

Executive Director

211 Sower Boulevard

Frankfort, KY 40602

Ms. Stephanie L. Stumbo

Kentucky Public Service Commission

RECEIVED

JUL 1 4 2008

PUBLIC SERVICE COMMISSION E.ON U.S. LLC State Regulation and Rates 220 West Main Street PO Box 32010 Louisville, Kentucky 40232 www.eon-us.com

Robert M. Conroy Director - Rates T 502-627-3324 F 502-627-3213 robert.conroy@eon-us.com

July 11, 2008

RE: <u>Application of Louisville Gas and Electric Company to File</u> <u>Depreciation Study</u> – Case No. 2007-00564

<u>Application of Kentucky Utilities Company to File Depreciation Study</u> – Case No. 2007-00565

Dear Ms. Stumbo:

Enclosed please find and accept for filing two originals and ten (10) copies of the Joint Rebuttal Testimony of John J. Spanos on behalf of Louisville Gas and Electric Company and Kentucky Utilities Company in the above-referenced matters.

Should you have any questions concerning the enclosed, please do not hesitate to contact me.

Sincerely,

Robert M. Conroy

Enclosures

cc: Parties of Record

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

APPLICATION OF LOUISVILLE GAS AND ELECTRIC COMPANY TO FILE DEPRECIATION STUDY)))	CASE NO. 2007-00564
In the Matter of:		
APPLICATION OF KENTUCKY UTILITIES COMPANY TO FILE DEPRECIATION STUDY)))	CASE NO. 2007-00565

JOINT REBUTTAL TESTIMONY OF JOHN J. SPANOS

ON BEHALF OF LOUISVILLE GAS AND ELECTRIC COMPANY KENTUCKY UTILITIES COMPANY

Filed: July 11, 2008

1 2	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.			
3	A.	My name is John J. Spanos. My business address is 207 Senate Avenue, Camp Hill,			
4		Pennsylvania.			
5	Q.	HAVE YOU PREVIOUSLY SUBMITTED TESTIMONY IN THIS			
6		PROCEEDING?			
7	А.	Yes. My pre-filed testimony was submitted for both companies on December 28,			
8		2007.			
9	Q.	WHAT IS THE PURPOSE OF YOUR REBUTTAL TESTIMONY?			
10	А.	The purpose of this testimony is to rebut the pre-filed direct testimony of Attorney			
11		General Witness, Mr. Michael J. Majoros, Jr.			
12	Q.	WHAT IS THE SUBJECT OF YOUR REBUTTAL TESTIMONY?			
13	A.	The subject of my rebuttal testimony is the use of the Equal Life Group (ELG)			
14		procedure in calculating depreciation accrual rates for all asset classes for Louisville			
15		Gas and Electric Company and Kentucky Utilities Company. I will also address Mr.			
16		Majoros's discussion related to cost of removal.			
17	Q.	CAN YOU EXPLAIN WHY YOU HAVE PROPOSED DEPRECIATION			
18		RATES UTILIZING THE EQUAL LIFE GROUP PROCEDURE?			
19	A.	The equal life group procedure is the most accurate procedure for matching capital			
20		recovery to utilization or consumption of the assets which is one of the major			
21		objectives of a depreciation rate.			
22	Q.	PLEASE DESCRIBE THE EQUAL LIFE GROUP PROCEDURE.			
23	A.	In the Equal Life Group (ELG) procedure, the property group or account is			
24		subdivided into groups of equal life based on the estimated survivor characteristics of			

- 1 -

1 the account. The depreciation for each equal life group is based on the straight line 2 method, that is, an equal amount of the group's service value is recorded as 3 depreciation in each year of service. The total depreciation for the account is the 4 summation of the depreciation for each equal life group. For this reason, this 5 procedure is also known as the unit summation procedure.

6 Q. CAN YOU SHOW IN A SIMPLE EXAMPLE HOW THE EQUAL LIFE 7 GROUP PROCEDURE COMPARES TO THE AVERAGE SERVICE LIFE 8 PROCEDURE?

9 A. I will use a two unit example to show how the equal life group (ELG) procedure more 10 appropriately matches recovery to consumption. Each unit costs \$1,000. Unit A will 11 be in service for 5 years and Unit B will be in service for 15 years. There is no net 12 salvage anticipated for these units.

