2007-2011

WORK PLAN

Kentucky 34 Barren PO Box 1298
Glasgow KY 42142-1298

2007-2011 CONSTRUCTION WORK PLAN

FOR
FARMERS RURAL ELECTRIC COOPERATIVE CORPORATION
KENTUCKY - 34 - BARREN
GLASGOW, KENTUCKY

PREPARED BY:
FARMERS RURAL ELECTRIC COOPERATIVE CORPORATION
GLASGOW, KENTUCKY

MARCH, 2007

I hereby certify that this 2007-2011 Construction Work Plan was prepared by me or under my direct supervision and that I am a duly registered professional engineer under the laws of the State of Kentucky.

Registration No. 22343

FRECC CONSTRUCTION WORK PLAN REPORT TABLE OF CONTENTS

i. Cover Sheetii. Title Page; Engineer's Certificationiii. Table of Contents
I. EXECUTIVE SUMMARY
A. Purpose, Results and General Basis of Study
B. System Description: Distribution System and Power Supply
C. Summary of Construction Program and Costs
D. Substation Transformer Load Data
E. Required Substation Construction
II. BASIS OF STUDY AND PROPOSED CONSTRUCTION
A. Design Criteria
B. Distribution Line and Voltage Conversion Costs
C. Status of Previous CWP Items
D. Analysis of Current System Studies

1. 1996 Long-Range Plan
2. 2005 O \& M Survey (REA Form 300)
3. Sectionalizing Studies
E. Historical and Projected System Data
4. Seasonal Peak Load Current Measurements
5. Summary of Service Interruptions
6. System KW, KWH, and LF Charts

III. REQUIRED CONSTRUCTION ITEMS

A. Summary of Items
B. Construction Required For New Services
C. Meter Changes Required For AMR Implementation
D. Service Changes Required For Existing Services
E. Distribution Lines - Site Specific Additions and Changes
F. Substations - Additions and Changes
G. Sectionalizing Equipment - Additions and Changes
H. Line Regulators - Additions and Changes
I. Line Capacitors - Additions and Changes
J. Replacement - Poles
K. Distribution Auto-transformers - Additions and Changes
L. Other Distribution Items - Security Lights
M. Other Distribution Items - AMR
IV. APPENDIX
A. Samples of Computerized Analysis Used

1. Economical Conductor Sizes
2. Economic Analysis of Alternate Plans
3. Distribution Circuit Analysis Printout
B. System Maps - 2006 Load Levels

PURPOSE OF REPORT

This report documents the March 2007 engineering analysis of, and summarizes the proposed construction for, Farmers Rural Electric Cooperative Corporation's (FRECC) electric distribution system for the four-year planning period of 04/2007 thru 03/2011.

The report also provides engineering support, in the form of descriptions, costs and justification of required new facilities, for a loan application to RUS to finance the proposed construction program.

RESULTS OF PROPOSED CONSTRUCTION

Upon completion of construction of the facilities proposed herein, the system will provide adequate and dependable service to $\mathbf{2 3 , 2 6 4}$ residential/farm consumers using an average of 1260 kWH per consumer per month, and 1766 large power and special loads which are provided for on an individual basis. It is estimated there will be 2000 idle services.

GENERAL BASIS OF STUDY

The 2011 projected number of consumers and total peak system load was taken directly from the Cooperative's 2006 Load Forcast Report (LFR) as approved by RUS.

The Cooperative's 1996 Long-Range Plan (LRP) load projections and recommendations were followed for this four-year planning period. All of the construction proposed herein is consistent with the LRP unless otherwise noted and explained.

The Cooperative's 2005 Operations and Maintenance review, (Review Rating Summary; RUS Form 300), was used to determine construction required to replace physically deteriorated equipment and material, upgrade portions of the system to conform with code or safety requirements, and/or improve reliability or quality of service.

New distribution, transmission, and power supply construction requirements were considered simultaneously as a "one system" approach for the orderly and economical development of the total system. All of the proposed construction and recommendations herein, relative to power supply and delivery, were discussed with the cooperative's power supplier, East Kentucky Power Cooperative (EKPC).

A complete list of the lines and equipment, and their estimated cost, (all based on recent historical data), required for 2,560 new services is developed in Section III-B. A similar list and cost of necessary service upgrades to existing members is in Section III-D.

An analysis, using as a basis RUS guidelines and the design criteria herein, of thermal loading, voltages, physical conditions and reliability was performed on all of the substations, distribution lines and major equipment of the existing system. Milsoft software was used to analyze the distribution circuits during the 2006 / 2007 winter substation peak loading periods. A sample printout is in Section A of the Appendix. The exhibits in Section II form the rest of the basis of this analysis.

For each deficiency that was determined, alternate solutions were investigated and economically evaluated, so that the most cost effective construction, if required, could be proposed. A sample computer analysis used to determine the most economical alternate plans is in Section A of the Appendix.

SYSTEM DESCRIPTION: DISTRIBUTION SYSTEM AND POWER SUPPLY

Farmers Rural Electric Cooperative Corporation (FRECC), whose headquarters are in Glasgow, Kentucky, provides service in the rural areas of three counties and small portions of six counties in the south central portion of the state as shown on Map I-B-1. The 1,120 square mile service area is comprised mostly of rolling, forested hills and has two small lakes. FRECC's service area surrounds Glasgow (2000 population of 15,000). Glasgow is served by its own municipal electric system. Several of the other most populated areas are served by Kentucky utilities, a private power company.

Most of the economy of this area is based on commercial services for the tourist industry and agriculture. The Cooperative also serves several oil wells. FRECC has and will continue to serve the moderate growth of new commercial, small manufacturing and residential consumers adjacent to Glasgow.

The following data is from FRECC's 12/31/06 REA Form 7:

Number of Consumers:	23,537
MWH Purchased:	522,143
MWH Sold:	496,089
Maximum Non-Coincident kW Demand	120,076
Total Utility Plant:	$\$ 58,474,459(\$ 2,484$ / member)
Consumers/mile:	6.76

There are 48 primary distribution circuits totaling 3,481 miles of line served from twelve distribution substations. Thirty-two of the circuits are partially energized at 14,400/25,000 Volts, grounded wye, the remainder are at $7,200 / 12,470$ volts, grounded wye. All primary lines built since 1964 have been insulated for 14,400/25,000 Volts. Installed conductor sizes range from \#8 copperweld to 795 MCM Aluminum. Almost all new primary construction is overhead with only a small amount of existing plant being underground primary.

East Kentucky Power Cooperative (EKPC) provides all of power and energy needs to Farmers Rural Electric Cooperative Corporation, plus 16 other distribution cooperatives, by virtue of a standard "all requirements" contract. EKPC is a RUS financed G \& T cooperative with offices in Winchester, Kentucky.

EKPC constructs, owns, operates and maintains the twelve distribution substations and 69,000 Volt transmission lines which supply FRECC's distribution system. The predominant substation low-side voltage is $14,400 / 25,000$ Volts, grounded wye.

FARMERS RURAL ELECTRIC SERVICE AREA KENTUCKY 34 BARREN

Page 8

EAST KENTUCKY POWER COOPERATIVE'S SUBSTATION AND TRANSMISSION NETWORK

FOR

FARMERS RURAL ELECTRIC SERVICE AREA KENTUCKY 34 BARREN

- COUNTY SEATS
(\dagger
HEADQUARTERS
- SUBSTATIONS (69 kV)
- NEW SUBSTATONS (69 kV)
\triangle SUBSTATIONS (161 kV)

