

Kontucky-Amorican Water Company
Schodule of Forecastod Capital Expanditures
Budget Itemm Bo thru 94
CENTRAL

 Misc Structures
Communicaton Equipment Non-Telephone Total for Budget titem 90

 12020091

12020092
12020092
12020092
12020092
12020092
12020092

12020082 Miscellaneous Equipment 12020093-1tem 93 - Process Plant Replacement | 2020094 | tem 94-Process Plant additions |
| :--- | :--- |
| 2020094 | Computer soflware |
| 2020094 | Laboratory Equipment | Total for Budget ftem 93 ———Total for Budget Item 94

$\begin{aligned} & \text { Kentucky-Ameri } \\ & \text { Schedule of For } \\ & \text { Budatitam } 8 \text { in } \end{aligned}$	an Water Company															
		JDE													Frecasted	Foreasied
120202080			Jan	Febo.05	Ma	Apr-05	Maz\% 05	Jun-05	Julob	$\mathrm{Alu}^{\text {a }}$-5	Sepo. ${ }^{\text {a }}$	Oct.05	Noro 05	Dec.05	Toill 2005	Testreat
-1202030	Mentes	${ }_{\substack{33109 \\ 33300}}$	6,000		\% 5.000	s 5,000		s. 5.000	5.000	5.000	5,000	5.000	${ }^{8} 5.000$	5,000	80.000	60,000
${ }^{120202080}$		${ }_{\text {333000 }}$	$\frac{5}{8}$	\%				5 .								
	Toalior Bubet tem 80		5.000	5000	5,000	${ }^{5} 5$	S 5.000	${ }^{5} \quad .5000$	${ }^{5} 50000$	${ }^{5} 5.000$	5.000	5.000	5000	5.00	60.00	560.000
${ }^{12020089}$	Tiem 81-Mains replacementstrelecation Co Coxponse															
${ }^{12020081}$	mains	331001	2,000	2,000	\& 2,000	¢ 2,000	\$ 2,000	¢ 2.000	2.000	2,00	2.000	2.000	2,00	2.00	24.000	24.0
	Toaltor Buctor tiem 81		S 2.000	3 \% 2.000	S 2.000	S 2000	S 2.000	$5 \quad 2.000$	\% 2000	82000	2000	2.000	2.000	2.00	\% 24,000	
${ }_{\text {1202082 }}^{1202082}$	Trem 82 - -etwork oxtensions © Coeexpene															
${ }^{1212020082}$	Mans	${ }_{3}^{3310501}$				s	\% -	s .	s	s	s		s	\%		
	Toat lor Butat lem 82		5				5		s	s	s		5.			
${ }^{120202083}$	Hem m3-Hydrant replicemmens															
12020083	Hydrantis	335000	5 -		\%	\% 2,500	8	2.500	s	s	¢	s	s.	s	5 5.000	5.000
	Totalfor Eusbot lem ${ }^{\text {B }}$				${ }^{5}$.	$5^{5} 2.500$	s	S 2.500	s			s	s	s	${ }^{5} 5.000$	
${ }_{1}^{120202088}$	Heme 84- Hydrant mw															
${ }^{12020084}$	Hydrants	335000	5	s		,	s	5.		s	s		s	s	s	
	Total lor Eubet teem 89		5	S	5	s		${ }_{5}$		s			s	${ }^{3}$		
	Senices.	333500	1.000	8 1.000	s 1.000	s 1.000	¢ 1.000	\% 1.000	\% 1.000	¢ 1.000	3.1 .000	1.000	1.000	1.000	12,000	12.000
	Total tor Bubot teem 85		1.000	31.000	s 1.000	Is 1.000	3 1.000	s 1.000	\% 1.000	51.000	51.000	$5 \quad 1.000$	5 1.000	1.000	S 12,000	
12020086	Heme 86. Sesilicoss naw															
								3.000	4,000	4,000						${ }^{36,550}$
	Toialior Bubot tom 38			${ }^{3} \quad 3.000$	s 3,000	¢ 3.000	¢ 3,000	\% 3.000	S 4.000	\% 4.000	3 4,000	3.000	3.000	3.000	6,9,50	36,06
-12020087	Hem 87 - Melerer 8 meier sotiling spoplaced															
- $\frac{12020007}{12020087}$	Mele										${ }^{5} \quad 1,000$				3.000	3.000
$-{ }^{12020087}$	Meter ISSalataions	${ }_{334200}$	500	- 500	${ }^{5}$ \% 500	${ }_{5}{ }^{3}$ S 500	$\frac{5}{5}$ 500		$\frac{5}{500}$						\% 6,000	5,700
	Totalifor Bubet tem 87		1.500	$5 \quad 500$	15	- 500	¢ 500	\% 1.500	\% 500	S 500	1.500	500	500	5 S 500	9.000	8.70
${ }^{1202008888}$	Heeme 8 - Metores 8 mater sotiling now															
${ }^{120200388}{ }^{12020088}$	Meeiess Pasic Case	${ }^{3341700}$			-1.500									1.500		s.000
${ }^{-12202028} \times$	Meter Ohas	${ }^{334430} \mathbf{3 4 2 0 0}$		500	S 500	500	500									
	Totalifor Buteet item 88		500	S $\quad 500$	$3 \quad 2000$	S $\quad 500$	¢ 500	s 2.000	s 500	s 500	\% 2000	S 500	500	s 2,000	S 12.000	\% 12.000
- 12020089																
${ }^{12020098}$	Completes 8 Peerono D Persomal	${ }_{3}^{3642220}$		${ }_{5}^{\text {s }}$	s		${ }_{s}^{\text {s }}$	s	s	${ }^{\text {s }}$		${ }^{\text {s }}$ s, 200				8,200
	Totalifor Eudet tem 89			s	s		s	s	s	5	3.000	¢ 5.200		5	8.200	88.200

Kentucky-Amer Schedule of F_{0}	can Water Company acasted Capital Expenditures															
Tudgotlem 80	hir 94															
Tri-Glage																
		JDE														
12020080	Itom $80-$ Mains and Hyd , Daposilt Agreament	Acct	Jan-05	Feb-05	Mar-05	Apr-05	May-05	Jun-05	Jul-05	Aug-05	Sep-05	Oct-05	Now. 05	Decos	Forecasted	Forreastod
${ }^{12020090}$	Item 80 -ofice 80 Oeratilopse Conter															Expendidures
12202090	Misc Equipment	347000														
122020080	Misc Stuctures	304800	\$				s	\therefore	\$	$\frac{\mathrm{s}}{5}$ -	6.000	3.000	1.000		\$ 10.000	10.900
										5 .					s .	
	Total for Buctet Item 90		S	5			s		s	5						
	tem91-Vabiles											3.000	1.000	5	S 10.000	S 10.000
12020091	Trans Equilment Light Trucks															
${ }^{120220091}$	Trans Equipment Other	${ }^{34141400}$	$\frac{3}{5}$		$\frac{8}{5} \quad 15,000$	$\frac{8}{5}$:		$\frac{5}{5}$	$\stackrel{\square}{8}$	$\frac{5}{8}=$					15000	15,000
- $\frac{12020091}{1202091}$	Trans Equipment Autos	${ }_{341300}$	$\frac{5}{8}$		$\frac{5}{5}$:	s					\$	${ }_{5}^{8}$			-	
	Trans Equipment Heavy Tucks	341200	s-		5 -	s			\div	s			-			
	Total for Bubuet llem 91				15.000											
					15.000						\$				S 15 5,000	\$ 15,000
${ }^{12020092}$	Hem 92 -Tools 8 Equipment															
12020092	Tools, Shop, 8 Garage Equipment	343000			s -	\$ -	s	\%	\$ 5.000	\$ 1.000	s		\$ 4,000	\$	\$ 10,000	15,000
	Total for Buctet teem 92								\$ 5.000	\$ 1.000						
										+			\& 4,000		\% 10,000	$5-15.000$
-12020093	Iteem 93-Process Plant Replacement															
${ }^{120200093}$	Elactric pumping oquipment	304600		-			-									
${ }^{122200093}$	Water Treatmentent equopment					s		\%							$\frac{3}{5}$	
${ }^{120220093}$	Laborator Equipment	${ }^{344000}$	$\frac{5}{8}$	$\stackrel{5}{8}$	${ }_{5}{ }^{\text {s }}$ -		$\frac{5}{5}$			$\frac{5}{5}$	\%		\$			
12020093	Other tangible property	348800		5	-	s	s-		-	\%	-	\%	-	$\stackrel{\text { S }}{5}$	$\stackrel{5}{5}$	
	Total for Bugbet liem 93															
													8 -			
12020094	liem 94- Process Plant adalifons															
${ }_{1}^{12020094} 1$	Computer software	${ }^{340300}$	5 .	\%	\$ -	s	s			\$						
	Laborar Equpmen!	344000				\$ -	\$ -	s		s	5	S-	${ }_{5}$	5	\$	
	Total for Bucbet item 84															

contal																		
			Sub	Amment														
	Desscaion				Empontutues	Reserved	Feno. ${ }^{\text {a }}$	Mar-04	A0.04	Maros	Jun 04	Ju.09-	Aupos	Samo 04	O9,04	$\stackrel{\text { Noras }}{ }$	Deacos	$\xrightarrow{\text { Foreasased }}$ Toatios
${ }^{12020003}$			33107	160											s		s	3
		${ }^{12020003}$		150														
2020101	Lex.Seautiv Sriem meovem.		304800	5^{733}		s	5		s		5.							
																5	s	- ${ }^{768}$
	Tolat for ivoedmen Provect $2 \rightarrow$	11202101		${ }_{763}$														
12020102	Lex.Clas militank 3 OMs		-381000	- 778.50			\% 29894	s 150000	3.150,000	\% 180000	s 100000	-388032			s	s		${ }_{3} 1.1785002$
	Tout Tor ivestmen Provect $3 \rightarrow$	121202012		77.550			${ }^{29,94}$	180000	160000	150000	-160000	88632						-1.459,
	Lex.Scand Inpovemenis		${ }^{\frac{302030}{3030}}$	${ }^{5} \frac{77.615}{28.8181}$			${ }^{\text {s }}$ 5,909	${ }^{5}$ S 10.0000	${ }^{8}$ 10,000	${ }^{3}{ }_{30,985}{ }^{\text {a }}$	$5 \quad$ -	s			s			40^{293}
		12020103		-389848			5.909	10,000	10,000	${ }^{39,985}$.							${ }^{405230}$
${ }^{20201094}$	Lex. Sown Countwans.		331007	+ ${ }^{\text {c }} 17$		s	${ }^{5} \quad 95$	${ }^{5}$ [1,546]			\bigcirc -	s	s	s	s	s	S	$4.2,74$
		120																
								${ }_{\text {che }}^{(1564)}$			0							(1,274)
200				${ }^{\text {s }}$	${ }^{\frac{1,294}{1.94}}$		${ }_{1}^{1,365}$	${ }^{5}$ 25,000	${ }^{3}$ 25,000	${ }^{3} \quad 25000$	50.000	${ }^{3}$-1000000	156000	${ }^{3} 150000$	S 18.0000	150000	${ }^{5}+122989$	1.0127286
	Toati forinvetmot Procere $6 \rightarrow$	12020105		${ }_{63,52}$			1385	25000	25,000	25000	60,000	100000	150000	150,000	-150000	150000	122820	1,0122828
12720310	LExRestmond Res Sta hlo		320100	\% 229008	\bigcirc		${ }^{5} 80$	s		s	s	s	s	s	\%	s	3.	5220.000
	Toat lor inosestmon Provetet \rightarrow																	
																		为
12020207	Lesstom Res man imer		${ }^{363007}$		${ }^{16,6,46}$		${ }^{3}{ }^{246}$	¢ 1.000	- 1.000	${ }^{\text {s }}$ 20,400	${ }^{5}{ }^{50,000}$	${ }^{3}{ }_{50,000}$	${ }^{5}$ 8,000	${ }^{5}{ }_{\text {10,0,000 }}$	150.000	100,000	68,168	$\underline{723,51}$
		${ }^{12202029}$		1077946			${ }^{246}$	1.000	1.000	20,40	50.00	50,000	75,00	100,000	160000	.10,000	87,768	${ }^{723,155}$
12002022			-33109	${ }^{3.8 .786}$			${ }^{5}{ }^{29}$	s	5 .	s				:		:	${ }_{5}$	2864
		11200202		2776	\bigcirc													
12002023			Sotaco				\% 220,022	¢ 5,000	- 5,000	-30,000	- 180,207				s		s	\% ${ }^{4499089}$
		${ }^{12202023}$				-	${ }^{28,862}$											${ }^{462098}$
$\frac{1250212}{12020204}$	Lex. Sowe of supey Prol		3180000	-5.304,165														
																	- 2,0	${ }^{\text {s }} 619,007$

Schedule of	Amportcom Wation															
Investment	Projects (lP's)															
Contral																
-190\%			Sub													
Job\#	Descripition		Acct	, an-05	Feb-05	二可-05	Apro-05	May-05	Jun-05							Forecasted
							Apros	May-05	Jun-05	\cdots	Aug-05	Sep-05	$0 \mathrm{Ct}-05$	Nov-05	Dec-05	Total: 005
	Total for livestment Prolect $11 \rightarrow$	12029212		10,000												
				10,000	10.000	50,000	50,000	75,000.	150,000	-150,000	200.000	250,000	250,000	175,000	130,000	1,50,000
12029619	LLEX-Customer Sevice Sofware		340300	\$ -		\%	\$	\$	s							
										$\stackrel{5}{5}$	¢	-	\$	\$	5	\$
						-										
	Total for Investment Prolect $12 \rightarrow$	12029619		0		- 0	0	0								
12029801	LEX-Integratod Resource P									- 0	0			0		0
12029801	LEx-mitegrated Resource P		339600	8		\$	\$	\%	\$	s	\$	\$.	s	s	s	\$ -
						-										\$ - - - -
	Total for Investment Project $13 \rightarrow$	12029801														
		1228001				- 0	- 0		6	--0	\bigcirc		0	0		0
12029808	LEX-Surge Protection KRS		331001	${ }^{5}$		\$	s - -		\$	s						
							+			S	\$		-	\$	\$	\$
				-		--										
	Total for investment Project $14 \rightarrow$	12029008		0		0										
$\underline{12029809}$	LEX-Upgrade Cart Winch KRS									- 0		0		0	0	
	Levpgrade Cant Winarkrs		304800	9		8	s	8	\$	5	\$	\$	s	\$.		
											\bigcirc	$\$$	5 -	\$ -	s	s
										- --						
	Total for tivestment Project $15 \rightarrow$	12029809				0										
	\rightarrow	12028809		- 0	0	0	-			-- 0		0	1 - 0	0	0	
12020301	Elevated Storage Tank 2 MG		330100	\% 100,000	\$ 150,000	\$ 300,000	\$ 300,000	\$ 300,000	\$ 50,000							
-									\bigcirc	13 100,000	\$ 150,000	S. 100,000	\$ 50,000	\$	s	\$ 1.600000
	Total for Investmont Prolect $16 \rightarrow$	12020301		100,000	150,000	300,000	300,000	300,000	50,000	100,000	150,000	100,000	50,000	0	0	1,600,000
12020302	Major Hilighway_Relocations		331001	\$	s -	\$.		\$	s .	s .						
									5 -	\% -			\$	\$.	\$	\$ -
																0
	Total for livestment Prolect $17 \rightarrow$	12020302		0	0		0	0	0	0	0					
12020303												0	0	0	0	
	jeectrical Rellability lmpr		304800	\$ 105,400	\$. 106,200	\% 96,400	\$ 5,200	\$ 2,200	\$ 2.200	\$ 2,200	8	8 -	\$	S	\$	319,800
	Total for Investment Project $18 . \rightarrow$	12020303		105.400	106,200											
							5,200	2.200	2,200	2,200	0	0.	0	0	0	319.800
12020404	Eusiness Process Efficiency Project \& Orcom Eudget		340300	-	\$	\$	\$	s	s -	\$		\$	s			
				0	0	0.	0.	0	0	0	0	5 -	\bigcirc	\$ -	0	
				0	0	0	0	0	,	0	0	0	0	0	0	
																0
	Total for Investment Project $19 \rightarrow$	12020404		0	0	0	0	0	0	0	0 !	0	0	0	0	
12020402	Major Highway Relocations															
	M,		331001	0	\$ 0	13 -			$5 \quad 0$	0		0	5 -	0	,	
				0	0	0	0	0	0	-	0	0	0	$\underline{0}$	\bigcirc	

Kentucky-Amorilian wator company Schedule of Forecasted Capltal Expendilturea Investment Projects ($\mathrm{PP}^{\mathrm{s}} \mathrm{s}$)																
tP																
Job\#	Descraption		${ }_{\text {Acct }}$	Jan-05	Feb-05	Mar-05	Apr-05									Forecasted
								May-05	Jun-05	Jul-05	Aug-05	Sep-05	Oct-05	Nov-05	Deco 05	Total 2005
	Otai for investment 9 profect $20=$	12020402		0	0	0	0	0	0	0	0	- 0	0	0	0	0
	Major Highway Relocations		331001	10.000	\$ 25,000	s 25.000	\$ 25,000	s 50,000	\$ 75,000			s 25.000	8 25,000			
											60,0	3. 25.000	${ }^{3} \quad 25,000$	S 25,000	15.000	400.000
				0	\bigcirc	0		0		\bigcirc	$\bigcirc 0$	0	0	0	0	0
																0
	Total for Investment Prolect $21 \rightarrow$	0		10,000	25.000	25,000	25,000	50,000	75,000	50,000	50,000	25,000	25.000	25,000	15.000	400000
	Inciline Car Replacement @ukR		304100		s -	\$	s	\$ 10,000	\$ 25,000	\$ 50,000	\$ 50,000	\$ 50,000	\$ 25,000	\$ 20,000	s 20,000	¢ 250,000
	Total for Investment Project $22 \rightarrow$	0		0	0											
							0	10,000	25,000	50,000	50,000	50,000	25,000	20,000	20,000	250,000
	Sround Storage Tank- -3.0 MG		330400	\$	\$.	\$	5 .	[s		\$ 5,000	\$ 10,000	\$ 10,000	\$ 20,000	\$ 20,000	\$ 10,000	\$ 75,000
	Total for Investment Project $23 \rightarrow$	0														
						,	0	0	0	5,000	10,000	10,000	20,000	20,000	10,000	75,000
	Replace Trao Vac System at RR'S		320100	5 5.000	/ 5,000	5.000	\$. 5,000	s	s.	s	\$.	\$ 25,000	¢ 1500,0m	\$ 50,000	s.	\$ 245,000
																${ }_{0}^{0}$
	Total for Investment Project $24 \rightarrow$	0		5.000	5,000	5.000	5.000	0	0	0	0	25,000	150,000	50.000	0	245,000
	KRS Filiter Media Replacement--Hyd 3 \& 4		320100		\$.	\$ 50,000	\$ 150,000	§ 30,000	\$ 20,000	5 -	\$	5				S 250,000
									, 20,00	-	.	\bigcirc.	-			¢ 250,000
		-														
	Total for Investment Prolect $25-$	0		0	0	50,000.	150.000	30,000	20,000	0	0	0	0	0	0	250,000
	Russell Cave Road Main - $34,000^{\circ}$ of $12^{\prime \prime}$		331001	\$.	\$	\$ 5,000	\$ 5,000	\$ 10.000	\$ 25,000	\$ 50.000	\$ 150,000	\$ 100,000	\$ 100,000	\$ 50,000	\$ 5,000	S 500,000
	Total for Investment Prolect $26 \rightarrow$	0		0	0	5,000	5,000	10,000	25,000	50,000	150,000	100,000	10,000	50,000	5.000	500,000
			331001	\$ -	\$	-	15	is -								
													\$ -	$\$$ -	\$ -	\$
																0
	Total for Investment Project $27 . \cdots$	0		0	0		0									
								0	0	0	\bigcirc	0	0.	0	0	
	Reserved				\$ -	\$ -	\$	\% -	$\$ \quad-$	-	5	s	\$	\$	\$ -	\$
				0		\bigcirc	- -	\bigcirc	--0	0	---	0	0	0	0	
										0	,	- 0	0	0	0	
	Total for Investment Profoct $28 \rightarrow$	0														
											0		0	0	0	
	Reserved			5		-	\$	\$ -	5 - -	¢ -	5 -	s	5	3	\$	5
					-	0	-- 0	0	- 0	\bigcirc	0	0	-	0	0	
											0		0	0	0	0
	Total for Investment Project $29 \rightarrow$	0		-	0	0	0	0	0	0	0					-
																0
	Reserved					s		s	s	S	s	\$	s	\$.	S	5

Man American water Compan Schedule of Forecasted Capital Expenditures																
Schedule of Forecasted Capital Expenditures Investment Projects (IP's) Central																Froreasted
			Sub			Mara ${ }^{5}$	Apros	Mey 05	Jun05	Julus	Aug 05.	Sep. 05	Odas	${ }^{\text {Nou-05 }}$	Deco.05.	Total 2005
	-_- Dossciotion			Jan-05	Feb-05	Marab	Apras									
						\bigcirc		\bigcirc		\bigcirc	\bigcirc		\bigcirc			
														\bigcirc		
	Total for tivestment Prolect $30 \rightarrow$	\bigcirc			\bigcirc	0	- 0	\bigcirc	- -	\bigcirc						
	Resened			s -	$5 \quad-$	5 -	$5-$	5	-	5	\bigcirc	s	5	5		
				\bigcirc	- -	-	\bigcirc	- 0	-	--0	-0.	- 0	\bigcirc	- 0°		
	Total for investment Profect $31-\sim$	\bigcirc			\bigcirc		0	\bigcirc		- 0 ?	\bigcirc		0			
	Reseved				3 -	3 -	3	$3-$		3 - -	5 -	3 - -	¢	s -		
							\bigcirc				0	-				
	Totat Ior Investment Promect $32 \rightarrow$	\bigcirc			-											

