Jonathan D. Crabtree

Black & Veatch Corporation 11401 Lamar Avenue Overland Park, KS 66211 USA * CrabtreeJD@bv.com ((913) 458-2403

Building a World of Difference[®]

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Tuesday, October 12, 2010 3:12 PM
To: Crabtree, Jonathan D.
Cc: Saunders, Eileen; Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: RE: 168908. 41.0100 101011 Mill Creek Information Request

Jonathan,

Sorry about forgetting the attachment yesterday. It should be attached this time.

We had already found one drawing on Unit 2 that was requested, so I am uploading it today. We will mark that one as being complete and if you find otherwise, please let me know.

We do have percent volume CO2 at the stack and I am in the process of getting that data (should be tomorrow). I am planning to get the year-to-date data, if you need more, let me know.

I'm not positive I can find testing results in those areas, but I would say they probably have been done before. I will try to find any test results I can.

I will get an uncorrupted version of "MC 3 SCR General Arrangt Plan Section E-20.pdf" uploaded tomorrow.

What address, and to whose attention, should the B&V Short Circuit Study be sent?

Thanks,

Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Crabtree, Jonathan D. [mailto:CrabtreeJD@bv.com]
Sent: Monday, October 11, 2010 5:11 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: 168908. 41.0100 101011 Mill Creek Information Request

Alex,

Thanks for the update. I believe your attachment did not make it on there with your email. Feel free to resend it or wait until your next update.

Regarding the plant arrangements, if the ones we requested are Unit 2 drawings, we already have clear copies of those and you do not need to rescan them. Unless you have additional Unit 1 plant arrangement drawings, we will assume we have everything we need and we can close that item.

Additionally, in response to the "Not measured" items on the data request (air heater leakage, precipitator leakage, and stack gas outlet oxygen percent) please provide information regarding the following (if available):

1) Do you have measurements of percent volume CO2 at the stack on any or all units?

2) Has the plant conducted any flue gas testing on any of the units at the air heater gas outlets and/or the cold-side ESPs? The type of information we would be looking for would again be percent volume O2 and/or CO2.

Lastly, in the priority 2 folder, the "MC 3 SCR General Arrangt Plan Section E-20.pdf" appears to be corrupted and we are unable to open it. If possible, please send another copy.

Thanks for your help,

Jonathan D. Crabtree

Black & Veatch Corporation 11401 Lamar Avenue Overland Park, KS 66211 USA * CrabtreeJD@bv.com ((913) 458-2403

Building a World of Difference®

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Monday, October 11, 2010 2:59 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101011 Mill Creek Information Request

M.R.,

Thanks for the feedback on these issues. I will get the AH info uploaded as soon as possible. We're looking for the prints you've listed below. We've found some, but they are not the latest revisions you've listed. Just for clarification, these prints you've listed are for Unit 2, not Unit 1.

Once again, the sheet is attached. There wasn't much that was added today, only 4 foundation prints under the Priority 2 folder.

Thanks,

Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Monday, October 11, 2010 10:03 AM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: 168908. 41.0143 101011 Mill Creek Information Request

Alex,

Sorry for any confusion on the Unit 1 Plant arrangements.

There are six Unit 1 PA drawings that just fuzz out to the point you can't read the characters when you blow them up to readable size. It may just be bad files or poor copies of good files. The six drawings are:

 $\begin{array}{l} \mbox{F-663-253-16, -16A, \& 16B} & (drawings are actually numbered as F-663-253, shts 1 of 3, 2 of 3 \& 3 of 3) \\ \mbox{F-663-254-12, -12A, \& 12B} & (drawings are actually numbered as F-663-254, shts 1 of 3, 2 of 3 \& 3 of 3) \\ \end{array}$

Please do the best you can. If the originals are real light, they may never scan well.

I'll let you know if we need anything further on Limestone.

Thanks,

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Friday, October 08, 2010 2:19 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

Attached is the updated spreadsheet for today. There is some confusion on the Unit 1 Plant Arrangement Drawings. If possible, please list the drawing numbers of the prints that are unreadable or the file names and I will look for better copies of those prints.

Also, please check the limestone analysis file I uploaded to see if that is the information you're looking for.

Thanks,

Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Betz, Alex

Sent: Thursday, October 07, 2010 3:18 PM
To: 'Wehrly, M. R.'
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

Attached is the updated spreadsheet for today. A lot of information has been added. We are having trouble finding "Original/Operating performance data" for the Air Heaters. We do have actual operating data, but are not sure if that's what you're looking for. Please advise on that item.

The Excess O2 spreadsheet shows the actual data in 4 hour averages for the year to date. If you need more data, please let me know.

Thanks,

Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Wednesday, October 06, 2010 8:59 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

Alex, Thanks for the update. Send the study when you can. With the transformer nameplate pictures/drawings, we should be able to get started on the electrical review. I've forwarded the structural steel study information on to Monty and if we think it will be useful, we'll try to get it from our storage. M.R.

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Wednesday, October 06, 2010 2:23 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

I am in the process of getting you a copy of the study, but I doubt it will be to you by Friday.

The attached sheet shows everything that I've uploaded to the website. Notice that some of the items could not be found either because we don't measure them, can't find them, or they don't exist. For the MC3 FD Fan Curve and MC1 & MC2 ID Booster Fan Curves, please see the comments in the "Completed" column.

I did find a structural report on Unit 3 FGD from 1993 by B&V, but it does not look that helpful, especially since it's from 1993. The cover letter is attached which shows the B&V Project and File number for you to reference in the B&V files if you think it would be valuable.

Thanks,

Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Tuesday, October 05, 2010 10:22 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

Alex,

Thanks for finding this information. Yes we can still use SKM although we have a newer version and we'd have to update the data anyway. Our Ann Arbor office told us they have the SKM model disks also, so we can get them from them if we need to. Just a copy of the report would do it for now. Thanks, M.R.

From: Betz, Alex [mailto:Alex.Betz@eon-us.com] Sent: Tuesday, October 05, 2010 12:16 PM To: Wehrly, M. R. Cc: Saunders, Eileen; Hillman, Timothy M. Subject: B&V Short Circuit Study

M.R.,

I have located the short circuit study, but I also found out from the guy who has the study that he has a model in an SKM (PTW) format. I think I remember you mentioning that format during the conference call yesterday, but don't remember if you said you could use that or couldn't use that, so please let me know.

Thanks,

Alex Betz

Mechanical Engineer II LG&E - Mill Creek Station 14660 Dixie Hwy Louisville, KY 40272 (502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Table 1-4 Limestone Properties [E.ON TO CONFIRM]									
Dry Basis, Percent (%) by Weight	Nominal	<u>% Guaranteed</u>							
Calcium Carbonate, CaCO ₃	94%	90% minimum							
Magnesium Carbonate, MgCO ₃	3%	6% maximum (1.5% max insoluble)							
Silica Dioxide, SiO ₂	-	3.5% maximum							
Ferric Oxide, Fe ₂ O ₃	-	1.5% maximum							
Aluminum Oxide, Al ₂ O ₃	-	4.3% maximum							
Total Inerts (non CaCO ₃)	6%	7% maximum							
Moisture	5%	12% maximum							
Bond Work Index (kWh/t)	12	12 maximum 4 minimum							
Surface Moisture	12%	7% maximum							
Fluorides	500	ppm							
Chlorides	550	ppm							
Bulk Density Design Basis									
Volumentric Sizing	55	pcf							
Structural Loading	115	pcf							
Angle of Repose	30	degree							
Surcharge Angle	25	degree							
Maximum lump size	³ / ₄ inch								
Data from Environmental Compliance Project Quality Data spreadsheet.									

From:	Hillman, Timothy M.
То:	Saunders, Eileen
CC:	Jackson, Audrey; 168908 E.ON-AQC; Crabtree, Jonathan D.; Wehrly, M. R.; Lucas, Kyle J.; Mehta,
	Pratik D.; Mahabaleshwarkar, Anand
Sent:	9/29/2010 5:24:40 PM
Subject:	168908.41.0100 100929 Mill Creek, Ghent and Brown Coal Fuel Question
Attachments:	Environmental Compliance Proj quality data.xlsx; Mill Creek.xls

Eileen,

During the Phase I work, E.ON initially provided coal analysis data (included in the spreadsheet below) as the typical or "Current Coal" for Mill Creek. Coal data for Ghent and Brown were not initially provided.

Later during the course of the Phase I work, we were asked to use a different fuel (a "Future Coal", included in the spreadsheet below) for the Phase I work for Mill Creek, as well as for Ghent and Brown.

Accordingly, the Phase I study was conducted using the "Future Coal" as a design basis for Mill Creek, Ghent and Brown.

The analyses for the Mill Creek "Current Coal" and "Future Coal" are as follows:

Ultimate Coal Analysis (% by mass as received):	Current Coal	Future Coal
Carbon	64	61.21
Hydrogen	4.5	4.28
Sulfur	3.5	3.36
Nitrogen	1.3	1.27
Oxygen	4.62	6.89
Chlorine	0.08	0
Ash	12	12
Moisture	10	11
Total	100.00	100.00
Higher Heating Value, Btu/lb (as received)	11,471.82	11,200
SO2 Inlet Loading, Ib/Mbtu	6.10	6.00

Additionally, during the Aug 5-6 Mill Creek AQC Workshop, a 6.2 lb/Mbtu SO2 coal was referenced, which is higher than the 6.10 and 6.00 lb/Mbtu SO2 for the "Current Coal" and "Future Coal", respectively.

Our question is, which fuel analysis should we use as the coal fuel design basis for Mill Creek, Ghent, and Brown in the Phase II work?

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Ernaik hillmantm@by.com

1 E.ON U.S. Corporate Fuels	FOxygen AR uminum Oxid % % 6.42 27.93 6.69 19.54 6.99 23.42 6.88 21.41
3 5/3/10 0 <td>% % 6.42 27.93 6.69 19.54 6.99 23.42</td>	% % 6.42 27.93 6.69 19.54 6.99 23.42
4	% % 6.42 27.93 6.69 19.54 6.99 23.42
4	% % 6.42 27.93 6.69 19.54 6.99 23.42
5 Olimitation Outlimate 6 Coal Quality Average for 2009 Moisture Ash AR Volatile ARixed Carbon A BTU AR Sulfur AR Alkalinity AF Carbon AR Hydrogen	% % 6.42 27.93 6.69 19.54 6.99 23.42
6 Coal Quality Average for 2009 Moisture Ash AR Volatile ARixed Carbon A BTU AR Sulfur AR Alkalinity AF Carbon ARHydrogen ARHydr	% % 6.42 27.93 6.69 19.54 6.99 23.42
7 % % % % BTU/lb % mg/L %	% % 6.42 27.93 6.69 19.54 6.99 23.42
7 % % % % BTU/lb % mg/L %	% % 6.42 27.93 6.69 19.54 6.99 23.42
8 Brown Average 6.01 10.62 36.72 46.65 12,403 1.51 0.19 69.39 4.67 1.37 9	6.42 27.93 6.69 19.54 6.99 23.42
9 2.44 100.00 10 Green River Average 10.55 8.60 36.71 44.15 11,827 2.36 0.21 66.00 4.46 1.34 11	6.69 19.54 6.99 23.42
10 Green River Average 10.55 8.60 36.71 44.15 11,827 2.36 0.21 66.00 4.46 1.34 11	6.99 23.42
11 Image: Constraint of the second state	6.99 23.42
12 Cane Run Average 13.59 10.36 34.92 41.13 10,933 2.72 0.21 60.83 4.18 1.34 13	
13	
14 Ghent Average 10.77 11.27 35.66 42.30 11,286 2.81 0.22 62.70 4.31 1.27 15 10.00 1.27 16 Mill Creek Average 11.43 11.36 35.68 41.54 11,115 3.02 0.23 61.67 4.22 1.28 17 5.44 100.00	6.88 21.41
15 4.98 100.00 16 Mill Creek Average 11.43 11.36 35.68 41.54 11,115 3.02 0.23 61.67 4.22 1.28 17 5.44 100.00	0.00 21.41
16 Mill Creek Average 11.43 11.36 35.68 41.54 11,115 3.02 0.23 61.67 4.22 1.28 17 100.00 128	
17 5.44 100.00	7.01 20.89
18 Trimble County Average 10.30 11.96 35.67 42.07 11.261 3.09 0.24 62.36 4.31 1.26	
	6.72 22.62
19 5.48 100.00	
20	
21	
22 TYPICAL/Average Quality for Future Coals	
23 Ghent, Mill Creek, Cane Run, Trimble (11.00 12.00 36.00 42.00 11,200 3.36 0.22 61.21 4.28 1.27	6.89 21.69
24 6.00 100.01	
25 Brown Low Sulfur Coal 6.50 11.50 37.00 47.00 12,000 1.50 0.19 68.04 4.67 1.37	6.42 27.93
26 2.50 100.00	
27 Green River Average 10.50 9.00 37.00 44.00 11,600 2.60 0.21 65.41 4.46 1.34	6.69 19.45
28 4.48 100.00	
29 PRB for TC2 Blend 28.00 7.00 36.00 30.00 8,500 0.60 0.40 48.00 3.53 0.86	12.01 18.00
30 100.00	+

	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE
1																
2																
3																
4																
5	Ash Analysis															
6	arium Ovic	alojum Ovic				phorus Pento	otassium Ovid		odium Oxic		ulfur Triovia		Silica	Undetermined	Antimony S	EArsonic As
7	%		%	%	%	%	%	%	%	%		%	311Ca %	%	ppm	ppm
8	0.13	1.40	12.63	0.84	0.03	0.35	2.21	51.11	0.33	0.15	1.09	1.55	77.53	0.25	0.76	
9																
10	0.06	2.89	19.97	0.91	0.04	0.21	2.41	49.61	0.77	0.04	2.47	1.08	67.72		1.07	10
11	0.05	4.04	00.04	0.00	0.02	0.04	2.62	45.05	0.24	0.05	0.05	4.40	64 70	0.47	4.07	15
12 13	0.05	1.21	22.91	0.99	0.03	0.24	2.63	45.95	0.31	0.05	0.95	1.10	64.72	0.17	1.37	15
14	0.07	2.70	21.39	0.89	0.04	0.24	2.24	46.56	0.52	0.05	2.58	1.07	65.14	0.25	1.00	13
15																
16	0.08	3.41	21.84	0.92	0.04	0.27	2.37	45.26	0.48	0.04	3.36	1.00	63.44	0.04	1.12	12
17		0.53	~~~~~					45.00	0.45	0.00		4.04				40
18 19	0.08	2.57	22.23	0.92	0.04	0.29	2.39	45.09	0.45	0.06	2.24	1.01	63.70		0.94	13
20																
21																
22																
23	0.07	2.74	21.80	0.91	0.04	0.26	2.33	45.88	0.48	0.05	2.58	1.04	64.37	0.12	1.05	13
24																
25	0.13	1.40	12.63	0.84	0.03	0.35	2.21	51.11	0.33	0.15	1.09	1.55	77.53	0.25	0.76	21
26																
27	0.06	2.89	19.90	0.91	0.04	0.21	2.41	49.65	0.77	0.04	2.47	1.08	67.72	0.13	1.07	10
28																
29	0.40	17.00	5.10	3.60	0.03	0.50	0.90	40.27	1.60	0.40	11.00	1.20	58.00		2.00	4
30																

	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS
1														
2														
3														
4														
5					Trac	e Elemer	nts							
6	Barium, Ba	Cadmium, Co	Chlorine, Cl	Chromium, Cr	Flourine, Fl	Lead, Pt	Magnesium, Mg	Mercury, Hç	Nickel, Ni S	elenium, Se	Strontium, Sı	Vanadium, V	Zinc, Zn	
7	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
8 9	115	0.08	863	20	85	8	547	0.12	15	4.73	135	31	14	
10	49	0.30	1,845	17	71	11	509	0.10	14	1.93	30	40	50	
11														
12 13	63	0.20	155	23	86	12	721	0.09	29	2.32	58	48	32	
14	72	0.60	964	21	93	12	663	0.13	19	3.16	56	40	44	
15					400	40		0.40					- 4	
16 17	77	0.68	622	23	102	10	703	0.13	20	2.65	47	37	51	
18	79	0.89	624	25	108	11	693	0.12	21	3.02	67	39	59	
19 20														
20														
22														
23	74	0.65	1,600	23	98	11	684	0.12	20	2.94	56	40	48	
24						-								
25	115	0.08	863	20	85	8	547	0.12	15	4.73	135	31	14	
26 27	49	0.30	1,845	17	71	11	509	0.10	14	1.93	30	40	50	
28														
29 30	270	1.40	125	10	63	4	1,525	0.08	7	2.00	250	28	11	
30														

	A	В	С	D	E	F	G	Н	I		J	К	L	М	N	0	Р	Q			
1	Limesto	one Qua	lity																		
2	Mill Cree	ek, Trimb	le Count	y and Gh	ent																
3 4 5																					
4																					
5				ş	6.1 S	pecific	ations.	. The	lime	ston	e de	elivere	d here	under	shall	conform	n to th	e folle			
6 7																					
8																					
8 9			spe	ecifica	tions of	on a "d	ry" bas	sis:										1			
10			-																		
11																					
12																					
13				,	Activo	Inorad	lient Pr	en en entre	~~~			1	0/1 Cm	കണ്ട	ьđ						
14 15				4	Active	mgiet	пеш гі	noñoin	ons			7	<u>%) Gu</u>	arame	ea						
16																					
16 17				Q	urface	Maint						-	0% M	lowing	1 ****			1			
18				3	ullace	INDISI	ult.					/	.U 20 IV	Iaxiiiii				1			
19																					
20				C	aco.							C	A A02 1	h Alimium							
21		CaCO ₃												90.0% Minimum *							
19 20 21 22 23 24 25 26 27																					
24				ħ.	AcCO-							6	0.0% M	lavim	1 ***						
25		MgCO ₃										U	V 70 IV	iaxiiiii	4111			1			
26																					
27				S	iO_2							2	.5% N	lazima	1 ***						
28 29				3	$1 \vee 2$							5		181XIIIII	4618						
29																					
30 31 32				E	e_2O_3							1	.5% N	Invin	****						
32				<u>.</u>	$c_2 \bigcirc 3$							1	.970 IV.	IaAIIIIU	1111						
33 34 35																					
34				٨	al2O3							Λ	.30%]	Movin	111444						
35				17	⊾ ₂ ∨3							-1	.JV70 J	wiaxiii	164111						
36 37																					
38				Te	nerts							7	.0% N	favim	1177						
39				<u>u.u</u>								'	.070 IV.	ICIAIIIII	111						
40																					
41				ĥ	louride	an a						5	00 PP	NÁ							
42				.e . '	*********	L						. J	····	1 V IL							
43 44																					
44				ſ	Chloide	•C						5	50PPN	Л							
46				L	JUIUIUC	14.J						5		¥. <u>B</u> .							
47																					
48 49				P	ond W	Zork In	dev					1	2 Max								
49				1	VILLE VI	o o las all	1949-196. 19					T	۸،ا۵،۱۷ سک								
50																					

	R	S
1	<u>.</u>	
2		
3		
4		
6	owing	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20 21		
21		
22		
23		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37 38		
38 39		
39 40		
40		
42		
43		
44		
45		
46		
47		
48		
49		
50		

	A	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q
51				45		u 11	1 19	F. 3							•		~ ~ ~
52				- 1	The S	seller s	hall us	e its b	est ette	orts to	supply	i limes	stone c	ontain	ing a n	nınımı	Im of 의
53				C	aCO_3												
54				<u>ا</u> ر	acoj.												
55																	
57																	
58																	
58			1	1	1	1	1	1	1		1	1	1	1	1	1	

	R	S
51		
52	2.0%	
53		
54		
52 53 54 55 56 57		
56		
58		

	A	В	С	D	E	F	G	Н		J	К	L	M	N	0	Р	Q		
1	Limesto	one Qua	lity																
2	Brown																		
3																			
3 4 5																			
5																			
67				S (6.1 S	pecific	ations.	The	limes	stone d	elivere	d here	under :	shall (conform	n to th	e folle		
6 7 8 9 10				0	<u></u>	•													
9																			
10		specifications on an "as received" basis:																	
11																			
12																			
13					Active	Ingred	ient Pr	oporti	ons		C	%) Gu	arantee	ed					
14		Active Ingredient Proportions (%)																	
13 14 15 16 17																			
17				Si	urface	Moist	4	.0% M	laximu	um									
18																			
19																			
20				C	aCO ₃						9	2.0% I	Minim	um					
21																			
23																			
24				\mathbf{M}	fgCO ₃						6	$.0\%{ m M}$	laximu	ım					
18 19 20 21 22 23 24 25 26 27		- ··· • ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··																	
26																			
27				Si	iO ₂						3	.5% M	laximu	m					
28					2														
30																			
31				Fe	e_2O_3						1.0% Maximum								
32																			
33					~		~ ~ `						· .						
34				R	$_2O_3(A$	$1_2O_3 + F$	e_2O_3)					90% Tj	ypical						
36							•					_							
28 29 30 31 32 33 34 35 36 37 38 39 40 41				~									r +						
38				S								05% M	laximu	ım					
39																			
40				тэ	0														
41				\mathbf{P}_2	205						.4	40% M	laximu	lm					
43																			
42 43 44 45 46 47					11	NT. A.	77 AS				-	002 3							
45		Alkali (Na ₂ O+K ₂ O)										1.0% Maximum							
46																			
47					10								r *						
48 49				A	$1_{2}O_{3}$						1	.5% M	laximu	m					
49 50		1			I	I	I	I	I		1	I	I	1	1	1	1		
50				1	1	1	1	1	1		1	1	1	1		1			

	R	S
		0
1		
2		
3		
4		
5		
6	wing	
7		
8		
9		
10		
11		
12 13		
14		
15		
16		
16 17		
18		
19		
20		
20 21		
22		
23		
23 24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35 36		
36 37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		I
50		

	Α	В	С	D	E	F	G	Н	I	J	k	(L	М	Ν	0	Р	Q
51 52		-		Īn	erts							21	09/ Ma					
52		-		LL.	UIS							3.	0% Ma	IXIIII U				
54		1																
55 56		+		Fl	ouride	:						1,	250 PP	M				
57		1																
58 59		+		CI	ıloride	×C			250 PPM									
60					1101100	6						ل مند		L .				
61 62		-		-			_											
63		-		Be	ond W	ork In	dex					10).5 Maz	cimun	1			
64			1			1									1		1	

	R	S
51 52		
52		
53		
54		
53 54 55 56 57		
56		
57		
58 59		
59		
60		
61		
62		
62 63 64		
64		

	A B C	D	E	F	G	Н	
1	Black & Veatch AQCS	Informat	ion Ne	eds			
2							
3	Power Plant:		Owner:				
4	Unit		Project:				
5							
6	References:						
7	1)						
8	2)						
9	3)						
10	4)						
11	Yellow highlight denotes Critical Focus Needs.						
12	Fuel Data						
13	Ultimate Coal Analysis (% by mass as received)			<u>Typical</u>	<u>Minimum</u>	<u>Maximum</u>	
14	Carbon			64			%
15	Hydrogen			4.5			%
16	Sulfur			3.5			%
17	Nitrogen			1.3			%
18	Oxygen			4.62			%
19	Chlorine			0.08			%
20	Ash			12			%
21	Moisture		-	10			%
22	Total			100.00			
23	Higher Heating Value, Btu/lb (as received)			11471.82			Btu/lb
24	Ash Mineral Analysis (% by mass):						
25	Silica(SiO ₂)						%
26	Alumina (Al ₂ O ₃)						%
27	Titania (TiO ₂)						%
28	Phosphorous Pentoxide (P ₂ O ₅)						%
29	Calcium Oxide (CaO)						%
30	Magnesium Oxide (MgO)						%
31	Sodium Oxide (Na ₂ O)						%
32	Iron Oxide (Fe ₂ O ₃)						%
33	Sulfur Trioxide (SO ₃)						%
34	Potassium Oxide (K ₂ O)						%
35	Coal Trace Element Analysis (mercury and espe	ecially arsenic	c if fly ash	is returned to boile	er)		

	J	К
1	,	
2		
3		
4		
5		
6		
7		
8		
9		
10		
11]	
12		
13		Notes
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		

	Α	В	С	D	E	F	G	Н	l
36		Vanadium					%		
37		Arsenic					%		
38		Mercury					% or ppm		
39		Other	LOI				%		
40		Natural gas	s firing capability (if any at all)						
41		Natural gas	line (into the station) capacity (if a	applicable)					
42		Current Los	st on Ignition (LOI)						
43		Start-up Fu	el						
44		Ash Fusion	Temperature						
45		Initial Defo	ormation				°F		
46		Softening					°F		
47		Hemispheri	ical				°F		
48		Hardgrove	Grindability Index						

	J	К
36	2	
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		

	A	В	С	D	E	F	G	Н	I
49		Plant Size	and Operation Data: (provide for	r each unit)		<u>Unit 1</u>	<u>Unit 2</u>	<u>Unit 3</u>	<u>Unit 4</u>
50		Maximum (I	Design) Fuel Burn Rate			B&V can determir	ne some values fro		
51		Boiler Type	(e.g. wall-fired, tangential fired, cy	(clone)		Tangential fired	Tangential fired	opposed wall	opposed wall
52		Boiler Manu	ıfacturer			CE	CE	B&W	B&W
53		Net MW Rating (specify plant or turbine MW) Winter ratings				303MW	303MW	397MW	492MW
54		Gross MW	Rating	Winter ratings		330MW	330MW	423MW	525MW
55		Net Unit He	at Rate			10639	10929	10602	10410
56		Net Turbine	Heat Rate						
57		Boiler SO2	to SO3 Conversion Rate (if known)					
58		Fly Ash/Bot	tom Ash Split			80/20	80/20	80/20	80/20
59		Flue Gas R	ecirculation (FGR)						
60			Installed? (Y/N)			N	N	N	N
61			In operation? (Y/N)						
62		Flue Gas R	ecirculation (if installed)						
63		Type of Air	Heater			Air Preheater Co.	Air Preheater Co.	Ljungstrom	Ljungstrom
64		Air Heater (Configuration (horizontal or vertica	I flow or shaft)		Vertical Flow	Vertical Flow	Vertical Flow	Vertical Flow
65		Design Pres	ssure/Vacuum Rating for Steam G	enerator	+/-				
66		Design Pres	ssure/Vacuum Rating for Particula	te Control	+/-				
67									
68		Electrical /	Control						
69		DCS Manuf	acturer (e.g. Westinghouse, Foxbo	oro, Honeywell,	etc.)	Honeywell	Honeywell	Honeywel	Honeywell
70		Type of DC	S (e.g. WDPF, Ovation, Net 90, In	fi 90. Symphony	. TDC 30	TC3000			Experion
71			vork Installed? (Y/N)		<u>,</u>	Y	Y	N	N
72			etwork Manufacturer (e.g. Pegasus	s. Westinahouse	e, etc.)	Neuco	Neuco		
73			city available in DCS?		, ,	minimal	minimal	minimal	minimal
74		Historian M				Honeywell	Honeywell	Honeywell	Honeywell
75		Additional C	Controls from DCS or local PLC w/	tie-in		,	,	,	y
76		Transforme	r Rating for Intermediate Voltage S	Switchgear					
			<u> </u>	0					
77			Spare Electrical Cubicles in Existi	ng MCC's and L	.CUS's (S				
78		Auxiliary Ele	ectric Limited (Y/N)			Ν	N	N	N
79									
80		Operating	<u>Conditions</u>						
81		Economize	r Outlet Temperature			760	760	690	640

	J	К
49		Notes
50	MBtu/hr	
51		
52		
53	MW	
54	MW	
55	Btu/kWh	
	Btu/kWh	
57	%	
58	%	
59		
60		
61		
62	%	
63		
64		
	in wg.	
	in wg.	
67		
68		
69		
70		
70		
71		
72		
73 74		
75		
76		
77		
78		
79		
80		
	°F	

	А	В	С	D	E	F	G	Н	I
82		Economizer	r Outlet Pressure			-5	-5	-5	-5
83		Excess Air or Oxygen at Economizer Outlet (full load/min load)				5	5	5	5
84		Economizer	r Outlet Gas Flow			1524804	1524804	1958726	2239453
85						2976508	2976508	4056287	4848440
86		Air Heater C	Dutlet Temperature			375	375	325	315
87		Air Heater C	Dutlet Pressure			-10	-10	-18	-18
88		Particulate	Control Equipment Outlet Tempera	ature		375	375	325	315
89		Particulate	Control Equipment Outlet Pressure	9		-14	-14	-23	-21
90		FGD Outlet	Temperature (if applicable)			133	133	130	130
91		FGD Outlet	Pressure (if applicable)			1	1	1	1

	J	К
	in wg.	
83	%	
84	acfm	
85	lb/hr	
86	°F	
87	in wg.	
88	°F	
89	in wg.	
90	°F	
91	in wg.	

	Α	В	С	D	E	F	G	Н	
92		NOx Emiss	ions			<u>Unit 1</u>	<u>Unit 2</u>	<u>Unit 3</u>	<u>Unit 4</u>
93		Emissions L	.imit					0.7	0.7
94	-	Type of NO	x Control (if any) - LNB, OFA, etc.			LNB/OFA	LNB/OFA	LNB/SCR	LNB/SCR
95	(x Reduction with existing controls					90%	90%
96		Type of A	mmonia Reagent Used (Anhydrou	Is or % H ₂ O or l	Jrea)			Anhydrous	Anhydrous
97		Reagent (Cost					500	500
98	(Current Emissions				0.32	0.32	0.05	0.05
99									
100									
101									
102	-	Particulate	<u>Emissions</u>						
103		Emissions L				0.115	0.115	0.105	0.105
104	-	Type of Em	ission Control - Hot Side ESP, Co	ld Side ESP or	FF	Cold Side ESP	Cold Side ESP	Cold Side ESP	Cold Side ESP
105		Oxygen Cor	ntent of Flue Gas @ Air Heater Ou	utlet		4	4	4	4
106			ntent of Flue Gas @ ESP/FF Outle	et		4	4	4	4
107	(Current Em	issions			0.36	0.48	0.05	0.04
108		Fly Ash Sole	d (Y/N) - See Economic Section			Y	Y	Y	Y
109									
110			ESP						
111			Specific Collection Area (SCA)						
112			Discharge Electrode Type						
113			Supplier						
114			Efficiency						
115			No. of Electrical Sections						
116			% of Fly Ash Sold						
117									
118			<u>Fabric Filter</u>						
119			Air to Cloth Ratio (net)						
120			Number of Compartments						
121			Number of Bags per Compartmen	nts					
122			Efficiency						
123			% of Fly Ash Sold						
124									
125	-	<u>SO₂Emissi</u>	ons						
126		Emissions L	imit			1.2	1.2	1.2	1.2

	J	К
92		Notes
93	lb/MBtu	
94		
95	%	
96		
97	\$/ton	
98	lb/hr	
99	ton/yr	
100	lb/MBtu	
101		
102		
103	lb/MBtu	
104		
105	%	
106	%	
107	lb/MBtu	
108		Very minimal at this point in time
109		
110		
111	ft ² /1000 acfm	
112		
113		
114	%	
115		
116	%	
117		
118		
119	ft/min	
120		
121		
122		
123	%	
124		
125		
126	lb/MBtu	

	А	В	С	D	E	F	G	Н	
127	127 Type of Emission Control - wet or semi-dry FGD (if any)					Wet FGD	Wet FGD	Wet FDG	Wet FGD
128		Current Emi	ssions			0.47	0.47	0.58	0.47
129									
130									
131		Byproduct S	old (Y/N) - See Economic Section	1					
132									

	J	К
127		
	lb/hr	
129	ton/yr	
130	j Ib/MBtu	
131		
132		

	Α	В	С	D	E	F	G	Н	I
133		ID Fan Info	rmation (at Full Load):			<u>Unit 1</u>	<u>Unit 2</u>	<u>Unit 3</u>	<u>Unit 4</u>
134		ID Fan Inlet			-16	-16.5	-22	-23	
135		ID Fan Disc			-2	-1			
136		ID Fan Inlet	Temperature			340	340	330	330
137		Oxygen Cor	ntent of Flue Gas @ ID Fan Inlet			4	4	4	4
138		ID Fan Mote	or Voltage (Rated)			4160	4160	4160	4160
139		ID Fan Mote	or Amps (Operating)			275	275	920	1115
140		ID Fan Mote	or Amps (Rated)			320	320	1176	
141		ID Fan Mote	or Power (Rated)			2500	2500	9000	9500
142		ID Fan Mote	or Service Factor (1.0 or 1.15)			1.15	1.15	1	1.15
143									
144		Chimney Ir	nformation:						
145		Flue Liner N	Naterial			C276	C276	C276	C276
146		Flue Diame	ter			15' 6''	15' 6''	19' 6''	19' 6''
147		Chimney He	eight			623	623	630	630
148		Number of	Flues			1	1	1	1
149									
150		Drawing an	nd Other Information Needs:						
151		Baseline po	Ilutant emissions data for AQC an	alysis					
152		Technical e	valuations performed to support re	ecent consent d	ecree act	ivity			
153		Existing Pla	ant/AQC system general design a	nd performance	e issues				
154		Full detailed	d boiler front, side, and rear elevat	ion drawings		1			
155		Boiler Desig	n Data (Boiler Data Sheet)						
156		Ductwork A	rrangement Drawing (emphasis fr	om economizer	outlet to	air heater inlet)			
157		Ductwork A	rrangement Drawing (emphasis fr	om air heater o	utlet to sta	ack)			
158		Plant Arrang	gement Drawings (showing colum	n row spacing)					
159		CEM Quarte	erly and Annual Data (required if b	ase emissions	are to be	verified)			
160		Recent Par	ticulate Emission Test Report (If av	vailable)		1	1	1	
161		Current Me	rcury Testing Results (If available)						
162		Current Site Arrangement Drawing							
163		Foundation	Drawings and/or Soils Report						
164		Undergrour	d Utilities Drawings						
165		Plant One L	ine Electrical Drawing						
166		Fan Curves	for Existing ID Fans (including cu	rrent system res	sistance c	curve)			
167		Acceptable	Fan Operating Margins						

	J	K
133		Notes
134	in wg.	
135	in wg.	
136	F	
137	%	
138	volts	
139	A	
140	A	
141	hp	
142		
143		
144		
145		
146		top of liner
147		
148		1&2 share a common stack
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162		
163		
164		
165		
166		
167		

	Α	В	С	D	Е	F	G	H	I
168		Plant Outag	e Schedule						
169		Specific bui	rner and overfire air ports arrange	ement (single wa	ll, oppose	ed fired, total numb	per of burners, nun	nber of burner leve	ls, number of over
170									

	J	K
168		
169		
170		

	А	В	С	D	E	F	G	Н	
171		Economic Evaluation Factors:				<u>Unit X</u>	<u>Unit X</u>	<u>Unit X</u>	<u>Unit X</u>
172	Remaining Plant Life/Economic Life								
173		Annual Cap	acity Factor (over life of study/pla	nt)					
174		Contingenc	y Margin (can be determined by B	&V)					
175		Owner Indir	ects Cost Margin						
176		Interest Dur	ing Construction						
177		Levelized F	ixed Charge Rate or Capital Reco	very Factor					
178		Present Wo	rth Discount Rate						
179		Capital Esc	alation Rate						
180		O&M Escala	ation Rate						
181		Energy Cos	t (energy to run in-house equipme	nt)					
182		Replaceme	nt Energy Cost (required to be						
183		purchase	ed during unit outage)						
184		Year-by-Yea	ar Fuel Prices (over life of study/pl	ant)					
185									
186		Base Fuel F	Price						
187									
188		Fuel Price E	Escalation Rate						
189		Water Cost							
190		Limestone (Cost						
191		Lime Cost							
192		Ammonia C	ost						
193		Fully Loade	d Labor Rate (per person)						
194		Fly Ash Sale	es						
195		Bottom Ash	Sales						
196		FGD Byproc	duct Sales						
197		Waste Disposal Cost							
198		Fly Ash							
199		Bottom Ash							
200		Scrubber	Waste						

	J	K
171		Notes
172	years	
173		
174	%	
175	%	
176	%	
177	%	
178	%	
179	%	
180	%	
181	\$/MWh	
182		
183	\$/MWh	
184	\$/MBtu	
185	\$/ton	
	\$/MBtu	
187	\$/ton	
188		
	\$/1,000 gal	
	\$/ton	
	\$/ton	
192	\$/ton	
	\$/year	
	\$/ton	
	\$/ton	
	\$/ton	
197		
	\$/ton	
	\$/ton	
200	\$/ton	

/	A B	С	D	E	F
1					
	roject -	Document & Dra	awing List		
3					
4	ltem	Document Type	Document/Drawing No.	Description	Date
5	1	Drawing			
6	2	Drawing			
7	3	Drawing			
8	4	Drawing			
9	5	Document			
10	6	Drawing			
11	7	Document			
12	8	Document			
13	9	Document			
14	10	Document			
15	11	Document			
16	12	Document			
17	13	Document			
18	14	Document			
19	15	Document			
20	16	Document			
21	17	Drawing			
22	18	Drawing			
23	19	Drawing			
24	20	Drawing			
25	21	Drawing			
26	22	Drawing			
27	23	Drawing			
28	24 25	Drawing			
29	25	Drawing			
30	26	Document			
31	27	Document			
32	28	Drawing			
33	29	Drawing			
34	30	Drawing			
35	31	Drawing			
36	32	Document			
37	33	Document			
38	34	Drawing			
39	35	Drawing			
40	36	Drawing			
41	37	Drawing			
42	38	Drawing			
43	39	Drawing			
44	40	Document			

	G
1	
2	
3	
4	Notes
5	
6	
7	
9	
10	
11	
12 13	
14	
15	
16	
17 18	
19	
20	
21	
22 23	
23	
25	
26	
27 28	
20	
30	
31	
32 33	
34	
35	
36	
37 38	
30	
40	
41	
42 43	
43	

	A	В	С	D	E	F
45	Ĩ	41	Drawing			
46		42	Drawing			
47		43	Drawing			
48		44	Drawing			
49		45	Document			
50		46	Drawing			
51		47	Document			
52		48	Document			

	G
45	
46	
47	
48	
49	
50	
51	
52	

From:	Saunders, Eileen
То:	Schroeder, Andrea
Sent:	10/14/2010 9:58:52 AM
Subject:	FW: Environmental Compliance-DRAFT
Attachments:	Environmental Summay alternate scenario Rev4 - Pras (4) 10-13-10.xlsx

Andrea,

I noticed that Robert is out of the office so I thought I would send you a copy of the email I sent to him yesterday.

Thanks,

Eileen

From: Saunders, Eileen
Sent: Wednesday, October 13, 2010 11:44 AM
To: Conroy, Robert
Cc: Straight, Scott; Ritchey, Stacy
Subject: Environmental Compliance-DRAFT

Robert,

Scott and I conference this morning regarding the enclosed spreadsheet. Here are some general comments for you to consider while conducting your review:

- For the most part, we approached each station as a program. Mill Creek is slightly different due to the variety of work that is planned for the station.
- The start dates for construction are based on the earliest unit to be installed.
- For Mill Creek, the FGD upgrades on Units 1, 2, 3 and SCR upgrades on Unit 4 are tied to the same construction dates. All MC Baghouses, PAC Injection Systems and Unit 3 Removal dates are linked together. Lastly, all new MC SCR's are tied to the same date.
- · I did not make any changes to the ECR Filing column, the SAM Mitigation row or the financials.
- As discussed, we do not have a corporate contracting strategy at this time so I used the worst case scenario of an EPC contract as my starting point. Additionally, these construction dates are based on schedules provided by B&V during their Phase I Study. That study is not representative of Level I Engineering.

Please let me know if you would like to arrange a conference call to discuss the information provided.

Thanks,

Eileen

	А	C	D	E	F	G	Н	I	J
1	Environmental Air - CATR by January 2015, NAAQS by J	anuary 2016, HAPs	by January 2017	DRAFT	Г				
2	\$ in thousands								
3		Capital Cost	ECR Filing	pportable Documerst Maj	or Commitme	2011	2012	2013	2014
4	Alternate Plan								
5	Brown								
6	Brown 1 - SCR	\$59,000	Dec-10		R- Unit 2	\$2,950	\$17,700	\$23,600	\$14,750
7	Brown 1 - Baghouse	\$34,000	Dec-10		R- Unit 2	\$1,700	\$11,900	\$13,600	\$6,800
8	Brown 1 - PAC Injection	\$1,599	Apr-12	See BF	R- Unit 2			\$800	\$800
10	Brown 1 - SAM Mitigation	\$4,000	Dec-10			\$200	\$1,200	\$1,600	\$1,000
12	Brown 1 - Escalation	\$15,476				\$371	\$3,679	\$6,504	\$4,922
13	Total Brown 1	\$114,075				\$5,221	\$34,479	\$46,103	\$28,272
15	Brown 2 - SCR	\$92,000	Dec-10	May, 2	2011	\$9,200.0	\$34,500	\$43,700	\$4,600
16	Brown 2 - Baghouse	\$34,000	Jul-11	May, 2		+-,	\$1,360	\$10,200	\$10,880
17	Brown 2 - PAC Injection	\$2,476	Apr-13	May, 2			+ = , = = = =	+,	\$1,238
20	Brown 2 - SAM Mitigation	\$4,000	Dec-10			\$200	\$1,600	\$2,200	
22	Brown 2 - Escalation	\$21,300				\$718	\$4,475	\$9,214	\$3,524
23	Total Brown 2	\$153,776				\$10,118	\$41,935	\$65,314	\$20,242
24									
27	Brown 3 - Baghouse	\$61,000	Apr-12		R- Unit 2			\$1,830	\$21,350
28	Brown 3 - PAC Injection	\$5,426	Apr-13		R- Unit 2			4	\$1,000
31	Brown 3 - Escalation	\$16,475		See BF	R- Unit 2	\$0	\$0	\$301	\$4,711
32	Total Brown 3	\$82,901				\$0	\$0	\$2,131	\$27,061
34	Total Brown	\$350,751				\$15,339	\$76,414	\$113,547	\$75,575
35		<i>,,</i>				<i>+/</i>	<i>•••••••••••••••</i>	<i>,,.</i>	<i>•••••</i>
36	Ghent								
37	Ghent 1 - Baghouse	\$131,000	Apr-12	See Gl	H-Unit 2			\$3,930	\$45,850
38	Ghent 1 - PAC Injection	\$6,380	Apr-13	See G	H-Unit 2				\$1,000
42	Ghent 1 - Escalation	\$34,012				\$0	\$0	\$645	\$9,876
43	Total Ghent 1	\$171,392				\$0	\$0	\$4,575	\$56,726
44	Ghent 2 - SCR	\$227,000	Dec-10	June, 2	2011	\$11,350	\$68,100	\$90,800	\$56,750
46	Ghent 2 - Ser	\$120,000	Apr-12	June, 2		\$11,550	\$08,100	\$4,800	\$42,000
47	Ghent 2 - PAC Injection	\$6,109	Apr-12 Apr-13	June, 2				÷,000	\$1,000
52	Ghent 2 - Escalation	\$66,928	Api 15	june, i	2011	\$867	\$8,135	\$15,701	\$21,028
53	Total Ghent 2	\$420,037				\$12,217	\$76,235	\$111,301	\$120,778
54		<i>¥</i> . 1 0,007				<i>~,</i>	<i></i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>\</i>	<i><i><i></i></i></i>
55	Ghent 3 - Baghouse	\$138,000	Apr-12		H-Unit 2			\$16,560	\$48,300
56	Ghent 3 - PAC Injection	\$6,173	Apr-13	See Gl	H-Unit 2				\$3,087
60	Ghent 3 - Escalation	\$33,660		See Gl	H-Unit 2	\$0	\$0	\$2,720	\$10,832
61 62	Total Ghent 3	\$177,833				\$0	\$0	\$19,280	\$62,219
63	Ghent 4 - Baghouse	\$117,000	Apr-12	See GI	H-Unit 2			\$11,700	\$40,950
64	Ghent 4 - PAC Injection	\$6,210	Apr-12 Apr-13		H-Unit 2			φ 11,700	\$40,950
68	Ghent 4 - Escalation	\$28,990	Abi-12	328 01	- Jint 2	\$0	\$0	\$1,922	\$9,287
	Total Ghent 4	\$152,200				\$0 \$0	\$0 \$0	\$13,622	\$53,342
69									
							C76 77E		C702 AGE 1
71	Total Ghent	\$921,461				\$12,217	\$76,235	\$148,777	\$293,065

	к	L	м	N	0	Р
1		-			5	
2						
3	2015	2016	2017	2018	Total	
4						
5						
6					\$59,000	\$0
7					\$34,000	\$0 \$0
8					\$1,599	\$0
10					\$4,000	\$0
12					\$15,476	\$0 \$0
13	\$0	\$0	\$0	\$0	\$114,075	\$0 \$0
14		ŪĘ.	μŲ	<u> </u>	Ş114,073	ΟÇ
15					\$92,000	\$0
16	\$10,540	\$1,020			\$34,000	\$0
17	\$1,238				\$2,476	\$0
20					\$4,000	\$0
22	\$3,053	\$316			\$21,300	\$0
23	\$14,831	\$1,336	\$0	\$0	\$153,776	\$0
24						
27	\$28,670	\$9,150			\$61,000	\$0
28	\$3,426	\$1,000			\$5,426	\$0
31	\$8,320	\$3,142			\$16,475	\$0
32	\$40,416	\$13,292	\$0	\$0	\$82,901	\$0
33 34	\$55,248	¢14 639	\$0	\$0	\$350,751	\$0
35	Ş 3 5,246	\$14,628		ŞU	\$350,751	ŞU
36						
37	\$61,570	\$19,650			\$131,000	\$0
38	\$4,380	\$1,000			\$6,380	\$0
42	\$17,097	\$6,393			\$34,012	\$0
43	\$83,047	\$27,043	\$0	\$0	\$171,392	\$0
44	,, - ···	,,	7 -	7 -	<i>ii</i>	
45					\$227,000	\$0
46	\$56,400	\$16,800			\$120,000	\$0
47	\$4,109	\$1,000			\$6,109	\$0
52	\$15,686	\$5,511			\$66,928	\$0
53	\$76,195	\$23,311	\$0	\$0	\$420,037	\$0
54	¢55.240	¢c.000			¢130.000	ć
55	\$66,240	\$6,900			\$138,000	\$0 \$0
56	\$3,087	to 105			\$6,173	\$0
60	\$17,972	\$2,136			\$33,660	\$0
61 62	\$87,298	\$9,036	\$0	\$0	\$177,833	\$0
63	\$58,500	\$5,850			\$117,000	\$0
64	\$3,105	÷5,650			\$6,210	\$0
68	\$15,970	\$1,811	\$0	\$0	\$28,990	\$0
69	\$13,576 \$77,575	\$7,661	\$0 \$0	\$0 \$0	\$152,200	\$0 \$0
						•
71	\$324,115	\$67,052	\$0	\$0	\$921,461	\$0
72						

	А	С	D	E F	G	н	I	J
73	Mill Creek							
74	Mill Creek 1 - FGD Upgrade	\$41,250	Apr-12	June, 2011			\$10,313	\$28,875
75	Mill Creek 1 - SCR	\$97,020	Apr-12	December, 2011			\$2,911	\$27,166
76	Mill Creek 1 - Baghouse	\$80,850	Jul-11	See MC-Unit 4		\$8,085	\$28,298	\$40,425
77	Mill Creek 1 - Electrostatic Precipitator	\$0		See MC-Unit 4		\$0	\$0	\$0
78	Mill Creek 1 - PAC Injection	\$4,290	Jul-11	See MC-Unit 4		\$429	\$1,502	\$2,360
81	Mill Creek 1 - SAM Mitigation	\$7,920	Apr-12				\$396	\$792
83	Mill Creek 1 - Escalation	\$52,077			\$0	\$1,017	\$7,131	\$21,000
84	Total Mill Creek 1	\$283,407			\$0	\$9,531	\$50,549	\$120,617
85		644.050				<u> </u>	<u> </u>	<u> </u>
	Mill Creek 2 - FGD Upgrade	\$41,250	Jul-11	June, 2011		\$10,313	\$28,875	\$2,063
87	Mill Creek 2 - SCR	\$97,020	Jul-11	December, 2011	4	\$2,911	\$27,166	\$29,106
88	Mill Creek 2 - Baghouse	\$80,850	Dec-10	See MC-Unit 4	\$8,085	\$28,298	\$40,425	\$4,043
89	Mill Creek 2 - Electrostatic Precipitator	\$33,000	Dec-10	See MC-Unit 4	\$3,300	\$11,550	\$16,500	\$1,650
90	Mill Creek 2 - PAC Injection	\$4,290	Dec-10	See MC-Unit 4	\$429	\$1,502	\$2,360	40.075
	Mill Creek 2 - SAM Mitigation	\$7,920	Jul-11			\$396	\$792	\$2,376
92	Mill Creek 2 - Escalation	\$45,866			\$903	\$6,566	\$19,070	\$8,271
93 94	Total Mill Creek 2	\$310,196			\$12,717	\$61,534	\$135,188	\$47,508
	Mill Creek 3 - FGD (U4 update and tie in)	\$63,750	Apr-13	June, 2011				\$47,813
98		\$25,500	Apr-13	See MC-Unit 4				\$6,375
	Mill Creek 3 - Baghouse	\$104,125	Jul-11	See MC-Unit 4		\$2,083	\$31,238	\$39,568
	Mill Creek 3 - PAC Injection	\$5,525	Jul-11	See MC-Unit 4		\$111	\$1,658	\$2,100
	Mill Creek 3 - Escalation	\$43,488			\$0	\$262	\$5,402	\$20,206
102	Total Mill Creek 3	\$242,388			\$0	\$2,455	\$38,297	\$116,061
103								
	Mill Creek 4 - FGD	\$236,250	Dec-10	March, 2011	\$18,900	\$80,325	\$89,775	\$47,250
	Mill Creek 4 - SCR Upgrade	\$5,250	Dec-10	June, 2011	\$4,200	\$1,050		
	Mill Creek 4 - Baghouse	\$131,250	Dec-10	March, 2011	\$5,250	\$45,938	\$52,500	\$27,563
	Mill Creek 4 - PAC Injection	\$6,825	Dec-10	March, 2011	\$273	\$2,389	\$2,730	\$1,433
	Mill Creek 4 - Ammonia	\$10,500	Dec-10	June, 2011	\$5,250	\$5,250		
	Mill Creek 4 - Escalation	\$58,596			\$2,588	\$16,121	\$23,815	\$16,073
110	Total Mill Creek 4	\$448,671			\$36,461	\$151,072	\$168,820	\$92,319
112	Total Mill Creek	\$1,284,663			\$49,177	\$224,592	\$392,854	\$376,505
113		<i>Q1,204,003</i>		-	<i><i>Q131211</i></i>	YEE 1,55E	<i>\$352,054</i>	\$370,303
114	Trimble							
	Trimble 1 - Baghouse	\$128,000	Apr-12	December, 2012			\$12,800	\$44,800
	Trimble 1 - PAC Injection	\$6,451	Apr-12 Apr-13	December, 2012			+12,000	\$3,226
117	Trimble 1 - Escalation	\$31,635	p		\$0	\$0	\$2,102	\$10,124
118	Total Trimble 1	\$166,086			\$0	\$0	\$14,902	\$58,149
113								
120	Total Trimble	\$166,086			\$0	\$0	\$14,902	\$58,149
121		1			·			
122	Total Environmental Compliance Air - Alternate Plan	\$2,722,961			\$76,733	\$377,241	\$670,080	\$803,294
123								
124								
	Scope	\$2,274,459						
126	Escalation	\$448,502						
127		\$2,722,961						

	К	L	М	N	0	Р
73						
74	\$2,063				\$41,250	\$0
75	\$29,106	\$35,897	\$1,940		\$97,020	\$0
76	\$4,043				\$80,850	\$0
77	\$0				\$0	\$0
78					\$4,290	\$0
81	\$2,376	\$3,960	\$396		\$7,920	\$0
83	\$9,744	\$12,340	\$846		\$52,077	\$0
84	\$47,331	\$52,197	\$3,182	\$0	\$283,407	\$0
85						
86					\$41,250	\$0
87	\$35,897	\$1,940			\$97,020	\$0
88					\$80,850	\$0
89					\$33,000	\$0
90					\$4,290	\$0
91	\$3,960	\$396			\$7,920	\$0
92	\$10,332	\$723	\$0		\$45,866	\$0
93	\$50,190	\$3,060	\$0	\$0	\$310,196	\$0
94						
97	\$15,938				\$63,750	\$0
98	\$19,125				\$25,500	\$0
99	\$31,238				\$104,125	\$0
100	\$1,658				\$5,525	\$0
101	\$17,617	\$0			\$43,488	\$0
102	\$85,575	\$0	\$0	\$ 0	\$242,388	\$0
103 104					\$236,250	\$0
104					\$230,230	\$0 \$0
105					\$131,250	\$0 \$0
107					\$6,825	\$0 \$0
107						\$0 \$0
	ćo.				\$10,500	
109	\$0 \$0	ćo	ćo	ćo.	\$58,596	\$0
110 111	\$0	\$0	\$0	\$0	\$448,671	\$0
112	\$183,095	\$55,257	\$3,182	\$0	\$1,284,663	\$0
113						
114						
115	\$64,000	\$6,400			\$128,000	\$0
116	\$3,226				\$6,451	\$0
117	\$17,427	\$1,981			\$31,635	\$0
118	\$84,653	\$8,381	\$0	\$0	\$166,086	\$0
117						
120	\$84,653	\$8,381	\$0	\$0	\$166,086	\$0
121						
122	\$647,111	\$145,319	\$3,182	\$0	\$2,722,961	\$0
123						
124						
125						
126						
127						

	А	С	D	E	F	G	Н	Ι	J
128									
129									
130									
131									
132									
133									
134							3.5%	3.5%	3.5%
135							1	2	3

	К	L	М	N	0	Р
128						
129						
130						
131						
132						
133						
134	3.5%	3.5%	3.5%	3.5%	3.5%	
135	4	5	6	7	8	

	А	В	D E	F	G	Н	Ι	J	К	L	М	N
1		Environmental Air - CATR by January 2015, NAAQS	by January 2016, HAPs by Jan	uary 2017								
2		\$ in thousands		0011	0040	0040	2011	0045	2046	0017	2010	
3			Capital Cost	2011	2012	2013	2014	2015	2016	2017	2018	Total
4		Alternate Plan		4	A	4						4
5		Brown 1 - SCR	\$59,000	\$2,950	\$17,700	\$23,600	\$14,750					\$59,000
6		Brown 1 - Baghouse	\$34,000	\$1,700	\$11,900	\$13,600	\$6,800					\$34,000
7		Brown 1 - SAM Mitigation	\$4,000	\$200	\$1,200	\$1,600	\$1,000					\$4,000
10		Brown 2 - SCR	\$92,000	\$9,200	\$34,500	\$43,700	\$4,600					\$92,000
11		Brown 2 - SAM Mitigation	\$4,000	\$200	\$1,600	\$2,200						\$4,000
12		Ghent 2 - SCR	\$227,000	\$11,350	\$68,100	\$90,800	\$56,750					\$227,000
16		Mill Creek 2 - Baghouse	\$80,850	\$8,085	\$28,298	\$40,425	\$4,043					\$80,850
19		Mill Creek 2 - Electrostatic Precipitator	\$33,000	\$3,300	\$11,550	\$16,500	\$1,650					\$33,000
20		Mill Creek 2 - PAC Injection	\$4,290	\$429	\$1,502	\$2,360						\$4,290
23		Mill Creek 4 - FGD	\$236,250	\$18,900	\$80,325	\$89,775	\$47,250					\$236,250
24		Mill Creek 4 - SCR Upgrade	\$5,250	\$4,200	\$1,050							\$5,250
28		Mill Creek 4 - Baghouse	\$131,250	\$5,250	\$45,938	\$52,500	\$27,563					\$131,250
29		Mill Creek 4 - PAC Injection	\$6,825	\$273	\$2,389	\$2,730	\$1,433					\$6,825
30		Mill Creek 4 - Ammonia	\$10,500	\$5,250	\$5,250							\$10,500
35		Brown 2 - Baghouse	\$34,000		\$1,360	\$10,200	\$10,880	\$10,540	\$1,020			\$34,000
36	2	Mill Creek 1 - Baghouse	\$80,850		\$8,085	\$28,298	\$40,425	\$4,043				\$80,850
37	2	Mill Creek 1 - PAC Injection	\$4,290		\$429	\$1,502	\$2,360					\$4,290
41	2	Mill Creek 2 - FGD Upgrade	\$41,250		\$10,313	\$28,875	\$2,063					\$41,250
42	2	Mill Creek 2 - SCR	\$97,020		\$2,911	\$27,166	\$29,106	\$35,897	\$1,940			\$97,020
46	2	Mill Creek 2 - SAM Mitigation	\$7,920		\$396	\$792	\$2,376	\$3,960	\$396			\$7,920
47	2	Mill Creek 3 - Baghouse	\$104,125		\$2,083	\$31,238	\$39,568	\$31,238				\$104,125
48	2	Mill Creek 3 - PAC Injection	\$5,525		\$111	\$1,658	\$2,100	\$1,658				\$5,525
49	3	Brown 1 - PAC Injection	\$1,599			\$800	\$800					\$1,599
50		Brown 3 - Baghouse	\$61,000			\$1,830	\$21,350	\$28,670	\$9,150			\$61,000
53	3	Ghent 1 - Baghouse	\$131,000			\$3,930	\$45,850	\$61,570	\$19,650			\$131,000
55	3	Ghent 2 - Baghouse	\$120,000			\$4,800	\$42,000	\$56,400	\$16,800			\$120,000
56	3	Ghent 3 - Baghouse	\$138,000			\$16,560	\$48,300	\$66,240	\$6,900			\$138,000
57	3	Ghent 4 - Baghouse	\$117,000			\$11,700	\$40,950	\$58,500	\$5,850			\$117,000
58	3	Mill Creek 1 - FGD Upgrade	\$41,250			\$10,313	\$28,875	\$2,063				\$41,250
59	3	Mill Creek 1 - SCR	\$97,020			\$2,911	\$27,166	\$29,106	\$35,897	\$1,940		\$97,020
60	3	Mill Creek 1 - SAM Mitigation	\$7,920			\$396	\$792	\$2,376	\$3,960	\$396		\$7,920
63		Trimble 1 - Baghouse	\$128,000			\$12,800	\$44,800	\$64,000	\$6,400			\$128,000
64	4	Brown 2 - PAC Injection	\$2,476				\$1,238	\$1,238				\$2,476
65	4	Brown 3 - PAC Injection	\$5,426				\$1,000	\$3,426	\$1,000			\$5,426
66	4	Ghent 1 - PAC Injection	\$6,380				\$1,000	\$4,380	\$1,000			\$6,380
67	4	Ghent 2 - PAC Injection	\$6,109				\$1,000	\$4,109	\$1,000			\$6,109
68		Ghent 3 - PAC Injection	\$6,173				\$3,087	\$3,087				\$6,173
69		Ghent 4 - PAC Injection	\$6,210				\$3,105	\$3,105				\$6,210
70		Mill Creek 3 - FGD (U4 update and tie in)	\$63,750				\$47,813	\$15,938				\$63,750
71		Mill Creek 3 - FGD (Unit 3 Removal)	\$25,500				\$6,375	\$19,125				\$25,500
72		Trimble 1 - PAC Injection	\$6,451				\$3,226	\$3,226				\$6,451
73								. , .				<i>, _</i>
74												
75												
		1										

	0
1	
2	
3	
4	
5	\$0
6	\$0
7	\$0
10	\$0
11	\$0
12	\$0
16	\$0
19	\$0
20	\$0
23	\$0
24	\$0
28	\$0
29	\$0
30	\$0
35	\$0
36	\$0
37	\$0
4 1	\$0
42	\$0
46	\$0
47	\$0
48	\$0
49	\$0
50	\$0
53	\$0
55	\$0
56	\$0
57	\$0
58	\$0
59	\$0
60	\$0
63	\$0
64	\$0
65	\$0
66	\$0
67	\$0
68	\$0
69	\$0
70	\$0
71	\$0
72	\$0
73	
74	
75	

	А	В	D	E	F	G	Н	I	J	К	L	М	N
76													
77													
78													
79					3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	
80					1	2	3	4	5	6	7	8	

From:	Wilson, Stuart
То:	Hurst, Brian
Sent:	9/9/2010 4:49:45 PM
Subject:	RE: Brown Ash Pond/Landfill Analysis

Cool. Thanks.

From: Hurst, Brian Sent: Thursday, September 09, 2010 4:40 PM To: Wilson, Stuart Subject: RE: Brown Ash Pond/Landfill Analysis

Stuart,

Attached is the bullet point summary you requested for the Brown Landfill/Ash Pond analysis and (hopefully) all the relevant information needed between the 2005 study and the recent document from Project Engineering. I can construct this into a formal document if need be...just let me know.

Basically the story is the Landfill options in the 2005 study were the highest cost with long projected permitting lead times (3+ years). The high by-product production rates (40% higher than the recent Project Engineering document) forecasted the ponds to be full by January 2010 which was too late to wait for landfill permitting. That's why the landfills weren't considered. The Project Engineering report still expects the landfills to be more expensive, but in order to be compliant, the ash ponds need to discontinue by-product disposal.

Let me know if you have any questions or issues.

Brian Hur*s*t

Planning Engineer, Generation Planning (502) 627-3416 phone (502) 217-4898 fax

From: Wilson, Stuart Sent: Wednesday, September 08, 2010 3:26 PM To: Hurst, Brian Subject: Re: Brown Ash Pond/Landfill Analysis

Sounds good. We can reference this report to bridge the gap between the options considered in 2009 and the options we're considering now. As we discussed, we need a series of bullet points summarizing our story. I'd envision this to be part of a bullet point. Make sense?

Stuart

From: Hurst, Brian To: Wilson, Stuart Sent: Wed Sep 08 14:57:21 2010 Subject: RE: Brown Ash Pond/Landfill Analysis

Stuart,

Just talked to Jeff Heun in Project Engineering who was the lead on the Brown Ash Pond project up until early this year. He said that the document they based their onsite ash-pond/onsite landfill decision on was an FMSM (engineering consulting firm) report from September 2006, that we referenced several times in our testimony and appendices for the 2009 ECR Filing. In this document FMSM evaluated 3 different ash pond options and 2 different on-site landfill options. The limiting factor was that Brown needed byproduct capacity very soon and landfill permitting was estimated to take at least 3 years because of the coarse features

underneath the property at Brown (cave-like features). For the landfill options, once the ponds filled up, off-site trucking would be needed until permitting and initial construction could be completed which significantly increased the revenue requirements.

He said that the PSC has several of these documents in their possession and can reference them.

However, I will still look at this report (he said Generation Engineering has a copy) and diagnose the major points we can use if the PSC comes back with questions on this issue.

Let me know if you have any questions or issues.

Brian Hurst

Planning Engineer, Generation Planning

(502) 627-3416 phone

(502) 217-4898 fax

From: Wilson, Stuart Sent: Tuesday, September 07, 2010 5:56 PM To: Hurst, Brian Subject: Brown Ash Pond/Landfill Analysis

Brian,

Based on your experience from the 2009 ECR filing (as it relates to Brown), I'd like your thoughts on how best to communicate the 'stop the pond and go with a landfill' decision to the commission. What did we say before? What should we say now? So far, PE's paper contains total revenue requirements. Is this all the commission needs to see? I understand that our 2009 filing contained two options (ash pond and off-site landfill). How do we bridge the gap from that 'story' to our story now?

Thanks.

Stuart

From:	Saunders, Eileen
То:	Joyce, Jeff; Wright, Paul; Drake, Michael; Ayler, Danny; Bickers, Troy; Smith, Dave; Jones, Greg;
	Scott, Randy; Revlett, Gary
CC:	Hillman, Timothy M.
Sent:	10/14/2010 11:18:02 AM
Subject:	FW: 168908.14.1000 101012 Ghent - Draft Kickoff and Site Visit Meeting Minutes
Attachments:	Draft Ghent Kickoff and Site Walkdown Meeting Minutes - 101210 with attachments.pdf

All,

Here are the notes from our meeting. Please let me know if you have any comments so I can respond to B&V.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Tuesday, October 12, 2010 1:53 PM
To: Saunders, Eileen
Cc: 168908 E.ON-AQC; Jackson, Audrey; Wehrly, M. R.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Hintz, Monty E.; Goodlet, Roger F.; Crabtree, Jonathan D.
Subject: 168908.14.1000 101012 Ghent - Draft Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached draft meeting minutes from the Ghent kickoff. Please provide E.ON's comments by next Tuesday, 10/19. Thanks,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

DRAFT

BLACK & VEATCH CORPORATION CONFERENCE MEMORANDUM

E.ON US Phase II: Air Quality Control Study Ghent Kick-off and Site Visit B&V Project 168908 B&V File 14.1000 October 12, 2010

A kick-off and site walk down meeting was held October 6-7th at the Ghent Generating Station for the Phase II: Air Quality Control Study Project.

Recorded by: Tim Hillman

Attending:

Ghent Kick-off Meeting, October 6th

The purpose of this meeting was to 1) present the project scope and Phase I study results to the Ghent facility personnel, and 2) provide for a site visit and walk down of the Ghent facility. The above attendance list reflects those attending the initial kick-off meeting at Ghent. (Agenda and Attendance Roster attached herein for reference).

MEETING DISCUSSION

Day 1, October 6, 2010

The kick-off meeting began at 9 am at Ghent.

- Eileen began the meeting with introductions and a brief summary of the project scope.
 E.ON requested B&V to prepare a data request with priority dates similar to that developed for Mill Creek. (Action Item #1)
- 2. E.ON (Gary Revlett) provided a review of all the regulations and environmental controls that are driving the capital projects. (Presentation attached herein for reference).
 - NAAQS

Page 2

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 12, 2010

- Clean Air Transport Rule CATR
- Electric Generating Unit Maximum Achievable Control Technology EGU MACT

DRAFT

- The change from annual average to a one (1) hour limit for NAAQS causes the biggest issues; even the diesel fired units may have issues on the site. The impact of one hour limits will be based on monitoring of stack emissions coupled with modeling done for the plume dispersion.
- 4. SO₂ should not be a problem for the Ghent units since the existing FGDs basically achieve +98% removal on the units and the modeling shows that they require 96% removal on a plant average.
- 5. Compliance dates are very short and the industry has commented that insufficient implementation time is included for CATR Phase 1 in 2012 and Phase 2 in 2014.
- CATR is the driving force for Ghent for both SO₂ and NO_x.
- 7. Hg is an issue at Ghent. However, E.ON hopes that with the addition of an SCR on Unit 2, acceptable Hg control may be achieved without additional modifications.
- E.ON provided an updated table that can be used as the initial Ghent design basis titled: Estimated Limits & Compliance Dates for Future New Air Requirements Ghent Station". (Attached herein for reference).
- 9. E.ON believes Ghent will likely meet the new NAAQS standards because of the existing scrubbers and SCRs.
- 10. CATR NOx and SO2 limits are aggressive because allowance modeling for the plant assumed a new SCR on Unit 2. Ghent SO2 allowances for SO2 in 2014 are higher for some reason than the 2012 allowances. This maybe an error in the CATR model.
- 11. B&V provided a presentation of the Ghent Phase I results and an overview of a PJFF. (Power Point Presentation attached herein for reference). The following general characteristics of a pulse jet fabric filter (PJFF) were discussed.
 - Pressure drop can be 6-8 inches through the PJFF. The increased system
 pressure drop will require increased ID fan capacity. Upgrade of the existing ID
 fans, the addition of booster fans, or new replacement ID fans will be required.
 E.ON emphasized that, if possible, the fans should be located downstream of the
 PJFF to minimize erosion and damage by dust loading.
 - PJFF bags are normally made of polyphenylene sulfide (PPS) materials, but materials such as fiberglass with a Teflon membrane have been used in specific applications. Temperature constraints on PPS bags are in the range of 380-400 °F continuous operation. Bags woven of fiberglass material can safely be subjected to 500 °F over the short term. The temperature limits require PJFFs to be installed downstream of the air heater.
 - PJFFs are compartmentalized with isolation between compartments to allow online maintenance of bags and compartment equipment.
 - The differences between PJFFs and reverse gas fabric filters were described and discussed.
 - Bag life for a PJFF is typically 3 years by guarantee. The PJFF is harder on the bags during cleaning than a reverse gas fabric filter due to the high, short-duration air pulse used.

Page 3

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 12, 2010

 Dimensions of PJFF vary by manufacturer and are based on gas flow. A "typical" PJFF for a Ghent-sized unit would have an approximately 90 foot x140 foot footprint.