CODEEXT	ITEM \#	DESCRIPTION	MILES	ESTIMATED COST				
				1st YEAR	[2nd YEAR	3rd YEAR	4th YEAR	TOTAL
101		80 - UG NEW CONSUMERS	8.4	84,547	87,506	90,569	93,739	356,362
102		2480 - OH NEW CONSUMERS	140.2	1,128,001	1,167,481	1,208,343	1,250,635	4,754,460
100		NEW DISTRIBUTION LINES	148.6	1,212,548	1,254,988	1,298,912	1,344,374	5,110,823
363	1-2-C	CONV 1-PH TO 3-PH, RECOND \#4 ACSR TO \#1/0 ACSR	0.7	32,200				32,200
374	ALL-ALL-A	CONDUCTOR REPLACEMENT	40.0	160,000	160,000	160,000	160,000	640,000
375	1-4-A	CONV 2-PH TO 3-PH, CONV 1-PH TO 3-PH, RECOND TO \#1/0	0.8				36,800	36,800
376	2-5-A	CONV 1-PH TO 3-PH, RECOND \#4 ACSR TO \#1/0 ACSR	0.7				32,200	32,200
377	3-4-A	CONV 1-PH 72 KV TO 14 4KV	8.8				74,500	74,500
378	4-2-A	CONV 1.PH TO 2.PH, RECOND \#4 ACSR TO \#1/O ACSR	1.3				59,800	59,800
379	5-1-A	CONV 1-PH 72 KV TO 14.4KV	7.6				67,900	67,900
380	5-2-A	CONV 3-PH 7.2KV TO 14.4KV	0.7				7,650	7,650
381	5-3-A	CONV 1-PH \& 3-PH 72 TO 14 4KV, RECOND 3-PH \# $\#$ TO \#4/0	27.5	373,000				373,000
382	5-3-B	RECOND 3-PH \#4 ACSR TO \#110 ACSR	25				72,500	72,500
383	5-4-A	CONV 1-PH \& 3-PH 7.2 TO 144 KV	7.7				76,800	76,800
384	5-4-B	CONV 1-PH TO 3-PH, RECOND \#4 ACSR TO \#4/O ACSR	3.1		176,700			176,700
385	7-4-A	CONV 1-PH TO 3-PH, RECOND \#4 ACSR TO \#1/ ACSR	0.2	9,200				9,200
386	8-2-A	CONV 1-PH \& 2-PH \& 3-PH 72 KV TO 14 4KV	38.8			349,850		349,850
387	8-3-A	CONV 1-PH \& 3-PH 7.2KV TO 14.4KV, RECOND 3-PH TO \#4/0	10.8		316,400			316,400
388	10-2-A	CONV 1.PH TO 3-PH, RECOND \#4ACSR TO \#10 ACSR	1.0				46,000	46,000
389	12-2-A	RECOND 3-PH H1/0 ACSR TO 397 ACSR	1.6	80,000				80,000
300		LINE CONVERSIONS	153.8	654,400	653,100	509,850	634,150	2,451,500
601		TRANSFORMERS ~ NEW SERVICES		328,830	340,339	352,251	364,580	1,385,999
		TRANSFORMERS - CONVERSIONS						476,550
		METERS - NEW SERVICES		89,600	91,840	94,136	96,489	372,065
		METERS - AMR CHANGEOUT		1,161,000	516,000	0	0	1,677,000
								3,911,614
602		SERVICE UPGRADES		90,182	93,339	96,605	99,987	380,113
603		SECTIONALIZING EQUIPMENT		62,925	62,925	62,925	62,925	182,700
604		REGULATOR STATIONS		107,400	107,400	107,400	107,400	429,600
605		CAPACITORS		12,500	12,500	12,500	12,500	50,000
606		POLE REPLACEMENTS (1360 POLES TOTAL)		465,686	481,985	498,854	516,314	1,962,839
609		AUTOTRANSFORMERS		62,925	62,925	62,925	62,925	251,700
600		DISTRIBUTION EQUIPMENT		1,130,448	1,161,412	1,193,460	1,226,630	7,168,566
701		SERCURITY LIGHTS		66,934	69,277	71,702	74,211	282,125
702		AMR COMPUTER AND COMMUNICATION HARDWAF		620,000				613,000
700		OTHER DISTRIBUTION EQUIPMENT		686,934	69,277	71,702	74,211	895,125
		Total						15,626,014

SUBSTATION TRANSFORMER LOAD DATA

HISTORICAL AND PROJECTED WINTER PEAK KW DEMANDS

SUBSTATION		TRANSFORMER			$\begin{aligned} & \text { ACTUAL } \\ & 2 / 16 / 2007 \end{aligned}$	PROPOSED SYSTEM 2011 (10\% WINTER)	MAX LOAD \% RATING
		\#	KVA	CLASS			
1.	GOODNIGHT	3	6.033	F/A	8.199	10,351	57\%
2.	MUNFORDVILLE	1	18,100	F/A	16,197	16,330	90\%
3.	TEMPLE HILL	1	18,100	F/A	13,156	15,713	87\%
4.	KNOB LICK	1	18,100	F/A	10,241	9,275	51\%
5.	BECKTON**	1	18,100	F/A	15.575	16,700	92\%
6.	CAVE CITY	3	6,033	F/A	8,882	11,710	65\%
7.	PARKWAY I	1	18,100	F/A	10,930	13,499	75\%
	PARKWAY II	1	18,100	F/A	7.824	8,700	48\%
8.	GALLOWAY	1	18,100	F/A	9,679	13,129	73\%
9.	BONNIEVILLE	1	8,080	F/A	4,262	5,509	68\%
10.	WEST GLASGOW	1	18,100	F/A	6,042	11,461	63\%
11.	SEYMOUR	1	18,100	F/A	5,437	9,863	54\%
12.	FOX HOLLOW	1	18,100	F/A	9,979	14,133	78\%
13.	EDM INDUST PK	1	18,100	F/A	0	4,628	26\%
	TOTALS:		207,178		126,403	161,001	

* Under construction. Scheduled for completion during the spring 2008. This substation will relieve loading from Galloway.
** Monitoring Load in Conjunction with EKPC
F/A - Forced Air
O/A - Open Air

REQUIRED SUBSTATION CONSTRUCTION

The 2007-2011 CWP does include one new distribution substation. This substation is for the Edmonton Industrial Park and will relieve load from the Galloway substation. With the inclusion of the new substation, the analysis shows that no substations will become overloaded during the construction work plan period. FRECC will continue to monitor all substation loading with EKPC.

DESIGN CRITERIA

Each of the following design criteria items was reviewed by the RUS General Field Representative on November 16, 2006 and his provisional concurrence was attained.

Construction proposed herein is required to meet the following minimum standards of adequacy for voltages, thermal loading, safety and reliability on the system.

1. Voltage levels on primary distribution lines are to fall between 118 and 126 volts on a 120 volt base.
2. The following equipment is not to be thermally loaded by more than the percentage shown of its nameplate rating (winter loading):

a. Power Transformers	130% Winter ; 100\% Summer
b. Regulators	130% Winter ; 100\% Summer
c. Auto-Transformers	$\mathbf{1 3 0 \%}$ Winter ; 100\% Summer
d. Reclosers	$\mathbf{1 0 0 \%}$ Winter ; 100\% Summer
e. Line Fuses	$\mathbf{8 0 \%}$ Winter; $\mathbf{8 0 \%}$ Summer

3. Primary conductors are not to be loaded over 75% of their thermal rating. A case by case limit is used for major tie lines between substations to allow for different backfeed situations.
4. Poles and/or crossarms are to be replaced if found to be physically deteriorated by visual inspection and/or tests.
5. Conductors (and associated poles and hardware as required) will be considered for replacement if found to be in poor condition, having excessive sag in need of being changed out on a systematic basis.
6. Primary distribution lines are to be rebuilt and/or relocated if they are found to be unsafe or fail to meet the applicable National Electrical Safety Code clearances.
7. New lines and line conversions to be built according to the standard primary voltage levels as determined after review of the Long Range Plan, present loading and future load growth projection.
8. New primary conductor sizes to be determined on a case by case basis using the Economic Conductor Sizing Computer Program and presently valid constants and variables. The final proposed conductor may be modified to conform with the cooperative's standard sizes and recommendations of the Long-Range Plan.
9. All new primary construction to be overhead except where underground is required to comply with governmental or environmental regulations, local restrictions or favorable economics.
10. All new distribution lines to be designed and built according to RUS standard construction specifications and guidelines.
11. The fault current available at regulator or auto-transformer location should not exceed limits as set out by IEEE C37.91-1985 and in no case should it exceed 25 times normal base current at the location in question.
12. The fault current available at oil circuit recloser locations should not exceed the nameplate rating.
13. System improvements to correct voltage drop and to improve phase balance will be made on single and two-phase lines with loads exceeding 50 amps (based on Operating and Engineering practices).
14. Power factor correction is to be made when the substation power factor decreases below 97% lagging at peak load or 95% leading at minimum load. Power factor correction capacitors are to be located for maximum loss reduction with consideration given for voltage improvement.

THE PRECEEDING CRITERIA IS USED FOR DESIGN PURPOSES ONLY. IT IS NOT MEANT TO BE INCLUSIVE OF ALL CRITERIA THAT CAN OR SHOULD BE USED.