$\begin{aligned} & \text { Kentucky Am } \\ & \text { Schedule of } \end{aligned}$	merican Water Forecasted Captial Expenditures																	
	Proipets (tP's)																	
P				Amimurt ${ }^{\text {n }}$														
${ }_{\text {J }}^{\text {Jobt }}$	Description		Sub Acct		$\frac{\text { Transfer }}{\text { Expendtures }}$													Froceasted
	Descipan				Expendurues	Resened	Feb-04	Mar-04	Apro4	Nay 04	Jun-04	Ju.04	Aug.04	Sep-04	${ }_{0}^{0} \mathrm{Ca}-04$	Nor-04	Dec. 04	Totat 2004
$\frac{12300111}{1230011}$	New Colurnus spoiect (Tivilage)		${ }^{303200}$	\$ 2334.422		\$	\$ 20.45	\$	\$	$5 \quad$.	\$	\$	\$ -	\$	5 ¢		\$.	234,422
. 12300111	New Columbus Proleet (Tivillage)		304100	272,208	0		26,475	50,000	50,000	46,393			0	0	0	-	0	445,076
	Total for hivestmant Probet 1																	
		12300111		50.630	\bigcirc	0	26,475	50,000	50.000	46,393	0.	0	0	0	0	0	0	679498
12020402	Owen County Main Exensions		331001				0				\bigcirc	0	0	0	20,000	20.000	20,000	\$ 600.000
	Total Ior hvestrient Prokect $2 \rightarrow$	12020402													20000	20000	20000	60000
	Total 1 P's			506.630	0	0	26.475	50,000	50.000	46.393	0	0	0	${ }_{0}$	20.000	20.000	20.000	${ }^{98}$

$\begin{array}{\|l} \text { Kentucky A } \\ \text { Schedule of } \end{array}$	nerican Water Forecasted Captiad Expenditures															
Tri-Vilage.																
If																
	Descripition		Acal	Jan-05	Febo-05	Mar-05	$\sim_{\text {Aprob }}$	May-05	Jum.05	Jus.05	Aug.05	Sep-05	Oot.05	Now 05	Deco. 05	$\xrightarrow{\text { Forecasted }}$ Titates
12300711	New Columbus Proiec (ThNilage)		${ }^{303200}$													
12300111	New Columpus Proiect (TriNllage)		${ }^{304100}$	\bigcirc									\bigcirc		-	
-																
	Total tor hvestment Propect ${ }^{\text {a }} \rightarrow$	1230011		0		0	9		0.	0	\square	-	\cdots			
12020402	Owen Count Mall Exensions		-33100	20,000	20,000	20,000	- 20,000	20,000	20,000]	30,000	30,000	20,000	20,000	20,000	.	240,000
	Total for hvestment Proiecta - -	12020402		20000	280000	20000	20000	20000	20000	30000	30000	20000	20000	20000	0	240000
	Troial P's			20,000	20,000	20.000	20,000	20.000	20,000	30,000	30,000	20,000	20.000	20,000	0	240.000

Kentucky－A	erlcan Wot	rcombany		tility Plant Plac	ed into Service									
Schedule	Feented	Capltal Exp	enditures											
Forecasted	est Year：	11／30，05												
Ease Test Y		0713104												
		Code												
Tememe 80， 94	100．00\％	1												
［P＇s	100．00\％	2		$=\frac{2}{2004}$	$-\frac{3}{204}$	204	2004	206	2004	2084	2004	${ }_{2004}^{10}$	2004	$\stackrel{-12}{2004}$
						Art 04	May－04	Junn－04	Jullou	$\mathrm{Aug}^{\text {a }}$－ 44	Sevo－24	Oction	Nov－04	Dec－04
em	Code	Reserved	Descriplion	Eebe－2004	Mar－2004	Apr 2004	Max－2004	Jun－2004	Jun－2 ${ }^{104}$	Aluaz－2004	Sep－2004	Oct－2004	Nov－2004	Dec－2004
20363	2		Electical Reliablility mor		0	0		0	0	0	0	0		
	2				0	0			－0	－ 0	0	0	0	
0	2			0	0	0	0	0				\bigcirc	0	
0	2			0	0	0	0			0				
0	2				\bigcirc				0			$-$	\bigcirc	611.053
20404	2		Eusiness Processs Efficlency Project \＆Orcem Bur						－	0	，	0	0	
$\frac{0}{0}$	2			－	\bigcirc					，		0	0	
0	2			－	0	0	0	0	0.	0	\bigcirc	0	0	
0	2								0	0	0	0	－ 0	
12020402	2		Malor Highway Relocations	－ 0	．	0						0		400，000
0	2													
0	2			，	0	0	－ 0					0		
\bigcirc	$\stackrel{2}{2}$			0	0		－－ 0				\bigcirc	0	01	
\bigcirc	$\frac{2}{2}$			0	0			$\stackrel{\square}{6}$	0	0			$0 \cdot$	
0	2		Major Highway Relocations				－ 0	0	0	0	0	0	0	
0	2			0	0.	\bigcirc	，	0	\bigcirc	\bigcirc		0	0	
0	2			0	0	0	－＿0	0	0	0	0	0	0	
0	2		Indine Car Replacement ©KRS				－ 0	\bigcirc	0	0	\bigcirc	0	$\stackrel{0}{0}$	
，	2			0	0	0	0	，	0	0	0	0	0	
0	2			0	0	0	0	0	0	0	\bigcirc	0	0	
－－							0		0					
－	$\overline{2}$		Ground Storage Tank－ 3.0 MG		\bigcirc	0	0	0	0 O	0	O	0	0	
，	2			0	0	0	0	0	0	0	0	0	0	
0.	2			0	\bigcirc	．	0	\bigcirc	0		\bigcirc	－0	0	
				\bigcirc	－	－	0	\bigcirc	0	0	0	0	0	
0	2		Reriace Taskac sistem at res	0	0	0	0	0	0	0		－ 0	0	
－	2			，	0	0	0	0	0	0		－－0	0	
0	2			0	0	0	0	0	0	0		－	0	
0	2			，	0	0	0	\bigcirc	\bigcirc	0	！	－－0	0	
\bigcirc	2			0	\bigcirc	\bigcirc	\bigcirc			－		-0	0	
0	2		KRS Filler Medla Replacement－－Hyd 384	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\stackrel{0}{0}$		．		0.	0	
0	2			0	0	0	0	0	0	0	0	0	0	
	2				0			\bigcirc	0	0	0			
0	2								0				0	
0	2		Russell Cave Road Maln－34，000＇of $12^{\prime \prime}$						0	0	0	0	0	
\bigcirc	－${ }^{2}$				0			0	0	0	0	0	0	
0	2			0	0	0	0	0	。	0	0	0	0	
0	－${ }^{2}$			－－ 0	0	\bigcirc	\bigcirc	0	0	0	，	0	\bigcirc	
－	2			0	\bigcirc	0	0	0	\bigcirc	\bigcirc	0	0	－	
0	2			，	0	0	0	0	0	0	0	－0	－－0	
0	2			0	0	0	0	0	\bigcirc	0	\bigcirc	\bigcirc	0	
0	2			0		0	0	0	0	0	0	0	－ 0	
0	2		Resseved	0	\bigcirc	0	0	0	0	0	0	0	－ 0	
0	2			－ 0	O	0	0	0	－0	0	0	0	0	
0	2			0	，	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	
－－					\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	2		Reserved	0	0	0	0	0	\cdots	0	。	－	－	
0	2			0	0		0	0	\bigcirc	0	\bigcirc	\bigcirc	－ 0	
0	$\frac{2}{2}$						\bigcirc		\bigcirc	\bigcirc	\bigcirc		－$\quad 0$	
0	2			0				0	O	0	－	0	，	
0	2		Reserved	0	0	0	0	0	0	0	0	0	0	
0	2			0	\bigcirc	\bigcirc	0	0	0	0	0	0		
0	2			$\stackrel{0}{0}$	0		0	0	0	0	0	0	0	
0	2			0	，	，	．	。	0	0	0	0	0	
0	2		Resenved		0	－	．	0	0	0	0	0	0	
\bigcirc	2			0	，	．	－	\bigcirc	0	0	0	0	0	
0	2			0	0	0	0	\bigcirc	0	0	0	\bigcirc	\bigcirc	
				0	0	0	0	0	0	－	\bigcirc	－	0	－ 0
0	2		Reserved	0	0	0	0	0	0	0	0	0	0	
，				0	0	\cdots	0	0	0	0	0	0	0	
0	2			0	0	0	0	0	0	0	0	0	0	
0	2			0	0	0		0	0	0	0	\bigcirc	0	
0	2				0	$\stackrel{0}{0}$	\％	0	S	0	0		0	
				963.039	1．122．648				$\underline{2,760, i 7 i}$	890.000		931，000		

Kentucky-Ame	an Water	pany					Utility Plant Pla	d into Servic			
Schedule of	casted Ca	al Expenditur									
Forecasted Te	Year:	11130105									
Base Test Yea		07131104	TRI-VILLAGE								
		Cade									
Itern 80-94	100.00\%	1									
IP's	100.00\%	2		10	11	12	1	2	3	4	ci
				2004	2004;	2004	20005	2005	2005	2005	2005
Investment			-	Oct-04	Nov-04	Dec-04	Jan-05	Feb-05	Mar-05	Apr-05	May-05
Item	Code	Reserved	Description	Oct-2004	Nov-2004 ${ }^{\text {a }}$	Dec-2004	Jan-2005	Feb-2005	Mar-2005	Apr-2005	May-2005
12020080	1		Mains	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
12020080	1		Services	0	0	0	0	0	0	0	0
12020080	1		Hydrants	0	0	0	0	0	0	0.	0
				0	0	0	0	0	0	0	0
				0	0	0	0	0	0	0	0
			-_-...----_-								
			-								
			$\square-$								
			- -								
			- - - - - - - - -								
			-								
12020081	1		Mains	2.000	2,000	2,000	2,000	2,000	2,000	2.000	2,000_
			- - -								
			-								
			-								
			-_- -								
			-								
12020082	1		Mains	-	0	0	0	0	0	0	0
			-		-						
			-								
			-								
			-								
			-								
12020083	1		Hydrants	0	0	0	0	0	0	0	2,500
			-								
	1		.								
			- - -								
			- -								
			-								
12020084	1		Hydrants	0	0	0	0	0	0	0	0
			-								
			-								
			-								
			- - -								
			- $\ldots-\ldots-$								
12020085	1		Services	1,000	1,000	1,000	1,000	1.000	1,000	1,000	1,000
			-						1,000	1,000	1,000
			- -								
			--								
			- -								
-12020086	- 1		Services	4,000	3,000	2,950	3,050	0	3,000	- - - 3,000	3,000
			--								
			-								
			-		.						
			- -								
12020087	1		Meters Plastic Case	0	0	0	0	1,000	0	0	0
$\underline{12020087}$	1		Meter Other	0	0	0	0	0	0	0	0

Kentucky-Am	n Water	mpany		Brility Plant Pla	ed into Servic						
Schedule of Fo	casted Ca	tal Expenditu									
Forecasted Tes	Year:	11/30/05									
Base Test Year		07/31/04	TRI-VLLLAGE								
		Code									
Item 80-94	100.00\%	1									
IP's	100.00\%	2		2	3	4	5	6	7	8	9
				2004	2004	2004	2004	2004	2004	2004	2004
Investment				Feb-04	Mar-04	Apr-04	May-04	Jun-04	Jul-04	Aug-04	Sep-04
Item	Code	Reserved	Description	Feb-2004	Mar-2004	Apr-2004	May-2004	Jun-2004	Jul-2004	Aug-2004	Sep-2004
12020087	1		Meter Installations	0	500	500	250	250	250	250	250
			- - - - - - - - - - - - -								
			- -								
			\cdots								
			-								
			- -								
12020088	1		Meters Plastic Case	1,125	1,125	0	0	0	0	0	C
12020088	1		Meter Other	0	0	1,500	0	0	1,500	0	C
12020088	1		Meter Installations	0	0	0	0	0	0	0	C
-			- - -								
			-								
			-								
			-								
12020089	1		Computers \& Periph Mainframe	0							
12020089	1		Computers \& Periph Personal	0	0	0	0	0	0	0	0
12020089	1		Communication Equip-rion-tele	0	0	0	0	0	0	0	0
12020089	1		Misc Equipment								
12020089 ~	1		Computer Equip \& Periph Other								
			- - - - - - - - - -								
			- -								
			-								
			-								
12020090	1		Misc Equipment	0	0	0	0	0	0	0	0
12020090	1		Office Structures	0	0	0	0	0	0	0	0
			Misc Structures								
			Communication Equipment Non-Telephone								
			- - - - - - - - - -								
			-		.						
			-								
			-								
12020091	1		Trans Equipment Light Trucks	0	0	0	0	0	0	0	0
12020091	1		Trans Equipment Other	0	0	0	0	0	0	0	0
12020091	1		Trans Equipment Autos	0	0	0	0	0	0	0	0
12020091	1		Trans Equipment Heavy Trucks	0	0	0	0	0	0	0	0
12020091			Power Operated Equipment								
			$\square-$								
.			-								
			- - -								
			$\underline{\square}$								
			-								
12020092	1		Electric pumping equipment	0	0	0	0	0	0	0	0
12020092	1		WT equipment non-media	0	0	0	0	0	0	0	0
12020092	1		Tools, Shop, \& Garage Equipment	0	0	0	0	0	0	0	0
12020092			Laboratory Equipment								
- 12020092			MiscêllaneousËquipment								
--											
										..---	
12020093	1		Electric purnping equipment	0	0	0	0	0	0	0	-

Kentucky-American Water Company				Utility Plant Placed into Service							
Schedule of Forecasted Capital Expenditures											
Forecasted Test Year:		11/30/05									
Base Test Year:		07/31/04	TRI-VILLAGE								
		Code									
Item 80-94	100.00\%	1									
IP's	100.00\%	2		2	3	4					
				2004					7	8	9
Investment				Feb-04	Mar-04	2004	2004	2004	2004	2004	2004
Item	Code	Reserved	Description	Feb-04	Mar-04	Apr-04	May-04	Jun-04	Jul-04	Aug-04	Sep-04
				-2004	Mar-2004	Apr-2004	May-2004	Jun-2004	Jul-2004	Aug-2004	Sep-2004
12020093	1		Water treatment equipment	0	0	0	0				
12020093	1		Water Treatment Non-Media	0	0	0	0	0	0	0	0
12020093	1		Laboratory Equipment	0	0	0	0	0	0	0	0
12020093	1		Other tangible property								
			- -								
			-								
			-								
			-								
12020094	1		Computer software	0	0	0					
12020094	1		Laboratory Equipment	0	0	0	0	0	0	0	0
					0	0	0	0	0	0	0
			-								
			-								
			-								
			-								
			\cdots								
			*								
			-								
12300111	2		New Columbus Project (TriVillage)	0							
12300111	2		New Columbus Project (TriVillage)	0	0	234,422	0	0	0	0	0
				0	0	0	445,076	0	0	0	0
12020402	2		Owen County Main Extensions	0	0	0	0	0	0	0	0

Units $=\$$

District	CPS Code	$\begin{gathered} \text { Project } \\ \text { Code } \\ \hline \end{gathered}$	Brief Description of Proposed Expenditures	Stage (PNI, P\|A. PCA, New)	$\begin{aligned} & \text { Business } \\ & \text { Plan } 5 \text {-year } \end{aligned}$ total	Prior	$\begin{array}{r} 2005 \\ \text { Period } \\ 1 \\ \hline \end{array}$	2	3	4	5	- 6	7	8	9	10	11	12	Total 2005
		04-80	Malns, Hydrants, Valves, Meters - Depositicontribution	New	21,657,014		204,000	297,840	346,800	314,160	301,920	326,400	301,920	338,640	363,120	287,840	363,120	624,240	4,080,000
		04.81	Network - Replacement Renewal	New	3,645,300		33,600	31,200	44.400	60,600	53,400	46.000	41.400	38,400	44,400	61,200	55.400	90,000	600,000
		04-82	Network - Extension	New	1.631,240		12,750	18,615	21,675	19,635	18,870	20,400	18,870	21,165	22,695	18,615	31,695	30,015	255,000
		04.83	Hydrants - Replacement	New	135,050	\%	1,400	1.300	1,900	2,500	2,200	2,500	1.700	1,600	1,800	2,600	4,000	2,000	25,500
		${ }^{04-84}$	Hydrants - New	New	1,591,890	${ }^{\text {P }}$	15.000	22,300	25,500	23,100	24,200	28,000	24,200	26,900	28,700	25,500	28,700	29,900	300,000
		04-85	Services - Replacement	New	2,836,750		12,000	19,500	41,500	25,500	39,000	36,000	42,500	60,500	77,500	46,500	59,000	40,500	500,000
		04-86	Services - New	New	6,081,347		27,800	47,500	91,400	59,000	90,200	83,300	98,400	100,600	181,600	137.600	137,500	102,100	1,157,000
		04.87	Meters - Replacement	New	4,335,582		24,500	54,700	72,900	128,200	88,200	85,600	56,400	41,600	89,800	72,700	68,300	33,900	816,800
		04-88	Meters - New	New	3,829,518	-	21,800	39,300	83,500	113,200	77,900	76,450	49,800	66,800	64,850	57,000	59,900	31,200	721.500
		04-89	ITS Equipment \& Systems	New	556,040		500	5,800	6,100	7,700	10,400	14,200	4,200	3,300	6,200	9,000	3,300	5,800	76,500
		04-90	Offices and Operations Centers	New	454,832	5	300	4,200	4,400	5,500	7,500	10,200	3,000	2,900	7,900	6,300	2,300	500	55,000
		04.91	Vehicles	New	935,570	- ${ }^{\text {H }}$	20,000	35,000	85,000	85,000	15,000	0	0	0	0	0		-	200,000
		04-92	Tools and Equipment	New	753.000		10,000	10,000	14,200	15,000	33,300	15,000	15,000	7,800	10,000	12,800	13,900	3,000	160,000
		04-93	Process Piant - Replacement	New	1,255.000	86t	13,600	21,300	14,000	20,300	44,100	31,500	8,700	51,400	47,200	23,000	74,900		350,000
		04.94	Process Plant - Additions	New	386,600	$y^{190} 9$	0	2,000	3,000	2,000	2,900	6,500	4.500	1,200	7,300	6,700	3.400	10,500	50.000
		04-95	Treatment Media Replacement and Process Rehabilitation (capitalized)	New		${ }^{2}$	0	0	-	0		0	0		0	0			
		04-96	Tank Rehabililition/ Painting (capilalized)	New		䨓	0	0	0	0	0	-	0	0	0	0			
		04-97	Comprehensive Planning Studies	New	300,000			0	0	0	-	0	0	0	0	0	0	0	0
			TOTAL RECURRING PROJECTS		50,384,733	[idy	397,050	610,555	816.275	861,395	809,090	780,050	870,590	762,805	953,065	777,355	905,415	\#\#\#\#\#\#	9,347,300
		01-05	Russell Cave Road Tank - 1.0 Mg (342)	PIA		1,048,400	80,000	75,000	75,000	75,000	75.000	50,000	21,600	0	0	0	0	0	451,600
		02-04	Source of Supply Development Project (343)	PIA	5,000,000	589,000	10,000	10,000	50,000	50,000	75,000	150,000	150,000	200,000	250,000	250,000	175,000	130,000	1,500,000
		03.01	Elevated Storage Tank - 2.0 Mg (342)	PIA		1,100,000	100,000	150,000	300.000	300.000	300,000	50,000	100,000	150.000	100,000	50,000	0		1,600,000
		03-03	Electrical Reliability upgrades/System Relliability (332)	PIA		780,200	105,400	106,200	96.400	5,200	2.200	2,200	2.200	0	0	0	0		319.800
		04-03	Owen County Main Exiensions (343)	PIA	400,000	60,000	20,000	20,000	20,000	20,000	20,000	20,000	30,000	30,000	20,000	20,000	20,000	\bigcirc	240,000
			Major Highway Relocations (343)	PIA	2,930,000		10,000	25,000	25,000	25,000	50,000	75,000	50,000	50,000	25,000	25,000	25,000	15,000	400,000
			Incline Car Replacement ©KRSS (311)	PIA	1,650,000		0	0	0	0	10,000	25,000	50,000	50,000	50,000	25,000	20,000	20.000	250,000
			Ground Storage Tank-3.0 MG (342)	PIA	1,800,000		0	0	0	- 0	0	0	5,000	10,000	10,000	20,000	20,000	10.000	75,000
			Replace Trac-Vac System at RRS (332)	PIA	300,000		5,000	5,000	5,000	5,000	0	0	0		25,000	150,000	50,000		245,000
			KRS Filler Meda Replacement - Hyd 3 \& 4 (332)	PNI		-	0	0	50,000	150,000	30,000	20,000	0	0	0	,	0		250,000
			Russell Cave Road Main - 34,000' of 12" (343)	PNi	1,300,000	0	0	0	5,000	5,000	10,000	25,000	50,000	150,000	100,000	100,000	50,000	5,000	500.000
			Rockwell Village Wastewater Pipeline	PNI			10,000	25,000	50,000	50,000	100,000	50,000	50,000	15,000		0	0		350,000
			North Broadway Main Replacement (343)	New	1,900,000														
			Replace Trash Rake @ KRS (311)	New	325,000	0													
			Valve House Upgrades at KRS (332)	New	350,000	0													
			Sludge Handling Improvements - RRS (332)	New	2,000,000														
			Yamailton Road Main (343)	${ }^{\text {New }}$	200,000														
			North Upper Street Main Replacement Project (343)	New	1,300,000														
			UV Instalation - KRS/RRS (332)	New	7,800,000														
			Leestown Road Main Improvements (343)	New	700,000														
			Source of Supply Project - Consortium (343)	New	20,000,000														
			KRS Clearwell improvements (332)	New	1,500,000														
				New															
				New	0														
				New	-														
				New															
				New	0														
				New	0														
			LTOTAL INVESTMENT PROJECTS		49,255,000		, 340,400	416,200	676,	85,20	672,200	67,2	508,8	655,000	580,000	640,000	360,000	180,000	6,181,400

Kentucky-American Water Company

September 21, 2001
Revised P 01-02
Project No. 11106

KENTUCKY-AMERICAN WATER COMPANY REVISED CAPITAL INVESTMENT PROJECT 01-02 CLAYS MILL 3 MG GROUND STORAGE TANK

Reference: Investment Project Memorandum dated September 5,2000, Strategic Business Plans for 1999 and 2000

ESTIMATED COST

Previous Estimated Cost	$\$ 100,000$
Previous 2001 Expenditure	$\$ 100,000$
Revised Estimated Cost	$\$ 1,500,000$
Revised Prior Expenditure	$\$ 100,000$
Proposed 2002 Expenditure	$\$ 100,000$
Proposed 2003 Expenditure	$\$ 1,300,000$

It is recommended that the budget be revised to include construction funding. The original authorized expenditures were for design only. The purpose of the project is to equalize demand during peak periods, provide fire flows, and improve system reliability within the distribution network.

