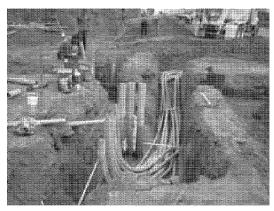


# **Ghent Unit 3 PJFF challenges**

- Site constraints
- Long ductwork for Unit 3
- Restricted access around the footprint of Unit 3 ESP – tight space
- Difficult crane access for tie in of Unit 3 fabric filter inlet/outlet ductwork




October 6, 2010



### **Ghent Unit 4 PJFF challenges**

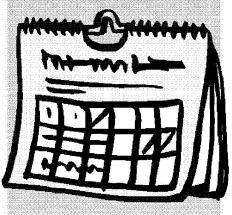
- Demolish and relocate underground utilities
  - Electrical manholes
  - Water wells
  - Storm sewer boxes and piping
  - Circulating cooling water piping





# **Typical PJFF schedule**

- 32 to 36 months
  - Engineering & procurement 16 months
  - Erect PJFF foundations 6 months
  - Erect PJFF 12 months
  - Tie-in outage 1 month
  - Start-up 1 month

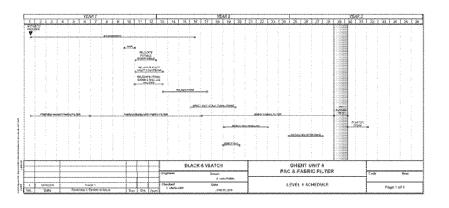

BLACKS VEATCH

### BUILDING A WORLD OF DIFFERENCE®

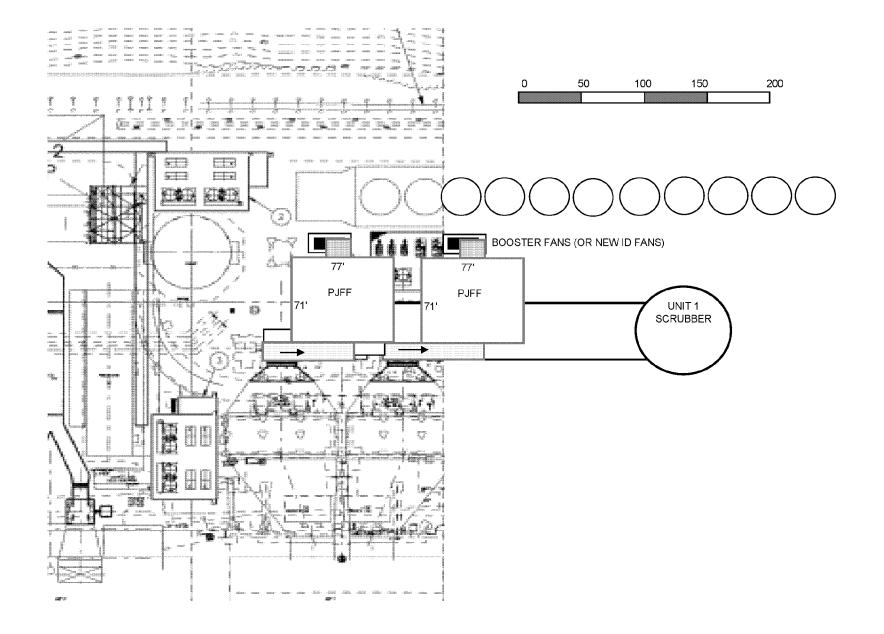
Typical SCR schedule

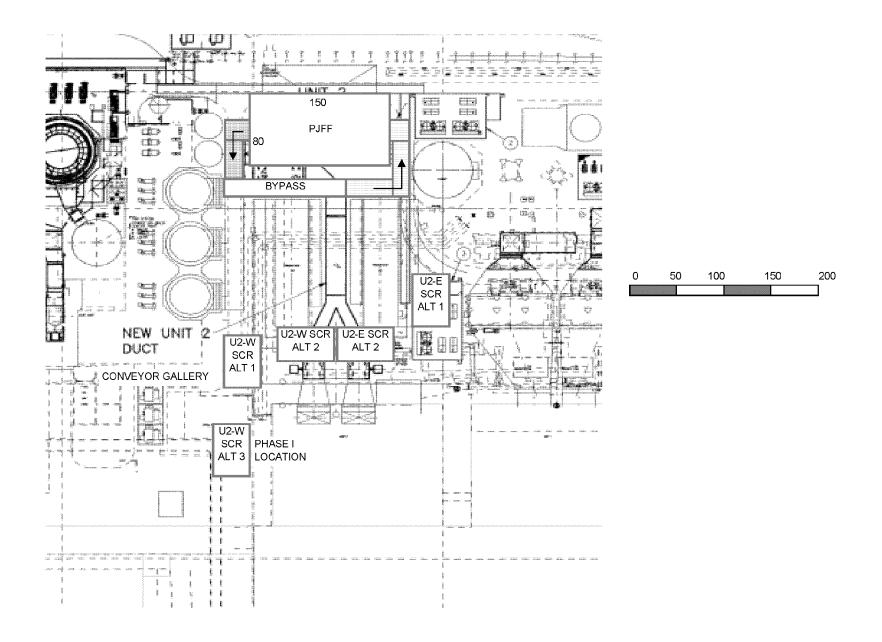
- 32 to 36 months
  - Engineering & procurement 16 months
  - Erect SCR foundations 4 months
  - Erect SCR support steel 4 months
  - Erect SCR & ductwork 8 months
  - Tie-in outage 1 month
  - Start-up 1 month

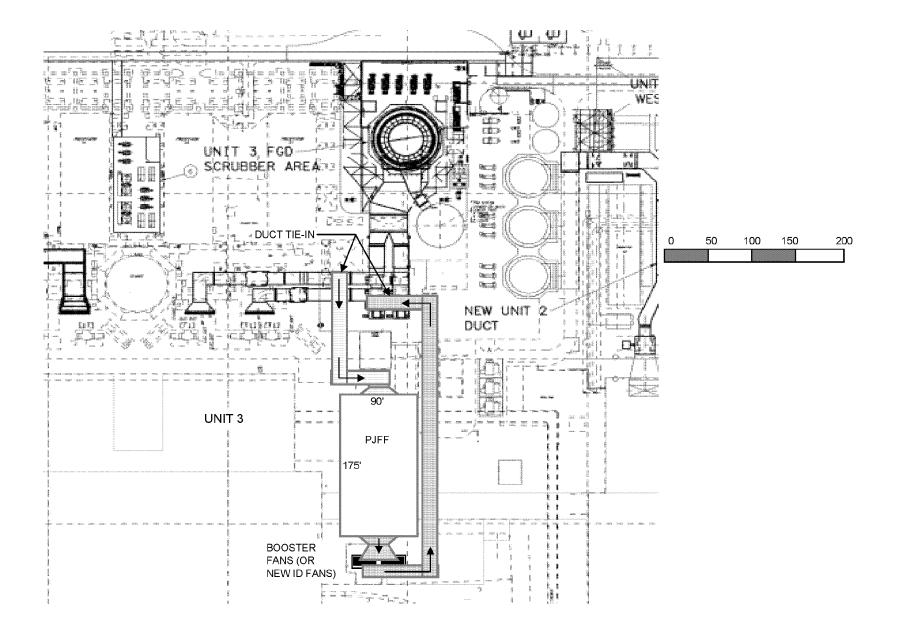
B&V - 26

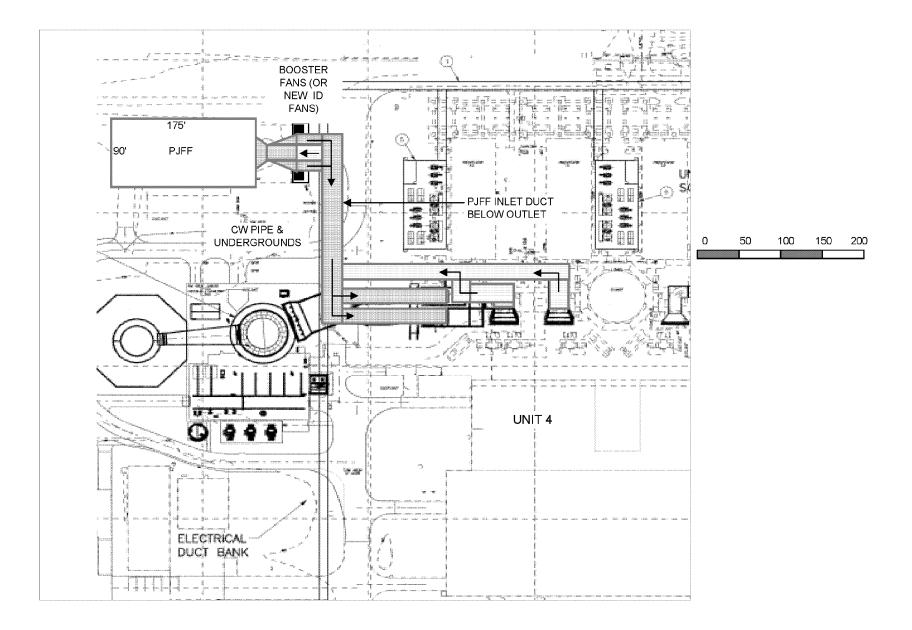


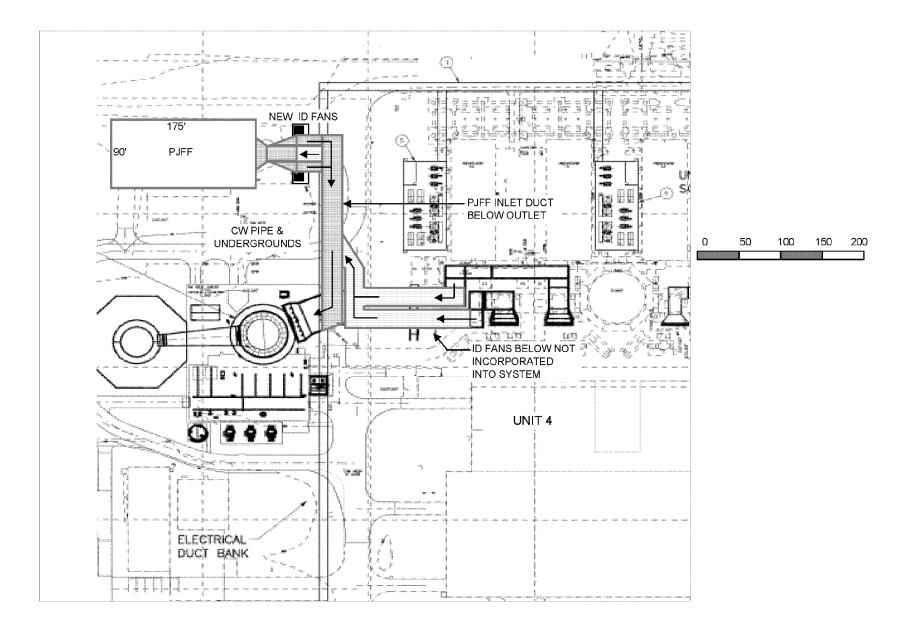

October 6, 2010





Phase I implementation schedule


- Ghent Unit 1 PJFF 36 months
- Ghent Unit 2 SCR & PJFF 44 months
- Ghent Unit 3 PJFF 32 months
- Ghent Unit 4 PJFF 32 months





October 6, 2010











| From:        | Hillman, Timothy M.                                                                                |
|--------------|----------------------------------------------------------------------------------------------------|
| То:          | Saunders, Eileen                                                                                   |
| CC:          | 168908 E.ON-AQC; Jackson, Audrey; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand; Wehrly, M.       |
|              | R.; Lausman, Rick L.; Hintz, Monty E.; Goodlet, Roger F.; Betz, Alex; Lucas, Kyle J.; Smith, Dave; |
|              | Mehta, Pratik D.; Greenwell, Sarah                                                                 |
| Sent:        | 11/29/2010 9:42:30 AM                                                                              |
| Subject:     | 168908.28.3000 101129 - Action Item List                                                           |
| Attachments: | 168908 LG&E AND KU ACTION ITEM LIST.xls                                                            |

Eileen,

Attached is the updated action item list for our weekly Monday call.

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

|    | Α      | В                | С        | D                                                       | E        | F          | G       | Н         | J          | K         | L        | М        |
|----|--------|------------------|----------|---------------------------------------------------------|----------|------------|---------|-----------|------------|-----------|----------|----------|
| 1  | ITEM # | SOURC            | CE       | DESCRIPTION                                             | FILE NO. | FACILITY   | RESPON  | ISIBILITY | DATE ADDEI | IG DUE DA | RR DUE D | OMPL DAT |
| 2  |        | DOC/MTNG         | DATE     |                                                         |          |            | CO.     | INITIAL   |            |           |          |          |
| 3  |        | GENERAL          |          |                                                         |          | n          | A       |           |            |           |          |          |
|    | 27     | Conf Call 10102  | 10/25/10 | Prepare letter spec for Fabric Filter workshop.         | 41.0806  | n          | B&V     | AM/RL     | 10/19/10   | TBD       |          |          |
| 4  |        | MILL CREEK       |          |                                                         |          | Mill Creek | A       |           |            |           |          |          |
| 5  | 35     |                  | 11/8/10  | Incorporate LG&E and KU comments to Mill Creek PDN      | 22.1000  | Mill Creek | B&V     | MW/JC     | 11/08/10   | 11/16/10  | 11/29/10 |          |
| 6  | 32     | Email 41.0803 1  | 11/5/10  | Provide comments and direction on Mill Creek Validation | 41.0803  | Mill Creek | LG&E/KU | ES        | 11/08/10   | 11/16/10  | 11/29/10 |          |
| 7  | 43     | Email 14.1000 1  | 11/16/10 | Provide LG&E/KU comments on Mill Creek validation pr    | 14.1000  | Mill Creek | LG&E/KU | ES        | 11/16/10   | 11/22/10  | 11/29/10 | <u> </u> |
| 8  |        | GHENT            |          | · · · · · · · · · · · · · · · · · · ·                   |          | Ghent      | A       |           |            |           |          |          |
| 9  | 40     |                  | 11/8/10  | Incorporate LG&E and KU comments to Ghent PDM an        | 22 1000  | Ghent      | B&V     | MW/JC     | 11/15/10   | 11/30/10  | 12/06/10 |          |
| 10 |        | E.W. BROWN       |          |                                                         |          | Brown      | A       |           |            |           |          |          |
| 11 |        |                  |          |                                                         |          | BIOWII     |         |           |            |           |          |          |
| 12 | 41     | Brown KO Mtg N   | 11/15/10 | Review U3 SCR arrgmnts & comment on potential PJFF      | 14.1000  | Brown      | B&V     | TH/ MH    | 11/16/10   | 12/10/10  |          |          |
| 13 | 38     | Brown KO Mtg N   | 11/15/10 | Prepare Unit 1 and 2 sketches with and without SCR      | 14.1000  | Brown      | B&V     | ΤН        | 11/15/10   | 01/10/11  |          |          |
| 14 | 42     | Email 14.1000 1  | 11/16/10 | Provide LG&E/KU comments on Brown Kick Off Meetin       | 14.1000  | Brown      | LG&E/KU | ES        | 11/16/10   | 11/22/10  | 11/29/10 |          |
| 15 | 44     | Conf Call 10112: | 11/22/10 | Establish date for Brown Validation meeting.            | 41.0803  | Brown      | LG&E/KU | ES        | 11/22/10   | 11/29/10  |          |          |
| 16 | 45     | Email 22.1000 1  | 11/24/10 | Provide comments on Brown Project Design Memorand       | 22.1000  | Brown      | LG&E/KU | ES        | 11/29/10   | 12/03/10  |          |          |
|    | 46     |                  |          |                                                         |          |            |         |           |            |           |          |          |
| 17 | 47     |                  |          |                                                         |          |            |         |           |            |           |          |          |
| 18 | 48     |                  |          |                                                         |          |            |         |           |            |           |          |          |
| 19 | 49     |                  |          |                                                         |          |            |         |           |            |           |          | <u> </u> |
| 20 | 50     |                  |          |                                                         |          |            |         |           |            |           |          |          |
| 21 | 51     |                  |          |                                                         |          |            |         |           |            |           |          |          |
| 22 | 52     |                  |          |                                                         |          |            |         |           |            |           |          |          |
| 23 |        |                  |          |                                                         |          |            |         |           |            |           |          |          |
| 24 | 53     |                  |          |                                                         |          |            |         |           |            |           |          |          |

|          | N           | 0                                                   | Р          | Q    | R            | S           | Т       |
|----------|-------------|-----------------------------------------------------|------------|------|--------------|-------------|---------|
| 1        | STATUS      | NOTES                                               |            |      |              |             |         |
| <u> </u> |             |                                                     |            |      |              |             |         |
| 2        |             |                                                     |            |      |              |             |         |
| 3        |             |                                                     |            |      |              |             |         |
| 4        | Open        | Discuss what the spec and workshop would look lil   | ke during  | the  | 11/29 conf   | erence call | (11/22) |
| 5        |             |                                                     |            |      |              |             |         |
| 6        | In Progress |                                                     |            |      |              |             |         |
| 7        | Open        |                                                     |            |      |              |             |         |
| 8        | Open        |                                                     |            |      |              |             |         |
| 9        |             |                                                     |            |      |              |             |         |
| 10       | In Progress |                                                     |            |      |              |             |         |
| 11       |             |                                                     |            |      |              |             |         |
| 12       | Open        | Pending the receipt of the Unit 3 SCR arrangemen    | ts from t  | he E | srown Into F | request     |         |
| 13       | Open        |                                                     |            |      |              |             |         |
| 14       | Open        |                                                     | 170 (4     |      |              |             |         |
| 15       | Open        | Potentially to be scheduled for the week of January | / 1/th. (1 | 1/2  | <del>)</del> |             |         |
| 16       | Open        |                                                     |            |      |              |             |         |
| 17       |             |                                                     |            |      |              |             |         |
| 18       |             |                                                     |            |      |              |             |         |
| 19       |             |                                                     |            |      |              |             |         |
| 20       |             |                                                     |            |      |              |             |         |
| 21       |             |                                                     |            |      |              |             |         |
| 22       |             |                                                     |            |      |              |             |         |
| 23       |             |                                                     |            |      |              |             |         |
| 24       |             |                                                     |            |      |              |             |         |

|    | Α  | В | С | D | E | F | G | Н | J | K | L | М |
|----|----|---|---|---|---|---|---|---|---|---|---|---|
| 25 | 54 |   |   |   |   |   |   |   |   |   |   |   |
|    | 55 |   |   |   |   |   |   |   |   |   |   |   |
| 26 | 56 |   |   |   |   |   |   |   |   |   |   |   |
| 27 |    |   |   |   |   |   |   |   |   |   |   |   |
| 28 | 57 |   |   |   |   |   |   |   |   |   |   |   |
| 29 | 58 |   |   |   |   |   |   |   |   |   |   |   |
| 30 | 59 |   |   |   |   |   |   |   |   |   |   |   |
|    | 60 |   |   |   |   |   |   |   |   |   |   |   |
| 31 | 61 |   |   |   |   |   |   |   |   |   |   |   |
| 32 |    |   |   |   |   |   |   |   |   |   |   |   |
| 33 | 62 |   |   |   |   |   |   |   |   |   |   |   |
| 34 | 63 |   |   |   |   |   |   |   |   |   |   |   |
| 35 | 64 |   |   |   |   |   |   |   |   |   |   |   |
| 36 | 65 |   |   |   |   |   |   |   |   |   |   |   |
|    | 66 |   |   |   |   |   |   |   |   |   |   |   |
| 37 | 67 |   |   |   |   |   |   |   |   |   |   |   |
| 38 |    |   |   |   |   |   |   |   |   |   |   |   |
| 39 | 68 |   |   |   |   |   |   |   |   |   |   |   |
| 40 | 69 |   |   |   |   |   |   |   |   |   |   |   |
| 41 | 70 |   |   |   |   |   |   |   |   |   |   |   |
| 42 | 71 |   |   |   |   |   |   |   |   |   |   |   |
| 43 | 72 |   |   |   |   |   |   |   |   |   |   |   |
|    | 73 |   |   |   |   |   |   |   |   |   |   |   |
| 44 | 74 |   |   |   |   |   |   |   |   |   |   |   |
| 45 |    |   |   |   |   |   |   |   |   |   |   |   |
| 46 | 75 |   |   |   |   |   |   |   |   |   |   |   |
| 47 | 76 |   |   |   |   |   |   |   |   |   |   |   |
| 48 | 77 |   |   |   |   |   |   |   |   |   |   |   |
|    |    | I | 1 |   | I | 1 | 1 |   |   | 1 |   |   |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 25 |   |   |   |   |   |   |   |
| 26 |   |   |   |   |   |   |   |
| 27 |   |   |   |   |   |   |   |
| 28 |   |   |   |   |   |   |   |
| 29 |   |   |   |   |   |   |   |
| 30 |   |   |   |   |   |   |   |
| 31 |   |   |   |   |   |   |   |
| 32 |   |   |   |   |   |   |   |
| 33 |   |   |   |   |   |   |   |
| 34 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 35 |   |   |   |   |   |   |   |
| 36 |   |   |   |   |   |   |   |
| 37 |   |   |   |   |   |   |   |
| 38 |   |   |   |   |   |   |   |
| 39 |   |   |   |   |   |   |   |
| 40 |   |   |   |   |   |   |   |
| 41 |   |   |   |   |   |   |   |
| 42 |   |   |   |   |   |   |   |
| 43 |   |   |   |   |   |   |   |
| 44 |   |   |   |   |   |   |   |
| 45 |   |   |   |   |   |   |   |
| 46 |   |   |   |   |   |   |   |
| 47 |   |   |   |   |   |   |   |
| 48 |   |   |   |   |   |   |   |

|    | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 49 | 78  |   |   |   |   |   |   |   |   |   |   |   |
|    | 79  |   |   |   |   |   |   |   |   |   |   |   |
| 50 | 80  |   |   |   |   |   |   |   |   |   |   |   |
| 51 | 81  |   |   |   |   |   |   |   |   |   |   |   |
| 52 |     |   |   |   |   |   |   |   |   |   |   |   |
| 53 | 82  |   |   |   |   |   |   |   |   |   |   |   |
| 54 | 83  |   |   |   |   |   |   |   |   |   |   |   |
|    | 84  |   |   |   |   |   |   |   |   |   |   |   |
| 55 | 85  |   |   |   |   |   |   |   |   |   |   |   |
| 56 | 86  |   |   |   |   |   |   |   |   |   |   | I |
| 57 |     |   |   |   |   |   |   |   |   |   |   |   |
| 58 | 87  |   |   |   |   |   |   |   |   |   |   |   |
| 59 | 88  |   |   |   |   |   |   |   |   |   |   |   |
| 60 | 89  |   |   |   |   |   |   |   |   |   |   |   |
|    | 90  |   |   |   |   |   |   |   |   |   |   |   |
| 61 | 91  |   |   |   |   |   |   |   |   |   |   |   |
| 62 | 92  |   |   |   |   |   |   |   |   |   |   |   |
| 63 |     |   |   |   |   |   |   |   |   |   |   |   |
| 64 | 93  |   |   |   |   |   |   |   |   |   |   |   |
| 65 | 94  |   |   |   |   |   |   |   |   |   |   |   |
| 66 | 95  |   |   |   |   |   |   |   |   |   |   |   |
|    | 96  |   |   |   |   |   |   |   |   |   |   |   |
| 67 | 97  |   |   |   |   |   |   |   |   |   |   |   |
| 68 | 98  |   |   |   |   |   |   |   |   |   |   |   |
| 69 |     |   |   |   |   |   |   |   |   |   |   |   |
| 70 | 99  |   |   |   |   |   |   |   |   |   |   |   |
| 71 | 100 |   |   |   |   |   |   |   |   |   |   |   |
| 72 | 101 |   |   |   |   |   |   |   |   |   |   |   |
| 12 |     |   |   |   |   |   |   |   |   |   |   |   |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 49 |   |   |   |   |   |   |   |
| 50 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 51 |   |   |   |   |   |   |   |
| 52 |   |   |   |   |   |   |   |
| 53 |   |   |   |   |   |   |   |
| 54 |   |   |   |   |   |   |   |
| 55 |   |   |   |   |   |   |   |
| 56 |   |   |   |   |   |   |   |
| 57 |   |   |   |   |   |   |   |
| 58 |   |   |   |   |   |   |   |
| 59 |   |   |   |   |   |   |   |
| 60 |   |   |   |   |   |   |   |
| 61 |   |   |   |   |   |   |   |
| 62 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 63 |   |   |   |   |   |   |   |
| 64 |   |   |   |   |   |   |   |
| 65 |   |   |   |   |   |   |   |
| 66 |   |   |   |   |   |   |   |
| 67 |   |   |   |   |   |   |   |
| 68 |   |   |   |   |   |   |   |
| 69 |   |   |   |   |   |   |   |
| 70 |   |   |   |   |   |   |   |
| 71 |   |   |   |   |   |   |   |
| 72 |   |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 73  | 102 |   |   |   |   |   |   |   |   |   |   |   |
| 1 1 | 103 |   |   |   |   |   |   |   |   |   |   |   |
| 74  | 104 |   |   |   |   |   |   |   |   |   |   |   |
| 75  | 105 |   |   |   |   |   |   |   |   |   |   |   |
| 76  | 106 |   |   |   |   |   |   |   |   |   |   |   |
| 77  |     |   |   |   |   |   |   |   |   |   |   |   |
| 78  | 107 |   |   |   |   |   |   |   |   |   |   |   |
| 79  | 108 |   |   |   |   |   |   |   |   |   |   |   |
| 80  | 109 |   |   |   |   |   |   |   |   |   |   |   |
|     | 110 |   |   |   |   |   |   |   |   |   |   |   |
| 81  | 111 |   |   |   |   |   |   |   |   |   |   |   |
| 82  | 112 |   |   |   |   |   |   |   |   |   |   |   |
| 83  |     |   |   |   |   |   |   |   |   |   |   |   |
| 84  | 113 |   |   |   |   |   |   |   |   |   |   |   |
| 85  | 114 |   |   |   |   |   |   |   |   |   |   |   |
| 86  | 115 |   |   |   |   |   |   |   |   |   |   |   |
|     | 116 |   |   |   |   |   |   |   |   |   |   |   |
| 87  | 117 |   |   |   |   |   |   |   |   |   |   |   |
| 88  | 118 |   |   |   |   |   |   |   |   |   |   |   |
| 89  | 119 |   |   |   |   |   |   |   |   |   |   |   |
| 90  |     |   |   |   |   |   |   |   |   |   |   |   |
| 91  | 120 |   |   |   |   |   |   |   |   |   |   |   |
| 92  | 121 |   |   |   |   |   |   |   |   |   |   |   |
| 93  | 122 |   |   |   |   |   |   |   |   |   |   |   |
|     | 123 |   |   |   |   |   |   |   |   |   |   |   |
| 94  | 124 |   |   |   |   |   |   |   |   |   |   |   |
| 95  | 125 |   |   |   |   |   |   |   |   |   |   |   |
| 96  | 120 |   |   |   |   |   |   |   |   |   |   |   |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 73 |   |   |   |   |   |   |   |
| 74 |   |   |   |   |   |   |   |
| 75 |   |   |   |   |   |   |   |
| 76 |   |   |   |   |   |   |   |
| 77 |   |   |   |   |   |   |   |
| 78 |   |   |   |   |   |   |   |
| 79 |   |   |   |   |   |   |   |
| 80 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 81 |   |   |   |   |   |   |   |
| 82 |   |   |   |   |   |   |   |
| 83 |   |   |   |   |   |   |   |
| 84 |   |   |   |   |   |   |   |
| 85 |   |   |   |   |   |   |   |
| 86 |   |   |   |   |   |   |   |
| 87 |   |   |   |   |   |   |   |
| 88 |   |   |   |   |   |   |   |
| 89 |   |   |   |   |   |   |   |
| 90 |   |   |   |   |   |   |   |
| 91 |   |   |   |   |   |   |   |
| 92 |   |   |   |   |   |   |   |
| 93 |   |   |   |   |   |   |   |
| 94 |   |   |   |   |   |   |   |
| 95 |   |   |   |   |   |   |   |
| 96 |   |   |   |   |   |   |   |

|            | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|------------|-----|---|---|---|---|---|---|---|---|---|---|---|
| 97         | 126 |   |   |   |   |   |   |   |   |   |   |   |
| 98         | 127 |   |   |   |   |   |   |   |   |   |   |   |
|            | 128 |   |   |   |   |   |   |   |   |   |   |   |
| 99         | 129 |   |   |   |   |   |   |   |   |   |   |   |
| 100        |     |   |   |   |   |   |   |   |   |   |   |   |
| 101        | 130 |   |   |   |   |   |   |   |   |   |   |   |
| 102        | 131 |   |   |   |   |   |   |   |   |   |   |   |
| 103        | 132 |   |   |   |   |   |   |   |   |   |   |   |
| 104        | 133 |   |   |   |   |   |   |   |   |   |   |   |
| 104        | 134 |   |   |   |   |   |   |   |   |   |   |   |
|            | 135 |   |   |   |   |   |   |   |   |   |   |   |
| 106        | 136 |   |   |   |   |   |   |   |   |   |   |   |
| 107        | 137 |   |   |   |   |   |   |   |   |   |   |   |
| 108        | 138 |   |   |   |   |   |   |   |   |   |   |   |
| 109        |     |   |   |   |   |   |   |   |   |   |   |   |
| 110        | 139 |   |   |   |   |   |   |   |   |   |   |   |
| 111        | 140 |   |   |   |   |   |   |   |   |   |   |   |
| 112        | 141 |   |   |   |   |   |   |   |   |   |   |   |
| 113        | 142 |   |   |   |   |   |   |   |   |   |   |   |
|            | 143 |   |   |   |   |   |   |   |   |   |   |   |
| 114<br>115 | 144 |   |   |   |   |   |   |   |   |   |   |   |
|            | 145 |   |   |   |   |   |   |   |   |   |   |   |
| 116        | 146 |   |   |   |   |   |   |   |   |   |   |   |
| 117        | 147 |   |   |   |   |   |   |   |   |   |   |   |
| 118        |     |   |   |   |   |   |   |   |   |   |   |   |
| 119        | 140 |   |   |   |   |   |   |   |   |   |   |   |
| 120        | 149 |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 97  |   |   |   |   |   |   |   |
| 98  |   |   |   |   |   |   |   |
| 99  |   |   |   |   |   |   |   |
| 100 |   |   |   |   |   |   |   |
| 101 |   |   |   |   |   |   |   |
| 102 |   |   |   |   |   |   |   |
| 103 |   |   |   |   |   |   |   |
| 104 |   |   |   |   |   |   |   |
| 105 |   |   |   |   |   |   |   |
| 106 |   |   |   |   |   |   |   |
| 107 |   |   |   |   |   |   |   |
| 108 |   |   |   |   |   |   |   |
| 109 |   |   |   |   |   |   |   |
| 110 |   |   |   |   |   |   |   |
| 111 |   |   |   |   |   |   |   |
| 112 |   |   |   |   |   |   |   |
| 113 |   |   |   |   |   |   |   |
| 114 |   |   |   |   |   |   |   |
| 115 |   |   |   |   |   |   |   |
| 116 |   |   |   |   |   |   |   |
| 117 |   |   |   |   |   |   |   |
| 118 |   |   |   |   |   |   |   |
| 119 |   |   |   |   |   |   |   |
| 120 |   |   |   |   |   |   |   |

|     | А   | В | С | D | E | F | G | Н | J | K | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 121 | 150 |   |   |   |   |   |   |   |   |   |   |   |
| 122 | 151 |   |   |   |   |   |   |   |   |   |   |   |
|     | 152 |   |   |   |   |   |   |   |   |   |   |   |
| 123 | 153 |   |   |   |   |   |   |   |   |   |   |   |
| 124 | 154 |   |   |   |   |   |   |   |   |   |   |   |
| 125 | 155 |   |   |   |   |   |   |   |   |   |   |   |
| 126 |     |   |   |   |   |   |   |   |   |   |   |   |
| 127 | 156 |   |   |   |   |   |   |   |   |   |   |   |
| 128 | 157 |   |   |   |   |   |   |   |   |   |   |   |
| 129 | 158 |   |   |   |   |   |   |   |   |   |   |   |
| 130 | 159 |   |   |   |   |   |   |   |   |   |   |   |
|     | 160 |   |   |   |   |   |   |   |   |   |   |   |
| 131 | 161 |   |   |   |   |   |   |   |   |   |   |   |
| 132 | 162 |   |   |   |   |   |   |   |   |   |   |   |
| 133 | 163 |   |   |   |   |   |   |   |   |   |   |   |
| 134 | 164 |   |   |   |   |   |   |   |   |   |   |   |
| 135 |     |   |   |   |   |   |   |   |   |   |   |   |
| 136 | 165 |   |   |   |   |   |   |   |   |   |   |   |
| 137 | 166 |   |   |   |   |   |   |   |   |   |   |   |
| 138 | 167 |   |   |   |   |   |   |   |   |   |   |   |
| 139 | 168 |   |   |   |   |   |   |   |   |   |   |   |
|     | 169 |   |   |   |   |   |   |   |   |   |   |   |
| 140 | 170 |   |   |   |   |   |   |   |   |   |   |   |
| 141 | 171 |   |   |   |   |   |   |   |   |   |   |   |
| 142 | 172 |   |   |   |   |   |   |   |   |   |   |   |
| 143 |     |   |   |   |   |   |   |   |   |   |   |   |
| 144 | 173 |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 121 |   |   |   |   |   |   |   |
| 122 |   |   |   |   |   |   |   |
| 123 |   |   |   |   |   |   |   |
| 124 |   |   |   |   |   |   |   |
| 125 |   |   |   |   |   |   |   |
| 126 |   |   |   |   |   |   |   |
| 127 |   |   |   |   |   |   |   |
| 128 |   |   |   |   |   |   |   |
| 129 |   |   |   |   |   |   |   |
| 130 |   |   |   |   |   |   |   |
| 131 |   |   |   |   |   |   |   |
| 132 |   |   |   |   |   |   |   |
| 133 |   |   |   |   |   |   |   |
| 134 |   |   |   |   |   |   |   |
| 135 |   |   |   |   |   |   |   |
| 136 |   |   |   |   |   |   |   |
| 137 |   |   |   |   |   |   |   |
| 138 |   |   |   |   |   |   |   |
| 139 |   |   |   |   |   |   |   |
| 140 |   |   |   |   |   |   |   |
| 141 |   |   |   |   |   |   |   |
| 142 |   |   |   |   |   |   |   |
| 143 |   |   |   |   |   |   |   |
| 144 |   |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 145 | 174 |   |   |   |   |   |   |   |   |   |   |   |
|     | 175 |   |   |   |   |   |   |   |   |   |   |   |
| 146 | 176 |   |   |   |   |   |   |   |   |   |   |   |
| 147 | 177 |   |   |   |   |   |   |   |   |   |   |   |
| 148 | 178 |   |   |   |   |   |   |   |   |   |   |   |
| 149 | 179 |   |   |   |   |   |   |   |   |   |   |   |
| 150 |     |   |   |   |   |   |   |   |   |   |   |   |
| 151 | 180 |   |   |   |   |   |   |   |   |   |   |   |
| 152 | 181 |   |   |   |   |   |   |   |   |   |   |   |
| 153 | 182 |   |   |   |   |   |   |   |   |   |   |   |
|     | 183 |   |   |   |   |   |   |   |   |   |   |   |
| 154 | 184 |   |   |   |   |   |   |   |   |   |   |   |
| 155 | 185 |   |   |   |   |   |   |   |   |   |   |   |
| 156 |     |   |   |   |   |   |   |   |   |   |   |   |
| 157 | 186 |   |   |   |   |   |   |   |   |   |   |   |
| 158 | 187 |   |   |   |   |   |   |   |   |   |   |   |
| 159 | 188 |   |   |   |   |   |   |   |   |   |   |   |
| 160 | 189 |   |   |   |   |   |   |   |   |   |   |   |
|     | 190 |   |   |   |   |   |   |   |   |   |   |   |
| 161 | 191 |   |   |   |   |   |   |   |   |   |   |   |
| 162 | 192 |   |   |   |   |   |   |   |   |   |   |   |
| 163 |     |   |   |   |   |   |   |   |   |   |   |   |
| 164 | 193 |   |   |   |   |   |   |   |   |   |   |   |
| 165 | 194 |   |   |   |   |   |   |   |   |   |   |   |
| 166 | 195 |   |   |   |   |   |   |   |   |   |   |   |
|     | 196 |   |   |   |   |   |   |   |   |   |   |   |
| 167 | 197 |   |   |   |   |   |   |   |   |   |   |   |
| 168 |     |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 145 |   |   |   |   |   |   |   |
| 146 |   |   |   |   |   |   |   |
| 147 |   |   |   |   |   |   |   |
| 148 |   |   |   |   |   |   |   |
| 149 |   |   |   |   |   |   |   |
| 150 |   |   |   |   |   |   |   |
| 151 |   |   |   |   |   |   |   |
| 152 |   |   |   |   |   |   |   |
| 153 |   |   |   |   |   |   |   |
| 154 |   |   |   |   |   |   |   |
| 155 |   |   |   |   |   |   |   |
| 156 |   |   |   |   |   |   |   |
| 157 |   |   |   |   |   |   |   |
| 158 |   |   |   |   |   |   |   |
| 159 |   |   |   |   |   |   |   |
| 160 |   |   |   |   |   |   |   |
| 161 |   |   |   |   |   |   |   |
| 162 |   |   |   |   |   |   |   |
| 163 |   |   |   |   |   |   |   |
| 164 |   |   |   |   |   |   |   |
| 165 |   |   |   |   |   |   |   |
| 166 |   |   |   |   |   |   |   |
| 167 |   |   |   |   |   |   |   |
| 168 |   |   |   |   |   |   |   |

|                          | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|--------------------------|-----|---|---|---|---|---|---|---|---|---|---|---|
|                          | 198 |   |   |   |   |   |   |   |   |   |   |   |
| 169                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 170                      | 199 |   |   |   |   |   |   |   |   |   |   |   |
| 170                      | 200 |   |   |   |   |   |   |   |   |   |   |   |
| 171                      | 200 |   |   |   |   |   |   |   |   |   |   |   |
| 172                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 173                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 174                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 175                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 176                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 177                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 178                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 179                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 180                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 181<br>182               |     |   |   |   |   |   |   |   |   |   |   |   |
| 182                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 184                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 185                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 186                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 187                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 188                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 189                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 190                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 191                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 192                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 193                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 194                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 195<br>196               |     |   |   |   |   |   |   |   |   |   |   |   |
| 196                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 198                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 199                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 200                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 201                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 202                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 202<br>203<br>204<br>205 |     |   |   |   |   |   |   |   |   |   |   |   |
| 204                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 205                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 206                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 207                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 208<br>209               |     |   |   |   |   |   |   |   |   |   |   |   |
| 209                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 210                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 211                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 212                      |     |   |   |   |   |   |   |   |   |   |   |   |
| 214                      |     |   |   |   |   |   |   |   |   |   |   |   |
|                          |     |   | 1 |   |   | 1 | 1 |   |   | 1 | 1 |   |

|            | N | 0 | Р | Q | R | S | Т |
|------------|---|---|---|---|---|---|---|
|            |   |   |   |   |   |   |   |
| 169        |   |   |   |   |   |   |   |
|            |   |   |   |   |   |   |   |
| 170        |   |   |   |   |   |   |   |
|            |   |   |   |   |   |   |   |
| 171        |   |   |   |   |   |   |   |
| 172<br>173 |   |   |   |   |   |   |   |
| 173        |   |   |   |   |   |   |   |
| 174        |   |   |   |   |   |   |   |
| 176        |   |   |   |   |   |   |   |
| 177        |   |   |   |   |   |   |   |
| 178        |   |   |   |   |   |   |   |
| 179        |   |   |   |   |   |   |   |
| 179<br>180 |   |   |   |   |   |   |   |
| 181        |   |   |   |   |   |   |   |
| 182        |   |   |   |   |   |   |   |
| 183        |   |   |   |   |   |   |   |
| 184        |   |   |   |   |   |   |   |
| 185        |   |   |   |   |   |   |   |
| 186        |   |   |   |   |   |   |   |
| 187        |   |   |   |   |   |   |   |
| 188<br>189 |   |   |   |   |   |   |   |
| 189        |   |   |   |   |   |   |   |
| 190        |   |   |   |   |   |   |   |
| 191        |   |   |   |   |   |   |   |
| 193        |   |   |   |   |   |   |   |
| 194        |   |   |   |   |   |   |   |
| 195        |   |   |   |   |   |   |   |
| 196        |   |   |   |   |   |   |   |
| 197        |   |   |   |   |   |   |   |
| 198        |   |   |   |   |   |   |   |
| 199<br>200 |   |   |   |   |   |   |   |
| 200        |   |   |   |   |   |   |   |
| 201        |   |   |   |   |   |   |   |
| 202        |   |   |   |   |   |   |   |
| 203        |   |   |   |   |   |   |   |
| 204        |   |   |   |   |   |   |   |
| 205        |   |   |   |   |   |   |   |
| 206<br>207 |   |   |   |   |   |   |   |
| 207        |   |   |   |   |   |   |   |
| 208        |   |   |   |   |   |   |   |
| 209        |   |   |   |   |   |   |   |
| 210        |   |   |   |   |   |   |   |
| 212        |   |   |   |   |   |   |   |
| 212        |   |   |   |   |   |   |   |
| 213        |   |   |   |   |   |   |   |
| <u> </u>   |   |   |   |   |   | 1 |   |

|      | Α  | В | С | D | E | F | G | Н | J | К | L | М |
|------|----|---|---|---|---|---|---|---|---|---|---|---|
| 7047 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7048 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7049 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7050 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7051 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7052 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7053 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7054 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7055 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7056 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7057 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7058 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7059 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7060 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7061 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7062 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7063 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7064 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7065 | 58 |   |   |   |   |   |   |   |   |   |   |   |

|      | N | 0 | Р | Q | R | S | Т |
|------|---|---|---|---|---|---|---|
| 7047 |   |   |   |   |   |   |   |
| 7048 |   |   |   |   |   |   |   |
| 7049 |   |   |   |   |   |   |   |
| 7050 |   |   |   |   |   |   |   |
| 7051 |   |   |   |   |   |   |   |
| 7052 |   |   |   |   |   |   |   |
| 7053 |   |   |   |   |   |   |   |
| 7054 |   |   |   |   |   |   |   |
| 7055 |   |   |   |   |   |   |   |
| 7056 |   |   |   |   |   |   |   |
| 7057 |   |   |   |   |   |   |   |
| 7058 |   |   |   |   |   |   |   |
| 7059 |   |   |   |   |   |   |   |
| 7060 |   |   |   |   |   |   |   |
| 7061 |   |   |   |   |   |   |   |
| 7062 |   |   |   |   |   |   |   |
| 7063 |   |   |   |   |   |   |   |
| 7064 |   |   |   |   |   |   |   |
| 7065 |   |   |   |   |   |   |   |

|          | Α      | В                           | С          | D                                                                                                                | E        | F            | G       | н         | J        | K         | L         | М        | Ν        |
|----------|--------|-----------------------------|------------|------------------------------------------------------------------------------------------------------------------|----------|--------------|---------|-----------|----------|-----------|-----------|----------|----------|
|          | ITEM # | SOURC                       | E          | DESCRIPTION                                                                                                      | FILE NO. | FACILITY     | RESPON  | ISIBILITY | ATE ADDE | IG DUE DA | RR DUE D/ | OMPL DAT | STATUS   |
| 1        |        | DOC/MTNG                    | DATE       |                                                                                                                  |          | -            | co.     | INITIAL   | -        |           |           |          |          |
| 2        |        | Beekinne                    |            |                                                                                                                  |          |              |         |           |          |           |           |          |          |
| 3        | 34     |                             | 11/8/10    | Prepare and issue draft of Project Design Memorandum                                                             | 22.1000  | Brown        | B&V     | тн        | 11/08/10 | 11/25/10  |           | 11/24/10 | Complete |
|          | 36     | Brown KO Mta                | ######     | Provide a list of "sacred ground" areas at Brown.                                                                | 14.1000  | Brown        | LG&E/KU | FS        | 11/15/10 | 11/19/10  |           | 11/23/10 | Complete |
| 4        |        | J                           |            | , i i i i i i i i i i i i i i i i i i i                                                                          |          |              |         |           |          |           |           |          |          |
| 5        | 39     | Brown KO Mtg                | ######     | Identify a contact person for data collection                                                                    | 14.1000  | Brown        | LG&E/KU | ES        | 11/15/10 | 11/19/10  |           | 11/22/10 | Complete |
|          | 33     |                             | 11/8/10    | Prepare Data Request for Brown Station.                                                                          | 41.0100  | Brown        | B&V     | тн        | 11/08/10 | 11/18/10  |           | 11/19/10 | Complete |
| 6        |        |                             |            |                                                                                                                  |          |              |         |           |          |           |           |          |          |
| 7        | 37     | Brown KO Mtg                | ######     | Provide drawings of the Unit 3 SO3 mitigation project                                                            | 14.1000  | Brown        | LG&E/KU | ES        | 11/15/10 | 11/19/10  |           | 11/11/10 | Complete |
|          | 25     | Email 22.1000               | ######     | Provide LG&E and KU comments on Ghent Project Des                                                                | 22.1000  | Ghent        | LG&E/KU | ES        | 10/21/10 | 10/28/10  |           | 11/08/10 | Complete |
| 8        |        |                             |            |                                                                                                                  |          |              |         |           |          |           |           |          |          |
| 9        | 23     | Conf Call 1010 <sup>.</sup> | ######     | Provide draft of Mill Creek Validation Report for LG&E/K                                                         | 41.0803  | Mill Creek   | B&V     | TH/MW     | 10/19/10 | 11/05/10  |           | 11/05/10 | Complete |
| $\vdash$ | 29     |                             | ######     | Provide Brown Kickoff presentation .                                                                             | 14.1000  | Brown        | B&V     | тн        | 10/29/10 | 11/05/10  |           | 11/03/10 | Complete |
| 10       |        |                             |            |                                                                                                                  |          |              |         |           |          |           |           |          |          |
| 11       | 24     | Conf Call 1010 <sup>.</sup> | ######     | Prepare differences between SCR and SNCR for Brown                                                               | 14.1000  | Brown        | B&V     | AM/RL     | 10/19/10 | 11/09/10  |           | 11/03/10 | Complete |
|          | 28     |                             | ######     | Provide Mill Creek Validation presentation.                                                                      | 41.0803  | Mill Creek   | B&V     | тн        | 10/29/10 | 11/05/10  |           | 11/03/10 | Complete |
| 12       |        |                             |            | -                                                                                                                |          |              |         |           |          |           |           |          |          |
| 13       | 31     | Email 14.1000               | ######     | Provide comments on Brown Kickoff meeting agenda                                                                 | 14.1000  | Brown        | LG&E/KU | ES        | 10/27/10 | 11/02/10  |           | 11/01/10 | Complete |
|          | 30     | Email 14.1000               | ######     | Provide comments on Mill Creek Validation meeting age                                                            | 14.1000  | Mill Creek   | LG&E/KU | ES        | 10/27/10 | 11/02/10  |           | 11/01/10 | Complete |
| 14       |        |                             |            |                                                                                                                  |          |              |         |           |          |           |           |          |          |
| 15       | 26     |                             | ######     | Provide sketches of Unit 4 AQC equipment in the thicke                                                           | 41.0402  | Mill Creek   | B&V     | мн        | 10/25/10 | 10/27/10  | 10/27/10  | 11/01/10 | Complete |
|          | 22     | Email 14.1000               | ######     | Provide LG&E/KU comments on Ghent Site Visit meeti                                                               | 14.1000  | Ghent        | LG&E/KU | ES        | 10/15/10 | 10/19/10  |           | 10/22/10 | Complete |
|          |        |                             |            |                                                                                                                  |          |              |         |           |          |           |           |          |          |
| 16       | 11     | KO & MO Cite )              | 0/20/40    | Evaluate pros and cons of NID system for November teo                                                            | 14 1000  | n            | B&V     | AM/RL     | 00/21/10 | Nov. 2010 |           | 10/21/10 | Complete |
| 17       |        | KO & NC Site V              | 9/20/10    | Evaluate pros and cons of NID system for November ted                                                            | 14.1000  | n            | D&V     | AWIRL     | 09/21/10 | 1000.2010 |           | 10/21/10 | Complete |
|          | 21     | Ghent Site Visit            | ######     | Prepare Ghent Information Request.                                                                               | 41.0100  | Ghent        | B&V     | тн        | 10/11/10 | 10/15/10  |           | 10/18/10 | Complete |
| 18       | 15     | KO & MC Site )              | 0/20/40    | Review B&V electrical study conducted in the 1990s                                                               | 14 1000  | Mill Creek   | Dev     | JB        | 09/21/10 | 09/24/10  | TBD       | 10/18/10 | Complete |
| 19       | 15     |                             | 9/20/10    | Review Bay electrical study conducted in the 1990s                                                               | 14.1000  | Will Creek   |         | 10        | 09/21/10 | 09/24/10  |           | 10/16/10 | Complete |
|          | 18     | Email 41.0100               | 9/29/10    |                                                                                                                  | 41.0100  | n            | LG&E/KU | ES        | 09/30/10 | 10/06/10  |           | 10/18/10 | Complete |
| 20       | 4      |                             | 0/20/40    | Choose the coal fuel design basis for Mill Creek, Ghent,<br>Use B&V file system to set up LG&E/KU document stora | 14.1000  | n            | LG&E/KU | E0        | 09/21/10 | ТВД       |           | 10/18/10 | Complete |
| 21       | 4      | INC & IVIC SILE V           | 9/20/10    | Use Dav me system to set up LGAE/NO document stor                                                                | 14.1000  | 11           |         | 23        | 09/21/10 |           |           | 10/16/10 | Complete |
|          | 12     | KO & MC Site \              | 9/20/10    | Schedule vendors for evaluation of existing scrubbers                                                            | 14.1000  | n            | LG&E/KU | ES        | 09/21/10 | TBD       |           | 10/18/10 | Complete |
| 22       | 1      |                             | 0/20/40    | Determine location for Mill Creek Task 6 Technology Se                                                           | 14 1000  | Mill Crock   |         | E0        | 09/21/10 | 10/15/10  |           | 10/12/10 | Complete |
| 23       | 1      | IND & IVIC SILE \           | / 3/20/ IU | Determine location for will Creek rask o rechnology Se                                                           | 14.1000  | I will Creek | LGAE/NU | 23        | 09/21/10 |           |           | 10/12/10 | Complete |
|          | 20     | Email 22.1000               | 10/5/10    | Provide comments on the Mill Creek Project Design Me                                                             | 22.1000  | Mill Creek   | LG&E/KU | ES        | 10/11/10 | 10/12/10  |           | 10/12/10 | Complete |
| 24       |        |                             |            |                                                                                                                  |          |              |         |           |          |           |           |          |          |

|              | 0                                                     | Р           | Q         | R            | S                | Т           | U  | V | W | Х |
|--------------|-------------------------------------------------------|-------------|-----------|--------------|------------------|-------------|----|---|---|---|
|              | NOTES                                                 |             |           |              |                  |             |    |   |   |   |
| 1            |                                                       |             |           |              |                  |             |    |   |   |   |
| 2            |                                                       |             |           |              |                  |             |    |   |   |   |
| 2            | PDM issued for In-House Review (11/18)                |             |           |              |                  |             |    |   |   |   |
| 3            |                                                       |             |           |              |                  |             |    |   |   |   |
|              | Added to Info Request Priority 1                      |             |           |              |                  |             |    |   |   |   |
| 4            |                                                       |             |           |              |                  |             |    |   |   |   |
|              |                                                       |             |           |              |                  |             |    |   |   |   |
| 5            |                                                       |             |           |              |                  |             |    |   |   |   |
| 6            |                                                       |             |           |              |                  |             |    |   |   |   |
| <b>–</b>     |                                                       |             |           |              |                  |             |    |   |   |   |
| 7            |                                                       |             |           |              |                  |             |    |   |   |   |
|              |                                                       |             |           |              |                  |             |    |   |   |   |
| 8            |                                                       |             |           |              |                  |             |    |   |   |   |
|              |                                                       |             |           |              |                  |             |    |   |   |   |
| 9            |                                                       |             |           |              |                  |             |    |   |   |   |
| 10           |                                                       |             |           |              |                  |             |    |   |   |   |
|              | To be included in Brown KO presentation. Also inc     | lude fabi   | ric fil   | ter discussi | on. (10/25)      |             |    |   |   |   |
| 11           |                                                       |             |           |              | · /              |             |    |   |   |   |
|              | Final sent on 11/5                                    |             |           |              |                  |             |    |   |   |   |
| 12           |                                                       |             |           |              |                  |             |    |   |   |   |
| 13           |                                                       |             |           |              |                  |             |    |   |   |   |
| 13           | Confirmed LG&E and KU team is available for the       | afternoo    | l<br>n on | 11/ <b>9</b> |                  |             |    |   |   |   |
| 14           |                                                       | anternoo    |           | 1110         |                  |             |    |   |   |   |
|              |                                                       |             |           |              |                  |             |    |   |   |   |
| 15           |                                                       |             |           |              |                  |             |    |   |   |   |
|              | Eileen has no comments (10/18). Waiting for com       | ments fro   | om L      | .G&E/KU m    | embers.          |             |    |   |   |   |
|              |                                                       |             |           |              |                  |             |    |   |   |   |
| 16           |                                                       |             | (4)       | 2(10)        | 1                |             |    |   |   |   |
| 17           | Will send powerpoint presentation in the next coup    | le of day   | s (1      | J/18).       |                  |             |    |   |   |   |
|              |                                                       |             | Г         |              |                  |             |    |   |   |   |
| 18           |                                                       |             |           |              |                  |             |    |   |   |   |
|              | B&V could not locate study. Added to Data Reque       | st. Will i  | revie     | w when LG    | &E/KU prov       | ides study. |    |   |   |   |
| 19           |                                                       |             |           |              |                  |             |    |   |   |   |
|              | Use future coal. (10/11) Chlorine needs to be corre   | ected (10   | )/18)     |              |                  |             |    |   |   |   |
| 20           |                                                       | 4           |           | (4.0)        |                  |             |    |   |   |   |
| 21           | Audrey is working on it (10/11). It is set up. Eileen | to reviev   | v (10     | #18).        |                  |             |    |   |   |   |
| <u>  _  </u> | To be scheduled week of 10/25. B&V requested to       | he inclu    | ided      | in debriefin | l<br>a w/ each w | i<br>endor  |    |   |   |   |
| 22           |                                                       | Se more     |           |              | g .v/ cuoit v    |             |    |   |   |   |
|              | MC Technology selection meeting to be held in Lo      | uisville o  | n 11      | /9 with Brov | vn KO mtg o      | on 11/10&1  | 1. |   |   |   |
| 23           |                                                       |             |           |              | -                |             |    |   |   |   |
|              | Eileen's comments provided on 10/12. Sent to Ale      | ex for furt | her       | comments.    |                  |             |    |   |   |   |
| 24           |                                                       |             |           |              |                  |             |    |   |   |   |

|    | Α  | В               | С       | D                                                            | Е       | F          | G       | Н      | J        | K        | L        | М        | Ν        |
|----|----|-----------------|---------|--------------------------------------------------------------|---------|------------|---------|--------|----------|----------|----------|----------|----------|
| 25 | 13 | KO & MC Site \  | 9/20/10 | Provide structural steel study assessments                   | 14.1000 | n          | LG&E/KU | ES     | 09/21/10 | 09/24/10 | 09/30/10 | 10/04/10 | Complete |
| 26 | 14 | KO & MC Site \  | 9/20/10 | Provide minimum access dimension box                         | 14.1000 | n          | LG&E/KU | ES     | 09/21/10 | 09/24/10 | 09/30/10 | 10/04/10 | Complete |
| 27 | 7  |                 |         | Determine personnel assignments for document review          |         | n          | LG&E/KU | ES     | 09/21/10 | TBD      |          | 10/04/10 | Complete |
| 28 | 19 | Re: Email 41.01 | 9/30/10 | B&V to provide schedule/deadlines for Mill Creek inform      | 41.0100 | Mill Creek | B&V     | ΤΗ     | 09/30/10 | 10/06/10 |          | 10/04/10 | Complete |
| 29 | 6  | KO & MC Site \  | 9/20/10 | Create IBackup FTP site for large file transfer              | 14.1000 |            | B&V     | KL     | 09/21/10 | 09/24/10 |          | 09/29/10 | Complete |
| 30 | 10 | KO & MC Site \  | 9/20/10 | Prepare data inventory and information request               | 14.1000 | Mill Creek | B&V     | MW/JC  | 09/21/10 | 09/24/10 |          | 09/29/10 | Complete |
| 31 | 5  | KO & MC Site \  | 9/20/10 | Provide engineering cost estimate at end of each month       | 14.1000 | n          | B&V     | ТΗ     | 09/21/10 | 09/30/10 |          | 09/28/10 | Complete |
| 32 | 2  | KO & MC Site \  | 9/20/10 | Determine dates for Ghent kick-off meeting                   | 14.1000 | Ghent      | LG&E/KU | ES     | 09/21/10 | 09/23/10 |          | 09/27/10 | Complete |
| 33 | 16 | KO & MC Site \  | 9/20/10 | Evaluate the possibility of accelerating the installation of | 14.1000 | Mill Creek | LG&E/KU | ES &TH | 09/21/10 | TBD      |          | 09/27/10 | Complete |
| 34 | 17 | Email 14.1000   | 9/20/10 | Provide LG&E/KU comments on Kick Off Meeting and N           | 14.1000 |            | LG&E/KU | ES     | 09/21/10 | 09/24/10 |          | 09/24/10 | Complete |
| 35 | 3  | KO & MC Site \  | 9/20/10 | Provide DVD copy of Phase I Report                           | 14.1000 |            | B&V     | ТΗ     | 09/21/10 | 09/24/10 |          | 09/22/10 | Complete |
| 36 | 9  | KO & MC Site \  | 9/20/10 | Update PIM with Eileen's Ghent contact information           | 14.1000 |            | B&V     | MW     | 09/21/10 | 09/24/10 |          | 09/21/10 | Complete |
| 37 | 8  | KO & MC Site \  | 9/20/10 | Determine if a Monday, 2 pm EST project conference ca        | 14.1000 |            | B&V     | TH/MW  | 09/21/10 | 09/23/10 |          | 09/21/10 | Complete |
| 38 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 39 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 40 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 41 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 42 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 43 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 44 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 45 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 46 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 47 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 48 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |

|    | 0                                                  | Р          | Q     | R            | S          | Т            | U            | V             | W              | Х      |
|----|----------------------------------------------------|------------|-------|--------------|------------|--------------|--------------|---------------|----------------|--------|
| 25 | CD received 9/27. Units 1, 2, and 4 on CD. Unit 3  |            |       |              |            | 9/28.        |              |               |                |        |
| 26 | CD received 9/27. Access Dimension not included    |            |       |              | 3.         |              |              |               |                |        |
| 27 | MC - Alex Betz and a couple others at plant. Proce | ss in pla  | ce (1 | 0/4)         |            |              |              |               |                |        |
| 28 |                                                    |            |       |              |            |              |              |               |                |        |
| 29 |                                                    |            |       |              |            |              |              |               |                |        |
| 30 |                                                    |            |       |              |            |              |              |               |                |        |
| 31 | Sent 9/28.                                         |            |       |              |            |              |              |               |                |        |
| 32 | Scheduled for October 6&7                          |            |       |              |            |              |              |               |                |        |
| 33 | B&V email addressed the acceleration of the SCR    | install fo | r MC  | 5 1 & 2 (9/1 | 7). LG&E/I | KU replied r | io change ir | n direction a | t this time (§ | ୬/27). |
| 34 | Final issued on 9/24                               |            |       |              |            |              |              |               |                |        |
| 35 | Set received on 9/22                               |            |       |              |            |              |              |               |                |        |
| 36 |                                                    |            |       |              |            |              |              |               |                |        |
| 37 | Scheduled                                          |            |       |              |            |              |              |               |                |        |
| 38 |                                                    |            |       |              |            |              |              |               |                |        |
| 39 |                                                    |            |       |              |            |              |              |               |                |        |
| 40 |                                                    |            |       |              |            |              |              |               |                |        |
| 41 |                                                    |            |       |              |            |              |              |               |                |        |
| 42 |                                                    |            |       |              |            |              |              |               |                |        |
| 43 |                                                    |            |       |              |            |              |              |               |                |        |
| 44 |                                                    |            |       |              |            |              |              |               |                |        |
| 45 |                                                    |            |       |              |            |              |              |               |                |        |
| 46 |                                                    |            |       |              |            |              |              |               |                |        |
| 47 |                                                    |            |       |              |            |              |              |               |                |        |
| 48 |                                                    |            |       |              |            |              |              |               |                |        |

|      | Α  | В | С | D | E | F | G | Н | J | K | L | М | N |
|------|----|---|---|---|---|---|---|---|---|---|---|---|---|
| 7095 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7096 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7097 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7098 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7099 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7100 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7101 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7102 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7103 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7104 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7105 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7106 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7107 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7108 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7109 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7110 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7111 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7112 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7113 | 58 |   |   |   |   |   |   |   |   |   |   |   |   |

|      | 0 | Р | Q | R | S | Т | U | V | W | Х |
|------|---|---|---|---|---|---|---|---|---|---|
| 7095 |   |   |   |   |   |   |   |   |   |   |
| 7096 |   |   |   |   |   |   |   |   |   |   |
| 7097 |   |   |   |   |   |   |   |   |   |   |
| 7098 |   |   |   |   |   |   |   |   |   |   |
| 7099 |   |   |   |   |   |   |   |   |   |   |
| 7100 |   |   |   |   |   |   |   |   |   |   |
| 7101 |   |   |   |   |   |   |   |   |   |   |
| 7102 |   |   |   |   |   |   |   |   |   |   |
| 7103 |   |   |   |   |   |   |   |   |   |   |
| 7104 |   |   |   |   |   |   |   |   |   |   |
| 7105 |   |   |   |   |   |   |   |   |   |   |
| 7106 |   |   |   |   |   |   |   |   |   |   |
| 7107 |   |   |   |   |   |   |   |   |   |   |
| 7108 |   |   |   |   |   |   |   |   |   |   |
| 7109 |   |   |   |   |   |   |   |   |   |   |
| 7110 |   |   |   |   |   |   |   |   |   |   |
| 7111 |   |   |   |   |   |   |   |   |   |   |
| 7112 |   |   |   |   |   |   |   |   |   |   |
| 7113 |   |   |   |   |   |   |   |   |   |   |

|    | А         | В                      | С | D |  |  |  |
|----|-----------|------------------------|---|---|--|--|--|
| 1  | LG&E/KU   | LG&E and KU            |   |   |  |  |  |
| 2  | АВ        | Alex Betz - Mill Creek |   |   |  |  |  |
| 3  | DS        | Dave Smith - Ghent     |   |   |  |  |  |
| 4  | ES        | Eileen Saunders        |   |   |  |  |  |
| 5  | GB        | Greg Black             |   |   |  |  |  |
| 6  | GR        | Gary Revlett           |   |   |  |  |  |
| 7  |           |                        |   |   |  |  |  |
| 8  |           |                        |   |   |  |  |  |
| 9  |           |                        |   |   |  |  |  |
| 10 |           |                        |   |   |  |  |  |
| 11 |           |                        |   |   |  |  |  |
| 12 |           |                        |   |   |  |  |  |
| 13 |           |                        |   |   |  |  |  |
| 14 |           |                        |   |   |  |  |  |
| 15 |           |                        |   |   |  |  |  |
| 16 |           |                        |   |   |  |  |  |
| 17 | <u>BV</u> | Black & Veatch (B&V)   |   |   |  |  |  |
| 18 | TH        | Tim Hillman            |   |   |  |  |  |
| 19 | KL        | Kyle Lucas             |   |   |  |  |  |
| 20 | AM        | Anand Mahabaleshwarker |   |   |  |  |  |
| 21 | MK        | Mike King              |   |   |  |  |  |
| 22 | RL        | Rick Lausman           |   |   |  |  |  |
| 23 | MW        | M.R. Wehrly            |   |   |  |  |  |
| 24 | МН        | Monty Hintz            |   |   |  |  |  |
| 25 | JB        | Jim Bayless            |   |   |  |  |  |
| 26 | JC        | Jonathan Crabtree      |   |   |  |  |  |

| From:        | Saunders, Eileen                                                                  |
|--------------|-----------------------------------------------------------------------------------|
| То:          | Straight, Scott; Kirkland, Mike                                                   |
| CC:          | Didelot, Joe; Buckner, Mike; Betz, Alex; 'Hillman, Timothy M.'                    |
| Sent:        | 10/25/2010 2:08:17 PM                                                             |
| Subject:     | FW: 168908.41.0803 101021 Mill Creek - Comparison Pros/Cons of NID System vs. CDS |
|              | PowerPoint                                                                        |
| Attachments: | CDS vs NIDS.pdf                                                                   |

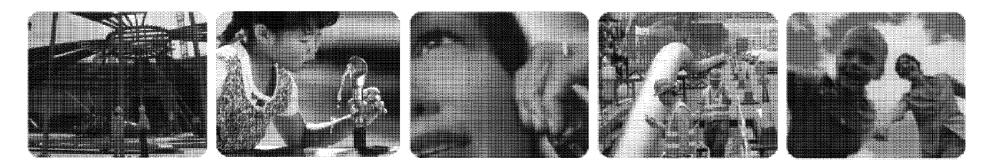
Scott and Mike,

Enclosed, please find additional information regarding NID Systems as requested.

Thank you,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Thursday, October 21, 2010 10:28 AM
To: Saunders, Eileen
Cc: Jackson, Audrey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.; Mahabaleshwarkar, Anand
Subject: 168908.41.0803 101021 Mill Creek - Comparison Pros/Cons of NID System vs. CDS PowerPoint


Eileen,

During the Mill Creek kickoff meeting on September 15th, plant personnel requested a general comparison (pros and cons) of the NID system with a standard circulating dry scrubber (CDS). Therefore, in response to action item #11, please find subject attached for your review and consideration. We can also include this in the November 9th validation presentation if you desire.

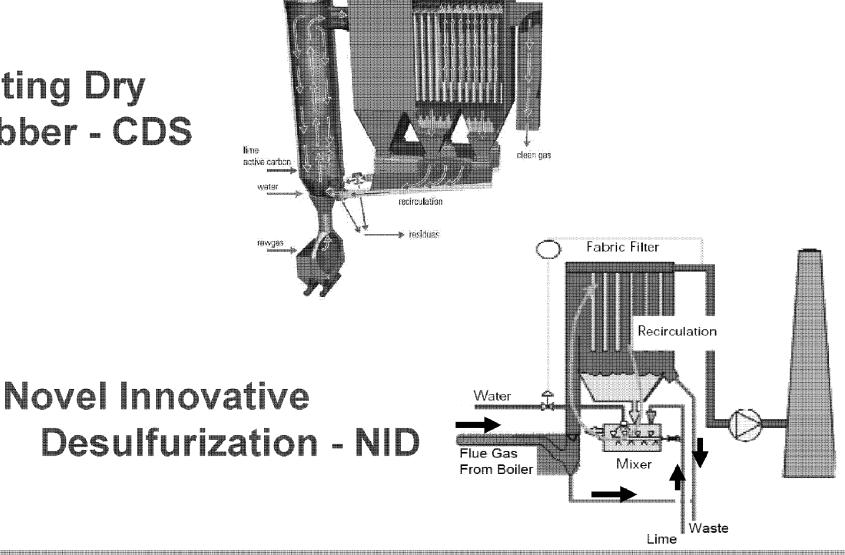
Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

#### **BUILDING A WORLD OF DIFFERENCE®**



# Circulating Dry Scrubber (CDS) vs Novel Innovative Desulfurization (NID) General Comparison

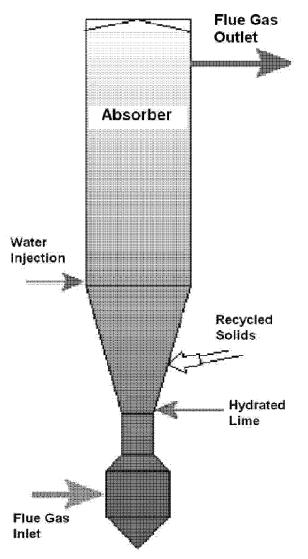

**Black & Veatch** 

October 19, 2010



# A Closer look at two dry FGD systems

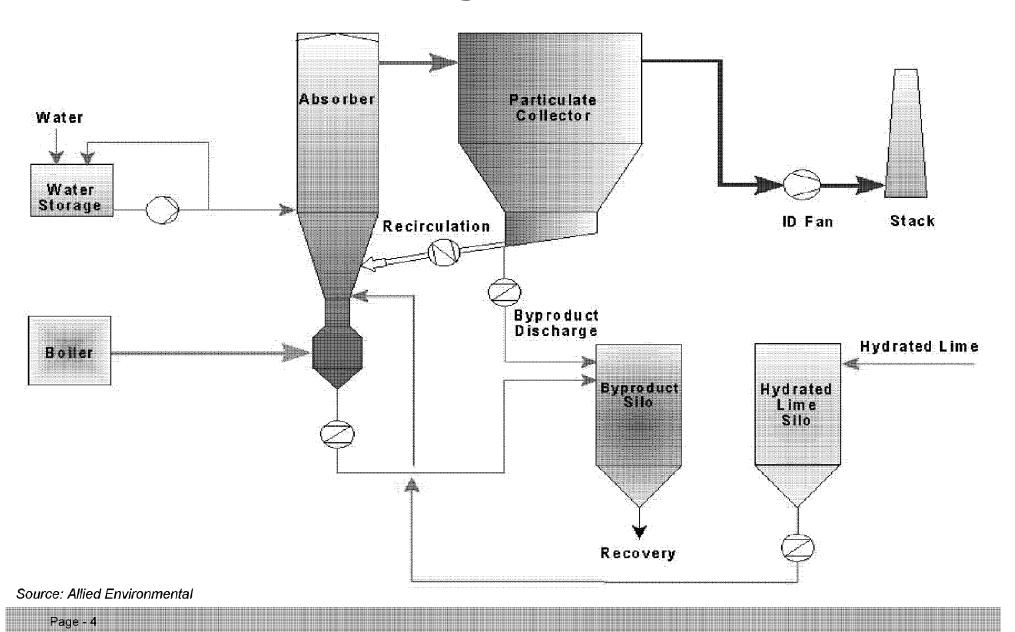
# **Circulating Dry Scrubber - CDS**



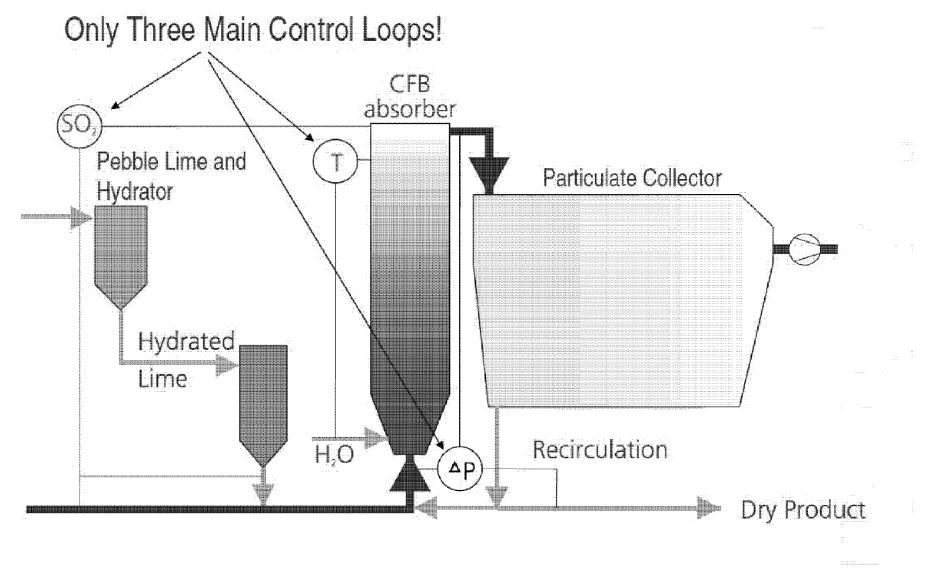

Source: AE&E



# **Circulating Dry Scrubber (CDS)**


- Dry free flowing powder of Ca(OH)<sub>2</sub> reagent fed into vessel
- Fluid bed of recycled ash/byproduct solids, and fresh reagent
- Water injected separately
- High solids recycle rate



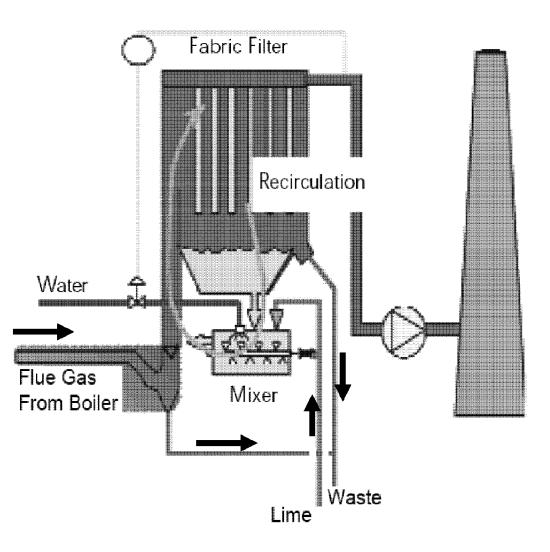

Source: Allied Environmental

BLACK & VEATCH

### **CDS Process Flow Diagram**



### **Process Control of CDS scrubber**




#### Source: Allied Environmental

### BLACK & VEATCH

### **Novel Innovative Desulfurization (NID) Process**

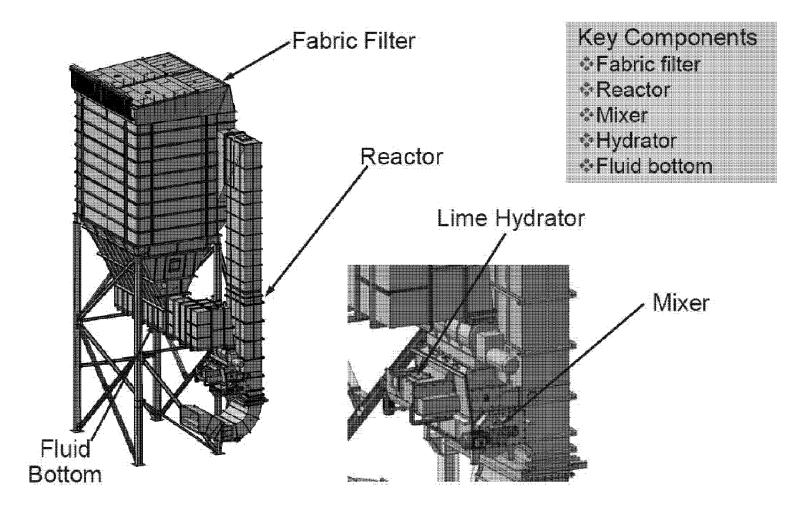
- Ash, byproduct, fresh lime and water recycled to the Jreactor
- Flue gas moves through J-reactor where major SO<sub>2</sub> capture takes place



Source: Alstom

Pade - f

BLACK & VEATCH

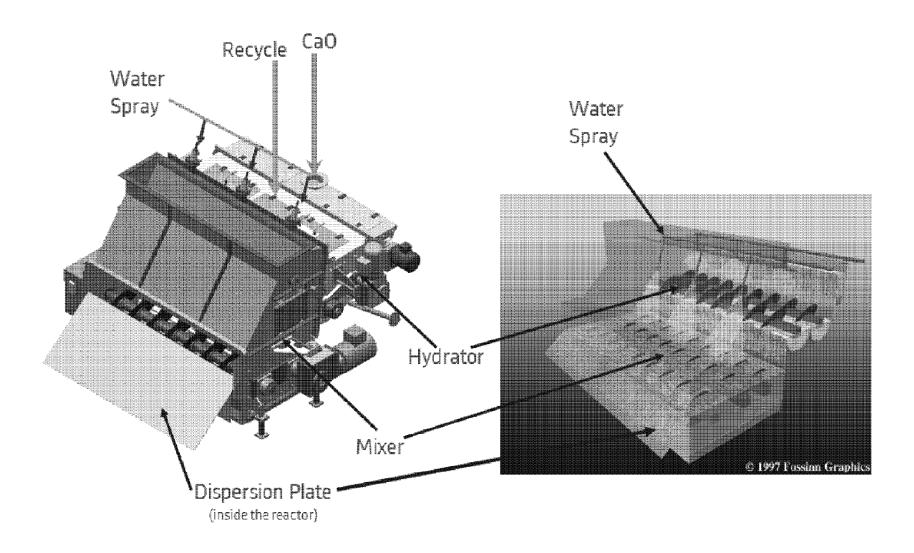

### **New Innovative Device (NID)**



#### Source: Alstom

Page - 7

### **NID Components**

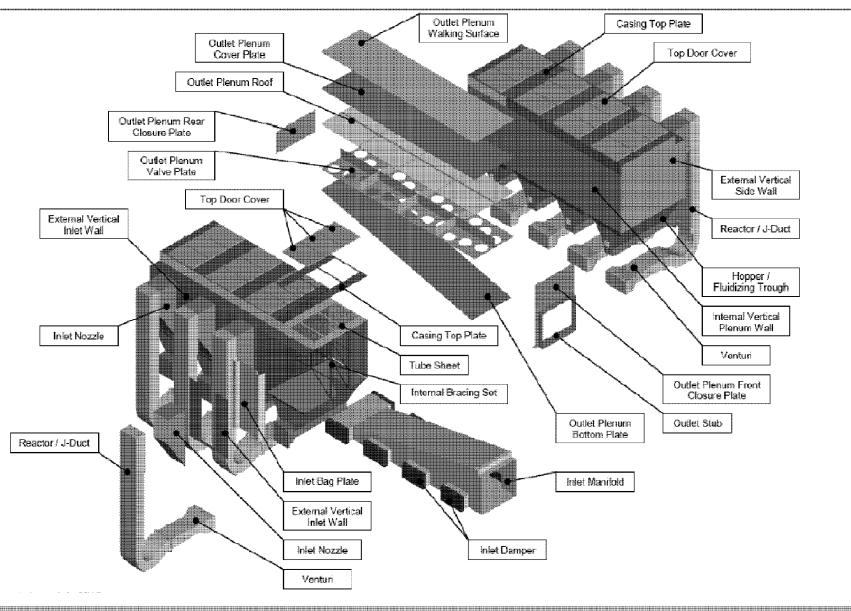



Source: Alstom

R,

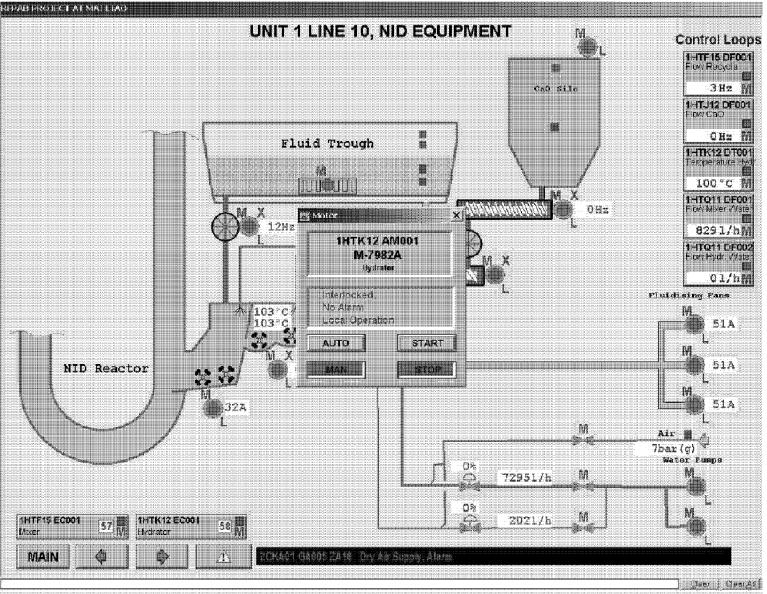
**BLACK & VEATCH** 

# **NID Components**



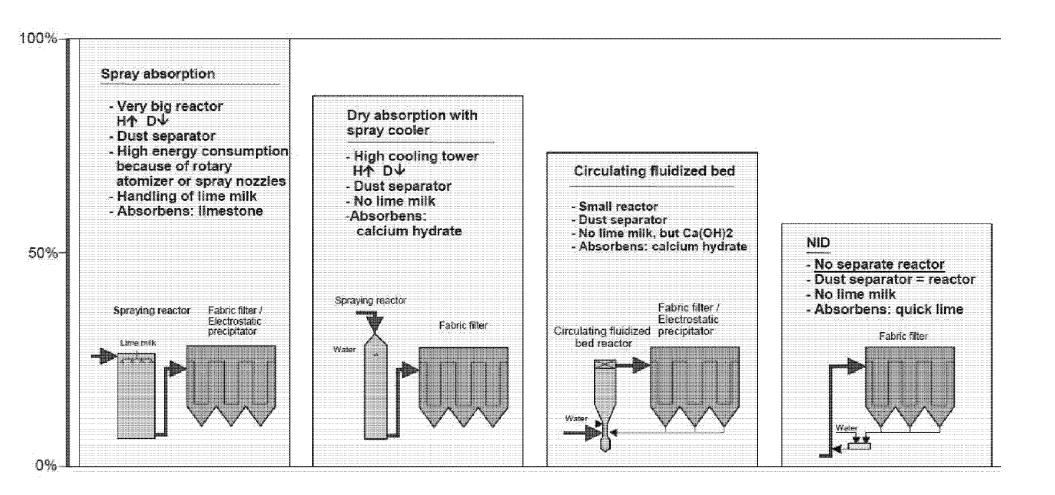

Source: Alstom

Page - 9


BLACK & VEATCH

### **NID Components Schematic**




BLACK & <u>VEATCH</u>

### **NID Process Control**





### **Footprint comparison**





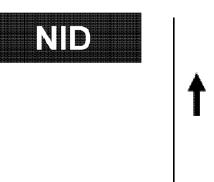
# CDS / NID technology comparison

| Factor               | CDS                           | NID                                      |
|----------------------|-------------------------------|------------------------------------------|
| Approach Temperature | 30°F                          | 25°F                                     |
| Lime Consumption     | SR of 1.7 – 1.85              | SR of 2.0 – 2.25                         |
| Coal Sulfur Content  | All                           | Low and Medium                           |
| Turndown             | Recirculation fan for<br><50% | Excellent capabilities                   |
| Pluggage Potential   | None                          | Potential at mixer-<br>hydrator assembly |

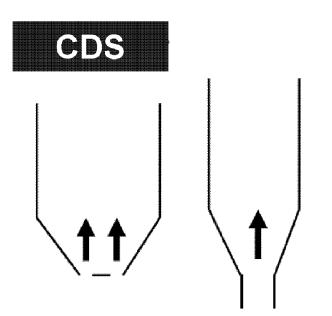


# CDS / NID technology comparison

| Factor             | CDS       | NID       |  |  |
|--------------------|-----------|-----------|--|--|
| Standard Lime Size | 3/4" x 0" | 1/8" x 0" |  |  |
| Plenum Design      | Walk-in   | Top Door  |  |  |
| Footprint          | Larger    | Smaller   |  |  |
| Pressure Drop      | High      | Less      |  |  |
| Equipment Cost     | Less      | More      |  |  |




# CDS / NID technology comparison


| Factor                           | CDS  | NID     |  |  |  |
|----------------------------------|------|---------|--|--|--|
| Maintenance                      | Low  | High    |  |  |  |
| Corrosion potential              | Low  | High    |  |  |  |
| Inlet Temperature<br>Limitations | None | < 350 F |  |  |  |
| Auxiliary Power                  | High | Low     |  |  |  |
| Water Requirements               | Low  | High    |  |  |  |



### **Flow Comparison**



- •Same flow velocity in whole reactor.
- •Same lifting force all the time
- •Agglomerates are following the flow
- •No water spraying inside reactor/flue gas



Lower velocity in upper part of reactor, acceleration through venturi
Lower lifting force in upper part
Agglomerates are to a higher extend collected in the reactor and can't leave it
Water addition inside reactor

# NID has 4-8 week savings over CDS

| Activity                    | NID<br>34-35 months                                      | CDS<br>36 months                                     |
|-----------------------------|----------------------------------------------------------|------------------------------------------------------|
| Engineering/<br>Procurement | 12 months                                                | 12 months                                            |
| Foundations                 | 6 months                                                 | 6 months                                             |
| Erection                    | 14-15 months<br>(J-tubes shop fabricated<br>in 3 pieces) | 16 months<br>(requires welding of<br>reactor plates) |
| Tie-in Outage               | 1 month                                                  | 1 month                                              |
| Start-up                    | 1 month                                                  | 1 month                                              |

## Vendors

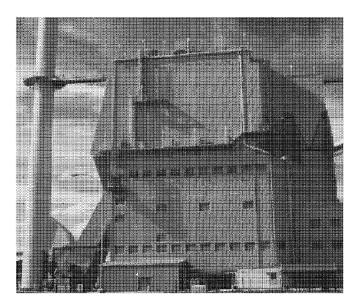
#### NID system

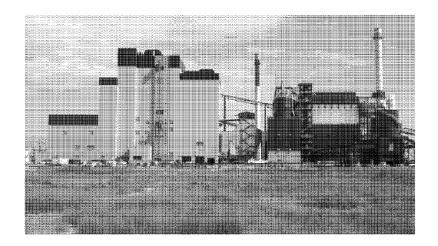
Alstom Power Inc

#### CDS system

- Allied Environmental Inc
- Austrian Energy & Environmental Inc
- Babcock Power Environmental Inc
- Nooter Eriksen

Black & Veatch has recent experience with all of these vendors






# **B&V PC Boiler CDS/NID Experience**

- First CDS scrubber in U.S.
  - Black Hills Power & Light
     Wygen Station
  - Started up in 1995
  - 80 MW operating unit in Wyoming
- Currently installing CDS technology on 220 MW Whelan Energy Center #2
- NID on 5 x 5 MW industrial application in 1994





| From:        | Hillman, Timothy M.                                                                                |
|--------------|----------------------------------------------------------------------------------------------------|
| То:          | Saunders, Eileen                                                                                   |
| CC:          | 168908 E.ON-AQC; Jackson, Audrey; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand; Wehrly, M.       |
|              | R.; Hintz, Monty E.; Goodlet, Roger F.; Betz, Alex; Lucas, Kyle J.; Smith, Dave; Mehta, Pratik D.; |
|              | Greenwell, Sarah                                                                                   |
| Sent:        | 12/6/2010 10:23:11 AM                                                                              |
| Subject:     | 168908.28.3000 101206 - Action Item List                                                           |
| Attachments: | 168908 LG&E AND KU ACTION ITEM LIST.xls                                                            |

Eileen,

While we have cancelled the Monday conference call for today, I thought I would still send out the action item list. We may be able to find a few minutes to review after the validation presentation tomorrow.

