
2007-00435

2007 - 2011

ONIMISSION

WORK PLAN

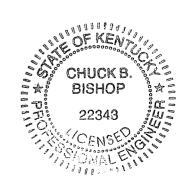
Kentucky 34 Barren PO Box 1298 Glasgow KY 42142-1298

2007 - 2011 CONSTRUCTION WORK PLAN

FOR

FARMERS RURAL ELECTRIC COOPERATIVE CORPORATION

KENTUCKY - 34 - BARREN GLASGOW, KENTUCKY


PREPARED BY:

FARMERS RURAL ELECTRIC COOPERATIVE CORPORATION GLASGOW, KENTUCKY

MARCH, 2007

I hereby certify that this 2007 - 2011 Construction Work Plan was prepared by me or under my direct supervision and that I am a duly registered professional engineer under the laws of the State of Kentucky.

Registration No. 22343

FRECC CONSTRUCTION WORK PLAN REPORT TABLE OF CONTENTS

- i. Cover Sheet
- ii. Title Page; Engineer's Certification
- iii. Table of Contents

I. EXECUTIVE SUMMARY

- A. Purpose, Results and General Basis of Study
- B. System Description: Distribution System and Power Supply
- C. Summary of Construction Program and Costs
- D. Substation Transformer Load Data
- E. Required Substation Construction

II. BASIS OF STUDY AND PROPOSED CONSTRUCTION

- A. Design Criteria
- B. Distribution Line and Voltage Conversion Costs
- C. Status of Previous CWP Items
- D. Analysis of Current System Studies
 - 1. 1996 Long-Range Plan
 - 2. 2005 O & M Survey (REA Form 300)
 - 3. Sectionalizing Studies

E. Historical and Projected System Data

- 1. Seasonal Peak Load Current Measurements
- 2. Summary of Service Interruptions
- 3. System KW, KWH, and LF Charts

III. REQUIRED CONSTRUCTION ITEMS

- A. Summary of Items
- B. Construction Required For New Services
- C. Meter Changes Required For AMR Implementation
- D. Service Changes Required For Existing Services
- E. Distribution Lines Site Specific Additions and Changes
- F. Substations Additions and Changes
- G. Sectionalizing Equipment Additions and Changes
- H. Line Regulators Additions and Changes
- I. Line Capacitors Additions and Changes
- J. Replacement Poles
- K. Distribution Auto-transformers Additions and Changes
- L. Other Distribution Items Security Lights
- M. Other Distribution Items AMR

IV. APPENDIX

- A. Samples of Computerized Analysis Used
 - 1. Economical Conductor Sizes
 - 2. Economic Analysis of Alternate Plans
 - 3. Distribution Circuit Analysis Printout
- B. System Maps 2006 Load Levels

PURPOSE OF REPORT

FRECC CWP: I-A

Page 1

This report documents the March 2007 engineering analysis of, and summarizes the proposed construction for, Farmers Rural Electric Cooperative Corporation's (FRECC) electric distribution system for the four-year planning period of 04/2007 thru 03/2011.

The report also provides engineering support, in the form of descriptions, costs and justification of required new facilities, for a loan application to RUS to finance the proposed construction program.

RESULTS OF PROPOSED CONSTRUCTION

Upon completion of construction of the facilities proposed herein, the system will provide adequate and dependable service to 23,264 residential/farm consumers using an average of 1260 kWH per consumer per month, and 1766 large power and special loads which are provided for on an individual basis. It is estimated there will be 2000 idle services.

GENERAL BASIS OF STUDY

The 2011 projected number of consumers and total peak system load was taken directly from the Cooperative's 2006 Load Forcast Report (LFR) as approved by RUS.

The Cooperative's 1996 Long-Range Plan (LRP) load projections and recommendations were followed for this four-year planning period. All of the construction proposed herein is consistent with the LRP unless otherwise noted and explained.

The Cooperative's 2005 Operations and Maintenance review, (Review Rating Summary; RUS Form 300), was used to determine construction required to replace physically deteriorated equipment and material, upgrade portions of the system to conform with code or safety requirements, and/or improve reliability or quality of service.

New distribution, transmission, and power supply construction requirements were considered simultaneously as a "one system" approach for the orderly and economical development of the total system. All of the proposed construction and recommendations herein, relative to power supply and delivery, were discussed with the cooperative's power supplier, East Kentucky Power Cooperative (EKPC).

A complete list of the lines and equipment, and their estimated cost, (all based on recent historical data), required for 2,560 new services is developed in Section III-B. A similar list and cost of necessary service upgrades to existing members is in Section III-D.

An analysis, using as a basis RUS guidelines and the design criteria herein, of thermal loading, voltages, physical conditions and reliability was performed on all of the substations, distribution lines and major equipment of the existing system. Milsoft software was used to analyze the distribution circuits during the 2006 / 2007 winter substation peak loading periods. A sample printout is in Section A of the Appendix. The exhibits in Section II form the rest of the basis of this analysis.

For each deficiency that was determined, alternate solutions were investigated and economically evaluated, so that the most cost effective construction, if required, could be proposed. A sample computer analysis used to determine the most economical alternate plans is in Section A of the Appendix.

FRECC CWP: I-A

Page 2

SYSTEM DESCRIPTION: DISTRIBUTION SYSTEM AND POWER SUPPLY

FRECC CWP: I-B-1

Page 1

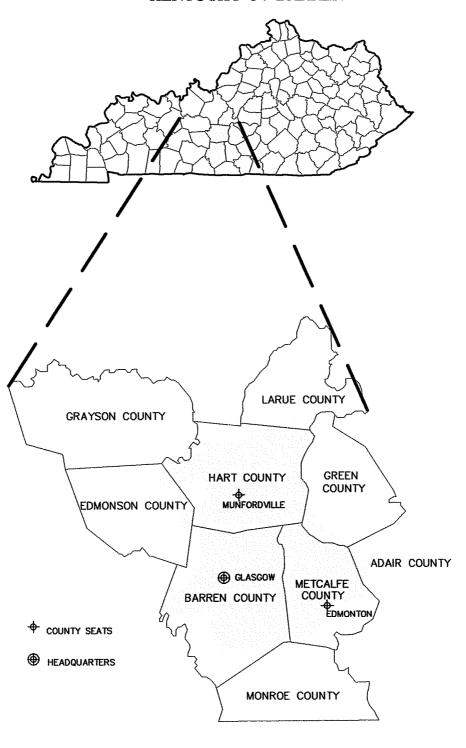
Farmers Rural Electric Cooperative Corporation (FRECC), whose headquarters are in Glasgow, Kentucky, provides service in the rural areas of three counties and small portions of six counties in the south central portion of the state as shown on Map I-B-1. The 1,120 square mile service area is comprised mostly of rolling, forested hills and has two small lakes. FRECC's service area surrounds Glasgow (2000 population of 15,000). Glasgow is served by its own municipal electric system. Several of the other most populated areas are served by Kentucky utilities, a private power company.

Most of the economy of this area is based on commercial services for the tourist industry and agriculture. The Cooperative also serves several oil wells. FRECC has and will continue to serve the moderate growth of new commercial, small manufacturing and residential consumers adjacent to Glasgow.

The following data is from FRECC's 12/31/06 REA Form 7:

Number of Consumers: 23,537
MWH Purchased: 522,143
MWH Sold: 496,089
Maximum Non-Coincident kW Demand 120,076

Total Utility Plant: \$58,474,459 (\$2,484 / member)

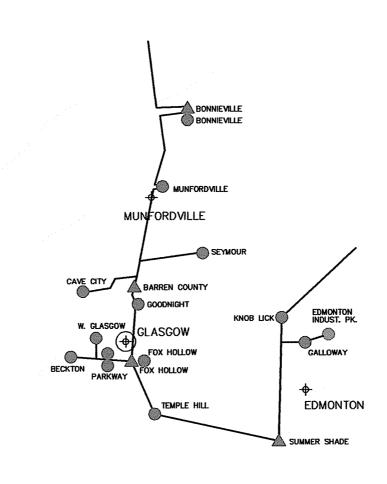

Consumers/mile: 6.76

There are 48 primary distribution circuits totaling 3,481 miles of line served from twelve distribution substations. Thirty-two of the circuits are partially energized at 14,400/25,000 Volts, grounded wye, the remainder are at 7,200/12,470 volts, grounded wye. All primary lines built since 1964 have been insulated for 14,400/25,000 Volts. Installed conductor sizes range from #8 copperweld to 795 MCM Aluminum. Almost all new primary construction is overhead with only a small amount of existing plant being underground primary.

East Kentucky Power Cooperative (EKPC) provides all of power and energy needs to Farmers Rural Electric Cooperative Corporation, plus 16 other distribution cooperatives, by virtue of a standard "all requirements" contract. EKPC is a RUS financed G & T cooperative with offices in Winchester, Kentucky.

EKPC constructs, owns, operates and maintains the twelve distribution substations and 69,000 Volt transmission lines which supply FRECC's distribution system. The predominant substation low-side voltage is 14,400/25,000 Volts, grounded wye.