Kentucky-American Water Company
Revised 2001 IP 01-02
Clays Mill 3 MG Ground Storage Tank
Project No. 11106
September 21, 2001
Page 2

DISCUSSION

On June 13,2000, Kentucky-American Water Company pumped a record amount of water into its Lexington area distribution system. That day, a total of 66.37 MGD was pumped from its treatment plants. The previous maximum day of record was 64.67 MGD in 1998. Additionally, the maximum hourly pumpage rate on that day was 107 MGD, an increase of approximately 12 MGD over the previous maximum hour event that took place in 1998. A tank crucial to one of KAWC's largest customers was critically low for several hours this day, thus fire protection for this area was low and other tanks were at minimum volume levels. Finally, all available pumps were operating, including all tanks and the pumps at both plants which were operating at full rated capacity.

Kentucky-AmericanWater Company has twelve storage facilities in its distribution system with a total volume of 16.84 MG . These storage facilities are used to provide fire protection and equalize pressures during high demand periods. Reliability is provided through storage and diesel capabilities at the treatment plants. Kentucky-Americanhas worked with the Kentucky Public Service Commission to determine an appropriate level of storage that is cost effective and meets the objectives of health, safety and reliability for its customers. Because of this continued dialogue with the Commission staff, Kentucky-American has received approval to operate with storage below the volume equal to one average day that is required by Kentucky regulations. However, based on the operations during the latest peak day event and continued growth within the system, it is imperative that Kentucky-American increase its storage capacity in order to continue to provide fire protection and reliability to its distribution system.

Since the maximum day of record, KAWC has added several new demands to its existing system. These system demands include sale for resale to Harrison County Water Association for $100,000 \mathrm{gpd}$, connecting 1100 customers in Clark County for $350,000 \mathrm{gpd}$, increased sale for resale to North Middletown of $100,000 \mathrm{gpd}$, and approximately 3000 new customers. The proposed tank is critical to meeting system reliability and is the most efficient way to meet peak period demands, provide fire protection and allow for continued growth. The tank will be located on property in south Lexington that is an existing tank site to minimize construction costs. This will allow Kentucky-American to utilize existing piping to the site and expand the existing pumping on-site capabilities. This existing tank site is located in the middle of a high growth area and is an excellent location to optimize the use of the additional facilities.

Kentucky-American Water Company
Revised 2001 IP 01-02
Clays Mill 3 MG Ground Storage Tank
Project No. 11106
September 21, 2001
Page 3

Design is scheduled for completion in 2001, with minor construction activities to begin in 2002 and completion in 2003. The cost estimate was based on the design engineer's estimate and will vary based upon contractor installation prices. This estimate is projected to be accurate within plus ten to minus twenty-five percent.

Richard C. Svindland. P.E.
Senior Operations Engineer

KENTUCKY-AMERICAN WATER COMPANY
REVISED CAPITAL INVESTMENT PLAN PROJECT 01-02
CLAYS MILL 3 MG GROUND STORAGE TANK

KENTUCKY-AMERICAN WATER COMPANY REVISED CAPITAL INVESTMENT PLAN PROJECT 01-02 CLAYS MILL 3 MG GROUND STORAGE TANK															
$\begin{aligned} & \text { DESGRPTIION } \\ & \text { OF ACTVITY } \end{aligned}$	$\begin{gathered} \text { ENTITY } \\ \text { RESPONSIBLE } \end{gathered}$	$\left\|\begin{array}{c\|} 2001 \\ \text { carcover } \end{array}\right\|$	Jan	Feb	Mar	Apr	May	Jun	${ }^{2002}$	${ }^{\text {Aug }}$	Sep	Oct	Nov	Dec	$cTOTAL 2002$
Preliminan Desion	KAWC / Consultant	S 115.000													
Final Design	Consultant	S 75.000													
Const. Admin. 5 Inspection	Kawc/ Consultant														\$ 5.000
Materials	KAWC														
Construction	Contractor														\$ 37,000
SUB-TOTAL			\$.	\$ 250		\$ 2.500	\$7,250		250	250	250	250	250		s 82000
															+ 22.000
O8C (+1-5\%)		\$ 2,840		\$ 10	10	\$ 130	\$ 3.860	\$ 10	\$ 10	\$ 10	10	\$ 10	\$ 10	10	\$ 4.080
Overitead (+ (-2\%)		$\frac{8}{5}$	8.	\% 10	\$ 10	S. 50	S 1.550	S 10	\$ 10	\$ 10	\$ 10	$5 \quad 10$	\$ 10	¢ 10	\$ 1.690
		5													
		¢ 750					1.330	1.090	1.100	1,100	1,100	1,100	1.100	1.100	\$ 11,410
CASH FORECAST		S 100,000	\$5 590	\$ 860	Is 860	\$3.300	\$83,990	\$ 1.360	\$ 1.370	151.370	S 1.370	/5 1.370	S 1.3	\$ 1.370	\$ 99, 180

KENTUCKY-AMERICAN WATER COMPANY REVISED CAPITAL INVESTMENT PLAN PROJECT 01-02 CLAYS MILL 3 MG GROUND STORAGE TANK															
DESCRIPTIONOF ACTIVITY	ENTITY RESPONSIBLE	$2001 \& 02$ Carryover	- ${ }^{2003}$												$\begin{aligned} & \text { TOTAL } \\ & 2003 \\ & \hline \end{aligned}$
			Jan			Apr	May	Jun	Jul	Aug	Sep	OCt	Nov	Dec	
Preliminary Design	KAWC / Consultant	S 15,000													\$ -
Final Design	Consultant	\$ 75,000													\$
Const. Admin. / Inspection	KAWC / Consultant	\$ 5.000													\$ 45,000
Materials	KAWC	\$ 40,000													\$ 110,000
Constuction	Contrgector	\$ 37,000													\$ 993,480
Misc. Company Labor	KAWC	\$ 4.520													
															S
SUB-TOTAL		\$ 176,520	\$156,540	\$126,540		\$ 86.540		\$86.540	\$ 06.540	\$86,540	\$ 86.540	\$ 86,540	S 86.540	\$ 86.540	\$1.148.480
ORC ($+\ldots .5 \%$)		\$ 6,920	\$ 7,830	\$ 6,330	\$ 4,330	\$ 4,330	\$ 4.330	\$ 4.330	\$ 4,330	\$ 4,330	\$ 4,330	\$ 4.330	\$ 4,330	\$ 4,330	\$ 57,460
Overhead ($+/ \ldots 2 \%$)		\$ 3,580	\$ 3.130	\$ 2.530	\$ 1.730	\$ 1.730	\$ 1,730	\$ 1.730	\$ 1,730	\$ 1,730	\$ 1.730	\$ 1.730	\$ 1.730	\$ 1.730	\$ 22,960
AFUDC		\$ 12.160	2,570	3,270	3.680	4,220	4.770	5,310	5.850	6.390	6.930	7,470	8.010	8,550	\$ 67,020
CASHFORECAST		\$ 199,180	\$170,070	\$138,670	\$ 96,280	\$ 96,820	\$97,370	\$ 97,910	\$ 98,450	\$ 98,990	1\$99,530	51000070	\$100,610	\$101,150	\$1,295,920

KENTUCKY-AMERICANWATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL
 CLAYS MILL 3 MG GROUND STORAGE TANK

Determination of Revenue Requirement					
Authorized Rate of Return on Common Equity					11.00\%
Federal Income Tax Rate					35.00\%
Return on Common Equity before FIT					16.92\%
State Income Tax Rate					8.25\%
Required Rate of Return on CE for Project					18.44\%
Common Equity Ratio for Project					40.00\%
Weighted Cost of Common Equity before Tax					7.38\%
Long Term Debt Ratio for Project					60.00\%
Estimated Cost Rate for New Debt					8.00\%
Weighted Cost of Debt					4.80\%
Total Pre-Tax Cost of Capital					12.18\%
Total Estimated Cost of Project				\$	1,500,000
Investment by Others					0
Net Investment Financed by Company				\$	1,500,000
New Common Equity \$	\$ 600,000				
New Long Term Debt	900,000				
Total Revenue Requirement Amount					Rate
Required Pre-Tax Operating Income		\$	182,700		12.18\%
Depreciation Rate	1.180\%		17,700		1.18\%
Property Tax Rate	0.7037\%		10,556		0.70\%
Change in Operation \& Maint. Expense			0		0.00\%
Revenue from New Customers			0		0.00\%
Total Net Revenue Requirement		\$	210,956		14.06\%
Revenue Tax Rate	0.14537\%		307		0.02\%
Total Revenue Requirement		\$	211,263		14.08\%
Latest 12 Months Revenue - 06/30/2001			,071,359		
Required Price Increase			0.53\%		

KENTUCKY-AMERICANWATER COMPANY PROPOSED DESIGN INVESTMENT PROJECT 01THREE MILLION GALLON GROUND STORAGE TANK

Reference: 1992 Least/Comprehensive Planning Study, Project B-13; 1993 and 2000 Storage Capacity Analyses, Strategic Business Plans for 1999 and 2000

SUBJECT OF STUDY

The need to equalize pressures and provide fire flows and system reliability through finished water storage located in the distribution system.

RECOMMENDATION

A 3.0 million gallon ground storage tank should be designed and constructed in the distribution system to provide fire flows and system reliability and to equalize demands within the system. This facility should be located on the site of existing storage to reduce costs.

ESTIMATED COST

Total Estimated Cost	$\$ 100,000$
Proposed 2001 Expenditure	$\$ 100,000$

ADEQUACY

The proposed investment project is adequate for engineering design, survey, and bidding services to properly locate the new tank. A revision to the current project will be made after construction bids are received.

Kentucky-American Water Company
Proposed 2001 IP 01-
Three MG Ground Storage Tank
Project No. 11106
September 5,2000
Page 2

DISCUSSION

This capital investment will initiate design services for the new three (3) MG tank. Using current and projected system demands, the IRP to be completed in late 2000 will determine which existing site (Hume Road, Clays Mill or Parkers Mill) will be most effective in having additional storage added to the site. The tank will be a ground storage facility, and will share the pump station with the existing tank on the site. Based on recent system operations, including the new record maximum day pumpage, it is obvious that this tank is necessary. Peak system demands in the northwestern and western sections of the distribution system caused low pressure for numerous residential and commercial customers. The continued residential growth in this area will only increase system demands during hot and dry weather. This additional tank is critical to meeting system reliability and is the most efficient way to meet peak period demands while providing fire protection. Design will also include dechlorinationfacilities on site to allow for dechlorination while the tank is drained for maintenance.

The Kentucky Public Service Commission Title 807, Chapter 5 - Utilities, Section 4 Continuity of Service, paragraph (4) states "the minimum storage capacity for systems shall be equal to the average daily consumption." KAWC does not currently meet this requirement. The 1992 Least/Comprehensive Planning Study and the 1993 Storage Capacity Analysis outlined the need for three additional three (3) MG tanks in the main service area and two additional tanks in the north high service area. The 1993 Storage Capacity Analysis proposed the use of a 50-50 spilt between storage capacity and back-up power facilities. Kentucky-Americanwould be able to provide one-half average daily consumption in storage and be able to produce and pump onehalf average daily consumption using backup or auxiliary power at the treatment facilities. In 1993 the Public Service Commission approved the Storage Capacity Analysis and granted a variance to KAWC until 2005. Two of the five necessary tanks have already been constructed with the completion of the three (3) MG Clays Mill ground storage tank and the 750,000 gallon elevated Briar Hill Road tank. In 2000, KAWC initiated discussions with the PSC to explore a further variance of storage needs, however, it is clear from system operations that this tank is necessary. Those discussions are still ongoing for future storage needs.

Kentucky-American Water Company
Proposed 2001 IP 01-
Three MG Ground Storage Tank
Project No. 11106
September 5,2000
Page 3

Design is scheduled for 2001, with constructionto begin in 2002 and completion in 2003. A revision to the current proposed investment project will be presented once design is complete and construction costs can be accurately projected. It is estimated that construction will cost $\$ 1,400,000$. The proposed design cost is within an accuracy of plus or minus 10 percent.

Richand C. Svindiand
Operations Engineer

NOR/rcs

KENTUCKY-AMERICAN WATER COMPANY

 PROPOSED 2001 CAPITAL INVESTMENT PLAN PROJECT 01-THREE (3) MG GROUND STORAGE TANK

ITEM	RESPONSIBLE ENTITY	TOTAL ESTIMATED COST	
Preliminary Design	KAWC / Consultant	\$	15,000
Final Design	Consultant	\$	75,000
Company Labor	KAWC	\$	4,529
	Sub-Total	\$	94,529
O\&C (3\%)		\$	2,836
Engineering Overhead (2\%)		\$	1,891
	Sub-Total	\$	99,255
AFUDC		\$	744
	Total	\$	100,000

KENTUCKY-AMERICANWATER COMPANY PROPOSED 2001 CAPITAL INVESTMENT PLAN PROJECT 01THREE (3) MG GROUND STORAGE TANK														
DESCRIPTION OF ACTIVITY	$\begin{gathered} \text { ENTITY } \\ \text { RESPONSIBLE } \\ \hline \end{gathered}$	- JAN	FEB	MAR	APR	MAY	JUN	$\frac{2001}{1_{\mathrm{JUL}}^{2}}$	AUG	SEPT	OCT	NOV	DEC	$\begin{aligned} & \text { TOTAL } \\ & 2001 \\ & \hline \end{aligned}$
Preliminary Design	KAWC/ Consultant			\$ 5,000	\$ 5.000	\$5,000								\$ 15.000
Final Design	Consultant					\$25,000	\$25,000	\$25,000						S 75,000
Company Labor	KAWC						\$ 2,029	\$2.500						\$ 4.529
SUB-TOTAL				\$ 5,000	\$ 5,000	\$30,000	\$27,029	\$27,500						\$ 94.529
O8C (3\%)					\$ 150									\$ 2,836
Overtead (2%)				\$ 100	\$ 100	\$ 600	\$ 541	\$ 550						${ }_{5}$ \% 1,891
AFAUDC				39.38	39.38	236.25	212.85	216.58						$15 \quad 744$
CASHFORECAST				\$ 5,289	\$ 5.289	\$31.736	\$28.593	\$29.092	\$					\% 100.000

KENTUCKY-AMERICANWATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL THREE (3) MG GROUND STORAGE TANK

Determination of Revenue Reauirement					
Authorized Rate of Return on Common Equity					11.00\%
					35.00\%
Return on Common Equity before FIT					16.92\%
State Income Tax Rate					8.25\%
Required Rate of Return on CE for Project					18.44\%
Common Equity Ratio for Project					40.00\%
				Weighted Cost of Common Equity before Tax	738%
Long Term Debt Ratio for Project					60.00\%
Estimated Cost Rate for New Debt					7.00\%
					4.20\%
Total Pre-Tax Cost of Capital					11.58\%
Total Estimated Cost of Project				\$	1,500,000
Investment by Others Net Investment Financed by Company					0
				\$	1.500.000
New Common Equity $\$$ 600,000 New Long Term Debt 900,000					
Total Revenue Reauirement			Amount		Bate
Required Pre-Tax Operating Income		\$	173,700		11.58\%
Depreciation Rate	2.200\%		33,000		2.20\%
Property Tax Rate	0.7037\%		10,556		0.70\%
Change in Operation \& Maint. Expense			0		0.00\%
Revenue from New Customers			0		0.00\%
Total Net Revenue Requirement		\$	217,256		14.48\%
Revenue Tax Rate	0.14537\%		316		0.02\%
Total Revenue Requirement		\$	217,572		14.50\%
Latest 12 Months Revenue - 06/30/2000			39,128,658		
Required Price Increase			0.56\%		

Approved at Board of Directors' Meeting December 11, 2001

 AmericanWater Works Service Company, Inc.1025 Laurel Oak Road. P.O. Box 1770 • Voorhees, New Jersey 08043 • (856) 346-8201 • Fax (856) 346-6360

October 1,2001
File No. 380-8362

KENTUCKY-AMERICAN WATER COMPANY
 REVISED INVESTMENT PROJECT 01-03 DISTRIBUTED CONTROL SYSTEM IMPROVEMENTS

Reference: Investment Project Memorandum dated September 13, 2000; 2000 and 2001 Strategic Business Plans.

Previous Estimated Cost	$\$ 94,000$
Budget 2001 Expenditures	94,000
Revised Estimated Cost	$\$ 650,000$
Revised 2001 Expenditure	94,000
Proposed 2002 Expenditure	100,000
Proposed 2003 Expenditure	456,000

An upward revision of the investment project budget is recommended to allocate funding for design/build system integration. The approved budget is only for the preliminary design and bidding phase, which is complete. The requested funding reflects actual bid pricing from system integrators.

Kentucky-American Water Company
Revised IP 01-03
Distributed Control System Improvements
October 1,2001

The proposed expenditures are to complete an upgrade of the existing distributed control system (DCS) at Kentucky-American Water Company. This system currently monitors and controls the Kentucky River Station and Richmond Road Station treatment plants, as well as the remote distribution storage tanks and booster stations. The existing system was installed in the mid-1980s and has been expanded several times. Much of the hardware and software is obsolete and no longer supported by the manufacturers. Additionally, the system has grown to a point that cannot be reliably supported by the existing hardware and software resulting in down time and loss of data.

The proposed improvements consist of minor hardware upgrades to the RTUs and data concentrators, replacement of the workstation hardware, installation of all new software, and improvements to the control logic, alarming strategies, and reporting capabilities. The upgraded system will include expanded remote access capabilities, which will improve response time to alarm events and allow for efficient and secure supervisory access to the system. The proposed improvements will be adequate to handle current needs as well as future expansion without concern for compromising the reliability and integrity of the system.

The total project cost estimate is accurate to within -20 to +0 percent given the fact that it reflects actual pricing from system integrators based on the detailed preliminary design.

David M. Reves, P.E.

KENTUCKY-AMERICAN WATER COMPANY REVISED INVESTMENT PROJECT 01-03 DISTRIBUTED CONTROLSYSTEM IMPROVEMENTS

Detailed Cost Estimate

	September 2000	October 2001
Preliminary Engineering	$\$ 80,000$	$\$ 65,000$
Bidding	10,000	5,000
Construction Engineering \& Management		45,000
Utility Plant Construction		
\quad Acct \# 346 -Communication Equipment		$\underline{460,000}$
\quad Electrical \& Controls		$\$ 575,000$
Omissions \& Contingencies	$\underline{50,000}$	
AFUDC	$\underline{490,000}$	$\$ 625,000$
TOTAL	$\underline{4,000}$	$\underline{25,000}$
6650,000		

American Water Works Service Company, Inc.

1025 Laurel Oak Road • P.O. Box 1770 • Voorhees, New Jersey 08043 • (856) 346-8201 • Fax (856) 346-8360

September 13,2000
File No. 380-8362
IP 01-03
Proje+ID - 11107
KENTUCKY-AMERICAN WATER COMPANY PROPOSED INVESTMENT PROJECT DISTRIBUTED CONTROL SYSTEM IMPROVEMENTS

Reference: 2000 Strategic Business Plan

SUBJECT

Deficiencies and obsolescence of the existing distributed control system (DCS) for the production facilities and distribution system.

