Sample Calculations ### Sample Calculations, Stack Outlet, Method 5B/202, Run 1 # **Area of Sample Location** $$A_s = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$ $$A_s = \pi \times \left(\frac{180}{2 \times 12}\right)^2$$ $$A_s = 177 \text{ ft}^2$$ where: A_s = area of sample location (ft²) d_s = diameter of sample location (in) 12 = conversion factor (in /A) = conversion factor (diameter to radius) ### **Stack Pressure Absolute** $$P_a = P_b + \frac{P_s}{13.6}$$ $$P_a = 29.56 + \frac{-0.1}{13.6}$$ $$P_a = 29.55 in.Hg$$ where: P_a = stack pressure absolute (in. Hg) = barometric pressure (in. Hg) P_b = static pressure (in. H₂O) P_s 13.6 = conversion factor (in. H₂O/in. Hg) # Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure $$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$ $$V_{m(std)} = \frac{17.64(60.01)(1.0034)\left(29.56 + \frac{1.73}{13.6}\right)}{(91.9 + 460)}$$ $$V_{m(std)} = 60.01scf$$ #### where: $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) V_m = volume of gas sampled at meter conditions (ft³) Y_d = gas meter correction factor (dimensionless) P_b = barometric pressure (in. Hg) ΔH = average sample pressure (in. H₂O) T_m = average gas meter temperature (°F) 13.6 = conversion factor (in. H₂O/in. Hg) 17.64 = ratio of standard temperature over standard pressure (°R/in.Hg) $= conversion (^{o}F to ^{o}R)$ # Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure $$\begin{aligned} V_{w(std)} &= 0.04715 \times (V_{wc} + V_{vsg}) \\ V_{w(std)} &= 0.04715 \times (175.8 + 11.0) \\ V_{w(std)} &= 8.81 scf \end{aligned}$$ #### where: $V_{w(std)}$ = volume of water vapor at standard conditions (scf) V_{wc} = weight of liquid collected (g) V_{wsg} = weight gain of silica gel (g) 0.04715 = volume occupied by one gram of water at standard temperature and pressure (ft³/g) # Percent Moisture² $$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})} \right]$$ $$B_{ws} = 100 \times \left[\frac{8.81}{(60.01 + 8.81)} \right]$$ $$B_{ws} = 12.8\%$$ #### where: B_{ws} = moisture content of the gas stream (%) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) $V_{w(std)}$ = volume of water vapor at standard conditions (scf) 100 = conversion factor # Molecular Weight of Dry Gas Stream³ $$\begin{split} M_d = & \left(44 \times \frac{\%CO_2}{100} \right) + \left(32 \times \frac{\%O_2}{100} \right) + \left(28 \times \frac{\left(\%N_2\right)}{100} \right) \\ M_d = & \left(44 \times \frac{11.6}{100} \right) + \left(32 \times \frac{7.72}{100} \right) + \left(28 \times \frac{\left(80.7\right)}{100} \right) \end{split}$$ $M_d = 30.16lb/lbmole$ #### where: M_d = molecular weight of the dry gas stream (lb/lb-mole) $%CO_2$ = carbon dioxide content of the dry gas stream (%) = molecular weight of carbon dioxide (lb/lb-mole) $\%O_2$ = oxygen content of the dry gas stream (%) 32 = molecular weight of oxygen (lb/lb-mole) $\%N_2$ = nitrogen content of the dry gas stream (%) = molecular weight of nitrogen and carbon monoxide (lb/lb-mole) 100 = conversion factor ² The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content. ³ The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen. # Molecular Weight of Wet Gas Stream $$\begin{split} M_s = & \left(M_d \times \left(1 - \frac{B_{ws}}{100} \right) \right) + \left(18 \times \frac{B_{ws}}{100} \right) \\ M_s = & \left(30.16 \times \left(1 - \frac{12.8}{100} \right) \right) + \left(18 \times \frac{12.8}{100} \right) \end{split}$$ $M_s = 28.61 lb/lbmole$ where: M_s = molecular weight of the wet gas stream (lb/lb-mole) M_d = molecular weight of the dry gas stream (lb/lb-mole) B_{ws} = moisture