Sample Calculations, ESP Unit 1, Method 5B/202, Run 1

Area of Sample Location

$$A_s = \pi \times \left(\frac{d_s}{2 \times 12}\right)^2$$

$$A_s = \pi \times \left(\frac{132}{2 \times 12}\right)^2$$

$$A_s = 95.0 \text{ ft}^2$$

where:

= area of sample location (ft²) A_s = diameter of sample location (in)

12 = conversion factor (in/ft)

= conversion factor (diameter to radius)

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

$$P_a = 28.90 + \frac{-2.0}{13.6}$$

$$P_a = 28.75 in.Hg$$

where:

Pa = stack pressure absolute (in. Hg) = barometric pressure (in. Hg)

r_s 13.6 = static pressure (in. H_2O)

= conversion factor (in. H_2O/in . Hg)

Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure

$$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$

$$V_{m(std)} = \frac{17.64(54.83)(0.9904)\left(28.90 + \frac{1.24}{13.6}\right)}{(80.3 + 460)}$$

$$V_{m(std)} = 51.40scf$$

where:

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

V_m = volume of gas sampled at meter conditions (ft³) Y_d = gas meter correction factor (dimensionless)

P_b = barometric pressure (in. Hg)

ΔH = average sample pressure (in. H₂O)
 T_m = average gas meter temperature (°F)
 13.6 = conversion factor (in. H₂O/in. Hg)

= ratio of standard temperature over standard pressure (°R/in. Hg)

 $= conversion (^{\circ}F to ^{\circ}R)$

Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure

$$\begin{split} &V_{w(std)} = 0.04715 \times \left(V_{wc} + V_{wsg}\right) \\ &V_{w(std)} = 0.04715 \times \left(51.0 + 34.0\right) \\ &V_{w(std)} = 4.01scf \end{split}$$

where:

 $V_{w(std)}$ = volume of water vapor at standard conditions (scf)

V_{wc} = weight of liquid collected (g) V_{wsg} = weight gain of silica gel (g)

0.04715 = volume occupied by one gram of water at standard temperature and

pressure (ft^3/g)

Percent Moisture²

$$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})} \right]$$

$$B_{ws} = 100 \times \left[\frac{4.01}{(51.40 + 4.01)} \right]$$

$$B_{ws} = 7.23\%$$

where:

 B_{ws} = moisture content of the gas stream (%) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

= volume of water vapor at standard conditions (scf)

100 = conversion factor

Molecular Weight of Dry Gas Stream³

$$M_{d} = \left(44 \times \frac{\%CO_{2}}{100}\right) + \left(32 \times \frac{\%O_{2}}{100}\right) + \left(28 \times \frac{(\%N_{2})}{100}\right)$$

$$M_{d} = \left(44 \times \frac{12.0}{100}\right) + \left(32 \times \frac{7.28}{100}\right) + \left(28 \times \frac{(80.7)}{100}\right)$$

 $M_d = 30.21lb / lbmole$

where:

= molecular weight of the dry gas stream (lb/lb-mole) M_d

= carbon dioxide content of the dry gas stream (%)

= molecular weight of carbon dioxide (lb/lb-mole) 44

 $%O_2$ = oxygen content of the dry gas stream (%) = molecular weight of oxygen (lb/lb-mole) 32

= nitrogen content of the dry gas stream (%) $%N_2$

= molecular weight of nitrogen and carbon monoxide (lb/lb-mole) 28

100 = conversion factor

² The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content.

³ The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

Molecular Weight of Wet Gas Stream

$$\begin{split} M_{s} = & \left(M_{d} \times \left(1 - \frac{B_{\text{\tiny MS}}}{100} \right) \right) + \left(18 \times \frac{B_{\text{\tiny MS}}}{100} \right) \\ M_{s} = & \left(30.21 \times \left(1 - \frac{7.23}{100} \right) \right) + \left(18 \times \frac{7.23}{100} \right) \\ M_{s} = & 29.33 lb / lbmole \end{split}$$

where:

M_s = molecular weight of the wet gas stream (lb/lb-mole)

 M_d = molecular weight of the dry gas stream (lb/lb-mole)

B_{ws} = moisture content of the gas stream (%) 18 = molecular weight of water (lb/lb-mole)

