KENTUCKY SEEM ADMINISTRATIVE PLAN

Kentucky Plan
Version 3.064.00

Effective Date: July 3, 2010-TBD

Note: This SEEM Administrative Plan version is issued to reflect the OSS architecture changes implemented on July 3, 2010.

at\&t

Contents

Page

Administrative Plan 1
1 - Scope 1
2 - Reporting 1
3 - Review of Measurements and Enforcement Mechanisms. 21
4 - Enforcement Mechanisms. 2
4.1 -_ Definitions 2
4.2 - - Application 43
4.3 - $4 \underline{3}$
Methodology
4.4 __ Payment of Tier-1 and Tier-2 86
Amounts
4.5 - - Limitations of $9 \underline{7}$
Liability
4.6 - Change of 119
Law.4.7-Affiliate Reporting11
4.8-7 - Enforcement Mechanism 1210
Cap4.9-8-1210
Audits

\qquad
4.10-9 - Dispute 1310
Resolution
4.1110 - Regional and State 1311
Coefficients...................
Appendix A: Fee Schedule 1412
Table 1: Fee Schedule for Tier--1 Per Transaction Fee Determination 1412
Fable 2: Tier 2 Per Transaction Fee Determination 15
Appendix B: SEEM Submetrics 1613
B. 1 - Tier--1 1613
\qquad
..
B. 2 - Tier 2 Submetrics 21
Appendix C: Statistical Properties and Definitions 2618
C. 1 - Necessary Properties for a Test Methodology 2618
C. 2 - Testing Methodology - The Truncated Z 2820
Appendix D: Statistical Formulas and Technical Descriptions 3123
D. 1 - Notation and Exact Testing Distributions 3123
D. 2 - Calculating the Truncated Z 3426
Appendix E: BSTAT\&T SEEM Remedy Calculation 4537
Procedures 4537
Procedure
E. 2 - Tier-2 Calculation for Retail Analogs 48
E. 32 - Tier -1 Calculation For Benchmarks 5140
E. 43 - Tier-1 Calculation For Benchmarks (In The Form Of A 5241
Target))............................
E.5-Tier 2 Calculations For Benchmarks 53
E. 64 - Regional and State 5342
Coefficients
..................................
Appendix F: BellSouth'sAT\&T's Policy on Reposting of Performance Data and Recalculation of SEEM Payments 5644

Administrative Plan

1 Scope

\qquad This Administrative Plan (Plan) includes Service Quality Measurements (SQM) with corresponding Self Effectuating Enforcement Mechanisms (SEEM) to be implemented by AT\&T pursuant to Order No. TBD issued on TBD by the Kentucky Public Service Commission (the "Commission") in Docket No. XXXXXXXXXX, and as confirmed by Consummating Order No. TBD, issued by the Commission on TBD.
1.1 The Georgia Public Service Commission issued its Order Granting Joint Motion to Approve New Performance Measurement Plan on July 18, 2005. This Administrative Plan (Plan) includes the same-Service Quality Measurements with corresponding Self Effectuating Enforcement Mechanisms as approved by the Georgia Commission. This Plan is to be implemented by BellSouth pursuant to orders issued by the Kentucky Public Service Commission (the "Commission") in Docket No. 2004-00391 (dated June 20, 2005) and in Docket No. 2001-00105 (dated May 11, 2004) instructing BellSouth to continue with the Georgia performance plan, along with any future modifications.
1.2 Upon the Effective Date of this Plan, all appendices referred to in this Plan will be located on the BellSouth Performance Measurement ReportsAT\&T performance measurement website at: https://pmap.bellsouthwholesale.att.com.

2 Reporting

2.1 In providing services pursuant to the Interconnection Agreements between BellSouthAT\&T and each CLEC, BellSouthAT\&T will report its performance to each CLEC in accordance with BellSouth's SQAAsAT\&T's SQM and pay remedies in accordance with the applicable SEEM, which are posted on the Performance Measurement ReportsAT\&T performance measurement website.
2.2 BellSouth will make performance reports available to each CLEC on a monthly basis. The reports will contain information collected in each performance eategory and will be available to each CLEC via the Performance Measurements Reports website. BellSouth will also provide electronic access to the raw data underlying the SQMs.
2.3 Final validated SQM reports will be posted no later than the last day of the month following the data month in which the activity is incurred, or the first business day thereafter. Final validated SQM reports not posted by this time will be considered tate.
2.42 Final validated SEEM reports will be posted on the Performance Measurements ReportsAT\&T performance measurement website on the 15th of the month, following the posting of final validated SQM reports for that data month or the first business day
thereafter.
2.5 BellSouth shall pay penalties to the Commission, in the aggregate, for all late SQM and SEEM reports in the amount of $\$ 2000$ per day. Such payment shall be made to the-Commission or its designee within fifteen (15) calendar days of the end of the reporting month in which the late publication of the report occurs.
2.6 BellSouth shall pay penalties to the Commission, in the aggregate, for all reposted SQM and SEEM reports in the amount of $\$ 400$ per day. The circumstances which may necessitate a reposting of SQM reports are detailed in Appendix F, Reposting of Performance Data and Recalculation of SEEM Payments. Such payments shall be made to the Commision or its designee within fifteen (15) calendar days of the final publication date of the report or the report revision date.
2.7 Tier 11 SEEMS payments and Administrative fines and penalties for late and reposted reports will be sent to the Commission. Checks and the accompanying transmittal letter will be postmarked on or before the $15^{\text {th }}$-of the month or the first business day thereafter, when the $15^{\text {th }}$ falls on a non-business day.
2.83 BellSouthAT\&T shall retain the performance measurement raw data files for a period of 18 months and further retain the monthly reports produced in PMAP-for a period of three years.
2.94 BellSouthAT\&T will provide documentation of late and reposted SQM and SEEM Rreports during the reporting month that the data is posted to the website. These notations may be viewed on the Performance Measurements website from the PMAP home page on the Current Month Updates link.

3 Review of Measurements and Enforcement Mechanisms

3.1 BellSouth will participate in annual review cycles. A collaborative work group, which will include BellSouth, interested CLECs and the Commission will review the Performance Assessment Plan for additions, deletions or other modifications-Review of Measurements

A workshop and/or conference shall be organized and held periodically or at the request of either party for the purpose of evaluating the existing remedies and determining whether any remedies should be deleted, modified or any new remedies added. Provided however, no new remedies shall be added which are already governed by existing remedies. A CLEC may actively participate in this periodic workshop with AT\&T, other CLECs, and state regulatory authority representatives.

Administrative Changes
AT\&T may make administrative changes that do not substantively change the SEEM Plan. Such changes are excluded from the periodic review process noted above. AT\&T will provide written notice to the Commission regarding all administrative changes. An administrative change is one that corrects typographical, spelling, grammatical, or computational errors, updates website addresses and incorporates modifications to architecture implemented in an OSS release following the approved Change Management process. Administrative changes will not change the intent or the plan language of the document.

3.2 In the event a dispute arises regarding the ordered modification or amendment to the SQMs or SEEMs, the parties will refer the dispute to the Kentucky Public Service Commission.

4 Enforcement Mechanisms

4.1 Definitions

4.1.1 Enforcement Measurement Elements - performance measurements identified as SEEM measurements within the SEEM Plan.
4.1.2 Enforcement Measurement Benchmark compliance - level of performance established by the Commission used to evaluate the performance of BellSouthAT\&T for CLECs where no analogous retail process, product or service is feasible.
4.1.3 Enforcement Measurement Retail Analog compliance - comparing performance levels provided to BellSouthAT\&T retail customers with performance levels provided by BellSouthAT\&T to the CLEC customer for measures where retail analogs apply.
4.1.4 Test Statistic and Balancing Critical Value - means by which enforcement will be determined using statistically valid equations-statistical methods. The Test Statistic and Balancing Critical Value are set forth in Appendices C, D_{2} and E of this Plan.
4.1.5 Cell - grouping of transactions at which like-to-like comparisons are made. For example, all BellSouthAT\&T retail-(POTS) services, for residential customers, requiring a dispatch in a particular wire center, at a particular point in time will be compared directly to CLEC resold services for residential customers, requiring a dispatch, in the same wire center, at a similar point in time. _When determining compliance, these cells can have a positive or negative Test Statistic. See Appendices C, D and E of this Plan.
4.1.6 Delta, Psi-and_Epsilon, and Lambda - measures of the meaningful difference between BellSouthAT\&T performance and CLEC performance. For individual CLECs, the Delta (δ) value shall be 0.5 and for the CLEC aggregate the Delta value shall be 0.35 . The value for Psi (Ψ) shall be 3 for individual CLECs and 2 for the CLEC aggregate. The value for Epsilon $\underline{\varepsilon}$ will be 2.5 for both individual CLECs and the CLEC aggregate. The value of Lambda (λ) shall be 1 for both individual CLECs and the CLEC aggregate.
4.1.7 Tier-1 Enforcement Mechanisms - self-executing fees paid directly to each CLEC when BellSouthAT\&T delivers non-compliant performance of any one of the Tier-1 Enforcement Measurement Elements for any month as calculated by BellSouth.AT\&T.
4.1.8 Tier-2 Enforcement Mechanisms - fees paid directly to the Kentucky Public Service Commission of its designee. Tior 2 Enforcement Mechanisms are triggered by three consecutive monthly failures at the submetric level in which BellSouth performance is out of compliance of does not meet the benchmarks for the aggregate of all CLEC data.
4.1.9 \quad Affiliate - person that (directly or indirectly) owns or controls, is owned or controlled by, or is under common ownership or control with, another person. For purposes of this paragraph, the term "own" means to own an equity interest (or the equivalent thereof) of more than 10 Percent.
4.1.109 Affected Volume - that quantity of the total impacted CLEC volume or CLEC Aggregate volume for which remedies will be paid.
4.1.111 Cell Ranking - placing cells in rank order from highest to lowest, where the cell with the most negative z-scoreZ-Score is ranked highest and the cell with the least negative z-scoreZ-Score is ranked lowest.

Cell Correction - method for determining the quantity of transactions to be remedied, referred to as "affected volume," wherein the cell-level modified z-scoreZ-Score for the highest ranked cell is first changed to zero ("corrected") and then the next highest, progressively, until the overall level truncated z-scoreZ-Score is equal to the Balancing Critical Value or zero as required by the Fee-Schedule-Remedy Calculation Procedures. Either all of the transactions in a corrected cells are remedied or a prorated share (determined through interpolation) areis remedied.

4.2 Application

4.2.1 The application of the Tier-1-and Tier-2 Enforcement Mechanisms does not foreclose other legal and regulatory claims and remedies available to each CLEC.
4.2.2 Payment of any Tier-1-or Tier-2 Enforcement Mechanisms shall not be considered as an admission against interest or an admission of liability or culpability in any legal, regulatory or other proceeding relating to BellSouth'sAT\&T's performance and the payment of any Tier-1 or Tier-2 Enforcement Mechanisms shall not be used as evidence that BellSouthAT\&T has not complied with or has violated any state or federal law or regulation.

4.3 Methodology

4.3.1 Tier-1 Enforcement Mechanisms will be triggered by BellSouth'sAT\&T's failure to achieve applicable Enforcement Measurement Compliance or Enforcement Measurement Benchmarks for each CLEC for the State of Kentucky for a given Enforcement Measurement Element in a given month. Enforcement Measurement Compliance is based upon a Test Statistic and Balancing Critical Value calculated by BellSouthAT\&T utilizing BellSouthAT\&T generated data. _The method of calculation is set forth in Appendices C, D_{2} and E of this Plan.
4.3.1.1 All OCNs and ACNAs for individual CLECs will be consolidated for purposes of calculating transaction-based failures.
4.3.1.2 When a measurement has five or more transactions for the CLEC, calculations will be performed to determine remedies according to the methodology described in the remainder of this document.
4.3.1.3 Tier-1 Enforcement Mechanisms apply on a per transaction basis and will escalate based upon the number of consecutive months that fail for each Enforcement Mechanism Element for which BellSouthAT\&T has reported non-compliance. Failures beyond Month 6 will be subject to Month 6 fees. All transactions for an individual CLEC will be consolidated for purposes of calculating Tier-1 Enforcement Mechanisms.
4.3.1.4 For submetrics that are assessed based on Enforcement Measurement Retail Analog compliance criteria, the fee paid for a particular submetric that failed at the Tier-_ 1 level will be differentiated based on two criteria. First, the Tier-1 fee paid will be based on whether the same submetric that failed at the Tier--1 level (CLEC-specific) also failed at the CLEC aggregate level in the same month. Second, the Tier--1 fee paid will be based on whether the transactions in the cells to be remedied correct the overall truncated $z Z=$-score-Score from the region below the Balancing Critical Value ("BCV") to the BCV or from the BCV to zero. Depending on which of these criteria apply, a different
multiplier will be applied to the Fee Schedule (shown in Appendix A, Table 1: Fee Schedule for Tier--1 Per Transaction Fee Determination) to determine the amount of the Tier-_1 payments. The chart below shows the applicable multipliers:

CLEC Aggregate Performance	Per Transaction Fee Below BCV	Per Transaction Fee Between BCV and 0
Passes	$(\text { Fee })^{\star}(3 / 2)$	$(\text { Fee })^{*}(1 / 3)$
Fails	$(\text { Fee })^{\star}(3)$	$(\text { Fee })^{*}(2 / 3)$

No multiplier applies for the Billing Invoice Accuracy measure.
-4.3.1.5 For submetrics that are assessed based on- Enforcement Measurement Benchmark compliance criteria the fee paid for a particular submetric that failed at the Tier-_ 1 level will be differentiated based on whether the same submetric that failed at the Tier--1 level (CLEC-specific) also failed at the CLEC aggregate level in the same month. _A different multiplier will be applied to the Fee Schedule (shown in Appendix A, Table 1: Fee Schedule for Tier-_1 Per Transaction Fee Determination) to determine the amount of the Tier-1 payments. The chart below shows the applicable multipliers:

CLEC Aggregate Performance	Per Transaction Fee
Passes	$(\text { Fee })^{\star}(3 / 2)$
Fails	$(\text { Fee })^{*}(5 / 2)$ for Ordering and Flow Through $(\text { Fee })^{*}(3)$ for all other benchmark measures

Tier-2 Enforcement Mechanisms will be triggered by BellSouth's failure to achieve applicable Enforcement Measurement Compliance or Enforcement Measurement Benchmarks for the State of Kentucky for given Enforcement Measurement Elements for three consecutive months. The method of calculation is set forth in Appendices C and D of this Plan.
4.3.2.1 Tier-2 Enforcement Mechanisms apply, for an aggregate of all CLEC data generated by BellSouth, on a per transaction basis for each Enforcement Mechanism Element for which BellSouth has reported non-compliance.
4.3.2.2 The fee paid for a particular submetric that failed
_4.3.32 The Market Penetration Adjustments will be applied based on the following provisions to enhance competition for nascent products. In order to ensure parity and benchmark performance where CLECs order low volumes of advanced and nascent services, BellSouthAT\&T will make additional Tier-_1 and Tier 2 payments where performance standards for the following measures are not met, if the measurement applies to the nascent service.

- Percent Missed Installation Appointments
- Average Completion Interval
- Missed Repair Appointments
- Maintenance Average Duration
- Average Response Time for Loop Make-up-Response Time-Electronic Information
4.3.32.1 These additional payments will only apply when there are more than 10 and less than 100 average units in service statewide for the preceding three-month period. _The additional payments in the form of a market penetration adjustment will be made if BellSouthAT\&T fails to provide parity for the above measurements as determined by the use of the Truncated Z- test and the balancing critical value or fails to meet the established benchmark.
4.3.32.2 BellSouthAT\&T shall calculate the new Tier-_1-and Tier 2 payments, which include the market penetration adjustment by applying the normal method of calculating affected volumes as ordered by the Commission and trebling the normal Tier-_1 and Tier 2remedy.
4.3.2.3- If, for the three months of data, there were 100 observations or 3 more on average for the sub-metric, then no additional payments under this market penetration adjustment provision will be made. Further, market penetration adjustments shall no longer apply if 24 months have elapsed since the first unit of the nascent service was installed.
4.3.32.4 CLECs may file a petition with the Commission in order to add a service to the list of services for which the market penetration adjustment may apply.
4.3.32.5 Any payments made under this market penetration adjustment provision are subject to the Absolute Cap set by the Commission.
4.3.43 For Tier--1-and Tier 2 evaluations, the retail analog or benchmark areis the same as for the SQM. See the SQM for SEEM retail analogs and benchmarks.