If depreciation is determined using the Average Service Life (ASL) 13 14 Procedure, then it would be determined that the average service life for the two units is 10 years ((5 + 15)/2) and the depreciation rate is 10% (1/10 years). Therefore, the 15 16 total account original cost is \$2,000 and the annual depreciation amount is \$200 (\$2,000 times 10%). At the end of year 5, the total annual accrual for the account is 17 \$1,000 (200 times 5). Also affecting the accumulated depreciation is the retirement 18 19 of Unit A for \$1,000. Thus, the accumulated depreciation for the account at the end of year 5 is zero (\$1,000 annual accruals minus \$1,000 retirements). At the beginning 20 of year 6, we have \$1,000 of original cost, an accumulated depreciation level of \$0 21 22 and one unit that has one-third of its service life expired. With the average service life procedure, the 10% rate or \$100 of annual expense is booked for years 6 through 23

1 15 and at the end of year 15 we retire Unit B. We collected \$1,000 in annual accruals 2 during years 6 through 15 and made a retirement of \$1,000 at year 15, so our original 3 cost and accumulated depreciation are both zero, so full recovery was achieved. 4 However, if we focus on the end of year 5, we had one unit remaining with two-thirds 5 of its life expectancy still to be consumed, but 100% of the investment to be 6 recovered. This method did not match recovery to consumption in the most 7 appropriate manner.

8 In contrast, if depreciation is determined using the equal life group (ELG) 9 procedure, then the depreciation expense would be recorded quite differently. I will 10 use the same two unit example to illustrate the ELG calculation. Unit A will be in 11 service for 5 years, therefore it will have a 20% (100 divided by 5 years) rate. Unit B will be in service for 15 years, and will have a 6.67% (100 divided by 15 years) rate. 12 13 Consequently, depreciation expense for years 1 through 5 would be \$200 (\$1,000 14 times 20%) for Unit A and \$66.67 (\$1,000 times 6.67%) for Unit B. At the end of 15 year 5, the total annual accruals would be approximately \$1,334 (\$1,000 for Unit A 16 and \$334 for Unit B). Unit A would be retired at the end of year 5, so the 17 accumulated depreciation at the end of year 5 is \$334 (\$1,334 of annual accruals 18 minus \$1,000 retirement). In years 6 through 15, the annual accruals would be 19 \$66.67 for a total to \$666 for the 10-year period. Thus, at the end of year 15, the accumulated depreciation is \$0 (\$1,000 of accruals minus the \$1,000 retirement of 20 21 Unit B), so full recovery was once again achieved. However, if we look back at the 22 end of year 5, we can see recovery of Unit A matched consumption of Unit A at the time the unit went out of service, and more importantly Unit B has survived one-third 23

of its expected life and recovery was one-third (334/1000) of the expected recovery.
A much more appropriate recovery pattern is recorded using the ELG procedure.
This two unit example is used to understand the recovery patterns of the two
procedures; however, there are many historical transactions that affect the rate of each
of these procedures that complicates the depreciation rate for each account. The
following table sets forth the activity for the accumulated depreciation using the two
methodologies.

COMPARISON OF ACCUMULATED DEPRECIATION AND ANNUAL ACCRUALS USING THE ASL VS ELG PROCEDURES

			ASL			ELG	
				Accum.			Accum.
	Plant	Annual*		Depr.	Annual**		Depr.
Year	Balance	Accruals	Retirements	Balance	Accruals Accruals	<u>Retirements</u>	Balance
1	2,000	200	0	200	267	0	267
2	2,000	200	0	400	267	0	534
3	2,000	200	0	600	266	0	800
4	2,000	200	0	800	267	0	1,067
5	2,000	200	1,000	0	267	1,000	334
6	1,000	100	0	100	66	0	400
7	1,000	100	0	200	67	0	467
8	1,000	100	0	300	67	0	534
9	1,000	100	0	400	66	0	600
10	1,000	100	0	500	67	0	667
11	1,000	100	0	600	67	0	734
12	1,000	100	0	700	66	0	800
13	1,000	100	0	800	67	0	867
14	1,000	100	0	900	67	0	934
15	1,000	100	1,000	0	66	1,000	0

* Annual Accruals = Plant Balance Multiplied by Rate (10%)

** Annual Accruals = Plant Balance Multiplied by Rate for Each Unit

8 Q. IS THE ELG PROCEDURE MORE COMPLEX TO UNDERSTAND?

A. Yes, it can be characterized as a more complex procedure; however, with the use of computers today, the annual calculations are not difficult to compute as shown by the two unit example. Furthermore, both procedures are straight-line, however, the ELG procedure calculates straight-line of each unit by vintage while the ASL procedure calculates straight-line regardless of age. Both procedures assure full recovery, no more, no less, but ELG is a better match of recovery to consumption than the ASL procedure.