RECOMMENDATION

A comprehensive upgrade of the DCS is recommended to modernize and integrate the present monitoring and control functions

ESTIMATED COST

Total Estimated Cost	$\$ 94,000$
Proposed 2001 Expenditure	$\$ 94,000$

Kentucky-American Water Company
Proposed 2001 IP
DistributedControl System Improvements
September 11,2000

ADEQUACY

The recommended funding is adequate for design and bidding of the DCS improvements.

Kentucky-AmericanWater Company
Proposed 2001 Investment Project
Distributed Control System Improvements
September 13,2000

DISCUSSION

Kentucky-AmericanWater Company (KAWC) owns and operates an intake at the Kentucky River, two water treatment plants, and numerous distribution system facilities. Computer based distributed control system (DCS) technology was installed at these facilities in a step-wise manner over the past ten years. The equipment in the earliest DCS that was installed at the Richmond Road Station is obsolete and unreliable resulting in the occasional loss of data. The Kentucky River Station DCS cannot communicate with the Richmond Road Station DCS. More recently installed DCS hardware and software at the Richmond Road Station is not compatible with the original DCS at Richmond Road. Furthermore, the existing DCS has minimal reserve capacity for additional functions and very limited capabilities to export data for operational reports and other functions.

This Investment Project is recommended to: replace the existing data concentrators and operator interfaces (i.e., work stations); upgrade 40 of the existing remote telemetry units; upgrade the software, programs, displays and reports; provide a frame relay for communication and data access from anywhere in the system; provide a structured query logic server and firewall to permit the sharing of data with other Water Company functions, but without affecting the integrity of the data. The recommendedimprovements will create an integrated DCS to handle all current monitoring, control and reporting functions and to accommodate additional functions in the future.

The total project cost for the recommended improvements is estimated at $\$ 650,000$ within -20 to +10 percent.

Director - Design

KENTUCKY-AMERICAN WATER COMPANY DISTRIBUTED CONTROL SYSTEM IMPROVEMENTS

Detailed Cost Estimate

REH/bem

9113100
Okyip \backslash Distributed Control System Impr.doc

KENTUCKY-AMERICANWATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL DESIGN SCADA IMPROVEMENTS

Determination of Revenue Requirement					
Authorized Rate of Return on Common Equity					11.00\%
Federal Income Tax Rate					35.00\%
Return on Common Equity before FIT					16.92\%
State Income Tax Rate					8.25\%
Required Rate of Return on CE for Project					18.44\%
Common Equity Ratio for Project					40.00\%
Weighted Cost of Common Equity before Tax					7.38\%
Long Term Debt Ratio for Project					60.00\%
Estimated Cost Rate for New Debt					7.00\%
					4.20\%
Total Pre-Tax Cost of Capital					11.58\%
Total Estimated Cost of Project				\$	650,000
					0
				\$	650,000
New Common Equity $\$ \quad 260,000$ New Long Term Debt 390,000					
Total Revenue Requirement			mount		Bate
Required Pre-Tax Operating Income		\$	75,270		11.58\%
Depreciation Rate	4.790\%		31,135		4.79\%
Property Tax Rate	0.7037\%		4,574		0.70\%
Change in Operation \& Maint. Expense			0		0.00\%
Revenue from New Customers			0		0.00\%
Total Net Revenue Requirement		\$	110,979		17.07\%
Revenue Tax Rate	0.14537\%		162		0.02\%
Total Revenue Requirement		\$	111,141		17.09\%
Latest 12 Months Revenue-06/30/2000			128,658		
Required Price Increase			0.28\%		

KENTUCKY-AMERICANWATER COMPANY PROPOSED DESIGN INVESTMENT PROJECT 01ONE MILLION GALLON PUMPED STORAGE FACILITY

Reference: 1992 Least/Comprehensive Planning Study, Project B-8; 1993 and 2000 Storage Capacity Analyses, Strategic Business Plans 1997, 1998, 1999,2000

SUBJECT

The need to equalize pressures, provide fire flows, and improve system reliability through finished water storage located in the north section of the distribution system.

RECOMMENDATION

A one (1) million gallon pumped storage tank should be designed and constructed in the northern Fayette County section of the distribution system to provide fire flows and system reliability, and to equalize demands within the system.

ESTIMATED COST

Total Estimated Cost	$\$ 200,000$
Proposed 2001 Expenditure	$\$ 150,000$
Proposed 2002 Expenditure	$\$ 50,000$

ADEQUACY

The proposed investment project funds are adequate for engineering design, survey, and land acquisition and bidding services to properly locate the new tank.

Kentucky-American Water Company
Proposed 2001 IP 01-
Russell Cave Road Pumped Storage Facilities
September 5,2000
Page 2

DISCUSSION

This capital investment will initiate design services for the new one (1) MG tank to be located on a new site in the northern section of the distribution system as recommended in the 1992 Least Cost/Comprehensive Planning Study. Part of that task will be to negotiate land acquisition. This tank is critical to the continued operations and reliability in the rapidly growing Scott County area. On peak demand days, many high elevation areas in Scott County experience low pressure. It is anticipated that this tank will provide better reliability for Toyota Motor Manufacturing and will reinforce the area where new bulk sales will be provided to the Harrison County Water Association. The tank will also allow for the Muddy Ford tank to be taken out of service for maintenance. The Muddy Ford tank, which was built in 1989, is currently so critical to Scott County and Toyota operations that it could not be painted without shutting down Toyota. A recent inspection projected the life of the paint on the tank to be an additional five years. In that time frame, additional storage for the area must be available. Design will also include dechlorination facilities on site to allow for disinfection and adequate treatment during tank draining.

The Kentucky Public Service Commission Title 807, Chapter 5 - Utilities, Section 4 Continuity of Service, paragraph (4) states 'the minimum storage capacity for systems shall be equal to the average daily consumption." KAWC does not currently meet this requirement. The 1992 Least/Comprehensive Planning Study and the 1993 Storage Capacity Analysis outlined the need for an additional three (3) MG tank in the main service area and two additional tanks in the north high service area. The 1993 Storage Capacity Analysis proposed the use of a $50-50$ spilt between storage capacity and back-up power facilities. In 1993 the Public Service Commission approved the Storage Capacity Analysis and granted a variance to KAWC until 2005. Two of the five necessary tanks have already been constructed with the completion of the three (3) million gallon Clays Mill ground storage tank and the 750,000 gallon elevated Briar Hill Road tank. In 2000, KAWC initiated discussion with the PSC to explore the possibility of a further variance, however, it is clear from operational history that this proposed tank is absolutely necessary. The discussions with the PSC are ongoing with regard to future storage needs.

Kentucky-AmericanWater Company
Proposed 2001 IP 01-
Russell Cave Road Pumped Storage Facilities
September 5,2000
Page 3
Design will be complete in 2002, and construction will begin in 2003 with completion in 2004. It is estimated that construction will cost $\$ 1,300,000$ including pumping facilities. The accuracy of this estimate is plus/minus 15 percent.

Kevin W. Kennoy Operations Engineer

NOR/kwk

KENTUCKY-AMERICAN WATER COMPANY PROPSOED DESIGN INVESTMENT PLAN PROJECT 01ONE MILLION GALLON PUMPEDSTORAGE FACILITY

Detailed Cost Estimate

Item	Category	Estimate
Preliminary and Final Design	Contract	\$75,000
Administration	Company	5,000
Surveying	Contract	4,000
Land Purchase and Legal Services	Company	96,200
		\$180,200
O\&C (5\%)		9,010
Engineering Overhead (2\%)		3,604
		\$192,814
AFUDC		6,722
		\$199,536
SAY		\$200,000
/sdb		
9/21/00		
Okyipt 01 lMG Pumped Storage Fac.doc		

0.0075
AFUDC InterestRate

KENTUCKY-AMERICAN WATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL Russell Cave Road Pumped Storage Facilities

Determination of Revenue Reauirement				
Authorized Rate of Return on Common Equity				11.00\%
Federal Income Tax Rate				35.00\%
Return on Common Equity before FIT				16.92\%
State Income Tax Rate				8.25\%
Required Rate of Return on CE for Project				18.44\%
Common Equity Ratio for Project				40.00\%
Weighted Cost of Common Equity before Tax				7.38\%
Long Term Debt Ratio for Project				60.00\%
Estimated Cost Rate for New Debt				7.00\%
Weighted Cost of Debt				4.20\%
Total Pre-Tax Cost of Capital				11.58\%
Total Estimated Cost of Project				\$ 1,500,000
Investment by Others				0
Net Investment Financed by Company				\$ 1,500,000
New Common Equity \$	\$ 600,000			
New Long Term Debt	900,000			
Total Revenue Requirement			Amount	Rate
Required Pre-Tax Operating Income		\$	173,700	11.58\%
Depreciation Rate	2.200\%		33,000	2.20\%
Property Tax Rate	0.7037\%		10,556	0.70\%
Change in Operation \& Maint. Expense			0	0.00\%
Revenue from New Customers			0	0.00\%
Total Net Revenue Requirement		\$	217,256	14.48\%
Revenue Tax Rate	0.14537\%		316	0.02\%
Total Revenue Requirement		\$	217,572	14.50\%
Latest 12 Months Revenue-06/30/2000			39,128,658	
Required Price Increase			0.56\%	

Project 01-11	:
Kentucky American - New Columbus Mains/Owen County	
Project Manager	$:$
Rroject Status	$:$
: PROJECT CHANGE REQUEST	

1.0 SUMMARY

This project was approved as InvestmentProject in2001 as part of the conditions for the acquisition of the Tri-Village Water District in Owen County. Kentucky American agreed to invest $\$ 1,800,000$ towards the design and construction of water mains, a storage tank, and booster pumps to feed the New Columbus area of Owen County. It was anticipated that 240,000 feet of 3,4 and 6 -inch mains be installed to serve approximately 235 new customers.
1.1 Project Objectives

A key driver for the acquisition of the Tri-Village Water District in Owen County was the extension of new water lines to unserved areas of rural Owen County. Kentucky American Water committed to the project and the acquisition closed in August2001.
1.2 Changes Requested

The extensions of water mains has been very successful in Owen County. Nearly 115 more customers than originally anticipated have signed up for water service. The project was anticipated to be complete in the fall of 2003. Because of extremely favorable pipe installation costs and in order to fully leverage grant money received in Owen County for water main extensions, Kentucky American has proposes to extend additional mains under the current contracts for an additional $\$ 315,000$. PVC pipe cost increases eliminated any $\mathrm{O} \& \mathrm{C}$ in the budge! ©f the project. This additional work will serve another 100 customers. The additional work will extend the project until February 2004.
1.3 Reasons for Changes

The Owen County Judge Executive has been very successful in receiving grant monies and is supportive of Kentucky American Water. His support was instrumental in the acquisitionand has been key to the additional acquisition of the Elk Lake Homeowners Water Association and now the City of Owenton water and sewer operations. This additional work will provide additional customers at a lower per customer cost than the original work.
1.4 Revised Cost and Program

- Increase project cost $\$ 315,000$.
- Extend project program completion to February 2004.
1.5 Project Issues and Risks

There is $\quad 1$ risk a: with this project. Kf n \& meric $\boldsymbol{\mathrm { W }}$ would like to continue to work with the Owen ∂x ty Judge Executive to leverage available grant monies for extensions into unserved areas.
2.0 INTRODUCTION
$2.1 \quad 1 \quad 10 \mathrm{j}$ is at 90% complete. The nk has been pect in service \exists d water is on some of the mains. This r w.li be spent ID nber 2003 and January-February 2004 and represents an increase of 17.5%.
3.0 THE CHANGE PROPOSAL
3.1 The Owen County Judge Executivehas been very aggressive in promoting water line extensions,
which has generated an enthusiasm among residents in Owen County. Kentucky American hopes to continue to work with the residents to provide water line extensions in a timely manner.
3.2 If the expenditure increase is deferred, it would likely promote hard feelings with residents in Owen County, and the price would likely be much higher for installation at a future date. A local contractor has provided a very favorable installation cost of less than $\$ 10$ per foot to continue work efforts. Because this area is close to Scott County and the Toyota Manufacturing facility, it is anticipated that residential growth will occur with water service and improved infrastructure in the area.
3.3 There are essentially no other options than deferring the project for future work. Because the Judge has successfully received $\$ 1.4$ million in state grants, it is anticipated that with Kentucky American's partnership the Judge will continue to be successful in receiving grants.
3.4 It is recommended that the price increase and additional expenditures be approved at this time, to allow the project to continue as currently tracked.
3.5 Detail the effect of any change in the investment driver targets under which the project is being undertaken utilizing Purpose Codes. Include primary and secondary business drivers.

Purpose Code	Description	$\%$	Measure	Units	Target
AC02	Post Acquisition Committed Expenditures	100			

4.0 POST PROJECT APPROVAL FINANCIALSTATEMENT

4.1 See attachment.
4.2 There is no anticipated significant variation in operational expenditure since the Investment Project Memoranda was approved.
4.3 Since there were no other alternatives, an economic analysis has not been performed.
5.0 EFFECT OF CHANGE ON PROJECT COMPLETION
5.1 Easement acquisition has delayed some of the main installation, which was originally scheduled to be completed in August 2003 but was revised in early 2003 to the end of the year. With the additional main installations, the project will carryover into 2004. The tank was placed in service in October 2003 and the booster station will be placed in service in November 2003.

6.0 ISSUES AND RISKS

6.1 Currently, there are no significantissues or risks other than maintaining the enthusiasm and support of the Owen County residents. The additional main extensions are not expected to cause any significant increase in operational expenditures.

7.0 RECOMMENDATION

7.1 It is Iecommended that the Capital Investment Management Committee grant ap pro for th incre it ital expendilures of $\$ 315,000$ for at thil ije $\quad \mathrm{t}$ if $\$ 2,115,000$ and an extension
of project completion until February 2004.

PROJECT REVIEW		
	Signature:	Date:
Asset Owner or nominated Asset Manager I Capital Program Manaor		
Operations Manager		
Project Manager (Deliverer)		
Finance Representative		
RECOMMENDED FOR APPROVAL : PNI Only		
VP Technical Service		
Others (as nominated by VP Technical Services)		

APPENDICES

A1 PCA Control Data Sheet
Associatedform - CMF3.55
A2 Detailed Estimate of Cost
$t \leq \quad \mid 1$ of estimated costs presented in sufficient detail to support the recommended expenditure. To facilitate "budget to actual" expenditure analysis, to primary it estima line items (see "Utility Plant Construction") shall form the basis for project set-up in the "job cost" accounting system. Secondary cost estimate line item detail shall be provided if necessary to better conve) e scope of the primary line item expenditure. Co st categories for : fuction it will livy follow the 1984 NARUC Wal ir Utility PI it a system
Standard primary cost categories have also been establishedfor indirect capital costs such as preliminaryengineering, detailed design, permit acquisition, etc. A list of these prime categories is attached. Line items for AFUDC, capitalization of utility subsidiary charges, omissions and contingencies ($\mathrm{O} \& \mathrm{C}$), etc. are to be included, if appropriate. Expenditurestransferred from other investment projects shall also be itemized. The estimate shall also include any costs of removal associated with the project but these costs are not to be included in the "Estimated Cost" for the project.

A3 Economic Analysis

An "Economic Analysis of the Impact of Capital Spending Proposal" will be attached. The analysis will address the revenue requirement and rate impact of the project's capital expenditure and operating costs. If an investment will result in an operating expense increase/reduction, or
an increase in revenue through additional sales, the analyses will consider the economic impacts. Present Value Spreadsheet Summary

A4 Schedule IForecast
A bar chart presenting the anticipated schedule of significant components of the project (study, design, permitting, construction, easement acquisition, etc.), and the American Water System entity (Utility Subsidiary, System Engineering, etc.) responsible for the activity.

A5 Sketches
If appropriate, a legible and informative drawing or sketch should be appended to show the location of facilities, such as main extensions. When large drawings are needed, they should be folded as neatly as possible to a size of $81 / 2^{\prime \prime}$ by $11^{\prime \prime}$. Also, if appropriate, include an area map of the system so the project can be identified as to its relationship with the system in general.
A6 Other project specific information

Author's Name(s)
Date
Version (1.0 for first submission)
AMERICAN WATER - SOUTHEASTREGION-KENTUCKY AW/CMF3.50 CAPITAL INVESTMENTMANAGEMENT COMMITTEE - 1112003 ISSUE 1.0

Revision History:

Version	Date	Summary of Changes
1.0	11110103	Issue

KENTUCKY AMERICAN WATER

REVISED INVESTMENT PLAN PROJECT 01-11

NEW COLUMBUS MAIN EXTENSIONS TRI-VILLAGE WATER DISTRICT - OWEN COUNTY

ITEM	RESPONSIBLE ENTITY	TOTAL ORIGINAL ESTIMATED COST	TOTAL REVISEDESTIMATED COST	
Administration	KAWC	\$ 10,000	\$	10,000.00
Design	Consultant	\$ 125,000	\$	475,000.00
Materials	KAWC	\$ 500,000	\$	440,000.00
Inspection	KAWC	\$ 38,500	\$	50,000.00
Construction	Contractor	\$ 925,000	\$	1,100,000.00
	Sub-Total	\$ 1,598,500	\$	2,075,000
O\&C		\$ 79,940	\$	-
Engineering Overhead		\$ 31,990	\$	2,070.00
	Sub-Total	\$ 1,710,430	\$	2,077,070
AFUDC		\$ 84,890	\$	37,930.00
	Total	\$ 1,795,320	\$	2,115,000
	Estimate	\$ 1,800,000	\$	2,115,000.00,

KENTUCKY AMERICAN WATER REVISED INVESTMENT PLAN PROJECT 01-11 NEW COLUMBUS MAIN EXTENSIONS															
description FACTIVITY	$\left\lvert\, \begin{aligned} & \text { ENSTITYY } \\ & \text { RESPONIBLE } \end{aligned}\right.$	${ }^{2003}$													${ }^{\text {TOTOAL }}$
	RESPONSIBLE				Mar	Apr	May	Jun	Jul	Aug.	Sep	Oct	Nov	Dec	
Administration	Kawc	10,000													
Design	Consultant	$\frac{5}{5} 441.170$													\$ 33,830
Materials	KAWC	\$ 440,000													\$
Inspection	kAwC	\$ 43.500													¢ 6.500
Inspection															\$ 6.500
Constuction	Contractor	\$ 950,760													S 149,240
	-														
SUB-TOTAL		\$1,885,430	\$136,000	\$ 53,570		\$.	\$								\$ 189.570
08 C		-	\$.	s-	s	s.	\$								S
Overhead		5 -	\$.	\$ 2.070	\$.	\$ -	8 -								\% 2.070
AFUDC		S 37.930					-								
CASH FORECAST		\$1,923,360	\$136,000	\$ 55.640	\$	\$	\$	\$	s	\%	\%	5	\$	S	S 191.640

KENTUCKY AMERICAN WATER ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL NEW COLUMBUS MAIN EXTENSIONS
 REVISED 12-03-03

Determination of Revenue Reauirement			
Authorized Rate of Return on Common Equity			11.00\%
Federal Income Tax Rate			35.00\%
Return on Common Equity before FIT			16.92\%
State Income Tax Rate			8.25\%
Required Rate of Return on CE for Project			18.44\%
Common Equity Ratio for Project			40.00\%
Weighted Cost of Common Equity before Tax			7.38\%
Long Term Debt Ratio for Project			60.00\%
Estimated Cost Rate for New Debt			6.30\%
Weighted Cost of Debt			3.78\%
Total Pre-Tax Cost of Capital			11.16\%
Total Estimated Cost of Project			\$ 2,115,000
Investment by Others			0
Net Investment Financed by Company			¢ 3115 nnn
New Common Equity \$ 846,000			
New Long Term Debt 1,269,000			
Total Revenue Reauirement		mount	Bate
Required Pre-Tax Operating Income	\$	236,034	11.16\%
Depreciation Rate 1.180\%		24,957	1.18\%
Property Tax Rate 0.8810\%		18,633	0.88\%
Change in Operation \& Maint. Expense		28,402	1.34\%
Revenue from New Customers		$(213,252)$	-10.08\%
Total Net Revenue Requirement	\$	94,774	4.48\%
Revenue Tax Rate 0.14537\%		137	0.01\%
Total Revenue Requirement	\$	94.911	4.49\%
Latest 12 Months Revenue-11/30/2002	\$	753,801	
Required Price Increase		12.59\%	

Kentucky-AmericanWater Company

1025 Laurel Oak Road • P.O. Box 1770 • Voorhees, New Jersey 08043 A (609) 346-8220 2401

KENTUCKY-AMERICAN WATER COMPANY PROPOSED INVESTMENT PLAN PROJECT 01-11 NEW COLUMBUS AREA MAIN EXTENSIONS TRI-VILLAGE WATER DISTRICT - OWEN COUNTY

Reference: Investment Project Memorandum 01-08 dated November 24, 1999.

SUBJECT

The extension of mains in rural Owen County.

RECOMMENDATION

It is recommended that approximately 240,000 feet of 3,4 and 6 -inch PVC mains, along with a booster pump station and storage tank be installed in the southeast portion of Owen County to serve the New Columbus area.