content of the gas stream (%) 18 = molecular weight of water (lb/lb-mole) 100 = conversion factor # Velocity of Gas Stream $$V_{s} = 85.49 (C_{p}) \sqrt{\overline{\Delta P}} \sqrt{\frac{(T_{s} + 460)}{(M_{s}) (P_{b} + \frac{P_{s}}{13.6})}}$$ $$V_{s} = 85.49 (0.84) (1.39) \sqrt{\frac{(128 + 460)}{(28.61) (29.56 + \frac{-0.1}{13.6})}}$$ $$V_s = 83.2 ft / sec$$ where: V_s = average velocity of the gas stream (ft/sec) C_p = pitot tube coefficient dimensionless $\sqrt{\Delta P}$ = average square root of velocity pressures (in. H₂O)^{1,2} T_s = average stack temperature (${}^{o}F$) M_s = molecular weight of the wet gas stream (lb/lb-mole) P_b = barometric pressure (in. Hg) P_s = static pressure of gas stream (in. H_2O) 85.49 = pitot tube constant (ft/sec)($[(lb/lb-mole)(in. Hg)]/[(^0R)(in. H_2O)])^{1/2}$ = conversion ($^{\circ}$ F to $^{\circ}$ R) 13.6 = conversion factor (in. H_2O/in , H_3O/in) #### Volumetric Flow of Gas Stream - Actual Conditions $$Q_a = 60(V_s)(A_s)$$ $Q_a = 60(83.2)(177)$ $Q_a = 882,234acfm$ where: Q_a = volumetric flow rate of the gas stream at actual conditions (acfm) V_s = average velocity of the gas stream (ft/sec) A_s = area of duct or stack (ft²) 60 = conversion factor (min/hr) # Volumetric Flow of Gas Stream - Standard Conditions $$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{(T_s + 460)}$$ $$Q_{std} = \frac{17.64(882,234)\left(29.56 + \frac{-0.1}{13.6}\right)}{(128 + 460)}$$ $$Q_{std} = 782,725scfm$$ where: Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm) Q_a = volumetric flow rate of the gas stream at actual conditions (acfm) T_s = average stack temperature (°F) P_b = barometric pressure (in. Hg) P_s = static pressure of gas stream (in. H_2O) 13.6 = conversion factor (in. H_2O/in . H_3O/in . 17.64 = ratio of standard temperature over standard pressure (°R/in. Hg) $= conversion (^{o}F to ^{o}R)$ # Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis $$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$ $$Q_{dstd} = 782,715 \left(1 - \frac{12.8}{100} \right)$$ $$Q_{dstd} = 682,820 dsc fm$$ where: Q_{dstd} = volumetric flow rate of the gas stream at standard conditions, on a dry basis (dscfm) Q_{std} = volumetric flow rate of the gas stream at standard conditions (scfm) B_{ws} = moisture content of the gas stream (%) 100 = conversion factor ### Area of Nozzle $$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$ $$A_n = \pi \times \left(\frac{0.184}{2 \times 12}\right)^2$$ $$A_n = 0.000185 ft^2$$ where: A_n = area of nozzle (ft^2) d_n = diameter of nozzle (in) = conversion factor (in/ft) 2 = conversion factor (diameter to radius) ### **Percent Isokinetic** $$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{us}}{100}\right)}$$ $$I = \frac{0.0945(128 + 460)(60.01)}{\left(29.56 + \frac{-0.1}{13.6}\right)(83.2)(1.85 \times 10^{-4})(90)\left(1 - \frac{12.8}{100}\right)}$$ $$I = 93.5\%$$ ### where: I = percent isokinetic (%) T_s = average stack temperature (${}^{o}F$) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) P_b = barometric pressure (in. Hg) P_s = static pressure of gas stream (in. H₂O) V_s = average velocity of the gas stream (ft/sec) A_n = cross sectional area of nozzle (ft^2) Θ = sample time (min) B_{ws} = moisture content of the gas stream (%) 0.0945 = constant (0 R/in. Hg) 460 = conversion (0 F to 0 R) 13.6 = conversion factor (in. $H_2O/in Hg$) 100 = conversion factor #### Acetone Wash Blank-Particulate $$W_a = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$ $$W_a = \frac{(0.0000)(75)}{200}$$ $$W_a = 0.0000g$$ ### where: W_a = particulate mass in acetone