

July 24, 2009

Kenvirons, Inc. 452 Versailles Road Frankfort, KY 40601

Attention: Mr. Ken Taylor, P.E.

Subject: Report of Geotechnical Exploration KY38 AND MARY WYNN WATER TANKS Harlan County, Kentucky QORE Project No. 24305400

Dear Mr. Taylor:

QORE, Inc. has completed the geotechnical exploration for the proposed tank. The purpose of this exploration was to obtain subsurface data at the sites pursuant to developing sile preparation and foundation recommendations for the proposed construction. We conducted this project according to our proposal KY4934, dated June 15, 2009, which was authorized by Mr. R. Vaughn Williams – Vice President of Kenvirons. Our work scope included exploration at a total of three proposed tank sites and a package waste water treatment plant site. This report covers two of the water tanks. The other tank and package treatment plant sites are covered in separate reports. This report explains our understanding of the project, documents our findings, and presents our conclusions and geotechnical engineering recommendations.

QORE appreciates the opportunity to be of service. We look forward to helping you through project completion. If you have any questions, please call.

Respectfully submitted,

QORE. Inc. FIEHLER Andrew M. Fiehler. 23977 Project Engineer Licensed Kentucky 23,97 Attachments: **Report of Geotechnical Exploration** Appendices

1 Quenzator

Michael D. Owens Principal Geotechnical Consultant

S:projects\2009 projects\24305400r01

REPORT OF GEOTECHNICAL EXPLORATION KY38 AND MARY WYNN WATER TANKS HARLAN COUNTY, KENTUCKY QORE Project No. 24305400

TABLE OF CONTENTS

INTRODUCTION	
SITE DESCRIPTION	1
PROJECT INFORM	ATION1
SITE GEOLOGY	
EXPLORATION ME	THODS
	N
SUBSURFACE CO	NDITIONS
CONCLUSIONS AN	ID RECOMMENDATIONS4
EARTHWORK RE	ISSION
FOLLOW-UP SERV	/ICES
LIMITATIONS	
ASFE Information	
APPENDICES	
APPENDIX A	Site Location/Topographic Map Boring Location Plan
APPENDIX B	Test Boring Legend Test Boring Records Fleid Testing Procedures
APPENDIX C	Summary of Laboratory Test Data

Laboratory Tesing Procedures

REPORT OF GEOTECHNICAL EXPLORATION KY38 AND MARY WYNN WATER TANKS HARLAN COUNTY, KENTUCKY QORE Project No. 24305400

INTRODUCTION

QORE, Inc. has completed the geotechnical exploration for the proposed tank. The purpose of this exploration was to obtain subsurface data at the sites pursuant to developing site preparation and foundation recommendations for the proposed construction. We conducted this project according to our proposal KY4934, dated June 15, 2009, which was authorized by Mr. R. Vaughn Williams – Vice President of Kenvirons. This report explains our understanding of the project, documents our findings, and presents our conclusions and geotechnical engineering recommendations,

SITE DESCRIPTION

This report covers the proposed KY38 and Mary Wynn water tank sites. The KY38 water tank is located near the entrance to the abandoned Darby Mine No. 1 in eastern Harlan County, just north of Kentucky Highway 38. The proposed tank location was located adjacent to a fuel tank and the access drive for the mine in an overgrown area with chest high weeds. The proposed tank site was relatively level, sloping slightly downhill to the south. A small pond is shown on the site plan; however, the area was very overgrown and our field engineer did not observe the pond condition. Likewise, the dam of the pond was overgrown thus our engineer could not assess the condition of the dam.

The Mary Wynn tank is located in a small clearing in the woods along the crest of a ridgeline. The tank is accessed via a gravel road that extends up the hill from KY Highway 38 about 3 miles west of the KY38 Tank site. The hillsides adjacent to the tank site slope steeply downhill away from the tank. The provided topographic mapping indicates the hillsides are at an approximate slope angle of 1.5:1 H:V. Topographic site location maps showing the locations of the two tanks are included in Appendix A.

PROJECT INFORMATION

The information provided to QORE included location plan maps of the proposed tank sites and general information about the proposed tanks. The ground storage tanks will be the same size, with each one holding 47,000 gallons and being approximately 28 feet tall with a diameter of 17 feet.

The tank structural design will be determined by the tank supplier/constructor thus structural loading information and settlement criteria were not available at the time of this report. Considering the height of the tank, we would expect bearing pressures to exceed 2,000 psf. Settlement tolerances for similar tanks are typically 1.5 inches of total settlement and 0.75 inches of differential settlement. Our work scope included only the tank foundations and does not include evaluating the soil conditions along the access road alignment.

SITE GEOLOGY

We reviewed the USGS geologic quadrangle map at each of the tank sites. The KY38 tank is located within the *Keokee Quadrangle* (1971), which indicates the site is underlain by the Wise Formation. The Wise is a mixture of siltstone, shale, sandstone, and coal. The sandstones are generally light colored, medium grained, and moderately quartzose. There are four persistent sandstone members within the Wise with the Clover Fork sandstone being mapped immediately below the site. The Clover Fork varies in thickness from 45 to 65 feet. The shale and siltstone portions of the Wise are generally dark gray and can be indistinguishable. The Wise contains several coal beds and coal zones. Kentucky Cabinet for Mines and Minerals mapping indicates that the Darby Mine No. 1, located at the site, mined the Darby Coal seam which is in the formation below the Wise. The mine mapping does not indicate coal mining immediately beneath the proposed KY38 tank site.

The Mary Wynn tank site is located within the *Louellen Quadrangle (1973)* which indicates the site is underlain by the Mingo Formation. The Mingo Formation is a mixture of sandstone, shale, siltstone and coal. The sandstone is generally light to dark gray and massively bedded. The shale and siltstone are both medium to dark gray with fine sand and are interbedded. The Mingo Formation contains several coal beds/zones including the Kellioka coal bed. Mine mapping information available through the Kentucky Cabinet for Mines and Minerals indicates that there is an active mine whose permit area extends beneath the proposed Mary Wynn tank site. Presently, it does not appear that mining has occurred beneath the tank site based on our review of the available mapping. However, the mine mapping shows that mining is planned in the next two years. The Rex Coal Co, Inc. mine is currently mining the Kellioka coal bed. Based on the geologic mapping, the Kellioka coal bed is between 200 and 250 feet below the tank site elevation.

EXPLORATION METHODS

Field Exploration

We drilled three soil test borings to explore the subsurface conditions at each of the sites. Appendix A contains drawings showing the boring locations and proposed tank location. Mr. Andrew Fiehler, P.E. a QORE staff engineer, was on-site to observe pertinent site features and surface indications of site geology, to direct drilling operations, and to record and log the results of the soil sampling.

We obtained soil samples using a split-barrel sampler driven by an automatic hammer system according to ASTM D1586. Rock coring was used to sample auger refusal material in one boring at each of the sites. The stratification lines shown on the boring records represent the approximate boundaries between soil or rock types. The transitions may be more gradual than shown. Field sampling and testing procedures used by QORE are in general accordance with ASTM procedures and established geotechnical engineering practice. Appendix B contains brief descriptions of field procedures.

Laboratory Testing

Mr. Fiehler returned the recovered soil and rock core samples to the laboratory for testing. QORE performed Atterberg Limits tests and natural moisture content tests on representative samples from each site. Our laboratory test data is summarized in Appendix C.

SUBSURFACE CONDITIONS

Our work scope included exploration of three water tank sites. For ease of record keeping, borings at the KY38 Tank site were numbered in the 200's (i.e. -B-201) and the Mary Wynn Tank site were numbered in the 300's (i.e. -B-301).

KY38 Tank – Our borings encountered what appeared to be mine waste material. The mine waste material was a mixture of sandstone pieces with lean clay and sand. We were able to penetrate between 8 and 15 feet of the mine waste material with our augers before encountering auger refusal. In boring B-203 we encountered auger refusal at a depth of 8.5 feet at which point rock coring was begun. Auger refusal was believed to be encountered on a boulder as the recovered rock core samples were also a mixture of the sandstone pieces. The coring process was advanced to a depth of 24.5 feet in an effort to encounter bedrock before

being terminated at the direction of the engineer. Bedrock was not encountered in the core hole.

Free groundwater was not encountered in the open borings at the completion of soil augering. Groundwater levels fluctuate with time due to seasonal rainfall, locally heavy precipitation events, construction activities, and other site-specific factors. Therefore, future groundwater levels may be encountered within the depths explored by our borings. It is common to encounter groundwater in perched or trapped zones within fills such as that encountered at the site. Amounts and flow duration from encountered water vary and depends on site specific characteristics and recent rainfall activity.

Mary Wynn Tank – Our borings encountered residual soils extending from the ground surface. We advanced our borings in the small clearing which was void of topsoil. However, outside of the clearing, we observed a layer of leaf litter and topsoil approximately six to eight inches thick. Boring B-301 encountered auger refusal at a depth of 1.5 feet, at which point rock coring was begun. The recovered core samples consisted of interbedded weathered sandstone and silty sand. The recoveries and the Rock Quality Designations (RQD) for the rock coring process indicated poor quality rock.

In borings B-302 and B-303, we were able to penetrate the weathered rock layers with the augers to a depth 14.3 feet in B-302 and the pre-determined termination depth of 15.5 feet in B-303. The Standard Penetration Tests (SPT) in borings B-302 and B-303 indicated layers of weathered sandstone and silty sand similar to the recovered samples from B-301.

CONCLUSIONS AND RECOMMENDATIONS

GENERAL DISCUSSION

KY38 Tank - The project site is located on what appears to be a mine waste dump. The site is located at the entrance to an abandoned underground coal mine, which is the likely source of the encountered fill material. We believe it is possible to construct the proposed tank at the project site, provided initial site preparation is performed and some additional design details are included. The site preparation and design details are discussed further in the following sections of the report.

There is an inherent risk of structurally significant settlement involved with leaving any of the existing spoil material in-place beneath the proposed tank. Our recommendations outlined below are intended to help reduce the potential for settlement. To completely remove the risk of settlement of the spoil material would require complete removal of all of the spoil and backfilling the excavation in a controlled manner. Another option for eliminating the risk of settlement of the spoil material would be to found the tank on deep foundations bearing on the underlying bedrock. These options would be more expensive. By constructing the tank on the project site, even implementing our recommendations, the owner must be willing to accept the risk of potentially structurally significant settlement.

Mary Wynn Tank – This tank site is located along the back of a residual ridgeline with steep side slopes. While our borings did not encounter *solid* bedrock, we believe that the encountered subsurface conditions are suitable for supporting the proposed water tank.

For ease of discussion, the following sections of the report outline our recommendations for the KY38 Tank. The recommendations for the Mary Wynn Tank begin on Page 8.

KY38 TANK

EARTHWORK RECOMMENDATIONS

All topsoil and organic materials should be stripped from the tank area to prepare the area for construction. The stripping can be limited to the immediate construction area. The removed topsoil should be spread in "landscape" areas only, outside of the construction area. Organic material should not be utilized as fill material.

