## COMMONWEALTH OF KENTUCKY

#### BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATON OF OWEN COUNTY RURAL ) ELECTRIC COOPERATIVE CORPORATION FOR ) AN ORDER GRANTING AUTHORITY TO ADOPT ) CASE NO. 10124 A SCIENTIFIC SAMPLING METHOD IN THE ) TESTING OF SINGLE PHASE WATT-HOUR ) METERS )

### ORDER

IT IS ORDERED that Owen County Rural Electric Cooperative Corporation shall file an original and 12 copies of the following information with this Commission, with a copy to all parties of record, by January 25, 1988. If neither the requested information nor a motion for an extension of time is filed by the stated date, the case may be dismissed.

(1) Please indicate whether the Sample Meter Testing Plan proposed in the application will be the same as the Sample Testing Plan described in Appendix "A" attached to this Order. If it is not the same, then describe the areas where it differs.

Done at Frankfort, Kentucky, this 21st day of January, 1988.

PUBLIC SERVICE COMMISSION

ATTEST:

Executive Director

# APPENDIX A

APPENDIX TO AN ORDER OF THE PUBLIC SERVICE COMMISSION IN CASE NO. 10124 DATED 1/21/88

# KENTUCKY PUBLIC SERVICE COMMISSION

STATISTICAL

•••

## SAMPLE TESTING PLAN

FOR

SINGLE PHASE ELECTRIC. METERS

January 20, 1984

•

.

#### SAMPLE TEST PLAN IMPLEMENTATION

This plan is currently approved by the Public Service Commission of Kentucky for use in lieu of 100% periodic testing where the utility can demonstrate that the use of sample testing is justified. It is justified in those instances where the utility can realize significant savings in meter testing expense while maintaining or improving the level of accuracy and service to the consumers.

Any utility contemplating the use of sample testing should analyze its situation in light of the above considerations. Should circumstances prove favorable to the use of sample testing the utility should seek authorization from the Commission for its implementation. In considering a sample testing plan for single phase electric watt-hour meters in Kentucky, some factors other than purely statistical must be taken into account. Specifically, the requirements of the Public Service Commission rules must be integrated into the plan to insure compliance with the rules as well as to provide a plan which will be statistically sound, economical, and effective in providing the necessary standards of service to the customer, however, no request by a utility for permission to institute sample testing of meters will be considered unless the utility is currently on schedule in the eight-year test cycle.

In particular the rules state:

- Periodic sampling plans apply only to single phase meters.
- No meter may remain in service without testing longer than 25 years.
- 3) All meters must be tested at 50% power factor, L.L. and F.L.
- 4) The overall accuracy of meters for refund and back billing purposes is obtained by averaging the percent accuracy at full load and light load.

Obviously, these and other Commission rules will have some effect on the nature of the sampling plan, i.e.:

Provision Number 4: While averaging the full load (FL) and light load (LL) accuracies is permitted and valid in terms of refunding and back billing, its use exclusively in statistical evaluation of test data will obscure much information about meter performance under different load conditions. Various kinds of

meters may exhibit marked variations in registration, particularly at light load. Therefore, it is considered desirable to plot and evaluate data at full load, light load and average load.

Provision Number 2: High degrees of reliability can often be obtained from relatively small samples drawn randomly from a homogenous population. However, every meter must be tested at least once every 25 years regardless of the condition of that particular group as indicated by the yearly sample. Therefore, there appears to be no justification for using minimal sample sizes.

On the average, in order to meet the 25-year requirement, 4% of the meters in each group must be tested annually. Therefore, it is considered desirable to have a 4% sample size for each group. While this figure is larger than is needed in many cases for a good estimate of the group condition, the larger the sample the better the estimate of the group condition.

In addition, if substantially less than this number is tested annually, it is quite possible that a utility could build up a large backlog of untested meters in the latter years of a 25-year period which would be very difficult to complete in the remaining time.

Most sampling plans which are considered in regard to meters are based on the Gaussian or "normal" distribution. The statistics derived from the curve, i.e.,  $\overline{X}$  "Bar-X", and "sigma," once known, completely describe the curve. In other words, if X and sigma are known the curve can be reproduced.  $\overline{X}$  is the arithmetic mean, and sigma is the standard deviation. The first is a measure of central tendency and the later is a measure of the dispersion of the data about the mean.

- 2 -

In order for these statistics to be valid and useful the population under consideration and/or the sample drawn from that population must distribute normally. For example, because  $\sigma$  is a mathematical function of the normal curve, precisely 68.26% of the items comprising the distribution will be contained in  $\pm$  one,  $\sigma$ , etc.

If the items do not distribute normally, an error or uncertainty will be introduced, the magnitude of which will depend on the degree of nonconformity of the data from the normal distribution.

If the population is homogeneous, where the quantity measured is a continuous variable and occurs randomly, and where the sample is selected randomly, the sample will distribute approximately normal, with better and better approximations as the sample size increases. But when watthour meters of different age, manufacturer, bearing systems, retarding magnets, etc., are grouped together for purposes of sample testing, the group may no longer be sufficiently homogeneous to produce distributions for which  $\overline{X}$  and  $\overline{\sigma}$  are meaningful.

