COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION OF KENTUCKY

In the Matter of:

THE APPLICATIONS OF BIG RIVERS ELECTRIC CORPORATION FOR:)	
(I) APPROVAL OF WHOLESALE TARIFF)	CASE NO 2007 00455
CORPORATION, (II) APPROVAL OF)	CASE NO. 2007-00455
TRANSACTIONS, (III) APPROVAL TO ISSUE)	
(IV) APPROVAL OF AMENDMENTS TO)	
CONTRACTS; AND)	
E.ON U.S., LLC, WESTERN KENTUCKY ENERGY)	
INC. FOR APPROVAL OF TRANSACTIONS)	

EXHIBIT 18

Testimony of David A. Spainhoward

December 2007

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION OF KENTUCKY

Case No. 2007-00455

DIRECT TESTIMONY OF DAVID A. SPAINHOWARD

ON BEHALF OF APPLICANTS

DECEMBER 2007

Exhibit 18 Page 1 of 48

DIRECT TESTIMONY OF DAVID A. SPAINHOWARD

Q. Please state your name, your address, your position with Big Rivers Electric Corporation and your qualifications.

My name is David A. Spainhoward. My current business address is 201 Third 8 A. 9 Street, Henderson, Kentucky 42420. I have been an employee of Big Rivers Electric Corporation ("Big Rivers") since 1972. My current position is Vice 10 President External Relations & Interim Chief Production Officer at Big 11 Rivers. Before holding my current position, I held the position of Vice 12 President Contract Administration and Regulatory Affairs. I have also held 13 positions in the Big Rivers Corporate Planning, Real Estate, Accounting and 14 Purchasing departments. I am a graduate of Oakland City University in 15 Oakland City, Indiana with the degree of Bachelor of Science in Management. 16 17 I also have a Master of Science in Management degree from Oakland City University. I am also a graduate of Lockyear College of Business in 18 Evansville, Indiana with an Associate Degree in Data Process Management. 19 20 In addition, I have a certificate of proficiency from the United States Department of Agriculture School in Bookkeeping and Accounting. I am 21 currently Chairman of the Board of Commissioners of the Henderson County 22 Water District in Henderson, Kentucky. 23

24

1 2

3 4

7

25 Q. Have you previously testified before this Commission?

Exhibit 18 Page 2 of 48

1	А.	Yes. I have previously submitted testimony and personally appeared before
2		the Kentucky Public Service Commission in numerous other matters. I was
3		one of Big Rivers' witnesses in the case approving Big Rivers' 1998 lease
4		transaction ("Lease Transaction") with E.ON U.S., LLC and its affiliates (the
5		"E.ON U.S. Parties").
6		
7	I.	INTRODUCTION
8		
9	Q.	What is the purpose of your testimony in this proceeding?
10		
11	A.	My testimony addresses three principal areas. First, in Section II, I address
12		issues related to Big Rivers' and the E.ON U.S. Parties' contracts and
13		relationship with the City of Henderson, and the City of Henderson Utility
14		Commission, acting through Henderson Municipal Power & Light,
15		(collectively, "Henderson"). Those contracts, specifically the Agreement and
16		Amendments to Agreements among Henderson, Big Rivers and certain of the
17		E.ON U.S. Parties (the "1998 Station Two Agreement"), require a consent
18		from Henderson for an early termination of the 1998 Station Two Agreement.
19		I describe the status of this process to obtain Henderson's consent and the
20		related agreements in my testimony.
21		

1	In Section III, I address Big Rivers' Rates, Rules and Administrative
2	Regulations for Furnishing Electric Service (the "Tariff") and explain the
3	proposed changes to the Tariff that are necessary to implement an unwind of
4	the 1998 Lease Transaction (the "Unwind Transaction"). I also address some
5	of the larger issues associated with changes to Big Rivers' Open Access
6	Transmission Tariff ("OATT") made as part of the implementation of the
7	Unwind Transaction, including new rates for transmission and ancillary
8	services and other changes made to comply with Federal Energy Regulatory
9	Commission ("FERC") changes in the standard terms and conditions of
10	transmission and ancillary services that must be offered under an OATT in
11	order to satisfy FERC's requirements.
12	
13	In addition to the Tariff and OATT changes, in Section III I also discuss Big
14	Rivers' proposal to reinitiate the Integrated Resource Plan ("IRP") process and
15	propose an approach on how Big Rivers will implement its requirements after
16	the Unwind Transaction is closed.
17	
18	In Section IV, I discuss the reporting and other requirements imposed on Big
19	Rivers as part of the 1998 Lease Transaction in connection with Big Rivers'
20	request in the Application that it be relieved of these requirements.
21	

1		Finally, in Section V, I present Big Rivers' Environmental Compliance Plan
2		aimed at recovering through an environmental surcharge Big Rivers' costs
3		related to reagent, net disposal and net allowances for sulfur dioxide ("SO $_2$ "),
4		nitrous oxide ("NOx"), and sulfur trioxide ("SO $_3$ "). I present SO $_2$, NOx, and
5		${ m SO}_3$ as three separate environmental programs under the Environmental
6		Compliance Plan, and I establish each program's compliance with the
7		regulatory requirements for the recovery of environmental surcharges under
8		KRS § 278.183. I also explain the derivation of the costs underlying each of
9		these three programs and break them out by individual Big Rivers plant.
10		
11	II.	HENDERSON STATION TWO ISSUES AND STATUS
12		
13	Q.	Please describe the contractual relationship between Henderson and
14		Big Rivers with respect to Station Two prior to the Lease
15		Transaction.
16		
17	А.	Under the terms of an August 1, 1970 Power Plant Construction and
18		Operation Agreement between Henderson and Big Rivers ("Station Two
19		Operating Agreement"), Big Rivers became responsible for operating and
20		maintaining Henderson's Station Two units ("Station Two"). Big Rivers, in
21		return, was entitled to the portion of Station Two's capacity that was surplus
22		to Henderson's needs under an August 1, 1970 Power Sales Contract with the

Exhibit 18 Page 5 of 48

1		City of Henderson (the "Station Two Power Sales Agreement"). Big Rivers
2		and Henderson also entered into a third 1970 agreement relating to Station
3		Two, the Joint Facilities Agreement. (Together, these three 1970 agreements
4		are referred to as the "Station Two Contracts").
5		
6		In 1998, prior to the closing of the Lease Transaction between Big Rivers and
7		the E.ON U.S. Parties, Big Rivers and Henderson agreed upon amendments
8		to the Station Two Contracts (the "1998 Station Two Contract Amendments").
9		The 1998 Station Two Contract Amendments established the foundation for
10		Big Rivers to incorporate certain of its Station Two Contract obligations and
11		benefits as part of the long-term Lease Transaction, and were implemented
12		between Henderson and Big Rivers. Among other things, the 1998 Station
13		Two Contract Amendments extended the terms of the Station Two Contracts
14		for the operating life of Station Two.
15		
16	Q.	Please describe the relationship between Station Two and the
17		existing Lease Transaction between Big Rivers and the E.ON U.S.
18		Parties.
19		
20	А.	As part of the Lease Transaction, Big Rivers, Henderson, WKE Station Two,
21		Inc. ("WKE Station Two"), LG&E Energy Marketing Inc. ("LEM"), and
22		Western Kentucky Energy Corp. ("WKEC") (the last three E.ON U.S. Parties,

Exhibit 18 Page 6 of 48

1	of which WKEC is the remaining party) entered into a new multi-party
2	agreement, the 1998 Station Two Agreement. The 1998 Station Two
3	Agreement used the Station Two Contracts, as amended by the 1998 Station
4	Two Contract Amendments, as the baseline for the deal between Henderson
5	and Big Rivers and modified that deal to include WKE Station Two to perform
6	certain obligations and obtain certain benefits for the term of the Lease
7	Transaction.
8	
9	Notwithstanding this conveyance of rights and obligations, Big Rivers
10	remained a party to the Station Two Contracts, as amended (albeit with the
11	E.ON U.S. Parties agreeing to perform a substantial majority of Big Rivers'
12	obligations during the term of the Lease Transaction) and also continued in its
13	role as transmission provider to Henderson. In general terms, however, WKE
14	Station Two and LEM succeeded to Big Rivers' rights to the surplus capacity
15	and energy from Station Two in return for the lease payments made to Big
16	Rivers in the Lease Transaction, and WKE Station Two assumed the
17	generating plant operation and maintenance responsibilities of Big Rivers
18	under these contracts. The full terms of this arrangement are set forth in the
19	1998 Station Two Agreement.
20	
21	In 2005, both the 1998 Station Two Contract Amendments between Big Rivers
22	and Henderson and the 1998 Station Two Agreement between Big Rivers,

Exhibit 18 Page 7 of 48

1		Henderson, and WKEC were amended to accommodate the building of
2		selective catalytic reduction equipment ("SCR") on the two Station Two units.
3		References to the 1998 Station Two Contract Amendments and to the 1998
4		Station Two Agreement in this testimony refer to those agreements as
5		amended in 2005.
6		
7		In order to unwind the Lease Transaction, Henderson must agree to an early
8		expiration of the term of the Station Two Agreement in order to restore Big
9		Rivers' and Henderson's relationship regarding Station Two to its status prior
10		to the commencement of the Lease Transaction (i.e., to the status set out in
11		the Station Two Contracts as amended by the 1998 Station Two Contract
12		Amendments).
13		
]4	Q.	Does the 1998 Station Two Agreement make any provision for how
15		Station Two issues will be dealt with upon a termination of the Lease
16		Transaction?
17		
18	А.	Yes. Section 10.16 of the 1998 Station Two Agreement provides that at the
19		expiration or termination of the 1998 Station Two Agreement, all rights and
20		obligations under the Station Two Contracts, as amended by the 1998 Station
21		Two Contract Amendments, assigned to and assumed by the E.ON U.S.
22		Parties, will automatically revert to and be assigned to Big Rivers without any

Exhibit 18 Page 8 of 48

1		action on the part of any of the parties to the 1998 Station Two Agreement.
2		By means of the 1998 Station Two Contract Amendments, Big Rivers and
3		Henderson already had amended the terms of their arrangement to
4		accommodate a termination of the 1998 Station Two Agreement. Section
5		10.16 further provides that none of the E.ON U.S. Parties thereafter shall
6		retain any interest in the Station Two Contracts, and that Big Rivers will
7		assume, pay and perform all obligations and liabilities relating to the Station
8		Two Contracts going forward from the date of expiration or termination.
9		
10	Q.	Will Big Rivers have a new agreement amending the 1998 Station Two
11		Agreement?
12		
13	А.	Yes, most likely. Under the 1998 Station Two Contract Amendments, Big
14		Rivers and Henderson updated their arrangements to enable Big Rivers to
15		operate Station Two after the termination of the Lease Transaction. Section
16		10.16 of the 1998 Station Two Agreement establishes that the intent of the
17		parties was to restore Big Rivers and Henderson to a contractual status for
18		Station Two closely resembling their status prior to the Lease Transaction
19		and that no separate documentation is required for the status quo to be
20		restored once the 1998 Station Two Agreement terminates. Provided
21		Henderson gives its consent to the early termination of the 1998 Station Two
22		Agreement, Big Rivers under the terms of the 1998 Station Two Contract

Exhibit 18 Page 9 of 48

1		Amendments already has a contractual structure in place under which it can
2		operate and maintain the Station Two units and receive the excess quantities
.3		of capacity and energy to which it is contractually entitled. However, because
4		Henderson must provide its consent to the early termination of the 1998
5		Station Two Agreement and because certain additional issues between
6		Henderson, Big Rivers and the E.ON Parties have yet to be resolved, Big
7		Rivers anticipates that an amendment in one form or another may be
8		required.
9		
10	Q.	Is Big Rivers including a new amended agreement at this time as part
11		of its filing?
12		
13	А.	No. Big Rivers, Henderson, and the E.ON U.S. Parties are still negotiating
14		Station Two issues in connection with obtaining Henderson's consent to the
15		early termination of the 1998 Station Two Agreement. In Big Rivers'
16		discussions with Henderson, we have come to an agreement on a number of
17		issues that were raised by Henderson, but other issues remain outstanding.
18		Once these negotiations are completed consistent with the above general
19		principles, Big Rivers will supplement its Application to include a new
20		amended agreement with Henderson, if one is required.
21		

Exhibit 18 Page 10 of 48

1	III.	DESCRIPTION OF BIG RIVERS' TARIFF CHANGES, PROPOSAL TO
2		REINSTITUTE ITS IRP OBLIGATIONS
3		
4		A. The Big Rivers Tariff
5		
6	Q.	Will Big Rivers be making any changes to its tariffs on file with the
7		Kentucky Public Service Commission ("KPSC") in order to implement
8		the Unwind Transaction?
9		
10	A.	Yes. Big Rivers is proposing to make changes both with respect to its existing
11		Tariff as well as to its existing OATT.
12		
13	Q.	Has Big Rivers provided a description of the changes to the existing
14		Big Rivers Tariff in its filing?
15		
16	А.	Yes. Big Rivers has attached as Exhibit 24 to its filing a comparison of Big
17		Rivers' currently applicable Tariff to its proposed Tariff. Big Rivers has also
18		provided its currently applicable Tariff as Exhibit 22. And Exhibit 23
19		presents the proposed Tariff.
20		
21	Q.	Mr. Spainhoward, could you please walk us through the changes to
22		the Big Rivers Tariff?