To prepare the tank foundation area, we recommend that the tank footprint, plus a buffer of 10 feet, be excavated to a depth equal to the tank diameter below the foundation elevation. In this case a depth of 17 feet. After the excavation subgrade has been observed by a QORE engineer, the excavation can then be backfilled with compacted, structural fill material to the foundation bearing elevation.

The fill material should be compacted to a target density of at least 95 percent of the standard Proctor maximum dry density. Mine spoll used as structural fill should be placed in 6-inch lifts, unless it is demonstrated that adequate compaction is achieved with maximum lifts up to 12 inches thick. The maximum particle size should be limited to 6 inches in any dimension within the upper 2 feet of the foundation subgrade. We recommend limiting the lift thickness to 6 inches in the top 2 feet of the tank subgrade.

The material excavated from the tank footprint should be suitable for use as backfill. A standard Proctor test was not included in the scope of this project. We recommend that a standard Proctor test be performed prior to placement of the fill to determine the compaction criteria. Some selective culling or crushing of large diameter boulders may be required in order to reuse the excavated material as fill.

It has been our experience that the spoil is most adequately compacted by blading the lift into place, compacting with a CAT 825 or similar compactor, and finish rolling with a loaded scraper or haul truck. The compactor breaks down the material and seats the cobbles while the heavy rubber tired equipment provides the compaction. Since the backfill area will likely prevent access by heavy earthwork equipment, additional passes of the compactor will likely be required to achieve the required compaction. Adequacy of the compaction is determined qualitatively with supplemental data provided by the nuclear density gauge. Our evaluation criteria consists of the following:

- Lift thickness
- Particle size and gradation of material
- Intensity and uniformity of compactive effort and number of passes
- Response of the lift to construction traffic
- Moisture content
- Dry density

The dry density is not the determining factor in assessing the adequacy of the compactive effort and approval of the fill lift. If the contractor uses the recommended equipment, conforms with the material specifications, applies a uniform effort over the entire fill lift, traverses over the fill lift under the normal course of placing subsequent material, and the moisture content is within an acceptable range, the fill performance should be acceptable regardless of the density values obtained in the field. Therefore, only highly trained and qualified personnel should monitor fill placement. The final site grades will also play an important role in the long term performance of the tank and site stability. Our experience with mine waste sites indicates that the materials can degrade and soften when exposed to water. Site grading should direct surface water and tank overflow water away from the tank via paved or concrete lined ditches. A ditch should also be constructed on the uphill side of the tank to direct surface water away from the tank area. Sealing the ground surface around the tank with a layer of clayey soll over the rocky backfill is an effective means of reducing the amount of water allowed into the subgrade.

FOUNDATION RECOMMENDATIONS

We recommend that the tank be designed to bear on a mat foundation, even though we recommend re-grading the tank site. The foundation should be designed for a maximum allowable bearing pressure of 2,000 psf. Our experience with mine waste sites indicates that the materials can degrade and soften when exposed to water. We recommend that once the foundation excavation has been approved by a QORE engineer, the reinforcing steel be placed and the foundation concrete be poured the same day. If this is not possible, a mud mat or layer of lean concrete should be placed in the excavation to protect the approved subgrade. We recommend that the mud mat be at least 4 inches thick and be poured neat to the excavation walls. The mud mat will also allow the reinforcing steel to be placed and kept clean.

We recommend that a French drain be constructed around the perimeter of the tank foundation. The drain should tie into the site drainage to direct the collected water away from the tank and recompacted area. French drains are typically constructed by lining an excavation with filter fabric and backfilling with open graded crushed stone such as KYDOT #57 stone. The filter fabric should be of sufficient length to overlap at the top of the excavation to completely enclose the stone backfill.

A detailed settlement analysis (with consolidation testing) was beyond the scope of this report. When constructing on spoil fill sites such as this one, the Owner must be willing to accept the risk of settlement, even if some ground modification is performed. The risk of settlement is proportional to the depth and age of the fill, as well as the compactive effort applied to the fill during placement. Due to the heterogeneous composition of the spoil fill, it is difficult to accurately predict a magnitude of expected settlement.

Seismic Information

The American Water Works Association (AWWA) site classification definitions (as described in AWWA D100-05) are analogous to the 2007 Kentucky Building Code (KBC) site seismic classifications as defined in Table 1615.1.1 of the code. Based on our evaluation of the subsurface conditions at the project site, we recommend a site classification of "E". This relatively low site classification is based partly on the fact that our borings encountered moderately low consistency spoils within the depths explored and did not encounter any residual soil or bedrock.

MARY WYNN TANK

EARTHWORK RECOMMENDATIONS

All topsoil and organic materials should be stripped from the tank area to prepare the area for construction. The stripping can be limited to the immediate construction area. Based on field observations at the time of drilling, expect stripping depths of about ½ foot to penetrate the topsoil and leaf litter. Removal of trees should include the rootball. The removed topsoil should be spread in "landscape" areas only, outside of the construction area. Organic material should not be utilized as fill material.

Structural Fill Placement

The site plans indicate that about two to three feet of soll fill placement will be required at the tank site. Ideally, structural fill is defined as inorganic natural soll with a maximum particle size of 3 inches and maximum dry density of at least 95 pounds per cubic foot (pcf) when tested by the standard Proctor method (ASTM D698) and a plasticity index (PI) of less than 30 percent. Our laboratory testing indicates that the cut material can be used as structural fill. During construction, standard Proctor testing and Atterberg limits testing of proposed fill soils (on-site and/or off-site) should be performed to determine the maximum dry density and plasticity of the soil prior to use as structural soil fill. Soils with a PI greater than or equal to 30 percent may be used in deeper fills, provided they are kept at least 3 feet below the design subgrade elevation.

Fill placement should occur in relatively thin (6 to 8-inch) layers and be compacted to at least 95 percent of the standard Proctor maximum dry density. The moisture content of the fill should be maintained within 3 percent of the soil's optimum moisture content even though compaction may be achieved at moisture contents outside the specified range.

In-place density testing must be performed on structural fill as a check that the previously recommended compaction criteria have been achieved. This allows our project engineer to monitor the quality of the fill construction and verify that his design criterion is being achieved in the field. We further recommend that these tests be performed on a full-time basis by QORE. The testing frequency for density tests performed on a full-time basis can be determined by our personnel based on the area to be tested, the grading equipment used, and construction schedule. Tests should be performed at vertical intervals of 8-inches or less (the recommended lift thickness) as the fill is being placed.

FOUNDATION RECOMMENDATIONS

Based on the provided design information, we recommend that the tank be founded on a mat foundation. We recommend that the tank foundations be founded on weathered rock and sized for a maximum allowable bearing capacity of 2,500 pounds per square foot (psf). We recommend a minimum foundation bearing elevation of 1821 feet MSL.

Since the foundation bearing surface will likely be weathered sandstone with clay seams, the material will degrade quickly when exposed to water. We recommend that once the foundation excavation has been approved by a QORE engineer, the reinforcing steel be placed and the concrete foundation be poured the same day. If this is not possible, a mud mat or layer of lean concrete can be placed in the excavation to seal the subgrade. We recommend that the mud mat be at least 4 inches thick and be poured neat to the excavation walls. The mud mat will also allow the reinforcing steel to be placed and kept clean.

We also recommend that the site be graded to direct surface water away from the foundations. Backfilling around the foundation with compacted soil fill will help reduce the amount of water which can infiltrate the subgrade.

A detailed settlement analysis with consolidation testing was beyond the scope of this report. With the mat foundation bearing on weathered rock, we anticipate that the settlement will be less than the maximum tolerable settlement of 1.5 inches using the maximum allowable bearing pressure. For this type of foundation system, the differential settlement across the tank is usually about one-half the total settlement.

Seismic Information

The American Water Works Association (AWWA) site classification definitions (as described in AWWA D100-05) are analogous to the 2007 Kentucky Building Code (KBC) site seismic classifications as defined in Table 1615.1.1 of the code. Based on our evaluation of the subsurface conditions at the project site, we recommend a site classification of "C".

FOLLOW-UP SERVICES

Our services should not end with the submission of this geotechnical report. QORE should be kept involved throughout the design and construction process to maintain continuity and to verify that our recommendations are properly interpreted and implemented. To achieve this, we should be retained to review project plans and specifications with the designers to see that our recommendations are fully incorporated. We also should be retained to monitor and test the site preparation and foundation construction. If we are not allowed the opportunity to continue our involvement on this project, we cannot be held responsible for the recommendations in this report.

Foundation construction will be a critical aspect of this project. Our familiarity with the site and with the foundation recommendations will make us a valuable part of your construction quality assurance team. In addition, a qualified engineering technician should observe and test all structural concrete and steel. Only experienced, qualified persons trained in geotechnical engineering and familiar with foundation construction should be allowed to monitor and test foundations. Normally, full-time monitoring of the site work and foundation installation is appropriate.

LIMITATIONS

This report has been prepared for the exclusive use of Kenvirons, Inc. for specific application to this project. Our conclusions and recommendations have been prepared using generally accepted standards of geotechnical engineering practice in the Commonwealth of Kentucky. No other warranty is expressed or implied. This company is not responsible for the conclusions, opinions, or recommendations of others based on these data.

Our conclusions and recommendations are based on the limited design information furnished to us, the data obtained from this geotechnical exploration, and our past experience. They do not reflect variations in the subsurface conditions that are likely to exist between our borings and in unexplored areas of the site resulting from the variability of the soils and bedrock at these sites as well as past fill placement at the KY38 tank site. If such variations become apparent during construction, it will be necessary for us to re-evaluate our conclusions and recommendations based upon on-site observation of the conditions.

If the overall design or location of the water tank is changed, the recommendations contained in this report must not be considered valid unless our firm reviews the changes and our recommendations modified and verified in writing. When the design is finalized, we should be given the opportunity to provide the additional service of reviewing the foundation plan, grading plan, and applicable portions of the project specifications. This review will allow us to check whether these documents are consistent with the intent of our recommendations.

We recommend that the owners retain these services and that QORE be allowed to continue our involvement in the project through these phases of construction. Our firm is not responsible for interpretation of the data contained in this report by others, nor do we accept any responsibility for job site safety, which is the sole responsibility of the contractor.

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes:

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geolechnical engineers structure their services to meet the specific needs of their clients. A geolechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geolechnical engineering study is unique, each geolechnical engineering study is unique, each geolechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geolechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one — nol even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because these relying on a geolechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking fols, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- · completed before important project changes were made.

Typical changes that can crode the reliability of an existing geotechnical engineering report include those that affect:

 The function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design learn, or
- project ownership.

