COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

JAN 28 2014

In the Matter of:

PUBLIC SERVICE COMMISSION

THE APPLICATION OF)
NEW CINGULAR WIRELESS PCS, LLC)
AND AMERICAN TOWERS LLC)
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC) CASE NO.: 2014-00017
CONVENIENCE AND NECESSITY TO CONSTRUCT)
A WIRELESS COMMUNICATIONS FACILITY)
IN THE COMMONWEALTH OF KENTUCKY)
IN THE COUNTY OF BRECKINRIDGE)
	-

SITE NAME: JAKE HORSLEY

APPLICATION FOR
CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY
FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility ("AT&T Mobility"), and American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers LLC ("Applicants"), by counsel, pursuant to (i) KRS §§ 278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submit this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of AT&T Mobility with wireless communications services.

In support of this Application, Applicants respectfully provide and state the following information:

- 1. The complete name and address of the Applicants: New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility, having a local address of 601 West Chestnut Street, Louisville, Kentucky 40203; American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers LLC, having a mailing address of 10 Presidential Way, Woburn, Massachusetts 01801.
- 2. Applicants propose construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicants submit this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
- 3. The Certificate of Authority filed with the Kentucky Secretary of State for AT&T Mobility was attached to a prior application and is part of the case record for PSC case number 2011-00473 and is hereby incorporated by reference. A certificate of formation for American Towers LLC is attached as part of **Exhibit A**.
- 4. AT&T Mobility operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. A copy of the AT&T Mobility's FCC license to provide wireless services is attached to this Application or described as part of **Exhibit A**, and the facility will be constructed and operated in accordance with applicable FCC regulations. American Towers LLC will build, own and manage the tower and tower compound where AT&T Mobility will place its equipment building, antennas, radio electronics equipment and appurtenances.
 - 5. The public convenience and necessity require the construction of the

proposed WCF. The construction of the WCF will bring or improve AT&T Mobility's services to an area currently not served or not adequately served by increasing coverage and/or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. The WCF will provide a necessary link in the AT&T Mobility communications network that is designed to meet the increasing demands for wireless services in Kentucky's wireless communications service area. The WCF is an integral link in AT&T Mobility's network design that must be in place to provide adequate coverage to the service area.

6. To address the above-described service needs, Applicants propose to construct a WCF at 218 Williams Lane, Stephensport, Kentucky 40170 (37°55'53.15" North latitude, 86°28'37.73" West longitude), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by Cornelius and Adina Hollingshead pursuant to a Deed recorded at Deed Book 298, Page 681, and Deed Book 256, Page 774 in the office of the Breckinridge County Clerk. The proposed WCF will consist of a 255-foot tall tower, with an approximately 10-foot tall lightning arrestor attached at the top, for a total height of 265-feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of the AT&T Mobility's radio electronics equipment and appurtenant equipment. The WCF equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF compound will be fenced and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as Exhibit B and Exhibit C.

- 7. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete is attached as **Exhibit D**, along with a map of suitable scale showing the location of the proposed new construction as well as the location of any like facilities located anywhere within the map area, along with a map key showing the owner of such other facilities.
- 8. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for the antennas has also been included as part of **Exhibit B**.
- 9. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of **Exhibit C**.
- 10. Applicants have considered the likely effects of the installation of the proposed WCF on nearby land uses and values and have concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate the necessary antennas on an existing structure. When suitable towers or structures exist, AT&T Mobility attempts to co-locate on existing structures such as communications towers or other structures capable of supporting its facilities; however, no other suitable or available co-location site was found to be located in the vicinity of the site. A report detailing the site selection process for the subject site (including documentation as to why co-location is not possible for this site) is attached as **Exhibit E**.

- 11. A copy of the Notice of Proposed Construction and 1A letter issued to the Federal Aviation Administration ("FAA") is attached as **Exhibit F**.
- 12. A copy of the Application for Kentucky Airport Zoning Commission ("KAZC")

 Approval to construct the tower is attached as **Exhibit G**.
- 13. A geotechnical engineering firm has performed soil boring(s) and subsequent geotechnical engineering studies at the WCF site. A copy of the geotechnical engineering report, signed and sealed by a professional engineer registered in the Commonwealth of Kentucky, is attached as **Exhibit H**. The name and address of the geotechnical engineering firm and the professional engineer registered in the Commonwealth of Kentucky who supervised the examination of this WCF site are included as part of this exhibit.
- 14. Clear directions to the proposed WCF site from the County seat are attached as **Exhibit I**. The name and telephone number of the preparer of **Exhibit I** are included as part of this exhibit.
- 15. Applicants, pursuant to a written agreement, have acquired the right to use the WCF site and associated property rights. A copy of the redacted agreement or an abbreviated agreement recorded with the County Clerk is attached as **Exhibit J**. The financial terms of the lease agreement are confidential and proprietary.
- 16. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of **Exhibit C** bear the signature and stamp of a professional engineer registered in the Commonwealth of Kentucky. All tower designs

meet or exceed the minimum requirements of applicable laws and regulations.

- 17. The Construction Manager for the proposed facility is Ron Rohr, and the identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained **Exhibits B & C**.
- 18. As noted on the Survey attached as part of **Exhibit B**, the surveyor has determined that the site is not within any flood hazard area.
- 19. **Exhibit B** includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). Every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system is illustrated in **Exhibit B**.
- 20. Applicants have notified every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the telephone number and address of the PSC, and has been informed of his or her right to request intervention. A list of the notified property owners and a copy of the form of the notice sent by certified mail to each landowner are attached as **Exhibit K** and **Exhibit L**, respectively.
- 21. Applicants have notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC

docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as **Exhibit M**.

- 22. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as **Exhibit N**. Notice of the location of the proposed facility has also been requested in a newspaper of general circulation in the county in which the WCF is proposed to be located.
- 23. The general area where the proposed facility is to be located is rural in character and sparsely populated.
- 24. The process that was used by the AT&T Mobility radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. AT&T Mobility's radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered when searching for sites for antennas that would provide the coverage deemed necessary by AT&T Mobility. A map of the area in

which the tower is proposed to be located which is drawn to scale and clearly depicts the necessary search area within which the site should be located pursuant to radio frequency requirements is attached as **Exhibit O**.

- 25. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.
- 26. All responses and requests associated with this Application may be directed to:

David A. Pike
Pike Legal Group, PLLC
1578 Highway 44 East, Suite 6
P. O. Box 369
Shepherdsville, KY 40165-0369
Telephone: (502) 955-4400

Telefax: (502) 543-4410 Email: dpike@pikelegal.com

Patrick W. Turner General Attorney-Kentucky AT&T Kentucky 1600 Williams Street Suite 5200 Columbia, South Carolina 29201 Telephone: (803) 401-2900

Telephone: (803) 401-2900 Telefax: (803) 254-1731 Email: <u>pt1285@att.com</u>

Matthew Russell Attorney American Towers LLC 10 Presidential Way Woburn, MA 01801

Telephone: 781.926.7154

Email: matthew.russell@americantower.com

WHEREFORE, Applicants respectfully request that the PSC accept the foregoing Application for filing, and having met the requirements of KRS §§ 278.020(1), 278.650, and 278.665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

∠David A. Pike

Pike Legal Group, PLLC

1578 Highway 44 East, Suite 6

P. O. Box 369

Shepherdsville, KY 40165-0369 Telephone: (502) 955-4400 Telefax: (502) 543-4410

Email: dpike@pikelegal.com

Attorney for New Cingular Wireless PCS, LLC

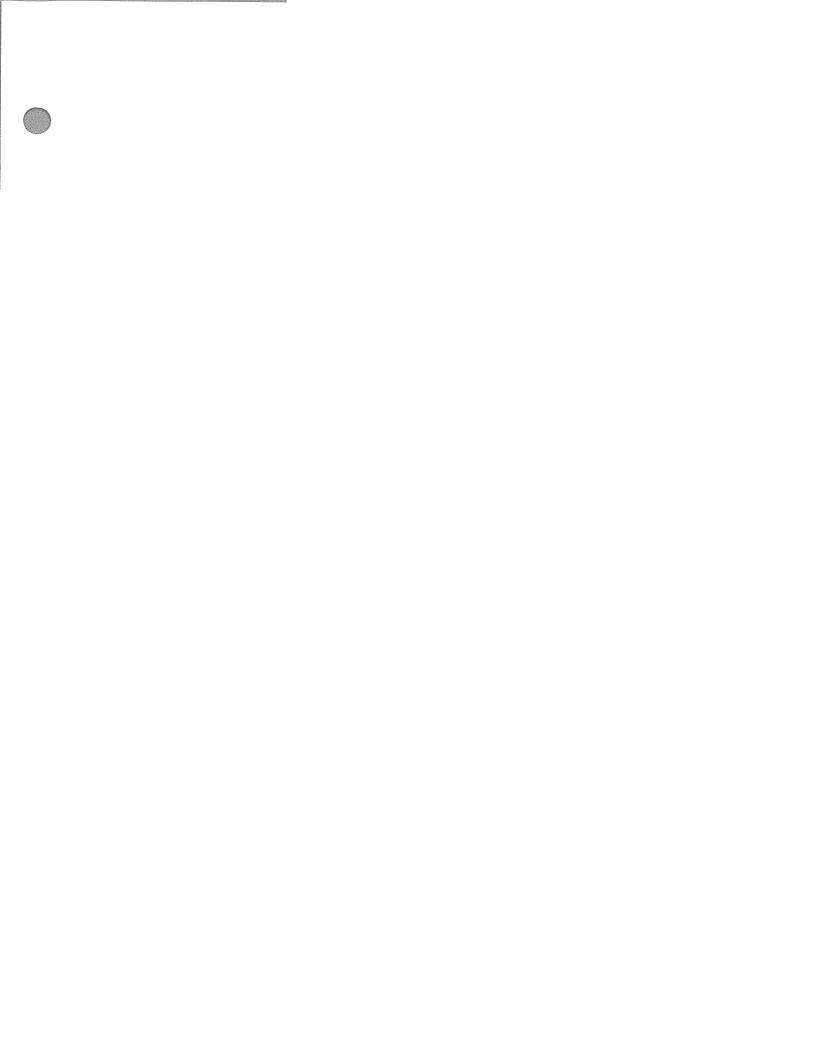
d/b/a AT&T Mobility

and

Matthew Russell 10 Presidential Way Woburn, MA 01801

Telephone: 781.926.7154

Email: <u>matthew.russell@americantower.com</u>
Attorney for American Towers LLC d/b/a Delaware


American Towers LLC

LIST OF EXHIBITS

Α **FCC License Documentation** В Site Development Plan: 500' Vicinity Map Legal Descriptions Flood Plain Certification Site Plan Vertical Tower Profile С Tower and Foundation Design D Competing Utilities, Corporations, or Persons List and Map of Like Facilities in Vicinity Ε Co-location Report F FAA G Kentucky Airport Zoning Commission Н Geotechnical Report Directions to WCF Site Copy of Real Estate Agreement J **Notification Listing** Κ Copy of Property Owner Notification Copy of County Judge/Executive Notice Μ Copy of Posted Notices Ν

Copy of Radio Frequency Design Search Area

0

EXHIBIT A FCC LICENSE DOCUMENTATION

Commonwealth of Kentucky Trey Grayson, Secretary of State

8/6/2009

Division of Corporations Business Filings

P. O. Box 718 Frankfort, KY 40602 (502) 564-2848 http://www.sos.ky.gov

Certificate of Authorization

Authentication Number: 84012 Jurisdiction: Briggs Law Office, PSC

Visit http://apps.sos.ky.gov/business/obdb/certvalidate.aspx_to authenticate this certificate.

I, Trey Grayson, Secretary of State of the Commonwealth of Kentucky, do hereby certify that according to the records in the Office of the Secretary of State, NEW CINGULAR WIRELESS PCS, LLC

, a limited liability company organized under the laws of the state of Delaware, is authorized to transact business in the Commonwealth of Kentucky and received the authority to transact business in Kentucky on October 14, 1999.

I further certify that all fees and penalties owed to the Secretary of State have been paid; that an application for certificate of withdrawal has not been filed; and that the most recent annual report required by KRS 275.190 has been delivered to the Secretary of State.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my Official Seal at Frankfort, Kentucky, this 6th day of August, 2009.

STATION OF THE PARTY OF THE PAR

Trey Grayson Secretary of State Commonwealth of Kentucky 84012/0481848 Delaware

PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE DO HEREBY CERTIFY THAT THE ATTACHED IS A TRUE AND

CORRECT COPY OF THE CERTIFICATE OF CONVERSION OF A DELAWARE

CORPORATION UNDER THE NAME OF "AMERICAN TOWERS, INC." TO A

DELAWARE LIMITED LIABILITY COMPANY, CHANGING ITS NAME FROM

"AMERICAN TOWERS, INC." TO "AMERICAN TOWERS LLC", FILED IN THIS

OFFICE ON THE THIRTIETH DAY OF JUNE, A.D. 2011, AT 11:54 O'CLOCK

A.M.

AND I DO HEREBY FURTHER CERTIFY THAT THE EFFECTIVE DATE OF
THE AFORESAID CERTIFICATE OF CONVERSION IS THE THIRTIETH DAY OF
JUNE, A.D. 2011, AT 11:59 O'CLOCK P.M.

2525871 8100V

110780451

DATE: 06-30-11

AUTHENTICATION: 8874959

Jeffrey W. Bullock, Secretary of State

You may verify this certificate online at corp.delaware.gov/authver.shtml

State of Delaware Secretary of State Division of Corporations Delivered 11:54 AM 06/30/2011 FILED 11:54 AM 06/30/2011 SRV 110780451 - 2525871 FILE

STATE OF DELAWARE CERTIFICATE OF CONVERSION FROM A CORPORATION TO A LIMITED LIABILITY COMPANY PURSUANT TO SECTION 18-214 OF THE LIMITED LIABILITY ACT

1.) The jurisdiction where the Corporation first formed is <u>Delaware</u> .
2.) The jurisdiction immediately prior to filing this Certificate is <u>Delaware</u> .
3.) The date the corporation first formed is <u>July 19, 1995</u> .
4.) The name of the Corporation immediately prior to filing this Certificate is American Towers, Inc.
5.) The name of the Limited Liability Company as set forth in the Certificate of Formation is American Towers LLC.
6.) The effective date of this Certificate of Conversion is the 30 th of June, 2011 at 11:59 p.m.
IN WITNESS WHEREOF, the undersigned have executed this Certificate on the 29 day of June, 2011 A.D.

Name: Michael John McCormack
Print or Type

uthorized Person

Delaware

PAGE 2

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE DO HEREBY CERTIFY THAT THE ATTACHED IS A TRUE AND

CORRECT COPY OF CERTIFICATE OF FORMATION OF "AMERICAN TOWERS

LLC" FILED IN THIS OFFICE ON THE THIRTIETH DAY OF JUNE, A.D.

2011, AT 11:54 O'CLOCK A.M.

AND I DO HEREBY FURTHER CERTIFY THAT THE EFFECTIVE DATE OF THE AFORESAID CERTIFICATE OF FORMATION IS THE THIRTIETH DAY OF JUNE, A.D. 2011, AT 11:59 O'CLOCK P.M.

2525871 8100V

110780451

AUTHENTYCATION: 8874959

DATE: 06-30-11

You may verify this certificate online at corp.delaware.gov/authver.shtml

State of Delaware Secretary of State Division of Corporations Delivered 11:54 AM 06/30/2011 FILED 11:54 AM 06/30/2011 SRV 110780451 - 2525871 FILE

CERTIFICATE OF FORMATION

OF

AMERICAN TOWERS LLC

- 1. The name of the limited liability company is American Towers LLC.
- 2. The address of its registered office in the State of Delaware is Corporation Trust Center, 1209 Orange Street, in the City of Wilmington, Delaware 19801. The name of its registered agent at such address is The Corporation Trust Company.
- 3. The effective date of this Certificate of Formation is June 30, 2011 at 11:59 p.m.

IN WITNESS WHEREOF, the undersigned have executed this Certificate of Formation of American Towers LLC this 29 day of June, 2011.

Authorized Person

Michael John McCormack

ULS License

Cellular License - KNKN748 - NEW CINGULAR WIRELESS PCS, LLC

This license has pending applications: 0006003502

Call Sign KNKN748

0

Radio Service

CL - Cellular

Status Active Auth Type

Regular

Market

Market

Submarket

CMA445 - Kentucky 3 - Meade

Channel Block Α

Phase

2

Dates

Grant

08/30/2011

Expiration

10/01/2021

Effective .

11/24/2012

Cancellation

Five Year Buildout Date

01/06/1997

Control Points

1

1650 Lyndon Farms Court, LOUISVILLE, KY

P: (502)329-4700

Licensee

FRN

0003291192

Type

Limited Liability Company

Licensee

NEW CINGULAR WIRELESS PCS, LLC

2200 N. Greenville Ave, 1W Richardson, TX 75082

ATTN Reginald Youngblood

P:(972)234-7003 F:(972)301-6893

E:FCCMW@att.com

Contact

AT&T MOBILITY LLC MICHAEL P GOGGIN

1120 20TH STREET, NW, SUITE 1000

WASHINGTON, DC 20036

P:(202)457-2055 F:(202)457-3073 E:MG7268@ATT.COM

Ownership and Qualifications

Radio Service Type Mobile

Regulatory Status Common Carrier

Interconnected

Yes

Alien Ownership

The Applicant answered "No" to each of the Alien Ownership questions.

Basic Qualifications

The Applicant answered "No" to each of the Basic Qualification questions.

Demographics

Race

Ethnicity

Gender

ULS License

PCS Broadband License - KNLG923 - NEW CINGULAR WIRELESS PCS, LLC

Call Sign KNLG923 Radio Service CW - PCS Broadband

Status Active Auth Type Regular

Market

Market BTA263 - Louisville, KY Channel Block F

001970.000000000 001975.00000000

Dates

Grant 09/28/2007 Expiration 08/21/2017

Effective 11/24/2012 Cancellation

Buildout Deadlines

1st 08/21/2002 2nd

Notification Dates

1st 10/05/2001 2nd

Licensee

FRN 0003291192 Type Limited Liability Company

Licensee

NEW CINGULAR WIRELESS PCS, LLC P:(972)234-7003 2200 N. Greenville Ave, 1W F:(972)301-6893 Richardson, TX 75082 E:FCCMW@att.com

ATTN Reginald Youngblood

Contact

AT&T MOBILITY LLC P:(202)457-2055 Michael P Goggin F:(202)457-3073

1120 20th Street, NW - Suite 1000 E:michael.p.goggin@att.com

Washington, DC 20036 ATTN Michael P. Goggin

Ownership and Qualifications

Radio Service Type Mobile

Regulatory Status Common Carrier Interconnected Yes

Alien Ownership

The Applicant answered "No" to each of the Alien Ownership questions.

Basic Qualifications

The Applicant answered "No" to each of the Basic Qualification questions.

Tribal Land Bidding Credits

This license did not have tribal land bidding credits.

ULS License

PCS Broadband License - WPOI255 - NEW CINGULAR WIRELESS PCS, LLC

Call Sign WPOI255 Radio Service CW - PCS Broadband

Status Active Auth Type Regular

Market

Market MTA026 - Louisville-Lexington- Channel Block A

Evansvill

Submarket 19 Associated 001850,000000000-

Frequencies (MHz)

001865.00000000 001930.00000000-001945.00000000

Dates

Grant 07/07/2005 Expiration 06/23/2015

Effective 11/24/2012 Cancellation

Buildout Deadlines

1st 06/23/2000 2nd 06/23/2005

Notification Dates

1st 07/07/2000 2nd 02/17/2005

Licensee

FRN 0003291192 Type Limited Liability Company

Licensee

NEW CINGULAR WIRELESS PCS, LLC P:(972)234-7003 2200 N. Greenville Ave, 1W F:(972)301-6893 Richardson, TX 75082 E:FCCMW@att.com

ATTN Reginald Youngblood

Contact

AT&T MOBILITY LLC P:(202)457-2055 Michael P Goggin F:(202)457-3073

1120 20th Street, NW - Suite 1000 E:michael.p.goggin@att.com

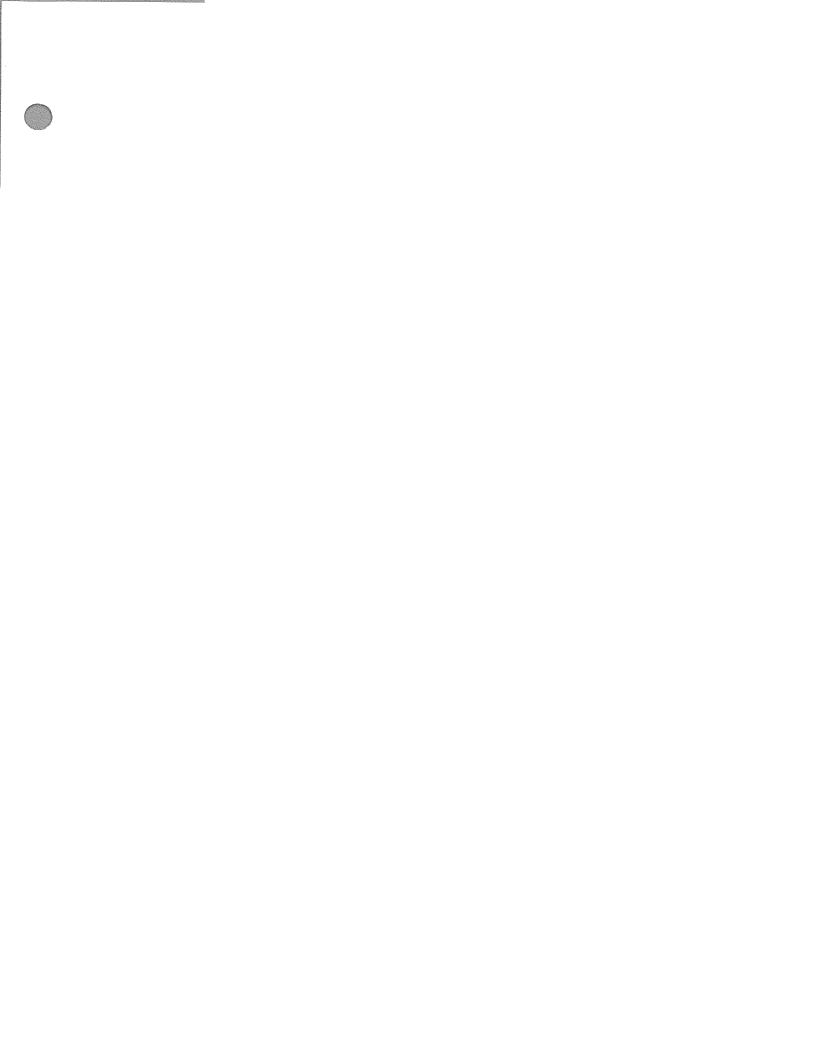
Washington, DC 20036 ATTN Michael P. Goggin

Ownership and Qualifications

Radio Service Type Mobile

Regulatory Status Common Carrier Interconnected Yes

Alien Ownership


The Applicant answered "No" to each of the Alien Ownership questions.

Basic Qualifications

The Applicant answered "No" to each of the Basic Qualification questions.

Tribal Land Bidding Credits

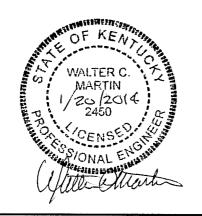

This license did not have tribal land bidding credits.

EXHIBIT B

SITE DEVELOPMENT PLAN:

500' VICINITY MAP
LEGAL DESCRIPTIONS
FLOOD PLAIN CERTIFICATION
SITE PLAN
VERTICAL TOWER PROFILE

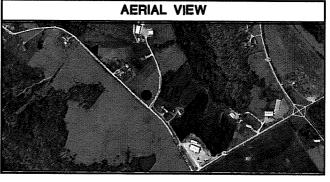
AMERICAN TOWER

CORPORATION

SITE NAME.

JAKE HORSLEY

AT&T SITE# 143741/ATC # 281318


NEW 255' SELF SUPPORT TOWER W/ 10' LIGHTING ARRESTOR INSTALLED WITHIN NEW 80' X 80' FENCED TELECOMMUNICATIONS FACILITY

DIRECTIONS

BEGINNING AT THE BRECKINRIDGE COUNTY COURT HOUSE, 111 2ND STREET HARDINSBURG, KY PROCEED WEST ON 2ND STREET TOWARD KY-259 FOR .01 MILES. TURN RIGHT ONTO KY-259/MAIN ST. AND PROCEED FOR .1 MILES. TURN LEFT ONTO KY-144 AND PROCEED FOR .3 MILES. TURN RIGHT ONTO WILLIAMS RD. AND PROCEED .2 MILES. SITE IS ON YOUR RIGHT.

	SHEET INDEX								
DRAWING SHEET	DRAWING TITLE								
T-1	TITLE SHEET								
S-1	500' ADJOINERS AND ABUTTERS								
S-2	SITE SURVEY								
C-1	SITE LAYOUT								
C1-2	DIM. TO PROPERTY LINES								
C-2	TOWER ELEVATION								

AMERICAN TOWER REVIEW
THE FOLLOWING PARITES HEREBY APPROVE AND ACCEPT THESE DOCUMENTS AND AUTHORIZE THE CONTRACTOR TO PROCEED WITH THE CONSTRUCTION DESCRIBED HEREIN. ALL DOCUMENTS ARE SUBJECT TO REVIEW BY THE LOCAL BUILDING DEPARTMENT AND MAY IMPOSE CHANGES OR MODIFICATIONS

ATC R.F.:	DATE:
ATC ZONING:	DATE:
ATC S.A.:	DATE:
ATC P & T:	DATE:
ATC CONST.:	DATE:
ATC A&E MGR.:	DATE:
PROPERTY OWNER:	DATE:

T. Alan Neal Company

Land Surveyors and Consulting Enginee

428 E Wernock Street
Lautente, KY 40217

Phone: (902) 635-5966 (802) 636-8111 Fec (502) 636-8263

PROPERTY OWNER:

CORNELIUS & ADINA 226 WILLIAMS LANE STEPHENSPORT, KY 40170

SITE ADDRES

218 WILLIAMS LANE STEPHENSPORT, KY 40170

SITE I			1437	41/	ATC	# 2	8131
REMSIONS	MOVED LEASE AREA 11-06-13	REVISED TOWER HEIGHT 11-11-13	REVISED SITE ADDRESS 12-17-13	REVISED SITE PLANS 01-16-14			

TITLE SHEET

| Mark | CHECKED BY: | DATE: 24-13 | Mark | CHECKED BY: | C

FSTAN PROJECT NO.: 13-8578

T-1

SITE INFORMATION

site name: site number: site address JAKE HORSLEY 13-8578

218 WILLIAMS LANE

STEPHENSPORT, KENTUCKY 40170

JURISDICTION: TAX ACCOUNT ID: MAP/PARCEL: BRECKINRIDGE COUNTY

635/ 54-1N

746.6

PARCEL SIZE/COMPOUND SIZE

SIZE 100' X 100'/ 80' X 80'

SITE COORDINATES: 37° 55' 53.15° 86° 28' 37.73°

STRUCTURE TYPE: STRUCTURE HEIGHT: GROUND LANDLORD ADDRESS: GROUND LANDLORD ADDRESS: SELF SUPPORT 255' 226 WILLIAMS LANE

LANDLORD NAME: LANDLORD ADDRESS:

GROUND ELEVATION:

CORNELIUS & ADMA
226 WILLIAMS LANE
STEPHENSPORT, KY 40170
AMERICAN TOWER CORPORATION

STEPHENSPORT, KY 40170

116 HUNTINGTON AVE. BOSTON, MA 02116 (617) 375-7500

APPLICANT PHONE:

APPLICANT:

CODE ANALYSIS

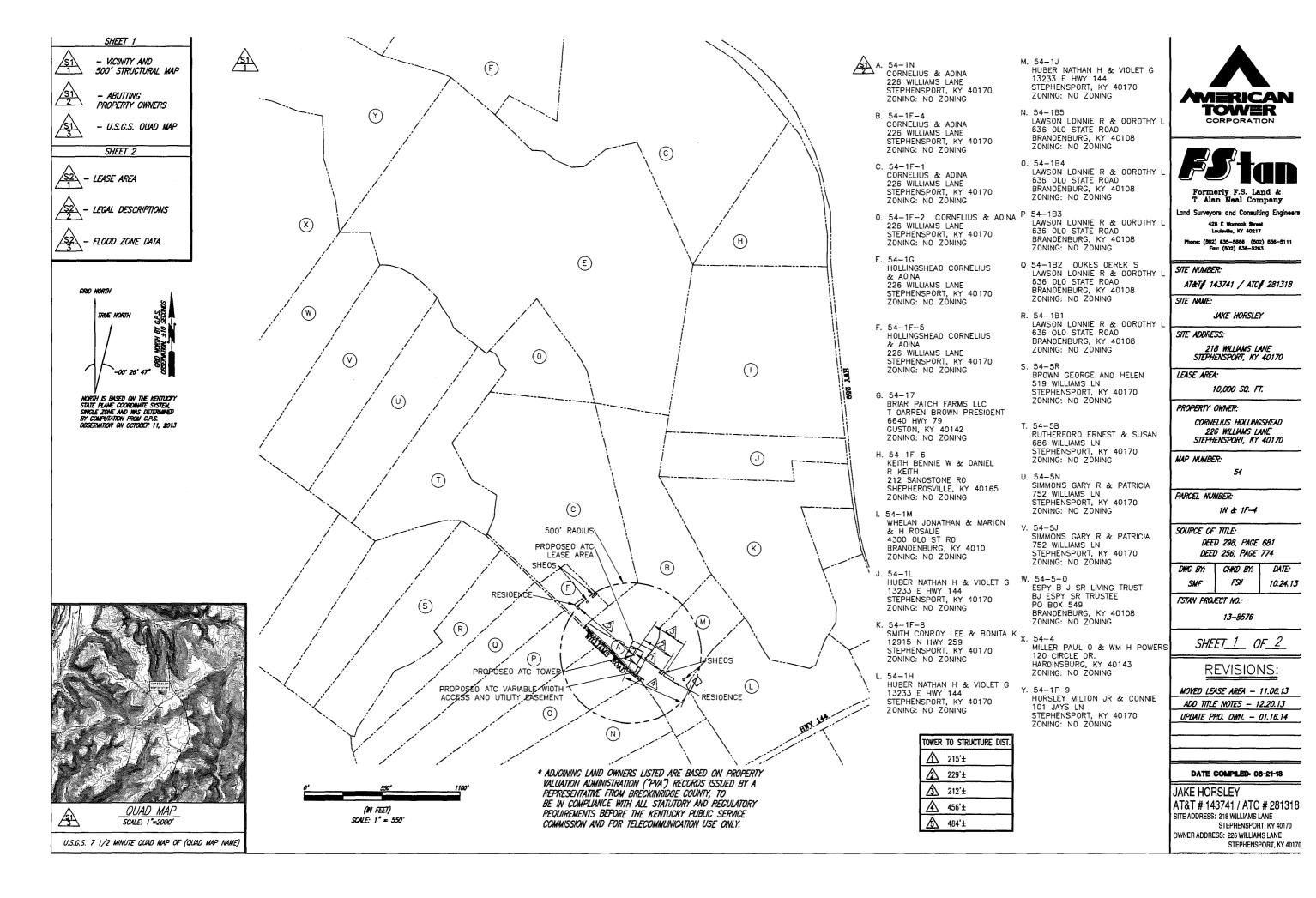
BUILDING CODE: IBC 2010 KY BLDG Code 2007

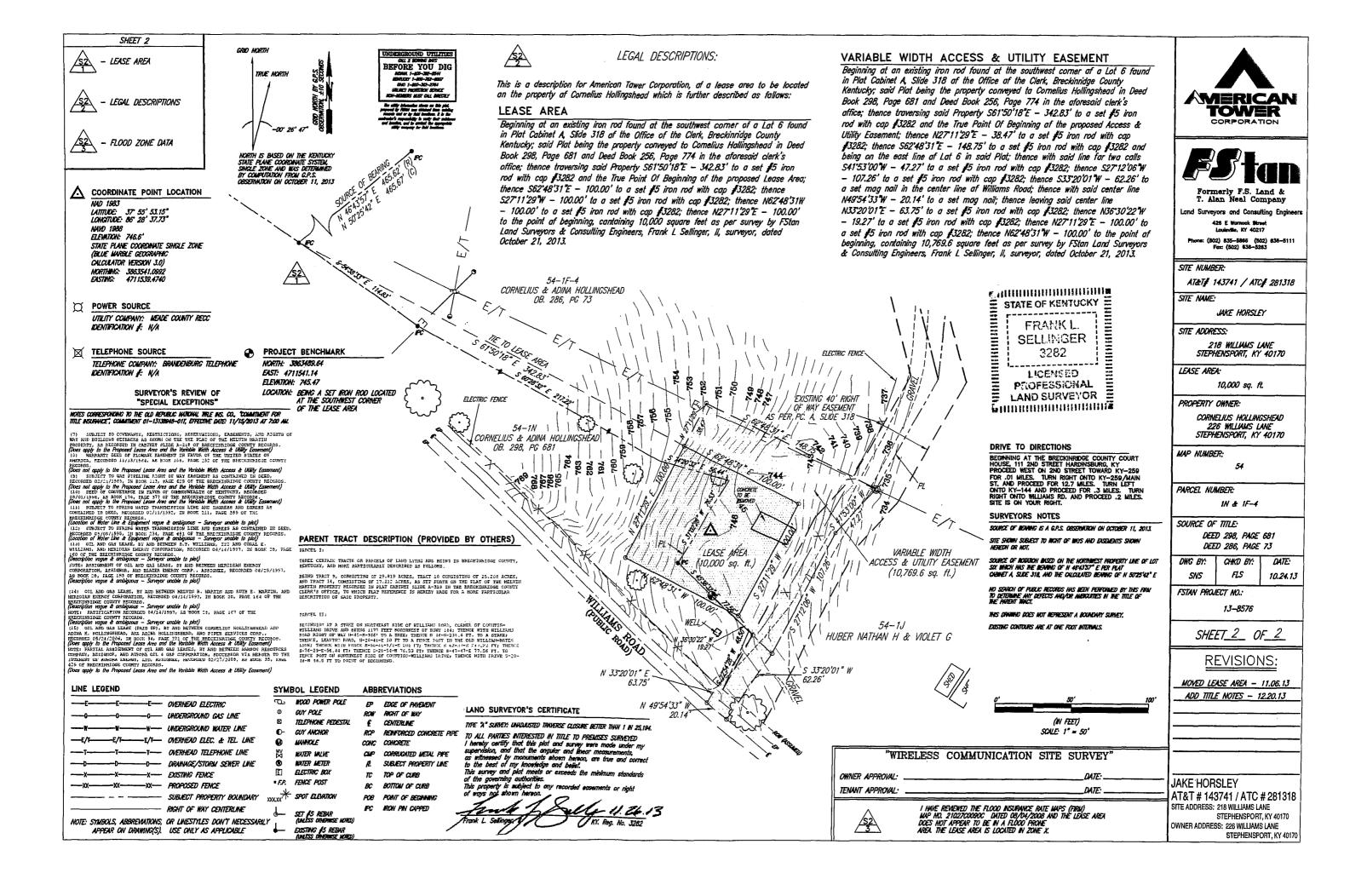
ELECTRICAL CODE:

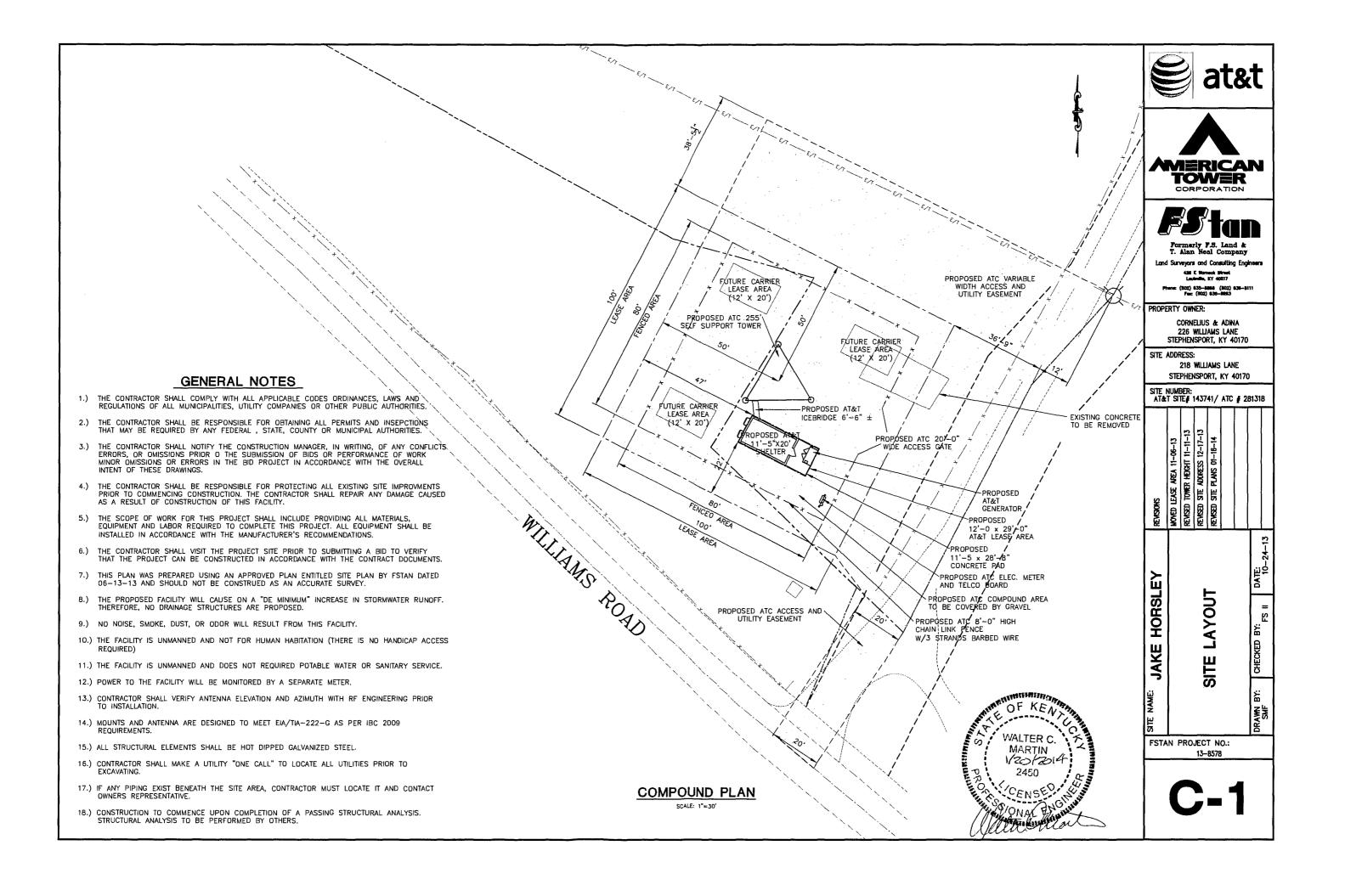
NEC 2005

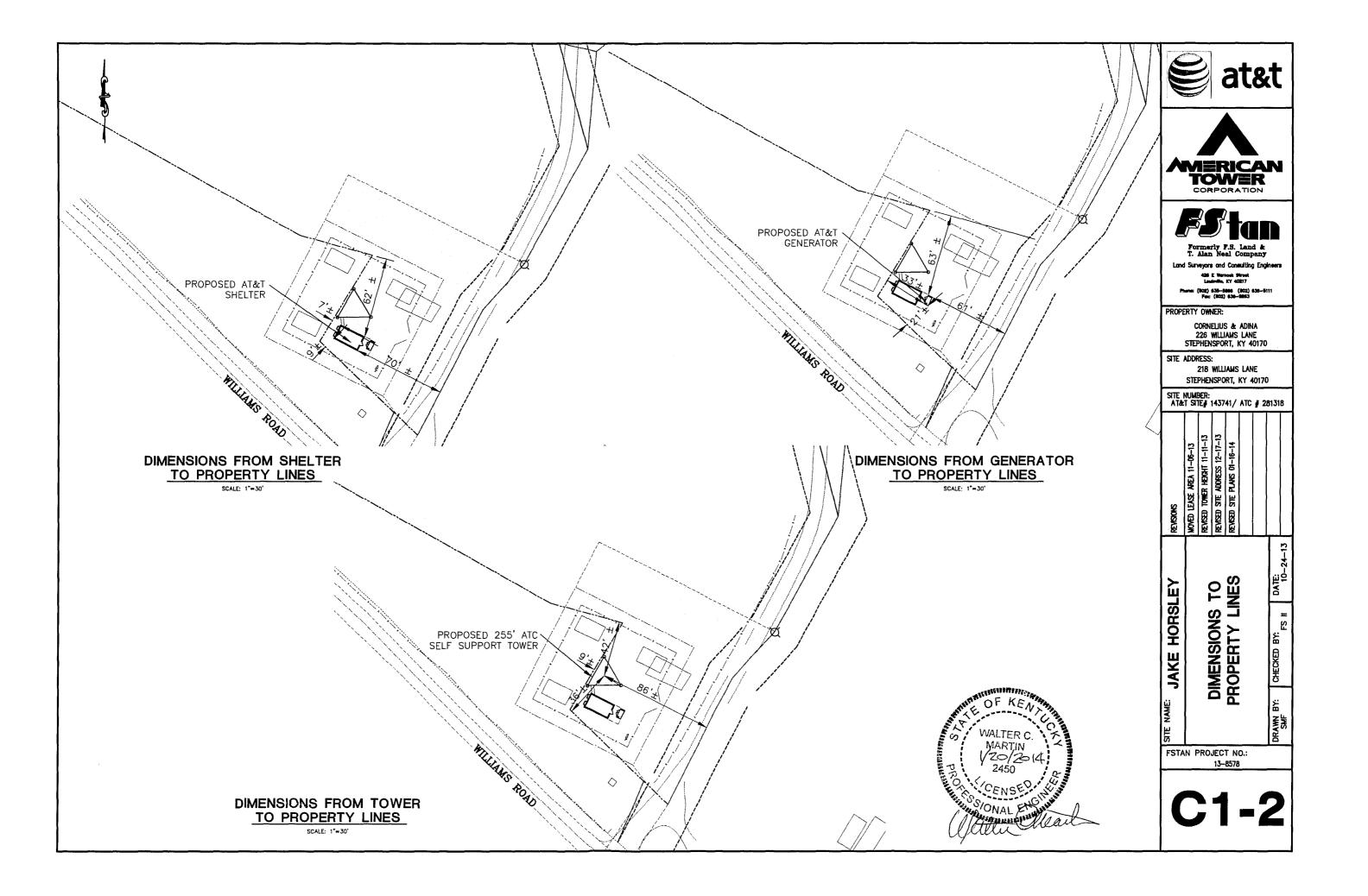
FIRE SAFETY CODE:

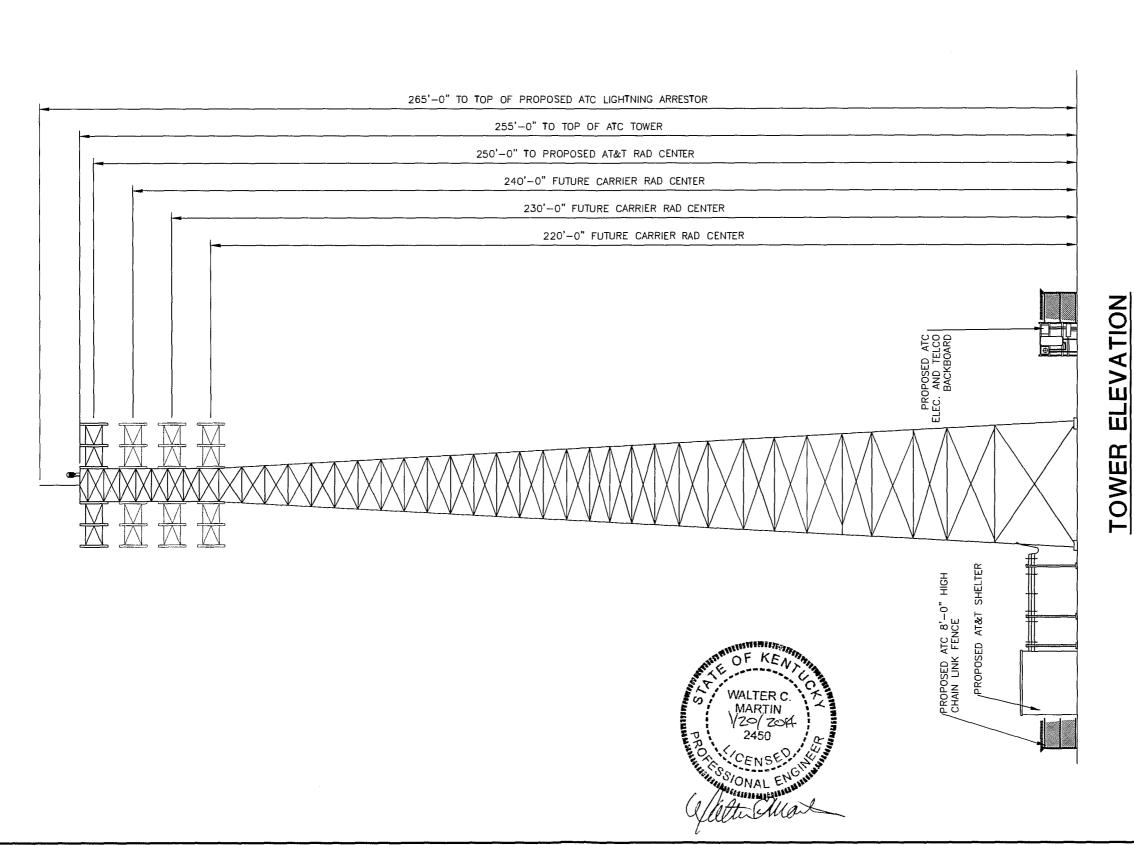
USE GROUP:


NFPA 101 U (UTILITY)


CONSTRUCTION TYPE:


PROJECT DESCRIPTION


1. NEW 100' X 100' LEASED/ 80' x 80' FENCED TELECOMMUNICATIONS FACILITY TO BE INSTALLED.


- 2. NEW 255' SELF SUPPORT TOWER TO BE INSTALLED WITHIN FENCED TELECOMMUNICATIONS FACILITY.
- 3. NEW ELECTRICAL SERVICE TO BE INSTALLED.
- 4. NEW TELEPHONE SERVICE TO BE INSTALLED.

NOTE: THE ELEVATIONS SHOWN ON THIS SHEET ARE FOR PICTORIAL PURPOSES ONLY. THIS DESIGN WAS PROVIDED BY OTHERS. REFER TO TDWER PLANS FOR TOWER DESIGN.

NOT TO

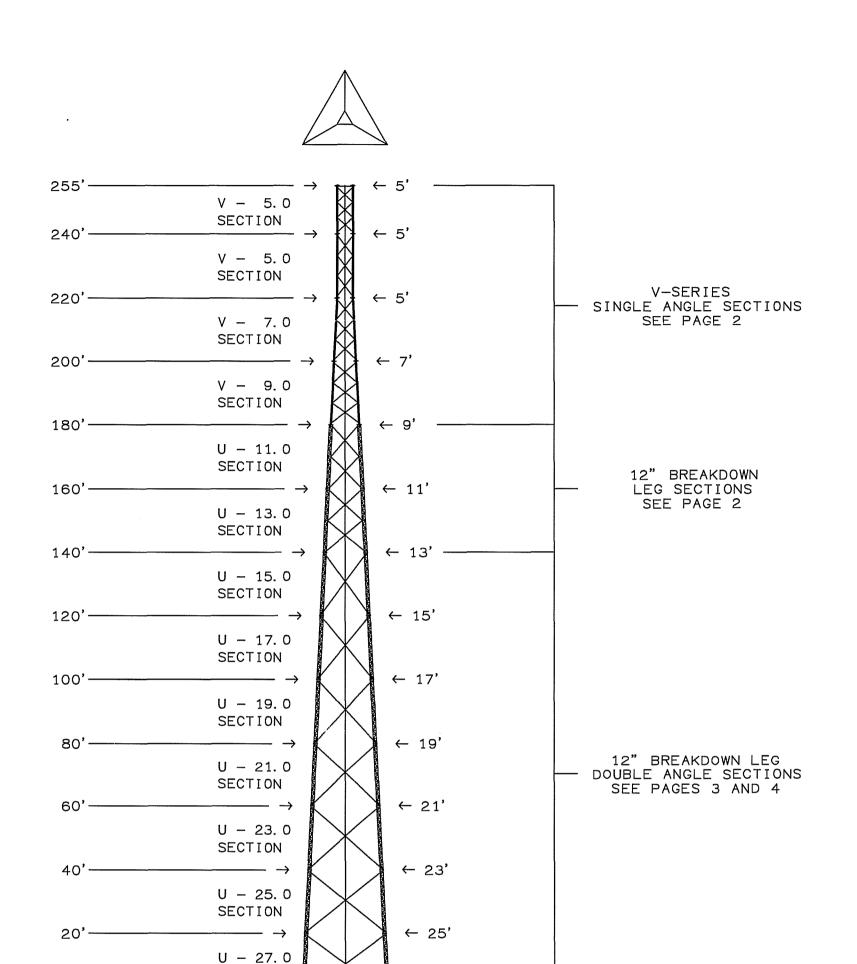
Land Surveyors and Consulting Engineer

Phone: (802) 636-8666 (802) 636-8111 Fac (802) 636-8263

CORNELIUS & ADINA 226 WILLIAMS LANE STEPHENSPORT, KY 40170

SITE ADDRESS:

218 WILLIAMS LANE


		STE	PHE	ISP0	RT,	KY 4	0170)
İ	SITE I			1437	41/	ATC	# 2	8131
	WS	LEASE AREA 11-06-13	D TONER HEIGHT 11-11-13	D SHE ADDRESS 12-17-13	D SITE PLANS 01-16-14			


EY REVISIONS	MOVED LEASE AREA 11-06-13	REVISED TOWER HEIGHT 11-11-	REWSED SHE ADDRESS 12-17-	REMSED SITE PLANS OI-16-1		DATE:	DATE:	DATE:	DATE	DATE	DATE	DATE:	DATE: 10-24-13
ME JAKE HORSLEY				IOWER ELEVATION		AY: CHECKED BY:	BY: CHECKED BY:	3Y: CHECKED BY: FS II					

FSTAN PROJECT NO .:

DRAWN BY: SMF

EXHIBIT C TOWER AND FOUNDATION DESIGN

Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP.	
#281318 JAKE HORSLEY,	ΚY
" V-27. 0 X 255'	

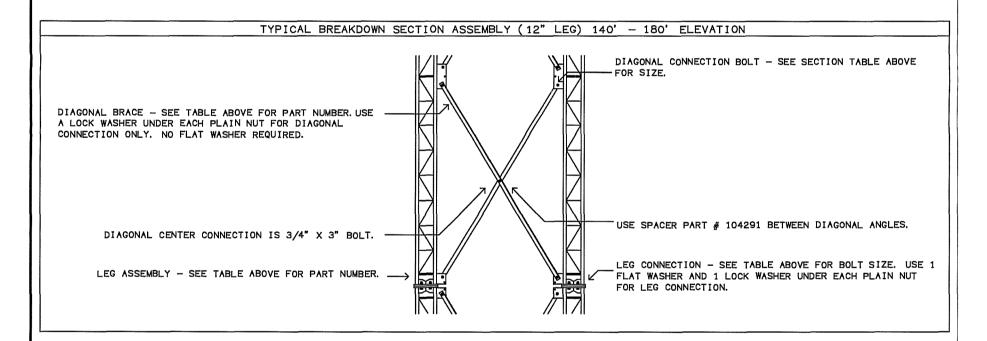
		_		KENTUCKY C. O. A.	15	42			_ =		
Α	ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	n	ť٦	V	
REV	DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	N/A		1-877-467-4763 Plymouth, IN CTD LCT LDCC				
VALM	ONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES,	NGINEERING	COPYRIGHT 2013			1-888-880-9191 Salem, OR		KUC I	JKE3		
PR0V	IDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTR	IES, I	NC.	DRAWN BY	JAK		DRAWING NO.				
Fro	om: F1015805. DFT - 12/03/2013 13: 58	ENG. FILE NO. A	-24	40826-	252333						
Prin	nted from 252333_01@A.DWG - 12/03/2013 14:00 @	12/0	4/2013 1 <u>2: 5</u> 9	ARCHIVE F	-10	015805	PAGE	1	0F	<u> 13</u>	

SECTION

0'_

V-SERIES LEG SECTION DATA 180' - 255' ELEVATION																				
SECTION				SECTION LEG DIAGONAL BRACE HO												HOR				
,,	. ENOTH	*	NoM	10/41 1	OD A DE	CL	IMBING	NOI	N-CLIMB	CONNECT	T BOLT+	PART	NUMBER	**	ANG	GLE	CONNEC	T BOLT	CENTER	
#	LENGTH	WEIGHT	SIZE	WALL	GRADE	QTY	PART#	QTY	PART#	DIAM	LENGTH	#1	#2	#3	FACE	THICK	DIAM	LENGTH	SPACER	UIT
V- 5.0	15'	734#	2-1/2"	0. 203	A572-50	1	226169	2	226170	3/4"	3-1/2"	227077	227077	227077	2*	1/8"	3/4"	2-1/4"	116467	1
V- 5.0	20'	1285#	4"	0. 237	A572-50	1	226184	2	226185	3/4"	3-1/2"	227113	227113	227113	2*	3/16"	3/4"	2-1/4"	116467	
V- 7.0	20'	1609#	5*	0. 258	A572-50	1	226200	2	226201	3/4"	3-1/2"	226190	226189	231342	2"	3/16"	3/4"	2-1/4"	116467	1
V- 9. 0	20'	2293#	6 "	0. 280	A572-50	3	229377			1"	4-3/4"	225035	225034	231345	2-1/2"	3/16"	3/4"	2-1/4"	116467	

+ AT BOTTOM OF SECTION


* THE WEIGHTS LISTED ARE THEORETICAL. THE ACTUAL WEIGHTS WILL VARY, ALL WEIGHTS SHOULD BE CONFIRMED IN THE FIELD PRIOR TO ERECTION.

** PANELS ARE NUMBERED BEGINNING AT THE TOP OF THE SECTION.

HORIZONTAL DATA	TYPICAL V-SERIES	SECTION ASSEMBLY 180' - 255' ELEVATION
HORIZ IN HORIZ HT SEC# PART# 255 V- 5. 0 227584	HORIZONTALS AS REQUIRED. SEE TABLE TO LEFT FOR ELEVATION AND PART #.	
	DIAGONAL BRACE - SEE TABLE ABOVE FOR PART NUMBER.	DIAGONAL CONNECTION BOLT - SEE SECTION TABLE ABOVE FOR SIZE.
	DIAGONAL CENTER CONNECTION - 5/8" X 2-1/4" BOLT	DIAGONAL CENTER SPACER - SEE TABLE ABOVE FOR PART NUMBER.

BREAKDOWN SECTION DATA (12" LEG) 140' - 180' ELEVATION												
SEC	SECTION	LEG	LEG	TOP DIAG	BOT DIAG	DIAGONA	L ANGLE	SECTION	LEG CO	NNECT+	DIAG	CONNECT
#	LENGTH	SIZE	PART#	PART#	PART#	FACE	THICK	WEIGHT	DIAM	LENGTH	DIAM	LENGTH
U-11. 0	20'	1- 3/4"	229588	105568	105571	3,	3/16"	2990#	1"	4-3/4"	1 "	2-1/4"
U-13. 0	20'	1- 3/4"	229588	105574	105576	3"	3/16"	3056#	1"	4-3/4"	1 "	2-1/4"
* THE WEIGHTS LISTED ARE THEORETICAL. THE ACTUAL WEIGHTS WILL VARY. ALL WEIGHTS SHOULD BE CONFIRMED IN THE FIELD PRIOR TO ERECTION. + USE 1 FLAT WASHER UNDER EACH LOCK WASHER FOR LEG CONNECTION ONLY.												

LEG ASSEMBLY - SEE TABLE ABOVE FOR PART

LEG CONNECTION - SEE TABLE ABOVE FOR BOLT

SIZE.

Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP. #281318 JAKE HORSLEY, KY V-27. 0 X 255' KENTUCKY C. O. A. 1542 APPROVED/ENG. M_S 12/4/2013 APPROVED/FOUND. N/A 1-877-467-4763 Plymouth, IN 1-888-880-9191 Salem, OR **STRUCTURES** COPYRIGHT 2013 VALMONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES, INC. ENGINEERING PROVIDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTRIES, INC. DRAWN BY DRAWING NO. From: F1015805. DFT - 12/03/2013 13:58 ENG. FILE NO. A-240826-252333 Printed from 252333_02@@.DWG - 12/03/2013 14:00 @ 12/04/2013 12:59 ARCHIVE F-1015805 of 13 PAGE

BREAKDOWN SECTION LEG DATA (12" LEG WITH DOUBLE ANGLES) O' - 140' ELEVATION

	S	SECTION		LEG		LEG CONNECT @ BOTTOM+			
#	MODEL	LENGTH	WEIGHT*	SIZE	PART #	DIAM	LENGTH #		
7	U-15. 0	20'	3953#	_2 "	208332	1"	4-3/4" 12		
6	U-17. 0	20'	4615#	2- 1/4 "	208334	1"	4-3/4" 12		
5	U-19. 0	20'	4676#	2- 1/4 "	208334	1"	4-3/4" 12		
4	U-21. 0	20'	5327#	2- 1/2 "	208335	1"	4-3/4" 12		
3	U-23. 0	20'	6119#	2- 1/2 "	208335	1"	4-3/4" 12		
2	U-25. 0	20'	7007#	2- 3/4 "	208337	1"	4-3/4" 12		
1	U-27. 0	20'	7047#	2- 3/4 "	208337				

- * THE WEIGHTS LISTED ARE THEORETICAL. THE ACTUAL WEIGHTS WILL VARY. ALL WEIGHTS SHOULD BE CONFIRMED IN THE FIELD PRIOR TO ERECTION.
- + QTY IS PER LEG. USE 1 LOCK WASHER AND 1 FLAT WASHER UNDER EACH PLAIN NUT.

В	REAKDOWN	SECTIO	ON DIAG	ONAL D	ATA (12	2" LEG	WITH D	OUBLE A	NGLES)	0' -	- 140' E	ELEVATI	ON
	SECTION	DIAGONAL PART #		DIAG ANGLE		DIAG END BOLT		DIAG CE SPACER		CENTER PLATE	SPACE	SPACER	
#	MODEL	UPPER	LOWER	LONG	FACE	THICK	DIAM	LENGTH	DIAM	LENGTH	PART #	PART #	#*
7	U-15. 0	215272	215276	215357	3"	3/16"	7/8"	2-1/2"	5/8"	2-1/4"	211833	104291	5
6	U-17. 0	215280	215284	215361	3"	3/16"	7/8"	2-1/2"	5/8"	2-1/4"	211833	104291	6
5	U-19. 0	215288	215292	215364	3"	3/16"	7/8"	2-1/2"	5/8"	2-1/4"	211833	104291	7
4	U-21. 0	215295	215299	215368	3"	3/16"	7/8"	2-1/2"	5/8"	2-1/4"	211833	104291	8
3	U-23. 0	215304	215308	215373	3-1/2"	1/4"	7/8"	2-1/2"	5/8"	2-1/4"	211833	104291	8
2	U-25. 0	215312	215316	215377	3-1/2"	1/4"	7/8"	2-1/2"	5/8"	2-1/4"	211833	104291	8
1	U-27. 0	215320	215324	215380	3-1/2"	1/4"	7/8"	2-1/2"	5/8"	2-1/4"	211833	104291	8
*	QUANTITY	* QUANTITY IS PER PANEL PER FACE. USE 1 LOCK WASHER UNDER EACH PLAIN NUT.											

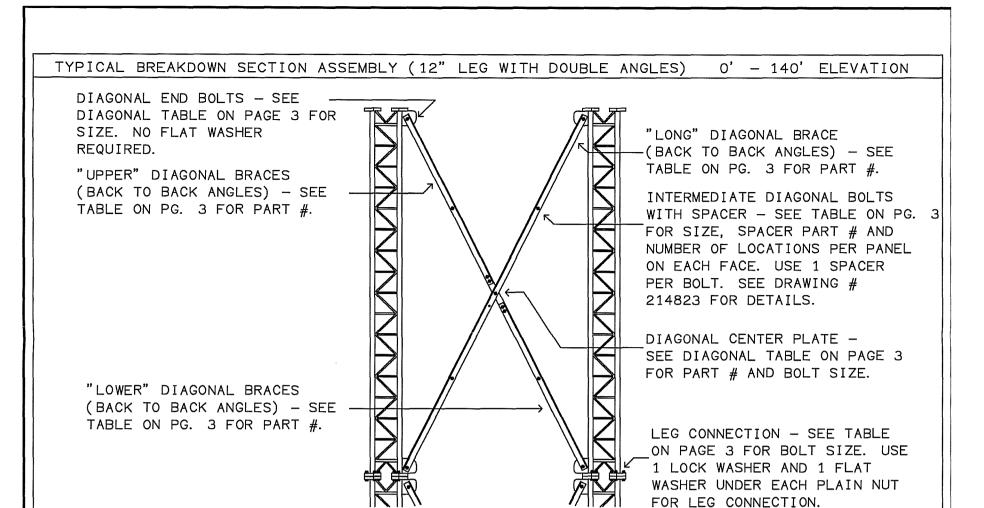
Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP. #281318 JAKE HORSLEY, KY V-27.0 X 255'

		V- <u>Z7. U</u>	7 2
KENTUCKY C. O. A.	154	42	
APPROVED/ENG.	M_S	12/4/2013	V
APPROVED/FOUND.	N/A		1-877-4
COPYRIGHT 2013			1-888-8
DRAWN BY	SKK		DRAWI

valmont₹

VALMONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES, INC. ENGINEERING PROVIDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTRIES, INC.


From: F1015805. DFT - 12/03/2013 13:58

Printed from 252333_03@@.DWG - 12/03/2013 14:00 @ 12/04/2013 12:59 ARCHIVE

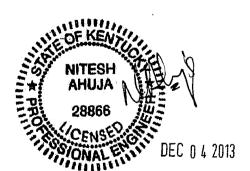
ENG. FILE NO. A-240826-ARCHIVE F-1015805 DRAWING NO. 252333 PAGE

3 of 13

STRUCTURES

ATTENTION ERECTOR:

- 1. EXTRA CARE MUST BE TAKEN WHEN STANDING BREAKDOWN LEG SECTIONS FROM A FLAT "ASSEMBLY" POSITION ON THE GROUND TO AN UPRIGHT POSITION FOR STACKING. POOR RIGGING AND/OR LIFTING PROCEDURES MAY DAMAGE THE ANGLE BRACES AND/OR BREAKDOWN LEGS. IT IS THE RESPONSIBILTY OF THE TOWER CONTRACTOR TO ENSURE BREAKDOWN LEGS AND ANGLES ARE NOT DAMAGED DURING THE TOWER ASSEMBLY AND ERECTION.
- 2. WHEN LIFTING ("FLYING") SINGLE PANEL TOWER SECTIONS TO PLACE THEM ON PREVIOUSLY ERECTED SECTIONS, A MINIMUM OF TWO (2) FULL SECTIONS (TYPICALLY 40') MUST BE ASSEMBLED TOGETHER TO PROVIDE ADEQUATE STABILITY TO THE TOWER LEGS AND ANGLE BRACES. IT IS THE RESPONSIBILTY OF THE TOWER CONTRACTOR TO ENSURE BREAKDOWN LEGS AND ANGLES ARE NOT DAMAGED DURING THE TOWER ASSEMBLY AND ERECTION.



Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP. #281318 JAKE HORSLEY. KY V-27. 0 X 255' KENTUCKY C. O. A. 1542 M_S 12/4/2013 APPROVED/ENG. APPROVED/FOUND. N/A **STRUCTURES** COPYRIGHT 2013 VALMONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES, INC. ENGINEERING DRAWN BY DRAWING NO. PROVIDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTRIES, INC. From: F1015805.DFT - 12/03/2013 13:58 ENG. FILE NO. A-240826-252333 Printed from 252333_04@@. DWG - 12/03/2013 14:00 @ 12/04/2013 12:59 ARCHIVE F-1015805 of 13 PAGE

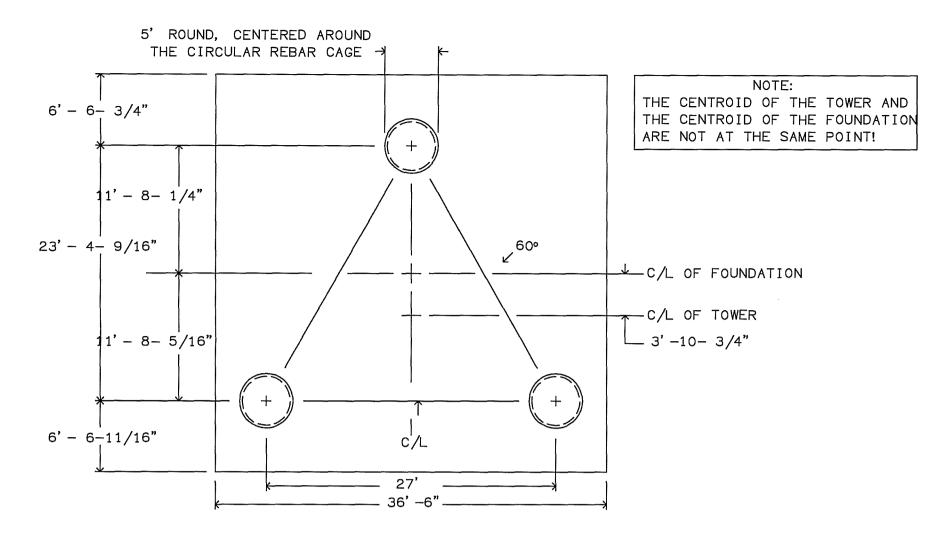
GENERAL NOTES

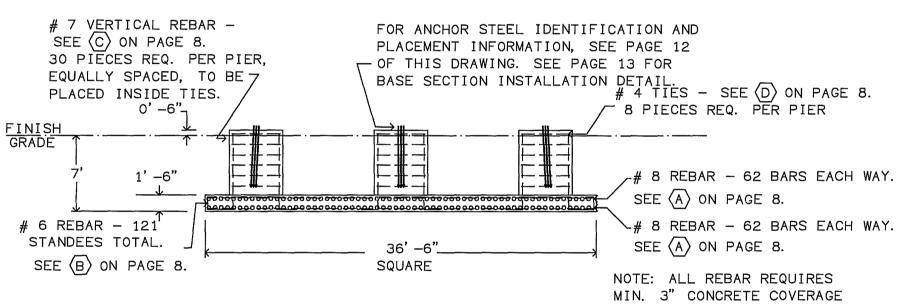
- TOWER MEETS THE REQUIREMENTS OF THE 2013 KENTUCKY BUILDING CODE UTILIZING AN 90 MPH 3-SEC GUST BASIC WIND SPEED WITH A STRUCTURE CLASS OF II, TOPOGRAPHIC CATEGORY OF 1 AND EXPOSURE C CRITERIA WITH NO ICE PER ANSI/TIA-222-G. TOWER MEETS THE REQUIREMENTS OF THE 2013 KENTUCKY BUILDING CODE UTILIZING AN 30 MPH 3-SEC GUST BASIC WIND SPEED WITH A STRUCTURE CLASS OF II, TOPOGRAPHIC CATEGORY OF 1 AND EXPOSURE C CRITERIA WITH .75" RADIAL ICE PER ANSI/TIA-222-G.
- NO TWIST AND SWAY LIMITATIONS SPECIFIED OR USED FOR THIS TOWER.
- MATERIAL: (A) SOLID RODS TO ASTM A572 GRADE 50. (B) ANGLES TO ASTM A36. (C) PIPE TO ASTM A500 GRADE B. (D) STEEL PLATES TO ASTM A36. (E) CONNECTION BOLTS TO ASTM A325 OR ASTM A449 (Fu=120 KSI AND Fy=92 KSI) AND ANCHOR BOLTS TO ASTM F1554 (Fu=150 KSI AND Fy=105 KSI). (F) TOWER LEG PIPE TO BE ASTM ASOO GRADE B/C WITH SOKSI MIN. YIELD STRENGTH
- BASE REACTIONS PER TIA-222-G FOR 90 MPH BASIC WIND SPEED WITH NO ICE (REACTIONS INCLUDE TIA-222-G LOAD FACTORS): TOTAL WEIGHT = 93.0 KIPS. MAXIMUM COMPRESSION = 625.0 KIPS PER LEG. MOMENT = 13888.0 KIP-FT. MAXIMUM UPLIFT = 556.0 KIPS PER LEG. MAXIMUM SHEAR = 95.0 KIPS TOTAL.
- BASE REACTIONS PER TIA-222-G FOR 30 MPH BASIC WIND SPEED WITH 0.75" RADIAL ICE (REACTIONS INCLUDE TIA-222-G LOAD FACTORS): TOTAL WEIGHT = 287. O KIPS. MOMENT = 1627. O KIP-FT. MAXIMUM SHEAR = 10. O KIPS TOTAL.
- FINISH: ALL BOLTS ARE GALVANIZED IN ACCORDANCE WITH ASTMA153 (HOT DIPPED) OR ASTM B695 CLASS 50 (MECHANICAL). ALL OTHER STRUCTURAL MATERIALS ARE GALVANIZED IN ACCORDANCE WITH ASTM123.
- ANTENNAS: 250'-135 SQ. FT. AREA WITH 3,000# WITH ICE/115 SQ. FT. AREA WITH 2,000# NO ICE AND (18) 1-5/8" LINES 240' -135 SQ. FT. AREA WITH 3,000# WITH ICE/115 SQ. FT. AREA WITH 2,000# NO ICE AND (18) 1-5/8" LINES 230' -135 SQ. FT. AREA WITH 3,000# WITH ICE/115 SQ. FT. AREA WITH 2,000# NO ICE AND (18) 1-5/8" LINES 220' -135 SQ. FT. AREA WITH 3,000# WITH ICE/115 SQ. FT. AREA WITH 2,000# NO ICE AND (18) 1-5/8" LINES 220' -135 SQ. FT. AREA WITH 3,000# WITH ICE/115 SQ. FT. AREA WITH 2,000# NO ICE AND (18) 1-5/8" LINES NOTE: (A) ELEVATIONS ARE TO THE BOTTOM OF THE ANTENNAS EXCEPT FOR MICROWAVE DISHES, WHICH ARE TO THE CENTERLINE.
 - (B) ALL TRANSMISSION LINES MUST BE PLACED ON PIROD SUPPLIED LINE BRACKETS.
- REMOVE FOUNDATION TEMPLATE PRIOR TO ERECTING TOWER. INSTALL BASE SECTION WITH MINIMUM OF 2" CLEARANCE ABOVE CONCRETE. SEE BASE SECTION PLACEMENT PAGE FOR MORE INFORMATION. PACK NON-SHRINK STRUCTURAL GROUT UNDER BASE SECTION AFTER LEVELING TOWER.
- MIN. WELDS 5/16" LINESS OTHERWISE SPECIFIED. ALL WELDING TO CONFORM TO AWS D1.1 SPECIFICATIONS.
- THIS DRAWING DOES NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND HE SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, SEQUENCES AND PROCEDURES.
- ALL BOLTS AND NUTS MUST BE IN PLACE BEFORE THE ADJOINING SECTIONS ARE INSTALLED.
- ALL STRUCTURAL BOLTS ARE TO BE TIGHTENED TO A SNUG TIGHT CONDITION AS DEFINED BY AISC SPECIFICATION UNLESS OTHERWISE NOTED.
- ATTENTION TOWER ERECTOR: COAT ALL BOLT ASSEMBLIESTHAT USE PIN LOCK NUTS WITH ZINC RICH COLD GALVANIZING COMPOUND AFTER FINAL TIGHTNENING.
- TIA-222-G GROUNDING FOR TOWER.
- BASED ON THE LOADING LISTED ABOVE, THIS TOWER HAS A THEORETICAL FAILURE POINT AT TOWER MIDPOINT OR ABOVE FOR AN EFFECTIVE "ZERO FALL ZONE" AT 15. GROUND LEVEL.

Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP. #281318 JAKE HORSLEY, KY V-27. 0 X 255' KENTUCKY C. O. A. 1542 M_S 12/4/2013 APPROVED/ENG. APPROVED/FOUND.N/A 1-877-467-4763 Plymouth, IN 1-888-880-9191 Salem, OR **STRUCTURES** VALMONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES, INC. ENGINEERING COPYRIGHT 2013 DRAWN BY DRAWING NO. PROVIDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTRIES, INC. SKK ENG. FILE NO. A-240826-252333 From: F1015805. DFT - 12/03/2013 14: 04 of 13 Printed from 252333_05@@.DWG * 12/03/2013 16:33 @ 12/04/2013 12:59 ARCHIVE F-1015805 PAGE

FOUNDATION NOTES


ALTERNATE FOUNDATION #1


- 1. SOIL AS PER REPORT BY FSTAN, DATED: 11/25/13 (PROJECT#13-8633)
- 2. CONCRETE TO BE 4000 PSI @ 28 DAYS. REINFORCING BAR TO CONFORM TO ASTM A615 GRADE 60 SPECIFICATIONS. CONCRETE INSTALLATION TO CONFORM TO ACI-318 (2008) BUILDING REQUIREMENTS FOR REINFORCED CONCRETE. ALL CONCRETE TO BE PLACED AGAINST UNDISTURBED EARTH FREE OF WATER AND ALL FOREIGN OBJECTS AND MATERIALS. A MINIMUM OF THREE INCHES OF CONCRETE SHALL COVER ALL REINFORCEMENT. WELDING OF REBAR NOT PERMITTED.
- 3. A COLD JOINT IS PERMISSIBLE UPON CONSULTATION WITH PIROD. ALL COLD JOINTS SHALL BE COATED WITH BONDING AGENTS PRIOR TO SECOND POUR.
- 4. ALL FILL SHOULD BE PLACED IN LOOSE LEVEL LIFTS OFNO MORE THAN 8" THICK. FILL MATERIALS SHOULD BE CLEAN AND FREE OF ORGANIC AND FROZEN MATERIALS OR ANY OTHER DELETERIOUS MATERIALS. COMPACT FILL TO 98% OF STANDARD PROCTOR MAXIMUM DRY DENSITY IN ACCORDANCE WITH ASTM D698.
- 5. BENDING, STRAIGHTENING OR REALIGNING (HOT OR COLD) OF THE ANCHOR BOLTS BY ANY METHOD IS PROHIBITED.
- 6. CROWN TOP OF FOUNDATION FOR PROPER DRAINAGE.
- 7. THE ON-SITE GEOTECHNICAL ENGINEER SHALL CONFIRM THAT THE INSITU SOIL STRENGTHS MEET OR EXCEED THOSE PARAMETERS GIVEN IN THE SOIL REPORT.
- 8. DIFFICULTIES DURING EXCAVATION MAY ARISE DUE TO THE PRESENCE OF BOULDERS, COBBLES, AND/OR SHALLOW BEDROCK. THE BOULDERS, COBBLES, AND/OR ROCK MUST BE REMOVED FROM THE EXCAVATION.
- 9. ANY SOFT OR UNSTABLE SUBGRADE SOILS DETECTED DURING THE EXCAVATION SHOULD BE REMOVED AND REPLACED WITH COMPACTED FILL.
- 10. SUBGRADE PREPARATIONS AND BACKFILLING MUST BE COMPLETED PER THE SPECIFICATIONS IN THE REFERENCED GEOTECHNICAL REPORT ABOVE.

Nitesh Ahuja, KY Professional Engineer #28866

		AMERICAN TOWER CORP. #281318 JAKE HORSLEY, KY V-27.0 X 255'						
		KENTUCKY C. O. A.	15	42		- 3/2		
Α	ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	ntv
REV	DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	M_S	12/4/2013	1-877-467-4763 Plymouth, IN	STRUCTURES
VALM	ONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES,	COPYRIGHT 2013			1-888-880-9191 Salem, OR	SIRUCTURES		
PROV	IDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTR	DRAWN BY	JAK		DRAWING NO.			
Fro	om: F1015805. DFT - 12/04/2013 10: 35	ENG. FILE NO. A	-24	40826-	252333			
Prin	nted from 252333_06@A.DWG - 12/04/2013 10:37 @	12/0	4/2013 12: 59	ARCHIVE F	-10	15805	PAGE	6 or 13

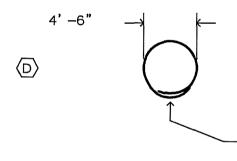
ALTERNATE FOUNDATION #1

87. 1 CUBIC YARDS CONCRETE REQUIRED
FOR INSTALLATION SPECIFICATIONS AND
ADDITIONAL INFORMATION, SEE PAGE 6
OF THIS DRAWING.

Nitesh Ahuja, KY Professional Engineer #28866

		AMERICAN TOWER CORP. #281318 JAKE HORSLEY, KY V-27.0 X 255'						
				KENTUCKY C. O. A.	15	42		- 3/7
Α	ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	nt V
REV	DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	M_S	12/4/2013	1-877-467-4763 Plymouth, IN	STRUCTURES
VALM	ONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES,	INC. E	NGINEERING	COPYRIGHT 2013			1-888-880-9191 Salem, OR	31KUCTURES
PROV	IDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTR	IES, I	NC.	DRAWN BY	JAK		DRAWING NO.	
Fro	om: F1015805. DFT - 12/04/2013 10: 35	ENG. FILE NO. A	-24	40826-	252333			
Pri	ated from $252333 \cdot 070A$, DWG $= 12/04/2013 \cdot 10.37 \cdot 0$	12/0	4/2013 12:59	ARCHIVE F	-10	15805	PAGE	7 of 13

8 REBAR - 248 PIECES REQ. TOTAL APPROX WT = 96.1# EACH, 23833# TOTAL


REBAR SUPPORTS MAY CONSIST OF ANY ACCEPTABLE MEANS OF SECURELY SUPPORTING THE TOP REINFORCEMENT GRID ABOVE THE BOTTOM REINFORCEMENT GRID WHILE MAINTAINING A SEPARATION OF 1' (OUTSIDE REBAR).

6 REBAR - 121 PIECES REQUIRED TOTAL TYPE 26 STANDEE PLACED BETWEEN REBAR GRIDS ON NOMINAL 4' SPACING THROUGHOUT APPROX UNBENT LENGTH = 4' - 4- 1/4" APPROX WT = 6.5# EACH, 787# TOTAL

3- 1/2" RAD.
$$1'-6-3/8$$
"

7 REBAR - 90 PIECES REQUIRED TOTAL APPROX UNBENT LENGTH = 8' - 4- 7/8"

APPROX WT = 17.2# EACH, 1548# TOTAL

4 REBAR - 24 PIECES REQUIRED TOTAL APPROX UNBENT LENGTH = 15' - 8- 1/4" APPROX WT = 10.5# EACH, 252# TOTAL

LAP DIMENSION: 1' - 6- 1/2"
PLACE CIRCULAR TIES SO THAT LAPS ON
ADJACENT TIES ARE 180 DEGREES APART.
PLACE ONE TIE AT TOP OF PAD AND TWO
TIES AT TOP OF PIER REBAR. EQUALLY
SPACE REMAINING TIES ALONG PIER.

ALTERNATE FOUNDATION #1

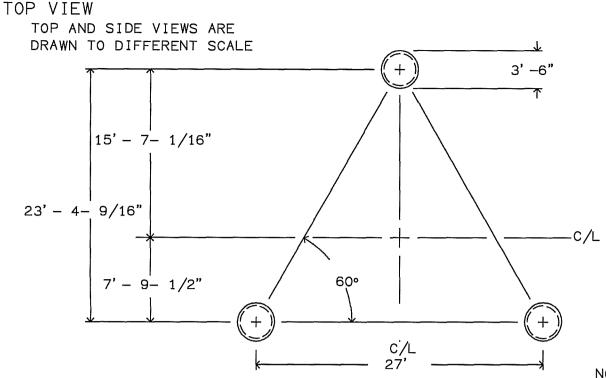
REBAR DETAIL

TOTAL APPROX REBAR WEIGHT = 26420# REINFORCING BAR TO CONFORM TO ASTM A615 GRADE 60 SPECIFICATIONS.

Nitesh Ahuja, KY Professional Engineer #28866

				#			OWER CORP. HORSLEY, KY X 255'	
				KENTUCKY C. O. A.	154	42		- 3/7
Α	ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	nt V
REV	DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	M_S	12/4/2013	1-877-467-4763 Plymouth, IN	STRUCTURES
VALM	ONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES,	NC. E	NGINEERING	COPYRIGHT 2013			1-888-880-9191 Salem, OR	SIRUCIURES
PROV	IDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTRE	ES, I	NC.	DRAWN BY	JAK		DRAWING NO.	
Fro	m: F1015805. DFT - 12/04/2013 10: 35			ENG. FILE NO. A	-24	10826-	252333	
Prim	nted from 252333_08@A.DWG - 12/04/2013 10:38 @	12/04	1/2013 12: 5 9	ARCHIVE F	<u>-10</u>	15805	PAGE	8 of 13

FOUNDATION NOTES


ALTERNATE FOUNDATION #2

- 1. SOIL AS PER REPORT BY FSTAN, DATED: 11/25/13 (PROJECT#13-8633)
- 2. CONCRETE TO BE 3000 PSI @ 28 DAYS. REINFORCING BAR TO CONFORM TO ASTM A615 GRADE 60 SPECIFICATIONS. CONCRETE INSTALLATION TO CONFORM TO ACI-318 (2008) BUILDING REQUIREMENTS FOR REINFORCED CONCRETE. ALL CONCRETE TO BE PLACED AGAINST UNDISTURBED EARTH FREE OF WATER AND ALL FOREIGN OBJECTS AND MATERIALS. A MINIMUM OF THREE INCHES OF CONCRETE SHALL COVER ALL REINFORCEMENT. WELDING OF REBAR NOT PERMITTED.
- 3. A COLD JOINT IS PERMISSIBLE UPON CONSULTATION WITH PIROD. ALL COLD JOINTS SHALL BE COATED WITH BONDING AGENTS PRIOR TO SECOND POUR.
- 4. ALL REINFORCING STEEL TO BE FORMED INTO A CAGE PRIOR TO SETTING INTO POSITION IN THE EXCAVATED PIER.
- 5. PERMANENT STEEL CASING SHALL NOT BE USED WITHOUT CONSENT FROM FOUNDATION DESIGNERS.
- 6. BENDING, STRAIGHTENING OR REALIGNING (HOT OR COLD) OF THE ANCHOR BOLTS BY ANY METHOD IS PROHIBITED.
- 7. CROWN TOP OF FOUNDATION FOR PROPER DRAINAGE.
- 8. THE ON-SITE GEOTECHNICAL ENGINEER SHALL CONFIRM THAT THE INSITU SOIL STRENGTHS MEET OR EXCEED THOSE PARAMETERS GIVEN IN THE SOIL REPORT.
- 9. A TEMPORARY, FULL LENGTH STEEL CASING MAY BE REQUIRED DURING INSTALLATION.
- 10. DRILLING SLURRY AND TREMIE METHODS OF CONCRETE PLACEMENT MAY BE REQUIRED DURING INSTALLATION.
- 11. DIFFICULT DRILLING AND/OR ROCK CORING IS TO BE EXPECTED BELOW A DEPTH OF 15 FT. THE DRILLING CONTRACTOR SHOULD BE PREPARED TO REMOVE ROCK AND/OR ROCK CORES FROM THE EXCAVATION.
- 12. THE CAISSON MUST PENETRATE A MINIMUM OF 9.5' INTO THE HARD AND HIGHLY WEATHERED SHALE BEDROCK LAYER.

Nitesh Ahuja, KY Professional Engineer #28866

				#			OWER CORP. HORSLEY, KY X 255'			
				KENTUCKY C. O. A.	15	42			_ =	
Α	ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	n		y
REV	DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	M_S	12/4/2013	1-877-467-4763 Plymouth, IN		UCTU	•
VALM	ONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES, I	NC. E	NGINEERING	COPYRIGHT 2013			1-888-880-9191 Salem, OR	316	0010	KES
PROV	IDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTRI	ES, I	NC.	DRAWN BY	JAK		DRAWING NO.			
Fro	om: F1015805. DFT - 12/04/2013 10: 35			ENG. FILE NO. A	-24	40826-	252333			
Prin	nted from 252333_09@A.DWG - 12/04/2013_10:38 @	12/0	4/2013 13:00	ARCHIVE F	-10	15805	PAGE	9	0F	13

NOTE: ALL REBAR REQUIRES MINIMUM 3" CONCRETE COVERAGE

FOR ANCHOR STEEL IDENTIFICATION AND PLACEMENT INFORMATION, SEE PAGE 12. SEE PAGE 13 FOR BASE SECTION INSTALLATION DETAIL.

SIDE VIEW

O'-6"

FINISH
GRADE

O'-6"

FOR DETAIL VIEW OF REBAR CAGE
END AREA, SEE © ON PAGE 11.

4 HORIZONTAL TIES – SEE ® ON PAGE 11.

19 PIECES REQUIRED PER PIER,
EQUALLY SPACED.

9 VERTICAL REBAR – SEE ② ON PAGE 11.

20 PIECES REQUIRED PER PIER,
EQUALLY SPACED, TO BE PLACED
INSIDE TIES.

ALTERNATE FOUNDATION #2

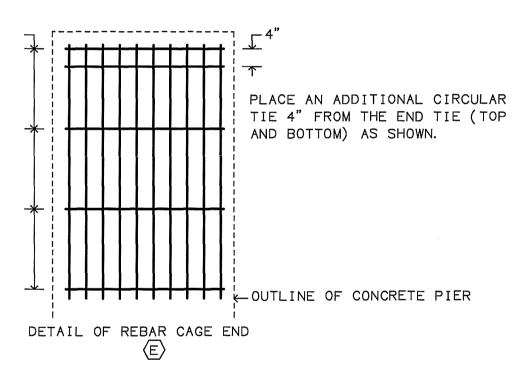
THREE PIERS REQUIRED 8.9 CUBIC YARDS CONCRETE REQUIRED EACH PIER

FOR INSTALLATION SPECIFICATIONS AND ADDITIONAL INFORMATION, SEE PAGE 9
OF THIS DRAWING.

Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP. #281318 JAKE HORSLEY, KY V-27.0 X 255'

				KENTUCKY C. O. A.	15	42		_ =	
Α	ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	nt	
REV	DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	M_S	12/4/2013	1-877-467-4763 Plymouth, IN	STRUCT	•
VALM	ONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES,	INC. E	NGINEERING	COPYRIGHT 2013			1-888-880-9191 Salem, OR	SIRUCII	UKES
PROV	IDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTR	IES, I	NC	DRAWN BY	JAK		DRAWING NO.		
Fro	om: F1015805. DFT - 12/04/2013 10: 35			ENG. FILE NO. A	-24	10826-	252333		
Pri	nted from 252333_10@A.DWG - 12/04/2013 10:38 @	12/04	4/2013 13:00	ARCHIVE F	-10)15805	PAGE	10 of	13


(A) # 9 REBAR - 60 PIECES REQ. TOTAL
APPROX WT = 83.3# EACH, 4998# TOTAL

4 REBAR - 57 PIECES REQUIRED TOTAL
APPROX UNBENT LENGTH = 11' - 2- 1/2"
APPROX WT = 7.5# EACH, 428# TOTAL

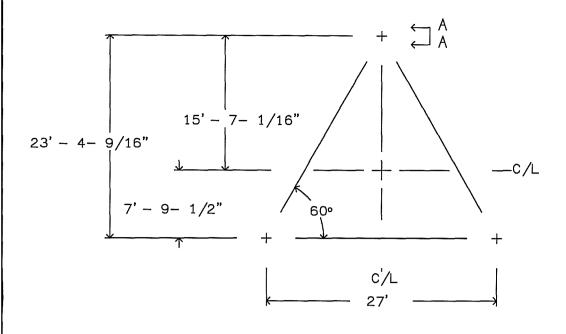
LAP DIMENSION: 1' - 9- 3/8"
PLACE CIRCULAR TIES SO THAT LAPS ON
ADJACENT TIES ARE 180 DEGREES APART.

1' -6"

PLACE FIRST TIE AT END OF VERTICAL BARS (TOP AND BOTTOM) AND CONTINUE SPACING AS SHOWN THROUGHOUT PIER.

ALTERNATE FOUNDATION #2

REBAR DETAIL


TOTAL APPROX REBAR WEIGHT = 5426#
REINFORCING BAR TO CONFORM TO
ASTM A615 GRADE 60 SPECIFICATIONS.

Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP. #281318 JAKE HORSLEY, KY V-27.0 X 255'

				KENTUCKY C. O. A.	15	42		- =	
Α	ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	ntv	
REV	DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	M_S	12/4/2013	1-877-467-4763 Plymouth, IN	STRUCTUR	
VALM	ONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES,	INC. E	NGINEERING	COPYRIGHT 2013			1-888-880-9191 Salem, OR	SIROCION	(E3
PROV	IDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTR	IES, I	NC.	DRAWN BY	JAK		DRAWING NO.		
Fro	om: F1015805. DFT - 12/04/2013 10: 35			ENG. FILE NO. A	-24	10826-	252333		
Prin	nted from 252333_11@A. DWG - 12/04/2013_10:38_@	12/04	4/2013 13: 00	ARCHIVE F	<u>-10</u>	15805	PAGE	11_of	13_

TOWER ANCHOR STEEL PLACEMENT - TOP VIEW

TEMPLATE ASSEMBLY P/N 216152 INCLUDES CORNER PLATE P/N 211902, IS REQUIRED FOR INSTALLATION AND MUST BE PLACED AS SHOWN. SEE DRAWING # 211875 FOR TEMPLATE ASSEMBLY DETAILS. SEE PAGE 7 FOR TOWER C/L LOCATION RELATIVE TO THE FOUNDATION LAYOUT. TEMPLATE PLACEMENT +/- 3". EACH LEG MUST BE CENTERED IN PIER WITHIN +/-10% OF PIER DIAMETER. TEMPLATE MUST BE LEVEL +/- 1 DEGREE. INSTALL TEMPLATE WITH SUFFICIENT SPACE BENEATH (2" MINIMUM) TO PERMIT FINISHING OF CONCRETE AND TO FACILITATE TEMPLATE REMOVAL PRIOR TO TOWER ERECTION.

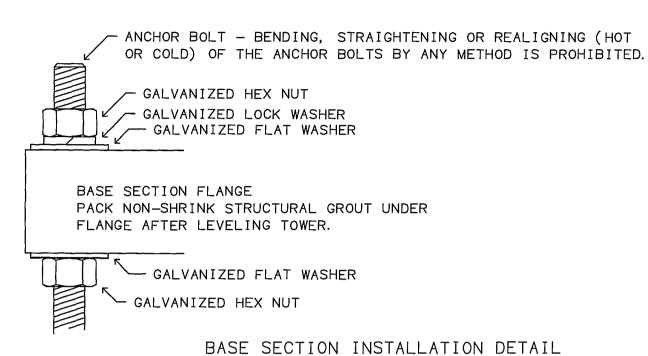
SEE PAGE 13 FOR BASE SECTION INSTALLATION DETAIL.

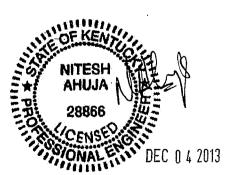
REFERENCE ANGLE = 3.30 DEGREES. TEMPLATE MUST BE UTILIZED TO ASSIST IN PROPER PLACEMENT. -TEMPLATE - SEE ABOVE FOR PART NUMBER AND ASSEMBLY DRAWING DATA. TEMPLATE MUST BE SECURED WITH 2 NUTS AS SHOWN. 8- 1/2" TOP OF FOUNDATION ANCHOR BOLT P/N 123653 -12 REQUIRED PER LEG. DIAMETER = 1", LENGTH = 6'. COLOR CODE = BLACK/GOLD. INSTALL WITH 8-1/2" OF THREADS EXPOSED. BENDING, STRAIGHTENING OR REALIGNING 5' - 3 - 1/2" (HOT OR COLD) OF THE ANCHOR BOLTS BY ANY METHOD IS PROHIBITED. -EMBEDMENT PLATE P/N 212008 (1 REQUIRED PER LEG.) PLATE MUST BE SECURED WITH 2 NUTS AS SHOWN. VIEW A - A - ANCHOR BOLT INSTALLATION DETAIL (NOT TO SCALE)

ATTENTION CONTRACTOR INSTALLING THE ANCHOR BOLTS!

1" DIAMETER ANCHOR BOLTS FOR TAPERED TOWER.

VERIFY THE PART NUMBERS AND SIZES FOR ALL COMPONENTS ON THIS PAGE AND PAGE 13.


IF THERE ARE ANY DISCREPANCIES, PLEASE NOTIFY PIROD, INC. PRIOR TO INSTALLATION!!



Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP.

		:	#	281	318 JAKE V-27. 0	HORSLEY, KY X 255'	
			KENTUCKY C. O. A.	15	42		. 3/2
A ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	nt V
REV DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	M_S	12/4/2013	1-877-467-4763 Plymouth, IN	STRUCTURES
VALMONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES,	INC. E	NGINEERING	COPYRIGHT 2013			1-888-880-9191 Salem, OR	STRUCTURES
PROVIDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTRI	IES, I	NC	DRAWN BY	JAK		DRAWING NO.	
From: F1015805. DFT - 12/04/2013 10: 35			ENG. FILE NO. A	-24	10826-	252333	
Printed from 252333_12@A. DWG - 12/04/2013 10:38 @	12/04	4/2013 13:00	ARCHIVE F	<u>-10</u>	15805	PAGE	12 of 13

Nitesh Ahuja, KY Professional Engineer #28866

AMERICAN TOWER CORP. #281318 JAKE HORSLEY, KY V-27.0 X 255'

ł				KENTUCKY C. O. A.	154	42		- =	
Α	ADDED FOUNDATIONS	JAK	12/04/2013	APPROVED/ENG.	M_S	12/4/2013	valmo	nti	V
REV	DESCRIPTION OF REVISIONS	INI	DATE	APPROVED/FOUND.	M_S	12/4/2013	1-877-467-4763 Plymouth, IN	STRUCTU	•
VALM	ONT STRUCTURES IS A DIVISION OF VALMONT INDUSTRIES,	INC. E	NGINEERING	COPYRIGHT 2013			1-888-880-9191 Salem, OR	31KUC1C	JKE3
PROV	IDED BY PIROD, INC., WHOLLY OWNED BY VALMONT INDUSTR	IES, I	NC.	DRAWN BY	JAK		DRAWING NO.		
Fro	m: F1015805. DFT - 12/04/2013 10: 35			ENG. FILE NO. A	-24	10826-	252333		
Prin	ted from 252333_13@A. DWG - 12/04/2013 10:38 @	12/04	4/2013 13:00	ARCHIVE F	<u>-10</u>	15805	PAGE	13 of	13

December 4, 2013

American Tower Corp.

Attn: Mr. Ron Rohr

SUBJECT: Valmont File #240826 Model V-27.0 x 255' Self Supporting Tower

Site: #281318 Jake Horsley - Stephensport, KY

Thank you for your inquiry concerning tower design codes and practices as they relate to your requested tower designs.

Valmont Structures has been designing and building guyed and self-supporting towers and monopoles since the early 1950's. During this time, we have sold thousands of towers ranging in height form as little as 50' high to in excess of 1400'. These towers were individually engineered to accommodate the loading requirements imparted by the design wind speed, ice considerations, antenna loading, and other factors dictated by the national code requirements existing at the time the tower was built.

The present National Tower code, the TIA-222-G, represents the latest refinement of specific minimum requirements for tower engineers and manufacturers to follow to help assure that the tower structure and its foundation are designed to meet the most realistic conditions for local weather while assuring that the tower is designed to stringent factors of safety.

The TIA-222-G code incorporates an escalating wind factor based on tower height. If 90 MPH 3 second gust is the basic design wind speed at the 10 meter height, then per the specification, this speed is then increased in stages up the tower. "Meeting the code" implies that the design will have all of the code requirements for safety factors intact at the wind speed specified. Thus, the ultimate survival speed would be considerably higher.

While failure is extremely rare in any kind of tower, it is especially so for self supported towers and monopoles. In fact, only if a tower or monopole were subjected to a direct hit from a tornado or the severest of hurricanes would failure be predicted, and then usually only if hit by flying debris.

We are aware of only a very few documented instances of a self supporting tower or monopole failure. Self supporting towers and monopoles can be designed such that the most common mode of failure is in the upper middle region of the tower, with the upper portion of the tower remaining connected and "bending and bowing over" against the base of the tower or pole. The fact that the wind is normally greater on the upper portion of the structure contributes to the likelihood of this type of failure.

This particular Tower is designed such that its first point of predicted failure is in the region above the 140' level. The predicted mode of wind induced failure would be a buckling of the tower legs above the 140' level with the top sections of the tower folding over on to the intact base sections. This would then affect a "zero fall zone" at ground level.

As Senior Engineer of the company and a registered P.E. in 20 states, I oversee all engineering and application of our towers. I am a graduate engineer from Auburn University and am assisted by other registered professional engineers on our staff.

Valmont Structures is an AISC approved shop. All Valmont Structures welders are AWS and CWB qualified. Mathematical and physical tests are performed routinely on tower sections and designs as required. Our total design, engineer and build process has been quality audited by our customers including public utilities, telephone companies, government agencies, and of course AISC.

We trust the above and the attached will be helpful to you. If you should need anything else, please let us know at your convenience.

Sincerely,

Nitesh Ahuja, P.E. Senior Engineer Ext. #5257

AMERICAN TOWER®

11/7/13

Dear Commissioners:

The construction manager for the proposed new communications facility will be Ron Rohr. His contact information is 740-438-9710. Ron Rohr has been involved in the construction of communications facilities for over 17 years, and general construction for over 20 years.

Some of the notable and most recent projects are:

2010 - Present

American Tower Corporation – Construction Manager

- Successfully led the construction team on the 140 site, Southern Ohio Launch while maintaining a respectful and professional demeanor under difficult circumstances.
- Played a key part in the collaborating efforts to build the scope of work, pricing matrix, and close out documentation on several projects.
- Have cultivated a pool of responsible, dependable and quality driven GC's to work on ATC projects throughout the Midwest and Northeast Region.

1990 - 2009

Superior Concepts - Owner

- Contract Project and Construction Manager to multiple wireless carriers. Work included, but not limited to, permitting all the way through to final construction close outs. Also managed several DAS projects in shopping malls and residential areas.
- Equipment operator, cell site super intendant, regional foreman, etc...
- Carpentry, Construction and Consulting

Accreditations and Licenses

OSHA Electrical Safety
Vallen Safety Knowledge Systems / Fall Protection
Builders Exchange of Central Ohio / Estimating & Bid Preparation
Amphenol Wireless Cable Connector Training
Commscope Connector Training
Andrew Connector Training
Current OSHA Safety Training
Current Haz Com Training
FAA/FCC Training

Thank you,

Ron Rohr

Construction Manager

Section	£T.		T12	Ħ		110	4	_	118		77	16	ħ		T4	t		12	F
Legs		-			I			ŋ			ь		ш		۵	U	-	В	4
Leg Grade										A572-50	20								
Diagonals		2L3 1/2	2L3 1/2x3 1/2x1/4					2L3x3x3/16	3/16			מ	L3x3x3/16		L2 1/2x2 1/2x3/16		L2x2x3/16		L2x2x1/8,
Diagonal Grade										A36									
Top Girts								***************************************		N.A.									L2x2x3/16
Face Width (ft) 27	- Carlotte Communication of the Communication of th	25	23		21		19	17		15	13		1	6	7				
# Panels @ (ft)						7 @ 20				-			4@ 10		6 @ 6.66667	36667	9	@ 6.52778	3 @ 4.86111
Weight (K) 49.7	7.1		2.0	6.1		5.3	43		4.6		4.0	3.2	31		1.7	13	-	1.0	0.5
<u>u.u II</u>	20.0 ft ft	<u>20,0 ft</u>	roca II	40.0 ft	60,0 ft		80,0 ft	100.0 ft	400 7 7	120.0 ft	140.0 ft		160,0 ft	180.0 ft		200.0 ft	220.0 ft		240.0 ft
		To an	A CONTRACTOR OF THE PARTY OF TH		The second secon	The section of the se	The first teaching and the same of the sam	100 - 1	HARTH HARRY CONTROL FOR STATE OF THE STATE O		THE ACT IN T	TO DESCRIPTION OF THE PROPERTY	A THE STREET, AND THE STREET,	Carlo control or many					
R		30								\triangle									

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Beacon	255	ATC Loading	240
Beacon Extender (4') 803062	255	ATC Loading	230
1/2" x 4' lightning rod	255	ATC Loading	220
ATC Loading	250		

SYMBOL LIST

MARK	SIZE	MARK	SIZE
Α	P- 2.50" - 0.75" conn15' -C-(Pirod 226169)	F	#12ZG -2.00" - 0.875" connHBD-Trans (Pirod
В	P- 4.00"- 0.75" conn20' -C-Trans-6B-4B-(Pirod	[208332)
	226184)	G	#12ZG -2.25" - 0.875" conn. (Pirod 208334)
С	P- 5.00"- 0.75" connTrans-20' -C-(Pirod	Н	#12ZG - 2.50" - 0.875" conn. (Pirod 208335)
	226200)	1	#12ZG - 2.75" - 0.875" conn. (Pirod 208337)
D	P- 6.00"- 0.75" connHBD-Trans-20' -C-(Pirod		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-50	50 ksi	65 ksi		36 ksi	58 ksi

TOWER DESIGN NOTES

- 1. Tower is located in Breckinridge County, Kentucky.
 2. Tower designed for Exposure C to the TIA-222-G Standard.
 3. Tower designed for a 90 mph basic wind in accordance with the TIA-222-G Standard.
 4. Tower is also designed for a 30 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
 5. Deflections are based upon a 60 mph wind.
 6. Tower Structure Class II.
 7. Topographic Category 1 with Crest Height of 0.00 ft
 8. Zero Fall Zone
 9. TOWER RATING: 99.6%

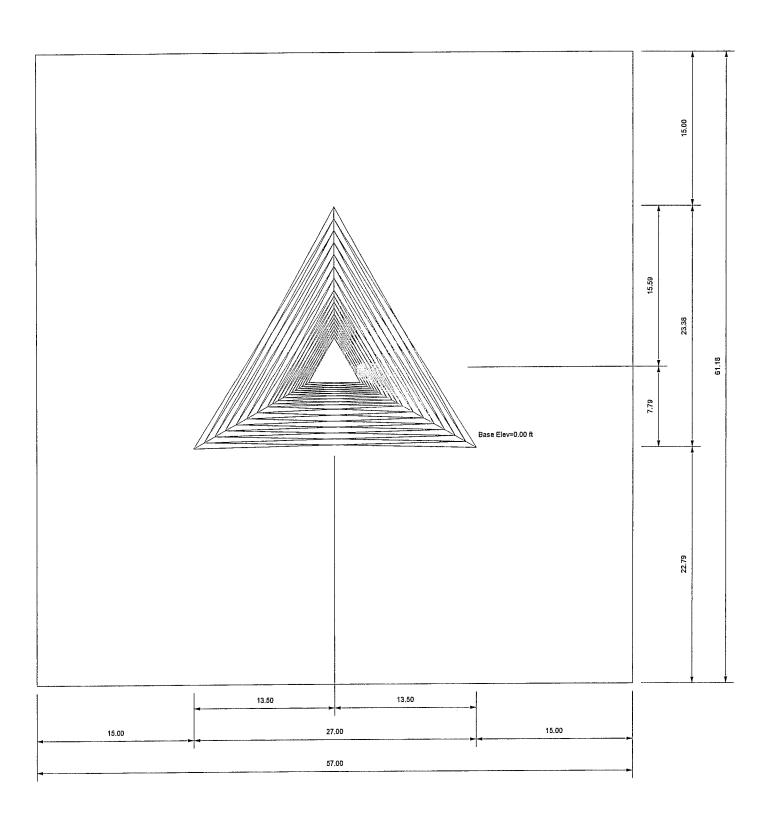
ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 625 K UPLIFT: -556 K SHEAR: 62 K

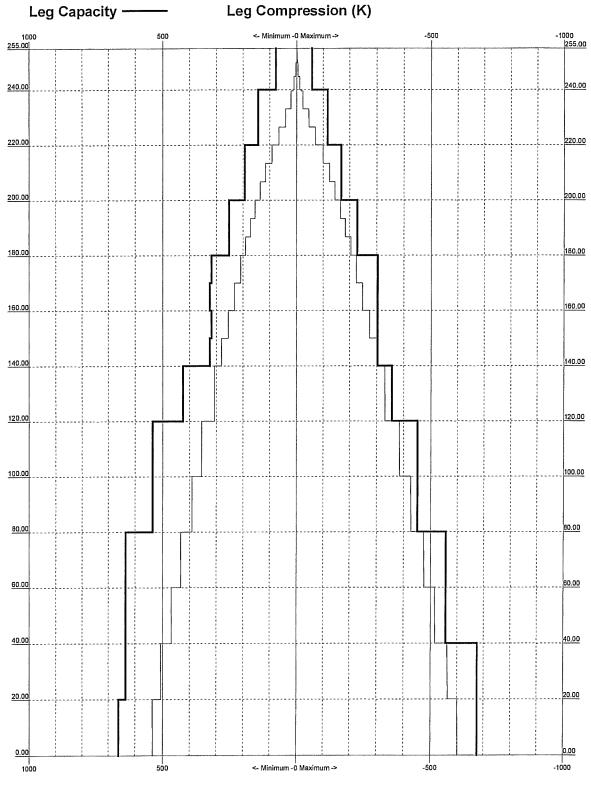
AXIAL 287 K

SHEAR MOMENT 10 K 1627 kip-ft


TORQUE 0 kip-ft 30 mph WIND - 0,7500 in ICE AXIAL

93 K SHEAR MOMENT 95 K / 13888 kip-ft

TORQUE 12 kip-ft REACTIONS - 90 mph WIND NITESH **AHUJA** DEC 0 4 2013


Valmont	^{Job:} 240826		
1545 Pidco Drive	Project: V-27 x 255' - #281318 .	lake Horsley, K\	/
Plymouth, IN	Client: American Tower Corp.	Drawn by: SKK	App'd:
Phone: 574-936-4221	Code: TIA-222-G	Date: 12/03/13	Scale: NTS
FAX:	Path: **Physioleculve-Recom/Documents/2400/40628 ATC #761318 Jak	e Horsley KY V29 v 285V02 Tower Calcard.	Dwg No.

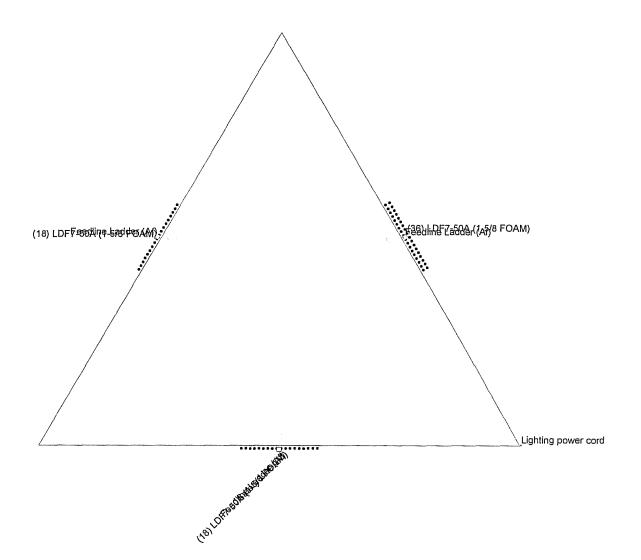
Plot Plan Total Area - 0.08 Acres

Valmont	^{Job:} 240826		
1545 Pidco Drive	Project: V-27 x 255' - #281318 .	Jake Horsley, K	Υ
Plymouth, IN	Client: American Tower Corp.	Drawn by: SKK	App'd:
	Coda: TIA-222-G	Data: 12/03/13	Scala: NTS
FAX:	Path:	ha Horstey KY VZ9 x 255102 Tower Calcyl	Dwg No.

TIA-222-G - 90 mph/30 mph 0.7500 in Ice Exposure C

I		^{Job:} 240826		
1	1545 Pidco Drive	Project: V-27 x 255' - #281318	lake Horsley, KY	/
1	Plymouth, IN	Client: American Tower Corp.	Drawn by: SKK	App'd:
ı	Phone: 574-936-4221	Code: TIA-222-G	Date: 12/03/13	Scale: NTS
ı	FAX.	Path:		Dwg No.

Feedline Distribution Chart 0' - 255'


Round	Flat	App in Face	App Out Face	Truss Le

255.00		Fa	ce A			promotor	•	Fac	e B			7	F-12-12-12-12-12-12-12-12-12-12-12-12-12-		Fac	e C	-	
					250.00				§:		r	250.00						
240.00					240.00				/8 FO/			240.00						
240.00		·- [· · · · · · · · · · · · · · · · · · ·	240.00	ļ			(†8) LDF7;50A (1-\$/8 FOAN)			210.00						
					230.00	ļ						230.00				l	1	****
220.00					220.00				9 (5	:		220,00					l	
220.00								1				220.00						
200.00					Ē.									ľ				
180.00																		
						-												
160.00			*****			ļ												
															ı			
140.00																		
	9					Propr				(A)			3/8					
	HR) I DE7-504 11-518 FOAM	5		({		Lighting power cord				Feedijne Ladder (A1)			Safety Line 3/8		(MAC			
120.00		-		adde		ghting		Ž					Şafet		5/8 F(
	27.50			Feedline (Af)		Ľ		200		Feed					PA (1		e Lado	
	5	3		<u>a</u>				ync.							DF7-5		Feedline Ladder (Af)	
100.00	Σ	-						(30) tur 7-304 (1-3/8 r.u.A.M)						**********	(18) LDF7-50A (1-5/8 FOAM)	********		
							į	(P)										
															- 1			
80.00											. .							
İ															l			
60.00																*********		
																		i
40.00							*******											
20,00																		
										İ					1			
0.00																		

Valmont	^{Job:} 240826		
1545 Pidco Drive	Project: V-27 x 255' - #281318 J	ake Horsley, KY	1
Plymouth, IN	Client: American Tower Corp.	Drawn by: SKK	App'd:
Phone: 574-936-4221	Code: TIA-222-G	Date: 12/03/13	Scale: NTS
FAX:	Path:	House My 173 v 255777 Towns Calestin	Dwg No.

Feedline Plan

Round ______ Flat _____ App In Face _____ App Out Face _____ Truss-Let

	^{Job:} 240826		
1545 Pidco Drive	Project: V-27 x 255' - #281318 J	ake Horsley, KY	•
Plymouth, IN	Client: American Tower Corp.	Drawn by: SKK	App'd;
Phone: 574-936-4221	Code: TIA-222-G	Date: 12/03/13	Scale: NTS
FAX:	Path;	Horeley KY V28 + 755°C2 Tower Calcal24	Dwg No. E

tnxTower ,	Job 240826	Paga 1 of 59
Valmont 1545 Pikko Driva	Project V-27 x 255' - #281318 Jake Horsley, KY	Dala 13:12:57 12/03/13
Plymosth, IN Phone: 574-936-4221	American Tower Corp.	Designed by SKK

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 255.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the tap and 27.00 ft at the base.

This tower is designed using the TLA-222-O standard.

The following design criteria apply:

Tower is located in Breckinridge County, Kentucky.

Basic wind speed of 90 mph.

Structure Class II.

Exposure Category C.

Topagraphic Category I.

Crest Height 0.00 ft.

Nominal ice thickness to 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pef.

A wind speed of 30 mph is used in eambination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

Zero Fall Zone.

A nan-linear (P-delta) analysis was used.

Pressures are calculated at each section.

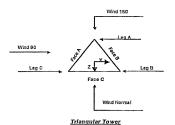
Stress ratio used in tower member design is 1.

Local bending stresses due to elimbing loads, feedline supports, and appurtenance mounts are nat considered.

Options

- Consider Moments Legt
 Consider Moments Horizontals
 Consider Moments Diagonals
 Consider Moments Diagonals
 Use Code Stress Ration
 Use Code Stress Ration
 Use Code Stress Ration
 Use Code Salety Factors Guys
 Escolate lee
 Always Use Max Kz
 Lee Special Wind Profile
 Include Batts In Member Capacity
 Leg Boits Arx At Top Of Section
 Sectodary Horizondal Brasse Leg
 Use Diamont Inner Brasing (a Sided)
 Add IBC .6D+W Combination

- Distribute Ley Loads As Uniform
 Assume Legs Pinned
 Assume Right Index Piste
 Use Clear Spans For Wind Area
 Retermined The Company of the Company
 Project Wind Association of the Company
 Freder Wind Association of the Company
 Six Members Have Col Lends
 Six Members Have Col Lends
 Sort Capolity Reparts By Component
 Triangulate Diamond Inner Briefung
- 1 Treat Freeline Bundler As Cylinder
 Une ASCE 18 X Brace 19 Keles
 Calculate Redomate Brender Forces
 Ignore Redomdant Brender Forces
 Ignore Redomdant Brender Forces
 Ignore Redomdant However
 A Rt Leg Blust Resist Compression
 All ILeg Panels Have Same Alloweble
 Offset Girl Af Foundation
 Consider Feedline Torque
 Technic Angle Block Shoar Check
 Include Shear-Torsion Interestion
 Always Use Sub-Critical Flow
 Use Top Mounted Sockets


tnxTower	Јо ь 240826	Page 3 of 59
Valutoni 1545 Psico Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymorah, IN Phora: 574-936-4221 FAX:	Ctlent American Tower Corp.	Designed by SKK

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Haz K Brace End	Has Hortzoniols	Top Girt Offset	Bottom Gjri Offset
	A	ft		Ponels .		ln	in
T3	228.00-208.00	6,67	X Brace	No	No	0.0000	0.0800
T4	288,88-180,00	6.67	X Brace	No	No	0,0088	0.0800
T5	188.88-160.88	10.00	X Brace	No	No	0.0088	0.0300
T6	168,00-140,08	18,00	X Brace	No	No	g 0088	0.0000
T7	140.08-120.80	20.08	X Brace	No	No	80888	0.0000
T8	128,80-180,08	20,80	XBrace	No	Na	0.0008	0.0800
T9	100.00-88.00	20,00	X Brace	No	No	8.8008	0.0000
T18	88.08-60.08	20.88	X Brace	No	No	0.0088	0,0000
TII	60,00-40,00	20,08	X Brace	No	No	8.0000	0.0000
T12	40.00-20.08	20.00	X Brace	No	No	8.0088	a,0080
T13	20,00-0.80	20.08	X Brace	No	No	8.0080	0,8888

		Tower Se	ction (3eometry	(cont'd)	
Tower Elevation ft	Leg Type	Leg Site	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 255.00-240,00	Pipe	1°- 2.50° - 0.75° conn15°	A572-50	Equal Angle	L2x2x1/8	A36
T2 240.80-220.00	Pipc	-C-(Pired 226169) p-4,00"- 0.75" conn20" -C-Trans-6B-4B-(Pired 226184)	(50 kai) A572-50 (50 kai)	Equal Angle	L2x2x3/16	(36 ksi) A36 (36 ksi)
T3 220.00-200.00	Pipe	P- 5.80*- 0.75" connTruns-20* -C-(Pirod 226200)	A572-58 (50 ksi)	Equal Angle	L2x2x3/16	A36 (36 ksi)
T4 208,00-180,00	Pipe	P+ 6.90*+ 0.75* conn1fBD-Trans-20* +C-(Pirod 229377)	À572-50 (50 kai)	Equal Angle	L2 1/2x2 1/2x3/16	A36 (36 ksi)
T5 180.00-160.00	Trus Leg	#12ZG -1.75" - 1.00" cannHBD-Trans (Pirod 229588)	A572-50 (50 ksl)	Equal Angle	1.3x3x3/16	A36 (36 ksi)
T6 168.8a-14a.0a	Truss Leg	#12ZG -1.75" - 1.00" sonnHDD-Trans (Pired 229589)	A572-50 (50 ksi)	Equal Angle	1.3x3x3/16	A36 (36 ksi)
T7 140.00-120.00	Trust Leg	#t2ZG -2.88" - 0.875" connHBD-Truns (Pisted 208332)	A\$72-50 (50 ksi)	Double Equal Angle	2L3x3x3/16	A36 (36 ksi)
TB 120.00-100.00	Trust Leg	#12ZG -2.25* - 0.875* conn. (Pirod 208334)	A572-58 (50 ksi)	Double Equal Angle	2L3x3x3/16	A36 (36 ksi)
00,08-88.001 PT	Trus Log	#12ZG -2.25" - 0.875" conn. (Pirod 208334)	A572-50 (58 kai)	Double Equal Angle	2L3x3x3/16	A36 (36 ksi)
T10 80.00-60.00	Truss Log	#12ZG - 2.50" - 0.875" conn. (Pirod 208335)	A572-58 (50 ksl)	Double Equal Angle	21.3x3x3/16	A36 (36 ksi)
T11 60.80-40.00	Trus Leg	#12ZG - 2,50* - 0.875* conn. (Pirod 288335)	A572-50 (58 kgi)	Double Equal Angle	2L3 1/2x3 1/2x1/4	A36 (36 ksl)
T12 40.00-20.00	Truss Leg	#12ZG - 2.75" - 0.875" conn. (Pirod 208337)	A572-50 (50 ksi)	Double Equal Angle	2L3 1/2x3 1/2x1/4	A36 (36 ksi)
T13 28.08-0.00	Truss Leg	#1220 + 2.75" - 0.875" conn. (Pirod 288337)	A572-58 (50 ksi)	Double Equal Angle	2I.3 I/2x3 1/2x1/4	A36 (30 kai)

Tower	Section	Geometry	(conf'd)

tnxTower	Job 240826	Page 2 of 59
Valmont 1545 Pidoo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Tower Section Geometry									
 Tower	Tower	Assembly	Description	Section	Munber	Section			
Section	Elevation	Datobase	-	Width	of Sections	Length			
	ft			ft		ft			
 TI	255.00-240.80	·····	V-Series Leg	5.8a	1	15.88			
T2	248.88-220.08		V-Series Leg	5.88	1	20.08			
T3	220.08-288.00		V-Series Leg	5.88	1	20.80			
T4	280,80-188,88		V-Series Leg	7.88	1	20.80			
T5	180.00-160.00		PiRod 12BD Truss Leg	9.00	1	20.80			
T6	168,00-148,08		PiRod 12BD Truss Leg	11.00	1	28.00			
17	148,80-128,08		PiRod 12BDH Truss Leg	13.80	1	20,84			
T8	120,00-188.00		PiRod 12BDH Truss Log	15.80	1	20.00			
T9	180,08-80.08		PiRod 12BDH Truss Leg	17.80	1	20,08			
Tio	80.88-60.00		PiRod 12BD11 Trus : Leg	19.00	1	20.00			
Til	60.8#-48.88		PiRod 12BDH Truss Leg	21.88	1	20.08			
T12	40.08-20.88		PiRed 12BDH Truss Leg	23.08	1	20,00			
T13	24.00-0.08		PiRod 12BDH Truss Leg	25.00	1	20.08			

		To	wer Sect	ion Geo	metry (co	nt'd)	
Tower	Tower	Diogonal	Bracing	Hor	Has	Top Girt	Bottom Girt
Section	Elevation	Specing	Туре	K Brace End	Harizontols	Offict	Offset
	ft	ft		Ponels		In	ín
T1	255.80-248.00	4,86	X Brace	No	No	5,0008	8.0008
T2	240.88-220.08	6.53	X Brace	No	No	5.0000	8.0000

tnxTower	Ј _о b 240826	Page 4 of 59
Valmaut 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymosol, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Tower Elevation A	Top Girt Type	Top Giri Site	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Beltom Girl Grade
T1 255.00-240.00	Equal Angle	L2x2x3/16	A36 (36 ksi)	Solid Round		A36 (36 ksi)

			Tower	Section	Geom	etry (con	i uj	
Tower Elevation	Gusset Areo (per face)	Ousset Thickness in	Guset Grade	Adjust. Foctor Aş	Adjust. Factor A.	Weigla Mult.	Dauble Angle Stitch Bolt Spacing Diogonals in	Double Angle Stitch Boli Spocing Horizoniols In
	0.00	0.2500	A36	<u> </u>	3	1,85	36,0888	36,0000
255.00-240.00	2.30	-,,,,,,,,,	(36 ksl)	•	•	00	54.5008	20.0000
T2	80.0	8.2500	A36	1	1	1.05	36,0088	36.8800
240.08-220.08			(36 ksi)	_	1	1.05	36,0008	
T3 228,00-208,00	0.80	n,3750	A36 (36 ksi)	1	1	1.05	30,008	36,0008
74 T4	0.00	0.375n	(36 KH)	,	1	1.05	36,0330	36.0000
200.00-180.00	0.00	0.3734	(36 kai)	•	-	4.03	24.0880	34.000
T5	0.08	8,5008	A36	1	1	1.05	36,0800	36,8000
180.00-168.00	5.00	0.0000	(36 ksi)	•	-	****		24,000
T6	0.00	8.5000	A36	ı	1	1.05	36.0800	36.8000
160,00-140.00			(36 kai)					
17	0.00	0.6250	A36	1	1	1,85	36.0800	36.0800
148.00-120.00			(36 ksi)					
T8	0.00	0.6250	A36	1	1	1.05	36.8000	36.0880
128.00-100.00			(36 kai)					
79	06.0	0.6258	A36	1	1	1.05	36.0008	36.8800
100,80-80,00	0.50	0.6250	(36 kai) A36	1	1	1.05	36.8880	36.8800
T10 80.00-60.00	0.80	0.0230	(36 ksi)	•	•	1.05	30.8880	30.8800
TI1	0.00	0,6250	A36	1	1	1.05	36,0880	36,0000
60.08-48.00	0.04	5,0230	(36 ksi)	•	•	2.03	30,0000	20.000
T12	0.08	8,6250	A36	1	.1	1.05	36,8880	36,0000
40.08-28.00		230	(36 ksi)					
13 20.00-0.00	80.0	8.6250	A36	1	1	1.05	36,0800	35,0000
			(36 kzi)					

			To	ver Se	ction C	eomet	ry (cor	ıt'd)		
						K Fo	ctors			
Tower Elevolion	Cale K Single Angles	Colc K Solid Ronnds	Legs	X Brace Diags X	K Brace Diagr X	Single Diogs	Girts X	Hortz.	Sec. Horiz. X	Inner Brace
TI	Yes	Yes	1				<u>-</u>		- 1	-i
255,00-249.00 T2 249,08-220,00	Yes	Yes	1	t	1	1	i	1	i	1
T3 220.00-200.00	Yes	Yes	1	i	1	1	1	i	1	i
T4	Yes	Yes	1	i	1	1	i	i	i	i

tnxTower	Joh 240826	Page 5 of 59	
Valuont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13	
Plymouth, IN Phone: 374-936-4221 BAY.	Client American Tower Corp.	Designed by SKK	

				-		KFa				
Tower Elevation	Cale K Single	Cale K Salid	Legs	X Brace Diags	K Brasé Diags	Single Diags	Girts	Hortz.	Sec. Hariz	Inner Brace
	Angles	Rounds		X	X.	X	x	X	X	X
f										
200,00-180.00				,			:	1		1
T5	Yes	Yes	1	Į.	!	!	:	1	!	1
180,00-168.00						:	1	1	1	
T6	Yes	Yes	ı	ı	į		ı	1	1	1
160,00-140,00				1		1	1	1	1	1
T7	Yes	Yes	1	1	1	1	1	1	ţ	1
140.00-120.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	ı	1	Ţ	1	1	1	1
120,00-100,00		4		1	1	1	1	1	1	ι
T9	Yes	Yes	ı	1	t	Ţ)	1	1	
100.00-80.00				1	1	1	t	1	1	1
T10	Yes	Yes	1	ı	1	1	1	1	ι	t
80,00-60.00				t	ı	1	1	1	1	1
TII	Yes	Yes	1	1	1	1	1	1	1	ı
60.00-40.00				1	ı	1	1	ı	1	1
T12	Yes	Yes	1	1	ı	1	1	1	1	1
40.00-20.00				1	1	1)	ı	1	1
T13	Yes	Yes	1	1	t	1	1	1	1	t
20.00.0.00				1	1	t	1	1	1	t

28,60-0.00

Note: K factors are applied to member segment lengths, K-braces without inner supporting members will have the K factor in the out-of-plane direction applied.