The experience of some utilities using sample testing has been to get multimodal, and particularly bimodal distributions (Figure 1). Also, some distributions, particularly on light load tests, bear no resemblance whatever to the normal curve.

The question to be answered is what is a good enough approximation of the normal distribution to justify the use of its statistics. This question must be resolved by the users of the sampling plan as the situations occur. When these situations occur the user must be

- 3 -

aware of the limitations of the information derived, and he should attempt to determine the cause.

The sample should be drawn randomly. That is, each meter in the group should have an equal chance of being selected. For a given year, the sample should be without replacement. In subsequent years, the sample should not include any meters which have been tested in the previous seven years.

The reliability of normal curve statistics begins to diminish at about sample size 200 or less and is generally considered too low at sample size 30. Consequently, 30 should be the minimum sample size. Below this number other statistical techniques are employed.

In consideration of the preceding arguments, the following sample testing procedure is presented: Steps:

- Divide single phase meters into groups (usually five) according to differences in operating characteristics, bearing systems, compensations, etc.
- Randomly select 4% of each group (minimum of 30).
   Eliminate from the sample any nonregistering meters and replace.
- 3) Test selected meters at LL, FL and 50% power factor when applicable. (50% P.F. test will not be used in calculations.)
- Plot on separate tally sheets, FL, LL, and average of the two. (Note general shape of the distribution.)

- 4 -

- 5) Compute sample mean and standard deviation for each of the above distributions. (Perform the following operations only on the distribution for the average of FL and LL.)
- 6) Standardize variables. (so standard normal curve tables may be used). This is performed as follows: The allowable error for meters is  $\pm$  2%, so  $\pm$ 2% is the upper limit (u) and -2% is the lower limit (L). Then the standardized variables are  $Z_u$  for upper and  $Z_L$  for lower.

$$z_{u} = \underline{u} - \overline{x} = \frac{+2}{\sigma} - \overline{x}$$

$$z_{L} = \overline{x} - L = \overline{x} - (-2) = \overline{x} + 2$$

- 7) Enter table 1 page **6** with  $Z = Z_u$  and read the percentage of meters faster than +2%. Enter table 1 again with  $Z = Z_L$  and read the percentage of meters slower than -2%. These two values are added together. They will both either be positive or zero. This is the estimate of the percentage of meters in the group outside the limits of  $\pm 2\%$ .
- 8) Refer to the table in PSC KAR 5:041E, Sect. 16(4)(a) to determine if additional meters in the group must be tested. (See table 2, page \$.)



|     | % area | 3    | % area |
|-----|--------|------|--------|
| 0.0 | 50.00  | 2.0  | 02.28  |
| 0.1 | 46.02  | 2.1  | 01.79  |
| 0.2 | 42.07  | 2.2  | 01.39  |
| 0.3 | 38.21  | 2.3  | 01.07  |
| 0.4 | 34.46  | 2.4  | 00.82  |
| 0.5 | 30.85  | 2.5  | 00.62  |
| 0.6 | 27.42  | 2 •6 | 00.37  |
| 0.7 | 24.20  | 2.7  | 00.35  |
| 0.8 | 21.19  | 2.8  | 00.26  |
| 0.9 | 18.41  | 2.9  | 00.19  |
| 1.0 | 15.87  | 3.0  | 00.13  |
| 1.1 | 13.57  | 3.1  | 00.10  |
| 1.2 | 11.41  | 3.2  | 00.07  |
| 1.3 | 09.68  | 3.3  | 00.05  |
| 1.4 | 08.08  | 3.4  | 00.03  |
| 1.5 | 06.68  | 3.5  | 00.02  |
| 1.6 | 05.48  | 3.6  | 00.02  |
| 1.7 | 04.46  | 3.7  | 00.01  |
| 1.8 | 03.59  | 3.8  | 00.01  |
| 1.9 | 02.87  | 3.9  | 00.00  |

TABLE 1

- 6 -

| Percent of             | Meters Within   | Percentage of Meters  |  |  |  |
|------------------------|-----------------|-----------------------|--|--|--|
| Limits of              | 2% Fast or Slow | to be Tested Annually |  |  |  |
| (Indicated by Sample)* |                 |                       |  |  |  |
|                        |                 |                       |  |  |  |
| 99.0                   | 100.0           | 2                     |  |  |  |
| 98.0                   | 98.9            | 4                     |  |  |  |
| 97.0                   | 97.9            | 6 '                   |  |  |  |

| 96.0      | 96.9 | 8  |
|-----------|------|----|
| 95.0      | 95.9 | 10 |
| 93.0      | 94.9 | 12 |
| 91.0      | 92.9 | 14 |
| Less than | 91.0 | 16 |

••• 6

•

\*807 KAR 5:041E Sect. 16(4)(a)

•

# TABLE 2

APPENDIX "I" (T. Paper)

Example of Distribution Tables, Computation of  $\overline{X}$  and  $\sigma^{-}$ , and use of Tables I and II