8 Q. THROUGHOUT MUCH OF HIS TESTIMONY MR. MAJOROS IS 9 CRITICAL OF THE ELG PROCEDURE. CAN YOU EXPLAIN?

10 A. As described previously in this testimony, both the ASL and ELG procedure fully 11 recover the capital investment in a rational manner. However, in my opinion, the 12 ELG procedure is the superior procedure. The most appropriate depreciation study 13 should utilize the procedure that best matches future recovery plans of the Company 14 while not unfairly burdening ratepayers. Consequently, I often recommend the ELG 15 procedure when conducting depreciation studies, as has been the case in other 16 Kentucky proceedings such as Union Light, Heat and Power Company.

17 Q. ON PAGE 8 OF HIS TESTIMONY, MR. MAJOROS DISCUSSES
18 RETROACTIVE VERSUS GOING FORWARD IMPLEMENTATION OF
19 THE ELG PROCEDURE. DO YOU THINK RETROACTIVE
20 IMPLEMENTATION IS WRONG?

A. No, I do not. In either my study or Mr. Majoros's ASL presentation, the same
 amount of future accruals and a remaining life basis for determining the annual
 depreciation expense in this proceeding, are used. Since the amount of future

- 5 -

accruals related to this topic is the same whether the ELG or ASL procedures are used
for embedded plant, as reflected in the fact that the future accruals are the same, there
can be no retroactive implementation. The future accruals are determined by
subtracting the actual book reserve from the original cost, so past recovery is not a
variable based on depreciation procedure.

6 The issue in this proceeding is the grouping of the future accruals. The future 7 accruals can be segregated into groups of equal life or can remain as a single amount 8 at the property group level. The use of the ELG procedure will permit the recovery of 9 future accruals related to each item over its actual remaining life rather than the use of 10 averages with the future accruals for the entire account.

Q. IF THE ELG PROCEDURE IS SUPERIOR TO THE ASL PROCEDURE IN MATCHING DEPRECIATION EXPENSE WITH THE LIFE OF THE ASSETS, WHY WAS THE ASL METHOD ONCE COMMONLY USED IN DEPRECIATION STUDIES?

15 Although the ELG or unit summation procedure has been known to experts for many A. 16 years (it was described by Robley Winfrey, well-known expert in depreciation issues, 17 as the only mathematically correct procedure in 1942), its widespread use was 18 constrained by the large amount of computations required. However, the ASL 19 procedure could readily be performed without the aid of computers and became the choice of experts by default. With the advent of modern computer equipment, this 20 21 constraint has been removed. Therefore, the ELG procedure, which is unquestionably 22 more accurate, is now available to all companies.

Q. ARE THERE REGULATORY PRECEDENTS FOR THE USE OF THE ELG PROCEDURE FOR ALL VINTAGES OF A UTILITY'S PROPERTY?

A. Yes, there are. The ELG procedure has been accepted by the Kentucky Public
Service Commission (KPSC or the Commission) and other state and federal
commissions. The Federal Communication Commission (FCC) accepts ELG for all
telephone utilities and state commissions such as Indiana and Pennsylvania, to name a
few, accept ELG for all utilities.

8 Q. WHAT IS YOUR CONCLUSION WITH RESPECT TO THE USE OF THE 9 ELG PROCEDURE FOR ALL VINTAGES OF UTILITY PLANT FOR BOTH 10 LOUISVILLE GAS AND ELECTRIC COMPANY AND KENTUCKY 11 UTILITIES COMPANY?

