Sample Calculations # Sample Calculations, Unit 1 Stack, Method 5B/202, Run 1 # **Area of Sample Location** $$A_s = \pi \times \left(\frac{d_s}{2 \times 12}\right)^2$$ $$A_s = \pi \times \left(\frac{192.0}{2 \times 12}\right)^2$$ $$A_s = 201 ft^2$$ #### where: A_s = area of sample location (ft²) d_s = diameter of sample location (in) 12 = conversion factor (in/ft) 2 = conversion factor (diameter to radius) ## **Stack Pressure Absolute** $$P_a = P_b + \frac{P_s}{13.6}$$ $$P_a = 29.27 + \frac{-0.4}{13.6}$$ $$P_a = 29.24 \text{ in.Hg}$$ ## where: P_a = stack pressure absolute (in. Hg) P_b = barometric pressure (in. Hg) P_s = static pressure (in. H_2O) 13.6 = conversion factor (in. H_2O/in . Hg) ## Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure $$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$ $$V_{m(std)} = \frac{17.64(55.09)(1.0141)\left(29.27 + \frac{1.26}{13.6}\right)}{(104 + 460)}$$ $$V_{m(std)} = 51.33scf$$ #### where: $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) V_m = volume of gas sampled at meter conditions (ft³) Y_d = gas meter correction factor (dimensionless) P_b = barometric pressure (in. Hg) ΔH = average sample pressure (in. H₂O) T_m = average gas meter temperature (°F) 13.6 = conversion factor (in. H₂O/in. Hg) = ratio of standard temperature over standard pressure (°R/in. Hg) = conversion (°F to °R) # Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure $$\begin{split} V_{w(std)} &= 0.04715 \times \left(V_{wc} + V_{wsg} \right) \\ V_{w(std)} &= 0.04715 \times \left(173.7 + 33.3 \right) \\ V_{w(std)} &= 9.76scf \end{split}$$ #### where: $V_{w(std)}$ = volume of water vapor at standard conditions (scf) V_{wc} = weight of liquid collected (g) V_{wsg} = weight gain of silica gel (g) 0.04715 = volume occupied by one gram of water at standard temperature and pressure (ft³/g) # Percent Moisture² $$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{\left(V_{m(std)} + V_{w(std)} \right)} \right]$$ $$B_{ws} = 100 \times \left[\frac{9.76}{(51.33 + 9.76)} \right]$$ $$B_{ws} = 16.0\%$$ #### where: B_{ws} = moisture content of the gas stream (%) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) $V_{w(std)}$ = volume of water vapor at standard conditions (scf) 100 = conversion factor # Molecular Weight of Dry Gas Stream³ $$M_d = \left(44 \times \frac{\%CO_2}{100}\right) + \left(32 \times \frac{\%O_2}{100}\right) + \left(28 \times \frac{(\%N_2)}{100}\right)$$ $$M_d = \left(44 \times \frac{13.0}{100}\right) + \left(32 \times \frac{5.83}{100}\right) + \left(28 \times \frac{(81.1)}{100}\right)$$ $$M_d = 30.31lb/lbmole$$ #### where: M_d = molecular weight of the dry gas stream (lb/lb-mole) %CO₂ = carbon dioxide content of the dry gas stream (%) = molecular weight of carbon dioxide (lb/lb-mole) $\%O_2$ = oxygen content of the dry gas stream (%) = molecular weight of oxygen (lb/lb-mole) $\%N_2$ = nitrogen content of the dry gas stream (%) = molecular weight of nitrogen and carbon monoxide (lb/lb-mole) 100 = conversion factor ² The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content. ³ The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen. ## Molecular Weight of Wet Gas Stream $$\begin{split} M_{s} = & \left(M_{d} \times \left(1 - \frac{B_{wsat}}{100} \right) \right) + \left(18 \times \frac{B_{wsat}}{100} \right) \\ M_{s} = & \left(30.31 \times \left(1 - \frac{15.4}{100} \right) \right) + \left(18 \times \frac{15.4}{100} \right) \\ M_{s} = & 28.42 lb / lb mole \end{split}$$ where: M_s = molecular weight of the wet gas stream (lb/lb-mole) M_d = molecular weight of the dry gas stream (lb/lb-mole) B_{wsat} = moisture saturation point of the gas stream (%) = molecular weight of water (lb/lb-mole) 100 = conversion factor # **Velocity of Gas Stream** $$V_{s} = 85.49 \left(C_{p} \left(\sqrt{\Delta P}\right) \sqrt{\frac{\left(T_{s} + 460\right)}{\left(M_{s}\right)\left(P_{b} + \frac{P_{s}}{13.6}\right)}}$$ $$V_{s} = 85.49 \left(0.84\right)\left(0.740\right) \sqrt{\frac{\left(130 + 460\right)}{\left(28.42\right)\left(29.27 + \frac{-0.4}{13.6}\right)}}$$ $$V_s = 44.8 \, ft \, / \sec$$ where: V_s = average velocity of the gas stream (ft/sec) C_p = pitot tube coefficient dimensionless $\sqrt{\Delta P}$ = average square root of velocity pressures (in. H₂O)^{1/2} T_s = average stack temperature (${}^{o}F$) M_s = molecular weight of the wet gas stream (lb/lb-mole) P_b = barometric pressure (in. Hg) P_s = static pressure of gas stream (in. H_2O) 85.49 = pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(0 R)(in. H₂O)]) ${}^{1/2}$ 460 = conversion (°F to °R) 13.6 = conversion factor (in. H_2O/in . Hg) # Volumetric Flow of Gas Stream - Actual Conditions $$Q_a = 60(V_s)(A_s)$$ $Q_a = 60(44.8)(201)$ $Q_a = 540,076acfm$ where: = volumetric flow rate of the gas stream at actual conditions (acfm) Q_a V_s = average velocity of the gas stream (ft/sec) A_s = area of duct or stack (ft²) = conversion factor (min/hr) #### Volumetric Flow of Gas Stream - Standard Conditions $$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{\left(T_s + 460\right)}$$ $$Q_{std} = \frac{17.64(540,076)\left(29.27 + \frac{-0.4}{13.6}\right)}{\left(130 + 460\right)}$$ $$Q_{std} = 472,358scfm$$ where: = volumetric flow rate of the gas stream at standard conditions (scfm) = volumetric flow rate of the gas stream at actual conditions (acfm) Q_{std} = volumetric flow rate of the gas Q_a = volumetric flow rate of the gas T_s = average stack temperature (°F) P_b = barometric pressure (in. Hg) P_s = static pressure of gas stream (in 13.6 = conversion factor (in. H₂O/in. F = static pressure of gas stream (in. H_2O) = conversion factor (in. H_2O/in . H_3O/in . 17.64 = ratio of standard temperature over standard pressure (°R/in. Hg) = conversion (°F to °R) 460 # Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis $$Q_{dstd} = Q_{std} \left(1 - \frac{B_{wsat}}{100} \right)$$ $$Q_{dstd} = 472,358 \left(1 - \frac{15.4}{100} \right)$$ $$Q_{dstd} = 399,908 dscfm$$ where: Q_{dstd} = volumetric flow rate of the gas stream at standard conditions, on a dry basis (dscfm) Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm) B_{wsat} = moisture saturation point of the gas stream (%) 100 = conversion factor # Area of Nozzle $$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$ $$A_n = \pi \times \left(\frac{0.230}{2 \times 12}\right)^2$$ $$A_n = 0.000289 \, ft^2$$ where: A_n = area of nozzle (ft^2) d_n = diameter of nozzle (in) 12 = conversion factor (in/ft) 2 = conversion factor (diameter to radius) ## **Percent Isokinetic** $$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{wsat}}{100}\right)}$$ $$I = \frac{0.0945(130 + 460)(51.33)}{\left(29.27 + \frac{-0.4}{13.6}\right)(44.8)(2.89 \times 10^{-4})(90)\left(1 - \frac{15.4}{100}\right)}$$ $$I = 99.4\%$$ #### where: = percent isokinetic (%) I T_s = average stack temperature (°F) = volume of gas collected at standard temperature and pressure (scf) = barometric pressure (in. Hg) P_b = static pressure of gas stream (in. H_2O) P_s = average velocity of the gas stream (ft/sec) V_{s} = cross sectional area of nozzle (ft^2) A_n = sample time (min) Θ = moisture saturation point of the gas stream (%) Bwsat = constant (⁰R/in. Hg) 0.0945 = conversion (°F to °R) 460 13.6 = conversion factor (in. H₂O/in Hg) 100 = conversion factor #### Acetone Wash Blank-Particulate $$W_{a} = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$ $$W_{a} = \frac{(0.0000)(80)}{200}$$ $$W_{a} = 0.0000g$$ #### where: W_a = particulate mass in acetone wash, blank corrected (g) = mass collected, acetone wash blank (g) m_{ab} = volume of acetone wash (ml) v_{aw} = volume of acetone wash blank (ml) Vawb ## Mass in Front Half, Acetone Blank Corrected $$m_f = m_{fil} + (m_a - W_a)$$ $m_f = 0.0244 + (0.0122 - 0.0000)$ $m_f = 0.0366g$ ## where: = mass in front half filter, and acetone wash, blank corrected (g) m_f = mass in front half filter (g) m_{fil} = mass in acetone wash (g) m_a = particulate mass in acetone wash blank (g) W_a # **Total Particulate Catch** $$M_n = m_f + m_b$$ $M_n = 0.0366 + 0.0132$ $M_n = 0.0498g$ #### where: M_n = total mass catch (g) $m_{\rm f}$ = mass in front half filter, and acetone wash, blank corrected (g) = mass in back half organic fraction, and inorganic fraction, blank m_b (g) corrected ## Total Particulate Concentration, grains/dscf $$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$ $$C_{gr/dscf} = \frac{(0.0498)(15.43)}{51.33}$$ $$C_{gr/dscf} = 0.0150 grains/dscf$$ #### where: C_{gr/dscf} = particulate concentration (grains/dscf) M_n = total particulate catch (g) $V_{m(std)}$ = volume of gas collected at standard conditions (scf) 15.43 = conversion factor (grains/g) # Calculated F_d Factor, dscf/mmBtu $$F_d = K((K_{hd} \times H) + (K_c \times C) + (K_s \times S) + (K_n \times N) - (K_o \times O_2)) / GCV_w$$ $$F_d = 10^6 ((3.64 \times 5.14) + (1.53 \times 73.54) + (0.57 \times 3.60) + (0.14 \times 1.46) - (0.46 \times 5.03)) / 13,092$$ $$F_d = 10.019$$ #### where: F_d = calculated fuel factor (dscf/mmBtu) K = conversion factor (Btu/million Btu) K_{hd} = constant (scf/lb) H = weight percent hydrogen in coal (%) $K_c = constant (scf/lb)$ C = weight percent carbon in coal (%) $K_s = constant (scf/lb)$ S = weight percent sulfur in coal (%) $K_n = constant (scf/lb)$ N = weight percent nitrogen in coal (%) $K_0 = constant (scf/lb)$ O₂ = weight percent oxygen in coal (%) GCV = gross calorific value of fuel, dry (Btu/lb) # Total Particulate Emission Rate, lb/mmBtu 4 $$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$ $$E_{PM} = \frac{(0.0498)(10,019)(20.9)}{(51.33)(453.6)(20.9 - 5.83)}$$ $$E_{PM} = 0.0297lb / mmBtu$$ #### where: = toal particulate matter emission rate, (lb/mmBtu) E_{PM} M_n = total particulate catch (g) F_d =fuel factor (dcsf/mmBtu) = oxygen content of ambient air (%) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) 453.6 = conversion factor (g/lb) $\%O_2$ = oxygen content of the dry gas stream (%) # Total Particulate Emission Rate, lb/hr $$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m,std})(453.6)}$$ $$E_{lb/hr} = \frac{(0.0498)(399,908)(60)}{(51.33)(453.6)}$$ $$E_{lb/hr} = 51.3lb/hr$$ #### where: = particulate emission rate (lb/hr) E_{lb/hr} M_n = total particulate catch (g) $V_{m(std)}$ = volume of gas collected at standard conditions (scf) = volumetric flow rate of the dry gas stream at standard conditions (dscfm) Q_{dstd} = conversion factor (min/hr) 60 453.6 = conversion factor (g/lb) ⁴ All particulate emission rates are calculated in a similar manner. # Sample Calculations, Method 26, Run 1 # Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)⁵ $$C_{HCL} = \frac{(M_{HCl})}{(V_{m(std)})(10^3)(453.59)}$$ $$C_{HCl} = \frac{(3.51)}{(87.84)(10^3)(453.59)}$$ $$C_{HCl} = 8.81 \times 10^{-8} \, lb \, / \, dscf$$ #### where: C_{HCl} = concentration of hydrogen chloride in flue gas (lb/dscf) M_{HCl} = mass of hydrogen chloride collected in sample (mg) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) 10^3 = conversion factor (mg/g) 453.59 = conversion factor (g/lb) # Concentration of Hydrogen Chloride in Flue Gas (ppmdv)⁶ $$C_{ppmv} = \frac{(M_{HCl})(385.3)(10^6)}{(MW_{HCl})(V_{m(std)})(10^3)(453.59)}$$ $$C_{ppmv} = \frac{(3.51)(385.3)(10^6)}{(36.458)(87.84)(10^3)(453.59)}$$ $$C_{ppmv} = 0.931 \, ppmdv$$ #### where: = concentration of hydrogen chloride in flue gas (ppmv) C_{ppmv} M_{HCl} = mass of hydrogen chloride collected in sample (mg) 385.3 = volume occupied by one pound gas at standard conditions (dscf/lbmole) 10^{6} = conversion factor (fraction to ppm) = molecular weight of hydrogen chloride (lb/lb-mole) MW_{HCl} volume of gas collected at standard temperature and pressure (scf) $V_{m(std)}$ 10^3 = conversion factor (mg/g) 453.59 = conversion factor (g/lb) ⁵ The concentration of HF is calculated in a similar manner. ⁶ The concentration of HF is calculated in a similar manner using the appropriate molecular weight. # Hydrogen Chloride Emission Rate, lb/mmBtu⁷ $$\begin{split} E_{HCl} &= \frac{\left(C_{HCl}\right)\!\left(F_d\right)\!\left(20.9\right)}{\left(20.9 - O_2\right)} \\ E_{HCl} &= \frac{\left(8.81 \times 10^{-8}\right)\!\left(10,019\right)\!\left(20.9\right)}{\left(20.9 - 5.83\right)} \end{split}$$ $E_{HCl} = 0.00122 lb / mmBtu$ where: = hydrogen chloride emission rate, (lb/mmBtu) E_{HCI} C_{HCl} = hydrogen chloride concentration, (lb/dscf) =fuel factor (dcsf/mmBtu) = oxygen content of ambient air (%) 20.9 = oxygen content of the dry gas stream (%) %O₂ # Hydrogen Chloride Emission Rate⁸ $$E_{HCl} = C_{HCl} \times Q_{dstd} \times 60$$ $$E_{HCl} = 8.81 \times 10^{-8} \times 372,370 \times 60$$ $$E_{HCl} = 1.97 lb / hr$$ where: E_{HCl} = hydrogen chloride emission rate, (lb/hr) = hydrogen chloride concentration, dry basis, (ppmdv) C_{ppmdv} = volumetric flow rate of the dry gas stream at standard conditions (dscfm) Q_{dstd} = molecular weight of hydrogen chloride (lb/lbmole) MW 60 = conversion factor (min/hr) 385.3 = volume occupied by one pound gas at standard conditions (dscf/lbmole) 10^{6} = conversion factor (fraction to ppm) ⁷ The emission rate of CO is calculated in a similar manner. ⁸ The CO emission rate was calculated in a similar manner. # Sample Calculations, Method 29, Run 1 # Concentration of Lead in Flue Gas, ug/dscm⁹ $$C_{ug/dscm} = \frac{(M_C)}{(V_{m(std)})} (35.31)$$ $$C_{ug/dscm} = \frac{(7.15)}{(68.06)} (35.31)$$ $C_{ug/dscm} = 3.71ug/dscm$ where: = concentration of lead in flue gas (ug/dscm) C_{ug/dscm} M_C = mass of lead in sample (ug) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure(scf) 35.31 = conversion factor (ft³/m³) # Emission Rate of Lead in Flue Gas, lb/mmBtu¹⁰ $$E = \frac{(C_{ug/dscm})(F_d)(20.9)}{(35.315)(20.9 - \%O_2)(453.6)(10^6)}$$ $$E = \frac{(3.71)(10,019)(20.9)}{(35.315)(20.9 - 10.0)(453.6)(10^6)}$$ $$E = 4.45 \times 10^{-6} lb/mmBtu$$ where: E = lead emission rate (lb/mmBtu) C_{ug/dscm} = lead concentration (ug/dscm) =fuel factor (dcsf/mmBtu) 35.315 = conversion factor (ft^3/m^3) 20.9 = oxygen content of ambient air (%) $\%O_2$ = oxygen content of the dry gas stream (%) 453.6 10⁶ = conversion factor (g/lb) = conversion factor (ug/g) ⁹ The concentrations of all MHs and mercury are calculated in a similar manner. ¹⁰ The emission rates of all MHs and mercury are calculated in a similar manner. # Lead Emission Rate, lb/hr11 $$E_{lb/hr} = \frac{(C_{ug/dscm})(Q_{dstd})(60)}{(35.31)(10^6)(453.6)}$$ $$E_{lb/hr} = \frac{(3.71)(403,055)(60)}{(35.31)(10^3)(10^3)(453.6)}$$ $$E_{lb/hr} = 0.00560lb/hr$$ ## where: $E_{lb/hr}$ = lead emission rate (lb/hr) $C_{ug/dscm}$ = lead concentration (ug/dscm) Q_{dstd} = volumetric flow rate of dry gas stream at standard conditions (dscfm) 10³ = conversion factor (ug/mg) 10³ = conversion factor (mg/g) 35.31 = conversion factor (ft³/m³) 60.0 = conversion factor (min/hr) 453.59 = conversion factor (g/lb) ¹¹ The emission rates of all MHs and mercury are calculated in a similar manner.