4.4 Payment of Tier-1 and Tier 2Amounts

4.4.1 If BellSouthAT\&T performance triggers an obligation to pay Tier-1 Enforcement Mechanisms to a CLEC-or an obligation to remit Tier-2 Enforeement Mechanisms to the Commission or its designee, BellSouth, AT\&T shall make payment in the required amount on the day upon which the final validated SEEM reports are posted on the Performance Measurements ReportsAT\&T website as set forth in Section 2.4-2 above.
4.4.2 For each day after the due date that BellSouth fails to payAT\&T pays a CLEC less than the required amount, BellSouthTier-1 remedy, AT\&T will pay the CLEC 6\% simple interest per annum-on the difference between the required amount and the amount previously paid. The underpayment and interest will be paid to the CLEC in the next month's payment cycle.
4.4.3 For each day after the due date that BellSouth fails to pay the Tier-2 Enforcement Mechanisms, BellSouth will pay the Commission an additional $\$ 1,000$ per day.
4.4.43 If a CLEC disputes the amount paid -for Tier-1 Enforcement Mechanisms, the CLEC shall submit a written claim to BellSouthAT\&T within sixty (60) days after the payment date. BellSouthAT\&T shall investigate all claims and provide the CLEC written findings within thirty (30) days after receipt of the claim. If BellSouthAT\&T determines the CLEC is owed additional amounts, BellSouthAT\&T shall pay the CLEC such additional amounts within thirty (30) days after its findings along with 6% simple interest per annum.
4.4.5 For Tier-2 Enforcement Mechanisms, if the Commission requests clarification of an amount paid, a written claim shall be submitted to BellSouth within sixty (60) days after the payment date. BellSouth shall investigate all claims and provide the Commission written findings within thirty (30) days after receipt of the claim. If BellSouth determines the Commission is owed additional amounts, BellSouth shall pay such additional amounts within thirty (30) days after its findings along with 6% simple interest per annum.
4.4.64 Any adjustments for underpayment or overpayment of calculated Tier 1Tier-1 and Tier 2 remedies will be made consistent with the terms of BellSouth's AT\&T's Policy On Reposting Of Performance Data and Recalculation of SEEM Payments, as set forth in Appendix F of this document. If any
circumstance necessitating remedy adjustments should occur that is not specifically addressed in the Reposting Policy, such adjustments will be made consistent with the terms defined in Paragraph 6-7 of the Reposting Policy. ("SEEM payments will be subject to recalculations for a maximum of three months in arrears...") unless the Kentucky Public Service Commission orders otherwise.
4.4.75 Any adjustments for underpayment or overpayment will be made in the next month's payment cycle after the recalculation is made. _The final current month PARIS-reports will reflect the final paid dollars, including adjustments for prior months where applicable. Questions regarding the adjustments should be made in accordance with the normal process used to address CLEC questions related to SEEM payments.

4.4.5.1 If a SEEM overpayment is made to a CLEC, and AT\&T's SEEM liability calculated and payable to that CLEC in the next month's payment cycle is insufficient to offset the amount of overpayment, then within 30 days of AT\&T's request, the CLEC shall repay the amount necessary to satisfy the remaining SEEM overpayment balance. If the CLEC is unable to repay the overpayment at that time, the CLEC may contact AT\&T for payment arrangements.

4.4.86 Where there is a SEEM adjustment, in addition to the submetric, data month(s), and adjustment amount, BellSouthAT\&T will include an adjustment code on the CLEC specific Tier--1 or Tier 2 PARIS-reports on the PMAPAT\&T performance measurement website. Then, on a separate document under the Exhibits link on the BellSouth PMAPAT\&T performance measurement website, this code will be cross-referenced with a brief narrative description of the adjustment. These codes and descriptions will be applicable to all Sstates where an adjustment was applied. If there are multiple adjustment codes, the code explanation document under the Exhibits linkcan be accessed on the AT\&T performance measurement website that will contain all of the codes and the narrative descriptions for each code. An explanation of the cause of the adjustment and the data months impacted by the adjustment will be included in the narrative.

4.5 Limitations of Liability

4.5.1 BellSouthAT\&T will not be obligated to pay Tier-1-or Tier-2 Enforcement Mechanisms for non-compliance with a performance measure if such noncompliance results from a CLEC's acts or omissions that cause failed or missed performance measures. These acts or omissions include but are not limited to, accumulation and submission of orders at unreasonable quantities or times, failure to follow publicly available procedures, or failure to submit
accurate orders or inquiries. BellSouthAT\&T shall provide each CLEC and the Commission with reasonable notice of, and supporting documentation for, such acts or omissions. Each CLEC shall have 10 business days from the filing of such Notice to advise BellSouthAT\&T and the Commission in writing of its intent to challenge, through the dispute resolution provisions of this plan, the claims made by BellSouth. BellSouthAT\&T. AT\&T shall not be obligated to pay any amounts subject to such disputes until the dispute is resolved.
4.5.2 BellSouthAT\&T shall not be obligated to pay Tier-1 or Tier-2 Enforcement Mechanisms (SEEM payments) for non-compliance with a performance measurement if such non-compliance was the result of any event that performance under this SQM/SEEM Plan isForce Majeure Event that either directly or indirectly prevented, restricted, or interfered with performance as measured by the SQM/SEEM Plan. Such Force Majeure Events include non-compliance caused by reason of fire, flood, earthquake or like acts of God, wars, revolution, civil commotion, explosion, acts of public enemy, embargo, acts of the government in its sovereign capacity, labor difficulties, including without limitation, strikes, slowdowns, picketing, or boycotts, or any other circumstances beyond the reasonable control and without the fault or negligence of BellSouth. BellSouthAT\&T. AT\&T, upon giving prompt notice to the Commission and CLECs as provided below, shall be excused from such performance on a day-to-day basis to the extent of such prevention, restriction, or interference; provided, however, that BellSouthAT\&T shall use diligent efforts to avoid or remove such causes of non-performance.
4.5.2.1 To invoke the application of Section 4.5.2 (Force Majeure Event), BellSouthAT\&T will provide written notice to the Commission and post notification of such filing on AT\&T's website wherein BellSouthAT\&T will identify the Force Majeure Event, the affected measures, and, if applicable, the impacted areaswire centers, including affected NPAs and NXXs.
4.5.2.2 No later than ten (10) business days after BellSouthAT\&T provides written notice in accordance with Section 4.5.2.1 affected partiesCLECs must file written comments with the Commission to the extent theysuch CLECs have objections or concerns regarding the application of Section 4.5.2. CLECs will be required to show that the relief is not reasonable under the circumstances.
4.5.2.3 BellSouth'sAT\&T's written notice of the applicability of Section 4.5.2 wouldshall be presumptively valid and deemed approved by the Commission effective thirty (30) calendar days after

BellSouthAT\&T provides notice in accordance with Section 4.5.2.1. The Commission may require BellSouthAT\&T to provide a true-up of SEEM fees to affected earriersCLECs if a Force Majeure Event declaration (or some portion thereof) is found to be invalid by the Commission after it has taken effect.
4.5.2.4 During the pendency of a Force Majeure Event, BellSouthAT\&T shall provide-file with the Commission with-periodic updates of its restoration/recovery progress and efforts as agreed upon between the Commission Staff and BellSouth.AT\&T. The Commission Staff will consider reasonable requests from affected carriers on such updates' contents and frequency, including the need for weekly progress update reports. Additionally, for Force Majeure events directly impacting a geographic area of the network infrastructure, AT\&T will post to the AT\&T website (https://clec.att.com/clec/shell.cfm?section=2535) periodic updates of its restoration/recovery progress and efforts. AT\&T will post at a minimum for the area where Force Majeure has been declared where applicable; the identity of each wire center and associated NPA/NXXs and the wire centers' color coded Area Dispatch Status report; the total number of AT\&T pending service orders; the total number of CLEC pending service orders; the total number of AT\&T pending trouble reports; and the total number of CLEC pending trouble reports.
4.5.2.5 The Force Majeure claim will be presumptively valid for a period of sixty (60) calendar days. After sixty (60) calendar days have elapsed, AT\&T shall resume compliance with the Enforcement Mechanisms or file for an extension of the relief period. To the extent CLECs have objections or concerns regarding the extension, CLECs must file written comments with the Commission within ten (10) business days from the request of the extension. CLECs will be required to show that the extended period was not reasonable under the circumstances. AT\&T's request for extension shall be presumptively valid and deemed approved by the Commission effective thirty (30) calendar days after AT\&T provides notice in accordance with Section 4.5.2.1. The Commission may require AT\&T to provide a true-up of SEEM payments to affected CLECs if a Force Majeure Event (or some portion thereof) is found to be invalid by the Commission after it has taken effect.
4.5.3 In addition to these specific limitations of liability, BellSouthAT\&T may petition the Commission to consider a waiverrelief based upon other
circumstances.

4.6 Change of Law

4.6.1 Upon a particular Commission's issuance of an Order pertaining to Performance Measurements or Remedy Plans in a proceeding expressly applicable to all CLECs, BellSouthAT\&T shall implement such performance measures and remedy plans covering its performance for the CLECs, as well as any changes to those plans ordered by the Commission, on the date specified by the Commission. If a change of law occurs which may relieve BellSouth's provisioning of a UNE or UNE combination, BellSouth shall Petitionchange AT\&T's obligations, parties may petition the Commission within 30 days if it seeks -to cease reporting data or paying remediesseek changes to the SQM and SEEM plans in accordance with the such change of law._ Performance Measurements and remedy plans that have been ordered by the Commission can currently be accessed via the Internet at -AT\&T performance measurement website.http://pmap.bellsouth.com. _Should there be any difference between the performance measure and remedy plans on BellSouth'sAT\&T's website and the plans the Commission has approved as filed in compliance with its orders, the Commission-approved compliance plan will supersede as of its effective date.

4.7 Affiliate-Reporting

4.7.1 BellSouth shall provide monthly results for each metric for each BellSouth CLEC affiliate. Upon request, the Kentucky Public Service Commission shall be provided the number of transactions of observations for BellSouth CLEG affiliates. Further, BellSouth shall inform the Commission of any changes regarding non-CLEC affiliates' use of its OSS databases, systems, and interfaces.

4.87 Enforcement Mechanism Cap

4.87.1 BellSouth'sAT\&T's total liability for the payment of Tier-1 and Tier-2 Enforcement Mechanisms shall be collectively and absolutely capped at 36\% of net revenues in Kentucky, based upon the most recently reported ARMIS data.
4.87.2 If projected payments exceed the state cap, a proportional payment will be made to the respective parties.
4.87.3 If BellSouth'sAT\&T's payment of Tier-1 and Tier-2 Enforcement Mechanisms would have exceeded the cap referenced in this plan, a CLEC may commence a proceeding with the Commission to demonstrate why BellSouthAT\&T should pay any amount in excess of the cap. _The CLEC shall have the burden of proof to demonstrate why, under the circumstances, BellSouthAT\&T should have additional liability.

4.98 Audits

4.98. 1 BellSouthAT\&T currently provides CLECs with certain audit rights as a part of their individual interconnection agreements. If requestedordered by athe Public Service Commission, BellSouthAT\&T will agree to undergo a SEEM audit.-The Unless otherwise agreed between AT\&T and the Public Service Commission, the audit should be conducted by an independent third party auditor. The results of audits will be made available to all the parties subject to proper safeguards to protect proprietary information. Audits will be conducted under the following specifications:
4.98.1.1 The cost of one audit per version of the SEEM plan shall be borne by BellSouth.AT\&T.
4.98.1.2 Should an independent third party auditor be required, it shall be selected by BellSouthAT\&T and the PSC.
4.98.1.3 BellSouthAT\&T and the PSC shall jointly determine the scope of the audit.
4.98.1.4 The PSC may request input regarding selection of the auditor from interested parties.
4.98. 2 These audits are intended to provide the basis for the PSCs and CLECs to determine that SEEM produces accurate data that reflects each State's Order for performance measurements.

4.109 Dispute Resolution

4.109.1 Notwithstanding any other provision of the Interconnection Agreement between BellSouthAT\&T and each CLEC, if a any-dispute arises regarding BellSouth'sAT\&T's performance or obligations pursuant to this Plan, BellSouthAT\&T and the CLEC shall negotiate in good faith for a period of thirty (30) days to resolve the dispute. If at the conclusion of the 30 day period, BellSouthAT\&T and the CLEC are unable to reach a resolution, then the dispute shall be resolved by the Commission.

4.1110 Regional and State-Coefficients

Some metrics are calculated for the entire BellSouthAT\&T Southeast region, rather than by state. Where these metrics are a Tier-_1 SEEM submetric, a regional coefficient is calculated to determine the amount of the penaltyremedy for the CLEC in each state. For example, the Acknowledgement Completeness Measurement can be measured for an individual CLEC, but only at the regional level. In several states it is also a Tier--1 SEEM submetric. Thus, if there is a failure in this measurement for a CLEC, it is necessary to determine the amount of penaltyremedy for the CLEC in each state. A Regional Coefficient is used to do this. (Appendix E, Section E. $6 \underline{4}$ describes the method of calculating the Regional Coefficients.) The amount of Tier 1 penaltyremedy for the CLEC in a state is determined by multiplying the regional affected volume by the Coefficient for the state and by the state fee.
A state coefficient is calculated to split Tier 2 payments for regional metrics among states by submetric.

Appendix A: Fee Schedule

Table 1: Fee Schedule for Tier-1 Per Transaction Fee Determination

Performance Measure	Month 1	Month 2	$\begin{gathered} \text { Month } \\ 3 \end{gathered}$	$\begin{gathered} \text { Month } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Month } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { Month } \\ 6 \\ \hline \end{gathered}$
OSS/Pre-Ordering	\$10.00	\$15.00	$\frac{\$ 24.00 \$ 20}{.00}$	$\frac{\$ 30.00 \$ 25}{00}$	$\frac{\$ 36.00 \$ 30 .}{00}$	$\frac{\$ 42.00 \$ 35.0}{\theta}$
Service Order Accuracy	\$20.00	\$20.00	$\frac{\$ 24.00 \$ 20}{.00}$	$\frac{\$ 24.00 \$ 20 .}{00}$	$\frac{\$ 24.00}{00} \$ 20 .$	$\frac{\$ 24.00 \$ 20.0}{\theta}$
Flow Through = Business	\$40.00	\$45.00	$\frac{\$ 60.00 \$ 50}{.00}$	$\frac{\$ 66.00 \$ 55 .}{00}$	$\frac{\$ 72.00}{00} \$ 60 .$	$\frac{\$ 78.00}{\theta} \$ 65.0$
Flow Through - LNP	\$40.00	\$45.00	\$67.50	\$74.25	\$81.00	\$87.75
Flow Through Residence	\$40.00	\$45.00	\$67.50	\$74.25	\$81.00	\$87.75
Flow Through - UNE-L	\$40.00	\$45.00	\$60.00	\$66.00	\$72.00	\$78.00
$\frac{\text { FOCT - Fully }}{\text { Mechanized }}$	\$20.00	\$25.00	\$36.00	\$42.00	\$48.00	\$54.00
$\frac{\text { FOCT - Partially }}{\text { Mechanized }}$	\$20.00	\$25.00	\$40.50	\$47.25	\$54.00	\$60.75
FOCT - Email	\$20.00	\$25.00	\$36.00	\$42.00	\$48.00	\$54.00
FOCT - IC Trunks	\$20.00	\$25.00	\$36.00	\$42.00	\$48.00	\$54.00
Ordering_ All Other Metrics	\$20.00	\$25.00	$\frac{\$ 36.00 \$ 30}{.00}$	$\frac{\$ 42.00 \$ 35}{00}$	$\frac{\$ 48.00 \$ 40 .}{00}$	$\frac{\$ 54.00 \$ 45.0}{\theta}$
Provisioning - Resale	\$40.00	\$50.00	$\frac{\$ 84.00 \$ 70}{.00}$	$\frac{\$ 120.00 \$ 10}{0.00}$	$\frac{\$ 156.00 \$ 13}{0.00}$	$\frac{\$ 240.00 \$ 20}{0.00}$
Provisioning - UNE	\$115.00	\$130.00	$\frac{\$ 174.00 \$ 1}{45.00}$	$\frac{\$ 192.00 \$ 16}{0.00}$	$\frac{\$ 228.00 \$ 19}{0.00}$	$\frac{\$ 276.00 \$ 23}{0.00}$
Provisioning - UNEP	\$55.00	\$60.00	$\begin{gathered} \$ 70.00 \$ 84 \\ .00 \\ \hline \end{gathered}$	$\begin{gathered} \$ 75.00 \$ 90 . \\ 00 \end{gathered}$	$\begin{gathered} \$ 90.00 \$ 108 \\ .00 \end{gathered}$	$\begin{gathered} \$ 110.00 \$ 13 \\ 2.00 \\ \hline \end{gathered}$
Provisioning - IC Trunks	\$25.00	\$30.00	\$60.75	\$87.75	\$108.00	\$168.75
Provisioning - LNP	\$115.00	\$190.00	\$462.00	\$552.00	\$642.00	\$738.00
Maintenance and Repair - Resale	\$40.00	\$50.00	$\frac{\$ 84.00 \$ 70}{.00}$	$\frac{\$ 120.00 \$ 10}{0.00}$	$\frac{\$ 156.00 \$ 13}{0.00}$	$\frac{\$ 240.00 \$ 20}{0.00}$
Maintenance and Repair - UNE	\$115.00	\$130.00	$\frac{\$ 174.00 \$ 1}{45.00}$	$\frac{\$ 192.00 \$ 16}{0.00}$	$\frac{\$ 228.00 \$ 19}{0.00}$	$\frac{\$ 276.00 \$ 23}{0.00}$
Maintenance and Repair - UNEP	\$55.00	\$60.00	$\begin{gathered} \$ 70.00 \$ 84 \\ .00 \end{gathered}$	$\begin{gathered} \$ 75.00 \$ 90 . \\ \underline{00} \end{gathered}$	$\begin{gathered} \$ 90.00 \$ 108 \\ \underline{.00} \end{gathered}$	$\begin{gathered} \$ 110.00 \$ 13 \\ \underline{2.00} \end{gathered}$
Maintenance and Repair - IC Trunks	\$25.00	\$30.00	\$54.00	\$78.00	\$96.00	\$150.00
LNP	\$115.00	\$190.00	\$385.00	\$460.00	\$535.00	\$615.00
$\begin{gathered} \text { Billing-BIA (see Note } \\ 1 \text {) } \\ \hline \end{gathered}$	2\%	2\%	2\%	2\%	2\%	2\%
Billing - BIT	\$7.00	\$7.00	\$7.00	\$7.00	\$7.00	\$7.00
Billing - BUDT (see Note 2)	\$0.046	\$0.046	\$0.046	\$0.046	\$0.046	\$0.046
Billing - BEC (see note Note 3)	\$0.07	\$0.07	\$0.07	\$0.07	\$0.07	\$0.07
IC Trunks fTrunk Group Performanceł	\$25.00	\$30.00	$\frac{\$ 54.00 \$ 45}{.00}$	$\frac{\$ 78.00 \$ 65 .}{00}$	$\frac{\$ 96.00 \$ 80 .}{00}$	$\frac{\$ 150.00 \$ 12}{5.00}$

Collocation	$\$ 3,165$	$\$ 3,165$	$\$ 3,165$	$\$ 3,165$	$\$ 3,165$	$\$ 3,165$

Note 1: Reflects percent interest to be paid on adjusted amounts.
Note 2: Amount paid per 1000 usage records.
Note 3: Amount paid per dispute.
Table 2: Tier 2 Per Transaction Fee Determination

Measure		Retail Analogs	
		Below BCV	
OSS/Pre-Ordering (note-1)	$\$ 6$	-	$\$ 30$
Ordering	-	-	$\$ 60$
Service Order Accuracy	-	-	$\$ 60$
Flow Through	-	-	$\$ 120$
Provisioning - Resale	$\$ 26$	$\$ 120$	-
Provisioning - UNE	$\$ 76$	$\$ 345$	$\$ 345$
Provisioning - UNEP	$\$ 36$	$\$ 165$	-
Maintenance and Repair- Resale	$\$ 26$	$\$ 120$	-
Maintenance and Repair-UNE	$\$ 76$	$\$ 345$	-
Maintenance-and-Repair-UNEP	$\$ 36$	$\$ 165$	-
LNP	$\$ 36$	$\$ 165$	-
Billing - BIA (note-1)	1.3%	-	-
Billing - BIT (note-1)	$\$ 4$	-	-
Billing - BUDT (note-1)	$\$.03$	-	-
Billing - BEC (note-1)	$\$ 0.04$	-	-
Change Management	-	-	$\$ 1,000$
ICTrunks	$\$ 16$	$\$ 75$	$\$ 75$
Gollocation	-	-	$\$ 9,495$

Note 1: The truncated Z does not apply to these measures.