FARMERS RURAL ELECTRIC SERVICE AREA KENTUCKY 34 BARREN


Page 8

EAST KENTUCKY POWER COOPERATIVE'S SUBSTATION AND TRANSMISSION NETWORK

FOR

FARMERS RURAL ELECTRIC SERVICE AREA

KENTUCKY 34 BARREN

Page 9

71,702

69,277

686,934

74,211

895,125

15,626,014

OTHER DISTRIBUTION EQUIPMENT

Total

SUMMARY OF CONSTRUCTION PROGRAM AND COSTS ESTIMATED COST 3rd YEAR 4th YEAR 1st YEAR 2nd YEAR TOTAL CODE EXT ITEM # MILES DESCRIPTION 356,362 - UG NEW CONSUMERS 84,547 101 2480 - OH NEW CONSUMERS 140.2 128,001 1,167,481 1,208,343 1,250,635 4,754,460 102 100 **NEW DISTRIBUTION LINES** 148.6 1,212,548 1,254,988 1,298,912 1,344,374 5,110,823 32,200 CONV 1-PH TO 3-PH, RECOND #4 ACSR TO #1/0 ACSR 32,200 363 1-2-C CONDUCTOR REPLACEMENT 40.0 160,000 160,000 160,000 160,000 640,000 374 ALL-ALL-A 36,800 32,200 375 1-4-A CONV 2-PH TO 3-PH, CONV 1-PH TO 3-PH, RECOND TO #1/0 0.8 36.800 32,200 2-5-A 3-4-A 0.7 376 CONV 1-PH TO 3-PH, RECOND #4 ACSR TO #1/0 ACSR 74,500 74,500 8.8 377 CONV 1-PH 7.2KV TO 14 4KV 4-2-A CONV 1-PH TO 2-PH, RECOND #4 ACSR TO #1/0 ACSR 59,800 59,800 378 67,900 7,650 379 5-1-A CONV 1-PH 7.2KV TO 14.4KV 7.6 67,900 7,650 380 381 5-2-A 5-3-A CONV 3-PH 7.2KV TO 14.4KV 0.7 CONV 1-PH & 3-PH 7 2 TO 14 4KV, RECOND 3-PH #4 TO #4/0 27.5 373,000 373,000 72,500 76,800 382 5-3-B RECOND 3-PH #4 ACSR TO #1/0 ACSR 2.5 72,500 383 5-4-A 5-4-B CONV 1-PH & 3-PH 7.2 TO 14.4KV 7.7 76,800 176,700 384 385 176,700 CONV 1-PH TO 3-PH RECOND #4 ACSR TO #4/0 ACSR 3.1 7-4-A CONV 1-PH TO 3-PH, RECOND #4 ACSR TO #1/O ACSR 0.2 9,200 9,200 386 8-2-A CONV 1-PH & 2-PH & 3-PH 7 2KV TO 14 4KV 38.8 349,850 349,850 CONV 1-PH & 3-PH 7.2KV TO 14.4KV, RECOND 3-PH TO #4/0 316,400 387 8-3-A 10.8 316,400 46,000 46,000 CONV 1-PH TO 3-PH, RECOND #4ACSR TO #1/0 ACSR 1.0 10-2-A 388 80,000 RECOND 3-PH #1/0 ACSR TO 397 ACSR 1.6 80,000 389 12-2-A 654,400 300 LINE CONVERSIONS 153.8 653,100 509,850 634,150 2,451,500 340,339 352,251 1,385,999 328.830 364.580 TRANSFORMERS - NEW SERVICES 601 476,550 TRANSFORMERS - CONVERSIONS 372,065 1,677,000 METERS - NEW SERVICES 89,600 91,840 94,136 96,489 METERS - AMR CHANGEOUT 1,161,000 516,000 0 3.911.614 SERVICE UPGRADES 90,182 93,339 96,605 99,987 380,113 602 182,700 603 SECTIONALIZING EQUIPMENT 62,925 62,925 62,925 62,925 107,400 107,400 107,400 107,400 429,600 604 REGULATOR STATIONS CAPACITORS 12,500 12,500 12,500 12,500 50,000 605 606 POLE REPLACEMENTS (1360 POLES TOTAL) 465,686 481,985 498.854 516,314 1,962,839 AUTOTRANSFORMERS 62,925 62,925 62,925 62,925 251,700 609 DISTRIBUTION EQUIPMENT 1,130,448 1,161,412 1,193,460 1,226,630 7,168,566 600 71,702 74,211 282,125 701 SERCURITY LIGHTS 66,934 69,277 AMR COMPUTER AND COMMUNICATION HARDWAF 620,000 613.000 702

* CARRYOVER

700

SUBSTATION TRANSFORMER LOAD DATA

HISTORICAL AND PROJECTED WINTER PEAK KW DEMANDS

	SUBSTATION	TR/	ANSFORMER KVA	R CLASS	ACTUAL 2/16/2007	PROPOSED SYSTEM 2011 (10% WINTER)	MAX LOAD % RATING
1.	GOODNIGHT	3	6,033	F/A	8,199	10,351	57%
2.	MUNFORDVILLE	1	18,100	F/A	16,197	16,330	90%
3.	TEMPLE HILL	1	18,100	F/A	13,156	15,713	87%
4.	KNOB LICK	1	18,100	F/A	10,241	9,275	51%
5.	BECKTON**	1	18,100	F/A	15,575	16,700	92%
6.	CAVE CITY	3	6,033	F/A	8,882	11,710	65%
7.	PARKWAY I	1	18,100	F/A	10,930	13,499	75%
	PARKWAY II	1	18,100	F/A	7,824	8,700	48%
8.	GALLOWAY	1	18,100	F/A	9,679	13,129	73%
9.	BONNIEVILLE	1	8,080	F/A	4,262	5,509	68%
10.	WEST GLASGOW	1	18,100	F/A	6,042	11,461	63%
11.	SEYMOUR	1	18,100	F/A	5,437	9,863	54%
12.	FOX HOLLOW	1	18,100	F/A	9,979	14,133	78%
13.	EDM INDUST PK	1	18,100	F/A	0	4,628	26%
	TOTALS:		207,178		126,403	161,001	

Under construction. Scheduled for completion during the spring 2008. This substation will relieve loading from Galloway. Monitoring Load in Conjunction with EKPC

F/A - Forced Air

O/A - Open Air

REQUIRED SUBSTATION CONSTRUCTION

FRECC CWP: I-E

Page 1

The 2007 - 2011 CWP does include one new distribution substation. This substation is for the Edmonton Industrial Park and will relieve load from the Galloway substation. With the inclusion of the new substation, the analysis shows that no substations will become overloaded during the construction work plan period. FRECC will continue to monitor all substation loading with EKPC.

DESIGN CRITERIA

Each of the following design criteria items was reviewed by the RUS General Field Representative on November 16, 2006 and his provisional concurrence was attained.

Construction proposed herein is required to meet the following minimum standards of adequacy for voltages, thermal loading, safety and reliability on the system.

- 1. Voltage levels on primary distribution lines are to fall between 118 and 126 volts on a 120 volt base.
- 2. The following equipment is not to be thermally loaded by more than the percentage shown of its nameplate rating (winter loading):

a. Power Transformers
b. Regulators
c. Auto-Transformers
d. Reclosers
e. Line Fuses
130% Winter; 100% Summer
130% Winter; 100% Summer
100% Winter; 100% Summer
80% Winter; 80% Summer

- 3. Primary conductors are not to be loaded over 75% of their thermal rating. A case by case limit is used for major tie lines between substations to allow for different backfeed situations.
- 4. Poles and/or crossarms are to be replaced if found to be physically deteriorated by visual inspection and/or tests.
- 5. Conductors (and associated poles and hardware as required) will be considered for replacement if found to be in poor condition, having excessive sag in need of being changed out on a systematic basis.
- 6. Primary distribution lines are to be rebuilt and/or relocated if they are found to be unsafe or fail to meet the applicable National Electrical Safety Code clearances.
- 7. New lines and line conversions to be built according to the standard primary voltage levels as determined after review of the Long Range Plan, present loading and future load growth projection.
- 8. New primary conductor sizes to be determined on a case by case basis using the Economic Conductor Sizing Computer Program and presently valid constants and variables. The final proposed conductor may be modified to conform with the cooperative's standard sizes and recommendations of the Long-Range Plan.

- 9. All new primary construction to be overhead except where underground is required to comply with governmental or environmental regulations, local restrictions or favorable economics.
- 10. All new distribution lines to be designed and built according to RUS standard construction specifications and guidelines.
- 11. The fault current available at regulator or auto-transformer location should not exceed limits as set out by IEEE C37.91-1985 and in no case should it exceed 25 times normal base current at the location in question.
- 12. The fault current available at oil circuit recloser locations should not exceed the nameplate rating.
- 13. System improvements to correct voltage drop and to improve phase balance will be made on single and two-phase lines with loads exceeding 50 amps (based on Operating and Engineering practices).
- 14. Power factor correction is to be made when the substation power factor decreases below 97% lagging at peak load or 95% leading at minimum load. Power factor correction capacitors are to be located for maximum loss reduction with consideration given for voltage improvement.

THE PRECEEDING CRITERIA IS USED FOR DESIGN PURPOSES ONLY. IT IS NOT MEANT TO BE INCLUSIVE OF ALL CRITERIA THAT CAN OR SHOULD BE USED.

DISTRIBUTION LINE AND VOLTAGE CONVERSION COSTS

(ESTIMATED)

<u>\$ / mile</u>

NEW CONSTRUCTION (OVERHEAD)

\$ 26,000	1 - PHASE;	# 2 ACSR
29,000	1 - PHASE ;	#1/0 ACSR
46,000	2 - PHASE ;	# 2 ACSR
51,000	2 - PHASE;	#1/0 ACSR
49,000	3 - PHASE;	# 2 ACSR
55,000	3 - PHASE;	#1/0 ACSR
65,000	3 - PHASE;	#4/0 ACSR
78,000	3 - PHASE ;	#397ACSR

RECONDUCTORING (OVERHEAD)

\$ 16,000	1 - PHASE ;	# 2 ACSR *
20,000	1 - PHASE ;	#1/0 ACSR *
29,000	3 - PHASE ;	#1/0 ACSR *
35,000	3 – PHASE ;	#4/0 ACSR *
50,000	3 – PHASE ;	397 ACSR *

1-PHASE TO 3-PHASE LINE CONVERSION (OVERHEAD)

\$ 38,000	WITH# 2 ACSR *
46,000	WITH #1/0 ACSR *
57,000	WITH #4/0 ACSR *
68,000	WITH #397ACSR *

VOLTAGE CONVERSION (12 KV TO 25 KV OVERHEAD)

COSTS WILL BE ON A JOB-BY-JOB BASIS BECAUSE EACH JOB WILL HAVE A PORTION ALREADY REINSULATED. (APPROXIMATELY \$8,000 FOR SINGLE PHASE AND \$10,500 FOR THREE PHASE PER MILE EXCLUDING EQUIPMENT) ESTIMATE \$100 PER SINGLE-PHASE TRANSFORMER CHANGE (THIS RELFECTS RETIREMENT OF EXISTING TRANSFORMER)

NOTES:

- * A voltage conversion adder will be included in each reconductoring or line conversion job cost that includes a voltage conversion.
- Above costs include engineering, right-of-way clearing, and overheads.