Exhibit 18 Page 11 of 48

1	А.	Certainly. There are three reasons for the changes proposed to Big Rivers'
2		Tariff: first, to reflect the reality that Big Rivers now will be generating
3		electricity, rather than purchasing all of its needs; second, to reflect the fact
4		that Alcan Primary Products Corporation ("Alcan") and Century Aluminum of
5		Kentucky General Partnership ("Century") (collectively, the "Smelters") will
6		be served under special contracts; and third, to promote general efficiency, as
7		certain defunct or inapplicable provisions are amended or deleted to reflect
8		current conditions.
9		
10	Q.	On Tariff Sheet No. 2, Big Rivers has deleted references to the
11		Smelter delivery points. Can you explain the reasons for this change?
12		
13	А.	Yes. This change was necessary because Big Rivers will be providing
14		wholesale power to Kenergy for the benefit of the Smelters under a special
15		contract. Those special contracts are a part of this filing and will be discussed
16		in detail in the testimony of Mr. Blackburn (Exhibit 10).
17		
18	Q.	Big Rivers has amended Section A(9) of its Tariff at page 10 to
19		eliminate the use of a Billing Review Committee. Could you please
20		explain why Big Rivers no longer intends to use this committee?
21		

Exhibit 18 Page 12 of 48

1	А.	Big Rivers' existing Tariff provided that in billing periods where there was a
2		potential special metering issue that a committee comprised of members of
3		Energy Control, Engineering and Transmission, and Accounting would be
4		employed to review demand and energy quantities. Although Big Rivers
5		intends to perform the same tasks, Big Rivers no longer considers it necessary
6		to employ a special committee to do so, and thus has eliminated this reference.
7		
8	Q.	Big Rivers in Section A(11) at page 12 has added language clarifying
9		adjustments that may be made to its power factor calculation. Please
10		explain this change.
11		
12	А.	Big Rivers' existing Tariff in Section A(11) requires that Big Rivers' three
13		member distribution cooperatives ("Members") maintain a power factor at the
14		time of maximum demand of not less than 90% leading or lagging. Big Rivers
15		now proposes additional clarifying language that provides that Big Rivers will
16		adjust the maximum metered demand in situations in which this specified
17		90% leading or lagging power factor is not met. In this way, Members will
18		have a financial incentive to maintain the required power factor, and Big
19		Rivers will be compensated for any failure to maintain this required level.
20		Under the proposed adjustment, the maximum metered demand will be
21		multiplied by 90% and then divided by the actual power factor percentage.

1		This will result in increases in the metered demand where the power factor is
2		less than 90%.
3		
4	Q.	Big Rivers has modified its Transmission Emergency Control
5		Program in Section A(15) of its Tariff. Please explain this change.
6		
7	A.	This section of Big Rivers' Tariff describes the actions that Big Rivers will
8		take in an emergency to restore service. Big Rivers has made limited
9		clarifying changes to this section. Because Big Rivers' OATT describes certain
10		transmission priorities that must be maintained in the event of a
11		transmission emergency requiring a curtailment, Big Rivers has added
12		language to this section clarifying that Big Rivers will take measures to
13		restore transmission service in a manner not inconsistent with its OATT. Big
14		Rivers also has provided additional detail regarding some of the steps it will
15		take to restore service in the wake of a transmission emergency.
16		
17	Q.	Section A(16) of Big Rivers' Tariff sets out Big Rivers' Generation
18		Deficiency Emergency Control Program. Does Big Rivers propose
19		any modifications to this section?
20		
21	А.	Yes. References in the current Section $A(16)$ to "purchased power" have been
22		changed to "generation" to reflect that Big Rivers will now be operating its

Exhibit 18 Page 14 of 48

1		generation. In addition, certain clarifying language has been added to the
2		sequential steps that will be taken by Big Rivers in the case of a generation
3		deficiency.
4		
5	Q.	Section A(17) of Big Rivers' Tariff sets out Big Rivers' Fuel
6		Emergency Control Program. Does Big Rivers propose any
7		modifications to this section?
8		
9	А.	Yes. This new section sets forth how Big Rivers will operate should its coal
10		inventory drop below certain levels.
11		
12	Q.	Section C(3) of the Big Rivers Tariff currently sets forth the terms
13		under which Big Rivers will provide services to its Members for use
14		by the Smelters. Does Big Rivers plan to change this section?
15		
16	А.	Yes. This section will be revised to provide that it is terminated effective with
17		the date of the closing of the Unwind Transaction. On and after the closing
18		date of the Unwind Transaction Big Rivers will commence serving Kenergy
19		with the wholesale power used to serve Alcan and Century pursuant to special
20		contracts, rather than as part of the Tariff.
21		
22		

1	Q.	Sections C(5) and C(6) of the Big Rivers Tariff currently describe the
2		rates and terms under which Big Rivers will provide transmission
3		and ancillary services to its Members for use by the Smelters. Does
4		Big Rivers change these sections in the proposed Tariff?
5		
6	А.	Yes. These sections are revised to provide that they are terminated effective
7		with the date of closing of the Unwind Transaction. On and after the closing
8		date of the Unwind Transaction, Big Rivers will commence serving Kenergy
9		with the wholesale power used to serve the Smelters pursuant to special
10		contracts rather than as part of the Tariff.
11		
12	Q.	Does Big Rivers also propose changes to its Tariff, Exhibit 22, in
13		order to implement new cost adjustment clauses to accommodate the
14		lease unwind?
15		
16	A.	Yes. Big Rivers is proposing five cost adjustment clauses, or "riders", to be
17		implemented as part of its Tariff: (1) Rebate Adjustment (Tariff Section 15);
18		(2) Environmental Surcharge (Tariff Section 16); (3) Fuel Adjustment Clause
19		(Tariff Section 17); (4) Member Rate Stability Mechanism (Tariff Section 18) ;
20		and (5) Unwind Surcredit (Tariff Section 19). These five riders are critical to

Exhibit 18 Page 16 of 48

12

subject of the separate testimony of William Steven Seelye at Exhibit 25. Mr. Seelye fully describes the operation and explanation for these tariff changes.

3

5

4 Q. What other areas of the Tariff does Big Rivers propose to change?

6 Α. As another consequence of the end of the Lease Transaction and the associated termination of power purchases from WKEC (as assignee of LEM) 7 to meet Big Rivers' Member loads (exclusive of the Smelter loads) under the 8 Power Purchase Agreement with WKEC ("Purchase Agreement"), Big Rivers 9 also is revising the sections of its Tariff dealing with Cogeneration Rates to 10 reflect Big Rivers' changed capacity resource avoided costs and purchased 11 power options. Big Rivers has included revisions to two cogeneration tariffs. 12 13 First, Big Rivers has revised its Cogeneration and Small Power Production Purchase Tariff for cogenerators with over 100 KW. Second, Big Rivers has 14 revised its Cogeneration and Small Power Producer Sales Tariff for 15 cogenerators with over 100 KW. Uniform changes to these two tariffs include 16 removal of all references to the applicable E.ON U.S. Party (LEM) and to 17 18 purchases from LEM under the Purchase Agreement. The sales tariff 19 replaces fixed rates tied to LEM with rates tied to Big Rivers' effective tariff rates. In place of the prior references to the Purchase Agreement, Big Rivers 20 incorporates new formulas to calculate capacity purchase rates and firm 21 energy purchase rates in the purchase tariff. The purchase tariff will be based 22 23 on a formula approach to the calculation of avoided costs.

Exhibit 18 Page 17 of 48

1

В.

Changes to Big Rivers' OATT

2 Big Rivers is also changing its Open Access Transmission Tariff. 3 Q. 4 Could you please provide background regarding Big Rivers' OATT? 5 Big Rivers introduced its OATT in 1998 as part of the Lease Transaction. The 6 A. 7 1998 Lease Transaction left Big Rivers in control of its transmission system. Both the E.ON U.S. Parties and the Smelters required access to that 8 9 transmission system (the E.ON U.S. Parties for off-system sales and the Smelters for imports of so-called Tier 3 service). The OATT served as the 10 means to assess unbundled charges for transmission service and ancillary 11 12 service. 13 Previously, in 1996, the Federal Energy Regulatory Commission ("FERC") had 14 issued its Order No. 888 (Promoting Wholesale Competition Through Open 15 16 Access Non-Discriminatory Transmission Services by Public Utilities). FERC's Order No. 888 required transmission-owning utilities subject to FERC's 17 18 jurisdiction as public utilities under the Federal Power Act to unbundle the costs and services for transmission and ancillary services from wholesale sales 19 20of power. Although Big Rivers was not subject to that order, Order No. 888 did impose a reciprocity requirement that directed any user of a public 21 utility's OATT to provide reciprocal access to that user's own transmission 22

Exhibit 18 Page 18 of 48

1		facilities on a comparable basis to the service provided to the owner and
2		operator of those facilities. Because Big Rivers intended to use third-parties'
3		OATTs, having a ready means of providing reciprocal access to transmission
4		service for those third-parties was deemed advantageous.
5		
6		Big Rivers thus implemented an OATT as part of the 1998 Lease Transaction.
7		Big Rivers calculated a transmission cost of service and incorporated
8		generation-based ancillary services rates that were direct pass-throughs of
9		amounts to be charged Big Rivers by the E.ON U.S. Parties for the provision
10		of required generation-based ancillary services. The OATT Big Rivers filed
11		was based almost entirely on the <i>pro forma</i> Order No. 888 OATT published by
12		FERC. Big Rivers' only substantive changes to the pro forma tariff were ones
13		designed to reflect the fact that Big Rivers is a non-FERC-jurisdictional
14		cooperative and one that did not operate generation assets.
15		
16	Q.	Why is Big Rivers filing its OATT with the Kentucky Public Service
17		Commission?
18		
19	А.	Big Rivers is not regulated as a "public utility" by the FERC under Part II of
20		the Federal Power Act. Accordingly, the rates, terms and conditions of Big
21		Rivers' OATT are not subject to direct jurisdiction by FERC, although FERC
22		did issue a declaratory order finding that Big Rivers' OATT satisfied FERC's

Exhibit 18 Page 19 of 48

1		reciprocity requirements. Because the Lease Transaction involved Big Rivers
2		providing Tier 3 transmission service to the Smelters, Big Rivers and the
3		Smelters requested that the KPSC take jurisdiction over Big Rivers' OATT in
4		order to provide a forum for reviewing its rates, terms, and conditions. The
5		KPSC agreed to do so to the extent not preempted from doing so and approved
6		Big Rivers' OATT as part of its approval of the Lease Transaction.
7		Accordingly, Big Rivers now is filing these changes to its OATT with the
8		KPSC and asking the KPSC to exercise its jurisdiction and approve the
9		revised OATT.
10		
11	Q.	Will Big Rivers also be filing the OATT with FERC?
12		
13	А.	Yes. Although Big Rivers is not required to file the OATT with FERC, Big
14		Rivers will be seeking a declaratory order from FERC that the new OATT
15		qualifies as a valid reciprocity tariff under FERC's Order No. 890 standards.
16		Big Rivers intends to file this declaratory order in sufficient time to obtain a
17		FERC order by the Unwind Transaction closing date.
18		
19	Q.	Why is Big Rivers changing its OATT as part of the Unwind
20		Transaction?
21		

Exhibit 18 Page 20 of 48

1	А.	Big Rivers is changing its OATT for two reasons. First, FERC in 2007
2		implemented a new rule significantly amending many of the provisions of the
3		Order No. 888 OATT mechanism. In February 2007, FERC issued Order No.
4		890 (Preventing Undue Discrimination and Preference in Transmission
5		Services) with a revised pro forma OATT. Having had more than ten years of
6		experience operating under the Order No. 888 tariffs, FERC implemented a
7		number of refinements throughout the new tariff to more closely align
8		operations to the non-discriminatory system FERC envisioned. Order No. 890
9		continues to incorporate a reciprocity requirement, and Big Rivers saw the
10		occasion of the Unwind Transaction as the ideal time in which to incorporate
11		these FERC-driven OATT changes to reflect Order No. 890. Big Rivers would
12		be making these changes irrespective of the changes it is making to reflect the
13		Unwind Transaction.
14		
15		Second, as noted in the testimony of Ralph L. Luciani (Exhibit 35), Big Rivers'
16		resumption of ownership and control of the generation facilities in place of the
17		E.ON U.S. Parties eliminates the existing pass-through used for the
18		determination of the generation-based ancillary services costs included in Big
19		Rivers' OATT. Because Big Rivers did not have an OATT prior to the Lease
20		Transaction, Big Rivers had never implemented generation-based ancillary
21		services rates reflecting its own ancillary services costs. Consequently, Big
22		Rivers engaged Ralph Luciani of CRA International, Inc. to develop new

Exhibit 18 Page 21 of 48

1		generation-based ancillary services rates based on Big Rivers' operation of the
2		reverted generation assets to incorporate into Big Rivers' OATT in place of the
3		pass-through of the E.ON U.S. Parties' rates. Mr. Luciani has also developed
4		new transmission rates to update all of the rates in Big Rivers' OATT.
5		
6	Q.	Does Big Rivers provide a comparison of the changes in its revised
7		OATT to its existing OATT in its filing?
8		
9	A.	Yes. Exhibit 34 contains a red-lined version of the Big Rivers OATT
10		comparing the differences between the new Order No. 890 version of Big
11		Rivers' OATT (attached as Exhibit 33) to the existing Order No. 888-based
12		version of Big Rivers' OATT (attached as Exhibit 32). The changes between
13		the two versions are significant. However, the overwhelming majority of these
14		changes simply reflect FERC's restructuring of the tariff rather than changes
15		initiated by Big Rivers. Apart from implementing the new Big Rivers focused
16		generation-based ancillary services rates necessary as a result of the Unwind
17		Transaction and updating Big Rivers' transmission rates, Big Rivers merely is
18		implementing the revised terms of the Order No. 890 OATT in the proposed
19		OATT. In certain limited respects, Big Rivers' OATT differs from the pro
20		forma Order No. 890 OATT, but many of these differences already were
21		reflected in Big Rivers' existing OATT.