... **c** 



TALLY SHEET

ERROR

METER TEST RESULTS - PERCENTAGE OF



TALLY SHEET

7 FAST

METER TEST RESULTS - PERCENTAGE OF ERROR

NOTS

% \\

Figure No. 2

702 Total

| In the latter basis of the latter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | METER CALBRATION EVALUATION                    | ROUP 5     |   | LIGHT                | LOAD                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|---|----------------------|-------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IN SALE LESIS 1900 G                           |            |   | AVERAGE              | $(\bar{X})^{-} =232 \bar{X}$        |
| FROR     METERS     NO. OF METERS TESTO - 702       IN 5 (D)     (N)     (N2) $(X^2)$ (N2)       2.1     (N)     (N2) $(X^2)$ (N2)       1.3     (N)     (N2) $(X^2)$ (N2)       1.4     (N)     (N2) $(X^2)$ $(X^2)$ 1.4     (N)     (N2) $(X^2)$ $(X^2)$ 1.4     (N)     (N2) $(X^2)$ $(X^2)$ 1.4     (N)     (N) $(X^2)$ $(X^2)$ 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Meter No. of                                   |            |   | STD. DEV             | ( <b>d</b> ) = <u>.427 7</u> .      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Error Meters                                   |            |   | NO. OF METERS        | $\mathbf{TESTED} = \underline{702}$ |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN Z (X) (N)                                   | (NX)       |   | $(x^2)^{-1}$         | (Nx <sup>2</sup> )                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                            |            |   | 4.41                 |                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                            |            |   | 4.00                 |                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |            |   |                      |                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>    1.8                                </u> |            |   | 3.24                 |                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |            |   | 2.59                 |                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                                            | ····       |   | 2.25                 |                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4                                            |            |   | 1.95                 |                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3                                            |            |   | 1.69                 |                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2                                            |            |   | 1.44                 | <br>                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                                            | ·          |   | 1.21                 |                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | ······     |   |                      |                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                       |            |   | 0.64                 | •                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 3                                            | 2 1        |   | 0.49                 | 1.47                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | 1.8        |   | 0.36                 | . 1.08                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | 17.5       |   | 0.25                 | 8.75                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 428                                            | _11.2      |   | 0.16                 | 4.48                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |            |   | 0.09                 | 6,21                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63                                             |            |   | 0_04                 | 2,52                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | 2.0        |   | 0.01                 | 20                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL 2 -                                      |            |   |                      |                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .0 12                                          | 00.0       |   | 00.0                 | 00.00                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | 2.8        |   | 0.01                 | . 28                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .2 35                                          | 7.0        |   | 0.04                 | 1.40                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | 28.8       |   | 0.09                 | 8.64                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54                                             | 21.6       |   | 0.16                 | 8,64                                |
