Sample Calculations, Stack Outlet, Method 5B/202, Run 1

Area of Sample Location

$$A_s = \pi \times \left(\frac{d_s}{2 \times 12}\right)^2$$

$$A_s = \pi \times \left(\frac{408}{2 \times 12}\right)^2$$

$$A_s = 908 ft^2$$

where:

 A_s = area of sample location (ft^2)

d_s = diameter of sample location (in)

= conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

$$P_a = 29.56 + \frac{-0.2}{13.6}$$

$$P_a = 29.55 in.Hg$$

where:

P_a = stack pressure absolute (in. Hg)

 P_b = barometric pressure (in. Hg)

 P_s = static pressure (in. H_2O)

13.6 = conversion factor (in. $H_2O/in. Hg$)

Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure

$$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$

$$V_{m(std)} = \frac{17.64(54.71)(0.9891)\left(29.56 + \frac{1.17}{13.6}\right)}{(100 + 460)}$$

$$V_{m(std)} = 50.54scf$$

where:

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) $V_{\rm m}$ = volume of gas sampled at meter conditions (ft³) Y_d = gas meter correction factor (dimensionless) P_{h} = barometric pressure (in. Hg) = average sample pressure (in. H₂O) ΔΗ = average gas meter temperature (°F) T_{m} 13.6 = conversion factor (in. H_2O/in . Hg) 17.64 = ratio of standard temperature over standard pressure (°R/in.Hg) 460 = conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure

$$\begin{aligned} V_{w(std)} &= 0.04715 \times \left(V_{wc} + V_{wsg}\right) \\ V_{w(std)} &= 0.04715 \times \left(150.4 + 25.6\right) \\ V_{w(std)} &= 8.30 scf \end{aligned}$$

where:

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf) V_{wc} = weight of liquid collected (g) V_{wsg} = weight gain of silica gel (g) 0.04715 = volume occupied by one gram of water at standard temperature and

pressure (ft³/g)

Percent Moisture²

$$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})} \right]$$

$$B_{ws} = 100 \times \left[\frac{8.30}{(50.54 + 8.30)} \right]$$

 $B_{ws} = 14.1\%$

where:

 B_{ws} = moisture content of the gas stream (%)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

 $V_{v,(std)}$ = volume of water vapor at standard conditions (scf)

100 = conversion factor

Molecular Weight of Dry Gas Stream³

$$\begin{split} M_d = & \left(44 \times \frac{\%CO_2}{100} \right) + \left(32 \times \frac{\%O_2}{100} \right) + \left(28 \times \frac{\left(\%N_2\right)}{100} \right) \\ M_d = & \left(44 \times \frac{12.7}{100} \right) + \left(32 \times \frac{6.53}{100} \right) + \left(28 \times \frac{\left(80.8\right)}{100} \right) \end{split}$$

 $M_d = 30.29lb / lbmole$

where:

 M_d = molecular weight of the dry gas stream (lb/lb-mole)

%CO₂ = carbon dioxide content of the dry gas stream (%)

44 = molecular weight of carbon dioxide (lb/lb-mole)

%O₂ = oxygen content of the dry gas stream (%)

= molecular weight of oxygen (lb/lb-mole)

 $\%N_2$ = nitrogen content of the dry gas stream (%)

28 = molecular weight of nitrogen and carbon monoxide (lb/lb-mole)

100 = conversion factor

² The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content.

³ The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

Molecular Weight of Wet Gas Stream

$$M_{s} = \left(M_{d} \times \left(1 - \frac{B_{ws}}{100}\right)\right) + \left(18 \times \frac{B_{ws}}{100}\right)$$

$$M_{s} = \left(30.29 \times \left(1 - \frac{14.1}{100}\right)\right) + \left(18 \times \frac{14.1}{100}\right)$$

$$M_{s} = \left(30.29 \times \left(1 - \frac{14.1}{100}\right)\right) + \left(18 \times \frac{14.1}{100}\right)$$

 $M_s = 28.56lb/lbmole$

where:

M_s = molecular weight of the wet gas stream (lb/lb-mole)

M_d = molecular weight of the dry gas stream (lb/lb-mole)

B_{ws} = moisture content of the gas stream (%) 18 = molecular weight of water (lb/lb-mole)

