL SEMICON	7	7,954
NCR	3	8,135
NETWORK APPLIANCE	12	13,952
NEW YORK TIMES 'A'	6	3,524
NEWELL RUBBERMAID	8	8,413
NEWMONT MINING	2	18,216
NEWS CORP 'A'	3	47,928
NICOR	1	2,036
NIKE 'B'	9	19,535
NISOURCE	6	6,427
NOBLE	4	9,368
NORDSTROM	14	13,471

NORFOLK SOUTHERN	4	18,396
NORTHERN TRUST	14	12,973
NORTHROP GRUMMAN	10	25,152
NOVELL	6	2,187
NOVELLUS SYSTEMS	8	3,858
NUCOR	4	17,746
NVIDIA	9	10,494
OCCIDENTALPTL	5	38,606
OFFICE DEPOT	11	9,293
OFFICEMAX	5	3,767
OMNICOM GP	11	17,231
ORACLE	17	86,594
PACCAR	7	16,981
PACTIV	4	4,218
PALL	4	4,453
PARKER-HANNIFIN	7	9,731
PATTERSON COMPANIES	7	4,606
PAYCHEX	16	14,924
PEABODY ENERGY	4	10,273
PENNEYJC	10	17,731
PEPSI BOTTLING GP	6	7,283
PEPSICO	8	103,064
PERKINELMER	3	2,834
PFIZER	11	175,685
PG\&E	5	16,018
PHELPS DODGE	3	25,120
PINNACLE WEST CAP	3	4,734
PITNEY-BOWES	3	10,348
PLUM CREEK TIMBER	3	6,860
PMC-SIERRA	4	1,336
PNC FINL SVS.GP.	9	21,522
POLO RALPH LAUREN 'A'	10	5,054
PPG INDUSTRIES	6	10,739
PPL	6	14,442
PRAXAIR	8	19,555
PRINCIPAL FINL GP	9	16,083
PROCTER \& GAMBLE	12	199,294
PROGRESS ENERGY	5	12,318
PROGRESSIVE OHIO	6	17,321
PROLOGIS	1	15,846
PRUDENTIAL FINL	9	43,606
PUB SER ENTER GP	3	18,630
PUBLIC STORAGE	1	16,623
PULTE HOMES	4	7,552
QLOGIC	9	2,723
QUALCOMM	10	65,399
QUEST DIAGNOSTICS	9	9,666
QUESTAR	5	7,081
QWEST COMMS INTL	9	16,208
RADIOSHACK	10	3,336
RAYTHEON 'B'	8	23,474
REALOGY	1	7,396
REGIONS FINL NEW	9	25,867
REYNOLDS AMERICAN	4	17,635
ROBERT HALF INTL	8	6,336
ROCKWELL AUTOMATION	6	10,071
ROCKWELL COLLINS	12	11,001
ROHM \& HAAS	9	11,321

ROWAN COS	6	3,356
RYDER SYSTEM	5	3,058
SABRE HDG	3	4,327
SAFECO	8	7,618
SAFEWAY	8	15,019
SANDISK	7	8,603
SANMINA-SCl	6	1,892
SARA LEE	6	11,963
SCHERING-PLOUGH	11	34,173
SCHLUMBERGER	5	73,364
SCRIPPS EW 'A'	7	5,694
SEALED AIR	5	5,082
SEARS HOLDINGS	3	27,256
SEMPRAEN.	5	15,555
SHERWIN-WILLIAMS	3	8,746
SIGMA ALDRICH	6	5,332
SIMON PR.GP	1	24,064
SLM	9	17,241
SMITH INTL.	4	8,223
SNAP-ON	3	2,893
SOLECTRON	7	2,803
SOUTHERN	5	26,293
SOUTHWEST AIRLINES	4	11,984
SOVEREIGN BANC.	8	11,747
SPECTRA ENERGY	3	15,857
SPRINT NEXTEL	9	55,438
ST.JUDE MED.	14	13,597
STANLEY WORKS	7	4,504
STAPLES	10	18,391
STARBUCKS	15	22,439
STARWOOD HTLS \& RSTS. WORLDWIDE	9	13,672
STATE STREET	12	21,727
STRYKER	13	24,837
SUN MICROSYSTEMS	5	21,821
SUNOCO	1	7,750
SUNTRUST BANKS	13	30,222
SUPERVALU	6	7,658
SYMANTEC	14	15,625
SYNOVUS FINL	9	10,448
SYSCO	7	19,744
T ROWE PRICE GP	8	12,164
TARGET	17	52,418
TECO ENERGY	4	3,487
TEKTRONIX	6	2,312
TELLABS	6	4,497
TEMPLE INLAND	2	6,184
TENET HLTHCR	3	3,032
TERADYNE	6	2,938
TEREX	2	6,418
TEXAS INSTS	13	45,644
TEXTRON	8	11,222
THE DIRECTV GROUP	7	27,666
THE HERSHEY COMPANY	10	9,015
THE TRAVELERS COS	7	34,901
THERMO FISHER SCIENTIFIC	2	18,066
TIFFANY \& CO	11	5,809
TIME WARNER	8	76,044
TJXCOS	7	12,424

SARA LEE34,173
SCHLUMBERGER5,694
SEALED AIR27,256
SEMPRA8,746signaldorich24,0648,2232,803
SOUTHERN1,984
SOVEREIGN BANC5,857
SPRINT NEXTEL13,597
STANLEY WORKS18,391
STARBUCKS 22,435
STATE STREET 21,727SUN MICROSYSTEMS21,82130,222
SUPERVALU 7,6580,448
SYSCO12,164
TARGET3,487
TEKTRONIX4,497
TEMPLE INLAND3,032
TERADYNE6,418
TEXAS INSTS11,222
THE DIRECTV GROUP9,015
THE TRAVELERS COS8,066
TIME WARNER76,044
TJX COS 7 12,424

TORCHMARK	8	6,262
TRANSOCEAN	3	22,099
TRIBUNE	7	7,218
TXU	4	30,540
TYCO INTL	7	59,455
TYSON FOODS 'A'	4	4,873
UNIONPACIFIC	6	26,384
UNISYS	4	2,859
UNITED PARCEL SER	6	46,253
UNITED TECHNOLOGIES	8	64,079
UNITEDHEALTH GP	15	72,980
UNIVISION COMMS 'A'	1	8,985
UNUM GROUP	7	7,264
US BANCORP	10	62,285
US STEEL	3	10,190
UST	3	9,046
VF	9	8,913
VALERO ENERGY	1	34,434
VARIAN MED SYS	6	5,780
VERISIGN	8	5,984
VERIZON COMMS	14	106,504
VIACOM 'B'	12	24,986
VORNADO REALTY TST	1	17,273
VULCAN MATERIALS	3	11,125
WACHOVIA	14	86,602
WAL MART STORES	16	199,273
WALGREEN	11	44,197
WALT DISNEY	12	70,224
WASHINGTON MUTUAL	8	40,247
WASTE MAN	3	17,799
WATERS	4	5,584
WATSON PHARMS	7	2,635
WEATHERFORD INTL	5	13,641
WELLPOINT	12	49,031
WELLS FARGO \& CO	16	116,268
WENDY'S INTL	11	3,697
WESTERN UNION	17	16,130
WEYERHAEUSER	3	20,384
WHIRLPOOL	3	6,840
WHOLE FOODS MARKET	9	6,499
WILLIAMS COS	4	15,642
WINDSTREAM	3	6,856
WRIGLEY WILLIAM JR.	9	10,772
WYETH	11	65,720
WYNDHAM WORLDWIDE	2	6,889
XCEL ENERGY	5	9,497
XEROX	4	16,294
XILINX	9	8,396
XL CAP 'A'	10	12,584
XTO EN	8	18,399
YAHOO	17	41,266
YUM! BRANDS	12	14,898
ZIMMER HDG	13	19,900
ZIONS BANCORP	12	9,082

KENTUCKY-AMERICAN WATER COMPANY

Attachment to Request for information No. 18 Part (b)

There is no company in the S\&P 500 in the February $2007 \mathrm{IV} / \mathrm{E} / \mathrm{S}$ Thomson Financial data that has a negative long-term expected growth rate estimate

KENTUCKY-AMERICAN WATER COMPANY Attachment to Request for Information No 18 Parts (c) and (d)

COMPANY NAME(DS)	Ticker	Feb-07	Feb-07	Jan-07	Jan-07	Dec.06	Dec. 06	P_{0}	D_{0}	IBES EPS LTG MEAN	Costof Equily	Market Cap 5 (mils)	$1+9$	EPSLIG HESTS
3M	M M M	77.43	7352	7988	73.09	8155	7735	7714	192	1121\%	14.2\%	53.581	11121\%	7
ABBOTI LABS	ABT	5506	5206	53.85	48.75	4910	4625	5085	130	1074\%	13.8\%	81,798	11074\%	9
ACE	ACE	5996	5566	6103	5740	6190	5591	5864	100	1212%	141%	18.107	112 12\%	9
ADC TELECOM	ADCT	1759	15.94	16.65	1453	1524	1340	3556	000	10.85\%	10.9\%	1.823	11085\%	10
ADOBE SYSTEMS	ADBE	4110	3745	4132	3720	4322	3761	39.65	000	1486\%	14.0\%	22.552	11486\%	7
ADVANCED MCRO DEVC	AMD	1591	1443	20.63	15.52	2300	1990	18.23	000	14 28\%	14.3\%	7.779	11428\%	9
AES	AES	2310	20.50	2232	1992	2385	2190	2193	000	1500\%	15.0\%	13.689	\$1500\%	3
AETNA	AET	4660	4185	4361	4031	4390	4101	4288	004	1579\%	15.9\%	23,078	11579\%	9
AFFILIATED CMP SVS A'	ACS	5450	48.89	4982	4779	5117	48.06	50.04	000	1289\%	120\%	4.712	11289\%	9
AFLAC,	AFL.	49.37	46.66	4871	4550	46.20	43.34	46.66	074	1466\%	16\%\%	23.098	114.66\%	13
AGILENT TECHS	A	34.15	3124	35.48	3187	3569	3168	3335	000	14.75\%	148\%	12.506	114.75\%	4
AIR PRDS \& CHEMS	APD	78.63	73.35	75.00	6858	7245	68.76	7280	136	1171\%	138\%	15.781	11171\%	6
ALCOA	AA	36.05	3207	3262	28.09	3133	2886	3150	0.68	1178\%	143\%	28.434	11178\%	6
ALLEGHENY EN	AYE	50.25	4531	4794	4428	46.25	4355	4626	0.00	2140\%	21.4\%	7.739	121.40\%	5
ALLEGHENY TECHS	AII	110.00	9579	10417	85.10	98.72	8433	9635	0.52	15.00\%	157\%	9.899	11500\%	2
Allergan	AGN	11823	110.10	12122	105.00	123.02	115.01	115.43	0.40	17 29\%	177\%	16.862	11729\%	7
ALLIED WASTE INDS	AW	1332	1186	1288	1228	13.14	1222	1262	000	13.50\%	13.5\%	4.549	11350\%	4
Allstate	ALL	62.44	59.52	65.85	60.05	6614	6267	6278	152	9.47\%	123\%	36.877	109 47\%	10
ALLETEL	AT	6388	59.50	63.04	6000	6260	5654	60.94	050	751\%	8.4\%	21.578	10751\%	11
ALTERA	ALTR	2232	19.99	20.65	1929	2054	19.30	20.35	000	1870\%	8.7\%	7.331	11870\%	10
ALTRIA GROUP INCO	MO	8785	8117	9050	86.00	8656	83.43	85.92	344	750%	121\%	174.964	10750\%	4
AMAZON COM	AMZN	4200	36.68	3914	3630	4064	3770	38.74	000	2353\%	235\%	15.629	12353\%	11
AMBAC FINANCIAL	ABK	9183	86.49	90.49	8611	90.75	84.15	8830	072	1150%	125\%	9.006	11150\%	6
AMERELEC PWR	AEP	46.76	43.48	43.90	4167	43.13	4154	43.41	156	427\%	B3\%	17.749	104.27\%	7
AMER STANDARD	ASD	55.30	5152	49.47	4521	46.80	4436	4878	0.72	13.13\%	14%	10.510	11313\%	8
AMEREN	AEE	55.00	5162	5433	5241	55.08	5325	5362	254	620\%	11:0\%	10.649	106.20\%	5
AMERICAN EXPRESS	AXP	59.15	5450	6190	5714	6250	5800	5887	0.60	1238\%	13.6\%	66.103	11238\%	9
AMERICANINTL GP	AIG	7019	6538	72.45	6794	7297	6917	6968	0.66	1257\%	137\%	180.785	11257\%	7
AMERIPRISE FINL.	AMP	6308	5674	59.35	54.68	55.79	5320	5714	0.44	10.69\%	11.0\%	13.673	11069\%	8
AMERISOURCEBERGEN	ABC	5552	5195	5440	45.08	48.02	4429	4988	0.20	13.50\%	14.0\%	9.927	113.50\%	6
AMGEN	AMGN	7049	6386	76.95	6785	7199	6788	69.84	000	16.09\%	10.1\%	72.032	11609\%	13
ANADARKO PETROLEUM	APC	4487	3955	4417	4016	5050	4201	43.54	0.36	8.80\%	97\%	18.123	10880%	5
ANALOG DEVICES	ADI	3717	3253	3453	3228	33.82	3207	33.73	072	2088\%	23.6\%	11.797	12088%	4
ANHEUSER-BUSCH COS	BUD	52.25	4861	5156	48.50	4975	4739	49.68	118	8.63\%	11.4\%	37,011	10863\%	7
AON	AOC	3921	3569	36.20	3430	3711	3487	36.23	060	786\%	9.8\%	11.631	10786\%	7
APACHE	APA	7274	68.00	73.44	6301	7050	65.34	68.84	060	1064\%	117\%	22.244	11064\%	7
APARTMENT INV MAN 'A'	AlV	6579	5759	6300	5414	5811	54.20	5881	240	400\%	85\%	5.511	10400\%	1
APOLLO GP 'A'	APOL	4885	4170	4354	3902	4040	3750	41.84	0.00	15.25\%	15\%	7.969	115.25\%	12
APPLE	AAPL	9081	8286	97.80	8190	92.33	76.77	87.08	0.12	20.78\%	21.\%	73.391	12078\%	10
APPLERA APPD BIOS	ABI	3478	30.52	3759	3400	38.31	36.20	3523	0.17	10.50\%	111\%	5.573	110 50\%	6
APPLIED MATS	AMAT	19.48	1772	19.79	1735	19.33	17.42	1852	0.20	15.31\%	18.0\%	25.042	115.31\%	13
ARCHER-DANLS MIDL	ADM	36.55	3299	3300	30.20	35.23	3120	33.20	0.46	10.40\%	12.0\%	22.030	110.40\%	5
ARCHSTONE SMITHTST	ASN	6211	55.26	6477	5655	60.81	5601	5925	181	700\%	10.5\%	11.972	10700\%	1
ATET	T	38.18	35.19	3788	3270	36.21	3374	35.65	1.42	8.27\%	12.9\%	227.340	10827%	9
AUTODESK	ADSK	45.07	3888	45.19	39.81	4288	39.65	4191	0.00	1654\%	10.5\%	9.219	11654\%	11
AUTOMATIC DATA PROC	ADP	5150	4815	49.28	46.85	4978	4752	48.85	092	1230\%	14.5\%	26.788	11230%	10
AUTONATION	AN	2319	2185	2252	20.65	2152	20.38	2169	0.00	1146\%	115\%	4,535	11146%	6
Allozone	AZO	13222	123.17	12614	11594	120.37	11239	12171	000	1350\%	135\%	8.660	113.50\%	9
AVALONBAY COMMMS	AVB	14994	13400	14926	12826	13460	125.22	13688	3.40	700\%	08\%	9.795	10700\%	2
AVAYA	AV	13.49	1196	1489	1235	1425	1247	4324	000	10.70\%	107\%	5.490	110.70\%	10
AVERY DENNISON	AVY	6916	6521	7135	6708	6931	66.45	6809	160	1100\%	138\%	7.127	11100\%	5
AVON PRODUCTS	AVP	4013	34.29	3514	3255	3425	3204	3473	074	10.65\%	132\%	16.204	110.65\%	7