12 The ELG procedure provides a better match of depreciation expense with the Α. 13 consumption of an asset's service value. This characteristic has previously been 14 recognized by this Commission in prior proceedings. The improved matching exists 15 whether the procedure is implemented during or at the beginning of an asset's service 16 life. Implementation of ELG during the life of an asset does not constitute retroactive 17 ratemaking. The future accruals are the same whether the ELG or ASL procedure is 18 used. The ELG procedure simply improves the future matching of expense and 19 consumption of service value and should be adopted in this proceeding in the manner 20 that I have proposed. Mr. Majoros's proposal of the Average Service Life Procedure 21 or adoption of the ELG procedure on a going forward basis should not be accepted. 22 **NET SALVAGE FOR ACCOUNTS**

23 Q. WHAT ARE NET SALVAGE AND NEGATIVE NET SALVAGE?

- 7 -

A. Net salvage is the gross salvage value of retired property less the cost of removal of
 such property. If cost of removal exceeds salvage value, the net salvage is negative,
 hence, negative net salvage.

4

5

Q. IN THE DIRECT TESTIMONY OF MR. MAJOROS, WHAT HAS HE PROPOSED AS A RATEMAKING ALLOWANCE FOR NET SALVAGE?

A. He has proposed a radical change in the basis for determining the Companies'
allowance for net salvage for all accounts for both Louisville Gas and Electric
Company and Kentucky Utilities Company. His proposal is that net salvage should
be discounted to a present value level for determining the calculation of depreciation.

10 Q. HAS MR. MAJOROS CONSISTENTLY MADE THIS PROPOSAL FOR 11 CHANGING NET SALVAGE PERCENTS FROM THOSE PROPOSED BY 12 MR. SPANOS?

13 A. No, he has not. Mr. Majoros continually makes different proposals to adjust net 14 salvage percents, seemingly with the single motive of reducing depreciation expense 15 not just proper recovery. As can be seen in past cases in Kentucky alone, he switches 16 from the cash basis proposal to the present value proposal to a normalization 17 proposal. None of these proposals are designed to accomplish the definition of 18 depreciation which is recovery of the full service value of the assets during the life of 19 the asset in a rational manner which is the basis of Mr. Spanos' traditional proposal. 20 Depreciation is not intended to be a result oriented calculation, yet Mr. Majoros 21 continually changes his approaches in order to reduce depreciation.

22 Q. DO AUTHORITATIVE TEXTS ON DEPRECIATION SUPPORT YOUR 23 PROPOSAL RELATED TO NET SALVAGE?

- 8 -

1	A.	All authoritative texts on the subject of depreciation support my proposal to accrue
2		for net salvage in the traditional manner presented in my study. The two depreciation
3		texts most often cited by depreciation experts as authoritative support the traditional
4		approach that I have proposed. Public Utility Depreciation Practices, published in
5		1996 by the National Association of Regulatory Utility Commissioners states:
6 7 8 9 10 11 12 13		Closely associated with this reasoning are the accounting principle that revenues be matched with costs and the regulatory principle that utility customers who benefit from the consumption of plant pay for the cost of that plant, no more, no less. The application of the latter principle also requires that the estimated cost of removal of plant be recovered over its life. ¹ Depreciation Systems, another widely accepted text states the concept in this manner:
14 15 16 17		The matching principle specifies that all costs incurred to produce a service should be matched against the revenue produced. Estimated future costs of retiring of an asset currently in service must be accrued
		and allocated as part of the current expenses ²
17 18 19	Q.	and allocated as part of the current expenses ² WHAT TREATMENT OF NET SALVAGE DO YOU PROPOSE?
18	Q. A.	
18 19		WHAT TREATMENT OF NET SALVAGE DO YOU PROPOSE?
18 19 20		WHAT TREATMENT OF NET SALVAGE DO YOU PROPOSE? I propose, consistent with the authoritative texts and the policy of the very large
18 19 20 21		WHAT TREATMENT OF NET SALVAGE DO YOU PROPOSE? I propose, consistent with the authoritative texts and the policy of the very large majority of regulatory commissions, the traditional incorporation of net salvage in the
18 19 20 21 22		WHAT TREATMENT OF NET SALVAGE DO YOU PROPOSE? I propose, consistent with the authoritative texts and the policy of the very large majority of regulatory commissions, the traditional incorporation of net salvage in the determination of depreciation. The traditional approach has been used by this
 18 19 20 21 22 23 		WHAT TREATMENT OF NET SALVAGE DO YOU PROPOSE? I propose, consistent with the authoritative texts and the policy of the very large majority of regulatory commissions, the traditional incorporation of net salvage in the determination of depreciation. The traditional approach has been used by this Commission in establishing the Companies' ratemaking allowances for depreciation
 18 19 20 21 22 23 24 		WHAT TREATMENT OF NET SALVAGE DO YOU PROPOSE? I propose, consistent with the authoritative texts and the policy of the very large majority of regulatory commissions, the traditional incorporation of net salvage in the determination of depreciation. The traditional approach has been used by this Commission in establishing the Companies' ratemaking allowances for depreciation for decades. The traditional approach collects net salvage costs ratably over the life