FRECC CWP: II-C Page 1

STATUS OF PREVIOUS (2002-2006) CWP ITEMS

				ESTIN	ATED COST		
CODE EXT	ITEM#	DESCRIPTION	MILES	ORIGINAL	PRESENT	1 %	STATUS
OODE IEXT		22001111011			[لــــــــ	
101		40 - UG NEW CONSUMERS	3.0	\$200,000	\$207,934		
102		2960 - OH NEW CONSUMERS	172.0	\$3,388,738	\$4,533,931		
100		NEW DISTRIBUTION LINES	175.0	\$3,588,738	\$4,741,865	132%	
100		NEW DIGITALDS HOW EMED	110.0	40,000,700	44,741,000	10210	
339 *	3-3-B	CONV 1-PH TO 3-PH, RECOND #4 ACSR T	1.9	\$81,700	\$61,058	75%	Complete
342 *	9-1-A	CONV 1-PH TO 3-PH, RECOND #4 ACSR T	2.0	\$86,600	\$81,113	94%	Complete
343 *	2-5-C	3-PH AND 1-PH, CONV 12.47 - 25 KV	14.0	\$135,000	\$47,244	35%	Complete
345 *	2-5-B	1-PH, CONV 7.2 - 14.4 KV	9.5	\$79,500	\$60,651	76%	Complete
347 *	5-4-G	CONV 1-PH TO 3-PH, #1/0 ACSR TO # 1/0	1.3	\$55,900	\$28,021	50%	Complete
349 *	7-2-D	CONV 1-PH TO 3-PH, RECOND #4 ACSR T	2.8	\$120,400	\$85,554	71%	Complete
351 *	8-2-B	3-PH AND 1-PH, CONV 12.47 - 25 KV	25.9	\$259,450	Ψ00,004		Cancelled
361	1-2-A	3-PH, RECOND #1/0 ACSR TO #397 ACSR	0.2	\$4,300			Complete
362	1-2-B	CONV 1-PH TO 3-PH, RECOND #4 ACSR T	0.2	\$8,600	\$21,890	255%	Complete
363	1-2-B	CONV 1-PH TO 3-PH, RECOND #4 ACSR T	0.7	\$30,100	Q2.1,000	20070	Carryover
364	2-3-A	3-PH AND 1-PH, CONV 12.47 - 25 KV	9.8	\$100,150	\$91,911	92%	Complete
365	2-4-A	CONV 1-PH TO 2-PH, RECOND #4 ACSR T	1.4	\$60,200	\$54,933	91%	Complete
366	3-4-A	1-PH, CONV 7.2 - 14.4 KV	2.8	\$113,400	\$6,813	6%	Complete
367	3-4-A	1-PH, CONV 7.2 - 14.4 KV	0.3	\$2,650	\$9,050	342%	Complete
368	3-4-B 4-1-A	3-PH AND 1-PH, CONV 12.47 - 25 KV	25.6	\$263,800	\$153,371	58%	Complete
	10-2-A	3-PH, RECOND #4 ACSR TO #4/0 ACSR, C	5.0	\$60,250	\$158,975	264%	Complete
369 370	7-3-A	CONV 1-PH TO 3-PH, RECOND #4 ACSR T	1.0	\$43,000	\$42,905	100%	Complete
		1-PH, CONV 7.2 - 14.4 KV	8.6	\$82,550	\$26,289	32%	Complete
371	8-2-B	1-PH, CONV 7.2 - 14.4 KV	1.7		\$20,269	171%	Complete
372	9-1-A	• * *	1.0	\$16,100		123%	Complete
373	9-1-B ALL-AL	1-PH, CONV 7.2 - 14.4 KV	120.0	\$9,500	\$11,699 \$1,011,895	77%	In-Progress
374	ALL-AL	CONDUCTOR REPLACEMENT		\$1,320,000			m-riogress
300		LINE CONVERSIONS	235.7	\$2,845,150	\$1,980,934	70%	
601		TRANSFORMERS & METERS (AND MISC S	PECIAL EQ)	\$1,970,054	\$2,401,811	122%	
602		SERVICE UPGRADES		\$121,074	\$358,008	296%	
603		SECTIONALIZING EQUIPMENT		\$50,000	\$138,451	277%	
604 .1	2-3-A	3-PHASE REGULATOR BANK		\$21,000			
604 .2	5-3-C	3-PHASE REGULATOR BANK		\$21,000			
604 3	5-4-H	3-PHASE REGULATOR BANK		\$21,000			
604 .4	8-2-C	3-PHASE REGULATOR BANK		\$21,000			
604 .5	8-2-D	1-PHASE REGULATOR BANK		\$4,000			
		REGULATORS			\$66,087	75%	
605		CAPACITORS		\$20,000	\$0	0%	
606 .0		POLE REPLACEMENTS (1800 POLES TO		\$891,000			
606 .1		COPPERWELD REPLACEMENT	101.6	\$934,720			Complete
606 .2*	5-3-A	COPPERWELD REPLACEMENT	1.7	\$15,640			Complete
606 .3*	5-3-B	COPPERWELD REPLACEMENT	1.5	\$13,800			Complete
606 4*	5-4-A	COPPERWELD REPLACEMENT	2.4	\$22,080			Complete
606 .5*	5-4-B	COPPERWELD REPLACEMENT	2.5	\$23,000			Complete
606 .6*	5-4-C	COPPERWELD REPLACEMENT	1.7	\$15,640			Complete
606 7*	4-4-B	COPPERWELD REPLACEMENT	3.8	\$34,960			Complete
606 .8*	3-2-A	COPPERWELD REPLACEMENT	0.8	\$6,900			Complete
606 9*	1-1-A	COPPERWELD REPLACEMENT	4.2	\$38,640			Complete
606 10*	4-4-A	COPPERWELD REPLACEMENT	4.4	\$49,300			Complete
606 .11	3-4-C	COPPERWELD REPLACEMENT	11.8	\$108,560			Complete
606	040	REPLACEMENT	136.4	\$2,154,240	\$2,074,814	96%	
608		CLEARANCE POLES	80	\$54,000	\$0	0%	
609		AUTOTRANSFORMERS		\$135,500	\$97,280	72%	
600		DISTRIBUTION EQUIPMENT		\$4,592,868	5,136,451	112%	
701		SERCURITY LIGHTS		\$309,000	\$410,654	133%	
701 702		REINBURSEMENTS		\$1,568,086	\$4,957,181	316%	
700		OTHER DISTRIBUTION EQUIPMENT		\$1,877,086	\$4,957,181	264%	
					ATT-0		
1600		MISCELLANEOUS PROJECTS		\$12,903,842	\$782,562 \$17,598,993	136%	

ANALYSIS OF 1996 LONG-RANGE PLAN

Farmers Rural Electric Cooperative's 1996 Long-Range Plan (LRP) still remains current and adequate. The LRP was used as a guide in the 2007 – 2011 CWP preparation.

FRECC CWP: II-D-1

Page 1

The study was based on the 1993-1994 winter peak loads of 83,800 KW and an average annual load growth rate of 3.0%. Three future load levels were studied: 2000 when the loads would be increased by approximately 31% (110,000 KW), 2005 when the loads would be increased by approximately 48% (124,000 KW) and 2015 when the loads would increase by approximately 80 % (151,000 KW) more than the base year.

The LRP recommends that the distribution system continue to be built as 14.4/24.9 KV but operated at the most economic level (7.2/12.47 KV or 14.4/24.9 KV) depending on the loading. Alternate plans which were developed but found not to be the most economical were: (1) conversion of the entire system to 14.4/24.9 KV and (2) building and operating new plant as 7.2/12.47 KV.

ANALYSIS OF 2005 OPERATIONS & MAINTENANCE SURVEY

FRECC CWP: II-D-2

Page 1

In May of 2005, an Operation and Maintenance Survey (O & M Survey) of the FRECC distribution system was conducted. Line and pole inspection records, voltage and current test records, special equipment records, outage records comprised the basis for the system analysis and rating. The completed O & M Survey was reviewed by Mike Norman, RUS General Field Representative on May 19, 2005.

Transmission lines and distribution substations are owned and maintained by East Kentucky Power Cooperative (EKPC) and have been excluded from the rating process.

In general, the overhead and underground distribution facilities were found to be in satisfactory condition. With the exception of right-of-way clearing, all the operations and maintenance programs and engineering programs were found to be satisfactory. We have modified our right-of-way clearing process to address Mr. Norman's concern for vines growing on poles and yard trees.

One-half the system is inspected every year utilizing a ground patrol inspection (2 year cycle). In 1996, FRECC developed a pole inspection plan. The goal of this plan is to inspect all FRECC poles on a 7 year cycle. During the first cycle, we found approximately 8 to 10 percent were physically deteriorated and required replacement. We anticipate this rate to decrease as we continue on our second cycle.

An "Aged Conductor Survey" was performed during a previous CWP which highlighted copperweld conductor and some older 4 ACSR to be in poor physical condition. The age of these conductors were often in excess of 50 years. According to our records, all copperweld conductor has been changed. We anticipate discovering small sections in future years due to inaccuracies in our records. We are continuing to change 4 ACSR as needed.

FRECC has a program to clear the overhead distribution line rights-of-way on a 6 year cycle. This work is performed by in-house and contract tree trimming crews. The program incorporates hand-cutting, use of remote trimmers, and spray equipment. FRECC has experimented with an increased amount of high-volume followed by a low-volume spraying to decrease the amount of cutting and mowing.

Contract construction labor was utilized in the last 4-year CWP to assist FRECC's in-house construction crews. This additional assistance will be required to complete the proposed projects as submitted in the 2007-2011 CWP.

SECTIONALIZING STUDIES

A list of sectionalizing projects and costs associated with this CWP is included in Section III-F of this report. This list incorporates oil circuit reclosers (OCRs), electronic reclosers, sectionalizers, fuses, and any other needed protective equipment.

FRECC CWP: II-D-3

Page 1

Also, FRECC will annually remove from service, inspect, and perform maintenance on approximately one-sixth of the System OCRs. The maintenance includes, but is not limited to, changing the oil, testing and certifying the device, and providing cosmetic repairs. All test reports are documented and saved. Once this is completed, the device can be returned to service.

Finally, the Engineering department of FRECC continually assesses the System with respect to any major changes not reflected in the CWP. Any changes to the protective scheme, CWP related or not, are documented and saved.

SEASONAL PEAK LOAD CURRENT MEASUREMENTS

FRECC CWP: II-E-1

Page 1

			Dec-	-06	
SUBSTATION	СКТ				%
# NAME	NO.	A ph	B ph	C ph	UNBAL
1. GOODNIGHT		267	263	429	34%
00001	1	85	53	94	31%
	2	86	109	136	23%
	3	38	34	59	35%
	4	58	67	140	58%
	5	9	36	5	116%
	5	9	30	1 3	11070
2. MUNFORDVILLE		373	243	302	22%
	1 (14.4)	44	26	76	56%
	2 (14.4)	53	13	45	65%
	3 (14.4)	35	25	45	29%
	4 (14.4)	1	1	1	0%
	5 (14.4)	81	94	67	17%
	6 (14.4)	157	80	66	55%
	7 (14.4)	2	4	2	50%
		077	244	070	00/
3. TEMPLE HILL		277	311	279	8%
	1 (14.4)	97	66	115	29%
	2 (14.4)	22	21	1	93%
	3 (14.4)	45	53	49	8%
	4 (14.4)	60	105	67	36%
	5 (14.4)	24	26	29	10%
	6 (14.4)	29	40	18	38%
4. KNOB LICK		194	185	191	3%
	1 (14.4)	52	43	39	16%
	2 (14.4)	49	88	87	34%
	3 (14.4)	30	5	15	80%
	4 (14.4)	45	45	44	1%
	5 (14.4)	18	4	6	93%
				0.40	=0/
5. BECKTON		324	319	348	5%
	1 (14.4)	11	8	33	90%
	2 (14.4)	132	129	139	4%
	3 (14.4)	78	78	44	34%
	4 (14.4)	103	104	132	17%
6. CAVE CITY		304	396	348	13%
	1	122	140	115	11%
	2	58	60	59	2%
	3	105	187	145	28%
	4	19	9	29	53%
7 DADIZMAY		250	ACA	406	18%
7. PARKWAY I	4	359	464	496	
	1	88	88	102	10%
	2	93	90	128	23%
	3	44	71	63	26%
	4	134	215	203	27%
PARKWAY II		287	293	292	1%
	1	192	204	192	4%
	•	L L			. ,,,

Page 20

SEASONAL PEAK LOAD CURRENT MEASUREMENTS

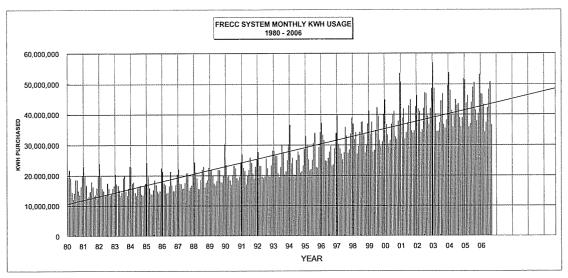
FRECC CWP: II-E-1

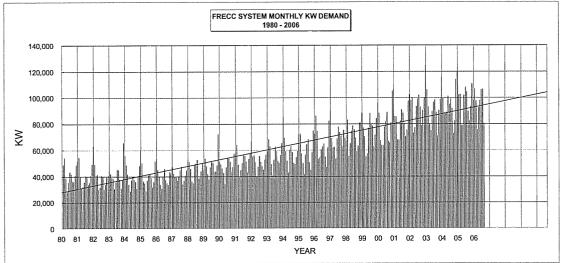
Page 2

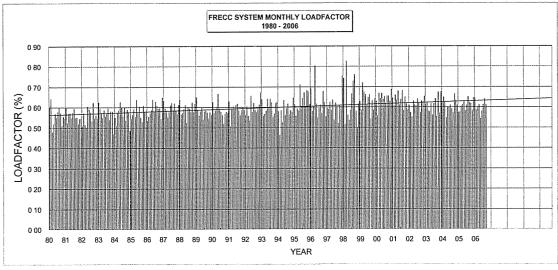
			Dec-06				
SUBSTATION	CKT				%		
# NAME	NO.	A ph	B ph	C ph	UNBAL		
8. GALLOWAY		181	221	207	11%		
o. Onelown	1 (14.4)	134	149	149	7%		
	2 (14.4)	46	72	58	23%		
	3 (14.4)	1	0	0	200%		
O DOMESTIC			00	Fol	240/		
9. BONNIEVILLE		53	88	56	34%		
	1 (14.4)	30	30	22	20%		
	2 (14.4)	23	58	34	51%		
10. WEST GLASGOW		130	133	139	4%		
	1 (14.4)	26	26	41	32%		
	2 (14.4)	104	107	98	5%		
11. SEYMOUR		107	121	83	20%		
TI. OLTWOON	2 (14.4)	62	72	56	14%		
	3 (14.4)	6	8	5	26%		
	4 (14.4)	39	41	22	35%		
10. FOX HOLLOW		437	349	498	18%		
	1	196	119	183	28%		
	2	241	230	315	20%		

^{1.}Unbalance is the percent difference between the current of the maximum or minimum phase and the average current of all three phases.