22

1	Q.	Would you please describe the ways in which Big Rivers' proposed
2		OATT differs from the FERC pro forma Order No. 890 OATT?
3		
4	A.	Some changes to the OATT simply reflect the fact that Big Rivers is not
5		regulated as a "public utility" by FERC and thus is not required to file rates,
6		terms and conditions of its tariff with FERC. Sections of the OATT changed
7		on this basis include: Section 3; Section 9; Section 11; Section 12.4; Section
8		12.5; Section 15.6; Section 26; Section 29.5; and Section 34.5. These changes
9		parallel changes Big Rivers made at the time it filed its currently effective
10		OATT.
11		
12		In addition, Big Rivers has replaced the term "Transmission Provider"
13		throughout the OATT with "Big Rivers." Big Rivers made this identical
14		change in its Order No. 888 OATT.
15		
16		Order No. 890 also creates an obligation to post certain information regarding
17		the timing of system impact studies, and requires transmission providers to
18		pay fines in situations where response times exceed certain amounts. Because
19		Big Rivers is not subject to FERC's regulation and is not required to file this
20		information, Big Rivers has not incorporated these sections of the pro forma
21		OATT.
22		

Q. How else does the Big Rivers OATT differ from the FERC Order No. 890 pro forma OATT?

3

The new OATT assesses penalties from entities that take unreserved ancillary 4 A. 5 service or transmission service. The FERC pro forma Order No. 890 OATT in a number of places (Sections 13.7(c); 14.5; 28.6; 30.4; and Schedule 9) 6 7 specifically gives the transmission provider discretion to specify the rate treatment for the use of unreserved transmission and ancillary services. 8 9 FERC elsewhere in Order No. 890 indicated that in general it will allow charges of up to 200% of the cost of service. Big Rivers has adopted this 10 amount as its default penalty language. In addition, Order No. 890 requires 11 12 transmission providers to specify an allocation method to rebate the penalty 13 portion of these charges in appropriate circumstances. Big Rivers addresses 14 this requirement in Section 15.8 of the new OATT in a straight-forward 15 manner. 16 Are there other changes to the Big Rivers OATT as compared to the 17 Q. 18 Order No. 890 pro forma OATT? 19

A. Yes. Big Rivers has made a number of small changes to the Order No. 890 pro
 forma tariff to more accurately reflect its operations. For example, Big Rivers
 has adjusted Section 7.1 of the OATT to incorporate Big Rivers' standard

Exhibit 18 Page 24 of 48

1		billing procedures and practices. And in Sections 7.2 and 17.3 Big Rivers
2		replaces FERC's regulatory interest rate on payments with the U.S. Treasury
3		Bill interest rate. This change mirrors the provisions of the existing Big
4		Rivers OATT. Big Rivers refines the term "Native Load Customers" in Section
5		1.19 specifically to include its three member distribution cooperatives. And
6		Big Rivers omits Section 5 of the pro forma OATT dealing with local
7		furnishing bonds because they are inapplicable to Big Rivers. Big Rivers
8		made an identical change in its existing OATT.
9		
10	Q.	Does the proposed Big Rivers OATT change any of the information
11		included in the attachments to the FERC Order No. 890 pro forma
12		OATT?
12 13		OATT?
12 13 14	А.	OATT? Yes. One of the principal reasons FERC issued Order No. 890 was FERC's
12 13 14 15	А.	OATT? Yes. One of the principal reasons FERC issued Order No. 890 was FERC's concern that there was a lack of standardization in the technical issues
12 13 14 15 16	А.	OATT? Yes. One of the principal reasons FERC issued Order No. 890 was FERC's concern that there was a lack of standardization in the technical issues surrounding transmission service (<i>e.g.</i> , calculation of available transmission,
12 13 14 15 16 17	А.	OATT? Yes. One of the principal reasons FERC issued Order No. 890 was FERC's concern that there was a lack of standardization in the technical issues surrounding transmission service (<i>e.g.</i> , calculation of available transmission, transmission planning and expansion methodologies, and treatment of
12 13 14 15 16 17 18	A.	OATT? Yes. One of the principal reasons FERC issued Order No. 890 was FERC's concern that there was a lack of standardization in the technical issues surrounding transmission service (<i>e.g.</i> , calculation of available transmission, transmission planning and expansion methodologies, and treatment of parallel flows). As part of Order No. 890, FERC specified a new level of detail
12 13 14 15 16 17 18 19	A.	OATT? Yes. One of the principal reasons FERC issued Order No. 890 was FERC's concern that there was a lack of standardization in the technical issues surrounding transmission service (<i>e.g.</i> , calculation of available transmission, transmission planning and expansion methodologies, and treatment of parallel flows). As part of Order No. 890, FERC specified a new level of detail that transmission providers should include in certain of their attachments to
12 13 14 15 16 17 18 19 20	А.	OATT? Yes. One of the principal reasons FERC issued Order No. 890 was FERC's concern that there was a lack of standardization in the technical issues surrounding transmission service (<i>e.g.</i> , calculation of available transmission, transmission planning and expansion methodologies, and treatment of parallel flows). As part of Order No. 890, FERC specified a new level of detail that transmission providers should include in certain of their attachments to their OATTs dealing with these technical transmission issues. However, with
12 13 14 15 16 17 18 19 20 21	A.	OATT? Yes. One of the principal reasons FERC issued Order No. 890 was FERC's concern that there was a lack of standardization in the technical issues surrounding transmission service (<i>e.g.</i> , calculation of available transmission, transmission planning and expansion methodologies, and treatment of parallel flows). As part of Order No. 890, FERC specified a new level of detail that transmission providers should include in certain of their attachments to their OATTs dealing with these technical transmission issues. However, with regard to some of these issues FERC is working to develop new standards that

Exhibit 18 Page 25 of 48

1	requirements to the extent possible and has altered a number of these
2	attachments from those included in the existing Big Rivers OATT to reflect
3	changes that have been put in place.
4	
5	Big Rivers incorporates a revised Attachment C to reflect Big Rivers' current
6	methodology to determine available transmission capability ("ATC"). As
7	FERC further refines ATC requirements it may be necessary for Big Rivers
8	either to supplement this Application or later revise the OATT.
9	
10	Big Rivers also incorporates a revised Attachment D to reflect Big Rivers'
11	current methodology used to process System Impact Studies. This is another
12	area of focus of Order No. 890. As with Attachment C, it may become
13	necessary to supplement or revise this attachment if FERC further specifies
14	how these studies are to be performed.
15	
16	Big Rivers incorporates a revised Attachment J to address issues related to
17	parallel flows across its transmission system. In the submitted Attachment J
18	Big Rivers details its operating practices under the Joint Reliability
19	Coordination Agreement among the Tennessee Valley Authority ("TVA") and
20	the Midwest Independent System Operator, Inc. Because TVA acts as the
21	reliability coordinator for Big Rivers, TVA will address this parallel flow issue
22	under that agreement in the manner specified in the revised Attachment J.

Exhibit 18 Page 26 of 48

1		Finally, in Attachment K Big Rivers includes its Transmission Planning
2		Procedures. Big Rivers intends to meet Order No. 890's regional transmission
3		planning requirements through joint participation with TVA, East Kentucky
4		Power Cooperative, and AECI in a planning entity to be known as the Central
5		Public Power Participants ("CPPP"). CPPP will interface with other regional
6		entities in MISO, PJM, and the southeast as applicable. A draft of the CPPP
7		approach to meet Order No. 890's planning requirements is included at
8		Attachment K. Big Rivers will revise this portion of the filing if and when
9		Big Rivers develops a new transmission planning process.
10		
11	Q.	Are there any other changes to the Big Rivers OATT?
12		
13	А.	Yes. A final change to the submitted OATT is Big Rivers' inclusion of a new
14		detailed creditworthiness procedure in Attachment L. FERC requires all
15		transmission providers to include a detailed creditworthiness procedure that
16		
		will give potential customers advance notice of the creditworthiness standards
17		will give potential customers advance notice of the creditworthiness standards applicable to them. Big Rivers believes this creditworthiness procedure is fair
17 18		will give potential customers advance notice of the creditworthiness standards applicable to them. Big Rivers believes this creditworthiness procedure is fair towards third-parties and meets FERC's requirements for a creditworthiness
17 18 19		will give potential customers advance notice of the creditworthiness standards applicable to them. Big Rivers believes this creditworthiness procedure is fair towards third-parties and meets FERC's requirements for a creditworthiness proposal.
17 18 19 20		will give potential customers advance notice of the creditworthiness standards applicable to them. Big Rivers believes this creditworthiness procedure is fair towards third-parties and meets FERC's requirements for a creditworthiness proposal.
17 18 19 20 21		will give potential customers advance notice of the creditworthiness standards applicable to them. Big Rivers believes this creditworthiness procedure is fair towards third-parties and meets FERC's requirements for a creditworthiness proposal.

1		C. Integrated Resource Plan
2.		
3	Q.	Please describe Big Rivers' current obligations with respect to the
4		Integrated Resource Plan.
5		
6	А.	Kentucky Administrative Regulation 807 KAR 5:058 establishes an integrated
7		resource planning process that requires the Commission to review the long-
8		range resource plans of electric utilities subject to its jurisdiction. Big Rivers
9		most recently filed its IRP with the Commission on November 29, 2005. Big
10		Rivers later on January 11, 2006 filed a motion to hold the case (Case No.
11		2005-00485) in abeyance. On April 18, 2006, Big Rivers asked the
12		Commission to continue to hold the case in abeyance, and the Commission
13		continues to hold the IRP case in abeyance.
14		
15	Q.	How does Big Rivers propose to meet its IRP obligations after the
16		Unwind Transaction is closed?
17		
18	А.	Big Rivers requests in the Application that the Commission terminate Case
19		No. 2005-00485 which has been held in abeyance for the past two years. Big
20		Rivers commits to file its next IRP no later than November 2010.
21		

1	Q.	Why does Big Rivers propose to wait until November 2010 to file an
2		IRP?

3

4 The current IRP filed in November 2005 was not based on circumstances in Α. 5 which Big Rivers operated its generation. Accordingly, it is appropriate to 6 terminate Case No. 2005-00485. Big Rivers is scheduled to conduct a new 7 load forecast in 2009. This new forecast will be the basis for the development 8 of its IRP. Big Rivers believes that a postponement of the filing of its IRP 9 until 2010 is appropriate and will allow a presentation based on the best 10 information available. 11

IV. <u>RELIEF FROM 1998 LEASE TRANSACTION REPORTING AND</u> OTHER REQUIREMENTS

14

Q. Did the Commission impose any reporting and other requirements on
 Big Rivers in connection with its approval of the 1998 Lease
 Transaction?

- 18
- A. Yes. The Commission approved the 1998 Lease Transaction in orders dated
 April 30, 1998 in P.S.C. Case No. 97-204 and July 14, 1998 in P.S.C. Case No.
 98-267 (the "1998 Orders"). The 1998 Orders are attached as Exhibit 6 to the
 Application.

1	In the 1998 Orders, the Commission included a number of reporting and
2	information requirements on Big Rivers which Big Rivers now desires the
3	Commission to terminate. Specifically, the Commission set forth the following
4	requirements: (i) ordering paragraph 3 of P.S.C. Case No. 98-267 required Big
5	Rivers to adopt a 50/50 sharing methodology for the reporting and recovery of
6	unforeseen changes in transmission costs due to the Smelters' load; (ii)
7	ordering paragraph 5 of P.S.C. Case No. 98-267 required Big Rivers annually
8	to file and update its financial model; and (iii) ordering paragraph 20 of P.S.C.
9	Case No. 97-204 required Big Rivers to file a report of its arbitrage sales and
10	other sales every six months (which requirement later was incorporated into
11	the annual filing of the financial model).
12	
13	In addition, ordering paragraph 15 of P.S.C. Case No. 97-204 required Big
14	Rivers to file a new depreciation study for Commission approval. As part of
15	that later filing, the Commission sought assurances that Big Rivers'
16	generating units would be operated for the period implicit in the new
17	depreciation rates used in the depreciation study. In approving the
18	depreciation study required by Case No. 97-204, the Commission, by letter
19	issued October 7, 1999, also imposed a requirement that Big Rivers file an
20	annual report describing the previous year's plant maintenance as well as
21	major maintenance projects scheduled for the future year.

Exhibit 18 Page 30 of 48

1	Q.	What does Big Rivers propose with respect to these reporting and
2		other requirements?
3		
4	A.	With the closing of the Unwind Transaction there no longer will be a need for
5		these reporting and other requirements that were imposed on Big Rivers in
6		the 1998 Orders. These requirements related only to the circumstances
7		involved in the 1998 Lease Transaction and will have no further relevance
8		upon its termination. Big Rivers thus proposes that the Commission's order
9		in the Application expressly relieve Big Rivers of these requirements.
10		
11	v.	ENVIRONMENTAL COMPLIANCE PLAN AND ENVIRONMENTAL
12		SURCHARGE
13		
14	Q.	Why is Big Rivers proposing to implement an Environmental
15		Surcharge?
16		
17	А.	Big Rivers and WKEC have followed closely changes in environmental
18		regulations regarding SO_{2} , NOx , and SO_{3} . We believe the Big Rivers facilities
19		comply with current environmental requirements, and are seeking approval
20		from the Commission to recover the variable O&M expenses associated with
21		operating those facilities after the Unwind Transaction is closed. On a going-
22		forward basis. Big Rivers proposes the Environmental Surcharge to recover

Exhibit 18 Page 31 of 48

1		these O&M costs, which are all costs resulting from federal and state
2		environmental requirements and related to the generation of electricity from
3		coal.
4		
5	Q.	What is the nature of Big Rivers' proposed Environmental Surcharge?
6		
7	А.	Big Rivers is asking for Commission approval to recover through a new
8		Environmental Surcharge mechanism its environmental-related variable
9		O&M costs (reagents, net disposals, and net allowances) associated with its
10		SO_2 control technology equipment, its NOx control technology equipment, and
11		its mitigation of SO $_3$ for opacity purposes. In Case No. 2007-0455, Big Rivers
12		is requesting approval for its Unwind Transaction, which incorporates the use
13		of the new Environmental Surcharge. Separately, in Case No. 2007-00460,
14		Big Rivers is requesting approval of the Environmental Surcharge.
15		Accordingly, I include this section of my testimony describing the
16		Environmental Surcharge in both proceedings.
17		
18	Q.	How does Big Rivers propose to recover the Environmental
19		Surcharge?
20		
21	А.	Big Rivers will recover the Environmental Surcharge as a surcharge on all
22		energy sold. The costs of the programs included in the Environmental

Exhibit 18 Page 32 of 48

1		Surcharge are allocated on a straight energy basis across all MWh taken on
2		Big Rivers' system. This allocation, as well as the general operation of the
3		Environmental Surcharge, is explained in greater detail in Exhibit 25, the
4		Testimony of William Steven Seelye.
5		
6	Q.	Is Big Rivers submitting an environmental compliance plan in
7		connection with its request to utilize an Environmental Surcharge as
8		part of this filing?
9		
10	А.	Yes, Big Rivers is submitting a limited Big Rivers Electric Corporation
11		Environmental Compliance Plan ("Environmental Compliance Plan") with
12		three separate programs (SO ₂ , NOx, and SO ₃) as part of this filing in order to
13		support its proposal to adopt an Environmental Surcharge. The
14		Environmental Compliance Plan, attached as Exhibit DAS-1, is not a full
15		environmental compliance plan treating all of the various environmental
16		issues Big Rivers will face with respect to the operation of its units. Instead,
17		the attached Environmental Compliance Plan is presented for Commission
18		approval pursuant to the requirements of KRS 278.183 solely to support the
19		recovery of the costs of these three programs, the costs of which will comprise
20		Big Rivers' proposed Environmental Surcharge. Big Rivers is developing a
21		more comprehensive and more global environmental compliance plan, of
22		which the attached Environmental Compliance Plan would be only a portion.