DRAFT

- An advantage of PJFF installation is that its performance is generally independent of the ash type and is based primarily on flue gas volume. A PJFF could allow burning of PRB coal in the future. This flexibility will be considered in the study.
- One question to be considered is whether Ghent needs to keep the hot-side ESPs, either for ash scavenging or because the existing SCRs are the low-dust type.
 B&V noted that a change in catalyst could convert the SCRs to operate in high-dust conditions if the possibility of lower catalyst life is acceptable.
- The area and facilities for dry ash conversion and ash handling need to be considered with this study. E.ON commented that B&V had previously completed an ash handling study and that the AQC study must be coordinated with the plans developed in the ash handling study.
- 12. B&V provided an overview of the Phase I study results. Two additional points were also noted and discussed.
 - B&V may consider designing the Unit 2 SCR as high-dust units from the onset, allowing deletion of the existing ESPs at Unit 2 if warranted by congestion and construction difficulties.
 - B&V asked if E.ON needs to sell fly ash. Saleable fly ash would require "scalping" of the fly ash upstream of PAC injection and require the retention and use of the existing ESPs. E.ON would like to sell fly ash on an opportunistic basis, but is not necessarily tied to the existing ESPs.
- 13. EON made the following general comments.
 - E.ON wants any new axial fans to be downstream of the PJFFs.
 - E.ON asked B&V to investigate a refined layout for Unit 3 PJFF that would reduce the ductwork runs indicated in the Phase I study.
 - The courtyard area between Units 2 and 3 can be used for siting new equipment. The various maintenance shops on the south side of the courtyard could be relocated. There is no "sacred ground" onsite that must be avoided in locating new facilities. However, retention or re-establishment of the ground level breezeway and the overhead skyway between Units 2 and 3 is desirable.
- 14. A plant walk down of Units 1-4 was conducted until approximately 3 pm.
- 15. After the walk down, B&V personnel convened in the Ghent conference room to review preliminary arrangement sketches and begin preparations for the debriefing meeting.
- 16. Day 1 activities adjourned at approximately 6 pm.

Day 2, October 7, 2010

The second day of meetings began at 8 am at Ghent.

17. B&V began Day 2 by preparing some initial sketch arrangements for Units 1-4 in preparation for a site de-briefing scheduled later in the afternoon.

Page 4

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 12, 2010

18. At approximately 10 am, B&V resumed site walk downs, splitting into two groups to ground-verify some assumptions made in the initial arrangement sketches.

DRAFT

- 19. A site debriefing meeting was convened at 1 pm. The following are the general and unit specific discussions that ensued. (Initial arrangement sketches attached herein).
 - General comments:
 - B&V believes it will likely not be feasible to reuse/upgrade the existing ID fans to avoid the addition of new booster or ID fans. Physical constraints on routing duct to and from the existing ID inlet fans is problematic. Locating the PJFFs to protect all of the existing ID fans is not practical in all cases, even for the axial fans at Units 3 and 4. The Unit 3 fans can be incorporated into the revised AQC system, but only in a location that may not be beneficial. B&V fan experts will review this, but new ID fans or booster fans are expected to be required for all units.
 - Unit 1:
 - Sorbent injection will need to be relocated in the duct work to near the inlet of the PJFF. E.ON questioned whether the PJFF vendors would be willing to offer SO3 guarantees based on sorbent injection. B&V noted that if the vendor is awarded both sorbent injection and the PJFF as a single package he will likely offer some guarantees, but the specific level will have to be negotiated.
 - Concern was expressed with the elevated PJFF for Unit 1 being located close to the Unit 2 cooling tower. B&V will investigate and provide opinions on the overall affect of the new structures on cooling tower performance and level of icing that could result.
 - If the impact to performance warrants it, it was discussed that a couple cells could be added to the east end of the tower to increase the overall tower capacity or allow impacted cells to be taken out of service.
 - Alternate arrangements at Unit 1 appear very limited at this time. E.ON asked about relocating Unit 2's cooling tower to make more room for Unit 1 PJFF. The major issue with that approach is where to relocate the cooling tower. The potential of locating the new cooling tower towards the river or to the east of Unit 1's cooling tower was discussed. Any new construction towards the river, either relocating the Unit 2 cooling tower or the plant reagent piperack, would likely trigger permit concerns with the COE. Building a new tower in the "rock pile" area (formerly the limestone storage area east of the plant) was also discussed. Routing of the underground circulating water lines potentially would be a major issue.
 - Unit 2
 - Because of the high level of congestion in the existing arrangement at Unit 2, plus the need to add a PJFF, B&V considered three alternatives for the SCR location at Unit 2. Two alternatives (Alternates 1 & 3) include split SCR's – two separate reactors, one for each ESP train, with the only difference between the alternatives being the location of the west side SCR.
 - Alternate 1 locates the west SCR in the area just west of the west ID fan and the east SCR above the tower support for the Unit 1 SCRs. The area

Page 5

CONFERENCE MEMORANDUM

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 12, 2010

west of the ID fans appears sufficiently open to allow construction of a tower support for the SCR. The advantage of this arrangement is the short runs of ductwork required.

 Alternate 3 locates the west SCR along the west side of the Unit 2 boiler structure and the east SCR in the same location as Alternate 1. The approach suggested in the Phase 1 study of locating both split SCRs on the west side of the boiler structure would be problematic because of the difficulty of routing duct work from east side Unit 2 duct to the courtyard and back.

DRAFT

- Alternate 2 is similar to that used for the Unit 1 SCR, with a combined SCR located above the ESPs. However, the area beneath the SCRs in Alternate 2 is very congested, making foundation design and installation extremely difficult. Moreover, the lack of nearby open area will limit crane access and greatly complicate constructability. Assuming sufficient free area is found to accommodate the necessary foundations, Alternate 1 is more favorable to construction and the most likely option.
- Low dust SCRs will be assumed for Unit 2 unless elimination of the existing ESPs is warranted for some other reason.
- E.ON has previous studies about locating the SCR modules in the courtyard. E.ON offered to provide these studies to B&V. B&V will add these studies to the Ghent Information Request.
- The Unit 2 PJFF is assumed to be located north of the existing ESPs and ductwork. It appears that a short temporary bypass connecting the airheater outlet duct and the ductwork to the scrubber inlet would allow installation of a PJFF in this area with the unit on line. The completed PJFF would be tied into the system during an outage. The new booster or ID fans for Unit 2 (not shown on the arrangement sketches) would tentatively be located at the west (downstream) end of the new PJFF.
- Unit 3
 - The preliminary arrangement sketches show the PJFF location in the courtyard, requiring relocation of the maintenance shop. E.ON has some ideas where the shop could be relocated. As currently configured, new booster or ID fans could be added south of the PJFF without impacting the existing tanks south of the shop.
 - The skyway connecting Units 2 and 3 would need to be temporarily removed, and then routed around the south side of the PJFF. The skyway may be used to provide access from the turbine buildings to the PJFF. To avoid re-routing of the significant amount of interconnecting pipe located in the ground level breezeway between units, the PJFF would be designed to span over this piping and allow the breezeway structure to remain in place, if practical.
- Unit 4
 - The most likely location for the new PJFF is between the existing Unit 4 ESP area and the Unit 3 cooling tower as shown on the sketch. This location avoids the circ water pipe and most of the underground utilities in the area.

Page 6

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 12, 2010

 The ID fans currently being installed at Unit 4 would be difficult to incorporate into the ductwork system running to the new PJFF and back, as shown on the arrangement sketches. For that reason, new ID fans located near the PJFF and sized to replace the ID fans would be the most likely option due to constructability, access, and outage considerations. New ID fans in this location would allow relatively easy connection directly to the ductwork at the FGD inlet.

DRAFT

- E.ON asked about wet fans to be located downstream of the scrubber, similar to those used in Europe. B&V explained some of the disadvantages, including materials of construction, maintenance and reliability.
- E.ON expressed general agreement with the arrangement as discussed for Unit 4. An alternate version of the Unit 4 arrangement sketch was developed to more closely depict the arrangement discussed.
- The debriefing meeting concluded at approximately 2:30.
- 20. Eileen identified Dave Smith as the Ghent information request point of contact. Dave's contact information is as follows: 502-627-4633 and dave.smith@eon-us.com.
- 21. B&V conducted a final walk down to ground-truth some of the comments obtained during the debriefing meeting and review the Unit 1 issues with relocating equipment to allow a more advantageous PJFF location to avoid cooling tower issues.
- 22. Plant personnel provided an electronic of an aerial view of the site.
- 23. B&V departed Ghent at approximately 4 pm.

ACTION ITEMS

#	Description	Responsible	Due Date
1	Prepare Ghent Information Request	ТМН	10/15/10
2			
3			
4			
5			

ATTACHMENTS

- Agenda
- Attendance roster
- E.ON Environmental Drivers Presentation and Estimated Limits & Compliance Dates for Future New Air Requirements Ghent Station
- Phase | Results and PJFF PowerPoint Presentation
- Initial arrangement sketches presented during the de-brief meeting

cc: All Attendees File

AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Ghent October 6 - 7, 2010 Location: Ghent Generating Station

Day 1, October 6th, B&V Arrives 8 am

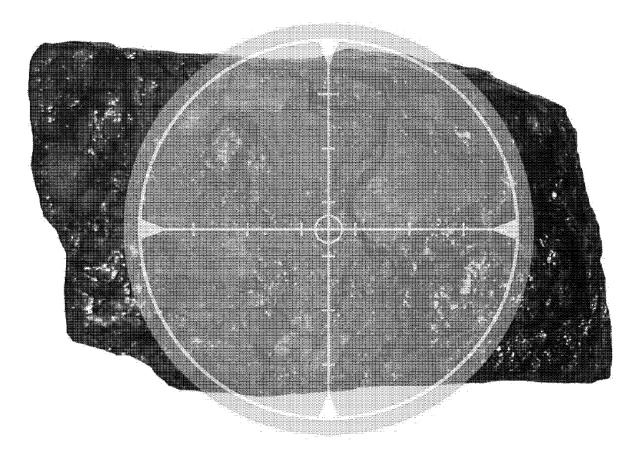
- I. Introductions (Starts at 9 am)
- II. Project/Scope Description (E.ON Eileen S)
- III. Environmental Drivers Presentation (E.ON Gary R)
- IV. Phase I Study Results/PJFF Overview Presentation (B&V Rick L and Anand M)
- V. Lunch (on site)
- VI. Begin Escorted Site Walk Down and Data Collection

Day 2, October 7th, B&V Arrives 8 am

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (on site)
- III. Site Debriefing Meeting
- IV. Additional Walk Down Time if Required
- V. Depart (no later than 4 pm)

EQU	AOC GHENT A	WT KICKOFF	10/6/2010
9:00			, , ,
NAME	COMPONY/POSITION	TELENO.	EMAIL
Tim Hillman	BHV /Proj Mgr	913-458-7928	A
ROGER GOODULT	Biv/CONSTRUCT		
M.R. WEHRLY	BEV /ENG MGR	913-458-71	131 wehrlymr@bv.com 1528 LAUSMANRL@bv.com
RICK LAUSMAN	BEV/ARCEnq		
MONTY HINTZ Anand Mahabaleshu	BEV/CIVIL-STRUETE	NCR 913-458-24	164 hintzme @ br. com 7736 mahabaleshwarkara
Gary Revlett	LGTE - KU	.502 627 - 40	(Am-
JAMES YOCUN	KO	502-347-4157	\wedge .
Randy Scott	LOVE-KU	347-4020	
(regiones		347-4031	Greg. Jones "
Mike Mooney	L6E/KV	627-3671	Mike Mooney & Con-us- cour
Zileen Shundeus	LG32/1202	347-4023	Erben Sameleos
Jeff Joyce	C Kewturty Hilder	s <u>397-4001</u>	jeff. jozen
DANNY AREN	<u> </u>	502-347-4052	DANNY AYLER Q reaw-us, con
- TROY BUCKERS	Kenting Util, Tie	502-347-4957	TROY. bickers D " " "
aul Wright	<u> </u>	502-347-4003	paul.wright@eow-us.com
Mike Drate	KU	502 347 4002	michaeldrahe en -us cu
Dave Smith	KV	(502)627-4633	dave. swith econ-us. com

	<u></u>		
			1917-110 Ma
	·		


New EPA Air Regulations

Gary Revlett Air Manager, Environmental Affairs

LGE-KU-00004061

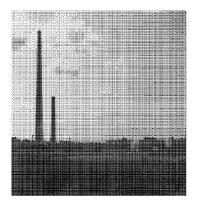
e.on U.s.

Coal (Still) in the Crosshairs

e-011 U.S.

Upcoming Air Related EPA Regulations

- **1.** Nitrogen Dioxide National Ambient Air Quality Standard: NO_x NAAQS
- 2. Sulfur Dioxide National Ambient Air Quality Standard: SO₂ NAAQS
- 3. Clean Air Interstate Rule (CAIR) Replacement: Clean Air Transport Rule (CATR)
- 4. Clean Air Mercury Rule (CAMR) Replacement: Electric Generating Unit Maximum Achievable Control Technology (EGU MACT)


e.011 U.S.

New Nitrogen Dioxide National Ambient Air Quality Standard

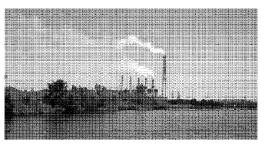
- New 1-hour NO₂ ambient air standard added to the current annual standard.
- The new ambient air standard is added to protect public health from short-term exposures.
- Sources with the greatest impact are power plants and major highways.
- Maximum impact due to short-duration adverse meteorological conditions.
- This new regulation is final and compliance is required by 2016.

Potential Company Impact(s):

- All coal-fired boilers will need tall stacks (> 400 ft.).
 OR
- Any coal-fired unit without a tall stack will need a SCR

e.om U.S.

New Sulfur Dioxide National Ambient Air Quality Standard


- New 1-hour SO₂ ambient air standard added to the current 24-hour standard.
- The new ambient air standard is added to protect public health from short-term exposures.
- Sources with the greatest impact are coal-fired power plants.
- Maximum impact due to short-duration adverse meteorological conditions.
- This new regulation is final and compliance is required by end of 2016.

Potential Company Impact(s):

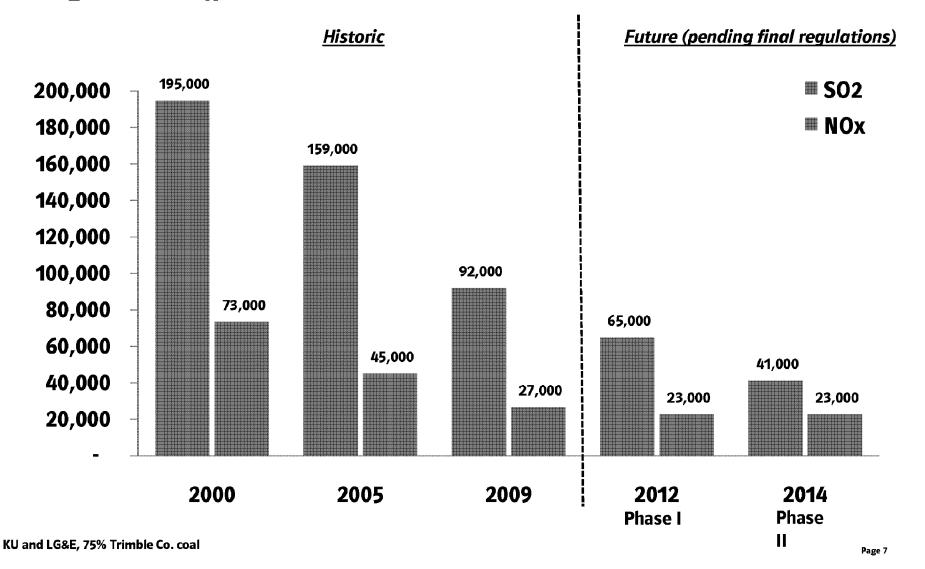
 All coal-fired boilers need tall stacks (> 400 ft.) and a FGD with greater than 96% removal efficiency.

OR

• Switch to low sulfur fuels

e.on U.S.

CAIR Replacement – Proposed Clean Air Transport Rule (CATR) for SO₂ and NO_x

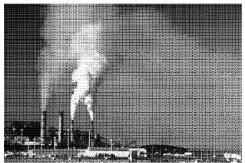

- Replaces the CAIR cap-and-trade regulations which were vacated in 2008.
- The Acid Rain SO₂ cap-and-trade program will remain in place.
- 100% intrastate trading of SO₂ and NO_x allowances but limited interstate trading
- The new regulations were proposed in July, 2010 and will not be final until June, 2011.
- The proposed implementation dates of Phase 1 in 2012 and Phase 2 in 2014 are unrealistic.

Potential Company Impact(s):

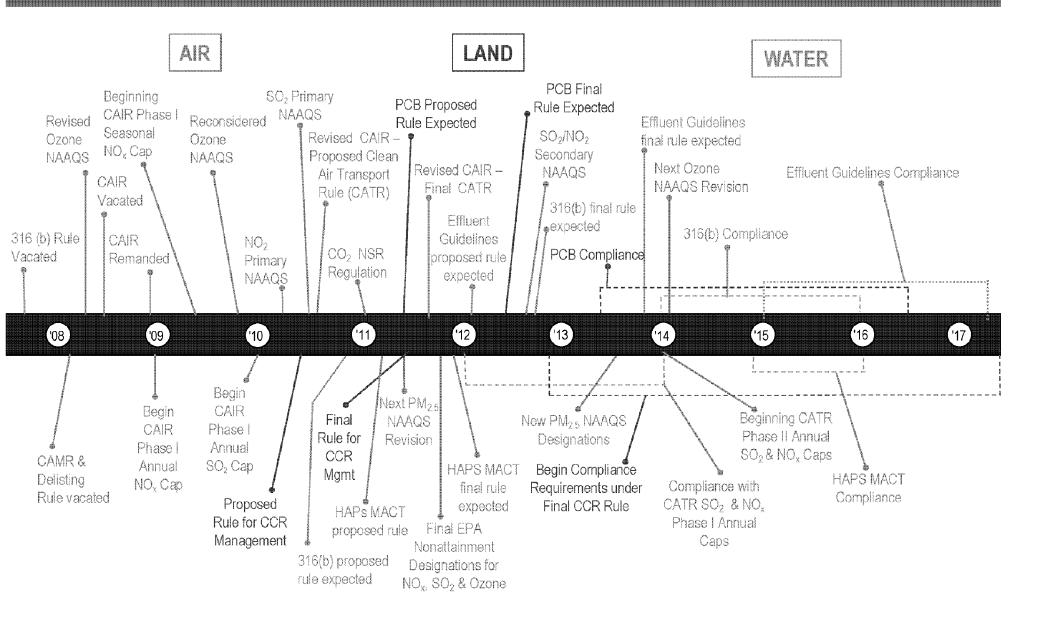
- With less than 10% interstate trading allowed, utilities in Kentucky need to self comply.
- Will require a fleet-wide 20% reduction in NO_x emissions and more than 50% reduction in SO₂ emissions by 2014.

e.om U.S.

SO₂ and NO_x: Historic Emissions and CATR Allocations

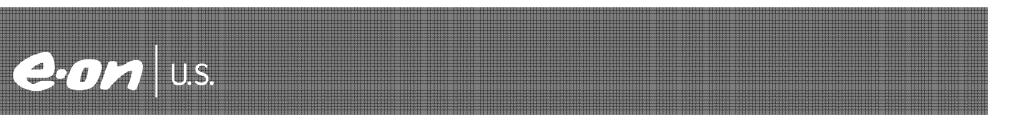

e.om U.S.

CAMR Replacement - Electric Utility Maximum Achievable Control Technology (MACT)


- Currently the CAMR replacement has not yet been proposed by EPA.
- EPA plans to propose in the new rules in March 2011 and finalize in November 2011.
- New emissions limits for Hazardous Air Pollutants such as mercury, hydrogen chloride and hydrogen fluoride and other toxic metals.
- No trading of emissions or allowances, each plant must meet the pollutant specific emission limit.
- Expected compliance date will be 2015 with a possible 1-year extension.

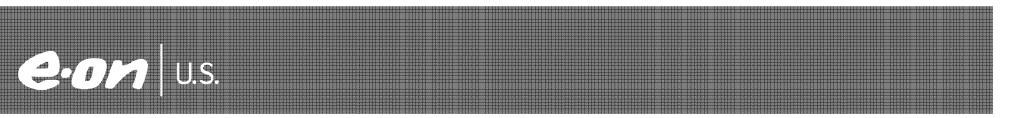
Potential Company Impact(s):

 Most coal-fired units will need to add a baghouse with carbon and lime injection.


e.on U.S.

e.om U.S.

Summary


- Coal is still, and will continue to be, in the cross-hairs of the EPA.
- We will analyze every EPA proposal to determine the full magnitude of its impact, including the financial and operational implications.
- As with any proposed environmental regulation, we will continue to follow the developments and act accordingly to achieve full compliance once it takes effect.
- It will be necessary for continued coordination between departments and across the lines of business. There will be an increased effort to educate the public and key stakeholders.

Estimated Limits & Compliance Dates For Future New Air Requirements

Ghent Station

Program	Re	gulated Pollutants		Unit/Plant	Current Reg.	Forcasted Date for Compliance	
Name	Pollutant	Limit	Units	Averaging	Required Date		
SAM NSR NOV	H ₂ SO ₄	2 - 10	ppm	Unit	To Be Determined	2012 - 2014	
New 1-hour NAAQS for SO ₂	SO ₂	0.31 for plant avg.	lbs/mmBtu	Based on air quality modeling	June, 2017	June, 2016 to June, 2017	
New 1-hour NAAQS for NO _x	NO _x	0.47 for plant avg.	lbs/mmBtu	Based on air quality modeling	January, 2017	No sooner than January, 2017	
	SO ₂	0.186	lbs/mmBtu	Plant, but statewide	Beginning Phase I in 2012; Limits in Phase II during 2014	Beginning Phase I in 2013; Limits in Phase II during 2015	
CATR	NO _x	0.041	lbs/mmBtu	trading			
	Mercury	90% or	Removal	Plant	January, 2015, with 1-yr extension - January, 2016	January, 2016, with 1-yr extension - January, 2017 Potential delay for commitment to shutdown older coal-fired units	
	Mercury	0.012	lbs/GWH				
	Acids (HCl)	0.002	lbs/mmBtu				
New EGU MACT	Metals (PM) or	0.03	lbs/mmBtu	Unit or Plant			
	Metals (As)	0.5 x 10 ⁻⁵	lbs/mmBtu				
	Organics (CO)	0.10	lbs/mmBtu	-			
	Dioxin/Furan	15 x 10 ⁻¹⁸	lbs/mmBtu	-			
PM _{2.5} NAAQS	PM _{2.5} or Condensable PM	To be determined based on modeling	lbs/hours	Plant	After 2017	After 2017	

-		2009 Actual Emissions				
Plant	Unit	SO ₂ (tons)	NO _x (tons)	mmBtu (year)	SO ₂ Rate (Ibs/mmBtu)	NO _x Rate (lbs/mmBtu)
Ghent	1	1,418.1	973.2	31,802,243	0.09	0.06
Ghent	2	5,044.3	2,664.9	24,783,886	0.41	0.22
Ghent	3	3,188.6	1,972.3	34,425,557	0.19	0.11
Ghent	4	1,220.5	802.8	28,668,181	0.09	0.06
Ghent	Total	10,872	6,413	119,679,867	0.182	0.107

Evaluation of CATR for Ghent Station

		CATR Allocation Tons		CATR Alterative lb/mmBtu					
Plant	Unit	SO ₂ for 2012	SO ₂ for 2014	NO _x in ≥ 2012	SO ₂ for 2012	SO_2 for 2014	NO, in ≥ 2012	SO ₂ 2012 Heat Input	NO _x 2012 Heat Input
Ghent	1	2,221	3,653	794	0.139	0.214	0.050	31,854,467	31,477,413
Ghent	2	2,101	1,813	976	0.180	0.108	0.058	23,378,147	33,536,165
Ghent	3	3,578	3 <i>,</i> 363	483	0.199	0.203	0.030	35,919,897	32,698,639
Ghent	4	1,214	3 <i>,</i> 359	468	0.079	0.203	0.029	30,683,824	32,663,045
Ghent	Total	9,114	12,188	2,721	0.155	0.186	0.041	121,836,336	130,375,262

Page 12

Phase II AQC Study Ghent Station Kickoff

Black & Veatch

October 2010

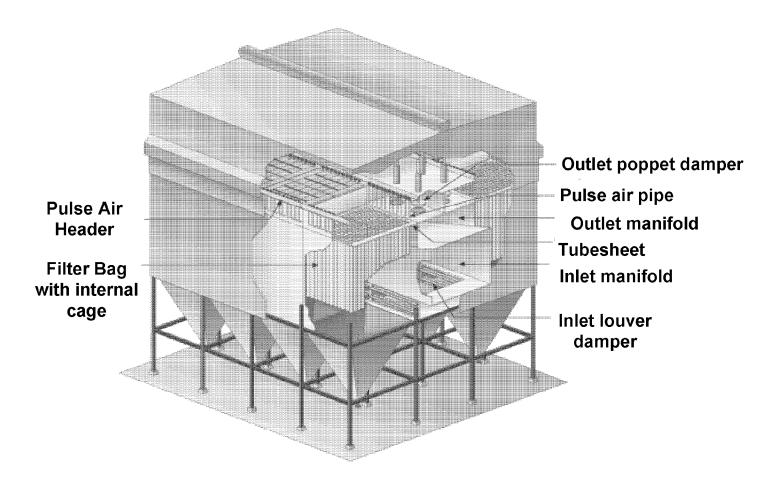
LGE-KU-00004073

RIACK & VEATCH

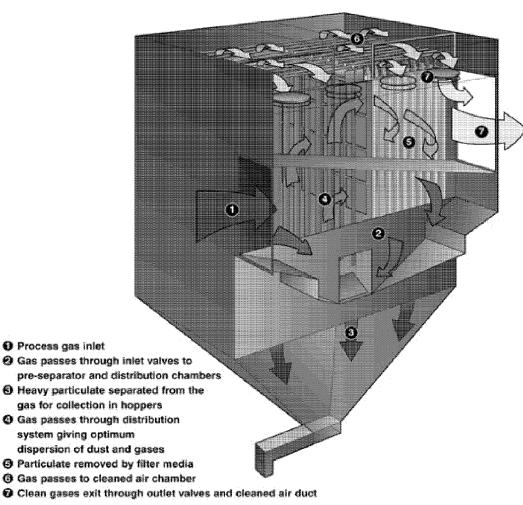
Agenda

- Regulatory drivers
- PJFF overview
- Overview of phase I results

Regulatory drivers – still uncertainty

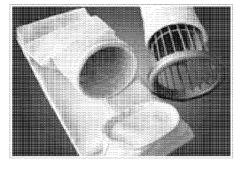

Program Name	Regulated Pollutants	Forecasted Date for Compliance	
PSD/NSR	SAM Ghent Units 1- 4	E.ON currently negotiating with EPA	
1-hour NAAQS for NO _x	NO _x	2015 - 2017	
1-hour NAAQS for SO ₂	SO ₂	2016	
Clean Air Transport Rule	NO _x SO ₂	Beginning in 2012 Phase in 2014	
New EGU MACT	Mercury Acids (HCI) Metals (PM) Metals (AS) Organics (CO) Dioxin/Furan	Estimated January, 2015; with 1-yr extension - January, 2016	

PJFF Overview


PJFF – overall layout

Courtesy: Babcock & Wilcox

PJFF – flow diagram


R,

BLACK & VEATCH

BUILDING A WORLD OF DIFFERENCE[®]

PJFF advantages vs. DESP

- Fuel flexibility
- High efficiency especially on PM_{2.5}
- Performance is less susceptible to plant operating conditions
- Works well during startups
- Better control of hazardous air pollutants such as heavy metals (Ar, Ni, Pb, etc.)
- Allows reagent injection to work better (Hg or SO₃)

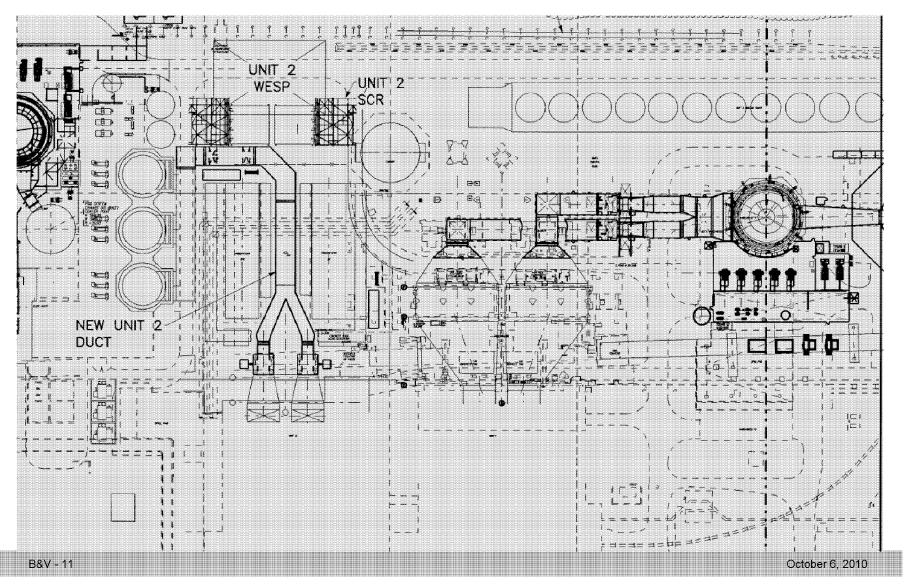
PJFF disadvantages vs. DESP

- Bags damaged by high temperatures
- High pressure drop
- Periodic bag replacement

B&V - 9

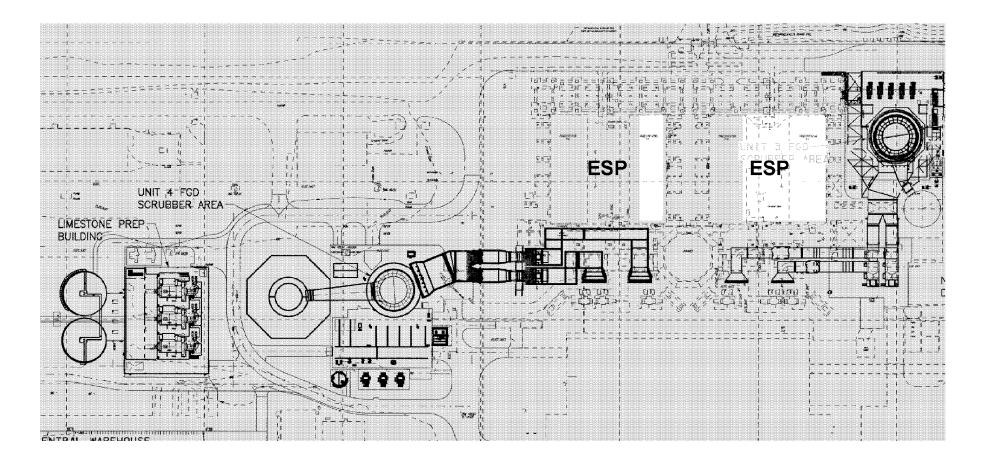
Overview of Phase I Results

Phase I AQCS results for Ghent Station

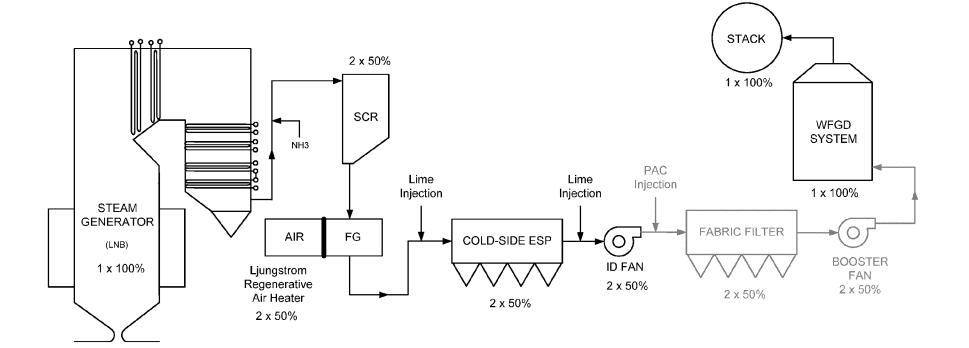

- Ghent Unit 1
 - Pulse Jet Fabric Filter (PJFF)
 - Powdered Activated Carbon (PAC) Injection
- Ghent Unit 2
 - Selective Catalytic Reduction (SCR) System
 - Pulse Jet Fabric Filter (PJFF)
 - Lime / Trona Injection
 - Powdered Activated Carbon (PAC) Injection
- Ghent Unit 3
 - Pulse Jet Fabric Filter (PJFF)
 - Powdered Activated Carbon (PAC) Injection
- Ghent Unit 4

B&V - 10

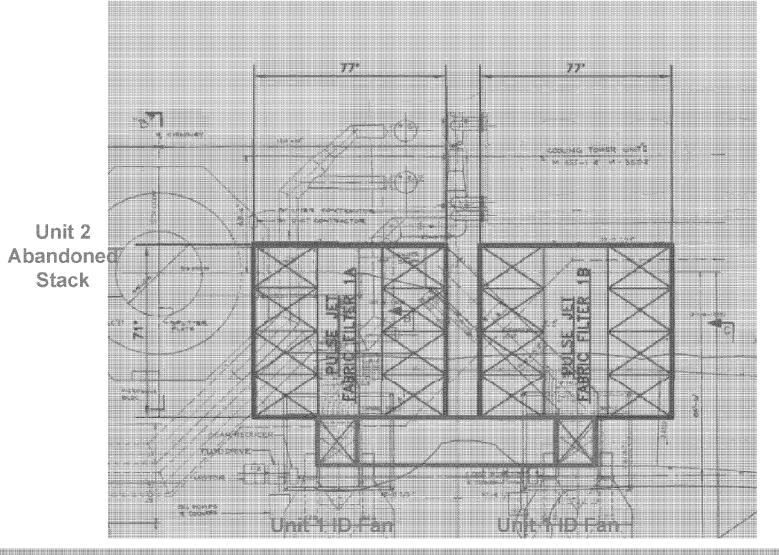
- Pulse Jet Fabric Filter (PJFF)
- Powdered Activated Carbon (PAC) Injection



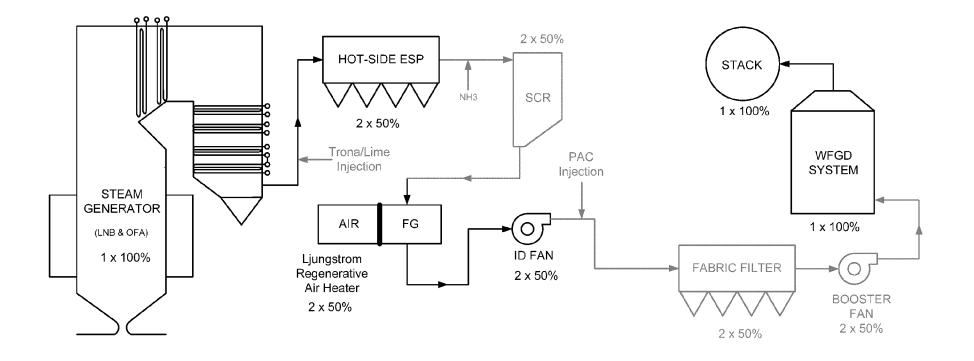
Ghent Unit 1 and Unit 2 space constraints



Ghent Unit 3 and Unit 4 space constraints

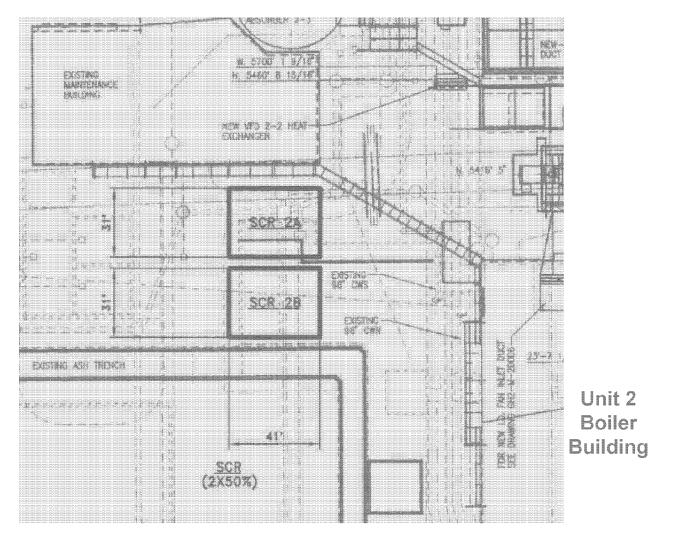


Ghent Unit 1 PJFF layout


Ghent Unit 1 PJFF challenges

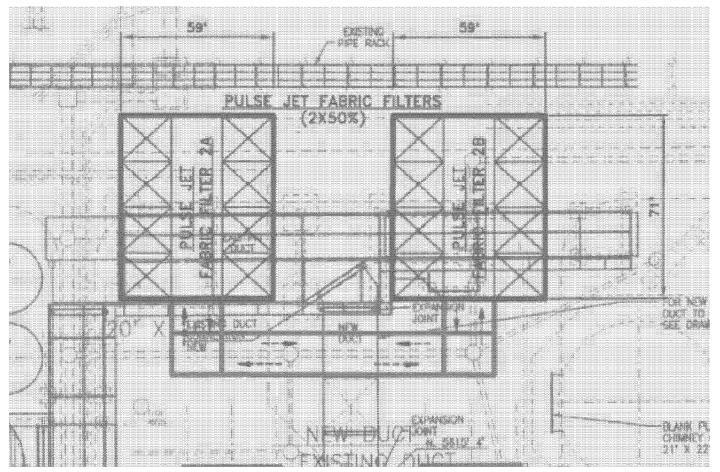
- Elevated PJFF
- Real estate constraints
- Demolition and relocation of pipe racks
- Difficult crane access
- Restricted cooling tower access during project execution
- Lattice boom / crawler crane booms for final assembly

BUILDING A WORLD OF DIFFERENCE[®]



Ghent Unit 2 layout

Ghent Unit 2 SCR layout



Ghent Unit 2 SCR challenges

- Equipment lifting required over areas of high personnel traffic
- Demolition of overhead walkway between Unit 2 & Unit 3 boiler building
- Demolition and relocation of overhead power lines
- Tower crane for heavy equipment and final assembly of SCR
- Demolition and relocation of pipe-racks

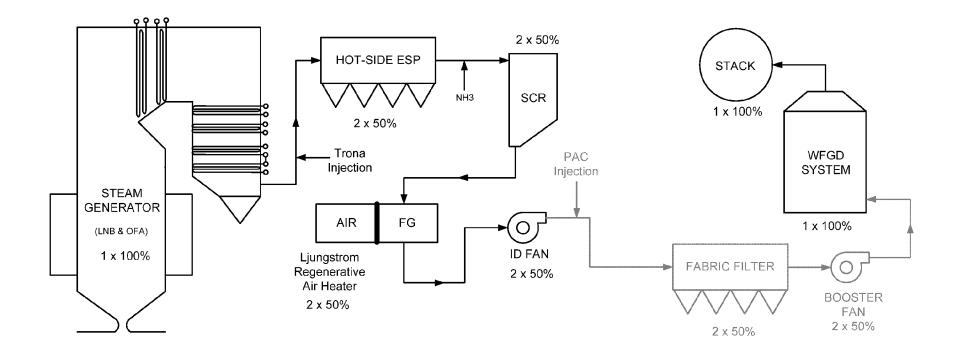
Ghent Unit 2 PJFF layout

Unit 2 ID Fan Outlet Ductwork

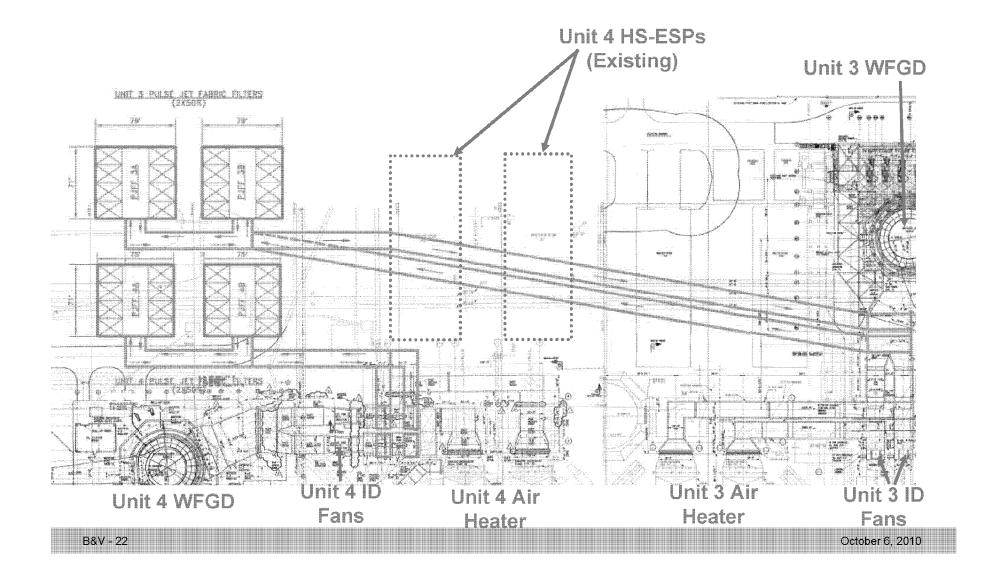
B&V - 19

Ghent Unit 2 PJFF challenges

- Elevated PJFF
- Real estate constraints
- Difficult crane access


- Demolition and relocation of pipe racks
- Restricted cooling tower access during project execution
- Lattice boom / crawler crane booms for final assembly
- Bypass duct required

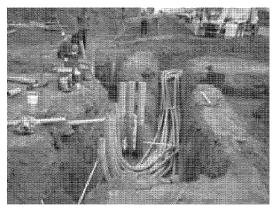
BUILDING A WORLD OF DIFFERENCE[®]



Ghent Unit 3 / Unit 4 layout

Ghent Unit 3 and Unit 4 PJFF layout

Ghent Unit 3 PJFF challenges

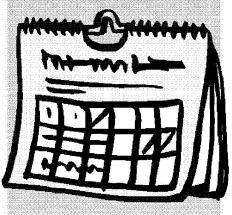

- Site constraints
- Long ductwork for Unit 3
- Restricted access around the footprint of Unit 3 ESP – tight space
- Difficult crane access for tie in of Unit 3 fabric filter inlet/outlet ductwork

Ghent Unit 4 PJFF challenges

- Demolish and relocate underground utilities
 - Electrical manholes
 - Water wells
 - Storm sewer boxes and piping
 - Circulating cooling water piping

Typical PJFF schedule

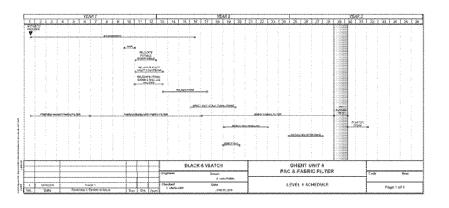
- 32 to 36 months
 - Engineering & procurement 16 months
 - Erect PJFF foundations 6 months
 - Erect PJFF 12 months
 - Tie-in outage 1 month
 - Start-up 1 month

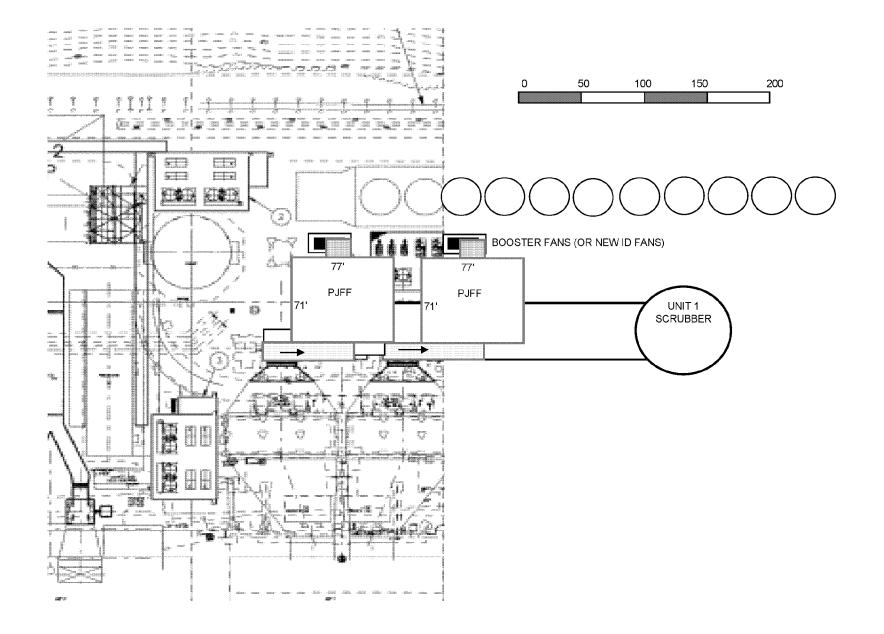

RLACKE VEATCH

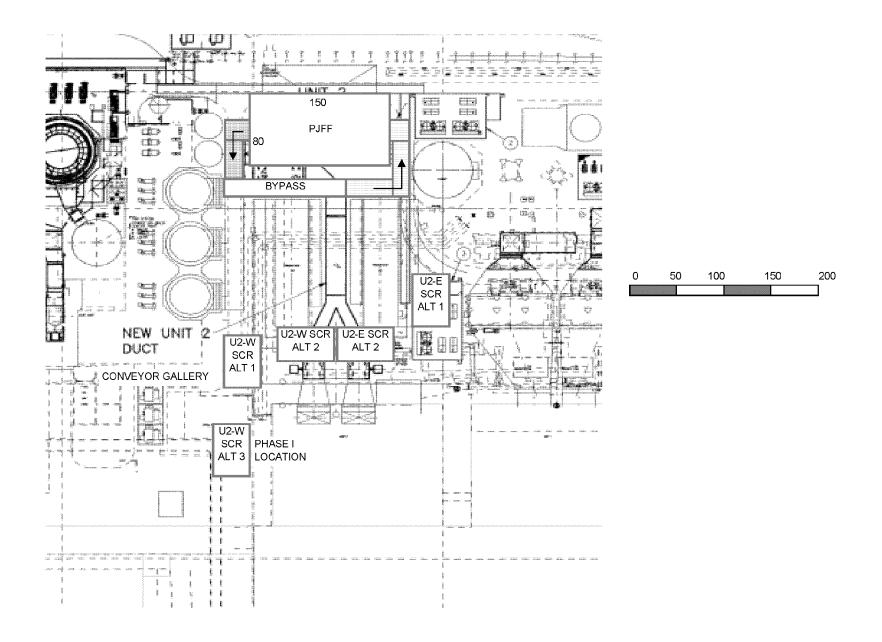
BUILDING A WORLD OF DIFFERENCE®

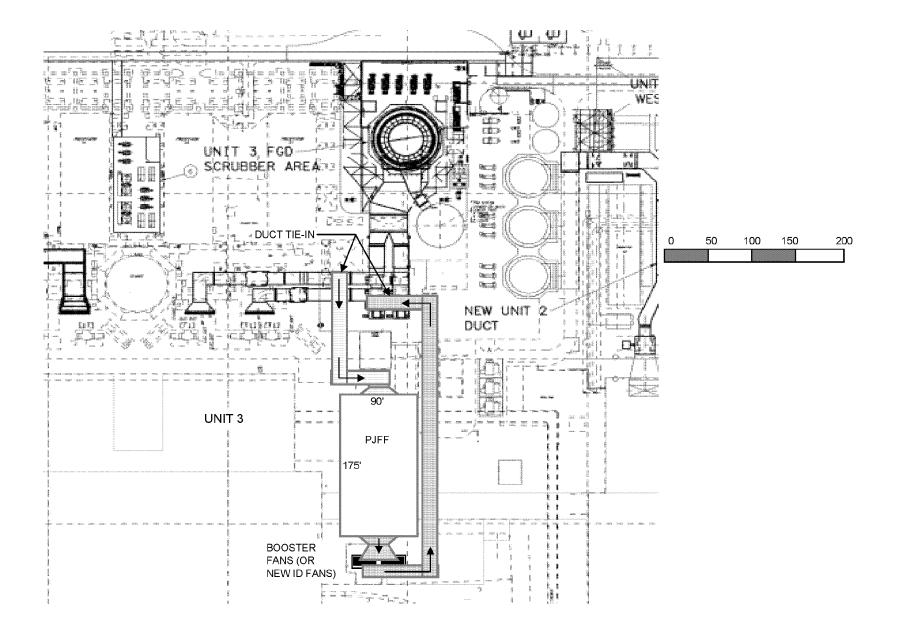
Typical SCR schedule

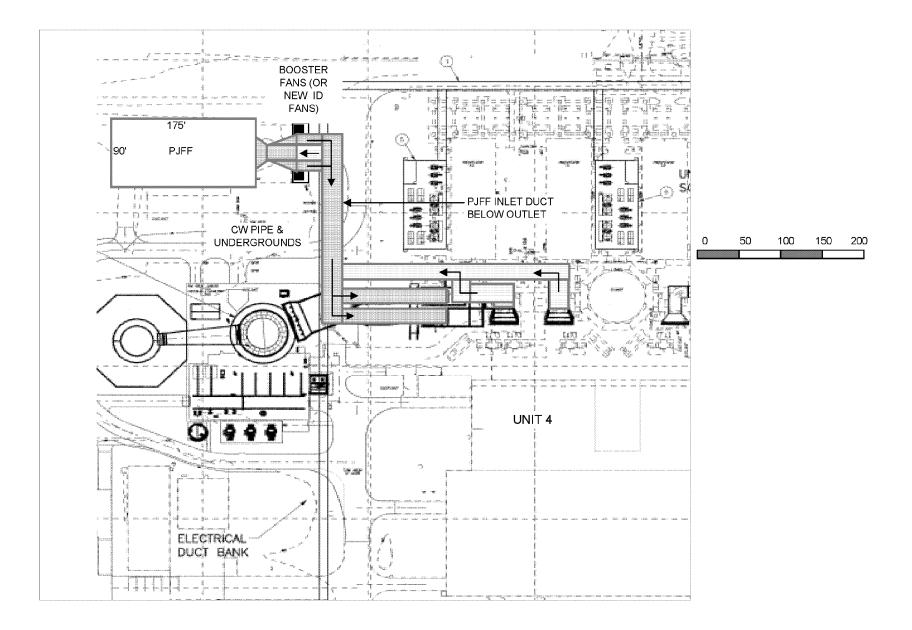
- 32 to 36 months
 - Engineering & procurement 16 months
 - Erect SCR foundations 4 months
 - Erect SCR support steel 4 months
 - Erect SCR & ductwork 8 months
 - Tie-in outage 1 month
 - Start-up 1 month

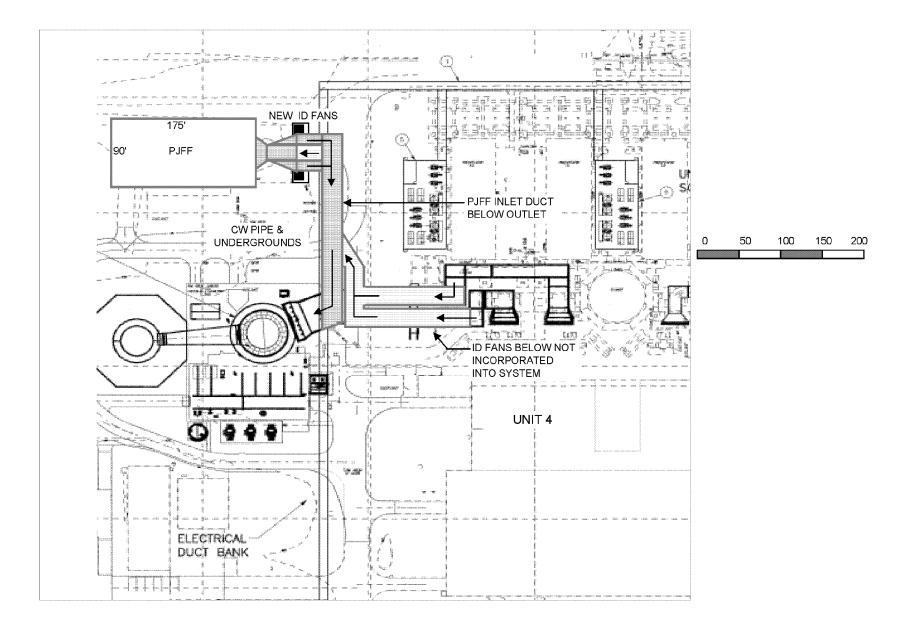

B&V - 26






Phase I implementation schedule


- Ghent Unit 1 PJFF 36 months
- Ghent Unit 2 SCR & PJFF 44 months
- Ghent Unit 3 PJFF 32 months
- Ghent Unit 4 PJFF 32 months



From:	Hillman, Timothy M.
То:	Saunders, Eileen
CC:	Wehrly, M. R.; Hintz, Monty E.; Lucas, Kyle J.; Lausman, Rick L.; Crabtree, Jonathan D.;
	Mahabaleshwarkar, Anand; King, Michael L. (Mike)
Sent:	9/10/2010 9:01:11 AM
Subject:	E.ON Mill Creek Kickoff Meeting - Final Agenda
Attachments:	EON Mill Creek Kickoff Meeting Agenda.doc

Eileen,

Attached is the final agenda. B&V personnel attendance is as follows:

Day 1 (9/14)	Broadway Office Complex Tim Hillman M.R. Wehrly Kyle Lucas Mike King	Mill Creek Anand Mahabaleshwarkar Rick Lausman Monty Hintz
Days 2 (9/15)		Mill Creek Anand Mahabaleshwarkar Rick Lausman Monty Hintz M.R. Wehrly Tim Hillman Kyle Lucas
Day 3 (9/16)		Mill Creek Anand Mahabaleshwarkar Monty Hintz

Best regards.

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Friday, September 10, 2010 6:34 AM
To: Hillman, Timothy M.
Cc: Wehrly, M. R.; Hintz, Monty E.; Lucas, Kyle J.; Lausman, Rick L.; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand
Subject: RE: E.ON Mill Creek Kickoff Meeting - Draft Agenda

M.R. Wehrly Tim Hillman

Tim,

It looks like you got everything! I am comfortable with the Agenda as written.

One thing I need from you today is a list of who will be at the station **each day**. I need to inform the guards and have one of my guys waiting for them at the gate. Please send that information today if possible.

Also, I will have lunch brought in on Wednesday for the group. On Thursday, I suggest running down the street to Subway and grabbing lunch.

I will provide a projector that we can use.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Thursday, September 09, 2010 9:38 AM
To: Saunders, Eileen
Cc: Wehrly, M. R.; Hintz, Monty E.; Lucas, Kyle J.; Lausman, Rick L.; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand
Subject: E.ON Mill Creek Kickoff Meeting - Draft Agenda

Eileen,

I drafted and routed the attached agenda for my team's review yesterday, requesting comments by the end of today (9/9). Please review and advise of any E.ON comments or revisions. I will then revise the agenda based on E.ON's and B&V's comments and send a final agenda to you tomorrow (Friday, 9/10) for distribution.

A couple questions:

- On Sep 15th and 16th, would it be possible to have lunch on-site at Mill Creek, or will we need to go off-site?
- Does Mill Creek have a PC projector that we can use?

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Thursday, September 09, 2010 7:53 AM
To: Hillman, Timothy M.
Subject: Re: Draft AQCS Contract - Notice To Proceed

Tim,

Last time we met as a group, you sent me a sample agenda that I modified. Can you send me a draft that I can review? I would like to send something to the plant tomorrow.

Thanks,

Eileen

From: Hillman, Timothy M. <HillmanTM@bv.com>
To: Whitworth, Wayne
Cc: Saunders, Eileen; Clements, Joe; King, Michael L. (Mike) <kingml@bv.com>; Pollins, Kent D. <PollinsKD@bv.com>
Sent: Thu Sep 09 08:48:00 2010
Subject: RE: Draft AQCS Contract - Notice To Proceed

Thanks Wayne.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

From: Whitworth, Wayne [mailto:Wayne.Whitworth@eon-us.com]
Sent: Thursday, September 09, 2010 7:42 AM
To: Hillman, Timothy M.
Cc: Saunders, Eileen; Clements, Joe; King, Michael L. (Mike); Pollins, Kent D.
Subject: RE: Draft AQCS Contract - Notice To Proceed
Importance: High

Tim,

Attached is an executed copy of the AQCS Contract. The duplicate original will be sent to you today via UPS Next Day Air. Please note that a number will be assigned to this contract prior to your first billing. The contract number will need to be included on all invoices.

Thanks for all your help. If you have any questions, please don't hesitate to call.

Best regards,

W. Wayne Whitworth

Project Engineering E-ON U.S. Services Inc. 820 West Broadway P.O. Box 32020 Louisville, KY 40202

email: wayne.whitworth@eon-us.com

Office: 502.627.2641 Fax: 502.217.2843 Cell: 502.762.6614

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Wednesday, September 08, 2010 10:04 AM
To: Whitworth, Wayne
Cc: Saunders, Eileen; Clements, Joe; King, Michael L. (Mike); Pollins, Kent D.
Subject: RE: Draft AQCS Contract - Notice To Proceed

Wayne,

I understand that the contract has been signed and that originals were sent to you via FedEx yesterday.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Emai: hillmantm@bv.com

From: Whitworth, Wayne [mailto:Wayne.Whitworth@eon-us.com]
Sent: Tuesday, September 07, 2010 9:01 AM
To: Hillman, Timothy M.
Cc: Saunders, Eileen; Clements, Joe; King, Michael L. (Mike)
Subject: RE: Draft AQCS Contract - Notice To Proceed
Importance: High

Tim,

Please find attached our Contract Notice To Proceed for Phase II Air Quality Control Study incorporating your comments of September 1, 2010. Please print two copies, sign both as originals and return to my attention. A countersigned duplicate original will be returned for your records.

Note that the attached does not include a contract number. Our Contract Number will be assigned when the project is established in our accounting systems, anticipated to be later this week. The Contract Number must be included on all invoices presented for payment.

Eileen Saunders will be contacting you to arrange a project kick-off meeting to be held in Louisville sometime next week.

Should you have any questions, please do not hesitate to call.

Best regards,

W. Wayne Whitworth

Project Engineering E-ON U.S. Services Inc. 820 West Broadway P.O. Box 32020 Louisville, KY 40202

email: wayne.whitworth@eon-us.com

Office: 502.627.2641 Fax: 502.217.2843 Cell: 502.762.6614

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Wednesday, September 01, 2010 1:53 PM
To: Whitworth, Wayne
Cc: Saunders, Eileen; Clements, Joe; Pollins, Kent D.; King, Michael L. (Mike); Hillman, Timothy M.
Subject: RE: Draft AQCS Contract
Importance: High

Wayne,

Please find attached subject contract with a few minors edits/revisions in track-changes. You will find the track-changes on the following pages of the draft contract.

- Pg 2, Section 5.3
- Pg 3, Section 8.1
- Pg 4, Section 9.1.1
- Pg 4, Section 9.3.2
- Pg 17, Exhibit 1, Scope of work, Task 8
- Pg 20, Exhibit 1, Scope of work, Compensation

Don't hesitate to call me if you have any questions.

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Emai: hillmantm@bv.com

From: Whitworth, Wayne [mailto:Wayne.Whitworth@eon-us.com]
Sent: Tuesday, August 31, 2010 11:34 AM
To: Hillman, Timothy M.
Cc: Saunders, Eileen; Clements, Joe
Subject: Draft AQCS Contract
Importance: High

Tim,

<<Contract DRAFT Black Veatch Rev 4 (8-27-2010-els) .docx>>

Attached is a draft for the Phase II Air Quality Control Study. Please let me know if you have any comments as we continue to seek the required approvals to proceed..

Regards

W. Wayne Whitworth

Project Engineering

E-ON U.S. Services Inc.

820 West Broadway

P.O. Box 32020

Louisville, KY 40202

email: wayne.whitworth@eon-us.com

Office: 502.627.2641

Fax: 502.217.2843

Cell: 502.762.6614

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Mill Creek Station September 14 - 16, 2010 Location: E.ON Broadway Office Complex and Mill Creek

Day 1, September 14th, Arrive 1 pm (Broadway Office Complex)

- I. Introductions
- II. Review Project Scope
- III. Review Project Schedule
- IV. Review Project Deliverables
- V. Project Administration
 - a. Communication
 - b. File System
 - c. Monthly Reports
 - d. Weekly Conference Calls/Action Item List
 - e. Invoicing
- VI. Project Documentation
- VII. Information Request

Day 2, September 15th, Arrive 8 am (Mill Creek)

- I. Introductions
- II. Environmental Drivers Presentation (E.ON Gary R.)
- III. Aug 5-6th AQC Workshop Results Presentation (B&V Rick L and Anand M.)
- IV. Lunch (on site)
- V. Continue Escorted Site Walk Down and Data Collection

Day 3, September 16th, Arrive 8 am (Mill Creek)

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (off site)
- III. Site Debriefing Meeting
- IV. Depart (no later than 4 pm)

Day 1, September 14th, Arrive 1 pm (Mill Creek)

- I. Arrive on Site and Introductions
- II. Begin Initial Escorted Site Walk Down

From:Drake, MichaelTo:Saunders, EileenSent:10/14/2010 3:09:41 PMSubject:RE: 168908.14.1000 101012 Ghent - Draft Kickoff and Site Visit Meeting MinutesAttachments:image003.jpg

You forgot about flying monkeys... or did I just dream that part? I was not all there that day!

Best Regards, Michael Drake

Friends of Coal

P Please consider the environment before printing this e-mail

From: Saunders, Eileen
Sent: Thursday, October 14, 2010 11:18 AM
To: Joyce, Jeff; Wright, Paul; Drake, Michael; Ayler, Danny; Bickers, Troy; Smith, Dave; Jones, Greg; Scott, Randy; Revlett, Gary
Cc: Hillman, Timothy M.
Subject: FW: 168908.14.1000 101012 Ghent - Draft Kickoff and Site Visit Meeting Minutes

All,

Here are the notes from our meeting. Please let me know if you have any comments so I can respond to B&V.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Tuesday, October 12, 2010 1:53 PM
To: Saunders, Eileen
Cc: 168908 E.ON-AQC; Jackson, Audrey; Wehrly, M. R.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Hintz, Monty E.; Goodlet, Roger F.; Crabtree, Jonathan D.
Subject: 168908.14.1000 101012 Ghent - Draft Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached draft meeting minutes from the Ghent kickoff. Please provide E.ON's comments by next Tuesday, 10/19. Thanks,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

From:	Saunders, Eileen
То:	Straight, Scott; Kirkland, Mike; Didelot, Joe; Buckner, Mike; Revlett, Gary; Bennett, Mike; Betz, Alex;
	Mooney, Mike (BOC 3); Moehrke, William; Craigmyle, Kenny
CC:	'Hillman, Timothy M.'; Heath, Rosie
Sent:	9/10/2010 9:13:26 AM
Subject:	FW: E.ON Mill Creek Kickoff Meeting - Final Agenda
Attachments:	EON Mill Creek Kickoff Meeting Agenda.doc

All,

Please see the enclosed agenda for our meeting next Wednesday. B&V will be meeting with me on Tuesday, September 14th at the BOC to discuss administrative processes but you will see in the email below, that they will have a few members of their team doing an initial walkdown at the site. Bill Moehrke and Kenny Craigmyle will take care of assisting B&V on that day.

On Wednesday, September 15th, we will meet in the Main Office Conference Room. As shown on the agenda, the first part of the meeting will be a technical discussion followed by site walkdowns. Lunch will be provided.

Also, B&V requested a return visit to the site on Thursday September 16th as well. Bill and Kenny can escort them as well on that day. The plant is always welcome to join us on these walkdowns but I did not want to tie-up personnel for three days. A debriefing meeting will be held at the site prior to B&V's departure. The time for that meeting will be determined Wednesday.

I have included the names of the personnel who will be coming to the site. Can someone provide these names to the guards and give them access to the site?

Please let me know if you have any questions.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Friday, September 10, 2010 9:01 AM
To: Saunders, Eileen
Cc: Wehrly, M. R.; Hintz, Monty E.; Lucas, Kyle J.; Lausman, Rick L.; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand; King, Michael L. (Mike)
Subject: E.ON Mill Creek Kickoff Meeting - Final Agenda

Eileen,

Attached is the final agenda. B&V personnel attendance is as follows:

Day 1 (9/14)	Broadway Office Complex	Mill Creek
	Tim Hillman	Anand Mahabaleshwarkar
	M.R. Wehrly	Rick Lausman
	Kyle Lucas Mike King	Monty Hintz

Days 2 (9/15)

Mill Creek Anand Mahabaleshwarkar Rick Lausman Monty Hintz M.R. Wehrly Tim Hillman Day 3 (9/16)

Kyle Lucas

Mill Creek Anand Mahabaleshwarkar Monty Hintz M.R. Wehrly Tim Hillman

Best regards.

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Emai: hillmantm@bv.com

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Friday, September 10, 2010 6:34 AM
To: Hillman, Timothy M.
Cc: Wehrly, M. R.; Hintz, Monty E.; Lucas, Kyle J.; Lausman, Rick L.; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand
Subject: RE: E.ON Mill Creek Kickoff Meeting - Draft Agenda

Tim,

It looks like you got everything! I am comfortable with the Agenda as written.

One thing I need from you today is a list of who will be at the station **each day**. I need to inform the guards and have one of my guys waiting for them at the gate. Please send that information today if possible.

Also, I will have lunch brought in on Wednesday for the group. On Thursday, I suggest running down the street to Subway and grabbing lunch.

I will provide a projector that we can use.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Thursday, September 09, 2010 9:38 AM
To: Saunders, Eileen
Cc: Wehrly, M. R.; Hintz, Monty E.; Lucas, Kyle J.; Lausman, Rick L.; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand
Subject: E.ON Mill Creek Kickoff Meeting - Draft Agenda

Eileen,

I drafted and routed the attached agenda for my team's review yesterday, requesting comments by the end of today (9/9). Please review and advise of any E.ON comments or revisions. I will then revise the agenda based on E.ON's and B&V's comments and send a final agenda to you tomorrow (Friday, 9/10) for distribution.

A couple questions:

- On Sep 15th and 16th, would it be possible to have lunch on-site at Mill Creek, or will we need to go off-site?

- Does Mill Creek have a PC projector that we can use?

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211

Phone: (913) 458~7928 Email: hillmantm@bv.com

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Thursday, September 09, 2010 7:53 AM
To: Hillman, Timothy M.
Subject: Re: Draft AQCS Contract - Notice To Proceed

Tim,

Last time we met as a group, you sent me a sample agenda that I modified. Can you send me a draft that I can review? I would like to send something to the plant tomorrow.

Thanks,

Eileen

From: Hillman, Timothy M. <HillmanTM@bv.com>
To: Whitworth, Wayne
Cc: Saunders, Eileen; Clements, Joe; King, Michael L. (Mike) <kingml@bv.com>; Pollins, Kent D. <PollinsKD@bv.com>
Sent: Thu Sep 09 08:48:00 2010
Subject: RE: Draft AQCS Contract - Notice To Proceed

Thanks Wayne.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

From: Whitworth, Wayne [mailto:Wayne.Whitworth@eon-us.com]
Sent: Thursday, September 09, 2010 7:42 AM
To: Hillman, Timothy M.
Cc: Saunders, Eileen; Clements, Joe; King, Michael L. (Mike); Pollins, Kent D.
Subject: RE: Draft AQCS Contract - Notice To Proceed
Importance: High

Tim,

Attached is an executed copy of the AQCS Contract. The duplicate original will be sent to you today via UPS Next Day Air. Please note that a number will be assigned to this contract prior to your first billing. The contract number will need to be included on all invoices.

Thanks for all your help. If you have any questions, please don't hesitate to call.

Best regards,

W. Wayne Whitworth

Project Engineering E-ON U.S. Services Inc. 820 West Broadway P.O. Box 32020 Louisville, KY 40202

email: wayne.whitworth@eon-us.com

Office: 502.627.2641 Fax: 502.217.2843 Cell: 502.762.6614

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Wednesday, September 08, 2010 10:04 AM
To: Whitworth, Wayne
Cc: Saunders, Eileen; Clements, Joe; King, Michael L. (Mike); Pollins, Kent D.
Subject: RE: Draft AQCS Contract - Notice To Proceed

Wayne,

I understand that the contract has been signed and that originals were sent to you via FedEx yesterday.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Emai: hillmantm@bv.com

From: Whitworth, Wayne [mailto:Wayne.Whitworth@eon-us.com]
Sent: Tuesday, September 07, 2010 9:01 AM
To: Hillman, Timothy M.
Cc: Saunders, Eileen; Clements, Joe; King, Michael L. (Mike)
Subject: RE: Draft AQCS Contract - Notice To Proceed
Importance: High

Tim,

Please find attached our Contract Notice To Proceed for Phase II Air Quality Control Study incorporating your comments of September 1, 2010. Please print two copies, sign both as originals and return to my attention. A countersigned duplicate original will be returned for your records.

Note that the attached does not include a contract number. Our Contract Number will be assigned when the project is established in our accounting systems, anticipated to be later this week. The Contract Number must be included on all invoices presented for payment.

Eileen Saunders will be contacting you to arrange a project kick-off meeting to be held in Louisville sometime next

week.

Should you have any questions, please do not hesitate to call.

Best regards,

W. Wayne Whitworth

Project Engineering E-ON U.S. Services Inc. 820 West Broadway P.O. Box 32020 Louisville, KY 40202

email: wayne.whitworth@eon-us.com

Office: 502.627.2641 Fax: 502.217.2843 Cell: 502.762.6614

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Wednesday, September 01, 2010 1:53 PM
To: Whitworth, Wayne
Cc: Saunders, Eileen; Clements, Joe; Pollins, Kent D.; King, Michael L. (Mike); Hillman, Timothy M.
Subject: RE: Draft AQCS Contract
Importance: High

Wayne,

Please find attached subject contract with a few minors edits/revisions in track-changes. You will find the track-changes on the following pages of the draft contract.