BAKER HUGHES	BHI	7255	63.34	7466	65.55	78.85	7153	7108	0.52	1800\%	18.9\%	20.736	118.00\%	4
BALL.	BL	4920	45.28	4755	43.51	44.08	42.40	4534	0.40	1250\%	13.5\%	4.695	112.50\%	4
BANK OF AMERICA	BAC	54.21	49.00	54.18	5135	55.00	5132	5251	224	866\%	13.0\%	224.579	108.66\%	14
BANK OF NEW YORK CO	BK	43.46	39.47	4139	3905	40.55	3513	3984	088	1131\%	13.9\%	29.931	11131\%	13
BARDCR	BCR	8366	7901	86.17	7712	85.72	8174	8224	0.56	14.80\%	15.6\%	8.078	114.80\%	6
BARR PHARMACEUTICALS	BRL.	56.66	5201	56.15	50.24	5228	50.03	5290	000	14.66\%	14.7\%	5.302	114.66\%	7
BAUSCH \& LOMB	BOL	5592	5130	56.10	5112	53.88	4736	52.61	052	10.67\%	118\%	2.750	110.67\%	3
BAXTER INTL.	BAX	5099	4810	4998	46.07	48.54	4428	4799	067	13.03\%	14.7\%	31.951	113.03\%	4
BB \& T	BET	4419	4210	4430	4192	4474	4274	4333	168	853\%	13.8\%	22.541	108.53\%	12
BEAR STEARNS	BSC	17023	149.10	17261	16091	16620	149.73	16146	128	1157\%	\$25\%	17.665	11157\%	7
BECTON DICKINSON	BDX	7883	74.60	7730	6930	7330	6998	7389	098	1245\%	44.0\%	18,313	112.45\%	10
BED BATH \& BEYOND	BBBY	4332	39.87	4238	3779	4172	3782	40.48	000	16.38\%	70.4\%	11.208	116.38\%	16
BEMIS	BMS	3484	3300	3653	3201	3499	33.76	34.19	084	10.67\%	536\%	3.448	11067\%	3
BESTEUY	BBY	5180	4611	5180	4801	5559	4695	50.04	040	16.20\%	172\%	22.337	11620\%	19
BIGLOTS	BIG	2749	2413	2635	2271	2411	2148	2438	000	750%	75\%	2.636	10750%	2
BIOGENIDEC	B1B	5051	45.02	5245	4704	5272	48.00	49.29	0.00	1082\%	108\%	14.951	11082\%	10
BIOMET	BMET	4267	4215	4252	4117	4250	3740	4140	030	1575\%	188\%	10.336	11575\%	8
B. SVS	BJS	28.65	26.50	2910	25.55	33.89	28.94	28.77	0.20	2300\%	238%	7.759	12300\%	4
BLACK \& DECKER	BDK	90.91	83.37	8739	78.81	8766	76.85	84.17	168	960\%	118\%	5.436	10960\%	5
BMC SOFTWARE	BMC	36.92	2964	35.84	3225	33.50	3185	33.33	0.00	1236\%	12.4\%	6.111	11236\%	7
BOEING	BA	9224	85.24	90.34	84.60	9185	88.35	8877	140	1556\%	175\%	68.818	115 56\%	12
BOSTON PROPS	Exp	13302	117.00	12656	10907	\$18.22	10752	11857	272	600\%	8.6\%	13.672	10600\%	2
BOSTON SCIENTIFIC	BSX	18.47	15.85	18.69	16.61	1735	15.67	1711	000	956\%	0.6\%	23.569	10956\%	5
BRISTOL MYERS SQUBB	BMY	2933	2589	2939	25.73	26.41	2460	26.89	112	1158%	16.6\%	53.355	11158\%	10
BROADCOM 'A'	BRCM	3705	3131	3470	2927	35.18	3139	3315	000	23.14\%	23.1\%	15.493	123 14\%	11
BROWN-FORMAN ' ${ }^{\prime}$	BFB	6825	6453	68.14	6420	6980	6527	6670	121	10.40\%	125\%	4.254	11040\%	3
BRUNSWICK	BC	3486	32.00	3464	2967	3287	3125	3255	060	983\%	120\%	2.918	10983%	B
BURL NTHN SANTA FE C	BNI	8590	7818	8156	7151	7890	7189	7799	100	14.10\%	45.6\%	27.830	114.10\%	6
CA	CA	2746	2450	2577	2298	2335	2129	2423	016	13.61\%	44.4\%	13.442	113.61\%	7
CAMPBELL SOUP	CPB	4265	3850	3894	3720	3998	3781	39.18	080	6.78\%	91\%	15.487	106.78\%	11
CAPITAL ONE FINL	COF	83.84	75.78	8073	7530	7874	75.75	78.36	0.11	1256\%	127\%	23,399	112 56\%	12
CARDINAL HEALTH	CAH	73.10	69.50	7334	63.32	6699	6405	68.38	0.36	14 15\%	148\%	27.849	114 15\%	10
CAREMARK RX	CMX	64.34	60.20	6159	5492	58.08	46.83	5766	0.40	1854\%	19\%\%	26,035	11854\%	11
CARNIVAL	CCL.	5241	45.75	52.73	49.69	50.31	46.81	4962	110	1463\%	173\%	28.642	114.63\%	8
CATERPILLAR	CAT	68.43	63.01	6434	5798	63.95	6030	6300	120	1347\%	15.8\%	41.010	11347%	4
CB RICHARD ELIIS GP	CBG	3915	3200	3784	3250	34.26	3174	3458	000	1133\%	113\%	7.337	11133\%	3
CBS 'B'	CBS	3227	28.45	3197	30.50	32.04	29.45	3078	088	10.02\%	13.4\%	21,249	110.02\%	6
CELGENE	CELG	57.41	5230	58.60	5269	60.12	5350	55.77	000	50.81\%	50.8\%	18.080	15081\%	8
CENTERPOINT EN	CNP	1895	1725	1754	16.40	16.87	1602	1717	068	1100\%	45.7\%	5.475	11100\%	4
CENTEX	CTX	55.62	4594	56.45	5056	58.42	5438	53.56	016	13.33\%	137\%	5.505	113.33\%	3
CENTURYTEE.	CTL.	4680	4430	4499	4266	44.11	4199	4414	026	3.50\%	4%	5.125	103.50\%	6
CH ROBINSON WWD	CHRW	54.67	5026	5350	4211	44.40	39.44	4740	0.72	1617\%	18.0\%	8.703	116.17\%	6
CHARIES SCHWAB	SCHW	1997	1795	20.86	1799	19.49	1778	19.01	0.20	1526\%	165\%	22.963	155.26\%	7
CHESAPEAKE ENERGY	CHK	3183	2888	3011	2727	3416	29.00	30.21	0.24	1500\%	10.0\%	13,75!	11500\%	5
CHEVRON	cVX	7496	68.02	73.44	6848	7620	7183	7216	208	5.16\%	84\%	145.601	105 16\%	5
CHIMERC EX HDG	CME	58766	510.00	596.30	515.96	550.33	50305	54388	3.44	2223\%	23.0\%	18.808	122 23\%	5
CHubb	CB	53.60	50.60	5386	5157	5368	5101	5239	116	982\%	12.4\%	20.846	10982\%	9
CIENA	CEEN	3280	26.08	30.56	2708	29.73	2439	28.44	000	1088\%	10.9\%	2.302	11088\%	8
CIGNA	Cl	14670	13199	13299	12700	13265	12412	13258	010	1194\%	12.\%	14.463	11194\%	10
CINCINNATI FIN	CINF	46.24	4299	46.00	44.49	46.89	4380	45.07	1.42	10.50\%	14.2\%	7.408	11050\%	2
CINTAS	CTAS	4289	40.16	4205	3968	43.24	38.48	4108	039	1389\%	15.0\%	6.285	11389%	9
CIRCUIT CITY STORES	CC	2202	18.99	20.90	18.95	25.52	1825	2077	016	16.45\%	17.4\%	3,107	116 45\%	18
CISCO SYSTEMS	CSCO	28.85	2544	28.99	25.76	2796	26.45	2724	0.00	1463\%	14.6\%	152.813	11463\%	10
CIT GP	Cl	6159	5492	59.23	5412	56.66	5121	5629	1.00	775\%	9.8\%	10.789	10775\%	5
CItigroup	C	5550	4956	56.28	5350	5700	4883	53.45	216	981\%	148\%	245.536	109.81\%	13
CIIZENS COMMS	CZN	1521	14.01	1469	1392	14.49	1395	1438	100	404\%	119\%	4.764	104.04\%	7
CITRIX SYS	CTXS	3330	30.86	3299	2610	2975	26.62	2994	0.00	1460\%	146\%	5.645	114.60\%	10
CLEAR CHL COMMS	CCU	3714	35.61	3755	3531	3578	35.16	36.09	0.75	1201\%	145\%	17.867	11201\%	5
CLOROX	CLX	6750	6250	6620	6284	6490	63.21	6453	124	1030\%	125\%	9.514	110.30\%	10
CMS ENERGY	CMS	18.41	1663	16.88	1598	1700	15.93	16.81	0.20	6.60\%	78\%	3.797	106.60\%	5
COACH	COH	5103	4247	47.03	4251	4499	4185	4498	0.00	2069\%	207\%	17.642	12069\%	16
COCA COLA	KO	4855	4556	4900	4749	4935	46.23	4770	136	8.47\%	118\%	106.249	108 47\%	7
COCA COLA ENTS	CCE	2125	20.05	2122	20.12	2103	1997	2061	024	8.69\%	10.0\%	9.586	10869\%	7
COGNIZANT TECH SLIN 'A'	CTSH	9555	8467	85.37	75.75	8249	7527	8318	000	34.92\%	34.9\%	12.404	13492\%	12
COLGATE-PALM	CL	69.00	66.67	68.56	65.01	66.48	6416	66.65	128	10.23\%	125\%	34.219	110.23\%	11
COMBANC	CBH	35.01	33.00	36.15	30.45	36.66	3425	34.25	052	13.73\%	15.0\%	6.144	113.73\%	11
COMCAST A'	CMCSA	2946	24.92	30.18	2789	28.94	2683	28.04	000	18.47\%	185\%	52.213	118.47\%	7
COMERICA	CMA	63.39	59.21	5997	5768	5972	5755	59.59	256	6.86\%	118\%	9.443	106.86\%	9
COMPASS BANCSHARES	CBSS	70.74	6074	6108	5861	60.88	56.81	6148	172	1014%	134\%	8.722	110 14\%	7
COMPUTER SCIS	CSC	56.25	5202	53.20	5075	5413	5137	5295	0.00	1075\%	10.8\%	8,893	11075\%	10

COMPUWARE	CPWR	9.68	8.92	903	8.28	875	829	8.83	0.00	1100\%	140\%	3.174	11100\%	3
CONAGRA FOODS	CAG	26.40	2489	2773	2563	28.35	25.27	2638	072	717\%	103\%	12.331	107 17\%	6
CONOCOPHLLLPS	COP	68.44	64.01	7150	6159	74.89	66.05	6775	164	700\%	98\%	106.751	10700\%	1
CONSOL EN	CNX	38.06	3396	35.00	2915	3772	3188	3430	028	16.93\%	170\%	6.385	11693%	4
CONSOLIDATED EDISON	ED	5005	4800	4870	4707	4928	4755	4844	232	296\%	82\%	12.347	10296\%	5
CONSTELLATION BRANDS ${ }^{\circ} \times$	STZ	24.89	2301	2917	24.07	2914	2779	2635	0.00	1175\%	11.8\%	4,104	11175\%	7
CONSTELLATION EN	CEG	8316	7255	7265	68.78	7020	6770	7251	174	1250\%	15.4\%	14.006	112 50\%	4
CONVERGYS	CVG	2718	25.38	2650	23.84	2432	23.45	25.11	0.00	11.44\%	114\%	3.450	11144%	9
COOPERINDS	CBE	9623	89.74	95.66	88.32	94.49	8828	9212	168	12.43\%	14.6\%	8.269	112 43\%	7
CORNING	GLW	2280	19.56	2173	18.12	2234	18.62	20.53	0.00	1750\%	17.5\%	31.755	117 50\%	8
COSTCO WHOLESALE	COST	5870	55.05	5725	5243	5512	5173	55.05	0.52	1299\%	141\%	25,217	11299%	16
COUNTRYWIDE FINL	CFF	4519	36.93	4526	39.86	4310	3921	4159	0.60	1083\%	12.5\%	22.992	110.83\%	9
COVENTRY HLTHCR.	CVH	56.87	5120	5220	48.78	5185	4828	5153	0.00	1355\%	¢3.6\%	8,661	113.55\%	11
CSX	csx	4253	36.63	3700	33.50	3789	3355	36.85	0.48	1686\%	t65\%	15.799	116.86\%	4
CUMMINS	CMI	146.80	133.02	135.00	11264	124.27	11755	12821	1.44	1256\%	13.0\%	7,020	11256\%	5
CVS	CVS	33.58	30.76	33.72	30.46	3183	2847	31.47	019	13.95\%	147\%	25.613	11395\%	6
DR HORTON	DHI	3113	2505	2938	2505	2781	2571	2736	060	13.29\%	15.9\%	7.943	113.29\%	7
DANAHER	DHR	75.00	70.04	75.97	70.47	7440	7137	72.88	008	1489\%	150\%	21.600	11489\%	12
DARDEN RESTAURANTS	DRI	43.23	3898	40.68	3815	4162	39.51	4036	0.46	1205\%	134%	5.777	11205\%	16
DEAN FOODS NEW	DF	46.39	4291	44.78	4095	43.55	4223	4347	000	10.04\%	10.0\%	6.291	11004\%	6
DEERE	DE	11650	100.44	10095	90.23	98.51	93.55	100.03	176	967\%	197\%	23,930	10967\%	7
DELL	DELL	2551	2251	27.48	2357	2758	25.04	25.28	0.00	1238\%	12.4\%	52.656	11238\%	14
DEVON ENERGY	DVN	7124	6478	7091	6324	74.49	66.23	6848	0.45	11 19\%	12.0\%	28.487	11119\%	5
DILLARDS A ${ }^{\text {a }}$	DDS	3610	3290	3578	3278	3615	33.89	34.60	0.16	6.00\%	6.5\%	2.469	10600\%	7
DOLLAR GENERAL	DG	1801	16.38	17.88	16.16	1617	1501	16.60	0.20	1212%	13.5\%	5.124	112 12%	11
DOMINION RES	D	8830	8297	84.00	79.67	8430	8039	83.27	284	730\%	112\%	30.066	10730\%	5
DONNELLEYRR\& SONS	RRD	38.71	35.40	3748	35.22	36.00	3493	36.29	104	1000\%	13.4\%	7.771	110.00\%	4
DOVER	DOV	50.92	4713	5000	4712	5040	4829	48.98	074	1267\%	14.5\%	9.632	11267\%	3
DOW CHEMICALS	DOW	4726	4110	4268	39.02	40.65	3945	4169	150	980\%	14.0\%	40.630	10980\%	4
DOW JONES \& CO	DJ	38.34	35.43	40.08	36.61	39.20	3560	3754	100	13.66\%	16.9\%	2.231	113.66\%	8
dte energy	DTE	48.69	46.03	49.42	4514	49.24	4698	4758	212	567\%	107\%	8,300	105.67\%	3
DU PONT EI DE NEMOURS	DD	5367	4863	5100	4758	49.68	45.90	49.41	148	801\%	115\%	46.289	108.01\%	6
DUKE ENERGY	DUK	20.43	1943	2000	1840	20.09	18.30	19.44	084	5.25\%	10:\%	24,421	105 25\%	4
DYNEGY 'A'	DYN	8.81	695	725	6.47	732	659	723	000	4.00\%	4.0\%	3,230	10400\%	1
E TRADE FINL	ETFC	2489	2225	2608	2250	2409	2218	23.67	0.00	1430%	143\%	9.688	11430\%	5
EASTMAN CHEMICALS	EMN	6183	5760	6322	5754	6000	5773	59.65	176	667\%	10.0\%	4.817	10667\%	3
EASTMAN KODAK	EK	2708	23.74	2650	2438	2654	25.13	25.56	0.50	475\%	6.0\%	6.805	104.75\%	4
EATON	ETN	84.89	76.78	7858	7191	7884	7432	7755	172	1087\%	\$3.5\%	11.880	110.87\%	9
EBAY	EbAY	3435	3088	3380	28.60	3322	3002	3181	000	2225\%	223\%	42.980	122 25\%	17
ECOLAB	ECL.	44.91	4162	4537	4277	4578	4381	4404	0.46	1752%	768\%	10.395	19752\%	7
EDISONINTL.	EIX	5100	4500	46.28	4276	4715	4479	4616	116	650\%	9.3\%	15.414	106.50\%	2
ELPASO	EP	15.66	1423	15.63	1426	1584	1440	15.00	016	1200\%	133%	9.770	11200\%	4
ELECTRONIC ARTS	ERTS	5439	4914	54.43	4796	56.68	50.21	5214	000	18.69\%	187\%	15.223	118.69\%	10
ELECTRONIC DATA SYSTEMS	EDS	2994	2596	2774	2575	2793	26.33	2728	020	2133%	223\%	14.255	12133\%	3
ELILLLLY	LLY	5520	5230	5437	5157	54.92	5113	5325	170	8.24\%	110\%	58,582	108 24\%	13
EMBARQ	EQ	5756	5194	5700	5162	53.32	49.90	5356	200	3.33\%	75\%	7.981	10333\%	3
EMC	EMC	14.89	13.47	1454	1307	1379	1286	13.77	0.00	14.49\%	14.5\%	29.865	11449\%	9
EMERSON ELECTRIC	EMR	46.08	4273	4520	43.11	4465	4195	43.95	105	1043\%	13.2\%	34.133	110.43\%	7
ENSCOINTL	ESV	5293	48.52	5119	45.00	5575	4983	50.54	010	3400\%	343\%	7.430	13400\%	7
ENTERGY	ETR	105.20	9245	9416	89.60	9403	9050	94.32	216	825\%	t0.9\%	19.910	108.25\%	4
EOGRES	EOG	69.95	6440	6975	59.21	7072	6187	65.98	036	984\%	50.5\%	16.050	10984%	6
EQuFax	EFX	4200	3746	4164	39.37	4164	3773	3997	016	10.63\%	119\%	4.72	11063\%	8
ESTEE LAUDER $\cos { }^{\circ}{ }^{\circ}$	EL	48.73	45.60	4815	39.52	4215	4028	4407	050	1144%	120\%	5.693	11144\%	10
EXELON	EXC	7231	5993	6299	58.74	6282	6082	6294	176	875\%	120\%	43.037	10875\%	4
EXPRESS SCRIPTS ${ }^{\text {A }}$	ESRX	79.58	6925	7203	6464	75.00	65.99	7108	000	1708\%	17\%	9.960	17708\%	12
EXXON MOBLL	XOM	76.10	7118	76.27	7064	79.00	7482	7467	128	6.15\%	8:\%	408,332	10615\%	4
FAMILY DOLLAR STORES	FDO	33.31	2876	3274	2859	2999	2777	3019	0.46	1175\%	13.6\%	4.355	11175\%	12
FANNIE MAE	FNM	6025	55.85	60.44	5497	6150	56.34	5823	160	9.22\%	12.4\%	53.482	10922\%	5
FEDERATED DEPT STRS	FD	45.00	40.88	4161	3612	4160	3739	40.43	0.51	1216\%	13.7\%	23,239	112 16\%	8
FEDERATED INVRS ${ }^{\text {B }}$	FII	38.40	3502	36.90	3337	3420	3244	35.06	072	1125\%	13.7\%	3.707	11125\%	B
FEDEX	FDX	12142	110.30	11290	106.63	11774	10669	11261	0.36	1354\%	13.9\%	34.551	11354\%	7
FIDELITY NAT INFO SVS.	FIS	4775	4242	4260	39.99	4187	3935	4233	0.20	1288\%	53.4\%	12.979	11288\%	8
FIFTH THIRD BANCORP	FITB	4130	39.57	41.41	38.86	4157	3914	4031	160	1045\%	15.1\%	22.317	110.45\%	10
FIRST DATA	FDC	2596	24.19	2650	24.34	2574	2329	2500	012	1167%	122\%	18.614	11167\%	12
FIRST HORIZON NATIONAL	FHN	45.44	4249	4405	39.75	4200	3961	4222	180	733\%	122\%	5.356	107 33\%	9
FIRSTENERGY	FE	66.29	5936	6123	5777	6170	5987	61.04	200	750\%	113\%	19.679	10750\%	6
FISERV	FISV	55.08	5193	5387	5111	53.60	50.24	5264	000	1421\%	142\%	8.843	11421\%	14
FLUOR	FLR	90.00	8300	8281	75.22	88.01	80.88	8332	080	23.33\%	24.0\%	7.536	123 33\%	4
FORD MOTOR	F	897	760	862	743	815	685	794	0.00	8.98\%	9.0\%	13.799	10898\%	2
FOREST LABS	FRX	5797	5116	56.54	50.00	5213	48.82	5277	0.00	1539\%	15.4\%	16.163	115 39\%	16