ESTIMATED COST

Total Estimated Cost
Proposed 2001 Expenditure
Proposed 2002 Expenditure
Proposed 2003 Expenditure
\$1,800,000
\$ 51,000
\$1,355,000
\$ 394,000

ADEQUACY

The proposed investment project funds are adequate far design, property acquisition and construction.

Kentucky-American Water Company

Proposed IP 01-11
Project No. 11112
New Columbus Area Main Extensions
August 24,2001
Page 2

DISCUSSION

Kentucky-American Water Company (KAWC) closed the acquisition of the Tri-Village Water District in Owen County (TVWD) on August 2, 2001. The acquisition was approved by the KAWC Board of Directors under P 01-08.

During negotiations with TVWD Board of Directors, it was agreed as part of the merger that KAWC would invest $\$ 1,800,000$ towards the design and construction of water mains, water storage tank and booster pumps as required to feed the New Columbus area of Owen County. The estimated $\$ 1,800,000$ amount was derived using a financial model of the existing 1,635 customers in TVWD service area and the potential for an additional 280 customers in the proposed New Columbus area The agreement between TVWD and KAWC was made with the understanding that rates for TVWD would be increased at the next rate case filed with the PSC (expected within 2 years of closing) in order to recover the investment.

Due to the large amount of pipe length on this project, construction methods will follow typical TVWD standards for rural main installation. The mains will be installed in road right-ofway wherever easements cannot be negotiated at no cost. The mains are being sized for domestic use only, and PVC pressure class pipe will be used in lieu of ductile iron wherever possible.

The project may increase or decrease in scope, or if requested by the County Judge Executive, the budget amount increased to provide water service to other rural areas in the vicinity (Leaning Oak and Natlee Slatin roads) with the understanding that these additional costs would be recovered in rates and the next rate case filing.

This project is part of the commitment required under the acquisition of TVWD and the additional revenue requirement will be funded with a future rate increase for the entire TriVillage System.

KENTUCKY-AMERICANWATER COMPANY

PROPOSED DESIGN INVESTMENT PLAN PROJECT 01-11
NEW COLUMBUS MAIN EXTENSIONS TRI-VILLAGE WATER DISTRICT - OWEN COUNN

ITEM	RESPONSIBLE ENTITY	TOTAL ESTIMATED COST	
Administration	KAWC	\$	10,000
Design	Consultant	\$	125,000
Materials	KAWC	\$	500,000
Inspection	KAWC	\$	38,500
Construction	Contractor	\$	925,000
	Sub-Total	\$	1,598,500
O\&C (5\%)		\$	79,940
Engineering Overhead (2\%)		\$	31,990
	Sub-Total	\$	1,710,430
AFUDC		\$	84,890
	Total	\$	1,795,320
		\$	1,800,000

KENTUCKY-AMERICANWATER COMPANY PROPOSED DESIGN INVESTMENT PLAN PROJECT 01-11 NEW COLUMBUS MAIN EXTENSIONS																
DESCRIPTION	ENTTY	2001802	2003													$\begin{aligned} & \text { TOTAL } \\ & 2003 \\ & \hline \end{aligned}$
OF ACTVITY	RESPONSIBLE	Caryover	Jan	Feb	Mar	Apr	May	Jun		Jul	Aug	Sep	Oct	Nov	Dec	
Administration	KAWC	\$ 10,000														s
Design	Consuliant	\$ 125,000														s
Materials	KAWC	S 375,000														\$ 125,000
Inspection	Kawc	\$ 19,250														\$ 19,250
Construction	Contractor	\$ 750,000														\$ 175,000
																S 17.000
SUB-TOTAL		\$1,279,250	\$183,850	S 38,850	\$ 38,850	\$ 30,850	\$ 38.850									\$ 319.250
O8C (5\%)		${ }_{\text {\% }}^{5}$ \%3,990														\$ 15,950
(0)		${ }_{5}^{5}$														S 15,950
Overthead (2%)		\% 25,590	\$ 3.280	\$ 780	\$ 780	\$ 780	\$ 780									\$ 6.400
AFUDC			9.530	9.380	9.630	9.870	10.110									\$ 48.520
CASH FORECAST		\$1,405,200	\$184,850	\$ 50,950	\$ 51,200	\$ 51,440	\$ 51,680		\$		9	/			s	\$ 390.120

KENTUCKY-AMERICANWATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL NEW COLUMBUS MAIN EXTENSIONS

Determination of Revenue Requirement			
Authorized Rate of Return on Common Equity			11.00\%
Federal Income Tax Rate			35.00\%
Return on Common Equity before FIT			16.92\%
State Income Tax Rate			8.25\%
Required Rate of Return on CE for Project			18.44\%
Common Equity Ratio for Project			40.00\%
Weighted Cost of Common Equity before Tax			7.38\%
Long Term Debt Ratio for Project			60.00\%
Estimated Cost Rate for New Debt			8.00\%
Weighted Cost of Debt			4.80\%
Total Pre-Tax Cost of Capital			12.18\%
Total Estimated Cost of Project			\$ 1,800,000
Investment by Others			0
Net Investment Financed by Company			\$ 1,800,000
New Common Equity \$ 720,000			
New Long Term Debt 1,080,000			
Total Revenue Requirement		mount	Bate
Required Pre-Tax Operating Income	\$	219,240	12.18\%
Deoreciation Rate 1.180\%		21,240	1.18\%
Property Tax Rate 0.8810\%		15,858	0.88\%
Change in Operation \& Maint. Expense		0	0.00\%
Revenue from New Customers		$(134,400)$	-7.47\%
Total Net Revenue Requirement	\$	121,938	6.77\%
Revenue Tax Rate 0.14537\%		178	0.01\%
Total Revenue Requirement	\$	122,116	6.78\%
Latest 12 Months Revenue - 06/30/2001	\$	701,502	
Required Price Increase		17.41\%	

Kentucky-American Water Company

2300 Richmond Road . Lexington, Kentucky 40502 • (859)269-2386 • Fax (859) 268-6327
September 21,2001
Proposed IP 02-01
Project No. 11205

KENTUCKY-AMERICAN WATER COMPANY
 PROPOSED INVESTMENT PROJECT 02- ol LEESTOWN ROAD WATER LINE IMPROVEMENTS

Reference: \quad Strategic Business Plans for 2000 and 2001.

SUBJECT OF STUDY

To improve reliability and flows in the distribution system.

RECOMMENDATION

It is recommended that funds be authorized for the design, bidding, and construction of 10,000 feet of 16 -inch water main along Leestown Road to improve fire flows and increase distribution system reliability. It is also recommended that funds be authorized for the design of an additional 33,000 feet of 16 -inch water main along Leestown Road, with construction to occur in the future.

ESTIMATED COST

Total Estimated Cost	$\$ 700,000$
Proposed 2002 Expenditure	$\$ 700,000$

ADEQUACY

The proposed investment project is adequate for engineering design, bidding services and constructionfor the Leestown Road Water Line Improvements.

Kentucky-AmericanWater Company
Proposed IP 02-ol
Leestown Road Water Line Improvements
Project No. 11205
September 21,2001
Page 2

DISCUSSION

This capital investment will initiate design, bidding, easement acquisition, and construction services for a new 16 -inch water main along the Leestown Road (US 421) corridor. Installed in Leestown Road is an 8 -inch water main that extends outward from the City of Lexington into rural Fayette County and into a small portion of Scott and Woodford Counties. The main heads in a northwesterly direction for approximately 10 miles with water sales along the way and ultimately to the City of Midway in Woodford County. Customers served by this main include the Federal Medical Center (FMC), which houses 1,800 inmates and is one of KAWC's top 10 customers, and the Veterans Administration(VA) Hospital.

In recent years, individual customers including industrial customers, Midway, FMC and the VA Hospital have increased their demands due to expansions. Additionally, the first four miles of the above mentioned corridor is experiencing rapid growth for residential and commercial customers. A 16 -inch main has been installed parallel to the existing 8-inch main in new residential developments in the area The City of Midway has also indicated that it will increase its demands by 200,000 gallons per day due to the construction of an industrial park.

During the summers of 2000 and 2001, numerous customer complaints were received regarding low pressures along the Leestown Road corridor. The continued residential growth in this area will only increase system demands during hot and dry weather. This main is critical to maintaining system reliability not only for fire flows and system reinforcement but also for low pressure problems. This project also provides a future opportunity for regionalization with communities in the area and will enable continued growth.

This project is needed immediately to improve service and reliability for our existing customers. The main will be designed with adequate capacity to accommodate known future developments along the corridor. The potential for regionalization enhances the value of this project and will only help to facilitate future extensions of water lines in Fayette, Scott and Woodford Counties.

Abstract

Kentucky-American Water Company Proposed IP 02- Leestown Road Water Line Improvements Project No. 11205 September 21,2001 Page 3

Construction for the first 10,000 feet of main is scheduled for 2002. Construction of the additional 33,000 feet of main is expected within the next five years depending on growth and regionalization efforts. To take advantage of economies of scale, the entire design work will be completed at this time. It is estimated that total construction will cost $\$ 2,500,000$. The proposed design and construction cost is within an accuracy of plus or minus 10 percent.

NOR/rcs

KENTUCKY-AMERICANWATER COMPANY PROPOSED INVESTMENTPROJECT 02- O|

LEESTOWN ROAD WATER LINE IMPROVEMENTS

ITEM	RESPONSIBLEENTITY	TOTAL ESTIMATED COST	
Administration	KAWC	\$	10,000
Design. Bidding, \& Easements	Engineer Consultant	\$	130,000
Materials	KAWC	\$	185,000
Construction	Contractor	\$	331,310
	Sub-Total	\$	656,310
O\&C (+/-3\%)		\$	19,680
Engineering Overhead ($+1-2 \%$)		\$	13.540
	Sub-Total	\$	689,530
AFUDC		\$	10,470
	Total	\$	700,000

KENTUCKY-AMERICAN WATER COMPANY PROPOSED INVESTMENT PROJECT 02-O1 LEESTOWN ROAD WATER LINE IMPROVEMENTS															
DESCRIPTION OFACTVITY	ENTITY	2002													$\overline{\text { TOTAL }}$
							JuN		JUL	AUG			Nov		
Administration	KAWC														\$ 10,000
Design \& Bidding	Consulitant														\$130,000
Materials	KAWC														185.000
Construction	Contractor														\$331,310
SUB-TOTAL					\$ 18,970	\$ 47,420	\$ 47,420		47,420	\$47,420	\$47,420	\$ 94,930	\$131,000	\$174,310	\$656,310
O\&C(t+-3\%)					\$ 570	\$ 1.420				\$ 1,420	\$ 1,420		\$ 3,930	\$ 5,230	\$ 19,680
Overhead (+ +-2\%)					\$ 390	\$ 980	\$ 980		980	\$ 980	\$ 980	\$ 1,960	\$ 2,700	\$ 3,590	\$ 13.540
AFUDC					\$ 70	S 180	\$ 680		1,030	\$ 1,240	\$ 1.240	\$ 1,420	\$ 1.910	\$ 2.700	\$ 10,470
CASHFORECAST					\$ 20,000	\$ 50,000	\$ 50,500			\$51,060	\$51,060	\$101, 160	\$139,540	\$185,830	\$700,000

KENTUCKY-AMERICANWATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL
 LEESTOWN ROAD WATER LINE IMPROVEMENTS

Determination of Revenue Requirement

Authorized Rate of Return on Common Equity	11.00%
Federal Income Tax Rate	35.00%
Return on Common Equity before FIT	16.92%
State Income Tax Rate	8.25%
Required Rate of Return on CE for Project	18.44%
Common Equity Ratio for Project	40.00%
Weighted Cost of Common Equity before Tax	$\mathbf{7 . 3 8 \%}$

Long Term Debt Ratio for Project	60.00%
Estimated Cost Rate for New Debt	8.00%
Weighted Cost of Debt	4.80%

| Total Pre-Tax Cost of Capital | | |
| :--- | :--- | :--- | :--- |
| | | |
| Total Estimated Cost of Project | | |
| Investment by Others | | |
| Net Investment Financed by Company | | |
| New Common Equity | $\$$ | 280,000 |
| New Long Term Debt | | 420,000 |

Total Revenue Requirement

Required Pre-Tax Operating Income	
Depreciation Rate	1.180%
Property Tax Rate	0.7037%
Change in Operation \& Maint. Expense	
Revenue from New Customers	
Total Net Revenue Requirement	
Revenue Tax Rate	0.14537%
Total Revenue Requirement	

Latest 12 Months Revenue-06/30/2001
Required Price Increase

	Amount	Rate
	85,260	12.18%
	8,260	1.18%
	4,926	0.70%
	0	0.00%
	0	0.00%
$\$$	98,446	14.06%
	143	0.02%
$\$$	98,589	14.08%

\$40,071,359
0.25%

AMERICAN WATER - SOUTHEASTREGION

AW/CMF3.50
CAPITAL INVESTMENT MANAGEMENT COMMITTEE - 03/08/2004
ISSUE 1.1

Project 12020203 : Replace Traveling Screens at Kentucky River Station Intake
Project Manager : Shannyn Walker
Project Status : PROJECT CHANGE REQUEST
1.0 SUMMARY
1.1 Project Objectives

The Kentucky River Station traveling screens are critical to the effective operation of the intake system. As they remove leaves, branches, fish and other debris larger than $1 / 2^{\prime \prime}$, they are responsible for protecting the raw water intake pumps from damage from these elements. The original screens are no longer effective and with replacement of the two traveling screens, the KRS intake pump efficiencieswill be improved.
1.2 Changes Requested

It is requested that the approved Investment \mathbf{F} ojer budget be increased from 5450,000 to $\$ 670,000$ for a total increased amount of $\$ 220,000$.
1.3 Reasons for Changes

Bids for the installation of the intake screens were received in February 2004, and the low bid was higher than anticipated in the original cost estimate. The upward adjustment to the project budget will account for the actual installation bid received.
1.4 Revised Cost and Program

- Increase project cost \$220,000.
- Project completion of August 2004 has not changed from the approved SCEP.
1.5 Project Issues and Risks

There is some risk associated with weather related events causing a delay in the project completion. Most of the screen work will take place in the spring and will be subject to high water levels.

2.0 INTRODUCTION

This project was approved as Investment Project in 2002 to replace (2) traveling water screens at the KRS intake due to their deterioration. As portions of the traveling screens have been in service since their original Installation in the late 1950's, $\$ 450,000$ was approved to completely replace these screens and provide improved flow through the KRS intake.
The project is about 25% complete with the (2) traveling screens being purchased and delivered to KRS. Bids have been received and Kentucky American is prepared to award a contract.

3.0 THE CHANGE PROPOSAL

3.1 The existing traveling screens at the Kentucky River Station intake are critical to the operation of the intake. With the plant operating at or above capacity with increasing frequency, there is a very limited window of opportunity for replacement. The current screens are forty years old and are at imminent risk of failure. The chains have been repaired constantly, and broke during 2003, allowing the screen to fall in the river. The original cost estimate was prepared in 1999, then the sluice gate project was delayed and the traveling screen project was also delayed. There has been no change in the scope of the project. The IP memo was written in 2001, and the estimate still appeared to be good. However, it is apparent based on the actual bid prices that further investigation of the estimate should have been made considering the delay.
3.2 If the expenditure increase is deferred, the existing traveling screens wouid remain in service and operate with deficiencies. The KRS intake pumps wouid experience greater stress as they continue to operate at their maximum capacity. Further, the entire intake is at risk for shut down if the screens should fail during peak demand periods when the pump well has to be clear to operate as needed.
3.3 If the cost increase is deferred, one screen could still be replaced within the authorized expenditures. However, based on alternative bid pricing, there would be a remobilization expense of $\$ 148,000$ and the intake would still be at risk. There are no other options than deferring the project for future work.
3.4 It is recommended that the price increase and additional expenditures be approved at this time. It is also recommendedthat the project be extended to August 2004, to allow the project to be completely carried out as previously planned.
3.5 The traveling screen chains have failed repeatedly, while the screens themselves are in imminent danger of failure.

Purpose Code	Description	$\%$	Measure	Units	Target
NA-PP01	Water - Poor Physical Performance	100			

4.0 POST PROJECT APPROVAL FINANCIALSTATEMENT
4.1 See attachment.
4.2 There is no anticipated significant variation in operational expenditure since the investment Project Memoranda was approved.
4.3 Since there were no other alternatives, an economic analysis was not performed.
5.0 EFFECT OF CHANGE ON PROJECT COMPLETION
5.1 With the delay of the sluice gate project due to budget constraints, the traveling screen project was directly affected and delayed. The traveling screens were originally to be completed by the end of 2003. Now that (4) new sluice gates are in service as of the end of 2002, the traveling screens can be isolated and replaced. Both traveling screens are scheduled to be in service and completed by June 2004.

6.0 ISSUES AND RISKS

6.1 There are no significantissues or risks to carry out this project as proposed. There is no anticipation of increase in operational expenditures.

7.0 RECOMMENDATION

7.1 It is recommended that the Capital investment Management Committee grant approval for the increased capital expenditures of $\$ 220.000$ for a total project cost of $\$ 670,000$ and an extension of project completion until June 2004.AMERICAN WATER - SOUTHEASTREGION
APPENDICES
A1 PCA Control Data Sheet
Associated form - CMF3.55 - appropriately signed.
A2 Detailed Estimate of Cost
A3 Economic Analysis
A4 Schedule / Forecast
Shannyn Walker March 8,2004
Version 1.0AW/CMF3.50
CAPITAL INVESTMENT MANAGEMENT COMMITTEE - 03/08/2004 ISSUE 1.1

AMERICAN WATER-SOUTHEASTREGION
 AW/CMF3.50
 CAPITAL INVESTMENT MANAGEMENT COMMITTEE - 03/08/2004
 ISSUE 1.1

Revision History:
(When using the template, delete this table-it is for template revision purposes only)

Version	Date	Summary of Changes
1.0	$03 / 08 / 04$	First revision of approved Investment Proiect

KENTUCKY-AMERICAN WATER COMPANY

REVISED - PROPOSED INVESTMENT PLAN PROJECT 02-013
REPLACE TRAVELING SCREENS AT KENTUCKY RIVER STATION INTAKE

		ORIGINAL	REVISED
ITEM	RESPONSIBLE ENTITY	ESTIMATED COST	ESTIMATED COST
Administration	KAWC	\$ 4,500	\$ 5,831
Materials	KAWC	\$ 260,000	\$ 225,414
Construction	Contractor	\$ 150,000	\$ 378,654
	Manufacturer Repllnspection	\$	\$ 8,000
	Sub-Total	\$ 414,500	\$ 617,899
O\&C (+/-3\%)		\$ 12,460	\$ 18,550
Engineering nverhead (+/-2\%).		\$ 8,530	\$ 12,730
	Sub-Total	\$ 435.490	\$ 649.179
AFUDC		\$ 11,330	\$ 18,210
	Total	\$ 446,820	\$ 667,389
	Estimate	\$ 450,000	\$ 670,000

KENTUCKY-AMERIGAN WATER COMPANY REVISED-PROPOSEDINVESTMENT PLAN PROJECT 02-0 3 REPLACE TRAVELING SCREENS AT KENTUCKY RIVER STATIONINTAKE															
DESCRIPTION OF ACTIVITY	$\begin{aligned} & \text { ENTTTY } \\ & \text { RESPONSIBLE } \end{aligned}$	JAN	FEB	MAR	APR	MAY	${ }^{20}$	104 jul	AUG	SEPT	OCT	Nov	DEC	TOTAL	TOTAL PROJECT
Adsinisistation	KAW	\$ 500	S 500	\$. 500	\% $8 \cdot 1,331$	s 1,000	\%. 1,000	\% 5.1 .000						5.831	
Materials	KAW		\$.225,414											225,414	5.414
Cortract Labor	Contraciormanufacturer		¢ 805		8. 40.000	\$ 86.0000	\$ 1150,000	$s=50,000$	585,849					386,654	386.654
	Rep and lissectior														
SUB-TOTAL.		\$ 500	\$226.719	\$ 500	\$ 81.331	\$ 61,000	\$151,000	\$51,000	\$85,849					\$ 617,699	617,899
08C $(+1-3 \%)$		\$ 20							\$ 2.580					18,550	
Overhead (+ - 2% \%		${ }^{+10}$	4.670	S 10	850	S 1.280	S 3.110	\$ 1,050	\$ 1.770					\$ 12.730	12,730
AFUDC		s.	¢ 870	\$ 1.740	S 1.900	\$ 2,300	\% 3,110	\$ 3.880	\% 4.410	5.				\$ 18,210	${ }^{8} \quad 18,210$
CASH FORECAST		\$530	8239,059	\$ 2,270	S 45,321	\$ 66,380	\$161,760	\$ 57,460	\$94.609						\$ 667,389

KENTUCKY-AMERICAN WATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL

REPLACE TRAVELING SCREENS AT KENTUCKY RIVER STATION INTAKE

 REVISED -03/08/04Determination of Revenue Requirement

Authorized Rate of Return on Common Equity	11.00%

Federal Income Tax Rate $\quad 35.00 \%$
Return on Common Equity before FIT $\quad 16.92 \%$
State Income Tax Rate $\quad 8.25 \%$
Required Rate of Return on CE for Project $\quad 18.44 \%$
Common Equity Ratio for Project $\quad 40.00 \%$

Weighted Cost of Common Equity before Tax \quad| 7.38% |
| :--- |

Long Term Debt Ratio for Project 60.00\%
Estimated Cost Rate for New Debt $\quad 8.00 \%$
Weighted Cost of Debt
4.80\%

Total Pre-Tax Cost of Capital

Total Estimated Cost of Project	$\$$
Investment by Others	667,389
	0
Net Investment Financed by Company	$\$ \quad 667,389$

New Common Equity \$ 266,956
New Long Term Debt 400,433

Total Revenue Requirement		Amount	
Required Pre-Tax Operating Income		\$	81,288
Depreciation Rate	3.140\%		20,956
Property Tax Rate	0.7037\%		4,696
Change in Operation\& Maint. Expense			0
Revenue from New Customers			0
Total Net Revenue Requirement		\$	106,940
Revenue Tax Rate	0.14537\%		156
Total Revenue Requirement		\$	107,096
Latest 12 Months Revenue - 06/30/2001		\$	40,071,359
Required Price Increase			0.27\%

Kentucky-American Water Company

1025 Laurel Oak Road • PO. Sox 1770 • Voorhees, New Jersey 08043 • (609) 346-8200
August 24,2001
IP 02-63
Project No. 11206

KENTUCKY-AMERICAN WATER COMPANY PROPOSED INVESTMENT PLAN PROJECT 02- 03
 REPLACE TRAVELING SCREENS AT KENTUCKY RIVER STATION INTAKE

Reference: Strategic Business Plans for 1999 and 2000

SUBJECT:

Deteriorating operation of the two (2) traveling screens at the Kentucky River Station Intake on the Kentucky River.