DISTRIBUTION LINE AND VOLTAGE CONVERSION COSTS

(ESTIMATED)
\$/mile

NEW CONSTRUCTION (OVERHEAD)

\$ 26,000	1-PHASE ;	\# 2 ACSR
29,000	1-PHASE;	\#1/0 ACSR
46,000	2 -PHASE ;	\# 2 ACSR
51,000	2-PHASE;	\#1/0 ACSR
49,000	3-PHASE ;	\# 2 ACSR
55,000	3-PHASE ;	\#1/0 ACSR
65,000	3 -PHASE ;	\#4/0 ACSR
78,000	3-PHASE ;	\#397ACSR

RECONDUCTORING (OVERHEAD)

$\mathbf{\$ 1 6 , 0 0 0}$
$\mathbf{2 0 , 0 0 0}$
$\mathbf{2 9 , 0 0 0}$
$\mathbf{3 5 , 0 0 0}$
$\mathbf{5 0 , 0 0 0}$
$\$ 38,000$
46,000
57,000
68,000

1-PHASE ;	\# 2 ACSR *
1-PHASE ;	\#1/0 ACSR *
3-PHASE $;$	\#1/0 ACSR *
3-PHASE;	\#4/0 ACSR *
3-PHASE;	397 ACSR *

1-PHASE TO 3-PHASE LINE CONVERSION (OVERHEAD)
WITH \# 2 ACSR *
WITH \#1/0 ACSR * WITH \#4/0 ACSR * WITH \#397ACSR *

VOLTAGE CONVERSION (12 KV TO 25 KV OVERHEAD)

COSTS WILL BE ON A JOB-BY-JOB BASIS BECAUSE EACH JOB WILL HAVE A PORTION ALREADY REINSULATED. (APPROXIMATELY $\$ 8,000$ FOR SINGLE PHASE AND $\$ 10,500$ FOR THREE PHASE PER MILE EXCLUDING EQUIPMENT) ESTIMATE $\$ 100$ PER SINGLE-PHASE TRANSFORMER CHANGE (THIS RELFECTS RETIREMENT OF EXISTING TRANSFORMER)

NOTES:

* A voltage conversion adder will be included in each reconductoring or line conversion job cost that includes a voltage conversion.
- Above costs include engineering, right-of-way clearing, and overheads.

STATUS OF PREVIOUS (2002-2006) CWP ITEMS

[^0]
ANALYSIS OF 1996 LONG-RANGE PLAN

Farmers Rural Electric Cooperative's 1996 Long-Range Plan (LRP) still remains current and adequate. The LRP was used as a guide in the 2007-2011 CWP preparation.

The study was based on the 1993-1994 winter peak loads of 83,800 KW and an average annual load growth rate of 3.0%. Three future load levels were studied: 2000 when the loads would be increased by approximately 31% ($110,000 \mathrm{KW}$), 2005 when the loads would be increased by approximately $48 \%(124,000 \mathrm{KW})$ and 2015 when the loads would increase by approximately $80 \%(151,000 \mathrm{KW})$ more than the base year.

The LRP recommends that the distribution system continue to be built as 14.4/24.9 KV but operated at the most economic level ($7.2 / 12.47 \mathrm{KV}$ or $14.4 / 24.9 \mathrm{KV}$) depending on the loading. Alternate plans which were developed but found not to be the most economical were: (1) conversion of the entire system to 14.4/24.9 KV and (2) building and operating new plant as 7.2/12.47 KV.

ANALYSIS OF 2005 OPERATIONS \& MAINTENANCE SURVEY

In May of 2005, an Operation and Maintenance Survey ($O \& M$ Survey) of the FRECC distribution system was conducted. Line and pole inspection records, voltage and current test records, special equipment records, outage records comprised the basis for the system analysis and rating. The completed O \& M Survey was reviewed by Mike Norman, RUS General Field Representative on May 19, 2005.

Transmission lines and distribution substations are owned and maintained by East Kentucky Power Cooperative (EKPC) and have been excluded from the rating process.

In general, the overhead and underground distribution facilities were found to be in satisfactory condition. With the exception of right-of-way clearing, all the operations and maintenance programs and engineering programs were found to be satisfactory. We have modified our right-of-way clearing process to address Mr. Norman's concern for vines growing on poles and yard trees.

One-half the system is inspected every year utilizing a ground patrol inspection (2 year cycle). In 1996, FRECC developed a pole inspection plan. The goal of this plan is to inspect all FRECC poles on a $\mathbf{7}$ year cycle. During the first cycle, we found approximately 8 to 10 percent were physically deteriorated and required replacement. We anticipate this rate to decrease as we continue on our second cycle.

An "Aged Conductor Survey" was performed during a previous CWP which highlighted copperweld conductor and some older 4 ACSR to be in poor physical condition. The age of these conductors were often in excess of 50 years. According to our records, all copperweld conductor has been changed. We anticipate discovering small sections in future years due to inaccuracies in our records. We are continuing to change 4 ACSR as needed.

FRECC has a program to clear the overhead distribution line rights-of-way on a 6 year cycle. This work is performed by in-house and contract tree trimming crews. The program incorporates hand-cutting, use of remote trimmers, and spray equipment. FRECC has experimented with an increased amount of high-volume followed by a low-volume spraying to decrease the amount of cutting and mowing.

Contract construction labor was utilized in the last 4-year CWP to assist FRECC's in-house construction crews. This additional assistance will be required to complete the proposed projects as submitted in the 2007-2011 CWP.

SECTIONALIZING STUDIES

A list of sectionalizing projects and costs associated with this CWP is included in Section IIIF of this report. This list incorporates oil circuit reclosers (OCRs), electronic reclosers, sectionalizers, fuses, and any other needed protective equipment.

Also, FRECC will annually remove from service, inspect, and perform maintenance on approximately one-sixth of the System OCRs. The maintenance includes, but is not limited to, changing the oil, testing and certifying the device, and providing cosmetic repairs. All test reports are documented and saved. Once this is completed, the device can be returned to service.

Finally, the Engineering department of FRECC continually assesses the System with respect to any major changes not reflected in the CWP. Any changes to the protective scheme, CWP related or not, are documented and saved.

SEASONAL PEAK LOAD CURRENT MEASUREMENTS

SUBSTATION	$\begin{aligned} & \text { CKT } \\ & \text { NO. } \\ & \hline \end{aligned}$	Dec-06			
					\%
\# NAME		A ph	B ph	C ph	UNBAL
1. GOODNIGHT		267	263	429	34\%
	1	85	53	94	31\%
	2	86	109	136	23\%
	3	38	34	59	35\%
	4	58	67	140	58\%
	5	9	36	5	116\%
2. MUNFORDVILIE		373	243	302	22\%
	1 (14.4)	44	26	76	56\%
	2 (14.4)	53	13	45	65\%
	3 (14.4)	35	25	45	29\%
	4 (14.4)	1	1	1	0\%
	5 (14.4)	81	94	67	17\%
	6 (14.4)	157	80	66	55\%
	7 (14.4)	2	4	2	50\%
3. TEMPLE HILL		277	311	279	8\%
	1 (14.4)	97	66	115	29\%
	2 (14.4)	22	21	1	93\%
	3 (14.4)	45	53	49	8\%
	4 (14.4)	60	105	67	36\%
	5 (14.4)	24	26	29	10\%
	6 (14.4)	29	40	18	38\%
4. KNOB LICK		194	185	191	3\%
	1 (14.4)	52	43	39	16\%
	2 (14.4)	49	88	87	34\%
	3 (14.4)	30	5	15	80\%
	4 (14.4)	45	45	44	1\%
	5 (14.4)	18	4	6	93\%
5. BECKTON		324	319	348	5\%
	1 (14.4)	11	8	33	90\%
	2 (14.4)	132	129	139	4\%
	3 (14.4)	78	78	44	34\%
	4 (14.4)	103	104	132	17\%
6. CAVE CITY		304	396	348	13\%
	1	122	140	115	11\%
	2	58	60	59	2\%
	3	105	187	145	28\%
	4	19	9	29	53\%
7. PARKWAY I		359	464	496	18\%
	1	88	88	102	10\%
	2	93	90	128	23\%
	3	44	71	63	26\%
	4	134	215	203	27\%
PARKWAY II		287	293	292	1\%
	1	192	204	192	4\%

Page 20

SEASONAL PEAK LOAD CURRENT MEASUREMENTS

SUBSTATION \# NAME	$\begin{aligned} & \text { CKT } \\ & \text { NO. } \end{aligned}$	Dec-06			
					\%
		A ph	B ph	C ph	UNBAL
8. GALLOWAY		181	221	207	11\%
	1 (14.4)	134	149	149	7\%
	2 (14.4)	46	72	58	23\%
	3 (14.4)	1	0	0	200\%
9. BONNIEVILLE		53	88	56	34\%
	1 (14.4)	30	30	22	20\%
	2 (14.4)	23	58	34	51\%
10. WEST GLASGOW		130	133	139	4\%
	1 (14.4)	26	26	41	32\%
	2 (14.4)	104	107	98	5\%
11. SEYMOUR		107	121	83	20\%
	2 (14.4)	62	72	56	14\%
	3 (14.4)	6	8	5	26\%
	4 (14.4)	39	41	22	35\%
10. FOX HOLLOW		437	349	498	18\%
	,	196	119	183	28\%
	2	241	230	315	20\%

1. Unbalance is the percent difference between the current of the maximum or minimum phase and the average current of all three phases.