| $\frac{6}{-7} = \frac{39}{41} = \frac{23.4}{28.7} = \frac{0.36}{0.49} = \frac{14.04}{20.09}$ $\frac{8}{8} = \frac{30}{20} = \frac{24.0}{24.0} = \frac{0.49}{0.64} = \frac{20.09}{20.09}$ $\frac{9}{9} = \frac{11}{20} = \frac{0.64}{20.49} = \frac{20.09}{20.09}$ $\frac{1.0}{1.1} = \frac{10}{2.20} = \frac{0.81}{1.20} = \frac{0.81}{33.00} = \frac{14.04}{33.00}$ $\frac{1.0}{1.00} = \frac{0.81}{33.00} = \frac{0.81}{33.00} = \frac{8.91}{33.00}$ $\frac{1.0}{1.21} = \frac{0}{0} = \frac{0.81}{1.221} = \frac{0.81}{33.00}$ $\frac{1.0}{1.00} = \frac{0.81}{33.00} = \frac{0.81}{33.00} = \frac{14.04}{33.00}$ $\frac{1.0}{1.21} = \frac{0}{0} = \frac{0.81}{1.221} = \frac{0.81}{33.00}$ $\frac{1.0}{1.21} = \frac{0.81}{1.20} = \frac{0.81}{33.00} = \frac{0.81}{33.00} = \frac{0.81}{33.00}$ $\frac{1.0}{1.00} = \frac{0.81}{33.00} = \frac{0.81}{33.00} = \frac{0.81}{33.00}$ $\frac{1.0}{1.00} = \frac{0.81}{33.00} = \frac{0.81}{33.00} = \frac{0.81}{33.00}$ $\frac{1.0}{1.21} = \frac{0.81}{1.20} = \frac{0.81}{33.00} = \frac{0.81}{3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | 50.5       |   | 0.25                 | 25.25                               |
| $\frac{7}{8} - \frac{41}{30} - \frac{28.7}{24.0} - \frac{0.49}{0.64} - \frac{20.09}{19.20} - \frac{19.20}{19.20} - \frac{19.20}{10.2} - \frac{10.20}{10.2} - \frac{10.20}{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 639                                            | 23.4       |   | 0.36                 | 14.04                               |
| $\frac{3}{4} = \frac{30}{11} = \frac{24.0}{9.9} = \frac{0.04}{0.81} = \frac{19.20}{8.91}$ $\frac{10}{1.0} = \frac{33}{33.0} = \frac{0.04}{0.81} = \frac{3.91}{33.00}$ $\frac{1.1}{1.00} = \frac{0.04}{0.81} = \frac{3.91}{33.00}$ $\frac{1.00}{1.21} = \frac{0.04}{0.00} = \frac{33.00}{1.00}$ $\frac{1.1}{1.2} = \frac{0.04}{0.00} = \frac{0.04}{0.81} = \frac{3.91}{33.00}$ $\frac{1.0}{1.2} = \frac{0.04}{0.00} = \frac{0.04}{0.81} = \frac{3.91}{0.00}$ $\frac{1.0}{1.2} = \frac{1.00}{0} = \frac{0.04}{0.00} = \frac{0.04}{0.00}$ $\frac{1.0}{1.2} = \frac{1.00}{0} = \frac{0.04}{0.00} = \frac{0.04}{0.00}$ $\frac{1.0}{1.2} = \frac{1.00}{0} = \frac{0.04}{0.00} = \frac{0.04}{0.00}$ $\frac{1.0}{1.2} = \frac{0.00}{0.00} = \frac{0.00}{0.00}$ $\frac{1.0}{1.2} = \frac{0.00}{0.00}$ $\frac{1.0}{0.00} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | 28.7       |   | 0.49                 | · <u>20.09</u>                      |
| $\frac{4}{10} \qquad \frac{11}{33} \qquad \frac{9.3}{33.0} \qquad \frac{10.84}{1.21} \qquad \frac{3.21}{33.00} \qquad \frac{11.20}{0} \qquad \frac{33.00}{0} \qquad \frac{11.21}{1.21} \qquad \frac{33.00}{0} \qquad \frac{11.21}{1.44} \qquad \frac{11.44}{1.44} \qquad \frac{11.96}{1.96} \qquad \frac{11.9}{2.255} \qquad \frac{2.25}{2.25} \qquad \frac{11.6}{2.256} \qquad \frac{2.25}{2.25} \qquad \frac{11.6}{2.256} \qquad \frac{11.9}{2.225} \qquad \frac{11.6}{2.256} \qquad \frac{11.9}{2.225} \qquad \frac{11.6}{2.225} \qquad \frac{11.6}{2.2$                                                                                                                                                                                                                                                                                                                                                                               | 830                                            | 24.0       |   | 0.64                 | 12.20                               |
| $\frac{1.1}{1.2} - \frac{1}{1.2} - \frac{1}{1.2} - \frac{1}{1.2} - \frac{1}{1.2} - \frac{1}{1.2} - \frac{1}{1.44} - \frac{1}{1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                | 9.9        |   | 1.00                 | 33.00                               |
| $\frac{1.2}{1.3} \qquad 1.2 \qquad 1.2 \qquad 1.44 \qquad 1.$ |                                                | <u></u> D  |   | <u>1.21</u>          | 0                                   |
| $\frac{1.3}{1.4} = \frac{1.69}{1.96} = \frac{1.69}{1.96}$ $\frac{1.6}{2.25} = \frac{1.6}{2.25} = \frac{1.6}{2.25}$ $\frac{1.6}{2.25} = \frac{1.6}{2.25} = \frac{1.6}{2.25}$ $\frac{1.7}{2.6} = \frac{2.89}{1.9} = \frac{1.6}{2.25} = \frac{1.6}{2.25}$ $\frac{1.8}{2.25} = \frac{1.6}{2.25} = \frac{1.6}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25} = \frac{1.69}{2.25}$ $\frac{1.6}{2.25} = \frac{1.69}{2.25} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-\frac{1}{1}$                                 | 1.2        |   | 1.44                 | 1.44                                |
| $\frac{1.4}{1.5} = \frac{1.96}{2.25} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3                                            |            |   | 1.69                 |                                     |
| $\frac{1.5}{1.6} = \frac{2.25}{2.56} = \frac{2.25}{2.56}$ $\frac{1.7}{2.0} = \frac{2.2}{2.3} = \frac{2.2}{2.56} = \frac{2.2}{2.56}$ $\frac{1.9}{3.24} = \frac{2.2}{3.54} = \frac{2.2}{2.56} = \frac{2.2}{2.56}$ $\frac{1.9}{3.24} = \frac{2.2}{3.54} = 2.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4                                            |            |   | 1.96                 |                                     |
| $\frac{1.6}{1.7} = \frac{2.36}{2.89} = \frac{1.24}{1.24} = \frac{1.2}{1.24} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                            |            |   | 2.25                 |                                     |
| $\frac{1.7}{1.8}$ $\frac{1.9}{2.0}$ $\frac{2.0}{2.1}$ $\frac{1.7}{10TAL \ 3 = 230.0}$ $\frac{1.9}{4.41}$ $\frac{1.9}{1.65.60}$ $\frac{1.9}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.65.60}{(702)}$ $\frac{1.2359}{(.0538)}$ $\frac{1.272}{(.1821)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                                            |            |   | 2.56                 |                                     |