Exhibit 18 Page 33 of 48

1	Q.	Please describe the various components of the three programs that
2		will comprise the Environmental Compliance Plan submitted as
3		Exhibit DAS-1.
4		
5	А.	Big Rivers is proposing that its Environmental Compliance Plan will be
6		comprised of three separate programs: (1) an SO_2 program to recover the
7		variable costs of reagents, sludge and ash disposal, and the sale of SO_2
8		allowances; (2) a NOx program to recover the variable costs of reagents and
9		the sale of NOx allowances; and (3) an SO_3 program to recover the variable
10		costs of reagents. I describe each of these three programs below in summary
11		form. Exhibit DAS-1 describes each of these three programs in greater depth.
12		
13		A. SO ₂ Program
14		
15	Q.	Please describe the environmental requirements that obligate Big
16		Rivers to control its emissions of SO ₂ .
17		
18	А.	Big Rivers' generation is subject to a number of different regulatory
19		requirements relating to SO ₂ . These regulatory requirements vary from plant
20		to plant. In general, however, SO_2 emissions are subject to regulation under a
21		number of legislative provisions: (1) the Kentucky State Implementation Plan
22		("SIP") for emissions of all regulated pollutants; (2) amendments to the federal

Exhibit 18 Page 34 of 48

1		Clean Air Act; and (3) the provisions of the Clean Air Interstate Rule
2		("CAIR"). The specific application of each of these regulatory requirements to
3		each of Big Rivers' plants is presented in the Environmental Compliance Plan
4		in Exhibit DAS-1.
5		
6	Q.	Please describe the reagent costs which Big Rivers proposes to
7		recover through the Environmental Surcharge.
8		
9	А.	The SO_2 reagent cost is comprised of the commodity cost of three separate
10		types of reagent: lime, limestone, and di-basic acid or similar substitutes
11		("DBA"). No single Big Rivers unit incurs all three of these reagent costs.
12		These reagents are used to treat the flue gas emitted from the plants.
13		Depending on the plant concerned, either lime or limestone is used to treat
14		flue gas, sometimes in tandem with DBA.
15		
16	Q.	What does Big Rivers propose to recover as the reagent cost for lime,
17		limestone, and DBA as part of the Environmental Surcharge?
18		
19	А.	Attached as Attachment 1 to the Environmental Compliance Plan included as
20		Exhibit DAS-1, Big Rivers provides the projected non-fuel variable O&M costs
21		for a five-year period (2008-2012). For each Big Rivers generating station,
22		this exhibit provides a projected reagent cost for lime, limestone, and DBA, as

Exhibit 18 Page 35 of 48

1	applicable. In each case, the amount included as the reagent cost is a pure
2	commodity cost with no additional labor or handling added to the cost. For
3	each unit, Big Rivers has estimated the projected requirement for lime,
4	limestone and DBA and then multiplied that projected requirement by the
5	expected price of that commodity for the year in question.
6	
7	For the Coleman Station, the limestone costs are projected to begin at \$2.463
8	million in 2008 (partial year), and to rise to \$5.311 million in 2012. The
9	Coleman Station projects no use of DBA.
10	
11	For the Green Station, the lime costs are projected to begin at \$5.494 million
12	in 2008 (partial year), and to rise to \$11.710 million in 2012. The Green
13	Station projects no use of DBA.
14	
15	For Henderson Station Two, the BREC share of lime costs are projected to
16	begin at \$1.865 million in 2008 (partial year), and to rise to \$4.080 million in
17	2012. The Henderson Station Two projects no use of DBA.
18	
19	For the Wilson Station, the limestone costs are projected at \$2.112 million in
20	2008 (partial year), rising to a high of \$3.281 million in 2010. The Wilson
21	Station projects DBA costs of \$0.750 million in 2008 (partial year), rising to a
22	high of \$1.223 million in 2012.

Exhibit 18 Page 36 of 48

- Q. Please describe the SO₂ disposal costs that will be incorporated into
 the Environmental Surcharge.
- 3

4 A. In addition to the costs of the reagents, Big Rivers also must incur costs to 5 dispose of coal combustion by-products. The various units each produce quantities of fly ash, bottom ash, and SO₂ scrubber sludge as combustion by-6 products, and Big Rivers must dispose of these by-products consistent with 7 environmental regulations. In addition, certain quantities of fixation lime are 8 added as a reagent to these by-products as a stabilizing agent. The costs 9 proposed by Big Rivers for inclusion in its Environmental Surcharge are 10 comprised of the handling and hauling costs paid by Big Rivers to third-party 11 contractors to remove and dispose of these combustion by-products, as well as 12 the reagent cost for the fixation lime. No internal Big Rivers labor cost is 13 allocated as a part of these costs. 14

15

16 Q. Are there any exceptions to this ordinary treatment of the costs of 17 disposing of these combustion by-products?

18

A. Yes. Unlike the other generating units, Big Rivers' Coleman Station produces
gypsum as part of the combustion by-products. The Coleman Station's
scrubber waste is gypsum, a portion of which retains a value and can be sold
and transported for reuse in other industries, and a portion of which must be

1		disposed of as non-reusable ("off-spec gypsum"). Accordingly, Big Rivers
2		offsets against the SO_2 disposal costs the amounts received from the sale of
3		gypsum from the Coleman Station. These gypsum sales used as an offset are
4		projected to be \$0.227 million in 2008 (partial year), rising to \$0.344 million in
5		2009 before declining to \$0.322 million in 2012. These costs are shown on
6		Exhibit DAS-1, Attachment 1.
7		
8	Q.	What costs does Big Rivers project for fly ash, bottom ash, sludge,
9		fixation lime, and off-spec gypsum disposal?
10		
11	A.	These costs also are shown on Exhibit DAS-1, Attachment 1. For the
12		Coleman Station, fly ash disposal costs are projected to be \$1.024 million in
13		2008 (partial year), increasing to \$1.033 million in 2012, and bottom ash
14		disposal costs are projected to be \$0.256 million in 2008 (partial year),
15		increasing to \$0.258 million in 2012. The Coleman Station has no ordinary
16		sludge; instead its waste is either sold for production of gypsum or disposed of
17		as off-spec gypsum waste. Off-spec gypsum disposal costs are projected to be
18		\$0.137 million in 2008 increasing to \$0.138 million in 2012. The Coleman
19		Station projects no costs for fixation lime.
20		
21		For the Green Station, sludge disposal costs are projected to be \$0.870 million
22		in 2008 (partial year), rising to \$1.567 million in 2012; fly ash disposal costs

Exhibit 18 Page 38 of 48

1		are projected to be \$0.376 million in 2008, rising to \$0.677 million in 2012;
2		bottom ash disposal costs are projected to be \$0.094 million in 2008, rising to
3		\$0.169 million in 2012; and fixation lime disposal costs are projected to be
4		\$0.437 million in 2008, rising to \$0.731 million in 2012.
5		
6		For Henderson Station Two, sludge disposal costs net of Henderson are
7		projected to be \$0.298 million in 2008 (partial year), rising to \$0.551 million in
8		2012; fly ash disposal costs are projected to be \$0.097 million in 2008, rising to
9		\$0.179 million in 2012; bottom ash disposal costs are projected to be \$0.024
10		million in 2008, rising to \$0.045 million in 2012; and fixation lime disposal
11		costs are projected to be \$0.138 million, rising to \$0.244 million in 2012.
12		
13		For the Wilson Station, sludge disposal costs are projected to be \$0.357 million
14		in 2008 (partial year), rising to \$0.564 million in 2012; fly ash disposal costs
15		are projected to be \$0.098 million in 2008, rising to \$0.182 million in 2012;
16		bottom ash disposal costs are projected to be \$0.024 million in 2008, rising to
17		\$0.045 million in 2012; and fixation lime disposal costs are projected to be
18		\$0.179 million in 2008, rising to \$0.446 million in 2012.
19		
20	Q.	The final component of the Environmental Surcharge relating to SO_2
21		concerns the sale of SO ₂ allowances. Could you please explain this
22		component.

Exhibit 18 Page 39 of 48

1

2	А.	In each year, Big Rivers emits a quantity of SO_{2} , expressed in terms of tons of
3		SO_2 , and each year it receives from the United States Environmental
4		Protection Agency ("EPA") a number of allowances, each of which permits it to
5		emit one ton of SO ₂ . Big Rivers has projected the amount of SO ₂ (expressed in
6		thousand tons, or "ktons") that it will emit over the period 2008 to 2012. Big
7		Rivers also has projected the SO ₂ allowances it will receive from the EPA over
8		the same period. Under the terms of the agreements with Henderson,
9		portions of SO_2 allowances received from the EPA are retained by Henderson.
10		Attached as Attachment 2 to Exhibit DAS-1, Big Rivers presents its projected
11		disposition of SO_2 allowances for the period 2008 to 2012. In each year, any
12		SO_2 allowances that are excess to Big Rivers' needs will be sold as surplus,
13		and the revenues received from these sales will be used as an offset to reduce
14		the level of the Environmental Surcharge. Big Rivers projects that it will
15		realize \$14.487 million in revenues from the sale of excess 2008 SO_2
16		allowances, with this amount declining to \$4.065 million for $2012 \mathrm{SO}_2$
17		allowances.
18		
19		B. NOx Program
20		
21	Q.	Please describe the legal requirements that obligate Big Rivers to
22		control its emissions of NOx.

Exhibit 18 Page 40 of 48

1	А.	Big Rivers' generation is subject to a number of different regulatory
2		requirements relating to NOx. These requirements vary from plant to plant
3		under each regulatory requirement. In general, however, NOx emissions are
4		subject to regulation under four separate legislative provisions: (1) the
5		Kentucky SIP for emissions of all regulated pollutants; (2) the provisions of
6		various amendments to the federal Clean Air Act; (3) the U.S. Environmental
7		Protection Agency's NOx SIP Call pursuant to Clean Air Act Section 126; and
8		(4) the provisions of the CAIR. The specific application of each of these
9		regulatory requirements to each of Big Rivers' plants is presented in the
10		Environmental Compliance Plan in Exhibit DAS-1.
11		
12	Q.	Please describe the reagent costs which Big Rivers proposes to
13		
		recover through the Environmental Surcharge.
14		recover through the Environmental Surcharge.
14 15	А.	recover through the Environmental Surcharge. The NOx reagent cost is comprised of the commodity cost of two separate
14 15 16	А.	recover through the Environmental Surcharge. The NOx reagent cost is comprised of the commodity cost of two separate types of reagent: sulfur and ammonia. Ammonia is used in the equipment
14 15 16 17	А.	recover through the Environmental Surcharge. The NOx reagent cost is comprised of the commodity cost of two separate types of reagent: sulfur and ammonia. Ammonia is used in the equipment called selective catalytic reduction ("SCR") equipment to convert NOx into
14 15 16 17 18	А.	recover through the Environmental Surcharge. The NOx reagent cost is comprised of the commodity cost of two separate types of reagent: sulfur and ammonia. Ammonia is used in the equipment called selective catalytic reduction ("SCR") equipment to convert NOx into nitrogen and water vapor. Sulfur is used to offset the negative impact of SCR
14 15 16 17 18 19	А.	recover through the Environmental Surcharge. The NOx reagent cost is comprised of the commodity cost of two separate types of reagent: sulfur and ammonia. Ammonia is used in the equipment called selective catalytic reduction ("SCR") equipment to convert NOx into nitrogen and water vapor. Sulfur is used to offset the negative impact of SCR equipment on other plant systems such as the flue gas desulfurization system.
14 15 16 17 18 19 20	А.	recover through the Environmental Surcharge. The NOx reagent cost is comprised of the commodity cost of two separate types of reagent: sulfur and ammonia. Ammonia is used in the equipment called selective catalytic reduction ("SCR") equipment to convert NOx into nitrogen and water vapor. Sulfur is used to offset the negative impact of SCR equipment on other plant systems such as the flue gas desulfurization system.
14 15 16 17 18 19 20 21	А. Q .	recover through the Environmental Surcharge. The NOx reagent cost is comprised of the commodity cost of two separate types of reagent: sulfur and ammonia. Ammonia is used in the equipment called selective catalytic reduction ("SCR") equipment to convert NOx into nitrogen and water vapor. Sulfur is used to offset the negative impact of SCR equipment on other plant systems such as the flue gas desulfurization system. What does Big Rivers propose to recover as the reagent cost for sulfur
 14 15 16 17 18 19 20 21 22 	A. Q.	recover through the Environmental Surcharge. The NOx reagent cost is comprised of the commodity cost of two separate types of reagent: sulfur and ammonia. Ammonia is used in the equipment called selective catalytic reduction ("SCR") equipment to convert NOx into nitrogen and water vapor. Sulfur is used to offset the negative impact of SCR equipment on other plant systems such as the flue gas desulfurization system. What does Big Rivers propose to recover as the reagent cost for sulfur and ammonia as part of the Environmental Surcharge?