SUMMARY OF SERVICE INTERRUPTIONS

POWER SUPPLY	SCHEDULED	MAJOR STORM	WEATHER	EQUIPMENT	ANIMAL	ACT OF MAN	RW	OTHER	TOTAL

NUMBER

2002	2	17	-	296	136	68	22	82	262	885
2003	3	13	21	306	85	63	25	83	208	807
2004	5	17	335	302	51	62	50	55	314	1,191
2005	4	11	-	179	41	25	57	74	225	616
2006	8	15	-	396	43	49	55	109	325	1,000
TOTAL:	22	73	356	1,479	356	267	209	403	1,334	4,499
5 YR AVG:	4	15	71	296	71	53	42	81	267	900

HOURS

2002	5,799	1,746	-	26,007	26,920	1,335	2,624	14,559	11,774	90,763
2003	4,416	1,133	6,102	13,335	15,584	1,817	3,113	10,523	5,812	61,833
2004	7,193	887	317,530	28,196	9,057	1,252	6,179	5,279	13,288	388,861
2005	16,582	475	-	28,871	15,371	343	2,283	8,177	10,622	82,725
2006	15,448	1,116	-	36,309	8,035	11,016	3,265	20,066	13,618	108,873
TOTAL:	49,437	5,357	323,632	132,719	74,966	15,762	17,463	58,604	55,114	733,055
TYR AVG:	9,887	1,071	64,726	26,544	14,993	3,152	3,493	11,721	11,023	146,611

MEMBERS EFFECTED										
2002	7,728	2,046	-	9,817	13,313	982	598	5,870	7,515	47,869
2003	11,884	1,472	1,235	5,442	6,018	1,317	1,057	3,774	4,936	37,135
2004	6,562	1,537	17,426	10,316	5,140	866	3,918	1,755	8,496	56,016
2005	13,124	1,102		9,013	6,022	252	1,189	3,054	5,640	39,396
2006	22,864	1,354	-	11,708	3,548	5,502	1,802	5.313	9,550	61,641
TOTAL:	62,162	7,511	18,661	46,296	34,041	8,919	8,564	19,766	36,137	242,057
5 YR AVG:	12,432	1,502	3,732	9,259	6,808	1,784	1,713	3,953	7,227	48,411

AVERAGE HOURS OUTAGE PER MEMBER

2002	0.291	0.088	-	1.307	1.353	0.067	0.132	0.732	0.592	4.562
2003	0.216	0.055	0.298	0.652	0.762	0.089	0.152	0.514	0.284	3.023
2004	0.342	0.042	15.088	1.340	0.430	0.059	0.294	0.251	0.631	18.478
2005	0.767	0.022	-	1.335	0.711	0.016	0.106	0.378	0.491	3.826
2006	0.661	0.048	-	1.553	0.344	0.471	0.140	0.858	0.583	4.657
TOTAL:	2.277	0.255	15.386	6.188	3.600	0.703	0.823	2.734	2.581	34.546
5YR AVG:	0.455	0.051								

Page 23

CODEEEXT	ITEM \#	DESCRIPTION	MLLES	ESTIMATED COST				
				1st YEAR	2nd YEAR	3rd YEAR	4th YEAR	TOTAL
101		80 - UG NEW CONSUMERS	8.4	84,547	87,506	90,569	93,739	356,362
102		2480 - OH NEW CONSUMERS	140.2	1,128,001	1,167,481	1,208,343	1,250,635	4,754,460
100		NEW DISTRIBUTION LINES	148.6	1,212,548	1,254,988	1,298,912	1,344,374	5,110,823
363	1-2-C	CONV 1.PH TO 3.PH, RECOND \#4 ACSR TO \#1/ ACSR	0.7	32,200				32,200
374	ALL-ALL-A	CONDUCTOR REPLACEMENT	40.0	160,000	160,000	160,000	160,000	640,000
375	1-4-A	CONV 2-PH TO 3-PH, CONV 1-PH TO 3-PH, RECOND TO \#1/0	0.8				36,800	36,800
376	2-5-A	CONV 1-PH TO 3.PH, RECOND \#4 ACSR TO \#10 ACSR	0.7				32,200	32,200
377	3-4.A	CONV 1-PH 72 KV TO 14.4KV	8.8				74,500	74,500
378	4-2-A	CONV 1-PH TO 2.PH, RECOND \#4 ACSR TO \#10 ACSR	1.3				59,800	59,800
379	5-1-A	CONV 1-PH 7.2KV TO 144 KV	7.6				67,900	67,900
380	5-2-A	CONV 3-PH 7.2KV TO 14.4KV	0.7				7.650	7,650
381	5-3-A	CONV 1-PH \& 3-PH 72 TO 14 4KV, RECOND 3-PH \#4 TO \#4/0	27.5	373,000				373,000
382	5-3-B	RECOND 3-PH \#4 ACSR TO \#1/0 ACSR	2.5				72,500	72,500
383	5-4-A	CONV 1-PH \& 3-PH72 TO 14.4 KV	77				76,800	76,800
384	5-4-B	CONV 1.PH TO 3-PH, RECOND \#4 ACSR TO \#410 ACSR	3.1		176,700			176,700
385	7-4-A	CONV 1-PH TO 3-PH, RECOND \#4 ACSR TO \#1O ACSR	0.2	9,200				9,200
386	8-2-A	CONV 1-PH \& 2-PH \& 3-PH 72 KV TO 14.4KV	38.8			349,850		349,850
387	8-3-A	CONV 1-PH \& 3.PH 7. 2KV TO 14 4KV, RECOND 3-PH TO \#410	10.8		316,400			316,400
388	10-2-A	CONV 1-PH TO 3-PH, RECOND \#4ACSR TO \#10 ACSR	1.0				46,000	46,000
389	12-2-A	RECOND 3-PH \#110 ACSR TO 397 ACSR	1.6	80,000				80,000
300		LINE CONVERSIONS	1538	654,400	653,100	509,850	634,150	2,451,500
601		TRANSFORMERS - NEW SERVICES		328,830	340,339	352,251	364,580	1,385,999
		TRANSFORMERS - CONVERSIONS						476,550
		METERS - NEW SERVICES		89,600	91,840	94,136	96,489	372,065
		METERS - AMR CHANGEOUT		1,161,000	516,000	0	0	1,677,000
								3,911,614
602		SERVICE UPGRADES		90,182	93,339	96,605	99,987	380,113
603		SECTIONALIZING EQUIPMENT		62,925	62,925	62,925	62,925	182,700
604		REGULATOR STATIONS		107,400	107,400	107,400	107,400	429,600
605		CAPACITORS		12,500	12,500	12,500	12,500	50,000
606		POLE REPLACEMENTS (1360 POLES TOTAL)		465,686	481,985	498,854	516,314	1,962,839
609		AUTOTRANSFORMERS		62,925	62,925	62,925	62,925	251,700
600		DISTRIBUTION EQUIPMENT		1,130,448	1,161,412	1,193,460	1,226,630	7,168,566
701		SERCURITY LIGHTS		66,934	69,277	71,702	74,211	282,125
702		AMR COMPUTER AND COMMUNICATION HARDWAF		620,000				613,000
700		OTHER DISTRIBUTION EQUIPMENT		686,934	69,277	71,702	74,211	895,125
		Total						15,626,014

CONSTRUCTION REQUIRED FOR NEW SERVICES

[^1]
METER CHANGES REQUIRED FOR AMR IMPLEMENTATION

	2006	ESTIMATED 48-MONTH WORK PLAN PERIOD				
METER CHANGES - SYSTEM WIDE		4/07-3/08	4/08-3/09	4/09-3/10	4/10-3/11	TOTAL
AMR METER CHANGES						
Number of Bler Changes	11,000	9,000	4,000			13,000
AVERAGE COST	129	\$129	\$129			
Total Cost of Service Changes		\$1,161,000	\$516,000	\$0	\$0	\$1,677,000

SERVICE CHANGES FOR EXISTING SERVICES

	24 MONTH HISTORY	
SERVICE CHANGES - SYSTEM WIDE	10/04-9/05	10/05-9/06
SERVICE CHANGES		
Number of Service Changes	134	132
AVERAGE COST	\$640	\$670
Total Cost of Service Changes	\$85,825	\$88,473