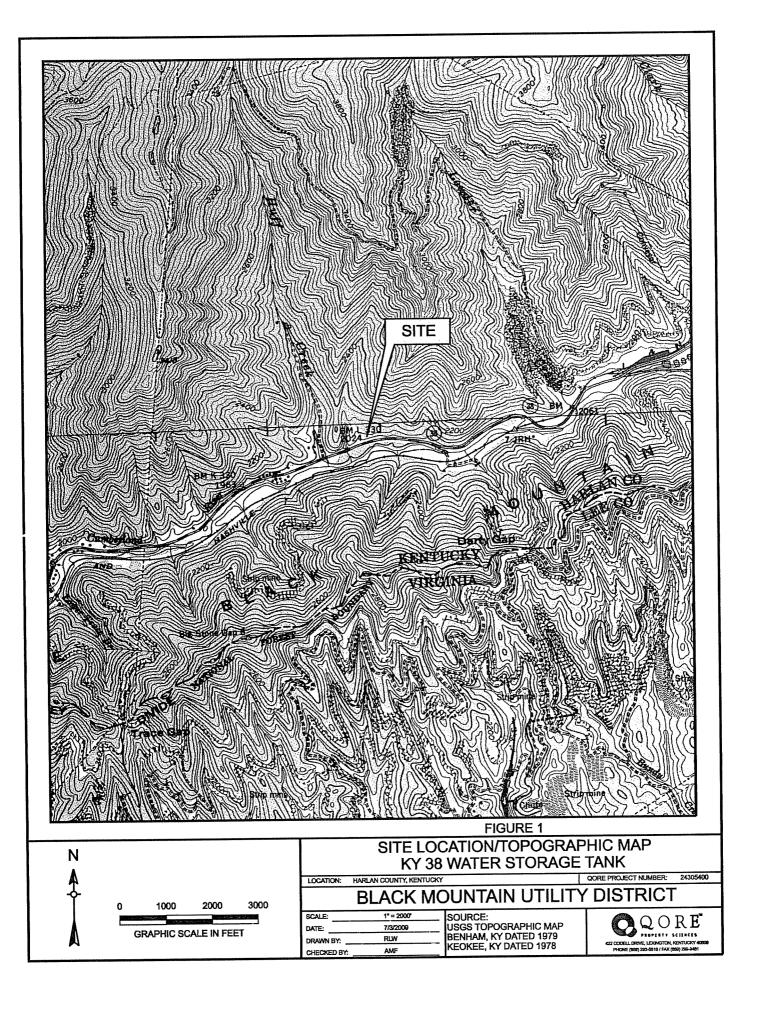
As a general rule, always inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or flability for problems that occur because their reports do not consider developments of which they were not informed.

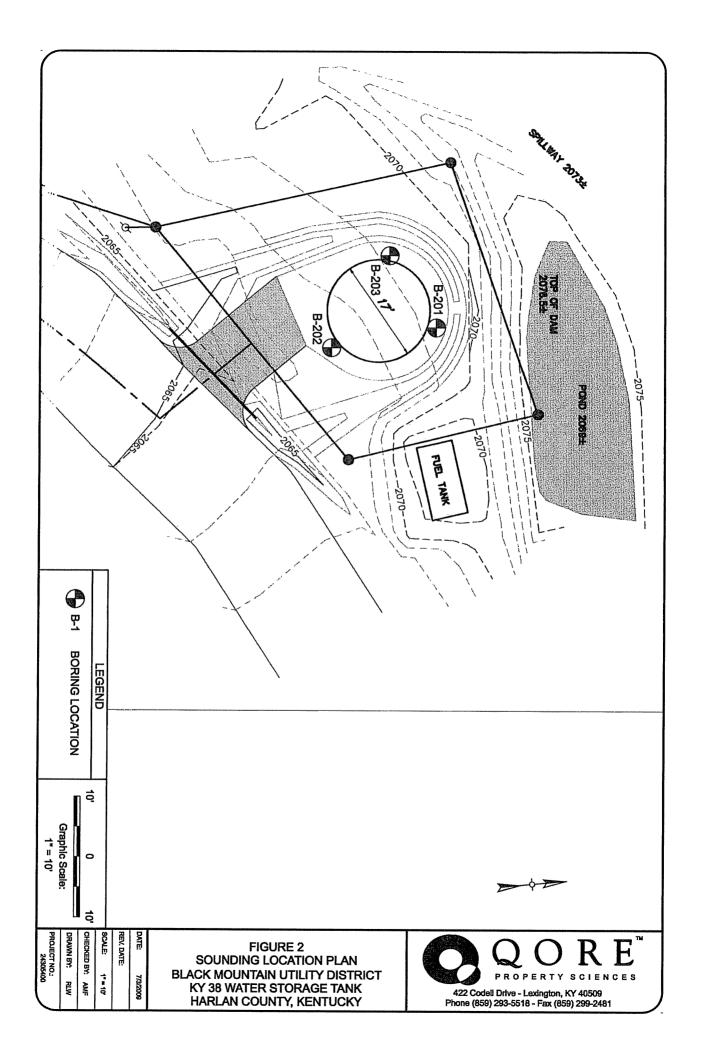
Subsurface Conditions Can Change

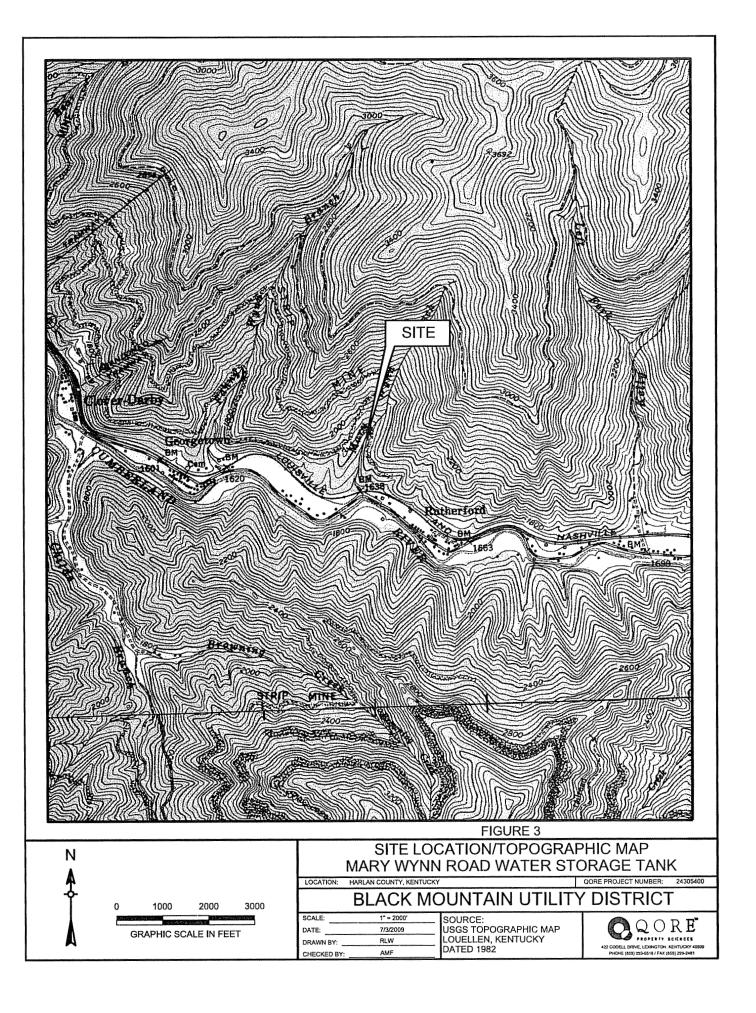
A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the sile; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional lesting or analysis could prevent major problems.

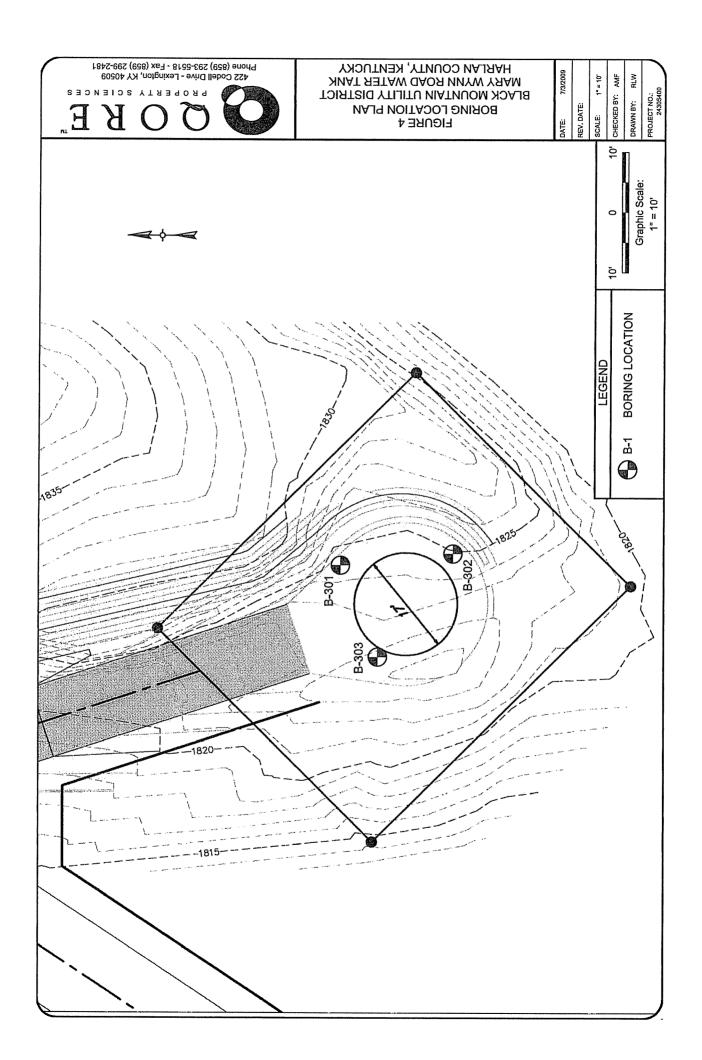
Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tosts are conducted or samples are taken. Geolechnical englneers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.