Tower Section Geometry (cont'd)

			Trus-Leg	K Factors		
	Tru	s-Legs Used As Leg Ms	nibers	Tnisi	Legs Used As Inver M	embers
Tower Elevation ft	Leg Panels	. X Brace Diogonals	Z Brace Diogonals	Leg Panels	X Brace Diagonols	Z Brace Diagonals
T5 160.00-160.00	1	0.5	0,7	1	0,5	0.7
T6 160,00-140,00	1	0.5	0.7	1	0.5	0.7
T7 140.00-120.00	1	0.5	0.7	t	0.5	0.7
TE 120.00-100.00	ı	0.5	0.7	ı	0.5	0.7
T9 100,00-50.00	ī	0.5	0.7	1	0.5	8.7
T10 80.08-60.00	1	0.5	0.7	1	0.5	0.7
T11 68.00-40.00	I	0,5	0.7	ı	0.5	0.7
T12 46.80-20.00	1	0.5	0.7	1	0,5	8.7
T13 20,60-0.60	1	0.5	0.7	ť	0.5	0.7

Tower Section Geometry (cont'd)

tnxTower	Job 240826	Page 7 of 59
Valmout 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4211 FAX:	Client American Tower Corp.	Designed by SKK

Tower				Cannecti	en Officts			
Elevation		Diag	onal			K-Br	asing	
	Vert. Top	Harit. Top	Vert. Bat	Horiz. Bot.	Vert. Top	Haria Top	Vert. Bot.	Horiz. Bot
я	in	in	in	in	in	in	in	in
T9	5,0000	11.5000	5,0000	11,5008	0.0000	0.0000	0.8000	8000.0
100,00-E0.00 T10	5,0000	11.5000	5.0000	11.5080	0.0000	0.000,0	8.8000	0.0008
\$8,00-60.00 Ttt	5,0000	t1.5008	5,0008	11.5000	0.0000	0,0000	0.0800	0.0000
60.00-40.00 T12	5,0000	11.5000	5,0000	11,5008	0.0008	0.0800	0.8000	8.000.0
40.00-20.00 T13 20.00-0.00	5.0000	11.5000	5.0000	11.5008	0.0000	0.0800	0,0800	8008

Tower Section Geometry (cont'd)			

Tower	Leg	Leg		Diagon	al	Tap G	irt	Bortom	Girt	MidG	irt	Long Hori	zon1al	Short Han	izontal
Elevojian	Connection					İ						ł			
Я	$T_{j}pe$	Balt Size	No.	Bolt Stre	No.	Bolt Size	Na	Bolt Size	No.	Bolt Size	No	Bolt Size	No.	Rolt Size	Nα
		in	110.	in	****	in	,	in		in		in		In	,,,,,
TI	Flange	0.7500		0.7500	1	8.7500	ī	1.0000	0	1.0000	0	1.0800	0	1.0000	0
255.00-240.00	range	A325N	•	A325N	•	A325N	•	A325N		A325N		A325N		A325N	
T2	Flange	8.7500	6	0.7500	1	0.7588	t	1.0000	0	1.8800	8	1.0000	8	1.8000	Ð
240.00-220.00	2	A325N	-	A325N		A325N		A325N		A325N		A325N		A325N	
T3	Flange	8.7500	8	0.7500	1	0.0000	0	1.0000	0	1,0000	0	1.0000	0	1.0800	0
220.00-200.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T4	Flonge	1.0000	G	0.7500	1	0.8000	Ð	8008.1	0	£.0000	0	1.8800	0	1.0000	0
208.00-160.08	4	A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T5	Flonge	1.0008	6	1.0000	1	0.0000	0	1.0000	0	1,0003	0	1.0000	8	1.8800	0
180,00-160,00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T6	Flange	1,0000	6	1.0000	1	8.0000	Ð	1.0000	0	1.8800	0	1,0080	0	1,0000	8
160,08-140,00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
17	Flange	1.8000	12	0.8750	1	8.0000	Ð	1.0000	0	1,0000	0	8000.1	0	1.0000	0
140.00-120.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
TS	Flange	1,0000	12	0.8750	1	0.0000	e	1,0000	0	1.0000	0	0.0000.1	8	1.8000	0
120.00-100.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T9	Flange	1.0008	12	0.8750	1	0.8000	0	0.000.1	0	1.8000	0	1.0008	0	1.0000	0
100,00-80,00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T10	Finge	1.0080	12	0.8750	1	0.8000	0	1.0000	0	1.0000	0	1.0008		1.8000	8
80.00-60.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
Til	Flance	1,0000	12	0.8758	1	0.0000	. 0	1.0000	0	1.0000	0	1.8888	0	1.0008	a
60.00-40.00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T12	Flange	1,0000	12	0,8750	1	0.0000	0	1.0000	0	1.0000	0	1.0000	0	1,0000	6
40,00-20,00		A325N		A325N		A325N		A325N		A325N		A325N		A325N	
T13 20 00-0.00	Figure	1.0000	12	0.8750	1	0.0800	Ð	0000,1	0	1.0000	8	1.0000	0	1.8008	8
		F1554-105		A325N		A325N		A325N		A325N		A325N		A325N	

Feed Line/Linear	Annurlanances	Enforced Ac	Dound Or Elaf
Feed I Ine/Linear	Andurtenances	- Emereu As	Kouna Of Fiat

tnxTower	Job 240826 , .	Page 6 of 59
Vulinont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth IN Phons: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Tower Elevation fl	Lrg		Diogonol		Tap G	Tap Girt		Botton Girl		Mid Gin		Long Horizontal		Short Hartsontal	
•	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Met Width Deduct in	U	Net Width Dedict in	υ	Net Width Deduct in	Ū	Net Width Deduct in	U	
Ti	0.0000	1	8.0000	0.75	8000.0	0.75	0.0000	0.75	8,0000	0.75	0.0000	0.75	0.0000	0.75	
255,00-240,08 T2	0.0000	1	0.0000	0.75	0.0008	0.75	0.0000	0.75	8,8000	0.75	0.0000	0.75	0.0000	0.75	
40.00-220.00	2,000				-,										
T3	0.0000	1	0.0000	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	8,0000	0.75	0.0000	0.75	
220.00-200.08			1				i				i				
T4	0.000	1	0.0000	0.75	0000.0	0.75	0.000.0	8.75	8.0000	0.75	0.0000	0.75	0.0000	0.75	
00,081-00,000			1				l								
T5	0.0000	1	0.6600	0.75	0.0000	0.75	8,000.9	0.75	0.0000	0.75	0.0000	0,75	0.0000	0,75	
180.00-160.00	0.0000	ı	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.8000	0.75	0.0000	0.75	0.0000	0.75	
T6 60.00-140.00	0,0000	•	0,0000	u. 12	0,0000	u. 13	0.0000	0.73	U.B.OLO	0.73	0.0000	0.73	0.0000	U. 13	
T7	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	
140.00-120.00	0.0000	•	00.0												
TE	0.0800	1	0,0600	0.75	0,0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	
20.00-100.00			1				i								
T9	0.0000	1	0.0000	0.75	0.0000	0.75	0.8000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	
100,00-E0,00															
TIO	9.0000	t	8.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	9,0000	0.75	0.0000	0.75	
E0.00-60.00			0.0000	0.75	0.0000	0.75	8 080e	0.75	0.8000	0.75	0.0808	0.75	0.0000		
T11 60.00-40.00	0.0000	1	0,0000	0.75	0.0000	0.73	0.0800	0.75	0.8000	U. 75	0.0800	U, 73	0.0000	0.75	
T12	0.0000	ı	0.0000	0.75	0.0000	0.75	0.00ns	0.75	0 0000	0.75	0.0000	0.75	0.0000	0.75	
40.00-20.00	0,0000	•	1 5.0000		""""	12	1				1			0.72	
13 20,00-0.00	0.0000	t	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0008	0.75	

Towars	action G	compfn	(cont'd)

Tower				Connecti	n Officets				
Elevation	7"	Dio	onal	Commen	K-Brozing				
	Vert. Top	Horiz. Top	Vert. Bat.	Horiz. Bot.	Vert. Top	Hariz. Top	Vert. Bot.	Horia. Bat	
ft	in	in	in	in .	la	in	in	In	
TI	5.0000	5.0000	5.0000	5.8000	0.0000	0.0000	0.0000	0.0000	
255,00-240,00 T2	5.0000	5.0000	5.0000	5,0000	0.0006	0.0000	0.000	0.0800	
240.00-220.00 T3	5.0000	6.2500	5.0000	6.2500	0,0000	0,0000	0.0800	0.0000	
220.08-200.00 T4	5,0000	6.2500	5.0000	6.2500	8.8000	0.8008	0,0000	0.8008	
200.00-180.00 T5	5.0000	10.7500	5.0000	10.7500	0000,8	0.0008	0.0000	0.8800	
160.88-160.00 T6	5.0000	10.7500	5,0000	to.7500	8000.0	0.0000	8,0000	0.0000	
160.00-148.00 T7	5,0000	11,5000	5.0000	11.5000	0,0000	0.0000	0.0000	0,0000	
140.00-120.00 T8	5.0008	11.5000	5.0000	11.5000	8,0000	0,0000	0,0000	0.0000	
120.00-100.00			i				l .		

tnxTower	Јоъ 240826	Page 8 of 59
Valmont 1345 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phane: 574-936-4221 FAX:	Cilent American Tewer Corp.	Designed by SKK

Description	Face	Allow Shield	Campanent Type	Placement	Face Offset	Loteral Offict	#	# Per	Clear Spacing	Width or Perimete.	
	Leg			ft	lн	(Frac FW)		Raw	in	inin	plf
Safety Line 3/8	C	No	Ar (CaAa)	255.00 - 0.00	3.0008	6	t	1	0.3750	0.3750	0.22
Lighting power cord	В	No	Ar (CaAs)	255,00 - 0.08	0.5800	0.5	ı	1	0.2000	0.8700	0.15
LDF7-58A (1-5/8 FDAND	С	No	Ar (CuAs)	230.00 - 0.00	1,0008	e	12	18	1.0280	1.9800	0.82
LDF7-50 A (1-5/8 FOAM)	В	No	Ar (CaAa)	220.00 - 0,00	1,0000	0	36	18	1.0200	1.9600	8.82
LDF7-50A (1-5/8 FOAND	В	Na	Ar (CaAa)	250,00 - 220.88	1.0000	0	12	12	1.0200	t.9800	8.82
LDF7-50 A	A	No	Ar (CaAa)	240.00 - 0.88	1,0000	0	12	t E	t,0280 t.0000	1.9800	0.82
Feedline Ladder (Af)	В	No	Af (CaAs)	250,00 - Q.00	1.0000	0	1	1	3.0000	3.0000	8.40
Feedline Ladder (Af)	A	No	Af(CaAa)	240.00 - 0.80	1,8008	8	1	1	3.0080	3.0000	E.4 0
Feedling Ladder (Af)	c	No	Af (CaAs)	230.00 - 0.88	1.8000	0	1	1	3.0000	3.0000	8.40

Feed Line/Linear Appurtenances Section Areas

Tawer Section	Tower Elevation	Face	AR	Ar	CAAA In Face	CAA Out Face	ll'a ight
ageiron	A		fi³	ft ²	nº	ft ²	K
TI	255.08-240.00	A	8,000	0,000	8.008	0,000	0.00
••	200110 2 10.2	В	8,000	0,000	41,945	808.9	0.23
		B	8,000	0.008	0.563	0.000	0.00
T2	240.00-220.00		0.000	0.080	81,280	0.000	8.46
-		A B C	0.000	0.000	83.820	0.000	0.47
		č	0.000	0,000	41,390	0.000	0.24
T3	220,80-200,00	Ā	800.0	8,000	81.280	8.000	8.46
		В	0.000	8,000	154.300	0.000	8.76
		č	8,000	0.000	82.030	0,000	0.47
T4	200.00-180.00	À	0.008	0,030	81,280	0.000	0.46
		A B	0,000	0.000	154,300	0.000	0.76
		č	0.000	0.000	\$2,038	0.088	0,47
TS	180,00-160,00	Ā	8.008	0.000	\$t.280	0.000	0.46
**		A B	0.000	0.008	154.300	882.0	0.76
		č	0.000	0.800	82,030	0.000	0.47
T6	160,00-140,00	Ā	0.000	8,008	81.288	880,0	0.46
	,	R	8,000	0.008	154.300	0.008	0.76
		B	0.008	8,000	82,038	9.008	0.47
17	140,00-120.00	Ā	8,000	8,080	\$t,280	0.800	0.46
••		В	0.800	0.000	154.380	0.008	0.76
		č	0.000	0.008	82.830	0.000	0.47
TE	120.80-188.00	Ā	0.808	0.000	81,280	0.000	0.46
		В	0.800	8,000	154,300	0.000	0.76
		č	0.000	0,008	E2.038	0.808	0.47
19	100.00-80.00		0.000	0.000	81,280	8.000	0.46
	200.00-00.00	A B	0.000	0.000	154,300	8,00,9	0.76
		č	0.000	0.800	82,030	0.000	0.47
Tio	20,00-60,00	Ä	0.800	0.000	81.280	0.008	0.46
	20.00.00	B	0.000	0.000	154,300	0.000	0.76
		č	0.000	0.000	82,030	0.000	0.47
TH	60.00-40.00	A	0.000	0.000	81.200	0.000	0.46
111	00.004000	B	0.000	0.000	154,300	1.000	0.76
		C .	0,000	0.000	82.030	0.000	B.47

	tnxTower	Joh 240826	Page 9 of 59
	Valment 1545 Fideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
i	Physicish IN Phase: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

Tower Section	Tawer Elevation	Face	Ae	Ar	CAAA In Face	CAAA Out Face	Weight
	A		fi³	ft ²	ft2	ft ²	K
Tt2	40,00-20.88	Α.	0.000	B.000	81,280	0.000	0.46
		В	0.008	8.000	154.308	0.800	0.76
		С	0.808	8.000	82.030	0.800	0.47
T13	20.80-8.00	Α.	0.080	8.000	81,280	0.000	0.45
		В	8.000	0.00g	154.388	8.080	0.76
		c	0.088	0.000	82.030	0.000	R.17

Tower	Tower	Fase	Ice	Ax	Ar	Cata	CAA	Weight
Section	Elevation ft	- or Leg	Thickness In	ft²	ft²	In Foze	Out Face ft ²	κ
TI	255,00-240.80	A	1,835	8,000	0.080	8,008	0,080	0.00
		В		8.000	0.000	86,643	0.000	1.46
		С		0.008	0.000	6.067	0,000	0.08
T2	240.00-220.00	A	1,821	8.000	0.080	159,539	8,008	2.72
		В		0.000	8.800	158.565	800.0	2.85
		С		800.0	0,000	R7.805	8.080	1.46
T3	220.00-200.00	A	1.005	0.880	0.000	159.383	0.080	2.70
		В		0.000	0.000	169.267	0.080	4.80
		С		0.000	8.800	167.353	0.000	2.01
T4	208.00-180.00	A	1.787	6.000	0.000	159.213	0.880	2.68
		В		0.000	0.000	159.021	0.000	3.98
		C	_	0.008	0.000	167.111	8.080	2.78
T5	180,00-160,08	٨	1.767	0.000	0,000	159.026	0.000	2.66
		В		0.000	0.020	168.751	0.000	3.95
		С		0.000	0.808	166,045	0.000	2.76
T6	160,80-148.08	A	1,745	0.000	0.000	158.018	0.000	264
		В		0.000	0.88.0	15R.450	8.080	3.92
		C		8.000 0.000	0.008	166,549	0.808	2.73
17	140.08-120.00	, А.	1.720			158.583	0.000	2.61
		В.		0.000	0.88.0	160.110	0.080	3.09
T8		Ċ.	1.692	0.000	0.008	166.215	800.0	2.70
12	120.00-100.00	A	1.692	0.008	0.080	150.31.4 167.721	0.800	2.58
				0.000	0.000	165.032	0.000	3.86
T9	180.80-80.00	C A	1,658	0.000	8.000	157.996	0.000	2.67
19	140.80-80.00	B	1.036	0.900	0.000	157.261	0.000 088.8	2.54
		Č		0.000	0.000	165.379	8.860	3.01 2.63
T10	80.00-60.00	Ā	1.617	0.000	0.000	157,608	0.008	2.49
•••	W.00-00.00	B	4.047	809.0	0.008	156.698	0.000	3,76
		ć		0.000	8.800	154,026	0.008	2.58
T11	60.00-48.00	Ä	1.564	0.000	0.000	157,103	880.0	2.44
		B		0.000	0,000	165,967	0.000	3.70
		č		0.000	0.800	164.187	8,800	2.51
T12	40.00-20.08	Ä	1,406	0.000	0.000	156.369	0,000	2.35
		B		0.000	0.808	164,903	0,000	3,60
		č		0.000	0.000	153.062	0,00,0	2.42
T13	20.80-8.00	Ă	1.331	8.000	0.000	154.914	0.880	2.18
		В		0.008	0.008	162.795	8.088	3,41
		č		0.000	0.000	160,989	0.080	2.24

tnxTower	Job 240826	Page 11 of 59
Valmont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

Feed Line Center of Pressure

Tower	Feed Line	Description	Feed Line K.		K,
Section	Record No.		Segment Elev.	No Ice	ke
T3	9	Feedline Lodder (Af)	228.80 200.00 - 220.00	1.0800	1.0000
T4	1	Safety Line 3/8	188,00 - 200.00	0.6000	8.6008
T4	2	Lighting power cord	180.00 - 200.80	0.6000	0.6000
T4	3	LDF7-50 A (t-5/0 FOAM)	100.00 - 200.00	0.6080	0.6000
T4	4	LDF7-50A (1-5/8 FDAM)	180.00 - 200.00	0000.0	8000,0
T4	6	LDF7-50A (1-5/8 FOAM)	180.00 - 200.00	0000.0	0.6800
T4	7	Feedline Ladder (Af)	t80.08 - 208.00	t.0000	1.0000
T4	8	Feedline Lodder (Af)	180.00 - 200.00	1.0000	1,0008
T4	9	Feedline Ladder (Af)	180.00 - 200.00	t.0800	1.0806
TS	t	Safety Line 3/8	160.00 - 180.00	0.5088	0.5885
T5	2	Lighting power cord	t60.08 - 180.00	0.5008	8.5885
TS	3	LDF7-50A (1-5/8 FOAM)	- 80.08 00.08	8.6000	0.5885
75	4	LDF7-50 A (1-5/0 FDANI)	160.00 - 188.00	0.6000	0.5885
TS	6	LDF7-50 A (1-5/0 FDAM)	160.00 -	0.6000	0.5RR5
T5	7	Feedline Ladder (Af)	160.00 - 180.08	1.0000	1.0088
TS	8	Fredline Ladder (Af)	150,00 - 180,00	1.0000	1.0000
TS	9	Feedline Ladder (Af)	160,00 -	1,8000	1.0000
76	1	Safety Line 3/8	140.00 - 160.80	0.6000	0.6080
Т6	2	Lighting power cord	140,08 -	0.6880	0.6888
Т6	3	LDF7-58A (1-5/8 FOAM)	140.08 -	0.000	0.0000
76	4	LDF7-50A (1-5/8 FOAM)	140.00 - 160.00	8.6000	0.6008
Т6	6	LDF7-50A (1-5/8 FDAM)	140.00 - 160.08	0.6000	0.5000
Т6	7	Feedline Ladder (Af)	140,80 - 160,00	1.0000	t.0000
76	8	Feedline Lodder (Af)	140.80 - 160.00	1.0000	t.000s
76	9	Feedline Ladder (AI)	140.00 - 150.00	1.0000	1,0000
17	1	Safety Line 3/8	120.00 - 148.00	0,6000	8,6000
177	2	Lighting power cord	t 20.00 - 140.00	0.6000	0.6660
17	3	LDF7-50 A (1-5/8 FOAM)	120.00 - 140.00	0.6000	0.6008
17	4	LDF7-50 A (1-5/0 FOAM)	120.00 -	0,6008	0.6000
17	6	LDF7-50A (1-5/0 FOAM)	120.00 -	0.6000	0.6000
17	7	Feedline Ladder (Af)	120.00 -	1.0000	1.0000

tuxTower	Job 240826	Page 10 of 59
Valment 1843 Fideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Section	Elevation	C₽r	C P _I	CP _r Icc	CP ₂ Ice
	ft	tri	fri	ln	In
TI	255,00-240,00	3,0894	-1,5587	2,6502	-0.9106
T2	240,08-228.80	0.0536	-0.8889	0.1377	-0.5974
T3	220,88-200,08	1.8027	-0.5163	8.2104	0.1162
T4	200.00-180.00	1.2415	-8,6352	0.2581	0.1605
T5	180.00-160.80	1,4829	-0.7569	0.2730	0.1921
T6	168.00-140.00	1.7342	-8,8830	0.3126	0.2339
17	140.00-128,00	1.9991	-1,0160	0.3546	0.2768
TB	120.80-100.00	2.2423	-1.1380	0.3903	0.3151
T9	100.80-80.80	2.4944	-1.2646	0.4252	0.3517
T10	\$0.00-60.80	2.7306	-1,3830	0.4571	0.3849
TH	60.00-48.80	2.9562	-1.4952	0.4839	0.4125
T12	40.00-20.00	3.1735	-1.6052	0.5057	0.4334
T13	20.80-0.00	3.4132	-1.7255	8.5106	0.4331

			Shieldi	ng Fa	ctor Ka	
Tower	Feed Line	Description	Feed Line	K,	K.	
Section	Record No.		Segment Elev.	Mo Ice	Ice	
ŢÍ	1	Safety Line 3/8	240.00 -	0.5000	0,5788	
1 1	. 1		235.00	ı)	- 1	
T1	2	Lighting power cord	248.00 -	0.6000	0.5788	
1 1	i.		235.00		- 1	
T1	5	LDF7-50A (1-5/0 FOAM)	248.00 -	0.5000	0.5788	
l!	_		250.08	1	1	
71	- 1	Foodline Ladder (Af)	240.00 -	1.0000	1.0000	
T2	, , ,	Safety Line 3/8	250,00 228,00 -	0.6000	0.5857	
1 14	-1	Salety Line 3/8	240.00	0.0000	0.5857	
1 72	2	Lighting power cord	220.00 -	0.6080	0.5857	
! '2	7	angining power cora	248,08	0.0080	0.3637	
12	3	LDF7-50A (1-5/8 FOAM)	220.80 -	0.5000	0.5857	
"	1	251 , 2017(1 5/01 0/01)	230,00	0.00001	V.3637	
T2	s	LDF7-50A (1-5/8 FDAM)	220.00 -	0.6000	0.5857	
1 1	- 1		240.00		0.5257	
T2	g > 6	LDF7-50A (1-5/8 FDAM)	220.00 -	0.6800	0.5857	
li			240.00			
T2	7	Feedline Ladder (Af)	220.00 -	1.0000	1.0000	
	1		240.00			
T2	8	Feedline Ladder (Af)	228.00 -	1.0000	1.0000	
1 1	1		210.00	i	1	
T2	9	Fezdline Ladder (Af)	220,08	1.0000	1.0000	
1	i.		230.08		i	
13	1]	Salety Line 3/0	200,80	0.6000	0.6000	
1 _1			220.00			
T3	2	Lighting power cord	200.00 - 220.00	0.6000	0.6000	
13	3	LDF7-50A (1-5/8 FOAM)	200.00 -	0.6000	0.6000	
131	-	LDF 1-30A (1-378 POARI)	220.80	0.6000	0.6000	
13	4	LDF7-50A (1-5/8 FDAM)	200.00 -	0.6000	0.6008	
1 13	7	PDI (-1011(1-20 FD/DIL))	220.00	2.5000	0.0008	
13	6	LDF7-50A (1-5/8 FOAM)	208.00 -	0.6000	0.6000	
I "	1		220.00			
T3	7	Feedline Ladder (Af)	200.08 -	1,0800	1.0000	
"	1		228.80			
T3	8	Feedline Ladder (Af)	280.08 -	1.0008	1.0000	

tnxTower	Job 240826	Page 12 of 59
Valmont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley,	KY Date KY 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Tower Section	Feed Lina Record No.	Description	Feed Line Segnant Elev.	K _e Noice	K _e
DECTION	REGUINA		140.00		1ET
17	8	Feedline Ladder (Af)		t.0000	1.0000
	٠	recuire Lauder (AL)	148,00	1.0006	1.0000
17	9	Feedline Ladder (Af)	t20.00 -	1,0000	1.0800
	_ 1	t comme zamont (12)	140.00	1.5500	1.0400
T8	1	Safety Line 3/8	t00.88	0.6080	0.6000
	•	,	120.08	-10000	0.0000
TB	2	Lighting power cord		0.6000	8.6000
			120.08		
TS)	3	LDF7-50A (1-5/8 FOAM)	100.00 -	8.6000	0.6080
- 1			120.00		
TS	4	LDF7-50 A (t-5/8 FOAM)	t00.00 -	8,5000	0.6000
1			120.80		
TS	6	LDF7-50A (t-5/8 FDAM)	£00.08 -	0.6000	8.6000
ì			t20.00]]	
T8	7	Feedline Ladder (Af)	108.00 -	t.0000	1.8000
			120.00	i i	
TR	8	Feedline Lodder (Af)	t80.00-	1.0000	1.0000
_1	í		120,00		
TS	9	Feedline Ladder (Af)	100.00 -	1,8000	1,0000
- 1			120,00	i	
79	1	Safety Line 3/8		0.6000	8,6000
T9	2	Lighting power cord	80.00 - 188,00	0.6080	0.6000
T9	3	LDF7-58A (1-5/8 FOAM)		0.680.0	0.5080
T9]	4]	LDF7-50A (1-5/8 FOAM)		0.6000	0.6000
19	6	LDF7-50 A (1-5/8 FOAM)		0.6800	0.6000
T9	7	Feedline Ladder (Af)	20.22 - 120.00	1.0000	1.0000
T9	0	Fredline Ladder (Af)		1.0000	1.0008
T9	9	Feedline Ladder (Af)		1,0000	1.8000
T10	1)	Safety Line 3/8	60.00 - 80.00	0.6000	0.6000
Tto T10	2 3	Lighting power cord	60.80 - 80.08	0.6000	0,6000
T10	4	LDF7-50 A (t-5/8 FOAM) LDF7-50 A (t-5/0 FOAM)	60.08 - 80.00	0.6000	0.6000
T10	6	LDF7-50A (I-5/8 FOAM)	60.00 - RO.00	0.6050	0.6000 8,6008
T10	7	Feedline Ladder (Af)	60.00 - 80.00	1.0000	t.0000
T10	á	Feedline Ladder (Af)	60.00 - 80.00	1.0000	1,0000
T10	أو	Fredline Ladder (Af)	60,00 - 80,00	1.0000	1,0000
TtI	il	Safety Line 3/8	40.00 - 60.00	0.6088	0.5000
Tti	2	Lighting power cord	40.00 - 60.00	0.6000	0.5080
Tiil	3	LDF7-50A (1-5/8 FOAM)	40,00 - 60,00	0.6880	8,6000
Tit	4	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0.6800	8,5000
TII	6	LDF7-50 A (1-5/8 FOAM)	40.00 - 68.00	0.6080	0.6000
Tit	7	Feedling Ladder (Af)	40,80 - 60,00	1,8000	t.0000
Titl	0	Feedline Ladder (Af)	40,00 - 60.00	1,0800	1,8080
Tiil	9	Feedline Ladder (Af)	40.00 - 60.00	1,0008	0000.1
T12	i	Safety Line 3/8	20.00 - 40.08	0.6000	8,6800
T12	2	Lighting power cord	20.00 - 40.00	0.6800	0,6000
T12	3	LDF7-50 A (1-5/8 FOAND	20.00 - 40.00	0.6000	0.6008
Tt2	4	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0.6080	0,6000
T12	6	LDF7-S8A(t-5/8 FOAM)	20.00 - 40.08	8.6008	0.6000
T12	7	Feedline Ladder (Af)	20,00 - 48.00	1,0000	1.0000
Tiz	8	Feedline Ladder (Af)	25.80 - 40.00	1.8000	1.0000
T12	9	Feedline Ladder (Af)	20.00 - 48.00	1,0000	1,0008
T13	1	Safety Line 3/8	0.00 - 20.00	0.5000	8,5008
T13	2	Lighting power cord	6.00 - 20.00	0.6000	8,6000
T13	3	LDF7-50A (1-5/0 FOAM)	0.00 - 20.00	0.6000	0,6000
T13	4	LDF7-50A (1-5/0 FOAM)	0.00 - 20.00	0.6080	0.6000
T13	6	LDF7-58A (1-5/8 FOAM)	0.00 - 20.00	0,6000	0.6000
T13	7	Feedline Ladder (Af)	0.00 - 20.00	1.0000	1,0000
T13	8	Feedline Ladder (Af)	0.00 - 20.00	1.0000	1.0000
T13	9	Feedling Ladder (Af)	0.00 - 20.00	1.0000	1.0000

tnxTower	Job 240826	Page 13 of 59
Valimont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth IN Phone: 574-936-4221 FAX:	Glient American Tower Corp.	Designed by SKK

			Di	screte 1	ower L	oads			
Description	Face or Leg	Offset Type	Offsets: Horz Lateral Fort	Azimuth Adjutiment	Piasement		C _A A _A Front	C _A A _A Side	Weight
	,		ft ft ft	4	Ŋ		fî²	fi²	ĸ
Besc on	A	From Leg	8.00	0.0000	255.08	No Ice	2.46	2.4E	0,87
			8.08			1/2" Icc	2.67	2.67	6.10
			4.39			1" lca	2.96	2.96	0.12
lencan Extender (4') 803062	A	From Lcg	0.00	0.000E	255.00	No Ice	1.11	1.11	0.03
			0.00			1/2* lcc	1.32	1.32	6,04
			2.21			1" Ice	1.54	1.53	0.05
1/2" x 4' lightning rod	c	From Leg	0.88	0.00E3	255.80	No lcc	8.20	0.20	0. E1
			0.00			1/2" lce	0.60	0.60	0.02
			2.00			1º Icc	0.89	6.89	0.02
ATC Loading	C	None		0.0000	250,00	No Ice	115.00	115.00	2.00
						1/2" Ice	135.80	135.00	3.00
						1" Ice	155.08	155.00	4.00
ATC Loading	c	None		8.0000	248.00	No Ice	115.00	115.00	2.66
						1/2" Ico	135.00	135.00	3.00
						l* Ice	155.00	155.00	4.08
ATC Loading	c	Nanc		0.0000	230.00	No lee	115.00	115,00	2.00
=						1/2" Icc	135.08	135,00	3.00
						I - Ice	155.80	155,00	4.00
ATC Loading	C	None		0.8000	220.00	No Ice	115.00	115.00	2.00
-	1					1/2" lec	135.00	135,00	3.0E
						1" lee	155.00	155.00	4.00

	Truss-Leg Properties									
Section Designation	Area	Area Ice	Seif Weight	Ice N'eight	Equiv. Diameter	Equiv. Diameter Ice	Leg Area			
	in ²	in²	κ	ĸ	in	in	frs ²			
#12ZG -1.75" - 1.00" connHBD-Trans (Pirod 2295#8)	2200,6887	5808,4093	0.84	2.27	7.6410	20.1681	7.2158			
#12ZG -1.75" - 1.0E" connHBD-Trans (Pirod 229588)	2200.6087	5796,0560	0.84	2.26	7.6410	20,1252	7.2158			
#12ZG -2.00" - 0.875" conn1IBD-Trans	2321.4820	5854.1205	0.99	2.29	g.0607	20,3268	4.4248			
(Pirod 208332) #12ZG -2.25* - 0.875*conn. (Pirod 208334)	2457.0628	5910.1026	1.17	2.31	8.5315	20.5212	11.9282			
#12ZG -2.25* -	2457.0620	5891.2118	1.17	2.30	8.5315	20.4556	11.9282			

tnxTower	Job 240826	Page 15 of 59
Valmont 1545 Pidco Drive	Project V-27 x 255' - #281318 Jake Hersley, KY	Date 13:12:57 12/03/13
Plymauth, IN Phane: 574-936-4221 FAX:	Cilent American Tower Corp.	Designed by SKK

Section Elevation	z	K ₂	q;	Aa	F	Ar	Ag	Air	Leg 96	C _A A _A tn	C _A A _A Out
p.	ft		psf .	fi³	e e	ρı²	fi ²	יות		Face fl ²	Face ft ¹
T12	30.00	0.982	17	504.614	A	17.060	32.655	32.655	65.68	81.280	0.080
40,00-20.00				i	B	17.060	32,655		65.68	154,300	0.088
					€	£7.060	32.655		65,68	82,030	0,030
T13 20.00-0.03	10.60	0.85	15	544.614	A	17,958	32.655	32.655	64,52	81,280	0.000
- 1					В	17.958	32.655		64.52	154,300	0,800
1				l	lc.	17.958	32,655		61.52	82,030	0.003

Tower Pressure - With Ice

G_{Ii}	==	0.8	

Section	I	K ₂	q,	11	A ₂	F	Ar	As	Aug	Log	CAA	C_aA_a
Elevotion							l			96	Jn .	Out
				i	.,	e					Face	Foce
	ft		psf	in	ft²	•	ft ²	ft ²	ſt²		ft³	fi ²
TI	247.50	1,532	3	1.8348	83.181	A	6.589	28.451	16.362		800.0	0,000
255.06-240.00						B	6.589	28.451		46.70	86.643	0.000
1 1						С	6.589	28,451		46.70	6.067	0.000
T2	230.00	1.508	3	1.8214	113,571		7.056	39.995	27.143		159.539	0.000
240.00-220.00						В	7.956	39.995		57,69	168.565	6,000
1 1	- 1					С	7.056	39.995		57.69	87.805	0.000
T3	210.00	1.48	3	1.8049	135,307		7.669	44.470	30.627	58.74	159.383	0,000
220.80-200.08	- 1	- 1	' '			В	7.669	44.470		58.74	169.267	0.000
	- 1	- 1	- 1			С	7.669	44.470		58.74	167.353	8,000
T4	1 90.00	1,449	3	1.7870	177,019		11.361	50.294	34.053	55,23	159,213	0.000
200.00-188.00						В	11.361	50.294	l i	55.23	169.021	6,000
						С	11.361	58.294		55.23	167.111	0.000
T5	170.00	1.415	3	1.7672	228.843		12.313	B1.846	67.339	71.52	159.026	0.000
180.08-160.0E	- 1	- 1				В	12313	8t.846		71.52	168.751	0,000
	- 1	- 1	- 1			С	12313	81.846		71.52	166,845	0.000
T6	158.00	1.378	3	1.7452	268.730		13.727	83,167	67.196	69.35	158.818	0.000
160.06-140.08		l	- 1	í		В	13.727	83.167		69.35	168,458	0.800
	- 1		- 1			C	13.727	83.167		69.35	166,549	0,000
T7	130.00	1.337	3	1.7204	309.104		I1.332	88.866	67.869	73.61	158.583	0.800
140.08-120.00	1					В	11,332	80.866		73,61	168,110	0.000
				1		C	11.332	80.866	1	73,61	166.215	0.000
TS	110.00	1.291	3	1.6919	349.426	A	11.896	81.935	68.518	73.02	158.314	9,890
120.00-100.00	Į.	Į,	l	Į		В	11.896	\$1.935		73.02	167,721	0.000
	į.		i			C I	11.896	81.935		73.02	165,832	8,000
T9 100.00-80.00	96.00	1.238	2	1.6583	389.314	A	12.514	82.133	68,299	72.16	157.496	0.000
		- 1		- 1		В	12,514	82.133		72.16	167,261	0.000
				- 1		C	12.514	82.133	1	72.16	165.379	0.000
T10 80,08-60,00	70.00	1.174	2	t.6171	429.594	A	13.178	83,073	68,865	71.55	157,608	0.000
						В	13.178	83.073		71.55	166,698	0.000
	- 1	- 1	- 1	- 1	- 1	c	13.178	83.073		71.55	164.826	8,000
T11 60,00-40.00	50.00	1.094	2	1.5636	469.416	A	16.198	82.989	68.517	69.68	157,103	6.000
			- 1			В	16.198	82.989		69,08	165,967	0.800
	- 1	- 1	- 1	- 1		c l	16.198	82.939	1	69,08	164,107	0.000
T12 40.06-20.00	38.00	0.982	2	1.4853	509,573	Ā	17,060	83,329	68.844	68.58	156 369	8,000
	30		-1			9	17.060	83,329	-4.477	68,58	164,903	0.000
	1	- 1	- 1	- 1	1	c l	17,060	E3_329	- 1	68.58	163,062	000.0
T13 20.00-0.00	10.00	0.85	2	1.3312	549.057	Ă	17,958	81.497	67,837	68.21	154.914	6.000
	1-1		~1			В	17.958	81,497	21,227	68,21	162,795	0.808
		- 1	- 1	i	- 1	c	17.958	81,497	- 1	68.21	160,989	0.00
							17.930	61,497		08.21	10(1.989)	6 (100)

taxTower	Job 240826	Page 14 of 59
l'almont 1545 l'ideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymauth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Section Designation	Area	Area Ice	Self Weight	Ice Weight	Equiv, Diameter	Equiv. Diameter Ice	Leg Area
	(n²	in ²	K	K	Úrs	in	in²
0.875" conn. (Firod 208334)							
#12ZG - 2.50" - 0.875" conn. (Pirod 208335)	2597.2622	5940,0820	1.37	2.31	9.0183	20.6253	14.7262
#122G - 2.50" - 8.875" conn. (Pirod 208335)	2597.2622	5910,0109	1.37	2.28	9.0183	20.5289	14.726
#12ZG - 2.75" - 0.875" conn. (Firod 208337)	2816.7341	5938.2486	1.63	2.28	9.7883	28.6189	17.8181
#12ZG - 2.75" - 6.875" conn. (Pirod 208337)	2816.7341	5851.3 <i>T</i> 35	1.63	2.19	9.7803	20.3173	17.8187

Tower Pressures - No Ice

 $G_H = 0.850$

Section Elevation	ž	K's	g _t	Ao	F	Ar	An	Aire	Leg 94	C_AA_A In	C _A A _A Out
2.0	l			i	-				28	Face	Face
n	ft		psf	ft²		ft ³	n²	ft ²		A.	fi ²
TI	247,50	1.532	27	78.594	A	6.589	7.133	7.138	52.17	0.000	0.00
255.00-240.00					В	6.589	7,188	,,,,,,	52.17	41,945	0.00
				[C	6.589	7,188		52.17	0,563	8.00
12	236,00	1.588	27	107.500	A	7,056	15.080	15.000	68.01	\$1,288	0.00
240.80-220.00					В	7,856	15.080		68.01	83.620	0.00
				ì	c	7,056	15,000	1 1	68.81	41.330	8.08
T3	216.00	1.48	26	129.283	A	7.669	18.574	18.574	78.78	81.280	0.00
220.00-200.00				ł	В	7.669	18.574		70,78	154,368	0.00
					c	7.669	18.574	i j	78,78	82,038	0.08
T4	190.80	1.449	26	171.855	A	11.361	22,120	22.120	66.07	81.280	8,68
200.60-130,08	1	1			B	11.361	22.120	1	66,07	154,300	0.00
					C	11.361	22.120		66,07	#2.030	0,00
T5	₹ 170.00	1.415	25	222.945	Α.	12.313	25.512	25.512	67,45	31,280	0,00
130.80-160.00					В	12.313	25.512	ı	67,45	154,300	0,03
- 1					C	12.313	25.512	1	67,45	82,030	0.60
T6	158.00	1.378	24	262.945	A	13,727	25.512	25.512	65.02	81.286	0,00
160.08-140.00					В	13,727	25.512		65.02	154.3EG	0.08
		ł		l i	C	13.727	25.512		65.02	82,038	0.88
77	130,80	1.337	24	303.362	Α	11.332	26.914	26.914	70.37	81.230	0.00
148.00-120.00					В	11.332	26.914	- 1	76.37	154.300	0.60
					С	11.332	26.914		70,37	82.030	0,08
TS	110,60	1.291	23	343.780	A	11.896	28.486	28.456	70.54	81.280	6.00
120.68-100.66	1	- 1			В	11.896	28.486	- 1	70.54	154.360	8.004
	_ i	- 1	1		C	11.896	28.486	- 1	70.54	82,030	0,000
T9	90.08	1,23B	22	383,780	Α	12.514	28.486	28.486	69.48	81,286	0.000
100.00-80.00		- 1			В	12.514	28.486		69.48	154,3E8	0.080
	.	- 1			С	12.514	28.486	l.	69.48	82.030	8,000
T10	70.00	1.174	21	424.197	A	13.178	30.111	30.111	69.56	81.280	0.060
80.00-60.00	i	- 1			В	13.178	30.111	- 1	69,56	154.300	0.000
1	- 1	- 1			c	13.178	30.111		69.56	82,030	0.080
T11	50.00	1.894	19	464.197	A	I6.19B	30.111	36.111	65,02	81.230	0.080
60,00-40,00	- 1	- 1	- 1	- 1	В	16.198	111.00		65,02	154,300	0.000
ļ	!	- (- (c l	16.198	38.111	ŧ	65.02	82,030	9,000

tnxTower	Је в 240826	Page 16 of 59
Valmoni 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Tower Pressure - Service

 $G_H=0.850$

Section		K:	q;	Aa	F	Ar	Az	Au	Leg	CAL	Cala
Elevation		i I	l	Į .	a			1	96	In	Out
	_			_,	E				l	Face	Face
	P P		pıf	ft ²	6	ft ²	ſſ	Jr		n,	ft ²
TI	247,50	1.532	12	78.594	A	6.589	7.188	7.138	52.17	6,000	0.000
255.00-240.08		1 1		l	В	6.189	7.188		52.17	41.945	0.000
		ا ا			c	6,589	7.188	l	52.17	0.563	0.080
72	230.00	1.503	12	107.500	A	7.056	15.080	15.000	68.81	81,280	0.000
240.88-228.00				l	В	7.056	15.880		68.81	83.020	0.000
1		ا ا			C	7.056	15,000		68,01	41.390	0.000
T3	210.60	1.48	12	129.283	A	7,669	(8.574	18.574	70.78	81.280	0.080
220.00-20E.00		1 1		1	В	7,669	18.574	1	70,78	154,300	0.080
		ا ا			ļ¢	7.669	18,574	i	76,78	82030	8,800
T4	190.06	1.449	11	171.055	^	11.361	22.120	22.120	66.07	81.280	0.000
200.00-180.00		1 1			В	I1,36t	22.120		66.87	154.308	0.000
{					С	11.361	22.120		66.07	82,030	0.000
T5	170.00	1.415	11	222,945	A	12.313	25.512	25.512	67,45	81.280	0,880
180.00-160.00					В	£2.313	25.512	[67.45	154.308	0.000
					£	12.313	25.512	l :	67.45	82,030	0.000
T6	£50.00	1.378	It	262.945	A	13.727	25.512	25.512	65.02	81.280	0.000
160.00-140.08		1			В	13.727	25.512		65.02	154,300	0.080
1					С	13,727	25.512	1	65.02	82.030	0.000
17	130.00	1.337	16	303.362	A	11.332	26.914	26.914	70.37	81.280	0.000
140.08-120.00					B	11.332	26.914		79.37	154.300	0.800
1		1			C	I1.332	26.914	1	70.37	82.030	0.080
T8 J	110,00	1.291	16	343.788	A	11.196	28.486	28,486	70.54	81.280	0.880
120.00-180.00		1		l i	В	11.896	28,486		70.54	154.308	8.000
					C	11.896	28.485	i .	70.54	82.030	0.600
T9	90.00	1.238	10	383.780	٨	12.514	28,486	28.486	69.48	51.230	0,880
100.08-00.00			i		В	12.514	28.486		69.48	I54.3E0	0.080
ŀ		1			C	12.514	28.486		69.48	82,030	0.000
T10	70.00	1.174	9	424.197	A	13.178	36.111	30.111	69.56	81,280	0.000
80,80-60,00		1	- 1		В	13.178	30.111		69,56	154,300	0.000
			f		c	13.178	30.1tt		69.56	82,030	0.000
T11	50.00	1.094	9	464.197	A	16,198	30.611	36,111	65.02	81,280	0.080
60.00-40.00					В	16.198	30.111		65.02	154,300	0.000
- 1	- 1				C	16.198	30.11t	1	65.02	82,030	0.000
T12	30.0E	0.982	8	504.614	A	17.068	32.655	32.655	65.68	81,280	0.000
40,00-20.00		1	- 1		B	17.066	32.655		65.68	154.3E0	0.000
			- 1		c	17.060	32,655		65.68	82,030	0.000
T13 26.00-0.00	10.00	9.85	7	544,614	A	£7.958	32.655	32,655	64.52	81,286	0.008
					g	17.958	32.615		64.52	154,300	0,080
i	- 1				č	17,958	32655		64.52	82.030	6.000

Tower Forces - No Ice - Wind Normal To Face

Section	Add	Self	F	e	Cr	q,	D _f	D_{ℓ}	As	F	w	Ctrl
Elevation	Weight	Weight	a									Face
				l i		ptf			1 1			
ſ	K	K			L) ')) fi ²	K	plf	
71	6.24	0.49	A	0,175	2.6EI	27	T	1	18.690	1.26	84.00	В
255.00-248.00	ĺ	l	п	0,175	2.681		1	1	10,690			
		}	C	0.175	2.681		1	1	10.690	1		
T2	1.17	1.00	A	6,205	2.579	27	i	1	15,126	3,05	152.78	В

-	tnxTower	Job	240826	Page 17 of 59
	Valmont 1545 Pideo Drive	Project	V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
ļ	Plymoutl; IN Phone: 574-956-4221 FAX:	Client	American Tower Corp.	Designed by SKK

Section	Add	Self	F		C _E	92	Dr	D_k	Ag	F	w	CtrL
Elevation	Weight	Weight	l a	,	۳,	92	1 "		, AF	, r	l "	Faec
2,22,411,1011			÷	1	l .	psf	•	l		ł	ı	Face
fi	ĸ	K	٤.			100			ft2	ĸ	plf	
240,00-220.00			B	0.205	2.579		1	1	15.126			1
1			c	0.285	2.579	1	1 1	1 1	15,126		i .	!
13	1.69	1.28	A.	0,203	2.586	26	1	1	16,962	4.25	212.27	B
220.00-208.08			B	0,203	2.586		1 1	1	14,962			-
			C	0.203	2.586		1	1	16.962			1
T4	1.69	1.73	A	8.196	2.61	26	1	1	21.545	4.43	221.27	В
200.00-180,00	}		В	0.196	2.61		i	1	21,545			1 -
1	1		C	6.196	2.61		1	i i	21.545			
TS	1,69	3.09	A	0.17	2.7	25	1	l t	23.257	4.46	223.11	В
188,00-160,00			В	0.17	2.7		1	i	23,257			1 "
			C	0,17	2.7		1	1	23,257			1
T6	1.69	3.15	A	0.149	2.774	24	1	1	24,399	4.45	222.35	В
160.00-140.00	i	1	В	0.149	2.774		1	1	24,399			_
- 1			C	0.149	2.774		3	1	24,399		1	l
77	1.69	4.03	٨	E.126	2.861	24	1	1	22.284	4.24	211.82	В
140.80-120.00	- 1		В	0.126	2,861		1	1	22.284			-
1	- 1		c	0.126	2.841		1	1	22,284			
TB	1.69	4.62	A	0.117	2.895	23		1	23,373	4.17	208.27	В
120.00-188.00			В	0.117	2.895		ı.	1	23,373			_
	- 1		c	0.117	2,895		1	1.1	23.373			
T9	1.69	4.68	Λ	0.107	2.937	22	1	3	23,853	4.04	201.87	В
180,00-80,00	- 1		В	0.187	2.937		1	1	23.853			
Į.	- 1		C	0.187	2.937		1	1	23,853			
T10	1.69	5,33	A	8.102	2.956	21	3	1	25,101	3.90	195.11	В
80.00-60,00	1		В	8.102	2.956		1	1	25.101			_
- 1	i		С	0.182	2.956		1	1	25.101			
T11	1.69	6.11	A	1.0	2.965	19		1	28,090	3.78	189.22	В
60.88-40.08	1	- 1	В	0.1	2.965	- 1	1	1	28.098			-
- 1		- 1	С	0.1	2.965	i	1	1	28.090		- 1	
T12	1.69	7.02	A	0.099	2.97	17	1	1	29.941	3,48	174.07	В
40.88-28.00		i	В	0,099	2.97	- 1	1	t l	29,941	*****		-
- 1	l		С	0,099	2.97	- 1	1	il	29,941			
T13	1.69	7.13	٨	8.093	2.993	15	1	il	30,760	3.05	152,63	В
28.00-0.00	1	- 1	В	8.093	2.993	- 1	i	i	38,768			"
- 1	i		С	0.093	2.993	- 1	1	i	30.768			
Sum Weight:	28.02	49.66			- 1		1	OTM	6141.88	48.55	- 1	
- 1		- 1		- 1	- 1	- 1	- 1		kip-ft		1	

			Τοι	ver F	orce	s - N	o Ice	- W	ind 60	To Face)	
Section Elevation	Add Weight	Self R'eighi	F	ε	C,	qı psf	D _F	D_R	At	F	1F	Ctrl. Face
<i>ft</i> T1	K 0,24	K 0.49	Á	0,175	2.681	27	0.8		fi ²	K	plf	
255.00-240.00	0,24	0.49	B	0,175	2.681	21	0.8		9.372 9.372	1.18	78.68	С
233.20 240.20			c	8.175	2.681		0.8	l il	9,372	i .		
T2	1.17	1.08	A	8.205	2,579	27	0.8	l i	13,715	2.97	148.59	С
240.00-220.00			В	8.205	2.579		8,0	1	13.715			_
- 1			С	8.205	2.579		0.8	1	13.715			
T3	1.69	1.28	A	0.283	2.586	26	0.8	1	15.428	4.15	287.97	c
220.08-200.88	i		В	0.203	2.586		0.8	1	15.421	i i		
			С	0.203	2.586		0.8	1	15,428	i		
T4	1.69	1.73	٨	961.8	2.61	26	8.8	1	19.273	4.30	214.83	С

tnxTower	Job 240826	Page 19 of 59
Valmont 1545 Pidco Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Section	Add	Self	F		C,	q.	D _F	$D_{\mathcal{S}}$	As	F	10	Cirl
Elevation	Weight	H'eight	a			l						Face
l			0			P4f						l
f f	K	K	-						r,	K	plf	ì
160.80-140.00			В	0.149	2.774		0.85	1	22.340			
i I			C	0,149	2.774		0.85	1	22,340			
17	1.69	4.03	A	0.126	2.861	24	0.85		28.585	3.81	190.46	С
140.00-120.00			В	8.125	2.861		0.85	1	20.585		i	
l j			C	0.126	2.961		0.85	1	20.585			l
T8	1.69	4.62	A	8.117	2.895	23	0.85	1	21.588	3.75	187.35	С
120.00-100.00			В	0.117	2.895		0.85	1	21.588			
l			С	0.117	2.895		0.85	1	21.588			1
T9	1.69	4.68	٨	0.107	2.937	22	0.85	1	21.976	3.63	181.49	С
188,88-80,00			В	0.107	2.937		0.85	1	21.976			i
!!			С	0.387	2937	1	0.85	1	21.976			
T10	1.69	5.33	٨	8.182	2.956	21	0.85	3	23.125	3.51	175.58	l c
90,88-68,00			В	8.102	2.956		6.85	1	23.125			
i I			C	0.102	2.956		0.85	1	23.125			
TII	1.69	6.11	A	0.1	2,965	19	0.85	3	25.661	3,40	169,83	c
60.88-48.00			В	0.1	2.965		0.85	1	25.661			-
l i			C	0.1	2.965		0.85	ı	25.661	1		
T12	1.69	7.82	A	0.099	2.97	17	0.85	L.	27.382	3,13	156.37	c
40.00-20.00			В	8.899	2.97		8.85	3	27,382			_
	1		C	0.899	2.97		8.85	1	27,382	- 1	1	
T13	1.69	7.13	٨	8.893	2.993	15	0.85	1	28,066	2.74	137.01	С
20.00-0,00	- 1		В	0.093	2.993		0.85	1	28.866			_
I I			С	8,893	2.993		0,85	1	28.066			
Sum Weight:	20.82	49.66		l i				MTO	5648.89	44.19		
							- 1		kip-ft			

Section Elevation fl 55.00-240.00 T2 40.00-228.80	Add B'eight K L.54	Self Weight K 2.22	F a c A B C A	0.421 0.421 0.421	2.023 2.823 2.023	qı pəf	Dr 1	D ₈	Ag ft ²	F K	w plf	Ctrl. Foce
fl T1 55.00-240.00 T2	<u>K</u> 1.54	<u>K</u> 2.22	e A B	0.421	2.823		1	1		κ		
T1 55.00-240.00 T2	1.54	2.22	A B	0.421	2.823		1	1		κ		
T1 55.00-240.00 T2	1.54	2.22	A B	0.421	2.823	3	1	1		κ		
55.00-240.00 T2			В	0.421	2.823	3	1	3				
T2	7.03	3,16		0.421					24.959	0.27	18.23	В
	7.03	3,16	A				1	1	24.959	i i		
	7.03	3,16					1	1	24.959			l
10.00-228.80			В	0.414 0.414	2.036 2.836	3	- 1	3	32.754	0.60*	29,94	В
			č	0.414	2.036			3	32.754	- 1		
T3	9.51	3.66	الما	0.414	2.894	3		1	32,754	- 1	1	
20.00-208.88	9.51	3.00	B	0.385	2.894	3		1	35.696	0.68	34.20	С
20,00-208.88	- 1		č	0.385	2.894				35.686	- 1		
T4	9.45	4.73	λ	E.348	2.175	3	:	- 11	35.686			_
08.00-188.00	9.43	4./3	B	0.348	2.175	,	:	1 !!	42.313	8.71	35.5L	С
18.00-188.00	i		č	0.348	2.175		- 1	:1	42.313 42.313	- 1		
T5	9.37	11.83	ĭ	0.411	2.842	3	- ;	: :1	64.799			١
80.00-160.08	2.31	11.00	B	0.411	2.042	-	- 1	:1	64,799	0,78	39.02	С
100.00			c	8,411	2.842		:	1 :1	64,799	- 1		
76	9.29	12.05	1	0.361	2.147	3	- ; ;	- :1	65,295	0.78		_
60.00-140.00	2,5	12.05	B	0.361	2.147	- 1	- ::	- :1	65.295	0.78	39.18	С
70,00-1-10.00	- 1		c l	0.361	2.147		- :1	1 :1	65,295		- 1	
17	9.21	13,12	اتما	0.298	2301	3	- :1	;	59,722	0.75	37.62	С
40.00-120.00			в	0.298	2.301	i *I	- :	1 11	59.722	0.72	37,62	
10,00-120.00	1		c l	8,298	2,301		- 1	- 1	59.722	- 1	- 1	
TB	9.10	13.84		0.269	2,383	3	- ;1	- 11	60.219	0.74	36.89	С

tnxTower	Job	Page
mxlower	240826	18 of 59
Valmont 1545 Pidea Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Plione: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

Section Elevation	Add B'eight	Self Weight	F		CF	92	D,	$D_{\mathcal{R}}$	Aε	F	ער	Ctrl.
Euranon	n eign	ii cigni	a					1	l			Face
n	ĸ	K	:			psf		!	ft ²	K	plf	
200,00-108,08			В	0.196	2.61		0.8	1	19,273		- Py-	
			C	0.196	2.61		8.8	Ιi	19.273			
T5	1.69	3.09	Ā	0.17	2.7	25	0.8	l i	20,794	4,32	216.86	c
180,98-160,08			В	0.17	2.7		0.8	l i	20,794	4.55	2.0.00	_
			c	0.17	2.7		0.8	l i	20,794			
T6	1.69	3.15	A	0.149	2.774	24	0.8	l i	21.654	4.29	214.49	С
160.80-140.00			в	0.149	2.774		0.8	l i	21,654	1122	214.75	_
			С	6.149	2.774		0.8	l i	21.654			
17	1.69	4.83	A	0.126	2.86t	24	0.8	i	20,018	4.11	205,32	С
140.00-128.08			В	0,125	2,861		0.8	i	28,010			_
			С	0.126	2.861		0.8	1	20,018		-	
TB	1.69	4.62	A	0.117	2.895	23	0.8	i	20,993	4.03	281.61	c
128.00-100.00	- 1		В	0.117	2.895		8.0	l i	20,993			
	f		С	E.117	2.895		0.8	i	20,993			
T9	1.69	4.68	A	0.107	2.937	22	0.8	ı	21,350	3.90	195.05	С
100.00-80.80			В	0.307	2.937		6.8	i	21,350		******	
- 1			С	6,107	2.937		0.8	1	21,350			
TIE	1.69	5.33	Α.	0.102	2,956	21	8.8	i	22,466	3.77	188,26	c
80.00-60.88			В	0.102	2.956		8.8	1	22,466		******	
	- 1		c	0.102	2.956	1	0.8	l il	22,466	i		
TII	1.69	6,11	A	0.1	2.965	19	0,8	i	24,851	3,63	181.35	c
60.08-48.00	ŀ		B	0,1	2.965	- 1	0.8	1	24.851			
l			C	B.1	2.965	- 1	0.8	1	24,851	ļ		
T12	1.69	7.82	A	0.899	2.97	17	0.9	i	26,529	3.33	166.61	C
40.88-20.08			В	0.099	2.97	- 1	0.8	1	26.529			-
i		- 1	C	0,099	2.97	- 1	0.8	1	26.529	1	- 1	
T13	1,69	7.13	A	0.093	2.993	15	0.8	l ti	27.168	2.92	145.78	C
20,00-0,00			В	0.093	2.993	- 1	0.8	1	27.168			
- 1	1		C	0.093	2.993	i	0.8	1	27.168		- 1	
Sum Weight:	20.02	49.66	- 1	1		1	- 1	MTO	5945,30	46.90	- 1	
	- 1		- 1				- 1		kip-ft		- 1	

Tower Forces - No Ice - Wind 90 To Face

Section	Add	Self	F	c	C,	2:	D,	D ₆	Az	F	w	Ctrl
Elevotion	R'eight .	B'sight	a		1	-			- 1	· 1	_ [Face
			c			P#f			i i			
ft	K	K							fi²	ĸ	plf	
TI	0.24	0.49	A	0.175	2681	27	0.85	1	9.781	1.20	79.95	C
255.00-248.08			В	0.175	2.68t		0.85	t t	9.701			
			C	0.175	2.68t		8.85	1	9,781			
T2	1.17	3.00	A	8,285	2.579	27	0.85	1	14,068	3.24	162.17	С
240.00-220.00			В	0.205	2.579		0.85	1	14.068			
			C	0.285	2.579		0.85	1	14,068			
13	1.69	1.28	Α.	0.203	2.586	26	8.85	1	15.8t1	3,81	198,73	С
220.88-208.80			В	0.203	2.586		8.85	1	15.811	1		
ı			C	0.283	2.586		0,85	t l	15.811	1		
T4	1.69	1.73	Α.	8,195	2.61	26	0.85	t l	19.841	3.97	198.58	С
280.00-188.88			В	0.196	2.61		0.85	1	19.841	- 1		
			С	0.196	2.61		0,85	1	19.841	- 1		
T5	1.69	3.89	A	0.17	2.7	25	0.95	1	21.418	4.01	200,37	С
180,00-160,00	l i		В	8.17	2.7		8.95	1	21.418	- 1		
		1	C	0.17	2.7		0.85	11	21.410			
T6	1.69	3.15	A	0.149	2.774	24	0.85	il	22,340	3.99	199.46	С

tnxTower	Job	240826	Page 20 of 59
Valutont 1545 Pidea Drive	Project	V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client	American Tower Corp.	Designed by SKK

Section	Add	Self	F		C,	9	D _F	D _k	As	F	36'	Ctr
Elevotion	Weight	Weight	а			_				-		Fac
					I	psf						
fì	ĸ	K							ft ¹	к	plf	
120.08-100.00			В	0,269	2.393		1	1	60.219			_
- 1			С	8.269	2.383		1	1	68.219	- 1		
T9	8.98	13.90	A	0.243	2.458	2	1	1	60,425	0.72	35,78	c
100.00-90.00	1		В	0.243	2.459		1	1 1	60.425			_
	1		C	0.243	2,458	i I	1	1	60.425	- 1		
Tio	8.83	14.66	Α.	0.224	2518	2	1	1	61.287	8.69	34.39	С
80,08-60.00			B	0.224	2.518		t l	1	61.287	- 1		
			C	0.224	2.518		1	1	61.287	- 1		
T11	8.64	15.70	Α.	0.211	2.559	2	1	1	64.045	0.66	32.77	С
60.0E-40.08			B	0.211	2.559		1	3	64.045			
1	i		C	8.211	2.559	1	1	1	64.045	- 1		
T12	8.37	16.56	A	8,197	2686	2	1	1	64.888	0.59	29,67	c
40,00-20,00	i		B	8.197	2.606	1	1	1	64.988			
- 1	1		C	8.197	2.606	l i	1	1	64.888	- 1	- 1	
T13	7.83	16.22	A	181.0	2.66	2	1	1	64.528	0.51	25.54	С
20,00-0.86			В	0.181	2,66		1	1	64.528			
			C	0.181	266		1]	1	64.528		- 1	
Sum Weight:	107.17	141.65			2.1A.		- 1	OTAL	1083.41	8.48	- 1	
	ı				limit		- 1	- 1	kip-ft	-	- 1	

Tower Forces - With Ice - Wind 60 To Face

Section Elevation	Add Weight	Self Weighi	F	e	С,	91	D_F	D_{I}	As	F	18*	Ctrl
2.1474	n tigni	,, eign	ĕ			pıf			1	i		Pos
ft	K	ĸ	8			~			n²	r I	plf	ĺ
Ti	1.54	2.22	A	0.421	2,623	3	0.8	1	23.641	0.27	[7.78	
255.00-240.00	l i		В	0.421	2.023		0.8	1	23.641	- 1		
			C	8,421	2.023		0,8	1	23,641			
T2	7.03	3.16	Α.	8.414	2.036	3	0.9	1	31.343	0.60*	29.94	С
240.00-220.00			В	0.414	2.036		0,8	1	31.343	- 1		
T3			C	0.414	2.036		8.8	1	31.343	- 1		
220.00-200.08	9.51	3.66	AB	0.385	2.094	3	9.0	1	34.152	0.68	33.80	В
220.00-300.08			C	0.385	2.094		0.8		34.152	i		
T4	9.45	4.73	Ä	0.34R	2.094 2.175	3	0,8		34.152 40.041			_
280.08-180.00	3.43	4.73	B	0.348	2.175	3	8.0	ı,	40.041	0.70	34.92	В
200.08**80.00	1		C	0.348	2.175		0.8	. !	40.641	l l		
75	9.37	11.93	Ă	0.411	2.842	3	0.8	: : :	62.336	0.77	38.43	В
180,00-160,08		11.00	B	8,411	2.842	"	0.8	- :1	62.336	0.77	38.43	15
			č	0.411	2.042		8.8	- :1	62.336	- 1		
T6 l	9.29	12.85	Ā	0.361	2147	3	0.8	- 11	62.549	0,77	38.50	В
168.88-140.00			B	0.361	2147	- 1	0.8	- 11	62,549	5,77	30.30	ь
			c	0.361	2147		0.8	il	62,549	- 1		
17	9.21	13.12	A	0.298	2,301	3	8.0	- il	57,455	0.74	37.04	В
148.00-128.00	- 1		В	8.298	2.301	1	0.8	il	57,455			_
i	1		c	E.298	2.301		0.8	il	57,455			
TB	9.10	13.84	A	0.269	2,383	3	0.8	il	57.840	0.73	36.28	В
120.00-100.00	1	- 1	В	0.269	2.383	- 1	0.8	1	57,840			-
	- 1	- 1	c	0.269	2,383	- 1	0,8	il	57,840	i		
T9	8.98	13.90	A	0,243	2.458	2	0,8	i	57,923	0.70	35,15	В
100.80-80.08	- 1	- 1	В	0.243	2.459		0.8	1	57.923			-
	- 1	ı	c	0.243	2.458	- 1	0.8	il	57,923			
T10	8.83	14.66	A	6,224	2.518	2	0.8	- 1	58.651	0.67	33.74	В

	tnxTower	Јоb 240826	Page 21 of 59
	Valmont 1543 Pideo Drive	Project V-27 x 255' - #281318 Jake Hersley, KY	Date 13:12:57 12/03/13
I	Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Section Elevation	Add Weiglit	Self Weight	F	f	C,	q,	D _F	D _R	A_{E}	F	1C	Ctrl. Fase
fi	ĸ	к				psf			fi²	K	plf	
80.00-60.00			В	0.224	2.518		8,0	1	58.651			
Į			С	0.224	2.518		0.8	1	58.651	1		
TII	8.64	15.70	A	0.211	2.559	2	0.8	1	60.806	0.64	32.01	В
60.00-40.00	1		В	0.211	2559		0.8	1	60.806	i		
	- 1		¢	0.211	2.539		0.8	1	60.806	i		
T12	8.37	16.56		0,197	2.606	2	0.8	1	61.476	0.58	28.94	В
48.00-20.08	1		В	6.197	2.606	1	6.8	1	61.476			
	1		С	0.197	2.606		0.8	1	61,476	Į.		
T13	7.83	16.22	A	0,181	2.66	2	8,8	1	60.936	0.50	24.86	В
20,00-0.00	1		В	0.181	2.66		0.8	1	60.936	- 1		
	- 1		С	0.181	2.66		3,E	1	60.936	I		
Sum Weight:	107.17	141.65			*2.1A ₂			OTM	1065,53	8,34		
ı	- 1		,		limit				kip-ft			