¹ Public Utility Depreciation Practices. Page 157. National Association of Regulatory Utility Commissioners. 1996.

² Depreciation Systems, Wolf, Frank K. and W. Chester Fitch. Page 7. Iowa State University Press. 1994.

Q. YOU STATED THAT IT IS MORE APPROPRIATE AND EQUITABLE TO RECOGNIZE NET SALVAGE COSTS DURING THE LIFE OF THE RELATED PLANT. PLEASE EXPLAIN.

The net salvage cost of an item of plant is a part of its service value and, therefore, it 4 Α. 5 is a part of the item's cost of providing service. The cost of the item providing 6 service should be collected from the customers that receive the service. Thus, an allocable portion of the net salvage cost should be recovered each year from the 7 8 customers receiving the value of the service rendered by the item of plant in the same 9 way that an allocable portion of the item's original cost is recovered from such customers each year. This approach is equitable in that customers are responsible for 10 the costs of plant that provide service to them. This is a sound ratemaking principle. 11 12 This concept does not state anywhere that there is a need to also discount to present 13 value the future recovery because the results are too high.

14 Q. PLEASE ILLUSTRATE THIS PRINCIPLE AS IT APPLIES TO NET 15 SALVAGE COSTS WITH A SIMPLE EXAMPLE.

16 Consider a single customer, Customer A, served by a section of distribution pole line Α. 17 that does not provide service to other customers. The original cost of the pole line is 18 \$5,000 and it is installed when the customer is added to the system. The estimated 19 life of the pole line is 50 years and the estimated net salvage is negative 60 percent. The annual depreciation expense to be recovered from this customer using the straight 20 21 line whole life accrual of net salvage is \$160 per year ($$5,000 \times 1.60 / 50$ years). The 22 annual depreciation expense to be recovered from this customer using Mr. Majoros's 23 present value approach of net salvage is \$112 per year (\$5,000 x 1.12 / 50 years).

1

(The 12% is extracted from Exhibit MJM-2, page 15 of 18 for Account 364.)

In year 30, the customer moves out and another customer, Customer B, moves into the residence served by this pole line. During the 30 years, a total of \$4,800 (\$160 x 30 years) was collected from the Customer A under the straight line whole life accrual of net salvage. Only \$3,360 (\$112 x 30 years) would be collected under the present value method.

At the end of year 50, the pole line is replaced at a total cost of \$8,000, \$3,000 7 to remove the old pole line and \$5,000 to install the new pole line. (I have excluded 8 9 inflation from the example to promote a better understanding of the principle.) Under 10 the straight line whole life accrual method, the depreciation expense in year 50 would 11 continue at $160 (5,000 \times 1.60 / 50 \text{ years})$. Under the present value method, the sum of the depreciation collected would be \$5,600 (\$112 x 50 years), however, the total 12 13 cost would have been \$8,000. Thus, the present value approach recovers a portion of 14 the service value of the asset, but did not accomplish full recovery of the total service 15 value. Therefore, using the remaining life technique, Customer B would actually pay the difference in rates between the \$5,600 of accruals and the \$8,000 of actual 16 17 expenditures. This is not equitable between customers.

This example is obviously simplified and excludes inflation, but it does not change the fact that Mr. Majoros's approach will not give full recovery of the service value of each asset. In this example, it is undeniable that \$8,000 is the cost to the utility for this pole line, which should be recovered in depreciation expense. Unlike Mr. Majoros's approach, the traditional approach, which I recommend and which is used exclusively by almost all regulatory bodies, provides full recovery of the service 1 value of the asset.

