<u>AFFIDAVIT</u>

STATE OF GEORGIA

COUNTY OF FULTON

BEFORE ME, the undersigned authority, duly commissioned and qualified in and for the State and County aforesaid, personally came and appeared A. Wayne Gray, who, being by me first duly sworn deposed and said that:

He is appearing as a witness before the Kentucky Public Service Commission in Case No. 2003-00379, Review of Federal Communications Commission's Triennial Review Order Regarding Unbundling Requirements for Individual Network Elements, and if present before the Commission and duly sworn, his testimony would be set forth in the annexed testimony consisting of $\underline{/4}$ pages and $\underline{6}$ exhibits.

A. Wayne Gray

SWORN TO AND SUBSCRIBED BEFORE ME THIS THAT OF MARCH, 2004

Notary Public

MICHEALE F. BIXLER / Notary Public, Douglas County, Georgia My Commission Expires November 3, 2005

1		BELLSOUTH TELECOMMUNICATIONS, INC.
2		DIRECT TESTIMONY OF A. WAYNE GRAY
3		BEFORE THE KENTUCKY PUBLIC SERVICE COMMISSION
4		DOCKET NO. 2003-00379
5		MARCH 10, 2004
6		
7	Q.	PLEASE STATE YOUR NAME, YOUR BUSINESS ADDRESS, AND YOUR
8		POSITION WITH BELLSOUTH TELECOMMUNICATIONS, INC.
9		("BELLSOUTH").
10		
11	A.	My name is A. Wayne Gray. My business address is 675 West Peachtree Street, Atlanta,
12		Georgia 30375. My title is Director – Regional Planning and Engineering Center in the
13		Network Planning and support organization.
14		
15	Q.	PLEASE SUMMARIZE YOUR BACKGROUND AND EXPERIENCE.
16		
17	A.	I graduated from Georgia Tech in 1979, with a Bachelor of Electrical Engineering
18		degree. In 1992, I received a Master of Business Administration degree from Emory
19		University. I began working for Southern Bell in 1979, in the Equipment Engineering
20		organization in Miami, Florida. Over the course of my 24-year career with BellSouth, I
21		have held various line and staff positions in Equipment Engineering, Traffic Engineering
22		(Capacity Management), Infrastructure Planning and Project Management. In November
23		1999, I became Director-Collocation in the Network Planning and Support organization.
24		In December 2001, my scope of responsibility was expanded and my title was changed to
25		Director – Regional Planning and Engineering Center. In this position, I am responsible

1		for ensuring that BellSouth provisions collocation arrangements in the timeframes
2		established by contractual agreements and governmental mandates. I am also responsible
3		for managing the planning and engineering of BellSouth's Advanced Intelligent Network,
4		Common Channel Signaling Network, Link Monitoring System, Public Packet Switching
5		Network, MemoryCall® Service platform, Pooled Internet Access Platforms, and
6		corporate transport network. My responsibilities also include the activities performed by
7		BellSouth's Numbering and Technology Forecasting groups. In addition, I direct all
8		switch software upgrades and contract administration for the purchase of network
9		technologies.
10		
11	Q.	WHAT IS THE PURPOSE OF YOUR TESTIMONY?
12		
13	A.	The first part of my testimony describes the network architecture an efficient Competitive
14		Local Exchange Carrier ("CLEC") would utilize to self provide high capacity loops over
15		which it serves its customers. The second part of my testimony describes the network
16		architecture an efficient CLEC would utilize to self provide high capacity interoffice
17		transport facilities. I describe the certain network costs associated with the network
18		architecture that a CLEC would utilize to self provide high capacity loops and transport,
19		and which are discussed in the testimony of Dr. Aniruddha ("Andy") Banerjee.
20		
21	I. HI	GH-CAPACITY LOOPS
22		
23	Q.	WHAT DO YOU MEAN BY "HIGH CAPACITY LOOPS?"
24		
25	A.	The types of loops covered in my testimony are DS1, DS3, and dark fiber. These loops