		<u>T</u>	ow	er Fo	rces	- Wi	th lc	e - V	Vind 90	To Fac	e	
Section Elevation	Add Weight	Self Peight	F	£	Cp	q _i	D _f	D_R	Ag	F	w	Ctrl. Face
Elevation	n rigin	n Eign	۳.			psf						race
ft	ĸ	κ				1			fi²	ĸ	plf	
T1	1.54	2.22	Α.	0.421	2.023	3	0.35	1	23.971	0.24	16.33	C
25 5.00-240.00			В	0.421	2.023	1	0.35	1	23.971			l
			C	0.421	2.023		0.35	1	23.971			1
T2	7.03	3.16	Α	0.414	2.036	3	0.35	1	31.696	0,60*	29.94	С
240,00-220.00			В	0.414	2.036		0.35	1	31.696			l
			C	0.414	2.836		0.35	1	31.696			
73	9.51	3.66	Α	R.385	2.094	3	0.85	1	34.536	0.68	34.04	В
220.08-200.00		,	В	g.385	2.094		0.35	1	34.536			
i			С	g.385	2.094		0.85	1	34.536			
T4	9,45	4.73	A	8.348	2.175	3	0.85	1	40.609	0.70	35.20	В
200.00-180.80	- 1		В	8.348	2175		0.85	1	40.609	i		1
ĺ			C	0.348	2.175		E.85	1	40,609			
T5	9.37	11.83	A	0.411	2.042	3	B.85	1	62,952	0.77	38.71	В
180.00-160.00	i		В	0.411	2.042		0.85	1	62.952			
}	- 1		C	0.411	2.042		E.85	1	62,952			
T6	9.29	12.05	Λ	0.361	2.147	3	0.85	1	63.236	0,78	38.80	В
80.01-1-80.03	- 1		В	0.361	2.147		0.85	1	63.236			
1	- 1		c	0.361	2.147	1 1	0.85	1	63.236			
17	9.21	13.12	A	0.298	2.301	3	0.85	1	58.022	0.75	37.31	В
140.00-120.08	1		В	0.298	2.381		0.85	1	58,022			
- 1	1		С	0.298	2.301		0.85	1	58.022			
TB	9.10	13.84	A	0.269	2.383	3	0.85	1	58.434	0.73	36.55	В
120.00-100.00			В	0.269	2.383	i	0.05	1	58,434			
- 1			C	8.269	2.383		0.85	1	58.434	i		
T9	8.98	13,90	A	0.243	2.458	2	0.85	ı	58.548	0.71	35.42	В
100.00-80.001			В	0,243	2.45B		0.85	1	58 548	- 1		
- 1			С	0.243	2.458		0.85	1	53.548			
T10	8.83	14.66	Α	0.224	2.518	2	0.85	1	59.310	0.68	34.01	В
80.88-60.00			В	0.224	2.518		0.85	1	59.310			
- 1			С	0.224	2.518		0.85	1	59.310	1		l
TLL	8.64	15.70	A	8.211	2.559	2	0.85	1	61.616	8.65	32.30	В
60.08-40.00			B	8.211	2.559		0.85	1	61,616			
- 1	i		С	0.211	2.559		0.85	1	61.616	1		l
T12	8.37	16.56	Λ	0.197	2.686	2	0.85	1	62.329	0.53	29.21	В

tnxTower	Job 240826	Page 23 of 59
Valment 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Section	Add	Self	F	f	C,	q:	D _F	D_{R}	Az	F	w	CtrL
Elevation	N'eight	Weight	a		ŀ	۔۔۔ ا			i l			Fore
1 1	K	ĸ	6			psf			nº l	ĸ	plf	
									kip-ft			

Tower Forces - Service - Wind 60 To Face												
						,						
Section Elevation	Add Weight	Self Weigin	F		C,	G,	D _F	D_R	Az	F	15"	Cirl. Face
Elevolian	reign	n eign	<u>د</u>			psf						race
A	κ	ĸ				100			fi	ĸ	plf	
Ti	0.24	0.49	٨	0.175	2.681	12	E.3	1	9.372	8.52	34.93	С
255,00-240.00			В	0.175	2.681		0.8	t	9.372			
		1,00	c	0.t 75	2,681		0.8	1	9.372			_
T2 240.80-220.00	1.17	1.00	A B	0.205	2.579 2.579	12	0.8 0.8	1	13.715	1.32	66.04	C
240,80-220,00			C	0.285	2.579		0.8	1	13.715 13.715			
T3	1.69	t.28	Ă	8.203	2.586	12	0.8	i	15,428	1.85	92.39	c
220,00-200,00	1.09	1,20	В	0.203	2.586	12	8.8	i	15,428	1.83	92,39	٠ ا
210,00-200,00			č	0.203	2.586		0.8	i	15,428			
T4	1.69	1.73	Ā	0.196	2.61	11	0.8	l i	19.273	1,91	95,48	c
200.00-180.08			В	8,196	2.61		0.8	ì	19.273		25,40	١ -
			С	0.196	2.61		0.8	1	19.273			
73	1.69	3.09	Α	0.17	2.7	11	8.8	1	20.794	1.92	96,03	С
180,00-160,00			В	0.17	2.7		8.8	1	20.794			
	1	i	C	0.17	2.7	1	0.8	1	20,794			
Т6	1.69	3.15	Α	0.149	2.774	11	0.8	1	21.654	1.91	95.33	С
60.88-148,00			В	0.149	2.774		0.8	1	21.654			
			C	0.149	2.774		0.8	1	21.654			
17	1.69	4.03	A	8.126	2.861	10	0.8	1	20.018	1.83	91.26	С
140.08-120.00	ı		В	0.126 0.126	2.861 2.861		8.0	1	20.013			
	1,69	4.62		0.125	2.895	18	0.8	1	20.018			_
20.00-100.00	1.69	4.62	A B	0.117	2,895	18	0.8	1	20.993	1.79	89,60	С
20.00-100.00			č	0.117	2,895	i I	0.8	l il	20.993			
19	1.69	4.68	A	0.107	2.937	10	0,8	i	21.350	1.73	86.69	c
100.08-80.08	1.07	7.00	В	0.107	2.937	l "I	B.B	;	21.350	1.73	a0.09	٠ ا
			č	0.107	2.937		0.8	l i	21,350			
718	1.69	5.33	Ā	8,182	2.956	9	0.8	i	22,466	1.67	83.67	c
80.00-60.00			В	0.102	2,956	il	0.8	i	22,466	•,		-
· 1			C	0.102	2.956		0,8	1	22.466			
Tii	1.69	6,11	A	0.1	2.965	9	0.8	1	24.851	1.61	80,60	С
60.00-40.00			В	0.1	2.965		8.0	1	24.851			
į.			С	0.1	2.965		8.8	t	24.851			
T12	1.69	7.02	A	0.099	2.97	8	0,8	1	26,529	1.48	74.85	С
40,00-20,00			В	0.099	2.97	1 1	0.8		26,529			
			C	8,899	2.97	J _	0.8	. !	26.529			_
T13	1.69	7.13	A	0.093	2.993	7	0.8	. 1	27.168	1.30	64.79	С
20.00-0,00			В	8.093	2,993		0.8	1	27.168			
	20.00	49.66	С	0.093	2.993	1	0.8	I I	27.168	20.01		
Sum Weight:	20.02	49.66						OTM	2642.36 kip-ft	20.84		
						II			kap-n	1		

4	Job				Page
tnxTower		240826		*	22 of 59
Valmant 1545 Pulso Drive	Project	V-27 x 255' - #281318 Jake Ho	rsley, KY		Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client	American Tower Corp.			Designed by SKK

Section	Add	Self	F	•	C,	q:	D_F	D_R	Az	F	15	Ctrl.
Elevation	Weight	R'eight	а					1				Face
ſ	к	ĸ	•			psf			(i)	ĸ	plf	
40.00-20.00			В	0.197	2.606		0.85	1	62.329			
1			C	0.197	2.606		0.85	1	62.329	- 1		
T13	7.83	16.22		0.181	2,66	2	0.85	1	61.834	0.50	25,11	В
20.00-0.00			В	0.181	2.66		0.85		G1.834			
1			C	8.181	2.66		8.85	1	61.834			
Sum Weight:	107.17	141.65			2.1A.			OTM	1066.71	8.38		
					limit				kip-ft			

		Tov	vei	Forc	es - S	Serv	ice -	Win	d Norm	al To F	ace	
Section Elevation	Add N'eight	Seif Weight	F a	f	C,	q ₁	D _F	D_R	Ag	F	w	Ctri. Face
n	. к	R	5	ì		pŋ			fi²	к	plf	
71	0.24	0,49	A	0.175	2.681	12	1	1	10.698	0.56	37,33	В
255.08-248.00			В	0.175	2.681		1	1	10.690	i		
(C	0.175	2.681		1	1	10.692			
2-10.00-220.00	1.17	1.00	AB	0.205	2.579 2.579	12		1	15.126	1.36	67.E7	В
240,00-220.00			ľč	0.203	2.579		1	1	15.126 15.126	- 1		l
13	1.69	1.28	١×	0.283	2.586	12	1		16.962	1.89	94.34	в
220,00-280,00	1.05	1.24	В	0.203	2.586	***	i	l il	16,962	1.69	34.34	
220,00 200.00			lõ	0.203	2.586		i	l il	16.962			
T4	1.69	1.73	Ā	R.196	2.61	11	i	l il	21.545	1.97	98.34	В
200.00-120.00			В	0.196	2.61		ī	l il	21,545	***	,	-
			С	0.196	2.61		1	l i	21,545	- 1		
T5	1.69	3.09	Α	E.17	2.7	11	1	1	23.257	1.98	99.16	В
180.00-160.00	- 1		В	0.17	2.7		1	1	23,257	- 1		
i	1		C	0.17	2.7		1	1	23.257	- 1		
T6	1.69	3,15	٨	0.149	2.774	11	1	1	24,399	1.98	98,82	В
160.00-140.88	i		В	8,149	2.774		1	1	24.399	- 1		
			С	8.149	2.774		1	1	24.399	- 1		
140.08-120.00	1.69	4.03	A	0.126	2.861	10	1	1	22.284	1.38	94.14	В
140.08-120.00	· /		B	0.126 0.126	2.861 2.861		1	1.	22,284	- 1		
тя	1.69	4.62	ĭ	0.125	2.895	18	1	1	23,373	1.35	92,56	В
120.00-100.00	1.09	4.62	B	0.117	2.895	28	1	1	23.373	1.85	92.30	В
120,00-100,00			Ĉ	0.117	2.895		1	l il	23.373	1		
19	1.69	4.68	Ă	0.107	2.937	10	i	l il	23.853	1.79	89,72	в
100,00-80,00	1.02	-1.00	В	0.107	2.937		i	l il	23.853	4.75	45.72	ь.
			Īē	0.107	2.937		ī	i	23,853			
T10	1.69	5.33	À	0.102	2.956	9	ī	ī	25,101	1.73	86.72	В
80.03-08.08			В	0.182	2.956		1	i	25,101			
- 1	- 1		C	8.102	2.956		1	1	25,101			
TII	1.69	6.11	A	0.1	2,965	9	1	1	28,090	1.68	84.18	В
60.00-40.00	}		В	0.1	2.965		1	1	28,090			
	1		С	0.1	2.965		1	- 1	28.090	- 1		
T12	1.69	7.02	V	8.099	2.97	3	1	1	29,941	1.55	77.36	В
40.08-20.08	1		В	0.099	2.97		1	1	29.941			
713	1.69	7.13	C	0.099 8.093	2.97	I	1	3.1	29,941			_
20.00-0.00	1.69	7.13	AB	0.093	2.993	7	1	!	30.760 30.768	1.36	67.83	В
20.00-0.00	1		c	0.093	2,993		1	!	30.760			
Sum Weight:	20.02	49.66	٦,	0.093	2.993		,	LATO I	2729.73	21.58	1	

tnxTower	Job 240826	Page 24 of 59
Valmant 3545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

		٦	ίον	ver Fo	rces	- Se	rvic	e - V	lind 90	To Fac	Α	
									11110 00	10140	<u> </u>	
Section Elevotion	Add R'eight	Self Weight	F	•	C,	q:	D_{r}	D ₂	As	F	10	Ctrl. Foce
а	ĸ	ĸ	=			psf			fi²	ĸ	plf'	
T1	0.24	0.49	Ā	0.175	2.681	12	8.85	1	9,701	R.53	35.53	C
255,00-240.00			В	0.175	2,681		0.85	i	9.701		25.03	ı - ı
			C	0.175	2.681		8.85	1	9.701			
T2	1.17	1.80	Α	0,205	2.579	12	0.85	t	14.068	1,44	72.0E	c
240,00-220,08			В	0.205	2,579		0.85	1	14.068			
			С	0,205	2.579		0.85	1	14.068			
T3	1.69	1.28	٨	0.203	2.536	12	0.85	1	15.811	1.70	84.77	C
220.00-208.00			В	0.203	2.586		0.25	1	15.811			
			c	0.203	2.586		0.85	1	15.81t			
T4	1.69	1.73	A	0.196	2.61	11	0.85	1	19.841	1.77	88.26	C
200,08-180,00			В	0,196	2.61		0.35	1	19.841			
_ }			c	0.196	2.61		0.85	t	19.843			
T5	1.69	3.09	A	0.17	2.7	1t	0,35	1	21.418	1.78	89.85	С
180.08-160.08			В	0.17	2.7		0,85	1	21.410			
			C	0,17	2.7		0.85	1	21.418			
T6	1.69	3.15	A	0.149	2.774	11	0.85	1	22.348	1,77	88.65	C
160,00-140,00			В	8.149	2.774		0.25	1	22.348			
			C	0.149	2.774		0.85	1	22.348			
T7	1.69	4.03	V	0.126	2.861	10	0.85	1	20,585	1.69	84.65	С
140.00-120.08			В	0.126	2.861		0.25	1	28.585			
			C	0.126	2.261		0.85	1	20,585			_
120.00-100.00	1.69	4.62	<u>^</u>	0.117	2.895	10	8.85	1	21.588	1.67	83.27	С
1 20.00-100.00	l		В	0.117	2.895	l i	E.85	1	21.588			
т9	1.69	4.68	c	0.117	2.895 2.937		0.85	1	21.588 21.976		80.66	c
100,00-80,00	1.09	4.08	AB	0.107		10	0.85	1	21.976	1.61	80,00	٠
100,00,00			ď	0.107	2.937		0.85	1	21.976			
T10	1.69	5.33	Ä	0.107	2,937	9	0.85	1	23,125	1.56	78.0E	c
80.00-60.00	1.69	2.33	B	0.102	2.956	, ,	0.85	i	23.125	1.30	18.05	٠,
50.00-00.00	. 1		l c		2.936	1	0.85	1	23,125			
TIL	1.69	6.11	Å	0.102 0.1	2.965	9	0.85	1	25,661	1.51	75.48	c
60.00-48.00	1.09	9.11	ĥ	0.1	2,965	"	0.85	i	25.661	1.51	12.48	١٠١
20,00 -14,00			č	0.1	2,965		0.85	i	25.661			
T12	1.69	7.02	Ă	0,899	2.97	8	0.85	i	27.382	1.39	69.50	c
40.08-20.00	1.09	1.02	ĥ	0.099	2.97	°	0.85	i	27,382	1.39	a9.30	٦
-0.08-20.00			Č.	0.099	2.97		0.85	:	27.382			
T13	1.69	7.13	Ā	0.093	2,993	7	0.85	i	28.066	1.22	66.89	c.
20.00-0.00	1,05	7.13	В	0.093	2.993	· '!	B.85		28.066	1.22	D0.03	٠ ا
20.50.0.00	1		č	0.893	2.993		R.85	: :	28.066			. 1
Sum Weight:	20,02	49.66	اٽا	0.673	4,593		6.03	OTAL	2510.62	19,64	- 1	
DOM WEIGHT:	20.02	45.00						01111	kip-ft	19,64	- 1	
								1	Kip-II			

l					Mast \	ectors/	- No le	ce			
	Section No.	Section Elevation	Wind Azimah	Directionality	F	ν,	V _z	on.,	OTM _z	Torque	
	Na.	ft	a a		ĸ	Ľ	ĸ	kip-ft	kip-fl	kip-fl	
į	TI	255,00-240.00	0	Wind Normal		0,00	-1.02	-253.33	-0.33	0.26	
ı	1		30	Wind 90		0.60	-1.04	-257.22	-148.73	0.19	
i		į į	60	Wind 68		1.02	-0.59		-253.03	6.82	
-	1	1	90	Winter	1 20	1.28	6.00	-0.18	-297.141	-0.16	

inxTower	Job 240826	Page 25 of 59
Valmout 1343 Pidzo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymoidi, IN Plione: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

No.	Section Elevation	Wind Azimuth	Directionality	F	1%	1/4	OTM,	OIM ₂	Torque
,,,,,	fi fi	22-125-427		r l	K	ĸ	kip-fl	kip-ft	kip-fl
		120	Wind Normal	1.02	0.89	0.51	126,39	-219.56	-8,
		150	Wind 90	0.74	0.37	0.64	158.99	-92.23	-8.
		180	Wind 60	0.94	0.00	0.94	232.91	-0.33	-0.
		210	Wind 90	1.20	-0.60	1.04	256,86	148.97	+0.
		240 270	Wind Normal Wind 90	1.26	-1.09	0.63	155.75	269.74	-0.
		300	Wind 60	1.20 0.94	-1.20 -0.82	0.00 -0.47	-0.18 -116.72	296.47 201.53	8.
		330	Wind 90	0.74	-0.82 -0.37	-0.47	-159.35	91.56	U. O.
T2	248,00-220,00	- "al	Wind Normal	2.82	0.00	-2.82	-649.07	-0.81	8,
		30	Wind 90	2,79	1.40	-2.42	-556.85	-321.29	-0.
		60	Wind 60	2.97	2.57	-1.49	-342.12	-591.95	-0.
		90	Wind 98	3.24	3.24	0.00	-0.36	-745,99	-0.
		, 128	Wind Normal	3.05	2.64	1.53	350,85	-688.33	-0.
1		150	Wind 90	2.79	1.40	2.42	556.12	-321.29	-0,
- 1		180	Wind 60	2.74	80.0	274	629.43	-0.01	-0,
- 1		210 240	Wind 90	2.79	-1.40	2.42	556.12	321.28	0,
ļ		270	Wind Normal Wind 90	3.85	-2.64	1.53	350.85	608,31	0.
1		300	Wind 60	3.24 2.97	-3.24 -2.57	0,00 -1,49	-0.36 -342.12	745.98 591.93	0.
Í		330	Wind 90	2.79	-1.40	-2.42	-556.85	321,28	0.
13	220.00-200.80	o	Wind Normal	3,51	0.00	-3.51	-736,58	-0,56	8.
		30	Wind 90	3,81	1.91	-3.30	-694.03	-401.08	0.
- 1		60	Wind 68	4.16	3.60	-2.08	-436,83	-756,64	ő.
- 1		90	Wind 90	3.81	3,81	0.00	-0,30	-801.61	-0.
1		120	Wind Normal	3.51	3.04	1.75	367.83	-638.19	-0.
- 1		158	Wind 90	3.50	1.75	3.03	636.08	-367.97	-0.
- 1		180	Wind 60	3.42	0.88	3.42	717.51	-0.56	-0.
		210	Wind 90	3.81	-1.91	3,30	693.42	399.97	-0.
Į	i	240 270	Wind Normal	4.25	-3,68	2.12	445.45	771,52	-0.
- 1		300	Wind 98 Wind 60	3.81 3.42	-3.81 -2.96	0.00 -1.71	-0.30	800.49	0.
- 1		330	Wind 90	3.50	-2.96	-1.71	-359.21 -636.69	621.08 366.86	0. 8.
T4	200.08-180.80	330	Wind Normal	3.70	0.80	-3.70	-703,69	-0.71	8. 0.
		30	Wind 90	3.97	1.99	3.44	-653.90	-37B.01	0,
- 1		- 60	Wind 60	4.30	3.72	-2.15	-408.57	-707.71	0.
- 1	i	90	Wind 90	3,97	3.97	0.00	-0.36	-755.32	-0.
- 1		120	Wind Normal	3.70	3.21	1.85	351,27	-60 9.79	+0.
- 1		150	Wind 90	3.66	1.83	3.17	602.33	-348,68	-0.
- 1		180	Wind 60	3.57	80.0	3.57	678,46	-0.71	-0
1		218	Wind 90	3.97	-1.99	3.44	653.13	376.60	-0,:
	1	240	Wind Normal	4.43	-3.83	2.21	428.03	727,47	-0.1
	1	270 300	Wind 90	3.97	-3.97	0.00	-0,38	753.90	0.3
l l		338	Wind 60 Wind 90	3.57	-3.09	-1.79	-339.B1	587.19	8.3
TS	180.80-160.08	335	Wind Normal	3.06	-1.83 0,00	-3.17 -3.76	-603.09 -638.83	347.27 -0.86	0.4 0.4
	100.00 100,00	30	Wind 90	4.01	2.00	-3.47	-590,46	-341.49	0.3
- 1		60	Wind 60	4.32	3.74	-2.16	-367.77	-637,04	0.0
- 1		90	Wind 90	4.81	4.01	0.00	-0.46	-682.13	-0.
	1	120	Wind Normal	3.76	3.25	1.88	318.72	-553.70	-0
	1	158	Wind 90	3.71	1.85	3.21	545.13	-315,86	-0.3
		188	Wind 60	3.61	0.08	3.61	613,93	-0,86	-0.4
- 1		218	Wind 98	4.81	-2.00	3.47	589.53	339.78	-0.3
- 1	I	240	Wind Normal	4.46	3.B6	2.23	378.82	656.08	-0.0
- 1		270	Wind 98	4.01	-1.01	0.00	-8,46	680.41	0.2
- 1	į.	300	Wind 68	3.61	-3.13	-1,81	-307,66	531.23	8.4
T6	160.08-140.00	330	Wind 90	3.71	-1.85	-3.21	-546.06	314.14	0.5
۳	100.04-140.00	.30	Wind Normal Wind 90	3.76	0.00	-3.76	-564.30	-1.01	0.5
- 1		60	Wind 90	3,99	1.99	-3.45	-518.76	380,20	0.3
1		90	Wind 60	4.29 3.99	3.72	-2.14 0.00	-322,28	-558.27 -599.39	0.8
		120	Wind Normal	3.76	3.95	1.88	-0.55 281.33	-255.75	-0.2 0.5

l		90 Wind 90 120 Wind Normal	3.99	3.72 3.99 3.25	-2.14 0.00 1.88	-322.28 -0.55 281.33	-558.27 -599.39 -489.23	0.84 -0.29 0.51		
								¥		
_								4		
	tnxTower	Job		2408:	26		P	age 27 of 59		tnxTo
	Valinont 1545 Pideo Drive	Projec1	V-27 x 255'	- #28131	3 Jake Ho	rsiey, KY	D:	ate 3:12:57 12/03/13		Valmoi 1545 Pideo
	Plymouth, IN Phone: 574-936-4221 FAX:	Client	Ап	erican To	wer Corp		٥	esigned by SKK		Plymouth, Phone: 574-93 FAX:

Section	Section	Wind	Directionality	F	ν.	ν,	OTM,	OTM,	Torque
No.	Elevation	Azimuth			- 1	- 1	- 1		•
	ſ	<u> </u>		K	K	ĸ	kip-ft	ktp-ft	kip-fl
. 1		180	Wind 60	3.88	0,00	3.08	153.07	-1.76	-0.7
		210	Wind 90	3.40	-1.70	2.94	146.13	83.15	-0,5
		240	Wind Normal	3.78	-3.28	1.89	93,66	162,10	-0.0
i		270	Wind 90	3.40	-3.40	0,00	-0,95	168.07	0.4
		380	Wind 68	3.08	-2.67	-1.54	-77.96	.131.63	0,7
		330	Wind 90	3.16	-1.58	-2,74	-137.93	77.32	0.8
T12	40,00-20.00	0	Wind Normal	2.99	0.00	-2.99	-90.75	-1.91	0.7
,		30	Wind 90	3.13	. 1.56	-2.71	-82.28	-48.82	0.5
- 1		60	Wind 60	3.33	2.89	-1.67	-51.02	-88.49	0.0
		90	Wind 90	3.13	3.13	0,00	-1.03	-95.73	-0.4
		120	Wind Normal	2.99	2.59	1.50	43.83	-79.61	-0.7
		150	Wind 90	2.92	1.46	2,53	74,78	-45.6B	+0.B
		180	Wind 60	2.84	0.00	2.84	84.21	-1.91	-0.7
j		210	Wind 90	3.13	-1.56	2.71	80,22	45.00	-0.5
- 1		240	Wind Normal	3.48	-3.02	1.74	51.19	88,54	-0,0
- 1		270	Wind 98	3.13	-3.13	0.00	-1.03	91.91	0,4
- 1		300	Wind 68	2.84	-2.46	-1,42	-43.65	71.91	0.7
		330	Wind 98	2,92	-1.46	-2.53	-76.B4	41.86	0.8
T13	20,00-0,00	1 0	Wind Normal	2.63	0,00	-2.63	-27.39	-2.06	0.7
- !		38	Wind 90	2.74	1.37	+2.37	-24.84	-15.77	0.4
)		60	Wind 60	2.92	2.53	-1.46	-15.69	-27.31	0,0
i		90	Wind 90	2.74	2.74	80,0	-1.11	-29,47	-0.3
		120	Wind Narmat	2.63	2.28	1.31	12.03	-24.82	-0.7
		150	Wind 98	2.56	1.28	2.22	21.05	-14.86	-0.8
		188	Wind 68	2.49	0.00	2.49	23,80	-2.06	-0.7
		210	Wind 90	2.74	-1.37	2.37	22.62	11.64	-0.4
- 1		240	Wind Normal	3.05	-2.64	1,53	14.15	24.37	-0,0
- 1		278	Wind 90	2.74	-2.74	0.00	-1.11	25.34	0.3
- 1		300	Wind 60	2.49	-2.16	-1.25	-13.57	19.51	0.6
		330	Wind 90	2.56	1.28	-2.22	-23.27	10.73	0.8

		Mast Totals - No Ice								
Wind Azimuth	ν,	V	OTM,	OTM _s	Torque					
•	ĸ	К	kip-ft	ktp-ft	kip-fl					
0	0.00	-41.24	-5228.65	-14.76	7.01					
30	21.87	-37.88	-4810.85	-2787.58	4.47					
60	40.61	-23.45	-2980.98	-5163.54	0.31					
90	44.19	6.00	-8.33	-5663,65	-4.00					
120	35.92	20.74	2624.69	-4575.28	-6,76					
150	20.18	34.95	4394,49	-2556,73	-7.73					
150	0.00	39.59	5007,41	-14.76	-6,71					
210	-21.87	37.88	4794,20	2757.98	-4.47					
2401	-42.05	24.28	3062.61	5304.27	-0.33					
270	-44.19	0.00	-B.33	5634,13	4.00					
380	-34,48	-19.91	-2543.06	4375,52	6.47					
330	-20.18	-34,95	-4411.14	2527.21	7.73					

Mast V	ectors	With	Ice

tnxTower	Job 240826	Page 26 of 59
Valmont 1515 Pideo Drive	Project V-27 x 255* - #281318 Jake Horsley, KY	Dats 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

Section	Section	Wind	Directionality	F	1/2	1/4	OTM,	OTAI _e	Torque
No.	Elevation ft	Asimuth 9		r	κ	r	kip-ft	ktp-fl	kip-fl
		150	Wind 90	3.70	1.85	3.20	47D.50	-278.17	-0.60
		180 210	Wind 60	3.60	0.00	3,60	539.61	-1.01	-0.52
	1	248	Wind 90 Wind Normal	3.99 4.45	-1,99 -3,85	3,45 2,22	517.66 332.98	298.18 576.68	-0.35 +0.04
	i	270	Wind 90	3.99	-3.99	0.00	+0.55	597.37	8.29
		300	Wind 60	3.60	-3.12	-1.80	-270.63	456,78	0.49
17	140.88-120.00	330	Wind 90	3.70	-1.85	-3.20	+480.60	276.15	0.60
.,	140.88-120.00	30	Wind Normal Wind 90	3.57 3.81	0.80 1.90	-3.57 -3.38	+464,49 +429,47	-1.16 -248,76	8,59 8,39
		60	Wind 60	4.11	3,56	-2.05	-267.55	-463.48	0.04
		90	Wind 98	3.81	3.81	8.80	-0.63	-496.35	-0.32
		120	Wind Normal	3.57	3.09	1,78	231,31	-402.88	-0,56
	ļ	158 180	Wind 90 Wind 60	3.52 3.44	1.76 0.80	3.05 3.44	396.13 446.34	-230.23 -1.16	-0.66 -0.57
		210	Wind 30	3.81	-1.90	3.30	428.22	246,44	-0.39
	İ	248	Wind Normal	4.24	-3,67	2.12	274.74	475,79	-0.04
		270	Wind 90	3.81	-3.81	0.08	-0.63	494.03	0.32
		380 338	Wind 60 Wind 90	3.44 3.52	-2.98	-1.72 -3.05	-224.11 -397.39	385.93	8.54
TS	120,80-100.00	333	Wind Normal	3.52	-1.76 0.00	-3.05	-387,93	227.91 -1.31	0.66 0.66
		30	Wind 90	3.75	1.87	-3.25	-357.66	-207.40	0,43
		60	Wind 60	4.03	3.49	-2.02	-222.47	-385.42	0.05
		90 120	Wind 90 Wind Normal	3.75 3.52	3.75 3.05	0.00 1.76	-0.71 192.90	-413.48 -336.65	-0.36
		150	Wind 90	3.47	1.74	3.01	338.03	-192.26	-0.62 -0.73
		180	Wind 60	3.39	0.00	3.39	371.86	-1.31	-0.63
		210	Wind 90	3.75	-1.87	3.25	356.24	204.77	-0.43
		240 270	Wind Normal Wind 90	4.17 3.75	-3.61 -3.75	2.08	228.39	395,49 410.86	-0.05
		300	Wind 60	3.73	-2.93	-1.69	-0.71 -186.99	321.34	0.36 0.59
		330	Wind 90	3,47	-1.74	-3.01	-331.44	189.64	0.73
T9	108.00-80.00	e	Wind Normal	3.42	0.00	-3,42	-308,49	-1.46	0.71
		30 60	Wind 90 Wind 60	3.63 3.98	1.81 3.38	-3.14 -1.95	-283.71	-164.81 -305.52	0.46
		90	Wind 90	3,53	3.63	0.00	-176.34 -0.79	-303.52	0.05 -0.3B
	1	120	Wind Normal	3,42	2.96	1.71	153,06	-267.94	-0.67
		158	Wind 90	3,37	1.63	292	261.57	-152.94	-0.78
		180 210	Wind 60 Wind 90	3.28 3.63	0,00 1.81	3,28 3,14	294.64 282.13	-1.46 161.88	-0.68
	1.	240	Wind Normal	4.04	-3.50	2.02	180.89	313.22	-0.46 -0.05
		270	Wind 90	3.63	-3.63	0.00	-0.79	325,23	25.0
		300 330	Wind 60	3,28	-2,84	-1.64	-148.58	254.39	0.64
T10	80.00-60.00	330	Wind 90 Wind Normal	3.37 3.32	-1.68 8.80	-2.92 -3.32	-263.15 -232.96	150.01 -1.61	0.78
		30	Wind 90	3,51	1,75	-3.04	-213.65	-124.46	0.73
		60	Wind 60	3.77	3,26	-1.88	-132.65	-229.86	0.05
		90 120	Wind 90 Wind Normal	3.51 3.32	3.51 2.87	0.00	-0.87	-247.31	-0,40
	ļ	150	Wind 90	3.32	1.63	1.66 2.82	115.18 196.74	-202.61 -115,70	-0.71 -0.83
- 1	ì	£B0	Wind 60	3.18	8.00	3.18	221.63	-1.61	-0.72
		210	Wind 90	3.51	-1.75	3.84	211.91	121.23	-0.49
		240 270	Wind Normal Wind 90	3.90 3.51	-3.38 -3.51	1.95 0.00	135.71 -0.87	234.95 244.08	-0.85
		300	Wind 68	3.18	-3.31	-1.59	-112.12	191.08	8.40 0,68
}	1	33D	Wind 98	3.26	-t.63	-2.82	-198.48	112.48	0.83
T11	60.00-48.08	0	Wind Normal	3,24	0.80	-3.24	-16284	-1.76	08.0
- 1		30 60	Wind 90	3,40	1.70	-294	-14B.03	-86.68	0.51
- 1	l	90	Wind 60 Wind 90	3.63 3.40	3.14 3.40	-1.81 0.80	-91.62 -0.95	-158.81 -171,59	0.06 -0.42
- 1		120	Wind Normal	3.24	2.80	1.62	80.00	-141.97	+0.75
	J.	150	Wind 98	3.16	1.58	2.74	136.03	-38,85	-0.87

tuxTower	Job 240826	Page 28 of 59
Valmont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

Section No.	Section Elevation	Wind Azimuth	Directionality	F	ν,	14	OTM _s	OTM	Torque
	Elevation fl	Azimuta		ı ı	κ l	_K	kip-ft	kip-ft	ktp-fl
T1	255.00-240,00	0	Wind Normal	0,20	0.00	-0.20	-51.08	-2.16	0.
		30	Wind 90	0.24	0.12	-0.21	-53.34	-32.46	D.
	!	60 90	Wind 60 Wind 90	8.27	0.23	-0.13	-33.85	-59.32	0,
		120	Wind Normal	0.24	0.24 0.18	0.00 0.10	-6.84 24.27	-62.77 -45.66	-0. -0.
		158	Wind 90	0.17	0.09	0.15	36.53	-23.73	-0.
		180	Wind 60	0.20	0.00	0.20	47.71	-2.16	-0.
		210	Wind 90	0.24	-0.12	0.21	51.65	28.15	-0.
		240 278	Wind Normal Wind 90	0.27	-0.24	0.14	33.88	56.47	~0.
		388	Wind 60	0.24	-0.24 -0.17	-0.10	-0.84 -25.12	58,46 39,89	Ð.
		330	Wind 90	0.17	-0.89	-0.15	-38.21	19.42	6.
T2	240.00-220.80	a	Wind Normal	0.54	0.00	-0.54	+125.12	-0.32	O,
		30	Wind 90	0.55	0.28	-0.48	-112.20	-64.02	-0.
		60	Wind 60	0.60	0.52	-0.30	-70.71	-119.58	-0.
		90 120	Wind 90 Wind Normal	0.60	0.60	80.0	-1,85	-138.03	-0.
		150	Wind Wind 90	0.60	0.33	0.30 0.48	67.01 100.49	-119.58 -64.02	-8. -0.
		180	Wind 68	0.53	0.00	0.53	119.76	-0.32	-0.
		210	Wind 90	0.55	-0.28	0.48	108.49	63.39	0.
		240	Wind Normal	0.60	-0.52	0.30	67.01	118.95	8.
- 1		270	Wind 90	0.60	-0.60	20.0	-1.85	137.40	e.
1		300 330	Wind 60	0.60	-0,52	-0.30	-70.71	118.95	0.
13	220.00-200.00	330	Wind 90 Wind Normal	0.55 8.63	+0.28 0.00	-0.48 -0.68	-112.20 -144.56	63.39 -2.67	0. 8.
	220.00 200,00	30	Wind 90	0.67	0.34	-0.58	-123,24	-73.29	8. 8,
		60	Wind 60	0.67	0.58	-0.33	-71.04	-124.13	0.
- 1		90	Wind 98	0.67	0.67	0.08	+0.92	-143.91	0.
		120	Wind Normal	0.68	0.59	0.34	70.89	-127.07	-0.
1		150	Wind 90	0.68	0.34	0.59	122.89	-74.16	-0,
		180 210	Wind 60 Wind 90	0.6B 0.67	-0.34	0.68	141.85 t21.39	-2.67 67.94	-8. -0.
		240	Wind Normal	0.68	-0.59	6.34	70,03	128.22	-0.
- 1		270	Wind 90	0.67	-0.67	0.00	-0.92	138.56	-0.1
- 1		300	Wind 60	0.68	-0.59	-0.34	-71.91	120.28	0,1
		330	Wind 90	0.68	-0.34	-0.59	-124.74	68.B1	0.0
T4	200.00-180,00	0	Wind Narmal	0.71	0.00	-0.71	-136.09	-3.37	0.0
- 1		30 60	Wind 90	0.70	0.35	-0.60	-115.66	-69,49	0.0
- 1		90	Wind 60 Wind 90	6.70	0.60	-0.35 8.00	-66.72 -1.14	-116.95 -135.60	0.0
- 1		120	Wind Normal	0.71	0.62	0.36	66.33	-120.24	0,0
- 1		150	Wind 98	8,70	0.35	0.61	114.70	-70.25	-0.0
	i	180	Wind 60	0.70	0.00	0.70	131.54	-3.37	-0,0
		210	Wind 90	0,70	-0.35	0.60	113.37	62.74	-0,0
		240	Wind Normal	0.70	-0.61	0.35	65.57	112.17	-0.0
		270 300	Wind 90 Wind 60	0.70 0.70	-0.70 -0.60	0.00	-1.14	128.86 111.54	-0.0
- 1	- 1	330	Wind 90	0.70	-0.35	-0.35 -0.61	-67.49 -116.99	63.51	0.0
T5	180,00-160,00	0	Wind Normal	0,78	0.00	-0.78	-134.04	-4.06	0.0
- 1		30	Wind 90	0.77	0.38	-0.66	-114,28	-69,21	0,0
i		60	Wind 60	0.76	0,66	-0.38	-66.01	-116.08	0.0
- 1		90	Wind 90	0,77	0.77	0.00	-1.37	-134.35	0.0
1	1	120	Wind Normal	8.78	0.68	0.39	64.97	-118.96	0,0
- 1	1	150 180	Wind 90 Wind 60	0.77	0.39	0.67	112.61	-69,86	-0,0
í	1	210	Wind 60	0.77 0.77	0.08 -0.38	0.77 0.66	129.30 111.47	-4.06 61.08	-0.0 -0.0
- 1	,	240	Wind Normal	0.77	-0.38	0.39	64.31	109.70	-0.0 -0.0
- 1	l	270	Wind 90	6.77	-0.77	0.00	-1,37	126.22	-0.0
- 1	[300	Wind 60	0.77	-0.67	-0.3B	-66.70	109.09	-0.0
1	i	330	Wind 90	0.77	-0.39	-0.67	-115.34	61.74	0.0
76	160,00-140,00	la	Wind Normal	6.78	0.00	-0.78	-119.13	-4.75	0,0

tnxTower	Job	240826	Page 29 of 59
Valmont 1545 Pidza Drive	Project	V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, BV Phone: 574-936-4221 FAX:	Client	American Tower Corp.	Designed by SKK

Section No.	Section	Wind	Directionality	F	ν,	ν,	OTM,	OTM ₂	Torque
No.	Elevation ft	Azimuth		Б	ĸ	ж	kip-fl	kip-ft	ktp-fl
		30	Wind 90	0.77	0.38	-0.67	-101.40	-62.37	0.0
		60	Wind 60	0.76	0.66	-0.38	-58.77	-103.78	0.0
	l	90	Wind 98	0.77	0.77	0.00	-1.59	-119.99	U,D
	l	120	Wind Normal	0.78	0.68	0.39	57.17	-106.53	0.0
	l	150	Wind 98	0.78	0.39	0.67	99.21	-62.95	-0.0
	ł	180	Wind 60	0.77	0.00	8.77	113.91	-4.75	a.a.
		210	Wind 90	0.77	-0.38	0.67	98.21	52.87	0,0~
		248	Wind Normal	0.78	-0,67	0.39	56.60	96.04	-0.8
		270	Wind 90	0.77	-0.77	80,0	-1.59	110.50	-8,0
		388	Wind 60	0.77	-0.67	-8.39	-59.35	95.28	-0.0
T7		330	Wind 90	0.78	-0.39	-0.67	-102.40	53,45	0,0
17	140.88-120.00	. 0	Wind Normal	0.75	0.08	-0.75	-99.64	-5.42	0.0
		30	Wind 90	0.74	0.37	-0,64	-85.08 -49.50	-53.44 -87.99	0.0
		60	Wind 60	0.73	0.64 8.74	-0.37		-101,46	0.8
		90 120	Wind 90	0.74	0.65	08.0 8.38	-1.83 47.88	-90.13	8.0
		150	Wind Normal Wind 90	0.75	0.63	8.65	82.18	-53.93	-0,0
		180	Wind 60	0.74	0,08	0.74	94.48	-5,42	-0.0
		210	Wind 98	0.74	-0.37	0.64	81.34	42,60	.0.0
		240	Wind Normal	0.74	-0.65	6,37	46,59	78.45	-0.0
		270	Wind 98	0.74	-0.74	0.00	-1.83	90.61	-0.0
		300	Wind 60	0.74	-0.64	-0.37	-49,98	77,98	-0.0
		330	Wind 90	0.75	-0.37	-0,65	-85.84	43.08	0,8
T8	120,00-100,00	I - 61	Wind Normal	0.74	0.00	-0.74	-83,23	-6.89	8.0
- 1		30	Wind 90	0.72	0.36	-0.63	-71.83	-45,98	0.0
- 1		60	Wind 60	0.72	0.62	-0.36	-41.58	-74.52	8.8
ĺ		90	Wind 98	6.72	0.72	8.08	-2.07	-85.71	0.0
- 1		120	Wind Normal	0.74	0.64	0.37	38.51	-76.37	0.0
- 1		150	Wind 90	0.73	0.37	0.63	67.57	-46.30	-0.0
- 1		180	Wind 60	0.73	0.00	0.73	77.75	-6.09	+0.03
ı		210	Wind 90	0.72	-0.36	0.63	66.89	33.72	-0.0
- 1		240	Wind Normal	0.73	-0.63	0.37	38.11	63.51	-0.0
- 1		270	Wind 90	0.72	-0.72	8,08	-2.07	73.54	-0.0
ı		300	Wind 60	8.73	-0.63	-0.36	-41.98	63.04	-0.0
T9		330	Wind 90	0.73	-0.37	-0.63	-71.71	34.12	0,0
19	88,08-08,001	30	Wind Normal Wind 98	0.72	0.80	-0.72 -0.61	-66.73 -57.00	-6.74 -38-31	0.0
		68		0.70 0.78	8.60		-33,64	-60.99	0.0.
		90	Wind 60 Wind 98	0.70	0.70	-0.35	-2.32	-69.88	0.03
		120	Wind Normal	0.72	8.62	8.36	29.88	-62.52	0.0
		150	Wind 90	0.71	0.35	8.61	52,50	-38.62	-0.01
		180	Wind 60	0.70	0.00	0.70	60.95	-6.74	-0.03
- 1		210	Wind 90	8.70	-0.35	8,61	52.36	24.83	-0.03
- 1		240	Wind Normal	0.71	-0.61	0.35	29.57	48.50	-8.83
- 1		278	Wind 90	0.78	-0.70	0.00	-2.32	56.40	-0.03
- 1		300	Wind 60	0.78	-0.61	-0.35	-33.96	48.05	-0.01
- 1		330	Wind 98	0.71	-0.35	-0.61	-57,54	25.14	0,81
110	80,08-60.08	0	Wind Normal	0.69	0.00	-0.69	-50.73	-7.37	0.03
- 1	-	30	Wind 90	0.67	8.34	-0.58	-43,42	-30.95	0.03
- 1		60	Wind 60	0.67	8.58	-0.33	-25.97	-47.83	0.03
- 1		90	Wind 90	0.67	0.67	0.08	-2.59	-54.53	0.02
- 1		120	Wind Normal	0.69	0.60	8.34	21.48	-49.06	0.0
- 1		150	Wind 90	0.68	0.34	8.59	38,65	-31.18	-0,0
1		180	Wind 60	0.67	0.00	0.67	44.65	-7.37	-8.83
- 1		210	Wind 90	0.67	-0.34	8,58	38.25	16.20	+0,83
- 1		240	Wind Normal	D. 68	-0.59	8.34	21.25	33.92	-0.03
- 1		270	Wind 90	0.67	-0.67	0.00	-2.59	39.78	-0.02
- 1		380	Wind 60	0.67	-0.58	-0.34	-26,20	33.53	-0.01
l		330	Wind 98	80.0	-0.34	-0.59	-43.82	16.43	0.01
T11	60.00-40,00	0	Wind Normal	0.66	8.00	-0.66	-35.63	-7,98	0.03
		38	Wind 90	0.64	8.32	-0.55	-30,58	-23.98	0.0

tnxTower	dal	240826		Page 30 of 59
Valuumt 1545 Pideo Drive	Project	V-27 x 255' - #281318 Jake Horsley, KY		Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client	American Tower Corp.	Management and the second	Designed by SKK

Section	Section	Wind	Directionality	F	V_x	V ₂	OIM,	OTM,	Torque
No.	Elevation A	Azimuth		κ	ĸ	k l	kip-ft	kip-fi	kip-fl
		60	Wind 60	0.63	0.55	-0.32	-18.72	-35,44	0,1
- 1		90	Wind 90	0,64	0.64	0.00	-2.87	-39.98	0.1
ŀ		120	Wind Normal	0.66	0.57	0.33	13.51	-36,36	0.1
- 1		150	Wind 96	0.65	0.32	0.56	25,10	-24.13	-0.1
- 1		180	Wind 60	0.64	0.00	0.64	29.14	-7.98	-0.
i		210	Wind 90	0.64	-0.32	0.55	24.84	8.02	-0.1
- 1		240	Wind Normal	0.65	-0.56	0.32	13.36	20.13	-D.
		270	Wind 90	0.64	-0.64	0.00	-2.87	24.02	.0.
		308	Wind 60	0.64	-0.55	-0.32	-18.87	19,74	-0.
		330	Wind 90	0.65	-0.32	-0.56	-30.84	8.17	0.
T12	40.80-26.08	01	Wind Normal	0.59	80.0	-0.59	-20,99	-8.54	0.
- 1		30	Wind 98	0.53	0.29	-0.50	-18.22	-17.22	0.
- 1		60	Wind 60	0.57	0.50	-0.29	-11.79	-23.43	Ø.
- 1		90	Wind 98	8,53	0.58	0.00	-3.19	-25,90	D.
1		120	Wind Normal	0.59	0.51	0.38	5.72	-23.95	0.
		150	Wind 90	0.58	0.29	0.51	12.00	-17.30	-0.
		180	Wind 60	0.58	0.00	0.58	14.18	-8.54	-0.
l l		210	Wind 90	0.58	-0.29	0.50	11.85	0.14	-0.
		246	Wind Normal	0.59	-0.51	0.29	5.63	6.74	-0.
- 1		270	Wind 98	0.58	-0.58	00.0	-3.19	8.33	+0.
[388	Wind 68	0.58	-0.50	-0.29	-11.87	6.50	-8.
- 1		330	Wind 90	0.58	-0.29	-0.51	-18.37	0.23	0.
T13	20.00-0.00	6	Wind Normal	0.51	0.80	-0.51	-8.70	-8.96	0.
- 1		30	Wind 90	0.50	0.25	-0.43	-7.90	-11.45	0.
- 1		60	Wind 60	0.49	0.43	-0.25	-6,05	+13.23	0.0
- 1		90	Wind 90	8.58	0.58	0.00	-3.59	-13.94	0.0
- 1		120	Wind Normal	0.51	0.44	8.26	~1,03	-13.39	D,i
- 1		150	Wind 90	0.50	0.25	0.43	8.76	-11.47	-0.
		180	Wind 60	0.50	0.08	0.50	1.38	-8.96	-0.
- 1		210	Wind 90	8.50	-0.25	0.43	8.72	-6.47	-0.1
- 1		240	Wind Normal	0.51	-0.44	0,25	-1.86	-4.58	-0,0
ı		270	Wind 90	0.50	-0.50	0.80	-3.59	-3.99	-0,
- 1		308	Wind 60	0.50	-0.43	-0.25	-6.88	-4.65	-0.0
		338	Wind 98	8.50	-0.25	-0.43	-7.94	-6.45	8.1

,		p ³⁴		Mas	t Totals -	With Ice
	Wind Aziouth	ν,	ν,	OTML ktp-fl	OTM _s	Torque ktp-fl
ar.	0 30 60 90 120 158 180 210	0.08 4.13 7.16 8.30 7.29 4.13 0.88 -4.13	-8.35 -7.15 -4.13 0.00 4.21 7.15 8.20 7.15 4.28	-1075.66 -933.16 -554.38 -26.17 505.80 873.58 1005.79 888.83 509.98	-68.43 -992.08 -983.33 -1126.04 -989.83 -587.90 -68.43 455.22 860.21	0.29 0.32 6.26 8.13 -0.02 -0.17 -8.28 -8.32 -0.27
	270 300 330	-8.30 -7.16 -4.13	0.08 -4.13 -7.15	-26.17 -550.20 -925.92	989.18 839.22 451.04	-0.13 0.82 8.17

tnxTower	Jeb 240826	Page 31 of 59
Valmont 1545 Pidco Orive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

			ſ	∕last V	ectors	- Servi	ce		
Section	Section	Wind	Directionality	F	V4	ν,	OTM	OTA 4	Terque
No.	Elevotion	Azimuth							
TI	255.00-240.00	0	Wind Normal	K 0.45	X 0.00	-0.45	-112.69	ktp-fl -0.33	kip-ft 0.12
**	233,00-240.00	38	Wind 90	0.43	0.00	-0.45	-114.42	-66.29	0.12
		60	Wind 60	8.52	9.45	-0.26	-65,02	-112.64	0.01
		98	Wind 98	8.53	0.53	8.00	-0,18	-132.25	-0,07
		120	Wind Normal	8.45	9.39	8.23	56.08	-97.77	-0.11
	ł	150 180	Wind 90 Wind 60	0.33 0.42	0.17 0.80	0.29 8.42	70.56 183.41	-41.17 -0.33	-0.10 -0.11
		210	Wind 90	0.42	-0.27	0.46	114.06	65.63	-0.11
		240	Wind Normal	0.56	-0.48	0.28	69,12	119.70	-0.01
		270	Wind 98	0.53	-0.53	8,00	-0.18	131.58	0.07
		38D	Wind 60	0.42	-0.36	-0.21	-51.98	89,38	0.18
12	248.00-220.00	330	Wind 90	8.33	-0.17	-0.29	-70.92	40.51	0.10
12	248.00-220.00	30	Wind Normal Wind 90	1.25 1.24	0.80 0.62	-1.25 -1.08	-288.68 -247.69	-0.01 -142.80	0.01 -8.04
	1	60	Wind 68	1.32	1.14	-0.66	-152.26	-263.09	-8.04
	1	90	Wind 98	1.44	1.44	8,00	-0,36	-331.56	-0,10
	ĺ	120	Wind Narmal	1.36	1.18	8.68	155.73	-270.37	-0,08
	1	150	Wind 90	1.24	0.62	1.08	246.96	-142.80	-8.05
		180	Wind 60	1,22	0.00	1.22	279.55	-0.01	-0.01
	l '	210 240	Wind 90 Wind Normal	1.24 1.36	-0.62 -1.18	1.08	246,96 155.73	142.79 270.36	0.84 0.08
		270	Wind 98	1.44	-1.44	0.00	-8.36	331.54	9.18
		300	Wind 68	1.32	-1.14	-0.66	-152.26	263.88	0.08
		330	Wind 90	1.24	-0.62	-1.08	-247.69	142.79	0.05
T3	220.08-208.80	0	Wind Normal	1.56	0.00	-1.56	-327.54	-0.56	8.13
	i	30	Wind 90	1.70	0.85	-1.47	-308.63	-178.57	8.09 10.8
		68] 90	Wind 68 Wind 90	1.85	1.68	-0.92 0.00	-194.31 -0.30	-336.60 -356.58	-0,07
		120	Wind Normal	1.56	1.35	0.78	163,31	-283.95	-0.t2
		150	Wind 90	1.56	0.78	1.35	282.53	-163.85	-0.15
		160	Wind 60	1.52	0.80	1.52	318.72	-0.56	-8.13
		218	Wind 98	1.70	-0.85	1.47	309,02	177.45	-0.09
		240	Wind Normal	1.89	-1.63	0.94	197.81	342.59	-8.81 0.07
		270 300	Wind 90 Wind 68	1.70	-1.70 -1.32	0.00 -0.76	-0.30 -159.82	355.46 275.73	9.12
		330	Wind 98	1,56	-0.78	-1.35	-283,14	162.74	0.15
T4	288,80-180,00	0	Wind Normal	1.65	0.80	-1.65	-312.96	-0.71	D.17
		30	Wind 98	1.71	88.0	-1.53	-290.83	-168.40	0.11
		60	Wind 60	1.91	1.65	-0.95	-181.88	-314.93	0.01
		90 120	Wind 90	1.77	1.77	0.00	-0.38 155.91	-336.09	-0.09
		120	Wind Normal Wind 90	1.65	1.42 0.81	0.82 1.41	267.49	-271.41 -155.36	-0.16 -0.19
		180	Wind 60	1.59	0.80	1.59	301.32	-0.71	-0.16
		210	Wind 90	1.77	-0.88	1.53	290,07	166,98	-0.11
		240	Wind Normal	1.97	-1.70	8.98	186.47	322.93	-0,01
		270	Wind 90	1.77	-1.77	0.00	-0.38	33 4.67	g.09
		308	Wind 60	1.59	-1.38	-0.79	-151.24	260.58	0.16
T5	180.68-160.00	338 B	Wind 90	1.63	-0.81 80.0	-1.41	-268.26	153.95	8.19 0.21
13	100.00-100.00	30	Wind Narmal Wind 98	1.67	0.89	-1.67 -1.54	-284.18 -262.69	-0.86 -152.75	0.21
		60	Wind 60	1.92	1.66	-0.96	-163.71	-283.6t	0.01
		98	Wind 90	1.78	1.78	8.00	-0.46	-303.65	-0.11
		120	Wind Normal	1.67	1.45	0.83	141.39	-246.57	-0.19
		150	Wind 90	1.65	0.82	1.43	242.82	-140,86	د 0.22-
	1	180	Wind 60	1.61	9,00	1.61	272.68	-0.86	-0.20
		210 248	Wind 98 Wind Normal	1.78	-0.89 -1.72	1.54 0.99	261.76 163.11	158.53 291.12	-0.13 -0.01

tnxTower	Јо ь 240826	Page 32 of 59
Volmant 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

ection	Section	Wind	Directionality	F	ν_{z}	ν,	OTM,	OTM,	Torque
No.	Elevation A	Asimuth 6	j	ĸ	κ	x	kip-ft	kip-fl	ktp-ft
		300	Wind 60	1.61	-1.39	-0.80	-137,00	235,62	0.
		330	Wind 90	1.65	-0.82	-1,43	-242.95	139.14	O.
T6	168.08-140.00	0	Wind Narmal	1.67	0.00	-1.67	-251,10	-1.91	O,
- 1		30	Wind 90	1.77	0.89	-1.54	-230.86	-133,98	Q.
- 1		60	Wind 60	1.91	1.65 1.77	-0,95 0,00	-143,54	-248,68 -266,95	D.
i		90 120	Wind 90 Wind Normal	1.77 t.67	1.77	0,00	-0.55 124.73	-200,93 -218,00	-0 -0
		150	Wind 98	1.64	0.82	1.42	212.81	-124.19	-0
		188	Wind 60	1.60	0.00	1.60	239.53	-1.01	-0
		218	Wind 90	1.77	-0,89	1.54	229.77	131.96	-0
		240	Wind Normal	1.98	-1.71	0.99	1 47.69	255.74	+0
		270	Wind 90	1.77	-1.77	0.80	~0.55	264.94	8
		300	Wind 60	1.60	-1.39	-0.80	-126,58	206.90	D
		330	Wind 90	1.64	-0.82	-1.42	-213,90	122.17	0
T7	148.00-120.00	8	Wind Normal	1.59	0.08	-1.59	-206.79	-1.16	g
- 1		39	Wind 90	1.69	g.85	-1.47	-191.23	-111.20	8
i		60 90	Wind 60	1.83	1.58	-0.91 0.00	-119.26 -0.63	-206.64 -221.25	8
		120	Wind 90 Wind Normal	1.69 1.59	1.69 1.37	9.79	102.45	-221.23	-8 -0
		150	Wind 98	1.57	0.78	1.36	175.71	-102,97	-0
		150	Wind 60	1.53	0.00	1.53	198.03	-1.16	-0
		210	Wind 90	1.69	-0.85	1,47	189,97	108.88	-8
- 1		240	Wind Normal	1.88	-1.63	0.94	121.76	210,82	-0
- 1		270	Wind 90	1,69	-1.69	0,00	-0.63	218.92	a
- 1		300	Wind 60	1.53	-1.32	-0.76	-99.95	170.88	0
- 1		330	Wind 90	1.57	-0.78	-1.36	-176.96	180.65	O.
T8	128.00-100.08	D]	Wind Normal	1.56	0.80	-1.56	-[72.81]	-1.31	D
- 1		30	Wind 90	1.67	0.83	-1.44	-1.59,35	-92.90	D
- 1		68	Wind 60	1.79	1.55	-0.90	-99.27	-172.03	8
- 1		90	Wind 90	1.67	1.67 1.35	0.00 0.78	-8.71 85.34	-184.50 -150.35	-0 -0
- 1		120 110	Wind Normal Wind 90	1.56 1.54	0.77	1.34	146.29	-86.18	-0
- 1		180	Wind 60	1.51	0.00	1.51	164.88	-1.31	-0
- 1		210	Wind 90	1.67	-0.83	1.44	157.94	90,28	-0
- 1		240	Wind Narmal	1.85	-1,60	0.93	101.11	175.05	-8
- 1		270	Wind 90	1.67	-1.67	8.08	-0.71	181.88	Ö.
- 1		380	Wind 60	1.51	-1.30	-0.75	-83,50	142.09	8.
- 1		330	Wind 90	1.54	-0.77	-1.34	-147.78	83,56	O.
T9	00.08-80.081	- 0	Wind Normal	1.52	0.08	-1.52	-137,54	-1.46	0.
		38	Wind 90	1.61	18.0	-1.40	-126,53	-74.06	0
		60	Wind 60	1.73	1.58	-0.87	-78.81	-136.60	0.
		90	Wind 90	1.61	1.61	0,00 9.76	-g.79 67.39	-146.66 -119.90	-0
		120 150	Wind Normal Wind 90	1.52	0.75	1.38	115.82	-68.78	-0.
		180	Wind 60	1.46	0.00	1.46	130,51	-1.46	-0.
		210	Wind 90	1.61	-0.81	1.48	124.95	71.14	-0.
		240	Wind Normal	1.79	-1.55	0.90	79.96	138,40	-0.
i		270	Wind 90	1.61	-1,61	0,00	-0.79	143.73	0.
		380	Wind 60	1.46	-1.26	-0.73	-66.44	112,25	0
- 1		330	Wind 90	1.50	-0.75	-1.30	-117.39	65.86	D.
Tie	80.00-60,00	6	Wind Normal	1.47	80.0	-1.47	-104.02	-1.61	0.
- 1		30	Wind 90	1.56	0.78	-1.35	-95.44	-56.21	D,
- 1		60	Wind 60	1.67	1.45	-0.84	-59:44	-103.06	0.
- 1		90	Wind 98	1.56	1.56	0.08	-0.87	-110,81	-0.
- 1		120	Wind Normal	1.47	1.28	8,74	50,71	-98.94	-0.
- 1		158	Wind 90	1.45	0.72	1.25	86.96	-52.32	-0.
- 1		180	Wind 60	1.41	83,0	1.41	98.02	-1.61	-0.
- 1		210	Wind 90	1.56	-0,78	1.35	93.70	52,99	-0,
- 1		240	Wind Normal	1.73	-1.50		59.83	103,53	-0.
- 1		270	Wind 99	1.56	-1,56	0.00	-0.87 -50.31	107.59 84.03	8.
		380	Wind 60	1.41	-1.22	-0.71	~30.31	84.02	0.3

tnxTower	Jab 240826	Page 33 of 59	
Valmont 1543 Pideo Drive	V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13	
Plymouth, IN Phone: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK	

Section No.	Section Elevation	Wind Azinsuth	Directionality	F	$\nu_{\rm s}$	V _e	OTM _s	OTAf,	Torque
IVO.	fi			κ	Ε	κ	kip-ft	kip-fi	kip-fi
7		330	Wind 90	1.45	-6.72	-1.25	-38.70	49,09	0.3
TII	60.00-40.00	0	Wind Normal	1.44	0.00	-1.44	-72,90	-1.76	0.3
- 1		30	Wind 90	1,51	0.75	-1.31	-66.32	-39,50	0.2
- 1		60	Wind 60	1.61	1.40	-6.B1	-41,25	-71.56	0.0
- 1		90	Wind 90	1.5t	1.51	0.00	-0.95	-77.24	-0.
- 1		120	Wind Normal	1.44	1.25	0,72	35.03	-64.08	-0.3
- 1		150	Wind 90	1.41	0.70	1.22	59.93	-36.91	-0.;
		180	Wind 60	1.37	0.00	1.37	67.50	-1.76	-0.3
		210	Wind 90	1.51	-0.75	1.31	64.42	35.98	-0,
		248	Wind Normal	1.68	-1.46	8.84	41.18	71.07	-0.0
		270	Wind 90	1.51	-1.51	0.00	-0.95	73,72	0,1
		300	Wind 60	1.37	-1.19	-0.6E	-35.18	57,52	B.3
		330	Wind 90	1.41	-0.70	-1.22	-61.83	33.39	0
T12	40,60-20,00	0	Wind Normal	1.33	0.00	~1.33	~18.91	-1.91	0,:
- 1		30	Wind 90	1.39	0.69	-1.20]	-37.14	-22.76	0,
		60	Wind 60	1.48	1.26	-0.74	-23.25	-40,39	0,0
		90	Wind 90	1.39	1.39	0.00	-1.03	~43.61	-8.
- 1		120	Wind Normal	1.33	1.15	0.66	1B.91	-36.45	-0,3
- 1		150	Wind 90	1.30	0.65	1.12	32.66	-21.37	-0.
- 1		180	Wind 60	1.26	0.00	1.26	36.86	-1.91	-0.3
		210	Wind 90	1.39	-0.69	1.28	35,08	18.94	-0,3
- 1		240	Wind Normal	1.55	-1.34	0.77	22.18	38.29	-0.0
		270	Wind 90	1.39	-1.39	0.80	-1.03	39.78	0.1
- 1		300	Wind 60	1.26	-1.09	-0.63	-19.97	30.98	0.3
1		330	Wind 90	1.30	-0.65	-1.12	-34.73	17.54	8,3
T13	20.08-0.08	8	Wind Normal	1.17	0.00	-1.17	-12.79	-2.06	0.3
		38	Wind 90	1.22	8.61	-1.85	-11.66	-8.15	0.2
		68	Wind 60	1.30	1.12	-0.65	-7.59	-13.29	0.0
		90	Wind 90	1.22	1.22	0.80	-1.11	-14.24	-0.1
- 1		120	Wind Normal	1.17	1.01	8.56	4.73	-12.1B	-0.3
- 1		158	Wind 90	1.14	0.57	0.99	8,74	-7.75	-0.3
- 1		180	Wind 68	1.11	0,08	1.11	9.96	-2.06	-0.3
- 1		210	Wind 90	1.22	-6.61	1.85	9.43	4.03	-0.2
- 1		248	Wind Normal	1.36	-1.17	0.68	5.67	9.69	-0.0
- 1		·278	Wind 90	1.22	-1.22	0.00	-1.11	18.12	0.1
- 1		300	Wind 60	1.11	-0.96	-0.55	-6.65	7,52	8,3
- 1		330	Wind 90	1.14	-0.57	-0.99	-10,96	3.62	0.3