FORTUNE BRANDS	FO	8421	7895	8690	7950	8596	79.97	8258	156	10.56\%	12.8\%	12.061	110 56\%	6
FPL GROUP	FPL	6307	5667	5687	53.72	5557	5304	56.49	164	8.40\%	11.8\%	23,455	108.40\%	6
FRANK RES	BEN	126.71	115.16	12177	11131	11470	104.49	11569	060	1487\%	15.5\%	29.034	114.87\%	8
FREDDE MAC	FRE	6697	6282	68.55	6371	69.85	66.30	66.37	200	964\%	13.2\%	43.155	109.64\%	6
FREEPORT-MCMOR CPR \& GD I	IFCX	6199	5265	58.56	4885	6289	53.40	56.39	125	13.50\%	10.2\%	10.758	11350\%	2
GANNETT	GCI	6350	5792	60.94	57.46	6146	59.28	60.09	$\dagger 24$	8.26\%	10.0\%	14.176	108 26\%	7
GAP	GPS	20.26	18.21	2104	1850	2070	18.56	1955	0.32	1063\%	125\%	14.915	11063\%	13
GENERAL DYNAMICS	GD	80.48	7425	8128	7359	75.97	7236	76.32	0.92	1013\%	115\%	30.534	110 43\%	10
GENERAL ELECTRIC	GE	36.60	3450	38.28	35.76	38.49	3496	3643	112	1067\%	44.3\%	359.443	11067\%	11
GENERAL MILLS	GIS	58.33	5457	5798	56.08	5923	55.79	5700	148	B.13\%	11\%	19.156	10813\%	7
GENERAL MOTORS	GM	3724	3131	3333	29.10	3113	28.84	31.82	100	6.03\%	9.6\%	17.319	10603\%	1
GENUINE PARTS	GPC	5075	47.46	48.60	46.19	48.34	4629	4794	1.46	963\%	132\%	8.215	10963\%	4
GENWORTH FINANCIAL	GNW	3716	3470	3527	33.69	3501	3218	3467	036	1036\%	176\%	15,845	110.36\%	9
genzyme	GENZ	6784	6078	6877	60.53	6435	5971	6366	000	1736%	174\%	16,013	11736%	7
GILEAD SCIENCES	GLD	7497	6951	6698	6192	6823	6311	6745	000	1791\%	170\%	32,390	11791\%	10
GOLDMAN SACHS GP	GS	22275	194.65	220.51	19782	20670	19152	205.66	140	1553\%	184\%	80.491	115.53\%	9
GOODRICH	GR	5200	4665	49.16	4497	4648	44.29	4726	080	1477\%	18.8\%	6,049	11477\%	10
GOOGLE 'A'	GOOG	506.01	443.04	573.00	46111	49240	45234	47798	000	36.54\%	36.5\%	97.995	136.54\%	16
GRAINGER W W	GWW	80.37	76.28	7787	6877	7442	69.68	74.57	116	1221\%	141\%	6.518	11221\%	8
H\&RBLOCK	HRB	2495	2154	24.86	2286	24.05	2269	23.49	0.54	\$3.67\%	10.4\%	6,946	11367\%	6
Hallieurton	HAL	3230	29.35	30.90	2765	33.78	3080	3080	0.30	18.00\%	19.2\%	31.151	11800\%	5
HARLEY-DAVIDSON	HOG	70.32	65.23	7403	68.26	74.74	6764	7004	0.84	1289\%	143\%	16.424	11289\%	9
HARMAN INTL INDS	HAR	10568	9453	10452	9240	10790	9853	100.59	005	21 13\%	21.2\%	6.386	121 13\%	7
HARRAHS ENTM	HET	85.55	83.75	8558	8231	8425	7752	8316	160	1366\%	10.0\%	15,665	11366\%	9
HARTFORD FINL SVS GP	HG	9795	9255	9504	9030	9375	8378	923	200	1072\%	133\%	30.174	110.72\%	8
HASbro	HAS	2980	2761	2894	2704	2769	2614	2787	0.64	1050\%	132\%	4,571	110.50\%	4
HENZHJ	HNZ	4795	4551	4716	4490	4675	44.13	4607	140	734\%	108\%	14.899	10734%	7
HERCULES	HPC	2140	1958	2009	1828	1973	1811	19.53	000	1000\%	10.0\%	2.189	11000\%	1
HESS	HES	5660	5203	5486	4596	5270	48.40	5176	0.40	907\%	10.0\%	14.457	10907\%	4
HEWLETT-PACKARD	HPQ	43.24	3847	43.72	4105	4170	3921	4123	0.32	1288\%	13.8\%	105.214	11268\%	13
Hilton hotels	HLT	3782	3411	36.49	3315	35.79	3237	3496	0.16	1349\%	14.0\%	13.493	113.49\%	10
HOME DEPOT	HD	4201	39.29	4184	3906	40.37	3818	4013	0.90	1261\%	55.3\%	79.614	11261\%	13
HONEYWELLINTL.	HON	48.50	45.51	45.99	4314	45.77	41.49	4507	100	1113%	+3.7\%	36.725	11113%	8
HOSPIRA	HSP	40.66	35.30	3713	33.60	3476	3258	35.67	000	1075\%	10.8\%	6.089	11075\%	4
HUDSON CITY BANC	HCEK	1400	13.18	1425	13.59	1409	1308	13.70	032	1700\%	19.9\%	7.540	11700\%	5
HUMANA	HUM	6450	55.17	5668	5100	5693	5285	56.19	000	18.54%	185\%	9,955	118.54\%	11
HUNTINGTON BCSH	HBAN	2410	23.04	2414	2284	2497	2287	23.66	106	580\%	10\%\%	5.353	105.80\%	5
IACINTERACTIVECORP	1 ACl	4099	3770	39.48	3687	3866	35.49	3820	000	1246\%	12.5\%	10.158	112 46\%	6
HLINOS TOOL WKS	ITW	5365	5082	5120	4560	4809	45.93	49.22	084	1268\%	14\%	28.444	11268\%	11
IMS HEALTH	RX	30.07	2805	28.86	2626	2798	26.97	2803	0.12	1245\%	13.0\%	5,571	112.45\%	6
INGERSOLL.RAND	IR	45.62	4110	43.89	3825	4160	3783	4138	072	1196\%	14.0\%	13.115	11196\%	9
INTEGRYS ENERGY GROUP	TEG	58.04	53.05	55.47	5272	54.83	5187	5433	264	5.00\%	10.5\%	4.112	10500\%	2
INTEL	INTC	2167	19.80	2230	20.14	2145	20.03	2090	0.45	1258\%	45.2\%	110.822	11258\%	15
INTERNATIONAL BUS MACH	IBM	100.44	9247	10090	9455	9788	9055	9613	120	1056\%	\$2.0\%	136,927	11056\%	9
INTERPUBLIC GP	IPG	1334	1238	13.94	1208	1283	11.43	1267	0.00	995\%	0.9\%	5.435	10995%	7
INTLFLAV \& FRAG	IFF	49.46	46.29	5100	4727	4988	4692	4847	0.84	1000\%	120\%	4.132	11000\%	1
INTL. GAME TECH	IGT	4480	3952	4879	4168	4676	4340	44.6	052	1519\%	106\%	13,564	115 49\%	8
INTLPAPER	IP	38.00	3359	34.86	3275	3525	3290	34.56	100	600\%	93\%	15,947	10600\%	2
INTUT	INTU	3210	2893	3223	28.54	3211	29.90	30.64	000	1525\%	153\%	10.153	115.25\%	8
ITI	ITT	6171	5810	6026	56.30	57.44	5250	5772	056	1233\%	135\%	10.615	11233%	3
JABIL CIRCUIT	${ }^{\mathrm{JBL}}$.	27.86	2395	2551	23.45	29.48	23.40	25.61	028	23.97\%	254\%	5.594	123.97\%	8
JANUS CAPITAL GP	JNS	22.40	2058	2260	2004	2180	19.96	2123	004	1796\%	182\%	4,065	11796%	9
JDS UNIPHASE	JDSU	1750	1550	1799	1569	1865	16.61	16.99	000	18.75\%	18.8\%	3,231	118.75\%	4
JOHNSON \& JOHNSON	JNJ	6715	6272	6822	6590	6725	65.29	6509	150	846\%	11%	179.288	108.46\%	5
JOHNSON CONTROLS	JCl	9967	9130	9413	8428	88.44	8109	8982	132	1400\%	15.8\%	18.779	\$1400\%	5
JONES APPAREE GROUP	JNY	3431	3230	35.54	3270	3451	3294	3372	0.56	9.67\%	11.6\%	3.518	10967\%	9
JP MORGAN CHASE \& CO	JPM	5195	4760	5116	4732	49.00	4551	4876	136	1036\%	130\%	167.169	11036\%	9
JUNIPER NETWORKS	JNPR	20.19	1785	20.92	1784	2178	18.40	1950	000	1762\%	178\%	10.410	11762%	14
KB HOME	KBH	56.08	48.65	54.41	4769	53.70	4951	5169	100	1200\%	143\%	4.412	11200\%	6
KELLOGG	K	50.42	48.68	5100	48.95	5095	4933	49.89	116	898\%	117\%	19.596	108.98\%	10
KEYCORP	KEY	39.90	3742	38,30	3700	38.63	35.73	3783	146	691\%	113\%	15.099	106.91\%	11
KEYSPAN	KSE	4136	40.60	4152	40.62	4136	4079	4108	190	250\%	7.6\%	7.148	10250\%	1
KIMBERLY-CLARK	KMB	7028	6725	6997	6766	6858	65.90	6827	212	721\%	10.3\%	30.692	10721%	8
KIMCO REALTY	KIM	5360	4893	4993	4359	47 ¢3	4420	4790	144	8.00\%	11.5\%	11.810	10800\%	1
KINDER MORGAN KANS	KM	10650	10558	10702	10500	106.20	10496	10588	350	1000\%	13.9\%	14.170	11000\%	2
KINGPHARMS	KG	1895	1750	1813	1579	16.92	15.86	1719	000	5.73\%	5.7\%	4.483	10573\%	3
KLA TENCOR	KLAC	54.66	4830	5284	4685	5240	4926	5072	0.48	1733\%	88.5\%	9.968	11733%	10
KOHLS	KSS	7463	6831	7110	6584	7249	6766	7001	0.00	1767\%	177\%	23,304	11767\%	17
KROGER	KR	2669	2478	25.73	2294	24.48	21.41	24.34	026	892\%	10.1\%	17.947	10892\%	8
L3 COMMUNICATIONS	LLL	8942	8275	83.25	7926	84.49	7800	8286	100	14.34\%	15\%	10.605	114 34\%	8

LABORATORY CORP OF AM HD	(LH)	81.00	7271	74.85	70.94	7430	7026	7401	0.00	1313\%	13.1\%	8,572	113.13\%	8
LEGG MASON	LM	110.17	100.55	10968	9563	9875	9383	10144	0.84	1350\%	14.5\%	13.067	113.50\%	7
LEGGETT\&PLATT	IEG	2471	2359	2467	23.07	2446	2311	2394	0.68	1450\%	18.0\%	4.272	114.50\%	4
LEHMAN BROS HDG	LEH	8618	7280	8413	76.20	7888	7226	7841	060	1263\%	13.5\%	37.931	11263\%	6
LENNARA	LEN	5654	4876	54.62	48.33	54.61	50.57	5224	064	1121\%	127\%	6.200	11121\%	7
LEXMARKINTL GPA	LXK	6451	5924	73.20	6157	7468	68.49	6695	000	918\%	9.2\%	5.746	109 18\%	9
LIMITED BRANDS	LTD	29.88	2722	30.03	26.16	3196	28.77	2900	0.60	13.40\%	15.9\%	10.472	113 40\%	16
LINCOLNNAT	LINC	7118	6569	6751	64.29	66.72	6252	66.32	158	10.71\%	13.5\%	18.768	11071\%	12
LINEAR TECH	LLTC	34.78	30.78	3303	2972	34.42	29.81	3209	072	1775\%	20.6\%	9.602	\$1775\%	14
LIZ CLABBORNE	L.12	46.84	43.40	4618	4315	4450	4219	4438	022	13.67\%	44\%	4.509	11367\%	6
LOCKHEED MARTIN	LMT	10350	95.84	9875	9108	93.24	8985	95.38	140	1124\%	130%	40.457	11124\%	9
LOWES COMPANES	L.OW	35.74	3244	3395	3113	3198	3015	3257	0.20	1538\%	18%	48,638	115 38\%	16
LSIL LOGIC	L.SI	1019	878	1067	8.95	1070	8.97	971	0.00	1750\%	175\%	3.990	11750%	2
M\&T BK.	MTE	12513	11880	123.21	118.47	12304	11768	12106	240	9.17\%	115%	13.090	109 17\%	6
MANOR CARE	HCR	5533	5283	53.43	4607	48.49	46.43	50.43	0.68	14.43\%	18\%	3,862	11443\%	7
MARATHON OLL	MRO	9414	8868	9150	8300	9873	9030	9106	160	976\%	11.8\%	31.370	10976\%	4
MARRIOTT INTL A'	MAR	5150	4636	48.31	44.79	4831	44.81	4735	025	15.47\%	18.1\%	18.447	115 47\%	11
MARSH \& MCLENNAN	MMC	3049	2895	3175	29.37	3208	2975	30.40	076	1108\%	14.0\%	16.170	11108\%	6
MARSHALL \& ILSLEY	M 1	49.26	46.40	4874	46.13	48.62	45.46	47.44	108	9.67\%	12.3\%	12.123	10967\%	12
MASCO	MAS	34.72	29.64	3206	28.95	30.53	28.51	3074	088	1243\%	85.9\%	11.400	112 43\%	7
MATTEL.	MAT	2747	2443	2478	2262	23.17	2152	2400	065	10.00\%	\$3.2\%	10.380	110.00\%	4
MAXIMINTEGRATED PRDS	MXIM	33.71	30.05	3372	3030	3286	2991	3176	062	18.77\%	21.2\%	10.127	118.77\%	13
MBIA	MBI	73.48	65.38	7602	7023	73.49	6834	7116	136	10.33\%	120\%	8.955	11033\%	6
MCCORMCK \& CONV	MKC	3959	3794	3936	3715	39.82	38.44	38.72	0.80	9.59\%	120\%	4.428	10959\%	7
MCDONALDS	MCD	4621	4338	45.06	4254	4468	4170	4393	100	8.69\%	113\%	54.009	10869\%	13
MCGRAW.HIL.	MHP	6986	6277	69.98	65.01	6925	6592	6713	0.82	1238\%	138\%	22.722	11238\%	5
MCKESSON	MCK	5807	5506	56.93	50.80	5145	4843	53.46	0.24	1425\%	14.8\%	16.143	11425\%	8
MEADWESTVACO	MWV	3246	2985	3074	28.52	30.50	29.15	3020	092	1100\%	14.0\%	5.447	11100\%	1
MEDCOHEALTHSETN	MHS	69.00	5793	59.45	5252	55.34	49.56	5730	000	1679\%	10.8\%	19.193	116.79\%	14
MEDIMMUNE	MED	35.06	30.37	35.46	3232	33.67	3138	33.04	000	38.14\%	3a.1\%	7.394	138.14\%	3
MEDTRONIC	MDT	5469	49.69	5486	5221	5466	5140	52.92	044	13.81\%	4.8.8\%	56.578	113.8\%	11
MELLON FINL	MEL	46.24	4250	4424	41.80	43.08	3959	4291	088	\$151\%	830\%	17.625	11151\%	12
MERCK \& CO	MRK	45.44	4235	46.55	4316	4590	42.63	4434	152	732\%	112\%	95.937	107 32\%	10
MEREDITH	MDP	6039	5735	59.05	5568	5729	5360	5723	0.74	1188%	134\%	2.232	11188\%	4
MERRILLLYNCH\& CO	MER	9598	8250	98.68	9127	9393	8582	9123	1.40	1275\%	14.6\%	72.441	11275\%	7
METLIFE	MET	6625	6212	6287	58.74	59.72	5721	6115	059	1101\%	12.1\%	47.499	11101\%	10
MGIC INVT	MTG	7010	5955	63.83	58.55	63.50	5745	6246	100	1028\%	12.2\%	4.786	110.28\%	7
MICRON TECHNOLOGY	MU	1325	1176	1431	1279	15.05	13.12	13.38	000	15.33\%	55.3\%	8.929	115.33\%	10
MICROSOFT	MSFT	30.94	2779	31.48	29.40	30.26	28.80	2978	0.40	13.64\%	15.3\%	271.835	11364\%	66
MILIUPORE	MLI.	76.13	68.49	6929	6529	7016	66.41	6930	000	15.80\%	15.8\%	3.834	11580\%	5
MOLEX	MOLX	3100	2925	3234	2816	3363	3155	30.99	0.30	1457\%	157\%	2.831	114 57\%	7
MOLSON COORS BREWING 'B'	TAP	88.06	80.30	8130	7511	7699	7090	78.78	128	1107\%	13.0\%	5.407	11107%	6
MONSANTO	MON	5708	5104	56.24	4910	53.49	4712	5235	0.50	2153\%	22.8\%	27.675	12153\%	6
MONSTER WORLDWIDE	MNST	5479	4881	5139	45.77	4820	4186	48.47	000	2540\%	25.4\%	5.877	125 40\%	15
MOODYS	MCO	7609	6351	7260	6754	7170	68.81	7004	032	1407\%	14.6\%	18.495	114.07\%	7
MORGAN STANLEY	MS	8439	7304	8466	79.60	83.40	74.51	7993	108	1319\%	14.8\%	78.275	11319\%	9
MOTOROLA	MOT	1998	1825	20.91	1790	2255	20.17	1996	020	1181\%	13.0\%	45.062	11181\%	12
MURPHY OLL	MUR	5300	4886	5091	45.45	54.39	50.06	50.45	060	10.17\%	11.0\%	9.501	110.17\%	4
MYLAN LABORATORIES	MYL	2275	20.99	2215	1990	20.92	19.72	2107	024	15.80\%	77.2\%	4.383	115.80\%	5
NABORS INDS	NBR	3274	29.27	3051	2753	34.62	29.65	30.72	000	18.00\%	56.0\%	8.727	118.00\%	3
NAT CITY	NCC	38.52	3743	3835	34.82	37.43	35.29	36.97	156	721\%	12 1%	24.082	10721\%	7
NATIONAL OLWELL VARCO	NOV	7103	59.69	6195	5375	6860	6080	6264	0.00	2756\%	27 0\%	12.053	12756\%	3
NATIONAL SEMICON.	NSM	26.15	2220	2362	2165	2518	22.42	2354	0.16	1386\%	147\%	7.954	11386\%	7
NCR	NCR	4825	45.45	4760	4234	43.40	40.67	4462	0.00	900\%	9.0\%	8.135	10900\%	3
NETWORK APPLIANCE	NTAP	4062	3661	40.89	36.20	4156	3826	3902	000	2367\%	237\%	13,952	12367\%	12
NEW YORK TIMES 'A'	NYT	2690	2315	2437	2277	24.61	2355	2423	070	770\%	11.0\%	3,524	107 70\%	6
NEWELL. RUBBERMAID	NWL	3195	2954	30.65	28.66	29.50	2831	2977	084	938\%	12.7\%	8.413	109.38\%	8
NEWMONT MINING	NEM	4833	4379	45.67	4191	4780	4476	4538	0.40	20.00\%	211%	18.216	120.00\%	2
NEWS CORP ${ }^{\prime}$ A'	NWS A	2410	2221	23.40	2114	2194	20.29	22.18	012	18.00\%	187\%	47.928	118.00\%	3
NICOR	GAS	4833	4535	4738	44.46	49.86	46.46	46.97	186	310\%	75\%	2.036	103.10\%	1
NIKE ${ }^{\text {B }}$	NKE	108.90	9844	10035	9492	10120	94.79	99.77	148	13.56\%	15.3\%	19.535	11356%	9
NISOURCE	N	2480	2367	24.49	2304	28.03	23.72	2463	092	3.33\%	75\%	6.427	10333\%	6
NOBLE	NE	7671	6881	76.02	6798	8231	75.01	74.47	0.16	4625\%	488\%	9.368	14625\%	4
NORDSTROM	JWN	59.70	5112	5599	50.00	51.40	4726	5258	0.54	1380\%	15.0\%	13.471	11380\%	14
NORFOLK SOUTHERN	NSC	5268	46.68	5384	47.05	5198	4862	5014	088	15.45\%	17.0\%	18.396	11545\%	4
NORTHERN TRUST	NTRS	63.49	59.72	6269	5866	61.40	5600	6033	100	1205\%	14.0\%	12.973	11205\%	14
NORTHROP GRUMMAN	NOC	75.72	70.50	7192	6623	6877	6604	6986	1.48	1167%	14.2\%	25.152	11167\%	10
NOVELL.	NOVL	732	6.18	735	605	6.36	570	649	000	1133\%	113\%	2.187	11133\%	6
NOVELLUS SYSTEMS	NVLS	33.09	3046	34.97	29.63	35.00	3143	3243	015	1775\%	80.3\%	3.858	11775\%	8
NUCOR	NUE	66.99	59.42	6488	53.20	6755	5460	6111	044	666%	75\%	17.746	10566\%	4