1		are known as "high-capacity loops" because they allow transmission speeds significantly
2		higher than the 64 Kbps of voice grade lines. High-capacity loops are typically used in
3		corporate data networks and to provide voice service to enterprise locations requiring a
4		large number of lines.
5		
6		"DS1 loop facilities" refer to digital loops having a total transmission speed of 1.544
7		Mbps provided over various transmission media including, but not limited to, two-wire
8		and four-wire copper, coaxial cable, fiber optics, wireless, radio, and power line facilities.
9		A DS1 capacity loop contains the equivalent of 24 voice-grade or DS0 channels.
10		
11		"DS3 loop facilities" refer to digital loops having a total transmission speed of 44.736
12		Mbps provided over various transmission media including, but not limited to, fiber
13		optics, coaxial cable, wireless, radio, and power line facilities. A DS3 capacity loop
14		contains the equivalent of 28 DS1 channels or 672 DS0 channels.
15		
16		"Dark fiber" refers to optical transmission loops without attached electronics, through
17		which no light is transmitted and no signal is carried. There is no transmission speed
18		associated with dark fiber since the transmission speed of the loop depends on the type of
19		electronics used to light the fiber.
20		
21	Q.	PLEASE DISCUSS THE CAPACITY LEVELS ACHIEVED WHEN CARRIERS
22		DEPLOY FIBER-OPTIC BASED TRANSMISSION SYSTEMS.
23		
24	A.	Carriers typically deploy fiber-optic facilities that can operate at a range of capacities
25		determined by the electronics attached to them. For example, when laying fiber it makes

1		sense to deploy high-capacity, "OCn" facilities so that there will always be enough
2		bandwidth to handle the traffic on a given loop. The term "OCn" refers to Optical Carrier
3		where "n" designates the optical carrier level. The optical carrier level "n" is directly
4		related to the quantity of DS3 capacity units the system is capable of handling
5		simultaneously. For example, OC48 systems provide capacity for 48 individual DS3
6		transmission "pipes". The carrier can then attach electronics to subdivide (or
7		"channelize") the available capacity, activating the amount of capacity and number of
8		channels needed along the loop. The electronics used to do this channelization of OCn
9		facilities into DS1 or DS3 facilities are relatively inexpensive, are widely available, and
10		can be quickly installed whenever the carrier has demand for DS1 or DS3 facilities. The
11		equipment required is the same type of equipment CLECs such as AT&T and MCI use in
12		their networks, and based upon my review of testimony filed by these CLECs and others,
13		I am confident that CLECs are capable of performing the necessary tasks to subdivide
14		capacity as needed.
15		
16	Q.	ONCE AN OCn FACILITY IS INSTALLED, IS IT OPERATIONALLY READY
17		TO OFFER DS1 OR DS3 LOOPS?
18		
19	A.	Yes. As explained in the previous answer, a carrier with channelized OCn facilities is
20		operationally ready to provide DS1 or DS3 facilities.
21		
22	Q.	PLEASE DISCUSS THE COSTS A CARRIER WOULD INCUR WERE IT TO
23		CONSTRUCT ITS OWN HIGH CAPACITY LOOP FACILITIES TO OFFER
24		RETAIL SERVICE IN A BUILDING.
25		

There are two types of cost that a carrier would incur -- the costs of extending the loop 1 A. facility and the other costs of offering service (e.g., sales costs, and general and 2 administrative costs). I will describe the first category of costs below; the second 3 category is discussed by BellSouth witness Dr. Banerjee. 4

5

6

7

8

Q. WHAT COSTS ARE INCURRED FOR A COMPETITIVE CARRIER TO

EXTEND A LOOP FACILITY TO A PARTICULAR CUSTOMER LOCATION?

9 A. Costs for network extension consist of one-time capital expenditures as well as operating expenses incurred on a recurring basis. These costs are incurred at three points in the 10 11 network (see Exhibit AWG-1) – at the newly connected building, at the currently collocated wire center or building that the new location is being connected to, and at a 12 "node" along the fiber route itself. 13

14

15 Moving from the left of Exhibit AWG-1, the "Off Net Building" is the one that is not connected directly to the existing fiber network. It is sometimes referred to as a "spoke" 16 17 off the fiber-optic network. At that Off Net Building, one would find the equipment elements listed on the left hand side of Exhibit AGW-1. The Light Guide Cross-connect 18 ("LGX") allows the attachment of individual fiber optic strands (via fiber optic 19 "jumpers") to connectors that allow the fiber to be interfaced with other electronics such 20 as the multiplexers. The fiber optic "pipe" is then channelized by the multiplexer into 21 smaller DS1 or DS3 transmission paths (dependent on customer demand) via plug-in 22 electronic cards and other cross-connect panels. At the customer's premises, channel-23 24 bank equipment is utilized to convert the DS1 or DS3 pipes into individual channels (at DS0 level) via so-called D-4 channel bank equipment. The intra-building network cable 25