Appendix B: SEEM Submetrics

B. 1 Tier-1 Submetrics

Item No.	SQM Ref	Tier-1 Submetric
1	LMT	PO-2 Loop Makeup - Response Time - Electronic - Loop
2	AKC	O-2 Acknowledgement Message Completeness - Acknowledgments
3	FT	O-3 Percent Flow-Through Service Requests - Business
4	FT	O-3 Percent Flow-Through Service Requests - LNP
5	FT	O-3 Percent Flow-Through Service Requests - Residence
6	FT	O-3 Percent Flow-Through Service Requests - UNE-L (includes UNE-L with LNP)
7	FT	O-3 Percent Flow-Through Service Requests - UNE-P
8	RI	O-8 Reject Interval - Fully Mechanized
9	RI	O-8 Reject Interval - Partially Mechanized
10	RI	O-8 Reject Interval - Aon MechanizedEmail
11	FOCT	O-9 Firm Order Confirmation Timeliness - Fully Mechanized
12	FOCT	O-9 Firm Order Confirmation Timeliness - Partially Mechanized
13	FOCT	O-9 Firm Order Confirmation Timeliness - Non MechanizedEmail
14	FOCT	O-9 Firm Order Confirmation Timeliness - Local Interconnection Trunks
15	FOCC	O-11 FOC \& Reject Response Completeness - Fully Mechanized
16	FOCC	O-11 FOC \& Reject Response Completeness - Partially Mechanized
17	FOCC	O-11 FOC \& Reject Response Completeness - Non MechanizedEmail
18	MIA	P-3 Percent Missed Installation Appointments - Resale POTS
19	MIA	P-3 Percent Missed Installation Appointments - Resale Design
20	MIA	P-3 Percent Missed Installation Appointments - UNE Loop and Port Combinations
21	MIA	P-3 Percent Missed Installation Appointments - UNE Loops - Design
19		

Appendix B: SEEM Submetrics		
Item No.	SQM Ref	Tier-_1 Submetric
$\underline{22}$	MIA	P-3 Percent Missed Installation Appointments - UNE EELS
$22 \underline{23}$	MIA	P-3 Percent Missed Installation Appointments - UNE Loops - Non-Design
$23 \underline{24}$	MIA	P-3 Percent Missed Installation Appointments - UNE xDSL and Line Splitting
2425	MIA	P-3 Percent Missed Installation Appointments - UNE Line Splitting/Sharing
$25 \underline{26}$	MIA	P-3 Percent Missed Installation Appointments - LNP Standalone
2627	MIA	P-3 Percent Missed Installation Appointments - Local Interconnection Trunks
$27 \underline{28}$	OCl	P-4 Order Completion Interval (OCI) - Resale POTS
2829	OCl	P-4 Order Completion Interval (OCI) - Resale Design
2930	OCl	P-4 Order Completion Interval (OCI) - UNE Loop and Port Combinations
3031	OCl	P-4 Order Completion Interval (OCI) - UNE Loop Design
$31 \underline{32}$	OCl	P-4 Order Completion Interval (OCI) - UNE Loop Non-Design
3233	OCl	P-4 Order Completion Interval (OCI) - UNE xDSL and Line Splitting- without conditioning
3334	OCl	P-4 Order Completion Interval (OCI) - UNE xDSL and Line Splitting- with conditioning
3435	OCl	P-4 Order Completion Interval (OCI) - UNE Line Splitting/Sharing Dispatch
3536	OCl	P-4 Order Completion Interval (OCI) - UNE Line Splitting/Sharing - NonDispatch
3637	OCI	P-4 Order Completion Interval (OCI) - Local interconnection Trunks
3738	OCl	P-4 Order Completion Interval (OCI) - UNE EELS
3839	CCI	P-7 Coordinated Customer Conversions - Hot Cut Durations
3940	CCT	P-7A Coordinated Customer Conversions - Hot Cut Timeliness Percent within Interval
4041	NCDD	P-7D Non-Coordinated Customer Conversions - Percent Completed and Notified on Due Date
$41 \underline{42}$	PPT	P-9 Percent Provisioning Troubles within X days of Service Order GompletionProvisioning Trouble Rate - Resale POTS
4243	PPT	P-9 Porcent Provisioning Troubles within X days of Sorvice Ordor CompletionProvisioning Trouble Rate - Resale Design
4344	PPT	P-9 Provisioning Trouble Rate - UNE Loop and Port Combinations

at\&t

Item No.	SQM Ref	Tier-1 Submetric
4445	PPT	P-9 Percent Provisioning Troubles within X days of Service Order Completion Provisioning Trouble Rate -- UNE Loops - Design
4546	PPT	P-9 Percent Provisioning Troubles within X days of Service Order Completion Provisioning Trouble Rate-UNE Loops - Non-Design
4647	PPT	P-9 Provisioning Trouble Rate - UNE xDSL and Line Splitting
4748	PPT	P-9 Percent Provisioning Troubles within X days of Service Order CompletionProvisioning Trouble Rate - UNE Line Spliting/Sharing Dispatch
4849	PPT	P-9 Provisioning Trouble Rate - UNE Line Splitting/Sharing - Non-Dispatch
4950	PPT	P-9 Porcent-Provisioning Troubles within X days of Service Ordor CompletionTrouble Rate - Local Interconnection Trunks
5051	SOA	P-11 Service Order Accuracy - Resale
51	SOA	P-11 Service Order Accuracy - UNE
52	SOA	P-11 Service Order Accuracy - UNE-P
5352	LOOS	P-13B LNP - Percent Out of Service < 60 Minutes - LNP
5453	LAT	P-13C LNP Percent of Time BellSouthAT\&T Applies the 10-Digit Trigger Prior to the LNP Order Due Date - LNP - (Standalone)
$55 \underline{54}$	LDT	P-13D LNP - Disconnect Timeliness (Non-Trigger)
$56 \underline{55}$	MRA	MR-1 Percent Missed Repair Appointment - Resale POTS
$57 \underline{56}$	MRA	MR-1 Percent Missed Repair Appointment - Resale Design
5857	MRA	MR-1 Percent Missed Repair Appointment - UNE Loop and Port Combinations
5958	MRA	MR-1 Percent Missed Repair Appointment - UNE Loops Design
59	MRA	MR-1 Percent Missed Repair Appointment - UNE EELS
60	MRA	MR-1 Percent Missed Repair Appointment - UNE Loops Non-Design
61	MRA	MR-1 Percent Missed Repair Appointment - UNE xDSL and Line Splitting
62	MRA	MR-1 Percent Missed Repair Appointment - UNE Line Splitting/Sharing
63	MRA	MR-1 Percent Missed Repair Appointment - Local Interconnection Trunks
64	CTRRNPRR	MR-22A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat Reports - Resale POTS
65	CTRR-	MR-z2A Customer Trouble Report Rate Net of Provisioning Troubles and

Appendix B: SEEM Submetrics

Item No.	$\begin{gathered} \hline \text { SQM } \\ \text { Ref } \end{gathered}$	Tier_-1 Submetric
	NPRR	Repeat Reports - Resale Design
66	CTRR- NPRR	MR-z2A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat Reports - UNE Loop and Port Combinations
67	CTRR- NPRR	MR-22A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat Reports - UNE Loops Design
68	CTRR- NPRR	MR-22A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat Reports - UNE Loops Non-Design
69	CTRR- NPRR	MR-22A Customer Trouble Report Rate - UNE xDSLNet of Provisioning Troubles and Repeat Reports - UNE xDSL and Line Splitting
70	CTRR NPRR	MR-2A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat ReportsGustomer Trouble Report Rate- UNE Line Splittingt Sharing
71	CTRR NPRR	MR-2A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat ReportsCustomer Trouble Report Rate - Local Interconnection Trunks
72	MAD	MR-3 Maintenance Average Duration - Resale POTS
73	MAD	MR-3 Maintenance Average Duration - Resale Design
74	MAD	MR-3 Maintenance Average Duration - UNE Loop and Port Combinations
75	MAD	MR-3 Maintenance Average Duration - UNE Loops Design
76	MAD	MR-3 Maintenance Average Duration - UNE EELS
7677	MAD	MR-3 Maintenance Average Duration - UNE Loops Non-Design
7778	MAD	MR-3 Maintenance Average Duration - UNE xDSL and Line Splitting
7879	MAD	MR-3 Maintenance Average Duration - UNE Line Splitting/Sharing
7980	MAD	MR-3 Maintenance Average Duration - Local Interconnection Trunks
8081	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - Resale POTS
8182	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - Resale Design
8283	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE Loop and Port Combinations
8384	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE Loops Design
8485	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE Loops NonDesign

at\&t

Item No.	$\begin{gathered} \text { SQM } \\ \text { Ref } \end{gathered}$	Tier-1 Submetric
8586	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE xDSL and Line Splitting
8687	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE Line Splitting/Sharing
8788	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - Local Interconnection Trunks
8889	oos	MR-5 Out of Service (OOS) > 24 hours - Resale POTS
8990	oos	MR-5 Out of Service (OOS) > 24 hours - Resale Design
9091	oos	MR-5 Out of Service (OOS) > 24 hours - UNE Loop and Port Combinations
$91 \underline{92}$	OOS	MR-5 Out of Service (OOS) > 24 hours - UNE Loops Design
$92 \underline{93}$	OOS	MR-5 Out of Service (OOS) > 24 hours - UNE Loops Non-Design
9394	oos	MR-5 Out of Service (OOS) >24 hours - UNE xDSL and Line Splitting
9495	oos	MR-5 Out of Service (OOS) > 24 hours - UNE Line Splitting/Sharing
9596	oos	MR-5 Out of Service (OOS) > 24 hours - Local Interconnection Trunks
9697	BIA	B-1 Invoice Accuracy
$97 \underline{98}$	BIT	B-2 Mean Time to Deliver Invoices - CRIS
9899	BIT	B-2 Mean Time to Deliver Invoices - CABS
99100	BUDT	B-5 Usage Data Delivery Timeliness
100101	BEC	B-10 Percent Billing Adjustment Requests (BAR) Responded to within 45 Business Days - State
$101 \underline{102}$	TGP	TGP Trunk Group Performance
102103	MDD	C-3 Collocation Percent of Due Dates Missed

B. 2 Tier 2 Submetrics

Item No.	$\begin{aligned} & \text { SQM } \\ & \text { Ref } \end{aligned}$	Tier 2 Submetric
7	ARI	OSS-1 OSS Response Interval (Pro-Ordering/Ordering)-Enhanced Verigate
z	ARt	OSS-1 OSS Response Interval (Pre-Ordering/Ordering) - LEX
3	ARI	OSS-1 OSS Response Interval (Pro-Ordering/Ordering) -XML Gateway
4	ARI	OSS-1 OSS Response Interval (Maintenance \& Repair)
5	H	OSS-2 OSS Interface Availability - (Pro-Ordering/Ordering) - Regional per OSS interface
6	tA	OSS-2 OSS Interface Availability - (Maintenance \& Repair) - Regional per OSS Interface
7	LMT	PO-2 Loop Makeup - Response Time - Electronic - Loop
8	AKC	O-2 Acknowledgement Message Completeness - Acknowledgments
9	FF	Q-3 Porcent Flow-Through Sorvice Requests - Business
10	FT	O-3 Percent Flow-Through Service Requests - LNP
11	FT	O-3 Percent Flow-Through Service Requests - Residence
12	ET	Q-3 Porcent Flow-Through Service Requests - UNE-L (includes UNE-L with LNP)
13	FF	Q-3 Percent Flow-Through Service Requests - UNE-P
14	R1	Q-8-Reject Interval - Fully Mechanized
15	R 1	Q-8-Rejoct Interval - Partially Mochanized
16	R	Q-8 Reject Interval - Non Mechanized
17	FOCT	Q-9-Firm Order Confirmation Timeliness - Fully Mechanized
18	FOGF	Q-9-Firm Order Confirmation Timeliness - Partially Mechanized
19	FOCT	O-9 Firm Order Confirmation Timeliness - Non Mechanized
20	FOCT	Q-9 Firm Order Confirmation Timeliness-Local Interconnection Trunks
21	FOCC	O-11 FOC \& Reject Response Completeness - Fully Mechanized
22	FOCC	O-11 FOC \& Reject Response Completeness - Partially Mechanized
23	FOCG	Q-11 FOG \& Reject Response Completeness - Non Mechanized

at\&t

Hem No.	SQAM Ref	Fier 2 Submetric
24	OAAT	Q-12 Average Answer Time - Ordering Centers - CLEC Local Garrier Service Contor
25	MIA	P-3 Percent Missed Installation Appointments - Resale POTS
26	MIA	P-3 Percent Missed Installation Appointments - Resale Design
27	AIIA	P-3 Percent Missed Installation Appointments - UNE Loop and Port Combinations
28	MIA	P-3 Percent Missed Installation Appointments - UNE Loops - Design
29	AIIA	P-3 Porcent Missed Installation Appointments - UNE Loops - Non-Design
30	MIA	P-3 Percent Missed Installation Appointments - UNE XDSL
31	MIIA	P-3 Porcent Missed Installation Appointments - UNE Line Splitting/Sharing
32	MIA	P-3 Percent Missed Installation Appointments - LNP Standalone
33	MIA	P-3 Percent Missed Installation Appointments - Local Interconnection Trunks
34	OCl	P-4 Order Completion Interval (OCI)-Resale POTS
35	Of	P-4 Order Completion Interval (OCI)-Resale Design
36	OCl	P-4 Order Completion Interval (OCI) - UNE Loop and Port Combinations
37	OCl	P-4 Order Completion Interval (OCI) - UNE Loop Design
38	OCH	P-4 Order Completion Interval (OCI) - UNE Loop Non-Design
39	OCH	P-4 Order Completion Interval (OCI) - UNE XDSL - without conditioning
40	OG	P-4 Order Completion Interval (OCI) - UNE XDSL - with conditioning
41	OCl	P-4 Order Completion Interval (OCI) - UNE Line Splitting/Sharing Dispatch
42	OCl	P-4 Order Completion Interval (OCI) - UNE Line Splitting/Sharing - NonDispatch
43	OCl	P-4 Order Completion Interval (OCI) - Local interconnection Trunks
44	OCl	P-4 Order Completion Interval (OCI) - UNE EELS
45	6Ct	P-7 Coordinated Customer Conversions - Hot Cut Durations
46	CCT	P-7A Coordinated Customer Conversions - Hot Cut Timeliness Percent within Interval
47	NGDD	P-7D Non-Coordinated Customer Conversions - Percent Completed and Notified on Due Date