Thanks,

#### TIM HILLMAN | Project Manager, Energy

Black & Veatch Corporation | 11401 Lamar Ave., Overland Park, KS 66211 + 1 913-458-7928 P |HillmanTM@BV.com Building a World of Difference.®

Please consider the environment before printing my e-mail

Please note that the information and attachments in this email are intended for the exclusive use of the addressee and may contain confidential or privileged information. If you are not the intended recipient, please do not forward, copy or print the message or its attachments. Notify me at the above address, and delete this message and any attachments. Thank you

| ITEM #         SCURCE         DESCRIPTION         FLE NO.         FACILITY<br>FLE NO.         RESPONSIBILITY<br>FLE NO.         DATE ADDECTS DUE DATE ADDEC                               |          | Α      | В                 | С        | D                                                       | E        | F          | G       | Н         | J          | K         | L         | М        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------------|----------|---------------------------------------------------------|----------|------------|---------|-----------|------------|-----------|-----------|----------|
| 2         DOC/MTNG         DATE         CC.         INITIAL         CC.         INITIAL           3         GENERAL         n=         A         n=         A         n=         A         n=         A         n=         A         n=         n=         A         n=         A         n=         A         n=         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N <td></td> <td>ITEM #</td> <td>SOURC</td> <td>CE</td> <td>DESCRIPTION</td> <td>FILE NO.</td> <td>FACILITY</td> <td>RESPON</td> <td>ISIBILITY</td> <td>PATE ADDEI</td> <td>IG DUE DA</td> <td>RR DUE D/</td> <td>OMPL DAT</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ITEM # | SOURC             | CE       | DESCRIPTION                                             | FILE NO. | FACILITY   | RESPON  | ISIBILITY | PATE ADDEI | IG DUE DA | RR DUE D/ | OMPL DAT |
| 1         1         6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |        |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 3         CENERAL         100         n         A         n         A         n         A         n         A         n         A         n         A         n         A         n         A         n         A         n         A         n         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B         N         B </td <td>2</td> <td></td> <td>DUC/MITING</td> <td>DATE</td> <td></td> <td></td> <td></td> <td>0.</td> <td>INTTAL</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2        |        | DUC/MITING        | DATE     |                                                         |          |            | 0.      | INTTAL    |            |           |           |          |
| 4         27         Conf Call 10102         10/25/10         Prepare letter spec for Fabric Filter workshop.         41.0806         n         B&V         AM/RL         10/19/10         TBD           5         MILL CREEK           MIII Creek         A                       11/0/10         12/10/10          12/10/10         12/10/10          11/0/10         12/10/10          11/0/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        | GENERAL           |          |                                                         |          | n          | A       |           |            |           |           |          |
| 4         MIL CREEK         Additional and the set of the | 3        |        |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 5         MILL CREEK         NIIL CREEK         NIIL CREEK         NIII Creek         A         Image: Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 27     | Conf Call 10102   | 10/25/10 | Prepare letter spec for Fabric Filter workshop.         | 41.0806  | n          | B&V     | AM/RL     | 10/19/10   | TBD       |           |          |
| 5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10         11/16/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4        |        |                   |          |                                                         |          | Mill Crook |         |           |            |           |           |          |
| 32         Email 41.0803 1         11/5/10         Provide comments and direction on Mill Creek Validation 41.0803         Mill Creek LG&E:KU ES         11/06/10         11/06/10         12/10/10           7         43         Email 14.1000 1         11/16/10         Provide LG&E/KU comments on Mill Creek Validation pr         14.1000         Mill Creek LG&E:KU ES         11/16/10         11/22/10         12/10/10           8         GHENT         Ghent A              11/16/10         11/22/10         12/10/10            9         40         -         11/16/10         Incorporate LG&E and KU comments to Ghent PDM an         22.1000         Ghent A             11/16/10         11/16/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         11/16/10         11/22/10         12/10/10         12/10/10         11/16/10         11/22/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5        |        |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 43         Email 14.1000 1         11/16/10         Provide LG&E/KU comments on Mill Creek validation pr         14.1000         Mill Creek LG&E/KU ES         11/16/10         11/12/10         12/10/10           8         GHENT         Ghent         A         Ghent         A         Image: Comments on Mill Creek validation pr         14.1000         Mill Creek LG&E/KU ES         11/16/10         11/12/10         12/10/10           9         40          11/8/10         incorporate LG&E and KU comments to Ghent PDM an         22.1000         Ghent         B&V         MW/JCC         11/16/10         12/10/10         12/10/10           10         E.W. BROWN         EW. BROWN         Brown KO Mtg N         11/15/10         Review U3 SCR argmits & comment on potential PJFf         14.1000         Brown         B&V         TH         11/16/10         12/10/10         12/10/10           11         41         Brown KO Mtg N         11/15/10         Prepare Unit 1 and 2 sketches with and without SCR         14.1000         Brown         B&V         TH         11/16/10         11/12/10         12/10/10           14         42         Email 14.1000 1         11/12/10         Provide LG&E/KU comments on Brown Kick Off Meetin         14.1000         Brown         LG&E/KU ES         11/12/10         12/10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u> | 32     | Email 41.0803 1   | 11/5/10  | Provide comments and direction on Mill Creek Validation | 41.0803  | Mill Creek | LG&E/KU | ES        | 11/08/10   | 11/16/10  | 12/10/10  |          |
| 7       6       6       6       6       6       6       7       6       7       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6        |        |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 8         GHENT         11/8/10         Incorporate LG&E and KU comments to Ghent PDM an         22.1000         Ghent         A         MW/JC         11/15/10         11/13/10         12/10/10           9         40         -         11/8/10         Incorporate LG&E and KU comments to Ghent PDM an         22.1000         Ghent         B&V         MW/JC         11/15/10         11/13/10         12/10/10         12/10/10           10         E.W. BROWN         8         Brown A         Brown A               11/15/10         12/10/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/17/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10         12/10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _        | 43     | Email 14.1000 1   | 11/16/10 | Provide LG&E/KU comments on Mill Creek validation pr    | 14.1000  | Mill Creek | LG&E/KU | ES        | 11/16/10   | 11/22/10  | 12/10/10  |          |
| 8         -         11/6/10         Incorporate LG&E and KU comments to Ghent PDM an         22.100         Ghent         B&V         MW/JC         11/15/10         11/30/10         12/10/10           9         0         -         11/8/10         Incorporate LG&E and KU comments to Ghent PDM an         22.1000         Ghent         B&V         MW/JC         11/15/10         11/15/10         12/10/10         12/10/10           10         E.W. BROWN         Brown KO Mtg N         11/15/10         Review U3 SCR argmts & comment on potential PJFi         14.1000         Brown         B&V         TH         11/16/10         12/17/10         12/17/10           11         41         Brown KO Mtg N         11/15/10         Prepare Unit 1 and 2 sketches with and without SCR         14.1000         Brown         B&V         TH         11/16/10         12/10/10         12/17/10           13         42         Email 14.1000 1         11/16/10         Provide LG&E/KU comments on Brown Kick Off Meetin         14.1000         Brown         LG&E/KU ES         11/12/10         12/10/10         12/10/10           14         44         Conf Call 10112         11/24/10         Provide comments on Brown Project Design Memorand         22.1000         Brown         LG&E/KU ES         11/129/10         12/10/10 <td< td=""><td></td><td></td><td>CHENT</td><td></td><td></td><td></td><td>Chant</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        | CHENT             |          |                                                         |          | Chant      |         |           |            |           |           |          |
| 9         40          11/8/10         Incorporate LG&E and KU comments to Ghent PDM and 22.1000         Ghent         B&V         MW/JC         11/15/10         11/15/10         12/10/10           10         E.W. BROWN         Brown KO Mtg N         11/15/10         Review U3 SCR argmints & comment on potential PJFF         14.1000         Brown         A         Incorporate LG&E model         Information for model         Information for model         Information for model         Informodel         Information for model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8        |        | GHENI             |          |                                                         |          | Griefic    |         |           |            |           |           |          |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 40     |                   | 11/8/10  | Incorporate LG&E and KU comments to Ghent PDM an        | 22.1000  | Ghent      | B&V     | MW/JC     | 11/15/10   | 11/30/10  | 12/10/10  |          |
| 10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       11/16/10       11/16/10       11/16/10       11/12/10       12/10/10       11/12/10       12/10/10       12/10/10       11/12/10       12/10/10       12/10/10       11/12/10       12/10/10       12/10/10       11/12/10       12/10/10       12/10/10       11/12/10       11/12/10       12/10/10       12/10/10       12/10/10       12/10/10       11/12/10       12/10/10       12/10/10       12/10/10       12/10/10       11/12/10       11/12/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10       12/10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9        |        |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 41         Brown KO Mtg N         11/15/10         Review U3 SCR arrgmnts & comment on potential PJF1         14.1000         Brown         B&V         TH/ MH         11/16/10         12/17/10           12         38         Brown KO Mtg N         11/15/10         Prepare Unit 1 and 2 sketches with and without SCR         14.1000         Brown         B&V         TH         11/16/10         12/10/10         12/17/10           13         42         Email 14.1000 1         11/16/10         Provide LG&E/KU comments on Brown Kick Off Meetin         14.1000         Brown         LG&E/KU ES         11/16/10         11/22/10         12/10/10           14         44         Conf Call 10112         11/22/10         Establish date for Brown Validation meeting.         41.0803         Brown         LG&E/KU ES         11/22/10         11/29/10         12/10/10           15         45         Email 22.1000 1         11/24/10         Provide comments on Brown Project Design Memorand         22.1000         Brown         LG&E/KU ES         11/29/10         12/01/10         12/10/10           16         46         1         11/24/10         Provide comments on Brown Project Design Memorand         22.1000         Brown         LG&E/KU ES         11/29/10         12/10/10           17         47         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |        | E.W. BROWN        |          |                                                         |          | Brown      | A       |           |            |           |           |          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10       | 44     |                   | 11/15/10 | Deview U2 COD extension & command on extential D IC     | 14 1000  | Braum      | Dev     | TH/ MALL  | 11/16/10   | 10/10/10  | 10/17/10  |          |
| 38         Brown KO Mtg N         11/15/10         Prepare Unit 1 and 2 sketches with and without SCR         14.1000         Brown         B&V         TH         11/15/10         01/10/11           42         Email 14.1000 1         11/16/10         Provide LG&E/KU comments on Brown Kick Off Meetin         14.1000         Brown         LG&E/KU         ES         11/16/10         11/12/10         12/10/10           14         44         Conf Call 10112         11/12/10         Establish date for Brown Validation meeting.         41.0803         Brown         LG&E/KU         ES         11/12/10         12/10/10           45         Email 22.1000 1         11/12/10         Provide comments on Brown Project Design Memorand         22.1000         Brown         LG&E/KU         ES         11/29/10         12/10/10           16         46 <td>11</td> <td>41</td> <td>Brown KO Ivilg Iv</td> <td>11/15/10</td> <td>Review 03 SCR arrgmints &amp; comment on potential PJFF</td> <td>14.1000</td> <td>Drown</td> <td></td> <td></td> <td>11/16/10</td> <td>12/10/10</td> <td>12/17/10</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11       | 41     | Brown KO Ivilg Iv | 11/15/10 | Review 03 SCR arrgmints & comment on potential PJFF     | 14.1000  | Drown      |         |           | 11/16/10   | 12/10/10  | 12/17/10  |          |
| 12       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u> | 38     | Brown KO Mtg M    | 11/15/10 | Prepare Unit 1 and 2 sketches with and without SCR      | 14.1000  | Brown      | B&V     | тн        | 11/15/10   | 01/10/11  |           |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12       |        | -                 |          |                                                         |          |            |         |           |            |           |           |          |
| 44       Conf Call 10112       11/22/10       Establish date for Brown Validation meeting.       41.0803       Brown       LG&E/KU       ES       11/22/10       12/10/10         15       Email 22.1000 1       11/24/10       Provide comments on Brown Project Design Memorand       22.1000       Brown       LG&E/KU       ES       11/22/10       12/10/10         16       46       11/24/10       Provide comments on Brown Project Design Memorand       22.1000       Brown       LG&E/KU       ES       11/29/10       12/10/10         16       46       11/24/10       Provide comments on Brown Project Design Memorand       22.1000       Brown       LG&E/KU       ES       11/29/10       12/10/10         16       46       11/24/10       Provide comments on Brown Project Design Memorand       22.1000       Brown       LG&E/KU       ES       11/29/10       12/10/10         16       47       1       11/24/10       Provide comments on Brown Project Design Memorand       10       10       11/29/10       12/10/10         17       48       1       11/24/10       12/10/10       12/10/10       12/10/10       11/20/10       12/10/10         19       49       1       50       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 42     | Email 14.1000 1   | 11/16/10 | Provide LG&E/KU comments on Brown Kick Off Meetin       | 14.1000  | Brown      | LG&E/KU | ES        | 11/16/10   | 11/22/10  | 12/10/10  |          |
| 14 $45$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $11/29/10$ $12/03/10$ $12/10/10$ 15       46 $6$ $6$ $6$ $6$ $6$ $11/29/10$ $12/03/10$ $12/10/10$ 16 $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ $6$ <td< td=""><td>13</td><td>44</td><td></td><td>11/22/10</td><td>Establish data fay Dyawa Validatian waasting</td><td>41.0002</td><td>Drawn</td><td></td><td>50</td><td>11/00/10</td><td>11/20/10</td><td>10/10/10</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13       | 44     |                   | 11/22/10 | Establish data fay Dyawa Validatian waasting            | 41.0002  | Drawn      |         | 50        | 11/00/10   | 11/20/10  | 10/10/10  |          |
| 45       Email 22.1000 1       11/24/10       Provide comments on Brown Project Design Memorand       22.1000       Brown       LG&E/KU       ES       11/29/10       12/10/10         16       16       11/24/10       Provide comments on Brown Project Design Memorand       22.1000       Brown       LG&E/KU       ES       11/29/10       12/10/10         16       16       11/24/10       Provide comments on Brown Project Design Memorand       22.1000       Brown       LG&E/KU       ES       11/29/10       12/10/10         16       16       11/24/10       11/24/10       Provide comments on Brown Project Design Memorand       22.1000       Brown       LG&E/KU       ES       11/29/10       12/10/10         17       47       17       17       11/24/10       11/24/10       12/10/10       12/10/10       12/10/10       12/10/10         18       48       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td>14</td> <td>44</td> <td>Coni Cali 10112.</td> <td>11/22/10</td> <td></td> <td>41.0603</td> <td>Brown</td> <td></td> <td>E5</td> <td>11/22/10</td> <td>11/29/10</td> <td>12/10/10</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14       | 44     | Coni Cali 10112.  | 11/22/10 |                                                         | 41.0603  | Brown      |         | E5        | 11/22/10   | 11/29/10  | 12/10/10  |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u> | 45     | Email 22.1000 1   | 11/24/10 | Provide comments on Brown Project Design Memorand       | 22.1000  | Brown      | LG&E/KU | ES        | 11/29/10   | 12/03/10  | 12/10/10  |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15       |        |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 46     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16       | 47     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17       | 47     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 48     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18       |        |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 49     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19       | 50     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20       | 50     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u> | 51     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21       |        |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 23         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 52     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 23 54 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22       | 50     |                   |          |                                                         |          |            |         |           |            |           |           |          |
| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23       | 53     |                   |          |                                                         |          |            |         |           |            |           |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u> | 54     |                   |          |                                                         |          |            |         |           |            |           |           | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24       |        |                   |          |                                                         |          |            |         |           |            |           |           |          |

|    | N           | 0                                                  | Р               | Q          | R                  | S                 | Т   |
|----|-------------|----------------------------------------------------|-----------------|------------|--------------------|-------------------|-----|
| 4  | STATUS      | NOTES                                              |                 |            |                    |                   |     |
| 1  |             |                                                    |                 |            |                    |                   |     |
| 2  |             |                                                    |                 |            |                    |                   |     |
| 3  |             |                                                    |                 |            |                    |                   |     |
|    | Open        | Discuss after NID visit to E. KY Power on 12/1.    |                 |            |                    |                   |     |
| 4  |             |                                                    |                 |            |                    |                   |     |
| 5  |             |                                                    |                 |            |                    |                   |     |
| 6  | Open        | No comments as of 11/29.                           |                 |            |                    |                   |     |
| -  | Open        |                                                    |                 |            |                    |                   |     |
| 7  |             |                                                    |                 |            |                    |                   |     |
| 8  |             |                                                    |                 |            |                    |                   |     |
| 9  | In Progress | Pending information for Load Model.                |                 |            |                    |                   |     |
| 10 |             |                                                    |                 |            |                    |                   |     |
|    | In Progress | Received Unit 3 arrangements on 12/02. Commen      | l<br>its pendir | l<br>ng re | l<br>eview of the  | I<br>drawings.    |     |
| 11 |             |                                                    | -               | -          |                    | _                 |     |
| 12 | Open        |                                                    |                 |            |                    |                   |     |
| 13 | Open        |                                                    |                 |            |                    |                   |     |
| 13 | Open        | Potentially to be scheduled for the week of Januar | I<br>γ17th. №   | leed       | l<br>I to ask Jeff | I<br>Railey (11/: | 29) |
| 14 | Open        |                                                    |                 |            |                    |                   |     |
| 15 | Open        |                                                    |                 |            |                    |                   |     |
| 16 |             |                                                    |                 |            |                    |                   |     |
|    |             |                                                    |                 |            |                    |                   |     |
| 17 |             |                                                    |                 |            |                    |                   |     |
| 18 |             |                                                    |                 |            |                    |                   |     |
| 19 |             |                                                    |                 |            |                    |                   |     |
|    |             |                                                    |                 |            |                    |                   |     |
| 20 |             |                                                    |                 |            |                    |                   |     |
| 21 |             |                                                    |                 |            |                    |                   |     |
| 22 |             |                                                    |                 |            |                    |                   |     |
| 23 |             |                                                    |                 |            |                    |                   |     |
| 23 |             |                                                    |                 |            |                    |                   |     |
| 24 |             |                                                    |                 |            |                    |                   |     |

|    | Α  | В | С | D | E | F | G | Н | J | K | L | М |
|----|----|---|---|---|---|---|---|---|---|---|---|---|
| 25 | 55 |   |   |   |   |   |   |   |   |   |   |   |
|    | 56 |   |   |   |   |   |   |   |   |   |   |   |
| 26 | 57 |   |   |   |   |   |   |   |   |   |   |   |
| 27 |    |   |   |   |   |   |   |   |   |   |   |   |
| 28 | 58 |   |   |   |   |   |   |   |   |   |   |   |
| 29 | 59 |   |   |   |   |   |   |   |   |   |   |   |
| 30 | 60 |   |   |   |   |   |   |   |   |   |   |   |
| 31 | 61 |   |   |   |   |   |   |   |   |   |   |   |
| 32 | 62 |   |   |   |   |   |   |   |   |   |   |   |
| 33 | 63 |   |   |   |   |   |   |   |   |   |   |   |
| 34 | 64 |   |   |   |   |   |   |   |   |   |   |   |
| 35 | 65 |   |   |   |   |   |   |   |   |   |   |   |
| 36 | 66 |   |   |   |   |   |   |   |   |   |   |   |
| 37 | 67 |   |   |   |   |   |   |   |   |   |   |   |
| 38 | 68 |   |   |   |   |   |   |   |   |   |   |   |
| 39 | 69 |   |   |   |   |   |   |   |   |   |   |   |
| 40 | 70 |   |   |   |   |   |   |   |   |   |   |   |
| 41 | 71 |   |   |   |   |   |   |   |   |   |   |   |
| 42 | 72 |   |   |   |   |   |   |   |   |   |   |   |
| 43 | 73 |   |   |   |   |   |   |   |   |   |   |   |
| 44 | 74 |   |   |   |   |   |   |   |   |   |   |   |
| 45 | 75 |   |   |   |   |   |   |   |   |   |   |   |
| 46 | 76 |   |   |   |   |   |   |   |   |   |   |   |
| 47 | 77 |   |   |   |   |   |   |   |   |   |   |   |
| 48 | 78 |   |   |   | _ |   |   |   |   |   |   |   |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 25 |   |   |   |   |   |   |   |
| 26 |   |   |   |   |   |   |   |
| 27 |   |   |   |   |   |   |   |
| 28 |   |   |   |   |   |   |   |
| 29 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 30 |   |   |   |   |   |   |   |
| 31 |   |   |   |   |   |   |   |
| 32 |   |   |   |   |   |   |   |
| 33 |   |   |   |   |   |   |   |
| 34 |   |   |   |   |   |   |   |
| 35 |   |   |   |   |   |   |   |
| 36 |   |   |   |   |   |   |   |
| 37 |   |   |   |   |   |   |   |
| 38 |   |   |   |   |   |   |   |
| 39 |   |   |   |   |   |   |   |
| 40 |   |   |   |   |   |   |   |
| 41 |   |   |   |   |   |   |   |
| 42 |   |   |   |   |   |   |   |
| 43 |   |   |   |   |   |   |   |
| 44 |   |   |   |   |   |   |   |
| 45 |   |   |   |   |   |   |   |
| 46 |   |   |   |   |   |   |   |
| 40 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 48 |   |   |   |   |   |   |   |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | Α   | В | С | D | E | F | G | Н | J | K | L | М        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---|---|---|---|---|---|---|---|---|---|----------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49 | 79  |   |   |   |   |   |   |   |   |   |   |          |
| 51 $81$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <t< td=""><td></td><td>80</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 80  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 81  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 | 82  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 84  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 85  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 86  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56 | 87  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59 | 89  |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | 90  |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | 91  |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | 92  |   |   |   |   |   |   |   |   |   |   |          |
| 64       94       94       94       94       94       95       95       95       95       96       96       96       97       97       97       97       97       97       97       97       98       98       98       99       99       99       99       99       99       99       99       99       99       99       99       99       99       99       99       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90                                                                                                                                                                                                                                                                                                |    | 93  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{bmatrix} 64 \\ 95 \\ 65 \end{bmatrix} = \begin{bmatrix} 95 \\ 96 \\ 96 \\ 67 \end{bmatrix} = \begin{bmatrix} 97 \\ 97 \\ 67 \end{bmatrix} = \begin{bmatrix} 97 \\ 97 \\ 68 \end{bmatrix} = \begin{bmatrix} 97 \\ 98 \\ 98 \\ 98 \\ 99 \end{bmatrix} = \begin{bmatrix} 99 \\ 98 \\ 99 \\ 99 \\ 99 \end{bmatrix} = \begin{bmatrix} 99 \\ 99 \\ 99 \\ 99 \\ 99 \\ 99 \\ 99 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63 | 94  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64 |     |   |   |   |   |   |   |   |   |   |   | <u> </u> |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{bmatrix} 97 \\ 97 \\ 88 \end{bmatrix} = \begin{bmatrix} 97 \\ 98 \\ 99 \\ 99 \\ 99 \\ 99 \\ 99 \\ 99 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 |     |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 97  |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 98  |   |   |   |   |   |   |   |   |   |   |          |
| 100     100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 99  |   |   |   |   |   |   |   |   |   |   |          |
| 101         101         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102 <td></td> <td>100</td> <td></td> |    | 100 |   |   |   |   |   |   |   |   |   |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70 | 101 |   |   |   |   |   |   |   |   |   |   | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71 |     |   |   |   |   |   |   |   |   |   |   | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72 | 102 |   |   |   |   |   |   |   |   |   |   |          |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 49 |   |   |   |   |   |   |   |
| 50 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 51 |   |   |   |   |   |   |   |
| 52 |   |   |   |   |   |   |   |
| 53 |   |   |   |   |   |   |   |
| 54 |   |   |   |   |   |   |   |
| 55 |   |   |   |   |   |   |   |
| 56 |   |   |   |   |   |   |   |
| 57 |   |   |   |   |   |   |   |
| 58 |   |   |   |   |   |   |   |
| 59 |   |   |   |   |   |   |   |
| 60 |   |   |   |   |   |   |   |
| 61 |   |   |   |   |   |   |   |
| 62 |   |   |   |   |   |   |   |
| 63 |   |   |   |   |   |   |   |
| 64 |   |   |   |   |   |   |   |
| 65 |   |   |   |   |   |   |   |
| 66 |   |   |   |   |   |   |   |
| 67 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 68 |   |   |   |   |   |   |   |
| 69 |   |   |   |   |   |   |   |
| 70 |   |   |   |   |   |   |   |
| 71 |   |   |   |   |   |   |   |
| 72 |   |   |   |   |   |   |   |

|    | Α   | В | С | D | E | F | G | Н | J | K | L | М      |
|----|-----|---|---|---|---|---|---|---|---|---|---|--------|
| 73 | 103 |   |   |   |   |   |   |   |   |   |   |        |
|    | 104 |   |   |   |   |   |   |   |   |   |   |        |
| 74 | 105 |   |   |   |   |   |   |   |   |   |   |        |
| 75 | 106 |   |   |   |   |   |   |   |   |   |   |        |
| 76 |     |   |   |   |   |   |   |   |   |   |   |        |
| 77 | 107 |   |   |   |   |   |   |   |   |   |   |        |
|    | 108 |   |   |   |   |   |   |   |   |   |   |        |
| 78 | 109 |   |   |   |   |   |   |   |   |   |   |        |
| 79 | 110 |   |   |   |   |   |   |   |   |   |   |        |
| 80 |     |   |   |   |   |   |   |   |   |   |   |        |
| 81 | 111 |   |   |   |   |   |   |   |   |   |   |        |
| 82 | 112 |   |   |   |   |   |   |   |   |   |   |        |
|    | 113 |   |   |   |   |   |   |   |   |   |   |        |
| 83 | 114 |   |   |   |   |   |   |   |   |   |   |        |
| 84 | 115 |   |   |   |   |   |   |   |   |   |   |        |
| 85 |     |   |   |   |   |   |   |   |   |   |   |        |
| 86 | 116 |   |   |   |   |   |   |   |   |   |   |        |
| 87 | 117 |   |   |   |   |   |   |   |   |   |   |        |
|    | 118 |   |   |   |   |   |   |   |   |   |   |        |
| 88 | 119 |   |   |   |   |   |   |   |   |   |   |        |
| 89 | 120 |   |   |   |   |   |   |   |   |   |   |        |
| 90 |     |   |   |   |   |   |   |   |   |   |   |        |
| 91 | 121 |   |   |   |   |   |   |   |   |   |   |        |
| 92 | 122 |   |   |   |   |   |   |   |   |   |   |        |
|    | 123 |   |   |   |   |   |   |   |   |   |   |        |
| 93 | 124 |   |   |   |   |   |   |   |   |   |   | ┝────┦ |
| 94 |     |   |   |   |   |   |   |   |   |   |   |        |
| 95 | 125 |   |   |   |   |   |   |   |   |   |   |        |
| 96 | 126 |   |   |   |   |   |   |   |   |   |   |        |
| 90 |     | I | 1 |   |   |   |   |   |   |   |   |        |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 73 |   |   |   |   |   |   |   |
| 74 |   |   |   |   |   |   |   |
| 75 |   |   |   |   |   |   |   |
| 76 |   |   |   |   |   |   |   |
| 77 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 78 |   |   |   |   |   |   |   |
| 79 |   |   |   |   |   |   |   |
| 80 |   |   |   |   |   |   |   |
| 81 |   |   |   |   |   |   |   |
| 82 |   |   |   |   |   |   |   |
| 83 |   |   |   |   |   |   |   |
| 84 |   |   |   |   |   |   |   |
| 85 |   |   |   |   |   |   |   |
| 86 |   |   |   |   |   |   |   |
| 87 |   |   |   |   |   |   |   |
| 88 |   |   |   |   |   |   |   |
| 89 |   |   |   |   |   |   |   |
| 90 |   |   |   |   |   |   |   |
| 91 |   |   |   |   |   |   |   |
| 92 |   |   |   |   |   |   |   |
| 93 |   |   |   |   |   |   |   |
| 94 |   |   |   |   |   |   |   |
| 95 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 96 |   |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | К | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 97  | 127 |   |   |   |   |   |   |   |   |   |   |   |
|     | 128 |   |   |   |   |   |   |   |   |   |   |   |
| 98  | 129 |   |   |   |   |   |   |   |   |   |   |   |
| 99  |     |   |   |   |   |   |   |   |   |   |   |   |
| 100 | 130 |   |   |   |   |   |   |   |   |   |   |   |
|     | 131 |   |   |   |   |   |   |   |   |   |   |   |
| 101 |     |   |   |   |   |   |   |   |   |   |   |   |
| 102 | 132 |   |   |   |   |   |   |   |   |   |   |   |
| 103 | 133 |   |   |   |   |   |   |   |   |   |   |   |
|     | 134 |   |   |   |   |   |   |   |   |   |   |   |
| 104 |     |   |   |   |   |   |   |   |   |   |   |   |
| 105 | 135 |   |   |   |   |   |   |   |   |   |   |   |
| 106 | 136 |   |   |   |   |   |   |   |   |   |   |   |
|     | 137 |   |   |   |   |   |   |   |   |   |   |   |
| 107 | 138 |   |   |   |   |   |   |   |   |   |   |   |
| 108 |     |   |   |   |   |   |   |   |   |   |   |   |
| 109 | 139 |   |   |   |   |   |   |   |   |   |   |   |
|     | 140 |   |   |   |   |   |   |   |   |   |   |   |
| 110 | 141 |   |   |   |   |   |   |   |   |   |   |   |
| 111 |     |   |   |   |   |   |   |   |   |   |   |   |
| 112 | 142 |   |   |   |   |   |   |   |   |   |   |   |
|     | 143 |   |   |   |   |   |   |   |   |   |   |   |
| 113 | 144 |   |   |   |   |   |   |   |   |   |   |   |
| 114 |     |   |   |   |   |   |   |   |   |   |   |   |
| 115 | 145 |   |   |   |   |   |   |   |   |   |   |   |
| 1 1 | 146 |   |   |   |   |   |   |   |   |   |   |   |
| 116 | 147 |   |   |   |   |   |   |   |   |   |   |   |
| 117 |     |   |   |   |   |   |   |   |   |   |   |   |
| 118 | 148 |   |   |   |   |   |   |   |   |   |   |   |
|     | 149 |   |   |   |   |   |   |   |   |   |   |   |
| 119 | 150 |   |   |   |   |   |   |   |   |   |   |   |
| 120 |     |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 97  |   |   |   |   |   |   |   |
| 98  |   |   |   |   |   |   |   |
| 99  |   |   |   |   |   |   |   |
| 100 |   |   |   |   |   |   |   |
| 101 |   |   |   |   |   |   |   |
| 102 |   |   |   |   |   |   |   |
| 102 |   |   |   |   |   |   |   |
| 104 |   |   |   |   |   |   |   |
| 105 |   |   |   |   |   |   |   |
| 106 |   |   |   |   |   |   |   |
| 107 |   |   |   |   |   |   |   |
| 108 |   |   |   |   |   |   |   |
| 109 |   |   |   |   |   |   |   |
| 110 |   |   |   |   |   |   |   |
| 111 |   |   |   |   |   |   |   |
| 112 |   |   |   |   |   |   |   |
| 113 |   |   |   |   |   |   |   |
| 114 |   |   |   |   |   |   |   |
| 115 |   |   |   |   |   |   |   |
| 116 |   |   |   |   |   |   |   |
| 117 |   |   |   |   |   |   |   |
| 118 |   |   |   |   |   |   |   |
| 119 |   |   |   |   |   |   |   |
| 120 |   |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М        |
|-----|-----|---|---|---|---|---|---|---|---|---|---|----------|
| 121 | 151 |   |   |   |   |   |   |   |   |   |   |          |
| 122 | 152 |   |   |   |   |   |   |   |   |   |   |          |
|     | 153 |   |   |   |   |   |   |   |   |   |   |          |
| 123 | 154 |   |   |   |   |   |   |   |   |   |   |          |
| 124 | 155 |   |   |   |   |   |   |   |   |   |   |          |
| 125 | 156 |   |   |   |   |   |   |   |   |   |   |          |
| 126 |     |   |   |   |   |   |   |   |   |   |   |          |
| 127 | 157 |   |   |   |   |   |   |   |   |   |   |          |
| 128 | 158 |   |   |   |   |   |   |   |   |   |   |          |
| 129 | 159 |   |   |   |   |   |   |   |   |   |   |          |
|     | 160 |   |   |   |   |   |   |   |   |   |   |          |
| 130 | 161 |   |   |   |   |   |   |   |   |   |   |          |
| 131 | 162 |   |   |   |   |   |   |   |   |   |   |          |
| 132 | 163 |   |   |   |   |   |   |   |   |   |   |          |
| 133 |     |   |   |   |   |   |   |   |   |   |   |          |
| 134 | 164 |   |   |   |   |   |   |   |   |   |   |          |
| 135 | 165 |   |   |   |   |   |   |   |   |   |   |          |
| 136 | 166 |   |   |   |   |   |   |   |   |   |   |          |
|     | 167 |   |   |   |   |   |   |   |   |   |   |          |
| 137 | 168 |   |   |   |   |   |   |   |   |   |   |          |
| 138 | 169 |   |   |   |   |   |   |   |   |   |   |          |
| 139 | 170 |   |   |   |   |   |   |   |   |   |   |          |
| 140 |     |   |   |   |   |   |   |   |   |   |   |          |
| 141 | 171 |   |   |   |   |   |   |   |   |   |   |          |
| 142 | 172 |   |   |   |   |   |   |   |   |   |   |          |
|     | 173 |   |   |   |   |   |   |   |   |   |   |          |
| 143 | 174 |   |   |   |   |   |   |   |   |   |   |          |
| 144 |     |   |   |   |   |   |   |   |   |   |   | <u> </u> |

| 121 |     | N | 0 | Р | Q | R | S | Т |
|-----|-----|---|---|---|---|---|---|---|
| 122 | 121 |   |   |   |   |   |   |   |
| 123 |     |   |   |   |   |   |   |   |
| 124 |     |   |   |   |   |   |   |   |
| 125 |     |   |   |   |   |   |   |   |
| 126 |     |   |   |   |   |   |   |   |
| 127 |     |   |   |   |   |   |   |   |
| 128 |     |   |   |   |   |   |   |   |
| 129 |     |   |   |   |   |   |   |   |
| 130 |     |   |   |   |   |   |   |   |
| 131 |     |   |   |   |   |   |   |   |
| 132 |     |   |   |   |   |   |   |   |
| 133 | 131 |   |   |   |   |   |   |   |
| 134 | 132 |   |   |   |   |   |   |   |
| 135 | 133 |   |   |   |   |   |   |   |
| 136 | 134 |   |   |   |   |   |   |   |
| 137 | 135 |   |   |   |   |   |   |   |
| 138 | 136 |   |   |   |   |   |   |   |
| 139 | 137 |   |   |   |   |   |   |   |
| 140 | 138 |   |   |   |   |   |   |   |
| 140 | 139 |   |   |   |   |   |   |   |
| 141 |     |   |   |   |   |   |   |   |
| 142 |     |   |   |   |   |   |   |   |
|     |     |   |   |   |   |   |   |   |
|     |     |   |   |   |   |   |   |   |
| 144 |     |   |   |   |   |   |   |   |

| ****** | Α   | В | С | D | E | F | G | Н | J | K | L | М        |
|--------|-----|---|---|---|---|---|---|---|---|---|---|----------|
| 145    | 175 |   |   |   |   |   |   |   |   |   |   |          |
|        | 176 |   |   |   |   |   |   |   |   |   |   |          |
| 146    | 177 |   |   |   |   |   |   |   |   |   |   |          |
| 147    | 178 |   |   |   |   |   |   |   |   |   |   |          |
| 148    | 179 |   |   |   |   |   |   |   |   |   |   |          |
| 149    | 180 |   |   |   |   |   |   |   |   |   |   | <u> </u> |
| 150    |     |   |   |   |   |   |   |   |   |   |   |          |
| 151    | 181 |   |   |   |   |   |   |   |   |   |   |          |
| 152    | 182 |   |   |   |   |   |   |   |   |   |   |          |
| 153    | 183 |   |   |   |   |   |   |   |   |   |   |          |
| 154    | 184 |   |   |   |   |   |   |   |   |   |   |          |
|        | 185 |   |   |   |   |   |   |   |   |   |   |          |
| 155    | 186 |   |   |   |   |   |   |   |   |   |   |          |
| 156    | 187 |   |   |   |   |   |   |   |   |   |   |          |
| 157    | 188 |   |   |   |   |   |   |   |   |   |   |          |
| 158    |     |   |   |   |   |   |   |   |   |   |   |          |
| 159    | 109 |   |   |   |   |   |   |   |   |   |   |          |
| 160    | 190 |   |   |   |   |   |   |   |   |   |   |          |
| 161    | 191 |   |   |   |   |   |   |   |   |   |   |          |
|        | 192 |   |   |   |   |   |   |   |   |   |   |          |
| 162    | 193 |   |   |   |   |   |   |   |   |   |   |          |
| 163    | 194 |   |   |   |   |   |   |   |   |   |   |          |
| 164    | 195 |   |   |   |   |   |   |   |   |   |   | ļ        |
| 165    |     |   |   |   |   |   |   |   |   |   |   |          |
| 166    | 196 |   |   |   |   |   |   |   |   |   |   |          |
| 167    | 197 |   |   |   |   |   |   |   |   |   |   |          |
| 168    | 198 |   |   |   |   |   |   |   |   |   |   |          |
| 100    |     |   |   |   |   |   |   |   |   |   |   |          |

|     | N | 0 | Р | Q | R        | S | Т |
|-----|---|---|---|---|----------|---|---|
| 145 |   |   |   |   |          |   |   |
| 146 |   |   |   |   |          |   |   |
| 147 |   |   |   |   |          |   |   |
|     |   |   |   |   |          |   |   |
| 148 |   |   |   |   |          |   |   |
| 149 |   |   |   |   |          |   |   |
| 150 |   |   |   |   |          |   |   |
| 151 |   |   |   |   |          |   |   |
| 152 |   |   |   |   |          |   |   |
| 153 |   |   |   |   |          |   |   |
| 154 |   |   |   |   |          |   |   |
| 155 |   |   |   |   |          |   |   |
| 156 |   |   |   |   |          |   |   |
| 157 |   |   |   |   |          |   |   |
| 158 |   |   |   |   |          |   |   |
| 159 |   |   |   |   |          |   |   |
| 160 |   |   |   |   |          |   |   |
| 161 |   |   |   |   |          |   |   |
| 162 |   |   |   |   |          |   |   |
| 163 |   |   |   |   |          |   |   |
| 164 |   |   |   |   |          |   |   |
| 165 |   |   |   |   |          |   |   |
| 166 |   |   |   |   |          |   |   |
| 167 |   |   | L |   | <u> </u> |   |   |
|     |   |   | ļ |   |          |   |   |
| 168 |   |   |   |   |          |   |   |

|            | А   | В | С | D | E | F | G | Н | J | К | L | М                                            |
|------------|-----|---|---|---|---|---|---|---|---|---|---|----------------------------------------------|
|            | 199 |   |   |   |   |   |   |   |   |   |   |                                              |
| 169        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 170        | 200 |   |   |   |   |   |   |   |   |   |   |                                              |
| 170<br>171 |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 172        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 172        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 174        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 175        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 176        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 177        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 178        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 179        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 180        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 181<br>182 |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 183        |     |   |   |   |   |   |   |   |   |   |   | <u> </u>                                     |
| 184        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 185        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 186        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 187        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 188        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 189        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 190        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 191        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 192        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 193<br>194 |     |   |   |   |   |   |   |   |   |   |   | <u> </u>                                     |
| 194        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 196        |     |   |   |   |   |   |   |   |   |   |   | <u> </u>                                     |
| 197        |     |   |   |   |   |   |   |   |   |   |   | <u>                                     </u> |
| 198        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 199        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 200        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 201<br>202 |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 202        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 203<br>204 |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 204        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 205        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 206        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 207<br>208 |     |   |   |   |   |   |   |   |   |   |   | ┝───┤                                        |
| 208        |     |   |   |   |   |   |   |   |   |   |   | ┝───┤                                        |
| 209        |     |   |   |   |   |   |   |   |   |   |   | ├                                            |
| 210        |     |   |   |   |   |   |   |   |   |   |   | <u> </u>                                     |
| 212        |     |   |   |   |   |   |   |   |   |   |   | ├───┤                                        |
| 212        |     |   |   |   |   |   |   |   |   |   |   | <u>                                     </u> |
| 214        |     |   |   |   |   |   |   |   |   |   |   |                                              |
| 215        |     |   |   |   |   |   |   |   |   |   |   |                                              |
|            |     |   | • |   | • | • | • | • |   |   | • |                                              |

|            | N | 0 | Р | Q | R | S | Т |
|------------|---|---|---|---|---|---|---|
| ******     | ` |   |   |   |   |   |   |
| 169        |   |   |   |   |   |   |   |
|            |   |   |   |   |   |   |   |
| 170        |   |   |   |   |   |   |   |
| 171        |   |   |   |   |   |   |   |
| 172        |   |   |   |   |   |   |   |
| 173        |   |   |   |   |   |   |   |
| 174        |   |   |   |   |   |   |   |
| 175<br>176 |   |   |   |   |   |   |   |
| 176        |   |   |   |   |   |   |   |
| 179        |   |   |   |   |   |   |   |
| 178<br>179 |   |   |   |   |   |   |   |
| 180        |   |   |   |   |   |   |   |
| 181        |   |   |   |   |   |   |   |
| 182        |   |   |   |   |   |   |   |
| 183        |   |   |   |   |   |   |   |
| 184        |   |   |   |   |   |   |   |
| 185        |   |   |   |   |   |   |   |
| 186        |   |   |   |   |   |   |   |
| 187        |   |   |   |   |   |   |   |
| 188        |   |   |   |   |   |   |   |
| 189<br>190 |   |   |   |   |   |   |   |
| 190        |   |   |   |   |   |   |   |
| 191        |   |   |   |   |   |   |   |
| 192        |   |   |   |   |   |   |   |
| 193        |   |   |   |   |   |   |   |
| 194        |   |   |   |   |   |   |   |
| 195        |   |   |   |   |   |   |   |
| 196        |   |   |   |   |   |   |   |
| 197        |   |   |   |   |   |   |   |
| 198<br>199 |   |   |   |   |   |   |   |
| 200        |   |   |   |   |   |   |   |
| 200        |   |   |   |   |   |   |   |
| 201        |   |   |   |   |   |   |   |
| 202        |   |   |   |   |   |   |   |
| 203        |   |   |   |   |   |   |   |
| 205        |   |   |   |   |   |   |   |
| 206        |   |   |   |   |   |   |   |
| 207        |   |   |   |   |   |   |   |
| 208        |   |   |   |   |   |   |   |
| 209        |   |   |   |   |   |   |   |
| 210        |   |   |   |   |   |   |   |
| 211        |   |   |   |   |   |   |   |
| 212        |   |   |   |   |   |   |   |
| 213<br>214 |   |   |   |   |   |   |   |
| 214        |   |   |   |   |   |   |   |
| 215        |   |   |   |   |   |   |   |

|      | Α  | В | С | D | E | F | G | Н | J | К | L | М |
|------|----|---|---|---|---|---|---|---|---|---|---|---|
| 7047 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7048 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7049 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7050 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7051 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7052 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7053 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7054 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7055 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7056 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7057 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7058 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7059 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7060 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7061 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7062 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7063 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7064 | 58 |   |   |   |   |   |   |   |   |   |   |   |

|      | N | 0 | Р | Q | R | S | Т |
|------|---|---|---|---|---|---|---|
| 7047 |   |   |   |   |   |   |   |
| 7048 |   |   |   |   |   |   |   |
| 7049 |   |   |   |   |   |   |   |
| 7050 |   |   |   |   |   |   |   |
| 7051 |   |   |   |   |   |   |   |
| 7052 |   |   |   |   |   |   |   |
| 7053 |   |   |   |   |   |   |   |
| 7054 |   |   |   |   |   |   |   |
| 7055 |   |   |   |   |   |   |   |
| 7056 |   |   |   |   |   |   |   |
| 7057 |   |   |   |   |   |   |   |
| 7058 |   |   |   |   |   |   |   |
| 7059 |   |   |   |   |   |   |   |
| 7060 |   |   |   |   |   |   |   |
| 7061 |   |   |   |   |   |   |   |
| 7062 |   |   |   |   |   |   |   |
| 7063 |   |   |   |   |   |   |   |
| 7064 |   |   |   |   |   |   |   |

|    | Α      | В                           | С                 | D                                                        | E        | F          | G       | н        | J        | К         | L         | М         | N        |
|----|--------|-----------------------------|-------------------|----------------------------------------------------------|----------|------------|---------|----------|----------|-----------|-----------|-----------|----------|
|    | ITEM # | SOURC                       | E                 | DESCRIPTION                                              | FILE NO. | FACILITY   | RESPON  | SIBILITY | ATE ADDE | IG DUE DA | RR DUE D/ | OMPL DAT  | STATUS   |
| 1  |        | DOC/MTNG                    | DATE              |                                                          |          | -          | co.     | INITIAL  | -        |           |           |           |          |
| 2  |        |                             |                   |                                                          |          |            |         |          |          |           |           |           |          |
| 3  | 35     |                             | 11/8/10           | Incorporate LG&E and KU comments to Mill Creek PDN       | 22.1000  | Mill Creek | B&V     | MW/JC    | 11/08/10 | 11/16/10  | 11/29/10  | 11/29/10  | Complete |
|    | 34     |                             | 11/8/10           | Prepare and issue draft of Project Design Memorandum     | 22.1000  | Brown      | B&V     | тн       | 11/08/10 | 11/25/10  |           | 11/24/10  | Complete |
| 4  |        | D KONK                      |                   |                                                          | 444000   |            |         |          | 14/15/10 | 11/10/10  |           | 11/20/110 |          |
| 5  | 36     | Brown KO Mitg               | <del>######</del> | Provide a list of "sacred ground" areas at Brown.        | 14.1000  | Brown      | LG&E/KU | ES       | 11/15/10 | 11/19/10  |           | 11/23/10  | Complete |
| 6  | 39     | Brown KO Mtg                | ######            | Identify a contact person for data collection            | 14.1000  | Brown      | LG&E/KU | ES       | 11/15/10 | 11/19/10  |           | 11/22/10  | Complete |
| 7  | 33     |                             | 11/8/10           | Prepare Data Request for Brown Station.                  | 41.0100  | Brown      | B&V     | ТН       | 11/08/10 | 11/18/10  |           | 11/19/10  | Complete |
| 8  | 37     | Brown KO Mtg                | ######            | Provide drawings of the Unit 3 SO3 mitigation project    | 14.1000  | Brown      | LG&E/KU | ES       | 11/15/10 | 11/19/10  |           | 11/11/10  | Complete |
| 9  | 25     | Email 22.1000 ·             | ######            | Provide LG&E and KU comments on Ghent Project Des        | 22.1000  | Ghent      | LG&E/KU | ES       | 10/21/10 | 10/28/10  |           | 11/08/10  | Complete |
| 10 | 23     | Conf Call 1010              | ######            | Provide draft of Mill Creek Validation Report for LG&E/K | 41.0803  | Mill Creek | B&V     | TH/MW    | 10/19/10 | 11/05/10  |           | 11/05/10  | Complete |
| 11 | 29     |                             | ######            | Provide Brown Kickoff presentation .                     | 14.1000  | Brown      | B&V     | ТН       | 10/29/10 | 11/05/10  |           | 11/03/10  | Complete |
| 12 | 24     | Conf Call 1010 <sup>-</sup> | ######            | Prepare differences between SCR and SNCR for Browr       | 14.1000  | Brown      | B&V     | AM/RL    | 10/19/10 | 11/09/10  |           | 11/03/10  | Complete |
| 13 | 28     |                             | ######            | Provide Mill Creek Validation presentation.              | 41.0803  | Mill Creek | B&V     | ТН       | 10/29/10 | 11/05/10  |           | 11/03/10  | Complete |
| 14 | 31     | Email 14.1000               | ######            | Provide comments on Brown Kickoff meeting agenda         | 14.1000  | Brown      | LG&E/KU | ES       | 10/27/10 | 11/02/10  |           | 11/01/10  | Complete |
| 15 | 30     | Email 14.1000               | ######            | Provide comments on Mill Creek Validation meeting age    | 14.1000  | Mill Creek | LG&E/KU | ES       | 10/27/10 | 11/02/10  |           | 11/01/10  | Complete |
| 16 | 26     |                             | ######            | Provide sketches of Unit 4 AQC equipment in the thicke   | 41.0402  | Mill Creek | B&V     | мн       | 10/25/10 | 10/27/10  | 10/27/10  | 11/01/10  | Complete |
|    | 22     | Email 14.1000               | ######            | Provide LG&E/KU comments on Ghent Site Visit meeti       | 14.1000  | Ghent      | LG&E/KU | ES       | 10/15/10 | 10/19/10  |           | 10/22/10  | Complete |
| 17 |        |                             |                   |                                                          |          |            |         |          |          |           |           |           |          |
| 18 | 11     | KO & MC Site \              | 9/20/10           | Evaluate pros and cons of NID system for November teo    | 14.1000  | n          | B&V     | AM/RL    | 09/21/10 | Nov. 2010 |           | 10/21/10  | Complete |
| 19 | 21     | Ghent Site Visit            | ######            | Prepare Ghent Information Request.                       | 41.0100  | Ghent      | B&V     | ТН       | 10/11/10 | 10/15/10  |           | 10/18/10  | Complete |
| 20 | 15     | KO & MC Site \              | 9/20/10           | Review B&V electrical study conducted in the 1990s       | 14.1000  | Mill Creek | B&V     | JB       | 09/21/10 | 09/24/10  | TBD       | 10/18/10  | Complete |
| 21 | 18     | Email 41.0100               | 9/29/10           | Choose the coal fuel design basis for Mill Creek, Ghent, | 41.0100  | n          | LG&E/KU | ES       | 09/30/10 | 10/06/10  |           | 10/18/10  | Complete |
| 22 | 4      | KO & MC Site \              | 9/20/10           | Use B&V file system to set up LG&E/KU document store     | 14.1000  | n          | LG&E/KU | ES       | 09/21/10 | TBD       |           | 10/18/10  | Complete |
| 23 | 12     | KO & MC Site \              | 9/20/10           | Schedule vendors for evaluation of existing scrubbers    | 14.1000  | n          | LG&E/KU | ES       | 09/21/10 | TBD       |           | 10/18/10  | Complete |
| 24 | 1      | KO & MC Site \              | 9/20/10           | Determine location for Mill Creek Task 6 Technology Se   | 14.1000  | Mill Creek | LG&E/KU | ES       | 09/21/10 | 10/15/10  |           | 10/12/10  | Complete |

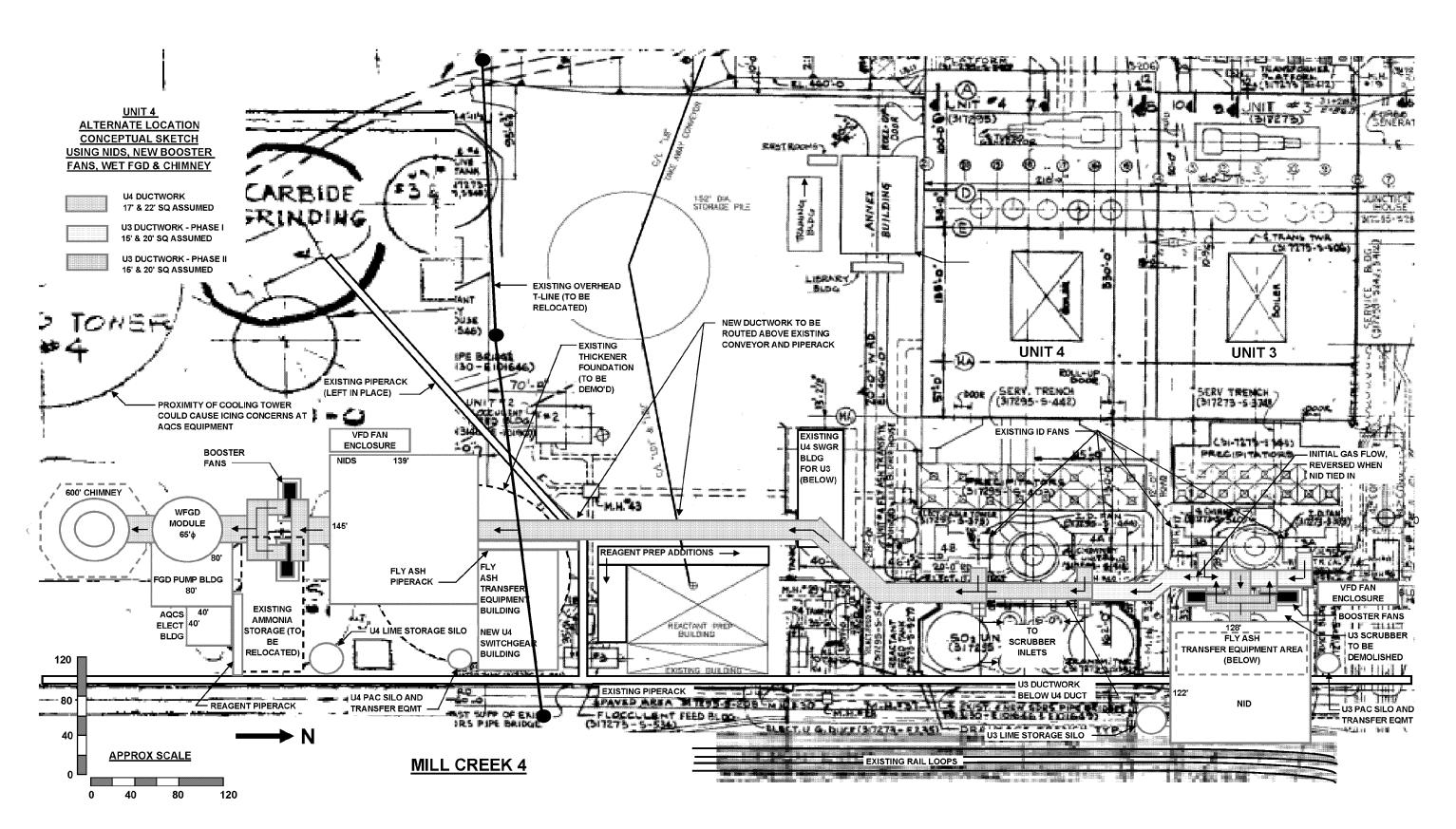
|          | 0                                                     | Р             | Q          | R            | S                 | Т                       | U  | V | W | Х |
|----------|-------------------------------------------------------|---------------|------------|--------------|-------------------|-------------------------|----|---|---|---|
|          | NOTES                                                 |               |            |              |                   |                         |    |   |   |   |
| 1        |                                                       |               |            |              |                   |                         |    |   |   |   |
| 2        |                                                       |               |            |              |                   |                         |    |   |   |   |
| <u> </u> |                                                       |               | $\vdash$   |              |                   |                         |    |   |   |   |
| 3        |                                                       |               |            |              |                   |                         |    |   |   |   |
|          | PDM issued for In-House Review (11/18)                |               |            |              |                   |                         |    |   |   |   |
| 4        | Added to Info Request Priority 1                      |               | -          |              |                   |                         |    |   |   |   |
| 5        | Added to find Request Fridity 1                       |               |            |              |                   |                         |    |   |   |   |
|          |                                                       |               |            |              |                   |                         |    |   |   |   |
| 6        |                                                       |               |            |              |                   |                         |    |   |   |   |
| 7        |                                                       |               |            |              |                   |                         |    |   |   |   |
| <u> </u> |                                                       |               | $\vdash$   |              |                   |                         |    |   |   |   |
| 8        |                                                       |               |            |              |                   |                         |    |   |   |   |
|          |                                                       |               |            |              |                   |                         |    |   |   |   |
| 9        |                                                       |               |            |              |                   |                         |    |   |   |   |
| 10       |                                                       |               |            |              |                   |                         |    |   |   |   |
|          |                                                       |               | $\vdash$   |              |                   |                         |    |   |   |   |
| 11       |                                                       |               |            |              |                   |                         |    |   |   |   |
|          | To be included in Brown KO presentation. Also inc     | lude fabi     | ric fil    | ter discussi | on. (10/25)       |                         |    |   |   |   |
| 12       |                                                       | -             |            |              | 1                 |                         |    |   |   |   |
| 1        | Final sent on 11/5                                    |               |            |              |                   |                         |    |   |   |   |
| 13       |                                                       |               | -          |              |                   |                         |    |   |   |   |
| 14       |                                                       |               |            |              |                   |                         |    |   |   |   |
|          | Confirmed LG&E and KU team is available for the       | afternoo      | n on       | 11/9         |                   |                         |    |   |   |   |
| 15       |                                                       |               |            |              |                   |                         |    |   |   |   |
| 16       |                                                       |               |            |              |                   |                         |    |   |   |   |
| 10       | Eileen has no comments (10/18). Waiting for com       | ments fr      | l<br>om l  | G&E/KII m    | embers            |                         |    |   |   |   |
|          |                                                       |               |            |              | embero.           |                         |    |   |   |   |
| 17       |                                                       |               |            |              |                   |                         |    |   |   |   |
|          | Will send powerpoint presentation in the next coup    | le of day     | s (1       | 0/18).       |                   |                         |    |   |   |   |
| 18       |                                                       |               |            |              |                   |                         |    |   |   |   |
| 19       |                                                       |               |            |              |                   |                         |    |   |   |   |
| 19       | B&V could not locate study. Added to Data Reque       | l<br>st∖Will∍ | 1<br>revie | w when IG    | l<br>&E/KU prov   | l<br>rides study        |    |   |   |   |
| 20       | Date stand for locale stady. Added to Data Reque      | U. VVIII      | 0110       |              |                   |                         |    |   |   |   |
|          | Use future coal. (10/11) Chlorine needs to be corre   | ected (10     | )/18)      | )            |                   |                         |    |   |   |   |
| 21       |                                                       |               |            |              |                   |                         |    |   |   |   |
| 1        | Audrey is working on it (10/11). It is set up. Eileen | to reviev     | v (10      | /18).        |                   |                         |    |   |   |   |
| 22       | To be scheduled week of 10/25. B&V requested to       | be inclu      | ided       | in debriefin | l<br>na w/ each w | l<br>endor              |    |   |   |   |
| 23       | To be concluded week of 10/20. Boy requested to       | be molt       | -ucu       |              | g m caon v        | 0.1001.                 |    |   |   |   |
|          | MC Technology selection meeting to be held in Lo      | uisville o    | n 11       | /9 with Brow | vn KO mtg o       | on 11/10&1 <sup>-</sup> | 1. |   |   |   |
| 24       |                                                       |               |            |              |                   |                         |    |   |   |   |

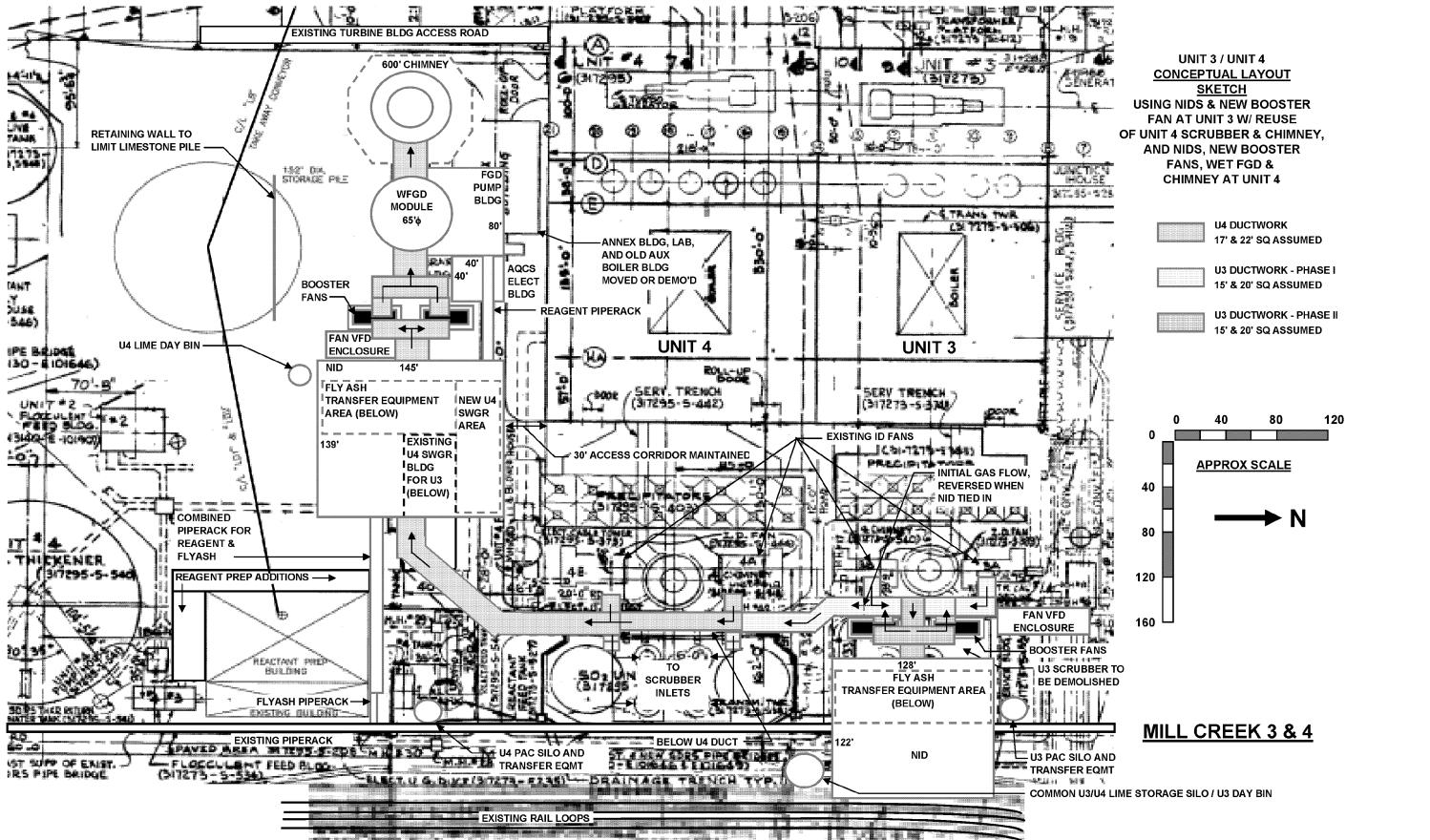
|    | Α  | В               | С       | D                                                            | Е       | F          | G       | Н      | J        | К        | L        | М        | Ν        |
|----|----|-----------------|---------|--------------------------------------------------------------|---------|------------|---------|--------|----------|----------|----------|----------|----------|
| 25 | 20 | Email 22.1000   | 10/5/10 | Provide comments on the Mill Creek Project Design Me         | 22.1000 | Mill Creek | LG&E/KU | ES     | 10/11/10 | 10/12/10 |          | 10/12/10 | Complete |
| 26 | 13 | KO & MC Site \  | 9/20/10 | Provide structural steel study assessments                   | 14.1000 | n          | LG&E/KU | ES     | 09/21/10 | 09/24/10 | 09/30/10 | 10/04/10 | Complete |
| 27 | 14 | KO & MC Site \  | 9/20/10 | Provide minimum access dimension box                         | 14.1000 | n          | LG&E/KU |        | 09/21/10 | 09/24/10 | 09/30/10 | 10/04/10 | Complete |
| 28 | 7  | KO & MC Site \  | 9/20/10 | Determine personnel assignments for document review          | 14.1000 | n          | LG&E/KU | ES     | 09/21/10 | TBD      |          | 10/04/10 | Complete |
| 29 | 19 | Re: Email 41.01 | 9/30/10 | B&V to provide schedule/deadlines for Mill Creek inform      | 41.0100 | Mill Creek |         | TH     | 09/30/10 | 10/06/10 |          | 10/04/10 | Complete |
| 30 | 6  | KO & MC Site \  | 9/20/10 | Create IBackup FTP site for large file transfer              | 14.1000 |            | B&V     | KL     | 09/21/10 | 09/24/10 |          | 09/29/10 | Complete |
| 31 | 10 | KO & MC Site \  | 9/20/10 | Prepare data inventory and information request               | 14.1000 | Mill Creek | B&V     | MW/JC  | 09/21/10 | 09/24/10 |          | 09/29/10 | Complete |
| 32 | 5  | KO & MC Site \  | 9/20/10 | Provide engineering cost estimate at end of each month       | 14.1000 | n          | B&V     | ТН     | 09/21/10 | 09/30/10 |          | 09/28/10 | Complete |
| 33 | 2  | KO & MC Site \  | 9/20/10 | Determine dates for Ghent kick-off meeting                   | 14.1000 | Ghent      | LG&E/KU | ES     | 09/21/10 | 09/23/10 |          | 09/27/10 | Complete |
| 34 | 16 | KO & MC Site \  | 9/20/10 | Evaluate the possibility of accelerating the installation of | 14.1000 | Mill Creek | LG&E/KU | ES &TH | 09/21/10 | TBD      |          | 09/27/10 | Complete |
| 35 | 17 | Email 14.1000   | 9/20/10 | Provide LG&E/KU comments on Kick Off Meeting and N           | 14.1000 |            | LG&E/KU | ES     | 09/21/10 | 09/24/10 |          | 09/24/10 | Complete |
| 36 | 3  | KO & MC Site \  | 9/20/10 | Provide DVD copy of Phase I Report                           | 14.1000 |            | B&V     | ΤΗ     | 09/21/10 | 09/24/10 |          | 09/22/10 | Complete |
| 37 | 9  | KO & MC Site \  | 9/20/10 | Update PIM with Eileen's Ghent contact information           | 14.1000 |            | B&V     | MW     | 09/21/10 | 09/24/10 |          | 09/21/10 | Complete |
| 38 | 8  | KO & MC Site \  | 9/20/10 | Determine if a Monday, 2 pm EST project conference ca        | 14.1000 |            | B&V     | TH/MW  | 09/21/10 | 09/23/10 |          | 09/21/10 | Complete |
| 39 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 40 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 41 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 42 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 43 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 44 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 45 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 46 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 47 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 48 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |

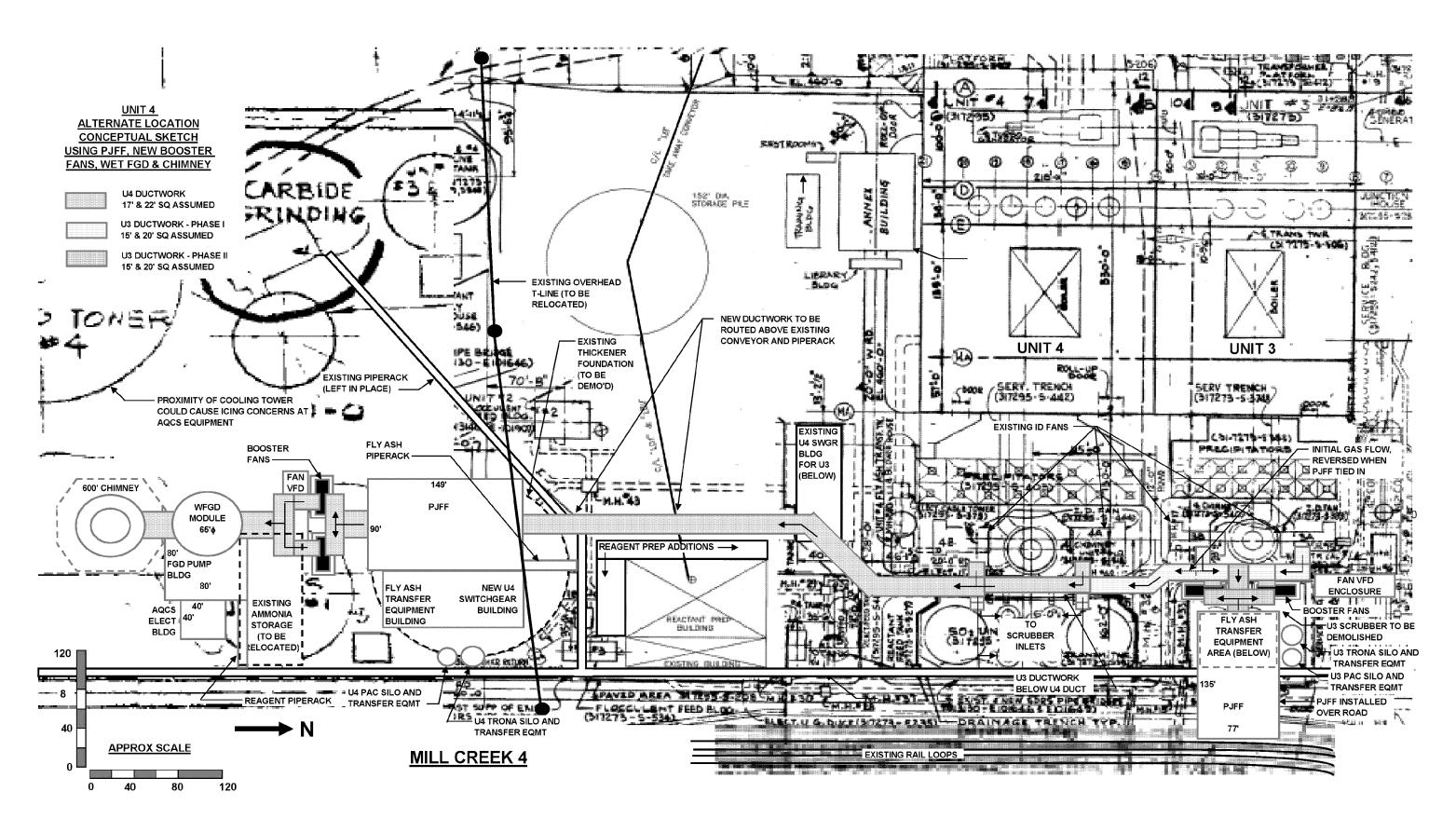
|    | 0                                                  | Р           | Q    | R            | S          | Т            | U            | V             | W             | Х      |
|----|----------------------------------------------------|-------------|------|--------------|------------|--------------|--------------|---------------|---------------|--------|
| 25 | Eileen's comments provided on 10/12. Sent to Ale   |             |      |              |            |              |              |               |               |        |
| 26 | CD received 9/27. Units 1, 2, and 4 on CD. Unit 3  |             |      |              |            | 9/28.        |              |               |               |        |
| 27 | CD received 9/27. Access Dimension not included.   | . Email re  | que  | st sent 9/28 | 3.         |              |              |               |               |        |
| 28 | MC - Alex Betz and a couple others at plant. Proce | ss in plac  | e (1 | 0/4)         |            |              |              |               |               |        |
| 29 |                                                    |             |      |              |            |              |              |               |               |        |
| 30 |                                                    |             |      |              |            |              |              |               |               |        |
| 31 |                                                    |             |      |              |            |              |              |               |               |        |
| 32 | Sent 9/28.                                         |             |      |              |            |              |              |               |               |        |
| 33 | Scheduled for October 6&7                          |             |      |              |            |              |              |               |               |        |
| 34 | B&V email addressed the acceleration of the SCR    | install for | MC   | : 1 & 2 (9/1 | 7). LG&E/I | KU replied r | io change ir | n direction a | t this time ( | 9/27). |
| 35 | Final issued on 9/24                               |             |      |              |            |              |              |               |               |        |
| 36 | Set received on 9/22                               |             |      |              |            |              |              |               |               |        |
| 37 |                                                    |             |      |              |            |              |              |               |               |        |
| 38 | Scheduled                                          |             |      |              |            |              |              |               |               |        |
| 39 |                                                    |             |      |              |            |              |              |               |               |        |
| 40 |                                                    |             |      |              |            |              |              |               |               |        |
| 41 |                                                    |             |      |              |            |              |              |               |               |        |
| 42 |                                                    |             |      |              |            |              |              |               |               |        |
| 43 |                                                    |             |      |              |            |              |              |               |               |        |
| 44 |                                                    |             |      |              |            |              |              |               |               |        |
| 45 |                                                    |             |      |              |            |              |              |               |               |        |
| 46 |                                                    |             |      |              |            |              |              |               |               |        |
| 47 |                                                    |             |      |              |            |              |              |               |               |        |
| 48 |                                                    |             |      |              |            |              |              |               |               |        |

|      | A  | В | С | D | E | F | G | Н | J | К | L | М | N |
|------|----|---|---|---|---|---|---|---|---|---|---|---|---|
| 7095 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7096 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7097 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7098 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7099 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7100 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7101 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7102 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7103 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7104 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7105 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7106 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7107 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7108 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7109 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7110 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7111 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7112 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7113 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7114 | 58 |   |   |   |   |   |   |   |   |   |   |   |   |

|      | 0 | Р | Q | R | S | Т | U | V | W | Х |
|------|---|---|---|---|---|---|---|---|---|---|
| 7095 |   |   |   |   |   |   |   |   |   |   |
| 7096 |   |   |   |   |   |   |   |   |   |   |
| 7097 |   |   |   |   |   |   |   |   |   |   |
| 7098 |   |   |   |   |   |   |   |   |   |   |
| 7099 |   |   |   |   |   |   |   |   |   |   |
| 7100 |   |   |   |   |   |   |   |   |   |   |
| 7101 |   |   |   |   |   |   |   |   |   |   |
| 7102 |   |   |   |   |   |   |   |   |   |   |
| 7103 |   |   |   |   |   |   |   |   |   |   |
| 7104 |   |   |   |   |   |   |   |   |   |   |
| 7105 |   |   |   |   |   |   |   |   |   |   |
| 7106 |   |   |   |   |   |   |   |   |   |   |
| 7107 |   |   |   |   |   |   |   |   |   |   |
| 7108 |   |   |   |   |   |   |   |   |   |   |
| 7109 |   |   |   |   |   |   |   |   |   |   |
| 7110 |   |   |   |   |   |   |   |   |   |   |
| 7111 |   |   |   |   |   |   |   |   |   |   |
| 7112 |   |   |   |   |   |   |   |   |   |   |
| 7113 |   |   |   |   |   |   |   |   |   |   |
| 7114 |   |   |   |   |   |   |   |   |   |   |


|    | А         | В           | С           | D    |
|----|-----------|-------------|-------------|------|
| 1  | LG&E/KU   | LG&E and    | KU          |      |
| 2  | AB        | Alex Betz - | Mill Creek  |      |
| 3  | DS        | Dave Smith  | n - Ghent   |      |
| 4  | ES        | Eileen Sau  | nders       |      |
| 5  | GB        | Greg Black  |             |      |
| 6  | GR        | Gary Revle  | tt          |      |
| 7  |           |             |             |      |
| 8  |           |             |             |      |
| 9  |           |             |             |      |
| 10 |           |             |             |      |
| 11 |           |             |             |      |
| 12 |           |             |             |      |
| 13 |           |             |             |      |
| 14 |           |             |             |      |
| 15 |           |             |             |      |
| 16 |           |             |             |      |
| 17 | <u>BV</u> | Black & Ve  | atch (B&V)  |      |
| 18 | TH        | Tim Hillma  | n           |      |
| 19 | KL        | Kyle Lucas  |             |      |
| 20 | AM        | Anand Mar   | nabaleshwai | rker |
| 21 | MK        | Mike King   |             |      |
| 22 | RL        | Rick Lausn  | nan         |      |
| 23 | MW        | M.R. Wehr   | ly          |      |
| 24 | МН        | Monty Hint  | z           |      |
| 25 | JB        | Jim Bayles  | s           |      |
| 26 | JC        | Jonathan C  | Crabtree    |      |


| From:        | Hillman, Timothy M.                                                                                          |
|--------------|--------------------------------------------------------------------------------------------------------------|
| То:          | Saunders, Eileen                                                                                             |
| CC:          | Jackson, Audrey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.; Mehta,               |
|              | Pratik D.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Goodlet, Roger F.; Ballard, Michael W;                 |
|              | Hintz, Monty E.                                                                                              |
| Sent:        | 10/27/2010 3:19:36 PM                                                                                        |
| Subject:     | 168908.41.0803 101027 - Mill Creek U4 Alternative AQC Arrangement Sketches for Nov 1st                       |
|              | Conference Call                                                                                              |
| Attachments: | MC U3-U4 NID Sketch Alt.pdf; MC U3-U4 NID Sketch.pdf; MC U3-U4 PJFF Sketch Alt.pdf; MC U3-U4 PJFF Sketch.pdf |


In preparation for our Nov 1st conference call, please find attached sketches of the potential Mill Creek U4 AQC arrangements. The sketches include both NID and PJFF versions of an east-west configuration along the south side of U4, and a north-south configuration in the old thickener area.


#### Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Emaik hillmantm@bv.com









| From:        | Hillman, Timothy M.                                                                     |
|--------------|-----------------------------------------------------------------------------------------|
| То:          | Saunders, Eileen                                                                        |
| CC:          | Jackson, Audrey; 168908 E.ON-AQC; Wehrly, M. R.; Lucas, Kyle J.                         |
| Sent:        | 10/27/2010 3:23:07 PM                                                                   |
| Subject:     | 168908.14.1000 101027 Draft Meeting Agendas for Mill Creek Validation and Brown Kickoff |
| Attachments: | EON Brown Kickoff Meeting Agenda.doc; EON Mill Creek Validation Meeting Agenda.doc      |

Please find attached draft meeting agendas for the Mill Creek validation meeting on Nov 9th, and the Brown Kickoff meeting Nov 10-11. Please advise of any comments or edits. Also, for the Mill Creek validation meeting, we anticipate you will distribute the electronic validation report to the E.ON meeting attendees, as we have an agenda item (# IV) to review the report during the meeting.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Ernaik hillmantm@by.com

# AGENDA

Phase II Air Quality Control Study Brown Kickoff Meeting and Site Visit November 10 - 11, 2010 Location: Brown Generating Station

## Day 1, November 10<sup>th</sup>, B&V arrives at approximately 8:30 am

- I. Introductions (Starts at 9 am)
- II. Project/Scope Description (E.ON Eileen S.)
- III. Environmental Drivers Presentation (E.ON Gary R.)
- IV. Phase I Study Results/AQC Overview Presentation (B&V Anand M.)
- V. Lunch (on site)
- VI. Begin Escorted Site Walk Down and Data Collection

# Day 2, November 11<sup>th</sup>, B&V arrives at approximately 8:30 am

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (on site)
- III. Site Debriefing Meeting
- IV. Additional Walk Down Time if Required
- V. B&V Depart (no later than 4 pm)

# AGENDA

Phase II Air Quality Control Study Mill Creek Validation Meeting November 9, 2010 Location: Mill Creek Generating Station

## November 9<sup>th</sup>, B&V arrives at approximately 8:30 am

- I. Introductions (Starts at 9 am)
- II. Meeting Purpose (E.ON Eileen S.)
- III. Project Status and Background (B&V Tim H.)
- IV. AQC Validation Report Summary (B&V M.R. W.)
- V. AQC Validation Arrangement Presentation (B&V Anand M.)
- VI. Lunch (on site)
- VII. Open Discussion and Next Steps
- VIII. B&V Depart

| From:        | Lucas, Kyle J.                                                                                    |
|--------------|---------------------------------------------------------------------------------------------------|
| To:          | Saunders, Eileen                                                                                  |
| CC:          | Wehrly, M. R.; Hillman, Timothy M.; Mahabaleshwarkar, Anand; Mehta, Pratik D.; Crabtree, Jonathan |
| Sent:        | D.<br>12/8/2010 2:45:55 PM                                                                        |
| Subject:     | 168908 101208 - Example Mill Creek Unit 1 AQC Table                                               |
| Attachments: | Mill Creek Unit 1.pdf                                                                             |

As discussed yesterday on our conference call with Scott Straight, please find attached a draft table containing a high level summary of Mill Creek Unit 1's AQC equipment. The table includes those pollutants from the Phase II project which we are targeting specific emissions reductions (illustrated in a percent removal). Also, the table includes a notation for certain AQC equipment which has the potential to provide a level of co-benefit control of certain pollutants (removal efficiencies not provided as they have not been calculated for this project). Please review this example table and provide your comments. Once we have these, we'll draft 17 other tables, one for each of the remaining coal-fired units. It would be helpful to receive your comments by COB today to allow us to complete these additional tables by Friday. Regards,

Kyle

Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

**AQC** Technologies

| AQC Technologies for N                                                                                                                                                                                                                                                                          | Mill Creek Unit 1                  |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|
| Equipment                                                                                                                                                                                                                                                                                       | Pollutant Control                  | Removal Efficiency            |
| Boiler with Existing Low NOx Burners and Existing Over-Fire Air                                                                                                                                                                                                                                 | NO <sub>x</sub> Control            | (1)                           |
| New Neural Networks                                                                                                                                                                                                                                                                             | CO Control                         | <sup>(2)</sup>                |
|                                                                                                                                                                                                                                                                                                 | PM Control                         | (3)                           |
|                                                                                                                                                                                                                                                                                                 | NO <sub>x</sub> Control            | (4)                           |
| New SCR                                                                                                                                                                                                                                                                                         | NO <sub>x</sub> Control            | 56.14% <sup>(5)</sup>         |
|                                                                                                                                                                                                                                                                                                 | Hg Control                         | <b></b> <sup>(6)</sup>        |
|                                                                                                                                                                                                                                                                                                 | SO <sub>3</sub> Control            | <sup>(7)</sup>                |
| Existing Air Heater                                                                                                                                                                                                                                                                             | SO <sub>3</sub> Control            | (8)                           |
| New Cold-Side Dry ESP                                                                                                                                                                                                                                                                           | PM Control                         | <sup>(9)</sup>                |
|                                                                                                                                                                                                                                                                                                 | Hg Control                         | (10)                          |
|                                                                                                                                                                                                                                                                                                 | Dioxin/Furan Control               | (11)                          |
| New Ceshend Interview                                                                                                                                                                                                                                                                           |                                    |                               |
| New Sorbent Injection                                                                                                                                                                                                                                                                           | SO <sub>3</sub> Control            | <b>93.91%</b> <sup>(12)</sup> |
|                                                                                                                                                                                                                                                                                                 | HCl Control                        | (13)                          |
|                                                                                                                                                                                                                                                                                                 | SO <sub>2</sub> Control            |                               |
| New PAC Injection                                                                                                                                                                                                                                                                               | Hg Control                         | 90% <sup>(15)</sup>           |
|                                                                                                                                                                                                                                                                                                 | Dioxin/Furan Control               | (16)                          |
|                                                                                                                                                                                                                                                                                                 | SO <sub>3</sub> Control            | (1?)                          |
| New PJFF                                                                                                                                                                                                                                                                                        | PM Control                         | <b>99.66%</b> <sup>(18)</sup> |
|                                                                                                                                                                                                                                                                                                 | HC1 Control                        | (19)                          |
|                                                                                                                                                                                                                                                                                                 | Hg Control                         | (20)                          |
|                                                                                                                                                                                                                                                                                                 | Dioxin/Furan Control               | (21)                          |
|                                                                                                                                                                                                                                                                                                 | SO <sub>3</sub> Control            | (22)                          |
| Refurbished existing WFGD                                                                                                                                                                                                                                                                       | SO <sub>2</sub> Control            | 96% <sup>(23)</sup>           |
|                                                                                                                                                                                                                                                                                                 | HCl Control                        | 98.64% <sup>(24)</sup>        |
|                                                                                                                                                                                                                                                                                                 | SO <sub>3</sub> Control            | (25)                          |
|                                                                                                                                                                                                                                                                                                 | Hg Control                         | <sup>(26)</sup>               |
| Notes:                                                                                                                                                                                                                                                                                          |                                    |                               |
| <ol> <li>Combustion control provides co-benefit for NO<sub>x</sub> removal. P.</li> <li>CO is an operational constraint which can be managed in op<br/>Ib/MBtu. Percentage removal efficiency can not be determin</li> <li>Neural network provides co-benefit for PM removal by redu</li> </ol> | timization process. Neural network |                               |
| (4) Neural network provides co-benefit for NO <sub>x</sub> removal. Percent                                                                                                                                                                                                                     | 0                                  | considered.                   |
| <ul> <li>NO<sub>x</sub> removal efficiency of SCR is based on NO<sub>x</sub> inlet conce<br/>0.139 lb/MBtu.</li> </ul>                                                                                                                                                                          |                                    |                               |
| (6) SCR provides co-benefit for Hg removal by increasing the o considered.                                                                                                                                                                                                                      | xidation of Hg. Percentage ren     | noval efficiency is not       |
| (7) SCR increases the amount of $SO_3$ content in the flue gas by                                                                                                                                                                                                                               |                                    |                               |
| (8) Air heater provides co-benefit for $SO_3$ removal. Percentage :                                                                                                                                                                                                                             | •                                  |                               |
| <ul> <li>(9) Cold-side dry ESP provides co-benefit for PM removal. Perc</li> <li>(10) Cold-side dry ESP provides co-benefit for Hg removal. Perc</li> </ul>                                                                                                                                     |                                    |                               |
| (10) Cold-side dry ESP provides co-benefit for dioxin/furan remo                                                                                                                                                                                                                                |                                    |                               |
| <ul> <li>(12) SO<sub>3</sub> removal efficiency for sorbent injection is based on SO</li> <li>concentration of 5 ppmvd.</li> </ul>                                                                                                                                                              | •                                  | •                             |
| (13) Sorbent injection provides co-benefit for HCl removal. Perc                                                                                                                                                                                                                                |                                    |                               |
| <ul> <li>(14) Sorbent injection provides co-benefit for SO<sub>2</sub> removal. Perce</li> <li>(15) Hg removal efficiency for PAC injection is based on Hg into of 1.07 lb/TBtu.</li> </ul>                                                                                                     |                                    |                               |
| (16) PAC injection may reduce dioxin/furan up to $15 \times 10^{-18}$ lb/M                                                                                                                                                                                                                      | 1Btu. Percentage removal effic     | iency can not be determined.  |
| (17) DAC injection provides on henefit for SO removal Descent                                                                                                                                                                                                                                   | e                                  | •                             |

- (18) PM removal efficiency for PJFF is based on PM inlet concentration of 8.746 lb/MBtu and PM outlet concentration of 0.03 lb/MBtu.
- (19) PJFF provides co-benefit for HCl removal. Percentage removal efficiency is not considered.
- (20) PJFF provides co-benefit for Hg removal. Percentage removal efficiency is not considered.
- (21) PJFF provides co-benefit for dioxin/furan removal. Percentage removal efficiency can not be determined.

(17) PAC injection provides co-benefit for SO<sub>3</sub> removal. Percentage removal efficiency is not considered.

- (22) PJFF provides co-benefit for SO<sub>3</sub> removal. Percentage removal efficiency is not considered.
- (23) Expected efficiency based on LG&E prediction.
- (24) HCl removal efficiency for WFGD is based on HCl inlet concentration of 0.147 lb/MBtu and HCl outlet concentration of 0.002 lb/MBtu.
- (25) WFGD provides co-benefit for SO<sub>3</sub> removal. Percentage removal efficiency is not considered.
- (26) WFGD provides co-benefit for Hg removal. Percentage removal efficiency is not considered.

| From:        | Crabtree, Jonathan D.                                              |
|--------------|--------------------------------------------------------------------|
| То:          | Saunders, Eileen; Betz, Alex                                       |
| CC:          | Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC                |
| Sent:        | 10/27/2010 7:00:54 PM                                              |
| Subject:     | 168908. 41.0100 101027 Mill Creek Information Request - PDM Tables |
| Attachments: | Environmental Compliance Proj quality data.xlsx                    |

Since it is getting late in eastern time, I am responding by email. I listened to your voicemail that Tim forwarded me regarding Table 1-4: Limestone Properties. The response below will hopefully clarify any questions you had in regards to Table 1-4. Also, your email mentioned you had questions regarding Table 1-2. If so, please feel free to call me at your convenience tomorrow at 913-458-2403 or send me an email. I'll be in the office tomorrow from 8:30am - 6:30pm EST.

#### Table 1-4:

The top half of the table "Dry Basis, Percent by Weight" has two columns: "% Guaranteed" and "Nominal". I filled out the "% Guaranteed" column based on the attached spreadsheet provided during Phase I. In PDMs from past projects, we have had the "nominal" column for typical/expected values. The highlighted values are old values from a past PDM. If E.ON has numbers readily available to replace them, please update the table those values. Otherwise, we can just delete that half of the column for this phase of the project. Additionally, information that is shown as crossed out and highlighted are values that are typically included in our PDM table but have not yet been provided. If this information is available, please update the table or we will just leave them out for this phase of the project.

The bottom half of the table "Bulk Density Design basis" has only a "Nominal" column. The values highlighted are standard numbers that B&V uses for Limestone Bulk Density. If E.ON has their own values for these parameters, please update the table or else we will just use the standard numbers at this time.

Please let me know if you have any further questions. And as I mentioned before, if you would like to discuss another table or info request, please give me a call or send me an email.

Thanks,

### Jonathan D. Crabtree

Black & Veatch Corporation 11401 Lamar Avenue Overland Park, KS 66211 USA \* CrabtreeJD@bv.com ( (913) 458-2403

Building a World of Difference<sup>®</sup>

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Wednesday, October 27, 2010 4:29 PM
To: Crabtree, Jonathan D.; Betz, Alex
Cc: Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: RE: 168908. 41.0100 101012 Mill Creek Information Request from PDM

Jonathan,

I am working with Alex to complete Table 1-2 and I have a few clarifying questions. Would you please contact me at Ghent on 502-347-4023 sometime today or tomorrow morning? I also left Tim a voice mail detailing some of my questions.

Thanks,

Eileen

From: Crabtree, Jonathan D. [mailto:CrabtreeJD@bv.com]
Sent: Tuesday, October 12, 2010 5:33 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: 168908. 41.0100 101012 Mill Creek Information Request from PDM

#### Alex,

As you may have recently seen, there are tables in the Mill Creek Project Design Memorandum (PDM) that were requested to be filled in or confirmed by E.ON. In response to Eileen's comments, we would like to add these fill-in tables from the PDM to the Information Request, which will hopefully clarify some of the existing requests.

#### Attached are the following four word documents:

Table 1-2 - Design Basis Water Analysis - This information was previously requested on the Information Request under "3. Plant Data g. Water analyses and supply information." This table is an example of the kind of information we are looking for and in what form it will be placed in the PDM. (PRIORITY LVL 4)

Table 1-4 - Limestone Properties - This information was previously requested on the Information Request under "3. Plant Data o. Need current limestone quality analysis." From Phase I of this project, we had information that filled out the "%Guaranteed" column but are still interested if you have information that can fill in the "Nominal" column or any of the values under "Bulk Density Design Basis". I reviewed the limestone quality you uploaded on i-backup and if you prefer those values could be used to fill in the first two rows under the "Nominal" column. (PRIORITY LVL 2)

Table 1-11 and 1-12 - Electrical Design Data and Electrical Equipment and System Voltages - This information could not be filled in based on previously supplied electrical information. If possible, it would be helpful if these values could be filled in and confirmed by someone on site or in the T&D group. (PRIORITY LVL 4)

Table 1-14 (mislabeled in PDM as 1-11) - Load Model - Recent operating information will be helpful when performing economic analysis of the different equipment options. (PRIORITY LVL 4)

Feel free to fill out the tables in the attached word documents or provide the necessary data to fill in these tables, whichever is easier for you. These tables can be placed in i-Backup or emailed to us.

Let me know if you have any questions.

Thanks,

### Jonathan D. Crabtree

Black & Veatch Corporation 11401 Lamar Avenue Overland Park, KS 66211 USA \* CrabtreeJD@bv.com ( (913) 458-2403

## Building a World of Difference<sup>®</sup>

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Tuesday, October 12, 2010 3:12 PM
To: Crabtree, Jonathan D.
Cc: Saunders, Eileen; Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: RE: 168908. 41.0100 101011 Mill Creek Information Request

Jonathan,

Sorry about forgetting the attachment yesterday. It should be attached this time.

We had already found one drawing on Unit 2 that was requested, so I am uploading it today. We will mark that one as being complete and if you find otherwise, please let me know.

We do have percent volume CO2 at the stack and I am in the process of getting that data (should be tomorrow). I am planning to get the year-to-date data, if you need more, let me know.

I'm not positive I can find testing results in those areas, but I would say they probably have been done before. I will try to find any test results I can.

I will get an uncorrupted version of "MC 3 SCR General Arrangt Plan Section E-20.pdf" uploaded tomorrow.

What address, and to whose attention, should the B&V Short Circuit Study be sent?

Thanks,

### Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Crabtree, Jonathan D. [mailto:CrabtreeJD@bv.com]
Sent: Monday, October 11, 2010 5:11 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: 168908. 41.0100 101011 Mill Creek Information Request

Alex,

Thanks for the update. I believe your attachment did not make it on there with your email. Feel free to resend it or wait until your next update.

Regarding the plant arrangements, if the ones we requested are Unit 2 drawings, we already have clear copies of those and you do not need to rescan them. Unless you have additional Unit 1 plant arrangement drawings, we will assume we have everything we need and we can close that item.

Additionally, in response to the "Not measured" items on the data request (air heater leakage, precipitator leakage, and stack gas outlet oxygen percent) please provide information regarding the following (if available):

1) Do you have measurements of percent volume CO2 at the stack on any or all units?

2) Has the plant conducted any flue gas testing on any of the units at the air heater gas outlets and/or the cold-side ESPs? The type of information we would be looking for would again be percent volume O2 and/or CO2.

Lastly, in the priority 2 folder, the "MC 3 SCR General Arrangt Plan Section E-20.pdf" appears to be corrupted and we are unable to open it. If possible, please send another copy.

Thanks for your help,

### Jonathan D. Crabtree

Black & Veatch Corporation 11401 Lamar Avenue Overland Park, KS 66211 USA \* CrabtreeJD@bv.com ( (913) 458-2403

Building a World of Difference<sup>®</sup>

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Monday, October 11, 2010 2:59 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101011 Mill Creek Information Request

M.R.,

Thanks for the feedback on these issues. I will get the AH info uploaded as soon as possible. We're looking for the prints you've listed below. We've found some, but they are not the latest revisions you've listed. Just for clarification, these prints you've listed are for Unit 2, not Unit 1.

Once again, the sheet is attached. There wasn't much that was added today, only 4 foundation prints under the Priority 2 folder.

Thanks,

### Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Monday, October 11, 2010 10:03 AM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: 168908. 41.0143 101011 Mill Creek Information Request

Alex,

Sorry for any confusion on the Unit 1 Plant arrangements.

There are six Unit 1 PA drawings that just fuzz out to the point you can't read the characters when you blow them up to readable size. It may just be bad files or poor copies of good files. The six drawings are:

F-663-253-16, -16A, & 16B (drawings are actually numbered as F-663-253, shts 1 of 3, 2 of 3 & 3 of 3) F-663-254-12, -12A, & 12B (drawings are actually numbered as F-663-254, shts 1 of 3, 2 of 3 & 3 of 3)

Please do the best you can. If the originals are real light, they may never scan well.

I'll let you know if we need anything further on Limestone.

Thanks, M.R.

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Friday, October 08, 2010 2:19 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

Attached is the updated spreadsheet for today. There is some confusion on the Unit 1 Plant Arrangement Drawings. If possible, please list the drawing numbers of the prints that are unreadable or the file names and I will look for better copies of those prints.

Also, please check the limestone analysis file | uploaded to see if that is the information you're looking for.

Thanks,

## Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Betz, Alex
Sent: Thursday, October 07, 2010 3:18 PM
To: 'Wehrly, M. R.'
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

Attached is the updated spreadsheet for today. A lot of information has been added. We are having trouble finding "Original/Operating performance data" for the Air Heaters. We do have actual operating data, but are not sure if that's what you're looking for. Please advise on that item.

The Excess O2 spreadsheet shows the actual data in 4 hour averages for the year to date. If you need more data, please let me know.

Thanks,

## Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Wednesday, October 06, 2010 8:59 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

Alex,

Thanks for the update.

Send the study when you can. With the transformer nameplate pictures/drawings, we should be able to get started on the electrical review.

I've forwarded the structural steel study information on to Monty and if we think it will be useful, we'll try to get it from our storage. M.R.

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Wednesday, October 06, 2010 2:23 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

I am in the process of getting you a copy of the study, but I doubt it will be to you by Friday.

The attached sheet shows everything that I've uploaded to the website. Notice that some of the items could not be found either because we don't measure them, can't find them, or they don't exist. For the MC3 FD Fan Curve and MC1 & MC2 ID Booster Fan Curves, please see the comments in the "Completed" column.

I did find a structural report on Unit 3 FGD from 1993 by B&V, but it does not look that helpful, especially since it's from 1993. The cover letter is attached which shows the B&V Project and File number for you to reference in the B&V files if you think it would be valuable.

Thanks,

## Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Tuesday, October 05, 2010 10:22 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

Alex,

Thanks for finding this information. Yes we can still use SKM although we have a newer version and we'd have to update the data anyway. Our Ann Arbor office told us they have the SKM model disks also, so we can get them from them if we need to. Just a copy of the report would do it for now. Thanks, M.R.

From: Betz, Alex [mailto:Alex.Betz@eon-us.com] Sent: Tuesday, October 05, 2010 12:16 PM To: Wehrly, M. R. Cc: Saunders, Eileen; Hillman, Timothy M. Subject: B&V Short Circuit Study

M.R.,

I have located the short circuit study, but I also found out from the guy who has the study that he has a model in an SKM (PTW) format. I think I remember you mentioning that format during the conference call yesterday, but don't remember if you said you could use that or couldn't use that, so please let me know.

Thanks,

# Alex Betz

Mechanical Engineer II LG&E - Mill Creek Station 14660 Dixie Hwy Louisville, KY 40272 (502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

|          | A           | В             | С                | D           | E           | F           | G             | Н      |                     | J             | К               | L           | М           | N          | 0           |
|----------|-------------|---------------|------------------|-------------|-------------|-------------|---------------|--------|---------------------|---------------|-----------------|-------------|-------------|------------|-------------|
| 1        | E.ON U      | J.S. Cor      | porate Fu        | els         |             |             |               |        |                     |               |                 |             |             |            |             |
| 2        | Environ     | mental Co     | ompliance P      | roject - Co | oal Qua     | lity Da     | ta            |        |                     |               |                 |             |             |            |             |
| 3        | 5/3/10      |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 4        |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 5        |             |               |                  |             |             |             |               |        |                     |               |                 | Ultim       | ate         |            |             |
| -        |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
|          |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 6        | Coal Qua    | lity Averag   | e for 2009       | Moisture    | Ash AR      | Volatile AR | ixed Carbon A | BTU AR | Sulfur AR           | Alkalinity AF | Carbon AR       | lydrogen AF | litrogen AF | Oxygen ARI | uminum Oxic |
| 7        |             |               |                  | %           | %           | %           | %             | BTU/lb | %                   | mg/L          | %               | %           | %           | %          | %           |
| 8        |             | Brown Aver    | age              | 6.01        | 10.62       | 36.72       | 46.65         | 12,403 | 1.51                | 0.19          | 69.39           | 4.67        | 1.37        | 6.42       | 27.93       |
| 9        |             |               |                  |             |             |             |               |        | 2.44                |               | 100.00          |             |             |            |             |
| 10       | (           | Green River A | verage           | 10.55       | 8.60        | 36.71       | 44.15         | 11,827 | 2.36                | 0.21          | 66.00           | 4.46        | 1.34        | 6.69       | 19.54       |
| 11       |             | Cono Dun Av   |                  | 13.59       | 10.36       | 34.92       | 41.13         | 40.022 | 3.99<br><b>2.72</b> | 0.21          | 100.00<br>60.83 | 4.18        | 1.34        | 6.99       | 23.42       |
| 12<br>13 |             | Cane Run Av   | erage            | 13.59       | 10.30       | J4.9Z       | 41.13         | 10,933 | 4.97                | 0.21          | 100.00          | 4.10        | 1.34        | 0.99       | 23.42       |
| 14       |             | Ghent Aver    | 200              | 10.77       | 11.27       | 35.66       | 42.30         | 11,286 | 2.81                | 0.22          | 62.70           | 4.31        | 1.27        | 6.88       | 21.41       |
| 15       |             |               |                  | 10.17       | 11.21       | 33.00       | 42.50         | 11,200 | 4.98                | V.22          | 100.00          | 1,7,1       | 1.21        | 0.00       | 21.41       |
| 16       |             | Mill Creek Av | erage            | 11.43       | 11.36       | 35.68       | 41.54         | 11,115 | 3.02                | 0.23          | 61.67           | 4.22        | 1.28        | 7.01       | 20.89       |
| 17       |             |               |                  |             |             |             |               | ,      | 5.44                |               | 100.00          |             |             |            |             |
| 18       | Tr          | imble County  | Average          | 10.30       | 11.96       | 35.67       | 42.07         | 11,261 | 3.09                | 0.24          | 62.36           | 4.31        | 1.26        | 6.72       | 22.62       |
| 19       |             |               | _                |             |             |             |               |        | 5.48                |               | 100.00          |             |             |            |             |
| 20       |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 21       |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 22       | JTYPICAL    | /Average C    | uality for Futu  | ure Coals   |             |             |               |        |                     |               |                 |             |             |            |             |
|          |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
|          |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 23       | Ghent, Mill | Creek, Cane   | e Run, Trimble C | 11.00       | 12.00       | 36.00       | 42.00         | 11,200 | 3.36                | 0.22          | 61.21           | 4.28        | 1.27        | 6.89       | 21.69       |
| 24       |             |               |                  |             | 12100       |             |               | ,200   | 6.00                |               | 100.01          |             |             | 0.00       |             |
| 25       | Bro         | wn Low Su     | fur Coal         | 6.50        | 11.50       | 37.00       | 47.00         | 12,000 | 1.50                | 0.19          | 68.04           | 4.67        | 1.37        | 6.42       | 27.93       |
| 26       | 1           |               |                  |             | · · · · · · |             |               | _,     | 2.50                |               | 100.00          |             |             |            |             |
| 27       | 6           | reen River A  | Verage           | 10.50       | 9.00        | 37.00       | 44.00         | 11,600 | 2.60                | 0.21          | 65.41           | 4.46        | 1.34        | 6.69       | 19.45       |
| 27       |             |               | verage           | 10.30       | 3.00        | 57.00       | 44.00         | 11,000 | 4.48                | 0.21          | 100.00          | 4.40        | 1.54        | 0.09       | 13.43       |
| 29       |             | PRB for TC2   | Blend            | 28.00       | 7.00        | 36.00       | 30.00         | 8,500  | 0.60                | 0.40          | 48.00           | 3.53        | 0.86        | 12.01      | 18.00       |
| 30       |             |               | DIGIN            | 20.00       | 7.00        | 30.00       | 30.00         | 0,000  | 0.00                | 0.40          | 100.00          | 5.55        | 0.00        | 12.01      | 10.00       |
| L 30     | I           |               |                  |             |             |             |               |        |                     |               | 100.00          |             |             |            |             |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AB AC AD                         | Z AA                   | Y            | Х          | W     | V             | U             | Т    | S    | R          | Q           | Р          |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|--------------|------------|-------|---------------|---------------|------|------|------------|-------------|------------|-----------------|
| 3         Anthony         Anth |                                  |                        |              |            |       |               |               |      |      |            |             |            | 1               |
| 4         0         Asti Analysis         Asti Analysis           6         arium Oxicalcium Oxid ron Oxide agresium Oxidinganese Oxiephorus Pentovtassium Oxid licon Dioxiedium Oxiculfur Trioxianium Diox         Silica         Undetermined         Antimony, SEAra           7         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %                                                                                                                                                                          |                                  |                        |              |            |       |               |               |      |      |            |             |            | 2               |
| 6         Ash Analysis           6         arium Oxicalcium Oxic Iron Oxide agnesium Oxianganese Oxisphorus Pentovotassium Oxid licon Dioxiodium Oxicorontium Oxiculfur Trioxianium Diox         Silica         Undetermined Antimony, SEArs           7         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %                                                                                                                                                                                           |                                  |                        |              |            |       |               |               |      |      |            |             |            | 3               |
| 6         arium Oxicalcium Oxid iron Oxide agnesium Oxianganese Oxisphorus Pento/otassium Oxid licon Dioxiofdium Oxid/Irur Trioxianium Diox         Silica         Undetermined         Antimony, SEArs           7         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         %         % </td <td></td> <td>4</td>                            |                                  |                        |              |            |       |               |               |      |      |            |             |            | 4               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                        |              |            |       | sh Analysis   | A             |      |      |            | 1           | 1          | 5               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                        |              |            |       |               |               |      |      |            |             |            |                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iox Silico Undetermined Antimony | ulfur Trioxionium Diox | rontium Ovid | odium Oxid |       | otossium Oxid | nhorus Bontov |      |      | Iron Ovido | alaium Oxic | orium Ovic | 6               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                |                        |              |            |       |               |               | -    | -    |            |             |            |                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                        |              |            |       |               |               |      |      |            |             |            | 8               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                        |              |            |       |               |               |      |      |            |             |            | 9               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 67.72 1.0                      | 2.47 1.08              | 0.04         | 0.77       | 49.61 | 2.41          | 0.21          | 0.04 | 0.91 | 19.97      | 2.89        | 0.06       |                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 64.72 0.47 1.5                 | 0.05 1.10              | 0.05         | 0.24       | 45.05 | 2.62          | 0.24          | 0.02 | 0.00 | 22.04      | 4.04        | 0.05       | ⊢ – – +         |
| 14       0.07       2.70       21.39       0.89       0.04       0.24       2.24       46.56       0.52       0.05       2.58       1.07       65.14       0.25       1.00         15       16       0.08       3.41       21.84       0.92       0.04       0.27       2.37       45.26       0.48       0.04       3.36       1.00       63.44       0.04       1.12         16       0.08       3.41       21.84       0.92       0.04       0.27       2.37       45.26       0.48       0.04       3.36       1.00       63.44       0.04       1.12         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 04.72 0.17 1.3                 | 0.95 1.10              | 0.05         | 0.51       | 45.95 | 2.03          | 0.24          | 0.05 | 0.99 | 22.91      | 1.21        | 0.05       |                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 65.14 0.25 1.0                 | 2.58 1.07              | 0.05         | 0.52       | 46.56 | 2.24          | 0.24          | 0.04 | 0.89 | 21.39      | 2.70        | 0.07       |                 |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                        |              |            |       |               |               |      |      |            |             |            | 15              |
| 18       0.08       2.57       22.23       0.92       0.04       0.29       2.39       45.09       0.45       0.06       2.24       1.01       63.70       0.94         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 63.44 0.04 1.1                 | 3.36 1.00              | 0.04         | 0.48       | 45.26 | 2.37          | 0.27          | 0.04 | 0.92 | 21.84      | 3.41        | 0.08       |                 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 63 70 0.0                      | 2 24 1 01              | 0.06         | 0.45       | 45.00 | 2 30          | 0.20          | 0.04 | 0.02 | 22.23      | 2.57        | 0.09       |                 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                              | 2.24 1.01              | 0.00         | 0.45       | 43.09 | 2.35          | 0.25          | 0.04 | 0.92 | 22.23      | 2.51        | 0.00       | 10              |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                        |              |            |       |               |               |      |      |            |             |            | 20              |
| 23       0.07       2.74       21.80       0.91       0.04       0.26       2.33       45.88       0.48       0.05       2.58       1.04       64.37       0.12       1.05         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                        |              |            |       |               |               |      |      |            |             |            | 21              |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                        |              |            |       |               |               |      |      |            |             |            | 22              |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                        |              |            |       |               |               |      |      |            |             |            |                 |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                        |              |            |       |               |               |      |      |            |             |            |                 |
| 25       0.13       1.40       12.63       0.84       0.03       0.35       2.21       51.11       0.33       0.15       1.09       1.55       77.53       0.25       0.76         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 64.37 0.12 1.0                 | 2.58 1.04              | 0.05         | 0.48       | 45.88 | 2.33          | 0.26          | 0.04 | 0.91 | 21.80      | 2.74        | 0.07       | 23              |
| 26         27         0.06         2.89         19.90         0.91         0.04         0.21         2.41         49.65         0.77         0.04         2.47         1.08         67.72         0.13         1.07           28         28         28         28         28         29         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                    |                                  |                        |              |            |       |               |               |      |      |            |             |            |                 |
| 27         0.06         2.89         19.90         0.91         0.04         0.21         2.41         49.65         0.77         0.04         2.47         1.08         67.72         0.13         1.07           28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>5 (1.53 0.25 0.7</u>          | 1.09 1.55              | 0.15         | 0.33       | 51.11 | 2.21          | 0.35          | 0.03 | 0.84 | 12.63      | 1.40        | 0.13       | $ \rightarrow$  |
| 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                        |              |            |       |               |               |      |      |            |             |            | $ \rightarrow $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>8 67.72 0.13 1.0</u>          | 2.47 1.08              | 0.04         | 0.77       | 49.65 | 2.41          | 0.21          | 0.04 | 0.91 | 19.90      | 2.89        | 0.06       | 27              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 58.00 2.0                      | 11 00 1 20             | 0.40         | 1.60       | 40.27 | 0 90          | 0.50          | 0.03 | 3 60 | 5 10       | 17.00       | 0.40       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 11.00 1.20             | 0.40         | 1.00       | 40.27 | 0.30          | 0.50          | 0.00 | 0.00 | 5.10       | 17.00       | 0.40       | 30              |

|          | AF         | AG          | AH           | Al           | AJ           | AK       | AL            | AM          | AN           | AO          | AP            | AQ          | AR       | AS |
|----------|------------|-------------|--------------|--------------|--------------|----------|---------------|-------------|--------------|-------------|---------------|-------------|----------|----|
| 1        |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 2        |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 3        |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 4        |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 5        |            |             |              |              | Trac         | e Elemer | nts           |             |              |             |               |             |          |    |
| 6        | Barium, Ba | Cadmium, Co | Chlorine, Cl | Chromium, Cr | Flourine, Fl | Lead, Pt | Magnesium, Mg | Mercury, Hç | Nickel, Ni S | elenium, Se | Strontium, Sı | Vanadium, V | Zinc, Zn |    |
| 7        | ppm        | ppm         | ppm          | ppm          | ppm          | ppm      | ppm           | ppm         | ppm          | ppm         | ppm           | ppm         | ppm      |    |
| 8<br>9   | 115        | 0.08        | 863          | 20           | 85           | 8        | 547           | 0.12        | 15           | 4.73        | 135           | 31          | 14       |    |
| 10       | 49         | 0.30        | 1,845        | 17           | 71           | 11       | 509           | 0.10        | 14           | 1.93        | 30            | 40          | 50       |    |
| 11       |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 12<br>13 | 63         | 0.20        | 155          | 23           | 86           | 12       | 721           | 0.09        | 29           | 2.32        | 58            | 48          | 32       |    |
| 14       | 72         | 0.60        | 964          | 21           | 93           | 12       | 663           | 0.13        | 19           | 3.16        | 56            | 40          | 44       |    |
| 15       |            |             |              |              | 400          | 40       |               | 0.40        |              |             |               |             | - 4      |    |
| 16<br>17 | 77         | 0.68        | 622          | 23           | 102          | 10       | 703           | 0.13        | 20           | 2.65        | 47            | 37          | 51       |    |
| 18       | 79         | 0.89        | 624          | 25           | 108          | 11       | 693           | 0.12        | 21           | 3.02        | 67            | 39          | 59       |    |
| 19<br>20 |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 20       |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 22       |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
|          |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 23       | 74         | 0.65        | 1,600        | 23           | 98           | 11       | 684           | 0.12        | 20           | 2.94        | 56            | 40          | 48       |    |
| 24       |            |             |              |              |              | -        |               |             |              |             |               |             |          |    |
| 25       | 115        | 0.08        | 863          | 20           | 85           | 8        | 547           | 0.12        | 15           | 4.73        | 135           | 31          | 14       |    |
| 26<br>27 | 49         | 0.30        | 1,845        | 17           | 71           | 11       | 509           | 0.10        | 14           | 1.93        | 30            | 40          | 50       |    |
| 28       |            |             |              |              |              |          |               |             |              |             |               |             |          |    |
| 29<br>30 | 270        | 1.40        | 125          | 10           | 63           | 4        | 1,525         | 0.08        | 7            | 2.00        | 250           | 28          | 11       |    |
| 30       |            |             |              |              |              |          |               |             |              |             |               |             |          |    |

| 2 M<br>3 4<br>5 6<br>7 8<br>9 10                                                                      | imesto<br>Iill Cree | one Qua<br>ek, Trimb | l <b>ity</b><br>le Count | y and Gh     | ont                                    |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
|-------------------------------------------------------------------------------------------------------|---------------------|----------------------|--------------------------|--------------|----------------------------------------|------------------|----------|----------|-------|-------|------|---------|---------------|---------|----------------------------|---------|---------|---------|
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                 | 1ill Cree           | ek, Trimb            | le Count                 | y and Gh     | ont                                    |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 4<br>5<br>7<br>8<br>9<br>10                                                                           |                     |                      |                          |              | ent                                    |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 6<br>7<br>8<br>9<br>10                                                                                |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 6<br>7<br>8<br>9<br>10                                                                                |                     |                      |                          |              | C 4 C                                  |                  | L        | erren zi | * 1   |       |      |         |               |         |                            |         |         |         |
| 6<br>7<br>8<br>9<br>10                                                                                |                     |                      |                          | ş            | 6.1 <u>S</u>                           | <u>pecific</u>   | ations.  | The      | limes | stone | è de | elivere | d here        | under   | shall                      | conform | n to th | e folle |
| 8<br>9<br>10                                                                                          |                     |                      |                          |              |                                        | -                |          |          |       |       |      |         |               |         |                            |         |         |         |
| 9<br>10                                                                                               |                     |                      |                          | • ~          | -                                      |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 10                                                                                                    |                     |                      | sp                       | ecifica      | tions (                                | on a "d          | ry" bas  | is:      |       |       |      |         |               |         |                            |         |         |         |
|                                                                                                       |                     |                      |                          |              |                                        |                  | •        |          |       |       |      |         |               |         |                            |         |         |         |
| 11                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 12                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 13                                                                                                    |                     |                      |                          | Į.           | Active                                 | Ingred           | lient Pr | morti    | one   |       |      | (       | <u>%) Gu</u>  | arante  | ьđ                         |         |         |         |
| 15                                                                                                    |                     |                      |                          | <u>r</u>     | LOUIVO                                 | <u>III și Cu</u> |          | oporu    | ous   |       |      | 7       | <u>/0/ \u</u> | ananne  |                            |         |         |         |
| 12<br>13<br>14<br>15<br>16<br>17                                                                      |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
|                                                                                                       |                     |                      |                          | S            | urface                                 | Moist            | ure      |          |       |       |      | 7       | 0.0% M        | lavimi  | m                          |         |         |         |
| 18                                                                                                    |                     |                      |                          | 5            | 'HI.I.UVV                              | · LVENDEDE       | UL U     |          |       |       |      |         | •070 IV       | IGAIIII | 41.51                      |         |         |         |
| 19                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 20                                                                                                    |                     |                      |                          | C            | $aCO_3$                                |                  |          |          |       |       |      | G       | 0.0%          | Minim   | um *                       |         |         |         |
| 22                                                                                                    |                     |                      |                          | ~            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                  |          |          |       |       |      |         | 0.0703        |         | . <b>1</b> . 4. 8. 18. 19. |         |         |         |
| 18         19         20         21         22         23         24         25         26         27 |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 24                                                                                                    |                     |                      |                          | $\mathbb{N}$ | 4gCO <sub>3</sub>                      | p                |          |          |       |       |      | 6       | 5.0% M        | laxim   | m                          |         |         |         |
| 25                                                                                                    |                     |                      |                          |              | -8                                     | ,                |          |          |       |       |      |         |               |         | ***                        |         |         |         |
| 26                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 28                                                                                                    |                     |                      |                          | S            | $iO_2$                                 |                  |          |          |       |       |      | 3       | .5% N         | faxim   | m                          |         |         |         |
| 29                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         | www.c.wc.uc.  |         | ····                       |         |         |         |
| 28<br>29<br>30<br>31                                                                                  |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 31                                                                                                    |                     |                      |                          | F            | $e_2O_3$                               |                  |          |          |       |       |      | 1       | .5% M         | faxim   | ım                         |         |         |         |
| 32                                                                                                    |                     |                      |                          |              | J J.                                   |                  |          |          |       |       |      | -       |               |         |                            |         |         |         |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                          |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 35                                                                                                    |                     |                      |                          | A            | $d_2O_3$                               |                  |          |          |       |       |      | 4       | .30%]         | Maxin   | num                        |         |         |         |
| 36                                                                                                    |                     |                      |                          |              | ~ /                                    |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 37                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 38                                                                                                    |                     |                      |                          | Ir           | nerts                                  |                  |          |          |       |       |      | 7       | 1.0% M        | faximı  | ım                         |         |         |         |
| 39                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 40<br>41                                                                                              |                     |                      |                          | 1.444        |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 42                                                                                                    |                     |                      |                          | F            | lourid                                 | e                |          |          |       |       |      | 5       | 500 PP        | М       |                            |         |         |         |
| 43                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 42<br>43<br>44<br>45<br>46<br>47                                                                      |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               | _       |                            |         |         |         |
| 45                                                                                                    |                     |                      |                          | C            | hloide                                 | 2S               |          |          |       |       |      | 5       | 50PPN         | М       |                            |         |         |         |
| 46                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 4/                                                                                                    |                     |                      |                          | -            |                                        |                  | -        |          |       |       |      |         |               |         |                            |         |         |         |
| 48<br>49                                                                                              |                     |                      |                          | В            | ond W                                  | vork In          | dex      |          |       |       |      | 1       | 2 Max         | imum    |                            |         |         |         |
| 50                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |

|          | R     | S |
|----------|-------|---|
| 1        |       | _ |
| 2        |       |   |
| 2        |       |   |
| 4        |       |   |
| 5        |       |   |
| 6        | owing |   |
| 7        |       |   |
| 8        |       |   |
| 9        |       |   |
| 10       |       |   |
| 11       |       |   |
| 12       |       |   |
| 13       |       |   |
| 14       |       |   |
| 15       |       |   |
| 16<br>17 |       |   |
| 18       |       |   |
| 19       |       |   |
| 20       |       |   |
| 21       |       |   |
| 22       |       |   |
| 23       |       |   |
| 24       |       |   |
| 25       |       |   |
| 26       |       |   |
| 27       |       |   |
| 28       |       |   |
| 29<br>30 |       |   |
| 31       |       |   |
| 32       |       |   |
| 33       |       |   |
| 34       |       |   |
| 35       |       |   |
| 36       |       |   |
| 37       |       |   |
| 38       |       |   |
| 39       |       |   |
| 40       |       |   |
| 41       |       |   |
| 42<br>43 |       |   |
| 43       |       |   |
| 44       |       |   |
| 46       |       |   |
| 47       |       |   |
| 48       |       |   |
| 49       |       |   |
| 50       |       |   |

|          | Α | В | C | D            | E                 | F        | G       | Н        |        | J       | K      | L       | М       | N      | 0       | Р      | Q       |
|----------|---|---|---|--------------|-------------------|----------|---------|----------|--------|---------|--------|---------|---------|--------|---------|--------|---------|
| 51       |   |   |   | säe          | 1717 E            | N 88     | 1 11    | •. y     |        | •       | 3      | · ·     |         |        | •       |        | ~ ~     |
| 52       |   |   |   | · <b>W</b> · | I ne c            | seller s | nall us | ie its d | est em | orts to | supply | y limes | stone c | ontain | ıng a ı | minimi | um of 9 |
| 53       |   |   |   | C            | CaCO <sub>3</sub> |          |         |          |        |         |        |         |         |        |         |        |         |
| 54<br>55 |   |   |   | -            |                   | •        |         |          |        |         |        |         |         |        |         |        |         |
| 56       |   |   |   |              |                   |          |         |          |        |         |        |         |         |        |         |        |         |
| 57       |   |   |   |              |                   |          |         |          |        |         |        |         |         |        |         |        |         |
| 58       |   |   | 1 | 1            |                   | 1        | 1       | 1        |        |         | 1      | 1       |         | 1      |         |        | 1       |

|                            | R    | S |
|----------------------------|------|---|
| 51                         |      |   |
| 52                         | 2.0% |   |
| 53                         |      |   |
| 52<br>53<br>54<br>55<br>56 |      |   |
| 55                         |      |   |
| 56                         |      |   |
| 57                         |      |   |
| 58                         |      |   |

|                                                                                  | A       | В       | С    | D              | E                 | F            | G                 | Н      |        | J       | К       | L                                | M       | N       | 0       | Р       | Q       |
|----------------------------------------------------------------------------------|---------|---------|------|----------------|-------------------|--------------|-------------------|--------|--------|---------|---------|----------------------------------|---------|---------|---------|---------|---------|
| 1                                                                                | Limesto | one Qua | lity |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 2                                                                                | Brown   |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 3                                                                                |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 3<br>4<br>5                                                                      |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 5                                                                                |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 67                                                                               |         |         |      | S (            | 6.1 S             | pecific      | ations.           | The    | limes  | stone d | elivere | d here                           | under : | shall ( | conform | n to th | e folle |
| 6<br>7<br>8<br>9<br>10                                                           |         |         |      | 0              | <u></u>           | •            |                   |        |        |         |         |                                  |         |         |         |         |         |
| 9                                                                                |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 10                                                                               |         |         | spe  | ecifica        | tions c           | m an ":      | as rece           | ived"  | basis: |         |         |                                  |         |         |         |         |         |
| 11                                                                               |         |         | 1    |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 12                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 13                                                                               |         |         |      |                | Active            | Ingred       | ient Pr           | oporti | ons    |         | C       | %) Gu                            | arantee | ed      |         |         |         |
| 14                                                                               |         |         |      |                |                   | <u>(</u> +   |                   |        |        |         |         | ก่างหนังหมู่ใหม่องการสารเหมาะการ |         |         |         |         |         |
| 13<br>14<br>15<br>16<br>17                                                       |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 17                                                                               |         |         |      | Si             | urface            | Moist        | ure               |        |        |         | 4       | .0% M                            | laximu  | um      |         |         |         |
| 18                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 19                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 20                                                                               |         |         |      | C              | aCO <sub>3</sub>  |              |                   |        |        |         | 9       | 2.0% I                           | Minim   | um      |         |         |         |
| 21                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 23                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 24                                                                               |         |         |      | $\mathbf{M}$   | fgCO <sub>3</sub> |              |                   |        |        |         | 6       | $.0\%{ m M}$                     | laximu  | ım      |         |         |         |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                         |         |         |      |                | L                 |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 26                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 27                                                                               |         |         |      | Si             | iO <sub>2</sub>   |              |                   |        |        |         | 3       | .5% M                            | laximu  | m       |         |         |         |
| 28                                                                               |         |         |      |                | 2                 |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 30                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 31                                                                               |         |         |      | Fe             | $e_2O_3$          |              |                   |        |        |         | 1       | .0% M                            | laximu  | m       |         |         |         |
| 32                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 33                                                                               |         |         |      |                | ~                 |              | ~ ~ `             |        |        |         |         |                                  | · .     |         |         |         |         |
| 34                                                                               |         |         |      | R              | $_2O_3(A$         | $1_2O_3 + F$ | $e_2O_3$ )        |        |        |         |         | 90% Tj                           | ypical  |         |         |         |         |
| 36                                                                               |         |         |      |                |                   |              | •                 |        |        |         |         | _                                |         |         |         |         |         |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41 |         |         |      | ~              |                   |              |                   |        |        |         |         |                                  | r +     |         |         |         |         |
| 38                                                                               |         |         |      | S              |                   |              |                   |        |        |         |         | 05% M                            | laximu  | ım      |         |         |         |
| 39                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 40                                                                               |         |         |      | тэ             | 0                 |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 41                                                                               |         |         |      | $\mathbf{P}_2$ | 205               |              |                   |        |        |         | .4      | 40% M                            | laximu  | lm      |         |         |         |
| 43                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 42<br>43<br>44<br>45<br>46<br>47                                                 |         |         |      |                | 11                | NT. A.       | 77 AS             |        |        |         | -       | 002 3                            |         |         |         |         |         |
| 45                                                                               |         |         |      | A              | ікан (            | $Na_2O+$     | К <sub>2</sub> О) |        |        |         | L       | .0% M                            | laximu  | m       |         |         |         |
| 46                                                                               |         |         |      |                |                   |              |                   |        |        |         |         |                                  |         |         |         |         |         |
| 47                                                                               |         |         |      |                | 10                |              |                   |        |        |         |         |                                  | r •     |         |         |         |         |
| 48<br>49                                                                         |         |         |      | A              | $1_{2}O_{3}$      |              |                   |        |        |         | 1       | .5% M                            | laximu  | m       |         |         |         |
| 49<br>50                                                                         |         | 1       |      |                | I                 | I            | I                 | I      | I      |         | 1       | I                                | I       | 1       | 1       | 1       | 1       |
| 50                                                                               |         |         |      | 1              | 1                 | 1            | 1                 | 1      | 1      |         | 1       | 1                                | 1       | 1       |         | 1       |         |

| 1       -         1       -         2       -         3       -         4       -         5       6         7       7         8       9         10       11         11       12         13       14         15       16         17       18         19       20         21       22         23       24         25       26         27       28         29       30         31       32         33       34         35       36         37       38         39       40         41       42         43       44         45       46         47       48         49       50                                                                                                                                                             | ſ |    | R    | S        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|------|----------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ŀ |    | N    | <u> </u> |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ļ |    |      |          |
| 4         5         6         7         8         9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                             | ļ | 2  |      |          |
| 5       6         7       8         9       10         11       12         13       14         15       16         17       18         19       20         21       22         23       24         25       26         27       28         29       30         31       32         33       34         35       36         37       38         39       40         41       42         43       44         45       46         47       48         49                                                                                                                                                                                                                                                                                   |   |    |      |          |
| 6       7         8       9         10       11         12       13         14       15         16       17         18       19         20       21         22       23         24       25         26       27         28       29         30       31         32       33         34       35         36       37         38       39         40       41         42       43         44       45         46       47         48       49                                                                                                                                                                                                                                                                                             |   | 4  |      |          |
| 7     WIIIg       8     9       10     11       12     13       14     15       16     17       18     19       20     21       22     23       24     25       26     27       28     29       30     31       32     33       34     35       36     37       38     39       40     41       42     43       44     45       46     47       48     49                                                                                                                                                                                                                                                                                                                                                                               |   | 5  |      |          |
| $     \begin{array}{r}       8 \\       9 \\       10 \\       11 \\       12 \\       13 \\       14 \\       15 \\       16 \\       17 \\       18 \\       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\       29 \\       30 \\       31 \\       32 \\       33 \\       34 \\       35 \\       36 \\       37 \\       38 \\       39 \\       40 \\       41 \\       42 \\       43 \\       44 \\       45 \\       46 \\       47 \\       48 \\       49 \\       49 \\       49 \\       4   $                                                                                                                                                        | ļ |    | wing |          |
| 9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                               | ļ | 7  |      |          |
| $     \begin{array}{r}       10 \\       11 \\       12 \\       13 \\       14 \\       15 \\       16 \\       17 \\       18 \\       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\       29 \\       30 \\       31 \\       32 \\       33 \\       34 \\       35 \\       36 \\       37 \\       38 \\       39 \\       40 \\       41 \\       42 \\       43 \\       44 \\       45 \\       46 \\       47 \\       48 \\       49 \\       49 \\       49 \\       4       4       45       46 \\       47       48 \\       49       49       4       4       45       46       47       48       49       4       4       4       4       4       $ | ŀ | 8  |      |          |
| $ \begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ł |    |      |          |
| $     \begin{array}{r}       12 \\       13 \\       14 \\       15 \\       16 \\       17 \\       18 \\       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\       29 \\       30 \\       31 \\       31 \\       32 \\       33 \\       34 \\       35 \\       36 \\       37 \\       38 \\       39 \\       40 \\       41 \\       42 \\       43 \\       44 \\       45 \\       46 \\       47 \\       48 \\       49 \\       49 \\       49 \\       4       4       45       46       47       48       49       4       4       45       46       47       48       49       4       4       4       4       4       $                            | ł | 10 |      |          |
| $   \begin{array}{c}     13 \\     14 \\     15 \\     16 \\     17 \\     18 \\     19 \\     20 \\     21 \\     22 \\     23 \\     24 \\     25 \\     26 \\     27 \\     28 \\     29 \\     30 \\     31 \\     32 \\     33 \\     34 \\     35 \\     36 \\     37 \\     38 \\     39 \\     40 \\     41 \\     42 \\     43 \\     44 \\     45 \\     46 \\     47 \\     48 \\     49 \\   \end{array} $                                                                                                                                                                                                                                                                                                                  | ł | 10 |      |          |
| $     \begin{array}{r}       15 \\       16 \\       17 \\       18 \\       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\       29 \\       30 \\       31 \\       32 \\       33 \\       34 \\       35 \\       36 \\       37 \\       38 \\       39 \\       40 \\       41 \\       42 \\       43 \\       44 \\       45 \\       46 \\       47 \\       48 \\       49 \\       49 \\       49 \\       4       4       4       4       4       $                                                                                                                                                                                                      | ł | 12 |      |          |
| $     \begin{array}{r}       15 \\       16 \\       17 \\       18 \\       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\       29 \\       30 \\       31 \\       32 \\       33 \\       34 \\       35 \\       36 \\       37 \\       38 \\       39 \\       40 \\       41 \\       42 \\       43 \\       44 \\       45 \\       46 \\       47 \\       48 \\       49 \\       49 \\       49 \\       4       4       4       4       4       $                                                                                                                                                                                                      | ŀ | 14 |      |          |
| $     \begin{array}{r}       16 \\       17 \\       18 \\       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\       29 \\       30 \\       31 \\       32 \\       33 \\       34 \\       35 \\       36 \\       37 \\       38 \\       39 \\       40 \\       41 \\       42 \\       43 \\       44 \\       45 \\       46 \\       47 \\       48 \\       49 \\       49 \\       49 \\       4       4   $                                                                                                                                                                                                                                              | ŀ | 14 |      |          |
| 17         18         19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                      | ŀ | 16 |      |          |
| 18         19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                 | ł | 17 |      |          |
| 19         20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                            | ŀ | 18 |      |          |
| 20         21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                       | ľ | 19 |      |          |
| 21         22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                  | ľ | 20 |      |          |
| 22         23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                             | ľ | 21 |      |          |
| 23         24         25         26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                                        | ľ | 22 |      |          |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ī | 23 |      |          |
| 26         27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [ | 24 |      |          |
| 27         28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [ | 25 |      |          |
| 28         29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |    |      |          |
| 29         30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ | 27 |      |          |
| 30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ | 28 |      |          |
| 31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 29 |      |          |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ | 30 |      |          |
| 33       34       35       36       37       38       39       40       41       42       43       44       45       46       47       48       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŀ | 31 |      |          |
| 34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ł | 32 |      |          |
| 35       36       37       38       39       40       41       42       43       44       45       46       47       48       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ł | 33 |      |          |
| 36<br>37<br>38<br>39<br>40<br>41<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ł | 34 |      |          |
| 37       38       39       40       41       42       43       44       45       46       47       48       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ł | 36 |      |          |
| 38       39       40       41       42       43       44       45       46       47       48       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŀ | 37 |      |          |
| 39       40       41       42       43       44       45       46       47       48       49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŀ | 38 |      |          |
| 40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł |    |      |          |
| 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł | 40 |      |          |
| 42<br>43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ł | 41 |      |          |
| 43<br>44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ì | 42 |      |          |
| 44<br>45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 | 43 |      |          |
| 45<br>46<br>47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 44 |      |          |
| 47<br>48<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [ | 45 |      |          |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [ | 46 |      |          |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [ | 47 |      |          |
| 49<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ |    |      |          |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ | 49 |      | l        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L | 50 |      | 1        |

|          | Α | В | С | D   | E       | F      | G   | Н | I         | J | k | (     | L       | М          | Ν | 0 | Р | Q |
|----------|---|---|---|-----|---------|--------|-----|---|-----------|---|---|-------|---------|------------|---|---|---|---|
| 51<br>52 |   | - |   | Īn  | erts    |        |     |   |           |   |   | 21    | 09/ Ma  |            |   |   |   |   |
| 52       |   | + |   | LL. | UIS     |        |     |   |           |   |   | 3.    | 0% Ma   | IXIIII U   |   |   |   |   |
| 54       |   | 1 |   |     |         |        |     |   |           |   |   |       |         |            |   |   |   |   |
| 55<br>56 |   | + |   | Fl  | ouride  | :      |     |   | 1,250 PPM |   |   |       |         |            |   |   |   |   |
| 57       |   | 1 |   |     |         |        |     |   |           |   |   |       |         |            |   |   |   |   |
| 58<br>59 |   | + |   | CI  | ıloride | ×C     |     |   |           |   |   | 25    | O PPM   | ſ          |   |   |   |   |
| 60       |   |   |   |     | 1101100 | 6      |     |   |           |   |   | ل مند |         | <b>L</b> . |   |   |   |   |
| 61<br>62 |   | - |   | -   |         |        | _   |   |           |   |   |       |         |            |   |   |   |   |
| 63       |   | - |   | Be  | ond W   | ork In | dex |   |           |   |   | 10    | ).5 Maz | cimun      | 1 |   |   |   |
| 64       |   |   | 1 |     |         | 1      |     |   |           |   |   |       |         |            | 1 |   | 1 |   |

|                                        | R | S |
|----------------------------------------|---|---|
| 51                                     |   |   |
| 52                                     |   |   |
| 53                                     |   |   |
| 54                                     |   |   |
| 51<br>52<br>53<br>54<br>55<br>56<br>57 |   |   |
| 56                                     |   |   |
| 57                                     |   |   |
| 58<br>59                               |   |   |
| 59                                     |   |   |
| 60                                     |   |   |
| 61                                     |   |   |
| 62                                     |   |   |
| 63                                     |   |   |
| 62<br>63<br>64                         |   |   |

| From:        | Lucas, Kyle J.                                                                                    |
|--------------|---------------------------------------------------------------------------------------------------|
| То:          | Saunders, Eileen                                                                                  |
| CC:          | Wehrly, M. R.; Hillman, Timothy M.; Mahabaleshwarkar, Anand; Mehta, Pratik D.; Crabtree, Jonathan |
|              | D.                                                                                                |
| Sent:        | 12/10/2010 11:56:26 AM                                                                            |
| Subject:     | 168908 101210 - AQC Summary Table for 18 Coal-Fired Units                                         |
| Attachments: | AQC Technologies 121010.pdf                                                                       |

Eileen,

Attached, please a draft table containing a high level summary of the AQC technologies for the 18 coal-fired units. The table includes those pollutants from the Phase II project which we are targeting specific emissions reductions (illustrated in a percent removal). Also, the table includes a notation for certain AQC equipment which has the potential to provide a level of co-benefit of control of certain pollutants (removal efficiencies not provided as they have not been calculated for this project). Additionally, those Phase I units do not contain specific emission reductions as they are not part of the Phase II study. However, similar to those Phase II units, an indication has been made for co-benefit should technology be implemented for these units.

Please let me know if you have any questions.

Have a nice weekend, Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaski@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

#### Fleet-wide AQC Technologies

|                                      |                                                    |                                            |                          |                            |                         |                                            | Phase II Study                             | 7                                          |                                            |                                            |                                            |                                            |                     |                     | Pha                 | se I Study          |                     |                                            |
|--------------------------------------|----------------------------------------------------|--------------------------------------------|--------------------------|----------------------------|-------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------------------------------|
|                                      |                                                    |                                            |                          |                            |                         |                                            | •                                          |                                            |                                            |                                            |                                            |                                            |                     |                     |                     | Green Riv           | er Removal          | Trimble County                             |
| Equipment                            | Pollutant Control                                  | Unit 1                                     | Mill Creek Ren<br>Unit 2 | noval Efficiency<br>Unit 3 | Unit 4                  | Unit 1                                     | Ghent Remo                                 | val Efficien <i>cy</i><br>Unit 3           | Unit 4                                     | Brow<br>Unit 1                             | n Removal Effic<br>Unit 2                  | ciency<br>Unit 3                           | Cane F<br>Unit 4    | tun Removal Ef      | ficiency<br>Unit 6  | Effic<br>Unit 3     | ciency<br>Unit 4    | Removal Efficiency<br>Unit 1               |
| Boiler with Existing Low NOx Burners |                                                    | (1)                                        | (1)                      | N/A                        | N/A                     | N/A                                        | (1)                                        | (1)                                        | (1)                                        | N/A                                        | (1)                                        | (1)                                        | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (1)                                        |
|                                      | NO <sub>x</sub> Control<br>NO <sub>x</sub> Control | N/A                                        | N/A                      | (1)                        | (1)                     | (1)                                        | N/A                                        | N/A                                        | N/A                                        | (1)                                        | N/A                                        | N/A                                        | (1)                 | (1)                 | N/A                 | (1)                 | (1)                 | N/A                                        |
| Boiler with Existing Over-Fire Air   | NO <sub>x</sub> Control                            | N/A                                        | N/A                      | <br>N/Λ                    | <br>N/Λ                 | <br>N/Λ                                    | Ν/Λ                                        | N/A                                        | N/Λ                                        | <br>N/Λ                                    | N/A                                        | N/Λ                                        | <br>N/Λ             | N/A                 | (1)                 | N/A                 | N/A                 | N/A                                        |
| New Neural Networks                  |                                                    | (2)                                        | (2)                      | (2)                        | (2)                     | (2)                                        | (2)                                        | (2)                                        | - (2)                                      | (2)                                        | (2)                                        | (2)                                        | (2)                 | (2)                 | (2)                 | (2)                 | (2)                 | (2)                                        |
| Now Noural Notivorks                 | CO Control<br>PM Control                           | (3)                                        | (3)                      | (3)                        | (3)                     | (3)                                        | (3)                                        | (3)                                        | (3)                                        | (3)                                        | (3)                                        | (3)                                        | (3)                 | (3)                 | 6                   | (3)                 | (3)                 | (3)                                        |
|                                      | NO <sub>x</sub> Control                            | (4)                                        | (4)                      | (4)                        | (4)                     | (4)                                        | (4)                                        | (4)                                        | <sup>(4)</sup>                             | (4)                                        | (4)                                        | (4)                                        | <sup>(4)</sup>      | - (4)               |                     | - (4)               | (4)                 | (4)                                        |
| Existing Hot-Side Dry ESP            | PM Control                                         | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | <sup>(9)</sup>                             | (9)                                        | <sup>(9)</sup>                             | N/A                                        | N/A                                        | N/A                                        | N/A                 | NA                  | N/A                 | N/A                 | - (9)               | N/A                                        |
|                                      | Hg Control                                         | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | (10)                                       | (10)                                       | (10)                                       | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A                 | (10)                | N/A                                        |
|                                      | Dioxin/Furan Control                               | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | (11)                                       | (11)                                       | - (11)                                     | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A                 | (11)                | N/A                                        |
| Existing SCR                         | NO <sub>x</sub> Control                            | N/A                                        | N/A                      | N/Λ <sup>(12)</sup>        | N/Λ <sup>(12)</sup>     | N/ $\Lambda$ <sup>(12)</sup>               | N/A                                        | N/ $\Lambda$ <sup>(12)</sup>               | N/Λ <sup>(12)</sup>                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A <sup>(12)</sup>                        |
|                                      | IIg Control                                        | N/A                                        | N/A                      | (6)                        | (6)                     | (6)                                        | N/A                                        | (6)                                        | (6)                                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (6)                                        |
|                                      | SO3 Control                                        | N/A                                        | N/A                      | (7)                        | <b>-</b> <sup>(7)</sup> | (7)                                        | N/A                                        | (7)                                        | <sup>(7)</sup>                             | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (7)                                        |
| New SCR                              | NO <sub>x</sub> Control                            | 56.14% <sup>(5)</sup>                      | 55.72% <sup>(26)</sup>   | N/A                        | N/A                     | N/A                                        | 85.14% <sup>(28)</sup>                     | N/A                                        | N/A                                        | 65.04% <sup>(30)</sup>                     | 64.33% <sup>(32)</sup>                     | N/A <sup>-(12)</sup>                       | N/A <sup>(35)</sup> | N/A                                        |
|                                      | Hg Control                                         | (6)                                        | (6)                      | N/A                        | N/A                     | N/A                                        | (6)                                        | N/A                                        | N/A                                        | (6)                                        |                                            | (6)                                        | (6)                 | (6)                 | (6)                 | (6)                 | (6)                 | N/A                                        |
|                                      | SO3 Control                                        | (7)                                        | (7)                      | N/A                        | N/A                     | N/A                                        | - (7)                                      | N/A                                        | N/A                                        |                                            | (7)                                        | - 71                                       | (7)                 | <sup>(7)</sup>      | (7)                 | (7)                 | (7)                 | N/A                                        |
|                                      | SO3 Control                                        | (8)                                        | (8)                      | (8)                        | (8)                     | (8)                                        | (8)                                        | (8)                                        | (8)                                        | (8)                                        | (8)                                        | (8)                                        | N/A                 | N/A                 | N/A                 | N/A                 | (8)                 | (8)                                        |
|                                      | SO3 Control                                        | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | (8)                 | - (8)               | (8)                 | (8)                 | N/A                 | N/A                                        |
| Existing Cold-Side Dry ESP           | PM Control                                         | N/A                                        | N/A                      | (9)                        | - (9)                   | - (9)                                      | N/A                                        | N/A                                        | N/A                                        | (9)                                        | - 0                                        | (9)                                        | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (9)                                        |
|                                      | Hg Control                                         | N/Λ                                        | N/A                      | (10)                       | - (10)                  | (10)                                       | Ν/Λ                                        | Ν/Λ                                        | N/A                                        |                                            | (10)                                       | (10)                                       | N/A                 | N/A                 | Ν/Λ                 | Ν/Λ                 | Ν/Λ                 | (10)                                       |
| New Cold-Side Dry ESP                | Dioxin/Furan Control                               | N/A<br>(9)                                 | N/A                      | (11)                       | (11)                    | <sup>(11)</sup>                            | N/A                                        | N/A                                        | N/A                                        | ***                                        | (11)                                       | <sup>(11)</sup>                            | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (1)                                        |
| New Cold-Slue Dry ESP                | PM Control                                         | (10)                                       | (10)                     | N/A                        | N/A                     | N/A                                        | N/A                                        | N/A<br>N/A                                 | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A                                        |
|                                      | Hg Control<br>Dioxin/Furan Control                 | (11)                                       | (1)                      | N/A<br>N/A                 | N/A<br>N/A              | N/A<br>N/A                                 | N/A<br>N/A                                 | N/A<br>N/A                                 | N/A                                        | N/A<br>N/A                                 | N/A<br>N/A                                 | N/A<br>N/A                                 | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A                                 |
| Existing Sorbent Injection           | SO <sub>3</sub> Control                            | N/A                                        | N/A                      | N/A (12)                   | N/A (12)                | N/A (12)                                   | N/A<br>N/A                                 | N/A (12)                                   | N/A (12)                                   | N/A<br>N/A                                 | N/A<br>N/A                                 | N/A<br>N/A                                 | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A (12)                                   |
| Existing borbent injection           | HCl Control                                        | N/A<br>N/A                                 | N/A<br>N/A               | IN/A<br>(13)               | IN/A<br>(13)            | IN/A (13)                                  | N/A N/A                                    | (13)                                       | IN/A (13)                                  | N/A<br>N/A                                 | N/A<br>N/A                                 | N/A<br>N/A                                 | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | (13)                                       |
|                                      | SO, Control                                        | N/A                                        | N/A                      | (14)                       | (14)                    | (14)                                       | M/A                                        | (14)                                       | (14)                                       | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (14)                                       |
| New Sorbent Injection                | SO3 Control                                        | N/A <sup>(12)</sup>                        | N/A (12)                 | N/A                        | N/A                     | N/A                                        | 93,51% (29)                                | NA                                         | N/A                                        | 93.24% <sup>(31)</sup>                     | 94.05% (33)                                | 94.12% <sup>(34)</sup>                     | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                 | N/A                 | N/A                                        |
| _                                    | HCl Control                                        | (13)                                       | - (13)                   | N/A                        | N/A                     | N/A                                        | (13)                                       | N/A                                        | N/A                                        | - (13)                                     | (13)                                       | (13)                                       | - (13)              | - (13)              | - (13)              | N/A                 | N/A                 | N/A                                        |
|                                      | SO <sub>2</sub> Control                            | (14)                                       | (14)                     | N/A                        | N/A                     | N/A                                        | - (14)                                     | N/A                                        | N/A                                        | (14)                                       | (14)                                       | (14)                                       | - (14)              | - (14)              | (14)                | N/A                 | N/A                 | N/A                                        |
| New PAC Injection                    | Hg Control                                         | 90% <sup>(15)</sup>                        | 90% <sup>(15)</sup>      | 90% <sup>(15)</sup>        | 90% <sup>(15)</sup>     | 90% <sup>(15)</sup>                        | 90°° <sup>(15)</sup>                       | 90% <sup>(15)</sup>                        | 90% <sup>(15)</sup>                        | 90% <sup>(15)</sup>                        | 90% <sup>(15)</sup>                        | 90% <sup>(15)</sup>                        | N/A <sup>(35)</sup>                        |
|                                      | Dioxin/Furan Control                               | (16)                                       | (16)                     | (16)                       | (16)                    | (16)                                       | (16)                                       | (16)                                       | (1.6)                                      | (16)                                       | (16)                                       | (16)                                       | - (16)              | - (16)              | (16)                | (16)                | (16)                | (16)                                       |
|                                      | SO3 Control                                        | (17)                                       | (17)                     | (17)                       | - (17)                  | (17)                                       | (17)                                       | (17)                                       | - (17)                                     | (17)                                       | (17)                                       | (17)                                       | - (17)              | - (17)              | (17)                | (17)                | - (17)              | (17)                                       |
| New PJFF                             | PM Control                                         | 99.66% <sup>(18)</sup>                     | 99.66% <sup>(18)</sup>   | 99.66% <sup>(18)</sup>     | 99.66% <sup>(18)</sup>  | 99.66% <sup>(18)</sup>                     | 99.66% <sup>(18)</sup>                     | 99.66% <sup>(18)</sup>                     | 99.66% <sup>(18)</sup>                     | 99.66% <sup>(18)</sup>                     | 99.66% <sup>(18)</sup>                     | 99.66% <sup>(18)</sup>                     | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                 | N/A                 | N/A <sup>(35)</sup>                        |
|                                      | HCl Control                                        | (19)                                       | (19)                     | (19)                       | (19)                    | (19)                                       | (19)                                       | (19)                                       | (19)                                       | (19)                                       | (19)                                       | (19)                                       | - (19)              | (19)                | (19)                | N/A                 | N/A                 | (19)                                       |
|                                      | Hg Control                                         | (20)                                       | (20)                     | (20)                       | (20)                    | (20)                                       | (20)                                       | (20)                                       | (20)                                       | (20)                                       | (20)                                       | (20)                                       | - (20)              | - (20)              | (20)                | N/A                 | N/A                 | (20)                                       |
|                                      | Dioxin/Furan Control                               | (21)                                       | - (21)                   | (21)                       | (21)                    | (21)                                       | (21)                                       | (21)                                       | - (21)                                     | - (21)                                     | (21)                                       | (21)                                       | - (21)              | - (21)              | (21)                | N/A                 | N/A                 | (21)                                       |
|                                      | SO <sub>3</sub> Control                            | (22)                                       | (22)                     | (az)                       | (22)                    | (22)                                       | (22)                                       | (22)                                       | - (22)                                     | (22)                                       | <sup>(22)</sup>                            | (22)                                       | - (22)              | - (22)              | (22)                | N/A                 | N/A                 | (22)                                       |
| Existing wFGD                        | SO <sub>2</sub> Control                            | N/A <sup>(12)</sup><br>N/A <sup>(12)</sup> | N/A <sup>(12)</sup>      | N/A <sup>(12)</sup>        | N/A<br>N/A              | N/A <sup>(12)</sup><br>N/A <sup>(12)</sup> | N/A<br>N/A          | N/A                 | N/A<br>N/A          | N/A                 | N/A<br>N/A          | N/A <sup>(12)</sup><br>N/A <sup>(12)</sup> |
|                                      | HCl Control<br>SO3 Control                         | N/A                                        | (24)                     | (24)                       | N/A<br>N/A              | N/A (24)                                   | N/A (24)                                   | (24)                                       | (24)                                       | N/A (24)                                   | N/A (24)                                   | (24)                                       | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | <sup>(24)</sup>                            |
|                                      | Hg Control                                         | (25)                                       | (25)                     | (25)                       | N/A<br>N/A              | (25)                                       | (25)                                       | (25)                                       | (25)                                       | (25)                                       | (25)                                       | (25)                                       | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | N/A<br>N/A          | (25)                                       |
| New WFGD                             | SO <sub>2</sub> Control                            | N/A                                        | N/A                      | N/A                        | 98% <sup>(27)</sup>     | N/A                                        | N/A (35)            | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                 | N/A                 | N/A                                        |
|                                      | HCl Control                                        | N/A                                        | N/A                      | N/A                        | 98.64% <sup>(23)</sup>  | N/A                                        | N/A <sup>(35)</sup> | N/A (35)            | N/A (35)            | N/A                 | N/A                 | N/A                                        |
|                                      | SO <sub>3</sub> Control                            | N/A                                        | N/A                      | N/A                        | (24)                    | N/A                                        | (24)                | - (24)              | - (24)              | N/A                 | N/A                 | N/A                                        |
|                                      | Hg Control                                         | N/A                                        | N/A                      | N/A                        | (25)                    | N/A                                        | - (25)              | - (25)              | (25)                | N/A                 | N/A                 | N/A                                        |
| New Semi-Dry Scrubber                | SO <sub>2</sub> Control                            | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                                        |
|                                      | HCl Control                                        | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                                        |
|                                      | SO3 Control                                        | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                                        |
|                                      | PM Control                                         | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                                        |
|                                      | Hg Control                                         | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | (20)                | (20)                | N/A                                        |
|                                      | Dioxin/Furan Control                               | N/A                                        | N/A                      | N/A                        | N/A                     | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                                        | N/A                 | N/A                 | N/A                 | (21)                | (21)                | N/A                                        |

168908

Notes: . Combustion control provides co-benefit for NOx removal. Percentage removal efficiency is not considered. 2. CO is an operational constraint which can be managed in optimization process. Neural networks may reduce CO to 0.1 lb/MBtu. Percentage removal efficiency can not be deter 3. Neural network provides co-benefit for PM removal by reducing the LOI content. 4. Neural network provides co-benefit for NO, removal. Percentage removal efficiency is not considered. 5. NO<sub>x</sub> removal efficiency of SCR is based on NO<sub>x</sub> inlet concentration of 0.3169 lb/MBtu and NO<sub>x</sub> outlet concentration of 0.139 lb/MBtu. 6. SCR provides co-benefit for Hg removal by increasing the oxidation of Hg. Percentage removal efficiency is not considered. 7. SCR increases the amount of  $SO_3$  content in the flue gas by oxidation of  $SO_2$ . 8. Air heater provides co-benefit for SO<sub>3</sub> removal. Percentage removal efficiency is not considered. 9. Cold-side dry ESP provides co-benefit for PM removal. Percentage removal efficiency is not considered. 10. Cold-side dry ESP provides co-benefit for Hg removal. Percentage removal efficiency is not considered. 11. Cold-side dry ESP provides co-benefit for dioxin/furan removal. Percentage removal efficiency can not be determined. 12. Not applicable for Phase II study. 13. Sorbent injection provides co-benefit for HCl removal. Percentage removal efficiency is not considered 14. Sorbent injection provides co-benefit for SO<sub>2</sub> removal. Percentage removal efficiency is not considered. 15. Hg removal efficiency for PAC injection is based on Hg inlet concentration of 10.71 lb/TBtu and Hg outlet concentration of 1.07 lb/TBtu 16. PAC injection may reduce dioxin/furan up to  $15 \times 10^{-18}$  lb/MBtu. Percentage removal efficiency can not be determined. 17. PAC injection provides co-benefit for SO<sub>3</sub> removal. Percentage removal efficiency is not considered. 18. PM removal efficiency for PJFF is based on PM inlet concentration of 8.746 lb/MBtu and PM outlet concentration of 0.03 lb/MBtu 19. PJFF provides co-benefit for HCl removal. Percentage removal efficiency is not considered. 20. PJFF provides co-benefit for Hg removal. Percentage removal efficiency is not considered. 21. PJFF provides co-benefit for dioxin/furan removal. Percentage removal efficiency can not be determined 22. PJFF provides co-benefit for  $SO_3$  removal. Percentage removal efficiency is not considered. 23. HCl removal efficiency for WFGD is based on HCl inlet concentration of 0.147 lb/MBtu and HCl outlet concentration of 0.002 lb/MBtu. 24. WFGD provides co-benefit for  $SO_3$  removal. Percentage removal efficiency is not considered. 25. WFGD provides co-benefit for Hg removal. Percentage removal efficiency is not considered. 26. NO<sub>x</sub> removal efficiency of SCR is based on NO<sub>x</sub> inlet concentration of 0.3139 lb/MBtu and NO<sub>x</sub> outlet concentration of 0.139 lb/MBtu. 27. SO<sub>2</sub> removal efficiency of WFGD is based on SO<sub>2</sub> inlet concentration of 6.0 lb/MBtu and SO<sub>2</sub> outlet concentration of 0.12 lb/MBtu. 28. NO<sub>x</sub> removal efficiency of SCR is based on NO<sub>x</sub> inlet concentration of 0.276 lb/MBtu and NO<sub>x</sub> outlet concentration of 0.041 lb/MBtu. 29. SO<sub>3</sub> removal efficiency for sorbent injection is based on SO<sub>3</sub> inlet concentration of 77 ppmvd and SO<sub>3</sub> outlet concentration of 5 ppmvd. 30. NO<sub>x</sub> removal efficiency of SCR is based on NO<sub>x</sub> inlet concentration of 0.4463 lb/MBtu and NO<sub>x</sub> outlet concentration of 0.156 lb/MBtu. 31. SO<sub>3</sub> removal efficiency for sorbent injection is based on SO<sub>3</sub> inlet concentration of 74 ppmvd and SO<sub>3</sub> outlet concentration of 5 ppmvd. 32. NO<sub>x</sub> removal efficiency of SCR is based on NO<sub>x</sub> inlet concentration of 0.4374 lb/MBtu and NO<sub>x</sub> outlet concentration of 0.156 lb/MBtu. 33. SO<sub>3</sub> removal efficiency for sorbent injection is based on SO<sub>3</sub> inlet concentration of 84 ppmvd and SO<sub>3</sub> outlet concentration of 5 ppmvd. 34. SO<sub>3</sub> removal efficiency for sorbent injection is based on SO<sub>3</sub> inlet concentration of 85 ppmvd and SO<sub>3</sub> outlet concentration of 5 ppmvd. 35. Final emission limit and equipment yet to be determined. Not part of Phase II study.

168908

| rmined. |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |
|         |  |  |

| From:        | Saunders, Eileen                                                                |
|--------------|---------------------------------------------------------------------------------|
| То:          | Billiter, Delbert                                                               |
| CC:          | Betz, Alex                                                                      |
| Sent:        | 10/28/2010 8:44:16 AM                                                           |
| Subject:     | FW: 168908. 41.0100 101027 Mill Creek Information Request - PDM Tables          |
| Attachments: | Environmental Compliance Proj quality data.xlsx; Table 1_04 Limestone Props.doc |

#### Delbert,

Alex Betz and I have been working with B&V on the Mill Creek portion of the Phase II Environmental Compliance Study. The attached Excel Spreadsheet was provided to B&V during Phase I. Is it ok to use that original information for Phase II or should we update them on the word document (Table 1-4)?

Also, the Bulk Density numbers in the second part of Table 1-4 are standard numbers that B&V uses. Should we allow them to continue with those numbers or should do we have new inputs for them?

In addition to the two attachments, please see the emails below for further details of their request.

I would appreciate any guidance you can give us.

Thank you,

Eileen

From: Crabtree, Jonathan D. [mailto:CrabtreeJD@bv.com]
Sent: Wednesday, October 27, 2010 7:01 PM
To: Saunders, Eileen; Betz, Alex
Cc: Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: 168908. 41.0100 101027 Mill Creek Information Request - PDM Tables

Eileen,

Since it is getting late in eastern time, I am responding by email. I listened to your voicemail that Tim forwarded me regarding Table 1-4: Limestone Properties. The response below will hopefully clarify any questions you had in regards to Table 1-4. Also, your email mentioned you had questions regarding Table 1-2. If so, please feel free to call me at your convenience tomorrow at 913-458-2403 or send me an email. I'll be in the office tomorrow from 8:30am - 6:30pm EST.

#### <u>Table 1-4:</u>

The top half of the table "Dry Basis, Percent by Weight" has two columns: "% Guaranteed" and "Nominal". I filled out the "% Guaranteed" column based on the attached spreadsheet provided during Phase I. In PDMs from past projects, we have had the "nominal" column for typical/expected values. The highlighted values are old values from a past PDM. If E.ON has numbers readily available to replace them, please update the table those values. Otherwise, we can just delete that half of the column for this phase of the project. Additionally, information that is shown as crossed out and highlighted are values that are typically included in our PDM table but have not yet been provided. If this information is available, please update the table or we will just leave them out for this phase of the project.

The bottom half of the table "Bulk Density Design basis" has only a "Nominal" column. The values highlighted are standard numbers that B&V uses for Limestone Bulk Density. If E.ON has their own values for these parameters, please update the table or else we will just use the standard numbers at this time.

Please let me know if you have any further questions. And as I mentioned before, if you would like to discuss another table or info request, please give me a call or send me an email.

Thanks,

## Jonathan D. Crabtree

Black & Veatch Corporation 11401 Lamar Avenue Overland Park, KS 66211 USA \* CrabtreeJD@bv.com ( (913) 458-2403

Building a World of Difference<sup>®</sup>

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Wednesday, October 27, 2010 4:29 PM
To: Crabtree, Jonathan D.; Betz, Alex
Cc: Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: RE: 168908. 41.0100 101012 Mill Creek Information Request from PDM

Jonathan,

I am working with Alex to complete Table 1-2 and I have a few clarifying questions. Would you please contact me at Ghent on 502-347-4023 sometime today or tomorrow morning? I also left Tim a voice mail detailing some of my questions.

Thanks,

Eileen

From: Crabtree, Jonathan D. [mailto:CrabtreeJD@bv.com]
Sent: Tuesday, October 12, 2010 5:33 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: 168908. 41.0100 101012 Mill Creek Information Request from PDM

Alex,

As you may have recently seen, there are tables in the Mill Creek Project Design Memorandum (PDM) that were requested to be filled in or confirmed by E.ON. In response to Eileen's comments, we would like to add these fill-in tables from the PDM to the Information Request, which will hopefully clarify some of the existing requests.

Attached are the following four word documents:

Table 1-2 - Design Basis Water Analysis - This information was previously requested on the Information Request under "3. Plant Data g. Water analyses and supply information." This table is an example of the kind of information we are looking for and in what form it will be placed in the PDM. (PRIORITY LVL 4)

Table 1-4 - Limestone Properties - This information was previously requested on the Information Request under "3. Plant Data o. Need current limestone quality analysis." From Phase I of this project, we had information that filled out the "%Guaranteed" column but are still interested if you have information that can fill in the "Nominal" column or any of the values under "Bulk Density Design Basis". I reviewed the limestone quality you uploaded on i-backup and if you prefer those values could be used to fill in the first two rows under the "Nominal" column. (PRIORITY LVL 2)

Table 1-11 and 1-12 - Electrical Design Data and Electrical Equipment and System Voltages - This information could not be filled in based on previously supplied electrical information. If possible, it would be helpful if these values could be filled in and confirmed by someone on site or in the T&D group. (PRIORITY LVL 4)

Table 1-14 (mislabeled in PDM as 1-11) - Load Model - Recent operating information will be helpful when performing economic analysis of the different equipment options. (PRIORITY LVL 4)

Feel free to fill out the tables in the attached word documents or provide the necessary data to fill in these tables, whichever is easier for you. These tables can be placed in i-Backup or emailed to us.

Let me know if you have any questions.

Thanks,

# Jonathan D. Crabtree

Black & Veatch Corporation 11401 Lamar Avenue Overland Park, KS 66211 USA \* CrabtreeJD@bv.com ( (913) 458-2403

Building a World of Difference<sup>®</sup>

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Tuesday, October 12, 2010 3:12 PM
To: Crabtree, Jonathan D.
Cc: Saunders, Eileen; Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: RE: 168908. 41.0100 101011 Mill Creek Information Request

Jonathan,

Sorry about forgetting the attachment yesterday. It should be attached this time.

We had already found one drawing on Unit 2 that was requested, so I am uploading it today. We will mark that one as being complete and if you find otherwise, please let me know.

We do have percent volume CO2 at the stack and I am in the process of getting that data (should be tomorrow). I am planning to get the year-to-date data, if you need more, let me know.

I'm not positive I can find testing results in those areas, but I would say they probably have been done before. I will try to find any test results I can.

I will get an uncorrupted version of "MC 3 SCR General Arrangt Plan Section E-20.pdf" uploaded tomorrow.

What address, and to whose attention, should the B&V Short Circuit Study be sent?

Thanks,

## Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Crabtree, Jonathan D. [mailto:CrabtreeJD@bv.com]
Sent: Monday, October 11, 2010 5:11 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Wehrly, M. R.; 168908 E.ON-AQC
Subject: 168908. 41.0100 101011 Mill Creek Information Request

Alex,

Thanks for the update. I believe your attachment did not make it on there with your email. Feel free to resend it or wait until your next update.

Regarding the plant arrangements, if the ones we requested are Unit 2 drawings, we already have clear copies of those and you do not need to rescan them. Unless you have additional Unit 1 plant arrangement drawings, we will assume we have everything we need and we can close that item.

Additionally, in response to the "Not measured" items on the data request (air heater leakage, precipitator leakage, and stack gas outlet oxygen percent) please provide information regarding the following (if available):

1) Do you have measurements of percent volume CO2 at the stack on any or all units?

2) Has the plant conducted any flue gas testing on any of the units at the air heater gas outlets and/or the cold-side ESPs? The type of information we would be looking for would again be percent volume O2 and/or CO2.

Lastly, in the priority 2 folder, the "MC 3 SCR General Arrangt Plan Section E-20.pdf" appears to be corrupted and we are unable to open it. If possible, please send another copy.

Thanks for your help,

### Jonathan D. Crabtree

Black & Veatch Corporation 11401 Lamar Avenue Overland Park, KS 66211 USA \* CrabtreeJD@bv.com ( (913) 458-2403

# Building a World of Difference®

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Monday, October 11, 2010 2:59 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101011 Mill Creek Information Request

M.R.,

Thanks for the feedback on these issues. I will get the AH info uploaded as soon as possible. We're looking for the prints you've listed below. We've found some, but they are not the latest revisions you've listed. Just for clarification, these prints you've listed are for Unit 2, not Unit 1.

Once again, the sheet is attached. There wasn't much that was added today, only 4 foundation prints under the Priority 2 folder.

Thanks,

## Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Monday, October 11, 2010 10:03 AM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: 168908. 41.0143 101011 Mill Creek Information Request

Alex,

Sorry for any confusion on the Unit 1 Plant arrangements.

There are six Unit 1 PA drawings that just fuzz out to the point you can't read the characters when you blow them up to readable size. It may just be bad files or poor copies of good files. The six drawings are:

 $\begin{array}{l} \mbox{F-663-253-16, -16A, \& 16B} & (drawings are actually numbered as F-663-253, shts 1 of 3, 2 of 3 \& 3 of 3) \\ \mbox{F-663-254-12, -12A, \& 12B} & (drawings are actually numbered as F-663-254, shts 1 of 3, 2 of 3 \& 3 of 3) \\ \end{array}$ 

Please do the best you can. If the originals are real light, they may never scan well.

I'll let you know if we need anything further on Limestone.

Thanks,

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Friday, October 08, 2010 2:19 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

Attached is the updated spreadsheet for today. There is some confusion on the Unit 1 Plant Arrangement Drawings. If possible, please list the drawing numbers of the prints that are unreadable or the file names and I will look for better copies of those prints.

Also, please check the limestone analysis file I uploaded to see if that is the information you're looking for.

Thanks,

## Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

### From: Betz, Alex

Sent: Thursday, October 07, 2010 3:18 PM
To: 'Wehrly, M. R.'
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

Attached is the updated spreadsheet for today. A lot of information has been added. We are having trouble finding "Original/Operating performance data" for the Air Heaters. We do have actual operating data, but are not sure if that's what you're looking for. Please advise on that item.

The Excess O2 spreadsheet shows the actual data in 4 hour averages for the year to date. If you need more data, please let me know.

Thanks,

## Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Wednesday, October 06, 2010 8:59 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

Alex, Thanks for the update. Send the study when you can. With the transformer nameplate pictures/drawings, we should be able to get started on the electrical review. I've forwarded the structural steel study information on to Monty and if we think it will be useful, we'll try to get it from our storage. M.R.

From: Betz, Alex [mailto:Alex.Betz@eon-us.com]
Sent: Wednesday, October 06, 2010 2:23 PM
To: Wehrly, M. R.
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: RE: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

M.R.,

I am in the process of getting you a copy of the study, but I doubt it will be to you by Friday.

The attached sheet shows everything that I've uploaded to the website. Notice that some of the items could not be found either because we don't measure them, can't find them, or they don't exist. For the MC3 FD Fan Curve and MC1 & MC2 ID Booster Fan Curves, please see the comments in the "Completed" column.

I did find a structural report on Unit 3 FGD from 1993 by B&V, but it does not look that helpful, especially since it's from 1993. The cover letter is attached which shows the B&V Project and File number for you to reference in the B&V files if you think it would be valuable.

Thanks,

#### Alex Betz

(502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

From: Wehrly, M. R. [mailto:WehrlyMR@bv.com]
Sent: Tuesday, October 05, 2010 10:22 PM
To: Betz, Alex
Cc: Saunders, Eileen; Hillman, Timothy M.; Bayless, James W. III (Jim); 168908 E.ON-AQC; Crabtree, Jonathan D.
Subject: 168908. 41.0143 101005 Mill Creek RE: B&V Short Circuit Study

Alex,

Thanks for finding this information. Yes we can still use SKM although we have a newer version and we'd have to update the data anyway. Our Ann Arbor office told us they have the SKM model disks also, so we can get them from them if we need to. Just a copy of the report would do it for now. Thanks, M.R.

From: Betz, Alex [mailto:Alex.Betz@eon-us.com] Sent: Tuesday, October 05, 2010 12:16 PM To: Wehrly, M. R. Cc: Saunders, Eileen; Hillman, Timothy M. Subject: B&V Short Circuit Study

M.R.,

I have located the short circuit study, but I also found out from the guy who has the study that he has a model in an SKM (PTW) format. I think I remember you mentioning that format during the conference call yesterday, but don't remember if you said you could use that or couldn't use that, so please let me know.

Thanks,

# Alex Betz

Mechanical Engineer II LG&E - Mill Creek Station 14660 Dixie Hwy Louisville, KY 40272 (502) 933-6602 Office (502) 217-2286 Fax (502) 817-3733 Cell

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

|          | A           | В             | С                | D           | E           | F           | G             | Н      |                     | J             | К               | L           | М           | N          | 0           |
|----------|-------------|---------------|------------------|-------------|-------------|-------------|---------------|--------|---------------------|---------------|-----------------|-------------|-------------|------------|-------------|
| 1        | E.ON U      | J.S. Cor      | porate Fu        | els         |             |             |               |        |                     |               |                 |             |             |            |             |
| 2        | Environ     | mental Co     | ompliance P      | roject - Co | oal Qua     | lity Da     | ta            |        |                     |               |                 |             |             |            |             |
| 3        | 5/3/10      |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 4        |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 5        |             |               |                  |             |             |             |               |        |                     |               |                 | Ultim       | ate         |            |             |
| -        |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
|          |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 6        | Coal Qua    | lity Averag   | e for 2009       | Moisture    | Ash AR      | Volatile AR | ixed Carbon A | BTU AR | Sulfur AR           | Alkalinity AF | Carbon AR       | lydrogen AF | litrogen AF | Oxygen ARI | uminum Oxic |
| 7        |             |               |                  | %           | %           | %           | %             | BTU/lb | %                   | mg/L          | %               | %           | %           | %          | %           |
| 8        |             | Brown Aver    | age              | 6.01        | 10.62       | 36.72       | 46.65         | 12,403 | 1.51                | 0.19          | 69.39           | 4.67        | 1.37        | 6.42       | 27.93       |
| 9        |             |               |                  | 10.00       |             |             |               |        | 2.44                |               | 100.00          |             |             |            |             |
| 10       | (           | Green River A | verage           | 10.55       | 8.60        | 36.71       | 44.15         | 11,827 | 2.36                | 0.21          | 66.00           | 4.46        | 1.34        | 6.69       | 19.54       |
| 11       |             | Cono Dun Av   |                  | 13.59       | 10.36       | 34.92       | 41.13         | 40.022 | 3.99<br><b>2.72</b> | 0.21          | 100.00<br>60.83 | 4.18        | 1.34        | 6.99       | 23.42       |
| 12<br>13 |             | Cane Run Av   | erage            | 13.59       | 10.30       | J4.9Z       | 41.13         | 10,933 | 4.97                | 0.21          | 100.00          | 4.10        | 1.34        | 0.99       | 23.42       |
| 14       |             | Ghent Aver    | 200              | 10.77       | 11.27       | 35.66       | 42.30         | 11,286 | 2.81                | 0.22          | 62.70           | 4.31        | 1.27        | 6.88       | 21.41       |
| 15       |             |               |                  | 10.17       | 11.21       | 33.00       | 42.50         | 11,200 | 4.98                | V.22          | 100.00          | 1,7,1       | 1.21        | 0.00       | 21.41       |
| 16       |             | Mill Creek Av | erage            | 11.43       | 11.36       | 35.68       | 41.54         | 11,115 | 3.02                | 0.23          | 61.67           | 4.22        | 1.28        | 7.01       | 20.89       |
| 17       |             |               |                  |             |             |             |               | ,      | 5.44                |               | 100.00          |             |             |            |             |
| 18       | Tr          | imble County  | Average          | 10.30       | 11.96       | 35.67       | 42.07         | 11,261 | 3.09                | 0.24          | 62.36           | 4.31        | 1.26        | 6.72       | 22.62       |
| 19       |             |               | _                |             |             |             |               |        | 5.48                |               | 100.00          |             |             |            |             |
| 20       |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 21       |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 22       | JTYPICAL    | /Average C    | uality for Futu  | ure Coals   |             |             |               |        |                     |               |                 |             |             |            |             |
|          |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
|          |             |               |                  |             |             |             |               |        |                     |               |                 |             |             |            |             |
| 23       | Ghent, Mill | Creek, Cane   | e Run, Trimble C | 11.00       | 12.00       | 36.00       | 42.00         | 11,200 | 3.36                | 0.22          | 61.21           | 4.28        | 1.27        | 6.89       | 21.69       |
| 24       |             |               |                  |             | 12100       |             |               | ,200   | 6.00                |               | 100.01          |             |             | 0.00       |             |
| 25       | Bro         | wn Low Su     | fur Coal         | 6.50        | 11.50       | 37.00       | 47.00         | 12,000 | 1.50                | 0.19          | 68.04           | 4.67        | 1.37        | 6.42       | 27.93       |
| 26       | 1           |               |                  |             | · · · · · · |             |               | _,     | 2.50                |               | 100.00          |             |             |            |             |
| 27       | 6           | reen River A  | Verage           | 10.50       | 9.00        | 37.00       | 44.00         | 11,600 | 2.60                | 0.21          | 65.41           | 4.46        | 1.34        | 6.69       | 19.45       |
| 27       |             |               | verage           | 10.30       | 3.00        | 57.00       | 44.00         | 11,000 | 4.48                | 0.21          | 100.00          | 4.40        | 1.54        | 0.09       | 13.43       |
| 29       |             | PRB for TC2   | Blend            | 28.00       | 7.00        | 36.00       | 30.00         | 8,500  | 0.60                | 0.40          | 48.00           | 3.53        | 0.86        | 12.01      | 18.00       |
| 30       |             |               |                  | 20.00       | 7.00        | 30.00       | 50.00         | 0,000  | 0.00                | 0.40          | 100.00          | 5.55        | 0.00        | 12.01      | 10.00       |
| L 30     | I           |               |                  |             |             |             |               |        |                     |               | 100.00          |             |             |            |             |

|          | Р          | Q           | R     | S    | Т    | U            | V             | W     | Х          | Y    | Z             | AA   | AB         | AC           | AD         | AE          |
|----------|------------|-------------|-------|------|------|--------------|---------------|-------|------------|------|---------------|------|------------|--------------|------------|-------------|
| 1        |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 2        |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 3        |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 4        |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 5        | 1          |             |       |      |      | Δ            | sh Analysis   |       |            |      |               |      |            |              |            |             |
|          |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 6        | arium Ovic | alojum Ovic |       |      |      | phorus Pento | otassium Ovid |       | odium Oxic |      | ulfur Triovia |      | Silica     | Undetermined | Antimony S | EArsonic As |
| 7        | %          |             | %     | %    | %    | %            | %             | %     | %          | %    |               | %    | 311Ca<br>% | %            | ppm        | ppm         |
| 8        | 0.13       | 1.40        | 12.63 | 0.84 | 0.03 | 0.35         | 2.21          | 51.11 | 0.33       | 0.15 | 1.09          | 1.55 | 77.53      | 0.25         | 0.76       |             |
| 9        |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 10       | 0.06       | 2.89        | 19.97 | 0.91 | 0.04 | 0.21         | 2.41          | 49.61 | 0.77       | 0.04 | 2.47          | 1.08 | 67.72      |              | 1.07       | 10          |
| 11       | 0.05       | 4.04        | 00.04 | 0.00 | 0.02 | 0.04         | 2.62          | 45.05 | 0.24       | 0.05 | 0.05          | 4.40 | 64 70      | 0.47         | 4.07       | 15          |
| 12<br>13 | 0.05       | 1.21        | 22.91 | 0.99 | 0.03 | 0.24         | 2.63          | 45.95 | 0.31       | 0.05 | 0.95          | 1.10 | 64.72      | 0.17         | 1.37       | 15          |
| 14       | 0.07       | 2.70        | 21.39 | 0.89 | 0.04 | 0.24         | 2.24          | 46.56 | 0.52       | 0.05 | 2.58          | 1.07 | 65.14      | 0.25         | 1.00       | 13          |
| 15       |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 16       | 0.08       | 3.41        | 21.84 | 0.92 | 0.04 | 0.27         | 2.37          | 45.26 | 0.48       | 0.04 | 3.36          | 1.00 | 63.44      | 0.04         | 1.12       | 12          |
| 17       |            | 0.53        | ~~~~~ |      |      |              |               | 45.00 | 0.45       | 0.00 |               | 4.04 |            |              |            | 40          |
| 18<br>19 | 0.08       | 2.57        | 22.23 | 0.92 | 0.04 | 0.29         | 2.39          | 45.09 | 0.45       | 0.06 | 2.24          | 1.01 | 63.70      |              | 0.94       | 13          |
| 20       |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 21       |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 22       |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
|          |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
|          |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 23       | 0.07       | 2.74        | 21.80 | 0.91 | 0.04 | 0.26         | 2.33          | 45.88 | 0.48       | 0.05 | 2.58          | 1.04 | 64.37      | 0.12         | 1.05       | 13          |
| 24       |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 25       | 0.13       | 1.40        | 12.63 | 0.84 | 0.03 | 0.35         | 2.21          | 51.11 | 0.33       | 0.15 | 1.09          | 1.55 | 77.53      | 0.25         | 0.76       | 21          |
| 26       |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 27       | 0.06       | 2.89        | 19.90 | 0.91 | 0.04 | 0.21         | 2.41          | 49.65 | 0.77       | 0.04 | 2.47          | 1.08 | 67.72      | 0.13         | 1.07       | 10          |
| 28       |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |
| 29       | 0.40       | 17.00       | 5.10  | 3.60 | 0.03 | 0.50         | 0.90          | 40.27 | 1.60       | 0.40 | 11.00         | 1.20 | 58.00      |              | 2.00       | 4           |
| 30       |            |             |       |      |      |              |               |       |            |      |               |      |            |              |            |             |

|          | AF         | AG          | AH           | Al           | AJ           | AK       | AL            | AM          | AN         | AO           | AP            | AQ          | AR       | AS |
|----------|------------|-------------|--------------|--------------|--------------|----------|---------------|-------------|------------|--------------|---------------|-------------|----------|----|
| 1        |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 2        |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 3        |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 4        |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 5        |            |             |              |              | Trac         | e Eleme  | nts           |             |            |              |               |             |          |    |
| 6        | Barium, Ba | Cadmium, Co | Chlorine, Cl | Chromium, Cr | Flourine, Fl | Lead, Pt | Magnesium, Mg | Mercury, Hç | Nickel, Ni | Selenium, Se | Strontium, Sı | Vanadium, V | Zinc, Zn | I  |
| 7        | ppm        | ppm         | ppm          | ppm          | ppm          | ppm      | ppm           | ppm         | ppm        | ppm          | ppm           | ppm         | ppm      |    |
| 8<br>9   | 115        | 0.08        | 863          | 20           | 85           | 8        | 547           | 0.12        | 15         | 4.73         | 135           | 31          | 14       |    |
| 9<br>10  | 49         | 0.30        | 1,845        | 17           | 71           | 11       | 509           | 0.10        | 14         | 1.93         | 30            | 40          | 50       |    |
| 11       |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 12       | 63         | 0.20        | 155          | 23           | 86           | 12       | 721           | 0.09        | 29         | 2.32         | 58            | 48          | 32       |    |
| 13<br>14 | 72         | 0.60        | 964          | 21           | 93           | 12       | 663           | 0.13        | 19         | 3.16         | 56            | 40          | 44       |    |
| 15       | 12         | 0.00        |              |              |              | 12       | 000           | 0.10        | 10         | 0.10         | 00            |             |          |    |
| 16       | 77         | 0.68        | 622          | 23           | 102          | 10       | 703           | 0.13        | 20         | 2.65         | 47            | 37          | 51       |    |
| 17<br>18 | 79         | 0.00        | 624          | 25           | 409          | 11       | 602           | 0.12        | 21         | 3.02         | 67            | 39          | 59       |    |
| 18       | 79         | 0.89        | 624          | 20           | 108          | - 11     | 693           | 0.12        | 21         | 3.02         | 07            | 39          | 28       |    |
| 20       |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 21       |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 22       |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
|          |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 23       | 74         | 0.65        | 1,600        | 23           | 98           | 11       | 684           | 0.12        | 20         | 2.94         | 56            | 40          | 48       |    |
| 24       |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 25       | 115        | 0.08        | 863          | 20           | 85           | 8        | 547           | 0.12        | 15         | 4.73         | 135           | 31          | 14       |    |
| 26       |            |             |              |              |              |          |               |             |            |              |               |             |          |    |
| 27       | 49         | 0.30        | 1,845        | 17           | 71           | 11       | 509           | 0.10        | 14         | 1.93         | 30            | 40          | 50       |    |
| 28       | 270        | 1.40        | 125          | 10           | 63           | 4        | 1,525         | 0.08        | 7          | 2.00         | 250           | 28          | 11       |    |
| 29<br>30 | 210        | 1.40        | 120          | 10           | 00           | 4        | 1,525         | 0.00        | 1          | 2.00         | 230           | 20          | 11       |    |

| 2 M<br>3 4<br>5 6<br>7 8<br>9 10                                                                      | imesto<br>Iill Cree | one Qua<br>ek, Trimb | l <b>ity</b><br>le Count | y and Gh     | ont                                    |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
|-------------------------------------------------------------------------------------------------------|---------------------|----------------------|--------------------------|--------------|----------------------------------------|------------------|----------|----------|-------|-------|------|---------|---------------|---------|----------------------------|---------|---------|---------|
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                 | 1ill Cree           | ek, Trimb            | le Count                 | y and Gh     | ont                                    |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 4<br>5<br>7<br>8<br>9<br>10                                                                           |                     |                      |                          |              | ent                                    |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 6<br>7<br>8<br>9<br>10                                                                                |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 6<br>7<br>8<br>9<br>10                                                                                |                     |                      |                          |              | C 4 C                                  |                  | L        | erren zi | * 1   |       |      |         |               |         |                            |         |         |         |
| 6<br>7<br>8<br>9<br>10                                                                                |                     |                      |                          | ş            | 6.1 <u>S</u>                           | <u>pecific</u>   | ations.  | The      | limes | stone | è de | elivere | d here        | under   | shall                      | conform | n to th | e folle |
| 8<br>9<br>10                                                                                          |                     |                      |                          |              |                                        | -                |          |          |       |       |      |         |               |         |                            |         |         |         |
| 9<br>10                                                                                               |                     |                      |                          | • ~          | -                                      |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 10                                                                                                    |                     |                      | sp                       | ecifica      | tions (                                | on a "d          | ry" bas  | is:      |       |       |      |         |               |         |                            |         |         |         |
|                                                                                                       |                     |                      |                          |              |                                        |                  | •        |          |       |       |      |         |               |         |                            |         |         |         |
| 11                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 12                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 13                                                                                                    |                     |                      |                          | Į.           | Active                                 | Ingred           | lient Pr | morti    | one   |       |      | (       | <u>%) Gu</u>  | arante  | ьđ                         |         |         |         |
| 15                                                                                                    |                     |                      |                          | <u>r</u>     | LOUIVO                                 | <u>III și Cu</u> |          | oporu    | ous   |       |      | 7       | <u>/0/ \u</u> | ananne  |                            |         |         |         |
| 12<br>13<br>14<br>15<br>16<br>17                                                                      |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
|                                                                                                       |                     |                      |                          | S            | urface                                 | Moist            | ure      |          |       |       |      | 7       | 0.0% M        | lavimi  | m                          |         |         |         |
| 18                                                                                                    |                     |                      |                          | 5            | 'HI.I.UVV                              | · LVENDEDE       | UL U     |          |       |       |      |         | •070 IV       | IGAIIII | 41.51                      |         |         |         |
| 19                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 20                                                                                                    |                     |                      |                          | C            | $aCO_3$                                |                  |          |          |       |       |      | G       | 0.0%          | Minim   | um *                       |         |         |         |
| 22                                                                                                    |                     |                      |                          | ~            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                  |          |          |       |       |      |         | 0.0703        |         | . <b>1</b> . 4. 8. 18. 19. |         |         |         |
| 18         19         20         21         22         23         24         25         26         27 |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 24                                                                                                    |                     |                      |                          | $\mathbb{N}$ | 4gCO <sub>3</sub>                      | p                |          |          |       |       |      | 6       | 5.0% M        | faxim   | m                          |         |         |         |
| 25                                                                                                    |                     |                      |                          |              | -8                                     | ,                |          |          |       |       |      |         |               |         | ****                       |         |         |         |
| 26                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 28                                                                                                    |                     |                      |                          | S            | $iO_2$                                 |                  |          |          |       |       |      | 3       | .5% N         | faxim   | m                          |         |         |         |
| 29                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         | www.c.wo.u    |         | ····                       |         |         |         |
| 28<br>29<br>30<br>31                                                                                  |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 31                                                                                                    |                     |                      |                          | F            | $e_2O_3$                               |                  |          |          |       |       |      | 1       | .5% M         | faxim   | ım                         |         |         |         |
| 32                                                                                                    |                     |                      |                          |              | J J.                                   |                  |          |          |       |       |      | -       |               |         |                            |         |         |         |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39                                                          |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 35                                                                                                    |                     |                      |                          | A            | $d_2O_3$                               |                  |          |          |       |       |      | 4       | .30%]         | Maxin   | num                        |         |         |         |
| 36                                                                                                    |                     |                      |                          |              | ~ /                                    |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 37                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 38                                                                                                    |                     |                      |                          | Ir           | nerts                                  |                  |          |          |       |       |      | 7       | 1.0% M        | faximı  | ım                         |         |         |         |
| 39                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 40<br>41                                                                                              |                     |                      |                          | 1.444        |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 42                                                                                                    |                     |                      |                          | F            | lourid                                 | e                |          |          |       |       |      | 5       | 600 PP        | М       |                            |         |         |         |
| 43                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 42<br>43<br>44<br>45<br>46<br>47                                                                      |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               | _       |                            |         |         |         |
| 45                                                                                                    |                     |                      |                          | C            | hloide                                 | 2S               |          |          |       |       |      | 5       | 50PPN         | М       |                            |         |         |         |
| 46                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |
| 4/                                                                                                    |                     |                      |                          | -            |                                        |                  | -        |          |       |       |      |         |               |         |                            |         |         |         |
| 48<br>49                                                                                              |                     |                      |                          | В            | ond W                                  | vork In          | dex      |          |       |       |      | 1       | 2 Max         | imum    |                            |         |         |         |
| 50                                                                                                    |                     |                      |                          |              |                                        |                  |          |          |       |       |      |         |               |         |                            |         |         |         |

|          | R     | S |
|----------|-------|---|
| 1        |       |   |
| 2        |       |   |
| 3        |       |   |
| 4        |       |   |
| 5        |       |   |
| 6        | owing |   |
| 6<br>7   |       |   |
| 8        |       |   |
| 9        |       |   |
| 10       |       |   |
| 11       |       |   |
| 12       |       |   |
| 13       |       |   |
| 14       |       |   |
| 15       |       |   |
| 16       |       |   |
| 17       |       |   |
| 18       |       |   |
| 19       |       |   |
| 20<br>21 |       |   |
| 22       |       |   |
| 22       |       |   |
| 24       |       |   |
| 25       |       |   |
| 26       |       |   |
| 27       |       |   |
| 28       |       |   |
| 29       |       |   |
| 30       |       |   |
| 31       |       |   |
| 32       |       |   |
| 33       |       |   |
| 34       |       |   |
| 35       |       |   |
| 36       |       |   |
| 37       |       |   |
| 38       |       |   |
| 39<br>40 |       |   |
| 40<br>41 |       |   |
| 41       |       |   |
| 43       |       |   |
| 44       |       |   |
| 45       |       |   |
| 46       |       |   |
| 47       |       |   |
| 48       |       |   |
| 49       |       |   |
| 50       |       |   |

|          | Α | В | С | D        | E        | F        | G       | Н       |          | J       | K      | L              | М       | N      | 0      | Р                    | Q       |
|----------|---|---|---|----------|----------|----------|---------|---------|----------|---------|--------|----------------|---------|--------|--------|----------------------|---------|
| 51       |   |   |   | .5.      | rimis in | u 11     | 1 19 19 | F. 3    |          |         | 3      | 4.1            |         |        | •      |                      | ~ ~ ~   |
| 52       |   |   |   | 1        | The S    | seller s | hall us | e its b | est ette | orts to | supply | <i>i</i> limes | stone c | ontain | mg a i | $\operatorname{nnm}$ | Im of 9 |
| 53       |   |   |   | C        | aCO3.    |          |         |         |          |         |        |                |         |        |        |                      |         |
| 54       |   |   |   | <b>L</b> | ac Og.   |          |         |         |          |         |        |                |         |        |        |                      |         |
| 55<br>56 |   |   |   |          |          |          |         |         |          |         |        |                |         |        |        |                      |         |
| 57       |   |   |   |          |          |          |         |         |          |         |        |                |         |        |        |                      | 1       |
| 58       |   |   | 1 | 1        | 1        | 1        | 1       | 1       | 1        |         | 1      | 1              | I       |        | I      | I                    | 1       |

|                                  | R     | S |
|----------------------------------|-------|---|
| 51                               | 0.001 |   |
| 52                               | 2.0%  |   |
| 53                               |       |   |
| 52<br>53<br>54<br>55<br>56<br>57 |       |   |
| 55                               |       |   |
| 56                               |       |   |
|                                  |       |   |
| 58                               |       |   |

|                                                                                  | A       | В       | С    | D              | E                 | F              | G                 | Н                             |              | J            | К            | L      | M       | N       | 0       | Р       | Q       |  |  |  |
|----------------------------------------------------------------------------------|---------|---------|------|----------------|-------------------|----------------|-------------------|-------------------------------|--------------|--------------|--------------|--------|---------|---------|---------|---------|---------|--|--|--|
| 1                                                                                | Limesto | one Qua | lity |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 2                                                                                | Brown   |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 3                                                                                |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 3<br>4<br>5                                                                      |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 5                                                                                |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 67                                                                               |         |         |      | S (            | 6.1 S             | pecific        | ations.           | The                           | limes        | stone d      | elivere      | d here | under : | shall ( | conform | n to th | e folle |  |  |  |
| 6<br>7<br>8<br>9<br>10                                                           |         |         |      | 0              | <u></u>           | •              |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 9                                                                                |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 10                                                                               |         |         | spe  | ecifica        | tions c           | m an ":        |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 11                                                                               |         |         | 1    |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 12                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 13                                                                               |         |         |      |                | Active            | Ingred         | C                 | %) Gu                         | arantee      | ed           |              |        |         |         |         |         |         |  |  |  |
| 14                                                                               |         |         |      |                |                   |                |                   | ก่างหนังหมู่ใหม่องกละเหมอะการ |              |              |              |        |         |         |         |         |         |  |  |  |
| 13<br>14<br>15<br>16<br>17                                                       |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 17                                                                               |         |         |      | Si             | urface            | Moist          | ure               |                               |              |              | 4            | .0% M  | laximu  | um      |         |         |         |  |  |  |
| 18                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 19                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 20                                                                               |         |         |      | C              | aCO <sub>3</sub>  |                |                   |                               |              |              | 9            | 2.0% I | Minim   | um      |         |         |         |  |  |  |
| 21                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 23                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 24                                                                               |         |         |      | $\mathbf{M}$   | fgCO <sub>3</sub> |                |                   |                               |              | 6            | $.0\%{ m M}$ | laximu | ım      |         |         |         |         |  |  |  |
| 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27                         |         |         |      |                | L                 |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 26                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 27                                                                               |         |         |      | Si             | iO <sub>2</sub>   |                |                   |                               |              |              | 3            | .5% M  | laximu  | m       |         |         |         |  |  |  |
| 28                                                                               |         |         |      |                | 2                 |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 30                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 31                                                                               |         |         |      | Fe             | $e_2O_3$          |                |                   |                               |              |              | 1.0% Maximum |        |         |         |         |         |         |  |  |  |
| 32                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 33                                                                               |         |         |      |                | ~                 |                | ~ ~ `             |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 34                                                                               |         |         |      | R              | $_2O_3(A$         | $1_{2}O_{3}+F$ | $e_2O_3$ )        |                               |              |              |              | 90% Tj | ypical  |         |         |         |         |  |  |  |
| 36                                                                               |         |         |      |                |                   |                | •                 |                               |              |              |              | _      |         |         |         |         |         |  |  |  |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41 |         |         |      | ~              |                   |                |                   |                               |              |              |              |        | r +     |         |         |         |         |  |  |  |
| 38                                                                               |         |         |      | S              |                   |                |                   |                               |              |              |              | 05% M  | laximu  | ım      |         |         |         |  |  |  |
| 39                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 40                                                                               |         |         |      | тэ             | 0                 |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 41                                                                               |         |         |      | $\mathbf{P}_2$ | 205               |                |                   |                               |              | .40% Maximum |              |        |         |         |         |         |         |  |  |  |
| 43                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 42<br>43<br>44<br>45<br>46<br>47                                                 |         |         |      |                | 11                | NT. A.         | 77 AS             |                               | 1.00/ 3.6    |              |              |        |         |         |         |         |         |  |  |  |
| 45                                                                               |         |         |      | A              | ікан (            | $Na_2O+$       | К <sub>2</sub> О) |                               | 1.0% Maximum |              |              |        |         |         |         |         |         |  |  |  |
| 46                                                                               |         |         |      |                |                   |                |                   |                               |              |              |              |        |         |         |         |         |         |  |  |  |
| 47                                                                               |         |         |      |                | 10                |                |                   |                               |              |              |              |        | r •     |         |         |         |         |  |  |  |
| 48<br>49                                                                         |         |         |      | A              | $1_{2}O_{3}$      |                |                   |                               |              |              | 1            | .5% M  | laximu  | m       |         |         |         |  |  |  |
| 49<br>50                                                                         |         | 1       |      |                | I                 | I              | I                 | I                             | I            |              | I.           | I      | I       | 1       | 1       | 1       | 1       |  |  |  |
| 50                                                                               |         |         |      | 1              | 1                 | 1              | 1                 | 1                             | 1            |              | 1            | 1      | 1       | 1       |         | 1       |         |  |  |  |

|          | R      | S |
|----------|--------|---|
| 4        |        | - |
| 1        |        |   |
| 2        |        |   |
| 3        |        |   |
| 4        |        |   |
| 5        |        |   |
| 6        | wing   |   |
| 7        | , , me |   |
| 8        |        |   |
| 9        |        |   |
| 10       |        |   |
| 11       |        |   |
| 12       |        |   |
| 13<br>14 |        |   |
| 14       |        |   |
| 15       |        |   |
| 16<br>17 |        |   |
| 17       |        |   |
| 18       |        |   |
| 19       |        |   |
| 20<br>21 |        |   |
| 21       |        |   |
| 22       |        |   |
| 23       |        |   |
| 24       |        |   |
| 25       |        |   |
| 26       |        |   |
| 27       |        |   |
| 28       |        |   |
| 29       |        |   |
| 30<br>31 |        |   |
| 31       |        |   |
| 32       |        |   |
| 33       |        |   |
| 34       |        |   |
| 35       |        |   |
| 36       |        |   |
| 37<br>38 |        |   |
| 38<br>39 |        |   |
| 39<br>40 |        |   |
| 40       |        |   |
| 41       |        |   |
| 42<br>43 |        |   |
| 43       |        |   |
| 44       |        |   |
| 45       |        |   |
| 40       |        |   |
| 48       |        |   |
| 49       |        |   |
| 50       |        |   |
| 00       |        |   |

|          | Α | В | С      | D  | E       | F      | G   |  | Н | I | J | k | (     | L       | М          | Ν | 0 | Р | Q |
|----------|---|---|--------|----|---------|--------|-----|--|---|---|---|---|-------|---------|------------|---|---|---|---|
| 51<br>52 |   | - |        | Īn | orte    |        |     |  |   |   |   |   | 21    | 09/ Ma  |            |   |   |   |   |
| 52       |   | + | Inerts |    |         |        |     |  |   |   |   |   |       | 0% Ma   | IXIIII U   |   |   |   |   |
| 54       |   | 1 |        |    |         |        |     |  |   |   |   |   |       |         |            |   |   |   |   |
| 55<br>56 |   | + |        | Fl | ouride  | :      |     |  |   |   |   |   | 1,    | 250 PP  | M          |   |   |   |   |
| 57       |   | 1 |        |    |         |        |     |  |   |   |   |   |       |         |            |   |   |   |   |
| 58<br>59 |   | + |        | CI | ıloride | ×C     |     |  |   |   |   |   | 25    | O PPM   | ſ          |   |   |   |   |
| 60       |   |   |        |    | 1101100 | 6      |     |  |   |   |   |   | ل مند |         | <b>L</b> . |   |   |   |   |
| 61<br>62 |   | - |        | -  |         |        | _   |  |   |   |   |   |       |         |            |   |   |   |   |
| 63       |   | - |        | Be | ond W   | ork In | dex |  |   |   |   |   | 10    | ).5 Maz | cimun      | 1 |   |   |   |
| 64       |   |   | 1      |    |         | 1      |     |  |   |   |   |   |       |         |            | 1 |   | 1 |   |

|                                                    | R | S |
|----------------------------------------------------|---|---|
| 51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59 |   |   |
| 52                                                 |   |   |
| 53                                                 |   |   |
| 54                                                 |   |   |
| 55                                                 |   |   |
| 56                                                 |   |   |
| 57                                                 |   |   |
| 58                                                 |   |   |
| 59                                                 |   |   |
| 60                                                 |   |   |
| 61                                                 |   |   |
| 62                                                 |   |   |
| 63                                                 |   |   |
| 62<br>63<br>64                                     |   |   |

| Table 1-4         Limestone Properties         [E.ON TO CONFIRM] |                      |                                               |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------|----------------------|-----------------------------------------------|--|--|--|--|--|--|--|--|--|
| Dry Basis, Percent (%) by Weight                                 | Nominal              | <u>% Guaranteed</u>                           |  |  |  |  |  |  |  |  |  |
| Calcium Carbonate, CaCO <sub>3</sub>                             | 94%                  | 90% minimum                                   |  |  |  |  |  |  |  |  |  |
| Magnesium Carbonate, MgCO <sub>3</sub>                           | 3%                   | 6% maximum<br><del>(1.5% max insoluble)</del> |  |  |  |  |  |  |  |  |  |
| Silica Dioxide, SiO <sub>2</sub>                                 | -                    | 3.5% maximum                                  |  |  |  |  |  |  |  |  |  |
| Ferric Oxide, Fe <sub>2</sub> O <sub>3</sub>                     | -                    | 1.5% maximum                                  |  |  |  |  |  |  |  |  |  |
| Aluminum Oxide, Al <sub>2</sub> O <sub>3</sub>                   | -                    | 4.3% maximum                                  |  |  |  |  |  |  |  |  |  |
| Total Inerts (non CaCO <sub>3</sub> )                            | 6%                   | 7% maximum                                    |  |  |  |  |  |  |  |  |  |
| Moisture                                                         | 5%                   | 12% maximum                                   |  |  |  |  |  |  |  |  |  |
| Bond Work Index (kWh/t)                                          | 12                   | 12 maximum<br>4 minimum                       |  |  |  |  |  |  |  |  |  |
| Surface Moisture                                                 | 12%                  | 7% maximum                                    |  |  |  |  |  |  |  |  |  |
| Fluorides                                                        | 500                  | ppm                                           |  |  |  |  |  |  |  |  |  |
| Chlorides                                                        | 550                  | ppm                                           |  |  |  |  |  |  |  |  |  |
| Bulk Density Design Basis                                        |                      |                                               |  |  |  |  |  |  |  |  |  |
| Volumentric Sizing                                               | 55                   | pcf                                           |  |  |  |  |  |  |  |  |  |
| Structural Loading                                               | 115                  | pcf                                           |  |  |  |  |  |  |  |  |  |
| Angle of Repose                                                  | 30                   | degree                                        |  |  |  |  |  |  |  |  |  |
| Surcharge Angle                                                  | 25                   | degree                                        |  |  |  |  |  |  |  |  |  |
| Maximum lump size                                                | 3⁄4                  | inch                                          |  |  |  |  |  |  |  |  |  |
| Data from Environmental Compliance Pro                           | ject Quality Data sp | preadsheet.                                   |  |  |  |  |  |  |  |  |  |

From:Lucas, Kyle J.To:Saunders, EileenCC:Wehrly, M. R.; Hillman, Timothy M.; Mahabaleshwarkar, Anand; Mehta, Pratik D.; Crabtree, Jonathan<br/>D.Sent:12/10/2010 2:47:23 PMSubject:RE: 168908 101210 - AQC Summary Table for 18 Coal-Fired UnitsAttachments:AQC Technologies.xls

Eileen, As requested.

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Ernaik Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

From: Lucas, Kyle J. Sent: Friday, December 10, 2010 10:56 AM To: Saunders, Eieen

Cc: Wehrly, M. R.; Hilman, Timothy M.; Mahabaleshwarkar, Anand; Mehta, Pratik D.; Crabtree, Jonathan D.

Subject: 168908 101210 - AQC Summary Table for 18 Coal-Fired Units

#### Eileen,

Attached, please a draft table containing a high level summary of the AQC technologies for the 18 coal-fired units. The table includes those pollutants from the Phase II project which we are targeting specific emissions reductions (illustrated in a percent removal). Also, the table includes a notation for certain AQC equipment which has the potential to provide a level of co-benefit of control of certain pollutants (removal efficiencies not provided as they have not been calculated for this project). Additionally, those Phase I units do not contain specific emission reductions as they are not part of the Phase II study. However, similar to those Phase II units, an indication has been made for co-benefit should technology be implemented for these units.

Please let me know if you have any questions.

Have a nice weekend, Regards, Kyle

> Kyle Lucas | Environmental Permitting Manager Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-9062 | Fax: (913) 458-9062 Emaik Iucaskj@bv.com

This communication is intended solely for the benefit of the intended addressee(s). It may contain privileged and/or confidential information. If this message is received in error by anyone other than the intended recipient(s), please delete this communication from all records, and advise the sender via electronic mail of the deletion.

|    | A                                      | В                       | С                      | D                      | E                            | F                      | G                      | Н                       | I                      | J                      |
|----|----------------------------------------|-------------------------|------------------------|------------------------|------------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|
| 1  | 1                                      |                         |                        |                        |                              |                        |                        | Phase II Study          |                        |                        |
| 2  |                                        |                         |                        |                        | noval Efficiency             |                        |                        |                         | val Efficiency         |                        |
| 3  | Equipment                              | Pollutant Control       | Unit 1                 | Unit 2                 | Unit 3                       | Unit 4                 | Unit 1                 | Unit 2                  | Unit 3                 | Unit 4                 |
| 4  | Boiler with Existing Low NOx Burners a | NO <sub>x</sub> Control | (1)                    | - (1)                  | N/A                          | N/A                    | N/A                    | (1)                     | - (1)                  | (1)                    |
| 5  | Boiler with Existing Low NOx Burners   | NO <sub>x</sub> Control | N/A                    | N/A                    | (1)                          | (1)                    | (1)                    | N/A                     | N/A                    | N/A                    |
| 6  | Boiler with Existing Over-Fire Air     | NO <sub>x</sub> Control | N/A                    | N/A                    | N/A                          | N/A                    | N/A                    | N/A                     | N/A                    | N/A                    |
| 7  | New Neural Networks                    | CO Control              | (2)                    | (2)                    | (2)                          | (2)                    | (2)                    | (2)                     | - (2)                  | (2)                    |
| 8  |                                        | PM Control              | - (3)                  | - (3)                  | (3)                          | (3)                    | - (3)                  | - (3)                   | - (3)                  | (3)                    |
| 9  |                                        | NO <sub>x</sub> Control | (4)                    | (4)                    | (4)                          | (4)                    | (4)                    | - (4)                   | (4)                    | (4)                    |
| 10 | Existing Hot-Side Dry ESP              | PM Control              | N/A                    | N/A                    | N/A                          | N/A                    | N/A                    | (9)                     | - (9)                  | <sup>(9)</sup>         |
| 11 |                                        | Hg Control              | N/A                    | N/A                    | N/A                          | N/A                    | N/A                    | (10)                    | (10)                   | (10)                   |
| 12 |                                        | Dioxin/Furan Control    | N/A                    | N/A                    | N/A                          | N/A                    | N/A                    | (11)                    | (11)                   | (11)                   |
| 13 | Existing SCR                           | NO <sub>x</sub> Control | N/A                    | N/A                    | N/A (12)                     | N/A <sup>(12)</sup>    | N/A (12)               | N/A                     | N/A (12)               | N/A <sup>(12)</sup>    |
| 14 |                                        | Hg Control              | N/ $\Lambda$           | $N/\Lambda$            | (6)                          | (6)                    | (6)                    | N/Λ                     | - (6)                  | (6)                    |
| 15 |                                        | SO3 Control             | N/A                    | N/A                    | (7)                          | (7)                    | (7)                    | N/A                     | - (7)                  | (7)                    |
| 16 | New SCR                                | NO <sub>x</sub> Control | 56.14% <sup>(5)</sup>  | 55.72% <sup>(26)</sup> | N/A                          | N/A                    | N/A                    | 85.14% (28)             | N/A                    | N/A                    |
| 17 |                                        | Hg Control              | (6)                    | (6)                    | N/A                          | N/A                    | N/A                    | (6)                     | N/A                    | N/A                    |
| 18 |                                        | SO3 Control             | - 7                    | (7)                    | N/A                          | N/A                    | N/A                    | - (7)                   | N/A                    | N/A                    |
| 19 | Existing Air Heater                    | SO3 Control             | (8)                    | (8)                    | (8)                          | (8)                    | (8)                    | (8)                     | - (8)                  | (8)                    |
| 20 | New Air Heater                         | SO3 Control             | N/A                    | N/A                    | N/A                          | N/A                    | N/A                    | N/A                     | N/A                    | N/A                    |
| 21 | Existing Cold-Side Dry ESP             | PM Control              | N/A                    | N/A                    | <sup>(9)</sup>               | (9)                    | <sup>(9)</sup>         | N/A                     | N/A                    | N/A                    |
| 22 |                                        | Hg Control              | N/A                    | N/A                    | (10)                         | (10)                   | (10)                   | N/A                     | N/A                    | NA                     |
| 23 |                                        | Dioxin/Furan Control    | N/A                    | N/A                    | (11)                         | (11)                   | (11)                   | N/A                     | NYA                    | N/A                    |
| 24 | New Cold-Side Dry ESP                  | PM Control              | <sup>(9)</sup>         | <sup>(9)</sup>         | N/A                          | N/A                    | N/A                    | N/A 🧹                   | NA \                   | A A                    |
| 25 |                                        | Hg Control              | (10)                   | (10)                   | N/A                          | N/A                    | N/A                    | N/A                     | T N/A                  | NA                     |
| 26 |                                        | Dioxin/Furan Control    | (11)                   | - (11)                 | N/A                          | N/A                    | N/A                    | N/A                     | N/A                    | N/A                    |
| 27 | Existing Sorbent Injection             | SO3 Control             | N/A                    | N/A                    | N/A (12)                     | N/A <sup>(12)</sup>    | N/A (12)               | N(A \                   | N/A <sup>(12)</sup>    | N/A (NZ                |
| 28 |                                        | HCl Control             | N/A                    | N/A                    | (13)                         | (13)                   | (£1) <u>_</u>          | N/A                     | (13)                   | (13)                   |
| 29 |                                        | SO <sub>2</sub> Control | N/A                    | N/A                    | (14)                         | (14)                   |                        | N/A                     | \ <sup>(14)</sup>      | (14)                   |
| 30 | New Sorbent Injection                  | SO3 Control             | N/A (12)               | N/A (12)               | N/A                          | N/A                    | N/A                    | (29)                    | N/A                    | N/A                    |
| 31 | 1                                      | HCl Control             | (13)                   | (13)                   | N/A                          | N/A                    | $N_{A-1}$              | (13)                    | N/A                    | N/A                    |
| 32 |                                        | SO <sub>2</sub> Control | (14)                   | - The                  | N/A                          | N/A                    | N/A                    | (14)                    | N/A                    | N/A                    |
| 33 | New PAC Injection                      | Hg Control              | 90% <sup>(15)</sup>    | 90% (15)               | <b>5</b> 90% <sup>(15)</sup> | 90% <sup>(15)</sup>    | 90% <sup>(15)</sup>    | 90%(15)                 | 90% <sup>(15)</sup>    | 90% <sup>(15)</sup>    |
| 34 | 1                                      | Dioxin/Furan Control    | (16)                   | (M)                    | (16)                         | 16)                    | (16)                   | (16)                    | (16)                   | (16)                   |
| 35 |                                        | SO3 Control             | (17)                   |                        | (17)                         | (17)                   | (17)                   | <b></b> <sup>(17)</sup> | (17)                   | (17)                   |
| 36 | New PJFF                               | PM Control              | 99.66% <sup>(18)</sup> | 99.66% <sup>(18)</sup> | \99.66% <sup>(18)</sup>      | 99.66% <sup>(18)</sup> | 99.66% <sup>(18)</sup> | 99.66% <sup>(18)</sup>  | 99.66% <sup>(18)</sup> | 99.66% <sup>(18)</sup> |
| 37 | 1                                      | HCl-Control             | <u>(19)</u>            | F-(19)                 | \ <sup>(19)</sup>            | (19)                   | (19)                   | <b></b> <sup>(19)</sup> | (19)                   | (19)                   |
| 38 |                                        | Hg Controt              | - 20)                  | (20)                   |                              | (20)                   | (20)                   | (20)                    | (20)                   | (20)                   |

|    | к                       | L                      | м                      | N                   | 0                   | Р                   | Q                   | R                   | S                   | Т          |
|----|-------------------------|------------------------|------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------|
| 1  | ·                       |                        |                        |                     |                     | Pha                 | se I Study          |                     |                     |            |
| 2  | Brow                    | n Removal Effic        | ciency                 | Cane F              | tun Removal Ef      | ficiency            | Green River Re      | moval Efficienc     | County Removal      | Efficiency |
| 3  | Unit 1                  | Unit 2                 | Unit 3                 | Unit 4              | Unit 5              | Unit 6              | Unit 3              | Unit 4              | Unit 1              |            |
| 4  | N/A                     | (1)                    | - (1)                  | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (1)                 |            |
| 5  | (1)                     | N/A                    | N/A                    | (1)                 | _ (1)               | N/A                 | (1)                 | (1)                 | N/A                 |            |
| 6  | N/A                     | N/A                    | N/A                    | N/A                 | N/A                 | (1)                 | N/A                 | N/A                 | N/A                 |            |
| 7  | (2)                     | (2)                    | (2)                    | (2)                 | _ (2)               | (2)                 | (2)                 | (2)                 | - (2)               |            |
| 8  | (3)                     | (3)                    | - (3)                  | - (3)               | _ (3)               | - (3)               | Λ - <sup>(3)</sup>  | (3)                 | (3)                 |            |
| 9  | (4)                     | (4)                    | (4)                    | (4)                 | _ (4)               | -9                  | (4)                 | (4)                 | (4)                 |            |
| 10 | N/A                     | N/A                    | N/A                    | N/A                 | N/A                 | <u> </u>            | N/A                 | (9)                 | N/A                 |            |
| 11 | N/A                     | N/A                    | N/A                    | N/A                 | D#A                 |                     | N/A                 | (10)                | N/A                 |            |
| 12 | N/A                     | N/A                    | N/A                    | N/A                 | √ N/A               | / W/A/              | N N/A               | (11)                | N/A                 |            |
| 13 | N/A                     | N/A                    | N/A                    | ANA /               | N/A                 | \\N} <b>\\</b> \\   | . Ŋ∕A               | N/A                 | N/A <sup>(12)</sup> |            |
| 14 | N/A                     | Ν/Λ                    | N/A                    | \N/A                | $\sqrt{N/\Lambda}$  |                     | \ NA                | Ν/Λ                 | (6)                 |            |
| 15 | N/A                     | N/A                    | M/A                    | N/A                 | N/A                 | NXA \               | A.V.A               | N/A                 | (7)                 |            |
| 16 | 65.04% <sup>(30)</sup>  | 64.33% (32)            | N/A (1/2)              | N/N (35)            | N/A (35)            | N/A (30)            | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                 |            |
| 17 | (6)                     |                        | (6)                    | (6)                 | / <i>F</i> @/       | (6)                 | (6)                 | (6)                 | N/A                 |            |
| 18 | - (7) 🧹                 |                        |                        | <u> </u>            |                     | (7)                 | <sup>(7)</sup>      | <sup>(7)</sup>      | N/A                 |            |
| 19 | (8)                     | \ <u>\</u>             | (8)                    | N/A                 | LAHA                | N/A                 | N/A                 | (8)                 | (8)                 |            |
| 20 | ŇĄ                      | \ MA /                 | N/A                    | 7 (8)               | - (8)               | (8)                 | (8)                 | N/A                 | N/A                 |            |
| 21 | (9)                     | \ <sup>®</sup>         | \ <sup>(9)</sup>       | ) N/A               | N/A                 | N/A                 | N/A                 | N/A                 | <sup>(9)</sup>      |            |
| 22 |                         | \ <sup>(1</sup> 0)     | (10)                   | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (10)                |            |
| 23 | \\ <sup>(11)</sup>      | $-f_{\rm m}/$          |                        | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (11)                |            |
| 24 | N/A                     | NA                     | N/A                    | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 |            |
| 25 | N/A                     | N/A                    | N/A                    | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 |            |
| 26 | N/A                     | N/A                    | N/A                    | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 |            |
| 27 | $N/\Lambda$             | N/A                    | N/A                    | N/A                 | $N/\Lambda$         | N/A                 | N/A                 | N/A                 | N/A (12)            |            |
| 28 | N/A                     | N/A                    | N/A                    | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (13)                |            |
| 29 | N/A                     | N/A                    | N/A                    | N/A                 | N/A                 | N/A                 | .N/A                | N/A                 | (14)                |            |
| 30 | 93.24% <sup>(31)</sup>  | 94.05% <sup>(33)</sup> | 94.12% <sup>(34)</sup> | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                 | N/A                 | N/A                 |            |
| 31 | (13)                    | (13)                   | (13)                   | (13)                | (13)                | (13)                | N/A                 | N/A                 | N/A                 |            |
| 32 | (14)                    | (14)                   | (14)                   | (14)                | (14)                | (14)                | N/A                 | N/A                 | N/A                 |            |
| 33 | 90% <sup>(15)</sup>     | 90% <sup>(15)</sup>    | 90% <sup>(15)</sup>    | N/A <sup>(35)</sup> |            |
| 34 | (16)                    | (16)                   | (16)                   | (16)                | (16)                | (16)                | (16)                | (16)                | (16)                |            |
| 35 | <b></b> <sup>(17)</sup> | - (17)                 | <sup>(17)</sup>        | (17)                | (17)                | (17)                | - (17)              | (17)                | (17)                |            |
| 36 | 99.66% <sup>(18)</sup>  | 99.66% <sup>(18)</sup> | 99.66% <sup>(18)</sup> | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                 | N/A                 | N/A <sup>(35)</sup> |            |
| 37 | (19)                    | (19)                   | <sup>(19)</sup>        | (19)                | (19)                | (19)                | N/A                 | N/A                 | (19)                |            |
| 38 | (20)                    | (20)                   | (20)                   | (20)                | (20)                | (20)                | N/A                 | N/A                 | (20)                |            |

|    | A                     | В                    | С        | D          | E        | F                      | G        | Н        | I        | J               |
|----|-----------------------|----------------------|----------|------------|----------|------------------------|----------|----------|----------|-----------------|
| 39 |                       | Dioxin/Furan Control | Let \    | (21)       | (21)     | (21)                   | (21)     | (21)     | - (21)   | <sup>(21)</sup> |
| 40 |                       | SO3 Control          | (22)     | (1-2-(22)) | (22)     | (22)                   | (22)     | (22)     | (22)     | (22)            |
| 41 | Existing WFGD         | SP2 Control          | N/A (12) | N/A (12)   | N/A (12) | N/A                    | N/A (12) | N/A (12) | N/A (12) | N/A (12)        |
| 42 |                       | HC1 Control          | 12)      | N/A (12)   | N/A (12) | N/A                    | N/A (12) | N/A (12) | N/A (12) | N/A (12)        |
| 43 |                       | \$O₃)Control \       | - (24)   | (24)       | - (24)   | N/A                    | (24)     | (24)     | - (24)   | (24)            |
| 44 |                       | Hg Control           | - (25)   | (25)       | (25)     | N/A                    | (25)     | (25)     | - (25)   | (25)            |
| 45 | New WFGD              | SO2 Control          | N/A      | N/A        | N/A      | 98% <sup>(27)</sup>    | N/A      | N/A      | N/A      | N/A             |
| 46 |                       | HCl Control          | N/A      | N/A        | N/A      | 98.64% <sup>(23)</sup> | N/A      | N/A      | N/A      | N/A             |
| 47 |                       | SO3 Control          | N/A      | N/A        | N/A      | (24)                   | N/A      | N/A      | N/A      | N/A             |
| 48 |                       | Hg Control           | N/A      | N/A        | N/A      | (25)                   | N/A      | N/A      | N/A      | N/A             |
| 49 | New Semi-Dry Scrubber | SO2 Control          | N/A      | N/A        | N/A      | N/A                    | N/A      | N/A      | N/A      | N/A             |
| 50 |                       | HCl Control          | N/A      | N/A        | N/A      | N/A                    | N/A      | N/A      | N/A      | N/A             |
| 51 |                       | SO3 Control          | N/A      | N/A        | N/A      | N/A                    | N/A      | N/A      | N/A      | N/A             |
| 52 |                       | PM Control           | N/A      | N/A        | N/A      | N/A                    | N/A      | N/A      | N/A      | N/A             |
| 53 |                       | Hg Control           | N/A      | N/A        | N/A      | N/A                    | N/A      | N/A      | N/A      | N/A             |
| 54 |                       | Dioxin/Furan Control | N/A      | N/A        | N/A      | N/A                    | N/A      | N/A      | N/A      | N/A             |