| $\frac{1.9}{2.0}$ $\frac{1.9}{2.1}$ $TOTAL 1 = 702$ $TOTAL 3 = 230.0$ $\frac{1}{x} = \frac{100}{1000} = \frac{1000}{1000} = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |            |   | 3.24                 |                                     |
| $\frac{2.0}{2.1}$ TOTAL 1= 702<br>TOTAL 3= 230.0<br>$\frac{x}{x} = \frac{TOTAL 2 - TOTAL 3}{TOTAL 1}$ $\frac{x}{x} = \frac{(67.9) - (230.9)}{(702)}$ $\frac{x}{x} = \frac{(-163.0)}{(702)} =2327$ $\frac{4.00}{4.41}$ TOTAL 4 = 165.60<br>TOTAL 4 = 165.60<br>TOTAL 4 = -x <sup>2</sup><br>TOTAL 1<br>$\sigma = \sqrt{\frac{TOTAL 4}{TOTAL 1}}$ $\sigma = \sqrt{\frac{(165.60)}{(702)} - (232)^{2}}$ $\sigma = \sqrt{(.2359) - (.0538)}$ $\sigma = \sqrt{(.1821)4277}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9                                            |            |   | 3, 61                |                                     |
| $\frac{2.1}{\text{TOTAL } 1 = 702}$ $\frac{4.41}{\text{TOTAL } 4 = 165.60$ $\frac{1}{X} = \frac{\text{TOTAL } 2 - \text{TOTAL } 3}{\text{TOTAL } 1}$ $\frac{1}{X} = \frac{(67.9) - (230.9)}{(702)}$ $\frac{1}{X} = \frac{(-163.0)}{(702)} =2327$ $\sigma = \sqrt{\frac{(.2359) - (.0538)}{(.1821)4277}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                            |            |   | 4.00                 |                                     |
| TOTAL L= 702<br>TOTAL 3= 230.0<br>$\bar{x} = \frac{TOTAL 2 - TOTAL 3}{TOTAL 1}$ $\bar{x} = \frac{(67.9) - (230.9)}{(702)}$ $\bar{x} = \frac{(-163.0)}{(702)} =2327$ $\sigma = \sqrt{\frac{(165.60)}{(.2359) - (.0538)}}$ $\sigma = \sqrt{(.2359) - (.0538)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.1                                            |            |   | 4.41                 |                                     |
| TOTAL $1 = 702$<br>TOTAL $3 = 230.0$<br>$\bar{x} = \frac{TOTAL 2 - TOTAL 3}{TOTAL 1}$<br>$\bar{x} = \frac{(67.9) - (230.9)}{(702)}$<br>$\bar{x} = \frac{(-163.0)}{(702)} =2327$<br>$\sigma = \sqrt{\frac{(165.60)}{(702)} - (232)^2}$<br>$\sigma = \sqrt{(.2359) - (.0538)}$<br>$\sigma = \sqrt{(.1821)4277}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |            |   |                      | 1 - 165 60                          |
| $\overline{X} = \frac{\text{TOTAL } 2 - \text{TOTAL } 3}{\text{TOTAL } 1}$ $\overline{X} = \frac{(67.9) - (230.9)}{(702)}$ $\overline{X} = \frac{(-163.0)}{(702)} =232\overline{2}$ $\overline{\sigma} = \sqrt{\frac{(.2359) - (.0538)}{(.1821)427\overline{2}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOTAL DA 702<br>TOTAL 3                        | 230.0      |   | . TOTAL              | 4 = 105.00                          |
| $\bar{x} = \frac{\text{TOTAL } 2 - \text{TOTAL } 3}{\text{TOTAL } 1}$ $\bar{x} = \frac{(67.9) - (230.9)}{(702)}$ $\bar{x} = \frac{(-163.0)}{(702)} =2327$ $\sigma = \sqrt{\frac{(165.60)}{(702)} - (232)^2}$ $\sigma = \sqrt{(.2359) - (.0538)}$ $\sigma = \sqrt{(.1821)} = .4277$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | 23010      | _ |                      | 2                                   |
| $\bar{x} = \frac{(67.9) - (230.9)}{(702)}$ $\bar{x} = \frac{(-163.0)}{(702)} = \frac{2327}{2}$ $\sigma = \sqrt{\frac{(165.60)}{(702)} - (232)^2}$ $\sigma = \sqrt{(.2359) - (.0538)}$ $\sigma = \sqrt{(.1821)} = \frac{.4277}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = TOTAL 2 - TOTA                               | <u>L 3</u> | 0 | TOTAL 4              | - X ··                              |
| $\bar{x} = \frac{(67.9) - (230.9)}{(702)} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTAL 1                                        |            |   | TOTAL 1              |                                     |
| $\mathbf{x} = \frac{(-163.0)}{(702)} = \frac{2327}{2327} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - (67 0) $-$ (230)                             | .9)        | 0 | (165.60              | )) - (232) <sup>2</sup>             |
| $\bar{X} = \frac{(-163.0)}{(702)} = \frac{2327}{2327}$ $\sigma = \sqrt{(.2359) - (.0538)}$ $\sigma = \sqrt{(.1821)} = \frac{.4277}{.4277}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $X = \frac{(07.3) - (2307)}{(702)}$            | <u> </u>   | • | (702)                |                                     |
| $\mathbf{x} = \frac{(-163.0)}{(702)} = \frac{2327}{2327} \qquad \mathbf{\sigma} = \sqrt{(.2359) - (.0538)} \\ \mathbf{\sigma} = \sqrt{(.1821) - (.4277)} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |            |   | V                    |                                     |
| (702) = $232\%$<br>$\sigma$ - $\sqrt{(.1821)}$ - $.427\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\bar{X} = (-163.0)$                           | 0.20       | ٥ | - V(.2359)           | - (.0538)                           |
| $\sigma - (.1821)4277$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (702) =                                        | 232%       |   |                      | -                                   |
| ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |            | ( | <b>Γ -</b> \ (.1821) | = .4277                             |