- Pg 2, Section 5.3
- Pg 3, Section 8.1
- Pg 4, Section 9.1.1
- Pg 4, Section 9.3.2
- Pg 17, Exhibit 1, Scope of work, Task 8
- Pg 20, Exhibit 1, Scope of work, Compensation

Don't hesitate to call me if you have any questions.

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Emak: hillmantm@bv.com

From: Whitworth, Wayne [mailto:Wayne.Whitworth@eon-us.com]
Sent: Tuesday, August 31, 2010 11:34 AM
To: Hillman, Timothy M.
Cc: Saunders, Eileen; Clements, Joe
Subject: Draft AQCS Contract
Importance: High

Tim,

<<Contract DRAFT Black Veatch Rev 4 (8-27-2010-els) .docx>>

Attached is a draft for the Phase II Air Quality Control Study. Please let me know if you have any comments as we continue to seek the required approvals to proceed..

Regards

W. Wayne Whitworth

Project Engineering

E-ON U.S. Services Inc.

820 West Broadway

P.O. Box 32020

Louisville, KY 40202

email: wayne.whitworth@eon-us.com

Office: 502.627.2641

Fax: 502.217.2843

Cell: 502.762.6614

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained

therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Mill Creek Station September 14 - 16, 2010 Location: E.ON Broadway Office Complex and Mill Creek

Day 1, September 14th, Arrive 1 pm (Broadway Office Complex)

- I. Introductions
- II. Review Project Scope
- III. Review Project Schedule
- IV. Review Project Deliverables
- V. Project Administration
 - a. Communication
 - b. File System
 - c. Monthly Reports
 - d. Weekly Conference Calls/Action Item List
 - e. Invoicing
- VI. Project Documentation
- VII. Information Request

Day 2, September 15th, Arrive 8 am (Mill Creek)

- I. Introductions
- II. Environmental Drivers Presentation (E.ON Gary R.)
- III. Aug 5-6th AQC Workshop Results Presentation (B&V Rick L and Anand M.)
- IV. Lunch (on site)
- V. Continue Escorted Site Walk Down and Data Collection

Day 3, September 16th, Arrive 8 am (Mill Creek)

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (off site)
- III. Site Debriefing Meeting
- IV. Depart (no later than 4 pm)

Day 1, September 14th, Arrive 1 pm (Mill Creek)

- I. Arrive on Site and Introductions
- II. Begin Initial Escorted Site Walk Down

From: To: Sent: Subject: Attachments: Conroy, Robert Schroeder, Andrea 9/30/2010 12:40:58 PM

Environmental Summay alternate scenario Rev4 - Pras (2).xlsx

Robert M. Conroy *Director, Rates E.ON U.S. Services Inc.* (502) 627-3324 (phone) (502) 627-3213 (fax) (502) 741-4322 (mobile) robert.conroy@eon-us.com

	А	С	D	E	F	G	Н	I	J	К
1	Environmental Air - CATR by January 2015, NAAQS by .	January 2016, HAPs	by January 2017							
2	\$ in thousands									
3		Capital Cost	ECR Filing	pportable Docume	Start of Construction	2011	2012	2013	2014	2015
4	Alternate Plan									
5	Brown									
6	Brown 1 - SCR	\$59,000	Dec-10			\$2,950	\$17,700	\$23,600	\$14,750	
7	Brown 1 - Baghouse	\$34,000	Dec-10			\$1,700	\$11,900	\$13,600	\$6,800	
8	Brown 1 - PAC Injection	\$1,599	Apr-12					\$800	\$800	
10	Brown 1 - SAM Mitigation	\$4,000	Dec-10			\$200	\$1,200	\$1,600	\$1,000	
12	Brown 1 - Escalation	\$15,476				\$371	\$3,679	\$6,504	\$4,922	
13	Total Brown 1	\$114,075				\$5,221	\$34,479	\$46,103	\$28,272	\$ 0
14										
15	Brown 2 - SCR	\$92,000	Dec-10			\$9,200.0	\$34,500	\$43,700	\$4,600	
16	Brown 2 - Baghouse	\$34,000	Jul-11				\$1,360	\$10,200	\$10,880	\$10,540
17	Brown 2 - PAC Injection	\$2,476	Apr-13						\$1,238	\$1,238
	Brown 2 - SAM Mitigation	\$4,000	Dec-10			\$200	\$1,600	\$2,200		
22	Brown 2 - Escalation	\$21,300				\$718	\$4,475	\$9,214	\$3,524	\$3,053
23 24	Total Brown 2	\$153,776				\$10,118	\$41,935	\$65,314	\$20,242	\$14,831
24	Brown 3 - Baghouse	\$61,000	Apr-12					\$1,830	\$21,350	\$28,670
	Brown 3 - PAC Injection	\$5,426	Apr-12 Apr-13					÷1,850	\$1,000	\$3,426
31	Brown 3 - Escalation	\$16,475				\$0	\$0	\$301	\$4,711	\$8,320
32	Total Brown 3	\$82,901				\$0	\$0 \$0	\$2,131	\$ 27,061	\$40,416
32	Total blowing	302,501				ŞU	φų	<i>Ş</i> 2,131	\$27,001	340,410
34	Total Brown	\$350,751				\$15,339	\$76,414	\$113,547	\$75,575	\$55,248
35										
36	Ghent									
37	Ghent 1 - Baghouse	\$131,000	Apr-12					\$3,930	\$45,850	\$61,570
38	Ghent 1 - PAC Injection	\$6,380	Apr-13						\$1,000	\$4,380
42	Ghent 1 - Escalation	\$34,012				\$0	\$0	\$645	\$9,876	\$17,097
43 44	Total Ghent 1	\$171,392				\$0	\$0	\$4,575	\$56,726	\$83,047
44	Ghent 2 - SCR	\$227,000	Dec-10			\$11,350	\$68,100	\$90,800	\$56,750	
46	Ghent 2 - Baghouse	\$120,000	Apr-12			Ş11,550	\$08,100	\$4,800	\$42,000	\$56,400
47	Ghent 2 - PAC Injection	\$6,109	Apr-12 Apr-13					,000	\$1,000	\$30,400
52	Ghent 2 - Escalation	\$66,928				\$867	\$8,135	\$15,701	\$21,000	\$15,686
53	Total Ghent 2	\$420,037				\$12,217	\$76,235	\$111,301	\$120,778	\$76,195
54		Ş420,037				¥12,217	<i>\$10,233</i>	Ş111,501	<i>Ş120,778</i>	\$70,135
55	Ghent 3 - Baghouse	\$138,000	Apr-12					\$16,560	\$48,300	\$66,240
56	Ghent 3 - PAC Injection	\$6,173	Apr-13						\$3,087	\$3,087
60	Ghent 3 - Escalation	\$33,660				\$0	\$0	\$2,720	\$10,832	\$17,972
61	Total Ghent 3	\$177,833				\$0	\$0	\$19,280	\$62,219	\$87,298
62										
63	Ghent 4 - Baghouse	\$117,000	Apr-12					\$11,700	\$40,950	\$58,500
64	Ghent 4 - PAC Injection	\$6,210	Apr-13			.			\$3,105	\$3,105
68	Ghent 4 - Escalation	\$28,990				\$0	\$0	\$1,922	\$9,287	\$15,970
69	Total Ghent 4	\$152,200				\$0	\$0	\$13 ,622	\$53,342	\$77,575
71	Total Ghent	\$921,461				\$12,217	\$76,235	\$148,777	\$293,065	\$324,115
72										

	L	М	N	0	Р
1					
2					
3	2016	2017	2018	Total	
4					
5					
6				\$59,000	\$0
7				\$39,000	\$(
					· · ·
8				\$1,599	\$0
10				\$4,000	\$0
12				\$15,476	\$(
13	\$0	\$0	\$0	\$114,075	\$0
14				<u> </u>	<i></i>
15	4			\$92,000	\$0
16	\$1,020			\$34,000	\$0
17				\$2,476	\$0
20				\$4,000	\$(
22	\$316			\$21,300	\$0
23	\$1,336	\$ 0	\$0	\$153,776	\$0
24					
27	\$9,150			\$61,000	\$0
28	\$1,000			\$5,426	\$(
31	\$3,142			\$16,475	\$0
32	\$13,292	\$0	\$0	\$82,901	\$0
33			4 -	4	
34 35	\$14,628	\$0	\$0	\$350,751	\$0
36	640 CE0			¢4.24.000	A.
37	\$19,650			\$131,000	\$0
38	\$1,000			\$6,380	\$(
42	\$6,393			\$34,012	\$0
43 44	\$27,043	\$0	\$0	\$171,392	\$0
				¢227.000	ć/
45	¢16.000			\$227,000	\$0
46	\$16,800			\$120,000	\$0
47	\$1,000			\$6,109	\$0
52	\$5,511			\$66,928	\$(
53 54	\$23,311	\$0	\$0	\$420,037	\$0
	¢c 000			¢138.000	~ ~ ~
55	\$6,900			\$138,000	\$0
56	40.105			\$6,173	\$0
60	\$2,136			\$33,660	\$0
61	\$9,036	\$0	\$0	\$177,833	\$0
62	¢5.050			¢117.000	<i>~</i>
63	\$5,850			\$117,000	\$0
64	.	.		\$6,210	\$0
68	\$1,811	\$0	\$0	\$28,990	\$(
69	\$7,661	\$0	\$0	\$152,200	\$0
71	\$67,052	\$0	\$0	\$921,461	\$0

	А	С	D	E	F	G	н	Ι	J	К
73	Mill Creek									
74	Mill Creek 1 - FGD Upgrade	\$41,250	Apr-12					\$10,313	\$28,875	\$2,063
75	Mill Creek 1 - SCR	\$97,020	Apr-12					\$2,911	\$27,166	\$29,106
76	Mill Creek 1 - Baghouse	\$80,850	Jul-11				\$8,085	\$28,298	\$40,425	\$4,043
77	Mill Creek 1 - Electrostatic Precipitator	\$0					\$0	\$0	\$0	\$0
78	Mill Creek 1 - PAC Injection	\$4,290	Jul-11				\$429	\$1,502	\$2,360	
81	Mill Creek 1 - SAM Mitigation	\$7,920	Apr-12					\$396	\$792	\$2,376
83	Mill Creek 1 - Escalation	\$52,077				\$0	\$1,017	\$7,131	\$21,000	\$9,744
84	Total Mill Creek 1	\$283,407				\$0	\$9,531	\$50,549	\$120,617	\$47,331
85		644.050	1 4 4				640.040	620.075	<u> </u>	
	Mill Creek 2 - FGD Upgrade	\$41,250	Jul-11				\$10,313	\$28,875	\$2,063	¢35.007
	Mill Creek 2 - SCR	\$97,020	Jul-11			4	\$2,911	\$27,166	\$29,106	\$35,897
	Mill Creek 2 - Baghouse	\$80,850	Dec-10			\$8,085	\$28,298	\$40,425	\$4,043	
	Mill Creek 2 - Electrostatic Precipitator	\$33,000	Dec-10			\$3,300	\$11,550	\$16,500	\$1,650	
	Mill Creek 2 - PAC Injection	\$4,290	Dec-10			\$429	\$1,502	\$2,360		
_	Mill Creek 2 - SAM Mitigation	\$7,920	Jul-11				\$396	\$792	\$2,376	\$3,960
92	Mill Creek 2 - Escalation	\$45,866				\$903	\$6,566	\$19,070	\$8,271	\$10,332
93 94	Total Mill Creek 2	\$310,196				\$12,717	\$61,534	\$135,188	\$47,508	\$50,190
	Mill Creek 3 - FGD (U4 update and tie in)	\$63,750	Apr-13						\$47,813	\$15,938
	Mill Creek 3 - FGD (Unit 3 Removal)	\$25,500	Apr-13						\$6,375	\$19,125
	Mill Creek 3 - Baghouse	\$104,125	Jul-11				\$2,083	\$31,238	\$39,568	\$31,238
	Mill Creek 3 - PAC Injection	\$5,525	Jul-11				\$111	\$1,658	\$2,100	\$1,658
	Mill Creek 3 - Escalation	\$43,488	Jui-11			\$0	\$262	\$5,402	\$20,206	\$17,617
101	Total Mill Creek 3	\$242,388				\$0	\$2,455	\$38,297	\$116,061	\$85,575
102	rotar win creek s	7242 ,300					¥2,433	<i>\$30,237</i>	<i><i><i>ϕ</i>110,001</i></i>	<i>403,373</i>
104	Mill Creek 4 - FGD	\$236,250	Dec-10			\$18,900	\$80,325	\$89,775	\$47,250	
105	Mill Creek 4 - SCR Upgrade	\$5,250	Dec-10			\$4,200	\$1,050			
	Mill Creek 4 - Baghouse	\$131,250	Dec-10			\$5,250	\$45,938	\$52,500	\$27,563	
107	Mill Creek 4 - PAC Injection	\$6,825	Dec-10			\$273	\$2,389	\$2,730	\$1,433	
108	Mill Creek 4 - Ammonia	\$10,500	Dec-10			\$5,250	\$5,250			
109	Mill Creek 4 - Escalation	\$58,596				\$2,588	\$16,121	\$23,815	\$16,073	\$0
110	Total Mill Creek 4	\$448,671				\$36,461	\$151,0 72	\$168,820	\$92,319	\$0
III		A4 884 553					4	4000.054		A400.005
112	Total Mill Creek	\$1,284,663				\$49,177	\$224,592	\$392,854	\$376,505	\$183,095
113										
114	Trimble	4499,999							<u> </u>	454.888
	Trimble 1 - Baghouse	\$128,000	Apr-12					\$12,800	\$44,800	\$64,000
	Trimble 1 - PAC Injection	\$6,451	Apr-13			60	<u> </u>	62.402	\$3,226	\$3,226
117	Trimble 1 - Escalation	\$31,635				\$0	\$0	\$2,102	\$10,124	\$17,427
118	Total Trimble 1	\$166,086				\$0	\$0	\$14 ,902	\$58,149	\$84,653
120	Total Trimble	\$166,086				\$0	\$0	\$14,902	\$58,149	\$84,653
121							-			
122	Total Environmental Compliance Air - Alternate Plan	\$2,722,961				\$76,733	\$377,241	\$670,080	\$803,294	\$647,111
123						. ,		· •		
124										
	Scope	\$2,274,459								
126	Escalation	\$448,502								
127		\$2,722,961								
		, ,,		1	1					

	L	М	N	0	Р
73					
74				\$41,250	\$0
75	\$35,897	\$1,940		\$97,020	\$0
76				\$80,850	\$0
77				\$0	\$0
78				\$4,290	\$0
81	\$3,960	\$396		\$7,920	\$0
83	\$12,340	\$846		\$52,077	\$0 \$0
84	\$52,197	\$3,182	\$0	\$283,407	\$0 \$0
85	<i>452,157</i>	<i>\$3,102</i>	ΨŪ	Ş203,407	ψŪ
86				\$41,250	\$0
87	\$1,940			\$97,020	\$0
88				\$80,850	\$0
89				\$33,000	\$0
90				\$4,290	\$0
91	\$396			\$7,920	\$0
92	\$723	\$0		\$45,866	\$0
93	\$3,060	\$0 \$0	\$0	\$310,196	\$0 \$0
93 94	\$3,000	30		\$510,190	ŞU
97				\$63,750	\$0
98				\$25,500	\$0
99				\$104,125	\$0
100				\$5,525	\$0
101	\$0			\$43,488	\$0
102	\$0	\$ 0	\$0	\$242,388	<u></u> \$0
103		20		<i><i>YE</i>12,300</i>	
104				\$236,250	\$0
105				\$5,250	\$0
106				\$131,250	\$0
107				\$6,825	\$0
108				\$10,500	\$0
109				\$58,596	\$0
110	\$0	\$0	\$0	\$448,671	\$0
111	ç u	<i>40</i>		<i>\(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
112	\$55,257	\$3,182	\$0	\$1,284,663	\$0
113					
114					
115	\$6,400			\$128,000	\$0
116				\$6,451	\$0
117	\$1,981			\$31,635	\$0
118	\$8,381	\$0	\$0	\$166,086	\$0
115				-	
120	\$8,381	\$0	\$0	\$166,086	\$0
121					
122	\$145,319	\$3,182	\$0	\$2,722,961	\$0
123					
124					
124 125					

	А	С	D	E	F	G	Н		J	К
128										
129										
130										
131										
132										
133										
134						3.5%	3.5%	3.5%	3.5%	3.5%
135						1	2	3	4	5

	L	М	N	0	Р
128					
129					
130					
131					
132					
133					
134	3.5%	3.5%	3.5%		
135	6	7	8		

	А	В	D	E F	G	Н	I	J	К	L	М	N
1		Environmental Air - CATR by January 2015, NAAQS	by January 2016, HAPs	by January 2017								
2		\$ in thousands										
3			Capital Cost	2011	2012	2013	2014	2015	2016	2017	2018	Total
4		Alternate Plan										
5		Brown 1 - SCR	\$59,000	\$2,950	\$17,700	\$23,600	\$14,750					\$59,000
6		Brown 1 - Baghouse	\$34,000	\$1,700	\$11,900	\$13,600	\$6,800					\$34,000
7		Brown 1 - SAM Mitigation	\$4,000	\$200	\$1,200	\$1,600	\$1,000					\$4,000
10		Brown 2 - SCR	\$92,000	\$9,200	\$34,500	\$43,700	\$4,600					\$92,000
11		Brown 2 - SAM Mitigation	\$4,000	\$200	\$1,600	\$2,200						\$4,000
12		Ghent 2 - SCR	\$227,000	\$11,350	\$68,100	\$90,800	\$56,750					\$227,000
16		Mill Creek 2 - Baghouse	\$80,850	\$8,085	\$28,298	\$40,425	\$4,043					\$80,850
19		Mill Creek 2 - Electrostatic Precipitator	\$33,000	\$3,300	\$11,550	\$16,500	\$1,650					\$33,000
20		Mill Creek 2 - PAC Injection	\$4,290	\$429	\$1,502	\$2,360						\$4,290
23		Mill Creek 4 - FGD	\$236,250	\$18,900	\$80,325	\$89,775	\$47,250					\$236,250
24		Mill Creek 4 - SCR Upgrade	\$5,250	\$4,200	\$1,050							\$5,250
28		Mill Creek 4 - Baghouse	\$131,250	\$5,250	\$45,938	\$52,500	\$27,563					\$131,250
29		Mill Creek 4 - PAC Injection	\$6,825	\$273	\$2,389	\$2,730	\$1,433					\$6,825
30		Mill Creek 4 - Ammonia	\$10,500	\$5,250	\$5,250							\$10,500
35		Brown 2 - Baghouse	\$34,000		\$1,360	\$10,200	\$10,880	\$10,540	\$1,020			\$34,000
36	2	Mill Creek 1 - Baghouse	\$80,850		\$8,085	\$28,298	\$40,425	\$4,043				\$80,850
37	2	Mill Creek 1 - PAC Injection	\$4,290		\$429	\$1,502	\$2,360					\$4,290
41	2	Mill Creek 2 - FGD Upgrade	\$41,250		\$10,313	\$28,875	\$2,063					\$41,250
42	2	Mill Creek 2 - SCR	\$97,020		\$2,911	\$27,166	\$29,106	\$35,897	\$1,940			\$97,020
46	2	Mill Creek 2 - SAM Mitigation	\$7,920		\$396	\$792	\$2,376	\$3,960	\$396			\$7,920
47	2	Mill Creek 3 - Baghouse	\$104,125		\$2,083	\$31,238	\$39,568	\$31,238				\$104,125
48	2	Mill Creek 3 - PAC Injection	\$5,525		\$111	\$1,658	\$2,100	\$1,658				\$5,525
49	3	Brown 1 - PAC Injection	\$1,599			\$800	\$800					\$1,599
50		Brown 3 - Baghouse	\$61,000			\$1,830	\$21,350	\$28,670	\$9,150			\$61,000
53	3	Ghent 1 - Baghouse	\$131,000			\$3,930	\$45,850	\$61,570	\$19,650			\$131,000
55	3	Ghent 2 - Baghouse	\$120,000			\$4,800	\$42,000	\$56,400	\$16,800			\$120,000
56	3	Ghent 3 - Baghouse	\$138,000			\$16,560	\$48,300	\$66,240	\$6,900			\$138,000
57	3	Ghent 4 - Baghouse	\$117,000			\$11,700	\$40,950	\$58,500	\$5,850			\$117,000
58	3	Mill Creek 1 - FGD Upgrade	\$41,250			\$10,313	\$28,875	\$2,063				\$41,250
59	3	Mill Creek 1 - SCR	\$97,020			\$2,911	\$27,166	\$29,106	\$35,897	\$1,940		\$97,020
60	3	Mill Creek 1 - SAM Mitigation	\$7,920			\$396	\$792	\$2,376	\$3,960	\$396		\$7,920
63	3	Trimble 1 - Baghouse	\$128,000			\$12,800	\$44,800	\$64,000	\$6,400			\$128,000
64	4	Brown 2 - PAC Injection	\$2,476				\$1,238	\$1,238				\$2,476
65		Brown 3 - PAC Injection	\$5,426				\$1,000	\$3,426	\$1,000			\$5,426
66		Ghent 1 - PAC Injection	\$6,380				\$1,000	\$4,380	\$1,000			\$6,380
67		Ghent 2 - PAC Injection	\$6,109				\$1,000	\$4,109	\$1,000			\$6,109
68	4	Ghent 3 - PAC Injection	\$6,173				\$3,087	\$3,087				\$6,173
69	4	Ghent 4 - PAC Injection	\$6,210				\$3,105	\$3,105				\$6,210
70		Mill Creek 3 - FGD (U4 update and tie in)	\$63,750				\$47,813	\$15,938				\$63,750
71		Mill Creek 3 - FGD (Unit 3 Removal)	\$25,500				\$6,375	\$19,125				\$25,500
72		Trimble 1 - PAC Injection	\$6,451				\$3,226	\$3,226				\$6,451
73		,	+-,.31				. ,	, ,==5				, _, +
74												
75												

	0
1	
2	
3	
4	
5	\$0
6	\$0
7	\$0
10	\$0
11	\$0
12	\$0
16	\$0
19	\$0
20	\$0
23	\$0
24	\$0
28	\$0
29	\$0
30	\$0
35	\$0
36	\$0
37	\$0
4 1	\$0
42	\$0
46	\$0
47	\$0
48	\$0
49	\$0
50	\$0
53	\$0
55	\$0
56	\$0
57	\$0
58	\$0
59	\$0
60	\$0
63	\$0
64	\$0
65	\$0
66	\$0
67	\$0
68	\$0
69	\$0
70	\$0
71	\$0
72	\$0
73	
74	
75	

	А	В	D	E	F	G	н	I	J	к	L	М	N
76	Ì												
77													
78													
79					3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	
80					1	2	3	4	5	6	7	8	

From:	Conroy, Robert
То:	Straight, Scott
CC:	Saunders, Eileen; Schroeder, Andrea
Sent:	9/30/2010 2:25:07 PM
Subject:	ECR compliance plan filings.
Attachments:	Environmental Summay alternate scenario Rev4 - Pras (2).xlsx

Scott,

Here is the table that I gave you before you left. As we discussed, the column labeled "ECR Filing" was a place holder based on when spending would occur and in no way is it accurate. What I need is an understanding of what documentation we have to support a CCN and ECR filing for each of the projects. In addition, since most of the projects will require a CCN, I need to know when "construction" as defined by the CCN will begin so that I can plan accordingly on when to file the application with the KPSC.

You had mentioned "Black and Veatch" study supporting the projects. Would it be possible for me to get access to review that document so I can understand what we have? Thanks for your help and let me know what time you are available to discuss tomorrow.

Robert M. Conroy

Director, Rates E.ON U.S. Services Inc. (502) 627-3324 (phone) (502) 627-3213 (fax) (502) 741-4322 (mobile) robert.conroy@eon-us.com

	А	С	D	E	F	G	Н	I	J	К
1	Environmental Air - CATR by January 2015, NAAQS by	January 2016, HAP	s by January 2017							
2	\$ in thousands									
3		Capital Cost	ECR Filing	pportable Docume ita	art of Construction	2011	2012	2013	2014	2015
4	Alternate Plan									
5	Brown									
6	Brown 1 - SCR	\$59,000	Dec-10			\$2,950	\$17,700	\$23,600	\$14,750	
7	Brown 1 - Baghouse	\$34,000	Dec-10			\$1,700	\$11,900	\$13,600	\$6,800	
8	Brown 1 - PAC Injection	\$1,599	Apr-12					\$800	\$800	
10	Brown 1 - SAM Mitigation	\$4,000	Dec-10			\$200	\$1,200	\$1,600	\$1,000	
12	Brown 1 - Escalation	\$15,476				\$371	\$3,679	\$6,504	\$4,922	
13	Total Brown 1	\$114,075				\$5,221	\$34,479	\$46,103	\$28,272	\$0
14	D 0 00D	<u> </u>	5 40			<u> </u>	604500	<u> </u>	<u> </u>	
	Brown 2 - SCR	\$92,000	Dec-10			\$9,200.0	\$34,500	\$43,700	\$4,600	610 510
	Brown 2 - Baghouse	\$34,000	Jul-11				\$1,360	\$10,200	\$10,880	\$10,540
	Brown 2 - PAC Injection	\$2,476	Apr-13	+		¢200	61 600	ća 200	\$1,238	\$1,238
	Brown 2 - SAM Mitigation	\$4,000	Dec-10			\$200	\$1,600	\$2,200	Ć2 524	¢2.052
	Brown 2 - Escalation	\$21,300				\$718	\$4,475	\$9,214	\$3,524	\$3,053
23 24	Total Brown 2	\$153,776			-	\$10,118	\$41,935	\$65,314	\$20,242	\$14,831
	Brown 3 - Baghouse	\$61,000	Apr-12					\$1,830	\$21,350	\$28,670
	Brown 3 - PAC Injection	\$5,426	Apr-13					. ,	\$1,000	\$3,426
31	Brown 3 - Escalation	\$16,475				\$0	\$0	\$301	\$4,711	\$8,320
32	Total Brown 3	\$82,901				\$0	\$0	\$2,131	\$27,061	\$40,416
33										-
34 35	Total Brown	\$350,751				\$15,339	\$76,414	\$113,547	\$75,575	\$55,248
36	Ghent									
$ \rightarrow $	Ghent 1 - Baghouse	\$131,000	Apr-12					\$3,930	\$45,850	\$61,570
	Ghent 1 - PAC Injection	\$6,380	Apr-12 Apr-13					\$3,550	\$1,000	\$4,380
-	Ghent 1 - Escalation	\$34,012	Api-15			\$0	\$0	\$645	\$9,876	\$17,097
43	Total Ghent 1	\$171,392				\$0 \$0	<u>\$0</u>	\$4,575	\$56,726	\$83,047
44		\$171,35 2				ÇU.	ΨŪ	φ τ ,575	<i>\$30,720</i>	,0 0,047
45	Ghent 2 - SCR	\$227,000	Dec-10			\$11,350	\$68,100	\$90,800	\$56,750	
46	Ghent 2 - Baghouse	\$120,000	Apr-12					\$4,800	\$42,000	\$56,400
47	Ghent 2 - PAC Injection	\$6,109	Apr-13						\$1,000	\$4,109
52	Ghent 2 - Escalation	\$66,928				\$867	\$8,135	\$15,701	\$21,028	\$15,686
53	Total Ghent 2	\$420,037				\$12,217	\$76,235	\$111,301	\$120,778	\$76,195
54		6420.000	4					616 560	¢ 40, 200	A CC 240
	Ghent 3 - Baghouse	\$138,000	Apr-12	+				\$16,560	\$48,300	\$66,240
	Ghent 3 - PAC Injection	\$6,173	Apr-13				<u> </u>	ća 700	\$3,087	\$3,087
	Ghent 3 - Escalation	\$33,660				\$0	\$0	\$2,720	\$10,832	\$17,972
61 62	Total Ghent 3	\$177,833				\$0	\$0	\$19,280	\$62,219	\$87,298
	Ghent 4 - Baghouse	\$117,000	Apr-12					\$11,700	\$40,950	\$58,500
	Ghent 4 - PAC Injection	\$6,210	Apr-13	1 1					\$3,105	\$3,105
	Ghent 4 - Escalation	\$28,990	· · ·			\$0	\$0	\$1,922	\$9,287	\$15,970
69	Total Ghent 4	\$152,200				\$0	\$0	\$13,622	\$53,342	\$77,575
71	Total Ghent	\$921,461				\$12,217	\$76,235	\$148,777	\$293,065	\$324,115
71	iota dient	104 ₀ 1,126¢				¥16,611	Ψ70,233	4140,777	,00J	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12										

	L	М	N	0	Р
1					
2					
3	2016	2017	2018	Total	
4					
5					
6				\$59,000	\$(
7				\$39,000	\$(
-					· · · ·
8				\$1,599	\$0
10				\$4,000	\$0
12				\$15,476	\$0
13	\$0	\$0	\$0	\$114,075	\$0
14				¢02.000	<i></i>
15	61.020			\$92,000	\$0
16	\$1,020			\$34,000	\$0
17				\$2,476	\$0
20				\$4,000	\$0
22	\$316			\$21,300	\$0
23	\$1,336	\$0	\$0	\$153,776	\$0
24	60.450			¢64,000	
27	\$9,150			\$61,000	\$0
28	\$1,000			\$5,426	\$(
31	\$3,142			\$16,475	\$0
32 33	\$13,292	\$0	\$0	\$82,901	\$0
34	\$14,628	\$0	\$0	\$350,751	\$0
35	314,020	30	οç	3330,731	Şt
36					
37	\$19,650			\$131,000	\$(
38	\$1,000			\$6,380	\$(
42	\$6,393			\$34,012	\$
		\$0	\$0		
43 44	\$27,043	ŞU	ŞU	\$171,392	\$0
45				\$227,000	\$0
46	\$16,800			\$120,000	\$
47	\$1,000			\$6,109	\$(
52	\$5,511			\$66,928	\$(
52	\$3,311 \$23,311	\$0	\$0	\$00,928 \$420,037	<u>ېر</u> \$(
53	323,311	şυ	ŞU	3420,03 ∕	şı
55	\$6,900			\$138,000	\$(
56	+ - ,			\$6,173	\$(
60	\$2,136			\$33,660	\$(
61	\$9,036	\$0	\$0	\$33,000 \$177,833	\$(
62	ەدەردې	γç	γu	411,000	Şt
63	\$5,850			\$117,000	\$(
64	· - ·			\$6,210	\$(
68	\$1,811	\$0	\$0	\$28,990	\$0
69	\$7,661	\$0 \$0	\$0 \$0	\$152,200	\$(
70	-				-
71	\$67,052	\$0	\$0	\$921,461	\$0

	А	С	D	E	F	G	н	I	J	К
73	Mill Creek									
74	Mill Creek 1 - FGD Upgrade	\$41,250	Apr-12					\$10,313	\$28,875	\$2,063
75	Mill Creek 1 - SCR	\$97,020	Apr-12					\$2,911	\$27,166	\$29,106
76	Mill Creek 1 - Baghouse	\$80,850	Jul-11				\$8,085	\$28,298	\$40,425	\$4,043
77	Mill Creek 1 - Electrostatic Precipitator	\$0					\$0	\$0	\$0	\$0
78	Mill Creek 1 - PAC Injection	\$4,290	Jul-11				\$429	\$1,502	\$2,360	
81	Mill Creek 1 - SAM Mitigation	\$7,920	Apr-12					\$396	\$792	\$2,376
83	Mill Creek 1 - Escalation	\$52,077				\$0	\$1,017	\$7,131	\$21,000	\$9,744
84	Total Mill Creek 1	\$283,407				\$0	\$9,531	\$50,549	\$120,617	\$47,331
85	Mill Creek 2 - FGD Upgrade	\$41,250	Jul-11				\$10,313	\$28,875	\$2,063	
	Mill Creek 2 - FGD Opgrade Mill Creek 2 - SCR	\$97,020	Jul-11 Jul-11			-			. ,	\$35,897
						<u> </u>	\$2,911	\$27,166	\$29,106	\$35,897
	Mill Creek 2 - Baghouse	\$80,850	Dec-10			\$8,085	\$28,298	\$40,425	\$4,043	
	Mill Creek 2 - Electrostatic Precipitator	\$33,000	Dec-10			\$3,300	\$11,550	\$16,500	\$1,650	
	Mill Creek 2 - PAC Injection	\$4,290	Dec-10 Jul-11			\$429	\$1,502 \$396	\$2,360	¢2.276	¢2.000
	Mill Creek 2 - SAM Mitigation	\$7,920	Jul-11			¢002		\$792	\$2,376 \$8,271	\$3,960
92	Mill Creek 2 - Escalation	\$45,866				\$903	\$6,566	\$19,070	. ,	\$10,332
93 94	Total Mill Creek 2	\$310,196				\$12,717	\$61,534	\$135,188	\$47,508	\$50,190
97	Mill Creek 3 - FGD (U4 update and tie in)	\$63,750	Apr-13						\$47,813	\$15,938
98	Mill Creek 3 - FGD (Unit 3 Removal)	\$25,500	Apr-13						\$6,375	\$19,125
	Mill Creek 3 - Baghouse	\$104,125	Jul-11				\$2,083	\$31,238	\$39,568	\$31,238
100	Mill Creek 3 - PAC Injection	\$5,525	Jul-11				\$111	\$1,658	\$2,100	\$1,658
101	Mill Creek 3 - Escalation	\$43,488				\$0	\$262	\$5,402	\$20,206	\$17,617
102	Total Mill Creek 3	\$242,388				\$0	\$2,455	\$38,297	\$116,061	\$85,575
103		6005.050	D 10			<u> </u>	<u> </u>	600 775	647.050	
	Mill Creek 4 - FGD	\$236,250	Dec-10			\$18,900	\$80,325	\$89,775	\$47,250	
	Mill Creek 4 - SCR Upgrade	\$5,250	Dec-10			\$4,200	\$1,050	450 500	407 5 60	
	Mill Creek 4 - Baghouse	\$131,250	Dec-10			\$5,250	\$45,938	\$52,500	\$27,563	
	Mill Creek 4 - PAC Injection	\$6,825	Dec-10			\$273	\$2,389	\$2,730	\$1,433	
	Mill Creek 4 - Ammonia	\$10,500	Dec-10			\$5,250	\$5,250	600.04F	646.070	<u> </u>
	Mill Creek 4 - Escalation	\$58,596				\$2,588	\$16,121	\$23,815	\$16,073	\$0
110 111	Total Mill Creek 4	\$448,671				\$36,461	\$151,072	\$168,820	\$92,319	\$0
112	Total Mill Creek	\$1,284,663				\$49,177	\$224,592	\$392,854	\$376,505	\$183,095
113						. ,			. ,	
114	Trimble									
115	Trimble 1 - Baghouse	\$128,000	Apr-12		1	1		\$12,800	\$44,800	\$64,000
	Trimble 1 - PAC Injection	\$6,451	Apr-13						\$3,226	\$3,226
117	Trimble 1 - Escalation	\$31,635				\$0	\$0	\$2,102	\$10,124	\$17,427
118	Total Trimble 1	\$166,086				\$0	\$0	\$14,902	\$58,149	\$84,653
	Total Trimble	¢166.096				<u>ćo</u>	\$0	¢14.002	ČEQ 140	
120	Total Trimble	\$166,086				\$0	\$U	\$14,902	\$58,149	\$84,653
121	Total Environmental Compliance Air - Alternate Plan	\$2,722,061				676 700	6277 744	\$670.000	\$803,294	¢647 111
	Total Environmental Compliance Air - Alternate Plan	\$2,722,961				\$76,733	\$377,241	\$670 <i>,</i> 080	ŞOUS,29 4	\$647,111
123 124										
	Faana	62 274 450								
	Scope Scope	\$2,274,459								
126 127	Escalation	\$448,502				-				
12/		\$2,722,961								

	L	М	N	0	Р
73					
74				\$41,250	\$0
75	\$35,897	\$1,940		\$97,020	\$0
76				\$80,850	\$0
77				\$0	\$0
78				\$4,290	\$0
81	\$3,960	\$396		\$7,920	\$0
83	\$12,340	\$846		\$52,077	\$0 \$0
84	\$52,197	\$3,182	\$0	\$283,407	\$0 \$0
85	<i>452,157</i>	<i>\$3,102</i>	ΨŪ	Ş203,407	ΨŪ
86				\$41,250	\$0
87	\$1,940			\$97,020	\$0
88				\$80,850	\$0
89				\$33,000	\$0
90				\$4,290	\$0
91	\$396			\$7,920	\$0
92	\$723	\$0		\$45,866	\$0
93	\$3,060	\$0 \$0	\$0	\$310,196	\$0 \$0
93 94	\$3,000	30		\$310,190	ŞU
97				\$63,750	\$0
98				\$25,500	\$0
99				\$104,125	\$0
100				\$5,525	\$0
101	\$0			\$43,488	\$0
102	\$0	\$ 0	\$ 0	\$242,388	\$0
103	<i>-</i>	<i>-</i>	-	<i>+=</i> .=,===	
104				\$236,250	\$0
105				\$5,250	\$0
106				\$131,250	\$0
107				\$6,825	\$0
108				\$10,500	\$0
109				\$58,596	\$0
110	\$0	\$0	\$0	\$448,671	\$0
111				. ,	
112	\$55,257	\$3,182	\$0	\$1,284,663	\$0
113					
114					
115	\$6,400			\$128,000	\$0
116				\$6,451	\$0
117	\$1,981			\$31,635	\$0
118	\$8,381	\$0	\$0	\$166,086	\$0
117				-	
120	\$8,381	\$0	\$0	\$166,086	\$0
121					
122	\$145,319	\$3,182	\$0	\$2,722,961	\$0
123					
124					
125					
125 126					

	Α	С	D	E	F	G	Н		J	К
128										
129										
130										
131 132										
132										
133										
134						3.5%	3.5%	3.5%	3.5%	3.5%
135						1	2	3	4	5

	L	М	N	0	Р
128					
129					
130					
131					
132					
133					
134	3.5%	3.5%	3.5%		
135	6	7	8		

	А	В	D	E F	G	Н	I	J	К	L	М	N
1		Environmental Air - CATR by January 2015, NAAQS b	y January 2016, HAPs	by January 2017								
2		\$ in thousands										
3			Capital Cost	2011	2012	2013	2014	2015	2016	2017	2018	Total
4		Alternate Plan										
5		Brown 1 - SCR	\$59,000	\$2,950	\$17,700	\$23,600	\$14,750					\$59,000
6		Brown 1 - Baghouse	\$34,000	\$1,700	\$11,900	\$13,600	\$6,800					\$34,000
7		Brown 1 - SAM Mitigation	\$4,000	\$200	\$1,200	\$1,600	\$1,000					\$4,000
10		Brown 2 - SCR	\$92,000	\$9,200	\$34,500	\$43,700	\$4,600					\$92,000
11		Brown 2 - SAM Mitigation	\$4,000	\$200	\$1,600	\$2,200						\$4,000
12		Ghent 2 - SCR	\$227,000	\$11,350	\$68,100	\$90,800	\$56,750					\$227,000
16		Mill Creek 2 - Baghouse	\$80,850	\$8,085	\$28,298	\$40,425	\$4,043					\$80,850
19		Mill Creek 2 - Electrostatic Precipitator	\$33,000	\$3,300	\$11,550	\$16,500	\$1,650					\$33,000
20		Mill Creek 2 - PAC Injection	\$4,290	\$429	\$1,502	\$2,360						\$4,290
23		Mill Creek 4 - FGD	\$236,250	\$18,900	\$80,325	\$89,775	\$47,250					\$236,250
24		Mill Creek 4 - SCR Upgrade	\$5,250	\$4,200	\$1,050							\$5,250
28		Mill Creek 4 - Baghouse	\$131,250	\$5,250	\$45,938	\$52,500	\$27,563					\$131,250
29		Mill Creek 4 - PAC Injection	\$6,825	\$273	\$2,389	\$2,730	\$1,433					\$6,825
30		Mill Creek 4 - Ammonia	\$10,500	\$5,250	\$5,250							\$10,500
35		Brown 2 - Baghouse	\$34,000		\$1,360	\$10,200	\$10,880	\$10,540	\$1,020			\$34,000
36		Mill Creek 1 - Baghouse	\$80,850		\$8,085	\$28,298	\$40,425	\$4,043				\$80,850
37		Mill Creek 1 - PAC Injection	\$4,290		\$429	\$1,502	\$2,360					\$4,290
41		Mill Creek 2 - FGD Upgrade	\$41,250		\$10,313	\$28,875	\$2,063					\$41,250
42		Mill Creek 2 - SCR	\$97,020		\$2,911	\$27,166	\$29,106	\$35,897	\$1,940			\$97,020
46		Mill Creek 2 - SAM Mitigation	\$7,920		\$396	\$792	\$2,376	\$3,960	\$396			\$7,920
47		Mill Creek 3 - Baghouse	\$104,125		\$2,083	\$31,238	\$39,568	\$31,238				\$104,125
48		Mill Creek 3 - PAC Injection	\$5,525		\$111	\$1,658	\$2,100	\$1,658				\$5,525
49		Brown 1 - PAC Injection	\$1,599			\$800	\$800					\$1,599
50		Brown 3 - Baghouse	\$61,000			\$1,830	\$21,350	\$28,670	\$9,150			\$61,000
53		Ghent 1 - Baghouse	\$131,000			\$3,930	\$45,850	\$61,570	\$19,650			\$131,000
55		Ghent 2 - Baghouse	\$120,000			\$4,800	\$42,000	\$56,400	\$16,800			\$120,000
56	3	Ghent 3 - Baghouse	\$138,000			\$16,560	\$48,300	\$66,240	\$6,900			\$138,000
57		Ghent 4 - Baghouse	\$117,000			\$11,700	\$40,950	\$58,500	\$5,850			\$117,000
58	3	Mill Creek 1 - FGD Upgrade	\$41,250			\$10,313	\$28,875	\$2,063				\$41,250
59		Mill Creek 1 - SCR	\$97,020			\$2,911	\$27,166	\$29,106	\$35,897	\$1,940		\$97,020
60		Mill Creek 1 - SAM Mitigation	\$7,920			\$396	\$792	\$2,376	\$3,960	\$396		\$7,920
63	3	Trimble 1 - Baghouse	\$128,000			\$12,800	\$44,800	\$64,000	\$6,400			\$128,000
64	4	Brown 2 - PAC Injection	\$2,476				\$1,238	\$1,238				\$2,476
65	4	Brown 3 - PAC Injection	\$5,426				\$1,000	\$3,426	\$1,000			\$5,426
66	4	Ghent 1 - PAC Injection	\$6,380				\$1,000	\$4,380	\$1,000			\$6,380
67	4	Ghent 2 - PAC Injection	\$6,109				\$1,000	\$4,109	\$1,000			\$6,109
68	4	Ghent 3 - PAC Injection	\$6,173				\$3,087	\$3,087				\$6,173
69	4	Ghent 4 - PAC Injection	\$6,210				\$3,105	\$3,105				\$6,210
70	4	Mill Creek 3 - FGD (U4 update and tie in)	\$63,750				\$47,813	\$15,938				\$63,750
71		Mill Creek 3 - FGD (Unit 3 Removal)	\$25,500				\$6,375	\$19,125				\$25,500
72	4	Trimble 1 - PAC Injection	\$6,451				\$3,226	\$3,226				\$6,451
73												
74												
75												

	0
1	
2	
3	
4	
5	\$0
6	\$0
7	\$0
10	\$0
11	\$0
12	\$0
16	\$0
19	\$0
20	\$0
23	\$0
24	\$0
28	\$0
29	\$0
30	\$0
35	\$0
36	\$0
37	\$0
4 1	\$0
42	\$0
46	\$0
47	\$0
48	\$0
49	\$0
50	\$0
53	\$0
55	\$0
56	\$0
57	\$0
58	\$0
59	\$0
60	\$0
63	\$0
64	\$0
65	\$0
66	\$0
67	\$0
68	\$0
69	\$0
70	\$0
71	\$0
72	\$0
73	
74	
75	

	А	В	D	E	F	G	н	I	J	к	L	М	N
76	Ì												
77													
78													
79					3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	3.5%	
80					1	2	3	4	5	6	7	8	

From:	Saunders, Eileen
То:	Billiter, Delbert
Sent:	9/30/2010 3:19:00 PM
Subject:	FW: 168908.41.0100 100929 Mill Creek, Ghent and Brown Coal Fuel Question
Attachments:	Environmental Compliance Proj quality data.xlsx; Mill Creek.xls

Hi Delbert,

I am now assigned to the Phase 2 portion of the Environmental Compliance work with Black and Veatch. Please take a look at the questions below. Essentially, they are asking which would be the best fuel design basis to use during the next phase of study/engineering.

Please let me know your thoughts as soon as possible. As usual, I appreciate your help on this issue.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Wednesday, September 29, 2010 5:25 PM
To: Saunders, Eileen
Cc: Jackson, Audrey; 168908 E.ON-AQC; Crabtree, Jonathan D.; Wehrly, M. R.; Lucas, Kyle J.; Mehta, Pratik D.; Mahabaleshwarkar, Anand
Subject: 168908.41.0100 100929 Mill Creek, Ghent and Brown Coal Fuel Question

Eileen,

During the Phase I work, E.ON initially provided coal analysis data (included in the spreadsheet below) as the typical or "Current Coal" for Mill Creek. Coal data for Ghent and Brown were not initially provided.

Later during the course of the Phase I work, we were asked to use a different fuel (a "Future Coal", included in the spreadsheet below) for the Phase I work for Mill Creek, as well as for Ghent and Brown.

Accordingly, the Phase I study was conducted using the "Future Coal" as a design basis for Mill Creek, Ghent and Brown.

The analyses for the Mill Creek "Current Coal" and "Future Coal" are as follows:

Ultimate Coal Analysis (% by mass as received):	Current Coal	Future Coal
Carbon	64	61.21
Hydrogen	4.5	4.28
Sulfur	3.5	3.36
Nitrogen	1.3	1.27
Oxygen	4.62	6.89
Chlorine	0.08	0
Ash	12	12
Moisture	10	11
Total	100.00	100.00
Higher Heating Value, Btu/lb (as received)	11,471.82	11,200
SO2 Inlet Loading, Ib/Mbtu	6.10	6.00

Additionally, during the Aug 5-6 Mill Creek AQC Workshop, a 6.2 lb/Mbtu SO2 coal was referenced, which is higher than the 6.10 and 6.00 lb/Mbtu SO2 for the "Current Coal" and "Future Coal", respectively.

Our question is, which fuel analysis should we use as the coal fuel design basis for Mill Creek, Ghent, and Brown in the Phase II work?

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

	Α	В	С	D	E	F	G	Н		J	К	L	М	N	0
1	E.ON U	J.S. Cor	porate Fu	els											
2	Environ	mental Co	ompliance P	roject - Co	bal Qua	lity Da	ta								
3	5/3/10														
4															
5							l. I		1			Ultim	ate		
6	Coal Qua	lity Averag	e for 2009	Moisture	Ash AR	Volatile AR	ixed Carbon A	BTU AR	Sulfur AR	Alkalinity Al	Carbon AR	lydrogen AR	litrogen AF	Oxygen ARI	uminum Oxie
7				%	%	%	%	BTU/lb	%	mg/L	%	%	%	%	%
8		Brown Aver	age	6.01	10.62	36.72	46.65	12,403		0.19	69.39	4.67	1.37	6.42	27.93
9									2.44		100.00				
10	(Green River A	verage	10.55	8.60	36.71	44.15	11,827	2.36 3.99	0.21	66.00 100.00	4.46	1.34	6.69	19.54
<u> </u>		Cane Run Av		13.59	10.36	34.92	41.13	10,933	2.72	0.21	60.83	4.18	1.34	6.99	23.42
12 13			eraye	15.59	10.50	J4.32	41.15	10,955	4.97	0.21	100.00	4.10	1.54	0.99	23.42
14		Ghent Aver	age	10.77	11.27	35.66	42.30	11,286	2.81	0.22	62.70	4.31	1.27	6.88	21.41
15							12100	,	4.98	•	100.00			0.00	
16		Mill Creek Av	erage	11.43	11.36	35.68	41.54	11,115	3.02	0.23	61.67	4.22	1.28	7.01	20.89
17									5.44		100.00				
18	Tr	mble County	Average	10.30	11.96	35.67	42.07	11,261	3.09	0.24	62.36	4.31	1.26	6.72	22.62
19									5.48		100.00				
20 21															
21		/Avorago C	uality for Futu	uro Coale											
22	TTICAL	Average G	tuanty for rutt												
	Ghent, Mill	Creek, Cane	e Run, Trimble C	11.00	12.00	36.00	42.00	11,200	3.36	0.22	61.21	4.28	1.27	6.89	21.69
24				0.50			47.00	10.000	6.00	0.45	100.01	4.05	4.05	A 44	
25	Bro	own Low Su	itur Coal	6.50	11.50	37.00	47.00	12,000	1.50	0.19	68.04	4.67	1.37	6.42	27.93
26									2.50		100.00				
27	G	reen River A	verage	10.50	9.00	37.00	44.00	11,600	2.60	0.21	65.41	4.46	1.34	6.69	19.45
28									4.48		100.00				
29	F	PRB for TC2	Blend	28.00	7.00	36.00	30.00	8,500	0.60	0.40	48.00	3.53	0.86	12.01	18.00
30											100.00				

	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	AC	AD	AE
1																
2																
3																
4																
5	1					Α	sh Analysis									
6 a	rium Oxic	alcium Oxic	lron Oxide a	agnesium Oxid	anganese Oxie	sphorus Pento	otassium Oxid	licon Dioxi	odium Oxic	trontium Oxid	ulfur Trioxia	anium Diox	Silica	Undetermined	Antimony, SE	Arsenic, As
7	%	%	%	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm
8	0.13	1.40	12.63	0.84	0.03	0.35	2.21	51.11	0.33	0.15	1.09	1.55	77.53	0.25	0.76	21
9	0.00	0.00	40.07	0.04	0.04	0.04	0.44	40.04	0.77	0.04	0.47	4.00	67.70		4.07	40
10 11	0.06	2.89	19.97	0.91	0.04	0.21	2.41	49.61	0.77	0.04	2.47	1.08	67.72		1.07	10
12	0.05	1.21	22.91	0.99	0.03	0.24	2.63	45.95	0.31	0.05	0.95	1.10	64.72	0.17	1.37	15
13																
14	0.07	2.70	21.39	0.89	0.04	0.24	2.24	46.56	0.52	0.05	2.58	1.07	65.14	0.25	1.00	13
15 16	0.08	3.41	21.84	0.92	0.04	0.27	2.37	45.26	0.48	0.04	3.36	1.00	63.44	0.04	1.12	12
17	0.00	3.41	21.04	0.92	0.04	0.27	2.57	43.20	0.40	0.04	3.30	1.00	03.44	0.04	1.12	12
18	0.08	2.57	22.23	0.92	0.04	0.29	2.39	45.09	0.45	0.06	2.24	1.01	63.70		0.94	13
19																
20 21																
22																
22	0.07	2.74	21.80	0.91	0.04	0.26	2.33	45.88	0.48	0.05	2.58	1.04	64.37	0.12	1.05	13
23 24	0.07	2.14	21.00	0.31	0.04	0.20	2.55	45.00	0.40	0.05	2.50	1.04	04.57	0.12	1.05	13
25	0.13	1.40	12.63	0.84	0.03	0.35	2.21	51.11	0.33	0.15	1.09	1.55	77.53	0.25	0.76	21
26																
27	0.06	2.89	19.90	0.91	0.04	0.21	2.41	49.65	0.77	0.04	2.47	1.08	67.72	0.13	1.07	10
28																
29	0.40	17.00	5.10	3.60	0.03	0.50	0.90	40.27	1.60	0.40	11.00	1.20	58.00		2.00	4
30																

	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS
1														
2														
3														
4														
5	1		I		Trac	e Elemer	nts		1					
6	Barium, Ba	Cadmium, Co	Chlorine, Cl	Chromium, Cr	Flourine, Fl	Lead, Pt	Magnesium, Mgl	Mercury, Hç	Nickel, Ni	Selenium, Se	Strontium, Sı	Vanadium, V	Zinc, Zn	I
7	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
8 9	115	0.08	863	20	85	8	547	0.12	15	4.73	135	31	14	
10	49	0.30	1,845	17	71	11	509	0.10	14	1.93	30	40	50	
11														
12 13	63	0.20	155	23	86	12	721	0.09	29	2.32	58	48	32	
14	72	0.60	964	21	93	12	663	0.13	19	3.16	56	40	44	
15														
16	77	0.68	622	23	102	10	703	0.13	20	2.65	47	37	51	
17 18	79	0.89	624	25	108	11	693	0.12	21	3.02	67	39	59	
19														
20														
21														
22														
23	74	0.65	1,600	23	98	11	684	0.12	20	2.94	56	40	48	
24														
25	115	0.08	863	20	85	8	547	0.12	15	4.73	135	31	14	
26	46	0.00	4.045	4-			5 00	0.40		1.00		10	50	
27 28	49	0.30	1,845	17	71	11	509	0.10	14	1.93	30	40	50	
29 30	270	1.40	125	10	63	4	1,525	0.08	7	2.00	250	28	11	
30							•							

	A	В	С	D	E	F	G	Н	I	J		К	L	М	N	0	Р	Q		
1	Limesto	one Qua	ality																	
2	Mill Cree	k, Trimb	le Count	y and Gh	ent															
3 4 5				1																
4																				
5				ş	6.1 S	pecific	ations.	. The	lime	stone	$d\epsilon$	elivere	d here	under	shall	conform	n to th	e folld		
6					100000	And a second														
6 7 8 9 10																				
9			specifications on a "dry" basis:																	
10		- •																		
11																				
12																				
13				4	Active	Ingred	lient D	www.	one			1	<u>%) Gu</u>	aranta	he					
14 15				Ĩ	TOULO	IIIBICC		oporu	$\overline{\text{ous}}$			7	<u>/0) Uu</u>	arante	<u>cu</u>					
16																				
16 17				S	urface	Moist	ure					7	0.0% M	lavimi	1177					
18 19					· ULL_LUA U V	- LVIOIDI	UL U						.0/0 IV	IaAIIII	4111					
19																				
20				C	aCO ₃							ç	0.0%	Minim	11m *					
22				~					_											
20 21 22 23 24 25 26 27																				
24				\mathbb{N}	4gCO ₃	p						6	5.0% M	faxim	m					
25				4.4	-8-2-3	,							(* W Z W J. * .	8.844 LA.L.L.L.	****					
26																				
21				S	iO ₂							3	5.5% M	laxim	m					
28 29					~ ~ ~							~	www.c.wc.uc.							
30 31																				
31				F	e_2O_3							1	.5% M	laximu	ım					
32												_								
33																				
35				A	d_2O_3							- 4	.30%]	Maxin	ıum					
33 34 35 36 37 38																				
37																				
38				lr	nerts							7	1.0% M	laximu	ım					
39 40																				
40 41				1,202	а а и ч							_		R . #						
42				ŀ	lourid	e						5	600 PP	M						
42 43 44																				
44				~	118.18. * *							,	· /* /\	<i>s</i> .						
45				C	chloide	:S						5	50PPN	Л						
45 46 47																				
48				75	17 6	Zoole To	1					4	A 3 4.							
48 49				В	iona M	/ork In	aex					L	2 Max	imum						
50																				

	R	S
1	8	
2		
3		
4		
5	owing	
6	pwing	
6 7		
8		
9		
10		
11		
12		
13		
14		
15		
16 17		
18		
19		
20		
21		
22		
23 24		
24		
25		
26		
27		
28		
29 30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43 44		
44		
45		
47		
48	1	
49	1	
50		

	A	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q
51				454	- 10 C	u 11	1 11 11	·. 7			3						
52				12.	Ine S	seller s	hall us	e its b	est ette	orts to	supply	/ limes	stone c	ontain	ing a i	mmm	un of 9
53				C	aCO_3												
54				k	acos.												
55																	
50																	
58																	
50																	

	R	S
51		
52	2.0%	
52 53		
54 55 56		
55]	
56		
57]	
58		

	A	В	С	D	E	F	G	Н		J	К	L	M	N	0	Р	Q	
1	Limesto	one Qua	lity															
	Brown																	
3																		
3 4 5																		
5																		
6				S.	6.1 S	pecific	ations.	The	limes	stone d	elivere	d here	under :	shall d	conform	n to th	e folld	
6 7 8 9 10				0	<u></u>	•												
9																		
10			spe	ecifica	tions c	m an ":	as rece	ived"	basis:									
11																		
12																		
13		Active Ingredient Proportions (%) Guaranteed																
14						<u>(</u> +					, she	ก่างหนึ่งหมืองการการการการการการการการการการการการการก						
14 15 16 17																		
17				S	urface	Moist	ure				4	.0%N	laximu	um				
18																		
19																		
20				C	aCO ₃						9	2.0%1	Minim	um				
21																		
22																		
24				\mathbf{N}	fgCO ₃						6	$0.0\%~{ m M}$	laximu	ım				
18 19 20 21 22 23 24 25 26 27					L													
26																		
27				S	iO ₂						3	.5% M	laximu	m				
28					Ľ													
30																		
31				F	e_2O_3						1	.0% M	laximu	m				
32																		
33					~		~ ~ `											
34				R	$_2O_3(A$	$1_2O_3 + F$	e_2O_3)					90% Tj	ypical					
28 29 30 31 32 33 34 35 36 37 38 39 40 41		L I					•					-						
37		Ļ		ينحر									r +					
38				S								05% M	aximu	lm				
39																		
40				т	0													
41				\mathbf{P}_{2}	205						, ²	40% M	aximu	m				
43		Ļ																
42 43 44 45 46 47		Ļ		1	11 11 2	$\sim \sim$	72 AS				-	001 3						
45		t		A	ikalı (Na_2O+	$K_2O)$				1	.0% M	laximu	\mathbf{m}				
46																		
47					10						-		r *					
48 49				A	$1_{2}O_{3}$						1	.5% M	axımu	m				
49 50				1	I	1	I	I	1		1	I	1	1	1	1	1	
50						1	1		1		1	1	1					

	R	S
1		
2		
2		
3		
4		
5		
6	wing	
7		
8		
9 10 11 12 13 14		
10		
11		
12		
13		
14		
15		
15 16 17		
17		
18		
19		
20		
21		
22		
20 21 22 23 24		
24		
25		
26		
27		
28 29		
29		
30		
31		
32 33		
33		
34		
35 36		
36		
37		
38		
39		
40		
41		
42 43		
43		
44		
45		
46		
47		
48		
49 50		
		1

	Α	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q
51		-		Tes	~~~						2	007 N.C.					
52 53		-		111.	erts						э.	0% Ma	aximu	111			
54		1															
55 56		_		F1	ouride	;					1,	250 PF	PM				
57																	
58		1		C	ıloride						25	50 PPN	đ				
59 60		_		C	nonuc	28					43	DU PPIN	1				
61		1															
62 63				Bo	ond W	ork In	dex				10).5 Ma	ximun	n			
64		+		1	I	I	I		I				1	1	I	I	I

	R	S
51 52		
52		
53		
54		
55 56 57		
56		
57		
58 59		
59		
60		
61		
62		
63 64		
64		

	A B C	D	E	F	G	Н	
1	Black & Veatch AQCS	Informat	ion Ne	eds			
2							
3	Power Plant:		Owner:				
4	Unit		Project:				
5							
6	References:						
7	1)						
8	2)						
9	3)						
10	4)						
11	Yellow highlight denotes Critical Focus Needs.						
12	Fuel Data						
13	Ultimate Coal Analysis (% by mass as received)			<u>Typical</u>	<u>Minimum</u>	<u>Maximum</u>	
14	Carbon			64			%
15	Hydrogen			4.5			%
16	Sulfur			3.5			%
17	Nitrogen			1.3			%
18	Oxygen			4.62			%
19	Chlorine			0.08			%
20	Ash			12			%
21	Moisture		-	10			%
22	Total			100.00			
23	Higher Heating Value, Btu/lb (as received)			11471.82			Btu/lb
24	Ash Mineral Analysis (% by mass):						
25	Silica(SiO ₂)						%
26	Alumina (Al ₂ O ₃)						%
27	Titania (TiO ₂)						%
28	Phosphorous Pentoxide (P ₂ O ₅)						%
29	Calcium Oxide (CaO)						%
30	Magnesium Oxide (MgO)						%
31	Sodium Oxide (Na ₂ O)						%
32	Iron Oxide (Fe ₂ O ₃)						%
33	Sulfur Trioxide (SO ₃)						%
34	Potassium Oxide (K ₂ O)						%
35	Coal Trace Element Analysis (mercury and espe	ecially arsenic	c if fly ash	is returned to boile	er)		

	J	К
1	,	
2		
3		
4		
5		
6		
7		
8		
9		
10		
11]	
12		
13		Notes
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		

	Α	В	С	D	E	F	G	Н	l
36		Vanadium					%		
37		Arsenic					%		
38		Mercury					% or ppm		
39		Other	LOI				%		
40		Natural gas	s firing capability (if any at all)						
41		Natural gas	line (into the station) capacity (if a	applicable)					
42		Current Los	st on Ignition (LOI)						
43		Start-up Fu	el						
44		Ash Fusion	Temperature						
45		Initial Defo	ormation				°F		
46		Softening					°F		
47		Hemispheri	ical				°F		
48		Hardgrove	Grindability Index						

	J	К
36	2	
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		

	A	В	С	D	E	F	G	Н	I	
49		Plant Size	and Operation Data: (provide for	r each unit)		<u>Unit 1</u>	Unit 1Unit 2Unit 3&V can determine some values from previous VISTA			
50		Maximum (I	Design) Fuel Burn Rate			B&V can determir	ne some values fro	m previous VISTA		
51		Boiler Type	(e.g. wall-fired, tangential fired, cy	(clone)		Tangential fired	Tangential fired	opposed wall	opposed wall	
52		Boiler Manu	ıfacturer			CE	CE	B&W	B&W	
53		Net MW Ra	ting (specify plant or turbine MW)	Winter ratings		303MW	303MW	397MW	492MW	
54		Gross MW	Rating	Winter ratings		330MW	330MW	423MW	525MW	
55		Net Unit He	at Rate			10639	10929	10602	10410	
56		Net Turbine	Heat Rate							
57		Boiler SO2	to SO3 Conversion Rate (if known)						
58		Fly Ash/Bot	tom Ash Split			80/20	80/20	80/20	80/20	
59		Flue Gas R	ecirculation (FGR)							
60			Installed? (Y/N)			N	N	N	N	
61			In operation? (Y/N)							
62		Flue Gas R	ecirculation (if installed)							
63		Type of Air	Heater			Air Preheater Co.	Air Preheater Co.	Ljungstrom	Ljungstrom	
64		Air Heater (Configuration (horizontal or vertica	I flow or shaft)		Vertical Flow	Vertical Flow	Vertical Flow	Vertical Flow	
65		Design Pres	ssure/Vacuum Rating for Steam G	enerator	+/-					
66		Design Pres	ssure/Vacuum Rating for Particula	te Control	+/-					
67										
68		Electrical /	Control							
69		DCS Manuf	acturer (e.g. Westinghouse, Foxbo	oro, Honeywell,	etc.)	Honeywell	Honeywell	Honeywel	Honeywell	
70		Type of DC	S (e.g. WDPF, Ovation, Net 90, In	fi 90. Symphony	. TDC 30	TC3000			Experion	
71			vork Installed? (Y/N)		<u>,</u>	Y	Y	N	N	
72			etwork Manufacturer (e.g. Pegasus	s. Westinahouse	e, etc.)	Neuco	Neuco			
73			city available in DCS?		, ,	minimal	minimal	minimal	minimal	
74		Historian M				Honeywell	Honeywell	Honeywell	Honeywell	
75		Additional C	Controls from DCS or local PLC w/	tie-in		,	,	,	y	
76		Transforme	r Rating for Intermediate Voltage S	Switchgear						
			<u> </u>							
77			Spare Electrical Cubicles in Existi	ng MCC's and L	.CUS's (S					
78		Auxiliary Ele	ectric Limited (Y/N)			Ν	N	N	N	
79										
80		Operating	<u>Conditions</u>							
81		Economize	r Outlet Temperature			760	760	690	640	

	J	К
49		Notes
50	MBtu/hr	
51		
52		
53	MW	
54	MW	
55	Btu/kWh	
	Btu/kWh	
57	%	
58	%	
59		
60		
61		
62	%	
63		
64		
	in wg.	
	in wg.	
67		
68		
69		
70		
70		
71		
72		
73 74		
75		
76		
77		
78		
79		
80		
	°F	

	А	В	С	D	E	F	G	Н	I
82		Economizer Outlet Pressure				-5	-5	-5	-5
83	Excess Air or Oxygen at Economizer Outlet (full load/min load)			d)	5	5	5	5	
84		Economizer	r Outlet Gas Flow			1524804	1524804	1958726	2239453
85						2976508	2976508	4056287	4848440
86		Air Heater C	Dutlet Temperature			375	375	325	315
87		Air Heater C	Dutlet Pressure			-10	-10	-18	-18
88		Particulate	Control Equipment Outlet Tempera	ature		375	375	325	315
89	Particulate Control Equipment Outlet Pressure			9		-14	-14	-23	-21
90	FGD Outlet Temperature (if applicable)				133	133	130	130	
91		FGD Outlet	Pressure (if applicable)			1	1	1	1

	J	К
	in wg.	
83	%	
84	acfm	
85	lb/hr	
86	°F	
87	in wg.	
88	°F	
89	in wg.	
90	°F	
91	in wg.	