wash, blank corrected (g) m_{ab} = mass collected, acetone wash blank (g) v_{aw} = volume of acetone wash (ml) v_{awb} = volume of acetone wash blank (ml) # Mass in Front Half, Acetone Blank Corrected $$m_f = m_{fil} + (m_a - W_a)$$ $m_f = 0.0026 + (0.0058 - 0.0000)$ $m_f = 0.0083g$ #### where: m_f mass in front half filter, and acetone wash, blank corrected (g) m_{fil} = mass in front half filter (g) m_a = mass in acetone wash (g) W_a = particulate mass in acetone wash blank (g) # **Total Particulate Catch** $$M_n = m_f + m_b$$ $M_n = 0.0083 + 0.0137$ $M_n = 0.0220g$ #### where: M_n = total mass catch (g) m_f = mass in front half filter, and acetone wash, blank corrected (g) m_b = mass in back half organic fraction, and inorganic fraction, blank corrected (g) ### Total Particulate Concentration, grains/dscf $$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$ $$C_{gr/dscf} = \frac{(0.0220)(15.43)}{60.01}$$ $$C_{gr/dscf} = 0.00566 grains / dscf$$ #### where: = particulate concentration (grains/dscf) Cgr/dscf M_n $V_{m(std)}$ = total particulate catch (g) = volume of gas collected at standard conditions (scf) 15.43 = conversion factor (grains/g) # Calculated F_d Factor, dscf/mmBtu $$F_d = K((K_{hd} \times H) + (K_c \times C) + (K_s \times S) + (K_n \times N) - (K_o \times O_2)) / GCV_w$$ $$F_d = 10^6 ((3.64 \times 4.83) + (1.53 \times 73.83) + (0.57 \times 3.59) + (0.14 \times 1.51) - (0.46 \times 8.24)) / 13,080$$ $$F_d = 9,863$$ #### where: = calculated fuel factor (dscf/mmBtu) F_d K = conversion factor (Btu/million Btu) Khd = constant (scf/lb) = weight percent hydrogen in coal (%) Η = constant (scf/lb) K_c = weight percent carbon in coal (%) \mathbf{C} K_s = constant (scf/lb) = weight percent sulfur in coal (%) S = constant (scf/lb) \mathbf{K}_{n} = weight percent nitrogen in coal (%) = constant (scf/lb) K_0 = weight percent oxygen in coal (%) GCV_w = gross calorific value of fuel, wet (Btu/lb) # Total Particulate Emission Rate, lb/mmBtu $$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$ $$E_{PM} = \frac{(0.0220)(9,863)(20.9)}{(60.27)(453.6)(20.9 - 7.72)}$$ $$E_{PM} = 0.0126lb / mmBtu$$ #### where: = toal particulate matter emission rate, (lb/mmBtu) E_{PM} M_n = total particulate catch (g) F_d 20.9 =fuel factor (dcsf/mmBtu) = oxygen content of ambient air (%) $V_{\text{in(std)}}$ = volume of gas collected at standard temperature and pressure (scf) 453.6 = conversion factor (g/lb) = oxygen content of the dry gas stream (%) %O₂ #### Total Particulate Emission Rate, lb/hr $$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m,std})(453.6)}$$ $$E_{lb/hr} = \frac{(0.0220)(682,820)(60)}{(60.01)(453.6)}$$ $$E_{lb/hr} = 33.1lb/hr$$ #### where: = particulate emission rate (lb/hr) E_{lb/hr} = total particulate catch (g) M_n = volume of gas collected at standard conditions (scf) $V_{m(std)}$ = volumetric flow rate of the dry gas stream at standard conditions (dscfm) Q_{dstd} 60 = conversion factor (min/hr) 453.6 = conversion factor (g/lb) ⁴ All particulate emission rates are calculated in a similar manner. # Sample Calculations, Method 26A, Run 1 # Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)⁵ $$C_{HCL} = \frac{(M_{HCl})}{(V_{m(std)})(10^3)(453.6)}$$ $$C_{HCl} = \frac{(1.15)}{(94.71)(10^3)(453.6)}$$ $$C_{HCl} = 2.68 \times 10^{-8} lb / dscf$$ #### where: = concentration of hydrogen chloride in flue gas (lb/dscf) C_{HCl} M_{HCl} mass of hydrogen chloride collected in sample (mg) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) = conversion factor (mg/g) 453.6 = conversion factor (g/lb) # Concentration of Hydrogen