100 = conversion factor

Velocity of Gas Stream

$$V_{s} = 85.49 \left(C_{p} \left(\sqrt{\Delta P}\right) \sqrt{\frac{\left(T_{s} + 460\right)}{\left(M_{s} \left(P_{b} + \frac{P_{s}}{13.6}\right)}}\right)}$$

$$V_{s} = 85.49 (0.84)(0.879) \sqrt{\frac{(324 + 460)}{(29.33)\left(28.90 + \frac{-2.0}{13.6}\right)}}$$

$$V_{s} = 60.9 \, ft \, / \sec$$

where:

 V_s = average velocity of the gas stream (ft/sec)

C_p = pitot tube coefficient dimensionless

 $\sqrt{\Delta P}$ = average square root of velocity pressures (in. H₂O)^{1/2}

 T_s = average stack temperature (${}^{o}F$)

M_s = molecular weight of the wet gas stream (lb/lb-mole)

P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H_2O)

85.49 = pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(0 R)(in. H₂O)]) ${}^{1.2}$

= conversion ($^{\circ}$ F to $^{\circ}$ R)

13.6 = conversion factor (in. H_2O/in . H_3O/in .

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_a = 60(V_s)(A_s)$$

 $Q_a = 60(60.9)(95.0)$
 $Q_a = 347,156acfm$

where:

= volumetric flow rate of the gas stream at actual conditions (acfm) Qa

V_s = average velocity of the gas stream (ft/sec)
A_s = area of duct or stack (ft²)
= conversion factor (min/hr)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{(T_s + 460)}$$

$$Q_{std} = \frac{17.64(347,156)\left(28.90 + \frac{-2.0}{13.6}\right)}{(324 + 460)}$$

$$Q_{std} = 224,494scfm$$

where:

= volumetric flow rate of the gas stream at standard conditions (scfm) Q_{std}

= volumetric flow rate of the gas stream at actual conditions (acfm) Q_a

 T_s = average stack temperature (°F)

 P_b = barometric pressure (in. Hg)

 P_s = static pressure of gas stream (in. H₂O)

13.6 = conversion factor (in. H_2O/in . H_3O/in .

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg)

= conversion (°F to °R) 460

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

$$Q_{dstd} = 224,494 \left(1 - \frac{7.23}{100} \right)$$

$$Q_{dsid} = 208,339 dsc fm$$

where:

= volumetric flow rate of the gas stream at standard conditions, on a dry Q_{dstd}

basis (dscfm)

= volumetric flow rate of the gas stream at standard conditions (scfm) Q_{std}

 B_{ws} = moisture content of the gas stream (%)

100 = conversion factor

Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$

$$A_n = \pi \times \left(\frac{0.220}{2 \times 12}\right)^2$$

$$A_n = 0.000264 \, \text{ft}^2$$

where:

 A_n

= area of nozzle (ft²) = diameter of nozzle (in)

= conversion factor (in/ft)

2 = conversion factor (diameter to radius)

Percent Isokinetic

$$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{ws}}{100}\right)}$$

$$I = \frac{0.0945(324 + 460)(51.40)}{\left(28.90 + \frac{-2.0}{13.6}\right)(60.9)(2.64 \times 10^{-4})(90)\left(1 - \frac{7.23}{100}\right)}$$

$$I = 98.7\%$$

where:

I = percent isokinetic (%)

 T_s = average stack temperature (${}^{\circ}F$)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

P_b = barometric pressure (in. Hg)

P_s = static pressure of gas stream (in. H₂O) V_s = average velocity of the gas stream (ft/sec)

 A_n = cross sectional area of nozzle (ft^2)

 Θ = sample time (min)

 B_{ws} = moisture content of the gas stream (%)

0.0945 = constant (0 R/in. Hg) 460 = conversion (0 F to 0 R)

13.6 = conversion factor (in. $H_2O/in Hg$)

100 = conversion factor

Acetone Wash Blank-Particulate

$$W_a = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$

$$W_a = \frac{(0.0000)(120)}{200}$$

$$W_a = 0.0000g$$

where:

W_a = particulate mass in acetone wash, blank corrected (g)

 m_{ab} = mass collected, acetone wash blank (g)

 v_{aw} = volume of acetone wash (ml)

 v_{awb} = volume of acetone wash blank (ml)

Mass in Front Half, Acetone Blank Corrected

$$m_f = m_{fil} + (m_a - W_a)$$

 $m_f = 0.3531 + (0.1324 - 0.0000)$
 $m_f = 0.4854g$

where:

m_f = mass in front half filter, and acetone wash, blank corrected (g)

m_{fil} = mass in front half filter (g) m_a = mass in acetone wash (g)

W_a = particulate mass in acetone wash blank (g)