|    | К        | L        | M        | N                   | 0                   | Р                   | Q                   | R                   | S        | Т |
|----|----------|----------|----------|---------------------|---------------------|---------------------|---------------------|---------------------|----------|---|
| 39 | (21)     | (21)     | (21)     | (21)                | (21)                | (21)                | N/A                 | N/A                 | (21)     |   |
| 40 | (22)     | (22)     | (22)     | (22)                | (22)                | (22)                | N/A                 | N/A                 | (22)     |   |
| 41 | N/A (12) | N/A (12) | N/A (12) | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A (12) |   |
| 42 | N/A (12) | N/A (12) | N/A (12) | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | N/A (12) |   |
| 43 | - (24)   | (24)     | (24)     | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (24)     |   |
| 44 | (25)     | (25)     | (2.5)    | N/A                 | N/A                 | N/A                 | N/A                 | N/A                 | (2.5)    |   |
| 45 | N/A      | N/A      | N/A      | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                 | N/A                 | N/A      |   |
| 46 | N/A      | N/A      | N/A      | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A                 | N/A                 | N/A      |   |
| 47 | N/A      | N/A      | N/A      | (24)                | (24)                | (24)                | N/A                 | N/A                 | N/A      |   |
| 48 | N/A      | N/A      | N/A      | (25)                | (25)                | (25)                | N/A                 | N/A                 | N/A      |   |
| 49 | N/A      | N/A      | N/A      | N/A                 | N/A                 | N/A                 | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A      |   |
| 50 | N/A      | N/A      | N/A      | N/A                 | N/A                 | N/A                 | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A      |   |
| 51 | N/A      | N/A      | N/A      | N/A                 | N/A                 | N/A                 | N/A <sup>(35)</sup> | N/A <sup>(35)</sup> | N/A      |   |
| 52 | N/A      | N/A      | N/A      | N/A                 | N/A                 | N/A                 | N/A <sup>(35)</sup> | N/A (35)            | N/A      |   |
| 53 | N/A      | N/A      | N/A      | N/A                 | N/A                 | N/A                 | - (20)              | (20)                | N/A      |   |
| 54 | N/A      | N/A      | N/A      | N/A                 | N/A                 | N/A                 | - (21)              | (21)                | N/A      |   |

|    | Α                                                                                                              | В                            | С                      | D              | E           | F                    | G             | Н                        | 1           | J            |
|----|----------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|----------------|-------------|----------------------|---------------|--------------------------|-------------|--------------|
| 55 | Notes:                                                                                                         |                              |                        |                |             |                      |               |                          |             |              |
| 56 | 1. Combustion control pr                                                                                       |                              |                        |                | 0           |                      | 2             |                          |             |              |
|    | 2. CO is an operational co                                                                                     |                              |                        |                | A           |                      |               | works may                | reduce C    | O to 0.1 lb  |
|    | 3. Neural network provid                                                                                       |                              |                        |                |             |                      |               |                          |             |              |
| 59 | 4. Neural network provid                                                                                       | es co-benefit fo             | r NO <sub>x</sub> rem  | oval. Perc     | entage rem  | ioval effici         | ency is not   | considere                | d.          |              |
| 60 | 5. $NO_x$ removal efficiency                                                                                   | y of SCR is base             | ed on $NO_x$           | inlet conc     | entration c | of 0.3169 ll         | o/MBtu an     | d NO $_{\rm x}$ outl     | et concent  | ration of 0  |
| 61 | 6. SCR provides co-bene:                                                                                       | fit for Hg remov             | al by incre            | easing the     | oxidation o | of Hg. Perc          | entage rer    | noval effic              | iency is no | t considere  |
| 62 | 7. SCR increases the amo                                                                                       | ount of SO <sub>3</sub> con- | tent in the            | flue gas by    | y oxidation | of SO <sub>2</sub> . |               |                          |             |              |
| 63 | 8. Air heater provides co-                                                                                     | benefit for SO <sub>3</sub>  | removal.               | Percentage     | e removal e | efficiency i         | s not consi   | dered.                   |             |              |
| 64 | 9. Cold-side dry ESP pro                                                                                       | vides co-benefi              | t for PM r             | emoval. Pe     | ercentage r | emoval eff           | ficiency is a | not conside              | ered.       |              |
|    | 10. Cold-side dry ESP pro                                                                                      |                              |                        |                |             |                      |               |                          |             |              |
| 66 | 11. Cold-side dry ESP pro                                                                                      | ovides co-benef              | it for diox            | in/furan re    | moval. Per  | centage re           | moval effi    | ciency can               | not be det  | ermined.     |
|    | 12. Not applicable for Ph                                                                                      |                              |                        |                |             |                      |               |                          |             | N T          |
|    | 68 13. Sorbent injection provides co-benefit for HCl removal. Percentage removal efficiency is not considered. |                              |                        |                |             |                      |               |                          |             |              |
| _  | 14. Sorbent injection prov                                                                                     |                              |                        |                |             |                      |               |                          |             |              |
|    | 15. Hg removal efficiency                                                                                      |                              |                        |                |             |                      | 1             | 1 1 1                    |             |              |
| 71 | 16. PAC injection may re                                                                                       |                              |                        |                |             | -                    |               | - <u>\</u> - <u>\</u> -\ |             | termined.    |
| 72 | 17. PAC injection provid                                                                                       | es co-benefit fo             | r SO <sub>3</sub> remo | oval. Perce    | entage rem  | oval efficie         | ency is not   | considered               |             |              |
|    | 18. PM removal efficienc                                                                                       | •                            |                        |                |             |                      | - + +         | - + + +                  | t concentra | ition of 0.0 |
|    | 19. PJFF provides co-ben                                                                                       |                              |                        |                |             |                      |               |                          |             |              |
|    | 20. PJFF provides co-ben                                                                                       |                              |                        |                |             |                      |               |                          |             |              |
|    | 21. PJFF provides co-ben                                                                                       |                              |                        |                |             |                      |               |                          | nined.      |              |
|    | 22. PJFF provides co-ben                                                                                       |                              |                        |                |             |                      |               |                          |             |              |
|    | 23. HCl removal efficient                                                                                      |                              |                        |                |             |                      |               |                          | utlet conce | entration o  |
|    | 24. WFGD provides co-b                                                                                         |                              |                        |                |             |                      |               |                          |             |              |
|    | 25. WFGD provides-co-b                                                                                         |                              |                        |                |             |                      |               |                          |             |              |
|    | 26. NO <sub>x</sub> removal efficien                                                                           |                              |                        | /              |             |                      |               |                          |             |              |
| 82 | 27. SO2 removal efficience                                                                                     | cy of WEGD is                | based on S             | $O_2$ inlet co | oncentratio | n of 6.0 lb          | /MBtu and     | l SO <sub>2</sub> outle  | t concentra | ation of 0.1 |

| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    | K                   | L                             | М           | N                   | 0          | Р         | Q | R | S | Т |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|-------------------------------|-------------|---------------------|------------|-----------|---|---|---|---|
| 57       MBtu. Percentage removal efficiency can not be determined.       58         58       59       50         60       139 lb/MBtu.       50         61       139 lb/MBtu.       50         62       50       50         63       50       50         64       50       50         65       50       50         66       50       50         67       50       50         68       50       50         69       50       50         70       51       50         71       51       50         72       51       50         73       31b/MBtu.       50         74       51       50         75       51       50         76       51       50         77       51       50         78       50       50         79       51       50         81       51       50         71       51       50         71       51       50         78       51       50         71       50 <t< td=""><td>55</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55 |                     |                               |             |                     |            |           |   |   |   |   |
| 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                     |                               |             |                     |            |           |   |   |   |   |
| 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57 | MBtu. Per           | rcentage re                   | emoval effi | ciency can          | not be det | termined. |   |   |   |   |
| 60       139 lb/MBtu.         61       d.         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58 |                     |                               |             |                     |            | $\neg$ [] |   |   |   |   |
| 61 bd.       62         63       64         65       66         66       67         68       68         69       70 n of 1.07 lb/TBtu.         70 n of 1.07 lb/TBtu.       71         72       73 3 lb/MBtu.         74       74         75       68         76       71         77       74         78       79         80       713 9 lb/MBtu.         78       714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59 |                     |                               |             |                     |            |           |   |   |   |   |
| 62       63       64         64       65       66         66       66       66         67       68       68         68       68       68         69       68       68         70       10 f 1.07 lb/TBtu.       71         71       71       71         72       73       3 lb/MBtu.         74       74       71         75       76       71         77       77       71         78       70.002 lb/MBtu.       71         79       72       73         80       73       73         81       73       73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                     | Btu.                          |             | 75                  |            | / /       |   |   |   |   |
| 63       64       65         66       66       66         67       66       66         68       68       68         69       69       68         70       1 of 1.07 lb/TBtu.       71         71       71       71         72       73       3 lb/MBtu.         74       74       71         75       76       71         77       77       71         78       70.002 lb/MBtu.       72         80       69       60         81       0.139 lb/MBtu.       72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61 | ed.                 |                               | 5           | 1511                |            |           | \ |   |   |   |
| 64     65       66     66       67     68       69     69       70 h of 1.07 lb/TBtu.     68       71     71       72     71       73 3 lb/MBtu.     71       74     71       75     71       76     71       77     71       78 f 0.002 lb/MBtu.     71       79     60       80     60       81 0.139 lb/MBtu.     60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62 |                     |                               |             |                     |            |           |   |   |   |   |
| 65       66       67         67       68       68         68       69       68         70       of 1.07 lb/TBtu.       68         71       71       71         72       71       71         73       3 lb/MBtu.       71         74       72       71         75       72       71         76       71       72         77       73       74         78       0.002 lb/MBtu.       73         79       74       74         79       73       74         79       74       74         79       73       74         79       74       75         79       74       74         79       74       75         79       74       74         79       74       75         79       74       75         71       74       75         73       74       75         74       75       75         77       75       75         78       76       76         79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63 |                     |                               | $\Box$      | $\land \land \land$ |            |           |   |   |   |   |
| 66       67       68       69       68       69       69       69       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60 <td< td=""><td>64</td><td></td><td>1 /</td><td></td><td>(   ) )</td><td></td><td>1.</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64 |                     | 1 /                           |             | (   ) )             |            | 1.        |   |   |   |   |
| 67       68       69       68       69       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60 <td< td=""><td>65</td><td>5</td><td><math>\gamma \gamma \gamma \gamma</math></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65 | 5                   | $\gamma \gamma \gamma \gamma$ |             |                     |            |           |   |   |   |   |
| 68       69       69       69       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60       60 <td< td=""><td>66</td><td><math>\land \land \land</math></td><td><math>\mathcal{V}</math></td><td><math>\int</math></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 | $\land \land \land$ | $\mathcal{V}$                 | $\int$      |                     |            |           |   |   |   |   |
| 69       0       0       1.07 lb/TBtu.       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67 |                     | 21                            |             |                     |            |           |   |   |   |   |
| 70       of 1.07 lb/TBtu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68 |                     |                               |             |                     |            |           |   |   |   |   |
| 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                     |                               |             |                     |            |           |   |   |   |   |
| 72       Image: strain s          | 70 | <u>h of 1.07 lt</u> | o/TBtu.                       |             |                     |            |           |   |   |   |   |
| 73       3 lb/MBtu.       Image: state st                  | 71 |                     |                               |             |                     |            |           |   |   |   |   |
| 74       Image: state of the           | 72 |                     |                               |             |                     |            |           |   |   |   |   |
| 75       Image: state of the           | 73 | 3 lb/MBtu           | l.                            |             |                     |            |           |   |   |   |   |
| 76       Image: state of the           | 74 |                     |                               |             |                     |            |           |   |   |   |   |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75 |                     |                               |             |                     |            |           |   |   |   |   |
| 78       F0.002 lb/MBtu.       Image: Constraint of the second se                  | 76 |                     |                               |             |                     |            |           |   |   |   |   |
| 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77 |                     |                               |             |                     |            |           |   |   |   |   |
| 80         Image: Second s | 78 | £0.002 lb/I         | MBtu.                         |             |                     |            |           |   |   |   |   |
| 81 0.139 lb/MBtu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79 |                     |                               |             |                     |            |           |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80 |                     |                               |             |                     |            |           |   |   |   |   |
| 82 2 lb/MBtu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81 | þ.139 lb/M          | fBtu.                         |             |                     |            |           |   |   |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82 | 2 lb/MBtu           | I.                            |             |                     |            |           |   |   |   |   |

|    | A                                                                                                                                                           | В                 | C            | D                          | E              | F            | G          | Н                     |                         | J           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|----------------------------|----------------|--------------|------------|-----------------------|-------------------------|-------------|
| 83 | 28. NO <sub>x</sub> removal efficien                                                                                                                        | cy of SCR is be   | ised on NC   | $0_{\mathrm{x}}$ inlet con | centration     | of 0.276 ll  | o/MBtu an  | d NO <sub>x</sub> out | let concent             | ration of 0 |
| 84 | 29. $SO_3$ removal efficient                                                                                                                                | cy for sorbent in | njection is  | based on S                 | $O_3$ inlet co | oncentratio  | n of 77 pp | mvd and S             | O <sub>3</sub> outlet o | concentrati |
| 85 | 30. NO <sub>x</sub> removal efficiency of SCR is based on NO <sub>x</sub> inlet concentration of 0.4463 lb/MBtu and NO <sub>x</sub> outlet concentration of |                   |              |                            |                |              |            |                       |                         |             |
| 86 | 31. SO <sub>3</sub> removal efficient                                                                                                                       | cy for sorbent in | njection is  | based on S                 | $O_3$ inlet co | oncentratio  | n of 74 pp | mvd and S             | O <sub>3</sub> outlet o | oncentrati  |
| 87 | 32. $NO_x$ removal efficien                                                                                                                                 | cy of SCR is ba   | sed on NC    | $0_{\mathrm{x}}$ inlet con | centration     | of 0.4374    | lb/MBtu a  | nd $NO_x$ ou          | tlet concer             | ntration of |
| 88 | 33. SO3 removal efficient                                                                                                                                   | ey for sorbent in | njection is  | based on S                 | $O_3$ inlet co | oncentratio  | n of 84 pp | mvd and S             | O <sub>3</sub> outlet o | concentrati |
| 89 | 34. SO3 removal efficient                                                                                                                                   | ey for sorbent in | njection is  | based on S                 | $O_3$ inlet co | oncentratio  | n of 85 pp | mvd and S             | O <sub>3</sub> outlet o | oncentrati  |
| 90 | 35. Final emission limit a                                                                                                                                  | nd equipment y    | vet to be de | etermined.                 | Not part of    | f Phase II s | study.     |                       |                         |             |
| 91 |                                                                                                                                                             |                   |              |                            |                |              |            |                       |                         |             |

|    | K                 | L     | M | N | 0 | Р | Q | R | S | Т |
|----|-------------------|-------|---|---|---|---|---|---|---|---|
| 83 | з 041 lb/MBtu.    |       |   |   |   |   |   |   |   |   |
| 84 | 84 on of 5 ppmvd. |       |   |   |   |   |   |   |   |   |
| 85 | þ.156 lb/N        | fBtu. |   |   |   |   |   |   |   |   |
| 86 | 86 pn of 5 ppmvd. |       |   |   |   |   |   |   |   |   |
| 87 | 87 0.156 lb/MBtu. |       |   |   |   |   |   |   |   |   |
| 88 | 88 pn of 5 ppmvd. |       |   |   |   |   |   |   |   |   |
| 89 | on of 5 pp        | mvd.  |   |   |   |   |   |   |   |   |
| 90 |                   |       |   |   |   |   |   |   |   |   |
| 91 |                   |       |   |   |   |   |   |   |   |   |

| From:        | Hillman, Timothy M.                                                                                |
|--------------|----------------------------------------------------------------------------------------------------|
| То:          | Saunders, Eileen                                                                                   |
| CC:          | 168908 E.ON-AQC; Jackson, Audrey; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand; Wehrly, M.       |
|              | R.; Hintz, Monty E.; Goodlet, Roger F.; Betz, Alex; Lucas, Kyle J.; Smith, Dave; Mehta, Pratik D.; |
|              | Greenwell, Sarah                                                                                   |
| Sent:        | 12/13/2010 11:40:34 AM                                                                             |
| Subject:     | 168908.28.3000 101213 - Action Item List                                                           |
| Attachments: | 168908 LG&E AND KU ACTION ITEM LIST.xls                                                            |

Eileen,

Attached is the action item list for our weekly Monday conference call.

#### Regards,

#### TIM HILLMAN | Project Manager, Energy

Black & Veatch Corporation | 11401 Lamar Ave., Overland Park, KS 66211 + 1 913-458-7928 P |HillmanTM@BV.com Building a World of Difference.®

Please consider the environment before printing my e-mail

Please note that the information and attachments in this email are intended for the exclusive use of the addressee and may contain confidential or privileged information. If you are not the intended recipient, please do not forward, copy or print the message or its attachments. Notify me at the above address, and delete this message and any attachments. Thank you

|          | Α      | В                | С        | D                                                           | E        | F          | G              | Н         | J          | K            | L        | М        |
|----------|--------|------------------|----------|-------------------------------------------------------------|----------|------------|----------------|-----------|------------|--------------|----------|----------|
| 1        | ITEM # | # SOURCE         |          | DESCRIPTION                                                 | FILE NO. | FACILITY   | RESPONSIBILITY |           | DATE ADDEI | IG DUE DA    | RR DUE D | OMPL DAT |
|          |        | DOC/MTNG DATE    |          |                                                             |          |            | CO.            | INITIAL   |            |              |          |          |
| 2        |        | GENERAL          |          |                                                             |          | n          | A              |           |            |              |          |          |
| 3        | 07     | Conf Call 10102  | 40/05/40 | Den and letter and fan Ealais Eillen oarde han              | 44.0000  |            | B&V            | AM/RL     | 10/19/10   |              |          |          |
| 4        | 27     | Conf Call 10102: | 10/25/10 | Prepare letter spec for Fabric Filter workshop.             | 41.0806  | n          | D&V            | AM/RL     | 10/19/10   | TBD          |          |          |
| 5        |        | MILL CREEK       |          |                                                             |          | Mill Creek | A              |           |            |              |          |          |
| 6        | 46     | Conf Call 10120  | 12/7/10  | Develop high level cost comparison between the installa     | 14.1000  | Mill Creek | B&V            | тн        | 12/13/10   | TBD          |          |          |
| 7        | 32     | Email 41.0803 1  | 11/5/10  | Provide comments and direction on Mill Creek Validation     | 41.0803  | Mill Creek | LG&E/KU        | ES        | 11/08/10   | 11/16/10     | 12/13/10 |          |
| 8        | 43     | Email 14.1000 1  | 11/16/10 | Provide LG&E/KU comments on Mill Creek validation pr        | 14.1000  | Mill Creek | LG&E/KU        | ES        | 11/16/10   | 11/22/10     | 12/13/10 |          |
|          |        | GHENT            |          |                                                             |          | Ghent      | A              |           |            |              |          |          |
| 9        | 40     |                  | 11/8/10  | Incorporate LG&E and KU comments to Ghent PDM an            | 22.1000  | Ghent      | B&V            | MW/JC     | 11/15/10   | 11/30/10     | 12/20/10 |          |
| 10       | 55     | Ghent Val Mtg M  | 12/7/10  | Provide reference/experience list for plants who inject tro | 14.1000  | Ghent      | B&V            | АМ        | 12/13/10   | 12/17/10     |          |          |
| 11       | 56     | Ghent Val Mtg M  | 12/7/10  | Provide a qualitative comparison between unit sorbent ir    | 14.1000  | Ghent      | B&V            | АМ        | 12/13/10   | 12/17/10     |          |          |
| 12       | 51     | Ghent Val Mtg M  | 12/7/10  | Provide suggestions to balance/bias the flows downstrea     | 14.1000  | Ghent      | B&V            | MW        | 12/13/10   | 01/07/11     |          |          |
| 13       | 52     | Ghent Val Mtg M  | 12/7/10  | Include demolition costs in the project cost estimate as a  | 14.1000  | Ghent      | B&V            | RF        | 12/13/10   | st estimate) |          |          |
| 14       | 48     | Ghent Val Mtg M  | 12/7/10  | Provide technical information on PJFF to LG&E/KU for i      | 14.1000  | Ghent      | B&V            | AM        | 12/13/10   | TBD          |          |          |
| 15       | 57     | Ghent Val Mtg M  | 12/7/10  | Jeff Joyce from LG&E/KU will investigate what the plant     | 14.1000  | Ghent      | LG&E/KU        | JJ        | 12/13/10   | 12/13/10     |          |          |
| 16       | 54     | Ghent Val Mtg M  | 12/7/10  | Review and provide comments on the Ghent Validation         | 14.1000  | Ghent      | LG&E/KU        | Ghent Tea | 12/13/10   | 12/14/10     |          |          |
| 17       | 50     | Ghent Val Mtg M  | 12/7/10  | Confirm if there will be any issues or concerns if the exis | 14.1000  | Ghent      | LG&E/KU        | ES        | 12/13/10   | 12/17/10     |          |          |
| 18<br>19 | 53     | Ghent Val Mtg M  | 12/7/10  | LG&E/KU to schedule visit to Trimble County Unit 2          | 14.1000  | Ghent      | LG&E/KU        | ES        | 12/13/10   | 12/17/10     |          |          |
|          | 58     | Email 14.1000 1  | 12/10/10 | Provide comments on Ghent Validation Meeting Minutes        | 14.1000  | Ghent      | LG&E/KU        | ES        | 12/13/10   | 12/17/10     |          |          |
| 20       | 47     | Ghent Val Mtg M  | 12/7/10  | Review requirements for fire protection on PJFFs.           | 14.1000  | Ghent      | LG&E/KU        | ES        | 12/13/10   | 12/30/10     |          |          |
| 21       | 49     | Ghent Val Mtg M  | 12/7/10  | Inform professionals involved in the Ghent ash handling     | 14.1000  | Ghent      | LG&E/KU        | ESMW      | 12/13/10   | 12/17/10     |          |          |
| 22       |        | E.W. BROWN       |          |                                                             |          | Brown      | A              |           |            |              |          |          |
| 23<br>24 | 41     | Brown KO Mtg N   | 11/15/10 | Review U3 SCR arrgmnts & comment on potential PJFF          | 14.1000  | Brown      | B&V            | TH/ MH    | 11/16/10   | 12/10/10     | 12/17/10 |          |

|     | N           | 0                                                   | Р         | Q     | R            | S         | Т |
|-----|-------------|-----------------------------------------------------|-----------|-------|--------------|-----------|---|
| 1   | STATUS      | NOTES                                               |           |       |              |           |   |
| - 1 |             |                                                     |           |       |              |           |   |
| 2   |             |                                                     |           |       |              |           |   |
| 3   |             |                                                     |           |       |              |           |   |
| 4   | Open        | Discuss after NID visit to E. KY Power on 12/1.     |           |       |              |           |   |
| 5   |             |                                                     |           |       |              |           |   |
| 6   | Open        |                                                     |           |       |              |           |   |
| 7   | Open        | No comments as of 11/29.                            |           |       |              |           |   |
| 8   | Open        |                                                     |           |       |              |           |   |
| 9   |             |                                                     |           |       |              |           |   |
| 10  | In Progress | Pending information for Load Model.                 |           |       |              |           |   |
| 11  | Open        |                                                     |           |       |              |           |   |
| 12  | Open        |                                                     |           |       |              |           |   |
| 13  | Open        |                                                     |           |       |              |           |   |
| 14  | Open        |                                                     |           |       |              |           |   |
| 15  | Open        |                                                     |           |       |              |           |   |
| 16  | Open        | Jeff will attend the Monday conference call 12/13 t | o discus  | s sp  | ecifics with | B&V.      |   |
| 17  | Open        |                                                     |           |       |              |           |   |
| 18  | Open        | LG&E/KU to check with their Environmental Affairs   | s Departr | nen   | t.           |           |   |
| 19  | Open        |                                                     |           |       |              |           |   |
| 20  | Open        |                                                     |           |       |              |           |   |
| 21  | Open        |                                                     |           |       |              |           |   |
| 22  | Open        |                                                     |           |       |              |           |   |
| 23  |             |                                                     |           |       |              |           |   |
| 24  | In Progress | Received Unit 3 arrangements on 12/02. Commen       | ts pendir | ng re | view of the  | drawings. |   |

| 1         3         Brown KO Mag         11/15/10         Prepare Unit 1 and 2 sete/cles with and without SCR         14 1000         BeV         TH         11/15/10         01/10/11           2         42         Email 14.1000         11/16/10         Provide LGSE/KU comments on Brown Kick Off Meetin         1410803         Brown         LGSE/KU ES         11/16/10         11/12/10         12/13/10           2         42         Conf Call 10112         11/12/10         Provide LGSE/KU comments on Brown Kick Off Meetin         1410803         Brown         LGSE/KU ES         11/12/10         11/12/10         12/13/10           28         45         Email 22.1000 1         11/12/10         Provide comments on Brown Vaidation meeting.         21.000         Brown         LGSE/KU ES         11/12/10         12/10/10           29         60         Provide comments on Brown Vaidation meeting.         21.000         Brown         LGSE/KU ES         11/12/10         12/10/10           30         61         Provide comments on Brown Vaidation meeting.           3 |    | Α  | В                | С        | D                                                  | E       | F     | G       | н  | J        | К        | L        | М |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------------------|----------|----------------------------------------------------|---------|-------|---------|----|----------|----------|----------|---|
| 1         2         2         5mail 14 10001         11/16/10         Provide LGSE/KU comments on Brown Kak Off Meetin         14.1000         Brown         LGSE/KU         ES         11/16/10         11/22/10         12/13/10           7         44         Conf Call 10112         11/22/10         Establish date for Brown Validation meeting.         41.0803         Brown         LGSE/KU         ES         11/12/10         12/13/10         12/13/10           8         55         Establish date for Brown Validation meeting.         41.0803         Brown         LGSE/KU         ES         11/12/10         12/23/10         12/13/10           9         59          11/12/10         Provide comments on Brown Project Design Memorand         21.000         Brown         LGSE/KU         ES         11/12/10         12/23/10         12/23/10           10         60          11/12/10         Provide comments on Brown Project Design Memorand         21.000         LGSE/KU         ES         11/12/10         12/23/10         12/23/10           10         11/12/10         11/12/10         Provide comments on Brown Project Design Memorand         21.00         LGSE/KU         ES         11/12/10         12/23/10         12/23/10           10         11/12/10         11/12                                                                                                                    | 25 | 38 | Brown KO Mtg N   | 11/15/10 | Prepare Unit 1 and 2 sketches with and without SCR | 14.1000 | Brown | B&V     | тн | 11/15/10 | 01/10/11 |          |   |
| 1         44         Conf Call 10112         11/22/10         Establish date for Brown Validation meeting.         41.0803         Brown         IG&E/KU         ES         11/22/10         11/29/10         12/10/10           8         Email 22.1000 1         11/24/10         Provide comments on Brown Project Design Memorand         22.1000         Brown         IG&E/KU         ES         11/29/10         12/10/10           9         9         Provide comments on Brown Project Design Memorand         22.1000         Brown         IG&E/KU         ES         11/29/10         12/10/10           9         9         Provide comments on Brown Project Design Memorand         22.1000         Brown         IG&E/KU         ES         11/29/10         12/10/10           10         60         Provide comments on Brown Project Design Memorand         22.1000         Brown         IG&E/KU         ES         11/29/10         12/10/10           11         60         Provide comments on Brown Project Design Memorand         21.00         Provide Comments on Brown Project Design Memorand         IG&E/KU         ES         11/29/10         12/10/10           11         Provide Comments on Brown Project Design Memorand         Provide Project Design Memorand         Provide Project Design Memorand         Provide Project Design Memorand         Provide                                      |    | 42 | Email 14.1000 1  | 11/16/10 | Provide LG&E/KU comments on Brown Kick Off Meetin  | 14.1000 | Brown | LG&E/KU | ES | 11/16/10 | 11/22/10 | 12/13/10 |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 44 | Conf Call 10112: | 11/22/10 | Establish date for Brown Validation meeting.       | 41.0803 | Brown | LG&E/KU | ES | 11/22/10 | 11/29/10 | 12/10/10 |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 45 | Email 22.1000 1  | 11/24/10 | Provide comments on Brown Project Design Memorand  | 22.1000 | Brown | LG&E/KU | ES | 11/29/10 | 12/03/10 | 12/10/10 |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 59 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 30       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 | 60 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 |    |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 32 $62$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <t< td=""><td>31</td><td>61</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31 | 61 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 62 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32 | 63 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 34 $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33 | 64 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 35 $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34 |    |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35 | 65 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36 | 66 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 67 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 68 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 69 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 40 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39 | 70 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 |    |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41 |    |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42 | 72 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 73 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 45     75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 74 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 46         76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 75 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 | 76 |                  |          |                                                    |         |       |         |    |          |          |          |   |
| 47 78 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46 |    |                  |          |                                                    |         |       |         |    |          |          |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47 |    |                  |          |                                                    |         |       |         |    |          |          |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 | 78 |                  |          |                                                    |         |       |         |    |          |          |          |   |

|    | N    | 0                                                   | Р        | Q    | R           | S           | Т   |
|----|------|-----------------------------------------------------|----------|------|-------------|-------------|-----|
| 25 | Open |                                                     |          |      |             |             |     |
| 26 | Open |                                                     |          |      |             |             |     |
| 27 | Open | Potentially to be scheduled for the week of January | /17th. N | leed | to ask Jeff | Railey (11/ | 29) |
| 28 | Open |                                                     |          |      |             |             |     |
| 29 |      |                                                     |          |      |             |             |     |
| 30 |      |                                                     |          |      |             |             |     |
| 31 |      |                                                     |          |      |             |             |     |
| 32 |      |                                                     |          |      |             |             |     |
| 33 |      |                                                     |          |      |             |             |     |
| 34 |      |                                                     |          |      |             |             |     |
| 35 |      |                                                     |          |      |             |             |     |
| 36 |      |                                                     |          |      |             |             |     |
| 37 |      |                                                     |          |      |             |             |     |
| 38 |      |                                                     |          |      |             |             |     |
| 39 |      |                                                     |          |      |             |             |     |
| 40 |      |                                                     |          |      |             |             |     |
| 41 |      |                                                     |          |      |             |             |     |
| 42 |      |                                                     |          |      |             |             |     |
| 43 |      |                                                     |          |      |             |             |     |
| 44 |      |                                                     |          |      |             |             |     |
| 45 |      |                                                     |          |      |             |             |     |
| 46 |      |                                                     |          |      |             |             |     |
| 47 |      |                                                     |          |      |             |             |     |
| 48 |      |                                                     |          |      |             |             |     |

|    | А   | В | С | D | E | F | G | Н | J | K | L | М |
|----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 49 | 79  |   |   |   |   |   |   |   |   |   |   |   |
| 50 | 80  |   |   |   |   |   |   |   |   |   |   |   |
|    | 81  |   |   |   |   |   |   |   |   |   |   |   |
| 51 | 82  |   |   |   |   |   |   |   |   |   |   |   |
| 52 |     |   |   |   |   |   |   |   |   |   |   |   |
| 53 | 83  |   |   |   |   |   |   |   |   |   |   |   |
| 54 | 84  |   |   |   |   |   |   |   |   |   |   |   |
| 55 | 85  |   |   |   |   |   |   |   |   |   |   |   |
| 56 | 86  |   |   |   |   |   |   |   |   |   |   |   |
|    | 87  |   |   |   |   |   |   |   |   |   |   |   |
| 57 | 88  |   |   |   |   |   |   |   |   |   |   |   |
| 58 | 89  |   |   |   |   |   |   |   |   |   |   |   |
| 59 |     |   |   |   |   |   |   |   |   |   |   |   |
| 60 | 90  |   |   |   |   |   |   |   |   |   |   |   |
| 61 | 91  |   |   |   |   |   |   |   |   |   |   |   |
| 62 | 92  |   |   |   |   |   |   |   |   |   |   |   |
| 63 | 93  |   |   |   |   |   |   |   |   |   |   |   |
|    | 94  |   |   |   |   |   |   |   |   |   |   |   |
| 64 | 95  |   |   |   |   |   |   |   |   |   |   |   |
| 65 | 96  |   |   |   |   |   |   |   |   |   |   |   |
| 66 |     |   |   |   |   |   |   |   |   |   |   |   |
| 67 | 97  |   |   |   |   |   |   |   |   |   |   |   |
| 68 | 98  |   |   |   |   |   |   |   |   |   |   |   |
| 69 | 99  |   |   |   |   |   |   |   |   |   |   |   |
| 70 | 100 |   |   |   |   |   |   |   |   |   |   |   |
|    | 101 |   |   |   |   |   |   |   |   |   |   |   |
| 71 | 102 |   |   |   |   |   |   |   |   |   |   |   |
| 72 |     |   |   |   |   |   |   |   |   |   |   |   |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 49 |   |   |   |   |   |   |   |
| 50 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 51 |   |   |   |   |   |   |   |
| 52 |   |   |   |   |   |   |   |
| 53 |   |   |   |   |   |   |   |
| 54 |   |   |   |   |   |   |   |
| 55 |   |   |   |   |   |   |   |
| 56 |   |   |   |   |   |   |   |
| 57 |   |   |   |   |   |   |   |
| 58 |   |   |   |   |   |   |   |
| 59 |   |   |   |   |   |   |   |
| 60 |   |   |   |   |   |   |   |
| 61 |   |   |   |   |   |   |   |
| 62 |   |   |   |   |   |   |   |
| 63 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 64 |   |   |   |   |   |   |   |
| 65 |   |   |   |   |   |   |   |
| 66 |   |   |   |   |   |   |   |
| 67 |   |   |   |   |   |   |   |
| 68 |   |   |   |   |   |   |   |
| 69 |   |   |   |   |   |   |   |
| 70 |   |   |   |   |   |   |   |
| 71 |   |   |   |   |   |   |   |
| 72 |   |   |   |   |   |   |   |

|    | А   | В | С | D | E | F | G | Н | J | K | L | М |
|----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 73 | 103 |   |   |   |   |   |   |   |   |   |   |   |
|    | 104 |   |   |   |   |   |   |   |   |   |   |   |
| 74 | 105 |   |   |   |   |   |   |   |   |   |   |   |
| 75 | 106 |   |   |   |   |   |   |   |   |   |   |   |
| 76 | 107 |   |   |   |   |   |   |   |   |   |   |   |
| 77 |     |   |   |   |   |   |   |   |   |   |   |   |
| 78 | 108 |   |   |   |   |   |   |   |   |   |   |   |
| 79 | 109 |   |   |   |   |   |   |   |   |   |   |   |
| 80 | 110 |   |   |   |   |   |   |   |   |   |   |   |
|    | 111 |   |   |   |   |   |   |   |   |   |   |   |
| 81 | 112 |   |   |   |   |   |   |   |   |   |   |   |
| 82 | 113 |   |   |   |   |   |   |   |   |   |   |   |
| 83 |     |   |   |   |   |   |   |   |   |   |   | ļ |
| 84 | 114 |   |   |   |   |   |   |   |   |   |   |   |
| 85 | 115 |   |   |   |   |   |   |   |   |   |   |   |
| 86 | 116 |   |   |   |   |   |   |   |   |   |   |   |
| 87 | 117 |   |   |   |   |   |   |   |   |   |   |   |
|    | 118 |   |   |   |   |   |   |   |   |   |   |   |
| 88 | 119 |   |   |   |   |   |   |   |   |   |   |   |
| 89 | 120 |   |   |   |   |   |   |   |   |   |   |   |
| 90 |     |   |   |   |   |   |   |   |   |   |   |   |
| 91 | 121 |   |   |   |   |   |   |   |   |   |   |   |
| 92 | 122 |   |   |   |   |   |   |   |   |   |   |   |
| 93 | 123 |   |   |   |   |   |   |   |   |   |   |   |
|    | 124 |   |   |   |   |   |   |   |   |   |   |   |
| 94 | 125 |   |   |   |   |   |   |   |   |   |   |   |
| 95 | 126 |   |   |   |   |   |   |   |   |   |   |   |
| 96 | 120 |   |   |   |   |   |   |   |   |   |   |   |

| N         O         P         Q         R         S           73 |   |
|------------------------------------------------------------------|---|
| 74                                                               |   |
| 75                                                               |   |
| 76                                                               |   |
| 77                                                               |   |
| 78                                                               |   |
| 79                                                               | - |
| 80                                                               |   |
| 81                                                               |   |
| 82                                                               | + |
| 83                                                               |   |
|                                                                  |   |
|                                                                  |   |
| 84                                                               |   |
| 85                                                               |   |
| 86                                                               |   |
| 87                                                               |   |
| 88                                                               |   |
| 89                                                               |   |
| 90                                                               |   |
| 91                                                               |   |
| 92                                                               |   |
| 93                                                               |   |
| 94                                                               |   |
| 95                                                               | 1 |
| 96                                                               | + |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 97  | 127 |   |   |   |   |   |   |   |   |   |   |   |
| 98  | 128 |   |   |   |   |   |   |   |   |   |   |   |
|     | 129 |   |   |   |   |   |   |   |   |   |   |   |
| 99  | 130 |   |   |   |   |   |   |   |   |   |   |   |
| 100 |     |   |   |   |   |   |   |   |   |   |   |   |
| 101 | 131 |   |   |   |   |   |   |   |   |   |   |   |
| 102 | 132 |   |   |   |   |   |   |   |   |   |   |   |
| 102 | 133 |   |   |   |   |   |   |   |   |   |   |   |
|     | 134 |   |   |   |   |   |   |   |   |   |   |   |
| 104 | 135 |   |   |   |   |   |   |   |   |   |   |   |
| 105 | 136 |   |   |   |   |   |   |   |   |   |   |   |
| 106 | 137 |   |   |   |   |   |   |   |   |   |   |   |
| 107 | 138 |   |   |   |   |   |   |   |   |   |   |   |
| 108 |     |   |   |   |   |   |   |   |   |   |   |   |
| 109 | 139 |   |   |   |   |   |   |   |   |   |   |   |
| 110 | 140 |   |   |   |   |   |   |   |   |   |   |   |
| 111 | 141 |   |   |   |   |   |   |   |   |   |   |   |
| 112 | 142 |   |   |   |   |   |   |   |   |   |   |   |
|     | 143 |   |   |   |   |   |   |   |   |   |   |   |
| 113 | 144 |   |   |   |   |   |   |   |   |   |   |   |
| 114 | 145 |   |   |   |   |   |   |   |   |   |   |   |
| 115 | 146 |   |   |   |   |   |   |   |   |   |   |   |
| 116 | 147 |   |   |   |   |   |   |   |   |   |   |   |
| 117 |     |   |   |   |   |   |   |   |   |   |   |   |
| 118 | 148 |   |   |   |   |   |   |   |   |   |   |   |
| 119 | 149 |   |   |   |   |   |   |   |   |   |   |   |
| 120 | 150 |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 97  |   |   |   |   |   |   |   |
| 98  |   |   |   |   |   |   |   |
| 99  |   |   |   |   |   |   |   |
| 100 |   |   |   |   |   |   |   |
| 101 |   |   |   |   |   |   |   |
| 102 |   |   |   |   |   |   |   |
| 103 |   |   |   |   |   |   |   |
| 104 |   |   |   |   |   |   |   |
| 105 |   |   |   |   |   |   |   |
| 106 |   |   |   |   |   |   |   |
| 107 |   |   |   |   |   |   |   |
| 108 |   |   |   |   |   |   |   |
| 109 |   |   |   |   |   |   |   |
| 110 |   |   |   |   |   |   |   |
| 111 |   |   |   |   |   |   |   |
| 112 |   |   |   |   |   |   |   |
| 113 |   |   |   |   |   |   |   |
| 114 |   |   |   |   |   |   |   |
| 115 |   |   |   |   |   |   |   |
| 116 |   |   |   |   |   |   |   |
| 117 |   |   |   |   |   |   |   |
| 118 |   |   |   |   |   |   |   |
| 119 |   |   |   |   |   |   |   |
| 120 |   |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 121 | 151 |   |   |   |   |   |   |   |   |   |   |   |
| 122 | 152 |   |   |   |   |   |   |   |   |   |   |   |
|     | 153 |   |   |   |   |   |   |   |   |   |   |   |
| 123 | 154 |   |   |   |   |   |   |   |   |   |   |   |
| 124 | 155 |   |   |   |   |   |   |   |   |   |   |   |
| 125 | 156 |   |   |   |   |   |   |   |   |   |   |   |
| 126 |     |   |   |   |   |   |   |   |   |   |   |   |
| 127 | 157 |   |   |   |   |   |   |   |   |   |   |   |
| 128 | 158 |   |   |   |   |   |   |   |   |   |   |   |
| 129 | 159 |   |   |   |   |   |   |   |   |   |   |   |
| 130 | 160 |   |   |   |   |   |   |   |   |   |   |   |
|     | 161 |   |   |   |   |   |   |   |   |   |   |   |
| 131 | 162 |   |   |   |   |   |   |   |   |   |   |   |
| 132 | 163 |   |   |   |   |   |   |   |   |   |   |   |
| 133 | 164 |   |   |   |   |   |   |   |   |   |   |   |
| 134 | 165 |   |   |   |   |   |   |   |   |   |   |   |
| 135 |     |   |   |   |   |   |   |   |   |   |   |   |
| 136 | 166 |   |   |   |   |   |   |   |   |   |   |   |
| 137 | 167 |   |   |   |   |   |   |   |   |   |   |   |
| 138 | 168 |   |   |   |   |   |   |   |   |   |   |   |
| 139 | 169 |   |   |   |   |   |   |   |   |   |   |   |
|     | 170 |   |   |   |   |   |   |   |   |   |   |   |
| 140 | 171 |   |   |   |   |   |   |   |   |   |   |   |
| 141 | 172 |   |   |   |   |   |   |   |   |   |   |   |
| 142 | 173 |   |   |   |   |   |   |   |   |   |   |   |
| 143 |     |   |   |   |   |   |   |   |   |   |   |   |
| 144 | 174 |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 121 |   |   |   |   |   |   |   |
| 122 |   |   |   |   |   |   |   |
| 123 |   |   |   |   |   |   |   |
| 124 |   |   |   |   |   |   |   |
| 125 |   |   |   |   |   |   |   |
| 126 |   |   |   |   |   |   |   |
| 127 |   |   |   |   |   |   |   |
| 128 |   |   |   |   |   |   |   |
| 129 |   |   |   |   |   |   |   |
| 130 |   |   |   |   |   |   |   |
| 131 |   |   |   |   |   |   |   |
| 132 |   |   |   |   |   |   |   |
| 133 |   |   |   |   |   |   |   |
| 134 |   |   |   |   |   |   |   |
| 135 |   |   |   |   |   |   |   |
| 136 |   |   |   |   |   |   |   |
| 137 |   |   |   |   |   |   |   |
| 138 |   |   |   |   |   |   |   |
| 139 |   |   |   |   |   |   |   |
| 140 |   |   |   |   |   |   |   |
| 141 |   |   |   |   |   |   |   |
| 142 |   |   |   |   |   |   |   |
| 143 |   |   |   |   |   |   |   |
| 144 |   |   |   |   |   |   |   |

| ****** | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|--------|-----|---|---|---|---|---|---|---|---|---|---|---|
| 145    | 175 |   |   |   |   |   |   |   |   |   |   |   |
|        | 176 |   |   |   |   |   |   |   |   |   |   |   |
| 146    | 177 |   |   |   |   |   |   |   |   |   |   |   |
| 147    | 178 |   |   |   |   |   |   |   |   |   |   |   |
| 148    | 179 |   |   |   |   |   |   |   |   |   |   |   |
| 149    | 180 |   |   |   |   |   |   |   |   |   |   |   |
| 150    |     |   |   |   |   |   |   |   |   |   |   |   |
| 151    | 181 |   |   |   |   |   |   |   |   |   |   |   |
| 152    | 182 |   |   |   |   |   |   |   |   |   |   |   |
| 153    | 183 |   |   |   |   |   |   |   |   |   |   |   |
| 154    | 184 |   |   |   |   |   |   |   |   |   |   |   |
|        | 185 |   |   |   |   |   |   |   |   |   |   |   |
| 155    | 186 |   |   |   |   |   |   |   |   |   |   |   |
| 156    | 187 |   |   |   |   |   |   |   |   |   |   |   |
| 157    | 188 |   |   |   |   |   |   |   |   |   |   |   |
| 158    |     |   |   |   |   |   |   |   |   |   |   |   |
| 159    | 109 |   |   |   |   |   |   |   |   |   |   |   |
| 160    | 190 |   |   |   |   |   |   |   |   |   |   |   |
| 161    | 191 |   |   |   |   |   |   |   |   |   |   |   |
|        | 192 |   |   |   |   |   |   |   |   |   |   |   |
| 162    | 193 |   |   |   |   |   |   |   |   |   |   |   |
| 163    | 194 |   |   |   |   |   |   |   |   |   |   |   |
| 164    | 195 |   |   |   |   |   |   |   |   |   |   |   |
| 165    |     |   |   |   |   |   |   |   |   |   |   |   |
| 166    | 196 |   |   |   |   |   |   |   |   |   |   |   |
| 167    | 197 |   |   |   |   |   |   |   |   |   |   |   |
| 168    | 198 |   |   |   |   |   |   |   |   |   |   |   |
| 100    |     |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 145 |   |   |   |   |   |   |   |
| 146 |   |   |   |   |   |   |   |
| 147 |   |   |   |   |   |   |   |
| 148 |   |   |   |   |   |   |   |
| 149 |   |   |   |   |   |   |   |
| 150 |   |   |   |   |   |   |   |
| 151 |   |   |   |   |   |   |   |
| 152 |   |   |   |   |   |   |   |
| 153 |   |   |   |   |   |   |   |
| 154 |   |   |   |   |   |   |   |
| 155 |   |   |   |   |   |   |   |
| 156 |   |   |   |   |   |   |   |
| 157 |   |   |   |   |   |   |   |
| 158 |   |   |   |   |   |   |   |
| 159 |   |   |   |   |   |   |   |
| 160 |   |   |   |   |   |   |   |
| 161 |   |   |   |   |   |   |   |
| 162 |   |   |   |   |   |   |   |
| 163 |   |   |   |   |   |   |   |
| 164 |   |   |   |   |   |   |   |
| 165 |   |   |   |   |   |   |   |
| 166 |   |   |   |   |   |   |   |
| 167 |   |   |   |   |   |   |   |
| 168 |   |   |   |   |   |   |   |

|            | A   | В | С | D | E | F | G | Н | J | К | L        | М                                            |
|------------|-----|---|---|---|---|---|---|---|---|---|----------|----------------------------------------------|
|            | 199 |   |   |   |   |   |   |   |   |   |          |                                              |
| 169        |     |   |   |   |   |   |   |   |   |   |          |                                              |
|            | 200 |   |   |   |   |   |   |   |   |   |          |                                              |
| 170<br>171 |     |   |   |   |   |   |   |   |   |   |          | L                                            |
| 171        |     |   |   |   |   |   |   |   |   |   |          | <b>├</b> ───┤                                |
| 172        |     |   |   |   |   |   |   |   |   |   |          | <b>├────</b> ┨                               |
| 173        |     |   |   |   |   |   |   |   |   |   |          | II                                           |
| 174        |     |   |   |   |   |   |   |   |   |   |          | <u> </u>                                     |
| 176        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 177        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 178        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 179        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 180        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 181        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 182        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 183        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 184        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 185        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 186        |     |   |   |   |   |   |   |   |   |   |          | L                                            |
| 187        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 188<br>189 |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 189        |     |   |   |   |   |   |   |   |   |   |          | <b>├───</b> ┃                                |
| 190        |     |   |   |   |   |   |   |   |   |   |          | II                                           |
| 191        |     |   |   |   |   |   |   |   |   |   |          | <b>├</b> ────┨                               |
| 193        |     |   |   |   |   |   |   |   |   |   |          | <u> </u>                                     |
| 194        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 195        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 196        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 197        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 198        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 199        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 200        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 201<br>202 |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 202        |     |   |   |   |   |   |   |   |   |   |          | ļ]                                           |
| 203        |     |   |   |   |   |   |   |   |   |   |          | <u>                                     </u> |
| 204        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 205<br>206 |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 206        |     |   |   |   |   |   |   |   |   |   |          | ┝───┨                                        |
| 207        |     |   |   |   |   |   |   |   |   |   |          | ┝───┨                                        |
| 208        |     |   |   |   |   |   |   |   |   |   |          | ┝───┨                                        |
| 203        |     |   |   |   |   |   |   |   |   |   | <u> </u> |                                              |
| 211        |     |   |   |   |   |   |   |   |   |   |          | <b>├──</b> ┤                                 |
| 212        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 213        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 214        |     |   |   |   |   |   |   |   |   |   |          |                                              |
| 215        |     |   |   |   |   |   |   |   |   |   |          |                                              |
|            |     |   | • |   | • | • |   |   |   | • |          |                                              |

|            | N | 0 | Р | Q | R | S | Т |
|------------|---|---|---|---|---|---|---|
|            | 5 |   |   |   |   |   |   |
| 169        |   |   |   |   |   |   |   |
|            |   |   |   |   |   |   |   |
| 170        |   |   |   |   |   |   |   |
| 171        |   |   |   |   |   |   |   |
| 172        |   |   |   |   |   |   |   |
| 173<br>174 |   |   |   |   |   |   |   |
| 174        |   |   |   |   |   |   |   |
| 176        |   |   |   |   |   |   |   |
| 177        |   |   |   |   |   |   |   |
| 178        |   |   |   |   |   |   |   |
| 178<br>179 |   |   |   |   |   |   |   |
| 180        |   |   |   |   |   |   |   |
| 181        |   |   |   |   |   |   |   |
| 182        |   |   |   |   |   |   |   |
| 183        |   |   |   |   |   |   |   |
| 184<br>185 |   |   |   |   |   |   |   |
| 185        |   |   |   |   |   |   |   |
| 186        |   |   |   |   |   |   |   |
| 187        |   |   |   |   |   |   |   |
| 188        |   |   |   |   |   |   |   |
| 189<br>190 |   |   |   |   |   |   |   |
| 190        |   |   |   |   |   |   |   |
| 191        |   |   |   |   |   |   |   |
| 192        |   |   |   |   |   |   |   |
| 193        |   |   |   |   |   |   |   |
| 195        |   |   |   |   |   |   |   |
| 196        |   |   |   |   |   |   |   |
| 197        |   |   |   |   |   |   |   |
| 198        |   |   |   |   |   |   |   |
| 199        |   |   |   |   |   |   |   |
| 200        |   |   |   |   |   |   |   |
| 201        |   |   |   |   |   |   |   |
| 202        |   |   |   |   |   |   |   |
| 203        |   |   |   |   |   |   |   |
| 204        |   |   |   |   |   |   |   |
| 205        |   |   |   |   |   |   |   |
| 206        |   |   |   |   |   |   |   |
| 207        |   |   |   |   |   |   |   |
| 208        |   |   |   |   |   |   |   |
| 209        |   |   |   |   |   |   |   |
| 210<br>211 |   |   |   |   |   |   |   |
| 211        |   |   |   |   |   |   |   |
| 212        |   |   |   |   |   |   |   |
| 213        |   |   |   |   |   |   |   |
| 214        |   |   |   |   |   |   |   |
| 213        |   |   |   |   |   | 1 |   |

|      | А  | В | С | D | E | F | G | Н | J | К | L | М |
|------|----|---|---|---|---|---|---|---|---|---|---|---|
| 7047 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7048 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7049 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7050 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7051 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7052 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7053 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7054 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7055 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7056 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7057 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7058 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7059 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7060 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7061 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7062 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7063 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7064 | 58 |   |   |   |   |   |   |   |   |   |   |   |

|      | N | 0 | Р | Q | R | S | Т |
|------|---|---|---|---|---|---|---|
| 7047 |   |   |   |   |   |   |   |
| 7048 |   |   |   |   |   |   |   |
| 7049 |   |   |   |   |   |   |   |
| 7050 |   |   |   |   |   |   |   |
| 7051 |   |   |   |   |   |   |   |
| 7052 |   |   |   |   |   |   |   |
| 7053 |   |   |   |   |   |   |   |
| 7054 |   |   |   |   |   |   |   |
| 7055 |   |   |   |   |   |   |   |
| 7056 |   |   |   |   |   |   |   |
| 7057 |   |   |   |   |   |   |   |
| 7058 |   |   |   |   |   |   |   |
| 7059 |   |   |   |   |   |   |   |
| 7060 |   |   |   |   |   |   |   |
| 7061 |   |   |   |   |   |   |   |
| 7062 |   |   |   |   |   |   |   |
| 7063 |   |   |   |   |   |   |   |
| 7064 |   |   |   |   |   |   |   |

|    | Α      | В                           | С                 | D                                                        | E        | F          | G       | н        | J        | К         | L         | М         | Ν        |
|----|--------|-----------------------------|-------------------|----------------------------------------------------------|----------|------------|---------|----------|----------|-----------|-----------|-----------|----------|
|    | ITEM # | SOURC                       | E                 | DESCRIPTION                                              | FILE NO. | FACILITY   | RESPON  | SIBILITY | ATE ADDE | IG DUE DA | RR DUE D/ | OMPL DAT  | STATUS   |
| 1  |        | DOC/MTNG                    | DATE              |                                                          |          | -          | co.     | INITIAL  | -        |           |           |           |          |
| 2  |        |                             |                   |                                                          |          |            |         |          |          |           |           |           |          |
| 3  | 35     |                             | 11/8/10           | Incorporate LG&E and KU comments to Mill Creek PDN       | 22.1000  | Mill Creek | B&V     | MW/JC    | 11/08/10 | 11/16/10  | 11/29/10  | 11/29/10  | Complete |
|    | 34     |                             | 11/8/10           | Prepare and issue draft of Project Design Memorandum     | 22.1000  | Brown      | B&V     | тн       | 11/08/10 | 11/25/10  |           | 11/24/10  | Complete |
| 4  |        | D. KO.M                     |                   |                                                          | 444000   |            |         |          | 14/15/10 | 11/10/10  |           | 11/20/110 |          |
| 5  | 36     | Brown KO Mitg               | <del>######</del> | Provide a list of "sacred ground" areas at Brown.        | 14.1000  | Brown      | LG&E/KU | ES       | 11/15/10 | 11/19/10  |           | 11/23/10  | Complete |
| 6  | 39     | Brown KO Mtg                | ######            | Identify a contact person for data collection            | 14.1000  | Brown      | LG&E/KU | ES       | 11/15/10 | 11/19/10  |           | 11/22/10  | Complete |
| 7  | 33     |                             | 11/8/10           | Prepare Data Request for Brown Station.                  | 41.0100  | Brown      | B&V     | ТН       | 11/08/10 | 11/18/10  |           | 11/19/10  | Complete |
| 8  | 37     | Brown KO Mtg                | ######            | Provide drawings of the Unit 3 SO3 mitigation project    | 14.1000  | Brown      | LG&E/KU | ES       | 11/15/10 | 11/19/10  |           | 11/11/10  | Complete |
| 9  | 25     | Email 22.1000 ·             | ######            | Provide LG&E and KU comments on Ghent Project Des        | 22.1000  | Ghent      | LG&E/KU | ES       | 10/21/10 | 10/28/10  |           | 11/08/10  | Complete |
| 10 | 23     | Conf Call 1010              | ######            | Provide draft of Mill Creek Validation Report for LG&E/K | 41.0803  | Mill Creek | B&V     | TH/MW    | 10/19/10 | 11/05/10  |           | 11/05/10  | Complete |
| 11 | 29     |                             | ######            | Provide Brown Kickoff presentation .                     | 14.1000  | Brown      | B&V     | ТН       | 10/29/10 | 11/05/10  |           | 11/03/10  | Complete |
| 12 | 24     | Conf Call 1010 <sup>-</sup> | ######            | Prepare differences between SCR and SNCR for Browr       | 14.1000  | Brown      | B&V     | AM/RL    | 10/19/10 | 11/09/10  |           | 11/03/10  | Complete |
| 13 | 28     |                             | ######            | Provide Mill Creek Validation presentation.              | 41.0803  | Mill Creek | B&V     | ТН       | 10/29/10 | 11/05/10  |           | 11/03/10  | Complete |
| 14 | 31     | Email 14.1000               | ######            | Provide comments on Brown Kickoff meeting agenda         | 14.1000  | Brown      | LG&E/KU | ES       | 10/27/10 | 11/02/10  |           | 11/01/10  | Complete |
| 15 | 30     | Email 14.1000               | ######            | Provide comments on Mill Creek Validation meeting age    | 14.1000  | Mill Creek | LG&E/KU | ES       | 10/27/10 | 11/02/10  |           | 11/01/10  | Complete |
| 16 | 26     |                             | ######            | Provide sketches of Unit 4 AQC equipment in the thicke   | 41.0402  | Mill Creek | B&V     | мн       | 10/25/10 | 10/27/10  | 10/27/10  | 11/01/10  | Complete |
|    | 22     | Email 14.1000               | ######            | Provide LG&E/KU comments on Ghent Site Visit meeti       | 14.1000  | Ghent      | LG&E/KU | ES       | 10/15/10 | 10/19/10  |           | 10/22/10  | Complete |
| 17 |        |                             |                   |                                                          |          |            |         |          |          |           |           |           |          |
| 18 | 11     | KO & MC Site \              | 9/20/10           | Evaluate pros and cons of NID system for November teo    | 14.1000  | n          | B&V     | AM/RL    | 09/21/10 | Nov. 2010 |           | 10/21/10  | Complete |
| 19 | 21     | Ghent Site Visit            | ######            | Prepare Ghent Information Request.                       | 41.0100  | Ghent      | B&V     | ТН       | 10/11/10 | 10/15/10  |           | 10/18/10  | Complete |
| 20 | 15     | KO & MC Site \              | 9/20/10           | Review B&V electrical study conducted in the 1990s       | 14.1000  | Mill Creek | B&V     | JB       | 09/21/10 | 09/24/10  | TBD       | 10/18/10  | Complete |
| 21 | 18     | Email 41.0100 <sup>-</sup>  | 9/29/10           | Choose the coal fuel design basis for Mill Creek, Ghent, | 41.0100  | n          | LG&E/KU | ES       | 09/30/10 | 10/06/10  |           | 10/18/10  | Complete |
| 22 | 4      | KO & MC Site \              | 9/20/10           | Use B&V file system to set up LG&E/KU document store     | 14.1000  | n          | LG&E/KU | ES       | 09/21/10 | TBD       |           | 10/18/10  | Complete |
| 23 | 12     | KO & MC Site \              | 9/20/10           | Schedule vendors for evaluation of existing scrubbers    | 14.1000  | n          | LG&E/KU | ES       | 09/21/10 | TBD       |           | 10/18/10  | Complete |
| 24 | 1      | KO & MC Site \              | 9/20/10           | Determine location for Mill Creek Task 6 Technology Se   | 14.1000  | Mill Creek | LG&E/KU | ES       | 09/21/10 | 10/15/10  |           | 10/12/10  | Complete |

|          | 0                                                     | Р          | Q            | R            | S           | Т           | U  | V | W | Х |
|----------|-------------------------------------------------------|------------|--------------|--------------|-------------|-------------|----|---|---|---|
|          | NOTES                                                 |            |              |              |             |             |    |   |   |   |
| 1        |                                                       |            |              |              |             |             |    |   |   |   |
| 2        |                                                       |            |              |              |             |             |    |   |   |   |
| <u> </u> |                                                       |            | -            |              |             |             |    |   |   |   |
| 3        |                                                       |            |              |              |             |             |    |   |   |   |
|          | PDM issued for In-House Review (11/18)                |            |              |              |             |             |    |   |   |   |
| 4        |                                                       |            |              |              |             |             |    |   |   |   |
|          | Added to Info Request Priority 1                      |            |              |              |             |             |    |   |   |   |
| 5        |                                                       |            |              |              |             |             |    |   |   |   |
| 6        |                                                       |            |              |              |             |             |    |   |   |   |
| <u> </u> |                                                       |            |              |              |             |             |    |   |   |   |
| 7        |                                                       |            |              |              |             |             |    |   |   |   |
|          |                                                       |            |              |              |             |             |    |   |   |   |
| 8        |                                                       |            |              |              |             |             |    |   |   |   |
|          |                                                       |            |              |              |             |             |    |   |   |   |
| 9        |                                                       |            | -            |              |             |             |    |   |   |   |
| 10       |                                                       |            |              |              |             |             |    |   |   |   |
|          |                                                       |            |              |              |             |             |    |   |   |   |
| 11       |                                                       |            |              |              |             |             |    |   |   |   |
|          | To be included in Brown KO presentation. Also inc     | lude fabi  | ric fil      | ter discussi | on. (10/25) |             |    |   |   |   |
| 12       |                                                       |            |              |              |             |             |    |   |   |   |
| 13       | Final sent on 11/5                                    |            |              |              |             |             |    |   |   |   |
| 13       |                                                       |            |              |              |             |             |    |   |   |   |
| 14       |                                                       |            |              |              |             |             |    |   |   |   |
|          | Confirmed LG&E and KU team is available for the       | afternoo   | n on         | 11/9         |             |             |    |   |   |   |
| 15       |                                                       |            |              |              |             |             |    |   |   |   |
|          |                                                       |            |              |              |             |             |    |   |   |   |
| 16       | Eileen has no comments (10/18). Waiting for com       | <b>6</b>   |              | 095/1/11     |             |             |    |   |   |   |
|          | Elleen has no comments (10/18). Waiting for com       | ments fro  | om L         | .G&E/KU m    | empers.     |             |    |   |   |   |
| 17       |                                                       |            |              |              |             |             |    |   |   |   |
| <u> </u> | Will send powerpoint presentation in the next coup    | le of dav  | s (1)        | 0/18)        |             |             |    |   |   |   |
| 18       |                                                       | ,          | • (          |              |             |             |    |   |   |   |
|          |                                                       |            |              |              |             |             |    |   |   |   |
| 19       |                                                       |            |              |              |             |             |    |   |   |   |
|          | B&V could not locate study. Added to Data Reque       | st. Wil⊟ı  | revie        | w when LG    | &E/KU prov  | ides study. |    |   |   |   |
| 20       | Use future coal. (10/11) Chlorine needs to be corre   | noted (1r  | 1/10         |              |             |             |    |   |   |   |
| 21       | Use future coal. (10/11) Chionne needs to be corre    | ectea (1t  | <i>и</i> 18) | l            |             |             |    |   |   |   |
| <u> </u> | Audrey is working on it (10/11). It is set up. Eileen | to reviev  | v (10        | /18).        |             |             |    |   |   |   |
| 22       |                                                       |            |              |              |             |             |    |   |   |   |
|          | To be scheduled week of 10/25. B&V requested to       | be inclu   | ıded         | in debriefin | g w/ each v | endor.      |    |   |   |   |
| 23       |                                                       |            |              |              |             |             |    |   |   |   |
|          | MC Technology selection meeting to be held in Lo      | uisville o | n 11         | /9 with Brow | vn KO mtg o | on 11/10&1  | 1. |   |   |   |
| 24       |                                                       |            |              |              |             |             |    |   |   |   |

|    | Α  | В               | С       | D                                                            | Е       | F          | G       | Н      | J        | К        | L        | М        | Ν        |
|----|----|-----------------|---------|--------------------------------------------------------------|---------|------------|---------|--------|----------|----------|----------|----------|----------|
| 25 | 20 | Email 22.1000   | 10/5/10 | Provide comments on the Mill Creek Project Design Me         | 22.1000 | Mill Creek | LG&E/KU | ES     | 10/11/10 | 10/12/10 |          | 10/12/10 | Complete |
| 26 | 13 | KO & MC Site \  | 9/20/10 | Provide structural steel study assessments                   | 14.1000 | n          | LG&E/KU | ES     | 09/21/10 | 09/24/10 | 09/30/10 | 10/04/10 | Complete |
| 27 | 14 | KO & MC Site \  | 9/20/10 | Provide minimum access dimension box                         | 14.1000 | n          | LG&E/KU |        | 09/21/10 | 09/24/10 | 09/30/10 | 10/04/10 | Complete |
| 28 | 7  | KO & MC Site \  | 9/20/10 | Determine personnel assignments for document review          | 14.1000 | n          | LG&E/KU | ES     | 09/21/10 | TBD      |          | 10/04/10 | Complete |
| 29 | 19 | Re: Email 41.01 | 9/30/10 | B&V to provide schedule/deadlines for Mill Creek inform      | 41.0100 | Mill Creek |         | TH     | 09/30/10 | 10/06/10 |          | 10/04/10 | Complete |
| 30 | 6  | KO & MC Site \  | 9/20/10 | Create IBackup FTP site for large file transfer              | 14.1000 |            | B&V     | KL     | 09/21/10 | 09/24/10 |          | 09/29/10 | Complete |
| 31 | 10 | KO & MC Site \  | 9/20/10 | Prepare data inventory and information request               | 14.1000 | Mill Creek | B&V     | MW/JC  | 09/21/10 | 09/24/10 |          | 09/29/10 | Complete |
| 32 | 5  | KO & MC Site \  | 9/20/10 | Provide engineering cost estimate at end of each month       | 14.1000 | n          | B&V     | ТН     | 09/21/10 | 09/30/10 |          | 09/28/10 | Complete |
| 33 | 2  | KO & MC Site \  | 9/20/10 | Determine dates for Ghent kick-off meeting                   | 14.1000 | Ghent      | LG&E/KU | ES     | 09/21/10 | 09/23/10 |          | 09/27/10 | Complete |
| 34 | 16 | KO & MC Site \  | 9/20/10 | Evaluate the possibility of accelerating the installation of | 14.1000 | Mill Creek | LG&E/KU | ES &TH | 09/21/10 | TBD      |          | 09/27/10 | Complete |
| 35 | 17 | Email 14.1000   | 9/20/10 | Provide LG&E/KU comments on Kick Off Meeting and N           | 14.1000 |            | LG&E/KU | ES     | 09/21/10 | 09/24/10 |          | 09/24/10 | Complete |
| 36 | 3  | KO & MC Site \  | 9/20/10 | Provide DVD copy of Phase I Report                           | 14.1000 |            | B&V     | ΤΗ     | 09/21/10 | 09/24/10 |          | 09/22/10 | Complete |
| 37 | 9  | KO & MC Site \  | 9/20/10 | Update PIM with Eileen's Ghent contact information           | 14.1000 |            | B&V     | MW     | 09/21/10 | 09/24/10 |          | 09/21/10 | Complete |
| 38 | 8  | KO & MC Site \  | 9/20/10 | Determine if a Monday, 2 pm EST project conference ca        | 14.1000 |            | B&V     | TH/MW  | 09/21/10 | 09/23/10 |          | 09/21/10 | Complete |
| 39 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 40 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 41 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 42 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 43 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 44 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 45 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 46 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 47 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |
| 48 |    |                 |         |                                                              |         |            |         |        |          |          |          |          |          |

|    | 0                                                                         | Р           | Q    | R      | S          | Т            | U            | V             | W             | Х      |
|----|---------------------------------------------------------------------------|-------------|------|--------|------------|--------------|--------------|---------------|---------------|--------|
| 25 | Eileen's comments provided on 10/12. Sent to Ale                          |             |      |        |            |              |              |               |               |        |
| 26 | CD received 9/27. Units 1, 2, and 4 on CD. Unit 3 :                       |             |      |        |            | 9/28.        |              |               |               |        |
| 27 | CD received 9/27. Access Dimension not included. Email request sent 9/28. |             |      |        |            |              |              |               |               |        |
| 28 | MC - Alex Betz and a couple others at plant. Proce                        | ss in plac  | e (1 | 0/4)   |            |              |              |               |               |        |
| 29 |                                                                           |             |      |        |            |              |              |               |               |        |
| 30 |                                                                           |             |      |        |            |              |              |               |               |        |
| 31 |                                                                           |             |      |        |            |              |              |               |               |        |
| 32 | Sent 9/28.                                                                |             |      |        |            |              |              |               |               |        |
| 33 | Scheduled for October 6&7                                                 |             |      |        |            |              |              |               |               |        |
| 34 | B&V email addressed the acceleration of the SCR                           | install for | мс   | 2 (9/1 | 7). LG&E/I | KU replied r | io change ir | n direction a | t this time ( | 9/27). |
| 35 | Final issued on 9/24                                                      |             |      |        |            |              |              |               |               |        |
| 36 | Set received on 9/22                                                      |             |      |        |            |              |              |               |               |        |
| 37 |                                                                           |             |      |        |            |              |              |               |               |        |
| 38 | Scheduled                                                                 |             |      |        |            |              |              |               |               |        |
| 39 |                                                                           |             |      |        |            |              |              |               |               |        |
| 40 |                                                                           |             |      |        |            |              |              |               |               |        |
| 41 |                                                                           |             |      |        |            |              |              |               |               |        |
| 42 |                                                                           |             |      |        |            |              |              |               |               |        |
| 43 |                                                                           |             |      |        |            |              |              |               |               |        |
| 44 |                                                                           |             | _    |        |            |              |              |               |               |        |
| 45 |                                                                           |             |      |        |            |              |              |               |               |        |
| 46 |                                                                           |             | _    |        |            |              |              |               |               |        |
| 47 |                                                                           |             | _    |        |            |              |              |               |               |        |
| 48 |                                                                           |             |      |        |            |              |              |               |               |        |

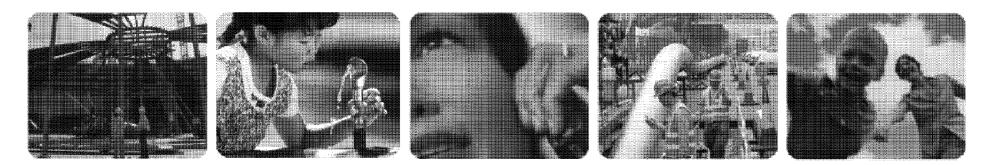
|      | A  | В | С | D | E | F | G | Н | J | К | L | М | N |
|------|----|---|---|---|---|---|---|---|---|---|---|---|---|
| 7095 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7096 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7097 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7098 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7099 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7100 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7101 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7102 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7103 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7104 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7105 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7106 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7107 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7108 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7109 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7110 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7111 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7112 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7113 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7114 | 58 |   |   |   |   |   |   |   |   |   |   |   |   |

| ********* | 0 | Р | Q | R | S | Т | U | V | W | Х |
|-----------|---|---|---|---|---|---|---|---|---|---|
| 7095      |   |   |   |   |   |   |   |   |   |   |
| 7096      |   |   |   |   |   |   |   |   |   |   |
| 7097      |   |   |   |   |   |   |   |   |   |   |
| 7098      |   |   |   |   |   |   |   |   |   |   |
| 7099      |   |   |   |   |   |   |   |   |   |   |
| 7100      |   |   |   |   |   |   |   |   |   |   |
| 7101      |   |   |   |   |   |   |   |   |   |   |
| 7102      |   |   |   |   |   |   |   |   |   |   |
| 7103      |   |   |   |   |   |   |   |   |   |   |
| 7104      |   |   |   |   |   |   |   |   |   |   |
| 7105      |   |   |   |   |   |   |   |   |   |   |
| 7106      |   |   |   |   |   |   |   |   |   |   |
| 7107      |   |   |   |   |   |   |   |   |   |   |
| 7108      |   |   |   |   |   |   |   |   |   |   |
| 7109      |   |   |   |   |   |   |   |   |   |   |
| 7110      |   |   |   |   |   |   |   |   |   |   |
| 7111      |   |   |   |   |   |   |   |   |   |   |
| 7112      |   |   |   |   |   |   |   |   |   |   |
| 7113      |   |   |   |   |   |   |   |   |   |   |
| 7114      |   |   |   |   |   |   |   |   |   |   |

|    | A         | В           | С           | D    |
|----|-----------|-------------|-------------|------|
| 1  | LG&E/KU   | LG&E and    |             |      |
| 2  | AB        | Alex Betz - | Mill Creek  |      |
| 3  | DS        | Dave Smith  | n - Ghent   |      |
| 4  | ES        | Eileen Sau  | nders       |      |
| 5  | GB        | Greg Black  |             |      |
| 6  | GR        | Gary Revle  | tt          |      |
| 7  | JJ        | Jeff Joyce  | - Ghent     |      |
| 8  |           |             |             |      |
| 9  |           |             |             |      |
| 10 |           |             |             |      |
| 11 |           |             |             |      |
| 12 |           |             |             |      |
| 13 |           |             |             |      |
| 14 |           |             |             |      |
| 15 |           |             |             |      |
| 16 |           |             |             |      |
| 17 | <u>BV</u> | Black & Ve  | atch (B&V)  |      |
| 18 | ТН        | Tim Hillma  | n           |      |
| 19 | KL        | Kyle Lucas  |             |      |
| 20 | AM        | Anand Mar   | nabaleshwai | rker |
|    | MK        | Mike King   |             |      |
| 22 | RL        | Rick Lausn  | nan         |      |
| 23 | MW        | M.R. Wehr   | ly          |      |
| 24 | МН        | Monty Hint  | z           |      |
| 25 | JB        | Jim Bayles  | s           |      |
| 26 | JC        | Jonathan C  | Crabtree    |      |
| 27 | RF        | Ron Fields  |             |      |

| From:        | Hillman, Timothy M.                                                                      |
|--------------|------------------------------------------------------------------------------------------|
| То:          | Saunders, Eileen                                                                         |
| CC:          | Jackson, Audrey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.;  |
|              | Mahabaleshwarkar, Anand                                                                  |
| Sent:        | 10/21/2010 10:27:51 AM                                                                   |
| Subject:     | 168908.41.0803 101021 Mill Creek - Comparison Pros/Cons of NID System vs. CDS PowerPoint |
| Attachments: | CDS vs NIDS.pdf                                                                          |

Eileen,


During the Mill Creek kickoff meeting on September 15th, plant personnel requested a general comparison (pros and cons) of the NID system with a standard circulating dry scrubber (CDS). Therefore, in response to action item #11, please find subject attached for your review and consideration. We can also include this in the November 9th validation presentation if you desire.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overband Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@by.com

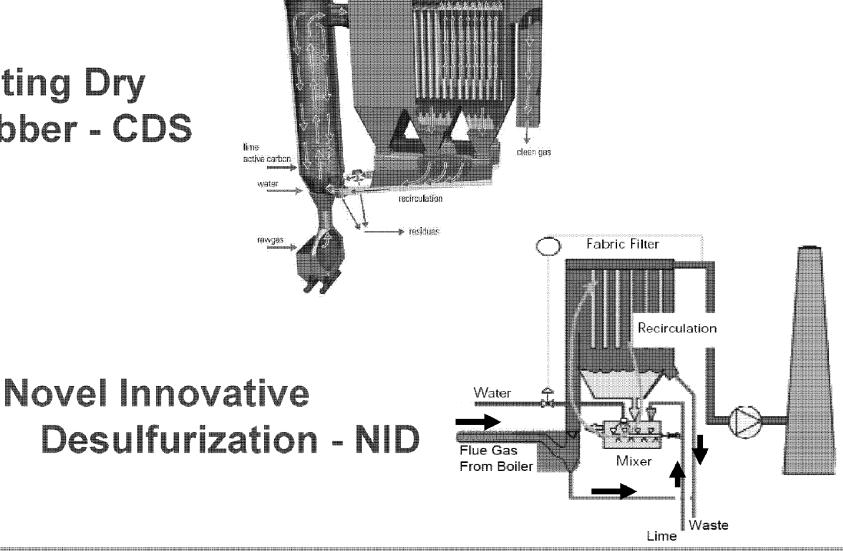
# BLACK & VEATCH

#### **BUILDING A WORLD OF DIFFERENCE®**



# Circulating Dry Scrubber (CDS) vs Novel Innovative Desulfurization (NID) General Comparison

**Black & Veatch** 

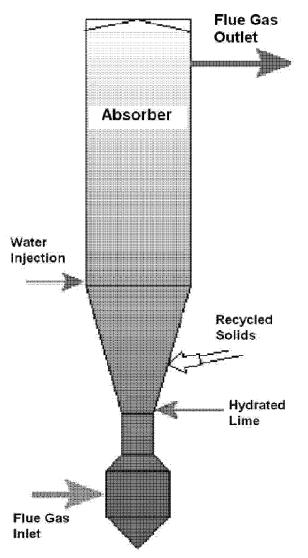

October 19, 2010

LGE-KU-00001668



# A Closer look at two dry FGD systems

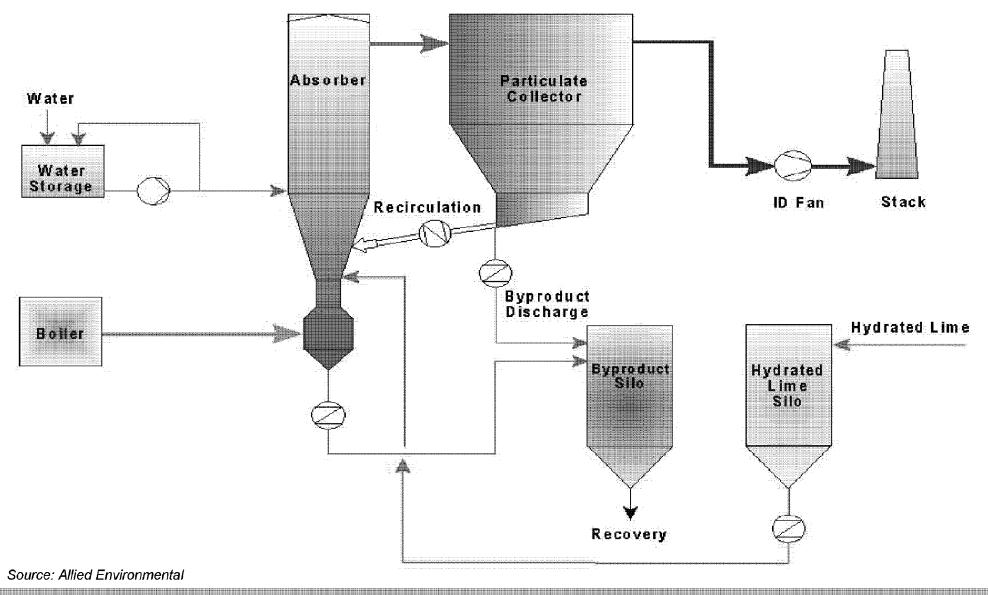
### **Circulating Dry Scrubber - CDS**




Source: AE&E



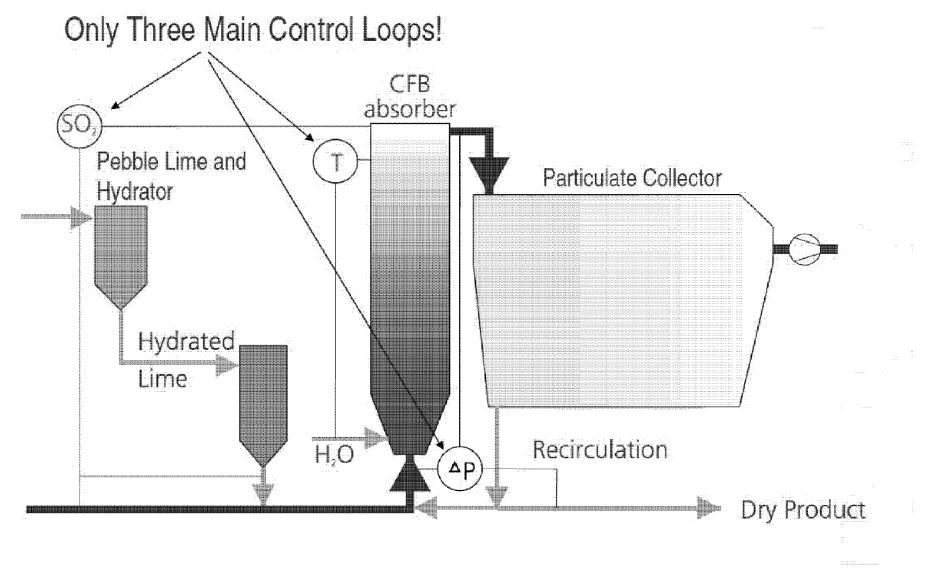
## **Circulating Dry Scrubber (CDS)**


- Dry free flowing powder of Ca(OH)<sub>2</sub> reagent fed into vessel
- Fluid bed of recycled ash/byproduct solids, and fresh reagent
- Water injected separately
- High solids recycle rate



Source: Allied Environmental

BLACK & VEATCH

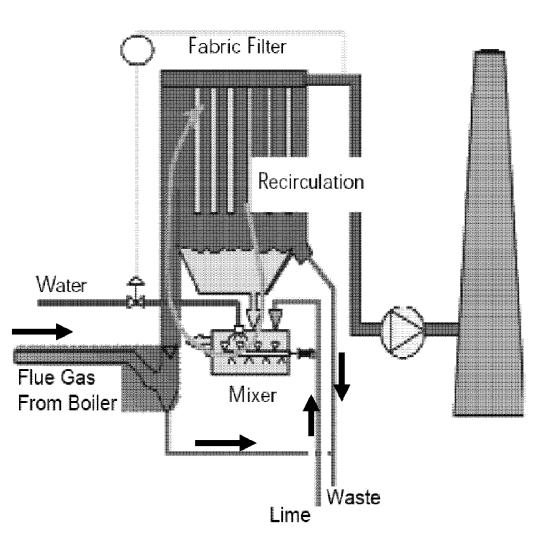

### **CDS Process Flow Diagram**



LGE-KU-00001671

BLACK & VEATCH

### **Process Control of CDS scrubber**




#### Source: Allied Environmental

### BLACK & VEATCH

### **Novel Innovative Desulfurization (NID) Process**

- Ash, byproduct, fresh lime and water recycled to the Jreactor
- Flue gas moves through J-reactor where major SO<sub>2</sub> capture takes place



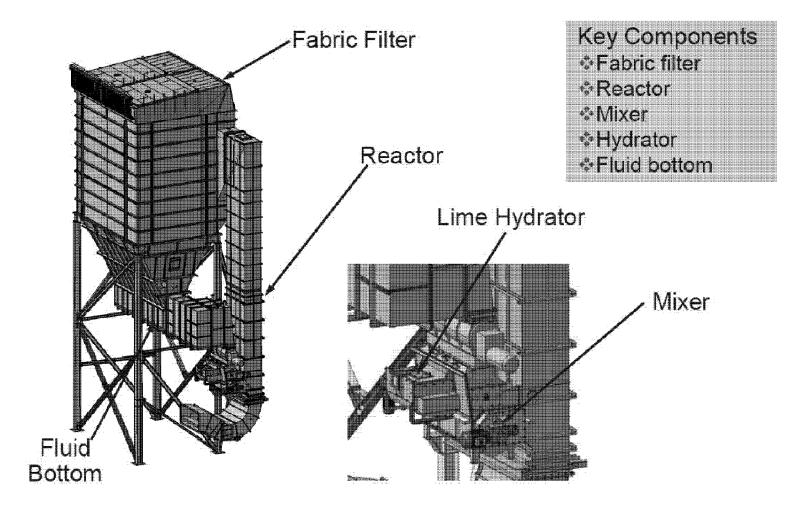
Source: Alstom

Pade - f

BLACK & VEATCH

### **New Innovative Device (NID)**



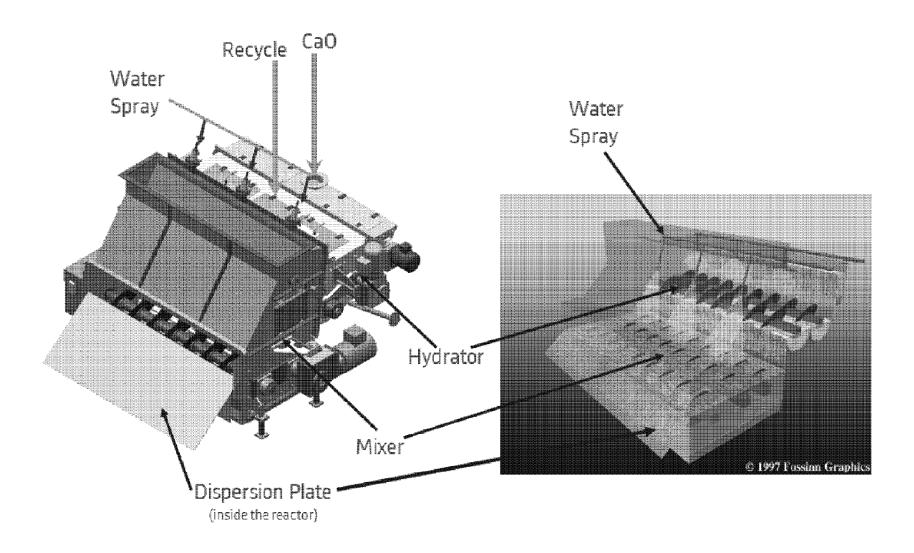

#### Source: Alstom

Page - 7

LGE-KU-00001674

### BLACK & VEATCH

### **NID Components**




Source: Alstom

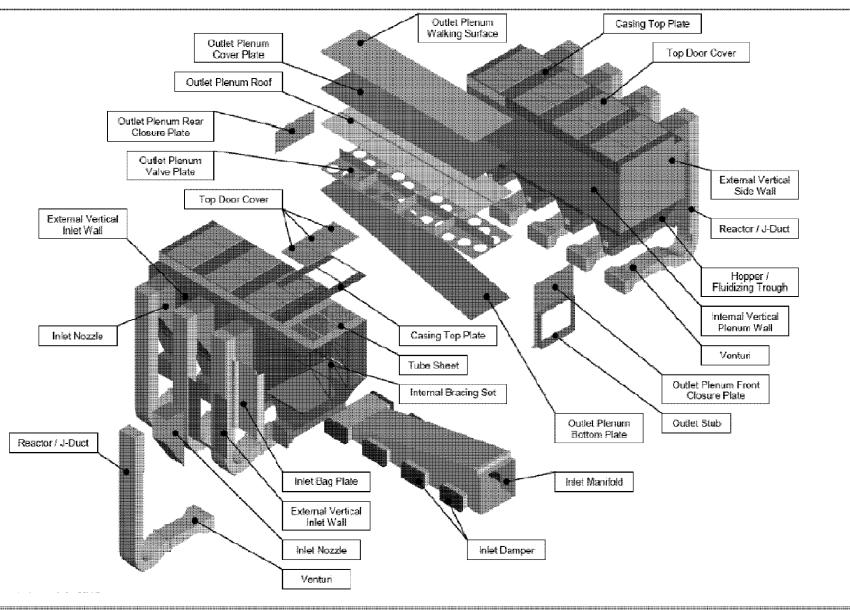
R,

**BLACK & VEATCH** 

### **NID Components**

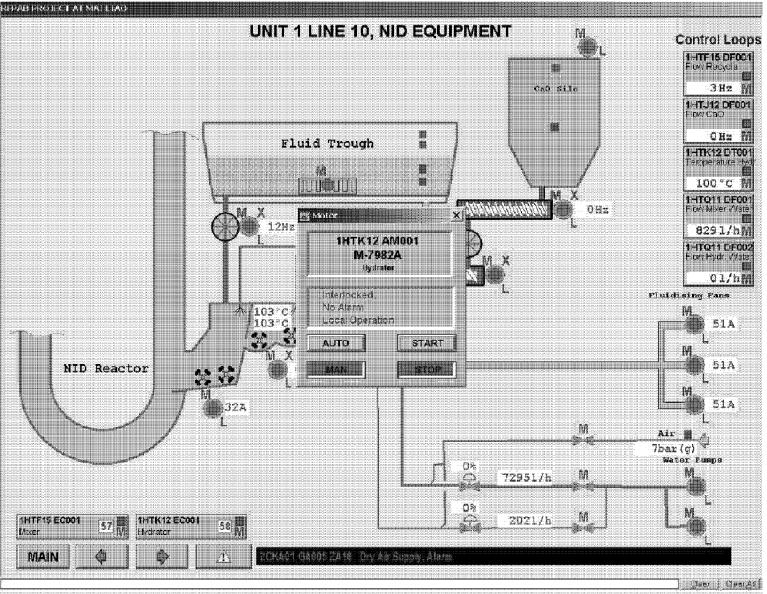


Source: Alstom


Page - 9

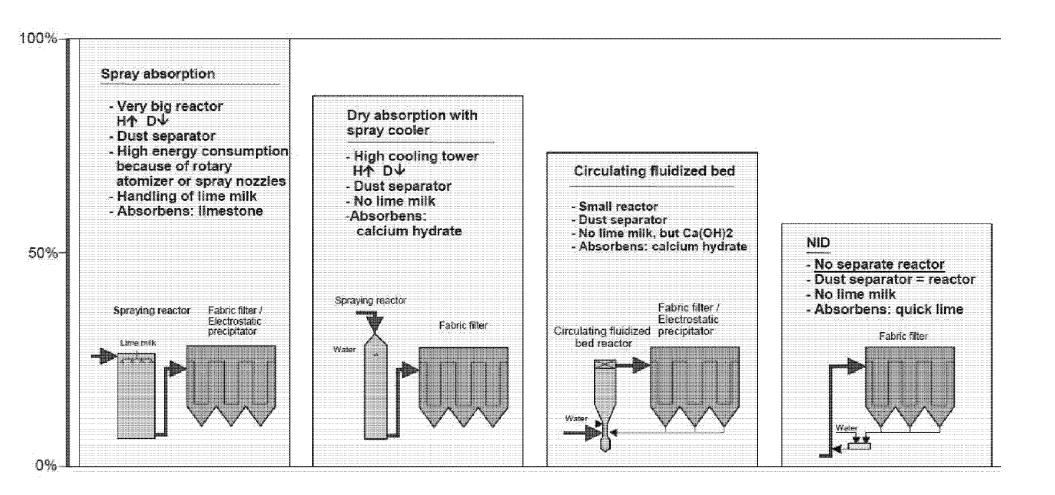
LGE-KU-00001676

Page - 10


BLACK & VEATCH

### **NID Components Schematic**




BLACK & VEATCH

### **NID Process Control**





### **Footprint comparison**





# CDS / NID technology comparison

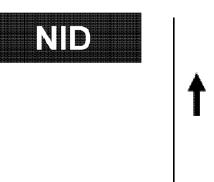
| Factor               | CDS                           | NID                                      |  |  |  |  |  |
|----------------------|-------------------------------|------------------------------------------|--|--|--|--|--|
| Approach Temperature | 30°F                          | 25°F                                     |  |  |  |  |  |
| Lime Consumption     | SR of 1.7 – 1.85              | SR of 2.0 – 2.25                         |  |  |  |  |  |
| Coal Sulfur Content  | All                           | Low and Medium                           |  |  |  |  |  |
| Turndown             | Recirculation fan for<br><50% | Excellent capabilities                   |  |  |  |  |  |
| Pluggage Potential   | None                          | Potential at mixer-<br>hydrator assembly |  |  |  |  |  |



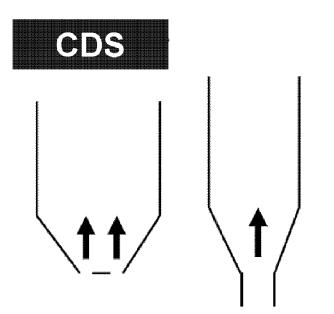
# CDS / NID technology comparison

| Factor             | CDS       | NID       |  |  |  |  |  |
|--------------------|-----------|-----------|--|--|--|--|--|
| Standard Lime Size | 3/4" x 0" | 1/8" x 0" |  |  |  |  |  |
| Plenum Design      | Walk-in   | Top Door  |  |  |  |  |  |
| Footprint          | Larger    | Smaller   |  |  |  |  |  |
| Pressure Drop      | High      | Less      |  |  |  |  |  |
| Equipment Cost     | Less      | More      |  |  |  |  |  |




# CDS / NID technology comparison

| Factor                           | CDS  | NID     |  |  |  |  |  |
|----------------------------------|------|---------|--|--|--|--|--|
| Maintenance                      | Low  | High    |  |  |  |  |  |
| Corrosion potential              | Low  | High    |  |  |  |  |  |
| Inlet Temperature<br>Limitations | None | < 350 F |  |  |  |  |  |
| Auxiliary Power                  | High | Low     |  |  |  |  |  |
| Water Requirements               | Low  | High    |  |  |  |  |  |




BLACK & VEATCH

# **Flow Comparison**



- •Same flow velocity in whole reactor.
- •Same lifting force all the time
- •Agglomerates are following the flow
- •No water spraying inside reactor/flue gas



Lower velocity in upper part of reactor, acceleration through venturi
Lower lifting force in upper part
Agglomerates are to a higher extend collected in the reactor and can't leave it
Water addition inside reactor

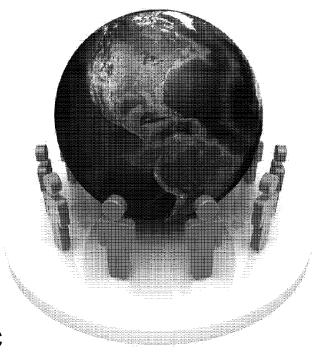
BLACK & VEATCH

# NID has 4-8 week savings over CDS

| Activity                    | NID<br>34-35 months                                      | CDS<br>36 months                                                |  |  |  |  |
|-----------------------------|----------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| Engineering/<br>Procurement | 12 months                                                | 12 months                                                       |  |  |  |  |
| Foundations                 | 6 months                                                 | 6 months                                                        |  |  |  |  |
| Erection                    | 14-15 months<br>(J-tubes shop fabricated<br>in 3 pieces) | 16 months<br>(requires welding of<br>reactor plates)<br>1 month |  |  |  |  |
| Tie-in Outage               | 1 month                                                  |                                                                 |  |  |  |  |
| Start-up                    | 1 month                                                  | 1 month                                                         |  |  |  |  |

# Vendors

## NID system

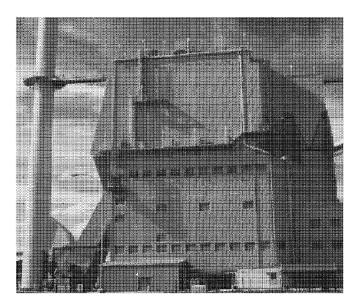

Alstom Power Inc

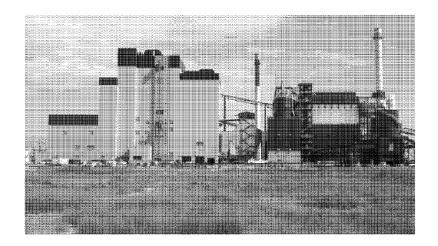
## CDS system

- Allied Environmental Inc
- Austrian Energy & Environmental Inc
- Babcock Power Environmental Inc
- Nooter Eriksen

Black & Veatch has recent experience with all of these vendors







### BUILDING A WORLD OF DIFFERENCE®



# **B&V PC Boiler CDS/NID Experience**

- First CDS scrubber in U.S.
  - Black Hills Power & Light
     Wygen Station
  - Started up in 1995
  - 80 MW operating unit in Wyoming
- Currently installing CDS technology on 220 MW Whelan Energy Center #2
- NID on 5 x 5 MW industrial application in 1994





| From:        | Hillman, Timothy M.                                                                             |
|--------------|-------------------------------------------------------------------------------------------------|
| То:          | Saunders, Eileen                                                                                |
| CC:          | Jackson, Audrey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.; Mehta,  |
|              | Pratik D.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Goodlet, Roger F.; Ballard, Michael W;    |
|              | Hintz, Monty E.                                                                                 |
| Sent:        | 10/29/2010 12:38:35 PM                                                                          |
| Subject:     | 168908.41.0803 101029 - Mill Creek U4 Alternative AQC Arrangement Sketches for Nov 1st          |
|              | Conference Call (Revised)                                                                       |
| Attachments: | Mill Creek U3-U4 NID A.pdf; Mill Creek U3-U4 NID B.pdf; Mill Creek U3-U4 PJFF A.pdf; Mill Creek |
|              | U3-U4 PJFF B.pdf                                                                                |

Eileen,

As part of our validation work, we have made some refinements to the Mill Creek U4 arrangement sketches that I sent you on Wednesday. Please consider the attached revised sketches for our Monday conference call.

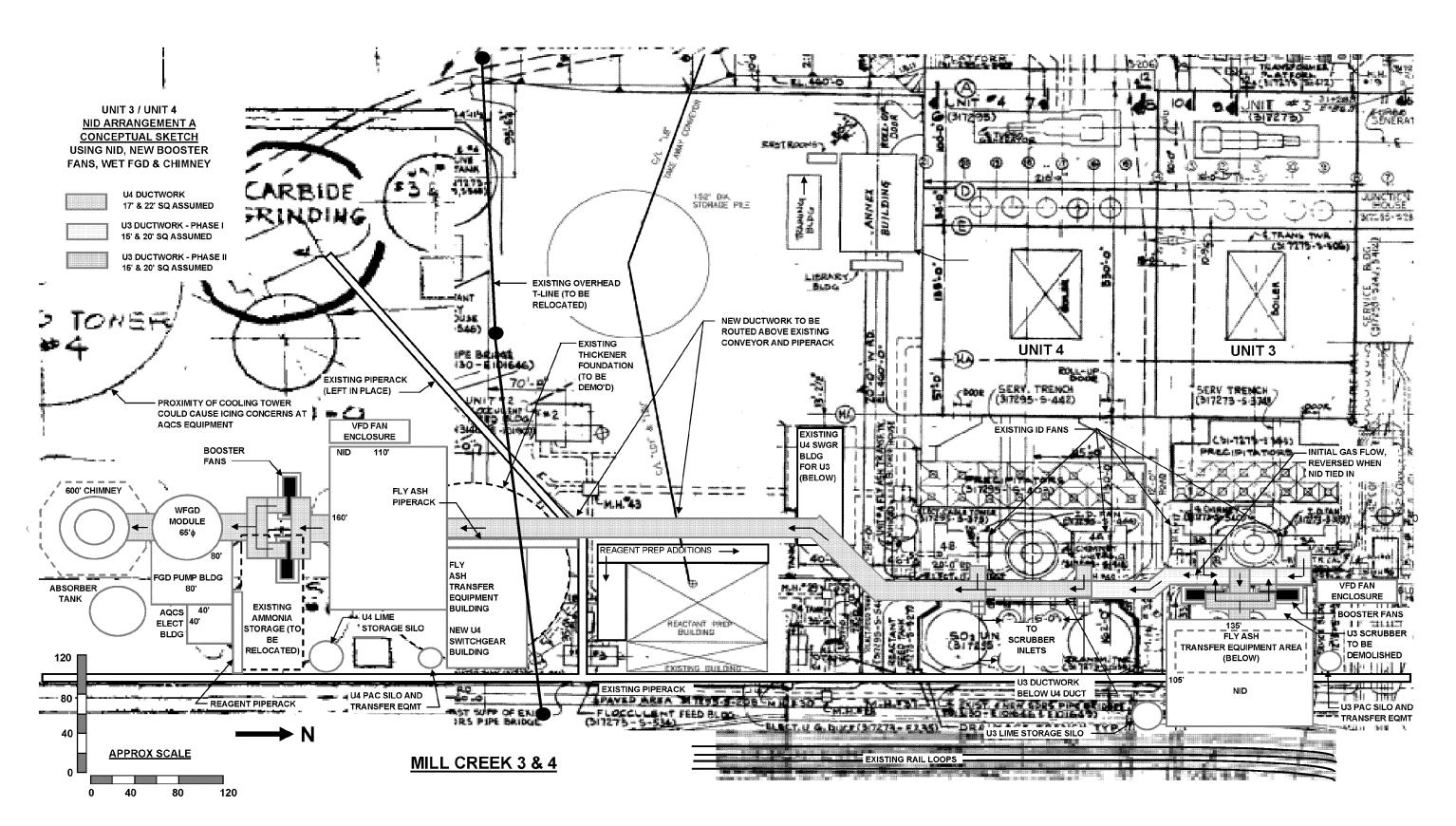
Best regards,

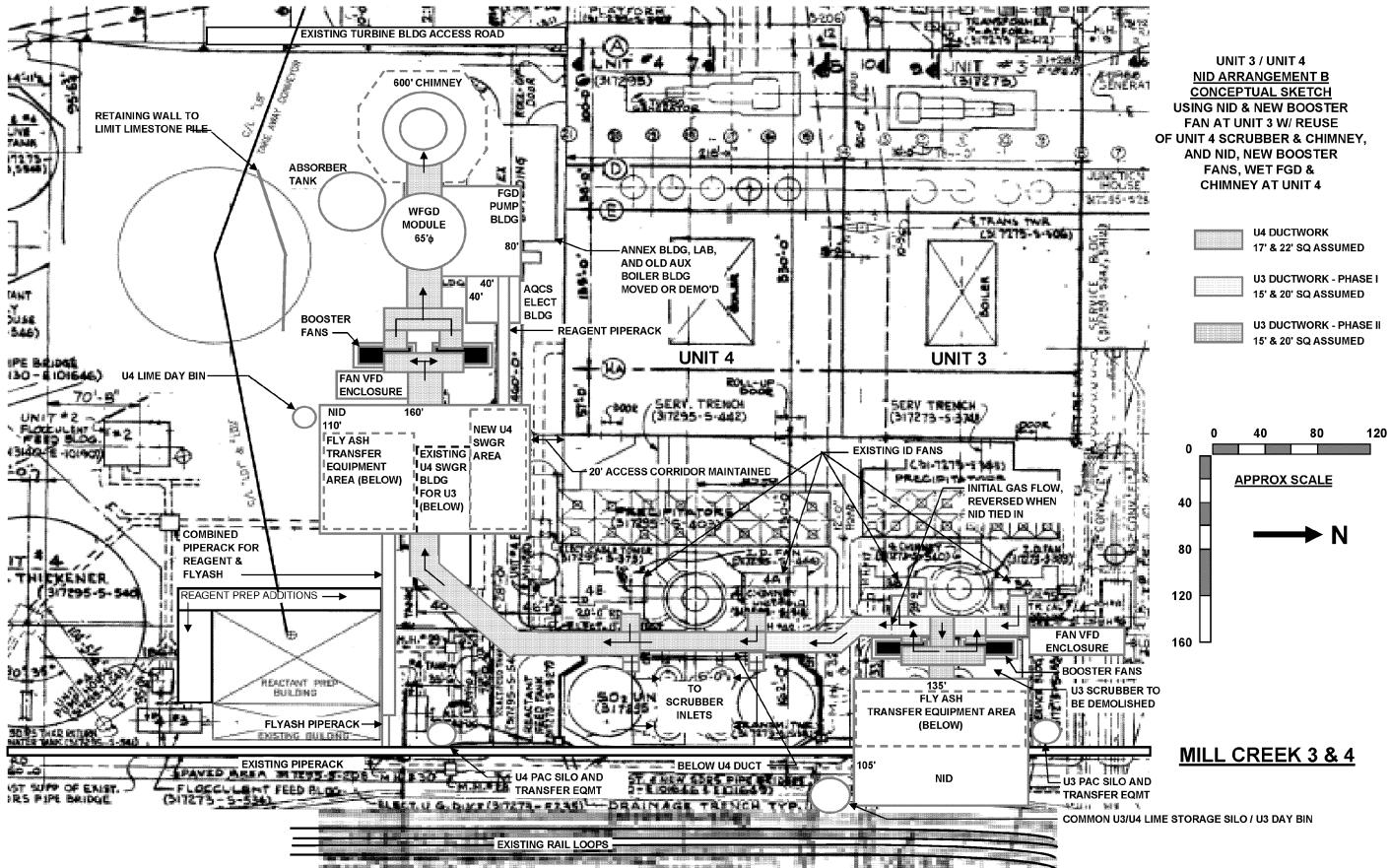
Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Ernal: hillmantm@by.com

From: Hillman, Timothy M. Sent: Wednesday, October 27, 2010 2:20 PM

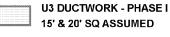
To: 'Saunders, Eleen'

Cc: Jackson, Audrey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.; Mehta, Pratik D.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Goodlet, Roger F.; Ballard, Michael W; Hintz, Monty E.