A Report's Recommendations Are *Not* Final


Do not overrely on the construction recommendations included in your report. Those recommendations are not final, because geolechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual


APPENDIX A


SITE LOCATION/TOPOGRAPHIC MAP

BORING LOCATION PLAN

APPENDIX B

TEST BORING LEGEND

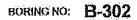
TEST BORING RECORDS

FIELD TESTING PROCEDURES

TEST BORING RECORD LEGEND

COUNSE ENAMED DOLLS Price Endominant California ISANDE SERVICE.3 Dit. KS N Relative Dansity D.4. Very Locee D.4. Very Locee D.4. Very Soit D.5. Sitt Soit D.5. Si	COAPSE OD	AINED SOILS	E AND COAR	E GRAINED SO		1	E QIZE
N Relation Density N Consistence Boulders Greater funs 300 mm (1/2 ln) 0-4 Very Losse 0-1 Very Soft 0-6.5 Cobble 75 mm (1/2 ln) 5-40 Losse 2.4 Soft 0.5.1 Cobble 75 mm (1/2 ln) 11:30 Firm 5.8 Firm 1.2 Coarset Sand 2 mm (1/2 ln) 0.425 mm (1/2 ln) 11:30 Very Firm 5.15 Siff 2.4 Madian Sand 0.425 mm (1/2 ln) 11:40 Very Firm 5.15 Siff 2.4 Madian Sand 0.425 mm (1/2 ln) 11:40 Very Firm 5.15 Siff 2.4 Madian Sand 0.425 mm (1/2 ln) 11:40 Very Firm 5.15 Siff 3.4 Exact Stand 0.027 mm (1/2 ln) 11:40 Loss Stand Coarse Sand 2.4 Soft 0.5 Soft 11:40 Loss Stand Coarse Sand 2.4 Soft No.5 Soft 11:40 Loss Stand Coarse Sand Soft No.5 Soft No.5 11:40 Loss Stand Coarse Sand Hard Hard Hard Hard Hard Hard Hard Hard Hard Har						PARIGL	E SIZE
5-10 Logen 2-4 Soft D.5-1 Courses A.7-rem to 7-rm (Q16 to 3 int) 11.20 Yem 5-15 Simil 2-4 Courses Courses Courses A.7-rem to 4.7-rem to 2-rem 31-60 Dense 5-15 Simil 5-24 Modism Saudo 0425 mm to 2-rem Ene Saudo 0425 mm to 2-rem Ene Saudo 0425 mm to 2-rem 31-60 Dense Simil 5-10 Simil 5-10 Dense Simil 5-10 Dense Dense Simil 5-10 Dense Dense Simil 5-10 Dense Dense Simil 5-10 Dense Dense Dense Dense Simil 5-10 Dense Dense <th>Ń</th> <th>Relative Density</th> <th>Ň</th> <th>Consistency</th> <th></th> <th>Boulders</th> <th>Greater than 300 mm (12 in)</th>	Ń	Relative Density	Ň	Consistency		Boulders	Greater than 300 mm (12 in)
±.10 Logsa 2-4 Seft D.5-4 Carres 4.74 mm to 75 mm t	n A	Very Lonse	0-1	Very Soft	0-0.5	Cobbles	75 mm to 300 mm (3 to 12 in)
11-00 Vary Pirm 0-15 Strift 2-4 Machine Same Determine 31-80 Vary Stift 4-9 Pinz Same Determine Pinz Same Determine Pinz Same Determine Pinz Same Determine Same Determine Same Determine Same Determine Same Determine Same Determine Same Same Determine Same					D.5-1	Gravel	
1-93 Denian 16-30 Vany Still 4-8 Fine Sand 0.0425 mm 2-500 View 31 Hend 6-31 Site 6049 Less then 0.025 mm 2-500 Dis A and the company stalling and combined present phonomatics. The barnese of a standard 4-4-4-4 min. D.22-loc: O.D. patiburities stamper is driven three-6-finite-comment with the standard 4-4-4-4 min. D.22-loc: O.D. patiburities is standard 4-4-4-4 min. Patiburities is the standard 4-4-4 m	11-20	Firm	58		3.4 C		
Ourse Over 31 Hard Bit at Cays Lowy Lowy <thlowy< th=""> <thlowy< th=""> Lowy</thlowy<></thlowy<>	A N N		17.5.2 年末。				
a TXANDARD PENETTATION TEST as advanded values of a method to bolin a distribute of assinution and resting and the intervention is advanted to advante advanted to advanted to advanted to advante advanted to advanted t	Chuer 50	Very Dense	Dver 31	Hard	8+	Silts & Clays	Less than 0.075 mm
ROCK PROPERTIES ROCK QUALITY DESIGNATION (ROD) Percent ROD Quality Provemine Providence Rock can be broken by heavy harminer blows. 6-25 Vary Poor Moderate harmoner blows. Frock can be broken by heavy harminer blows. 50-75 Fair State State broken of blows. State broken with light harmer blows. 50-75 Fair State Frock is otheren to broken with fight harmer blows. 76:80 Good Vary Soft: Frock disindigates or cashy compresses when touched; can be hard to very hard soit. 90-100 Excellent X100 State C BQ 177/6 ROD + Length of Gare Run X100 State C BQ 177/6 ROD + Sum of 4 h and longer Rock Perces Recovered X100 State C BQ 177/6 ROD + Sum of 4 h and longer Rock Perces Recovered X100 State C BQ 177/6 ROD + Sum of 4 h and longer Rock Perces Recovered X100 State C BQ 177/6 ROD + State of Core Run State of	tain relative density	and consistency informatic	on. A standard	1.4-inch I.D./2-i trip. free-fall de	nch O.D. split-t esion, or actual	ed by a rope and ca	whead. The blow counts required
Nucley Constraint Constraint Constraint Constraint Percent ROD Quality Very Hard: Rock can be broken by beavy hammer blows. 0-25 Very Poor Rock can be broken by beavy hammer blows. 25-50 Pöör Hard: Rock can be broken by beavy hammer blows. 50-75 Fair Moderate hammor blows. Smal pinces can be broken of along abare edges by considerable hamper edges and crumbes with mith by hammer blows. 50-75 Fair Soft Rock is coherent but breaks with mith and pressure at sharp edges and crumbes with mith pressure at sharp edges and crumbes with mith pressure at sharp edges and crumbes with mith and pressure. 90-100 Excellent Very Soft: Rock is coherent but breaks with mith pressure at sharp edges and crumbes with mith and pressure. 90-100 Excellent X100 Cord Diameter Indias 90-100 Excellent X100 Signap deges and crumbes with mith and pressure. 90-100 Excellent X100 Signap deges and crumbes with mith and pressure. 90-100 Excellent X100 Signap deges and crumbes with mith and pressure. 90-100 Excellent X100 Signap deges and crumbes with mith and pressure. 90-100 Excellent X100 Signap deges and crumbes with mith and pressure. 90-100 Excellent	······································						aine in an inclusion and a state of the stat
Processing Dotation 0-25 Very Poor 25-50 Poor 25-50 Poor 50-75 Fair 75-90 Good 90-100 Excellent 90-100 E	ROCKQL	JALITY DESIGNATION (RO	2D)		ومحاجد المحاجم والمحاجم والمراجع		通過有許
0.25 Very Poor moderate hammer blaws. 25-50 Peor Moderately Snat pices acts he broken off along sharp edges by considerably hand flumb pressure; can be broken with ligh hammer blaws. 50-75 Fair Soft: Rock is coherent but breaks were assly with hammer blaws. 79:80 Goigd Very Soft: Rock is coherent but breaks were assly with thom pressure at sharp edges and crumbas with tim hand pressure. 90-100 Excellent Very Soft: Rock disinfograbe or assly compresses when touched; can be had to very hard soil. 90-100 Excellent Sign of 4 to, and boost accel Pieces Resourced X100 Sign of 4 to, and boost accel Pieces Resourced X100 scovery = Length of Core Run X100 Sign of 4 to, and boost accel Pieces Resourced X100 SYMBOLS Solit Press Resourced X100 Symposition of Core Run Symposition of Core Run Applicit finderation, BPF Applicit finderatis Core Diameter finderat							
25-50 Poor Hard: hard flumb pressure; can be broken with light hammer blows. 50-75 Fair Soft: Rock is coherent but breaks very easily with thumb pressure. 75-90 Good Very Soft: Rock is coherent but breaks very easily with thumb pressure. 90-100 Excellent Very Soft: Rock disintegrates or casily compresses when fouched; can be hard to very hard seit. 90-100 Excellent X100 Si REC BO 90-100 Excellent X100 Si REC BO 100 Excellent X100 Si REC NO 100 Length of Core Run X100 Si REC NO 100 Length of Core Run X100 Si REC NO 100 Length of Core Run X100 Si REC NO 100 Length of Core Run X100 Si REC NO 101 Length of Core Run X100 Si REC NO 102 Stringth of Core Run X100 Si REC NO 101 Longth of Core Run Si REC NO Si REC 102 Si REC Soft. Soft. NO Si REC 103 Longth of Core Run Si Reco No Si Reco <t< td=""><td>0-25</td><td>Very Poor</td><td></td><td>Hard:</td><td>Mock cannol moderate ha</td><td>ne proken by inum mmer blows:</td><td>a hiszais' ant can as nioven ph</td></t<>	0-25	Very Poor		Hard:	Mock cannol moderate ha	ne proken by inum mmer blows:	a hiszais' ant can as nioven ph
50-75 Fair sharp edges and crumbles with firm hand pressure. 75-90 Good 90-100 Excellent Vary Soft: Sharp edges and crumbles with firm hand pressure. Sold Good 90-100 Excellent Length of Rock Core Recovered Length of Core Run X100 Sold Core Run Nam of 4 In and longer Rock Places Recovered Length of Core Run SymBoLs Soll, PROPERTY SYMBOLS KEY TO MATERIAL TYPES Nam of 4 In and longer Rock Places Recovered Longth of Core Run SymBoLS Soll, PROPERTY SYMBOLS KEY TO MATERIAL TYPES Nam of 4 In and longer Rock Places Recovered Longth of Core Run SymBoLS Soll, PROPERTY SYMBOLS KEY TO MATERIAL TYPES Appeal Mategraywacke Provide Sitt Crushed Core Standed Gravel Linestoley Sitt Crushed Sitt Crushed Core Diameter <td>25-50</td> <td>Poor</td> <td></td> <td></td> <td>hard lhumb p</td> <td>pressure; can be br</td> <td>oken with light hammer blows.</td>	25-50	Poor			hard lhumb p	pressure; can be br	oken with light hammer blows.
XP-90 Good 90-100 Excellent 90-100 Excellent Length of Flock Core Recovered Length of Core Run X100 SS REC NQ NQ 1-7/16 NQ 1-17/16 NQ 1-17/16 NQ 1-17/16 NQ <td>50-75</td> <td>Fair</td> <td></td> <td>Soft:</td> <td>sharp edges</td> <td>and crumbles with</td> <td>firm hand pressure.</td>	50-75	Fair		Soft:	sharp edges	and crumbles with	firm hand pressure.
Lendth of Rock Core Recovered Length of Core Run X100 Core Diameter BQ Inclias BQ Inclias BQ ROD = Sum of 4 In, and Jonger Rock Pieces Recovered Length of Core Run X100 X100 HQ 2-1/2 ROD = Sum of 4 In, and Jonger Rock Pieces Recovered Length of Core Run X100 SYMBOLS SOIL PROPERTY SYMBOLS ROD = SYMBOLS KEY TO MATERIAL TYPES N: Standard Penetration, BPF Asphalt Digganic Sill Organic Sill Limestone Matagraywacke N: Standard Penetration, BPF Clushed Limostono Weil-Graded Gravel Sandstone Phylite N: Standard Penetration, BPF Shot-rock Weil-Graded Gravel Sillistone Claystono Claystono Motagraywacke N: Standard Penetration, M: Low Plasticity Inogranic Sill Viell-Graded Sand Sillistone Claystono Sillistone Claystono N: Sample Recovery N: Sample Sample N: Sample Recovery Yigh Plasticity Inogranic Sill Shy Sand Gneiss Sinist N: Sample Time Reading N: Sample Time Reading Low Plasticity Inogranic Sill Shy Sand Schist Schist Auger or	75-90	Good		Very Soft:			ipresses when touched; can be
Length of Core Run X100 B3 REC BQ 1-7/16 RQD + Sum of 4 In, and Ionsar Rock Pieces Recovered Length of Core Run X100 HQ 2-1/2 RQD + Sum of 4 In, and Ionsar Rock Pieces Recovered Length of Core Run X100 SYMBOLS SYMBOLS KEY TO MATERIAL TYPES KEY TO MATERIAL TYPES N: Standard Penetration, BPF Motagraywacke N: Standard Penetration, Standard Penetration, BPF Motagraywacke N: Standard Penetration, Penetration, Standard Penetration, Standard Penetration, Standard Penetration, Standard Penetration, Penetration, Standard Penetration, Standard Penetration, Standard Penetration, Standard Penetratin, Standard Penetration, Standard Penetration, Standard P	90-100	Excellent					
KEY TO MATERIAL TYPES Solit PROPERTY SYMBOLS Topsoil High Plasticity inorganic Sill or Clay Image and Sills/Clays Peal Material Asphall Organic Sills/Clays Limestone Mategraywacke N: Standard Penetration, BPF Crushed Limostone Well-Graded Gravel Sendstone Phylite Mategraywacke N: Standard Penetration, BPF Fill Material Organic Sills/Clays Well-Graded Gravel Sendstone Phylite Mategraywacke P: Plasticity index, % Fill Material Opony-Graded Gravel Sillstone P: Finds Compressive Strength Estimated Qu, TSF Shot-rock Fill Silty Gravel Claystono Sillstone F: Finds Content Low Plasticity Inorganic Silt Clayey Gravel Weathered Rock Dolomite Imit Sills Sills Sills Single Imit Sills Spoon Sample No Sample Recovery' High Plasticity Inorganic Clay Silty Sand Graeiss Schist Mater or Imit Reading Low Plasticity Inorganic Silt or Clayey Sand Schist Schist Auger or Water Level Time Reading		if 4 In, and longer Rock Pie	ces Recovored	.43			
