Sample Calculations

Sample Calculations, Unit 1 Stack, Method 5B/202, Run 1

Area of Sample Location

$$A_s = \pi \times \left(\frac{d_s}{2 \times 12}\right)^2$$

$$A_s = \pi \times \left(\frac{192.0}{2 \times 12}\right)^2$$

$$A_s = 201 ft^2$$

where:

A_s = area of sample location (ft²) d_s = diameter of sample location (in)

12 = conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

$$P_a = 29.27 + \frac{-0.4}{13.6}$$

$$P_a = 29.24 \text{ in.Hg}$$

where:

P_a = stack pressure absolute (in. Hg)

P_b = barometric pressure (in. Hg)

 P_s = static pressure (in. H_2O)

13.6 = conversion factor (in. H_2O/in . Hg)

Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure

$$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$

$$V_{m(std)} = \frac{17.64(55.09)(1.0141)\left(29.27 + \frac{1.26}{13.6}\right)}{(104 + 460)}$$

$$V_{m(std)} = 51.33scf$$

where:

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

V_m = volume of gas sampled at meter conditions (ft³) Y_d = gas meter correction factor (dimensionless)

P_b = barometric pressure (in. Hg)

ΔH = average sample pressure (in. H₂O) T_m = average gas meter temperature (°F) 13.6 = conversion factor (in. H₂O/in. Hg)

= ratio of standard temperature over standard pressure (°R/in. Hg)

= conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure

$$\begin{split} V_{w(std)} &= 0.04715 \times \left(V_{wc} + V_{wsg} \right) \\ V_{w(std)} &= 0.04715 \times \left(173.7 + 33.3 \right) \\ V_{w(std)} &= 9.76scf \end{split}$$

where:

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf)

V_{wc} = weight of liquid collected (g) V_{wsg} = weight gain of silica gel (g)

0.04715 = volume occupied by one gram of water at standard temperature and

pressure (ft³/g)

Percent Moisture²

$$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{\left(V_{m(std)} + V_{w(std)} \right)} \right]$$

$$B_{ws} = 100 \times \left[\frac{9.76}{(51.33 + 9.76)} \right]$$

$$B_{ws} = 16.0\%$$

where:

 B_{ws} = moisture content of the gas stream (%)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf)

100 = conversion factor

Molecular Weight of Dry Gas Stream³

$$M_d = \left(44 \times \frac{\%CO_2}{100}\right) + \left(32 \times \frac{\%O_2}{100}\right) + \left(28 \times \frac{(\%N_2)}{100}\right)$$

$$M_d = \left(44 \times \frac{13.0}{100}\right) + \left(32 \times \frac{5.83}{100}\right) + \left(28 \times \frac{(81.1)}{100}\right)$$

$$M_d = 30.31lb/lbmole$$

where:

 M_d = molecular weight of the dry gas stream (lb/lb-mole)

%CO₂ = carbon dioxide content of the dry gas stream (%)

= molecular weight of carbon dioxide (lb/lb-mole)

 $\%O_2$ = oxygen content of the dry gas stream (%)

= molecular weight of oxygen (lb/lb-mole)

 $\%N_2$ = nitrogen content of the dry gas stream (%)

= molecular weight of nitrogen and carbon monoxide (lb/lb-mole)

100 = conversion factor

² The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content.

³ The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

Molecular Weight of Wet Gas Stream

$$\begin{split} M_{s} = & \left(M_{d} \times \left(1 - \frac{B_{wsat}}{100} \right) \right) + \left(18 \times \frac{B_{wsat}}{100} \right) \\ M_{s} = & \left(30.31 \times \left(1 - \frac{15.4}{100} \right) \right) + \left(18 \times \frac{15.4}{100} \right) \\ M_{s} = & 28.42 lb / lb mole \end{split}$$

where:

M_s = molecular weight of the wet gas stream (lb/lb-mole)

 M_d = molecular weight of the dry gas stream (lb/lb-mole)

 B_{wsat} = moisture saturation point of the gas stream (%)

= molecular weight of water (lb/lb-mole)

100 = conversion factor

Velocity of Gas Stream

$$V_{s} = 85.49 \left(C_{p} \left(\sqrt{\Delta P}\right) \sqrt{\frac{\left(T_{s} + 460\right)}{\left(M_{s}\right)\left(P_{b} + \frac{P_{s}}{13.6}\right)}}$$

$$V_{s} = 85.49 \left(0.84\right)\left(0.740\right) \sqrt{\frac{\left(130 + 460\right)}{\left(28.42\right)\left(29.27 + \frac{-0.4}{13.6}\right)}}$$

$$V_s = 44.8 \, ft \, / \sec$$

where:

 V_s = average velocity of the gas stream (ft/sec)

C_p = pitot tube coefficient dimensionless

 $\sqrt{\Delta P}$ = average square root of velocity pressures (in. H₂O)^{1/2}

 T_s = average stack temperature (${}^{o}F$)

M_s = molecular weight of the wet gas stream (lb/lb-mole)

P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O)

85.49 = pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(0 R)(in. H₂O)]) ${}^{1/2}$

460 = conversion (°F to °R)

13.6 = conversion factor (in. H_2O/in . Hg)

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_a = 60(V_s)(A_s)$$

 $Q_a = 60(44.8)(201)$
 $Q_a = 540,076acfm$

where:

= volumetric flow rate of the gas stream at actual conditions (acfm) Q_a

 V_s = average velocity of the gas stream (ft/sec) A_s = area of duct or stack (ft²) = conversion factor (min/hr)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{\left(T_s + 460\right)}$$

$$Q_{std} = \frac{17.64(540,076)\left(29.27 + \frac{-0.4}{13.6}\right)}{\left(130 + 460\right)}$$

$$Q_{std} = 472,358scfm$$

where:

= volumetric flow rate of the gas stream at standard conditions (scfm)

= volumetric flow rate of the gas stream at actual conditions (acfm)

Q_{std} = volumetric flow rate of the gas
Q_a = volumetric flow rate of the gas
T_s = average stack temperature (°F)
P_b = barometric pressure (in. Hg)
P_s = static pressure of gas stream (in
13.6 = conversion factor (in. H₂O/in. F

= static pressure of gas stream (in. H_2O)

= conversion factor (in. H_2O/in . H_3O/in .

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg)

= conversion (°F to °R) 460

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{wsat}}{100} \right)$$

$$Q_{dstd} = 472,358 \left(1 - \frac{15.4}{100} \right)$$

$$Q_{dstd} = 399,908 dscfm$$

where:

Q_{dstd} = volumetric flow rate of the gas stream at standard conditions, on a dry

basis (dscfm)

Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm)

 B_{wsat} = moisture saturation point of the gas stream (%)

100 = conversion factor

Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$

$$A_n = \pi \times \left(\frac{0.230}{2 \times 12}\right)^2$$

$$A_n = 0.000289 \, ft^2$$

where:

 A_n = area of nozzle (ft^2)

 d_n = diameter of nozzle (in)

12 = conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Percent Isokinetic

$$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{wsat}}{100}\right)}$$

$$I = \frac{0.0945(130 + 460)(51.33)}{\left(29.27 + \frac{-0.4}{13.6}\right)(44.8)(2.89 \times 10^{-4})(90)\left(1 - \frac{15.4}{100}\right)}$$

$$I = 99.4\%$$

where:

= percent isokinetic (%) I

 T_s = average stack temperature (°F)

= volume of gas collected at standard temperature and pressure (scf)

= barometric pressure (in. Hg) P_b

= static pressure of gas stream (in. H_2O) P_s = average velocity of the gas stream (ft/sec) V_{s}

= cross sectional area of nozzle (ft^2) A_n

= sample time (min) Θ

= moisture saturation point of the gas stream (%) Bwsat

= constant (⁰R/in. Hg) 0.0945 = conversion (°F to °R) 460

13.6 = conversion factor (in. H₂O/in Hg)

100 = conversion factor

Acetone Wash Blank-Particulate

$$W_{a} = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$

$$W_{a} = \frac{(0.0000)(80)}{200}$$

$$W_{a} = 0.0000g$$

where:

 W_a = particulate mass in acetone wash, blank corrected (g)

= mass collected, acetone wash blank (g) m_{ab}

= volume of acetone wash (ml) v_{aw}

= volume of acetone wash blank (ml) Vawb

Mass in Front Half, Acetone Blank Corrected

$$m_f = m_{fil} + (m_a - W_a)$$

 $m_f = 0.0244 + (0.0122 - 0.0000)$
 $m_f = 0.0366g$

where:

= mass in front half filter, and acetone wash, blank corrected (g) m_f

= mass in front half filter (g) m_{fil} = mass in acetone wash (g) m_a

= particulate mass in acetone wash blank (g) W_a

Total Particulate Catch

$$M_n = m_f + m_b$$

 $M_n = 0.0366 + 0.0132$
 $M_n = 0.0498g$

where:

 M_n = total mass catch (g)

 $m_{\rm f}$ = mass in front half filter, and acetone wash, blank corrected (g)

= mass in back half organic fraction, and inorganic fraction, blank m_b (g)

corrected

Total Particulate Concentration, grains/dscf

$$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$

$$C_{gr/dscf} = \frac{(0.0498)(15.43)}{51.33}$$

$$C_{gr/dscf} = 0.0150 grains/dscf$$

where:

C_{gr/dscf} = particulate concentration (grains/dscf)

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

15.43 = conversion factor (grains/g)

Calculated F_d Factor, dscf/mmBtu

$$F_d = K((K_{hd} \times H) + (K_c \times C) + (K_s \times S) + (K_n \times N) - (K_o \times O_2)) / GCV_w$$

$$F_d = 10^6 ((3.64 \times 5.14) + (1.53 \times 73.54) + (0.57 \times 3.60) + (0.14 \times 1.46) - (0.46 \times 5.03)) / 13,092$$

$$F_d = 10.019$$

where:

F_d = calculated fuel factor (dscf/mmBtu)

K = conversion factor (Btu/million Btu)

 K_{hd} = constant (scf/lb)

H = weight percent hydrogen in coal (%)

 $K_c = constant (scf/lb)$

C = weight percent carbon in coal (%)

 $K_s = constant (scf/lb)$

S = weight percent sulfur in coal (%)

 $K_n = constant (scf/lb)$

N = weight percent nitrogen in coal (%)

 $K_0 = constant (scf/lb)$

O₂ = weight percent oxygen in coal (%)

GCV = gross calorific value of fuel, dry (Btu/lb)

Total Particulate Emission Rate, lb/mmBtu 4

$$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$

$$E_{PM} = \frac{(0.0498)(10,019)(20.9)}{(51.33)(453.6)(20.9 - 5.83)}$$

$$E_{PM} = 0.0297lb / mmBtu$$

where:

= toal particulate matter emission rate, (lb/mmBtu) E_{PM}

 M_n = total particulate catch (g) F_d

=fuel factor (dcsf/mmBtu)
= oxygen content of ambient air (%)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

453.6 = conversion factor (g/lb)

 $\%O_2$ = oxygen content of the dry gas stream (%)

Total Particulate Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m,std})(453.6)}$$

$$E_{lb/hr} = \frac{(0.0498)(399,908)(60)}{(51.33)(453.6)}$$

$$E_{lb/hr} = 51.3lb/hr$$

where:

= particulate emission rate (lb/hr) E_{lb/hr}

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

= volumetric flow rate of the dry gas stream at standard conditions (dscfm) Q_{dstd}

= conversion factor (min/hr) 60 453.6 = conversion factor (g/lb)

⁴ All particulate emission rates are calculated in a similar manner.

Sample Calculations, Method 26, Run 1

Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)⁵

$$C_{HCL} = \frac{(M_{HCl})}{(V_{m(std)})(10^3)(453.59)}$$

$$C_{HCl} = \frac{(3.51)}{(87.84)(10^3)(453.59)}$$

$$C_{HCl} = 8.81 \times 10^{-8} \, lb \, / \, dscf$$

where:

 C_{HCl} = concentration of hydrogen chloride in flue gas (lb/dscf) M_{HCl} = mass of hydrogen chloride collected in sample (mg)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) 10^3 = conversion factor (mg/g)

453.59 = conversion factor (g/lb)

Concentration of Hydrogen Chloride in Flue Gas (ppmdv)⁶

$$C_{ppmv} = \frac{(M_{HCl})(385.3)(10^6)}{(MW_{HCl})(V_{m(std)})(10^3)(453.59)}$$

$$C_{ppmv} = \frac{(3.51)(385.3)(10^6)}{(36.458)(87.84)(10^3)(453.59)}$$

$$C_{ppmv} = 0.931 \, ppmdv$$

where:

= concentration of hydrogen chloride in flue gas (ppmv) C_{ppmv}

M_{HCl} = mass of hydrogen chloride collected in sample (mg)

385.3 = volume occupied by one pound gas at standard conditions

(dscf/lbmole)

 10^{6} = conversion factor (fraction to ppm)

= molecular weight of hydrogen chloride (lb/lb-mole) MW_{HCl}

volume of gas collected at standard temperature and pressure (scf)

 $V_{m(std)}$ 10^3 = conversion factor (mg/g) 453.59 = conversion factor (g/lb)

⁵ The concentration of HF is calculated in a similar manner.