	Mast Totals - Service								
Wind	V _z	1/2	OTM _s	OTM ₂	Torque				
Azimati)	K	ĸ	Lip-ft	kip-fl	kip-ft				
C	0.00	-18.33	-2324.92	-14.76	3.12				
30	9.72	-16.83	-2142.78	-1247.09	1.99				
60	18.85	-18.42	-1329,51	-2303.11	8.14				
90	19.64	0.88	-8.33	-2525.38	-1.78				
120	15.96	9,22	1161.90	-2041.66	-3.81				
158	8.97	15.54	1948.48	-1144.52	-3.44				
188]	0.00	17.59	2220.89	-14.76	-2.98				
218	-9.72	16.83	2126.13	1217.57	-1.99				
240	-18,69	18.79	1356,54	2349.25	-8.15				
278	-19.64	0.08	-8.33	2495.86	1.78				
388	-15,33	-8.85	-1134.87	1936.48	2,88				
330	-8.97	-15,54	-1965.13	1115.88	3,44				

tnxTower	Јоb 249826	Page 35 of 59
Valmont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymorth IN Plione: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

Wind	F4	F,	1/2	ν_i	OTM,	OIM,	Torque
Azimutli .	i i	1					
	K	K	K	K	kip-fl	Mp-ft	Mp-fl
8	0.00	0.00	0.08	-0.08	-1.17	8.84	-0.
30	0.80	8.00	80,8	-0,88	-1,81	-0.56	+0.
68	0.00	0.00	0.00	-0.00	-8.57	-8,99	e.
90	8.80	8.00	0.88	0.80	0.02	-1,15	ō.
120	8.80	8.00	0.80	80.08	0,61	-8.99	ō
150	8.80	0.00	80.0	0.00	1.05	-0.56	ō
160	8.00	0.00	g.00	0.00	1.21	8.84	ő
218	0.00	8.00	-0.g0	0.80	1.05	8.63	Ğ
240	0.60	8.80	-0.88	0.00	0.61	1,06	o o
270	80.0	0.88	-0.00	0.88	0.02	1.22	-0
300	0.80	8.08	-0.80	-0.00	-0.57	1.86	-0
330	8.80	0.00	-0.80	-0.08	-1.01	0.63	-8

			ATC Loading - E	levation 250 - None	c		
Wind Azimuth	F.	F,	ν,	P _k	OTM _z	OTM,	Torque
•	K .	ĸ .	ĸ	K	Lip-ft	Mp-ft	kip-fl
В	2.64	0.00	0.80	-2.64	-661,12	0.08	8.0
30	2.64	8.00	1.32	-2.29	-572.55	-330.56	0.0
60	2.64	8.00	2.29	-1.32	-338.56	-572.55	0.0
90	2.64	E.00	2.64	0.88	8.00]	-661.12	0.0
120	2.64	8.00	2.29	1.32	330.56	-572,55	0.8
150	2.64	0.80	1.32	2.29	572.55	-338,56	0.0
150]	2.64	0.00	88.0	2.64	661.12	0.08	8,6
210	2.64	0.60	-1.32	2,29	572.55	330.56	0.0
240	2.64	0.00	-2.29	1.32	330,56	572.55	0.8
270	2.64	8.80	-2.64	8.08	8.80	661.12	0.8
380	2.64	0.00	-2.29	-1.32	-338,56	572.55	0.0
338	2.64	8.08	-1.32	-2.29	-572.55	338.56	0.0

			ATC Loading - E	levation 240 - None			
B'ind Azimuth	F _c	F _t	ν.	и.	OTM,	OIM _z	Torque
•	ĸ	K	K.	ĸ	kip-fl	kip-ft	kip-fl
8	2.62	0.00	0.00	-2.62	-629.24	0.00	8
30	2.62	8,80	1.31	-2.27	-544,94	-314.62	8
60	2,62	8,00	2.27	-1.31	-314.62	-544.94	ā
90]	2.62	0.08	2.62	0.00	0.00	-629.21	0
120	2,62	0.00	2.27	1.31	314.62	-544.94	a
150	2.62	0.00	1.31	2.27	544,94	-314.62	ō
180	2.52	0.00	8.80	2.62	629.24	0.08	ŏ
218	2.62	8,00	-1,31	2.27	544.94	314.62	ō
248	2.62	8.08	-2.27	1.31	314.62	544.94	G
270	2.62	8.00	-2.62	0.80	0,00	629,24	0
308	2,62	0,00	-2.27	-1.31	-314.62	544,94	ő
330	2.62	6,60	-1.31	-2.27	-544.94	314.62	ň

			ATC Londin	- Elevation 230 - N	one C		
B'ind Acleuth	F,	F _z	ν,	V _e	OTM,	OTM,	Torque
g	κ	K	K	ĸ	kip-fi	kip-ft	Lip-ft
0	2.60	0.00	0.00	-2.60	-597.65		8.00
38	2.60	0.00	1.30		-517.58		0.00
60	2.60	0.00	2.25	-1.30	-298,82		0.00
90	2.60	0.00	2.60	0.00	0.00	-597.65	0.00

	tuxTower	Job 240826	Page 34 of 59	
	Valmoni 1345 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13	
i	Plymoudt, IN Pliane: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK	

	Discr	ete Ap	purte	nance	Press	ures	- No I	ce G	H = 0.850
Description	Almiling Azimuth	Weight K	Offset <u>.</u> fl	Officit	ž jt	K _t	q _i	C _A A _C Front	CAAc Side ft ²
Bescon Extender (4') 803062	0.0000 0.0080	0.07 0.03	0.00 00.0	-2.89 -2.89	259.39 257.21	1.547 1.544	27 27	2.40 1.11	2.40 1.11
1/2" x 4" lightning rod ATC Loading ATC Loading	240,000B 0.8000 8.0000	0,81 2,08 2,80	-2.50 0.00 8.80	1.44 0.08 0.08	257,80 250,00 240,00	1.544 1.535 1.522	27 27 27	0.20 115.00 115.00	0.20 115,00 115,00
ATC Loading ATC Loading	0.0008 8,0008 Sum Weight:	2.00 2.00 8.12	0.0g 0.00	0.80	230.00 220.08	1.508 1.494	27 26	115.00 115.00	115.00 115.00

		Disc	ete Appı	ırtenanc	e Vectors	- No Ice							
	Bencon - Elevation 259.39 - From Leg A												
Wind Azimudi	F.	F ₄	V _z	V.	OIM ₂	OIM	Tarque						
8	K.	ĸ	K	K	kip-ft	Hp-ft	ktp-ff						
0	0,06	8,00	80.0	-8.06	-14.64	0.00	0.8						
30]	E.05	0.03	0.03	-0.05	-12.78	-7.21	-0.8						
68	0.03	0.05	0.05	-0.03	-7.42	-12.49	-0.1						
90	0.00	0.06	0.86	8.00	-0.21	-14.43	-0.1						
128	0.83	0.05	8.85	0.83	7.00	-12,49	-0.1						
150	0.85	0.03	0.03	0.05	12.28	-7.21	-0.0						
180	0.06	8.00	0.80	0.06	14.22	8.08	0.8						
218	8.05	8.03	-0,83	0.05	12.28	7.21	0.8						
240	0.03	0.85	-0.05	0.03	7,00	12.49	0.1						
270	0,80	0.86	-0.06	0.08	-0.21	14,43	0.1						
380	0.83	0.05	-8.85	-0.03	-7.42	12.49	0.1						
330	กรรไ	083	-0.03	an as	12.70	7.21	0.0						

			Patering, 14 / GD3DD	2 - Elevation 257.21	· From LAT A		
Wind	Fa	F _z	V _z	V_{ϵ}	OTM,	OTM,	Torque
Azimuth]			-
	r	K	K	K	kip-ft	kip-ft	kip-fl
e]	0.03	0.88	0.80	-0.83	-6.69	0.00	0,0
30	0.02	0.01	8.81	-8.82	-5,81	-3.38	-0.0-
60	10.0	g.82	8.82	-0.81	-3.39	-5.72	-0.0
90	0.80	8.03	0.03	0.00	-0.09	-6.60	-0.8
120	0.81	8,02	0.02	0.01	3.22	-5.72	-0.80
158	0.82	8.01	0.01	8.82	5.63	-3,30	-0.8
188	8.83	8,88	88,0	0.83	6,52	0.00	0.00
218]	0.02	8.81	-0.01	8.82	5.63	3,38	8.04
240	10.0	0.02	-0.82	0.81	3.22	5.72	0.80
270	0.88	0.03	-0.83	0.80	-0.09	6.68	0.0
388	0.81	8.82	-8.02	-6.01	-3,39	5.72	0.80
330	0.82	8.81	-0.01	-0.82	-5.81	3.30	0.8-

1/2"x 4" lightning rod - Elevation 257 - From Leg C

tnxTower	Job 240825	Page 36 of 59
Valmont 1545 Pideo Drive	V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymorah, IN Plume: 574-936-4221 FAX:	Glierd American Tower Corp.	Designed by SKK

117nd	Fa	F,	ν.	V_x	OIM _z	OTM ₄	Torque
Azinuah o	ĸ	r	ĸ	ĸ	kip-ft	kip-ft	kip-fl
120	2.60	0.00	2.25	1.30	298,82	-517,5E	8.
150	2,60	0.80	1.38	2.25	517.58	-298.82	
160	2,60	8.00	g.88]	2.60	597.65	8,00	ō.
218	2.60	0.80	-1.30	2.25	517.58	298.82	ō,
240	2.60	8,88	-2.25	1.30	298.82	517.58	0
270	2.68	0.00	-2.60	0.00	8,00	597.65	0.
300	2.68	0,00	-2,25	-1.30	-298.82	517.58	8.
330	2,60	0.00	-1.30	-2.25	-517.58	298.82	o o

Wind			.,		57.00 4		
	F.	F ₂	ν,	V _z	OTM ₂	OTM,	Torque
Arlendh							
	K	K	K	K	kip-ft	ktp-ft	Hp-ft
이	2.57	0.00	8.00	-257	-566.34	0.08	8,
38	2.57	8.80	1.29	-2.23	-490,46	-283.17	8.1
68	2.57	0.88	2,23	-1.29	-283.17	-490,46	8.3
98	2.57	8.88	2.57	0.80	0.00	-566.34	0.0
120	2.57	8,80	2.23	1.29	283.17	-490,46	0.1
150	2.57	8.00	1.29	2.23	498.46	-283.17	0.6
180	2,57	0.00	83,8	2.57	566,34	0.08	8.
210	2.57	0.00	-1.29	2.23	490,46	283,17	8,1
240	2.57	8,80	-2.23	1.29	283.17	490,46	0,0
270	2,57	8.00	-2.57	0.00	0.00	566.34	0.1
300	2.57	8.00	-2.23	-1.29	-283.17	498,46	8.1
338	2,57	8,00	-1.29	-2.23	-490.46	283.17	8.1

Tarque	OTM,	OTA 4	V.	V _z	Wind Attenth
l kip-fi	kip-fl	kip-ft	ĸ	K	
0.84	0,	-2476.85	-10.52	0,00	0
238.25	-1238.	-2145,05	-9.11	5,26	30
2144.74	-2144.	-1238.56	-5.26	9.11	68
176.53	-2476.	-0.28	0,00	18.52	90
144.74	-2144	1238,01	5.26	9.11	120
1238,25	-1238	2144.49	9.11	5,26	150
0.04		2476,29	18.52	0.80	180
238.32	1238	21 44, 49	9.11	-5,26	218
144.81	21.44.	t 238.01	5,26	-9.11	240
476.60		-0.28	8.00	-18.52	270
144.81		-1238.56	-5,26	-9.11	300
238.32		-2145.85	-9.11	-5.26	330

	Discr	ete App	ourter	ance	Press	ures -	With	lce	G _B = 0.650		~~~~
Description Bescon	Aming Azinuth 0.0000	Weight E 0.16	Officia fl 0.00	Officts ft -2.89	ji 259,39	K _z	g, ps∫ 3	C _A A _C Front ft ² 3,40	C _A A _C Side ft ¹ 3.40	In 1.8402	

tnxTower	Job 240826	Page 37 of 59
Valment 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Pliane: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Description	Alming Aslandh	Weight	Offict _s	Offset	-	E_t	g,	C _A A _C Froni	C _A Ac Side	I,
	22,000,000	K.	n	, p	ft	i	psf	ft ²	ft ²	In
Beseon Extender (4')	0.0000	0.07	0.00	-2.89	257.21	1.544	3	1.88	1.88	1.8483
803062	1 1	l i						1	- 1	
I/2" x 4" lightning rod	240.0808		-2,50	1.44	257.00	1.544	3	1.25	1.25	1.8403
ATC Loading	0.8600	5,67	0,00	0.00	250.00	1.535	3	188,47	188,47	4.8367
ATC Loading	0.0000	5,66	0.00	0.00	240,00	1.522	_ 3 \	488.17	188.17	1.8297
ATC Loading	8,0000	5.64	0.00	0.00	230.80	1.508	3	187.86	187.86	1.8214
ATC Loading	0.0000	5,63	0.00	0.60	220.00	1.494	3	187.53	487.53	4.813
	Sum	22.87			- 1	1	·			
	Watchie			· •					- 1	

ATC Loading ATC Loading ATC Loading ATC Loading	0.8000 0.0000 8.0000 0.0000 Sum Weight:	5,67 5,66 5,64 5,63 22,87	0.00 0.00 0.00 0.00	00.0 00.0 00.0 00.0	250.00 240.00 230.80 220.00	1.535 4.522 1.508 1.494	3	188.47 188.17 187.86 187.53	188.17 188.17 187.86 487.53	1.8292 1.8214 1.8134
1/2" x 4" lightning rod	240.0808	0.04	-2.50	1.44	257.00	1.544	3	1.25	1.25	1.8403

			Beoson - Elevatio	1 259.39 - From La	t /		
Wind	F.	F_{I}	ν_{s}	ν.	OTM ₂	OTM,	Torque
Azimuth	- 1	ľ	- 1	i	1	1	
•	K .	ĸ	K .	K .	kip-fi	kip-ft	hp-fl
0	0.01	0.00	0.00	-0.01	-2.74	0.00	0.8
30	0.01	0.00	0.00	-0.01	-2.43	-1.13	-0.0
60	0.00	10.0	10.0	-0.80	-1.60	-1.96	-0.0
90	8.80	8.81	16.0	0.00	-0.47	-2.27	-0.g
120	00.8	0.01	0.01	8.00	0.67	-4.96	-0.8
150	0.01	0.00	0.00	8.01	1,50	-1.43	-0.0
1 30	0.01	0,00	0.00	0.81	4.80	80.0	0.0
210	0.01	8.00	-0.00	0.01	1.50	1.13	0.0
240	0.00	13.0	-0.01	8.00	0.67	1.96	0.0
270	0.00	0.01	-0.01	8.00	-0.47	2.27	0.0
300	0.00	10.0	-0.81	-0.80	-1.68	1.96	0.0
330	0.01	0.00	-0.00	10.0-	-2.43	1.13	0.0

B'ind	F ₄	F.	ν.	V.	OTM	OTM,	Torque
Azimuth	_		E I	,			
	<u> </u>				ktp-ft	ktp-ft	kip-fl
6	0.00	0.00	86.0	-0.00	-1.44	0.08	0,6
38	0.00	0.00	0.00	-0.80	~1.27	-0.62	-0.0
60	0.00	0.00	0.00	-0,00	-0.82	-4,08	+0.8
90	0.00	0.00	0,00	0.00	-0.19	-1.24	-0.0
120	0.00	0,00	0.00	0.00	0.43	-1.08	-0.0
150	0.00	0.00	8.00	80.0	0.89	-0.62	-0,0
188	0.00	0.00	0.00	0.00	1.05	0.88	0.0
210	0.00	0.00	-0.00	0.00	0,89	0.62	0.0
240	0.00	0.00	-0,00	0.00	0.43	1,08	0.0
270	0.80	0.00	-0.00	0.80	-0.19	1.24	0.0
300	0.00	0.00	-0.08	-0.00	-0.82	1.88	0.0
330	0.00	0.00	-0.00	-0.00	-1.27	0.62	0,0

		1)	2"x 4" lightning re	od - Elevation 257 - F	rom Leg C		
Wind	F _a	F,	ν	ν_{z}	OTM,	OTAL.	Torque
Azimuh	- 1		r	P	kip-ft	kip-ft	kip-ft
	0.00		0.00	-0.08			
.01		0.00			-0.77	8.89	-0.8
30	0.00	98.0	0.00	-0.00	+0.66	-0.32	-D.B
60	0.00[0,00	0.00	-0.00	-0.36	-0.62	0.0
90	0.00	0.80	00.8	0.00	0.65	-0.73	0.0

4	Job	Page
tnxTower	240826	39 of 59
Valmont 1545 Pideo Driva	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth IN Phone: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

			ATC Loading	Einvation 230 - No.	se C		
Wind	F.	F,	ν,	V _z	OTM,	OTM,	Torque
Azimuth	- 1					i	
	K .	K	K	K	kip-fl	kip-fl	kip-fi
210	0.47	0.00	-0.24	0.41	93.94	54,24	0.80
240	0.47	0.00	-0.41	8.24	54.24	93.94	0.00
270	0.47	0.00	-0.47	0.00	0.00	108.43	0,00
300	0.47	0.00	-0.41	-0.24	-54.24	93.94	0.00
3301	0.47	0.00	-0.24	-0.41	-93.94	54.24	0.00

			ATC Loading	- Elevation 220 - No	one C		
Wind Azimuth	F _e	F,	ν,	V,	OTM,	OTM ₂	Torque
٥	κ	ĸ	ĸ	K	kip-ft	kip-ft	ktp-fl
0	0.47	0.80	0.00	-0.47	-102.62	0.00	0.0
30	0.47	0.00	0.23	-0.40	~88.87	-51.31	0.00
60	0.47	0.00	0.48	-0.23	-51.31	-88.87	0,00
90	0.47	0.00	0.47	0.00	0,00	-t82.63	0.00
120	0.47	0.00	0.40	0.23	51.31	-88.87	0.0
450	0.47	0.00	0.23	0.48	88.87	-51.31	0.80
180	0.47	0.00	0.00	0.47	102.62	0.00	0.80
210	0.47	0.00	-0.23	0.40	88.87	51.31	0.0
240	0.47	0.00	-0.40	0.23	51.31	88.87	0.00
270	0.47	0.00	-0.47	0.00	0.00	102.62	0.00
300	0.47	8.00	-0.40	-0.23	-54.31	\$8,87	0.00
330	0.47	0.00	-0.23	-0.40	-88.87	51.31	0.00

Discrete	Appu	ırtenanc	e To	tais -	With	lce

B'ind	ν,	<i>V</i> ₁	OTM ₂	OTM ₂	Torque
Azimuth	ĸ	ĸ	kip-ft	kip-ft	kip-fl
0	0.00	-1.91	-450.83	0.09	-0.0
30	0.96	-1.66	-390.51	-225.02	-0.8
60	1.66	-0.96	-225,72	-389.81	-a.t
90	1.91	0.00	-0.61	-450.13	-0,€
120	1.66	0,96	224.50	-389.84	-8.6
150	0.96	1.66	389.30	-225.02	-0.6
1.50	0.00	1.91	419.61	0.09	0,0
210	-0.96	1.66	389.30	225.20	0,
240	-1.66	0,96	224.58	389.99	0.0
270	-1.91	0.00	-0.61	450.31	0.6
300	-1.66	-0.96	-225.72	389.99	0,6
330	-0.96	-1.66	-390.51	225.20	0.0

	Discre	ete App	ourter	nance	Press	ures ·	Serv	ice (G _H = 0.850
Description	Aiming Azimuth	Weight	Officel	Offict,	ż	K,	q,	C _A A _□ Front	C₄Ac Side
	0	7.	ft	fi	fi		rsf	ft ²	ft ²
Beacon	0.000.0	0.07	0.00	-2.89	259.39	1.547	12	2.40	2.40
Beacon Extender (4') 803062	0.0000	0.03	0.00	-2.89	257.21	1.544	12	1.11	1.11
1/2" x 4 lightning rod	240.0000	0.01	-2.56	3,44	257.00	1.514	12	0.20	0.20

tnxTower	Jeb 240826	Page 38 of 59
Valmont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, BV Plione: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Wind Asimuth	F.	F,	ν,	ν,	OTA!	OTM,	Tarque
	K	K	Z.	K	kip-ft	kip-ft	kip-ff
120	0,00	08.0	60.8	8.00	0.47	-0.62	0.0
450	0.00	0.00	0.00	0.08	0.77	-0.32	0.0
180	0.80	0,00	0.00	0.00	8,88	0.09	8.0
210	0.00	0.00	-0.00	0.00	0,77	0.51	0.0
240	0.00	0.00	-0.00	0.00	0.47	0.81	0.8
270	0.80	0.00	-0.80	0.00	0.05	0.92	-0.0
300	0.00	6.00	-0.00	-0.00	~0.36	8.81	-8.0
330	0.00	0.00	-0.00	-0.80	~8.66	0.54	-0.0

-				levation 250 - None			
Wind	F _a	F _s	ν,	V _z	OTM _z	OTM,	Torque
Azimuth	- 1	1			}	1	
	K (K	K (<u> </u>	ktp-ft	kip-fl	kip-fl
0	0.48	0,80	8.00	-0,4B	-120.39	00.8	8.0
30	8,48	0.80	0.24	-0.42	-104.26	-60.19	0.0
60	0.48	0,00	0.42	-0.24	-58.19	-104.26	8.8
90	0.48	0.00	0.48	8.00	0.00	-120,39	8.8
120	0.48	0.60	0.42	0.24	60.49	-104.26	6.0
150	0.43	0.00	8.24	0.42	104.26	-60,19	0.0
188	0.48	0.00	0.00	0.48	120.39	0.00	0.0
210	0.48	0.00	-0.24	0.42	104.26	60.19	0,0
240	0.48	6.00	-0.42	0.24	60.19	104.26	0.0
278	0.48	0.00	-0.48	0.00	0.00	120.39	0.0
380	0.48	0.00	-0.42	-0.24	-60.19	104.26	0.0
330	0.48	0.00	-0.24	-0.42	-184.26	60.19	8.0

			ATC Loading ~	Elevation 240 - Nane			
Wind Aslantle	F.	F ₄	ν,	ν.	OTM,	OTM;	Torque
۰	ĸ	K	K	K	kip-ft	kip-ft	kip-ft
0	0.48	0,00	0.00	-0.48	-114.40	0.00	0.0
30	0.48	0.00	0.24	-0.41	-99.07	-57.20	0.0
60	0.48	0.00]	0.41	-0.24	-57.20	-99.67	0.0
90	0.48	0.00	0,48	0.00	0.00	-414.40	0.0
120	r→ 0.48	0.00	0.41	0.24	57.20	-99.07	0.8
150	0.48	0.00	0.24	0.4t	99.07	-57.20	0.0
188	0.48	0,00	0.00	0.48	£14.40	0,00	0.0
210	0.48	0.00	-0.24	0.41	99.67	57.20	0.0
240	0.48	0,00	+0.41	0.24	57.20	99.07	0.0
270	0.48	0.00	+0,48	0.00	0.00	114.40	0.0
300	0.48	0.00	-0.41	-0.24	-57.20	99.07	0.0
330	0.48	0.00	-0.24	-0.41	-99.07	57,20	0.0

ATC Loading - Elevation 230 - None C											
Wind	F,	F ₁	ν,	1/4	OTM,	OTM.	Torone				
Azimuth	i	- 1				· · I	•				
	K	K	ĸ	K	kip-fl	kip-ft	kip-ft				
0	0,47	0.00	80.0	-0.47	-408.48	0.00	0.0				
30	0.47	6.00	0.24	-0.41	-93.94	-54.24	0.4				
60	0.47	0.00	0.41	-0.24	-54.24	-93.94	0.1				
90	0.47	0.00	0.47	0.00	0.00	-108.48	0.0				
128	0.47	0,00	0.41	0.24	54.24	-93.94	0.1				
158	0.47	0.00	0.24	0.41	93.94	-54.24	0.0				
180	0.47	0.00	0.80	0.47	108.48	0.00	0.6				

tnxTower	daL	Page
inxtower	240826	40 of 59
Valmant 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKIC

Description	Aiming Azimuth	Weight K	Offiet,	Offict,	r A	K,	q. psf	C _A A _C Front fl ²	C _A A _C Side ft ¹
ATC Loading	8000.0	2.00	08.0	0.00	25 0.00	1.535	12	115.00	115.0
ATC Looding	0.0000	2.00	0.00	0.00	240,00	1.522	42	115.00	145.0
ATC Loading	0.0000	2.00	0.00	0.00	230,00	1.508	12	115.08	115.0
ATC Loading	0.0000	2.00	80.0	0.80	220,00	t.494	12	115.00	115.0
	Sum	8.12		- 1					
	Weight			- 1	- 1		- 1	í	

Discrete Appurtenance Vectors - Service

Wind Azimuth	F ₄	F ₂	ν,	V ₂	OTM ₂	OIM ₂	Torque
AL	ĸ	κ	, K	K	kip-fi	kip-ft	kip-fi
0	8.82	0,00	0.00	-0.02	-6,62	8.00	0.0
30	8.02	0.01	0.01	-0.02	-5.76	-3.21	-0.0
60	0.01	0.02	0.82	-0.01	-3.42	-5.55	-0.0
90	0.00	0.02	0.02	0.00	-0.21	-6.41	-0.0
128	0.01	0.02	0.02	0.01	3.00	-5.55	-0.0
150	0.02	0.01	0.01	0.02	5.34	-3.21	-0.0
180	0.02	0,00	0,00	0.02	6.20	0.00	0.0
210	0.02	0.01	-0.01	0.02	5.34	3.21	0.0
240	0.01	0.02	-0.02	0.01	3.60	5.55	0.8
278	0.00	0.02	-0.02	0.00	-0.21	6.41	0.0
388	10.0	0.02	-0.02	-0.01	-3.42	5.55	0.0
330	0.02	0.01	-0.01	-0.87	-5.76	3.21	0.8

			Extender (4') 80506	2 - Elevarian 257.21			
Wind	F,	F,	ν_{\star}	ν_{ϵ}	OTM,	OTA!	Torque
Azimah			1			- 1	
	K	K	<u> </u>	K	ktp-ft	kip-fl	kip-ft
0	0.01	0.00	0.00	-0.01	-3.02	0.00	0.
30	10.0	0.01	0.01	-0.01	-2.63	-1.47	~0.
60	10.0	0.61	0.01	-0.01	-1.55	-2.54	-0.
98	0.08	0.01	0.01	00.0	~0.09	-2.94	-0.
120]	0.01	0.01	10.0	0.01	1,38	-2.54	-0.
150	6.01	0.01	10.0	8.01	2.46	-1.47	-0.
180	0.01	0.00	0.00	8.01	2.85	0.00	0.
210	0.01	0.0t	-0.01	0.01	2.46	t.47	0.
240	0.01	0.01	-0.01	10.0	1.38	2.54	0.
270	0.00	0.01	-0.01	0.00	~8.09	2.94	0.
300	10.0	0.01	-D.01	-0.01	-1.55	2,54	Ð.
330	0.011	ו וה ת	-0.01	-801	-263	1 47	D.

			2 L4 Hamburg rt	od - Elevation 237 - Fr			
B'ind	F,	F,	ν,	V	OTM,	OIM _e	Tarque
Azimuth	1	- 1	- 1	- 1			
۵	ĸ	Z.		. K	kip-ft	kip-ft	Lip-ft
01	0.00	8.00	0.00	-0.00	-0.51	0.04	-0.
30	0.08	0.00	0.00	-0.80	-0.44	-0,23	-0.
60	00.8	0.00	0.00	40.0	-0.24	~0.42	0.
90	0.00	0.00	0.00	0.00	0.02	-0.49	0.
120	0.03	0.00	0.00	0.08	0.28	-0.42	0.
150	0.00	0.00	0.00	00.0	0.48	-0.23	0.
1.00	0.00	0.00	6.60	0.00	0.55	0.04	Ü.

tnxTqwer	, Jub	240826	Page 41 of 59
Valmont 1545 Pideo Drive	Project	V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221	Cilent	American Tower Corp.	Designed by SKK

	1/2" x 4" lightning rod - Elevation 257 - From Leg C											
Wind Astonith	F.	- F,	ν,	ν.	OTM,	OIM,	Torque					
*	κ	_ <i>E</i>		ĸ	Ltp-ft	tip-ft	kip-fl					
210	0.00	0.00	-0.00		0.48	0.30	0.00					
240	0.00	0.00	-0,00		0.28	0.49	0.08					
270	0,00	0.00	-0.00	0.00	0.62	0.56	-0,00					
300	0,00	8,00	-0.00	-0.00	-0.24	0.49	-0.01					
330	0.00	0.00	-0.00	-0.80	-0.44	0.30	-0.01					

			ATC Loading - E	Jevedon 350 - None	C		
Il'Ind Azionth	F.	F,	P.	K.	OIM,	OTM,	Torque
•	Κ	· <u>K</u>	ĸ	r	Eip-fl	Hp-ft	ktp-fl
0)	1.[1	0,00	0.00	-1.18	-293.83	0.00	0.
30	1.18	0.00	0.59	-1.02	-251.47	-146,92	0.
60	1.18	0.00	1.02	-0.59	-146.92	-254.47	0.
90	1.18	0.00	1.18	0.00	0.00	-293.83	Ō
[20]	1.18	0,00	1.02	0.59	146.92	-251.47	0
150	1.18	0,00	0.59	1.02	254.47	-146.92	0
180	1.12	0.00	0.00	1,18	293.63	0.00	D
210	1.18	0.00	-0.59	1.02	254.47	146.92	0
240	1.18	0.00	-1.02	0.59	146.92	254.47	0
270	1.18	0.00	-1.11	0.00	0.00	293.83	0
300	1.18	0.00	-1.02	-0.59	-146.92	254.47	0
330	I.12	0.00	-0.39	-1.02	-254.47	146.92	0

			ATC Londing - I	Invation 240 - None	c		
Wind Astroith	F,	F,	V _e	ν,	OTM,	OTM ₄	Torque
	K	K	K	_ κ	kip-fi	kip-ft	Esp-ft
0	1.17	0.00	0.00	-1.17	-279.66	0.00	Đ,
30	1.17	0.00	0,58	-1.01	-242.20	-139.83	0.
60	1.17	0.00	I.01	-0.58	-139.83	-242.20	Đ.
90	1.17	0,00	1.17	0.00	0.00	-279.66	0.
120	1.17	0.00	1.01	0.58	139.83	-242.20	0.
150	1.17]	0.00	0.58	1.01	342.20	-139.83	0,
150]	1.17	0.00	0.00	1.17	279,66	0.00	0.
210	1,17	0.00	-0.58	10.1	242.28	139.83	O.
240	1.17	8.00	-1.01	8,58	139.83	242.20	Ö.
270	1.17	0.00	-1.17	0.00	0.00	279.65	Q.
300	1.17	0.00	-1.DI	-0.58	-139.23	242.20	0.
330	1,17	0.00	-0.58	-1.01	-242,20	139.83	0.0

ATC Loading - Elevation 230 - Note C										
Wind Aztouth	F.	F,	ν,	ν,	OTM	OTAL.	Torque			
•	K	K	Z.		Arp-#	Hp-ft	kip-ft			
8	1.15	0.00	0.00	-1.15	-265.62	0.00	0.			
30	1.15	0.00	0.58	-1.00	-230.03	-132.81	0.			
60	1.15	0.00	I.00	-0.58	-132.81	-230.03	0.			
90	1.15	0.00	I.15	0.80	0.00	263.62	0.			
120	1.15	0.00	1.00	0.58	132.81	-230.03	8.			
130	1.15	0.00	0.58	1.00	230.03	-132.81	Đ.			
IRO	1.15	6.00	0.00	1.15	265,62	0.00	0.			
210	1,15	0.00	-0.58	1.00	230.03	132.81	D.			
240	1.15	0.00	-1.00	0.58	132.91	230.03	0,			
270	1.15	0.00	-I.15	0.00	8.00	265.62	0,			

tnxTower	Job 240826	Page 43 of 59
Valmont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Data 13:12:57 12/83/13
Plymouth IN Phone: 574-936-4221 FAX:	Client American Towar Corp.	Designed by SKK

Load	Vertical	Sum of	Sun of	Sim of	Sun of	Sum of Torques
Case	Forces	Forces	Forces	Overturning	Overturning	
	l l	(x	Z	Moments, Ms	Montents, M.	l
		K	<u></u>	kip-fl	kip-jî	Hp-ft
Wind 60 day - No Ico	St. National St.	49.73	-21.71	-1219-54	-7308.28	0.11
Wind 90 deg - No Ico		54.71	0.00		-0140.19	-4.22
Wind 28 deg - No Ice	10.000	45.04	26,00		-6720,02	-6.95
Wind 158 deg - No Ice		25,44	44,07	6538.98	-3794.97	-7.84
Wind 188 dag - No Ice		0.00	50.11	7413.70	-14.72	-6,70
Wind 218 deg - No Ice		-27.13	46.99		3996.30	-4.35
Wind 248 deg - No Ice	100,000	-51.16	29.54	4300.62	7449.01	-0.12
Wind 270 deg - No tee		-54.71	0.88	-R.60	#110.74	4.22
Wind 300 dag - No Ice		-43,60	-25.17	-3781.62	6520,33	6.66
Wind 338 deg - No les		-25.41	-41.87	-6556.19	3765.53	7.84
Member Jos	91.99					25
Tetal Weight Ico	271.69			-26.71	-68.34	
Wind 8 deg - Ico		0.08	-10.26	-1526.49	-68.34	8.20
Wind 38 deg - Ice		5.08	-1.11	-1323.67	-417.10	0.30
Wind 60 deg - Ice		1.51	-5.09	-780.ID	-1373.13	0.23
Wind 90 dog - Ico		18.21	0.00	-26.78	-1576.17	8.18
Wind I28 deg - Ica		8.94	5.16	730,31	-1379.64	-0.05
Wind 150 deg - Ice		5.09	2.81	1262,88	-8t 2.92	-0.13
Wind 188 dag - Ico		5.58	10.11	1455.40	-61.34	-0.27
Wind 218 dag - Ice	40000	-5.08	8.81	1270.12	680,43	-0.30
Wind 248 deg - Ice		-1.94	5.16	734.49	I250.21	-0.23
Wind 278 deg - Ica		-10.21	8,00	-26.78	1439.49	-0.10
Wind 300 dag - Ion		-8.82	-5.09	-775.92	1229.22	0.05
Wind 335 dag - loc		-5.09	-8.81	-1316.43	676,25	0.11
Total Weight	77.79			-8.60	-14.72	
Wind 8 deg - Service		0.00	-23.01	-3417.56	8.04	3.11
Wind 38 deg - Service		12.06	-20.89	-30\$7.96	-1782.64	1.93
Wind 60 deg - Service		22.18	-12.76	-1071.80	-3241.54	0.05
Wind 90 deg - Service		24.32	0.00	-0.28	-36I t.28	-1.88
Wind 128 dog - Service	75 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20.02	11.56	1720.30	-2908.10	-3.09
Wind I 58 deg - Service		11.31	19.59	2909.76	-1650.08	-3.48
Wind 1 10 deg - Service		0.00	22.27	3329.64	8,04	-2.96
Wind 210 dag - Service		-12.06	20.89	3087.41	1782.71	-1.93
Wind 240 deg - Service	- 1 Jan 1 1 1 1	-22.74	13,13	1914.93	3317.28	-0.06
Wind 278 deg - Service		-24.32	0.00	-0.28	3611.35	I.80
Wind 308 deg - Service		-19.38	-11.19	1677.17	2904.50	2.96
Wind 330 deg - Service		-11.31	-19.59	-2910.32	1600.15	3.41

Load Combinations						
Comb. Na.		Description				
1	Dead Only					
2	1.2 Dead+1.6 Wind 0 deg - No Ice					
3	8.9 Dead+1.6 Wind 0 deg - No Ico					
4	1.2 Drad+1.6 Wind 30 deg - No Ice					
5	0.9 Dead+1.6 Wind 30 deg - No Ice					
6	1.2 Dead+1.6 Wind 60 deg - No Ice					
7	0.9 Dead+1.6 Wind 60 deg - No Ice					
3	1.2 Dead+1.6 Wind 90 deg - No Ice					
9	0.9 Dead+I.6 Wind 90 deg - No les					
10	1.2 Dead+1.6 Wind 120 deg - No Ice					
11	0.9 Dead+1.6 Wind 120 deg - No Ice					
12	1.2 Dead+1.6 Wind 150 deg - No Ice					
13	0.9 Dead+1.6 Wind 150 des - No les					
14	1.2 Dead+1.6 Wind 180 deg - No Jee					

tnxTower	Job 240826	Page 42 of 59
Valmont 1545 Pidzo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 EAY	Client American Tower Corp.	Designed by SKK

			ATC Loching	- Elevation 230 - No	ne C		
Wind Azinuth	F.	F,	ν,	ν,	OTM,	OTM _t	Torque
i:	K	K	r	r l	kip-fl	kip-ft	ktp-fl
300	1.15	8,00	-1,00	-0.58	-132.8t	230.03	0.00
330	1.15	0.00	-0.58	-1.00	-230.03	132.81	0.00

			ATC Loading - E	trration 220 - Norse			
B'ind	F.	F	ν,	ν,	OTM.	OTM.	T orque
Azimuth		1		- 1		i i	
. •	K	ĸ	Z .	r .	kip-fi	kip-fl	kip-fi
D	1.14	0,00	0.00	-1.14	-251.71	0.00	0.
30	I.14	0.00	0.57	-0.99	-217.91	-125.85	0.
68	1.14	0.00	0.99]	-0.57	-125.85	-217.91	0.
90	1.14	0,00	1,14	0.00	0,00	-251.71	0.
120	1.14	0.00	0.99	0.57	125.85	-217.90	0.
150	1,14	0.00	0.57	0.99	217,98	-125.85	Ð.
120	1.14	0.00	0.00	1.14	251.71	0.00	Đ.
210	I.14	0,00	-0.57	0.99	317.98	125.85	Q.
240	1.14	0.00	-0.99	0.57	125.85	217.90	0.
270	1.14	0.00	-1,14	0.00	0.00	251.71	8.
300	t.14	0.00	-0.99	-0.57	-125.85	217,98	0.
330	1.14	0.00	-0.57	-0.99	-217.98	125,85	0.

Discrete Appurtenance Totals - Service

Wind Azimuth	ν.	ν,	on.	OTAL	Torque
•	_K	_ K	kip-ft	kip-ft	kip-ft_
0	0.00	-4,68	-1100.97	0.04	-0.01
30	2.34	-4.05	-953,51	-550.31	-0.0
60	4.05	-2.34	-550.63	-953.20	-0.05
90	4.68	0.00	-0.28	-1100.66	-0,10
120	4.05	2.34	550,07	-953,28	-0,09
150	2.34	4.05	952.95	-550.31	-0,0
120	8.00	4.68	t 100.42	0.04	0.8
210	2.34	4.05	912,95	550.38	0.0
240	-4.05	2.34	550,07	953.27	0.0
270	-4.61	0.00	-0.28	1100.73	0.1
300	-4.05	-2.34	-550.63	953.27	0.0
330	-234	-4.05	-953.51	550.38	0.0:

Force Totals

Load Case	Vertical Forces	Sum of Forces X K	Sus: of Forces Z K	Sum of Overturning Moments, M, kip-fl	Sum of Overturning Moments, Ms kip-ft	Sim of Torques kip-fl
Leg Weight Bracing Weight Total Member Self-Weight Total Weight Wind 8 deg - No Ico	36.09 13.56 49.66 77.79		-51,77	-8.60 -8.60 -7697.50	-14.72 -14.72	

tnxTower	Job 240826	Page 44 of 59
Vali nont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jeke Hersley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Cilent American Tower Corp.	Designed by SKK

Comb. Na	Description	
15	0.9 Dead+1.6 Wind 180 des - No les	
16	1,2 Drad+1.6 Wind 218 deg - No Jes	
17	0.9 Dead+1.6 Wind 210 dog - No los	
18	1.2 Dead+1.5 Wind 240 deg - No Ico	
iē	0.9 Dead+1.6 Wind 240 deg - No Inc	
20	1.2 Drad+1.6 Wind 278 deg - No Jes	
21	0.9 Dead+1.6 Wind 270 dog - No log	
22	1.2 Doud+1.6 Wind 300 deg - No Ico	
23	0.9 Dend+1.6 Wind 300 deg - No Jos	
24	1.2 Dead+1.6 Wind 310 deg - No loc	
25	0.9 Dead+1.6 Wind 338 deg - No les	
26	1.2 Dead+1.0 Ico+1.0 Temp	
27	1.2 Dead+1.0 Wind 0 dea+1.0 Jee+1.3 Temp	
28	I.2 Dead+1.0 Wind 30 deg+I.0 lex+I.0 Temp	
29	1.2 Dead+1.0 Wind 60 des+1.0 fee+1.5 Temp	
30	1.2 Dead+1.8 Wind 90 des+1.0 Ice+1.0 Temp	
31	I.2 Dend+1.0 Wind 120 deg+1.0 (ce+1.0 Temp	
32	1.2 Dead+1.0 Wind 150 des+1.0 lea+1.0 Temp	
33	1.2 Dead+1.0 Wind 180 deg+1.0 [cc+1.5 Temp	
34	1.2 Dead+1.0 Wind 210 dea+1.0 Jco+1.8 Temp	
35	1.2 Dead+1.0 Wind 248 deg+1.0 Ice+1.0 Temp	
35	1.2 Dead+1.8 Wind 270 deg+1.0 les+1.0 Temp	
37	1.2 Dead+1.0 Wind 300 des+1.0 Ice+1.0 Tamp	
31	I.2 Dead+I.0 Wind 338 deg+1.0 Ice+1.0 Temp	
39	Dead+Wind 0 deg - Service	
40	Dead+Wind 30 de g - Service	
41	Dead+Wind 60 deg - Service	
42	Dead+Wind 90 deg - Service	
43	Dead+Wind I20 dog - Service	
44	Dead+Wind 150 deg - Service	
45	Duad+Wind 180 deg - Service	
45	Dead+Wind 210 deg - Service	
47	Dead+Wind 240 dag - Service	
48	Dead+Wind 270 deg - Service	
49	Dead+Wind 300 deg - Service	
50	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section No.	Elevation fl	Component Type	Condition	Gov. Load	Atial	Major Axis Moment	Minor Axia
		-24 -		Comb.	κ	Hp-ft	kip.fl
Ti	255 - 240	Leg	Max Tension	7	9.65	0.59	-0.35
			Max. Compression	2	-11.99	-0.00	-0.67
			Max. Mx		0.09	0.66	-0.87
			Max. My	14	9.19	-0.00	0.69
			Max. Vy		1.41	-0.15	-0,85
			Max. Vx	2	-1.42	0.01	0.18
		Disgonal	Mex Tension	24	3.28	0.00	0.00
			Max. Compression	12	~3.00	0.00	8,00
			Max. Mx	6	-0.89	0:03	-0.00
			Max. My	12	-2.81	-0.00	O.DI
			Max. Vy	36	-0.02	0.02	-8.00
			Max. Vx	12	0.00	-0.00	8.01
		Top Girt	Max Tension	15	0.45	0.00	0.00
			Max. Compression	2	-0.55	0.00	0.00
			Max. Mix	26	-0.02	-0.04	0.00
			Max, My	10	0.09	0.00	-0.80
			Max. Vy	26	-0.03	0.00	0.00

tuxTower	Јо р 240826	Page 45 of 59
Valmont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13;12:57 12/03/13
1545 Flace Drive Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

ection No.	Elevation ft	Component Type	Candition	Gov. Load	Axtal	Major Axiz Montent	Minor Axi Moment
	•	-27		Const.	K	ktp-fl	kip-ft
			Max. Vx	10	0.00	0.08	0.08
12	240 - 220	Leg	Max Tension	7	65.53	0.86	-8.04
			Max. Campression	2	-71,67	0.03	1.12
			Max. Mx	8	34.75	-2.29	0.28
			Max. My	14	39.82	-0.01	-2.41
			Max. Vy	28	-4,18	1.21 -0.02	0.42 -1.46
		Diagonal	Max. Vx Max Tension	14 24	4,79 18,74	0.86	0.80
		Diagonal	Max. Compression	24	-11.30	8,08	0.80
			Max. Mx	5	-3.94	-0.86	0.80
			Max. My	18	-18.24	-0.03	0.81
			Max. Vy	27	-8.82	0.04	0.08
			Max. Vx	LO	-0.08	8.00	0,88
T3	220 - 280	Leg	Max Tension	7	135.0D	0.08	-0.01
			Max. Compression	2	-145.55	2.52	-0.02
			Max. Mx	18	-99,21	3.68	-0.01
			Max. My	8	-4.73	80.0	2.41
			Max. Vy	18	-0.98	3,68	-0.01
			Max. Vx	16	0.89	0.82	-1.44
		Diagonal	Max Tension	12	8.39	0.00	80.0
			Max. Compression	12	-8.79	0.00	0.08
			Max. Mx	5	-4.48	-0.06	-0.00
			Max. My	24	-8.72	-0.04	-0.02
			Max. Vy	27 24	-0.03 0.00	0.03 0.08	9,55 0.50
T4	288 - 180	Lcg	Max. Vx Max Tension	7	190.67	-3.30	-0.00
	200-150	Lug	Max. Compression	2	-205.12	-4.34	-0.82
			Max. Mx	2	-285.12	-4.34	-0.02
			Max. My	ŝ	-6.16	-0.05	2.43
			Max. Vy	2	1.26	3.59	-0.01
			Max. Vx	4	-0.47	0.86	-1.17
		, Diagonal	Max Tensino	12	8,98	0.00	0.00
			Max. Compression	12	-9.87	0.08	80.0
		•	Max. Mx	4	3.76	8.10	-0.00
			Max. My	24	-8,99	-0.06	-0.03
			Max. Vy	27	+0,04	0.05	-D.00
		_	Max. Vx	24	8.01	0.00	0.00
T5	188 - 160	Leg	Max Tension	7	231.73	-5.17	-0.01
			Max. Compression	2	-248,96	11.15	-0.05 -0.06
			Max. Mx	2 8	-225.08 -8.93	16,49 -0.29	11.53
			Max. My Max. Vy	18	-8.93	16.48	-0.02
			Max. Vx	10	-1.54	8.17	10.82
		Diagonal	Max Tension	12	9.30	0.00	0.00
		Diagonal	Max. Compression	12	-10.37	0.00	0.00
			Max. Mx	2	6.16	8.13	-0.58
			Max. My	31	0.29	0.07	0,01
			Max. Vy	31	-0.05	0.09	-0,81
			Max. Vx	31	-0.00	8.03	0.00
T6	160 - 148	Leg	Max Tension	7	279.82	-4.94	-0.81
		-	Max. Campression	2	-382.38	9.12	-0.13
			Max. Mx	2	-274,59	15.74	-0.04
			Max. My	8	-11.32	-0.35	11.60
			Max. Vy	18	-1.60	15.72	-0.01
			Max. Vx	8	-1.11	-0.35	11.68
		Diago nal	Max Tension	10	10.17	8,00	00.0
			Max. Compression	ţD.	-10.35	0.00	0.00
			Max. Mx	6	7.29	0.14	00,0
			Max. Mx Max. My Max. Vy	6 24 29	7.29 -9.77 0.06	0.14 -0.06 0.08	0,00 -0.04 -0.01

tnxTower	Jль 240826	Page 47 of 59
Valmont 1543 Pidco Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Plone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Section	Elevation	Component	Candition	Gan	Axial	Major Asis	Minor Axt
No.	ſì	Type		Lord		Monnent	Moment
	·			Camb.	ĸ	kip-ft	ktp-ft
			Max. Compression	2	-564.59	13.34	-8.13
			Max. Mx	22	499.37	-14.15	-0.15
			Max. My	4	-27,72	+0.78	-18.37
			Max. Vy	22	1.01	-t-l.15	-0.15
			Max. Vx	4	1.14	-0.78	-18.37
		Diagonal	Max Tension	10	16.22	8.00	8.00
		-	Max. Compression	12	-16.12	8,00	0.08
			Max. Mx	29	0.01	-0.68	0.10
			Max. My	22	-15.96	-0.24	0.10
			Max. Vv	29	-0.22	-0.68	0.13
			Max. Vx	29	0.01	0.00	0.00
T13	28 - 0	Leg	Max Tension	7	538.11	-1.20	-0.00
		•	Max. Compression	2	-601.50	9,22	-0.89
			Max. Mx	18	-688.13	9.23	-0.00
			Max. My	24	-27.51	-0.97	11.87
			Max, Vy	18	-D.63	9,23	-0.00
			Max. Vx	4	-0.72	-0.96	-L1.84
		Diagonal	Max Tension	15	17.49	8,88	0.00
		•	Max. Compression	2	-19.68	0.08	0.88
			Max. Mx	30	2.47	-0.65	-0.10
			Max. My	31	1.95	-0.65	-0.10
			Max. Vy	30	-0.22	-0.65	-0.10
			Max. Vx	31	-0.01	0.00	0,00

Maximum Reactions							
Location	Candition	Gav. Load Comb.	Vertical K	Hartzontal, X K	Harizantel, Z K		
Lag C	Max. Vert	18	623.75	53.37	-38.81		
	Max. H.	18	623.75	53,37	-30.81		
	Max. H,	7	-556.35	~48.32	27.89		
	Min. Vert	7	-556,35	-48.32	27.89		
	Min. H.	7	-556.35	-48.32	27.89		
	Min. H.	18	623.75	53.37	-30.81		
Leg B	Max. Vest	10	625.07	-53.27	-31.05		
	Max. H.	23	-555.37	48.19	28.08		
	Max. He	23	-555.37	48.19	28.88		
	Min. Vert	23	-555,37	48.19	28,08		
	Min. H.	10	625.87	-53,27	-31.05		
	Min. H.	10	625,07	-53.27	-31.85		
Leg A	Max. Vert	2	625.07	0.25	61.65		
	Max. II.	21	23.76	3.51	1.65		
	Max. 11,	2	625.07	0.25	61,65		
	Min, Vert	15	-555.36	-0.22	-55.77		
	Min. II.	9	23.76	-3.49	1.65		
	Min. H.	15	-555.36	-0.22	-55.77		

		Fower Ma	ast Reac	tion Sumn	агу		
Lund	l'ertical	Shear,	Sirear _s	Overturning	Overturning	Torque	
Cambinatinn	K	K	К	Moment, M₁ kip-fl	Montent, M _L Lip-fl	kip-ft	

tnxTower	Job 240826 2	Page 46 of 59
Valmant 1545 Pidca Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

ection	Elevation	Companent	Condition	Gav.	Axial	Majar Axis	MinorAx
No.	ft	$T_{YP}\varepsilon$		Land		Mament	Moment
				Contb.	ĸ	kip-fl	kip-fl
17	140 - 120	Log	Max Tension	7	386.88	4.09	-8.01
			Max. Compression	2	-330.64	21.68	-0.19
			Max. Mx	18	-329.78	21.62	-8.01
			Max. My	8	-12.64	0.19	12.88
			Max. Vy	19	-1.51 -0.76	21.54	-0.01 12.77
		TV	Max. Vx	16 23	15.88	0,19 0,88	0.88
		Diagonal	Max Tension	10	-17.71	0.88	0.00
			Max. Compression Max. Mx	6	15.34	-0.27	-8.01
			Max. Mv	24	-15.75	0.86	8.87
			Max. Vy	29	-8.10	-D.25	-8,05
			Max. Vx	29	-0.81	0.08	0.00
TE	120 - 180	Leg	Max Tension	7	355.13	8.12	-0.01
	110 - 100	Lug	Max. Compression	2	-385,49	20,73	-0.20
			Max. Mx	18	-384.54	20.76	-8.01
			Max. My	8	-15.98	-0.16	11.13
			Max. Vy	18	-1.72	20.76	-8.81
			Max. Vx	10	-0.48	-10.58	10.35
		Diagonal	Max Tension	18	14.64	0.00	0.00
		Dioponal	Max. Compression	12	-15.66	0.00	0,00
			Max. Mx	29	1.53	-0.30	-0.05
			Max. My	30	0.83	-0.30	0.06
			Max. Vy	29	-0.12	-0.30	-0.05
			Max. Vx	38	0.01	0.80	0.00
T9	100 - 80	Leg	Max Tension	7	391.60	0.44	-0.01
			Max, Compression	2	-427.61	18.59	-8.16
			Max. Mx	18	-426.58	10.61	-0.08
			Max. My	8	-17.81	0.27	9.58
			Max. Vv	19	-1,20	10.54	-0.00
			Max. Vx	16	-0,63	0.27	9.49
		Diagonal	Max Tension	23	14.89	0.08	0.00
		-	Max. Compression	LD	-16.54	0.00	0.00
			Max, Mx	29	1.06	-0.34	•0.06
			Max. My	29	1.27	-0.30	0.06
			Max. Vy	29	-0.13	-0.34	-8,86
			Max. Vx	32	-0.01	0.80	8.00
T10	EG - 60	Leg	Max Tension	7	433.04	4.19	-8.01
			Max. Compression	2	-475.79	17.41	-0.28
	j "		Max. Mx	22	427.00	-17.56	-0.20
			Max. My	8	-21.21	-0.49	14.64
			Max. Vy	22	1.35	-17.56	-0,20
		- ·	Max. Vx	16	-0.76	-0.49	14.62
		Diagonal	Max Tension	12	14.69	0.00	0.00 8.00
			Max. Compression	12	-15.81	0.00	
			Max. Mx	29	8.91	-0.40	0.06 8,07
			Max. My	27	-0.49	-0,40 -0,40	-0.06
			Max. Vy	29 27	-0.15	0.08	8,00
11	60 - 40	T	Max. Vx	7	0.01	-0.19	-0,00
**	60 - 40	Leg	Max Tension		468.16 -516.73	18.38	-0.00
			Max. Compression	2 18	-515.53	18.38	0.00
			Max. Mx	24	-20.82	-0.59	7.42
			Max. My	24 18	-20.82 -1.15	18.32	0.00
			Max. Vy	4	-0.41	-0.57	-7.40
		Diagonal	Max. Vx	23	-0.41 15.88	0.08	0.08
		Diagonal	Max Tension	10	-17.72	0.00	0.02
			Max. Compression Max. Mx	29	1.67	-0.56	-0.09
			Max. My	28	2.16	-0.53	0.09
				29	0.20	-0.56	-0.09
			Max. Vy Max. Vx	29	0.01	0.00	0.00
				7	4.73	0.94	-0.00

tnxTower	Јо Б 240826	Page 48 of 59
Valmant 1545 Pideo Drive	Praject V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Plione: 574-936-4221 FAX;	Cliant American Tower Corp.	Designed by SKK

Load Cambinaliaa	Vertical	Shear	Shear,	Overtarning Monters, M.	Overturning Moneal, M.	Tarque
	K	K	ĸ	kip-ft	kip-fl	kip-fl
Dead Ordy	77.79	-0.00	0.80	-8,55	-14.66	-0.0
.2 Desd+1.6 Wind 8 deg = No	93.35	-8.08	-94.52	-13889.32	-17.88	- 11.3
9 Dead+1.6 Wind 0 deg - No	70.01	-0.00	-94.52	-13862.83	-13.42	11.33
.2 Dead+1.6 Wind 30 deg - Na	93.35	43.77	-75,81	-11341.59	-6562.28	7.21
1.9 Dend+1.6 Wind 30 deg - No ce	78.01	43.77	-75.81	-11320.02	-6546,79	7.20
1.2 Dead+1.6 Wind 60 deg - No	93.35	79.56	-45,94	-6791.33	-11762.60	0,16
0.9 Drad+1.6 Wind 60 deg - Nn ce	70.01	79.56	-45.94	-6777.46	-11738.65	8.16
1.2 Dead+1.6 Wind 90 deg - No	93.35	87,54	0.00	-12.59	-13103.13	-7.11
0.9 Dead+1.6 Wind 90 deg - Na les	70.01	87.54	0.00	-9.91	-13876.73	-7.08
1.2 Dead+I.6 Wind 128 deg - Va Ice	93.35	81.86	47.26	6928.42	-12036.49	-11.31
0.9 Dead+1.6 Wind 120 deg + No lee	70.01	81.56	47.26	6919.68	-12012.22	-11.27
1.2 Desd+1.6 \Wind 150 deg + No Ice	93.35	43.77	75.81	11322.84	-6558.79	-12.49
0.9 Dead+1.6 Wind 158 deg - Vallee	70.01	43.77	75.81	11306.42	-6543.41	-12.45
.2 Dead+1.6 Wind 180 deg - Va Ire	93.35	-8.00	91.87	13551.40	-17.88	-10,87
1.9 Dead+1.6 Wind 120 deg - Volce	70.01	-0.00	91.87	13531.51	-13.41	-10.83
.2 Dead +1.6 Wind 210 deg - Vo Ice	93.35	-43.77	75.81	11322.92	6523,87	-7.28
1,9 Dead+1.6 Wind 210 deg - No Ice	78.81	-43.77	75.81	1[386.49	6516.63	-7.25
.2 Dead+1.6 Wind 240 deg = In Ice	93.35	-81.86	47,26	6928.51	12008.87	-0.18
l.9 Dead+1.6 Wind 248 deg - lo Ice	70.01	-81.85	47.26	6919.69	11985.53	-0.18
.2 Dead+1.6 Wind 270 deg - In Ice	93,35	-87.51	08.0	-12.68	13067.59	7.11
l.9 Dead+1.6 Wind 270 deg - √olec	70.01	-67.54	0.00	-9.91	13850.1t	7.08
.2 Dead+1.6 Wind 388 deg - lo fee	93,35	-79.56	-45.94	-6791.43	11727.01	10.84
1.9 Dead+1.6 Wind 380 deg = Vollec	70.01	-79.56	-45.94	-6777,56	11711.99	10.79
.2 Dead+1.6 Wind 330 deg - To les	93.35	-43.77	-75.81	-11341.78	6526.60	12.49
.9 Dead+1.6 Wind 338 deg - lo Ice	78.01	-43.77	-75.81	-t1320.12	6520.03	12.45
.2 Dead+1.0 fee+1.0 Temp	287.24	-0.00	0.00	-28.91	-72.23	-0.00
2 Dead+1.0 Wind 0 deg+1.0 e+1.0 Temp	287.24	-0,88	-10.40	-1594.50	-72.81	0.36
.2 Dead+1.8 Wind 30 deg+1.0 :e+1.0 Temp	287.24	5.14	-8.91	-1371.78	-847.95	0.35
.2 Dead+1.0 Wind 60 deg+1.0 :c+1.0 Temp	287,24	8.83	-5.13	-8 03. 77	-1414.39	0.23
.2 Dred+1.0 Wind 90 deg+1.0 ce+1.0 Temp	287.24	10.29	0.00	-29.21	-1613.08	8,06
.2 Dend+1.0 Wind 120 eg+1.0 fce+1.0 Temp	287.24	9.08	5.20	753.44	-1428.39	-0,12
2 Dead+1.0 Wind 150	287.24	5.14	6.91	1313.37	-847.94	-0.27

	taxTower	Joh 240826	Page 49 of 59
	Valinont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
l	Plymouth, IN Phone: 574-936-4221 FAX:	Clieni American Tower Corp.	Designed by SKK

Load Combination	Vertical	Sheors	Shear.	Overturning Moment, M.	Overturning Moment, M _s	Torque
	, K	ĸ	K	kip-fl	ktp-ft	ktp-fl
deg+1.8 lce+1.0 Temp						
1.2 Dead+1.0 Wind 180	287.24	-0.08	10.25	1519.91	-72.81	-0.3
dcg+1.0 lcc+1.0 Temp						
1.2 Dead+1.0 Wind 218	287.24	~5.14	8.91	1313.37	702,32	-0.3
deg+1.0 fc+1.0 Temp						
1.2 Dead+1.8 Wind 240	287.24	-9.00	5.20	753.43	1282.77	+0,2
dog+1.8 lce+1.0 Temp						
1.2 Dead+1.0 Wind 278	287.24	-10.29	0.08	-29.22	1477.46	-0.0
deg+1.0 Icc+1.0 Temp						0,00
1.2 Dead+1.0 Wind 380	287.24	-8.88	-5.13	-803.77	1268.76	E.1:
deg+1.0 Ice+1.0 Temp						
1.2 Dead+1.0 Wind 330	287.24	-5.14	-8.91	-1371.79	782.33	0.2
deg+1.0 1cc+1.8 Temp						
Dead+ Wind 8 dag - Service	77.79	-8.80	-26.26	-3859.72	-1.4.80	3.13
Dead+Wind 30 deg - Service	77.79	12.16	-21.06	-3153.23	-1830.33	1.90
Dead+Wind 60 deg - Service	77,79	22.18	-12.76	-1890.30	-3273.90	8.0
Dead+Wind 90 deg - Service	77.79	24.32	0.00	-8.67	-3645.85	-1.9
Dead+Wind 120 deg - Service	77.79	22.74	13.13	1916.87	-3349.92	-3.13
Dead+Wind 150 deg - Service	77.79	12.16	21.06	3135.93	-1830.32	-3.5
Dead+Wind 180 deg - Service	71.79	-0.00	25.52	3754.64	-14.81	-3.8
Dead+Wind 218 deg - Service	77.79	-12,16	21.86	3135.93	1800.71	-1.9
Dead+Wind 248 deg - Service	77.79	-22.74	13.13	1916.87	3320.31	-0.0
Dead+Wind 270 deg - Service	77.79	-24.32	0.80	-8.68	3616.25	1.9
Dead+Wind 380 deg - Service	77.79	-22.10	-12.76	-1890.31	3244.30	3.00
Dead+Wind 330 deg - Service	77,79	-12.16	-21.06	-3153.24	1800.73	3,52

	Sie	m of Applied Force	7		Sum of Reaction	rtf	
ond	PX	PY	PZ	PX	PΥ	PZ	% Error
ото.	K	K	K	K	ĸ	K	
1	0.00	~77,79	0.80	0.08	77.79	-8.00	8.001%
2	0.00	-93.35	-94.53	0.00	93.35	94,52	0.08156
3	0.08	-70.01	-94.53	0,0g	78.01	94.52	0.001%
4	43.77	-93.35	-75.81	-43.77	93,35	75.81	8.001%
5	43.77	-70.01	-75.81	-43,77	70.81	75.81	0,001%
6	79.56	<i>-</i> 93.35	-45.94	-79.56	93.35	45,94	8.08194
7	79.56	-70.01	-45.94	-79.56	70,01	45.94	0.081%
8	87.54	-93.35	0.08	-87.54	93.35	-0.00	0.001%
9	87.54	-70.81	0.00	-87,54	70.01	+0.00	0.00151
10	81.86	-93.35	47.26	-81.86	93.35	-47.26	0.001%
11	81.86	-70.01	47.26	-81,86	70.01	-47.26	0.001%
12	43.77	-93.35	75.81	-43.77	93.35	-75.81	0.001%
13	43.77	-70.01	75.81	-43.77	70.01	~75.81	0.001%
14	0.00	-93,35	91.87	0.00	93.35	-91.87	0.001%
15	80,0	-70.81	91.87	0.08	70.01	-91.87	0.001%
15	-43.77	-93.35	75.81	43.77	93.35	-75.B1	0.00194
17	-43.77	-70.01	75.81	43,77	70.81	~75.81	0.001%
18	-81.86	-93,35	47.26	81.86	93.35	-47.25	0.001%
19	-81.86	-70.01	47.26	81.86	70.01	-47.26	0.001%
20	-87.54	-93.35	8.00	87.54	93.35	-0.00	0.081%
21	-87.54	-70,01	0.80	87.54	70.01	-0.00	9.001%
22	-79.56	-93.35	-45.94	79.56	93,35	45.94	0.00156
23	-79.56	-70.01	-45.94	79.56	70.81	45,94	0.001%
24	-43.77	-93.35	-75.81	43.77	93.35	75.81	0.001%
25	-43.77	-70.81	-75.81	43.77	70.01	75.81	0.081%
26	0.00	-287.24	8.80	0.00	287.24	-0.00	8.000%
27	0.00	-287.24	-10.40	0.00	287.24	10.40	0.800%

