

RECEIVED

NOV 17 2009

PUBLIC SERVICE COMMISSION

Mr. Jeff DeRouen Executive Director Kentucky Public Service Commission 211 Sower Boulevard Frankfort, KY 40602

Kentucky Utilities Company

State Regulation and Rates 220 West Main Street PO Box 32010 Louisville, Kentucky 40232 www.eon-us.com

Robert M. Conroy Director - Rates T 502-627-3324 F 502-627-3213 robert.conroy@eon-us.com

November 17, 2009

RE: THE APPLICATION OF KENTUCKY UTILITIES COMPANY FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND APPROVAL OF ITS 2009 COMPLIANCE PLAN FOR RECOVERY BY ENVIRONMENTAL SURCHARGE <u>CASE NO. 2009-00197</u>

Dear Mr. DeRouen:

Please find enclosed and accept for filing the original in hardcopy and eight (8) copies of KU's Title V Permit Modification for the Addition of a SCR for the Brown Unit 3, in the above-referenced matter.

Should you have any questions concerning the enclosed, please contact me at your convenience.

Sincerely,

Robert M. Conroy

Enclosures

cc: Parties of Record

an @.011 company

220 West Main Street P.O. Box 32010 Louisville, Kentucky 40232

<u>CERTIFIED MAIL</u> <u>CERTIFIED NUMBER 7006 2760 0005 5303 8699</u> <u>RETURN RECEIPT REQUESTED</u>

July 9, 2009

Mr. Jim Morse Permit Review Branch Kentucky Division for Air Quality 200 Fair Oaks Lane Frankfort, KY 40601

 RE: Modification to Permit V-03-023
 I.D. # 21-167-00001
 PSD Construction Permit Application/Title V Operating Application for the Addition of a SCR Control for E.W. Brown Unit 3

Dear Mr. Morse:

Section XVI of the Consent Decree between U.S. EPA and Kentucky Utilities (KU) for the E.W. Brown Station requires that KU obtain a construction permit for a SCR/pollution control device for E.W. Brown Unit 3. The proposed addition of this pollution control device is a major modification to an existing source, and thus is subject to Prevention of Significant Deterioration (PSD) review.

Attached please find KU's completed PSD permit application/Title V operating permit application seeking permission to commence construction on the new SCR control, along with an SO3 mitigation device, for E.W. Brown Unit 3. These completed forms constitute a revision to the original Title V permit application for the E.W. Brown Generating Station, filed with your office in December of 1996. The initial Title V Permit was issued March 1, 2005. In addition to this PSD application, a Title V renewal permit application will be submitted within the next several weeks.

The application has been signed by Ralph Bowling, the responsible official (designated representative) for KU's E.W. Brown Generating Station.

For your convenience, an electronic copy of the application has been placed on a CD and can be found in the inside front binder pocket. If you have any questions, please feel free to contact me (502-627-2343) or Gary Revlett (502-627-2357) regarding any questions.

Sincerely,

Zerh Fard Marlin

Marlene Zeckner Pardee Senior Environmental Scientist

CC: <u>CERTIFIED MAIL</u> <u>CERTIFIED NUMBER 7006 2760 0005 5303 8736</u> <u>RETURN RECEIPT REQUESTED</u> Mr. Ben Markin

Permit Review Branch Kentucky Division for Air Quality 200 Fair Oaks Lane Frankfort, KY 40601

CERTIFIED MAIL

<u>CERTIFIED NUMBER 7006 2760 0005 5303 8705</u> <u>RETURN RECEIPT REQUESTED</u>

Chief, Environmental Enforcement Section Environment and Natural Resources Division U.S. Department of Justice P.O. Box 7611, Ben Franklin Station Washington, D.C. 20044-7611 DJ# 90-5-2-1-06837

CERTIFIED MAIL

CERTIFIED NUMBER 7006 2760 0005 5303 8712 RETURN RECEIPT REQUESTED

Director, Air Enforcement Division Office of Enforcement and Compliance Assurance U.S. Environmental Protection Agency Ariel Rios Building (2242A) 1200 Pennsylvania Avenue, N.W. Washington, DC 20460

<u>CERTIFIED MAIL</u> <u>CERTIFIED NUMBER 7006 2760 0005 5303 8729</u>

RETURN RECEIPT REQUESTED Director Air, Pesticides and Toxics Management Division U.S. EPA-Region 4 Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Atlanta, GA 30303-8960

<u>CERTIFIED MAIL</u> <u>CERTIFIED NUMBER 7006 2760 0005 5303 8743</u> <u>RETURN RECEIPT REQUESTED</u>

William Bumpers Baker Botts LLP The Warner 1299 Pennsylvania Avenue, N.W. Washington, DC 20004

Kentucky Utilities Company

E.W. Brown Generating Station

Title V Permit Modification for Addition of SCR for E.W. Brown Unit 3 Submitted to Kentucky Division for Air Quality July 2009

1.0 Introduction1- 1
2.0 Project Characterization 2-1
2.1 Project Location
2.2 Project Description
2.3 Project Emissions –2-1
2.4 Maximum Project PSD Pollutant Potential to Emit2-3
2.5 PSD/NSR Major Modification Determination2-4
2.6 Local Air Quality Attainment/Nonattainment Status2-4
2.7 Federal and State Air Ouality Requirements2-5
2.7.1 Federal Clean Air Act Requirements
2.7.2 Kentucky State Air Quality Requirements
3.0 Best Available Control Technology
3 1 BACT Analysis Basis
3.2 Coal Fired Boiler Sulfuric Acid Mist BACT Analysis
4.0 Ambient Air Quality Impact Analysis 4-1 4.1 PSD Pollution Modeling Results 4-1 5.0 MACT Analyses 5-1 6.0 Additional PSD Impact Analyses 6-1 6.1 Commercial, Residential, and Industrial Growth 6-1 6.2 Vegetation 6-1 6.3 Soils 6-2 6.4 Class II Visibility 6-2
Appendix A – Kentucky Division for Air Quality Title V Application FormsA
Appendix B – Projected Coal SpecificationB
Appendix C – Equipment & System DescriptionsC
Appendix D – Maps, Site Drawings, Flow Diagrams, PicturesD
Appendix E – Emission CalculationsE
Appendix F - MSDSF
Appendix G – CAM Plan for Unit 3G

Table of Contents

Appendix H – H2SO4 Air Dispersion Modeling & Risk Assessment	Н
Appendix I – Viscreen –	I

1.0 Introduction

Kentucky Utilities (KU), as operator of the E.W. Brown Generating Station located in Harrodsburg, Kentucky, is submitting a Prevention of Significant Deterioration (PSD) air permit application for the construction of a selective catalytic reduction device (SCR) with a sulfur trioxide (SO₃) mitigation system for E.W. Brown Unit 3. The SO₃ mitigation system is being proposed to control sulfur trioxide and sulfuric acid mist (H_2SO_4).

In 2008, KU received a consent decree for E.W. Brown Unit 3. On March 17, 2009, the consent decree was entered by the Court; hence, the clock began for the requirements noted in the consent decree. One of the requirements noted under section IV of the consent decree was to install and continually operate a SCR for Unit 3 by Dec. 31, 2012. Hence, KU is requesting approval of this PSD permit application to construct a SCR with SO₃ mitigation for E.W. Brown Unit 3. Section XVI of the consent decree states that KU must secure a permit to authorize construction or operation of any device required by the consent decree, including all preconstruction, construction, and operating permits required under state law, and that the application must be submitted in a timely manner.

Section XVI of the consent decree, states that within one hundred eighty days after entry of the consent decree or at the time that KU submits it Title V renewal permit application (expires March 1, 2010), whichever is later, KU shall amend any applicable Title V permit application, or apply for amendments of its Title V permit, to include a schedule for all unit-specific and plant – specific performance, operational , maintenance, and control technology requirements established by the consent decree including, but not limited to, required emission rates, removal efficiencies, and Unit Annual Tonnage Limitations for SO₂ and NO_x, and the requirements pertaining to the use and surrender of NO_x Allowances.

Due to the need to obtain a construction permit for the SCR and SO₃ mitigation system so that the SCR and SO₃ mitigation system is in operation by December 31, 2012, KU has decided to request a PSD for the construction of the SCR and SO₃ mitigation system and to submit a Title V Renewal Permit prior to September 1, 2009, to allow the Kentucky Division for Air Quality sufficient time for the review/approval of the permit applications.

2.0 Project Characterization

This section briefly characterizes the Project, the addition of a SCR/SO₃ mitigation system for E.W. Brown Unit 3. It includes a general description of Unit 3, location, local air quality status, and the applicability of New Source Review (NSR); and emission calculations for Prevention of Significant Deterioration (PSD) regulated pollutants emitted as the result of the additional pollution control devices (SCR and SO₃ mitigation system).

2.1 Project Location

The Project will be located at KU's E.W. Brown Generating Station, which is located in Burgin, Kentucky (Mercer County). The plant is approximately twenty-five miles southwest of Lexington, Kentucky. See Appendix D.

2.2 Project Description

Unit 3 is an existing unit (construction commenced July 19, 1971). It is a pulverized coalfired, dry bottom, tangentially fired indirect heat exchanger, which is equipped with an electrostatic precipitator and low nitrogen oxides burners. A wet flue-gas desulphurization system is currently under construction for Units 1, 2, & 3.

This PSD application requests approval for the construction and operation of a SCR/SO_3 mitigation to control NO_x and sulfuric acid mist, a secondary pollutant, which is created as the result of adding the SCR pollution control device as required by the E.W. Brown Consent Decree.

The SCR System and Ammonia Storage contract has not been awarded; a Request for Proposal was sent to six technology suppliers on June 12, 2009. The Engineering, Procurement, and Construction of the SCR and balance of plant activities will be competitively bid in the third quarter of 2009. Contract release on the SCR is anticipated in the fourth quarter of 2009. The SO₃ mitigation system contract has not been awarded, but KU anticipates that it will be similar to the systems installed for Louisville Gas and Electric's Trimble County Generating and KU's Ghent Generating plants, which were supplied by Noltec. The SO₃ mitigation contract will follow the SCR contract release as the design and implementation of this system is much shorter.

2.3 Project Emissions

The SCR system being installed per the USEPA and KU Consent Decree will reduce NO_x emissions at E.W. Brown Unit 3. Baseline NO_x emissions (prior to the operation of the SCR) are calculated as the highest "annual" average emission rate in tons per year, based

on the actual emissions determined over a 24-month consecutive period during the most recent 5-year period preceding the contemporaneous emissions change. Due to the timing of the Project, the most recent "actual" emissions period starts in March 2009 and goes back 5 years through March 2004. The annual NO_x emission rate after the SCR operation was calculated based on expected boiler heat input for the 5-year period after SCR operation and meeting the 0.07 lb/mmBtu emissions rate listed in the Consent Decree. See Table 2-1 for a summary of the baseline and maximum projected NO_x emission rate in tons per year. Detailed worksheets showing calculation assumptions and methodology are contained in Appendix E.

A coincidental increase in emissions of sulfuric acid mist (H_2SO_4) will be generated from the operation of the selective catalytic reduction (SCR) system used specifically for E.W. Brown Unit 3. Post SCR operation emissions were calculated for the Unit 3 combustion source (with associated control devices) based on projected fuel burn rates and projected fuel quality, engineering design estimates for control device performance, known or industry accepted pollutant production/generation rates, and standard engineering calculation methodology.

As listed in the BACT determination (Section 3.0), H_2SO_4 emissions will be controlled using a combination of the wet flue gas desulphurization device (wet FGD) and a sorbent injection system. See Table 2-2 for a summary of the controlled and uncontrolled H_2SO_4 maximum projected emissions rates for the Project. Detailed worksheets showing calculation assumptions and methodology are contained in Appendix E.

Table 2-1 E.W. Brown Unit 3 PSD Emissions Comparison Associated with SCR Project								
Pollutant	PollutantBaseline tpy (a)Baseline lb/hr (a)Maximum ProjectedMaximum ProjectedEmissions Increase / ReviewUnit 3Unit 3Unit 3DecreaseRequiredBoiler tryBoiler tryBoiler lb/hr(Yes/No)							
H ₂ SO ₄	457.6	.6 114.5 596.8 ^(d) 151.3 ^(b) Increase Yes						
NO _x	NO _x 4,356.3 1,062.8 1,024.0 ^(c) 259.6 ^(b) Decrease No							
 (a) Baseline values of H₂SO₄ are prior to use of higher sulfur coal, wet FGD, SCR, and sorbent injection. (b) Maximum projected lb/hr based on annual average tons per year (tpy). (c) Maximum projected NO_x tpy based on meeting 0.07 lb/mmBtu emission rate per Consent Decree. (d) Maximum projected tpy based on use of high sulfur coal, SCR, and wet FGD 								

2.4 Maximum Project PSD Pollutant Potential to Emit

Potential to emit (PTE) calculations for H_2SO_4 were performed based on 8,760 hours of operation, maximum boiler heat input, maximum coal fuel throughput, industry standard pollutant production rates, and design or expected control device efficiencies. See Table 2-2 for a summary of the Project PTE estimates for H_2SO_4 . Detailed PTE worksheets showing calculation assumptions and methodology are contained in Appendix E.

Table 2-2 EW Brown Unit 3 Project H ₂ SO ₄ Uncontrolled, Controlled, and Potential to Emit							
Pollutant	Maximum Projected Unit 3Maximum Projected Unit 3Unit 3 Boiler PTE tpy (b)Unit 3 Boiler PTE lb/hrBoiler tpyBoiler lb/hr						
H_2SO_4 Uncontrolled ^(a)	4,110.9	1,042.3	6,641.2	1,516.3			
H ₂ SO ₄ Controlled 596.8 151.3 (c) 964.3 220.2							

(a) Uncontrolled values do not include reduction due to wet FGD or sorbent injection.

(b) PTE tpy in Table 2-2 correspond to the values as listed in the BACT analysis (BACT analysis includes a maximum hourly PTE and a 75% capacity factor; also represents the "uncontrolled" value with only a wet FGD).

(c) Maximum projected lb/hr H₂SO₄ based on annual average tpy.

2.5 PSD/NSR Major Modification Determination

As shown in table 2-1, the Project's post-change controlled H_2SO_4 emissions are greater than baseline amount by more than the 7 ton significance level allowed by PSD. Therefore, the project is subject to PSD review for H_2SO_4 . See Table 2-1 for a summary of the baseline and post-change controlled H_2SO_4 emissions.

For the purpose of determining the difference in the pre-change "actual" baseline emissions and the post change "future actual" emissions, the WEPCO rule methodology was followed for calculating actual versus future projected emissions for an electric utility steam generating unit (EGU).

For an EGU, the baseline period actual emissions are calculated as the highest "annual" average emission rate in tons per year, based on the actual emissions determined over a 24-month consecutive period during the most recent 5-year period preceding the contemporaneous emissions change. Due to the timing of the project, the most recent "actual" emissions period starts in March 2009 and goes back 5 years through March 2004. The baseline annual NO_x emissions are 4,356 tons and the baseline annual H_2SO_4 emissions are 457.6 tons.

The post change future actual emissions is a projection of an annual rate in tons per year, that reflects the maximum annual emissions expected to occur during any one of the 5 years immediately after the change. The post-change rolling annual future actual emissions were calculated started in January 2013 (after SCR operation) through the 5 year period ending in December 2017. Based on the projected future utilization of Brown Unit 3 the projected maximum future NO_x emissions are 1,024.0 tons per year and 596.8 tons per year of sulfuric acid. This change represents a predicted decrease in NOx emissions following the installation of the SCR of 3,332.3 tons per year and the predicted increase in H₂SO₄ emissions with BACT control of 139.2 tons per year. In addition to calculating the projected future maximum yearly emissions, the Potential-To-Emit (PTE) was also calculated for H₂SO₄. This information along without calculated uncontrolled H₂SO₄ emissions in provided in Table 2-2. Detailed PSD actual (baseline) and future actual emissions showing calculation assumptions and example calculations are presented in Attachment E.

2.6 Local Air Quality Attainment/Nonattainment Status

As indicated in Table 2-1 the calculated increase in H_2SO_4 emissions is 139.2 tons per year and thus the proposed project will be a major modification under New Source Review (NSR) regulations, and will be subject to the PSD review program for H_2SO_4 .

Accordingly, this application contains the following analyses to support a complete and thorough review of the Projects PSD air permit application:

- Best Available Control technology (BACT) Analysis
- Additional Impact Analysis
- Class II Area Impact Analysis
- Ambient Air Quality Impact Analysis

2.7 Federal and State Air Quality Requirements

Air quality permitting in Kentucky is under the jurisdiction of KDAQ. The USEPA has given KDAQ authority to implement and enforce the federal CAA provisions and state air regulations under its approved SIP. KDAQ will be responsible for the review of this application and the issuance of an air permit to construct and operate the pollution control devices for KU's E.W. Brown Unit 3. The following subsections discuss the applicable federal and state air quality programs, regulations, and standards, which relate to this project.

2.7.1 Federal Clean Air Act Requirements

The following subsections discuss the applicable federal regulations and how KU proposes to comply with the regulations for E.W. Brown Units 3.

2.7.1.1 New Source Review (NSR) Applicability

The federal CAA NSR provisions are implemented for new major stationary sources and major modifications under two programs: the PSD program outlined in 40 CFR 52.21, and the nonattainment NSR program outlined in 40 CFR 51 and 52.

The PSD program is designed to ensure that the air quality in existing attainment areas does not significantly deteriorate or exceed the NAAQS, while providing a margin for future industrial and commercial growth. PSD applies to any new major stationary sources and any major modifications at an existing major source that occur in an area designated as attainment. As noted in Section 2.5, the E.W. Brown project is in attainment areas with respect to all pollutants. As such, PSD review will apply to the Project as a major modification.

A major stationary source is defined as any one of the listed major source categories which emits or has the PTE of 100 tpy or more of any regulated pollutant, or 250 tpy or more of any regulated pollutant if the stationary source does not fall under one of the listed major source categories (i.e., fossil fuel fired boilers with greater than 250 mmBtu/hr heat input), and has a PTE of greater than 100 tpy for at least one regulated pollutants, it is classified as a major stationary source.

The only PSD pollutant of concern is sulfuric acid mist (H_2SO_4) , which is a secondary pollutant that will be created as the result of adding the SCR. The

significance level for H_2SO_4 is 7 tons per year. The PSD review consists of a best available control technology (BACT) analysis for sulfuric acid mist (H_2SO_4).

2.7.1.2 1990 CAA Title V

40 CFR Part 70, Title V of the CAA established an air quality operating permit program that provides a central point for tracking all applicable air quality requirements for every source required to obtain a permit. Each state is required to have a Title V operating permit program. In Kentucky's Title V operating permit program, KDAQ administers the construction permits and operating permits for Title V sources thought a "parallel review" process, which means that the construction and operating permit requirements are implemented and enforced through a single Title V Permit.

2.7.1.3 Compliance Assurance Monitoring - 40 CFR Part 64

In conjunction with the significant revision to the Title V Permit, a compliance assurance monitoring (CAM) plan in accordance with 40 CFR, Part 64, is required for the Project. The CAM rule became effective November 21, 1997. CAM applies to each pollutant specific emission unit (PSEU) that meets, the following three conditions:

- 1. Is subject to an emission limitation or standard, and
- 2. Use a control device to achieve compliance , and
- 3. Has precontrol emission that exceed or are equivalent to the major source threshold

The following PSEU are excluded from CAM rule:

1. Those subject to 111 or 112 standards promulgated after November 15, 1990, since those standards have been and will be designed with monitoring that provides a reasonable assurance of compliance.

2. Those subject to the acid rain program, emission trading programs such as acid rain programs, emission caps, or continuous compliance determination method for compliance, because CAM is believed to be redundant for those units.

3. Certain municipally owned utility units, as defined in 40 CFR 72.2, which produce electricity during periods of peak electrical demand or emergency situations, since these periods or situations are infrequent.

Uncontrolled emissions of sulfuric acid mist, a regulated pollutant, will exceed the 100 ton Part 64 major source threshold. Hence, CAM will apply to H_2SO_4 emissions. A CAM plan for H_2SO_4 emissions is attached in Appendix G.

2.7.2 Kentucky State Air Quality Requirements

KDAQ has permitting and review authority for all air quality projects in Kentucky through the USEPA approved SIP. Additionally, KDAQ has promulgated regulations for new and modified air pollutant sources, which are published in Kentucky Administrative Regulations (KAR), Title 401 Chapters 50 and 68. Several of these regulations have specific requirements regarding allowable emission rates and require air quality impact analyses. The regulations applicable to the E.W. Brown emission Unit 3 project are discussed in the following subsections.

2.7.2.1 Kentucky – Permit Registrations and Prohibitory Rules

KAR Chapter 52, Permits Registrations and Prohibitory Rules, stipulates KDAQ's construction and operating permit requirements. KDAQ administers the construction permits and operating permits through a "parallel review" process, which means that the construction and operating permit requirements for a Title V source are implemented and enforced through a single Title V permit.

The Project will be subject to 401 KAR 51:017 Prevention of Significant Deterioration of Air Quality as indicated by Table 2-1. 401 KAR 51:017 applies to the construction of a new major source or any project at an existing source that commences construction after September 22, 1982, and is located in an area designated attainment or unclassified under 42 U.S.C. 7407(d)(1)(A)(ii) and (iii). According to 401 KAR 51:017, "The owner or operator of a new major stationary source or major modification, which is subject to the requirements of Sections 8 to 16 of this administrative regulation, shall not begin actual construction without a proposed permit or proposed permit revision issued under 401 KAR 52:020 stating that the major stationary source or major modification shall meet those requirements."

401 KAR 52:020, Title V Permits, already apply to the existing E.W. Brown Generating Station/Unit 3. Therefore, as required by KDAQ's "parallel review" process, this permit application is being submitted to comply with the requirements of 401 KAR 51:017 and 401 KAR 52:020, and KU is requesting a significant revision to the existing Title V permit for E.W. Brown Unit 3.

2.7.2.2 Kentucky – New Source Review Reform

The NSR program covers the construction of new major emitting facilities as well as existing facilities that make major modifications, which significantly increase emissions. The program requires that owners or new plants and existing plants planning major modifications obtain a permit before construction.

2.7.2.3 Chemical Accident Prevention

401 KAR 68, Chemical Accident Prevention, incorporates by reference federal 40 CFR Part 68, Accident Release Prevention Provisions.

The CAA added language to Section 112 that requires chemical accident prevention for affected facilities. Section 112(R), Prevention of Accidental Releases, establishes a general duty for owners and operators of stationary sources who produce, process, handle, or store any of a number of regulated substances to prevent and mitigate accidental releases of these substances by preparing detailed risk assessments and implementing a number of safety procedures through the preparation of a risk management plan (RMP).

The specific requirements of the RMP for affected facilities are established in 40 CFR Part 68, Accidental Release Prevention Provisions. These regulations require the owner/operator of an affected source to prepare and implement an RMP to detect and prevent/minimize accidental releases of regulated substances, and to provide a prompt emergency response to any such release in order to protect human health and the environment.

Affected facilities are those stationary sources that store, use, or handle any of 140 listed hazardous chemicals or flammable/explosive substances in greater than the listed threshold quantities. This list of regulated substances includes commonly stored liquid phases of gases such as ammonia, which the E.W. Brown currently stores at quantities above the threshold level. The plant will need additional storage for ammonia, which will be used, for the SCR.

The RMP is generally composed of three sections including a hazard assessment, a prevention program, and an emergency release response program. For affected facilities, submittal of the comprehensive RMP us required by the later of the following dates:

- 1. Three years after the date when a regulated substance is listed.
- 2. The date on which a regulated substance is first present above the threshold quantity at the facility.

The E.W. Brown Generating Station is already subject to the RMP since it currently uses and stores anhydrous ammonia in greater than the threshold quantities. The Project's SCR will use anhydrous ammonia. The RMP will be amended prior to the addition of anhydrous ammonia to the new SCR ammonia tanks.

3.0 Introduction and Executive Summary

As part of a consent decree between United States Environmental Protection Agency (USEPA) and Kentucky Utilities (KU), dated March 17, 2009, KU is required to install a selective catalytic reduction (SCR) to reduce NO_x emissions at Brown 3. The installation of this control equipment will coincidentally increase sulfuric acid mist (SAM or H₂SO₄) emissions above the 7 ton/yr significant emission rate threshold and will be classified as a New Source Review/Prevention of Significant Deterioration (NSR/PSD) major modification. As a result of the calculated emissions increase, the Project is subject to a Best Available Control Technology (BACT) review for sulfuric acid mist (H₂SO₄).

Brown 3 is a pulverized coal, tangentially fired boiler, combusting high-sulfur bituminous coal. It is equipped with cold-side dry ESP for particulate matter (PM) removal and wet FGD system for reduction of SO_2 in the flue gas. Future NO_x reduction utilizing selective catalytic reduction (SCR) is planned.

As required under the NSR/PSD regulations, the BACT analysis presented herein employed a "top-down," five-step analysis process to determine the appropriate emission control technologies and emissions limitations for the Project. The BACT analysis was conducted for the main boiler. The BACT analysis was conducted in accordance with the USEPA's recommended methodology:

- Step 1--Identify All Control Technologies.
- Step 2--Eliminate Technically Infeasible Options.
- Step 3--Rank Remaining Control Technologies by Control Effectiveness.
- Step 4--Evaluate Most Effective Controls.
- Step 5--Select BACT.

Step 1--Identify All Control Technologies

The first step in a "top-down" analysis is to identify all available control options for the emission unit in question. Identifying all the potential available control options consists of those air pollution control technologies or techniques with a practical potential for application to the emission unit and the regulated pollutant under evaluation. The potential available control technologies and techniques include lower emitting processes, practices, and post-combustion controls. Lower emitting practices can include fuel cleaning, treatment, or innovative fuel combustion techniques that are classified as precombustion controls. Post-combustion controls would be the various add-on controls for the pollutant being controlled.

Step 2--Eliminate Technically Infeasible Options

The second step of the "top-down" analysis is to identify the technical feasibility of the control options identified in Step 1, taking into account source-specific factors. A control option that is determined to be technically infeasible is eliminated. "Technically infeasible" is defined as a clearly documented case of a control option with technical difficulties precluding successful use of the control option because of physical, chemical, and engineering issues. After completion of this step, technically infeasible options are then eliminated from the BACT review process.

In Step 2, control options not eliminated are considered to be technically feasible. A "technically feasible" control option is defined as a control technology that has been installed and operated successfully at a similar type of source of comparable size to the proposed facility under review (i.e., "demonstrated"). If the control option cannot be demonstrated, the analysis considers two key concepts: availability and applicability. "Availability" is defined as technology that can be obtained through commercial channels or is otherwise available within the common sense meaning of the term. A technology that is being offered commercially by vendors or is in licensing and commercial demonstration is deemed an available technology. Technologies that are in development (concept stage/research and patenting) and testing stages (bench-scale/laboratory testing/pilot scale testing) are classified as not available. The second concept, "applicability," is defined as an available control option that can reasonably be installed and operated on the source type under consideration. In summary, the commercially available technology is applicable if it has been previously installed and operated at a similar type of source of comparable size, or a source with similar gas stream characteristics.

Step 3--Rank Remaining Control Technologies by Control Effectiveness

The third step of the "top-down" analysis is to rank all the remaining control alternatives not eliminated in Step 2, based on control effectiveness for the pollutant under review. If the BACT analysis proposes the top control alternative, it is not necessary to provide cost and other detailed information for other less effective control options.

Step 4--Evaluate Most Effective Controls

Once the control effectiveness is established in Step 3 for all the feasible control technologies identified in Step 2, additional evaluations of each technology are performed to make a BACT determination in Step 4. The impacts of the technology implementation on the viability of the control technology at the source are evaluated. The evaluation

process of these impacts is also known as an impact analysis. The following impact analyses are performed for the remaining alternatives:

- Energy evaluation of alternatives.
- Environmental evaluation of alternatives.
- Economic evaluation of alternatives.

The first impact analysis addresses the energy evaluation of alternatives. The energy impact of each evaluated control technology is the energy penalty or benefit resulting from the operation of the control technology at the source. Direct energy impacts include such items as the auxiliary power consumption of the control technology and the additional draft system power consumption to overcome the additional system resistance of the control technology in the flue gas flow path. The costs of these energy impacts are defined either in additional fuel costs or the cost of lost generation, which affects the cost-effectiveness of the control technology.

The second impact analysis addresses the environmental effects of alternatives. Non-air quality environmental effects are evaluated to determine the cost to mitigate the environmental effects caused by the operation of a control technology. Examples of nonair quality environmental effects include polluted water discharge and solids or waste generation. The procedure for conducting this analysis should be based on a consideration of site-specific circumstances.

The third and final impact analysis addresses the economic evaluation of alternatives. This analysis is performed to assess the cost to purchase and operate the control technology. The capital and operating/annual cost is estimated based on the established design parameters. Information for the design parameters is obtained from established reference sources. Documented assumptions can be made in the absence of available information for the design parameters. The estimated cost of control is represented as an annualized cost (\$/year) and, with the estimated quantity of pollutant removed (tons/year), the cost-effectiveness (\$/tons) of the control technology is determined. Cost-effectiveness is used to assess the economic cost to achieve the required emissions reduction in the most economical manner. Two types of costeffectiveness are considered in a BACT analysis: average and incremental costeffectiveness. Average cost-effectiveness is defined as the total annualized cost of control divided by the annual quantity of pollutant removed for each control technology. The incremental cost-effectiveness is a comparison of the cost and performance level of a control technology to the next most stringent option. It has a unit of (dollars/incremental ton removed). The incremental cost-effectiveness is a useful measure of economic viability when comparing technologies that have similar removal efficiencies.

Step 5--Select BACT

The highest ranked control technology that is not eliminated in Step 4 is proposed as BACT for the pollutant and emission unit under review.

As summarized in Table 3-1, the aforementioned BACT analysis process resulted in the following control technology and emissions level determinations for the Project's affected air emissions sources and pollutants.

Table 3-1 Brown 3 BACT Determination Summary							
Pollutant Control Technology Emission Basis Compliance Method							
H ₂ SO ₄ Wet FGD with Sorbent 220 lb/hr Initial Performance Test							
	Brown 3 BA Control Technology Wet FGD with Sorbent Injection	Control Technology Emission Basis Wet FGD with Sorbent Injection 220 lb/hr					

3.1 BACT Analysis Basis

This section describes the basis of the BACT analysis, including the regulatory background, methodology and approach, and emission unit description and assumptions.

3.1.1 Regulatory Basis

The Clean Air Act Amendments of 1990 (CAA) established revised conditions for the approval of pre-construction permit applications under the PSD program. One of these requirements is that BACT be installed to control all pollutants regulated under the Act that are emitted in significant amounts from new major sources or major modifications.

The applicable state regulations governing this process can be found in Kentucky regulations 401 KAR 51:025, which states BACT as "Best available control technology" or "BACT" means an emissions limitation, including a visible emission standard, based on the maximum degree of reduction for each regulated NSR pollutant that will be emitted from a proposed major stationary source or major modification that:

(a) Is determined by the cabinet on a case-by-case basis after taking into account energy, environmental, and economic impacts and other costs, to be achievable by the source or modification through application of production processes or available methods, systems, and techniques, including fuel cleaning or treatment or innovative fuel combustion techniques for control of that pollutant;

(b) Does not result in emissions of a pollutant that would exceed the emissions allowed by an applicable standard of 40 C.F.R. Parts 60 and 61; and

(c) Is satisfied by a design, equipment, work practice, or operational standard or combination of standards approved by the cabinet, if, the cabinet determines technological or economic limitations on the application of measurement methodology to a particular emissions unit would make the imposition of an emissions standard infeasible, the standard establishes the emissions reduction achievable by implementation of the design, equipment, work practice or operation, and the standard provides for compliance by means that achieve equivalent results.