ESTIMATED 48-MONTH WORK PLAN PERIOD					
4/07-3/08	4/08-3/09		4/09-3/10	4/10-3/11	TOTAL
130	130		130	130	520
\$694	\$718	-	\$743	\$769	
\$90,182	\$93,339		\$96,605	\$99,987	\$380,113

* Inflated by 3.5\%

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 363*

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert and re-conductor 0.7 miles of single phase, \# 4 ACSR to three phase $\# 1 / 0 \mathrm{ACSR}$, from line section 23015 to location 43-77-075. Replace poles and equipment and relocate portions of line as required. Carried over from previous construction work plan due to pending road move.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 23007 exceeds design criteria \#13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current level will meet design criteria \#13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.
*Carryover

CONSTRUCTION ITEM - LINE CONVERSION

DESCRIPTION OF PROPOSED CONSTRUCTION

Re-conductor 40 miles of single phase, \#6, \#8 Copperweld and \# 4ACSR to \#2 ACSR. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The conductor is aged and deteriorated needing replacement.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work aged conductor will be replaced by new conductor, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 375
CWP ITEM NUMBER: 1_4_A
ESTIMATED COST: $\$ \mathbf{3 6}, 800$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 0.4 miles of two phase, \# 4 ACSR to three phase \# 1/0 ACSR, from line section 12699 to line section 23541. Convert 0.4 miles of single phase, $\# 4$ ACSR to three phase \#1/0 ACSR, from line section 20851 to 11814. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections fed by the above area fall below design criteria \#1. The current in sections starting with 20851 exceed design criteria \#13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1 and current will be improved to within limits set in design criteria \#13, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 376
CWP ITEM NUMBER: 2_5_A ESTIMATED COST: $\mathbf{\$ 3 2 , 2 0 0}$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 0.7 miles of single phase \#4 ACSR to Three Phase \#1/0 ACSR start line section 12767 to line section 12945. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections fed by the above area fall below design criteria \#1. The current in section 10262 exceed design criteria \#13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1 and current will be improved to within limits set in design criteria \#13, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

Conversion of 3.7 miles of 7.2 kV single phase to 14.4 kV single phase would be required to meet design criteria at a cost of $\$ 30,000$. The cost is similar with the three phase conversion providing better voltage drop and reliability.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 377
CWP ITEM NUMBER: 3_4_A ESTIMATED COST: $\$ 74,500$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 8.8 miles of single phase 7.2 kV to 14.4 kV . Convert from line section 24883 and ending section 8637. 41 transformers will be replaced. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria \#1. The current in sections starting with section 24833 and ending in section 5437 exceed design criteria \#13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1 and current will be improved to within limits set in design criteria \#13, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

Single phase 7.2 kV to three phase 12.47 kV was considered but was abandoned due to cost.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 378
CWP ITEM NUMBER: 4_2_A
ESTIMATED COST: $\mathbf{\$ 5 9 , 8 0 0}$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 1.3 miles of single phase, \# 4 ACSR to two phase \# 1/0 ACSR, in line sections starting with 4606 and ending with 4613. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 4606 exceeds design criteria \#13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current level will meet design criteria \#13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

Voltage conversion was considered but was abandoned due to cost.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 379
CWP ITEM NUMBER: 5_1_A
ESTIMATED COST: $\$ \mathbf{6 7}, 900$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 7.6 miles of single phase 7.2 kV to 14.4 kV . Convert from all line sections served by ocr 06-19R01. 71 transformers will be replaced. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The current level in single phase tap exceeds design criteria \#13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 380

CWP ITEM NUMBER: 5_2_A
ESTIMATED COST: $\$ 7,650$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 0.7 miles of three phase 12.47 kV to three phase 24.9 kV in line section 5775.3 transformers will be replaced. Replace poles and equipment and relocate portions of line as required

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria \#1.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 381
CWP ITEM NUMBER: 5_3_A ESTIMATED COST: $\$ 373,000$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 5.2 miles of three phase 12.47 kV to three phase 24.9 kV ending with line section 19829. Convert 22.3 miles of single phase 7.2 kV to single phase 14.4 kV . 210 transformers will be replaced. Replace poles and equipment and relocate portions of line as required. Reconductor 3.4 miles of three phase from \#4 ACSR three phase to \#4/0 ACSR three phase, starting in line section 20435 and ending with section 19829, due to condition and age.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria \#1. Equipment loading on stepdowns exceed design criteria \#2.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1 and equipment loading will be within limits, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 382

CWP ITEM NUMBER: 5_3_B ESTIMATED COST: $\$ 72,500$

DESCRIPTION OF PROPOSED CONSTRUCTION

Reconductor 2.5 miles of three phase from \#4 ACSR three phase to \#1/0 ACSR three phase, starting in line section 5778 and ending in section 7886, due to condition and age.

REASON FOR PROPOSED CONSTRUCTION

Design criteria \#5.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this aged conductor will be systematically removed, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 383

CWP ITEM NUMBER: 5_4_A ESTIMATED COST: $\$ 7 \overline{6}, \overline{800}$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 2.6 miles of three phase 12.47 kV to three phase 24.9 kV , adding stepdown to line section 19633 and adding stepdown to line section 15815 . Convert 5.1 miles of single phase 7.2 kV to single phase 7.2 kV associated with 3 phase conversion. 87 transformers will be replaced. Replace poles and equipment and relocate portions of line as required

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria \#1.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 3.1 miles of single phase, \#4 ACSR to three phase \#4/0 ACSR, from line section 23877 to line section 3036. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections fed by the above area fall below design criteria \#1, and serve three phase customers in area.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 385
CWP ITEM NUMBER: 7_4_A ESTIMATED COST: $\mathbf{\$ 9 , 2 0 0}$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 0.2 miles of single phase, \# 4 ACSR to three phase \# 1/0 ACSR, line sections 20516, 23334. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 20516 and 23334 exceeds design criteria \#13.
RESULTS OF PROPOSED CONSTRUCTION
As a result of this work the current level will meet design criteria \#13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 6.6 miles of three phase 12.47 kV to three phase 24.9 kV . Convert 0.5 miles of two phase 12.47 kV to two phase 24.9 kV . Convert 31.7 miles of single phase 7.2 kV to single phase 14.4 kV in line section. 217 transformers will be replaced. Replace poles and equipment and relocate portions of line as required.

SECTIONS AFFECTED

Relocate Stepdown to line section 4695.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria \#1.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 387

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert and reconductor 3.9 miles of single phase \#4 ACSR 7.2 kV to three phase \#4/0 ACSR 24.9 kV and convert 6.9 miles of single phase 7.2 kV to 14.4 kV . 77 transformers will be replaced. Replace poles and equipment and relocate portions of line as required.

SECTIONS AFFECTED

Beginning section 3526 to ending section 5226.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 24567 and multiple sections starting at 5137 exceeds design criteria \#13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current levels will meet design criteria \#13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 388
CWP ITEM NUMBER: 10_2_A ESTIMATED COST: $\$ 46,000$

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 1.0 miles of single phase, \# 4 ACSR to three phase \# 1/0 ACSR, in line sections starting with 8350 and ending with 4150 . Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 8350 exceeds design criteria \#13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current level will meet design criteria \#13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CONSTRUCTION ITEM - LINE CONVERSION

CFR CODE: 389
CWP ITEM NUMBER: 12_2_A ESTIMATED COST: $\$ 80,000$

DESCRIPTION OF PROPOSED CONSTRUCTION

Reconductor 1.6 miles of three phase from \#1/0 ACSR three phase to \#397 ACSR three phase. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria \#1. Equipment loading on Conductor exceed design criteria \#3.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria \#1 and equipment loading will be within limits, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

SUBSTATIONS (Additions and Changes)

During this Construction Work Plan, a new substation will be added in Metcalfe County. This new substation will serve all the existing load in the Edmonton Industrial Park, relieving load off our Galloway Substation.

