Sample Calculations

Sample Calculations, Unit 2 Stack, Method 5B/202, Run 1

Area of Sample Location

$$A_s = \pi \times \left(\frac{d_s}{2 \times 12}\right)^2$$

$$A_s = \pi \times \left(\frac{192.0}{2 \times 12}\right)^2$$

$$A_s = 201 ft^2$$

where:

 A_s = area of sample location (ft^2)

d_s = diameter of sample location (in)

= conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

$$P_a = 29.41 + \frac{-0.4}{13.6}$$

$$P_a = 29.38in.Hg$$

where:

 P_a = stack pressure absolute (in. Hg)

P_b = barometric pressure (in. Hg)

 P_s = static pressure (in. H_2O)

13.6 = conversion factor (in. H_2O/in . Hg)

Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure

$$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$

$$V_{m(std)} = \frac{17.64(52.01)(1.0141)\left(29.41 + \frac{1.12}{13.6}\right)}{(105 + 460)}$$

$$V_{m(std)} = 48.61scf$$

where:

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) = volume of gas sampled at meter conditions (ft³) Y_d = gas meter correction factor (dimensionless) = barometric pressure (in. Hg) P_b = average sample pressure (in. H₂O) ΔН T_{m} = average gas meter temperature (°F) 13.6 = conversion factor (in. H_2O/in . Hg) = ratio of standard temperature over standard pressure (°R/in, Hg) 17.64 460 = conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure

$$\begin{split} V_{w(std)} &= 0.04715 \times \left(V_{wc} + V_{wsg}\right) \\ V_{w(std)} &= 0.04715 \times \left(143.9 + 34.7\right) \\ V_{w(std)} &= 8.42scf \end{split}$$

where:

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf) V_{wc} = weight of liquid collected (g)

 V_{wc} = weight of liquid collected (g) V_{wsg} = weight gain of silica gel (g)

0.04715 = volume occupied by one gram of water at standard temperature and

pressure (ft³/g)

Percent Moisture²

$$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})} \right]$$

$$B_{ws} = 100 \times \left[\frac{8.42}{(48.61 + 8.42)} \right]$$

$$B_{ws} = 14.8\%$$

where:

 B_{ws} = moisture content of the gas stream (%)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf)

100 = conversion factor

Molecular Weight of Dry Gas Stream³

$$\begin{split} M_d &= \left(44 \times \frac{\%CO_2}{100}\right) + \left(32 \times \frac{\%O_2}{100}\right) + \left(28 \times \frac{\left(\%N_2\right)}{100}\right) \\ M_d &= \left(44 \times \frac{12.8}{100}\right) + \left(32 \times \frac{6.20}{100}\right) + \left(28 \times \frac{\left(81.0\right)}{100}\right) \end{split}$$

 $M_d = 30.30lb/lbmole$

where:

M_d = molecular weight of the dry gas stream (lb/lb-mole)

%CO₂ = carbon dioxide content of the dry gas stream (%)

= molecular weight of carbon dioxide (lb/lb-mole)

%O₂ = oxygen content of the dry gas stream (%)

32 = molecular weight of oxygen (lb/lb-mole)

%N₂ introgen content of the dry gas stream (%)

28 = molecular weight of nitrogen and carbon monoxide (lb/lb-mole)

100 = conversion factor

² The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content.

³ The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

Molecular Weight of Wet Gas Stream

$$\begin{split} M_s = & \left(M_d \times \left(1 - \frac{B_{ws}}{100} \right) \right) + \left(18 \times \frac{B_{ws}}{100} \right) \\ M_s = & \left(30.30 \times \left(1 - \frac{14.8}{100} \right) \right) + \left(18 \times \frac{14.8}{100} \right) \\ M_s = & 28.48 lb / lbmole \end{split}$$

where:

 M_s = molecular weight of the wet gas stream (lb/lb-mole)

 M_d = molecular weight of the dry gas stream (lb/lb-mole)

B_{ws} = moisture content of the gas stream (%) 18 = molecular weight of water (lb/lb-mole)

100 = conversion factor

Velocity of Gas Stream

$$V_{s} = 85.49(C_{p})\sqrt{\overline{\Delta P}}\sqrt{\frac{(T_{s} + 460)}{(M_{s})(P_{b} + \frac{P_{s}}{13.6})}}$$

$$V_{s} = 85.49(0.84)(0.707)\sqrt{\frac{(130 + 460)}{(28.48)(29.41 + \frac{-0.4}{13.6})}}$$

$$V_s = 42.6 \, ft / \sec$$

where:

 V_s = average velocity of the gas stream (ft/sec)

C_p = pitot tube coefficient dimensionless

 $\sqrt{\Delta P}$ = average square root of velocity pressures (in. H₂O)^{1/2}

 T_s = average stack temperature (°F)

 M_s = molecular weight of the wet gas stream (lb/lb-mole)

P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O)

85.49 = pitot tube constant (ft/sec)([(lb/lb-mole)(in, Hg)]/[(0 R)(in, H₂O)]) $^{1/2}$

= conversion ($^{\circ}$ F to $^{\circ}$ R)

13.6 = conversion factor (in. H_2O/in . H_3O/in .

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_a = 60(V_s)(A_s)$$

$$Q_a = 60(42.6)(201)$$

 $Q_a = 513,880$ acfm

where:

Q_a = volumetric flow rate of the gas stream at actual conditions (acfm)

 V_s = average velocity of the gas stream (ft/sec)

A_s = area of duct or stack (ft²) 60 = conversion factor (min/hr)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{(T_s + 460)}$$

$$Q_{std} = \frac{17.64(513,880)\left(29.41 + \frac{-0.4}{13.6}\right)}{(130 + 460)}$$

$$Q_{std} = 451,663scfm$$

where:

Q_{std} volumetric flow rate of the gas stream at standard conditions (scfm)

Q_a = volumetric flow rate of the gas stream at actual conditions (acfm)

 T_s = average stack temperature (°F)

 P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O)

13.6 = conversion factor (in. H_2O/in . Hg)

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg)

= conversion ($^{\circ}$ F to $^{\circ}$ R)

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

$$Q_{dstd} = 451,663 \left(1 - \frac{14.8}{100} \right)$$

$$Q_{dstd} = 385,124 dsc fm$$

where:

= volumetric flow rate of the gas stream at standard conditions, on a dry Q_{dstd}

basis (dscfm)

Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm)

 B_{wsat} = moisture saturation point of the gas stream (%)

100 = conversion factor

Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$

$$A_n = \pi \times \left(\frac{0.230}{2 \times 12}\right)^2$$

$$A_n = 0.000289 ft^2$$

where:

A_n = area of nozzle (ft²) d_n = diameter of nozzle (in) 12 = conversion factor (in/ft)

= conversion factor (in/ft) 12

= conversion factor (diameter to radius)

Percent Isokinetic

$$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{ws}}{100}\right)}$$

$$I = \frac{0.0945(130 + 460)(48.61)}{\left(29.41 + \frac{-0.4}{13.6}\right)(42.6)(2.89 \times 10^{-4})(90)\left(1 - \frac{14.8}{100}\right)}$$

$$I = 97.8\%$$

where:

I = percent isokinetic (%)

 T_s = average stack temperature (°F)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

= barometric pressure (in. Hg) P_b

= static pressure of gas stream (in. H₂O) P_{s}

= average velocity of the gas stream (ft/sec) $V_{\rm s}$

= cross sectional area of nozzle (ft^2) A_n

Θ = sample time (min)

= moisture content of the gas stream (%) B_{ws}

0.0945 = constant (0 R/in. Hg) = conversion (°F to °R) 460

= conversion factor (in. H₂O/in Hg) 13.6

100 = conversion factor

Acetone Wash Blank-Particulate

$$W_a = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$

$$W_a = \frac{(0.0006)0(100)}{200}$$

$$W_a = 0.0000g$$

where:

W_a = particulate mass in acetone wash, blank corrected (g)

 m_{ab} = mass collected, acetone wash blank (g)

 v_{aw} = volume of acetone wash (ml)

 v_{awb} = volume of acetone wash blank (ml)

Mass in Front Half, Acetone Blank Corrected

$$m_f = m_{fil} + (m_a - W_a)$$

 $m_f = 0.0195 + (0.0055 - 0.0000)$
 $m_f = 0.0250g$

where:

m_f mass in front half filter, and acetone wash, blank corrected (g)

 m_{fil} = mass in front half filter (g) m_a = mass in acetone wash (g)

W_a = particulate mass in acetone wash blank (g)