Q. DOES THIS SIMPLE EXAMPLE REALLY APPLY OVER TIME GIVEN THE EXISTENCE OF INFLATION AND SERVICE BEING PROVIDED TO MANY CUSTOMERS, NOT ONE CUSTOMER?

5 A. Yes, it does. Although the addition of customers and the introduction of inflation into 6 the simple example described above make it complex, the principle that is illustrated 7 remains the same. The real system is only the summation of many, many instances 8 that are identical to the illustration.

9 Q. WHAT WERE THE STATISTICAL BASES FOR YOUR NET SALVAGE 10 ESTIMATES?

A. The statistical bases for my estimates of net salvage were the historical net salvage
costs as a percent of the original cost of the retired assets that produced the gross
salvage or the required costs to remove.

14 Q. DOES THE USE OF THESE STATISTICAL BASES RESULT IN THE
 15 COLLECTION OF FUTURE INFLATED REMOVAL COSTS FROM
 16 CURRENT CUSTOMERS?

A. Yes, to a certain extent. The reliance on historical indications of net salvage as a
percent of the original cost retired will result in the collection of net salvage costs at a
future price level. However, such reliance also assumes that there will be substantial
improvements in technology, comparable or lesser environmental regulations and a
significant reduction in inflation.

22 Q. HOW DOES USE OF NET SALVAGE PERCENTS THAT ARE 23 COMPARABLE TO THE HISTORICAL INDICATIONS ASSUME THESE

1 EVENTS?

A. The net salvage percents, which are the net salvage costs divided by the original costs of the assets that have been retired and expressed as percents, are related to the retirement of plant that on average is significantly younger than the average service life of the plant in service, on an original cost dollar weighted basis. For example, the average age of retirements of distribution poles during the most recent 20 years, 1988-2007, is approximately 30 years. This is less than the average life of 50 years estimated for this account.

9 The average net salvage percent related to these retirements, made on average 10 at age 30, was negative 60 percent. That is, after 30 years in service, the plant was 11 retired and the cost to remove the plant, as a result of inflation, technological changes 12 and other factors, was 60 percent of the cost to install the same plant.

13 The future retirements of the total current distribution poles in service will have an average age that actually exceeds the average life. Thus, future retirements 14 15 will be of plant that has been in service nearly one and one-half times as long as the plant retired during the period 1988-2007. For retirements at such ages to experience 16 net salvage that is 60 percent of the cost to install, there will have to be a reduction in 17 the rate of inflation adjusted for technological improvements. If the rate of inflation 18 adjusted for technological improvements that occurred between the installation and 19 20 retirement of plant retired during the period 1988-2007 occurred over a period that is one and one-half times as long, the net salvage cost would be much greater as a 21 percent of the original cost of the plant retired. 22

23 Q. WHAT IS THE IMPLICATION OF THE ASSUMPTION THAT THE

- 13 -

1 FUTURE RATE OF INFLATION ADJUSTED FOR TECHNOLOGICAL

2 IMPROVE-MENTS WILL BE LESS THAN THE HISTORICAL RATE?

A. The implication of this assumption as reflected in my estimates of net salvage
 percents is that the resultant net salvage accruals are most likely inadequate to recover
 the total net salvage costs over the entire life cycle of the plant currently in service.

6 Q. DO YOU HAVE ANY CONCERN THAT THE LEVEL OF NET SALVAGE 7 COSTS INCURRED WILL BE LESS THAN THE AMOUNTS THAT YOU 8 HAVE ESTIMATED?

9 A. No, I do not. Net salvage costs will be incurred. The estimates that I have made will
10 almost certainly result in the recovery of less, not more, net salvage than the actual
11 costs incurred.

12 Q. IS IT APPROPRIATE TO ASK CURRENT CUSTOMERS TO PAY FOR 13 FUTURE COSTS OF REMOVAL AT A PRICE LEVEL THAT IS GREATER 14 THAN TODAY'S PRICE LEVEL?