•



PERCENTAGE UP 1 MELLK IESL RESULTS

LKNUR

METER CAL ----

| TER CALIBRATION EVALUATION<br>17 SAMPLE TESTS 1968 GROUP 5<br>METER |                                               |                                        |           | FULL LOAD<br>AVERAGE $(\overline{X}) =348$ %<br>STD. DEV. $(\sigma) = .357$ %<br>NO. OF METERS TESTED = 702 |                                        |  |  |
|---------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| ERROR<br>IN Z (X)                                                   | (n)                                           | (nx)                                   |           | (x <sup>2</sup> )                                                                                           | ( <b>n</b> x <sup>2</sup> )            |  |  |
| 2.1                                                                 |                                               | والتفاكر بالمربسين                     |           |                                                                                                             |                                        |  |  |
| 1.9                                                                 |                                               |                                        |           | 3.61                                                                                                        | · · ·································· |  |  |
| 1.8                                                                 | <u> </u>                                      |                                        |           | 3.24                                                                                                        |                                        |  |  |
| <u> </u>                                                            |                                               |                                        |           | 2.89                                                                                                        |                                        |  |  |
| <u> </u>                                                            |                                               |                                        |           | 2.25                                                                                                        |                                        |  |  |
| 1.3                                                                 |                                               |                                        |           | 1.69                                                                                                        |                                        |  |  |
| $\frac{1.2}{1.1}$                                                   |                                               |                                        |           | $\frac{1.44}{1.21}$                                                                                         | · •                                    |  |  |
| 1.0                                                                 |                                               | ······································ |           | 1.00                                                                                                        |                                        |  |  |
| <u>.</u>                                                            |                                               | 8                                      |           | 0.81                                                                                                        | 64                                     |  |  |
| 7                                                                   | 4                                             | <u> </u>                               |           | 0.49                                                                                                        | 1.96                                   |  |  |
|                                                                     |                                               | 7.5                                    |           | 0.25                                                                                                        | 3.75                                   |  |  |
|                                                                     | <u>    14                                </u> | <u> </u>                               |           | -0.16<br>0.09                                                                                               | $\frac{2.24}{1.80}$                    |  |  |
| 2                                                                   |                                               | 9.0                                    |           | 0.04                                                                                                        | 1.80                                   |  |  |
| <u>_</u>                                                            | <br>TOTAL 2 =                                 |                                        |           | 0_01                                                                                                        | 10                                     |  |  |
| 0                                                                   |                                               | 00.0                                   |           | 0.00                                                                                                        | 00.00                                  |  |  |
| <u>_</u>                                                            | 40                                            | 4.0                                    | . · · · · | 0.01                                                                                                        | 40                                     |  |  |
| 3                                                                   |                                               | 15.0                                   |           | 0.09                                                                                                        | 4,50                                   |  |  |
|                                                                     | 84                                            | 33.6                                   |           | <u> </u>                                                                                                    | 13.44                                  |  |  |
| .6                                                                  | 40                                            | 24.0                                   | •.        | 0.36                                                                                                        | <u> </u>                               |  |  |
| 78                                                                  | 64                                            | <u>    44.8     </u>                   |           | 0.49                                                                                                        | <u>31.36</u>                           |  |  |
|                                                                     |                                               | 1.8                                    |           | 0.81                                                                                                        | 1.62                                   |  |  |
|                                                                     |                                               |                                        |           | <u> </u>                                                                                                    | 10_00                                  |  |  |
| 1.2                                                                 |                                               |                                        |           | 1.44                                                                                                        |                                        |  |  |
| 1.4                                                                 |                                               |                                        |           | 1.96                                                                                                        |                                        |  |  |
| $\frac{1.5}{1.6}$                                                   |                                               |                                        |           | 2.25                                                                                                        |                                        |  |  |
| <u> </u>                                                            |                                               |                                        |           | 2.89                                                                                                        |                                        |  |  |
| $\frac{1.8}{1.9}$                                                   |                                               |                                        |           | 3.61                                                                                                        |                                        |  |  |
| 2.0                                                                 |                                               |                                        |           | 4.00                                                                                                        |                                        |  |  |
|                                                                     |                                               |                                        |           | <u>4_41</u>                                                                                                 |                                        |  |  |
| TOTAL 1                                                             | • 702 TOTAL                                   | 3= 2/8.1                               | •         | TOTAL 4                                                                                                     |                                        |  |  |
| $\overline{X} = \underline{T}$                                      | TAL 2 - TOT<br>TOTAL 1                        | AL 3                                   |           | $\sigma = \frac{\text{TOTAL 4}}{\text{TOTAL 1}}$                                                            | - X <sup>2</sup>                       |  |  |
| x - <u>(</u>                                                        | (702)                                         | 9.1)                                   |           | σ - ( <u>(174.68)</u><br>(702)                                                                              | - ( 348) <sup>2</sup>                  |  |  |
| <del>.</del> _ /                                                    | -244 9                                        |                                        |           | <b>6 - (K.2488)</b>                                                                                         | - (.1211)                              |  |  |
| × = 7.                                                              | (702)                                         | (348) 7                                |           | σ = V <sup>(.1277)</sup>                                                                                    | <u>. 357 %</u>                         |  |  |