Exhibit 18 Page 41 of 48

1	А.	In the attached Exhibit DAS-1, Big Rivers provides for each Big Rivers
2		generating station a projected reagent cost for ammonia and sulfur. In each
3		case, the amount included as the reagent cost is a pure commodity cost with
4		no additional labor or handling added into the cost. For each unit, Big Rivers
5		has estimated the projected requirement for ammonia and sulfur and then
6		multiplied that projected amount by the expected price of that commodity for
7		the year in question.
8		
9		No ammonia or sulfur costs relating to NOx are projected for the Coleman
10		Station, the Green Station, or the Reid unit.
11		
12		For Henderson Station Two, the sulfur costs net of Henderson are projected to
13		begin at \$0.036 million in 2008 (partial year), and to rise to \$0.091 million in
14		2012. The ammonia costs are projected to begin at \$0.331 million, and to rise
15		to \$0.826 million in 2012.
16		
17		For the Wilson Station, the sulfur costs are projected to begin at \$0.023
18		million in 2008 (partial year), rising to a high of \$0.037 million in 2012. The
19		Wilson Station ammonia costs are projected to begin at \$0.645 million in 2008,
20		rising to \$1.722 million in 2012.
21		

Exhibit 18 Page 42 of 48 Q. The final component of the Environmental Surcharge relating to NOx
 concerns the purchase of NOx allowances. Could you please explain
 this component.

4

5 A. In each year, Big Rivers emits a quantity of NOx, expressed in terms of tons of 6 NOx, and each year it receives from the EPA a number of allowances, each of 7 which permits it to emit one ton of NOx. Big Rivers has projected the amount of NOx (expressed in thousand tons, or "ktons") that it will emit over the 8 9 period 2008 to 2012. Big Rivers also has projected the NOx allowances it will 10 receive from the EPA over the same period. Under the terms of the 11 agreements with Henderson, portions of any excess NOx allowances not 12 necessary for Station Two to comply with NOx emissions requirements are retained by Henderson. Attachment 2 to Exhibit DAS-1 is Big Rivers' 13 14 projected disposition of NOx allowances for the period 2008 to 2012. Big Rivers' allocated share of NOx emission allowances during the period 2008-15 2012 is less than Big Rivers' projected NOx emissions. Accordingly, Big 16 17 Rivers will need to purchase NOx allowances to cover this gap. Big Rivers 18 projects that it will incur \$0.214 million to purchase NOx allowances for 2008, \$7.226 million for 2009, \$6.104 million in 2010, \$3.974 million in 2011, and 19 20 \$3.648 million for 2012. All of these net costs will be flowed through the 21 Environmental Surcharge.

22

2

5

Q. Please describe the legal requirements that obligate Big Rivers to control its emissions of SO₃.

Big Rivers incurs costs to control its SO₃ emissions in response to 6 Α. 7 requirements from federal, state, and local environmental authorities. The KPSC has found that SO₃ mitigation costs are made in response to 8 9 requirements from federal, state, and local environmental authorities even though specific emission limits are not established for SO₃ emissions. See The 10 Application of Kentucky Utilities Company for a Certificate of Public 11 Convenience and Necessity to Construct a Selective Catalytic Reduction 12 System and Approval of its 2006 Compliance Plan for Recovery by 13 Environmental Surcharge, Case No. 2006-00206, final order dated December 14 21, 2006. These general requirements include: (1) the general duty to avoid 15 16 harm to human health and the environment under KRS Chapter 224; (2) the general requirement under Kentucky state law not to create opacity (e.g., 401 17 KAR 59:015; 401 KAR 60:005; 401 KAR 61:015); (3) the Kentucky SIP for 18 19 emissions of all regulated pollutants; and (4) amendments to the federal Clean 20 Air Act.

21

Exhibit 18 Page 44 of 48

1	Q.	Please describe the reagent costs for SO3 which Big Rivers proposes
2		to recover through the Environmental Surcharge.
3		
4	А.	The SO $_3$ reagent cost is comprised of the commodity cost of a single reagent,
5		lime hydrate. Lime hydrate is blown into station ductwork in dry form and
6		reacts with SO_3 to neutralize its effect on opacity.
7		
8	Q.	What does Big Rivers propose to recover as the reagent cost for lime
9		hydrate as part of the Environmental Surcharge?
10		
11	А.	Exhibit DAS-1 shows the projected reagent cost for lime hydrate for the
12		Wilson generating station. The amount included as the lime hydrate reagent
13		cost is a pure commodity cost with no additional labor or handling added into
14		the cost. For the Wilson unit, Big Rivers has estimated the projected
15		requirement for lime hydrate and then multiplied that projected requirement
16		by the expected price of the commodity for the year in question.
17		
18		No SO_3 requirements for lime hydrate are expected for the Coleman Station,
19		the Green Station, the Reid unit, or Henderson Station Two.
20		For the Wilson Station, the lime hydrate reagent cost is projected to be \$0.421
21		million in 2008, rising to \$1.123 million in 2012.
22		

Exhibit 18 Page 45 of 48

1	Q.	Does this limited environmental compliance plan mean that Big
2		Rivers is proposing to undercollect its environmental costs?
3		
4	A.	No. The global environmental compliance plan that Big Rivers will develop
5		will simply be broader in time and scope.
6		
7	Q.	Does the submitted Environmental Compliance Plan demonstrate
8		that the costs of the three programs are "costs of complying with the
9		Federal Clean Air Act as amended and those federal, state, or local
10		environmental requirements which apply to coal combustion wastes
11		and by-products from facilities utilized for production of energy from
12		coal"?
13		
14	A.	Yes. Consistent with the requirements of KRS 278.183, I detail in my
15		discussion above and in Exhibit DAS-1 the specific regulatory requirements
16		applicable to each of the three submitted programs. I also describe the
17		various costs which Big Rivers seeks to recover and explain how they relate to
18		coal combustion wastes and by-products from facilities utilized for production
19		of energy from coal.
20		
21	Q.	Do the costs proposed for the three submitted programs comprising
22		the Environmental Compliance Plan include any construction or

Exhibit 18 Page 46 of 48

1 other capital expenses requiring Commission findings on rate of 2 return? 3 No. As demonstrated above in the discussion of each of the three programs, 4 A. 5 none of the costs for which Big Rivers seeks recovery include any construction or other capital expenditures. Instead, the costs relate to commodity costs of 6 7 various reagents, third-party contracts to handle and dispose of combustion wastes and by-products, and net proceeds relating to the sale and purchase of 8 SO₂ and NOx allowances for Big Rivers' plants. 9

10

11Q.Does Big Rivers propose any income taxes, property taxes, other12applicable taxes, or depreciation expenses with respect to the three13submitted programs in the Environmental Compliance Plan?14.15A.16.

- Q. Could you please summarize the action you request the Commission
 to take regarding the Environmental Compliance Plan and
- 19 Environmental Surcharge?
- 20
- A. In connection with the Unwind Transaction and the restoration to Big Rivers'
 operation of the leased generation assets, Big Rivers will be incurring variable

Exhibit 18 Page 47 of 48

1		O&M environmental costs for reagents, net disposals, and net allowances
2		associated with its SO_2 control technology equipment, its NOx control
3		technology equipment, and its mitigation of SO_3 for opacity purposes. These
4		variable costs will have an effect on Big Rivers' cost of service. As discussed in
5		the testimony of William Steven Seelye, Exhibit 25, Big Rivers has proposed
6		to use an Environmental Surcharge to recover these costs.
7		
8		In support of the use of this Environmental Surcharge, Big Rivers is filing an
9		Environmental Compliance Plan which describes the legal and regulatory
10		requirements for the variable costs involved and lists the projected costs by
11		Big Rivers plant. Big Rivers requests that the KPSC accept its
12		Environmental Compliance Plan under KRS § 278.183 and permit the costs
13		relating to this Environmental Compliance Plan to be recovered under the
14		proposed Environmental Surcharge.
15		
16	Q.	Does this conclude your testimony?
17		
18	А.	Yes.

VERIFICATION

I verify, state, and affirm that the foregoing testimony is true and correct to the best of my knowledge and belief.

David A. Spainhoward

COMMONWEALTH OF KENTUCKY) COUNTY OF HENDERSON)

Subscribed and sworn to before me by David A. Spainhoward on this the 20 th day of December, 2007.

Paula Mitchell Notary Public, Ky. State at Large

My Commission Expires: 1-19-09

Exhibit DAS-1 Page 1 of 12

Big Rivers Electric Corporation Environmental Compliance Plan

A Touchstone Energy® Cooperative

Station Description, Air Emissions Regulations and Units' Design

Coleman Station

The Coleman Station is a multiple unit plant consisting of three coal-fired units designed to burn Illinois Basin coal. The units were commercialized in 1969, 1970 and 1972 respectively with a combined net output rating of 440 MW during Ozone Season and 443 MW during Non-Ozone Season.

The Coleman Station is regulated as an existing station and must comply with the requirements contained in the Kentucky State Implementation Plan (SIP) for emissions of all regulated pollutants. The station was originally equipped with high efficiency electrostatic precipitators to control particulate emissions.

Reid Station

The Robert Reid Station is a multiple unit plant consisting of one coal-fired unit designed to burn Illinois Basin coal and/or natural gas and one combustion turbine with the ability to burn either fuel oil or natural gas. The units were commercialized in 1966 and 1976 respectively with a combined net output rating of 130 MW. Reid Station is regulated as an existing station and must comply with the requirements contained in the Kentucky State Implementation Plan (SIP) for emissions of all regulated pollutants. The Reid unit #1 was originally equipped with mechanical ash separators and was retro-fitted with high efficiency electrostatic precipitators in the 1970's to control particulate emissions.

City of Henderson Station Two

The Station Two facility is a multiple unit plant owned by the City of Henderson and operated by Big Rivers and consists of two coal-fired units designed to burn Illinois Basin coal. The units were commercialized in 1973 and 1974 respectively with a combined net output rating of 310 MW during Ozone Season and 311 MW during Non-Ozone Season. The City of Henderson's Station Two is regulated as an existing station and must comply with the requirements contained in the Kentucky State Implementation Plan (SIP) for emissions of all regulated pollutants. The station was originally equipped with high efficiency electrostatic precipitators to control particulate emissions.

Robert D. Green Station

The Robert D. Green facility is a multiple unit plant consisting of two coal-fired units designed to burn Illinois Basin coal. The units were commercialized in 1979 and 1981 respectively with a combined net output rating of 454 MW during both Ozone Season and Non-Ozone Season. The Green Station is regulated as a new station and must comply with the requirements contained in the Kentucky State Implementation Plan (SIP) and in 40 CFR 60 Subpart D for emissions of all regulated pollutants. The station was originally equipped with high efficiency electrostatic precipitators to control particulate emissions, low-NOx burners and dual-module, magnesium-lime-based flue gas desulfurization (FGD) systems.

DB Wilson Station

The DB Wilson Station is a single coal-fired unit designed to burn Illinois Basin coal. The unit was commercialized in 1986 with a net output rating of 417 MW during Ozone Seaason and 419

MW during Non-Ozone Seaason. The DB Wilson Station is regulated as a new station and must comply with the requirements contained in the Kentucky State Implementation Plan (SIP) and in 40 CFR 60 Subpart D(a) for emissions of all regulated pollutants. The station was originally equipped with high efficiency electrostatic precipitators to control particulate emissions, low-NOx burners with over-fire air ports; and a four-module, limestone-based FGD systems.

Sulfur Dioxide

For emissions of sulfur dioxide (SO2) the current permit limit for each **Coleman** unit is 5.2 lbs SO2/mmBTU heat input. These limits may be achieved either through the use of a medium sulfur coal or by utilization of a post combustion process.

Additionally, the provisions of the Acid Rain Program (ARP) contained in the Clean Air Act Amendments of 1990 apply to the units at the Coleman Station (C-1, C-2, & C-3). During Phase I of the ARP the annual allowances allocated to the units were sufficient to balance against the emissions. However, with the beginning of Phase II the emissions exceeded the annual allowance allocations requiring the purchase of additional allowances. To mitigate this issue a Flue Gas Desulfurization (FGD) system was installed at the Coleman Station and achieved full operation in early 2006. This single module, limestone-based system treats the flue gas from all three units providing reductions in SO2 emissions of 98%. These emission reductions allow the allowance allocations to balance the emissions and provide some surplus allowances for use within the rest of the Big Rivers system or for sale in the market.

Coleman Station is also subject to the provisions of the Clean Air Interstate Rule (CAIR). The SO2 provisions of this rule will take effect beginning in 2010. During the Phase I of the rule (from 2010 - 2014) the allowance surrender ratio will be two allowances for each ton of emissions. Beginning in 2015 with Phase II of the rule, the surrender ratio will increase to 2.86 allowances for each ton of emissions. Results from the production cost model indicate that the allocated allowances for Coleman Station will be sufficient to balance against the emissions during both Phase I and Phase II. There will be allowances remaining to be used to balance emissions in the rest of the Big Rivers system during Phase I.

Under the SO2 program for Coleman the primary costs are limestone reagent purchases associated with operation of the FGD system. Coleman does not require any FGD additives such as di-basic acid (DBA).

For emissions of SO2 the current limit for **the Reid coal fired unit** is 5.2 lbs SO2/mmBTU heat input. This limit may be achieved either through the use of a medium sulfur coal or by utilization of a post combustion process.

Additionally, the provisions of the ARP contained in the Clean Air Act Amendments of 1990 apply to the coal fired unit at Reid Station (R-1). From the beginning of Phase I of the ARP the allowances allocated to the units were not sufficient to balance against the emissions. This

situation continues through Phase II. To mitigate this issue surplus allowances from other units within the Big Rivers system are used to balance the Reid emissions above the Reid allocations.

Reid Station is also subject to the provisions of the CAIR. The SO2 provisions of this rule will take effect beginning in 2010. During the Phase I of the rule (from 2010 – 2014) the allowance surrender ratio will be two allowances for each ton of emissions. Beginning in 2015 with Phase II of the rule, the surrender ratio will increase to 2.86 allowances for each ton of emissions. The deficiency of allowance allocations will continue and become more pronounced under the requirements of CAIR. Additionally, SO2 emissions from the Reid combustions turbine (R-CT) operation will also be subject to the CAIR. This unit has no SO2 allowance allocations so all Reid emissions will be balanced through Big Rivers intra-system transfers or market allowance purchases.