1		and termination ("INCT") provides the inside wiring required to access the entire
2		customer location. INCT is not always required to be purchased for various reasons, but I
3		have made the conservative assumption that the CLEC is required to purchase INCT in
4		100% of the buildings it serves.
5		
6		Between the Off Net Building and the node on the CLEC's existing fiber-optic network is
7		the fiber optic cable itself. Here, a CLEC would incur the (distance-sensitive) material
8		cost of the fiber-optic cable, as well as construction fees and other fees paid to use
9		another party's poles, ducts or conduits.
10		
11		At the node location on the CLEC's fiber optic network, the CLEC would incur costs for
12		the same types of equipment needed at the Off Net building (LGX bays, fiber jumpers,
13		etc.)
14		
15		The configuration of the network equipment required at the new and existing wire centers
16		to terminate the fiber and provide DS0/DS1/DS3 loops to end-use customers is illustrated
17		in Exhibit AWG-2. This diagram shows pictorially the relationship of the individual
18		"piece parts" described above.
19		
20	Q.	WHAT ARE THE COSTS FOR THE EQUIPMENT ELEMENTS LISTED?
21		
22	A.	Both the capital and operating costs for each piece of equipment is listed in Exhibit
23		AWG-3. These numbers reflect the fully installed costs of all equipment, including
24		material, labor, all overhead, and taxes. These costs are taken directly from the cost study
25		that BellSouth filed in the Commission's most recent UNE cost case, AC382, and which

underlie the UNE rates approved by this Commission. While CLECs will no doubt 1 contend that such costs may not reflect CLEC specific costs, any such contention is 2 misguided. UNE rates are intended to reflect the costs associated with deploying an 3 efficient network architecture. Moreover, in considering whether entry is economic in 4 the context of analyzing potential deployment for switching, the FCC notes that such an 5 6 analysis "must be based on the most efficient business model for entry rather than any particular carrier's business model." It stands to reason that any cost considerations 7 involved in the potential deployment analysis for loops and transport should focus on an 8 9 efficient network and an efficient business model.

10

11 Q. HOW DO THE COSTS THAT BELLSOUTH FILED WITH THE COMMISSION 12 ACCOUNT FOR RIGHTS OF WAY?

13

A. The costs filed with the Commission include what BellSouth pays for Right of Way 14 15 ("ROW") and other permitting fees both at the state and the municipality level. Specifically, these and other miscellaneous fees are accounted for: 1) in the in-plant 16 17 factor that is applied to the base material cost to determine the fully-loaded capital cost; 2) in the "Ad Valorem & Other Tax" factor that is used to determine the non-plant-18 19 specific operating expense. These factors include ROW, municipal license taxes, state privilege taxes, state self-insurer's tax, and taxes levied upon the assessed value of 20 21 property. 22

23 Q. HOW DO YOU DETERMINE THE QUANTITY OF MULTIPLEXERS AND 24 DS1/DS3 CARDS NEEDED?

1	A.	The quantities of network equipment needed scales with demand. We assume that one
2		DS1 circuit equivalent to be provided for every \$500 per month of retail revenue. This
3		factor was estimated based on the report "Art of War," J.P. Morgan, November 2003, and
4		its supporting spreadsheet. After determining the number of DS1 equivalents ("N")
5		needed, the requirement of DS1/DS3 plug-ins is calculated as follows:
6		If N \leq 28, number of DS1s = N, number of DS3s = 0
7		If N > 28, number of DS1s = max (28, N x $1/3$), rounded up to the next integer, number
8		of $DS3s = 2/3 \times N/28$, rounded up to the next integer
9		If more than 3 muldems (another term for a multiplexer) are needed, equipment is scaled
10		by adding another OC3 multiplexer, as shown in Exhibit AWG-2.
11		
12	II. H	IGH-CAPACITY TRANSPORT
13		
14	Q.	WHAT IS A "ROUTE?"
15		
16	A.	A route is defined in the FCC's rules as "a transmission path between one of an
17		incumbent LEC's wire centers or switches and another of the incumbent LEC's wire
18		centers or switches" within a LATA. Furthermore, "a route between two points (e.g.,
19		wire center or switch "a" and wire center or switch "z") may pass through one or more
20		intermediate wire centers or switches (e.g., wire center or switch "x"). Transmission
21		paths between identical end points (e.g., wire center or switch "a" and wire center or
22		switch "z") are the same 'route,' irrespective of whether they pass through the same
23		intermediate wire centers or switches, if any." 47 C.F.R. §51.319(e).
24		
		IS IT REASONABLE TO INFER THAT A CARRIER IS OPERATIONALLY