To bring consistency to the BACT process, states may use the USEPA's "topdown" approach to BACT determinations, as discussed in USEPA guidelines. In practice, a top-down BACT analysis determines the most stringent control technology and emissions limitation combination available for a similar source or source category of emission units. At the head of the list in the top-down analysis are the control technologies and emissions limits that represent the Lowest Achievable Emission Rate (LAER) determinations, which, under NSR/PSD regulations, represent the most effective control alternative and must be considered under the BACT analysis process. The following informational databases, clearinghouses, and documents were used to identify recent control technology determinations for similar source categories and emission units for this BACT analysis:

- USEPA's RACT/BACT/LAER Clearinghouse (RBLC).
- USEPA's National Coal Fired Utility Projects Spreadsheet (July 2007).
- Federal/State/Local new source review permits, permit applications, and associated inspection/test reports.
- Technical journals, newsletters, and reports.
- Information from air quality control (AQC) technology suppliers.
- Engineering design on other projects.

If the top level of control is feasible (for a similar type source and fuel category) and does not exhibit unacceptable economic, energy, or environmental effects, then that level of control must be declared to represent BACT for the respective pollutant and air emissions source. Alternatively, upon proper documentation that the top level of control is not feasible for a specific unit and pollutant based on a site- and/or project-specific consideration of the aforementioned screening criteria (e.g., technical, economic, energy, and environmental considerations), then the next most stringent level of control is identified and similarly evaluated. This process continues until the BACT level under consideration. BACT cannot be determined to be less stringent than the emissions limits established by an applicable New Source Performance Standard (NSPS) for the affected air emissions source.

3.1.2 Unit Operations and Baseline Emissions Basis

For coal fired boilers, reliable emission tests cannot be conducted during startup, shutdown, and malfunction to serve as a means of demonstrating compliance with an expressed BACT emission limit. This conclusion is consistent with the regulatory provisions of the NSPS, where the operations during periods of startup, shutdown, and malfunction are not considered representative for purposes of conducting compliance performance tests. BACT envisions these types of circumstances and provides for the use of applicable work practice standards such as good air pollution control practices and proper operation and maintenance as a basis for measurable and practicably enforceable compliance elements. However, recently EPA and the Kentucky Division for Air Quality (KDAQ) have held that BACT is applicable during all periods, including startup and shutdown. Additionally, KDAQ has made similar recommendations and have previously assigned lb/hr BACT emission limits for emission units undergoing NSR/PSD review. Therefore, should a H₂SO₄ BACT emission limit for startup and shutdown be determined

to be applicable, this value should be based on a lb/hr rate consistent with previous determinations. Furthermore, the Brown 3 SCR will be designed for a wide range of operation and it likely will be in service at low loads. Thus, a lb/hr BACT limit is most appropriate.

Brown 3 is a base loaded electric generating unit and, for the purposes of this review, is designed to operate unrestricted for 8,760 hours per year with a planned capacity factor of 75%. The following subsections characterize the unit size, fuel, operating scenario, and emissions assumptions that were collectively utilized as a basis for the BACT analysis.

3.1.3 Coal Fired Boiler

Table 3-2 presents the BACT design basis for the Project's coal fired boiler.

Table 3-2 Main Boiler Design Basis ^(a)						
Size	463 MW (gross) / 433 MW (net)					
Maximum Heat Input	5,300 mmBtu/h ^(b)					
Operating Hours	8,760 h/yr					
Fuel	High-sulfur bituminous coal					
^(a) 100 percent load, average annual site conditions. ^(b) Based upon firing design fuel.						

Table 3-2 presents the typical high-sulfur bituminous coal quality fuel specifications which will be combusted by Brown 3. The fuel listed is considered representative of the design fuel proposed for this unit.

Table 3-3 Coal Fuel Specifications							
Description	Value	High-Sulfur Bituminous					
Higher Heating Value	Btu/lb _m	11,000					
Ultimate Analysis							
Basis		As Received					
Carbon	%	60.30					
Hydrogen	%	4.50					
Nitrogen	%	1.17					
Sulfur	%	3.80					
Chlorine	%	0.07					
Ash	%	13.80					
Moisture	%	9.56					
Oxygen (by difference) % 6.8							

Using the design basis presented in Table 3-2 and the fuel specifications presented in Tables 3-3, the uncontrolled baseline emissions from Brown 3 for sulfuric acid mist are presented in Table 3-4.

Table 3-4 Brown 3 Baseline Uncontrolled H ₂ SO ₄ Emissions ^(a)					
Pollutant	Mass Rate (lb/h)				
H ₂ SO ₄ 758					
^(a) Total emissions are based on typical, baseload fuel coal specifications at 5,300 mmBtu/h with future SCR in service.					

3.2 Coal Fired Boiler Sulfuric Acid Mist BACT Analysis

This section presents the top-down, five-step BACT process used to evaluate and determine the H_2SO_4 emission limit for Brown 3. As this analysis will demonstrate, the proposed H_2SO_4 BACT limit for the Brown 3 is an emissions limit of 220 lb/hr.

3.2.1 Step 1--Identify All Control Technologies

The first step in a top-down analysis, according to the EPA's October 1990, Draft New Source Review Workshop Manual, is to identify all available control options. Available control options are those air pollution control technologies or techniques with a practical potential for application to the emission unit and the sulfuric acid mist emission limit that is being evaluated. Sulfuric acid is present in the flue gases generated from the combustion of coal, because a small fraction of the SO₂ produced is further oxidized to SO₃. SO₃ reacts with water in the flue gas to form sulfuric acid vapor. Sulfuric acid can cause air heater fouling and equipment corrosion downstream, and when the flue gas containing sulfuric acid vapor is cooled, it condenses to form a submicron aerosol mist as it is emitted to the atmosphere.

In addition to the SO₃ formed during combustion, SCR catalysts used for NO_x control further oxidize a fraction of SO₂ to SO₃. The combination of furnace and SCR oxidation has the capability to produce significant quantities of SO₃. In addition, the SO₃ content in the furnace exit gas can limit SCR operation at lower unit loads because of the lower flue gas temperatures that result from the low load operation. The potential to form ammonium sulfate salts that will foul active catalyst sites increases at the lower economizer outlet flue gas temperatures.

Effective controls for H_2SO_4 include only post-combustion controls and include lime-based semi-dry FGDs, wet FGDs, wet ESPs, and alkali sorbent injection systems. These control technology alternatives are described below.

3.2.2 Lime-Based Semi-Dry FGD Systems

US utilities have installed numerous semi-dry FGD systems on some boilers using lower sulfur fuels such as lignite or subbituminous coals. While this FGD system is installed for SO_2 removal from flue gas, a co-benefit of the semi-dry FGD system is the high removal of SO₃. In fact, semi-dry FGD in combination with fabric filters have been determined as a BACT type technology for SO₃ removal.

The SO₃ removal is made possible because the flue gas temperature leaving a lime-based semi-dry FGD is lowered below the sulfuric acid dew point, and significant SO₃ removal is attained as the condensed acid reacts with the alkaline lime-based reagent in the fabric filter cake.

3.2.3 Wet FGD

Similar to the semi-dry FGD system, the wet FGD is capable of incremental removal (low removal rates) of SO₃ from the flue gas as a co-benefit to the primary controlled pollutant, which is SO₂. SO₃ reduction is achieved via two primary mechanisms.

The first method is by removing SO_3 that is condensed on the fly ash surface as the flue gas enters the FGD absorber and is quenched by the limestone slurry spray. This removal method is dependent on the particulate removal capability of the wet FGD system, which is also an incremental type co-benefit. Additionally, the wet FGD is typically installed downstream of the primary particulate collection device; therefore, the fly ash concentration in the flue gas will be very low.

The second mechanism for SO_3 removal from the flue gas is by contacting the SO_3 molecules with the limestone slurry spray droplets, absorbing the SO_3 molecules into the droplets, and neutralization of the acidic SO_3 by the alkaline limestone-based slurry. However, this removal mechanism is not very effective because the contact process between the SO_3 molecules and limestone slurry spray droplets cannot be achieved efficiently. The SO_3 molecules are very small when compared to the spray droplets, so the fluid dynamics interaction will result in the smaller SO_3 particle circumventing the large spray droplet when both particles collide from opposite directions. It should be noted that the efficiency of SO_3 contact with the spray droplet varies between the wet FGD designs available because of the different limestone spray philosophies.

3.2.4 Wet Electrostatic Precipitator

On the very few wet ESP (WESP) control systems installed on utility boilers, they are typically installed downstream of a wet FGD. In high-sulfur coal applications, the addition of a WESP allows sulfuric acid mist to condense and be collected as particulate or absorbed into the water stream along the charged collection surfaces.

A WESP collects particles based on the same principle as a dry ESP; negatively charged particles are collected on positively charged surfaces. However, the main difference in WESP operations is that the collecting surfaces are wet instead of dry and are flushed with water rather than being rapped to remove the particulate. Typically, a WESP is installed downstream of an existing wet FGD system, where the flue gas is already saturated, so the amount of added water is minimized. The particulate collection efficiency is enhanced by a lack of re-entrainment after contact with the wet collector plates (as contrasted with re-entrainment during rapping on a dry ESP). Therefore, a WESP is well suited for fine particulate or acid mist applications because it reduces opacity, sulfuric acid mist, and other aerosols. However, a WESP is not well suited as the primary particulate control device for handling uncontrolled particulate emissions levels from the boiler. The large amount of sludge wastewater produced for capturing the large amount of particulate material would not be technically feasible.

The use of a WESP for acid mist collection was one of the earliest applications for ESP. Although there are relatively few applications in the utility industry, this is a mature technology with hundreds of industrial installations, though the scale of most of those is dramatically different.

3.2.5 Sorbent Injection Systems

Injection of finely divided alkalis into the flue gas has been demonstrated for the removal of SO_3 from flue gases. Most commercial experience is from units firing high sulfur oil where trace metals, mainly vanadium, increase SO_2 oxidation. Magnesiumbased compounds have been used successfully for decades to capture SO_3 in oil fired units. As coal fired units burning high sulfur bituminous coals have been retrofitted with SCR systems (primarily in the east), interest in the injection of alkali compounds directly into the flue gas duct of a unit has increased. Sorbents such as sodium bisulfite, trona, and hydrated lime have recently been tested on large coal fired units, with reported results showing the achievement of high control efficiencies of SO_3 in high sulfur applications. The alkaline material injected can be classified to magnesium-, sodium-, and calcium- based sorbents. The injection points for the reagents may vary in the flue gas flow path, from in-furnace, upstream of air heater, upstream of dry ESP, and upstream of wet FGD.

3.2.6 Step 2--Eliminate Technically Infeasible Options

Step 2 of the BACT analysis involves the evaluation of all the identified available control technologies in Step 1 of the BACT analysis to determine their technical feasibility. A control technology is technically feasible if it has been previously installed and operated successfully at a similar type of source of comparable size, or there is technical agreement that the technology can be applied to the source. Available and applicable are the two terms used to define the technical feasibility of a control technology.

From a review of the aforementioned H_2SO_4 control technologies, it can be concluded that all of the aforementioned four technologies (i.e., dry FGD, wet FGD, sorbent injection systems, and WESP) are technically feasible as H_2SO_4 control technology alternatives for Brown 3. Table 3-5 summarizes the evaluation of the technically feasible H_2SO_4 options. However, a wet FGD is currently being retrofitted at Brown 3 and, therefore, a wet FGD with sorbent injection and the WESP will be considered further in the BACT analysis.

Table 3-5 Summary of Step 2Eliminate Technically Infeasible Options								
Technically Feasible (Yes/No)								
Technology Alternative	Available Applicable							
Dry (or semi-dry) FGD	Yes	No						
Wet FGD	Yes	Yes						
Sorbent Injection with Wet FGD	Yes	Yes						
Wet ESP with Wet FGD	Yes	Yes						

3.2.7 Step 3--Rank Remaining Control Technologies by Effectiveness

A review of the information contained in the USEPA BACT/LAER Clearinghouse and other sources specified in Section 3.2.1 was conducted to determine the top level of H_2SO_4 control for pulverized coal boilers. A search was also conducted for recently permitted coal fired facilities whose BACT determinations have not yet been included in the current BACT/LAER Clearinghouse database, but no additional facilities were identified. The results of this search for all coal fired boilers are listed in Attachment A. Table 3-6 shows the H_2SO_4 BACT determinations (proposed and proposed limits) that have the closest attributes when compared to Brown 3, which include fuel type, boiler technology, and boiler size.

FACILITY	COMPANY		FUE	SIZE	BOILER	LIMIT	LIMIT (Ibbr)	CONTROL	DEDMIT STATUS	OPERATIONAL	COMPLIANCE
FACILIT	COMPANY	SIATE	FUEL	(10044)	TEON.	(inversional)	chart (Dath)	TEGIK	FERMI STATUS	311103	METHOD
SANTEE COOPER CROSS										Unit 3 in 2007 Unit 4	Initial Reformance
GENERATING STATION UNITS	CANTEE COODER		Diturningun	27550	80	0.0014	7 ca(b)	MECO	Permit iccued	in 2009	Toet
TRIMPLE COUNTY	SANTEE COUPER		Subbiluminous	27000	FU	0.0014	7.50	VVI 00	P BRING ISSUED	812000	1000
GENERATING STATION	A A A A A I I I VIII O I		Bituminous								Initial Performance
UNIT 2	ELECTRIC COMPANY	KV .	Bland	750	PC	0.0038	26.5 ^(a)	WESP	Permit Issuerf	Under Construction	Test
ONT 2	LLLOTING COM ANT		Subbituminous	700		0.0000				Citadi Concession	
	IS POWER		Bituminous								
ELK RUN ENERGY STATION	DEVELOPMENT	IA	Blend	750	PC	0.0034+278(d)	24.9 ^(b)	DFGD/FF	Proposed	Cancelled (2009)	
			Subbituminous							One unit rejected;	
			Bituminous							Unit 6 under	
CLIFFSIDE	DUKE POWER	NC	Bland	2x800	PC	0.005(*)	39.3 ^(b)	WFGD	Proposed	construction	Annual testing
							1				Initial Performance
1											Test
	LONGVIEW POWER.										& Testing Every 5
MAIDSVILLE	LLC	w	Bituminous	600	PC	0.0075	45.8 ^(s)	WFGD/Inj/FF	Permit issued	Under Construction	Years
PEE DEE GENERATING			Bituminous/Pet								Initial Performance
STATION	SANTEE COOPER	SC	Coke	2X660	PC	0.005(¢)	28.5 ^(b)	WFGD	Proposed	Under Construction	Test
			Subbituminous/								
AMERICAN MUNICIPAL POWER			Bituminous								Initial Performance
OHIO GENERATING STATION	AMP-OHIO	ОН	Blend	2x480	PC	0.0075	38.9(*)	WFGD	Proposed	Permitting	Test
ELM ROAD GENERATING						1					
STATION (EXISTING OAK CREEK											
FACILITY) UNITS 1 &											IPT + every 60
2	WISCONSIN ENERGY	WI	Subbituminous	2X615	PC	0.0100	61.8**	WFGD	Permit Issued	Under Construction	months + parametric
PRAIRIE STATE GENERATING						0.000	07.4(8)	wron	Permit issued -		Initial Performance
STATION	PEABODY	IL.	Bituminous	2X/50	PU	0.039**	37.1	WEGD	under appeal	Under Construction	1051
INTERMOUNTAIN POWER	INTERMOUNTAIN		Bituminous/Bien				no on(b)			0	Annual Treat
GENERATING STATION UNIT 3	POWER SERVICE	<u>U</u>	a	950	PC	0.0044	39.82	WFGU	Permit Issued	Cancelled (2007)	Annual Fest
	PUBLIC SERVICE										
	COMPANY OF			700		0.0040	24 4 7(0)	Line CDUTE	Darmit Incured	Under Construction	7.1 hr is st p.m.s
COMANCHE STATION UNIT 3	COLORADO		Sup-Bituminous	/50	PC	0.0042	31.17	Line SD+FF	F81100 155080	unuer construction	J, I-ru @St runs
UPPD-NEBRASKA CITY	OMAHA PUBLIC	NIT	Cub Distriction	660	DC.	0.0040	27 21(0)	DECOVEE	Bermit Issued	Linder Construction	1651//00100
STATION UNIT 2	POWER DISTRICT	I INE	Jaun-pituminous	1 000	FL	1.0042	1 21.21	Urgutre	F 01110 155000	Childer Constraction	avordgo

Table 3-6
H ₂ SO ₄ Top-Down RBLC Clearinghouse Review Results

(a) Value indicated in air permit. (b) Calculated Value based on the stated emission level and boiler heat input rate (c) RBLC previously indicated 0 0075 Is/MBtu, but permit # 1040-0113-CA indicated 0 005 Is/MBtu (d) RBLC previously indicated 0 0042, but draft permit indicated 0.0034 Is/Mbtu (e) RBLC previously indicated 0 006. but draft permit indicated 0.005 Ib/Mbtu (e) RBLC previously indicated 0.006. but draft permit indicated 0.005 Ib/Mbtu

A review of the H₂SO₄ BACT determinations in Table 3-6 indicates the following information for new facilities; however, no information was identified for facilities undergoing a retrofit:

- The lowest H₂SO₄ emission limit **permitted** for a new high-sulfur 0 bituminous fueled PC boiler is 0.0014 lb/mmBtu, utilizing a Wet FGD at the Santee Cooper Cross Generating Station.
- The lowest H₂SO₄ emission limit **permitted** for a new high-sulfur bituminous fueled PC boiler utilizing WESP is 0.0038 lb/mmBtu at the Louisville Gas & Electric Trimble County Generating Station.
- The lowest H₂SO₄ emission limit **permitted** for a new high-sulfur bituminous fueled PC boiler is 0.0042 lb/mmBtu, utilizing a Dry FGD and Fabric Filter at the LS Power Elk Run Energy Station.
- The most stringent H_2SO_4 emission limit **permitted** for a new high-sulfur 0 bituminous fueled PC boiler utilizing Wet FGD with sorbent injection is 0.0075 lb/mmBtu at the Longview Power Maidsville project.
- Several H₂SO₄ emissions limits that are being proposed and permitted between 0.010 and 0.039 lb/mmBtu for new high-sulfur bituminous fueled PC units utilizing Wet FGD, including Wisconsin Energy Elm Road Generating Station at 0.010 lb/mmBtu, Sempra Generation Twin Oaks

Power Plant at 0.020 lb/mmBtu, and Peabody Prairie State Generating Station at 0.039 lb/mmBtu.

• Compliance for these facilities is based on emissions testing. The noted facility list does not contain retrofit designs.

The wide range of H_2SO_4 emission limits proposed for high-sulfur bituminous and blends of high-sulfur bituminous with other fuels in PC boilers (as shown in Attachment A) is, in large part, due to the fact that the emission reductions proposed are actually the result of an assumed collateral control benefit from control technologies used to limit emissions of SO₂ and PM/PM₁₀, and the variability in the assumed SO₂ to SO₃ conversion and fuel sulfur content. These aforementioned sources are new units which are designed to efficiently combined emission control technology to achieve combined control of H_2SO_4 emissions. However, Brown 3 is an existing unit being retrofitted as a result of a consent decree. Additionally, there is little to no information available for a new or retrofitted existing unit which demonstrates continuous long-term compliance with the H_2SO_4 BACT determination emission limits proposed and summarized above.

While the review of the H_2SO_4 BACT determinations indicated several projects with low permitted levels of H_2SO_4 for high-sulfur bituminous fueled PC boiler utilizing Wet FGD with sorbent injection (in some cases) it should be noted that these are new projects that have been designed for optimal reduction of H_2SO_4 using sorbent injection and particulate matter collection systems that accounts for the additional PM loading from the H_2SO_4 mitigation system. Therefore, the evaluation of the control effectiveness for Brown 3 has to take into consideration, additional factors that impact the level of H_2SO_4 control achievable.

3.2.8 Wet FGD with Sorbent Injection

One of these additional factors that can affect the level of achievable control is the additional PM loading due to sorbent injection rates. For Brown 3, the consent decree requires a controlled PM level of 0.03 lb/mmBtu (on a 6-hour and 24-hour rolling basis), which is achieved using the cold-side ESP and Wet FGD system. The use of sorbent injection for Brown 3 must take into consideration the design PM loading and removal capacity of the cold-side ESP and Wet FGD. The sorbent injection rate will be ultimately limited by the PM emissions level at the stack.

For the sorbent injection systems, KU has recently performed testing of a sorbent injection system at Ghent Unit 3, which has a similar back-end air quality control configuration (except for hot-side ESP versus cold-side ESP) as Brown 3. Trona injection was utilized at Ghent 3 because of its hot-side ESP arrangement, and Trona has

been demonstrated for injection upstream of both the hot-side and cold-side ESP. Opacity measurements were also recorded during this test to continually evaluate the impacts of sorbent injection on the particulate matter emission level. From the test results, it can be seen that opacity levels below 20% were maintained for injection rates up to 3,000 lb/hr. Therefore, it is expected that the test results achieved at Ghent 3 will be representative of a similar injection scenario and the resulting H_2SO_4 emissions achieved, if applied at Brown 3. A summary of the test results for Ghent 3 are presented in Attachment B.

Applying similar level of control as demonstrated in the Ghent 3 test results to Brown 3, the expected control effectiveness of the sorbent injection system (limited by PM emission limit) is 0.042 lb/mmBtu. Correspondingly, this equates to an emission rate of 220 lb/hr. The calculation process to determine the emission rates is presented in Attachment C.

3.2.9 WESP

For the WESP system, high levels of H_2SO_4 reduction can be achieved due to the moisture saturated operating condition and high conductivity of the H_2SO_4 mist particles. For a retrofit scenario, the WESP is expected to remove H_2SO_4 to levels comparable to new units that were reviewed in Section 3.3.3.

3.2.10 Ranking of H₂SO₄ Control Technology

Based upon the technologies identified as technically feasible and available in Steps 1 and 2, the following technologies presented in Table 3-7 are ranked in a "Top-Down Approach" methodology.

Table 3-7 Ranking of H2SO4 Control Technologies					
Control Option	Control Effectiveness (lb/mmBtu)				
Wet ESP with Wet FGD 0.004					
Sorbent Injection with Wet FGD 0.042					

3.2.11 Step 4--Evaluate Most Effective Controls and Document Results

In the following subsections, the technically feasible control alternatives are evaluated in a comparative approach with respect to their energy, environmental, and economic impacts on the Project.

3.2.12 Energy Evaluation of Alternatives

While the energy impact of a WESP is considerably greater than that of sorbent injection, there are no significant energy impacts that would preclude the use of these technologies to limit H_2SO_4 .

3.2.13 Environmental Evaluation of Alternatives

When considering any WESP technology, there are potential environmental impacts associated with the direct operation of the technology. In general, the impacts are consistent with that of a wet FGD, which is the creation of a visible stack plume, increased water consumption, and the requirements of a wastewater treatment system. However, since a WESP is typically located after a wet FGD, its environmental impacts are essentially shared.

As discussed in Section 3.3.8, the sorbent injection systems has a potential impact on the PM emission limit, but the increase in the PM emission level will be mitigated by the cold-side ESP and Wet FGD and a controlled sorbent injection rate for H_2SO_4 control.

3.2.14 Economic Evaluation of Alternatives

The economic evaluations of the WESP and sorbent injection control alternatives have been assessed in this BACT analysis and are presented in Section 3.3.15.

Tables 3-8 and 3-9 present the total capital investment for the installation of a WESP or sorbent injection system at Brown 3, respectively. As described in the tables, the purchased equipment costs include the respective sulfuric acid mist control technologies. The direct installation costs, which include balance-of-plant items such as foundations and supports, handling and erection, electrical, piping, insulation, and paint, were calculated as a percentage of the purchased equipment costs and totaled with the purchased equipment costs to estimate the total direct costs of each control alternative. Finally, the total capital investment was calculated as the summation of the total direct costs and total indirect costs (including engineering and owner's costs) and an allowance for funds used during construction.

Tables 3-8 and 3-9 also present the annualized operating costs for the installation of a wet ESP or sorbent injection system on the Project's main boiler. As described in the tables, the operating fixed and variable direct annual costs includes operating labor, maintenance labor and materials, and auxiliary and ID fan power costs. The indirect annual costs, which includes, the capital recovery costs, is totaled with the direct annual costs to estimate the total annual costs for the control system.

3.2.15 Step 5--Select H₂SO₄ BACT

The development of an emissions limit (and eventual compliance) has to be carefully considered and estimated on the basis of assumptions relative to fuel sulfur content (refer to Table 3-3), SO_2 to SO_3 conversion during the combustion process and across the SCR. The following assumptions form the basis for the H₂SO₄ BACT limitation for the proposed control technology:

- Oxidation conversion of a total of 2.0 percent of SO_2 to SO_3 in the combustion process and across the SCR catalyst.
- Fuel sulfur as presented in the BACT basis, Table 3-3.

Tables 3-8 and 3-9 provide the economic analysis for installation of the wet ESP and sorbent injection technology, respectively. Table 3-10 summarizes the top-down evaluation of the sulfuric acid mist BACT control alternatives, including economic, energy, and environmental considerations, in accordance with the BACT determination methodology previously discussed. Table 3-11 summarizes the Project's H_2SO_4 BACT determination for Brown 3.

KU has determined that a sorbent injection system, in combination with a wet FGD, represents the H_2SO_4 BACT for Brown 3. The decision to select sorbent injection is based on the control technology with a reasonable annualized cost and control effectiveness. This is also the top control technology evident in recent permits for similar sized units and fuels such as the Longview Power Maidsville project and the technology is more easily installed at an existing unit than other control options. Therefore, a sulfuric acid mist limit of 220 lb/hr is proposed as BACT for Brown 3. The emission limit of 220 lb/hr corresponds to approximately 71 percent removal of H_2SO_4 for the sorbent injection system when firing the design basis fuel. The total reduction removal efficiency from uncontrolled SO₃ emissions is approximately 84 percent. These emission calculations, which are based on the Controlled Condensate Test Method, are shown in Attachment C of Section 3.

E.W. Brown Unit 3

Table 3-8 Wet ESP Equipment Engineering Analysis - Cost Analysis (WESP)

Kentucky Utilities E.W. Brown H2SO4 BACT Analysis - Cost Estimate

Technology: Brown 3 - Wet ESP			Date: 6/12/2009	
Cost Item	\$	Remarks/Cost Basis		
CAPITAL COST				
Direct Costs				
Purchased equipment costs				
WESP system includes casing, electrical sys., penthouse blower & beater, access provisions	\$29,900,000	Engineering estimate		
Ash handling system	\$1,370,000	Engineering estimate		
Booster fans	\$1,790,000	Engineering estimate		
Electrical system upgrades	\$1,790,000	Engineering estimate		
Ductwork	\$4,110,000	Engineering estimate		
Subtotal capital cost (CC)	\$38,960,000	5 5		
Instrumentation and controls	\$1,948,000	(CC) X 5 0%		
Freight	\$974,000	(CC) X 2 5%		
Total purchased equipment cost (PEC)	\$41,882,000	. ,		
Direct installation costs				
Foundation & supports	\$8,376,000	(PEC) X 200%		
Handling & erection	\$20,941,000	(PEC) X 50 0%		
Electrical	\$4,188,000	(PEC) X 10.0%		
Piping	\$2,094,000	(PEC) X 50%		
Insulation	\$838,000	(PEC) X 2.0%		
Painting	\$419,000	(PEC) X 1.0%		
Demolition	\$419,000	(PEC) X 1 0%		
Relocation	\$419,000	(PEC) X 1.0%		
Total direct installation costs (DIC)	\$37,694,000			
Site preparation	\$250,000	Engineering estimate		
Total direct costs (DC) = (PEC) + (DIC)	\$79,826,000	N/A		
Indirect Costs				
Engineering	\$9,579,000	(DC) X 12.0%		
Owner's cost	\$6,386,000	(DC) X 8.0%		
Construction management	\$7,983,000	(DC) X 10.0%		
Start-up and spare parts	\$1,197,000	(DC) X 1.5%		
Performance test	\$100,000	Engineering estimate		
Contingencies	\$15,965,000	(DC) X 20.0%		
Total indirect costs (IC)	\$41,210,000			
Allowance for Funds Used During Construction (AFDC)	\$8,424,000	[(DC)+(IC)]4 64%	3 years (project time length X 1/2)	
Total Capital Investment (TCI) = (DC) + (IC) + (AFDC)	\$129,460,000			
ANNUAL COST				
Direct Annual Costs				
Fixed annual costs				
Maintenance materials and labor	\$2,395,000	(DC) X 30%	110 000 04	Caller at all as a second
Uperating labor	\$110,000	I FIE and	110,000 \$/year	Estimated manpower
i otai fixed annual costs	\$2,505,000			
Variable annual costs			75 %	capacity factor
Reagent [Mg(OH) ₂]	\$30,000	44 lb/hr and	210.00 \$/ton	estimated
Auxiliary power	\$362,000	1,636 kW and	0 03364 \$/kWh	estimated
ID fan power	\$539,000	2,441 kW and	0 03364 \$/kWh	estimated
Service water	\$245,000	207 gpm and	3 \$/kgal	estimated
Total variable annual costs	\$1,176,000			
Total direct annual costs (DAC)	\$3,681,000			
Indirect Annual Costs				
Cost for capital recovery	\$15,846,000	(TCI) X 12 24%	CRF	
Total indirect annual costs (IDAC)	\$15,846,000			
Total Appual Cast $(TAC) = (DAC) + (IDAC)$	¢10 527 000			
(DAU) = (DAU) + (DAU)	φ13,321μ00			

E.W. Brown Unit 3

Table 3-9SO3 Sorbent Injection Equipment Engineering Analysis - Cost Analysis(SO3 Sorbent Injection)

Technology: Brown 3 - Sorbent Injection			Date: 5/19/2009	
Cost item	\$	Remarks/Cost Basis		
CAPITAL COST				
Direct Costs				
Purchased equipment costs				
Long-term storage silo (with truck unloading sys.)	\$350,000	Engineering estimate		
Short-term storage silo	\$230,000	Engineering estimate		
Air blowers	\$320,000	Engineering estimate		
Rotary feeders	\$40,000	Engineering estimate		
Injection system	\$150,000	Engineering estimate		
Ductwork modifications, supports, platforms	\$30,000	Engineering estimate		
Electrical system upgrades	\$960,000	Engineering estimate		
Instrumentation and controls	\$50,000	Engineering estimate		
Subtotal capital cost (CC)	\$2,130,000			
Freight	\$53,000	(CC) X 25%		
Total purchased equipment cost (PEC)	\$2,183,000			
Direct installation costs				
Foundation & supports	\$218,000	(PEC) X 10.0%		
Handling & erection	\$437,000	(PEC) X 20.0%		
Electrical	\$218,000	(PEC) X 10.0%		
Piping	\$109,000	(PEC) X 5.0%		
Insulation	\$44,000	(PEC) X 20%		
Painting	\$109,000	(PEC) X 50%		
Demolition	\$0	(PEC) X 0.0%		
Relocation	\$0	(PEC) X 0.0%		
Total direct installation costs (DiC)	\$1,135,000			
Site preparation	\$0	N/A		
Buildings	\$75,000	Engineering estimate		
Total direct costs (DC) = (PEC) + (DIC)	\$3,393,000			
Indirect Costs				
Engineering	\$407,000	(DC) X 12 0%		
Owner's cost	\$407,000	(DC) X 12 0%		
Construction management	\$339,000	(DC) X 10 0%		
Start-up and spare parts	\$51,000	(DC) X 15%		
Performance test	\$100,000	Engineering estimate		
Contingencies	\$679,000	(DC) X 20 0%		
Total indirect costs (IC)	\$1,983,000			
Allowance for Funds Used During Construction (AFDC)	\$125,000	[(DC)+(IC)]4 64%	1 years (pr	oject time length X 1/2)
Total Capital Investment (TCI) = (DC) + (IC) + (AFDC)	\$5,501,000			
ANNUAL COST				
Direct Annual Costs				
Fixed annual costs				
Maintenance labor and materials	\$102,000	(DC) X 30%		
Operating labor	\$110,000	1 FTE and	110,000 \$/year	Estimated manpower
Total fixed annual costs	\$212,000			
Veriable encuel costs			75 94	conocity factor
Somet (trong)	\$1 183 000	3 000 lb/br and	120 \$/top	from Ghant 3 testing
	\$35,000	160 kW and	0.03364 \$/k\Mh	estimated
Total variable annual costs	\$1 218 000	100 KW and	0.00001 0.000	ootandtod
Total direct annual costs (DAC)	\$1,430,000			
Indirect Annual Costs				
Cost for capital recovery	\$673,000	(TCI) X 12.24%	CRF	
Total indirect annual costs (IDAC)	\$673,000			
Total Annual Cost $(TAC) = (DAC) + (IDAC)$	62 102 000			
rotal Annual COSt (TAC) = (DAC) + (IDAC)	\$Z,103,000			
E.W. Brown Unit 3

Table 3-10 Sulfuric Acid Mist Top-Down BACT Summary									
	Emissions Energy Emissions Economic Impacts						ental Impacts		
Control Alternative	Emissions, lb/h	Emissions Reduction, tpy	Total Capital Cost, \$1,000	Total Annualized Cost, \$1,000/yr	Control Cost- Effectiveness, \$/ton	Incremental Cost- Effectiveness, \$/ ton	Incremental Increase Over Baseline, kWh/yr	Toxic Impacts (Yes/No)	Adverse Environmental Impacts (Yes/No)
Sorbent Injection with Wet FGD	220	1,767	5,501	2,103	1,190		1,051,200	No	No
Wet ESP with Wet FGD (0.004 lb/mmBtu)	21.2	2,420	129,460	19,527	8,068	26,683	26,785,892	No	No
Uncontrolled Base Line (with Wet FGD)	758								

Table 3-11					
Brown 3 H ₂ SO ₄ BACT Determination					
	Emission Limit				
Control Technology	(lb/hr)				
Sorbent Injection with Wet FGD	220 ^(a)				
^(a) Is equivalent to a sulfuric acid mis (based on the Controlled Condensate concentration of 10 ppmvw at actua	t rate of 0.042 lb/mmBtu e Test Method) and a l O ₂ conditions.				