Under the SO2 program for the Reid Station the primary costs are costs that are related to the need to purchase additional allowances to offset emissions.

For emissions of SO2 the current limit for **each Station Two unit** is 5.2 lbs SO2/mmBTU heat input. These limits may be achieved either through the use of a medium sulfur coal or by utilization of a post combustion process.

Additionally, the provisions of the ARP contained in the Clean Air Act Amendments of 1990 apply to the units at Station Two (H-1 & H-2). During Phase I of the ARP the allowances allocated to the units were sufficient to balance against the emissions. However, with the beginning of Phase II the emissions were expected to exceed the allowance allocations requiring the purchase of additional allowances. To mitigate this issue a FGD system was installed at the Station during Phase I and achieved full operation in 1995. This single-module-per-unit, magnesium-lime-based system treats the flue gas from each unit providing reductions in SO2 emissions of approximately 94%. These emission reductions allow the allowance allocations to balance the emissions and provide some surplus allowances for use within the Big Rivers system or for sale in the market.

Station Two is also subject to the provisions of the CAIR. The SO2 provisions of this rule will take effect beginning in 2010. During the Phase I of the rule (from 2010 - 2014) the allowance surrender ratio will be two allowances for each ton of emissions. Beginning in 2015 with Phase II of the rule, the surrender ratio will increase to 2.86 allowances for each ton of emissions. Results from the production cost model indicate that the allocated allowances for Station Two will be sufficient to balance the emissions during both Phase I and Phase II. There will be allowances remaining to be used to balance emissions in the rest of the Big Rivers system during Phase I.

Under the SO2 program for Station Two the primary costs are lime reagent purchases associated with operation of the FGD system. Station Two does not require any FGD additives such as dibasic acid (DBA).

For emissions of SO2 the current limit for **each Green unit** is 0.8 lbs SO₂/mmBTU heat input. These limits may be achieved either through the use of a compliance coal or by utilization of a post combustion process.

Additionally, the provisions of the ARP contained in the Clean Air Act Amendments of 1990 apply to the units at Green Station (G-1 & G-2). During Phase I and Phase II of the ARP the allowances allocated to the units were sufficient to balance against the emissions. These dual-module magnesium-lime FGD systems treat the flue gas from each unit providing reductions in SO2 emissions of approximately 97%. These emission reductions allow the allowance allocations to balance the emissions and provide some surplus allowances for use within the Big Rivers system or for sale in the market.

Green Station is also subject to the provisions of the CAIR. The SO2 provisions of this rule will take effect beginning in 2010. During the Phase I of the rule (from 2010 - 2014) the allowance surrender ratio will be two allowances for each ton of emissions. Beginning in 2015 with Phase II of the rule, the surrender ratio will increase to 2.86 allowances for each ton of emissions. Results from the production cost model indicate that the allocated allowances for Green Station will be sufficient to balance the emissions during both Phase I and Phase II. There will be allowances remaining to be used to balance emissions in the rest of the Big Rivers system during Phase I.

Under the SO2 program for the Green Station the primary costs are lime reagent purchases associated with operation of the FGD system. Green Station does not require any FGD additives such as DBA.

For **Wilson** emissions of SO2 the current limit is 1.2 lbs SO₂/mmBTU heat input. Additionally, at this rate the scrubber must meet a SO2 reduction of 90%. The regulations require the installation and operation of an FGD system.

Additionally, the provisions of the ARP contained in the Clean Air Act Amendments of 1990 apply to the unit at Wilson Station (W-1). During Phase I and Phase II of the ARP the allowances allocated to the unit were sufficient to balance against the emissions. This four-module limestone FGD system treats the flue gas from each unit providing reductions in SO2 emissions of approximately 91%. These emission reductions allow the allowance allocations to balance the emissions and provide some surplus allowances for use within the Big Rivers system or for sale in the market.

Wilson Station is also subject to the provisions of the CAIR. The SO2 provisions of this rule will take effect beginning in 2010. During the Phase I of the rule (from 2010 - 2014) the allowance surrender ratio will be two allowances for each ton of emissions. Beginning in 2015 with Phase II of the rule, the surrender ratio will increase to 2.86 allowances for each ton of emissions. Results from the production cost model indicate that the allocated allowances for Wilson Station will no longer be sufficient to balance against the emissions with the current removal efficiency, requiring the use of either surplus allowances available from the rest of the Big Rivers system or the purchase of allowances from the market.

Under the SO2 program for Wilson Station the primary costs are limestone reagent purchases and enhancement chemicals such as DBA associated with operation of the FGD system.

Attached Exhibits 1 and 2 demonstrate there are sufficient SO2 allowances in the 2008-2012 time frame for the Big Rivers generating system to meet compliance without the need to purchase additional allowances. However, there may be costs that are related to the need to purchase additional allowances to offset emissions or credits related to having additional surplus allowances available for sale in the market should actual operations differ from the production cost modeling

Oxides of Nitrogen

The existing Kentucky SIP requirements for the emissions of NOx from the Coleman Plant show that there are no specific rate based limits (ie. in lbs/mmBTU).

Under the provisions for the ARP for NOx reductions, the Coleman Station units are a part of an overall system-wide averaging plan. As a part of this plan the Coleman units have an annual target limit of approximately 0.49 lbs NOx/mmBTU. To meet this requirement, low-NOx burners were retro-fitted to each Coleman unit in 1993 and 1994.

As a result of various state Clean Air Act Section 126 requests, the Environmental Protection Agency (EPA) issued the NOx SIP Call which provided specific limits on the number of tons of NOx which could be emitted from various states (including Kentucky) during the Ozone Season (May 1 through Sept 30 of each year). These state emissions budgets were then divided among the various sources within the state and NOx emission allowance allocations were made. The system wide control plan included modifications to the Coleman units to reduce NOx emissions through the installation of advanced over-fire air systems in 2002 & 2003; to be operated during the annual Ozone Season.

The provisions of the NOx portion of the Clean Air Interstate Rule begin in 2009 with the creation of two new allowance allocations, one based on annual requirements, the other based on the continuation of the Ozone Season. Once the CAIR requirements begin the limitations under the NOx SIP Call will expire. The control plan calls for the continued operation of the installed advanced over-fire air systems but on a year-round basis. The need for additional allowances to balance against station emissions is expected to continue.

Under the NOx program for Coleman Station the primary costs are related to the need to purchase additional allowances to offset emissions or credits related to having surplus allowances available for sale in the market

The existing Kentucky SIP requirements for the emissions of NOx from **Reid Station** show that there are no specific rate based limits (ie. in lbs/mmBTU)

Under the provisions for the ARP for NOx reductions, the Reid Station coal fired unit is a part of an overall system-wide averaging plan. As a part of this plan the unit has an annual target limit of approximately 0.9 lbs NOx/mmBTU

As a result of various state Clean Air Act Section 126 requests, the EPA issued the NOx SIP Call which provided specific limits on the number of tons of NOx which could be emitted from various states (including Kentucky) during the Ozone Season .These state emissions budgets were then divided among the various sources within the state and NOx emission allowance allocations were made. The system wide control plan included modifications to the Reid Station coal fired unit (R-1) to reduce NOx emissions through the replacement of half the unit's coal burners with natural gas burners; and through the installation of a flue gas recirculation systems in 2001; to be operated during the annual Ozone Season.. Although this has enabled the unit to reduce emissions, the levels are still greater than the allowance allocations requiring the use of either surplus allowances available from the rest of the Big Rivers system or the purchase of allowances from the market. Additionally, the Reid combustion turbine (R-CT) was equipped with dual-fuel burners in 2001 allowing use of either fuel oil or natural gas combustion.

The provisions of the NOx portion of the Clean Air Interstate Rule begin in 2009 with the creation of two new allowance allocations, one based on annual requirements, the other based on the continuation of the Ozone Season. Once the CAIR requirements begin the limitations under the NOx SIP Call will expire. The control plan calls for the continued operation of the installed Reid NOx control systems on a year-around basis. The need for additional allowances to balance against station emissions is expected to continue.

Under the NOx program for Reid Station the primary costs are related to the need to purchase additional allowances to offset emissions or credits related to having surplus allowances available for sale in the market

The existing Kentucky SIP requirements for the emissions of NOx from **Station Two** show that there are no specific rate based limits (ie. in lbs/mmBTU)

Under the provisions for the ARP for NOx reductions, the Station Two units are a part of an overall system-wide averaging plan. As a part of this plan the station units have an annual target limit of approximately 0.51 lbs NOx/mmBTU. To meet this requirement low-NOx burners were retro-fitted each Station Two unit in 1993 and 1994.

As a result of various state Clean Air Act Section 126 requests, the EPA issued the NOx SIP Call which provided specific limits on the number of tons of NOx which could be emitted from various states (including Kentucky) during the Ozone Season. These state emissions budgets were then divided among the various sources within the state and NOx emission allowance allocations were made. The system wide control plan included modifications to the Station Two units to reduce NOx emissions through the installation of Selective Catalytic Reduction (SCR) systems to be operated during the annual Ozone Season. This has enabled the units to reduce emissions to a level below the allowance allocations and make surplus allowances available for use throughout the Big Rivers system or for sale.

The provisions of the NOx portion of the Clean Air Interstate Rule begin in 2009 with the creation of two new allowance allocations, one based on annual requirements, the other based on the continuation of the Ozone Season. Once the CAIR requirements begin the limitations under the NOx SIP Call will expire. The control plan calls for the continued operation of the installed SCR systems but on a year-around basis.

Under the NOx program for Station Two the primary costs are anhydrous ammonia reagent purchases associated with operation of the SCR system. Costs for sulfur addition to the Station Two FGD are also a result to offset negative process impacts due to the SCRs.

The existing Kentucky SIP and 40 CFR 60, Subpart D requirements for the emissions of NOx from **Green Station** have a rate based limit of 0.7 lbs NOx /mmBTU heat input.

Under the provisions for the Acid Rain Program for NOx reductions, the Green Station units are a part of an overall system-wide averaging plan. As a part of this plan the station units have an annual target limit of approximately 0.45 lbs NOx/mmBTU.

As a result of various state Clean Air Act Section 126 requests, the EPA issued the NOx SIP Call which provided specific limits on the number of tons of NOx which could be emitted from various states (including Kentucky) during the Ozone Season. These state emissions budgets were then divided among the various sources within the state and NOx emission allowance allocations were made. The system wide control plan included modifications to the Green Station units to reduce NOx emissions through the installation of coal re-burn systems to be operated during the annual Ozone Season. This has enabled the units to reduce emissions to a level which provides for system compliance but the levels are still greater than the allowance allocations requiring the use of either surplus allowances available from the rest of the Big Rivers system or the purchase of allowances from the market.

The provisions of the NOx portion of the Clean Air Interstate Rule begin in 2009 with the creation of two new allowance allocations, one based on annual requirements, the other based on the continuation of the Ozone Season. Once the CAIR requirements begin the limitations under the NOx SIP Call will expire. The control plan calls for the continued operation of the installed coal re-burn systems but on a year-around basis. The need for additional allowances to balance against station emissions is expected to continue.

Under the NOx program for Green Station the primary costs are related to the need to purchase additional allowances to offset emissions or credits related to having surplus allowances available for sale in the market

The existing Kentucky SIP and 40 CFR 60, Subpart D requirements for the emissions of NOx from **Wilson Station** have a rate based limit of 0.6 lbs NOx /mmBTU heat input.

Under the provisions for the ARP for NOx reductions, the Wilson Station units are a part of an overall system-wide averaging plan. As a part of this plan the station units have an annual target limit of approximately 0.47 lbs NOx/mmBTU

As a result of various state Clean Air Act Section 126 requests, the EPA issued the NOx SIP Call which provided specific limits on the number of tons of NOx which could be emitted from various states (including Kentucky) during the Ozone Season. These state emissions budgets were then divided among the various sources within the state and NOx emission allowance allocations were made. The system wide control plan included modifications to the Wilson Station unit to reduce NOx emissions through the installation of a SCR system in 2003 & 2004; to be operated during the annual Ozone Season. This has enabled the unit to reduce emissions to a level below the allowance allocations and make surplus allowances available for use throughout the Big Rivers system or for sale.

The provisions of the NOx portion of the Clean Air Interstate Rule begin in 2009 with the creation of two new allowance allocations, one based on annual requirements, the other based on the continuation of the Ozone Season. Once the CAIR requirements begin the limitations under the NOx SIP Call will expire. The control plan calls for the continued operation of the installed SCR system but on a year-around basis.

Under the NOx program for Wilson Station the primary costs are anhydrous ammonia reagent purchases associated with operation of the SCR system. There are also costs for sulfur addition to the Wilson Station FGD. The sulfur is required to offset negative process impacts due to the SCRs.

Attached Exhibits 1 and 2 demonstrate there are insufficient NOx allowances in the 2008-2012 time frame for the Big Rivers generating system to meet compliance. Additional allowances will need to be purchased to meet compliance. However, there may be costs that are related to the need to purchase additional allowances to offset emissions or credits related to having additional surplus allowances available for sale in the market should actual operations differ from the production cost modeling

SO3 and Opacity Compliance

The current limit for each **Coleman** unit for emissions of particulate matter is 0.27 lbs /mmBTU heat input. In addition, emissions shall not exceed 40% opacity based on a six-minute average except that a maximum of 60% opacity is allowed for a period of not more than six minutes in any sixty minutes during certain operational procedures. Also, each unit has established, through testing, an opacity trigger limit that is related to the particulate emission standard. This trigger limit provides an alternate method of monitoring particulate emissions on a continuous basis. These limits are achieved through the use of a high efficiency electrostatic precipitator. Due to the FGD design, additional significant reductions are realized as a result of flue gas interaction with the FGD slurry in the spray tower.