NEW DISTRIBUTION CONSTRUCTION ITEM - SECTIONALIZING EQUIP.
 (Additions and Changes)

CFR CODE: 603
ESTIMATED COST: \$182,700

THREE PHASE ELECTRONIC RECLOSERS

NEW DISTRIBUTION CONSTRUCTION ITEM - REGULATORS (Additions and Changes)

CFR CODE: 604
ESTIMATED COST: \$429,600

SECTION (END OF)	FEEDER	$\begin{aligned} & \text { SIZE } \\ & \text { (AMP) } \end{aligned}$	$\overline{\mathrm{ADD}}$ (\#)	$\begin{gathered} \hline \text { REMOVE } \\ (\#) \end{gathered}$	$\begin{gathered} \hline \text { MAT. \& LABOR } \\ \text { COST } \end{gathered}$		$\begin{gathered} \text { EQUIPMENT } \\ \text { COST } \end{gathered}$		$\begin{aligned} & \text { TOTAL } \\ & \text { COST } \end{aligned}$
10112	01-01	50	1		\$ 2,500.00			\$	2,500.00
14576	02-02	100	3		\$ 12,600.00	\$	24,000.00	\$	36,600.00
13098	02-03	100	3		\$ 12,600.00	\$	24,000.00	\$	36,600.00
13135	02-06	50	1		\$ 2,500.00			\$	2,500.00
9896	03-01	150	3		\$ 12,600.00			\$	12,600.00
4204	03-04	100	3		\$ 12,600.00	\$	31,500.00	\$	44,100.00
13260	04-04	100	3		\$ 12,600.00	\$	24,000.00	\$	36,600.00
3043	05-04	100	3		\$ 12,600.00	\$	31,500.00	\$	44,100.00
20576	07-04	219	3		\$ 12,600.00	\$	28,500.00	\$	41,100.00
4396	08-01	50	1		\$ 2,500.00			\$	2,500.00
22460	11-02	100	3		\$ 12,600.00	\$	31,500,00	\$	44,100.00
14028	11-02	100	3		\$ 12,600.00	\$	31,500,00	\$	44,100,00
18812	12-01	219	3		\$ 12,600,00	\$	28,500.00	\$	41,100.00
12836	12-02	219	3		\$ 12,600.00	\$	28,500.00	\$	41,100.00
								\$	429,600.00
26-65-VR1	02-05	50		1					
03-08-VR1	04-02	50		1					
06-16-VR1	05-03	150		3					
06-15-VR1	05-03	150		3					
38-42-VR1	11.03	50		1					

50 Amp Regulators	3	3
100 Amp Regulators	21	0
150 Amp Regulators	3	6
219 Amp Regulators	9	0

NEW DISTRIBUTION CONSTRUCTION ITEM - CAPACITORS

YEAR: 2007
CFR CODE: 605

CWP ITEM NUMBER:
ESTIMATED COST: \$50,000*

DESCRIPTION OF PROPOSED CONSTRUCTION

Capacitors used for power factor correction.
REASON FOR PROPOSED CONSTRUCTION
To correct power factor by use of fixed and switched banks, allowing the system to operate as efficiently as possible.

* EKPC furnishes capacitors

REPLACEMENT - POLES

CFR CODE: 606
ESTIMATED COST: $\mathbf{\$ 1 , 9 6 2 , 8 3 9}$

DESCRIPTION OF PROPOSED CONSTRUCTION

Replace all poles found to be physically deteriorated by FRECC's personnel throughout the system. It is estimated that approximately 340 poles per year will need to be replaced.

REASON FOR PROPOSED CONSTRUCTION

FRECC inspects approximately 4,500 cooperatives poles each year. Historically, approximately 8.0% of these poles need to be replaced because of their poor physical condition.

NEW DISTRIBUTION CONSTRUCTION ITEM - AUTO TRANSF. (Additions and Changes)

CFR CODE: 609
ESTIMATED COST: \$251,700

$\begin{aligned} & \text { SECTION } \\ & \text { (END OF) } \\ & \hline \end{aligned}$	FEEDER	$\begin{aligned} & \text { SIZE } \\ & \text { (KVA) } \end{aligned}$	$\begin{gathered} \hline \mathrm{ADD} \\ (\#) \end{gathered}$	$\begin{gathered} \text { REMOVE } \\ (\#) \end{gathered}$	$\begin{gathered} \text { RACK } \\ (Y) \end{gathered}$		$\begin{gathered} \overline{\text { MAT. \& LABOR }} \\ \text { COST } \\ \hline \end{gathered}$		$\begin{aligned} & \text { EQUIPMENT } \\ & \text { COST } \end{aligned}$		$\begin{aligned} & \text { TOTAL } \\ & \text { COST } \end{aligned}$
5775	05-02	500	3			\$	4,800.00	\$	21,600.00	\$	26,400.00
19633	05-04	500	3			\$	4,800.00	\$	21,600.00	\$	26,400.00
15815	05-04	1000	3		Y	\$	10,000.00	\$	46,500.00	\$	56,500.00
19829	05-03	1000	3		Y	\$	10,000.00	\$	46,500.00	\$	56,500.00
5226	08-03	500	3			\$	4,800.00	\$	21,600.00	\$	26,400,00
4696	08-02	1000	3		Y	\$	10,000.00	\$	46,500.00	\$	56,500.00
10925	09-02	500	1			\$	1,500.00			\$	1,500.00
5437	03-04	500	1			\$	1,500.00			\$	1,500.00
38-54-SD1	11-04	1000	3		Y	\$	-			\$	-
02-43-SD1	03-03	500	1			\$	-			\$	-
01-77-SD1	03-05	500	1			\$	-			\$	-

07-66-SD1	$03-04$	500	1
$06-77-$ SD1	$05-02$	333	3
$06-18-S D 1$	$05-03$	1000	3
06-19-SD1	$05-01$	500	3
48-87-SD1	$05-04$	1000	3
44-97-SD1	$08-02$	333	3
38-54-SD1	$11-04$	500	3
$02-43-S D 1$	$03-03$	333	1
$01-77-S D 1$	$03-05$	333	1

EKPC

333 KVA Autos $0 \quad 8$
500 KVA Autos 137
1000 KVA Autos
126

EKPC OWNS (3) OF THESE UNITS

OTHER DISTRIBUTION ITEMS - SECURITY LIGHTS

CFR CODE: 701
ESTIMATED COST: \$282,125

DESCRIPTION OF PROPOSED CONSTRUCTION

Install approximately 290 outdoor security lights and associated poles per year as requested by consumer - members.

REASON FOR PROPOSED CONSTRUCTION

This work is necessary because of FRECC's outdoor lighting program.

	24 MONTH HISTORY		ESTIMATED 48-MONTH WORK PLAN PERIOD								
SECURITY LIGHTS - SYSTEM WIDE	10/04-9/05	10/05-9/06	4/07-3/08		4/08-3/09		4/09-3/10		4/10-3/11		TOTAL
SECURITY LIGHTS											
Number of Security Lights	301	287	290		290		290		290		1,160
AVERAGE COST	\$330	\$223	231	*	239	*	247	*	256	*	
Total Cost of Security Lights	\$99,249	\$64,002	\$66,934		\$69,277		\$71,702		\$74,211		\$282,125

*** Inflated by 3.5%

OTHER DISTRIBUTION ITEMS - AMR

CFR CODE: 702
ESTIMATED COST: $\$ 613,000$

DESCRIPTION OF PROPOSED CONSTRUCTION

In the 2002-2006 CWP, a cost justification study was prepared and AMR proved to be the most economical and efficient method of reading customer meters. The TWACS system was chosen due to better communication pathways to the meter, which holds additional potential benefits when compared to other systems, including some load management features. The AMR system will be completed in this CWP.

REASON FOR PROPOSED CONSTRUCTION

This work is necessary to provide better meter reading information from the customer, improve workflow throughout the month, improve customer service and reduce customer complaints.

ESTIMATED COST - COMPUTER AND COMMUNICATION HARDWARE

TWACS HARDWARE FOR 10 SUBSTATIONS	$\$ 470,000$
MODULATION TRANSFORMERS	$\$ 130,000$
COMMUNICATION TO SUBSTATIONS	$\$ 13,000$
TOTAL	$\$ 613,000$

* 13,000 meters with modules will be included in code 601 (See section III-C)

Economic Conductor Analysis

1 Phase Construction

7.6 kV	Operating Voltage (Phase to Ground)
1 phases	Number of Phases (1, 2, or 3)
100 kW	Initial Load in kW (this value should remain at 100 kW)
3%	Annual Load Growth
95%	Power Factor (residential = 90% unless capacitors are used)
57%	Load Factor (annual value in $\%$)
3%	Annual Inflation Rate of Construction Costs
13.45%	Carrying Charge Rate
$\$ 0.0300 \$ / \mathrm{kWh}$	Wholesale Energy Cost $(\$ / \mathrm{kWh})$
$\$ 5.22 \$ / \mathrm{kW}$	Wholesale Demand Cost $\$ / \mathrm{kW})$
5%	Inflation Rate of Wholesale Power Costs (annual inflation rate)
30 years	Period (number of years of the analysis)
6%	Interest Rate (to be used as the discount rate in the present worth analysis)

| Description of the Conductor | (ACSR | 2 ACSR | $1 / 0 \mathrm{ACSR}$ | $4 / 0 \mathrm{ACSR}$ | 397 ACSR | 795 ACSR |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Initial Construction Cost Per Mile | $\$ 0$ | $\$ 16,000$ | $\$ 20,000$ | $\$ 0$ | $\$ 0$ | $\$ 0$ |
| Resistance in Ohms Per Mile | 2.459 | 1.583 | 1.034 | 0.573 | 0.257 | 0.131 |
| Present Worth of Construction Costs | $\$ 0$ | $\$ 29,622$ | $\$ 37,027$ | $\$ 0$ | $\$ 0$ | $\$ 0$ |