⁶ The concentration of HF is calculated in a similar manner using the appropriate molecular weight.

Hydrogen Chloride Emission Rate, lb/mmBtu⁷

$$\begin{split} E_{HCl} &= \frac{\left(C_{HCl}\right)\!\left(F_d\right)\!\left(20.9\right)}{\left(20.9 - O_2\right)} \\ E_{HCl} &= \frac{\left(8.81 \times 10^{-8}\right)\!\left(10,019\right)\!\left(20.9\right)}{\left(20.9 - 5.83\right)} \end{split}$$

 $E_{HCl} = 0.00122 lb / mmBtu$

where:

= hydrogen chloride emission rate, (lb/mmBtu) E_{HCI} C_{HCl} = hydrogen chloride concentration, (lb/dscf)

=fuel factor (dcsf/mmBtu)

= oxygen content of ambient air (%) 20.9

= oxygen content of the dry gas stream (%) %O₂

Hydrogen Chloride Emission Rate⁸

$$E_{HCl} = C_{HCl} \times Q_{dstd} \times 60$$

$$E_{HCl} = 8.81 \times 10^{-8} \times 372,370 \times 60$$

$$E_{HCl} = 1.97 lb / hr$$

where:

E_{HCl} = hydrogen chloride emission rate, (lb/hr)

= hydrogen chloride concentration, dry basis, (ppmdv) C_{ppmdv}

= volumetric flow rate of the dry gas stream at standard conditions (dscfm) Q_{dstd}

= molecular weight of hydrogen chloride (lb/lbmole) MW

60 = conversion factor (min/hr)

385.3 = volume occupied by one pound gas at standard conditions (dscf/lbmole)

 10^{6} = conversion factor (fraction to ppm)

⁷ The emission rate of CO is calculated in a similar manner.

⁸ The CO emission rate was calculated in a similar manner.

Sample Calculations, Method 29, Run 1

Concentration of Lead in Flue Gas, ug/dscm⁹

$$C_{ug/dscm} = \frac{(M_C)}{(V_{m(std)})} (35.31)$$

$$C_{ug/dscm} = \frac{(7.15)}{(68.06)} (35.31)$$

 $C_{ug/dscm} = 3.71ug/dscm$

where:

= concentration of lead in flue gas (ug/dscm) C_{ug/dscm}

 M_C = mass of lead in sample (ug) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure(scf) 35.31 = conversion factor (ft³/m³)

Emission Rate of Lead in Flue Gas, lb/mmBtu¹⁰

$$E = \frac{(C_{ug/dscm})(F_d)(20.9)}{(35.315)(20.9 - \%O_2)(453.6)(10^6)}$$

$$E = \frac{(3.71)(10,019)(20.9)}{(35.315)(20.9 - 10.0)(453.6)(10^6)}$$

$$E = 4.45 \times 10^{-6} lb/mmBtu$$

where:

E = lead emission rate (lb/mmBtu) C_{ug/dscm} = lead concentration (ug/dscm) =fuel factor (dcsf/mmBtu)

35.315 = conversion factor (ft^3/m^3)

20.9 = oxygen content of ambient air (%)

 $\%O_2$ = oxygen content of the dry gas stream (%)

453.6 10⁶ = conversion factor (g/lb) = conversion factor (ug/g)

⁹ The concentrations of all MHs and mercury are calculated in a similar manner.

¹⁰ The emission rates of all MHs and mercury are calculated in a similar manner.

Lead Emission Rate, lb/hr11

$$E_{lb/hr} = \frac{(C_{ug/dscm})(Q_{dstd})(60)}{(35.31)(10^6)(453.6)}$$

$$E_{lb/hr} = \frac{(3.71)(403,055)(60)}{(35.31)(10^3)(10^3)(453.6)}$$

$$E_{lb/hr} = 0.00560lb/hr$$

where:

 $E_{lb/hr}$ = lead emission rate (lb/hr) $C_{ug/dscm}$ = lead concentration (ug/dscm)

Q_{dstd} = volumetric flow rate of dry gas stream at standard conditions (dscfm)

10³ = conversion factor (ug/mg) 10³ = conversion factor (mg/g) 35.31 = conversion factor (ft³/m³) 60.0 = conversion factor (min/hr) 453.59 = conversion factor (g/lb)

¹¹ The emission rates of all MHs and mercury are calculated in a similar manner.