Topsoil High PlastIcity inorganic Sill or Citay Peal Amphibolile M: Motagraywacke Asphall Organio Sillis/Ciays Limestone Motagraywacke Pi: Plasticity index, %. Crushed Limostono Well-Graded Sandstone Phylite Motagraywacke Op: Pocket Penetrometer Value, TSF Qir Well-Graded Sandstone Phylite Organio Compressive Strength Estimated Qui, TSF Fill Material Poorly-Graded Siltstone Provide Provide Shot-rock Silty Gravel Siltstone Provide Provide Provide Low Plasticity Inorganic Silt Clayed Gravel Weathered Rock Weathered Rock Undisturbed Op No Sample Recovery Low Plasticity Inorganic Silt Poorly-Graded Granite Op No Sample Recovery Valor Level After Drilling High Plasticity Inorganic Clay Silty Sand Granite Op No Sample Recovery Valor Level Sample Poork Core Sample Extended Low Plasticity Inorganic Silt or Silty Sand Gneiss Splits Auger or Piine Reading				43 X100	RQD		
Asphall Clay Clay Metagraywacke Pit. Plasticity index, % Crushed Silts/Clays Well-Graded Sandstone Phylite Pit. Plasticity index, % Crushed Well-Graded Sandstone Phylite Pooteket Penetrometer Value, TSF Vell-Graded Sandstone Phylite Uncontinued Compressive Strength Fill Poorly-Graded Siltstone Provide Provide Shot-rock Fill Silty Gravel Claystono Provide Provide Low Plasticity Clayoy Gravel Weathered No Sample No Sample High Plasticity Poorly-Graded Grantle Silts Spoon Water Level Low Plasticity Poorly-Graded Grantle Grantle Split-Spoon Water Level Low Plasticity Poorly-Graded Grantle Grantle Split-Spoon Water Level Horganic Clay Silty Sand Graeiss Schist No Sample Extended Low Plasticity Silty Sand Schist Graeis Time Resdiring		Length of Core Ru		43 X100	RQD	HQ 	2-1/2 DIL PROPERTY SYMBOLS
Asphall Clay Clay Metagraywacke Pit Plasticity index, % Crushed Silts/Clays Limestone Phylite Pit Plasticity index, % Crushed Well-Graded Sandstone Phylite Pocket Penetrometer Value, TSF Well-Graded Sandstone Phylite Uncontinued Compressive Strength Fill Poorty-Graded Siltstone Provide Provide Shot-rock Silty Gravel Claystono Provide Provide Low Plasticity Poorty-Graded Siltstone Provide Provide Low Plasticity Clayay Gravel Weathered No Sample No Sample Notagray Sand Dolomite Provide Siltstone Provide Low Plasticity Poorty-Graded Granite Provide Provide Provide Low Plasticity Poorty-Graded Granite Provide	RQD ≠ <u>Sum c</u>	Length of Core Run Key to Mat		43 X109 SYMBOL	RQD S	HQ N: Star	2-1/2 DIL PROPERTY SYMBOLS indard Penetralion, BPF
Asphall Organic Limestone Motagraywacke PI: Plasticity index, % Crushed Silts/Clays Limestone Phylite Pi: Plasticity index, % Crushed Limestone Phylite Pi: Plasticity index, % Op: Pocket Penetrometer Value, TSF Qu: Uncontined Compressive Strength Estimated Qu, TSF Op: Op: Pocket Penetrometer Value, TSF Qu: Poorty-Graded Siltstone Phylite Ory Unit Weight, PCF Shot-rock Silty Gravel Claystono Fill Claystono Low Plasticity Clayoy Gravel Weathered No Sample High Plasticity Weil-Graded Dolomito No Sample Low Plasticity Poorty-Graded Granite Indisturbod No Sample High Plasticity Poorty-Graded Granite Silty Sand Greiss Vater Level High Plasticity Silty Sand Greiss Schist Auger or Extended	RQD ≠ <u>Sum c</u>	Length of Core Run KEY TO MAT	n FERIAL TYPES	43 X109 SYMBOL	RQD S	HQ N: Star M: Mol	2-1/2 DIL PROPERTY SYMBOLS Indard Penetralion, BPF Sture Content, %
Crushed Limostono Well-Graded Gravel Sandstone Phylite Qu: Unconlined Compressive Strength Estimated Qu, TSF Fill Material Poorly-Graded Gravel Sillstone Y Dry Unit Weight, PCF Shot-rock Fill Silly Gravel Olaystono Fill Material Orgony-Graded Gravel Sillstone Low Plasticity Inorganic Silt Clayoy Gravel Weathered Rock Weathered Rock Undisturbed Sample No Sample Recovery Low Plasticity Inorganic Clay Poorly-Graded Sand Dolomito Indisturbed Granite No Sample Recovery High Plasticity Inorganic Clay Poorly-Graded Sand Granite Indisturbed Granite Split-Spoon Sample Water Level After Drilling High Plasticity Inorganic Clay Silty Sand Gneiss Gneiss Extended Low Plasticity Inorganic Silt or Clayey Sand Schist Auger or	RQD ≠ <u>Sum c</u>	Length of Core Run KEY TO MAT High Plasticity Inorganic Sill or City	n FERIAL TYPES	43 X109 SYMBOL	RQD S	HQ N: Star M: Mói LL: Liqu	2-1/2 DIL PROPERTY SYMBOLS Indard Penetralion, BPF sture Content, % Jud Limit, %
Limostono Gravel Sandstone Phylite Gravel Fill Material Poorly-Graded Siltstone Dry Unit Weight, PCF Shot-rock Silty Gravel Claystono F: Fines Content Low Plasticity Clayey Gravel Weathered Weathered No Sample High Plasticity Well-Graded Sand Dolomite Inorganic Silt Low Plasticity Poorly-Graded Granite Inorganic Silt Split-Spoon Low Plasticity Poorly-Graded Granite Inorganic Silt Split-Spoon Low Plasticity Poorly-Graded Granite Split-Spoon Water Level High Plasticity Sity Sand Granite Inorganic Clay Start Dolomite Low Plasticity Sity Sand Granite Inorganic Clay Extended High Plasticity Sity Sand Graeiss Graeiss Extended Low Plasticity Clayey Sand Schist Auger or Extended	RQD = <u>Sum c</u>	Length of Core Run KEY TO MAT High Plasticity Inorganic Silt or Clay Organic	n FERIAL TYPES	43 X100 SYMBOL	RQD S Amphibolile	HQ N: Star M: Mol LL: Liqu ke Pit Plas	2-1/2 DIL PROPERTY SYMBOLS Indard Penetralion, BPF sture Content, % Jid Limit, % sticity Index, %
Fill Material C Poorly-Graded Gravel Siltstone Claystone Claystone Claystone Claystone F: Fince Content Low Plasticity Inorganic Silt Claysed Weathered Rock Dolomite Claystone	RQD = <u>Sum c</u>	KEY TO MAT KEY TO MAT High Plasticity Inorganic Silt or City Organic Silts/Clays	n FERIAL TYPES	43 X100 SYMBOL	RQD S Amphibolile	HQ N: Star M: Mol LL: Liqu Pl: Plat Qp: Poo	2-1/2 DIL PROPERTY SYMBOLS Indard Penetration, BPF sture Content, % Ind Limit, % sticity Index, % ket Penetrometer Value, TSF
Shot-rock Fill Silly Gravel Claystono Fill SAMPLING SYMBOLS Low Plasticity Clayey Gravel Weathered Weathered Undisturbed Sample High Plasticity Well-Graded Dolomito Dolomito Split-Spoon Water Level Low Plasticity Poorly-Graded Granite Split-Spoon Water Level High Plasticity Silty Sand Gneiss Gneiss Schist Mater or	RQD = <u>Sum c</u>	Length of Core Run KEY TO MAT High Plasticity Inorganic Sill or Clay Organic Sills/Clays Well-Graded Gravel	TERIAL TYPES	43 X100 SYMBOL:	RQD S Amphibolite Metagraywac	HQ N: Star M: Mol LL: Liqu Pi: Plat Qp: Poo Qu: Uno	2-1/2 DIL PROPERTY SYMBOLS Indard Penetration, BPF sture Content, % Ind Limit, % sticity Index, % thet Penetrometer Value, TSF confined Compressive Strength
Low Plasticity Inorganic Silt High Plasticity Inorganic Silt Clayey Gravel Well-Graded Send Dolomite Low Plasticity Inorganic Clay High Plasticity Inorganic Clay High Plasticity Inorganic Clay Low Plasticity Inorganic Clay Clayey Sand Clayey Sand Schist Clayey Sand Clayey Sand	ROD = <u>Sum c</u> Topsoil Asphall Crushed Limostone	KEY TO MAT KEY TO MAT High Plasticity Inorganic Sill or Clay Organic Sills/Clays Well-Graded Gravel Poorly-Graded	TERIAL TYPES	43 X100 SYMBOL: one	RQD S Amphibolite Metagraywac	HQ N: Star M: Mol LL: Liqu Pit: Plat Qp: Poo Qut: Unic Esti y Dry	2-1/2 DIL PROPERTY SYMBOLS inderd Penetrallon, BPF sture Content, % ind Limit, % sticity index, % thet Penetrometer Value, TSF contined Compressive Strength imated Qu, TSF
High Plasticity Well-Graded Dolomito Low Plasticity Poorly-Graded Granite High Plasticity Poorly-Graded Granite High Plasticity Poorly-Graded Granite High Plasticity Silty Sand Granite Low Plasticity Silty Sand Granite High Plasticity Silty Sand Granite Low Plasticity Silty Sand Granite Low Plasticity Silty Sand Schist Low Plasticity Clayey Sand Schist	ROD = Sum c	KEY TO MAT KEY TO MAT High Plasticity Clay Organic Silt or Clay Silts/Clays Well-Graded Gravel	TERIAL TYPES	43 X100 SYMBOL: me one	RQD S Amphibolite Metagraywac	HQ N: Star M: Mol LL: Liqu Pl: Plai Qp: Poo Qu: Unc Esti γ Dry p ² F: Finc	2-1/2 DIL PROPERTY SYMBOLS Indard Penetration, BPF sture Content, % Ind Limit, % sticity Index, % ket Penetrometer Value, TSF contined Compressive Strength mated Qu, TSF Unit Weight, PCF es Content
Inorganic Silt Sand Low Plasticity Poorly-Graded Inorganic Clay Poorly-Graded High Plasticity Silty Sand Gneiss Gneiss Low Plasticity Silty Sand Gneiss Schist Low Plasticity Clayey Sand Schist Auger or	RQD = Sum c	KEY TO MAT KEY TO MAT High Plasticity Inorganic Sill or Clay Organic Sills/Clays Well-Graded Gravel Clay Silly/Graded Gravel Silly Gravel	FERIAL TYPES	43 X100 SYMBOL: one	RQD S Amphibolite Metagraywac	HQ N: Star M: Mol LL: Liqu Pl: Plat Qp: Poo Qu: Unc Esti ý Dry D ² F: Fink	2-1/2 DIL PROPERTY SYMBOLS indard Penetration, BPF sture Content, % ind Limit, % sticity Index, % sticity Index, % stel Penetrometer Value, TSF contined Compressive Strength imated Qu, TSF Unit Weight, PCF es Content SAMPLING SYMBOLS
Low Plasticity Inorganic Clay Inorganic Clay Inorganic Clay Inorganic Silt or Clayey Sand Clayey Sand Schist Clayey Sand Schist	RQD = Sum c	Length of Core Run KEY TO MAT High Plasticity Inorganic Silt or Clay Organic Silts/Clays Well-Graded Gravel Clayer Silts Gravel Silts Gravel Clayer Gravel	TERIAL TYPES	43 X100 SYMBOL: one	RQD S Amphibolite Metagraywac	HQ N: Star M: Mol LL: Liqu Pl: Plat Qp: Poo Qu: Unc Esti y Dry D ² F: Fink	2-1/2 DIL PROPERTY SYMBOLS indard Penetralion, BPF sture Content, % ind Limit, % sticity Index, % xet Penetrometer Value, TSF contined Compressive Strength imated Qu, TSF Unit Weight, PCF es Content SAMPLING SYMBOLS sturbod No Sample
Inorganic Clay Gneiss Gneiss Extended Time Reading Clayey Sand Schist Auger or	RQD = Sum c Image: Sum c Sum c	KEY TO MAT KEY TO MAT High Plasticity Inorganic Silt or Clay Organic Silts/Clays Well-Graded Gravel Clayey Gravel Silty Gravel Clayey Gravel Well-Graded Sand	TERIAL TYPES	43 X100 SYMBOL: one	RQD S Amphibolite Metagraywac	HQ N: Star M: Mol LL: Liqu Pit Plat Qp: Poo Qu: Unc Esti Y Dry p F: Fink Samp	2-1/2 DIL PROPERTY SYMBOLS indard Penetration, BPF sture Content, % ind Limit, % sticity Index, % ket Penetrometer Value, TSF contined Compressive Strength innated Qu, TSF Unit Weight, PCF cs Content SAMPLING SYMBOLS sturbod plé No Sample Recovery
Inorganic Silt or Clayey Sand	RQD # Sum c Topsoil Asphall Crushed Limostono Fill Material Shot-rock Fill Low Plasticity Inorganic Silt Ling Plasticity Low Plasticity Inorganic Silt Low Plasticity Inorganic Silt Low Plasticity Inorganic Silt	KEY TO MAT KEY TO MAT High Plasticity Inorganic Silt or Clay Organic Silts/Clays Well-Graded Gravel Clayey Gravel Silty Gravel Clayey Gravel Clayey Gravel Well-Graded Sand Poorly-Graded	rERIAL TYPES	43 X100 SYMBOL: one one one	RQD S Amphibolite Metagraywac	HQ N: Star M: Mol LL: Liqu Pl: Plas Qp: Poc Qu: Unc Esti y Dry F: Fink F: Fink Samp Split- Samp	2-1/2 DIL PROPERTY SYMBOLS indard Penetration, BPF sture Content, % ind Limit, % sticity index, % sticity index, % sticity index, % sturbed Compressive Strength imated Qu, TSF Unit Weight, PCF cs Content SAMPLING SYMBOLS sturbed No Sample Recovery Spoon ple Vater Level After Drilling
	ROD # Sum c Topsoil Asphall Asphall Crushed Limostono Fill Material Shot-rock Fill Low Plasticity Inorganic Silt Lino Plasticity Inorganic Silt Low Plasticity Inorganic Silt Low Plasticity Inorganic Silt Low Plasticity Inorganic Silt Low Plasticity Inorganic Clay	KEY TO MAT KEY TO MAT High Plasticity Inorganic Sill or Clay Organic Sills/Clays Well-Graded Gravel Clayey Gravel Silly Gravel Clayey Gravel Clayey Gravel Well-Graded Sand Poorly-Graded Sand	rERIAL TYPES	43 X100 SYMBOL: one one one	RQD S Amphibolite Metagraywac	HQ N: Star M: Mol LL: Liqu Pl: Plas Qp: Poo Qu: Unc Esti y Dry F: Fink F: Fink Sam Split- Sam	2-1/2 DIL PROPERTY SYMBOLS indard Penetralion, BPF sture Content, % ind Limit, % sticity index, % index of the sticitude Sticitude State Compressive Strength inded Qu, TSF Unit Weight, PCF cs Content SAMPLING SYMBOLS sturbod ple No Sample Recovery Spoon ple Water Level After Drilling Core ple Extended