FRECC CWP: II-E-2 Page 1


SUMMARY OF SERVICE INTERRUPTIONS


	POWER SUPPLY	SCHEDULED	MAJOR STORM	WEATHER	EQUIPMENT	ANIMAL	ACT OF MAN	R/W	OTHER	TOTAL
NUMBER							·····			
2002	2	17	-	296	136	68	22	82	262	885
2003	3	13	21	306	85	63	25	83	208	807
2004	5	17	335	302	51	62	50	55	314	1,191
2005	4	11	-	179	41	25	57	74	225	616
2006	8	15	-	396	43	49	55	109	325	1,000
TOTAL:	22	73	356	1,479	356	267	209	403	1,334	4,499
5 YR AVG:	4	15	71	296	71	53	42	81	267	900


HOURS										1
2002	5,799	1,746	-1	26,007	26,920	1,335	2,624	14,559	11,774	90,763
2003	4,416	1,133	6,102	13,335	15,584	1,817	3,113	10,523	5,812	61,833
2004	7,193	887	317,530	28,196	9,057	1,252	6,179	5,279	13,288	388,861
2005	16,582	475	-	28,871	15,371	343	2,283	8,177	10,622	82,725
2006	15,448	1,116	-	36,309	8,035	11,016	3,265	20,066	13,618	108,873
TOTAL:	49,437	5,357	323,632	132,719	74,966	15,762	17,463	58,604	55,114	733,055
5 YR AVG:	9,887	1,071	64,726	26,544	14,993	3,152	3,493	11,721	11,023	146,611

MEMB	ERS EFFEC	TED								
2002	7,728	2,046	- [9,817	13,313	982	598	5,870	7,515	47,869
2003	11,884	1,472	1,235	5,442	6,018	1,317	1,057	3,774	4,936	37,135
2004	6,562	1,537	17,426	10,316	5,140	866	3,918	1,755	8,496	56,016
2005	13,124	1,102		9,013	6,022	252	1,189	3,054	5,640	39,396
2006	22,864	1,354	- 1	11,708	3,548	5,502	1,802	5,313	9,550	61,641
TOTAL:	62,162	7,511	18,661	46,296	34,041	8,919	8,564	19,766	36,137	242,057
5 YR AVG:	12,432	1,502	3,732	9,259	6,808	1,784	1,713	3,953	7,227	48,411

AVER	AGE HOUR	S OUTAGE	PER MEM	BER						
2002	0.291	0.088		1.307	1.353	0.067	0.132	0.732	0.592	4.562
2003	0.216	0.055	0.298	0.652	0.762	0.089	0.152	0.514	0.284	3.023
2004	0.342	0.042	15.088	1.340	0.430	0.059	0.294	0.251	0.631	18.478
2005	0.767	0.022	-	1.335	0.711	0.016	0.106	0.378	0.491	3.826
2006	0.661	0.048	- 1	1.553	0.344	0.471	0.140	0.858	0.583	4.657
TOTAL:	2.277	0.255	15.386	6.188	3.600	0.703	0.823	2.734	2.581	34.546
5 YR AVG:	0.455	0.051	3.077	1.238	0.720	0.141	0.165	0.547	0.516	6.909

Page 23

613,000

895,125

15,626,014

SUMMARY OF CONSTRUCTION PROGRAM AND COSTS ESTIMATED COST CODE EXT ITEM # DESCRIPTION MILES 1st YEAR 2nd YEAR 3rd YEAR 4th YEAR TOTAL 101 - UG NEW CONSUMERS 87.506 8.4 84.547 90.569 93,739 356,362 2480 - OH NEW CONSUMERS 1,128,001 1,167,481 1,208,343 1,250,635 4.754.460 102 140.2 100 NEW DISTRIBUTION LINES 148.6 1,212,548 1,254,988 1,298,912 1,344,374 5,110,823 363 1-2-C CONV 1-PH TO 3-PH, RECOND #4 ACSR TO #1/0 ACSR 0.7 32,200 32,200 ALL-ALL-A 374 CONDUCTOR REPLACEMENT 40.0 160,000 160,000 160.000 160.000 640,000 1-4-A CONV 2-PH TO 3-PH, CONV 1-PH TO 3-PH, RECOND TO #1/0 0.8 375 36,800 36,800 376 2-5-A CONV 1-PH TO 3-PH, RECOND #4 ACSR TO #1/0 ACSR 0.7 32,200 32,200 3-4-A 8.8 1.3 74,500 59,800 377 CONV 1-PH 7 2KV TO 14.4KV 74,500 4-2-A 378 CONV 1-PH TO 2-PH, RECOND #4 ACSR TO #1/0 ACSR 59.800 5-1-A CONV 1-PH 7 2KV TO 14 4KV 7.6 67,900 379 67,900 0.7 27.5 380 5-2-A CONV 3-PH 7 2KV TO 14 4KV 7,650 7,650 373 000 381 5-3-A CONV 1-PH & 3-PH 7 2 TO 14 4KV, RECOND 3-PH #4 TO #4/0 373,000 72,500 5-3-B 382 RECOND 3-PH #4 ACSR TO #1/0 ACSR 2.5 72,500 383 5-4-A CONV 1-PH & 3-PH 7.2 TO 14.4KV 7.7 76,800 76,800 384 5-4-B 7-4-A CONV 1-PH TO 3-PH, RECOND #4 ACSR TO #4/0 ACSR 3.1 176,700 176,700 385 CONV 1-PH TO 3-PH, RECOND #4 ACSR TO #1/O ACSR 9.200 9,200 349,850 0.2 386 8-2-A CONV 1-PH & 2-PH & 3-PH 7 2KV TO 14.4KV 38.8 349,850 387 8-3-A CONV 1-PH & 3-PH 7 2KV TO 14 4KV, RECOND 3-PH TO #4/0 10.8 316,400 316,400 388 10-2-A 12-2-A CONV 1-PH TO 3-PH, RECOND #4ACSR TO #1/0 ACSR RECOND 3-PH #1/0 ACSR TO 397 ACSR 1.0 46.000 46,000 389 80.000 1.6 80,000 LINE CONVERSIONS 300 153.8 654,400 653,100 509,850 634,150 2,451,500 TRANSFORMERS - NEW SERVICES 601 328,830 340,339 352,251 364,580 1,385,999 TRANSFORMERS - CONVERSIONS 476,550 METERS - NEW SERVICES 372,065 89,600 91,840 94,136 96,489 METERS - AMR CHANGEOUT 1,161,000 516,000 1,677,000 3,911,614 602 SERVICE UPGRADES 90,182 93,339 380.113 96.605 99.987 603 SECTIONALIZING EQUIPMENT 62,925 62,925 62,925 62,925 182,700 REGULATOR STATIONS 107,400 107,400 107,400 107,400 429,600 604 CAPACITORS 605 12,500 12,500 12,500 12,500 50,000 606 POLE REPLACEMENTS (1360 POLES TOTAL) 465,686 481,985 498,854 516,314 1,962,839 AUTOTRANSFORMERS 62,925 62,925 62,925 251,700 609 62.925 DISTRIBUTION EQUIPMENT 600 1.130.448 1.161.412 1.193.460 1.226.630 7,168,566 701 SERCURITY LIGHTS 66,934 69,277 71,702 74,211 282,125

620,000

686.934

69,277

71,702

74,211

AMR COMPUTER AND COMMUNICATION HARDWAF

OTHER DISTRIBUTION EQUIPMENT

Total

* CARR

702

700

FRECC CWP: III-B Page 1

CONSTRUCTION REQUIRED FOR NEW SERVICES

	24 MONTH HISTORY					ESTIMATED 4	18-1	ONTH WOR				
NEW MEMBERS - SYSTEM WIDE	10/04 - 9/05	10/05 - 9/06	Į	1/07 - 3/08		4/08 - 3/09		4/09 - 3/10		4/10 - 3/11		TOTAL
			İ									
NUMBER OF NEW SERVICES	10	47		20		20		20		20		80
Underground Overhead	16 593	17 633		620		620		620		620		2,480
Overnead	595	033		020		020		020		020		2,400
TOTAL NEW MEMBERS	609	650	640			640		640		640		2,560
LINEAL FEET OF NEW LINE												
Underground (UG)												
Primary	2,458	9,277		8,000		8,000		8,000		8,000		32,000 ft
Secondary	0	895		800		800		800		800		3,200 ft
Service Drop	2,297	2,395	- 1	2,300		2,300		2,300		2,300		9,200 ft
	4,755	12,567		11,100		11,100		11,100		11,100		44,400 ft 8.4 mi
AVERAGE (UG)	297	739										0.4 1111
			1									
Overhead (OH)	96,315	105,578		100,000		100,000		100,000		100,000		400,000 ft
Primary Secondary	24,095	25,050		25,000		25,000		25,000		25,000		100,000 ft
Secondary Service Drop	60,350	62,862		60,000		60,000		60,000		60,000		240,000 ft
Service Drop	180,760	193,490	ŀ	185,000		185,000		185,000		185,000		740,000 ft
	100,100	100,100		.55,555		100,000				,		140.2 mi
AVERAGE (OH)	305	306										
TOTAL LENGTH IN FEET	185,515	206,057	ŀ	196,100		196,100		196,100		196,100		784,400 ft
	,			,				-				148.6 mi
COST OF NEW SERVICES												
Underground	\$62,751	\$69,435		\$84,547		\$87,506		\$90,569		\$93,739		\$356,362
				44.007		04.075		04.500		£4.007		Ø47.040
AVERAGE (UG)	\$3,922	\$4,084		\$4,227	_	\$4,375		\$4,528		\$4,687		\$17,818
	6070.000	C4 440 700		\$1,128,001		\$1,167,481		\$1,208,343		\$1,250,635		\$4,754,460
Overhead	\$979,906	\$1,112,708		\$1,120,001		\$1,107,401		\$1,200,343				
AVERAGE (OH)	\$1,652	\$1,758		\$1,819	*	\$1,883	•	\$1,949	*	\$2,017	*	\$7,668
TOTAL COST OF NEW LINE	\$1,042,657	\$1,182,143		\$1,212,548		\$1,254,988		\$1,298,912		\$1,344,374		\$5,110,823
OOGT OF NEW TRANSFORMERS												
COST OF NEW TRANSFORMERS	10	10		10		10		10		10		40
Number of UG Transformers Number of OH Transformers	504	503		500		500		500	ļ	500		2,000
Number of On Transformers	514	513		510		510		510		510		2,040
Avg Inst UG Cost Avg Inst OH Cost	\$1,094 \$573	\$1,171 \$612		\$1,212 \$633	*	\$1,254 \$656	•	\$1,298 \$679	*	\$1,344 \$702	-	
Avg mat on oust	ψυ10	Ψ012		4000		1			Г	7	İ	
Cost of UG Transformers	\$7,456	\$9,453		12,120		12,544		12,983		13,437		\$51,084
Cost of OH Transformers	\$198,645	\$344,196		316,710		327,795		339,268		351,142		\$1,334,915
TOTAL COST OF NEW TRANS	\$206,101	\$353,649		\$328,830		\$340,339		\$352,251	1	\$364,580		\$1,385,999
TOTAL GOOT OF NEW TIVING	Ψ200,101	4000,010		V 020,000				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,		• • • • • • • • • • • • • • • • • • • •
COST OF NEW METERS								İ				
COST OF NEW METERS	532	516		640		640	1	640		640		2,560
Number of Meters	552	310		040		040		040		040		2,000
Average Installed Cost of Meters	\$59	\$57		\$140	**	\$144	**	\$147	**	\$151	**	
TOTAL COST OF NEW METERS	\$31,388	\$29,412		\$89,600		\$91,840		\$94,136		\$96,489	1	\$372,065
								1				***
TOTAL COST OF NEW SERVICES	\$1,280,146	\$1,565,204		\$1,630,978		\$1,687,167	1	\$1,745,299	1	\$1,805,443]	\$6,868,887