	A B	С	D	E	F	G	Н	I
92	NOx Em	ssions			<u>Unit 1</u>	<u>Unit 2</u>	<u>Unit 3</u>	<u>Unit 4</u>
93	Emissior	s Limit					0.7	0.7
94	Type of NOx Control (if any) - LNB, OFA, etc.				LNB/OFA	LNB/OFA	LNB/SCR	LNB/SCR
95		IOx Reduction with existing controls					90%	90%
96	Туре о	Type of Ammonia Reagent Used (Anhydrous or % H ₂ O o					Anhydrous	Anhydrous
97	Reage	nt Cost					500	500
98	Current E	missions			0.32	0.32	0.05	0.05
99								
100								
101								
102	<u>Particula</u>	<u>ate Emissions</u>						
103	Emissior	s Limit			0.115	0.115	0.105	0.105
104	Type of E	Emission Control - Hot Side ESP, Co	ld Side ESP or	FF	Cold Side ESP	Cold Side ESP	Cold Side ESP	Cold Side ESP
105		Content of Flue Gas @ Air Heater O			4	4	4	4
106	Oxygen (Content of Flue Gas @ ESP/FF Outl	et		4	4	4	4
107	Current E	Emissions			0.36	0.48	0.05	0.04
108	Fly Ash S	Sold (Y/N) - See Economic Section			Y	Y	Y	Y
109								
110		ESP						
111		Specific Collection Area (SCA)						
112		Discharge Electrode Type						
113		Supplier						
114		Efficiency						
115		No. of Electrical Sections						
116		% of Fly Ash Sold						
117								
118		<u>Fabric Filter</u>						
119		Air to Cloth Ratio (net)						
120		Number of Compartments						
121		Number of Bags per Compartme	nts					
122		Efficiency						
123		% of Fly Ash Sold						
124								
125	<u>SO₂Emi</u>	ssions						
126	Emissior	s Limit			1.2	1.2	1.2	1.2

	J	К
92		Notes
93	lb/MBtu	
94		
95	%	
96		
97	\$/ton	
98	lb/hr	
99	ton/yr	
100	lb/MBtu	
101		
102		
103	lb/MBtu	
104		
105	%	
106	%	
107	lb/MBtu	
108		Very minimal at this point in time
109		
110		
111	ft ² /1000 acfm	
112		
113		
114	%	
115		
116	%	
117		
118		
119	ft/min	
120		
121		
122		
123	%	
124		
125		
126	lb/MBtu	

	А	В	С	D	E	F	G	Н	Ι
127	127 Type of Emission Control - wet or semi-dry FGD (if any)					Wet FGD	Wet FGD	Wet FDG	Wet FGD
128		Current Emi	ssions			0.47	0.47	0.58	0.47
129									
130									
131		Byproduct S	old (Y/N) - See Economic Section	1					
132									

	J	К
127		
	lb/hr	
129	ton/yr	
130	j Ib/MBtu	
131		
132		

	Α	В	С	D	E	F	G	Н	I	
133		ID Fan Info	rmation (at Full Load):			<u>Unit 1</u>	<u>Unit 2</u>	<u>Unit 3</u>	<u>Unit 4</u>	
134		ID Fan Inlet	Pressure			-16	-16.5	-22	-23	
135		ID Fan Disc	harge Pressure			-2	-1			
136		ID Fan Inlet	Temperature			340	340	330	330	
137		Oxygen Cor	ntent of Flue Gas @ ID Fan Inlet			4	4	4	4	
138		ID Fan Moto	or Voltage (Rated)			4160	4160	4160	4160	
139		ID Fan Moto	or Amps (Operating)			275	275	920	1115	
140		ID Fan Moto	or Amps (Rated)			320	320	1176		
141		ID Fan Moto	or Power (Rated)			2500	2500	9000	9500	
142		ID Fan Moto	or Service Factor (1.0 or 1.15)			1.15	1.15	1	1.15	
143										
144		Chimney In	nformation:							
145		Flue Liner N	Naterial			C276	C276	C276	C276	
146		Flue Diame	ter			15' 6''	15' 6''	19' 6''	19' 6''	
147		Chimney He	eight			623	623	630	630	
148		Number of I	Flues			1	1	1	1	
149										
150		Drawing ar	nd Other Information Needs:							
151		Baseline po	llutant emissions data for AQC an	alysis						
152		Technical e	valuations performed to support re	ecent consent d	ecree act	ivity				
153		Existing Pla	ant/AQC system general design a	nd performance	e issues					
154		Full detailed	d boiler front, side, and rear elevat	ion drawings			1	1		
155		Boiler Desig	gn Data (Boiler Data Sheet)							
156		Ductwork A	rrangement Drawing (emphasis fr	om economizer	outlet to	air heater inlet)				
157		Ductwork A	rrangement Drawing (emphasis fr	om air heater o	utlet to sta	ack)				
158		Plant Arrang	gement Drawings (showing colum	n row spacing)						
159		CEM Quarte	erly and Annual Data (required if b	ase emissions	are to be	verified)				
160		Recent Parl	ticulate Emission Test Report (If a	vailable)						
161		Current Mer	rcury Testing Results (If available)							
162		Current Site Arrangement Drawing								
163		Foundation	Drawings and/or Soils Report							
164		Undergroun	d Utilities Drawings							
165		Plant One L	ine Electrical Drawing							
166		Fan Curves	for Existing ID Fans (including cu	rrent system res	sistance c	curve)				
167		Acceptable	Fan Operating Margins							

	J	K
133		Notes
134	in wg.	
135	in wg.	
136	F	
137	%	
138	volts	
139	A	
140	A	
141	hp	
142		
143		
144		
145		
146		top of liner
147		
148		1&2 share a common stack
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162		
163		
164		
165		
166		
167		

	Α	В	С	D	Е	F	G	Н	l	
168	Plant Outage Schedule									
169	9 Specific burner and overfire air ports arrangement (single wall, opposed fired, total number of burners, number of burner levels, number of over									
170										

	J	К
168		
169		
170		

	Α	В	С	D	E	F	G	Н	I
171	Economic Evaluation Factors:					<u>Unit X</u>	<u>Unit X</u>	<u>Unit X</u>	<u>Unit X</u>
172	2 Remaining Plant Life/Economic Life								
173		Annual Cap	acity Factor (over life of study/pla	nt)					
174		Contingenc	y Margin (can be determined by B	&V)					
175		Owner Indir	ects Cost Margin						
176		Interest Dur	ing Construction						
177		Levelized Fi	ixed Charge Rate or Capital Reco	very Factor					
178		Present Wo	rth Discount Rate						
179		Capital Esc	alation Rate						
180		O&M Escala	ation Rate						
181		Energy Cos	t (energy to run in-house equipme	nt)					
182	Replacement Energy Cost (required to be								
183		purchase	ed during unit outage)						
184		Year-by-Yea	ar Fuel Prices (over life of study/pl	ant)					
185									
186		Base Fuel F	Price						
187									
188		Fuel Price E	Escalation Rate						
189		Water Cost							
190		Limestone (Cost						
191		Lime Cost							
192		Ammonia C	ost						
193		Fully Loade	d Labor Rate (per person)						
194		Fly Ash Sale	es						
195	Bottom Ash Sales								
196	FGD Byproduct Sales								
197	Waste Disposal Cost								
198		Fly Ash							
199		Bottom As	sh						
200		Scrubber	Waste						

	J	K
171		Notes
172	years	
173		
174	%	
175	%	
176	%	
177	%	
178	%	
179	%	
180	%	
181	\$/MWh	
182		
183	\$/MWh	
184	\$/MBtu	
185	\$/ton	
	\$/MBtu	
187	\$/ton	
188		
	\$/1,000 gal	
	\$/ton	
	\$/ton	
192	\$/ton	
	\$/year	
	\$/ton	
	\$/ton	
	\$/ton	
197		
	\$/ton	
	\$/ton	
200	\$/ton	

	А	В	С	D	E	F			
1	_								
2	Ρı	roject -	Document & Dra	wing List					
3									
4		Item	Document Type	Document Type Document/Drawing No. Description D					
5		1	Drawing						
6		2	Drawing						
7		3	Drawing						
8		4	Drawing						
9		5	Document						
10		6	Drawing						
11		7	Document						
12		8	Document						
13		9	Document						
14		10	Document						
15		11	Document						
16		12	Document						
17		13	Document						
18		14	Document						
19 20		15	Document						
20		16	Document						
22		17	Drawing						
22		18	Drawing						
23		19	Drawing						
24		20	Drawing						
25		21	Drawing						
20		22 23	Drawing						
28		23	Drawing						
20		24 25	Drawing						
30		20	Drawing						
30		26 27	Document Document						
32		27 28							
33		28 29	Drawing Drawing						
34	\vdash	29 30	Drawing			+			
35		30 31	Drawing						
36		32	Document						
37	\vdash	32 33	Document						
38		33 34	Drawing						
39		34 35	Drawing						
40		35 36	Drawing						
41		30 37	Drawing						
42		37 38	Drawing						
43		39	Drawing						
44		39 40	Document						
44		40	Document						

	G
1	
2	
3	
4	Notes
5	
6	
7	
9	
10	
11	
12 13	
13	
15	
16	
17 18	
19	
20	
21	
22 23	
23	
25	
26	
27	
28 29	
30	
31	
32 33	
33	
35	
36	
37	
38 39	
40	
41	
42	
43 44	
44	

	A	В	С	D	E	F
45	Ĩ	41	Drawing			
46		42	Drawing			
47		43	Drawing			
48		44	Drawing			
49		45	Document			
50		46	Drawing			
51		47	Document			
52		48	Document			

	G
45	
46	
47	
48	
49	
50	
51	
52	

From:Hillman, Timothy M.To:Saunders, EileenCC:Wehrly, M. R.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Hintz, Monty E.; 168908
E.ON-AQC; Jackson, AudreySent:9/22/2010 10:48:08 AMSubject:168908.28.3000 100922 - Monday Weekly Meeting and Action Item ListAttachments:168908 EON ACTION ITEM LIST.xls

Eileen,

I'm setting up a weekly project meeting for Monday at 2 pm your time (Outlook meeting invitation to follow). As you requested, the format will be similar to what we did for Phase I, where we used the following standing agenda. We can always add to the agenda as circumstances arise, but let me know if you want anything else added to the standing agenda.

Standing Agenda:

- 1) Project Status
- 2) Action Item List
- 3) Activities Scheduled for the Week

I've also attached the first action item list. You will note that most of the action items came from our kick-off meeting and Mill Creek site walk down. Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Ernalk hillmantm@by.com

	A	В	С	D	E	F	G	Н	J	K	L	М	Ν
•••••••••••••	ITEM #	SOURCI	E	DESCRIPTION	FILE NO.	FACILITY	RESPON	ISIBILITY	ATE ADDE	IG DUE DA	RR DUE D	OMPL DAT	STATUS
1		DOC/MTNG	DATE			-	co.						
2		DOC/WITING					0.						
		GENERAL					A						
3		KO & MC Cite V	0/20/40	Determine if a Manday, 2 and ECT project conference and	111000		B&V	TH/MW	09/21/10	09/23/10			0
4	8	KU & IVIC Site VI	9/20/10	Determine if a Monday, 2 pm EST project conference ca	14.1000		B&V		09/21/10	09/23/10			Open
	3	KO & MC Site Vi	9/20/10	Provide DVD copy of Phase I Report	14.1000		B&V	тн	09/21/10	09/24/10			Open
5													
6	6	KO & MC Site Vi	9/20/10	Create IBackup FTP site for large file transfer	14.1000		B&V	KL	09/21/10	09/24/10			Open
	5	KO & MC Site Vi	9/20/10	Provide engineering cost estimate at end of each month	14.1000		B&V	тн	09/21/10	09/30/10			Open
7													-
	11	KO & MC Site Vi	9/20/10	Evaluate pros and cons of NID system for November teo	14.1000		B&V	AM/RL	09/21/10	Nov. 2010			Open
8	13		0/20/10	Provide structural steel study assessments	14.1000		E.ON	ES	09/21/10	09/24/10			Open
9	15	NO & IVIC SILE VI	9/20/10	Provide structural steel study assessments	14.1000		E.ON		09/21/10	09/24/10			Open
	14	KO & MC Site Vi	9/20/10	Provide minimum access dimension box	14.1000		E.ON	ES	09/21/10	09/24/10			Open
10													
11	17	Email 14.1000 1	9/20/10	Provide E.ON comments on Kick Off Meeting and Mill C	14.1000		E.ON	ES	09/21/10	09/24/10			Open
	4	KO & MC Site Vi	9/20/10	Use B&V file system to set up E.ON document storage	14.1000		E.ON	ES	09/21/10	TBD			Open
12													
	7	KO & MC Site Vi	9/20/10	Determine personnel assignments for document review	14.1000		E.ON	ES	09/21/10	TBD			Open
13	10	KO 8 MO 0#+ 1/	0/20/40	Schedule vendors for evaluation of existing scrubbers	14.1000		E.ON	ES	09/21/10	TBD			0
14	12	KO & WIC Sile VI	9/20/10	Schedule veridors for evaluation of existing scrubbers	14.1000		E.ON	E2	09/21/10	IBD			Open
<u> </u>		GHENT				Ghent	A						
15													
16	2	KO & MC Site Vi	9/20/10	Determine dates for Ghent kick-off meeting	14.1000	Ghent	E.ON	ES	09/21/10	09/23/10			Open
10		MILL CREEK				Mill Creek	Α						
17													
	10	KO & MC Site Vi	9/20/10	Prepare data inventory and information request	14.1000	Mill Creek	B&V	MW/JC	09/21/10	09/24/10			Open
18	15		0/20/10	Review B&V electrical study conducted in the 1990s	14 1000	Mill Creek	Dev.	JB	09/21/10	09/24/10			0000
19	10	IND & IVIC SILE VI	9/20/10	Review Dav electrical study conducted in the 1990s	14.1000	I will Creek		120	09/21/10	09/24/10			Open
	1	KO & MC Site Vi	9/20/10	Determine location for Mill Creek Task 6 Technology Se	14.1000	Mill Creek	E.ON	ES	09/21/10	10/15/10			Open
20													
21	16	KO & MC Site Vi	9/20/10	Evaluate the possibility of accelerating the installation of	14.1000	Mill Creek	E.ON & B	ES &TH	09/21/10	TBD			Open
21	18												
22	Ĺ												
	19												
23	20												
24	20												
		I				1	I						

	0	Р	Q	R	S	Т
1	NOTES					
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21	See B&V email 9/17/2010 addressing the accelera	tion of th	e S	CR install fo	or MC 1 & 2	
22						
23						
24						

	А	В	С	D	E	F	G	Н	J	K	L	М	N
25	21												
	22												
26													I
27	23												
	24												
28	25												
29													
30	26												
31	27												
32	28												
33	29												
	30												
34	31												
35													
36	32												
37	33												
38	34												
39	35												
40	36												
	37												
41	38												
42													ļ]
43	39												
44	40												
45	41												
46	42												
	43												
47	44												
48													

	0	Р	Q	R	S	Т
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						

	А	В	С	D	E	F	G	Н	J	K	L	М	N
49	45												
	46												
50	47												
51													
52	48												
	49												
53	50												
54													
55	51												
56	52												
57	53												
58	54												
59	55												
	56												
60	57												
61													
62	58												
63	59												
64	60												
65	61												
66	62												
67	63												
68	64												
69	65												
70	66												
	67												
71	68												
72													

	0	Р	Q	R	S	Т
49						
50						
51						
52						
53						
54						
55						
56						
57						
58						
59						
60						
61						
62						
63						
64						
65						
66						
67						
68						
69						
70						
71						
72						

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
73	69												
	70												
74	71												
75	72												
76													
77	73												
78	74												
79	75												
80	76												
	77												
81	78												
82	79												
83	80												
84	81												
85													
86	82												
87	83												
88	84												
89	85												
90	86												
91	87												
92	88												
93	89												
	90												
94	91			1									
95	92												
96													

	0	Р	Q	R	S	Т
73						
74						
75						
76						
77						
78						
79						
80						
81						
82						
83						
84						
85						
86						
87						
88						
89						
90						
91						
92						
93						
94						
95						
96						

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
97	93												
98	94												
	95												
99	96												
100													
101	97												
102	98												
103	99												
104	100												
105	101												
106	102												
107	103												
108	104												
109	105												
110	106												
111	107												
112	108												
113	109												
114	110												
115	111												
116	112												
117	113												
118	114												
119	115												
120	116												

	0	Р	Q	R	S	Т
97						
98						
99						
100						
101						
102						
103						
104						
105						
106						
107						
108						
109						
110						
111						
112						
113						
114						
115						
116						
117						
118						
119						
120						

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
121	117												
122	118												
	119												
123	120												
124													
125	121												
126	122												
127	123												
128	124												
129	125												
130	126												
131	127												
132	128												
133	129												
134	130												
135	131												
136	132												
137	133												
138	134												
139	135												
140	136												
141	137												
142	138												
143	139												
144	140												

	0	Р	Q	R	S	Т
121						
122						
123						
124						
125						
126						
127						
128						
129						
130						
131						
132						
133						
134						
135						
136						
137						
138						
139						
140						
141						
142						
143						
144						

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
145	141												
	142												
146	143												I
147													
148	144												
149	145												
	146												
150	147												
151													
152	148												
153	149												
154	150												
155	151												
156	152												
157	153												
158	154												
159	155												
160	156												
161	157												
162	158												
163	159												
164	160												
165	161												
166	162												
167	163												
168	164												

	0	Р	Q	R	S	Т
145						
146						
147						
148						
149						
150						
151						
152						
153						
154						
155						
156						
157						
158						
159						
160						
161						
162						
163						
164						
165						
166						
167						
168						

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
169	165												
	166												
170													
171	167												
	168												
172	100												
173	169												
	170												
174	171												
175													
	172												
176	173												
177													
178	174												
179	175												
1/9	176												
180													
181	177												
182	178												
183	179												
163	180												
184													
185	181												
	182												
186	183												
187													
188	184												
189	185												
	186												<u> </u>
190													
191	187												
	188												
192		1											

	0	Р	Q	R	S	Т
169						
170						
171						
172						
173						
174						
175						
176						
177						
178						
179						
180						
181						
182						
183						
184						
185						
186						
187						
188						
189						
190						
191						
192						

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
400	189												
193	190												
194	150												
	191												
195													
196	192												
190	193												
197	100												
	194												
198													
199	195												
133	196												
200													
	197												
201	400												
202	198												
202	199												
203													
	200												
204													
204 205 206 207 208 209													
207													
208													
209													
210													
212													
213													
214													
215													
216													
210 211 212 213 214 215 216 217 218 219 220 221 223 224 225 226 227 228 229			<u> </u>										
219													
220													
221													
222													
223													
225													
226													
227													
228													
229													

	0	Р	Q	R	S	Т
193						
194						
104						
195						
196						
107						
197						
198						
199						
200						
201						
201						
202						
203						
204						
205 206						
206						
207						
209						
210						
211						
212						
213 214						
214						
216						
217						
218						
219						
220						
221			<u> </u>			
222 223			-			
223			-			
225						
226						
227						
228						
229						

	А	В	0	D	E	н	U	Н	J	K	L	М	N
7096													
7097													
	58												
7098													

	0	Р	Q	R	S	Т
7096						
7097						
7098						

	Α	В	С	D	E	F	G	Н	J	K	L	М	Ν
**********	ITEM #	# SOURC	E	DESCRIPTION	FILE NO.	FACILITY	RESPON	ISIBILITY	ATE ADDE	IG DUE DA	RR DUE D	OMPL DAT	STATUS
1													
		DOC/MTNG	DATE				CO.	INITIAL					
2	9	KO & MC Site)	9/20/10	Update PIM with Eileen's Ghent contact information	14.1000		B&V	MW	09/21/10	09/24/10		00/21/10	Complete
3	5		3/20/10	opdate i na with Elleen's Onent contact mormation	14.1000				03/21/10	03/24/10		03/21/10	Complete
	18												
4													
	19												
5													
6	20												
0	21												
7	21												
	22												
8													
	23												
9	24												
10	24												
-10	25												
11													
	26												
12													
12	27												
13	28												
14	20												
	29												
15													
	30												
16													
17	31												
17	32												
18													
	33												
19													
	34												
20	35												
21	30												
	36	1											
22													
	37												
23		ļ											
	38												
24													

	O NOTES	Р
1	NOTES	
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
25	39												
26	40												
27	41												
28	42												
	43												
29	44												
30	45												
31	46												
32	47												
33	48												
34	49												
35	50												
36													
37	51												
38	52												
39	53												
40	54												
41	55												
42	56												
43	57												
44	58												
44	59												
	60												
46	61												
47	62												
48													

	0	Р
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
36		
37		
38		
39 40		
40		
41		
43		
44		
45		
46		
47		
48		

	A	В	С	D	E	F	G	Н	J	K	L	М	N
49	63												
50	64												
51	65												
52	66												
52	67												
	68												
54	69												
55	70												
56	71												
57	72												
58	73												
59	74												
60	75												
61	76												
62	77												
63													
64	78												
65	79												
66	80												
67	81												
68	82												
69	83												
70	84												
71	85												
72	86												
		1					I						

	0	Р
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		
71		
72		

	А	В	С	D	E	F	G	Н	J	K	L	М	Ν
73	87												
74	88												
	89												
75	90												
76	91												
77													
78	92												
79	93												
80	94												
81	95												
	96												
82	97												
83	98												
84	99												
85													
86	100												
87	101												
88	102												
89	103												
90	104												
	105												
91	106												
92	107												
93													
94	108												
95	109												
96	110												

	0	Р
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
97	111												
98	112												
99	113												
100	114												
101	115												
102	116												
103													
104	118												
105	119												
106	120												
107	121												
108	122												
109	123												
110	124												
111	125												
112	126												
113	127												
114	128												
115	129												
116	130												
117	131												
118	132												
119	155												
120	134												

	0	Р
97		
98		
99		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		
111		
112		
113		
114		
115		
116		
117		
118		
119		
120		

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
121	135												
122	136												
123	137												
	138												
124	139												
125	140												
126	141												
127	142												
128													
129	143												
130	144												
131	145												
132	146												
133	147												
	148												
134	149												
135	150												
136	151												
137	152												
138	153												
139													
140	154												
141	155												
142	156												
143	157												
144	158												
44													I

	0	Р
121		
122		
123		
124		
124		
126		
127		
128		
129		
130		
131		
132		
133		
134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		

	Α	В	С	D	E	F	G	Н	J	K	L	М	N
145	159												
146	160												
147	161												
	162												
148	163												
149	164												
150	165												
151	166												
152													
153	167												
154	168												
155	169												
156	170												
157	171												
	172												
158	173												
159	174												
160	175												<u> </u>
161	176												
162	177												
163													
164	178												
165	179												
166	180												
167	181												
	182												
168													

	0	Р
145		
146		
147		
148		
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162		
163		
164		
165		
166		
167		
168		

	Α	В	С	D	E	F	G	Н	J	K	L	М	Ν
169	183												
170	184												
	185												
171	186												
172													
173	187												
174	188												
175	189												
	190												
176	191												
177													
178	192												
179	193												
180	194												
	195												
181	196												
182													
183	197												
184	198												
185	199												
	200												
186 187													
188													
189 190													
190													
192													
191 192 193 194													
194													
195 196 197													
197													
198													
199													

	0	Р
169		
170		
174		
171		
172		
173		
174		
175		
176		
177		
178		
179		
180		
181		
182		
183		
184		
185		
186		
187		
188		
189 190		
190		
192		
193		
194		
195		
196		
197		
198		
199		

	Α	В	С	D	E	F	G	Н	J	К	L	М	N
7072													
7073													
7074													
7075													
7076													
7077													
7078													
7079													
7080	58												

	0	Р
7072		
7073		
7074		
7075		
7076		
7077		
7078		
7079		
7080		

	Α	В	С	D	E	
1	E.ON	E.ON U.S. SERVICES INC. COMPANY				
2	ES	Eileen Sau	nders			
3	GB	Greg Black				
4	GR	Gary Revle	tt			
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15	<u>BV</u>	Black & Veatch (B&V)				
16	тн	Tim Hillma				
17	KL	Kyle Lucas				
18	AM	Anand Mahabaleshwarker				
19	МК	Mike King				
20	RL	Rick Lausman				
21	MW	M.R. Wehrly				
22	мн	Monty Hintz				
23	JB	Jim Bayless				
24	JC	Jonathan C	Crabtree			

From:	Conroy, Robert
То:	Bellar, Lonnie; Lovekamp, Rick
CC:	Elzy, Tammy
Sent:	9/23/2010 2:50:04 PM
Subject:	Draft ROC agenda
Attachments:	ROC September 24, 2010.docx

Here is a proposed draft agenda for tomorrow. Add/delete as you see fit.

Robert M. Conroy

Director, Rates E.ON U.S. Services Inc. (502) 627-3324 (phone) (502) 627-3213 (fax) (502) 741-4322 (mobile) robert.conroy@eon-us.com

Regulatory Oversight Committee September 24, 2010

- Open Proceedings Update
 - \circ Complaints 2 active (1 KU / 1 LG&E)
 - CPCN Transmission Line Grahamville to DOE
 - ITO Application (SPP)
 - \circ ECR Reviews 6 month (period ending expense month 02/28/10)
 - \circ FAC Reviews 6 month (period ending expense month 04/30/10)
 - Financing Cases (KY, VA, TN)
- Administrative Case
 - EISA 2007 Standards
 - Natural Gas Retail Competition
- Change of Control PPL Corp Acquisition
 - o Kentucky, Virginia, Tennessee
 - o FERC
- KPSC Audit of CCS
- Future Proceedings
 - DSM Plan filing
 - o 2009 Virginia AIF
 - Virginia Rate Case (TY 2010)
 - Tennessee Rate Case
 - o ECR Modification / Environmental Regulations

From:	Lovekamp, Rick
То:	Conroy, Robert; Bellar, Lonnie
CC:	Elzy, Tammy
Sent:	9/23/2010 3:09:23 PM
Subject:	RE: Draft ROC agenda
Attachments:	ROC September 24 2010_RELedits.docx

Made one change.

From: Conroy, Robert Sent: Thursday, September 23, 2010 2:50 PM To: Bellar, Lonnie; Lovekamp, Rick Cc: Elzy, Tammy Subject: Draft ROC agenda

Here is a proposed draft agenda for tomorrow. Add/delete as you see fit.

<< File: ROC September 24, 2010.docx >>

Robert M. Conroy *Director, Rates E.ON U.S. Services Inc.* (502) 627-3324 (phone) (502) 627-3213 (fax) (502) 741-4322 (mobile) robert.conroy@eon-us.com

Regulatory Oversight Committee September 24, 2010

- Open Proceedings Update
 - \circ Complaints 2 active (1 KU / 1 LG&E)
 - CPCN Transmission Line Grahamville to DOE
 - ITO Application (SPP)
 - \circ ECR Reviews 6 month (period ending expense month 02/28/10)
 - \circ FAC Reviews 6 month (period ending expense month 04/30/10)
 - Financing Cases (KY, VA, TN)
- Administrative Case
 - EISA 2007 Standards
 - Natural Gas Retail Competition
- Change of Control PPL Corp Acquisition
 - o Kentucky, Virginia, Tennessee
 - o FERC
- KPSC Management Audit of Customer Service Related Functions
- Future Proceedings
 - DSM Plan filing
 - o 2009 Virginia AIF
 - Virginia Rate Case (TY 2010)
 - Tennessee Rate Case
 - o ECR Modification / Environmental Regulations

From:	Hillman, Timothy M.
То:	Saunders, Eileen
CC:	168908 E.ON-AQC; Crabtree, Jonathan D.; Wehrly, M. R.; Lausman, Rick L.; Mahabaleshwarkar,
	Anand; Hintz, Monty E.; Lucas, Kyle J.
Sent:	9/20/2010 5:08:58 PM
Subject:	168908.14.1000 100920 Mill Creek - Draft Kickoff and Site Visit Meeting Minutes
Attachments:	Mill Creek Kickoff and Site Walkdown Meeting Minutes with Attachments - Draft.pdf

Eileen,

Please find attached draft meeting minutes from last week's kickoff and Mill Creek site visit. Please provide E.ON's comments back to me by Friday, 9/24.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Ernaik hillmantm@bv.com

DRAFT

BLACK & VEATCH CORPORATION CONFERENCE MEMORANDUM

E.ON US Phase II: Air Quality Control Study Project Kick-off and Mill Creek Site Visit B&V Project 168908 B&V File 14.1000 September 20, 2010

A project administrative kick-off meeting and Mill Creek site visit and walk down were held September 14-16th for the Phase II: Air Quality Control Study Project. The administrative kick-off meeting was held at E.ON's Broadway Office Complex in Louisville, while the site visit and walk down were held at the Mill Creek Generating Station.

Recorded by: Tim Hillman

Attending:

Administrative Kick-off Meeting, September 14th.

Eileen Saunders	E.ON
Mike Rooney	E.ON
Mike King	B&V
Tim Hillman	B&V
M.R. Wehrly	B&V
Kyle Lucas	B&V

Mill Creek Kick-off Meeting, September 15th.

Eileen Saunders	E.ON
Mike Rooney	E.ON
Bill Moehrke	E.ON
Kenny Craigmyle	E.ON
Kevin Siers	E.ON
Michael Stevens	E.ON
Jim Nichols	E.ON
Gary Revlett	E.ON
Joe Didelot	E.ON
Scott Straight	E.ON
Mike Kirkland	LG&E
Mike Buckner	LG&E
Alex Betz	LG&E
Tim Hillman	B&V
M.R. Wehrly	B&V
Anand Mahabaleshwarkar	B&V
Kyle Lucas	B&V
Rick Lausman	B&V
Monty Hintz	B&V

The purpose of the meetings was to 1) provide an administrative kick-off of the project, 2) present the project scope and purpose of the project to Mill Creek personnel, and 3) provide for a site visit and walk down of the Mill Creek facility. The above attendance roster reflects those attending the administrative kick-off meeting in Louisville and the initial kick-off meeting at Mill Creek. The meeting agenda and attendance sign-up sheets are attached herein for reference.

DRAFT

Page 2

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 20, 2010

MEETING DISCUSSION

Day 1, September 14, 2010

As noted in the agenda, the meetings began at 1 pm on September 14th, with an administrative meeting in the Broadway Office Complex and an initial escorted site walk down at Mill Creek with part of the B&V team. The following is an account of the administrative kick-off meeting.

- 1. The meeting began with introductions and distribution of the agenda.
- 2. B&V distributed a copy of the project scope of work contained in the contract and provided a summary of each task along with the associated deliverable.
 - It was noted that a Project Design Memorandum (Task 5) would be developed for each facility.
 - E.ON commented that the Fabric Filter Vendor Workshop scope of work may not start until after the Ghent project has been kicked-off, but likely before the Brown kick-off.
- 3. B&V reviewed the major milestone schedule contained in the scope of work.
 - The possibility of holding the Mill Creek Task 6, AQC Technology Selection Meeting during the second week of November in B&V offices in Kansas City was discussed. E.ON to review and make recommendation. [Action Item #1]
 - E.ON to determine dates for Ghent kick-off meeting. The milestone schedule tentatively has this schedule for the week of October 4th. [Action Item #2]
- 4. E.ON requested B&V provide a DVD of the Phase I report. [Action Item #3]
- 5. B&V distributed a draft copy of the Project Instruction Memorandum (PIM). The communication contacts and project filing system were discussed in some detail.
 - E.ON will investigate setting up a document storage file system to mimic the Documentum system proposed by B&V in the PIM. [Action item #4]
 - B&V to copy Eileen on all correspondence with the plants.
 - Copy Audrey.Jackson@eon-us.com for copy to E.ON file mailbox.
 - B&V will establish and iBackup FTP site to facilitate large file transfer. [Action item #6]
 - E.ON will determine personnel assignments for document review. [Action Item #7]
- 6. B&V distributed a template of a standard monthly report. E.ON approved of the basic format and data of the monthly report template.
 - In addition to the Summary of Engineering Costs contained in the standard monthly report, E.ON requested a financial engineering cost estimate at the end of each month. Copy Mike Rooney on monthly reports. [Action Item #5]
 - Monthly reports will typically be sent during the second week of the following month.
- 7. E.ON requested to use the same weekly telephone conference date of Monday, 2 pm EST. B&V will check for conflicts and advise. [Action item #8]

DRAFT

Page 3

E.ON US Project Kick-off and Mill Creek Site Visit

B&V Project 168908 September 20, 2010

- B&V distributed an example action item list used during the Phase I work. It was agreed to use the same format for Phase II. The action item list will be divided by facility.
- 9. E.ON prefers to provide document review comments in a table log format.
- 10. E.ON is purchasing a trailer for the Mill Creek site that may offer some additional project meeting space.
- 11. Eileen Saunders provided an alternate contact number for her at Ghent (502-347-4023). B&V to update PIM with contact information. [Action Item #9]
- 12. B&V distributed a draft data request and inventory of data/information already in B&V's possession. E.ON asked B&V to carefully scrutinize the information request so as to not request information we may already have. B&V to finalize the initial data request and inventory list and submit it to E.ON as soon as possible. [Action item #10]
- 13. The administrative kick-off meeting concluded at approximately 4:30 pm.

Day 2, September 15, 2010

The second day of kick-off meetings began at 9 am at Mill Creek.

- 14. Eileen began the meeting with introductions and a brief summary of the project scope.
- 15. Gary Revlett provided a presentation of the main regulatory drivers influencing the coalfired fleet. These drivers include the new NOx and SO2 NAAQS standards, Utility MACT for hazardous air pollutants, and the proposed Clean Air Transport Rule (CATR). Gary explained that these current and pending regulations are the drivers for the Phase II work. Gary provided an updated table that can be used as the initial design basis titled "Estimated Limits & Compliance Dates for Future New Air Requirement Mill Creek Station".
- 16. Scott Straight addressed the meeting stating that the current company strategy does not have E.ON self-compliant (as a fleet) with NOx credits until 2016. E.ON would like to be self-compliant by 2013-2014. Scott asked the group to evaluate the possibility of accelerating the installation of SCRs on Mill Creek Units 1 and 2. This is also being considered at Ghent. (Note: Over the course of the next two days, this scenario was given consideration. A separate email correspondence addressing this issue was prepared and sent to E.ON on September 17, 2010, a copy of which is attached herein.) [Action Item #16]
- 17. B&V provided a presentation summary of the results of the August 5th and 6th Mill Creek AQC Screen Workshop. The presentation summarized the workshop purpose and attendees, an overview of the current plant basis, AQC technologies and options considered, and recommendations of the workshop. A copy of the workshop presentation summary slides is attached here in for reference.
 - E.ON requested B&V review the pros and cons of the NID system as part of the technology validation task. Action item #11]
- 18. E.ON advised that Alex Betz would be the Mill Creek plant contact for information requests.
- 19. E.ON will be contacting Hitachi, BPI, Foster Wheeler, and Alstom, and/or others to evaluate the status of the existing scrubbers and determine the extent they can be

DRAFT

Page 4

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 20, 2010

refurbished. E.ON is to lead this effort with support from B&V as requested. [Action item #12] Results of the evaluation will be provided to B&V

- If the new Unit 4 WFGD and stack requires the relocation of the ammonia storage area, it may be possible to consolidate it with the ammonia storage requirements for the new Unit 1 and 2 SCRs.
- 21. It may be possible to reuse Unit 4's fans on Unit 3 should the existing fans become superfluous in the new Unit 4 arrangement. It then may be possible to reuse the Unit 3 fans on Unit 1 and/or unit 2.
- 22. E.ON confirmed there is no "sacred ground" around the existing units, areas reserved for other uses and unavailable for use in the AQCS upgrade. B&V requested if any balance-of-plant upgrades are currently under consideration that should be taken into account in the AQCS work, beyond the plans for an additional ball mill at the limestone prep building.
- 23. Following lunch, E.ON and B&V personnel continue site walk down activities, concluding at approximately 5:30 pm. Some observations from this walk down are identified below.
 - Unit 4 fabric filter likely to be required to be installed above the Unit 4 scrubber electrical building.
 - Unit 3 would be tied into the current Unit 4 scrubber after the new Unit 4 FGD is built. The old Unit 3 scrubber would be torn down to allow new AQC equipment to be potentially located in that area.
 - Unit 3 and 4 structural steel was generally in good shape for lower areas that could be inspected. Higher areas of Unit 3 & 4 could not be assessed due to the large flue gas leaks in the duct that limited access for personal safety reasons.
 - Duct configuration will be complicated, but appears possible, and will depend on the specific fan arrangement and if new ID fans or booster fans will be used.

Day 3, September 16, 2010

The third and final day of meetings began at 9 am at Mill Creek.

- 24. B&V summarized the major findings of the walk downs for Eileen and began preparing white board sketches of the preliminary AQC control configurations discussed over the last two days in preparation for a site de-briefing scheduled for the early afternoon.
- 25. After a break in the morning rain, an additional walk down of Units 1 and 2 was conducted before lunch to review the structural integrity of the Unit 1 and Unit 2 steel for additional AQC equipment.
- 26. At 1:15 pm, B&V presented de-briefing of the site walk down findings and preliminary AQC control configurations. Two sketches were prepared for the meeting. One illustrated the preliminary AQC configuration options for Units 3 and 4, while the second sketch addressed Units 1 and 2 and the possibility of accelerating the SCR schedule. Pictures of the two white board sketches are attached here in for reference.
 - As a result of the workshop discussions, the potential for locating the Unit 4 fabric filter/NIDs unit and new scrubber, plus a new chimney, to the south of Unit 4 was

DRAFT

Page 5

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 20, 2010

considered. The original location for the new scrubber and chimney considered was in the area of the demolished thickener south of the limestone prep building. This location, however, involved crossing the limestone conveyor with relatively high ductwork, plus moving both an overhead Unit 3 and Unit 4 345kV T-line and the ammonia tanks and electrical building to provide necessary working space for new construction.

- Alternately, it was determined that there is likely sufficient space for the new Unit 4 AQCS train directly south of Unit 4, running more or less straight east to west with the new chimney located opposite of the Unit 4 turbine building. This arrangement, if it fits, has the advantage of relatively short ductwork runs, no impact to the overhead T-line, and no impact to the existing ammonia tank farm. It would, however, require relocation of the existing annex building and lab, plus limit construction access to one side of the train. B&V will continue evaluation of this arrangement as first choice for Unit 4, with the thickener area location used as a fall-back alternate.
- Should either of the above arrangements fit, it appeared that it would be advantageous to upgrade the existing Unit 4 scrubber in place and reuse it for Unit 3. The flue gas from Unit 3 would be rerouted to the Unit 4 scrubber in the short term (Phase I) and the Unit 3 scrubber demo'd. A new Unit 3 fabric filter/NIDs unit could be built in its place and tied into the Unit 3 ductwork as Phase II of a two phase construction sequence at Unit 3.
- Both Unit 1 and Unit 2 offer significant challenges in the addition of an SCR as an immediate modification (refer to Sep 17th email, attached herein for reference). The existing ESP at both units is located within a few feet of the boiler structure, leaving insufficient room to route ductwork to a new SCR overhead of the ESP. The ESP would have to be demolished or extensively modified before the SCR could be constructed, resulting in either an extended outage while the ESP is moved or reconstructed or the installation of a separate new ESP in another location prior to installation of the SCR. In addition, area available for new structures for either Units 1 or 2 is very limited, by the narrow alleyway between Units 1 and 3 for Unit 1 and by the new RO facility north of the powerblock at Unit 2. No obvious arrangement for the AQCS upgrades at Units 1 and 2 were immediately noted, and additional investigation will be required.
- 27. B&V commented on the poor condition of the structural steel at the existing scrubbers, especially at Units 1 and 2. Relatively isolated examples of steel corrosion, most likely due to exposure to flue gas, were noted in the superstructures at the Unit 3 and 4 scrubbers. However, severe corrosion and loss of structural mass was noted in a significant number of areas at Units 1 and 2. The most severe damage noted was in lighter components, such as platform and grating, but instances of chemical attack on the major structural steel members were also noted on Units 1 and 2. E.ON agreed to provide the results of recent studies assessing the structural steel. [Action Item #13]
- New AQC will likely restrict vehicle and maintenance access in some areas of the facility. E.ON agreed to provide the minimum access dimensions for use in the analysis. [Action Item #14]
- 29. E.ON noted that the existing Unit 4 AQCS (ESP and scrubber) were powered by the Unit 4 aux power supply. Should the Unit 4 scrubber be reused for Unit 3, an alternate source of aux power for the refurbished equipment must be included. Otherwise, an outage on Unit 4 would result in the loss of AQCS for Unit 3.

Page 6

CONFERENCE MEMORANDUM

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 20, 2010

30. E.ON noted that no aux power supply greater than 4160V is currently available in the immediate plant area. However, two free 14kV breakers are available in the switchyard as potential sources of medium voltage power for new loads such as fans in the AQCS upgrade. E.ON also noted that B&V Ann Arbor completed a short circuit study for the plant in the 1990's. B&V to review this study. [Action item #15]

DRAFT

31. The meeting concluded at approximately 3 pm.

ACTION ITEMS

#	Description	Responsible	Due Date
1	Determine location for Mill Creek Task 6 Technology	E.ON	10/15/10
	Selection meeting during 2 nd wk of November		
2	Determine dates for Ghent kick-off meeting	E.ON	9/23/10
3	Provide DVD copy of Phase I Report	B&V	9/24/10
4	Use B&V file system to set up E.ON document storage	E.ON	TBD
5	Provide engineering cost estimate at end of each month and	B&V	End of
	copy Mike Rooney on monthly reports		Month
6	Create IBackup FTP site for large file transfer	B&V	9/24/10
7	Determine personnel assignments for document review	E.ON	TBD
8	Determine if a Monday, 2 pm EST project conference call	B&V	9/23/10
	time will work for B&V project team		
9	Update PIM with Eileen's Ghent contact information	B&V	9/24/10
10	Prepare data inventory and information request	B&V	9/24/10
11	Evaluate pros and cons of NID system for November	B&V	Nov 2010
	technology validation presentation		
12	Schedule vendors for evaluation of existing scrubbers	E.ON	TBD
13	Provide structural steel study assessments	E.ON	9/24/10
14	Provide minimum access dimension box	E.ON	9/24/10
15	Review B&V electrical study conducted in the 1990s	B&V	9/24/10
16	Evaluate the possibility of accelerating the installation of	E.ON and B&V	TBD
	SCRs on Mill Creek Units 1 and 2		

ATTACHMENTS

- Agenda
- Attendance roster
- B&V email of September 17, 2010 addressing the acceleration of the SCR installation schedule for Mill Creek Units 1 and 2.
- August 5th and 6th Mill Creek AQC Workshop Summary Presentation.
- Pictures of the September 16, 2010 white board sketches from the de-brief meeting.

cc: All Attendees File

DRAFT

AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Mill Creek Station September 14 - 16, 2010 Location: E.ON Broadway Office Complex and Mill Creek

Day 1, September 14th, Arrive 1 pm (Broadway Office Complex)

- I. Introductions
- II. Review Project Scope
- III. Review Project Schedule
- IV. Review Project Deliverables
- V. Project Administration
 - a. Communication
 - b. File System
 - c. Monthly Reports
 - d. Weekly Conference Calls/Action Item List
 - e. Invoicing
- VI. Project Documentation
- VII. Information Request

Day 2, September 15th, Arrive 8 am (Mill Creek)

- I. Introductions
- II. Environmental Drivers Presentation (E.ON Gary R.)
- III. Aug 5-6th AQC Workshop Results Presentation (B&V Rick L and Anand M.)
- IV. Lunch (on site)
- V. Continue Escorted Site Walk Down and Data Collection

Day 3, September 16th, Arrive 8 am (Mill Creek)

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (off site)
- III. Site Debriefing Meeting
- IV. Depart (no later than 4 pm)

Day 1, September 14th, Arrive 1 pm (Mill Creek)

- I. Arrive on Site and Introductions
- II. Begin Initial Escorted Site Walk Down

Pow ADC Mill Creek 1pm -4:30p. 9/14/10 Admin drick-off Meeting Hyle lucas 913-458-9062_ Myle Lucas 913-958-9062 /4cas Kjebv.com M.R. WEHRLY 913-458-7131 Wehrly Mr. Can Mike Mooney 502-627-3671 Mike. Mooney Con-US. Com Eleen Sauders 502-627-2431 eileen saunders @ eon-US. Con MIKEKING 313618-8657 KINGMLGBV.COM 77m Hillman 913-458-7928 hillmonthe ebvicon.

ON ACC Mill Creek Plant' Kickurr 9/15/10 9am -11:30 Kyle Lucas BEV 913-458-9062 Asst PM/EN MULS Kuaskjew.com Rick LAUSMAN Bil 913 438 7528 AQC Eng LAUSMAN RL& BU.COM Mike. Mooney & EON-VS- 184 507-1027-3671 Mike Mooney Budget Analyst EON WILLing Machkkz @ Gop-UK Con BILL MOEHRKY 302-627-6269 PRIFECT COMPD. Tim Hillmon BHV 913-458-7928 BTV PM hillmante @ bu.com MONTY HINTZ BEV 913-458-2464 hintzmeeby.com BEV CIVIL/STRUCT M.R. WEHRLY BEV 913-458-7131 webstywselv. Can B&V ENG. Mgr. Keyin Sies EON-US 502-817-3545 Production Leader Michnel Stevens EON-US 502-933-6518 Production SUPV / Comp. Jun Nichols For 45 502-932-6643 Pear Syper. Mike BulkNER LGSE 502-933-6515 Production MANAger Mike Kinkand LC:E 507-973-6565 General MANAger KENNY CRAIGMYLE EON Eileen Sauders EON PROJECT COORDINATOR 502-20627-6366 502 -627-2431 MGR Major Copital Project Gary Revlett FON 502 - 627 - 4621 MGK Environmental Attor JOE DIDELOT EON 502-933-6559 MGR, MAINT. MC Scott STRAICUT 1 6 " 627-2701 Director-PE 1/ex Betz LGRE 502-933-6602 Mech. Eng., Mill Cak Anand Mahabaleshwankar B&V 913 4587736 AQC Section Lead

Hillman, Timothy M.

From:	Hillman, Timothy M.
Sent:	Friday, September 17, 2010 12:01 PM
To:	'Saunders, Eileen'
Cc:	Lausman, Rick L.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Wehrly, M. R.; Hintz, Monty E.
Subject:	168908.14.1000 100917 Mill Creek - Acceleration of MC 1 and 2 SCR Installation

Eileen,

Anand and the rest of the team combined notes in this email to present both a high level and somewhat detailed summary of the issues surrounding Scott's inquiry about accelerating the installation schedule of SCRs at Mill Creek Units 1 and 2. Hopefully this will assist you in the pending management decision process.

Thanks for all you planning and organization this week. I thought the meetings and site walk downs were very helpful and meaningful.

Tim.

<u>Summary</u>

The most direct path of accelerating the installation of SCRs on Units 1 and 2 would be to construct the new SCRs with the existing ESPs in place. Unfortunately, this is hampered by the close proximity of the existing dry ESPs to the boilers. As a result, there is no room to route ductwork to and from the new SCRs. Therefore, any acceleration of Unit 1 and 2's new SCR schedule would likely require the original Phase 1 approach of building a new ESP and/or PJFF/NID *first*, in order that the existing ESP could be demolished to make room for the new SCR and ductwork.

Details and Basis

Available SCR Options for MC 1 & 2:

Option 1. High-dust SCR located above the existing dry ESP

Option 2. High-dust SCR located at new location with new air heater placed directly under the new SCR reactor

Option 3. Tail-end, low-dust SCR located on new ground downstream of existing ESP, with flue gas reheat

Challenges Presented by the Economizer Outlet and the Close Proximity of the Existing Dry ESP:

- For SCR Options 1 and 2, the economizer outlet duct would need to be routed eastwards out of the boiler building through the east boiler building wall to flow the flue gas to the SCR reactor inlet, located either per Option 1 or 2. The arrangement of the existing dry ESP, located to the east and at approximately same elevation as the economizer outlet duct, along with its close proximity to the boiler building wall, are all preventing the routing of new SCR inlet duct towards the east direction. Similarly, due to presence of boiler support steel inside the boiler building, it is nearly impossible to route the ductwork out to either the north or south side.
- Also, for Option 1, the new SCR outlet duct needs to be connected back to the existing air heater, which is located directly underneath the economizer. This creates additional congestion in the same area and presents ductwork support challenges with the current boiler steel. On the other hand, for Option 2, it is possible to install a new air heater underneath the new SCR reactor at another location and connect the flue gas stream to the new dry ESP and/or PJFF/NID. However, the routing of the SCR inlet ductwork out of the boiler building for Option 2 still faces the same challenges as Option 1.
- The tail-end, low-dust SCR (Option 3) will increase the capital and O&M cost due to the need for flue gas reheating
 and another air heater to maintain the SCR operating temperature. Therefore, Option 3 is not considered feasible in
 this preliminary review.

Solutions to above challenges:

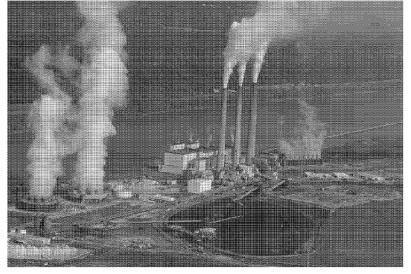
• For SCR Options 1 and 2, routing of the new SCR ductwork makes the demolition of the existing dry ESPs inevitable.

Therefore, in order to create room for a new SCR, a new dry ESP and/or PJFF/NID system will need to be installed first, while the units are online. Once the new dry ESP and/or PJFF/NID system is installed and operating, the existing dry ESP can be demolished to create room for the new SCR. The ID fan and or booster fan requirements can also be finalized based on the BOP challenges, including aux power availability.

• Option 3 is believed to be capital and O&M cost intensive, and is therefore not considered feasible in this preliminary review.

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com


Alternative FGD Technology Workshop Review

Black & Veatch

Agenda

- Drivers
- Overview workshop
- Current plant basis
- Technologies and options discussed
- Recommendations of workshop

Regulatory drivers – still uncertainty

Program Name	Regulated Pollutants	Forecasted Date for Compliance	
BART	SAM (MC3 Only)	Within 6 months of final Title V	
1-hour NAAQS for NO _x	NO _x	2015 -2017	
1-hour NAAQS for SO ₂	SO ₂	2016	
Clean Air Transport Rule	NO _x SO ₂	Beginning in 2012 Phase in 2014	
New EGU MACT	Mercury Acids (HCI) Metals (PM) Metals (AS) Organics (CO) Dioxin/Furan	Estimated January, 2015; with 1-yr extension - January, 2016	

Workshop attendees

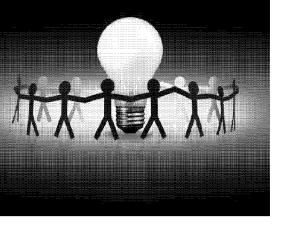
E.ON US

- Scott Straight
- Phillip Imber
- Ronald Gregory
- Gary Revlett
- Mike Kirkland

Black & Veatch

- Tim Hillman
- Mike Ballard
- Anand Mahabaleshwarkar AQCS
- Rick Lausman
 AQCS

- Sr. Chem. Engineer
- Mgr Major Projects
 - Mgr Air Section & Environmental Affairs
- Mill Creek Plant Manager


Construction

Workshop purpose

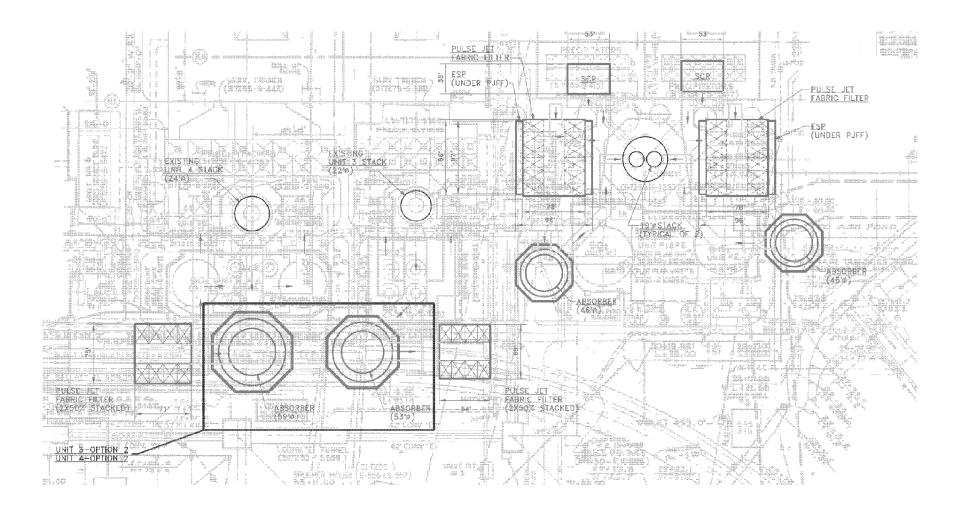
- Review Phase 1 B&V evaluation
- Review current plant constraints
- Brainstorm potential for lower cost yet effective alternatives

R,

BLACK & VEATCH

BUILDING A WORLD OF DIFFERENCE®

Phase 1 B&V evaluation


- Fleet wide review
- Screen technologies
- Conceptual design
- Limited time constraints
- New wet FGD and fabric filters for each Mill Creek unit

Mill Creek phase 1 potential layout - example

Current conditions and future targets

		Current Emissions	Current Removal	Future Removal
Unit	MW	lb/MBtu	<u>%</u>	<u>%</u>
1	330	0.48	92	96
2	330	0.48	92	96
3	425	0.36	86	96
4	<u>525</u>	0.12	92	98
Plant	1610	0.36		
Plant	Targets	0.25 lb/MBtu		96%

Uncontrolled SO2 Emissions 6.2 lb/MBtu

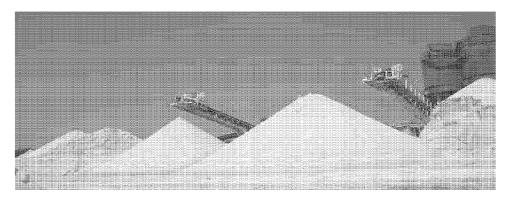
Page - 8

HAPS Issues

- E.ON.US emissions tests are just being finished
- Hg controls are expected for MC units
- Acid gases are likely acceptable
- Uncertainty if plant-wide averaging for Hg will be available
- Speciated metal emissions are also low at MC units

Site specific criteria

- Existing wet FGD
- Condition of FGD and structural steel
- Dewatering system and material handling in place
- Limestone grinding issues
- High sulfur fuel
- Fly ash sale requirement
- Mercury control
- Available space
-Other



September 2010

Byproduct Issues

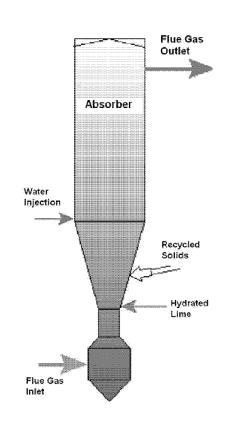
- Mill Creek needs to be able to sell ash due to landfill limitations
- Water emission issues and future limitations may be an issue
- Wastewater stream is currently going to ash ponds

Current FGD conditions

- All scrubbers are basically in a constant rebuilding mode
- Scrubbers are good for another 20 years structurally speaking
- MC1 and MC2 had trays added in 2002 which are now wearing thin
- Top of modules need to be placed
- MC1 and MC2 all duct work has been replaced that wasn't replaced during the wet stack conversion
- Pumps conditions are acceptable with some on MC 1 and MC2 previously replaced

Current FGD conditions - continued

- MC3 and MC4 FGD had trays added in 2000
- MC4 top of modules and duct work needs to be replaced
- MC4 contact trays need replacement
- MC3 scrubber structure is good, although mixing is poor
- MC3 has underground reaction tanks and recycle pumps which cause maintenance and reliability issues.

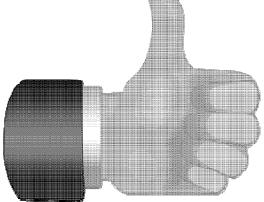

R,

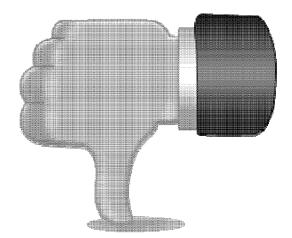
BLACKS VEATCH

BUILDING A WORLD OF DIFFERENCE®

Technology review

- Semi-dry FGD
 - Provides acid gas control (SO₃)
 - Limits waste water production
 - High sulfur fuel is an issue
 - Reagent costs
 - Different technologies provide different advantages - NIDS vs CDS





Factors for upgrading or abandoning existing FGD

- Expected life of unit
- Improvement level required
- Condition of existing FGD
- Space considerations
- Cost comparison to new FGD
- Technical or physical limitations
- Orphaned components

Page - 15

Preliminary workshop results

- Build a new WFGD for MC4
- Upgrade MC4's existing WFGD and use it for MC3
- Upgrade MC1 and MC2's existing WFGDs
- Add fabric filters to all four units
- Add PAC for Hg control

Page - 16

- Add duct injection systems for SO₃ control.
- As an alternative to the fabric filter, add NID system

Workshop results

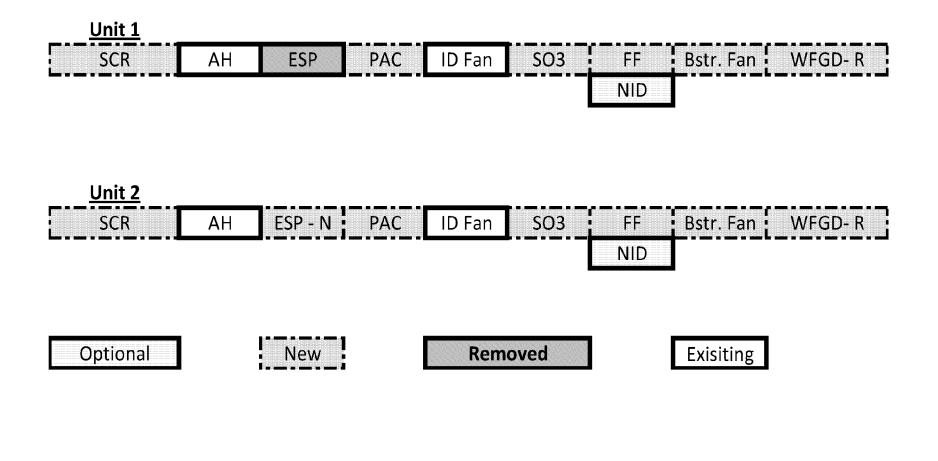
<u>Planned Future</u>					
<u>Unit No.</u>	<u>Technology</u>	<u>Schedule</u> <u>Priority</u>			
1	FGD upgrade	1			
2	FGD upgrade	4			
3	Unit 4 FGD with modification	3			
4	New FGD	2			

LGE-KU-00004249

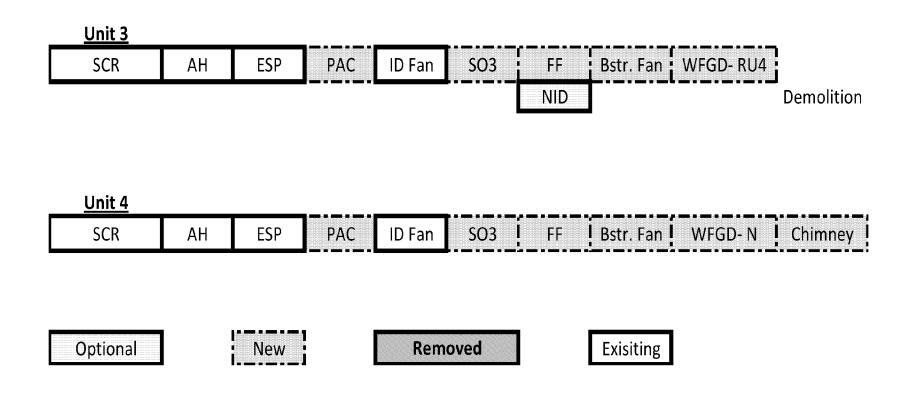
R.

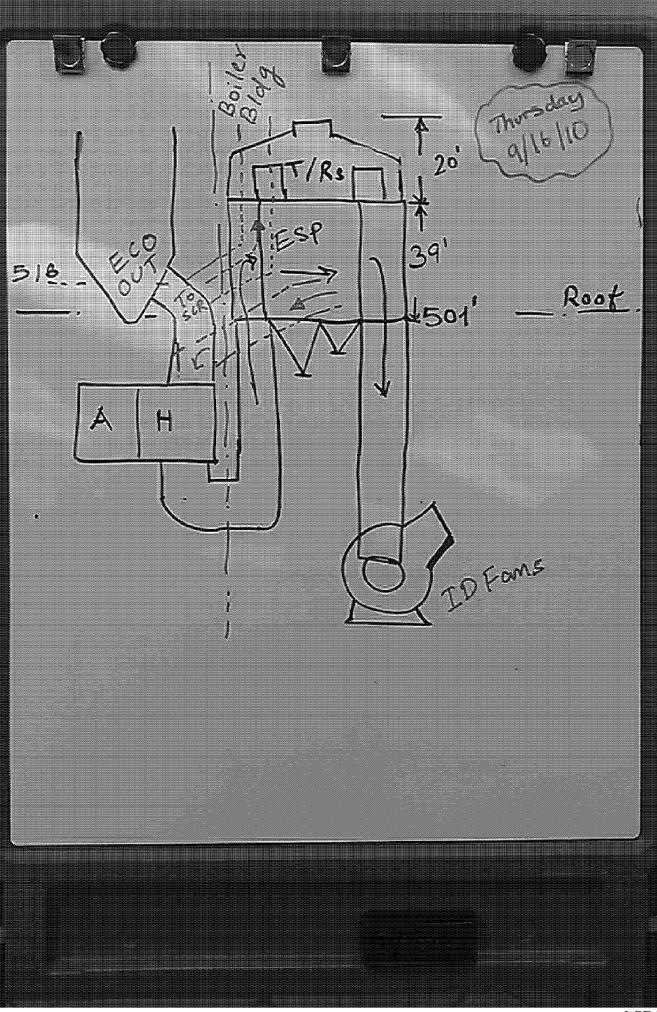
BLACK & VEATCH

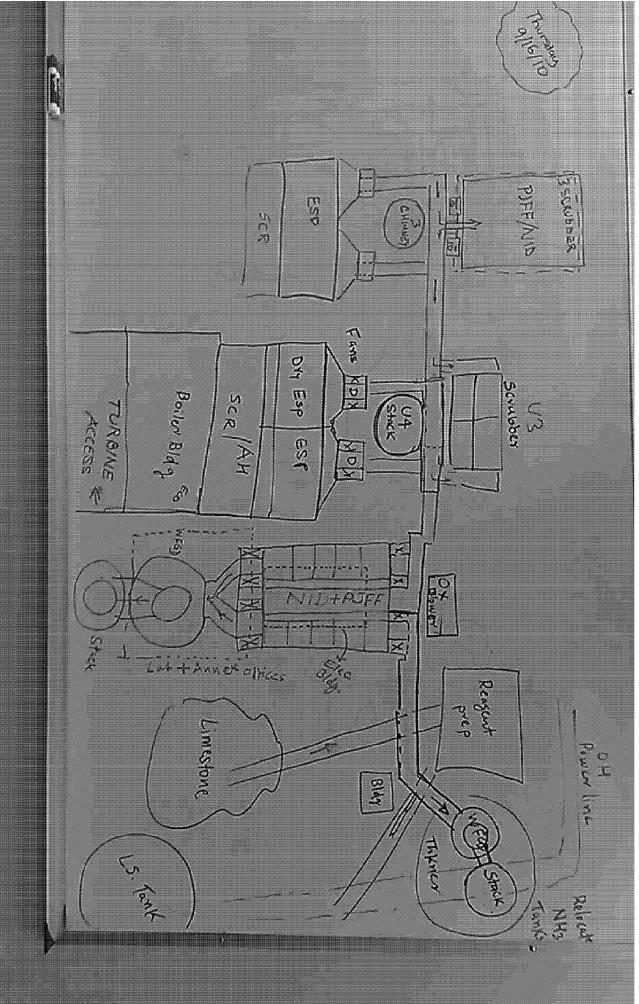
Workshop results


Preliminary Schedule

<u>Unit</u>	<u>FGD</u>	<u>FF</u>	<u>SCR</u>	<u>Fans</u>	<u>Chimney</u>	FF Location
1	2012	2014	2016	2014	Existing	In road
2	2013 or 4th - 2013	2013	2015	2013	Existing	To open area north
3	1st Qtr 2014	Apr 2015		2015	Existing	Road with fans in Unit 3 FGD area
4	4th - 2013	4th - 2013	Relocate NH3	2013	Likely New	South side of plant


September 2010


Proposed equipment lineups- Unit 1 & 2



Proposed equipment lineups- Unit 3 & 4

LGE-KU-00004253

From:Hillman, Timothy M.To:Saunders, EileenCC:168908 E.ON-AQC; Wehrly, M. R.; Lucas, Kyle J.; Jackson, Audrey; Hillman, Timothy M.Sent:9/24/2010 2:17:04 PMSubject:168908.14.1000 100924 Mill Creek - Final Kickoff and Site Visit Meeting MinutesAttachments:Mill Creek Kickoff and Site Walkdown Meeting Minutes - Final with Attachments.pdf

Eileen,

Please find attached the final Mill Creek Kickoff meeting minutes incorporating E.ON's comments. Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Ernaik Hillmantm@by.com

 From:
 Hillman, Timothy M.

 Sent:
 Monday, September 20, 2010 4:09 PM

 To:
 'Saunders, Elleen'

 Cc:
 168908 E.ON-AQC; Crabtree, Jonathan D.; Wehrly, M. R.; Lausman, Rick L.; Mahabaleshwarkar, Anand; Hintz, Monty E.; Lucas, Kyle J.

 Subject:
 168908.14.1000 100920 Mill Creek - Draft Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached draft meeting minutes from last week's kickoff and Mill Creek site visit. Please provide E.ON's comments back to me by Friday, 9/24.

<< File: Mill Creek Kickoff and Site Walkdown Meeting Minutes with Attachments - Draft.pdf >> Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Ernaik hillmantm@bv.com

BLACK & VEATCH CORPORATION CONFERENCE MEMORANDUM

E.ON US Phase II: Air Quality Control Study Project Kick-off and Mill Creek Site Visit B&V Project 168908 B&V File 14.1000 September 24, 2010

A project administrative kick-off meeting and Mill Creek site visit and walk down were held September 14-16th for the Phase II: Air Quality Control Study Project. The administrative kick-off meeting was held at E.ON's Broadway Office Complex in Louisville, while the site visit and walk down were held at the Mill Creek Generating Station.

Recorded by: Tim Hillman

Attending:

Administrative Kick-off Meeting, September 14th.

	– – – –
Eileen Saunders	E.ON
Mike Mooney	E.ON
Mike King	B&V
Tim Hillman	B&V
M.R. Wehrly	B&V
Kyle Lucas	B&V

Mill Creek Kick-off Meeting, September 15th.

Eileen Saunders	E.ON
Mike Mooney	E.ON
Bill Moehrke	E.ON
Kenny Craigmyle	E.ON
Kevin Siers	E.ON
Michael Stevens	E.ON
Jim Nichols	E.ON
Gary Revlett	E.ON
Joe Didelot	E.ON
Scott Straight	E.ON
Mike Kirkland	LG&E
Mike Buckner	LG&E
Alex Betz	LG&E
Tim Hillman	B&V
M.R. Wehrly	B&V
Anand Mahabaleshwarkar	B&V
Kyle Lucas	B&V
Rick Lausman	B&V
Monty Hintz	B&V

The purpose of the meetings was to 1) provide an administrative kick-off of the project, 2) present the project scope and purpose of the project to Mill Creek personnel, and 3) provide for a site visit and walk down of the Mill Creek facility. The above attendance roster reflects those attending the administrative kick-off meeting in Louisville and the initial kick-off meeting at Mill Creek. The meeting agenda and attendance sign-up sheets are attached herein for reference.

Page 2

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

MEETING DISCUSSION

Day 1, September 14, 2010

As noted in the agenda, the meetings began at 1 pm on September 14th, with an administrative meeting in the Broadway Office Complex and an initial escorted site walk down at Mill Creek with part of the B&V team. The following is an account of the administrative kick-off meeting.

- 1. The meeting began with introductions and distribution of the agenda.
- 2. B&V distributed a copy of the project scope of work contained in the contract and provided a summary of each task along with the associated deliverable.
 - It was noted that a Project Design Memorandum (Task 5) would be developed for each facility.
 - E.ON commented that the Fabric Filter Vendor Workshop scope of work may not start until after the Ghent project has been kicked-off, but likely before the Brown kick-off.
- 3. B&V reviewed the major milestone schedule contained in the scope of work.
 - The possibility of holding the Mill Creek Task 6, AQC Technology Selection Meeting during the second week of November in B&V offices in Kansas City was discussed. E.ON to review and make recommendation. [Action Item #1]
 - E.ON to determine dates for Ghent kick-off meeting. The milestone schedule tentatively has this schedule for the week of October 4th. [Action Item #2]
- 4. E.ON requested B&V provide a DVD of the Phase I report. [Action Item #3]
- 5. B&V distributed a draft copy of the Project Instruction Memorandum (PIM). The communication contacts and project filing system were discussed in some detail.
 - E.ON will investigate setting up a document storage file system to mimic the Documentum system proposed by B&V in the PIM. [Action item #4]
 - B&V to copy Eileen on all correspondence with the plants.
 - Copy <u>Audrey.Jackson@eon-us.com</u> for copy to E.ON file mailbox.
 - B&V will establish and iBackup FTP site to facilitate large file transfer. [Action item #6]
 - E.ON will determine personnel assignments for document review. [Action Item #7]
- 6. B&V distributed a template of a standard monthly report. E.ON approved of the basic format and data of the monthly report template.
 - In addition to the Summary of Engineering Costs contained in the standard monthly report, E.ON requested a financial engineering cost estimate at the end of each month. Copy Mike Rooney on monthly reports. [Action Item #5]
 - Monthly reports will typically be sent during the second week of the following month.
- E.ON requested to use the same weekly telephone conference date of Monday, 2 pm EST. B&V will check for conflicts and advise. [Action item #8]

Page 3

E.ON US Project Kick-off and Mill Creek Site Visit

B&V Project 168908 September 24, 2010

- B&V distributed an example action item list used during the Phase I work. It was agreed to use the same format for Phase II. The action item list will be divided by facility.
- 9. E.ON prefers to provide document review comments in a table log format.
- 10. E.ON is purchasing a trailer for the Mill Creek site that may offer some additional project meeting space.
- 11. Eileen Saunders provided an alternate contact number for her at Ghent (502-347-4023). B&V to update PIM with contact information. [Action Item #9]
- 12. B&V distributed a draft data request and inventory of data/information already in B&V's possession. E.ON asked B&V to carefully scrutinize the information request so as to not request information we may already have. B&V to finalize the initial data request and inventory list and submit it to E.ON as soon as possible. [Action item #10]
- 13. The administrative kick-off meeting concluded at approximately 4:30 pm.

Day 2, September 15, 2010

The second day of kick-off meetings began at 9 am at Mill Creek.

- 14. Eileen began the meeting with introductions and a brief summary of the project scope.
- 15. Gary Revlett provided a presentation of the main regulatory drivers influencing the coalfired fleet. These drivers include the new NOx and SO2 NAAQS standards, Utility MACT for hazardous air pollutants, and the proposed Clean Air Transport Rule (CATR). Gary explained that these current and pending regulations are the drivers for the Phase II work. Gary provided an updated table that can be used as the initial design basis titled "Estimated Limits & Compliance Dates for Future New Air Requirement Mill Creek Station".
- 16. Scott Straight addressed the meeting stating that the current company strategy does not have E.ON self-compliant (as a fleet) with NOx credits until 2016. E.ON would like to be self-compliant by 2013-2014. Scott asked the group to evaluate the possibility of accelerating the installation of SCRs on Mill Creek Units 1 and 2. This is also being considered at Ghent. (Note: Over the course of the next two days, this scenario was given consideration. A separate email correspondence addressing this issue was prepared and sent to E.ON on September 17, 2010, a copy of which is attached herein.) [Action Item #16]
- 17. B&V provided a presentation summary of the results of the August 5th and 6th Mill Creek AQC Screen Workshop. The presentation summarized the workshop purpose and attendees, an overview of the current plant basis, AQC technologies and options considered, and recommendations of the workshop. A copy of the workshop presentation summary slides is attached here in for reference.
 - E.ON requested B&V review the pros and cons of the NID system as part of the technology validation task. Action item #11]
- 18. E.ON advised that Alex Betz would be the Mill Creek plant contact for information requests.
- 19. E.ON will be contacting Hitachi, BPI, Foster Wheeler, and Alstom, and/or others to evaluate the status of the existing scrubbers and determine the extent they can be

Page 4

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

refurbished. E.ON is to lead this effort with support from B&V as requested. [Action item #12] Results of the evaluation will be provided to B&V

- If the new Unit 4 WFGD and stack requires the relocation of the ammonia storage area, it may be possible to consolidate it with the ammonia storage requirements for the new Unit 1 and 2 SCRs.
- 21. It may be possible to reuse Unit 4's fans on Unit 3 should the existing fans become superfluous in the new Unit 4 arrangement. It then may be possible to reuse the Unit 3 fans on Unit 1 and/or unit 2.
- 22. E.ON confirmed there is no "sacred ground" around the existing units, areas reserved for other uses and unavailable for use in the AQCS upgrade. B&V requested if any balance-of-plant upgrades are currently under consideration that should be taken into account in the AQCS work, beyond the plans for an additional ball mill at the limestone prep building.
- Following lunch, E.ON and B&V personnel continue site walk down activities, concluding at approximately 5:30 pm. Some observations from this walk down are identified below.
 - Unit 4 fabric filter likely to be required to be installed above the Unit 4 scrubber electrical building.
 - Unit 3 would be tied into the current Unit 4 scrubber after the new Unit 4 FGD is built. The old Unit 3 scrubber would be torn down to allow new AQC equipment to be potentially located in that area.
 - Unit 3 and 4 structural steel was generally in good shape for lower areas that could be inspected. Higher areas of Unit 3 & 4 could not be assessed due to the large flue gas leaks in the duct that limited access for personal safety reasons.
 - Duct configuration will be complicated, but appears possible, and will depend on the specific fan arrangement and if new ID fans or booster fans will be used.