Attachment A Coal Fired Boiler Top-Down RBLC Clearinghouse Review Results

	H2S	04 To	op Down R	BLC	Clearinghou	ise Techi	nology Revie	ew Results			
FACILITY	COMPANY	STATE	FUEL	SIZE (MW)	BOILER TECHNOLOGY	LIMIT (Ib/mmBtu)	AVERAGING PERIOD	CONTROL TECHNOLOGY	STATUS	NSR BASIS	DATA SOURCE
SANTEE COOPER CROSS GENERATING STATION	SANTEE COOPER	sc	Bituminous	2X660	PC	0.0014		WFGD	Permit issued	PSD Avoidance/Net Out PSD	RBLC
CITY UTILITIES OF SPRINGFIELD - SOUTHWEST POWER STATION	CITY UTILITIES OF SPRINGFIELD	мо	Subbituminous	275	PC	0.00018		DFGD	Permit issued	BACT-PSD	Reg Spreadsheet
SEVIER POWER COMPANY	NEVCO - SEVIER POWER	UT	Subbituminous	270	CFB	0.0024	24-Hr	Lime Scrubber	Permit issued	BACT-PSD	RBLC
BEECH HOLLOW POWER	ROBINSON POWER	PA	Waste Coal	272	CFB	0,0030		Limestoned Inj.	Permit issued - under appeal	BACT-PSD	RBLC
CALAVERAS LAKE STATION (J K SPRUCE)	CITY PUBLIC SERVICE OF SAN ANTONIO	тх	Subbituminous	750	PC	0.0037		WFGD	Permit issued	BACT-PSD	Reg Spreadsheet
HUGO STATION	WESTERN FARMERS	ок	Subbituminous	750	PC	0.0037		DFGD	Permit issued	BACT-PSD	Reg Spreadsheet
SANDY CREEK ENERGY STATION	SANDY CREEK ENERGY ASSOCIATES	тх	Subbiluminous	800	PC	0.0037		DFGD/FF	Permit issued	BACT-PSD	RBLC/Reg Spreadsheet
MUTIPLE GENERATING STATIONS	TXU	тх		800	PC	0.0037		WFGD	Proposed	BACT-PSD	Reg Spreadsheet
NORBORNE POWER PLANT	ASSOCIATED ELECTRIC CO- OPERATIVE INC	мо	Subbituminous	781	PC	0.0038		DFGD/FF	Permit Issued	BACT-PSD	Draft Permit
TRIMBLE COUNTY GENERATINIG	LOUISVILLE GAS & ELECTRIC COMPANY	кү	Subbituminous/Bi tuminous Blend	750	PC	0,0038	3-Hr (26,6 lb/h)	WESP	Permit Issued	BACT-PSD	Reg Spreadsheet
GLADES POWER PARK	FLORIDA POWER & LIGHT COMPANY	FL	Bituminous/Pet Coke	2X980	PC	0.0040		WFGD	Withdrawn	BACT-PSD	Reg Spreadsheet
HOLCOMB POWER PLANT	SUNFLOWER ELECTRIC	кз	PRB	3x700	PC	0.0040		DFGD/FF	Draft Permit	BACT-PSD	Reg Spreadsheet
SOUTH HEART POWER PROJECT	GREAT NORTHERN POWER	ND	Lignite	500	CFB	0.0042		Limestone Inj and Polishing Dry Scrubber	Proposed	BACT-PSD	Reg Spreadsheet
OPPD - NEBRASKA CITY STATION	OMAHA PUBLIC POWER	NF	Subbituminous	660	PC	0.0042		DFGD/FF	Permit issued	BACT-PSD	RBLC
MIDAMERICAN ENERGY COMPANY	MIDAMERICAN ENERGY COMPANY	IA	PRB	790	PC	0.0042		DFGD	Permit issued	BACT-PSD	RBLC
COMANCHE STATION (UNIT 3)	XCEL ENERGY	со	Subbituminous	750	PC	0.0042		DFGD	Permit issued	Net Out-PSD	Reg Spreadsheet
ELK RUN ENERGY STATION	LS POWER DEVELOPMENT	IA	Subbituminous/Bi tuminous Blend	750	PC	0.0042	3-Hr	DFGD/FF	Proposed	BACT-PSD	Draft Application
TS POWER PLANT	NEWMONT NEVADA ENERGY INVESTMENT, LLC	NV	PRB	200	PC	0.0043		DFGD/FF	Permit issued	BACT-PSD	RBLC
		UT	Subbituminous/Bi	900	PC	0.0044	24-Hr	WEGD/EE	Permit issued	BACT-PSD	BBLC
MANITOWOG DUDUG UTU TES	MANITOWOC PUBLIC	14/1	Cost/Pet Coke	64	CER	0.0045		Limestone In	Permit issued	N/A	BBLC
THOROUGHBRED GENERATING	GENERATING COMPANY,	KY	Bituminous	22750	PC	0.00497		WEGD	Permit issued	BACT-PSD	RBLC
BONANZA	DESERET GENERATION & TRANSMISSION	UT	Waste Coal	110	CFB	0.0050		Limestone Inj and Polishing Dry Scrubber	Proposed	Net Out-PSD	Reg Spreadsheet
WPS - WESTON PLANT (UNIT 4)	WISCONSIN PUBLIC SERVICE	wi	PRB	500	PC	0.0050	24-Hr	DFGD	Permit issued	BACT-PSD	RBLC/Reg Spreadsheet

	H2SC	04 To	p Down R	BLC C	learinghou	se Techo	onology Rev	iew Results			
FACILITY	COMPANY	STATE	FUEL	SIZE (MW)	BOILER TECHNOLOGY	LIMIT (lb/mmBtu)	AVERAGING PERIOD	CONTROL TECHNOLOGY	STATUS	NSR BASIS	DATA SOURCE
			Subbituminous/Bi				1				
LONGLEAF ENERGY ASSOCIATES	LS POWER DEVELOPMENT	GA	tuminous Blend	2x600	PC	0.0050	30-Day	DFGD	Permit issued	BACT-PSD	Reg Spreadsheet
ESTILL COUNTY ENERGY PARTNERS	ESTILL COUNTY ENERGY PARTNERS	КY	Bituminous	110	CFB	0.0050	30-Day	Limestone Inj and Polishing Dry Scrubber	Proposed	BACT-PSD	Reg Spreadsheet
EAST KENTUCKY POWER COOP., INC./SPURLOCK POWER STA (Unit 4)	EAST KENTUCKY POWER	КY	Bituminous	300	CFB	0.0050	3-Hr	Limestone Inj and Polishing Dry Scrubber	Draft Permit	BACT-PSD	Reg Spreadsheet
EAST KENTUCKY POWER COOP., INC./SPURLOCK POWER STA (UNIT 3)	EAST KENTUCKY POWER	КY	Bituminous	270	CFB	0.0050	30-Day	Limestone Inj and Polishing Dry Scrubber	Permit issued	BACT-PSD	RBLC
	OTTER TAIL POWER	90	Subbituminous	600	PC	0.0050		WEGD	Proposed	Net Out-PSD	Reg Spreadsheet
HIGHWOOD GENERATING STATION	SOUTHERN MONTANA ELECTRIC GENERATION & TRANSMISSION COOP	мт	Subbituminous	270	CFB	0.0054	1-Hr	Limestone Inj	Proposed	BACT-PSD	Reg Spreadsheet
		TV	Subbituminous/P	07450	OEB	0.0055		Limostano In	Proposed	BACT. DOD	Peg Spreadsheet
PORMOSA	FORMOSA PLASTICS CORP		l ignite	2×800	PC	0.0055	<u> </u>	WEGD	Proposed	BACT-PSD	Reg Spreadsheet
SWEPCO UNIT	AMERICAN ELECTRIC POWER (AEP)	AR	PRB	600	PC	0.0060		DFGD	Proposed	BACT-PSD	Reg Spreadsheet
WESTERN GREENBRIER CO- GENERATION, LLC	WESTERN GREENBRIER CO-GENERATION, LLC	wv	Waste Coal	98	CFB	0.0060		Limestone Inj/FF	Permit issued - under appeal	BACT-PSD	RBLC/Reg Spreadsheet
GREENE ENERGY RESOURCE RECOVERY PROJECT	WELLINGTON DEV/GREENE ENERGY	PA	Waste Coal	2X250	CFB	0,0060		Limestone Inj and Polishing Scrubber	Permit issued - under appeal	BACT-PSD	RBLC
	DUKE POWER	NC	Subbituminous/Bi tuminous Blend	2x800	PC	0,0060	3-Hr	WFGD	Proposed	Net Out-PSD	Reg Spreadsheet
GASCOYNE GENERATING STATION	MONTANA DAKOTA UTILITIES / WESTMORELAND POWER	ND	Lignite	175	CFB	0.0061	3-Hr	Limestone Inj	Permit issued	BACT-PSD	RBLC
PLUM POINT ENERGY	PLUM POINT ASSOCIATES, LLC	AR	Subbituminous	800	PC	0.0061		DFGD/FF	Permit issued	BACT-PSD	RBLC
	ROCKY MOUNTAIN POWER,				2.6	0.0000		0500		Other Case-by-	RBLC/Reg
HARDIN GENERATOR PROJECT	INC.	MT	Subbituminous	116	PC	0.0063	1-11		Permit issued	Case	BBI C/Reg
ROUNDUP POWER PROJECT	COMPANY	мт	Subbituminous	2X390	PC	0.0064		DFGD	Permit issued	BACT-PSD	Spreadsheet
MUSTANG GENERATING STATION	MUSTANG ENERGY (PEABODY)	NM	Subbituminous	300	PC	0,0066		DFGD	Under review - BACT unresolved	BACT-PSD	Reg Spreadsheet
IATAN GENERATING STATION	KANSAS CITY POWER &		0.111	000		0.0070		WEOD	Dormit inque d	Not Out BCD	RBLC/Reg
	LIGHT LIGHT	MO	Bituminous	600	PC PC	0.0072	3-Hr	WEGD/Ini/EF	Permit issued	BACT-PSD	RBLC
PEE DEE GENERATING STATION	SANTEE COOPER	sc	Bituminous/Pet Coke	2X660	PC	0.0075	3-Hr	WFGD	Proposed	BACT-PSD	Reg Spreadsheet

	H2S	04 To	op Down R	BLC	Clearinghou	ise Techi	nology Revie	w Results			
FACILITY	COMPANY	STATE	FUEL	SIZE (MW)	BOILER TECHNOLOGY	LIMIT (Ib/mmBtu)	AVERAGING	CONTROL TECHNOLOGY	STATUS	NSR BASIS	DATA SOURCE
AMERICAN MUNICIPAL POWER OHIO GENERATING STATION	AMP-OHIO	он	Subbituminous/Bi tuminous Blend	2x480	PC	0,0075	3-Hr	WFGD	Proposed	BACT-PSD	Reg Spreadsheet
ELM ROAD GENERATING STATION (EXISTING OAK CREEK FACILITY	WISCONSIN ENERGY	wi	Subbituminous	2X615	PC	0.0100		WFGD	Permit Issued	BACT-PSD	Reg Spreadsheet
RIVER HILL POWER COMPANY, LLC	RIVER HILL POWER COMPANY, LLC	PA	Waste Coal	290	CFB	0.0100			Permit issued	BACT-PSD	RBLC
TWIN OAKS POWER PLANT (UNIT 3)	SEMPRA GENERATION	тх	Lignite	600	PC	0,0200		WFGD	Proposed	BACT-PSD	Reg Spreadsheet
PRAIRIE STATE GENERATING STATION	PEABODY	IL	Bituminous	2X750	PC	0.0390		WFGD	Permit issued - under appeal	BACT-PSD	Reg Spreadsheet
DESERT ROCK ENERGY FACILITY	SITHE GLOBAL	NM	Subbituminous	2X750	PC			WFGD	Proposed	BACT-PSD	Reg Spreadsheet- NO SAM Limit
COTTONWOOD ENERGY CENTER	BHP BILLITON	NM	Subbituminous	500	PC			WFGD	Proposed	BACT-PSD	Reg Spreadsheet- NO SAM Limit
TOUQUOP ENERGY PROJECT	TOUQUOP ENERGY PROJECT	NV	Subbituminous	750	PC			WFGD	Proposed	BACT-PSD	Reg Spreadsheet- NO SAM Limit
ELY ENERGY CENTER	SIERRA PACIFIC & NV POWER	NV	Subbituminous	2X750	PC			WFGD	Proposed	BACT-PSD	Reg Spreadsheet- NO SAM Limit
WYGEN 3	BLACK HILLS CORPORATION	WY	Subbituminous	100	PC			DFGD	Permit issued	BACT-PSD	RBLC-NO SAM Limit
WHITEPINE ENERGY STATION	LS POWER DEVELOPMENT	NV	PRB	3x530	PC			DFGD	Proposed	BACT-PSD	NO SAM Limit
WYGEN 2	BLACK HILLS CORPORATION	WY	Subbituminous	500	PC			DFGD	Permit issued	BACT-PSD	Limit
BIG CAJUN II POWER PLANT	LOUISIANA GENERATING, LLC	LA	Subbituminous	675	PC			WFGD	Permit issued	BACT-PSD	Limit
HUNTER	PACIFICORP	UT	Subbituminous	575	PC			WFGD	Proposed	Net Out-PSD	Reg Spreadsheet- NO SAM Limit
LAMAR LIGHT & POWER POWER PLANT	LAMAR UTILITIES BOARD DBA LAMAR LIGHT & POWER	со	Subbituminous/Bi tuminous Blend	44	CFB			Limestone Inj	Permit issued	BACT-PSD	RBLC/Reg Spreadsheet-NO SAM Limit
WHELAN ENERGY CENTER	HASTINGS UTILITIES	NE	Subbituminous	220	PC			DFGD	Permit issued	BACT-PSD	RBLC/Reg Spreadsheet-NO SAM Limit
INDECK ELWOOD	INDECK ELWOOD	IL	Bituminous	2X330	CFB			Limestone Inj	Permit issued - under appeal - EAB remand	BACT-PSD	Reg Spreadsheet- NO SAM Limit
PALATKA GENERATIING STATION	SEMINOLE ELECTRIC COORP	FL	Bituminous	800	PC			WFGD	Proposed	Net Out-PSD	Reg Spreadsheet- NO SAM Limit

Color Code Legend Data from EPA Regions 4 and 7 Spreadsheet Data from Draft Application Data from EPA's RBLC Cleannghouse Attachment B SO₃ Testing Results Ghent 3 Client:E.ON USPlant:Ghent Unit 3Location:Stack

Run Number:	1	2	3	4	5	6	7	8
Date:	4/17/2009	4/17/2009	4/17/2009	4/17/2009	4/17/2009	4/17/2009	4/17/2009	4/17/2009
Run Time: Start	9:45	10:20	11:30	12:08	13:10	13:56	14:50	15:27
End	10:15	10:50	12:00	12:38	13:40	14:26	15:20	15:57
Pbar - Barometric Pressure:	29.60	29.60	29.60	29.60	29.60	29.60	29,60	29.60
TT - Sampling Time:	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
VM - Meter Volume:	17.890	17.101	17.027	17.139	16.897	17.012	16.137	16.957
TM - Avg. Meter Temp (F):	71	74	76	78	79	81	83	85
PM - Avg. Delta H (in. of H2O):	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Y - Meter Calibration Factor:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
VMSTD - Std. Gas Volume (SCF):	17.828	16.933	16.810	16.842	16.571	16.619	15.704	16.464
Vlc - Volume Water Collected:	67	70	64	67	66	64	65	67
%M - Percent Moisture:	15.04	16.30	15.21	15.78	15.80	15.35	16.31	16.08
Bws - Mole Fraction, Dry:	0.150	0.163	0.152	0.158	0.158	0.154	0.163	0.161
%CO2 - Carbon Dioxide, Dry:	12.0	12.0	11.9	11.9	12.2	12.2	12.1	12.1
%O2 - Oxygen, Dry:	7.5	7.5	7.5	7.5	7.2	7.2	7.5	7.5
MD - Dry Molecular Weight:	30.22	30.22	30.20	30.20	30.24	30.24	30.24	30.24
MS - Wet Molecular Weight:	28.38	28.23	28.35	28.28	28.31	28.36	28.24	28.27
PS - Static Press. (in. of Hg):	29.57	29.57	29.57	29.57	29.57	29.57	29.57	29.57
SO3								
Emission Concentration (gr/dscf):	0.006	0.015	0.016	0.015	0.011	0.015	0.015	0.013
Emission Concentration (ppm):	4.3	10.0	10.7	10.1	7.7	10.2	10.1	9.0
Emission Rate (lb/mmBtu):	0.014	0.032	0.034	0.032	0.024	0.032	0.032	0.029
Opacity (%):	18.3	18.0	15.5	16.1	16.2	16.0	15.2	14.1
Trona Injection Rates								
Inlet (lbs/hour)	1250	1250	1000	1000	0	0	1500	1500
Outlet (lbs/hour)	1250	1250	1000	1000	1500	1500	1500	1500
Unit Information								
MW	513	514	512	515	515	514	514	514

Attachment C Emissions Estimate

Kentucky Utilities (K	U) - E.W. Bro	wn Unit 3		
H ₂ SO ₄ BA	CT Analysis			
Emissions E	stimate Rev.	3		
	Uncontrolled	Reference	Sorbent Ini	Reference
Ultimate Coal analysis, as received		Treforence	Consone inj.	11010101100
Carbon. %	60.30	Ref 1		
Hydrogen, %	4.50	Ref 1		
Sulfur, %	3.80	Ref 3		
Nitrogen, %	1.17	Ref 1		
Oxygen, %	6.80	Ref 1		
Chlorine, %	0.07	Ref 1		
Ash, %	13.80	Ref 1		
Moisture, %	9.56	Ref 1		
Total, %	100.00	Calculated		
Higher Heating Value, Btu/lb	11,000.00	Ref 1		
Unit Characteristics				
Unit Rating, Gross MW	457	Ref 1		
Unit Rating, Net MW	433	Ref 1		
Boiler Type		Ref 1		
Boiler Manufacturer	10.150	Ref 1		· · · · · ·
Reiler Heat Input mmPtu/hr (HHV)	5 300 0	Rei I Pof 1		
Coal Flow Pate Ib/br	481 818	Calculated		
Coal Flow Rate, tons/month	173 455	Note 4		
Capacity Factor %	75	Year 2017		
Fly Ash Portion of Total Ash, %	80	Ref 1		
Boiler Economizer Outlet Conditions				
Flue Gas Temperature F	700	Ref 1		
Flue Gas Pressure, in, w.g.	-4.5	Ref 1		
Flue Gas Composition				
Sulfur Dioxide (SO ₂), lb/mmBtu	6.90	Calculated		
Sulfur Dioxide (SO ₂), lb/hr	36,580	Calculated		
Sulfur Trioxide (SO ₂) $ b/br $	457	Note 1		
Sulfur Trioxide (SO) Ih/mmPtu	0.096	Colculated		
	0.000	Calculated		
SCR Outlet Conditions				
Sulfur Trioxide (SO ₃), lb/hr	1,371	Note 1		
Sulfur Trioxide (SO ₃), lb/mmBtu	0.259	Calculated		
Air Heater Outlet Conditions				
Flue Gas Temperature, F	330	Ref 1		
Flue Gas Pressure, in. w.g.	-16.5	Ref 1		
Flue Gas Composition				
Sulfur Trioxide (SO ₃), lb/hr	1,303	Note 2 (a)		
Sulfur Trioxide (SO ₃), lb/mmBtu	0.246	Calculated		
Cold-Side ESP Outlet Conditions				
Flue Gas Temperature, F	330	Ref 1		
Flue Gas Pressure, in. w.g.	-17.0	Ref 1		
Flue Gas Composition		ļ		
Sulfur Trioxide (SO ₃), lb/hr	1,238	Note 2 (b)	359	Note 2 (c)
Sulfur Trioxide (SO ₃), lb/mmBtu	0.234	Calculated	0.068	Calculated

ECD Outlet Conditions	T	T	ľ	
FGD Outlet Conditions	128.00	Pof 1		
Flue Gas Temperature, F	120.00	Rei I		
Flue Gas Pressure, in. w.g.	6 356 503	Ref 2 Note 3		
Flue Gas Wats Flow Rate, 10/11	28.32	Ref 2		
Flue Gas Molar Flow Rate moles/hr	224 453	Calculated		
Flue Gas Composition	22-1,400	Guidalatea		
Sulfur Trioxide (SQ ₂), lb/hr	619	Note 2 (d)	180	Note 2 (d)
Sulfur Trioxide (SO ₃), lb/mmBtu	0.117	Calculated	0.034	Calculated
Sulfur Trioxide (SO ₂), ppmvw @ actual O ₂	34	Calculated	10	Calculated
Sulfuric Acid Mist (H ₂ SO ₄) lb/hr	758	Calculated	220	Calculated
Sulfuric Acid Mist (H-SO.) b/mmBtu	0.143	Calculated	0.042	Calculated
Summer Acid Mist (H_2OO_4), ion minute	0.143	Calculated	10	Calculated
Sulfuric Acid Mist (H_2SO_4), ppmvw @ actual O_2	34	Calculated	10	Calculated
Annual Emissions Estimate				
Sulfuric Acid Mist (H ₂ SO ₄), ton/yr	2,490	Calculated	723	Calculated
Notes:	<u>I</u>	<u> </u>	1	I
1. Sulfur dioxide to sulfur trioxide conversion is assur	ned to be:			
a. Across boiler = 1.0%				
b. Across SCR catalyst = 2.0%				
2. Sulfur trioxide removal is assumed to be:				
a. Across air heater = 5%	(from ref 3)			
b. Across ESP = 5%	(from ref 3)			
c. Sorbent injection before (incl.) ESP = 71%	estimated pe	erformance lev	el	
d. Across FGD = 50%	(from Fluor/I	BPI FGD perfo	rmance guara	antee)
e. Total reduction = 84%	•			
3. BR3 FGD outlet mass flow rate is based on ratio of	f BR3 FGD ir	let mass flow	rate to total F	GD inlet
mass flow rate applied to the total FGD outlet mas	s flow rate as	shown in Ref	2.	
4. Coal flow rate (tons/month) based on 24 hour/day	and 30 day/n	nonth and 100	% capacity fa	ctor.
References				
1. BACT Analysis Information Request response, J.	Wilkerson, 4/8	8/09.		
Brown FGD Project Process Flow Diagram, BRO-	M-00001/2, J.	Wilkerson, 4/2	27/09.	
3. E-mail from J. Wilkerson, 5/19/09.				
Revision History				
Rev	Date	Purpose		
0	5/4/2009	Initial issue	17 14	4
1	5/19/2009	Revised as p	er client's con	nments
2	5/20/2009	Revised as p	er client's con	ments
3	1/1/2009	newseu as p	er ollerit s con	ments

4.0 Ambient Air Quality Impact Analysis

The following section discusses the air dispersion modeling methodology and the modeling results from the ambient air quality impact analysis for the proposed project. This air quality analysis was performed for those PSD pollutants subject to PSD review (i.e., H_2SO_4). In addition, the ambient air quality analysis was performed to address any concerns under 401 KAR 63:020. Since the PSD pollutant is not subject to an ambient air quality standard or PSD increment, it is not a PSD requirement to determine the air quality impacts associated with this project. However, we have chosen to proactively demonstrate that the proposed project does not cause adverse ambient impacts.

4.1 PSD Pollutant Modeling Results

The AERMOD model was run for each of the five one-year periods as listed in the modeling analysis. To evaluate both short and long term impacts, both one-hour averages and annual averages were calculated to compare against the applicable risk threshold. The emission rates used in the modeling were maximum predicted future H_2SO_4 emissions for Brown Units 1 and 2 plus the proposed 220 lbs/hour BACT emission limit for Unit 3.

The maximum one-hour impact hazard quotient (HQ) of 0.14 occurs just beyond the property boundary southeast of the boiler stack and the maximum annual average impact HQ of 0.20 occurs to the northeast of the plant site across the Dix River and southeast of Bowman's Bend. The maximum HQ value of 0.20 demonstrates that the potential H_2SO_4 emissions from the new boiler stack after the project will not pose an adverse health risk at any offsite location. Table 4-1 summarizes the AERMOD modeling results.

The detailed H_2SO_4 air dispersion modeling analysis and risk assessment which lists all modeling assumptions, methodology, and modeling inputs and outputs are contained in Appendix H.

		Table	4-1					
Maxii	Maximum Modeled Offsite H ₂ SO ₄ Concentrations and Hazard Quotients							
Averaging	Year	Risk	Maximum	Maximum	Below Risk			
Period		Thresholds ^(b)	1 st High	Hazard	Threshold			
		$(\mu g/m^3)$	Impact	Quotient	Levels			
			$(\mu g/m^3)$	$(\mu g/m^3)$	(Yes/No)			
1-hour ^(a)	1992-LEX	100	13.59	0.14	Yes			
	(Max. of 5 yrs)							
Annual (a)	1990-LEX	1.0	0.20	0.20	Yes			
	(Max. of 5 yrs)							
a. Evaluate	ed 1 st high impacts	for each year me	odeled since ri	isk thresholds	are not to be			
exceede	d.							
b. Acute (1	-hour) H ₂ SO ₄ risk	threshold is base	ed on the Nort	h Carolina D	ivision for Air			
Quality	Acceptable Ambie	ent Level under t	he State's Air	Toxics Progra	am. Non-			
cancer c	cancer chronic (annual) H ₂ SO ₄ risk threshold is based on the Louisville Metro Air							
Pollution	n Control District	(LMAPCD) Ben	chmark Ambi	ent Concentra	ation (BAC).			

5.0 MACT Analysis

There is no applicable MACT standard for the E.W. Brown Unit 3 Project, construction of a SCR. The pollutants of concerns are NOx, which will decrease, and sulfuric acid mist. The addition of the SCR will not create or increase any Hazardous Air Pollutants (HAPs). Therefore, no MACT analysis was performed.

6.0 Additional PSD Impact Analyses

Federal PSD regulations require additional analysis of impacts due to construction and operation of a new major stationary source or modified existing sources. The analysis considers impairment to visibility, impacts on soils and vegetation, as well as projected air quality impacts that may occur as the result of general commercial, residential, industrial, and other growth associated with the new major stationary source or modified existing sources.

6.1 Commercial, Residential, and Industrial Growth

Limited additional commercial, residential, and industrial growth will result from the project. This growth will be the result of an increase in workforce during the construction of the project. The construction phase will last approximately 24-months. Construction employment of approximately 400 workers is expected over the course of the construction period. Since the construction of the project will be temporary, the growth associated with project construction will be short-term and the effects to the ambient air quality are expected to be insignificant.

Project employment reflecting full time jobs directly tied to the operation of the proposed project will likely increase by four operators. Consequently, a quantitative assessment of growth-related air quality impacts due to full time jobs was not conducted.

6.2 Vegetation

The following sub-sections briefly describe the potential effects of sulfuric acid mist (H_2SO_4) produced by the proposed project on the nearby vegetation and soils.

6.2.1 Sulfuric Acid Mist (H₂SO₄)

 H_2SO_4 is directly emitted by power plants. H_2SO_4 is formed as a result of combustion chemistry and air quality control system chemistry. Sulfur in the fuel converts to sulfur dioxide (SO2) via combustion chemistry. SO2 converts to sulfur trioxide (SO3) when Selective Catalytic Reduction (SCR) control is utilized. SO3 further converts to form H_2SO_4 when moisture is present in the stack or ambient air. However, due to good combustion practices and the use of a SO₃ "Mitigation System" which is highly effective at reducing SO₃ emissions, SO₃ emissions (and therefore H_2SO_4) will be reduced to a negligible increase. Consequently, no adverse impacts to vegetation at or near the proposed project are expected from H_2SO_4 emissions.

6.3 Soils

Ten dominant soil types are mapped out or are in the immediate vicinity of the project site. They include the following:

- Chenault gravelly silt loam, 2 to 6 percent slopes (CmB).
- Chenault gravelly silt loam, 6 to 12 percent slopes (CmC).
- Fairmount-Rock outcrop complex, 6 to 12 percent slopes (FaC).
- Fairmount-Rock outcrop complex, 12 to 30 percent slopes (FaD).
- Fairmount-Rock outcrop complex, 30 to 60 percent slopes (FaF).
- Maury silt loam, 2 to 6 percent slopes (MaB)
- Maury silt loam, 6 to 12 percent slopes (MaC)
- McAfee silt loam, 2 to 6 percent slopes (McB)
- McAfee silt loam, 6 to 12 percent slopes (McC)
- McAfee silt loam, 12 to 20 percent slopes (McD)

Sulfates caused by H_2SO_4 deposition onto the soils can be beneficial and detrimental to soil depending on its composition. However, as stated previously, the proposed project will have a negligible increase in H_2SO_4 emissions, as such, is not expected to have an adverse impact to the soils in the immediate vicinity.

6.4 Class II Visibility

E.W. Brown Generating Station is located in Mercer County, Kentucky. The KDAQ has not identified any areas of potential visibility concern for the proposed project. However, as visibility analyses are a requirement for PSD air permit applications, the proposed project has chosen to analyze its impact upon Class II visibility at the nearby town of Harrodsburg, Kentucky, located approximately 8.7 km southwest of the proposed project location. Figure 6-1 illustrates the location of Harrodsburg with respect to the proposed project.

Location of Class II Vista For Visibility Analysis Figure 6-1

As defined in the CAA, the PSD requirements provide for a system of area classifications. Class I areas are generally national parks and wilderness areas. Class II areas are areas that can accommodate well-managed industrial growth. As such, visibility analyses were performed to evaluate the potential for visibility impairment inside the selected Class II scenic vista.

Due to emissions control technologies that are being applied to the project, as previously described in Section 2, the effects on visibility are expected to be insignificant at Harrodsburg. Specifically, the technologies that are being applied include the use of SCR for NOx control, a wet flue gas desulphurization (WFGD) system for SO₂, and a SO₃ mitigation system (sorbent injection) to control H_2SO_4 emissions. These control systems will minimize significant visibility impacts.

6.4.1 Model Input Source Parameters and Methodology

6.4.1.1 Visual Impairment Screening Assessment

A visibility impairment screening analysis was conducted at the aforementioned Class II area to provide a conservative indication of the perceptibility of plumes from the proposed project. The analysis was performed in accordance with the USEPA's *Workbook for Plume Visual Impact Screening and Analysis* (EPA-450/4-88-015, September 1988, hereinafter referred to as the "Workbook"), using the VISCREEN model. It should be noted that the visibility impairment analysis and model VISCREEN are typical for assessments in PSD Class I areas where visibility preservation is a factor in the permit approval process. However, since no Class II visibility model is available, this model and the methodology for Class I areas as outlined in the Workbook were used.