For emissions of particulate matter the current limit for the coal fired **Reid** unit #1 is 0.28 lbs /mmBTU heat input. In addition, emissions shall not exceed 40% opacity based on a six-minute average except that a maximum of 60% opacity is allowed for a period of not more than six minutes in any sixty minutes during certain operational procedures. Also, the unit has established, through testing, an opacity trigger limit that is related to the particulate emission

standard. This trigger limit provides an alternate method of monitoring particulate emissions on a continuous basis. This limit is achieved through the use of a high efficiency electrostatic precipitator.

For emissions of particulate matter the current limit for each **Station Two** unit is 0.21 lbs /mmBTU heat input. In addition, emissions shall not exceed 40% opacity based on a six-minute average except that a maximum of 60% opacity is allowed for a period of not more than six minutes in any sixty minutes during certain operational procedures. Also, each unit has established, through testing, an opacity trigger limit that is related to the particulate emission standard. This trigger limit provides an alternate method of monitoring particulate emissions on a continuous basis when the unit is utilizing the bypass stack. These limits are achieved through the use of a high efficiency electrostatic precipitator. Due to the FGD design, additional significant reductions are realized as a result of flue gas interaction with the FGD slurry in the spray tower. Under normal operation post-scrubber particulate emissions are directly monitored on a continuous basis using a particulate monitor in lieu of using opacity monitoring and trigger level values.

For emissions of particulate matter the current limit for each **Green** unit is 0.1 lbs /mmBTU heat input. In addition, emissions shall not exceed 20% opacity based on a six-minute average except that a maximum of 27% opacity is allowed for a period of not more than six minutes in any sixty minutes during certain operational procedures. Also, each unit has established, through testing, an opacity trigger limit that is related to the particulate emission standard. This trigger limit provides an alternate method of monitoring particulate emissions on a continuous basis. These limits are achieved through the use of a high efficiency electrostatic precipitator. Due to the FGD design, additional significant reductions are realized as a result of flue gas interaction with the FGD slurry in the spray tower.

For emissions of particulate matter the current limit for the **Wilson** unit is 0.03 lbs /mmBTU heat input. In addition, emissions shall not exceed 20% opacity based on a six-minute average except that a maximum of 27% opacity is allowed for a period of not more than six minutes in any sixty minutes during certain operational procedures. Also, each unit has established, through testing, an opacity trigger limit that is related to the particulate emission standard. This trigger limit provides an alternate method of monitoring particulate emissions on a continuous basis. These limits are achieved through the use of a high efficiency electrostatic precipitator. As a result of the operation of the SCR system, there has been an increase in the opacity of the W-1 stack plume. In order to maintain the opacity levels to those approximately equal to levels prior to the installation of the SCR, a hydrated lime duct injection system has been installed and is operated when the SCR system in utilized. The primary cost of this operation is the purchase of the reagent.

Scrubbers By-Products Disposal

At the **Coleman Station** there are three main sources of combustion by-products; fly ash, bottom ash and scrubber waste. Due to the nature of these materials they are categorized as special waste. Fly ash and bottom ash are currently sluiced to the north ash pond. These materials are

then periodically removed from the pond for final disposal at other permitted facilities. Additionally, there are costs related to the disposal of any off-spec gypsum (marketable byproduct of the Coleman FGD). Currently, costs associated with the disposal of this waste are incorporated into a third party contract for the handling, hauling and operation of the landfill. No fixation lime is presently required for stabilization of these wastes in the landfills. Beginning in 2009 these wastes will be disposed of in a new facility at the Coleman Station. Consequently disposal costs are anticipated to decrease (in real dollars).

Coleman is unique in the BREC system in that scrubber waste is gypsum which is sold and transported for reuse in other industries including wallboard and cement. The revenue from the sale of this gypsum is netted against the other Coleman disposal costs mentioned above.

At the **Reid Station** there are two main sources of combustion by-products; fly ash and bottom ash. Due to the nature of these materials they are categorized as special waste. The R-1 fly ash is used to blend with the FGD sludge from the Green and Station Two units along with fixation lime to help with stabilization for disposal before being placed in a permitted on-site landfill.

Bottom ash is currently sluiced to the station ash pond. This material is then periodically removed from the pond for final disposal at the on-site landfill. Currently, costs associated with the disposal of this waste are incorporated into a third party contract for the handling, hauling and operation of the landfill.

At the **Station Two** there are three main sources of combustion by-products; fly ash, bottom ash and scrubber waste. Due to the nature of these materials they are categorized as special waste. Bottom ash is currently sluiced to the station ash pond. This material is periodically removed from the pond for final disposal at the permitted on-site landfill. Currently, costs associated with the disposal of these wastes are incorporated into a third party contract for the handling, hauling and operation of the landfill. Additionally, there are costs that are related to disposal of FGD sludge. Fixation lime is required for stabilization of these wastes in the landfill. In approximately 2015 the on-site landfill will be full and these wastes are planned to be disposed of in an off-site landfill permitted for "special wastes"; consequently disposal costs are anticipated to increase (in real dollars).

At the **Green Station** there are three main sources of combustion by-products; fly ash, bottom ash and scrubber waste. Due to the nature of these materials they are categorized as special waste. Bottom ash is currently sluiced to the station ash pond. These materials are periodically removed from the pond for final disposal at other permitted facilities. Fly ash is currently handled with a dry system, allowing it to be directly incorporated into the scrubber waste stream or sold as market conditions allow. Scrubber waste is disposed in an on-site special waste landfill. Currently, costs associated with the disposal of these wastes are incorporated into a third party contract for the operation of the landfill.

Additionally, there are costs that are related to disposal of FGD sludge. Fixation lime is required for stabilization of these wastes in the landfill. In approximately 2015 the on-site landfill will be full and these wastes are planned to be disposed of in an off-site landfill permitted for "special wastes"; consequently disposal costs are anticipated to increase (in real dollars).

At the **Wilson Station** there are three main sources of combustion by-products; fly ash, bottom ash and scrubber waste. Due to the nature of these materials they are categorized as special waste. Bottom ash is currently handled in semi-dry condition using conventional material handling equipment and disposed in the on-site landfill. Fly ash is currently handled with a dry system, allowing it to be directly incorporated into the scrubber waste stream or sold as market conditions allow. Scrubber waste is disposed in an on-site special waste landfill. Currently, costs associated with the disposal of this waste are incorporated into a third party contract for the handling, hauling and operation of the landfill.

Additionally, there are costs that are related to disposal of FGD sludge. Fixation lime is required for stabilization of these wastes in the landfill.

Coleman Station non-fuel variable O&M (in nominal dollars)

Voor	2008-model	2008-model	2009-model	2010-model	2011_model	2012-model
icai		Non OTAG and	OTAG page	OTAG and		
Net Concretion (MM/hr)	1 256 912	997 712	2 405 000	2 206 000	2 272 000	2 100 000
Net Generauon (Wivvin)	1.300.012	007.713	3.403.000	3.390.000	3.372.000	3.190.000
Net Avg MVVS					ļ	
Net Average Heat Rate (BTU/KVVII)						
SO2 ID/MMBTU INIET						
Average Service Hours						
Percent SO2 removal						
Limestone						(27.2.12
	83.046	54,334	208,408	207.857	206,388	195.248
Cost per Ton of Reagent	\$17.93	\$17.93	\$19.72	\$21.69	\$24.29	\$27.20
Cost of Reagent	\$1,489,007	\$9/4.204	\$4,109,802	\$4,508,418	\$5,013,165	\$5.310.758
Gypsum sales	400.002	71 740	075 000	074 470	272 520	057 800
	109,003	(01.05)	2/5,200	2/4,4/9	212,539	257.829
Cost per Ion	(\$1.25)	(\$1.25)	(\$1.25)	(\$1.25)	(\$1.25)	(\$1.25)
LOST	(\$137.079)	(\$89.585)	(\$344.008)	(\$343.098)	(\$340.674)	(\$322.285)
		-				
	70.054	AT 4 40	400.010	100.000	170.000	100.000
I ons of Disposal	/2.051	4/,140	180,816	180,338	1/9,063	169.399
Cost per Ton of Disposal	\$8.59	\$8.59	\$5.50	\$5.69	\$5.89	\$6.10
Cost of Disposal	\$618,917	\$404,935	\$994,487	\$1,026,123	\$1,054,684	\$1,033,332
				<u> </u>		
BOTTOM ASN	40.040	44 707		45.00	41 705	40.055
Tons of Disposal	18,013	11.785	45,204	45,084	44,766	42.350
Cost per Ton of Disposal	\$8.59	\$8.59	\$5.50	\$5.69	\$5.89	\$6.10
Cost of Disposal	\$154.729	\$101.234	\$248,622	\$256,531	\$263,671	\$258.333
						ļ
Off-Spec Gypsum disppsal						
Tons of Disposal	9,633	6.303	24.175	24,111	23,940	22.648
Cost per Ton of Disposal	\$8.59	\$8.59	\$5.50	\$5.69	\$5.89	\$6.10
Cost of Disposal	\$82,748	\$54,139	\$132,961	\$137,190	\$141.009	\$138,154
Di-Basic Acid						
Pounds of Reagent	0	0	0	0	0	0
Cost per Pound of Reagent	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Cost of Di-Basic Acid	\$0	\$0	\$0	\$0	\$0	\$0
		1				
SO2 and ash \$/Mwhr	\$1.63	\$1.63	\$1.51	\$1.64	\$1.82	\$2.01
Total /Year	\$2,208,322	\$1,444,825	\$5,141,864	\$5,585,163	\$6,131,854	\$6,418,290
MVVnr per Gals	<u> </u>	<u> </u>				
Gallons of Sultur	0	0				
Cost/galion of Sulfur	\$0.00	\$0.00				
Cost of Sulfur	\$0	<u>\$U</u>	\$0	\$0	\$0	\$0
6 mmonio						
	<u> </u>			<u> </u>	1	
NH3 Lbs/ MVVhr			+			
I ons of Ammonia						
LOST / I ON OT AMMONIA	<u> </u>	<u>au.uu</u>	*0		*	*0
Lost of Ammonia	<u>۵</u> 0	<u> </u>	<u>↓ \$</u> ∪	<u>\$U</u>	\$0	\$0
				<u> </u>		
Linie Hydrate (for SU ₃)						
TPD		L				ļ
I ons of Lime Hydrate					·	
Cost/ton of Lime Hydrate	<u>\$U.UU</u>	\$0.00		#D		
	<u>ψ</u> υ	<u> </u>	<u> \$0</u>	<u> </u>	j \$ 0	<u> </u>
NOx Sub-Total	\$0	5U	\$0	\$0	\$0	\$0
Total /Year	\$2.208.322	\$1,444.825	\$5,141.864	\$5.585.163	\$6.131.854	\$6,418.290
Total \$/Mwhr	\$1.63	\$1.63	\$1.51	\$1.64	\$1.82	\$2.01

Green Station non-fuel variable O&M (in nominal dollars)

.

Veee	2062 model	2008-model	7009-model	2010-model	2011-model	2012-model
rear	OTAG-Pet coke	Ninn-OTAG net coke	OTAG-net coke	OTAG-coal	OTAG-coal	OTAG-coal
Not Concration (MMbr)	1 490 129	965,779	3,645,000	3.614.000	3.405.000	3,607,000
Net Generauon (Invent)	1,400,120	000,770	0,010,000			
Net Average Light Date (PTH/MMb)				-		
SO2 lb/mmBTU inlet		· · · · · · · · · · · · · · · · · · ·				
Average Service Hours						
Average Service Hours				,		
Limo						
TPY lime	49.972	32 388	122,236	119.052	112,167	118.821
Cost per Top of Reagent	\$66.72	\$66.72	\$70.29	\$74.49	\$87.86	\$98.55
Cost of Reagent	\$3,334,129	\$2,160,908	\$8,591.986	\$8,868,152	\$9,854,970	\$11,709,808
Sludge Disposal						
Tons	198,559	128,690	485,695	473,041	445,684	472,124
Cost per Ton	\$2.66	\$2.66	\$2.88	\$3.32	\$3.32	\$3.32
Cost	\$528,167	\$342,314	\$1,398,801	\$1,570,495	\$1,479,672	\$1.567,453
Fly Ash						
Tons of Disposa	85,723	55,559	209,687	204,224	192,413	203.828
Cost per Ton of Disposal	\$2.66	\$2.66	\$2.88	\$3.32	\$3.32	\$3.32
Cost of Disposal	\$228,023	\$147,786	\$603,898	\$678.023	\$638,813	\$676,710
Bottom Ash			-			
Tons of Disposa	21,431	13,890	52,422	51,056	48,103	50,957
Cost per Ton of Disposal	\$2.66	\$2.66	\$2.88	\$3.32	\$3.32	\$3.32
Cost of Disposa	\$57.006	\$36,946	\$150,975	\$169.506	\$159,703	\$169,177
Fixation Lime						40.045
Tons of Disposa	4,549	2,948	11,126	10,836	10,210	10,815
Cost per Ton of Disposa	\$58.25	\$58.25	\$60.37	\$65.30	\$67.61	\$07.01
Cost of Disposa	\$264,951	\$1/1,/19	\$6/1,683	\$707.606	\$090,269	\$731.219
			· · · · · · · · · · · · · · · · · · ·			
DI-Basic Acto	<u></u>				<u>.</u>	<u> </u>
Pounds of Reagen			<u> </u>	\$0.00	\$0.00	\$0.00
Cost per Pound of Reagen	1 \$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0
Cost of Di-Dasic Acic	1 - 0 0		ψυ	φυ		
nawilla dae bre 202	\$2.96	\$2.96	\$3.13	\$3.32	\$3.77	\$4.12
Total /Vea	\$4 412 276	\$2 859 674	\$11 417 342	\$11 993 782	\$12 823 427	\$14 854,367
Totar / rea			• ••••••••••			
Sulfur						
MWhr per Gals	5			······································	·	
Gallons of Sulfu	<u>r </u>				·	
Cost/gallon of Sulfu			<u> </u>			<u> </u>
Cost of Sulfu	r \$0	\$0	\$0	\$0	\$0	\$0
Ammonia	<u></u>				+	
NH3 Lbs/ MWh	<u>[]</u>				+	
ions of Ammonia					+	
Cost of Ammonia	<u></u>		\$0	<u></u> 02	\$0	- \$0
			φυ 		t	+
lime Hydrate (for SQ.)			1		1	
						1
Tope of Line Hudrot	<u></u>	<u></u>			+	
Costion of Line Hydrat	~		-		1	· · · · · · · · · · · · · · · · · · ·
Cost of Line Hydrat	e \$0	\$0	\$0	\$0	\$0	\$0
NOx Sub-Tota	\$0	\$0	\$0	\$0	\$0	\$0
Total Nea	\$4 412 276	\$2,859,674	\$11,417,342	\$11,993,782	\$12,823,427	\$14,854,367
Total \$Mub	r \$2.96	\$2.96	\$3.13	\$3.32	\$3.77	\$4.12
I UUGI WINIYA			1		1	