at\&t

Hem No.	$\begin{gathered} \text { SQM } \\ \text { Ref } \end{gathered}$	Tier 2 Submetric
48	PPT	P-9 Percent Provisioning Troubles within X days of Service Order CompletionResale POTS
49	PPT	P-9 Percent Provisioning Troubles within X days of Service Order Completion Resale Design
50	PPT	P-9 Percent Provisioning Troubles within X days of Service Order Completion UNE Loop and Port Combinations
51	PPT	P-9 Percent Provisioning Troubles within X days of Service Order Completion UNE Loops - Design
52	PPT	P-9 Percent Provisioning Troubles within X days of Service Order Completion UNE Loops - Non-Design
53	PPT	P-9 Percent Provisioning Troubles within X days of Service Order Completion UNE XDSL
54	PPT	P-9 Percent Provisioning Troubles within X days of Sorvice Order Completion UNE Line Splitting/Sharing - Dispatch
55	PPT	P-9 Percent Provisioning Troubles within X days of Service Order CompletionUNE Line Splitting/Sharing - Non-Dispatch
56	PPT	P-9 Percent Provisioning Troubles within X days of Service Order Completion Local Interconnection Trunks
57	SOA	P-11 Service Order Accuracy-Resale
58	SOA	P-11 Service Order Accuracy - UNE
59	SOA	P-11 Service Order Accuracy - UNE-P
60	LOOS	P-13B LNP - Porcent Out of Service - 60 Minutes - LNP
61	LAT	P-13C LNP Percent of Time BellSouth Applies the 10-Digit Trigger Prior to the LNP Order Due Date - LNP - (Standalone)
62	LDT	P-13D LNP - Disconnect Timeliness (Non-Trigger)
63	MRA	MR-1 Percent Missed Repair Appointment - Resale POTS
64	MRA	MR-1 Percent Missed Repair Appointment - Resale Design
65	MRA	MR-1 Porcent Missod Repair Appointment - UNE Loop and Port Combinations
66	MRA	MR-1 Percent Missed Repair Appointment-UNE Loops Design
67	MRA	MR-1 Percent Missed Repair Appointment - UNE Loops Non-Design
68	MRA	MR-1 Percent Missed Repair Appointment - UNE XDSt
69	MRA	MR-1 Percent Missed Repair Appointment - UNE Line Splitting/Sharing

at\&t

Item No.	SQA Ref	Tier 2 Submetric
70	MRA	MR-1 Percent Missed Repair Appointment-Local Interconnection Trunks
71	CTRR	MR-2 Customer Trouble Report Rate - Resale POTS
72	GTRR	MR-2 Customer Trouble Report Rate - Resale Design
73	GTRR	MR-2 Customer Trouble Report Rate - UNE Loop and Port Combinations
74	CTRR	MR-2 Customer Trouble Report Rate - UNE Loops Design
75	GTRR	MR-2 Customer Trouble Report Rate - UNE Loops Non-Design
76	CTRR	MR-2 Customer Trouble Report Rate - UNE xDSL
77	GTRR	MR-2 Customer Trouble Report Rato - UNE Line Splitting/Sharing
78	CTRR	MR-2 Customer Trouble Report Rate - Local Interconnection Trunks
79	MAD	MR-3 Maintenance Average Duration - Resale POTS
80	MAD	MR-3 Maintenance Average Duration - Resale Design
81	MAD	MR-3 Maintenance Average Duration - UNE Loop and Port Combinations
82	MAD	MR-3 Maintenance Average Duration - UNE Loops Design
83	MAD	MR-3 Maintenance Average Duration - UNE Loops Non-Design
84	MAD	MR-3 Maintenance Average Duration - UNE xDSL
85	MAD	MR-3 Maintenance Average Duration - UNE Line Splitting/Sharing
86	MAD	MR-3 Maintenance Average Duration - Local Interconnection Trunks
87	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - Resale POTS
88	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - Resale Design
89	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE Loop and Port Combinations
90	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE Loops Design
91	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE Loops Non- Design
92	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE xDSL
93	PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - UNE Line Splitting/Sharing
PRT	MR-4 Percent Repeat Customer Troubles within 30 Days - Locat Interconnection Trunks	
74		

Appendix B: SEEM Submetrics

Hem No.	$\begin{gathered} \text { SQM } \\ \text { Ref } \end{gathered}$	Tier 2 Submetric
95	oos	MR-5 Out of Service (OOS) >24 hours - Resale POTS
96	oos	MR-5 Out of Service (OOS) >24 hours - Resale Design
97	oos	MR-5 Out of Service (OOS) >24 hours - UNE Loop and Port Combinations
98	Oos	MR-5-0ut of Service (OOS) >24 hours - UNE Loops Design
99	OOS	MR-5 Out of Service (OOS) > 24 hours - UNE Loops Non-Design
100	oos	MR-5 Out of Service (OOS) >24 hours - UNE XDSL
101	oos	MR-5 Out of Service (OOS) >24 hours - UNE Line Splitting/Sharing
102	oos	MR-5 Out of Service (OOS) >24 hours - Local Interconnection Trunks
103	BIA	B-1 Invoice Accuracy
104	BIT	B-2 Mean Time to Deliver Invoices - CRIS
105	BIT	B-2 Mean Time to Deliver Invoices-CABS
106	BUDT	B-5 Usage Data Delivery Timeliness
107	BEC	B-10 Percent Billing Adjustment Requests (BAR) Responded to within 45 Business Days - State
108	TGP	TGP Trunk Group Performance
109	MDD	G-3 Collocation Percent of Due Dates Missed
110	NT	CM-1 Timelines of Change Management Notices - Region
111	DT	GM-3 Timeliness of Documentation Associated with Change - Region
112	SEC	CM-6 Percentage of Software Errors Corrected in " X " Business Days - Region
113	GRA	CM-7 Percentage of Change Requests Accepted or Rejected Within 10 Days Region
114	SCRI	CM-11 Percentage of Software Change Requests Implemented Within 60 Wooks of Prioritization - Region

Appendix C: Statistical Properties and Definitions

The statistical process for testing whether BellSouth's (BST)AT\&T's wholesale customers (alternative local exchange carriers or CLECCompetitive Local Exchange Carriers or CLECs) are being treated equally with BST'sAT\&T's retail customers involves more than a simple mathematical formula. Three key elements need to be considered before an appropriate decision process can be developed. These are the type of:

- data
- comparison
- performance
- Data
- Comparison
- Performance

This section describes the properties of a test methodology and the truncated Z statistic for three types of measures that compare CLEC's performance to AT\&T's retail analog.

C. 1 Necessary Properties for a Test Methodology

Once the key elements are determined, a test methodology should be developed that complies with the following properties:

C.1.1 Like-to-Like Comparisons

When possible, data should be compared at appropriate levels, e.g. wire center, time of month, dispatched residential, new orders. The testing process should:
©..Identify variables that may affect the performance measure

- $\quad . R e c o r d ~ t h e s e ~ i m p o r t a n t ~ c o n f o u n d i n g ~$ covariates
- ...Adjust for the observed covariates in order to remove potential biases and to make the CLEC and the ILEC units as comparable as possible

C.1.2 Overall Level Test Statistic

Each performance measure of interest should be summarized by one overall test statistic giving the decision maker a rule that determines whether a statistically significant difference exists. The test statistic should have the following properties:

- ..The method should provide a single overall index on a standard scale.
- -..lf entries in comparison cells are exactly proportional over a covariate, the aggregated index should be very nearly the same as if comparisons on the covariate had not been done.
- ...The contribution of each comparison cell should depend on the number of observations in the cell.
- ..Cancellation between comparison cells should be limited.
- ..The index should be a continuous function of the observations.

C.1.3 Production Mode Process

The decision system must be developed so that it does not require intermediate manual intervention, i.e., the process must be mechanized to the extent possible.

```
\bullet _......................................Calculations are well defined for possible
    eventualities.
- _.................................T.T.T..Te decision process is an algorithm that
    needs no manual intervention.
- ......................................Results should be arrived at in a timely
    manner.
-__.....................................The system must recognize that
    resources are needed for other performance measure-related processes
    that also must be run in a timely manner.
-_.....................................TThe system should be auditable;}\mathrm{ and
    adjustable over time.
```


C.1.4 Balancing

The testing methodology should balance Type I and Type II Error probabilities.

- ...P P (Type I Error) = P (Type II Error) for well-defined null and alternative hypotheses.
- \quad...TThe formula for a test's balancing critical value should be simple enough to calculate using standard mathematical functions, i.e., one should avoid methods that require computationally intensive techniques.
- ..Little to no information beyond the null hypothesis, the alternative hypothesis, and the number of observations should be required for calculating the balancing critical value.

C.1.5 Measurement Types

The performance measurements that will undergo testing are of three types: mean, proportion, and rate. All three have similar characteristics. Different types of data are used to calculate them. Table C-1 shows the type of data that is used to derive each measurement type.

Table C-1: Measurement Types and Data

Measurement Type	Data Used to Derive Measure
Mean	Interval Measurements
Proportion	Counts
Rate	

C. 2 Testing Methodology - The Truncated Z

In summary, many covariates are chosen in order to provide meaningful comparison levels below the submetric level chosen for the parity comparison. This includes such factors as wire center and time of month, as well as order type for provisioning measures. In each comparison cell, a Z statistic is calculated. The form of the Z statistic may vary depending on the performance measure, but it should be distributed approximately as a standard normal, with mean zero and variance equal to one. Assuming that the test statistic is derived so that it is negative when the performance for the CLEC is worse than for the ILEC, a positive truncation is done - i.e. if the result is negative it is left alone, if the result is positive it is changed to zero. A weighted average of the truncated statistics is calculated where a cell's weight depends on the volume of BSTAT\&T and CLEC orders in the cell. The weighted average is standardized by subtracting the weighted theoretical mean of the truncated distribution, and this is divided by the standard error of the weighted average. Summaries based on measurement type are given for the calculation of the cell Z statistic.

Additionally, there are measures that are compared to a retail analog at least in part where cell definitions do not exist that permit assignment of data for these measures to cells so the truncated Z statistic cannot be calculated. Therse measures are:
-.-Average Response IntervalAnswer Time (M\&R)
-. Billing Invoice Accuracy

- Billing Invoice Timeliness
- Speed of Answer in the Ordering Center
- Mean Time to Deliver Invoices

In addition, there are two measurementsis one measurement that uses retail results 'plus' (2 seconds for OSS Response Time; 0.5\% for Trunk Blocking)Response Time); resulting in a benchmark standard. These measurements are:This
measurement is OSS Average Response Time \& Response Interval (Pre-Ordering) and Trunk Group Performance/Ordering/Maintenance \& Repair.

As an example of one approach taken for a parity measure that does not use the truncated Z methodology, consider the measure Billing Invoice Accuracy. In Kentucky, BellSouthAT\&T calculates results for this measure by subtracting the Absolute Value of Total Related Adjustments during the current month from the Absolute Value of Total Billed Revenues during the current month then dividing these results by the Absolute Value of Total Billed Revenues during the current month and multiplying these results by 100. The formula is as follows:

Invoice Accuracy $=[(\mathbf{a}-\boldsymbol{b}) / \mathbf{a}] \times 100$
_____ a = Absolute Value of Total Billed Revenues during current month
\qquad $\mathbf{b}=$ Absolute Value of Total Billing Related Adjustments during current month
A numerical example of the penaltyremedy calculation is given below:

Example:
CLEC DATA
Bill Adjustments $\quad \$ 14,660.00$
Total Billed Revenue \$336,529.00
BellSouthAT\&T DATA
Bill Adjustments \$6,018,969,26
Total Billed Revenue $\$ 484,691,922.40$

CLEC Invoice Accuracy Ratio $=[(366 \underline{336}, 529.00-14,660.00) / 366 \underline{336}, 529.00] \times 100=$ 96.00-95.64

BSTAT\&T Invoice Accuracy Ratio = $[(484,691,922.40-6,018,969.26) / 484,691,922.40] \times 100=98.75$

Thus, the calculated values are:
——CLEC Result $=96 \%$
BellSouthAT\&T Result $=98.75 \%$
In Kentucky once it is determined that the BSTAT\&T percent is higher, BellSouthAT\&T pays the CLEC according to the Kentucky Fee Schedule.

The calculation would be 2% of the adjustment $=\$ 14,660 \times .02=\$ 293.20$-the difference in the CLEC Invoice Accuracy Ratio and the AT\&T Invoice Accuracy Ratio multiplied by the total CLEC Bill Adjustments. Then multiply the result by 2% (Appendix A: Fee Schedule)

- $98.75 \%-95.64 \%=3.11 \%$
- $3.11 \% \times \$ 14,660=\$ 455.92$
- $\$ 455.92 \times 2 \%=\$ 9.12$

C.2.1 Mean Measures

For mean measures, an adjusted, asymmetricmodified t statistic is calculated for each like-to-like cell that has at least seven BSTAT\&T and seven CLEC transactions. A permutation test is used when one or both of the BSTAT\&T and CLEC sample sizes is less than seven. The adjusted, asymmetricmodified t statistic and the permutation calculation are described in Appendix D, Statistical Formulas and Technical Description.

C.2.2 Proportion Measures

For performance measures that are calculated as a proportion, in each adjustment cell, the cell Z and the moments for the truncated cell Z can be calculated in a direct manner. In adjustment cells where proportions are not closeequal to zero or one, and where the sample sizes are reasonably large $\left(n_{i j} p_{\mathrm{ij}}\left(1-p_{\mathrm{ij}}\right)>9\right)$, a normal approximation can be used. In this case, the moments for the truncated Z come directly from properties of the standard normal distribution. If the normal approximation is not appropriate, then the Z statistic is calculated from the hypergeometric distribution. In this case, the moments of the truncated Z are calculated exactly using the hypergeometric probabilities.

C.2.3 Rate Measures

The truncated Z methodology for rate measures has the same general structure for calculating the Z in each cell as proportion measures. For the rate measure eustomer trouble report rateCustomer Trouble Report Rate there areis a fixed number of access lines in service for the CLEC, $\mathrm{b}_{2 \mathrm{j}}$, and a fixed number for BSTAT\&T, $\mathrm{b}_{1 \mathrm{j}}$. The modeling assumption is that the occurrence of a trouble is independent between access lines, and the number of troubles in b access lines follows a Poisson distribution with mean $\lambda-b$ where λ is the probability of a trouble per 1 access line and $b\left(=b_{1 j}+b_{2 j}\right)$ is the total number of access lines in service. The exact permutation distribution for this situation is approximated by the binomial distribution (the limit for the hypergeometric distribution) that is based on the total number of BSTAT\&T and CLEC troubles, n, and the proportion of BSTAT\&T access lines in service, $q_{j}=b_{1 j} / b$.

In an adjustment cell, if the number of CLEC troubles is greater than 15 and the number of BSTAT\&T troubles is greater than 15, and $n_{i j} q_{i j}\left(1-q_{i j} q_{i}\right)>9$, then a normal approximation can be used. In this case, the moments of the truncated Z come directly
from properties of the standard normal distribution. Otherwise, if there are very few troubles, the number of CLEC troubles can be modeled using a binomial distribution with n equal to the total number of troubles (CLEC plus BSTAT\&T troubles.). In this case, the moments for the truncated Z are calculated explicitly using the binomial distribution.

Appendix D: Statistical Formulas and Technical Descriptions

We start by assuming that the data are disaggregated so that comparisons of CLEC's performance to AT\&T's retail analog are made within appropriate classes or adjustment cells that define "like" observations.

D. 1 Notation and Exact Testing Distributions

Below, we have detailed the basic notation for the construction of the truncated Z statistic. In what follows the word "cell" should be taken to mean a like-to-like comparison cell that has both at least one (or more)-ILEC observation and at least one (or more) CLEC observation.
$\mathrm{L}=\quad$ the total number of occupied cells
$j=\quad 1, \ldots, L ;$ an index for the cells
$n_{1 j}=\quad$ the number of ILEC transactions in cell j
$\mathrm{n}_{2 \mathrm{j}}=\quad$ the number of CLEC transactions in cell j
$\mathrm{n}_{\mathrm{j}}=\quad$ the total number transactions in cell $\mathrm{j} ; \mathrm{n}_{1 \mathrm{j}}+\mathrm{n}_{2 \mathrm{j}}$
$\mathrm{X}_{\mathrm{ij} \mathrm{k}}=\quad$ Individual ILEC transactions in cell $\mathrm{j} ; \mathrm{k}=1, \ldots, \mathrm{n}_{1 \mathrm{j}}$
$\mathrm{X}_{2 \mathrm{jk}}=\quad$ Individual CLEC transactions in cell j; $\mathrm{k}=1, \ldots, \mathrm{n}_{2 \mathrm{j}}$
$\mathrm{Y}_{\mathrm{jk}}=\quad$ individual transaction (both ILEC and CLEC) in cell j
$= \begin{cases}X_{1 j k} & k=1, \ldots, n_{1 j} \\ X_{2 j k} & k=n_{1 j}+1, \ldots, n_{j}\end{cases}$
$\Phi^{-1}()=$ the inverse of the cumulative standard normal distribution function

For Mean Performance Measures the following additional notation is needed.

$$
\begin{aligned}
\bar{X}_{1 j} \quad= & \text { The ILEC sample mean of cell } \mathrm{j} \\
\bar{X}_{2 j}= & \text { The CLEC sample mean of cell } \mathrm{j} \\
\mathrm{~s}_{1 \mathrm{j}}^{2} \quad= & \text { The ILEC sample variance in cell } \mathrm{j} \\
\mathrm{~s}_{2 \mathrm{j}}^{2} \quad= & \text { The CLEC sample variance in cell } \mathrm{j} \\
\left\{y_{\mathrm{j} k}\right\} \quad= & \text { a random sample of size } \mathrm{n}_{2 \mathrm{j}} \text { from the set of } \mathrm{Y}_{\mathrm{j} 1}, \ldots, \mathrm{Y}_{\mathrm{in}_{\mathrm{j}}} ; \mathrm{k}= \\
& 1, \ldots, \mathrm{n}_{2 \mathrm{j}} \\
\mathrm{M}_{\mathrm{j}} \quad= & \text { The total number of distinct pairs of samples of size } \mathrm{n}_{1 \mathrm{j}} \text { and } \mathrm{n}_{2} ; \\
& =\binom{\mathrm{n}_{\mathrm{j}}}{\mathrm{n}_{1 \mathrm{j}}}
\end{aligned}
$$

The exact parity test is the permutation test based on the "modified Z" statistic. For large samples, weone can avoid permutation calculations since this statistic will be normal (or Student's t) to a good approximation. For small samples, where weone cannot avoid permutation calculations, have foundit has been determined that the difference between "modified Z" and the textbook "pooled Z" is negligible. We therefore propose to use Therefore the permutation test based on pooled Z for small samples-will be used. This decision speeds up the permutation computations considerably, because for each permutation we need only compute the sum of the CLEC sample values, and not the pooled statistic itself.