Initial Load		Total Annual Cost Per Mile	
(AMPS)	(kW)		
14	100	\$29,796	\$37,141
28	200	\$30,317	\$37,481
42	300	\$31,185	\$38,049
55	400	\$32,401	\$38,843
69	500	\$33,964	\$39,864
83	600	\$35,875	\$41,112
97	700	\$38,133	\$42,587
111	800	\$40,739	\$44,289
125	900	\$43,691	\$46,218
139	1000	\$46,992	\$48,373
152	1100	\$50,639	\$50,756
166	1200	\$54,635	\$53,365
180	1300	\$58,977	\$56,202
194	1400	\$63,667	\$59,265
208	1500	\$68,704	\$62,555
222	1600	\$74,089	\$66,073
235	1700	\$79,821	\$69,817
249	1800	\$85,900	\$73,788
263	1900	\$92,327	\$77,986
277	2000	\$99,101	\$82,411
291	2100	\$106,223	\$87,062
305	2200	\$113,692	\$91,941
319	2300	\$121,508	\$97,047
332	2400	\$129,672	\$102,379
346	2500	\$138,184	\$107,939
360	2600	\$147,042	\$113,725
374	2700	\$156,248	\$119,738
388	2800	\$165,802	\$125,979
402	2900	\$175,702	\$132,446
416	3000	\$185,951	\$139,140
429	3100	\$196,546	\$146,061
443	3200	\$207,489	\$153,209
457	3300	\$218,780	\$160,583
471	3400	\$230,417	\$168,185
485	3500	\$242,403	\$176,014

Economic Conductor Analysis

1 Phase Construction

15.2 kV	Operating Voltage (Phase to Ground)
1 phases	Number of Phases (1, 2, or 3)
100 kW	Initial Load in kW (this value should remain at 100 kW)
3%	Annual Load Growth
95%	Power Factor (residential = 90% unless capacitors are used)
57%	Load Factor (annual value in \%)
3%	Annual Inflation Rate of Construction Costs
13.45%	Carrying Charge Rate
$\$ 0.0300 \$ / \mathrm{kWh}$	Wholesale Energy Cost ($\$ / \mathrm{kWh}$)
$\$ 5.22 \$ / \mathrm{kW}$	Wholesale Demand Cost ($\$ / \mathrm{kW}$)
5%	Inflation Rate of Wholesale Power Costs (annual inflation rate)
30 years	Period (number of years of the analysis)
6%	Interest Rate (to be used as the discount rate in the present worth analysis)

Description of the Conductor	4 ACSR	2 ACSR	$1 / 0 \mathrm{ACSR}$	$4 / 0 \mathrm{ACSR}$	397 ACSR	795 ACSR
Initial Construction Cost Per Mile	$\$ 0$	$\$ 16,000$	$\$ 20,000$	$\$ 0$	$\$ 0$	$\$ 0$
Resistance in Onms Per Mile	2.459	1.583	1.034	0.573	0.257	0.131
Present Worth of Construction Costs	$\$ 0$	$\$ 29,622$	$\$ 37,027$	$\$ 0$	$\$ 0$	$\$ 0$

Initial Load		Total Annual Cost Per Mile
(AMPS)	(kW)	To

7	100	$\$ 29,665$	$\$ 37,056$
14	200	$\$ 29,796$	$\$ 37,141$
21	300	$\$ 30,013$	$\$ 37,283$
28	400	$\$ 30,317$	$\$ 37,481$
35	500	$\$ 30,708$	$\$ 37,737$
42	600	$\$ 31,185$	$\$ 38,049$
48	700	$\$ 31,750$	$\$ 38,417$
55	800	$\$ 32,401$	$\$ 38,843$
62	900	$\$ 33,139$	$\$ 39,325$
69	1000	$\$ 33,964$	$\$ 39,864$
76	1100	$\$ 34,876$	$\$ 40,460$
83	1200	$\$ 35,875$	$\$ 41,112$
90	1300	$\$ 36,961$	$\$ 41,821$
97	1400	$\$ 38,133$	$\$ 42,587$
104	1500	$\$ 39,392$	$\$ 43,409$
111	1600	$\$ 40,739$	$\$ 44,289$
118	1700	$\$ 42,172$	$\$ 45,225$
125	1800	$\$ 43,691$	$\$ 46,218$
132	1900	$\$ 45,298$	$\$ 47,267$
139	2000	$\$ 46,992$	$\$ 48,373$
145	2100	$\$ 48,772$	$\$ 49,536$
152	2200	$\$ 50,639$	$\$ 50,756$
159	2300	$\$ 52,594$	$\$ 52,032$
166	2400	$\$ 54,635$	$\$ 53,365$
173	2500	$\$ 56,762$	$\$ 54,755$
180	2600	$\$ 58,977$	$\$ 56,202$
187	2700	$\$ 61,278$	$\$ 57,705$
194	2800	$\$ 63,667$	$\$ 59,265$
201	2900	$\$ 66,142$	$\$ 60,882$
208	3000	$\$ 68,704$	$\$ 62,555$
215	3100	$\$ 71,353$	$\$ 64,286$
222	3200	$\$ 74,089$	$\$ 66,073$
229	3300	$\$ 76,911$	$\$ 67,916$
235	3400	$\$ 79,821$	$\$ 69,817$
242	3500	$\$ 82,817$	$\$ 71,774$

Economic Conductor Analysis

3 Phase Construction

7.6 kV
3 phases
100 kW
3%
95%
57%
3%
13.45%
$\$ 0.0300 \$ / \mathrm{kWh}$
$\$ 5.22 \$ / \mathrm{kW}$
5%
30 years
6%

Operating Voltage (Phase to Ground)
Number of Phases (1, 2, or 3)
Initial Load in kW (this value should remain at 100 kW)
Annual Load Growth
Power Factor (residential $=90 \%$ unless capacitors are used)
Load Factor (annual value in \%)
Annual Inflation Rate of Construction Costs
Carrying Charge Rate
Wholesale Energy Cost ($\$ / \mathrm{kWh}$)
Wholesale Demand Cost ($\$ / \mathrm{kW}$)
Inflation Rate of Wholesale Power Costs (annual inflation rate)
Period (number of years of the analysis)
Interest Rate (to be used as the discount rate in the present worth analysis)

Description of the ConductorInitial Construction Cost Per Mile		4 ACSR	2 ACSR	1/0 ACSR	4/0 ACSR	397 ACSR	795 ACSR
		\$0	\$0	\$29,000	\$35,000	\$50,000	\$0
Resistance in Ohms Per Mile		2459	1.583	1.034	0.573	0.257	0.131
Present Worth of Construction Costs		\$0	\$0	\$53,690	\$64,798	\$92,568	\$0
	Initial Load	Total Annual Cost Per Mile					
(AMPS)	(kW)						

5	100	$\$ 54,030$	$\$ 64,987$	$\$ 92,653$
9	200	$\$ 55,051$	$\$ 65,552$	$\$ 92,906$
14	300	$\$ 56,753$	$\$ 66,496$	$\$ 93,328$
18	400	$\$ 59,136$	$\$ 67,816$	$\$ 93,919$
23	500	$\$ 62,199$	$\$ 69,513$	$\$ 94,679$
28	600	$\$ 65,943$	$\$ 71,588$	$\$ 95,608$
32	700	$\$ 70,368$	$\$ 74,040$	$\$ 96,706$
37	800	$\$ 75,474$	$\$ 76,870$	$\$ 97,972$
42	900	$\$ 81,260$	$\$ 80,076$	$\$ 99,408$
46	1000	$\$ 87,727$	$\$ 83,660$	$\$ 101,012$
51	1100	$\$ 94,875$	$\$ 87,621$	$\$ 102,785$
55	1200	$\$ 102,704$	$\$ 91,959$	$\$ 104,727$
60	1300	$\$ 111,213$	$\$ 96,675$	$\$ 106,838$
65	1400	$\$ 120,403$	$\$ 101,768$	$\$ 109,118$
69	1500	$\$ 130,274$	$\$ 107,238$	$\$ 111,566$
74	1600	$\$ 140,826$	$\$ 113,085$	$\$ 114,184$
78	1700	$\$ 152,058$	$\$ 119,310$	$\$ 116,970$
83	1800	$\$ 163,971$	$\$ 125,911$	$\$ 119,926$
88	1900	$\$ 176,565$	$\$ 132,890$	$\$ 123,050$
92	2000	$\$ 189,840$	$\$ 140,247$	$\$ 126,343$
97	2100	$\$ 203,795$	$\$ 147,980$	$\$ 129,804$
102	2200	$\$ 218,431$	$\$ 156,091$	$\$ 133,435$
106	2300	$\$ 233,748$	$\$ 164,579$	$\$ 137,235$
111	2400	$\$ 249,745$	$\$ 173,444$	$\$ 141,203$
115	2500	$\$ 266,424$	$\$ 182,686$	$\$ 145,341$
120	2600	$\$ 283,783$	$\$ 192,306$	$\$ 149,647$
125	2700	$\$ 301,823$	$\$ 202,303$	$\$ 154,122$
129	2800	$\$ 320,543$	$\$ 212,677$	$\$ 158,766$
134	2900	$\$ 339,945$	$\$ 223,429$	$\$ 163,579$
139	3000	$\$ 360,027$	$\$ 234,557$	$\$ 168,560$
143	3100	$\$ 380,790$	$\$ 246,063$	$\$ 173,711$
148	3200	$\$ 402,233$	$\$ 257,946$	$\$ 179,030$
152	3300	$\$ 424,358$	$\$ 270,207$	$\$ 184,518$
157	3400	$\$ 447,163$	$\$ 282,844$	$\$ 190,176$
162	3500	$\$ 470,649$	$\$ 295,859$	$\$ 196,002$