Total Particulate Catch

$$M_n = m_f + m_b$$

 $M_n = 0.0250 + 0.0293$
 $M_n = 0.0543g$

where:

 M_n = total mass catch (g)

m_f = mass in front half filter, and acetone wash, blank corrected (g)

m_b = mass in back half organic fraction, and inorganic fraction, blank corrected (g)

Total Particulate Concentration, grains/dscf

$$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$

$$C_{gr/dscf} = \frac{(0.0543)(15.43)}{48.61}$$

$$C_{gr/dscf} = 0.0172 grains/dscf$$

where:

Cgu'dscf = particulate concentration (grains/dscf)

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

15.43 = conversion factor (grains/g)

Calculated F_d Factor, dscf/mmBtu

$$F_d = K((K_{hd} \times H) + (K_c \times C) + (K_s \times S) + (K_n \times N) - (K_o \times O_2)) / GCV_w$$

$$F_d = 10^6 ((3.64 \times 5.12) + (1.53 \times 73.85) + (0.57 \times 3.07) + (0.14 \times 1.59) - (0.46 \times 6.96)) / 13,544$$

$$F_d = 9,628$$

where:

 F_d = calculated fuel factor (dscf/mmBtu)

K = conversion factor (Btu/million Btu)

 K_{hd} = constant (scf/lb)

H = weight percent hydrogen in coal (%)

 $K_c = constant (scf/lb)$

C = weight percent carbon in coal (%)

 K_s = constant (scf/lb)

S = weight percent sulfur in coal (%)

 $K_n = constant (scf/lb)$

N weight percent nitrogen in coal (%)

 $K_0 = \text{constant (scf/lb)}$

O₂ weight percent oxygen in coal (%)

GCV_w gross calorific value of fuel, wet (Btu/lb)

Total Particulate Emission Rate, lb/mmBtu 4

$$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$

$$E_{PM} = \frac{(0.0543)(9,628)(20.9)}{(48.61)(453.6)(20.9 - 6.20)}$$

$$E_{PM} = 0.0337lb / mmBtu$$

where:

 E_{PM} = toal particulate matter emission rate, (lb/mmBtu)

M_n = total particulate catch (g) F_d = fuel factor (dcsf/mmBtu)

20.9 = oxygen content of ambient air (%)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

453.6 = conversion factor (g/lb)

 $\%O_2$ = oxygen content of the dry gas stream (%)

Total Particulate Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m,std})(453.6)}$$

$$E_{lb/hr} = \frac{(0.0543)(385,124)(60)}{(48.61)(453.6)}$$

$$E_{lb/hr} = 56.9lb/hr$$

where:

 $E_{lb/hr}$ = particulate emission rate (lb/hr)

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

60 = conversion factor (min/hr) 453.6 = conversion factor (g/lb)

⁴ All particulate emission rates are calculated in a similar manner.

Sample Calculations, Method 26A, Run 1

Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)⁵

$$C_{HCL} = \frac{(M_{HCl})}{(V_{m(std)})(10^3)(453.59)}$$

$$C_{HCl} = \frac{(4.97)}{(84.70)(10^3)(453.59)}$$

$$C_{HCl} = 1.29 \times 10^{-7} \, lb \, / \, dscf$$

where:

C_{HCl} = concentration of hydrogen chloride in flue gas (lb/dscf) M_{HCl} = mass of hydrogen chloride collected in sample (mg)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) 10^3 = conversion factor (mg/g)

10³ = conversion factor (mg/g) 453.59 = conversion factor (g/lb)

Concentration of Hydrogen Chloride in Flue Gas (ppmdv)⁶

$$C_{ppmv} = \frac{(M_{HCl})(385.3)(10^6)}{(MW_{HCl})(V_{m(std)})(10^3)(453.59)}$$

$$C_{ppmv} = \frac{(4.97)(385.3)(10^6)}{(36.458)(84.70)(10^3)(453.59)}$$

$$C_{ppmv} = 1.37 \ ppmdv$$

where:

 C_{ppmv} = concentration of hydrogen chloride in flue gas (ppmv) M_{HCl} = mass of hydrogen chloride collected in sample (mg)

385.3 = = volume occupied by one pound gas at standard conditions

(dscf/lbmole)

 10^6 = conversion factor (fraction to ppm)

MW_{HCl} = molecular weight of hydrogen chloride (lb/lb-mole)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

10³ = conversion factor (mg/g) 453.59 = conversion factor (g/lb)

⁵ The HF concentration was calculated in a similar manner.