Inflated by 3.5%
Inflated by 2.5%

METER CHANGES REQUIRED FOR AMR IMPLEMENTATION

METER CHANGES - SYSTEM WIDE	2006
AMR METER CHANGES	
Number of Mer Changes	11,000
AVERAGE COST	129
Total Cost of Service Changes	

	ESTIMATED 48	-MONTH WORK	PLAN PERIOD	
4/07 - 3/08	4/08 - 3/09	4/09 - 3/10	4/10 - 3/11	TOTAL
9,000	4.000			13,000
9,000	4,000			10,000
\$129	\$129			
\$1 161 000	\$516,000	\$0	\$0	\$1.677.000

FRECC CWP: III-C

Page 1

FRECC CWP: III-D Page 1

SERVICE CHANGES FOR EXISTING SERVICES

	24 MONTH HISTORY					
SERVICE CHANGES - SYSTEM WIDE	10/04 - 9/05	10/05 - 9/06				
SERVICE CHANGES						
Number of Service Changes	134	132				
AVERAGE COST	\$640	\$670				
Total Cost of Service Changes	\$85,825	\$88,473				

ESTIMATED 48-MONTH WORK PLAN PERIOD										
4/07 - 3/08		4/08 - 3/09	Г	4/09 - 3/10		4/10 - 3/11	Γ	TOTAL		
130	1	130	1	130		130		520		
100		100		100		100		320		
\$694	•	\$718	•	\$743	*	\$769	*			
\$90,182	•	\$93,339	•	\$96,605		\$99,987	•	\$380,113		

^{*} Inflated by 3.5%

CFR CODE: 363*

CWP ITEM NUMBER: 1_2_C

ESTIMATED COST: \$32,200

FRECC CWP: III-E

Page 1

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert and re-conductor 0.7 miles of single phase, # 4 ACSR to three phase # 1/0 ACSR, from line section 23015 to location 43-77-075. Replace poles and equipment and relocate portions of line as required. Carried over from previous construction work plan due to pending road move.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 23007 exceeds design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current level will meet design criteria #13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

*Carryover

CFR CODE: 374 CWP ITEM NUMBER: ALL_ALL_A

ESTIMATED COST: \$640,000

FRECC CWP: III-E

Page 2

DESCRIPTION OF PROPOSED CONSTRUCTION

Re-conductor 40 miles of single phase, #6, #8 Copperweld and # 4ACSR to #2 ACSR. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The conductor is aged and deteriorated needing replacement.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work aged conductor will be replaced by new conductor, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CFR CODE: 375 CWP ITEM NUMBER: 1_4_A

ESTIMATED COST: \$36,800

FRECC CWP: III-E

Page 3

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 0.4 miles of two phase, # 4 ACSR to three phase # 1/0 ACSR, from line section 12699 to line section 23541. Convert 0.4 miles of single phase, #4 ACSR to three phase #1/0 ACSR, from line section 20851 to 11814. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections fed by the above area fall below design criteria #1. The current in sections starting with 20851 exceed design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1 and current will be improved to within limits set in design criteria #13, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

No alternative plans available.

CFR CODE: 376 CWP ITEM NUMBER: 2_5_A

ESTIMATED COST: \$32,200

FRECC CWP: III-E

Page 4

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 0.7 miles of single phase #4 ACSR to Three Phase #1/0 ACSR start line section 12767 to line section 12945. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections fed by the above area fall below design criteria #1. The current in section 10262 exceed design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1 and current will be improved to within limits set in design criteria #13, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

Conversion of 3.7 miles of 7.2 kV single phase to 14.4 kV single phase would be required to meet design criteria at a cost of \$30,000. The cost is similar with the three phase conversion providing better voltage drop and reliability.

CFR CODE: 377 CWP ITEM NUMBER: 3_4_A

ESTIMATED COST: \$74,500

FRECC CWP: III-E

Page 5

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 8.8 miles of single phase 7.2 kV to 14.4 kV. Convert from line section 24883 and ending section 8637. 41 transformers will be replaced. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria #1. The current in sections starting with section 24833 and ending in section 5437 exceed design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1 and current will be improved to within limits set in design criteria #13, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

Single phase 7.2 kV to three phase 12.47 kV was considered but was abandoned due to cost.

CFR CODE: 378 CWP ITEM NUMBER: 4_2_A

ESTIMATED COST: \$59,800

FRECC CWP: III-E

Page 6

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 1.3 miles of single phase, #4 ACSR to two phase #1/0 ACSR, in line sections starting with 4606 and ending with 4613. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 4606 exceeds design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current level will meet design criteria #13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

Voltage conversion was considered but was abandoned due to cost.

CFR CODE: 379 CWP ITEM NUMBER: 5_1_A

ESTIMATED COST: \$67,900

FRECC CWP: III-E

Page 7

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 7.6 miles of single phase 7.2 kV to 14.4 kV. Convert from all line sections served by ocr 06-19-R01. 71 transformers will be replaced. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The current level in single phase tap exceeds design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 380 CWP ITEM NUMBER: 5_2_A ESTIMATED COST: \$7,650

FRECC CWP: III-E

Page 8

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 0.7 miles of three phase 12.47 kV to three phase 24.9 kV in line section 5775. 3 transformers will be replaced. Replace poles and equipment and relocate portions of line as required

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria #1.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 381 CWP ITEM NUMBER: 5_3_A ESTIMATED COST: \$373,000

FRECC CWP: III-E

Page 9

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 5.2 miles of three phase 12.47 kV to three phase 24.9 kV ending with line section 19829. Convert 22.3 miles of single phase 7.2 kV to single phase 14.4 kV. 210 transformers will be replaced. Replace poles and equipment and relocate portions of line as required. Reconductor 3.4 miles of three phase from #4 ACSR three phase to #4/0 ACSR three phase, starting in line section 20435 and ending with section 19829, due to condition and age.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria #1. Equipment loading on stepdowns exceed design criteria #2.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1 and equipment loading will be within limits, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 382 CWP ITEM NUMBER: 5_3_B ESTIMATED COST: \$72,500

FRECC CWP: III-E

Page 10

DESCRIPTION OF PROPOSED CONSTRUCTION

Reconductor 2.5 miles of three phase from #4 ACSR three phase to #1/0 ACSR three phase, starting in line section 5778 and ending in section 7886, due to condition and age.

REASON FOR PROPOSED CONSTRUCTION

Design criteria #5.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this aged conductor will be systematically removed, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 383

CWP ITEM NUMBER: 5_4_A
ESTIMATED COST: \$76,800

FRECC CWP: III-E

Page 11

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 2.6 miles of three phase 12.47 kV to three phase 24.9 kV, adding stepdown to line section 19633 and adding stepdown to line section 15815. Convert 5.1 miles of single phase 7.2 kV to single phase 7.2 kV associated with 3 phase conversion. 87 transformers will be replaced. Replace poles and equipment and relocate portions of line as required

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria #1.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 384 CWP ITEM NUMBER: 5_4_B

ESTIMATED COST: \$176,700

FRECC CWP: III-E

Page 12

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 3.1 miles of single phase, # 4 ACSR to three phase # 4/0 ACSR, from line section 23877 to line section 3036. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections fed by the above area fall below design criteria #1, and serve three phase customers in area.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 385 CWP ITEM NUMBER: 7_4_A

ESTIMATED COST: \$9,200

FRECC CWP: III-E

Page 13

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 0.2 miles of single phase, # 4 ACSR to three phase # 1/0 ACSR, line sections 20516, 23334. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 20516 and 23334 exceeds design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current level will meet design criteria #13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 386 CWP ITEM NUMBER: 8_2_A ESTIMATED COST: \$349,850

FRECC CWP: III-E

Page 14

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 6.6 miles of three phase 12.47 kV to three phase 24.9 kV. Convert 0.5 miles of two phase 12.47 kV to two phase 24.9 kV. Convert 31.7 miles of single phase 7.2 kV to single phase 14.4 kV in line section. 217 transformers will be replaced. Replace poles and equipment and relocate portions of line as required.

SECTIONS AFFECTED

Relocate Stepdown to line section 4695.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria #1.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 387

CWP ITEM NUMBER: 8_3_A
ESTIMATED COST: \$316,400

FRECC CWP: III-E

Page 15

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert and reconductor 3.9 miles of single phase #4 ACSR 7.2 kV to three phase #4/0 ACSR 24.9 kV and convert 6.9 miles of single phase 7.2 kV to 14.4 kV. 77 transformers will be replaced. Replace poles and equipment and relocate portions of line as required.

SECTIONS AFFECTED

Beginning section 3526 to ending section 5226.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 24567 and multiple sections starting at 5137 exceeds design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current levels will meet design criteria #13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 388 CWP ITEM NUMBER: 10_2_A

ESTIMATED COST: \$46,000

FRECC CWP: III-E

Page 16

DESCRIPTION OF PROPOSED CONSTRUCTION

Convert 1.0 miles of single phase, # 4 ACSR to three phase # 1/0 ACSR, in line sections starting with 8350 and ending with 4150. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The current level in section 8350 exceeds design criteria #13.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the current level will meet design criteria #13, allowing better sectionalizing, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

CFR CODE: 389 CWP ITEM NUMBER: 12_2_A

ESTIMATED COST: \$80,000

FRECC CWP: III-E

Page 17

DESCRIPTION OF PROPOSED CONSTRUCTION

Reconductor 1.6 miles of three phase from #1/0 ACSR three phase to #397 ACSR three phase. Replace poles and equipment and relocate portions of line as required.