A permutation probability mass function distribution for cell j, based on the "pooled Z" can be written as

$$
\mathrm{PM}(\mathrm{t})=\mathrm{P}\left(\sum_{\mathrm{k}} \mathrm{y}_{\mathrm{jk}}=\mathrm{t}\right)=\frac{\text { the number of samples that sum to } \mathrm{t}}{\mathrm{M}_{\mathrm{j}}}
$$

and the corresponding cumulative permutation distribution is

$$
\operatorname{CPM}(\mathrm{t})=\mathrm{P}\left(\sum_{\mathrm{k}} \mathrm{y}_{\mathrm{jk}} \leq \mathrm{t}\right)=\frac{\text { the number of samples with sum } \leq \mathrm{t}}{\mathrm{M}_{\mathrm{j}}}
$$

For Proportion Performance Measures the following notation is defined:
$a_{1 j}=\quad$ The number of ILEC cases possessing an attribute of interest in cell j
$a_{2 j}=\quad$ The number of CLEC cases possessing an attribute of interest in cell j
$a_{j}=\quad$ The number of cases possessing an attribute of interest in cell j; $a_{1 j}+a_{2 j}$

The exact distribution for a parity test is the hypergeometric distribution. The hypergeometric probability mass function distribution for cell j is

$$
H G(h)=P(H=h)=\left\{\begin{array}{c}
\frac{\binom{n_{1 j}}{h}\binom{n_{2 \mathrm{j}}}{a_{\mathrm{j}}-h}}{\binom{n_{\mathrm{j}}}{a_{\mathrm{i}}}}, \max \left(0, \mathrm{a}_{\mathrm{j}}-\mathrm{n}_{2 \mathrm{j}}\right) \leq \mathrm{h} \leq \min \left(\mathrm{a}_{\mathrm{j}}, \mathrm{n}_{1 \mathrm{j}}\right) \\
0
\end{array}\right.
$$

and the cumulative hypergeometric distribution is

$$
\operatorname{CHG}(x)=P(H \leq x)=\left\{\begin{array}{cl}
0 & x<\max \left(0, a_{j}-n_{2 j}\right) \\
\sum_{h=\max \left(0, a_{\mathrm{j}}-n_{1 j}\right)}^{x} \operatorname{HG}(h), & \max \left(0, a_{j}-n_{2 j}\right) \leq x \leq \min \left(a_{j}, n_{1 j}\right) \\
1 & x>\min \left(a_{j}, n_{1 j}\right)
\end{array}\right.
$$

For Rate Performance Measures, the notation needed is defined as:
$\mathrm{b}_{1 \mathrm{j}} \quad=$ the number of ILEC base elements in cell j
$\mathrm{b}_{2 \mathrm{j}} \quad=$ the number of CLEC base elements in cell j
$b_{j} \quad=$ the total number of base elements in cell $j ; b_{1 j}+b_{2 j}$
$\mathrm{r}_{1 \mathrm{j}} \quad=$ the ILEC sample rate of cell $\mathrm{j} ; \mathrm{n}_{1 \mathrm{j}} / \mathrm{b}_{\mathrm{lj}}$
$\mathrm{r}_{2 \mathrm{j}} \quad=$ the ILEC sample rate of cell $\mathrm{j} ; \mathrm{n}_{2 \mathrm{j}} / \mathrm{b}_{2 \mathrm{j}}$
$q_{j} \quad=$ the relative proportion of ILEC elements for cell $j ; b_{1 j} / b_{j}$

The exact distribution for a parity test is the binomial distribution. The binomial probability mass function distribution for cell j is:

$$
B N(k)=P(B=k)=\left\{\begin{array}{cc}
\binom{n_{j}}{k} q_{j}^{k}\left(1-q_{j}\right)^{n_{j}-k}, & 0 \leq k \leq n_{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

and the cumulative binomial distribution is

$$
C B N(x)=P(B \leq x)=\left\{\begin{array}{cl}
0 & x<0 \\
\sum_{k=0}^{x} B N(k), & 0 \leq x \leq n_{j} \\
1 & x>n_{j}
\end{array}\right.
$$

D. 2 Calculating the Truncated Z

The general methodology for calculating an overall level test statistic is outlined below.

D.2.1 Calculate Cell Weights (W_{i})

A weight based on the number of transactions is used so that a cell, which has a larger number of transactions, has a larger weight. The actual weight formula will depend on the type of measure.

Mean Measure

$$
\mathrm{W}_{\mathrm{j}}=\sqrt{\frac{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}}}{\mathrm{n}_{\mathrm{j}}}}
$$

Proportion Measure

$$
\mathrm{W}_{\mathrm{j}}=\sqrt{\frac{\mathrm{n}_{2 \mathrm{j}} \mathrm{n}_{1 \mathrm{j}}}{\mathrm{n}_{\mathrm{j}}} \cdot \frac{\mathrm{a}_{\mathrm{j}}}{\mathrm{n}_{\mathrm{j}}} \cdot\left(1-\frac{\mathrm{a}_{\mathrm{j}}}{\mathrm{n}_{\mathrm{j}}}\right)}
$$

Rate Measures

$$
\mathrm{W}_{\mathrm{j}}=\sqrt{\frac{\mathrm{b}_{1 \mathrm{j}} \mathrm{~b}_{2 \mathrm{j}}}{\mathrm{~b}_{\mathrm{j}}} \cdot \frac{\mathrm{n}_{\mathrm{j}}}{\mathrm{~b}_{\mathrm{j}}}}
$$

D.2.2 Calculate a Z-Value-Score $\left(Z_{j}\right)$ for each Cell

$A Z$ statistic with mean 0 and variance 1 is needed for each cell.

- ...Otherwise, the actual Z statistic calculation depends on the type of performance measure.

Mean Measure

$$
\mathrm{Z}_{\mathrm{j}}=\Phi^{-1}(\alpha)
$$

where α is determined by the following algorithm.
If the two means are equal and the two variances are zero, set the cell Z-s-Score to zero.
If $\min \left(\mathrm{n}_{1 \mathrm{j}}, \mathrm{n}_{2 \mathrm{j}}\right)>6$, then determine α as

$$
\alpha=P\left(\mathrm{t}_{\mathrm{n}_{1 \mathrm{j}}-1} \leq \mathrm{T}_{\mathrm{j}}\right)
$$

that is, α is the probability that a Student's t random variable with $n_{1 j}-1$ degrees of freedom, is less than

$$
T_{j}= \begin{cases}t_{j}+\frac{g}{6}\left(\frac{n_{1 j}+2 n_{2 j}}{\sqrt{n_{1 j} n_{2 j}\left(n_{1 j}+n_{2 j} j\right.}}\right)\left(t_{j}^{2}+\frac{n_{2 j}-n_{1 j}}{n_{1 j}+2 n_{2 j}}\right) & t_{j} \geq t_{\min j} \\ t_{j}+\frac{g}{6}\left(\frac{n_{1 j}+2 n_{2 j}}{\sqrt{n_{1 j} n_{2 j}\left(n_{1 j}+n_{2 j}\right)}}\right)\left(t_{\min j}^{2}+\frac{n_{2 j}-n_{1 j}}{n_{1 j}+2 n_{2 j}}\right) & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{j}}=\frac{\overline{\mathrm{X}}_{1 \mathrm{j}}-\overline{\mathrm{X}}_{2 \mathrm{j}}}{\mathrm{~s}_{1 \mathrm{j}} \sqrt{\frac{1}{\mathrm{n}_{1 \mathrm{j}}}+\frac{1}{n_{2 \mathrm{j}}}}} \\
& \mathrm{t}_{\min \mathrm{j}}=\frac{-3 \sqrt{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{n}_{\mathrm{j}}}}{g\left(\mathrm{n}_{1 \mathrm{j}}+2 \mathrm{n}_{2 \mathrm{j}}\right)}
\end{aligned}
$$

and g is the median value of all values of

$$
\gamma_{1 \mathrm{j}}=\frac{\mathrm{n}_{1 \mathrm{j}}}{\left(\mathrm{n}_{1 \mathrm{j}}-1\right)\left(\mathrm{n}_{1 \mathrm{j}}-2\right)} \sum_{\mathrm{k}}\left(\frac{\mathrm{X}_{1 \mathrm{jk}}-\bar{X}_{1 \mathrm{j}}}{\mathrm{~s}_{1 \mathrm{j}}}\right)^{3}
$$

over all cells within the submeasure being tested such that all three conditions stated below are true. If no submeasure cells exist that satisfy these conditions, then $\mathrm{g}=0$.

$\gamma_{1 j}$	>0
$n_{1 j}>6$	
of $\quad n_{1 j} \geq n_{3 q} \quad$ for all values of $j-$, where $n_{3 q}$ is the $3^{\text {rd }}$ quartile of all values	

If no submeasure cells exist that satisfy these conditions, then $\mathrm{g}=0$.
Note, that t_{j} is the "modified Z " statistic. The statistic T_{j} is a "modified Z " correctedadjusted for the skewness of the ILEC data.
If $\min \left(\mathrm{n}_{1 \mathrm{j}}, \mathrm{n}_{2 \mathrm{j}}\right) \leq 6$, and

- ... $\mathrm{M}_{\mathrm{j}} \leq 1,000$ (the total number of distinct pairs of samples of size $n_{1 j}$ and $n_{2 j}$ is 1,000 or less)
- - Calculate the sample sum for all possible samples of size $\mathrm{n}_{2 \mathrm{j}}$.
- __Rank the sample sums from smallest to largest. Ties are dealt by using average ranks.
- __Let R_{0} be the rank of the observed sample sum with respect to all the sample sums.

$$
\alpha=1-\frac{\mathrm{R}_{0}-0.5}{\mathrm{M}_{\mathrm{j}}}
$$

- ... $\mathrm{M}_{\mathrm{j}}>1,000$
- Draw a random sample of 1,000 sample sums from the permutation distribution.
- _Add the observed sample sum to the list. There are a total of 1001 sample sums. Rank the sample sums from smallest to largest. Ties are dealt by using average ranks.
- L_Let R_{0} be the rank of the observed sample sum with respect all the sample sums.

$$
\alpha=1-\frac{\mathrm{R}_{0}-0.5}{1001}
$$

Proportion Measure

$$
Z_{\mathrm{j}}=\frac{\mathrm{n}_{\mathrm{j}} \mathrm{a}_{1 \mathrm{j}}-\mathrm{n}_{1 \mathrm{j}} \mathrm{a}_{\mathrm{j}}}{\sqrt{\frac{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)}{\mathrm{n}_{\mathrm{j}}-1}}}
$$

Rate Measure

$$
Z_{j}=\frac{n_{1 j}-n_{j} q_{j}}{\sqrt{n_{j} q_{j}\left(1-q_{j}\right)}}
$$

D.2.3 Obtain a Truncated Z-Value-Score for each Cell $\left(Z_{j}^{*}\right)$

To limit the amount of cancellation that takes place between cell results during aggregation, cells whose results suggest possible favoritism are left alone. Otherwise the cell statistic is set to zero. This means that positive equivalent Z-values-Scores are set to 0 , and negative values are left alone. Mathematically, this is written as

$$
\mathrm{Z}_{\mathrm{j}}^{*}=\min \left(0, \mathrm{Z}_{\mathrm{j}}\right)
$$

D.2.4 Calculate the Theoretical Mean and Variance

Calculate the theoretical mean and variance of the truncated statistic under the null hypothesis of parity, $\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)$ and $\operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)$. To compensate for the truncation in step 3 , an overall, weighted sum of the Z_{j}^{*} will need to be centered and scaled properly so that the final overall statistic follows a standard normal distribution.

-If $\mathrm{W}_{\mathrm{j}}=0$, then no evidence of favoritism is contained in the cell. The formulaes for calculating $\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)$ and $\operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)$ cannot be used. Set both equal to 0 .
- _... $\left(n_{1 j}, n_{2 j}\right)>6$ for a mean measure, or $\min \left\{a_{1 j}\left(1-\frac{a_{1 j}}{n_{1 j}}\right), a_{2 j}\left(1-\frac{a_{2 j}}{n_{2 j}}\right)\right\}>9$ for a proportion measure, or $\min \left(n_{1 j}, n_{2 j}\right)>$ 15 and $n_{j} q_{j}\left(1-q_{j}\right)>9$ for a rate measure, then

$$
\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)=-\frac{1}{\sqrt{2 \pi}}
$$

and

$$
\operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)=\frac{1}{2}-\frac{1}{2 \pi}
$$

- ..Otherwise, determine the total number of values for Z_{j}^{*}. Let Z_{j} and $\theta_{\mathrm{j} \text {, }}$, denote the values of Z_{j}^{*} and the probabilities of observing each value, respectively.

$$
\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)=\sum_{\mathrm{i}} \theta_{\mathrm{ji}} \mathrm{Z}_{\mathrm{ji}}
$$

and

$$
\operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)=\sum_{\mathrm{i}} \theta_{\mathrm{ji}} \mathrm{Z}_{\mathrm{ji}}^{2}-\left[\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)\right]^{2}
$$

The actual values of the z's and θ 's depends on the type of measure.

Mean Measure

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{j}}=\min \left(\mathrm{M}_{\mathrm{j}}, 1,000\right), \mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{j}} \\
& \mathrm{z}_{\mathrm{ji}}=\min \left\{0, \Phi^{-1}\left(1-\frac{\mathrm{R}_{\mathrm{i}}-0.5}{\mathrm{~N}_{\mathrm{j}}}\right)\right\} \quad \text { where } \mathrm{R}_{\mathrm{i}} \text { is the rank of sample sum i } \\
& \theta_{\mathrm{j}}=\frac{1}{\mathrm{~N}_{\mathrm{j}}}
\end{aligned}
$$

Proportion Measure

$$
\begin{aligned}
& z_{\mathrm{ji}}=\min \left\{0, \frac{n_{\mathrm{j}} \mathrm{i}-\mathrm{n}_{1 \mathrm{j}} a_{j}}{\left.\sqrt{\frac{\mathrm{n}_{1 \mathrm{j}} n_{2 \mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)}{n_{\mathrm{j}}-1}}\right\}, \quad i=\max \left(0, \mathrm{a}_{\mathrm{j}}-\mathrm{n}_{2 \mathrm{j}}\right), \ldots, \min \left(\mathrm{a}_{\mathrm{j}}, \mathrm{n}_{1 \mathrm{j}}\right)}\right. \\
& \theta_{\mathrm{ji}}=\operatorname{HG}(\mathrm{i})
\end{aligned}
$$

Rate Measure

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{ji}}=\min \left\{0, \frac{\mathrm{i}-\mathrm{n}_{\mathrm{j}} \mathrm{q}_{\mathrm{j}}}{\sqrt{\mathrm{n}_{\mathrm{j}} \mathrm{q}_{\mathrm{j}}\left(1-\mathrm{q}_{\mathrm{j}}\right)}}\right\}, \quad \mathrm{i}=0, \ldots, \mathrm{n}_{\mathrm{j}} \\
& \theta_{\mathrm{ji}}=\mathrm{BN}(\mathrm{i})
\end{aligned}
$$

D.2.5 Calculate the Overall Test Statistic (\mathbf{Z}^{\top})

$$
\mathrm{Z}^{\mathrm{T}}=\frac{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \mathrm{Z}_{\mathrm{j}}^{*}-\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)}{\sqrt{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}}^{2} \operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)}}
$$

The Balancing Critical Value

There are four key elements of the statistical testing process:

- ...the null hypothesis, H_{0}, that parity exists between ILEC and CLEC services
- $. t h e ~ a l t e r n a t i v e ~ h y p o t h e s i s, ~ H ~, ~ t h a t ~ t h e ~$ ILEC is giving better service to its own customers
- _...the Truncated Z test statistic, Z^{\top}, and - $. . . . \ldots \ldots . a ~ c r i t i c a l ~ v a l u e, ~ c ~$

The decision rule ${ }^{1}$ is

There are two types of errors possible when using such a decision rule:

- \quad. exists when there is, in fact, no favoritism.
- ...Type II Error: (β)Deciding parity exists when there is, in fact, favoritism.

The probabilities of each type of error are:

- Type I Error: $\alpha=\mathrm{P}\left(\mathrm{Z}^{\mathrm{T}}<c \mid \mathrm{H}_{0}\right)$
- Type II Error: $\beta=\mathrm{P}\left(\mathrm{Z}^{\mathrm{T}} \geq c \mid \mathrm{H}_{\mathrm{a}}\right)$

We want a balancing critical value, c_{B}, so that $\alpha=\beta$.
It can be shown that.

$$
c_{B}=\frac{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \mathrm{M}\left(\mathrm{~m}_{\mathrm{j}}, \mathrm{se}_{\mathrm{j}}\right)-\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \frac{-1}{\sqrt{2 \pi}}}{\sqrt{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}}^{2} \mathrm{~V}\left(\mathrm{~m}_{\mathrm{j}}, \mathrm{se}_{\mathrm{j}}\right)}+\sqrt{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}}^{2}\left(\frac{1}{2}-\frac{1}{2 \pi}\right)}}
$$

where

[^0]\[

$$
\begin{aligned}
& \mathrm{M}(\mu, \sigma)=\mu \Phi\left(\frac{-\mu}{\sigma}\right)-\sigma \phi\left(\frac{-\mu}{\sigma}\right) \\
& \mathrm{V}(\mu, \sigma)=\left(\mu^{2}+\sigma^{2}\right) \Phi\left(\frac{-\mu}{\sigma}\right)-\mu \sigma \phi\left(\frac{-\mu}{\sigma}\right)-\mathrm{M}(\mu, \sigma)^{2}
\end{aligned}
$$
\]

$\Phi(\cdot)$ is the cumulative standard normal distribution function, and $\phi(\cdot)$ is the standard normal density function, and μ and σ are the formal arguments of functions $\mathrm{M}(\cdot, \cdot)$ and $\mathrm{V}(, \cdot$,$) .$

This formula assumes that Z_{j} is approximately normally distributed within cell j . When the cell sample sizes, $n_{1 j}$ and $n_{2 j}$, are small this may not be true. It is possible to determine the cell mean and variance under the null hypothesis when the cell sample sizes are small. It is much more difficult to determine these values under the alternative hypothesis. Since the cell weight, W_{j} will also be small (see calculate weights section above) for a cell with small volume, the cell mean and variance will not contribute much to the weighted sum. Therefore, the above formula provides a reasonable approximation to the balancing critical value.
The values of m_{j} and se_{j} will depend on the type of performance measure.

Mean Measure

For mean measures, one is concerned with two parameters in each cell, namely, the mean and variance. A possible lack of parity may be due to a difference in cell means, and/or a difference in cell variances. One possible set of hypotheses that capture this notion, and take into account the assumption that transaction are identically distributed within cells is:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1 \mathrm{j}}=\mu_{2 \mathrm{j}}, \sigma_{1 \mathrm{j}}{ }^{2}=\sigma_{2 \mathrm{j}}{ }^{2} \\
& \mathrm{H}_{\mathrm{a}}: \mu_{2 \mathrm{j}}=\mu_{1 \mathrm{j}}+\delta_{\mathrm{j}} \sigma_{\mathrm{lj}}, \sigma_{2 \mathrm{j}}{ }^{2}=\lambda_{\mathrm{j}} \sigma_{1 \mathrm{j}}{ }^{2}{ }^{2}
\end{aligned}
$$

Where $\delta_{\mathrm{j}}>0, \lambda_{\mathrm{j}}-\underline{\underline{2}} 1_{2}$ and $\mathrm{j}=1, \ldots, \mathrm{~L}$, . (where and parameters δ_{ij} and λ_{j} corresponds to the deltaDelta and Lambda values defined in section 4.1.6 of the Administrative Plan)

Under this form of alternative hypothesis, the cell test statistic Z_{j} has mean and standard error given by

$$
\mathrm{m}_{\mathrm{j}}=\frac{-\delta_{\mathrm{j}}}{\sqrt{\frac{1}{n_{1 j}}+\frac{1}{n_{2 j}}}}
$$

and

$$
\operatorname{se}_{\mathrm{j}}=\sqrt{\frac{\lambda_{\mathrm{j}} n_{1 \mathrm{j}}+n_{2 \mathrm{j}}}{n_{1 \mathrm{j}}+n_{2 \mathrm{j}}}}
$$

Proportion Measure

For a proportion measure there is only one parameter of interest in each cell, the proportion of transaction possessing an attribute of interest. A possible lack of parity may be due to a difference in cell proportions. A set of hypotheses that take into account the assumption that transactions are identically distributed within cells while allowing for an analytically tractable solution is:

$$
\begin{array}{lll}
\mathrm{H}_{0}: & \frac{\mathrm{p}_{2 \mathrm{j}}\left(1-p_{1 \mathrm{j}}\right)}{\left(1-p_{2 j}\right) p_{1 j}}=1 \\
& \\
\mathrm{H}_{\mathrm{a}}: & \frac{p_{2 \mathrm{j}}\left(1-p_{1 \mathrm{j}}\right)}{\left(1-p_{2 \mathrm{j}}\right) \mathrm{p}_{1 \mathrm{j}}}=\psi_{\mathrm{j}} & \psi_{\mathrm{j}}>1 \text { and } \mathrm{j} \\
& =1, \ldots, L .
\end{array}
$$

(whereWhere parameters ψ_{j} corresponds to the psipsi values defined in section 4.1.6 of the Administrative Plant.

These hypotheses are based on the "odds ratio." If the transaction attribute of interest is a missed trouble repair, then an interpretation of the alternative hypothesis is that a CLEC trouble repair appointment is ψ_{j} times more likely to be missed than an ILEC trouble.
Under this form of alternative hypothesis, the within cell asymptotic mean and variance of $a_{1 j}$ are given by ${ }^{1}$

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{a}_{1 \mathrm{j}}\right)=\mathrm{n}_{\mathrm{j}} \pi_{\mathrm{j}}^{(1)} \\
& \operatorname{var}\left(\mathrm{a}_{1 \mathrm{j}}\right)=\frac{\mathrm{n}_{\mathrm{j}}}{\frac{1}{\pi_{\mathrm{j}}^{(1)}}+\frac{1}{\pi_{\mathrm{j}}^{(2)}}+\frac{1}{\pi_{\mathrm{j}}^{(3)}}+\frac{1}{\pi_{\mathrm{j}}^{(4)}}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \pi_{\mathrm{j}}^{(1)}=f_{\mathrm{j}}^{(1)}\left(\mathrm{n}_{\mathrm{j}}^{2}+f_{\mathrm{j}}^{(2)}+f_{\mathrm{j}}^{(3)}-f_{\mathrm{j}}^{(4)}\right) \\
& \pi_{\mathrm{j}}^{(2)}=f_{\mathrm{j}}^{(1)}\left(-\mathrm{n}_{\mathrm{j}}^{2}-f_{\mathrm{j}}^{(2)}+f_{\mathrm{j}}^{(3)}+f_{\mathrm{j}}^{(4)}\right) \\
& \pi_{\mathrm{j}}^{(3)}=f_{\mathrm{j}}^{(1)}\left(-\mathrm{n}_{\mathrm{j}}^{2}+f_{\mathrm{j}}^{(2)}-f_{\mathrm{j}}^{(3)}+f_{\mathrm{j}}^{(4)}\right) \\
& \pi_{\mathrm{j}}^{(4)}=f_{\mathrm{j}}^{(1)}\left(\mathrm{n}_{\mathrm{j}}^{2}\left(\frac{2}{\psi_{\mathrm{j}}}-1\right)-f_{\mathrm{j}}^{(2)}-f_{\mathrm{j}}^{(3)}-f_{\mathrm{j}}^{(4)}\right) \\
& f_{\mathrm{j}}^{(1)}=\frac{1}{2 \mathrm{n}_{\mathrm{j}}^{2}\left(\frac{1}{\psi_{\mathrm{j}}}-1\right)} \\
& f_{\mathrm{j}}^{(2)}=\mathrm{n}_{\mathrm{j}} \mathrm{n}_{1 \mathrm{j}}\left(\frac{1}{\psi_{\mathrm{j}}}-1\right) \\
& f_{\mathrm{j}}^{(3)}=\mathrm{n}_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\frac{1}{\psi_{\mathrm{j}}}-1\right) \\
& f_{\mathrm{j}}^{(4)}=\sqrt{\mathrm{n}_{\mathrm{j}}^{2}\left[4 \mathrm{n}_{1 \mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)\left(\frac{1}{\psi_{\mathrm{j}}}-1\right)+\left(\mathrm{n}_{\mathrm{j}}+\left(\mathrm{a}_{\mathrm{j}}-\mathrm{n}_{1 \mathrm{j}}\right)\left(\frac{1}{\psi_{\mathrm{j}}}-1\right)\right)^{2}\right]}
\end{aligned}
$$

Recall that the cell test statistic is given by

$$
Z_{j}=\frac{n_{j} a_{1 j}-n_{1 j} a_{j}}{\sqrt{\frac{n_{1 j} n_{2 j} a_{j}\left(n_{j}-a_{j}\right)}{n_{j}-1}}}
$$

Using the equations above, seeit can be shown that Z_{j} has mean and standard error given by

$$
m_{\mathrm{j}}=\frac{\mathrm{n}_{\mathrm{j}}^{2} \pi_{\mathrm{j}}^{(1)}-\mathrm{n}_{1 \mathrm{j}} \mathrm{a}_{\mathrm{j}}}{\sqrt{\frac{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)}{\mathrm{n}_{\mathrm{j}}-1}}}
$$

and

$$
\mathrm{se}_{\mathrm{j}}=\sqrt{\frac{\mathrm{n}_{\mathrm{j}}^{3}\left(\mathrm{n}_{\mathrm{j}}-1\right)}{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)\left(\frac{1}{\pi_{\mathrm{j}}^{(1)}}+\frac{1}{\pi_{\mathrm{j}}^{(2)}}+\frac{1}{\pi_{\mathrm{j}}^{(3)}}+\frac{1}{\pi_{\mathrm{j}}^{(4)}}\right)}}
$$

Rate Measure

A rate measure also has only one parameter of interest in each cell, the rate at which a phenomenon is observed relative to a base unit, e.g. the number of troubles per available line. A possible lack of parity may be due to a difference in cell rates. A set
of hypotheses that take into account the assumption that transactions are identically distributed within cells is:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{r}_{1 \mathrm{j}}=\mathrm{r}_{2 \mathrm{j}} \\
& \mathrm{H}_{\mathrm{a}}: \mathrm{r}_{2 \mathrm{j}}=\varepsilon_{\mathrm{j}} \mathrm{r}_{1 \mathrm{j}} \quad \varepsilon_{\mathrm{j}}>1 \text { and } \mathrm{j}=1, \ldots, \mathrm{~L} .
\end{aligned}
$$

(whereWhere parameters ε_{j} corresponds to the eEpsilon values defined in section 4.1.6 of the Administrative Planf.

Given the total number of ILEC and CLEC transactions in a cell, n_{j}, and the number of base elements, $b_{1 j}$ and $b_{2 j}$, the number of ILEC transaction, $n_{1 j}$, has a binomial distribution from n_{j} trials and a probability of

$$
q_{j}^{*}=\frac{r_{1 j} b_{1 j}}{r_{1 j} b_{1 j}+r_{2 j} b_{2 j}}
$$

Therefore, the mean and variance of $n_{1 j}$, are given by

$$
\begin{aligned}
& E\left(n_{1 j}\right)=n_{j} q_{j}^{*} \\
& \operatorname{var}\left(n_{1 j}\right)=n_{j} q_{j}^{*}\left(1-q_{j}^{*}\right)
\end{aligned}
$$

Under the null hypothesis

$$
q_{j}^{*}=q_{j}=\frac{b_{1 j}}{b_{j}}
$$

but under the alternative hypothesis

$$
\mathrm{q}_{\mathrm{j}}^{*}=\mathrm{q}_{\mathrm{j}}^{\mathrm{a}}=\frac{\mathrm{b}_{1 \mathrm{j}}}{\mathrm{~b}_{1 \mathrm{j}}+\varepsilon_{\mathrm{j}} \mathrm{~b}_{2 \mathrm{j}}}
$$

Recall that the cell test statistic is given by

$$
Z_{j}=\frac{n_{1 j}-n_{j} q_{j}}{\sqrt{n_{j} q_{j}\left(1-q_{j}\right)}}
$$

Using the relationships above, we seeit can be shown that Z_{j} has mean and standard error given by

$$
m_{j}=\frac{n_{j}\left(q_{j}^{a}-q_{j}\right)}{\sqrt{n_{j} q_{j}\left(1-q_{j}\right)}}=\left(1-\varepsilon_{j}\right) \frac{\sqrt{n_{j} b_{1 j} b_{2 j}}}{b_{1 j}+\varepsilon_{j} b_{2 j}}
$$

and

$$
s e_{j}=\sqrt{\frac{q_{j}^{a}\left(1-q_{j}^{a}\right)}{q_{j}\left(1-q_{j}\right)}}=\sqrt{\varepsilon_{j}} \frac{b_{j}}{b_{1 j}+\varepsilon_{j} b_{2 j}}
$$

D.2.6 Determining the Parameters of the Alternative Hypothesis

In this section we have indexed the alternative hypothesis of mean measures by two sets of parameters, λ_{j} and δ_{j} (where $\delta \lambda_{j}$ _correspondsand δ_{i} correspond to the deltaLambda and Delta values defined in section 4.1.6 of the Administrative Plan section). Proportion measures are indexed by parameter ψ_{j} and rate measures by ε_{j} (these parameters correspond to the Psi and Epsilon of section 4.1.6). A major difficulty with this approach is that more than one alternative will be of interest; for example we may consider one alternative in which all the δ_{j} are set to a common non-zero value, and another set of alternatives in each of which just one δ_{j} is non-zero, while all the rest are zero. There are very many other possibilities. Each possibility leads to a single value for the balancing critical value; and each possible critical value corresponds to many sets of alternative hypotheses, for each of which it constitutes the correct balancing value.

The formulas we have presented can be used to evaluate the impact of different choices of the overall critical value. For each putative choice, we can evaluate the set of alternatives for which this is the correct balancing value. While statistical science can be used to evaluate the impact of different choices of these parameters, there is not much that an appeal to statistical principles can offer in directing specific choices. Specific choices are best left to telephony experts. Still, it is possible to comment on some aspects of these choices:
Parameter Choices for λ_{j} - The set of parameters λ_{j} index alternatives to the null hypothesis that arise because there might be greater unpredictability or variability in the delivery of service to a CLEC customer over that which would be achieved for an otherwise comparable ILEC customer. While concerns about differences in the variability of service are important, it turns out that the truncated Z testing which is being recommended here is relatively insensitive to all but very large values of the λ_{j}. Put another way, reasonable differences in the values chosen here could make very little difference in the balancing points chosen. Therefore, λ_{i} parameters have been set to 1.
Parameter Choices for δ_{j} - The set of parameters δ_{j} are much more important in the choice of the balancing point than was true for the λ_{j}. The reason for this is that they directly index differences in average service. The truncated Z test is very sensitive to any such differences; hence, even small disagreements among experts in the choice of the δ_{j} could be very important. Sample size matters here too. For example, setting all the δ_{j} to a single value $-\delta_{\mathrm{j}}=\delta$ might be fine for tests across individual CLECs where the CLEC customer bases are not too different. Using the same value of δ for the overall state testing does not seem sensible. At the state level we are aggregating over CLECs, so using the same δ as for an individual CLEC would be saying that a "meaningful" degree of disparity is one where the violation is the same (δ) for each CLEC. But the detection of

Appendix D: Statistical Formulas and Technical Descriptions

disparity for any component CLEC is important, so the relevant "overall" δ should be smaller.

Parameter Choices for ψ_{j} or ε_{j} - The set of parameters ψ_{j} or ε_{j} are also important in the choice of the balancing point for tests of their respective measures. The reason for this is that they directly index increases in the proportion of service performance. The truncated Z test is sensitive to such increases; but not as sensitive as the case of δ for mean measures. Sample size matters here too. As with mean measures, using the same value of ψ or ε for the overall state testing does not seem sensible.

The bottom line here is that beyond a few general considerations, like those given above, a principled approach to the choice of the alternative hypotheses to guard against must come from elsewhere.

D.2.7 Decision Process

Once Z^{\top} has been calculated, it is compared to the balancing critical value to determine if the ILEC is favoring its own customers over a CLEC's customers.

Appendix E: BSTAT\&T SEEM Remedy Calculation Procedures

E. 1 BSTAT\&T SEEM Remedy Procedure

E.1.1 Tier-1 Calculation For Retail Analogs

DETERMINE IF AN INDIVIDUAL CLEC FAILS A TIER-_1 SUBMETRIC

1. Tier -1 is triggered by a monthly failure of any Tier- -1 Remedy Plan submetric.
2. Calculate the overall test statistic for a CLEC (CLEC1); Example, $\mathrm{z}^{\mathrm{T}}{ }_{\text {cLEC } 1}$ (Perper Statistical Methodology).
3. Calculate the balancing critical value (Example, ${ }^{\mathrm{c}} \mathrm{B}_{\text {CLECl }}$) that is associated with the alternative hypothesis (for fixed parameters $\delta, \Psi, \lambda, \delta, \psi$, or ε) for that CLEC.
4. If the overall test statistic is equal to or above the balancing critical value, stop here. That is, if ${ }^{\mathrm{c}} \mathrm{B}_{\text {CLEC } 1} \fallingdotseq \equiv \mathrm{z}^{\mathrm{T}}{ }_{\text {CLECL }}$, stop here. Otherwise, go to step 5.