Day 3, September 16, 2010

The third and final day of meetings began at 9 am at Mill Creek.

- 24. B&V summarized the major findings of the walk downs for Eileen and began preparing white board sketches of the preliminary AQC control configurations discussed over the last two days in preparation for a site de-briefing scheduled for the early afternoon.
- 25. After a break in the morning rain, an additional walk down of Units 1 and 2 was conducted before lunch to review the structural integrity of the Unit 1 and Unit 2 steel for additional AQC equipment.
- 26. At 1:15 pm, B&V presented de-briefing of the site walk down findings and preliminary AQC control configurations. Two sketches were prepared for the meeting. One illustrated the preliminary AQC configuration options for Units 3 and 4, while the second sketch addressed Units 1 and 2 and the possibility of accelerating the SCR schedule. Pictures of the two white board sketches are attached here in for reference.
 - As a result of the workshop discussions, the potential for locating the Unit 4 fabric filter/NIDs unit and new scrubber, plus a new chimney, to the south of Unit 4 was

Page 5

E.ON US Project Kick-off and Mill Creek Site Visit

B&V Project 168908 September 24, 2010

considered. The original location for the new scrubber and chimney considered was in the area of the demolished thickener south of the limestone prep building. This location, however, involved crossing the limestone conveyor with relatively high ductwork, plus moving both an overhead Unit 3 and Unit 4 345kV T-line and the ammonia tanks and electrical building to provide necessary working space for new construction.

- Alternately, it was determined that there is likely sufficient space for the new Unit 4 AQCS train directly south of Unit 4, running more or less straight east to west with the new chimney located opposite of the Unit 4 turbine building. This arrangement, if it fits, has the advantage of relatively short ductwork runs, no impact to the overhead T-line, and no impact to the existing ammonia tank farm. It would, however, require relocation of the existing annex building and lab, plus limit construction access to one side of the train. B&V will continue evaluation of this arrangement as first choice for Unit 4, with the thickener area location used as a fall-back alternate.
- Should either of the above arrangements fit, it appeared that it would be advantageous to upgrade the existing Unit 4 scrubber in place and reuse it for Unit 3. The flue gas from Unit 3 would be rerouted to the Unit 4 scrubber in the short term (Phase I) and the Unit 3 scrubber demo'd. A new Unit 3 fabric filter/NIDs unit could be built in its place and tied into the Unit 3 ductwork as Phase II of a two phase construction sequence at Unit 3.
- Both Unit 1 and Unit 2 offer significant challenges in the addition of an SCR as an immediate modification (refer to Sep 17th email, attached herein for reference). The existing ESP at both units is located within a few feet of the boiler structure, leaving insufficient room to route ductwork to a new SCR overhead of the ESP. The ESP would have to be demolished or extensively modified before the SCR could be constructed, resulting in either an extended outage while the ESP is moved or reconstructed or the installation of a separate new ESP in another location prior to installation of the SCR. In addition, area available for new structures for either Units 1 or 2 is very limited, by the narrow alleyway between Units 1 and 3 for Unit 1 and by the new RO facility north of the powerblock at Unit 2. No obvious arrangement for the AQCS upgrades at Units 1 and 2 were immediately noted, and additional investigation will be required.
- 27. B&V commented on the poor condition of the structural steel at the existing scrubbers, especially at Units 1 and 2. Relatively isolated examples of steel corrosion, most likely due to exposure to flue gas, were noted in the superstructures at the Unit 3 and 4 scrubbers. However, severe corrosion and loss of structural mass was noted in a significant number of areas at Units 1 and 2. The most severe damage noted was in lighter components, such as platform and grating, but instances of chemical attack on the major structural steel members were also noted on Units 1 and 2. E.ON agreed to provide the results of recent studies assessing the structural steel. [Action Item #13]
- New AQC will likely restrict vehicle and maintenance access in some areas of the facility. E.ON agreed to provide the minimum access dimensions for use in the analysis. [Action Item #14]
- 29. E.ON noted that the existing Unit 4 AQCS (ESP and scrubber) were powered by the Unit 4 aux power supply. Should the Unit 4 scrubber be reused for Unit 3, an alternate source of aux power for the refurbished equipment must be included. Otherwise, an outage on Unit 4 would result in the loss of AQCS for Unit 3.

Page 6

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

- 30. E.ON noted that no aux power supply greater than 4160V is currently available in the immediate plant area. However, there are spare cubicles which might be able to be modified to accept feeder breakers as potential sources of medium voltage power for new loads such as fans in the AQCS upgrade. E.ON also noted that B&V Ann Arbor completed a short circuit study for the plant in the 1990's. B&V to review this study. [Action item #15]
- 31. The meeting concluded at approximately 3 pm.

ACTION ITEMS

#	Description	Responsible	Due Date
1	Determine location for Mill Creek Task 6 Technology	E.ON	10/15/10
	Selection meeting during 2 nd wk of November		
2	Determine dates for Ghent kick-off meeting	E.ON	9/23/10
3	Provide DVD copy of Phase Report	B&V	9/24/10
4	Use B&V file system to set up E.ON document storage	E.ON	TBD
5	Provide engineering cost estimate at end of each month and	B&V	End of
	copy Mike Rooney on monthly reports		Month
6	Create IBackup FTP site for large file transfer	B&V	9/24/10
7	Determine personnel assignments for document review	E.ON	TBD
8	Determine if a Monday, 2 pm EST project conference call B&V 9/2		9/23/10
	time will work for B&V project team		
9	Update PIM with Eileen's Ghent contact information	B&V	9/24/10
10	Prepare data inventory and information request	B&V	9/24/10
11	Evaluate pros and cons of NID system for November	B&V	Nov 2010
	technology validation presentation		
12	Schedule vendors for evaluation of existing scrubbers	E.ON	TBD
13	Provide structural steel study assessments	E.ON	9/24/10
14	Provide minimum access dimension box	E.ON	9/24/10
15	Review B&V electrical study conducted in the 1990s B&V		9/24/10
16	Evaluate the possibility of accelerating the installation of	E.ON and B&V	TBD
	SCRs on Mill Creek Units 1 and 2		

ATTACHMENTS

- Agenda
- Attendance roster
- B&V email of September 17, 2010 addressing the acceleration of the SCR installation schedule for Mill Creek Units 1 and 2.
- August 5th and 6th Mill Creek AQC Workshop Summary Presentation.
- Pictures of the September 16, 2010 white board sketches from the de-brief meeting.

cc: All Attendees File

AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Mill Creek Station September 14 - 16, 2010 Location: E.ON Broadway Office Complex and Mill Creek

Day 1, September 14th, Arrive 1 pm (Broadway Office Complex)

- I. Introductions
- II. Review Project Scope
- III. Review Project Schedule
- IV. Review Project Deliverables
- V. Project Administration
 - a. Communication
 - b. File System
 - c. Monthly Reports
 - d. Weekly Conference Calls/Action Item List
 - e. Invoicing
- VI. Project Documentation
- VII. Information Request

Day 2, September 15th, Arrive 8 am (Mill Creek)

- I. Introductions
- II. Environmental Drivers Presentation (E.ON Gary R.)
- III. Aug 5-6th AQC Workshop Results Presentation (B&V Rick L and Anand M.)
- IV. Lunch (on site)
- V. Continue Escorted Site Walk Down and Data Collection

Day 3, September 16th, Arrive 8 am (Mill Creek)

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (off site)
- III. Site Debriefing Meeting
- IV. Depart (no later than 4 pm)

Day 1, September 14th, Arrive 1 pm (Mill Creek)

- I. Arrive on Site and Introductions
- II. Begin Initial Escorted Site Walk Down

Pow ADC Mill Creek 1pm -4:30p. 9/14/10 Admin drick-off Meeting Hyle lucas 913-458-9062_ Myle Lucas 913-958-9062 /4cas Kjebv.com M.R. WEHRLY 913-458-7131 Wehrly Mr. Can Mike Mooney 502-627-3671 Mike. Mooney Con-US. Com Eleen Sauders 502-627-2431 eileen saunders @ eon-US. Con MIKEKING 313618-8657 KINGMLGBV.COM 77m Hillman 913-458-7928 hillmonthe ebucan.

ON ACC Mill Creek Plant' Kickurr 9/15/10 9am -11:30 Kyle Lucas BEV 913-458-9062 Asst PM/EN MULS Kuaskjew.com Rick LAUSMAN Bil 913 438 7528 AQC Eng LAUSMAN RL& BU.COM Mike. Mooney & EON-VS- 184 507-1027-3671 Mike Mooney Budget Analyst EON WILLing Machkkz @ Gop-UK Con BILL MOEHRKY 302-627-6269 PRIFECT COMPD. Tim Hillmon BHV 913-458-7928 BTV PM hillmante @ bu.com MONTY HINTZ BEV 913-458-2464 hintzmeeby.com BEV CIVIL/STRUCT M.R. WEHRLY BEV 913-458-7131 webstywselv. Can B&V ENG. Mgr. Keyin Sies EON-US 502-817-3545 Production Leader Michnel Stevens EON-US 502-933-6518 Production SUPV / Comp. Jun Nichols For 45 502-932-6643 Pear Syper. Mike BulkNER LGSE 502-933-6515 Production MANAger Mike Kinkand LC:E 507-973-6565 General MANAger KENNY CRAIGMYLE EON Eileen Sauders EON PROJECT COORDINATOR 502-20627-6366 502 -627-2431 MGR Major Copital Project Gary Revlett FON 502 - 627 - 4621 MGK Environmental Attor JOE DIDELOT EON 502-933-6559 MGR, MAINT. MC Scott STRAICUT 1 6 " 627-2701 Director-PE 1/ex Betz LGRE 502-933-6602 Mech. Eng., Mill Cak Anand Mahabaleshwankar B&V 913 4587736 AQC Section Lead

Hillman, Timothy M.

From:	Hillman, Timothy M.
Sent:	Friday, September 17, 2010 12:01 PM
To:	'Saunders, Eileen'
Cc:	Lausman, Rick L.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Wehrly, M. R.; Hintz, Monty E.
Subject:	168908.14.1000 100917 Mill Creek - Acceleration of MC 1 and 2 SCR Installation

Eileen,

Anand and the rest of the team combined notes in this email to present both a high level and somewhat detailed summary of the issues surrounding Scott's inquiry about accelerating the installation schedule of SCRs at Mill Creek Units 1 and 2. Hopefully this will assist you in the pending management decision process.

Thanks for all you planning and organization this week. I thought the meetings and site walk downs were very helpful and meaningful.

Tim.

<u>Summary</u>

The most direct path of accelerating the installation of SCRs on Units 1 and 2 would be to construct the new SCRs with the existing ESPs in place. Unfortunately, this is hampered by the close proximity of the existing dry ESPs to the boilers. As a result, there is no room to route ductwork to and from the new SCRs. Therefore, any acceleration of Unit 1 and 2's new SCR schedule would likely require the original Phase 1 approach of building a new ESP and/or PJFF/NID *first*, in order that the existing ESP could be demolished to make room for the new SCR and ductwork.

Details and Basis

Available SCR Options for MC 1 & 2:

Option 1. High-dust SCR located above the existing dry ESP

Option 2. High-dust SCR located at new location with new air heater placed directly under the new SCR reactor

Option 3. Tail-end, low-dust SCR located on new ground downstream of existing ESP, with flue gas reheat

Challenges Presented by the Economizer Outlet and the Close Proximity of the Existing Dry ESP:

- For SCR Options 1 and 2, the economizer outlet duct would need to be routed eastwards out of the boiler building through the east boiler building wall to flow the flue gas to the SCR reactor inlet, located either per Option 1 or 2. The arrangement of the existing dry ESP, located to the east and at approximately same elevation as the economizer outlet duct, along with its close proximity to the boiler building wall, are all preventing the routing of new SCR inlet duct towards the east direction. Similarly, due to presence of boiler support steel inside the boiler building, it is nearly impossible to route the ductwork out to either the north or south side.
- Also, for Option 1, the new SCR outlet duct needs to be connected back to the existing air heater, which is located directly underneath the economizer. This creates additional congestion in the same area and presents ductwork support challenges with the current boiler steel. On the other hand, for Option 2, it is possible to install a new air heater underneath the new SCR reactor at another location and connect the flue gas stream to the new dry ESP and/or PJFF/NID. However, the routing of the SCR inlet ductwork out of the boiler building for Option 2 still faces the same challenges as Option 1.
- The tail-end, low-dust SCR (Option 3) will increase the capital and O&M cost due to the need for flue gas reheating
 and another air heater to maintain the SCR operating temperature. Therefore, Option 3 is not considered feasible in
 this preliminary review.

Solutions to above challenges:

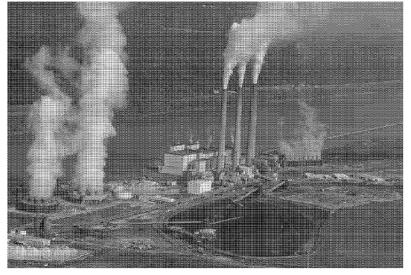
• For SCR Options 1 and 2, routing of the new SCR ductwork makes the demolition of the existing dry ESPs inevitable.

Therefore, in order to create room for a new SCR, a new dry ESP and/or PJFF/NID system will need to be installed first, while the units are online. Once the new dry ESP and/or PJFF/NID system is installed and operating, the existing dry ESP can be demolished to create room for the new SCR. The ID fan and or booster fan requirements can also be finalized based on the BOP challenges, including aux power availability.

• Option 3 is believed to be capital and O&M cost intensive, and is therefore not considered feasible in this preliminary review.

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com


Alternative FGD Technology Workshop Review

Black & Veatch

Agenda

- Drivers
- Overview workshop
- Current plant basis
- Technologies and options discussed
- Recommendations of workshop

Regulatory drivers – still uncertainty

Program Name	Regulated Pollutants	Forecasted Date for Compliance
BART	SAM (MC3 Only)	Within 6 months of final Title V
1-hour NAAQS for NO _x	NO _x	2015 -2017
1-hour NAAQS for SO ₂	SO ₂	2016
Clean Air Transport Rule	NO _x SO ₂	Beginning in 2012 Phase in 2014
New EGU MACT	Mercury Acids (HCI) Metals (PM) Metals (AS) Organics (CO) Dioxin/Furan	Estimated January, 2015; with 1-yr extension - January, 2016

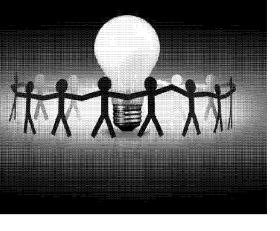
Workshop attendees

E.ON US

- Scott Straight
- Phillip Imber
- Ronald Gregory
- Gary Revlett
- Mike Kirkland

Black & Veatch

- Tim Hillman
- Mike Ballard
- Anand Mahabaleshwarkar AQCS
- AQCS **Rick Lausman**


- Sr. Chem. Engineer
- Mgr Major Projects
 - Mgr Air Section & Environmental Affairs
- Mill Creek Plant Manager
- **Project Manager**
- Construction

Workshop purpose

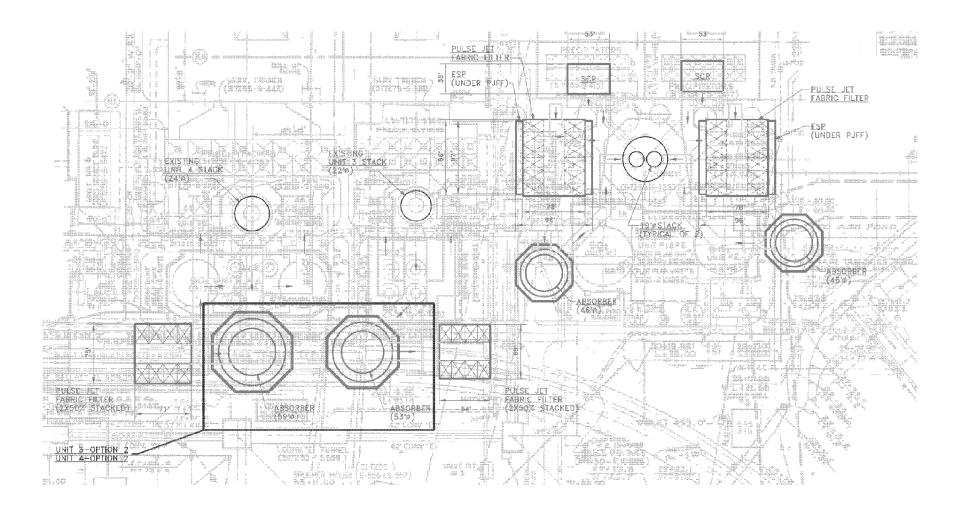
- Review Phase 1 B&V evaluation
- Review current plant constraints
- Brainstorm potential for lower cost yet effective alternatives

September 2010

Page - 5

Phase 1 B&V evaluation

- Fleet wide review
- Screen technologies
- Conceptual design
- Limited time constraints
- New wet FGD and fabric filters for each Mill Creek unit


September 2010

E.ON US Coal Fired Fleet Wide Air Quality Control Technology Cost Assessm

BLACK & VEATCH

Mill Creek phase 1 potential layout - example

Current conditions and future targets

		Current Emissions	Current Removal	Future Removal
Unit	<u>MW</u>	lb/MBtu	<u>%</u>	<u>%</u>
1	330	0.48	92	96
2	330	0.48	92	96
3	425	0.36	86	96
4	<u>525</u>	0.12	92	98
Plant	1610	0.36		
Plant	Targets	0.25 lb/MBtu		96%

Uncontrolled SO2 Emissions 6.2 lb/MBtu

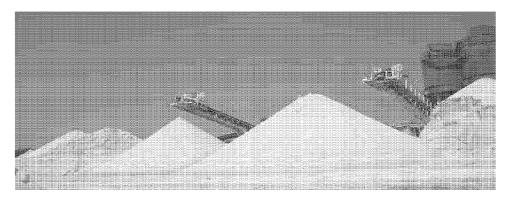
Page - 8

HAPS Issues

- E.ON.US emissions tests are just being finished
- Hg controls are expected for MC units
- Acid gases are likely acceptable
- Uncertainty if plant-wide averaging for Hg will be available
- Speciated metal emissions are also low at MC units

Site specific criteria

- Existing wet FGD
- Condition of FGD and structural steel
- Dewatering system and material handling in place
- Limestone grinding issues
- High sulfur fuel
- Fly ash sale requirement
- Mercury control
- Available space
-Other



September 2010

Byproduct Issues

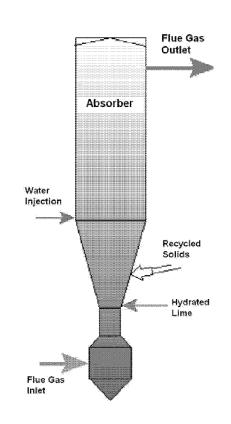
- Mill Creek needs to be able to sell ash due to landfill limitations
- Water emission issues and future limitations may be an issue
- Wastewater stream is currently going to ash ponds

Current FGD conditions

- All scrubbers are basically in a constant rebuilding mode
- Scrubbers are good for another 20 years structurally speaking
- MC1 and MC2 had trays added in 2002 which are now wearing thin
- Top of modules need to be placed
- MC1 and MC2 all duct work has been replaced that wasn't replaced during the wet stack conversion
- Pumps conditions are acceptable with some on MC 1 and MC2 previously replaced

Current FGD conditions - continued

- MC3 and MC4 FGD had trays added in 2000
- MC4 top of modules and duct work needs to be replaced
- MC4 contact trays need replacement
- MC3 scrubber structure is good, although mixing is poor
- MC3 has underground reaction tanks and recycle pumps which cause maintenance and reliability issues.

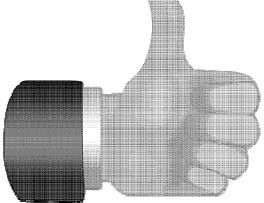

R,

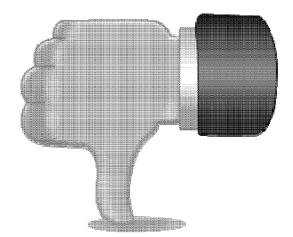
BLACKS VEATCH

BUILDING A WORLD OF DIFFERENCE®

Technology review

- Semi-dry FGD
 - Provides acid gas control (SO₃)
 - Limits waste water production
 - High sulfur fuel is an issue
 - Reagent costs
 - Different technologies provide different advantages - NIDS vs CDS





Factors for upgrading or abandoning existing FGD

- Expected life of unit
- Improvement level required
- Condition of existing FGD
- Space considerations
- Cost comparison to new FGD
- Technical or physical limitations
- Orphaned components

Page - 15

Preliminary workshop results

- Build a new WFGD for MC4
- Upgrade MC4's existing WFGD and use it for MC3
- Upgrade MC1 and MC2's existing WFGDs
- Add fabric filters to all four units
- Add PAC for Hg control

Page - 16

- Add duct injection systems for SO₃ control.
- As an alternative to the fabric filter, add NID system

Workshop results

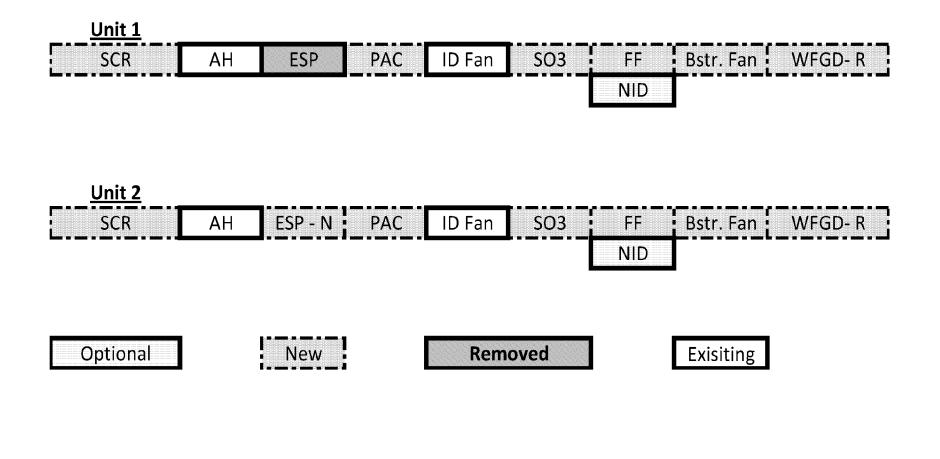
<u>Planned Future</u>				
<u>Unit No.</u>	<u>Technology</u>	<u>Schedule</u> <u>Priority</u>		
1	FGD upgrade	1		
2	FGD upgrade	4		
3	Unit 4 FGD with modification	3		
4	New FGD	2		

R.

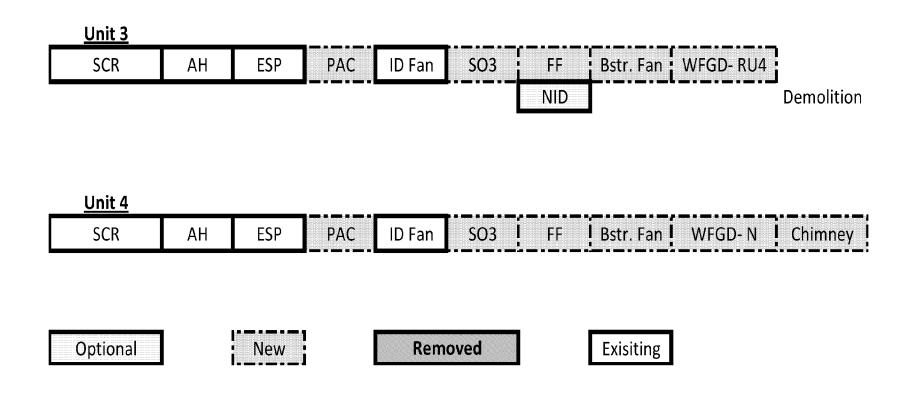
BLACK & VEATCH

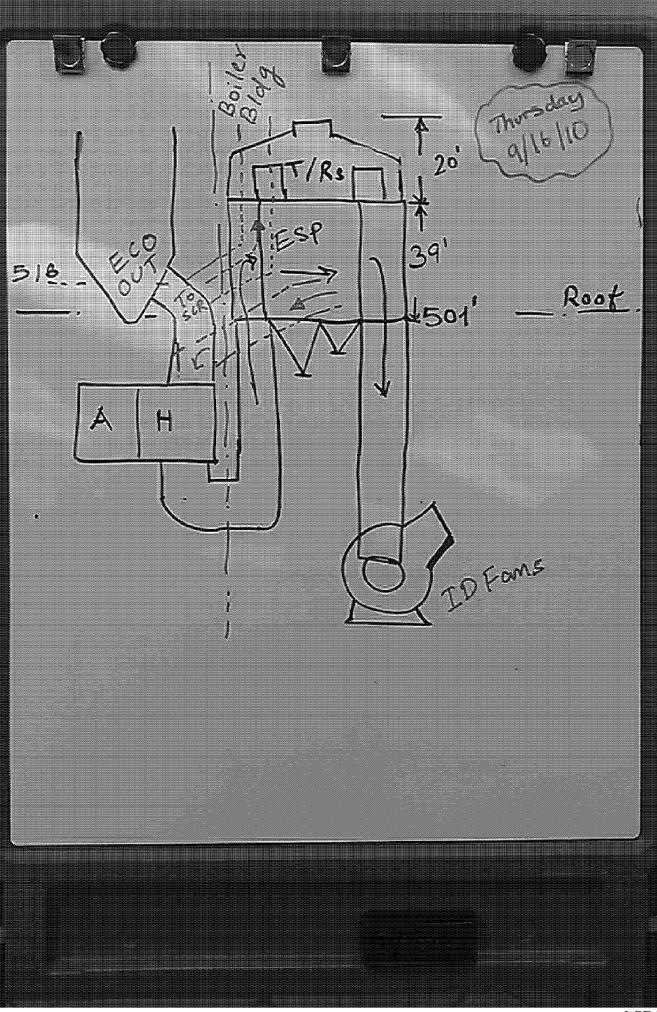
Workshop results

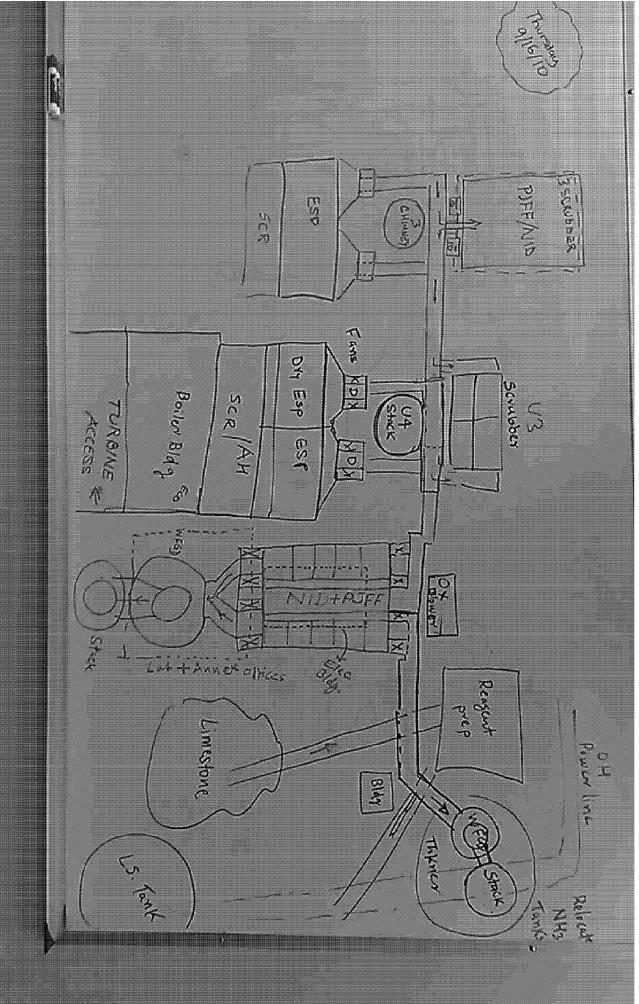
Preliminary Schedule


<u>Unit</u>	<u>FGD</u>	<u>FF</u>	<u>SCR</u>	<u>Fans</u>	<u>Chimney</u>	FF Location
1	2012	2014	2016	2014	Existing	In road
2	2013 or 4th - 2013	2013	2015	2013	Existing	To open area north
3	1st Qtr 2014	Apr 2015		2015	Existing	Road with fans in Unit 3 FGD area
4	4th - 2013	4th - 2013	Relocate NH3	2013	Likely New	South side of plant

Page - 18


September 2010


Proposed equipment lineups- Unit 1 & 2



Proposed equipment lineups- Unit 3 & 4

LGE-KU-00004287

From:	Saunders, Eileen
То:	Straight, Scott; Kirkland, Mike; Didelot, Joe; Buckner, Mike; Betz, Alex; Nichols, Jim (Mill Creek);
	Stevens, Michael; Revlett, Gary; Siers, Kevin; Moehrke, William; Mooney, Mike (BOC 3); Craigmyle,
	Kenny; Imber, Philip
Sent:	9/21/2010 7:51:38 AM
Subject:	FW: 168908.14.1000 100920 Mill Creek - Draft Kickoff and Site Visit Meeting Minutes
Attachments:	Mill Creek Kickoff and Site Walkdown Meeting Minutes with Attachments - Draft.pdf

All,

Please see the attached minutes from our B&V meeting and let me know if you have any comments by Thursday so I can respond to Tim by Friday.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Monday, September 20, 2010 5:09 PM
To: Saunders, Eileen
Cc: 168908 E.ON-AQC; Crabtree, Jonathan D.; Wehrly, M. R.; Lausman, Rick L.; Mahabaleshwarkar, Anand; Hintz, Monty E.; Lucas, Kyle J.
Subject: 168908.14.1000 100920 Mill Creek - Draft Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached draft meeting minutes from last week's kickoff and Mill Creek site visit. Please provide E.ON's comments back to me by Friday, 9/24.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

DRAFT

BLACK & VEATCH CORPORATION CONFERENCE MEMORANDUM

E.ON US Phase II: Air Quality Control Study Project Kick-off and Mill Creek Site Visit B&V Project 168908 B&V File 14.1000 September 20, 2010

A project administrative kick-off meeting and Mill Creek site visit and walk down were held September 14-16th for the Phase II: Air Quality Control Study Project. The administrative kick-off meeting was held at E.ON's Broadway Office Complex in Louisville, while the site visit and walk down were held at the Mill Creek Generating Station.

Recorded by: Tim Hillman

Attending:

Administrative Kick-off Meeting, September 14th.

Eileen Saunders	E.ON
Mike Rooney	E.ON
Mike King	B&V
Tim Hillman	B&V
M.R. Wehrly	B&V
Kyle Lucas	B&V

Mill Creek Kick-off Meeting, September 15th.

Eileen SaundersE.ONMike RooneyE.ONBill MoehrkeE.ONKenny CraigmyleE.ONKevin SiersE.ONMichael StevensE.ONJim NicholsE.ONGary RevlettE.ONJoe DidelotE.ONScott StraightE.ONMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VMonty HintzB&V	Fileen Counders	
Bill MoehrkeE.ONKenny CraigmyleE.ONKevin SiersE.ONMichael StevensE.ONJim NicholsE.ONGary RevlettE.ONJoe DidelotE.ONScott StraightE.ONMike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V		
Kenny CraigmyleE.ONKevin SiersE.ONMichael StevensE.ONJim NicholsE.ONGary RevlettE.ONJoe DidelotE.ONScott StraightE.ONMike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VRick LausmanB&V	Mike Rooney	E.ON
Kevin SiersE.ONMichael StevensE.ONJim NicholsE.ONGary RevlettE.ONJoe DidelotE.ONScott StraightE.ONMike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Bill Moehrke	E.ON
Michael StevensE.ONJim NicholsE.ONGary RevlettE.ONJoe DidelotE.ONScott StraightE.ONMike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Kenny Craigmyle	E.ON
Jim NicholsE.ONGary RevlettE.ONJoe DidelotE.ONScott StraightE.ONMike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Kevin Siers	E.ON
Gary RevlettE.ONJoe DidelotE.ONScott StraightE.ONMike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Michael Stevens	E.ON
Joe DidelotE.ONScott StraightE.ONMike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Jim Nichols	E.ON
Scott StraightE.ONMike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Gary Revlett	E.ON
Mike KirklandLG&EMike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Joe Didelot	E.ON
Mike BucknerLG&EAlex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Scott Straight	E.ON
Alex BetzLG&ETim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Mike Kirkland	LG&E
Tim HillmanB&VM.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Mike Buckner	LG&E
M.R. WehrlyB&VAnand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Alex Betz	LG&E
Anand MahabaleshwarkarB&VKyle LucasB&VRick LausmanB&V	Tim Hillman	B&V
Kyle LucasB&VRick LausmanB&V	M.R. Wehrly	B&V
Rick Lausman B&V	Anand Mahabaleshwarkar	B&V
	Kyle Lucas	B&V
Monty Hintz B&V	Rick Lausman	B&V
	Monty Hintz	B&V

The purpose of the meetings was to 1) provide an administrative kick-off of the project, 2) present the project scope and purpose of the project to Mill Creek personnel, and 3) provide for a site visit and walk down of the Mill Creek facility. The above attendance roster reflects those attending the administrative kick-off meeting in Louisville and the initial kick-off meeting at Mill Creek. The meeting agenda and attendance sign-up sheets are attached herein for reference.

DRAFT

Page 2

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 20, 2010

MEETING DISCUSSION

Day 1, September 14, 2010

As noted in the agenda, the meetings began at 1 pm on September 14th, with an administrative meeting in the Broadway Office Complex and an initial escorted site walk down at Mill Creek with part of the B&V team. The following is an account of the administrative kick-off meeting.

- 1. The meeting began with introductions and distribution of the agenda.
- 2. B&V distributed a copy of the project scope of work contained in the contract and provided a summary of each task along with the associated deliverable.
 - It was noted that a Project Design Memorandum (Task 5) would be developed for each facility.
 - E.ON commented that the Fabric Filter Vendor Workshop scope of work may not start until after the Ghent project has been kicked-off, but likely before the Brown kick-off.
- 3. B&V reviewed the major milestone schedule contained in the scope of work.
 - The possibility of holding the Mill Creek Task 6, AQC Technology Selection Meeting during the second week of November in B&V offices in Kansas City was discussed. E.ON to review and make recommendation. [Action Item #1]
 - E.ON to determine dates for Ghent kick-off meeting. The milestone schedule tentatively has this schedule for the week of October 4th. [Action Item #2]
- 4. E.ON requested B&V provide a DVD of the Phase I report. [Action Item #3]
- 5. B&V distributed a draft copy of the Project Instruction Memorandum (PIM). The communication contacts and project filing system were discussed in some detail.
 - E.ON will investigate setting up a document storage file system to mimic the Documentum system proposed by B&V in the PIM. [Action item #4]
 - B&V to copy Eileen on all correspondence with the plants.
 - Copy <u>Audrey.Jackson@eon-us.com</u> for copy to E.ON file mailbox.
 - B&V will establish and iBackup FTP site to facilitate large file transfer. [Action item #6]
 - E.ON will determine personnel assignments for document review. [Action Item #7]
- 6. B&V distributed a template of a standard monthly report. E.ON approved of the basic format and data of the monthly report template.
 - In addition to the Summary of Engineering Costs contained in the standard monthly report, E.ON requested a financial engineering cost estimate at the end of each month. Copy Mike Rooney on monthly reports. [Action Item #5]
 - Monthly reports will typically be sent during the second week of the following month.
- 7. E.ON requested to use the same weekly telephone conference date of Monday, 2 pm EST. B&V will check for conflicts and advise. [Action item #8]

DRAFT

Page 3

E.ON US Project Kick-off and Mill Creek Site Visit

B&V Project 168908 September 20, 2010

- B&V distributed an example action item list used during the Phase I work. It was agreed to use the same format for Phase II. The action item list will be divided by facility.
- 9. E.ON prefers to provide document review comments in a table log format.
- 10. E.ON is purchasing a trailer for the Mill Creek site that may offer some additional project meeting space.
- 11. Eileen Saunders provided an alternate contact number for her at Ghent (502-347-4023). B&V to update PIM with contact information. [Action Item #9]
- 12. B&V distributed a draft data request and inventory of data/information already in B&V's possession. E.ON asked B&V to carefully scrutinize the information request so as to not request information we may already have. B&V to finalize the initial data request and inventory list and submit it to E.ON as soon as possible. [Action item #10]
- 13. The administrative kick-off meeting concluded at approximately 4:30 pm.

Day 2, September 15, 2010

The second day of kick-off meetings began at 9 am at Mill Creek.

- 14. Eileen began the meeting with introductions and a brief summary of the project scope.
- 15. Gary Revlett provided a presentation of the main regulatory drivers influencing the coalfired fleet. These drivers include the new NOx and SO2 NAAQS standards, Utility MACT for hazardous air pollutants, and the proposed Clean Air Transport Rule (CATR). Gary explained that these current and pending regulations are the drivers for the Phase II work. Gary provided an updated table that can be used as the initial design basis titled "Estimated Limits & Compliance Dates for Future New Air Requirement Mill Creek Station".
- 16. Scott Straight addressed the meeting stating that the current company strategy does not have E.ON self-compliant (as a fleet) with NOx credits until 2016. E.ON would like to be self-compliant by 2013-2014. Scott asked the group to evaluate the possibility of accelerating the installation of SCRs on Mill Creek Units 1 and 2. This is also being considered at Ghent. (Note: Over the course of the next two days, this scenario was given consideration. A separate email correspondence addressing this issue was prepared and sent to E.ON on September 17, 2010, a copy of which is attached herein.) [Action Item #16]
- 17. B&V provided a presentation summary of the results of the August 5th and 6th Mill Creek AQC Screen Workshop. The presentation summarized the workshop purpose and attendees, an overview of the current plant basis, AQC technologies and options considered, and recommendations of the workshop. A copy of the workshop presentation summary slides is attached here in for reference.
 - E.ON requested B&V review the pros and cons of the NID system as part of the technology validation task. Action item #11]
- 18. E.ON advised that Alex Betz would be the Mill Creek plant contact for information requests.
- 19. E.ON will be contacting Hitachi, BPI, Foster Wheeler, and Alstom, and/or others to evaluate the status of the existing scrubbers and determine the extent they can be

DRAFT

Page 4

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 20, 2010

refurbished. E.ON is to lead this effort with support from B&V as requested. [Action item #12] Results of the evaluation will be provided to B&V

- If the new Unit 4 WFGD and stack requires the relocation of the ammonia storage area, it may be possible to consolidate it with the ammonia storage requirements for the new Unit 1 and 2 SCRs.
- 21. It may be possible to reuse Unit 4's fans on Unit 3 should the existing fans become superfluous in the new Unit 4 arrangement. It then may be possible to reuse the Unit 3 fans on Unit 1 and/or unit 2.
- 22. E.ON confirmed there is no "sacred ground" around the existing units, areas reserved for other uses and unavailable for use in the AQCS upgrade. B&V requested if any balance-of-plant upgrades are currently under consideration that should be taken into account in the AQCS work, beyond the plans for an additional ball mill at the limestone prep building.
- Following lunch, E.ON and B&V personnel continue site walk down activities, concluding at approximately 5:30 pm. Some observations from this walk down are identified below.
 - Unit 4 fabric filter likely to be required to be installed above the Unit 4 scrubber electrical building.
 - Unit 3 would be tied into the current Unit 4 scrubber after the new Unit 4 FGD is built. The old Unit 3 scrubber would be torn down to allow new AQC equipment to be potentially located in that area.
 - Unit 3 and 4 structural steel was generally in good shape for lower areas that could be inspected. Higher areas of Unit 3 & 4 could not be assessed due to the large flue gas leaks in the duct that limited access for personal safety reasons.
 - Duct configuration will be complicated, but appears possible, and will depend on the specific fan arrangement and if new ID fans or booster fans will be used.

Day 3, September 16, 2010

The third and final day of meetings began at 9 am at Mill Creek.

- 24. B&V summarized the major findings of the walk downs for Eileen and began preparing white board sketches of the preliminary AQC control configurations discussed over the last two days in preparation for a site de-briefing scheduled for the early afternoon.
- 25. After a break in the morning rain, an additional walk down of Units 1 and 2 was conducted before lunch to review the structural integrity of the Unit 1 and Unit 2 steel for additional AQC equipment.
- 26. At 1:15 pm, B&V presented de-briefing of the site walk down findings and preliminary AQC control configurations. Two sketches were prepared for the meeting. One illustrated the preliminary AQC configuration options for Units 3 and 4, while the second sketch addressed Units 1 and 2 and the possibility of accelerating the SCR schedule. Pictures of the two white board sketches are attached here in for reference.
 - As a result of the workshop discussions, the potential for locating the Unit 4 fabric filter/NIDs unit and new scrubber, plus a new chimney, to the south of Unit 4 was

DRAFT

Page 5

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 20, 2010

considered. The original location for the new scrubber and chimney considered was in the area of the demolished thickener south of the limestone prep building. This location, however, involved crossing the limestone conveyor with relatively high ductwork, plus moving both an overhead Unit 3 and Unit 4 345kV T-line and the ammonia tanks and electrical building to provide necessary working space for new construction.

- Alternately, it was determined that there is likely sufficient space for the new Unit 4 AQCS train directly south of Unit 4, running more or less straight east to west with the new chimney located opposite of the Unit 4 turbine building. This arrangement, if it fits, has the advantage of relatively short ductwork runs, no impact to the overhead T-line, and no impact to the existing ammonia tank farm. It would, however, require relocation of the existing annex building and lab, plus limit construction access to one side of the train. B&V will continue evaluation of this arrangement as first choice for Unit 4, with the thickener area location used as a fall-back alternate.
- Should either of the above arrangements fit, it appeared that it would be advantageous to upgrade the existing Unit 4 scrubber in place and reuse it for Unit 3. The flue gas from Unit 3 would be rerouted to the Unit 4 scrubber in the short term (Phase I) and the Unit 3 scrubber demo'd. A new Unit 3 fabric filter/NIDs unit could be built in its place and tied into the Unit 3 ductwork as Phase II of a two phase construction sequence at Unit 3.
- Both Unit 1 and Unit 2 offer significant challenges in the addition of an SCR as an immediate modification (refer to Sep 17th email, attached herein for reference). The existing ESP at both units is located within a few feet of the boiler structure, leaving insufficient room to route ductwork to a new SCR overhead of the ESP. The ESP would have to be demolished or extensively modified before the SCR could be constructed, resulting in either an extended outage while the ESP is moved or reconstructed or the installation of a separate new ESP in another location prior to installation of the SCR. In addition, area available for new structures for either Units 1 or 2 is very limited, by the narrow alleyway between Units 1 and 3 for Unit 1 and by the new RO facility north of the powerblock at Unit 2. No obvious arrangement for the AQCS upgrades at Units 1 and 2 were immediately noted, and additional investigation will be required.
- 27. B&V commented on the poor condition of the structural steel at the existing scrubbers, especially at Units 1 and 2. Relatively isolated examples of steel corrosion, most likely due to exposure to flue gas, were noted in the superstructures at the Unit 3 and 4 scrubbers. However, severe corrosion and loss of structural mass was noted in a significant number of areas at Units 1 and 2. The most severe damage noted was in lighter components, such as platform and grating, but instances of chemical attack on the major structural steel members were also noted on Units 1 and 2. E.ON agreed to provide the results of recent studies assessing the structural steel. [Action Item #13]
- New AQC will likely restrict vehicle and maintenance access in some areas of the facility. E.ON agreed to provide the minimum access dimensions for use in the analysis. [Action Item #14]
- 29. E.ON noted that the existing Unit 4 AQCS (ESP and scrubber) were powered by the Unit 4 aux power supply. Should the Unit 4 scrubber be reused for Unit 3, an alternate source of aux power for the refurbished equipment must be included. Otherwise, an outage on Unit 4 would result in the loss of AQCS for Unit 3.

Page 6

CONFERENCE MEMORANDUM

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 20, 2010

30. E.ON noted that no aux power supply greater than 4160V is currently available in the immediate plant area. However, two free 14kV breakers are available in the switchyard as potential sources of medium voltage power for new loads such as fans in the AQCS upgrade. E.ON also noted that B&V Ann Arbor completed a short circuit study for the plant in the 1990's. B&V to review this study. [Action item #15]

DRAFT

31. The meeting concluded at approximately 3 pm.

ACTION ITEMS

#	Description	Responsible	Due Date
1	Determine location for Mill Creek Task 6 Technology	E.ON	10/15/10
	Selection meeting during 2 nd wk of November		
2	Determine dates for Ghent kick-off meeting	E.ON	9/23/10
3	Provide DVD copy of Phase Report	B&V	9/24/10
4	Use B&V file system to set up E.ON document storage	E.ON	TBD
5	Provide engineering cost estimate at end of each month and	B&V	End of
	copy Mike Rooney on monthly reports		Month
6	Create IBackup FTP site for large file transfer	B&V	9/24/10
7	Determine personnel assignments for document review	E.ON	TBD
8	Determine if a Monday, 2 pm EST project conference call	B&V	9/23/10
	time will work for B&V project team		
9	Update PIM with Eileen's Ghent contact information	B&V	9/24/10
10	Prepare data inventory and information request	B&V	9/24/10
11	Evaluate pros and cons of NID system for November	B&V	Nov 2010
	technology validation presentation		
12	Schedule vendors for evaluation of existing scrubbers	E.ON	TBD
13	Provide structural steel study assessments	E.ON	9/24/10
14	Provide minimum access dimension box	E.ON	9/24/10
15	Review B&V electrical study conducted in the 1990s	B&V	9/24/10
16	Evaluate the possibility of accelerating the installation of	E.ON and B&V	TBD
	SCRs on Mill Creek Units 1 and 2		

ATTACHMENTS

- Agenda
- Attendance roster
- B&V email of September 17, 2010 addressing the acceleration of the SCR installation schedule for Mill Creek Units 1 and 2.
- August 5th and 6th Mill Creek AQC Workshop Summary Presentation.
- Pictures of the September 16, 2010 white board sketches from the de-brief meeting.

cc: All Attendees File

DRAFT

AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Mill Creek Station September 14 - 16, 2010 Location: E.ON Broadway Office Complex and Mill Creek

Day 1, September 14th, Arrive 1 pm (Broadway Office Complex)

- I. Introductions
- II. Review Project Scope
- III. Review Project Schedule
- IV. Review Project Deliverables
- V. Project Administration
 - a. Communication
 - b. File System
 - c. Monthly Reports
 - d. Weekly Conference Calls/Action Item List
 - e. Invoicing
- VI. Project Documentation
- VII. Information Request

Day 2, September 15th, Arrive 8 am (Mill Creek)

- I. Introductions
- II. Environmental Drivers Presentation (E.ON Gary R.)
- III. Aug 5-6th AQC Workshop Results Presentation (B&V Rick L and Anand M.)
- IV. Lunch (on site)
- V. Continue Escorted Site Walk Down and Data Collection

Day 3, September 16th, Arrive 8 am (Mill Creek)

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (off site)
- III. Site Debriefing Meeting
- IV. Depart (no later than 4 pm)

Day 1, September 14th, Arrive 1 pm (Mill Creek)

- I. Arrive on Site and Introductions
- II. Begin Initial Escorted Site Walk Down

Pow ADC Mill Creek 1pm -4:30p. 9/14/10 Admin drick-off Meeting Hyle lucas 913-458-9062____ Myle Lucas 913-958-9062 /4cas Kjebv.com M.R. WEHRLY 913-458-7131 Wehrly Mr. Can Mike Mooney 502-627-3671 Mike. Mooney Con-US. Com Eleen Sauders 502-627-2431 eileen saunders @ eon-US. Con MIKEKING 313618-8657 KINGMLGBV.COM 77m Hillman 913-458-7928 Willmantmebucan.

ON ACC Mill Creek Plant' Kickurr 9/15/10 9am -11:30 Kyle Lucas BEV 913-458-9062 Asst PM/EN MULS Kuaskjew.com Rick LAUSMAN Bil 913 438 7528 AQC Eng LAUSMAN RL& BU.COM Mike. Mooney & EON-VS- 184 507-1027-3671 Mike Mooney Budget Analyst EON WILLING MacAkkz @ GOP-UK Con BILL MOEHRKY 302-627-6269 PRIFECT COMPD. Tim Hillmon BHV 913-458-7928 BTV PM hillmante @ bu.com MONTY HINTZ BEV 913-458-2464 hintzmeeby.com BEV CIVIL/STRUCT M.R. WEHRLY BEV 913-458-7131 webstywselv. Can B&V ENG. Mgr. Keyin Sies EON-US 502-817-3545 Production Leader Michnel Stevens EON-US 502-933-6518 Production SUPV / Comp. Jun Nichols For 45 502-932-6643 Pear Super. Mike BulkNER LGSE 502-933-6515 Production MANAger Mike Kinkand LC:E 507-973-6565 General MANAger KENNY CRAIGMYLE EON Eileen Sauders EON PROJECT COORDINATOR 502-20627-6366 502 -627-2431 MGR Major Copital Project Gary Revlett FON 502 - 627 - 4621 MGK Environmental Attor JOE DIDELOT EON 502-933-6559 MGR, MAINT. MC Scott STRAICUT 1 6 " 627-2701 Director-PE 1/ex Betz LGRE 502-933-6602 Mech. Eng., Mill Cak Anand Mahabaleshwankar B&V 913 4587736 AQC Section Lead

Hillman, Timothy M.

From:	Hillman, Timothy M.
Sent:	Friday, September 17, 2010 12:01 PM
To:	'Saunders, Eileen'
Cc:	Lausman, Rick L.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Wehrly, M. R.; Hintz, Monty E.
Subject:	168908.14.1000 100917 Mill Creek - Acceleration of MC 1 and 2 SCR Installation

Eileen,

Anand and the rest of the team combined notes in this email to present both a high level and somewhat detailed summary of the issues surrounding Scott's inquiry about accelerating the installation schedule of SCRs at Mill Creek Units 1 and 2. Hopefully this will assist you in the pending management decision process.

Thanks for all you planning and organization this week. I thought the meetings and site walk downs were very helpful and meaningful.

Tim.

<u>Summary</u>

The most direct path of accelerating the installation of SCRs on Units 1 and 2 would be to construct the new SCRs with the existing ESPs in place. Unfortunately, this is hampered by the close proximity of the existing dry ESPs to the boilers. As a result, there is no room to route ductwork to and from the new SCRs. Therefore, any acceleration of Unit 1 and 2's new SCR schedule would likely require the original Phase 1 approach of building a new ESP and/or PJFF/NID *first*, in order that the existing ESP could be demolished to make room for the new SCR and ductwork.

Details and Basis

Available SCR Options for MC 1 & 2:

Option 1. High-dust SCR located above the existing dry ESP

Option 2. High-dust SCR located at new location with new air heater placed directly under the new SCR reactor

Option 3. Tail-end, low-dust SCR located on new ground downstream of existing ESP, with flue gas reheat

Challenges Presented by the Economizer Outlet and the Close Proximity of the Existing Dry ESP:

- For SCR Options 1 and 2, the economizer outlet duct would need to be routed eastwards out of the boiler building through the east boiler building wall to flow the flue gas to the SCR reactor inlet, located either per Option 1 or 2. The arrangement of the existing dry ESP, located to the east and at approximately same elevation as the economizer outlet duct, along with its close proximity to the boiler building wall, are all preventing the routing of new SCR inlet duct towards the east direction. Similarly, due to presence of boiler support steel inside the boiler building, it is nearly impossible to route the ductwork out to either the north or south side.
- Also, for Option 1, the new SCR outlet duct needs to be connected back to the existing air heater, which is located directly underneath the economizer. This creates additional congestion in the same area and presents ductwork support challenges with the current boiler steel. On the other hand, for Option 2, it is possible to install a new air heater underneath the new SCR reactor at another location and connect the flue gas stream to the new dry ESP and/or PJFF/NID. However, the routing of the SCR inlet ductwork out of the boiler building for Option 2 still faces the same challenges as Option 1.
- The tail-end, low-dust SCR (Option 3) will increase the capital and O&M cost due to the need for flue gas reheating
 and another air heater to maintain the SCR operating temperature. Therefore, Option 3 is not considered feasible in
 this preliminary review.

Solutions to above challenges:

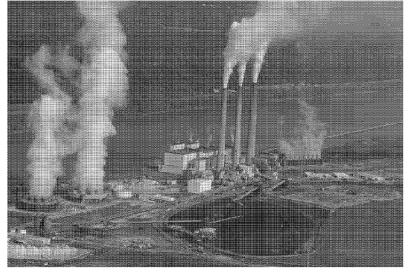
• For SCR Options 1 and 2, routing of the new SCR ductwork makes the demolition of the existing dry ESPs inevitable.

Therefore, in order to create room for a new SCR, a new dry ESP and/or PJFF/NID system will need to be installed first, while the units are online. Once the new dry ESP and/or PJFF/NID system is installed and operating, the existing dry ESP can be demolished to create room for the new SCR. The ID fan and or booster fan requirements can also be finalized based on the BOP challenges, including aux power availability.

• Option 3 is believed to be capital and O&M cost intensive, and is therefore not considered feasible in this preliminary review.

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com


Alternative FGD Technology Workshop Review

Black & Veatch

Agenda

- Drivers
- Overview workshop
- Current plant basis
- Technologies and options discussed
- Recommendations of workshop

Regulatory drivers – still uncertainty

Program Name	Regulated Pollutants	Forecasted Date for Compliance
BART	SAM (MC3 Only)	Within 6 months of final Title V
1-hour NAAQS for NO _x	NO _x	2015 -2017
1-hour NAAQS for SO ₂	SO ₂	2016
Clean Air Transport Rule	NO _x SO ₂	Beginning in 2012 Phase in 2014
New EGU MACT	Mercury Acids (HCI) Metals (PM) Metals (AS) Organics (CO) Dioxin/Furan	Estimated January, 2015; with 1-yr extension - January, 2016

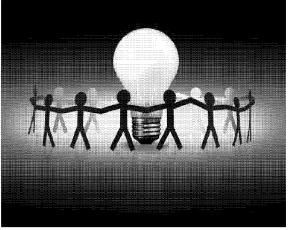
Workshop attendees

E.ON US

- Scott Straight
- Phillip Imber
- Ronald Gregory
- Gary Revlett
- Mike Kirkland

Black & Veatch

- Tim Hillman
- Mike Ballard
- Anand Mahabaleshwarkar AQCS
- Rick Lausman AQCS

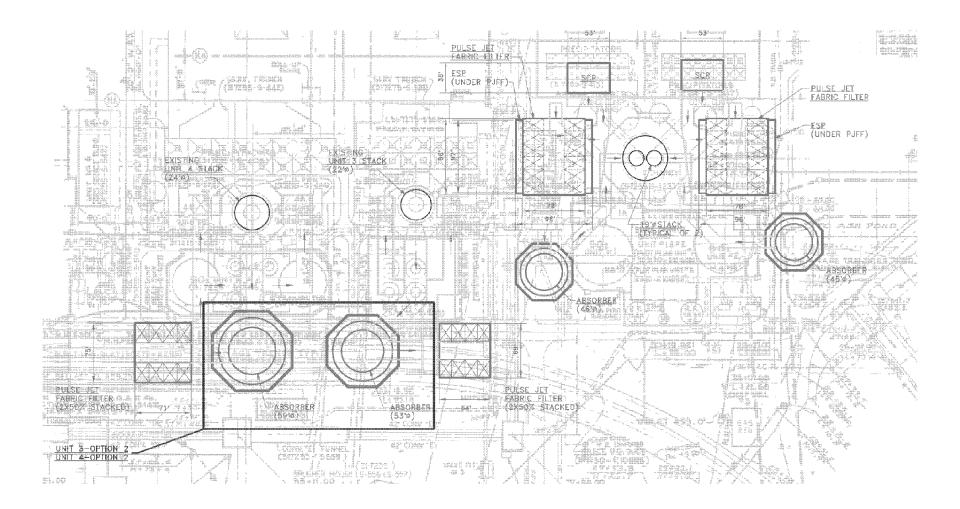


- Sr. Chem. Engineer
- Mgr Major Projects
 - Mgr Air Section & Environmental Affairs
- Mill Creek Plant Manager
- **Project Manager**
- Construction

Workshop purpose

- Review Phase 1 B&V evaluation
- Review current plant constraints
- Brainstorm potential for lower cost yet effective alternatives

Phase 1 B&V evaluation


- Fleet wide review
- Screen technologies
- Conceptual design
- Limited time constraints
- New wet FGD and fabric filters for each Mill Creek unit

Mill Creek phase 1 potential layout - example

Current conditions and future targets

		Current Emissions	Current Removal	Future Removal
Unit	<u>MW</u>	lb/MBtu	<u>%</u>	<u>%</u>
1	330	0.48	92	96
2	330	0.48	92	96
3	425	0.36	86	96
4	<u>525</u>	0.12	92	98
Plant	1610	0.36		
Plant	Targets	0.25 lb/MBtu		96%

Uncontrolled SO2 Emissions 6.2 lb/MBtu

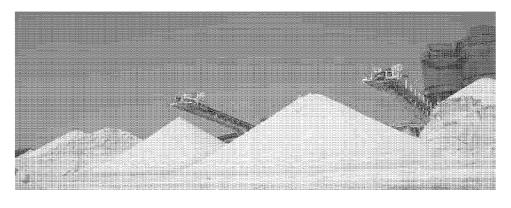
HAPS Issues

- E.ON.US emissions tests are just being finished
- Hg controls are expected for MC units
- Acid gases are likely acceptable
- Uncertainty if plant-wide averaging for Hg will be available
- Speciated metal emissions are also low at MC units

Site specific criteria

- Existing wet FGD
- Condition of FGD and structural steel
- Dewatering system and material handling in place
- Limestone grinding issues
- High sulfur fuel
- Fly ash sale requirement
- Mercury control
- Available space
-Other

Page - 10



September 2010

Byproduct Issues

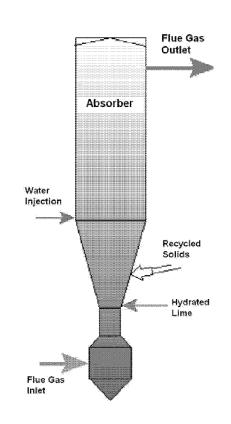
- Mill Creek needs to be able to sell ash due to landfill limitations
- Water emission issues and future limitations may be an issue
- Wastewater stream is currently going to ash ponds

Current FGD conditions

- All scrubbers are basically in a constant rebuilding mode
- Scrubbers are good for another 20 years structurally speaking
- MC1 and MC2 had trays added in 2002 which are now wearing thin
- Top of modules need to be placed
- MC1 and MC2 all duct work has been replaced that wasn't replaced during the wet stack conversion
- Pumps conditions are acceptable with some on MC 1 and MC2 previously replaced

Current FGD conditions - continued

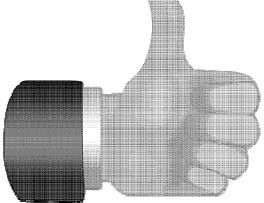
- MC3 and MC4 FGD had trays added in 2000
- MC4 top of modules and duct work needs to be replaced
- MC4 contact trays need replacement
- MC3 scrubber structure is good, although mixing is poor
- MC3 has underground reaction tanks and recycle pumps which cause maintenance and reliability issues.

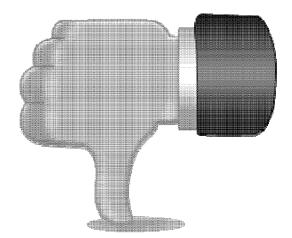

R,

BLACKS VEATCH

BUILDING A WORLD OF DIFFERENCE®

Technology review


- Semi-dry FGD
 - Provides acid gas control (SO₃)
 - Limits waste water production
 - High sulfur fuel is an issue
 - Reagent costs
 - Different technologies provide different advantages - NIDS vs CDS



Factors for upgrading or abandoning existing FGD

- Expected life of unit
- Improvement level required
- Condition of existing FGD
- Space considerations
- Cost comparison to new FGD
- Technical or physical limitations
- Orphaned components

Preliminary workshop results

- Build a new WFGD for MC4
- Upgrade MC4's existing WFGD and use it for MC3
- Upgrade MC1 and MC2's existing WFGDs
- Add fabric filters to all four units
- Add PAC for Hg control

Page - 16

- Add duct injection systems for SO₃ control.
- As an alternative to the fabric filter, add NID system

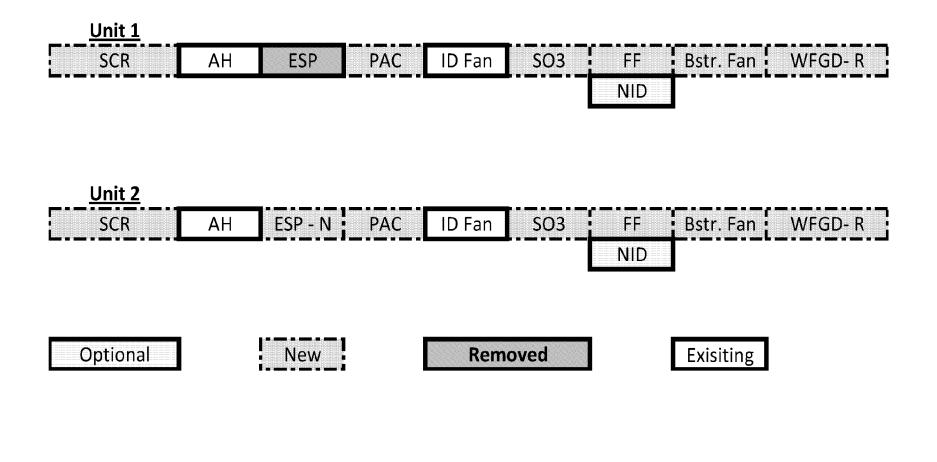
Workshop results

	<u>Planned Future</u>	
<u>Unit No.</u>	<u>Technology</u>	<u>Schedule</u> <u>Priority</u>
1	FGD upgrade	1
2	FGD upgrade	4
3	Unit 4 FGD with modification	3
4	New FGD	2

R.

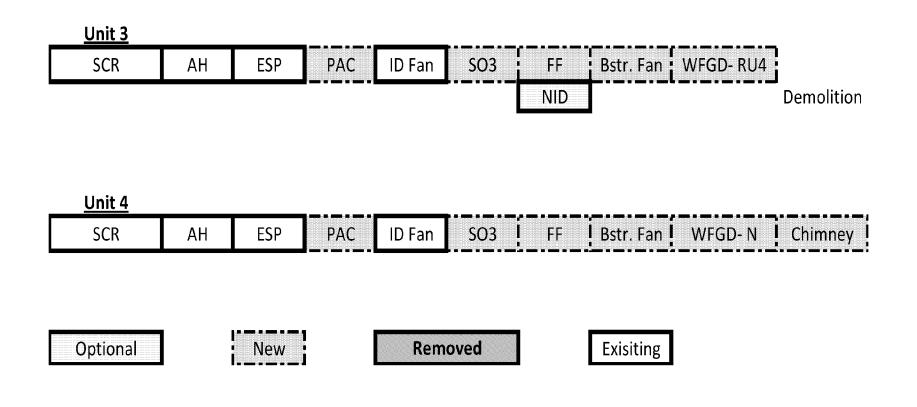
BLACK & VEATCH

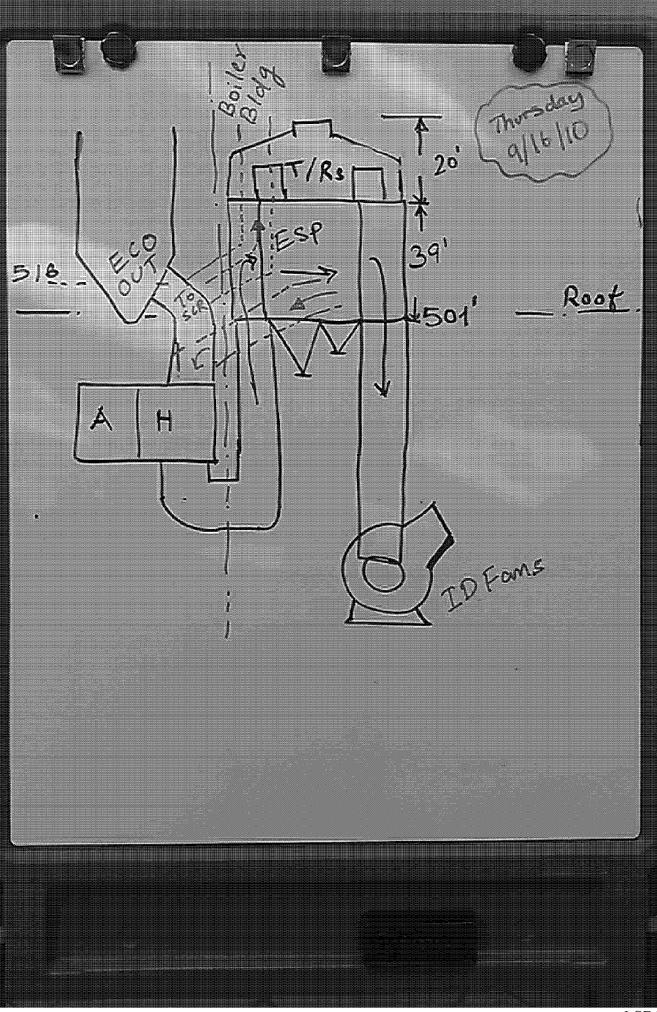
BUILDING A WORLD OF DIFFERENCE®

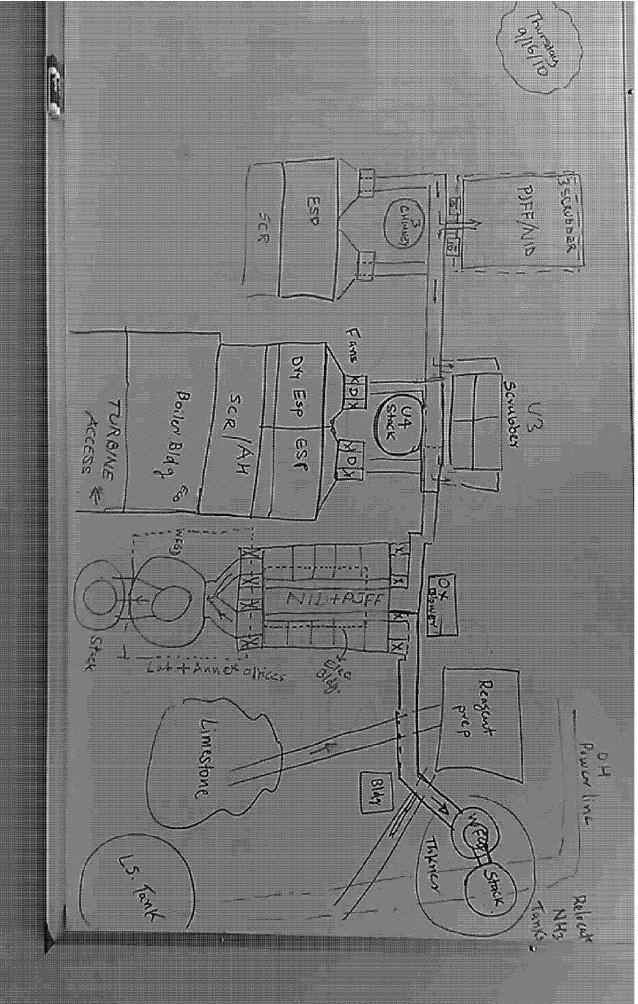

Workshop results

Preliminary Schedule

<u>Unit</u>	<u>FGD</u>	<u>FF</u>	<u>SCR</u>	<u>Fans</u>	<u>Chimney</u>	FF Location
1	2012	2014	2016	2014	Existing	In road
2	2013 or 4th - 2013	2013	2015	2013	Existing	To open area north
3	1st Qtr 2014	Apr 2015		2015	Existing	Road with fans in Unit 3 FGD area
4	4th - 2013	4th - 2013	Relocate NH3	2013	Likely New	South side of plant


Proposed equipment lineups- Unit 1 & 2





Proposed equipment lineups- Unit 3 & 4

LGE-KU-00004321

From:	Eileen Saunders
То:	saundersfam4@gmail.com; Saunders, Eileen
Sent:	8/15/2010 2:43:00 PM
Subject:	EON US Comments-6-23-10 (rev 1).xlsx
Attachments:	EON US Comments-6-23-10 (rev 1).xlsx

	AK AL AM
J.S.	
e Date	
?	
is type of estimate?	
rrent fans. The booste	er fans are included in thei
e units?	
	luded for this item (i.e. ren
ne (i e enemel))///b	at is driving the MC AH mo
ons (i.e. enamer). wh	lat is driving the MC AH Inc
nd others do not.	
———	

	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF
2																			
3																			
4 5																			
6																			
7																			+
8 9																			
9																			
10																			
11 12																			
12	t octimato	Plaasa ovr	 alain the ra	tionale of les	aving them	in and evola	in if there w	ere other si	 Indestions a	kod by the	nlant that w	 vere not inc	 luded last	ly there we	e sovoral c	orrections su	hmitted wi	th the Tech	∣ nology Optio
14	si colimate.	T lease exp															billined w		
15																			
16																			
17	l only). Thi	is is a critica	al clarificati	ion as E.ON	has to sho	w removal c	osts differer	tly in our fir	nancial repo	ts. Examp	le, Ghent Ur	nit 2 has de	molition cos	t of \$6m for	PJFF and	\$9m for Ghe	nt 2 SCR.	We can't u	nderstand h
18																			
19 0	ations cost	r? In genera	al, please c	larity the AH	modificatio	ons or lack th	nereot tor th	e units.											<u> </u>
20																			
20 21 22																			+
23																			
23 24 25 26																			
25																			
26																			
27																			
28 29																			
29 30																			
31																			
32 33 34																			+
33																			
34																			
35																			
36 37																			
37 38																			+
39																			+
40																			
41																			
42																			
43																			
44																			+
45 46																			+
46																			+
47																			+
49																			<u> </u>
49 50																			
51																			
52 53																			
53																			<u> </u>
54																			

	BG	BH	BI	BJ	BK	BL	BM	BN	BO	BP	BQ	BR	BS
2													
3													
5													
6													
7 8													
9													
10													
11													
12 13	ns. Those i	tems should	d be correct	ed in the fin	al report (se	e Ghent as	an example	 e).					
14													
15													
16	ow B&V can	ne un with t	hose costs	There was	more remo	val of ductw	ork in other	areas on th	ne plant site	that did not	cost this m	uch Pleas	e clarify
18						. a. o. duotw							s shariny.
19													
20 21													
22													
23													
24													
25													
27													
23 24 25 26 27 28 29 30 31 32 33 33 34 35													
29													
31													
32													
33													
34													
36													
36 37 38 39													
38													
40													
41 42													
42 43													
43													
44 45													
46													
47 48													
49													
49 50 51 52													
51													
52 53													
53													

	Α	В	С	D	E	F	G	AJ	AK	AL	AM
55											
56											
57											
58											
59											
60											
61											
62											
63 64											
64											
65											
66											
67											
68											1
68 69											
70											
71											
72											
73											

From:	Conroy, Robert
То:	Thompson, Paul; Voyles, John
CC:	Bellar, Lonnie
Sent:	8/25/2010 8:21:12 AM
Subject:	Unit life Q/A from ECR
Attachments:	2009 ECR Filing PSC 1-4.docx; 2009 ECR Filing PSC 2-1.docx

Paul/John,

Attached are the two questions from the KPSC in the 2009 ECR Plan proceeding related to the remaining life of Brown. In the supplemental response (PSC 2-1) we did not specifically reference "Group 1" or "Group 2" units, however, the concept of greater than 20 years (Group 1) and greater than 10 years (Group 2) remaining life is explained.