Total Particulate Catch

$$M_n = m_f + m_b$$

 $M_n = 0.4854 + 0.0379$
 $M_n = 0.5234g$

where:

 M_n = total mass catch (g)

 m_f = mass in front half filter, and acetone wash, blank corrected (g) m_b = mass in back half organic fraction, and inorganic fraction, blank

corrected (g)

Total Particulate Concentration, grains/dscf

$$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$

$$C_{gr/dscf} = \frac{(0.5234)(15.43)}{51.40}$$

$$C_{gr/dscf} = 0.157 grains/dscf$$

where:

= particulate concentration (grains/dscf) Cgr/dscf

= total particulate catch (g)

 $V_{m(std)}^{-n}$ 15.42 = volume of gas collected at standard conditions (scf)

= conversion factor (grains/g)

Calculated F_d Factor, dscf/mmBtu

$$F_d = K((K_{hd} \times H) + (K_c \times C) + (K_s \times S) + (K_n \times N) - (K_o \times O_2)) / GCV_w$$

$$F_d = 10^6 ((3.64 \times 4.90) + (1.53 \times 73.11) + (0.57 \times 2.93) + (0.14 \times 1.58) - (0.46 \times 9.09)) / 13,028$$

$$F_d = 9,779$$

where:

 F_d = calculated fuel factor (dscf/mmBtu)

K conversion factor (Btu/million Btu)

= constant (scf/lb) K_{hd}

Η = weight percent hydrogen in coal (%)

= constant (scf/lb) K_c

C = weight percent carbon in coal (%)

 K_s = constant (scf/lb)

= weight percent sulfur in coal (%) S

 K_n = constant (scf/lb)

= weight percent nitrogen in coal (%) N

Ko = constant (scf/lb)

= weight percent oxygen in coal (%)

GCV_w = gross calorific value of fuel, wet (Btu/lb)

Total Particulate Emission Rate, lb/mmBtu 4

$$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$

$$E_{PM} = \frac{(0.5234)(9,779)(20.9)}{(51.40)(453.6)(20.9 - 7.28)}$$

$$E_{PM} = 0.337lb / mmBtu$$

where:

E_{PM} = toal particulate matter emission rate, (lb/mmBtu)

M_n = total particulate catch (g) F_d = fuel factor (dcsf/mmBtu)

20.9 = oxygen content of ambient air (%)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

453.6 = conversion factor (g/lb)

%O₂ = oxygen content of the dry gas stream (%)

Total Particulate Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m,std})(453.6)}$$

$$E_{lb/hr} = \frac{(0.5234)(208,339)(60)}{(51.40)(453.6)}$$

$$E_{lb/hr} = 281lb/hr$$

where:

 $E_{lb/hr}$ = particulate emission rate (lb/hr)

 M_n = total particulate catch (g)

 $V_{m(std)}$ = volume of gas collected at standard conditions (scf)

Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

60 = conversion factor (min/hr) 453.6 = conversion factor (g/lb)

⁴ All particulate emission rates are calculated in a similar manner.

Sample Calculations, Method 26, Run 1

Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)⁵

$$C_{HCL} = \frac{(M_{HCl})}{(V_{m(std)})(10^{3})(453.6)}$$

$$C_{HCl} = \frac{(242)}{(120.67)(10^{3})(453.6)}$$

$$C_{HCl} = 4.42 \times 10^{-6} \, lb \, / \, dscf$$

where:

 C_{HCl} = concentration of hydrogen chloride in flue gas (lb/dscf) M_{HCl} = mass of hydrogen chloride collected in sample (mg) $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf) 10^3 = conversion factor (mg/g) 453.6 = conversion factor (g/lb)

Concentration of Hydrogen Chloride in Flue Gas (ppmdv)⁵

$$C_{ppmv} = \frac{(M_{HCl})(385.3)(10^6)}{(MW_{HCl})(V_{m(std)})(10^3)(453.6)}$$

$$C_{ppmv} = \frac{(242)(385.3)(10^6)}{(36.458)(120.67)(10^3)(453.6)}$$

$$C_{ppmv} = 46.7 ppmdv$$

where:

= concentration of hydrogen chloride in flue gas (ppmv) C_{ppmv} M_{HCl} = mass of hydrogen chloride collected in sample (mg) 385.3 = volume occupied by one pound gas at standard con

= = volume occupied by one pound gas at standard conditions

(dscf/lbmole)

 10^{6} = conversion factor (fraction to ppm)

MW_{HCl} = molecular weight of hydrogen chloride (lb/lb-mole)

 $V_{m(std)}$ = volume of gas collected at standard temperature and pressure (scf)

 10^3 = conversion factor (mg/g)

453.6 = conversion factor (g/lb)

⁵ The concentration of HF is calculated in a similar manner.