REASON FOR PROPOSED CONSTRUCTION

The voltage levels in sections served by the above described area fall below design criteria #1. Equipment loading on Conductor exceed design criteria #3.

RESULTS OF PROPOSED CONSTRUCTION

As a result of this work the voltage levels will meet design criteria #1 and equipment loading will be within limits, improving voltage drop and increasing reliability.

ALTERNATIVE CORRECTIVE PLANS INVESTIGATED

SUBSTATIONS (Additions and Changes)

FRECC CWP: III-F

Page 1

During this Construction Work Plan, a new substation will be added in Metcalfe County. This new substation will serve all the existing load in the Edmonton Industrial Park, relieving load off our Galloway Substation.

FRECC CWP: III-G Page 1

NEW DISTRIBUTION CONSTRUCTION ITEM – SECTIONALIZING EQUIP. (Additions and Changes)

CFR CODE: 603 ESTIMATED COST: \$182,700

THREE PHASE ELECTRONIC RECLOSERS

STATION	FEEDER		EQUIPMENT					
				COST				
01-36-R02	12-02		\$	20,300.00				
43-83-R02	10-02		\$	20,300.00				
44-97-R01	08-02		\$	20,300.00				
37-82-R01	06-01		\$	20,300.00				
43-03-R05	06-03		\$	20,300.00				
38-88-R02	04-04		\$	20,300.00				
38-54-R03	11-04		\$	20,300.00				
38-12-R01	11-02		\$	20,300.00				
36-57-R01	02-06		\$	20,300.00				

NEW DISTRIBUTION CONSTRUCTION ITEM - REGULATORS (Additions and Changes)

FRECC CWP: III-H

Page 1

CFR CODE: 604 ESTIMATED COST: \$429,600

SECTION	FEEDER	SIZE	VDD.	REMOVE	B / I /	AT. & LABOR	-	QUIPMENT		TOTAL
(END OF)	LEEDEK	SIZE (AMP)	ADD		IVI <i>F</i>	COST	E	COST		COST
	04.04		(#)	(#)	<u></u>		<u> </u>	0001	_	
10112	01-01	50	1		\$	2,500.00	ው	04.000.00	\$	2,500.00
14576	02-02	100	3		\$	12,600.00	\$	24,000.00	\$	36,600.00
13098	02-03	100	3		\$	12,600.00	\$	24,000.00	\$	36,600.00
13135	02-06	50	1		\$	2,500.00			\$	2,500.00
9896	03-01	150	3		\$	12,600.00	•	04 500 00	\$	12,600.00
4204	03-04	100	3		\$	12,600.00	\$	31,500.00	\$	44,100.00
13260	04-04	100	3		\$	12,600.00	\$	24,000.00	\$	36,600.00
3043	05-04	100	3		\$ \$	12,600.00	\$	31,500.00	\$	44,100.00
20576	07-04	219	3		\$	12,600.00	\$	28,500.00	\$	41,100.00
4396	08-01	50	1		\$	2,500.00			\$	2,500.00
22460	11-02	100	3		\$	12,600.00	\$	31,500.00	\$	44,100.00
14028	11-02	100	3		\$	12,600.00	\$	31,500.00	\$	44,100.00
18812	12-01	219	3		\$	12,600.00	\$	28,500.00	\$	41,100.00
12836	12-02	219	3		\$	12,600.00	\$	28,500.00	\$	41,100.00
									\$	429,600.00
26 65 VD4	02.05	F0		4	e (1888) (1889)				*****	
26-65-VR1	02-05	50		1						
03-08-VR1	04-02	50 450		1						
06-16-VR1	05-03	150		3						
06-15-VR1	05-03	150		3						
38-42-VR1	11-03	50		1						
50 Amp Regula	tors		3	3						
100 Amp Regul			21	0						
150 Amp Regul			3	6						
219 Amp Regul			9	0						

NEW DISTRIBUTION CONSTRUCTION ITEM - CAPACITORS

YEAR: 2007 CWP ITEM NUMBER: CFR CODE: 605 ESTIMATED COST: \$50,000*

FRECC CWP: III-I

Page 1

DESCRIPTION OF PROPOSED CONSTRUCTION

Capacitors used for power factor correction.

REASON FOR PROPOSED CONSTRUCTION

To correct power factor by use of fixed and switched banks, allowing the system to operate as efficiently as possible.

* EKPC furnishes capacitors

REPLACEMENT - POLES

CFR CODE: 606 ESTIMATED COST: \$1,962,839

DESCRIPTION OF PROPOSED CONSTRUCTION

Replace all poles found to be physically deteriorated by FRECC's personnel throughout the system. It is estimated that approximately 340 poles per year will need to be replaced.

REASON FOR PROPOSED CONSTRUCTION

FRECC inspects approximately 4,500 cooperatives poles each year. Historically, approximately 8.0% of these poles need to be replaced because of their poor physical condition.

	24 MONTH	HISTORY
POLE REPLACEMENTS - SYSTEM WIDE	10/04 - 9/05	10/05 - 9/06
POLE REPLACEMENTS		
Number of Pole Replacements	321	351
Number of Fole Replacements	321	331
AVERAGE COST	\$970	\$1,234
		41,201
Total Cost of Pole Replacements	\$311,247	\$433,110
•		· ' ' '

ESTIMATED 48-MONTH WORK PLAN PERIOD							
4/07 - 3/08	4/08 - 3/09	4/09 - 3/10	4/10 - 3/11	TOTAL			
340	340	340	340	1,360			
1,370	1,418	1,467	1,519				
\$465,686	\$481,985	\$498,854	\$516,314	\$1,962,839			

FRECC CWP: III-J

Page 1

NEW DISTRIBUTION CONSTRUCTION ITEM – AUTO TRANSF. (Additions and Changes)

FRECC CWP: III-K

Page 1

CFR CODE: 609 ESTIMATED COST: \$251,700

				T							
SECTION	FEEDER	SIZE	ADD	REMOVE		M/	AT. & LABOR	l E	QUIPMENT		TOTAL
(END OF)		(KVA)	(#)	(#)	(Y)		COST	<u> </u>	COST		COST
5775	05-02	500	3			\$	4,800.00	\$	21,600.00	\$	26,400.00
19633	05-04	500	3			\$	4,800.00	\$	21,600.00	\$	26,400.00
15815	05-04	1000	3		Υ	\$	10,000.00	\$	46,500.00	\$	56,500.00
19829	05-03	1000	3		Υ	\$	10,000.00	\$	46,500.00	\$	56,500.00
5226	08-03	500	3			\$	4,800.00	\$	21,600.00	\$	26,400.00
4696	08-02	1000	3		Υ	\$	10,000.00	\$	46,500.00	\$	56,500.00
10925	09-02	500	1			\$	1,500.00			\$	1,500.00
5437	03-04	500	1			\$	1,500.00			\$	1,500.00
38-54-SD1	11-04	1000	3		Υ	\$	_			\$	-
02-43-SD1	03-03	500	1			\$	-			\$ \$	-
01-77-SD1	03-05	500	1			\$	-			\$	-
										\$	251,700.00
										•	,
07-66-SD1	03-04	500		1							
06-77-SD1	05-02	333		3							
06-18-SD1	05-03	1000		3	EKPC						
06-19-SD1	05-01	500		3							
48-87-SD1	05-04	1000		3							
44-97-SD1	08-02	333		3							
38-54-SD1	11-04	500		3							
02-43-SD1	03-03	333		1							
01-77-SD1	03-05	333		1							
01-77-001	00 00	000		•							
333 KVA Autos			0	8							
500 KVA Autos			13	7							
1000 KVA Autos	:		12	6	EKPC (NVVI	S (3) OF THES	E 111	NITS		
1000 IVVA AULUS	!		12	U	LIVI-O C	MINA	0 (3) OF THE	ال شار	NITO		

OTHER DISTRIBUTION ITEMS - SECURITY LIGHTS

CFR CODE: 701 ESTIMATED COST: \$282,125

DESCRIPTION OF PROPOSED CONSTRUCTION

Install approximately 290 outdoor security lights and associated poles per year as requested by consumer - members.

REASON FOR PROPOSED CONSTRUCTION

This work is necessary because of FRECC's outdoor lighting program.

	24 MONTH	HISTORY
SECURITY LIGHTS - SYSTEM WIDE	10/04 - 9/05	10/05 - 9/06
SECURITY LIGHTS		
Number of Security Lights	301	287
AVERAGE COST	\$330	\$223
Total Cost of Security Lights	\$99,249	\$64,002

ESTIMATED 48-MONTH WORK PLAN PERIOD								
4/07 - 3/08		4/08 - 3/09		4/09 - 3/10		4/10 - 3/11		TOTAL
290		290		290		290		1,160
231	*	239	*	247	*	256	*	
\$66,934		\$69,277		\$71,702		\$74,211		\$282,125

FRECC CWP: III-L

Page 1

^{***} Inflated by 3.5%

OTHER DISTRIBUTION ITEMS - AMR

FRECC CWP: III-M

Page 1

CFR CODE: 702 ESTIMATED COST: \$613,000

DESCRIPTION OF PROPOSED CONSTRUCTION

In the 2002 – 2006 CWP, a cost justification study was prepared and AMR proved to be the most economical and efficient method of reading customer meters. The TWACS system was chosen due to better communication pathways to the meter, which holds additional potential benefits when compared to other systems, including some load management features. The AMR system will be completed in this CWP.

REASON FOR PROPOSED CONSTRUCTION

This work is necessary to provide better meter reading information from the customer, improve workflow throughout the month, improve customer service and reduce customer complaints.