Robert M. Conroy *Director, Rates E.ON U.S. Services Inc.* (502) 627-3324 (phone) (502) 627-3213 (fax) (502) 741-4322 (mobile) robert.conroy@eon-us.com

Response to Question No. 4 Page 1 of 2 Voyles

KENTUCKY UTILITIES COMPANY

Response to Initial Data Request of Commission Staff Dated August 19, 2009

Case No. 2009-00197

Question No. 4

Witness: John N. Voyles, Jr.

- Q-4. Refer to pages 22--23 of the Direct Testimony of John N. Voyles, Jr. ("Voyles Testimony") regarding the Brown Station Ash Treatment Basin Expansion (Project 29).
 - a. On pages 22-23, Mr. Voyles refers to increasing the elevation of the auxiliary pond to 900 feet, an elevation at which it "is projected to contain sufficient capacity for bottom ash storage for approximately 30 years." Does KU believe it needs such capacity for 30 years at the Brown Station? Explain the response.
 - b. On page 23, Mr. Voyles discusses the reports prepared by Fuller, Mossbarger, Scott, and May ("FMSM''). Describe, generally, the process under which FMSM was selected to perform the analysis of the storage needs at Brown.
- A-4. a. Yes. The Brown station is a base-load generating station required to meet the needs of customers. The Auxiliary Pond was initially constructed to 880' and will be used to store all CCP from the station while the main pond's initial phases are being constructed. This temporary use of the auxiliary pond will use the majority of the constructed capacity. The auxiliary pond is now being elevated to 900' and will be used for long term bottom ash storage only. Based on 2005 CCP production data for bottom ash, the original design life of the Auxiliary Pond was 20 years; changes in actual CCP production rates cause the projected life to vary and the projection is now 30 years, for bottom ash storage only. If the auxiliary pond were to be used for all ash storage, then the projected design life would be less than three years.

The incremental increase in elevation from 880' to 900' is, in the Company's best engineering judgment, the increase that maximizes the value of the proposed construction expense being incurred and minimizes overall costs to its customers. Additionally, the design for the Auxiliary Pond will use the gypsum produced by the FGD currently under construction as fill material in the increased impoundment elevation. If the Auxiliary Pond were being elevated to a lower height than is planned, KU would have to utilize some of

Response to Question No. 4 Page 2 of 2 Voyles

the capacity of the auxiliary pond to store the gypsum not used in the auxiliary pond extension, thereby reducing the projected life of the pond.

Further, KU is utilizing the phased approach to construction of the main pond expansion in order to enhance its ability to flexibly respond to unanticipated circumstances. Should the expected utilization of the Brown station change significantly, planned increases in the vertical elevation of the main pond could be optimized or eliminated and the ash/gypsum transfer system modified to use remaining capacity in both the main pond, or in the event of a station shutdown, the auxiliary pond

b. The analysis of the storage needs at E.W. Brown was competitively bid to local and national Civil and Geotechnical Engineering firms with experience in developing CCP storage facilities in 2005. Companies included in the competitive RFP process were MACTEC, Burns & McDonnell, and Stantec (formerly FMSM). See also the response to Question No. 24.

KENTUCKY UTILITIES COMPANY

Response to Second Data Request of Commission Staff Dated September 11, 2009

Case No. 2009-00197

Question No. 1

Witness: Charles R. Schram

- Q-1. Refer to the response to Item 4.a. of the Commission Staffs First Data Request ("Staffs First Request"). The question was intended to focus on whether KU anticipates that the Brown Station will continue in service for 30 years into the future. With the ages of the units being 38, 46, and 52 years, describe KU's expectations for their expected service lives.
- A-1. As stated in the 2008 IRP (Volume III, Optimal Expansion Plan Analysis, pg 13-14) no additional retirements are currently planned; and the continued operation of the Brown units remains part of the current least-cost supply plan. Consistent with its IRP requirements, the Company will continue to conduct retirement sensitivities in the determination of its optimal supply-side expansion plan.

KU believes that continuing a prudent level of ongoing maintenance and investment at Brown will ensure the ongoing reliable operation of the units and minimize the potential for a significant mechanical failure.

With respect to Brown Unit 3, KU will maintain the unit in such a way as to ensure, year over year, a minimum 20-year remaining useful life is expected. In other words, for each year KU operates and maintains Brown Unit 3, KU expects to have at least a 20-year remaining useful life commencing in that year. KU has made and plans to make significant investment in FGD and SCR equipment for the continued operation of the unit.

With respect to Brown Units 1 and 2, KU expects the units to have, year over year, a minimum of 10-years remaining useful life. Prudent investments will continue to be made to ensure operation of these units into the future. KU has made significant investment in FGD technology to meet expectations of continued operation of these units. However, changes in environmental laws and regulations or catastrophic failures could alter future operation of this vintage of units.

From:Jackson, AudreyTo:Saunders, EileenSent:6/23/2010 3:56:25 PMSubject:Document Comment Blank (2).xlsxAttachments:Document Comment Blank (2) (2) (2) (2).xlsx

	Α	В	С	D	E	F	G	Н
2				ENVIRON	IMENTAL COMPLIANCE AQC	S PROJECT	U. S.	
3								
4		Description:				Due Date		
5 6		Description:						
7	ltem No	ent reference or :	Ву	comment Dat	EON US Comments	Black and Veatch Response	Response Date	
8 9	1							
9 10	2							
10	3 4							
12	5							
13	6							
14	7							
15 16	8 9							
17	9 10							
18	11							
19	12							
20 21	13 14							
21	14							
23	16							
24	17							
25	18							
23 24 25 26 27 28 29	19 20							
28	20							
29								
30								
31 32 33								
33								
34								
35								
34 35 36 37								
38								
39 40								
40								
41								
42 43								
43 44 45								
45								
46 47 48								
47								
49								
50				1				
50 51 52 53								
52								
53 54								
54								

	Α	В	С	D	E	F	G	н
55								
56								
57								
58								
59								
60								
61								
62								
63								
64								
65								
66								
67								1
68								
69								
70								
71								
72								
73								

From:Shedrick SaundersTo:Saunders, Eileen; Shedrick SaundersSent:6/23/2010 7:55:58 PMSubject:E.ON CommentsAttachments:EON US Comments-6-23-10 (rev 1).xlsx

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"> Comment for B&V

	А	В	С	D	E	F	G	Н		J	К
2			E	ENVIRON	IMENTAL COMPLIANCE AQC	S PROJECT	u.s.				
3							1				
4						Due Dat	e:				
5		Description:									
6											
	ltem No	ent reference or :		comment Dat		Black and Veatch Response	Response Dat	e			
8	1	3.3.1.1	ELS	6/23/2010	Contingencies are placed per technology versus pe	r Unit. Are the contingencies different per	technology?				
9	2	3.2.2.2	ELS		Does the additional fan power that was estimated re	epresent general industry standards when	preparing this typ	e of estima	te?		
10	3	4.6	TH/TT		Units 1 and 2 were decommissioned in 2003.						
11	4	4.6.1	TH/TT		Green River Units 1 & 2 were placed in service in 1	948 and have been retired in place since 2	003.				
12	5	4.6.6	ELS		Spacing issue in the last sentence.						
13	6	Appendix E	ELS		Trimble County indicated that they would prefer to e	eliminate the use of booster fans and enha	nce their current	fans. The l	ooster fans	are include	d in their co
14	7	Appendix G	ELS		Please correct the Mill Creek Arrangement Drawing						
15	8	Appendix G	ELS		Can B&V provided a drawing that shows a location					-	
16	9	Appendix G	ELS		Since the Ghent PJFF will potentially be in the sam		ble for those uni	ts?		+	
17	10	Appendix H	ELS		General- The demolition costs are very confusing a				re included	⊥ for this item	Lie remova
18	11	Appenix H	ELS		Please verify that all Units have Demolition Costs a						
19	12	Appendix H	ELS		For the Ghent 2 SCR's, there were no AH modifica		t modifications (M/bot is d		
							nouncations (i.e. enamei) T	. vvnatiso		
20	13	Appendix H	ELS		Please explain the process for estimating the const			J			
21	14	Appendix I	ELS		General- Please work for consistency in describing		age is for and ot	hers do not.	1		
22	15	Appendix	ELS		For Ghent 2, please explain the By-Pass and End C	Caps comment in year 2.					
23	16										
24	17										
25	18										
26	19										
27	20										
28											
29											
30										-	
31										-	
32											
33										+	
34											
35								_		+	
36									-	+	
36								-		+	
										+	
38										+	
39								4			
40										+	
41										<u> </u>	ļ
42											
43											
44											
45											
46											
47											
48										-	
49							1	1		+	
50										+	
51							-	-		+	
51										+	
52										+	
53								-		+	
54										<u> </u>	<u> </u>

	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW
2																			
4																			
5																			
5 6																			
7																			
8 9 10																			
10																			
11																			
12																			
13	st estimate	. Please ex	plain the ra	tionale of lea	aving them	in and expla	in if there w	ere other su	uggestions a	sked by the	plant that v	vere not inc	luded. Last	ly, there we	re several c	orrections su	ibmitted w	ith the Tech	nology Optio
14																			
15 16																			+
17	l only). Th	nis is a critica	al clarificati	ion as E.ON	has to sho	w removal co	osts differer	ntly in our fi	nancial repo	rts. Exampl	le, Ghent Ur	nit 2 has de	nolition cos	st of \$6m for	PJFF and	\$9m for Ghe	ent 2 SCR.	We can't u	⊥ inderstand h
18																			
19	cations cos	st? In genera	al, please c	larify the AH	modificatio	ons or lack th	hereof for th	e units.											
20																			
21																			
23																			
20 21 22 23 24 25 26																			
25																			
26																			
27																			
29																			
27 28 29 30 31																			
31																			
32																			
32 33 34 35																			
34																			
36																			
37																			
36 37 38 39																			I
39																			
40 41 42																			+
42																			
43																			
44																			
45																			
46 47																			
48																			+
48 49 50 51 52 53			1	1		1	1							1		1			
50																			
51																			
52																			
53 54																			
-54					1			<u> </u>						1	1	I		1	

	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ
2													
3 4													
5													
6													
7 8													
9													
10													
11													
12	ns Those i	tems should	d be correct	ed in the fin	al report (se	e Ghent as	an example) 2)					
14							arronarripre						
15													
16	NA B&V cor	ne un with t	hose costa	There was	more remo	val of ducto	ork in other	areas on #	ne plant eito	that did not	t cost this m	uch Pleas	e clarify
18			1030 00318.	THELE WAS	more remo			ลเซลง บท แ	ie plant site			uun. rieds	
19													
20 21 22]
21													
23													
24													
25													
26													
23 24 25 26 27 28 29 30 31 32 33 34 35													
29													
30													
32													
33													
34													
35													
36 37 38 39													
38													
39													
40 41													
41 42													
43													
44 45													
45													
46 47													
48													
49 50 51 52													
51													
52													
53													
54													

From:	Saunders, Eileen
То:	'Hillman, Timothy M.'
CC:	Straight, Scott; Lucas, Kyle J.; Mahabaleshwarkar, Anand
Sent:	6/24/2010 8:09:14 AM
Subject:	EON US Comments-6-23-10 (rev 1) (2).xlsx
Attachments:	EON US Comments-6-23-10 (rev 1) (2).xlsx

Tim,

Enclosed, please find the first round of comments regarding the AQCS report. If I receive additional comments throughout the week, I will send them on to you. However, you requested a response by June 24, 2010 and I wanted to send you what I had up to this point.

I will be in meetings throughout the day but feel free to email me as I will have my Blackberry with me.

Thank you,

Eileen

2 ENVIRONMENTAL COMPLIANCE AQCS PROJECT U.S. 3 Description:		А	В	С	D	E	F	G	AJ	AK	AL	AM
3 Description 6 Description 7 Item Noise Inference or 1 Bits (23/2010) Contingencies are placed per technology versus per Unit. An 4 the contingencies different per technology? 9 2 23/22.22 ELS Does the additional an power that was estimated represent general industry standards where preparing this by of estimate? 10 3 4.6 TH/TT Units 1 and 2 were decommissioned in 2003. Placed in textro. 108/8 and have ben retired in place since 2003. 12 5 4.6.6 ELS Spacing issue in the sate sentence. 108/8 and have ben retired in place since 2003. 13 4 4.6.1 TH/TT Units 1.2 were decommissioned in 2003. 2 14 4.6.8.1 ELS Spacing issue in the sut extence. 108/8 and have ben retired in place since 2003. 2 15 8 Appendix G ELS Placeac corect the MII Creek Arrangement Drawings. Construct from 2002. 16 9 Appendix G ELS Bits was the wave solution of in 200 and a combined PUFF 2 Placeac vort from 10 from 200 and 200 for those unts? 10 Appendix H ELS	_	1	1		ENVIRON	MENTAL COMPLIANCE AQC	S PROJECT	U.S.	-			
S Description: 7 Item No intraference or . By comment Dat EON US Comments Black and Veatch Response Date 8 1 33.1.1 ELS 622010 Contingencies are placed por technology vorse public. Are the contingencies different per technology or . 9 2 3.2.2.2 ELS Does the additional fan power that was estimated represent great multicative standards when preparing this type of estimate? 11 4 4.6.1 TH/TT Green River Units 1.8.2 were decommissioned In 2003. 12 6 4.6.6 ELS Spacing issue in the last sectore. 13 6 Appendix E ELS Trimble County indicated that they would prefer to eliminate the use of booster fans and enhance their current fans. The booster fans and the fanse splain the greater splain the greater and thand trans the matere fanse and enhance their current f								<u> </u>				
6 0 0 0 EON US Comments Black and Veatch Response Response Date 8 1 3.3.11 ELS 6/32010 Contingencies are placed par technology versus per vert. Yen the contingencies different per technology? 10 3 4.6 TH/TT Units 1 and 2 were decommissioned in 2003. 11 4 4.8.1 TH/TT Units 1 and 2 were decommissioned in 2003. 12 5 4.6.6 ELS Spacing leaue in the last certence. 12 5 4.6.6 ELS Spacing leaue in the last certence. 13 4.7 Appendix 0 ELS Thrinb County Indicated hart they would prefer to eliminate the use of booster fans and enhance their current fans. The booster fans and enhance their current fans. The booster fans and enhance their current fans. The booster fans and enhance their current fans. 16 6 Appendix H ELS Since the Chern Plate Wind Decombing Plate Bites would prefer to eliminate the use of booster fans and enhance their current fans. 17 10 Appendix H ELS General- The demotifien Coster fans and enhance their current fans. The lase would be for those of coste their current fans. 17							Due Da	te:				
T item No ent reterence or 5 By comment Date EDM US Comments Bitck and Veatch Response Response Date 8 1 33.11 ELS 6722010 Contigencies are placed prechonogy varue per Unit. Are the contingencies ofference per technology varue per Unit. Are the contingencies ofference per technology varue per Unit. Are the contingencies ofference precision of the second of the of t			Description:									
8 1 3.3.1.1 ELS 6/232010 Comingencies are placed per technology versue per funct we the confingencies different per technology? 10 3 4.6 TH/TT Units 1 and 2 were decommissioned in 2003. Image: Comparison of 2003. 11 4 6.6 TH/TT Units 1 and 2 were decommissioned in 2003. Image: Comparison of 2003. 12 5 4.6.6 ELS Spacing issue in the last sentence. Image: Comparison of 2003. 13 6 Appendix G ELS Trimble County indicated that they would prefer to eliminate the use of booster fans and enhance their current fans. The booster fans and fans. The fans. The booster fans and fans. The fans. T	6											
9 2 3.2.2.2 ELS Does the additional fan power that was estimated represent jendudtry standards when proparing this type of estimate? 101 3 4.6 TH/TT Units 1 and 2 were decomissioned in 2003.	7 It	tem No	ent reference or :	By	comment Dat	EON US Comments	Black and Veatch Response	Response Dat	te			
9 2 3.2.2.2 ELS Does the additional fan power that was estimated represent general industry standards when preparing this type of estimate? 111 4 4.6.1 TH/TT Green River Units 1 & 2 were glaced in service in 1943 and have been retried in place since 2003. Image: Standard Stand	8	1	3.3.1.1	ELS	6/23/2010	Contingencies are placed per technology versus pe	r Unit. Are the contingencies different per	r technology?				
10 3 4.6 THTT Units 1 and 2 were decommissioned in 2003. 11 4 4.6.1 THTT Green River Units 1 a 2 were place in were in 1948 and have been retired in place since 2003. 12 5 4.6.6 ELS Spacing issue in the last centence. 13 6 Appendix G ELS Please corner the MII Creek Arrangement Drawings. 14 7 Appendix G ELS Please corner the MII Creek Arrangement Drawings. 14 7 Appendix G ELS Please corner the MII Creek Arrangement Drawings. 16 9 Appendix G ELS Since the Ghent PJFF will potentially be in the same area, would a combined PJFF be applicable for those units? 17 10 Appendix H ELS Please varity that all Units have Domotion Costs are serve conditionally night. Proves did 8X capter basket modifications (i.e. ename). What is drive or not All the appendix H ELS Please explain the process for estimating the construction diffecult potentials (i.e. ename). What is drive diffecult potentals (i.e. ename). What is drive diffecult potentals (i.e. ename	9	2	3.2.2.2	ELS					be of estima	te?		
11 4 4.6.1 THT Green River Units 1.8.2 were placed in service in 1949 and have been retired in place since 2003. 13 6 Appendix E ELS Trimble County indicated that they would prefer to eliminate the use of booster fans and enhance their current fans. The booster fans and enhance their construction difficulty costs. 17 10 Appendix H ELS General-Please work for consister run fans. The fans. The fans. The fans. The fans. The fans.	10			TH/TT		•						
12 5 4.6.6 ELS Spacing issue in the last sentence.							948 and have been retired in place since	2003				
13 6 Appendix E ELS Timple Country indicated that they would pref to eliminate the use of booster fans and enhance their current fans. The booster fans and enhance their fans and enhance their fans. The booster fans and enhance their fans.												
14 7 Appendix G ELS Please correct the Mill Creek Arrangement Drawings. Image: Construct the Mill Creek Arrangement Drawings. 16 9 Appendix G ELS Can B&V provide a drawing that shows a location for a combined PJFF be applicable for those unts? 17 10 Appendix G ELS Since the Ghent PJFF will potentially be in the same area, would a combined PJFF be applicable for those unts? 18 11 Appendix H ELS Please verify that all Units have Domoliton Costs are vert andiracity high. Please explain the Oxeo for solts that vere included for the cost is at vere included for the cos							l eliminate the use of booster fans and enha	ance their current	J fans The I	⊣ hooster fans	are include	d in their co
15 8 Appendix G ELS Can B&V provided a drawing that shows a location for a combined PJFF pe applicable for those units? 16 9 Appendix H ELS Since the Ghent PJFF Pull potentiality be in the same area. would a combined PJFF pe applicable for those units? 17 10 Appendix H ELS General-The demolfion costs are very containing and seem extraordinarity high. Please explain the types of costs 7 but were included for the cane Pull 18 11 Appendix H ELS For the Ghent PJFF Pull potentiality be in the same area. would a combined PJFF pe applicable for those units? 19 12 Appendix H ELS Please explain the process for estimating the construction difficulty costs. 21 14 Appendix H ELS General-The explanation in the grocess for estimating the licins. Some sheets asy what the outage is for and thers do not. 22 15 Appendix H ELS Please consider the comments regarding the MC arrangements and other scenarios we discussed during our June 21, 2010 conference 24 17 E Please consider the comments regarding the MC arrangements and other scenarios we discussed during our June 21, 2010 conference 26 19 E E E 30	_											
16 9 Appendix G ELS Since the Ohent PJFF will potentially be in the seme area, would a combined PJFFF be applicable for these unls? 17 10 Appendix H ELS General-The demolition costs are very confusing and seeme atracal mainty high. Please cuplian the types of costs that were included of the very confusion and seeme atracal mainty high. Please cuplian the types of costs that were included of the very confusion and seeme atracal mainty high. Please cuplian the types of costs that were included of the very confusion and seeme atracal mainty high. Please cuplian the types of costs that were included of the very confusion and the very confusion and the very confusion of the very confusion of the very confusion of the very confusion and the very confusion and the very confusion of the very		-							-			
17 10 Appendix H EL3 General-The demolition costs are very contuning and seem extraordinarily high. Please explain the types of costs that were included for 18 11 Appendix H ELS Please verify that all lumts have bornoliton costs as some were missing (le. Cane Run) Image: Cane Run (le. ename). Image								able for those uni	ts?			
11 Appent/L ELS Please writy that all Units have Demolitor Costs as some were mising (i.e. Cane Run) Image: Cane Run Image:										re included	l for this item	Lie remov
19 12 Appendix H ELS For the Ghant 2 SCRs, there were no AH modifications listed. Where did BW capture basket modifications (i.e. ename). What is driving the construction difficulty costs. 11 Appendix H ELS General-Piesse work for consistency in describing the life. Some sheets say what the outage is for and others do not. 12 15 Appendix I ELS General-Piesse work for consistency in describing the life. Some sheets say what the outage is for and others do not. 12 15 Appendix I ELS Please consider the comments regarding the MC arrangements and other scenarios we discussed during our June 21, 2010 conference 24 17 26 18 26 19												
20 13 Appendix I ELS Please explain the process for estimating the construction difficulty cests.	_							et modifications (\A/batia d	riving the M	
11 Appendix I ELS General-Please work for consistency in describing the tite-ins. Some sheets say what the outage is for and others do not. 23 15 Appendix I ELS For Ghent 2, please explain the By-Pass and End Caps comment in year 2. Image: Some sheets say what the outage is for and other scenarios we discussed during our June 21, 2010 conference 24 17 Image: Some sheets say what the outage is for and other scenarios we discussed during our June 21, 2010 conference 24 17 Image: Some sheets say what the outage is for and other scenarios we discussed during our June 21, 2010 conference 24 17 Image: Some sheets say what the outage is for and other scenarios we discussed during our June 21, 2010 conference 25 18 Image: Some sheets say what the outage is for and other scenarios we discussed during our June 21, 2010 conference 26 19 Image: Some sheets say what the outage is for and other scenarios we discussed during our June 21, 2010 conference 28 Image: Some scenarios we discussed during our June 21, 2010 conference Image: Some scenarios we discussed during our June 21, 2010 conference 29 Image: Some scenarios we discussed during our June 21, 2010 conference Image: Some scenarios we discussed during our June 21, 2010 conference 30 Image: Some scenarios we discussed during our June 21, 2010 conference Image: Some scenarios we discuse						For the Grient 2 SCR's, there were no AH modifical	lions listed. Where did boy capture bask	et modifications (i.e. enamer) T	. vvnatiso	nving the w	
12 15 Appendix I ELS For Ghent 2, please explain the By-Pass and End Caps comment in year 2. Image: comparison of the comments regarding the MC arrangements and other scenarios we discussed during our June 21, 2010 conference 24 17 Image: comments regarding the MC arrangements and other scenarios we discussed during our June 21, 2010 conference 25 16 Image: comments regarding the MC arrangements and other scenarios we discussed during our June 21, 2010 conference 25 16 Image: comments regarding the MC arrangements and other scenarios we discussed during our June 21, 2010 conference 26 19 Image: comment in year 2. Image: comment in year 2. 27 20 Image: comment in year 2. Image: comment in year 2. Image: comment in year 2. 27 20 Image: comment in year 2. Image: comment in year 2. Image: comment in year 2. 28 Image: comment in year 2. 30 Image: comment in year 2. 31 Image: comment in year 2. 33 Image: comm												
23 16 General ELS Please consider the comments regarding the MC arrangements and other scenarios we discussed during our June 21, 2010 conference 24 17								itage is for and ot	ners do not.			
24 17											<u> </u>	
25 18			General	ELS		Please consider the comments regarding the MC a	rrangements and other scenarios we disc	ussed during our	June 21, 20	10 conferer	ice call part	of our respo
26 19 Image: state stat												
27 20 Image: state stat												
28 Image: state stat	26											
29 Image: state stat	27	20										
30MM <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29											
32	30											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34											
36	35											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36											
38												
39					1		1					<u> </u>
40 Image: state of the s					1		1					<u> </u>
41 Image: state of the s									1			
42									1			<u> </u>
43									-			
44 Image: state of the s									-			
45 <	44											
46 <	44											
47												
48												<u> </u>
49									_	-		<u> </u>
50												<u> </u>
	49											<u> </u>
												L
51												<u> </u>
52 52 52 52 52 50 50 50 50 50 50 50 50 50 50 50 50 50												
53	53											
54	54											

	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF
2																			
4																			
5																			
5 6																			
7																			
8 9 10																			
10																			
11																			
12																			
13	st estimate.	. Please ex	plain the ra	tionale of lea	aving them	in and expla	in if there w	ere other su	uggestions a	sked by the	plant that v	vere not inc	luded. Last	ly, there we	re several co	orrections su	bmitted wi	th the Tech	nology Optio
14																			
15 16																			
17	only). Th	is is a critica	al clarificati	ion as E.ON	has to sho	w removal co	osts differen	itly in our fir	nancial repo	ts. Exampl	le, Ghent Ur	nit 2 has de	nolition cos	t of \$6m for	PJFF and	\$9m for Ghe	nt 2 SCR.	We can't u	⊥ nderstand h
18																			
19	cations cos	t? In genera	al, please c	larify the AH	modificatio	ons or lack th	nereof for th	e units.											
20 21 22																			
21																			
23	nse to the i	report.																	
24 25 26																			
25																			
26																			
27																			
29																			
27 28 29 30 31																			
31																			
32																			
32 33 34 35																			
35																			
36																			
37																			
36 37 38 39																			
39 40																			
41				-															<u> </u>
41 42																			
43																			
44 45																			
45																			
46 47																			
48																			
49																			
48 49 50 51 52 53																			
51																			
53																			
54																			
194		1	I		1	1	1	1			1		1	1	1	1		1	

	BG	BH	BI	BJ	BK	BL	BM	BN	BO	BP	BQ	BR	BS
2													
3 4													
5													
6													
7 8													
9													
10													
11													
12 13	ns Those i	items should	d be correct	ed in the fin	al report (se	e Ghent as	an example	 					
14													
15													
16	NA B&V cor	ne un with t	hose costo	There was	more remo	val of ducto	ork in other	aroas on #	ne plant eito	that did not	t cost this m	uch Pleas	e clarify
18			1030 00318.	THELE WAS	more remo			ลเซลง บท แ	ie plant site			uun. rieds	
19													
20 21													
21													
23													
24													
25													
20													
23 24 25 26 27 28 29 30 31 32 33 33 34 35													
29													
30													
32													
33													
34													
35													
36 37 38 39													
38													
39 40													
40													
41 42													
43													
44 45													
46													
47													
48													
49 50 51 52													
51													
52													
53													
54													

	Α	В	С	D	E	F	G	AJ	AK	AL	AM
55											
56											
57											
58											
59											
60											
61											
62											
63 64											
64											
65											
66											
67											
68											1
68 69											
70											
71											
72											
73											

From:Wilson, StuartTo:Garrett, ChrisCC:Schram, Chuck; Karavayev, LouanneSent:6/25/2010 11:45:11 AMSubject:FW: Status

Another update (seem email below from Eileen)...

Lou Anne is ready to drop the new numbers into the summary form as soon as we get them.

Stuart

From: Saunders, Eileen Sent: Friday, June 25, 2010 11:26 AM To: Wilson, Stuart Subject: FW: Status

Stuart,

Here is an update from B&V confirming that I will receive something today. I don't expect to receive it before close of business but they have surprised me and sent deliverables early before so maybe that will be the case today!

Just wanted to keep you informed.

Thanks,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com] Sent: Friday, June 25, 2010 9:15 AM To: Saunders, Eileen Cc: Hillman, Timothy M. Subject: RE: Status

Eileen, Yes, I believe we'll be able to send you the draft cost summary later today for the two scenarios at Mill Creek.

Regards, Kyle

Kyle Lucas | Environmental Permitting Manager

Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com] Sent: Friday, June 25, 2010 7:36 AM To: Lucas, Kyle J. Subject: Status

Kyle,

Are we still on track to receive the new scenarios/numbers for Mill Creek today? The generation planning folks asked me this morning so I figured I would just check in with you.

Thanks,

Eileen

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

From:Lucas, Kyle J.To:Saunders, EileenCC:Hillman, Timothy M.; Mahabaleshwarkar, AnandSent:6/25/2010 1:43:05 PMSubject:167987.26.0000 100625-New AQC Scenarios at MCAttachments:Draft Mill Creek Costs - Option 1&2 062510.pdf

Eileen,

Attached please find the draft cost summary for the following two Mill Creek scenarios for the WFGD options. The detailed cost and subsequent support information will be included within the report document.

1. Modification of Mill Creek 3 and 4 scrubbers from a 2-50% module configuration to a single 100% module configuration each. The scenario will not consider potential space limitations as a fatal flaw due to the rail/road access and will also not include the costs for moving the rail.

2. Modification of Mill Creek 1 and 2 scrubbers from two single separate modules to a one single combined larger scrubber module located near the roadway. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report but merge into the single scrubber then back to the existing stack.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaski@by.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Monday, June 21, 2010 4:07 PM
To: Lucas, Kyle J.
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand; Straight, Scott
Subject: RE: 167987.10.0100 100621-New AQC Scenarios

Kyle,

After the call, Scott and I reviewed the S&L report from 1999 and discovered that the ESP's were moved to the side not the SCRs. Therefore, Scott said it didn't make sense for me to forward those drawings on to you. You do not need to relocate the SCRs.

Your other assumptions are correct. Please proceed.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Monday, June 21, 2010 4:20 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.10.0100 100621-New AQC Scenarios

Eileen,

From our conference call today, EON requested additional AQC scenarios be reviewed and costs developed beyond those scenarios assumed in the draft AQC study. The scenarios requested include the following:

Modification of Mill Creek 3 and 4 scrubbers from a 2-50% module configuration to a single 100% module configuration each. The scenario will not consider potential space limitations as a fatal flaw due to the rail/road access and will also not include the costs for moving the rail. This scenario will be looked at separately as an additional AQC option for Units 3 and 4.

Also, we reviewed the original scenario data and found that this scenario was only partially completed before it was modified to the 2-50% module configuration. Thus, B&V can revisit and provide the draft costs data by Friday 6/25 COB with approval today.

Modification of Mill Creek 1 and 2 scrubbers from two single separate modules to a one single combined larger scrubber module located near the roadway <u>or</u> off to the side of unit. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report but merge into the single scrubber then back to the existing stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

B&V can provide the draft costs data by Friday 6/25 COB with approval today.

Move Mill Creek 1 and 2 SCRs to the location on the side of the units as described in the S&L report from 1999 which will be provided by EON. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the movement of the SCR location. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Remove Mill Creek 1 and 2 dry ESPs and only use the proposed PJFFs. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the removal of the dry ESP and associated repositioning of the PJFF (elevated) and duct work. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Modification of Brown 1 and 2 PJFF from two single separate PJFF to a one single combined PJFF. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report (note that Unit 1 is has LNB and OFA for NOx control) but merge into the single PJFF and then to the combined scrubber and stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

ase review the aforementioned scenarios provide an e-mail authorization for us to proceed with developing the cost information for each scenario. If needed, please modify the scenarios to clarify specific requirements. It is our understanding that the same level of detail for each scenario as presented within the draft AQC report will be provided for these scenarios. Upon receipt of your authorization and clarification of the scenarios, B&V will transmit the technology selection sheets for the updated scenario(s) for EON's review and approval along with a man-hour estimate and schedule for completion.

ase feel free to contact me with any questions.

gards, le

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Lucaski@bw.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

167987

E.ON Mill Creek	Draft Costs	6/25/2010		
New AQCS Cost Estimates				
AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Combined Units 1 & 2 WFGD	\$509,000,000	\$771	\$24,301,000	\$86,246,000
Combined Units 3 WFGD	\$335,000,000	\$792	\$17,199,000	\$57,969,000
Combined Units 4 WFGD	\$390,000,000	\$743	\$19,826,000	\$67,289,000
Combined Units 4 WFGD Savings in Cost AQC Equipment	\$390,000,000		\$19,826,000 O&M Cost	\$67,289,000
Savings in Cost		% Savings (CC)	. , ,	· , ,
Savings in Cost AQC Equipment	Capital Cost (CC)	% Savings (CC) 14.31%	O&M Cost	Levelized Annual Costs
Savings in Cost AQC Equipment Combined Units 1 & 2 WFGD	Capital Cost (CC) \$85,000,000	% Savings (CC) 14.31% 14.54%	O&M Cost \$4,644,000	Levelized Annual Costs \$14,989,000

DRAFT

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	6/25/2010 2:15:49 PM
Subject:	FW: 167987.26.0000 100625-New AQC Scenarios at MC
Attachments:	Draft Mill Creek Costs - Option 1&2 062510.pdf

Scott,

Are you somewhere that I can call you?

Thanks,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Friday, June 25, 2010 1:43 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100625-New AQC Scenarios at MC

Eileen,

Attached please find the draft cost summary for the following two Mill Creek scenarios for the WFGD options. The detailed cost and subsequent support information will be included within the report document.

1. Modification of Mill Creek 3 and 4 scrubbers from a 2-50% module configuration to a single 100% module configuration each. The scenario will not consider potential space limitations as a fatal flaw due to the rail/road access and will also not include the costs for moving the rail.

2. Modification of Mill Creek 1 and 2 scrubbers from two single separate modules to a one single combined larger scrubber module located near the roadway. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report but merge into the single scrubber then back to the existing stack.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: lucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand; Straight, Scott **Subject:** RE: 167987.10.0100 100621-New AQC Scenarios

Kyle,

After the call, Scott and I reviewed the S&L report from 1999 and discovered that the ESP's were moved to the side not the SCRs. Therefore, Scott said it didn't make sense for me to forward those drawings on to you. You do not need to relocate the SCRs.

Your other assumptions are correct. Please proceed.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Monday, June 21, 2010 4:20 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.10.0100 100621-New AQC Scenarios

Eileen,

From our conference call today, EON requested additional AQC scenarios be reviewed and costs developed beyond those scenarios assumed in the draft AQC study. The scenarios requested include the following:

Modification of Mill Creek 3 and 4 scrubbers from a 2-50% module configuration to a single 100% module configuration each. The scenario will not consider potential space limitations as a fatal flaw due to the rail/road access and will also not include the costs for moving the rail. This scenario will be looked at separately as an additional AQC option for Units 3 and 4.

Also, we reviewed the original scenario data and found that this scenario was only partially completed before it was modified to the 2-50% module configuration. Thus, B&V can revisit and provide the draft costs data by Friday 6/25 COB with approval today.

Modification of Mill Creek 1 and 2 scrubbers from two single separate modules to a one single combined larger scrubber module located near the roadway <u>or</u> off to the side of unit. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report but merge into the single scrubber then back to the existing stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

B&V can provide the draft costs data by Friday 6/25 COB with approval today.

Move Mill Creek 1 and 2 SCRs to the location on the side of the units as described in the S&L report from 1999 which will be provided by EON. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the movement of the SCR location. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Remove Mill Creek 1 and 2 dry ESPs and only use the proposed PJFFs. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the removal of the dry ESP and associated repositioning of the PJFF (elevated) and duct work. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Modification of Brown 1 and 2 PJFF from two single separate PJFF to a one single combined PJFF. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report (note that Unit 1 is has LNB and OFA for NOx control) but merge into the single PJFF and then to the combined scrubber and stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

ase review the aforementioned scenarios provide an e-mail authorization for us to proceed with developing the cost information for each scenario. If needed, please modify the scenarios to clarify specific requirements. It is our understanding that the same level of detail for each scenario as presented within the draft AQC report will be provided for these scenarios. Upon receipt of your authorization and clarification of the scenarios, B&V will transmit the technology selection sheets for the updated scenario(s) for EON's review and approval along with a man-hour estimate and schedule for completion.

ase feel free to contact me with any questions.

gards, le

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

167987

E.ON Mill Creek	Draft Costs	6/25/2010		
New AQCS Cost Estimates				
AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Combined Units 1 & 2 WFGD	\$509,000,000	\$771	\$24,301,000	\$86,246,000
Combined Units 3 WFGD	\$335,000,000	\$792	\$17,199,000	\$57,969,000
Combined Units 4 WFGD	\$390,000,000	\$743	\$19,826,000	\$67,289,000
Combined Units 4 WFGD Savings in Cost AQC Equipment	\$390,000,000		\$19,826,000 O&M Cost	\$67,289,000
Savings in Cost		% Savings (CC)	. , ,	· , ,
Savings in Cost AQC Equipment	Capital Cost (CC)	% Savings (CC) 14.31%	O&M Cost	Levelized Annual Costs
Savings in Cost AQC Equipment Combined Units 1 & 2 WFGD	Capital Cost (CC) \$85,000,000	% Savings (CC) 14.31% 14.54%	O&M Cost \$4,644,000	Levelized Annual Costs \$14,989,000

DRAFT

From:	Karavayev, Louanne
То:	Schram, Chuck
CC:	Wilson, Stuart
Sent:	6/25/2010 4:46:12 PM
Subject:	\$/kW cost for FGD, SCR, SNCR
Attachments:	Environmental Summay (rev5 6-3-10).xlsx

Chuck,

From the B&V estimates, the FGD cost is approximately \$900/kW on average, and the SCR cost is approximately \$350/kW on average. The SNCR cost from our scenario planning analysis was approximately \$80/kW on average. The B&V estimates are attached.

Lou Anne Karavayev

E.ON U.S. Generation Planning p (502) 627-2563 f (502) 217-4969 e LouAnne.Karavayev@EON-US.com

	Α	В	С	D	E	F	G	Н
1	Black & Veatch Study Cost Estimates							
2	\$ in thousands							
3								
4								
5			Capital Cost		O&M Cost	Lev	elized Annual Co	sts
6	BROWN							
7	Brown 1 - Low NOx Burners		\$1,156		\$0		\$141	
8	Brown 1 - Baghouse		\$40,000		\$1,477		\$6,345	
9	Brown 1 - PAC Injection		\$1,599		\$614		\$809	
10	Brown 1 - Neural Networks		\$500		\$50		\$111	
11	Brown 1 - Overfire Air		\$767		\$132		\$225	
12 13	Total Brown 1		\$44,022		\$2,273		\$7,631	
	Brown 2 - SCR		\$92,000		\$3,278		\$14,474	
	Brown 2 - Baghouse		\$51,000		\$1,959		\$8,166	
	Brown 2 - PAC Injection		\$2,476		\$1,090		\$1,391	
	Brown 2 - Neural Networks		\$500		\$50		\$111	
_	Brown 2 - Lime Injection		\$2,739		\$1,155		\$1,488	
19	Total Brown 2		\$148,715		\$7,532		\$25,630	
20								
	Brown 3 - Baghouse		\$61,000		\$3,321		\$10,745	
	Brown 3 - PAC Injection		\$5,426		\$2,330		\$2,990	
	Brown 3 - Neural Networks		\$1,000		\$100		\$222	
24 25	Total Brown 3		\$67,426		\$5,751		\$13,957	
26	Total Brown		\$260,163		\$15,556		\$47,218	
27								
28								
29	GHENT							
30	Ghent 1 - Baghouse		\$131,000		\$5,888		\$21,831	
31	Ghent 1 - PAC Injection		\$6,380		\$4,208		\$4,984	
32	Ghent 1 - Neural Networks		\$1,000		\$100		\$222	
33	Total Ghent 1		\$138,380		\$10,196		\$27,037	
34 25	Cheet 2 SCD		¢227.000		67.070		624 704	
	Ghent 2 - SCR		\$227,000		\$7,078		\$34,704	
	Ghent 2 - Baghouse		\$120,000		\$5,002		\$19,606	
	Ghent 2 - PAC Injection Ghent 2 - Lime Injection		\$6,109		\$2,880 \$2,775		\$3,623 \$3,442	
38 39	Ghent 2 - Lime Injection Ghent 2 - Neural Networks		\$5,483 \$1,000		\$2,775		\$3,442	
39 40	Total Ghent 2 - Neural Networks		. ,		\$100 \$17,835		\$222 \$61,597	
40	Total Grent 2		\$359,592		\$17,835		762,195	
42	Ghent 3 - Baghouse		\$138,000		\$6,122		\$22,917	
	Ghent 3 - PAC Injection		\$6,173		\$4,134		\$4,885	
44	Ghent 3 - Neural Networks		\$1,000		\$100		\$222	
45	Total Ghent 3		\$145,173		\$10,356		\$28,024	
46								

	А	В	С	D	E	F	G	н
47	Ghent 4 - Baghouse		\$117,000		\$5,363		\$19,602	
48	Ghent 4 - PAC Injection		\$6,210		\$3,896		\$4,652	
49	Ghent 4 - Neural Networks		\$1,000		\$100		\$222	
50	Total Ghent 4		\$124,210		\$9,359		\$24,476	
51			A				A	
52	Total Ghent		\$767,355		\$47,746		\$141,134	
53								
54 55								
	GREEN RIVER Green River 3 - SCR		\$29,000		\$1.040		\$4,569	
50 57	Green River 3 - CDS-FF		\$38,000		\$1,040		\$4,569	
57	Green River 3 - PAC Injection		\$1,112		\$323		\$458	
50 59	Green River 3 - Neural Networks		\$500		\$50		\$458	
55 60	Total Green River 3		\$68,612		\$8,287		\$16,637	
61	Total Green River 3		308,012		<i>30,201</i>		\$10,037	
62	Green River 4 - SCR		\$42,000		\$1,442		\$6,553	
63	Green River 4 - CDS-FF		\$54,000		\$10,289		\$16,861	
64	Green River 4 - PAC Injection		\$1,583		\$515		\$708	
65	Green River 4 - Neural Networks		\$500		\$50		\$111	
66	Total Green River 4		\$98,083		\$12,296		\$24,233	
67	T		6466 60F		620 502		640.070	
68 69	Total Green River	_	\$166,695	_	\$20,583	-	\$40,870	
70								
71	CANE RUN							
72	Cane Run 4 - FGD		\$152,000		\$8,428		\$26,926	
73	Cane Run 4 - SCR		\$63,000		\$2,219		\$9,886	
74	Cane Run 4 - Baghouse		\$33,000		\$1,924		\$5,940	
75	Cane Run 4 - PAC Injection		\$2,326		\$1,087		\$1,370	
76	Cane Run 4 - Lime Injection		\$2,569		\$983		\$1,296	
77	Cane Run 4 - Neural Networks		\$500		\$50		\$111	
78	Total Cane Run 4		\$253,395		\$14,691		\$45,529	
79	Cane Run 5 - FGD		\$159,000		\$8,789		\$28,139	
	Cane Run 5 - FGD Cane Run 5 - SCR		\$159,000 \$66,000		\$8,789 \$2,421		\$28,139 \$10,453	
_	Cane Run 5 - Baghouse		\$35,000		\$2,421 \$2,061		\$6,321	
	Cane Run 5 - PAC Injection		\$2,490		\$1,120		\$1,423	
	Cane Run 5 - Lime Injection		\$2,752		\$1,089		\$1,424	
85	Cane Run 5 - Neural Networks		\$500		\$1,085		\$1,424	
86	Total Cane Run 5		\$265,742		\$15,530		\$47,871	
87			φ203), τε		<i><i><i>q</i>₁₀,000</i></i>		<i> </i>	
88	Cane Run 6 - FGD		\$202,000		\$10,431		\$35,014	
89	Cane Run 6 - SCR		\$86,000		\$2,793		\$13,259	
90	Can Rune 6 - Baghouse		\$45,000		\$2,672		\$8,149	
91	Cane Run 6 - PAC Injection		\$3,490		\$1,336		\$1,761	
92	Cane Run 6 - Lime Injection		\$3,873		\$1,367		\$1,838	

	А	В	с	D	E	F	G	Н
93	Cane Run 6 - Neural Networks		\$500		\$50		\$111	
94	Total Can Run 6		\$340,863		\$18,649		\$60,132	
95		_				_		
96 97	Total Cane Run		\$860,000		\$48,870		\$153,532	
97								
99	Mill Creek							
100	Mill Creek 1 - FGD		\$297,000		\$14,341		\$50,486	
101	Mill Creek 1 - SCR		\$97,000		\$3,366		\$15,171	
102	Mill Creek 1 - Baghouse		\$81,000		\$3,477		\$13,335	
103	Mill Creek 1 - Electrostatic Precipita	itor	\$32,882		\$3,581		\$7,583	
104	Mill Creek 1 - PAC Injection		\$4,412		\$2,213		\$2,750	
105	Mill Creek 1 - Lime Injection		\$4,480		\$2,024		\$2,569	
106	Mill Creek 1 - Neural Networks		\$1,000		\$100		\$222	
107	Total Mill Creek 1		\$517,774		\$29,102		\$92,116	
108	Mill Creek 2 - FGD		\$297,000		\$14,604		\$50,749	
	Mill Creek 2 - SCR		\$97,000		\$3,401		\$15,206	
	Mill Creek 2 - Baghouse		\$81,000		\$3,518		\$13,376	
	Mill Creek 2 - Electrostatic Precipita	tor	\$32,882		\$3,664		\$15,576	
	Mill Creek 2 - PAC Injection		\$4,412		\$2,340		\$2,877	
	Mill Creek 2 - Lime Injection		\$4,480		\$2,340		\$2,662	
	Mill Creek 2 - Neural Networks		\$1,000		\$100		\$222	
116			\$517,774		\$29,744		\$92,758	
117			<i>4311)//4</i>		\$ 2 3)744		\$32,730	
118	Mill Creek 3 - FGD		\$392,000		\$18,911		\$66,617	
119	Mill Creek 3 - Baghouse		\$114,000		\$4,923		\$18,797	
120	Mill Creek 3 - PAC Injection		\$5,592		\$3,213		\$3,894	
121	Mill Creek 3 - Neural Networks		\$1,000		\$100		\$222	
122 123	Total Mill Creek 3		\$512,592		\$27,147		\$89,530	
	Mill Creek 4 - FGD		\$455,000		\$21,775		\$77,149	
	Mill Creek 4 - Baghouse		\$133,000		\$5,804		\$21,990	
	Mill Creek 4 - PAC Injection		\$6,890		\$3,858		\$4,697	
127	Mill Creek 4 - Neural Networks		\$1,000		\$100		\$222	
128	Total Mill Creek 4		\$595,890		\$31,537		\$104,058	
129			·/		77		T = = - T = = = =	
130	Total Mill Creek		\$2,144,030		\$117,530		\$378,462	
131								
132								
133	TRIMBLE		.		.			
	Trimble 1 - Baghouse		\$128,000		\$5,782		\$21,360	
	Trimble 1 - PAC Injection		\$6,451		\$4,413		\$5,198	
	Trimble 1 - Neural Networks		\$1,000		\$100		\$222	
137 138	Total Trimble 1		\$135,451		\$10,295		\$26,780	
130								

	А	В	С	D	E	F	G	Н
139	Total Trimble		\$135,451		\$10,295		\$26,780	
140								
141								
142	Grand Total		\$4,333,694		\$260,580		\$787,996	

	A	В	С	D	E
1	Black & Veatch Study Cost Estimate	s			
2					
3					
4					
5			MW		\$/kW
6	BROWN				
7	Brown 1 - Low NOx Burners				\$11
8	Brown 1 - Baghouse				\$364
9	Brown 1 - PAC Injection				\$15
10	Brown 1 - Neural Networks				\$5
11	Brown 1 - Overfire Air				\$7
12	Total Brown 1		110		\$400
13					,
14	Brown 2 - SCR				\$511
15	Brown 2 - Baghouse				\$283
16	Brown 2 - PAC Injection				\$14
17	Brown 2 - Neural Networks				\$3
18	Brown 2 - Lime Injection				\$15
19	Total Brown 2		180		\$826
20	Deres 2. Derek er er				¢100
	Brown 3 - Baghouse				\$133
22	Brown 3 - PAC Injection Brown 3 - Neural Networks				\$12
23 24	Total Brown 3		457		\$2 \$148
24	Total Brown 3		457		Ş140
26	Total Brown		747		\$348
27					
28					
29	GHENT				
30	Ghent 1 - Baghouse				\$242
31	Ghent 1 - PAC Injection				\$12
32	Ghent 1 - Neural Networks				\$2
33	Total Ghent 1		541	-	\$256
34					
	Ghent 2 - SCR				\$439
	Ghent 2 - Baghouse				\$232
37	Ghent 2 - PAC Injection				\$12
38	Ghent 2 - Lime Injection				\$11
39	Ghent 2 - Neural Networks				\$2
40	Total Ghent 2		517		\$696
	Ghent 3 - Baghouse				\$264
43	Ghent 3 - PAC Injection				\$12
44	Ghent 3 - Neural Networks				\$12
45	Total Ghent 3		523		\$278
46	i otal olient s		525	-	φ ε /0

	A	В	С	D	E
47	Ghent 4 - Baghouse				\$222
48	Ghent 4 - PAC Injection				\$12
49	Ghent 4 - Neural Networks				\$2
50	Total Ghent 4		526		\$236
51					
52	Total Ghent		2,107		\$364
53					
54					
55					
56	GREEN RIVER				
57	Green River 3 - SCR				\$408
58	Green River 3 - CDS-FF				\$535
59	Green River 3 - PAC Injection				\$16
60	Green River 3 - Neural Networks				\$7
61 62	Total Green River 3		71		\$966
63	Green River 4 - SCR				\$385
64	Green River 4 - CDS-FF				\$495
65	Green River 4 - PAC Injection				\$15
66	Green River 4 - Neural Networks				\$1
67	Total Green River 4		109		\$900
68			105		4 500
69	Total Green River		180	-	\$92 6
70					
71					
72	CANE RUN				
73	Cane Run 4 - FGD				\$905
74	Cane Run 4 - SCR				\$375
75	Cane Run 4 - Baghouse				\$196
76	Cane Run 4 - PAC Injection				\$14
77	Cane Run 4 - Lime Injection				\$15
78	Cane Run 4 - Neural Networks				\$3
79	Total Cane Run 4		168		\$1,508
80					ć070
81	Cane Run 5 - FGD				\$878 ¢265
82	Cane Run 5 - SCR				\$365
83	Cane Run 5 - Baghouse				\$193
84	Cane Run 5 - PAC Injection				\$14
85	Cane Run 5 - Lime Injection				\$15
86	Cane Run 5 - Neural Networks			-	\$3
87 88	Total Cane Run 5		181		\$1,468
89	Cane Run 6 - FGD				\$774
55	Cane Run 6 - SCR				\$330
90					, JJJC
90 91	Can Rune 6 - Baghouse				\$172

	А	В	C	D	E
93	Cane Run 6 - Lime Injection				\$15
94	Cane Run 6 - Neural Networks				\$2
95	Total Can Run 6		261		\$1,306
96					
97 98	Total Cane Run		610		\$1,410
98					
100	Mill Creek				
101	Mill Creek 1 - FGD				\$900
	Mill Creek 1 - SCR				\$294
103	Mill Creek 1 - Baghouse				\$245
	Mill Creek 1 - Electrostatic Precipita	ator			\$100
	Mill Creek 1 - PAC Injection				\$13
	Mill Creek 1 - Lime Injection				\$14
_	Mill Creek 1 - Neural Networks				\$3
108	Total Mill Creek 1		330		\$1,569
109					
	Mill Creek 2 - FGD				\$900
111	Mill Creek 2 - SCR				\$294
112	Mill Creek 2 - Baghouse				\$245
113	Mill Creek 2 - Electrostatic Precipita	ator			\$100
114	Mill Creek 2 - PAC Injection				\$13
115	Mill Creek 2 - Lime Injection				\$14
116	Mill Creek 2 - Neural Networks				\$3
117	Total Mill Creek 2		330		\$1,569
118					6007
	Mill Creek 3 - FGD				\$927
	Mill Creek 3 - Baghouse				\$270
	Mill Creek 3 - PAC Injection				\$13
	Mill Creek 3 - Neural Networks		400		\$2
123 124	Total Mill Creek 3		423		\$1,212
	Mill Creek 4 - FGD				\$867
	Mill Creek 4 - Baghouse				\$253
	Mill Creek 4 - PAC Injection				\$13
	Mill Creek 4 - Neural Networks				\$2
129	Total Mill Creek 4		525		\$1,135
130					
131	Total Mill Creek		1,608		\$1,333
132					
133					
134	TRIMBLE				
135	Trimble 1 - Baghouse				\$234
	Trimble 1 - PAC Injection				\$12
137	Trimble 1 - Neural Networks				\$2
138	Total Trimble 1		547		\$248

	А	В	C	D	E
139					
140	Total Trimble		547		\$248
141					
142					
143	Grand Total		5,799		\$747

From:Wilson, StuartTo:Karavayev, LouanneSent:6/28/2010 8:48:14 AMSubject:FW: 167987.26.0000 100625-New AQC Scenarios at MCAttachments:Draft Mill Creek Costs - Option 1&2 062510.pdf

Here are the new B&V numbers. Didn't see this come in on Friday...

Stuart

From: Saunders, Eileen
Sent: Friday, June 25, 2010 3:37 PM
To: Wilson, Stuart
Cc: Voyles, John; Bowling, Ralph; Straight, Scott; Kirkland, Mike; Hudson, Rusty
Subject: FW: 167987.26.0000 100625-New AQC Scenarios at MC

Stuart,

As discussed, please find revised numbers for the WFGD portion of the Mill Creek proposed AQCS compliance strategy. Project Engineering will continue to work with B&V to refine the costs on MC and the other facilities.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Friday, June 25, 2010 1:43 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100625-New AQC Scenarios at MC

Eileen,

Attached please find the draft cost summary for the following two Mill Creek scenarios for the WFGD options. The detailed cost and subsequent support information will be included within the report document.

1. Modification of Mill Creek 3 and 4 scrubbers from a 2-50% module configuration to a single 100% module configuration each. The scenario will not consider potential space limitations as a fatal flaw due to the rail/road access and will also not include the costs for moving the rail.

2. Modification of Mill Creek 1 and 2 scrubbers from two single separate modules to a one single combined larger scrubber module located near the roadway. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report but merge into the single scrubber then back to the existing stack.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager

Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: Iucaskj@bv.com This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Monday, June 21, 2010 4:07 PM
To: Lucas, Kyle J.
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand; Straight, Scott
Subject: RE: 167987.10.0100 100621-New AQC Scenarios

Kyle,

After the call, Scott and I reviewed the S&L report from 1999 and discovered that the ESP's were moved to the side not the SCRs. Therefore, Scott said it didn't make sense for me to forward those drawings on to you. You do not need to relocate the SCRs.

Your other assumptions are correct. Please proceed.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Monday, June 21, 2010 4:20 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.10.0100 100621-New AQC Scenarios

Eileen,

From our conference call today, EON requested additional AQC scenarios be reviewed and costs developed beyond those scenarios assumed in the draft AQC study. The scenarios requested include the following:

Modification of Mill Creek 3 and 4 scrubbers from a 2-50% module configuration to a single 100% module configuration each. The scenario will not consider potential space limitations as a fatal flaw due to the rail/road access and will also not include the costs for moving the rail. This scenario will be looked at separately as an additional AQC option for Units 3 and 4.

Also, we reviewed the original scenario data and found that this scenario was only partially completed before it was modified to the 2-50% module configuration. Thus, B&V can revisit and provide the draft costs data by Friday 6/25 COB with approval today.

Modification of Mill Creek 1 and 2 scrubbers from two single separate modules to a one single combined larger scrubber module located near the roadway <u>or</u> off to the side of unit. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report but merge into the single scrubber then back to the existing stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

B&V can provide the draft costs data by Friday 6/25 COB with approval today.

Move Mill Creek 1 and 2 SCRs to the location on the side of the units as described in the S&L report from 1999 which will be provided by EON. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the movement of the SCR location. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Remove Mill Creek 1 and 2 dry ESPs and only use the proposed PJFFs. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the removal of the dry ESP and associated repositioning of the PJFF (elevated) and duct work. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Modification of Brown 1 and 2 PJFF from two single separate PJFF to a one single combined PJFF. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report (note that Unit 1 is has LNB and OFA for NOx control) but merge into the single PJFF and then to the combined scrubber and stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

ase review the aforementioned scenarios provide an e-mail authorization for us to proceed with developing the cost information for each scenario. If needed, please modify the scenarios to clarify specific requirements. It is our understanding that the same level of detail for each scenario as presented within the draft AQC report will be provided for these scenarios. Upon receipt of your authorization and clarification of the scenarios, B&V will transmit the technology selection sheets for the updated scenario(s) for EON's review and approval along with a man-hour estimate and schedule for completion.

ase feel free to contact me with any questions.

gards, le

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

167987

E.ON Mill Creek	Draft Costs	6/25/2010		
New AQCS Cost Estimates				
AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Combined Units 1 & 2 WFGD	\$509,000,000	\$771	\$24,301,000	\$86,246,000
Combined Units 3 WFGD	\$335,000,000	\$792	\$17,199,000	\$57,969,000
o	#200 000 000	#740	#40.000.000	PC7 000 000
Combined Units 4 WFGD	\$390,000,000	\$743	\$19,826,000	\$67,289,000
Combined Units 4 WFGD Savings in Cost AQC Equipment	Capital Cost (CC)		\$19,826,000 O&M Cost	S67,289,000
Savings in Cost AQC Equipment		% Savings (CC)	. , ,	
Savings in Cost	Capital Cost (CC)	% Savings (CC) 14.31%	O&M Cost	Levelized Annual Costs
Savings in Cost AQC Equipment Combined Units 1 & 2 WFGD	Capital Cost (CC) \$85,000,000	% Savings (CC) 14.31% 14.54%	O&M Cost \$4,644,000	Levelized Annual Costs \$14,989,000

DRAFT

From:Hillman, Timothy M.To:Saunders, EileenCC:Mahabaleshwarkar, Anand; Lucas, Kyle J.Sent:6/30/2010 10:41:13 AMSubject:167987.28.0600 100630 EON AQC Project - Action Item List from 062810 Project Conference CallAttachments:EON ACTION ITEM LIST 063010.xls

Eileen,

Please find attached the updated action item list from our Monday conference call.

Also, lets plan on using the same conference call dial in number for our conference call meeting next Wednesday (7/7/10) to discuss the next phase of work.

Hope you get feeling better.

Regards,

Tim Hillman | Senior Air Quality Scientist

Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211

Phone: **(913) 458-7928** Email: hillmantm@bv.com

From: Hillman, Timothy M.
Sent: Wednesday, June 23, 2010 1:05 PM
To: 'Saunders, Eileen'
Cc: Mahabaleshwarkar, Anand; Lucas, Kyle J.
Subject: 167987.28.0600 100623 EON AQC Project - Action Item List from 062110 Project Conference Call

Eileen,

Please find attached the updated action item list from our Monday conference call.

Best regards,

Tim Hillman | Senior Air Quality Scientist

Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

	А	В	С	D	E	F	G	I	J	К
1				ACTION ITEM LIST - EO	N AIR	QUAL	TY CC	NTRO		
2										
3	ITEM #			DESCRIPTION	FILE NO.	RESPONSIBILITY		ATE ADDE	RIG DUE DAT	RR DUE D/
4		DOC/MTNG	DATE			CO.	INITIAL			
5		Conf Call	5/3/10	Send template for environmental requirements matrix		BV	AM	05/03/10		
6	2	Conf Call	5/3/10	Establish a "General" folder in the IBackup document manager		BV	BO	05/03/10	05/04/10	05/03/10
7	3	Conf Call	5/3/10	Set up weekly project status conference call and action item list		BV	тн	05/03/10	05/07/10	05/12/10
8	4	Conf Call	5/3/10	Prepare draft agenda for May 10 kickoff meeting		BV	ТН	05/03/10	05/04/10	05/05/10
9	5	Conf Call	5/3/10	Send EON names and disciplines of AQC site teams		BV	АМ	05/03/10	05/04/10	05/03/10
10	6	Conf Call	5/3/10	Send previous project invoice format to EON for review		BV	мк/тн	05/03/10	05/06/10	05/05/10
11	7	Conf Call	5/3/10	Prepare a more detailed/specific data request		BV	АМ	05/03/10	05/03/10	05/03/10
12	8	Conf Call	5/3/10	Email suggestions for coordination and order of site visits		EON	ES	05/03/10	05/04/10	05/05/10
13	9	Conf Call	5/3/10	Set up contact with EON Fuels		EON	ES	05/03/10	05/04/10	05/04/10
14	10	Conf Call	5/3/10	Determine financial model input requirements (i.e., owner's cost, etc)		EON	ES	05/03/10	05/07/10	
15	11	Kick-Off Mtng	5/10/10	Prepare Meeting Minutes from Kick-off Meeting		BV	KL	05/10/10	05/13/10	05/17/10
16	12	Project Call	5/17/10	Review Kickoff Meeting Minutes		EON	ES	05/17/10	05/18/10	
17	13	Project Call	5/17/10	Issue AQC Recommendation Summaries		BV	KL	5/17/10	05/18-05/20	
18	14	Project Call	5/17/10	Issue Design Basis		BV	KL	5/17/10	05/20/10	05/21/10
19	15	Project Call	5/17/10	Review and Approve AQC Recommendations		EON	ES	5/17/10	05/21/10	05/24/10
20	16	Project Call	5/24/10	Update Design Basis Memo with Revised Data References		BV	АМ	05/24/10	05/25/10	06/02/10
20	17	Project Call and S	5/24/10	Issue Capital and O&M Cost Data		BV	KL	05/24/10	COB 06/01/10	05/30/10
21	18	EON Email	6/1/10	AQC Cost Questions on Mill Creek, Brown, and Neural Networks		BV	тн	06/01/10	06/02/10	06/02/10
22	19	EON Email	6/4/10	AQC Cost Questions on Mill Creek and Brown		BV	KL	06/04/10	06/07/10	
	20	Schedule	6/4/10	Issue Draft Report for EON Review		BV	KL	06/04/10	06/18/10	06/17/10
24	21	Conf Call	6/7/10	Estimate AQC Costs for Brown Units 1 & 2 Combined		BV	АМ	06/07/10	06/08/10	
25										

	М	N	0	Ρ	Q	R	S	Т	U	V	W
1											
2											
3	STATUS	NOTES									
4											
5	Closed										
6	Closed										
7	Closed										
8	Closed										
9	Closed										
10	Closed										
	Closed										
11	Closed										
12	Closed										
13	Closed	EON confirmed at 5/10 Kick-off Meeting.									
14	Closed										
15	Closed										
16	Closed										
17	Closed										
18	Closed										
19	Closed	Email of June 2nd with revised Design Basis.									
20											
21	Closed										
22	Closed	Responses provided during 1030 (EST) call.									
23	Closed	Responses provided during Monday (6/7) call.									
24	Closed										
25	Closed	Email of June 8th.									

	Α	В	С	D	E	F	G	I	J	К
26	22	Conf Call	6/7/10	Provide Description of the Fixed and Variable O&M Costs included in the estima	ate.	BV	AM	06/07/10	06/08/10	
	23	EON Email	6/10/10	Brown 1 SCR Costs		BV	KL	06/10/10	06/14/10	
27										
28	24	BV Email	6/17/10	Receive EON comments on draft report		EON	ES	06/21/10	06/24/10	06/28/10
29	25	EON Email	6/22/10	Perform 2 additional (out of scope) cost scenarios (out of 4) as described in BV	email of	BV	KL	06/22/10	06/25/10	06/25/10
30	26	EON Email	6/22/10	Issue Final Report		BV	KL	06/22/10	07/09/10	
31	27	Conf Call	6/28/10	Ref Item #25 - provide 2 remaining costs scenarios (4 out of 4) as described in	BV email	BV	KL	06/28/10	07/06/10	
32	28	Conf Call	6/28/10	Provide Responses to EON Comments (in comment document)		BV	KL	06/28/10	07/09/10	
33										
34										
35										
36										
37										
38										
39										
40	36									
41	37									
42										
43	38									
44	39									
45	40									
46	41									
47	42									
48	43									
49	44									
-3		1	1			l	1			

	М	N	0	Р	Q	R	S	Т	U	V	W
26	Closed	Email of June 8th.									
	Closed	Email of June 14th - Note: Draft Report will have L	NB. E.C	ON to	comment	during revie	w period wh	hether to use	e SCR or L	NB in the Fir	nal Report.
27											
28	Closed	No additional comments as of conf call 6/28/10.									
29	Closed	Balance of deliverables due with final report.									
30	Open										
31	Open	Balance of deliverables due with final report.									
32	Open	Referencing B&V comment within final report o.k.									
33											
34											
35											
36											
37											
38											
39											
40											
41											
42											
43											
44											ļ!
45											
46											
47											
48											
49											

	Α	В	С	D	E	F	G	I	J	К
50	45									
51	46									
52	47									
	48									
53	49									
54	50									
55	51									
56										
57	52									
58	53									
59	54									
60	55									
	56									
61	57									
62	58									
63	59									
64										
65	60									
66	61									
67	62									
68	63									
69	64									
09	65									
70										
71	66									
72	67									
	68									
73										

50						W
51						
52						
53						
54						
55						
56						
57						
58						
59						
60						
61	 		 			
62	 					
63	 					
64						
65						
66				 		
67						
68						
69						
70						
71						
72						
73						

	Α	В	С	D	E	F	G	I	J	К
74	69									
75	70									
76	71									
77	72									
78	73									
79	74									
80	75									
81	76									
82	77									
83	78									
84	79									
85	80									
86	81									
87	82									
88	83									
89	84									
90	85									
91	86									
92	87									
93	88									
94	89									
95	90									
96	91									
97	92									
97	93									
98										

	М	N	0	Р	Q	R	S	Т	U	V	W
74											
75											
76											
77											
78											
79											
80											
81											
82											
83											
84											
85											
86											
87											
88											
89											
90											
91											
92											
93											
94											
95											
96											
97											
98											

	Α	В	С	D	E	F	G	I	J	K
99	94									
100	95									
101	96									
102	97									
103	98									
104	99									
105	100									
106	101									
107	102									
108	103									
109	104									
110	105									
111	106									
112	107									
113	108									
114	109									
115	110									
116	111									
117	112									
118	113									
119	114									
120	115									
120										
121										
122										
123										

	M	N	0	Р	Q	R	S	Т	U	V	W
99											
100											
101											
102											
103											
104											
105											
106											
107											
108											
109											
110											
111											
112											
113											
114											
115											
116											
117											
118											
119											
120											
121											
122											
123											

	Α	В	С	D	E	F	G	I	J	K
7097										
7098										
7099										
7100										
7101										
7102										
7103										
7104										
7105										
7106										
7107										
7108										
7109	58									

	М	N	0	Р	Q	R	S	Т	U	V	W
7097											
7098											
7099											
7100											
7101											
7102											
7103											
7104											
7105											
7106											
7107											
7108											
7109											

	A	В	С	D	E				
1	EON	E.ON U.S.	SERVICES	INC. COM	PANY				
2	ES	Eileen Sau	ON U.S. SERVICES INC. COMP leen Saunders						
3	GB	Greg Black	[
4	GR	Gary Revie							
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15	<u>BV</u>		atch (B&V)						
16	тн	Tim Hillma	n						
17	KL	Kyle Lucas							
18	AM	Anand Mał	abaleshwai	rker					
19	MK	Mike King							
20	BO	Brian O'Ne	al						

From:	Saunders, Eileen
То:	Straight, Scott
CC:	Ritchey, Stacy
Sent:	6/30/2010 4:00:29 PM
Subject:	Environmental Air Compliance Summary (draft 6-30-10).docx
Attachments:	Environmental Air Compliance Summary (draft 6-30-10).docx

Scott,

Here is a start of the summary for you to review. Please let me know your thoughts and we can finish up tomorrow.