240826

V-27 x 255' - #281318 Jake Horsley, KY

Page 51 of 59

Date 13:12:57 12/03/13

	mouth, IN 574-936-4221 FAX:	Client	America	n Tower Corp.
29	Yes	13	0.00008001	0.80006726
30	Yes	13	0.08008001	0.80006639
31	Yes	13	0.08000001	0.00006554
32	Yes	13	8.08000801	0.00006411
33	Yes	13	0.80080001	0.00006334
34	Yea	13	0,0000081	0.00006170
35	Yes	13	0.88008001	8.88006136
36	Yes	13	0.08000001	0.00006159
37	Yes	13	0.00000001	0.00006316
38	Yes	13	8,00500801	0.08006391
39	Yes	13	8,00000001	0.00005776
48	Yes	13	0.00000001	0.00005938
41	Yes	13	0.00808001	0.00006039
42	Yes	13	0.00000001	8,80005937
43	Yes	13	1,000,000,0	0.00005773
44	Yes	13	0.00080001	0.08005932
45	Yes	13	8.0n0000001	0.00006034
46	Yes	13	0.00008001	0.08005932
47	Yea	13	8.08800001	0.00085771
48	Yea	13	8.00800001	0.80005934
49	Yes	13	10000000.0	0.00006036

Project

tnxTower

		Maximum	Tower	Deflection	s - Service W	n
Section No.	Elevation	Horz. Deflection	Gov. Lood	Tilt	Twist	
	a	Dejiretion In	Comb.			
TI	255 - 240	13,240	39	0.5332	0.0145	
T2	240 - 220	11.571	39	0.5249	0.0127	
T3	220 - 200	9.306	39	0.4716	0.0094	
T4	200 - 180	7.315	39	0.3971	0.0068	
T5	180 - 160	5.752	39	0.3233	0.0054	
T6	168 - 148	4.325	39	0.2713	0.0044	
T7	140 - 120	3.183	39	0.2145	0.0034	
TS	120 - 100	2.247	39	0.1721	0.0026	
T9	100 - 80	1.516	39	0.1377	0.0820	
TIE	80 - 60	0.946	39	0.1030	8.0014	
Tt1	60 - 40	0.520	39	0.0748	0.0009	
T12	48 - 20	0.238	39	0.0465	0.0086	
TI3	20 - 0	0.060	39	0.0229	0.0003	

	Critical Deflect	tions and	Radius c	of Curvat	ure - Ser	vice Wind
Elevation	Appurtenance	Gov. Lood	Deflection	Tili	Twist	Radius of
ft		Comb.	fn			Curvonire
255.08	Beacon	39	13.240	0.5332	0.0145	90188
250.00	ATC Loading	39	12.688	0.5323	0.0139	90180
240,00	ATCLoading	39	11.571	0.5249	0.0127	36446
230,00	ATC Londing	39	10,429	0,5034	0.0111	62108
220,00	ATC Leading	39	9.306	0.4716	0.0094	16089

tnxTower	Joh 24082G	Page 50 of 59
Valuont 1545 Pideo Deive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 374-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

	Sı.	mi of Applied Force	1		Sum of Reaction	ıi	
Load	PX	PT	PZ	PX	PΥ	PZ	% Erro
Comb.	K	ĸ	K	K	K	K	
28	5.15	-287,24	-8.91	-5.14	287.24	8.91	0.8889
29	8.88	-287,24	-5.13	-B.88	287.24	5.13	0.8001
38	10.29	-287.24	80.0	-10,29	287.24	-0.80	8.0889
31	9.88	-287.24	5.20	+9.00	287.24	-5.20	0.800%
32	5.15	-287.24	B.91	-5.14	287.24	~8.91	0.888%
33	0.00	-287.24	18.25	0.80	287.24	-10.25	0.880%
34	-5.35	-287.24	8.91	5.14	287,24	-8.91	8,8009
35	-9.08	-287.24	5.28	9.08	287.24	-5.20	9.000%
36	-18.29	-287.24	8.00	18.29	. 287,24	-0.88	0.800%
37	-8.88	-287.24	-5.13	B.88	287.24	5.13	0.800%
38	-5.15	-287.24	-8.91	5.14	287.24	8.91	0.000%
39	0.00	-77.79	-26.26	0.00	77.79	26.26	8.000%
40	12.16	-77.79	-21.86	-12.16	77.79	21.06	0.800%
41	22,10	-77.79	-12.76	+22.10	77.79	12.76	0.000%
42	24.32	-77.79	0.00	-24.32	77.79	-0.00	0.0002
43	22.74	-77.79	13.13	-22.74	77.79	~13.13	0.0003
44	1216	-77.79	21.06	-12.16	77.79	-21.06	0.80098
45	-8.00	-77.79	25.52	8.00	77.79	+25,52	0.800%
46	-12.16	-77,79	21.06	12.16	77.79	-21.06	8,000%
47	-22.74	~77.79	13.13	22.74	77.79	-13.13	8,000%
48	-24.32	-77,79	8.00	24,32	77.79	+0,00	0.000%
49	-22.18	-77.79	-1276	22.10	77.79	12.76	0.800%
58	-12.16	-77.79	-21.06	12.16	77.79	21.86	0.000%

	*			
Lood	Converged?	Mumber	Displacement	Force
ambination		of Cycles	Tolerance	Tolerance
1	Yes	7	8.08008001	0,08812273
2	Yes	13	8.88008001	0.08005936
3	Yes	13	1 008 000 8.8	0.00005353
4	Yea	13	8.000080D1	B.8 E006495
5	Yes	13	0.80000001	0.88005886
6	Yes	13	1,088008801	0.08006910
7	Yes	13	8,80088001	0.08006282
8	Yes	13	1 00000008.0	0.00006497
9 /	Yes	13	8.00000083	8.00005887
10	Yes	13	0.08000001	0.80005935
11	Yes	13	8.00000001	0.08805353
12	Yes	13	8,00000001	0,00006490
13	Yes	13	0.00008001	8,00005882
14	Yes	13	0.00008001	0.88006908
15	Yes	13	0.00000001	0.00006288
16	Yes	13	1 0000000.8	0.00006494
17	Yes	13	0.00000001	0.00005885
18	Yes	13	8.00000001	0.08005935
19	Yes	13	0.00088001	0.00005352
20	Yes	13	0.00008001	0.00006497
21	Yes	13	0.00000001	0.00005887
22	Yes	13	0.00000001	0.00006909
23	Yes	13	8.00000001	0.00006281
24	Yes	13	0.80000001	0.00006491
25	Yes	13	10008008.0	8.80005882
26	Yes	9	18080000.0	0,80012047
27	Yes	13	0.80000001	0.00006538
28	Yes	13	0.00000001	0.00006631

tnxTower	Job 240826	Page 52 of 59
Valmont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

		Maximum	Tower	Deflection	s - Design
Section	Elevation	Horz.	Gov.	Tels	Treist
No.		Deflection	Load		
	£	in	Comb.	•	
Tì	255 - 240	47.579	2	1.9148	0.0524
T2	240 - 220	41.588	2	1.8855	0.0460
73	220 - 200	33.453	2	1.5948	0.0342
T4	208 - 180	26.295	2	1.4274	0,0245
T5	180 - 160	20.678	2	1,1622	0.8194
T6	160 - 140	15,549	2	0.9753	8.0155
T7	140 - 120	11.445	2	0.7707	0.0120
T8	120 - 100	8.083	2	0.6186	0.0092
T9	180 - 80	5,451	2	0.4952	0.8870
T18	BE - 60	3.403	2	0.3704	0,8850
T11	60 - 40	1.871	2	0.2688	0.0032
T12	40 - 20	0.854	2	0.1678	0.0021
T13	20 - 0	8.217	2	8.0823	0.0010

	Critical Deflect	tions and	Radius o	of Curva	ture - Des	ign Wind
Elévation	Appartenance	Gov.	Deflection	Tili	Twist	Radius of
		Load				Curvature
ft		Comb.	ln .	•	•	A
255,00	Beacon	2	47.579	1.9140	0.0524	25329
250.00	ATC Loading	2	45.598	1.9114	0.0505	25329
248.00	ATC Loading	2	41.588	1.8855	0.0460	10251
230.00	ATC Loading	2	37.488	1.8037	0.8403	17652
220.00	ATC Loading	2	33.453	1,6948	0.0342	4169

	*****			E	Boit D	esign	Data			
Section No.	Elevation fl	Сотропеці Туре	Bolt Orađe	Bolt Size In	Number Of Bolts	Maximum Load per Balt K	Allowoble Load K	Ratia Land Allowoble	Allowable Rotio	Criteria
Tl	255	Leg	A325N	0.7500	4	2.41	29.82	0.081	1	Bolt Tension
		Diagonal	A325N	0.7580	3	3,28	18.44	0.314	1	Member Bearin
		Top Girt	A325N	0.7500	1	0.45	10.77	0.041	1	Member Bearin
T2	240	Leg	A325N	0.7500	6	10.92	29.82	0.366	1	Bult Tension
		Diagonal	A325N	0.7500	1	10.74	14.36	0.748	1	Gusset Bearing
T3	220	Leg	A325N	0.7508	8	16.87	29.81	8,566	1	Bolt Tension
		Diegonal	A325N	0.7500	1	8.79	15.66	0.561	1	Member Bearin
T4	200	Leg	A325N	1.0000	6	31.70	53.01	0.599	1	Balt Tension
		Diagonal	A325N	0.7500	1	9.07	15.66	8.579	1	Member Bearin
T5	180	Leg	A325N	1.0008	6	38.62	53.01	0.729	1	Bolt Tension
		Diegonal	A325N	1.0008	i	9.30	15.83	V	1	Member Bearing

tuxTower	Job 240826	Page 53 of 59	
Valmont 1:45 Pidro Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13	
Plymouth, IN Plione: 574-936-4221 EAV-	Client American Tower Corp.	Designed by SKK	

Scation No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximust Land per	Allowable Load	Ratio Lood	Allowoble Ratia	Crtteria
****)î	-77-		ln	Bolts	Bolt K	K	Allowable		
T6	160	Leg	A325N	1,0000	6	46.64	53.01	0.880	I	Bolt Tension
		Diagonal	A325N	0000.1	1	10.17	15.83	0.642	1	Member Bearing
77	140	Leg	A325N	1,0000	12	25.57	53.01	0.482	1	Bolt Tension
		Diagonal	A325N	0.8750	Ŧ	15.80	31.32	0.504	1	Member Bearing
78	120	Leg	A325N	1.0000	12	29.59	53.01	0.558	1	Balt Tension
		Diagonal	A325N	0.8750	1	t4.64	31.32	8.468 V	1	Member Benring
T9	108	Leg	A325N	1.0000	t2	32.63	53.01	0.616	1	Balt Tension
		Diagonal	A325N	8. g75g	t	14.89	31.32	0.475	1	Member Bearing
Tio	80	Leg	A325N	1.0000	12	36.09	53.01	8.681 V	1	Bolt Tension
		Diagonal	A325N	0.8750	1	14.69	31.32	0.469	1	Munber Bearing
TH	60	Log	A325N	1,000g	12	39.B1	53.01	0.736	1	Bolt Tension
		Diagonal	A325N	0.8750	1	15.88	41.76	0.378	1	Member Bearing
T12	40	Leg	A325N	1.0000	12	42.29	53.81	8.798 V	1	Bolt Tension
		Diagonal	A325N	0.8750	1	16.22	41.76	0.388	1	Member Bearing
T13	20	Leg	F1554-10	1.0080	12	44.84	55.22	8.812	1	Bolt Tension
		Diaganal	A325N	0.8750	1	17.49	41.76	0.419	1	Member Bearing

Comp	ression	Checks

		Leg	Desig	n Daf	a (Co	mpres	sion)		
Section No.	Elevation	Size	L	L.	EVr	A	P_s	фР.	Ratio P.
	Л		ft	ft		in ²	ĸ	K	₽.
Ti	255 - 240	P- 2.50" - 0.75" com15' -C-(Pirod 226169)	15.0g	4.86	61.6 K=1.00	1.7048	-11.99	58.12	0.206
T2	248 - 228	P- 4.00"- 0.75" conn20" -C-Trans-6B-4B-(Pirod 226184)	20.00	6.53	51.9 K=1.00	3,1741	-71.67	117.31	0.611
T3	228 - 200	P- 5.00"- 0.75" connTrans-20'-C-(Pirod 226200)	20.03	6.6B	42.7 K=1.80	4.2999	-145.55	169,37	0.859 1
T4	200 - 188	P- 6.00"- 8.75* connHBD-Tram-20' -C-(Pirod 229377)	20.03	6.68	35.7 K=1.00	5.5813	-285.12	228.83	8.896 °
T5	180 - 168	#12ZG -1.75" - 1.00" connHBD-Trans (Pirod 229588)	28,03	10.02	3g,4 K=1.00	7.215g	-248,96	303.46	8.820 °
T6	160 - 148	#122.G -1.75" - 1.80" connHBD-Trans (Pirod 229585)	20.83	10.02	38.4 K≈1.00	7.2158	-302.38	303,46	0.996
T7	140 - 120	#12ZG -2.00" - 0.875" connHBD-Trans (Pirod	28.03	20,03	48.8 K≈1.00	9.4248	-330.64	356.29	0.928

tnxTower	J _p b 240826	Page 55 of 59
Valmont 1545 Pidza Drive	Project V-27 x 255' - #281318 J	Date 13:12:57 12/03/13
Plymault, IN Plione: 574-936-4221 FAX:	Client American Towe	r Corp. Designed by SKK

Section	Elevation	Size	L	L.	KUr	A	P _e	¢₽.	Ratio
Na	ß		ſ	ft		in ²	ĸ	K	P.
					K=1.04				V
T3	220 - 200	L2x2x3/16	8.11	4.07	123.9 K≈t.00	0.7158	-8.43	18.32	8.817
T4	200 - 180	1.2 1/2x2 1/2x3/16	9.60	4.80	117.2 K≃t.0t	8.9020	-9.07	14.17	0.548
T5	180 - 160	L3x3x3/16	12.65	6,43	129.5 K=1,00	1.0900	-to.37	14.54	0.713
T6	160 - 140	1.3x3x3/16	14.10	7.14	143.8 K≃1.00	1.0900	-10.23	11.92	0.859
T7	140 - 120	21.3x3x3/16	22.66	11.95	t 52. 8 K=t.80	2.1808	-17.71	21.10	0.8391
T8	120 - 100	2L3x3x3/16	23.79	12.45	159.t K=1.00	2.1988	-15.66	t 9.45	0.805
T9	100 - 80	2L3x3x3/16	25.03	13.02	166.4 K=t.00	2.1800	-16.54	17.79	8,930 1
T10	EO - 60	2L3x3x3/16	26.36	13.65	174.4 K=1.00	2.1800	-15.81	16.18	0.977
TII	60 - 40	2L3 1/2x3 1/2x1/4	27.77	1433	£57,5 K=1,00	3.3750	-17.72	30,72	8.5771
Tt2	40 - 20	2L3 1/2x3 1/2x1/4	29.25	15.04	165,4 K=1.00	3.3750	-16.12	27.86	0.579
T13	20 - 0	2L3 1/2x3 t/2x1/4	30.78	15.80	173.7 K≈1.00	3,3750	-19.68	25.27	8.779

¹ P. / &P. controls

	Top Girt Design Data (Compression)										
Section	Elevatian	Size	L	L,	KVr	A	P.,	♦ P.,	Ratia		
No.	ß		fŧ	ft		in ²	κ	K	₽.		
Ti	255 - 240	L2x2x3/16	5.00	4.47	136.1 K=1.80	0.7150	-0.55	8.72	8.063		

1 P. / &P. controls

	Tension Checks										
		Le	g Des	ign E	oata (Tensio	n)		- Alexandria de la composición del composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición de la composición d		
Section	Elevation	Site	L	L.	ΚVr	A	P _e	φP.	Ratio		
No.	ft		ſ	ft		in	K	E	P.		
TI	255 - 240	P-2.50* - 0.75* cont15' -C-(Pirod 226169)	15.B0	4.06	61.6	1.7040	9.65	76.68	8.126		

tnxTower	Jeb 240826	Page 54 of 59
Valmont 1545 Pideo Driva	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymonth, IN Phone: 574-936-4221 FAX:	Client American Tower Corp.	Designed by SKK

Section No.	Elevatian	Size	L	$L_{\mathbf{v}}$	KVr	A	P_x	ϕP_a	Ratio P.
	ſŧ		fi	ſ		tor ²	£	ĸ	фP.
TB	128 - 180	208332) #12ZG -2.25" - 0.875" conn. (Fired 208334)	20.03	20,03	48.8 K=1.00	t1,9282	-385.49	451.15	0.8541
T9	100 - 80	#12ZG -2.25" - 0.875" conn. (Pirod 208334)	20.03	28.03	48.8 K=1.80	11,9282	-427.61	451.15	0.948 '
T10	\$0-60	#12ZG - 2.50" - 0.875" cnnn. (Pirod 208335)	20.03	20.03	48.7 K=1.00	14,7262	-475.79	557.27	0.8541
TH	69 - 40	#12ZG - 2.50" - 0.875" conn. (Pirod 208335)	20.03	20,03	45.7 K=1.80	14.7262	-516.73	557.27	0.927
T12	40 - 20	#12ZG - 2.75" - 8.875" cnnn. (Pirod 288337)	20.03	20.03	48.6 K≃1.00	17.8187	-564,59	674.68	0.837
T13	20-0	#12ZG - 2.75" - 0.875" conn. (Pirod 208337)	20.03	20.03	48.6 K≈1.00	17.8187	-601.50	674.6g	8.892 1

 $^{^{1}}P_{*}$ / ϕP_{*} controls

			Truss-	Leg E	iagon	al Data	1		
Section No.	Elevation fl	Diagonal Size	L _i fi	ΚUr	φ₽ , K	A It ²	ν. Κ	φ1′ <u>,</u>	Stress Ratia
T5	180-160	E.5	1.40	94.1	324.71	0,1963	2.62	4.63	0.567
76	160 - 140	0,5	1.40	94.t	324.71	0.1963	1.68	4.63	0.346
T7	148 - 120	0.5	1.39	93.2	424.12	0.1963	1.51	4.67	0.324
TS	12g - 100	0.5	1.38	92.4	\$36.77	0,1963	1.72	4.71	0365
T9	180 - 80	0.5	1.38	92.4	536.77	0.1963	1.20	4.71	8.255
TIE	88 - 60 3.70	0.5	1.36	91.6	662.68	0.1963	1.35	4.75	0.286
T11	68 - 4 8	8.5	1.36	91.6	662.68	0.1963	1.15	4.75	8.243
T12	40 - 20	0.625	1.35	72.6	881.84	0.3068	1.19	3.74	0.149
T13	20 - 0	0.625	1.35	72.6	881.84	0.306\$	0.71	8.74	0.095

	Diagonal Design Data (Compression)											
Section No.	Elevation	Size	L	L,	KVr	A	P _x	♦ P*	Ratio			
210.	ft		ft	fl		in ²	ĸ	ĸ	δP.			
TI	255 - 240	L2x2x1/8	5.80	2.71	91.4 K=1.F2	0.4544	-3.00	9.92	0302			
T2	240 - 228	1.2x2x3/16	7.06	3.34	106.3	0.7150	-11.30	12.78	0.884 1			

tnxTower	Job	240826	Page 56 of 59
Valmout 1545 Pideo Drive	Project	V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymenth, IN Plume: 574-936-4221 FAX:	Cileni	American Tower Corp.	Designed by SKK

Section No.	Elevation	Size	L	L	KU	A	P.	$\phi P_{\mathbf{A}}$	Ratia P
	ft		fi	ft		let ²	ĸ	K	δP.
T2	240 - 228	P- 4.00"- 8.75" conn.+20" -C-Trans-6B-4B-(Pirod 226184)	20.00	6.53	51.9	3.1741	65.53	142.83	0.459
Т3	220 - 280	P- 5.00"- 8.75" comTrans-20'-C-(Pired 226200)	20.03	6,68	42.7	4.2999	135.00	193,49	0.698
T4	288 - 180	P- 6.00"- 8.75" connHBD-Trans-20' -C-(Pirod 229377)	28.03	6,68	35.7	5.5813	190.67	251.16	0,759
T5	128-160	#12ZG-1.75" - 1.00" cannHBD-Trans (Pirod 229588)	20.03	10.02	30.4	7.2158	231.73	324.71	0.71.1
T6	160 - 140	#12ZG -1.75" - 1.00" connHBD-Trans (Pirod 229588)	20.03	10.02	30.4	7,2158	279.82	324.71	0.862
T7	140 - 128	#12ZG -2.00" - 0.875" connHBD-Trans (Pirod 208332)	28.03	20.83	49.B	9,4248	306.80	424.12	8.723
TE	120 - 100	#12ZG -2.25" - 8.875" conn. (Pirod 208334)	20,03	20.03	48.8	11.9282	355.13	536.77	0.662
T9	100 - 50	#12ZG -2.25" - 0.875" conn. (Pirod 208334)	20.03	20.03	48.8	11.9282	391.60	536.77	0.730
T10	80 - 60	#12ZG - 2.50" - 0.875" conn. (Pirod 208335)	20.03	20.03	48,7	14.7262	433.04	662.68	0.653
T11	60-40	#12ZG = 2.50" = 0.875" conn. (Pirod 208335)	28.03	20.03	48.7	14.7262	468.16	662.68	0.706
T12	40 - 20	#12ZG - 2.75" - 8.875" conn. (Pirod 208337)	20.03	20.03	41.6	17.8187	507.51	801.84	8.633
T13	20-0	#12ZG - 2.75" - 0.875" conn. (Pirod 208337)	28.03	20.03	40,6	17.8187	538.11	281.54	0.671

¹ P. / \$P. controls

			Truss-	Leg E	lagon	al Data	Truss-Leg Diagonal Data										
Section No.	Elevation fl	Diaganal Size	L _i fi	EVr	φ <i>P.</i> ,	A In ²	V.	ψV _n K	Stress Rotto								
T5	180-168	0.5	1.40	94.1	324.71	0,1963	2.62	4.63	0.567								
T6	168 - t 40	0,5	1.40	94.1	324.71	0.1963	1.60	4.63	8.346								
T7	140 - 120	0.5	1.39	93.2	424.12	0.1963	1.51	4.57	0.324								
TE	128 - 100	0.5	1,38	92.4	536.77	0.1963	1.72	4.71	0.365								
79	189 - 80	0.5	1.30	92.4	536.77	0.t963	1.28	4.71	8.255								
Tio	20 - 60	0.5	t.36	91.6	662.6B	6,1963	1.35	4.75	0.286								
TII	60 - 40	0.5	1.36	91.6	662,68	0.1963	1.15	4.75	0,243								
T12	48 - 20	0.625	1.35	72.6	861.84	0.3068	1,19	g.74	8.149								

tnxTower	Job 240826	Page 57 of 59
Vaimont 1545 Pideo Drive	Project V-27 x 255' - #281318 Jake Horaley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

Section No.	Elevation fl	Diagonal Sits	L _e fl	KVr	φ₽ . Κ	A In	V. K	φV _a K	Stress Rotio
T13	20 + 0	0.625	1.35	72.6	601.64	0.3068	0.71	8.74	0.095

		Dia	gonal	Desig	n Dat	a (Ten	sion)		
ectien No.	Elevation	Size	L	L,	KUr	A	P.	φP _a	Ratio
	ft		ft	ft		in ²	K	K	P _a ∂P _a
TI	255 - 240	L2x2x1/8	5.80	2.71	55,5	0.2813	3.28	12.23	0.268
		*							~
T2	240 - 226	L2x2x3/16	7.06	3.34	68.6	0.4132	10.74	17.97	0.598
T3	220 - 200	1.2×2×3/16	7.66	3.85					· V
13	220 - 200	1.28283/10	7.00	3.83	78.6	0.4132	8.39	17.97	0.467
T4	200 - 180	L2 1/2x2 1/2x3/16	9.60	4.80	76.9	0.5535	8.98	24.08	0.373 *
							0.50	24.04	v
T5	180 - 160	1.3x3x3/16	12.65	6.43	84.7	0.6593	9.30	28.68	0.3245
									~
T6	160 - 140	L3x3x3/16	14.10	7.14	93.7	0.6593	10.17	28.68	0.3545
T7	140 - 120	2L3x3x3/16	22.66	11,95	155,2	1,3537	15.80	****	. V.
••	140-120	21.350.5710	22.00	11.53	133,2	1,3337	15.80	58.89	0.2681
78	120 - 100	2L3x3x3/16	23.79	1245	161.5	1.3537	14.64	58,89	0.249 1
									V
T9	100 - g0	21.3x3x3/16	25.03	13.02	168.8	1.3537	14.89	58.89	0.253 1
T10		****							V.
110	80 - 60	2L3x3x3/16	26.36	13.65	176.8	1.3537	14.69	58.89	0.249
T11	60 - 40	2Í.3 1/2x3 1/2x1/4	27.77	14.33	159.6	2.1563	15.80	93,80	0.1681
								,,,,,,	0.100
T12	40 - 20	2L3 1/2x3 1/2x1/4	29.25	15.04	167.5	2.1563	16.22	93.80	0.173
									V
T13	20 - 0	2L3 1/2x3 1/2x1/4	30.78	15.80	175.8	2.1563	17.49	93.80	0.186
									V

¹ P. / P. controls

L		To	p Girt D)esig	1 Data	a (Tens	ion)		
Section No.	Elevatian	Size	L	L.	ΚVr	A	P.,	φ <i>P</i> ,	Ratio
****	ft		ft	ft		ln²	K	K	₽. 6P.
TI	255 - 240	L2x2x3/16	5.00	4.47	92.6	0.4132	0.45	17.97	0.025

taxTower	Job	Page
inxrower	240826	59 of 59
Valmont 1545 Pidco Drive	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Phone: 574-936-4221 FAX:	Cli∎nt American Tower Corp.	Designed by SKK

Program Vertica 6.0.0.8 - 9/7/2011 File://plystrfile01/FileRoom/Documents/240/240826 ATC, #281318 Jak: Horsley, KY V29 x 255/VZ Tower Calcs/240826.cri

tnxTower	Job 24082G	Page 58 of 59
Valmant 1545 Pidan Driva	Project V-27 x 255' - #281318 Jake Horsley, KY	Date 13:12:57 12/03/13
Plymouth, IN Plione: 574-936-4221 FAX:	American Tower Corp.	Designed by SKK

 $^{1}_{P_{*}}$ / $_{4}P_{*}$ controls

			Section Capa					
cetian No.	Elevation ft	Camponers Type	Size	Critical Element	P K	aP _{ath} . K	96 Capacity	Pazz Foil
T1	255 - 240	Leg	P-2.50* - 0.75* conn15*	3	-11.93	58.12	20.6	Pass
T2	240 - 220	Leg	-C-(Pirod 226169) P- 4.08"- 0.75" conn20'	27	-71.67	117.31	61.1	Pass
T3	220 ~ 260	Leg	-C-Trans-6B-4B-(Pirod 226184) P-5.00"- 0.75" cannTrans-20' -C-(Pirod 226200)	48	-145,55	169.37	85.9	Pass
T1	200 - 180	Leg	P- 6.00"- 0.75" connHBD-Trans-20' -C-(Pirod	69	-205.12	228.83	89.6	Pass
T5	180 - 160	Leg	229377) #12ZG -1.75* - 1.06* cannHBD-Trans (Pirod 229588)	90	-248.96	303,46	82.0	Pars
T6	160 - 140	Leg	#12ZG -1.75" - 1.00" eannliBD-Trans (Pirod 229588)	105	-302.3g	303.46	99.6	Pass
17	140 - 120	Leg	#122G -2.00* - 0.875* connHBD-Trans (Pirod 208332)	120	-330.64	356.29	92.8	Pass
T8	120 -100	Leg	#12ZG -2.25" - 0.875" conn. (Pirod 208334)	129	-385.49	451.15	85,4	Pass
T9	100 - 80	Leg	#12ZG -2.25" - 0.875" cann. (Pirod 208334)	138	-427.61	451.15	94,8	Pass
Г10	80 - 60	Leg	#12ZG - 2.50" - 0.875" con n. (Pirod 208335)	147	-475.79	557.27	85.4	Pass
T11	60 ~ 40	Leg	#12ZG - 2.50" - 0.875" cann. (Pirod 208335)	156	-516.73	557.27	92.7	Pass
F12 F13	40 - 20 20 - 0	Leg	#12ZG - 2.75" - 0.875" cann. (Pirod 208337)	165	-564.59	674.68	83,7	Pass
		Leg	#12ZG - 2,75* - 0,875* cann. (Pired 208337)	174	-601.50	674.68	89.2	Pass
T1	255 ~ 240	Diagonal	L2x2x1/8	9	-3,00	9.92	30.2 31.4 (b)	Pass
T2	240 - 220	Diagonal	L2x2x3/16	31	-11.30	12.78	83,4	Pass
T3	220 - 280	Diagonal	L2x2x3/16	51	-8.43	10.32	81.7	Pass
T4	200 - 180	Diagonal	L2 1/2x2 1/2x3/16	72	-9.07	14.17	64.0	Pass
T5	180 - 160	Diagonal	L3x3x3/16	93	-10.37	14.54	71.3	Pass -
16	160 - 140	Disgonal	L3x3x3/16	169	-10.23	11.92	85.9	Pass
T7 T8	140 - 120	Diagonal	2I.3x3x3/16	123	-17.71	21.10	83,9	Pass
	100 - 100	Diagonal	2L3x3x3/16	132	-15.66	19.45	80.5	Pass
T9 10	R0 ~ 60	Diagonal	2L3x3x3/16	141	-16.54	17.79	93.0	Pass
11	60 - 40	Diagonal	2L3x3x3/16	150	-15.81	16.18	97.7	Pass
12	60 - 40 48 - 20	Diagonal	2L3 1/2x3 1/2x1/4	159	-17.72	30.72	57.7	Pass
	48 - 20 20 - 6	Diagonal	2L3 1/2x3 1/2x1/4	168	-16.12	27.86	57.9	Pass
13 FI		Diagonal	2L3 1/2x3 1/2x1/4	178	-19.68	25.27	77.9	Pass
11	255 - 240	Top Girt	1.2x2x3/16	4	-0.55	8.72	6,3	Patt
						1 (76*	Summary	
						Log (T6)	99.6	Pass
						Diaganal (T10)	97.7	Pasa
						Top Girt (T1)	6.3	Pass
						Balt Checks	0.83	Pass
						RATING =	99.6	Pass

DRILLED PIER FOUNDATION SUMMARY V- 27.0 25 A- 240826

American Tower Corp. #281318 Jake Horsley, KY

Pier Dimensions			
Pier diameter, d _i :	3.50	ft	
Depth, D:	24.5	ft	
Ext. above grade, E:	0.50	ft	
Bell diameter, b _d :	попе	ft	
Volume V.	8 91	CV (per	log)

Reinforcement Design							
Rebar	m_c:	20	verticals				
	slze, S_c:	9	equally spaced				
Ties	slze, S_t:	4	w/ overlaps				
	spacing:	17.29	" OC				

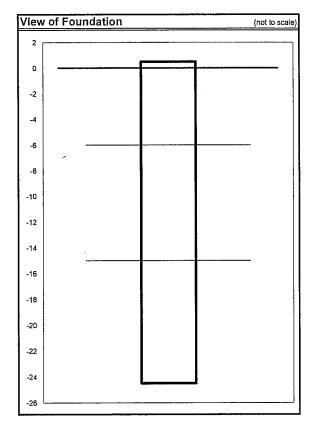
l	Anchor B	olts			
	P/N:	123653	7.	72" long.	1° diameter

Soil Information Per:
FStan, Dated:11/25/13 (Project#13-8633)
:

Site Parameters		
UltImate Bearing, B _c :	40.000	ksf
UltImate Pp:	6.786	kcf
Uit. Skin Friction, SF:	2.714	ksf
Selsmic Zone:	1	
Depth neglected, N:	3.50	ft
Neglect bottom, N _b :	none	ft

Additional Notes:

- * No foundation modifications listed.
- * See attached "Foundation Notes" for further information.


Material Properties							
Steel tensile str, F _y :	60000	psi	111				
Conc. Comp. str, F'c:	3000	psi					
Conc. Density, δ:	150.0	pcf	4				
Clear cover, cc:	3.00	in					

Backfill Compaction						
Lift thickness:	8	in				
Compaction:	98	%				
Standard Proctor:	ASTM	D698				

<u>Tower design conforms to the following:</u> * 1997 Uniform Building Code (UBC)

- * 2000 & 2003 International Building Code (IBC)
- * ANSI TIA-222-G
- * Building Code Requirements for Reinforced Concrete (ACt 318-

Load Case 1	Dec 19 20 11 11		All the state of the
Carlo Carlo Carlo Carlo			
	100,00		
	7.19.4		
* 100			
Load Case 2	stress rati	o: 99.6%	mark up: 0.4%
Shear/Leg, S:	62,00 kips	x 1.004 =	62.25 kips
Moment/Leg, M:	0.00 ft-kips	x 1.004 =	0.00 ft-kips
Compression/Leg, C:	625.00 kips	x 1.004 =	627.50 kips
Uplift/Leg, U:	556.00 kips	x 1.004 =	558.22 kips
Load Case 3	ii.		
	Property N		
	in the section		100000000000000000000000000000000000000
$M_{\rm c}$			
Load Case 4			14.
ing the second			
	n de la fisca		
	and the part of the		
Load Case 5			
	7.000.00		and the second
	1		April (April)
		ar all all	
tetics of the report	1950 747 (actor)		

FOUNDATION NOTES

- 1 THE ON-SITE GEOTECHNICAL ENGINEER SHALL CONFIRM THAT THE INSITU SOIL STRENGTHS MEET OR EXCEED THOSE PARAMETERS GIVEN IN THE SOIL REPORT.
- 2 A TEMPORARY, FULL LENGTH STEEL CASING MAY BE REQUIRED DURING INSTALLATION.
- 3 DRILLING SLURRY AND TREMIE METHODS OF CONCRETE PLACEMENT MAY BE REQUIRED DURING INSTALLATION.
- 4 DIFFICULT DRILLING AND/OR ROCK CORING IS TO BE EXPECTED BELOW A DEPTH OF 15 FT. THE DRILLING CONTRACTOR SHOULD BE PREPARED TO REMOVE ROCK AND/OR ROCK CORES FROM THE EXCAVATION.
- 5 THE CAISSON MUST PENETRATE A MINIMUM OF 9.5' INTO THE HARD AND HIGHLY WEATHERED SHALE BEDROCK LAYER.

DRILLED PIER FOUNDATION

American Tower Corp. #281318 Jake Horsley, KY

V- 27.0 A- 240826 255

Design Summary		
Pier diameter.	3.50	ft
Design depth:	24.5	ft
Concrete volume:	8.91	cu.yd. each
Use #4 circular ties.		

Maximum Loading	J		
Max. Uplift, U max:	558.22	kips/leg	per LC 2
Max. Comp., C max:	627.50	kips/leg	per LC 2
Max. Shear, S_max:	62.25	kips/leg	

Soil per: FStan, Dated: 11/25/13 (Project#13-8633)

0.0 V

Ultimate bearing: 40.000 ksf Ultimate S F (uplift): 2.714 ksf Ultimate S F (comp.):

Use ar	chor	bolt p/n 123	653		
Uplif	t Re	sistance	:		
		Ī	í ————	1	Т

Min. concrete compressive strength to be 3000 psi.

Layer	From	То	Cont. layer length	Pier diameter	Cohesion	Phi	Unit weight of soil	Overburden Pressure	Average overburden pressure	Factored skin friction	Factored friction force	Concrete unit weight	Factored concreta weight	Uplift Rasis
#	(ft)	(ft)	(ft)	(ft) ·	(ksf)	(dag)	(pcf)	(ksf)	(ksf)	(ksf)	(kips)	(pcf)	(kips)	(kips)
1	0,00	3.50	3.50	3.50	1.000	0,000	120.0	0.420	0.210	0.000	0,00	150.0	3.79	3.79
2	3.50	6.00	2.50	3,50	1.000	0.000	120.0	0.720	0.570	0.300	8.25	150.0	2.71	10.95
3	6.00	15.00	9.00	3.50	5.000	0.000	130.0	1.890	1.305	1.500	148.44	150.0	9.74	158.18
4	15.00	24.50	9.50	3,50	10.000	0.000	135.0	3.173	2.531	3.750	391.72	150.0	10.28	402.00
	Latera	pressure o	coefficient =	0.7						UPLIFT (CAPACITY =	574.92	kips	OK

Weighted Average Skin Friction (uttimate) = 2.714 kst

Compression Resistance:

Layar	From	То	Cont. layer length	Diamater	Factored skin friction	Friction force	Factored bearing capacity	Factored tip capacity
#	(ft)	(ft)	(ft)	(ft)	(ksf)	(kips)	(ksf)	(kips)
1	0.00	3,50	3,50	3.50	0.000	0.00	F	\$4.00 E
2	3,50	6,00	2,50	3.50	0.300	8.25	-	-
3	6.00	15.00	9.00	3.50	1.500	148.44	-	10.2
4	15.00	24.50	9.50	3.50	3.750	391.72	-	-
Tip	at 24	4.5 ft	-	3,50	-	-	30,000	288.63
				Total friction	n capacity =	548,40	kips	2.714
			COMI	PRESSION (CAPACITY =	837.04	kips	OK :

Reinforcement Design:

Concrete Clear Covar (in) = 3.00

# of bars	Bar siza #	Aree per ber (sq.in.)	Clear specing (in.)	Bar area (sq.in.)	Steel required (sq.in.)	Ultimete Laterai Resist. (kcf) *	Minimum length (ft) **
20	9	1.00	4.53	20.00	6.93	6.786	5,80
* see Pass	ive (attache	ed)		М	inimum are	a of steel is	ок

* see Broms method (attached) Minimum pier length is OK Rebar spacing is OK

*** see Maximum Factored Moment of a Circular Section (attached).

Moment Check:

,	Load Case 1 (fi-k)	Load Case 2 (ft-k)	Load Case 3 (ff-k)	Load Case 4 (ft-k)	Load Case 5 (ff-k)
ed **	89.42 *	260.32	26.53	89.42	89:425
ty ***	0.00	337.50	00.00	0.00	0.00 ±1
٠.	POK .	OK	OK ×	OK	OK :

Equivalent Weighted Average Cohesion

Equivalent	t we engineed	7troluge o	011001011			
			Layer			Weighted
Layer	From	То	Length	Neglect?	Cohesion	Cohesion
	(ft)	(ft)	(ft)		(ksf)	(ksf)
1111	0.00	3.50	0.00	у	1.000	0.00
2	3.50	6.00	2.50	n	1.000	2.50
3	6.00	15.00	9.00	n	5.000	45.00
4	15.00	24.50	9.50	n	10.000	95.00
5	24.50	24.50	0.00	n	10.000	0.00
6	24.50	24.50	0.00	n	10.000	0.00
7	24.50	24.50	0.00	n in	10.000	0.00
8	24.50	24.50	0.00	n	10.000	0.00
9	24.50	24.50	0.00	n	10.000	0.00
10	24.50	24.50	0.00	n	10.000	0.00
Bell	24.50	24.50	0.00	n	10.000	0.00
		Total =	21.00		Total =	142.50

		
Weighted Average Equivalent Cohesion = 6	3.79	(ksf)

Broms Method for Laterally Loaded Caissons, Piles, or Piers in Clay

(Reference "Drilled Shafts: Construction Procedures and Design Methods", ADSC No. ADSC-TL-4, August 1988

revised for LRFD

Diameter of pier, di:	3.50	ft		S/leg	M/leg
Extension above grade, E:	0.50	ft		(kips)	(k-ft)
Neglect at ground surface, N:	3.50	ft	LC1	22.00	-0"
Ultimate Passive Pressure, P _p :	6.786	kcf	LC2	62.25	0
Reduction Factor, $arphi$:	0.75		LC3	6,60	. 0
Nominal Passive Pressure ($P_p^*\varphi$), P_{pa} :	5.089	kcf	LC4	22.00	. 0
# of pier dia. P _p acts over, N _d :	3.00		LC5	22.00-	* 0.1

 $F = S / ((N_d / 3) * 9 * P_p * d_i)$ Depth to

Max. M, F LC1 LC2 LC3 LC4 LC5 0.03 0:10 0.10 (ft) 75 0.10 0.29

Solved $G_a = \sqrt{((S * (E + N + F / 2) + M) / ((N_d / 3) * 2.25 * P_{pa} * d_i))}$ Brom's

Equation LC1 LC2 LC3 LC5 for G_a (ft) 1.49 **注:1.48** 。

 $L = E + N + F + G_a$ Minimum

length of LC2 LC3 LC4 LC5 5,52 pier, L (ft) 5.59 5.80 5.59 5.59

> Minimum length req'd, L: 5.80 ft

Max $M_u = S * (E + N + F) + M - (N_d/3*9*P_{pa}*d_i*F^2/2)$ induced

moment, LC2 LC5 M_u (k-ft) 7 89:42 260.32 26.53 89.42 89.42

THIS SPREADSHEET IS SET UP FOR A MAXIMUM OF 56 BARS. MAXIMUM FACTORED MOMENT OF A CIRCULAR SECTION

Load	ling		
(negative for o	compression	on)	
Axial load =	558.22	kips	

Foundation					
Concrete					
Pier diameter =	3,50	ft			
Pier area =	1385.4	in^2			
Reinforcement					
Clear cover =	3.00	in			
Cage diameter =	2.91	ft			
Bar size =	9				
Bar diameter =	1.128	in			
Bar area =	0,999	in^2			
Number of bars =	20				

Material Strengths	18.79.	
Concrete compressive strength =	3000	psi
Reinforcement yield strength =	60000	psi
Modulus of elasticity =	29000	ksi
Reinforcement yield strain =	0.00207	
Limiting compressive strain =	0.003	

(per ACI 10.3.5 - N/A)

415.60

Seismic		13.
Seismic Zone =	1	
Are hooks required?	no	

Minimum Area of Steel

Required area of steel = 6.93 in^2 Actual area of steel = 19.99 in^2

Bar spacing = 4.53 in

Axial Loading

Load factor = 1.00

Reduction factor = 0.65575 (per ACI 9.3.1 & 2)

Factored axial load = 851.28 kips

Neutral Axis

Distance from extreme edge to neutral axis = 4.27 in

Equivalent compression zone factor = 0.85 (per ACI 10.2.7.3)

OK

Distance from extreme edge to

Equivalent compression zone factor = 3.63 in
Distance from centroid to neutral axis = 16.73 in

Compression Zone

Area of steel in compression zone = 1.00 in^2

Angle from centroid of pier to intersection of

equivalent compression zone and edge of pler = 34.21 deg

Area of concrete in compression = 57.27 in^2

Force in concrete = 0.85 * fc * Acc = 146.03 kips (per ACI 10.3.6.2)

Total reinforcement forces = -997.31 kip

Factored axial load = 851.28 kips

Force in concrete = -146.03 kips

Sum of the forces in concrete = 0.00 kips OK

Maximum Moment

First moment of the concrete area in compression about the centoid = 1097.24 in^3

Distance between centroid of concrete in compression and centroid of pier = 19.16 in

Moment of concrete in compression = 2797.95 in-kips

Total reinforcement moment = 3378.16 in-kips

Nominal moment strength of column = 6176.11 in-kips

Factored moment strength of column = 4049.97 in-kips 337.50 ft-kips

Maximum allowable moment of the pier = 337.50 ft-kips

Individual Bars

Ваг	Angle from first bar	Distance to centroid	Distance to neutral axis	Distance to equivalent comp. zone	Strain	Area of steel in compressi on	Axial force	Moment
#	(deg)	(in)	(in)	(in)		(in^2)	(kips)	(in-kips)
1	0.00	0.00	-16.73	-17.37	-0.01174	0.00	-59.96	0.00
2	18.00	5.39	-11.34	-11.98	-0.00796	0.00	-59.96	-323.06
3	36.00	10.25	-6.48	-7.12	-0.00455	0.00	-59.96	-614.50
4	54.00	14.11	-2.62	-3.26	-0.00184	0.00	-53.28	-751.54
5	72.00	16.58	-0.14	-0.78	-0.0001	0.00	-2.91	-48.18
6	90.00	17.44	0.71	0.07	0.0005	1.00	14.45	251.98
7 -	108.00	16.58	-0.14	-0.78	-0.0001	0.00	-2.91	-48.18
8	126.00	14.11	-2.62	-3.26	-0.00184	0.00	-53.28	-751.54
9	144.00	10.25	-6.48	-7.12	-0.00455	0.00	-59.96	-614.50
10	162.00	5.39	-11.34	-11.98	-0.00796	0.00	-59.96	-323.06
11	180.00	0.00	-16.73	-17.37	-0.01174	0.00	-59.96	0.00
12	198.00	-5.39	-22.11	-22.75	-0.01552	0.00	-59.96	323.06
13	216.00	-10.25	-26.97	-27.62	-0.01893	0.00	-59.96	614.50
14	234.00	-14.11	-30.83	-31.47	-0.02164	0.00	-59.96	845.79
15	252.00	-16.58	-33.31	-33.95	-0.02338	0.00	-59.96	994.29
16	270.00	-17.44	-34.16	-34.80	-0.02398	0.00	-59.96	1045.46
17	288.00	-16.58	-33.31	-33,95	-0.02338	0.00	-59.96	994.29
18	306.00	-14.11	-30.83	-31.47	-0.02164	0.00	-59.96	845.79
19	324.00	-10.25	-26.97	-27.62	-0.01893	0.00	-59.96	614.50
20	342.00	-5.39	-22.11	-22.75	-0.01552	0.00	-59.96	323.06

DEVELOPMENT LENGTH CHECK OF PIER REINFORCEMENT							
		·					
Foundation:	Pier diameter =	3.5	ft	Cover between side of pier and cage =	3.00 in.		
	Cage diameter =	3	ft	Cover between top of pier and cage =	3.00 in.		
	Rebar size =	9		Compressive strength of concrete =	3000 psi		
	Number of bars =	20		Rebar yield strength =	60000 psi		
	Clear spacing =	4.53	in.	•	ř 14-		
•	Are there hooks?	n					
	Check Compression?	n					
Anchor Steel:	Part number:	123653					
	Embedment length =	63.5	in.				
	Bolt Diameter =						
Anchor Plate:	Part number:	212008					
	Plate width =		in.				
Required developme	ent length (compression) =	999.00	in.				
1 '	elopment length (tension) =	48.19	in.				
Availe	able development length =	53.188	in.				
		OK					
The length available	in the pier for the developm	ent of the v	erti	cal reinforcement exceeds the required length (ACI 3	18-02, section 12.2).		
	,,,,=, ,=,				-,		

Foundation:	Pier diameter =	3.5	ft	Cover between side of pier and cage =	3.00 in.
	Cage diameter =	3	ft	Minimum cover between A/S and cage =	3.00 in.
Anchor Steel:	Part number:	123653		Angle of anchor steel in foundation =	3.3 degrees
	Embedment length =	63.5	in.		Emilia d
Anchor Plate:	Part number:	212008			
	Largest plate width =	21.38	in.		
	Bolt Diameter =	1	in.		
	Minimum cage diameter =	34.65	in.		
	Actual cage diameter =	36	in.		
		OK			

FOUNDATION NOTES

- 1 THE ON-SITE GEOTECHNICAL ENGINEER SHALL CONFIRM THAT THE INSITU SOIL STRENGTHS MEET OR EXCEED THOSE PARAMETERS GIVEN IN THE SOIL REPORT.
- 2 A TEMPORARY, FULL LENGTH STEEL CASING MAY BE REQUIRED DURING INSTALLATION.
- 3 DRILLING SLURRY AND TREMIE METHODS OF CONCRETE PLACEMENT MAY BE REQUIRED DURING INSTALLATION.
- 4 DIFFICULT DRILLING AND/OR ROCK CORING IS TO BE EXPECTED BELOW A DEPTH OF 15 FT. THE DRILLING CONTRACTOR SHOULD BE PREPARED TO REMOVE ROCK AND/OR ROCK CORES FROM THE EXCAVATION.
- 5 THE CAISSON MUST PENETRATE A MINIMUM OF 9.5' INTO THE HARD AND HIGHLY WEATHERED SHALE BEDROCK LAYER.

Equivalent Weighted Average Cohesion

Equivalent Weighted Average Concolon						
			Layer			Weighted
Layer	From	To	Length	Neglect?	Cohesion	Cohesion
	(ft)	(ft)	(ft)		(ksf)	· (ksf)
1	0.00	3.50	0.00	у	1.000	0.00
2	3.50	6.00	2.50	n	1.000	2.50
3	6.00	15.00	9.00	n	5.000	45.00
4	15.00	24.50	9.50	n	10.000	95.00
5	24.50	24.50	0.00	n	10.000	0.00
6	24.50	24.50	0.00	n	10.000	0.00
7	24.50	24.50	0.00	n	10.000	0.00
8	24.50	24.50	0.00	n	10.000	0.00
9	24.50	24.50	0.00	n	10.000	0.00
10	24.50	24.50	0.00	n	10.000	0.00
Bell	24.50	24.50	0.00	n	10.000	0.00
		Total =	21.00		Total =	142.50

Weighted	Average	Equivalent	Cohesion =	6.79	(ksf)

THIS SPREADSHEET IS SET UP FOR A MAXIMUM OF 56 BARS. MAXIMUM FACTORED MOMENT OF A CIRCULAR SECTION

Load	ling						
(negative for compression)							
Axial load =	558,22	kips					

Foundation					
Concrete					
Pier diameter =	3,50	ft			
Pier area =	1385.4	in^2			
Reinforcement					
Clear cover =	3.00	in			
Cage diameter =	2.91	ft			
Bar size =	9				
Bar diameter =	1.128	in			
Bar area =	0.999	in^2			
Number of bars =	20				

Material Strengths		
Concrete compressive strength =	3000	psi
Reinforcement yield strength =	60000	psi
Modulus of elasticity =	29000	ksi
Reinforcement yield strain =	0.00207	
Limiting compressive strain =	0.003	

(per ACI 10.3.5 - N/A)

415.60

Seismic Seismic Zone = Are hooks required? no

Minimum Area of Steel

Required area of steel = 6.93 in^2 19.99 ΟK Actual area of steel = in^2 Bar spacing = 4.53

Axial Loading

Load factor = 1.00

Reduction factor = 0.65575 (per ACI 9.3.1 & 2)

Factored axial load = 851.28 kips

Neutral Axis

Distance from extreme edge to neutral axis = 4.27

Equivalent compression zone factor = 0.85 (per ACI 10,2.7.3)

Distance from extreme edge to

Equivalent compression zone factor = 3.63 in Distance from centroid to neutral axis = 16.73 in

Compression Zone

Area of steel in compression zone = 1.00 in^2

Angle from centroid of pier to intersection of

equivalent compression zone and edge of pier = 34.21 deg in^2

Area of concrete in compression = 57.27

Force in concrete = 0.85 * fc * Acc = 146.03 (per ACI 10.3.6.2) kips

Total reinforcement forces = -997.31 kips

Factored axial load = 851,28 kips Force in concrete = -146.03 kips

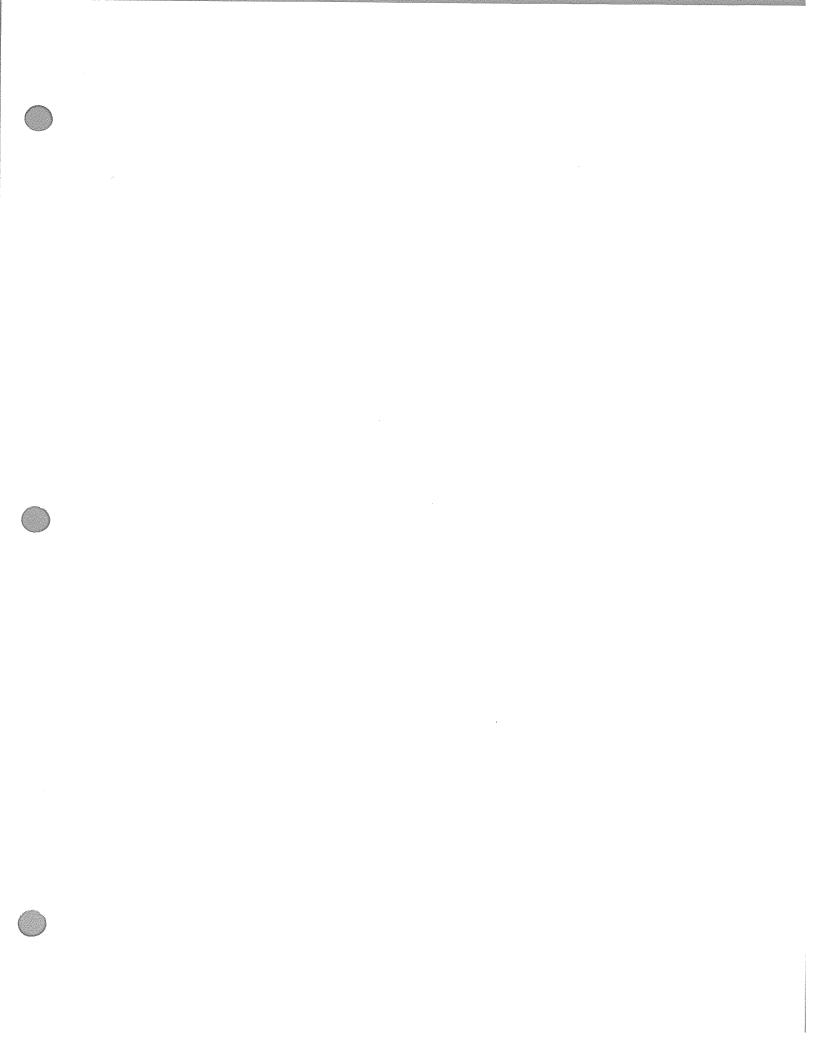
Sum of the forces in concrete = OK 0.00 kips

Maximum Moment

First moment of the concrete area in compression about the centoid = 1097.24 in³ Distance between centroid of concrete in compression and centroid of pier = 19.16 in

Moment of concrete in compression = 2797.95 in-kips

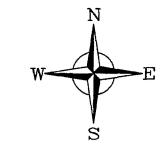
Total reinforcement moment = 3378.16 in-kips


Nominal moment strength of column = 6176.11 in-kips

Factored moment strength of column = in-kips 337.50 ft-kips

> Maximum allowable moment of the pier = 337.50 ft-kips

	DEVELOPMENT LENGTH CHECK OF PIER REINFORCEMENT							
F	. Dian diameter –	0.5	£1					
Foundation:	Pier diameter =	3.5	ft	Cover between side of pier and cage = 3.00 in.				
	Cage diameter =	3	ft	Cover between top of pier and cage = 3.00 in.				
	Rebar size =	9		Compressive strength of concrete = 3000 psi				
	Number of bars =	20		Rebar yield strength = 60000 psi				
	Clear spacing =	4.53	in.					
	Are there hooks?	n						
	Check Compression?	n						
Anchor Steel:	Part number:	123653	- Company					
	Embedment length =	63.5	in.					
	Bolt Diameter =	-	-					
	· ·	1-	al .					
Anchor Plate:	Part number:	212008]					
	Plate width =	21.375	in.					
Required deve	elopment length (compression) =	999.00	in.					
Required	d development length (tension) =	48.19	in.					
	Available development length =	53,188	in.					
	·	OK						
The length ava	ailable in the pier for the developm	ent of the v	ertic	cal reinforcement exceeds the required length (ACI 318-02, section 12.2)				
_	•							


CHECK EMBEDMENT PLATE CLEARANCE IN THE PIER								
Foundation:	Pier diameter = Cage diameter =	3.5 3	ft ft	Cover between side of pier and cage = Minimum cover between A/S and cage =	3.00 3.00			
Anchor Steel:	Part number: Embedment length =	123653 63.5	in.	Angle of anchor steel in foundation = 3.3		degrees		
Anchor Plate:	Part number: Largest plate width = Bolt Diameter =	212008 21.38 1	in. in.	·				
	Minimum cage diameter = Actual cage diameter =	34.65 36	in. in.					
The available spa	OK The available space exceeds the minimum cage diameter required for anchor steel installed in the pier at an angle.							

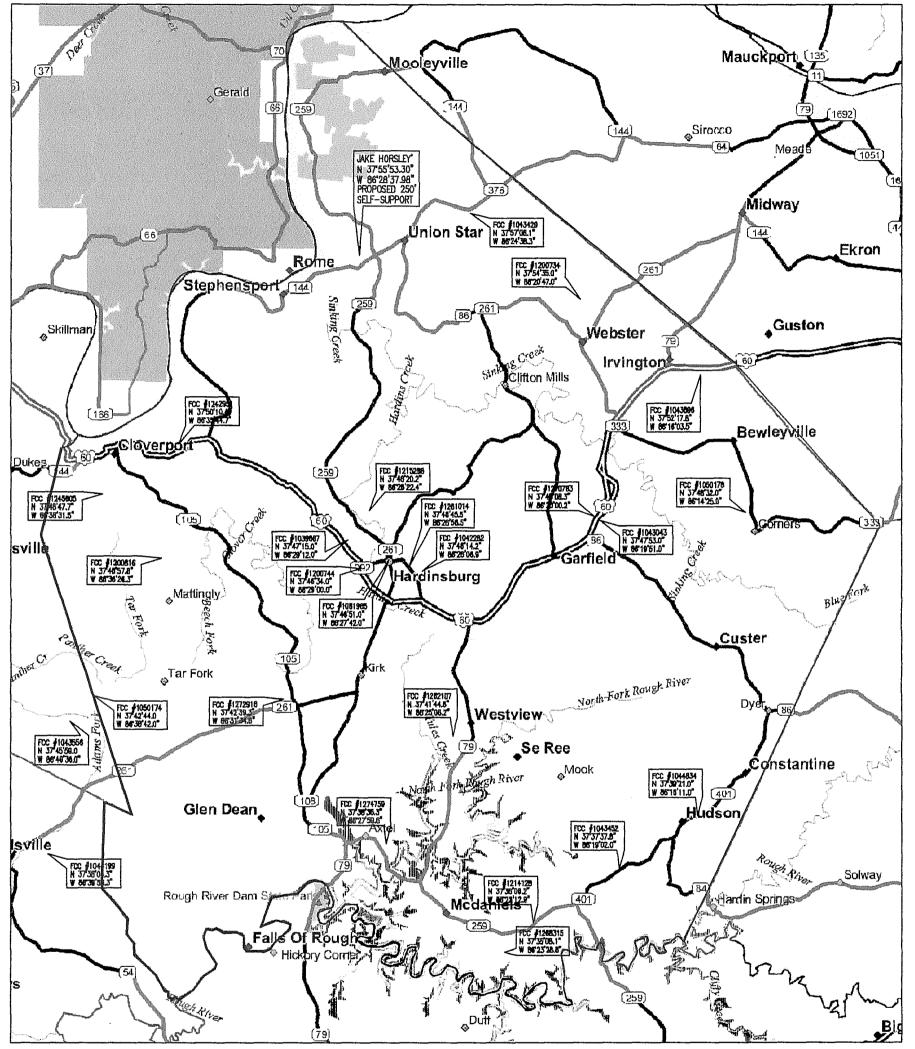


EXHIBIT D COMPETING UTILITIES, CORPORATIONS, OR PERSONS LIST AND MAP OF LIKE FACILITIES IN VICINITY

BRECKINRIDGE COUNTY, KENTUCKY AT&T SITE NAME: JAKE HORSLEY TOWER LOCATION EXHIBIT

TOWERS DEPICTED ARE ALL KNOWN CONSTRUCTED TOWER SITES REGISTERED WITH THE FEDERAL COMMUNICATIONS COMMISSION IN BRECKINRIDGE COUNTY, KENTUCKY

7.5 MINUTE U.S.G.S. QUADRANGLE MAP (NOT TO SCALE)

OCTOBER 30, 2013 FSTAN PROJECT NO. 13-8710

Registration # Status File # Owner Name 1039667 Constructed A0333592 Texas Gas Transmission, LLC Constructed A0194905 BRECKINRIDGE BROADCASTING CO INC 1042282 1043043 Constructed KENTUCKY RSA 3 CELLULAR GENERAL PARTNERSHIP DBA = BLUEGRASS CELLULAR 1043429 New Cingular Wireless PCS, LLC Constructed A0796256 1043452 Constructed A0659223 Global Tower, LLC A0640139 Skytower Communications-94.3, LLC 1043896 Constructed Constructed A0547374 KENTUCKY, COMMONWEALTH OF DBA = KY EMERGENCY WARNING SYSTEM KEWS 1044834 1050174 Constructed A0514371 TELAVA WIRELESS INC 1050176 Constructed A0523720 Telava Wireless, Inc. 1061965 Constructed A0072475 BRECKINRIDGE, COUNTY OF

F.S. Land Company T. Alan Neal Company

Land Surveyors and Consulting Engineers

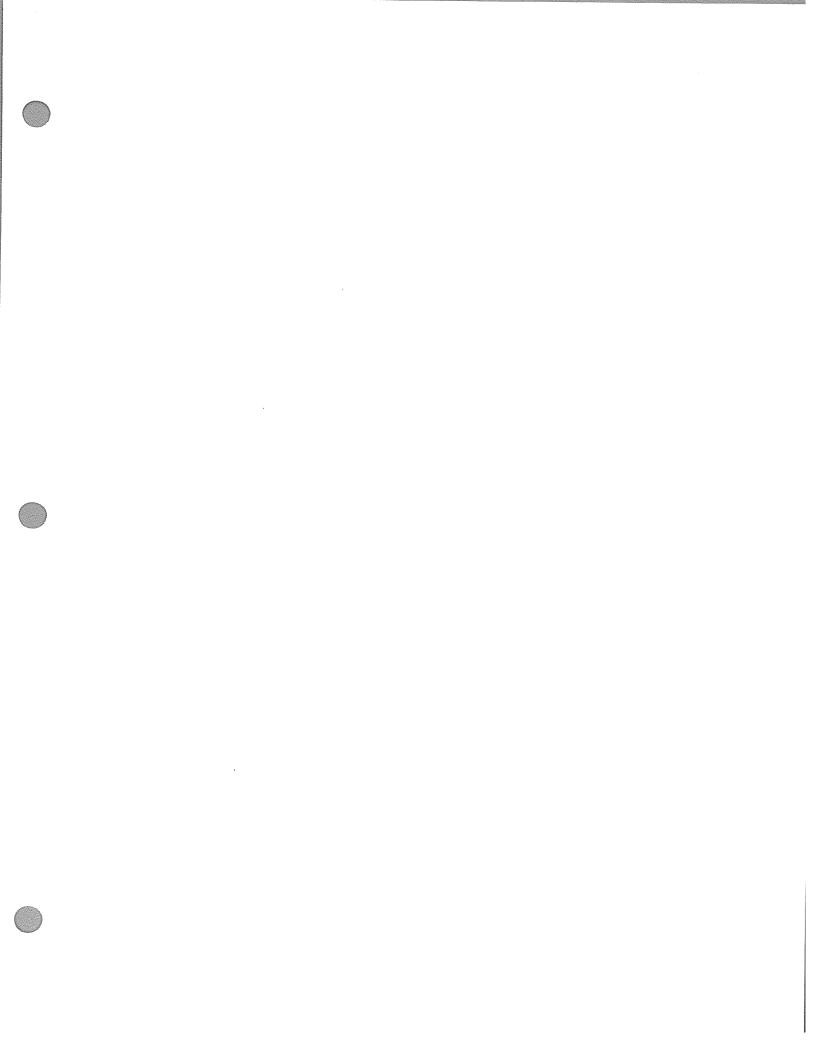
P.O. Box 17546 2313/2315 Crittenden Drive, Louisville, KY. 40217 Phone: (502) 635-5866 (502) 636-5111 Fox: (502) 636-5263

License Search

Search Results

Specified Search

State = **Kentucky**County = **BRECKINRIDGE**Radio Service = **CL**, **CW**Status = **Active**


Matches 1-11 (of 11)

PA = Pending Application(s)

TP = Termination Pending

L = Lease

	Call Sign/Lease ID	Name	FRN	Radio Service	Status	Expiration Date
1 PA	KNKN748	NEW CINGULAR WIRELESS PCS, LLC	0003291192		Active	10/01/2021
		·				, ,
2	KNKN867	Kentucky RSA #3 Cellular General Partnership	0001786706	CL	Active	10/01/2020
3	KNLF252	WIRELESSCO, L.P.	0002316545	CW	Active	06/23/2015
4	KNLG209	Powertel Memphis Licenses, Inc.	0001832807	CW	Active	04/28/2017
5	KNLG923	NEW CINGULAR WIRELESS PCS, LLC	0003291192	CW	Active	08/21/2017
6	KNLH397	Powertel Memphis Licenses, Inc.	0001832807	CW	Active	04/28/2017
7	WPOI255	NEW CINGULAR WIRELESS PCS, LLC	0003291192	CW	Active	06/23/2015
8	WPZV471	Bluegrass Wireless LLC	0010698868	CW	Active	06/23/2015
9	WQCS429	Cellco Partnership	0003290673	CW	Active	05/13/2015
10	WQCX684	T-Mobile License LLC	0001565449	CW	Active	06/20/2015
11 PA	WQDI528	Cricket License Company, LLC	0018402123	CW	Active	09/06/2015
	Call Sign/Lease ID	Name	FRN	Radio Service	Status	Expiration Date

EXHIBIT E CO-LOCATION REPORT

10/29/13

Kentucky Public Service Commission P.O. Box 615 211 Sower Boulevard Frankfort, Kentucky 40602-0615

RE: Alternate Site Analysis Report

Uniform Application for a Communications Facility

Applicant: AT&T Mobility

Site Location: 218 Williams Lane, Stephensport, KY 40170

Site Name: Jake Horsley

Dear Commissioners:

This report is provided to explain the site development process used by the Applicant to identify the site selected for the new wireless communications facility proposed in the accompanying Application.