HMP&L Station non-fuel variable O&M

(in nominal dollars-net of City)

ATTACHMENT 1

Year	2008-model	2008-model	2009-model	2010-model	2011-model	2012-model
	OTAG-coal	Non-OTAG coal	OTAG-coal	OTAG-coal	OTAG-coal	OTAG-coal
Net Generation (MWhr)	725.684	368.505	1.761.389	1.751.397	1.666.323	1.611.275
Net Avg MW's						
Net Average Heat Rate (BTU/kWh)						
SO2 lb/mmBTU inlet						
Average Service Hours						
Percent SO2 removal						
Lime						
TPY lime	18,644	9,292	45.253	44.997	42.811	41,397
Cost per Ton of Reagent	\$66.72	\$66.72	\$70.29	\$74.49	\$87.86	\$98.55
Cost of Reagent	\$1.243.940	\$619,980	\$3.180.860	\$3,351,802	\$3.761,371	\$4.079.641
Cludes Disessel						
Sludge Disposal	74 707	27 224	101 221	190 202	171 544	105.977
Tons Contract Top	74,707	\$7,234	1 101,331	160,302	171,044	110.001
Cost per Toll	\$2.00 \$108 700	\$2.00	\$522 232	\$508 603	\$560 526	\$550 711
COSE	\$130.722	433,043	<u> </u>	\$330,003	\$308.320	\$330.711
IFIv Ash						
Tons of Disposal	24,323	12,123	59.037	58,702	55,851	54,005
Cost per Ton of Disposal	\$2.66	\$2.66	\$2.88	\$3.32	\$3.32	\$3.32
Cost of Disposal	\$64,699	\$32.246	\$170,026	\$194.891	\$185,424	\$179.298
			-			
Bottom Ash						
Tons of Disposal	6.081	3,031	14,759	14,675	13,963	13,501
Cost per Ton of Disposal	\$2.66	\$2.66	\$2.88	\$3.32	\$3.32	\$3.32
Cost of Disposal	\$16,175	\$8,061	\$42,507	\$48.723	\$46,356	\$44.825
Fixation Lime						
Tons of Disposal	1,584	790	3,846	3.824	3,638	3,518
Cost per I on of Disposal	\$58.25	\$58.25	\$60.37	\$65.30	\$67.61	\$69.47
Cost of Disposal	\$92,290	\$40,000	\$232,170	\$249,711	\$245,986	\$244.404
Di-Basic Acid	······					
Pounds of Reagent	0	0	0	0	0	0
Cost per Pound of Reagent	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Cost of Di-Basic Acid	\$0	\$0	\$0	\$0	\$0	\$0
SO2 and ash \$/Mwhr	\$2.23	\$2.19	\$2.35	\$2.54	\$2.89	\$3.16
Total /Year	\$1,615,832	\$805,330	\$4,147,801	\$4,443,730	\$4,808,663	\$5,098,878
BREC generation share from Station II	73.17%	73.17%	73.76%	73.65%	72.67%	70.95%
Culture .						
MW/br per Gala						
Gallons of Sulfur	127	0	309	307	292	283
Cost/top of Sulfur	\$286.00	\$286.00	\$294.58	\$303.42	\$312.52	\$321.11
Cost of Sulfur	\$36,418	\$0	\$91.047	\$93,247	\$91,378	\$90,788
Ammonia						
NH3 Lbs/ MWhr						
Tons of Ammonia	643	0	1.561	1.552	1,476	1.428
Cost / Ton of Ammonia	\$515.41	\$515.41	\$530.87	\$546.80	\$563.20	\$578.69
Cost of Ammonia	\$331.367	\$0	\$828,424	\$848,442	\$831.440	\$826,085
Lime Hydrate (for SO ₃)						
TPD			1			
Lions of Lime Hydrate		U U		0	0	0
Cost of Line Hydrate	\$0.00 \$0	<u>Φ</u> 0.00 \$ Ω	\$0.00	\$0.00 \$0	\$0.00	30.00
NOr Sub-Total	\$367 786	\$0	\$919 471	\$941 689	\$922.810	\$916 272
Total Nose	\$1 983 617	\$805 330	\$5.067.272	\$5 385 410	\$5 731 492	\$6.015.75
Total \$/Mwhr	\$2 73	\$2 19	\$2.88	\$3 07	\$3 44	\$2.72
		l		1	+0	ψ 0. 10

Wilson Station non-fuel variable O&M (in nominal dollars)

•

ATTACHMENT 1

						1st half	2nd half
Year	2008-model	2008-model	2009-model	2010-model	2011-model	2012-model	2012-model
	OTAG-Pet coke	Non-OTAG pet coke	OTAG-pet coke	OTAG-pet coke	OTAG-petcoke	OTAG-petcoke	OTAG-coal
Net Generation (MWhr)	1.390.062	855,240	2.967.000	3,331.000	3.109.000	1.648.500	1.648.500
Net Avg MW's							
Net Average Heat Rate (BTU/kWh)							······································
SO2 lb/mmBTU inlet							
Average Service Hours							
Percent SO2 removal							
l imactana							
TDV limestere	04 261	E7 025	201 407	226 116	211 046	411.004	07.064
Cost por Ten of Bongont	94.301	\$12.05	<u>201,407</u>	220,110	\$15.24	n11.504	97.004 #15.70
Cost per 1011 Of Reagent	\$13.90	\$13.90	\$7 904 220	\$14.0U	\$10.24 \$2.746.347	\$10.70 \$1.756.905	010,/U
Cost of Reageni	φ1.310,332	\$790.499	\$2,054,220	φ <u>3.340,321</u>	\$3,210.347	\$1.750.695	\$1.523.690
Chudre Disconnel							
	400 707	101.072	200 450	404.945	277 200	200.400	470 700
lons	168,737	101.973	360,159	404.345	3/1.390	200.109	1/3./30
Cost per Ion	\$1.32	\$1.32	\$1.35	\$1.40	\$1.45	\$1.51	\$1.51
Cost	\$222.733	\$134.604	\$489.817	\$566,083	\$547.225	\$302,164	\$262,333
ILIA ASD					400.0.10		
Tons of Disposal	46,207	27.924	98,626	110,726	103.346	54,798	65,430
Cost per Ton of Disposal	\$1.32	\$1.32	\$1.36	\$1.40	\$1.45	\$1.51	\$1.51
Cost of Disposal	\$60,993	\$36,860	\$134.131	\$155,016	\$149.852	\$82,745	\$98.800
	[<u> </u>		ļ		
Bottom Ash							
Tons of Disposal	11.552	6,981	24,656	27.681	25,837	13,699	16,358
Cost per Ton of Disposal	\$1.32	\$1.32	\$1.36	\$1.40	\$1.45	\$1.51	\$1.51
Cost of Disposal	\$15,248	\$9.215	\$33,533	\$38,754	\$37.463	\$20.686	\$24,700
Fixation Lime							
Tons of Disposal	3,009	0	6,423	7,211	6,730	3,569	3,109
Cost per Ton of Disposal	\$59.33	\$59.33	\$61.10	\$62.94	\$64.83	\$66.77	\$66.77
Cost of Disposal	\$178,537	\$0	\$392.445	\$453,859	\$436.332	\$238.281	\$207.594
Di-Basic Acid							
Pounds of Reagent	793,239	499,946	1,693,118	1,900,835	1,774,150	940,716	940.716
Cost per Pound of Reagent	\$0.58	\$0.58	\$0.59	\$0.61	\$0.63	\$0.65	\$0.65
Cost of Di-Basic Acid	\$460,078	\$289.969	\$1.005,712	\$1,159,509	\$1.117.715	\$611,466	\$611.466
SO2 and ash \$/Mwhr	\$1.62	\$1.48	\$1.67	\$1.72	\$1.77	\$1.83	\$1.66
Total /Year	\$2,253,923	\$1,266,147	\$4,949,857	\$5,719,742	\$5,504,933	\$3,012,237	\$2,728,790
	· · · · · · · · · · · · · · · · · · ·			<u>_</u>			
Sulfur							
MWhr per Gals	190.69	190.69	190.69	190.69	190.69	190.69	190.69
Gallons of Sulfur	7,290	4,485	15,559	17,468	16,304	8,645	8,645
Cost/gallon of Sulfur	\$1.93	\$1,93	\$1.98	\$2.04	\$2.10	\$2.17	\$2.17
Cost of Sulfur	\$14.069	\$8,656	\$30.807	\$35,635	\$34.238	\$18,759	\$18,759
Ammonia	1]	
NH3 Lbs/ MWhr	1.8337	0.0000	1.8337	1.8337	1.8337	1.8337	1.8337
Tons of Ammonia	1,274	0	2,720	3.054	2,850	1.511	1.511
Cost / Ton of Ammonia	\$506.00	\$506.00	\$521.18	\$536.82	\$552.92	\$569.51	\$569.51
Cost of Ammonia	\$644.886	\$0	\$1,417,763	\$1.639.463	\$1.576.091	\$860.773	\$860.773
	<u> </u>					<u></u>	
Lime Hydrate (for SO ₂)					······		
TDD	25.00	0.00	25.00	25.00	25.00	25.00	25.00
Tops of Lime Hydrate	3.448	0.00	7 359	8 261	7 711	4 089	4 089
Cost/ton of Lime Hydrate	\$122.06	\$122.06	\$125.72	\$129.50	\$133.38	\$137.38	\$137.38
Cost of Lime Hydrate	\$420.811	\$0	\$925 127	\$1,069,852	\$1 028 468	\$561 684	\$561 684
MOx Sub Total	\$1 079 766	\$8,656	\$2 373 607	\$2 744 950	\$2 638 798	\$1 441 216	\$1 441 716
	\$2,222,600	¢0,000	\$7 200 EEE	\$P 464 607	\$2,000,700 \$2,142,724	¢1,++1,210	φ1,441,210 04 170 007
	φ3.333.009 60.40	Φ1.∠14,0U3	φ1.323.000	Φ0,404,092	φο, 143./ 31	- φ4,403,403	\$4.170.007
l otal \$/Mwhr	j \$2.40	\$1.49	\$2.4/	\$2.54	\$2.62	\$2.70	\$2.53

Emissions Allowance Costs Summary

ATTACHMENT 2

Nominal dollars									
		2008		2009		2010	2011		2012
SO2 Price	\$	778	\$	853	\$	441	\$ 409	.\$	396
Total SO2(ktons) - emitted	·	14.849		20.077	۰ ،	21.157	20.054		20.575
Total SO2(ktons) - REQUIRED for compliance		14.849		20.077		42.314	40.107		41.150
Total SO2 Allowances (ktons)		34.991		52.487		52,487	52.487		52,487
sub-total SO2 tons left		20.142		32.410		10.173	12.380		11.337
Excess H-1&2 Allowances Back to City (capacity take)		1.522		2.228		0.957	1.048		1.071
SO2 allowances (ktons) left for BREC		18.620		30.182		9.216	11.332		10.266
SO2 allowances Sales	\$14	4,486,360	\$25	,745,246	\$	4,064,256	\$4,634,788	\$	4,065,336

	1					
INOX Price	1					
Total NOx(ktons) - emitted		5.046	13.896	13.892	13.202	13,196
NOx Emissions Alloc to City (ktons)		0.114	0.286	0.286	0.287	0.301
net NOx(ktons) - emitted		4.932	13.610	13.606	12.915	12.895
Total NOx Allowances (ktons)	-	4.799	11.398	11.398	11.398	11.398
NOx Allowances Alloc to City (ktons)		0.148	0.326	0.326	0.327	0.341
Net NOx Allowances (ktons)	1	4.651	11.072	11.072	11.071	11.057
NOt allowances (ktons) left for BR	EG	0.2211	- 12550)	2544	(1644)	(1.838)
NOR allowances Sa			17.225,2461		SE 507 S 36 00 2	\$3.648.430

NOx Tons emitted

-

(in thousands)	2008	2009	2010	2011	2012
Wilson #1	0.382	0.983	1.120	0.994	1.045
HMPL #1	0.200	0.505	0.546	0.471	0.550
HMPL#2	0.195	0.574	0.529	0.569	0.476
Coleman #1	0.682	2.052	2.049	1.945	2.054
Coleman #2	0.858	2.118	1.957	1.999	1.941
Coleman #3	0.870	1.982	2.106	2.006	1.667
Reid #1	0.000	0.023	0.004	0.070	0.000
Reid CT	0.002	0.003	0.003	0.005	0.006
Green #1	0.878	3.027	2.743	2.893	2.728
Green #2	0.979	2.629	2.835	2.252	2.729
System total	5.046	13.895	13.892	13.202	13.196

.

SO2 Tons emitted

(in thousands)	2008	2009	2010	2011	2012
Wilson #1	7.304	9.637	10.846	10.131	10.586
HMPL #1	1.436	2.006	2.150	1.854	2.169
HMPL#2	1.287	2.264	2.101	2.246	1.892
Coleman #1	0.422	0.726	0.725	0.692	0.730
Coleman #2	0.498	0.749	0.693	0.708	0.689
Coleman #3	0.509	0.745	0.742	0.749	0.618
Reid #1	0.699	0.001	0.000	0.002	0.000
Reid CT	0.000	0.000	0.000	0.000	0.000
Green #1	1.309	2.124	1.907	2.050	1.938
Green #2	1.385	1.874	1.990	1.621	1.952
			<u> </u>		
System total	14.849	20.126	21.155	20.054	20.575