Distinct from a Class I visibility analysis, the analysis presented herein in concerned with visibility impairment within a Class II sensitive area. The general components of a visibility impairment analysis include the following:

- Determination of the visual quality of the area.
- Determination of the potential for visibility impairment with a screening level assessment.
- If warranted, a more in-depth analysis of the visibility impairment potential.

In accordance with the workbooks visual screening procedures, the VISCREEN plume visual impact screening model would first be used with default worst-case Level 1 screening parameters. However, it is important to note that Level 1 analysis incorporate numerous worst-case default assumptions and parameters. As such, and in accordance with USEPA guidance, a more representative worst-case Level 2 screening analysis with situation-specific input parameters for just wind speed was conducted. Table 6-1 presents the Level 2 visual screening parameters used in the VISCREEN modeling. Many of the input parameters for the Level 2 analysis are the same as the default worst-case values for a Level 1 analysis specified in the Workbook. The shaded parameters in Table 6-1 designate the more representative, situation-specific wind speed inputs of the

Level 2 analysis. The situation specific Level 2 screening parameters are described below.

6.4.1.2 Emissions

The expected hourly SO_4 emissions (as H_2SO_4) from the boiler were used in the visibility analysis. This value can be found in Appendix E.

6.4.1.3 Wind Speed

The worst-case Level 1 VISCREEN default value for wind speed of 1m/sec was found not to be representative of the general climatological conditions in the vicinity of the proposed project. Therefore, wind speed data for Fayette County (Lexington, Kentucky area) for the previous year (prior to April 2009) was analyzed to determine a more representative worst-case wind speed value.

The results of the meteorological analyses are presented in Table 6-1 as the shaded wind speed values.

6.4.2 Level 2 Visibility Summary

The VISCREEN model was used with the aforementioned representative, worst-case, situation-specific Level 2 input parameters as identified in Table 6-1. Results of the VISCREEN modeling are included in Table 6-2 for Harrodsburg, Kentucky. The modeling methodology utilized is designed for Class I areas. The areas presented in this analysis are classified as Class II, and as such, have no set criteria from which to evaluate visual impacts. However, the USEPA's *Workbook for Estimating Visibility Impairment* (EPA 450-80-031) has adopted general criteria for use in a visibility analysis. These criteria indicate that if the absolute value of contrast is greater than 0.1 or Delta E is greater than 4.0, the possibility exists that the visual impact would be judged adverse or significant. Based on the above reference, the results presented in Table 6-2 indicate that the Proposed project will not have an adverse or significant impact upon visibility within the Class II area of Harrodsburg. VISCREEN model input/output parameters are contained in Appendix I.

Table	6-1
VISCREEN Leve	12 Model Inputs
	x 10
VISCREEN Modeling Parameter	Level 2
	(Representative Worst-case Analysis)
(b)	Harrodsburg, Kentucky
Particulate Emissions (b)	0 lb/hr
NO_x (as NO_2) Emissions (b)	0 lb/hr
Primary NO ₂ Emissions	0 lb/hr (model default)
Soot Emissions	0 lb/hr (model default)
Sulfate Emissions (SO ₄) ^(b)	45 lb/hr
Source-Observer Distance	8.7 km
Minimum Source Class II Distance	8.7 km
Maximum Source Class II Distance	10 km
Background Visual Range ^(c)	20 km
Plume –Source-Observer Angle	11.25 degrees
Background Ozone Concentration	0.04ppm
Stability Class	<u> </u>
Wind Speed ^(c,d)	3.2 m/sec
Background Fine Particulate Density	1.5 g/cm^3
Background Fine Particulate Size Index	0.3 μ/m
Background Coarse Particulate Density	2.5g/cm ³
Background Coarse Particulate Size Index	6.0 μ/m
Plume Particulate Density	2.5 g/cm^3
Plume Particulate Size Index	2.0 μ/m
Plume Soot Density	2.0 g/cm^3
Plume Soot Size Index	0.1 μ/m
Plume Primary SO ₄ Density.	$1.5 g/cm^3$
Plume Primary SO ₄ Size Index	0.5 μ/m
^(a) VISCREEN model default values.	
^(b) Performance data as described in App	endix E.

(c) Worst case situation specific parameter.
 (d) Meteorological data analyzed from Fayette County (Lexington, Kentucky) for the previous year (up to April 2009).

Table 6-2 VISCREEN Level 2 Model Results for "Inside the Class II Area"						
Background	Distance	Delta E	Contrast			
Ţ.	(km)	Plume ^(a)	Plume (a)			
Sky	10.0	1.5	-0.014			
Terrain	8.7	3.8	0.039			
^(a) While there	are no Delta E or	contrast criteria thresh	olds for			
Class II areas,	the USEPA's Wor	rkbook for Estimating	Visibility			
Impairment us	es a Delta E of gre	eater than 4 or a contra	st of greater			
than 0.1 as having a threshold for having an adverse impact upon						
visibility.						

Appendix I Class II Visibility Analysis Modeling Input/Output

7.0 Class I Area Impact Analyses

The PSD regulations require the source to consider its impact on Class I areas. The closest Class I area, Mammoth Cave National Park, is located 77 miles (115 km) southwest of the E.W. Brown Station. The Class I impact analysis typically address two issues; visibility impacts and Class I increment consumption.

Class I increments only apply to PM/PM_{10} , SO_2 and NO_x . Since this project only has an increase in sulfuric acid mist emissions (NO_x emissions are reduced), there will be no Class I increment consumption associated with this project.

Based on VISCREEN Level 2 visibility modeling results provided in Section 6.4 of the PSD application, it was demonstrated that the SCR project did not have an adverse visibility impact near the facility (Class II area). Based on this modeling it is predicted that visibility impacts at Mammoth Cave (115 km – southwest) will also be insignificant.

ATTACHMENT A

Commonwealth of Kentucky
Natural Resources & Environmental Protection Cabinet
Department for Environmental Protection

Division for Air Quality 803 Schenkel Lane Frankfort, Kentucky 40601

PERMIT APPLICATION

The completion of this form is required under Regulations 401 KAR 52:020, 52:030, and 52:040 pursuant to KRS 224. Applications are incomplete unless accompanied by copies of all plans, specifications, and drawings requested herein. Failure to supply information required or deemed necessary by the division to enable it to act upon the application shall result in denial of the permit and ensuing administrative and legal action. Applications shall be submitted in triplicate.

APPLICATION INFORMATION

Note: The applicant must be the owner or operator (The owner/operator may be individual(s) or a corporation)

Name: Kentucky Utilities Company/E.W. Brown Generating Station

1)

Title:	P.	none:	(502) 627-2343
Mailing Add Com	(If applicant is an individual) dress: Louisville Gas & Electric Company npany		
Street or P.C	O. Box: P.O. BOX 32010		
City: Louis	isville Sta	e: <u>KY</u>	Zip Code:40232
Is the applic	cant (check one): 🗌 Owner 🗌 Operator 🔲 Owne	r & Oper	ator Corporation/LLC* CP**
 If the app Kentucky If the appl of State. 	plicant is a Corporation or a Limited Liability Corporation, subm / Secretary of State. Jlicant is a Limited Partnership, submit a copy of the current Certi	it a copy o īcate of Lir	f the current Certificate of Authority from the nited Partnership from the Kentucky Secretary
Person to co	ontact for technical information relating to application:		
Name: Ma	arlene Zeckner Pardee		
Title: Ser	enior Environmental Scientist P	hone:	502-627-2343
2)	OPERATOR INFORM	IATION	ſ
Note: The application	cant must be the owner or operator (The owner/operator may be individual(s) or	a corporation)
Name: Sa	ame as Applicant		
Title:	P	hone:	
Mailing Add Com	dress:npany	••••••••	
Street or P.C	O. Box:		
City:	Sta	te:	Zip Code:

DEP7007AI

Enter if known AFS Plant ID#

Agency Use Only

Date Received

Log#

Permit#

DEP7007AI

(Continued)

3) TYPE OF PERMIT APPLICATION									
For new sources that currently do not hold any air quality permits in Kentucky and are required to obtain a permit prior to construction									
Litical Operating Demuit (the normality will outhous hoth construction and execution of the new source)									
Initial Operating Permit (the permit will authorize both construction and operation of the new source)									
For existing sources that do not have a source-wide Operating Permit required by 401 KAR 52:020, 52:030, or 52:040.									
Type of Source (<i>Check all that apply</i>): \Box Major \Box Conditional Major \Box Synthetic Minor \Box Minor									
(Check one only)									
Initial Source-wide Operating Permit Construction of New Facilities at Existing Plant									
Construction of New Facilities at Existing Flant in Modification of Existing Facilities at Existing Flant									
Conter (explain) For existing sources that currently have a source-wide Operating Permit									
Type of Source (<i>Check all that apply</i>): X Major Conditional Major Synthetic Minor Minor									
Current Operating Permit # $\sqrt{-0.5-0.54}$									
Administrative Revision (describe type of revision requested, e.g. name change).									
Addition of New Facilities Addition of Existing Facilities									
For all construction and modification requiring a permit pursuant to 401 KAR 52:020, 52:030, or 52:040.									
Proposed Date for Start Proposed date for Operation Start-up: 2012									
4) SOURCE INFORMATION									
Source Name: Kentucky Utilities Company/E.W. Brown Generating Station									
Source Street Address: 815 Dix Dam Road									
City Useredeburg Zin Code, 40220 Country Margar									
City: Harrodsburg Zip Code: 40330 County: Mercer									
Primary Standard Industrial Classification (SIC) Category: Electric Services Primary SIC #: 4911									
Property Area Number of									
(Acres or Square Feet): 907.43 acres Employees: 121									
Description of Area Surrounding Source (<i>check one</i>):									
Approximate Distance to Nearest									
Residence or Commercial Property: < 0.5 mile									
UTM <u>or</u> Standard Location Coordinates: (Include topographical map showing property boundaries)									
UTM Coordinates: Zone 16 Horizontal (km) 701.3 Vertical (km) 4184.7									
Standard Coordinates: Latitude Degrees Minutes Seconds									
Longitude Degrees Minutes Seconds									

	DEP7007AI								
	(Continued)								
4) SOURCE INFROMATION (CONTINUE	ED)								
Is any part of the source located on federal land? 🗌 Yes 🛛 No									
What other environmental permits or registrations does this source currently hold in Kentucky?									
Kentucky Division of Waste Management Certificate of Registration-EPA ID #KYD-000-62 Kentucky Division of Water KPDES Permit #KY0002020	2-951								
What other environmental permits or registrations does this source need to obt	ain in Kentucky?								
5) OTHER REQUIRED INFORMATION									
Indicate the type(s) and number of forms attached as part of this application.									
⊥ DEP7007A Indirect Heat Exchanger, Turbine, Internal	on Reduction Credit e Stations Plating & Surface Treatment Operations cable Requirements & Compliance ties Engineering Practice (GEP) Stack Height nination Iliance Schedule for Noncomplying tion Units ed Progress Report liance Certification ificant Activities al Data eport f Authority from the Secretary of State tions and Limited Liability Companies) f Limited Partnership from the Secretary Limited Partnerships) nfidentiality (See 400 KAR 1:060) fy)								
Indicate if you expect to emit, in any amount, hazardous or toxic materials or compounds or su	uch materials into the atmosphere from any								
operation or process at this location. Pollutants regulated under 401 KAR 57:002 (NESHAP) Pollutants	listed in 401 KAR 63:060 (HAPS)								
Pollutants listed in 40 CFR 68 Subpart F [112(r) pollutants] Other									
· · · · · · · · · · · · · · · · · · ·									
Has your company filed an emergency response plan with local and/or state and federal offi implemented to mitigate an emergency release?	icials outlining the measures that would be								
Check whether your company is seeking coverage under a permit shield. If "Yes" is checked, and Form DEP7007V. Identify any non-applicable requirements for which you are seeking permit the application.	oplicable requirements must be identified on shield coverage on a separate attachment to ts is attached								

DEP7007AI (Continued)

6)	OWNER INFO	ORMATION						
Note: If the	applicant is the owner, write "same as applicant" on the name line.							
Name:	Same as Applicant							
Title:		Phone:						
Mailing	Address:							
(Company							
Street o	r P.O. Box:							
City:		State: Zip Code:						
List name	s of owners and officers of your company who have an interest i	in the company of 5% or more.						
	Name Positic	on (owner, partner, president, CEO, treasurer, etc.)						
(attach and	other sheet if necessary)							
7)	SIGNATUR	E BLOCK						
	I, the undersigned, hereby certify under penalty of law,	, that I am a responsible official, and that I have personally						
examine	d, and am familiar with, the information submitted in th	his document and all its attachments. Based on my inquiry						
of those	individuals with primary responsibility for obtaining	ng the information, I certify that the information is on						
knowled	ge and belief, true, accurate, and complete. I am awar	re that there are significant penalties for submitting false or						
incompl	incomplete information, including the possibility of fine or imprisonment.							
DX	Lalah Brili	715/09						
BY:	(Authorized signature)	(Date)						
	(restorates provides)	()						
	Palph Bowling	Vice President Power Production						
	Kaipii Downing							

(Typed or Printed Name of Signatory)

(Title of Signatory)

Natural Reso Departr DIVI (Submit copies of th Make add	Commonwealth of Kentuc urces & Environmental nent for Environmental SION FOR AIR QU his form for each individual u ditional copies as needed)	DEP7007A INDIRECT HEAT EXCHANGER, TURBINE, INTERNAL COMBUSTION ENGINE Emission Point # 017 (new stack) Emission Unit #							
1) Type of Unit (Mal	ce, Model, Etc.): <u>Combu</u>	stion Engineering P	ulverized Coal B	oiler					
Date Installed:	<u>7/19/71</u>	nichever is later)	_ Cost of Unit: _	<u>\$16,5 milli</u>	on				
(Date unit was installed, modified or reconstructed, whichever is later.) Where more than one unit is present, identify with Company's identification or code for this unit: Unit 3 2a) Kind of Unit (Check one): 2b) Rated Capacity: (Refer to manufacturer's specifications) 1. Indirect Heat ExchangerX 1. Fuel input (mmBTU/hr): 5,300 2. Gas Turbine for Electricity Generation 2. Power output (hp): 3. Pipe Line Compressor Engines: Power output (MW): Gas Turbine									
SECTION I. FUEL									
3) Type of Primary Fuel	(Check):	1 Ol # (Check one)	1	2 3	1 5 6				
	ural Cas D. Pro	onane	E. Butane	25 F. Wood	G. Gasoline				
H. Dies	el I. Oth	er (specify)							
4) Secondary Fuel (<i>i</i> ,	f any, specify type):	(I))//							
5) Fuel Composition									
<u>- sy ruei Composition</u>	Percent Ash ^a	Percent Sul	fur ^b	Heat Content Cor	responding to: ^{c, d}				
Туре	Maximum	Maximur	n	Maximum Ash	Maximum Sulfur				
Primary	20	3.8	11,00	00	11,000				
Secondary	20	3.8	11,00	00	11,000				
 a. As received basis. Prox b. As received basis. Ultir c. Higher Heating Value, I d. Suggested units are: Potential 	imate Analysis for Ash. (Ma nate Analysis for Sulfur. (M 3TU/Unit. (May use values i ands for solid fuel, gallon for	ay use values in your ay use values in your in your fuel contract) liquid fuels, and cu.	fuel contract) fuel contract) Ft. for gaseous fue	els. If other units are use	ed, please specify.				
6) Maximum Annı	ial Fuel Usage Rate (<i>plea</i>	ise specify units)*:	Not Applicable	e					
7) Fuel Source or su	pplier: <u>Numer</u>	ous – changes freque	ently						

*Should be entered only if applicant requests operating restriction through federally enforceable limitations.

					DEP7007A (Continued)
8)	MAXIMUM OPERATING SCH	IEDULE FOR	THIS UNIT*		
	hours/day	days/week	ζ.	weeks/year	
9)	If this unit is multipurpose, describe	e percent in each	use category:		
	Space Heat% Pro-	cess Heat	%	Power %	
10)	Control options for turbine/IC engin (1) Water Injection (3) Selective Catalytic Reduction (5) Combustion Modification)	ne (C <i>heck</i>) on (SCR)		(2) Steam Injection (3) Non-Selective Catalytic I (5) Other (Specify)	Reduction (NSCR)
IMP	ORTANT: Form DEP7007N must	also be complete	d for this unit.		
SEC	TION II COMPLETE ONLY F	OR INDIRECT I	HEAT EXCHA	NGERS	
11)	Coal-Fired Units				
	X Pulverized Coal Fired	l:		Fly Ash Rejection:	
	<u>X</u> Dry Bottom W Wet Bottom <u>X</u> Tangentia	all Fired lly Fired		Yes	No
	Cyclone Furnace			Spreader Stoker	
	Overfeed Stoker			Underfeed Stoker	
	Fluidized Bed Combus	stor:		Hand-fed	
	Circulating I	Bed 1		Other (specify)	
12)	Oil-Fired Unit				
	Tangentially (Corner) Fir	ed		Horizontally	o Opposed (Normal) Fired
13)	Wood-Fired Unit				
	Fly-Ash Reinjection:	ies 🗌	No		
	Dutch Oven/Fuel Cell Over	ı	Stoker	Suspension I	Firing
	Fluidized Bed Combustion	(FBC)			
14)	Natural Gas-Fired Units				······
	Low NO _x Burners:	🗌 Yes	No No		
	Flue Gas Recirculation:	Yes	No No		

*Should be entered only if applicant requests operating restriction through federally enforceable limitations.

	(Continued)							
15) Combustion Air Draft:Natural XInduced Forced Pressure lbs/sq. in. Percent excess air (air supplied in excess of theoretical air)%								
SECTION III								
16) Additional Stack Data								
 A. Are sampling ports provided? ⊠ Yes □ No B. If yes, are they located in accordance with 40 CFR 60*? ⊠ Yes □ No C. List other units vented to this stack : <u>Units 1& 2</u> 								
17) Attach manufacturer's specifications and guaranteed performance data for the indirect heat concerning fuel input, burners and combustion chamber dimensions.	exchanger. Include information							
18) Describe fuel transport, storage methods and related dust control measures, including ash disposal	and control.							
Coal Handling System – Coal is shipped to the site in unit trains and/or trucks. Coal is unloaded per hour. The coal is either diverted to an open storage pile or it is transferred via conveyor to a crusher conveyed to coal storage bunkers for feed into the coal-fired unit's pulverizers. Coal can be reclaimed fr crusher house, so it can then proceed through the coal handling system. The coal handling system is equip is the capacity for wet suppression on the open coal pile necessary to control fugitive emissions.	Coal Handling System – Coal is shipped to the site in unit trains and/or trucks. Coal is unloaded at a maximum rate of 1,640 tons per hour. The coal is either diverted to an open storage pile or it is transferred via conveyor to a crusher house. The crushed coal is then conveyed to coal storage bunkers for feed into the coal-fired unit's pulverizers. Coal can be reclaimed from the open storage pile into the crusher house, so it can then proceed through the coal handling system. The coal handling system is equipped with dust collectors and there is the capacity for wet suppression on the open coal pile necessary to control fugitive emissions.							
Ash Handling System – Both bottom and fly ash residual are created from the combustion of coal. Bottom ash falls to the bottom of the boiler where it is collected in the boiler ash hoppers. Fly ash is captured in the ESP, the economizer and the air heater and is collected in each of these places through a hopper system. The ash (bottom and fly) collected in each of these hoppers is then sluiced (via water jet system) to the ash treatment basin on site (a surface impoundment with a KPDES permitted outfall). Fly ash captured in the ESP can be collected by a dry ash handling system for beneficial reuse.								
Gypsum Handling System - The primary byproduct of the FGD system will be gypsum. Gypsum can certain quality characteristics. It is anticipated that the gypsum will meet these quality standards; hence a n will be constructed at Brown. The gypsum slurry will be pumped from the FGD to the dewatering facility t It will then be conveyed to a new exterior storage pile. A portion of the gypsum product may serve as benef of the Brown ash pond. From the storage pile, the gypsum will be conveyed to a new truck loading station of loading station. In event the gypsum cannot be marketed, the gypsum will be conveyed to the on-site ash por moisture in the gypsum, fugitive dust emissions from this process are anticipated to be nonexistent.	be a saleable product if it meets new gypsum dewatering facility o be processed for off-site users. ficial re-use for the construction or onto an adjacent rail car ond. Based on the entrained							
*Applicant assumes responsibility for proper location of sampling ports if the Division for Ai	r Quality							

requires a compliance demonstration stack test.

DEP7007A

Commonwealth of Kentucky Natural Resources & Environmental Protection Cabinet Department for Environmental Protection

DIVISION FOR AIR QUALITY

Applicant Name: Kentucky Utilities Company, Ghent

Log # _____E-997

OF OTIO	ION I Emissions Unit and Emission Point Information										
SECTIO	I. Emissions onit a		Maximum Opera	ting Parameters	Permi	tted Operating Para	meters				
KyEIS ID #	Emissions Unit and Emission Point Descriptions		Hourly Operating Rate (SCC Units/hr)	Annual Operating Hours (hrs/yr)	Hourly Operating Rate (SCC Units/hr)	Annual Operating Rate (SCC Units/yr)	Annual Operating Hours (hrs/yr)				
21 167 00001	Emission Unit Name:	Indirect Heat Exchanger (Unit 3)	5300 MMBTU/Hr.	8,760	NA	NA	NA				
	Date Constructed: HAPs present?	Prior to July 19, 1971 Yes No	Note: "The max contin MMBtu, Unit 2 - 1,733	nuos rating of all E.W. 3 MMBtu, Unit 3 -5,30	Brown units combin 0 MMBtu)	ed is 8293 MMBtu (Unit 1 -1,260				
	Emission Point Name: Source ID: SCC Code: SCC Units: KyEIS Stack #: Fuel Ash Content: Fuel Sulfur Content: Fuel Heat Content Ratio: Applicable Regulations:	Unit 3 Boiler new stack 017 10100212 Ibs/MMBtu new stack 017 13.8% (average) 3.80% 11,000 Btu/lb 401 KAR 61:015; Regulation 7									
alladish	Emission Point Name:		a ya kana ya 1977 aliyo kaya kabila da ka								
	Source ID: SCC Code: SCC Units:										
	KyEIS Stack #:										
	Fuel Ash Content: Fuel Sulfur Content: Fuel Heat Content Ratio: Applicable Regulations:										
			等于1997年1月1日中国大学学校的日本	annen seren esternet di Balana	 Development (1999) 1986 						

Emissions, Stacks, and

Controls Information

SECTIO	ECTION I. Emission Units and Emission Point Information (continued)											
	Emission Factors			Control Equipment			Hourly (Ib/hr) Emissions			Annual (tons/yr) Emissions		
KyEIS ID #	Pollutant	Emission Factor (Ib/SCC Units)	Emission Factor Basis	Control Equipment Association		Pollutant Overall Efficiency (%)	Uncontrolled Unlimited Potential	Controlled Limited Potential	Allowable	Uncontrolled Unlimited Potential	Controlled Limited Potential	Allowable
21 167 00001	See Attachment:	Calculations of En 7007N)	nissions for Form				See Attach Emission	ment: Calcul is for Form 70	ations of 007N)	See Attach Emission	ment: Calcu ns for Form 7	lations of 007N)
Section				1st control device E	lectro	static Precipitator						
				KyEIS Control ID #: Collection efficiency:		99%						
				2nd control device	Low	v-Nox Burners						
				KyEIS Control ID #: Collection efficiency: 50%								
				3rd control device	 Net Li)xidati	imestone Forced ion SO ₂ Scrubber						
				Collection efficiency:		98%	(manfactur	e's guarantee)	ł			
				4th control device	 ective with	Catalytic Reduction O_3 Control						
				KyEIS Control ID #: Collection efficiency:		85%	(manfactur	e's guarantee))			

DEP7007N

(continued)

SECTIO	N II. Stack Information										
		Sta	ck Physical	Data	Sta	ck Geographi	c Data	Sta	Stack Gas Stream D		
KyEIS Stack ID #	Stack Description	Height (ft)	Diameter (ft)	Vent Height (ft)	Vertical Coordinate	Horizontal Coordinate	Coordinate Collection Method Code	Flowrate (acfm)	Temperature (°F)	Exit Velocity (ft/sec)	
21 167 00001								approximate	approximate	approximate	
017 (new stack)	Unit #3 Boiler	561	26.67	561	I 4,184,403.39	701,443.17	INI	2,176,962	129	65.0	

SECTION III. Control Equipment Information for Electrostatic Precipitator									
KyEIS Control ID #	Control Equipm	ent Description	Manufacturer	Model Name and Number	Date Installed	Cost			
102 4140 0001	Electrostatic Precipitator ((2 precipitators - 2 split pre	Unit 3/stack 017) ecips operated in series)	Research-Cottrell Inc	Research-Cottrell Inc	24-May-1905	Unknown			
			Inlet Gas Strea	m Data	I	<u>.</u>			
Temper	ature:	Flowrate (scfm at 68°F):	Gas density (lb/ft ³):	Particle density (lb/ft ³) or Specific Gravity:	Average particle diameter (or attach a particle size distribu	r (μm): tion table)			
289	°F°C	1,750,000	Unknown	Unknown	Unkı	nown			
	Equipment Physical Data								
	The control	submitted in place of this informa	tion.						
Type o	f ESP:	Dimensions of ESP (spec	cify units):		Number of stages:	Number of plates per			
Pick one	:			30 ft		stage:			
Dry, r	negative corona	Collection plate height	-		2 +3 Sections in direction of gas				
Wet,	negative corona	Length of collection plate	in direction of gas flow	18 & 24 ft	flow; 2 + 2 section across gas flow; 4 + 6 total sections/94 + 114	48 & 58			
Wet, positive corona ESP total width			ESP total height _	37"10"	gas passages				
Particle	migration (drift) velocity:		Particle resistivity:		Voltage across plates:				
Unknown			Typically 1 x 10 ¹¹	- 1 x 10 ¹¹ ohm-cm	45 kV				
	Equipment Operational Data								
Pressure drop across unit (inches water gauge):			Pollutants collected/contr	olled:	Pollutant removal/destruc	tion efficiency (%):			
0.5"			Particulate Matter		99.0%				

KvEIS										
Control ID #	Control Equipm	ent Description	Manufacturer	Model Name and Number	Date Installed	Cost				
102 4140 Low NOx Burners (stack 017) for Units 3 0001			ABB	LNCFS III	1992	Unknown				
			Inlet Gas Strea	m Data						
Tempe	rature:	Flowrate (scfm at 68°F):	Gas density (lb/ft ³):	Particle density (lb/ft ³) or Specific Gravity:	Average particle diameter (or attach a particle size distribu	r (μ m) : tion table)				
NA	_°F°C	NA	NA	NA	Ν	IA				
		· · · · · · · · · · · · · · · · · · ·	Equipment Phys	ical Data	automittad in place of this informa	tion				
Type of	f control equipment (give de	equipment manufacturer's equipri-	th dimensions):	ded operating procedures may be						
Low NOx burners with seperated over-fired air. 50% NOx control efficiency.										
Equipment Operational Data										
Pressu	re drop across unit (inches	water gauge):	Pollutants collected/contr NOx	olled:	Pollutant removal/destruc	ction efficiency (%):				
	NA				50	0%				

Division Use Only: Reviewer _____ Supervisor _____

SECTION III. Control Equipment Information for Other Type of Control Equipment												
KyEIS Control	Control Equipment Description			Manufacturer	Model Name and Number	Date Installed	Cost					
10 # 102 4140	10 # 102 4140 Selective Catalytic Reduction (Unit 3)			TBD	TBD (Custom built	2012	Estimated \$186.5 million					
0001	0001 I Inlet Gas Stream Data											
Temperature:		: Flowrate (scfm at 68°F):		Gas density (lb/ft ³):	Particle density (lb/ft ³) or Specific Gravity:	Average particle diameter (μ m): (or attach a particle size distribution table)						
	°F	°C	Unknown	Unknown	Unknown	Unk	nown					
	Equipment Physical Data											
The control equipment manufacturer's equipment spectroalions and recommended operating proceedings more an place or and manufacturer's equipment (give descriptions and a sketch with dimensions):												
Equipment Operational Data												
Pressure drop across unit (inches water gauge):				Pollutants collected/cont	ontrolled: Pollutant removal/destruction e		ction efficiency (%):					
Unknown			'n			8	5%					

(continued)

SECTION III. Control Equipment Information for Scrubber												
KyEIS Control ID #	Control Equipm	nent Description	Manufacturer	Model Name and Number	Date Installed	Cost						
102 4140 0001	Wet Limestone Forced-Oxidation Sulfur Dioxide Scrubber (Unit 3 /Stack 017)		Fluor	Fluor (custom built)	5/1/2010 (Estimated startup date)	TBD						
Inlet Gas Stream Data												
Temperature:Flowrate (scfm330 ° F° C1,933,765		Flowrate (scfm at 68°F): Max guarantee: 1,933,765 (wet)	Gas density (lb/ft ³): Unknown	Particle density (lb/ft³) or Specific Gravity:Average particle diameter (or attach a particle size distribution UnknownUnknownUnk		r (μm): <i>tion table)</i> NOWN						
Equipment Physical Data												
Type o Ventu Packe	f scrubber: ri Throat type d bed Packing type tower Number of nozzle	Packing heighters equipment manufacturer's equipment manufacturer's equipment manufacturer's equipment of the second seco	nt (inches) ure (psig)BD	Type of Flow: Concurrent Countercurrent Crossflow	Dimensions of scrubber: Length in direction of gas flow TBD ft Cross-sectional area TBD sq.ft							
Other	(specify) L/G ratio for all spray	y towers 130 gal/Kacf			Venturi throat velocity	ft/s						
Type of mist eliminator: FRP with high temp flame resistant resin (vertical flow design)			Dimensions of mist elimir Cross-sectional area	sq ft	Pressure drop across mist eliminator (in. H sq ft designed to remove 99.5% of droplets > 4							
Chemical composition of scrubbing liquid:			Scrubbing liquid flowrate: Fresh liquid makeup rate:	gal/min gal/min	Disposal method of scrubber effluent: Oxidation to CaSO4 (gypsum), dewatered to 10% moisture, placed in on site landfill							
Equipment Operational Data												
Pressu	e drop across unit (inches	water gauge):	Pollutants collected/controlled:		Pollutant removal/destruction efficiency (%):							
	6.6		Sulfur Dioxide & Particulates		98% manufacture guarantee							
((J	O	I	I	u	I	Ц	J	e	u)	
----	---	---	---	---	---	---	---	---	---	---	---	--

SECTION III. Control Equipment Information for Other Type of Control Equipment								
KyEIS Control ID #		Control Equipm	nent Description	Manufacturer	Model Name and Number	Date Installed	Cost	
102 4140 0001	SO3 N	Aitigation (Stack 017	7) for Unit 3	To be determined	Custom Built	2012	TBD	
				Inlet Gas Strea	im Data			
Tempei	rature:		Flowrate (scfm at 68°F):	Gas density (lb/ft ³):	Particle density (lb/ft ³) or Specific Gravity:	Average particle diamete (or attach a particle size distribu	r (μm): tion table)	
NA	_°F _	° C	NA	NA	NA	N	IA	
			•••••••••••••••••••••••••••••••••••••••	Equipment Phys	sical Data			
		The control	equipment manufacturer's equipm	nent specifications and recommen	ded operating procedures may be	submitted in place of this informa	tion.	
	Custom Design, See Drawing #06-664-D For a Conceptional Drawing							
	Equipment Operational Data							
Pressu	re drop	across unit (inches	water gauge):	Pollutants collected/contr SO ₃	olled:	Pollutant removal/destruc	ction efficiency (%):	
		NA				To be de	etermined	