AT&T Mobility Site Development Process

Step 1: Problem Identification. AT&T Mobility radio frequency engineers first identified a growing coverage and/or capacity gap in an area of Breckinridge County near Stephensport, Kentucky.

- **Step 2: Search Ring.** To help guide the site development team's task of identifying a suitable location for a new wireless communications facility site, AT&T Mobility's radio frequency engineers identified the geographic area where the antenna site must be located in order to close the gap and issued a map (called a Search Ring) that identified the general area in which a new site must be located. In this instance, the search ring has a 0.3 mile search radius from the search ring center coordinates (37.931583 N, -86.47908 W). A copy of the Search Ring for this site is attached as Exhibit A. The area contains large rural residential/farmland parcels with large variations in elevation (see attached Exhibit B).
- **Step 3: Co-location Review.** The site development team first reviewed the area within the Search Ring for a suitable tall structure for co-location. In this case, there are no existing FCC-registered structures within the search ring, and there are no other existing structures within the search ring that are suitable to support AT&T Mobility's proposed antennas.
- **Step 4:** Review of the Area's Zoning Classification. Once the site development team determined that there are no available existing tall structures which are technically feasible and suitable for co-location, the team next reviewed local zoning requirements to identify parcels located within the search area that might be suitable from a land use perspective to host an antenna site. In this case, the selected site is located in an unincorporated portion of Breckinridge County, and there is no applicable zoning district.

Step 5: Preliminary Inspection and Assessment of Suitable Parcels. Once suitably zoned parcels are identified, the site development team visits the parcels and performs a preliminary inspection. The purpose of the preliminary inspection is: (1) to confirm the availability of sufficient land space for the proposed facility; (2) to identify a specific location for the facility on the parcel; (3) to identify any recognized environmental conditions that would disqualify the parcel from consideration; (4) to identify any construction issues that would disqualify the candidate; and, (5) to assess the potential impact of the facility on neighboring properties. In this case, the properties within the search ring have large elevation changes throughout the area. Locations providing higher elevations (to support the radio frequency service objective), ready access to public roads and utilities, and accommodating separation distance from homes in the area were identified for further evaluation.

Step 6: Candidate Evaluation and Selection. After the preliminary site assessments were performed, the site development team ranked the candidates based on the availability of ground space, topography, applicable environmental conditions, construction feasibility and the potential impact of the facility on neighboring properties. In this case, 4 candidates were identified as potential site locations (see Exhibit B). Of these, the landowner for Candidate A was not interested in leasing ground space for the tower. Candidates B and C were eliminated by AT&T Mobility's Radio Frequency Engineer because they would not adequately meet the service objective for the site. Candidate D (Parcel ID Numbers 54-1N and 54-1F-4) was chosen by the Radio Frequency Engineer as the location that best meets the radio frequency service objective for the site.

Step 7: Leasing and Due Diligence. Once a suitable candidate was selected, lease negotiations were commenced and site due diligence steps were performed, as described below.

Leasehold Due Diligence:

- A Title Report was obtained and reviewed to ensure that there are no limitations on the landowner's capacity to lease and to address any title issues.
- A site survey was obtained to identify the location of parcel features, boundaries, easements and other encumbrances revealed by the title search.

Engineering Due Diligence:

- Utility access identified.
- Grounding plan designed.
- Geotechnical soil analysis performed to determine foundation requirements.
- Foundations designed to meet the Kentucky Building Code lateral and subjacent support requirements.
- Site plan developed.

Environmental Due Diligence:

A Phase I Environmental Site Assessment ("ESA") investigation was performed to establish the pre-existing types and amounts of contamination at a site, and to establish that the leaseholder is innocent of liability for the costs of performing environmental cleanup work that might arise from pollution or contamination of the site caused by a third party.

In addition to performing a Phase 1 ESA, the site was also evaluated for potential impacts under the National Environmental Policy Act (NEPA), submitted to the State Historic Preservation Office for review of potential impacts to historic structures or districts, and submitted to the registered Tribal Historic Preservation Office so that registered Native American nations had the opportunity to review potential impacts on native religious, ceremonial, or cultural resources.

Federal Regulatory Approvals

- Federal Aviation Administration ("FAA") compliance.
- Federal Communication Commission ("FCC") compliance.

Step 8: Application. Once a lease is obtained and all site due diligence is completed, AT&T Mobility prepared and filed the accompanying uniform application to construct, maintain and operate a communications facility.

Conclusion

Applicant's site identification and selection process aims to identify the least intrusive of all the technically feasible parcels in a service need area. In this case, the property meets the radio frequency site design objective, is constructible and provides appropriate separation from homes in the area.

Sincerely,

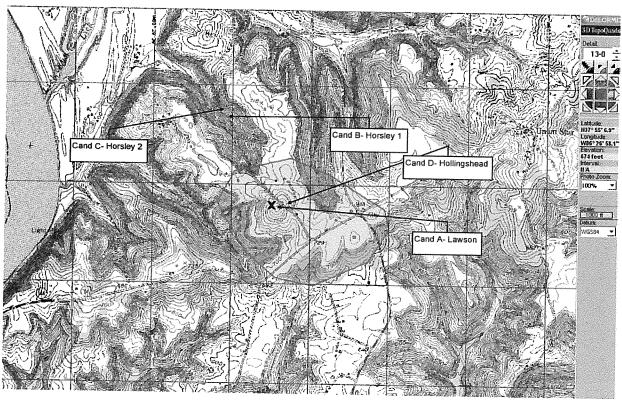
Brian Ramirez

Site Acquisition Agent PBM Wireless Services

13714 Smokey Ridge Overlook

Carmel, Indiana 46033

(317) 225-6075


Exhibit A

Aerial Map

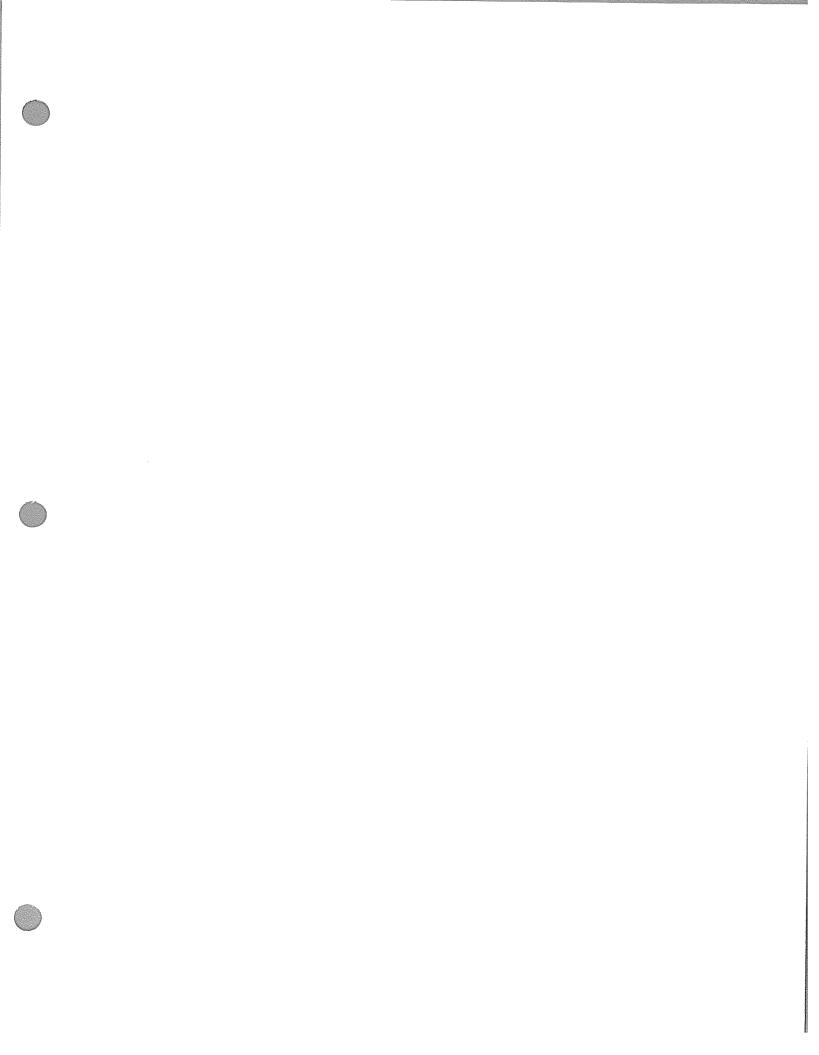


EXHIBIT B

Topographical Map

Jake Horsley: 37.931583 -86.47908

EXHIBIT F FAA

FAA OE/AAA Offices

View Interim Cases View Proposed Cases View Supplemental Notices

(Form 7460-2)

Search Archives

General FAQs

Wind Turbine FAQs

Download Archives

View Determined Cases

View Circularized Cases

Circle Search for Cases

Circle Search for Airports

Home

Notice of Proposed Construction or Alteration - Off Airport

faa.gov Tools: 📳 Print this page

Project Name: AMERI-000261674-14

Sponsor: American Towers, LLC

Details for Case: JAKE HORSLEY KY (281318)

Show Project Summary

Status

Public Comments:

2014-ASO-168-OE

None

Status:

Accepted

Date Accepted:

Date Determined: Letters:

Structure Name:

NOTAM Number:

FCC Number:

Prior ASN:

None

Documents:

01/08/2014

01/08/2014 📆 281318_TOC_101413...

ERP

ERP Unit

Project Documents:

Antenna Tower

JAKE HORSLEY KY (281318)

None

Constru

Notice Of:

Duration:

Notice Criteria Tool

DoD Preilminary Screening

Discretionary Review FAOs

Wind Turbine Build Out Distance Calculation Tool

Portal Page

My Cases (Off Airport)

My Cases (On Airport)

My Sponsors

My Circ Comments

Add New Case (Off Airport)

Add New Case (On Airport)

Add Supplemental Notice (7460-2 Form)

My Case Transfer History

Update User Account

What's New

Change Password

Logout

Forms

FAA Acronyms

Regulatory Policy

Relevant Advisory Circulars

Survey Accuracy

Light Outage Reporting

Useful Links

State Aviation Contacts

On Airport Contacts

Off Airport Contacts

ruction / Alteration Information		Structure Summa	ary
Of: Co	nstruction	Structure Type:	An

Permanent

if Temporary: Months: Days:

*For temporary cranes-Does the permanent structure require separate notice to the FAA? find out, use the Notice Criteria Tool. If separate notice is required, please ensure it is filed.

If it is not filed, please state the reason in the Description of Proposal. State Filing:

Structure Details

Work Schedule - Start:

Work Schedule - End:

Latitude: 37° 55' 53.15" N 86° 28' 37.73" W Longitude: Horizontal Datum: NAD83 Site Elevation (SE): 747 (nearest foot)

Structure Height (AGL): 265 (nearest foot)

Current Height (AGL):

For notice of alteration or existing provide the current AGL height of the existing structure Include details in the Description of Proposal

Nacelle Height (AGL):
* For Wind Turbines 500ft AGL or greater

Requested Marking/Lighting:

Other:

(nearest foot)

(nearest foot)

Recommended Marking/Lighting:

Current Marking/Lighting:

Other:

N/A Proposed Structure

Description of Location:

On the Project Summary page upload any certified survey.

Description of Proposal:

Nearest City:

Nearest State:

STEPHENSPORT

Kentucky

Please see attached survey

Dual-red and medium intensity

Proposed height increase to proposed tower. Supercedes ASN 2014-ASO-128-OE.

Common Frequency Bands

	•	
Low Freq	High Freq	Freq Unit
698	806	MHz
806	824	MHz

698	806	MHz	1000	W	
806	824	MHz	500	W	
824	849	MHz	500	W	
851	866	MHz	500	W	
869	894	MHz	500	W	
896	901	MHz	500	W	
901	902	MHz	7	W	
930	931	MHz	3500	W	
931	932	MHz	3500	W	
932	932.5	MHz	17	dBW	
935	940	MHz	1000	W	
940	9 41	MHz	3500	W	
1850	1910	MHz	1640	W	
1930	1990	MHz	1640	W	
2305	2310	MHz	2000	W	
2345	2360	MHz	2000	W	

Specific Frequencies

Clase

ATC

1A Letter Date: October 14, 2013 (Rev2 11-06-13)

FSTAN Project No: 13-8576

Site Name: JAKE HORSLEY

Site ID: 156458

For Aeronautical Study No.

Location: City Stephensport, KY.

County Breckinridge

U.S.G.S. Quadrangle: Lodiburg, KY.

(NAD 27) LATITUDE 37° 55' 52.92"

LONGITUDE 86° 28' 37.81"

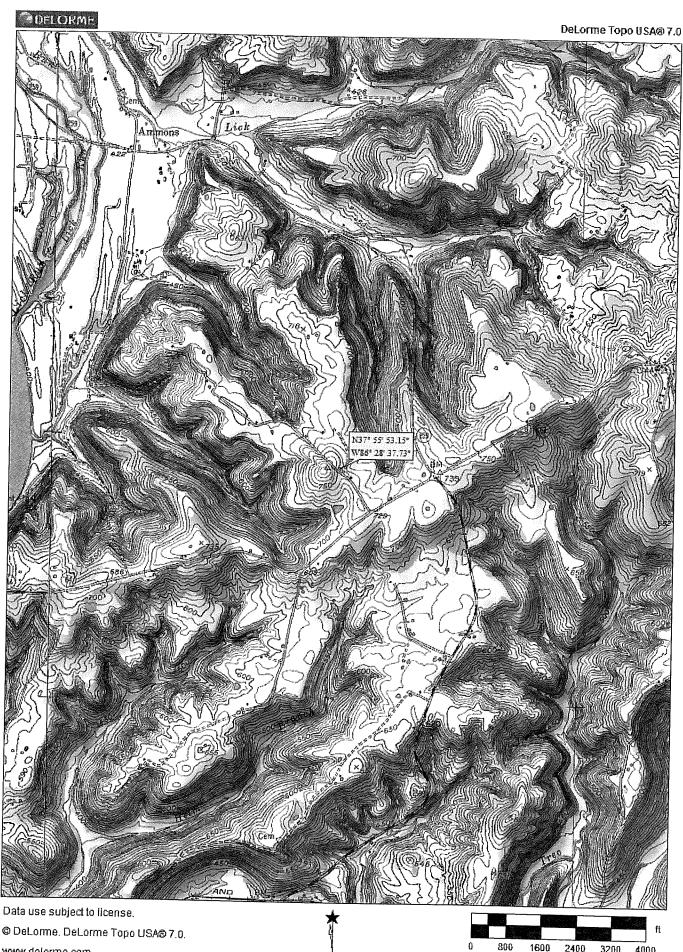
(NAD 83) LATITUDE 37° 55' 53.15"

LONGITUDE 86° 28' 37.73"

SITE ELEVATION (NAVD 88) 747' ± AMSL

I Certify, to the best of my knowledge and belief, that the horizontal and vertical datum as established from the referenced U.S.G.S. Quadrangle, is accurate to 1A Reporting requirements of \pm 20 feet horizontally and \pm 3 vertically.

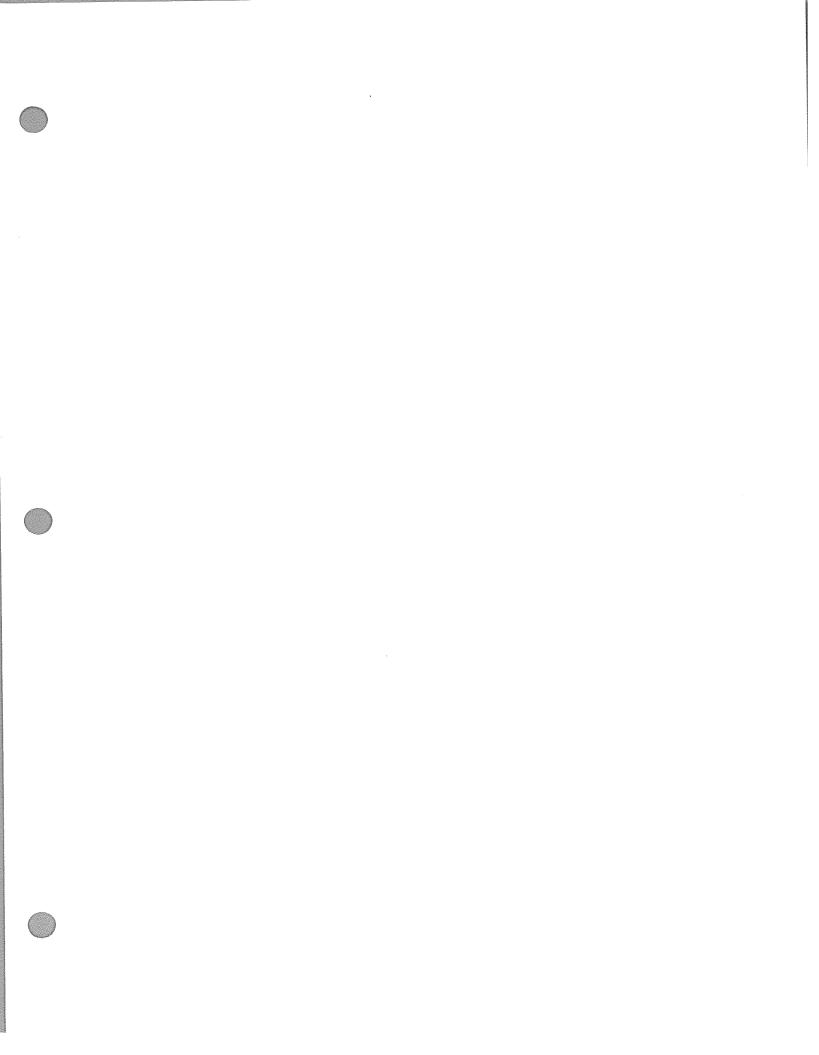
The horizontal datum (coordinates) are in terms of the North American Datum of 1927 (NAD 27) and 1983 (NAD 83) and expressed as degrees, minutes and seconds.


The vertical datum (heights) are in terms of the National Geodetic Vertical Datum of 1988 and are determined to the nearest foot.

Kentucky State Plane Coordinates (Single Zone) were established with Trimble Global Positioning Systems (GPS) receivers. This site has ties to the National Geodetic Reference System established by the National Geodetic Survey, formerly the U.S. Coast & Geodetic Survey by measurements to PID Station "DK7559", designated as "ROUGH RIVER SRP CORS ARP".

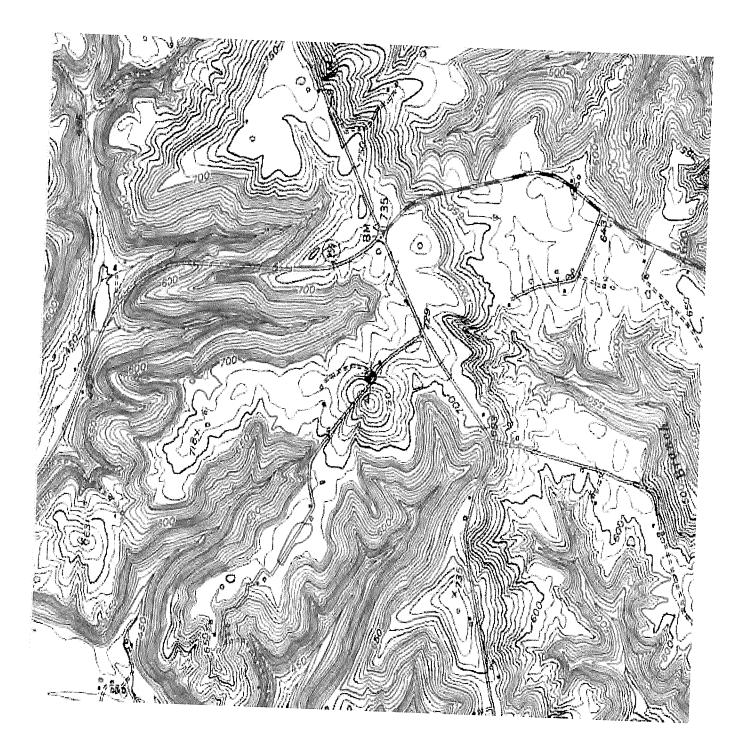
CONSULTANT

Frank L. Sellinger II, P.L.S. No. 3282 FSTAN Land Surveyors and Consulting Engineers 426 E Warnock St, Louisville, KY 40217


Phone: 502-635-5866 Fax: 502-636-5263

© DeLorme. DeLorme Topo USA® 7.0. www.delorme.com

EXHIBIT G KENTUCKY AIRPORT ZONING COMMISSION


KENTUCKY TRANSPORTATION CABINET


TC 56-50 Rev. 07/2010 Page 2 of 2

KENTUCKY AIRPORT ZONING COMMISSION

APPLICATION FOR PERMIT TO CONSTRUCT OR ALTER A STRUCTURE

APPLICANT (name)	PHONE	FAX	KY AERONAUTICA	LSTUDY#	
American Towers, Inc	(781) 926-7126	1	Ì		
ADDRESS (street)	aty		STATE	ΖIP	
10 Presidential Way	Woburn			01801	
APPLICANT'S REPRESENTATIVE (name)		FAX			
ADDRESS (street)	ατγ	ату		ΖP	
APPLICATION FOR New Construct DURATION Permanent Ten	ion		WORK SCHEDULE Start End		
TYPE Crane Building	l	NG/LIGHTING PREFE			
🔀 Antenna Tower	☐ Red Lights & Paint ☐ White- medium intensity ☐ White- high intensity				
Power Line Water Tank	Dual- red & med	dium intensity white	Dual-red & high intensity white		
Landfill Other	Other				
LATITUDE	LONGITUDE		DATUM NAD83 NAD27		
37 ⁰ 55′53.15″	86 ⁰ 28'37.73"		Other		
NEAREST KENTUCKY	NEAREST KENTUCK	Y PUBLIC USE OR M	ILITARY AIRPORT		
Oty Stephensport County Breckinridge					
STEPLEVATION (AMSL, feet)	TOTALSTRUCTURE	HEIGHT (AGL, feet)	eet) CURRENT (FAA aeronautical study #)		
747	265	•	2014-ASO-168-OE		
OVERALL HEIGHT (site elevation plus total structure height, feet) PREVIOUS (FAA aeronautical stud				ronautical study#)	
1012				• .	
DISTANCE (from nearest Kentucky public use or Military airport to structure) PREVIOUS (KY aeronautical study #)					
DIRECTION (from nearest Kentucky pub	lic use or Military air	port to structure)			
DESCRIPTION OF LOCATION (Attach US	SGS 7.5 minut e quadı	rangle map or an airi	port lavout drawing	with the precise site	
marked and any certified survey.)	,	, ,	,	,	
Please see attached map					
				······································	
DESCRIPTION OF PROPOSAL					
Proposed tower					
FAA Form 7460-1 (<i>Has t he "Notice of Q</i> ☐ No ☐ Yes, when? 01/08/2014	onstruction or Altera	tion" been filed with	the Federal Aviation	n Administration?)	
CERTIFICATION (I hereby certify that all	the above entries, m	nade by me, are true,	complete, and corr	ect to the best of	
my knowledge and belief.)					
PENALITIES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or					
imprisonment as set forth in KRS183.990(3). Noncompliance with FAA regulations may result in further penalties.)					
NAME TITLE	SIGNATURE	Digitally signed by Kura Miller DA: on-Natu Miller, on American Towers	DATE		
Katie Miller Compliance	Kat	Disc on where Miller, control can be not control to the control can be not control can be not control can be not control can be not control can be not can	01/08/2014		
COMMISSION ACTION	☐ Chairpersor☐ Administrat		 		
☐ Approved SIGNATURE ☐ Disapproved			DATE		

EXHIBIT H GEOTECHNICAL REPORT

GEOTECHNICAL ENGINEERING STUDY

Proposed Jake Horsley Tower N37° 55' 53.15" W86° 28' 37.73" 218 Williams Lane, Stephensport, Breckinridge County, Kentucky Project No. 13-8633

FStan Land Surveyors & Consulting Engineers 426 East Warnock Street Louisville, KY 40217 Phone: (502) 636-5111 Fax: (502) 636-5263

Prepared For:

Ms. Vicki Hollis American Tower Corporation 10 Presidential Way Woburn, MA 01801

Date: November 25, 2013

Land Surveyors and Consulting Engineers Formerly F.S. Land & T. Alan Neal Companies

November 25, 2013

Ms. Vicki Hollis American Tower Corporation 10 Presidential Way Woburn, MA 01801

Re: Geotechnical Engineering Study

Proposed 255-foot Self Support Tower with 10 foot Lighting Arrestor

American Tower Corporation Site Name: Jake Horsley

N37° 55' 53.15" W86° 28' 37.73"

218 Williams Lane, Stephensport, Breckinridge County, Kentucky

FStan Project No. 13-8633; AT&T NSB No. 156458; ATC No. 281318

Dear Ms. Hollis:

Transmitted herewith is our geotechnical engineering report for the referenced project. This report contains our findings, an engineering interpretation of these findings with respect to the available project characteristics, and recommendations to aid design and construction of the tower foundations.

We appreciate the opportunity to be of service to you on this project. If you have any questions regarding this report, please contact our office.

Cordially,

Elizabeth W. Stuber, P.E. Geotechnical Engineer

Kentucky License No.: 21636

Copies submitted: (3) Ms. Vicki Hollis

WANDONAL E

LETTER OF TRANSMITTAL

TABLE OF CONTENTS

			Pay	<u>ge</u>
1.	PU	RPO	SE AND SCOPE	.1
2.	PR	OJE	CT CHARACTERISTICS	.1
3.	SU	BSU	RFACE CONDITIONS	.2
4.	FO	UND	PATION DESIGN RECOMMENDATIONS	.3
	4.1	voT	WER	.3
	4.1	.1.	Drilled Piers	.3
	4.1	.2.	Mat Foundation	.4
	4.2.	Equ	UIPMENT BUILDING	.4
	4.3.	DRA	AINAGE AND GROUNDWATER CONSIDERATIONS	.5
5.	GE	ENER	AL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS	.6
	5.1	FILI	L COMPACTION	.7
	5.2	Con	NSTRUCTION DEWATERING	.7
6	FI	ELD 1	INVESTIGATION	.8
7	W	ARR A	ANTV AND LIMITATIONS OF STUDY	2

APPENDIX

BORING LOCATION PLAN GEOTECHNICAL BORING LOG SOIL SAMPLE CLASSIFICATION

GEOTECHNICAL ENGINEERING INVESTIGATION

Proposed 255-foot Self-Support Tower with 10 foot Lighting Arrestor

American Tower Corporation Site Name: Jake Horsely N37° 55' 53.15" W86° 28' 37.73"

218 Williams Lane, Stephensport, Breckenridge County, Kentucky FStan Project No. 13-8633; AT&T NSB No. 156458; ATC No. 281318

1. PURPOSE AND SCOPE

The purpose of this study was to determine the general subsurface conditions at the site of the proposed tower by drilling two soil test borings and to evaluate this data with respect to foundation concept and design for the proposed tower. Also included is an evaluation of the site with respect to potential construction problems and recommendations dealing with quality control during construction.

2. PROJECT CHARACTERISTICS

American Tower Corporation is proposing to construct a 255 feet tall self support communications tower with a 10 foot lighting arrestor on property owned by Cornelius Hollngshead, located at N37° 55' 53.15" / W86° 28' 37.73", 218 Williams Lane, Stephensport, Breckenridge County, Kentucky. The proposed lease area will be 100 feet x 100 feet with a short access road from the site running south to Williams Road. The site is located on a slope and is currently an undeveloped field within the town. The topographical site relief within the lease area is about 8 feet. The elevation of the site is approximately 747 feet msl. Surface water runoff is directed by the topography toward the northeast. A detailed evaluation of long-term slope stability was beyond the scope of this study. The proposed tower location is shown on the Boring Location Plan in the Appendix.

Preliminary information provided us indicates that this project will consist of constructing a self support communications tower 255 feet tall with a 10 foot lightning arrestor. We have assumed the following structural information:

- Compression = 400 kips
- Uplift = 300 kips
- Total shear = 40 kips

The development will also include a small equipment shelter near the base of the tower. The wall and floor loads for the shelter are assumed to be less than 4 kip/ln.ft. and 200 lbs/sq.ft., respectively.

3. SUBSURFACE CONDITIONS

The subsurface conditions were explored by drilling three test borings at the base of the proposed tower that was staked in the field by the project surveyor. The Geotechnical Soil Test Boring Logs, which are included in the Appendix, describes the materials and conditions encountered. A sheet defining the terms and symbols used on the boring log is also included in the Appendix. The general subsurface conditions disclosed by the test borings are discussed in the following paragraphs.

Only a thin veneer of topsoil was encountered at the existing ground surface. Below the topsoil, the borings encountered silty clay (CL-CH) of medium to high plasticity. The SPT N-values in the clayey soils ranged from 10 to 17 blows per foot indicating a medium stiff to very stiff consistency. Highly weathered clay shale was encountered between 6 and 7 feet that turned to weathered shale at about 13.5 feet. The borings were terminated in the shale at the scheduled depths of 15 and 40 feet.

Observations made at the completion of soil drilling operations indicated the borings to be dry. It must be noted, however, that short-term water readings in test borings are not necessarily a reliable indication of the actual groundwater level. Furthermore, it must be emphasized that the groundwater level is not stationary, but will fluctuate seasonally.

Based on the limited subsurface conditions encountered at the site and using Table 1615.1.1 of the 2002 Kentucky Building Code, the site class is considered "B". Seismic design requirements for telecommunication towers are given in section 1622 of the code. A detailed seismic study was beyond the scope of this report.

4. FOUNDATION DESIGN RECOMMENDATIONS

The following design recommendations are based on the previously described project information, the subsurface conditions encountered in our borings, the results of our laboratory testing, empirical correlations for the soil types encountered, our analyses, and our experience. If there is any change in the project criteria or structure location, you should retain us to review our recommendations so that we can determine if any modifications are required. The findings of such a review can then be presented in a supplemental report or addendum.

We recommend FStan be retained to review the near-final project plans and specifications, pertaining to the geotechnical aspects of the project, prior to bidding and construction. We recommend this review to check that our assumptions and evaluations are appropriate based on the current project information provided to us, and to check that our foundation and earthwork recommendations were properly interpreted and implemented.

4.1 Tower

Our findings indicate that the proposed self-support tower can be supported on drilled piers or on a common mat foundation.

4.1.1. Drilled Piers

Drilled piers that bear in the hard shale below a depth of about 15 feet can be designed for a net allowable end bearing pressure of 20,000 pounds per square foot (psf). The following table summarizes the recommended values for use in analyzing lateral and frictional resistance for the various strata encountered at the test boring. It is important to note that these values are estimated based on the standard penetration test results and soil types, and were not directly measured. The values provided for undrained shear strength and total unit weight are ultimate values and appropriate factors of safety should be used in conjunction with these values. If the piers will bear deeper than about 38 feet, a deeper boring should be drilled to determine the nature of the deeper material.

Depth Below Ground Surface, feet	Undrained Shear Strength,	Angle of Internal Friction,	Total Unit Weight, pcf	Allowable Passive Soil Pressure, psf/one foot of depth	Allowable Side Friction, psf
	psf	Ø, degrees			
0-6	1,000	0	120	750 + 40D	200
6 - 15	5,000	0	130	3,000 + 42(D-6)	1000
15 - 40	10,000	0	135	6,000 + 45(D-15)	2500

Note: D = Depth below ground surface (in feet) to point at which the passive pressure is calculated.

It is important that the drilled piers be installed by an experienced, competent drilled pier contractor who will be responsible for properly installing the piers in accordance with industry standards and generally accepted methods, without causing deterioration of the subgrade. The recommendations contained herein relate only to the soil-pier interaction and do not account for the structural design of the piers.

4.1.2. Mat Foundation

As an alternative, the tower could be supported on a common mat foundation bearing at a depth of at least 3.5 feet in the clay soil. A net allowable bearing pressure of up to 3,000 pounds per square foot may be used. These values may be increased by 30 percent for the maximum edge pressure under transient loads. A friction value of 0.30 may be used between the concrete and the underlying clay soil. The passive pressures given for the drilled pier foundation may be used to resist lateral forces.

It is important that the mat be designed with an adequate factor of safety with regard to overturning under the maximum design wind load.

4.2. Equipment Building

The equipment building may be supported on shallow spread footings bearing in the shallow clay and designed for a net allowable soil pressure of 2,000 pounds per square foot. The footings should be at least ten inches wide. If the footings bear on soil they should bear at a depth of at

least 36 inches to minimize the effects of frost action. All existing topsoil or soft natural soil should be removed beneath footings.

The floor slab for the new equipment building may be subgrade supported on a properly prepared subgrade. The slab should be designed and adequately reinforced to resist the loads proposed. The exposed subgrade should be carefully inspected by probing and testing as needed. Any organic material still in place, frozen or excessively soft soil and other undesirable materials should be removed.

Once the subgrade has been properly prepared and evaluated, fill may be placed to attain the desired final grade. Any non-organic, naturally occurring, non-expansive soils can be used for structural fill, including those encountered on this site, pending evaluation by the geotechnical engineer.

All engineered fill should be compacted to a dry density of at least 98 percent of the standard Proctor maximum dry density (ASTM D698). The compaction should be accomplished by placing the fill in about eight inch loose lifts and mechanically compacting each lift to at least the specified density. Field tests should be performed on each lift as necessary to insure that adequate compaction is being achieved.

4.3. Drainage and Groundwater Considerations

Good site drainage must be provided. Surface run-off water should be drained away from the shelter building and not allowed to pond. It is recommended that all foundation concrete be placed the same day the excavation is made.

At the time of this investigation, groundwater was not encountered. Therefore, no special provisions regarding groundwater control are considered necessary for the proposed structures.

5. GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS

It is possible that variations in subsurface conditions will be encountered during construction. Although only minor variations that can be readily evaluated and adjusted for during construction are anticipated, it is recommended the geotechnical engineer or a qualified representative be retained to perform continuous inspection and review during construction of the soils-related phases of the work. This will permit correlation between the test boring data and the actual soil conditions encountered during construction.

5.1. Foundation Excavation Inspection

5.1.1 Drilled Piers

The following recommendations are recommended for drilled pier construction:

- Clean the foundation bearing area so it is nearly level or suitably benched and is free of ponded water or loose material.
- Make provisions for ground water removal from the drilled shaft excavation.
 While the borings were dry prior to rock coring and significant seepage is not anticipated, the drilled pier contractor should have pumps on hand to remove water in the event seepage into the drilled pier is encountered.
- Specify concrete slumps ranging from 4 to 7 inches for the drilled shaft construction. These slumps are recommended to fill irregularities along the sides and bottom of the drilled hole, displace water as it is placed, and permit placement of reinforcing cages into the fluid concrete.
- Retain the geotechnical engineer to observe foundation excavations after the bottom of the hole is leveled, cleaned of any mud or extraneous material, and dewatered.
- Install a temporary protective steel casing to prevent sidewall collapse, prevent excessive mud and water intrusion, and to allow workers to safely enter, clean and inspect the drilled shaft.
- Clean the socket "face" prior to concrete placements. Cleaning will require
 hand cleaning or washing if a mud smear forms on the face of the rock. The
 geotechnical engineer should approve the rock socket surface prior to concrete
 placement.

- The protective steel casing may be extracted as the concrete is placed provided a sufficient head of concrete is maintained inside the steel casing to prevent soil or water intrusion into the newly placed concrete.
- Direct the concrete placement into the drilled hole through a centering chute to reduce side flow or segregation.

5.2 Fill Compaction

All engineered fill placed adjacent to and above the tower foundation should be compacted to a dry density of at least 95 percent of the standard Proctor maximum dry density (ASTM D-698). This minimum compaction requirement should be increased to 98 percent for any fill placed below the tower foundation bearing elevation. Any fill placed beneath the tower foundation should be limited to well-graded sand and gravel or crushed stone. The compaction should be accomplished by placing the fill in about 8 inch (or less) loose lifts and mechanically compacting each lift to at least the specified minimum dry density. Field density tests should be performed on each lift as necessary to insure that adequate moisture conditioning and compaction is being achieved.

Compaction by flooding is not considered acceptable. This method will generally not achieve the desired compaction and the large quantities of water will tend to soften the foundation soils.

5.3 Construction Dewatering

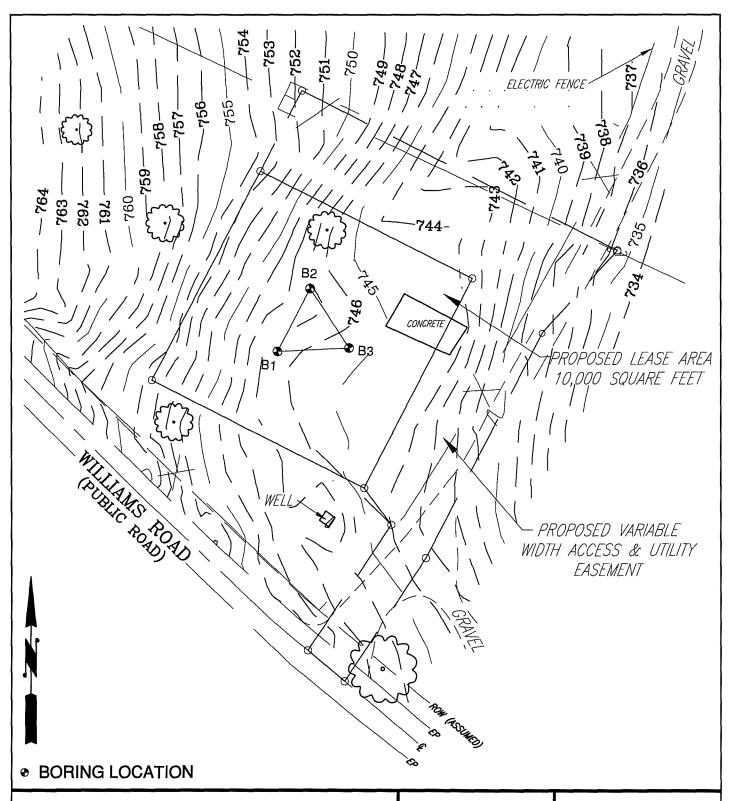
Groundwater may be encountered during drilled pier excavation. It is anticipated that any such seepage can be handled by conventional dewatering methods such as pumping from sumps. Dewatering of drilled pier excavations that extend below the groundwater level may be more difficult since pumping directly from the excavations could cause a deterioration of the bottom of the excavation. If the pier excavations are not dewatered, concrete should be placed by the tremie method.

6 FIELD INVESTIGATION

Three soil test borings were drilled based on the tower center location established in the field by the project surveyor. Split-spoon samples were obtained by the Standard Penetration Test (SPT) procedure (ASTM D1586) in the test boring. The borings were terminated in the shale at the scheduled depths of 15 and 40 feet. The split-spoon samples were inspected and visually classified by a geotechnical engineer. Representative portions of the soil samples were sealed in glass jars and returned to our laboratory.

The boring logs are included in the Appendix along with a sheet defining the terms and symbols used on the logs and an explanation of the Standard Penetration Test (SPT) procedure. The logs present visual descriptions of the soil strata encountered, Unified System soil classifications, groundwater observations, sampling information, laboratory test results, and other pertinent field data and observations.

7 WARRANTY AND LIMITATIONS OF STUDY


Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either express or implied. FStan is not responsible for the independent conclusions, opinions or recommendations made by others based on the field exploration and laboratory test data presented in this report.

A geotechnical study is inherently limited since the engineering recommendations are developed from information obtained from test borings, which depict subsurface conditions only at the specific locations, times and depths shown on the log. Soil conditions at other locations may differ from those encountered in the test borings, and the passage of time may cause the soil conditions to change from those described in this report.

The nature and extent of variation and change in the subsurface conditions at the site may not become evident until the course of construction. Construction monitoring by the geotechnical engineer or a representative is therefore considered necessary to verify the subsurface conditions and to check that the soils connected construction phases are properly completed. If significant variations or changes are in evidence, it may then be necessary to reevaluate the recommendations of this report. Furthermore, if the project characteristics are altered significantly from those discussed in this report, if the project information contained in this report is incorrect, or if additional information becomes available, a review must be made by this office to determine if any modification in the recommendations will be required.

APPENDIX

BORING LOCATION PLAN
GEOTECHNICAL BORING LOG
SOIL SAMPLE CLASSIFICATION

BORING LOCATION PLAN

SITE NAME: JAKE HORSLEY PROPOSED 255' SELF-SUPPORT TOWER WITH A 10' LIGHTNING ARRESTOR NOT TO SCALE

FSTAN PROJECT #:

13-8633

DATE:

11.25.13

Formerly F.S. Land & T. Alan Neal Company

Land Surveyors and Consulting Engineers
426 E WARNOCK STREET
Louisville, KY 40217

Phone: (502) 635-5866 (502) 636-5111 Fax: (502) 636-5263

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111 502-636-5263

Geotechnical Boring Log

Boring No: **B-1**

	502-530-5203			Boring No: B-1									
Client:	Client: American Tower Corporation			Project Number: 13-8633									
Project	Project: Proposed Jake Horsley Tower				Drilling Firm: Hoosier Drilling								
Locatio	Location: N37° 55' 53.15"/ W86° 28' 37.73"				Project Manager: Beth Stuber								
Date St	Date Started: 11/12/2013				Total Depth of Boring: 40 ft								
Date C	Date Completed: 11/12/2013					ods							
Boring	Meth	od: HSA-Manual Hammer		DRY at completion									
Surface		vation: NA		NA NA hours after completion									
Layer Depth ft	Legend	Material Description	Der Sca	ale Remark					Remarks				
		SILTY CLAY (CL-CH) - very stiff, brown with black nodes		1		5-8-9	100	tst	%				
		- stiff, tan-brown mottled		5 2	ss	6-7-7	100						
6.0-		CLAY SHALE - highly weathered, tan-brown		3	ss	6-10-13	100						
				10 4	ss	6-9-14	100						
13.5		SHALE - highly weathered, light gray		15	ss	17-50	44						
i.				20 - 6	ss	50	17						
				25 - 7	ss	50	11						
N. 601 12/18/13			:	30 - 8	ss	50	28						
13-8633.GPJ FSLA		- dark brown		35 - 9	ss	50	28						
GEOLECHNICAL BORING LOG 13-8633.GFJ FS.IAN.GUI 12/18/13 0 0		Bottom of Boring at 40 ft		40) ss	50	28						
GEOTECHI				=						Dogo 1 of			

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111 502-636-5263

Geotechnical Boring Log

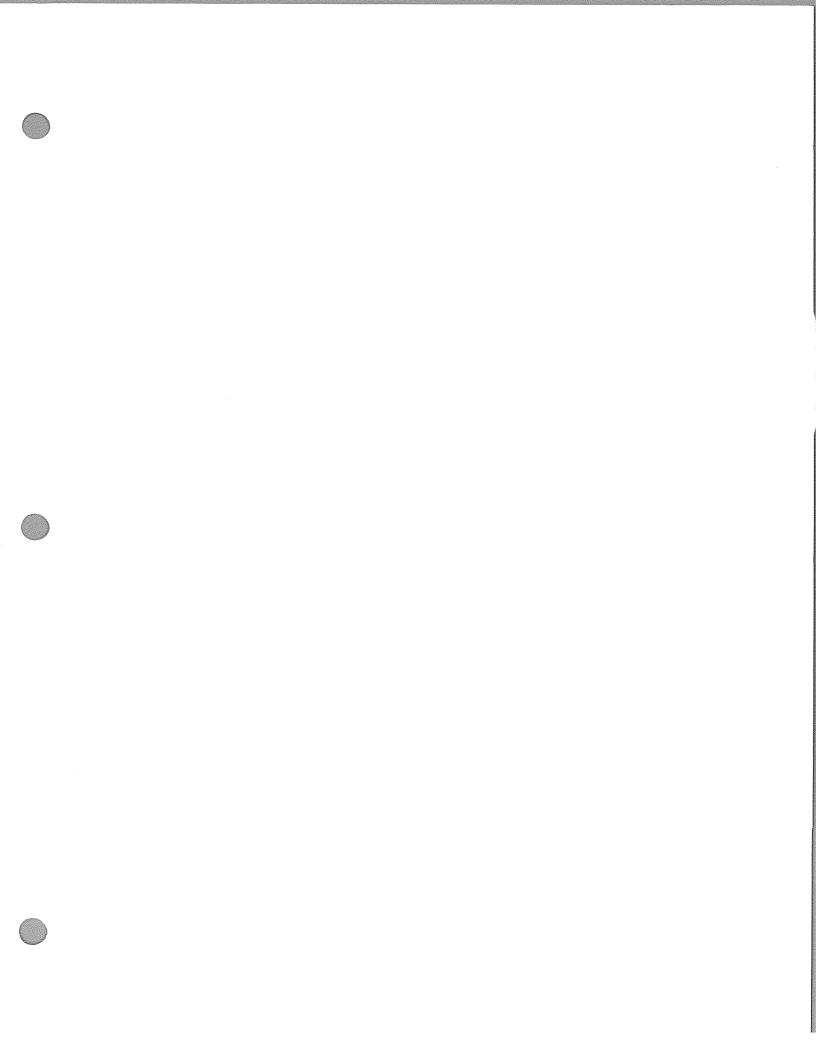
Boring No: **B-2**

Client: American Tower Corporation	Project Number: 13-8633
Project: Proposed Jake Horsley Tower	Drilling Firm: Hoosier Drilling
Location: N37° 55' 53.15"/ W86° 28' 37.73"	Project Manager: Beth Stuber
Date Started: 11/12/2013	Total Depth of Boring: 15 ft
Date Completed: 11/12/2013	NA on rods
Boring Method: HSA-Manual Hammer	DRY at completion
0 6 5 10 11 11	

Boring Method: HSA-Manual Hammer				DRY at completion									
Surface Elevation: NA				NA NA hours after completion									
Layer Depth ft	Legend	Material Description	Dep Sca ft	oth ale	th le		No. Typ		Sample I		PP	W	Remarks
π		SILTY CLAY (CL) - stiff, brown	11		NO.	ype	Blows	Rec. %	PP tsf	%			
				Ξ	1	ss	5-5-5	100					
				5	2	SS	7-6-5	0					
7.0-		CLAY SHALE - highly weathered, tan-brown	-	_	3	SS	7-8-9	22					
		OLAT STALE - Tigrily weathered, tari-brown				00	10 14 10	100					
				10-	4	SS	13-14-12	100					
13.5-		SHALE - highly weathered, gray	-			20	14-16-19						
15.0~		Bottom of Boring at 15 ft	1	15-	5	33	14-10-19	44					
									į				
				_									
			:	20-									
				_			I						
				_									
				25-									
				-									
			:	30 <u> </u>									
				_									
			:	35 <u> </u>									
				-									
				=									
			4	40-									
				_									
					i								
	<u></u>		<u> </u>						<u></u>		Daga 1 a		

F.S. Tan Land Consulting Engineers P.O. Box 17546 Louisville, KY 40217 502-636-5111 502-636-5263

Geotechnical Boring Log


Boring No: **B-3**

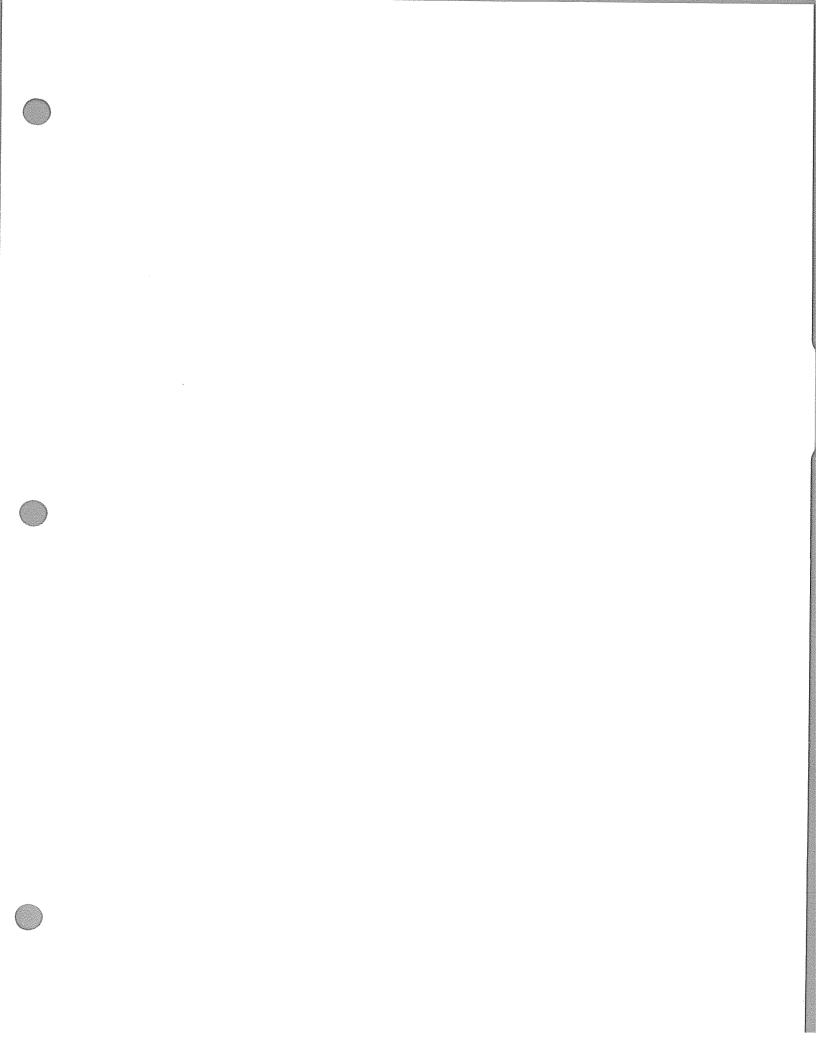
								B	Soring No: DT3
Client: American Tower Corporation			Project Number: 13-8633						
Project: Proposed Jake Horsley Tower			Drilling Firm: Hoosier Drilling						
Location: N37° 55' 53.15"/ W86° 28' 37.73"			Project Manager: Beth Stuber						
Date Started: 11/12/2013			otal D	epth	of Bori	ng:	15 f	t	
Date Completed: 11/12/2013			NA c	n ro	ds				
Boring Meth	nod: HSA-Manual Hammer		DRY	at c	completion	on_			
Surface Ele	vation: NA		NA NA hours after completion						
Layer Depth of t	Material Description	Dept Scale ft	cale Rema				Remarks		
6.0	SILTY CLAY (CL) - stiff, brown CLAY SHALE - highly weathered, tan-brown		2 3	ss ss	6-6-7 6-5-6	100 100 100	tsi	<u> </u>	
13.5	SHALE - highly weathered, gray Bottom of Boring at 15 ft	15	5	ss	21-27-30	89			
		25							
		36							

SOIL CLASSIFICATION CHART

n A	ופועות מסו	ONE	SYME	BOLS	TYPICAL	
IAIY	AJOR DIVISI	ONO	GRAPH	LETTER	DESCRIPTIONS	
	GRAVEL AND	CLEAN GRAVELS	.00.00	GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES	
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS. GRAVEL - SAND - SILT MIXTURES	
·	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	
LARGER THAN NO, 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES	
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	
		LIQUID LIMIT LESS THAN 50		ML	INORGANIC SILTS AND VERY FINE SANOS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED SOILS	SILTS AND CLAYS			CL	INORGANIC CLAYS OF LOW TO MEOIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
55,5			TOTAL DESIGN CONTROL OF THE PARTY OF THE PAR	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE		LIQUID LIMIT GREATER THAN 50		MH	INORGANIC SILTS, MICACÉOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS	
SIZE	SILTS AND CLAYS			СН	INORGANIC CLAYS OF HIGH PLASTICITY	
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
HI	GHLY ORGANIC S	GOILS	다 다 다 다 다 ? 다 다 다 다 ?	PT	PEAT, HŮMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

EXHIBIT I DIRECTIONS TO WCF SITE


Driving Directions to Proposed Tower Site at Jake Horsley

- 1. Beginning at the Breckinridge County Courthouse, located at 111 West 2nd Street in Hardinsburg, Kentucky, travel east on 2nd street to Ky-259 N / S. Main Street.
- 2. Turn left onto Ky-259 N / S. Main Street and travel approximately 12.7 miles.
- 3. Turn left onto Ky-144 W and travel approximately 0.3 miles.
- 4. Turn right onto Countiss Williams Road and travel approximately 0.2 miles.
- 5. The proposed site is on the left at 218 Williams Lane, Stephensport, Kentucky 40170.
- 6. The site coordinates are
 - a. North 37 deg 55' 53.15"
 - b. West 86 deg 28' 37.73"

Prepared by: Aaron L. Roof Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT J COPY OF REAL ESTATE AGREEMENT

LEASE AGREEMENT

THIS LEASE AGREEMENT ("Agreement") is made effective as of the date of the latter signature hereof (the "Execution Date") and is by and between Landlord and American Tower.

RECITALS

- A. WHEREAS, Landlord is the owner of that certain parcel of land (the "*Property*") located in the County of Breckinridge, State of Kentucky, as more particularly described on Exhibit A;
- B. WHEREAS, Landlord desires to grant to American Tower an option to lease from Landlord a portion of the Property (the "Compound"), together with easements for ingress and egress and the installation and maintenance of utilities (the "Easement" and together with the Compound, the "Site") both being approximately located as shown on Exhibit B; and

NOW, THEREFORE, in consideration of the mutual covenants and agreements herein contained, and other good and valuable consideration, the receipt, adequacy and sufficiency of all of which are hereby acknowledged, the parties hereto hereby agree as follows:

- 1. <u>Business and Defined Terms</u>. For the purposes of this Agreement, the following capitalized terms have the meanings set forth in this paragraph 1.
 - (a) American Tower: American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers LLC
 - (b) Notice Address of American Tower: American Towers LLC

c/o American Tower 10 Presidential Way Woburn, MA 01801 Attn: Land Management

with a copy to: American Towers LLC

c/o American Tower 116 Huntington Ave. Boston, MA 02116 Attn: Law Department

- (c) Landlord: Cornelius Hollingshead and Adina K. Hollingshead, his wife
- (d) Notice Address of Landlord: 226 Williams Lane Stephensport, KY 40170
- (e) Initial Option Period: One (1) year
- (f) Renewal Option Period(s): One (1) period of One (1) year each.
- (g) Option Period: The Initial Option Period and any Renewal Option Period(s)
- (h) Option Consideration (Initial Option Period):
- (i) Option Extension Consideration (Renewal Option Period(s)):

- (j) Commencement Date: The date specified in the written notice by American Tower to Landlord exercising the Option constitutes the Commencement Date of the Term.
- (k) Initial Term: Five (5) years, commencing on the Commencement Date and continuing until midnight of the day immediately prior to the fifth (5) anniversary of the Commencement Date.
- (1) **Renewal Terms:** Each of the Five (5) successive periods of five (5) years each, with the first Renewal Term commencing upon the expiration of the Initial Term and each subsequent Renewal Term commencing upon the expiration of the immediately preceding Renewal Term.
 - (m) Term: The Initial Term with any and all Renewal Terms
 - (n) Rent: The monthly amount of
- (o) Increase Amount: Rent will increase at the commencement of each Renewal Term by an amount equal to from the previous five year period.
 - (p) Increase Date: The first date of each Renewal Term.

2. Option to Lease.

- (a) <u>Grant of Option</u>. Landlord hereby gives and grants to American Tower and its assigns, an exclusive and irrevocable option to lease the Site during the Initial Option Period (the "Option").
- (b) <u>Extension of Option</u>. The Initial Option Period will automatically be extended for each Renewal Option Period unless American Tower provides Landlord written notice of its intent not to extend the Option.
- (c) <u>Consideration for Option</u>. Option Consideration is due and payable in full within 30 days of the Execution Date and American Tower will pay Landlord any Option Extension Consideration within 30 days of the commencement of any Renewal Option Period.
 - (d) Option Period Inspections and Investigations.
 - (i) During the Option Period, Landlord will provide American Tower with any keys or access codes necessary for access to the Property.
 - (ii) During the Option Period, American Tower and its officers, agents, employees and independent contractors may enter upon the Property to perform or cause to be performed test borings of the soil, environmental audits, engineering studies and to conduct a metes and bounds survey of the Site and/or the Property (the "Survey"), provided that American Tower will not unreasonably interfere with Landlord's use of the Property in conducting these activities. At American Tower's discretion, the legal description of the Site as shown on the Survey may replace Exhibit B of this Agreement and be added as Exhibit B of the Memorandum of Lease.
 - (iii) American Tower may not begin any construction activities on the Site during the Option Period other than those activities described in, or related to, this paragraph 2(d).
- (e) <u>Exercise of Option</u>. American Tower may, in its sole discretion, exercise the Option by delivery of written notice to Landlord at any time during the Option Period. If American Tower exercises the Option then Landlord will lease the Site to American Tower subject to the terms and conditions of this Agreement. If American Tower does not exercise the Option, this Agreement will terminate.

3. Term.

- (a) <u>Initial Term</u>. The Initial Term is as provided in paragraph 1(k).
- (b) Renewal Terms. American Tower will have the right to extend this Agreement for each of the Renewal Terms. Each Renewal Term will be on the same terms and conditions provided in this Agreement except that Rent will escalate as provided in paragraph 4(b). This Agreement will automatically be renewed for each successive Renewal Term unless American Tower notifies Landlord in writing of American Tower's intention not to renew the Agreement at any time prior to the expiration of the Initial Term or the Renewal Term which is then in effect.

4. Consideration.

- (a) American Tower will pay its first installment of Rent within thirty (30) days of the Commencement Date. Thereafter, Rent is due and payable in advance on the first day of each calendar month to Landlord at Landlord's Notice Address. Rent will be prorated for any partial months, including, the month in which the Commencement Date occurs.
 - (b) On the Increase Date, the Rent will increase by the Increase Amount.
- (c) In the event American Tower makes an overpayment of Rent or any other fees or charges to Landlord during the Term of this Agreement, American Tower may, but will not be required, to treat any such overpayment amount as prepaid Rent and apply such amount as a credit against future Rent due to Landlord.
- (d) American Tower will not be required to remit the payment of Rent to more than two recipients at any given time.

5. Use.

- (a) American Tower will be permitted to use the Site for the purpose of constructing, maintaining, removing, replacing, securing and operating a communications facility, including, but not limited to, the construction or installation and maintenance of a telecommunications tower (the "Tower"), structural tower base(s), communications equipment, one or more buildings or equipment cabinets, radio transmitting and receiving antennas, personal property and related improvements and facilities on the Compound (collectively, the "Tower Facilities"), to facilitate the use of the Site as a site for the transmission and receipt of communication signals including, but not limited to, voice, data and internet transmissions and for any other uses which are incidental to the transmission and receipt of communication signals (the "Intended Use").
- (b) American Tower, at its sole discretion, will have the right, without prior notice or the consent of Landlord, to license or sublease all or a portion of the Site or the Tower Facilities to other parties (each, a "Collocator" and collectively, the "Collocators"). The Collocators will be entitled to modify the Tower Facilities and to erect additional improvements on the Compound including but not limited to antennas, dishes, cabling, additional buildings or shelters ancillary to the Intended Use. The Collocators will be entitled to all rights of ingress and egress to the Site and the right to install utilities on the Site that American Tower has under this Agreement.

6. Tower Facilities.

- (a) American Tower will have the right, at American Tower's sole cost and expense, to erect the Tower Facilities which will be the exclusive property of American Tower throughout the Term as well as upon the expiration or termination of this Agreement.
- (b) Landlord grants American Tower a non-exclusive easement in, over, across and through the Property and other real property owned by Landlord contiguous to the Site as may be reasonably required for construction, installation, maintenance, and operation of the Tower Facilities including: (i) access to the Site for construction machinery and equipment, (ii) storage of construction materials and equipment during construction of the Tower Facilities, and (iii) use of a staging area for construction, installation and removal of equipment.
- (c) American Tower may, at its sole expense, use any and all appropriate means of restricting access to the Compound or the Tower Facilities, including, without limitation, construction of a fence and may install and maintain identifying signs or other signs required by any governmental authority on or about the Site, including any access road to the Site.
- (d) American Tower will maintain the Compound, including the Tower Facilities, in a reasonable condition throughout the Term. American Tower is not responsible for reasonable wear and tear or damage from casualty and condemnation. Landlord grants American Tower the right to clear all trees, undergrowth, or other obstructions and to trim, cut, and keep trimmed all tree limbs which may interfere with or fall upon the Tower Facilities or the Site.
- (e) American Tower will remove all of the above-ground portions of the Tower Facilities within 180 days following the expiration or termination of this Agreement.