ESTIMATED COST - COMPUTER AND COMMUNICATION HARDWARE

TWACS HARDWARE FOR 10 SUBSTATIONS	\$470,000
MODULATION TRANSFORMERS	\$130,000
COMMUNICATION TO SUBSTATIONS	\$ 13,000

TOTAL \$613,000

^{* 13,000} meters with modules will be included in code 601 (See section III-C)

Economic Conductor Analysis 1 Phase Construction

FRECC CWP: IV-A-1

Page 1

7.6 kV	Operating Voltage (Phase to Ground)
1 phases	Number of Phases (1, 2, or 3)
100 kW	Initial Load in kW (this value should remain at 100 kW)
3 %	Annual Load Growth
95 %	Power Factor (residential = 90% unless capacitors are used)
57 %	Load Factor (annual value in %)
3 %	Annual Inflation Rate of Construction Costs
13.45 %	Carrying Charge Rate
\$0.0300 \$/kWh	Wholesale Energy Cost (\$/kWh)
\$5.22 \$/kW	Wholesale Demand Cost (\$/kW)
5 %	Inflation Rate of Wholesale Power Costs (annual inflation rate)
30 years	Period (number of years of the analysis)
6 %	Interest Rate (to be used as the discount rate in the present worth and

Description of the Conductor	4 ACSR	2 ACSR	1/0 ACSR	4/0 ACSR	397 ACSR	795 ACSR
Initial Construction Cost Per Mile	\$0	\$16,000	\$20,000	\$0	\$0	\$0
Resistance in Ohms Per Mile	2.459	1.583	1.034	0.573	0.257	0.131
Present Worth of Construction Costs	\$0	\$29,622	\$37,027	\$0	\$0	\$0

Initial L	.oad	Tatal	Annual Cost Per Mi	la
(AMPS)	(kW)	Total	ie	
4.4	100	#20.70¢	627 444	
14	200	\$29,796	\$37,141 \$37,481	
28	300	\$30,317		
42	400	\$31,185	\$38,049	
55		\$32,401	\$38,843	
69	500	\$33,964	\$39,864	
83	600	\$35,875	\$41,112	
97	700	\$38,133	\$42,587	
111	800	\$40,739	\$44,289	
125	900	\$43,691	\$46,218	
139	1000	\$46,992	\$48,373	
152	1100	\$50,639	\$50,756	
166	1200	\$54,635	\$53,365	
180	1300	\$58,977	\$56,202	
194	1400	\$63,667	\$59,265	
208	1500	\$68,704	\$62,555	
222	1600	\$74,089	\$66,073	
235	1700	\$79,821	\$69,817	
249	1800	\$85,900	\$73,788	
263	1900	\$92,327	\$77,986	
277	2000	\$99,101	\$82,411	
291	2100	\$106,223	\$87,062	
305	2200	\$113,692	\$91,941	
319	2300	\$121,508	\$97,047	
332	2400	\$129,672	\$102,379	
346	2500	\$138,184	\$107,939	
360	2600	\$147,042	\$113,725	
374	2700	\$156,248	\$119,738	
388	2800	\$165,802	\$125,979	
402	2900	\$175,702	\$132,446	
416	3000	\$185,951	\$139,140	
429	3100	\$196,546	\$146,061	
443	3200	\$207,489	\$153,209	
457	3300	\$218,780	\$160,583	
471	3400	\$230,417	\$168,185	
485	3500	\$242,403	\$176,014	

Economic Conductor Analysis 1 Phase Construction

15.2 kV	Operating Voltage (Phase to Ground)
1 phases	Number of Phases (1, 2, or 3)
100 kW	Initial Load in kW (this value should remain at 100 kW)
3 %	Annual Load Growth
95 %	Power Factor (residential = 90% unless capacitors are used)
57 %	Load Factor (annual value in %)
3 %	Annual Inflation Rate of Construction Costs
13.45 %	Carrying Charge Rate
\$0.0300 \$/kWh	Wholesale Energy Cost (\$/kWh)
\$5.22 \$/kW	Wholesale Demand Cost (\$/kW)
5 %	Inflation Rate of Wholesale Power Costs (annual inflation rate)
30 years	Period (number of years of the analysis)
6 %	Interest Rate (to be used as the discount rate in the present worth analysis)

Description of the Conductor	4 ACSR	2 ACSR	1/0 ACSR	4/0 ACSR	397 ACSR	795 ACSR
Initial Construction Cost Per Mile	\$0	\$16,000	\$20,000	\$0	\$0	\$0
Resistance in Ohms Per Mile	2.459	1.583	1.034	0.573	0.257	0.131
Present Worth of Construction Costs	\$0	\$29.622	\$37.027	\$0	\$0	\$0

lni4:-1	Load		
Initial Load (AMPS) (kW)		Total Annu	ıal Cost Per Mile
(Alvira)	(IVAA)		
7	100	\$29,665 \$37,	056
14	200	\$29,796 \$37,	
21	300	\$30,013 \$37,	
28	400	\$30,317 \$37,	481
35	500	\$30,708 \$37,	737
42	600	\$31,185 \$38,	049
48	700	\$31,750 \$38,	417
55	800	\$32,401 \$38,	843
62	900	\$33,139 \$39,	325
69	1000	\$33,964 \$39,	864
76	1100	\$34,876 \$40,	460
83	1200	\$35,875 \$41,	112
90	1300	\$36,961 \$41,	821
97	1400	\$38,133 \$42,	587
104	1500	\$39,392 \$43,	409
111	1600	\$40,739 \$44,	289
118	1700	\$42,172 \$45,	
125	1800	\$43,691 \$46,	218
132	1900	\$45,298 \$47,	267
139	2000	\$46,992 \$48,	373
145	2100	\$48,772 \$49,	536
152	2200	\$50,639 \$50,	756
159	2300	\$52,594 \$52,	032
166	2400	\$54,635 \$53,	365
173	2500	\$56,762 \$54,	755
180	2600	\$58,977 \$56,	202
187	2700	\$61,278 \$57,	705
194	2800	\$63,667 \$59,	265
201	2900	\$66,142 \$60,	882
208	3000	\$68,704 \$62,	555
215	3100	\$71,353 \$64,	286
222	3200	\$74,089 \$66,	073
229	3300	\$76,911 \$67,	916
235	3400	\$79,821 \$69,	817
242	3500	\$82,817 \$71,	774

Economic Conductor Analysis 3 Phase Construction

FRECC CWP: IV-A-1

Page 3

7.6 kV	Operating Voltage (Phase to Ground)
3 phases	Number of Phases (1, 2, or 3)
100 kW	Initial Load in kW (this value should remain at 100 kW)
3 %	Annual Load Growth
95 %	Power Factor (residential = 90% unless capacitors are used)
57 %	Load Factor (annual value in %)
3 %	Annual Inflation Rate of Construction Costs
13.45 %	Carrying Charge Rate
\$0.0300 \$/kWh	Wholesale Energy Cost (\$/kWh)
\$5.22 \$/kW	Wholesale Demand Cost (\$/kW)
5 %	Inflation Rate of Wholesale Power Costs (annual inflation rate)

5 % 30 years Period (number of years of the analysis)

6 % Interest Rate (to be used as the discount rate in the present worth analysis)

Description of the Conductor	4 ACSR	2 ACSR	1/0 ACSR	4/0 ACSR	397 ACSR	795 ACSR
Initial Construction Cost Per Mile	\$0	\$0	\$29,000	\$35,000	\$50,000	\$0
Resistance in Ohms Per Mile	2.459	1.583	1.034	0.573	0.257	0.131
Present Worth of Construction Costs	\$0	\$0	\$53,690	\$64,798	\$92,568	\$0

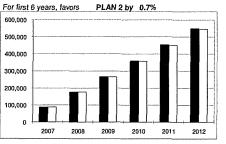
Initial L	oad	Total Avenuel C	\	# : I	
(AMPS)	(kW)	Total Annual C	ost Per N	Alle	
_					
5	100	\$54,030	\$64,987	\$92,653	
9	200	\$55,051	\$65,552	\$92,906	
14	300	\$56,753	\$66,496	\$93,328	
18	400	\$59,136	\$67,816	\$93,919	
23	500	\$62,199	\$69,513	\$94,679	
28	600	\$65,943	\$71,588	\$95,608	
32	700	\$70,368	\$74,040	\$96,706	
37	800	\$75,474	\$76,870	\$97,972	
42	900	\$81,260	\$80,076	\$99,408	
46	1000	\$87,727	\$83,660	\$101,012	
51	1100	\$94,875	\$87,621	\$102,785	
55	1200	\$102,704	\$91,959	\$104,727	
60	1300	\$111,213	\$96,675	\$106,838	
65	1400	\$120,403	\$101,768	\$109,118	
69	1500	\$130,274	\$107,238	\$111,566	
74	1600	\$140,826	\$113,085	\$114,184	
78	1700	\$152,058	\$119,310	\$116,970	
83	1800	\$163,971	\$125,911	\$119,926	
88	1900	\$176,565	\$132,890	\$123,050	
92	2000	\$189,840	\$140,247	\$126,343	
97	2100	\$203,795	\$147,980	\$129,804	
102	2200	\$218,431	\$156,091	\$133,435	
106	2300	\$233,748	\$164,579	\$137,235	
111	2400	\$249,745	\$173,444	\$141,203	
115	2500	\$266,424	\$182,686	\$145,341	
120	2600	\$283,783	\$192,306	\$149,647	
125	2700	\$301,823	\$202,303	\$154,122	
129	2800	\$320,543	\$212,677	\$158,766	
134	2900	\$339,945	\$223,429	\$163,579	
139	3000	\$360,027	\$234,557	\$168,560	
143	3100	\$380,790	\$246,063	\$173,711	
148	3200	\$402,233	\$257,946	\$179,030	
152	3300	\$424,358	\$270,207	\$184,518	
157	3400	\$447,163	\$282,844	\$190,176	
162	3500				
		\$447,163 \$470,649	\$282,844 \$295,859	\$190,176 \$196,002	

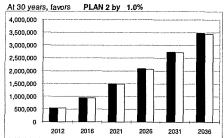
Economic Conductor Analysis 3 Phase Construction

15.2 kV	Operating Voltage (Phase to Ground)
3 phases	Number of Phases (1, 2, or 3)
100 kW	Initial Load in kW (this value should remain at 100 kW)
3 %	Annual Load Growth
95 %	Power Factor (residential = 90% unless capacitors are used)
57 %	Load Factor (annual value in %)
3 %	Annual Inflation Rate of Construction Costs
13.45 %	Carrying Charge Rate
\$0.0300 \$/kWh	Wholesale Energy Cost (\$/kWh)
\$5.22 \$/kW	Wholesale Demand Cost (\$/kW)
5 %	Inflation Rate of Wholesale Power Costs (annual inflation rate)
30 years	Period (number of years of the analysis)
6 %	Interest Rate (to be used as the discount rate in the present worth a

Description of the Conductor	4 ACSR	2 ACSR	1/0 ACSR	4/0 ACSR	397 ACSR	795 ACSR
Initial Construction Cost Per Mile	\$0	\$0	\$29,000	\$35,000	\$50,000	\$0
Resistance in Ohms Per Mile	2.459	1.583	1.034	0.573	0.257	0.131
Present Worth of Construction Costs	\$0	\$0	\$53,690	\$64,798	\$92,568	\$0

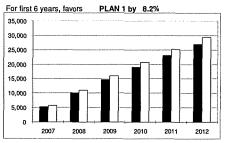
Initial	Load	Total Annual C	ant Dan N	Asia
(AMPS)	(kW)	Total Annual C	ost Per IV	ine
2	100	ØE2 77E	TC1 01E	\$02 E00
2 5	200	\$53,775 \$54,030	\$64,845 \$64,987	\$92,590 \$92,653
5 7	300	\$54,030 \$54,456	\$65,222	\$92,758
9	400			
12	500	\$55,051	\$65,552	\$92,906
14	600	\$55,817	\$65,977	\$93,096
	700	\$56,753	\$66,496	\$93,328
16		\$57,859 \$50,430	\$67,109	\$93,603
18	800	\$59,136	\$67,816	\$93,919
21	900	\$60,582	\$68,618	\$94,278
23	1000	\$62,199	\$69,513	\$94,679
25	1100	\$63,986	\$70,504	\$95,123
28	1200	\$65,943	\$71,588	\$95,608
30	1300	\$68,071	\$72,767	\$96,136
32	1400	\$70,368	\$74,040	\$96,706
35	1500	\$72,836	\$75,408	\$97,318
37	1600	\$75,474	\$76,870	\$97,972
39	1700	\$78,282	\$78,426	\$98,669
42	1800	\$81,260	\$80,076	\$99,408
44	1900	\$84,409	\$81,821	\$100,189
46	2000	\$87,727	\$83,660	\$101,012
48	2100	\$91,216	\$85,593	\$101,877
51	2200	\$94,875	\$87,621	\$102,785
53	2300	\$98,704	\$89,743	\$103,735
55	2400	\$102,704	\$91,959	\$104,727
58	2500	\$106,873	\$94,270	\$105,761
60	2600	\$111,213	\$96,675	\$106,838
62	2700	\$115,723	\$99,174	\$107,957
65	2800	\$120,403	\$101,768	\$109,118
67	2900	\$125,253	\$104,456	\$110,321
69	3000	\$130,274	\$107,238	\$111,566
72	3100	\$135,465	\$110,114	\$112,854
74	3200	\$140,826	\$113,085	\$114,184
76	3300	\$146,357	\$116,150	\$115,556
78	3400	\$152,058	\$119,310	\$116,970
81	3500	\$157,929	\$122,563	\$118,427