RECOMMENDATION:

It is recommended that the traveling screens be completely replaced.

ESTIMATED COST:

Total Estimated Cost	$\$ 450,000$
Proposed 2002 Expenditure	$\$ 200,000$
Proposed 2003 Expenditure	$\$ 250,000$

ADEQUACY:

The proposed investment project funds are adequate for replacement of both traveling screens.

Kentucky-American Water Company
Replace Traveling Screens at KRS Intake
Proposed 2001 IP 02-03
Project No. 11206
August 24,2001
Page 2

DISCUSSION

Two (2) traveling screens are located at the intake structure on the Kentucky River. These traveling screens are used to protect the raw water intake pumps from leaves, branches, fish, and other debris larger then $1 / 2^{\prime \prime}$. The traveling screens are located behind a coarse bar rack and can be isolated by the closure of sluice gates. A separate IP 01-06 was approved to replace the sluice gates used to isolate the traveling screens. Upon completion of IP 01-06, KAWC will be in a position to start the replacement of the traveling screens.

Portions of the traveling screens have been in service since their original installation in the late 1950's. In the late 1960's minor modifications were made as the drive mechanism for the two screens were vertically raised above the 100 -year flood stage, and additional buckets were added to the screens, but no major changes were made to the original equipment. Since the late 1960 's, continual maintenance has been required to keep the screens operational, with major overhauls and maintenance expense occurring in 1985, 1988,1992,1997 and 2000.

Effective operation of the screens also will improve the reliability of the intake pumps and maximize intake capacity. The existing screens have reached the end of their useful life with many structural components having severely corroded. Another major overhaul is not expected to increase the useful life. The screens should be replaced to ensure reliability, maintain intake capacity, and avoid extraordinary maintenance expenses.

The total project cost estimate is considered accurate to within 10 percent.

NOR/rcs

KENTUCKYK-AMERICAN WATER COMPANY PROPOSED INVESTMENT PLAN PROJECT O2-03 REPLACE TRAVELING SCREENS AT KENTUCKY RIVER STATION INTAKE

Cost Estimate

Total Estimated Cost

Engineering	$\$ 13,000$
Utility Plant Construction	260,000
Account \#306 -Intakes, Screens	150,000
Installation	$\$ 423,000$
	12,490 Omissions \& Contingencies AFUDC
	$\$ 435,490$
	12,090
	$\$ 447,580$
	SAY

hdb
01 kyip 02 - Replace Traveling Screens at KRS Intake doc

KENTUCKY-AMERICAN WATER COMPANY PROPOSED INVESTMENT PLAN PROJECT 02- 03 LACE TRAVELING SCREENS AT KENTUCKY RIVER STATION INTAKE															
DESCRIPTION ofactivitr	ENTITY	JAN	FEB	MAR	APR	MAY	jun ${ }^{200}$	JUL	Alls	SEPT	O\&1	NOY	08ε	$\begin{aligned} & \text { TOTAL } \\ & 2003 \\ & \hline \end{aligned}$	$\begin{gathered} \text { TOTAL } \\ \text { PROJECT } \end{gathered}$
Adminisistation	KAWC													\$ 2.000	4.500
Materials	KAWC													\$150,000	\$260,000
Construction	Contractor													\$ 75,000	\$150,000
SUB-TOTAL		\$ 500	\$100,500	\$88,000	\$ 38,000									\$227,000	\$414,500
O8C ($+1 / 3 \%$)															
														\$ 6,820	\$ 12,460
Overhead ($+1-2 \%$)		\$ 10	\$ 2,070	\$ 1.810	\$ 780									4,670	8,530
AFUDC		\$1,410	\$ 1,790	\$ 2,490	\$ 2,970									\$ 8,660	\$ 11,330
CASH FORECAST		\$1,940	\$107,380	\$94,940	\$ 42.890									\$247,150	\$446,820

KENTUCKY-AMERICAN WATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL REPLACE TRAVELING SCREENS AT KENTUCKY RIVER STATION INTAKE

Determination of Revenue Reauirement
Authorized Rate of Return on Common Equity $\quad 11.00 \%$
Federal Income Tax Rate
Return on Common Equity before FIT
State Income Tax Rate
Required Rate of Return on CE for Project
Common Equity Ratio for Project
Weighted Cost of Common Equity before Tax

Long Term Debt Ratio for Project		60.00\%
Estimated Cost Rate for New Debt		8.00\%
Weighted Cost of Debt		4.80\%
Total Pre-Tax Cost of Capital		12.18\%
Total Estimated Cost of Project	\$	446,820
Investment by Others		0
Net Investment Financed by Company	\$	446,820

New Common Equity	$\$$	178,728
New Long Term Debt		268,092

Total Revenue Requirement
Required Pre-Tax Operating Income
Depreciation Rate
Property Tax Rate
Change in Operation \& Maint. Expense
Revenue from New Customers
Total Net Revenue Requirement
Revenue Tax Rate
Total Revenue Requirement
Latest 12 Months Revenue - 06/30/2001
Required Price Increase
0.14537%
35.00%
16.92\%
8.25\%
18.44\%
40.00\%
7.38\%
60.00\%
8.00\%
4.80\%
12.18%
\$ 446,820
\$ 446,820
268,092

	Amount		Rate
	$\$$	54,423	12.18%
3.140%		14,030	3.14%
0.7037%		3,144	0.70%
		$(25,000)$	-5.60%
		0	0.00%
	$\$$	46,597	10.42%
		68	0.02%
		46,665	10.44%

\$40,071,359
$\begin{array}{r}\text { \$ } 40,071,359 \\ \hline 0.12 \%\end{array}$

March 11,2002
IP 02-04
Project No. 10212

KENTUCKY-AMERICAN WATER COMPANY

 PROPOSED INVESTMENT PLAN PROJECT 02- o4 WATER SUPPLY PROJECT DEVELOPMENTReference: Strategic Business Plans for 2002, Investment Project 92-12

SUBJECT:

Kentucky-American's current treatment capacity deficit and source of supply deficit.

RECOMMENDATION:

It is recommended that an investment project be established to facilitate water supply project plan development including the current Kentucky Public Service Commission proceeding and the Bluegrass Water Supply Consortium regional study efforts.

ESTIMATED COST:

Total Estimated Cost	$\$ 600,000$
Prior Expenditures	$\$ 157,000$
Proposed 2002 Expenditure	$\$ 243,000$
Proposed 2003 Expenditure	$\$ 200,000$

ADEQUACY:

The proposed investment project funds are estimated to be adequate for professional services toward obtaining regulatory and stakeholderconcurrenceof the project plan.

Kentucky-American Water Company
Water Supply Project Development
Proposed $2002 \mathbb{P}$ 02- 04
Project No. 10212
March 11,2002
Page 2

DISCUSSION

Kentucky-American has been working to resolve its long-term water supply deficit situation. This includes a source of supply deficit and a treatment capacity deficit. Upgrades have been made to maximize the treatment plant capabilities in the short term, and there have been efforts to optimize the use of the Kentucky River including valve installation on upstream dams for releases and permit modifications. Potential long-term solutions have created local controversy, which has delayed ultimate resolution of either pmblem individually.

In 1992, Kentucky-American proceeded with design and construction of a pipeline that would supply finished water that was to be purchased from the Louisville Water Company. Kentucky-American included design costs in its forward-looking rate case that year. In 1993, the Kentucky Public Service Commission established a separate proceeding to investigate the source of supply and treated water deficits. Kentucky-Americanagreed to halt work on the project until the conclusion of that case. Case No. 93-434 was finally resolved in August 1997 with an Order that the Kentucky River alternative solutions were insufficient and that Kentucky-American had the responsibility to solve the problem for its customers. Thus Kentucky-American initiated detailed design work on the pipeline. In 1999, with the pipeline design about 60% complete, the Lexington-Fayette Urban County Government Council established a technical forum to review the issue. The LFUCG Council, which represents over 80% of Kentucky-American's customers, passed a resolution in December 1999 that indicated a preference for a Kentucky River solution, provided a number of items could be concluded within specific timeframes. Accordingly, Kentucky-American terminated work on the design of the pipeline. The resolution also encouraged Kentucky-American to pursue a regional solution.

In 2000, Kentucky-American filed a rate case and among other issues sought relief of the $\$ 6.2$ million that had been expended on pursuing the pipeline solution up to that point. In May 2001, the PSC provided a final order in that case that granted Kentucky-American relief for the majority of expenditures to date. The nature of the various expenditures determined the different rate treatment of the expenditures.

In February 2001, the PSC requested a status update from Kentucky-American on the 1997 Order in Case No. 93-434. Kentucky-Americanfiled a 20-page response, that detailed the situation, status of work since 1997, and issues that had to be resolved in order for a solution to be implemented, either on the Kentucky River or from another source. Kentucky-American indicated that it could not unilaterally implement a project to increase the supply of the Kentucky River, although the LFUCG had indicated a preference for a river solution and KentuckyAmerican acquiesced to that preference in its decision to stop work on the pipeline. The PSC established Case No 2001-117 to investigate the feasibility and advisability of the KentuckyAmerican proposed solution to its source of supply deficit.

Kentucky-American Water Company
Water Supply Project Development
Proposed 2002 IP 02-04
Project No. 10212
March 11,2002
Page 3

Additionally, Kentucky-American has been working with a group of other water utilities that have established themselves as the Bluegrass Water Supply Consortium. This group has received a grant from Congress and matched by the Kentucky Infrastructure Authority, to complete a regional water supply study. This study should provide an objective, detailed recommendation for a regional water supply including regional interconnections, source of supply, and treatment capacity.

The continued involvement in both of these efforts is critical to implementing a water supply solution in the near future. The continued effort to develop the project with stakeholders and parties responsible for implementation is part of the PSC proceeding and the work with the Consortium. The estimated expenditures are specifically for Company labor involved in the issue and professional service including legal services involved in the PSC investigation. These estimates are based on previous Commission proceedings. It is anticipated that the water supply project plan will be fully developed as a result of the Commission proceeding in conjunction with the Consortium efforts.

While the nature of these expenditures alone would normally not constitute an investment project, Kentucky-American believes that it is appropriate given the nature of this ongoing issue.

NOR/rcs

KENTUCKY-AMERICAN WATER COMPANY

PROPOSED INVESTMENT PLAN PROJECT 02-० 4
WATER SUPPLY PROJECT DEVELOPMENT

ITEM	RESPONSIBLE ENTITY	TOTAL ESTIMATED COST	
Priors		\$	157,000
Project Development	KAWC	\$	128,170
Legal Services	Consultant	\$	262,000
Professional Services	Consultant	\$	31.500
	Sub-Total	\$	578.670
O\&C ($+1-3 \%$)		\$	12,660
			12,660
Engineering Overhead (+/-2\%)		\$	8,670
	Sub-Total	\$	600,000
AFUDC		\$	-
	Total	\$	600,000

KENTUCKY-AMERICAN WATER COMPANY PROPOSED INVESTMENT PLAN PROJECT 02-O WATERSUPPLYPROJECTDEVELOPMENT																		
DESCRIPTION	$\begin{array}{\|c\|} \hline \text { ENTITY } \\ \text { RESPONSIBLE } \\ \hline \end{array}$	2003												$\begin{gathered} \text { TOTAL } \\ 2003 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TOTALL } \\ \text { PROJECT } \\ \hline \end{array}$			
OFACTIVITY		JAN	FEB	MAR	- APR	MAY	IUN -	JUL	1 AUG 1 SEPT		OCT 1	NOV	1 DEC					
Project Development	KAWC			(3510\%002	8\% 120.0009			5.5 5.6008		H5.5.50002	8, $20.60{ }^{2}$		退	\$ 82,370	\$ \$ 128,170			
Legal Services	Consultant				85]									\$ 100,000	\$262,000			
Professional Services	Consultant			38	(25.52009									\$ 8,000	\$ 31,500			
-																		
SUB-TOTAL.		\$ 32,000	\$ 27,000	\$22.000	\$ 22,000	\$ 17,500	\$ 15,000	\$ 15,000	\$12,000	\$7,000	\$7,000	\$ 7,000	\$ 6,870	\$ 190,370	\$ 578,670			
O\&C ($+1-3 \%$)		\$ 960	\$ 810	\$ 660	\$ 660	\$ 530	\$ 450	\$ 450	\$ 360	\$ 210	\$ 210	\$ 210	\$ 210	\$ 5,720	\$ 12,660			
Overhead ($+1-2 \%$)		\$ 660	\$ 560	\$ 450	\$ 450	\$ 360	\$ 310	\$ 310	\$ 250	\$ 140	\$ 140	\$ 140	\$ 140	\$ 3.910	\$ 8,670			
						5	¢	(15,160	\$2,610	3,350	7,300	7,350	\$ 7,220	0,000	600,000			

[^0]
KENTUCKY-AMERICAN WATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL
 SPENDINGPROPOSAL
 WATER SUPPLY PROJECTDEVELOPMENT

Determination of Revenue Reauirement					
Authorized Rate of Return on Common Equity					11.00\%
Federal Income Tax Rate					35.00\%
Return on Common Equity before FIT					16.92\%
State Income Tax Rate					8.25\%
Required Rate of Return on CE for Project					18.44\%
Common Equity Ratio for Project					40.00\%
Weighted Cost of Common Equity before Tax					7.38\%
Long Term Debt Ratio for Project					60.00\%
Estimated Cost Rate for New Debt					8.00\%
Weighted Cost of Debt					4.80\%
Total Pre-Tax Cost of Capital					12.18\%
Total Estimated Cost of Project				\$	600,000
Investment by Others					0
Net Investment Financed by Company				\$	600,000
New Common Equity \$	\$ 240,000				
New Long Term Debt	360,000				
Total Revenue Requirement			Amount		Bate
Required Pre-Tax Operating Income		\$	73,080		12.18\%
Depreciation Rate	1.304\%		7,824		1.30\%
Property Tax Rate	0.7037\%		4,222		0.70\%
Change in Operation \& Maint. Expense			0		0.00\%
Revenue from New Customers			0		0.00\%
Total Net Revenue Requirement		\$	85,126		14.18\%
Revenue Tax Rate	0.14537\%		124		0.02\%
Total Revenue Requirement		\$	85.250		14.20\%
Latest 12 Months Revenue - 12/31/2001			41,477,827		
Required Price Increase			0.21\%		

[^1]
Kentucky-American Water Company

1025 Laurel Oak Road • P.O. Box 1770 - Voorhees, New Jersey $08043 \cdot(609) 346$ November 25,2002
Proposed P 03-0I

KENTUCKY-AMERICAN WATER COMPANY PROPOSED DESIGN INVESTMENT PROJECT 03- OI TWO MILLION GALLON ELEVATED STORAGE FACILITY

Reference: 1992 Least/Comprehensive Planning Study, Project B-13; 1993 and 2002 Storage Capacity Analyses, Strategic Business Plans 1997, 1998, 1999,2000

SUBJECT

The need to equalize pressures, enhance fire flows and system reliability, and comply with Public Service Commission distribution storage requirements.

RECOMMENDATION

A two (2) million gallon elevated storage tank should be designed and constructed in the eastern Fayette County section of the distribution system to provide fire flows and system reliability, and to equalize demands within the system.

ESTIMATED COST

Total Estimated Cost	$\$ 410,000$
Proposed 2003 Expenditure	$\$ 150,000$
Previous 2004 Expenditure	$\$ 260,000$

ADEQUACY

The proposed investment project will be adequate for land acquisition, design, permitting and bidding for the proposed tank. Construction funds will be requested in a future revision to this Investment Project.

Kentucky-American Water Company
Proposed IP 03- ol
Two Million Gallon Elevated Storage Facility
November 25,2002
Page 2

DISCUSSION

On August 15,2002, Kentucky-American Water Company pumped a record amount of water into its Lexington area distribution system. That day, a total of 71.82 MGD was pumped from its treatment plants. The previous maximum day of record was 66.37 MGD in 2000. More critical, however, was the power outage at the Kentucky River Station treatment plant on July 31, 2002 during peak demands. Pressure dropped throughout the main system in less than five minutes. Pressure remained low in some areas for 30 minutes while the tanks were activated and the Richmond Road Station pumping facilities were increased.

Kentucky-American Water Company has 12 storage facilities in its distribution system, with a total volume of 16.84 MG . These storage facilities are used to provide fire protection and equalize pressures during high demand periods. Ten of the tanks are pumped storage facilities.

Kentucky-American Water Company had previously received approval to operate with storage volume below one average day demand that is required by Kentucky regulations. As part of this deviation from the requirement, Kentucky-American Water Company proposed to construct five additional tanks between 1993 and 2005. The Public Service Commission had approved this schedule. Two of the tanks have been completed and are operational; two are designed and will be constructed in 2003-2004. The fifth was originally proposed as a 3.0 million gallon pumped storage facility in the 1993 Storage Analysis.

Kentucky-American Water Company has worked diligently to determine the appropriate level of storage that is cost effective and meets the objectives of health, safety and reliability for its customers. In previous analysis, it was determined that reliability would be provided through storage and standby power capabilities at the treatment plants. The recent power outage during peak demands demonstrated that immediate and short-term reliability cannot be met with the existing operational capabilities. Although existing storage and standby power capabilities were sufficient to provide reliability until the power was restored, it took a brief period of time to activate both. Because demands were so high during that brief period, system pressure was lost before the tanks and diesel capabilities could be implemented.

Kentucky-American has reviewed alternatives to improve the ability to implement those capabilities, which are being proposed in another Investment Project. However, it was determined that the most cost effective and reliable method to assure sustained system pressure during peak demands is with additional elevated storage. It is proposed that this elevated storage tank be built at this time instead of the additional pumped storage originally specified in the 1993 Storage Analysis. Kentucky-American in conjunction with System Engineering has recently updated the 1993 Storage Analysis and recommends that an additional 3.0 million gallon pumped storage facility be constructed between 2005 and 2010.

The proposed tank will be located along the Winchester Road corridor near Strader Drive, which is one of the highest points in the system. It will be centrally located, which will help sustain pressure throughout the system. Recent construction in the area has increased demands, which has resulted in increased low-pressure complaints in the area. By constructing the tank in this area, it

```
Kentucky-American Water Company
Proposed IP 03-
Two Million Gallon Elevated Storage Facility
November 25,2002
Page 2
```

will not only meet the system-wide reliability needs but also address the area low-pressure incidents that frequently occur. During the July 31 incident, this area experienced no water pressure for nearly thirty minutes.

Land acquisition costs are likely to be higher than usual because the proposed site is in an urban area. Additional SCADA logic will be required to ensure adequate operations of the tank for sustained water quality during moderate demand periods.

It is absolutely critical that design begin in 2003 so that adequate time is available for land acquisition and construction throughout 2004-2005. Kentucky-American is currently under an order from the Public Service Commission to complete the five proposed tanks by December 31, 2005. Following the July 31 incident, Commission staff have indicated that they are extremely concerned that Kentucky-American does not currently have adequate elevated storage for reliability purposes. It is recommended that this proposed elevated storage project be filed with the Public Service Commission before the end of 2002.

The estimated cost for the full project, including construction, is $\$ 3$ million. Construction funds will he requested in a future Investment Project memorandum. The cost estimate is based on recent similar tank design and construction and will vary based upon contractor prices and land acquisition costs. This estimate is projected to be accurate within plus 10 to minus 25 percent.