Chloride in Flue Gas (ppmdv)⁶ $$C_{ppmv} = \frac{(M_{HCl})(385.3)(10^6)}{(MW_{HCl})(V_{m(std)})(10^3)(453.6)}$$ $$C_{ppmv} = \frac{(1.15)(385.3)(10^6)}{(36.458)(94.71)(10^3)(453.6)}$$ $$C_{ppmv} = 0.283 \, ppmdv$$ ### where: C_{ppmv} = concentration of hydrogen chloride in flue gas (ppmv) M_{HCl} = mass of hydrogen chloride collected in sample (mg) = volume occupied by one pound gas at = = volume occupied by one pound gas at standard conditions (dscf/lbmole) = conversion factor (fraction to ppm) 10^{6} MW_{HCl} = molecular weight of hydrogen chloride (lb/lb-mole) = volume of gas collected at standard temperature and pressure (scf) $V_{m(std)}$ 10^3 = conversion factor (mg/g) 453.6 = conversion factor (g/lb) ⁵ The HF concentration was calculated in a similar manner. ⁶ The HF concentration was calculated in a similar manner. # Hydrogen Chloride Emission Rate, lb/mmBtu⁷ $$E_{HCI} = \frac{(C_{HCI})(F_d)(20.9)}{(20.9 - O_2)}$$ $$E_{HCI} = \frac{(2.68 \times 10^{-8})(9,863)(20.9)}{(20.9 - 7.72)}$$ $E_{HCl} = 0.000419lb / mmBtu$ where: E_{HCl} = hydrogen chloride emission rate, (lb/mmBtu) C_{HCl} = hydrogen chloride concentration, (lb/dscf) F_d = fuel factor (dcsf/mmBtu) 20.9 = oxygen content of ambient air (%) $\%O_2$ = oxygen content of the dry gas stream (%) ### **Hydrogen Chloride Emission Rate** $$E_{HCl} = C_{HCl} \times Q_{dstd} \times 60$$ $E_{HCl} = 2.68 \times 10^{-8} \times 654,404 \times 60$ $E_{HCl} = 1.05 lb/hr$ where: E_{HCl} = hydrogen chloride emission rate, (lb/hr) C_{ppmdv} = hydrogen chloride concentration, dry basis, (ppmdv) Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm) MW = molecular weight of hydrogen chloride (lb/lbmole) = conversion factor (min/hr) = volume occupied by one pound gas at standard conditions (dscf/lbmole) 10^6 = conversion factor (fraction to ppm) ⁷ The HF emission rate was calculated in a similar manner. # Sample Calculations, Method 29, Run 1 # Concentration of Lead in Flue Gas, ug/dscm8 $$C_{ug'dscm} = \frac{(M_C)}{(V_{m(std)})} (35.31)$$ $$C_{ug'dscm} = \frac{(4.79)}{(66.01)} (35.31)$$ $C_{ug/dscm} = 2.56ug/dscm$ where: $C_{ug'dscm}$ = concentration of lead in flue gas (ug/dscm) M_C = mass of lead in sample (ug) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure(scf) 35.31 = conversion factor (ft³/m³) # Emission Rate of Lead in Flue Gas, lb/mmBtu9 $$E = \frac{(C_{ug/dscm})(F_d)(20.9)}{(35.315)(20.9 - \%O_2)(453.6)(10^6)}$$ $$E = \frac{(2.56)(9,863)(20.9)}{(35.315)(20.9 - 7.72)(453.6)(10^6)}$$ $$E = 2.50 \times 10^{-6} lb/mmBtu$$ where: = lead emission rate (lb/mmBtu) E - read concentration (ug/dscm) F_d = fuel factor (dcsf/mmBtu) 35.31 = conversion factor (ft³/m³) 20.9 = oxygen content of ambient air (%) %O₂ = oxygen content of the dry gas streated 453.6 = conversion factor (g/lb) 10⁶ = conversion factor (ug/g) C_{ug dscm} = lead concentration (ug/dscm) = oxygen content of the dry gas stream (%) ⁸ The concentrations of all MHs and mercury are calculated in a similar manner. ⁹ The emission rates of all MHs and mercury are calculated in a similar manner. # Lead Emission Rate, lb/hr $$E_{lb/hr} = \frac{(C_{ng/dscm})(Q_{dstd})(60)}{(35.31)(10^6)(453.6)}$$ $$E_{lb/hr} = \frac{(2.56)(684,896)(60)}{(35.31)(10^3)(10^3)(453.6)}$$ $$E_{lb/hr} = 0.00657lb/hr$$ #### where: = lead emission rate (lb/hr) $E_{lb,hr}$ Cug/dscm = lead concentration (ug/dscm) Q_{dstd} = volumetric flow rate of dry gas stream at standard conditions (dscfm) 10^3 = conversion factor (ug/mg) 10^3 = conversion factor (mg/g) = conversion factor (ft³/m³) 35.31 60.0 = conversion factor (min/hr) 453.59 = conversion factor (g/lb)