7007N Form Supplement Table 2 (Section I Part 2) EON Brown Station

				Emission Fact	ors			Control Equipr	nent		Houri	y (lb/hr) Emis	sions	Annua	l (tons/yr) Emi	ssions
KyEIS ID #	Process ID(s)	Pollutant	CAS#	Uncontr Emission (Ib/SCC	olled Factor Units)	Emission Factor Basis	Control Equíp. #	Control Device	Control Efficiency	Hourly Operating Rate (SCC Units/hr)	Uncontrolled Unlimited Potential	Controlled Limited Potential	Allowable	Uncontrolled Unlimited Potential	Controlled Limited Potential	Allowable
I		I							1	I	11				L	
03	1	Unit 3 Indirect He	at Exchang	er												
		C0	00630-08-0	0.500	lb/ton	AP42 1.1-3, 9/98	na	na	па	240.9	120.5	na	na	527.6	na	na
		NOX	10102-44-0	15.000	lb/ton	AP42 1.1-3, 9/98	C03A, C03B	LNB, SCR	92.5%	240.9	3,613.6	271.0	371	15,827.7	1,187.1	na
		PM	na	138.000	lb/ton	AP42 1.1-4, 9/98	C03C	ESP	99.5%	240.9	33,245.5	159.0	159	145,615.1	696.4	na
		PM10	na	31.740	lb/ton	AP42 1.1-4, 9/98	C03C	ESP	97.9%	240.9	7,646.5	159.0	na	33,491.5	696.4	na
		PM2.5	na	8.280	lb/ton	AP42 1.1-6, 9/98	C03C	ESP	96.5%	240.9	1,994.7	70.7	na	8,736.9	309.5	na
		S02	07446-09-5	144.400	lb/ton	AP42 1.1-3, 9/98	C03D	FGD	98.0%	240.9	34,787.3	695.7	1,044	152,368.3	3,047.4	na
		VOC (TNMOC)	na	0.060	lb/ton	AP42 1.1-19, 9/98	na	na	na	240.9	14.5	na	na	63.3	na	na
		H2SO4	07664-93-9	6.625	lb/ton	3% conversion to SO3	C03D	FGD	86.2%	240.9	1,596.1	220.2	na	6,990.8	964.3	na
	1.1111-04	Antimony	07440-36-0	2.24E-04	lb/ton	AP42 1.1-16, 9/98	C03C	ESP	96.5%	240.9	5.40E-02	1.86E-03	na	2.36E-01	8.17E-03	na
		Arsenic	07740-38-2	1.24E-02	lb/ton	AP42 1.1-16, 9/98	C03C	ESP	98.9%	240.9	2.98E+00	3.18E-02	na	1.31E+01	1.39E-01	na
		Beryllium	07440-41-7	2.50E-03	lb/ton	AP42 1.1-16, 9/98	C03C	ESP	99.7%	240.9	6.03E-01	1.69E-03	na	2.64E+00	7.41E-03	na
		Cadmium	07440-43-9	4.89E-04	lb/ton	AP42 1.1-16, 9/98	C03C	ESP	93.1%	240.9	1.18E-01	8.15E-03	na	5.16E-01	3.57E-02	na
		Chromium	07440-47-3	4,22E-03	lb/ton	AP42 1.1-16, 9/98	C03C	ESP	95.5%	240.9	1.02E+00	4.59E-02	na	4.46E+00	2.01E-01	na
		Cobalt	07440-48-4	2.05E-03	lb/ton	AP42 1.1-16, 9/98	C03C	ESP	97.5%	240.9	4.94E-01	1.24E-02	na	2.16E+00	5.42E-02	na
		Lead	07439-92-1	1.00E-02	lb/ton	AP42 1.1-16. 9/98	C03C	ESP	98.6%	240.9	2.41E+00	3.35E-02	na	1.06E+01	1.47E-01	na
		Manganese	07439-96-5	6.32E-03	lb/ton	AP42 1,1-16, 9/98	C03C	ESP	95.9%	240.9	1.52E+00	6.17E-02	na	6.67E+00	2.70E-01	na
		Nickel	07440-02-0	2.22E-03	lb/ton	AP42 1.1-16, 9/98	C03C	ESP	92.3%	240.9	5.34E-01	4.11E-02	na	2.34E+00	1.80E-01	na
		Magnesium	07439-95-4	6.00E-01	lb/ton	AP42 1.1-18, 9/98	C03C	ESP	98.2%	240.9	1.45E+02	2.65E+00	na	6.33E+02	1.16E+01	na
		Mercury	07439-97-6	3.00E-04	lb/ton	AP42 1.1-18, 9/98	C03C	ESP	72.3%	240.9	7.23E-02	2.00E-02	na	3.17E-01	8.76E-02	na
		Selenium	07782-49-2	4.00E-03	lb/ton	AP42 1.1-18, 9/98	C03C	ESP	67.5%	240.9	9.64E-01	3.13E-01	na	4.22E+00	1.37E+00	na
		Biphenyl	00092-52-4	1.70E-06	lb/ton	AP42 1.1-13, 9/98	na	na	na	240.9	4.10E-04	na	na	1.79E-03	na	na
		Naphthalene	00091-20-3	1.30E-05	lb/ton	AP42 1.1-13, 9/98	na	na	na	240.9	3.13E-03	na	na	1.37E-02	na	na
		Acetaldehyde	00075-07-0	7.04E-05	lb/ton	PISCES	na	na	na	240.9	1.70E-02	na	na	7.43E-02	na	na
		Acetophenone	00098-86-2	2.64E-05	lb/ton	PISCES	na	na	na	240.9	6.36E-03	па	na	2.79E-02	na	na
		Acrolein	00107-02-8	4.18E-05	lb/ton	PISCES	na	na	na	240.9	1.01E-02	na	na	4.41E-02	па	na
		Benzene	00071-43-2	8.58E-05	lb/ton	PISCES	na	na	na	240,9	2.07E-02	na	na	9.05E-02	па	na
		Benzyl chloride	00100-44-7	6.16E-06	lb/ton	PISCES	na	na	na	240.9	1.48E-03	na	па	6.50E-03	па	na
		Bis(2- ethylhexyl)phthalate	00117-81-7	7.92E-05	lb/ton	PISCES	na	na	na	240.9	1.91E-02	na	na	8.36E-02	na	na
		Bromoform	00075-25-2	3.90E-05	lb/ton	AP42 1.1-14, 9/98	na	na	па	240,9	9.40E-03	na	na	4.12E-02	па	na

7007N Form Supplement Table 2 (Section I Part 2) EON Brown Station

				Emission Fact	ors		C	ontrol Equipr	ment		Hour	y (lb/hr) Emis	sions	Annua	I (tons/yr) Emi	ssions
KyEIS ID #	Process ID(s)	Pollutant	CAS#	Uncontr Emission (Ib/SCC	rolled Factor Units)	Emission Factor Basis	Control Equip. #	Control Device	Control Efficiency	Hourly Operating Rate (SCC Units/hr)	Uncontrolled Unlimited Potential	Controlled Limited Potential	Allowable	Uncontrolled Unlimited Potential	Controlled Limited Potential	Allowable
[Carbon disulfide	00075-15-0	2.42E-05	lb/ton	PISCES	па	na	па	240.9	5.83E-03	na	па	2.55E-02	па	na
		2-Chloroacetophenone	00532-27-4	7.00E-06	lb/ton	AP42 1.1-14, 9/98	na	па	na	240.9	1.69E-03	na	па	7.39E-03	na	na
		Chlorobenzene	00108-90-7	3.52E-06	lb/ton	PISCES	na	na	па	240.9	8.48E-04	na	па	3.71E-03	na	па
		Chloroform	00067-66-3	1.76E-05	lb/ton	PISCES	na	na	na	240.9	4.24E-03	na	na	1.86E-02	na	na
		Cumene	00098-82-8	5.30E-06	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	1.28E-03	na	па	5.59E-03	na	па
		Cyanide	00057-12-5	2.50E-03	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	6.02E-01	na	na	2.64E+00	na	na
	***	Dimethyl sulfate	00077-78-1	4.80E-05	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	1.16E-02	na	па	5.06E-02	па	na
<u> </u>		2,4-Dinitrotoluene	00121-14-2	4.40E-06	lb/ton	PISCES	na	na	na	240.9	1.06E-03	па	na	4.64E-03	na	na
		Ethylbenzene	00100-41-4	1.76E-05	lb/ton	PISCES	na	na	na	240.9	4.24E-03	na	na	1.86E-02	па	па
		Ethyl chloride	00075-00-3	4.20E-05	lb/ton	AP42 1.1-14, 9/98	na	na	па	240.9	1.01E-02	na	na	4.43E-02	na	па
		Ethylene dibromide	00106-93-4	1.20E-06	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	2.89E-04	na	na	1.27E-03	na	na
		Ethylene dichloride	00107-06-2	4.00E-05	lb/ton	AP42 1.1-14, 9/98	na	na	па	240.9	9.64E-03	na	na	4.22E-02	na	na
		Formaldehyde	00050-00-0	5.72E-05	lb/ton	PISCES	na	na	na	240.9	1.38E-02	na	na	6.04E-02	na	na
		Hexane	00110-54-3	6.70E-05	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	1.61E-02	na	na	7.07E-02	na	na
		Isophorone	00078-59-1	2.64E-05	lb/ton	PISCES	na	na	па	240.9	6.36E-03	na	na	2.79E-02	па	na
		Methyl bromide	00074-83-9	1.60E-04	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	3.85E-02	na	na	1.69E-01	na	na
		Methyl chloride	00074-87-3	5.30E-04	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	1.28E-01	па	na	5.59E-01	na	na
		Methyl ethyl ketone	00078-93-3	3.90E-04	lb/ton	AP42 1.1-14, 9/98	па	na	па	240.9	9.40E-02	na	na	4.12E-01	na	na
		Methyl hydrazine	00060-34-4	1.70E-04	lb/ton	AP42 1.1-14, 9/98	па	na	na	240.9	4.10E-02	na	na	1.79E-01	na	na
		Methyl methacrylate	00080-62-6	2.00E-05	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	4.82E-03	na	па	2.11E-02	па	na
		Methyl tert butyl ether	01634-04-4	3.50E-05	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	8.43E-03	na	na	3.69E-02	na	na
		Methylene chloride	00075-09-2	7.92E-05	lb/ton	PISCES	na	na	na	240.9	1.91E-02	na	па	8.36E-02	па	па
		Phenol	00108-95-2	7.26E-05	lb/ton	PISCES	na	na	na	240.9	1.75E-02	na	na	7.66E-02	na	na
		Propionaldehyde	00123-38-6	4.18E-05	lb/ton	PISCES	na	na	na	240.9	1.01E-02	na	na	4.41E-02	na	na
		Styrene	00100-42-5	1.54E-05	lb/ton	PISCES	na	па	па	240.9	3.71E-03	na	na	1.62E-02	na	na
		Tetrachloroethylene	00127-18-4	9.24E-06	lb/ton	PISCES	na	na	па	240.9	2.23E-03	na	na	9.75E-03	na	na
		Toluene	00108-88-3	3.74E-05	lb/ton	PISCES	na	na	na	240.9	9.01E-03	na	na	3.95E-02	па	na
		1,1,1-Trichloroethane	00079-00-5	2.00E-05	lb/ton	AP42 1.1-14, 9/98	na	na	na	240.9	4.82E-03	na	na	2.11E-02	na	na
		Vinyl acetate	00108-05-4	6.82E-06	lb/ton	PISCES	na	na	na	240.9	1.64E-03	na	na	7.20E-03	na	na
		m/p-Xylene	00108-38-3	1.80E-05	lb/ton	PISCES	па	na	na	240.9	4.35E-03	na	па	1.90E-02	na	na
		o-Xylene	00095-47-6	9.68E-06	lb/ton	PISCES	па	na	па	240.9	2.33E-03	na	na	1.02E-02	na	na
		POM	па	5.28E-05	lb/ton	AP42 1.1-17, 9/98	na	na	na	240.9	1.27E-02	na	па	5.57E-02	na	na
		Hydrogen Chloride	07647-01-0	1.44E+00	lb/ton	PISCES	C03D	FGD	80.8%	240.9	346.9	66.4	na	1,519.3	291.0	na
		Hydrogen Fluoride	07664-39-3	1.68E-01	lb/ton	PISCES	C03D	FGD	86.9%	240.9	40.6	5.3	na	177.8	23.3	na

Commonwealth of Kentucky Natural Resources & Environmental Protection Cabinet Department for Environmental Protection

DIVISION FOR AIR QUALITY

DEP7007V

Applicable Requirements & Compliance Activities

APPLICANT NAME:

Kentucky Utilities Company - E.W. Brown Generating Station

SECTION I.	I. EMISSION AND OPERATING STANDARD(S) AND LIMITATION(S)									
KYEIS	Emission Unit		Origin of Requirement	Applicable Requirement, Standard, Restriction,	Method of Determining Compliance with the					
No. ⁽¹⁾	Description ⁽²⁾	Contaminant ⁽³⁾	or Standard ⁽⁴⁾	Limitation, or Exemption ⁽⁹⁾	Emission and Operating Requirement(s) ⁶⁷					
U3	Utility Boiler	РМ	401 KAR 61:015 Section 4(4), Reg 7, & 2009 Consent Decree	0.254 lbs/ MMBtu based on 3-hr avg (Until Dec. 31, 2010) By Dec. 31, 2010 continuely operate ESP for Unit 3 to achieve a PM limit of not greater than 0.030 lb/MMBtu (based on 3-hr avg)	Annual performance test and PM CEM (once FGD & SCR are in operation) Note: Performance test must be completed prior to 12/31/10 to certify that PM emissions do not exceed 0.030 lb.MMBtu. PM CEM (within 180-days following commencement of operation of the FGD)					
		SO2	401 KAR 61:015 Section 5(1), & 2009 Consent Decree	5.15 lbs/ MMBtu based on 24-hr avg Annual plant limit of 31,998 tons/yr for 2009 & 2010 Within 1 year from the commencement of operation of the SCR & once sufficient data is obtained: (1) 30-day rolling avg emission rate (2) 30-day rolling avg SO2 removal efficiency (3) Annual SO2 limitation of 2,300 for Unit 3 beginning with calendar year 2011 Shall install a FGD by Dec. 31, 2012	CEM & reporting					
		NOx	401 KAR 61:015 Section 4(4), Reg 7, & 2009 Consent Decree	Annual plant limit of 4,072 tons/yr for 2009 - 2012 Continuely operate low NOx burners Beginning with calendar year 2009-2020. Plant must surrender to EPA or transfer to a non-profit 3rd party surplus Nox allowances within 60-days of the end of each calendar year (beginning March 1, 2010) 30-day rolling avg emission rate for NOx (once sufficient data is obtained) By Dec. 31, 2012 commence continuous operation of the SCR to maintain a 30-day rolling avg of no greater than 0.070 lb/MMBtu, except if flue gas temp does not allow use of the SCR. In that case, a max of 0.080 lb/MMBtu.	CEM & reporting					
		Opacity	401 KAR 61:015 Section 4(4) & Reg 7	Emission shall not exceed 40% based on a 6-min avg, except that a max of 60% is allowed for a periods or aggregate of periods of not more than 60-min in any 60- minutes during building a new fire, cleaning a firebox, or blowing soot.	COM/Method 9					
		SO3	2009 Consent Decree	Installed as part of SCR (PM control)	reporting					
		Heat Rate	2009 Consent Decree	Heat rate limit of 5300 MMBtu/hr (federally enforceable)	reporting					

APPLICANT NAME:

Kentucky Utilities Company - E.W. Brown Generating Station

DEP7007V

continued

SECTION II. MONITORING REQUIREMENTS

KYEIS	Emission Unit		Origin of Requirement	Parameter	
No. ⁽¹⁾	Description ⁽²⁾	Contaminant ⁽³⁾	or Standard ⁽⁴⁾	Monitored ⁽⁷⁾	Description of Monitoring ⁽⁸⁾
U3	Utility Boiler	РМ	401 KAR 61:005	РМ	Continuous Emissions Monitoring System shall comply with Regulation 401 KAR 61:005 PM CEM (within 180-days following commencement of operation of the FGD) Measure avg electrical output and min and max hourly generation rate daily (can be summarized as monthly averages in the semi-annual monitoring reports, if records are retained at facility). CAM plan if PM-CEM is out of compliance (ESP secondary voltage and current)
		SO2	401 KAR 61:005 401 KAR 61:015	SO2	Continuous Emissions Monitoring System shall comply with Regulation 401 KAR 61:005 measureing SO2 and oxygen or carbon dioxide Monitor sulfur content of solid fuel
		NOx	401 KAR 61:005	NOx	Continuous Emissions Monitoring System shall comply with Regulation 401 KAR 61:005 (NOx)
		Opacity	401 KAR 61:005	Opacity	Continuous Emissions Monitoring System shall comply with Regulation 401 KAR 61:005 (Opacity) Accept COM or within 30-minutes of 3rd consec exceedence, inspect the COM and/or control equipment, initiate repairs, perform Method 9, or documents why Method 9 can not be performed.
			Consent Decree	SO3	Records
			Consent Decree	Heat Rate	Monitor heat rate (records)
				Startup	Monitor duration of startup

APPLICANT NAME:

Kentucky Utilities Company - E.W. Brown Generating Station

DEP7007V

continued

SECTION III. RECORDKEEPING REQUIREMENTS

KYEIS	Emission Unit		Origin of Requirement	Parameter	
No. ⁽¹⁾	Description ⁽²⁾	Contaminant ⁽³⁾	or Standard ⁽⁴⁾	Recorded ⁽⁹⁾	Description of Recordkeeping ⁽¹⁰⁾
110	Lutite Deller	DM	401 KAR 61:015		CEM & COM monitoring data; compliance tests; records regarding maint and operation (avg
03	Ounty Boller	FIVI	401 KAR 01.015		electrical output and min & max hourly generation rate) of ESP shall be maintained
		SO2	401 KAR 61:015		CEM monitoring data; records regarding maint and operation FGD shall be maintained
		NOx	401 KAR 61:015		CEM monitoring data; records regarding maint and operation of SCR shall be maintained
		Opacity	401 KAR 61:015		COM monitoring data and Method 9's
			Consent Decree	SO3 (part of SCR)	Regards regarding operation
			Consent Decree	Heat Rate	Heat rate data
				Fuel Analysis	Fuel Analysis & ash content
				Startup data	Records of duration of startups & type (cold, warm, hot)

DEP7007V

continued

APPLICANT NAME:

Kentucky Utilities Company - E.W. Brown Generating Station

SECTION IV.	REPORTING	REQUIREMENTS
-------------	-----------	--------------

ī		E destas Usit	1	Origin of Requirement	Parameter	
1	KYEIS	Emission Unit	(3)	Origin of Requirement	Benerted ⁽¹¹⁾	Description of Reporting ⁽¹²⁾
	No. ⁽¹⁾	Description ⁽²⁾	Contaminant ⁽³⁾	or Standard	Reported	Building Provide Reporting the Control of the PM CEM for Unit
	U3	Utility Boiler	РМ	401 KAR 61:005	РМ	3, expressed in electronic format in Ib/MMBtu on a 6-hr and 24-hr rolling basis. PM monitor Quarterly EDR reports
			000			Quarterly EDR reports
		1	NOv			Quarterly EDR reports
			Oppositu			Testing data/method 9.
			Opacity		SO3	
					Heat Rate	Quarterly EDR reports for heat rate
and the second se					Deviations	DEVIATIONS, Notify EPA in writing as soon as practicable, but no later than 21-days following the date of a malfucation occurrent.
					Exceedences	Exceedences, startup, shutdown & malfunction reports;
					Reports	Semi-Annual monitoring reports, annual certifications, annual KYEIS emission surveys reports .
					Startup data	Reporting of type of startup (cold, warm, hot) and if duration exceeded manufacture's or historical durations
- 1		1				

APPLICANT NAME:

Kentucky Utilities Company - E.W. Brown Generating Station

DEP7007V continued

SECTION V. TESTING REQUIREMENTS

KYEIS No. ⁽¹⁾	Emission Unit Description ⁽²⁾	Contaminant ⁽³⁾	Origin of Requirement or Standard ⁽⁴⁾	Parameter Tested ⁽¹³⁾	Description of Testing ⁽¹⁴⁾
U3	Utility Boiler	PM	401 KAR 50:045; Consent Decree	PM	Annual (PM) stack test
		SO2			
		NOx			
		Onesity			Method 9 at least once every 14 boiler operating days, or more frequencly if requested by the
		Opacity			Division. If Method 9's are unable to be perform, document the reason.
				SO3	
				Heat Rate	

Commonwealth of Kentucky Natural Resources & Environmental Protection Cabinet Department for Environmental Protection

DIVISION FOR AIR QUALITY

TAT	10/7	ለሰ	רד די	
リピ	r/	vv	10	U

INSIGNIFICANT ACTIVITIES

INSIGNIFICANT ACTIVITY CRITERIA

- 1. Emissions from insignificant activities shall be counted toward the source's potential to emit;
- 2. Emissions from the activity shall not be subject to a federally enforceable requirement other than generally applicable requirements that apply to all activities and affected facilities such as 401 KAR 59:010, 61:020, 63:010, and others deemed generally applicable by the Cabinet;
- 3. The potential to emit a regulated air pollutant from the activity or affected facility shall not exceed 5 tons/yr.
- 4. The potential to emit of a hazardous air pollutant from the activity or affected facility shall not exceed 1,000 pounds/yr., or the deminimis level established under Section 112(g) of the Act, whichever is less;
- 5. The activity shall be included in the permit application, identifying generally applicable and state origin requirements.

Description of Activity	Generally Applicable Regulations	Does the Activity meet the Insignificant
Including Rated Capacity	Or State Origin Requirements	Activity Criteria Listed Above?
Hydrated Lime Silos (for SO3 mitigation)	401 KAR 63:010	PTE < 5 tpy, HAP emissions < 1000 lb/yr
Note: The insignificant activities listed above are modifications or additions to the existing activities, noted on prior submittals		
	SIGNATURE BLOCK	
I. THE UNDERSIGNED, HEREBY CERTIFY PERSONALLY EXAMINED, AND AM FAMILIA BASED ON MY INQUIRY OF THOSE INDIVID THAT THE INFORMATION IS ON KNOWLEI SIGNIFICANT PENALTIES FOR SUBMITTING IMPRISONMENT. BY	UNDER PENALTY OF LAW, THAT I AM A RI R WITH, THE INFORMATION SUBMITTED IN TH DUALS WITH PRIMARY RESPONSIBILITY FOR DGE AND BELIEF, TRUE, ACCURATE, AND CO G FALSE OR INCOMPLETE INFORMATION, I REQUIRE	ESPONSIBLE OFFICIAL, AND THAT I HAVE IIS DOCUMENT AND ALL ITS ATTACHMENTS. OBTAINING THE INFORMATION, I CERTIFY MPLETE. I AM AWARE THAT THERE ARE INCLUDING THE POSSIBILITY OF FINE OR
Ralph Bowling		uction
Typed or Printed Name	of Signatory Title of Signatory	/

ATTACHMENT B

NOTE: Powder River Basin Coal will be fired at most in a 50% mixture with Bituminous Coal

	FGD Design Basis	Brown Station	***************************************	Proje	ct Fuel Range
	Spreadsheet			Min	Max
Coal Data Sheet	Units	Design (Bituminous)	Powder River Basin	_	ļ
Design Coal Name	Must be filled in	Design		_	
Coal Source:	Coal Mine			J	ļ
Date Sample Taken:	Date	A Desided	As Deschard	+	
	As Received	As Received	As Received	1 10.4	74.45
Hydrogen (H)	<u>ννιγο</u> \Δμος	4.50	46.10	49.4	5 00
	100%	6.80	12 00	0.05	10.40
Nitragon (NL)	14400	0.00	12.00	0.95	19.40
	VVI%	1 1/	0.90	0.15	1 89
Sultur (S)	VVt%	3.80	0.40	0.2	3.80
Eluorine (El)	10/1%	0.07	0.02	0.02	0.23
Moisture (Water H-O)	10/02	0.56	28.00	5.00	20.80
Ash	1040/	12.80	28:00	5.00	20.60
	Total	100.00	100.00	5.00	30,00
Wt % Volatile	10tai	33.00	36.00	26.00	50.00
Wt % Fixed Carbon	Wt%	42.00	30.00	30.00	42.00
Higher Heating Value	Btu/ib, As Recvd	11,000	8,500	9000	12800
Trace Elements - Coal - As Rec'd	Typical				
Coal Basin Name	-				
Silver	ppm			0.00	0.00
Arsenic	ppm	10		3.00	15.00
Boron	ppm			0.00	0.00
Barlum	ppm		·	30.00	125.00
Bromine	ppm			0.00	0.00
Manganese	ppm			0.00	0.00
Nickel	ppm	15		0.00	0.00
Lead	ppm	10		5.00	40.00
Antimony	ppm	1		1.00	2.00
Selenium	ppm	2		1.00	4.00
Strontium	ppm	60		20.00	175.00
Cabalt	ppm	1		1.00	2.00
Chromium	ppm			10.00	75.00
Copper	ppm		nxx	0.00	0.00
Germanium	ppm			0.00	0.00
Mercury	ppm	0.15		0.10	0.25
Thalius	ppm			0.00	0.00
Uranium	ppm			0.00	0.00
Vanadium	ppm	40		30.00	175.00
Eluorine	ppm	20		10.00	100.00
Chlorine	ppin	700		200.00	2500.00
Additional Trace Elements	Ppm	100	······	200.00	2000.00
Magnesium	ppm	300		200.00	1500.00
	ppm			0.00	0.00
	ppm			0.00	0.00
	ppm			0.00	0.00
Minaral Analysis from Cool	ppm			0.00	0.00
wineral Analysis from Coal		47.00			
	VVI%	47.00		31.00	63.00
Al ₂ U ₃		20.00		15.00	50.00
TiO ₂	Wt%	1.00		0.50	1.80
Fe ₂ O ₃	Wt%	22 00		6.00	40.00
CaO	Wt%	3.25		0.47 2	8.46
MgO	W#%	0.96		0.50	1.44
Na ₂ O	Wt%	0 50		0.20	1.68
K30	VA9%	2 00		1.00	10.00
P_O_	14.00	0.30		0.00	0.50
200	VV170	170		0.08	0.50
	VVt%	1/0		0.25	4.77
SrO	Wt%	0.10		0.01	0.20
BaO	Wt%	0.05		0.01	0.20
Mn ₃ O ₄	Wt%	0.05		0.01	0.50

NOTE: Powder River Basin Coal will be fired at most in a 50% mixture with Bituminous Coal

	FGD Design Basis	Brown Station		Projec	t Fuel Range
	Spreadsheet			Min	Max
Coal Data Sheet	Units	Design (Bituminous)	Powder River Basin		
NiO	W1%	-		0.00	0.00
V ₂ O ₅	Wt%	-		0.00	0.00
Undetermined	Wt%	0.35		0.10	0.50
Ash Analysis					
Economizer Outlet Hopper	Y/N				
Economizer Outlet Ash Conditions					
Date Sample Taken:	Date				
Size Distribution	Percent				0.00
1/2*	%			0.00	0.00
-1/2 + 3/8	%			0.00	0.00
1/4 + #4 mesh	%			0.00	0.00
-4 + 8 mesh	%			0.00	0.00
-8 + 16 mesh	%			0.00	0.00
-16 + 30 mesh	%			0.00	0.00
-30 + 50 mesh	%			0.00	0.00
-100 + 200 mesh	<u> </u>			0.00	0.00
-200 + 325 mesh	%	1		0.00	0.00
-325 mesh	%			0.00	0.00
Mineral Analysis	Percent of Ash by Weight				
SiO ₂	% by Wt			0 00	0.00
Al ₂ O ₃	% by Wt			0.00	0.00
TiO ₂	% by Wt			0.00	0.00
Fe ₂ O ₃	% by Wt			0.00	0.00
CaO	% by Wt			0.00	0.00
MgO	% by Wt			0.00	0.00
K ₂ O	% by Wt			0.00	0 00
Na ₂ O	% by Wt			0.00	0.00
P ₂ O ₅	% by Wt			0.00	0.00
MnO ₂	% by Wt			0.00	0.00
SO ₃	% by Wt			0 00	0.00
SrO	% by Wt			0.00	0.00
BaO	% by Wt			0.00	0.00
Mn ₃ O ₄	% by Wt			0.00	0.00
NiO	% by Wt			0.00	0.00
V ₂ O ₅	% by Wt			0.00	0 00
Undetermined	% by Wt			0.00	0.00
Additional Ash Minerals					
	% by Wt			0.00	0.00
	% by Wt			0.00	0.00
	% by Wt			0.00	0.00
	% by Wt			0.00	0.00
Trace Elements					
Arsenic	ppm			0.00	0.00
Barium	ppm			0.00	0.00
Cadmium	ppm			0.00	0.00
Chromium	ppm		·····	0.00	0.00
Copper	ppm			0.00	0.00
Lead	ppm			0.00	0.00
Mercury	ppm			0.00	0.00
Selenium	ppm ppm	· · · · · · · · · · · · · · · · · · ·		0.00	0.00
Iron	mag			0.00	0.00
Manganese	ppm			0.00	0.00
Zinc	ppm			0,00	0.00
Boron	ррт			0.00	0.00
Aluminum	ppm			0.00	0.00
Ivanaululli	 DDIII 	1	1	0.00	. 0.00

NOTE: Powder River Basin Coal will be fired at most in a 50% mixture with Bituminous Coal

	FGD Design Basis	Brown Station		Projec	t Fuel Range
	Spreadsheet			Min	Max
Coal Data Sheet	Units	Design (Bituminous)	Powder River Basin		
Additional Ash Trace Elements				0.00	0.00
	ppm			0.00	0.00
	maa			0.00	0.00
	ppm			0.00	0.00
	ppm			0.00	0.00
Other Information				0.00	0.00
Carbon	% Weight			0.00	0.00
Hyarogen Ph	% Weight			0.00	0.00
ESP First Hopper					
Date Sample Taken:	Date				
Size Distribution	Percent				
1/"2"	%			0.00	0.00
-1/2 + 3/8	%			0.00	0.00
-3/8 + 1/4	%			0.00	0.00
-4 + 8 mesh				0.00	0.00
-8 + 16 mesh	%	1		0.00	0.00
-16 + 30 mesh	%			0.00	0.00
-30 + 50 mesh	%			0.00	0.00
-50 + 100 mesh	%			0.00	0.00
-100 + 200 mesh	%			0.00	0.00
-200 + 325 mesh				0.00	0.00
-325 mesn					
Mineral Analysis	Percent of Ash by Weight				
SiO ₂	% by Wt			0 00	0 00
AlaQa	% by Wt			0.00	0 00
	% by Wt			0.00	0 00
	76 by VVI			0.00	0.00
	76 by Wi			0.00	0.00
	% by Wt			0.00	0.00
NigO	% by Wt			0.00	0.00
No O	0/ builds			0.00	0.00
	% by Wi			0.00	0.00
P ₂ O ₅	% by Wt			000	0.00
MnO ₂	% by Wt			0.00	0.00
SO3	% by Wt			0.00	0.00
SrO	% by Wt			0.00	0,00
BaO	% by Wt			0.00	0.00
Mn ₃ O ₄	% by Wt			0.00	0 00
NIO	% by Wt			0.00	0.00
V ₂ O ₅	% by Wt			0.00	0.00
Undetermined	% by Wt			0.00	0.00
Additional ESP Ash Minerals	07 1		[_]	0.00	0.00
	% by Wi			0.00	0.00
	% by Wt			0.00	0.00
	% by Wt			0.00	0.00
	% by Wt			0.00	0.00
				ļ	
Trace Elements					0.00
Arsenic	ppm			0.00	0.00
Banum	ppm			0.00	0.00
Cadmium	рріп			0.00	0.00
Chromium	maa			0.00	0.00
Соррег	ppm			0.00	0.00
Lead	ppm			0.00	0.00
Mercury	ppm			0.00	0.00
Selenium	ppm			0.00	0.00
	ppm			0.00	0.00

Brown Coal Analysis Page 3 of 4 Revision Date: March 1, 2005

NOTE: Powder River Basin Coal will be fired at most in a 50% mixture with Bituminous Coal

······································	FGD Design Basis	Brown Station		Projec	t Fuel Range
	Spreadsheet			Min	Max
Coal Data Sheet	Units	Design (Bituminous)	Powder River Basin		
Manganese	ррт			0.00	0.00
Zinc	ppm			0.00	0.00
Boron	ppm			0.00	0.00
Aluminum	ppm			0.00	0.00
Vanadium	ppm			0.00	0.00
Additional ESP Ash Trace Elements					
	ppm			0.00	0.00
	ppm			0.00	0.00
	ppm			0.00	0.00
	ppm			0.00	0.00
	ppm			0.00	0.00
Other Information				1	
Carbon	% Weight			0.00	0.00
Hydrogen	% Weight			0.00	0.00
Ph				0.00	0.00

ATTACHMENT C

SELECTIVE CATALYTIC REDUCTION SYSTEM

A selective catalytic reduction (SCR) system to control concentrations of NO_x generated by the combustion of coal will be installed on E.W. Brown Unit 3

Anhydrous ammonia will be use in the SCR system.