NVIDIA	NVDA	3491	3030	3752	2991	38.96	3490	34.42	000	1647\%	105\%	10.494	166.47\%	9
OCCIDENTALPTL.	OXY	48.75	45.60	48.86	4206	52.40	48.04	4762	0.88	828\%	104\%	38,606	108 28\%	5
OFFICE DEPOT	ODP	38.13	3302	39.66	3672	4106	36.87	3758	000	14.54\%	145\%	9.293	114 54\%	11
OFFICEMAX	OMX	55.40	4829	5123	4787	51.80	46.44	5017	060	15.40\%	18\%\%	3.767	115.40\%	5
OMNICOM GP	OMC	10690	100.61	10530	10057	106.06	10240	103.64	100	1142\%	12.6\%	17.231	11142%	11
ORACLE	ORCL	17.44	1600	1798	16.77	1934	1693	1741	000	14.31\%	14.3\%	86,594	11431\%	17
PACCAR	PCAR	7423	6670	6972	63.23	6925	63.42	6776	080	1131\%	12.7\%	16.981	11131\%	7
PACTIV	PTV	3356	3156	3691	3158	36.53	3360	33.96	000	1100\%	\$1.0\%	4.218	11100\%	4
PALI.	PLL	36.34	34.36	3519	3323	35.57	3081	3425	0.48	1100\%	12.6\%	4.453	11100\%	4
PARKER-HANNIFIN	PH	88.19	8181	8465	7562	84.89	76.73	8198	104	1128%	12.8\%	9.731	11128\%	7
PATTERSON COMPANES	PDCO	39.76	3171	3829	3513	38.28	35.47	36.44	0.00	1614\%	12.5\%	4.605	116.14\%	7
PAYCHEX	PAYX	4250	40.03	4100	3879	4121	38.66	40.37	0.84	1571\%	183\%	14.924	115.71\%	16
PEABODY ENERGY	BTU	44.60	39.50	4196	3620	48.59	40.29	4186	0.24	2001\%	207\%	10.273	12001\%	4
PENNEY JC	JCP	8718	7952	8409	7523	8178	75.98	8063	0.72	1548\%	18.6\%	17.731	115.48\%	10
PEPSI BOTTLING GP	PBG	3254	3093	3199	30.13	3231	30.59	31.42	0.44	963\%	113\%	7,283	10963%	6
PEPSICO	PEP	65.39	6250	65.54	6229	6417	61.46	6356	120	1102\%	13.2\%	103.064	11102\%	8
PERKINELMER	PKI	2466	2335	23.94	2128	2258	2112	2282	028	13.00\%	14.5\%	2.834	11300\%	3
PFIZER	PFE	2700	2494	27.41	25.78	2786	2350	2608	116	480%	0,6\%	175.685	10480\%	11
PG\&E	PCG	4932	4550	4795	45.34	4817	4566	46.99	132	780\%	11.0\%	16.018	10780\%	5
PHEEPS DODGE	PD	128.00	12119	12477	11425	124.75	116.68	12161	080	2413%	25.0\%	25.120	124.13\%	3
PINNACLE WEST CAP	PNW	49.05	4721	5167	4809	5100	48.96	49.33	210	4.53\%	8.3\%	4.734	104.53\%	3
PITNEY-BOWES	PBI	4895	4716	48.50	4587	4705	45.96	4725	132	10.00\%	133\%	10.348	110.00\%	3
PL.UM CREEK TIMBER	PCL .	4164	38.64	4198	3815	40.00	36.64	3951	168	6.57\%	114\%	6,860	106.57\%	3
PMC-SIERRA	PMCS	7.47	6.31	678	606	797	640	6.83	0.00	1875\%	188\%	1.336	118.75\%	4
PNC FINL SVS GP	PNC	76.41	7280	75.65	7202	7515	7055	7376	220	967\%	13\%	21.522	10967\%	9
POLO RALPHI LAUREN A'	RL.	8907	8166	84.10	7790	8315	76.17	82.01	020	15.80\%	10 \%	5.054	115 80%	10
PPGINDUSTREES	PPG	6909	64.84	6788	6401	6669	6302	6592	200	904\%	12.6\%	10.739	10904\%	6
PPL	PPL	3968	3514	3666	34.43	3734	3550	36.46	122	1150\%	15.5\%	14.442	11150\%	6
PRAXAIR	PX	65.00	6023	6335	5797	6327	5851	6139	120	1155\%	13.0\%	19.555	11155\%	8
PRINCIPAL FINL. GP	PFG	6417	59.71	6186	5819	59.40	5685	60.03	080	1213\%	\$3.7\%	16.083	11213\%	9
PROCTER \& GAMBELE	PG	65.64	6125	66.30	6311	6473	6221	63.87	124	11.45\%	13.7\%	199,294	11145\%	12
PROGRESS ENERGY	PGN	50.95	4748	50.00	4705	49.55	4768	48.79	244	406\%	0.6\%	12.318	10406\%	5
PROGRESSIVE OHIO	PGR	23.76	2250	2475	2290	24.73	2219	23.47	0.03	817\%	B3\%	17.321	108.17\%	6
PROLOGS	PLD	7208	64.12	65.08	5732	65.81	59.16	6393	184	19.00\%	228\%	15.846	11900\%	1
PRUDENTIAL FINL	PRU	9326	89.05	89.33	85.38	8718	8100	8753	095	13.35\%	147\%	43.606	113.35\%	9
PUB SERENTER GP	PEG	7803	6648	6775	64.32	6810	6570	6840	234	867\%	12.6\%	18,630	108.67\%	3
PUBLIC STORAGE	PSA	11716	100.93	10941	96.02	9805	94.01	10260	200	800\%	10.2\%	16,623	108 00\%	1
PULTE HOMES	PHM	3556	2931	3490	3103	35.31	3200	33.02	0.16	1325\%	93.8\%	7.552	11325\%	4
OLOGIC	OLGC	1881	1741	22.46	1810	2272	2130	20.13	0.00	14.41\%	44.4\%	2.723	11441\%	9
QUALCOMM	QCOM	43.61	3700	3996	3679	40.99	35.80	3902	0.48	1810\%	19.6\%	65.399	118 10\%	10
QUEST DIAGNOSTICS	DGX	5429	50.30	5291	4882	54.20	5134	5198	0.40	1300\%	130\%	9.666	11300\%	9
QUESTAR	STR	86.32	7933	8281	7596	8956	82.45	8274	0.94	1182\%	132\%	7.081	11182\%	5
QWEST COMMS INTL	Q	890	787	863	806	8.47	750	8.24	000	800\%	8.0\%	16.208	108.00\%	9
RADIOSHACK	RSH	26.24	2178	2224	1669	17.85	16.42	2020	025	10.35\%	11.8\%	3.336	110 35\%	10
RAYTHEON 'B'	RTN	55.63	5190	53.22	50.96	5417	5100	5281	096	16.16\%	10.4\%	23,474	11616\%	8
REALOGY	H	3008	2955	30.30	29.42	3111	25.41	29.31	000	15.00\%	550\%	7.396	11500\%	1
REGIONS FINL NEW	RF	3761	3531	3817	35.76	3799	3640	36.87	144	783\%	123\%	25.867	10783\%	9
REYNOLDS AMERICAN	RAI	6510	6005	66.19	6200	6634	6356	63.87	3.00	6.25\%	110\%	17.635	10625\%	4
ROBERT HALF INTL.	RHi	4221	38.44	41.40	3702	38.87	36.61	3909	0.40	1825\%	10.5\%	6.336	118.25\%	8
ROCKWELL AUTOMATION	ROK	6531	6101	6301	5673	65.69	60.34	6202	116	1183\%	140\%	10.071	11183\%	6
ROCKWELL COLLINS	COL	69.91	64.39	6975	62.45	64.31	59.80	6510	064	13.46\%	14.8\%	11.001	113.46\%	12
ROHM \& HAAS	ROH	55.95	5159	5754	5013	5299	5032	5309	132	1153\%	145%	11.321	11153\%	
ROWAN COS	RDC	33.20	30.07	33.04	29.97	3799	3290	3286	0.40	2737\%	29.0\%	3.356	12737\%	6
RYDER SYSTEM	R	55.62	5120	54.75	5155	5289	5036	5273	0.84	11.42\%	13.3\%	3.058	11142\%	5
SAERE HDG	TSG	3261	3210	32.47	3182	3212	2717	3138	052	1066\%	\$2.6\%	4.327	11066\%	3
SAFECO	SAF	6915	64.07	6461	5743	64.85	6037	63.41	120	9.88\%	121\%	7.618	10988\%	8
SAFEWAY	SWY	3724	3372	36.24	3286	3561	3036	34.34	0.23	10.45\%	11.2\%	15.019	11045%	8
SANDISK	SNDK	4220	3613	4524	38.89	4698	4200	4207	0.00	1653\%	16.5\%	8.603	11653\%	7
SANMINA-SCl	SANM	3.94	3.42	3.66	3.24	392	3.42	3.60	0.00	1550\%	15.5\%	1.892	115.50\%	6
SARA LEE	SLE	1749	16.00	1730	1659	1718	16.50	1684	0.40	6.81\%	95\%	11,963	106.81\%	6
SCHERING-PLOUGH	SGP	25.24	23.00	25.37	2309	2407	2178	2376	0.26	24 23\%	25\%	34.173	124.23\%	11
SCHLUMEERGER	SLB	65.79	6180	64.37	5568	6918	6168	6308	070	2197%	234\%	73,364	12197\%	5
SCRIPPSEWA	SSP	49.42	4435	53.39	48.37	5090	4865	4918	0.48	1081\%	12.0\%	5.694	10081\%	7
SEALED AIR	SEE	6774	6356	66.32	63.02	6576	5855	6416	080	11.40\%	12.9\%	5.082	\$1140\%	5
SEARS HOLDINGS	SHED	18997	175.77	18167	16431	178.00	166.07	175.97	0.00	1033\%	10.3\%	27.256	\$1033\%	3
SEMPRAEN	SRE	6253	5725	58.01	54.73	5735	5457	5741	124	6.11\%	8.5\%	15.555	106 11%	5
SHERWIN-WILLIAMS	SHW	7111	6465	6927	6128	6476	6143	65.42	126	1147\%	134\%	8.746	111 17\%	3
SIGMA ALDRICH	SIAL	4291	37.65	4000	3740	39.68	3764	3921	0.46	9.41\%	10.8\%	5.332	109.41\%	6
SIMON PR GP	SPG	123.96	110.60	11509	9850	10408	9783	10834	3.36	700\%	105\%	24.064	10700\%	,
SLM	SLM	4664	4030	4996	4397	50.34	45.51	4612	100	15.52\%	182\%	17.241	115 52\%	9

SMITH INTL	SII	4292	39.49	4107	3613	4468	4081	40.85	040	18.00\%	192\%	8,223	11800\%	4
SNAP.ON	SNA	5166	48.50	48.42	46.46	4865	46.76	48.41	108	1067\%	133\%	2.893	11067\%	3
SOLECTRON	SLR	348	321	3.51	318	3.48	310	333	0.00	14.95\%	15.0\%	2.803	114 95\%	7
SOUTHERN	So	36.95	35.11	3725	36.10	3740	36.16	36.50	155	520\%	10.0\%	26.293	105 20\%	5
SOUTHWEST AIRLINES	Luv	16.14	15.00	1658	1495	16.03	15.18	15.65	0.02	10.18\%	10.3\%	11.984	11018\%	4
SOVEREIGN BANC	SOV	25.59	2487	2591	23.64	26.60	24.64	25.38	0.32	813\%	9.6\%	11.747	10813%	8
SPECTRA ENERGY	\#NA	2713	25.05	3000	25.11	2900	2750	2730	0.88	533\%	8.8\%	15.857	10533\%	3
SPRINT NEXTEL	S	19.81	1757	19.78	16.93	19.92	18.61	1877	010	8.74\%	9.4\%	55.438	10874\%	9
ST JUDE MED	STJ	43.46	3896	43.20	3490	3907	36.37	3933	000	15.97\%	10.0\%	13.597	11597\%	14
STANLEY WORKS	SWK	5899	5505	5754	4995	5196	4861	53.68	120	1157\%	14.2\%	4.504	11157\%	7
STAPLES	SPLS	2766	2560	2762	2529	2800	2494	2652	029	1620\%	47.5\%	18.391	11620\%	10
STARBUCKS	sbux	35.42	30.24	36.61	3349	3714	3490	3463	000	2200\%	220\%	22.439	12200\%	15
STARWOOD HTLS\& RSTS W	HOT	69.65	63.00	64.45	59.63	65.98	6202	64.12	168	1472\%	170\%	13,672	11472\%	9
STATE STREET	STT	7214	64.78	72.82	6731	6856	6096	6776	084	1260\%	14.1\%	21.727	11260\%	12
STRYKER	SYK	6427	59.44	6237	5489	55.92	5190	58.13	0.22	19.19\%	107\%	24.837	119.19\%	13
SUN MICROSYSTEMS	SUNW	6.78	5.40	6.66	544	588	534	5.92	0.00	1276\%	12.8\%	21.821	11276\%	5
SUNOCO	SUN	67.46	5977	6338	56.68	6942	6201	6312	110	1230\%	144\%	7.750	11230\%	1
SUNIRUST BANKS	SII	8743	8309	85.54	8133	8564	8111	84.02	292	8 40\%	12.4\%	30.222	108.40\%	13
SUPERVALU	SVI)	39.02	3620	38.23	34.46	3659	3393	36.41	066	9.20\%	11.3\%	7.658	10920\%	6
SYMANTEC	SYMC	1837	1665	2186	1726	2190	1964	1928	000	1301\%	13.0\%	15.625	11301\%	14
SYNOVUS FINL.	SNV	33.82	3186	3210	3039	3113	2969	3150	078	1222\%	+5.2\%	10.448	11222\%	9
SYSCO	SYY	35.23	3229	36.74	3380	3704	3521	3505	076	1353\%	76.1\%	19.744	11353\%	7
TROWE PRICE GP	TROW	50.30	45.57	4894	45.03	45.22	4263	46.28	068	1285\%	140\%	12.164	11285\%	8
TARGET	TGT	6474	59.40	6296	56.61	60.00	56.69	60.07	0.48	1479\%	158\%	52.418	114.79\%	17
TECO ENERGY	TE	1728	16.42	1749	16.69	1750	16.91	1705	0.76	388%	8.8\%	3,487	103.88\%	4
TEKTRONIX	TEK	2950	2801	2970	2778	3162	26.40	2884	024	1275\%	137\%	2.312	11275\%	6
TELLABS	TLAB	1099	993	1111	9.75	1082	9.61	1037	000	783\%	7.8\%	4,497	107 83\%	6
TEMPLEINLAND	TIN	6361	4872	50.58	4429	4671	3892	48.81	112	6.00\%	8.6\%	6.184	10600\%	2
TENETHLTHCR	THC	7.67	6.75	768	700	736	6.75	720	0.00	10.00\%	10.0\%	3.032	11000\%	3
TERADYNE	TER	16.84	1492	16.46	1464	1559	14.43	15.48	000	1475\%	\$4 8%	2.938	11475\%	6
TEREX	TEX	7275	56.22	62.80	54.75	66.52	5465	6128	0.00	850\%	85\%	6.418	10850\%	2
TEXAS INSTS	TXN	3257	29.91	3134	28.24	30.93	28.43	30.24	0.16	16.65\%	173\%	45.644	16.65\%	13
TEXIRON	TXT	98.43	8952	98.80	90.78	98.50	9270	9479	155	1288\%	14.8\%	11.222	11288\%	8
THE DIRECTV GROUP	DTV	26.09	2165	2525	23.82	25.57	2246	2414	0.00	1770\%	177\%	27.666	17770\%	7
THE HERSHEY COMPANY	HSY	5417	5056	5267	4970	5209	49.17	5139	108	9.38\%	11.8\%	9,015	10938\%	10
THE TRAVELERS COS	TRV	5433	5045	5464	5030	5500	5096	5261	104	9.97\%	12.3\%	34.901	109 97\%	7
THERMO FISHER SCIENTIFIC	TMO	4990	44.56	49.43	4454	4634	4320	4633	000	1600\%	10.0\%	18.066	11600\%	2
TIFFANY \& CO	TF	45.98	39.13	40.50	3817	4080	3745	40.34	040	1191\%	431\%	5.809	11191\%	11
TIME WARNER	TWX	2192	19.20	2315	2159	2225	2010	2137	0.22	14.42\%	15.7\%	76,044	11442\%	8
TJXCOS	T.JX	2943	2722	3024	2781	29.46	26.67	28.47	028	1214\%	133\%	12.424	11214\%	7
TORCHMARK	TMK	66.87	6333	65.49	6221	64.59	6250	6417	0.52	956\%	105\%	6262	109.56\%	8
TRANSOCEAN	RIG	8000	7531	8029	7247	84.23	76.50	7813	0.00	3100%	31.0\%	22.099	13100\%	3
TRIBUNE	TRB	3150	2971	3124	2994	3290	30.74	3101	072	874\%	1.4\%	7.218	108.74\%	7
TXU	TXU	68.45	5367	55.72	5285	5826	53.05	57.00	173	1325\%	16.9\%	30.540	11325\%	4
TYCO INTL	TYG	3329	3050	3232	2928	3186	29.40	3111	0.40	1271\%	14.2\%	59.455	11271\%	7
TYSON FOODS ${ }^{\text {A }}$	TSN	1920	1755	1794	1567	1709	1571	1719	016	8.50\%	9.6\%	4.873	10850\%	4
UNION PACIFIC	UNP	114.20	96.50	10123	8958	9616	8989	9793	140	1719\%	790\%	26,384	117 19\%	6
UNISYS	UIS	947	800	8.68	778	787	712	815	0.00	875\%	88\%	2.859	10875\%	4
UNITED PARCEL SER	UPS	75.32	6993	7598	70.38	78.77	73.62	74.00	168	1203\%	147\%	46.253	11203\%	6
UNITED TECHNOLOGIES	UTX	69.49	6475	6824	6185	65.49	6180	6527	106	1203\%	14.0\%	64,079	11203\%	8
UNIEDHEALTH GP	UNH	5495	5051	5629	50.76	54.46	48.49	5258	003	1611\%	16.2\%	72.980	116.14\%	15
UNIVISION COMMS 'A'	UVN	3609	3570	35.97	35.42	3555	3528	35.67	000	1300\%	13.0\%	8.985	11300\%	1
UNUM GROUP	UNM	22.88	2089	2225	1979	2093	1990	2111	030	1000\%	\$17\%	7.264	11000\%	7
US BANCORP	USB	36.84	3477	36.29	35.01	3685	33.45	3554	160	909\%	44.4\%	62.285	10909\%	10
US STEEL	X	9495	8255	84.18	6883	7901	7122	80.12	080	500\%	6.1\%	10.190	10500\%	3
UST	UST	6117	5748	58.81	5553	5949	5496	5791	240	700\%	117\%	9.046	10700\%	3
$V F$	VFC	80.97	7464	8329	73.59	83.10	76.92	78.75	220	9.67\%	12.8\%	8,913	109.67\%	9
VALEROENERGY	VLO	59.67	5462	54.46	4766	5709	50.90	5407	0.48	310\%	4\%\%	34.434	103.10\%	1
VARIAN MED SYS	VAR	50.05	45.85	5021	4401	50.80	46.77	4795	000	1583\%	15.8\%	5.780	115.83\%	6
VERISIGN	VRSN	26.78	24.72	2479	2292	26.00	23.99	2487	000	1563\%	45.6\%	5.984	11563\%	8
VERIZON COMMS	VZ	38.77	3583	3868	36.48	3754	34.43	3697	162	519\%	10.1\%	106.504	10519%	14
VIACOM 'B'	VIAB	41.47	38.05	4261	3966	4113	3750	4007	000	1380\%	73 6%	24.986	11380%	12
VORNADO REALTY TST	VNO	136.55	120.94	126.25	11629	13135	119.65	125.17	3.40	800\%	11\%	17.273	10800\%	1
VULCAN MATERIALS	VMC	125.79	10233	10283	8727	9200	8674	9949	184	1133\%	135\%	11.125	11133\%	3
WACHOVIA	WB	5880	5440	5757	5562	5767	53.63	56.28	224	9.19\%	138\%	86.602	10919\%	14
WAL MART STORES	WMT	5042	4744	4878	4651	46.89	4480	47.47	067	1256\%	142\%	199.273	11256\%	16
WALGREEN	WAG	46.49	43.39	46.69	44.80	4728	40.05	4478	031	1550\%	10.3\%	44.197	11550\%	11
WALT DISNEY	DIS	36.09	3265	3597	33.95	3489	3276	3439	031	1359\%	147\%	70.224	11359\%	12
WASHINGTON MUTUAL	WM	45.60	4220	4602	43.49	46.38	43.43	4455	216	1100%	10.8\%	40.247	11100\%	8
WASTE MAN	WMI	38.70	33.45	38.07	3550	3790	3567	36.55	096	10.33\%	134\%	17.799	11033%	3

WATERS	WAT	58.61	53.03	5776	4855	5115	48.35	5291	000	15.50\%	15.5\%	5,584	115.50\%	4
WATSON PHARMS	WPI	29.43	2627	2738	2532	2733	25.28	26.84	000	15.74\%	15.7\%	2.635	115.74\%	7
WEATHERFORD INTL	WFT	4254	38.65	4165	3590	4705	4139	4120	0.00	24.20\%	24.2\%	13.641	124.20\%	5
WELLPONT	WLP	84.15	7701	79.05	73.88	78.98	75.00	78.01	000	15.05\%	15.1\%	49.031	11505\%	12
WELLS FARGO \& CO	WFC	36.36	3380	36.64	35.37	36.16	35.01	35.56	112	11 19\%	14.9\%	116,260	11119\%	16
WENDYS SINTL.	WEN	34.42	3127	3454	3268	35.33	3212	33.39	034	1259\%	13.8\%	3,697	112 59\%	11
WESTERN UNION	\#NA	23.56	2142	23.34	20.74	24.14	2192	2252	004	12.41\%	12.0\%	16.130	112.41\%	17
WEYERHAEUSER	WY	8709	74.65	76.55	70.71	75.50	6412	74.77	240	6.33\%	10.0\%	20.384	10633%	3
WHiRLPOOL	WHR	96.77	88.01	9168	83.23	8751	80.80	88.00	172	15.67\%	f01\%	6.840	11567\%	3
WHOLE FOODS MARKET	WFMI	52.43	43.17	4732	4213	49.75	46.75	46.93	072	1711\%	90.0\%	6.499	117 11\%	9
WhLIAMS COS	WMB	2871	26.46	2723	25.17	2805	2605	26.95	0.36	1725\%	18.9\%	15.642	11725\%	4
WINDSTREAM	WIN	1563	1450	15.20	13.75	14.43	1354	1451	100	233%	10.0\%	6.856	10233\%	3
WRIGLEY WILLIAM JR	WWY	53.45	48.52	5256	4954	5330	50.88	5138	116	10.42\%	13.1\%	10.772	110.42\%	9
WVETH	WVE	5100	48.52	5225	4878	5154	4805	5002	104	786%	10.2\%	65,720	10786\%	11
WYNDHAM WORLDWIDE	WYN	3562	3109	3290	2972	3339	3075	3224	0.00	1250\%	125\%	6.889	11250%	2
XCEL ENERGY	XEL	24.73	2329	2362	2278	2363	2271	23.46	0.89	5.60\%	9.9\%	9.497	10560\%	5
XEROX	XRX	18.32	1710	1730	1612	1729	1620	17.06	0.00	1175\%	118\%	16,294	11175\%	4
XLINX	XL.NX	26.79	24.08	25.04	22.68	2730	2340	2488	0.48	1628\%	187\%	8.396	11628\%	9
XLCAP 'A'	XL	74.40	6904	7280	6693	7262	70.00	70.97	152	1176\%	143\%	12.584	11176\%	10
XTOEN	XTO	53.79	4916	50.80	4386	50.94	46.45	49.17	0.48	16.79\%	18.0\%	\$8,399	116.79\%	8
YAHOO	YHOO	3284	2815	29.88	2526	2761	25.13	28.15	000	26.57\%	26.8\%	41.266	12657\%	17
YUMI BRANDS	YUM	6222	5647	60.38	5740	63.48	5782	59.63	120	1151\%	13.9\%	14.898	11151\%	12
ZMMMERHDG.	ZMH	8727	8174	85.00	76.50	79.11	7288	80.48	000	14.97\%	15.0\%	19.900	114.97\%	13
ZIONS BANCORP	210 N	8856	84.18	8495	8118	83.15	7737	83.23	156	990\%	12.1\%	9.082	10990\%	12
Market-weighted Average											14. 2%			
Simple Average											143%			

KENTUCKY-AMERICAN WATER COMPANY
 CASE NO. 2007-00143
 ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 19 of 312

Witness: Dr. James H. Vander Weide

19. RE: Vander Weide Direct Testimony, With respect to page 45, lines 11-23, please provide:
(a) All regulatory cases in which Dr. Vander Weide has provided a rate of return or cost of equity recommendation since January 1, 2000,
(b) All regulatory cases in which Dr. Vander Weide has provided a rate of return or cost of equity recommendation since January 1, 2000 using a market-value capital structure for ratemaking purposes, and
(c) Copies of the rate of return section of all rate orders in which regulatory commissions have adopted Dr. Vander Weide's market-value capital structure for ratemaking purposes.

Response:

(a) The requested data are attached.
(b) The requested data are attached.
(c) Dr. Vander Weide does not routinely receive or maintain information on the orders issued by the state commissions in the dockets in which he has testified.