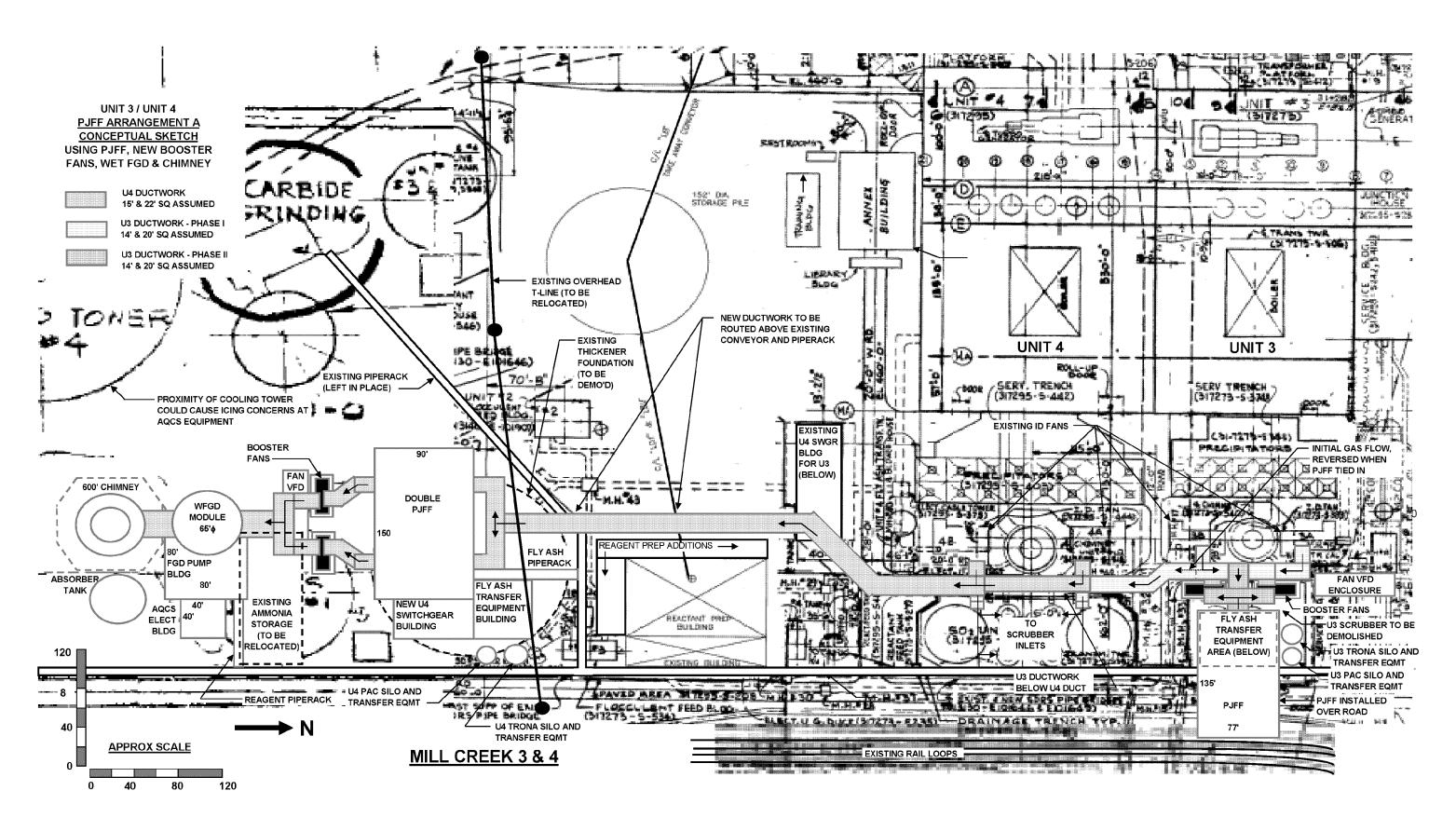

Subject: 168908.41.0803 101027 - Mil Creek U4 Alternative AQC Arrangement Sketches for Nov 1st Conference Call

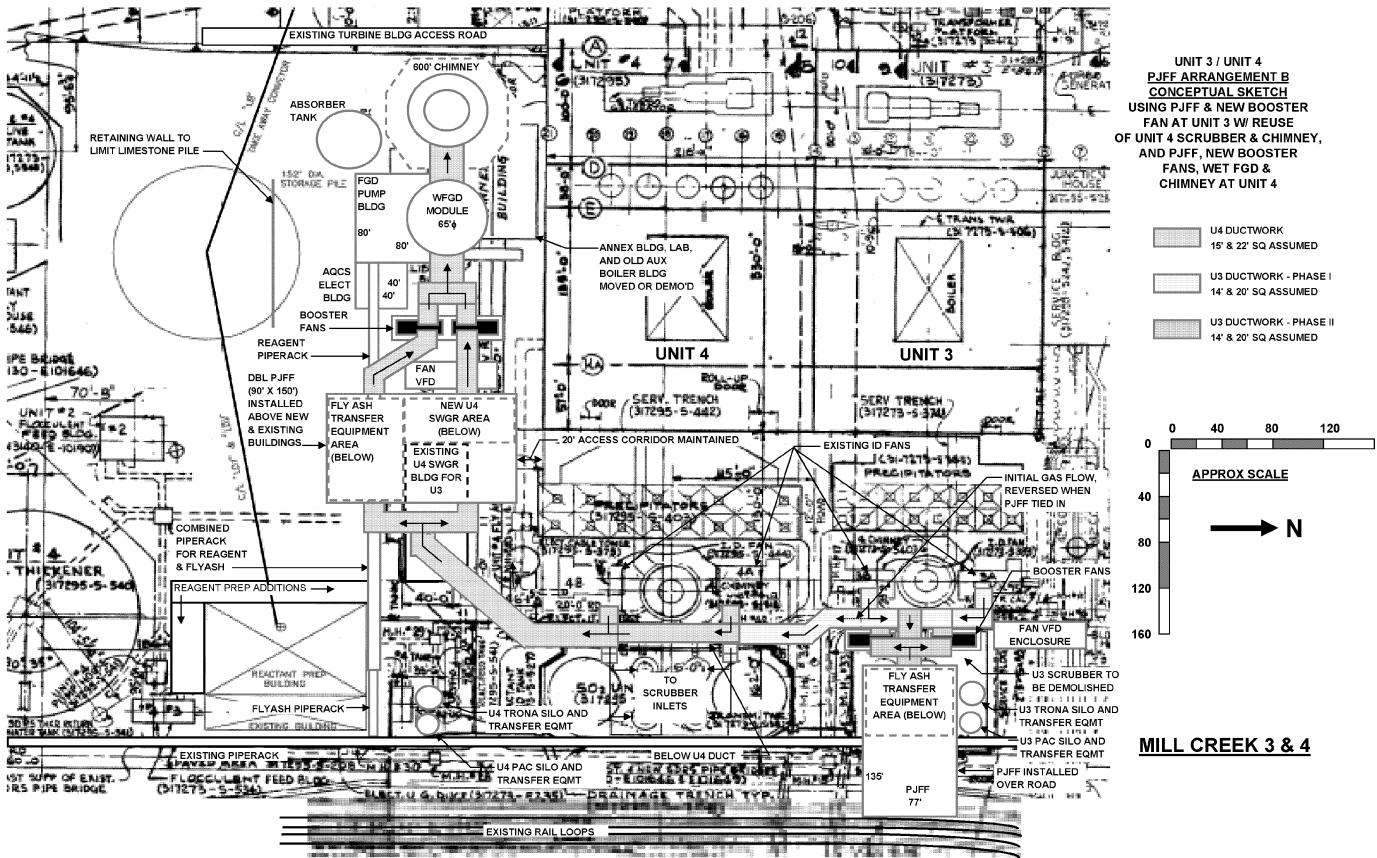

Eileen,

In preparation for our Nov 1st conference call, please find attached sketches of the potential Mill Creek U4 AQC arrangements. The sketches include both NID and PJFF versions of an east-west configuration along the south side of U4, and a north-south configuration in the old thickener area.


<< File: MC U3-U4 NID Sketch.pdf >> << File: MC U3-U4 NID Sketch Alt.pdf >> << File: MC U3-U4 PJFF Sketch.pdf >> << File: MC U3-U4 PJFF Sketch Alt.pdf >> Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Ernait hillmantm@bv.com








| <b>U3 DUCTWORK - PHASE I</b> |
|------------------------------|
| 15' & 20' SQ ASSUMED         |





LGE-KU-00001691

| From:        | Saunders, Eileen                                                                                |
|--------------|-------------------------------------------------------------------------------------------------|
| То:          | Straight, Scott                                                                                 |
| CC:          | HillmanTM@bv.com                                                                                |
| Sent:        | 10/29/2010 1:03:22 PM                                                                           |
| Subject:     | FW: 168908.41.0803 101029 - Mill Creek U4 Alternative AQC Arrangement Sketches for Nov 1st      |
|              | Conference Call (Revised)                                                                       |
| Attachments: | Mill Creek U3-U4 NID A.pdf; Mill Creek U3-U4 NID B.pdf; Mill Creek U3-U4 PJFF A.pdf; Mill Creek |
|              | U3-U4 PJFF B.pdf                                                                                |

Scott,

Here are updated sketches to use when we talk to B&V Monday at 2 pm.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Friday, October 29, 2010 12:39 PM
To: Saunders, Eileen
Cc: Jackson, Audrey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.; Mehta, Pratik D.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Goodlet, Roger F.; Ballard, Michael W; Hintz, Monty E.
Subject: 168908.41.0803 101029 - Mill Creek U4 Alternative AQC Arrangement Sketches for Nov 1st Conference Call (Revised)
Importance: High

Eileen,

As part of our validation work, we have made some refinements to the Mill Creek U4 arrangement sketches that I sent you on Wednesday. Please consider the attached revised sketches for our Monday conference call.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

nothy M.

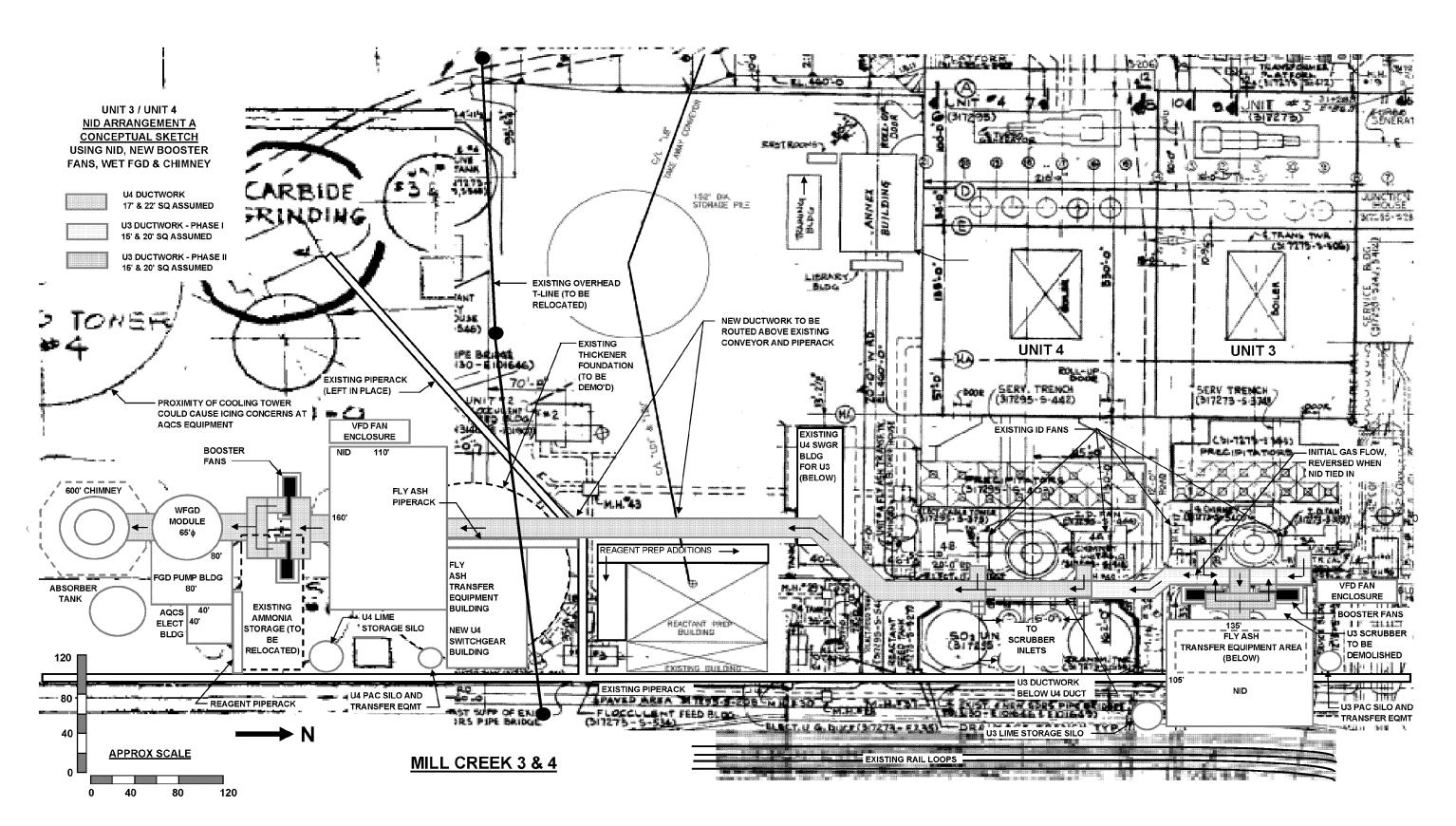
October 27, 2010 2:20 PM

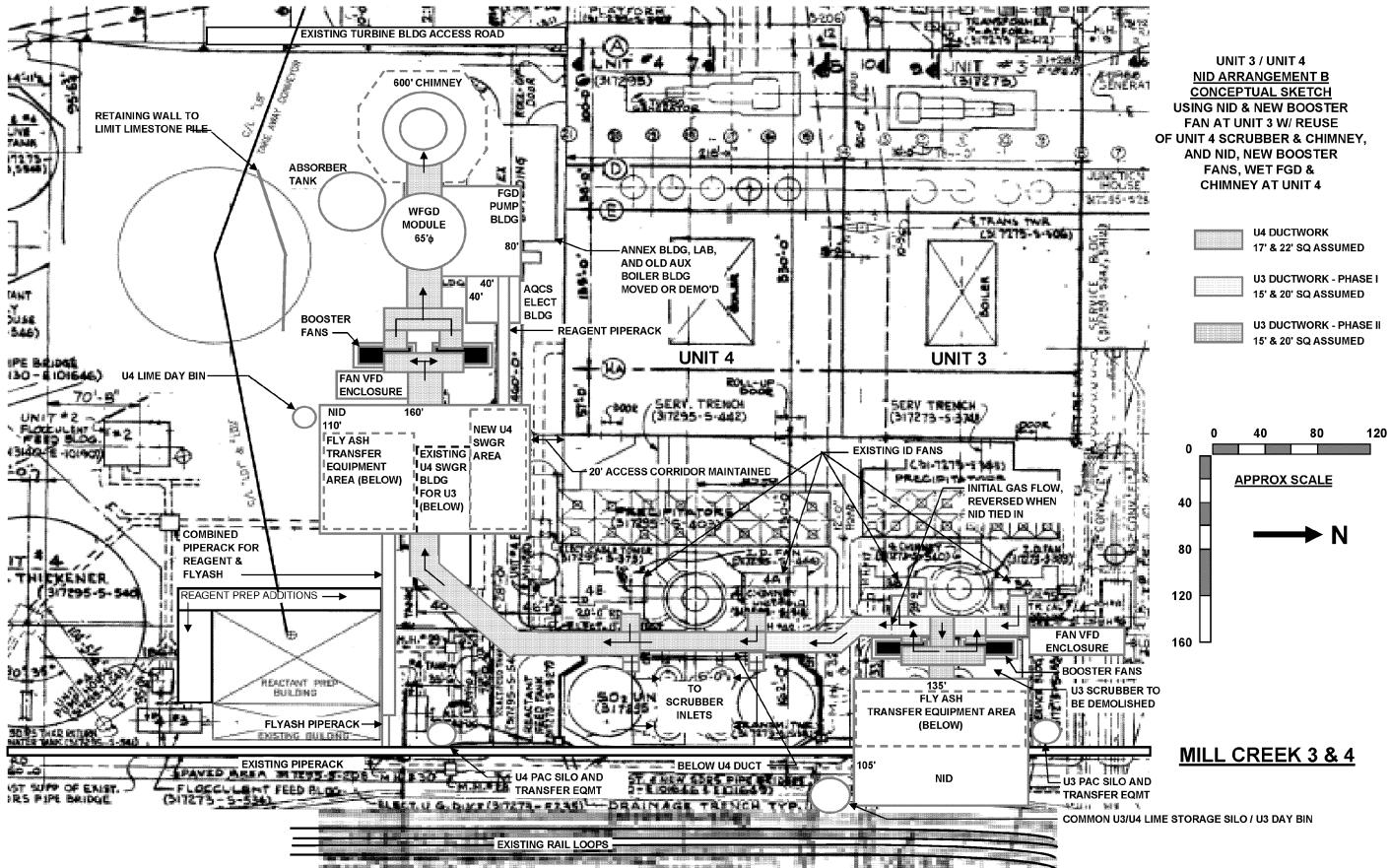
en'

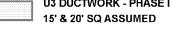
ey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.; Mehta, Pratik D.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Goodlet, Roger F.; Ballard, Michael W; Hintz, Monty E.

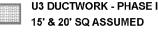
8.41.0803 101027 - Mill Creek U4 Alternative AQC Arrangement Sketches for Nov 1st Conference Call

Eileen,

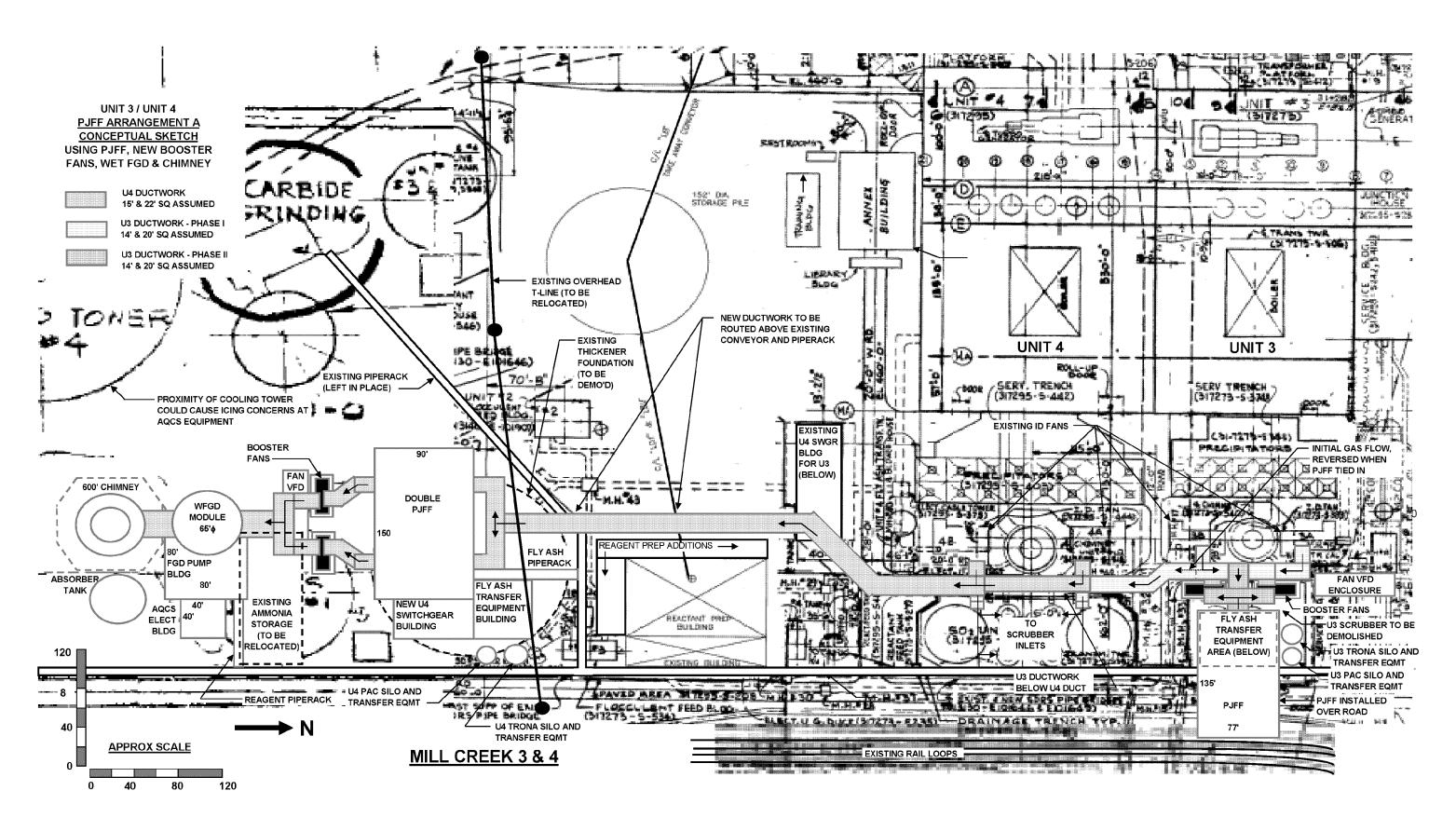

In preparation for our Nov 1st conference call, please find attached sketches of the potential Mill Creek U4 AQC arrangements. The sketches include both NID and PJFF versions of an east-west configuration along the south side of U4, and a north-south configuration in the old thickener area.

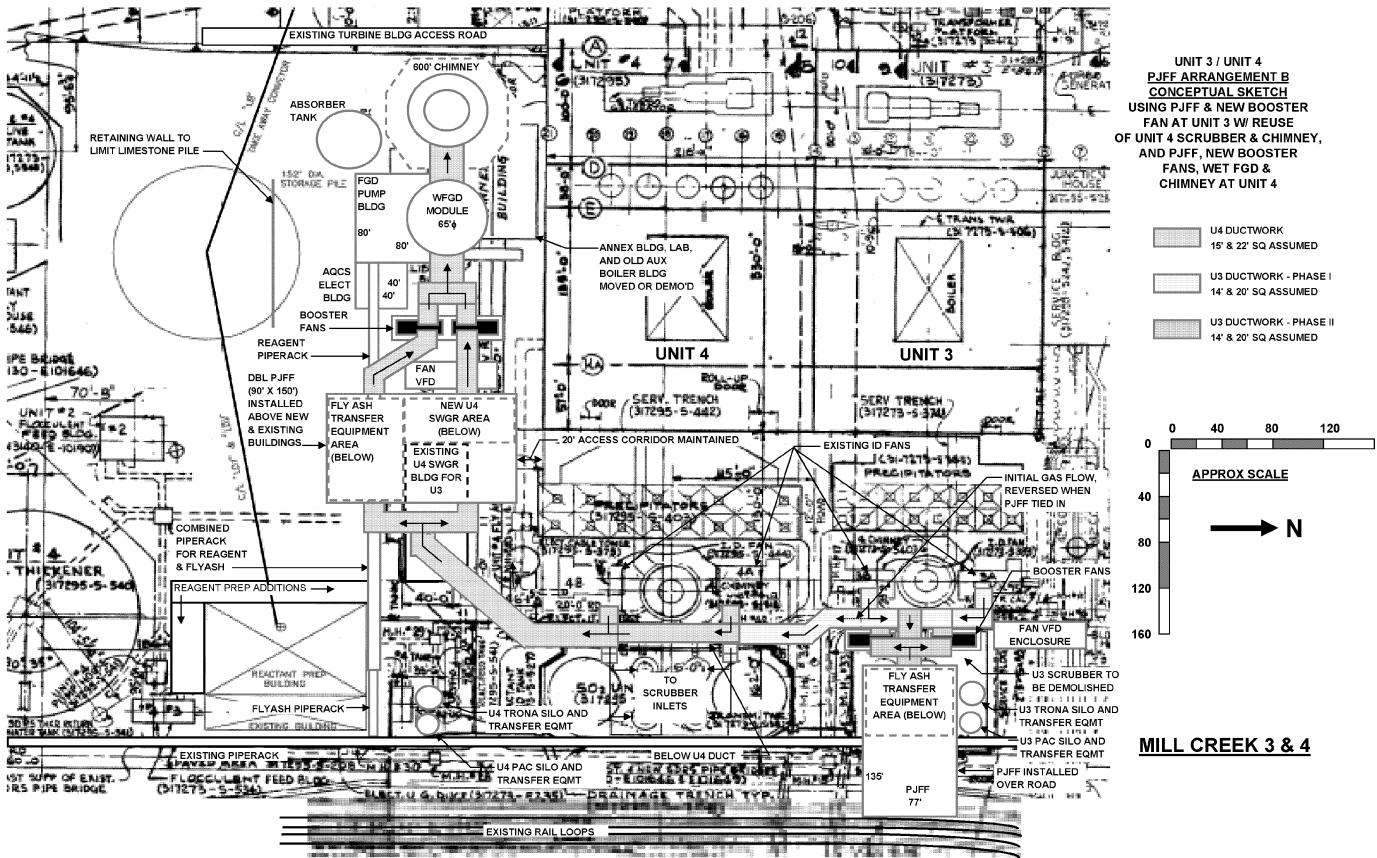

<< File: MC U3-U4 NID Sketch.pdf >> << File: MC U3-U4 NID Sketch Alt.pdf >> << File: MC U3-U4 PJFF Sketch.pdf >> << File: MC U3-U4 PJFF Sketch Alt.pdf >> Best regards,


Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™


Response to KU AG 1-2, 1-5 and LGE AG 1-2, 1-6

11401 Lamar Avenue Overland Park, KS 66211 Phone: **(913) 458-7928** Email: **hillmantm@bv.com** 








LGE-KU-00001695





LGE-KU-00001697

| From:<br>To: | Hillman, Timothy M.<br>Saunders, Eileen                                                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                                                        |
| CC:          | 168908 E.ON-AQC; Jackson, Audrey; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand; Wehrly, M.<br>R.; Hintz, Monty E.; Goodlet, Roger F.; Betz, Alex; Lucas, Kyle J.; Smith, Dave; Mehta, Pratik D.;<br>Greenwell. Sarah |
| Sent:        | 12/20/2010 12:25:39 PM                                                                                                                                                                                                 |
| Subject:     | 168908.28.3000 101220 - Action Item List                                                                                                                                                                               |
| Attachments: | 168908 LG&E AND KU ACTION ITEM LIST.xls                                                                                                                                                                                |

Eileen,

Attached is the action item list for our weekly Monday conference call.

Regards,

### TIM HILLMAN | Project Manager, Energy

Black & Veatch Corporation | 11401 Lamar Ave., Overland Park, KS 66211 + 1 913-458-7928 p |HillmanTM@BV.com Building a World of Difference.®

Please consider the environment before printing my e-mail Please note that the information and attachments in this email are intended for the exclusive use of the addressee and may contain confidential or privileged information. If you are not the intended recipient, please do not forward, copy or print the message or its attachments. Notify me at the above address, and delete this message and any attachments. Thank you

|            | А      | В                     | С        | D                                                        | E        | F          | G       | Н          | J          | K            | L         | М                                            |
|------------|--------|-----------------------|----------|----------------------------------------------------------|----------|------------|---------|------------|------------|--------------|-----------|----------------------------------------------|
| ********** | ITEM # | SOURC                 | CE       | DESCRIPTION                                              | FILE NO. | FACILITY   | RESPON  | ISIBILITY  | ÞATE ADDEI | IG DUE DA    | RR DUE D/ | OMPL DAT                                     |
| 1          |        |                       |          |                                                          |          |            |         |            |            |              |           | i I                                          |
| 2          |        | DOC/MTNG              | DATE     |                                                          |          |            | CO.     | INITIAL    |            |              |           |                                              |
|            |        | GENERAL               |          |                                                          |          | n          | A       |            |            |              |           |                                              |
| 3          |        | GENERAL               |          |                                                          |          | 11         | l^      |            |            |              |           |                                              |
|            | 27     | Conf Call 10102       | 10/25/10 | Prepare letter spec for Fabric Filter workshop.          | 41.0806  | n          | B&V     | AM/RL      | 10/19/10   | TBD          |           |                                              |
| 4          |        |                       |          |                                                          |          |            |         |            |            |              |           |                                              |
|            |        | MILL CREEK            |          |                                                          |          | Mill Creek | A       |            |            |              |           |                                              |
| 5          |        |                       |          |                                                          |          |            |         |            |            |              |           |                                              |
|            | 46     | Conf Call 10120       | 12/7/10  | Develop high level cost comparison between the installa  | 14.1000  | Mill Creek | B&V     | тн         | 12/13/10   | TBD          |           |                                              |
| 6          |        | <b>F</b> 11 44 0000 4 | 44 540   |                                                          | 11.0000  |            | 0.005   | 50         | 11/00/10   | 11/10/10     | 10/10/10  |                                              |
| 7          | 32     | Email 41.0803 1       | 11/5/10  | Provide comments and direction on Mill Creek Validation  | 41.0803  | Mill Creek | LG&E/KU | ES         | 11/08/10   | 11/16/10     | 12/13/10  |                                              |
| <b>_</b>   |        | GHENT                 |          |                                                          |          | Ghent      | A       |            |            |              |           |                                              |
| 8          |        | GHENT                 |          |                                                          |          | Griefit    | l^      |            |            |              |           |                                              |
|            | 56     | Ghent Val Mtg M       | 12/7/10  | Provide a gualitative comparison between unit sorbent in | 14.1000  | Ghent      | B&V     | АМ         | 12/13/10   | 12/17/10     | 12/22/10  |                                              |
| 9          |        | <b>.</b>              |          |                                                          |          |            |         |            |            |              |           | 1                                            |
|            | 51     | Ghent Val Mtg M       | 12/7/10  | Provide suggestions to balance/bias the flows downstrea  | 14.1000  | Ghent      | B&V     | MW         | 12/13/10   | 01/07/11     |           |                                              |
| 10         |        |                       |          |                                                          |          |            |         |            |            |              |           |                                              |
|            | 52     | Ghent Val Mtg M       | 12/7/10  | Include demolition costs in the project cost estimate as | 14.1000  | Ghent      | B&V     | RF         | 12/13/10   | st estimate) |           |                                              |
| 11         |        |                       |          |                                                          |          |            |         |            |            |              |           |                                              |
| 10         | 54     | Ghent Val Mtg M       | 12/7/10  | Review and provide comments on the Ghent Validation      | 14.1000  | Ghent      | LG&E/KU | Ghent Tea  | 12/13/10   | 12/14/10     | 12/20/10  |                                              |
| 12         | 58     | Email 14.1000 1       | 12/10/10 | Provide comments on Ghent Validation Meeting Minutes     | 111000   | Ghent      | LG&E/KU | EC         | 12/13/10   | 12/17/10     | 12/20/10  |                                              |
| 13         | 56     | Email 14.1000 1       | 12/10/10 | Provide comments on Grienit validation meeting minutes   | 14.1000  | Gnerit     |         | E9         | 12/13/10   |              | 12/20/10  |                                              |
| -13        | 47     | Ghent Val Mtg M       | 12/7/10  | Review requirements for fire protection on PJFFs.        | 14.1000  | Ghent      | LG&E/KU | ES         | 12/13/10   | 12/30/10     |           |                                              |
| 14         | -17    |                       | 12.7.10  |                                                          | 14.1000  |            |         | 20         | 12,10,10   | 12,00,10     |           |                                              |
|            | 49     | Ghent Val Mtg M       | 12/7/10  | Inform professionals involved in the Ghent ash handling  | 14.1000  | Ghent      | LG&E/KU | ES⊡MW      | 12/13/10   | 12/17/10     | 12/20/10  |                                              |
| 15         |        | _                     |          |                                                          |          |            |         |            |            |              |           | 1                                            |
|            |        | E.W. BROWN            |          |                                                          |          | Brown      | A       |            |            |              |           |                                              |
| 16         |        |                       |          |                                                          |          |            |         |            |            |              |           |                                              |
|            | 41     | Brown KO Mtg N        | 11/15/10 | Review U3 SCR arrgmnts & comment on potential PJFf       | 14.1000  | Brown      | B&V     | тн/ мн     | 11/16/10   | 12/10/10     | 12/22/10  |                                              |
| 17         |        |                       | 14/45/40 |                                                          | 444000   |            | DOV(    | <b>T</b> U | 14/45/10   | 04/40/44     |           |                                              |
| 18         | 38     | Brown KO Mtg N        | 11/15/10 | Prepare Unit 1 and 2 sketches with and without SCR       | 14.1000  | Brown      | B&V     | тн         | 11/15/10   | 01/10/11     |           |                                              |
|            | 59     | Email 22.1000 1       | 12/14/10 | Incorporate LG&E/KU comments to Brown PDM and iss        | 22 1000  | Brown      | B&V     | MW/JC      | 12/16/10   | 01/17/11     |           |                                              |
| 19         | 53     | 2.1000 1              | 12/14/10 |                                                          |          | DIOWIT     |         | 10100100   | 12/10/10   |              |           |                                              |
|            | 42     | Email 14.1000 1       | 11/16/10 | Provide LG&E/KU comments on Brown Kick Off Meetin        | 14.1000  | Brown      | LG&E/KU | ES         | 11/16/10   | 11/22/10     | 12/20/10  |                                              |
| 20         |        |                       |          |                                                          |          |            |         |            |            |              |           |                                              |
|            | 44     | Conf Call 10112       | 11/22/10 | Establish date for Brown Validation meeting.             | 41.0803  | Brown      | LG&E/KU | ES         | 11/22/10   | 11/29/10     | 12/20/10  |                                              |
| 21         |        |                       |          |                                                          |          |            |         |            |            |              |           |                                              |
|            | 60     |                       |          |                                                          |          |            |         |            |            |              |           | i 7                                          |
| 22         |        |                       |          |                                                          |          |            |         |            |            |              |           | <u> </u>                                     |
|            | 61     |                       |          |                                                          |          |            |         |            |            |              |           | 1                                            |
| 23         | 62     |                       |          |                                                          |          |            |         |            |            |              |           | ⊢]                                           |
| 24         | 02     |                       |          |                                                          |          |            |         |            |            |              |           |                                              |
| 24         |        |                       |          |                                                          |          | 1          | I       |            |            |              |           | <u>لــــــــــــــــــــــــــــــــــــ</u> |

|    | N           | 0                                                   | Р                      | Q    | R            | S           | Т      |
|----|-------------|-----------------------------------------------------|------------------------|------|--------------|-------------|--------|
| 1  | STATUS      | NOTES                                               |                        |      | Fv G^ K^     |             |        |
|    |             |                                                     |                        |      |              |             |        |
| 2  |             |                                                     |                        |      |              |             |        |
| 3  |             |                                                     |                        |      |              |             |        |
| 4  | In Progress | Develop letter spec and send to Eileen for review ( | 12/13)                 |      |              |             |        |
| 5  |             |                                                     |                        |      |              |             |        |
| 6  | In Progress | B&V has contacted Alstom & received initial respon  | nse (12/1              | 5)   |              |             |        |
| 7  | Complete??  | No comments on report. Direction given for U3, U4   | la&b, and              | d se | e AI #46 for | U1&U2 (12   | 2/13). |
| 8  |             |                                                     |                        |      |              |             |        |
| 9  | Open        |                                                     |                        |      |              |             |        |
| 10 | Open        |                                                     |                        |      |              |             |        |
| 11 | Open        |                                                     |                        |      |              |             |        |
| 12 | Open        |                                                     |                        |      |              |             |        |
| 13 | Open        |                                                     |                        |      |              |             |        |
| 14 | Open        |                                                     |                        |      |              |             |        |
| 15 | Open        |                                                     |                        |      |              |             |        |
| 16 |             |                                                     |                        |      |              |             |        |
| 17 | In Progress | Received additional drawings 12/10 which require    | more rev               | iew. |              |             |        |
| 18 | In Progress |                                                     |                        |      |              |             |        |
| 19 | Open        | Pending tables of information in Info Request.      |                        |      |              |             |        |
| 20 | In Progress | Eileen has no comments. Sent to team for comme      | nts. (12/ <sup>-</sup> | 13)  |              |             |        |
| 21 | Open        | Potentially to be scheduled for the week of January | /17 <b>th</b> . N      | leec | to ask Jeff  | Fraley(11/2 | 9)     |
| 22 |             |                                                     |                        |      |              |             |        |
|    |             |                                                     |                        |      |              |             |        |
| 23 |             |                                                     |                        |      |              |             |        |
| 24 |             |                                                     |                        |      |              |             |        |

|    | Α  | В | С | D | E | F | G | Н | J | K | L | М |
|----|----|---|---|---|---|---|---|---|---|---|---|---|
|    | 63 |   |   |   |   |   |   |   |   |   |   |   |
| 25 | 64 |   |   |   |   |   |   |   |   |   |   |   |
| 26 | 04 |   |   |   |   |   |   |   |   |   |   |   |
|    | 65 |   |   |   |   |   |   |   |   |   |   |   |
| 27 |    |   |   |   |   |   |   |   |   |   |   |   |
| 28 | 66 |   |   |   |   |   |   |   |   |   |   |   |
| 20 | 67 |   |   |   |   |   |   |   |   |   |   |   |
| 29 |    |   |   |   |   |   |   |   |   |   |   |   |
|    | 68 |   |   |   |   |   |   |   |   |   |   |   |
| 30 | 69 |   |   |   |   |   |   |   |   |   |   |   |
| 31 | 03 |   |   |   |   |   |   |   |   |   |   |   |
|    | 70 |   |   |   |   |   |   |   |   |   |   |   |
| 32 |    |   |   |   |   |   |   |   |   |   |   |   |
| 33 | 71 |   |   |   |   |   |   |   |   |   |   |   |
|    | 72 |   |   |   |   |   |   |   |   |   |   |   |
| 34 |    |   |   |   |   |   |   |   |   |   |   |   |
| 35 | 73 |   |   |   |   |   |   |   |   |   |   |   |
|    | 74 |   |   |   |   |   |   |   |   |   |   |   |
| 36 |    |   |   |   |   |   |   |   |   |   |   |   |
| 37 | 75 |   |   |   |   |   |   |   |   |   |   |   |
|    | 76 |   |   |   |   |   |   |   |   |   |   |   |
| 38 |    |   |   |   |   |   |   |   |   |   |   |   |
| 39 | 77 |   |   |   |   |   |   |   |   |   |   |   |
|    | 78 |   |   |   |   |   |   |   |   |   |   |   |
| 40 |    |   |   |   |   |   |   |   |   |   |   |   |
| 41 | 79 |   |   |   |   |   |   |   |   |   |   |   |
| 41 | 80 |   |   |   |   |   |   |   |   |   |   |   |
| 42 |    |   |   |   |   |   |   |   |   |   |   |   |
| 10 | 81 |   |   |   |   |   |   |   |   |   |   |   |
| 43 | 82 |   |   |   |   |   |   |   |   |   |   |   |
| 44 |    |   |   |   |   |   |   |   |   |   |   |   |
|    | 83 |   |   |   |   |   |   |   |   |   |   |   |
| 45 | 84 |   |   |   |   |   |   |   |   |   |   |   |
| 46 | 04 |   |   |   |   |   |   |   |   |   |   |   |
|    | 85 |   |   |   |   |   |   |   |   |   |   |   |
| 47 |    |   |   |   |   |   |   |   |   |   |   |   |
| 48 | 86 |   |   |   |   |   |   |   |   |   |   |   |
| 40 |    |   |   |   |   |   |   |   |   |   |   |   |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 25 |   |   |   |   |   |   |   |
| 26 |   |   |   |   |   |   |   |
| 27 |   |   |   |   |   |   |   |
| 28 |   |   |   |   |   |   |   |
| 29 |   |   |   |   |   |   |   |
| 30 |   |   |   |   |   |   |   |
| 31 |   |   |   |   |   |   |   |
| 32 |   |   |   |   |   |   |   |
| 33 |   |   |   |   |   |   |   |
| 34 |   |   |   |   |   |   |   |
| 35 |   |   |   |   |   |   |   |
| 35 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 37 |   |   |   |   |   |   |   |
| 38 |   |   |   |   |   |   |   |
| 39 |   |   |   |   |   |   |   |
| 40 |   |   |   |   |   |   |   |
| 41 |   |   |   |   |   |   |   |
| 42 |   |   |   |   |   |   |   |
| 43 |   |   |   |   |   |   |   |
| 44 |   |   |   |   |   |   |   |
| 45 |   |   |   |   |   |   |   |
| 46 |   |   |   |   |   |   |   |
| 47 |   |   |   |   |   |   |   |
| 48 |   |   |   |   |   |   |   |

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | А   | В | С | D | E | F | G | Н | J | K | L | М        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---|---|---|---|---|---|---|---|---|---|----------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49 | 87  |   |   |   |   |   |   |   |   |   |   |          |
| 38 $39$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ <t< td=""><td></td><td>88</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 88  |   |   |   |   |   |   |   |   |   |   |          |
| 51 $                                                                                                        -$ <th< td=""><td>50</td><td>89</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 | 89  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52 | 90  |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 91  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53 | 92  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 94  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 95  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59 | 97  |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 98  |   |   |   |   |   |   |   |   |   |   |          |
| 61 $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ <td< td=""><td>60</td><td>99</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 | 99  |   |   |   |   |   |   |   |   |   |   | <u> </u> |
| 62       101       101       101       101       101       102       102       102       103       103       103       103       103       103       103       103       104       104       105       105       105       105       105       105       106       106       106       107       108       108       108       109       109       109       109       109       109       109       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100 <td< td=""><td>61</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | 61 |     |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62 |     |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 101 |   |   |   |   |   |   |   |   |   |   |          |
| 64 $                                                                                                        -$ <th< td=""><td></td><td>102</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>  </td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | 102 |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64 | 103 |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65 |     |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66 | 104 |   |   |   |   |   |   |   |   |   |   |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 105 |   |   |   |   |   |   |   |   |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67 | 106 |   |   |   |   |   |   |   |   |   |   | <u> </u> |
| 69     69     69     69     60     60     60     60     60       70     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     108     1                                                                                                                                                                                                                                                     | 68 |     |   |   |   |   |   |   |   |   |   |   |          |
| 70     108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69 |     |   |   |   |   |   |   |   |   |   |   |          |
| 71         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 108 |   |   |   |   |   |   |   |   |   |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 109 |   |   |   |   |   |   |   |   |   |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71 |     |   |   |   |   |   |   |   |   |   |   | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72 | 110 |   |   |   |   |   |   |   |   |   |   |          |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 49 |   |   |   |   |   |   |   |
| 50 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 51 |   |   |   |   |   |   |   |
| 52 |   |   |   |   |   |   |   |
| 53 |   |   |   |   |   |   |   |
| 54 |   |   |   |   |   |   |   |
| 55 |   |   |   |   |   |   |   |
| 56 |   |   |   |   |   |   |   |
| 57 |   |   |   |   |   |   |   |
| 58 |   |   |   |   |   |   |   |
| 59 |   |   |   |   |   |   |   |
| 60 |   |   |   |   |   |   |   |
| 61 |   |   |   |   |   |   |   |
| 62 |   |   |   |   |   |   |   |
| 63 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 64 |   |   |   |   |   |   |   |
| 65 |   |   |   |   |   |   |   |
| 66 |   |   |   |   |   |   |   |
| 67 |   |   |   |   |   |   |   |
| 68 |   |   |   |   |   |   |   |
| 69 |   |   |   |   |   |   |   |
| 70 |   |   |   |   |   |   |   |
| 71 |   |   |   |   |   |   |   |
| 72 |   |   |   |   |   |   |   |

|    | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 73 | 111 |   |   |   |   |   |   |   |   |   |   |   |
| 74 | 112 |   |   |   |   |   |   |   |   |   |   |   |
| 75 | 113 |   |   |   |   |   |   |   |   |   |   |   |
|    | 114 |   |   |   |   |   |   |   |   |   |   |   |
| 76 | 115 |   |   |   |   |   |   |   |   |   |   |   |
| 77 | 116 |   |   |   |   |   |   |   |   |   |   |   |
| 78 | 117 |   |   |   |   |   |   |   |   |   |   |   |
| 79 |     |   |   |   |   |   |   |   |   |   |   |   |
| 80 | 118 |   |   |   |   |   |   |   |   |   |   |   |
| 81 | 119 |   |   |   |   |   |   |   |   |   |   |   |
| 82 | 120 |   |   |   |   |   |   |   |   |   |   |   |
| 83 | 121 |   |   |   |   |   |   |   |   |   |   |   |
| 84 | 122 |   |   |   |   |   |   |   |   |   |   |   |
|    | 123 |   |   |   |   |   |   |   |   |   |   |   |
| 85 | 124 |   |   |   |   |   |   |   |   |   |   |   |
| 86 | 125 |   |   |   |   |   |   |   |   |   |   |   |
| 87 | 126 |   |   |   |   |   |   |   |   |   |   |   |
| 88 |     |   |   |   |   |   |   |   |   |   |   |   |
| 89 | 127 |   |   |   |   |   |   |   |   |   |   |   |
| 90 | 128 |   |   |   |   |   |   |   |   |   |   |   |
| 91 | 129 |   |   |   |   |   |   |   |   |   |   |   |
| 92 | 130 |   |   |   |   |   |   |   |   |   |   |   |
| 93 | 131 |   |   |   |   |   |   |   |   |   |   |   |
|    | 132 |   |   |   |   |   |   |   |   |   |   |   |
| 94 | 133 |   |   |   |   |   |   |   |   |   |   |   |
| 95 | 134 |   |   |   |   |   |   |   |   |   |   |   |
| 96 | ,   |   |   |   |   |   |   |   |   |   |   |   |

|    | N | 0 | Р | Q | R | S | Т |
|----|---|---|---|---|---|---|---|
| 73 |   |   |   |   |   |   |   |
| 74 |   |   |   |   |   |   |   |
| 75 |   |   |   |   |   |   |   |
| 76 |   |   |   |   |   |   |   |
| 77 |   |   |   |   |   |   |   |
| 78 |   |   |   |   |   |   |   |
| 79 |   |   |   |   |   |   |   |
| 80 |   |   |   |   |   |   |   |
|    |   |   |   |   |   |   |   |
| 81 |   |   |   |   |   |   |   |
| 82 |   |   |   |   |   |   |   |
| 83 |   |   |   |   |   |   |   |
| 84 |   |   |   |   |   |   |   |
| 85 |   |   |   |   |   |   |   |
| 86 |   |   |   |   |   |   |   |
| 87 |   |   |   |   |   |   |   |
| 88 |   |   |   |   |   |   |   |
| 89 |   |   |   |   |   |   |   |
| 90 |   |   |   |   |   |   |   |
| 91 |   |   |   |   |   |   |   |
| 92 |   |   |   |   |   |   |   |
| 93 |   |   |   |   |   |   |   |
| 94 |   |   |   |   |   |   |   |
| 95 |   |   |   |   |   |   |   |
| 96 |   |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 97  | 135 |   |   |   |   |   |   |   |   |   |   |   |
| 98  | 136 |   |   |   |   |   |   |   |   |   |   |   |
|     | 137 |   |   |   |   |   |   |   |   |   |   |   |
| 99  | 138 |   |   |   |   |   |   |   |   |   |   |   |
| 100 |     |   |   |   |   |   |   |   |   |   |   |   |
| 101 | 139 |   |   |   |   |   |   |   |   |   |   |   |
| 102 | 140 |   |   |   |   |   |   |   |   |   |   |   |
| 103 | 141 |   |   |   |   |   |   |   |   |   |   |   |
| 104 | 142 |   |   |   |   |   |   |   |   |   |   |   |
| 105 | 143 |   |   |   |   |   |   |   |   |   |   |   |
|     | 144 |   |   |   |   |   |   |   |   |   |   |   |
| 106 | 145 |   |   |   |   |   |   |   |   |   |   |   |
| 107 | 146 |   |   |   |   |   |   |   |   |   |   |   |
| 108 | 147 |   |   |   |   |   |   |   |   |   |   |   |
| 109 |     |   |   |   |   |   |   |   |   |   |   |   |
| 110 | 148 |   |   |   |   |   |   |   |   |   |   |   |
| 111 | 149 |   |   |   |   |   |   |   |   |   |   |   |
| 112 | 150 |   |   |   |   |   |   |   |   |   |   |   |
| 113 | 151 |   |   |   |   |   |   |   |   |   |   |   |
| 114 | 152 |   |   |   |   |   |   |   |   |   |   |   |
| 115 | 153 |   |   |   |   |   |   |   |   |   |   |   |
|     | 154 |   |   |   |   |   |   |   |   |   |   |   |
| 116 | 155 |   |   |   |   |   |   |   |   |   |   |   |
| 117 | 156 |   |   |   |   |   |   |   |   |   |   |   |
| 118 | 157 |   |   |   |   |   |   |   |   |   |   |   |
| 119 |     |   |   |   |   |   |   |   |   |   |   |   |
| 120 | 158 |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 97  |   |   |   |   |   |   |   |
| 98  |   |   |   |   |   |   |   |
| 99  |   |   |   |   |   |   |   |
| 100 |   |   |   |   |   |   |   |
| 101 |   |   |   |   |   |   |   |
| 102 |   |   |   |   |   |   |   |
| 103 |   |   |   |   |   |   |   |
| 104 |   |   |   |   |   |   |   |
| 105 |   |   |   |   |   |   |   |
| 106 |   |   |   |   |   |   |   |
| 107 |   |   |   |   |   |   |   |
| 108 |   |   |   |   |   |   |   |
| 109 |   |   |   |   |   |   |   |
| 110 |   |   |   |   |   |   |   |
| 111 |   |   |   |   |   |   |   |
| 112 |   |   |   |   |   |   |   |
| 113 |   |   |   |   |   |   |   |
| 114 |   |   |   |   |   |   |   |
| 115 |   |   |   |   |   |   |   |
| 116 |   |   |   |   |   |   |   |
| 117 |   |   |   |   |   |   |   |
| 118 |   |   |   |   |   |   |   |
| 119 |   |   |   |   |   |   |   |
| 120 |   |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 121 | 159 |   |   |   |   |   |   |   |   |   |   |   |
| 122 | 160 |   |   |   |   |   |   |   |   |   |   |   |
|     | 161 |   |   |   |   |   |   |   |   |   |   |   |
| 123 | 162 |   |   |   |   |   |   |   |   |   |   |   |
| 124 | 163 |   |   |   |   |   |   |   |   |   |   |   |
| 125 | 164 |   |   |   |   |   |   |   |   |   |   |   |
| 126 |     |   |   |   |   |   |   |   |   |   |   |   |
| 127 | 165 |   |   |   |   |   |   |   |   |   |   |   |
| 128 | 166 |   |   |   |   |   |   |   |   |   |   |   |
| 129 | 167 |   |   |   |   |   |   |   |   |   |   |   |
| 130 | 168 |   |   |   |   |   |   |   |   |   |   |   |
|     | 169 |   |   |   |   |   |   |   |   |   |   |   |
| 131 | 170 |   |   |   |   |   |   |   |   |   |   |   |
| 132 | 171 |   |   |   |   |   |   |   |   |   |   |   |
| 133 | 172 |   |   |   |   |   |   |   |   |   |   |   |
| 134 |     |   |   |   |   |   |   |   |   |   |   |   |
| 135 | 173 |   |   |   |   |   |   |   |   |   |   |   |
| 136 | 174 |   |   |   |   |   |   |   |   |   |   |   |
| 137 | 175 |   |   |   |   |   |   |   |   |   |   |   |
|     | 176 |   |   |   |   |   |   |   |   |   |   |   |
| 138 | 177 |   |   |   |   |   |   |   |   |   |   |   |
| 139 | 178 |   |   |   |   |   |   |   |   |   |   |   |
| 140 | 179 |   |   |   |   |   |   |   |   |   |   |   |
| 141 |     |   |   |   |   |   |   |   |   |   |   |   |
| 142 | 180 |   |   |   |   |   |   |   |   |   |   |   |
| 143 | 181 |   |   |   |   |   |   |   |   |   |   | 7 |
| 144 | 182 |   |   |   |   |   |   |   |   |   |   |   |
| 144 |     |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S | Т |
|-----|---|---|---|---|---|---|---|
| 121 |   |   |   |   |   |   |   |
| 122 |   |   |   |   |   |   |   |
| 123 |   |   |   |   |   |   |   |
| 124 |   |   |   |   |   |   |   |
| 125 |   |   |   |   |   |   |   |
| 126 |   |   |   |   |   |   |   |
| 127 |   |   |   |   |   |   |   |
| 128 |   |   |   |   |   |   |   |
| 129 |   |   |   |   |   |   |   |
| 130 |   |   |   |   |   |   |   |
| 131 |   |   |   |   |   |   |   |
| 132 |   |   |   |   |   |   |   |
| 133 |   |   |   |   |   |   |   |
| 134 |   |   |   |   |   |   |   |
| 135 |   |   |   |   |   |   |   |
| 136 |   |   |   |   |   |   |   |
| 137 |   |   |   |   |   |   |   |
| 138 |   |   |   |   |   |   |   |
| 139 |   |   |   |   |   |   |   |
| 140 |   |   |   |   |   |   |   |
| 141 |   |   |   |   |   |   |   |
| 142 |   |   |   |   |   |   |   |
| 143 |   |   |   |   |   |   |   |
| 144 |   |   |   |   |   |   |   |

|                   | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-------------------|-----|---|---|---|---|---|---|---|---|---|---|---|
| 145               | 183 |   |   |   |   |   |   |   |   |   |   |   |
| 145               | 184 |   |   |   |   |   |   |   |   |   |   |   |
| 146               |     |   |   |   |   |   |   |   |   |   |   |   |
| 147               | 185 |   |   |   |   |   |   |   |   |   |   |   |
| 147               | 186 |   |   |   |   |   |   |   |   |   |   |   |
| 148               |     |   |   |   |   |   |   |   |   |   |   |   |
| 140               | 187 |   |   |   |   |   |   |   |   |   |   |   |
| 149               | 188 |   |   |   |   |   |   |   |   |   |   |   |
| 150               |     |   |   |   |   |   |   |   |   |   |   |   |
| 151               | 189 |   |   |   |   |   |   |   |   |   |   |   |
| 131               | 190 |   |   |   |   |   |   |   |   |   |   |   |
| 152               |     |   |   |   |   |   |   |   |   |   |   |   |
| 153               | 191 |   |   |   |   |   |   |   |   |   |   |   |
| 154               | 192 |   |   |   |   |   |   |   |   |   |   |   |
|                   | 193 |   |   |   |   |   |   |   |   |   |   |   |
| 155               | 194 |   |   |   |   |   |   |   |   |   |   |   |
| 156               |     |   |   |   |   |   |   |   |   |   |   |   |
| 157               | 195 |   |   |   |   |   |   |   |   |   |   |   |
|                   | 196 |   |   |   |   |   |   |   |   |   |   |   |
| 158               | 197 |   |   |   |   |   |   |   |   |   |   |   |
| 159               |     |   |   |   |   |   |   |   |   |   |   |   |
| 160               | 198 |   |   |   |   |   |   |   |   |   |   |   |
| 161               | 199 |   |   |   |   |   |   |   |   |   |   |   |
|                   | 200 |   |   |   |   |   |   |   |   |   |   |   |
| 162               |     |   |   |   |   |   |   |   |   |   |   |   |
| 163<br>164        |     |   |   |   |   |   |   |   |   |   |   |   |
| 165               |     |   |   |   |   |   |   |   |   |   |   |   |
| 165<br>166        |     |   |   |   |   |   |   |   |   |   |   |   |
| 167               |     |   |   |   |   |   |   |   |   |   |   |   |
| 168               |     |   |   |   |   |   |   |   |   |   |   |   |
| 169<br>170        |     |   |   |   |   |   |   |   |   |   |   |   |
| 171               |     |   |   |   |   |   |   |   |   |   |   |   |
| 171<br>172<br>173 |     |   |   |   |   |   |   |   |   |   |   |   |
| 173<br>174        |     |   |   |   |   |   |   |   |   |   |   |   |
| 174               |     |   |   |   |   |   |   |   |   |   |   |   |
|                   |     |   | 1 |   | L | 1 |   |   |   | 1 |   |   |

|            | N | 0 | Р | Q        | R | s | Т |
|------------|---|---|---|----------|---|---|---|
|            |   |   |   |          |   |   |   |
| 145        |   |   |   |          |   |   |   |
| 140        |   |   |   |          |   |   |   |
| 146        |   |   |   |          |   |   |   |
| 147        |   |   |   |          |   |   |   |
|            |   |   |   |          |   |   |   |
| 148        |   |   |   |          |   |   |   |
|            |   |   |   |          |   |   |   |
| 149        |   |   |   |          |   |   |   |
| 150        |   |   |   |          |   |   |   |
|            |   |   |   |          |   |   |   |
| 151        |   |   |   |          |   |   |   |
|            |   |   |   |          |   |   |   |
| 152        |   |   |   |          |   |   |   |
| 153        |   |   |   |          |   |   |   |
| 133        |   |   |   |          |   |   |   |
| 154        |   |   |   |          |   |   |   |
|            |   |   |   |          |   |   |   |
| 155        |   |   |   |          |   |   |   |
| 156        |   |   |   |          |   |   |   |
| 100        |   |   |   |          |   |   |   |
| 157        |   |   |   |          |   |   |   |
|            |   |   |   |          |   |   |   |
| 158        |   |   |   |          |   |   |   |
| 450        |   |   |   |          |   |   |   |
| 159        |   |   |   |          |   |   |   |
| 160        |   |   |   |          |   |   |   |
|            |   |   |   |          |   |   |   |
| 161        |   |   |   |          |   |   |   |
| 1 400      |   |   |   |          |   |   |   |
| 162<br>163 |   |   |   | $\vdash$ |   |   |   |
| 163        |   |   |   |          |   |   |   |
| 165        |   |   |   |          |   |   |   |
| 166        |   |   |   |          |   |   |   |
| 167        |   |   |   |          |   |   |   |
| 168        |   |   |   |          |   |   |   |
| 169<br>170 |   |   |   |          |   |   |   |
| 170        |   |   |   |          |   |   |   |
| 172        |   |   |   |          |   |   |   |
| 173        |   |   |   |          |   |   |   |
| 174        |   |   |   |          |   |   |   |
| 175        |   |   |   |          |   |   |   |

|      | А  | В | С | D | E | F | G | Н | J | K | L | М |
|------|----|---|---|---|---|---|---|---|---|---|---|---|
| 7048 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7049 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7050 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7051 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7052 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7053 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7054 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7055 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7056 | 58 |   |   |   |   |   |   |   |   |   |   |   |

|    | Α      | В                           | С       | D                                                           | E        | F          | G          | Н          | J         | K         | L        | М            | Ν        |
|----|--------|-----------------------------|---------|-------------------------------------------------------------|----------|------------|------------|------------|-----------|-----------|----------|--------------|----------|
|    | ITEM # | # SOURCE DESCRIPTION        |         | FILE NO.                                                    | FACILITY | RESPON     | ISIBILITY  | ATE ADDE   | IG DUE DA | RR DUE D/ | OMPL DAT | STATUS       |          |
| 1  |        |                             |         |                                                             |          | 4          |            |            | -         |           |          |              |          |
| 2  |        | DOC/MTNG                    | DATE    |                                                             |          |            | CO.        | INITIAL    |           |           |          |              |          |
|    | 40     |                             | 11/8/10 | Incorporate LG&E and KU comments to Ghent PDM an            | 22 1000  | Ghent      | B&V        | MW/JC      | 11/15/10  | 11/30/10  | 12/20/10 | 12/17/10     | Complete |
| 3  |        |                             | 11/0/10 |                                                             | 22.1000  |            |            |            | 11/10/10  | 11/50/10  | 12/20/10 | 12/17/10     | Complete |
| -  | 55     | Ghent Val Mtg I             | 12/7/10 | Provide reference/experience list for plants who inject tro | 14.1000  | Ghent      | B&V        | AM         | 12/13/10  | 12/17/10  |          | 12/16/10     | Complete |
| 4  |        | _                           |         |                                                             |          |            |            |            |           |           |          |              |          |
|    | 48     | Ghent Val Mtg I             | 12/7/10 | Provide technical information on PJFF to LG&E/KU for I      | 14.1000  | Ghent      | B&V        | AM         | 12/13/10  | TBD       |          | 12/16/10     | Complete |
| 5  |        |                             |         |                                                             |          |            |            |            |           |           |          |              | _        |
|    | 57     | Ghent Val Mtg I             | 12/7/10 | Jeff Joyce from LG&E/KU will investigate what the plant     | 14.1000  | Ghent      | LG&E/KU    | JJ         | 12/13/10  | 12/13/10  |          | 12/16/10     | Complete |
| 6  | 45     | Email 22 1000               |         | Provide comments on Brown Project Design Memorand           | 22.1000  | Brown      | LG&E/KU    | E0         | 11/29/10  | 12/03/10  | 12/10/10 | 12/14/10     | Complete |
| 7  | 40     |                             | *****   | Provide comments on Brown Project Design Memorand           | 22.1000  | Drown      | LG&E/KU    | ES         | 11/29/10  | 12/03/10  | 12/10/10 | 12/14/10     | Complete |
| -  | 43     | Email 14 1000 ·             | ####### | Provide LG&E/KU comments on Mill Creek validation pr        | 14 1000  | Mill Creek | I G&F/KU   | ES         | 11/16/10  | 11/22/10  | 12/13/10 | 12/13/10     | Complete |
| 8  |        |                             |         |                                                             |          |            |            |            |           |           |          |              |          |
|    | 50     | Ghent Val Mtg I             | 12/7/10 | Confirm if there will be any issues or concerns if the exit | 14.1000  | Ghent      | LG&E/KU    | ES         | 12/13/10  | 12/17/10  |          | 12/13/10     | Complete |
| 9  |        | _                           |         |                                                             |          |            |            |            |           |           |          |              | -        |
|    | 53     | Ghent Val Mtg I             | 12/7/10 | LG&E/KU to schedule visit PJFF at Trimble County Unit       | 14.1000  | Ghent      | LG&E/KU    | ES         | 12/13/10  | 12/17/10  |          | 12/13/10     | Removed  |
| 10 |        |                             |         |                                                             |          |            |            |            |           |           |          |              |          |
|    | 35     |                             | 11/8/10 | Incorporate LG&E and KU comments to Mill Creek PDN          | 22.1000  | Mill Creek | B&V        | MW/JC      | 11/08/10  | 11/16/10  | 11/29/10 | 11/29/10     | Complete |
| 11 | 34     |                             | 44/0/40 | Duanana and issue duaft of Duais of Design Management       | 00 1000  | Dusting    | B&V        | ТН         | 44/00/40  | 11/25/10  |          | 44/04/40     | Complete |
| 12 | 34     |                             | 11/8/10 | Prepare and issue draft of Project Design Memorandum        | 22.1000  | Brown      | B&A        |            | 11/08/10  | 11/25/10  |          | 11/24/10     | Complete |
| 12 | 36     | Brown KO Mta                | ####### | Provide a list of "sacred ground" areas at Brown.           | 14.1000  | Brown      | LG&E/KU    | ES         | 11/15/10  | 11/19/10  |          | 11/23/10     | Complete |
| 13 |        | Brown ite mitg              |         | rionde a list of sacred ground areas at brown.              | 14.1000  | Brown      |            | 20         | 11/10/10  | 11/10/10  |          | 11/20/10     | Complete |
|    | 39     | Brown KO Mtg                | ######  | Identify a contact person for data collection               | 14.1000  | Brown      | LG&E/KU    | ES         | 11/15/10  | 11/19/10  |          | 11/22/10     | Complete |
| 14 |        | , v                         |         | , ,                                                         |          |            |            |            |           |           |          |              |          |
|    | 33     |                             | 11/8/10 | Prepare Data Request for Brown Station.                     | 41.0100  | Brown      | B&V        | TH         | 11/08/10  | 11/18/10  |          | 11/19/10     | Complete |
| 15 |        |                             |         |                                                             |          |            |            |            |           |           |          |              |          |
|    | 37     | Brown KO Mtg                | ######  | Provide drawings of the Unit 3 SO3 mitigation project       | 14.1000  | Brown      | LG&E/KU    | ES         | 11/15/10  | 11/19/10  |          | 11/11/10     | Complete |
| 16 |        | <b>E N 80 (800</b>          |         |                                                             |          |            |            |            | 10/01/10  | 10/00/10  |          | 4.4.100.14.0 | <u> </u> |
| 17 | 25     | Email 22.1000               | ####### | Provide LG&E and KU comments on Ghent Project Des           | 22.1000  | Ghent      | LG&E/KU    | ES         | 10/21/10  | 10/28/10  |          | 11/08/10     | Complete |
| 17 | 23     | Conf Call 1010              | ####### | Provide draft of Mill Creek Validation Report for LG&E/K    | 41 0803  | Mill Creek | Bev        | TH/MW      | 10/19/10  | 11/05/10  |          | 11/05/10     | Complete |
| 18 | 25     |                             | ******  | Provide drait of will creek validation Report for EGGE/K    | 41.0000  |            |            | 11//4/4/4  | 10/13/10  | 11/03/10  |          | 11/00/10     | Complete |
|    | 29     |                             | ######  | Provide Brown Kickoff presentation                          | 14.1000  | Brown      | B&V        | ТН         | 10/29/10  | 11/05/10  |          | 11/03/10     | Complete |
| 19 |        |                             |         | ·                                                           |          |            |            |            |           |           |          |              |          |
|    | 24     | Conf Call 1010 <sup>,</sup> | ######  | Prepare differences between SCR and SNCR for Browr          | 14.1000  | Brown      | B&V        | AM/RL      | 10/19/10  | 11/09/10  |          | 11/03/10     | Complete |
| 20 |        |                             |         |                                                             |          |            |            |            |           |           |          |              |          |
|    | 28     |                             | ######  | Provide Mill Creek Validation presentation.                 | 41.0803  | Mill Creek | B&V        | тн         | 10/29/10  | 11/05/10  |          | 11/03/10     | Complete |
| 21 |        |                             |         |                                                             |          |            |            |            | 10/07/10  | 11/00/10  |          | 44/04//2     |          |
|    | 31     | Email 14.1000 °             | ######  | Provide comments on Brown Kickoff meeting agenda            | 14.1000  | Brown      | LG&E/KU    | ES         | 10/27/10  | 11/02/10  |          | 11/01/10     | Complete |
| 22 | 30     | Email 14 1000               | <i></i> | Provide comments on Mill Creek Validation meeting age       | 14 1000  | Mill Creek |            | <b>E</b> 0 | 10/27/10  | 11/02/10  |          | 11/01/10     | Complete |
| 23 | 30     |                             | *****   | Fromue comments on while Greek validation meeting age       | 14.1000  | Will Creek |            | 1.5        | 10/27/10  | 11/02/10  |          | 1701/10      | Complete |
|    | 26     |                             | ######  | Provide sketches of Unit 4 AQC equipment in the thicke      | 41 0402  | Mill Creek | B&V        | мн         | 10/25/10  | 10/27/10  | 10/27/10 | 11/01/10     | Complete |
| 24 |        |                             |         |                                                             |          |            | - <u> </u> |            | 10,20,10  |           |          |              | Complete |
|    |        |                             |         |                                                             |          | 1          | 1          |            |           |           |          |              |          |

|          | 0                                                   | Р | Q | R | S | Т | U | V | W | Х |
|----------|-----------------------------------------------------|---|---|---|---|---|---|---|---|---|
| 1        | NOTES                                               |   |   |   |   |   |   |   |   |   |
| <u> </u> |                                                     |   |   |   |   |   |   |   |   |   |
| 2        |                                                     |   |   |   |   |   |   |   |   |   |
| 3        |                                                     |   |   |   |   |   |   |   |   |   |
| 4        |                                                     |   |   |   |   |   |   |   |   |   |
| 5        |                                                     |   |   |   |   |   |   |   |   |   |
| 6        | Conference Call with Jeff on 12/16.                 |   |   |   |   |   |   |   |   |   |
| 7        | Comments received and question on section 1.10      |   |   |   |   |   |   |   |   |   |
| /        | No comments.                                        |   |   |   |   |   |   |   |   |   |
| 8        |                                                     |   |   |   |   |   |   |   |   |   |
| 9        | Gary Revlett and Env. Team say they do not have a   |   |   |   |   |   |   |   |   |   |
| 10       | Eileen said she will track this item on her own and |   |   |   |   |   |   |   |   |   |
| 11       |                                                     |   |   |   |   |   |   |   |   |   |
| 12       | PDM issued for In-House Review (11/18)              |   |   |   |   |   |   |   |   |   |
| 13       | Added to Info Request Priority 1                    |   |   |   |   |   |   |   |   |   |
| 14       |                                                     |   |   |   |   |   |   |   |   |   |
| 15       |                                                     |   |   |   |   |   |   |   |   |   |
| 16       |                                                     |   |   |   |   |   |   |   |   |   |
| 17       |                                                     |   |   |   |   |   |   |   |   |   |
| 18       |                                                     |   |   |   |   |   |   |   |   |   |
| 19       |                                                     |   |   |   |   |   |   |   |   |   |
| 20       | To be included in Brown KO presentation. Also inc   |   |   |   |   |   |   |   |   |   |
| 21       | Final sent on 11/5                                  |   |   |   |   |   |   |   |   |   |
| 22       |                                                     |   |   |   |   |   |   |   |   |   |
| 23       | Confirmed LG&E and KU team is available for the     |   |   |   |   |   |   |   |   |   |
| 24       |                                                     |   |   |   |   |   |   |   |   |   |

|    | Α          | В                           | С       | D                                                            | Е       | F          | G       | Н       | J        | K         | L        | М        | Ν        |
|----|------------|-----------------------------|---------|--------------------------------------------------------------|---------|------------|---------|---------|----------|-----------|----------|----------|----------|
|    | 22         | Email 14.1000               | ######  | Provide LG&E/KU comments on Ghent Site Visit meetil          | 14.1000 | Ghent      | LG&E/KU | ES      | 10/15/10 | 10/19/10  |          | 10/22/10 | Complete |
| 25 |            |                             |         |                                                              |         |            |         |         |          |           |          |          |          |
| 26 | 1 <b>1</b> | KO & MC Site \              | 9/20/10 | Evaluate pros and cons of NID system for November ted        | 14.1000 | n          | B&V     | AM/□RL  | 09/21/10 | Nov. 2010 |          | 10/21/10 | Complete |
| 27 | 21         | Ghent Site Visit            | ######  | Prepare Ghent Information Request.                           | 41.0100 | Ghent      | B&V     | ТН      | 10/11/10 | 10/15/10  |          | 10/18/10 | Complete |
| 28 | 15         | KO & MC Site \              | 9/20/10 | Review B&V electrical study conducted in the 1990s           | 14.1000 | Mill Creek | B&V     | JB      | 09/21/10 | 09/24/10  | TBD      | 10/18/10 | Complete |
| 29 | 18         | Email 41.0100               | 9/29/10 | Choose the coal fuel design basis for Mill Creek, Ghent,     | 41.0100 | n          | LG&E/KU |         | 09/30/10 | 10/06/10  |          | 10/18/10 | Complete |
| 30 | 4          | KO & MC Site \              | 9/20/10 | Use B&V file system to set up LG&E/KU document stora         | 14.1000 | n          | LG&E/KU |         | 09/21/10 | TBD       |          | 10/18/10 | Complete |
| 31 | 12         | KO & MC Site \              | 9/20/10 | Schedule vendors for evaluation of existing scrubbers        | 14.1000 | n          | LG&E/KU | ES      | 09/21/10 | TBD       |          | 10/18/10 | Complete |
| 32 | 1          | KO & MC Site \              | 9/20/10 | Determine location for Mill Creek Task 6 Technology Se       | 14.1000 | Mill Creek | LG&E/KU | ES      | 09/21/10 | 10/15/10  |          | 10/12/10 | Complete |
| 33 | 20         | Email 22.1000               | 10/5/10 | Provide comments on the Mill Creek Project Design Me         |         | Mill Creek |         |         | 10/11/10 |           |          | 10/12/10 | Complete |
| 34 | 13         | KO & MC Site \              | 9/20/10 | Provide structural steel study assessments                   | 14.1000 | n          | LG&E/KU |         | 09/21/10 | 09/24/10  |          | 10/04/10 | Complete |
| 35 | 14         | KO & MC Site \              | 9/20/10 | Provide minimum access dimension box                         | 14.1000 | n          | LG&E/KU | ES      | 09/21/10 | 09/24/10  | 09/30/10 | 10/04/10 | Complete |
| 36 | 7          | KO & MC Site \              | 9/20/10 | Determine personnel assignments for document review          | 14.1000 | n          | LG&E/KU | ES      | 09/21/10 | TBD       |          | 10/04/10 | Complete |
| 37 | 19         | Re: Email 41.0 <sup>°</sup> | 9/30/10 | B&V to provide schedule/deadlines for Mill Creek inform      | 41.0100 | Mill Creek | B&V     | ТН      | 09/30/10 | 10/06/10  |          | 10/04/10 | Complete |
| 38 | 6          | KO & MC Site \              | 9/20/10 | Create IBackup FTP site for large file transfer              | 14.1000 |            | B&V     | KL      | 09/21/10 | 09/24/10  |          | 09/29/10 | Complete |
| 39 | 10         | KO & MC Site \              | 9/20/10 | Prepare data inventory and information request               | 14.1000 | Mill Creek | B&V     | MW/□JC  | 09/21/10 | 09/24/10  |          | 09/29/10 | Complete |
| 40 | 5          | KO & MC Site \              | 9/20/10 | Provide engineering cost estimate at end of each month       | 14.1000 | n          | B&V     | ТΗ      | 09/21/10 | 09/30/10  |          | 09/28/10 | Complete |
| 41 |            |                             |         | Determine dates for Ghent kick-off meeting                   | 14.1000 | Ghent      | LG&E/KU |         | 09/21/10 | 09/23/10  |          | 09/27/10 | Complete |
| 42 |            |                             |         | Evaluate the possibility of accelerating the installation of |         | Mill Creek | LG&E/KU | ES &⊏TH | 09/21/10 | TBD       |          | 09/27/10 | Complete |
| 43 | 17         | Email 14.1000               | 9/20/10 | Provide LG&E/KU comments on Kick Off Meeting and N           | 14.1000 |            | LG&E/KU | ES      | 09/21/10 | 09/24/10  |          | 09/24/10 | Complete |
| 44 | 3          | KO & MC Site \              | 9/20/10 | Provide DVD copy of Phase I Report                           | 14.1000 |            | B&V     | тн      | 09/21/10 | 09/24/10  |          | 09/22/10 | Complete |
| 45 | 9          | KO & MC Site \              | 9/20/10 | Update PIM with Eileen's Ghent contact information           | 14.1000 |            | B&V     | MVV     | 09/21/10 | 09/24/10  |          | 09/21/10 | Complete |
| 46 | 8          | KO & MC Site \              | 9/20/10 | Determine if a Monday, 2 pm EST project conference ca        | 14.1000 |            | B&V     | TH/⊓MW  | 09/21/10 | 09/23/10  |          | 09/21/10 | Complete |
| 47 |            |                             |         |                                                              |         |            |         |         |          |           |          |          |          |
| 48 |            |                             |         |                                                              |         |            |         |         |          |           |          |          |          |

|    | 0                                                                         | Р           | Q             | R            | s                 | Т            | U            | V             | w             | X      |
|----|---------------------------------------------------------------------------|-------------|---------------|--------------|-------------------|--------------|--------------|---------------|---------------|--------|
|    | Eileen has no comments (10/18). Waiting for com                           | nents fro   | om L          | .G&E/KU m    | nembers.          |              |              |               |               |        |
|    |                                                                           |             |               |              |                   |              |              |               |               |        |
| 25 | Will send powerpoint presentation in the next coup                        | e of day    | s (10         | 0/18)        | 1                 |              |              |               |               |        |
| 26 |                                                                           | ie er day   | 0 ( 1         | or 107.      |                   |              |              |               |               |        |
| 27 |                                                                           |             |               |              |                   |              |              |               |               |        |
|    | B&V could not locate study. Added to Data Reque                           | st. Wil⊢ı   | I<br>revie    | w when LG    | L<br>S&E/KU prov  | ides study.  |              |               |               |        |
| 28 |                                                                           |             |               |              |                   |              |              |               |               |        |
| 29 | Use future coal. (10/11) Chlorine needs to be corre                       | ected (1L   | J/18)         | )            |                   |              |              |               |               |        |
|    | Audrey is working on it (10/11). It is set up. Eileen                     | to reviev   | v (1C         | )/18).       |                   |              |              |               |               |        |
| 30 | To be scheduled week of 10/25. B&V requested to                           | be inclu    | Ided          | in debriefir | l<br>ng w/ each y | endor        |              |               |               |        |
| 31 |                                                                           |             |               |              |                   |              |              |               |               |        |
| 32 | MC Technology selection meeting to be held in Lou                         | uisville or | n <b>11</b> . | /9 with Brow | wn KO mtg         | on 11/10&1   | 1.           |               |               |        |
| 52 | Eileen's comments provided on 10/12. Sent to Ale                          | x for furt  | her           | comments.    |                   |              |              |               |               |        |
| 33 |                                                                           | -+:11       |               | <b>-</b>     |                   |              |              |               |               |        |
| 34 | CD received 9/27. Units 1, 2, and 4 on CD. Unit 3                         | still need  | iea.          | Email reque  | est sent on a     | 9/28.        |              |               |               |        |
|    | CD received 9/27. Access Dimension not included. Email request sent 9/28. |             |               |              |                   |              |              |               |               |        |
| 35 | MC - Alex Betz and a couple others at plant. Process in place (10/4)      |             |               |              |                   |              |              |               |               |        |
| 36 |                                                                           |             |               |              |                   |              |              |               |               |        |
| 37 |                                                                           |             |               |              |                   |              |              |               |               |        |
|    |                                                                           |             |               |              |                   |              |              |               |               |        |
| 38 |                                                                           |             | -             |              |                   |              |              |               |               |        |
| 39 |                                                                           |             |               |              |                   |              |              |               |               |        |
| 40 | Sent 9/28.                                                                |             |               |              |                   |              |              |               |               |        |
| 40 | Scheduled for October 6&7                                                 |             |               |              |                   |              |              |               |               |        |
| 41 |                                                                           |             |               |              |                   |              |              |               |               |        |
| 42 | B&V email addressed the acceleration of the SCR                           | install fo  | r MC          | 1&2(9/1      | 7). LG&E/         | KU replied r | io change ii | n direction a | t this time ( | 9/27). |
|    | Final issued on 9/24                                                      |             |               |              |                   |              |              |               |               |        |
| 43 | Set received on 9/22                                                      |             |               |              |                   |              |              |               |               |        |
| 44 |                                                                           |             |               |              |                   |              |              |               |               |        |
| 45 |                                                                           |             |               |              |                   |              |              |               |               |        |
| 40 | Scheduled                                                                 |             |               |              |                   |              |              |               |               |        |
| 46 |                                                                           |             |               |              |                   |              |              |               |               |        |
| 47 |                                                                           |             |               |              |                   |              |              |               |               |        |
|    |                                                                           |             |               |              |                   |              |              |               |               |        |
| 48 |                                                                           |             |               |              |                   |              |              |               |               |        |

|      | A  | В | С | D | E | н | G | Н | J | K | L | М | N |
|------|----|---|---|---|---|---|---|---|---|---|---|---|---|
|      |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7120 |    |   |   |   |   |   |   |   |   |   |   |   |   |
|      |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7121 |    |   |   |   |   |   |   |   |   |   |   |   |   |
|      | 58 |   |   |   |   |   |   |   |   |   |   |   |   |
| 7122 |    |   |   |   |   |   |   |   |   |   |   |   |   |

|      | 0 | Р | Q | R | S | Т | U | V | W | Х |
|------|---|---|---|---|---|---|---|---|---|---|
| 7120 |   |   |   |   |   |   |   |   |   |   |
| 7121 |   |   |   |   |   |   |   |   |   |   |
| 7122 |   |   |   |   |   |   |   |   |   |   |

|    | A         | В           | С                      | D    |  |  |  |  |
|----|-----------|-------------|------------------------|------|--|--|--|--|
| 1  | LG&E/KU   |             | LG&E and KU            |      |  |  |  |  |
| 2  | AB        | Alex Betz - | Alex Betz - Mill Creek |      |  |  |  |  |
| 3  | DS        | Dave Smith  | Dave Smith - Ghent     |      |  |  |  |  |
| 4  | ES        | Eileen Sau  | nders                  |      |  |  |  |  |
| 5  | GB        | Greg Black  |                        |      |  |  |  |  |
| 6  | GR        | Gary Revle  | tt                     |      |  |  |  |  |
| 7  | JJ        | Jeff Joyce  | - Ghent                |      |  |  |  |  |
| 8  |           |             |                        |      |  |  |  |  |
| 9  |           |             |                        |      |  |  |  |  |
| 10 |           |             |                        |      |  |  |  |  |
| 11 |           |             |                        |      |  |  |  |  |
| 12 |           |             |                        |      |  |  |  |  |
| 13 |           |             |                        |      |  |  |  |  |
| 14 |           |             |                        |      |  |  |  |  |
| 15 |           |             |                        |      |  |  |  |  |
| 16 |           |             |                        |      |  |  |  |  |
| 17 | <u>BV</u> | Black & Ve  | atch (B&V)             |      |  |  |  |  |
| 18 | ТН        | Tim Hillma  | n                      |      |  |  |  |  |
| 19 | KL        | Kyle Lucas  |                        |      |  |  |  |  |
| 20 | AM        | Anand Mar   | nabaleshwai            | rker |  |  |  |  |
|    | MK        | Mike King   |                        |      |  |  |  |  |
| 22 | RL        | Rick Lausn  | nan                    |      |  |  |  |  |
| 23 | MW        | M.R. Wehrly |                        |      |  |  |  |  |
| 24 | МН        | Monty Hint  | z                      |      |  |  |  |  |
| 25 | JB        | Jim Bayles  | s                      |      |  |  |  |  |
| 26 | JC        | Jonathan C  | Crabtree               |      |  |  |  |  |
| 27 | RF        | Ron Fields  |                        |      |  |  |  |  |

| From:        | Saunders, Eileen                                                                                |
|--------------|-------------------------------------------------------------------------------------------------|
| То:          | Inman, Da <i>v</i> id                                                                           |
| Sent:        | 11/1/2010 9:10:45 AM                                                                            |
| Subject:     | FW: 168908.41.0803 101029 - Mill Creek U4 Alternative AQC Arrangement Sketches for Nov 1st      |
|              | Conference Call (Revised)                                                                       |
| Attachments: | Mill Creek U3-U4 NID A.pdf; Mill Creek U3-U4 NID B.pdf; Mill Creek U3-U4 PJFF A.pdf; Mill Creek |
|              | U3-U4 PJFF B.pdf                                                                                |

David,

Here are the sketches needed for our conference call at 1 pm. Please remind Scott of the call and let him know that I will be calling in from Mill Creek unless he feels I need to come to the BOC. Please let me know if he wants me to come to his office.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Friday, October 29, 2010 12:39 PM
To: Saunders, Eileen
Cc: Jackson, Audrey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.; Mehta, Pratik D.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Goodlet, Roger F.; Ballard, Michael W; Hintz, Monty E.
Subject: 168908.41.0803 101029 - Mill Creek U4 Alternative AQC Arrangement Sketches for Nov 1st Conference Call (Revised)
Importance: High

Eileen,

As part of our validation work, we have made some refinements to the Mill Creek U4 arrangement sketches that I sent you on Wednesday. Please consider the attached revised sketches for our Monday conference call.

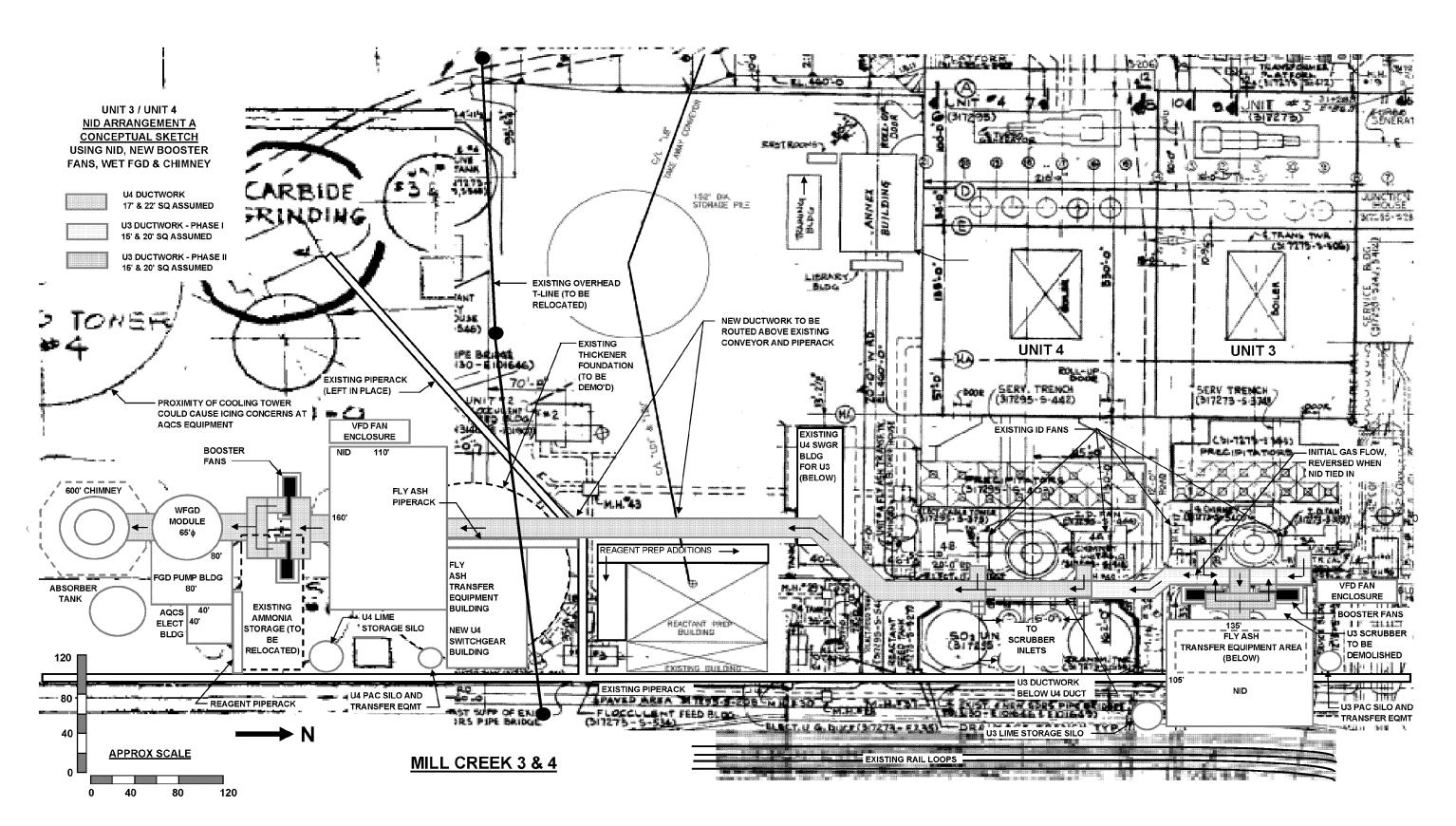
Best regards,

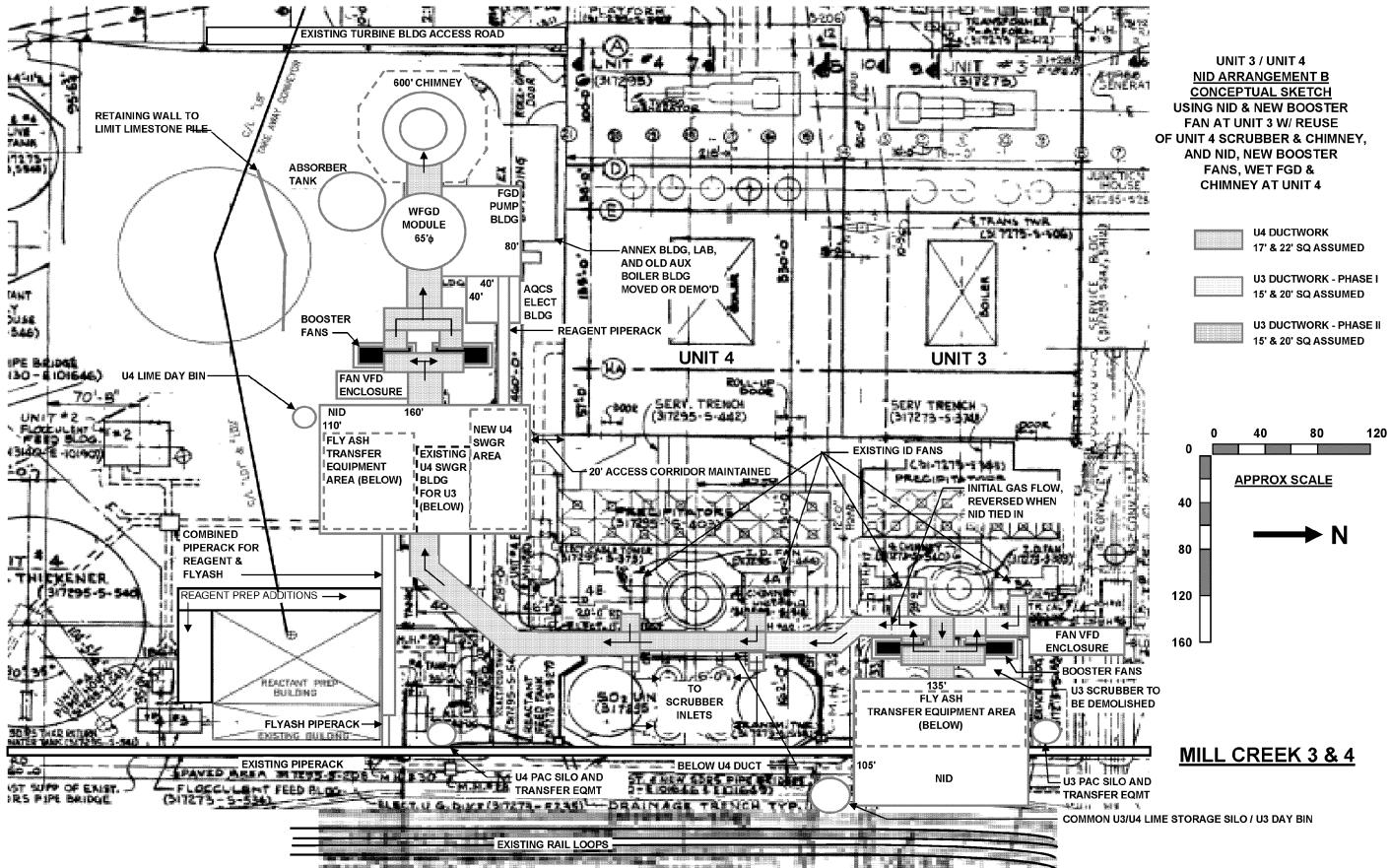
Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference ™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

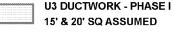
nothy M. October 27, 2010 2:20 PM

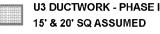
en'

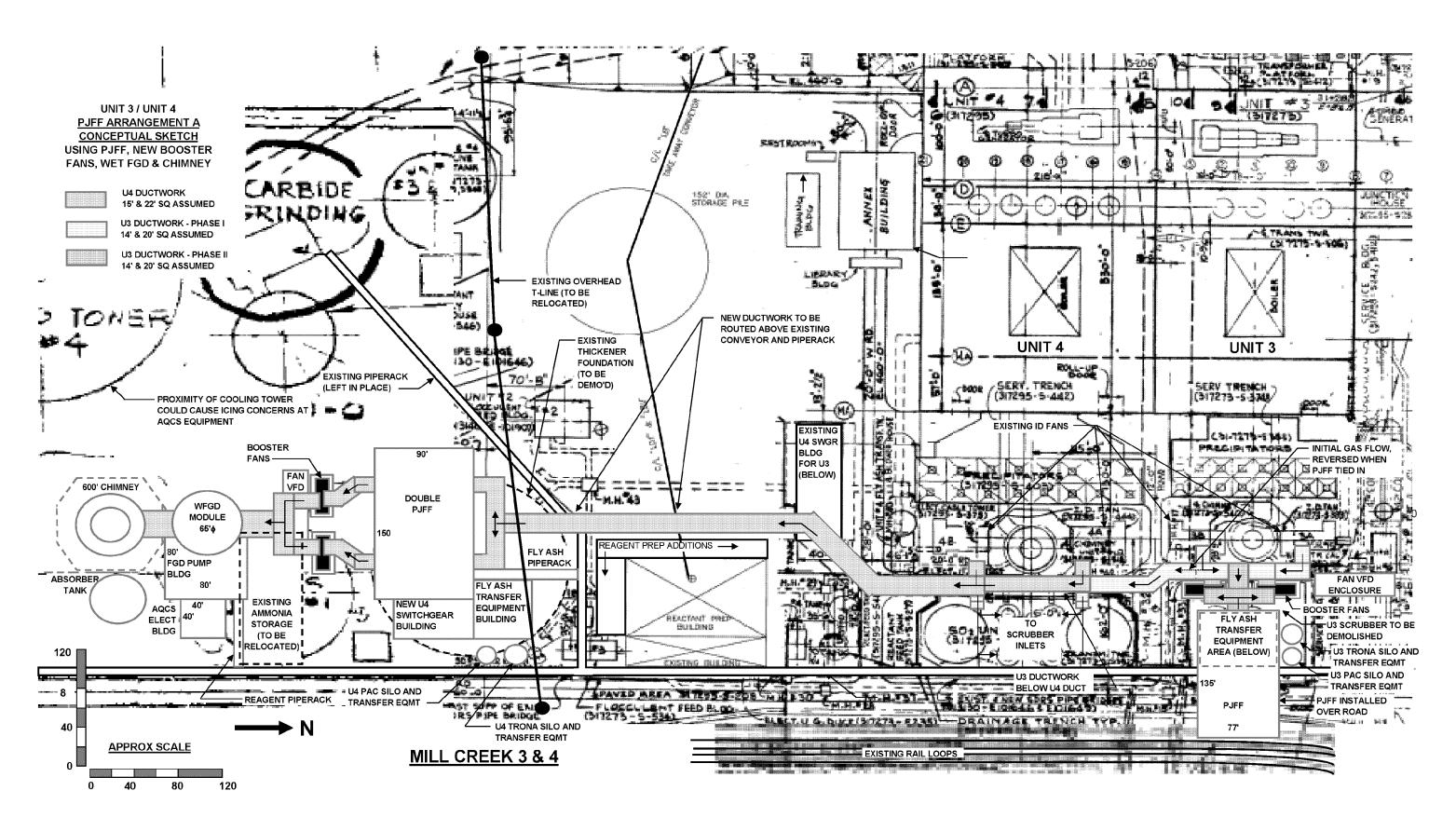
rey; 168908 E.ON-AQC; Wehrly, M. R.; Crabtree, Jonathan D.; Lucas, Kyle J.; Mehta, Pratik D.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Goodlet, Roger F.; Ballard, Michael W; Hintz, Monty E.

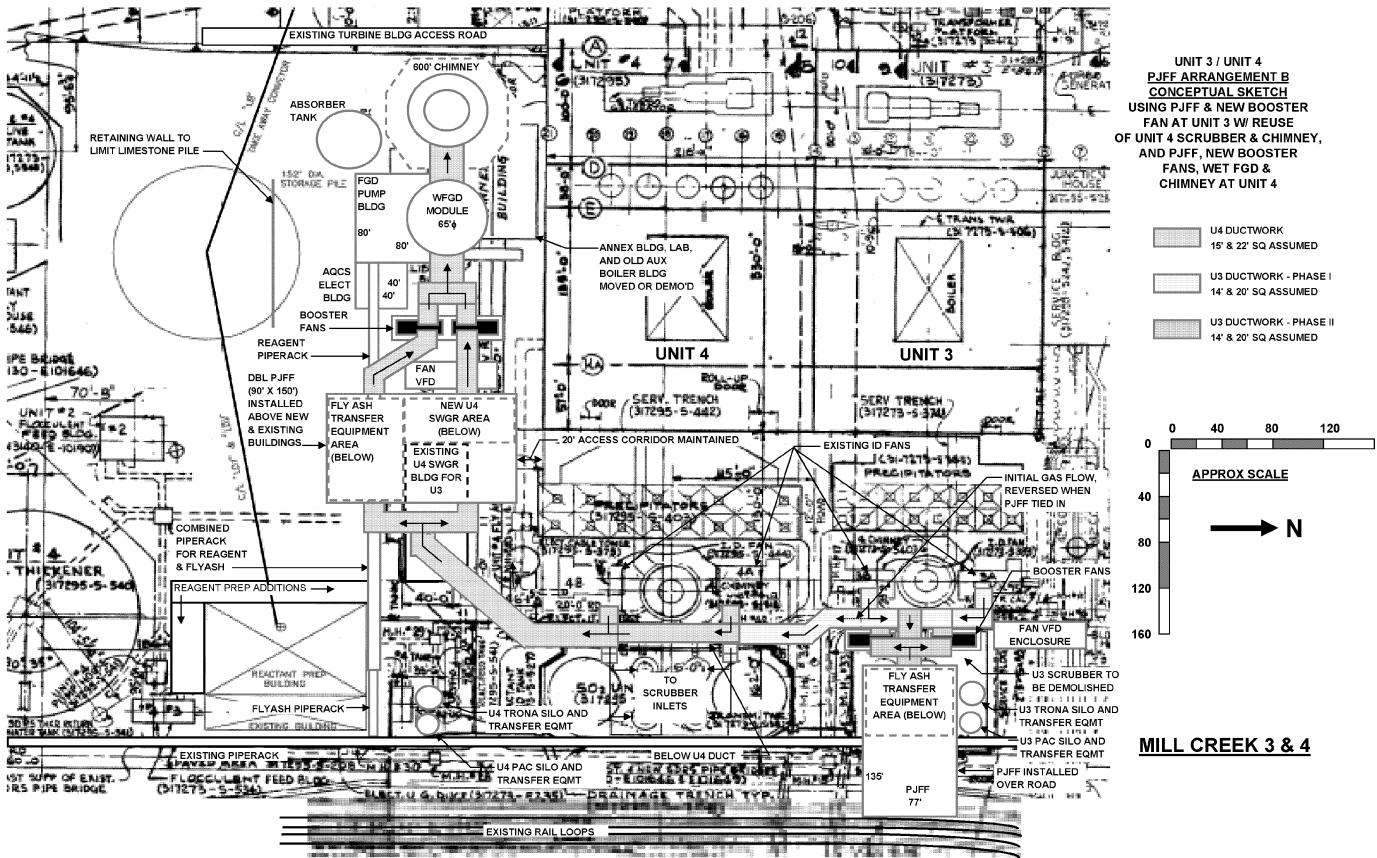

8.41.0803 101027 - Mill Creek U4 Alternative AQC Arrangement Sketches for Nov 1st Conference Call


Eileen,


In preparation for our Nov 1st conference call, please find attached sketches of the potential Mill Creek U4 AQC arrangements. The sketches include both NID and PJFF versions of an east-west configuration along the south side of U4, and a north-south configuration in the old thickener area.