Linda C. Bridwell, P.E.
Director -Engineering

KENTUCKY-AMERICANWATER COMPANY
REVISED CAPITAL INVESTMENT PLAN PROJECT 03-ol
2 MG ELEVATED STORAGE TANK

KENTUCKY-AMERICAN WATER COMPANY REVISED CAPITAL INVESTMENT PLAN PROJECT $0 \rightrightarrows$ O) 2 MG ELEVATED STORAGE TANK																		
DESCRIPTIONOF ACTIVITY	ENTITY RESPONSIBLE	$\begin{gathered} 2003 \\ \text { Carryover } \end{gathered}$	Jan												$\begin{gathered} \text { TOTAL } \\ 2004 \\ \hline \end{gathered}$			
			Jan	Feb	Mar	Apr	May	Jun	Jut	Aug	Sep	Oct	Nov	Dec				
Preliminary Design	KawC / Consultant	\$ 12,000													\$ -			
Final Design	Consultant	\$ 125,610	\$. 25,000	S575.000	Pilif5i000:	\$315;000	\$ 15,000								\$ 85,000			
Const. Admin. / Inspection	KAWC / Consultant	\$ -									Tit 500		\% 21000	1000	\$ 3,500			
Materials	KAWC	\$									123:30000	\% 30000	9-530000	+30000	\$ 120,000			
Construction	Contractor	s									$\cdots 20000$	- 4.45000	E 50000	5, 5	\$ 165,000			
Land Acquisition	KAWC	\$	6, min	- 3	+6,	\$5,50:000	S 800000	\$ 500000	Sis 50.000	\$580;000					\$ 250,000			
SUB-TOTAL		\$ 137,610	\$ 25,000	\$ 15,000	\$ 15,000	\$ 65,000	\$ 65,000	\$ 50,000	\$ 50,000	\$ 50,000	\$ 50,500	\$ 76,000	\$ 81,000	\$81,000	\$623,500			
O8C ($+1 / 5 \%$)		\$ 6,880	\$ 1,250	\$ 750	\$ 750	\$ 3,250	\$ 3,250	\$ 2,500	\$ 2,500	\$ 2,500	\$ 2,530	\$ 3,800	\$ 4,050	\$ 4,050	\$ 31,180			
Overhead ($+1-2 \%$)		\$ 2,750	\$ 500	\$ 300	\$ 300	\$ 1,300	\$ 1,300	\$ 1,000	\$ 1,000	\$ 1,000	\$ 1.010	\$ 1,520	\$ 1.620	\$ 1,620	\$ 12,470			
AFUDC		\$ 2,760	940	1,060	1,160	1,410	1,810	2,170	2,490	2,800	3,110	3,510	4.000	4,500	\$ 28,960			
CASH FORECAST		\% 150,000	\$. 27,690	\$ 17,110	\$ 17,210	\$ 70,960	\$ 71,360	\$ 55,670	\$55,990	\$ 56,300	\$ 57,150	S 84.830	\$ 90,670	\$91.170	\$ 6966110			

KENTUCKY-AMERICAN WATER COMPANY REVISED CAPITAL INVESTMENT PLAN PROJECT 03- O 2 MG ELEVATED STORAGE TANK															
DESCRIPTION	RESPONSIBLE	$\begin{aligned} & \text { Prior } \\ & \text { cariover } \end{aligned}$	Jan	Feb	Mar	$\overline{\text { Apr }}$	$\overline{\text { May }}$	Jun	$\frac{2005}{205}$	Auo	Sep	Oct	Nov	Dec.	${ }_{2005}^{\text {Total }}$
Preilininary Desion	KAWC/ Consutitat	12,000													
Final Design	Consultant	${ }^{5}$ 210,610													
Const. Admin. I Inspecion	KAWC C Consullant	\% 3.500	58\%5.000	S. 50000	S50.5000	5\% 5 [5000	S\% 8.5 .000	S5\% 5,000	\|S. 5 5.000	55:5.000	\% 3.5 .5000	5\%\% 5.000	18.45,000	S2750.060	
Materials	KAW	S 120.000	\$ 8 B0,000	\$5.30,000	30,00	ssm 30,000.	Th700009	S 51800000	[5] 90.000	37303000	3 3 30.000	1/3.30,00	3 30,	\$7, 50.0	\$ 360,000
Constuction.	Contractor	\$ 165,000	5 50.000	\$100,000	M00.000	00.0008	\$900.000	15.500 .000	\$:300,000.	\% 5200,000	$1{ }^{3} 7123.000$	[13500,000	\$-100,000	\$-100:000	1473,000
Land Acguisibion	¢ KANCO	\$ 250,000													
SUB-TOTAL		\$ 766.110	\$85,000	\$135.000	${ }^{1135,000}$	\$135,000	${ }^{5135,000}$	\$135,000	\$ 333.000	\$ 233.000	\$ 159.000	\$ 135.000	\$ 1355000	1350,60	${ }^{51,093,060}$
O8C (1+.5\%)		\$ 38,060	\$ 4,250											6.750	\% 94,660
													2,0	2.00	37,660
AFUDC		(31,720	5,020	${ }^{5,7}$	${ }^{0.550}$	7.400	B,240	9,090	10,560	12,340	3, 3.5	14,480	15.32	16,170	124,430
CASH FORECAST		${ }_{5} 846,10$	\$95,970	5150,160	\$151.000	\$ 151,850	\$ 152.680	\$ 153.540	\$ 369.000	\$268,790	\$ $18.182,620$	S 158,930	\$159,770	\$ 160,680	2,150,000

KENTUCKY-AMERICAN WATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL 2 MG ELEVATEDSTORAGE TANK

Determination of Revenue Requirement
Authorized Rate of Return on Common Equity 11.00\%
Federal Income Tax Rate 35.00\%
Return on Common Equity before FIT 16.92\%
State Income Tax Rate
Required Rate of Return on CE for Project
Common Equity Ratio for Project
Weighted Cost of Common Equity before Tax
Long Term Debt Ratio for Project
Estimated Cost Rate for New Debt
Weighted Cost of Debt
Total Pre-Tax Cost of Capital
Total Estimated Cost of Project
Investment by Others
Net Investment Financed by Company
8.25\%
18.44\%
40.00\%
7.38\%

New Common Equity $\quad \$ 1,200,000$
New Long Term Debt $1,800,000$

Total Revenue Requirement

Total Revenue Requirement		Amount		Rate
Required Pre-Tax Operating Income		$\$$	365,400	12.18%
Depreciation Rate	1.180%		35,400	1.18%
Property Tax Rate	0.7037%		21,111	0.70%
Change in Operation \& Maint. Expense			0	0.00%
Revenue from New Customers			0	0.00%
Total Net Revenue Requirement		$\$$	421,911	14.06%
Revenue Tax Rate	0.14537%		614	0.02%
Total Revenue Requirement		$\$$	422,525	14.08%

Latest 12 Months Revenue - 09/30/2002
Required Price Increase

$\$ \quad 42,262,154$

Project 12020303 : Reliability Improvements
Project Manager : Linda Bridwell
Project Status : PROJECT CHANGE REQUEST

1.0 SUMMARY

1.1 Project Objectives

On July 31,2002 Kentucky American experiences a power outage at its Kentucky River Station treatment facility during peak demands. This resulted in a system-wideboil water advisory. Afler extensive review. it was recommended that reiiability improvements be made which included electrical improvements at the KRS as well as replacing ball valves at some distribution system tanks, installation of a booster station to the Tates Creek tank, and SCADA reprogramming.
1.2 Changes Requested

It is requested that the approved capital expenditures be decreased from $\$ 1,320,000$ to $\$ 1,100,000$ as well as extend the project until March 2005. This chanãe will offset increased expenses on the Kentucky River Station traveling screens project.
1.3 Reasons for Changes

Kentucky Utilities indicated initially that improvements on their facilities would cost as much as $\$ 200.000$. That has now been revised based on further work with KU to $\$ 50,000$. Additionaily. the estimated cost of an additional transformer has been reduced by $\$ 70,000$ based on updated information from KU although bids have not been received.
1.4 Revised Cost and Proaram

	Approved Budget	Proposed Budget
2003 Expenditure	$\$ 10,000$	$\$ 10,000$
2004 Expenditure	$\$ 1,010,000$	$\$ 790,000$
2005 Expenditure	$\$ 300,000$	$\$ 300,000$
Total	$\$ 1,320,000$	$\$ 1,100,000$

- Reduce project cost and 2004 expendituresby $\$ 220,000$
- Project completion extended to March 2005.
1.5 Project Issues and Risks

The project has been delayed due to the need to first complete other investment projects that were first necessary including the Richmond Road Station improvements and the SCADA project. Continued risk lies in the delay, as the system is vulnerable to a power outage until the project is complete. Further. this reduction is proposed to accommodate necessary increased expenditures on the KRS traveling screen replacement project.

2.0 INTRODUCTION

This project was approved as Investment Project IP 03-03 in 2003 to improve reliability following a power outage. Although KAW personnel followed pre-established emergency procedures, the outage exposed a serious vulnerability of the system.
The project is about 5% complete with the ball valve replacements having been made and installation of sectionalizing breakers at the substation for completion before May 2004.

3.0 THE CHANGE PROPOSAL

3.1 The project has been delayed to date in working with Kentucky Utilities and awaiting completion of the SCADA project. After further discussions with KU, the scope of their efforts has been reduced and the breakers are now estimated at $\$ 50,000$. The transformer, which has also been delayed, is not as critical to reliability during peak periods, and can be delayed until after the summer peak periods. There is not a viable alternative to this proposed change, although there is some risk that an additional change may be necessary once bids are received.
3.2 The option of deferring the project is really not viable. The system is vuinerable to future power outages without these reliability improvements. An alternative to this project is a large diesel power installation at the KRS which was not cost effective. The Public Service Commission reviewed the power outage incident and agreed to these recommended changes.
3.3 The transformer addition could be deferred or eliminated; however, the treatment plant would then continue to be at risk for failure of the transformer.
3.4 It is recommended that the decrease expenditures be approved at this time to allow the KRS traveling screen project to go forward. It is also recommended that the project be extended to March 2005, to allow the project to be completely carried out as previously planned.
3.5 The project increases reliability of the treatment plant from poor physical condition and reliability.

Purpose Code	Description	$\%$	Measure	Units	Target
RQ-EM01	Water - Emergency Facilities (protect against external event)	100			

4.0 POST PROJECT APPROVAL FINANCIAL STATEMENT
4.1 See attachment.
4.2 There is no anticipated significant variation in operational expenditure since the investment Project Memoranda was approved.
4.3 Since there were no other alternatives, an economic analysis was not performed.

5.0 EFFECT OF CHANGE ON PROJECT COMPLETION

5.1 The improvements to the electrical service should be completed by May 2004 so that the treatment plant reliability is increased prior to peak demand periods. The transformer cannot be worked on until the peak period demands have slackened and should start during the fall. Additionally, the Tates Creek tank booster should be completed in 2004. The entire project should be completed in early 2005.

6.0 ISSUES AND RISKS

6.1 The only significant risk is that the system is still vulnerable during power outage situations. While prior to 2002, an outage had not occurred for 19 years, it is critical that the project be completed.

7.0 RECOMMENDATION

7.1 It is recommended that the Capital Investment Management Committee grant approval for the decreased capital expenditures of $\$ 220,000$ for a total project cost of $\$ 1,100,000$ and an extension of project completion until March 2005.

APPENDICES

A1 PCA Control Data Sheet

Associated form - CMF3. 55 - appropriately signed.
A2 Detailed Estimate of Cost
A3 Economic Analysis
A4 Schedule / Forecast

Linda Bridwell
March 11, 2004
Version 1.0

KENTUCKY AMERICAN WATER

PROJECT 12020303

RELIABILITY IMPROVEMENTS

KENTUCKY-AMERICANWATER COMPANY

RELIABILTY IMPROVEMENTS

DESCRIPTION OFACTVITY	RESTTTY	Priors	JAN	FEB					${ }^{2004}$						Total
	Prow	Priors	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEPT	OCT	Nov	DEC	2004
4 kV Transformer at KRS	AW		1s\%					\$250,000	[8:500,000	S\$50;000	\$9560,000:	359100:000	ब3\%100:000	S\%	\$ 481.800
Sectionalizing Breaker	Kentucky Uutities		K85	,	\%		53\% ${ }^{\text {\% \% 0,000 }}$	18525,000		3,			3xama	䜌綡	\$ 50.000
Ball Valve limprovements	KAW	\$7,229	\$ 17.142	\% 6,233	\% 19,400					Watas		\%		(1)	¢ 50.004
Taies Creek Tank Reltofit	KAW/Cont.								\$ 10.000	\$50,000	\$40.000	\$ 30,000	\% 20,000		\% 150,000
Tank SCADA Programmin	KAWICOns.			\$10.000											10,000
SUB-TOTAL			\$ 17, 142	\$16,233	\% 19,400		¢ 10,000	\$75,000	S 75,000	\$100,000	\$90,000	\$ 130,000	\$ 120,000	5.81,800	734,575
ORC $(+1.3 \%)$					s 580	\$	\$ 300	\$ 2.250	\$ 2,250	\$ 3.000	\$ 2.700	\$ 3,900	\$ 3.600	\$ 2,450	\$ 21,030
Overtiead (+ + -2%)					S 400		\$ 210	¢ 1,550	\$ 1.550	\$ 2,060	\$ 1.850	s 2.680	\$ 2.470	\% 1,690	S 14.460
AFUDC					S 309	${ }^{5} 383$	423	S 742		s	¢ 1.734		${ }^{5} \quad 2.234$	\$ 2,324	s 10.171
CASH FORECAST			\$ 17, 142	\%16,233	S 20,689	\$ 383	/ 10,933	\$79,542	\$78,800	\$105,060	\$96,284	\$ 138,602	[128.304		\$ 780,236

[^2]

[^3]
KENTUCKY AMERICAN WATER ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL
 PENDING PROPOSAL
 ABILITY IMPROVEMEN

Determination of Revenue Requirement				
Authorized Rate of Return on Common Equity				11.00\%
Federal Income Tax Rate				35.00\%
Return on Common Equity before FIT				16.92\%
State Income Tax Rate				8.25\%
Required Rate of Return on CE for Project				18.44\%
Common Equity Ratio for Project				40.00\%
Weighted Cost of Common Equity before Tax				7.38\%
Long Term Debt Ratio for Project				60.00\%
Estimated Cost Rate for New Debt				8.00\%
Weighted Cost of Debt				4.80\%
Total Pre-Tax Cost of Capital				12.18\%
Total Estimated Cost of Project				\$ 1,100,000
Investment by Others				0
Net Investment Financed by Company				\$ 1.100.000
New Common Equity	\$ 440,000			
New Long Term Debt	660,000			
Total Revenue Requirement			Amount	Bate
Required Pre-Tax Operating Income		\$	133,980	12.18\%
DepreciationRate	4.790\%		52,690	4.79\%
Property Tax Rate	0.7037\%		7,741	0.70\%
Change in Operation \& Maint. Expense			0	0.00\%
Revenue from New Customers			0	0.00\%
Total Net Revenue Requirement		\$	194,411	17.67\%
Revenue Tax Rate	0.14537\%		283	0.03\%
Total Revenue Requirement		\$	194,694	17.70\%
Latest 12 Months Revenue - 09/30/2002			42,262,154	
Required Price Increase			0.46\%	

[^4]
Kentucky-American Water Company

KENTUCKY-AMERICANWATER COMPANY PROPOSED INVESTMENT PLAN PROJECT 03-03 RELIABILITY IMPROVEMENTS

Reference: 2003 Proposed Annual Business Plan, 2002 Storage Analysis, 2002 July 31 Incident Report.

SUBJECT

The KAWC system is vulnerable to a disruption in water service if a power outage occurs during peak demands. A similar incident on July 31, 2002 resulted in customer outages and resultant Boil Water Advisory.

RECOMMENDATION

It is recommended that electrical, valving, pumping and SCADA improvements to KAWC's existing facilities be made to prevent customer disruption should a power outage occur during peak demand periods.

ESTIMATED COST

Total Estimated Cost
Proposed 2003 Expenditure
Proposed 2004 Expenditure

$$
\$ 1,320,000
$$

400,000
920,000

ADEQUACY

The proposed investment project funds are estimated to be adequate for design and construction of the proposed improvements.

Kentucky-AmericanWater Company
Reliability Improvements
Proposed 2003 IP 03-03
November 15,2002
Page 2

DISCUSSION

On July 31, 2002, Kentucky-American Water Company (KAWC) lost power to its Kentucky River Station (KRS) treatment facility. At the time, KAWC was experiencing peak demands. KRS was producing 48 million gallons per day (mgd) and the Richmond Road Station (RRS) treatment plant was producing 16 mgd . Since there is very little floating storage in the KAWC system, the system de-pressurized quickly once the main supply from KRS was interrupted. Within two minutes of the power failure, the RRS discharge pressure dropped from 77 psi to 25 psi . The pressure recorder at the highest point in the system dropped to 0 psi . Pressure dropped throughout the southern half of KAWC's distribution system.

Kentucky Utilities (KU) employees were immediately dispatched to the KRS. Within five minutes of the power failure, KAWC began switching to the diesel engine back-up of one of its high service pumps at the KRS. Pumps at two of the storage tanks were turned on by remote signal and the RRS began pumping at 25 mgd . The RRS raw water source was switched from the Kentucky River to Jacobson Reservoir. The operator remotely activated three other tanks as system pressures began to rise.

Within thirty minutes, the back-up diesel engine had been activated at the KRS and was operating its high service pump at 10 mgd , pumping from the KRS clearwell. No other diesel back up is available at the KRS for treatment or pumping. System pressure was back to normal within forty minutes. KAWC issued a precautionary boil water advisory for its entire system that lasted 22 hours. KAWC has experienced some public criticism for the lack of reliability, and the Kentucky Public Service Commission has asked for a review of KAWC's storage facilities in light of the incident. As a follow-up to that incident, KAWC has undertaken a review of its operating procedures and facilities to determine the most effective way to prevent customer disruption if a similar event occurred in the future.

KAWC personnel followed pre-established emergency procedures, which accounted for efficient and swift response. No significant changes to the operating procedures are recommended.

A review of the facilities has determined that some modifications should be made that will minimize or even eliminate the customer impact if a similar event occurred in the future. KAWC has a dual feed of 69 kV overhead transmission lines for electrical power at the KRS. Transmission comes from two different substations that are fed from two different generating facilities. The dual feeds come into a single substation, with parallel but separate feeds for three miles into the KRS substation. The switch between the dual feeds currently must be done manually, which requires nearly an hour even if KU personnel are dispatched immediately. Power then feeds through a single transformer at the plant and is split to dual feeds for each of two halves of the plant. The single transformer is 40 years old and has been identified as a vulnerable point because failure would cause a minimum of 48 hours of outage.

Kentucky-American Water Company
Reliability Improvements
Proposed 2003 IP 03-03
November 15,2002
Page 3

KAWC has twelve storage facilities and two treatment plant clearwell systems in the Lexington area that have a total volume of 20.71 million gallons. Eight of the tanks operate in what is considered the Main Service zone that covers all of Fayette, Woodford, and Jessamine Counties and the southern parts of Clark, Scott and Bourbon Counties. These tanks total 14.5 million gallons and all but one are pumped storage facilities. The Tates Creek Road tank with a volume of 0.5 million gallons is an elevated storage tank in this service zone. Because of the time of day, all but one of the pumped storage facilities were full and none were pumping into the distribution system in anticipation of peak hour demands later that evening. The Tates Creek tank is higher in elevation than the prevailing hydraulic grade line in the KAWC Main Service gradient. Therefore, it was less than one-third full when the power outage occurred, and it emptied within a few minutes.

In the event of an immediate loss of power during peak demand operations, the system must be able to stabilize pressures automatically for the first fifteen minutes to give operators time to respond. After reviewing all alternatives, it was determined that this can best be addressed by elevated storage, supported by automatic activation of the pumped storage tanks. The Tates Creek elevated tank, if full, could sustain system pressures with the loss of 48 mgd from KRS for ten to fifteen minutes.

The pumped storage facilities can currently be activated remotely but require the attention of the operators. With minimal SCADA programming, these facilities can be adjusted to activate automatically in a system-wide pressure loss. However, on July 31, the three largest pumped storage facilities could not be immediately activated because the ball valve system at those tanks would not open against the minimal system pressure. These ball valve systems can be modified to open on low system pressure at a moderate cost. The RRS production rate cannot be adjusted automatically without manually changing some chemical feed rates. This is being corrected during the ongoing DCS improvement project.

In a fature event, within the first five to fifteen minutes, the pumped storage facilities would be activated automatically, to further stabilize system pressures. The RRS operator would be able to increase the production rate of the plant in this time period to further stabilize system pressures. Electric feed to the KRS could be switched to the second transmission within the first five minutes by a remote switching mechanism. KRS plant personnel could begin restarting the plant.

In order to provide immediate reliability improvements that will be further enhanced by future elevated storage, the following improvements are included under this Investment Project. KAWC will have KU install sectionalizing breakers at its substation and necessary electrical equipment adjustments, thus minimizing the time to switch electrical power feeds. KAWC will install a redundant 4 kV transformer at the KRS substation and install the necessary electrical equipment adjustments. KAWC will upgrade the SCADA controls so that the pumped storage tanks will be automatically activated when a system pressure drop is detected. KAWC will

Kentucky-American Water Company
Reliability Improvements
Proposed 2003 IP 03- 03
November 15,2002
Page 4
retrofit the Tates Creek tank with a booster station and altitude valve to allow greater use of the Tates Creek tank during peak demand periods. KAWC will improve the ball valve systems on the three large tanks and the Newtown Booster station to allow operation when system pressure is lost. The construction of floating storage is recommended, and will be proposed as a future project in the Strategic Business Plan.