READY TO USE ITS FACILITIES TO PROVIDE DEDICATED TRANSPORT ALONG A "ROUTE" BETWEEN ANY PAIR OF INCUMBENT LEC WIRE CENTERS WHERE IT HAS OPERATIONAL COLLOCATION ARRANGEMENTS?

5

6 A. Yes. It is logical and reasonable to conclude that a carrier can route traffic between any 7 pair of wire centers within a LATA where it has operational collocation arrangements, i.e. that a carrier's network is fully interconnected. Although, for network and cost 8 9 efficiency reasons it is unlikely that a CLEC would have a *direct* link between every ILEC wire center where it is collocated (e.g., it may instead have a "hub and spoke" 10 layout where traffic is routed through the CLEC's point of presence), that fact is not 11 determinative under the FCC's definition of a "route," because that definition expressly 12 states that intermediate wire centers or interconnection points outside the ILECs' 13 facilities (e.g., collocation hotel, data center, CLEC point of presence) may be present on 14 15 the transmission path between two ILEC wire centers. For example, in response to discovery in Florida Docket No. 030852, AT&T explained its transport network as 16 17 "connect[ing], for example, our switch to ILEC office A and facilities that connect our switch to ILEC office B using portions of a fiber that passes near/through both A and B . . 18 19 ... (AT&T Response to Verizon's First Interrogatories, No. 1).

20

CLECs, especially CLECs that are also interexchange carriers, can use hub-and-spoke arrangements or fiber connections directly off of their existing fiber rings to connect central office collocations. The architecture is such that the connection can be made by connecting fiber from one ring to fiber from another ring to construct the route. This approach can also be used to connect end user locations to the network.

Q. HOW DO INDIRECT ROUTES THROUGH A SWITCH COMPARE WITH DIRECT ROUTES BETWEEN ILEC WIRE CENTERS IN TERMS OF RELIABILITY AND QUALITY OF SERVICE?

5

6 A. For all practical purpose, they are equivalent. Indirect routes with multiple intermediate 7 switches are used all the time in any voice or data network and the number of intermediate switches is typically higher for interLATA routes (especially for routes 8 9 across the country). CLECs typically use indirect routes to route traffic between two ILEC central offices even if they buy dedicated transport from the ILEC since their 10 logical architecture is still a hub and spoke with every circuit passing through a CLEC 11 switch. Finally, it is common for BellSouth to use intermediate switching equipment on 12 routes between its central offices, although this fact is transparent to CLECs buying 13 dedicated transport from BellSouth. 14

15

Q. IF A CARRIER HAS AN OCn TRANSPORT FACILITY TO A COLLOCATION ARRANGEMENT IN AN ILEC WIRE CENTER, IS THAT CARRIER OPERATIONALLY READY TO PROVIDE DS3 AND DS1 TRANSPORT TO THAT SPECIFIC WIRE CENTER?

20

A. Yes. As described above for loops, carriers typically deploy fiber-optic facilities that can operate at a range of capacities determined by the electronics attached to them. For example, when laying fiber it makes sense to deploy high-capacity, OCn facilities so that there will be enough bandwidth to handle all traffic on a given route and leave additional capacity available for growth. The carrier can then attach electronics to subdivide (or

"channelize") the available capacity, activating the amount of capacity and number of
channels needed along the route. The electronics used to do this channelization of OCn
facilities into DS1 or DS3 facilities are relatively inexpensive, are widely available, and
can be quickly installed whenever the carrier has demand for DS3 or DS1 transport
facilities. The fact that the capacity of the facility itself is at the OCn level is therefore
independent of the carrier's ability to provide a dedicated DS1 or DS3 transport route
over that facility.

8

9 Q. WHEN CARRIERS CONSTRUCT FIBER OPTIC TRANSMISSION SYSTEMS, 10 IS IT COMMON TO INCLUDE AN ALLOWANCE FOR SPARE (SOMETIMES 11 REFERRED TO AS "UNLIT") FIBER OPTIC STRANDS?

12

A. Yes, for network engineering reasons and based on the cost structure of fiber cables, it is 13 common to place additional spare fiber strands in anticipation of future needs. Since the 14 15 cost of deploying a fiber cable is mostly fixed (e.g., digging up the streets, attaching cable to poles, and deploying the fiber) and only slightly correlated with the number of fiber 16 17 strands in the cable, carriers almost always choose to deploy a considerable larger number of strands than what they need for their immediate transmission needs. In fact, 18 19 although generally four (4) fibers are enough to support OCn circuits that can provide enough capacity for any route (e.g., an OC192 has capacity for 192 DS3s, or 129,024 20 simultaneous voice conversation, and this capacity can be multiplied several times over 21 with the use of Dense Wave Division Multiplexing ("DWDM") technology), CLECs 22 typically deploy 144 fiber strands or more when extending a cable to large commercial 23 24 buildings or ILEC wire centers. Sizing cables in this manner is how BellSouth is able to provide dark fiber to CLECs on request – when carriers construct networks, no carrier 25

simply places facilities only for actual demand. Instead, demand for future needs are factored in such that an efficient carrier does not later incur additional construction costs.

3

4 Q. WHAT FACTORS INFLUENCE A CARRIER'S COSTS TO EXTEND THE 5 CARRIER'S NETWORK TO AN ADDITIONAL WIRE CENTER?

6

7 A. A competitive carrier's network is typically fully interconnected. That is, transport can 8 be provided between all of a carrier's collocated wire centers in a LATA. It follows that 9 to add a new wire center to its network, all a carrier has to do is extend its fiber from any location where it is currently present to the new wire center. This will allow it to connect 10 the new wire center with all its others in the LATA. To determine the costs of making 11 such an extension, one must first identify the nearest location, then determine what 12 expenses will be incurred in laying the new fiber and adding equipment to make the fiber 13 operationally ready to provide transport. 14

15

16 Q. HOW DO YOU DETERMINE THE COST TO EXTEND THE CARRIER'S 17 NETWORK TO AN ADDITIONAL WIRE CENTER?

18

A. Costs for network extension consist of one-time capital expenditures as well as operating
 expenses incurred on a recurring basis. These costs are incurred at three points in the
 network (see Exhibit AWG-4) – at the newly connected wire center, at the currently
 collocated wire center or building that the new location is being connected to, and along
 the fiber route itself.

24

As is shown starting on the left side of the diagram in Exhibit AWG-4, the network

equipment required at the new (the so-called "Off Net" central office) and existing 1 central office to terminate the fiber and provide DS1/DS3 facilities is depicted. Those 2 devices are functionally similar to those used in the context of providing high capacity 3 loops to a new customer location that I described earlier in this testimony. For the sake 4 of brevity, I will not repeat that discussion here. Exhibit AWG-5 shows the physical and 5 6 functional interaction between those devices. CLECs also have to pay BellSouth nonrecurring and recurring collocation charges at the new central office, which vary 7 based on the equipment deployed and the amount of space occupied. Additional costs are 8 9 incurred in constructing fiber cable to the new wire center. This cost is a function of the distance, and – depending on the geography – a combination of aerial, buried and 10 underground fiber may need to be deployed. There are additional pole and conduit costs 11 associated with aerial and underground fiber, respectively. 12 13 I would note that, to determine reasonable costs, certain expenses incurred when 14 15 connecting facilities to central offices and to customers buildings are not unique associated with a particular route. 16 17 18 WHAT ARE THE COSTS FOR THE EQUIPMENT ELEMENTS LISTED? 19 **Q**. 20 A. Both the capital and operating costs for each piece of equipment is listed in Exhibit 21 AWG-6. These numbers reflect the fully installed costs of all equipment, including 22 materials, labor, all overhead, and taxes. These costs are taken directly from the cost 23 24 study which BellSouth filed in the Commission's most recent UNE cost case, Docket No. AC382, and which underlie the UNE rates approved by this Commission. The costs are 25

those that an efficient provider could reasonably be expected to pay.