FAST (+)

••

(-) Motis

SAMPLE GROUP No. 5 - 1968 LOAD Average 1% Sample Tests Quantity of Meters Tested **Total** 2.1 2.0 1.9 1.8 1.7 1.6 1.5 7. FAST 1.4 1.3 1.2 1.1 1.0 .9 .8 .7 .6 111 3 :5 144 5 .4 +++++++++ 10 +++- +++ |11 .3 # 18 c. HH HH HH HH HH H44 .2 ## 35 HH HH HH HH III .1 24 .0 ## 111 4m mm mm 4m 4m 1m mm 111 48 .1 79 .2 ## ## 111- 1114 1114 HI HI HI HI HI HI ## 70 .3 +44 +44 +++ +++ +++ +++ +++ 49 ///( ++++ ++++ ++++ ++++ ++++ ## ## ## ### ### ## .4 ## ## 111 1/// 78 ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ .5 ++++ ++++ 87  $\prime\prime\prime$ 1111 1111 1111 1111 111 1111 1111 1111 1111 1111 1111 1111 89 .6 ## ## ## 1//+ 70 1111 20 ++++ ++++ .8 .9 ## ## [/!! 14 3 1.0/// SLOW 1.1 1.2 ~ 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 Figure No. 4 702 Total

TALLY SHEET

METER TEST RESULTS - PERCENTAGE OF ERROR

| METER CALIBRATION EVALUATION<br>1% SAMPLE TESTS 1968 GROU | P 5                                    |                   | AVERAGE   |                                                                                             |
|-----------------------------------------------------------|----------------------------------------|-------------------|-----------|---------------------------------------------------------------------------------------------|
| 107797 No 07                                              |                                        |                   | STD. DEV. | $(x) = \frac{3167}{.322}$                                                                   |
| ERROR METERS                                              |                                        | NO. OF MELI       |           | =                                                                                           |
| IN X (X) (n)                                              | (nx)                                   | (x <sup>2</sup> ) |           | $(nx^2)$                                                                                    |
| 2.1                                                       |                                        | 4.41              |           |                                                                                             |
| 2.0                                                       |                                        | 4.00              |           |                                                                                             |
| 1.8                                                       |                                        | 3.24              |           |                                                                                             |
| 1.7                                                       | ······                                 | 2.89              |           |                                                                                             |
| <u> </u>                                                  |                                        | 2.56              | ······    |                                                                                             |
|                                                           |                                        | 1.96              |           |                                                                                             |
|                                                           |                                        | 1.69              |           |                                                                                             |
| <u> </u>                                                  | <b>.</b>                               | 1.44              |           |                                                                                             |
| $\widehat{+}$ $1.0$ $$                                    | -                                      |                   |           |                                                                                             |
|                                                           | ······································ | 0.81              |           |                                                                                             |
| § <u> </u>                                                |                                        | 0_64              |           |                                                                                             |
| <sup>6</sup> . <u></u>                                    | 1.8                                    | 0.36              |           | 1.08                                                                                        |
|                                                           | 2.5                                    | 0.25              |           | 1.25                                                                                        |
|                                                           | 4.0                                    | 0.16              |           | 1.60                                                                                        |
| ·Z 35                                                     | 7.0                                    | 0.09              |           | 1.62                                                                                        |
|                                                           | 2.4                                    | 0.01              |           | .24                                                                                         |
| TOTAL 2 -                                                 | 23.1                                   |                   |           |                                                                                             |
| 48                                                        | 00.0                                   | 0_00              |           | 00.00                                                                                       |
| -1                                                        | 7.9                                    | ·· •              |           |                                                                                             |
| $-\frac{12}{-3}$ $-\frac{79}{-49}$                        | 14.7                                   | 0.04              | ·····     | <u> </u>                                                                                    |
| 4 78                                                      | 31.2                                   |                   |           | 12.48                                                                                       |
| <u> </u>                                                  | 43.5                                   | 0.25              | ,         | 21.75                                                                                       |
| $\frac{-3}{-7}$ $\frac{-3}{70}$                           | 49.0                                   | 0.49              |           | 34.30                                                                                       |
|                                                           | 16.0                                   | 0.64              |           | 12.80                                                                                       |
| <u> </u>                                                  | 12.6                                   | <u> </u>          |           | 11.34                                                                                       |
|                                                           |                                        | 1.21              |           |                                                                                             |
| v <u>1.2</u>                                              |                                        | 1_44              |           |                                                                                             |
| <u> </u>                                                  |                                        | -1.69             |           |                                                                                             |
| 1.5                                                       |                                        | 2.25              |           |                                                                                             |
| 1.6                                                       |                                        | 2.56              |           | م میں میں میں الکر المیں الکر المیں ہے۔<br>میں الکر میں |
| 1.8                                                       |                                        | <u> </u>          |           |                                                                                             |
| 1.9                                                       | ~ <u></u>                              | 3.61              |           |                                                                                             |
| 2,0                                                       |                                        | 4.00              |           |                                                                                             |
|                                                           |                                        |                   |           |                                                                                             |
| TOTAL 1 - 702                                             |                                        | • • 1             | OTAL 4 =  | 142.90                                                                                      |
| 101AL 3                                                   |                                        |                   |           |                                                                                             |
| X - TOTAL 2 - TOTAL                                       | 3                                      | <b>~</b> -        | TOTAL     | <u>→</u> <sup>2</sup>                                                                       |
|                                                           |                                        | <b>~</b> -        | TOTAL     |                                                                                             |
| x = (23.1) - (245.3) (702)                                | 2                                      | σ.                | (142.9    | $(-,316)^2$                                                                                 |
| ▼ ( 000 0)                                                |                                        | -                 | (702      | )                                                                                           |
| $x = \frac{(-222.2)}{(702)}310$                           | 5 <b>Z</b>                             | σ-                | (.2035    | ) - (.0999)                                                                                 |
|                                                           |                                        | σ                 | V(. 1036  | . 322%                                                                                      |