<< File: MC U3-U4 NID Sketch.pdf >> << File: MC U3-U4 NID Sketch Alt.pdf >> << File: MC U3-U4 PJFF Sketch.pdf >> << File: MC U3-U4 PJFF Sketch Alt.pdf >> Best regards,


Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com














LGE-KU-00001726

| From:        | Saunders, Eileen                                                                    |
|--------------|-------------------------------------------------------------------------------------|
| То:          | Kirkland, Mike; Buckner, Mike; Didelot, Joe; Betz, Alex                             |
| CC:          | Craigmyle, Kenny; Moehrke, William                                                  |
| Sent:        | 11/1/2010 9:13:52 AM                                                                |
| Subject:     | FW: 168908.14.1000 100924 Mill Creek - Final Kickoff and Site Visit Meeting Minutes |
| Attachments: | Mill Creek Kickoff and Site Walkdown Meeting Minutes - Final with Attachments.pdf   |

All,

I know I sent you the initial meeting minutes but I don't think I forwarded the final version to you. Please feel free to issue this information to others who attended our meeting.

Thank you,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Friday, September 24, 2010 2:17 PM
To: Saunders, Eileen
Cc: 168908 E.ON-AQC; Wehrly, M. R.; Lucas, Kyle J.; Jackson, Audrey; Hillman, Timothy M.
Subject: 168908.14.1000 100924 Mill Creek - Final Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached the final Mill Creek Kickoff meeting minutes incorporating E.ON's comments. Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

nothy M. otember 20, 2010 4:09 PM sen'

-AQC; Crabtree, Jonathan D.; Wehrly, M. R.; Lausman, Rick L.; Mahabakeshwarkar, Anand; Hintz, Monty E.; Lucas, Kyke J. 8.14.1000 100920 Mill Creek - Draft Kickoff and Ste Visit Meeting Minutes

Eileen,

Please find attached draft meeting minutes from last week's kickoff and Mill Creek site visit. Please provide E.ON's comments back to me by Friday, 9/24.

<< File: Mill Creek Kickoff and Site Walkdown Meeting Minutes with Attachments - Draft.pdf >> Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

### BLACK & VEATCH CORPORATION CONFERENCE MEMORANDUM

E.ON US Phase II: Air Quality Control Study Project Kick-off and Mill Creek Site Visit B&V Project 168908 B&V File 14.1000 September 24, 2010

A project administrative kick-off meeting and Mill Creek site visit and walk down were held September 14-16<sup>th</sup> for the Phase II: Air Quality Control Study Project. The administrative kick-off meeting was held at E.ON's Broadway Office Complex in Louisville, while the site visit and walk down were held at the Mill Creek Generating Station.

#### Recorded by: Tim Hillman

Attending:

Administrative Kick-off Meeting, September 14th.

|                 | <b>- - - - -</b> |
|-----------------|------------------|
| Eileen Saunders | E.ON             |
| Mike Mooney     | E.ON             |
| Mike King       | B&V              |
| Tim Hillman     | B&V              |
| M.R. Wehrly     | B&V              |
| Kyle Lucas      | B&V              |

## Mill Creek Kick-off Meeting, September 15<sup>th</sup>.

| Eileen Saunders        | E.ON |
|------------------------|------|
| Mike Mooney            | E.ON |
| Bill Moehrke           | E.ON |
| Kenny Craigmyle        | E.ON |
| Kevin Siers            | E.ON |
| Michael Stevens        | E.ON |
| Jim Nichols            | E.ON |
| Gary Revlett           | E.ON |
| Joe Didelot            | E.ON |
| Scott Straight         | E.ON |
| Mike Kirkland          | LG&E |
| Mike Buckner           | LG&E |
| Alex Betz              | LG&E |
| Tim Hillman            | B&V  |
| M.R. Wehrly            | B&V  |
| Anand Mahabaleshwarkar | B&V  |
| Kyle Lucas             | B&V  |
| Rick Lausman           | B&V  |
| Monty Hintz            | B&V  |

The purpose of the meetings was to 1) provide an administrative kick-off of the project, 2) present the project scope and purpose of the project to Mill Creek personnel, and 3) provide for a site visit and walk down of the Mill Creek facility. The above attendance roster reflects those attending the administrative kick-off meeting in Louisville and the initial kick-off meeting at Mill Creek. The meeting agenda and attendance sign-up sheets are attached herein for reference.

Page 2

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

### MEETING DISCUSSION

#### Day 1, September 14, 2010

As noted in the agenda, the meetings began at 1 pm on September 14<sup>th</sup>, with an administrative meeting in the Broadway Office Complex and an initial escorted site walk down at Mill Creek with part of the B&V team. The following is an account of the administrative kick-off meeting.

- 1. The meeting began with introductions and distribution of the agenda.
- 2. B&V distributed a copy of the project scope of work contained in the contract and provided a summary of each task along with the associated deliverable.
  - It was noted that a Project Design Memorandum (Task 5) would be developed for each facility.
  - E.ON commented that the Fabric Filter Vendor Workshop scope of work may not start until after the Ghent project has been kicked-off, but likely before the Brown kick-off.
- 3. B&V reviewed the major milestone schedule contained in the scope of work.
  - The possibility of holding the Mill Creek Task 6, AQC Technology Selection Meeting during the second week of November in B&V offices in Kansas City was discussed. E.ON to review and make recommendation. [Action Item #1]
  - E.ON to determine dates for Ghent kick-off meeting. The milestone schedule tentatively has this schedule for the week of October 4<sup>th</sup>. [Action Item #2]
- 4. E.ON requested B&V provide a DVD of the Phase I report. [Action Item #3]
- 5. B&V distributed a draft copy of the Project Instruction Memorandum (PIM). The communication contacts and project filing system were discussed in some detail.
  - E.ON will investigate setting up a document storage file system to mimic the Documentum system proposed by B&V in the PIM. [Action item #4]
  - B&V to copy Eileen on all correspondence with the plants.
  - Copy <u>Audrey.Jackson@eon-us.com</u> for copy to E.ON file mailbox.
  - B&V will establish and iBackup FTP site to facilitate large file transfer. [Action item #6]
  - E.ON will determine personnel assignments for document review. [Action Item #7]
- 6. B&V distributed a template of a standard monthly report. E.ON approved of the basic format and data of the monthly report template.
  - In addition to the Summary of Engineering Costs contained in the standard monthly report, E.ON requested a financial engineering cost estimate at the end of each month. Copy Mike Rooney on monthly reports. [Action Item #5]
  - Monthly reports will typically be sent during the second week of the following month.
- E.ON requested to use the same weekly telephone conference date of Monday, 2 pm EST. B&V will check for conflicts and advise. [Action item #8]

Page 3

E.ON US Project Kick-off and Mill Creek Site Visit

B&V Project 168908 September 24, 2010

- B&V distributed an example action item list used during the Phase I work. It was agreed to use the same format for Phase II. The action item list will be divided by facility.
- 9. E.ON prefers to provide document review comments in a table log format.
- 10. E.ON is purchasing a trailer for the Mill Creek site that may offer some additional project meeting space.
- 11. Eileen Saunders provided an alternate contact number for her at Ghent (502-347-4023). B&V to update PIM with contact information. [Action Item #9]
- 12. B&V distributed a draft data request and inventory of data/information already in B&V's possession. E.ON asked B&V to carefully scrutinize the information request so as to not request information we may already have. B&V to finalize the initial data request and inventory list and submit it to E.ON as soon as possible. [Action item #10]
- 13. The administrative kick-off meeting concluded at approximately 4:30 pm.

## Day 2, September 15, 2010

The second day of kick-off meetings began at 9 am at Mill Creek.

- 14. Eileen began the meeting with introductions and a brief summary of the project scope.
- 15. Gary Revlett provided a presentation of the main regulatory drivers influencing the coalfired fleet. These drivers include the new NOx and SO2 NAAQS standards, Utility MACT for hazardous air pollutants, and the proposed Clean Air Transport Rule (CATR). Gary explained that these current and pending regulations are the drivers for the Phase II work. Gary provided an updated table that can be used as the initial design basis titled "Estimated Limits & Compliance Dates for Future New Air Requirement Mill Creek Station".
- 16. Scott Straight addressed the meeting stating that the current company strategy does not have E.ON self-compliant (as a fleet) with NOx credits until 2016. E.ON would like to be self-compliant by 2013-2014. Scott asked the group to evaluate the possibility of accelerating the installation of SCRs on Mill Creek Units 1 and 2. This is also being considered at Ghent. (Note: Over the course of the next two days, this scenario was given consideration. A separate email correspondence addressing this issue was prepared and sent to E.ON on September 17, 2010, a copy of which is attached herein.) [Action Item #16]
- 17. B&V provided a presentation summary of the results of the August 5<sup>th</sup> and 6<sup>th</sup> Mill Creek AQC Screen Workshop. The presentation summarized the workshop purpose and attendees, an overview of the current plant basis, AQC technologies and options considered, and recommendations of the workshop. A copy of the workshop presentation summary slides is attached here in for reference.
  - E.ON requested B&V review the pros and cons of the NID system as part of the technology validation task. Action item #11]
- 18. E.ON advised that Alex Betz would be the Mill Creek plant contact for information requests.
- 19. E.ON will be contacting Hitachi, BPI, Foster Wheeler, and Alstom, and/or others to evaluate the status of the existing scrubbers and determine the extent they can be

Page 4

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

refurbished. E.ON is to lead this effort with support from B&V as requested. [Action item #12] Results of the evaluation will be provided to B&V

- If the new Unit 4 WFGD and stack requires the relocation of the ammonia storage area, it may be possible to consolidate it with the ammonia storage requirements for the new Unit 1 and 2 SCRs.
- 21. It may be possible to reuse Unit 4's fans on Unit 3 should the existing fans become superfluous in the new Unit 4 arrangement. It then may be possible to reuse the Unit 3 fans on Unit 1 and/or unit 2.
- 22. E.ON confirmed there is no "sacred ground" around the existing units, areas reserved for other uses and unavailable for use in the AQCS upgrade. B&V requested if any balance-of-plant upgrades are currently under consideration that should be taken into account in the AQCS work, beyond the plans for an additional ball mill at the limestone prep building.
- Following lunch, E.ON and B&V personnel continue site walk down activities, concluding at approximately 5:30 pm. Some observations from this walk down are identified below.
  - Unit 4 fabric filter likely to be required to be installed above the Unit 4 scrubber electrical building.
  - Unit 3 would be tied into the current Unit 4 scrubber after the new Unit 4 FGD is built. The old Unit 3 scrubber would be torn down to allow new AQC equipment to be potentially located in that area.
  - Unit 3 and 4 structural steel was generally in good shape for lower areas that could be inspected. Higher areas of Unit 3 & 4 could not be assessed due to the large flue gas leaks in the duct that limited access for personal safety reasons.
  - Duct configuration will be complicated, but appears possible, and will depend on the specific fan arrangement and if new ID fans or booster fans will be used.

### Day 3, September 16, 2010

The third and final day of meetings began at 9 am at Mill Creek.

- 24. B&V summarized the major findings of the walk downs for Eileen and began preparing white board sketches of the preliminary AQC control configurations discussed over the last two days in preparation for a site de-briefing scheduled for the early afternoon.
- 25. After a break in the morning rain, an additional walk down of Units 1 and 2 was conducted before lunch to review the structural integrity of the Unit 1 and Unit 2 steel for additional AQC equipment.
- 26. At 1:15 pm, B&V presented de-briefing of the site walk down findings and preliminary AQC control configurations. Two sketches were prepared for the meeting. One illustrated the preliminary AQC configuration options for Units 3 and 4, while the second sketch addressed Units 1 and 2 and the possibility of accelerating the SCR schedule. Pictures of the two white board sketches are attached here in for reference.
  - As a result of the workshop discussions, the potential for locating the Unit 4 fabric filter/NIDs unit and new scrubber, plus a new chimney, to the south of Unit 4 was

Page 5

E.ON US Project Kick-off and Mill Creek Site Visit

B&V Project 168908 September 24, 2010

considered. The original location for the new scrubber and chimney considered was in the area of the demolished thickener south of the limestone prep building. This location, however, involved crossing the limestone conveyor with relatively high ductwork, plus moving both an overhead Unit 3 and Unit 4 345kV T-line and the ammonia tanks and electrical building to provide necessary working space for new construction.

- Alternately, it was determined that there is likely sufficient space for the new Unit 4 AQCS train directly south of Unit 4, running more or less straight east to west with the new chimney located opposite of the Unit 4 turbine building. This arrangement, if it fits, has the advantage of relatively short ductwork runs, no impact to the overhead T-line, and no impact to the existing ammonia tank farm. It would, however, require relocation of the existing annex building and lab, plus limit construction access to one side of the train. B&V will continue evaluation of this arrangement as first choice for Unit 4, with the thickener area location used as a fall-back alternate.
- Should either of the above arrangements fit, it appeared that it would be advantageous to upgrade the existing Unit 4 scrubber in place and reuse it for Unit 3. The flue gas from Unit 3 would be rerouted to the Unit 4 scrubber in the short term (Phase I) and the Unit 3 scrubber demo'd. A new Unit 3 fabric filter/NIDs unit could be built in its place and tied into the Unit 3 ductwork as Phase II of a two phase construction sequence at Unit 3.
- Both Unit 1 and Unit 2 offer significant challenges in the addition of an SCR as an immediate modification (refer to Sep 17<sup>th</sup> email, attached herein for reference). The existing ESP at both units is located within a few feet of the boiler structure, leaving insufficient room to route ductwork to a new SCR overhead of the ESP. The ESP would have to be demolished or extensively modified before the SCR could be constructed, resulting in either an extended outage while the ESP is moved or reconstructed or the installation of a separate new ESP in another location prior to installation of the SCR. In addition, area available for new structures for either Units 1 or 2 is very limited, by the narrow alleyway between Units 1 and 3 for Unit 1 and by the new RO facility north of the powerblock at Unit 2. No obvious arrangement for the AQCS upgrades at Units 1 and 2 were immediately noted, and additional investigation will be required.
- 27. B&V commented on the poor condition of the structural steel at the existing scrubbers, especially at Units 1 and 2. Relatively isolated examples of steel corrosion, most likely due to exposure to flue gas, were noted in the superstructures at the Unit 3 and 4 scrubbers. However, severe corrosion and loss of structural mass was noted in a significant number of areas at Units 1 and 2. The most severe damage noted was in lighter components, such as platform and grating, but instances of chemical attack on the major structural steel members were also noted on Units 1 and 2. E.ON agreed to provide the results of recent studies assessing the structural steel. [Action Item #13]
- New AQC will likely restrict vehicle and maintenance access in some areas of the facility. E.ON agreed to provide the minimum access dimensions for use in the analysis. [Action Item #14]
- 29. E.ON noted that the existing Unit 4 AQCS (ESP and scrubber) were powered by the Unit 4 aux power supply. Should the Unit 4 scrubber be reused for Unit 3, an alternate source of aux power for the refurbished equipment must be included. Otherwise, an outage on Unit 4 would result in the loss of AQCS for Unit 3.

Page 6

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

- 30. E.ON noted that no aux power supply greater than 4160V is currently available in the immediate plant area. However, there are spare cubicles which might be able to be modified to accept feeder breakers as potential sources of medium voltage power for new loads such as fans in the AQCS upgrade. E.ON also noted that B&V Ann Arbor completed a short circuit study for the plant in the 1990's. B&V to review this study. [Action item #15]
- 31. The meeting concluded at approximately 3 pm.

## **ACTION ITEMS**

| #  | Description                                                  | Responsible  | Due Date |
|----|--------------------------------------------------------------|--------------|----------|
| 1  | Determine location for Mill Creek Task 6 Technology          | E.ON         | 10/15/10 |
|    | Selection meeting during 2 <sup>nd</sup> wk of November      |              |          |
| 2  | Determine dates for Ghent kick-off meeting                   | E.ON         | 9/23/10  |
| 3  | Provide DVD copy of Phase   Report                           | B&V          | 9/24/10  |
| 4  | Use B&V file system to set up E.ON document storage          | E.ON         | TBD      |
|    |                                                              |              |          |
| 5  | Provide engineering cost estimate at end of each month and   | B&V          | End of   |
|    | copy Mike Rooney on monthly reports                          |              | Month    |
| 6  | Create IBackup FTP site for large file transfer              | B&V          | 9/24/10  |
| 7  | Determine personnel assignments for document review          | E.ON         | TBD      |
| 8  | Determine if a Monday, 2 pm EST project conference call      | B&V          | 9/23/10  |
|    | time will work for B&V project team                          |              |          |
| 9  | Update PIM with Eileen's Ghent contact information           | B&V          | 9/24/10  |
| 10 | Prepare data inventory and information request               | B&V          | 9/24/10  |
| 11 | Evaluate pros and cons of NID system for November            | B&V          | Nov 2010 |
|    | technology validation presentation                           |              |          |
| 12 | Schedule vendors for evaluation of existing scrubbers        | E.ON         | TBD      |
| 13 | Provide structural steel study assessments                   | E.ON         | 9/24/10  |
| 14 | Provide minimum access dimension box                         | E.ON         | 9/24/10  |
| 15 | Review B&V electrical study conducted in the 1990s           | B&V          | 9/24/10  |
| 16 | Evaluate the possibility of accelerating the installation of | E.ON and B&V | TBD      |
|    | SCRs on Mill Creek Units 1 and 2                             |              |          |
|    |                                                              |              |          |

## **ATTACHMENTS**

- Agenda
- Attendance roster
- B&V email of September 17, 2010 addressing the acceleration of the SCR installation schedule for Mill Creek Units 1 and 2.
- August 5<sup>th</sup> and 6<sup>th</sup> Mill Creek AQC Workshop Summary Presentation.
- Pictures of the September 16, 2010 white board sketches from the de-brief meeting.

cc: All Attendees File

## AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Mill Creek Station September 14 - 16, 2010 Location: E.ON Broadway Office Complex and Mill Creek

## Day 1, September 14<sup>th</sup>, Arrive 1 pm (Broadway Office Complex)

- I. Introductions
- II. Review Project Scope
- III. Review Project Schedule
- IV. Review Project Deliverables
- V. Project Administration
  - a. Communication
  - b. File System
  - c. Monthly Reports
  - d. Weekly Conference Calls/Action Item List
  - e. Invoicing
- VI. Project Documentation
- VII. Information Request

## Day 2, September 15<sup>th</sup>, Arrive 8 am (Mill Creek)

- I. Introductions
- II. Environmental Drivers Presentation (E.ON Gary R.)
- III. Aug 5-6<sup>th</sup> AQC Workshop Results Presentation (B&V Rick L and Anand M.)
- IV. Lunch (on site)
- V. Continue Escorted Site Walk Down and Data Collection

## Day 3, September 16<sup>th</sup>, Arrive 8 am (Mill Creek)

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (off site)
- III. Site Debriefing Meeting
- IV. Depart (no later than 4 pm)

## Day 1, September 14<sup>th</sup>, Arrive 1 pm (Mill Creek)

- I. Arrive on Site and Introductions
- II. Begin Initial Escorted Site Walk Down

Pow ADC Mill Creek 1pm -4:30p. 9/14/10 Admin drick-off Meeting Hyle lucas 913-458-9062\_ Myle Lucas 913-958-9062 /4cas Kjebv.com M.R. WEHRLY 913-458-7131 Wehrly Mr. Can Mike Mooney 502-627-3671 Mike. Mooney Con-US. Com Eleen Sauders 502-627-2431 eileen saunders @ eon-US. Con MIKEKING 313618-8657 KINGMLGBV.COM 77m Hillman 913-458-7928 Willmantmebucan.

ON ACC Mill Creek Plant' Kickurr 9/15/10 9am -11:30 Kyle Lucas BEV 913-458-9062 Asst PM/EN MULS Kuaskjew.com Rick LAUSMAN Bil 913 438 7528 AQC Eng LAUSMAN RL& BU.COM Mike. Mooney & EON-VS- 184 507-1027-3671 Mike Mooney Budget Analyst EON WILLING MacAkkz @ GOP-UK Con BILL MOEHRKY 302-627-6269 PRIFECT COMPD. Tim Hillmon BHV 913-458-7928 BTV PM hillmante @ bu.com MONTY HINTZ BEV 913-458-2464 hintzmeeby.com BEV CIVIL/STRUCT M.R. WEHRLY BEV 913-458-7131 webstywselv. Can B&V ENG. Mgr. Keyin Sies EDN-US 502-817-3545 Production Leader Michnel Stevens EON-US 502-933-6518 Production SUPV / Comp. Jun Nichols For 45 502-932-6643 Pear Super. Mike BulkNER LGSE 502-933-6515 Production MANAger Mike Kinkand LC:E 507-973-6565 General MANAger KENNY CRAIGMYLE EON Eileen Sauders EON PROJECT COORDINATOR 502-20627-6366 502 -627-2431 MGR Major Copital Project Gary Revlett FON 502 - 627 - 4621 MGK Environmental Attor JOE DIDELOT EON 502-933-6559 MGR, MAINT. MC Scott STRAICUT 1 . " 627-2701 Director-PE 1/ex Betz LGRE 502-933-6602 Mech. Eng., Mill Cak Anand Mahabaleshwankar B&V 913 4587736 AQC Section Lead

## Hillman, Timothy M.

| From:    | Hillman, Timothy M.                                                                       |
|----------|-------------------------------------------------------------------------------------------|
| Sent:    | Friday, September 17, 2010 12:01 PM                                                       |
| To:      | 'Saunders, Eileen'                                                                        |
| Cc:      | Lausman, Rick L.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Wehrly, M. R.; Hintz, Monty E. |
| Subject: | 168908.14.1000 100917 Mill Creek - Acceleration of MC 1 and 2 SCR Installation            |

## Eileen,

Anand and the rest of the team combined notes in this email to present both a high level and somewhat detailed summary of the issues surrounding Scott's inquiry about accelerating the installation schedule of SCRs at Mill Creek Units 1 and 2. Hopefully this will assist you in the pending management decision process.

Thanks for all you planning and organization this week. I thought the meetings and site walk downs were very helpful and meaningful.

Tim.

## <u>Summary</u>

The most direct path of accelerating the installation of SCRs on Units 1 and 2 would be to construct the new SCRs with the existing ESPs in place. Unfortunately, this is hampered by the close proximity of the existing dry ESPs to the boilers. As a result, there is no room to route ductwork to and from the new SCRs. Therefore, any acceleration of Unit 1 and 2's new SCR schedule would likely require the original Phase 1 approach of building a new ESP and/or PJFF/NID *first*, in order that the existing ESP could be demolished to make room for the new SCR and ductwork.

## **Details and Basis**

## Available SCR Options for MC 1 & 2:

Option 1. High-dust SCR located above the existing dry ESP

Option 2. High-dust SCR located at new location with new air heater placed directly under the new SCR reactor

Option 3. Tail-end, low-dust SCR located on new ground downstream of existing ESP, with flue gas reheat

## Challenges Presented by the Economizer Outlet and the Close Proximity of the Existing Dry ESP:

- For SCR Options 1 and 2, the economizer outlet duct would need to be routed eastwards out of the boiler building through the east boiler building wall to flow the flue gas to the SCR reactor inlet, located either per Option 1 or 2. The arrangement of the existing dry ESP, located to the east and at approximately same elevation as the economizer outlet duct, along with its close proximity to the boiler building wall, are all preventing the routing of new SCR inlet duct towards the east direction. Similarly, due to presence of boiler support steel inside the boiler building, it is nearly impossible to route the ductwork out to either the north or south side.
- Also, for Option 1, the new SCR outlet duct needs to be connected back to the existing air heater, which is located directly underneath the economizer. This creates additional congestion in the same area and presents ductwork support challenges with the current boiler steel. On the other hand, for Option 2, it is possible to install a new air heater underneath the new SCR reactor at another location and connect the flue gas stream to the new dry ESP and/or PJFF/NID. However, the routing of the SCR inlet ductwork out of the boiler building for Option 2 still faces the same challenges as Option 1.
- The tail-end, low-dust SCR (Option 3) will increase the capital and O&M cost due to the need for flue gas reheating
  and another air heater to maintain the SCR operating temperature. Therefore, Option 3 is not considered feasible in
  this preliminary review.

## Solutions to above challenges:

• For SCR Options 1 and 2, routing of the new SCR ductwork makes the demolition of the existing dry ESPs inevitable.

Therefore, in order to create room for a new SCR, a new dry ESP and/or PJFF/NID system will need to be installed first, while the units are online. Once the new dry ESP and/or PJFF/NID system is installed and operating, the existing dry ESP can be demolished to create room for the new SCR. The ID fan and or booster fan requirements can also be finalized based on the BOP challenges, including aux power availability.

• Option 3 is believed to be capital and O&M cost intensive, and is therefore not considered feasible in this preliminary review.

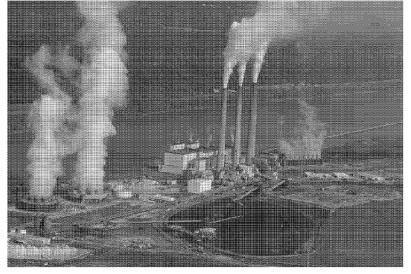
### Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com





# Alternative FGD Technology Workshop Review




**Black & Veatch** 

September 2010

# Agenda

- Drivers
- Overview workshop
- Current plant basis
- Technologies and options discussed
- Recommendations of workshop







# **Regulatory drivers – still uncertainty**

| Program Name                     | Regulated<br>Pollutants                                                               | Forecasted Date for<br>Compliance                               |  |
|----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| BART                             | SAM<br>(MC3 Only)                                                                     | Within 6 months of final Title V                                |  |
| 1-hour NAAQS for NO <sub>x</sub> | NO <sub>x</sub>                                                                       | 2015 -2017                                                      |  |
| 1-hour NAAQS for SO <sub>2</sub> | SO <sub>2</sub>                                                                       | 2016                                                            |  |
| Clean Air Transport<br>Rule      | NO <sub>x</sub><br>SO <sub>2</sub>                                                    | Beginning in 2012 Phase in 2014                                 |  |
| New EGU MACT                     | Mercury<br>Acids (HCI)<br>Metals (PM)<br>Metals (AS)<br>Organics (CO)<br>Dioxin/Furan | Estimated January, 2015; with<br>1-yr extension - January, 2016 |  |

# Workshop attendees

## E.ON US

- Scott Straight
- Phillip Imber
- Ronald Gregory
- Gary Revlett
- Mike Kirkland

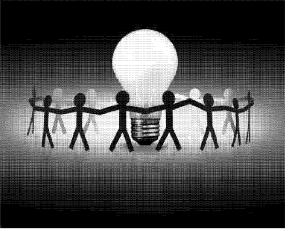
## **Black & Veatch**

Page - 4

- Tim Hillman
- Mike Ballard
- Anand Mahabaleshwarkar AQCS
- Rick Lausman AQCS



- Sr. Chem. Engineer
- Mgr Major Projects
  - Mgr Air Section & Environmental Affairs
- Mill Creek Plant Manager
- **Project Manager**
- Construction




September 2010

# BLACK & VEATCH

# Workshop purpose

- Review Phase 1 B&V evaluation
- Review current plant constraints
- Brainstorm potential for lower cost yet effective alternatives



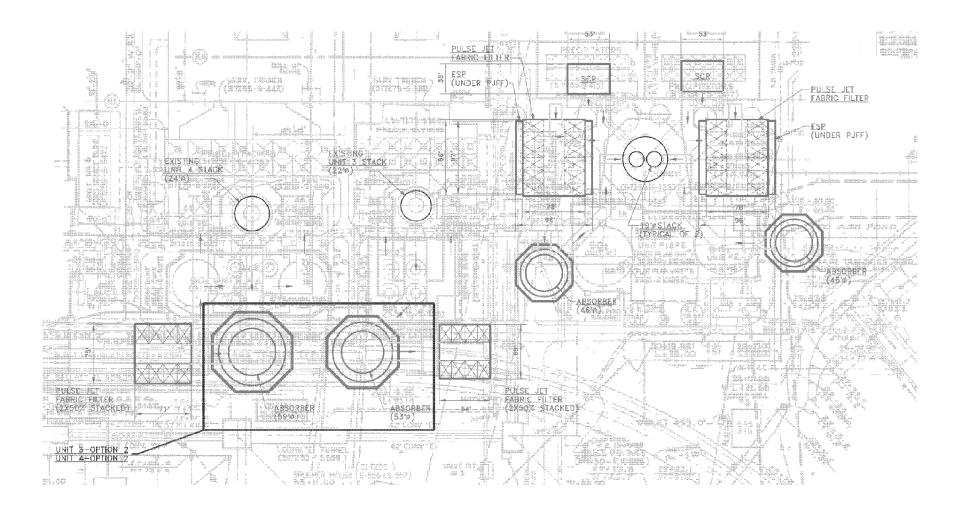
September 2010



# Phase 1 B&V evaluation

- Fleet wide review
- Screen technologies
- Conceptual design
- Limited time constraints
- New wet FGD and fabric filters for each Mill Creek unit




September 2010

E.ON US Coal Fired Fleet Wide Air Quality Control Technology Cost Assessm

BLACK & VEATCH



# Mill Creek phase 1 potential layout - example



September 2010



# **Current conditions and future targets**

|       |            | Current<br>Emissions | Current<br>Removal | Future<br>Removal |
|-------|------------|----------------------|--------------------|-------------------|
| Unit  | MW         | lb/MBtu              | <u>%</u>           | <u>%</u>          |
| 1     | 330        | 0.48                 | 92                 | 96                |
| 2     | 330        | 0.48                 | 92                 | 96                |
| 3     | 425        | 0.36                 | 86                 | 96                |
| 4     | <u>525</u> | 0.12                 | 92                 | 98                |
| Plant | 1610       | 0.36                 |                    |                   |
| Plant | Targets    | 0.25 lb/MBtu         |                    | 96%               |

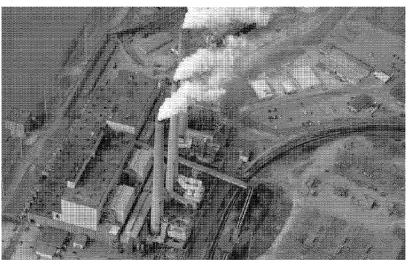
## Uncontrolled SO2 Emissions 6.2 lb/MBtu



# HAPS Issues

- E.ON.US emissions tests are just being finished
- Hg controls are expected for MC units
- Acid gases are likely acceptable
- Uncertainty if plant-wide averaging for Hg will be available
- Speciated metal emissions are also low at MC units



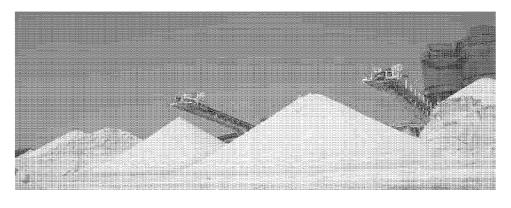

September 2010

# Site specific criteria

- Existing wet FGD
- Condition of FGD and structural steel
- Dewatering system and material handling in place
- Limestone grinding issues
- High sulfur fuel
- Fly ash sale requirement
- Mercury control
- Available space
- ......Other ......



September 2010






September 2010

**Byproduct Issues** 

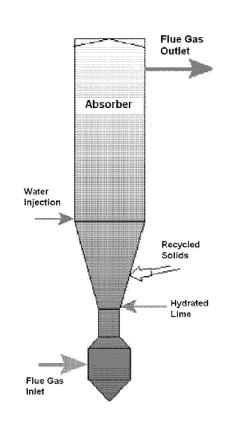
- Mill Creek needs to be able to sell ash due to landfill limitations
- Water emission issues and future limitations may be an issue
- Wastewater stream is currently going to ash ponds





# **Current FGD conditions**

- All scrubbers are basically in a constant rebuilding mode
- Scrubbers are good for another 20 years structurally speaking
- MC1 and MC2 had trays added in 2002 which are now wearing thin
- Top of modules need to be placed
- MC1 and MC2 all duct work has been replaced that wasn't replaced during the wet stack conversion
- Pumps conditions are acceptable with some on MC 1 and MC2 previously replaced

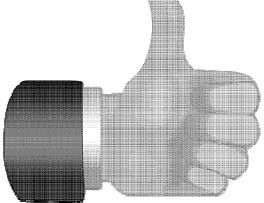


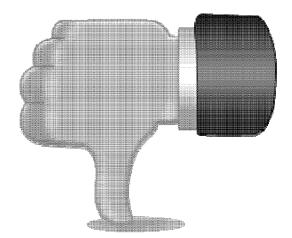

**Current FGD conditions - continued** 

- MC3 and MC4 FGD had trays added in 2000
- MC4 top of modules and duct work needs to be replaced
- MC4 contact trays need replacement
- MC3 scrubber structure is good, although mixing is poor
- MC3 has underground reaction tanks and recycle pumps which cause maintenance and reliability issues.

**Technology review** 

- Semi-dry FGD
  - Provides acid gas control (SO<sub>3</sub>)
  - Limits waste water production
  - High sulfur fuel is an issue
  - Reagent costs
  - Different technologies provide different advantages - NIDS vs CDS





BLACK & VEATCH



Factors for upgrading or abandoning existing FGD

- Expected life of unit
- Improvement level required
- Condition of existing FGD
- Space considerations
- Cost comparison to new FGD
- Technical or physical limitations
- Orphaned components







**Preliminary workshop results** 

- Build a new WFGD for MC4
- Upgrade MC4's existing WFGD and use it for MC3
- Upgrade MC1 and MC2's existing WFGDs
- Add fabric filters to all four units
- Add PAC for Hg control

Page - 16

- Add duct injection systems for SO<sub>3</sub> control.
- As an alternative to the fabric filter, add NID system

## **Workshop results**



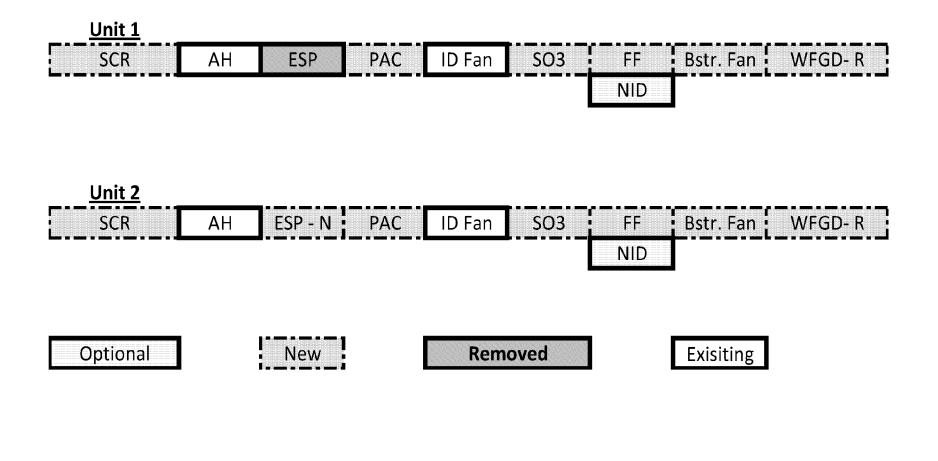
|                 | <u>Planned Future</u>        |                                    |  |
|-----------------|------------------------------|------------------------------------|--|
| <u>Unit No.</u> | <u>Technology</u>            | <u>Schedule</u><br><u>Priority</u> |  |
| 1               | FGD upgrade                  | 1                                  |  |
| 2               | FGD upgrade                  | 4                                  |  |
| 3               | Unit 4 FGD with modification | 3                                  |  |
| 4               | New FGD                      | 2                                  |  |

R.

BLACK & VEATCH

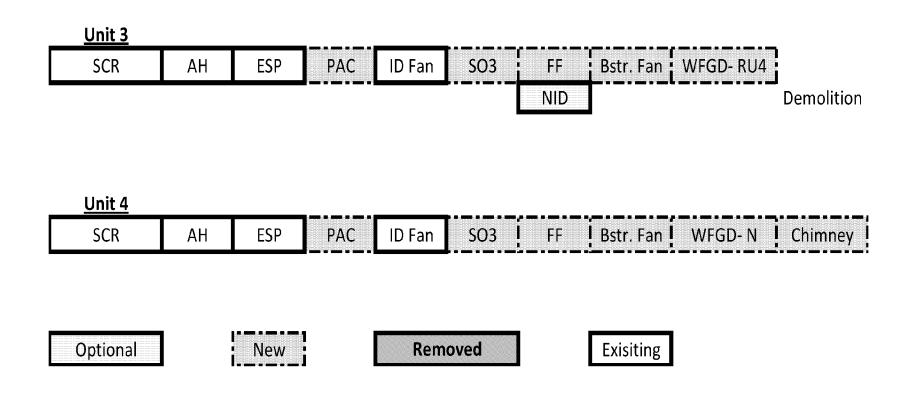
### BUILDING A WORLD OF DIFFERENCE®

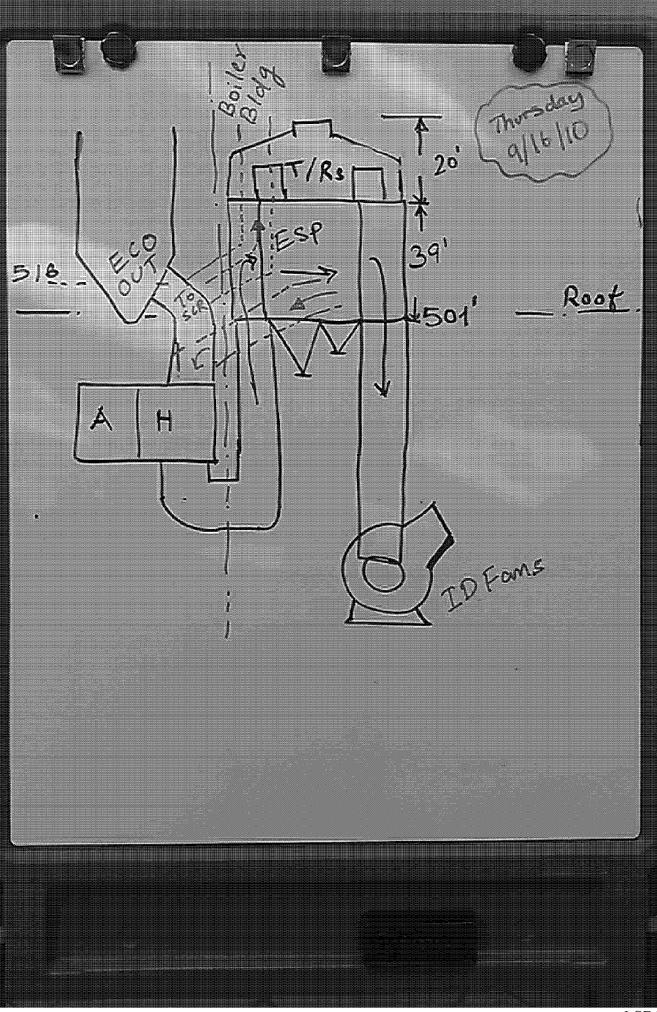
## **Workshop results**


## Preliminary Schedule

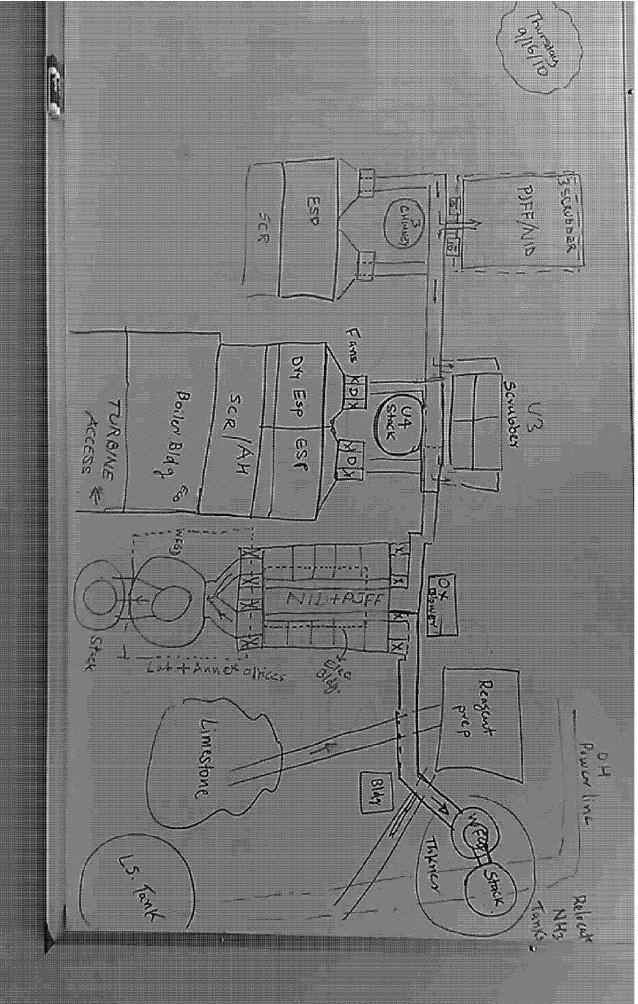
| <u>Unit</u> | <u>FGD</u>            | <u>FF</u>  | <u>SCR</u>      | <u>Fans</u> | <u>Chimney</u> | FF Location                          |
|-------------|-----------------------|------------|-----------------|-------------|----------------|--------------------------------------|
| 1           | 2012                  | 2014       | 2016            | 2014        | Existing       | In road                              |
| 2           | 2013 or<br>4th - 2013 | 2013       | 2015            | 2013        | Existing       | To open area<br>north                |
| 3           | 1st Qtr<br>2014       | Apr 2015   |                 | 2015        | Existing       | Road with fans in<br>Unit 3 FGD area |
| 4           | 4th - 2013            | 4th - 2013 | Relocate<br>NH3 | 2013        | Likely New     | South side of<br>plant               |




September 2010


Proposed equipment lineups- Unit 1 & 2






Proposed equipment lineups- Unit 3 & 4





LGE-KU-00001759



| From:        | Saunders, Eileen                                                                    |
|--------------|-------------------------------------------------------------------------------------|
| То:          | Inman, David                                                                        |
| Sent:        | 11/1/2010 9:14:26 AM                                                                |
| Subject:     | FW: 168908.14.1000 100924 Mill Creek - Final Kickoff and Site Visit Meeting Minutes |
| Attachments: | Mill Creek Kickoff and Site Walkdown Meeting Minutes - Final with Attachments.pdf   |

David,

You may want to make a color copy of this document as well to give to Scott.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Friday, September 24, 2010 2:17 PM
To: Saunders, Eileen
Cc: 168908 E.ON-AQC; Wehrly, M. R.; Lucas, Kyle J.; Jackson, Audrey; Hillman, Timothy M.
Subject: 168908.14.1000 100924 Mill Creek - Final Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached the final Mill Creek Kickoff meeting minutes incorporating E.ON's comments. Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@by.com

nothy M. ptember 20, 2010 4:09 PM sen' -AQC; Crabtree, Jonathan D.; Wehrly, M. R.; Lausman, Rick L.; Mahabaleshwarkar, Anand; Hintz, Monty E.; Lucas, Kyle J. 8.14.1000 100920 Mill Creek - Draft Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached draft meeting minutes from last week's kickoff and Mill Creek site visit. Please provide E.ON's comments back to me by Friday, 9/24.

<< File: Mill Creek Kickoff and Site Walkdown Meeting Minutes with Attachments - Draft.pdf >> Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

#### BLACK & VEATCH CORPORATION CONFERENCE MEMORANDUM

E.ON US Phase II: Air Quality Control Study Project Kick-off and Mill Creek Site Visit B&V Project 168908 B&V File 14.1000 September 24, 2010

A project administrative kick-off meeting and Mill Creek site visit and walk down were held September 14-16<sup>th</sup> for the Phase II: Air Quality Control Study Project. The administrative kick-off meeting was held at E.ON's Broadway Office Complex in Louisville, while the site visit and walk down were held at the Mill Creek Generating Station.

#### Recorded by: Tim Hillman

Attending:

Administrative Kick-off Meeting, September 14th.

|                 | <b>–</b> 011 |
|-----------------|--------------|
| Eileen Saunders | E.ON         |
| Mike Mooney     | E.ON         |
| Mike King       | B&V          |
| Tim Hillman     | B&V          |
| M.R. Wehrly     | B&V          |
| Kyle Lucas      | B&V          |

#### Mill Creek Kick-off Meeting, September 15<sup>th</sup>.

| Eileen Saunders        | E.ON |
|------------------------|------|
| Mike Mooney            | E.ON |
| Bill Moehrke           | E.ON |
| Kenny Craigmyle        | E.ON |
| Kevin Siers            | E.ON |
| Michael Stevens        | E.ON |
| Jim Nichols            | E.ON |
| Gary Revlett           | E.ON |
| Joe Didelot            | E.ON |
| Scott Straight         | E.ON |
| Mike Kirkland          | LG&E |
| Mike Buckner           | LG&E |
| Alex Betz              | LG&E |
| Tim Hillman            | B&V  |
| M.R. Wehrly            | B&V  |
| Anand Mahabaleshwarkar | B&V  |
| Kyle Lucas             | B&V  |
| Rick Lausman           | B&V  |
| Monty Hintz            | B&V  |

The purpose of the meetings was to 1) provide an administrative kick-off of the project, 2) present the project scope and purpose of the project to Mill Creek personnel, and 3) provide for a site visit and walk down of the Mill Creek facility. The above attendance roster reflects those attending the administrative kick-off meeting in Louisville and the initial kick-off meeting at Mill Creek. The meeting agenda and attendance sign-up sheets are attached herein for reference.

Page 2

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

#### MEETING DISCUSSION

#### Day 1, September 14, 2010

As noted in the agenda, the meetings began at 1 pm on September 14<sup>th</sup>, with an administrative meeting in the Broadway Office Complex and an initial escorted site walk down at Mill Creek with part of the B&V team. The following is an account of the administrative kick-off meeting.

- 1. The meeting began with introductions and distribution of the agenda.
- 2. B&V distributed a copy of the project scope of work contained in the contract and provided a summary of each task along with the associated deliverable.
  - It was noted that a Project Design Memorandum (Task 5) would be developed for each facility.
  - E.ON commented that the Fabric Filter Vendor Workshop scope of work may not start until after the Ghent project has been kicked-off, but likely before the Brown kick-off.
- 3. B&V reviewed the major milestone schedule contained in the scope of work.
  - The possibility of holding the Mill Creek Task 6, AQC Technology Selection Meeting during the second week of November in B&V offices in Kansas City was discussed. E.ON to review and make recommendation. [Action Item #1]
  - E.ON to determine dates for Ghent kick-off meeting. The milestone schedule tentatively has this schedule for the week of October 4<sup>th</sup>. [Action Item #2]
- 4. E.ON requested B&V provide a DVD of the Phase I report. [Action Item #3]
- 5. B&V distributed a draft copy of the Project Instruction Memorandum (PIM). The communication contacts and project filing system were discussed in some detail.
  - E.ON will investigate setting up a document storage file system to mimic the Documentum system proposed by B&V in the PIM. [Action item #4]
  - B&V to copy Eileen on all correspondence with the plants.
  - Copy <u>Audrey.Jackson@eon-us.com</u> for copy to E.ON file mailbox.
  - B&V will establish and iBackup FTP site to facilitate large file transfer. [Action item #6]
  - E.ON will determine personnel assignments for document review. [Action Item #7]
- 6. B&V distributed a template of a standard monthly report. E.ON approved of the basic format and data of the monthly report template.
  - In addition to the Summary of Engineering Costs contained in the standard monthly report, E.ON requested a financial engineering cost estimate at the end of each month. Copy Mike Rooney on monthly reports. [Action Item #5]
  - Monthly reports will typically be sent during the second week of the following month.
- E.ON requested to use the same weekly telephone conference date of Monday, 2 pm EST. B&V will check for conflicts and advise. [Action item #8]

Page 3

E.ON US Project Kick-off and Mill Creek Site Visit

B&V Project 168908 September 24, 2010

- B&V distributed an example action item list used during the Phase I work. It was agreed to use the same format for Phase II. The action item list will be divided by facility.
- 9. E.ON prefers to provide document review comments in a table log format.
- 10. E.ON is purchasing a trailer for the Mill Creek site that may offer some additional project meeting space.
- 11. Eileen Saunders provided an alternate contact number for her at Ghent (502-347-4023). B&V to update PIM with contact information. [Action Item #9]
- 12. B&V distributed a draft data request and inventory of data/information already in B&V's possession. E.ON asked B&V to carefully scrutinize the information request so as to not request information we may already have. B&V to finalize the initial data request and inventory list and submit it to E.ON as soon as possible. [Action item #10]
- 13. The administrative kick-off meeting concluded at approximately 4:30 pm.

#### Day 2, September 15, 2010

The second day of kick-off meetings began at 9 am at Mill Creek.

- 14. Eileen began the meeting with introductions and a brief summary of the project scope.
- 15. Gary Revlett provided a presentation of the main regulatory drivers influencing the coalfired fleet. These drivers include the new NOx and SO2 NAAQS standards, Utility MACT for hazardous air pollutants, and the proposed Clean Air Transport Rule (CATR). Gary explained that these current and pending regulations are the drivers for the Phase II work. Gary provided an updated table that can be used as the initial design basis titled "Estimated Limits & Compliance Dates for Future New Air Requirement Mill Creek Station".
- 16. Scott Straight addressed the meeting stating that the current company strategy does not have E.ON self-compliant (as a fleet) with NOx credits until 2016. E.ON would like to be self-compliant by 2013-2014. Scott asked the group to evaluate the possibility of accelerating the installation of SCRs on Mill Creek Units 1 and 2. This is also being considered at Ghent. (Note: Over the course of the next two days, this scenario was given consideration. A separate email correspondence addressing this issue was prepared and sent to E.ON on September 17, 2010, a copy of which is attached herein.) [Action Item #16]
- 17. B&V provided a presentation summary of the results of the August 5<sup>th</sup> and 6<sup>th</sup> Mill Creek AQC Screen Workshop. The presentation summarized the workshop purpose and attendees, an overview of the current plant basis, AQC technologies and options considered, and recommendations of the workshop. A copy of the workshop presentation summary slides is attached here in for reference.
  - E.ON requested B&V review the pros and cons of the NID system as part of the technology validation task. Action item #11]
- 18. E.ON advised that Alex Betz would be the Mill Creek plant contact for information requests.
- 19. E.ON will be contacting Hitachi, BPI, Foster Wheeler, and Alstom, and/or others to evaluate the status of the existing scrubbers and determine the extent they can be

Page 4

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

refurbished. E.ON is to lead this effort with support from B&V as requested. [Action item #12] Results of the evaluation will be provided to B&V

- 20. If the new Unit 4 WFGD and stack requires the relocation of the ammonia storage area, it may be possible to consolidate it with the ammonia storage requirements for the new Unit 1 and 2 SCRs.
- 21. It may be possible to reuse Unit 4's fans on Unit 3 should the existing fans become superfluous in the new Unit 4 arrangement. It then may be possible to reuse the Unit 3 fans on Unit 1 and/or unit 2.
- 22. E.ON confirmed there is no "sacred ground" around the existing units, areas reserved for other uses and unavailable for use in the AQCS upgrade. B&V requested if any balance-of-plant upgrades are currently under consideration that should be taken into account in the AQCS work, beyond the plans for an additional ball mill at the limestone prep building.
- Following lunch, E.ON and B&V personnel continue site walk down activities, concluding at approximately 5:30 pm. Some observations from this walk down are identified below.
  - Unit 4 fabric filter likely to be required to be installed above the Unit 4 scrubber electrical building.
  - Unit 3 would be tied into the current Unit 4 scrubber after the new Unit 4 FGD is built. The old Unit 3 scrubber would be torn down to allow new AQC equipment to be potentially located in that area.
  - Unit 3 and 4 structural steel was generally in good shape for lower areas that could be inspected. Higher areas of Unit 3 & 4 could not be assessed due to the large flue gas leaks in the duct that limited access for personal safety reasons.
  - Duct configuration will be complicated, but appears possible, and will depend on the specific fan arrangement and if new ID fans or booster fans will be used.

#### Day 3, September 16, 2010

The third and final day of meetings began at 9 am at Mill Creek.

- 24. B&V summarized the major findings of the walk downs for Eileen and began preparing white board sketches of the preliminary AQC control configurations discussed over the last two days in preparation for a site de-briefing scheduled for the early afternoon.
- 25. After a break in the morning rain, an additional walk down of Units 1 and 2 was conducted before lunch to review the structural integrity of the Unit 1 and Unit 2 steel for additional AQC equipment.
- 26. At 1:15 pm, B&V presented de-briefing of the site walk down findings and preliminary AQC control configurations. Two sketches were prepared for the meeting. One illustrated the preliminary AQC configuration options for Units 3 and 4, while the second sketch addressed Units 1 and 2 and the possibility of accelerating the SCR schedule. Pictures of the two white board sketches are attached here in for reference.
  - As a result of the workshop discussions, the potential for locating the Unit 4 fabric filter/NIDs unit and new scrubber, plus a new chimney, to the south of Unit 4 was

Page 5

E.ON US Project Kick-off and Mill Creek Site Visit

B&V Project 168908 September 24, 2010

considered. The original location for the new scrubber and chimney considered was in the area of the demolished thickener south of the limestone prep building. This location, however, involved crossing the limestone conveyor with relatively high ductwork, plus moving both an overhead Unit 3 and Unit 4 345kV T-line and the ammonia tanks and electrical building to provide necessary working space for new construction.

- Alternately, it was determined that there is likely sufficient space for the new Unit 4 AQCS train directly south of Unit 4, running more or less straight east to west with the new chimney located opposite of the Unit 4 turbine building. This arrangement, if it fits, has the advantage of relatively short ductwork runs, no impact to the overhead T-line, and no impact to the existing ammonia tank farm. It would, however, require relocation of the existing annex building and lab, plus limit construction access to one side of the train. B&V will continue evaluation of this arrangement as first choice for Unit 4, with the thickener area location used as a fall-back alternate.
- Should either of the above arrangements fit, it appeared that it would be advantageous to upgrade the existing Unit 4 scrubber in place and reuse it for Unit 3. The flue gas from Unit 3 would be rerouted to the Unit 4 scrubber in the short term (Phase I) and the Unit 3 scrubber demo'd. A new Unit 3 fabric filter/NIDs unit could be built in its place and tied into the Unit 3 ductwork as Phase II of a two phase construction sequence at Unit 3.
- Both Unit 1 and Unit 2 offer significant challenges in the addition of an SCR as an immediate modification (refer to Sep 17<sup>th</sup> email, attached herein for reference). The existing ESP at both units is located within a few feet of the boiler structure, leaving insufficient room to route ductwork to a new SCR overhead of the ESP. The ESP would have to be demolished or extensively modified before the SCR could be constructed, resulting in either an extended outage while the ESP is moved or reconstructed or the installation of a separate new ESP in another location prior to installation of the SCR. In addition, area available for new structures for either Units 1 or 2 is very limited, by the narrow alleyway between Units 1 and 3 for Unit 1 and by the new RO facility north of the powerblock at Unit 2. No obvious arrangement for the AQCS upgrades at Units 1 and 2 were immediately noted, and additional investigation will be required.
- 27. B&V commented on the poor condition of the structural steel at the existing scrubbers, especially at Units 1 and 2. Relatively isolated examples of steel corrosion, most likely due to exposure to flue gas, were noted in the superstructures at the Unit 3 and 4 scrubbers. However, severe corrosion and loss of structural mass was noted in a significant number of areas at Units 1 and 2. The most severe damage noted was in lighter components, such as platform and grating, but instances of chemical attack on the major structural steel members were also noted on Units 1 and 2. E.ON agreed to provide the results of recent studies assessing the structural steel. [Action Item #13]
- New AQC will likely restrict vehicle and maintenance access in some areas of the facility. E.ON agreed to provide the minimum access dimensions for use in the analysis. [Action Item #14]
- 29. E.ON noted that the existing Unit 4 AQCS (ESP and scrubber) were powered by the Unit 4 aux power supply. Should the Unit 4 scrubber be reused for Unit 3, an alternate source of aux power for the refurbished equipment must be included. Otherwise, an outage on Unit 4 would result in the loss of AQCS for Unit 3.

Page 6

E.ON US Project Kick-off and Mill Creek Site Visit B&V Project 168908 September 24, 2010

- 30. E.ON noted that no aux power supply greater than 4160V is currently available in the immediate plant area. However, there are spare cubicles which might be able to be modified to accept feeder breakers as potential sources of medium voltage power for new loads such as fans in the AQCS upgrade. E.ON also noted that B&V Ann Arbor completed a short circuit study for the plant in the 1990's. B&V to review this study. [Action item #15]
- 31. The meeting concluded at approximately 3 pm.

#### **ACTION ITEMS**

| #  | Description                                                  | Responsible  | Due Date |
|----|--------------------------------------------------------------|--------------|----------|
| 1  | Determine location for Mill Creek Task 6 Technology          | E.ON         | 10/15/10 |
|    | Selection meeting during 2 <sup>nd</sup> wk of November      |              |          |
| 2  | Determine dates for Ghent kick-off meeting                   | E.ON         | 9/23/10  |
| 3  | Provide DVD copy of Phase   Report                           | B&V          | 9/24/10  |
| 4  | Use B&V file system to set up E.ON document storage          | E.ON         | TBD      |
|    |                                                              |              |          |
| 5  | Provide engineering cost estimate at end of each month and   | B&V          | End of   |
|    | copy Mike Rooney on monthly reports                          |              | Month    |
| 6  | Create IBackup FTP site for large file transfer              | B&V          | 9/24/10  |
| 7  | Determine personnel assignments for document review          | E.ON         | TBD      |
| 8  | Determine if a Monday, 2 pm EST project conference call      | B&V          | 9/23/10  |
|    | time will work for B&V project team                          |              |          |
| 9  | Update PIM with Eileen's Ghent contact information           | B&V          | 9/24/10  |
| 10 | Prepare data inventory and information request               | B&V          | 9/24/10  |
| 11 | Evaluate pros and cons of NID system for November            | B&V          | Nov 2010 |
|    | technology validation presentation                           |              |          |
| 12 | Schedule vendors for evaluation of existing scrubbers        | E.ON         | TBD      |
| 13 | Provide structural steel study assessments                   | E.ON         | 9/24/10  |
| 14 | Provide minimum access dimension box                         | E.ON         | 9/24/10  |
| 15 | Review B&V electrical study conducted in the 1990s           | B&V          | 9/24/10  |
| 16 | Evaluate the possibility of accelerating the installation of | E.ON and B&V | TBD      |
|    | SCRs on Mill Creek Units 1 and 2                             |              |          |
|    |                                                              |              |          |

#### **ATTACHMENTS**

- Agenda
- Attendance roster
- B&V email of September 17, 2010 addressing the acceleration of the SCR installation schedule for Mill Creek Units 1 and 2.
- August 5<sup>th</sup> and 6<sup>th</sup> Mill Creek AQC Workshop Summary Presentation.
- Pictures of the September 16, 2010 white board sketches from the de-brief meeting.

cc: All Attendees File

#### AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Mill Creek Station September 14 - 16, 2010 Location: E.ON Broadway Office Complex and Mill Creek

#### Day 1, September 14<sup>th</sup>, Arrive 1 pm (Broadway Office Complex)

- I. Introductions
- II. Review Project Scope
- III. Review Project Schedule
- IV. Review Project Deliverables
- V. Project Administration
  - a. Communication
  - b. File System
  - c. Monthly Reports
  - d. Weekly Conference Calls/Action Item List
  - e. Invoicing
- VI. Project Documentation
- VII. Information Request

#### Day 2, September 15<sup>th</sup>, Arrive 8 am (Mill Creek)

- I. Introductions
- II. Environmental Drivers Presentation (E.ON Gary R.)
- III. Aug 5-6<sup>th</sup> AQC Workshop Results Presentation (B&V Rick L and Anand M.)
- IV. Lunch (on site)
- V. Continue Escorted Site Walk Down and Data Collection

#### Day 3, September 16<sup>th</sup>, Arrive 8 am (Mill Creek)

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (off site)
- III. Site Debriefing Meeting
- IV. Depart (no later than 4 pm)

#### Day 1, September 14<sup>th</sup>, Arrive 1 pm (Mill Creek)

- I. Arrive on Site and Introductions
- II. Begin Initial Escorted Site Walk Down

Pow ADC Mill Creek 1pm -4:30p. 9/14/10 Admin drick-off Meeting Hyle lucas 913-458-9062\_ Myle Lucas 913-958-9062 /4cas Kjebv.com M.R. WEHRLY 913-458-7131 Wehrly Mr. Can Mike Mooney 502-627-3671 Mike. Mooney Con-US. Com Eleen Sauders 502-627-2431 eileen saunders @ eon-US. Con MIKEKING 313618-8657 KINGMLGBV.COM 77m Hillman 913-458-7928 Willmantmebucan.

ON ACC Mill Creek Plant' Kickurr 9/15/10 9am -11:30 Kyle Lucas BEV 913-458-9062 Asst PM/EN MULS Kuaskjew.com Rick LAUSMAN Bil 913 438 7528 AQC Eng LAUSMAN RL& BU.COM Mike. Mooney & EON-VS- 184 507-1027-3671 Mike Mooney Budget Analyst EON WILLing Machkkz @ Gop-UK Con BILL MOEHRKY 302-627-6269 PRIFECT COMPD. Tim Hillmon BHV 913-458-7928 BTV PM hillmante @ bu.com MONTY HINTZ BEV 913-458-2464 hintzmeeby.com BEV CIVIL/STRUCT M.R. WEHRLY BEV 913-458-7131 webstywselv. Can B&V ENG. Mgr. Keyin Sies EDN-US 502-817-3545 Production Leader Michnel Stevens EON-US 502-933-6518 Production SUPV / Comp. Jun Nichols For 45 502-932-6643 Pear Super. Mike BulkNER LGSE 502-933-6515 Production MANAger Mike Kinkand LC:E 507-973-6565 General MANAger KENNY CRAIGMYLE Eile en Sauders EON PROJECT COORDINATOR 502-20627-6366 EON 502 -627-2431 MGR Major Copital Project Gary Revlett FON 502 - 627 - 4621 MGK Environmental Attor JOE DIDELOT EON 502-933-6559 MGR, MAINT. MC Scott STRAICUT 1 . " 627-2701 Director-PE 1/ex Betz LGRE 502-933-6602 Mech. Eng., Mill Cak Anand Mahabaleshwankar B&V 913 4587736 AQC Section Lead

#### Hillman, Timothy M.

| From:    | Hillman, Timothy M.                                                                       |
|----------|-------------------------------------------------------------------------------------------|
| Sent:    | Friday, September 17, 2010 12:01 PM                                                       |
| To:      | 'Saunders, Eileen'                                                                        |
| Cc:      | Lausman, Rick L.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Wehrly, M. R.; Hintz, Monty E. |
| Subject: | 168908.14.1000 100917 Mill Creek - Acceleration of MC 1 and 2 SCR Installation            |

#### Eileen,

Anand and the rest of the team combined notes in this email to present both a high level and somewhat detailed summary of the issues surrounding Scott's inquiry about accelerating the installation schedule of SCRs at Mill Creek Units 1 and 2. Hopefully this will assist you in the pending management decision process.

Thanks for all you planning and organization this week. I thought the meetings and site walk downs were very helpful and meaningful.

Tim.

#### <u>Summary</u>

The most direct path of accelerating the installation of SCRs on Units 1 and 2 would be to construct the new SCRs with the existing ESPs in place. Unfortunately, this is hampered by the close proximity of the existing dry ESPs to the boilers. As a result, there is no room to route ductwork to and from the new SCRs. Therefore, any acceleration of Unit 1 and 2's new SCR schedule would likely require the original Phase 1 approach of building a new ESP and/or PJFF/NID *first*, in order that the existing ESP could be demolished to make room for the new SCR and ductwork.

#### **Details and Basis**

#### Available SCR Options for MC 1 & 2:

Option 1. High-dust SCR located above the existing dry ESP

Option 2. High-dust SCR located at new location with new air heater placed directly under the new SCR reactor

Option 3. Tail-end, low-dust SCR located on new ground downstream of existing ESP, with flue gas reheat

#### Challenges Presented by the Economizer Outlet and the Close Proximity of the Existing Dry ESP:

- For SCR Options 1 and 2, the economizer outlet duct would need to be routed eastwards out of the boiler building through the east boiler building wall to flow the flue gas to the SCR reactor inlet, located either per Option 1 or 2. The arrangement of the existing dry ESP, located to the east and at approximately same elevation as the economizer outlet duct, along with its close proximity to the boiler building wall, are all preventing the routing of new SCR inlet duct towards the east direction. Similarly, due to presence of boiler support steel inside the boiler building, it is nearly impossible to route the ductwork out to either the north or south side.
- Also, for Option 1, the new SCR outlet duct needs to be connected back to the existing air heater, which is located directly underneath the economizer. This creates additional congestion in the same area and presents ductwork support challenges with the current boiler steel. On the other hand, for Option 2, it is possible to install a new air heater underneath the new SCR reactor at another location and connect the flue gas stream to the new dry ESP and/or PJFF/NID. However, the routing of the SCR inlet ductwork out of the boiler building for Option 2 still faces the same challenges as Option 1.
- The tail-end, low-dust SCR (Option 3) will increase the capital and O&M cost due to the need for flue gas reheating
  and another air heater to maintain the SCR operating temperature. Therefore, Option 3 is not considered feasible in
  this preliminary review.

#### Solutions to above challenges:

• For SCR Options 1 and 2, routing of the new SCR ductwork makes the demolition of the existing dry ESPs inevitable.

Therefore, in order to create room for a new SCR, a new dry ESP and/or PJFF/NID system will need to be installed first, while the units are online. Once the new dry ESP and/or PJFF/NID system is installed and operating, the existing dry ESP can be demolished to create room for the new SCR. The ID fan and or booster fan requirements can also be finalized based on the BOP challenges, including aux power availability.

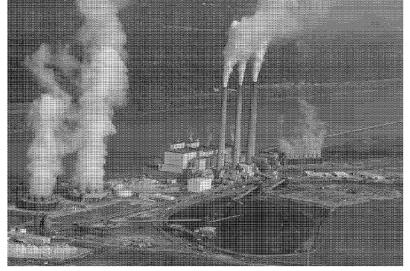
• Option 3 is believed to be capital and O&M cost intensive, and is therefore not considered feasible in this preliminary review.

#### Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com






# Alternative FGD Technology Workshop Review



**Black & Veatch** 

## Agenda

- Drivers
- Overview workshop
- Current plant basis
- Technologies and options discussed
- Recommendations of workshop







## **Regulatory drivers – still uncertainty**

| Program Name                     | Regulated<br>Pollutants                                                               | Forecasted Date for<br>Compliance                               |
|----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| BART                             | SAM<br>(MC3 Only)                                                                     | Within 6 months of final Title V                                |
| 1-hour NAAQS for NO <sub>x</sub> | NO <sub>x</sub>                                                                       | 2015 -2017                                                      |
| 1-hour NAAQS for SO <sub>2</sub> | SO <sub>2</sub>                                                                       | 2016                                                            |
| Clean Air Transport<br>Rule      | NO <sub>x</sub><br>SO <sub>2</sub>                                                    | Beginning in 2012 Phase in 2014                                 |
| New EGU MACT                     | Mercury<br>Acids (HCI)<br>Metals (PM)<br>Metals (AS)<br>Organics (CO)<br>Dioxin/Furan | Estimated January, 2015; with<br>1-yr extension - January, 2016 |

## Workshop attendees

### E.ON US

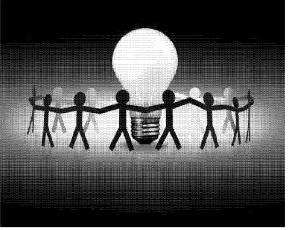
- Scott Straight
- Phillip Imber
- Ronald Gregory
- Gary Revlett
- Mike Kirkland

### Black & Veatch

Page - 4

- Tim Hillman
- Mike Ballard
- Anand Mahabaleshwarkar AQCS
- AQCS **Rick Lausman**




- Sr. Chem. Engineer
- Mgr Major Projects
  - Mgr Air Section & Environmental Affairs
- Mill Creek Plant Manager
- **Project Manager**
- Construction





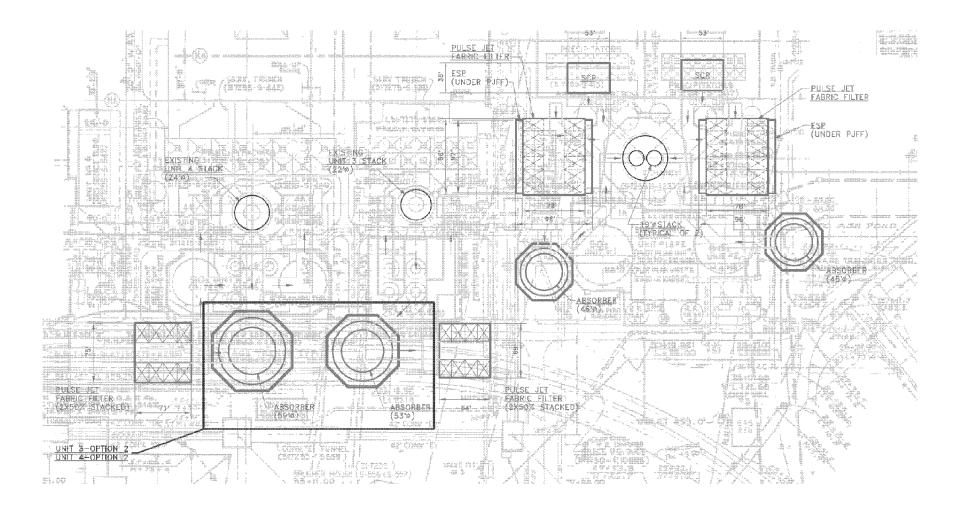
## Workshop purpose

- Review Phase 1 B&V evaluation
- Review current plant constraints
- Brainstorm potential for lower cost yet effective alternatives





## Phase 1 B&V evaluation


- Fleet wide review
- Screen technologies
- Conceptual design
- Limited time constraints
- New wet FGD and fabric filters for each Mill Creek unit







## Mill Creek phase 1 potential layout - example





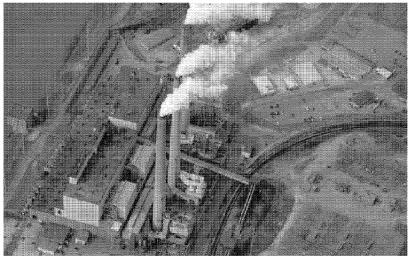
## **Current conditions and future targets**

|       |            | Current<br>Emissions | Current<br>Removal | Future<br>Removal |
|-------|------------|----------------------|--------------------|-------------------|
| Unit  | <u>MW</u>  | lb/MBtu              | <u>%</u>           | <u>%</u>          |
| 1     | 330        | 0.48                 | 92                 | 96                |
| 2     | 330        | 0.48                 | 92                 | 96                |
| 3     | 425        | 0.36                 | 86                 | 96                |
| 4     | <u>525</u> | 0.12                 | 92                 | 98                |
| Plant | 1610       | 0.36                 |                    |                   |
| Plant | Targets    | 0.25 lb/MBtu         |                    | 96%               |

## Uncontrolled SO2 Emissions 6.2 lb/MBtu



## HAPS Issues


- E.ON.US emissions tests are just being finished
- Hg controls are expected for MC units
- Acid gases are likely acceptable
- Uncertainty if plant-wide averaging for Hg will be available
- Speciated metal emissions are also low at MC units

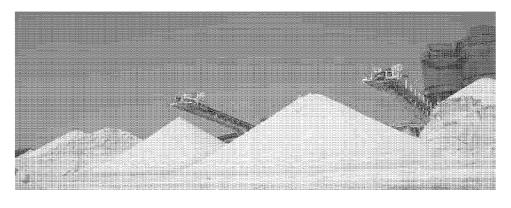


## Site specific criteria

- Existing wet FGD
- Condition of FGD and structural steel
- Dewatering system and material handling in place
- Limestone grinding issues
- High sulfur fuel
- Fly ash sale requirement
- Mercury control
- Available space
- ......Other ......










September 2010

**Byproduct Issues** 

- Mill Creek needs to be able to sell ash due to landfill limitations
- Water emission issues and future limitations may be an issue
- Wastewater stream is currently going to ash ponds





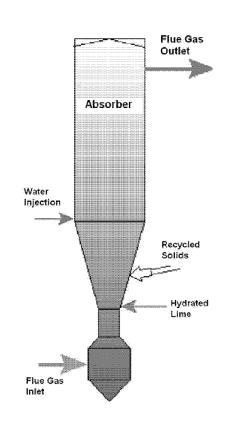
## **Current FGD conditions**

- All scrubbers are basically in a constant rebuilding mode
- Scrubbers are good for another 20 years structurally speaking
- MC1 and MC2 had trays added in 2002 which are now wearing thin
- Top of modules need to be placed
- MC1 and MC2 all duct work has been replaced that wasn't replaced during the wet stack conversion
- Pumps conditions are acceptable with some on MC 1 and MC2 previously replaced



**Current FGD conditions - continued** 

- MC3 and MC4 FGD had trays added in 2000
- MC4 top of modules and duct work needs to be replaced
- MC4 contact trays need replacement
- MC3 scrubber structure is good, although mixing is poor
- MC3 has underground reaction tanks and recycle pumps which cause maintenance and reliability issues.

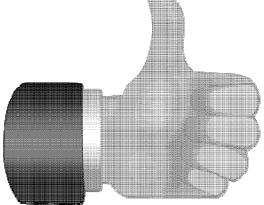

R,

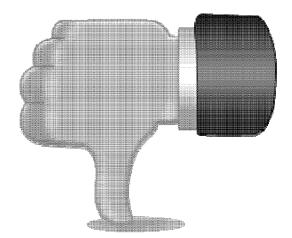
BLACKS VEATCH

### BUILDING A WORLD OF DIFFERENCE®

**Technology review** 

- Semi-dry FGD
  - Provides acid gas control (SO<sub>3</sub>)
  - Limits waste water production
  - High sulfur fuel is an issue
  - Reagent costs
  - Different technologies provide different advantages - NIDS vs CDS




Factors for upgrading or abandoning existing FGD

- Expected life of unit
- Improvement level required
- Condition of existing FGD
- Space considerations
- Cost comparison to new FGD
- Technical or physical limitations
- Orphaned components

Page - 15





#### BUILDING A WORLD OF DIFFERENCE®



**Preliminary workshop results** 

- Build a new WFGD for MC4
- Upgrade MC4's existing WFGD and use it for MC3
- Upgrade MC1 and MC2's existing WFGDs
- Add fabric filters to all four units
- Add PAC for Hg control
- Add duct injection systems for SO<sub>3</sub> control.
- As an alternative to the fabric filter, add NID system

## **Workshop results**



|                 | Planned Future               |                                    |
|-----------------|------------------------------|------------------------------------|
| <u>Jnit No.</u> | <u>Technology</u>            | <u>Schedule</u><br><u>Priority</u> |
| 1               | FGD upgrade                  | 1                                  |
| 2               | FGD upgrade                  | 4                                  |
| 3               | Unit 4 FGD with modification | 3                                  |
| 4               | New FGD                      | 2                                  |

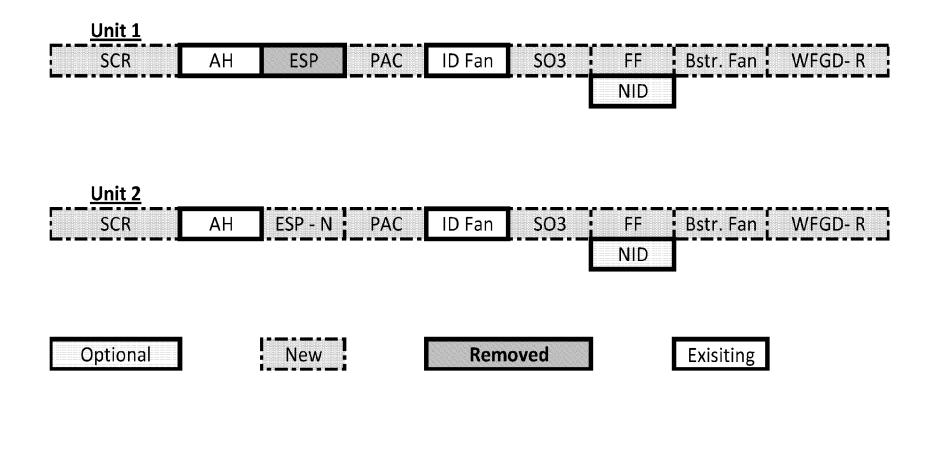
L

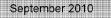
R.

BLACK & VEATCH

### BUILDING A WORLD OF DIFFERENCE®

# **Workshop results**

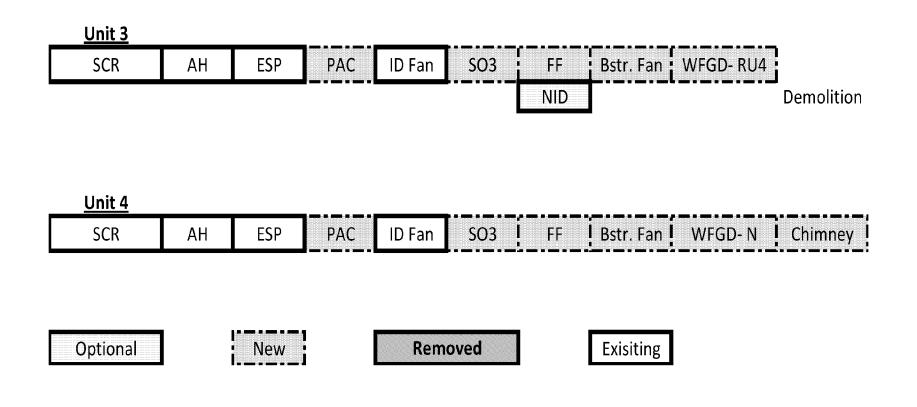

## Preliminary Schedule

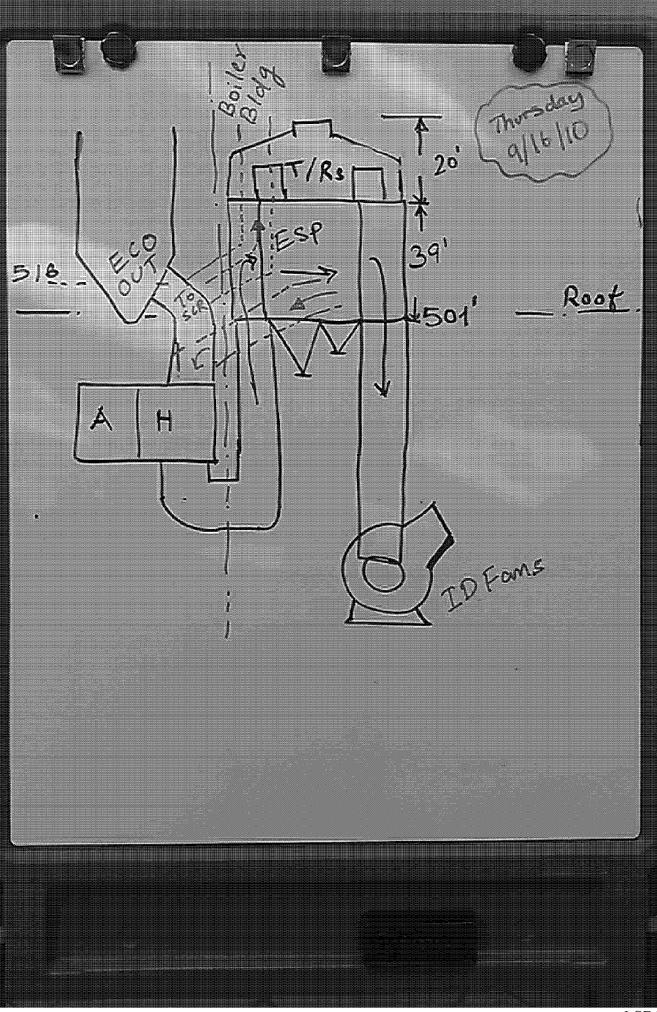

| <u>Unit</u> | <u>FGD</u>            | <u>FF</u>  | <u>SCR</u>      | <u>Fans</u> | <u>Chimney</u> | FF Location                          |
|-------------|-----------------------|------------|-----------------|-------------|----------------|--------------------------------------|
| 1           | 2012                  | 2014       | 2016            | 2014        | Existing       | In road                              |
| 2           | 2013 or<br>4th - 2013 | 2013       | 2015            | 2013        | Existing       | To open area<br>north                |
| 3           | 1st Qtr<br>2014       | Apr 2015   |                 | 2015        | Existing       | Road with fans in<br>Unit 3 FGD area |
| 4           | 4th - 2013            | 4th - 2013 | Relocate<br>NH3 | 2013        | Likely New     | South side of<br>plant               |

### BUILDING A WORLD OF DIFFERENCE®

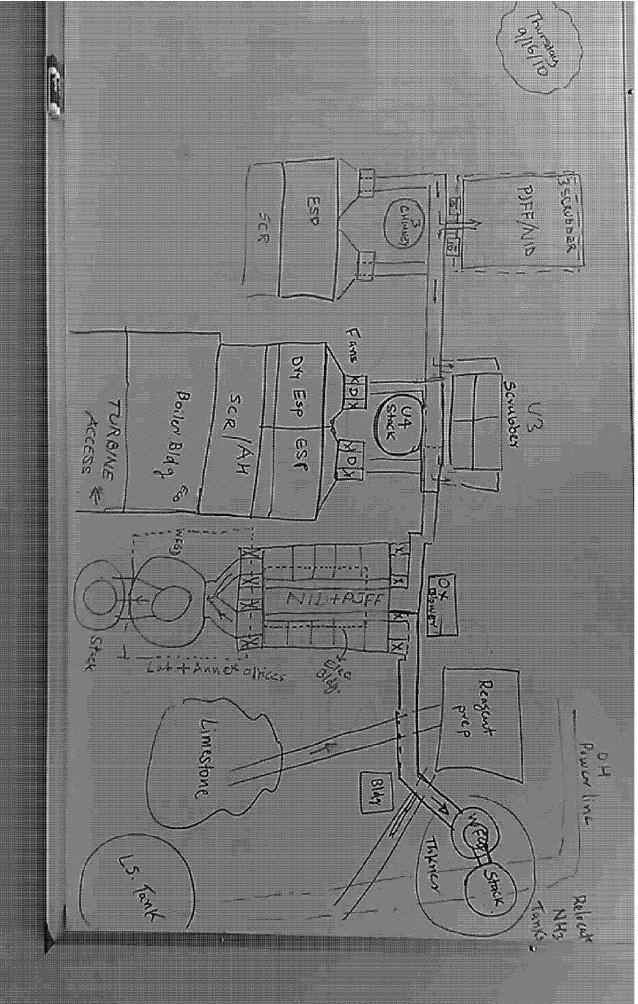


Proposed equipment lineups- Unit 1 & 2




### BUILDING A WORLD OF DIFFERENCE®




Proposed equipment lineups- Unit 3 & 4





LGE-KU-00001793



| From:<br>To:<br>CC:      | Hillman, Timothy M.<br>Saunders, Eileen<br>168908 E.ON-AQC; Jackson, Audrey; Crabtree, Jonathan D.; Mahabaleshwarkar, Anand; Wehrly, M.<br>R.; Lausman, Rick L.; Hintz, Monty E.; Goodlet, Roger F.; Betz, Alex; Lucas, Kyle J.; Smith, Dave; |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sent:                    | Mehta, Pratik D.<br>11/1/2010 11:01:49 AM                                                                                                                                                                                                     |
| Subject:<br>Attachments: | 168908.28.3000 101101 - Action Item List<br>168908 EON ACTION ITEM LIST.xls                                                                                                                                                                   |

Eileen,

Attached is the updated action item list for our weekly Monday conference call following our Mill Creek U4 discussion.

Regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Emaik hillmantm@bv.com

|          | Α      | В               | С        | D                                                         | E        | F             | G        | Н         | J          | K         | L         | М             |
|----------|--------|-----------------|----------|-----------------------------------------------------------|----------|---------------|----------|-----------|------------|-----------|-----------|---------------|
|          | ITEM # | SOURC           | ЭE       | DESCRIPTION                                               | FILE NO. | FACILITY      | RESPOR   | ISIBILITY | PATE ADDEI | IG DUE DA | RR DUE D/ | OMPL DAT      |
| 1        |        | DOC/MTNG        | DATE     |                                                           |          |               | co.      | INITIAL   | -          |           |           |               |
| 2        |        | DOC/MING        | DATE     |                                                           |          |               | 0.       | INITIAL   |            |           |           |               |
| -        |        | GENERAL         |          |                                                           |          | n             | A        |           |            |           |           |               |
| 3        |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          | 27     | Conf Call 10102 | 10/25/10 | Prepare letter spec for Fabric Filter workshop.           | 41.0806  | n             | B&V      | AM/RL     | 10/19/10   | TBD       |           |               |
| 4        |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          |        | MILL CREEK      |          |                                                           |          | Mill Creek    | A        |           |            |           |           |               |
| 5        | 23     | Conf Call 10101 | 10/10/10 | Provide draft of Mill Creek Validation Report for E.ON re | 41.0002  | Mill Creek    |          | TH/MW     | 10/19/10   | 11/05/10  |           |               |
| 6        | 23     | Conf Call 10101 | 10/18/10 | Provide draft of Mill Creek validation Report for E.ON re | 41.0803  | I MIIII Creek | B&V      |           | 10/19/10   | 11/05/10  |           |               |
|          | 28     |                 | 10/29/10 | Provide Mill Creek Validation presentation.               | 41.0803  | Mill Creek    | B&V      | тн        | 10/29/10   | 11/05/10  |           |               |
| 7        |        |                 | 10,20,10 |                                                           |          |               | 2        |           | 10/20/10   |           |           |               |
|          | 30     | Email 14.1000 1 | 10/27/10 | Provide comments on Mill Creek Validation meeting age     | 14.1000  | Mill Creek    | E.ON     | ES        | 10/27/10   | 11/02/10  |           |               |
| 8        |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          |        | GHENT           |          |                                                           |          | Ghent         | A        |           |            |           |           |               |
| 9        |        | -               |          |                                                           |          |               |          |           |            |           |           |               |
| 10       | 25     | Email 22.1000 1 | 10/21/10 | Provide E.ON comments on Ghent Project Design Mem         | 22.1000  | Ghent         | E.ON     | ES        | 10/21/10   | 10/28/10  |           |               |
| 10       |        | E.W. BROWN      |          |                                                           |          | Brown         | A        |           |            |           |           |               |
| 11       |        | E.W. BROWN      |          |                                                           |          | BIOWII        | <u>^</u> |           |            |           |           |               |
|          | 29     |                 | 10/29/10 | Provide Brown Kickoff presentation .                      | 14.1000  | Brown         | B&V      | тн        | 10/29/10   | 11/05/10  |           |               |
| 12       |        |                 |          | · · · · · · · · · · · · · · · · · · ·                     |          |               |          |           |            |           |           |               |
|          | 24     | Conf Call 10101 | 10/18/10 | Prepare differences between SCR and SNCR for Brown        | 14.1000  | Brown         | B&V      | AM/RL     | 10/19/10   | 11/09/10  |           |               |
| 13       |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          | 31     | Email 14.1000 1 | 10/27/10 | Provide comments on Brown Kickoff meeting agenda          | 14.1000  | Brown         | E.ON     | ES        | 10/27/10   | 11/02/10  |           |               |
| 14       |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 15       | 32     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 15       | 33     |                 |          |                                                           |          |               |          |           | -          |           |           |               |
| 16       | 55     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| <u> </u> | 34     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 17       |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          | 35     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 18       |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          | 36     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 19       | 37     |                 |          |                                                           |          |               |          |           |            |           |           | <b>└───</b> ┨ |
| 20       | 31     |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          | 38     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 21       | 55     |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          | 39     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 22       |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          | 40     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 23       |        |                 |          |                                                           |          |               |          |           |            |           |           |               |
|          | 41     |                 |          |                                                           |          |               |          |           |            |           |           |               |
| 24       |        |                 |          |                                                           |          |               |          |           |            |           |           |               |

|    | N           | 0                                                      | Р         | Q      | R            | S           |
|----|-------------|--------------------------------------------------------|-----------|--------|--------------|-------------|
| 1  | STATUS      | NOTES                                                  |           |        |              |             |
|    |             |                                                        |           |        |              |             |
| 2  |             |                                                        |           |        |              |             |
| 3  |             |                                                        |           |        |              |             |
| 4  | Open        | Reminder to start this action in the future after furt | her direc | tion   | from E.ON    | (10/25)     |
| 5  |             |                                                        |           |        |              |             |
| 6  | In Progress |                                                        |           |        |              |             |
| 7  | In Progress |                                                        |           |        |              |             |
| 8  | Open        |                                                        |           |        |              |             |
| 9  |             |                                                        |           |        |              |             |
| 10 | Open        |                                                        |           |        |              |             |
| 11 |             |                                                        |           |        |              |             |
| 12 | In Progress |                                                        |           |        |              |             |
| 13 |             | To be included in Brown KO presentation. Also inc      | lude fabr | ic fil | ter discussi | on. (10/25) |
| 14 | Open        |                                                        |           |        |              |             |
| 15 |             |                                                        |           |        |              |             |
| 16 |             |                                                        |           |        |              |             |
| 17 |             |                                                        |           |        |              |             |
| 18 |             |                                                        |           |        |              |             |
| 19 |             |                                                        |           |        |              |             |
| 20 |             |                                                        |           |        |              |             |
| 21 |             |                                                        |           |        |              |             |
| 22 |             |                                                        |           |        |              |             |
| 23 |             |                                                        |           |        |              |             |
| 24 |             |                                                        |           |        |              |             |

|    | Α  | В | С | D | E | F | G | Н | J | K | L | М |
|----|----|---|---|---|---|---|---|---|---|---|---|---|
| 25 | 42 |   |   |   |   |   |   |   |   |   |   |   |
|    | 43 |   |   |   |   |   |   |   |   |   |   |   |
| 26 | 44 |   |   |   |   |   |   |   |   |   |   |   |
| 27 |    |   |   |   |   |   |   |   |   |   |   |   |
| 28 | 45 |   |   |   |   |   |   |   |   |   |   |   |
|    | 46 |   |   |   |   |   |   |   |   |   |   |   |
| 29 | 47 |   |   |   |   |   |   |   |   |   |   |   |
| 30 | 48 |   |   |   |   |   |   |   |   |   |   |   |
| 31 |    |   |   |   |   |   |   |   |   |   |   |   |
| 32 | 49 |   |   |   |   |   |   |   |   |   |   |   |
| 33 | 50 |   |   |   |   |   |   |   |   |   |   |   |
|    | 51 |   |   |   |   |   |   |   |   |   |   |   |
| 34 | 52 |   |   |   |   |   |   |   |   |   |   |   |
| 35 |    |   |   |   |   |   |   |   |   |   |   |   |
| 36 | 53 |   |   |   |   |   |   |   |   |   |   |   |
| 37 | 54 |   |   |   |   |   |   |   |   |   |   |   |
| 38 | 55 |   |   |   |   |   |   |   |   |   |   |   |
| 39 | 56 |   |   |   |   |   |   |   |   |   |   |   |
|    | 57 |   |   |   |   |   |   |   |   |   |   |   |
| 40 | 58 |   |   |   |   |   |   |   |   |   |   |   |
| 41 | 59 |   |   |   |   |   |   |   |   |   |   |   |
| 42 |    |   |   |   |   |   |   |   |   |   |   |   |
| 43 | 60 |   |   |   |   |   |   |   |   |   |   |   |
| 44 | 61 |   |   |   |   |   |   |   |   |   |   |   |
| 45 | 62 |   |   |   |   |   |   |   |   |   |   |   |
| 46 | 63 |   |   |   |   |   |   |   |   |   |   |   |
| 47 | 64 |   |   |   |   |   |   |   |   |   |   |   |
| 47 | 65 |   |   |   |   |   |   |   |   |   |   |   |
| 40 |    |   |   |   |   |   |   |   |   |   |   |   |

|          | N | 0 | Р | Q | R | S |
|----------|---|---|---|---|---|---|
| 25       |   |   |   |   |   |   |
| 26       |   |   |   |   |   |   |
| 27       |   |   |   |   |   |   |
| 28       |   |   |   |   |   |   |
| 29       |   |   |   |   |   |   |
| 30       |   |   |   |   |   |   |
| 31       |   |   |   |   |   |   |
| 32       |   |   |   |   |   |   |
| 33       |   |   |   |   |   |   |
| 34       |   |   |   |   |   |   |
| 35       |   |   |   |   |   |   |
| 36       |   |   |   |   |   |   |
| 37       |   |   |   |   |   |   |
| 38       |   |   |   |   |   |   |
| 39       |   |   |   |   |   |   |
| 40       |   |   |   |   |   |   |
|          |   |   |   |   |   |   |
| 41<br>42 |   |   |   |   |   |   |
| 42       |   |   |   |   |   |   |
| 43       |   |   |   |   |   |   |
| 44       |   |   |   |   |   |   |
|          |   |   |   |   |   |   |
| 46       |   |   |   |   |   |   |
| 47       |   |   |   |   |   |   |
| 48       |   |   |   |   |   |   |

|    | Α  | В | С | D | E | F | G | Н | J | K | L | М |
|----|----|---|---|---|---|---|---|---|---|---|---|---|
| 49 | 66 |   |   |   |   |   |   |   |   |   |   |   |
|    | 67 |   |   |   |   |   |   |   |   |   |   |   |
| 50 |    |   |   |   |   |   |   |   |   |   |   |   |
| 51 | 68 |   |   |   |   |   |   |   |   |   |   |   |
|    | 69 |   |   |   |   |   |   |   |   |   |   |   |
| 52 | 70 |   |   |   |   |   |   |   |   |   |   |   |
| 53 |    |   |   |   |   |   |   |   |   |   |   |   |
| 54 | 71 |   |   |   |   |   |   |   |   |   |   |   |
| 55 | 72 |   |   |   |   |   |   |   |   |   |   |   |
| 56 | 73 |   |   |   |   |   |   |   |   |   |   |   |
| 57 | 74 |   |   |   |   |   |   |   |   |   |   |   |
| 58 | 75 |   |   |   |   |   |   |   |   |   |   |   |
| 59 | 76 |   |   |   |   |   |   |   |   |   |   |   |
| 60 | 77 |   |   |   |   |   |   |   |   |   |   |   |
| 61 | 78 |   |   |   |   |   |   |   |   |   |   |   |
| 62 | 79 |   |   |   |   |   |   |   |   |   |   |   |
| 63 | 80 |   |   |   |   |   |   |   |   |   |   |   |
| 64 | 81 |   |   |   |   |   |   |   |   |   |   |   |
| 65 | 82 |   |   |   |   |   |   |   |   |   |   |   |
| 66 | 83 |   |   |   |   |   |   |   |   |   |   |   |
| 67 | 84 |   |   |   |   |   |   |   |   |   |   |   |
| 68 | 85 |   |   |   |   |   |   |   |   |   |   |   |
| 69 | 86 |   |   |   |   |   |   |   |   |   |   |   |
| 70 | 87 |   |   |   |   |   |   |   |   |   |   |   |
| 71 | 88 |   |   |   |   |   |   |   |   |   |   |   |
| 72 | 89 |   |   |   |   |   |   |   |   |   |   |   |

|    | N | 0 | Р | Q | R | S |
|----|---|---|---|---|---|---|
| 49 |   |   |   |   |   |   |
| 50 |   |   |   |   |   |   |
| 51 |   |   |   |   |   |   |
| 52 |   |   |   |   |   |   |
| 53 |   |   |   |   |   |   |
|    |   |   |   |   |   |   |
| 54 |   |   |   |   |   |   |
| 55 |   |   |   |   |   |   |
| 56 |   |   |   |   |   |   |
| 57 |   |   |   |   |   |   |
| 58 |   |   |   |   |   |   |
| 59 |   |   |   |   |   |   |
| 60 |   |   |   |   |   |   |
| 61 |   |   |   |   |   |   |
| 62 |   |   |   |   |   |   |
| 63 |   |   |   |   |   |   |
| 64 |   |   |   |   |   |   |
| 65 |   |   |   |   |   |   |
| 66 |   |   |   |   |   |   |
| 67 |   |   |   |   |   |   |
| 68 |   |   |   |   |   |   |
| 69 |   |   |   |   |   |   |
| 70 |   |   |   |   |   |   |
| 71 |   |   |   |   |   |   |
| 72 |   |   |   |   |   |   |

|    | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 73 | 90  |   |   |   |   |   |   |   |   |   |   |   |
| 74 | 91  |   |   |   |   |   |   |   |   |   |   |   |
|    | 92  |   |   |   |   |   |   |   |   |   |   |   |
| 75 | 93  |   |   |   |   |   |   |   |   |   |   |   |
| 76 | 94  |   |   |   |   |   |   |   |   |   |   |   |
| 77 |     |   |   |   |   |   |   |   |   |   |   |   |
| 78 | 95  |   |   |   |   |   |   |   |   |   |   |   |
| 79 | 96  |   |   |   |   |   |   |   |   |   |   |   |
| 80 | 97  |   |   |   |   |   |   |   |   |   |   |   |
|    | 98  |   |   |   |   |   |   |   |   |   |   |   |
| 81 | 99  |   |   |   |   |   |   |   |   |   |   |   |
| 82 | 100 |   |   |   |   |   |   |   |   |   |   |   |
| 83 |     |   |   |   |   |   |   |   |   |   |   |   |
| 84 | 101 |   |   |   |   |   |   |   |   |   |   |   |
| 85 | 102 |   |   |   |   |   |   |   |   |   |   |   |
| 86 | 103 |   |   |   |   |   |   |   |   |   |   |   |
| 87 | 104 |   |   |   |   |   |   |   |   |   |   |   |
|    | 105 |   |   |   |   |   |   |   |   |   |   |   |
| 88 | 106 |   |   |   |   |   |   |   |   |   |   |   |
| 89 | 107 |   |   |   |   |   |   |   |   |   |   |   |
| 90 |     |   |   |   |   |   |   |   |   |   |   |   |
| 91 | 108 |   |   |   |   |   |   |   |   |   |   |   |
| 92 | 109 |   |   |   |   |   |   |   |   |   |   |   |
| 93 | 110 |   |   |   |   |   |   |   |   |   |   |   |
|    | 111 |   |   |   |   |   |   |   |   |   |   |   |
| 94 | 112 |   |   |   |   |   |   |   |   |   |   |   |
| 95 | 113 |   |   |   |   |   |   |   |   |   |   |   |
| 96 |     |   |   |   |   |   |   |   |   |   |   |   |

|    | N | 0 | Р | Q | R | S |
|----|---|---|---|---|---|---|
| 73 |   |   |   |   |   |   |
| 74 |   |   |   |   |   |   |
| 75 |   |   |   |   |   |   |
| 76 |   |   |   |   |   |   |
| 77 |   |   |   |   |   |   |
| 78 |   |   |   |   |   |   |
| 79 |   |   |   |   |   |   |
| 80 |   |   |   |   |   |   |
| 81 |   |   |   |   |   |   |
| 82 |   |   |   |   |   |   |
| 83 |   |   |   |   |   |   |
| 84 |   |   |   |   |   |   |
| 85 |   |   |   |   |   |   |
| 86 |   |   |   |   |   |   |
| 87 |   |   |   |   |   |   |
| 88 |   |   |   |   |   |   |
| 89 |   |   |   |   |   |   |
| 90 |   |   |   |   |   |   |
| 91 |   |   |   |   |   |   |
| 92 |   |   |   |   |   |   |
| 93 |   |   |   |   |   |   |
| 94 |   |   |   |   |   |   |
| 95 |   |   |   |   |   |   |
| 96 |   |   |   |   |   |   |