CALCULATE REMEDY PAYMENT FOR CORRECTION OF TEST STATISTIC TO THE BCVBALANCING CRITICAL VALUE

5. Select the cell with the most negative z value Z-Score (let $i=1, \ldots, I$ with $i=1$ having the most negative z-valueZ-Score, $i=2$ having next most negative z-valueZ-Score, etc. and with $\mathrm{i}=\mathrm{I}$ when the criterion in step 7 is fulfilled.) and set its z valueZ-Score to zero $\left(\mathrm{Z}_{\mathrm{CLECL}, \mathrm{i}}=0\right)$.
6. Recalculate the overall test statistic for that CLEC with the adjusted data; Example, $\mathrm{z}^{\mathrm{T}}{ }_{\text {clec }}{ }^{*}$ (Perper Statistical Methodology).
7. If the new overall test statistic is equal to or above the balancing critical value, that is, if ${ }^{\mathrm{c}} \mathrm{B}_{\text {CLEC } 1} \leq \leq=\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC1 }}{ }^{*}$, go to step 8. Otherwise, repeat steps $5-6$ letting $\mathrm{i}=\mathrm{i}+1$.
8. Calculate the Total Affected Volume (TAV) by summing the Total Impacted Volumes (TIV) of each cell whose z-valueZ-Score was reset to zero except the last cell changed. The impaffected volume for the last cell changed should be interpolated by
 should be rounded up to the next positive integer and added to $\mathrm{TAV}_{\text {CLECl. }}$. That is, $\mathrm{TAV}_{\text {CLEC } 1}=\operatorname{TIV}_{\text {CLEC } 1,1}+\operatorname{TIV}_{\text {CLEC } 1,2}+\ldots+\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}-1}+\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}, \mathrm{NT} T}$. Note that if $\operatorname{TIV}_{\text {CLECl,I }}=1$ then $\operatorname{TIV}_{\text {CLECl,IIINT }}=1$ and the interpolation step can be omitted. Any transactions that cause the overall test statistic to be between the BCV and zero will be included in the TIV for transactions between the BCV and zero.
9. 9. Calculate the below BCV portion of the payment to CLEC1 by multiplying the result of step $8\left(\mathrm{TAV}_{\mathrm{CLEC} 1}\right)$ by the appropriate dollar amount from the fee schedule. Thus, $\mathrm{CLEC1}_{\mathrm{BCV}}$ payment $=\mathrm{TAV}_{\text {CLEC } 1}$ 关 $\$ \$$ from Fee Schedule. Here the fee should be

Appendix E: BST-AT\&T SEEM Remedy Calculation Procedures

derived from Table 1: Fee Schedule for Tier--1 Per Transaction Fee Determination (Appendix A) multiplied by the appropriate factor from section 4.3.1.4. This factor is $3 / 2$ if the CLEC aggregate performance passes and 3 if the CLEC aggregate performance fails.

CALCULATE REMEDY PAYMENT FOR CORRECTION OF TEST STATISTIC TO ZERO

10. 10. If the current overall adjusted test statistic (calculated in step 6) is equal to or above zero, that is, if $0<=z^{\mathrm{T}}{ }_{\text {CLEC1 }}{ }^{*}$ for $\mathrm{i}=\mathrm{I}$, then go to step 14. Otherwise, go to step 11 .
1. Select the cell with the most negative remaining z-value (let $\mathrm{i}=\mathrm{I}+1, \ldots$, J with $\mathrm{i}=1+1$ having the most negative z -value, $\mathrm{i}=\mathrm{I}+2$ having next most negative z -value, etc. and with $\mathrm{i}=\mathrm{J}$ when the criterion in step 13 is fulfilled.) and set its z -value to zero ($\mathrm{z}_{\mathrm{CLEC}, \mathrm{i}}=0$).
2. Recalculate the overall test statistic for that CLEC with the adjusted data; Example, $\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC }}{ }^{*}$ (Per Statistical Methodology).
3. If the new overall test statistic is equal to or above zero, that is, if ${ }^{\mathrm{c}} \mathrm{B}_{\text {CLEC1 }}<=\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC1 }}{ }^{*}$, go to step 14. Otherwise, repeat steps $11-12$ letting $\mathrm{i}=\mathrm{i}+1$.
4. Calculate the Total Affected Volume (TAV0) by summing the Total Impacted Volumes (TIV0) of each cell whose z-value was reset to zero except the last cell changed. The affected volume for the last cell changed should be interpolated by TIV $0_{\text {CLEC } 1, \mathrm{JINT}}=\left(0-\mathrm{z}^{\mathrm{T}} \mathrm{CLEC} 1, \mathrm{~J}-1^{*}\right) /\left(\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC } 1, \mathrm{~J}}{ }^{*}-\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC } 1, \mathrm{~J}-1}{ }^{*}\right) * \mathrm{TIV}_{\mathrm{CLEC} 1, \mathrm{~J}}-\operatorname{TIV}_{\text {CLEC } 1, \mathrm{IINT}}$. The result should be rounded up to the next positive integer and added to TAV0 $0_{\text {CLEC1 }}$. That is, $\mathrm{TAV}_{\text {CLEC } 1}=\left(\mathrm{TIV}_{\text {CLEC } 1, \mathrm{I}}-\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}, \mathrm{NT}}\right)+\mathrm{TIV} 0_{\text {CLEC } 1, \mathrm{II}+1}+\mathrm{TIV}_{0_{\text {CLEC } 1, I+2}}+\ldots+$ $\left.T I V 0_{\text {CLEC } 1, \mathrm{~J}-1}+\mathrm{TIV} 0_{\mathrm{CLEC} 1, \mathrm{JINT}}\right)$. Note that if $\operatorname{TIV} 0_{\text {CLEC } 1, \mathrm{~J}}=1$ then $\mathrm{TIV}_{\text {CLEC } 1, \mathrm{JINT}}=1$ and the interpolation step can be omitted. Also, $\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}}-\operatorname{TIV}_{\text {CLEC } 1, \mathrm{IINT}}$ is the remaining transactions from $\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}}$ that were not used in step 8 and if $\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}}=\operatorname{TIV}_{\text {CLEC } 1, \mathrm{IINT}}$ then $\mathrm{TAV} 0_{\text {CLEC } 1}=0$.
5. Calculate the 0 to BCV portion of the payment to CLEC1 by multiplying the result of step $14\left(\mathrm{TAV} 0_{\text {CLEC1 }}\right)$ by the appropriate dollar amount from the fee schedule. Thus, CLEC_{0} payment $=\mathrm{TAV} 0_{\text {CLEC } 1} * \$ \$$ from Fee Schedule. Here the fee should be derived from Table 1: Fee Schedule for Tier-_1 Per Transaction Fee Determination (Appendix A) multiplied by the appropriate factor from section 4.3.1.4. This factor is $1 / 3$ if the CLEC aggregate performance passes and $2 / 3$ if the CLEC aggregate performance fails.

CALCULATE TOTAL REMEDY PAYMENT FOR CLEC1

16. The total remedy payment for CLEC1 is found by adding the results from step 9 to the results from step 15. That is CLEC1 $1_{\text {TOTAL }}$ payment $=-$ CLEC1 $_{\text {BCV }}$ payment + CLEC1 $_{0}$ payment.

at\&t

Appendix E: BST-AT\&T SEEM Remedy Calculation Procedures

E.1.2 Example: CLEC1 Percent Repeat Customer Troubles Within 30 Days (PRT) for Resale (DSGN).

Submeasure Category = Provisioning - Resale
Failure Month = Month 1
CLEC Aggregate Result = Failed

	n_{1}	n_{c}	Ic_{c}	\mathbf{z}^{\top} CLEC1	${ }^{\text {c }} \mathrm{B}_{\text {CLEC } 1}$		Order Zeroed Out (I/J)	$\begin{gathered} \text { TAV } \\ (<B C V) \end{gathered}$	$\begin{gathered} \text { TAVO } \\ (0 \text { to } B C V) \end{gathered}$
State	312	27	18	-4.10	-1.22				
Cell				$\mathrm{z}_{\text {CLEC } 1, \mathrm{i}}$	RANK	$z^{\text {c }}{ }_{\text {LLEC }}{ }^{*}$			
1		1	0	0.75					
2		4	2	-0.69	8				
3		3	3	-1.76	3	$-0.65^{\text {® }}$	3	2°	1
4		1	0	0.67					
5		4	3	-1.45	5	$0.80^{\Delta \Delta}$	5		1^{00}
6		3	3	-3.45	1	-2.46	1	3	
7		2	2	-1.81	2	-1.60	2	2	
8		3	2	-1.09	6				
9		1	1	-1.65	4	-0.13	4		1
10		2	1	-0.84	7				
11		1	0	0.62					
12		2	1	-0.40	9				
Total			18					7	3

${ }^{\Delta}$ Note that after making $z_{C L E C 1, I}=0$, the overall $Z^{\top}{ }^{\text {CLEC1 }}{ }^{*}=-0.65$ is greater than the balancing critical value ${ }^{{ }^{C}} \mathbf{B}_{\text {CLEC } 1}=-1.22$.
${ }^{\Delta \Delta}$ Note that after making $Z_{\text {CLEC } 1, \mathrm{~J}}=0$, the overall $\mathrm{z}^{\top}{ }^{\text {CLEC } 1}{ }^{*}=0.80$ is greater than zero.
${ }^{\circ}$ For cell\#3 the TAV would be calculated with ((-1.22) $\left.-(-1.60)\right) /((-0.65)-(-1.60)) \times 3$ $=1.2$ which is rounded up to 2 transactions.
${ }^{00}$ For cell\#5 the TAV0 would be calculated with $((0)-(-0.13)) /((0.80)-(-0.13)) \times 4=$ 0.56 which is rounded up to 1 transaction.

Remedy payment for CLEC1 ${ }_{\text {BCV }}$ payment is (7 units) * (\$40/unit) * (3 factor) = \$840 when the CLEC aggregate performance fails. Remedy payment for CLEC1 ${ }_{0}$ payment is (3 units) * (\$40/unit) * (2/3 factor) $=\$ 80$ when the CLEC aggregate

at\&t

Appendix E: BST $\underline{\text { AT\&T SEEM Remedy Calculation Procedures }}$
performance fails. The total remedy payment is CLEC $_{\text {TOTAL }}$ payment $=\$ 840+\$ 80=$ $\$ 920$.

E. 2 Tier-2 Calculation For Retail Analogs

1. Tier 2 is triggered by three consecutive monthly failures of any Tier 2 Remedy Plan sub-metric. Determine failure by performing steps 2 - 4 in section E.1.1 for each of the three consecutive months for the aggregate of all CLEC data. If any month passes, no remedies are required.
2. If remedies are required, caleulate monthly statistical results and affected volumes for the CLEC aggregate performance for each of the three consecutive months as outlined in steps 5-8 and 10-14 of section E.1.1. Determine average monthly affected volumes for the rolling 3-month period for both the TAV (remedies required for correcting the test statistic back to the $B C V$) and the TAV0 (remedies required for correcting the test statistic back to zero).
3. Calculate the payment to State Designated Agency by multiplying average monthly volumes by the appropriate dollar amount from the Tier-2 fee schedule (Appendix A, Table 2: Tier 2 Per Transaction Fee Determination).
4. Therefore, State Designated Agency payment = (average monthly volume TAV* \$\$ from Fee Schedule) + (average monthly volume TAV0* \$\$ from Fee Schedule).

E.2.1 Example:STATE-A Percent Provisioning Troubles within X Days - UNE Loops Design

Submeasure Category $=$ Provisioning - UNE
Failure Month = Month 1
CLEC Aggregate Result = Failed all three months

Month 1	n_{1}	n_{c}	I_{6}	$z_{\text {CLEC } 1}$	${ }^{6} \mathrm{~B}_{\text {CLEC } 1}$		Order Zeroed Out (I/J)	$\begin{gathered} \text { TAV } \\ \text { (<BCV) } \end{gathered}$	$\begin{aligned} & \text { TAV0 } \\ & (0-B C V) \end{aligned}$
State	155	37	8	-5.14	-0.35				
Gell				$z_{\text {GLEG } 1,}$	RANK	$z_{\text {clec }}{ }^{\text { }}$			
4		3	4	-1.53	5	$0.91^{\text {A4 }}$	5		4^{00}
z		4	θ	0.31					
3		2	4	-2.18	3	-1.21	3	4	
4		4	4	-4.52	2	-2.39	2	4	
5		4	θ	0.28					

at\&t

Appendix E: BST $\underline{\text { AT\&T SEEM Remedy Calculation Procedures }}$

Month 4	n_{1}	n_{C}	$I_{\text {c }}$	z^{\mp} CLEC4	${ }^{6} \mathrm{~B}_{\text {CLEC } 1}$		Order Zeroed Out (I/d)	$\begin{gathered} \text { TAV } \\ (<B C V) \end{gathered}$	$\begin{aligned} & \text { TAVO } \\ & (0-B C V) \end{aligned}$
6		18	4	-0.24	8				
7		5	4	-0.45	7				
8		4	4	-5.39	4	$=3.74$	4	4	
9		4	4	-0.50	6				
10		4	4	-2.14	4	-0.04 ${ }^{4}$	4	4^{θ}	θ
Total			8					4	4

${ }^{4}$ Note that after making $z_{\text {CLEC1, }}=0$, the overall $z_{\text {CLEC1 }}{ }^{*}=-0.04$ is greater than the balancing critical value ${ }^{6} \mathrm{~B}_{\text {CLEC } 1}=-0.35$.
${ }^{4 A}$ Note that after making $Z_{C L E C 1, J}=0$, the overall $Z^{\mp}{ }_{C L E C 1}{ }^{*}=0.80$ is greater than zero.
${ }^{\circ}$ For cell\#10 the TAV would not be interpolated given that the impacted volume for that cell is only 1.
${ }^{\ominus \theta}$ For cell\#1 the TAV $_{5}$ would not be interpolated given that the impacted volume for that cell is only 1.
TAV for month 1 is 4 units, TAVO for month 1 is 1 unit.

Submeasure Category = Provisioning - UNE

Failure Month = Month 2
CLEC Aggregate Result = Failed all three months

Month 2	n_{4}	\mathbf{H}_{6}	I_{6}	$z_{\text {clec }}{ }^{\text {c }}$	${ }^{6} \mathrm{~B}_{\text {CLEC }}$		Order Zeroed Out (I/d)	$\begin{gathered} \text { TAV } \\ (\leqslant B C V) \end{gathered}$	$\begin{aligned} & \text { TAVO } \\ & \text { (O-BCV) } \end{aligned}$
State	175	13	3	-0.94	-0.39				
Gell				$z_{\text {GLEG } 1,}$	RANK	$z_{\text {clec }}{ }^{\text { }}$			
1		2	4	-1.58	2				
2		4	0	1.00					
3		4	θ	0.25					
4		4	θ	0.26					
5		2	θ	0.46					
6		4	θ	0.20					
7		2	4	-0.71	3				

at\&t

Appendix E: BST-AT\&T SEEM Remedy Calculation Procedures

$\begin{gathered} \text { Month } \\ 2 \end{gathered}$	n_{1}	n_{c}	I_{6}	$z^{\top}{ }_{\text {CLEC }}$	${ }^{\text {c }} \mathbf{B}_{\text {CLEC } 1}$		Order Zeroed Out (1/d)	$\begin{gathered} \text { TAV } \\ \text { (<BCV) } \end{gathered}$	$\begin{gathered} \text { TAVO } \\ (0-B C V) \end{gathered}$
8		4	4	-4.12	7	$0.28{ }^{\text {a }}$	7	$7^{\text {® }}$	
9		4	0	0.35					
10		4	θ	0.50					
Total			3					1	0

${ }^{4}$ Note that after making $Z_{\text {CLEG } 1,-}=0$, the overall $Z^{\mp}{ }^{\top}$ LEG $1^{*}=0.28$ is greater than the balancing critical value ${ }^{\mathrm{C}} \mathbf{B}_{\mathrm{CLEEC}_{1}}=-0.39$. Note that it is also greater than zero. Therefore the total affected volume has been identified.
${ }^{\circ}$ For celll\#8 the TAV $_{4}$ would not be interpolated given that the impacted volume for that cell is only 1 .
TAV for month 2 is 1 unit, TAVO for month 2 is 0 units.