15 Yes, it is. The future cost to remove an item of plant is part of the service value that it A. 16 renders to current customers and a ratable portion of such costs should be recovered 17 from these customers. That is the theory of depreciation, i.e., the loss in service value 18 during a specific period. As these future costs are recovered from current customers, 19 they are deducted from rate base. This deduction in the amount on which the utility is entitled to earn a fair return, in effect, represents an amount on which the customer 20 21 earns a return or otherwise stated the utility reduces its requirement for return. That 22 is, as customers provide for the future cost of removal, they receive a return on such amounts because less rate base is required. This is fair compensation for making 23

payment prior to the cost incurrence by the utility. Further, as already noted, by charging customers for these costs during the life of the plant; the customers that benefit from the plant, or consume its service value, are the ones who pay for such service. Customers paying today for future costs of removal and receiving a return on such payments is no different than the utility recovering today amounts that it invested many years ago, but on which it earned a return until the amount was recovered from customers.

8 Q. WHY ARE THE CURRENT NET SALVAGE ACCRUALS SO MUCH 9 GREATER THAN THE CURRENT EXPERIENCE?

10 A. The difference in price level as described above is part of the difference. Another 11 significant difference is that the current experience is related to plant retirements that 12 largely come from an older plant base that was constructed to serve fewer customers, 13 whereas the current net salvage accruals relate to the plant presently in service that 14 serves a much larger customer base.

15 Q. IS IT APPROPRIATE FOR LOUISVILLE GAS AND ELECTRIC COMPANY

16AND KENTUCKY UTILITIES COMPANY TO COLLECT AMOUNTS FOR17FUTURE NET SALVAGE COSTS THAT ARE GREATER THAN THE18AMOUNTS CURRENTLY EXPENDED FOR SUCH COSTS?

A. Yes, it is. Although the amount that the study proposes to collect from customers for
future net salvage costs is greater than the amount currently expended for such costs,
the amount that both companies spend for plant additions is far greater than the
amount that it proposes for the recovery of original cost. If net salvage accruals
should be limited to discounted net salvage expenditures, then full recovery will not

be achieved during the life of an asset. Thus, the amount for recovery of costs is far
less than actual expenditures. Equity considerations require that customers pay for
the service value, original cost less net salvage, of the plant from which they receive
service. The fact that this results in accruals for net salvage that are greater than the
current experience is not inappropriate.

6

0.

PLEASE SUMMARIZE YOUR TESTIMONY RELATED TO NET SALVAGE.

A. The portion of the annual depreciation accrual rates and amounts proposed by the
Companies in this proceeding that is related to net salvage is reasonable and in accord
with sound ratemaking principles. Depreciation is the loss in service value and
service value is the difference between original cost and net salvage value. Thus, net
salvage should be a part of the straight line whole life depreciation accrual.

12 Net salvage costs should be recovered from customers served by the plant that 13 results in the expenditure of net salvage costs. The use of a straight line whole life 14 accrual over the life of the asset accomplishes this equity. The present value net 15 salvage approach does not. It is appropriate for the net salvage accrual to exceed the 16 current net salvage cost during a period of system growth and prior to reaching a 17 steady state for the plant.

18 The estimates of net salvage percents used in developing the net salvage 19 accrual are very reasonable and likely understate the future net salvage costs that will 20 occur. Almost every state, including Kentucky, uses the traditional approach of 21 straight line whole life or remaining life accrual of net salvage during the life of the 22 asset, as I have recommended. Considerations of customer equity with regard to the 23 matching of depreciation expense with the consumption of service value should

1	control. The proposal to discount net salvage costs should be rejected and the
2	traditional approach of accruing for such costs during the life of the related asset
3	should be retained.

4 Q. DOES THIS CONCLUDE YOUR REBUTTAL TESTIMONY?

5 A. Yes, it does.

VERIFICATION

COMMONWEALTH OF PENNSYLVANIA)) SS: COUNTY OF CUMBERLAND)

The undersigned, **John J. Spanos**, being duly sworn, deposes and says that he is the Vice President, Valuation and Rate Division for Gannett Fleming, Inc., that he has personal knowledge of the matters set forth in the foregoing testimony, and the answers contained therein are true and correct to the best of his information, knowledge and belief.

John J. Apanos

Subscribed and sworn to before me, a Notary Public in and before said County and State, this *MH* day of July, 2008.

Notary Public (SEAL)

My Commission Expires:

February 20, 2011

COMMONWEALTH OF PENNSYLVANIA Notarial Seal Cheryl Ann Rutter, Notary Public East Pennsboro Twp., Cumberland County My Commission Expires Feb. 20, 2011

Member, Pennsylvania Association of Notaries