-

## Use of Tables I and II

From the computations for average load, from the previous page.

$$\bar{X} = -.316 = -.32$$
  
 $\sigma^- = .322 = .32$ 

Standardize variables:

$$Z_u = \frac{+2-(-.32)}{.32} = \frac{2.32}{.32} = 7.25 = 7.2$$

$$\frac{2}{L} = \frac{-.32+2}{.32} = \frac{1.68}{.32} = 5.25 = 5.2$$

(round off using standard round of rule, or interpolate) Enter table I with Z = 7.2. Table only extends to Z = 3.9, so value for Z = 7.2 is zero.

The same is true for Z = 5.2. Consequently all meters are within the limits of  $\pm 2\%$  and no additional meters must be tested. Suppose  $Z_{ij}$  had been 1.4

and  $Z_r$  had been 1.7

Then from table I, the value for:  $Z_u = 8.08\%$ 

 $Z_{T} = 4.46\%$ 

Adding these gives a total of 12.54%. Going to Table II it is seen that 16% of the meters in the group must be tested.

APPENDIX II

.

Method of Computing Confidence Intervals for  $\overline{X}$  and  $\sigma^-$ 

. G

.

#### CONFIDENCE INTERVALS

Since the  $\overline{X}$  and  $\sigma$  of a sample which is drawn from a population are seldom exactly the same as the mean and standard deviation of the population, it is very helpful to be able to apply some test to determine how much in error they are likely to be.

This can be achieved by means of confidence intervals. The confidence interval provides a range of values within which you have a certain probability (confidence level) that the true population statistics will lie.

Any confidence level for the confidence interval may be computed, but the 95% confidence level is very frequently used. For a 95% confidence level, the confidence intervals for  $\overline{X}$  and  $\overline{\sigma}$  are found from the following formulas:

$$\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{N}}$$
  $\sigma \pm 1.96 \frac{\sigma}{\sqrt{2N}}$ 

Where X is the sample size.

Using a confidence interval only slightly larger, 95.44% instead of 95%, permits the use of a factor of 2 instead of 1.96 in the above formulas, thus simplifying the math. Then:

for a 95.44%  $\cong$  95% confidence interval for  $\overline{X}$  and  $\sigma^-$ , the equations become:

$$\overline{X} \pm 2 \frac{\sigma}{\sqrt{N}} \qquad \qquad \sigma \pm 2 \frac{\sigma}{\sqrt{2N}}$$

Example: 
$$N = 100$$
  
 $\overline{X} = .25$   
 $\sigma = .30$   
 $\overline{X} = .25 \pm 2 \frac{.30}{\sqrt{N}}$   
 $\overline{X} = .25 \pm .06$ 

.

Which means that you can be approximately 95% sure that the true population mean is between .19 and .31.

$$\sigma \pm 2 \frac{\sigma}{\sqrt{2N}} = .30 \pm 2 \frac{.30}{\sqrt{200}} = .30 \pm \frac{.60}{14.14}$$
$$= .30 \pm .04$$

Which means that you can be approximately 95% sure that the true population standard deviation is between .26 and .34.