100 = conversion factor

Velocity of Gas Stream

$$V_{s} = 85.49 \left(C_{p} \left(\sqrt{\Delta P}\right) \sqrt{\frac{\left(T_{s} + 460\right)}{\left(M_{s}\right)\left(P_{b} + \frac{P_{s}}{13.6}\right)}}$$

$$V_{s} = 85.49 (0.84)(0.466) \sqrt{\frac{(129 + 460)}{(28.56)(29.56 + \frac{-0.2}{13.6})}}$$

$$V_{\rm s} = 28.0 \, ft \, / \sec$$

where:

 V_s = average velocity of the gas stream (ft/sec)

C_p = pitot tube coefficient dimensionless

 $\sqrt{\Delta P}$ = average square root of velocity pressures (in. H₂O)^{1/2}

T_s = average stack temperature (°F)

M_s = molecular weight of the wet gas stream (lb/lb-mole)

P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O)

85.49 = pitot tube constant (ft/sec)([(lb/lb-mole)(in, Hg)]/[(0 R)(in, H₂O)]) $^{1.2}$

 $= conversion (^{\circ}F to ^{\circ}R)$

13.6 = conversion factor (in. H_2O/in , H_2O/in , H_2O/in)

Volumetric Flow of Gas Stream - Actual Conditions

 $Q_a = 60(V_s)(A_s)$

 $Q_a = 60(28.0)(908)$

 $Q_a = 1,522,906acfm$

where:

volumetric flow rate of the gas stream at actual conditions (acfm) Qa

= average velocity of the gas stream (ft/sec) = area of duct or stack (ft²)

 A_s = conversion factor (min/hr)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{(T_s + 460)}$$

$$Q_{std} = \frac{17.64(1,522,906)\left(29.56 + \frac{-0.2}{13.6}\right)}{\left(129 + 460\right)}$$

$$Q_{std} = 1,348,504scfm$$

where:

Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm)

= volumetric flow rate of the gas stream at actual conditions (acfm) O_a

 T_s = average stack temperature (°F) P_b = barometric pressure (in. Hg)

= static pressure of gas stream (in. H₂O) P_s

= conversion factor (in. H₂O/in. Hg) 13.6

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg)

460 = conversion (°F to °R)

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

$$Q_{dstd} = 1,348,504 \left(1 - \frac{14.1}{100}\right)$$

$$Q_{dstd}=1{,}158{,}769dscfm$$

where:

= volumetric flow rate of the gas stream at standard conditions, on a dry Q_{dstd}

basis (dscfm)

= volumetric flow rate of the gas stream at standard conditions (scfm) Q_{std}

= moisture content of the gas stream (%) $\mathbf{B}_{\mathbf{ws}}$

100 = conversion factor

Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$

$$A_n = \pi \times \left(\frac{0.312}{2 \times 12}\right)^2$$

$$A_n = 0.000531 ft^2$$

where:

 A_n

= area of nozzle (ft²) = diameter of no = diameter of nozzle (in)

= conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Percent Isokinetic

$$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{ws}}{100}\right)}$$

$$I = \frac{0.0945(129 + 460)(50.54)}{\left(29.56 + \frac{-0.2}{13.6}\right)(28.0)(5.31 \times 10^{-4})(90)\left(1 - \frac{14.1}{100}\right)}$$

$$I = 82.9\%$$

where:

= percent isokinetic (%) Ι

 T_s = average stack temperature (°F)

= volume of gas collected at standard temperature and pressure (scf)

= barometric pressure (in. Hg)

= static pressure of gas stream (in. H₂O) P_s V_{s} = average velocity of the gas stream (ft/sec)

= cross sectional area of nozzle (ft^2) A_n

Θ = sample time (min)

= moisture content of the gas stream (%) B_{ws}

= constant (⁰R/in. Hg) 0.0945 = conversion (°F to °R) 460

= conversion factor (in. H₂O/in Hg) 13.6

100 = conversion factor

Acetone Wash Blank-Particulate

$$W_a = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$

$$W_a = \frac{(0.0000)(200)}{100}$$

$$W_a = 0.0000g$$

where:

 W_a = particulate mass in acetone wash, blank corrected (g)

 m_{ab} = mass collected, acetone wash blank (g)

= volume of acetone wash (ml) \mathbf{v}_{aw}

= volume of acetone wash blank (ml) Vawb

Mass in Front Half, Acetone Blank Corrected

$$m_f = m_{fil} + (m_a - W_a)$$

 $m_f = 0.0053 + (0.0289 - 0.0000)$

$$m_f = 0.0053 + (0.0289 - 0.0000)$$

$$m_f = 0.0342g$$

where:

= mass in front half filter, and acetone wash, blank corrected (g) $m_{\rm f}$

= mass in front half filter (g) $m_{\rm fil}$ = mass in acetone wash (g) m_a

= particulate mass in acetone wash blank (g) W_a

Total Particulate Catch

$$M_n = m_f + m_b$$

$$M_{\rm h} = 0.0342 + 0.0172$$

$$M_n = 0.0513g$$

where:

 M_n = total mass catch (g)

= mass in front half filter, and acetone wash, blank corrected (g) $m_{\rm f}$

= mass in back half organic fraction, and inorganic fraction, blank m_b (g)

corrected

Total Particulate Concentration, grains/dscf

$$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$

$$C_{gr/dscf} = \frac{(0.0513)(15.43)}{50.54}$$

$$C_{gr/dscf} = 0.0157 \, grains / \, dscf$$

where:

Cgr.dscf particulate concentration (grains/dscf)

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

15.43 = conversion factor (grains/g)

Calculated F_d Factor, dscf/mmBtu

$$F_d = K((K_{hd} \times H) + (K_c \times C) + (K_s \times S) + (K_n \times N) - (K_o \times O_2)) / GCV_w$$

$$F_d = 10^6 ((3.64 \times 4.53) + (1.53 \times 74.48) + (0.57 \times 4.20) + (0.14 \times 1.44) - (0.46 \times 7.62)) / 13,129$$

$$F_d = 9,866$$

where:

F_d = calculated fuel factor (dscf/mmBtu)

K = conversion factor (Btu/million Btu)

 K_{hd} = constant (scf/lb)

H = weight percent hydrogen in coal (%)

K_c = constant (scf/lb)

C = weight percent carbon in coal (%)

K_s = constant (scf/lb)

S = weight percent sulfur in coal (%)

 $K_n = constant (scf/lb)$

N = weight percent nitrogen in coal (%)

 $K_o = constant (scf/lb)$

 O_2 = weight percent oxygen in coal (%)

GCV_w = gross calorific value of fuel, wet (Btu/lb)

Total Particulate Emission Rate, lb/mmBtu 4

$$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$

$$E_{PM} = \frac{(0.0513)(9,866)(20.9)}{(50.54)(453.6)(20.9 - 6.53)}$$

$$E_{PM} = 0.0321lb / mmBtu$$

where:

E_{PM} = total particulate matter emission rate, (lb/mmBtu)

M_n = total particulate catch (g) F_d = fuel factor (dcsf/mmBtu)

20.9 = oxygen content of ambient air (%)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

453.6 = conversion factor (g/lb)

 $\%O_2$ = oxygen content of the dry gas stream (%)

Total Particulate Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m,std})(453.6)}$$

$$E_{lb/hr} = \frac{(0.0513)(1,158,769)(60)}{(50.54)(453.6)}$$

$$E_{lb/hr} = 156lb/hr$$

where:

 $E_{lb/hr}$ = particulate emission rate (lb/hr)

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

60 = conversion factor (min/hr) 453.6 = conversion factor (g/lb)

⁴ All particulate emission rates are calculated in a similar manner.

Sample Calculations, Method 26A, Run 1

Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)

$$C_{HCL} = \frac{\left(M_{HCl}\right)}{\left(V_{m(sld)}\right)\left(10^{3}\right)\left(453.6\right)}$$

$$C_{HCl} = \frac{\left(0.194\right)}{\left(74.34\right)\left(10^{3}\right)\left(453.6\right)}$$

$$C_{HCl} = 5.75 \times 10^{-9} \, lb \, / \, dscf$$

where:

= concentration of hydrogen chloride in flue gas (lb/dscf) C_{HC1}

 M_{HCl} = mass of hydrogen chloride collected in sample (mg) $V_{m(std)}$ = volume of gas collected at standard temperature and = conversion factor (mg/g) = volume of gas collected at standard temperature and pressure (scf)

453.6 = conversion factor (g/lb)

Concentration of Hydrogen Chloride in Flue Gas (ppmdv)

$$C_{ppmv} = \frac{\left(M_{HCl}\right)(385.3)(10^{6})}{\left(MW_{HCl}\right)\left(V_{m(std)}\right)(10^{3})(453.6)}$$

$$C_{ppmv} = \frac{\left(0.194\right)(385.3)(10^{6})}{\left(36.458\right)(74.34)(10^{3})(453.6)}$$

$$C_{ppmv} = 0.0608 \, ppmdv$$

where:

= concentration of hydrogen chloride in flue gas (ppmv) C_{ppmv} M_{HCI} = mass of hydrogen chloride collected in sample (mg)

385.3 = = volume occupied by one pound gas at standard conditions

(dscf/lbmole)

 10^{6} = conversion factor (fraction to ppm)

= molecular weight of hydrogen chloride (lb/lb-mole) MW_{HCl}

= volume of gas collected at standard temperature and pressure (scf) $V_{m(std)}$

 10^{3} = conversion factor (mg/g) 453.6 = conversion factor (g/lb)

Hydrogen Chloride Emission Rate, lb/mmBtu

$$E_{HCI} = \frac{(C_{HCI})(F_d)(20.9)}{(20.9 - O_2)}$$

$$E_{HCI} = \frac{(5.75 \times 10^{-9})(9,971)(20.9)}{(20.9 - 6.92)}$$

 $E_{HCl} = 0.0000858lb / mmBtu$

where:

E_{HCl} = hydrogen chloride emission rate, (lb/mmBtu) C_{HCl} = hydrogen chloride concentration, (lb/dscf)

 F_d =fuel factor (dcsf/mmBtu)

20.9 = oxygen content of ambient air (%)

 $\%O_2$ = oxygen content of the dry gas stream (%)

Hydrogen Chloride Emission Rate

$$E_{HCl} = C_{HCl} \times Q_{dstd} \times 60$$

$$E_{HCI} = 5.75 \times 10^{-9} \times 1{,}184{,}178 \times 60$$

$$E_{HCl} = 0.409 lb / hr$$

where:

 E_{HCl} = hydrogen chloride emission rate, (lb/hr)

 C_{ppmdv} = hydrogen chloride concentration, dry basis, (ppmdv)

Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

MW = molecular weight of hydrogen chloride (lb/lbmole)

= conversion factor (min/hr)

385.3 = volume occupied by one pound gas at standard conditions (dscf/lbmole)

 10^6 = conversion factor (fraction to ppm)

Sample Calculations, Method 29, Run 1

Concentration of Lead in Flue Gas, ug/dscm⁵

$$C_{ug/dscm} = \frac{(M_C)}{(V_{m(std)})} (35.31)$$

$$C_{ug/dscm} = \frac{(5.36)}{(64.59)} (35.31)$$

$$C_{ug/dscm} = 2.93ug/dscm$$

where:

 $C_{ug/dscm}$ = concentration of lead in flue gas (ug/dscm)

 M_C = mass of lead in sample (ug) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure(scf)

= conversion factor (ft^3/m^3) 35.31

Emission Rate of Lead in Flue Gas, lb/mmBtu⁶

$$E = \frac{(C_{ug/dscm})(F_d)(20.9)}{(35.315)(20.9 - \%O_2)(453.6)(10^6)}$$

$$E = \frac{(2.93)(9.971)(20.9)}{(35.31)(20.9 - 6.92)(453.6)(10^6)}$$

$$E = 2.72 \times 10^{-6} \, mg \, / \, dscm @ 7\%O_2$$

where:

E = lead emission rate (lb/mmBtu) Cug/dscm = lead concentration (ug/dscm)

F_d 35.31 20.9 =fuel factor (dcsf/mmBtu) =conversion factor (ft³/m³)

= oxygen content of ambient air (%)

 $\%O_2$ = oxygen content of the dry gas stream (%)

453.6 = conversion factor (g/lb) 10^{6} = conversion factor (ug/g)

⁵ The concentrations of all MHs and mercury are calculated in a similar manner.

⁶ The emission rates of all MHs and mercury are calculated in a similar manner.

Lead Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(C_{ug/dscm})(Q_{dstd})(60)}{(35.31)(10^6)(453.6)}$$

$$E_{lb/hr} = \frac{(2.93)(1,187,686)(60)}{(35.31)(10^3)(10^3)(453.6)}$$

$$E_{lb/hr} = 0.0130lb/hr$$

where:

= lead emission rate (lb/hr) E_{lb.'hr} C_{ug/dscm} = lead concentration (ug/dscm) = volumetric flow rate of dry gas stream at standard conditions (dscfm) Q_{dstd} 10^3 = conversion factor (ug/mg) 10^3 = conversion factor (mg/g) = conversion factor (ft³/m³) 35.31 60.0 = conversion factor (min/hr) = conversion factor (g/lb) 453.6