PR	OJECT	: Harlar	i County Water Tanks	ne na na serie a na na nationale.	·· ··			JOB }	10: 243054	00	R	EPOR	T NO:		
-			ON: Harlan County, KY							•					
	EVATIC		yyże w podarzania w stara w st	BORING STAR			200)9		100000000000000000000000000000000000000			• • •	: 6/	30/2009
	· · · · · · · · ·		D: 4" HSA	RIG TYPE: CN	ME-55)				HAMA					
		NATER					L	BORI	NG DIAMETR	ER (IN):	4	SI	IEET	1	OF 1
Rei	marks;	KY 38 1	fank					·	1	,					17
Groundwater	ELEV. (FT.)	DEPTH (FT.)	MATERIAL	DESCRIPTION	Lithology	Sample Type	Recovery (in)	RQD (%)	Qu	STAND RI	ARD		ETRAT E (N)	10N	BLOW
	-		FILL - Mixture of Clayey S and sandstone pieces, bro	and (SC), with silt wn and tan, moist		7	10 10								10 - 8 7 - 6 -
			÷			7	10					Þ			4-9-
		• •				7	14							~> 6	6-2(34
						7	10							-	3-11 19
			FILL - Sandstone Boulder			Z	з								8 - 50/
			Auger Relusal at 14.8 feet												
						r.							· · · · · ·		


PR	OJECT	Harlan	County Water Tanks				J	OB N	0: 243054	00	REPO	RT NO:		
11.10			DN: Harlan County, KY											
	EVATIO		<u>anna an an</u>	BORING START	ED: 6	/30/	200	9				PLETED	: 6/3	0/2009
	, 1996, 1996, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997		D: 4" HISA	RIG TYPE CM	E-550)				HAMM				
GF	ROUNDV	VATER (() :				ŧ	ORI	NG DIAMETH	ER (IN):	4 1	HEET	1	OF 1
Re	marks:	KY 38 T	ank							1				
Groundwater	ELEV. (FT.)	DEPTH (FT.)	MATERIAL DI	escription	Lithology	Sample Type	Recovery (in)	ROD (%)	Qu	STAND	ARD PE SISTAI	ICE (N)		BLOWS /6"
		0 -	FILL - Mixlure of Clayey Sa and sandstone pieces, brow	nd (SC), with silt in and lan, moist		7	10			angester f. Wetter	•			4-5-7
							12					0		6 - 11 - 12
		- 5 -					14							4 - 7 - 12
						7	14					0		4 - 9 - 13
		- 10 -				7	12					. 0		7 - 9 - 9
		-												2-4-2
CRA/G2 24305400/GPJ. QOR CORP. GDT 7724/59			FILL - Sandstone Boulder Auger Refusal at 14.8 feet	-		*	Ľ							2-4-2
AFG2 24305400(GPJ C		- - 20:	-											

			ION: Harlan County, KY	James and a bride and	i inter		da esta			1			•		
	EVATIO		10. JF 110.4	BORING STAR			/20	09				OMPLET	ED: 6	/30/2	00
			0D: 4" HSA	RIG TYPE: CA	AE-55	0	-		ku shekarar			OTUA			<u></u>
		WATER KY 38	the second s					BORI	NG DIAMETI	ER (IN):	4	SHEE	T 1	OF	1
tter				attannana a anna dhann a Èirean	<u> </u>	ype	(u))		<u></u>						
Groundwater	ELEV. (FT.)	DEPTH (FT.)	MATERIAL DES	CRIPTION	Lithology	Sample Type	Recovery (In)	ROD (%)	Qu	STAND RE	esis:		ATION		0V /6"
	-	0 	FILL - Mixture of Clayey Sanc and sandstone pieces, brown	l (SC), with silt and lan, moist		7	12							7- 8-	
		.				/	12							4-	
	-		Auger Refusal at 8.5 feet / Be	ain Cořina		7	10					.0		6-(
		 10 	FILL - Mixture of Claycy Sand and numerous sandslone bou tan	(SC), with silt Iders, brown and											
		- 15 -								<u> 1997 - 1997 - 19</u> 0					
		- 20													
		- 25	Coring Terminated at 24.5 feet		***										
	ŀ	-30													