Thanks,

Eileen

Environmental Air Compliance Summary

In May of 2010, Project Engineering was asked to investigate the technological and financial impacts of new Environmental Air regulations on the fleet of coal fired units. Black and Veatch was hired and given four weeks to provide Project Engineering with a high level estimate based on site visits, data collection from the plants and industry experience. The points below provide a summary of key findings from that study:

Mill Creek FGDs

- Previous estimates of the air compliance impacts did not include new FGDs at Mill Creek. The current estimate is based on the B&V recommendation "that new limestone scrubbing technology will provide a more reliable long-term solution...considering the state of the existing scrubbers".
- DBA (dibasic acid) was ruled out due to concerns regarding potential legislation restricting waste water streams.
- Several options will be looked into to lower the Mill Creek costs such as a combined WFGD for Units 1 & 2, single modules WFGDs for Units 3 & 4 and the removal but not replacement of ESPS for Units 1 & 2.

Pulse Jet Fabric Filters and Powdered Activated Carbon Injection Systems

- Fabric Filters and PAC systems have been recommended for use throughout the fleet. This combination of technology not only addresses mercury restrictions, but also addresses Dioxin/Furan and Particulate Limitations required by the New EGU MACT. These items were not considered in previous estimates.
- The current estimate includes a cost saving provision of combining the Brown Unit 1 and 2 Fabric Filters.

SCR vs. SNCR

 The current estimate recommends the use of SCRs instead of SNCRs. SNCRs use either ammonia or urea as reagents. According to the B&V report, "The optimum temperature range for injection of ammonia or urea is 1,550 to 1900 F. The NOx reduction efficiency of an SNCR system decreases rapidly at temperatures outside this range. A coal fired boiler typically only operates at this range in the backpass of the boiler and the temperature location will change as a function of unit load." Therefore, SNCR's generally are capable of only 50% NOx reduction on consistent basis. This performance level will not meet expected emission limitations.

Escalation Summary

- The current estimate of \$4.1 billion has 4% escalation added and is based on a 2014-2016 completion schedule. This schedule was estimated first as it had the least impact to the current outage schedule.
- The delayed schedule calls for all Units to be completed by 2017 which impacts the escalation of the projects. The new estimate under this estimate would potentially be X. *Scott, Stacy and I will work on this number tomorrow. I have been at Ghent in meetings most of the day and she had afternoon meetings.*

Additional Assumptions (Scott-Do you want to include something like this section?)

- The cost estimate does not meet the criteria for Level I Engineering. As Scott and I discussed, it may take 6-8 months to reach that level of Engineering.
- This estimate does not include the outage impact costs.
- This estimate does not include market impacts.
- A generic Neural Network number was used as a means of addressing CO.

From:Saunders, EileenTo:Ritchey, StacySent:6/29/2010 8:22:25 AMSubject:Environmental Summay (rev5 6-3-10) (3).xlsxAttachments:Environmental Summay (rev5 6-3-10) (3).xlsx

	Α	В	С	D	E	F	G	Н
1	Black & Veatch Study Cost Estimates							
2	\$ in thousands							
3								
4								
5			Capital Cost		O&M Cost	Lev	elized Annual Co	sts
6	BROWN							
7	Brown 1 - Low NOx Burners		\$1,156		\$0		\$141	
8	Brown 1 - Baghouse		\$40,000		\$1,477		\$6,345	
9	Brown 1 - PAC Injection		\$1,599		\$614		\$809	
10	Brown 1 - Neural Networks		\$500		\$50		\$111	
11	Brown 1 - Overfire Air		\$767		\$132		\$225	
12 13	Total Brown 1		\$44,022		\$2,273		\$7,631	
	Brown 2 - SCR		\$92,000		\$3,278		\$14,474	
	Brown 2 - Baghouse		\$51,000		\$1,959		\$8,166	
	Brown 2 - PAC Injection		\$2,476		\$1,090		\$1,391	
	Brown 2 - Neural Networks		\$500		\$50		\$111	
_	Brown 2 - Lime Injection		\$2,739		\$1,155		\$1,488	
19	Total Brown 2		\$148,715		\$7,532		\$25,630	
20								
	Brown 3 - Baghouse		\$61,000		\$3,321		\$10,745	
	Brown 3 - PAC Injection		\$5,426		\$2,330		\$2,990	
	Brown 3 - Neural Networks		\$1,000		\$100		\$222	
24 25	Total Brown 3		\$67,426		\$5,751		\$13,957	
26	Total Brown		\$260,163		\$15,556		\$47,218	
27								
28								
29	GHENT							
30	Ghent 1 - Baghouse		\$131,000		\$5,888		\$21,831	
31	Ghent 1 - PAC Injection		\$6,380		\$4,208		\$4,984	
32	Ghent 1 - Neural Networks		\$1,000		\$100		\$222	
33	Total Ghent 1		\$138,380		\$10,196		\$27,037	
34 25	Cheet 2 SCD		¢227.000		67.070		624 704	
	Ghent 2 - SCR		\$227,000		\$7,078		\$34,704	
	Ghent 2 - Baghouse		\$120,000		\$5,002		\$19,606	
	Ghent 2 - PAC Injection Ghent 2 - Lime Injection		\$6,109		\$2,880 \$2,775		\$3,623 \$3,442	
38 39	Ghent 2 - Lime Injection Ghent 2 - Neural Networks		\$5,483 \$1,000		\$2,775		\$3,442	
39 40	Total Ghent 2 - Neural Networks		. ,		\$100 \$17,835		\$222 \$61,597	
40	Total Grent 2		\$359,592		\$17,835		762,195	
42	Ghent 3 - Baghouse		\$138,000		\$6,122		\$22,917	
	Ghent 3 - PAC Injection		\$6,173		\$4,134		\$4,885	
44	Ghent 3 - Neural Networks		\$1,000		\$100		\$222	
45	Total Ghent 3		\$145,173		\$10,356		\$28,024	
46								

	А	В	С	D	E	F	G	Н
47	Ghent 4 - Baghouse		\$117,000		\$5,363		\$19,602	
48	Ghent 4 - PAC Injection		\$6,210		\$3,896		\$4,652	
49	Ghent 4 - Neural Networks		\$1,000		\$100		\$222	
50	Total Ghent 4		\$124,210		\$9,359		\$24,476	
51			1					
52	Total Ghent		\$767,355		\$47,746		\$141,134	
53								
54								
55	GREEN RIVER		<u> </u>		44 6 46		<u> </u>	
	Green River 3 - SCR		\$29,000		\$1,040		\$4,569	
57	Green River 3 - CDS-FF		\$38,000		\$6,874		\$11,499	
58	Green River 3 - PAC Injection		\$1,112		\$323		\$458	
59	Green River 3 - Neural Networks		\$500		\$50		\$111	
60 61	Total Green River 3		\$68,612		\$8,287		\$16,637	
	Green River 4 - SCR		\$42,000		\$1,442		\$6,553	
63	Green River 4 - CDS-FF		\$54,000		\$10,289		\$16,861	
64	Green River 4 - PAC Injection		\$1,583		\$515		\$708	
65	Green River 4 - Neural Networks		\$500		\$50		\$111	
66	Total Green River 4		\$98,083		\$12,296		\$24,233	
67								
68	Total Green River		\$166,695		\$20,583	_	\$40,870	
69 70								
71	CANE RUN							
	Cane Run 4 - FGD		\$152,000		\$8,428		\$26,926	
73	Cane Run 4 - SCR		\$63,000		\$2,219		\$9,886	
	Cane Run 4 - Baghouse		\$33,000		\$1,924		\$5,940	
75	Cane Run 4 - PAC Injection		\$2,326		\$1,087		\$1,370	
76	Cane Run 4 - Lime Injection		\$2,569		\$983		\$1,296	
77	Cane Run 4 - Neural Networks		\$500		\$50		\$111	
78	Total Cane Run 4		\$253,395		\$14,691		\$45,529	
79							4-	
	Cane Run 5 - FGD		\$159,000		\$8,789		\$28,139	
	Cane Run 5 - SCR		\$66,000		\$2,421		\$10,453	
82	Cane Run 5 - Baghouse		\$35,000		\$2,061		\$6,321	
83	Cane Run 5 - PAC Injection		\$2,490		\$1,120		\$1,423	
84	Cane Run 5 - Lime Injection		\$2,752		\$1,089		\$1,424	
85	Cane Run 5 - Neural Networks		\$500		\$50		\$111	
86 87	Total Cane Run 5		\$265,742		\$15,530		\$47,871	
	Cane Run 6 - FGD		\$202,000		\$10,431		\$35,014	
	Cane Run 6 - SCR		\$86,000		\$2,793		\$13,259	
	Can Rune 6 - Baghouse		\$45,000		\$2,672		\$8,149	
91	Cane Run 6 - PAC Injection		\$3,490		\$1,336		\$1,761	
					· -/		· -/· -	

	А	В	С	D	E	F	G	Н
93	Cane Run 6 - Neural Networks		\$500		\$50		\$111	
94	Total Can Run 6		\$340,863		\$18,649		\$60,132	
95		_				_		
96 97	Total Cane Run		\$860,000		\$48,870		\$153,532	
97								
99	Mill Creek							
100	Mill Creek 1 - FGD		\$297,000		\$14,341		\$50,486	
101	Mill Creek 1 - SCR		\$97,000		\$3,366		\$15,171	
102	Mill Creek 1 - Baghouse		\$81,000		\$3,477		\$13,335	
103	Mill Creek 1 - Electrostatic Precipita	itor	\$32,882		\$3,581		\$7,583	
104	Mill Creek 1 - PAC Injection		\$4,412		\$2,213		\$2,750	
105	Mill Creek 1 - Lime Injection		\$4,480		\$2,024		\$2,569	
106	Mill Creek 1 - Neural Networks		\$1,000		\$100		\$222	
107	Total Mill Creek 1		\$517,774		\$29,102		\$92,116	
108	Mill Creek 2 - FGD		\$297,000		\$14,604		\$50,749	
	Mill Creek 2 - SCR		\$97,000		\$3,401		\$15,206	
	Mill Creek 2 - Baghouse		\$81,000		\$3,518		\$13,376	
	Mill Creek 2 - Electrostatic Precipita	tor	\$32,882		\$3,664		\$15,576	
	Mill Creek 2 - PAC Injection		\$4,412		\$2,340		\$2,877	
	Mill Creek 2 - Lime Injection		\$4,480		\$2,340		\$2,662	
	Mill Creek 2 - Neural Networks		\$1,000		\$100		\$222	
116			\$517,774		\$29,744		\$92,758	
117			<i>4311)//4</i>		\$ 2 3)744		\$32,730	
118	Mill Creek 3 - FGD		\$392,000		\$18,911		\$66,617	
119	Mill Creek 3 - Baghouse		\$114,000		\$4,923		\$18,797	
120	Mill Creek 3 - PAC Injection		\$5,592		\$3,213		\$3,894	
121	Mill Creek 3 - Neural Networks		\$1,000		\$100		\$222	
122 123	Total Mill Creek 3		\$512,592		\$27,147		\$89,530	
	Mill Creek 4 - FGD		\$455,000		\$21,775		\$77,149	
	Mill Creek 4 - Baghouse		\$133,000		\$5,804		\$21,990	
	Mill Creek 4 - PAC Injection		\$6,890		\$3,858		\$4,697	
127	Mill Creek 4 - Neural Networks		\$1,000		\$100		\$222	
128	Total Mill Creek 4		\$595,890		\$31,537		\$104,058	
129			·/		77		T = = - T = = = =	
130	Total Mill Creek		\$2,144,030		\$117,530		\$378,462	
131								
132								
133	TRIMBLE		.		.			
	Trimble 1 - Baghouse		\$128,000		\$5,782		\$21,360	
	Trimble 1 - PAC Injection		\$6,451		\$4,413		\$5,198	
	Trimble 1 - Neural Networks		\$1,000		\$100		\$222	
137 138	Total Trimble 1		\$135,451		\$10,295		\$26,780	
130								

	А	В	С	D	E	F	G	Н
139	Total Trimble		\$135,451		\$10,295		\$26,780	
140								
141								
142	Grand Total		\$4,333,694		\$260,580		\$787,996	

	Α	В	C	D	E
1	Black & Veatch Study Cost Estimate	es			
2					
3					
4					
5			MW		\$/kW
6	BROWN				
7	Brown 1 - Low NOx Burners				\$11
8	Brown 1 - Baghouse				\$364
9	Brown 1 - PAC Injection				\$15
10	Brown 1 - Neural Networks				\$5
11	Brown 1 - Overfire Air				\$7
12	Total Brown 1		110		\$400
13					
	Brown 2 - SCR				\$511
15	Brown 2 - Baghouse				\$283
16	Brown 2 - PAC Injection				\$14
17	Brown 2 - Neural Networks				\$3
18	Brown 2 - Lime Injection				\$15
19 20	Total Brown 2		180		\$826
	Brown 3 - Baghouse				\$133
	Brown 3 - PAC Injection				\$133
23	Brown 3 - Neural Networks				\$2
24	Total Brown 3		457		\$148
25			137		
26	Total Brown		747		\$348
27					
28					
29	GHENT				
30	Ghent 1 - Baghouse				\$242
31	Ghent 1 - PAC Injection				\$12
32	Ghent 1 - Neural Networks				\$2
33	Total Ghent 1		541		\$256
34 35	Chont 2 SCP				¢120
	Ghent 2 - SCR				\$439 \$232
30	Ghent 2 - Baghouse				
37	Ghent 2 - PAC Injection				\$12 \$11
38 39	Ghent 2 - Lime Injection Ghent 2 - Neural Networks				\$11
39 40	Total Ghent 2 - Neural Networks		517		ېد \$696
40	Total Grent 2		211		2080
42	Ghent 3 - Baghouse				\$264
43	Ghent 3 - PAC Injection				\$12
44	Ghent 3 - Neural Networks				\$2
45	Total Ghent 3		523		\$278
46					

	A	В	С	D	E
47	Ghent 4 - Baghouse				\$222
48	Ghent 4 - PAC Injection				\$12
49	Ghent 4 - Neural Networks				\$2
50	Total Ghent 4		526		\$236
51					
52	Total Ghent		2,107		\$364
53					
54					
55					
56	GREEN RIVER				
57	Green River 3 - SCR				\$408
58	Green River 3 - CDS-FF				\$535
59	Green River 3 - PAC Injection				\$16
60	Green River 3 - Neural Networks				\$7
61 62	Total Green River 3		71		\$966
63	Green River 4 - SCR				\$385
64	Green River 4 - CDS-FF				\$495
65	Green River 4 - PAC Injection				\$15
66	Green River 4 - Neural Networks				\$1
67	Total Green River 4		109		\$900
68			105		4 500
69	Total Green River		180	-	\$92 6
70					
71					
72	CANE RUN				
73	Cane Run 4 - FGD				\$905
74	Cane Run 4 - SCR				\$375
75	Cane Run 4 - Baghouse				\$196
76	Cane Run 4 - PAC Injection				\$14
77	Cane Run 4 - Lime Injection				\$15
78	Cane Run 4 - Neural Networks				\$3
79	Total Cane Run 4		168		\$1,508
80					ć070
81	Cane Run 5 - FGD				\$878 ¢265
82	Cane Run 5 - SCR				\$365
83	Cane Run 5 - Baghouse				\$193
84	Cane Run 5 - PAC Injection				\$14
85	Cane Run 5 - Lime Injection				\$15
86	Cane Run 5 - Neural Networks			-	\$3
87 88	Total Cane Run 5		181		\$1,468
89	Cane Run 6 - FGD				\$774
55	Cane Run 6 - SCR				\$330
90					, JJJ
90 91	Can Rune 6 - Baghouse				\$172

	А	В	C	D	E
93	Cane Run 6 - Lime Injection				\$15
94	Cane Run 6 - Neural Networks				\$2
95	Total Can Run 6		261		\$1,306
96					*
97 98	Total Cane Run		610		\$1,410
98					
100	Mill Creek				
101	Mill Creek 1 - FGD				\$900
102	Mill Creek 1 - SCR				\$294
103	Mill Creek 1 - Baghouse				\$245
104	Mill Creek 1 - Electrostatic Precipita	ator			\$100
105	Mill Creek 1 - PAC Injection				\$13
106	Mill Creek 1 - Lime Injection				\$14
107	Mill Creek 1 - Neural Networks				\$3
108	Total Mill Creek 1		330		\$1,569
109					
	Mill Creek 2 - FGD				\$900
	Mill Creek 2 - SCR				\$294
	Mill Creek 2 - Baghouse				\$245
	Mill Creek 2 - Electrostatic Precipita	ator			\$100
	Mill Creek 2 - PAC Injection				\$13
	Mill Creek 2 - Lime Injection				\$14
	Mill Creek 2 - Neural Networks				\$3
117 118	Total Mill Creek 2		330		\$1,569
	Mill Creek 3 - FGD				\$927
	Mill Creek 3 - Baghouse				\$327
	Mill Creek 3 - PAC Injection				\$270
	Mill Creek 3 - Neural Networks				\$13
122	Total Mill Creek 3		423		\$1,212
123	Total Will Creek 3		423		31, 212
125	Mill Creek 4 - FGD				\$867
126	Mill Creek 4 - Baghouse				\$253
127	Mill Creek 4 - PAC Injection				\$13
128	Mill Creek 4 - Neural Networks				\$2
129	Total Mill Creek 4		525		\$1,135
130					+
131	Total Mill Creek		1,608		\$1,333
132					
133					
134		1			
	Trimble 1 - Baghouse				\$234
	Trimble 1 - PAC Injection				\$12
	Trimble 1 - Neural Networks				\$2
138	Total Trimble 1		547		\$248

	А	В	C	D	E
139					
140	Total Trimble		547		\$248
141					
142					
143	Grand Total		5,799		\$747

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Hillman, Timothy M.; Mahabaleshwarkar, Anand
Sent:	7/6/2010 11:28:20 AM
Subject:	167987.26.0000 100706-New AQC Scenarios at MC & Brown
Attachments:	Brown 1 & 2 Capital Costs-Option 2&3 070610.pdf; Draft Mill Creek Costs-Option 1&2-opition3 070610.pdf

Eileen,

Attached please find the draft cost summary for the following remaining Mill Creek and Brown scenarios. The detailed cost and subsequent support information will be included within the report document.

1. Remove Mill Creek 1 and 2 dry ESPs and only use the proposed PJFFs. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the removal of the dry ESP and associated repositioning of the PJFF (elevated) and duct work. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

2. Modification of Brown 1 and 2 PJFF from two single separate PJFF to a one single combined PJFF. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report (note that Unit 1 is has LNB and OFA for NOx control) but merge into the single PJFF and then to the combined scrubber and stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaski@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Monday, June 21, 2010 4:07 PM
To: Lucas, Kyle J.
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand; Straight, Scott
Subject: RE: 167987.10.0100 100621-New AQC Scenarios

Kyle,

After the call, Scott and I reviewed the S&L report from 1999 and discovered that the ESP's were moved to the side not the SCRs. Therefore, Scott said it didn't make sense for me to forward those drawings on to you. You do not need to relocate the SCRs.

Your other assumptions are correct. Please proceed.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Monday, June 21, 2010 4:20 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.10.0100 100621-New AQC Scenarios

Eileen,

From our conference call today, EON requested additional AQC scenarios be reviewed and costs developed beyond those scenarios assumed in the draft AQC study. The scenarios requested include the following:

Modification of Mill Creek 3 and 4 scrubbers from a 2-50% module configuration to a single 100% module configuration each. The scenario will not consider potential space limitations as a fatal flaw due to the rail/road access and will also not include the costs for moving the rail. This scenario will be looked at separately as an additional AQC option for Units 3 and 4.

Also, we reviewed the original scenario data and found that this scenario was only partially completed before it was modified to the 2-50% module configuration. Thus, B&V can revisit and provide the draft costs data by Friday 6/25 COB with approval today.

Modification of Mill Creek 1 and 2 scrubbers from two single separate modules to a one single combined larger scrubber module located near the roadway <u>or</u> off to the side of unit. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report but merge into the single scrubber then back to the existing stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

B&V can provide the draft costs data by Friday 6/25 COB with approval today.

Move Mill Creek 1 and 2 SCRs to the location on the side of the units as described in the S&L report from 1999 which will be provided by EON. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the movement of the SCR location. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Remove Mill Creek 1 and 2 dry ESPs and only use the proposed PJFFs. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the removal of the dry ESP and associated repositioning of the PJFF (elevated) and duct work. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Modification of Brown 1 and 2 PJFF from two single separate PJFF to a one single combined PJFF. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report (note that Unit 1 is has LNB and OFA for NOx control) but merge into the single PJFF and then to the combined scrubber and stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

ase review the aforementioned scenarios provide an e-mail authorization for us to proceed with developing the cost information for each scenario. If needed, please modify the scenarios to clarify specific requirements. It is our understanding that the same level of detail for each scenario as presented within the draft AQC report will be provided for these scenarios. Upon receipt of your authorization and clarification of the scenarios, B&V will transmit the technology selection sheets for the updated scenario(s) for EON's review and approval along with a man-hour estimate and schedule for completion.

ase feel free to contact me with any questions.

gards,

e

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Black & Veatch Cost Estimates

Cost Revised on:	6/25/2010			
AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Units 1 & 2 Combined Fabric Filter	\$68,000,000	\$234	\$2,789,000	\$11,065,000

DRAFT

167987

Cost Revised on:	6/24/2010			
AQC Equipment	Capital Cost (CC)	\$/kW	O&M Cost	Levelized Annual Costs
Eliminating dry ESP and installing PJFF	\$72,000,000	\$218	\$4,462,000	\$13,224,000
Eliminating dry ESP and installing PJFF	\$72,000,000	\$218	\$4,575,000	\$13,337,000
Total	\$144,000,000	\$436	\$9,037,000	\$26,561,000

DRAFT

1 of 1

7/6/2010

From:	Saunders, Eileen
То:	Straight, Scott
Sent:	7/6/2010 11:41:10 AM
Subject:	FW: 167987.26.0000 100706-New AQC Scenarios at MC & Brown
Attachments:	Brown 1 & 2 Capital Costs-Option 2&3 070610.pdf; Draft Mill Creek Costs-Option 1&2-opition3
	070610.pdf

Scott,

New numbers from B&V. I am just beginning my review.

Thanks,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Tuesday, July 06, 2010 11:28 AM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100706-New AQC Scenarios at MC & Brown

Eileen,

Attached please find the draft cost summary for the following remaining Mill Creek and Brown scenarios. The detailed cost and subsequent support information will be included within the report document.

1. Remove Mill Creek 1 and 2 dry ESPs and only use the proposed PJFFs. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the removal of the dry ESP and associated repositioning of the PJFF (elevated) and duct work. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

2. Modification of Brown 1 and 2 PJFF from two single separate PJFF to a one single combined PJFF. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report (note that Unit 1 is has LNB and OFA for NOx control) but merge into the single PJFF and then to the combined scrubber and stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emai: Iucaskj@bv.com

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Monday, June 21, 2010 4:07 PM
To: Lucas, Kyle J.
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand; Straight, Scott
Subject: RE: 167987.10.0100 100621-New AQC Scenarios

Kyle,

After the call, Scott and I reviewed the S&L report from 1999 and discovered that the ESP's were moved to the side not the SCRs. Therefore, Scott said it didn't make sense for me to forward those drawings on to you. You do not need to relocate the SCRs.

Your other assumptions are correct. Please proceed.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Monday, June 21, 2010 4:20 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.10.0100 100621-New AQC Scenarios

Eileen,

From our conference call today, EON requested additional AQC scenarios be reviewed and costs developed beyond those scenarios assumed in the draft AQC study. The scenarios requested include the following:

Modification of Mill Creek 3 and 4 scrubbers from a 2-50% module configuration to a single 100% module configuration each. The scenario will not consider potential space limitations as a fatal flaw due to the rail/road access and will also not include the costs for moving the rail. This scenario will be looked at separately as an additional AQC option for Units 3 and 4.

Also, we reviewed the original scenario data and found that this scenario was only partially completed before it was modified to the 2-50% module configuration. Thus, B&V can revisit and provide the draft costs data by Friday 6/25 COB with approval today.

Modification of Mill Creek 1 and 2 scrubbers from two single separate modules to a one single combined larger scrubber module located near the roadway <u>or</u> off to the side of unit. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report but merge into the single scrubber then back to the existing stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

B&V can provide the draft costs data by Friday 6/25 COB with approval today.

Move Mill Creek 1 and 2 SCRs to the location on the side of the units as described in the S&L report from 1999 which will be provided by EON. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the movement of the SCR location. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Remove Mill Creek 1 and 2 dry ESPs and only use the proposed PJFFs. It is assumed that the "approved" AQC technology as presented in the draft report will remain and the only change is the removal of the dry ESP and associated repositioning of the PJFF (elevated) and duct work. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

Modification of Brown 1 and 2 PJFF from two single separate PJFF to a one single combined PJFF. The exhaust gas from each unit will pass through the "approved" AQC technology as presented in the draft report (note that Unit 1 is has LNB and OFA for NOx control) but merge into the single PJFF and then to the combined scrubber and stack. This scenario will be looked at separately as an additional AQC option for Units 1 and 2.

ase review the aforementioned scenarios provide an e-mail authorization for us to proceed with developing the cost information for each scenario. If needed, please modify the scenarios to clarify specific requirements. It is our understanding that the same level of detail for each scenario as presented within the draft AQC report will be provided for these scenarios. Upon receipt of your authorization and clarification of the scenarios, B&V will transmit the technology selection sheets for the updated scenario(s) for EON's review and approval along with a man-hour estimate and schedule for completion.

ase feel free to contact me with any questions.

gards, le

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

Black & Veatch Cost Estimates

Cost Revised on:	6/25/2010			
AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Units 1 & 2 Combined Fabric Filter	\$68,000,000	\$234	\$2,789,000	\$11,065,000

DRAFT

Cost Revised on:	6/24/2010			
AQC Equipment	Capital Cost (CC)	\$/kW	O&M Cost	Levelized Annual Costs
Eliminating dry ESP and installing PJFF	\$72,000,000	\$218	\$4,462,000	\$13,224,000
Eliminating dry ESP and installing PJFF	\$72,000,000	\$218	\$4,575,000	\$13,337,000
Total	\$144,000,000	\$436	\$9,037,000	\$26,561,000

DRAFT

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Hillman, Timothy M.; Mahabaleshwarkar, Anand
Sent:	5/30/2010 2:43:02 PM
Subject:	167987.26.0000 100530 - EON Draft AQCS Costs - EW Brown
Attachments:	Brown Unit 1 Cost Estimates 052810.pdf; Brown Unit 2 Cost Estimates 052810.pdf; Brown Unit 3 Cost Estimates 052810.pdf

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at EW Brown Units 1-3. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	1
MW	110
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Overfire Air	\$767,000	\$7	\$132,000	\$225,000
Low NOx Burners	\$1,156,000	\$11	\$0	\$141,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$44,022,000	\$400	\$2,273,000	\$7,631,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	2
MW	180
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$92,000,000	\$511	\$3,278,000	\$14,474,000
Fabric Filter	\$51,000,000	\$283	\$1,959,000	\$8,166,000
Lime Injection	\$2,739,000	\$15	\$1,155,000	\$1,488,000
PAC Injection	\$2,476,000	\$14	\$1,090,000	\$1,391,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$148,715,000	\$826	\$7,532,000	\$25,630,000

DRAFT

BROWN UNIT 2 - SCR COSTS

CAPITAL COST

Purchase Contracts

Civil/Structural Ductwork and Breeching Mechanical - Balance of Plant (BOP) Electrical - Equipment, Raceway VFDs. Motors and Couplings Switchgear and MCCs Control - DCS Instrumentation Air Heater Modifications ID Fans Catalyst Selective Catalytic Reduction System (Including Ammonia System)	\$468,000 \$151,000 \$0	Engineering Estimates Engineering Estimates Engineering Estimates
	, ,	
Subtotal Purchase Contract	\$16,531,000	
Civil/Structural Construction - Super Structures Civil/Structural Construction - Sub-Structures Mechanical/Chemical Construction Electrical/Control Construction Service Contracts & Construction Indirects Demolition Costs	\$2,854,000 \$742,000 \$8,971,000 \$4,103,000 \$14,331,000 \$6,500,000	Engineering Estimates
Subtotal Construction Contracts	\$37,501,000	
Construction Difficulty Costs	\$26,250,700	Engineering Estimates
Total Direct Costs	\$80,282,700	
Indirect Costs		
Engineering Costs (Includes G&A & Fee) EPC Construction Management (Includes G&A & Fee) Startup Spare Parts (Included) Construction Utilites (Power & Water) - Included Project Insurance Sales Taxes Project Contingency	\$2,696,000 \$1,691,000 \$0 \$444,000 \$627,000 \$6,326,000	
Total Indirect Costs	\$11,784,000	
Total Contracted Costs	\$92,000,000	
Capital Cost Effectiveness	\$511	/kW
ANNUAL COST	,	
Fixed Annual Costs		Capacity Factor = 62%
Operating labor Maintenance labor & materials Yearly emissions testing Catalyst activity testing Fly ash sampling and analysis Subtotal Fixed Annual Costs Variable Annual Costs	\$25,000 \$5,000	1 FTE and 123,325 \$/year (DC) X 3.0% Engineering Estimates Engineering Estimates Engineering Estimates
Reagent Auxiliary and ID fan power Catalyst replacement	\$309,000 \$186,000 \$202,000	940 kW and 0.03646 \$/kWh
Subtotal Variable Annual Costs	\$697,000	
Total Annual Costs	\$3,278,000	
Levelized Capital Costs	\$11,196,000	(TCI) X 12.17% CRF
Levelized Annual Costs	\$14,474,000	

BROWN UNIT 2 - PJFF COSTS

CAPITAL COST

Purchase Contracts

Civil/Structural Mechanical - Balance of Plant (BOP) Electrical - Equipment, Raceway, Switchgears, MCC Control - DCS Instrumentation ID Fans	\$2,646,000 \$7,580,000 \$161,000 \$178,000 \$535,000	Engineering Estimates
Subtotal Purchase Contract	\$11,100,000	
Construction Contracts		
Civil/Structural Construction - Super Structures Civil/Structural Construction - Sub-Structures Mechanical/Chemical Construction Electrical/Control Construction Service Contracts & Construction Indirects Demolition Costs		Engineering Estimates
Subtotal Construction Contracts	\$20,376,000	
Construction Difficulty Costs	\$14,263,200	Engineering Estimates
Total Direct Costs	\$45,739,200	
Indirect Costs		
Engineering Costs (Includes G&A & Fee) EPC Construction Management (Includes G&A & Fee) Startup Spare Parts (Included) Construction Utilites (Power & Water) - Included Project Insurance Sales Taxes Project Contingency - 18%	\$2,334,000 \$1,527,000 \$0 \$231,000 \$82,000 \$860,000	
Total Indirect Costs	\$5,034,000	
Total Contracted Costs	\$51,000,000	
Cost Effectiveness	\$283 ,	/kW
ANNUAL COST		
Fixed Annual Costs		Capacity Factor = 62%
Maintenance labor and materials	\$1,530,000	(DC) X 3.0%
Subtotal Fixed Annual Costs	\$1,530,000	
Variable Annual Costs		
Byproduct disposal Bag replacement cost Cage replacement cost ID fan power Auxiliary power	\$5,000 \$129,000 \$65,000 \$200,000 \$30,000	120 lb/hr and 15 \$/ton 3,880 bags and 100 \$/bag 3,880 cages and 50 \$/cage 1,010 kW and 0.03646 \$/kWh 150 kW and 0.03646 \$/kWh
Subtotal Variable Annual Costs	\$429,000	
Total Annual Costs	\$1,959,000	
Levelized Capital Costs	\$6,207,000	(TCI) X 12.17% CRF
Levelized Annual Costs	\$8,166,000	

Brown Unit 2 180 MW High Level Emissions Control Study

Technology: Lime Injection		Date: <u>5/30/2010</u>
Cost Item	\$	Remarks/Cost Basis
APITAL COST		
irect Costs		
Purchased equipment costs		
Long-term storage silo (with truck unloading sys.)	\$133,800	From Previous Mill Creek BACT Study
Short-term storage silo	\$88,800	From Previous Mill Creek BACT Study
-		
Air blowers	\$121,800	From Previous Mill Creek BACT Study
Rotary feeders	\$19,800	From Previous Mill Creek BACT Study
Injection system	\$80,400	From Previous Mill Creek BACT Study
Ductwork modifications, supports, platforms	\$0	
Electrical system upgrades	\$526,800	From Previous Mill Creek BACT Study
Instrumentation and controls	\$25,200	From Previous Mill Creek BACT Study
Subtotal capital cost (CC)	\$996,600	
Freight	\$45,000	(CC) X 4.5%
Total purchased equipment cost (PEC)	\$1,042,000	
Direct installation costs		
Foundation & supports	\$104,000	(PEC) X 10.0%
Handling & erection	\$208,000	(PEC) X 20.0%
Electrical	\$104,000	(PEC) X 10.0%
Piping	\$52,000	(PEC) X 5.0%
Insulation	\$21,000	(PEC) X 2.0%
Painting	\$52,000	(PEC) X 5.0%
Demolition	\$0	(PEC) X 0.0%
Relocation	\$0 \$0	(PEC) X 0.0%
	\$541,000	(FEC) A 0.0%
Total direct installation costs (DIC)	\$541,000	
Site preparation	\$0	N/A
Buildings	\$75,000	Engineering estimate
Total direct costs (DC) = (PEC) + (DIC)	\$1,658,000	
direct Costs		
Engineering	\$199,000	(DC) X 12:0%
Owner's cost	\$199,000	(DC) X 12.0%
Construction management	\$166,000	
Start-up and spare parts	\$25,000	(DC) X 1.5%
Performance test	\$100,000	Engineering estimate
Contingencies	\$332,000	(DC) X 20.0%
Total indirect costs (IC)	\$1,021,000	
owance for Funds Used During Construction (AFDC)	\$60,000	[(DC)+(IC)] X 4.50% 1 years (project time length X 1/2)
tal Capital Investment (TCI) = (DC) + (IC) + (AFDC)	\$2,739,000	
ost Effectiveness	\$15 /	k <i>W</i>
NNUAL COST		
rect Annual Costs		
Fixed annual costs		
Maintenance labor and materials	\$50,000	(DC) X 3.0%
Operating labor	\$123,000	FTE and 123,325 \$/year Estimated manpower
Total fixed annual costs	\$173,000	
	<u> </u>	
Variable annual costs		62 % capacity factor
Lime	\$754,000	2,100 lb/hr and 132.19 \$/ton
Byproduct disposal cost	\$208,000	2,400 lb/hr and 15 \$/ton
Auxiliary power	\$20,000	100 kW and 0.03646 \$/kWh
Total variable annual costs	\$982,000	
Total direct annual costs (DAC)	\$1,155,000	
direct Annual Costs		
Cost for capital recovery	\$333,000	(TCI) X 12.17% CRF
Total indirect annual costs (IDAC)	\$333,000	
. ,		
otal Annual Cost (TAC) = (DAC) + (IDAC)	\$1,488,000	
and a construction of the cost of the cost	+11-1001000	

Brown Unit 2 180 MW High Level Emissions Control Study

Technology:	PAC Injection
reennology.	

echnology: PAC Injection		Date: <u>5/30/2010</u>		
ost Item	\$	Remarks/Cost Basis		
APITAL COST				
irect Costs				
Purchased equipment costs				
Long-term storage silo (with truck unloading sys.)	\$151,641	Ratio from Brown Unit 3 BACT Analysis		
	. ,			
Short-term storage silo	\$99,650	Ratio from Brown Unit 3 BACT Analysis		
Air blowers	\$138,643	Ratio from Brown Unit 3 BACT Analysis		
Rotary feeders	\$17,330	Ratio from Brown Unit 3 BACT Analysis		
Injection system	\$64,989	Ratio from Brown Unit 3 BACT Analysis		
Ductwork modifications, supports, platforms	\$0			
Electrical system upgrades	\$415,930	Ratio from Brown Unit 3 BACT Analysis		
Instrumentation and controls	\$21,663	Ratio from Brown Unit 3 BACT Analysis		
– Subtotal capital cost (CC)	\$909,847	,		
Freight	\$23,000	(CC) X 2.5%		
Total purchased equipment cost (PEC)	\$933,000			
Direct installation costs				
	\$93,000			
Foundation & supports		(PEC) X 10.0%		
Handling & erection	\$187,000	(PEC) X 20.0%		
Electrical	\$93,000	(PEC) X 10.0%		
Piping	\$47,000	(PEC) X 5.0%		
Insulation	\$19,000	(PEC) X 2.0%		
Painting	\$47,000	(PEC) X 5.0%		
Demolition	\$0	(PEC) X 0.0%		
Relocation	\$0	(PEC) X 0.0%		
Total direct installation costs (DIC)	\$486,000			
_				
Site preparation	\$0	N/A		
Buildings _	\$75,000	Engineering estimate		
Total direct costs (DC) = (PEC) + (DIC)	\$1,494,000			
direct Costs				
Engineering	\$179,000	(DC) X 12.0%		
Owner's cost	\$179,000	(DC) X 12.0%		
Construction management	\$149,000	(DC) X 10.0%		
Start-up and spare parts	\$22,000	(DC) X 15%		
Performance test	\$100,000	Engineering estimate		
Contingencies	\$299,000	(DC) X 20.0%		
Total indirect costs (IC)	\$928,000			
lowance for Funds Used During Construction (AFDC)	\$54,000	[(DC)+(IC)] X 4.50% 1 years (project time length X 1/2)		
otal Capital Investment (TCI) = (DC) + (IC) + (AFDC)	\$2,476,000			
ost Effectiveness	\$14 /k	W		
irect Annual Costs				
Fixed annual costs				
Maintenance labor and materials	\$45,000	(DC) X 3.0%		
Operating labor	\$123,000	1 FTE and 123,325 \$/year Estimated manpower		
Total fixed annual costs	\$168,000			
Variable annual costs				
Variable annual costs	¢000 000	62 % capacity factor		
Reagent (BPAC)	\$896,000	150 lb/hr and 2200 \$/ton		
Byproduct disposal cost	\$6,000	150 lb/hr and 15 \$/ton		
Auxiliary power	\$20,000	100 kW and 0.03646 \$/kWh		
Total variable annual costs	\$922,000			
Total direct annual costs (DAC)	\$1,090,000			
· · · · =	\$1,090,000			
direct Annual Costs	<u> </u>			
direct Annual Costs Cost for capital recovery	\$301,000	(TCI) X 12.17% CRF		
direct Annual Costs	<u> </u>	(TCI) X 12.17% CRF		
direct Annual Costs Cost for capital recovery	\$301,000	(TCI) X 12.17% CRF		

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	3
MW	457
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$61,000,000	\$133	\$3,321,000	\$10,745,000
PAC Injection	\$5,426,000	\$12	\$2,330,000	\$2,990,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$67,426,000	\$148	\$5,751,000	\$13,957,000

DRAFT

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Hillman, Timothy M.; Mahabaleshwarkar, Anand
Sent:	5/30/2010 2:53:43 PM
Subject:	167987.26.0000 100530 - EON Draft AQCS Costs - Green River
Attachments:	Green River Unit 3 Cost Estimates 052810.pdf; Green River Unit 4 Cost Estimates 052810.pdf

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Green River Units 3 & 4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Green River
Unit:	3
MW	71
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$29,000,000	\$408	\$1,040,000	\$4,569,000
CDS-FF	\$38,000,000	\$535	\$6,874,000	\$11,499,000
PAC Injection	\$1,112,000	\$16	\$323,000	\$458,000
Neural Networks	\$500,000	\$7	\$50,000	\$111,000
Total	\$68,612,000	\$966	\$8,287,000	\$16,637,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Green River
Unit:	4
MW	109
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$42,000,000	\$385	\$1,442,000	\$6,553,000
CDS-FF	\$54,000,000	\$495	\$10,289,000	\$16,861,000
PAC Injection	\$1,583,000	\$15	\$515,000	\$708,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$98,083,000	\$900	\$12,296,000	\$24,233,000

DRAFT

From:Lucas, Kyle J.To:Saunders, EileenCC:Hillman, Timothy M.; Mahabaleshwarkar, AnandSent:5/30/2010 2:59:41 PMSubject:167987.26.0000 100530 - EON Draft AQCS Costs - TrimbleAttachments:Trimble Unit 1 Cost Estimates 052810.pdf

Eileen,

Attached please find the draft AQCS Costs for the approved technologies for Trimble Unit 1. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Trimble County
Unit:	1
MW	547
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$128,000,000	\$234	\$5,782,000	\$21,360,000
PAC Injection	\$6,451,000	\$12	\$4,413,000	\$5,198,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$135,451,000	\$248	\$10,295,000	\$26,780,000

DRAFT

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Hillman, Timothy M.; Mahabaleshwarkar, Anand
Sent:	5/30/2010 3:09:00 PM
Subject:	167987.26.0000 100530 - EON Draft AQCS Costs - Ghent
Attachments:	Ghent Unit 1 Cost Estimates 052810.pdf; Ghent Unit 2 Cost Estimates 052810.pdf; Ghent Unit 3 Cost
	Estimates 052810.pdf; Ghent Unit 4 Cost Estimates 052810.pdf

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Ghent Units 1-4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	1
MW	541
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$131,000,000	\$242	\$5,888,000	\$21,831,000
PAC Injection	\$6,380,000	\$12	\$4,208,000	\$4,984,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$138,380,000	\$256	\$10,196,000	\$27,037,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	2
MW	517
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$227,000,000	\$439	\$7,078,000	\$34,704,000
Fabric Filter	\$120,000,000	\$232	\$5,002,000	\$19,606,000
Lime Injection	\$5,483,000	\$11	\$2,775,000	\$3,442,000
PAC Injection	\$6,109,000	\$12	\$2,880,000	\$3,623,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$359,592,000	\$696	\$17,835,000	\$61,597,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	3
MW	523
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$138,000,000	\$264	\$6,122,000	\$22,917,000
PAC Injection	\$6,173,000	\$12	\$4,134,000	\$4,885,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$145,173,000	\$278	\$10,356,000	\$28,024,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	4
MW	526
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$117,000,000	\$222	\$5,363,000	\$19,602,000
PAC Injection	\$6,210,000	\$12	\$3,896,000	\$4,652,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$124,210,000	\$236	\$9,359,000	\$24,476,000

DRAFT

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Hillman, Timothy M.; Mahabaleshwarkar, Anand
Sent:	5/30/2010 3:23:27 PM
Subject:	167987.26.0000 100530 - EON Draft AQCS Costs - Mill Creek
Attachments:	Mill Creek Unit 1 Cost Estimates 052810.pdf; Mill Creek Unit 2 Cost Estimates 052810.pdf; Mill Creek Unit 3 Cost Estimates 052810.pdf; Mill Creek Unit 4 Cost Estimates 052810.pdf

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Mill Creek Units 1-4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	1
MW	330
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$97,000,000	\$294	\$3,366,000	\$15,171,000
WFGD	\$297,000,000	\$900	\$14,341,000	\$50,486,000
Fabric Filter	\$81,000,000	\$245	\$3,477,000	\$13,335,000
Electrostatic Precipitator	\$32,882,000	\$100	\$3,581,000	\$7,583,000
Lime Injection	\$4,480,000	\$14	\$2,024,000	\$2,569,000
PAC Injection	\$4,412,000	\$13	\$2,213,000	\$2,750,000
Neural Networks	\$1,000,000	\$3	\$100,000	\$222,000
Total	\$517,774,000	\$1,569	\$29,102,000	\$92,116,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	2
MW	330
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$97,000,000	\$294	\$3,401,000	\$15,206,000
WFGD	\$297,000,000	\$900	\$14,604,000	\$50,749,000
Fabric Filter	\$81,000,000	\$245	\$3,518,000	\$13,376,000
Electrostatic Precipitator	\$32,882,000	\$100	\$3,664,000	\$7,666,000
Lime Injection	\$4,480,000	\$14	\$2,117,000	\$2,662,000
PAC Injection	\$4,412,000	\$13	\$2,340,000	\$2,877,000
Neural Networks	\$1,000,000	\$3	\$100,000	\$222,000
Total	\$517,774,000	\$1,569	\$29,744,000	\$92,758,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	3
MW	423
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
WFGD	\$392,000,000	\$927	\$18,911,000	\$66,617,000
Fabric Filter	\$114,000,000	\$270	\$4,923,000	\$18,797,000
PAC Injection	\$5,592,000	\$13	\$3,213,000	\$3,894,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$512,592,000	\$1,212	\$27,147,000	\$89,530,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	4
MW	525
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
WFGD	\$455,000,000	\$867	\$21,775,000	\$77,149,000
Fabric Filter	\$133,000,000	\$253	\$5,804,000	\$21,990,000
PAC Injection	\$6,890,000	\$13	\$3,858,000	\$4,697,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$595,890,000	\$1,135	\$31,537,000	\$104,058,000

DRAFT

From:	Lucas, Kyle J.
То:	Saunders, Eileen
CC:	Hillman, Timothy M.; Mahabaleshwarkar, Anand
Sent:	5/30/2010 3:34:15 PM
Subject:	167987.26.0000 100530 - EON Draft AQCS Costs - Cane Run
Attachments:	Cane Run Unit 4 Cost Estimates 052810.pdf; Cane Run Unit 5 Cost Estimates 052810.pdf; Cane Run
	Unit 6 Cost Estimates 052810.pdf

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Cane Run Units 4-6. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	4
MW	168
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$63,000,000	\$375	\$2,219,000	\$9,886,000
WFGD	\$152,000,000	\$905	\$8,428,000	\$26,926,000
Fabric Filter	\$33,000,000	\$196	\$1,924,000	\$5,940,000
Lime Injection	\$2,569,000	\$15	\$983,000	\$1,296,000
PAC Injection	\$2,326,000	\$14	\$1,087,000	\$1,370,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$253,395,000	\$1,508	\$14,691,000	\$45,529,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	5
MW	181
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$66,000,000	\$365	\$2,421,000	\$10,453,000
WFGD	\$159,000,000	\$878	\$8,789,000	\$28,139,000
Fabric Filter	\$35,000,000	\$193	\$2,061,000	\$6,321,000
Lime Injection	\$2,752,000	\$15	\$1,089,000	\$1,424,000
PAC Injection	\$2,490,000	\$14	\$1,120,000	\$1,423,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$265,742,000	\$1,468	\$15,530,000	\$47,871,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	6
MW	261
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$86,000,000	\$330	\$2,793,000	\$13,259,000
WFGD	\$202,000,000	\$774	\$10,431,000	\$35,014,000
Fabric Filter	\$45,000,000	\$172	\$2,672,000	\$8,149,000
Lime Injection	\$3,873,000	\$15	\$1,367,000	\$1,838,000
PAC Injection	\$3,490,000	\$13	\$1,336,000	\$1,761,000
Neural Networks	\$500,000	\$2	\$50,000	\$111,000
Total	\$340,863,000	\$1,306	\$18,649,000	\$60,132,000

DRAFT

From:	Karavayev, Louanne		
То:	Revlett, Gary		
CC:	Wilson, Stuart		
Sent:	7/8/2010 3:49:48 PM		
Subject:	Emission Rates		
Attachments:	Environmental Summay (rev5 6-3-10).xlsx		

Gary,

Given the addition of emission control equipment (as shown in the attachment) at Brown, Ghent, Mill Creek, and Trimble, what is your best guess at the impact on NOx and Hg emission rates at each unit? Also, would it be okay to assume a 98% SO2 removal rate for a new FGD at Mill Creek? Any input you may have would be very helpful. Feel free to call or email with questions. I am currently working in the 8 N conference room (and should be here for the next several work days), so please call x4723 to reach me. Thank you,

Lou Anne Karavayev

E.ON U.S. Generation Planning p (502) 627-2563 f (502) 217-4969 e LouAnne.Karavayev@EON-US.com

	A	В	С	D	E	F	G	Н
1	Black & Veatch Study Cost Estimates							
2	\$ in thousands							
3								
4								
5			Capital Cost		O&M Cost	Lev	Levelized Annual Costs	
6	BROWN							
7	Brown 1 - Low NOx Burners		\$1,156		\$0		\$141	
8	Brown 1 - Baghouse		\$40,000		\$1,477		\$6,345	
9	Brown 1 - PAC Injection		\$1,599		\$614		\$809	
10	Brown 1 - Neural Networks		\$500		\$50		\$111	
11	Brown 1 - Overfire Air		\$767		\$132		\$225	
12 13	Total Brown 1		\$44,022		\$2,273		\$7,631	
	Brown 2 - SCR		\$92,000		\$3,278		\$14,474	
	Brown 2 - Baghouse		\$51,000		\$1,959		\$8,166	
	Brown 2 - PAC Injection		\$2,476		\$1,090		\$1,391	
	Brown 2 - Neural Networks		\$500		\$50		\$111	
_	Brown 2 - Lime Injection		\$2,739		\$1,155		\$1,488	
19	Total Brown 2		\$148,715		\$7,532		\$25,630	
20								
	Brown 3 - Baghouse		\$61,000		\$3,321		\$10,745	
	Brown 3 - PAC Injection		\$5,426		\$2,330		\$2,990	
	Brown 3 - Neural Networks		\$1,000		\$100		\$222	
24 25	Total Brown 3		\$67,426		\$5,751		\$13,957	
26	Total Brown		\$260,163		\$15,556		\$47,218	
27								
28								
29	GHENT							
30	Ghent 1 - Baghouse		\$131,000		\$5,888		\$21,831	
31	Ghent 1 - PAC Injection		\$6,380		\$4,208		\$4,984	
32	Ghent 1 - Neural Networks		\$1,000		\$100		\$222	
33	Total Ghent 1		\$138,380		\$10,196		\$27,037	
34 25	Chart 2 CCD		¢227.000		67.070		624 704	
	Ghent 2 - SCR		\$227,000		\$7,078		\$34,704	
	Ghent 2 - Baghouse		\$120,000		\$5,002		\$19,606	
	Ghent 2 - PAC Injection Ghent 2 - Lime Injection		\$6,109		\$2,880 \$2,775		\$3,623 \$3,442	
38 39	Ghent 2 - Lime Injection Ghent 2 - Neural Networks		\$5,483 \$1,000		\$2,775		\$3,442	
39 40	Total Ghent 2 - Neural Networks		. ,		\$100 \$17,835		\$222 \$61,597	
40	Total Grent 2		\$359,592		\$17,835		\$61'2A\	
42	Ghent 3 - Baghouse		\$138,000		\$6,122		\$22,917	
	Ghent 3 - PAC Injection		\$6,173		\$4,134		\$4,885	
44	Ghent 3 - Neural Networks		\$1,000		\$100		\$222	
45	Total Ghent 3		\$145,173		\$10,356		\$28,024	
46								

	А	В	С	D	E	F	G	н
47	Ghent 4 - Baghouse		\$117,000		\$5,363		\$19,602	
48	Ghent 4 - PAC Injection		\$6,210		\$3,896		\$4,652	
49	Ghent 4 - Neural Networks		\$1,000		\$100		\$222	
50	Total Ghent 4		\$124,210		\$9,359		\$24,476	
51			1					
52	Total Ghent		\$767,355		\$47,746		\$141,134	
53								
54								
55	GREEN RIVER		<u> </u>		44 6 46		<u> </u>	
	Green River 3 - SCR		\$29,000		\$1,040		\$4,569	
57	Green River 3 - CDS-FF		\$38,000		\$6,874		\$11,499	
58	Green River 3 - PAC Injection		\$1,112		\$323		\$458	
59	Green River 3 - Neural Networks		\$500		\$50		\$111	
60 61	Total Green River 3		\$68,612		\$8,287		\$16,637	
	Green River 4 - SCR		\$42,000		\$1,442		\$6,553	
63	Green River 4 - CDS-FF		\$54,000		\$10,289		\$16,861	
64	Green River 4 - PAC Injection		\$1,583		\$515		\$708	
65	Green River 4 - Neural Networks		\$500		\$50		\$111	
66	Total Green River 4		\$98,083		\$12,296		\$24,233	
67								
68	Total Green River		\$166,695		\$20,583	_	\$40,870	
69 70								
71	CANE RUN							
	Cane Run 4 - FGD		\$152,000		\$8,428		\$26,926	
73	Cane Run 4 - SCR		\$63,000		\$2,219		\$9,886	
	Cane Run 4 - Baghouse		\$33,000		\$1,924		\$5,940	
75	Cane Run 4 - PAC Injection		\$2,326		\$1,087		\$1,370	
76	Cane Run 4 - Lime Injection		\$2,569		\$983		\$1,296	
77	Cane Run 4 - Neural Networks		\$500		\$50		\$111	
78	Total Cane Run 4		\$253,395		\$14,691		\$45,529	
79							4-	
	Cane Run 5 - FGD		\$159,000		\$8,789		\$28,139	
	Cane Run 5 - SCR		\$66,000		\$2,421		\$10,453	
82	Cane Run 5 - Baghouse		\$35,000		\$2,061		\$6,321	
83	Cane Run 5 - PAC Injection		\$2,490		\$1,120		\$1,423	
84	Cane Run 5 - Lime Injection		\$2,752		\$1,089		\$1,424	
85	Cane Run 5 - Neural Networks		\$500		\$50		\$111	
86 87	Total Cane Run 5		\$265,742		\$15,530		\$47,871	
	Cane Run 6 - FGD		\$202,000		\$10,431		\$35,014	
	Cane Run 6 - SCR		\$86,000		\$2,793		\$13,259	
	Can Rune 6 - Baghouse		\$45,000		\$2,672		\$8,149	
91	Cane Run 6 - PAC Injection		\$3,490		\$1,336		\$1,761	
					· -/		· -/· -	

	А	В	С	D	E	F	G	Н
93	Cane Run 6 - Neural Networks		\$500		\$50		\$111	
94	Total Can Run 6		\$340,863		\$18,649		\$60,132	
95			4					
96 97	Total Cane Run		\$860,000		\$48,870		\$153,532	
98								
99	Mill Creek							
100	Mill Creek 1 - FGD		\$297,000		\$14,341		\$50,486	
101	Mill Creek 1 - SCR		\$97,000		\$3,366		\$15,171	
102	Mill Creek 1 - Baghouse		\$81,000		\$3,477		\$13,335	
103	Mill Creek 1 - Electrostatic Precipita	itor	\$32,882		\$3,581		\$7,583	
104	Mill Creek 1 - PAC Injection		\$4,412		\$2,213		\$2,750	
105	Mill Creek 1 - Lime Injection		\$4,480		\$2,024		\$2,569	
106	Mill Creek 1 - Neural Networks		\$1,000		\$100		\$222	
107	Total Mill Creek 1		\$517,774		\$29,102		\$92,116	
108 109	Mill Creek 2 - FGD		\$297,000		\$14,604		\$50,749	
	Mill Creek 2 - SCR		\$97,000		\$3,401		\$15,206	
	Mill Creek 2 - Baghouse		\$81,000		\$3,518		\$13,376	
	Mill Creek 2 - Electrostatic Precipita	itor	\$32,882		\$3,664		\$7,666	
	Mill Creek 2 - PAC Injection		\$4,412		\$2,340		\$2,877	
	Mill Creek 2 - Lime Injection		\$4,480		\$2,117		\$2,662	
	Mill Creek 2 - Neural Networks		\$1,000		\$100		\$222	
116	Total Mill Creek 2		\$517,774		\$29,744		\$92,758	
117								
	Mill Creek 3 - FGD		\$392,000		\$18,911		\$66,617	
	Mill Creek 3 - Baghouse		\$114,000		\$4,923		\$18,797	
	Mill Creek 3 - PAC Injection		\$5,592		\$3,213		\$3,894	
	Mill Creek 3 - Neural Networks		\$1,000		\$100		\$222	
122 123	Total Mill Creek 3		\$512,592		\$27,147		\$89,530	
	Mill Creek 4 - FGD		\$455,000		\$21,775		\$77,149	
	Mill Creek 4 - Baghouse		\$133,000		\$5,804		\$21,990	
	Mill Creek 4 - PAC Injection		\$6,890		\$3,858		\$4,697	
127	Mill Creek 4 - Neural Networks		\$1,000		\$100		\$222	
128	Total Mill Creek 4		\$595,890		\$31,537		\$104,058	
129								
130	Total Mill Creek		\$2,144,030		\$117,530		\$378,462	
131								
132	TDIA/DUC							
133	TRIMBLE Trimble 1 - Baghouse		¢139.000		¢E 700		¢21.260	
	Trimble 1 - Bagnouse Trimble 1 - PAC Injection		\$128,000 \$6,451		\$5,782 \$4,413		\$21,360 \$5,198	
	Trimble 1 - PAC injection Trimble 1 - Neural Networks		\$6,451		\$4,413		\$5,198	
136	Total Trimble 1		\$1,000		\$100		\$222	
137			ŞT22,421		\$10,292		\$ ∠0,76 0	

	А	В	С	D	E	F	G	Н
139	Total Trimble		\$135,451		\$10,295		\$26,780	
140								
141								
142	Grand Total		\$4,333,694		\$260,580		\$787,996	

	Α	В	C	D	E
1	Black & Veatch Study Cost Estimate	es			
2					
3					
4					
5			MW		\$/kW
6	BROWN				
7	Brown 1 - Low NOx Burners				\$11
8	Brown 1 - Baghouse				\$364
9	Brown 1 - PAC Injection				\$15
10	Brown 1 - Neural Networks				\$5
11	Brown 1 - Overfire Air				\$7
12	Total Brown 1		110		\$400
13					
	Brown 2 - SCR				\$511
15	Brown 2 - Baghouse				\$283
16	Brown 2 - PAC Injection				\$14
17	Brown 2 - Neural Networks				\$3
18	Brown 2 - Lime Injection				\$15
19 20	Total Brown 2		180		\$826
	Brown 3 - Baghouse				\$133
	Brown 3 - PAC Injection				\$133
23	Brown 3 - Neural Networks				\$2
24	Total Brown 3		457		\$148
25			137		
26	Total Brown		747		\$348
27					
28					
29	GHENT				
30	Ghent 1 - Baghouse				\$242
31	Ghent 1 - PAC Injection				\$12
32	Ghent 1 - Neural Networks				\$2
33	Total Ghent 1		541		\$256
34 35	Chant 2 SCP				¢120
	Ghent 2 - SCR				\$439 \$232
30	Ghent 2 - Baghouse				
37	Ghent 2 - PAC Injection				\$12 \$11
38 39	Ghent 2 - Lime Injection Ghent 2 - Neural Networks				\$11
39 40	Total Ghent 2 - Neural Networks		517		ېد \$696
40	Total Grent 2		211		2080
42	Ghent 3 - Baghouse				\$264
43	Ghent 3 - PAC Injection				\$12
44	Ghent 3 - Neural Networks				\$2
45	Total Ghent 3		523		\$278
46					

	A	В	С	D	E
47	Ghent 4 - Baghouse				\$222
48	Ghent 4 - PAC Injection				\$12
49	Ghent 4 - Neural Networks				\$2
50	Total Ghent 4		526		\$236
51					
52	Total Ghent		2,107		\$364
53					
54					
55					
56	GREEN RIVER				
57	Green River 3 - SCR				\$408
58	Green River 3 - CDS-FF				\$535
59	Green River 3 - PAC Injection				\$16
60	Green River 3 - Neural Networks				\$7
61 62	Total Green River 3		71		\$966
63	Green River 4 - SCR				\$385
64	Green River 4 - CDS-FF				\$495
65	Green River 4 - PAC Injection				\$15
66	Green River 4 - Neural Networks				\$1
67	Total Green River 4		109		\$900
68			105		4 500
69	Total Green River		180	-	\$92 6
70					
71					
72	CANE RUN				
73	Cane Run 4 - FGD				\$905
74	Cane Run 4 - SCR				\$375
75	Cane Run 4 - Baghouse				\$196
76	Cane Run 4 - PAC Injection				\$14
77	Cane Run 4 - Lime Injection				\$15
78	Cane Run 4 - Neural Networks				\$3
79	Total Cane Run 4		168		\$1,508
80					ć070
81	Cane Run 5 - FGD				\$878 ¢265
82	Cane Run 5 - SCR				\$365
83	Cane Run 5 - Baghouse				\$193
84	Cane Run 5 - PAC Injection				\$14
85	Cane Run 5 - Lime Injection				\$15
86	Cane Run 5 - Neural Networks			-	\$3
87 88	Total Cane Run 5		181		\$1,468
89	Cane Run 6 - FGD				\$774
55	Cane Run 6 - SCR				\$330
90					, JJJC
90 91	Can Rune 6 - Baghouse				\$172

	А	В	C	D	E
93	Cane Run 6 - Lime Injection				\$15
94	Cane Run 6 - Neural Networks				\$2
95	Total Can Run 6		261		\$1,306
96					*
97 98	Total Cane Run		610		\$1,410
98 99					
100	Mill Creek				
101	Mill Creek 1 - FGD				\$900
102	Mill Creek 1 - SCR				\$294
103	Mill Creek 1 - Baghouse				\$245
104	Mill Creek 1 - Electrostatic Precipita	tor			\$100
105	Mill Creek 1 - PAC Injection				\$13
106	Mill Creek 1 - Lime Injection				\$14
107	Mill Creek 1 - Neural Networks				\$3
108	Total Mill Creek 1		330		\$1,569
109					4000
	Mill Creek 2 - FGD				\$900
	Mill Creek 2 - SCR				\$294
	Mill Creek 2 - Baghouse				\$245
	Mill Creek 2 - Electrostatic Precipita	ator			\$100
	Mill Creek 2 - PAC Injection				\$13
	Mill Creek 2 - Lime Injection				\$14
	Mill Creek 2 - Neural Networks				\$3
117 118	Total Mill Creek 2		330		\$1,569
	Mill Creek 3 - FGD				\$927
	Mill Creek 3 - Baghouse				\$270
	Mill Creek 3 - PAC Injection				\$13
	Mill Creek 3 - Neural Networks				\$2
123	Total Mill Creek 3		423		\$1,212
124					
	Mill Creek 4 - FGD				\$867
	Mill Creek 4 - Baghouse				\$253
	Mill Creek 4 - PAC Injection				\$13
	Mill Creek 4 - Neural Networks				\$2
129 130	Total Mill Creek 4		525		\$1,135
130	Total Mill Creek		1,608		\$1,333
131	Total Will Creek		1,000		<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>
132					
134	TRIMBLE				
	Trimble 1 - Baghouse				\$234
	Trimble 1 - PAC Injection				\$12
	Trimble 1 - Neural Networks				\$12
137	Total Trimble 1		547		\$248

	А	В	С	D	E
139					
140	Total Trimble		547		\$248
141					
142					
143	Grand Total		5,799		\$747

From:	Saunders, Eileen
То:	Raque, Gary; Ritchey, Stacy
Sent:	6/1/2010 8:32:33 AM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - EW Brown
Attachments:	Brown Unit 1 Cost Estimates 052810.pdf; Brown Unit 2 Cost Estimates 052810.pdf; Brown Unit 3
	Cost Estimates 052810.pdf

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 2:43 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - EW Brown

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at EW Brown Units 1-3. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	1
MW	110
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Overfire Air	\$767,000	\$7	\$132,000	\$225,000
Low NOx Burners	\$1,156,000	\$11	\$0	\$141,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$44,022,000	\$400	\$2,273,000	\$7,631,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	2
MW	180
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$92,000,000	\$511	\$3,278,000	\$14,474,000
Fabric Filter	\$51,000,000	\$283	\$1,959,000	\$8,166,000
Lime Injection	\$2,739,000	\$15	\$1,155,000	\$1,488,000
PAC Injection	\$2,476,000	\$14	\$1,090,000	\$1,391,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$148,715,000	\$826	\$7,532,000	\$25,630,000

DRAFT

BROWN UNIT 2 - SCR COSTS

CAPITAL COST

Purchase Contracts

Civil/Structural Ductwork and Breeching Mechanical - Balance of Plant (BOP) Electrical - Equipment, Raceway VFDs, Motors and Couplings Switchgear and MCCs Control - DCS Instrumentation Air Heater Modifications ID Fans Catalyst Selective Catalytic Reduction System (Including Ammonia System) Subtotal Purchase Contract	\$468,000 \$151,000 \$0	Engineering Estimates Engineering Estimates Engineering Estimates
Construction Contracts		
Civil/Structural Construction - Super Structures Civil/Structural Construction - Sub-Structures Mechanical/Chemical Construction Electrical/Control Construction Service Contracts & Construction Indirects Demolition Costs Subtotal Construction Contracts	\$2,854,000 \$742,000 \$8,971,000 \$4,103,000 \$14,331,000 \$6,500,000 \$37,501,000	Engineering Estimates
Construction Difficulty Costs	\$26,250,700	Engineering Estimates
Total Direct Costs	\$80,282,700	
Indirect Costs		
Engineering Costs (Includes G&A & Fee) EPC Construction Management (Includes G&A & Fee) Startup Spare Parts (Included) Construction Utilites (Power & Water) - Included Project Insurance Sales Taxes Project Contingency	\$2,696,000 \$1,691,000 \$0 \$444,000 \$627,000 \$6,326,000	
Total Indirect Costs	\$11,784,000	
Total Contracted Costs	\$92,000,000	
Capital Cost Effectiveness	\$511	
	<i>\$311</i>	1800
ANNUAL COST Fixed Annual Costs		Capacity Factor = 62%
Operating labor Maintenance labor & materials Yearly emissions testing Catalyst activity testing Fly ash sampling and analysis Subtotal Fixed Annual Costs Variable Annual Costs	\$25,000 \$5,000	(DC) X 3.0% Engineering Estimates Engineering Estimates Engineering Estimates
Reagent	\$309,000	215 lb/hr and 530.03 \$/ton
Auxiliary and ID fan power Catalyst replacement	\$186,000 \$202,000	940 kW and 0.03646 \$/kWh
Subtotal Variable Annual Costs	\$697,000	
Total Annual Costs	\$3,278,000	
Levelized Capital Costs	\$11,196,000	(TCI) X 12.17% CRF
Levelized Annual Costs	\$14,474,000	

BROWN UNIT 2 - PJFF COSTS

CAPITAL COST

Purchase Contracts

Civil/Structural Mechanical - Balance of Plant (BOP) Electrical - Equipment, Raceway, Switchgears, MCC Control - DCS Instrumentation ID Fans	\$2,646,000 \$7,580,000 \$161,000 \$178,000 \$535,000	Engineering Estimates
Subtotal Purchase Contract	\$11,100,000	
Construction Contracts		
Civil/Structural Construction - Super Structures Civil/Structural Construction - Sub-Structures Mechanical/Chemical Construction Electrical/Control Construction Service Contracts & Construction Indirects Demolition Costs	\$2,355,000 \$895,000 \$8,956,000 \$3,024,000 \$146,000 \$5,000,000	Engineering Estimates
Subtotal Construction Contracts	\$20,376,000	
Construction Difficulty Costs	\$14,263,200	Engineering Estimates
Total Direct Costs	\$45,739,200	
Indirect Costs		
Engineering Costs (Includes G&A & Fee) EPC Construction Management (Includes G&A & Fee) Startup Spare Parts (Included) Construction Utilites (Power & Water) - Included Project Insurance Sales Taxes Project Contingency - 18%	\$2,334,000 \$1,527,000 \$0 \$231,000 \$82,000 \$860,000	
Total Indirect Costs	\$5,034,000	
Total Contracted Costs	\$51,000,000	
Cost Effectiveness	\$283 ,	/kW
ANNUAL COST		
Fixed Annual Costs		Capacity Factor = 62%
Maintenance labor and materials	\$1,530,000	(DC) X 3.0%
Subtotal Fixed Annual Costs	\$1,530,000	
Variable Annual Costs		
Byproduct disposal Bag replacement cost Cage replacement cost ID fan power Auxiliary power	\$5,000 \$129,000 \$65,000 \$200,000 \$30,000	120 lb/hr and 15 \$/ton 3,880 bags and 100 \$/bag 3,880 cages and 50 \$/cage 1,010 kW and 0.03646 \$/kWh 150 kW and 0.03646 \$/kWh
Subtotal Variable Annual Costs	\$429,000	
Total Annual Costs	\$1,959,000	
Levelized Capital Costs	\$6,207,000	(TCI) X 12.17% CRF
Levelized Annual Costs	\$8,166,000	

Brown Unit 2 180 MW High Level Emissions Control Study

	Date: <u>5/30/2010</u>	
\$	Remarks/Cost Basis	
\$133,800	From Previous Mill Creek BACT Study	
	From Previous Mill Creek BACT Study	
	From Previous Mill Creek BACT Study	
	From Previous Mill Creek BACT Study	
	From Previous Mill Creek BACT Study	
	From Previous Mill Creek BACT Study	
	From Previous Mill Creek BACT Study	
	(CC) X 4.5%	
\$1,042,000		
	(PEC) X 10.0%	
	(PEC) X 20.0%	
	(PEC) X 10.0%	
\$52,000	(PEC) X 5.0%	
\$21,000	(PEC) X 2.0%	
\$52,000	(PEC) X 5.0%	
\$0	(PEC) X 0.0%	
\$0	(PEC) X 0.0%	
\$541,000		
\$0	N/A	
	Engineering estimate	
\$1,658,000		
\$199.000	(DC) X 12.0%	
	(DC) X 12.0%	
	(DC) X 10.0%	
	(DC) X 15%	
	Engineering estimate	
	• •	
	(DC) X 20.0%	
\$1,021,000		
\$60,000	[(DC)+(IC)] X 4.50% 1 years (project time length X 1/2)	
\$2,739,000		
\$15 /	k W	
#F0 000		
	(DC) X 3.0%	
\$123,000	1 FTE and 123,325 \$/year Estimated manpower	
\$173,000		
	62 % capacity factor	
\$754,000	2,100 lb/hr and 132.19 \$/ton	
\$208,000	2,400 lb/hr and 15 \$/ton	
\$20,000	100 kW and 0.03646 \$/kWh	
\$982,000		
\$1,155,000		
\$333,000	(TCI) X 12:17% CRF	
\$333,000		
\$1 488 000		
41,400,000		
	\$133,800 \$88,800 \$121,800 \$80,400 \$526,800 \$526,800 \$25,200 \$996,600 \$1,042,000 \$1,042,000 \$1,042,000 \$208,000 \$1,042,000 \$21,000 \$52,000 \$52,000 \$52,000 \$52,000 \$1,658,000 \$1,658,000 \$1,658,000 \$1,658,000 \$1,021,000 \$1,020,000 \$1,020,000 \$1,020,000 \$1,155,000 \$1,155,000	

Brown Unit 2 180 MW High Level Emissions Control Study

Technology:	PAC Injection
reennology.	