Economic Conductor Analysis

3 Phase Construction

15.2 kV	Operating Voltage (Phase to Ground)
3 phases	Number of Phases (1,2, or 3)
100 kW	Initial Load in kW (this value should remain at 100 kW)
3%	Annual Load Growth
95%	Power Factor (residential = 90% unless capacitors are used)
57%	Load Factor (annual value in $\%$)
3%	Annual Inflation Rate of Construction Costs
13.45%	Carrying Charge Rate
$\$ 0.0300 \$ / k W h$	Wholesale Energy Cost $(\$ / \mathrm{kWh})$
$\$ 5.22 \$ / \mathrm{kW}$	Whalesale Demand Cost $\$ / \mathrm{kW})$
5%	Inflation Rate of Wholesale Power Costs (annual inflation rate)
30 years	Period (number of years of the analysis)
6%	Interest Rate (to be used as the discount rate in the present worth analysis)

Description of the Conductor	4 ACSR	2 ACSR	$1 / 0 \mathrm{ACSR}$	$4 / 0 \mathrm{ACSR}$	397 ACSR	795 ACSR
Initial Construction Cost Per Mile	$\$ 0$	$\$ 0$	$\$ 29,000$	$\$ 35,000$	$\$ 50,000$	$\$ 0$
Resistance in Ohms Per Mile	2.459	1.583	1.034	0.573	0.257	0.131
Present Worth of Construction Costs	$\$ 0$	$\$ 0$	$\$ 53,690$	$\$ 64,798$	$\$ 92,568$	$\$ 0$

Initial Load		
(AMPS $)$	$(k W)$	Total Annual Cost Per Mile

2	100	$\$ 53,775$	$\$ 64,845$	$\$ 92,590$
5	200	$\$ 54,030$	$\$ 64,987$	$\$ 92,653$
7	300	$\$ 54,456$	$\$ 65,222$	$\$ 92,758$
9	400	$\$ 55,051$	$\$ 65,552$	$\$ 92,906$
12	500	$\$ 55,817$	$\$ 65,977$	$\$ 93,096$
14	600	$\$ 56,753$	$\$ 66,496$	$\$ 93,328$
16	700	$\$ 57,859$	$\$ 67,109$	$\$ 93,603$
18	800	$\$ 59,136$	$\$ 67,816$	$\$ 93,919$
21	900	$\$ 60,582$	$\$ 68,618$	$\$ 94,278$
23	1000	$\$ 62,199$	$\$ 69,513$	$\$ 94,679$
25	1100	$\$ 63,986$	$\$ 70,504$	$\$ 95,123$
28	1200	$\$ 65,943$	$\$ 71,588$	$\$ 95,608$
30	1300	$\$ 68,071$	$\$ 72,767$	$\$ 96,136$
32	1400	$\$ 70,368$	$\$ 74,040$	$\$ 96,706$
35	1500	$\$ 72,836$	$\$ 75,408$	$\$ 97,318$
37	1600	$\$ 75,474$	$\$ 76,870$	$\$ 97,972$
39	1700	$\$ 78,282$	$\$ 78,426$	$\$ 98,669$
42	1800	$\$ 81,260$	$\$ 80,076$	$\$ 99,408$
44	1900	$\$ 84,409$	$\$ 81,821$	$\$ 100,189$
46	2000	$\$ 87,727$	$\$ 83,660$	$\$ 101,012$
48	2100	$\$ 91,216$	$\$ 85,593$	$\$ 101,877$
51	2200	$\$ 94,875$	$\$ 87,621$	$\$ 102,785$
53	2300	$\$ 98,704$	$\$ 89,743$	$\$ 103,735$
55	2400	$\$ 102,704$	$\$ 91,959$	$\$ 104,727$
58	2500	$\$ 106,873$	$\$ 94,270$	$\$ 105,761$
60	2600	$\$ 111,213$	$\$ 96,675$	$\$ 106,838$
62	2700	$\$ 115,723$	$\$ 99,174$	$\$ 107,957$
65	2800	$\$ 120,403$	$\$ 101,768$	$\$ 109,118$
67	2900	$\$ 125,253$	$\$ 104,456$	$\$ 110,321$
69	3000	$\$ 130,274$	$\$ 107,238$	$\$ 111,566$
72	3100	$\$ 135,465$	$\$ 110,114$	$\$ 112,854$
74	3200	$\$ 140,826$	$\$ 113,085$	$\$ 114,184$
76	3300	$\$ 146,357$	$\$ 116,150$	$\$ 115,556$
78	3400	$\$ 152,058$	$\$ 119,310$	$\$ 116,970$
81	3500	$\$ 157,929$	$\$ 122,563$	$\$ 118,427$

COMPARISON OF TOTAL ACCUMULATED COST and kWH LOSSES OF PLAN 1 vs PLAN 2

(All costs are the the accumulated present worth of the inflated cost)

TOTAL COSTS (\$)

	(Capitalized Costs + Lossos)	
	PLAN 1	PLAN 2
2007	87,800	87,300
2008	177,100	175,900
2009	267,900	266,000
2010	360,100	357,500
2011	454,000	450,700
2012	549,500	545,400
2016	949,100	941,300
2021	$1,491,700$	$1,478,400$
2026	$2,088,700$	$2,068,900$
2031	$2,747,100$	$2,719,900$
2036	$3,474,500$	$3,438,800$

TOTAL. CAPITALIZED COSTS (\$)

	PLAN1	PLANL2
2007	5,200	5,600
2008	10,100	11,000
2009	14,700	16,000
2010	19,000	20,700
2011	23,100	25,200
2012	27,000	29,400
2016	40,400	44,000
2021	53,400	58,000
2026	63,000	68,500
2031	70,300	76,400
2036	75,600	82,200

TOTAL COST OF LOSSES (\$)

	RLAN 1	PLAN 2
2007	82,700	81,600
2008	167,000	164,900
2009	253,200	250,000
2010	341,100	336,800
2011	430,900	425,500
2012	522,500	516,000
2016	908,600	897,300
2021	$1,438,300$	$1,420,400$
2026	$2,025,600$	$2,000,400$
2031	$2,676,800$	$2,643,500$
2036	$3,398,900$	$3,356,500$

TOTAL ACCUMULATED LOSSES (MWh)

	PLAN 1	PLAN2
2007	2,060	2,030
2008	4,240	4,190
2009	6,560	6,480
2010	9,020	8,910
2011	11,630	11,490
2012	14,400	14,220
2016	27,260	26,920
2021	48,270	47,670
2026	76,510	75,550
2031	114,450	113,020
2036	165,440	163,380

16.10% Fixed Charge Bate
3.50% Annual cost inllation rate-Construction
6.00\% Annual present worth rate - Cost of construction
3.00% Annual growth rate - kW demand
2.00% Annual cost inflation rate of engergy -kWh
6.00\% Annual present worth rate-Cost of kWh losses

.............. Feeder Ho o (скт05-01) Beginning with Device 05-01

FARMERS RECC 2007-2011 CWP

Proposed System Map
 2011 Load Level

1 inch = 2 miles

[^0]: * Carryover Items

 NOTE: This information reflects month-end dollar values through January 2007

[^1]: - Inflated by 35%
 ** Inflated by 25\%