Hydrogen Chloride Emission Rate, lb/mmBtu⁶

$$\begin{split} E_{HCI} &= \frac{\left(C_{HCI}\right)\!\left(F_d\right)\!\left(20.9\right)}{\left(20.9 - O_2\right)} \\ E_{HCI} &= \frac{\left(4.42 \times 10^{-6}\right)\!\left(9,808\right)\!\left(20.9\right)}{\left(20.9 - 7.28\right)} \end{split}$$

$$E_{HCl} = 0.0665lb / mmBtu$$

where:

E_{HCl} = hydrogen chloride emission rate, (lb/mmBtu) C_{HCl} = hydrogen chloride concentration, (lb/dscf)

 F_d = fuel factor (dcsf/mmBtu)

20.9 = oxygen content of ambient air (%)

 $%O_2$ = oxygen content of the dry gas stream (%)

Hydrogen Chloride Emission Rate⁶

$$E_{HCl} = C_{HCl} \times Q_{dstd} \times 60$$

$$E_{HCI} = 4.42 \times 10^{-6} \times 193,099 \times 60$$

$$E_{HCl} = 51.2lb/hr$$

where:

E_{HCI} = hydrogen chloride emission rate, (lb/hr) C_{HCI} = hydrogen chloride concentration, (lb/dscf)

Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

MW = molecular weight of hydrogen chloride (lb/lbmole)

60 = conversion factor (min/hr)

385.3 = volume occupied by one pound gas at standard conditions (dscf/lbmole)

10⁶ = conversion factor (fraction to ppm)

⁶ The emission rate of HF is calculated in a similar manner.

Sample Calculations, Method 29, Run 1

Concentration of Lead in Flue Gas, ug/dscm⁷

$$C_{ug/dscm} = \frac{(M_C)}{(V_{m(std)})} (35.31)$$

$$C_{ug/dscm} = \frac{(28.4)}{(63.85)} (35.31)$$

$$C_{ug/dscm} = 15.7ug/dscm$$
where:
$$C_{ug/dscm} = \text{concentration of lead in flue gas (ug/dscm)}$$

$$M_C = \text{mass of lead in sample (ug)}$$

$$V_{m(std)} = \text{volume of gas collected at standard temperature and pressure(scf)}$$

$$35.31 = \text{conversion factor (ft}^3/\text{m}^3)$$

Emission Rate of Lead in Flue Gas, lb/mmBtu8

$$E = \frac{(C_{ug/dscm})(F_d)(20.9)}{(35.31)(20.9 - \%O_2)(453.6)(10^6)}$$

$$E = \frac{(15.7)(9,808)(20.9)}{(35.31)(20.9 - 7.28)(453.6)(10^6)}$$

$$E = 1.48 \times 10^{-5} \, mg \, / \, dscm@7\%O_2$$

where:

 $\begin{array}{ll} E &= lead\ emission\ rate\ (lb/mmBtu)\\ C_{ug/dscm} &= lead\ concentration\ (ug/dscm)\\ F_d &= fuel\ factor\ (dcsf/mmBtu)\\ 35.31 &= conversion\ factor\ (ft^3/m^3)\\ 20.9 &= oxygen\ content\ of\ ambient\ air\ (\%)\\ \%O_2 &= oxygen\ content\ of\ the\ dry\ gas\ stream\ (\%)\\ 453.6 &= conversion\ factor\ (g/lb)\\ 10^6 &= conversion\ factor\ (ug/g)\\ \end{array}$

⁷ The concentrations of all MHs and mercury are calculated in a similar manner.

⁸ The emission rates of all MHs and mercury are calculated in a similar manner.

Lead Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(C_{ug/dscm})(Q_{dstd})(60)}{(35.31)(10^6)(453.6)}$$

$$E_{lb/hr} = \frac{(15.7)(208,870)(60)}{(35.31)(10^6)(453.6)}$$

$$E_{lb/hr} = 0.0123lb/hr$$

where:

 $E_{lb,hr}$ = lead emission rate (lb/hr) $C_{ug/dscm}$ = lead concentration (ug/dscm)

Q_{dstd} = volumetric flow rate of dry gas stream at standard conditions (dscfm)

10⁶ = conversion factor (ug/g) 35.31 = conversion factor (ft³/m³) 60.0 = conversion factor (min/hr) 453.6 = conversion factor (g/lb)