Submeasure Category = Provisioning - UNE

 Failure Month = Month 3CLEC Aggregate Result = Failed all three months

$\begin{array}{\|c\|} \hline \text { Month } \\ 3 \end{array}$	n_{1}	H_{C}	$t_{\text {c }}$	$z^{\text {F CLEC1 }}$	${ }^{C_{B}}{ }_{\text {CLEC } 1}$		Order Zeroed Out (1/d)	$\begin{gathered} \text { TAV } \\ \text { (<BCV) } \end{gathered}$	$\begin{aligned} & \text { TAVO } \\ & \text { (O-BCV) } \end{aligned}$
State	196	33	8	-4.76	-0.49				
Gell				$z_{\text {GLECT, }}$	RANK	$z_{\text {CLEC }}{ }^{\text { }}$			
4		2	0	0.48					
2		4	4	-2.55	6				
3		2	θ	0.57					
4		4	4	-3.00	4	-0.81	4	4	
5		4	4	-3.16	2	-2.78	z	7	
6		4	0	0.20					
7		4	4	-3.32	4	-3.76	4	4	
8		2	4	-3.00	3	-1.78	3	4	
9		4	4	-2.92	5	$0.18{ }^{4}$	5	7^{\ominus}	
10		6	4	-0.41	7				
11		10	4	-0.32	8				
12		4	0	0.24					

Appendix E: BST-AT\&T SEEM Remedy Calculation Procedures

$\begin{gathered} \text { Month } \\ 3 \end{gathered}$	n_{1}	n_{c}	I_{6}	$z^{\top}{ }_{\text {cLEC } 1}$	${ }^{\text {c }} \mathbf{B}_{\text {CLEC } 1}$	Order Zeroed Out (1/d)	$\begin{gathered} \text { TAV } \\ (<\mathrm{BCV}) \end{gathered}$	$\begin{gathered} \text { TAVO } \\ (0-B C V) \end{gathered}$
13		4	θ	0.28				
Fotal			8				5	0

${ }^{\Delta}$ Note that after making $Z_{C L E C 1,1-}=0$, the overall $Z^{\top} C L E C 1^{*}=0.18$ is greater than the balancing critical value ${ }^{6} \mathrm{~B}_{\mathrm{CLECG}_{1}}=-0.49$. Note that it is also greater than zero. Therefore the total affected volume has been identified.
oFor cell\#9 the TAV $_{5}$-would not be interpolated given that the impacted volume for that cell is only 1 .
TAV for month 3 is 5 units, TAVO for month 3 is 0 units.
If the above examples represent performance for each of months 1 through 3, then

E.2.2 Example: STATE-A Percent Provisioning Troubles within 30 Days - UNE Loops Design

State	TAV	TAV0
Aonth 1	4	4
Alonth 2	7	0
Aonth 3	5	θ
Average TAV(0) for rolling 3 month period	3.33	0.33
Remedy amount per unit (Appendix A Fable 2	$\$ 345$	$\$ 76$
Remedy Dollars	$\$ 1148.85$	$\$ 25.08$

The total remedy paid for this Tier 2 submetric is $\$ 1148.85+\$ 25.08=$ $\$ 1,173.93$ which rounds up to $\$ 1174$.

E.3E.2Tier-1 Calculation For Benchmarks

1. For each CLEC with five or more observations, calculate monthly performance results for the State.
2. CLECs having observations (sample sizes) between 5 and 30the large sample threshold L will use Table Ibenchmark adjustment calculations described below.
The only exception will be for Collocation Percent Missed Due Dates.

Appendix E: BST AT\&T SEEM Remedy Calculation Procedures

a. Large sample threshold is defined as $\mathrm{L}=5 /(\mathrm{B} \times(1-\mathrm{B}))$, rounded to the closest larger integer, where B is the benchmark. Large sample thresholds for some values of benchmarks are shown in the table below.

$\underline{\text { Benchmark }} \underline{\underline{B}}$	$\underline{\underline{\text { Large Sample }}}$
$\underline{90 \%}$	$\underline{\text { Threshold L }}$
$\underline{95 \%}$	$\underline{106}$
$\underline{96.5 \%}$	$\underline{149}$

b. The Equivalent Minimal Benchmark for sample size $\mathrm{n}=5, \mathrm{~EB}(5)$ is based on the smallest number of failures $\mathrm{k} \leq \mathrm{n}$, for which the cumulative binomial distribution CBN(k,n,B) exceeds 5\%. The failure allowance is at least 1 for small samples.

Nominal Benchmark	Equivalent Minimal Benchmark: EB(5)
$\underline{90 \%}$	$\underline{60 \%}$
$\underline{95 \%}$	$\underline{80 \%}$
$\underline{96.5 \%}$	$\underline{80 \%}$

c. For any CLEC sample size n between 5 and L, the Equivalent Benchmark EB(n) is calculated so that the adjustment percent decreases linearly from EB(5) for $\mathrm{n}=5$ to 0 for $\mathrm{n}=\mathrm{L}$, resulting in the following formula:

$$
\underline{\mathrm{EB}}(\mathrm{n})=\mathrm{B}-(\mathrm{B}-\mathrm{EB}(5)) \times(\mathrm{L}-\mathrm{n}) /(\mathrm{L}-5) .
$$

d. Effective Benchmark is equal to the nominal Benchmark for large samples and to the Equivalent Benchmark for small samples.

Small Sample Size Table (95\% Confidence)

Sample Size	Equivalent 90\% Benchmark	Equivalent 95% Benchmark
5	60.00%	80.00%
6	66.67%	83.33%
7	71.43%	85.71%
8	75.00%	75.00%
9	66.67%	77.78%
10	70.00%	80.00%

Sample Size	Equivalent 90% Benchmark	Equivalent 95\% Benchmark
18	77.78%	83.33%
19	78.95%	84.21%
20	80.00%	85.00%
21	76.19%	85.71%
22	77.27%	86.36%
23	78.26%	86.96%

Appendix E: BST-AT\&T SEEM Remedy Calculation Procedures

Sample Size	Equivalent 90\% Benchmark	Equivalent 95\% Benchmark
11	72.73%	81.82%
12	75.00%	83.33%
13	76.92%	84.62%
14	78.57%	85.71%
15	73.33%	86.67%
16	75.00%	87.50%
17	76.47%	82.35%

Sample Size	Equivalent 90\% Benchmark	Equivalent 95\% Benchmark
24	79.17%	87.50%
25	80.00%	88.00%
26	80.77%	88.46%
27	81.48%	88.89%
28	78.57%	89.29%
29	79.31%	86.21%
30	80.00%	86.67%

3. If the percentage (or equivalent percentage for small samples) meets the benchmark standard, no remedies are required. Otherwise, go to step 4.
4. Determine the Volume Proportion by taking the difference between the benchmark and the actual performance result.
5. Calculate the CLEC's Total Affected Volume (TAV) by multiplying the Volume Proportion from step 4 by the Total Impacted CLEC + Volume.
6. Calculate the payment to CLECt by multiplying the result of step 5 by the appropriate dollar amount from the fee schedule (Appendix A, Table 1) times the appropriate multiplier (section 4.3.1.5). That is,
CLECt's payment $=\left(\right.$ CLEC's Total Affected Volume CLEC1 * * $\$$ Volume x $\$ \$$ from Fee Schedule * multiplier). For the example that follows, fee amounts are based on an aggregate failure.

E.32.1 Example: _CLEC+1 Percent Missed Due Dates for Collocations

Submeasure Category = Collocation

Failure Month = Month 1
CLEC Aggregate Result = Failed

	$\mathbf{n}_{\mathbf{c}}$	Benchmark	PMDD $_{\mathbf{c}}$	Volume Proportion	Affected Volume	$\underline{\text { Fee }}$ Schedule	$\underline{\text { Fee }}$ Multiplier	Payout
State	600	$>\equiv \geqq 95 \%$ On Time	92%	.03	18			

Payout for CLEC1 is (18 units) * (\$3165/unit) * (3 factor) $=\$ 170,910$.

Appendix E: BST_AT\&T SEEM Remedy Calculation Procedures

E.43 Tier-1 Calculation For Benchmarks (In The Form Of A Target)

1. For each CLEC with five or more observations calculate monthly performance results for the State.
2. CLECs having observations (sample sizes) between 5 and 30large sample threshold L will use small sample size tableadjustments as described above.
3. Calculate the interval distribution based on the same data set used in step 1 .
4. If the 'percent within' (or equivalent percentage for small samples) meets the benchmark standard, no remedies are required. Otherwise, go to step 5.
5. Determine the Volume Proportion by taking the difference between benchmark and the actual performance result.
6. Calculate the Total Affected Volume by multiplying the Volume Proportion from step 5 by the Total CLEC+ Volume.
7. Calculate the payment to CLEC+ by multiplying the result of step 6 by the appropriate dollar amount from the fee schedule. CLEC1That is, CLEC's payment = CLEC's Total Affected Volume CLEC 1 * Volume x $\$ \$$ from Fee Schedule ${ }^{*} \underline{x}$ multiplier. For the example that follows, assume CLEC aggregate failure.

E.43. 1 Example: _CLEC- $\mathbf{1}$ Reject Interval - Fully Mechanized

	Submeasure Category = Ordering Failure Month = Month 1 CLEC Aggregate Result = Failed							
	\mathbf{n}_{c}	Benchmark	Reject Interval	Volume Proportion	Affected Volume	Fee Schedule	Fee Multiplier	Payout
State	600	$97 \%<=1$ hour	$95 \%<=$ 1 hour	. 02	12			

Payout for CLEC1 is (12 units) * (\$20/unit) * (2.5 factor) $=\$ 600$

E. 5 Tier 2 Calculations For Benchmarks

Fier 2 calculations for benchmark measures are the same as the Tier 1 benchmark calculations, except they are based on the CLEC aggregate performance and the CLEC aggregate data will have failed for three (3) consecutive months.
E. 6

Appendix E: BST $\underline{\text { AT\&T SEEM Remedy Calculation Procedures }}$

E. 4 Regional and State-Coefficients

This section describes the method of calculating regional and state-coefficients.
E.64.1-[AKC]

- ...Acknowledgement Completeness
(AKC_XML Gateway)
- Regional Coefficient Formula (Tier--1)
- Coefficient $=(\mathrm{A}+\mathrm{B}) /(\mathrm{C}+\mathrm{D})$ where:
- ..A_ $=$ number of valid FOC transactions of the CLEC in the state (fully \& partially mechanized)
- ..B B = number of valid RI transactions of the CLEC in the state (fully \& partially mechanized)
- $. C ~=~ t o t a l ~ v a l i d ~ F O C ~ t r a n s a c t i o n s ~ o f ~ t h e ~$ CLEC in the region (fully \& partially mechanized)
- ..D $=$ total valid RI transactions of the CLEC in the region (fully \& partially mechanized)

State-Coefficient Formula (Tier 2)

State-Coefficient $=(A+B) /(C+D)$ where:

- $A=$ number of valid FOC transactions for all CLECs in the state (fully \& partially mechanized)
- $\mathrm{B}=$ number of valid RI transactions for all CLECs in the state (fully \& partially mechanized)
- $\mathrm{C}=$ total valid FOC transactions in the region (fully \& partially mechanized)
- $D=$ total valid $R I$ transactions in the region (fully \& partially mechanized)

E.64.2-PFT[FT]

- . Percent Flow Through CLEC Aggregate - Residence (PFT-RES)
- . Percent Flow Through CLEC Aggregate - Business (PFT- BUS)
- Percent Flow Through CLEC Aggregate =_ UNE-Other (PFT-UOTH)
- -Porcent Flow Through CLEC Aggregate--L (includes UNE-Loop \& Port Combo (PFT-UNEPG-L with LNP)
- \&Percent Flow Through CLEC Aggregate - LNP (PFT-LNP)
- Regional Coefficient Formula (Tier-_1)
- Coefficient = A / B where:
- A = number of valid FOC transactions of the CLEC in the state (fully mechanized)
- $B=$ total valid FOC transactions of the CLEC in the region (fully mechanized)

E.4.3 [SOA]

- Service Order Accuracy [SOA]

- Regional Coefficient Formula (Tier-1)
- Coefficient = A / B where:
- $\quad A_{-}=$number of valid FOC transactionsSOA orders of the CLEC in the state (fully mechanized);
- $\quad \mathrm{B}=$ total valid FOC transactionsSOA orders of the CLEC in the region (fully mechanized).

State Coefficient Formula (Tier 2)

State-Coefficient $=A / B$ where:

- $A=$ number of valid FOC transactions for all CLECs in the state (fully mechanized)
- $B=$ total valid $F O C$ transactions in the region (fully mechanized)

E.6.3 CMN, PSEC, PCRAR, PCRIP

- Timeliness of Change Management (CMN)
- Percent of Software Errors Corrected in X $(10,30,45)$ Business Days Region (PSEC)
- Percent Change Requests Accepted or Rejected in 10 Days-Region (PCRAR)
- Pereent of Change Request Implemented Within 60-Weeks of PrioritizationRegion (PCRIP)

State-Coefficient Formula (Tier 2)

Goefficient $=(A+B) /(C+D)$ where:

- $\Lambda=$ number of valid FOC transactions for all CLECs in the state (fully \& partially mechanized)
- $B=$ number of valid RI transactions for all CLECs in the state (ftlly \& partially mechanized)
- $\mathrm{C}=$ total valid FOC transactions in the region (fully \& partially mechanized)
- $\mathrm{D}=$ total valid RI transactions in the region (fully \& partially mechanized)
E.6.4 IA
- Interface Availability (IA)

State Coefficient Formula (Tier 2)

Goefficient $=(A+B) /(C+D)$ where:

- $\Lambda=$ number of valid FOC transactions for all CLECs in the state (fully \& partially mechanized)
- $\mathrm{B}=$ number of valid $R I$ transactions for all CLECs in the state (fully \& partially
- $\mathrm{C}=$ total valid FOC transactions in the region (fully \& partially mechanized)
- $D=$ total valid RI transactions in the region (fully \& partially mechanized)

Appendix F: BellSouth'sAT\&T's Policy on Reposting of Performance Data and Recalculation of SEEM Payments

BellSouthAT\&T will make available repostedbe required to repost performance data as reflected in the Service Quality Measurement (SQM) reports and recalculate Self-Effectuating Enforcement Mechanism (SEEM) payments-using the Parity Analysis and Remedy Information System (PARIS), ${ }_{2}$ to the extent technically feasible, under the following circumstances:

1. 2. Those SQM measures included in a state's specific SQM plan with corresponding submetrics are subject to reposting. A notice will be placed on the PMAPAT\&T performance measurement website advising CLECs when reposted data is available.
1. 2. SQM Performance sub-metric calculations that result in a shift in the statewide aggregate performance from an "in parity" condition to an "out of parity" condition will be available for reposting.
1. 3. SQM Performance sub-metric calculations with benchmarks where statewide aggregate performance is in an "out of parity" condition will be available for reposting whenever there is a $>=2 \%$ decline in BellSouth'sAT\&T's performance at the sub-metric level.
1. 4. SQM Performance sub-metric calculations with retail analogues that are in an "out of parity" condition will be available for reposting whenever there is a degradation in performance as shown by an adverse change of $\ll>=.5$ in the z-scoreZ-Score at the sub-metric level.
1. 5. Any data recalculations that reflect an improvement in BellSouth'sAT\&T's performance will be reposted at BellSouth'sAT\&T's discretion. However, statewide performance must improve by at least 2% for benchmark measures and the z score must improve by at least 0.5 for retail analogs at the sub-metric level to qualify for reposting.
1. 6. SQM Performance data will be reposted for a maximum of three months in arrears from implementation of the change of programming request requirement ($R Q$) which corrects a detected error. RQs shall not be unreasonably delayed after the date of detectionthe error is detected. As an example, should-an error beis discovered during the analysis of the May data month, and this error peformance that triggers a reposting, BellSouthbut the RQ correcting the error is implemented in the calendar month of July
with the June data month performance reports, AT\&T will correct the data beginning with the month of detection (May) and the-the RQ implementation (July), which would be for the June data month performance reports, and will repost the data month performance reports for the three months preceding -data month performance reports - May, April, and March-and February.
1. 7. When updated SQM performance data has been reposted or when a payment error in PARIS-has been discovered, BellSouthAT\&T will recalculate applicable SEEM payments, where technically feasible, for a maximum of three months in arrears from date of detection. Recalculated SEEM payments due to reposted SQM data will be made for the same months that the applicable data was reposted. The three month period for recalculating SEEM payments due to an error in PARIS-will be determined in the same manner previously described for the SQM. For example, should an error in PARIS-be discovered for the data month of May, BellSouthJune, AT\&T will correct data for May and-the three preceding months - May, April, and March-and February.
1. 8. Any adjustments for underpayment of Tier--1 and Tier 2 calculated remedies resulting from the application of this policy will be made consistent with the terms of the statespecific SEEM plan, including the payment of interest. Any adjustments for overpayment of Tier--1 and Tier 2 remedies will be made at BellSouth'sAT\&T's discretion.
1. 9.-Any adjustments for underpayments resulting from application of this policy will be made in the next month's payment cycle after the recalculation is made. The final current month-PARIS reports will reflect the transmitted dollars, including adjustments for prior months where applicable. Questions regarding the adjustments should be made in accordance with the normal process used to address CLEC questions related to SEEM payments.
When a CLEC believes that an error in its specific data requires reposting where the above statewide thresholds have not been met, the CLEC is responsible for identifying such issues and requesting BellSouthAT\&T to repost the data. Any failure to repost inaccurate data should be brought to the attention of the Commission for resolution if it is estimated that the thresholds described in items 3,4 , or $5 \underline{4}$ have been met at the CLEC-specific level.

Determination of when Reposting Policy Applies

As part of the Change Notification Process, BellSouthAT\&T performs an analysis of impacts that are proposed to be made to Performance Measurement Application Platform (PMAP)performance measurement code. These impacts are used to identify changes to its reported SQM results.

To determine this impact, BellSouthAT\&T performs a query of the data warehouse to identify those records that would be impacted by the proposed change. Once the number of records are

Appendix F: BellSouth's-AT\&T's Policy on Reposting of Performance Data and Recalculation of SEEM Payments

is identified, the measurement is recalculated to determine the impact. This is the general framework for analysis - the specific steps used to evaluate the impact will vary with the issue being analyzed. However, the following example may assist in understanding:

Assume that service orders with an activity code of T-were erroneously being included in a UNEPparticular product disaggregation for Percent Missed Installation Appointments. They should have been in another product disaggregation. Further, assume that the number of records erroneously included as UNEP-is 110 records out of a total of 86,000 . In this example, the numerator and denominator would both be reduced by 110 records and the z-scoreZ-Score would be recalculated. If the amount of the change was sufficient to meet criteria 2,4 , or 5 above, the Reposting policy will be invoked.

[^0]: ${ }^{1}$ This decision rule assumes that a negative test statistic indicates poor service for the CLEC customer. If the opposite is true, then reverse the decision rule.