7. Utilities.

- (a) American Tower will have the right to install utilities, at American Tower's expense, and to improve present utilities on the Property and the Site. American Tower will have the right to permanently place utilities on (or to bring utilities across or under) the Site to service the Compound and the Tower Facilities.
- (b) If utilities necessary to serve the equipment of American Tower or the equipment of any Collocator cannot be located within the Site, Landlord agrees to allow the installation of utilities on the Property or other real property owned by Landlord without requiring additional compensation from American Tower or any Collocator. Landlord will, upon American Tower's request, execute a separate recordable written easement or lease to the utility company providing such service evidencing this right.
 - (c) American Tower and the Collocators each may install backup generator(s).

8. Access

- (a) In the event that the Site loses access to a public right of way during the Term, Landlord and American Tower will amend this Agreement, at no imposed cost to either party, to provide access to a public way by: (i) amending the location of the Easement; or (ii) granting an additional easement to American Tower.
- (b) To the extent damage (including wear and tear caused by normal usage) to the Easement or any other route contemplated hereunder intended to provide American Tower with access to the Site and the Tower Facilities is caused by Landlord or Landlord's tenants, licensees, invites or agents, Landlord will repair the damage at its own expense.

(c) Landlord will maintain access to the Compound from a public way in a free and open condition so that no interference is caused to American Tower by Landlord or lessees, licensees, invitees or agents of Landlord. In the event that American Tower's or any Collocator's access to the Compound is impeded or denied by Landlord or Landlord's lessees, licensees, invitees or agents, without waiving any other rights that it may have at law or in equity, American Tower may at its sole discretion deduct from Rent due under this Agreement an amount equal to per day for each day that such access is impeded or denied.

- 9. Representations and Warranties of Landlord. Landlord represents and warrants to American Tower and American Tower's successors and assigns:
 - (a) Landlord has the full right, power, and authority to execute this Agreement;
- (b) There are no pending or threatened administrative actions, including bankruptcy or insolvency proceedings under state or federal law, suits, claims or causes of action against Landlord or which may otherwise affect the Property;
- (c) The Property is not presently subject to an option, lease or other contract which may adversely affect Landlord's ability to fulfill its obligations under this Agreement, and the execution of this Agreement by Landlord will not cause a breach or an event of default of any other agreement to which Landlord is a party. Landlord agrees that it will not grant an option or enter into any contract or agreement which will have any adverse effect on the Intended Use or American Tower's rights under this Agreement;
- (d) No licenses, rights of use, covenants, restrictions, easements, servitudes, subdivision rules or regulations, or any other encumbrances relating to the Property prohibit or will interfere with the Intended Use;
- (e) Landlord has good and marketable fee simple title to the Site, the Property and any other property across which Landlord may grant an easement to American Tower or any Collocator, free and clear of all liens and encumbrances. Landlord covenants that American Tower will have the quiet enjoyment of the Compound during the term of this Agreement. If Landlord fails to keep the Site free and clear of any liens and encumbrances, American Tower will have the right, but not the obligation, to satisfy any such lien or encumbrance and to deduct the full amount paid by American Tower on Landlord's behalf from future installments of Rent;
- (f) American Tower will at all times during this Agreement enjoy ingress, egress, and access from the Site 24 hours a day, 7 days a week, to an open and improved public road which is adequate to service the Site and the Tower Facilities; and
- (g) These representations and warranties of Landlord survive the termination or expiration of this Agreement.
- 10. <u>Interference.</u> Landlord will not use, nor will Landlord permit its tenants, licensees, invitees or agents to use any portion of the Property in any way which interferes with the Intended Use, including, but not limited to, any use on the Property or surrounding property that causes electronic or physical obstruction or degradation of the communications signals from the Tower Facilities ("Interference"). Interference will be deemed a material breach of this Agreement by Landlord and Landlord will have the responsibility to terminate Interference immediately upon written notice from American Tower. Notwithstanding anything in this Agreement to the contrary, if the Interference does not cease or is not rectified as soon as possible, but in no event longer than 24 hours after American Tower's written notice to Landlord, Landlord acknowledges that continuing Interference will cause irreparable injury to

American Tower, and American Tower will have the right, in addition to any other rights that it may have at law or in equity, to bring action to enjoin the Interference.

- 11. <u>Termination</u>. This Agreement may be terminated, without any penalty or further liability upon written notice as follows:
- (a) By either party upon a default of any covenant or term of this Agreement by the other party which is not cured within 60 days of receipt of written notice of default (without, however, limiting any other rights available to the parties in law or equity); provided, that if the defaulting party commences efforts to cure the default within such period and diligently pursues such cure, the non-defaulting party may not terminate this Agreement as a result of that default.
- (b) Upon 30 days' written notice by American Tower to Landlord if American Tower is unable to obtain, maintain, renew or reinstate any agreement, easement, permit, certificates, license, variance, zoning approval, or any other approval which may be required from any federal, state or local authority necessary to the construction and operation of the Tower Facilities or to the Intended Use (collectively, the "Approvals"); or
- (c) Upon 30 days' written notice from American Tower to Landlord if the Site is or becomes unsuitable, in American Tower's sole, but reasonable judgment for use as a wireless communications facility by American Tower or by American Tower's licensee(s) or sublessee(s).
- (d) In the event of termination by American Tower or Landlord pursuant to this provision, American Tower shall be relieved of all further liability hereunder.

12. Taxes.

- (a) American Tower will pay any personal property taxes assessed on or attributable to the Tower Facilities. American Tower will reimburse Landlord for any increase to Landlord's real property taxes that are directly attributable to American Tower's Site and/or Tower Facilities upon receipt of the following: (1) a copy of Landlord's tax bill; (2) proof of payment; and (3) written documentation from the assessor of the amount attributable to American Tower. American Tower shall have no obligation to reimburse Landlord for any taxes paid by Landlord unless Landlord requests reimbursement within 12 months of the date said taxes were originally due. Additionally, as a condition precedent to Landlord having the right to receive reimbursement, Landlord shall, within 3 days of receipt of any notice from the taxing authority of any assessment or reassessment, provide American Tower with a copy of said notice. American Tower shall have the right to appeal any assessment or reassessment relating to the Site or Tower Facilities and Landlord shall either (i) designate American Tower as its attorney-in-fact as required to effect standing with the taxing authority, or (ii) join American Tower in its appeal.
- (b) Landlord will pay when due all real property taxes and all other fees and assessments attributable to the Property, Compound and Easement. If Landlord fails to pay when due any taxes affecting the Property or the Site, American Tower will have the right, but not the obligation, to pay such taxes and either: (i) deduct the full amount of the taxes paid by American Tower on Landlord's behalf from future installments of Rent, or (ii) collect such taxes by any lawful means.

13. Environmental Compliance.

(a) Landlord represents and warrants that:

- (i) No Hazardous Materials have been used, generated, stored or disposed of, on, under or about the Property in violation of any applicable law, regulation or administrative order (collectively, "*Environmental Laws*") by either Landlord or to Landlord's knowledge, any third party; and
- (ii) To Landlord's knowledge, no third party been permitted to use, generate, store or dispose of any Hazardous Materials on, under, about or within the Property in violation of any Environmental Laws.
- (b) Landlord will not, and will not permit any third party to use, generate, store or dispose of any Hazardous Materials on, under, about or within the Property in violation of any Environmental Laws.
- (c) American Tower agrees that it will not use, generate, store or dispose of any Hazardous Material on, under, about or within the Site in violation of any applicable laws, regulations or administrative orders.
- (d) The term "Hazardous Materials" means any: contaminants, oils, asbestos, PCBs, hazardous substances or wastes as defined by federal, state or local environmental laws, regulations or administrative orders or other materials the removal of which is required or the maintenance of which is prohibited or regulated by any federal, state or local government authority having jurisdiction over the Property.

14. Indemnification.

(a) General.

- (i) Landlord, its heirs, grantees, successors, and assigns will exonerate, hold harmless, indemnify, and defend American Tower from any claims, obligations, liabilities, costs, demands, damages, expenses, suits or causes of action, including costs and reasonable attorney's fees, which may arise out of: (A) any injury to or death of any person; (B) any damage to property, if such injury, death or damage arises out of or is attributable to or results from the acts or omissions of Landlord, or Landlord's principals, employees, invitees, agents or independent contractors; or (C) any breach of any representation or warranty made by Landlord in this Agreement.
- (ii) American Tower, its grantees, successors, and assigns will exonerate, hold harmless, indemnify, and defend Landlord from any claims, obligations, liabilities, costs, demands, damages, expenses, suits or causes of action, including costs and reasonable attorney's fees, which may arise out of: (A) any injury to or death of any person; (B) any damage to property, if such injury, death or damage arises out of or is attributable to or results from the negligent acts or omissions of American Tower, or American Tower's employees, agents or independent contractors; or (C) any breach of any representation or warranty made by American Tower in this Agreement.

(b) Environmental Matters.

(i) Landlord, its heirs, grantees, successors, and assigns will indemnify, defend, reimburse and hold harmless American Tower from and against any and all damages arising from the presence of Hazardous Materials upon, about or beneath the Property or migrating to or from the Property or arising in any manner whatsoever out of the violation of any Environmental Laws, which conditions exist or existed prior to or at the time of the execution of this Agreement or which may occur at any time in the future through no fault of American Tower. Notwithstanding

the obligation of Landlord to indemnify American Tower pursuant to this Agreement, Landlord will, upon demand of American Tower, and at Landlord's sole cost and expense, promptly take all actions to remediate the Property which are required by any federal, state or local governmental agency or political subdivision or which are reasonably necessary to mitigate environmental damages or to allow full economic use of the Site, which remediation is necessitated from the presence upon, about or beneath the Property of a Hazardous Material. Such actions include but not be limited to the investigation of the environmental condition of the Property, the preparation of any feasibility studies, reports or remedial plans, and the performance of any cleanup, remediation, containment, operation, maintenance, monitoring or actions necessary to restore the Property to the condition existing prior to the introduction of such Hazardous Material upon, about or beneath the Property notwithstanding any lesser standard of remediation allowable under applicable law or governmental policies.

(ii) American Tower, its grantees, successors, and assigns will indemnify, defend, reimburse and hold harmless Landlord from and against environmental damages caused by the presence of Hazardous Materials on the Compound in violation of any Environmental Laws and arising solely as the result of American Tower's activities after the execution of this Agreement.

15. Right of First Refusal; Sale of Property.

- (a) During the Term, prior to selling the Site or any portion of or interest in the Property or the Site, including but not limited to a leasehold interest or easement, or otherwise transfer Landlord's interest in Rent, and prior to assigning the Rent or any portion of Rent to a third party, Landlord shall notify American Tower in writing of the sale price and terms offered by a third party (the "Offer"), together with a copy of the Offer. American Tower will have the right of first refusal to purchase the real property interest or Rent or portion of Rent being sold by Landlord to such third party on the same financial terms of the Offer. American Tower will exercise its right of first refusal within 30 days of receipt of Landlord's notice and if American Tower does not provide notice within 30 days, American Tower will be deemed to have not exercised its right of first refusal. If American Tower does not exercise its right of first refusal, section 15(b) of this Agreement will control the terms of the sale.
- (b) Landlord may sell the Property or a portion thereof to a third party, provided: (i) the sale is made subject to the terms of this Agreement; and (ii) if the sale does not include the assignment of Landlord's full interest in this Agreement the purchaser must agree to perform, without requiring compensation from American Tower or any Collocator, any obligation of the Landlord under this Agreement, including Landlord's obligation to cooperate with American Tower as provided hereunder, which obligation Landlord would no longer have the legal right or ability to perform following the sale without requiring compensation from American Tower or any Collocator to be paid to such purchaser.

16. Assignment.

- (a) Any sublease, license or assignment of this Agreement that is entered into by Landlord or American Tower is subject to the provisions of this Agreement.
- (b) Landlord may assign this Agreement in its entirety to any third party in conjunction with a sale of the Property in accordance with Paragraph 15 of this Agreement. Landlord will not otherwise assign less than Landlord's full interest in this Agreement without the prior written consent of American Tower.
- (c) American Tower may assign this Agreement without prior notice to or the consent of Landlord. Upon assignment, American Tower shall be relieved of all liabilities and obligations

hereunder and Landlord shall look solely to the assignee for performance under this Agreement and all obligations hereunder.

- (d) American Tower may mortgage or grant a security interest in this Agreement and the Tower Facilities, and may assign this Agreement and the Tower Facilities to any such mortgagees or holders of security interests including their successors and assigns (collectively, "Secured Parties"). If requested by American Tower, Landlord will execute such consent to such financing as may reasonably be required by Secured Parties. In addition, if requested by American Tower, Landlord agrees to notify American Tower and American Tower's Secured Parties simultaneously of any default by American Tower and to give Secured Parties the same right to cure any default as American Tower. If a termination, disaffirmance or rejection of the Agreement by American Tower pursuant to any laws (including any bankruptcy or insolvency laws) occurs, or if Landlord will terminate this Agreement for any reason, Landlord will give to Secured Parties prompt notice thereof and Secured Parties will have the right to enter upon the Compound during a 30-day period commencing upon Secured Parties' receipt of such notice for the purpose of removing any Tower Facilities. Landlord acknowledges that Secured Parties are third-party beneficiaries of this Agreement.
- Condemnation. If a condemning authority takes all of the Site, or a portion sufficient in American Tower's sole judgment, to render the Site unsuitable for the Intended Use, this Agreement will terminate as of the date the title vests in the condemning authority. Landlord and American Tower will share in the condemnation proceeds in proportion to the values of their respective interests in the Site (which for American Tower includes, where applicable, the value of the Tower Facilities, moving expenses, prepaid rent and business dislocation expenses). If a condemning authority takes less than the entire Site such that the Site remains suitable for American Tower's Intended Use, the Rent payable under this Agreement will be reduced automatically by such percentage as the area so condemned bears to the Site as of the date the title vests in the condemning authority. A sale of all or part of the Site to a purchaser with the power of eminent domain in the face of the exercise of eminent domain power will be treated as a taking by condemnation for the purposes of this paragraph.
- 18. <u>Insurance.</u> American Tower will purchase and maintain in full force and effect throughout the Option Period and the Term such general liability and property damage policies as American Tower may deem necessary. Said policy of general liability insurance will at a minimum provide a combined single limit of \$1,000,000.

19. Waiver of Damages.

- (a) In the event that American Tower does not exercise its Option: (i) Landlord's sole compensation and damages will be fixed and liquidated to the sums paid by American Tower to Landlord as consideration for the Option; and (ii) Landlord expressly waives any other remedies it may have for a breach of this Agreement including specific performance and damages for breach of contract.
- (b) Neither Landlord nor American Tower will be responsible or liable to the other party for any loss or damage arising from any claim to the extent attributable to any acts of omissions of other licensees or tower users occupying the Tower Facilities or vandalism or for any structural or power failures or destruction or damage to the Tower Facilities except to the extent caused by the negligence or willful misconduct of such party.
- (c) EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT, IN NO EVENT WILL LANDLORD OR AMERICAN TOWER BE LIABLE TO THE OTHER FOR, AND AMERICAN TOWER AND LANDLORD EACH HEREBY WAIVE THE RIGHT TO RECOVER INCIDENTAL,

CONSEQUENTIAL (INCLUDING, BUT NOT LIMITED TO, LOST PROFITS, LOSS OF USE OR LOSS OF BUSINESS OPPORTUNITY), PUNITIVE, EXEMPLARY AND SIMILAR DAMAGES.

20. <u>Confidentiality.</u> Landlord will not disclose to any third party the Rent payable by American Tower under this Agreement and will treat such information as confidential, except that Landlord may disclose such information to prospective buyers, prospective or existing lenders, Landlord's affiliates and attorneys, or as may be required by law or as may be necessary for the enforcement of Landlord's rights under the Agreement.

21. Subordination Agreements.

- (a) If the Site is encumbered by a mortgage or deed of trust, within 30 days of receipt of a written request from American Tower, Landlord agrees to execute and obtain the execution by its lender of a non-disturbance and attornment agreement in the form provided by American Tower, to the effect that American Tower and American Tower's sublessees and licensees will not be disturbed in their occupancy and use of the Site by any foreclosure or to provide information regarding the mortgage to American Tower.
- (b) Should a subordination, non-disturbance and attornment agreement be requested by Landlord or a lender working with Landlord on a loan to be secured by the Property and entered into subsequent to the Execution Date, American Tower will use good faith efforts to provide Landlord or Landlord's lender with American Tower's form subordination, non-disturbance and attornment agreement executed by American Tower within 30 days of such request.
- 22. Notices. All notices or demands by or from American Tower to Landlord, or Landlord to American Tower, required under this Agreement will be in writing and sent (United States mail postage pre-paid, certified with return receipt requested or by reputable national overnight carrier service, transmit prepaid) to the other party at the addresses set forth in paragraph 1 of this Agreement or to such other addresses as the parties may, from time to time, designate consistent with this paragraph 22, with such new notice address being effective 30 days after receipt by the other party. Notices will be deemed to have been given upon either receipt or rejection.

23. Further Acts.

- (a) Within 15 days after receipt of a written request from American Tower, Landlord will execute any document necessary or useful to protect American Tower's rights under this Agreement or to facilitate the Intended Use including documents related to title, zoning and other Approvals, and will otherwise cooperate with American Tower in its exercise of its rights under this Agreement.
- (b) American Tower will be entitled to liquidated damages for the revenue lost by American Tower as a result of any delay caused by Landlord's unwillingness to execute a document or to take any other action deemed necessary by American Tower to protect American Tower's leasehold rights or to facilitate the Intended Use. As the actual amount of such lost revenue is difficult to determine, the parties agree that American Tower may deduct the amount of per day from future installments of Rent for any delay to American Tower caused by Landlord's failure or unwillingness to act, such amount being an estimate of American Tower's lost revenue. American Tower's right to collect such liquidated damages will in no way affect American Tower's right to pursue any and all other legal and equitable rights and remedies permitted under applicable laws.
- 24. <u>Memorandum of Lease</u>. Simultaneously with the execution of this Agreement, the parties will enter into the Memorandum of Lease attached to this Agreement as <u>Exhibit C</u> which American Tower

may record in the public records of the county of the Property. Landlord acknowledges and agrees that after Landlord signs the Memorandum of Lease but before American Tower records it, American Tower may add both: (a) a reference to the recording granting Landlord its interest in the Property; and (b) a legal description of the Site as Exhibit B. Landlord agrees to execute and return to American Tower a recordable Amended Memorandum of Lease in form supplied by American Tower if: (i) the information included in the Memorandum of Lease changes, or (ii) if it becomes clear that such information is incorrect or incomplete or if this Agreement is amended.

25. Miscellaneous,

- (a) This Agreement runs with the Property and is binding upon and will inure to the benefit of the parties, their respective heirs, successors, personal representatives and assigns.
- (b) American Tower may at American Tower's sole cost and expense procure an abstract of title or a commitment to issue a policy of title insurance (collectively "Title") on the Property.
- (c) Landlord hereby waives any and all lien rights it may have, statutory or otherwise, in and to the Tower Facilities or any portion thereof, regardless of whether or not same is deemed real or personal property under applicable laws.
- (d) The substantially prevailing party in any litigation arising hereunder is entitled to its reasonable attorney's fees and court costs, including appeals, if any.
- (e) Each party agrees to furnish to the other, within 30 days after request, such estoppel information as the other may reasonably request.
- (f) This Agreement constitutes the entire agreement and understanding of Landlord and American Tower with respect to the subject matter of this Agreement, and supersedes all offers, negotiations and other agreements. There are no representations or understandings of any kind not stated in this Agreement. Any amendments to this Agreement must be in writing and executed and delivered by Landlord and American Tower.
- (g) If either Landlord or American Tower is represented by a real estate broker in this transaction, that party is fully responsible for any fees due such broker and will hold the other party harmless from any claims for commission by such broker.
- (h) The Agreement will be construed in accordance with the laws of the state in which the Site is situated.
- (i) If any term of the Agreement is found to be void or invalid, the remainder of this Agreement will continue in full force and effect.
- (j) American Tower may obtain title insurance on its interest in the Site, and Landlord will cooperate by executing any documentation required by the title insurance company.
- (k) This Agreement may be executed in two or more counterparts, all of which are considered one and the same agreement and become effective when one or more counterparts have been signed by each of the parties, it being understood that all parties need not sign the same counterpart.
- (I) Landlord will not, during the Option Period or the Term, enter into any other lease, license, or other agreement for the same or similar purpose as the Intended Use, on or adjacent to the Property.

(m) Failure or delay on the part of either party to exercise any right, power or privilege hereunder will not operate as a waiver thereof and waiver of breach of any provision hereof under any circumstances will not constitute a waiver of any subsequent breach.

- (n) The parties agree that irreparable damage would occur if any of the provisions of this Agreement were not performed in accordance with their specified terms or were otherwise breached. Therefore, the parties agree the parties will be entitled to an injunction(s) in any court in the state in which the Site is located to prevent breaches of the provisions of this Agreement and to enforce specifically the terms and provisions of the Agreement, this being in addition to any other remedy to which the parties are entitled at law or in equity.
- (o) Each party executing this Agreement acknowledges that it has full power and authority to do so and that the person executing on its behalf has the authority to bind the party.
- (p) The parties agree that a scanned or electronically reproduced copy or image of this Agreement will be deemed an original and may be introduced or submitted in any action or proceeding as competent evidence of the execution, terms and existence hereof notwithstanding the failure or inability to produce or tender an original, executed counterpart of this Agreement and without the requirement that the unavailability of such original, executed counterpart of this Agreement first be proven.

[SIGNATURES APPEAR ON NEXT PAGE]

IN WITNESS WHEREOF, Landlord and American Tower have each executed this Agreement as of the respective dates written below.

LANDLORD: Cornelius Hollingshead and Adina K. Hollingshead, his wife

Name: Cornelius Hollingshead

Date: 12-05-13

Codina K. Nollingshead

Name: Adina K. Hollingshead

Date: 12-05-13

Acknowledgement

STATE OF ND COUNTY OF PEMBING

I, a Notary Public of the County and State aforesaid, certify that Cornelius Hollingshead and Adina K. Hollingshead, his wife came before me this day and acknowledged the execution of the foregoing instrument.

Witness my hand and official stamp or seal, this

けん day of

Notary Public

My commission expires:

[Affix Notary Seal]

SARAH WINKLER
Notary Public
State of North Dakota
My Commission Expires April 9, 2016

AMERICAN TOWER:

American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers LLC

By:
Name: Richard Rossi
Title: Vice President Legal
Date: 12-2-5-73

Acknowledgement

COMMONWEALTH OF MASSACHUSETTS)) ss:
COUNTY OF MIDDLESEX) 35.
On the day of Combined personally appeared Massissatisfactory evidence of identification, which were per is signed on the preceding or attached document, voluntarily for its stated purpose, as Marican Towers LLC, d/b/a Delaware American Towers LLC, d/b/a Delaware LLC, d/b/a Delaware LLC, d/b/a Delaware LLC, d/b/a Delaware LLC, d/b/a Delaware LLC, d/b/a Delaware LLC, d/b/a Delaware LLC, d/b/a Delaware LLC, d/b/a Delaware LL	and acknowledged that he/she signed it
•	
and the state of t	N. D. III
CONTRACTOR CONTRACTOR	Notary Public My Commission Expires:

The following exhibits are attached to this Agreement and incorporated into this Agreement:

Description or Depiction of Property Description or Depiction of Site Memorandum of Lease Exhibit A Exhibit B

Exhibit C

EXHIBIT A

DESCRIPTION OR DEPICTION OF PROPERTY

The Property is described and/or depicted as follows:

Beginning at a stake on northeast side of Williams Road, corner of Countis-Williams drive and being 1177 feet northwest of Hawy 144; thence with Williams Road right of way N-45-w-336' to a tree; thence N 46-W-238.6 ft. to a stake; thence, leaving road, N-20-46-E 10 ft to a fence post in the old William-Bates line; thence with fence S-56-46 1/2-E 200 ft; thence S 62-37-E 217.22 ft; thence S-76-29-E-56.44 ft; thence S-28-54-W 76.53 ft; thence S-47-47-E 77.56 ft. to fence post on northwest side of Countiss-Williams drive; thence with drive S-20-46-W 48.5 ft to point of beginning and containing .8 of acre more or less.

BEING the same property conveyed to Joseph Bauman, single, by deed from Kenneth Heavrin and Patricia Heavrin, his wife, and Mac Frazier and Sue Frazier, his wife, dated June 19, 2001 and recorded in Deed Book 275, page 148, Breckinridge County Clerk's Office.

AND

Three certain tracts or parcels of land lying and being in Breckinridge County, Kentucky, and more particularly described as follows:

Being Tract 9, consisting of 29.819 acres, Tract 10 consisting of 25.208 acres, and Tract 14, consisting of 17.212 acres, as set forth on the plat of the Melvin Martin property recorded in Plat Cabinet Slide A-318 in the Breckinridge County Clerk's Office, to which plat reference is hereby made for a more particular description of said property.

There is further conveyed with Tracts 9, 10, 14, and 15, the right of ingress and egress over a 40 foot right of way easement as shown on the plat of the Melvin Martin Property recorded in Plat Cabinet, Slide A-318, said Clerk's Office.

Tracts 9, 10, 14, and 15 are subject to a 40 foot right of way easement as shown on the plat of the Melvin Martin Property recorded in Plat Cabinet, Slide A-318, said Clerk's office.

SUBJECT HOWEVER, to the easements and restrictions as shown on the plat of the Melvin Martin Property recorded in Plat Cabinet Slide A-318 said Clerk's Office.

BEING a part of the same property conveyed to Isaac B. Martin and Lena M. Martin, his wife, by deed from Melvin B. Martin and Ruth E. Martin, his wife, dated February 25, 1999 and recorded in Deed Book 258, page 49, Breckinridge County Clerk's Office.

EXHIBIT B

DESCRIPTION OR DEPICTION OF SITE

Locations are approximate. American Tower may, at its option, replace this exhibit with a copy of the survey of the Site.

Compound:

Beginning at an existing iron rod found at the southwest corner of a Lot 6 found in Plat Cabinet A, Slide 318 of the Office of the Clerk, Breckinnidge County Kentucky; said Plat being the property conveyed to Cornelius Hollingshead in Deed Book 298, Page 681 and Deed Book 256, Page 774 in the aforesaid clerk's office; thence traversing said Property S61°50′18°E — 342.83′ to a set #5 iron rod with cap #3282 and the True Point Of Beginning of the proposed Lease Area; thence S62°48′31°E — 100.00′ to a set #5 iron rod with cap #3282; thence S27'11'29°W — 100.00′ to a set #5 iron rod with cap #3282; thence N62°48′31W — 100.00′ to a set #5 iron rod with cap #3282; thence N62°48′31W — 100.00′ to a set #5 iron rod with cap #3282; thence N27'11'29°E — 100.00′ to the point of beginning, containing 10,000 square feet as per survey by FStan Land Surveyors & Consulting Engineers, Frank L Sellinger, II, surveyor, dated October 21, 2013.

Access and Utility Easements:

Beginning at an existing iron rod found at the southwest corner of a Lot 6 found in Plat Cabinet A, Slide 318 of the Office of the Clerk, Breckinridge County Kentucky; said Plat being the property conveyed to Cornelius Hollingshead in Deed Book 298, Page 681 and Deed Book 256, Page 774 in the aloresaid clerk's office; thence traversing said Property S61'50'18'E - 342.83' to a set #5 iron rad with cap \$3282 and the True Point Of Beginning of the proposed Access &: Utility Easement; thence N2711'29"E - 38.47" to a set #5 iron rod with cap #3282; thence S62*48'31'E - 148.75' to a set #5 iron rod with cap #3282 and being on the east line of Lot 6 in said Plat; thence with said line for two calls S41 53'00'W - 47.27' to a set #5 iron rod with cap #3282; thence S2T12'06'W - 107.26' to a set #5 iron rod with cap #3282; thence \$33.20'01"W - 62.26' to a set mag nail in the center line of Williams Road; thence with said center line N49°54'33"W - 20.14" to a set mag nail; thence leaving said center line N33'20'01"E - 63.75' to a set #5 iron rod with cap #3282; thence N36'30'22"W - 19.27' to a set \$5 iron rod with cap \$3282; thence N27'11'29'E - 100.00' to a set \$5 iron rad with cap \$3282; thence N62*48'31"W - 100.00' to the paint of beginning, containing 10,769.6 square feet as per survey by FStan Land Surveyors & Consulting Engineers, Frank L Sellinger, II, surveyor, dated October 21, 2013.

EXHIBIT C

MEMORANDUM OF LEASE

[see following pages]

THIS DEED OF CONVEYANCE, made and entered into this the day of June, 2004, by and between JOSEPH BAUMAN, single, of 346 Williams Lane, Stephensport, Kentucky 40170, hereinafter referred to as the Grantor(s), and CORNELIUS HOLLINGSHEAD and ADINA HOLLINGSHEAD, his wife, of 226 Williams Lane, Stephensport, Kentucky 40170, hereinafter referred to as the Grantee(s).

WITNESSETH: That the Grantor(s), for and in consideration of the sum of ONE THOUSAND FIVE HUNDRED (\$1,500.00) DOLLAR(S), cash in hand paid, the receipt of which is hereby acknowledged, do hereby grant, sell and convey unto the Grantee(s), husband and wife, for their joint lives, with remainder in fee simple to the survivor of them, the following described property, to-wit:

Beginning at a stake on northeast side of Williams Road, corner of Countis-Williams drive and being 1177 feet northwest of Hgwy 144; thence with Williams Road right of way N-45-w-336' to a tree; thence N 46-W-238.6 ft. to a stake; thence, leaving road, N-20-46-E 10 ft to a fence post in the old William-Bates line; thence with fence S-56-46 1/2-E 200 ft; thence S 62-37-E 217.22 ft; thence S-76-29-E-56.44 ft; thence S-28-54-W 76.53 ft; thence S-47-47-E 77.56 ft. to fence post on northwest side of Countiss-Williams drive; thence with drive S-20-46-W 48.5 ft to point of beginning and containing .8 of acre more or less.

BEING the same property conveyed to Joseph Bauman, single, by deed from Kenneth Heavrin and Patricia Heavrin, his wife, and Mac Frazier and Sue Frazier, his wife, dated June 19, 2001 and recorded In Deed Book 275, page 148, Breckinridge County Clerk's Office.

TO HAVE AND TO HOLD the above described property, together with the appurtenances thereunto belonging, unto the Grantee(s), husband and wife, for their joint lives, with remainder in fee simple to the survivor of them, with Covenant of GENERAL WARRANTY, except as to the 2004 real estate taxes which shall be paid by Grantees.

SUBJECT, HOWEVER, to any restrictions, stipulations, and easements of record affecting said property.

The parties hereto state the consideration reflected in this deed is the full consideration paid for the property. The Grantee(s) join this deed for the sole purpose of certifying the consideration pursuant to Chapter 382 of KRS.

IN TESTIMONY WHEREOF, witness the signature(s) of the Grantor(s) and the Grantee(s), this the day and year first above written.

JOSEPH BAUMAN (Grantor)
Cornelius Wollingshead (Grantee) ADINA HOLLINGSHEAD (Grantee)
STATE OF KENTUCKY COUNTY OF BRECKINRIDGE SS The foregoing Deed of Conveyance and Consideration Certificate was acknowledged and swern to before me this 15 day of
STATE OF KENTUCKY COUNTY OF BRECKINRIDGE SS The foregoing Consideration Certificate was acknowledged and sworn to before me this 15 day of
THIS INSTRUMENT PREPARED BY: BRITE & BUTLER, PLLC ATTORNEYS AT LAW HARDINSBURG, KENTUCKY EXTRA PAGES TAX TAX TAX THIS INSTRUMENT PREPARED BY: BRITE & BUTLER, PLLC RECEIVED LO-/5-04 RECORDING FEE TAX TAX TAX TAX TAX TAX TAX TAX
STATE OF KENTUCKY, COUNTY OF BRECKINRIDGE, SCT. 1. CHARLES ALLEN WITSON, Clerk of the County and State alcreading, do certify that the terepoing instrument was on the day of the Mr. lodged for regard, whereupon the same with the foreigning and this ophilipate bays been duly recorded to prevent of the County of the County with the foreigning and this ophilipate bays been duly recorded to prevent of the County of the County Allen under my lend this day of the County Otherwise Allen Witson, Clerk of the County and State alcreading, do certify that the foreigning instrument was on the day of the County with the foreigning and this ophilipate bays been duly recorded to prevent of the County was on the County and State alcreading, do certify that the foreigning instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the learneoing instrument was on the County and State alcreading, do certify that the County and State alcreading the County and State alcreading the County and State alcreading the County and State alcreading the County and State alcreading the County and State alcreading the County and State alcreading the County and State alcreading the C

THIS DEED OF CONVEYANCE, made and entered into this the day of Dexast., 1998, by and between MELVIN B. MARTIN and RUTH E. MARTIN, his wife, of HC 72 Box 39, Stephensport, Breckinridge County, Kentucky 40170, hereinafter referred to as Grantors, and CORNELIUS HOLLINGSHEAD and ADINA HOLLINGSHEAD, his wife, of HC 72 Box 180 Stephensport, Breckinridge County, Kentucky 40170, hereinafter referred to as Grantees.

WITNESSETH: That the Grantors, for and in consideration of the sum of \$20,270.25 (TWENTY THOUSAND TWO HUNDRED SEVENTY DOLLARS AND TWENTY FIVE CENTS), cash in hand paid, the receipt of which is hereby acknowledged, do hereby sell, grant and convey to the Grantees for and during their joint lives with remeinder in fee simple to the survivor of them, the following described property, to-wit:

Three certain tracts or parcels of land lying and being in Breckinridge County, Kentucky, and more particularly described as follows:

Being Tract 6, consisting of 3.785 acres, Tract 7 consisting of 4.474 acres, and Tract 8, consisting of 11.822 acres, as set forth on the plat of the Melvin Martin property recorded in Plat Cabinet Slide A-318 in the Breckinridge County Clerk's Office, to which plat reference is hereby made for a more particular description of said property.

Being a part of the same property conveyed to Melvin B. Martin and Ruth E. Martin, his wife, from H. T. Williams, III and Coral Williams, his wife, by deed dated April 16, 1996, and recorded in Deed Book 238 at page 684 in the Breckinridge County Clerk's Office.

There is further conveyed with the above described property the right of ingress and egress over the 40 foot right of way easement as shown on the plat of the Melvin Martin Property recorded in Plat Cabinet, Slide A-318, said Clerk's office.

SUBJECT to a 40 foot right of way easement as shown on the plat of the Melvin Martin Property recorded in Plat Cabinet, Slide A-318, said Clerk's office.

SUBJECT HOWEVER, to the easements and restrictions as shown on the plat of the Melvin Martin Property recorded in Plat Cabinet Slide A-318 said Clerk's Office.

THE SAID MELVIN MARTIN REFERRED TO IN THE SAID PLAT OF THE MELVIN MARTIN PROPERTY IS ONE AND THE SAME PERSON AS MELVIN B. MARTIN, GRANTOR HEREIN.

TO HAVE AND TO HOLD the same in fee simple with all the appurtenances thereon, to the Grantees, for and during their joint lives, with remainder in fee simple to the survivor of them, with a Covenant of GENERAL WARRANTY.

Grantors covenant that they are lawfully seized in fee simple of the real estate hereby conveyed; with full right and power to convey the same and that said estate is free and clear of all encumbrances except State, County and School taxes for the year 1998, which shall be paid by the Grantors. Provided further, however, this conveyance is made subject to easements, restrictions, stipulations, and conditions either implied or of record.

The parties hereto state the consideration reflected in this deed is the full consideration paid for the property. The Grantees join in this deed for the sole purpose of certifying the consideration pursuant to Chapter 382 of the Kentucky Revised Statutes.

IN TESTIMONY WHEREOF, witness the signatures of the Grantors and Grantees herein, this the day, month and year first above written.

Molni B. Mart.
MELVIN B. MARTIN, GRANTOR

Ruth E. MARTIN, GRANTOR

Cornelius Hollingshead. CORNELIUS HOLLINGSHEAD, GRANTEE

adina Hollingshead, **GRANTEE**

STATE OF KENTUCKY COUNTY OF BRECKINRIDGE

I, the undersigned, a Notary Public, in and for the state and county aforesaid, do hereby certify that on this day the foregoing Deed of Conveyance from Melvin B. Martin and Ruth E. Martin, his wife, to Cornelius Hollingshead and Adina Hollingshead, his wife, and Consideration Certificate was produced before me in my said state and county by the Grantors and said Deed of Conveyance was signed and acknowledged and said Consideration Certificate was acknowledged and sworn to before me by Melvin B. Martin and Ruth E. Martin, his wife, to be their free act and deed and the free act and deed of each of them.

Given under my hand this 154k day of <u>December</u>, 1998. My commission expires <u>May 6, 1999</u>

Stephane Basham Kennedy NOTARY PUBLIC

STATE OF KENTUCKY COUNTY OF Breaking

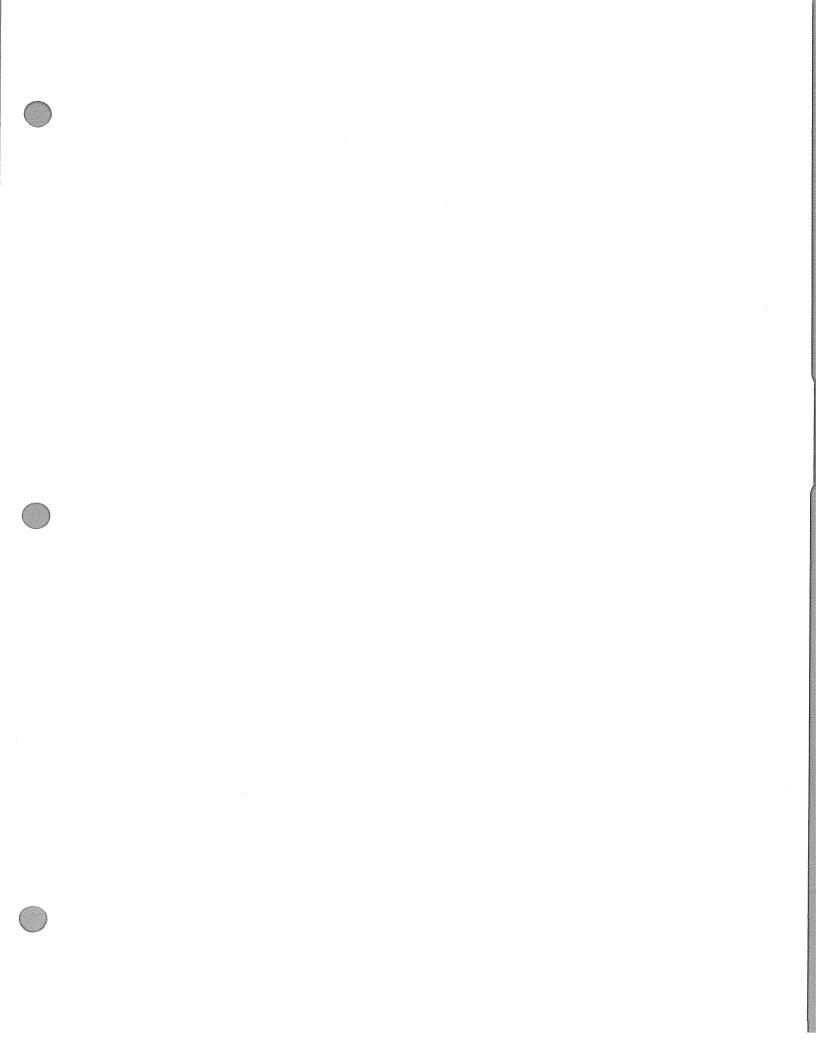
The foregoing Consideration Certificate was acknowledged and sworn to before me by Cornelius Hollingshead and Adina Hollingshead, his wife, this 19 day of December, 1998.

My commission expires 4-19-2000

NOTARY PUBLIC

STATE-AT-LARGE, KENTUCKY

NO TITLE EXAMINATION REQUESTED.


THIS INSTRUMENT PREPARED BY: HERBERT M. O'REILLY ATTORNEY AT LAW P. O. BOX 539

HARDINSBURG, KY 40143

RECEIVED. EXTRA PAGES

STATE OF KENTUCKY, COUNTY OF BRECKINGIDGE, SCT. I, CHARLES ALLEN WILSON, Clerk of the County and State shoreaud, do certify that theyloregoing instrument was on the Cardy of Control of Management of Manageme with the toregoing necorded in my said office in

Ghren under my hand the 3 day of CHARLES ANDEN MILDON, CLEIN

EXHIBIT K NOTIFICATION LISTING

Jake Horsley Landowner Notice Listing

Cornelius & Adina Hollingshead 226 Williams Lane Stephensport, KY 40170

Titus & Ruth S. Bauman 346 Williams Lane Stephensport, KY 40170

Paul E. & Donna S. Freadreacea 4874 Brenda Dr. Louisville, KY 40219

Briar Patch Farms LLC T. Darren Brown, President 6640 Hwy 79 Guston, KY 40142

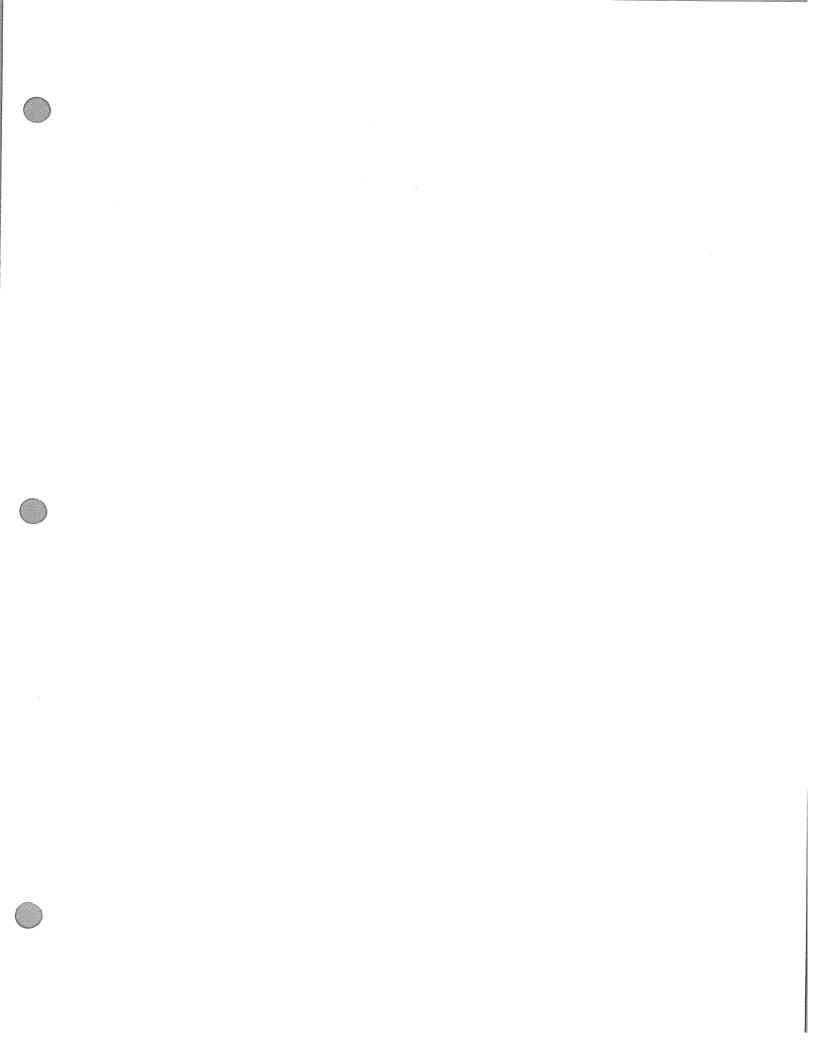
Bennie W. Keith & Daniel R. Keith 212 Sandstone Rd. Shepherdsville, KY 40165

Jonathan & Marion & H. Rosalie Whelan 4300 Old St. Rd. Brandenburg, KY 40108

Nathan H. & Violet G. Huber 13233 E. Hwy 144 Stephensport, KY 40170

Conroy Lee & Bonita K. Smith 12915 N. Hwy 259 Stephensport, KY 40170

Lonnie R. & Dorothy L. Lawson 636 Old State Road Brandenburg, KY 40108


George & Helen Brown 519 Williams Ln. Stephensport, KY 40170

Ernest & Susan Rutherford 686 Williams Ln. Stephensport, KY 40170

Gary R. & Patricia Simmons 752 Williams Ln. Stephensport, KY 40170

B.J. Espy Sr. Living Trust BJ Espy Sr. Trustee PO Box 549 Brandenburg, KY 40108 Milton Jr. & Connie Horsley 101 Jays Ln. Stephensport, KY 40170

Paul D. Miller & WM H. Powers 120 Circle Dr. Hardinsburg, KY 40143

EXHIBIT L COPY OF PROPERTY OWNER NOTIFICATION

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

Notice of Proposed Construction of Wireless Communications Facility Site Name: Jake Horsley

Dear Landowner:

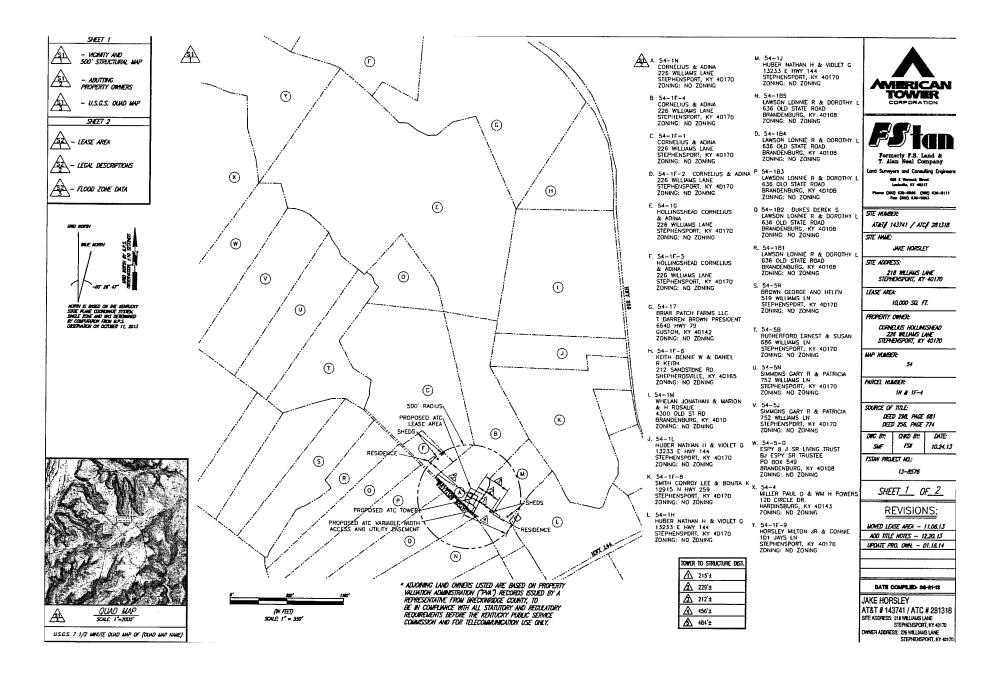
New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 218 Williams Lane, Stephensport, Kentucky 40170 (37°55′53.15" North latitude, 86°28′37.73" West longitude). The proposed facility will include a 255-foot tall antenna tower, plus a 10-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

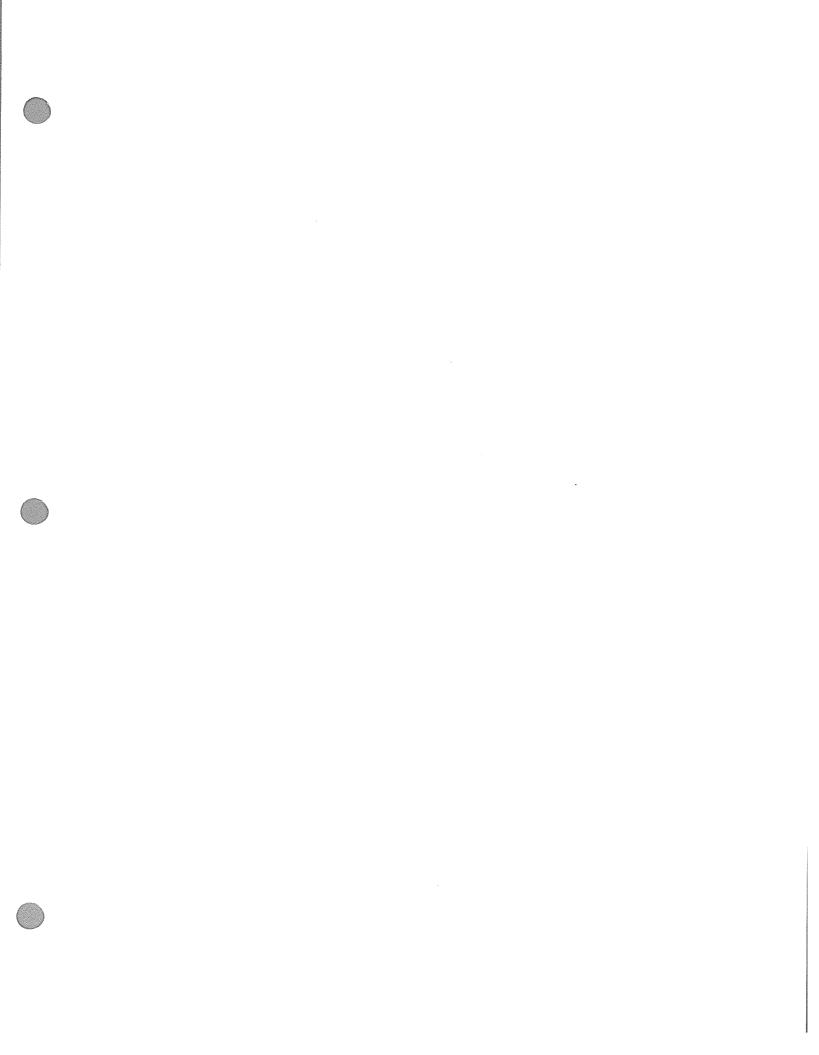
This notice is being sent to you because the Breckinridge County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2014-00017 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. AT&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us toll free at (800) 516-4293 if you have any comments or questions about this proposal.

Sincerely, David A. Pike Attorney for AT&T Mobility

enclosure


Driving Directions to Proposed Tower Site at Jake Horsley


- 1. Beginning at the Breckinridge County Courthouse, located at 111 West 2nd Street in Hardinsburg, Kentucky, travel east on 2nd street to Ky-259 N / S. Main Street.
- 2. Turn left onto Ky-259 N / S. Main Street and travel approximately 12.7 miles.
- 3. Turn left onto Ky-144 W and travel approximately 0.3 miles.
- 4. Turn right onto Countiss Williams Road and travel approximately 0.2 miles.
- 5. The proposed site is on the left at 218 Williams Lane, Stephensport, Kentucky 40170.
- 6. The site coordinates are
 - a. North 37 deg 55' 53.15"
 - b. West 86 deg 28' 37.73"

Prepared by: Aaron L. Roof Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT M COPY OF COUNTY JUDGE/EXECUTIVE NOTICE

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA CERTIFIED MAIL

Hon. Maurice Lucas
Breckinridge County Judge Executive
Breckinridge County Courthouse Annex
P.O. Box 227
Hardinsburg, KY 40143

RE: Notice of Proposal to Construct Wireless Communications Facility

Kentucky Public Service Commission Docket No. 201-00017

Site Name: Jake Horsley

Dear Judge Lucas:

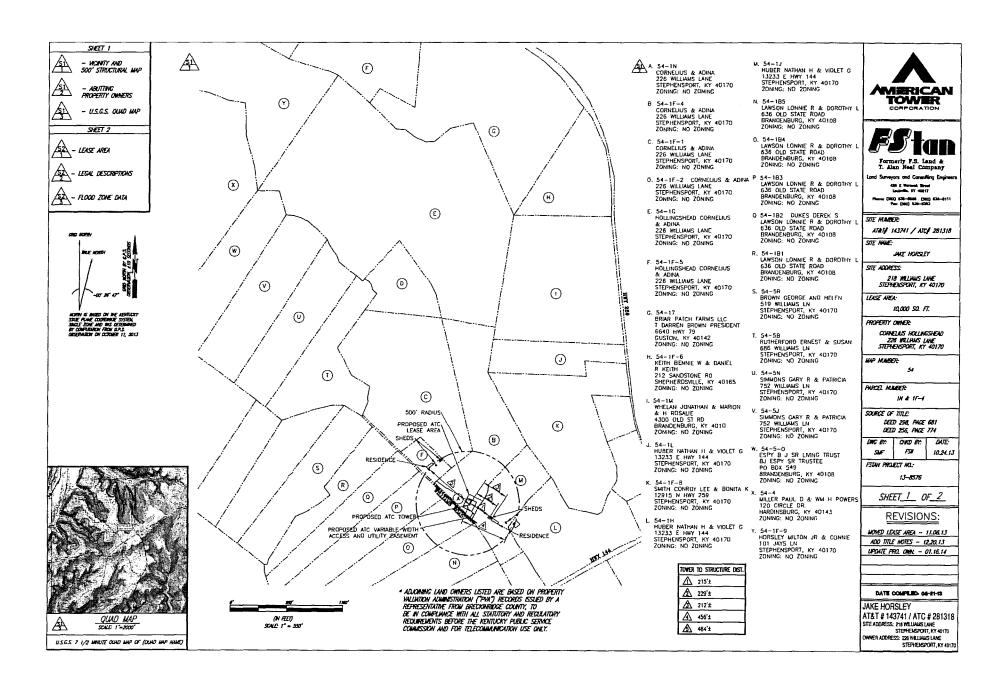
New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 218 Williams Lane, Stephensport, Kentucky 40170 (37°55′53.15" North latitude, 86°28′37.73" West longitude). The proposed facility will include a 255-foot tall antenna tower, plus a 10-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

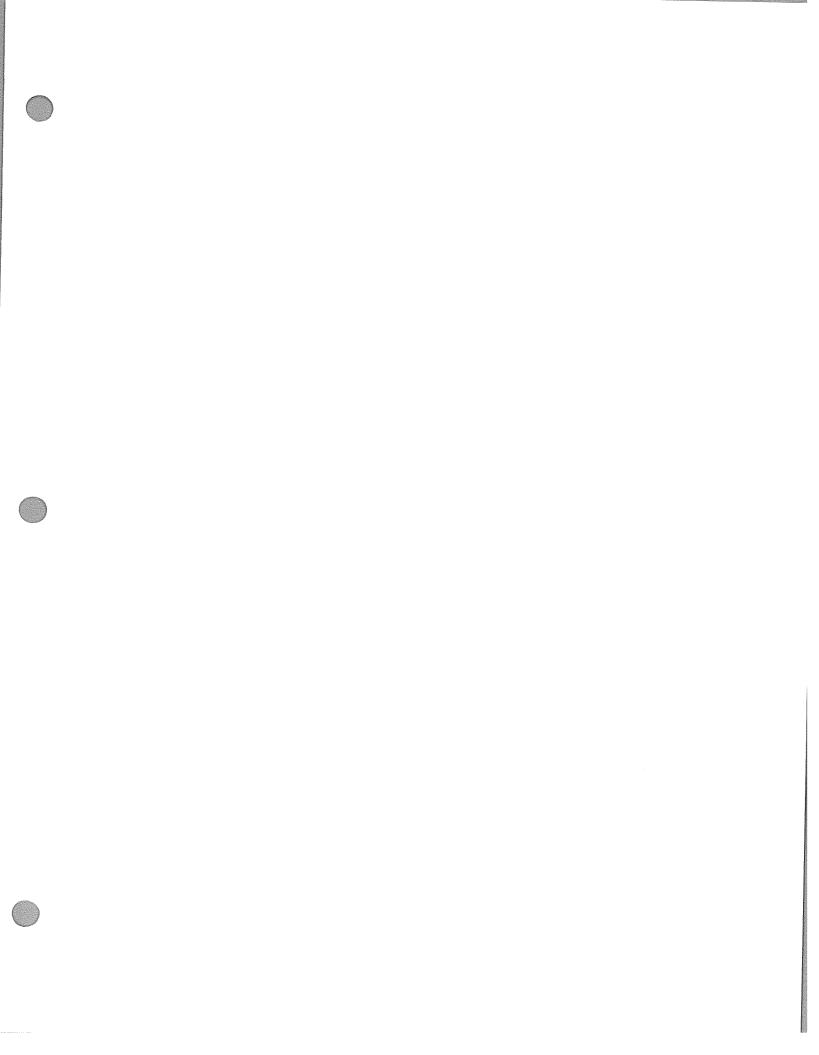
You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2014-00017 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. AT&T Mobility's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely,

David A. Pike Attorney for AT&T Mobility enclosures


Driving Directions to Proposed Tower Site at Jake Horsley


- Beginning at the Breckinridge County Courthouse, located at 111 West 2nd Street in Hardinsburg, Kentucky, travel east on 2nd street to Ky-259 N / S. Main Street.
- 2. Turn left onto Ky-259 N / S. Main Street and travel approximately 12.7 miles.
- 3. Turn left onto Ky-144 W and travel approximately 0.3 miles.
- 4. Turn right onto Countiss Williams Road and travel approximately 0.2 miles.
- 5. The proposed site is on the left at 218 Williams Lane, Stephensport, Kentucky 40170.
- 6. The site coordinates are
 - a. North 37 deg 55' 53.15"
 - b. West 86 deg 28' 37.73"

Prepared by:
Aaron L. Roof
Pike Legal Group PLLC
1578 Highway 44 East, Suite 6
P.O. Box 369
Shepherdsville, KY 40165-3069

Telephone: 502-955-4400 or 800-516-4293

EXHIBIT N COPY OF POSTED NOTICES

SITE NAME: JAKE HORSLEY NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "tower," which is at least four (4) inches in height.

New Cingular Wireless PCS, LLC d/b/a AT&T Mobility proposes to construct a telecommunications **tower** on this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165 (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number Case No. 2014-00017 in your correspondence.

New Cingular Wireless PCS, LLC d/b/a AT&T Mobility proposes to construct a telecommunications **tower** near this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165 (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number Case No. 2014-00017 in your correspondence.

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA TELEFAX: 270-756-1003

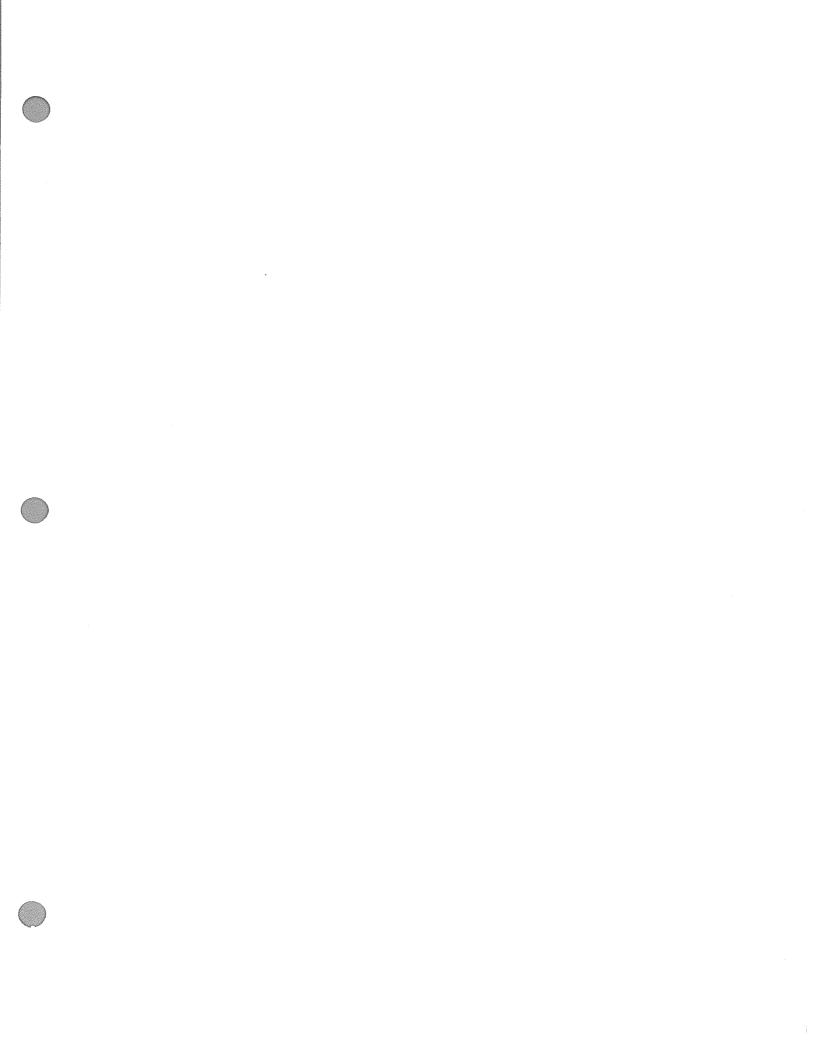
The Breckinridge Herald-News Attn: Carol Fennerty or Angie Wheatley 120 Old Highway 60 P.O. Box 6 Hardinsburg, KY 40143

RE: Legal Notice Advertisement

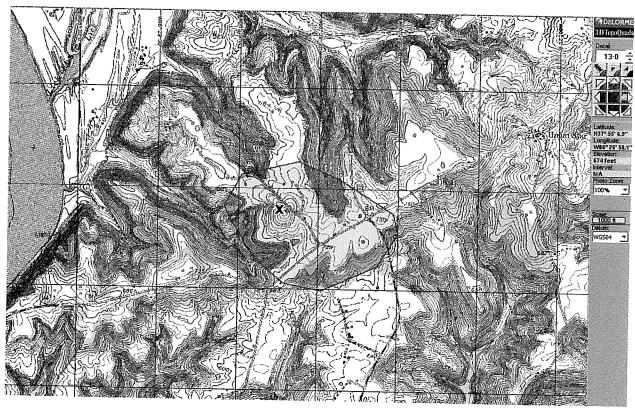
Site Name: Jake Horsley

Dear Ms. Fennerty or Wheatley:

Please publish the following legal notice advertisement in the next edition of *The Breckinridge Herald-News*:


NOTICE

New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility and American Towers LLC, a Delaware limited liability company d/b/a Delaware American Towers have filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at 218 Williams Lane, Stephensport, Kentucky 40170 (37°55'53.15" North latitude, 86°28'37.73" West longitude). You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2014-00017 in any correspondence sent in connection with this matter.


After this advertisement has been published, please forward a tearsheet copy, affidavit of publication, and invoice to Pike Legal Group, PLLC, P. O. Box 369, Shepherdsville, KY 40165. Please call me at (800) 516-4293 if you have any questions. Thank you for your assistance.

Sincerely,

Aaron L. Roof Pike Legal Group, PLLC

EXHIBIT O COPY OF RADIO FREQUENCY DESIGN SEARCH AREA

Jake Horsley: 37.931583 -86.47908