|             | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-------------|-----|---|---|---|---|---|---|---|---|---|---|---|
| 97          | 114 |   |   |   |   |   |   |   |   |   |   |   |
| 98          | 115 |   |   |   |   |   |   |   |   |   |   |   |
|             | 116 |   |   |   |   |   |   |   |   |   |   |   |
| 99          | 117 |   |   |   |   |   |   |   |   |   |   |   |
| 100         | 118 |   |   |   |   |   |   |   |   |   |   |   |
| 101         | 119 |   |   |   |   |   |   |   |   |   |   |   |
| 102         |     |   |   |   |   |   |   |   |   |   |   |   |
| 103         | 120 |   |   |   |   |   |   |   |   |   |   |   |
| 104         | 121 |   |   |   |   |   |   |   |   |   |   |   |
| 105         | 122 |   |   |   |   |   |   |   |   |   |   |   |
|             | 123 |   |   |   |   |   |   |   |   |   |   |   |
| 106         | 124 |   |   |   |   |   |   |   |   |   |   |   |
| 107         | 125 |   |   |   |   |   |   |   |   |   |   |   |
| 108         | 126 |   |   |   |   |   |   |   |   |   |   |   |
| 109         |     |   |   |   |   |   |   |   |   |   |   |   |
| 110         | 127 |   |   |   |   |   |   |   |   |   |   |   |
| <b>1</b> 11 | 128 |   |   |   |   |   |   |   |   |   |   |   |
| 112         | 129 |   |   |   |   |   |   |   |   |   |   |   |
| 113         | 130 |   |   |   |   |   |   |   |   |   |   |   |
|             | 131 |   |   |   |   |   |   |   |   |   |   |   |
| 114         | 132 |   |   |   |   |   |   |   |   |   |   |   |
| 115         | 133 |   |   |   |   |   |   |   |   |   |   |   |
| 116         |     |   |   |   |   |   |   |   |   |   |   |   |
| 117         | 134 |   |   |   |   |   |   |   |   |   |   |   |
| 118         | 135 |   |   |   |   |   |   |   |   |   |   | ] |
| 119         | 136 |   |   |   |   |   |   |   |   |   |   |   |
|             | 137 |   |   |   |   |   |   |   |   |   |   |   |
| 120         |     |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S |
|-----|---|---|---|---|---|---|
| 97  |   |   |   |   |   |   |
| 98  |   |   |   |   |   |   |
| 99  |   |   |   |   |   |   |
| 100 |   |   |   |   |   |   |
| 101 |   |   |   |   |   |   |
| 102 |   |   |   |   |   |   |
| 103 |   |   |   |   |   |   |
| 104 |   |   |   |   |   |   |
| 105 |   |   |   |   |   |   |
| 106 |   |   |   |   |   |   |
| 107 |   |   |   |   |   |   |
| 108 |   |   |   |   |   |   |
| 109 |   |   |   |   |   |   |
| 110 |   |   |   |   |   |   |
| 111 |   |   |   |   |   |   |
| 112 |   |   |   |   |   |   |
| 113 |   |   |   |   |   |   |
| 114 |   |   |   |   |   |   |
| 115 |   |   |   |   |   |   |
| 116 |   |   |   |   |   |   |
| 117 |   |   |   |   |   |   |
| 118 |   |   |   |   |   |   |
| 119 |   |   |   |   |   |   |
| 120 |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М  |
|-----|-----|---|---|---|---|---|---|---|---|---|---|----|
| 121 | 138 |   |   |   |   |   |   |   |   |   |   |    |
| 122 | 139 |   |   |   |   |   |   |   |   |   |   |    |
|     | 140 |   |   |   |   |   |   |   |   |   |   |    |
| 123 | 141 |   |   |   |   |   |   |   |   |   |   |    |
| 124 | 142 |   |   |   |   |   |   |   |   |   |   |    |
| 125 | 143 |   |   |   |   |   |   |   |   |   |   |    |
| 126 |     |   |   |   |   |   |   |   |   |   |   |    |
| 127 | 144 |   |   |   |   |   |   |   |   |   |   |    |
| 128 | 145 |   |   |   |   |   |   |   |   |   |   |    |
| 129 | 146 |   |   |   |   |   |   |   |   |   |   |    |
|     | 147 |   |   |   |   |   |   |   |   |   |   |    |
| 130 | 148 |   |   |   |   |   |   |   |   |   |   |    |
| 131 | 149 |   |   |   |   |   |   |   |   |   |   |    |
| 132 | 150 |   |   |   |   |   |   |   |   |   |   |    |
| 133 |     |   |   |   |   |   |   |   |   |   |   |    |
| 134 | 151 |   |   |   |   |   |   |   |   |   |   |    |
| 135 | 152 |   |   |   |   |   |   |   |   |   |   |    |
| 136 | 153 |   |   |   |   |   |   |   |   |   |   |    |
| 137 | 154 |   |   |   |   |   |   |   |   |   |   |    |
|     | 155 |   |   |   |   |   |   |   |   |   |   |    |
| 138 | 156 |   |   |   |   |   |   |   |   |   |   |    |
| 139 | 157 |   |   |   |   |   |   |   |   |   |   |    |
| 140 | 158 |   |   |   |   |   |   |   |   |   |   |    |
| 141 |     |   |   |   |   |   |   |   |   |   |   | ļ] |
| 142 | 159 |   |   |   |   |   |   |   |   |   |   |    |
| 143 | 160 |   |   |   |   |   |   |   |   |   |   | 7  |
| 144 | 161 |   |   |   |   |   |   |   |   |   |   |    |
| 144 |     |   | 1 |   |   |   |   |   |   |   |   |    |

|     | N | 0 | Р | Q | R | S |
|-----|---|---|---|---|---|---|
| 121 |   |   |   |   |   |   |
| 122 |   |   |   |   |   |   |
| 123 |   |   |   |   |   |   |
| 124 |   |   |   |   |   |   |
| 125 |   |   |   |   |   |   |
| 126 |   |   |   |   |   |   |
| 127 |   |   |   |   |   |   |
| 128 |   |   |   |   |   |   |
| 129 |   |   |   |   |   |   |
| 130 |   |   |   |   |   |   |
| 131 |   |   |   |   |   |   |
| 132 |   |   |   |   |   |   |
| 133 |   |   |   |   |   |   |
| 134 |   |   |   |   |   |   |
| 135 |   |   |   |   |   |   |
| 136 |   |   |   |   |   |   |
| 137 |   |   |   |   |   |   |
| 138 |   |   |   |   |   |   |
| 139 |   |   |   |   |   |   |
| 140 |   |   |   |   |   |   |
| 141 |   |   |   |   |   |   |
| 142 |   |   |   |   |   |   |
| 143 |   |   |   |   |   |   |
| 144 |   |   |   |   |   |   |

|     | Α   | В | С | D | E | F | G | Н | J | K | L | М |
|-----|-----|---|---|---|---|---|---|---|---|---|---|---|
| 145 | 162 |   |   |   |   |   |   |   |   |   |   |   |
| 146 | 163 |   |   |   |   |   |   |   |   |   |   |   |
|     | 164 |   |   |   |   |   |   |   |   |   |   |   |
| 147 | 165 |   |   |   |   |   |   |   |   |   |   |   |
| 148 | 166 |   |   |   |   |   |   |   |   |   |   |   |
| 149 |     |   |   |   |   |   |   |   |   |   |   |   |
| 150 | 167 |   |   |   |   |   |   |   |   |   |   |   |
| 151 | 168 |   |   |   |   |   |   |   |   |   |   |   |
| 152 | 169 |   |   |   |   |   |   |   |   |   |   |   |
| 153 | 170 |   |   |   |   |   |   |   |   |   |   |   |
|     | 171 |   |   |   |   |   |   |   |   |   |   |   |
| 154 | 172 |   |   |   |   |   |   |   |   |   |   |   |
| 155 | 173 |   |   |   |   |   |   |   |   |   |   |   |
| 156 | 174 |   |   |   |   |   |   |   |   |   |   |   |
| 157 |     |   |   |   |   |   |   |   |   |   |   |   |
| 158 | 175 |   |   |   |   |   |   |   |   |   |   |   |
| 159 | 176 |   |   |   |   |   |   |   |   |   |   |   |
| 160 | 177 |   |   |   |   |   |   |   |   |   |   |   |
|     | 178 |   |   |   |   |   |   |   |   |   |   |   |
| 161 | 179 |   |   |   |   |   |   |   |   |   |   |   |
| 162 | 180 |   |   |   |   |   |   |   |   |   |   |   |
| 163 | 181 |   |   |   |   |   |   |   |   |   |   |   |
| 164 |     |   |   |   |   |   |   |   |   |   |   |   |
| 165 | 182 |   |   |   |   |   |   |   |   |   |   |   |
| 166 | 183 |   |   |   |   |   |   |   |   |   |   |   |
| 167 | 184 |   |   |   |   |   |   |   |   |   |   |   |
|     | 185 |   |   |   |   |   |   |   |   |   |   |   |
| 168 |     |   |   |   |   |   |   |   |   |   |   |   |

|     | N | 0 | Р | Q | R | S |
|-----|---|---|---|---|---|---|
| 145 |   |   |   |   |   |   |
| 146 |   |   |   |   |   |   |
| 147 |   |   |   |   |   |   |
| 148 |   |   |   |   |   |   |
| 149 |   |   |   |   |   |   |
| 149 |   |   |   |   |   |   |
|     |   |   |   |   |   |   |
| 151 |   |   |   |   |   |   |
| 152 |   |   |   |   |   |   |
| 153 |   |   |   |   |   |   |
| 154 |   |   |   |   |   |   |
| 155 |   |   |   |   |   |   |
| 156 |   |   |   |   |   |   |
| 157 |   |   |   |   |   |   |
| 158 |   |   |   |   |   |   |
| 159 |   |   |   |   |   |   |
| 160 |   |   |   |   |   |   |
| 161 |   |   |   |   |   |   |
| 162 |   |   |   |   |   |   |
| 163 |   |   |   |   |   |   |
| 164 |   |   |   |   |   |   |
| 165 |   |   |   |   |   |   |
| 166 |   |   |   |   |   |   |
| 167 |   |   |   |   |   |   |
| 168 |   |   |   |   |   |   |

|                   | А   | В | С | D | E | F | G | Н | J | K | L | М |
|-------------------|-----|---|---|---|---|---|---|---|---|---|---|---|
| 160               | 186 |   |   |   |   |   |   |   |   |   |   |   |
| 169               | 187 |   |   |   |   |   |   |   |   |   |   |   |
| 170               |     |   |   |   |   |   |   |   |   |   |   |   |
|                   | 188 |   |   |   |   |   |   |   |   |   |   |   |
| 171               | 100 |   |   |   |   |   |   |   |   |   |   |   |
| 172               | 189 |   |   |   |   |   |   |   |   |   |   |   |
|                   | 190 |   |   |   |   |   |   |   |   |   |   |   |
| 173               |     |   |   |   |   |   |   |   |   |   |   |   |
| 174               | 191 |   |   |   |   |   |   |   |   |   |   |   |
| 174               | 192 |   |   |   |   |   |   |   |   |   |   |   |
| 175               |     |   |   |   |   |   |   |   |   |   |   |   |
|                   | 193 |   |   |   |   |   |   |   |   |   |   |   |
| 176               | 194 |   |   |   |   |   |   |   |   |   |   |   |
| 177               | 154 |   |   |   |   |   |   |   |   |   |   |   |
|                   | 195 |   |   |   |   |   |   |   |   |   |   |   |
| 178               | 100 |   |   |   |   |   |   |   |   |   |   |   |
| 179               | 196 |   |   |   |   |   |   |   |   |   |   |   |
| 1/0               | 197 |   |   |   |   |   |   |   |   |   |   |   |
| 180               |     |   |   |   |   |   |   |   |   |   |   |   |
| 181               | 198 |   |   |   |   |   |   |   |   |   |   |   |
| 101               | 199 |   |   |   |   |   |   |   |   |   |   |   |
| 182               |     |   |   |   |   |   |   |   |   |   |   |   |
|                   | 200 |   |   |   |   |   |   |   |   |   |   |   |
| 183<br>184<br>185 |     |   |   |   |   |   |   |   |   |   |   |   |
| 185               |     |   |   |   |   |   |   |   |   |   |   |   |
| 186               |     |   |   |   |   |   |   |   |   |   |   |   |
| 187               |     |   |   |   |   |   |   |   |   |   |   |   |
| 188<br>189        |     |   |   |   |   |   |   |   |   |   |   |   |
| 190               |     |   |   |   |   |   |   |   |   |   |   |   |
| 191               |     |   |   |   |   |   |   |   |   |   |   |   |
| 192               |     |   |   |   |   |   |   |   |   |   |   |   |
| 193<br>194        |     |   |   |   |   |   |   |   |   |   |   |   |
| 194<br>195        |     |   |   |   |   |   |   |   |   |   |   |   |
| 196               |     |   |   |   |   |   |   |   |   |   |   |   |
| 197               |     |   |   |   |   |   |   |   |   |   |   |   |
| 198<br>199        |     |   |   |   |   |   |   |   |   |   |   |   |
| 200               |     |   |   |   |   |   |   |   |   |   |   |   |
| 201               |     |   |   |   |   |   |   |   |   |   |   |   |
| 202               |     |   |   |   |   |   |   |   |   |   |   |   |

|            | N        | 0 | Р | Q        | R | S |
|------------|----------|---|---|----------|---|---|
|            | <u>.</u> |   |   |          |   |   |
| 169        |          |   |   |          |   |   |
| 470        |          |   |   |          |   |   |
| 170        |          |   |   |          |   |   |
| 171        |          |   |   |          |   |   |
|            |          |   |   |          |   |   |
| 172        |          |   |   |          |   |   |
|            |          |   |   |          |   |   |
| 173        |          |   |   |          |   |   |
| 174        |          |   |   |          |   |   |
| 174        |          |   |   |          |   |   |
| 175        |          |   |   |          |   |   |
|            |          |   |   |          |   |   |
| 176        |          |   |   |          |   |   |
| 177        |          |   |   |          |   |   |
| 177        |          |   |   |          |   |   |
| 178        |          |   |   |          |   |   |
|            |          |   |   |          |   |   |
| 179        |          |   |   |          |   |   |
| 180        |          |   |   |          |   |   |
| 180        |          |   |   |          |   |   |
| 181        |          |   |   |          |   |   |
|            |          |   |   |          |   |   |
| 182        |          |   |   |          |   |   |
| 100        |          |   |   |          |   |   |
| 183<br>184 |          |   |   |          |   |   |
| 185        |          |   |   |          |   |   |
| 186        |          |   |   |          |   |   |
| 187        |          |   |   |          |   |   |
| 188        |          |   |   |          |   |   |
| 189        |          |   |   | <u> </u> |   |   |
| 190<br>191 |          |   |   | <u> </u> |   |   |
| 191        |          |   |   |          |   |   |
| 193        |          |   |   |          |   |   |
| 194        |          |   |   |          |   |   |
| 195        |          |   |   |          |   |   |
| 196        |          |   |   |          |   |   |
| 197<br>198 |          |   |   |          |   |   |
| 198        |          |   |   |          |   |   |
| 200        |          |   |   |          |   |   |
| 201        |          |   |   |          |   |   |
| 202        |          |   |   |          |   |   |

|      | А  | В | С | D | E | F | G | Н | J | K | L | М |
|------|----|---|---|---|---|---|---|---|---|---|---|---|
| 7072 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7073 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7074 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7075 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7076 |    |   |   |   |   |   |   |   |   |   |   |   |
| 7077 | 58 |   |   |   |   |   |   |   |   |   |   |   |

| ****** | N | 0 | Р | Q | R | S |
|--------|---|---|---|---|---|---|
| 7072   |   |   |   |   |   |   |
| 7073   |   |   |   |   |   |   |
| 7074   |   |   |   |   |   |   |
| 7075   |   |   |   |   |   |   |
| 7076   |   |   |   |   |   |   |
| 7077   |   |   |   |   |   |   |

|    | Α      | В                 | С         | D                                                            | E        | F          | G        | Н        | J        | K         | L         | М         | N        |
|----|--------|-------------------|-----------|--------------------------------------------------------------|----------|------------|----------|----------|----------|-----------|-----------|-----------|----------|
|    | ITEM # | SOURC             | E         | DESCRIPTION                                                  | FILE NO. | FACILITY   | RESPON   | SIBILITY | ATE ADDE | IG DUE DA | RR DUE D/ | OMPL DAT  | STATUS   |
| 1  |        | DOC/MTNG          | DATE      |                                                              |          |            | co.      | INITIAL  |          |           |           |           |          |
| 2  |        | DOC/WITING        |           |                                                              |          |            | 00.      |          |          |           |           |           |          |
|    | 9      | KO & MC Site \    | 9/20/10   | Update PIM with Eileen's Ghent contact information           | 14.1000  |            | B&V      | MW       | 09/21/10 | 09/24/10  |           | 09/21/10  | Complete |
| 3  | 8      |                   | 0/20/40   | Determine if a Monday, 2 pm EST project conference ca        | 14.1000  |            | B&V      | TH/□MW   | 09/21/10 | 09/23/10  |           | 09/21/10  | Complete |
| 4  | 0      | NO & NO SILE Y    | 9/20/10   | Determine il a Monday, 2 pri EST project correferice ca      | 14.1000  |            | DQV      |          | 09/21/10 | 09/23/10  |           | 09/21/10  | Complete |
|    | 3      | KO & MC Site \    | 9/20/10   | Provide DVD copy of Phase I Report                           | 14.1000  |            | B&V      | тн       | 09/21/10 | 09/24/10  |           | 09/22/10  | Complete |
| 5  | 47     | F 1444000         | 0/00/40   |                                                              | 444000   |            | 5.01     | 50       | 00/01/10 | 00/04/10  |           | 00/04/40  | <u> </u> |
| 6  | 17     | Email 14.1000     | 9/20/10   | Provide E.ON comments on Kick Off Meeting and Mill C         | 14.1000  |            | E.ON     | ES       | 09/21/10 | 09/24/10  |           | 09/24/10  | Complete |
|    | 2      | KO & MC Site \    | 9/20/10   | Determine dates for Ghent kick-off meeting                   | 14.1000  | Ghent      | E.ON     | ES       | 09/21/10 | 09/23/10  |           | 09/27/10  | Complete |
| 7  |        |                   |           | -                                                            |          |            |          |          |          |           |           |           |          |
| 8  | 16     | KO & MC Site \    | 9/20/10   | Evaluate the possibility of accelerating the installation of | 14.1000  | Mill Creek | E.ON & B | ES &⊏TH  | 09/21/10 | TBD       |           | 09/27/10  | Complete |
|    | 5      | KO & MC Site \    | 9/20/10   | Provide engineering cost estimate at end of each month       | 14.1000  | n          | B&V      | тн       | 09/21/10 | 09/30/10  |           | 09/28/10  | Complete |
| 9  |        |                   |           |                                                              |          |            |          |          |          |           |           |           |          |
| 10 | 6      | KO & MC Site \    | 9/20/10   | Create IBackup FTP site for large file transfer              | 14.1000  |            | B&V      | KL       | 09/21/10 | 09/24/10  |           | 09/29/10  | Complete |
| 10 | 10     | KO & MC Site \    | 9/20/10   | Prepare data inventory and information request               | 14 1000  | Mill Creek | B&V      | MW/□JC   | 09/21/10 | 09/24/10  |           | 09/29/10  | Complete |
| 11 |        |                   | 0, 20, 10 |                                                              | 1.1.000  |            |          |          |          | 00.2      |           | 00.20,10  | Complete |
|    | 13     | KO & MC Site \    | 9/20/10   | Provide structural steel study assessments                   | 14.1000  | n          | E.ON     | ES       | 09/21/10 | 09/24/10  | 09/30/10  | 10/04/10  | Complete |
| 12 | 14     |                   | 0/20/10   | Provide minimum access dimension box                         | 14.1000  | n          | E.ON     | ES       | 09/21/10 | 09/24/10  | 09/30/10  | 10/04/10  | Complete |
| 13 | 14     |                   | 9/20/10   | Provide minimum access dimension box                         | 14.1000  | 11         | E.ON     | L0       | 09/21/10 | 09/24/10  | 09/30/10  | 10/04/10  | Complete |
|    | 7      | KO & MC Site \    | 9/20/10   | Determine personnel assignments for document review          | 14.1000  | n          | E.ON     | ES       | 09/21/10 | TBD       |           | 10/04/10  | Complete |
| 14 |        |                   |           |                                                              |          |            | 501/     |          |          | 10/00/10  |           | 10/01/10  |          |
| 15 | 19     | Re: Email 41.0'   | 19/30/10  | B&V to provide schedule/deadlines for Mill Creek inform      | 41.0100  | Mill Creek | B&V      | тн       | 09/30/10 | 10/06/10  |           | 10/04/10  | Complete |
|    | 1      | KO & MC Site \    | 9/20/10   | Determine location for Mill Creek Task 6 Technology Se       | 14.1000  | Mill Creek | E.ON     | ES       | 09/21/10 | 10/15/10  |           | 10/12/10  | Complete |
|    |        |                   |           |                                                              |          |            |          |          |          |           |           |           |          |
| 16 |        |                   |           |                                                              |          |            |          |          |          |           |           |           |          |
| 17 | 20     | Email 22.1000     | 10/5/10   | Provide comments on the Mill Creek Project Design Me         | 22.1000  | Mill Creek | E.ON     | ES       | 10/11/10 | 10/12/10  |           | 10/12/10  | Complete |
|    | 21     | Ghent Site Visit  | ######    | Prepare Ghent Information Request.                           | 41.0100  | Ghent      | B&V      | тн       | 10/11/10 | 10/15/10  |           | 10/18/10  | Complete |
| 18 |        |                   |           |                                                              |          |            |          |          |          |           |           |           |          |
|    | 15     | KO & MC Site \    | 9/20/10   | Review B&V electrical study conducted in the 1990s           | 14.1000  | Mill Creek | B&V      | JB       | 09/21/10 | 09/24/10  | TBD       | 10/18/10  | Complete |
| 19 | 18     | Email 41.0100     | 9/29/10   |                                                              | 41.0100  | n          | E.ON     | ES       | 09/30/10 | 10/06/10  |           | 10/18/10  | Complete |
| 20 |        |                   |           | Choose the coal fuel design basis for Mill Creek, Ghent,     |          |            |          |          |          | 10,00,10  |           | .0,10,10  | Complete |
|    | 4      | KO & MC Site \    | 9/20/10   | Use B&V file system to set up E.ON document storage          | 14.1000  | n          | E.ON     | ES       | 09/21/10 | TBD       |           | 10/18/10  | Complete |
| 21 | 10     |                   | 0/20/40   | Schedule vendors for evaluation of existing scrubbers        | 14.1000  |            | E.ON     | ES       | 09/21/10 | TBD       |           | 10/18/10  | Complete |
| 22 | 12     | ING & IVIC SILE V | 9/20/10   | Schedule vehicles for evaluation of existing scrubbers       | 14.1000  | n          |          | 13       | 09/21/10 |           |           | 10/10/10  | Complete |
|    | 11     | KO & MC Site \    | 9/20/10   | Evaluate pros and cons of NID system for November teo        | 14.1000  | n          | B&V      | AM/□RL   | 09/21/10 | Nov. 2010 |           | 10/21/10  | Complete |
| 23 |        |                   |           |                                                              |          |            | -        |          | 10/15/15 | 10/10/17  |           | 10/00// 5 |          |
| 24 | 22     | Email 14.1000     | ######    | Provide E.ON comments on Ghent Site Visit meeting m          | 14.1000  | Ghent      | E.ON     | ES       | 10/15/10 | 10/19/10  |           | 10/22/10  | Complete |
| 4  |        | I                 |           |                                                              | I        | 1          | 1        | I        |          |           |           |           |          |

|                 | 0                                                     | Р          | Q     | R             | S            | Т            | U             | V              | w             | Х  |
|-----------------|-------------------------------------------------------|------------|-------|---------------|--------------|--------------|---------------|----------------|---------------|----|
|                 | NOTES                                                 |            |       |               |              |              |               |                |               |    |
| 1               |                                                       |            |       |               |              |              |               |                |               |    |
|                 |                                                       |            |       |               |              |              |               |                |               |    |
| 2               |                                                       |            |       |               |              |              |               |                |               |    |
|                 |                                                       |            |       |               |              |              |               |                |               |    |
| 3               | Och - data d                                          |            |       |               |              |              |               |                |               |    |
| 4               | Scheduled                                             |            |       |               |              |              |               |                |               |    |
| 4               | Set received on 9/22                                  |            |       |               |              |              |               |                |               |    |
| 5               |                                                       |            |       |               |              |              |               |                |               |    |
| -               | Final issued on 9/24                                  |            |       |               |              |              |               |                |               |    |
| 6               |                                                       |            |       |               |              |              |               |                |               |    |
|                 | Scheduled for October 6&7                             |            |       |               |              |              |               |                |               |    |
| 7               |                                                       |            |       |               |              |              |               |                |               |    |
|                 | B&V email addressed the acceleration of the SCR       | install fo | r MC  | 2 1 & 2 (9/1  | 7). E.ON r   | eplied no ch | nange in dire | ection at this | s time (9/27) | ). |
| 8               |                                                       |            |       |               |              |              |               | 1              | 1             | 1  |
|                 | Sent 9/28.                                            |            |       |               |              |              |               |                |               |    |
| 9               |                                                       |            |       |               |              |              |               |                |               |    |
| 10              |                                                       |            |       |               |              |              |               |                |               |    |
|                 |                                                       |            |       |               |              |              |               |                |               |    |
| 11              |                                                       |            |       |               |              |              |               |                |               |    |
| <u> </u>        | CD received 9/27. Units 1, 2, and 4 on CD. Unit 3     | still need | led   | Email reque   | st sent on § | 9/28         |               |                |               |    |
| 12              |                                                       |            |       |               |              |              |               |                |               |    |
|                 | CD received 9/27. Access Dimension not included       | . Email r  | eque  | est sent 9/28 | 3.           |              |               |                |               |    |
| 13              |                                                       |            |       |               |              |              |               |                |               |    |
|                 | MC - Alex Betz and a couple others at plant. Proce    | ess in pla | ce (* | 10/4)         |              |              |               |                |               |    |
| 14              |                                                       |            |       |               |              |              |               |                |               |    |
|                 |                                                       |            |       |               |              |              |               |                |               |    |
| 15              | Mo Technolom, este diaman estimate ha haldin la       |            |       | (0            |              |              | 1             |                |               |    |
|                 | MC Technology selection meeting to be held in Lo      | uisville o | n 11. | 9 WITH Brow   | vn ko mtg (  |              | 1.            |                |               |    |
| 1               |                                                       |            |       |               |              |              |               |                |               |    |
| 16              | Eileen's comments provided on 10/12. Sent to Ale      |            |       |               |              | 1            |               |                |               |    |
| 17              | Elleen's comments provided on 10/12. Sent to Ale      | ax for fur | Iner  | comments.     |              |              |               |                |               |    |
| <u> </u>        |                                                       |            |       |               |              |              |               |                |               |    |
| 18              |                                                       |            |       |               |              |              |               |                |               |    |
|                 | B&V could not locate study. Added to Data Reque       | st. Will   | revie | w when E.C    | N provides   | study.       |               |                |               |    |
| 19              |                                                       |            |       |               |              | -            |               |                |               |    |
|                 | Use future coal. (10/11) Chlorine needs to be corre   | ected (10  | 0/18) |               |              |              |               |                |               |    |
| 20              |                                                       |            |       |               |              |              |               |                |               |    |
|                 | Audrey is working on it (10/11). It is set up. Eileen | to reviev  | v (1C | /18).         |              |              |               |                |               |    |
| 21              |                                                       |            |       |               |              |              |               |                |               |    |
|                 | To be scheduled week of 10/25. B&V requested to       | be inclu   | uded  | ın debriefin  | g w/ each v  | endor.       |               |                |               |    |
| 22              | Mill and neuropeoint presentation in the rest accord  | ام ما ما   | . (4) | 2/40)         |              | 1            |               |                |               |    |
| 23              | Will send powerpoint presentation in the next coup    | ne or day  | ร (10 | J/18).        |              |              |               |                |               |    |
| <u><u> </u></u> | Eileen has no comments (10/18). Waiting for com       | ments fr   | om F  | ON memb       | ers          |              |               |                |               |    |
| 24              |                                                       |            |       |               | 0.0.         |              |               |                |               |    |
|                 |                                                       |            |       |               |              | 1            |               | 1              | 1             | 1  |

|    | Α  | В | С      | D                                                      | E       | F          | G   | Н  | J        | К        | L        | М | Ν        |
|----|----|---|--------|--------------------------------------------------------|---------|------------|-----|----|----------|----------|----------|---|----------|
| 25 | 26 |   | ###### | Provide sketches of Unit 4 AQC equipment in the thicke | 41.0402 | Mill Creek | B&V | мн | 10/25/10 | 10/27/10 | 10/27/10 |   | Complete |
| 26 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 27 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 28 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 29 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 30 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 31 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 32 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 33 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 34 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 35 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 36 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 37 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 38 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 39 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 40 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 41 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 42 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 43 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 44 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 45 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 46 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 47 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |
| 48 |    |   |        |                                                        |         |            |     |    |          |          |          |   |          |

|    | 0 | Р | Q | R | S | Т | U | V | W | Х |
|----|---|---|---|---|---|---|---|---|---|---|
| 25 |   |   |   |   |   |   |   |   |   |   |
| 26 |   |   |   |   |   |   |   |   |   |   |
| 27 |   |   |   |   |   |   |   |   |   |   |
| 28 |   |   |   |   |   |   |   |   |   |   |
| 29 |   |   |   |   |   |   |   |   |   |   |
| 30 |   |   |   |   |   |   |   |   |   |   |
| 31 |   |   |   |   |   |   |   |   |   |   |
| 32 |   |   |   |   |   |   |   |   |   |   |
| 33 |   |   |   |   |   |   |   |   |   |   |
| 34 |   |   |   |   |   |   |   |   |   |   |
| 35 |   |   |   |   |   |   |   |   |   |   |
| 36 |   |   |   |   |   |   |   |   |   |   |
| 37 |   |   |   |   |   |   |   |   |   |   |
| 38 |   |   |   |   |   |   |   |   |   |   |
| 39 |   |   |   |   |   |   |   |   |   |   |
| 40 |   |   |   |   |   |   |   |   |   |   |
| 41 |   |   |   |   |   |   |   |   |   |   |
| 42 |   |   |   |   |   |   |   |   |   |   |
| 43 |   |   |   |   |   |   |   |   |   |   |
| 44 |   |   |   |   |   |   |   |   |   |   |
| 45 |   |   |   |   |   |   |   |   |   |   |
| 46 |   |   |   |   |   |   |   |   |   |   |
| 47 |   |   |   |   |   |   |   |   |   |   |
| 48 |   |   |   |   |   |   |   |   |   |   |

|      | Α  | В | С | D | Е | F | G | Н | J | K | L | М | N |
|------|----|---|---|---|---|---|---|---|---|---|---|---|---|
| 7096 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7097 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7098 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7099 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7100 |    |   |   |   |   |   |   |   |   |   |   |   |   |
| 7101 | 58 |   |   |   |   |   |   |   |   |   |   |   |   |

|      | 0 | Р | Q | R | S | Т | U | V | W | Х |
|------|---|---|---|---|---|---|---|---|---|---|
| 7096 |   |   |   |   |   |   |   |   |   |   |
| 7097 |   |   |   |   |   |   |   |   |   |   |
| 7098 |   |   |   |   |   |   |   |   |   |   |
| 7099 |   |   |   |   |   |   |   |   |   |   |
| 7100 |   |   |   |   |   |   |   |   |   |   |
| 7101 |   |   |   |   |   |   |   |   |   |   |

|    | A         | В                 | С          | D        | E    |  |
|----|-----------|-------------------|------------|----------|------|--|
| 1  | E.ON      | E.ON U.S.         | SERVICES   | INC. COM | PANY |  |
| 2  | AB        | Alex Betz -       |            |          |      |  |
| 3  | DS        | Dave Smith        | n - Ghent  |          |      |  |
| 4  | ES        | Eileen Sau        | nders      |          |      |  |
| 5  | GB        | Greg Black        |            |          |      |  |
| 6  | GR        | Gary Revle        | tt         |          |      |  |
| 7  |           |                   |            |          |      |  |
| 8  |           |                   |            |          |      |  |
| 9  |           |                   |            |          |      |  |
| 10 |           |                   |            |          |      |  |
| 11 |           |                   |            |          |      |  |
| 12 |           |                   |            |          |      |  |
| 13 |           |                   |            |          |      |  |
| 14 |           |                   |            |          |      |  |
| 15 |           |                   |            |          |      |  |
| 16 |           |                   |            |          |      |  |
| 17 | <u>BV</u> |                   | atch (B&V) |          |      |  |
| 18 | ТΗ        | Tim Hillma        | n          |          |      |  |
| 19 |           | Kyle Lucas        |            |          |      |  |
| 20 | AM        | Anand Mał         | abaleshwai | ker      |      |  |
| 21 | MK        | Mike King         |            |          |      |  |
| 22 | RL        | Rick Lausman      |            |          |      |  |
| 23 | MW        | M.R. Wehrly       |            |          |      |  |
| 24 | МН        | Monty Hintz       |            |          |      |  |
| 25 | JB        | Jim Bayless       |            |          |      |  |
| 26 | JC        | Jonathan Crabtree |            |          |      |  |

| From:        | Saunders, Eileen                                                                                   |
|--------------|----------------------------------------------------------------------------------------------------|
| То:          | Joyce, Jeff; Wright, Paul; Drake, Michael; Smith, Dave; Ayler, Danny; Bickers, Troy; Yocum, James; |
|              | Scott, Randy                                                                                       |
| CC:          | Straight, Scott; 'Hillman, Timothy M.'                                                             |
| Sent:        | 11/1/2010 2:41:30 PM                                                                               |
| Subject:     | FW: 168908.14.1000 101022 Ghent - Final Kickoff and Site Visit Meeting Minutes                     |
| Attachments: | Ghent Kickoff and Site Walkdown Meeting Minutes with Attachments - Final 102210.pdf                |

All,

Here are the final minutes from the discussion at Ghent.

Thanks,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Friday, October 22, 2010 2:43 PM
To: Saunders, Eileen
Cc: 168908 E.ON-AQC; Jackson, Audrey; Wehrly, M. R.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Hintz, Monty E.; Goodlet, Roger F.; Crabtree, Jonathan D.; Smith, Dave; Mehta, Pratik D.; Bayless, James W. III (Jim); Keltner, Erik J.; King, Michael L. (Mike)
Subject: 168908.14.1000 101022 Ghent - Final Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached the final Ghent Kickoff meeting minutes. This final version incorporates E.ON's comment below, and picks up a few additional comments/clarifications from B&V team members.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

From: Saunders, Eileen [mailto:Eileen.Saunders@eon-us.com]
Sent: Friday, October 22, 2010 6:36 AM
To: Hillman, Timothy M.
Cc: 168908 E.ON-AQC; Jackson, Audrey; Wehrly, M. R.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Hintz, Monty E.; Goodlet, Roger F.; Crabtree, Jonathan D.
Subject: RE: 168908.14.1000 101012 Ghent - Draft Kickoff and Site Visit Meeting Minutes

Tim,

The notes look fine with one exception: "James Yocun" should read "James Yocum".

Thanks,

Eileen

Sent: Tuesday, October 12, 2010 1:53 PM
To: Saunders, Eileen
Cc: 168908 E.ON-AQC; Jackson, Audrey; Wehrly, M. R.; Lucas, Kyle J.; Mahabaleshwarkar, Anand; Lausman, Rick L.; Hintz, Monty E.; Goodlet, Roger F.; Crabtree, Jonathan D.
Subject: 168908.14.1000 101012 Ghent - Draft Kickoff and Site Visit Meeting Minutes

Eileen,

Please find attached draft meeting minutes from the Ghent kickoff. Please provide E.ON's comments by next Tuesday, 10/19. Thanks,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com

The information contained in this transmission is intended only for the person or entity to which it is directly addressed or copied. It may contain material of confidential and/or private nature. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is not allowed. If you received this message and the information contained therein by error, please contact the sender and delete the material from your/any storage medium.

#### BLACK & VEATCH CORPORATION CONFERENCE MEMORANDUM

E.ON US Phase II: Air Quality Control Study Ghent Kick-off and Site Visit B&V Project 168908 B&V File 14.1000 October 22, 2010

A kick-off and site walk down meeting was held October 6-7<sup>th</sup> at the Ghent Generating Station for the Phase II: Air Quality Control Study Project.

Recorded by: Tim Hillman

Attending:

Ghent Kick-off Meeting, October 6th

| Eileen Saunders<br>Mike Mooney<br>Gary Revlett<br>James Yocum<br>Randy Scott<br>Greg Jones<br>Jeff Joyce<br>Danny Ayler<br>Troy Bickers<br>Paul Wright<br>Mike Drake<br>Dave Smith<br>Tim Hillman<br>M.R. Wehrly<br>Anand Mahabaleshwarkar<br>Kyle Lucas<br>Rick Lausman<br>Monty Hintz | E.ON<br>E.ON<br>E.ON<br>KU<br>LG&E - KU<br>LG&E - KU<br>KU<br>KU<br>KU<br>KU<br>KU<br>KU<br>B&V<br>B&V<br>B&V<br>B&V<br>B&V<br>B&V<br>B&V<br>B&V<br>B&V<br>B&V |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roger Goodlet                                                                                                                                                                                                                                                                           | B&V                                                                                                                                                            |

The purpose of this meeting was to 1) present the project scope and Phase I study results to the Ghent facility personnel, and 2) provide for a site visit and walk down of the Ghent facility. The above attendance list reflects those attending the initial kick-off meeting at Ghent. (Agenda and Attendance Roster attached herein for reference).

#### **MEETING DISCUSSION**

#### Day 1, October 6, 2010

The kick-off meeting began at 9 am at Ghent.

- Eileen began the meeting with introductions and a brief summary of the project scope.
   E.ON requested B&V to prepare a data request with priority dates similar to that developed for Mill Creek. (Action Item #1)
- 2. E.ON (Gary Revlett) provided a review of all the regulations and environmental controls that are driving the capital projects. (Presentation attached herein for reference).
  - NAAQS
  - Clean Air Transport Rule CATR

Page 2

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 22, 2010

- Electric Generating Unit Maximum Achievable Control Technology EGU MACT
- The change from annual average to a one (1) hour limit for NAAQS causes the biggest issues; even the diesel fired units may have issues on the site. The impact of one hour limits will be based on monitoring of stack emissions coupled with modeling done for the plume dispersion.
- SO<sub>2</sub> should not be a problem for the Ghent units since the existing FGDs basically achieve +98% removal on the units and the modeling shows that they require 96% removal on a plant average.
- 5. Compliance dates are very short and the industry has commented that insufficient implementation time is included for CATR Phase 1 in 2012 and Phase 2 in 2014.
- 6. CATR is the driving force for Ghent for both SO<sub>2</sub> and NO<sub>x</sub>.
- 7. Hg is an issue at Ghent. However, E.ON hopes that with the addition of an SCR on Unit 2, acceptable Hg control may be achieved without additional modifications.
- E.ON provided an updated table that can be used as the initial Ghent design basis titled: Estimated Limits & Compliance Dates for Future New Air Requirements Ghent Station". (Attached herein for reference).
- 9. E.ON believes Ghent will likely meet the new NAAQS standards because of the existing scrubbers and SCRs.
- 10. CATR NOx and SO2 limits are aggressive because allowance modeling for the plant assumed a new SCR on Unit 2. Ghent SO2 allowances for SO2 in 2014 are higher for some reason than the 2012 allowances. This maybe an error in the CATR model.
- B&V provided a presentation of the Ghent Phase I results and an overview of a PJFF. (Power Point Presentation attached herein for reference). The following general characteristics of a pulse jet fabric filter (PJFF) were discussed.
  - Pressure drop can be 6-8 inches through the PJFF. The increased system
    pressure drop will require increased ID fan capacity. Upgrade of the existing ID
    fans, the addition of booster fans, or new replacement ID fans will be required.
     E.ON emphasized that, if possible, the fans should be located downstream of the
    PJFF to minimize erosion and damage by dust loading.
  - PJFF bags are normally made of polyphenylene sulfide (PPS) materials, but materials such as fiberglass with a Teflon membrane have been used in specific applications. Temperature constraints on PPS bags are in the range of 380-400 °F continuous operation. Bags woven of fiberglass material can safely be subjected to 500 °F over the short term. The temperature limits require PJFFs to be installed downstream of the air heater.
  - PJFFs are compartmentalized with isolation between compartments to allow online maintenance of bags and compartment equipment.
  - The differences between PJFFs and reverse gas fabric filters were described and discussed.
  - Bag life for a PJFF is typically 3 years by guarantee. The PJFF is harder on the bags during cleaning than a reverse gas fabric filter due to the high, short-duration air pulse used.

Page 3

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 22, 2010

- Dimensions of PJFF vary by manufacturer and are based on gas flow. A "typical" PJFF for a Ghent-sized unit would have an approximately 90 foot x140 foot footprint.
- An advantage of PJFF installation is that its performance is generally independent of the ash type and is based primarily on flue gas volume. A PJFF could allow burning of PRB coal in the future. This flexibility will be considered in the study.
- One question to be considered is whether Ghent needs to keep the hot-side ESPs, either for ash scavenging or because the existing SCRs are the low-dust type.
   B&V noted that a change in catalyst could convert the SCRs to operate in high-dust conditions if the possibility of lower catalyst life is acceptable.
- The area and facilities for dry ash conversion and ash handling need to be considered with this study. E.ON commented that B&V had previously completed an ash handling study and that the AQC study must be coordinated with the plans developed in the ash handling study.
- 12. B&V provided an overview of the Phase I study results. Two additional points were also noted and discussed.
  - B&V may consider designing the Unit 2 SCR as high-dust units from the onset, allowing deletion of the existing ESPs at Unit 2 if warranted by congestion and construction difficulties.
  - B&V asked if E.ON needs to sell fly ash. Saleable fly ash would require "scalping" of the fly ash upstream of PAC injection and require the retention and use of the existing ESPs. E.ON would like to sell fly ash on an opportunistic basis, but is not necessarily tied to the existing ESPs.
- 13. EON made the following general comments.
  - E.ON wants any new axial fans to be downstream of the PJFFs.
  - E.ON asked B&V to investigate a refined layout for Unit 3 PJFF that would reduce the ductwork runs indicated in the Phase I study.
  - The courtyard area between Units 2 and 3 can be used for siting new equipment. The various maintenance shops on the south side of the courtyard could be relocated. There is no "sacred ground" onsite that must be avoided in locating new facilities. However, retention or re-establishment of the ground level breezeway and the overhead skyway between Units 2 and 3 is desirable.
- 14. A plant walk down of Units 1-4 was conducted until approximately 3 pm.
- 15. After the walk down, B&V personnel convened in the Ghent conference room to review preliminary arrangement sketches and begin preparations for the debriefing meeting.
- 16. Day 1 activities adjourned at approximately 6 pm.

#### Day 2, October 7, 2010

The second day of meetings began at 8 am at Ghent.

- 17. B&V began Day 2 by preparing some initial sketch arrangements for Units 1-4 in preparation for a site de-briefing scheduled later in the afternoon.
- 18. At approximately 10 am, B&V resumed site walk downs, splitting into two groups to ground-verify some assumptions made in the initial arrangement sketches.

Page 4

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 22, 2010

- 19. A site debriefing meeting was convened at 1 pm. The following are the general and unit specific discussions that ensued. (Initial arrangement sketches attached herein).
  - General comments:
    - B&V believes it will likely not be feasible to reuse/upgrade the existing ID fans to avoid the addition of new booster or ID fans. Physical constraints on routing duct to and from the existing ID inlet fans is problematic. Locating the PJFFs to protect all of the existing ID fans is not practical in all cases, even for the axial fans at Units 3 and 4. The Unit 3 fans can be incorporated into the revised AQC system, but only in a location that may not be beneficial. B&V fan experts will review this, but new ID fans or booster fans are expected to be required for all units.
  - Unit 1:
    - Sorbent injection will need to be relocated in the duct work to near the inlet of the PJFF. E.ON questioned whether the PJFF vendors would be willing to offer SO3 guarantees based on sorbent injection. B&V noted that if the vendor is awarded both sorbent injection and the PJFF as a single package he will likely offer some guarantees, but the specific level will have to be negotiated.
    - Concern was expressed with the elevated PJFF for Unit 1 being located close to the Unit 2 cooling tower. B&V will investigate and provide opinions on the overall affect of the new structures on cooling tower performance and level of icing that could result.
    - If the impact to performance warrants it, it was discussed that a couple cells could be added to the east end of the tower to increase the overall tower capacity or allow impacted cells to be taken out of service.
    - Alternate arrangements at Unit 1 appear very limited at this time. E.ON asked about relocating Unit 2's cooling tower to make more room for Unit 1 PJFF. The major issue with that approach is where to relocate the cooling tower. The potential of locating the new cooling tower towards the river or to the east of Unit 1's cooling tower was discussed. Any new construction towards the river, either relocating the Unit 2 cooling tower or the plant reagent piperack, would likely trigger permit concerns with the COE. Building a new tower in the "rock pile" area (formerly the limestone storage area east of the plant) was also discussed. Routing of the underground circulating water lines potentially would be a major issue.
  - Unit 2
    - Because of the high level of congestion in the existing arrangement at Unit 2, plus the need to add a PJFF, B&V considered three alternatives for the SCR location at Unit 2. Two alternatives (Alternates 1 & 3) include split SCR's – two separate reactors, one for each ESP train, with the only difference between the alternatives being the location of the west side SCR.
    - Alternate 1 locates the west SCR in the area just west of the west ID fan and the east SCR above the tower support for the Unit 1 SCRs. The area west of the ID fans appears sufficiently open to allow construction of a tower support for the SCR. The advantage of this arrangement is the short runs of ductwork required, and the SCR reactor box location can be

Page 5

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 22, 2010

reached by a crane set up in the area located immediately south of the abandoned Unit 2 chimney.

- Alternate 3 locates the west SCR along the west side of the Unit 2 boiler structure and the east SCR in the same location as Alternate 1. The approach suggested in the Phase 1 study of locating both split SCRs on the west side of the boiler structure would be problematic because of the difficulty of routing duct work from east side Unit 2 duct to the courtyard and back.
- Alternate 2 is similar to that used for the Unit 1 SCR, with a combined SCR located above the ESPs. However, the area beneath the SCRs in Alternate 2 is very congested, making foundation design and installation extremely difficult. Moreover, the lack of nearby open area adjacent to the SCR locations will limit crane access and greatly complicate constructability. Assuming sufficient free area is found to accommodate the necessary foundations, Alternate 1 is more favorable to construction and the most likely option.
- Low dust SCRs will be assumed for Unit 2 unless elimination of the existing ESPs is warranted for some other reason.
- E.ON has previous studies which propose locating the SCR modules in the courtyard on the west side of the Unit 2 boiler structure. E.ON offered to provide these studies to B&V. B&V will add these studies to the Ghent Information Request.
- The Unit 2 PJFF is assumed to be located north of the existing ESPs and ductwork. A short temporary bypass ductwork can be installed between the airheater outlet duct and the ductwork to the scrubber inlet. This would allow the large section of ductwork located north of the bypass to be demolished and the PJFF installed in its place while Unit 2 is on line. The completed PJFF would be tied into the system during an outage. The new booster or ID fans for Unit 2 (not shown on the arrangement sketches) would tentatively be located at the west (downstream) end of the new PJFF.
- Unit 3
  - The preliminary arrangement sketches show the PJFF location in the courtyard, requiring relocation of the maintenance shop. E.ON has some ideas where the shop could be relocated. As currently configured, new booster or ID fans could be added south of the PJFF without impacting the existing tanks south of the shop.
  - The skyway connecting Units 2 and 3 would need to be temporarily removed while the PJFF is installed. The skyway would then be modified to route around the south side of the PJFF and reconnect to Unit 3. It may also be possible to modify the skyway to provide access from the turbine buildings to the PJFF. To avoid re-routing of the significant amount of interconnecting pipe located in the ground level breezeway between units, the PJFF would be designed to span over this piping and allow the breezeway structure to remain in place, if practical.
- Unit 4

Page 6

E.ON US Ghent Kick-off and Site Visit B&V Project 168908 October 22, 2010

- The most likely location for the new PJFF is between the existing Unit 4 ESP area and the Unit 3 cooling tower as shown on the sketch. This location avoids the large 96" diameter circulating water pipelines, the water well, and most of the underground utilities in the area.
- The ID fans currently being installed at Unit 4 would be difficult to incorporate into the proposed ductwork configuration running between the existing ductwork tie in and the new PJFF and back, as shown on the arrangement sketches. A more favorable configuration may be accomplished by locating the new ID fans near the PJFF. The new fans would be sized to replace the current ID fans. New ID fans in this location would allow relatively easy connection directly to the ductwork at the FGD inlet.
- E.ON asked about wet fans to be located downstream of the scrubber, similar to those used in Europe. B&V explained some of the disadvantages, including materials of construction, maintenance and reliability.
- E.ON expressed general agreement with the arrangement as discussed for Unit 4. An alternate version of the Unit 4 arrangement sketch was developed to more closely depict the arrangement discussed.
- The debriefing meeting concluded at approximately 2:30.
- 20. Eileen identified Dave Smith as the Ghent information request point of contact. Dave's contact information is as follows: 502-627-4633 and dave.smith@eon-us.com.
- 21. B&V conducted a final walk down to ground-truth some of the comments obtained during the debriefing meeting and review the Unit 1 issues with relocating equipment to allow a more advantageous PJFF location to avoid cooling tower issues.
- 22. Plant personnel provided an electronic of an aerial view of the site.
- 23. B&V departed Ghent at approximately 4 pm.

#### **ACTION ITEMS**

| # | Description                                           | Responsible | Due Date |
|---|-------------------------------------------------------|-------------|----------|
| 1 | Prepare Ghent Information Request (complete 10/18/10) | ТМН         | 10/15/10 |

#### **ATTACHMENTS**

- Agenda
- Attendance roster
- E.ON Environmental Drivers Presentation and Estimated Limits & Compliance Dates for Future New Air Requirements Ghent Station
- Phase | Results and PJFF PowerPoint Presentation
- Initial arrangement sketches presented during the de-brief meeting

cc: All Attendees File

#### AGENDA

Phase II Air Quality Control Study – Kickoff Meeting and Site Visit E.ON - Ghent October 6 - 7, 2010 Location: Ghent Generating Station

#### Day 1, October 6<sup>th</sup>, B&V Arrives 8 am

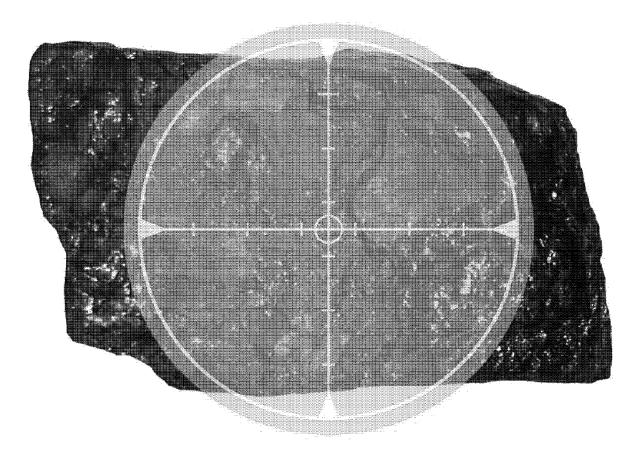
- I. Introductions (Starts at 9 am)
- II. Project/Scope Description (E.ON Eileen S)
- III. Environmental Drivers Presentation (E.ON Gary R)
- IV. Phase I Study Results/PJFF Overview Presentation (B&V Rick L and Anand M)
- V. Lunch (on site)
- VI. Begin Escorted Site Walk Down and Data Collection

#### Day 2, October 7<sup>th</sup>, B&V Arrives 8 am

- I. Continue Escorted Site Walk Down and Data Collection
- II. Lunch (on site)
- III. Site Debriefing Meeting
- IV. Additional Walk Down Time if Required
- V. Depart (no later than 4 pm)

| Equ                              | AOC GHENT A       | WT KICKOFF        | 10/6/2010                                   |
|----------------------------------|-------------------|-------------------|---------------------------------------------|
| 9:00                             |                   |                   |                                             |
|                                  |                   |                   |                                             |
| NAME                             | COMPOST/POSTION   | TELENO.           | EMAIL                                       |
|                                  | 1.                |                   |                                             |
| Tim Hillmon                      | Btv / Proj Mgr    | 913-458-7928      | <u>^</u>                                    |
| ROGER GOODULT                    | BIV CONSTRUCT     |                   |                                             |
| M.R. WEHRLY                      | BEV /ENG MGR      | 913-458-71        | 31 Wehrlymr@bv.com<br>528 LAUSMANRL Obv.com |
| RICK LAUSMAN                     | BEV/ARCEng        |                   |                                             |
| MONTY HINTZ<br>Anand Mahabeleshu | BEV/CIVIL-STRUEFE | WCR 913-458-24    | 7736 mahabaleshwarkora                      |
| <u>^</u> .                       |                   |                   |                                             |
| Gary Revlett                     | LGTE - KU         | .502 627 - 40     | CAN-                                        |
| JAMES YOCUN                      | KU                | 502-347-4157      | JAMES. YOLUN LG+KU                          |
| Randy Scott                      | 264E-KU           | 347-4020          |                                             |
| (regiones                        |                   | 347-4031          | Greg. Jones ""                              |
| Mike Mooney                      | L6E/KV            | 627-3671          | Mike Mooney & Con-US- QUAN                  |
| Eleen Stundeus                   |                   | 347-4023          | Erben Sceneters                             |
| Jeff Joyce                       |                   | s <u>397-400/</u> | itt. joyen                                  |
| DANNY APREN                      | <i>a</i> '        | 502-347.4052      | DANINT AKER Q reaw-us, com                  |
| JROY BILKERS                     |                   | 502-347-4957      | TROY. bickers 2 " a 4                       |
| aul Wright                       | <u>ku</u>         | 502-347-4003      | paul. wright@ eow-us.com                    |
| Mike Drate                       | KU                | 502 347 4002      | michaeldrahe @ em -us cu                    |
| Dave Swith                       | KV                | (502)627-4633     | dove. swith econ-us. com                    |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  | ·····             |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  | ······            |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |
|                                  |                   |                   |                                             |




## **New EPA Air Regulations**

Gary Revlett Air Manager, Environmental Affairs

LGE-KU-00001831

# **e.on** U.s.

## **Coal (Still) in the Crosshairs**

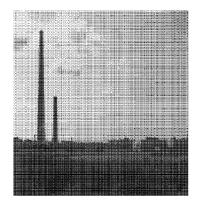


Page 2

# **e-011** U.S.

**Upcoming Air Related EPA Regulations** 

- **1.** Nitrogen Dioxide National Ambient Air Quality Standard: NO<sub>x</sub> NAAQS
- 2. Sulfur Dioxide National Ambient Air Quality Standard: SO<sub>2</sub> NAAQS
- 3. Clean Air Interstate Rule (CAIR) Replacement: Clean Air Transport Rule (CATR)
- 4. Clean Air Mercury Rule (CAMR) Replacement: Electric Generating Unit Maximum Achievable Control Technology (EGU MACT)


# **e.011** U.S.

## New Nitrogen Dioxide National Ambient Air Quality Standard

- New 1-hour NO<sub>2</sub> ambient air standard added to the current annual standard.
- The new ambient air standard is added to protect public health from short-term exposures.
- Sources with the greatest impact are power plants and major highways.
- Maximum impact due to short-duration adverse meteorological conditions.
- This new regulation is final and compliance is required by 2016.

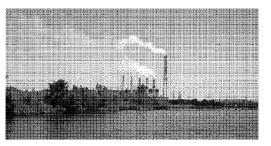
Potential Company Impact(s):

- All coal-fired boilers will need tall stacks (> 400 ft.).
   OR
- Any coal-fired unit without a tall stack will need a SCR



# **e.011** U.S.

## New Sulfur Dioxide National Ambient Air Quality Standard


- New 1-hour SO<sub>2</sub> ambient air standard added to the current 24-hour standard.
- The new ambient air standard is added to protect public health from short-term exposures.
- Sources with the greatest impact are coal-fired power plants.
- Maximum impact due to short-duration adverse meteorological conditions.
- This new regulation is final and compliance is required by end of 2016.

**Potential Company Impact(s):** 

 All coal-fired boilers need tall stacks (> 400 ft.) and a FGD with greater than 96% removal efficiency.

OR

• Switch to low sulfur fuels

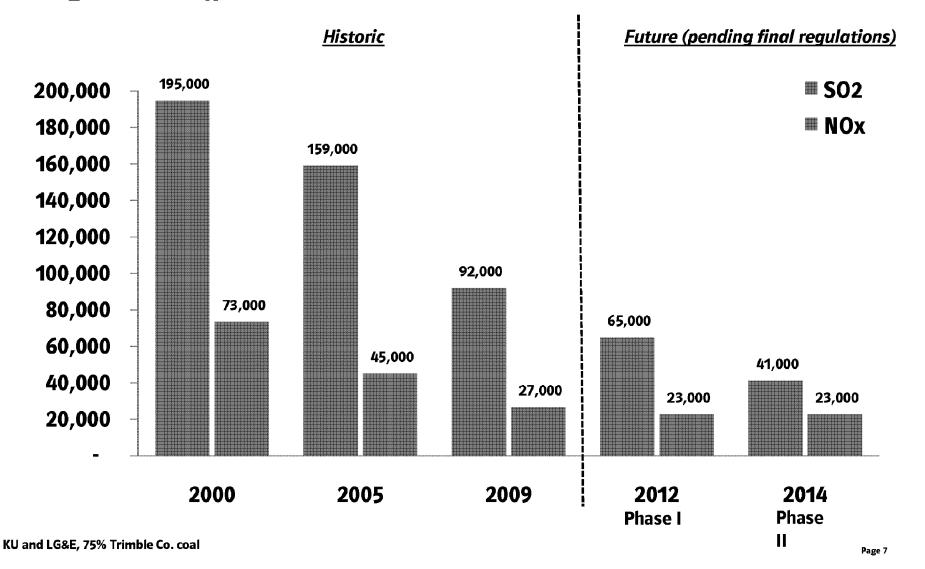


Page 5

# **e.on** U.S.

# CAIR Replacement – Proposed Clean Air Transport Rule (CATR) for SO<sub>2</sub> and NO<sub>x</sub>

- Replaces the CAIR cap-and-trade regulations which were vacated in 2008.
- The Acid Rain SO<sub>2</sub> cap-and-trade program will remain in place.
- 100% intrastate trading of SO<sub>2</sub> and NO<sub>x</sub> allowances but limited interstate trading
- The new regulations were proposed in July, 2010 and will not be final until June, 2011.
- The proposed implementation dates of Phase 1 in 2012 and Phase 2 in 2014 are unrealistic.


**Potential Company Impact(s):** 

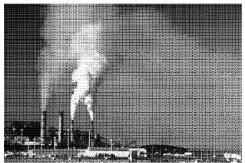
- With less than 10% interstate trading allowed, utilities in Kentucky need to self comply.
- Will require a fleet-wide 20% reduction in NO<sub>x</sub> emissions and more than 50% reduction in SO<sub>2</sub> emissions by 2014.

Page 6

# **e.011** U.S.

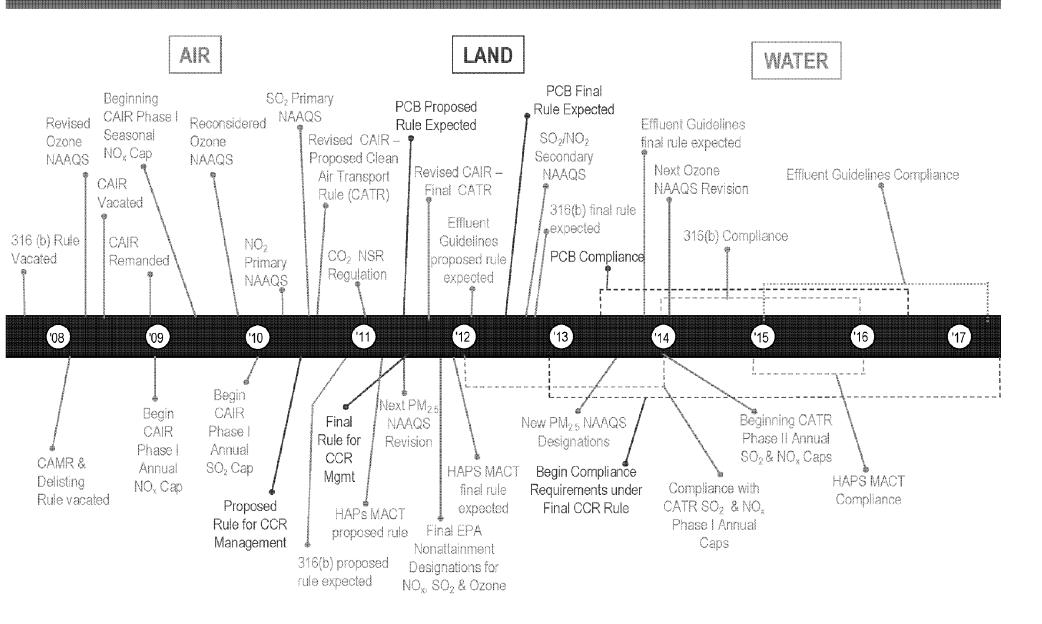
## SO<sub>2</sub> and NO<sub>x</sub>: Historic Emissions and CATR Allocations




# **e.om** U.S.

# CAMR Replacement - Electric Utility Maximum Achievable Control Technology (MACT)

- Currently the CAMR replacement has not yet been proposed by EPA.
- EPA plans to propose in the new rules in March 2011 and finalize in November 2011.
- New emissions limits for Hazardous Air Pollutants such as mercury, hydrogen chloride and hydrogen fluoride and other toxic metals.
- No trading of emissions or allowances, each plant must meet the pollutant specific emission limit.
- Expected compliance date will be 2015 with a possible 1-year extension.

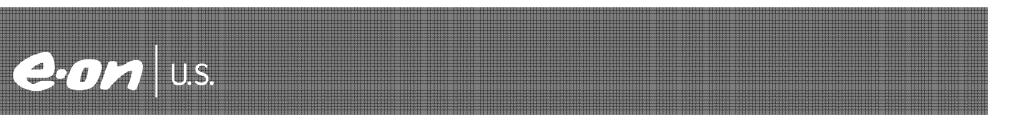

### **Potential Company Impact(s):**

 Most coal-fired units will need to add a baghouse with carbon and lime injection.



Page 8

# **e.on** U.S.

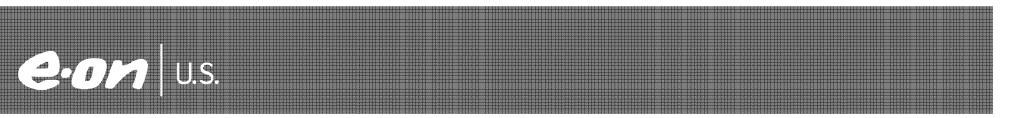



-- adapted from (EPA 2008) Updated August, 2010

# **e.om** U.S.

### Summary

- Coal is still, and will continue to be, in the cross-hairs of the EPA.
- We will analyze every EPA proposal to determine the full magnitude of its impact, including the financial and operational implications.
- As with any proposed environmental regulation, we will continue to follow the developments and act accordingly to achieve full compliance once it takes effect.
- It will be necessary for continued coordination between departments and across the lines of business. There will be an increased effort to educate the public and key stakeholders.




#### Estimated Limits & Compliance Dates For Future New Air Requirements

**Ghent Station** 

| Program                                 | Re                                     | gulated Pollutants                                                              |           | Unit/Plant                       | Current Reg.                   | Forcasted Date                                                                                                                   |  |
|-----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|-----------|----------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Name                                    | Pollutant                              | Limit Units                                                                     |           | Averaging                        | Required Date                  | for Compliance                                                                                                                   |  |
| SAM NSR NOV                             | H <sub>2</sub> SO <sub>4</sub>         | 2 - 10                                                                          | ppm       | Unit                             | To Be Determined               | 2012 - 2014                                                                                                                      |  |
| New 1-hour NAAQS for<br>SO <sub>2</sub> | - SOn                                  |                                                                                 | lbs/mmBtu | Based on air quality<br>modeling | June, 2017                     | June, 2016 to June, 2017                                                                                                         |  |
| New 1-hour NAAQS for NO <sub>x</sub>    |                                        | 0.47<br>for plant avg. Ibs/mmBtu Based on air quality<br>modeling January, 2017 |           | January, 2017                    | No sooner than January, 2017   |                                                                                                                                  |  |
|                                         | SO <sub>2</sub>                        | 0.186                                                                           | lbs/mmBtu | Plant, but statewide             | Beginning Phase I in 2012;     | Beginning Phase I in 2013; Limits in                                                                                             |  |
| CATR                                    | NO <sub>x</sub>                        | 0.041                                                                           | lbs/mmBtu | trading                          | Limits in Phase II during 2014 | Phase II during 2015                                                                                                             |  |
|                                         | Mercury                                | 90% or                                                                          | Removal   | Plant                            | January, 2015, with 1-yr       | January, 2016, with 1-yr<br>extension - January, 2017<br>Potential delay for commitment<br>to shutdown older coal-fired<br>units |  |
|                                         | Mercury                                | 0.012                                                                           | lbs/GWH   | Flain                            |                                |                                                                                                                                  |  |
|                                         | Acids (HCl)                            | 0.002                                                                           | lbs/mmBtu |                                  |                                |                                                                                                                                  |  |
| New EGU MACT                            | Metals (PM) or                         | 0.03                                                                            | lbs/mmBtu |                                  |                                |                                                                                                                                  |  |
|                                         | Metals (As)                            | 0.5 x 10 <sup>-5</sup>                                                          | lbs/mmBtu | Unit or Plant                    | extension - January, 2016      |                                                                                                                                  |  |
|                                         | Organics (CO)                          | 0.10                                                                            | lbs/mmBtu |                                  |                                |                                                                                                                                  |  |
|                                         | Dioxin/Furan                           | 15 x 10 <sup>-18</sup>                                                          | lbs/mmBtu |                                  |                                |                                                                                                                                  |  |
| PM <sub>2.5</sub> NAAQS                 | PM <sub>2.5</sub> or Condensable<br>PM | To be determined based<br>on modeling                                           | lbs/hours | Plant                            | After 2017                     | After 2017                                                                                                                       |  |

Page 11



| -     |       | 2009 Actual Emissions  |                        |              |                                     |                                     |  |
|-------|-------|------------------------|------------------------|--------------|-------------------------------------|-------------------------------------|--|
| Plant | Unit  | SO <sub>2</sub> (tons) | NO <sub>x</sub> (tons) | mmBtu (year) | SO <sub>2</sub> Rate<br>(Ibs/mmBtu) | NO <sub>x</sub> Rate<br>(lbs/mmBtu) |  |
| Ghent | 1     | 1,418.1                | 973.2                  | 31,802,243   | 0.09                                | 0.06                                |  |
| Ghent | 2     | 5,044.3                | 2,664.9                | 24,783,886   | 0.41                                | 0.22                                |  |
| Ghent | 3     | 3,188.6                | 1,972.3                | 34,425,557   | 0.19                                | 0.11                                |  |
| Ghent | 4     | 1,220.5                | 802.8                  | 28,668,181   | 0.09                                | 0.06                                |  |
| Ghent | Total | 10,872                 | 6,413                  | 119,679,867  | 0.182                               | 0.107                               |  |

#### **Evaluation of CATR for Ghent Station**

|       |       | CA                          | TR Allocati                 | on Tons      | CATR Alterative lb/mmBtu        |                 |              |                                    |                                    |
|-------|-------|-----------------------------|-----------------------------|--------------|---------------------------------|-----------------|--------------|------------------------------------|------------------------------------|
| Plant | Unit  | SO <sub>2</sub> for<br>2012 | SO <sub>2</sub> for<br>2014 | NO, in ≥2012 | <b>SO</b> <sub>2</sub> for 2012 | $SO_2$ for 2014 | NO, in ≥2012 | SO <sub>2</sub> 2012 Heat<br>Input | NO <sub>x</sub> 2012 Heat<br>Input |
| Ghent | 1     | 2,221                       | 3,653                       | 794          | 0.139                           | 0.214           | 0.050        | 31,854,467                         | 31,477,413                         |
| Ghent | 2     | 2,101                       | 1,813                       | 976          | 0.180                           | 0.108           | 0.058        | 23,378,147                         | 33,536,165                         |
| Ghent | 3     | 3,578                       | 3 <i>,</i> 363              | 483          | 0.199                           | 0.203           | 0.030        | 35,919,897                         | 32,698,639                         |
| Ghent | 4     | 1,214                       | 3,359                       | 468          | 0.079                           | 0.203           | 0.029        | 30,683,824                         | 32,663,045                         |
| Ghent | Total | 9,114                       | 12,188                      | 2,721        | 0.155                           | 0.186           | 0.041        | 121,836,336                        | 130,375,262                        |





# Phase II AQC Study Ghent Station Kickoff



**Black & Veatch** 

October 2010

LGE-KU-00001843

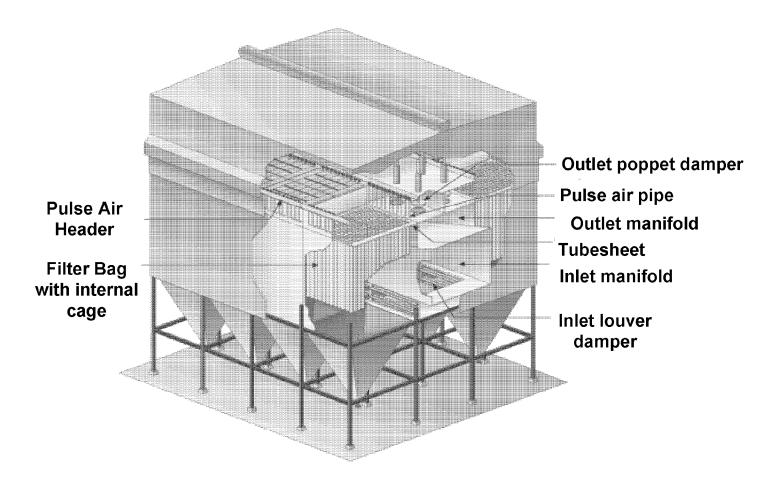
**BLACK & VEATCH** 

Agenda

- Regulatory drivers
- PJFF overview
- Overview of phase I results



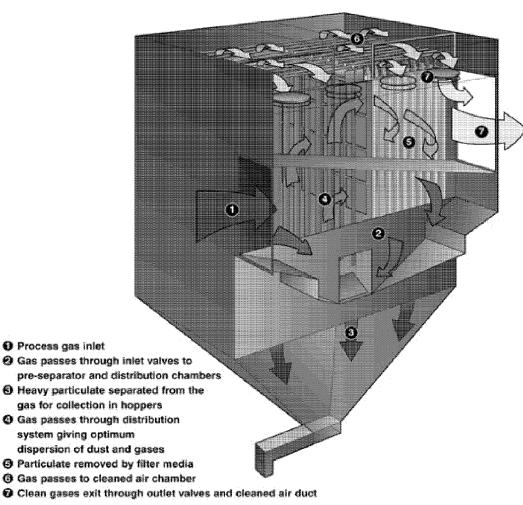
## **Regulatory drivers – still uncertainty**


| Program Name                     | Regulated<br>Pollutants                                                               | Forecasted Date for<br>Compliance                               |
|----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| PSD/NSR                          | SAM<br>Ghent Units 1- 4                                                               | E.ON currently negotiating with EPA                             |
| 1-hour NAAQS for NO <sub>x</sub> | NO <sub>x</sub>                                                                       | 2015 - 2017                                                     |
| 1-hour NAAQS for SO <sub>2</sub> | SO <sub>2</sub>                                                                       | 2016                                                            |
| Clean Air Transport<br>Rule      | NO <sub>x</sub><br>SO <sub>2</sub>                                                    | Beginning in 2012 Phase in 2014                                 |
| New EGU MACT                     | Mercury<br>Acids (HCI)<br>Metals (PM)<br>Metals (AS)<br>Organics (CO)<br>Dioxin/Furan | Estimated January, 2015; with<br>1-yr extension - January, 2016 |



# **PJFF Overview**




## **PJFF – overall layout**

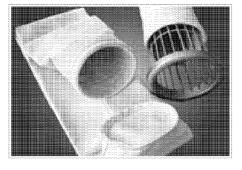


Courtesy: Babcock & Wilcox



## PJFF – flow diagram




R,

**BLACK & VEATCH** 

### BUILDING A WORLD OF DIFFERENCE<sup>®</sup>

## PJFF advantages vs. DESP

- Fuel flexibility
- High efficiency especially on PM<sub>2.5</sub>
- Performance is less susceptible to plant operating conditions
- Works well during startups
- Better control of hazardous air pollutants such as heavy metals (Ar, Ni, Pb, etc.)
- Allows reagent injection to work better (Hg or SO<sub>3</sub>)





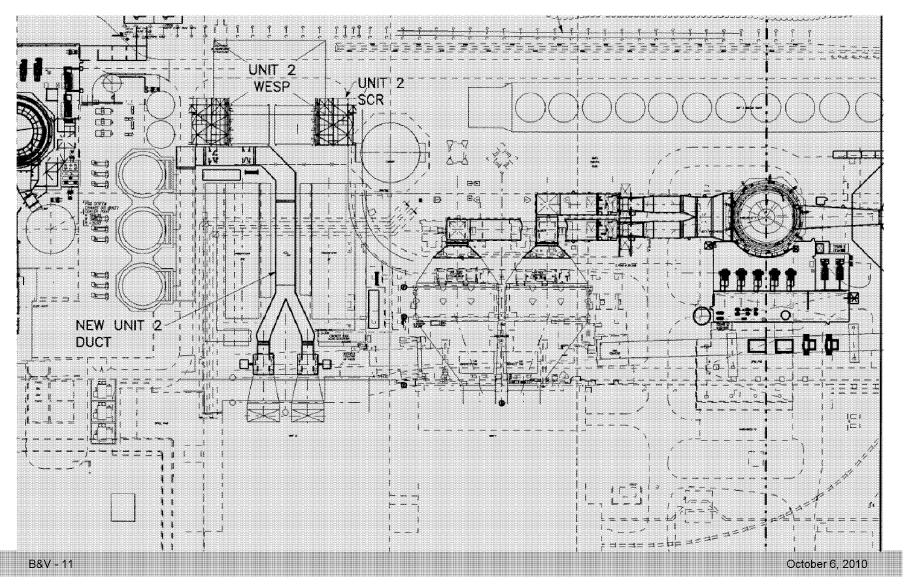
PJFF disadvantages vs. DESP

- Bags damaged by high temperatures
- High pressure drop
- Periodic bag replacement



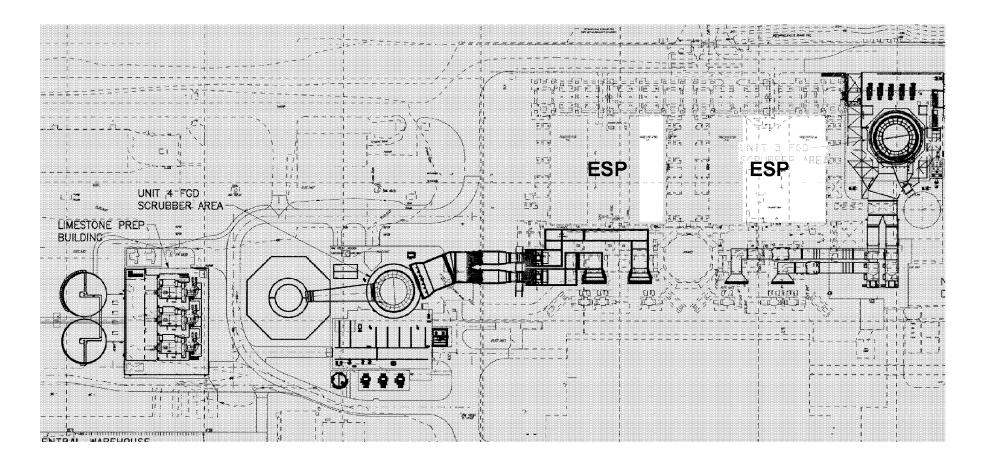


# Overview of Phase I Results



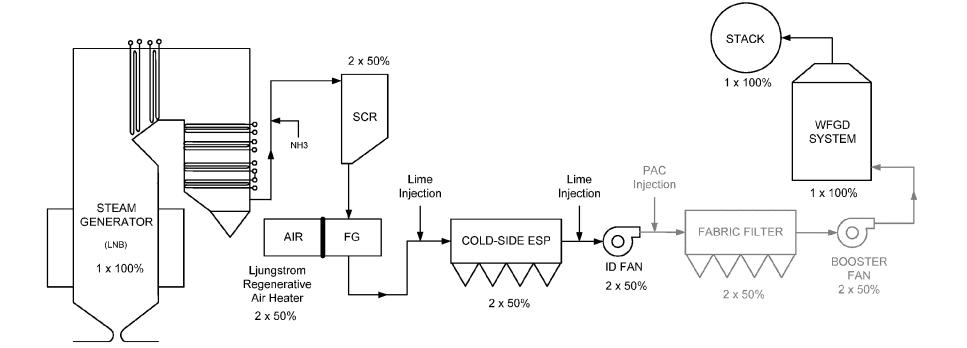

## Phase I AQCS results for Ghent Station

- Ghent Unit 1
  - Pulse Jet Fabric Filter (PJFF)
  - Powdered Activated Carbon (PAC) Injection
- Ghent Unit 2
  - Selective Catalytic Reduction (SCR) System
  - Pulse Jet Fabric Filter (PJFF)
  - Lime / Trona Injection
  - Powdered Activated Carbon (PAC) Injection
- Ghent Unit 3
  - Pulse Jet Fabric Filter (PJFF)
  - Powdered Activated Carbon (PAC) Injection
- Ghent Unit 4
  - Pulse Jet Fabric Filter (PJFF)
  - Powdered Activated Carbon (PAC) Injection



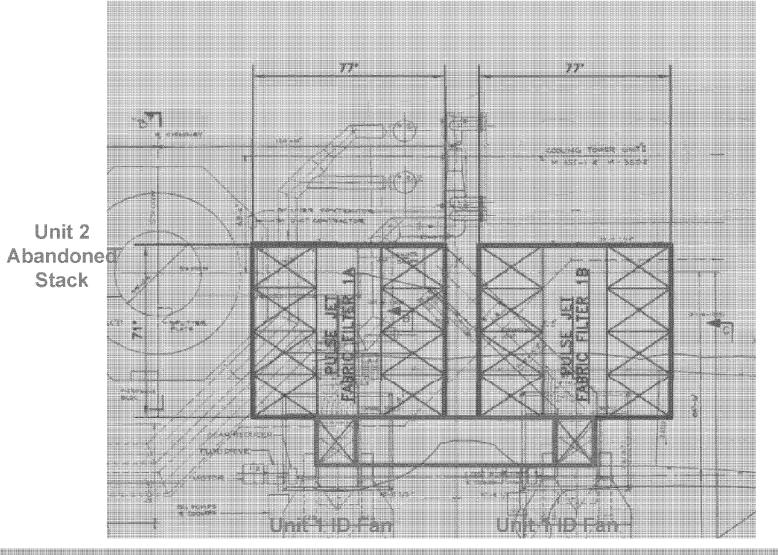

## **Ghent Unit 1 and Unit 2 space constraints**






### **Ghent Unit 3 and Unit 4 space constraints**





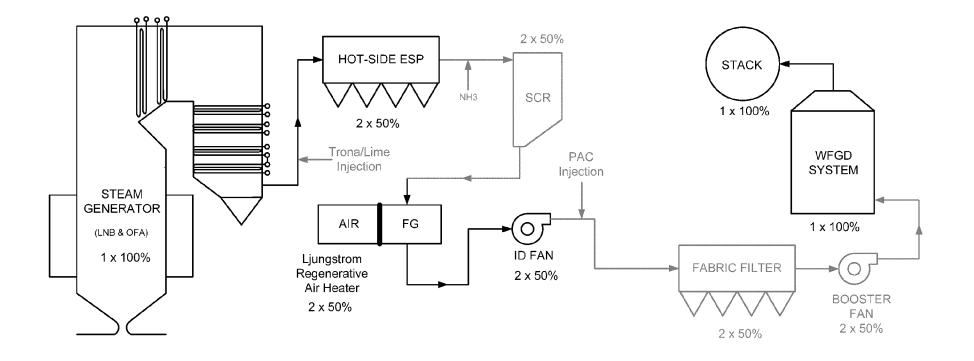






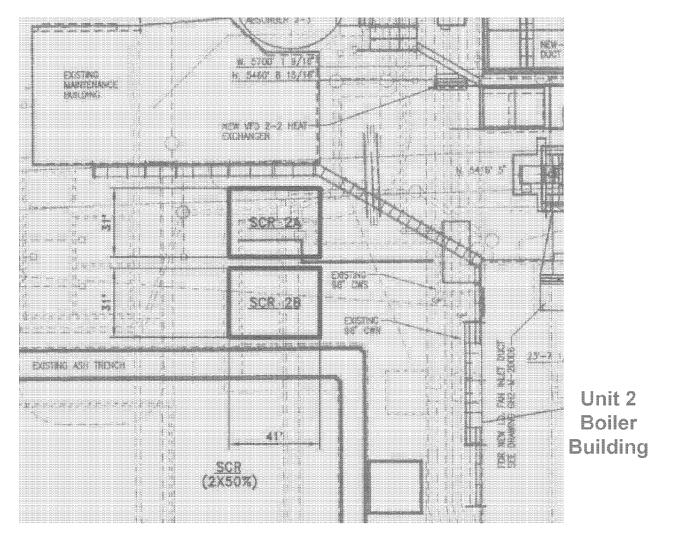

## **Ghent Unit 1 PJFF layout**






## **Ghent Unit 1 PJFF challenges**

- Elevated PJFF
- Real estate constraints
- Demolition and relocation of pipe racks
- Difficult crane access
- Restricted cooling tower access during project execution
- Lattice boom / crawler crane booms for final assembly



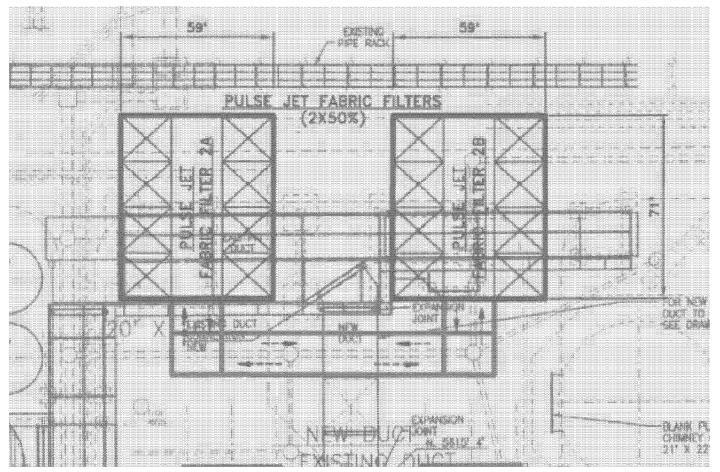

### **Ghent Unit 2 layout**





## **Ghent Unit 2 SCR layout**






# **Ghent Unit 2 SCR challenges**

- Equipment lifting required over areas of high personnel traffic
- Demolition of overhead walkway between Unit 2 & Unit 3 boiler building
- Demolition and relocation of overhead power lines
- Tower crane for heavy equipment and final assembly of SCR
- Demolition and relocation of pipe-racks



### **Ghent Unit 2 PJFF layout**

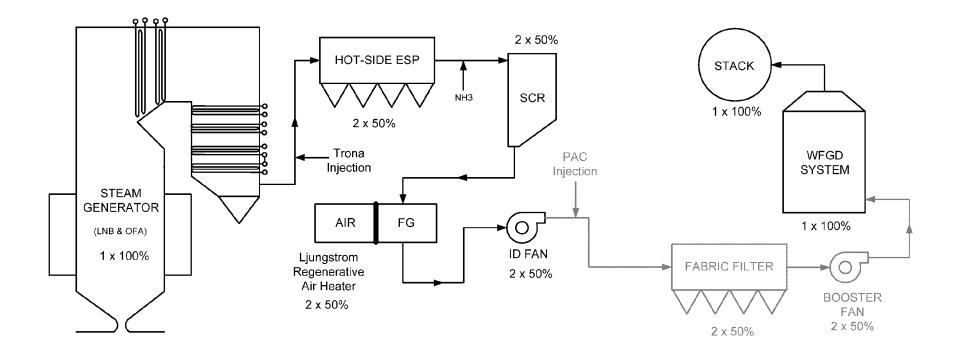


Unit 2 ID Fan Outlet Ductwork

B&V - 19

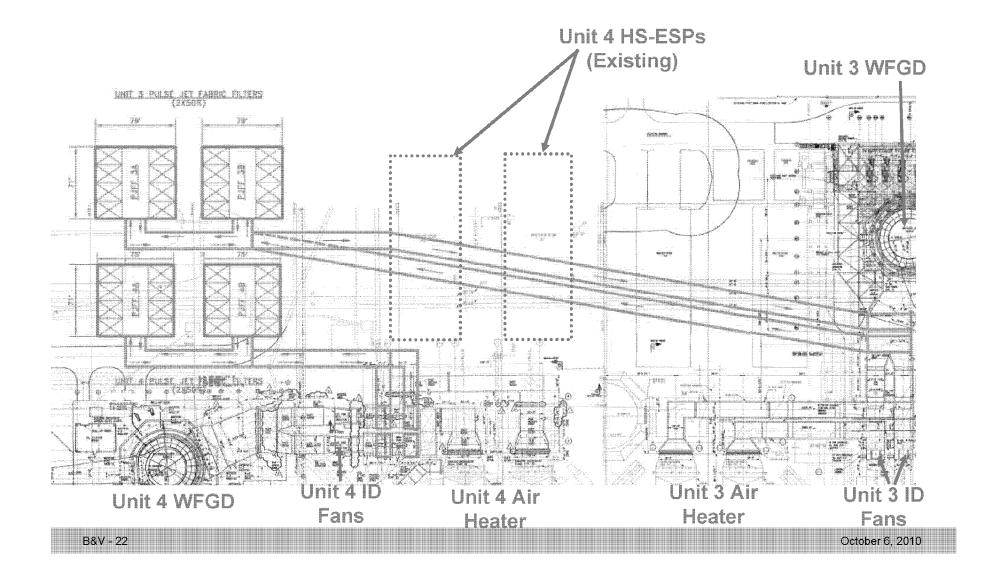
# **Ghent Unit 2 PJFF challenges**

- Elevated PJFF
- Real estate constraints
- Difficult crane access


- Demolition and relocation of pipe racks
- Restricted cooling tower access during project execution
- Lattice boom / crawler crane booms for final assembly
- Bypass duct required



#### **BUILDING A WORLD OF DIFFERENCE<sup>®</sup>**




## Ghent Unit 3 / Unit 4 layout



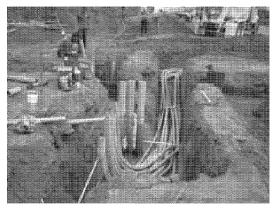


## Ghent Unit 3 and Unit 4 PJFF layout





# **Ghent Unit 3 PJFF challenges**


- Site constraints
- Long ductwork for Unit 3
- Restricted access around the footprint of Unit 3 ESP – tight space
- Difficult crane access for tie in of Unit 3 fabric filter inlet/outlet ductwork





# **Ghent Unit 4 PJFF challenges**

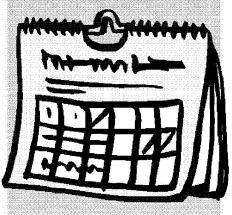
- Demolish and relocate underground utilities
  - Electrical manholes
  - Water wells
  - Storm sewer boxes and piping
  - Circulating cooling water piping





# **Typical PJFF schedule**

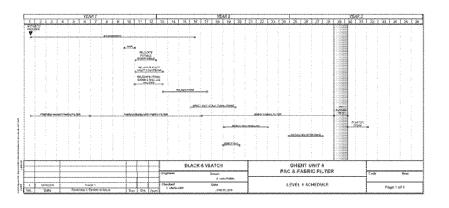
- 32 to 36 months
  - Engineering & procurement 16 months
  - Erect PJFF foundations 6 months
  - Erect PJFF 12 months
  - Tie-in outage 1 month
  - Start-up 1 month

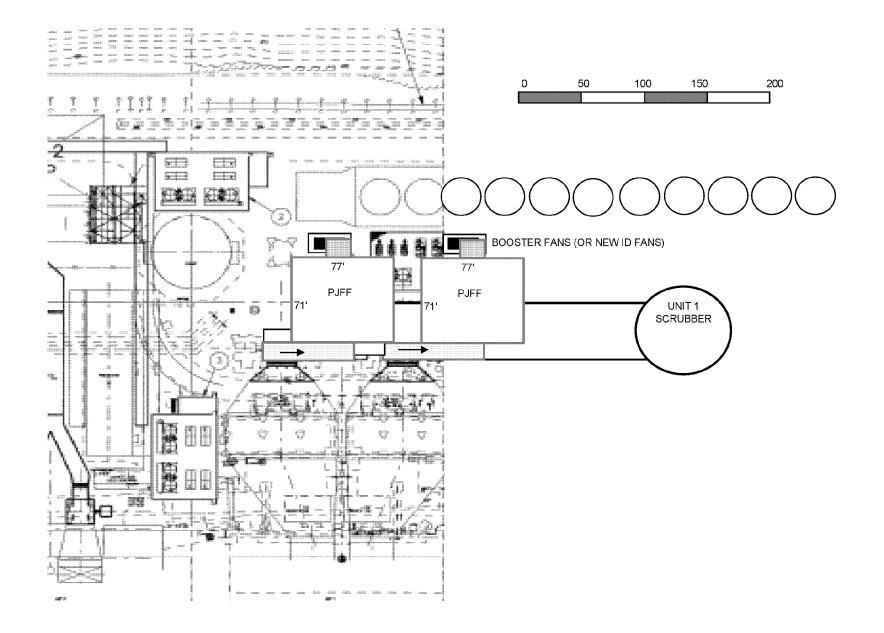

BLACKS VEATCH

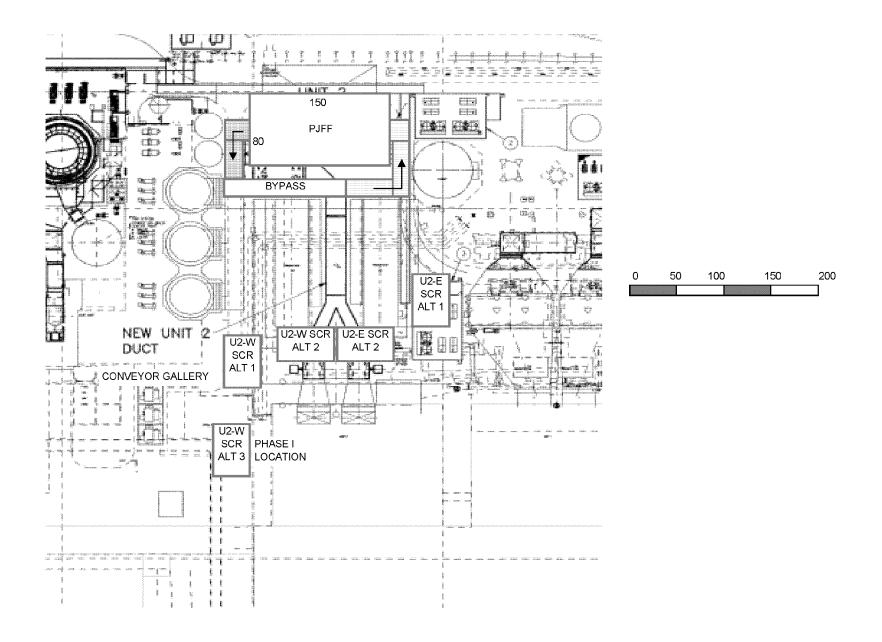
#### BUILDING A WORLD OF DIFFERENCE®

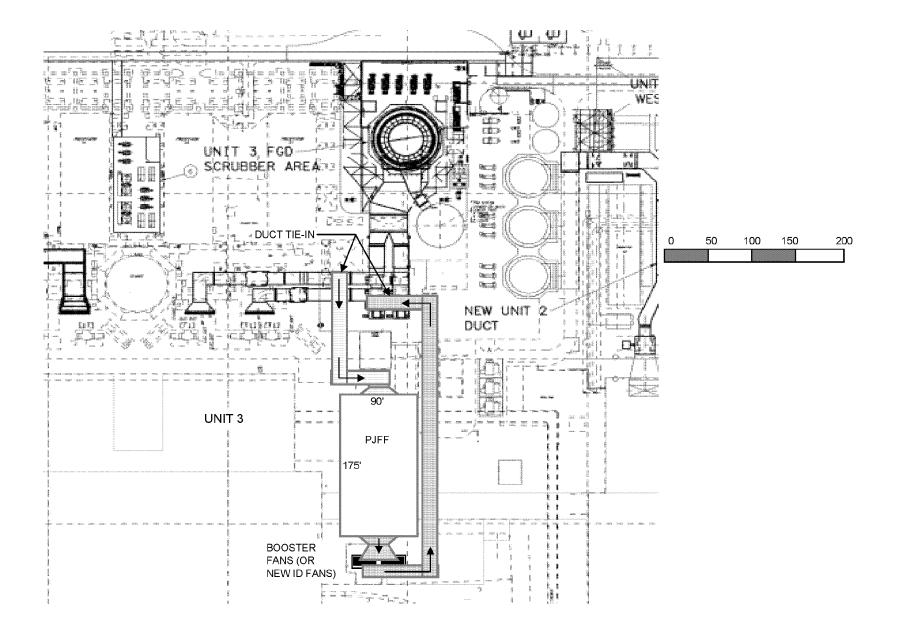
Typical SCR schedule

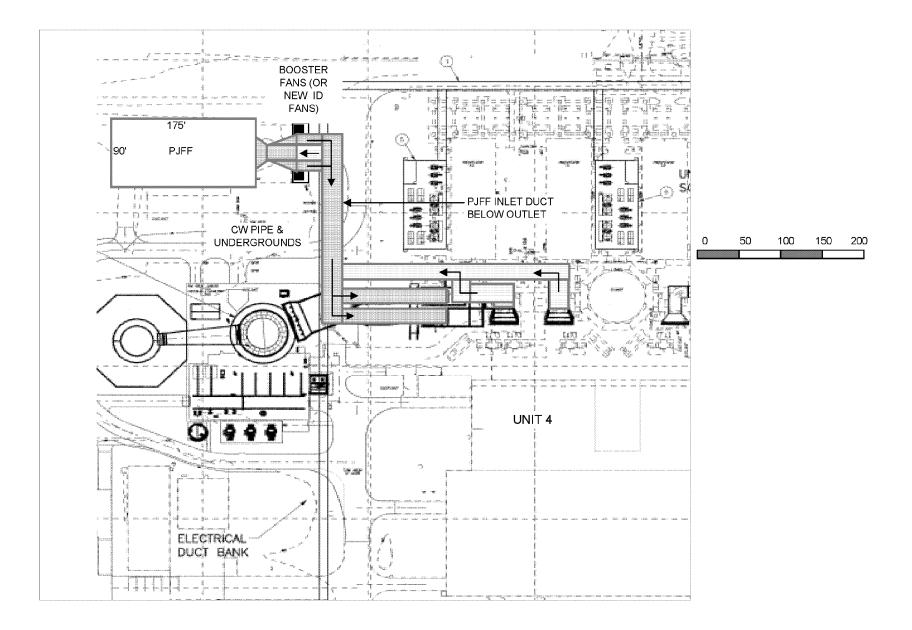
- 32 to 36 months
  - Engineering & procurement 16 months
  - Erect SCR foundations 4 months
  - Erect SCR support steel 4 months
  - Erect SCR & ductwork 8 months
  - Tie-in outage 1 month
  - Start-up 1 month

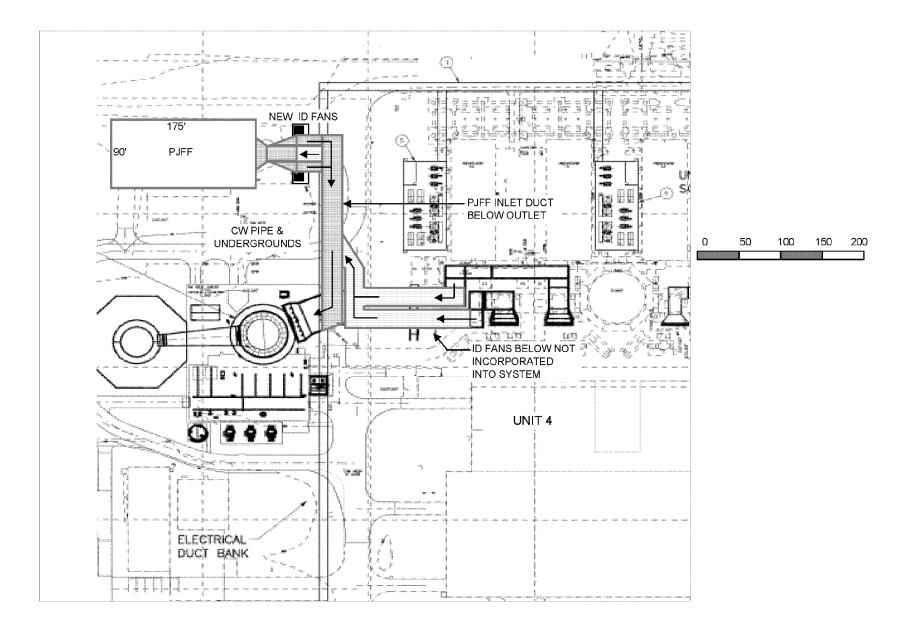

B&V - 26





Phase I implementation schedule


- Ghent Unit 1 PJFF 36 months
- Ghent Unit 2 SCR & PJFF 44 months
- Ghent Unit 3 PJFF 32 months
- Ghent Unit 4 PJFF 32 months














| From:        | Hillman, Timothy M.                                                                              |  |
|--------------|--------------------------------------------------------------------------------------------------|--|
| То:          | Saunders, Eileen                                                                                 |  |
| CC:          | Lucas, Kyle J.; Wehrly, M. R.; Crabtree, Jonathan D.                                             |  |
| Sent:        | 11/3/2010 10:32:28 AM                                                                            |  |
| Subject:     | Draft Mill Creek Validation and Brown Kickoff Presentations for Review.                          |  |
| Attachments: | Draft Brown kickoff Presentation 110310.pdf; Draft Mill Creek Validation Presentation 110310.pdf |  |

Eileen,

Please find attached draft presentations for the Mill Creek validation and Brown kickoff meetings. I'm circulating them to you at the same time as my team for final review.

I believe you'll find the Brown kickoff presentation very similar to the previous ones. We've included slides on PJFF and SCR vs. SNCR as requested.

In the Mill Creek validation presentation, we have included the arrangement sketches for the different options and summarized the major pros and cons of each. These slides should facilitate additional discussions where more detail can be discussed on the attributes of each arrangement. Finally, we have a placeholder in the side deck for the 3-D models of the arrangement alternatives that we are currently working on. I think the 3-D models will be invaluable during are meeting, as a picture speaks a thousand words.