⁶ The HF concentration was calculated in a similar manner.

Hydrogen Chloride Emission Rate, lb/mmBtu⁷

$$\begin{split} E_{HCI} &= \frac{\left(C_{HCI}\right)\!\left(F_d\right)\!\left(20.9\right)}{\left(20.9 - O_2\right)} \\ E_{HCI} &= \frac{\left(1.29 \times 10^{-7}\right)\!\left(9,628\right)\!\left(20.9\right)}{\left(20.9 - 6.20\right)} \end{split}$$

 $E_{HCI} = 0.00177lb / mmBtu$

where:

E_{HCl} = hydrogen chloride emission rate, (lb/mmBtu) C_{HCl} = hydrogen chloride concentration, (lb/dscf)

F_d =fuel factor (dcsf/mmBtu)

20.9 = oxygen content of ambient air (%)

 $\%O_2$ = oxygen content of the dry gas stream (%)

Hydrogen Chloride Emission Rate⁸

$$E_{HCl} = C_{HCl} \times Q_{dstd} \times 60$$

$$E_{HCI} = 1.29 \times 10^{-7} \times 366,612 \times 60$$

$$E_{HCl} = 2.85 lb / hr$$

where:

E_{HCl} = hydrogen chloride emission rate, (lb/hr)

C_{ppmdv} = hydrogen chloride concentration, dry basis, (ppmdv)

Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

MW = molecular weight of hydrogen chloride (lb/lbmole)

= conversion factor (min/hr)

385.3 = volume occupied by one pound gas at standard conditions (dscf/lbmole)

 10^6 = conversion factor (fraction to ppm)

⁷ The emission rate of HF is calculated in a similar manner.

⁸ The HF emission rate was calculated in a similar manner.

Sample Calculations, Method 29, Run 1

Concentration of Lead in Flue Gas, ug/dscm⁹

$$C_{ug/dscm} = \frac{(M_C)}{(V_{m(std)})} (35.31)$$

$$C_{ug.dscm} = \frac{(11.3)}{(65.56)} (35.31)$$

$$C_{ug/dscm} = 6.06ug/dscm$$

where:

C_{ug/dscm} = concentration of lead in flue gas (ug/dscm)

 M_C = mass of lead in sample (ug)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure(scf)

35.31 = conversion factor (ft^3/m^3)

Emission Rate of Lead in Flue Gas, lb/mmBtu¹⁰

$$E = \frac{(C_{ugldscm})(F_d)(20.9)}{(35.315)(20.9 - \%O_2)(453.6)(10^6)}$$

$$E = \frac{(6.06)(9,628)(20.9)}{(35.315)(20.9 - 6.20)(453.6)(10^6)}$$

$$E = 5.18 \times 10^{-6} \text{ mg/dscm}(79/O_2)$$

 $E = 5.18 \times 10^{-6} \, mg \, / \, dscm@7\%O_2$

where:

E = lead emission rate (lb/mmBtu)

 $C_{ug/dscm}$ = lead concentration (ug/dscm)

 F_d =fuel factor (dcsf/mmBtu) 35.315 =conversion factor (ft³/m³)

20.9 = oxygen content of ambient air (%)

%O₂ 453.6 = oxygen content of the dry gas stream (%)

= conversion factor (g/lb) 10^{6} = conversion factor (ug/g)

⁹ The concentrations of all MHs and mercury are calculated in a similar manner.

¹⁰ The emission rates of all MHs and mercury are calculated in a similar manner.

Lead Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(C_{ug/dscm})(Q_{dstd})(60)}{(35.31)(10^6)(453.6)}$$

$$E_{lb/hr} = \frac{(6.06)(381,636)(60)}{(35.31)(10^3)(10^3)(453.6)}$$

$$E_{lb/hr} = 0.00867lb/hr$$

where:

 $E_{lb/hr}$ = lead emission rate (lb/hr) $C_{ug/dscm}$ = lead concentration (ug/dscm)

Q_{dstd} = volumetric flow rate of dry gas stream at standard conditions (dscfm)

10³ = conversion factor (ug/mg) 10³ = conversion factor (mg/g) 35.31 = conversion factor (ft³/m³) 60.0 = conversion factor (min/hr) 453.59 = conversion factor (g/lb)