Flue gas containing ammonia and NO_x undergoes an exothermic reduction reaction as it passes through the catalyst, forming nitrogen and water vapor. The following are the predominant reactions that take place:

Catalyst

$$4NO + 4NH_3 + O_2 \cdots \rightarrow 4N_2 + 6H_2O + heat \uparrow$$

Catalyst
 $2NO_2 + 4NH_3 + O_2 \cdots \rightarrow 3N_2 + 6H_2O + heat \uparrow$

The catalyst reactor shall be located in a temperature zone of the boiler where the catalyst will be most effective at all loads and ambient temperatures.

The ammonia injection grid shall be located upstream of the SCR reactor in a zone where gas or surface temperatures do not exceed 800° F. The injection grid shall be designed and arranged to ensure uniform mixing of the ammonia and the exhaust gas stream.

Anhydrous ammonia vaporizing and dilution equipment will be provided with the SCR system. Dilution air shall be introduced by a centrifugal blower and measured by an orifice. Auxiliary steam will be used to heat the dilution air. The anhydrous ammonia feed shall be filtered, measured, and injected into a vaporizer unit. The ammonia shall contact the heated dilution air in an evaporator. The ammonia injection equipment shall include dilution air fans, dilution air heaters, liquid ammonia mass flow meter, flow control valve, piping, instruments, and all other required accessories. The ammonia shall be diluted and mixed with conveying air prior to injection into the flue gas stream.

Multiple layers of catalyst will be provided. Typical layers are two to three, with a potential fourth layer left open for addition at a later time to allow catalyst life to be optimized.

Soot blowers or sonic horns will be used to periodically clean ash off of the catalyst.

The injection grid shall be designed with multiple injection branches or shall use static mixers in the duct to mix the flue gas and ammonia prior to reaching the catalyst.

The rate of ammonia injection shall be determined from the inlet NO_x concentration and the signal proportion to gas flow, based on the preset NH_3/NO_x molar ration and the

desired target NO_x concentration. The rate of ammonia injection shall be adjusted upward in the outlet NO_x concentration exceeds the target NO_x emission rate.

During startup, injection of ammonia shall automatically be initiated when the following condition has been met:

The flue gas temperature at the outlet of the SCR catalyst is at SCR operating conditions.

The ammonia flow shall be stopped under any of the following conditions:

The ratio of ammonia and dilution airflow signals is greater than the maximum value specified.

Leaks are detected in the ammonia storage or ammonia distribution areas by external ammonia leak detectors.

SCR outlet temperatures fall below the minimum required temperature of the catalyst and SCR vendors.

The truck unloading system shall be designed for safe transfer of anhydrous ammonia reagent from the truck, to the ammonia storage tanks and return of displaced ammonia vapor to the unloading vehicle. The ammonia storage tank(s) shall be designed for safe storage of anhydrous ammonia reagent.

ş

SO3 Mitigation

Hydrated lime or Trona (sodium based sorbent) will be injected (dry injection) before and/or after the ESP. These sorbents react with the flue gas to form solid compounds. The solid compounds are removed in the ESP with additional removal in the WFGD. KU will use a dry injection technique, which will use pneumatic conveying equipment to transport dry solids from the storage silo to the flue gas stream. Attachment D contains a flow diagram of a typical SO3 mitigation system.

ATTACHMENT D

KU's E. W. Brown Station is located approximately 25 miles southwest of Lexington. Kentucky, jus northeast of the town of Harrodsburg, Kentucky as indicated on the map below.

2000	and the second		Samenatawa - 7980	ace 450	· · · · ·
the en alexan	eranktort 49	Wenessa		Incodata	
1.900.00000C	nn Air Mille	Productions C	indianetills	Charles and Charles of the	17 Ca
• • • • •	aBreidere.	uckers Lancelot Esta	res and main the	Inntown	
GD	27 ^{eeepee^{ee} State of S}	and the second se	14894 24051		
	Priibulle	100 A	- Doogra	i1	Hutchison
Guer	<u>ğreen</u>	Paynes Dep	or established	" Mattoxtowp	Sidville
1917 D 20 2 19	Nugent (Crossroads	Zion Hu	Mist	Fee
Alton	Lanes Mill	Sonita	C3	েন্দ্র । বিজ	Chronomia A
	ii Atronosa alia	÷	Viley		
Cation	14 (75 952)	Versailles Võ	an Meter 🖉 👘 👔	avincion.	a Aven
et.	Lawrenceburg	2 - 2 - S	Colony 🔊	- man Balance	The second se
44. 500	2	Snetland Fort Spra	ne a	and the second s	Wyandott
125	syrunye. S. A	33)	S Howywood	A Calendar	Old Pine 4
ak (C)	Stringtown	Errite Texas	Lakeview Acres	Shighton	Tebbs
- Cons Creek	Mertersvill	- Pineka	ard and a	Pricetolian	ROL HING
			17 18 DC 1 1975 FF 42 19 1		
	-McBrayer		and the second second second	-	- 6
Nevi	MicBrayer h	2000 7000 ·	Keene W	Albut Hull Athens	्र Forest Grove
Nevi Sandy	a WicDrayer N Maa	ວານວກ ໂດນທູ່	Keene w	Valnut Hul ^{©Athens} o	्व Forest Grove ु
Sondy	JMcBrayer h J ³⁸ e _ Satvita	Drxon Town _a c	Keena w Mesiran	Albut Hal ^{OAthens} o	्त्र Forest Grove े Locust Grove
New Sandy Influence	aWicBrayer h 	ס איס דמאוס פאיס פאיס פאיס פאיס פאיס פאיס דראי אמי אמי אמי אמי	Keene v Mesiron	Alout Hul ^{OAthens}	्म Forest Grove Cocust Grove
Novi Sonov Tirkwood	JWicBrayer h Januar Satvise Gregon Variarises	סאיס זאניז _כ Tray Noresuch	Keene w Mesiron Nicholasville	Valout Hul ^{OAthens}	Eorest Grove
Rendy Sondy Tekwood ^E tea Terchar	JWizBrayer Constant Gregon JVanorsdel	Dixon Town _a o Trov Nor exist Wa	Keene v Nestron' Nicholasville	Jalout Hill ^{OAthens} Coletowe	Forest Grove Corect Grove Corect Grove Fit
New Sondy Tekwood Tekwood Tekwood	ೆಟೆನಲಿrayer 2 - - - - - - - - - - - - - - - - - -	Driven Terring of Tray Nonetist: SWB	Keene v Nestron Nichotasville	Jahur Hill ^{oAthens} Coletown Spears	Encest Grove Locust Grove Fit
New Sondy Infected Per Totrant Totrant Totrant	Jilizbrayen hu Oregan "Venersdet Mundys Landma uge McAnee	Dixon Town of Tray Tray Moir etual SW0	Keena v ^{Mexiron} Mexiron Micholasville imore Vineyard Vali	Alnur Hill ^{OAthens} Coletown Spoars	G Forest Grove Locust Grove Fores Due Gross
Novi Sondy Informat ^E Inform Tatma Tatma	JilicBrayer Du Jilic Variarsdeo Mandys Landma Sac Mick ten 20 Tackson	Dixon Town o o Tray Nor etuch Will	Keene v Mesiron Mesiron Micholasville More Viali Hank	Valnut Hill ^{OAthens} Coletown Spoars ov View	Enrett Grove Locust Grove Ford Ford Blue Gross Recthoure
New Sondy Inference Torcon Torcon Torcon Torcon Torcon Torcon	ೆಟೆವರಿಗತ್ರಾಕ ಶ್ರಿ ವಿಕ್ಲ್ವಾನಿಗಳನ ವಿಕರ್ತಗ ವಿಕರ್ತನ ಮುಗ್ರದಲ್ಲಿ ಮುಗ್ರದಲ್ಲಿ ವಿಗ್ರಿ ವಿಕರ್ಷನ ವಿಕ್ಲಿ	Dison Towng o Trey Nor ersch Wi jitigh Bridge Shakertown	Keene v ^{Nestron'} Mestron' Micholasville More Vineyard Vall Park Polls	Coletown Spoars Willow Coletown	Const Grove Const Grove Ford Ford Blue Grove Restrouse
Sonav Sonav Infewpool ⁷ Inferna Totraa Totraa I Bobi	ៅមិនBrayer	Dixon Town of Trey Trey Nor ettal Will Uran Bridge Shakertown	Keene v Nestron Nicholasville Imore Vineyard Vall Hank Polla	Coletown Coletown Spears av View Cuttek Ratown	Encent Grove Locust Grove Forst Date Gross Rectioner
Sonav Sonav Informati Horna Talma J. Boba	JilicBrayer Ju Jilie Sators Oragan Janorsden Mundys Landma og McAnee Marcodsbirr Harrodsbirr	Dixon Town of Tray Nor even Uran Bridge Shakersown	Keens v Mestron Wicholasville Imore Vineyard Vall Party Polls	Valnur Hill ^{OAthens} Coletown Spears ay View Dusick ref Ratdwen Nattices	Ecrest Grove Eccust Grove File Ford Ford Resthouse
Novi Sonav Internat Marcan Talma I Bobi Rummurwy Essa	Jilisbrayen hu (Jise Satvise (Vanarsde) Mundys Landma iga Machine (Machine (Machine (Machine) (M	Dixon Town of Tray Moir etisch Migh Bridge Shakertown Shakertown	Keens M Mexiron Mexiron imore Vineyard Vall Party Polla Camp Nelson e Hickman Edenton	Alnur Hill ^{OAthens} Coletown Spears ar View Cutrick Eatown Million	Forest Grove Locust Grove Fores Fores Blue Gross Richmonel
Roman Roman Information Talma I Roma Roman Roman	الألقالية الم الم الم الم الم الم الم الم	Dinan Town Nor erust 	Keene v Mesicon Nicholasville Imare Vineyard Vall Bark Poll Gaoto Nelson e Hickman Edenton Mhite Oak Stoop	Alnux Hill ^{OADEns} Coletown Spears or view Custek Raldwin Million	Forest Grove Flocust Grove Ford Ford Richmond
Rose 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10	JAleBrayer b Saturss Mationstell Mationstell Mandvs Landma spectro Mandvs Landma of Jackson Herrodsbir Hill Surgin	Dixon Town Tray Nor ettal Wei Uran Bridge Shakeroown Buena Vises Litti Buena Vises Litti	Keene v Nesiron Nicholasviile Imore Vineyard Vali Hanty Polla Camp Nelson e Hickman Edenton Mhite Oak Stong or	Albur Hill ^{OADEAS} Coletown Spears av View Currek Paldwan Million	Ecrest Grove Ecrest Grove Fit Forst Forst Rechause Richsmond 876

Emission Control Technologies

SO3 Mitigation System - Typical Process Flow from Nol-tec

CORPORATE OFFICE

Nol-Tec Systems, Inc. 425 Apollo Drive Lino Lakes, MN 55014 +1-651-780-8600 +1-651-780-4400 fax sales@nol-tec.com `ww.nol-tec.com

REGIONAL SALES OFFICE

Nol-Tec Systems, Inc. 901 Blairhill Road, Ste. 500 Charlotte, NC 28217 +1-651-780-8600 +1-704-529-0139 fax

REGIONAL SALES OFFICE

Nol-Tec Systems, Inc. Bldg. 1000, Ste. 155 5250 East US Highway 36 Avon, IN 46123 +1-317-745-7977 +1-317-745-7978 fax

EUROPEAN OFFICE

Nol-Tec Europe S.r.l. Via Milano, 14 20064 Gorgonzola (MI) ITALY +39-02-95-16-875 +39-02-95-11-473 fax info@nol-teceurope.com www.nol-teceurope.com

CENTRAL ASIA OFFICE

Nol-Tec (Asia) Pte. Ltd. No. 10 Admiralty Street #02-14 Northlink Bldg. SINGAPORE 757695 +65-6753-5535 +65-6753-5575 fax ntasia@nol-tecasia.com.sg

ATTACHMENT E

Attachment E - PSD baseline and Post Change H₂SO₄ Calculations

Calculation Assumptions:

1. 100% of sulfur is oxidized in the boiler, 1% converted to SO₃ initially (no SCR): Source: Sargent and Lundy Final Report dated March 29, 2006.

2. Across the SCR, 2% of the SO2 is converted to SO3. Typical SO2 to SO2 conversion rate for 2 layers of high conversion rate catalyst. Source: Sargent and Lundy Final Report dated March 29, 2006.

3. With no sorbent injection, assume 5% SO3 is removed in air heater and 5% removed in the DESP,

Vian to solvent injection, assume or 800 is territy of an interfer and or remove in the DCOT.
 Use actual sulfur % by year (1.41-1.59% sulfur) for low sulfur coal. Source: Annual KYEIS (Emission Inventores).
 Use 3.8% sulfur for high sulfur coal value. This is the design value for the wet FGD system.
 SO₂ FGD control efficiency assumed to be 50% (start is May 2010). Source: Vendor design guarantee.

7 Molecular weight ratio used to determine SQ, and H ₂ SQ, emissions.	Note: Some columns hidden to	Note: Some columns hidden
Generated further and events in the second CONTER Concertion Blancing Department	shorten the 24-month rolling	to shorten the 24-month
b, Porecasted fuel burned and operating hours source. E.ON 0.5. Generation Franking Department.	annual average to fit on one page.	rolling annual average to fit
		on one page,

Step 1: Calculate Baseline Emissions

Calculate baseline H₅SO, emissions using current date (March 2009) and looking back 5 years. Start data in March 2002 to calculate a rolling 24-month annual average starting in March 2004.

Calculation of SO ₃ : Example calculation of SO ₃ :	(Coal tons X heater X con (27,053 X 1.	sulfur% X pro itrol efficiency 58% X 1% X (duction rate of ESP). Wh 80.0542/32.0	of SO ₅ X molec ere max coal to 65)*0.95*0.95)	ular weight r ons = max ci - calculation	atio X contro oal flow rate (a for March 20	l efficiency of air 481,818 lb/hr) X 303																		
Year Month	r 2002 March	April	Мау	June	July	August	September	October	November	December	2003 January	February	March	April	Мау	September	October	November	December	2007 January	February	March	April	2009 March	
Unit 3 Coal Burned Tons	106507	98522	73495	103484	110904	94620	91297	9	30719	90718	117794	82468	27053	100754	103109	74,361	88,529	86,669	83,544	86,743	99,494	75,523	0	91,916	
Monthly SO, tons	33,84	31,30	23.35	32.88	35.24	30,06	29.01	0,00	9.76	28.82	41.94	29.36	9.63	35.87	36.71	25.97	30,92	30.27	29.18	30,10	34,53	26.21	0,00	32.73	Max
Rolling 24-month Annual Tons	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	263,83	263,55	272.06	268,53	266,07	267,26	262.65	258.25	373.51	373.51
SO, Baseline Tons	373.5		H-SO,	Baseline Ton	s 457,6																				

Rolling average calculation of Black & Veatch "BACT" Data (H2SO4 tons/yr)

Calculate H₂SO₄ emissions with FGD and SCR operation (without SO₃ miligation) using maximum coal usage (see B&V data Section 3.0) and 75% capacity factor.

1	Calculation of SO3:	(max coal to	ns X sulfur% .	X SO ₃ product	ion rate X mol	ecular weigh	t ratio X contro	ol efficiency of FG	D X control	efficiency of a	r heater X c	ontrol efficien	cy of ESP X 7	5% capacit	y factor)								
	Example calculation of SO ₃ :	(175,864 X 3	.8% X 3% X	(80.0642/32.0	65)*0.5*0.95*0	,95*0.75) ca	lculation for Ja	anuary 2013															
	Year	2013												2014								2017	
	Month	January	February	March	April	May	June	July	August	September	October	November	December	January	February	March	July	August	September	October	November	December	
	Unit 3 Coal Burned Tons	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	175,864	
	Monthly SO ₃ tons	169.42	169.42	169.42	169.42	169.42	169.42	169.42	169.42	169,42	169.42	169.42	169.42	169.42	169.42	169.42	169.42	169.42	169.42	169.42	169.42	169.42	Max
	Rolling 24-month Annual Tons	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2033.05	2033.05	2033,05	2033,05	2033.05	2033.05	2033,05
	SO, tons after SCR operation	2,033,0		H ₂ SO ₄ tons	after SCR op	eration	2,490.5																

Step 2. Determine if PSD significance level is exceeded after project is initiated (SCR Operation). Note: same calculation as above except using "expected" coal usage and no capacity factor adjustment. Calculate emissions with FGD and SCR operation (without SO₃ mitigation) and compare to baseline H₂SO₄ + 7 tons allowed

Calculation of SO ₃ :	(expected co	al tons X sulfi	11% X SO3 pro	duction rate X	molecular w	eight ratio X o	control efficiency of	of FGD X co	ntrol efficiency	of air heate	er X control ef	ficiency of ESF	' }									
Example calculation of SO ₃ :	(124,052 X 3	.5% X 3% X (80.0642/32.06	5)*0.5*0.95*0	95) calculati	on for Januar	y 2013															
Yea Monti Unit 3 Coal Burned Tom Monthly SO ₃ ton Rolling 24-month Annual Tom	r 2013 January 124,052 159,34 r 0	February 114,098 146,56 0	March 116,360 149.46 0	April 25,869 33.23 0	May 110,033 141.34 0	June 109,069 140.10 0	July 117,578 151,03 0	August 117,349 150.73 0	September 109,084 140,12 0	October 106,384 136,65 0	November 109,294 140,39 0	December 119,670 153,71 0	2014 January 124,811 160.32 0	February 117,393 150.79 0	March 77,178 99.13 0	July 117,678 151,16 1636.99	August 115,715 148,63 1636,75	September 110,959 142.52 1639.44	October 120,057 154.21 1646.61	November 117,101 150.41 1653.22	2017 December 122,642 157,53 1653,53	Max 1677.76
SO ₃ tons after SCR operation	1,677.8		H₂SO₄ tons	after SCR op	eration	2,055.2																

Note: Some columns hidden to shorten the 24-month rolling annual average to fit on one page.

Step 3, Calculate maximum projected emissions after SCR operation, with SO3 mitigation

Calculate rolling 24-month annua	I average of H	so₄:																				
Calculation of SO3:	(expected coa	al tons X sulfi	ur% X SO ₃ pro	duction rate X	molecular w	eight ratio X c	ontrol efficiency o	of FGD X cor	ntrol efficiency	of air heate	er X control efi	ficiency of ESI	X control e	fficiency of	SO3 mitiga	tion system)						
Example calculation of SO ₃ :	(124,052 X 3,	.8% X 3% X ((80,064/32,065	i)*0.5*0.95*0.9	95°0,2904) ca	Iculation for J	anuary 2013															
Yea Month Unit 3 Coal Burned Tons Monthly SO ₃ tons Rolling 24-month Annual Tons	2013 January 124,052 46,27 0	February 114,098 42.56 0	March 116,360 43.40 0	April 25,869 9,65 0	May 110,033 41.04 0	June 109,069 40,68 0	July 117,578 43,86 0	August 117,349 43.77 0	September 109,084 40,69 0	October 106,384 39,68 0	November 109,294 40.77 0	December 119,670 44.64 0	2014 January 124811.4 46.56 0	February 117392.6 43,79 0	March 77177,9 28,79 0	July 117677.8 43.90 475.38	August 115715 43.16 475.31	September 110958.5 41.39 476.09	October 120056.7 44.78 478.18	November 117100.9 43.68 480.10	2017 December 122642 45.75 480.19	Мах 487.22
SO, tons after SCR operation	487.2		H₂SO₄ tons	after SCR op	eration	596.8																

	Potential To Emit (PTE) calculation:
5,300	Max boiler heat input (mmBtu/hr); per CD
8,760	PTE hours/year
11,000	Coal higher heating value (Btu/lb)
2,110,363.6	PTE Coal Tons (Max heat input X Max Hours / Heating Value
3.0%	SO3 production rate
5,421.5	SO ₃ PTE Uncontrolled Tons
787.2	SO ₃ PTE Controlled Tons (FGD + Sorbent Injection)
1,237.8	SO ₃ PTE Uncontrolled lb/hr
179.7	SO ₃ PTE Controlled lb/hr (FGD + Sorbent Injection)
6,641.2	H ₂ SO ₄ PTE Uncontrolled Tons
964.3	H ₂ SO ₄ PTE Controlled Tons (FGD + Sorbent Injection)
1,516.3	H ₂ SO ₄ PTE Uncontrolled lb/hr
220.2	H ₂ SO ₄ PTE Controlled Ib/hr (FGD + Sorbent Injection)

Example: So3 Uncontrolled Tons Potential To Emit (PE) calculation: PTE coal tons X sulfur % X SO3 production rate X molecular weight ratio X control efficiency of air heater X control efficiency of ESP

Baseline	Maximum		
Period	Projected		
H ₂ SO ₄ lb/hr	H ₂ SO ₄ lb/hr		
Calculation	Calculation		
457.6	596.8	H ₂ SO ₄ tons	
7994,4	7,888,0	*Operating Hours	
2000	2,000	Conversion	
114.5	151,3	H ₂ SO ₄ "Annual Average" Ib/hr	
		*Lowest annual expected hours from 2013 through 2017	

Attachment E - PSD Baseline and Projected Post-Change NOx Calculations

Calculation Assumptions:	Note: Some columns hidden to	Note: Some columns hidden to
1, Forecasted fuel heat input source: E.ON U.S. Generation Planning Department.	shorten the 24-month rolling	shorten the 24-month rolling
2. Nox emission rate after SCR operation is based on meeting 0.07 lb/mmBtu per Consent Decree times the projected monthly heat input (mmBtu).	annual average to fit on one	annual average to fit on one
3, NOx emissions (tons) during baseline period based on annual average lb/mmBtu rate times the average monthly heat input (mmBtu).	page.	page.

Step 1: Calculate Baseline Emissions Calculate baseline NOx emissions using current date (March 2009) and looking back 5 years. Start data in March 2002 to calculate rolling 24-month average starting in March 2004.

Calculation of NOx: Example calculation of NOx:	(Monti (685,4	thly Coal n 480 mmBt	nmBtu X N u X 0.36 lb	Ox Emission /mmBtu}/20	n Factor)/2000 00 - calculation	for March 200	3																					
Ye Mon Unit 3 Coal Burned To Monthly NOx to Rolling 24-month Annual To	ar 20 th Ma ns 256 ns 49 ns	2002 Iarch 60002 94,08 0	April 2396055 462.44 0	May 1776227 342.81 0	June 2480718 478.78 0	July 2664133 514.18 0	August 2288291 441.64 0	September 2184738 421,65 0	October 216 0.04 0	November 733570 141,58 0	December 2170157 418.84 0	2003 January 2864632 515,63 0	February 2004895 360.88 0	March 685,480 123.39 0	April 2533291 455.99 0	April 2036253 335,98 3071,61	May 387695 63.97 2932.30	June 1460182 240.93 2904.87	July 1735777 286.40 2879.81	August 2348933 387.57 2906.36	September 1805188 297.86 2918.67	October 2156035 355.75 2963.49	November 2128764 351,25 2973.14	2007 January 2130408 338.73 2988.70	February 2478396 394.06 3017.27	March 1864663 296.48 2979.07	2009 March 1,984,959 335.46 3985.84	Max 4356.30
NOx Baseline To	ns 4	4,356.3																										

Step 2. Calculate NOx emissions after S Calculate emissions after SCR operation	CR in operation and compare to N	Ox baseline													Note: Som shorten the annual aver page,	e columns 24-month age to fit c	hidden to rolling n one							
Calculation of NOx: (Mor Example calculation of NOx: (2,77 Year Month J. Unit 3 Coal Burned mmBtu 2 Monthly NOx tons	thly Coal mmBtu X N 8,759 mmBtu X 0.07 2013 Inuary February 78759 2555785 17,26 89,45	IOx Emission F Ib/mmBtu)/200 March 2606474 91.23	actor)/2000 IO - calculation April 579471 20.28	for January 2 May 2464737 86.27	2013 June 2443155 85.51	July 2633735 92.18 0	August 2628608 92.00 0	September 2443484 85,52 0	October 2383011 83,41 0	November 2448182 85.69 0	December 2680613 93.82 0	2014 January 2795775 97.85 0	February 2629595 92.04 0	February 2570197 89.96 997.87	March 2529359 88,53 1024,04	April 588614 20,60 999,46	May 2433672 85.18 1000.23	June 2323302 81.32 999.14	July 2635983 92.26 999.16	August 2592016 90.72 999.01	September 2485471 86.99 1000.65	November 2623059 91.81 1009.07	2017 December 2747181 96.15 1009.25	Max 1024.04

NOx tons after SCR operation 1,024.0

Baseline Period NOx Ib/hr	Post- Project NOx Ib/hr Calculatio	
4356.3	1,024.0	NOx tons
8197.6	7,888.0	*Operating Hours
2000	2,000	Conversion
1,062.8	259.6	"Annual Average" NOx Ib/hr
<i>,</i>		*Lowest annual expected hours from 2013 through 2017

ATTACHMENT F

Product Name:	HYDRATED LIME (continued)	
The second second		
Toxicity:	LD_{50} oral (rat) for calcium hydroxide is 7340 mg/kg. This product is not listed by MSHA, OSHA, or IARC as a carcinogen, but this product may contain crystalline silica, which has been classified by IARC as (Group I) carcinogenic to humans when inhaled in the form of quartz or cristobalite. No reported Carcinogenicity, Reproductive Effects, Teratogenicity or Mutagenicity.	
Exposure Limits:	Refer to section 8.	
Irritancy:	Can cause severe irritation of eyes, skin, respiratory tract and gastrointestinal tract.	
Chronic Exposure:	Inhalation of silica can cause a chronic lung disorder, silicosis.	
and the second second		
Alkaline substance ti Calcium hydroxide g Calcium carbonate is Uncontrolled spillag Harmful to aquatic li	hat increases pH to a maximum of 12.4 in a saturated water solution at 25°C radually reacts with CO ₂ in air to form calcium carbonate (CaCO ₃) ecologically neutral is in surface waters should be avoided since the increase pH could be detrimental to fish fe in high concentration	
the state of the s		
Dispose according to	federal, provincial/state and local environmental regulations.	
antina antin'i sa		
Classification: T	DG Not listed for ground transportation	
H	MR Not listed for ground transportation	
TDG: Transportation of Da HMR: Hazardous Materiak	ngerous Goods Regulation (CAN) Regulation (USA)	
Product Name:	HYDRATED LIME (continued)	
----------------------------------	--	--
distances and the		
Exposure Limits:	Calcium hydroxide: 15 mg/m ³ (OSHA-total); 5 mg/m ³ (OSHA - resp); 5 mg/m ³ (ACGIH, O. Reg. 833) Silica (crystalline quartz): 10 mg/m ³ (total dust); 3.3 mg/m ³ (respirable) (OSHA); 0.05 mg/m ³ (respirable - ACGIH); 0.1 mg/m ³ (O. Reg. 845)	
Frankaaring Controle.	Use ventilation and dust collection to control exposure to below applicable limits.	
Respiratory Protection:	Wear NIOSH N-95 Dust Mask.	
Eye Protection:	Eye protection (chemical goggles, safety glasses and/or face shield) should be worn where there is a risk of hydrated lime exposure. Contact lenses should not be worn when working with lime products	
Hand Protection:	Use clean dry gloves	
Skin Protection:	Cover body with suitable clothes (long sleeves shirts and trousers). Use over the ankle waterproof caustic resistant footwear	
	Refer to Ontario Regulation 845: Designated Substance – Silica.	
and the second states the second		
Physical State:	Solid	
Odor & Appearance:	Odorless, white powder	
pH:	12.4 in saturated water solution at 25°C	
Melting point:	580°C	
Boiling point:	2850°C	
Vapor pressure:	Non volatile	
Vepor density:	Non volatile	
Density:	2.24 g/cc	
Solability:	Slightly soluble in water: 0.2% @ 0° C	
	Soluble in acids, glycerin and sugar solutions	
	1	
Stability:	Stable products, not very soluble.	
Decomposition temperature:	580°C, forms calcium oxide (CaO) and water	
Reactivity:	Reacts with acids to form calcium salts while generating heat.	
	Reacts with carbon dioxide in air to form calcium carbonate.	
Conditions to avoid:	Vicinity of incompatible materials	
Incompatible materials:	Acids; reactive fluoridated, brominated or phosphorous compounds; aluminum (may form hydrogen gas), reactive powdered metals; organic acid anhydrides; nitro-organic compounds; interhalogenated compounds	
Hazardous decomposition prod	ucts: Calcium oxide (CaO)	

Product Name:

HYDRATED LIME (continued)

	Concerning and an and a second se		
Flash point:		Non-flammable	
Autoignition temperature:		Non-flammable	
Inflammability limits:		None	
Explosioa risk:		None by itself, but heat produced by reaction with strong acids can generate steam and pressure	
Hazardous combustion products:		Decomposes to produce calcium oxide (CaO), which can react with water to produce steam and pressure	
Extinguishing media:		Use dry chemical fire extinguisher. Do not use water or halogenated compounds, except that large amounts of water may be used to deluge small quantities of hydrated lime. Use appropriate extinguishing media for surrounding fire conditions.	
Fire fighting l	nstructions:	Keep personnel away from and upwind of fire. Wear full fire-fighting turn-out gear (full Bunker gear), and respiratory protection (self- contained breathing apparatus).	
E. Z.	Ball		
Individual and	collective precautions:	Avoid creating conditions which release dust – use mechanical ventilation to remove dust from work spaces	
Avoid inhalati	om of dust:	Wear respiratory protection - minimum NIOSH N-95 Dust Mask	
Cleaning methods for spills:			
Cleaning meth	ods for spills:	Use personal protective equipment (eyes, skin and inhalation, see Section 8). Use dry methods (vacuuming, sweeping) to collect spilled materials. Avoid generating dust. For large spills, evacuate area downwind of clean-up area operations to minimize dust exposure. For small spills, store spilled materials in dry, sealed plastic or metal containers. Dust residue on surfaces may be washed with water.	
Cleaning meth Precautions for the environmen	ods for spills: r the protection of nt:	Use personal protective equipment (eyes, skin and inhalation, see Section 8). Use dry methods (vacuuming, sweeping) to collect spilled materials. Avoid generating dust. For large spills, evacuate area downwind of clean-up area operations to minimize dust exposure. For small spills, store spilled materials in dry, sealed plastic or metal containers. Dust residue on surfaces may be washed with water. May not be released into surface waters without controls (increases pH)	
Cleaning meth Precautions for the environmen Waste Disposal	ods for spills: r the protection of nt: :	Use personal protective equipment (eyes, skin and inhalation, see Section 8). Use dry methods (vacuuming, sweeping) to collect spilled materials. Avoid generating dust. For large spills, evacuate area downwind of clean-up area operations to minimize dust exposure. For small spills, store spilled materials in dry, sealed plastic or metal containers. Dust residue on surfaces may be washed with water. May not be released into surface waters without controls (increases pH) Dispose according to federal, provincial/state and local environmental regulations	
Cleaning meth Precautions for the environmen Waste Disposal	ods for spills: r the protection of nt: :	Use personal protective equipment (eyes, skin and inhalation, see Section 8). Use dry methods (vacuuming, sweeping) to collect spilled materials. Avoid generating dust. For large spills, evacuate area downwind of clean-up area operations to minimize dust exposure. For small spills, store spilled materials in dry, sealed plastic or metal containers. Dust residue on surfaces may be washed with water. May not be released into surface waters without controls (increases pH) Dispose according to federal, provincial/state and local environmental regulations	
Cleaning meth Precautions for the environmen Waste Disposal MandHag:	ods for spills: the protection of t: : In open air or in ventilate	Use personal protective equipment (eyes, skin and inhalation, see Section 8). Use dry methods (vacuuming, sweeping) to collect spilled materials. Avoid generating dust. For large spills, evacuate area downwind of clean-up area operations to minimize dust exposure. For small spills, store spilled materials in dry, sealed plastic or metal containers. Dust residue on surfaces may be washed with water. May not be released into surface waters without controls (increases pH) Dispose according to federal, provincial/state and local environmental regulations	