3 Q. HOW DO YOU DETERMINE THE QUANTITY OF MULTIPLEXERS AND 4 DS1/DS3 CARDS NEEDED?

6	A.	The quantities of network equipment needed scales with demand. The number of OC12
7		and OC48 multiplexers is determined by the number of corresponding circuits demanded.
8		The number of OC3 multiplexers is determined by adding the number of OC3 circuits
9		demanded and the OC3 multiplexers needed to handle the demand for DS1 and DS3
10		circuits. The requirement of DS1s and DS3s cards is calculated by adding the DS1/DS3
11		cards needed to handle demand for these circuits, and the DS1/DS3 cards needed for
12		100% utilization of OC3, 90% utilization of OC12, and 80% utilization of OC48
13		multiplexers, assuming equal share of DS1 and DS3 muldems.
14		
15	Q:	THE FCC'S HAS INCLUDED, AS PART OF ITS WHOLESALE TRANSPORT
16		RULE, A REQUIREMENT THAT CLECS ARE ABLE TO OBTAIN
17		REASONABLE ACCESS TO CROSS-CONNECTS. CAN YOU ADDRESS THIS?
18		
19	A.	The availability of cross-connects is discussed in my direct testimony in the Kentucky
20		Switching Docket No. 2003-00347. That testimony accurately answers this question.
21		
22	Q.	DOES THAT CONCLUDE YOUR TESTIMONY?

24 A. Yes.

COST ELEMENTS FOR NETWORK EXTENSION (HIGH CAPACITY LOOPS)

BellSouth Telecommunications, Inc. Kentucky Public Service Commission Docket Number 2003-00379 Exhibit AWG-1 Page 1 of 1

"Off Net" building

- LGX
- Fiber jumpers
- OC3 multiplexer(s) depending on demand (commons + hardwire)
- DS1/DS3 plug-ins
- DS1/DS3 cross connect panels
- D-4 channel bank with plug-ins
- Intrabuilding Network Cable and Termination (INCT)

Other costs include:

- COGS**
- SG&A

CLEC fiber extension (distance sensitive)

- Right-of-way fees
- Installed investment for aerial, buried, and underground fiber
- Associated pole and conduit costs

CLEC existing node

- LGX
- Fiber jumpers
- OC3 multiplexer(s) depending on demand (commons + hardwire)
- DS1/DS3 plug-ins
- DS1/DS3 cross connect panels

*Includes Ad Valorem and other taxes

**Includes all non-loop costs and some depreciation for equipment in other parts of the network, e.g., switch for local voice

Notes

- Same equipment is installed at both ends, except the channel bank which is located only at the customer location
- Network equipment scales with demand, as follows
 - Number of DS1 circuits are forecast based on potential revenue
 - For N DS1 circuits required, the number of DS1s and DS3s are calculated as follows
 - If N <= 28, number of DS1s = N, number of DS3s = 0
 - If N > 28, number of DS1s = max (28, N x 1/3), rounded up to the next integer, number of DS3s = 2/3 x N/28, rounded up to the next integer
- Equipment is scaled by adding another OC3 MUX if more than 3 muldems are needed

Cost elements for network extension (High capacity loops)

		Ye	ar 0	Year 1+
_	<u> </u>	Cape	ex (\$)	Opex (\$)
NetworkCosts (at customer premise)				
LGX			1,626.33	31.25
Fiber jumpers			76.20	1.46
OC3 multiplexer (commons + hardwire)			11,669.65	224.24
DS1 plug-in			1,426.44	27.41
DS3 plug-in			2,472.74	47.52
DS1 cross connect panel			2,602.86	50.02
DS3 cross connect panel			10,413.28	200.10
D4 channel bank (commons + hardwire)			7,733.36	148.60
Channel bank plug-ins (2 Data, 2 ISDN, 12 VG)			829.79	15.95
DS0 INCT first / additional	68.35	/	22.36	30.84
DS1 INCT first / additional	76.49	/	30.51	59.76
Network Costs (at node)				
LGX			542.11	10.42
Fiber jumpers			76.20	1.46
OC3 multiplexer (commons + hardwire)			11,669.65	224.24
DS1 plug-in			1,426.44	27.41
DS3 plug-in			2,472.74	47.52
DS1 cross connect panel			2,602.86	50.02
DS3 cross connect panel			10,413.28	200.10
Fiber Extension Costs (per foot for 100-strand fiber)				
Average # of strands in fiber cable	100			
Total installed investment			5.35	0.05
Pole factor			0.84	0.02
Conduit factor			1.95	0.01
Total per foot costs			8.1442	0.0818

BellSouth Telecommunications, Inc. Kentucky Public Service Commission Docket Number 2003-00379 Exhibit AWG-3 Page 1 of 1

ASSUMPTIONS:

- Number of fiber strands 100
- Aerial Fiber 49.7% 11.6%
- Buried fiber
- Underground fiber 38.7%

COST ELEMENTS FOR NETWORK EXTENSION (DEDICATED TRANSPORT)

BellSouth Telecommunications, Inc. Kentucky Public Service Commission Docket Number 2003-00379 Exhibit AWG-4 Page 1 of 1

"Off Net"** Central Office

- LGX
- Fiber jumpers
- OC3/OC12/OC48 multiplexer(s) depending on demand (commons + hardwire)
- DS1/DS3 plug-ins
- DS1/DS3 cross connect panels

Other costs include:

Collocation expense

CLEC fiber extension (distance sensitive)

- Right-of-way fees
- Installed investment for aerial, buried, and underground fiber
- Associated pole and conduit costs

Central office*** with CLEC fiber and collocation

- LGX
- Fiber jumpers
- OC3/OC12/OC48 multiplexer(s) depending on demand (commons + hardwire)
- DS1/DS3 plug-ins
- DS1/DS3 cross connect panels

^{*}Includes Ad Valorem and other taxes

^{**}BLS central office where CLEC has not built fiber

^{***}Fiber may pass through an existing node before reaching here

NETWORK ARCHITECTURE/EQUIPMENT NEEDED FOR Kentucky Public Service Commission Docket Number 2003-00379 FIBER EXTENSION (DEDICATED TRANSPORT) Exhibit AWG-5 Page 1 of 1

Notes

- · Same equipment is installed at both ends
- Network equipment scales with demand, as follows:
 - Number of OC12 and OC48 multiplexers is determined by the number of corresponding circuits demanded
 - Number of OC3 multiplexers is determined by adding the number of OC3 circuits demanded and the OC3 multiplexers needed to handle the demand for DS1 and DS3 circuits.
 - The requirement of DS1s and DS3s cards is calculated by adding:
 - DS1 and DS3 cards needed to handle demand for DS1 and DS3 circuits
 - DS1 and DS3 cards needed for 100% utilization of OC3, 90% utilization of OC12, and 80% utilization of OC48 multiplexers, assuming equal share of DS1 and DS3 muldems

Cost elements for network extension (Dedicated Transport)

	Year 0	Year 1+
	CapEx (\$)	OpEx (\$)
NetworkCosts (at new CO)		
LGX	\$2,878.14	\$62.50
Fiber jumpers	\$134.85	\$2.93
OC3 multiplexer (commons + hardwire)	\$13,426.41	\$291.54
OC12 multiplexer	\$33,666.47	
OC48 multiplexer	\$92,998.90	\$2,019.38
DS1 plug-in	\$1,565.48	
DS3 plug-in	\$2,713.76	\$58.93
DS1 cross connect panel	\$4,606.32	\$100.02
DS3 cross connect panel	\$18,428.53	\$400.16
Collocation expense	\$9,542.26	\$29,904.14
Network Costs (at CO currently in cloud)		
LGX	\$959.38	\$20.83
Fiber jumpers	\$134.85	\$2.93
OC3 multiplexer (commons + hardwire)	\$13,426.41	\$291.54
OC12 multiplexer	\$33,666.47	\$731.03
OC48 multiplexer	\$92,998.90	\$2,019.38
DS1 plug-in	\$1,565.48	\$33.99
DS3 plug-in	\$2,713.76	\$58.93
DS1 cross connect panel	\$4,606.32	\$100.02
DS3 cross connect panel	\$18,428.53	\$400.16
Fiber Extension Costs (per foot for 100-strand fiber)		
Average # of strands in fiber cable	100	
Total installed investment	\$5.35	\$0.05
Pole factor	\$0.84	
Conduit factor	\$1.95	
Total per foot costs	\$8.1442	\$0.0818

BellSouth Telecommunications, Inc. **Kentucky Public Service Commission** Docket Number 2003-00379 Exhibit AWG-6 Page 1 of 1

ASSUMPTIONS:

- Number of fiber strands 100 Aerial Fiber
 - 49.7%
- Buried fiber 11.6%
- Underground fiber 38.7%