For electronic version, refer to KAW_R_AGDR1\#19_061807.pdf

Kentucky-American Water Company
Response to Request No 19 (a)

COMPANY	URRISDICIION	DATE	DOCKETNO.
Duke Energy Carolinas	North Carolina	May-07	E-7 Sub 828 ct a
North Carolina Rate Bureau (homeowners)	North Carolina	Dec-06	
San Diego Gas \& Electric	FERC	Nov-06	ER27-284-600
North Carolina Rate Bureau (workers compensation)	North Carolina	Aug-0\%	
Union Electric Company $\mathrm{d} / \mathrm{b} / \mathrm{a}$ AmerenUl:	Missouri	Jun-06	ER-2007-0002
North Carolina Rate Bureau (homeowners)	North Carolina	May 06	
North Carolina Rate Burcau (dwelling fare)	North Carolina	Mar-66	
Empire District Electric Company	Missouri	Feb-06	ER-2006-0315
Verizon Maine	Maine	Dec-05	2005-155
Dominion Virginia Power	Virginia	Nov-05	PUE-2004-00048
Empire District Blectric Company	Kansas	Sep-05	05-EPDE-980-RTS
North Carolina Rate Burcau (workers comp)	North Carolina	Sep-05	
Verizon Southwest	Texas	Jul-05	29315
PG\&E Company	PERC	Jul-05	ER-05-1284
Dominion Hope	West Virginin	Jun-05	05-034-6421
Verizon New England	US District Court New Hampshire	May-05	04-CV-65-113
San Diego Gas \& Plectric	Califorrin	May-05	05-05-012
Progress Energy	Tlorida	May-05	50078
North Carolina Rate Bureau (homeowners)	North Carolina	Feb-05	
Verizon Vermon	Vermont	Fcb 05	6959
V erizon Mlorida	Florida	Jan-05	050050-1L
Verizon Ilmois	Illinois	Jan-05	00-0812
Dominion Resources	North Carolina	Sep-04	1-22 Sub 41?
Tennessec-American Water Company	Tennessee	Aug-04	04-00288
Valor Telecommunications of Texas, 1 P	New Mexico	jul-04	3405 Phase C.
PG\&E Company	California	May-04	04-05-21
Verizon Northwest	Washington	Apr-04	UT-()40788
Empire District Elcetric Company	Missouri	Apr-04	ER-2004-0570
MidAmerican Energy	South Dikota	Apr-04	NG4001
Kentueky-American Water Company	Kentucky	Aprob	200400103
Interstate Power and Iight Company	Iowa	Mar-04	RP的-04-01
Northern Natural Gas Company	HERC	Feb-04	RP(04-155-000
North Carolina Rate Bureau (iuto)	North Carolina	Feb-04	
Verizon New Jersey	New Jerscy	Jan-04	1000060356
Verizon	FCC	Jan-04	03-173. FCC: 03-224
Verizon	FCC	Dec-03	03-173, FCC. 03-224
Phillips County Telephone Company	Colorado	Nov-03	03S-3159
Verizon California Inc	California	Nov-03	R03-04-003.193-04-002
PG\&E Company	FERC	Oct-03	12R04-109-000
North Carolina Rate Bureau (homeowners)	North Carolina	Oct-03	
Allstate Insurance Company	Texas	Sep-03	2568
Verizon Northwest Inc	Washington	Jul-03	UT-023003
Empire District Electric Company	Ohlahoma	Jul-0.3	Case No PUD 200300121
Verizon Virginia Ine	FCC	Apr-03	CC-00218,00249.00251
Northern Natural Gas Company	Ferc	Apr-03	R1903-398-000
North Carolina Rate Bureu (dwelling fire)	North Carolina	Apr-03	
MidAmerican Energy	Iowa	Apr-03	RPU-03-1, WRU-03-25-156
PG\&E Company	FIERC	Mar-03	ER03666000
Verizon North	Indiana	F\%b-03	42259
San Diego Gas \& Electric	HERC	$\mathrm{Feb}-63$	ER03-601000
Verizon Morida Inc	Florida	Feb-03	981834-TP/900321-1P
PG\&E Company	Herc	Jan-03	ER03409000
North Carolina Rate Burcau (auto)	Nortis Carolina	Jan-03	
Verizon New England Ine New Hampshire	New Hampshire	Dec-02	DT 02-110)

PG\&EE Company
Verizon Northwest
MidAmerican Energy
North Carolina Rate Bureau (workers comp)
Verizon Michigan
Verizon New England Inc New Hampshire PG\&E Company
Verizon New England Ine Rhode Island
Verizon New England Ine Massachusetts
MidAmerican Energy Company
North Carolina Rate Burcau (homeowners)
North Carolina Natural Gas Company
North Carolina Rate Burcau (auto)
Verizon lennsylvania
PG\&E Company
Verizon florida
Verizon Delaware
Florida Power Corporation
North Carolina Rate Bureau (workers comp)
Verizon Washington DC
Sherburne County Rural Telephone Company Verizon Virginia
Verizon Maryland
Verizon Massachusetts
North Carolina Rate Burenu (auto)
PG\&E Company
Verizon New York
PG\&E Company
Verizon New Jersey
North Carolina Rate Burenu (workers comp)
Verizon New Jersey
PG\&E Company
Vcrizon New York
PG\&E Company
PG\&E Company
PG\&E Company
Bell Athantic
USTA

California	Dec-02
Washington	Dec-02
lowa	Nov-02
North Carolina	Sep-02
US District Court Eastem District of Mic	Scp-02
New Hampshire	Aug-02
Califormia	May-02
Rhode Island	May-02
FC.	May-02
lowa	Mar-02
North Carolina	Mar-02
North Carolina	Feb-02
North Carolina	Jan-02
Pennsylvania	Dec-01
FERC	Nov-01
Florida	Nov-01
Delaware	Oct-01
Florida	Sep-01
North Carolina	Scp-01
Washington, DC	Jul-01
Minnesota	Jul-(0)
F CC	Jul-01
Maryland	May-()1
Massachusetts	May-01
North Carolina	Apr-01
FERC	Mar-01
New York	Oct-00
FIERC	Oct-(0)
New Jersey	Oct-00
North Carolina	Sep-00)
New Jersey	Sep-00
California	Aug.00
New York	Jui-00
California	May-00
FERC	Mar-00
PERC	Mar-00
New York	Feb-00
PCC	Jan-00

```
UT 020406
RPU-(02-10
```

Civil Action No 00-7320B
DI 02.110
A 02-05-022 er al
Docket No 2681
EB 02 MD 006 RPU 022

G21 Sul 424

R-00016683 ER0166000 99064B-TP
96-324 Phase II $000824-\mathrm{EJ}$

962
P427/Cl-00-712
CC-00218,00249,00251

8879

DTE 01-20

IER011630000)
98-C-1357
ER0166000)
TO00060356

1099120034
00-05-018
98-C.-1357
00.05-013

EROO-66-000)
ER99-4323-000
98-C-1357
94-1. $96-262$

Kentucky-American Water Company
Response to Request No 19 (b)

COMPANY	JURISDICIION	DATE	DOCKEINO.
Duke Energy Carolinas	North Carolina	May-07	E-7 Sub 828 ct al
Sm Diego Gas \& Electric	MERC	Noval	ER07-284-000
Union Electric Company d/b/a Amerenue	Missouri	Jun-06	ER-2007-0002
Empire District Electric Company	Missouri	$\mathrm{Feb}-0 \mathrm{O}$	ER-2006-0315
Verizon Maine	Maine	Dec-05	2005-155
Dominion Virginia Power	Virginia	Nov-15	PUE-2004-00048
Empire District Electric Company	Kansas	Sep-05	05-EPDE-980-RTS
Verizon Southwest	Texas	Jul-05	20315
PG\&EC Company	FERC	Jul-05	DR-05-1284
Dominion Hope	West Virginia	Jun-05	05-034-G42-1
Verizon New England	US District Court ${ }^{\text {N }}$	May-05	$04-\mathrm{CV}-65-\mathrm{PB}$
San Diego Gas \& Electric	California	May-05	05-05-012
Progress Energy	Florida	May-05	50078
Verizon Vermont	Vermont	Feb-05	6951
Verizon Florida	Florida	Jan-05	050059 T
Verizon Illinois	Ilinois	Jan-05	00-0812
Dominion Resources	North Carolina	Sep-04	E-22 Sub 412
Valor Ielecommunications of Texas, I. P	New Mexico	Jul-04	3495 Phase C
PG\&E Company	Californa	May-04	04-05-21
Verizon Northwest	Washington	Apr-04	UT-040788
Empire District Electric Company	Missouri	Aprof	ER-2004-0570
Midntmerican Energy	South Dakota	Apr-04	NG4-001
Verizon New Jerscy	New Jersey	Jand 04	TO00060356
Verizon	FCC	Jan 04	03-173, FCC, 03-224
Verizon	FCC	Dec-03	03-173, FCC, 03-224
Verizon California Ine	Callformia	Nov-03	R03-04-003.193-04-002
PG\&E Company	FERC	Oct-03	ERO4-109-000
Verizon Northwest Inc	Washington	Jul-03	U1-023003
Verizon Virgina Inc	FCC	Apr-03	CC-00218,00249.00251
PG\&E Company	FERC	Mar-03	ER03666000
Verizon North	Indiana	Teb-03	42250
San Diego Gas \& Eilcetric	Ferc	Feb-03	ER03-601000
Verizon Florida Ine	Florida	Feb-03	981834-TP/900321-TP
PG\&E Company	FERC	Jan 03	ER03409000
Verizon New lenghand Inc New Hampshire	New Hampshire	Dec-02	DI 02-110
Verizon Northwest	Washington	Dec-02	U1 020406
Verizon Michigan	US District Courl Et	Sep-02	Civil Action No 00-73208
Verizon New lengland Inc New Hampshire	New Hamphire	Aug-02	DT 02-110
Verizon New England Inc Rhode lsland	Rhode Island	May-02	Docket No 2681
Verizon New Eingland Inc Massachusetts	FCC	May-02	EB 02 MD 006
V Vrizon Pennsyluania	Pennsylvania	Dec-01	R-00016683
Verizon Florida	Florida	Nov-01	$99064 \mathrm{~B}-\mathrm{TP}$
Verizon Delaware	Delaware	Oct-01	96-324 Phase Il
Verizon Washington DC	Washington, DC	Jul-01	962
Verizon Virginin	PC,	Jul-01	CC-00218.00249,00251
Verizon Margland	Maryland	May-01	8879
Verizon Massachusetts	Massachusetts	May-01	DTE 01-20
Verizon New York	New York	Oct-00	98-C.1357
Verizon New Jersey	New Jersey	Oct-00	TO00060356
Verizon New Jerscy	New Jersey	Sep-00	TO99120934
Verizon New York	New York	Jul-00	98-C-1357
Bell Athntic	New York	F「cb-00	98-C.-1357
USTA	PCC	Jan-00	94-1, 96-262

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 20 of 312

Witness: Dr. James H. Vander Weide

20. RE: Vander Weide Direct Testimony. Please provide an electronic version (Microsoft Excel) of the following Schedules, with all data and equations left intact: Schedules 1, 2, $3,4,5,6,7,8$, and 9 .

Response:

Please refer to electronic file KAW_R_AGDR1\#20_061807.xls for the requested data.
For electronic version of this document, refer to KAW_R_AGDR1\#20_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 21 of 312

Witness: Michael A. Miller

21. RE: Mike Miller Direct Testimony. With respect to Exhibit MAM-3, please provide:
(a) All data, work papers, and copies of source documents used in the development of the capitalization amounts (13 Month Average Amounts, and adjustments as reflected in the Add (1) column, and
(b) An electronic version (Microsoft Excel) of Exhibit MAM-3, and all supporting Schedules and work papers used to determine the 13-month capitalization amounts, with all data and equations left intact.

Response:

(a) Please see the schedules attached which include the Business Plan numbers that were the beginning basis for the rate filing (adjusted as required for more recent data included in the rate filing, the Value Line Publication of Feb. 23, 2007 and the detailed pages from Exhibit 37, Schedule J which also were part of the original filing in this case). The Add (1) column is the ITC which the Commission has historically recognized in the capital structure used to determine fair and reasonable rates.
(b) Exhibit MAM-3 is the 13 month average capital structure taken from Exhibit 37, Schedule J. The electronic version of this file is KAW_AGDR1\#21b_Exhibit_ MAM3.061807.xls.

For electronic version, refer to KAW_R_AGDR1\#21_061807.pdf
CAPITAL STRUCTURE AFTER FINANCING:

KAW__R_AGDR1\#21_061807
Page 2 of 37

	${ }^{2087}$	SAN	FEB	MAR	APR	MAY	Jun	SㄴL	$\triangle \mathrm{LuG}$	SEP	OCT	NOV	2008
LONG TERM DEET (Bands)	99,900,000	99,300,000	99,900,000	106,800,000	106,800,000	106,800,000	105,800,000	106,800,000	106,800,000	106,800,000	123,800,000	123,800,000	123,800,000
PREFERRED STOCK (Prafered)	5,966,700	5,956,700	5,966,700	5,965,700	5,966,700	5,966,700	5,965,700	5,966,700	5,966,700	5,966,700	5,966,700	5,866,700	5,966,700
SHORT TERM DEET (SCh.3.L46)	7,444,309	t0,902,539	12,387,610	820,446	820,445	4,007,270	$9,206,224$	13,632,482	17,254,649	23,081,291	350,408	1,439,023	$4,233,628$
COMMON EQUITY (Sch.6.173)	83,550,955	83,.80, 289	84,207,515	87,475,794	88,903,, 28	89,407,769	89,133, 176	90,212,302	91,347,610	${ }_{91,359,997}$	97,404,557	90,257,453	97,443,389
	$\stackrel{\text { 196.781,954 }}{ }$	200.577 .528	202.461 .825	201,052.940	$202,490.974$	205.181 .739	211,05.100	216.611,484	221.366 .859	227,207,888	227.521 .645	229.683 .176	231,443.777
\% Of total													
LONG TERM DEET	50.8\%	49.8\%	49.3\%	53.7\%	52.7\%	51.\%	50.5\%	49.3\%	48.2\%	47.0\%	54.4\%	54.0%	53.5\%
PREFERRED STOCK	3.0\%	3.0\%	2.9\%	3.05	2.9\%	2.9\%	2.8\%	2.8\%	2.7\%	2.6\%	2.6\%	2.6\%	2.5\%
Short term debt	3.8\%	5.4\%	6.15	0.4\%	0.4\%	1.9\%	4.4%	6.3\%	7.8\%	10.2\%	0.2\%	0.6\%	1.8\%
COMMON EQUITY	42.4\%	41.8\%	41.6\%	43.5\%	43.9\%	43.4%	42.2\%	41.6%	41.3\%	40.2\%	42.85	42.85	42.1\%
	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	1000\%	10008	100.0\%	100.0\%	100.0\%	1000\%	100.0\%	100.0\%
Varance													
LONG TERM DEBT (Bonds)		0		8,900,000				0	0	0	47,000,000		
PREFERRED STOCK (Prefered)		0	0		0	0	0	0	0	0	1,90, 0	0	0
SHORT TERM DEET (SCh.3.146)		3,488,230	1,455,071	(11,557,164)	0	3,186,824	5,198,954	4,426,258	3,622,167	5,826,642	[22,730,883)	1,088,615	2,794,605
COMMON EQUITY (SCh.6, L73)		303,334	${ }_{403.226}$	3.268.279	1.478.034	503,941	(1274.593)	1,079,175	1.135,308	12.287	6,044.640	852,916	(814,064)
	0	3.791.564	1.888.297	(1,398.885)	1,4288.034	3.690,765	4.924,361	5,505.384	4.757.475	5.838.929	313.757	1.941.531	1.980.541
Now Fiancings													
Debt $\quad 6.30 \%$				10,000,000							17,000,000		
Equity				5,000,000							5.000,000		
Total Fiancings	0	0	0	15,000,000	0	0	0	0	0	0	22.000.000	0	0
				(3,100.000)									
	0	0	0	(3.100.000)	0	0	0	0	0	0	0	0	0
Net	0	0	0	11,900,000	0	0	0	0	0	0	22,000,000	0	0

PAGES 4849-4864
File in page order in the Selection \& Opinion binder

PARI 2
Selection \mathcal{E} Opinion
FEBRUARY23, 2007

Dear Subscribers,
As part of our ongoing efforts to keep The Value Line Investment Survey the most valuable investment resource for our subscribers, the entire service is now being released on the Value Line Web Site at 8:00 A.M. Eastern Time on Mondays. You can access each week's issue at www.valueline.com by entering your user name and password. We look forward to continuing to provide you with accurate and timely investment research. Thank you.
 The Quarterly Economic Review

In This Issue
The Quarterly Economic Review 4849
Vaiue Line Forecast for the U.S. Economy 4850

Stock Highlight	4855
Investors' Datebook: March, 2007	4856
Stocks for Long-Term Gains	4857
Closing Stock Market Averages	4857
As Of Press Time	485
Model Portfolios: Recent Developments	4858
Equity Funds Average Performance	4860
Fixed-Income Funds Average Performance 4860	
Selected Yields	4861
Federal Reserve Data	4861
Tracking the Economy	4862
Major Insider Transactions	4862
Market Monitor	4863
Value Line Asset Allocation Model	4863
Industry Price Performance	4863
Changes in Financial Strength Ratings	4863
Stock Market Averages	4864

The Selection \& Opinion Index appears on
page 4992 (December I, 2006).
In Three Parts: Part 1 is the Summary \& Index.
This is Part 2, Selection \& Opinion. Part 3 is
Ratings \& Reports. Volume LXII, Number 26.
Pudlished week by VALUE UNE FUGESHItiG, ING.
220 East 42 nd Street. Nen Yak, HY 10017 5891
O 2007, Vaue the Pudistrixg, Itc. All rights meserved Factual materiad is o thinod from sourcos beriend to bo reablo and is provided withon warmaties o any kind. THE FUELISHER IS NOT RESPONSTELE FOR ANY ERAORS OR

 starget of tarsmited in any printed, eectronic of elher form, of used for generalingor mankeing any printed or electronic pritbation, 5 ervicn or product. Officers,
 cartain invesment companies or ifrestment adviscry accounts lor which Vahia
 mended in tils petrication. Nothing herein shoukibe construed as an etter bo bery or sell securibes or to gind indridatal investment advice.
See bock cover for mportant diselosuras.

ECONOMIC AND STOCK MARKET COMMENTARY

Three months ago, in our last Quarterly Economic Review, we noted that the U.S. economy had slowed abruptly during the middle of 2006, with the rate of business growth moderating from 5.6% in the opening quarter to just 2.6% in the April-to-June period. We then added that this more restrained pace of U.S. economic activity was likely to be the rule over the final six months. That observation was true enough for the third quarter, when the nation's gross domestic product growth moderated somewhat further to 2.0%. However, the economy then showed surprising strength in the fourth quarter as a solid rise in consumer spending helped drive the nation's gross domestic product forward by a solid 3.5%. (Note that this was the initial estimate for fourth-quarter GDP. A revision in the figures, which could very well be downward, is due out on February 28th.) We expect growth to move onto a more measured, but still healthy, 2.5% 30% path during the current three months. Once more, the consumer is likely to play a decisive role in this prospective improvement, with some recent reported strength in consumer confidence being indicative of the current
good news coming out of this critical sector. Recent gains in nonmanufacturing, a relatively good showing on the employment front (where non-farm payroll growth has averaged 168,000 a month over the past six months), and a firming up in factory orders are added reasons for optimism at this time.

We expect the economy to move forward over the balance of 2007 . Once again, we probably will get the cooperation of the U.S. consumer (who accounts for about two-thirds of total GDP). That vital support should be sustained by further likely gains in personal income and employment, resilience in consumer confidence, recent moderation in heating oil and gasoline prices, and a recently strong stock market. Weakness in housing is likely to continue; although the sharp drop in housing demand-which some are still forecast-ing-may not take place. The reasons are that mortgage rates remain too low and personal income is still too high for a housing collapse, in our view. Our sense is that economic growth will average $2.5 \%-3.0 \%$ in 2007 . That pace should be

Continued on page 4852

VALUE LINE FORECAST FOR THE U.S. ECONOMY Statistical Summary for 2006-2008										
	2006:3	2006:4	$2007: 1$	2007:2	2007:3	2007:4	2008:1	2008:2	2007	2008
GDP AND OTHER KEY MEASURES										
Real Gross Domestic Product	11444	11542	11619	11697	11781	11868	11956	12045	11741	12093
Total Light Vehicle Sales (Mill Units)) 166	16.3	16.4	16.4	16.5	16.5	16.6	16.6	16.4	16.7
Housing Start (Million Units)	171	1.56	1.58	1.55	1.55	1.57	1.58	1.58	1.56	1.60
Corporate Economic Profits (\$Bill)	1653	1659	1726	1719	1752	1742	1830	1839	1735	1839
ANNUALIZED RATES OF CHANGE										
Gross Domestic Product (Real)	20	3.5	27	2.7	2.9	30	3.0	30	2.8	3.0
GOP Deflator	19	1.5	2.5	23	2.1	2.0	2.0	21	2.2	2.1
CPI-All Urban Consumers	29	-2.2	2.0	2.4	2.5	23	2.3	22	2.3	23
AVERAGE FOR THE PERIOD										
National Unemployment Rate	47	4.5	4.6	4.6	4.6	4.7	4.7	4.7	4.6	4.7
Prime Rate	82	8.2	8.3	8.3	8.3	8.2	8.0	8.0	8.3	8.0
10-Year Treasury Note Rate	4.9	4.6	4.8	4.8	4.9	4.9	5.0	5.0	4.8	5.1

Value Line Forecast for the U.S. Economy

	ACTUAL	ESTIMATED						
	2006:3	2006:4	2007:1	2007:2	2007:3	2007:4	2008:1	2008:2
GROSS DOMESTIC PRODUCT AND ITS COMPONENTS (2000 CHAIN WEIGHTED $\$$) BILLIONS OF DOLLARS								
Final Sales	11382	11500	11571	11651	11738	11825	11918	12010
Total Consumption	8111	8199	8266	8325	8383	8443	8506	8569
Nonresidential Fixed Investment	1334	1333	1356	1382	1399	1413	1427	1443
Structures	282	284	291	299	303	304	305	307
Equipment \& Software	1061	1056	1071	1090	1108	1125	1140	1154
Residential Fixed Investment	570	541	519	503	495	493	497	501
Exports	1310	1342	1366	1394	1422	1452	1482	1512
Imports	1939	1923	1956	1974	1996	2019	2040	2058
Federal Government	739	747	753	757	764	767	769	771
State \& Local Governments	1260	1270	1279	1283	1290	1297	1302	1307
Gross Domestic Product	13323	13487	13671	13834	13998	14167	14343	14517
Real GDP (2000 Chain Weighted \$)	11444	11542	11619	11697	11781	11868	11956	12045
Prices and wages-ANNuAL rates of change								
GDP Deflator	1.9	1.5	2.5	2.3	2.1	2.0	2.0	2.1
CPI-All Urban Consumers	2.9	-2.2	2.0	2.4	2.5	23	2.3	2.2
PPI-Finished Goods	02	-3.3	3.0	2.0	2.3	2.2	2.2	2.3
Employment Cost Index-Total Comp	36	32	3.0	3.0	3.1	3.1	3.2	3.2
Productivity	-0.1	3.0	2.0	2.2	2.2	2.0	20	2.2
PRODUCTION AND OTHER KEY MEASURES								
Industrial Prod (\% Change, Annualized)	4.0	-0.5	0.5	2.3	2.0	20	2.1	2.3
Factory Operating Rate (\%)	80.9	80.2	80.0	80.0	80.0	79.9	79.8	80.0
Nonfarm Inven Change (2000 Chain Weighted \$)	533	33.4	34.9	34.2	23.6	28.7	22.7	25.3
Housing Starts (Mill Units)	1.71	1.56	1.58	1.55	1.55	1.57	1.58	1.58
Existing House Sales (Mill Units)	628	6.24	6.25	6.15	6.00	5.90	5.90	5.95
Total Light Vehicle Sales (Mill. Units)	16.6	16.3	16.4	16.4	16.5	16.5	16.6	16.6
National Unemployment Rate (\%)	4.7	4.5	4.6	4.6	4.6	4.7	4.7	4.7
Federal Budget Surplus (Unified, FY, \$Bill)	-41.7	-80.4	-130.0	45.0	-55.0	-75.0	-125.0	15.0
Price of Oil (\$Bbl, U S. Refiners' Cost)	65.12	54,66	54.25	57.00	55.75	56.00	56.50	55.75
MONEY AND INTEREST RATES								
3-Month Treasury Bill Rate (\%)	4.9	4.9	5.0	5.0	4.9	4.9	4.9	4.9
Federal Funds Rate (\%)	5.2	5.2	5.3	5.3	5.3	5.2	5.0	5.0
10-Year Treasury Note Rate (\%)	4.9	4.6	4.8	4.8	4.9	4.9	5.0	5.0
Long-Term Treasury Bond Rate (\%)	5.0	4.7	4.9	4.9	5.0	5.1	5.1	5.2
AAA Corporate Bond Rate (\%)	57	5.4	5.4	5.4	5.5	5.6	5.7	5.7
Prime Rate (\%)	8.2	8.2	8.3	8.3	8.3	8.2	8.0	8.0
INCOMES								
Personal Income (Annualized \% Change)	5.9	4.9	6.0	6.0	5.7	5.5	5.6	5.7
Real Disp Inc (Annualized \% Change)	4.1	5.4	4.5	4.0	3.5	3.7	3.8	4.0
Personal Savings Rate (\%)	-12	-1.0	-0.8	-0.7	-0.6	-0.5	-0.4	-0.1
Corporate Economic Profits (Annualized \$Bill)	1653	1659	1726	1719	1752	1742	1830	1839
Yr-to-Yr \% Change	30.6	19.1	10.0	8.0	6.0	5.0	6.0	7.0
COMPOSITION OF REAL GDP-ANNUAL RATES OF CHANGE								
Gross Domestic Product	2.0	3.5	2.7	2.7	2.9	3.0	3.0	3.0
Final Sales	1.9	4.2	2.5	2.8	3.0	3.0	3.2	3.1
Total Consumption	2.8	4.4	3.3	2.9	2.8	2.9	3.0	3.0
Nonresidential Fixed Investment	10.0	-0.4	7.0	8.0	5.0	4.0	4.0	4.5
Structures	15.7	2.8	10.0	12.0	5.0	1.0	2.0	3.0
Equipment \& Software	77	-1.8	6.0	7.0	7.0	6.0	5.5	5.0
Residential Fixed Investment	-186	-19.2	-15.0	-12.0	-6.0	-2.0	3.0	4.0
Exports	6.8	10.0	7.5	8.4	8.3	8.6	8.5	8.4
Imports	5.6	-3.2	7.0	3.7	4.6	4.7	4.3	3.6
Federal Government	13	4.5	3.3	2.3	3.3	1.6	1.1	1.0
State \& Local Governments	1.9	3.3	2.8	1.4	2.1	2.2	1.5	1.5
Q2007. Vafue Line Putbisting, inc. All rights teserved. Factual malenial is obtained fom sources believed to be reliable and is provided without warranties of any kind. THE PHELSHER - IS NOT RESPONSBLE FOR ANY ERFORS OR OMISSIONS HEREIN. This publicationIS strictly for subscriber's Own, non-commerciat, inlernal use No part of il may be reproduced, resold, stored of transmilted in any printed, electronic or other form. or used for generating or matkeling any printod or electronic publication. service or product								

Value Line Forecast for the U.S. Economy

	ACTUAL				ESTIMATED					
	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
GROSS DOMESTIC PRODUCT AND ITS COMPONENTS (2000 CHAIN WEIGHTED $\$$) BILLIONS OF DOLLARS										
Final Sales	10036	10285	10648	11025	11370	11696	12047	12421	12806	13215
Total Consumption	7099	7295	7577	7841	8092	8354	8605	8872	9155	9458
Nonresidential Fixed Investment	1072	1082	1146	1224	1315	1387	1447	1512	1573	1640
Structures	254	244	249	252	274	299	305	308	314	322
Equipment \& Software	820	843	904	985	1051	1099	1164	1240	1315	1407
Residential Fixed Investment	470	509	560	608	582	503	518	536	563	602
Exports	1013	1026	1120	1196	1302	1409	1530	1665	1798	1924
Imports	1485	1545	1711	1815	1920	1986	2073	2185	2308	2437
Federal Government	643	687	717	728	742	760	771	770	774	772
State \& Local Governments	1216	1218	1224	1230	1257	1287	1309	1327	1343	1359
Gross Domestic Product	10470	10961	11712	12456	13254	13916	14613	15379	16193	17080
Real GDP (2000 Chain Weighted \$)	10049	10301	10704	11049	11422	11741	12093	12480	12880	13305
PRICES AND WAGES-ANNUAL RATES OF CHANGE										
GDP Deflator	17	2.1	28	30	2.9	22	2.1	2.1	2.2	2.3
CPI-All Urban Consumers	1.6	2.3	27	3.4	32	2.3	2.3	2.4	2.4	2.5
PPI-Finished Goods	-13	3.2	36	4.9	2.9	2.4	2.5	2.3	2.2	2.3
Employment Cost Index-Total Comp.	38	3.8	38	31	2.9	31	3.3	3.4	3.5	3.6
Productivity	43	3.9	3.4	2.7	2.1	2.1	2.2	2.2	2.3	23
PRODUCTION AND OTHER KEY MEASURES										
Industrial Prod (\% Change)	. 03	06	4.1	3.2	4.1	1.8	2.2	2.5	2.6	2.7
Factory Operating Rate (\%)	735	737	771	78.9	80.4	80.0	79.8	79.9	80.0	80.2
Nonfarm Inven. Change (2000 Chain Weighted \$)	152	140	470	19.6	4.3 .9	45.0	30.0	40.0	42.0	45.0
Housing Starts (Mill. Units)	1.71	185	1.95	2.07	1.82	1.56	1.60	1.65	1.75	1.85
Existing House Sales (Mill. Units)	565	6.18	672	706	6.50	6.08	5.95	6.00	6.20	6.40
Total Light Vehicle Sales (Mill. Units)	16.8	16.6	169	16.9	16.5	16.5	16.7	16.8	17.0	17.3
National Unemployment Rate (\%)	5.8	6.0	5.5	5.1	4.6	4.6	4.7	4.7	4.7	4.6
Federal Budget Surplus (Unified, FY, \$Bill)	-1578	-3770	-4130	-318.0	-248.0	-260.0	-230.0	-225.0	-195.0	-145.0
Price of Oil (\$Bbl, U S Refiners' Cost)	24.00	28.60	3691	50.31	60.12	55.75	56.00	56.00	53.00	50.00
MONEY AND INTEREST RATES										
3-Month Treasury Bill Rate (\%)	1.6	10	1.4	3.1	4.7	5.0	4.9	4.9	5.0	5.1
Federal Funds Rate (\%)	17	1.1	14	32	5.0	5.3	5.0	5.2	5.3	5.5
10-Year Treasury Note Rate (\%)	4.6	40	43	43	4.8	4.9	5.1	5.3	5.5	5.6
Long-Term Treasury Bond Rate (\%)	5.4	5.0	5.1	46	4.9	5.0	5.2	5.5	5.7	5.8
AAA Corporate Bond Rate (\%)	6.5	5.7	56	52	5.6	5.5	5.8	6.2	6.4	6.5
Prime Rate (\%)	4.7	4.1	43	6.2	8.0	8.3	8.0	8.0	8.2	8.3
INCOMES										
Personal income (\% Change)	18	32	6.2	52	6.4	5.8	5.7	5.0	5.8	6.0
Real Disp. Inc. (\% Change)	3.1	2.2	36	1.2	2.7	3.9	3.5	3.7	3.6	3.5
Personal Savings Rate (\%)	24	2.1	2.0	-0.4	-7.0	-0.7	-0.2	0.4	0.8	1.0
Corporate Economic Profits (\$Bili)	886	993	1183	1331	1618	1735	1839	1931	2066	2231
Yr-to-Yr \% Change	15.5	12.1	191	12.5	21.6	7.2	6.0	5.0	7 n 0	8.0
COMPOSITION OF REAL GDP-ANNUAL RATES OF CHANGE										
Gross Domestic Product	16	2.5	39	3.2	3.4	2.8	3.0	3.2	3.2	3.3
Final Sales	12	25	3.5	35	3.1	2.9	3.0	3.1	3.1	3.2
Total Consumption	2.7	2.8	3.9	35	3.2	3.2	3.0	3.1	3.2	3.3
Nonresidential Fixed Investment	-9.2	10	5.9	6.8	7.4	5.5	4.3	4.5	4.0	4.3
Structures	-17.0	-4.1	22	1.1	9.1	9.2	2.0	1.0	2.0	2.5
Equipment \& Software	-6.2	2.8	73	8.9	6.7	4.5	6.0	6.5	6.0	7.0
Residential Fixed investment	49	84	99	86	-4.2	-13,6	3.0	3.5	5.0	70
Exports	-2.3	13	92	68	8.9	8.2	8.6	8.8	8.0	7.0
Imports	3.4	4.1	10.8	61	5.8	3.4	4.4	5.4	5.6	5.6
Federal Covernment	70	6.8	4.3	1.5	2.0	2.4	1.4	-0.1	0.5	-0.2
State \& Local Governments	31	0.2	0.5	05	2.1	2.4	1.7	1.4	1.2	1.2

KENTUCKY-AMERICAN WATER COMPANY
CASE NO: 2007-00143
COST OF CAPITAL SUMMARY AT CURRENT AND PROPOSED RATES
i3 MONTH AVERAGE

13 Month Average Amount	\% of Tolal	Add (1)	Adjusted Capital	Cost Rate	Average Weighted Cos:
\$8,036,966	3.889\% S	42.153	\$8,079,119	5.250\%	0.20\%
103,387,163	50.031\%	542,282	103,929,445	6.580\%	3.29\%
5,944,726	2.877\%	31.184	5,975,910	7.750\%	0.22\%
89,276,928	43.203\%	468,274	39,745,202	11.400\%	4.93\%
\$206,645,783	100.000\% 5	1,083,893	\$207.729.676		8.64\%

 $\begin{array}{lllll}\mathbf{\$ 2 0 6 , 6 4 5 , 7 8 3}-100.000 \% & \$ 1,083,893 \quad \$ 207.729 .670\end{array}$
Average
Weighted
Cost
$\xlongequal{\$ \quad 1,083,892}$ DATE OF CAPITAL STRUCTURE: AVERAGE FOR FORECASTED PERIOD
TYPE OF FILING; X_ORIGINAL_UPDATED _ REVISED
WORKPAPER REFERENCE NO(S).: WIP-7
Class of \qquad (1) JDITC:
Class of
Capital

(1) Jottc.

Page 11 of 37
DATA: BASE PERIOD_X_FORECASTED PERIOD TYPE OF FILING:_X_ORIGINAL__ UPDATED_REVISED
WORKPAPER REFERENGE NOIS): WIP-T

KENTUCKY-AMERICAN WATER COMPANY
EMEEDDED COST OF LONG-TERM DEET
November 30,2008
DATA: X_ BASE PERIOD_FORECASTED PERIOD
DATE OF CAPITAL STRUCTURE: AS OF END OF BASE PERIOD
TYPE OF FILING: X_ORIGINAL_ UPDATED REVISED
TYPE OF FILING: _X_ORIGINAL__UPDATED__REVISED
WORKPAPER REFERENCE NO(S).: WIP-7

Page 13 of 37

Page 14 of 37
DATA: _ X BASE PERIOD_FORECASTED PERIOD
DATE OF CAPITAL STRUCTURE: AS OF END OF BASE PERIOD
TYPE OF FILING: _ ORIGINAL__ UPDATED ___ REVISED
KENTUCKY-AMERICAN WATER COMPANY
CASE NO: 2007-00143
EMBEDDED COST OF PREFERRED STOCK
AS OF JULY 31, 2007

KENTUCKY-AMERICAN WATER COMPANY
LONG TERM DEET

KENTUCKY-AMERICAN WATER COMPANY
LONG TERM DEBT

$\begin{gathered} \text { Line } \\ \substack{\mathrm{No}} \\ \hline \end{gathered}$	Debtissue Type \& Rale	$\begin{gathered} \text { Inicerest } \\ \text { Rale } \\ \hline \end{gathered}$	Balance @	Bulance (1) Feb. 2008	Balance (1) Mar-2008	Balance © Apr- 2008	Balance © May-2008	Balance (1) Jun-2008	Batance (@) Jur-200B	Balance (a) Aug-2008	Balance (1) Sep-2008	Balance (a) Oct-2008	Batanct (1) Nov-2009	13 Month Average		
1																
3	general mortgage bonds															
5	Senes 6.87%	6.870\%	\$2,400,000	12,400,000	9,300,000	9,300,000	9,300,000	9,300.000	9,300,000	9,300,000	9,300,000	9,300,000	9,300,000	10,253,846		
6	Series 6.96\%	6.960\%	7,000,000	7,000,000	7.000 .000	7,000,000	7,000,000	7,000,000	7,000,000	7,000,000	$7.000,000$	7.000,000	7,000.000	,000,000		
7	Saries 7.15\%	7.150\%	7,500,000	7,500,000	7,500,000	7,500,000	7.500,000	7,500.000	$7,500,000$	$7.500,000$	00000	7,500,000	,0000			
8	Senes 6.99%	6.990\%	9,000.000	9,000,000	9,000,000	9,000,000	9,000,000	9,000,000	9,000,000	9,000,000	9,000,000	9,000,000	9,000,000	9.000,000		
9	Series 5.65\%	5.650\%														
10	Seres 4.75%	4.750\%	14,000,000	14,000.000	14,000,000	14,000,000	14,000,000	14,000,000	14,000,000	14,000,000	14,000,000	14,000,000	14,000,000	14,000,000		
${ }_{11}$	Proposed 5.81%	5.810\%	50,000,000	50,000,000	50,000,000	50,000,000	50,000,000	50,000,000	50.000,000	50,000.000	50,000,000	50,000,000	50,000,000	50,000,000		
12	Proposed 5.81\%\%	5.810\%	0	0	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10.000,000	10,000,000	10,000,000	6,923.077		
13	Proposod 5.81%	5.810\%	\bigcirc	0	\bigcirc	0	0	0	0	0	0	17,000,000	17,000,000	2.615,365		
1515																
${ }_{17}^{16}$																
18																
19																
2021																
22																
2425																
27	total															
${ }_{29}^{28}$																
$\begin{aligned} & 29 \\ & 30 \end{aligned}$																
31																
${ }_{34}^{33}$																
3536																
383838																
383940																
41 42																

KENTUCKY-AMERICAN WATER COMPANY
UNAMORTIZED DEBT EXPENSE

Line No.	Debt lssue Type \& Rate	Balance (a)	Batance (1) Feb-2007	$\begin{aligned} & \text { Balance (10) } \\ & \text { Marr2007 } \end{aligned}$	Balance (1)	Batance (1) Mav-2007	Balance (1) Jun-2007	$\begin{aligned} & \text { Eatance (1) } \\ & \text { Jut } 2007 \end{aligned}$	$\begin{aligned} & \text { Batance (a) } \\ & \text { Aug-2007 } \end{aligned}$	Balance (1) Sep-2007	$\begin{aligned} & \text { Balance (1) } \\ & \text { Ocl-2007 } \end{aligned}$	$\begin{aligned} & \text { Balance (1) } \\ & \text { Nov-2007 } \\ & \hline \end{aligned}$	Belance (1)
'													
$\stackrel{3}{3}$	general mortgage bonds												
5	Senes 6.87\%	260,390	255,182	249,974	244,766	239.558	234,350	229,142	223.934	218,726	213.518	208,310	203,102
6	Series 6.56%	39,233	39,039	38,845	38,651	38,457	38,263	38,069	37,.75	37.681	37,487	37,293	37,099
7	Series 7.15\%	48,582	48,380	48,178	47,976	47,774	47.572	47,370	47,168	46,966	46,764	46,562	46,360
8	Series 6.99\%	69,591	69.319	69.947	66,775	68.503	68.231	67.959	67.687	67.415	67.143	66.871	66.599
9	Series 5.65\%	217	163	109	55	0			0	0		0	0
10	Series 4.75\%	0	0	0	0	0	0	0	0	0	0	。	-
11	Proposed 5.81%	-	0	0		0	0	0		0	2.500.000	2,483,750	2,467.
${ }^{12}$	Proposed 5.81\%	0	0	0	0	0	0	0	0	0			
13 14	Proposed 5.81% Serios 8.5% w/o over fild of $6.95 \% / \mathrm{issu}$												
14 15	Series 8.5\% w/o over fide of 6.96\%\% issu	15706	15,628	15,550	15,472	15,394	15,316	15,238	15,160	15,082	15,004	1,926	14,848
16													
17													
${ }^{18}$	0												
19													
21	total	S $433,719 \mathrm{~s}$	${ }^{3} 427,711$	421,703	5 415,695	5409.686	5 403,732	5 397,778	$5 \quad 391.824$	5 385,870	5 2,879,916	¢ 2,857,712	2.835,508
${ }_{23}^{22}$													
${ }_{24}^{23}$													
25													
${ }^{27}$													
27 28													
29													
30													
32													
33													
${ }_{35}^{34}$													
36													
${ }_{38}^{37}$													
39													
${ }^{40}$													
${ }_{42}^{41}$													