Product Name: HYDRATED LIME (continued) Overview: Hydrated lime is an odorless while or grayish-white granular powder. Contact can cause irritation to eyes, skin, respiratory system, and gastrointestinal tract. Contact may aggrave disorders of eyes, skin, gastrointestinal tract, and respiratory system. Eyes: Can cause severe irritation or burning of skin, especially in the presence of moisture. Ingestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Inhalation: Can cause severe irritation of the respiratory system. Long-term exposure may cause perm damage. Hydrated lime is not listed by MSHA, OSHA, or LARC as a carcinogent, but this product may contain crystalline quarts silica, which has been classified by LARC as (Grou carcinogenic to humans when inhaled. Inhalation of silica can also cause a chronic lung disorder, silicosis. Irritant: Eyes, mucous membranes, moist skin, respiratory tract. Flammability: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in confispace Symbolis: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problema. Long-term exposure to silica can cause a chronic lung disorder, silicosia. Eyee: Acute: severe irritation, intense tearing, burns. Chronig: possible blindness when exposur prolonged.	The dead block			
Overview: Hydrated lime is an odorless white or grayish-white granular powder. Contact can cause irritation to eyes, skin, respiratory system, and gastrointestinal tract. Contact may aggrave disorders of eyes, skin, gastrointestinal tract, and respiratory system. Eyes: Can cause severe irritation or burning of eyes, including permanent damage. Sida: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Iabalation: Can cause severe irritation of burning of gastrointestinal tract if swallowed. Iabalation: Can cause severe irritation of the respiratory system. Long-term exposure may cause perm damage. Hydrated lime is not listed by MSHA, OSHA, or IARC as a carcinogen, but this product may contain crystalline quartz silica, which has been classified by IARC as (Grou carcinogenic to humans when inhaled. Inhalation of silica can also cause a chronic lung disorder, silicosis. Irritant: Eyes, mucous membranes, moist skin, respiratory tract. Flemmability: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in confi space Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problema. Long-term exposure to silica can cause a chronic hung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burne. Chronic: possible blindness when exp	Product Name:	HYDRATED LIME (continued)		
Overview: Hydrated lime is an odorless white or grayish-white granular powder. Contact can cause irritation to eyes, skin, respiratory system, and gastrointestinal tract. Contact may aggrave disorders of eyes, skin, gastrointestinal tract, and respiratory system. Eyes: Can cause severe irritation or burning of sex, including permanent damage. Skin: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Imagestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Imagestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Imagestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Imagestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Imagestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Imagestion: Can cause severe irritation or burning of subtroentesting tract. Imagestion: Can cause severe irritation or burning of subtroentesting. Imagestion: Can cause severe irritation or burning of subtroentesting. Imagestion: User induct is not flammable or combustible Irritam: Eyes, mucous membranes, moist skin, respiratory tract. Filammability: May react violently with strong acids producing heat and possible steam explos	a to the state of			
Eyes: Can cause severe irritation or burning of eyes, including permanent damage. Skin: Can cause severe irritation or burning of skin, especially in the presence of moisture. Ingestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Inhalation: Can cause severe irritation of the respiratory system. Long-term exposure may cause perm damage. Hydrated lime is not listed by MSHA, OSHA, or IARC as a carcinogen, but this product may contain crystalline quartz silica, which has been classified by IARC as (Group carcinogenic to humans when inhaled. Inhalation of silica can also cause a chronic tung disorder, silicosis. Irritant: Eyes, nuccus membranes, moist skin, respiratory tract. Finamability: This product is not flarmable or combustible Explosive: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in confispace Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acutg: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic tung disorder, silicosis. Eyes: Acutg: irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acutg: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects.	Overview:	Hydrated lime is an odorless white or grayish-white granular powder. Contact can cause irritation to eyes, skin, respiratory system, and gastrointestinal tract. Contact may aggravate disorders of eyes, skin, gastrointestinal tract, and respiratory system.		
Skila: Can cause severe irritation or burning of skin, especially in the presence of moisture. Ingestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Inhalation: Can cause severe irritation of the respiratory system. Long-term exposure may cause perm damage. Hydrated lime is not listed by MSHA, OSHA, or IARC as a carcinogen, but this product may contain crystalline quartz silica, which has been classified by IARC as (Group carcinogenic to humans when inhaled. Inhalation of silica can also cause a chronic lung disorder, silicosis. Irritant: Eyes, mucous membranes, moist skin, respiratory tract. Flammability: This product is not flammable or combustible Explosive: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in confispace Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyee: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating. Chronic: no known effects. Inhalation: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known ef	Eyes:	Can cause severe irritation or burning of eyes, including permanent damage.		
Ingestion: Can cause severe irritation or burning of gastrointestinal tract if swallowed. Inhalation: Can cause severe irritation of the respiratory system. Long-term exposure may cause perm damage. Hydrated lime is not listed by MSHA, OSHA, or IARC as a carcinogen, but this product may contain crystalline quartz silica, which has been classified by IARC as (Groun carcinogenic to humans when inhaled. Inhalation of silica can also cause a chronic lung disorder, silicosis. Irritant: Eyes, mucous membranes, moist skin, respiratory tract. Flammability: This product is not flammable or combustible Explosive: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in confispace Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: sore throat, stomach aches, oramps, diarrhea, vomiting. Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, oramps, diarrhea, vomiting. Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, oramps, diarrhea, vomiting. Chronic: no known effects. <td>Skie:</td> <td colspan="3">Can cause severe irritation or burning of skin, especially in the presence of moisture.</td>	Skie:	Can cause severe irritation or burning of skin, especially in the presence of moisture.		
Inhalation: Can cause severe irritation of the respiratory system. Long-term exposure may cause perm damage. Hydrated lime is not listed by MSHA, OSHA, or IARC as a carcinogen, but this product may contain crystalline quartz silica, which has been classified by IARC as (Group carcinogenic to humans when inhaled. Inhalation of silica can also cause a chronic lung disorder, silicosis. Irritant: Eyes, mucous membranes, moist skin, respiratory tract. Flammability: This product is not flammable or combustible Explosive: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in configure space Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: sore throat, stomach aches, cramps, diarrhee, vomiting. Chronic: no known effects. Ingestion: Acute: sore throat, scek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eye to make sure all the lime dust has been washed out. Seek medical attention immediately. D not	Ingestion:	Can cause severe irritation or burning of gastrointestinal tract if swallowed.		
Irritant: Eyes, mucous membranes, moist skin, respiratory tract. Flammability: This product is not flammable or combustible Explosive: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in confispace Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the et to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Inhalation:	Can cause severe irritation of the respiratory system. Long-term exposure may cause permanent damage. Hydrated lime is not listed by MSHA, OSHA, or IARC as a carcinogen, but this product may contain crystalline quartz silica, which has been classified by IARC as (Group I) carcinogenic to humans when inhaled. Inhalation of silica can also cause a chronic lung disorder, silicosis		
Flammability: This product is not flammable or combustible Explosive: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in confispace Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eye to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Irritant:	Eyes, mucous membranes, moist skin, respiratory tract.]	
Explosive: This product is not explosive in dust form Reactivity: May react violently with strong acids producing heat and possible steam explosion in confispace Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eyes to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Flammability:	This product is not flammable or combustible		
Reactivity: May react violently with strong acids producing heat and possible steam explosion in confispace Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Health Effects: Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic hung disorder, silicosis. Eyes: Acute: Acute: severe irritation, intense tearing, burns. Chronic: no known effects. Ingestion: Acute: severe introat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the et to make sure all the lime dust has been washed out. Seek medical attention immediately. not rub eyes. Not eyes. Not eyes.	Explosive:	This product is not explosive in dust form		
space Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Health Effects: Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposure to silica can cause a chronic lung disorder, silicosis. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the exponent sufficial attention immediately. D not rub eyes.	Reactivity:	May react violently with strong acids producing heat and possible steam explosion in confined		
Symbols: WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects Health Effects: Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eye to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	-	space	Į	
Health Effects: Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eye to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Symbols:	WHMIS Symbol: "E" Corrosive Material; "D2A" Materials causing other toxic effects		
Health Effects: Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eyes. not rub eyes. Destination immediately. D			Sec.	
Inhalation: Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Treatments: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eye to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	and the second sec		<u> </u>	
Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eye to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Health Effects:			
Eyes: Acute: severe irritation, intense tearing, burns. Chronic: possible blindness when exposur prolonged. Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Treatments: Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eye to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Health Effects: Inhalation:	Acute: irritation, sore throat, cough, sneezing. Chronic: persistent coughing and breathing		
Skin: Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating Chronic: no known effects. Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Treatments: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the er to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Health Effects: Inhalation:	<u>Acute</u> : irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis.		
Ingestion: Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. Chronic: no known effects. Treatments: Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eyet to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Health Effects: Inhalation: Eyes:	<u>Acute</u> : irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. <u>Acute</u> : severe irritation, intense tearing, burns. <u>Chronic</u> : possible blindness when exposure is prolonged.		
Treatments: Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, giv artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eyet to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Health Effects: Inhalation: Eyes: Skin:	Acute: irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. <u>Acute</u> : severe irritation, intense tearing, burns. <u>Chronic</u> : possible blindness when exposure is prolonged. <u>Acute</u> : removes natural skin oils, blotches, itching and superficial burns in case of sweating. <u>Chronic</u> : no known effects.		
Inhalation: Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, give artificial respiration. Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eyet to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Health Effects: Inhalation: Eyes: Skin: Ingestion:	Acute: irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. <u>Acute</u> : severe irritation, intense tearing, burns. <u>Chronic</u> : possible blindness when exposure is prolonged. <u>Acute</u> : removes natural skin oils, blotches, itching and superficial burns in case of sweating. <u>Chronic</u> : no known effects. <u>Acute</u> : sore throat, stomach aches, cramps, diarrhea, vomiting. <u>Chronic</u> : no known effects.		
Eyes: Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eyes to make sure all the lime dust has been washed out. Seek medical attention immediately. D not rub eyes.	Health Effects: Inhalation: Eyes: Skin: Ingestion: Trestments:	Acute: irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. <u>Acute</u> : severe irritation, intense tearing, burns. <u>Chronic</u> : possible blindness when exposure is prolonged. <u>Acute</u> : removes natural skin oils, blotches, itching and superficial burns in case of sweating. <u>Chronic</u> : no known effects. <u>Acute</u> : sore throat, stomach aches, cramps, diarrhea, vomiting. <u>Chronic</u> : no known effects.		
•	Health Effects: Inhalation: Eyes: Skin: Ingestion: Treatments: Inhalation:	Acute: irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. <u>Acute</u> : severe irritation, intense tearing, burns. <u>Chronic</u> : possible blindness when exposure is prolonged. <u>Acute</u> : removes natural skin oils, blotches, itching and superficial burns in case of sweating. <u>Chronic</u> : no known effects. <u>Acute</u> : sore throat, stomach aches, cramps, diarrhea, vomiting. <u>Chronic</u> : no known effects. <u>Move victim to fresh air</u> . Seek medical attention if necessary. If breathing has stopped, give artificial respiration.		
Skin: Flush exposed area with large amounts of water. Seek medical attention immediately.	Health Effects: Inhalation: Eyes: Skin: Ingestion: Treatments: Inhalation: Eyes:	Acute: irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. <u>Acute</u> : severe irritation, intense tearing, burns. <u>Chronic</u> : possible blindness when exposure is prolonged. <u>Acute</u> : removes natural skin oils, blotches, itching and superficial burns in case of sweating. <u>Chronic</u> : no known effects. <u>Acute</u> : sore throat, stomach aches, cramps, diarrhea, vomiting. <u>Chronic</u> : no known effects. <u>Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, give artificial respiration.</u> Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eyelic to make sure all the lime dust has been washed out. Seek medical attention immediately. Do not rub eyes.		
Ingestion: Give large quantities of water or fruit juice. Do not induce vomiting. Seed medical attention immediately. Never give anything by mouth if victim is rapidly losing consciousness or is unconscious or convulsing.	Health Effects: Inhalation: Eyes: Skin: Ingestion: Treatments: Inhalation: Eyes: Skin:	Acute: irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. Acute: severe irritation, intense tearing, burns. <u>Chronic</u> : possible blindness when exposure is prolonged. Acute: removes natural skin oils, blotches, itching and superficial burns in case of sweating. <u>Chronic</u> : no known effects. Acute: sore throat, stomach aches, cramps, diarrhea, vomiting. <u>Chronic</u> : no known effects. Move victim to fresh air. Seek medical attention if necessary. If breathing has stopped, give artificial respiration. Immediately flush eyes with large amounts of water for at least 15 minutes. Pull back the eyelic to make sure all the lime dust has been washed out. Seek medical attention immediately. Do not rub eyes. Flush exposed area with large amounts of water. Seek medical attention immediately.	1	
•	Health Effects: Inhalation: Eyes: Skin: Ingestion:	<u>Acute</u> : irritation, sore throat, cough, sneezing. <u>Chronic</u> : persistent coughing and breathing problems. Long-term exposure to silica can cause a chronic lung disorder, silicosis. <u>Acute</u> : severe irritation, intense tearing, burns. <u>Chronic</u> : possible blindness when exposure is prolonged. <u>Acute</u> : removes natural skin oils, blotches, itching and superficial burns in case of sweating. <u>Chronic</u> : no known effects. <u>Acute</u> : sore throat, stomach aches, cramps, diarrhea, vomiting. <u>Chronic</u> : no known effects.		

Carmeuse North America 11 Stanwix Street, 11th Floor Plttsburgh, PA 15222 Phone: 412-995-5500 Fax: 412-995-5594

Date of Origin:	06/05/ 02
Date of Revision:	12/06/04
Revision No	7

•

ş

Material Safety Data Sheet

Product Name:

HYDRATED LIME

INFOTRAC: 800-535-5053 [in case of an emergency call this number 24 HOURS a day 7 DAYS a week.]

CONTRACTOR OF THE CONTRACTOR			(++1,*) · · · · ·		
1.1. Identification of the s	ubstance:				
Chaminal moment		<u></u>	a · a		
Chemical name:		Calcium hy	droxide		
Product name(s):		Hydrated L	ime, Ind	ustrial Hydrate	
Formula:		Ca(OH) ₂			
CAS #:		1305-62-0			
Molecular Weight:		74.08			
Material Uses:		Water treatr absorption,	nent, ste construc	el flux, caustic agent, pH adjustment, acid gas	
<u>1.2. Company:</u>		• •			
Main Office:				·	
Carmeuse North A	merica	Telephone:	412-99	95-5500	
11 Stanwix Street, Pittsburgh, PA 152	11 ^m Floor 22	Fax:	412-99	95-5594	
Canadian Office:					
Carmeuse Lime (Canad	a) Limited				
P.O. Box 190	,	Telenhone:	519-42	13-6283	
Ingersoll. Ontario N	15C 3K5	Fax	519_07	3_6545	
		1 441.	567-16		
In man fland	Q. Ing Weigh				
Impredient	76 DV Weign		<u>) ff</u>	<u>Exposure lannag</u>	
Calcium hydroxide	>85	1305-6	i2-0	OSHA PEL: 15 mg/m ³ (total), 5 mg/m ³ (resp) ACGIH TLV: 5 mg/m ³ O. Reg. 833 TWAEV: 5 mg/m ³ LD ₅₀ oral (rat) 7340 mg/kg	
Silica - crystalline quartz	<]	14808-0	50-7	OSHA PEL [°] : 10 mg/m ¹ (total dust); 3.3 mg/m ³ (respirable) ACGIH TLV: 0.05 mg/m ³ (respirable) O. Reg. 845: 0.1 mg/m ³	
'PEL (total dust) = $(30 \text{ mg/m}^3) / (\% \text{ silica + 2})$; PEL (respirable) = $(10 \text{ mg/m}^3) / (\% \text{ silica + 2})$					

CARMEUSE NATURAL CHEMICALS	Carmeuse Lime Black River Operation 9043 Highway 154 Butler, KY 41006
Product Description: FGD Hydrated Lime Product Code: 007 Production Facility: Black River Packaging: Bulk only	INFORMATION Hi Cal
<u>Typical Proparties</u> : Chemical Calcium Hydroxide Free Moisture	Average (%) 94.00 < 3.0
<u>Typical Properties</u> : Physical BET Surface Area (m ² /gram) Bulk Density (#/ft [*]) Size (at point of loading) - Passing 325 mesh	Average (%) 20 32 93.7
The information contained in this product information but any typical values given are subject to occasional and processing operations. Each user is advised to eva properties and performance characteristics) independent	n sheet is, to the best of our knowledge, true and accurate, variations based on variations in the raw material inputs aluate the product (specific compositions, physical ently for suitability in the intended use.

•

Product Name:	HYDRATED LIME (continued)
	and the second
Symbol:	WHIMIS RATING D2A, E <u>NFPA RATING</u> HEALTH-2 SPECIFIC HAZARD-ALK FLASH POINTS-0 REACTIVITY-1 HIMIS RATING HEALTH-2 SPECIFIC HAZARD-ALK FLASH POINTS-0 REACTIVITY-1
Rick Phrases:	Risk of serious damage to the eyes Keep out of reach of children
Safety Phrases:	Keep storage container away from humidity Avoid contact with skin and eyes. In case of contact with eyes, rinse immediately with water for at least 15 minutes
CPR (Caesde):	This product has been classified in accordance with the hazard criteria of the Controlled Products Regulation (CPR) of Canada and this MSDS contains all information required by the CPR.
a track to the the state of the	
Hydrated lime can be removed applying dilute vinegar, vehicle	from objects (such as vehicles) using rags dampened with dilute vinegar. After es (especially chrome surfaces) must be washed with water.

The information contained herein is believed to be accurate and reliable as of the date hereof. However, Carmeuse makes no representation, warranty or guarantee as to results or as to the information's accuracy, reliability or completeness. Carmeuse has no liability for any loss or damage that may result from use of the information. Each user is responsible to review this information, satisfy itself as to the information's suitability and completeness, and circulate the information to its employees, customers and other appropriate third parties.

ATTACHMENT G

Compliance Assurance Monitoring (CAM) Plan Kentucky Utilities/E.W. Brown Generating Station Unit 3

Introduction

CAM applies at Title V major sources that use control devices to achieve compliance with an applicable limit or standard and have potential pre-control emissions greater than or equal to 100% of the major source trigger for the pollutant.

Kentucky Utilities (KU) E.W. Brown Generating Station is requesting a PSD permit modification for Unit 3, which will trigger the following control devices to become subject to the CAM requirements as part of the PSD permit application request.

• Emission Unit 03 (Unit 3 Indirect Heat Exchanger) currently employs an electrostatic precipitator (ESP) for particulate matter (PM) control. A wet limestone flue gas desulfurization system (WFGD) for sulfur dioxide (SO₂) control is currently under construction, and a selective catalytic reduction (SCR) for nitrogen oxide (NOx) control which will include a SO3 mitigation system for sulfuric acid mist (H2SO4) control will be installed prior to December 31, 2012.

The Compliance Assurance Monitoring Plans (1-4) are provided below:

(1) Compliance Assurance Monitoring Plan – Particulate Matter for Emission Units 3

Emissions Unit	
Facility:	E.W. Brown Generating Station
Description:	Units 3 Indirect Heat Exchangers
Identification:	Emission Unit 03, Emission Point 017 (after WFGD is installed)
Applicable Regulations, Emission I	Limit, and Monitoring Requirements
Applicable Regulations:	Emission Unit 03: 401 KAR 61:015 and Regulation No. 7
Regulated Pollutant:	Particulate Matter (PM)
Emission Limits:	Emission Unit 03: 0.254 lb/MMBtu based on a 3-hr avg (existing)
	0.030 lb/MMBtu based on a 3-hr avg (after WFGD, but no later than
12/31/10)	
Monitoring Requirements: Visible	emissions (opacity), periodic testing for particulate matter

<u>Control Technology</u> Electrostatic precipitator (ESP)

Monitoring Approach

The E.W. Brown Generating Station Emission Unit 03 (emission point 017) will use a PM Continuous Emission Monitor (CEM) as its CAM for PM. The data reporting system for the PM CEM will continuously measure particulate matter and will calculate particulate matter emission rates in terms of lb/MMBtu based on a three-hour average and compare this to the applicable emission limit.

Justification

PM CEM

The use of a Continuous Emission Monitoring System that provides results in units of the standard for the pollutant of interest and meets the criteria in 40 CFR Part 64.3 (d)(2) is considered presumptively acceptable CAM.

(2) Compliance Assurance Monitoring Plan – SO₂ for Emission Unit 3

Emissions Unit	
Facility:	E.W. Brown Generating Station
Description:	Unit 3 Indirect Heat Exchanger
Identification:	Emission Unit 03; Emission Point 017 (after WFGD is installed)

Applicable Regulations, Emission Limit, and Monitoring Requirements			
Applicable Regulations:	401 KAR 61:015		
Regulated Pollutant:	sulfur dioxide (SO ₂)		
Emission Limits:	5.15 lb/MMBtu based on a 24-hour average (existing)		
	0.100 lb/MMBtu based on a 30-day rolling avg (with WFGD)		
	Emission Unit 03 has SO_2 allocations per the Acid Rain program.		
Monitoring Requirements:	40 CFR Part 75 Continuous Emission Monitoring (CEMs)		

Control Technology

Wet limestone forced-oxidation sulfur dioxide scrubber on Emission Unit 03.

Monitoring Approach

The E.W. Brown Generating Station Emission Unit 03 will use 40 CFR Part 75 CEMS to continuously measure sulfur dioxide on the generating unit. The data reporting system for the CEMS will calculate sulfur dioxide emission rates in terms of lb/MMBtu based on a 30-day rolling average and compare to the applicable limit.

Justification

The use of a Continuous Emission Monitoring System that provides results in units of the standard for the pollutant of interest and meets the criteria in 40 CFR Part 64.3 (d)(2) is considered presumptively acceptable CAM.

(3) Compliance Assurance Monitoring Plan – NOx for Emission Unit 3

Emissions Unit	
Facility:	E.W. Brown Generating Station
Description:	Unit 3 Indirect Heat Exchanger
Identification:	Emission Unit 03 Emission Point 017 (after WFGD is installed)

Applicable Regulations, Emission Limit and Monitoring Requirements

Applicable Regulations:	40 CFR Part 75
Regulated Pollutant:	Nitrogen Oxides (NOx)
Emission Limits:	Emission Units 03 has an emission limit of 0.70 lb/MMBtu
	based on a thirty-day rolling average, except a limit of 0.080
	lb/MMBtu based on a thirty-day rolling average applies if the
	gas temperature is too low to safely operate the SCR,.
Monitoring Requirements:	40 CFR Part 75 CEMS

Control Technology

Selective Catalytic Reduction (SCR) for Emission Units 03 and Low NOx Burners (CAM is not applicable to Low NOx Burners).

Monitoring Approach

The E.W. Brown Generating Station Emission Units 03 will use the 40 CFR Part 75 CEMS to continuously measure NOx on the generating units. The data reporting system for the CEMS will calculate NOx emission rates in terms of lb/MMBtu based on a thirty-day rolling average for the Emission Unit.

Justification

The use of a Continuous Emission Monitoring System that provides results in units of the standard for the pollutant of interest and meets the criteria in 40 CFR Part 64.3 (d)(2) is presumptively acceptable CAM.

(4) Compliance Assurance Monitoring Plan – Sulfuric Acid Mist (H₂SO₄) for Unit 3

KU proposes to control sulfuric acid mist (H_2SO_4) emissions from Unit 3 with a SO3 mitigation system.

LG&E proposes to conduct initial stack tests to verify that when SO_2 is at its permitted emission limit, sulfuric acid mist is at or below its permitted emission limit. Once it can be verified that whenever SO_2 is in compliance, sulfuric acid mist is in compliance, SO_2 will be used as a surrogate for sulfuric acid mist emissions.

ATTACHMENT H

H₂SO₄ Air Dispersion Modeling Analysis and Risk Assessment E.ON E.W. Brown Station • Harrodsburg, Kentucky

Prepared for:

E.ON U.S. LLC 220 West Main Street Louisville, Kentucky 40232

Prepared by:

TRINITY CONSULTANTS 1717 Dixie Highway, Suite 900 Covington, Kentucky 41011

Project 091801.0025

June 2, 2009

TABLE OF CONTENTS

1.	INTRODUCTION	
2.	FACILITY INFORMATION	2-1 2-1 2-1
3.	RISK ASSESSMENT THRESHOLDS	
4.	SOURCE AND EMISSIONS CHARACTERIZATION	
5.	MODELING METHODOLOGY AND MODEL OPTIONS5.1MODEL SELECTION5.2METEOROLOGICAL DATA5.3MODEL RECEPTOR GRID5.4BUILDING WAKE EFFECTS5.5MODEL OPTIONS	5-1 5-1 5-1 5-2 5-2 5-2 5-6
6.	 H₂SO₄ Risk Assessment	

i

Table 4-1.	New Main Stack Source Parameters for E.ON Brown Station	.4-1
Table 6-1.	Maximum Modeled Off-Site H ₂ SO ₄ Concentrations and Hazard Quotients	.6-2

LIST OF FIGURES

Figure 2-1.	E.W. Brown Station Plant Layout
Figure 5-1.	Photo with View of E.ON Brown Station Looking East Southeast
Figure 5-2.	Depiction of Buildings in BREEZE AERMOD Looking East Southeast
Figure 5-3.	Photo with View of E.ON Brown Station Looking North
Figure 5-4.	Depiction of Buildings in BREEZE AERMOD Looking North
Figure 6-1. Mo	Maximum 1st High 1-hr H ₂ SO ₄ Hazard Quotient from among Five Meteorological Years deled
Figure 6-2. Mo	Maximum Annual H ₂ SO ₄ Hazard Quotient from among Five Meteorological Years deled

E.ON U.S. (E.ON) owns and operates a power generation facility, the EW Brown Station, just east of Harrodsburg, Kentucky on the western shore of Lake Herrington. The facility consists of three coal-fired utility boilers as well as natural-gas-fired turbines, and hydroelectric capacity derived from Dix Dam. The Brown Station is submitting an air permit application for plant modifications involving the installation of a Selective Catalytic Reduction (SCR) control system on Unit 3. Due to the increased oxidation of sulfur to SO₃ in the flue gas caused by the SCR system, while emissions of NO_X will be substantially reduced, the project will result in collateral increases in H_2SO_4 emissions out the stack.

The Kentucky Division of Air Quality (KDAQ) may request that an air dispersion modeling analysis be completed as part of a permit action pursuant to 401 KAR 63:020 when there is an increase in air pollutant emissions associated with new construction or modifications at a facility that is deemed to be significant. This is done so that there is a documented basis for affirming that a facility does not cause an adverse impact, as required by 401 KAR 63:020. To proactively demonstrate that the increased levels of H_2SO_4 emissions would not cause adverse ambient impacts, an air dispersion modeling analysis has been conducted for inclusion with the air permit application. This refined modeling employed a refined treatment of building s, locations, terrain, meteorology, land use, and dispersion algorithms. Both the maximum short-term and annual ambient impacts of H_2SO_4 are compared with health-based reference concentrations found under other national or state health based programs.

2.1 FACILITY LOCATION AND AREA MAPS

The Brown Station is located approximately nine (9) miles east northeast of Harrodsburg, Kentucky along the west shore of Lake Herrington. The station property itself consists of 664 acres with associated boilers, control devices, coal storage, and other supporting facilities on the property as shown in Figure 2-1. The facility is located in the Dix River Valley with modest terrain features throughout the area but no significant mountains. Adjacent land to the north, west, south, and east of the facility is generally rural or wooded.

2.2 UTM COORDINATE SYSTEM

The location of emission sources, structures, and receptors were represented in this modeling analysis in the Universal Transverse Mercator (UTM) coordinate system. The UTM grid divides the world into coordinates that are measured in north meters (measured from the equator) and east meters (measured from the central meridian of each specific zone with a width of 500 kilometers). The datum used herein was based on North American Datum 1983 (NAD 83). UTM coordinates for this analysis are located in UTM Zone 16. The general central location of the main stack at the E.ON Brown Station is approximately 701,178 meters East and 4,184,894 meters North in Zone 16. All subsequent calculations were conducted maintaining this NAD83 base coordinate system for all building coordinates and receptor locations.

2-1

FIGURE 2-1. E.W. BROWN STATION PLANT LAYOUT

Conceptually, a health risk assessment combines dose-response values for adverse health effects with the results of a dispersion model to estimate inhalation exposures of human populations to concentrations of potentially hazardous chemicals. Adverse health effects may be chronic (i.e., long-term exposures) or acute (i.e., short-term exposures) with acute impacts experienced over short timeframes ranging from minutes to a day and chronic impacts experienced on an annual basis. Chronic exposures are classified as either cancerous or non-cancerous.

Under 401 KAR 63:020, KDAQ does not set any specific ambient thresholds for a given pollutant nor does it establish a basis for determining an acceptable ambient concentration (except for those pollutants covered explicitly under 401 KAR 53). A facility can use any credible and technically justifiable risk assessment approach to demonstrate compliance. To this end, a review of risk assessment methodologies and risk thresholds for assessing H_2SO_4 impacts provided in both Federal and State air agency guidance documents was conducted. Of the acute and chronic risk thresholds established based on this review the most conservative were used as a benchmark against which the acute and chronic exposures due to H_2SO_4 emissions from the Brown Station were evaluated. Ambient H_2SO_4 impacts were evaluated using the acute H_2SO_4 risk threshold from the North Carolina Division for Air Quality Acceptable Ambient Level (AAL) under the state air toxics program, 100 µg/m³ on a 1-hr average basis, is the Benchmark Ambient Concentration used in the analysis, 1.0 µg/m³ on an annual average basis, is the Benchmark Ambient Concentration used in the Louisville Metro Air Pollution Control District (LMAPCD) Strategic Toxic Air Reduction Program (STAR Program).

To provide an effective demonstration of possible acute or chronic risks using dispersion modeling results, a hazard quotient (HQ) was calculated for non-carcinogenic effects of H_2SO_4 . The HQ is defined as the maximum predicted concentration (μ g/m³) of an individual compound divided by the applicable risk threshold. The risk thresholds are estimates of a continuous inhalation exposure to the human population that is likely to be without an appreciable risk of deleterious effects during a short-term (in this case, one hour exposure) event or a lifetime (annual) exposure. A resultant value of HQ less than 1 is considered acceptable; values greater than 1 are indicative of the potential for elevated risk of non-cancerous health impacts that should be evaluated further using more refined analyses.

Only one source of H_2SO_4 emissions are of concern for the current modeling analysis, namely the new main stack at the Brown Station serving the three utility boilers–Units 1, 2 & 3. Emissions equal to **291.3 lb/hr** of H_2SO_4 were modeled through the single new stack (Stack ID 017).

With the exception of the stack coordinates and exhaust flowrate, stack parameters were set equal to values previously estimated by E.ON and represented on the DEP7007N form included in the March 2005 air permit application covering the installation of a new flue gas desulfurization system (along with the new stack). The flowrate value has been revised slightly based on more recent calculation estimates. The stack coordinates were revised to replace the less precise values that had previously been provided in the March 2005 application. Table 4-1 presents the stack information used in the modeling analysis.

TABLE 4-1. NEW MAIN STACK SOURCE FARAMETERS FOR E.ON DROWN STATION	TABLE 4-1.	NEW MAIN STA	ACK SOURCE PA	RAMETERS FOR	E.ON BROWN STATION
--	------------	--------------	----------------------	--------------	--------------------

	UTM, NAD83 CoordinateskStack DescriptionEast (m)North (m)7New Unit 1, 2 & 3 Main Stack701,1784,184,	NAD83 linates				Stack Gas	Stack Diameter (m)	
Stack ID	Stack Description	East (m)	ANAD83 dinates North, (m) Base Elev. H (m) 4,184,894 266.7	Stack Height (m)	Stack Gas Temp. (K)	Exit Velocity ^a (m/s)		
017	New Unit 1, 2 & 3 Main Stack	701,178	4,184,894	266.7	171	327	23.86	8.13

a. Based on an exhaust gas volume flowrate of 2,624,305 acfm for all three units exiting the stack.