PR	OJECT:	Harlan	County Water Tanks				Γ.	108	VO: 243054	00	REPO	RTN	0:	
PR	OJECT	LOCATH	ON: Harlan County, KY											<u>, and an </u>
EL	EVATIO	N: 1,82	5:1	BORING START	ED: 6	/30	/200	9		BORING	COMP	LETI	ED: 6	/30/2009
DR	ILLING	METHO	D: 4" HSA	RIG TYPE: CM	E-550)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			HAMME	R: AU	то		
GF	OUNDY	VATER ((i):					BORİ	NG DIAMETE	R (IN): 4	s	HEE	r 1	OF 1
1. 27.2	the second second		elevations measured relative t	o sile benchmark	of 18:	31.4	5 ft							
- 1-			/ynn Tank											
	Í		• 	<u></u>	T		i i			Í				Î
Groundwater	ELEV. (FT.)	DEPTH (FT.)	MATERIAL DES	CRIPTION	Lithology	Sample Type	Recovery (in)	ROD (%)	Qü	STANDA	ISTAN	0 30	ATIO 1) 1 40	76*
1.1	1825.1	0	Lean Clay (CL) sandy, STIFF,	orange, moist										
	1824.1		Weathered Sandstone, orang			V	12							8 - 14 - 50/0.4
	1823.6		Auger Refusal at 1.5 feet / Be			Π	П							
			Interbedded Sandstone and c				G	20						
				14		H		Ϋſ						
			Sandstone, tan and orange, fi grained, medium bedded											
		- 5 -	Clay seams, sandy and silty, l	an and orange,							<u> </u>	1.11		1
			molst											
		- 1					17	15						
		÷												
						Щ								
		- 10												
					1 # 4 1 # 4 1 # 5		22	U			Į			
						ii		In						
											ł			
						Ħ								
		- 16 -												-
	1						24	ĝ						
		-												
		-												
	1805.1		Coring Terminated at 19.0 for	st		μι		-						
		- 20	Connig: remainded at 1910 lot	μ τ .		1						-		41
		20												

	10089	ANI LANDA MAINTA TAY													
		ION: Harlan County, KY	DODBLO OTAR		714 10	1000			000000		10.0004	erer	n- 7	iii inn	00
		12 Classical Activity of the second secon				2005					<u> - 2-1-1-1-</u>		J. 7	Ίιζυ	
		a and a second	RIG TTPE: C	ME-22	Ų		dirana a	barth Little a Vincente		inn -		<u></u>			
			and a second	i de la composición I de la composición d	i. uha	_		NG DIAMETI	=R (IN): 4	! 	SH	EEI	1	0F	1
-1		a no perio e en su guerra energe antigo antigo de	iauve io sile denomiar	K OI 18	31.4										
elev. (FT.)	DEPTH (FT.)	MATERI	AL DESCRIPTION	Lithology	Sample Type	Recovery (in)	RQD (%)	Qu	STANDAI RES	IST/	ANCE	E (N)			OW /6"
826.1	- 10	Lean Clay (CL) sandy,	FIRM, tan, moist		Z	Ħ								2-	2-{
						Ø				•				1-	3 -
821,1	- 5 ·	Interbedded Weathered Sand (SM), sampled as and orange, moist	I Sandstone and silly VERY STIFF soil, tan		1	10			<u></u>			<u>,</u>		10	- 1(4
					7	18						9		7-	12 4
	- 10 -					18						6		10	-1! 4
810.7-	- 15 -	Augor Refusal at 14.4 f	eel			<u></u>					******			50	/0.
×															
	LLING DUNIJ) aarks: (FT.) 825.1	LLEV. DEPTH (FT.) 826.1 0 821.1 - 5 10 310.7-	Mary Wynn Tank ELEV. DEPTH (FT.) B25.1 0 Lean Clay (CL) sandy, B21.1 -5 and orange, moist 10	LING METHOD: 4" HSA RIG TYPE: C 2UNDWATER (ft): marks: Surface elevations measured relative to site benchmar Mary Wyrn Tank ELEV. DEPTH (FT.) DEPTH MATERIAL DESCRIPTION 826.1 0 Lean Clay (CL) sandy, FIRM, tan, moist 821.1 - 5 Sand (SM), sampled as VERY STIFF soil, tan and orange, moist 10	LLING METHOD: 4" HSA RIG TYPE: CME-55 20/0247ER (ft): aarks: Surface elevations measured relative to site benchmark of 18 Mary Wynn Tank S26.1 0 Lean Clay (CL) sandy, FIRM, tan, moist s26.1 0 Lean Clay (CL) sandy, FIRM, tan, moist s21.1 5 Interbedded Weathered Sandstone and silly Sand (SM), sampled as VERY STIFF soil, tan and orange, moist 10	LING METHOD: 4° HSA RIG TYPE: CME-550 DUNDWATER (0): Image: Surface elevations measured relative to sile benchmark of 1831.4 Mary Wym Tank Mary Wym Tank ELEW. DEPTH MATERIAL DESCRIPTION Image: Surface elevation is and ymposited relative to sile benchmark of 1831.4 826.1 0 Lean Clay (CL) sandy, FIRM, tan, moist Image: Surface end sile benchmark of 1831.4 821.1 5 Interbedded Weathered Sandstone and silly Sand (SM), sampled as VERY STIFF soil, tan and drange, moist Image: Surface end sile benchmark of 1831.4 821.1 5 Interbedded Weathered Sandstone and silly Sand (SM), sampled as VERY STIFF soil, tan and drange, moist Image: Surface end sile benchmark of 1831.4 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - - - - - - - - - - - - - - - - - - - -	LING METHOD: 4° HSA RIG TYPE: CME-550 DUNDWATER (ft): arks: Surface elevations measured relative to sile benchmark of 1831.45 ft Mary Wynn Tank SLEW, DEPTH (FT.) MATERIAL DESCRIPTION B25.1 0 Lean Clay (CL) sandy, FIRM, tan, moist 14 821.1 0 Lean Clay (CL) sandy, FIRM, tan, moist 19 10 10 10 10 10 10 10 10 10 10	LING METHOD: 4° HSA RIG TYPE: CME-650 DUNUWATER (ft): BORI sarks: Surface elevations measured relative to sile benchmark of 1831.45 ft Mary Wyrn Tank ELEV. DEPTH ELEV. DEPTH MATERIAL DESCRIPTION B 826.1 0 Lean Clay (CL) sandy, FIRM, tan, moist 14 0 15 - 15 - Augor Refusal at 14.4 feet 10 - 15 - Augor Refusal at 14.4 feet	LLING METHOD: 4" HSA HIG TYPE: CME-650 2UNIXWATER (t): BORING DIAMETI ants: Surface elevations measured relative to site benchmark of 1831.45 ft Mary Wynn Tank S25.1 0 Lean Clay (CL) sandy, FIRM, tan, motst 10 5 310.7 15 Augor Refuse! at 14.4 feet	LLING MIETHOD: 4" HSA HIG TYPE: CME-550 HAMME DUNUWATER (9): LEV DEPTH MATERIAL DESCRIPTION HIGH BY DEPTH ATTERIAL DESCRIPTION HIGH BY DEPHN ATTERIAL DESC	LLING METHOD: 4" HSA NG TYPE: CME-550 HAMMERE . DUNIXWATER (0): 4 EXPRISE DEADERS DIAMETER (IN): 4 arits: Surface elevations measured relative to sile benchmark of 1831.45 ft Mary Wynn Tank ELEV, DEPTH MATERIAL DESCRIPTION 825.1 0 Lean Clay (CL) sandy, FIRM, tan, moist 1 Interbedded Weathered Sandstone and silly Sand (SM), sampled as VERY STIFF soil, tan and orange, moist 10 10 10 10 10 10 10 10 10 10	LING METHOD: 4" HSA RIG TYPE: CME-550 HAMMER: AUT DUMIXWATER (0): EORING DIAMETER (IN): 4 SH ants: Surface elevations measured relative to site benchmark of 1831.45 ft Mary Wynn Tank ELEV, DEPTH MATERIAL DESCRIPTION Strandard B25.1 0 Lean Clay (CL) sandy, FIRM, tan, moist H 1 0 0 STANDARD PENE B25.1 0 Lean Clay (CL) sandy, FIRM, tan, moist H 1 1 0 0 821.1 5 Interbedded Weathered Sandstone and silly Is 10 10 11 11 10 10 10 0 11 110.7 -15 Augor Refusel at 14.4 feet 0	LING METHOD: 4" HSA RIG TYPE: CME-550 HAMMER: AUTO DUN/WATER (t): BORING DIAMETER (M): 4 SHEET ansx: Surface elevations measured relative to site benchmark of 1831.45 ft Mary Wynn Tank Setter, DEPTH MATERIAL DESCRIPTION State State State State Company (FT.) (FT.) MATERIAL DESCRIPTION State State State Company Setter (CL) sendy, FIRM, tan, moist it is and orenge, moist 	LING METHOD; 4" HSA HG TYPE: CME-550 HAMMER: AUTO DUNUMATER (t): and: Surface islevations measured relative to site benchmark of 1831.45 ft Mary Wynn Tank SLEV. DEPTH MATERIAL DESCRIPTION S26.1 Lean Clay (CL) sandy, FIRM, tan, moist Head of the surface and site of the surface and site of the surface and orange, moist Head (SM) teampled as VERY STIFF soll, tan and orange, moist Augor Refusal at 14.4 feet	LING METHOD; 4" HSA ROTYPE: CME-550 HAMMER: AUTO DUNUMATER (b): ansa: Surface elevations measured retellive to site benching to t1831.45 ft Mary Wynn Tank LEV, DEPTH MATERIAL DESCRIPTION B0

			County Water Tanks					TOR	10: 243054	HUU F	REPORT NO	0	
	and a second state		ON: Harlan County, KY										
		N: 1,82		BORING START			2005)		BORING	COMPLETE	D: 7	(1/2009
DR	ILLING	METHO	D: 4" HSA	RIG TYPE: CN	1E-55)				HAMMER	AUTO		
GR	OUNDY	VATER (ft):					BORI	NG DIAMET	ER (IN): 4	SHEET	1	OF 1
Rei			: elevations measured relative /ynn Tank	lo sile benchmark	of 18	31.4	5 N						
Groundwater	ELEV. (FT.)	DEPTH (FT.)	MATERIAL DE	SCRIPTION	Lithology.	Sample Type	Recovery (in)	Rap (%)	Qu	STANDARC	TANCE (N)		/6ª
	1623.5-	- 0 - 	Interbedded Woathered Sand Sand (SM), sampled as VER and orange, moist	istone and silty Y STIFF soil, tan			12				8		11 - 9 - 10 - 17 16 7 - 12 - 16 5 - 7 - 1
	1808.0-	- 10 - - 10 - 	Boring Terminated at 15.5 fee discretion without encounterin	t at engineer's g auger refusal.	יישרא איז איז איז איז איז איז איז איז איז אי	7	15						7 - 9 - 1 6 - 10 12

FIELD TESTING PROCEDURES

Field Operations. The general field procedures employed by QORE Property Sciences are summarized in ASTM D 420 which is envilled "Investigating and Sampling Soils and Rocks for Engineering Purposes." This recommonded practice lists recognized methods for determining soil and rock distribution and ground water conditions. These includes include geophysical and in situ methods is well as borings.

borings are deliced to obtain subsurface samples using one of several alternate techniques depending upon the subsurface conditions. These techniques are:

- Continuous 2-1/2 or 3-1/4 inch I.D. hollow stem augers;
- b. Wash borings using roller cone or drag bits (mud or water);
- c. Continuous flight augers (ASTM D 1425).

These drilling methods are not capable of penetrating through material designated as "rolusal materials." Refusal, thus indicated, may result from hard cemented soil, soft weathered rock, coarse gravel or boulders, thin rock scams, or the upper surface of sound continuous rock. Core drilling procedures are required to determine the character and continuity of refusal materials.

The subsurface conditions encountered during drilling are reported on a field test boring record by a field engineer who is on sile to deect the drilling operations and log the recovered samples. The record contains information concerning the boring method, samples attainpled and recovered, indications of the presence of various materials such as coarse gravel, cobbles, atc., and observations between samples. Therefore, these boring records contain both factual and interpretive information. The field boring records are on file in our office.

The soll and rock samples plus the field being records are reviewed by a geotechnical engineer. The engineer classifies the soils in general accordance with the procedures cutlined in ASTM D 2488 and prepares the final being records that are the basis for all evaluations and recommendations.

The final boring records represent our interpretation of the contents of the field records based on the results of the origineering examinations and tests of the field samples. These records depict subsurface conditions at the specific locations and at the particular time when drilled. Sell conditions at other locations may allor from conditions occurring at these boring locations. Also, the passage of time may result in a change in the subsurface sold and ground water conditions at these boring locations. The lines designating the interface between soll or refusal materials on the records and on profiles represent approximate boundaries. The transition between materials may be graduat. The final boring records are included with this report. The detailed data collection methods using during this study are discussed on the following pages.

Soil Test Borings: Soil test borings were made at the site at locations shown on the attached Boring Plan. Soil sampling and panetration testing were performed in accordance with ASTM D 1586.

The borings were made by mechanically twisting a 5.5/8" outer diameter auger into the soit. At regular intervals, the drilling loots were removed and samples obtained with a standard 1.4 inch I.D., 2 inch O.D., split tube sampler. The sampler was first seated 6 inches to penetrate any loose cutlings, then driven an additional foot with blows of a 140-pound liammer failing 30 inches. The number of hammer blows required to drive the sampler the final foot was recorded and is designated the "penetration resistance".

Representative portions of the samples, thus obtained, were placed in glass jara and transported to the laboratory. In the laboratory, the samples were exemined to verify the drillar's field classifications. Test Boring Records are attached which graphically show the solt descriptions and penatration resistances.

Soil Auner Soundance: Soil auger soundings were made at the site at the locations shown on the attached Boring Location Plan. The soundings were performed by mechanically twisting a steel auger into the soil. However, innike the soil test binings, a smaller diameter solid etem auger was used and no split-spoor samptes were obtained. The driller provided a general description of the soil encountered by observing the soils brought to the surface by the twisting auger. The auger was advanced until refusal materials were encountered and the refusal depth was noted by the driller. The auger is then withdrawn and the depths to water or caved materials are then includes were encountered by the driller.

Soil suger soundings provide a rapid, economical method of obtaining the approximate bodrock depth, groundwater depth, and general soil conditions : at locations where detailed soil testing and sampling is not required.

Water Level Readings: Water table readings are normally taken in conjunction with borings and are recorded on the "Test Boring Records". These readings indicate the approximate location of the hydrostatic water table at the time of our field investigation. Where impervious solls are encountered (clayey soils) the amount of water scopego into the boring is small, and it is generally not possible to establish the location of the hydrostatic water table through water level readings. The ground water table impacts by dependent upon the amount of precipitation at the sile during a particular period of time. Fluctuations in the water table should be expected with variations in precipitation, surface run-off, evaporation and other factors.

The time of boring water level reported on the boring records is determined by field crows as the dritting tools are advanced. The time of boring water level is datacted by changes in the dritting rate, self samples obtained, etc. Additional water table readings are generally obtained at least 24 hours after the borings are completed. The time tag of at least 24 hours is used to permit stabilization of the ground water table which has been disrupted by the dritting operations. The readings are taken by dropping a weighted line down the boring or using an elactrical probe to detect the water level surface. Occasionally the borings will cave in, preventing water level readings from being obtained or trapping dritting water above the caved in zone. The cave in depth is also measured and recorded on the boring records.

APPENDIX C

SUMMARY OF LABORATORY TEST DATA

LABORATORY TESTING PROCEDURES

Page 1 of 1

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	e and the second second	States and the second							 	1.1.1.1.1.1	 مد م أر مد	and the second	فمسر سنبسط	ر. الاستانية	in the second		
	\$ 64 X		ಸ್ಟೇಕರ														
			SPECIFIC GRAVITY							•	*						
		24305400 07/09/09	VATERAL FNER THAN NO. 200, %														
			UKCONFINED STRENGT, PSF								 					 	
2		PROJECT NUMBER: REPORT DATE:	PCF	DRY						· · ·				r			
Summa		.200	UNIT WEIGHT, POF	WET													
Laboratory Data Summary			YFC NAX. DENSITY PCF MUMUTCX VOISTURE %												-		
orato				6		13											
Lab			ATTERBERG LIMITS	ц а		24											
		Tank	ATTE	ריך		37				<u> </u>							
		is - KY 38	NATURAL MOISTURE		16.8	19.6	16.2	12.7	 <u> </u>		 						
		20. Tank	nscs			sc											
	E Kosto	Harian (SAMPLE		SPT	SPT	SPT	SPT									
0	Q Q R E	PROJECT NAME: Harran Co, Tanks - KY 38 Tank	SAMPLE CEPTH, FT.		1.5-3.0	4.0-5,5	6.5-8.0	9.0-10.5									
	Q.	PROJE	BORING NO.		B-201	B-201	B-201	B-201									

......

Page 1 of 1

	ł
V	;

Laboratory Data Summary

a	a contraction of the second se
2	
10	
я	
ł	
a	223 ACT 10 ACT
8	
	1000 CONTRACTOR 100
	ALC: NOT ALC: NOT A
	LEAD AND A STREET
	1.
	1000000 L 1000
	MUCH COL
a	The second se
	PERIOD
	100000
	10000
	- 5256
2	
1	

QORE"

422 Codeli L	422. Codel Drive, Lexington, KY 40509	KY 40509												-
PROJE	PROJECT NAME: Harlan Co. Tanks - Mary Wynn	Harian (20. Tani	cs - Mary V		Tank				PROJECT NUMBER: REPORT DATE:		24305400 07/09/09		
BORING NO.	SAMPLE Cepth, FT	E china	SCSN	MATURAL MOISTURE CONTENT, 34		ATTERACCOLMITS		MAX: ORY DENSITY PCF /OPTIMUM MOISTURE	ADE TRUBLES	1000 - 11 11	UNCONFINED COMPRESSIVE STRENGTH, PSF	MATERIAL FINER THAN	SPECIFIC	Carr. *
				- I	101	P.L.	11	• • • •	WET	DRY				
B-302	1.5-3.0	SPT		21.9										
B-302	4.0-5.5	SPT	SM	14.4	dN	ND	ΝP							
B-302	6.5-8.0	SPT		13.7										
B-302	9.0-10.5	SPT		17.0		1999 (M. 1999) 1999 - 1999 1999 - 1999 - 1999 1999 - 1999 - 1999 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 1999 - 1990 - 1990 - 1990 - 1			<u> </u>					
				-		and the second							-	
B-303	1.5-3.0	SPT		14:1					7. 7.0					
B-303	4.0-5.5	SPT		10.3										
B-303	6.5-8.0	SPT		14.7										
B-303	9,0-10.5	LdS		14.9										
							1.22							-
											1			

LABORATORY TESTING PROCEDURES

Soil Classification: Soil classifications provide a general guide to the engineering properties of various soil types and enable the engineer to apply past experience to current problems. In our investigations, samples obtained during drilling operations are examined in our laboratory and visually classified by an engineer. The soils are classified according to consistency (based on number of blows from standard penetration tests), color and texture. These classification descriptions are included on our "Test Boring Records."

The classification system discussed above is primarily qualitative and for detailed acil classification two laboratory tests are necessary: grain size tests and plasticity tests. Using these lest results the soil can be classified according to the AASHTO or Unified Classification Systems (ASTM 0 2487). Each of these classification systems and the in-place physical soil properties provides an index for estimating the soil's behavior. The soil classification and physical properties obtained are presented in this report.

Compaction Tests: Compaction tests are run on representative soil samples to determine the dry density obtained by a uniform compactive effort at varying moisture contents. The results of the test are used to determine the moisture content and unit weight desired in the field for similar soils. Proper field compaction is necessary to decrease future settlements, increase the shear strength of the soil and decrease the permeability of the soil.

The two most commonly used compaction tests are the Standard Proctor test and the Modified Proctor test. They are performed in accordance with ASTM D 698 and D 1557, respectively. Generally, the Standard Proctor compaction test is run on sumples from building or parking areas where small compaction equipment is anticipated. The Modified compaction test is generally performed for heavy structures, highways, and other areas where large compaction equipment is expected. In both tests a representative soil sample is placed in a most and compacted with a compaction hammer. Both tests have four alternate methods.

Tost	Melliod	Hammer WL/Fall	Mold Diam.	Run on Matl, Finer Than	No, of Layers	No. of Blows/Lay er
Standard	٨	5.5 lb./12*	4"	No. 4 sieve	- 3	25
D 698	ß	5.5 lb/12"	4 "	3/8" stovo	3	25
	C.	\$,5 b ./12"	6"	3/4" sleve	3	50

Test	Method	Hammer WLIFall	Mold Diam.	Run on Mail, Finer Than	No, of Layers	No. of Blows/Lay or
Motlified	Ă	10 lb/18"	A ⁿ	No. 4 sieve	5	25
D 1557	B	10 lb./18*	.4"	3/8" slovo	5	25
	С	10 lb/18"	6"	3/4" sleve	5	56

The moisture content and unit weight of each compacted sample is determined. Usually 4 to 5 such tests are run at different moisture contents. Test results are presented in the form of a dry unit weight versus moisture content curve. The compaction method used and any deviations from the recommended procedures are noted in this report.

Afterbern Limits: Portions of the samples are taken for Alterborg Limits testing to determine the plasticity characteristics of the soil. The plasticity index (PI) is the range of moisture content over which the soil deforms as a plastic material. It is bracketed by the liquid limit (LL) and the plastic limit (PL). The liquid limit is the moisture content at which the soil becomes sufficiently "wet" to flow as a heavy viscous fluid. The plastic limit is the lowest moisture content at which the soil becomes sufficiently "wet" to flow as a heavy viscous fluid. The plastic limit is the lowest moisture content at which the soil is sufficiently plastic to be manually rolled into tiny threads. The liquid limit and plastic limit are determined in accordance with ASTM D 4318.

Molsture Content The Molsture Content is determined according to ASTM D 2218.