KENTUCKY-AMERICAN WATER COMPANY
UNAMORTIZED DEBT EXPENSE

$\begin{aligned} & \text { Line } \\ & \text { No } \end{aligned}$	Debl issute Type $\&$ Rale	Batance (@ Jan-200	Balance © Feb-2008	Balance (:) Mar-2008	Balance (1)	Batance (4) May 200 B	Batance (a) Jun-2008	Balance (e) Jul-2006	Balance (1) Aug-2008	Balance (1) Sep-2008	Balance (사 Oct-2008	Balance (1)	13 Month Average
$\stackrel{1}{2}$	general mortgage bonds												
3													
5	Senes 6.87\%	197,894	192,686	187,478	192,270	177.062	171,854	166,645	161,438	156.230	151.022	145,814	177,062
6	Series 6.95\%	36,905	36,711	36.517	36,323	36.129	35,935	35,741	35.547	35,353	35,159	34,965	36,129
7	Series 7.15\%	45,158	45,956	45.754	45,552	45,350	45,148	44.946	44,744	44,542	44,340	44,138	45,350
${ }^{8}$	Senies 6.99\%	56.327	66,055	65,783	65.511	65.239	64,967	64,695	64,423	64,159	63.879	63,607	65.239
9	Series 5.65\%	0	-				0	0	0	0	0	0	0
10	Senes 4.75\%	0	0	0	0	0	0	0	0	0	\bigcirc	0	0
11	Proposed 5.81\%	2,451,250	2,435.000	2.418,750	2,402,500	2,386,250	2,370,000	2,353,750	2,337,500	2,321,250	2,305,000	2,288,750	2,386,250
12	Proposed 5.81\%	0	0	500,000	495,833	491,667	487,500	483,333	479,167	475,000	470,833	466,667	334,615
13	Proposed 5.81\%										850.000	842,083	846.042
${ }^{14}$	Seffes 8.5% wfo over fife of 6.96% issu	14,770	14,692	14,614	14,536	14,458	14,380	14,302	14,224	14,146	14,068	13,990	14,458
$\begin{aligned} & 15 \\ & 15 \end{aligned}$													
17													
18	0												
19 20													
21	total	5 2,813,304 ${ }^{\text {s }}$	5 2, 791,100	3,268,895	5 3,242,525	5 3,216,155	3,189,784	3,163,413	3,137,043	3,410,972	S 3,934, 301	$53,500,014$	3,905, 145
${ }^{23}$													
${ }_{24}$													
25													
26													
${ }_{28}^{27}$													
29													
30													
31													
${ }_{33}^{32}$													
34													
35													
36 37													
${ }_{38}$													
39													
40													
${ }_{42}^{41}$													

Line No.	$\begin{gathered} \text { Debt issue } \\ \text { Type \& } \\ \text { Rale } \end{gathered}$ Rale	Amount © Jan-2007	Amount (1) Feb-2007	Amount (e) Mar-2007	Amount (1) Apr-2007	Amount © May. 2007	Amount (1)	$\underset{\substack{\text { Amouni (1) } \\ \text { ju-2007 }}}{\substack{\text { den }}}$	Amount (1) Aub-2007	Amount © Spe-2007	$\begin{aligned} & \text { Amount (1) } \\ & \text { Oct-2007 } \end{aligned}$	Ampunt (${ }^{\text {N }}$ Nov-2007	Amount () Doc-2007
,													
3 4 4	general mortgage bonds												
5	Series 6.87\%	5.208	5,208	5.208	5.208	5,208	5.208	5.208	5,208	5.208	5,208	5.208	5.20
6	Series 6.96\%	194	194	194	194	194	194	194	194	194	194	4	194
7	Series 7.15\%	202	202	202	202	202	202	202	202	202	202	202	202
${ }^{8}$	Series 6.99%	272	272	272	272	272	272	272	272	272	272	272	272
9	Series 5.65\%	54	54	54	54	54	0	0		0	0	0	0
10	Sernes 4.75\%		0	0	0	0	0	0	0			0	15,
11	Propased 5.81\%		0	0	0	0	0	0	0	0	15.250	16.2	15,
12	Proposed 5.81\%		0	0	0	0	0	0	0	0	0	0	0
13	Proposed 5.81\%												
${ }_{15}^{14}$	Series 8.5\% wio over fifo of 5.96% issu	78	78	78	${ }^{76}$	${ }^{78}$	78	78	${ }^{78}$	78	${ }^{78}$	78	78
${ }_{16}^{15}$	\bigcirc												
17													
18	0												
19	0												
20	0												
${ }_{22}^{21}$													
23													
24	0												
25													
27	total	S 6.008	6,008	$\mathrm{s}^{6.008}$	$5 \quad 6.008$	6,008	$5 \quad 5,954$	s. 5.954	$5 \quad 5.954$	$5 \quad 5.954$	$5 \quad 22.204$	5 22,204	$5 \quad 22.204$
${ }_{29}^{28}$													
${ }_{30}^{29}$													
31													
32													
33													
34													
36													
${ }_{38}^{37}$													
39													
40													
${ }_{42}^{48}$													

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	Debt 1554 e Type 8 Ratio	Amount (1)	$\underset{\text { Fab- } 2000}{ }$	Amount © © Mar-200s	Amount (). Apr. 200 B	Amount © May-2008	Amount (e) Jun-2008	Amount © jut-2008	Amount () Aug:2008	Amount (1) Sep-2008	$\begin{aligned} & \text { Amount @ } \\ & \text { Oct-2000 } \end{aligned}$	Amount (1) Nov. 2008	$\begin{gathered} \text { Test Period } \\ \text { Tolat } \\ \hline \end{gathered}$													
2	general mortgage bonds																									
3																										
5	Series 6.87\%	5.208	5,208	5.208	5,208	5,208	5,208	5.208	5.208	5.208	5,208	5,208	62.496													
6	Series 6.95%	194	194	194	194	194	194	194	194	194	194	194	2.328													
7	Serie5 7.15%	202	202	202	202	202	202	202	202	202	202	202	2,424													
${ }^{8}$	Senes 6.99%	272	272	272	272	272	272	272	2	272	272	272	3.254													
9	Series 5.65\%										0		0													
10	Series 4.75%	0	0	0	0	0	0	0	\bigcirc	0	0	0														
11	Proposed 5.81\%	16,250	16.250	16,250	16,250	16,250	16,250	16,250	16.250	16,250	16.250	66,250	195.000													
12	Proposed 5.81%		。	4.167	4,167	4.167	4.157	4.167	4.167	4,467	4,167	4.167	37.500													
13	Proposed 5.61\%					0	0	0		0	7.917	7,917	15,833													
14 15	Series 8.5% wlo over fle of 6.965% issu	78	78	78	78	78	78	78	${ }^{76}$	${ }^{78}$	${ }^{78}$	8	${ }^{936}$													
15																										
16	0																									
17	0																									
${ }_{18}^{18}$	0																									
${ }^{19}$	\bigcirc																									
21																										
${ }_{23}^{22}$																										
$\begin{aligned} & 25 \\ & 26 \end{aligned}$																										
27	total	5 22.204	22,204	$5 \quad 26.371$	5 26,371	26,371	5 26,371	s 26, 279	26,371	$5 \quad 26.371$	$5 \quad 34,287$	34,287	319.781													
${ }_{29}^{28}$																										
30																										
31																										
${ }_{33}^{32}$																										
34																										
3536																										
3738																										
$\begin{array}{r}38 \\ 39 \\ \hline\end{array}$																										
${ }_{4}^{40}$																										
${ }_{42}^{41}$																										

Line No.	$\begin{gathered} \text { Debt Issue } \\ \text { Type \& } \\ \text { Rate } \\ \hline \end{gathered}$	Amount (1) jan-2007	$\begin{aligned} & \text { Amount (G8) } \\ & \text { Feb-2007 } \end{aligned}$	${ }_{\text {M }}$ Amount (1)	$\underset{\substack{\text { Amount (1) } \\ \text { Apr-2007 }}}{ }$	$\begin{aligned} & \text { Amounl © (9) } \\ & \text { May-2007 } \end{aligned}$	$\begin{aligned} & \text { Amount } 9 \\ & \text { Jun-2007 } \end{aligned}$	$\begin{gathered} \text { R.mount © } \\ \text { Jul } 2007 \end{gathered}$	$\begin{aligned} & \text { Amount (1) } \\ & \text { Aug-2007 } \end{aligned}$	Amount (4) $\operatorname{sep}-2007$	$\begin{aligned} & \text { Amount © } \\ & \text { Ocl-2007 } \end{aligned}$	$\underset{\substack{\text { Amportl (4) } \\ \text { Nov-2007 }}}{ }$	${ }_{\text {Dec. }}$ Amount (1)
2													
$\stackrel{3}{3}$	general mortgage bonds												
5	Seres 5.87\%	1,064,850	1,064,850	${ }^{851,880}$	851,880	851,880	851,880	851,880	${ }^{851.880}$	${ }^{851,880}$	${ }^{851,880}$	851,880	851,880
6	Series 6.96\%	487,200	487,200	487,200	487.200	487,700	487,200	487,200	487,200	487,200	487,200	487,200	487.200
7	Series 7.15\%	536,250	536,250	536,250	536.250	536,250	536,250	536.250	536,250	536,250	536,250	536.250	536,250
8	Sents 6.99\%	629,100	629,100	629,100	629,100	629,100	629,100	629,100	629,100	629,100	629,100	629,100	629,100
9	Series 5.65\%	1,356,000	1,356,000	1,356,000	1,356,000	1,356,000					0		\bigcirc
10	Series 4.75\%	665,000	665,000	665,000	665,000	665,000	665,000	655.000	665,000	665,000	665.000	665,000	665,000
11	Proposed 5.81\%	0	0	0	0	0	0		0	0	2,905,000	2.905,000	2.905,000
12	Proposed 5.81\%	0	0	0	0	0	0	0	\bigcirc	0	0	0	0
${ }_{14}^{13}$	Froposed 5.81\%	0	0	0	0	0	0	0	0	0	0	0	0
14 15													
15 16													
17													
${ }^{18}$													
20	total	S 4,739,400	4,736,400	4,525,430	4,525,430	4,525,430	3,169,430	3,169,430	$3.169,430$	3,169,430	6,074,430	6.074,430	6,074,430
21 21													
${ }^{23}$													
${ }^{24}$													
25 26													
26 27													
${ }^{28}$													
${ }_{30}^{29}$													
31													
32													
${ }_{34}^{33}$													
35													
36 37													
${ }_{38}$													
39 40													
40 42 42													

Line No.	$\begin{gathered} \text { Debi lissue } \\ \text { Type \& } \end{gathered}$ Rale	Amount (1)	$\underset{\text { Feb-2008 }}{\text { Ampun © }}$	Amount (1) Mar-2008	Amount (i) Apr-2000	Amount (1) May-2008	Amount (1) Jun-2008	Amount @ Jul-2008	Amount (1) Aug-2008	Amount (1) Sep-2008	Amount (1) Oct-2008	Amount (ic) Nav-2008	$\begin{aligned} & 13 \text { Month } \\ & \text { Average } \end{aligned}$
1													
3	general mortgage bonds												
5	Seties 6.87%	${ }^{851.880}$	${ }^{851,880}$	638.910	639,910	638,910	638.910	${ }^{638.910}$					
6	Serias 6.96%	487.200	487.200	487,200	487.200	487.200	487.200	487.200	487.200	487.200	${ }_{487,200}$	487.200	4877.200
7	Seicios 7.15\%	536.250	536,250	536.250	536.250	5356250	536.250	536,250	536.250	536.250	536.250	536.250	536.250
8	Series 6.99\%	629,100	629,100	629,100	629,100	629,100	629,100	629,100	629,100	629.100	629,100	629,100	629,100
9	Serios 5.65\%	0										0	0
10	Serios 5.75\%	665.000	665.000	665.000	665,000	665,000	665.000	665,000	665,000	865,000	665,000	665,000	665,000
11	Proposed 5.81\%	2.905,000	2,905,000	2.905.000	2,905,000	2.905.000	2,905,000	2.905.000	2.955,000	2,905,000	2,905,000	2,905,000	2,905
12	Proposed 5.81%	\bigcirc	\bigcirc	581,000	581.000	561,000	581,000	581,000	581,000	581,000	581,000	581,000	402,231
13	Proposed 5.81\%	0	。	0	0	0	0	0	0	0	987,700	987,700	151,954
15 16													
17													
${ }^{18}$													
20	total	56	6.074.	6.442.460	6.442.460	6.442.460	6.442.460	6.442.460	6.442.460	6.442 .460	7,430,160	$7.430,160$	6,48
21													
${ }_{23}^{22}$													
24													
25													
${ }^{26}$													
${ }_{28}^{27}$													
${ }_{29}$													
30													
31													
33													
34													
35													
${ }_{37}^{36}$													
${ }_{38}^{37}$													
39													
40													
42													

KENTUCKY-AMERICAN WATER COMPANY
PREFERRED STOCK

Line No.	Debtissue Type $\&$ Type 8 Rale	$\begin{gathered} \text { hatorest } \\ \text { Rate } \end{gathered}$	$\begin{aligned} & \text { Bulance (ay } \\ & \text { Jan-2007 } \end{aligned}$	Balance (1) Fab-2007	Balanco (圈	Apr-200 Batance (a)	Batance (1) May 2007	$\begin{aligned} & \text { Balance (a) } \\ & \text { jun-2007 } \end{aligned}$	$\begin{aligned} & \text { Ealance (@) } \\ & \text { Jul-2007 } \end{aligned}$	$\begin{aligned} & \text { Batance (1) } \\ & \text { Aug-2007 } \end{aligned}$	$\begin{gathered} \text { Balanee (1) } \\ \text { Sep-2007 } \end{gathered}$	Balance (1) Ocl-2007	Batance (1) Nov-2007	Balance (1) Dec-2007
1 2 3														
5	Seres $8.53 / 4 \% \%$, $5100 \mathrm{~Pa}_{7}$	5.750\%	391,800	391,800	391,800	391,800	391,600	391,800	391,800	391,800	391,800	391,800	391,800	391,800
7	Senes C, 5 1/2\%, 3100 Pz	5.500\%	488,300	488,300	488,300	488,300	488,300	488.300	488,300	488,300	488,300	488,300	488,300	488,300
1	Senes D. 5%, 5100 Par	5.000\%	586,600	566,600	566,600	586.600	586,600	586,600	586,600	566,600	586,600	586,600	586,600	586,600
${ }_{11}^{10}$														
${ }_{13}^{12}$	8.47\% Senes, 5100 Par	${ }^{0.4703 \%}$	4,500,000	4,500,000	4,500,000	4,500,000	4.500,000	4,500,000	4,500,000	4,500,000	4.500,000	4,500,000	4,500,000	4,500,000
14 15														
16														
${ }_{18}^{17}$	total		5.965,700	5,966,700	5,966,700	5,966.700	5,966,700	5,966,700	5,966,700	5,966,700	5,966,700	5,966,700	5,966,700	5,966,700
19														
${ }_{21}^{20}$														
22														
23														
${ }^{24}$														
25														
26 27														
28														
29														
${ }_{31}^{30}$														
32														
${ }_{34}^{33}$														
35														
${ }_{36}^{36}$														
38														
39														
40 41														
42														

KENTUCKY-AMERICAN WATER COMPANY
PREFERRED STOCK

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Debi issue } \\ \text { Type } 8 \\ \text { Rate } \\ \hline \end{gathered}$	$\begin{gathered} \text { interest } \\ \text { Rate } \end{gathered}$	Balance @ jan-2008	$\begin{aligned} & \text { Balance (1) } \\ & \text { Feb-200B } \end{aligned}$	$\begin{aligned} & \text { Balance (14 } \\ & \text { Mar-2008 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Balance (e) } \\ & \text { Apt-2000 } \end{aligned}$	Balance (1)	Batance (1) Jun-2008	$\begin{gathered} \text { Balance (1) } \\ \text { Jul-2008 } \end{gathered}$	Balance (4) Aus-2008	$\begin{aligned} & \text { Batance (匈 } \\ & \text { S.ep-2000 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Batance @ } \\ \text { Oct-2009 } \\ \hline \end{gathered}$	Balance (1) Nov-2008	33 Month
1 2 3														
5	Series B, 53/4\%\%, 5100 Pa	5.750\%	391.800	391.600	391,800	391.800	391.800	391,800	391,800	391.800	391,800	391,800	397,800	391,800
7	Series C, 5 \%/2\%, S100 Pi	5.500\%	488,300	488,300	486,300	488,300	488.300	488,300	488,300	488,300	488,300	488.300	488,300	488,300
9	Seritios 0, 5\%, 5100 Par	5.000\%	566,600	586,600	566,600	586,600	586,600	586,600	596,600	586,600	586,600	586,600	586,600	586.600
110														
12 13	8.47\% Serics. 5100 Par	8.470\%	4,500,000	4,500,000	4,500,000	4,500,000	4,500,000	4.500,000	4.500,000	4,50,000	4.50,000	4,500.000	4,500,000	4.500,000
${ }_{15}^{14}$														
16														
18	total		5,966,700	5,966,700	5,966,700	5,966,700	5.966,700	5,966,700	5,966,700	5,966,700	5,966,700	5,966,700	5,966,700	5,966,700
19 20														
21														
22														
${ }^{23}$														
24														
25														
26														
${ }_{28}^{27}$														
${ }_{29}^{29}$														
30														
31 32														
${ }_{33}^{32}$														
34														
35 36														
37														
38 39														
${ }_{40}$														
${ }_{4}^{41}$														
42														

KENTUCKY-AMERICAN WATER COMPANY
UNAMORTIZED PREFERRED STOCK EXPENSE

KENTUCKY-AMERICAN WATER COMPANY
UNAMORTIZED PREFERRED STOCK EXPENSE

KENTUCKY-AMERICAN WATER COMPANY
PREFERRED STOCK DIVIDENDS

KENTUCKY-AMERICAN WATER COMPANY
PREFERRED STOCK EXPENSE AMORTIZATION

KENTUCKY-AMERICAN WATER COMPANY
PREFERRED STOCK EXPENSE AMORTIZATIOA

KENTUCKY-AMERICAN WATER COMPANY
SHORT TERM DEBT

KENTUCKY-AMERICAN WATER COMPANY
COMMON EQUITY

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$		$\underset{\substack{\text { Amount (} \\ \text { Jan-2007 }}}{ }$	Amount (G)	Ambunt ()	Amount (:)	Amount (3)	Amount (:)	Amount (1)	${ }^{\text {Amount (1) }}$ Au9:2007	Amounl 1 (Sep-2007	$\underset{\substack{\text { Ampunt } \\ \text { Ocl-2007 }}}{\text { (1) }}$	Amount (:) Nov-2007	Amount (:) Dec-2007
1													
2 3 4	balance	S 73,228,973	s 73,187,262	S 73,129,635	$572.552,670$	s 72,577,476	5 72.696.590	S 72,672,394	S 73,357,159	S 74,088,749	s 74,544,574	5 84,155,537	84,584,942
5													
6	ADD: EQUITY INFUSION										9,000,000		
${ }_{8}$													
9	ADD: NET INCOME TO COMMON EQUI	(41,711)	(57,627)	541,809	24,006	119,144	210,913	684,765	731,590	742,893	510,963	429,405	523,786
12	Less: onvienos on common eautr			(11188744)			1235						(1.607.773)
13	Less.anomos oncomon			(,			[23,			(28,08			(1.607.773)
14													
15		S 73,187,262	5. $73,129,635$	5 . $72,552,670$	S 72,577,476	572.696 .590	$5 \xlongequal{72,672,394}$	5 73, 357, 159	5 74,089,749	5 74,544,574	5 84,155,537	S 84,564,942	S 83,500,955
17			73129	72552670									
18		s.	s										
19													
22													
22													
23													
${ }^{24}$													
25 25													
${ }_{27} 26$													
28													
29													
31													
32													
${ }^{33}$													
${ }^{34}$													
36													
${ }_{38}^{37}$													
38													

KENTUCKY-AMERICAN WATER COMPANY
COMMON EQUITY

KENTUCKY-AMERICAN WATER COMPANY
JDITC

Line No.		Amount (1)	$\begin{aligned} & \text { Amount (1) } \\ & \text { Feb-20007 } \end{aligned}$	Amount (1)	$\begin{gathered} \text { Amount © } \\ \text { Apr-2007 } \end{gathered}$	$\begin{aligned} & \text { Amount (a) } \\ & \text { May-2007 } \end{aligned}$	$\begin{aligned} & \text { Amount @ } \\ & \text { Jun-20007 } \end{aligned}$	$\begin{aligned} & \text { Amount (a) } \\ & \text { Jul-20007 } \end{aligned}$	$\begin{aligned} & \text { Amount (1) } \\ & \text { Aug:2007 } \end{aligned}$	$\begin{gathered} \text { Amount (© } \\ \text { Sepozoot } \end{gathered}$	Ambunt Oct-2007	Amounl (1)	$\begin{aligned} & \text { Amount (i) } \\ & \text { Dec-2007 } \end{aligned}$
$\frac{1}{2}$													
3													
4													
5													
7													
${ }^{8}$													
10	DEFERREDITC (JOITC - 4\% AND 10\%)	$5 \quad 1.186 .740$	\% 1,180,312 s	1.173 .884 s	s 1,167,455	s \%161,029 s	s 1,154,600 s	s 1,746,172 5	¢ 1141,744 s	1,135,316	1,128,889	5. $4.122,460$	1,116,032
11													
${ }_{13}^{12}$	DEfERREDITC-3\%	S 100.841	s 108,203 s	107.565 s	s 106,927	s 106, 289 5	s 105,651 s	¢ 105,013 s	\% 104,375 s	103,737 s	103.099	102,461 s	101,823
14													
${ }_{16}^{15}$	AnNLAL AMORTIZATION OF 36												
17		S											
${ }^{18}$	ANNUAL AMORTILATION OF 4\%: ITC	s 6,300											
19													

KENTUCKY-AMERICAN WATER COMPANY
JDITC

$\begin{aligned} & \text { Line } \\ & \mathrm{Na} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { Amount @ } \\ & \text { fan-2008 } \end{aligned}$		Amouni (i) Fet-2008		$\begin{aligned} & \text { Amount @ © } \\ & \text { Mar-200B } \end{aligned}$		Amaunl (i) Adr-2000		$\begin{aligned} & \text { Amount (1) } \\ & \text { May-2009 } \end{aligned}$		Amount (1) Jun-2008		$\begin{aligned} & \text { Amount : }) \\ & \text { Jut-2008 } \\ & \hline \end{aligned}$		Amount @ Aug-2008		$\begin{aligned} & \text { imounl (1) } \\ & \text { Sep-2008 } \end{aligned}$		$\begin{aligned} & \text { mount : } \\ & \text { Oct-2008 } \end{aligned}$		$\begin{aligned} & \text { mount (). } \\ & \text { vov-2008 } \end{aligned}$		3 Month Average
2																									
4																									
5																									
8																									
9																									
10	DEFERRED ITC (JDITC - 4\% AND 10\%)	3	1,109,604	5	1,103,176	5	1,096,748		1,090,320		1,083,892		1,077,464	5	1,071,036	5	1,064,608	s	1,058, 180	5	1,051,752	s	1,045,324	s	1,083,892
11																									
12																									
13	DEFERREDITC-3\%	s	101,185	s	100,547	5	99,909	5	99,271	s	98,633	s	97,995	s	97,357	s	96.719	s	96,081	s	95,443	s	94,805	s	98,633
14																									
15																									
16	ANNUAL AMORTIZATION OF 3% ITC																								
17																									
18	ANNUAL AMORTIZATION OF 4% ITC																								
19																									

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION
Item 22 of 312

Witness: Michael A. Miller

22. RE: Mike Miller Direct Testimony. With respect to Exhibit MAM-3, please provide:
(a) All data, work papers, assumptions on costs and interest rates in all pro forma financings, and other data used to determine the cost rates for short-term debt, long-term debt, and preferred stock, and
(b) An electronic version of all supporting Schedules and work papers used to determine the senior capital costs, with all data and equations left intact.