Technology: PAC Injection		Date: 5/30/2010		
ost Item	\$	Remarks/Cost Basis		
APITAL COST				
irect Costs				
Purchased equipment costs				
Long-term storage silo (with truck unloading sys.)	\$151,641	Ratio from Brown Unit 3 BACT Analysis		
	. ,			
Short-term storage silo	\$99,650	Ratio from Brown Unit 3 BACT Analysis		
Air blowers	\$138,643	Ratio from Brown Unit 3 BACT Analysis		
Rotary feeders	\$17,330	Ratio from Brown Unit 3 BACT Analysis		
Injection system	\$64,989	Ratio from Brown Unit 3 BACT Analysis		
Ductwork modifications, supports, platforms	\$0			
Electrical system upgrades	\$415,930	Ratio from Brown Unit 3 BACT Analysis		
Instrumentation and controls	\$21,663	Ratio from Brown Unit 3 BACT Analysis		
– Subtotal capital cost (CC)	\$909,847	,		
Freight	\$23,000	(CC) X 2.5%		
Total purchased equipment cost (PEC)	\$933,000			
Direct installation costs				
	\$93,000			
Foundation & supports		(PEC) X 10.0%		
Handling & erection	\$187,000	(PEC) X 20.0%		
Electrical	\$93,000	(PEC) X 10.0%		
Piping	\$47,000	(PEC) X 5.0%		
Insulation	\$19,000	(PEC) X 2.0%		
Painting	\$47,000	(PEC) X 5.0%		
Demolition	\$0	(PEC) X 0.0%		
Relocation	\$0	(PEC) X 0.0%		
Total direct installation costs (DIC)	\$486,000			
_				
Site preparation	\$0	N/A		
Buildings _	\$75,000	Engineering estimate		
Total direct costs (DC) = (PEC) + (DIC)	\$1,494,000			
direct Costs				
Engineering	\$179,000	(DC) X 12.0%		
Owner's cost	\$179,000	(DC) X 12.0%		
Construction management	\$149,000	(DC) X 10.0%		
Start-up and spare parts	\$22,000	(DC) X 15%		
Performance test	\$100,000	Engineering estimate		
Contingencies	\$299,000	(DC) X 20.0%		
Total indirect costs (IC)	\$928,000			
lowance for Funds Used During Construction (AFDC)	\$54,000	[(DC)+(IC)] X 4.50% 1 years (project time length X 1/2)		
otal Capital Investment (TCI) = (DC) + (IC) + (AFDC)	\$2,476,000			
ost Effectiveness	\$14 /k	W		
irect Annual Costs				
Fixed annual costs				
Maintenance labor and materials	\$45,000	(DC) X 3.0%		
Operating labor	\$123,000	1 FTE and 123,325 \$/year Estimated manpower		
Total fixed annual costs	\$168,000			
Variable annual costs				
Variable annual costs	¢000 000	62 % capacity factor		
Reagent (BPAC)	\$896,000	150 lb/hr and 2200 \$/ton		
Byproduct disposal cost	\$6,000	150 lb/hr and 15 \$/ton		
Auxiliary power	\$20,000	100 kW and 0.03646 \$/kWh		
Total variable annual costs	\$922,000			
Total direct annual costs (DAC)	\$1,090,000			
· · · · =	\$1,090,000			
direct Annual Costs	<u> </u>			
direct Annual Costs Cost for capital recovery	\$301,000	(TCI) X 12.17% CRF		
direct Annual Costs	<u> </u>	(TCI) X 12.17% CRF		
direct Annual Costs Cost for capital recovery	\$301,000	(TCI) X 12.17% CRF		

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	3
MW	457
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$61,000,000	\$133	\$3,321,000	\$10,745,000
PAC Injection	\$5,426,000	\$12	\$2,330,000	\$2,990,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$67,426,000	\$148	\$5,751,000	\$13,957,000

DRAFT

From:	Saunders, Eileen
То:	Raque, Gary; Ritchey, Stacy
Sent:	6/1/2010 8:32:46 AM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Green River
Attachments:	Green River Unit 3 Cost Estimates 052810.pdf; Green River Unit 4 Cost Estimates 052810.pdf

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 2:54 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Green River

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Green River Units 3 & 4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Lucaski@bv.com

Black & Veatch Cost Estimates

Plant Name:	Green River
Unit:	3
MW	71
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$29,000,000	\$408	\$1,040,000	\$4,569,000
CDS-FF	\$38,000,000	\$535	\$6,874,000	\$11,499,000
PAC Injection	\$1,112,000	\$16	\$323,000	\$458,000
Neural Networks	\$500,000	\$7	\$50,000	\$111,000
Total	\$68,612,000	\$966	\$8,287,000	\$16,637,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Green River
Unit:	4
MW	109
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$42,000,000	\$385	\$1,442,000	\$6,553,000
CDS-FF	\$54,000,000	\$495	\$10,289,000	\$16,861,000
PAC Injection	\$1,583,000	\$15	\$515,000	\$708,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$98,083,000	\$900	\$12,296,000	\$24,233,000

DRAFT

From:	Saunders, Eileen
То:	Raque, Gary; Ritchey, Stacy
Sent:	6/1/2010 8:32:55 AM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Trimble
Attachments:	Trimble Unit 1 Cost Estimates 052810.pdf

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:00 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Trimble

Eileen,

Attached please find the draft AQCS Costs for the approved technologies for Trimble Unit 1. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Lucaski@bv.com

Black & Veatch Cost Estimates

Plant Name:	Trimble County
Unit:	1
MW	547
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$128,000,000	\$234	\$5,782,000	\$21,360,000
PAC Injection	\$6,451,000	\$12	\$4,413,000	\$5,198,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$135,451,000	\$248	\$10,295,000	\$26,780,000

DRAFT

From:	Saunders, Eileen
То:	Raque, Gary; Ritchey, Stacy
Sent:	6/1/2010 8:33:04 AM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Ghent
Attachments:	Ghent Unit 1 Cost Estimates 052810.pdf; Ghent Unit 2 Cost Estimates 052810.pdf; Ghent Unit 3 Cost
	Estimates 052810.pdf; Ghent Unit 4 Cost Estimates 052810.pdf

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:09 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Ghent

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Ghent Units 1-4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	1
MW	541
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$131,000,000	\$242	\$5,888,000	\$21,831,000
PAC Injection	\$6,380,000	\$12	\$4,208,000	\$4,984,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$138,380,000	\$256	\$10,196,000	\$27,037,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	2
MW	517
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$227,000,000	\$439	\$7,078,000	\$34,704,000
Fabric Filter	\$120,000,000	\$232	\$5,002,000	\$19,606,000
Lime Injection	\$5,483,000	\$11	\$2,775,000	\$3,442,000
PAC Injection	\$6,109,000	\$12	\$2,880,000	\$3,623,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$359,592,000	\$696	\$17,835,000	\$61,597,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	3
MW	523
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$138,000,000	\$264	\$6,122,000	\$22,917,000
PAC Injection	\$6,173,000	\$12	\$4,134,000	\$4,885,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$145,173,000	\$278	\$10,356,000	\$28,024,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	4
MW	526
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$117,000,000	\$222	\$5,363,000	\$19,602,000
PAC Injection	\$6,210,000	\$12	\$3,896,000	\$4,652,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$124,210,000	\$236	\$9,359,000	\$24,476,000

DRAFT

From:	Saunders, Eileen
То:	Raque, Gary; Ritchey, Stacy
Sent:	6/1/2010 8:33:12 AM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Mill Creek
Attachments:	Mill Creek Unit 1 Cost Estimates 052810.pdf; Mill Creek Unit 2 Cost Estimates 052810.pdf; Mill
	Creek Unit 3 Cost Estimates 052810.pdf; Mill Creek Unit 4 Cost Estimates 052810.pdf

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:23 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Mill Creek

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Mill Creek Units 1-4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	1
MW	330
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$97,000,000	\$294	\$3,366,000	\$15,171,000
WFGD	\$297,000,000	\$900	\$14,341,000	\$50,486,000
Fabric Filter	\$81,000,000	\$245	\$3,477,000	\$13,335,000
Electrostatic Precipitator	\$32,882,000	\$100	\$3,581,000	\$7,583,000
Lime Injection	\$4,480,000	\$14	\$2,024,000	\$2,569,000
PAC Injection	\$4,412,000	\$13	\$2,213,000	\$2,750,000
Neural Networks	\$1,000,000	\$3	\$100,000	\$222,000
Total	\$517,774,000	\$1,569	\$29,102,000	\$92,116,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	2
MW	330
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$97,000,000	\$294	\$3,401,000	\$15,206,000
WFGD	\$297,000,000	\$900	\$14,604,000	\$50,749,000
Fabric Filter	\$81,000,000	\$245	\$3,518,000	\$13,376,000
Electrostatic Precipitator	\$32,882,000	\$100	\$3,664,000	\$7,666,000
Lime Injection	\$4,480,000	\$14	\$2,117,000	\$2,662,000
PAC Injection	\$4,412,000	\$13	\$2,340,000	\$2,877,000
Neural Networks	\$1,000,000	\$3	\$100,000	\$222,000
Total	\$517,774,000	\$1,569	\$29,744,000	\$92,758,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	3
MW	423
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
WFGD	\$392,000,000	\$927	\$18,911,000	\$66,617,000
Fabric Filter	\$114,000,000	\$270	\$4,923,000	\$18,797,000
PAC Injection	\$5,592,000	\$13	\$3,213,000	\$3,894,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$512,592,000	\$1,212	\$27,147,000	\$89,530,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	4
MW	525
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
WFGD	\$455,000,000	\$867	\$21,775,000	\$77,149,000
Fabric Filter	\$133,000,000	\$253	\$5,804,000	\$21,990,000
PAC Injection	\$6,890,000	\$13	\$3,858,000	\$4,697,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$595,890,000	\$1,135	\$31,537,000	\$104,058,000

DRAFT

From:	Saunders, Eileen
То:	Raque, Gary; Ritchey, Stacy
Sent:	6/1/2010 8:33:20 AM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Cane Run
Attachments:	Cane Run Unit 4 Cost Estimates 052810.pdf; Cane Run Unit 5 Cost Estimates 052810.pdf; Cane Run
	Unit 6 Cost Estimates 052810.pdf

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:34 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Cane Run

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Cane Run Units 4-6. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	4
MW	168
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$63,000,000	\$375	\$2,219,000	\$9,886,000
WFGD	\$152,000,000	\$905	\$8,428,000	\$26,926,000
Fabric Filter	\$33,000,000	\$196	\$1,924,000	\$5,940,000
Lime Injection	\$2,569,000	\$15	\$983,000	\$1,296,000
PAC Injection	\$2,326,000	\$14	\$1,087,000	\$1,370,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$253,395,000	\$1,508	\$14,691,000	\$45,529,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	5
MW	181
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$66,000,000	\$365	\$2,421,000	\$10,453,000
WFGD	\$159,000,000	\$878	\$8,789,000	\$28,139,000
Fabric Filter	\$35,000,000	\$193	\$2,061,000	\$6,321,000
Lime Injection	\$2,752,000	\$15	\$1,089,000	\$1,424,000
PAC Injection	\$2,490,000	\$14	\$1,120,000	\$1,423,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$265,742,000	\$1,468	\$15,530,000	\$47,871,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	6
MW	261
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$86,000,000	\$330	\$2,793,000	\$13,259,000
WFGD	\$202,000,000	\$774	\$10,431,000	\$35,014,000
Fabric Filter	\$45,000,000	\$172	\$2,672,000	\$8,149,000
Lime Injection	\$3,873,000	\$15	\$1,367,000	\$1,838,000
PAC Injection	\$3,490,000	\$13	\$1,336,000	\$1,761,000
Neural Networks	\$500,000	\$2	\$50,000	\$111,000
Total	\$340,863,000	\$1,306	\$18,649,000	\$60,132,000

DRAFT

From:Saunders, EileenTo:Ritchey, Stacy; Raque, GarySent:6/1/2010 12:15:40 PMSubject:Environmental Summay (rev3 6-1-10).xlsxAttachments:Environmental Summay (rev3 6-1-10).xlsx

Updated

	А	В	С	D	E	F	G	н	I	J
1	Black & Veatch Study Cost Estimate	es								
2	\$ in thousands									
3										
4										
5		Cap	ital Cost		O&M Cost	Tot	al Capital and O	&M Levelized Annual Costs		sts
6	BROWN									
7	Brown 1 - Low NOx Burners		\$1,156		\$0		\$1,156		\$141	
8	Brown 1 - Baghouse		\$40,000		\$1,477		\$41,477		\$6,345	
9	Brown 1 - PAC Injection		\$1,599		\$614		\$2,213		\$809	
10	Brown 1 - Neural Networks		\$500		\$50		\$550		\$111	
11	Brown 1 - Overfire Air		\$767		\$132	_	\$899		\$225	
12	Total Brown 1		\$44,022		\$2,273	_	\$46,295		\$7,631	
13	Brown 2 - SCR		¢02.000		¢2.270		COE 270		¢14.474	
	Brown 2 - SCR Brown 2 - Baghouse		\$92,000 \$51,000		\$3,278 \$1,959		\$95,278 \$52,959		\$14,474 \$8,166	
	Brown 2 - PAC Injection		\$2,476		\$1,959		\$3,566		\$8,166	
	Brown 2 - Neural Networks		\$500		\$1,090		\$550		\$1,391	
	Brown 2 - Lime Injection		\$2,739		\$1,155		\$3,894		\$1,488	
19	Total Brown 2		\$148,715		\$7,532	-	\$156,247		\$25,630	
20	Total Brown 2		\$140,715		Ş7,532	-	\$150,247		\$25,630	
21	Brown 3 - Baghouse		\$61,000		\$3,321 \$64,321		\$64,321		\$10,745	
22	Brown 3 - PAC Injection		\$5,426		\$2,330 \$7,756		\$7,756		\$2,990	
23	Brown 3 - Neural Networks		\$1,000		\$100		\$1,100		\$222	
24	Total Brown 3		\$67,426		\$5,751		\$73,177		\$13,957	
25	Tatal Duarum		6250 452		645 55C	_			647.340	
26 27	Total Brown		\$260,163		\$15,556		\$275,719		\$47,218	
27										
20	GHENT									
30	Ghent 1 - Baghouse		\$131,000		ćE 000		¢136 000		\$21,831	
	Ghent 1 - PAC Injection		\$6,380		\$5,888 \$136,888			\$4,984		
32	Ghent 1 - Neural Networks		\$1,000		\$4,208 \$10,588 \$100 \$1,100			\$222		
33	Total Ghent 1		\$138,380		\$10,196	-	\$148,576		\$27,037	
34			9130,36U		\$10,190	-	\$140,370		ş27,037	
35	Ghent 2 - SCR		\$227,000		\$7,078		\$234,078		\$34,704	
36	Ghent 2 - Baghouse		\$120,000		\$5,002		\$125,002		\$19,606	
37	Ghent 2 - PAC Injection		\$6,109				\$8,989		\$3,623	
38	Ghent 2 - Lime Injection		\$5,483				\$8,258		\$3,442	
39	Ghent 2 - Neural Networks		\$1,000		\$100		\$1,100		\$222	
40	Total Ghent 2		\$359,592		\$17,835 \$377,		\$377,427		\$61,597	
41 42	Ghent 3 - Baghouse		\$138,000		\$6,122 \$144,2		\$144,122		\$22,917	
42	Ghent 3 - PAC Injection		\$6,173				\$10,307		\$4,885	
44	Ghent 3 - Neural Networks		\$1,000		\$100		\$1,100		\$222	
45	Total Ghent 3		\$145,173		\$10,356		\$155,529		\$28,024	
45					<i>\</i>		<i>\</i>		<i><i><i></i></i></i>	

	А	B C	D E	F G	H I	J
47	Ghent 4 - Baghouse	\$117,000	\$5,363	\$122,363	\$19,602	
48	Ghent 4 - PAC Injection	\$6,210	\$3,896	\$10,106	\$4,652	
49	Ghent 4 - Neural Networks	\$1,000	\$100	\$1,100	\$222	
50	Total Ghent 4	\$124,210	\$9,359	\$133,569	\$24,476	
51						
52	Total Ghent	\$767,355	\$47,746	\$815,101	\$141,134	
53						
54						
55	GREEN RIVER	400.000		400.010	4	
-	Green River 3 - SCR	\$29,000	\$1,040		\$4,569	
	Green River 3 - CDS-FF	\$38,000	\$6,874		\$11,499	
	Green River 3 - PAC Injection	\$1,112	\$323		\$458	
	Green River 3 - Neural Networks	\$500	\$50		\$111	
60 61	Total Green River 3	\$68,612	\$8,287	\$76,899	\$16,637	
	Green River 4 - SCR	\$42,000	\$1,442	\$43,442	\$6,553	
63	Green River 4 - CDS-FF	\$54,000	\$10,289		\$16,861	
-	Green River 4 - PAC Injection	\$1,583	\$515		\$708	
	Green River 4 - Neural Networks	\$500	\$50		\$111	
66	Total Green River 4	\$98,083	\$12,296		\$24,233	
67						
68	Total Green River	\$166,695	\$20,583	\$187,278	\$40,870	
69 70						
71	CANE RUN					
72	Cane Run 4 - FGD	\$152,000	\$8,428	\$160,428	\$26,926	
73	Cane Run 4 - SCR	\$63,000	\$2,219		\$9,886	
74	Cane Run 4 - Baghouse	\$33,000	\$1,924	\$34,924	\$5,940	
	Cane Run 4 - PAC Injection	\$2,326	\$1,087	· · ·	\$1,370	
76	Cane Run 4 - Lime Injection	\$2,569	\$983	\$3,552	\$1,296	
77	Cane Run 4 - Neural Networks	\$500	\$50	\$550	\$111	
78	Total Cane Run 4	\$253,395	\$14,691	\$268,086	\$45,529	
79						
	Cane Run 5 - FGD	\$159,000	\$8,789		\$28,139	
	Cane Run 5 - SCR	\$66,000	\$2,421		\$10,453	
-	Cane Run 5 - Baghouse	\$35,000	\$2,061		\$6,321	
	Cane Run 5 - PAC Injection	\$2,490	\$1,120		\$1,423	
	Cane Run 5 - Lime Injection	\$2,752	\$1,089	. ,	\$1,424	
85	Cane Run 5 - Neural Networks	\$500	\$50		\$111	
86 87	Total Cane Run 5	\$265,742	\$15,530	\$281,272	\$47,871	
	Cane Run 6 - FGD	\$202,000	\$10,431	\$212,431	\$35,014	
	Cane Run 6 - SCR	\$86,000	\$2,793		\$13,259	
89	Lane Run o - SCR		, -,			
	Can Rune 6 - Baghouse	\$45,000	\$2,672	\$47,672	\$8,149	
90		\$45,000 \$3,490	\$2,672 \$1,336		\$8,149 \$1,761	

	А	В	С	D	E	F	G	Н	1	J
93	Cane Run 6 - Neural Networks		\$500		\$50		\$550		\$111	
94	Total Can Run 6		\$340,863		\$18,649	\$18,649			\$60,132	
95										
96	Total Cane Run		\$860,000		\$48,870		\$908,870		\$153,532	
97 98										
99	Mill Creek									
100	Mill Creek 1 - FGD		\$297,000		\$14,341		\$311,341		\$50,486	
101	Mill Creek 1 - SCR		\$97,000		\$3,366		\$100,366		\$15,171	
102	Mill Creek 1 - Baghouse		\$81,000		\$3,477		\$84,477		\$13,335	
	Mill Creek 1 - Electrostatic Precipita	ator	\$32,882		\$3,581		\$36,463		\$7,583	
104	Mill Creek 1 - PAC Injection		\$4,412		\$2,213		\$6,625		\$2,750	
105	Mill Creek 1 - Lime Injection		\$4,480		\$2,024		\$6,504		\$2,569	
106	Mill Creek 1 - Neural Networks		\$1,000		\$100		\$1,100		\$222	
107	Total Mill Creek 1		\$517,774		\$29,102		\$546,876		\$92,116	
108					4		4		4	
	Mill Creek 2 - FGD		\$297,000		\$14,604		\$311,604		\$50,749	
	Mill Creek 2 - SCR		\$97,000		\$3,401		\$100,401		\$15,206	
	Mill Creek 2 - Baghouse		\$81,000		\$3,518		\$84,518		\$13,376	
	Mill Creek 2 - Electrostatic Precipita	ator	\$32,882		\$3,664		\$36,546		\$7,666	
	Mill Creek 2 - PAC Injection		\$4,412		\$2,340		\$6,752		\$2,877	
	Mill Creek 2 - Lime Injection		\$4,480		\$2,117		\$6,597		\$2,662	
	Mill Creek 2 - Neural Networks		\$1,000		\$100		\$1,100		\$222	
116 117	Total Mill Creek 2		\$517,774		\$29,744		\$547,518		\$92,758	
	Mill Creek 3 - FGD		\$392,000		\$18,911		\$410,911		\$66,617	
119	Mill Creek 3 - Baghouse		\$114,000		\$4,923		\$118,923		\$18,797	
120	Mill Creek 3 - PAC Injection		\$5,592		\$3,213		\$8,805		\$3,894	
	Mill Creek 3 - Neural Networks		\$1,000		\$100		\$1,100		\$222	
122	Total Mill Creek 3		\$512,592		\$27,147		\$539,739		\$89,530	
123					4		4			
	Mill Creek 4 - FGD		\$455,000		\$21,775		\$476,775		\$77,149	
	Mill Creek 4 - Baghouse		\$133,000		\$5,804		\$138,804		\$21,990	
	Mill Creek 4 - PAC Injection		\$6,890		\$3,858		\$10,748		\$4,697	
	Mill Creek 4 - Neural Networks		\$1,000		\$100		\$1,100		\$222	
128 129	Total Mill Creek 4		\$595,890		\$31,537		\$627,427		\$104,058	
130	Total Mill Creek		\$2,144,030		\$117,530		\$2,261,560		\$378,462	
131			. , ,				. ,,			
132										
133	TRIMBLE									
134	Trimble 1 - Baghouse		\$128,000		\$5,782	\$5,782 \$13			\$21,360	
	Trimble 1 - PAC Injection		\$6,451		\$4,413	. ,			\$5,198	
136	Trimble 1 - Neural Networks		\$1,000		\$100		\$1,100		\$222	
137	Total Trimble 1		\$135,451		\$10,295		\$145,746		\$26,780	
138										

	А	В	С	D	E F		G	G H I		
139			\$135,451		\$10,295		\$145,746		\$26,780	
140										
141										
142	Grand Total		\$4,333,694		\$260,580		\$4,594,274		\$787,996	

From:	Saunders, Eileen
То:	Ritchey, Stacy; Raque, Gary
Sent:	6/1/2010 12:17:16 PM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Cane Run
Attachments:	Cane Run Unit 4 Cost Estimates 052810.pdf; Cane Run Unit 5 Cost Estimates 052810.pdf; Cane Run
	Unit 6 Cost Estimates 052810.pdf

phone

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:34 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Cane Run

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Cane Run Units 4-6. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	4
MW	168
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$63,000,000	\$375	\$2,219,000	\$9,886,000
WFGD	\$152,000,000	\$905	\$8,428,000	\$26,926,000
Fabric Filter	\$33,000,000	\$196	\$1,924,000	\$5,940,000
Lime Injection	\$2,569,000	\$15	\$983,000	\$1,296,000
PAC Injection	\$2,326,000	\$14	\$1,087,000	\$1,370,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$253,395,000	\$1,508	\$14,691,000	\$45,529,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	5
MW	181
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$66,000,000	\$365	\$2,421,000	\$10,453,000
WFGD	\$159,000,000	\$878	\$8,789,000	\$28,139,000
Fabric Filter	\$35,000,000	\$193	\$2,061,000	\$6,321,000
Lime Injection	\$2,752,000	\$15	\$1,089,000	\$1,424,000
PAC Injection	\$2,490,000	\$14	\$1,120,000	\$1,423,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$265,742,000	\$1,468	\$15,530,000	\$47,871,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Cane Run
Unit:	6
MW	261
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$86,000,000	\$330	\$2,793,000	\$13,259,000
WFGD	\$202,000,000	\$774	\$10,431,000	\$35,014,000
Fabric Filter	\$45,000,000	\$172	\$2,672,000	\$8,149,000
Lime Injection	\$3,873,000	\$15	\$1,367,000	\$1,838,000
PAC Injection	\$3,490,000	\$13	\$1,336,000	\$1,761,000
Neural Networks	\$500,000	\$2	\$50,000	\$111,000
Total	\$340,863,000	\$1,306	\$18,649,000	\$60,132,000

DRAFT

From:	Saunders, Eileen
То:	Ritchey, Stacy; Raque, Gary
Sent:	6/1/2010 12:17:49 PM
Subject:	FW: E.ON AQC - Design Basis
Attachments:	Design Basis for E-ON 052110b.pdf

FYI

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Friday, May 21, 2010 10:52 AM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand; Mehta, Pratik D.
Subject: E.ON AQC - Design Basis

Eileen,

Attached is the design basis we have quickly developed for each unit based on the noted fuels and other information provided by E.ON. The design basis is reflects the estimate of boiler and equipment operation based using the current unit emissions from the Matrix. B&V will use this information as the baseline for each unit and from this point the approved AQC technologies will be added and costs developed. Again, this is just one point/step of the overall costing process and can be revised in later phases of the project.

Please review this information and feel free to provide comments by Monday morning for consideration.

Regards, Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Lucaski@bv.com

Dasign Basis

	EON EW Brown, Ghent, Cane Run, Mill Creek, Trimble County, Green River Design Basis																		
Unit Designation	1	EW Brown	3	1	Gł	nent 3	4	4	Cane Run 5	5/21/2010 6	1	MiH C 2	Creek 3	4	Trimble 1	County 2	Greer 3	n River 4	Reference
Ultimate Coal analysis, wet basis Carbon, % Hydrogen, % Sulfur, %	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.26 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	61.20 4.28 3.36	65.41 4.46 2.60	65.41 4.46 2.60	BeV Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Nitrogen, % Chlorine, % Oxygen, %	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.27 0.00 6.89	1.34 0.00 6.69	1.34 0.00 6.69	B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Ash, % Mcisture, % Higher Heating Value, Btu/lb Trace Metal Analysis, ppm	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	12.00 11.00 11,200	9.00 10.50 11.600	9.00 10.50 11,600	B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Antimony (Sb) Arsenic (As) Barium (Ba)	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.05 13.00 74.00	1.07 10.00 49.00	1.07 10.00 49.00	Data from E-ON Data from E-ON Data from E-ON
Cadmium (Cd) Chlorine (Cl) Chromium (Cr) Fluorine (F)	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 96.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.65 1600.00 23.00 98.00	0.30 1845.00 17.00 71.00	0.30 1845.00 17.00 71.00	Data from E-ON Data from E-ON Data from E-ON Data from E-ON
Lead (Pb) Magnesium (Mg) Mercury (Hg)	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 684.00 0.12	11.00 509.00 0.10	11.00 509.00 0.10	Data from E-ON Data from E-ON Data from E-ON
Nickel (Ni) Selenium (Se) Strontium (Sr) Vanadium (V)	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	20.00 2.94 56.00 40.00	14.00 1.93 30.00 40.00	14.00 1.93 30.00 40.00	Data from E-ON Data from E-ON Data from E-ON Data from E-ON
Zinc (Zn) Ash Analysis, % by mass Alumina (Al2O3) Barium Oxide (BaO)	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	48.00 21.69 0.07	50.00 19.45 0.06	50.00 19.45 0.06	Data from E-ON Data from E-ON Data from E-ON Data from E-ON
Lime (CaO) Iron Oxide (Fe2O3) Magnesia (MgO)	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.74 21.80 0.91	2.89 19.90 0.91	2.89 19.90 0.91	Data from E-ON Data from E-ON Data from E-ON
Manganese Oxide (MnO) Phosphorcus Pentoxide (P2O5) Potassium Oxide (K2O) Silica (SIO2)	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.86	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.89	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.26 2.33 45.88	0.04 0.21 2.41 49.65	0.04 0.21 2.41 49.65	Data from E-ON Data from E-ON Data from E-ON Data from E-ON
Sodium Oxide (Na2O) Strontium Oxide (SrO) Sulfur Trioxide (SO3) Titania (TiO2)	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.46 0.05 2.56 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.48 0.05 2.58 1.04	0.77 0.04 2.47 1.08	0.77 0.04 2.47 1.08	Data from E-ON Data from E-ON Data from E-ON Data from E-ON
Undetermined Unit Characteristics Gross Turbine Generator Load, MW	0.12	0.12	0.12	0.12	0.12 517	0.12 523	0.12	0.12	0.12	0.12 261	0.12	0.12	0.12 423	D.12 525	0.12 547	0.12	0.13	0.13	Data from E-ON B&V Combustion Calculations
Boiler Efficiency, % (HFV) Boiler Heat Input, MBtu/hr (HHV) Coal Flow Rate, Ib/hr Capacity Factor, %	85.32 999.80 89,268 44.00	86.73 1,665.50 148,705 62.00	86.53 4.120.43 367,895 57.00	85.74 5,369 479,375 81.00	86.83 4,327 386,339 71.00	86.31 5,496 490,714 78.00	66.77 5,473 468,661 77.00	85.12 1,603 143,125 60.00	87.14 1,757 156,875 62.00	87.09 2,589 231,161 54.00	85.40 3,224 287,857 68.00	85.40 3,311 295,625 70.00	86.51 4,209 375,804 75.00	86.51 5,122 457,321 75.00	86.68 5,310 474,107 85.00	86.92 6,583 587,768 87.00	89.02 848 73,103 26.00	85.25 1,150 99,138 32.00	B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations Data from E-ON
Fly Ash Portion of Total Ash, % Air Heater Leakage, % Excess Air, % Economizer Outlet Conditions	80.0 10.0 34.352	80.0 10.0 18.258	80.0 10.0 16.848	80.0 10.0 18.258	80.0 10.0 21.926	80.0 10.0 21.926	80.0 10.0 20.433	80.0 16.7 20.00	80.0 17.0 20.00	80.0 7.8 20.00	80.0 10.0 20.00	80.0 10.0 20.00	80.0 10.0 20.00	80 0 10.0 20.00	80.0 10.0 18.258	80.0 6.0 19.700	80.0 6.8 25.000	80.0 6.8 25.000	B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Flue Gas Temperature, F Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, Ib/hr	650 -8.0 1.090,927	730 -3.7 1.615,221	730 -5.0 3,952,267	729 -3.2 5,206.933	610 -5.1 4.316.060	731 -5.1 5.482,104	791 -4.5 5,397,559	580 -4.0 1,575.668	630 -3.0 1.727.042	617 -4.0 2.544,856	760 -5.0 3.169,029	760 -5.0 3,254,545	690 -5.0 4,137.234	640 -5.0 5.034,667	700 -6.0 5,149.714	586 -6.0 6,455,853	475 -5.0 886.785	610 -8.0 1.202,598	B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Volumetric Flue Gas Flow Rate, acfm Uncontrolled Sulfur Dioxide Concentration, Ib/MBtu Uncontrolled Sulfur Dioxide Mass Flow Rate, Ib/hr Uncontrolled PM Concentration, Ib/MBtu	509,072 6.00 5,993 8.746	796,739 6.00 9,963 8.746	1,955,176 6.00 24,697 8.746	2,563,081 6.00 32.161 8.746	1,922.533 6.00 25,936 8.746	2.718,161 6.00 32,942 8.746	2,805,958 6.00 32,805 8.746	680.015 6.00 9,608 8.746	779,254 6.00 10,531 8.746	1,137,376 6.00 15,518 8.746	1.608,445 6.00 19,324 8.746	1,651,849 6.00 19,846 8.746	1,979.343 6.00 25,228 8.746	2.303,938 6.00 30,701 8.746	2,490,348 6.00 31,826 8.746	2,816.034 6.00 39,458 8.746	345,095 4.48 3,798 6.334	536,927 4.48 5,150 6.334	B&V Combustion Calculations = % Sulfur in Coal x 20,000 / HHV B&V Combustion Calculations B&V Combustion Calculations
Uncontrolled PM Mass Flow Rate, Ib/hr Uncontrolled Mercury Concentration, Ib/TBtu Uncontrolled HCI Mass Flow Rate, Ib/hr Uncontrolled HCI Concentration, Ib/MBtu	8,744 10.71 147 0.15	14,566 10.71 244.63 0.15	36,037 10.71 605.21 0.15	46,957 10.71 789 0.15	37,844 10.71 636 0.15	48,068 10.71 807 0.15	47,867 10.71 804 0.15	14,020 10.71 235 0.15	15,367 10.71 258 0.15	22,643 10.71 380 0.15	28,197 10.71 474 0.15	28,958 10.71 486 0.15	36,812 10.71 618 0.15	44,797 10.71 752 0.15	46,441 10.71 780 0.15	57,575 10.71 967 0.15	5,371 8.62 139 0.16	7,284 8.62 188 0.16	Uncontrolled PM (Ib/MBtu) x Heat Input (MBtu/hr) Hg in Coal (ppm) x Coal Flow Rate (Ib/hr) / Heat Input (MBtu/hr) HCl in Coal (ppm) / 1,000,000 x Coal Flow Rate (Ib/hr) x MW of HCl / MW of Cl HCl Flowrate (Ib/hr) / Heat Input (MBtu/hr) HCl Flowrate (Ib/hr) / Heat Input (MBtu/hr)
Hot-Side ESP Outlet Conditions Flue Gas Temperature, F Flue Gas Pressure, In. w.g. Flue Gas Mass Flow Rate, Ib/hr	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	605 -10.80 4.531.863	708 -10.90 5.756.209	770 -10.8 5.667,437	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	No Hot-side ESP.	600 -8.1	B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Volumetric Flue Gas Flow Rate, acfm Controlled PM Concentration, Ib/MBtu Controlled PM Mass Flow Rate, Ib/hr Particulate Removal Efficiency, %	side ESP	Unit has a Cold- side ESP	side ESP	side ESP	2,041,027 0.0565 244 99.35	2,843,960 0.0451 248 99,48	2,947,083 0.0248 135.73 99.72	side ESP	side ESP	side ESP	Unit has a Cold- side ESP	side ESP		side ESP	side ESP	side ESP	Unit has a Cold- side ESP	0.08	B&V Combustion Calculations B&V Combustion Calculations = Controlled PM (lb/MBtu) × Heat Input (MBtu/hr) = {1 - Controlled PM db/MBtu) / Uncontrolled PM (lb/MBtu) } x 100
SCR Outlet Conditions Flue Gas Temperature, F Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, Ic/hr Volumetric Flue Gas Flow Rate, acfm Controlled NoX Concentration, Ib/MBtu	No SCR	No SCR	New SCR Planned for 2012	729 -13.2 5,311,071 2,682,371 0.0639	No SCR	708 -20.90 5.871,333 2.977,658 0.0479	770 -20.8 5,780,786 3,085,629 0.0627	No SCR	No SCR	No SCR	No SCR	No SCR	690 -13.0 4,219,979 2,061,162 0.0584	640 -13.0 5,135,360 2,399,175 0.0589	700 -16.0 5,252,708 2,606,716 0.076	586 -11.0 6,584,970 2,910,365 0.076	No SCR		B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations Data from E-ON
Controlled NOx Mass Flow Rate, Ib/hr Air Heater Outlet Conditions Flue Gas Temperature, F Flue Gas Pressure, in. w.g.	350 -14.00	330 ~8.00	340 -18.00	343 361 -22.4	309 -18.60	263 322 -36.10	343 309 -29.4	369 -8.0	299 -6.0	318 -8.0	375 -10.0	375 -10.0	246 330 -18.0	302 330 -18.0	404 320 -22.5	324 -16.0	243 -9.0	363 -13.5	= Controlled NOx (b/MBtu) x Heat Input (MBtu/hr) B8V Combustion Calculations P2V Combustion Calculations
Flue Gas Flessate, fill w.g. Flue Gas Mass Flow Rate, lb/hr Volumetric Flue Gas Flow Rate, acfm Cold-Side ESP Outlet Conditions	1.200,020 415,851	1,776,743 589,646	4,347,494 1,498,187	5,842.179 2,091,568	4,985.049 1,657,754	6.458,467 2,288,309	6,358,865 2,175,592	1,839.262 641,787	2.021.310 642,552	2,744,081 896,674	3.485,932 1,229,416	3,580,000 1,262,592	4,641.976	5.648,896 1,924,653	5,777.979 1,965,750	6,980.068 2,345,528	947,426 280,496	1.349,077	B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Flue Gas Temperature, F Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, Ib/hr Volumetric Flue Gas Flow Rate, aofm	340 -18.00 1.260,021 436,197	320 -12.00 1.865,580 618,296	330 -19.00 4,564.869 1.559,510	358 -25.7 6,134.288 2,209,920	Unit has a Hot-side	No Cold-side ESP. Unit has a Hot-side	e Unit has a Hot-side	369 -9.1 1,931.225 676.568	299 -6.8 2.122,376 676,855	318 -9.8 2.881,285 947,034	340 -14.0 3.660.228 1.250.977	340 -14.0 3,759.000 1,284,735	330 -23.0 4.874.075 1.684.442	330 -21.0 5.931,341 2.039,199	320 -25.5 6,066,878 2.082,968	324 -18.0 7,398.872 2.502.995	230 -11.0 994,797 290,916	No Cold-side ESP. Unit has a Hot-side	B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Controlled PM Concentration, Ib/MBtu Controlled PM Mass Flow Rate, Ib/hr Particulate Removal Efficiency, %	0.241 241 97.24	0.1 0.1 166.55 98.86	0.1 0.1 412.04 98.86	0.023 123 99.74	ESP	ESP	ESP	676,568 0.041 66 99.53	676,855 0.034 60 99.61	0.024 62 99.73	1,250,977 0.0385 124 99,56	1,284,735 0.0443 147 99.49	1,684,442 0.0517 218 99.41	0.0354 181 99.60	2,082,968 0.017 90 99.81	0.31 2041 96.46	0.063 53 99.01	- ESP	B&V Combuston Calculations Data from E-ON = Controlled PM (lb/MBtu) / Heat Input (MBtu/hr) = { 1- Controlled PM (lb/MBtu) / Uncontrolled PM (lb/MBtu) } x 100
Fabric Filter Outlet Conditions Flue Gas Temperature, F Flue Gas Pressure, in. w.g.																313 -23.1 7 308 872	-		B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
File Gas Mass Flow Rate, Ic/hr Volumetric Fue Gas Flow Rate, ac/m Controlled PM Concentration, Ib/MBtu Controlled PM Mass Flow Rate, Ib/hr Particulate Removal Efficiency, %	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	No Fabric Filter	7,398,872 2,500,664 0.015 99 95.16	No Fabric Filter	NO FADRIC FILLER	B&V Combustion Calculations B&V Combustion Calculations Data from E-ON = Controlled PM from fabric Filter (Ib/MBtu) x Heat Input (MBtu/hr) = { 1- FF Controlled PM (Ib/MBtu) / ESP Controlled PM (Ib/MBtu) } x 100
ID Fan Outlet Conditions Flue Gas Temperature, F Flue Gas Pressure, in. w.g. Flue Gas Mass Flow Rate, Ib/hr	356.05 10.00 1,260,021	332.17 10.00 1,865,580	346.44 10.00 4,564,869	376.94 6.10 6,134,286	325.52 11.40 4,985,049	346.34 5.90 6,458,467	333.60 14.60 6,358,865	379.03 8.00 1,931,225	306.39 7.00 2,122,376	327.81 8.00 2,881,285	354.85 10.00 3.660,228	355.15 10.00 3,759,000	348.83 10.00 4,874.075	348.83 10.00 5,931,341	340.08 10.00 6,066,878	334.60 15.77 7,398,672	235.91 1.00 994,797		B&V Combustion Calculations B&V Combustion Calculations B&V Combustion Calculations
Volumetric Flue Gas Flow Rate, acfm	415,059	594,805	1.481,211	2,086,965	1,571,913	2,119,437	2,010,799	656,526	660,654	917.824	1,200,841	1,233,697	1,588,066	1,932,543	1,954.644	2.334,113	284,775		B&V Combustion Calculations

Dasign Basis

										Design Bas 5/21/2010									
it Designation		EW Brown		Ghent				Cane Run			Mill Creek		Trimble	County	Green	River			
	1	2	3	1	2	3			5	6	1		3			2	3	4	Reference
rubber Outlet Conditions	(For 3 units com	ibined to a common/	shared scrubber)																
ie Gas Temperature, F		129.64		131.74	128.04	129.28	128.50	131.19	125.96	128.80	130.30	130.32	129.60	129.60	129.24	129.43			B&V Combustion Calculations
e Gas Pressure, in. w.g.		2.00		1 70	1.50	2.00	1.60	2.00	2.00	2.00	1.00	1.00	1.00	1.00	2.00	6.00			B&V Combustion Calculations
ue Gas Mass Flow Rate, Ib/hr		8,136,097		6,534,149	5,252,980	6,834,132	6,711,801	2,056,206	2,226,116	3,036,144	3,879,298	3,984,228	5,157.618	6,277,442	6,413,722	7,813,543	No Scrubber	No Scrubber	B&V Combustion Calculations
lumetric Flue Gas Flow Rate, acfm		2,029,768		1,643,977	1,306,064	1.705,743	1,671,656	517,157	550,120	754,452	972,502	998,878	1,291.025	1.571,359	1,598,535	1,927.087	no ocrabbei	No ocrabbei	B&V Combustion Calculations
ntrolled Sulfur Dioxide Mass Flow Rate, lb/hr		679		805	865	824	821	659	736	1,750	1,515	1,556	2,441	2,407	441	546			B&V Combustion Calculations
ntrolled Sulfur Dioxide Concentration, lb/MBtu		0.10		0.150	0.200	0.150	0.150	0.411	0.419	0.676	0.47	0.47	0.58	0.47	0.083	0.083			= Controlled SO ₂ (lb/hr) / Heat Input (MBtu/hr)
lfur Dioxide Removal Efficiency, %		98.33		97.50	96.67	97.50	97.50	93.15	93.02	88.73	92.17	92.17	90.33	92.17	98.62	98.62			= { 1- Controlled SO ₂ (lb/MBtu) / Uncontrolled SO ₂ (lb/MBtu) } x 100
ESP Outlet Conditions																			
e Gas Temperature, F																129.43			B&V Combustion Calculations
e Gas Pressure, in. w.g.		No WESP		No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	No WESP	2.00	No WESP	No WESP	B&V Combustion Calculations
e Gas Mass Flow Rate, lb/hr																7,813.543			B&V Combustion Calculations
lumetric Flue Gas Flow Rate, acfm																1,945,943			B&V Combustion Calculations
k Outlet Emissions ¹																			
fur Dioxide Emission Concentration, Ib/MBtu	0.10	0.10	0.10	0.15	0.20	0.15	0.15	0.411	0.419	0.676	0.47	0.47	0.58	0.47	0.083	0.083	4.48	4.48	Data from E-ON
fur Dioxide Emission Rate, lb/hr	100	167	412	805	865	824	821	659	736	1,750	1,515	1.556	2,441	2,407	441	546	3,798	5,150	= SO ₂ Emission (lb/MBtu) x Heat Input (MBtu/hr)
Emission Concentration, Ib/MBtu	0.241	0.1	0.1	0.023	0.0565	0.0451	0.0248	0.041	0.034	0.024	0.0385	0.0443	0.0517	0.0354	0.017	0.015	0.063	0.08	Data from E-ON
I Emission Rate, Ib/hr	241	167	412	123	244	248	136	66	60	62	124	147	218	181	90	99	53	92	= PM Emission (lb/MBtu) × Heat Input (MBtu/hr)
Dx Emission Concentration, Ib/MBtu	0.4463	0.4374	0.3319	0.0639	0.276	0.0479	0.0627	0.3394	0.3843	0.272	0.3169	0.3139	0.0584	0.0589	0.076	0.076	0.4011	0.3864	Data from E-ON
Dx Emission Rate, Ib/hr	446	728	1,368	343	1,194	263	343	544	675	704	1,022	1,039	246	302	404	500	340	444	= NOx Emission (lb/MBtu) x Heat Input (MBtu/hr)
g Emission Concentration, lb/TBtu	5.0	5.0	5.0	2.0	3.5	2.0	2.0	3.5	3.5	3.5	3.0	3.0	2.5	2.5	1.2	1.0	5.5	5.5	Data from E-ON
g Emission Rate, Ib/hr	5.00E-03	8.33E-03	2.06E-02	1.07E-02	1.51E-02	1.10E-02	1.09E-02	5.61E-03	6.15E-03	9.06E-03	9.67E-03	9.93E-03	1.05E-02	1.28E-02	6.37E-03	6.58E-03	4.66E-03	6.33E-03	= Hg Emission (lb/TBtu) x Heat Input (MBtu/hr) / 1,000,000
Emission Concentration, Ib/MBtu	0.002	0.002	0.002	0.0015	0.0017	0.0015	0.0015	0.00095	0.00095	0.00095	0.0015	0.0015	0.0015	0.0015	0.00085	0.00085	0.017	0.017	Data from E-ON
I Emission Rate, Ib/hr	2	3	8	8	7	8	8	2	2	2	5	5	6	8	5	6	14	20	= HCI Emission (lb/MBtu) x Heat Input (MBtu/hr)
Emission Concentration, Ib/MBtu											**						-		CO Emissions are not known
Emission Rate, Ib/hr				-								-					-	_	CO Emissions are not known
oxin/Furan Emission Concentration, Ib/MBtu			1	-								-							Dioxin/Furan Emissions are not known
oxin/Furan Emission Rate, Ib/hr	-		1	-		-		-		-		-		-		-	-		Dioxin/Furan Emissions are not known
es: Current Outlet Emissions as noted in E-ON Matrix																			
ision History:	Rev 0			<u>Date</u> 5/21/2010				Description Initial Issue											

From:	Saunders, Eileen
То:	Fraley, Jeffrey; Pabian, Brad; Carman, Barry
Sent:	6/3/2010 2:36:05 PM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - EW Brown
Attachments:	Brown Unit 1 Cost Estimates 052810.pdf; Brown Unit 2 Cost Estimates 052810.pdf; Brown Unit 3
	Cost Estimates 052810.pdf

All,

Please find the Draft costs I received from B&V. Ralph Bowling is on vacation but I reviewed the information with John Voyles and Scott Straight today. As discussed recently by Paul Thompson in the manager's meeting, the issues surrounding these studies are highly sensitive. Therefore, I ask that you are careful in how you distribute or discuss the information at your station. Please note that the numbers are not final and we are still working with B&V to refine the technology options so the estimate may change.

Also, B&V is working on a report that will include the backup information regarding how these numbers were developed, site arrangements and simple flow diagrams. Once I receive that information, I will send that along to you.

If you have any questions, please let me know.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 2:43 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - EW Brown

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at EW Brown Units 1-3. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: Iucaskj@bv.com

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	1
MW	110
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$40,000,000	\$364	\$1,477,000	\$6,345,000
PAC Injection	\$1,599,000	\$15	\$614,000	\$809,000
Overfire Air	\$767,000	\$7	\$132,000	\$225,000
Low NOx Burners	\$1,156,000	\$11	\$0	\$141,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$44,022,000	\$400	\$2,273,000	\$7,631,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	2
MW	180
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$92,000,000	\$511	\$3,278,000	\$14,474,000
Fabric Filter	\$51,000,000	\$283	\$1,959,000	\$8,166,000
Lime Injection	\$2,739,000	\$15	\$1,155,000	\$1,488,000
PAC Injection	\$2,476,000	\$14	\$1,090,000	\$1,391,000
Neural Networks	\$500,000	\$3	\$50,000	\$111,000
Total	\$148,715,000	\$826	\$7,532,000	\$25,630,000

DRAFT

BROWN UNIT 2 - SCR COSTS

CAPITAL COST

Purchase Contracts

Civil/Structural Ductwork and Breeching Mechanical - Balance of Plant (BOP) Electrical - Equipment, Raceway VFDs. Motors and Couplings Switchgear and MCCs Control - DCS Instrumentation Air Heater Modifications ID Fans Catalyst Selective Catalytic Reduction System (Including Ammonia System)	\$468,000 \$151,000 \$0 \$1,158,000 \$1,883,000 \$1,643,000	Engineering Estimates Engineering Estimates Engineering Estimates
Subtotal Purchase Contract	\$16,531,000	
Construction Contracts		
Civil/Structural Construction - Super Structures Civil/Structural Construction - Sub-Structures Mechanical/Chemical Construction Electrical/Control Construction Service Contracts & Construction Indirects Demolition Costs		Engineering Estimates
Subtotal Construction Contracts	\$37,501,000	
Construction Difficulty Costs	\$26,250,700	Engineering Estimates
Total Direct Costs	\$80,282,700	
Indirect Costs		
Engineering Costs (Includes G&A & Fee) EPC Construction Management (Includes G&A & Fee) Startup Spare Parts (Included) Construction Utilites (Power & Water) - Included Project Insurance Sales Taxes Project Contingency	\$2,696,000 \$1,691,000 \$0 \$0 \$444,000 \$627,000 \$6,326,000	
Total Indirect Costs	\$11,784,000	
Total Contracted Costs	\$92,000,000	
Capital Cost Effectiveness	\$511	7887
ANNUAL COST		Capacity Factor = 62%
Fixed Annual Costs		
Operating labor Maintenance labor & materials Yearly emissions testing Catalyst activity testing Fly ash sampling and analysis	\$25,000 \$5,000	1 FTE and 123,325 \$/year (DC) X 3.0% Engineering Estimates Engineering Estimates Engineering Estimates
Subtotal Fixed Annual Costs	\$2,581,000	
Variable Annual Costs		
Reagent Auxiliary and ID fan power Catalyst replacement	\$309,000 \$186,000 \$202,000	940 kW and 0.03646 \$/kWh
Subtotal Variable Annual Costs	\$697,000	
Total Annual Costs	\$3,278,000	
Levelized Capital Costs	\$11,196,000	(TCI) X 12.17% CRF
Levelized Annual Costs	\$14,474,000	

BROWN UNIT 2 - PJFF COSTS

CAPITAL COST

Purchase Contracts

Civil/Structural Mechanical - Balance of Plant (BOP) Electrical - Equipment, Raceway, Switchgears, MCC Control - DCS Instrumentation ID Fans	\$2,646,000 \$7,580,000 \$161,000 \$178,000 \$535,000	Engineering Estimates
Subtotal Purchase Contract	\$11,100,000	
Construction Contracts		
Civil/Structural Construction - Super Structures Civil/Structural Construction - Sub-Structures Mechanical/Chemical Construction Electrical/Control Construction Service Contracts & Construction Indirects Demolition Costs	\$2,355,000 \$895,000 \$8,956,000 \$3,024,000 \$146,000 \$5,000,000	Engineering Estimates
Subtotal Construction Contracts	\$20,376,000	
Construction Difficulty Costs	\$14,263,200	Engineering Estimates
Total Direct Costs	\$45,739,200	
Indirect Costs		
Engineering Costs (Includes G&A & Fee) EPC Construction Management (Includes G&A & Fee) Startup Spare Parts (Included) Construction Utilites (Power & Water) - Included Project Insurance Sales Taxes Project Contingency - 18%	\$2,334,000 \$1,527,000 \$0 \$231,000 \$82,000 \$860,000	
Total Indirect Costs	\$5,034,000	
Total Contracted Costs	\$51,000,000	
Cost Effectiveness	\$283 ,	/kW
ANNUAL COST		
Fixed Annual Costs		Capacity Factor = 62%
Maintenance labor and materials	\$1,530,000	(DC) X 3.0%
Subtotal Fixed Annual Costs	\$1,530,000	
Variable Annual Costs		
Byproduct disposal Bag replacement cost Cage replacement cost ID fan power Auxiliary power	\$5,000 \$129,000 \$65,000 \$200,000 \$30,000	120 lb/hr and 15 \$/ton 3,880 bags and 100 \$/bag 3,880 cages and 50 \$/cage 1,010 kW and 0.03646 \$/kWh 150 kW and 0.03646 \$/kWh
Subtotal Variable Annual Costs	\$429,000	
Total Annual Costs	\$1,959,000	
Levelized Capital Costs	\$6,207,000	(TCI) X 12.17% CRF
Levelized Annual Costs	\$8,166,000	

Brown Unit 2 180 MW High Level Emissions Control Study

	Date: <u>5/30/2010</u>				
\$	Remarks/Cost Basis				
\$133,800	From Previous Mill Creek BACT Study				
	From Previous Mill Creek BACT Study				
	From Previous Mill Creek BACT Study				
	From Previous Mill Creek BACT Study				
	From Previous Mill Creek BACT Study				
	From Previous Mill Creek BACT Study				
	From Previous Mill Creek BACT Study				
	(CC) X 4.5%				
\$1,042,000					
	(PEC) X 10.0%				
	(PEC) X 20.0%				
	(PEC) X 10.0%				
\$52,000	(PEC) X 5.0%				
\$21,000	(PEC) X 2.0%				
\$52,000	(PEC) X 5.0%				
\$0	(PEC) X 0.0%				
\$0	(PEC) X 0.0%				
\$541,000					
\$0	N/A				
	Engineering estimate				
\$1,658,000					
\$199.000	(DC) X 12.0%				
	(DC) X 12.0%				
	(DC) X 10.0%				
	(DC) X 15%				
	Engineering estimate				
	• •				
	(DC) X 20.0%				
\$1,021,000					
\$60,000	[(DC)+(IC)] X 4.50% 1 years (project time length X 1/2)				
\$2,739,000					
\$15 /	k W				
#F0 000					
	(DC) X 3.0%				
\$123,000	1 FTE and 123,325 \$/year Estimated manpower				
\$173,000					
	62 % capacity factor				
\$754,000	2,100 lb/hr and 132.19 \$/ton				
\$208,000	2,400 lb/hr and 15 \$/ton				
\$20,000	100 kW and 0.03646 \$/kWh				
\$982,000					
\$1,155,000					
\$333,000	(TCI) X 12:17% CRF				
\$333,000					
\$1 488 000					
41,400,000					
	\$133,800 \$88,800 \$121,800 \$80,400 \$526,800 \$526,800 \$25,200 \$996,600 \$1,042,000 \$1,042,000 \$1,042,000 \$208,000 \$1,042,000 \$21,000 \$52,000 \$52,000 \$52,000 \$52,000 \$1,658,000 \$1,658,000 \$1,658,000 \$1,658,000 \$1,021,000 \$1,020,000 \$1,020,000 \$1,020,000 \$1,155,000 \$1,155,000				

Brown Unit 2 180 MW High Level Emissions Control Study

Technology:	PAC Injection
reennology.	

echnology: PAC Injection		Date: <u>5/30/2010</u>
ost Item	\$	Remarks/Cost Basis
APITAL COST		
irect Costs		
Purchased equipment costs		
Long-term storage silo (with truck unloading sys.)	\$151,641	Ratio from Brown Unit 3 BACT Analysis
	. ,	
Short-term storage silo	\$99,650	Ratio from Brown Unit 3 BACT Analysis
Air blowers	\$138,643	Ratio from Brown Unit 3 BACT Analysis
Rotary feeders	\$17,330	Ratio from Brown Unit 3 BACT Analysis
Injection system	\$64,989	Ratio from Brown Unit 3 BACT Analysis
Ductwork modifications, supports, platforms	\$0	
Electrical system upgrades	\$415,930	Ratio from Brown Unit 3 BACT Analysis
Instrumentation and controls	\$21,663	Ratio from Brown Unit 3 BACT Analysis
– Subtotal capital cost (CC)	\$909,847	,
Freight	\$23,000	(CC) X 2.5%
Total purchased equipment cost (PEC)	\$933,000	
Direct installation costs		
	\$93,000	
Foundation & supports		(PEC) X 10.0%
Handling & erection	\$187,000	(PEC) X 20.0%
Electrical	\$93,000	(PEC) X 10.0%
Piping	\$47,000	(PEC) X 5.0%
Insulation	\$19,000	(PEC) X 2.0%
Painting	\$47,000	(PEC) X 5.0%
Demolition	\$0	(PEC) X 0.0%
Relocation	\$0	(PEC) X 0.0%
Total direct installation costs (DIC)	\$486,000	
_		
Site preparation	\$0	N/A
Buildings _	\$75,000	Engineering estimate
Total direct costs (DC) = (PEC) + (DIC)	\$1,494,000	
direct Costs		
Engineering	\$179,000	(DC) X 12.0%
Owner's cost	\$179,000	(DC) X 12.0%
Construction management	\$149,000	(DC) X 10.0%
Start-up and spare parts	\$22,000	(DC) X 15%
Performance test	\$100,000	Engineering estimate
Contingencies	\$299,000	(DC) X 20.0%
Total indirect costs (IC)	\$928,000	
lowance for Funds Used During Construction (AFDC)	\$54,000	[(DC)+(IC)] X 4.50% 1 years (project time length X 1/2)
otal Capital Investment (TCI) = (DC) + (IC) + (AFDC)	\$2,476,000	
ost Effectiveness	\$14 /k	W
irect Annual Costs		
Fixed annual costs		
Maintenance labor and materials	\$45,000	(DC) X 3.0%
Operating labor	\$123,000	1 FTE and 123,325 \$/year Estimated manpower
Total fixed annual costs	\$168,000	
Variable annual costs		
Variable annual costs	¢000 000	62 % capacity factor
Reagent (BPAC)	\$896,000	150 lb/hr and 2200 \$/ton
Byproduct disposal cost	\$6,000	150 lb/hr and 15 \$/ton
Auxiliary power	\$20,000	100 kW and 0.03646 \$/kWh
Total variable annual costs	\$922,000	
Total direct annual costs (DAC)	\$1,090,000	
· · · · =	\$1,090,000	
direct Annual Costs	<u> </u>	
direct Annual Costs Cost for capital recovery	\$301,000	(TCI) X 12.17% CRF
direct Annual Costs	<u> </u>	(TCI) X 12.17% CRF
direct Annual Costs Cost for capital recovery	\$301,000	(TCI) X 12.17% CRF

Black & Veatch Cost Estimates

Plant Name:	Brown
Unit:	3
MW	457
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$61,000,000	\$133	\$3,321,000	\$10,745,000
PAC Injection	\$5,426,000	\$12	\$2,330,000	\$2,990,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$67,426,000	\$148	\$5,751,000	\$13,957,000

DRAFT

From:	Saunders, Eileen
То:	Troost, Tom; Harper, Travis
Sent:	6/3/2010 2:37:28 PM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Green River
Attachments:	Green River Unit 3 Cost Estimates 052810.pdf; Green River Unit 4 Cost Estimates 052810.pdf

All,

Please find the Draft costs I received from B&V. Ralph Bowling is on vacation but I reviewed the information with John Voyles and Scott Straight today. As discussed recently by Paul Thompson in the manager's meeting, the issues surrounding these studies are highly sensitive. Therefore, I ask that you are careful in how you distribute or discuss the information at your station. Please note that the numbers are not final and we are still working with B&V to refine the technology options so the estimate may change.

Also, B&V is working on a report that will include the backup information regarding how these numbers were developed, site arrangements and simple flow diagrams. Once I receive that information, I will send that along to you.

If you have any questions, please let me know.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 2:54 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Green River

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Green River Units 3 & 4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaski@bw.com

Black & Veatch Cost Estimates

Plant Name:	Green River
Unit:	3
MW	71
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$29,000,000	\$408	\$1,040,000	\$4,569,000
CDS-FF	\$38,000,000	\$535	\$6,874,000	\$11,499,000
PAC Injection	\$1,112,000	\$16	\$323,000	\$458,000
Neural Networks	\$500,000	\$7	\$50,000	\$111,000
Total	\$68,612,000	\$966	\$8,287,000	\$16,637,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Green River
Unit:	4
MW	109
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$42,000,000	\$385	\$1,442,000	\$6,553,000
CDS-FF	\$54,000,000	\$495	\$10,289,000	\$16,861,000
PAC Injection	\$1,583,000	\$15	\$515,000	\$708,000
Neural Networks	\$500,000	\$5	\$50,000	\$111,000
Total	\$98,083,000	\$900	\$12,296,000	\$24,233,000

DRAFT

From:	Saunders, Eileen
То:	Crutcher, Tom; Turner, Haley
Sent:	6/3/2010 2:37:41 PM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Trimble
Attachments:	Trimble Unit 1 Cost Estimates 052810.pdf

All,

Please find the Draft costs I received from B&V. Ralph Bowling is on vacation but I reviewed the information with John Voyles and Scott Straight today. As discussed recently by Paul Thompson in the manager's meeting, the issues surrounding these studies are highly sensitive. Therefore, I ask that you are careful in how you distribute or discuss the information at your station. Please note that the numbers are not final and we are still working with B&V to refine the technology options so the estimate may change.

Also, B&V is working on a report that will include the backup information regarding how these numbers were developed, site arrangements and simple flow diagrams. Once I receive that information, I will send that along to you.

If you have any questions, please let me know.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:00 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Trimble

Eileen,

Attached please find the draft AQCS Costs for the approved technologies for Trimble Unit 1. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaski@by.com

Black & Veatch Cost Estimates

Plant Name:	Trimble County
Unit:	1
MW	547
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$128,000,000	\$234	\$5,782,000	\$21,360,000
PAC Injection	\$6,451,000	\$12	\$4,413,000	\$5,198,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$135,451,000	\$248	\$10,295,000	\$26,780,000

DRAFT

From:	Saunders, Eileen
То:	Joyce, Jeff; Nix, Stephen; Piening, Carla
Sent:	6/3/2010 2:38:01 PM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Ghent
Attachments:	Ghent Unit 1 Cost Estimates 052810.pdf; Ghent Unit 2 Cost Estimates 052810.pdf; Ghent Unit 3 Cost
	Estimates 052810.pdf; Ghent Unit 4 Cost Estimates 052810.pdf

All,

Please find the Draft costs I received from B&V. Ralph Bowling is on vacation but I reviewed the information with John Voyles and Scott Straight today. As discussed recently by Paul Thompson in the manager's meeting, the issues surrounding these studies are highly sensitive. Therefore, I ask that you are careful in how you distribute or discuss the information at your station. Please note that the numbers are not final and we are still working with B&V to refine the technology options so the estimate may change.

Also, B&V is working on a report that will include the backup information regarding how these numbers were developed, site arrangements and simple flow diagrams. Once I receive that information, I will send that along to you.

If you have any questions, please let me know.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:09 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Ghent

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Ghent Units 1-4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@bw.com

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	1
MW	541
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$131,000,000	\$242	\$5,888,000	\$21,831,000
PAC Injection	\$6,380,000	\$12	\$4,208,000	\$4,984,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$138,380,000	\$256	\$10,196,000	\$27,037,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	2
MW	517
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$227,000,000	\$439	\$7,078,000	\$34,704,000
Fabric Filter	\$120,000,000	\$232	\$5,002,000	\$19,606,000
Lime Injection	\$5,483,000	\$11	\$2,775,000	\$3,442,000
PAC Injection	\$6,109,000	\$12	\$2,880,000	\$3,623,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$359,592,000	\$696	\$17,835,000	\$61,597,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	3
MW	523
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$138,000,000	\$264	\$6,122,000	\$22,917,000
PAC Injection	\$6,173,000	\$12	\$4,134,000	\$4,885,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$145,173,000	\$278	\$10,356,000	\$28,024,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Ghent
Unit:	4
MW	526
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
Fabric Filter	\$117,000,000	\$222	\$5,363,000	\$19,602,000
PAC Injection	\$6,210,000	\$12	\$3,896,000	\$4,652,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$124,210,000	\$236	\$9,359,000	\$24,476,000

DRAFT

From:	Saunders, Eileen
То:	Kirkland, Mike; Koller, Tiffany; Stevens, Michael
Sent:	6/3/2010 2:38:27 PM
Subject:	FW: 167987.26.0000 100530 - EON Draft AQCS Costs - Mill Creek
Attachments:	Mill Creek Unit 1 Cost Estimates 052810.pdf; Mill Creek Unit 2 Cost Estimates 052810.pdf; Mill
	Creek Unit 3 Cost Estimates 052810.pdf; Mill Creek Unit 4 Cost Estimates 052810.pdf

All,

Please find the Draft costs I received from B&V. Ralph Bowling is on vacation but I reviewed the information with John Voyles and Scott Straight today. As discussed recently by Paul Thompson in the manager's meeting, the issues surrounding these studies are highly sensitive. Therefore, I ask that you are careful in how you distribute or discuss the information at your station. Please note that the numbers are not final and we are still working with B&V to refine the technology options so the estimate may change.

Also, B&V is working on a report that will include the backup information regarding how these numbers were developed, site arrangements and simple flow diagrams. Once I receive that information, I will send that along to you.

If you have any questions, please let me know.

Thank you,

Eileen

From: Lucas, Kyle J. [mailto:LucasKJ@bv.com]
Sent: Sunday, May 30, 2010 3:23 PM
To: Saunders, Eileen
Cc: Hillman, Timothy M.; Mahabaleshwarkar, Anand
Subject: 167987.26.0000 100530 - EON Draft AQCS Costs - Mill Creek

Eileen,

Attached please find the draft AQCS Costs for the approved technologies at Mill Creek Units 1-4. The levelized annual cost was based on the Capital Recovery Factor (CRF) of 12.17% as supplied by EON as part of the economic criteria.

Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Email: lucaskj@bw.com

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	1
MW	330
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$97,000,000	\$294	\$3,366,000	\$15,171,000
WFGD	\$297,000,000	\$900	\$14,341,000	\$50,486,000
Fabric Filter	\$81,000,000	\$245	\$3,477,000	\$13,335,000
Electrostatic Precipitator	\$32,882,000	\$100	\$3,581,000	\$7,583,000
Lime Injection	\$4,480,000	\$14	\$2,024,000	\$2,569,000
PAC Injection	\$4,412,000	\$13	\$2,213,000	\$2,750,000
Neural Networks	\$1,000,000	\$3	\$100,000	\$222,000
Total	\$517,774,000	\$1,569	\$29,102,000	\$92,116,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	2
MW	330
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
SCR	\$97,000,000	\$294	\$3,401,000	\$15,206,000
WFGD	\$297,000,000	\$900	\$14,604,000	\$50,749,000
Fabric Filter	\$81,000,000	\$245	\$3,518,000	\$13,376,000
Electrostatic Precipitator	\$32,882,000	\$100	\$3,664,000	\$7,666,000
Lime Injection	\$4,480,000	\$14	\$2,117,000	\$2,662,000
PAC Injection	\$4,412,000	\$13	\$2,340,000	\$2,877,000
Neural Networks	\$1,000,000	\$3	\$100,000	\$222,000
Total	\$517,774,000	\$1,569	\$29,744,000	\$92,758,000

DRAFT

Black & Veatch Cost Estimates

Plant Name:	Mill Creek
Unit:	3
MW	423
Project description	High Level Emissions Control Study
Revised on:	05/28/10

AQC Equipment	Total Capital Cost	\$/kW	O&M Cost	Levelized Annual Costs
WFGD	\$392,000,000	\$927	\$18,911,000	\$66,617,000
Fabric Filter	\$114,000,000	\$270	\$4,923,000	\$18,797,000
PAC Injection	\$5,592,000	\$13	\$3,213,000	\$3,894,000
Neural Networks	\$1,000,000	\$2	\$100,000	\$222,000
Total	\$512,592,000	\$1,212	\$27,147,000	\$89,530,000

DRAFT