If you could provide a quick review of these and let us know your thoughts by the end of the day, then we will be in a position to finalize them and prepare copies for next week.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@bv.com





# Phase II AQC Study Brown Station Kickoff



**PPL companies** 

**Black & Veatch** 

November 2010

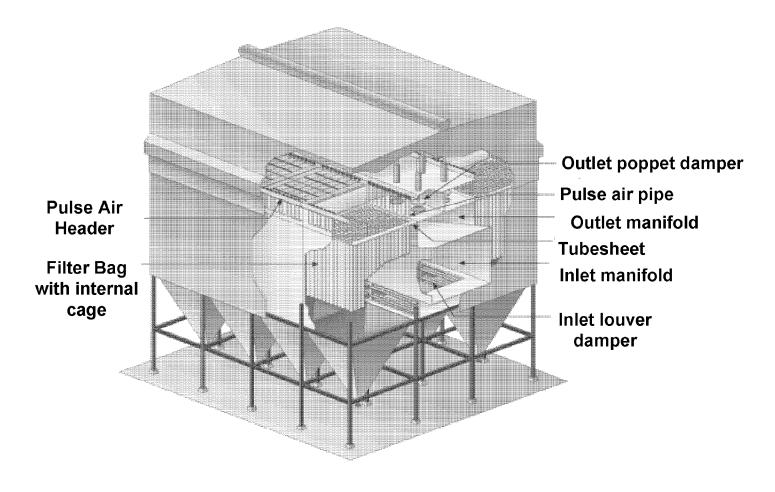
RIACK & VEATCH

Agenda

- Regulatory drivers
- PJFF overview
- SCR vs. SNCR
- Overview of phase I results



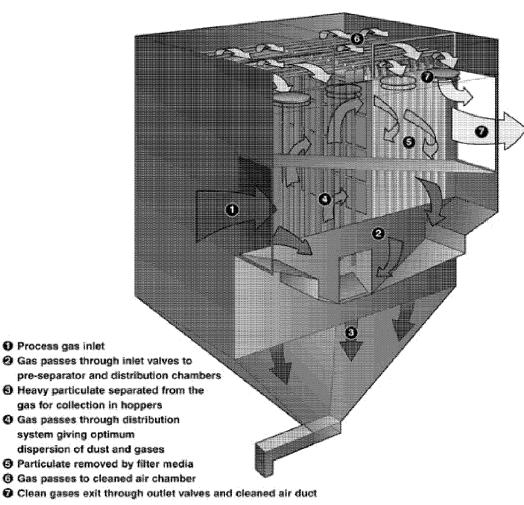
### **Regulatory drivers – still uncertainty**


| Program Name                     | Regulated<br>Pollutants                                                               | Forecasted Date for<br>Compliance                               |
|----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| PSD/NSR                          | SAM<br>Units 1-3                                                                      | Draft Permit Limit for SCR<br>Startup                           |
| 1-hour NAAQS for NO <sub>x</sub> | NO <sub>x</sub>                                                                       | January 2017                                                    |
| 1-hour NAAQS for SO <sub>2</sub> | SO <sub>2</sub>                                                                       | June 2017                                                       |
| Clean Air Transport<br>Rule      | NO <sub>x</sub><br>SO <sub>2</sub>                                                    | Beginning in 2012 Phase in 2014                                 |
| New EGU MACT                     | Mercury<br>Acids (HCI)<br>Metals (PM)<br>Metals (AS)<br>Organics (CO)<br>Dioxin/Furan | Estimated January, 2015; with<br>1-yr extension - January, 2016 |



# **PJFF Overview**




### **PJFF – overall layout**



Courtesy: Babcock & Wilcox

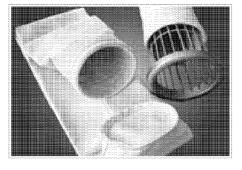


## PJFF – flow diagram



R,

**BLACK & VEATCH** 


#### BUILDING A WORLD OF DIFFERENCE<sup>®</sup>

# PJFF advantages vs. DESP

Fuel flexibility

B&V - 7

- High efficiency especially on PM<sub>2.5</sub>
- Performance is less susceptible to plant operating conditions
- Works well during startups
- Better control of hazardous air pollutants such as heavy metals (Ar, Ni, Pb, etc.)
- Allows reagent injection to work better (Hg or SO<sub>3</sub>)

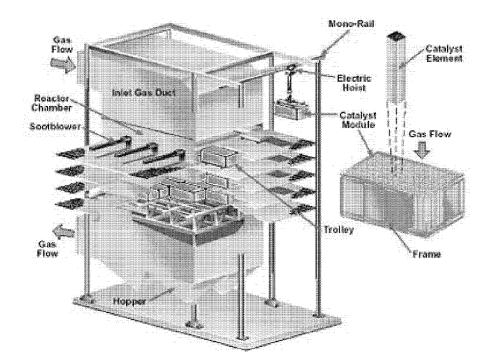




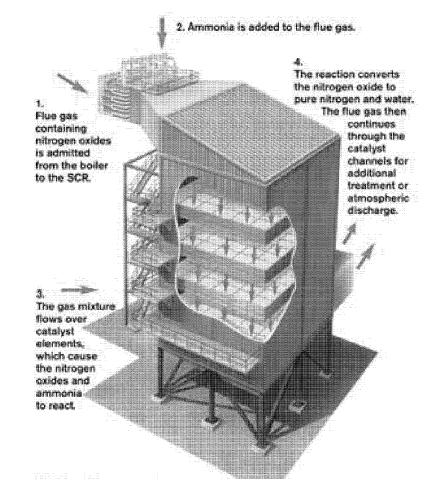
PJFF disadvantages vs. DESP

- Bags damaged by high temperatures
- High pressure drop
- Periodic bag replacement



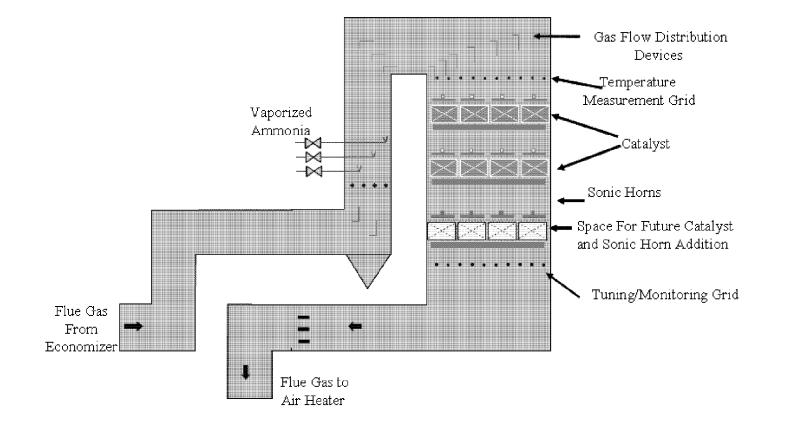

B&V - 9




# SCR vs. SNCR



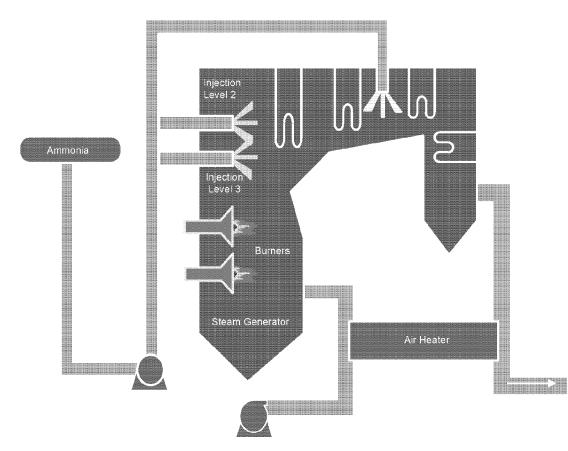
### SCR – overall layout




### SCR – flow diagram



# BLACK & VEATCH


# SCR – process





### **SNCR** – overview

R. BLACK & VEATCH





**SNCR** disadvantages

- High ammonia slip
- Large boilers complicate reagent injection
- High reagent usage
- Not as responsive to load changes

**SCR disadvantages** 

- SCR catalyst oxidizes SO<sub>2</sub> to SO<sub>3</sub>
- Requires catalyst
- Potential of plugging, erosion and poisoning of the catalyst
- Catalyst disposal and storage liability





# Overview of Phase I Results

#### **BUILDING A WORLD OF DIFFERENCE<sup>®</sup>**

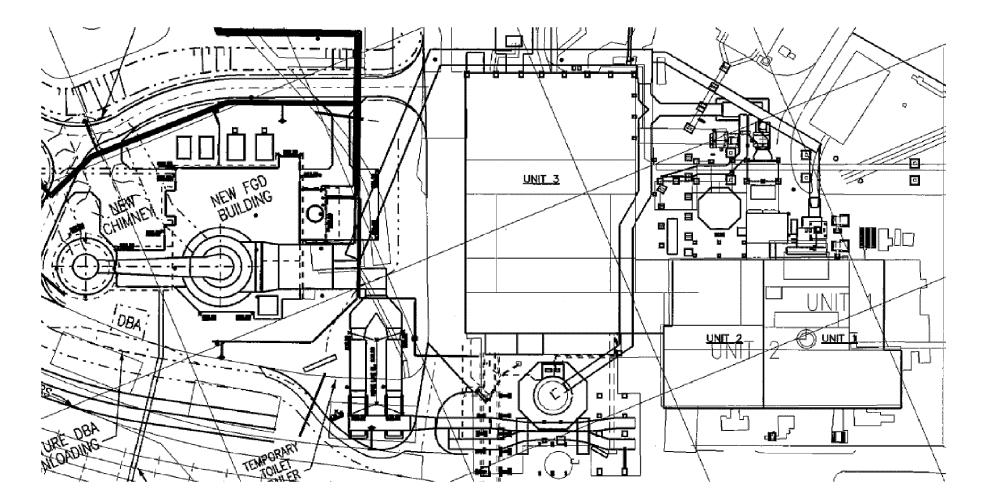


# Phase I AQCS results for Brown Station

- Brown Unit 1
  - Upgrade Low NOx Burners (LNB)
  - Over-Fire Air (OFA)
  - Pulse Jet Fabric Filter (PJFF)
  - Powdered Activated Carbon (PAC) Injection
- Brown Unit 2
  - Selective Catalytic Reduction (SCR) System
  - Pulse Jet Fabric Filter (PJFF)
  - Sorbent Injection
  - Powdered Activated Carbon (PAC) Injection
- Brown Unit 3

B&V - 17

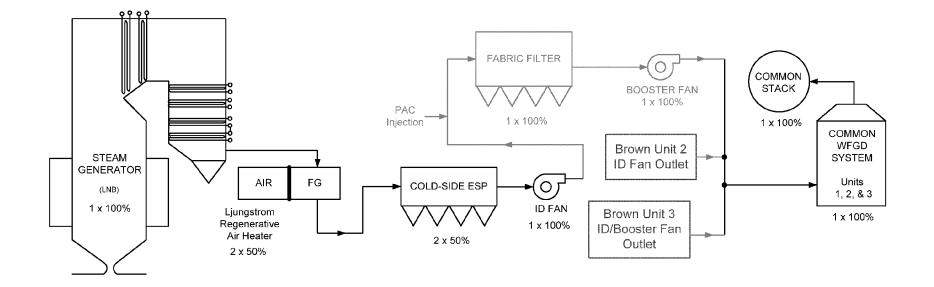
- Pulse Jet Fabric Filter (PJFF)
- Powdered Activated Carbon (PAC) Injection




# Phase I AQCS results for Brown Station (Options)

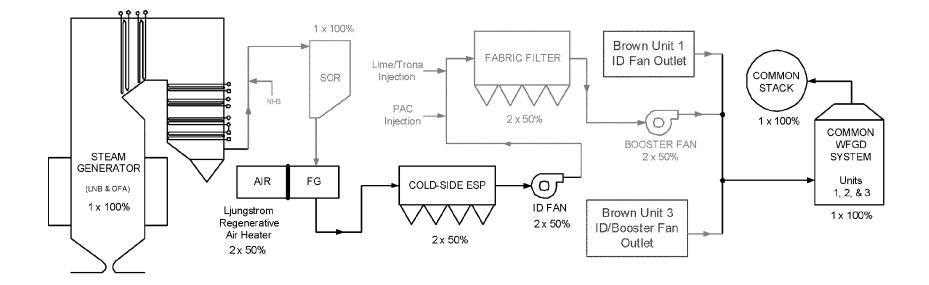
- Brown Units 1 & 2
  - Upgrade Low NOx Burners (LNB) for Unit 1
  - Over-Fire Air (OFA) for Unit 1
  - Selective Catalytic Reduction (SCR) for Unit 1
  - Selective Catalytic Reduction (SCR) for Unit 2
  - Common Units 1 and 2 Pulse Jet Fabric Filter (PJFF)
  - Sorbent Injection for Common Units 1 and 2 PJFF
  - Powdered Activated Carbon (PAC) Injection for Common Units 1 and 2 PJFF
- Brown Unit 3
  - Pulse Jet Fabric Filter (PJFF)
  - Powdered Activated Carbon (PAC) Injection




## **Existing Brown layout**

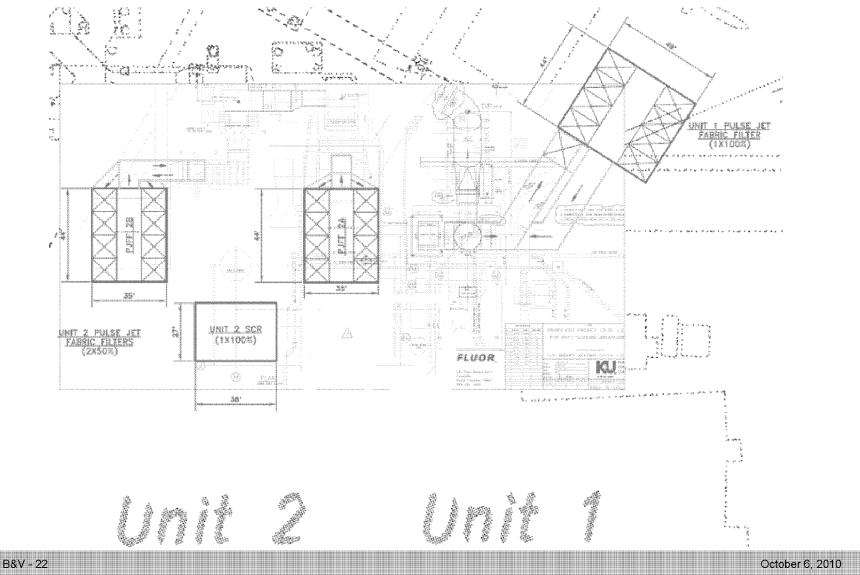


#### **BUILDING A WORLD OF DIFFERENCE<sup>®</sup>**



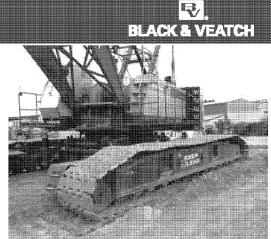

## **Brown Unit 1 process flow diagram**






### **Brown Unit 2 process flow diagram**






### **Brown Unit 1 and Unit 2 layout**



### **Brown Unit 2 SCR challenges**

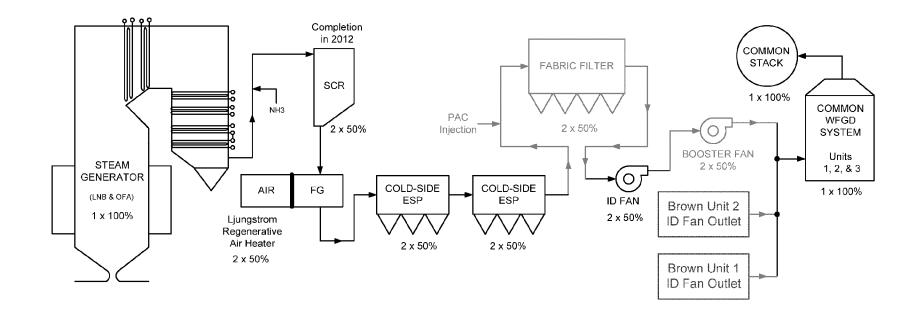
- Real estate constraints
- Difficult crane access
- Demolish existing mechanical dust collector
- Demolish abandoned Unit 2 stack
- Modify boiler building structural steel bracing and girts
- Demolish and relocate field fabricated tank located in base of abandoned Unit 2 chimney shell
- Demolish and relocate Unit 2 auxiliary transformer
- Pick and slide execution method to erect SCR



BLACK B VEATCH

#### BUILDING A WORLD OF DIFFERENCE®

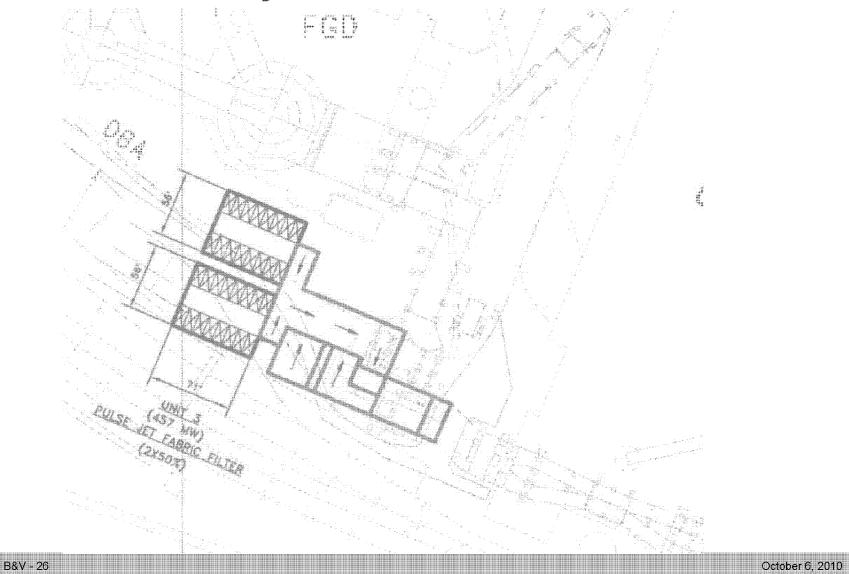
### **Brown Unit 2 PJFF challenges**


- Elevated PJFF
- Real estate constraints
- Difficult crane access



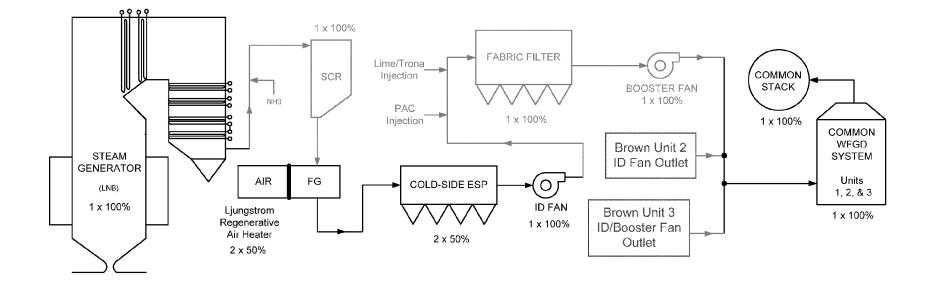
- Pick and slide execution method to erect fabric filter modules
- Extensive underground investigation required prior to installing new foundations for structural steel support frame
- Heavy foundations required on outer ends
- Difficult to stage construction equipment near ID fans




### **Brown Unit 3 process flow diagram**



BLACK & VEATCH

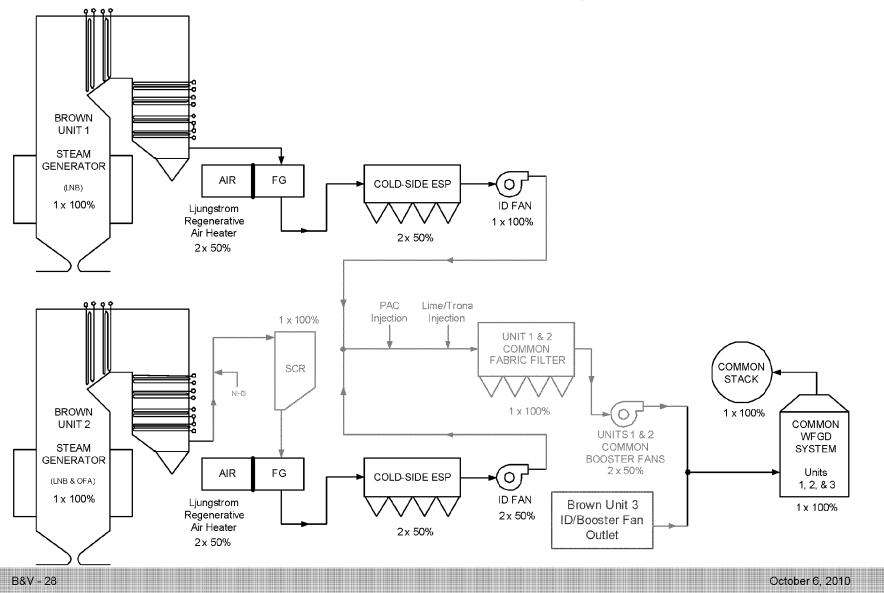

### BUILDING A WORLD OF DIFFERENCE®

### **Brown Unit 3 layout**





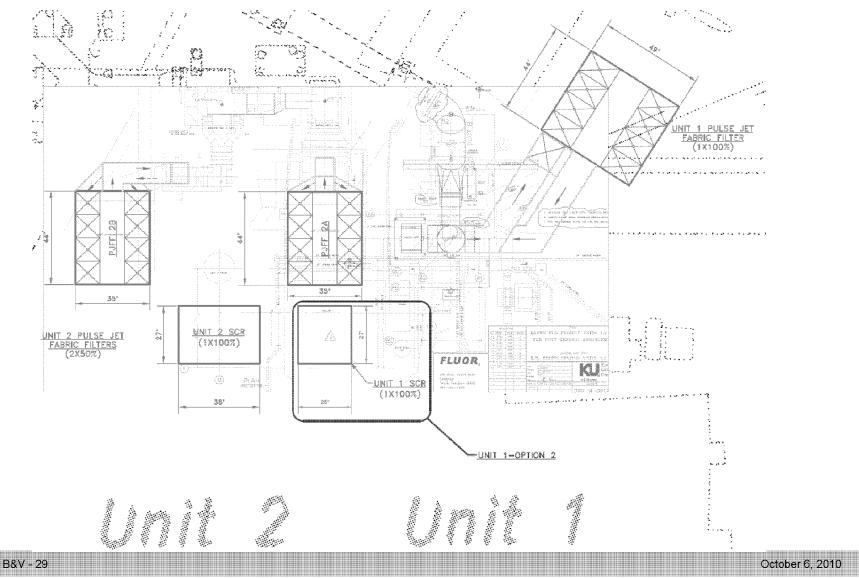
### Brown Unit 1 process flow diagram (option)




R

BLACK & VEATCH

#### **BUILDING A WORLD OF DIFFERENCE®**


Brown Unit 1 and Unit 2 process flow diagram (option)



LGE-KU-00001903

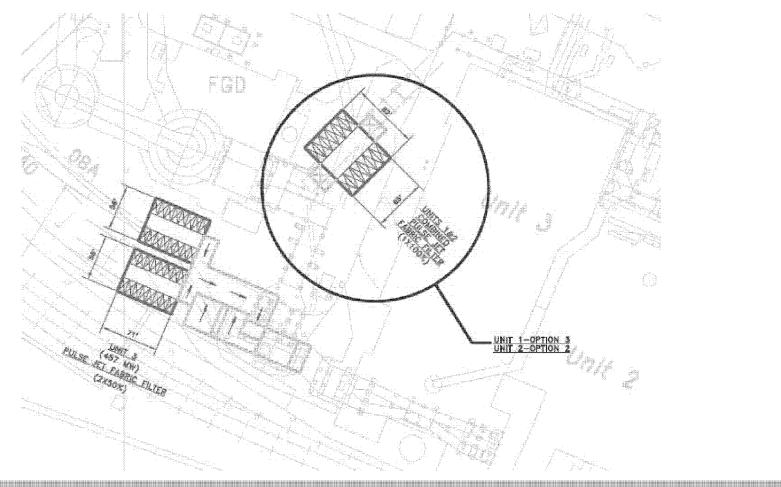


### Brown Unit 1 and Unit 2 layout (option)





Brown Unit 1 SCR challenges (option)

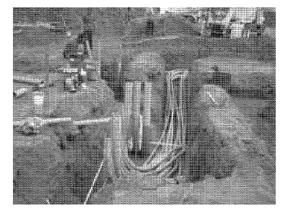

- Real estate constraints
- Extensive relocation of existing plant components
- Rotation of secondary air heater duct
- Modify boiler building structural steel and bracing to accommodate ductwork
- Relocate switchgear in the boiler building

R

**BLACK & VEATCH** 

### **BUILDING A WORLD OF DIFFERENCE®**





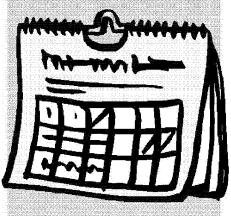

October 6, 2010



Brown Units 1 & 2 combined PJFF challenges (option)

- Elevated PJFF
- Demolish and relocate underground utilities
- Modify structural steel frame work
- Fabric filter built on standard frame above existing ductwork



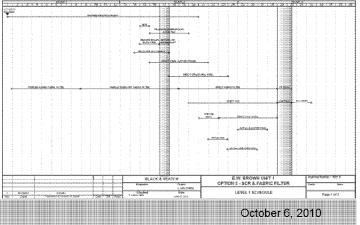



## **Typical PJFF schedule**

- 30 to 36 months
  - Engineering & procurement 12 -16 months
  - Erect PJFF foundations 6 months
  - Erect PJFF 10 -12 months
  - Tie-in outage 1 month
  - Start-up 1 month

Typical SCR schedule

- 32 to 36 months
  - Engineering & procurement 16 months
  - Erect SCR foundations 4 months
  - Erect SCR support steel 4 months
  - Erect SCR & ductwork 8 months
  - Tie-in outage 1 month
  - Start-up 1 month




October 6, 2010



**Phase I implementation schedule** 

- Brown Unit 1 PJFF 32 months
- Brown Unit 2 SCR & PJFF 34 months
- Brown Unit 3 PJFF 30 months
- Option Brown Unit 1 SCR 32 months
- Option Combined Brown Units 1 & 2 PJFF 30 months







## Phase II AQC Study Mill Creek Validation



**PPL companies** 

**Black & Veatch** 

November 2010

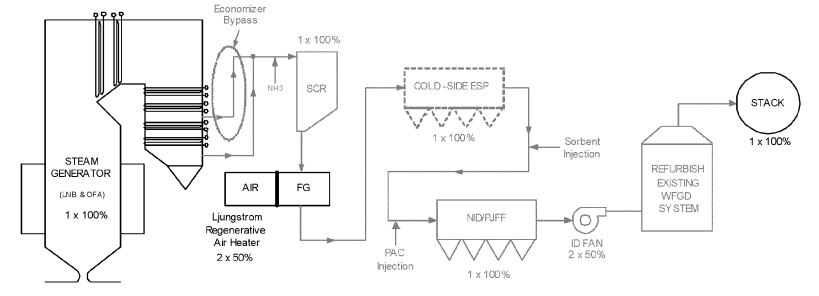


### Agenda

- Units 1, 2, 3 and 4 AQC equipment train
- Unit AQC equipment conceptual layout
- NID vs PJFF comparison
- 3-D Model
- Summary / wrap-up and discussions



# AQC Equipment Train Mill Creek Units 1, 2, 3 and 4


November 9, 2010



### Mill Creek Unit 1 AQC process flow diagram

- Add new pre-filter CS-ESP (alternative)
- Demolish existing CS-ESP
- Add new SCR at old CS-ESP

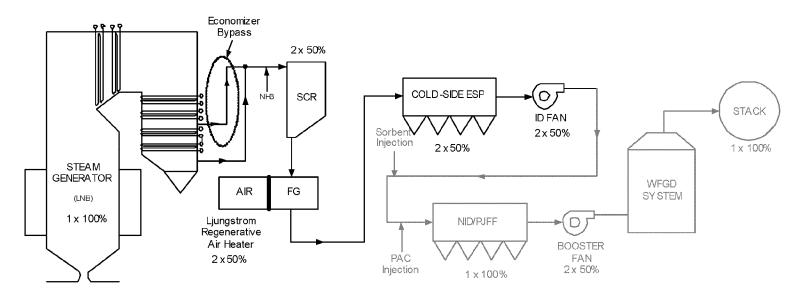
- Add new ID fans
- Add new NID or PJFF/duct injection option
- Upgrade and refurbish existing WFGD system





### Mill Creek Unit 2 AQC process flow diagram

- Add new CS-ESP (pre-filter)
- Add new ID fans
- Add new NID or PJFF/duct injection option

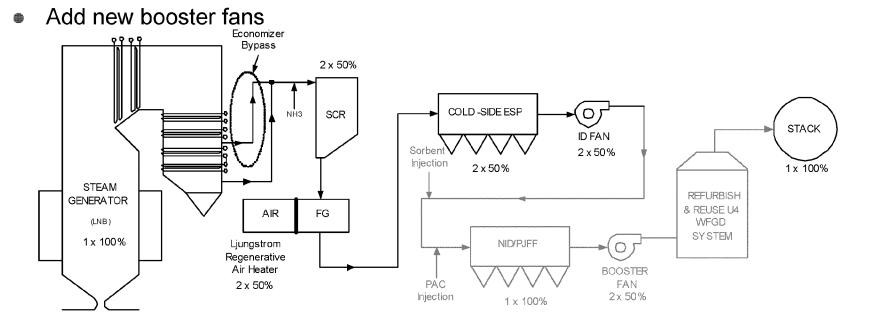

- Demolish existing CS-ESP
- Add new SCR at old CS-ESP
- Upgrade and refurbish existing WFGD system





### Mill Creek Unit 4 AQC process flow diagram

- Add new stack
- Add new NID or PJFF/duct injection option
- Add new booster fans
- Add new Unit 4 WFGD




R/

**BLACK & VEATCH** 

### Mill Creek Unit 3 AQC process flow diagram

- Upgrade and refurbish existing Unit 4 WFGD to re-use as unit 3 WFGD
- Reuse Unit 4 stack for Unit 3 (following Reuse of Unit 4 WFGD)
- Demolish existing Unit 3 WFGD
- Add new NID or PJFF/duct injection option



November 9, 2010



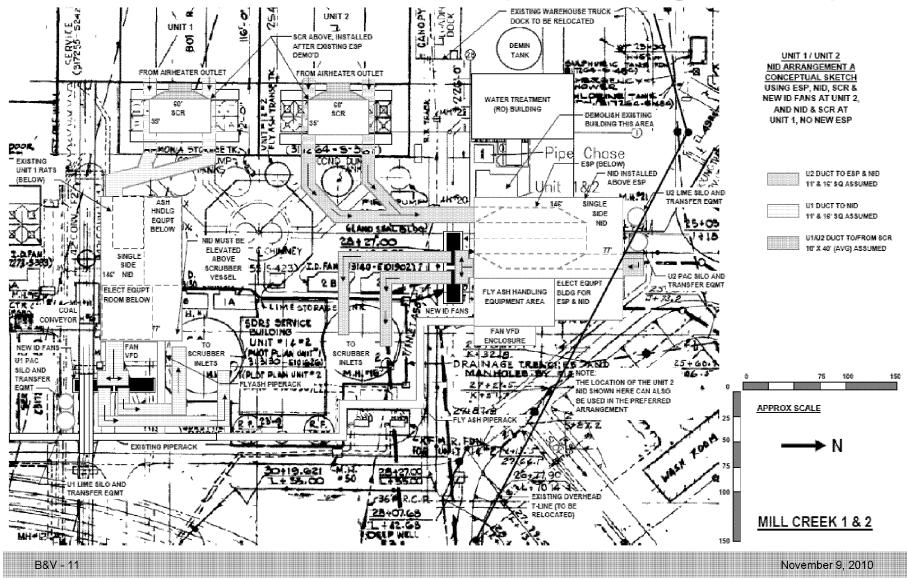
# **AQC Conceptual Sketches**

November 9, 2010



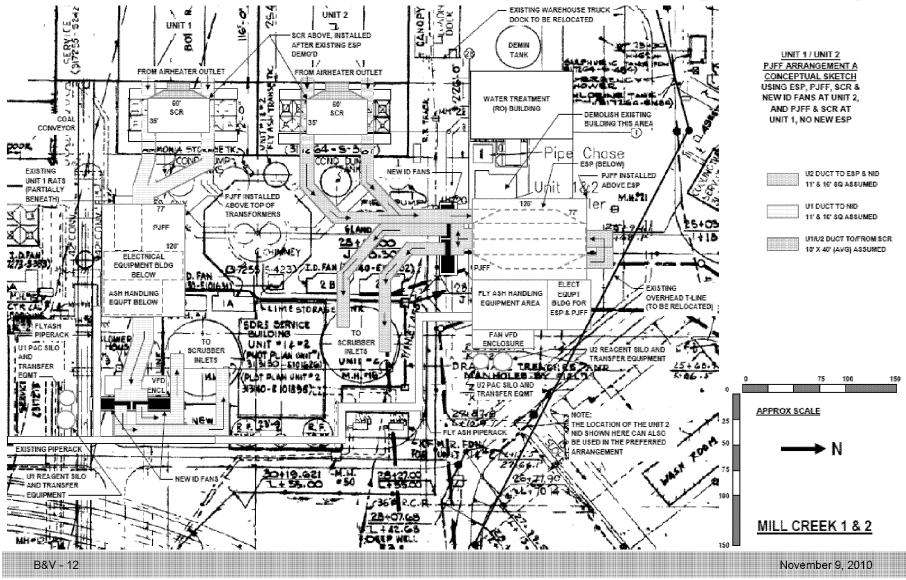
### AQC validation

- Validation report determined no fatal flows for the selected AQC equipment
- AQC equipment can meet identified emission targets
- Two or more arrangements possible for AQC equipment
- Pros and cons identified for each alternative




AQC conceptual sketches

- Unit 1 and Unit 2
  - 3 NID alternatives (A, B, and C)
  - 3 PJFF alternatives (A, B, and C)
- Unit 3 and Unit 4
  - 2 NID alternatives (A and B)
  - 2 PJFF alternatives (A and B)



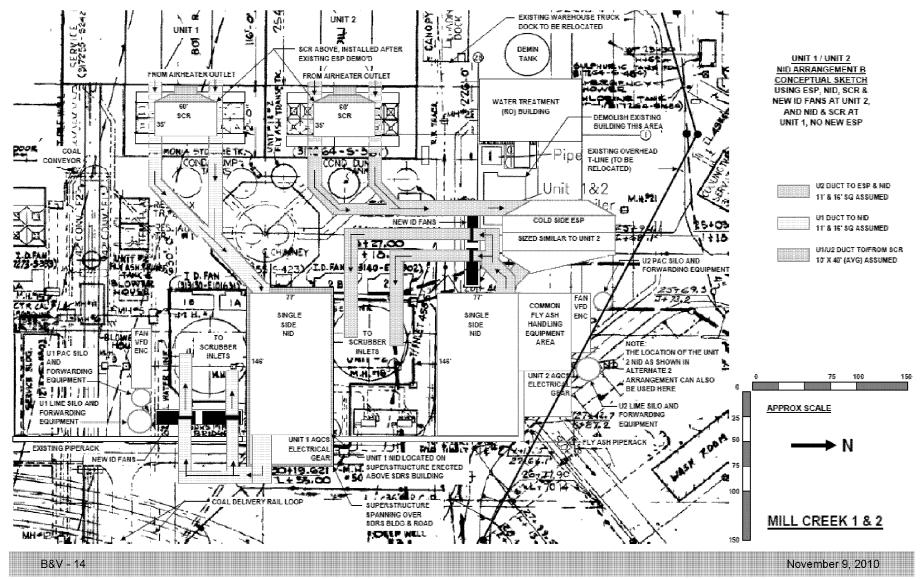

### Mill Creek Unit 1 and Unit 2 (NID arrangement A)





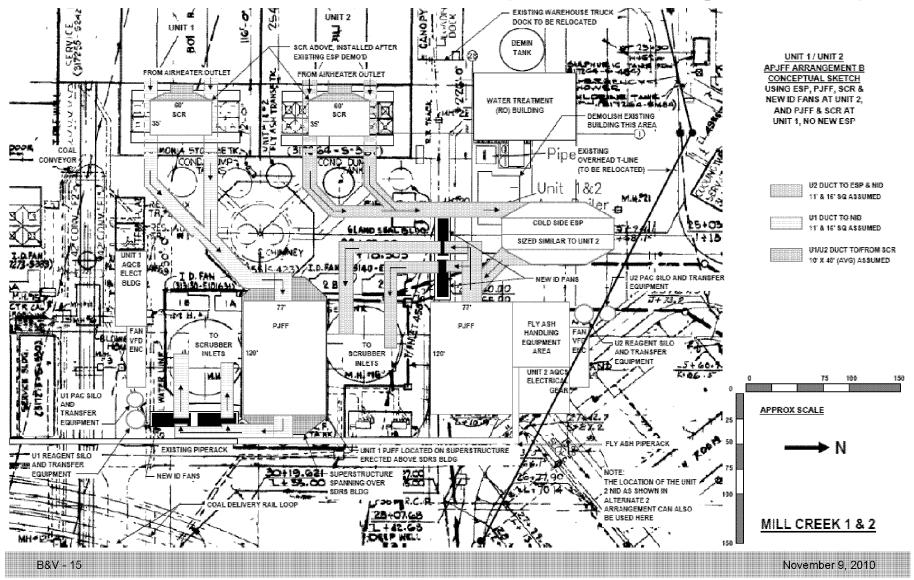
### Mill Creek Unit 1 and Unit 2 (PJFF arrangement A)






### Mill Creek Unit 1 and Unit 2 (arrangement A)

- Pros:
  - Optimized ductwork less capital cost and pressure drop
  - Less ash drop out during low load
- Cons:
  - No pre-filter CS-ESP for Unit 1 only due to space constraints
  - Unit 1 requires ash land-filling capacity
  - Restricted access for Unit 1 SCR construction
  - Elevated structure required for NID or PJFF
  - Unit 1 and Unit 2 auxiliary boiler building requires demolition
  - Relocate overhead transmission lines north of Unit 2




### Mill Creek Unit 1 and Unit 2 (NID arrangement B)





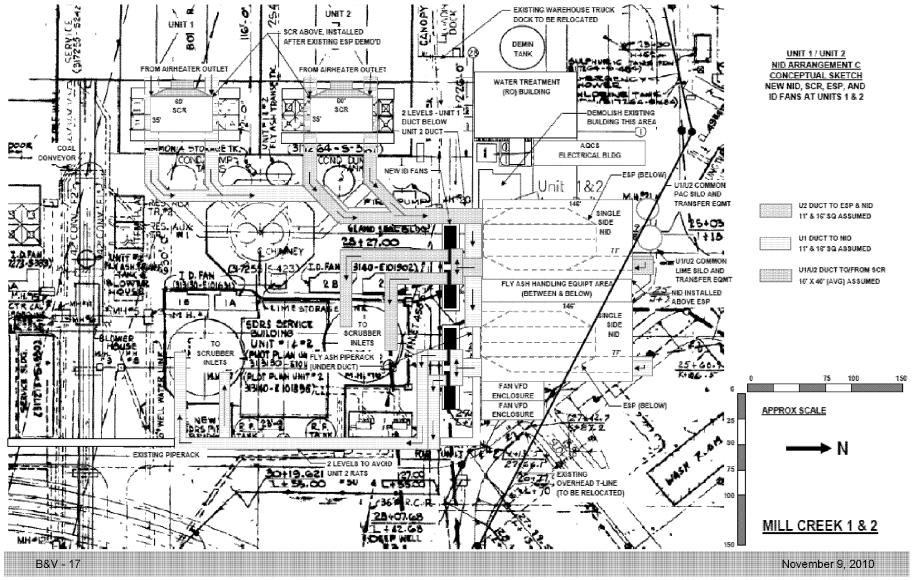
### Mill Creek Unit 1 and Unit 2 (PJFF arrangement B)





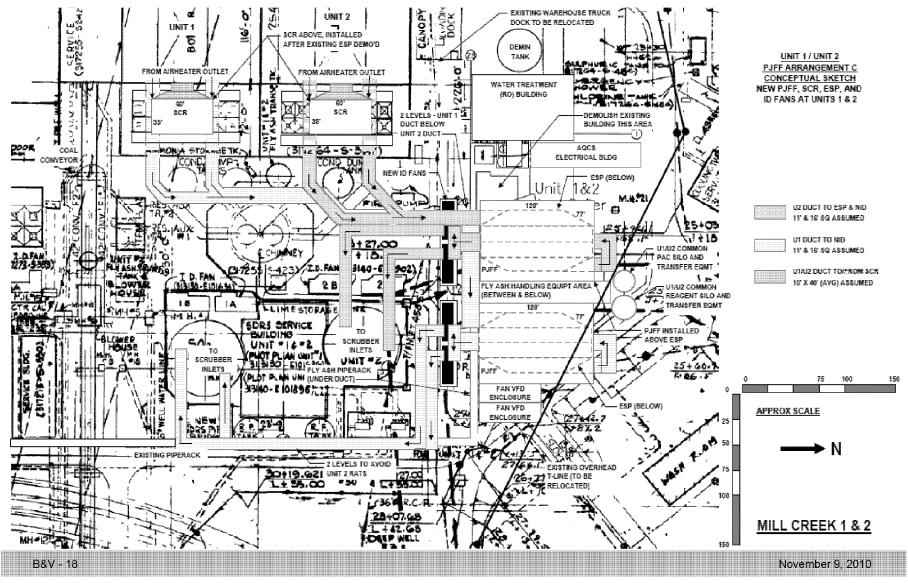
### Mill Creek Unit 1 and Unit 2 (arrangement B)

- Pros:
  - Optimized ductwork less capital cost and pressure drop
  - Less ash drop out during low load
- Cons:


B&V - 16

- No pre-filter CS-ESP for Unit 1 space constraints
- Unit 1 requires ash land-filling capacity
- Elevated structure required for NID or PJFF
- Unit 1 and Unit 2 auxiliary boiler building requires demolition
- Relocate overhead transmission lines north of Unit 2

November 9, 2010




### Mill Creek Unit 1 and Unit 2 (NID arrangement C)





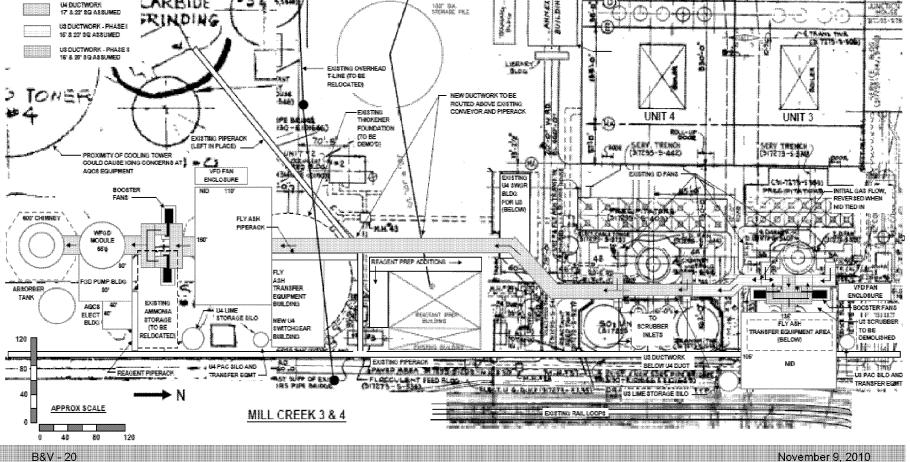
### Mill Creek Unit 1 and Unit 2 (PJFF arrangement C)



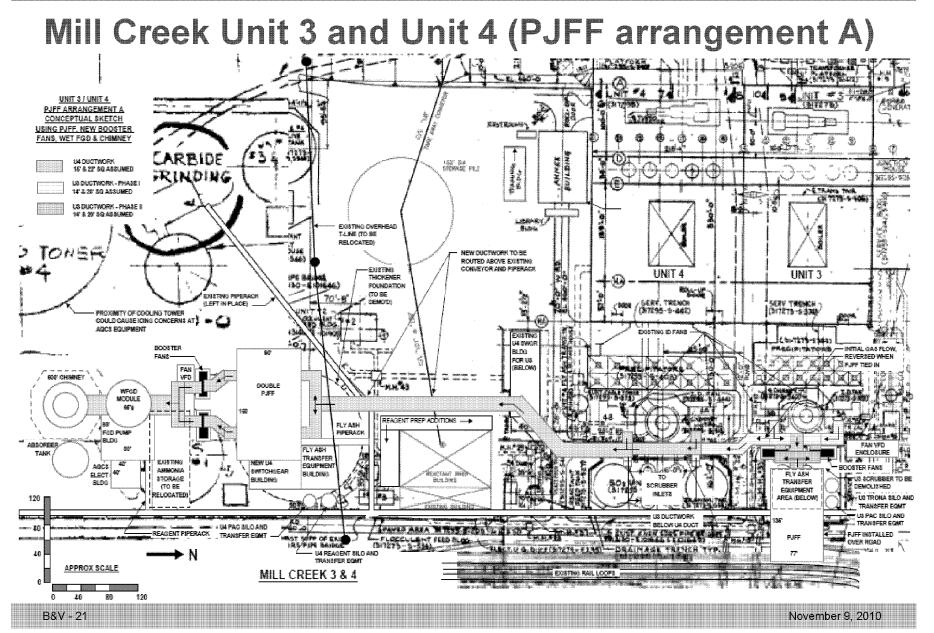


## Mill Creek Unit 1 and Unit 2 (arrangement C)

- Pros:
  - New CS-ESP pre-filter for Unit 1 and Unit 2 reduced ash land-fill capacity required
  - Constructability advantage
- Cons:


B&V - 19

- Longer ductwork higher capital costs and increased pressure drop
- Higher potential for ash dropout
- Elevated structure required for NID or PJFF
- Unit 1 and Unit 2 auxiliary boiler building requires demolition
- Relocate overhead transmission lines north of Unit 2


November 9, 2010



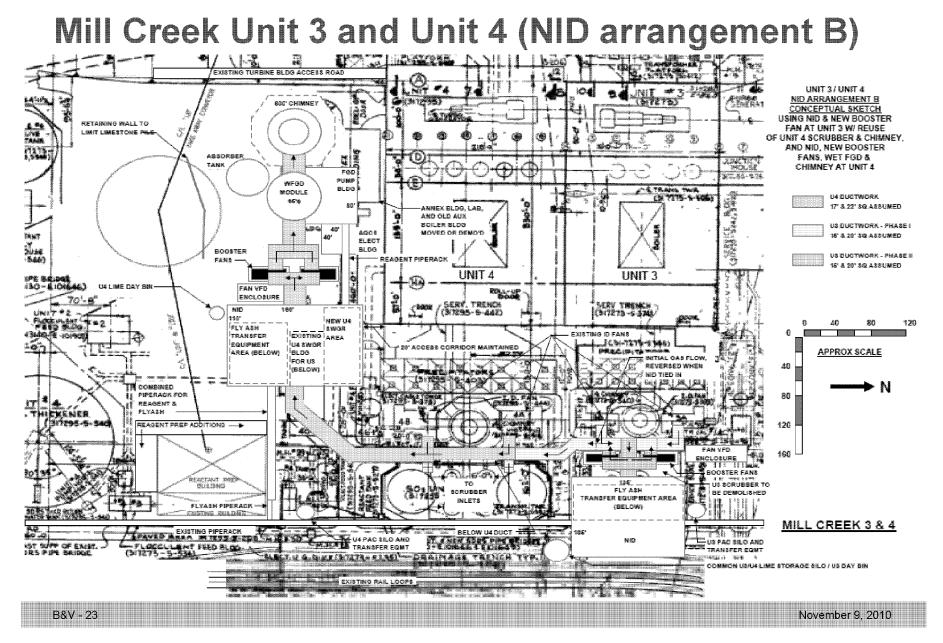
#### Mill Creek Unit 3 and Unit 4 (NID arrangement A) Ø4 UNIT 3 / UNIT 4 SEA RAD HID ARRANGEMENT A CONCEPTUAL SKETCH ESATED. USING NID. NEW BOOSTER FANS, WET FGD & CHIMNEY 恋 $\langle 0 \rangle$ RBIDE 13 NHG THAT U4 DUCTWORK 1869° Kao, Tanàna amin' a 17 & 22' 20 ASSUMED FRINDING US OUCTWORK - PHASEI 1-6 TRAMS TWE 15" 8 20" 3Q ASSUMED S TTTS & 406







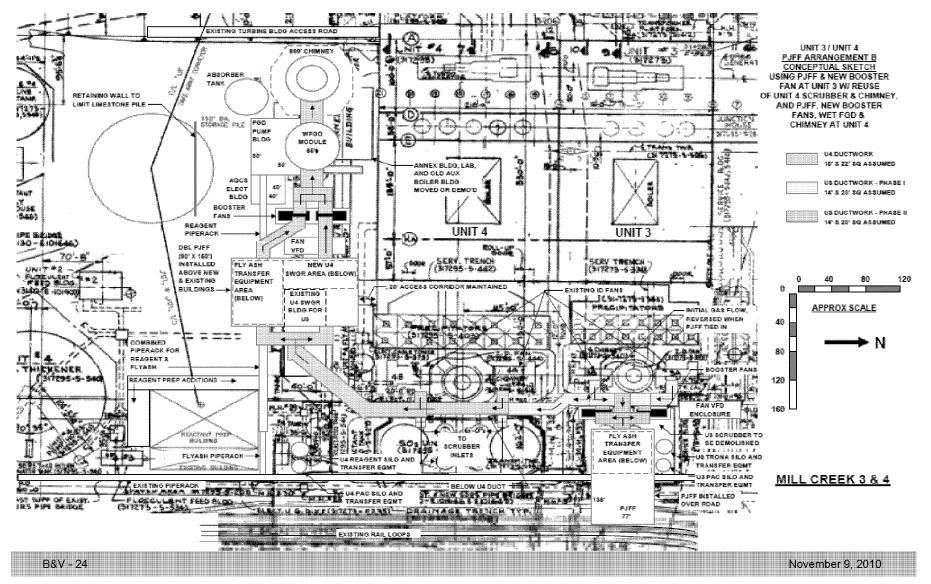



Mill Creek Unit 3 and Unit 4 (arrangement A)

- Pros:
  - Constructability advantage
  - Capital cost savings for Unit 3 by re-using Unit 4 scrubber modules and stack
- Cons:
  - Additional ductwork (above existing limestone conveyor)
  - Demolition of abandoned thickener
  - Relocation of ammonia storage and overhead transmission lines
  - Close proximity with cooling tower icing concerns

November 9, 2010

#### BUILDING A WORLD OF DIFFERENCE<sup>®</sup>






#### **BUILDING A WORLD OF DIFFERENCE<sup>®</sup>**



## Mill Creek Unit 3 and Unit 4 (PJFF arrangement B)





Mill Creek Unit 3 and Unit 4 (arrangement B)

- Pros:
  - Less ductwork
  - Capital cost savings for Unit 3 by re-using Unit 4 scrubber modules and stack
- Cons:
  - Demolition and relocation of annex building, lab building and old auxiliary boiler building
  - Limited access to Unit 4 boiler



# NID vs PJFF with Sorbent Injection

November 9, 2010



# PJFF- sorbent inj. / NID technology comparison

| Factor          | PJFF w/ sorbent<br>injection | NID    |
|-----------------|------------------------------|--------|
| Equipment Cost  | Lower                        | Higher |
| Footprint       | Smaller                      | Larger |
| Reagent Cost    | Higher                       | Lower  |
| Auxiliary Power | Lower                        | Higher |
| Pressure Drop   | Lower                        | Higher |



# PJFF- sorbent inj. / NID technology comparison

| Factor                           | PJFF w/ sorbent<br>injection | NID     |
|----------------------------------|------------------------------|---------|
| Plugging Potential               | N/A                          | Higher  |
| Recycle                          | No                           | Yes     |
| Maintenance                      | Lower                        | Higher  |
| Water Injected                   | No                           | Yes     |
| Inlet Temperature<br>Limitations | None                         | < 350 F |

| h | 55 |   |   |    |   | w |     | n | 5 | 5 |   |   |  |
|---|----|---|---|----|---|---|-----|---|---|---|---|---|--|
| i |    | 0 | e | EE | D | е | 115 | Э | 2 | U | - | J |  |
|   |    |   |   |    |   |   |     |   |   |   |   |   |  |
|   |    |   |   |    |   |   |     |   |   |   |   |   |  |



# PJFF- sorbent inj. / NID technology comparison

| Factor                                | PJFF w/ sorbent<br>injection | NID     |
|---------------------------------------|------------------------------|---------|
| HCI Removal                           | Lower                        | Higher  |
| Co-Benefits: Waste<br>Water Reduction | None                         | Higher  |
| Experience                            | Good                         | Limited |
|                                       |                              |         |
|                                       |                              |         |



# **3-D Model**

November 9, 2010



# Summary / Wrap-up and Discussions

November 9, 2010

| From:        | Saunders, Eileen                                                                                 |
|--------------|--------------------------------------------------------------------------------------------------|
| То:          | Straight, Scott                                                                                  |
| Sent:        | 11/4/2010 12:01:00 PM                                                                            |
| Subject:     | FW: Draft Mill Creek Validation and Brown Kickoff Presentations for Review.                      |
| Attachments: | Draft Brown kickoff Presentation 110310.pdf; Draft Mill Creek Validation Presentation 110310.pdf |

Scott,

Here are the slides for the Brown and MC presentations next week. I left you a voicemail that I would like you to hear regarding how I told B&V to proceed for the meetings.

Thank you,

Eileen

From: Hillman, Timothy M. [mailto:HillmanTM@bv.com]
Sent: Wednesday, November 03, 2010 10:32 AM
To: Saunders, Eileen
Cc: Lucas, Kyle J.; Wehrly, M. R.; Crabtree, Jonathan D.
Subject: Draft Mill Creek Validation and Brown Kickoff Presentations for Review.
Importance: High

Eileen,

Please find attached draft presentations for the Mill Creek validation and Brown kickoff meetings. I'm circulating them to you at the same time as my team for final review.

I believe you'll find the Brown kickoff presentation very similar to the previous ones. We've included slides on PJFF and SCR vs. SNCR as requested.

In the Mill Creek validation presentation, we have included the arrangement sketches for the different options and summarized the major pros and cons of each. These slides should facilitate additional discussions where more detail can be discussed on the attributes of each arrangement. Finally, we have a placeholder in the side deck for the 3-D models of the arrangement alternatives that we are currently working on. I think the 3-D models will be invaluable during are meeting, as a picture speaks a thousand words.

If you could provide a quick review of these and let us know your thoughts by the end of the day, then we will be in a position to finalize them and prepare copies for next week.

Best regards,

Tim Hillman | Project Manager Power Generation - Environmental Services Black & Veatch - Building a World of Difference™ 11401 Lamar Avenue Overland Park, KS 66211 Phone: (913) 458-7928 Email: hillmantm@by.com





# Phase II AQC Study Brown Station Kickoff



**PPL companies** 

**Black & Veatch** 

November 2010

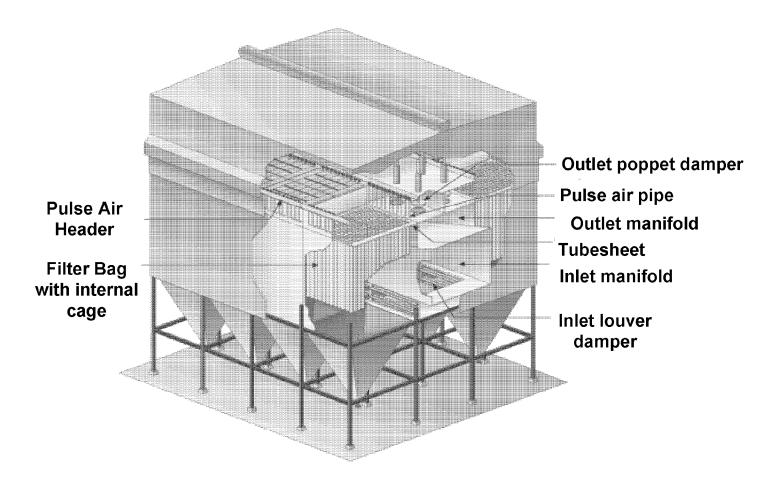
**BLACK & VEATCH** 

Agenda

- Regulatory drivers
- PJFF overview
- SCR vs. SNCR
- Overview of phase I results



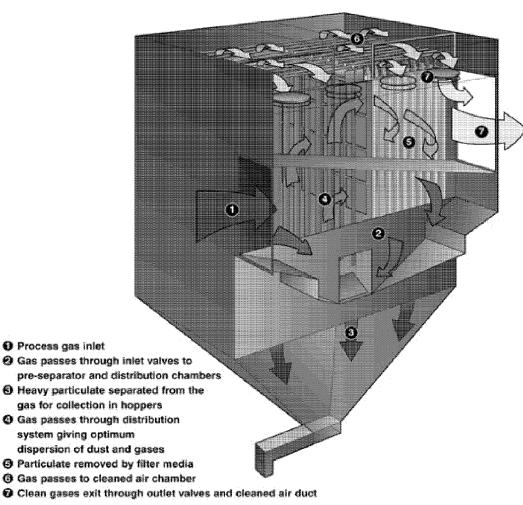
## **Regulatory drivers – still uncertainty**


| Program Name                     | Regulated<br>Pollutants                                                               | Forecasted Date for<br>Compliance                               |
|----------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| PSD/NSR                          | SAM<br>Units 1-3                                                                      | Draft Permit Limit for SCR<br>Startup                           |
| 1-hour NAAQS for NO <sub>x</sub> | NO <sub>x</sub>                                                                       | January 2017                                                    |
| 1-hour NAAQS for SO <sub>2</sub> | SO <sub>2</sub>                                                                       | June 2017                                                       |
| Clean Air Transport<br>Rule      | NO <sub>x</sub><br>SO <sub>2</sub>                                                    | Beginning in 2012 Phase in 2014                                 |
| New EGU MACT                     | Mercury<br>Acids (HCI)<br>Metals (PM)<br>Metals (AS)<br>Organics (CO)<br>Dioxin/Furan | Estimated January, 2015; with<br>1-yr extension - January, 2016 |



# **PJFF Overview**




## **PJFF – overall layout**

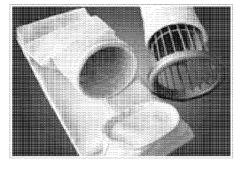


Courtesy: Babcock & Wilcox



# PJFF – flow diagram




R,

**BLACK & VEATCH** 

## **BUILDING A WORLD OF DIFFERENCE<sup>®</sup>**

# PJFF advantages vs. DESP

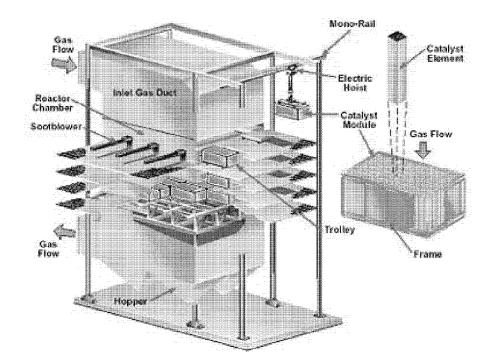
- Fuel flexibility
- High efficiency especially on PM<sub>2.5</sub>
- Performance is less susceptible to plant operating conditions
- Works well during startups
- Better control of hazardous air pollutants such as heavy metals (Ar, Ni, Pb, etc.)
- Allows reagent injection to work better (Hg or SO<sub>3</sub>)



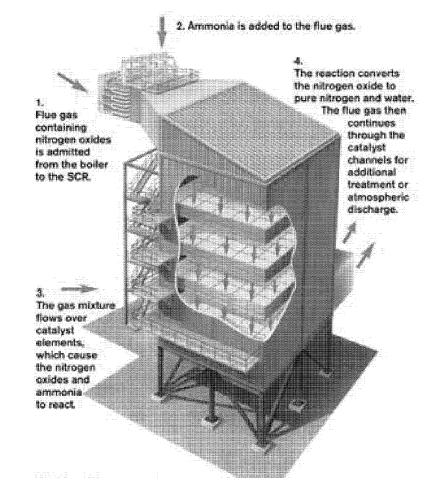


PJFF disadvantages vs. DESP

- Bags damaged by high temperatures
- High pressure drop
- Periodic bag replacement

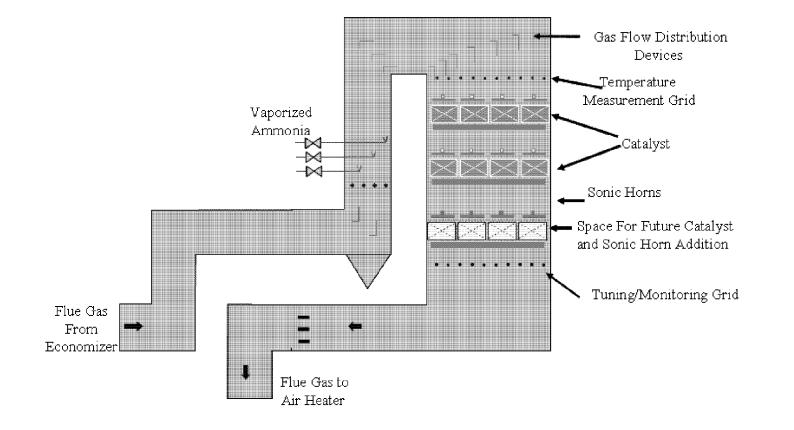






# SCR vs. SNCR



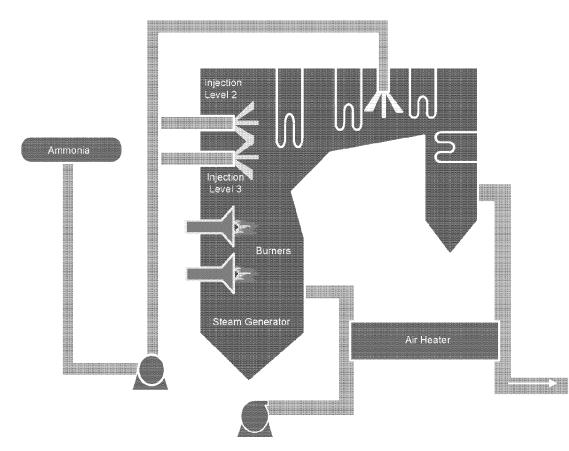
## SCR – overall layout




## SCR – flow diagram



# **BLACK & VEATCH**


# SCR – process





## **SNCR** – overview

R. BLACK & VEATCH





**SNCR** disadvantages

- High ammonia slip
- Large boilers complicate reagent injection
- High reagent usage
- Not as responsive to load changes

**SCR disadvantages** 

- SCR catalyst oxidizes SO<sub>2</sub> to SO<sub>3</sub>
- Requires catalyst
- Potential of plugging, erosion and poisoning of the catalyst
- Catalyst disposal and storage liability





# Overview of Phase I Results

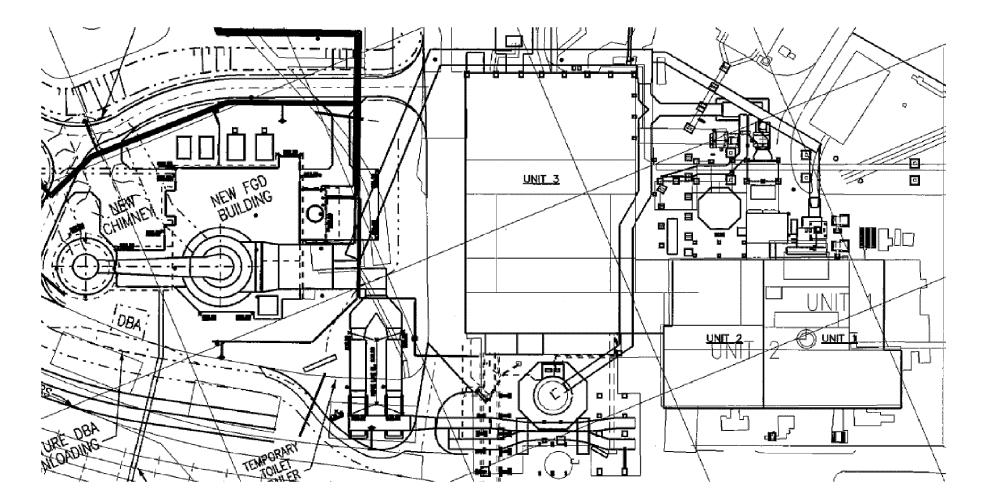


# Phase I AQCS results for Brown Station

- Brown Unit 1
  - Upgrade Low NOx Burners (LNB)
  - Over-Fire Air (OFA)
  - Pulse Jet Fabric Filter (PJFF)
  - Powdered Activated Carbon (PAC) Injection
- Brown Unit 2
  - Selective Catalytic Reduction (SCR) System
  - Pulse Jet Fabric Filter (PJFF)
  - Sorbent Injection
  - Powdered Activated Carbon (PAC) Injection
- Brown Unit 3

B&V - 17

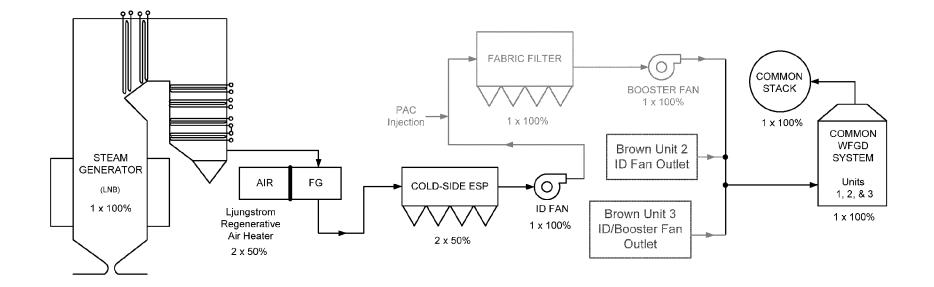
- Pulse Jet Fabric Filter (PJFF)
- Powdered Activated Carbon (PAC) Injection




# Phase I AQCS results for Brown Station (Options)

- Brown Units 1 & 2
  - Upgrade Low NOx Burners (LNB) for Unit 1
  - Over-Fire Air (OFA) for Unit 1
  - Selective Catalytic Reduction (SCR) for Unit 1
  - Selective Catalytic Reduction (SCR) for Unit 2
  - Common Units 1 and 2 Pulse Jet Fabric Filter (PJFF)
  - Sorbent Injection for Common Units 1 and 2 PJFF
  - Powdered Activated Carbon (PAC) Injection for Common Units 1 and 2 PJFF
- Brown Unit 3
  - Pulse Jet Fabric Filter (PJFF)
  - Powdered Activated Carbon (PAC) Injection

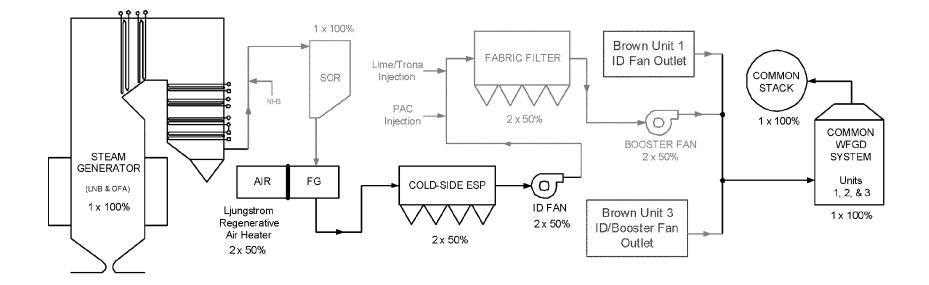



## **Existing Brown layout**



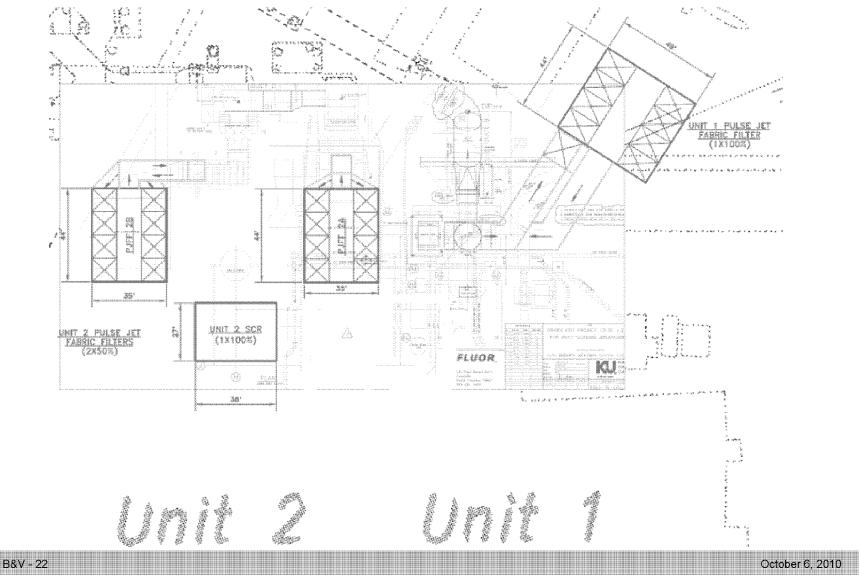
#### **BUILDING A WORLD OF DIFFERENCE<sup>®</sup>**




## **Brown Unit 1 process flow diagram**



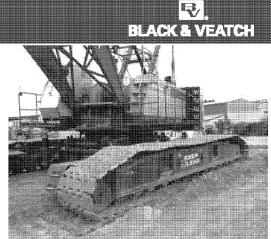
#### **BUILDING A WORLD OF DIFFERENCE<sup>®</sup>**




## **Brown Unit 2 process flow diagram**






## **Brown Unit 1 and Unit 2 layout**



### BUILDING A WORLD OF DIFFERENCE<sup>®</sup>

# **Brown Unit 2 SCR challenges**

- Real estate constraints
- Difficult crane access
- Demolish existing mechanical dust collector
- Demolish abandoned Unit 2 stack
- Modify boiler building structural steel bracing and girts
- Demolish and relocate field fabricated tank located in base of abandoned Unit 2 chimney shell
- Demolish and relocate Unit 2 auxiliary transformer
- Pick and slide execution method to erect SCR

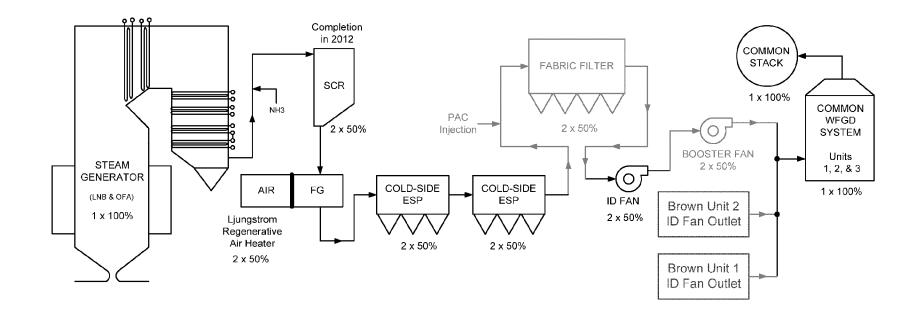


BLACKS VEATCH

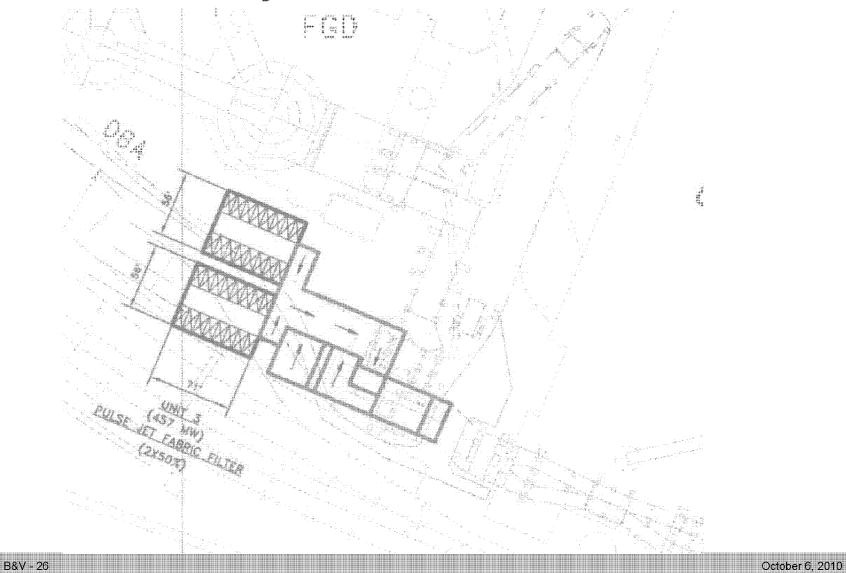
## BUILDING A WORLD OF DIFFERENCE®

# **Brown Unit 2 PJFF challenges**

- Elevated PJFF
- Real estate constraints
- Difficult crane access



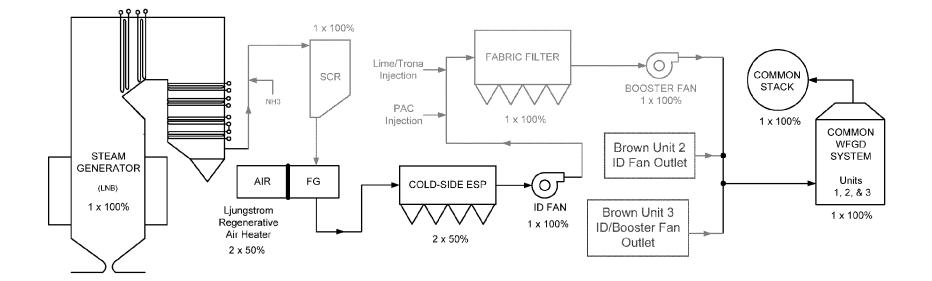

- Pick and slide execution method to erect fabric filter modules
- Extensive underground investigation required prior to installing new foundations for structural steel support frame
- Heavy foundations required on outer ends
- Difficult to stage construction equipment near ID fans


#### **BUILDING A WORLD OF DIFFERENCE<sup>®</sup>**



## **Brown Unit 3 process flow diagram**



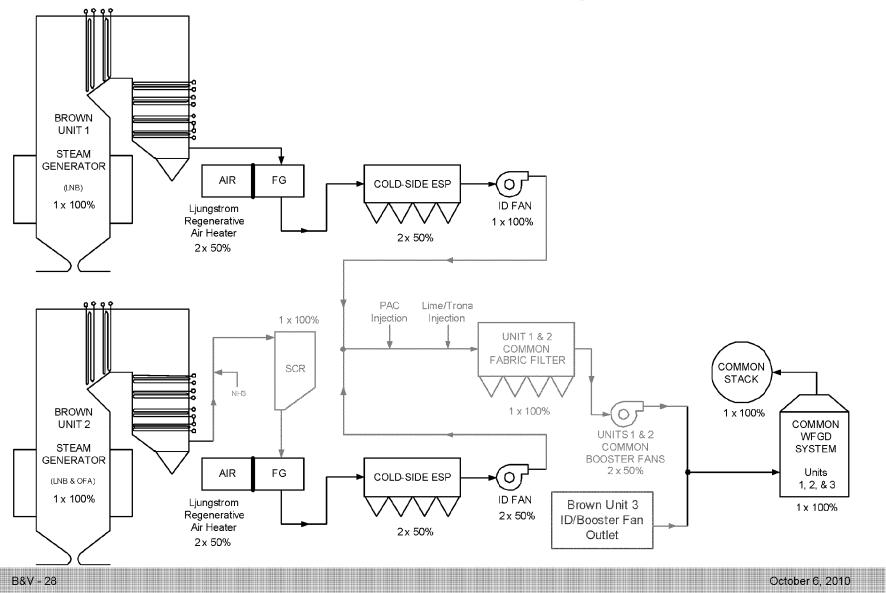

## **Brown Unit 3 layout**





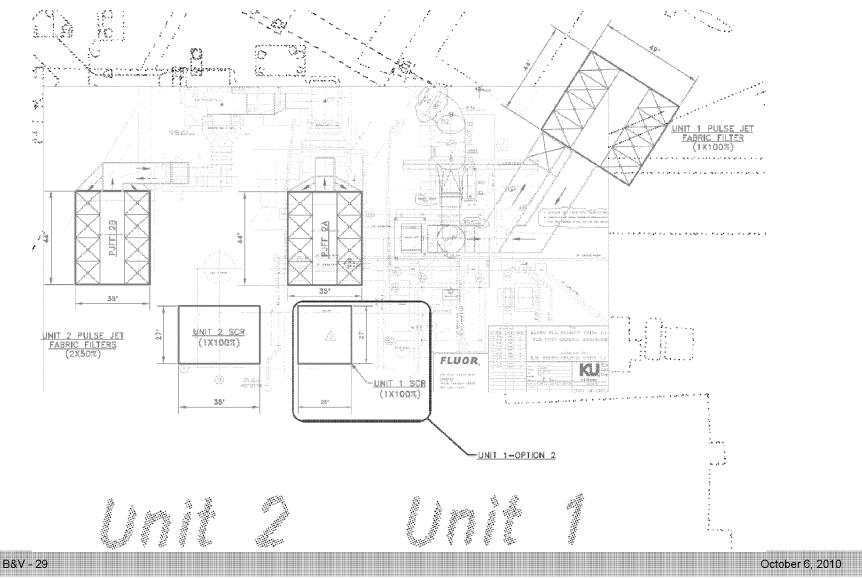


## Brown Unit 1 process flow diagram (option)




R

BLACK & VEATCH


#### **BUILDING A WORLD OF DIFFERENCE®**

Brown Unit 1 and Unit 2 process flow diagram (option)



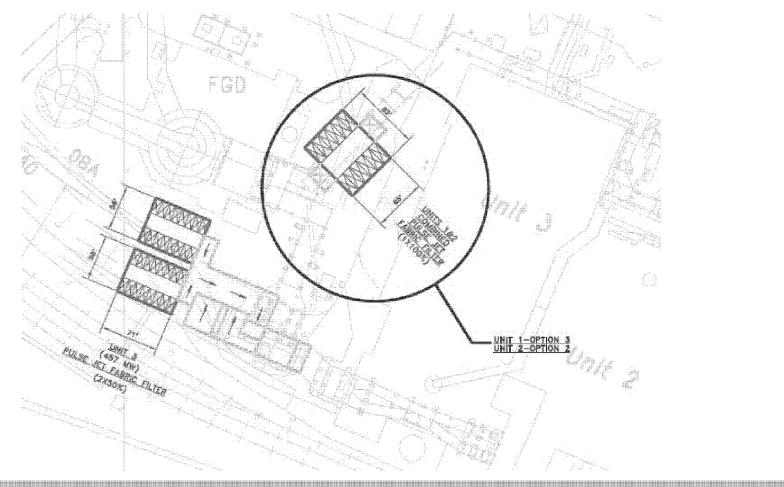


## Brown Unit 1 and Unit 2 layout (option)





Brown Unit 1 SCR challenges (option)

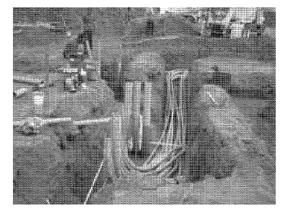

- Real estate constraints
- Extensive relocation of existing plant components
- Rotation of secondary air heater duct
- Modify boiler building structural steel and bracing to accommodate ductwork
- Relocate switchgear in the boiler building

R

**BLACK & VEATCH** 

### **BUILDING A WORLD OF DIFFERENCE®**






October 6, 2010



Brown Units 1 & 2 combined PJFF challenges (option)

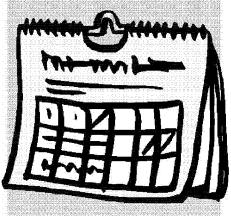
- Elevated PJFF
- Demolish and relocate underground utilities
- Modify structural steel frame work
- Fabric filter built on standard frame above existing ductwork





**Typical PJFF schedule** 

- 30 to 36 months
  - Engineering & procurement 12 -16 months
  - Erect PJFF foundations 6 months
  - Erect PJFF 10 -12 months
  - Tie-in outage 1 month
  - Start-up 1 month

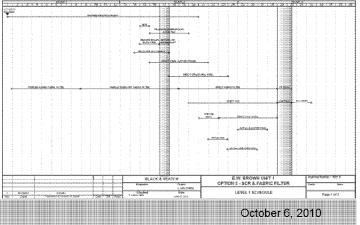

RLACKE VEATCH

### BUILDING A WORLD OF DIFFERENCE®

Typical SCR schedule

- 32 to 36 months
  - Engineering & procurement 16 months
  - Erect SCR foundations 4 months
  - Erect SCR support steel 4 months
  - Erect SCR & ductwork 8 months
  - Tie-in outage 1 month
  - Start-up 1 month

B&V - 34




October 6, 2010



**Phase I implementation schedule** 

- Brown Unit 1 PJFF 32 months
- Brown Unit 2 SCR & PJFF 34 months
- Brown Unit 3 PJFF 30 months
- Option Brown Unit 1 SCR 32 months
- Option Combined Brown Units 1 & 2 PJFF 30 months







## Phase II AQC Study Mill Creek Validation



PPL companies

**Black & Veatch** 

November 2010



## Agenda

- Units 1, 2, 3 and 4 AQC equipment train
- Unit AQC equipment conceptual layout
- NID vs PJFF comparison
- 3-D Model
- Summary / wrap-up and discussions



# AQC Equipment Train Mill Creek Units 1, 2, 3 and 4

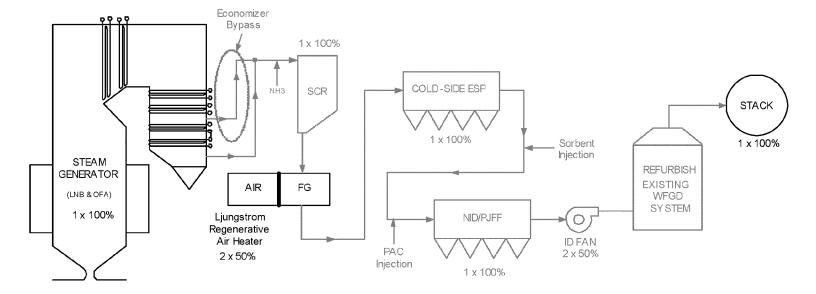
November 9, 2010



## Mill Creek Unit 1 AQC process flow diagram

- Add new pre-filter CS-ESP (alternative)
- Demolish existing CS-ESP
- Add new SCR at old CS-ESP

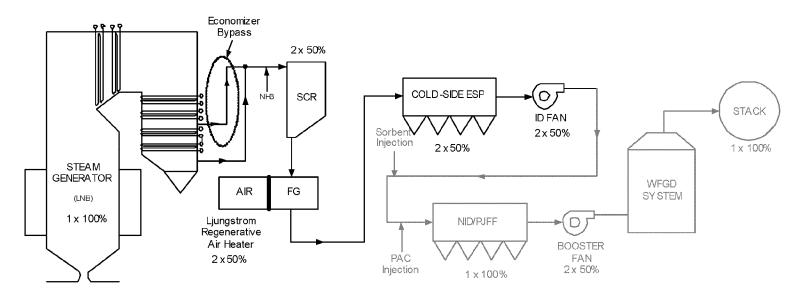
- Add new ID fans
- Add new NID or PJFF/duct injection option
- Upgrade and refurbish existing WFGD system






## Mill Creek Unit 2 AQC process flow diagram

- Add new CS-ESP (pre-filter)
- Add new ID fans
- Add new NID or PJFF/duct injection option

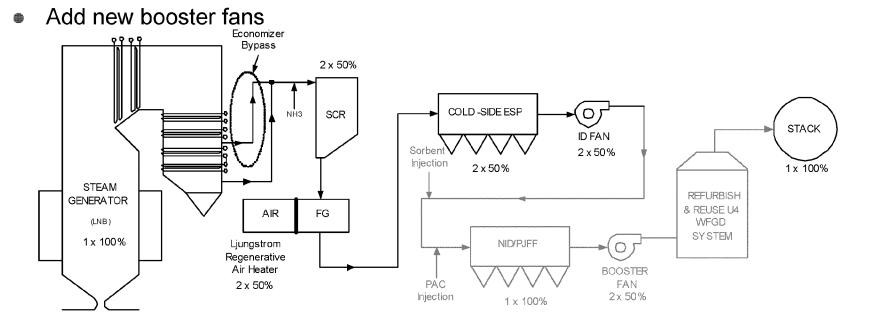

- Demolish existing CS-ESP
- Add new SCR at old CS-ESP
- Upgrade and refurbish existing WFGD system





## Mill Creek Unit 4 AQC process flow diagram

- Add new stack
- Add new NID or PJFF/duct injection option
- Add new booster fans
- Add new Unit 4 WFGD




R/

**BLACK & VEATCH** 

## Mill Creek Unit 3 AQC process flow diagram

- Upgrade and refurbish existing Unit 4 WFGD to re-use as unit 3 WFGD
- Reuse Unit 4 stack for Unit 3 (following Reuse of Unit 4 WFGD)
- Demolish existing Unit 3 WFGD
- Add new NID or PJFF/duct injection option



B&V - 8



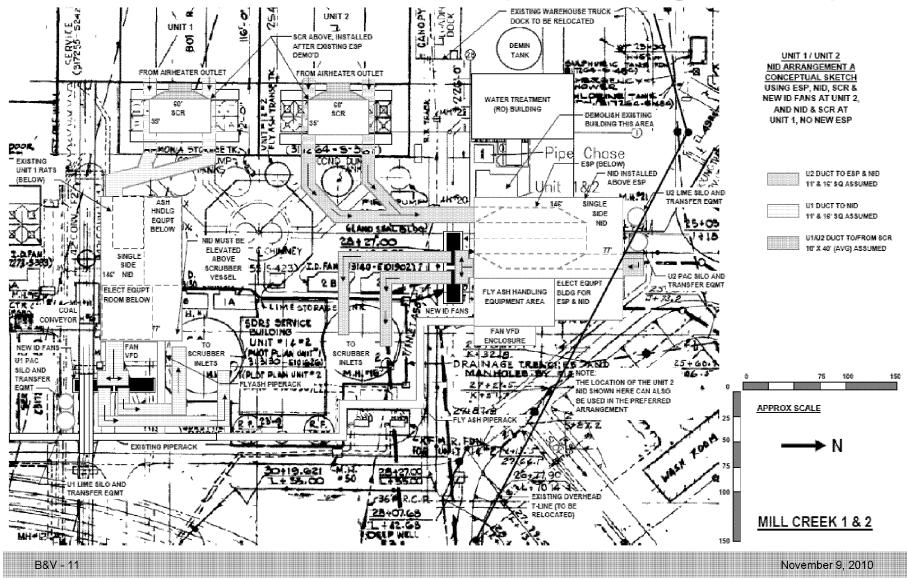
# **AQC Conceptual Sketches**

November 9, 2010



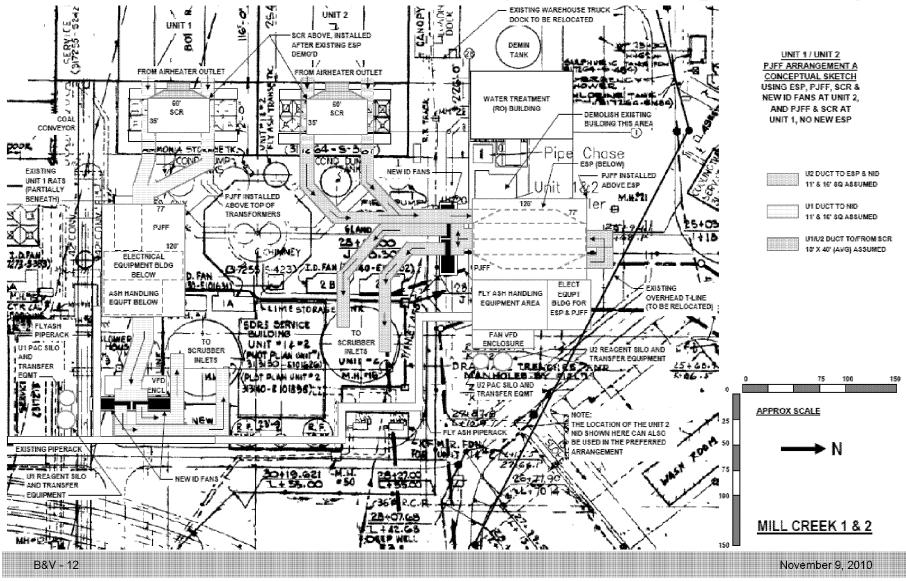
## AQC validation

- Validation report determined no fatal flows for the selected AQC equipment
- AQC equipment can meet identified emission targets
- Two or more arrangements possible for AQC equipment
- Pros and cons identified for each alternative




AQC conceptual sketches

- Unit 1 and Unit 2
  - 3 NID alternatives (A, B, and C)
  - 3 PJFF alternatives (A, B, and C)
- Unit 3 and Unit 4
  - 2 NID alternatives (A and B)
  - 2 PJFF alternatives (A and B)



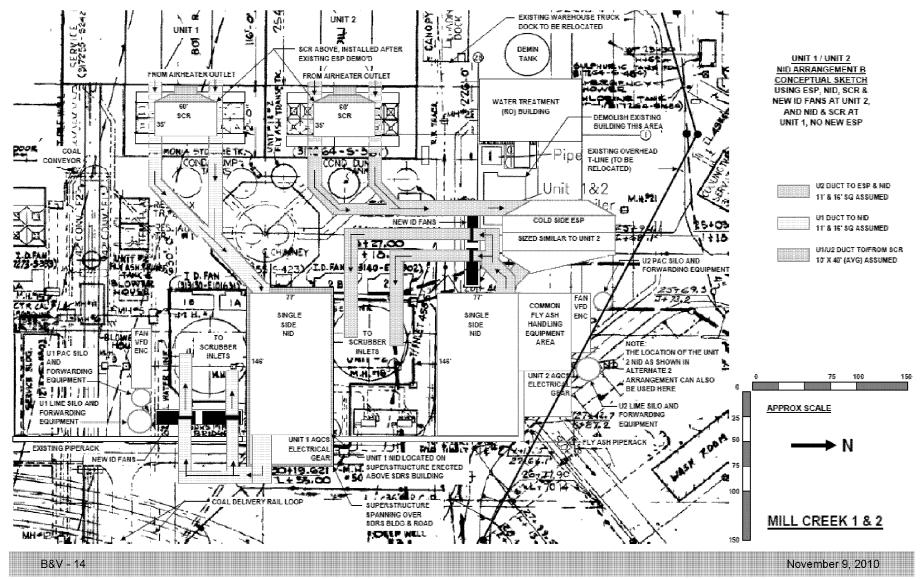

## Mill Creek Unit 1 and Unit 2 (NID arrangement A)





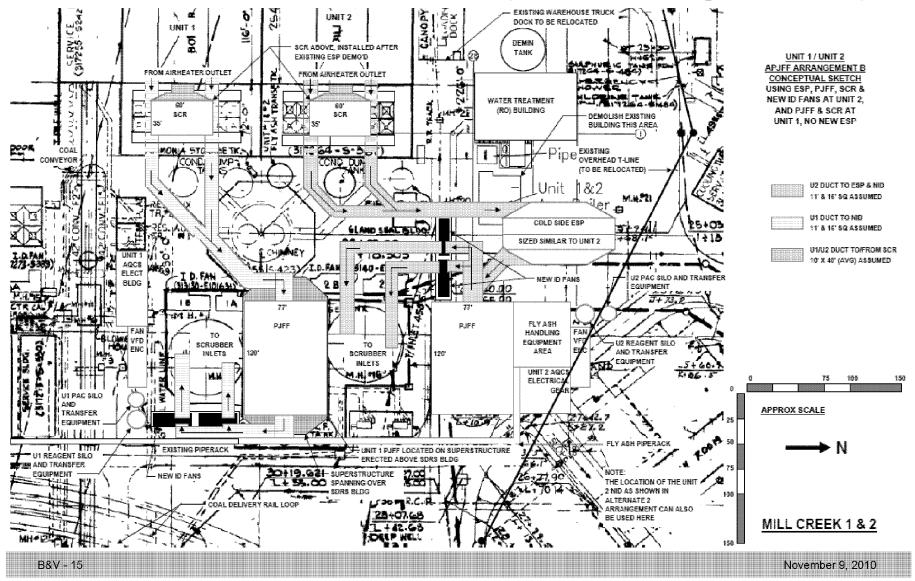
## Mill Creek Unit 1 and Unit 2 (PJFF arrangement A)






## Mill Creek Unit 1 and Unit 2 (arrangement A)

- Pros:
  - Optimized ductwork less capital cost and pressure drop
  - Less ash drop out during low load
- Cons:
  - No pre-filter CS-ESP for Unit 1 only due to space constraints
  - Unit 1 requires ash land-filling capacity
  - Restricted access for Unit 1 SCR construction
  - Elevated structure required for NID or PJFF
  - Unit 1 and Unit 2 auxiliary boiler building requires demolition
  - Relocate overhead transmission lines north of Unit 2




## Mill Creek Unit 1 and Unit 2 (NID arrangement B)





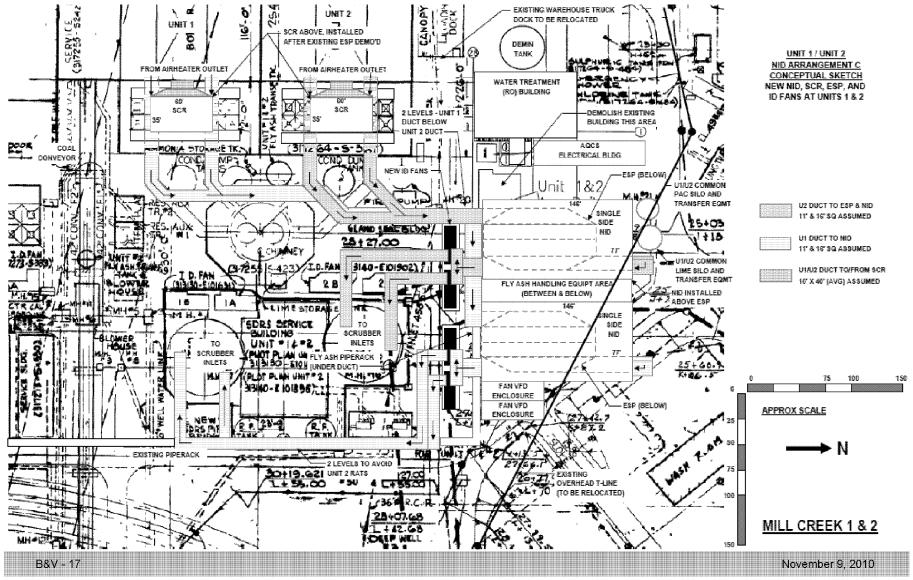
## Mill Creek Unit 1 and Unit 2 (PJFF arrangement B)





## Mill Creek Unit 1 and Unit 2 (arrangement B)

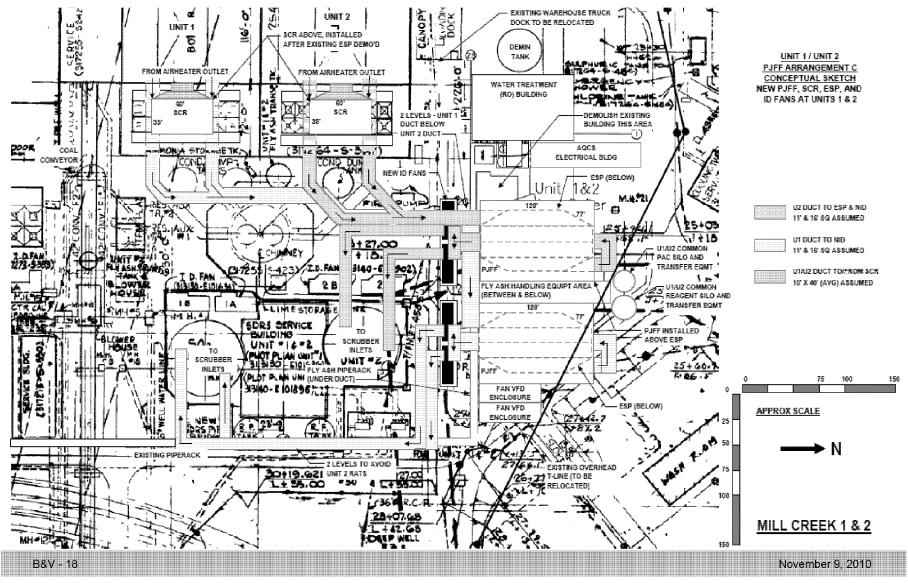
- Pros:
  - Optimized ductwork less capital cost and pressure drop
  - Less ash drop out during low load
- Cons:


B&V - 16

- No pre-filter CS-ESP for Unit 1 space constraints
- Unit 1 requires ash land-filling capacity
- Elevated structure required for NID or PJFF
- Unit 1 and Unit 2 auxiliary boiler building requires demolition
- Relocate overhead transmission lines north of Unit 2

November 9, 2010




## Mill Creek Unit 1 and Unit 2 (NID arrangement C)



LGE-KU-00001994



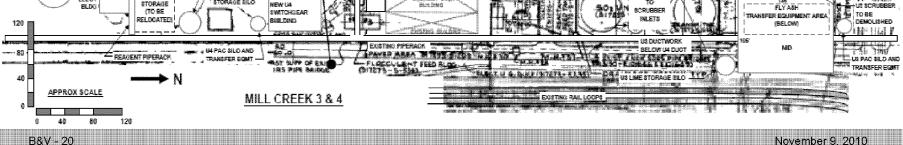
## Mill Creek Unit 1 and Unit 2 (PJFF arrangement C)





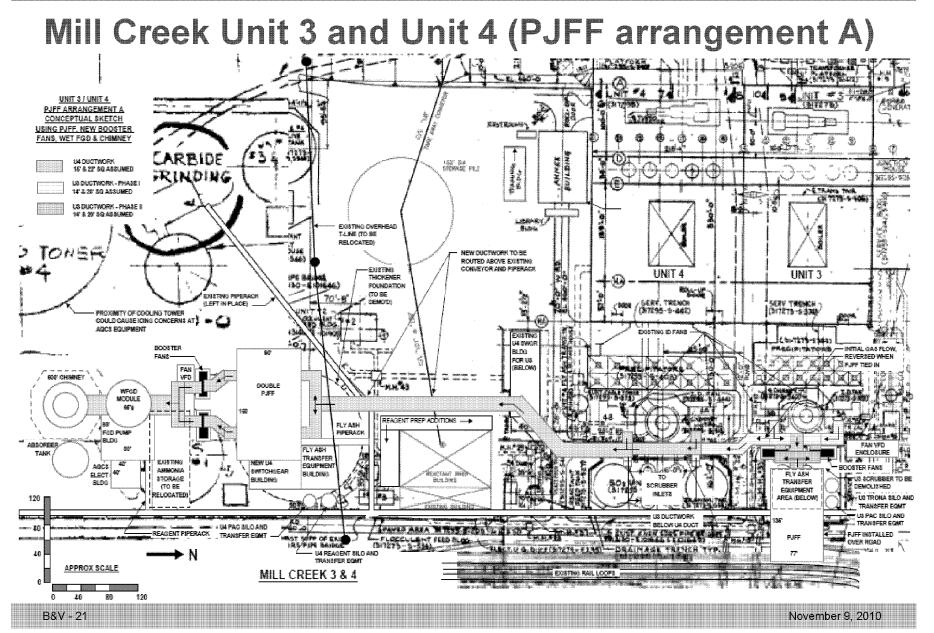
## Mill Creek Unit 1 and Unit 2 (arrangement C)

- Pros:
  - New CS-ESP pre-filter for Unit 1 and Unit 2 reduced ash land-fill capacity required
  - Constructability advantage
- Cons:


B&V - 19

- Longer ductwork higher capital costs and increased pressure drop
- Higher potential for ash dropout
- Elevated structure required for NID or PJFF
- Unit 1 and Unit 2 auxiliary boiler building requires demolition
- Relocate overhead transmission lines north of Unit 2

November 9, 2010




#### Mill Creek Unit 3 and Unit 4 (NID arrangement A) Ø4 UNIT 3 / UNIT 4 SEA RAD HID ARRANGEMENT A CONCEPTUAL SKETCH 2841203 USING NID. NEW BOOSTER FANS, WET FGD & CHIMNEY 恋 $\langle 0 \rangle$ RBIDE 13 NHG THAT AND CO U4 DUCTWORK 1869° Kao, Tanàna dia mand 17 & 22' 20 ASSUMED FRINDING **第二册**。常籍 US OUCTWORK - PHASEI 1-6 TRANS TWE 15" 8 20" 3Q ASSUMED S TTTS & 406 US DUCTWORK - PHASE 8 16' & 20' 3/Q A3 SUMEO 上成就各致方 Contraction. EXISTING OVERHEAD ..... T-LINE (TO BE . ANT RELOCATED) TONER 3 5.566 NEW DUCTINORIK TO BE 346 ROUTED ABOVE EXISTING Þ 4 CONVEYOR AND PIPERACK EXECTING UNIT 4 UNIT 3 THICKENER 伊吉 130-6 FOUNDATION CHOICE (TO BE EXISTING PIPERACK 0 SERV. TRENCH (17295-5-442) DEMO/D/ (LEFT IN PLACE) MARY TRENCH / 6008 ROXIMITY OF COOLING TOWER COULD CAUGE KING CONCERNS AT AGCS EQUIPMENT EXISTING ID FANS EXISTING ENCLOSURE CNI-7175-5 9443 U4 SWEEF BOOSTEF NUETS: 410 PRALIMITATION INITIAL GAS FLOW, BLDG FANS: REVERISED WHEN FOR US NID TED IN (BELOW) 600" CHEMNEY FLY ASH <sup>П</sup>.н.н.<sup>4</sup>33 REFERENCE WFGD ÷ 6516 REAGENT PREP ADDITIONS ......................... FLY ASH ND FINE BLDG ć, TRANSFER. ABSORBER VEDEAN 272 <u>е</u>., EQUIPMENT ENCLOSURE TANK EXISTING 1 BUILDING AGCS 40 BOCSTERFANS UH LIME AMMACHIA RACTEANT POR ELECT 40 🛊 is minor STORAGE SILO 70 STORAGE NEW U4 +US SCRUBBER ER DES FLY ASH 8CRI IBBEI (TO BE SWITCHCIEAR 787 A.B TOBE



LGE-KU-00001997







Mill Creek Unit 3 and Unit 4 (arrangement A)

- Pros:
  - Constructability advantage
  - Capital cost savings for Unit 3 by re-using Unit 4 scrubber modules and stack
- Cons:
  - Additional ductwork (above existing limestone conveyor)
  - Demolition of abandoned thickener
  - Relocation of ammonia storage and overhead transmission lines
  - Close proximity with cooling tower icing concerns