Response:

(a) Please see the response to AGDR1, question 21. Also please see Exhibit MAM-5 and the responses to questions 20 and 21 for a full explanation of how the cost rates for additional Long-term debt and Short-term debt were determined for the forecasted test-year.
(b) Please see the response to AGDR1, question 21.

For electronic version, refer to KAW_R_AGDR1\#22_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 23 of 312

Witness: Michael A. Miller

23. RE: Mike Miller Direct Testimony. With respect to Exhibit MAM-4, please provide:
(a) All data and work papers used in the analysis of the financings, and
(b) An electronic version of all supporting Schedules and work papers used in the analysis, with all data and equations left intact.

Response:

Please see the electronic version of the workpapers and additional schedules that support Exhibit MAM-4. Please refer to KAW_R_AGDR1\#23_Exhibit_MAM4_061807.xls

For electronic version of this document, refer to KAW_R_AGDR1\#23_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION
Item 24 of 312

Witness: Michael A. Miller
24. RE: Mike Miller Direct Testimony. With respect to Exhibit MAM-5, please provide:
(a) All data and work papers used in the analysis of interest rates, as well as an detailed explanation of the analysis which is performed in Exhibit MAM-5, and
(b) An electronic version of Exhibit MAM-5 (pages 1 and 2) along with all supporting Schedules and work papers used in the analysis, with all data and equations left intact.

Response:

(a) The source of all data used on Exhibit MAM-5 is the Value Line Publication from the date of publication as indicated on the Exhibit. No other workpapers or analysis was used other than as shown and noted on the Exhibit.
(b) Please refer to electronic file KAW_R_AGDR1\#24_Exhibit_MAM5_061807.xls.

For electronic version of this document, refer to KAW_R_AGDR1\#24_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY
CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION
Item 25 of 312

Witness: Michael A. Miller
25. RE: Pension Assets. Please provide the following:
(a) The overall expected rate of return used for pension assets;
(b) The expected rates of return for alternative assets classes (long-term bonds, common stock) used in determining the overall expected rate of return used for pension assets; and
(c) Copies of all documentation used in determining the expected rates of return for alternative assets classes (long-term bonds, common stock).

Response:

(a) Please see the American Water Pension Plan actuarial report dated May 7, 2007 provided in response to KAW_R_PSCDR2\#28b_061807.pdf which contains the requested information and all assumptions and sources used by the actuary, Towers Perrin.
(b) See the response to part a. above.
(c) See the response to part a. above.

For electronic version, refer to KAW_R_AGDR1\#25_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143
ATTORNEY GENERAL'S REQUEST FOR INFORMATION
Item 26 of 312

Witness: Michael A. Miller

26. Please provide a complete bill frequency analysis (also known as a consolidation analysis), separately for each customer class, meter size, and rate division and subdivision. Please provide this analysis in one or more electronic files in one of the following formats that most closely matches the original, in an unprotected (no password) format: Microsoft Excel, Lotus 1-2-3, Microsoft Access, dBASE, SPSS, SAS, comma delimited text, ASCII text, Adobe Acrobat (not a scanned or image file).

Response:

The electronic version of the bill frequency analysis for the base period actual from August 2006 through January 2007 is titled KAW_R_AGDR1\#26_billfrequency.xls.

For electronic version of this document, refer to KAW_R_AGDR1\#26_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY
 CASE NO. 2007-00143

 ATTORNEY GENERAL'S REQUEST FOR INFORMATION

 ATTORNEY GENERAL'S REQUEST FOR INFORMATION}

Item 27 of 312

Witness: Michael A. Miller

27. Please provide the original electronic spreadsheet file used to create Exhibit 37M, with all formulas and links intact, including all files linked thereto that are necessary for the proper functioning of the file. If any of the links are to a mainframe database or application, please provide the version of the output from such database or application that was used to produce Exhibit 37M.

Response:

See the electronic files filed in response to AGDR1\#46. The spreadsheet used to create Exhibit 37M is titled Rev07.xls.

For electronic version of this document, refer to KAW_R_AGDR1\#27_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 28 of 312

Witness: Michael A. Miller

28. Please provide the original electronic spreadsheet file used to create Exhibit MAM-9, with all formulas and links intact, including all files linked thereto that are necessary for the proper functioning of the file. If any of the links are to a mainframe database or application, please provide the version of the output from such database or application that was used to produce Exhibit MAM-9.

Response:

Please see KAW_R_AGDR1\#57_Exhibit_MAM9_061807.xls for the electronic version of the requested information.

For electronic version of this document, refer to KAW_R_AGDR1\#28_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 29 of 312

Witness: Linda C. Bridwell

29. RE: Testimony of Linda Bridwell, p. 22, lines 1-3. The witness states that all new meter installations have AMR capabilities. Please describe the current methods by which KAWC reads meters (for example, manual, touch pad, AMR, etc.). For each such method, please state the number of meters by customer class and the approximate amount of time it takes to read each such meter.

Response:

KAW reads meters manually, via touch pad, and via AMR. The manual and touch pad meters take approximately 2.5 minutes each to read. AMR requires only walking past or driving past at the posted speed limit. KAW first deployed AMR in rural areas where two meter readers are required for safety considerations. AMR is now deployed in new residential areas and areas with large residential lots. The table below shows the number of meters by revenue class and meter type as of May 31, 2007.

REVENUE CLASS	AMR	MANUAL	TOUCH PAD	TOTAL
Residential	25,663	77,672	2,006	105,341
Commercial	2,968	5,342	4256	8,736
Industrial	36	1	7	44
Other Public Authority	452	187	79	718
Other Water Utility	6	0	17	23
Private Fire	107	708	377	1,192
TOTAL	29,232	83,910	1,112	116,054

For electronic version, refer to KAW_R_AGDR1\#29_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 30 of 312

Witness: Paul Herbert

30. RE: Testimony of Paul Herbert, p. 3, lines 13-14. The witness states: "The allocated cost of service is one of several criteria appropriate for consideration in designing customer rates to produce the required revenues." What are the other criteria that the witness considers "appropriate for consideration" in designing rates in this case? Please list each such factor and describe how the witness considered or applied it in this case.

Response:

Please refer to the direct testimony of Paul Herbert, page 9, line 23 through page 10, line 5 , for the other criteria appropriate to consider in designing rates. The factors considered are listed on lines 7-13 on page 10 of the testimony.

For electronic version, refer to KAW_R_AGDR1\#30_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 31 of 312

Witness: Paul Herbert

31. RE: Testimony of Paul Herbert, p. 6, lines 19-21. What is the basis for the witness's statement that purchased water, power, and chemicals "require little administrative and general expense"?

Response:

The basis for the statement can be found in AWWA Manual M1, page 57, which states that the allocation of administrative and general expense should be based on the allocation of all other expenses exclusive of purchased power and chemical costs. Once they have been contracted for, they require little administrative and general expense other than to pay the monthly bill.

For electronic version, refer to KAW_R_AGDR1\#31_061807.pdf

KENTUCKY-AMERICAN WATER COMPANY

CASE NO. 2007-00143

ATTORNEY GENERAL'S REQUEST FOR INFORMATION

Item 32 of 312

Witness: Paul Herbert

32. RE: Testimony of Paul Herbert, p. 8, lines 8-9 and Exhibit 36, Schedule C (Factor G). Did the witness consider any other method to allocate meter reading costs (such as a method based on the cost or efficiency of reading meters for each class of customers)? If so, please provide copies of all analyses and workpapers evaluating such other methods. If not, please explain why not.

Response:

The witness considered using information that would provide an analysis of man-days to read meters by classification; however, such data was not readily available.

For electronic version, refer to KAW_R_AGDR1\#32_061807.pdf

[^0]: ${ }^{\text {A }}$ A review of recent rate rellef requests by a gas distribution uility. a telecommunication firm and un electric utility in a large industrial state revealed that a 100 basis poim bias in the equity cost estimate would account for approximately nine percent. fifteen percent, and eleven percent of the total revenue increases requested
 ${ }^{3}$ The typical DCF treatment uses either the sum of four quarterly dividends or the sum of four quarterly dividends multiplied by $(1+g)$ For the standard textbook DCF treatment see 11. Chapter 15: and 10

[^1]: Chapter 8) In either case the cost of equity will be understated untess the time value of quarterly dividends is considered Although DCF analyses presented in rate regulatory hearings fail to recognize this bias. in recent years several academic rate of retum witnesses have recognized this source of estimation bias. For example, see [5.6.8.9]
 In passing. it is worth noting that institutional investors stock rankings based upon DCF expected retums may be altered by this bias Also. DCF estimutes of equity capital cosi may be a source of bias in empirical financial research. Examples of empirical research using annual growth estimates and/or annual dividend values inelude [3, 4, 7]

[^2]: The CAPM suffers the same bias This is apparent when the CAPM is rewriten in terms of P_{0} or $P_{0}=\left(P_{1}+D_{1}\right) /\left[1+R_{f}+\beta\left(R_{m}-R_{f}\right)\right]$, where P_{0} is the current price. P_{1} and D_{1} are the expected price and dividend at the end of the nex period. and $\| 1+R_{f}+\beta\left(R_{m}-R_{f}\right)$ is the risk"udjusted required return In contrast. the time value of periodic payments is not ignored by bond dealers in the calculation of the yield to maturity for US Government and corporate bonds

[^3]: ${ }^{4}$ Although firms typically pay a dividend per share amonnt that is rounded to the nearest cent. The paper will use fractional cents for mathernatical and expository convenience
 "An iterative solution procedure for solving Equation ([1a) is

 $$
 5800=\left[\frac{\sum_{\mathrm{L}}^{4} \$ 25(1+k)^{1-250}}{(1+06)}\right]\left[\frac{1-\frac{(1+06)^{\prime}}{(1+k)^{1}}}{\frac{1+k}{1+06}-1}\right]
 $$

 using a large value for t (ie. $t \geq 100$).
 This equation is one of several formulations for growing cash flow streams For example. the equation reduces to Equation A 8 in the text by Copeland and Weston 12. p 706] Also as shown on page 17. when 4
 $D_{1}=\underset{\mathrm{Q}=1}{\mathrm{~S}} \$ 2511+193751^{1-250}$ the equation reduces to equation A 9 in Copeland and Weston A trial and arror process can be used to eakeulate the true cost of equity

[^4]: "Ex. dividend and dividend payment dates are important variables in the analysis. Equations (S) and (6) are developed under the assumption that the analysis date occurs immediately after a dividend payment Given quarterly dividend payments. the time periods for which the time value of dividend adjustments are required are 75 year, 50 year. 25 year. and 00 year. A different set of time periods would be involved if the analysis occurred between dividend payment dates
 ${ }^{7}$ The mathematical complexity of estimating k via Equation (6) can be reduced substantially by approximating the k in the numerator as $k=$ $\left[4\left(\mathrm{D}_{\mathrm{O} 1, \mathrm{~s}}\right) / \mathrm{P}\right)+\mathrm{g}$ This approximation echnique causes k to be understated slightly Additional iterations can determine the exact required retum

[^5]: *One measure often used to indicate the efficacy of regulation is the price/book value ratio. The argument generally made is that when a utility has a $P / B V=10$. the utility is earning the required retum. The extent to which this measure is correct depends on how closely the book value reflects the economic value of the assets
 "It should be observed that the required carnings per share are on an after-lax basis Revenue requirements are of course, on a before-fux basis.

[^6]: ${ }^{10}$ In passing, it should be pointed out that the same intra-year compounding problem exists in connection with the calculation of the cost of a utility's embedded debs. Conventional practice of both utilities and regulatory commissions is to calculate a utility's embedded debt cost as the weighted average of the coupon yields ($\mathrm{k}_{\mathrm{i} \text { :coupon }}$) of outstanding bond issues rather than to calculate a weighted average of the yields-tomaturity ($\mathrm{k}_{\mathrm{i}: \mathrm{y} \text { m }}$) (with $\mathrm{P}_{0}=\mathrm{P}_{1}=\$ 1000$) that gives recognition to intrayear compounding Interestingly, ignoring intra-year compounding does not create the serious bias problem in the cost of debt measure that it does with respect to the cost of equity estimate. This is because $\mathrm{k}_{\mathrm{i} \text { agg }}$ $\left.=\mathrm{k}_{\text {i:coupon }}=\mathrm{n} \mid\left(1+\mathrm{k}_{\mathrm{i}: \mathrm{y} \text { ma }}\right)^{1 / n}-1\right]$ when n is two, $\mathrm{P}_{0}=\mathrm{P}_{1}=\$ 1000$. and the seminannual interest payment is level.
 "A caveat is in order inasmuch as this presentation abstracts from various realities in the regulatory process. For example, a regulatory commission may choose to exclude specific assets from a utilify's rate base. or not allow certain expenses to be recovered However, introduction of these regulatory realities would not atter the conclusions reached in the puper regarding the proper procedures to be followed in implementing a DCF analysis of equity capital cost in rate regulation

[^7]: The authors wish to thank Bob Taggant, the Editor, and Marvin Rosenberg, Office of Regulatory Analysis of the Federal Energy Regulatory Commission, for their helpful comments.

[^8]: ${ }^{4}$ Siegel defines the annual equity earnings requirement $\left(R^{n}\right)$ for a utility to be the earnings " . from rate payers plus interest and dividends

[^9]: from securities owned [earnings on reinvested carnings] less all operating expenses and payments of interest on debt and dividends on preferred slock outstanding" [2, p. 51]. Later in the same paragraph when discussing the calculation of R^{n}, Siegel states that R^{a} must be estimated as $R^{\mathrm{a}}={ }^{n} \mathrm{r}_{\mathrm{c}} \mathrm{P}_{0}$ because the utility receives eamings continuously and this .. allows the firm to earn an additional rate of return on its revenue [earnings] before it disburses funds [quarterly dividends] to sharcholders, [thereby] lowering the annual revenue [ie, earnings] requirement below the level that would exist if the firm obtained revenue [ie, earnings] allotments at the end of the quarter" [2, p. 51]
 ${ }^{5}$ Implicit in the Exhibit 2 data is the assumption that the uility receives earnings through the continuous sale of service and is able to reinvest

[^10]: ${ }^{6}$ The scrvice rates established during a rate hearing will allow sharebolders to eam their required market retum in the future if it can be safely assumed that: (i) the required market retum does not change; (ii) the post rate hearing unit demand relative to productive capacity is unchanged; (iii) the [(operating costs per unit output)/(authorized service rate per unit output)] ratio does not change over time; and (iv) the average total investment and average equity investment per unit of capacity does not change over time. These assumptions may have worked colerably well in the 1950s and 1960s. However, developments in the 1970s and 19805, particularly inflation, changed the reasonableness of these crucial assumptions and fostered the incteased volume of rate hearings.
 ${ }^{7}$ The appropriate reinvestment rate to use in an analysis of the earnings requirement for a utility will be affected by such variables as seasonality of revenues and camings, the rate of growth and timing of capital expenditures and the rate base measure. This means. of course. that the appropriate reinvestment rate may range from zero up to investors' required retum, and is. ultimately, an empirical issue

[^11]: * University of British Columbia and Princeton University, respectively. This Research was supported by the Institute for Quantitative Research in Finance, the National Science Foundation, and the Graduate School of Business, University of Chicago. We are indebted to Paul Cootner for belpful comments.

 1. A number of studies of anticipations data bave been collected in two National Bureau Volumes [12] and [13]. Some more recent work on the assessment of expectations or forecasts has been done by Zarnowitz [16].
 2. The classic theoretical statement of the anticipations view of the determination of share valuation may be found in J. B. Williams [151. This position is also adopted in the standard textbook in the field [3]. The emphasis on the importance of earnings growth may also be found in [4], [5], and [19].
 3. One of the few attempts to conduct a study of this type was made by the Continental Illinois Bans and Trust Company of Chicago [1] in 1963. The bank collected a sample of earnings estimates one year in advance from tbree investment firms. An analysis of these projections revealed that the financial firms tended to overestimate earnings and that over-all quality of the estimates tended to be poor.
 4. The 185 companies for which the growth-rate estimates were made tended to be the large corporations in whose securities investment interest is centered. This selection was made on the basis of availability of data and was not chosen as a random sample.
[^12]: * The numbers of observations on which this table and other tables are based varies between cells. For the correlations, the numbers of observations are reported below:

[^13]: the correlations are all zero within industries could, however, be rejected well beyond conventional significance levels. Predictor C was dropped from these tests due to paucity of data in many industries.

[^14]: 11. This effect was also found when the calculated growth rates were based on either 1) the regression of eamings per share on time; or, 2) the appropriate root of the ratio of earnings per share at the end of the period to earnings at the beginning.
 12. The numbers of observations on which Table 4 is based are considerably smaller than those for which predictions were available. Only a small part of this loss was due to tnability to calculate past growth rates due to negative earnings figures. Much more important was the fact that the predictors did not give numerical figures for past growth rates when these would be negative. One might think that the companies for which past growth rates were easily calculated would be ones with highest simple correlations among the predictors. However, the only cases for which this appeared to be true were the correlations of predictor D with A, B, and E.
[^15]: 17. Predictor C could not be included in this calculation because of a lack of observations in some industries.
 18. The latter, however, was tested only on the basis of the asymptotic distribution of the correlation coefficient and the assumption that the data were distributed normally.
[^16]: 20. Other periods and methods of calculating growth rates were also used. The ones presented tended to be very slightly better than the others and are comparable to the most successful of the longer-term earnings extrapolations.
[^17]: ${ }^{2}$ Lyach. Jones and Ryon. a New York-based brokerage firm, have avainable in computer readable form consensus (avermge) earnings estimates updated monthly for the eurrent and next fiscal year as well as forecasts of aach individual analyst following anch stock. They designate this the the $1 / \mathrm{B} / \mathrm{E} / \mathrm{S}$ service. During the time period studied Lynch, Jones and Ryan surveyed brokerage lirms Our sample consisted of all stocks listed on the New Yofk Slock Exchange which were lollowed by three or more analysts. The average number of amalysts following each of these firms was slightly above seven. Furthermore, slightly less than 70 atocks were followed by ten or more analysts. The maximum number of analysts following any stock was 18 .

[^18]: ${ }^{3}$ We could bave used differenees from R_{m}. rather than the markel model in reporting our resuls. However the render might then question to what extent our conclusions were dae to differences in market risk Alteraatively we could have followed Watts [10] methodology to force the Beta on each Portolio to be exnety one. However since the differences in Beta from one were neither large nor systematicanty related to any criteria across our deciles we did not take this additional step.

[^19]: ${ }^{1}$ Vander Weide, J. H., and W I Carleton "Investor Growth Expectations: Analysts vs History" The Journal of Portfolio Management, Spring 1988, pp 78-82

[^20]: Notes:

 * Coefficient is significant at the 5% level (using a one-tailed test) and has the correct sign T-statistic in parentheses

[^21]: ' We also tried several other definitions of "earnings," including the firm's most recent primary earnings per share prior to any extraordinary items or discontinued operations