5.1 MODEL SELECTION

The selection of a dispersion model to estimate short-term and long-term off-site exposure must take into account consideration of the physical geometry of the source, the local dispersion environment, and terrain characteristics. These factors formulate the basis for choosing one or more of the models recommended in the EPA modeling guidelines. In November 2005, EPA promulgated *Revision to Guideline on Air Quality Models (Guideline)*, which contained recommendations on preferred air dispersion models to be used for assessing air quality impacts due to emissions from industrial facilities.¹ The revised *Guideline* specifies that AMS/EPA Regulatory Model (AERMOD), which includes the PRIME downwash algorithms, is the preferred model for refined modeling of an industrial facility. AERMOD is a refined, steady-state meteorology, multiple source, Gaussian dispersion model with improved treatment of turbulence in the planetary boundary layer and thus, its use was deemed appropriate for this modeling analysis.

The air dispersion modeling analysis for the Brown Station was conducted using the EPA-approved AERMOD model (Version 07026) to estimate maximum ground-level concentrations. AERMOD modeling was performed using all regulatory default options.

5.2 METEOROLOGICAL DATA

Refined dispersion models like AERMOD require a sequential hourly record of meteorology data representative of the region within which the source is located. In the absence of site-specific measurements, the EPA guidelines recommend the use of available meteorological data sets from the closest and most representative National Weather Service (NWS) stations.

For this modeling analysis, five years of surface meteorological data for 1988-1992 for the Lexington Bluegrass Airport (Station No. 93820) and upper air data from Wright Patterson Air Force Base in Dayton, Ohio (Station No. 13840) were used. Surface characteristics around the Lexington Bluegrass Airport were used in the AERSURFACE program to generate albedo, Bowen ratios, and surface roughness lengths which were consequently used to generate the meteorological data sets used in the modeling. Following recommendations in the *AERSURFACE User's Guide* and the current version of the *AERMOD Implementation Guide*, the determination of the surface roughness lengths was based on the inverse-distance weighted geometric mean applied in AERSURFACE with a default upwind distance of 1 kilometer relative to the measurement site for the study area radius.^{2 3} Since no consistent variations in land cover by direction were discernable in the 1-km area surrounding the

¹ U.S. EPA, Office of Air Quality Planning and Standards, *Federal Register* Vol. 70 / No. 216, pp. 68,218-68,261, 40 CFR 51, Appendix W, *Revision to Guideline on Air Quality Models*, November 9, 2005.

² U.S. EPA, Office of Air Quality Planning and Standards. *AERSURFACE User's Guide*. EPA 454/B-08-001. Research Triangle Park, North Carolina. January 2008.

³ U.S. EPA AERMOD Implementation Workgroup, AERMOD Implementation Guide, March 19, 2009

Lexington Bluegrass Airport anemometer, surface roughness lengths were evaluated in twelve (12) equal 30 degree sector starting at 0 degrees (i.e., due north) and rotating clockwise in 30 degree increments.

5.3 MODEL RECEPTOR GRID

In this air dispersion modeling analysis, ground-level concentrations were calculated throughout a Cartesian receptor grid and at receptors placed along the property line. The property line receptors were spaced 100 meters apart around the entire property boundary. The fine circular Cartesian grid beyond the fence line consists of 100-m spaced receptors extending out to five (5) kilometers in all directions. The receptors around the property were configured using public roads on the south and west and waterways on the east and north (refer to Figure 6-1 showing the modeled receptors). A single base elevation was used in the model data files for the boiler stack and buildings, because the area of the plant site where these structures are located is graded. Elevations of terrain for all receptors were derived from appropriate Digital Elevation Model (DEM) maps at 7.5' scale for the area.

5.4 BUILDING WAKE EFFECTS

The *Guideline on Air Quality Models* requires the evaluation of the potential for physical structures to affect the dispersion of emissions from stack sources. The exhaust from stacks that are located within specified distances of buildings and whose physical heights are below specified levels may be subject to "aerodynamic building downwash" under certain meteorological conditions. This determination is made by comparing actual stack heights to the Good Engineering Practice (GEP) stack height. An emission point is assumed to be subject to the effects of downwash if the release height is less than the minimum GEP stack height, which is defined by the following formula:

 $H_{GEP} = H + 1.5L$

Where,

H_{GEP}		minimum GEP stack height,
Н	=	structure height, and
L		lesser dimension of the structure (height or projected width).

This equation is limited to stacks located within 5L of a structure. Stacks located at a distance greater than 5L are not subject to the wake effects of the structure. EPA has promulgated stack height regulations that restrict the use of stack heights in excess of the maximum GEP height in air dispersion modeling analyses. The maximum GEP stack height for any source is the greater of 65 meters or H_{GEP} .⁴ That portion of a stack in excess of the maximum GEP height is generally not creditable when modeling to determine source impacts. This essentially prevents the use of excessively tall stacks to reduce ground-level pollutant concentrations.

⁴ 40 CFR §51.100(ii).

Major buildings were configured dimensionally and included in the modeling to consider downwash. Figures 5-1 through 5-4 show photos of the plant along with figures depicting the representations of these structures in the dispersion model. The direction-specific building dimensions used as input to AERMOD model were calculated using the *BREEZE®-AIR* software, developed by Trinity Consultants. This software incorporates the algorithms of the EPA-sanctioned Building Profile Input Program (BPIP), which has been adapted to incorporate the PRIME downwash algorithms and released by the EPA as "BPIPPRM" (version 04274). BPIPPRM was designed to incorporate the concepts and procedures expressed in the GEP Technical Support document, the Building Downwash Guidance document, and other related documents, while incorporating the PRIME enhancements to improve prediction of ambient impacts in building cavities and wake regions.⁵

⁵ U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, *Guidelines for* Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations) (Revised), Research Triangle Park, North Carolina, EPA 450/4-80-023R, June 1985.

FIGURE 5-1. PHOTO WITH VIEW OF E.ON BROWN STATION LOOKING EAST SOUTHEAST

FIGURE 5-2. DEPICTION OF BUILDINGS IN BREEZE AERMOD LOOKING EAST SOUTHEAST

FIGURE 5-3. PHOTO WITH VIEW OF E.ON BROWN STATION LOOKING NORTH

FIGURE 5-4. DEPICTION OF BUILDINGS IN BREEZE AERMOD LOOKING NORTH

5.5 MODEL OPTIONS

The AERMOD model was run for each of the five one-year periods specified in Section 5.2. To evaluate both short-term and long-term impacts, both one hour averages and annual averages were calculated to compare against the applicable risk thresholds. Source data used in the modeling analyses were provided in Table 4-1. AERMOD was run in EPA's regulatory default mode, which includes the following model switches:

- ▲ Elevated terrain algorithms requiring input of terrain height data
- ▲ Calms and missing meteorological data processing routines
- ▲ Maximum annual average concentrations
- ▲ Maximum 1-hour concentrations

6.1 EXPOSURE ASSESSMENT

The modeling analysis conducted used the conservatively estimated potential emission rates of H_2SO_4 from the new boiler stack, as described in Section 4, to evaluate potential off-site inhalation risks associated with H_2SO_4 emissions. The H_2SO_4 risk thresholds used represent an estimate of a continuous inhalation exposure to the human population that is likely to be without an appreciable risk of deleterious effects during a lifetime. Although risk assessments are typically conducted at potential locations were people congregate (i.e., residences, churches, recreation areas, etc.), this analysis conservatively relies on the maximum offsite H_2SO_4 impacts. The maximum offsite 1-hour average and annual average H_2SO_4 impacts at any receptor in the area surrounding the Brown Station were determined by the AERMOD model and are shown in Table 6-1. The maximum 1-hr impact occurs just beyond the property boundary southeast of the boiler stack and the maximum annual average impact occurs to the northeast of the plant site across Dix River and southeast of Bowman's Bend.

6.2 DETERMINATION OF HAZARD QUOTIENT

To evaluate whether the predicted H_2SO_4 impacts are considered acceptable (i.e., do not cause or contribute to adverse risk), the ratio of the maximum offsite impacts to the acute and chronic risk thresholds were each computed to yield a hazard quotient (HQ). As shown in Table 6-1 and in Figures 6-1 and 6-2, the maximum offsite 1-hour and annual average H_2SO_4 concentrations predicted in the air dispersion modeling analysis are equal to or less than 20 percent of the corresponding risk thresholds (i.e., the HQs are equal to or less than 0.20) which demonstrates that potential H_2SO_4 emissions from the new boiler stack after the modification will not pose an adverse health risk at any offsite location.

Electronic copies of the AERMOD input and output data files and meteorological data files for the modeling analyses completed can be provided upon request via email or ftp exchange.

Averaging Period	Year	Risk Thresholds ² (µg/m ³)	Maximum 1st High Impact (µg/m ³)	Maximum Hazard Quotient (µg/m ³)	UTM East ³ (m)	UTM North ³ (m)
1-hour ¹	1988-LEX	100	11.92	0.12	701,000	4,182,700
	1989-LEX	100	12.09	0.12	705,600	4,187,100
	1990-LEX	100	12.31	0.12	698,300	4,186,300
	1991-LEX	100	10.80	0.11	704,100	4,185,200
	1992-LEX	100	13.59	0.14	699,300	4,184,000
	Max. of 5 Years	100	13.59	0.14	699,300	4,184,000
Annual ¹	1988-LEX	1.0	0.17	0.17	703,000	4,186,000
	1989-LEX	1.0	0.18	0.18	703,000	4,186,000
	1990-LEX	1.0	0.20	0.20	702,700	4,186,400
	1991-LEX	1.0	0.19	0.19	702,900	4,186,300
	1992-LEX	1.0	0.19	0.19	702,900	4,186,300
	Max. of 5 Years	1.0	0.20	0.20	702,700	4,186,400

TABLE 6-1. MAXIMUM MODELED OFF-SITE H₂SO₄ CONCENTRATIONS AND HAZARD QUOTIENTS

¹ Evaluated 1st high impacts for each year modeled since risk thresholds are not to be exceeded.

 2 Acute (1-hr) H₂SO₄ risk threshold is based on the North Carolina Division for Air Quality Acceptable Ambient Level (AAL) under their State Air Toxics Program. Non-cancer chronic (annual) H₂SO₄ risk threshold is based on the Louisville

Metro Air Pollution Control District (LMAPCD) Benchmark Ambient Concentration (BAC).

³ UTM coordinates are in NAD83.

FIGURE 6-1. MAXIMUM 1ST HIGH 1-HR $\rm H_2SO_4$ Hazard Quotient from among Five Meteorological Years Modeled

FIGURE 6-2. MAXIMUM ANNUAL H₂SO₄ HAZARD QUOTIENT FROM AMONG FIVE METEOROLOGICAL YEARS MODELED

ATTACHMENT I

ES C:\DOCUME~1\s204683\MYDOCU~INEONUS~1\ATAPERMIT~1\EWBRNS~1\VISCREEN. - 8 X Primary SO4 = 45.000000 <u>.</u> leteorological and Ambient Data for Harrodsburg Wind speed (m/s) Stability Index Visual Range (km) 3.200000 6 20.00000 4.00000E-02 Ozone Conc. (ppm) = Plume Offset Angle= 11.250000 degrees Distances Between EW Brown 3 and Harrodsburg Source-Observer Min. Source-Class I Max. Source-Class I 8.700000 km 5 700000 km 10.000000 km 5 6 45 Are these input values ready for execution (y/n)? y Do you want to use the default screening threshold (y/n)? n Input delta E threshold (default = 2.00): 4.0 Input green contrast threshold (default = .05): .1 OUERALL RESULTS OF PLUME UISIBILITY SCREENING SOURCE: EW Brown 3 CLASS I AREA: Harrodsburg INSIDE class I area — Plume delta E DOES NOT EXCEED screening criterion for SKY background Plume delta E DOES NOT EXCEED screening criterion for TERRAIN background Plume contrast DOES NOT EXCEED screening criterion for SKY background Plume contrast DOES NOT EXCEED screening criterion for TERRAIN background OUTSIDE class I area — Plume delta E DOES NOT EXCEED screening criterion for SKY background Plume delta E EXCEEDS screening criterion for TERRAIN background Plume contrast DOES NOT/EXCEED screening criterion for SKY background Plume contrast EXCEEDS screening criterion for TERRAIN background $\begin{array}{rcl} DELTA & E &=& 4.0\\ GREEN & CONTRAST &=& .100 \end{array}$ - 御子 SCREENING CRITERIA: Do you want to see calculated results for lines of sight with maximum delta E (y/n)? y UIEW ANGLES (DEGREES) DIST (KM) PLUME PE PLUME PERCEPTIBILITY DELTA E(L*A*B*) phi alpha psi **r**p backward × forward ៣៣ 🖓 Line of sight with maximum perceptibility for plume viewed against a SKY background INSIDE class I area. 34 119.6 49.2 5.12 10.0 2.2 1.5 医 瘤 Line of sight with maximum perceptibility for plume viewed against a TERRAIN background INSIDE class I area. 🔄 💽 Inkov -Micro... CONSOW6 Citocoment. GS C-/DOCUME~... ASER

en (a)	DOCUME-	1\=20468	BANYDOC	U-neon	IS-MAT	THERMIT - NEVERINA - NVISC	QUELLA SXI	_ 6 ×
33	aga 84.4	inst a T 84.4	ERRAIN 6.35	backgrou 8.7	nd INS 1.7	IDE class I area. 3.8	-9	
Line o 32	of sight aga 1.4	t with m inst a S 167.3	aximum KY back _44	percepti ground 0 1.0	bility UTSIDI 7.7	y for plume viewed class I area. 2.3	.?	
Line o 32	f sight aga: 1.4	t with m inst a T 167.3	aximum ERRAIN .44	percepti backgrou 1.0	bility nd OVI 7.7	y for plume viewed SIDE class I area. 10.5 *	2.9	
* Exc	eeds so	reening	criter	ia				
Do you	want 1	to see c	alculat	ions for	all]	lines of sight (y/n)?	ָ אַ אַ	
UIEW no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Please	ANGLI phi 5.0 10.0 25.0 35.0 35.0 40.0 45.0 55.0 60.0 70.0 70.0 80.0 85.0 90.0 press	ES (DEGR alpha 163.8 158.8 153.8 148.8 143.8 133.8 128.8 128.8 123.8 123.8 123.8 103.8 103.8 98.8 98.8 93.8 88.8 83.8 78.8 78.8 [ENTER]	PLUME EES) psi 1.02 1.65 2.22 2.76 3.26 3.26 3.74 4.18 4.58 4.95 5.28 5.57 5.82 6.17 6.28 6.31 6.31 for mol	DELTA E DIST 2.7 4.2 5.1 5.7 6.2 6.6 6.9 7.2 7.4 7.6 7.8 8.0 8.1 8.3 8.1 8.3 8.4 8.3 8.4 8.5 8.9 re, Q to	AGAI KM7 6.1 4.7 3.8 3.3 2.9 2.6 2.3 2.2 2.0 1.9 1.8 1.7 1.7 1.7 1.7 1.7 1.7 2.1 1.7 1.7 2.1 1.7 1.7 2.1 1.7 1.7 1.7 2.1 1.7 1.7 2.1 1.7 1.7 1.7 2.1 1.7 1.7 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	IST A SKY BACKGROUND PLUME PERCEPTIBILITY forward 2.1 2.1 2.1 2.0 2.0 1.9 1.8 1.7 1.7 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.4	DELTA backwa -5 -5 -5 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	ECL*A*B*> ind
	ONCT	CC ZDECD	PLUME	DELTA E	AGAIN	IST A SKY BACKGROUND	DELTO	
no	phi	alpha	psi	X	rp	forward	backva	eni.
19 20 21 22 23 24 25 26 27 28	95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0	73-8 68-8 63-8 53-8 48-8 48-8 38-8 33-8 33-8 33-8	8.22 6.09 5.91 5.68 5.41 5.10 4.74 4.35 3.92 3.47	9.0 9.2 9.4 9.6 9.8 10.0 10.3 10.6 11.1 11.6	1.8 1.9 2.0 2.1 2.3 2.5 2.5 2.7 3.1 3.5	11555556665	abir adalarını	
29 30 31 32 33 34 Please	145.0 150.0 155.0 1.4 84.4 119.6 press	23.8 18.8 13.8 167.3 84.4 49.2 TENTERJ	2-98 2-46 1-91 -44 6-35 5-12 for mos	12.4 13.5 15.5 1.0 8.7 10.0 	4.2 5.3 7.1 7.7 1.7 2.2 guit	1.5 1.3 1.0 2.3 1.4 1.5	ado 1 Line shirt	
Carl Sugar	and the second			and the second				

en (2))	XXXXII/MĒ—1	\c20468	3VMYDOC	u~aneoni	US-AVAin	NPERMIT- NEWBRINS- NVU	Ye(ifi) edite	- 8 :
lease	press l	ENTERI	for moi	•e, Q to	quit			
JIEW no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Please	ANGLES phi 5.0 10.0 25.0 25.0 30.0 35.0 35.0 45.0 55.0 60.0 55.0 65.0 75.0 80.0 80.0 90.0 90.0	PL 3 (DEGR a 1pha 163.8 158.8 153.8 148.8 143.8 138.8 138.8 128.8 128.8 128.8 128.8 128.8 128.8 128.8 128.8 128.8 13.8 103.8 103.8 93.8 93.8 88.8 88.8 88.8 88.8 88.8 8	UME DEL1 EES> psi 1.02 1.65 2.22 2.76 3.26 3.26 3.74 4.18 4.95 5.28 5.28 5.28 5.28 5.28 5.28 5.28 6.31 6.35 6.31 for more	A E AGA DIST 2.724.21 5.176.2 6.2 7.4 6.2 7.4 6.2 7.4 6.2 7.4 8.4 8.7 8.4 8.7 8.4 8.7 9 to 8.7 9 to	INSI A (KM) p1783963209 643332963209 1199119 119777777 1111111111111111111	TERBAIN BACKGROUND PLUME PERCEPTIBILIT forward 7.3 * 6.2 * 5.7 * 5.4 * 5.2 * 5.8 * 4.9 * 4.7 * 4.6 * 4.5 * 4.4 * 4.3 * 4.2 * 4.1 * 4.0 * 3.9 3.8 3.7	Y DELTA E <l≯a×h backward 1.9 1.6 1.4 1.3 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0</l≯a×h 	
11EU no 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 21 ease	ANGLES 95.0 100.0 105.0 110.0 115.0 120.0 125.0 135.0 140.0 145.0 145.0 155.0 1.4 84.4 119.6 press [PLI CDEGRI alpha 73.8 68.8 63.8 58.8 53.8 48.8 43.8 33.8 28.8 33.8 28.8 18.8 13.8 167.3 84.4 49.2 ENTERJ	UME DEL1 EES) 6.22 6.09 5.91 5.68 5.41 5.10 4.74 4.35 3.92 3.47 2.98 2.46 1.91 .44 6.85 5.12 for mot	CA E AGA DISI 9.0 9.2 9.4 9.6 9.8 10.0 10.3 10.6 11.1 11.6 12.4 13.5 15.5 15.5 1.0 8.7 10.0 re. Q to	INST A (KM) 1-8 1-8 1-9 2-0 2-1 2.3 2.5 2.5 2.5 3-1 3.5 4-2 5.3 7.1 7.7 1.7 2.2 quit	TERRAIN BACKGROUND PLUME PERCEPTIBILIT forward 3.6 3.5 3.3 3.1 2.9 2.7 2.4 2.4 2.4 2.4 2.1 1.7 1.2 .6 .1 .0 10.5 * 3.8 2.7	Y DELTA EXL≯A≯B backward -8 -8 -8 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	
)o you sight JIEW no <u>rine o</u>	want to with max ANGLE phi a <u>f sight</u>	n see ca cimum gi S Upha with m	alculate reen cor 'DISTF <u>×</u> aximum c	ed resul itrast? INCES (H contrast	ts for (y/n) M) <u>ro</u> for p	lines of y -GREEN PLUME C forward contrast	ONTRAST- backward screeni contrast criteri	ing

•

•

•

•

•

•

۰.
een <u>ĉ</u>	NDOCUME	-1\02046	83\MYDOA	U~1\EOR	US=1\4fr\(2	ERMITE NEWDRING -	VACOLANE.	E ca
aine	of sigh	t with i	naximum	contrasi	t for plu	me viewed		in the second states
24	aga 119 6	inst a S	SKY back	ground	INSIDE C	lass I area.	64.4	
			(123 - 3	ila e la			191.4	
ine	of sigh	t with m	naximum	contrast	t for plu	me viewed		
22		inst a l	UERKALN G - T	backgrou	und INSID	E class I area.	900	
	0-1 - 1	07.7	0		3.3	- 257	-629	-10
ine	of sigh	t with p	naximum (contrast	t for plu	me viewed		
20	aga	inst a S	SKY, back	ground (DUTSIDE c	lass I area.		
32		107.3	1-0		8-2	.924	035	-1 <u>5</u>
ine	of sigh	t with r	naximum d	contrast	t for plu	me viewed		
20	aga	inst a l		backgrou	IndOUTSI	DE class l area.		
34	1.4	167.5	7-8		8 - 8 - 2	.132 ↔	.128 ×	19
*	Abso lut	e value	exceeds	Screen	ing crite	ria		and the second
								and the states of
Doy	iou want	to see	green co	ontrast	values f	or all lines of	sight (y/n	א? y
				و محمد از محمد می مربع از این همچنی کرد به محمد محمد از این کرد به مربع از محمد محمد از این کرد به			a kana sa ta 🕅 👘	and the second
			PLUME	CONTRAST	AGAINST	A SKY BACKGROUN	D	
TELL	ONC	T E C	птет	NOTE ZI		-GREEN PLUME	CONTRAST-	
no	nhi	alnha	DI SII	inges (1 Ph	VIZ TO	rorward	Dackward	screening
्रा	5.0	163.8	2.7	6.1	7.2	. 619	027	-19
2	15.0	158.8	4-2 E 1	4.7	b.Z	-017 GHC	624	
4	<u>13-0</u> 29-9	148_8	オラ	3.3	49	- 813 014	- 022	
5	25.0	143.8	6.2	2.9	4.5	้อาวิ	- 018	19
<u>6</u>	30.0	138.8	6_6	2.6	4.2	.012	017	-10
· ?	35.0		6.9	2.3	3.9	- <u>011</u>	016	-10
Q.	45 D	123.8	1-4 7 4	2.6	3-8	- <u>911</u> 616	015 - 015	-14
10	50.0	118.8	7.6	19	35	91.9 91.9	- 013 - 014	-18 10
11	55.0	113.8	7.8	1_9	3.4	009	- 013	19
12	60.0	108.8	8.0	1.8	3.4	.009	013	.10
	65.0 90 0	103.8		1.7	3-3	- 909	013	-19
5	75 Q	97.8	8 4	1.7	22	-007 009	013 	- <u>19</u> -10
16	80.0	88.8	8.6	1.7	3.4	009	- <u>M</u> 2	10
17	85.0	83.8	8.7	1.7	3.5	-008	012	. 19
18		78.8	- 8-9	1.2 		_009	012	.10
nen ore	juu re i lines of	siaht	(0, 10, 10)	iess Len iff)	IDENT FOR		12 10 L 17	
			SEMILLE C	UN URHS I	HGAINST	H SKY BRUKGROUN	U CONTROCT-	
IEW	ANGI	ÆS	DISTR	NCES CI	MD	forward	backuard	seweening
no	phi	alpha	×.	. ер	ro	contrast	contrast	eriterion
in i	05.0					The second second second		
20	95.0 100 0	73.8 68.9	9.9 0/0			- 999	- 512	
10000	165 6		9 4	「行き」	4.2	9199	+= 513	10
21	이야지 않는 것 같은 것 같			5-55-54		TITU	- 612	
21 22		56-6				HIT IS THE OLD ALL AND A MARKET	THE STATE STATE STATE	A SALE OF A A A PROPERTY
21 22 23	110.0 115.0	58-8 53-8	2_5 9_8	2.1	4.9	-009	013	. 10
21 22 23 24	110.0 115.0 120.0	58-8 53-8 48-8	9-8 10-0	2-0 2-1 2-3	4.9 5.5	-009 -009 -009	013 014	-10 -10 -19

.

es C	VDOCUME-	1\e20468	3MAYDOCI	U~{\\E(0)}	10S-1Mir/91	RMD=MaWBRNS=1	WERGERSTERA	- 6 ×
24 25 26 27 28 29 30 31 32 33 33 34 When more	120.0 125.0 130.0 135.0 140.0 145.0 150.0 155.0 1.4 84.4 119.6 you're r lines of	48.8 43.8 38.8 28.8 23.8 18.8 13.8 167.3 84.4 49.2 eady, p sight	10.0 10.3 10.6 11.1 11.6 12.4 13.5 15.5 1.0 8/7 10.0 lease pr (Q to qu	2.3 2.5 2.7 3.1 3.5 4.2 5.3 7.1 7.7 1.7 2.2 ess [E] it)	5.5 6.2 7.2 8.7 11.1 15.4 25.5 76.3 8.2 3.5 5.4 NTER] for	-009 -010 -010 -010 -011 -011 -011 -010 -009 -024 -008 -009	014 014 014 015 015 015 015 013 013 013 012 014	-15 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
		PLU	1E CONTR	AST AGI	AINST A TI	ERRAIN BACKGROUI	D	
VIEW no	ANGLES phi alpha		DISTANCES (KM) × pp po			-GREEN PLU forward contrast	E CONTRAST- backward : contrast o	screening criterion
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 When more	5.0 19.0 25.0 30.0 35.0 40.0 55.0 55.0 60.0 70.0 75.0 85.0 70.0 85.0 90.0 90.0 you're r 1ines of	163.8 158.8 153.8 148.8 143.8 133.8 128.8 128.8 123.8 123.8 113.8 103.8 103.8 98.8 93.8 83.8 78.8 78.8 78.8 eady, pl sight (2.7 4.2 5.1 5.7 6.2 6.6 6.9 7.2 7.4 7.6 7.8 8.0 8.1 8.3 8.4 8.3 8.4 8.3 8.4 8.2 8.4 8.2 8.4 8.4 8.2 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	6.1 4.7 3.8 3.3 2.9 2.6 2.3 2.2 2.0 1.9 1.9 1.9 1.9 1.9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	7.2 5.5 4.9 4.5 3.9 3.6 3.5 3.4 3.3 3.4 3.3 3.4 3.5 3.6 5.6 5.6 5.6 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 4.9 5.5 5.5 4.9 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	- 091 - 076 - 068 - 063 - 059 - 055 - 053 - 050 - 048 - 046 - 045 - 043 - 042 - 041 - 040 - 040 - 040 - 039 - 038	- 084 - 067 - 058 - 052 - 047 - 044 - 041 - 037 - 037 - 035 - 034 - 033 - 032 - 031 - 030 - 030 - 030 - 030 - 029 - 029	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10
		PLUM	IE CONTR	AST AGA	IINST A TE	RRAIN BACKGROU	D CONTROCT-	
VIEW no	ANGL phi	ES alpha	DISTA ×	NCES (1 rp	(M) 9°£	forward contrast	backward s	creening riterion
19 20 21 22 23 24 25 26 27 28 27 28 29 30	95.0 100.0 105.0 115.0 120.0 125.0 125.0 130.0 135.0 140.0 140.0 150.0	73.8 68.8 53.8 53.8 48.8 43.8 38.8 33.8 28.8 28.8 28.8 28.8 18.8	9.0 9.2 9.4 9.6 9.8 10.0 10.3 10.6 11.1 11.6 12.4 13.5	1.8 1.8 1.9 2.1 2.3 2.5 2.5 2.7 3.1 3.5 4.2 5.3	3.8 3.9 4.2 4.5 5.5 6.2 7.2 8.7 11.1 15.4 25.5	- 038 - 037 - 035 - 035 - 034 - 032 - 030 - 022 - 022 - 025 - 007 - 001	- 028 - 028 - 028 - 027 - 026 - 025 - 024 - 021 - 018 - 013 - 006 - 001	-10 -19 -19 -19 -10 -10 -10 -10 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19
\mathcal{A}		: 😕 🕘 .	22 💿 W	(B)	्र 🕖 विहेल	Carola Jeans	BT 6-100	M Branker

en (5)	\DOK(UME~ D4-4						WEGGEE) AEX	- 5	X	
33 34	84.4 119.6	64.4 49.2	8.7 10.0	2.2	3.5 5.4	- 008 - 009	012 014		*	
When	you're r lines of	eady, p sight	lease pr (0 to m	ess [] it)	ENTER] for					
				in Constant Maria						
		PLU	ME CONTR	IAST A	GAINST A TI	ERRAIN BACKGROU	ND			
UIEW	ANGL	ES	DISTA	NCES	(KM)	-GREEN PLOM forward	screening			
no	phi alpha		× <u>ro</u> <u>ro</u>			contrast	contrast	criterion		
1	5.0	163.8	2.7	6.1	7.2	.091	-084	-10		
2	10.0 15 G	158.8	4.2 51	4.7	5-2 5-5	-076 068	- U67 058	_11.5 1 F		
4	20.0	148.8	, Š.7	3.3	4.9	.063	.052	.10		
5	25.0	143.8	6.2	2.9	4.5	.059	.047	_1 9		
5 5	30-0 25 0	138.8	b.b 2 0	2.6	4.2 2 0	- 855 Aco	-044 044	-15 16		
8	40.0	128.8	7.2	22	3 8	.050	- 0-11 - 939			
<u> </u>	45.0	123.8	7.4	2.0	3.6	.048	.037	10		
10	50-0	118.8	7.6	1.9	3.5	.046	.035	-10		
11	55-0 60 0	113.8	7.8 5 0	1 9 1 0	3.4	- 1145 643	-034 n22	<u>- 1 5</u>		
13	65.0	103.8	8.1	1.7	33	-042	.032	19		
14	70.0	28.8	8.3	1.7	3.3	.041	.031			
15	75.0	93.8	8.4	1-7	3.4	-040	.030	-10		
15 17	85 0	88-8 83 8	8-6 87	1-7	3 4 9 5	-940 030	- 830 929			
18	90.0	78.8	8.9	1.7	3.6	038	-029	10		
When	you're r	eady, p	lease pr	ess H	ENTERI for		Section of Station			
more	lines of	sight	(4 to qu	117						
		in de la comunicación de la comunic	ME CONTE	AST A	ATNET A TI	FRRATN BACKGROUP	π.			
						-GREEN PLUM	CONTRAST-			
UTEN	ANGLES		DISTANCES CK			forward	backward	screening		
		ar fiug						- HELDERATON		
19	95.0	73.8	9.0	1.8	3.8	<u>. 038</u>	_028	-10		
28	100.0	68.8	9.2			157 Jan	- <u>1928</u>	-16		
22	119.9	58.8	9.6	2 9 9 9	45	- 935	* <u>927</u>	19		
23	115.0	53.8	9.8	2.1	4.9	-034	- 026	_16		
24	120-0	48.8	10.0	2.3	5.5	-032	- 925	<u>-10</u>		
25	125-0	41.8 79 9	10.3	2-5	6-Z 79	-939	- <u>924</u> 921	1 310		
27	135.0	33.8		3.1	-87	-922	018	17		
28	140.0	28.8	11:6	3.5	11.1	-015	-013	-10		
29	145.0	23.8	12.4	4.2	15.4	<u>61617</u>	-191916	10		
-30 -21	150-0 155 0	13.8	13-5		· 余号 ·	- <u>801</u> 000	- <u>091</u> 000			
32	1.4	167.3	1.9	7.7	8.2	132 *	.128 *	19		
33	84.4	84.4	8-7	- 1.7	3.5	_039	- 029	-10		
34	119.6	49 <u>-2</u>	10-0 Ioaco mi	2-2 10-10-11	5-4 NTEDI For	- 799	-025	-119		
more Nore	lines of	sight	(0 to m					The second second		
								N AND		
Do yo	u want t	o outic	(u∕n)?				in the second second		****	
141G	iami -	ំផុត	হা কা চয	(i)	: Dobation	- Paciena	କ୍ଲ୍ ୯୦୪୦୦	Dievan		
Carl Street	twind in	1	Long China China	1 meret		an a	Carl and the second	and the second		