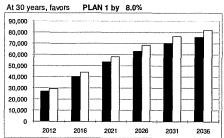

FRECC CWP: IV-A-2 Page 1

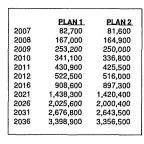

COMPARISON OF TOTAL ACCUMULATED COST and kWH LOSSES OF PLAN 1 vs PLAN 2

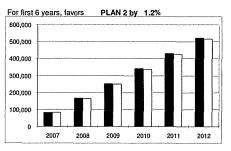
(All costs are the the accumulated present worth of the inflated cost)

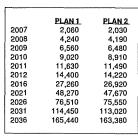
TOTAL COSTS (\$)

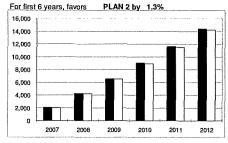

	(Capitalize	d Costs + Losses)	
		PLAN 1	PLAN 2
	2007	87,800	87,300
	2008	177,100	175,900
	2009	267,900	266,000
	2010	360,100	357,500
	2011	454,000	450,700
	2012	549,500	545,400
	2016	949,100	941,300
	2021	1,491,700	1,478,400
	2026	2,088,700	2,068,900
ĺ	2031	2,747,100	2,719,900
	2036	3,474,500	3,438,800

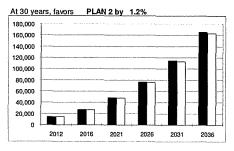



TOTAL CAPITALIZED COSTS (\$)


	PLAN 1	PLAN 2		
2007	5,200	5,600		
2008	10,100	11,000		
2009	14,700	16,000		
2010	19,000	20,700		
2011	23,100	25,200		
2012	27,000	29,400		
2016	40,400	44,000		
2021	53,400	58,000		
2026	63,000	68,500		
2031	70,300	76,400		
2036	75,600	82,200		


TOTAL COST OF LOSSES (\$)





TOTAL ACCUMULATED LOSSES (MWh)

16.10% Fixed Charge Rate 3.50% Annual cost inflation rate - Construction

6.00% Annual present worth rate - Cost of construction 3.00% Annual growth rate - kW demand

2.00% Annual cost inflation rate of engergy - kWh

6.00% Annual present worth rate - Cost of kWh losses

PLAN 1 PLAN 2

FRECC CWP: IVA-3 Page 1

Summary

Unbalanced Voltage Drop Report Source: BECKTON(5)

03/20/2007 08:46

Database: C:\MILSOFT\DATA\2011LOADALLOC_1-07.WM\
Title:
Case:
Page 1

						Ur		played :							mi		E]	lement-	
			Type/	Pri	Base	Element	Accum	Thru	5	Thru		F	kW	8	From	Length			
Cons Cons Element Name Thru	Parent Name		Conductor	kV	Volt	•	Drop	Amps	Cap	ĸw	KVAR	PF	Loss	Loss	Src	(mi)	KW	KVAR	On
BECKTON(5) 0 1133		A	BECKTON	15.12Y				431.33	0	6493	610	100	000	0.0	0.000	0.000	0	0	
0 795		В		15.124	126.0	000	0.00	323.13	0	4875	321	100					0	0	
0 1025		С		15 12Y	126.0	000	0.00	396-94	0	5976	554	100					0	0	
Fee	eder No. 0 (CKTO	5-02) Be	ginning with	n Device	05-02														
06-49-R01 0 71	4901	A	REC-70-L	7.53Y	125.5	0.00	0.48	46.03	66	346	27	100	000	0.0	5.921	0.000	0	0	
0 78		В		7.47Y	124.4	000	1.56	65 .74	94	489	43	100					0	0	
C 0 99 C		С		7.44Y	124.0	000	2.03	71.74	102	531	48	100					0	0	
P 6987 0 0 P	7588	С	1/0 Strd -	1469Y	122.5	-000	3.54	-0.07	0	0	-1	0	000	0 - 0	6.218	0-055	0	0	
P 6984 0 0 P	7578	С	#1/0 ACSR	14.701	122.5	-0.00	3.54	-0.26	0	0	-4	0	000	00	5.419	0.045	0	0	
P 23997 O O P	06-57-F01	с	1/0 Strd -	1470Y	122.5	-0.00	3.54	-0.26	0	0	-4	0	0.00	0.0	5.616	0.197	0	0	
P 7149 O O P	7897	A	1/0 Strd -	743Y	123.6	~0.00	2.20	~0.05	0	0	0	0	000	00	8.398	0.081	0	0	
P 7148 0 1 P	7897	A	1/0 Strd -	7.43Y	123.8	-0.00	2 - 20	0.36	0	0	-3	~4	000	00	8.414	0.097	0	0	
P 6944 1 1 P	7148	A	1/0 Strd -	7.43Y	123.8	-0.00	220	0.30	6	0	-2	-5	0.00	0.0	8760	0.346	0	0	
P 23222 0 0 P	06-74-F02	A	1/0 Strd -	743Y	123.8	-0.00	220	-0.07	0	0	-1	0	0.00	0 - 0	8.872	0.112	0	0	
P 7885 1 1 P	8192	А	1/0 Strd -	7.37Y	122.8	0.00	3 . 21	0.08	0	0	-1	-21	0.00	0.0	9811	0.127	0	0	
P 06-87-CP1 0 0 P	24930	А	Capacitor	7.20Y	120.0	0 . 00	5.98	-27.78	0	0	-200	0	0.00	0.0	9.952	0.000	0	0	
P		В		7.42Y	123.7	000	2.27	~2864	0	0	-213	0					0	0	
0 0 P P 0 0 P		С		7.25Y	120.8	0.00	5.19	-2796	0	0	-203	0					0	0	
P 06-77-CP1 0 0 P	8124	А	Capacitor	14.49Y	120.7	0.00	5.27	-6.99	0	0	-101	0	0.00	0 - 0	8.573	0.000	0	0	
P 0 0 P		В		14.87Y	123.9	0.00	2.09	-717	0	0	-107	0					0	0	
P 0 0 P		С		14.53Y	121.1	0.00	4.91	-701	0	0	-102	0					0	0	
P 5776 0 1 P	23998	A	1/0 Strd -	7.20Y	120.0	-0.00	5.98	-0.09	0	0	~1	0	0.00	0.0	9.199	0.085	0	0	
P 8212 1 1 P	5776	A	1/0 Strd -	7.20Y	1200	-0-00	5.98	-0.04	0	0	0	0	0.00	0.0	9.257	0-058	0	0	
P 7912 1 1 P	8213	A	1/0 Strd -	7.20Y	120.0	-0.00	6.01	-0.05	0	0	0	0	0.00	0.0	9.298	0-079	0	0	
P 6962 1 1 P	3068	A	1/0 Strd -	720Y	120.0	-0.00	6.04	-0.04	0	0	0	0	0,00	0.0	9.412	0.059	0	0	

----- Feeder No. 0 (CKT05-01) Beginning with Device 05-01 -----

----- Feeder No. 0 (CKT05-04) Beginning with Device 05-04 ------

KEY-> L = Low Voltage H = High Voltage C = Capacity Over Limit (%capacity or load amps) G = Generator Out of kvar Limits P = Power Factor Low

Page 58

FRECC CWP: IVA-3 Page 2

0

Summary

Unbalanced Voltage Drop Report Source: BECKTON(5)

Database: C:\MILSOFT\DAYA\2011LOADALLOC_1~07.WM\Title:

03/20/2007 08:46 Units Displayed In Volts -Base Voltage:120.0mi -----Element----Type/ Pri Base Element Accum Thru % Thru % kW % From Length Cons Cons Celement Name Parent Name Cnf Conductor kV Volt Drop Drop Amps Cap KW KVAR PF Loss Loss Src (mi) KW KVAR On Thru 48-74-R01 9028 A REC-35-H 7.45Y 124.1 0.00 1.90 5.21 15 39 3 100 0..00 0.0 7.032 0..000 0 В 7.43Y 123.9 0.00 2.14 23.41 67 173 14 100 0 0 0 30 С 7.29Y 121.5 0.00 4-52 47.86 137 343 C 0 62 C 62 98 0 0 P 48-67-CP1 0 0 P 0 0.00 0.0 4.950 0.000 0 15816 A Capacitor 7.43Y 123.8 0.00 2.15 -14.33 0 0 -107 0 В 7.42Y 123.6 0.00 2.36 -14.31 0 0 -106 0 0 0 P С 7.37Y 122.9 0.00 3.12 -14.22 0 0 -105 0 ō 0 P 6848 B REC-35-E 7.38Y 123.0 0.00 3.03 45.30 129 333 C 48-66-R01 30 100 0.00 0.0 5.279 0.000 C 48-47-R01 0 87 C 2982 A REC-35-H 7.53Y 125.5 0.00 0.46 65.63 188 475 136 96 0.00 0.0 7.862 0.000 В 7.55Y 125.8 0.00 0.21 30.32 87 202 108 88 0 9 С 7.52Y 125.3 0.00 0.74 26.48 76 169 104 85 0 0 C 48-25-R01 A REC-25-H 7.36Y 122.6 0.00 3.41 36.54 146 245 110 91 0.00 0.0 10.350 0.000 0 0 В 7.50Y 125.0 0.00 0.96 26.49 106 170 104 85 0 0 1 C 7.42Y 123.7 0.00 2.34 26.48 106 167 0 0 0 C ----- Feeder No. 0 (CKT05-03) Beginning with Device 05-03 -----06-26-CP1 20426 A Capacitor 14.94Y 124.5 0.00 1.47 -2.38 0 0 -36 0 0.00 0.0 2.914 0.000 0 0 B 14.99Y 125.0 0-00 1.05 ~2.39 0 0 -36 0 0 0 С 15.05Y 125.4 0.00 0.56 -2.40 0 0 -36 0 0 0

KEY-> 1 = Low Voltage H = High Voltage C = Capacity Over Limit (%capacity or load amps) G = Generator Out of kvar Limits P = Power Factor

B REC-15-H 7.26Y 121.0 0.00 5.00 21.94 146 159 12 100 0.00 0.0 8.821 0.000

Losses No Load Losses 538 0.00 KVAR

Lowest Voltage A-Phase -> 117.87 volts on 6661 B-Phase -> 118.49 volts on 8489 C-Phase -> 118.10 volts on 3043

C 06-42-R01 7625 0 37 C

Highest Accumulated Voltage Drop 8 13 volts on 6661 1.51 volts on 06-46-SD1 7.51 volts on 8489 1.51 volts on 6666 7.90 volts on 3043 1.41 volts on 4905

Page 59

FARMERS RECC 2007 - 2011 CWP

Proposed System Map 2011 Load Level

1 inch = 2 miles