The total cost estimate is within $+/$ - ten percent based on equipment availability and can be completed over 2003-2004.

Linda C. Bridwell, PE
Director of Engineering

NOR/lcb

KENTUCKY-AMERICAN WATER COMPANY ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL RELIABILITY IMPROVEMENTS

KENTUCKY-AMERICAN WATER COMPANY PROPOSED INVESTMENT PLAN PROJECT 03- 03 RELIABILITY IMPROVEMENTS															
DESCRIPTION OF ACTIVITY	ENTITY	Priors	JAN	FEB	MAR	APR	MAY	$\frac{2003}{J U N}$	JuL	AUG	SEPT	OCT	Nov	DEC	total 2003
4 KV Transformer at KRS	KAWC		\%	1,	5xamm		-	\%		\%	,	通:	Fex	-	
Seclionalling Breaker	Kentucky Uuilities			${ }^{3} \times 3.0003$	S 3 50,006	\$3 3 36,600					5	3ne		5	\$190,000
Bail valve Improvements	KAWC		\$2,000	\$ 7,000	\$ 1.000	S3:	2ᄌᄌxas	323	438:		,	(4atis		CS	\$ 25.000
Tates Creek Tank Retroft	Kawc/cont.		\$ 3,000	\$11,150	\$ 39,400	\$ 42,700	43,410	\$10,340							\$ 150,000
Tank SCADA programmin	KAWCICons.		\$ 2000	\$ 2500	\$ 4.200	S 1.300									
					3 4.200	, 1,300									\$ 10.000
SUB-TOTAL			§ 10.000	923,650	\$ 94.600	1994,000	$)^{93,410}$	\$ 59,340		9.	15	s			9 375,000
O8C $+1-3 \% 1$			${ }^{1} 300$	\$ 710	$15^{2} 880$	\$ 8.820	\$ 2.800	19 1,780		1					¢ 11.250
Overhead $(+\underline{+}$-2\%)			$18 \quad 210$	§ 490	\$ 1,950	\$ 1,940	s 1.920	\$ 1.220		s -	\%	/s			\% 7,738
AFUDC				[s 163	${ }^{1} 6604$	[8.1 .310	\$ 2.017	\$ $\$ 2.599$	+	\% .	is -	1s.	\$ -		\$5 6,729
CASFFFORECAST			\$ $\$ 10.547$	\$25,073	\$ 89,994	\$ 100,070	\$ 100,147	\$64,939							\$ 400,709

[^5]
KENTUCKY-AMERICAN WATER COMPANY

PROPOSED INVESTMENT PLAN PROJECT 03- 03

RELIABILITY IMPROVEMENTS

ITEM	RESPONSIBLEENTITY	TOTAL ESTIMATED COST	
4 kV Transformer at KRS	KAWC	\$	850,000
Sectionalizing Breaker	Kentucky Utilities	\$	200,000
Ball Valve Improvements	KAWC	\$	25,000
Tates Creek Tank Retrofit	KAWC/Cont.	\$	150,000
Tank SCADA programming	KAWC/Cons.	\$	10,000
	Sub-Total	\$	1,235,000
O\&C ($+/-3 \%$)		\$	37,050
Engineering Overhead ($+1-2 \%$)		\$	25,460
	Sub-Total	\$	1,297,510
AFUDC		\$	18,475
	Total	\$	1,315,985
		\$	1,320,000

Project 04-02	:	Kentucky DOT Relocations
Project Manager	:	Shannyn Walker
Project Status	$:$	PROJECTNEED IDENTIFICATION

1.0 SUMMARY

Water main'relocations that conflict with road construction undertaken by the Kentucky Department of Transportationand the Lexington-Fayette Urban County Government as recommended in the Kentucky AmericanWater 2003 Strategic Business Plan.
1.1 Project Objectives

It is estimatedthat approximately 5,000 feet of water lines will be in conflict with road reconstruction in 2004. It will be necessaryfor Kentucky Americanto relocate the pipe. The cost for relocating water mains that are located in private easement will be reimbursed by the appropriate agency.
1.2 Recommended Solution

It is recommendedthat approximately 5,000 of 24 -inch and 12 -inch be relocated as needed.
1.3 Cost and Program

- The request is for $\$ 400,000$ for engineering and construction 2004 .
- All work wiii be completed by December 2004.
1.4 Project Issues and Risks

The primary risk is damage to the water lines if they are not moved in a timely manner before road construction begins. There is a risk of potential customer service problems if the mains are out of service during high demand periods.
1.5 Changes Since Previous Approval

None
2.0 BACKGROUND
2.1.1 Kentucky AmericanWater is required to move water mains and other facilities when they conflict with roadway projects. In recent years, the KY DOT has increased its construction activity as a result of elevated federal funding, however, it appears that the level of construction will decrease through 2006.
It is estimated that there will be two major projects in 2004. One is the relocation of a 24 " main on Wellington Drive at Trinity for stormwater improvements. This work was originally scheduled in 2003 but was delayed because of other construction. Additionally, the relocation of 24 " main on Louden Avenue is expected in 2004. Finally, a smaller project to relocate a portion of main in Harrodsburg Road in conjunction with the final phase of that road construction is expected.
3.0 PROJECTJUSTIFICATION AND PRIORITIZATION
3.1

Purpose Code	Description	$\%$	Measure	Units	Target
OR01	Other regulations	100			

4.0 PROJECT OUTPUT AND BENEFITS

4.1 The intended outputs are relocated water lines in conjunction with road construction. in each case, the project is reviewed for the best alternative route to limit service disruption and minimize the necessary work. If reasonable, the water main is upsized during construction and service lines are replaced.

5.0 SCOPE AND OPTIONS

5.1 Relocated water lines are design with coordination of the road design engineers to minimize disruptions and construction. Where possible, the work is bid as a subcontract to the road construction. The improved coordination of this effort greatly reduces the overall project costs. Recent work for relocations have been as high as $\$ 100$ per foot of construction depending on traffic considerations and complexity of work. Because the work is required, there are no alternatives for the projects.

6.0 FINANCIAL STATEMENT

6.1 A detailed cost estimate of the projects is not yet available. It is estimated that work will generally cost $\$ 400,000$ but engineering to determine the scope and a firm cost estimate wiii be completed when the road design is complete.

Component \quad \$ million	Total	Year 0	Year 1
Development Costs	$\$ 0.0$		
Design \& ConstructionCost	$\$ 0.400$		$\$ 0.400$
Project Total	$\$ 0.400$		$\$ 0.400$
Advances \& Contributions	$\$ 0.100$		$\$ 0.100$

6.2 There will be a no additional operating costs or additional operating revenues as a result of this work.

7.0 PROCUREMENT

7.1 The intention is to complete design in-house. Construction will be completed by a contractor.

8.0 PROGRAM

8.1 Schedule:

Project Need Identification (PNI)
Project Implementation Approval (PIA)

Construction Start	$3 / 04$
Substantial Completion	$12 / 04$
Take Over	$12 / 04$
Post Project Review	$12 / 04$

9.0 ISSUES AND RISKS

9.1 There is a risk of damage to the existing water lines if they are not moved timely. Additionally there is a risk for reduced customer service during construction.

10.0 RECOMMENDATION

10.1 The relocation of approximately 5,000 feet of water main in 2004 is recommended due to conflicts with road construction.

Linda Bridwell
December 18,2003
Version (1.0 for first submission)

PROJECT REVIEW		
	Signature:	Date:
Asset Owner or nominated Asset Manager I Capital Program Manager		
Operations Manager		
Project Manager (Deliverer)		
Finance Representative		
RECOMMENDED FOR APPROVAL • PNI Only		
VP Technical Services		
Others (as nominated by VP Technical Services)		

APPENDICES

A1 PNI Control Data Sheet
None

A2 Detailed Estimate of Cost
 A detailed estimate of the design and constructioncost is not yet available. The request is $\$ 400,000$ for design and construction based on preliminary road constructionengineering. The scope and firm cost estimates to complete the proposed relocations will be complete based on final road design.

A3 Economic Analysis
An "Economic Analysis of the Impact of Capital Spending Proposal" is attached to this form.
A4 Schedule IForecast
A bar chart is attachedto this form.

Revision History:

Version	Date	Summary of Changes
$I .0$	$12 / 18 / 03$	Issue

KENTUCKY AMERICANWATER

PROPOSED 2004 PROJECT NEED IDENTIFICATION

KYDOT MAIN RELOCATIONS

ITEM	RESPONSIBLE ENTITY	TOTAL ESTIMATED COST	
Design/Easement Acquisition	KAWC / Consultant	\$	10,000
Construction \& Materials	Contractor	\$	343,950
Inspection	KAWC	\$	8,000
	Sub-Total	\$	361,950
O\&C (3\%)		\$	10,859
Engineering Overhead (2\%)		\$	7,239
	Sub-Total	\$	380,048
AFUDC		\$	20,280
	Total	\$	400,328

KENTUCKY AMERICAN WATER PROPOSED 2004 PROJECT NEED IDENTIFICATION KYDOT MAIN RELOCATIONS														
$\begin{aligned} & \text { DESCRIPTION } \\ & \text { OF ACTIVITY } \end{aligned}$	$\begin{gathered} \text { ENTITY } \\ \text { RESPONSIBLE } \end{gathered}$	JaN	FEB	MAR	APR	MAY	JuN	${ }^{2003}$ JUL	aug	SEPT	OCT	NOV	DEC	TOTAL 2002
Designo ${ }^{\text {assement } \text { Acouuisition }}$	KAWC / Consultant													10,000
Constuction	Contractor													313
CompanyLabor	KAWC													8.000
SUB-TOTAL		\$ 47,500	\$47,100	\$ 46,750	¢ 46,500	\$22,400	\$22,200	\$ 22,000	\$ 21,500	\$ 22,000	¢ 22,000	\$ 21,000	\$ 21,000	361,950
O8C (3\%)		${ }_{5}$ S 1,425	\$ 1.413	\$ 1,403	\$ 1.395	8 672	\$ 666	\$ 660	\$ 645	\$ 660	8-660	$8 \quad 630$	630	\$ 10,859
Overeaad (2%)		\$ 950	\$ 942	\$ 8335	\$ 930	5. 448	5444	\$ 440	S 430	440	§ 440	¢ 420	\$ 420	\$ 7.239
AFUDC		180	550	920	1,290	1.560	1.740	1,910	2.080	2.260	2,430	2,600	2,760	\$ 20,280
CASH FORECAST														

KENTUCKY-AMERICAN WATER COMPANY
 KYDOT MAIN RELOCATIONS
 REVISED INVESTMENT PROJECT $02-1$ - 02

Exhibit A
 List of 2007 DOT Projects

Project Name	Footage	Pipe Size	Estimated Cost
Wellington Way	800	$24^{\prime \prime}$	$\$ 50,000$
Louden Avenue	4,000	$24^{\prime \prime}, 6^{\prime \prime}$	$\$ 325,000$
Harrodsburg Road	200	$12^{\prime \prime}$	$\$ 25,000$
			$\$ 400,000$
			$(\$ 75,000)$
Subtotal			$(\$ 25,000)$
Harrodsburg Road (2003\&2004)			$(\$ 100,000)$
Louden Avenue			$\$ 300,000$

KENTUCKY AMERICAN WATER ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL
 KY DOT MAIN RELOCATIONS 04-02

Determination of Revenue Reauirement

Authorized Rate of Return on Common Equity
Federal Income Tax Rate
Return on Common Equity before FIT

State Income Tax Rate

Required Rate of Return on CE for Project
Common Equity Ratio for Project
Weighted Cost of Common Equity before Tax

Long Term Debt Ratio for Project
Estimated Cost Rate for New Debt
Weighted Cost of Debt

Project 04-03	:	Owen County Main Extensions
Project Manager	:	Richard Svindland
Project Status	:	PROJECT NEED IDENTIFICATION

1.0 SUMMARY

Water main extensions in rural Owen County are recommended as part of the Strategic Business Plan for Kentucky American for 2003.
1.1 Project Objectives

The Owen County Fiscal Court has received grant funding for \$750,000 for water lines in rural Owen County. This project will use capital expenditures to leverage a portion of that grant to providenew service in currently unserved areas. The County Judge-Executiveis committed to providing water service throughout the county and is supportive of a partnership with Kentucky American Water to complete that goal.

1.2 Recommended Solution

Approximately 40,000 feet of 8-inch, 6-inch and 4-inch mains are recommended to be installed in Owen County. The exact location of the mains will be determined by the priorities set by the Owen County Fiscal Court.

1.3 Cost and Program

- The initial request is for $\$ 60,000$ for preliminary engineering in 2004 to define the scope and develop a firm cost estimate of the project.
- The project will be completed in December 2007, with construction in 2005, 2006 and 2007.

1.4 Project Issues and Risks

The risks are higher rates for the Owen County residents and potential water quality concerns by extending small mains with only few residents per mile. The project will grow the customer base and continue to meet the State's goal of providing water service to all residents by 2020.
1.5 Changes Since Previous Approval

None

2.0 BACKGROUND

2.1 In 2001, Kentucky American Water acquired the Tri-Village Water District's assets in rural Owen County. The County Judge Executive was successful at that time in receiving grants for water line extensions that required 100\% matching. Kentucky American agreed to provide funds for the matching as part of the acquisition of the Tri-Village Water District. The project covered the extension of 240,000 feet of main and the construction of a tank. The project was also expected to be part of the next rate case to verify the appropriateness of the level of expenditures.
2.2 The Owen County Judge Executive has now successfully received additional grant funding from the Kentucky Infrastructure Authority for water line extensions at a level of \$750,000. The Judge Executive has asked Kentucky American to continue to serve as a partner on the extensions. The feasibility of the project will likely need a rate impact review by the Kentucky Public Service Commission.

CAPITAL INVESTMENT MANAGEMENT COMMITTEE - Dec 2003

$3.0 \quad$ PROJECT JUSTIFICATION AND PRIORITIZATION

3.1

Purpose Code	Description	$\%$	Measure	Units	Target
LC0才	Local capacity growth	100			

4.0 PROJECT OUTPUT AND BENEFITS

4.1 The intended outputs are additional water lines to serve new customer that currently do not have community water service. The specific water line extensions will continue to be prioritized on the highest density of population with the input of the Owen County Fiscal Court. This project will be a continuation of efforts to meet the Kentucky Governor' goal to provide treated, potable water to all Kentuckians by 2020.

5.0 SCOPE AND OPTIONS

5.1 Additional water line extensions are recommended to grow the water service system in Owen County. A prioritization of areas to be served needs to be completed, with design of water lines and easements following. Because of the rural nature of the area to be served, construction has been very cost effective, averaging $\$ 15$ per foot including engineering work. Additional booster stations may also be required depending on the location of the lines.
5.2 Preliminary engineering is recommended to determine the most cost effective installation of water lines and highest density of customers. Preliminary engineering will also include route selection and easement acquisition. There are no alternatives available to deliver the output.

6.0 FINANCIAL STATEMENT

6.1 A detailed estimate of the design and construction cost is it z ai. The il ir us is for $\$ 60,000 \mathrm{fi}$ preliminary engineering to define the scope and develop a firm cost estimate to complete the project.

Component \quad \$million	Total	Year 0	Year 1	Year2	Year 3	Year 4
Development Costs	$\$ 0.06$		$\$ 0.06$	$\$ 0.040$		
Design \& Construction Cost	$\$ 1.140$			$\$ 0.500$	$\$ 0.370$	$\$ 0.230$
Project Total	$\$ 1.200$		$\$ 0.06$	$\$ 0.540$	$\$ 0.370$	$\$ 0.230$
Advances \& Contributions				$\$ 0.300$	$\$ 0.200$	

6.2 There will be a slight increase in operating costs for additional new services to have meters read and additional purchased water costs. There will also be an increase in operating revenues from new customers. For the sake of the economic analysis it is estimated that there will be 100 new customers. This is based on the average customer density from the previous project. Work will only be completed that will fit within the proposed capital expenditures.

7.0 PROCUREMENT

The intention is to prioritize the main extensions and determine routes in-house. Engineering for
detailed route work and easement acquisition will be done by a consultant. Construction will be
completed by a contractor.

8.0 PROGRAM

8.1 Schedule:

Project Need Identification (PNI) 12/03
Project Implementation Approval (PIA) 12/04
Construction Start 3/05
Substantial Completion 12107
Take Over 12107
Post Project Review 3/08

9.0 ISSUES AND RISKS

9.1 The risks are for higher rates for existing Owen County customers to help pay for the cost of the water line extensions and because of the higher operating costs for meter reading and maintenance. An additional risk is for potential low chlorine residuals resulting from extending small mains with low customer density.
9.2 It is anticipated that the Kentucky Public Service Commission will review the appropriateness of potential rate increases in the next rate case or through a Certificate of Convenience and Necessity process prior to initiating the project. The current water supplier is reviewing the potential to convert from free chlorine to chloramines which will reduce the risk of low chlorine residuals. This review is occurring because of necessary compliance with disinfection by-product regulations. If a conversion to chloramines is not made, there may be a need to include booster chlorination in the project or install automatic flushing devices.
10.0 RECOMMENDATION
10.1 Rural water main extensions in Owen County are recommended. The initial request is for $\$ 60.000$ for preliminary engineering to define the scope and develop a firm cost estimate to complete the project. The initial total project cost estimate is $\$ 1,200,000$ with $\$ 500,000$ of that coming as a contribution of grant money by Owen County.

Linda Bridwell
December 18,2003
Version (1.0 for first submission)

PROJECT REVIEW			
	Signature:	Date:	
Asset Owner or nominated Asset Manager I Capital Program Manager			
Operations Manager			
Project Manager (Deliverer)			
Finance Representative			
RECOMMENDEDFOR APPROVAL	PNI Only		
VP Technical Services			
Others (as nominated by VP Technical Services)			

APPENDICES

A1 PNI Control Data Sheet
None
A2 Detailed Estimate of Cost
A detailed estimate of the design and constructioncost is not yet available. The initial request is $\$ 60,000$ for preliminary engineering to define the scope and develop a firm cost estimate to complete the project.

A3 Economic Analysis
An'Economic Analysis of the Impact of Capital Spending Proposal" is attached to this form.
A4 Schedule IForecast
A bar chart is attached to this form.AWICMF3.30
CAPITAL INVESTMENT MANAGEMENT COMMITTEE - Dec 2003

Revision History:

Version	Date	Summary of Changes
1.0	12118103	Issue

KENTUCKY AMERICAN WATER

PROJECT NEED IDENTIFICATION 04-03

Owen County Main Extensions
TRI-VILLAGE WATER DISTRICT - OWEN COUNTY

ITEM	RESPONSIBLE ENTITY		ORIGINAL TED COST
Administration	KAWC	\$	25,000
Design	Consultant	\$	90,000
Materials	KAWC	\$	200,000
Inspection	KAWC	\$	50,000
Construction	Contractor	\$	640,000
	Sub-Total	\$	1,005,000
O\&C		\$	50,250
Engineering Overhead		\$	50.250
	Sub-Total	\$	1,105,500
AFUDC		\$	94,500
	Total	\$	1,200,000
	Estimatel \$		1.200,000

KENTUCKY AMERICAN WATER PROJECT NEED IDENTIFICATION O+O3 Owen County Main Extensions														
DESCRIPTION OFACTVITY	$\begin{gathered} \text { ENTITY } \\ \text { RESPONSIBLE } \end{gathered}$	2004												$\begin{gathered} \text { TOTAL } \\ \hline 2004 \\ \hline \end{gathered}$
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Administralion.	KAWC													\$ 6.000
Design	Consultant													\$ 52,500
Materials	kAWC											\$.	\$	\$
Inspection	kAWC											\$	S.	\$
Construction	Contractor											\$	\$.	\$
														.
SUB-TOTAL											\$ 19,500	\$ 19,500	\$ 19,500	\$ 58,500
08 C											\$ 150	\$ 150	\$ 150	\$ 450
Overhead											\$ 150	\$ 150	\$ 150	\$ 450
AFUDC											200	200	200	8600
CASH FORECAST											\$ 20,000	\$ 20,000	\$ 20,000	\$ 60,000

KENTUCKY AMERICAN WATER ECONOMIC ANALYSIS OF THE IMPACT OF CAPITAL SPENDING PROPOSAL
 Owen County Main Extensions 12/16/03

1

	-
	-000\%oplli
	${ }^{\circ} \mathrm{BHE}$
	- ${ }^{\text {Onfing }}$
	'R Phatio
	-约
	-
- \%	
	Hithi ${ }^{\circ} \mathrm{m}^{\circ} \mathrm{O}$
	Bminio ${ }^{\circ}$
	Ull
	\% ${ }^{\circ}$ Il ${ }^{\circ} \mathrm{THI}$
	\%EK6
\%	
4	

Strategic captal expenditure plan

[^0]:

[^1]: H:ZEngineering\IPs102-XXX Water Supply Project DevelopmentWater Supply Project Development-detail cost Econ Analysis
 312712002

[^2]: H:IEngineeringupsi02-XXX Water Supply Project Developmento40311 SE KY 12020303 PCR Appendices
 2004

[^3]: H:IEngineeringllPs $102-$-XXX Water Supply Project Developmentio40311 SE KY 12020303 PCR Appendices

[^4]: H:IEngineering\IPsl02-XXX Water Supply Project DevelopmentiO40311 SE KY 12020303 PCR Appendices Econ Analysis
 5/1812004

[^5]:

