ATTORNEYS AT LAW

RECEIVED

June 29, 2007

JUL 0 2 2007

PUBLIC SERVICE COMMISSION

Via Federal Express

Ms. Elizabeth O'Donnell Executive Director Public Service Commission 211 Sower Boulevard, P.O. Box 615 Frankfort, Kentucky 40602-0615

Re: In the matter of: The Application of Big Rivers Electric Corporation for a Certificate of Public Convenience and Necessity to Construct a 161 kV Transmission Line in Ohio County, Kentucky, Case No. 2007-00177

Dear Ms. O'Donnell:

Enclosed for filing pursuant to 807 KAR 5:120 are (1) an original and six copies of the application of Big Rivers Electric Corporation for a certificate of public convenience and necessity to construct of 161 kV transmission line; (2) three copies of a set of maps showing the location of the proposed transmission line; and (3) one copy of a set of maps showing alternative routes that were considered. Thank you for your assistance in this matter.

Sincerely,

BAP

Tyson Kamuf

TAK/ej Enclosures

cc: David Spainhoward David Crockett Burns Mercer Kelly Nuckols Steve Thompson

Telephone (270) 926-4000 Telecopier (270) 683-6694

> 100 St. Ann Building PO Box 727 Owensboro, Kentucky 42302-0727

Ronald M. Sullivan Jesse T. Mountjoy Frank Stainback James M. Miller Michael A. Fiorella William R. Dexter Allen W. Holbrook R. Michael Sullivan Bryan R. Reynolds Tyson A. Kamuf Mark W. Starnes Julia H. Gordon C. Ellsworth Mountjoy Susan Montalvo-Gesser

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

)

In the matter of:

The Application of Big Rivers Electric Corporation) for a Certificate of Public Convenience and) Necessity to Construct a 161 kV Transmission Line) in Ohio County, Kentucky) Case No. 2007-00177

RECEIVED

JUL 0 2 2007

PUBLIC SERVICE COMMISSION

APPLICATION

Big Rivers Electric Corporation ("<u>Big Rivers</u>") files this application ("<u>Application</u>") pursuant to KRS 278.020 and 807 KAR 5:120, seeking a certificate of public convenience and necessity to construct a 161 kilovolt ("<u>kV</u>") transmission line. In support of this Application, Big Rivers states as follows:

1. The applicant, Big Rivers, is a rural electric cooperative corporation organized pursuant to KRS Chapter 279. Its address is P.O. Box 24, 201 Third Street, Henderson, Kentucky 42419. 807 KAR 5:120 Section 2(1)(a); 807 KAR 5:001 Section 8(1).

2. Big Rivers owns generating assets, and purchases, transmits and sells electricity at wholesale. Its principal purpose is to provide the wholesale electricity requirements of its three distribution cooperative members: Kenergy Corp, Meade County Rural Electric Cooperative Corporation, and Jackson Purchase Energy Corporation. The distribution cooperatives in turn provide retail electric service to approximately 110,000 consumer/members located in 22 Western Kentucky counties: Ballard, Breckenridge, Caldwell, Carlisle, Crittenden, Daviess, Graves, Grayson, Hancock, Hardin, Henderson, Hopkins, Livingston, Lyon, Marshall, McCracken, McLean, Meade, Muhlenberg, Ohio, Union and Webster.

3. A certified copy of the articles of incorporation of Big Rivers, and all amendments thereto, is attached as Exhibit 1 to the Application of Big Rivers in *In the Matter of:*

Application of Big Rivers Electric Corporation, LG&E Energy Marketing Inc., Western Kentucky Energy Corp., WKE Station Two Inc., and WKE Corp., Pursuant to the Public Service Commission Orders in Case Nos. 99-450 and 2000-095, for Approval of Amendments to Station Two Agreements, PSC Case No. 2005-00532. 807 KAR 5:120 Section 2(1)(a); 807 KAR 5:001 Section 8(3).

4. Big Rivers is seeking approval to construct a new 13-mile 161 kV transmission line in Ohio County, Kentucky, to connect the existing Big Rivers Wilson Switchyard to an existing 161 kV transmission line owned by Big Rivers. Due to the length and voltage of this transmission line, KRS 278.020 requires a certificate of public convenience and necessity for the construction. The authority of the Public Service Commission ("<u>Commission</u>") to grant this certificate is found in KRS 278.020(1). 807 KAR 5:120 Section 2(1)(a); 807 KAR 5:001 Section 8(1).

5. The route for the proposed line begins at Big Rivers' Wilson Power Plant site located approximately 6 miles west of Centertown in western Ohio County and extends 13 miles to the southeast to an existing Big Rivers 161 kV transmission line located approximately 3 miles southeast of McHenry in southern Ohio County. This route is part of the route selected by East Kentucky Power Cooperative, Inc. ("East Kentucky") for the transmission line project for which the Commission granted it a certificate of public convenience and necessity in *In the Matter of: Application of East Kentucky Power Cooperative, Inc. for a Certificate of Public Convenience and Necessity for the Construction of a 161 kV Electric Transmission Line in Barren, Warren, Butler, and Ohio Counties, Kentucky, PSC Case No. 2005-00207. Big Rivers is using the same route and structure design selected by East Kentucky and approved by the Commission in that case. Although East Kentucky abandoned its project and its certificate was*

revoked (see Order dated May 31, 2007, in PSC Case No. 2005-00207), Big Rivers is requesting approval to construct the 13 mile segment itself based upon its own demonstrated needs. 807 KAR 5:120 Section 2(1)(b); 807 KAR 5:001 Section 9(2)(c).

6. Three copies of a proposed route map, with a scale of one inch equals 1000 feet, and showing the location of the proposed construction, have been filed with the Commission along with this Application. 807 KAR 5:120 Section 2(2).

7. The route and structure designs of Big Rivers' proposed line are identical to the relevant portion of East Kentucky's route and structure designs approved by the Commission in PSC Case No. 2005-00207. The only substantive difference between the Big Rivers project and the relevant portion of the East Kentucky project is that Big Rivers' need for the line is different from East Kentucky's. Nevertheless, the proposed construction is still required by the public convenience and necessity. As the Commission knows, Big Rivers has entered into an agreement with certain subsidiaries or affiliates of E.ON U.S., LLC, formerly known as LG&E Energy LLC (the "E.ON Parties"), to pursue terminating the various agreements in place between and among them since 1998 that gave the E.ON Parties operational control of Big Rivers owned or operated power plants, and ownership of the electricity generated by them. If the transaction terminating those agreements (the "Unwind Transaction") closes as contemplated, Big Rivers will resume control of its generation facilities and ownership of all the power generated by those facilities. As shown in the transmission study attached hereto as Exhibit A, if Big Rivers regains control of the operation of its generating stations, the ability to export the excess generation capacity of those generating stations under a range of system conditions becomes critical to the long-term viability of Big Rivers. One contingency that requires additional export capacity is the potential loss of the loads from two large industrial loads

(aluminum smelters) served within the Big Rivers system. These two industrial loads currently represent approximately 850 MW of load demand. These two customers will execute new service contracts as part of the Unwind Transaction. Although those new service contracts are not yet finalized, Big Rivers anticipates that, after the Unwind Transaction closes, these two customers will be able to terminate their contemplated new service contracts on relatively short notice. The loss of these loads would result in a significant change in the level of excess generation on the Big Rivers system. In the absence of a replacement large load addition, the ability to export this excess generation outside the Big Rivers system is necessary. Various scenarios with the loss of both of these large industrial loads were evaluated in the transmission study. 807 KAR 5:001 Section 9(2)(a); 807 KAR 5:120 Section 2(1)(b).

8. Big Rivers has planned several projects that together will enable it to have the export capacity that it needs to withstand the potential loss of the two smelter loads. These projects include the proposed transmission line as well as other projects, such as upgrading some existing lines and constructing a new line terminal. Although all of these projects are necessary to provide the needed export capacity, the proposed transmission line is the only project for which a certificate of public convenience and necessity is required. The other projects are ordinary extensions of existing systems in the usual course of business for which no certificate is required under KRS 278.020.

9. As noted above, the proposed transmission line is necessary in the event the Unwind Transaction closes. Should the Unwind Transaction not go forward, the proposed project will not be necessary at this time. Therefore, Big Rivers is asking that approval of the proposed line be made contingent upon, and effective concurrently with, approval of the Unwind Transaction.

10. In the transmission study process, Big Rivers evaluated other transmission system improvements as alternatives to the proposed construction. Big Rivers considered and rejected construction of 1) a new 21 mile transmission line to add an interconnection from its Wilson Switchyard to the TVA Paradise Plant Switchyard, and 2) two new 13 mile transmission lines to interconnect and loop the existing Hardinsburg to Paradise line through the Wilson Switchyard. The proposed 13 mile transmission line construction proved to be the most effective improvement alternative, required the least amount of new right-of-way, and was the low-cost alternative. The transmission study describes in more detail the benefits and justification for the proposed construction as well as the limitations of the construction alternatives considered, but not selected.

11. Big Rivers also considered a total of eight alternative routes for the construction of the proposed transmission line. The evaluation of these routes is summarized in the report, "The EPRI Overhead Electric Transmission Line Siting Methodology Results for Big Rivers Electric Corporation's Line 19-F – Wilson to Line 7B Tap 161 kV Transmission Line," attached hereto as Exhibit B. That report also discusses and supports the reasons for the route selection. Maps depicting the alternative routes not selected have been filed with the Commission along with this Application. 807 KAR 5:120 Section 2(2).

12. The proposed transmission line requires a right-of-way of 100 feet in width and will typically be constructed using single steel pole structures. Access to the proposed right-of-way for the construction of the new transmission line will maximize the use of existing roads in the project area, and off road movement of vehicles will be restricted to the proposed right-of-way, to the maximum extent practicable. Trees within the proposed new right-of-way will be removed in order to achieve electrical clearances. Conventional construction equipment will be

used to frame and install the transmission line steel poles. The electrical conductors will then be strung, dead-ended, and clipped in using conventional equipment and processes. Sketches of proposed typical structures are attached hereto as Exhibit C. 807 KAR 5:120 Section 2(1)(b); 807 KAR 5:001 Section 9(2)(c).

13. The proposed construction will be self-financed by Big Rivers. The total cost of the transmission line project, including the purchase price of the necessary easements, is estimated to be \$4,700,000. The estimated cost of operation of the new construction, including the cost of insurance, taxes, and operation and maintenance ("<u>O&M</u>"), based on historical averages, is 6.63% of the net book value of the transmission improvement per year, or approximately \$190,000 per year. The project does not involve sufficient capital outlay to materially affect the existing financial condition of Big Rivers. The proposed construction will not result in any increased charges to Big Rivers' members. 807 KAR 5:120 Section 2(1)(b); 807 KAR 5:001 Section 9(2)(e)-(f).

14. No franchises or permits from any other public authority are required for the proposed construction. 807 KAR 5:120 Section 2(1)(b); 807 KAR 5:001 Section 9(2)(b).

15. The proposed construction will not compete with any other public utilities, corporations, or persons. 807 KAR 5:120 Section 2(1)(b); 807 KAR 5:001 Section 9(2)(c).

16. Each property owner over whose property the transmission line right-of-way is proposed to cross has been sent by first-class mail, addressed to the property owner at the owner's address as indicated by the county property valuation administrator records, or hand delivered:

(a) Notice of the proposed construction;

6

(b) The commission docket number under which the application will be processed and a map showing the proposed route of the line;

(c) The address and telephone number of the executive director of the commission;

(d) A description of his or her rights to request a local public hearing and to request to intervene in the case; and

(e) A description of the project.

807 KAR 5:120 Section 2(3).

17. The notification letters sent by Big Rivers took two different forms as a result of East Kentucky having already acquired easements from some of the property owners. Big Rivers has an option to purchase those easements. One form letter was sent to the property owners who had already granted easements, and the other form letter was sent to the property owners who had not. A copy of each notice form letter is attached hereto as Exhibit D. A list of the names and addresses of the property owners to whom Big Rivers sent the notices is attached hereto as Exhibit E. 807 KAR 5:120 Section 2(4).

18. A notice of intent to construct the proposed transmission line was published in the *Owensboro Messenger-Inquirer* and the *Ohio County News*, newspapers of general circulation in Ohio County. The notice included:

(a) A map showing the proposed route;

(b) A statement of the right to request a local public hearing; and

(c) A statement that interested persons have the right to request to intervene. 807 KAR 5:120 Section 2(5).

19. A copy of the newspaper notice is attached hereto as Exhibit F.

7

WHEREFORE, Big Rivers requests that the Commission issue an order granting it a certificate of public convenience and necessity for the proposed construction, with the order being made contingent upon and effective concurrently with approval of the Unwind Transaction, and for all other relief to which it may be entitled.

On this the 29th day of June, 2007.

SULLIVAN, MOUNTJOY, STAINBACK & MILLER, P.S.C.

Total

James M. Miller Tyson Kamuf 100 St. Ann Street P. O. Box 727 Owensboro, Kentucky 42302-0727 (270) 926-4000 Counsel for Big Rivers Electric Corporation

Verification

I, David G. Crockett, Vice President, System Operations for Big Rivers Electric Corporation, hereby state that I have read the foregoing Application and that the statements contained therein are true and correct to the best of my knowledge and belief, on this the 29th day of June, 2007.

Jochete

David G. Crockett Vice President, System Operations Big Rivers Electric Corporation

COMMONWEALTH OF KENTUCKY COUNTY OF HENDERSON

SUBSCRIBED AND SWORN to before me by David G. Crockett, as Vice President, System Operations for Big Rivers Electric Corporation, on this the 29th day of June, 2007.

)

)

Paula Mitchell

Notary Public, State at Large KY My commission expires: <u>1-12-09</u>

EXHIBIT A BIG RIVERS ELECTRIC CORPORATION BULK TRANSMISSION SYSTEM ASSESSMENT

Prepared by Big Rivers Electric Corporation June 28, 2007

TABLE OF CONTENTS

INTRODUCTION	1
SUMMARY OF RESULTS AND CONCLUSIONS	2
MODELING ASSUMPTIONS AND STUDY SCENARIOS	3
POWER FLOW ANALYSIS - SUMMER PEAK	6
POWER FLOW ANALYSIS - SENSITIVITY	17
IMPORT/EXPORT ANALYSIS	18
LOSS COMPARISON	20
SHORT-CIRCUIT MODEL ASSUMPTIONS AND STUDY RESULTS	20
TRANSIENT STABILITY STUDY	21
RECOMMENDATION	21

APPENDICES

APPENDIX A: BIG RIVERS PLANNING CRITERIA APPENDIX B: 2015 SUMMER PEAK STUDY RESULTS APPENDIX C: PRESENT WORTH ANALYSES APPENDIX D: SHORT CIRCUIT STUDY RESULTS APPENDIX E: SENSITIVITY STUDY RESULTS

INTRODUCTION

Background

As Big Rivers regains operation of its generating stations, the ability to export this generation under a wide range of system conditions becomes critical to the long-term viability of Big Rivers Electric Corporation (Big Rivers or BREC). Consequently, a complete bulk transmission system evaluation, including load loss scenarios, was undertaken.

Specifically, two large industrial customers (aluminum smelters) served within the Big Rivers balancing area have loads that total approximately 850 MW. The loss of one or both of these loads would result in significant excess generation in the Big Rivers balancing area. In the absence of a large load addition, the ability to export this generation outside the Big Rivers control area would be critical. Various scenarios with the loss of these industrial loads were evaluated in the transmission assessment study.

As evaluations of load loss scenarios were beginning, Vectren contacted Big Rivers with a request to evaluate possible EHV interconnections. This request resulted from a Vectren long-range transmission plan completed in late 2006. This plan includes a 345 kV Vectren to Big Rivers interconnection. If constructed, this interconnection will connect AB Brown (Vectren) to Reid EHV (BREC). In addition, the Vectren plan includes a 345 kV interconnection will connect Culley (Vectren) to Elmer Smith (Owensboro Municipal Utilities). An alternative to this eastern interconnection was also evaluated. This alternative is a 345 kV interconnection from Culley (Vectren) to Coleman EHV (BREC). These proposed interconnections were evaluated as part of the load loss scenarios to assess their effect on the ability to export excess generation off the Big Rivers system. These are the only know external bulk transmission projects which, if built, were deemed to have the potential to impact the study results.

Purpose

The purpose of this study was to prepare a complete analysis of the Big Rivers bulk transmission system with and without the loss of smelter load. The focus of the study was the Big Rivers transmission system, but consideration was given to external system conditions.

Various system improvement alternatives were evaluated with and without the loss of smelter load. In addition, to fully assess the Big Rivers transmission system and the improvement alternatives considered, the overall ability to import and export power during a variety of system conditions was studied.

Scope of Study

This study included steady-state power flow analyses and limited short-circuit analyses. The following transmission projects were considered in the study process:

Transmission Additions Included in all Studies

Daviess County EHV 345 kV Interconnection (BREC-KU) Skillman to Meade County to New Hardinsburg 161 kV circuit Francisco 345/138 kV substation (Vectren) Dubois to Newtonville 138 kV circuit (Vectren)

Transmission Additions Evaluated

Reid to AB Brown 345 kV interconnection (BREC-Vectren) Wilson to Paradise 161 kV interconnection (BREC-TVA) Culley 345/138 kV transformer (Vectren) Culley to Smith 345 kV interconnection (Vectren-KU) Coleman EHV to Culley 345 kV interconnection (BREC-Vectren) Culley to Duff 345 kV line (Vectren) AB Brown 345/138 kV transformer (Vectren) AB Brown to Gibson 345 kV interconnection (Vectren-Duke)

SUMMARY OF RESULTS AND CONCLUSIONS

At this time, it is not known whether any of the Vectren interconnection study improvements will be implemented. Therefore, the study results and conclusions are made in light of these results, but are not dependent upon any of the improvements. The following system enhancements were found to be necessary to reliably export all excess generation during the loss of both aluminum smelters:

IMPROVEMENT	MINIMUM REQUIRED RATING
Reid to Daviess Co. 161 kV Upgrade	1200 Amp
Coleman EHV to Coleman 161 kV 1 & 2 Upgrades	1200 Amp
Coleman to Newtonville 161 kV Upgrade	1200 Amp
Wilson to N.Hard/Paradise 161 kV 3 Terminal	2000 Amp
3 Terminal-Paradise 161 kV Upgrade	1600 Amp
Paradise 161 kV Terminal Upgrade	1600 Amp

Additional details regarding the study results and required improvements are included below:

- Modify the existing New Hardinsburg to Paradise 161 kV interconnection by constructing a 13 mile circuit from Wilson to the existing interconnection. This will create a New Hardinsburg/Wilson/Paradise three-terminal circuit.
- Upgrade the 8 mile 161 kV transmission circuit from the new three-terminal tap point to Paradise to allow for 1600 Amp operation.
- Upgrade the Paradise terminal (TVA) to allow for 1600 Amp operation.
- Upgrade the 22 mile Reid to Daviess County 161 kV circuit to allow for 1200 Amp operation.
- Upgrade the 6.4 mile Coleman to Newtonville 161 kV interconnection to allow for 1200 Amp operation.
- Upgrade both Coleman EHV to Coleman 161 kV circuits (the total combined circuit length is 2.8 miles) to allow for 1200 Amp operation.

MODELING ASSUMPTIONS AND STUDY SCENARIOS

Power Flow Base Case

A 2015 model created from a 2015 summer peak ECAR/MEM/VEM base case (created in 2005) was used to complete the system assessment. A detailed Big Rivers model was merged into the case. The loads modeled by Big Rivers are consistent with the 2005 corporate load forecast. In addition, facilities either planned or under consideration by Big Rivers were added to the model. From this 2015 summer peak model, four basic models were developed. These models are described as Case A, Case B, Case C, and Case D. A detailed discussion of each case is included later in this report. Additional models were also created to allow light load and other transfer scenarios to be evaluated. These scenarios are number 1 through 6 and are described later in this report.

Short-Circuit and Transient Stability Models

A regional short-circuit model was used to evaluate the fault duty impacts of the proposed construction. Stability analyses were not performed as part of the initial study. Instead, previously prepared stability studies were reviewed. If necessary, additional stability studies will be completed as part of a subsequent interconnection or system impact study.

Summer Peak Study Scenarios

The study was conducted in two phases. In the first phase, the following study scenarios were evaluated with the 2015 summer peak model. The second phase included an additional evaluation of the improvements proposed as a result of the first phase studies. The intent of the second phase was to provide a sensitivity analysis of the proposed facilities with power flow models that represent different system conditions. Four separate cases (A, B, C, and D) were created from the 2015 summer peak model. A description of the facilities included in each of these cases follows.

Case A - 2015 Summer Model Without the Proposed Vectren Interconnections

The Case A study results will serve as a benchmark for evaluating the interconnections proposed by Vectren. These study results will also provide an assessment of the impacts expected with the loss of smelter load.

Facilities included as in-service in the base model include:

Daviess County EHV 345 kV interconnection (BREC-KU) Ensor 161/69 kV substation 30 MVAR Hancock County 69 kV capacitor

Case B - 2015 Summer Model with the Proposed Vectren Interconnections

The Case B study results will allow the proposed Vectren interconnections to be evaluated under various system conditions.

Facilities included as in-service in the base model include:

Francisco 345/138 kV substation Dubois to Newtonville 138 kV circuit Daviess County EHV 345 kV Interconnection (BREC-KU) Reid to AB Brown 345 kV interconnection Culley 345/138 kV station Culley to Smith 345 kV interconnection Culley to Duff 345 kV line AB Brown 345/138 kV station AB Brown to Gibson 345 kV interconnection Ensor 161/69 kV substation 30 MVAR Hancock County 69 kV capacitor

Case C - 2015 Summer Model with a Variation of the Proposed Vectren Interconnections

The Case B study results will allow a modified Vectren interconnection plan to be evaluated under various system conditions. In this case, the proposed Culley to Smith 345 kV circuit is replaced with a Culley to Coleman EHV 345 kV circuit.

Facilities included as in-service in the base model include:

Francisco 345/138 kV substation Dubois to Newtonville 138 kV circuit Daviess County EHV 345 kV Interconnection (BREC-KU) Reid to AB Brown 345 kV interconnection Culley 345/138 kV station Coleman EHV to Culley interconnection (BREC-Vectren)

Culley to Duff 345 kV line AB Brown 345/138 kV station AB Brown to Gibson 345 kV interconnection Ensor 161/69 kV substation 30 MVAR Hancock County 69 kV capacitor

Case D - 2015 Summer Model Without an Eastern Vectren Interconnection

The case Case D study results will allow the Vectren 345 kV interconnection proposed from AB Brown to Reid to be evaluated. In this case, the proposed Culley to Smith 345 kV circuit (and the Culley to Coleman EHV 345 kV circuit) are removed from the model.

Facilities included as in-service in the base model include:

Francisco 345/138 kV substation Dubois to Newtonville 138 kV circuit Daviess County EHV 345 kV Interconnection (BREC-KU) Reid to AB Brown 345 kV interconnection Culley 345/138 kV station Culley to Duff 345 kV line AB Brown 345/138 kV station AB Brown to Gibson 345 kV interconnection Ensor 161/69 kV substation 30 MVAR Hancock County 69 kV capacitor

In addition, various scenarios were studied with each of the four cases. These scenarios are numbered 1 through 4. As description of these scenarios follows:

Scenario 1: Base model with the facilities included in the Case A, B, C or D description.

Scenario 2: Loss of both aluminum smelters with the excess generation exported (25% to the northeast, 25% to the northwest, 25% to the southeast, and 25% to the southwest).

- Scenario 3: Loss of both aluminum smelters with the excess generation exported (25% to the northeast, 25% to the northwest, 25% to the southeast, and 25% to the southwest). Also included is a modification of the existing New Hardinsburg (BREC) to Paradise (TVA) 161 kV interconnection (the existing circuit is looped through Wilson).
- Scenario 4: Loss of both aluminum smelters with the excess generation exported (25% to the northeast, 25% to the northwest, 25% to the southeast, and 25% to the southwest). Also included is new terrain Wilson to Paradise (TVA) 161 kV interconnection.

The Big Rivers system loads and excess generation included in both the 2015 summer peak model and a light load model (described later) are shown below:

	2015 Sum	ımer Peak Model	2015 Off Peak Model		
	Scenario 1	Scenarios 2, 3, 4	Scenario 1	Scenario 2	
Generation	1744	1744	1744	1744	
System Load	1599	749	1360	510	
HMP&L Take	100	100	100	100	
Balancing Area Load	1699	849	1460	610	
Excess Generation	45	895	284	1134	

Big Rivers Power Flow Model Loads (MW)

POWER FLOW ANALYSIS – SUMMER PEAK

Study Contingencies and Monitored Facilities

Big Rivers used the GE PSLF power flow and contingency processor program to automatically perform the power flow analysis. The contingencies studied included all transmission lines and transformers in the Big Rivers balancing area as well as select external outages. Each transmission line and transformer outage was evaluated alone and with the simultaneous outage of single generating units. This is consistent with the Big Rivers planning criteria described in Appendix A. In addition, select outages of multiple generating units with the outage of each transmission line or transformer were also studied.

The BREC, EKPC, Hoosier Energy, LGEE, TVA, and Vectren systems were monitored for overloads and voltage violations. Summary reports of the study results are included in Appendix B of this report. The table on the following page shows the maximum observed loading on each overloading facility for various scenarios. Additional details are included in later report sections.

MAXIMUM LOADING (% OF RATING)

LIMITING FACILITY		CAS	SE A		CASE B		CASE B			CASE C			CASE D		
	1	2	3	4	1	2	3	4	1	2	; 3	1	2	3	
Reid to Daviess Co. 161 kV	102%	129%	123%	126%	100%	95%	92%	98%	98%	97%	97%	107%	107%	108%	
Hancock to Coleman EHV 161 kV	95%				94%				93%			95%			
Hardin to Daviess Co EHV 345 kV		126%	102%	104%	102%	137%	116%	117%	101%	131%	118%	95%	129%	111%	
Wilson to Green River 161 kV		106%				95%				97%			99%		
Coleman EHV to Coleman 161 kV		112%	104%	109%			93%	96%		91%	97%		98%	107%	
Reid 345/161 kV Transformer		108%	99%	103%											
Smith to Daviess Co EHV 345 kV					101%					ĺ					
Coleman to Newtonville 161 kV		132%	115%	118%		115%	99%	100%		106%	97%		122%	108%	
Wilson to Reid EHV 345 kV					96%		93%	103%	95%	90%	108%	105%	95%	105%	
Wilson to Paradise 161 kV			134%	157%			135%	169%			158%			169%	

CASE A: Base 2015 summer peak model.

CASE B: 2015 summer peak model with the addition of all proposed Vectren interconnections.

CASE C: 2015 summer peak model with a modified Vectren interconnection plan (Culley to Coleman EHV 345 kV interconnection).

CASE D: 2015 summer peak model with only the AB Brown to Reid 345 kV interconnection added (the eastern Vectren-OMU or BREC interconnection was not included).

SCENARIO 1: Base model.

SCENARIO 2: Loss of both smelters.

SCENARIO 3: Loss of both smelters with the addition of a New Hardinsburg-Wilson-Paradise 161 kV loop.

SCENARIO 4: Loss of both smelters with the addition of a new Wilson to Paradise 161 kV circuit.

Case A – 2015 Summer Model without the Proposed Vectren-BREC Interconnections

Case A models include the Big Rivers system with planned system upgrades. The proposed Vectren interconnections with Big Rivers are not included. The study results are provided in Appendix B and discussed in this section.

As these studies show, a slight overload (102%) of the Reid to Daviess County 161 kV circuit is expected with a single contingency outage. System voltages in the Coleman-Hancock County-Daviess County area are below the criteria limit. In addition, import limitations have been experienced during multiple generating unit outages and heavy north to south transfers.

As described earlier, the loss of one or both smelter loads is a concern for Big Rivers. Studies completed with the loss of both smelter loads (with all excess generation exported off-system) indicate significant facility overloads should be expected. Overloads and/or heavy loadings are expected on the Reid to Daviess County 161 kV circuit (129%), the Coleman EHV to Hancock County 161 kV circuit (98%), the Wilson to Green River (KU) 161 kV interconnection (106%), the Coleman to Coleman EHV 161 kV circuits 1 and 2 (112%), the Daviess County EHV to Hardin County (LGEE) 345 kV circuit (126%), and the Coleman to Newtonville (Hoosier

Energy) 161 kV interconnection (132%). Additionally, a north to south transfers bias that can be reasonably expected to occur would result in increased loadings.

Since the existing Big Rivers bulk transmission system is primarily a 161 kV system with limited 138 kV and 345 kV facilities, the system is not capable of transferring large amounts of power to load outside the Big Rivers control area. Consequently, transmission enhancements that provide additional paths to either existing load centers or the EHV transmission system were found to be necessary to accommodate large power exports.

A previously prepared generator interconnection study identified the need for additional outlets (interconnections with neighboring utilities) during system conditions that include increased power exports from Big Rivers. More specifically, two interconnections were required to support the addition of 750 MW of generation to the Big Rivers transmission system. One of these upgrades (a 345 kV interconnection with KU) is already scheduled to be constructed in 2007. The second outlet is a new-terrain 161 kV Wilson to Paradise (TVA) interconnection. Since both interconnections were found to increase the ability to export power, the second interconnection was evaluated as part of the aluminum smelter load loss studies. In addition, two alternatives to this interconnection were also considered. Both alternatives include a modification of the existing New Hardinsburg to Paradise 161 kV interconnection. The second alternative involves looping the existing line through the Wilson station. The second alternative involves reating a three-terminal circuit by constructing a new 161 kV circuit from Wilson to the existing New Hardinsburg to Paradise interconnection. Either alternative would minimize the necessary new right-of-way (ROW) required to interconnect Wilson with Paradise.

The addition of a Wilson to Paradise (TVA) 161 kV interconnection along with a loss of both smelters results in reduced loadings. However, overloads do remain. Overloads are expected on Reid to Daviess County 161 kV circuit (126%), the Coleman to Coleman EHV 161 kV circuits 1 and 2 (109%), the Coleman to Newtonville (Hoosier Energy) 161 kV interconnection (118%) and the Daviess County EHV to Hardin County 345 kV circuit (104%).

The modification of the existing New Hardinsburg to Paradise (TVA) 161 kV interconnection (loop through Wilson), along with a loss of both smelters, also results in reduced loadings. However, overloads again remain. Overloads are expected on Reid to Daviess County 161 kV circuit (123%), the Coleman to Coleman EHV 161 kV circuits 1 and 2 (104%), the Daviess County EHV to Hardin County (LGEE) 345 kV circuit (102%), and the Coleman to Newtonville (Hoosier Energy) 161 kV interconnection (115%).

With the heavy loadings on both internal Big Rivers facilities and external facilities, an addition outlet (interconnection) is required to provide required transfer capability improvement. Since the modification of the existing New Hardinsburg to Paradise (TVA) 161 kV interconnection (either creating a loop circuit or three-terminal circuit) results in reduced loadings on key facilities and requires less ROW when compared to a direct Wilson to Paradise interconnection, this improvement is preferred option for providing increased export capability. No other reasonable interconnection option was identified. The complete list of facilities needed to export all excess power during peak loads and the loss of both aluminum smelters follows:

- Modify the existing New Hardinsburg to Paradise 161 kV interconnection by constructing a 13 mile circuit from Wilson to the existing interconnection. This will create a New Hardinsburg/Wilson/Paradise three-terminal circuit.
- Upgrade the 8 mile 161 kV transmission circuit from the new three-terminal tap point to Paradise to allow for 1600 Amp operation.
- Upgrade the Paradise terminal (TVA) to allow for 1600 Amp operation.
- Upgrade the 22 mile Reid to Daviess County 161 kV circuit to allow for 1200 Amp operation.
- Upgrade the 6.4 mile Coleman to Newtonville 161 kV interconnection to allow for 1200 Amp operation.
- Upgrade both Coleman EHV to Coleman 161 kV circuits (the total combined circuit length is 2.8 miles) to allow for 1200 Amp operation.
- Upgrade the KU 345 kV circuit from Daviess County EHV to Hardin County to allow for 1200 Amp operation.

Additional study details follow:

1. Normal System Observations (base model)

No facility overloads or low voltages were identified.

2. Normal System Observations (with loss of both smelters)

No facility overloads or low voltages were identified.

3. Normal System Observations (loss of both smelters, N. Hard/Paradise to Wilson)

No facility overloads or low voltages were identified.

4. Normal System Observations (loss of both smelters, Wilson to Paradise 16 kV Line Added)

No facility overloads or low voltages were identified.

1. Contingency Observations (base model)

The following transmission facilities (100 kV and above) either exceeded their emergency ratings or experienced heavy loadings near their ratings.

BREC	Reid – Daviess County 161 kV	102%
BREC	Coleman EHV – Hancock Co. 161 kV	95%

Unacceptable single contingency voltages are expected on the 161 kV system at both the Hancock County substation (91%) and the Newman substation (91%).

When the planning criteria is expanded to include the outage of two generating units and a single transmission element, the following transmission facilities (100 kV and above) exceeded their emergency ratings:

BREC	Reid – Daviess County 161 kV	122%
BREC	Coleman EHV – Hancock Co. 161 kV	100%
BREC	Newtonville (HE) – Coleman EHV 161 kV	112%

With the expanded criteria, voltages as low as 83% are expected with an outage of two Coleman generating units with a simultaneous outage of the Coleman EHV to Daviess County EHV 345 kV circuit.

2. Contingency Observations (with loss of both smelters)

Reid – Daviess County 161 kV	129%
Wilson – Green River (LGEE) 161 kV	106%
Coleman – Newtonville (HE) 161 kV	132%
Coleman EHV – Coleman 161 kV	112%
Hardin-Daviess County EHV 345 kV	126%
Reid EHV 345/161 kV Transformer	108%
	Reid – Daviess County 161 kV Wilson – Green River (LGEE) 161 kV Coleman – Newtonville (HE) 161 kV Coleman EHV – Coleman 161 kV Hardin-Daviess County EHV 345 kV Reid EHV 345/161 kV Transformer

3. Contingency Observations (loss of both smelters, N. Hard/Paradise to Wilson)

BREC	Reid – Daviess County 161 kV	123%
BREC	Coleman EHV – Coleman 161 kV	104%
BREC	Newtonville (HE) – Coleman 161 kV	115%
KU	Hardin-Daviess Co EHV 345 kV	102%

4. Contingency Observations (loss of both smelters, Wilson to Paradise 161 kV Line Added)

BREC	Reid – Daviess County 161 kV	126%
BREC	Coleman EHV – Coleman 161 kV	109%
BREC	Newtonville (HE) – Coleman 161 kV	118%
BREC	Hardin-Daviess Co. EHV 345 kV	104%

Case B – 2015 Summer Model with the Proposed Vectren-BREC Interconnections

Case B models include the Big Rivers system with planned system upgrades and the proposed Vectren interconnections. The study results are provided in Appendix B and discussed in this section.

The single contingency overload (102%) of the Reid to Daviess County 161 kV circuit found with Case A studies was reduced to 100% with the Vectren additions. However, the loading on the Smith (OMU) to Daviess County EHV (KU) 345 kV increased to 101%. The flow on the

Reid to Wilson 345 kV circuit was found to be 96%. Unacceptable system voltages in the Coleman-Hancock County-Daviess County area were improved from 91% to 92.5%.

Studies completed with the loss of both smelter loads (with all excess generation exported offsystem) indicate facility overloads should be expected with the Vectren additions. Overloads and/or heavy loadings are expected on the Reid to Daviess County 161 kV circuit (95% with Vectren compared to 129% without), the Wilson to Green River (KU) 161 kV interconnection (95% with Vectren and 106% without), the Coleman to Newtonville (Hoosier Energy) 161 kV interconnection (115% with the Vectren addition and 132% without) and the Daviess County EHV to Hardin County (KU) 345 kV interconnection (137% with Vectren and 126% without).

While the Vectren additions improve system voltages, the Hardin to Daviess County EHV circuit overload is more severe with the Vectren interconnection. In order to export all excess generation during peak, off-peak, and times of heavier north to south flows, additional improvements are required. The addition of a Wilson to Paradise interconnection (through a modification of the existing New Hardinsburg to Paradise interconnection) or the reconductoring of the Coleman to Newtonville 161 kV line is necessary.

The complete list of facilities needed to export all excess power during peak loads and the loss of both aluminum smelters follows:

- Upgrade the 6.4 mile Coleman to Newtonville 161 kV interconnection to allow for 1200 Amp operation.
- Modify the existing New Hardinsburg to Paradise 161 kV interconnection by constructing a 13 mile circuit from Wilson to the existing interconnection. This will create a New Hardinsburg/Wilson/Paradise three-terminal circuit.
- Upgrade the 8 mile 161 kV transmission circuit from the new three-terminal tap point to Paradise to allow for 2000 Amp operation.
- Upgrade the Paradise terminal (TVA) to allow for 2000 Amp operation.
- Upgrade both Coleman EHV to Coleman 161 kV circuits (the total combined circuit length is 2.8 miles) to allow for 1200 Amp operation.
- Upgrade the KU 345 kV circuit from Daviess County EHV to Hardin County to allow for 1200 Amp operation.

Additional study details follow:

1. Normal System Observations (base model)

LGEEDaviess Co. EHV – Hardin County 161 kV93%No unacceptable system voltages are expected.93%

2. Normal System Observations (with loss of both smelters)

LGEE Daviess Co. EHV – Hardin County 161 kV 122% No unacceptable system voltages are expected.

3. Normal System Observations (loss of both smelters, N. Hard/Paradise to Wilson)

LGEE Daviess Co. EHV – Hardin County 161 kV 116% No unacceptable system voltages are expected.

1. Contingency Observations (base model)

The following transmission facilities (100 kV and above) either exceeded their emergency ratings or experienced heavy loadings near their ratings.

BREC	Reid – Daviess County 161 kV	100%
BREC	Coleman EHV – Hancock Co. 161 kV	94%
LGEE	Daviess Co. EHV – Hardin County 161 kV	102%
LGEE	Daviess Co. EHV – Smith 161 kV	101%

No unacceptable system voltages are expected. The lowest observed bulk system voltage was 92.5% at the Newman substation (with an outage of the Reid to Daviess County 161 kV circuit with a simultaneous outage of 1 Coleman generating unit.

When the planning criteria is expanded to include the outage of two generating units and a single transmission element, the following transmission facilities (100 kV and above) exceeded their emergency ratings:

BREC	Reid – Daviess County 161 kV	126%
BREC	Coleman EHV – Hancock Co. 161 kV	99%
BREC	Newtonville (HE) – Coleman EHV 161 kV	109%
BREC	Coleman EHV – Coleman 161 kV 1 & 2	100%
LGEE	Daviess Co. EHV – Smith 161 kV	107%

With the expanded criteria, voltages as low as 85% are expected during various outage combinations.

2. Contingency Observations (with loss of both smelters)

LGEE	Daviess Co. EHV – Hardin County 161 kV	137%
BREC	Newtonville (HE) – Coleman EHV 161 kV	115%
BREC	Wilson – Green River (LGEE) 161 kV	95%
BREC	Reid – Daviess County 161 kV	95%

3. Contingency Observations (loss of both smelters, N. Hard/Paradise to Wilson)

BREC	Reid – Daviess County 161 kV	92%
BREC	Newtonville (HE) – Coleman EHV 161 kV	99%
BREC	Coleman EHV – Coleman 161 kV 1 & 2	93%
LGEE	Daviess Co. EHV – Hardin County 161 kV	116%
BREC	Wilson – Reid EHV 345 kV	93%

Case C - 2015 Summer Model with a variation of the Proposed Vectren-BREC Interconnections

Case C models include the BREC system with already planned system upgrades and the proposed Vectren interconnections. However, the Culley to Smith (OMU) 345 kV interconnection proposed by Vectren was replaced with a 345 kV Culley to Coleman interconnection. The study results are provided in Appendix B and discussed in this section.

The single contingency overload (102%) of the Reid to Daviess County 161 kV circuit found with Case A studies was reduced to 98% with the Vectren additions. However, the Daviess County to Hardin County 345 kV circuit was overloaded at 101%.

Studies completed with the loss of both smelter loads (with all excess generation exported offsystem) indicate facility overloads or heavy system loadings should be expected with the Vectren additions. Overloads and/or heavy loadings are expected on the Reid to Daviess County 161 kV circuit (97% with Vectren compared to 129% without), the Wilson to Green River (KU) 161 kV interconnection (97% with Vectren and 106% without), the Coleman to Newtonville (Hoosier Energy) 161 kV interconnection (106% with the Vectren addition and 132% without) and the Daviess County EHV to Hardin County (KU) 345 kV interconnection (131% with Vectren and 126% without).

While the Vectren additions improve system voltages, the Hardin to Daviess County EHV circuit overload is more severe with the Vectren interconnection. In order to export all excess generation during various system conditions (the Wilson to Green River 161 kV line loading is 106% with additional north to south transfers modeled) additional improvements are required. The addition of a Wilson to Paradise 161 kV interconnection (through a modification of the existing New Hardinsburg to Paradise interconnection) eliminates the Wilson to Green River overload and reduces the contingency loading on the Coleman to Newtonville 161 kV interconnection to just below 100%.

The complete list of facilities needed to export all excess power during peak loads and the loss of both aluminum smelters follows:

- Modify the existing New Hardinsburg to Paradise 161 kV interconnection by constructing a 13 mile circuit from Wilson to the existing interconnection. This will create a New Hardinsburg/Wilson/Paradise three-terminal circuit.
- Upgrade the 8 mile 161 kV transmission circuit from the new three-terminal tap point to Paradise to allow for 2000 Amp operation.
- Upgrade the Paradise terminal (TVA) to allow for 2000 Amp operation.
- Upgrade the KU 345 kV circuit from Daviess County EHV to Hardin County to allow for 1600 Amp operation.

Additional study details follow:

1. Normal System Observations (base model)

LGEE	Daviess Co. EHV – Hardin County 161 kV	93%
2. Normal Syst	em Observations (with loss of both smelters)	
LGEE	Daviess Co. EHV – Hardin County 161 kV	121%
<u>3. Normal Syst</u>	em Observations (loss of both smelters, N. Hard/l	Paradise to Wilson)
LGEE	Daviess Co. EHV – Hardin County 161 kV	115%

1. Contingency Observations (base model)

The following transmission facilities (100 kV and above) either exceeded their emergency ratings or experienced heavy loadings near their ratings.

BREC	Reid – Daviess County 161 kV	98%
BREC	Coleman EHV – Hancock Co. 161 kV	93%
LGEE	Daviess Co. EHV – Hardin County 161 kV	101%

No unacceptable system voltages are expected. The lowest observed bulk system voltage was 92.5% at the Hancock County substation (with an outage of the Coleman EHV to Hancock County 161 kV circuit with a simultaneous outage of the Wilson generating unit.

When the planning criteria is expanded to include the outage of two generating units and a single transmission element, the following transmission facilities (100 kV and above) exceeded their emergency ratings:

BREC	Reid – Daviess County 161 kV	104%
BREC	Coleman EHV – Hancock Co. 161 kV	97%
BREC	Coleman EHV – Coleman 161 kV 1 & 2	108%

With the expanded criteria, voltages as low as 91.6% are expected.

2. Contingency Observations (with loss of both smelters)

The following transmission facilities (100 kV and above) either exceeded their emergency ratings or experienced heavy loadings near their ratings.

BREC	Newtonville (HE) – Coleman EHV 161 kV	106%
BREC	Reid – Daviess County 161 kV	97%
LGEE	Daviess Co. EHV – Hardin County 161 kV	131%

3. Contingency Observations (loss of both smelters, N. Hard/Paradise to Wilson)

The following transmission facilities (100 kV and above) either exceeded their emergency ratings or experienced heavy loadings near their ratings.

BREC	Reid – Daviess County 161 kV	97%
BREC	Coleman EHV – Coleman 161 kV 1 & 2	97%
BREC	Wilson – Reid EHV 345 kV	108%
LGEE	Daviess Co. EHV – Hardin County 161 kV	118%

Case D – 2015 Summer Model with only the AB Brown to Reid Interconnection

Case D models include the Big Rivers planned system upgrades and the proposed 345 kV Vectren interconnections from AB Brown to Reid EHV. However, the Culley to Smith (OMU) 345 kV interconnection proposed by Vectren (and the 345 kV Culley to Coleman interconnection) was removed from the model. The study results are provided in Appendix B and discussed in this section.

The single contingency overload (102%) of the Reid to Daviess County 161 kV circuit found with Case A studies increased to 107% with the Vectren addition. In addition, the Reid EHV to Wilson 345 kV circuit was overloaded at 105% and the Coleman EHV to Hancock County 161 kV circuit was loaded at 95%. Similar to Case A, system voltages in the Coleman-Hancock County-Daviess County area are near the 92% criteria limit.

Studies completed with the loss of both smelter loads (with all excess generation exported offsystem) indicate facility overloads or heavy system loadings should be expected with the Vectren addition. Overloads and/or heavy loadings are expected on the Reid to Daviess County 161 kV circuit (107% with Vectren compared to 129% without), the Wilson to Green River (KU) 161 kV interconnection (99% with Vectren and 106% without), the Coleman to Newtonville (Hoosier Energy) 161 kV interconnection (122% with the Vectren addition and 132% without) and the Daviess County EHV to Hardin County (KU) 345 kV interconnection (129% with Vectren and 126% without).

With the 345 kV AB Brown to Reid EHV circuit in-place, the following facilities are required to export all excess power during peak loads and the loss of both aluminum smelters follows:

- Upgrade the 22 mile Reid to Daviess County 161 kV circuit to allow for 1200 Amp operation.
- Upgrade the 6.4 mile Coleman to Newtonville 161 kV interconnection to allow for 1200 Amp operation.
- Modify the existing New Hardinsburg to Paradise 161 kV interconnection by constructing a 13 mile circuit from Wilson to the existing interconnection. This will create a New Hardinsburg/Wilson/Paradise three-terminal circuit.
- Upgrade the 8 mile 161 kV transmission circuit from the new three-terminal tap point to Paradise to allow for 2000 Amp operation.

- Upgrade the Paradise terminal (TVA) to allow for 2000 Amp operation.
- Upgrade both Coleman EHV to Coleman 161 kV circuits (the total combined circuit length is 2.8 miles) to allow for 1200 Amp operation.
- Upgrade the KU 345 kV circuit from Daviess County EHV to Hardin County to allow for 1200 Amp operation.
- Upgrade the KU 345 kV circuit from Daviess County EHV to Hardin County to allow for 1600 Amp operation.

Additional study details follow:

1. Normal System Observations (base model)

No facility overloads or low voltages were identified.

2. Normal System Observations (with loss of both smelters)

LGEE Daviess Co. EHV – Hardin County 161 kV 118%

3. Normal System Observations (loss of both smelters, N. Hard/Paradise to Wilson)

LGEE Daviess Co. EHV – Hardin County 161 kV 111%

1. Contingency Observations (base model)

The following transmission facilities (100 kV and above) either exceeded their emergency ratings or experienced heavy loadings near their ratings.

BREC	Reid EHV – Wilson 345 kV	105%
BREC	Reid – Daviess County 161 kV	107%
BREC	Coleman EHV – Hancock Co. 161 kV	95%
LGEE	Daviess Co. EHV – Hardin County 161 kV	95%

Single contingency voltages at the accepted low voltage limit are expected on the 161 kV system at the Newman substation (91.9%).

2. Contingency Observations (with loss of both smelters)

The following transmission facilities (100 kV and above) either exceeded their emergency ratings or experienced heavy loadings near their ratings.

BREC	Reid – Daviess County 161 kV	107%
BREC	Wilson – Green River (LGEE) 161 kV	99%
BREC	Coleman – Newtonville (HE) 161 kV	122%
BREC	Coleman EHV – Coleman 161 kV	98%
KU	Hardin-Daviess County EHV 345 kV	129%

3. Contingency Observations (loss of both smelters, N. Hard/Paradise to Wilson)

The following transmission facilities (100 kV and above) either exceeded their emergency ratings or experienced heavy loadings near their ratings.

BREC	Coleman – Newtonville (HE) 161 kV	108%
BREC	Reid – Daviess County 161 kV	108%
BREC	Coleman EHV – Coleman 161 kV 1 & 2	107%
BREC	Wilson – Reid EHV 345 kV	105%
LGEE	Daviess Co. EHV – Hardin County 161 kV	111%

POWER FLOW ANALYSIS – SENSITIVITY

In order to more fully evaluate the proposed system enhancements, the following sensitivity studies were completed. A complete N-1 analysis was completed with each model (Case E, F, G, and H). In addition, scenarios 1, 4, and 5b were analyzed with each case. Again, a complete N-1 analysis was performed.

Case E: 3000 MW north to south transfer and no system improvements.

- Case F: 3000 MW north to south transfer with the AB Brown to Reid EHV 345 kV interconnection.
- Case G: Off-peak model with no system improvements.
- Case H: Off-peak model with the AB Brown to Reid EHV 345 kV interconnection.
- Scenario 1: Base model (with smelters).
- Scenario 4: No smelter.
- Scenario 5b: No smelter with a Wilson to Paradise 161 kV interconnection (3-terminal from the existing New Hardinsburg to Paradise 161 kV interconnection).

Results

As expected, facility loadings during off-peak load levels (with all excess generation exported) can be higher than the loadings experienced during peak load conditions. The same is true for system conditions that include heavier north to south transfers (the study results are included as Appendix E).

These scenarios, as described above, were studied with the addition of a Wilson to Paradise 161 kV interconnection (3-terminal with the existing New Hardinsburg to Paradise interconnection connected to Wilson). The study results showed no additional improvements are necessary above those identified with the peak load studies.

IMPORT/EXPORT ANALYSES

The intent of these analyses was to determine the impact various system improvement options are expected to have on the overall ability to import and export power to and from the Big Rivers balancing area. The loadings on internal Big Rivers facilities and nearby external facilities were considered. These analyses are not coordinated ATC studies. The results do not guarantee or imply that firm transmission that will be available to the market.

Export capability studies were completed with and without the loss of the aluminum smelter load. Without the load loss, over-generating was necessary to reach facility limitations. Consequently, the study results may not accurately represent actual conditions. Since the Reid to Daviess County 161 kV circuit is already planned to be upgraded, limits found on this circuit were not considered. In addition, the Wilson to Reid EHV 345 kV circuit is limited by a CT ratio. Since this upgrade could be easily accomplished, this limit was also not considered.

Export: Existing System (no Vectren Interconnections)

With the existing system, the 2015 summer peak export capability was found to be 574 MW as limited by the Wilson to Green River 161 kV circuit. With the addition of the proposed Wilson to Paradise interconnection (modification of the existing New Hardinsburg to Paradise 161 kV circuit), the export capability increased to 1121 MW as limited by the Coleman to Newtonville 161 kV interconnection.

With loss of both smelters, the 2015 summer peak export capability was found to be 912 MW as limited by the Coleman to Newtonville 161 kV interconnection. With the addition of the proposed Wilson to Paradise interconnection (modification of the existing New Hardinsburg to Paradise 161 kV circuit), the export capability increased to 1098 MW as limited by the Coleman to Newtonville 161 kV interconnection. With an upgrade of the Coleman to Newtonville circuit, the next limit was found to be the Reid to Hopkins County 161 kV circuit at 1380 MW.

The Wilson to Paradise interconnection (modification of the existing New Hardinsburg to Paradise 161 kV circuit) was found to significantly increase the Big Rivers export capability. With the loss of smelters and an upgrade of the Coleman to Newtonville interconnection, the export capability (not considering external flow gates or other external facilities) was increased by 468 MW.

Export: With the Addition of the Brown to Reid EHV 345 kV Interconnection

With 2015 summer peak conditions, the export capability was found to be 632 MW as limited by Wilson to Green River 161 kV circuit. With the addition of the proposed Wilson to Paradise interconnection (modification of the existing New Hardinsburg to Paradise 161 kV circuit), the export capability increased to 972 MW as limited by the Reid to Hopkins County 161 kV circuit.

With loss of both smelters, the 2015 summer peak export capability was found to be 1040 MW as limited by the Coleman to Newtonville 161 kV interconnection. With the addition of the

proposed Wilson to Paradise interconnection (modification of the existing New Hardinsburg to Paradise 161 kV circuit), the export capability increased to 1212 MW as limited by the Coleman to Newtonville 161 kV interconnection.

The interconnection addition is expected to increase flows into the Big Rivers system. However, when studied with 2015 summer peak load conditions, the interconnection did offer a modest increase in export capability (58 MW during normal peak conditions and 128 MW with the loss of both aluminum smelters).

Export: With the Addition of the Brown to Reid EHV 345 kV and Culley to Coleman 345 kV Interconnection

With 2015 summer peak conditions, the export capability was found to be 742 MW as limited by Wilson to Green River 161 kV circuit. With the addition of the proposed Wilson to Paradise interconnection (modification of the existing New Hardinsburg to Paradise 161 kV circuit), the export capability increased to 1294 MW as limited by the Reid to Hopkins County 161 kV circuit.

With loss of both smelters, the 2015 summer peak export capability was found to be 1259 MW as limited by the Wilson to Green River 161 kV interconnection. With the addition of the proposed Wilson to Paradise interconnection (modification of the existing New Hardinsburg to Paradise 161 kV circuit), the export capability increased to 1583 MW as limited by the Coleman to Newtonville 161 kV interconnection. With an upgrade of the Coleman to Newtonville circuit, the next limit was found to be the Reid to Hopkins County 161 kV circuit at 2048 MW.

The addition of both Vectren interconnections resulted in an export capability increase of 168 MW during normal peak load conditions and 347 MW with the loss of both smelter loads (as compared to export values with the addition of neither Vectren interconnection).

Import Study Results

2015 summer peak import studies were completed with the smelters load being served. The import was modeled as a transfer from the north (Duke). With the existing system, an import limit of 621 MW was found (limited by the Coleman to Newtonville 161 kV interconnection). With the addition of a Wilson to Paradise interconnection, an import limit of 626 MW was found (limited by the Coleman to Newtonville 161 kV interconnection). With an upgrade of the Coleman to Newtonville 161 kV circuit, the import limit increases to approximately 950 MW.

With the addition of the proposed AB Brown to Reid EHV 345 kV interconnection, the import capability increased to 895 MW. Again, the impact of the Wilson to Paradise interconnection was not significant (896 MW import capability). The limiting facility was found to be the Coleman to Newtonville 161 kV interconnection. An upgrade of the Coleman to Newtonville 161 kV circuit was found to increase the import limit to approximately 1200 MW. The overall import capability is expected to increase with the addition of the AB Brown to Reid EHV 345 kV interconnection.

With the addition of both of the proposed Vectren interconnections (AB Brown to Reid EHV 345 kV and Culley to Smith 345 kV) the import capability increased to 942 MW. Again, the impact of the Wilson to Paradise interconnection was not significant (941 MW import capability). The limiting facility was found to be the Coleman to Newtonville 161 kV interconnection. An upgrade of the Coleman to Newtonville 161 kV circuit is expected to increase the import limit. The overall import capability is expected to increase with the addition of these Vectren interconnections.

With the addition of both of the modified Vectren interconnection plan (AB Brown to Reid EHV 345 kV and Culley to Coleman EHV 345 kV) the import capability increased to 2000+MW (assuming the Coleman EHV to Coleman 161 kV circuits are upgraded). Again, the impact of the Wilson to Paradise interconnection was not significant (2000+MW import capability).

LOSS COMPARISON

A comparison of system losses is provided below. The largest loss reduction is in the Vectren system. The LGEE system includes the only significant loss increase. The overall change in system losses does not appear significant.

MW LOSSES (NO NEW PARADISE INTERCONNECTION)				
System	Case A	Case B	Case C	Case D
-	Losses	Losses	Losses	Losses
BREC (214)	22	23	22	23
LGEE (211)	258	267	266	264
TVA (147)	797	799	799	799
VECTREN (210)	43	35	35	35
Total	1120	1124	1122	1121

MW LOSSES (WITH NEW PARADISE INTERCONNECTION)				
System	Case A	Case B	Case C	Case D
	Losses	Losses	Losses	Losses
BREC (214)	22	23	23	24
LGEE (211)	257	266	265	263
TVA (147)	797	800	800	800
VECTREN (210)	43	35	35	35
Total	1119	1124	1123	1122

SHORT-CIRCUIT STUDY RESULTS

A short circuit analysis was completed. The intent of the analysis was to determine if the replacement of any circuit breakers would be required as a result of the proposed construction (line reconductors and the creation of a Wilson to Paradise interconnection). The study results are shown in Appendix D. Based on these results, no breaker replacement projects are proposed.

TRANSIENT STABILITY STUDY

Transient stability is a study conducted to investigate the dynamic response of generators due to a fault or some other type of system disturbance near a generator. Stability analyses were not completed as part of this study effort. However, a previously prepared stability study was reviewed.

The previously prepared stability study included a generation addition near the Wilson station and a new 161 kV Wilson to Paradise interconnection (in addition to the planned Daviess County EHV 345 kV switching station). Based on these study results, acceptable dynamic performance is expected with the addition of a Wilson to Paradise interconnection (either a new direct interconnection or through a modification of the existing New Hardinsburg to Paradise 161 kV interconnection).

RECOMMENDATION

The proposed facility upgrades described in the Summary of Results and Conclusions section of this report were found to be the most cost effective system improvements available to meet the system export needs. No other improvements were found to provide the robustness of the proposed facilities while limiting the need for new right-of-ways. The Vectren improvements were found to benefit the Big Rivers system and the regional transmission network. However, these improvements did not eliminate the need for the proposed Wilson to New Hardinsburg/Paradise Tap 161 kV circuit. Consequently, the Vectren interconnection alternatives were not selected due to the limited improvement provided to the Big Rivers export capability.

Three connection alternatives were considered for the 161 kV Wilson circuit. One alternative included a 21 mile new terrain Wilson to Paradise 161 kV interconnection. This alternative requires new 161 kV terminals at both Wilson and Paradise. Due to the additional miles of new-terrain right-of-way required (as compared to the selected alternative) and higher cost, this connection alternative was not selected. A second alternative included two 13 mile new terrain circuits on a common right-of-way to loop the Hardinsburg to Paradise 161 kV circuit through the Wilson switchyard. This alternative requires two new 161 kV terminals at Wilson. Due to the additional right-of-way and cost, this connection alternative was not selected alternative includes approximately 13 miles of new-terrain 161 kV construction from Wilson to a tap point in the existing Hardinsburg to Paradise 161 kV circuit. In addition, by creating a three-terminal circuit with an existing interconnection, only one new terminal (Wilson) is required. When cost, effectiveness, and necessary new right-of-way were considered, the proposed alternative was found to be the superior alternative.

APPENDIX A: BIG RIVERS PLANNING CRITERIA

TRANSMISSION PLANNING CRITERIA AND GUIDELINES PL-FAC-0001

	Document Information	
Gurrent Revision	Review Cycle	Subject to External Audit.
Rev. 1.0	As needed (copy to RC)	Yes

Big Rivers Corporate Approvals				
Prepared By	Chris Bradley/Bob Warren	5/18/2007		
Approval - Supervisor	N/A			
Approval - Dept. Manager	N/A			
Approval - Vice President				
		Revision Information		
----------	-----------	---	---------------	----------
Number	Date	Notes	Revised by	Approved
Rev. 1.0	3/15/2007	New Document - Replaces original document.	Chris Bradley	Yes
Rev. 1.1	5/18/2007	Dynamic stability procedures were expanded.	Chris Bradley	Yes
				·····

TABLE OF CONTENTS

I.	General System Planning Requirements1
II.	Power Flow Studies1
III.	Short Circuit Studies
IV.	Stability Studies
V.	Construction Work Plans7
VI.	Long-Range Engineering Plans9
VII.	Short-Term/Operational Planning10
VIII.	Miscellaneous Planning Studies11
IX.	Rating Methodologies12
X.	Line Switch Criteria15
XI.	Critical Facilities16
XII.	Coordination/Communication17
XIII	Transfer Capability17

- Appendix A: Voltage Level Criteria Guideline
- Appendix B: Load Distribution
- Appendix C: Transformer Information
- Appendix D: Shunt Information
- Appendix E: Loadability Tables
- Appendix F: Transmission Reliability Order of Curtailment

I. GENERAL SYSTEM PLANNING REQUIREMENTS

The Big Rivers transmission system consists of the physical equipment necessary to transmit power from its generating plants and interconnection points to all substations from which customers of its three member distribution cooperatives are served. Transmission planning embodies making investment decisions required to maintain this system so that it can reliably meet the power needs of the customers served. Transmission planning also includes the evaluation of transmission service requests, internal and external generator interconnection requests, internal and external transmission interconnection requests, and end-user connection requests. Justifications used in any transmission study are based on technical and economic evaluations of options that may be implemented to meet the specific need. The planning criteria described in this document are consistently utilized for all transmission studies.

The technical studies performed by the system planning section require the use of several software packages. The software package PSLF (Positive Sequence Load Flow) is a comprehensive set of transmission system planning programs supported by the General Electric Company. PSSE is a similar program supported by Siemens. Both software programs are used to complete AC and DC power flow studies, to create power flow equivalents, to prepare stability studies, and to complete other studies.

A software package for short-circuit calculations and relay coordination is also used. This package is known as CAPE (The Computer-Aided Power Engineering System) and is supported by Electrocon International Inc.

The above-described software programs are used in the preparation of seasonal assessments (for internal use and to meet NERC and/or SERC requirements) as well as short-term and long-term construction plans (as defined and required by RUS). Power flow studies for specific operating conditions are also performed to support system operations. Special power flow studies, generator, transmission, and end-user interconnection studies, and transfer capability studies are performed as needed.

II. POWER FLOW STUDIES

The most widely used software program for transmission system planning is the power flow program. In order to get consistent and meaningful results from power flow studies, specific criteria and procedures have been established and are followed. Succeeding sections of the document describe the contingency criteria, voltage criteria, line and transformer loading criteria, and modeling procedures established and consistently applied by Big Rivers for all transmission system planning study efforts.

1. Contingency Criteria

Big Rivers follows two RUS recommended criteria for analyzing the adequacy of its transmission system. The first criteria defines single contingency outages to be used in all system planning studies. This criteria serves as the basis for planning and justifying system improvements. The second criteria outlines double contingency outages that can be analyzed to determine the extent of problems encountered on the system under extreme outage or emergency situations. In most double contingency cases, system improvements would not be considered justifiable. However, the type and severity of the system problems encountered is useful information in planning those system improvements that are justifiable.

Single Contingency Criteria:

- 1. Outage of two generation units (any combination).
- 2. Outage of one generation unit and one transmission line.
- 3. Outage of one generating unit and one transformer.
- 4. Outage of one transmission line.

Double Contingency Criteria:

- 1. Outage of two transmission lines on the same right-of-way.
- 2. Outage of transmission lines due to outage of one bus.
- 3. Outage of three generation units.

In addition to the above-described criteria, Big Rivers also analyzes its transmission system to ensure compliance with NERC Planning Standards. The following describes the outages studied to ensure compliance with the NERC TPL standards:

NERC Category A (no contingencies)

As with all studies, base case conditions (no outages) are evaluated to ensure compliance with all planning criteria and standards. Base case models used for all studies should include appropriate loads that are consistent with the corporate load forecast, firm transactions, realistic generator dispatch based on historic data, and should include existing and planned facilities.

NERC Category B

- 1. Individual outage of all single elements in Big Rivers (including 3-terminal circuits), Hoosier Energy (HE), KU and LG&E (LGEE), Southern Illinois Power Cooperative (SIPC), TVA, and Vectren.
- 2. Single generating unit outages.

Seasonal assessments and other bulk system assessments performed by Big Rivers include the outage of each single element above 100 KV in the systems listed above with the bulk facilities in each of the above listed systems monitored.

NERC Category C (including NERC Category B with Generating Unit outage)

- 1. Single transmission element outage with simultaneous generating unit outage (including each of the following: Wilson, Green, Coleman, and Paradise).
- 2. Double transmission element outages including two circuits on a common tower (global Big Rivers outages and select external).
- 3. Substation bus or bus section outage.

Seasonal assessments include every combination of double contingencies in the Big Rivers system (above 100 KV). In addition, each Big Rivers single contingency is performed with the simultaneous outage of select individual generating units (listed above). Select bus section outages in Big Rivers are studied. While performing these outages, all bulk facilities (Big Rivers, HE, LGEE, SIPC, TVA, and Vectren) are monitored. However, the external facilities are monitored only for the potential to cascade (130% overload). Other transmission assessment studies may include only a subset of the above described outages.

NERC Category D

- 1. Coleman generating plant outaged.
- 2. Wilson generating plant outaged.
- 3. Green generating plant outaged.
- 4. Century Aluminum load outaged.
- 5. Alcan load outaged.
- 6. Outage of Reid 161 kV switchyard.
- 7. Outage of Coleman 161 kV switchyard.
- 8. Outage of all Green and HMP&L generating units.

Seasonal assessments include the above described Category D outages. While performing these outages, all bulk facilities (Big Rivers, HE, LGEE, SIPC, TVA, and Vectren) are monitored. However, the external facilities are monitored only for the potential to cascade (130% overload). Other transmission assessment studies may include only a subset of the above described outages.

When completing all bulk transmission studies, all internal facilities are monitored for voltage and loading violations. Either select external facilities or the complete list of external system previously described are also monitored. When completing seasonal assessments, the neighboring systems may only be monitored for the potential to cascade. When completing expansion studies or connection studies, any neighboring system violation will be compared against the base model to determine the impact of the proposed projects. Any violation made worse by the proposed system improvement will be investigated with the facility owner.

2. Voltage Criteria

As indicated in the following table, Big Rivers has adopted a voltage criteria for planning and assessing its transmission system. This criteria defines acceptable minimum and maximum voltage levels for the high-side buses. The criteria include a range of acceptable voltages for normal system conditions (all facilities in service) and during single contingency conditions. A more detailed description of the voltage criteria is included as Appendix A.

	69 kV Bus	Voltage	> 69 kV Bus	Voltage
Transmission System Conditions	Minimum	Maximum	Minimum	Maximum
Range A: Normal System Operations	95.0%	105.0%	95.0%	105.0%
Range B: Single Contingency Conditions	91.7%	105.8%	92.0%	105.0%

3. Facility Rating Criteria

Big Rivers' transmission lines are rated according to limits determined by the most restrictive of either the conductor thermal ratings, the NESC minimum line to ground clearances, or the terminal equipment ratings. Big Rivers' transformer ratings are established according to their thermal design ratings as specified by the manufacturer. For normal and single contingency situations, all lines are to be loaded at or below their ratings and all transformers are to be loaded at or below their maximum 65°C ratings. Substation equipment ratings are based on manufacturer recommendations. Big Rivers does not derate high voltage air switches, line traps, or power circuit breakers based on weather conditions or previous loading conditions. Shunt capacitors are designed for a minimum of 1.05 p.u. voltage. Jumpers connecting these substation components to other elements of the transmission system are sized with current carrying capacity greater than the component itself. Additional rating details can be found later in this report.

4. Modeling Procedures

In order to perform a power flow study, a model of the electrical system is required. The power flow model requires line and transformer impedances, transformer tap settings, generation levels, load levels (MW and MVAR), scheduled voltages, line and transformer ratings, and interchange schedules for Big Rivers' facilities as well as for other utilities.

To start the model development process, an MMWG power flow case for a desired year is obtained. This model includes information for neighboring utilities within SERC as well as other reliability areas. Neighboring utilities may be contacted directly in order to obtain more detailed system information. After the MMWG case is obtained, the Big Rivers model and any desired neighboring utility representations are removed and more detailed models are merged into the case.

After all detailed representations are merged into the MMWG case, fine-tuning of the case begins. The first step is to make sure Big Rivers' interchange is correct. The modeled interchange should typically reflect firm contract sales for the desired time period. Transactions that are consistent with firm transmission reservations confirmed on the OASIS may also be modeled as part of Big Rivers' scheduled interchange. Close attention is paid to HMP&L's allocation from Station 2 generation and HMP&L's loads (in the MMWG case, the HMP&L take is modeled as Big Rivers load. HMP&L load is modeled in a separate HMP&L area in the detailed case). After the interchange is modeled, the loads in Big Rivers' area are reviewed and revised. The distributed loads will match the forecast numbers found in the latest available Big Rivers load forecast for the desired year. Regression techniques or averages based on historical data are used to distribute the total rural load. The large industrial loads modeled in the power flow case will match the values given in the Big Rivers load forecast. Each distribution cooperative is consulted during this load distribution process. Additional details regarding this process are included in Appendix B. In most cases, the generation at Reid 1 and at the Reid CT is modeled off-line. All transmission or generation construction scheduled to be completed before the time period to be studied is added into the model. A final check of line and transformer impedances and ratings is performed prior to starting the desired power flow studies.

III. SHORT CIRCUIT STUDIES

System planning utilizes short circuit study results to evaluate the adequacy of the short time current or interrupting ratings of existing equipment, to determine the ratings of new equipment to be purchased, and to provide short circuit source data to its member cooperatives, their industrial customers, or for Big Rivers' own protection coordination studies. System planning currently performs these short circuit studies. Short circuit studies are performed using the CAPE software package.

In order to perform these short circuit studies, a database model including the positive and zero sequence impedances of each line, transformer, and generator is prepared for Big Rivers' system. Equivalent system impedances for each of Big Rivers' interconnections are also determined and modeled. Short circuit studies are then run to determine the magnitude of single phase to ground and three phase faults at each station or bus in Big Rivers' system. These fault levels are compared to the existing power circuit breaker ratings to determine if any equipment ratings are exceeded. If equipment ratings are exceeded, then upgrades in equipment are recommended.

IV. STABILITY STUDIES

Another concern of the system planning section is system stability. Stability refers to the ability of a generator to remain in synchronism with all other generators after a disturbance or fault. On an annual basis, seasonal assessments performed by Big Rivers will be reviewed to determine significant NERC Category B, C, and D outages that warrant near-term dynamic simulations. In general, any Category B, C, or D outage that has the potential to result in significant facility overloads, widespread low voltages, or cascading outages without operator action will be considered for inclusion in a dynamic analysis. Particular attention should be given to facilities or geographic areas that appear particularly vulnerable to frequent overloading or low voltage conditions (during various independent single or multiple contingencies). If no new significant facilities, outages, or areas of concerns are identified, previously prepared dynamic simulations may be sufficient. However, dynamic simulations should be performed if any of the following conditions or situations occur:

- Significant system changes have occurred since the last dynamic simulations were completed. This includes internal and nearby external changes (EHV additions, generator additions or retirements, interconnection additions, load loss or addition, etc.).
- Additional significant facilities or outages are identified through the seasonal assessment study process.
- The most recent dynamic simulations are found to be over 5 years old.

The criteria followed during stability studies follows:

- With one transmission element out-of-service, all generating units must remain stable with a subsequent single phase-to-ground fault.
- Under normal system peak load conditions with full generation output, all generating units must remain stable with a three phase-to ground fault at the most critical location.
- Under normal system peak load conditions with full generation output, all generating units must remain stable with a single phase-to-ground fault at the most critical location followed by a breaker failure.

- All circuit breakers should be capable of interrupting the maximum fault current duty imposed on the circuit breaker.
- All NERC standards and SERC Supplement requirements must be met.

V. CONSTRUCTION WORK PLANS

RUS requires that borrowers maintain an up-to-date short-range construction work plan (CWP). The CWP consists of a series of system studies, which covers a period of 2 to 3 years in the future and identifies required transmission facility improvements. The CWP is consistent with the long-range engineering plan. The CWP studies use the system load estimates found in the borrower's approved load forecast. A CWP, according to RUS, shall normally include studies of power flows, voltage regulation, and stability characteristics to demonstrate system performance and needs. These requirements, as well as additional requirements, are described in the <u>Federal Register</u> in 7 CFR Part 1710.

A CWP, as prepared by Big Rivers, covers a three year period beyond the year in which the study is being performed. For example, a CWP prepared in the summer of 1995 would cover the time frame from 1996 to 1998. New CWPs are typically prepared during the last year covered by an existing CWP.

Power flow studies make up the majority of a CWP as prepared by Big Rivers. A power flow database is prepared as previously described. Load levels that are consistent with the most current load forecast are modeled. Typically, the interchange is modeled according to firm contract sales and purchases. However, transactions that are consistent with firm transmission reservations that are confirmed on the OASIS may also be modeled as part of Big Rivers' scheduled interchange. Single contingency outages of each line of Big Rivers' system (excluding radial lines) are studied. Single contingencies, which yield unacceptable system results, are identified. Alternate systems switching arrangements or changes in transformer tap settings are evaluated as the first solution option. If operational changes will not correct the problem, then system improvement alternatives are defined, modeled, and studied to determine their merits in correcting the system problem. The system improvements that prove to be successful solutions for the system problem are then evaluated based on economics, reliability, practicality, possible system benefits, and consistency with long range engineering plans to determine their inclusion in the CWP recommendation. Both external and internal improvement options are considered. When external options are considered (or internal options that may impact external facilities), coordination with all neighboring systems (including MISO, SPP, and TVA RC) is necessary and will be initiated as soon as possible. Final construction plans should be provided to interested and potentially impacted entities for comment as soon as possible. Power flow studies are typically completed for summer and winter peak conditions. Power flow studies with

extreme conditions (peak load forecast with extreme weather) are also performed and may be used to evaluate construction alternatives.

Maximum transfer capability studies may be included as a part of the CWP. A maximum transfer capability study typically includes multiple scenarios to evaluate potential transfers. Maximum power transfer studies from Big Rivers to TVA and MISO would be evaluated. The intent of these studies is to identify any system problems that may occur because of off-system sales or purchases.

Short circuit studies to evaluate the adequacy of system equipment ratings are also performed and their results analyzed. Stability studies accompany any study in which additional generation is being recommended or evaluated.

VI. LONG-RANGE ENGINEERING PLANS

RUS also requires that borrowers maintain up-to-date long-range engineering plans. These long-range engineering plans are prepared in a manner similar to the process of preparing a CWP. A long-range engineering plan is prepared immediately following each CWP. This allows the CWP to be reviewed in light of long-range plans. Reviewing and revising a longrange engineering plan is acceptable in place of preparing an entirely new study if system changes and load forecast changes have been minimal. Engineering judgment is used to decide if simply reviewing and revising the study is appropriate.

As with a CWP, the long-range engineering plan is predominantly driven by the results of system power flow studies. The power flow studies are again prepared with an MMWG database. This database represents all systems ten years in the future. A detailed representation of Big Rivers, and any desired neighbor, is merged into the MMWG database. The load level modeled for Big Rivers are consistent with the approved load forecast for the desired year. The power flow cases are modeled with summer peak and off-peak loads. The modeled interchange reflects what Big Rivers management believes is most probable for the study period. This interchange level may be equivalent to firm contract sales and purchases or may include transactions that are consistent with firm transmission reservations that are confirmed on the OASIS. Single contingency outages of each Big Rivers' line (excluding radial lines) are studied. These single contingency studies identify cases that yield unacceptable voltages or line loading conditions. Studies are then run to evaluate possible solutions for the problems identified. Operational changes such as switching or transformer tap changes are the first solution options studied. If operational changes proved to be unsuccessful, then various system improvement options are studied. All system improvements that are found to be successful solutions for the system problems are then evaluated based on economics, reliability, practicality, and other system benefits to determine the best solution. Additional system studies are run to evaluate the cumulative effects of multiple system improvements. The result is a transmission system that

will allow Big Rivers to provide reliable and cost-effective electric service to its member cooperatives.

In addition to the ten-year study, a fifteen or twenty year study is performed. A procedure, similar to the ten-year study procedure, would be followed with a fifteen or twenty year power flow database. Any final conclusion is made using the results from both the ten-year study and the fifteen or twenty year study.

Maximum power transfer capability studies are also be prepared as part of a long-range engineering plan. These studies will help to identify any problems that may occur in the long run as a result of off-system transactions. Possible solutions to correct the deficiencies are identified and evaluated following normal power flow study procedures.

Short circuit studies are also performed as previously described. These studies help identify long-term problems associated with increasing fault duties. Stability studies accompany any study in which additional generation is being recommended or evaluated.

It should be noted that not every system addition or upgrade identified or proposed in the long-range engineering is implemented. As Big Rivers' system actually grows, it may become obvious that the problems identified in the long-range study may not develop or that problems may develop in other areas. The actual system development is continually reviewed and monitored to determine when a new long-range engineering plan is necessary. The long-range plan, when reviewed with the CWP, helps to identify any proposed short run solutions that may just be "band-aid" solutions for a major long-range problem. In some of these cases, investing in a facility that may only be a temporary solution may not be advisable. Instead, other alternatives may be more economical when the long-term system needs are considered.

VII. SHORT-TERM/OPERATIONAL PLANNING

Technical studies are performed by the system planning department to support near-term and real-time reliability efforts. These studies utilize both the OSI OpenNet application that provides a real-time state estimator and contingency analysis tool (EMS application) and the offline power flow study tool (PSLF).

1. Planned System Outages

Both the on-line and off-line power flow programs are used to study planned outages and system events as necessary. The TVA RC studies all outages entered into the NERC SDX and coordinates this information with other reliability coordinators. Any action plans involving Henderson Municipal Power and Light (HMP&L), our member cooperatives, or any impacted customer are coordinated through Big Rivers System Supervisors with Engineering support provided as needed. Action plans involving adjacent reliability coordinators are coordinated through TVA.

2. Real-Time Contingency Analysis

The real-time contingency analysis tool is used on a continuous basis (once every two minutes) to study all bulk system single contingencies (single line, transformer, and generator outages). Also, all single line/transformer contingencies are run with simultaneous generator outages on a regular basis (generally on a daily basis). Several external outages that have a known impact on the Big Rivers' system are also run on a daily basis. In Addition, the TVA RC uses the AREVA state estimator/contingency analysis program to monitor and study the Big Rivers system as well as the regional transmission network.

3. Real-Time Contingency Analysis Alarming

As previously discussed, the real-time contingency analysis tool is part of the EMS and the results can be viewed by the System Supervisors. The thermal and voltage results can be viewed on two separate displays. Any line or transformer with normal or N-1 loadings at 90% or greater of its seasonal thermal rating are alarmed and displayed. Normal and N-1 system voltages outside of the range from 95% to 105% of nominal are also alarmed and displayed.

4. Off-Line Model

MMWG power flow models for the desired years are used as the basis for developing the power flow model for use in reliability and planning studies. Detailed models for Big Rivers and any desired neighboring utility are merged into the case. This model is then updated to reflect the system conditions that are to be studied. Actual system data from the EMS is used in the update process.

5. Real-Time Model

The real-time model was also created from a MMWG power flow model with the detailed Big Rivers model merged in. The model is updated manually with support from the engineering department and neighboring utilities as needed. Real-time data is brought into the model every time the state estimator executes (once per minute) through the Big Rivers SCADA system and the ICCP connection with the TVA.

VIII. MISCELLANEOUS PLANNING STUDIES

Other studies performed by Big Rivers include operational studies, system impact studies to evaluate transmission service requests, generator interconnection studies, transmission interconnection studies, end-user connection studies, and various other special studies. The study process and format will vary according to need. However, all studies should follow the same voltage and facility loading criteria and should be consistent with the procedures and A10

methodologies outlined in this report (the alternative selection process is consistent with the process described in Section V). As with all studies, compliance with NERC standards is necessary.

In addition, transmission studies should be properly coordinated with neighboring transmission systems and reliability organizations. Specifically, all potentially impacted neighbors (E.ON. U.S., Hoosier Energy, MISO, SIPC, SPP, TVA, and Vectren) should be invited to participate in all generator interconnection studies and significant transmission interconnection or modification studies. Modeling information, study results, and proposed transmission plans should be communicated to these entities and any other interested transmission planning entity or transmission owner/provider. After all internal and external approvals (including regulatory approvals) are obtained, the proposed facilities will be included in the MMWG model building process and communicated to the TVA Reliability Coordinator. A log of communication (email history is acceptable) should be maintained as part of the study process.

On an annual basis, studies are prepared to evaluate all annual firm transmission requests (new or renewals). Other studies are performed to support the calculation of the ATC values that are posted to the OASIS. Details concerning these studies are included in a separate document.

Seasonal system assessments are also prepared on an annual basis. These seasonal assessments include (at a minimum) summer peak studies, winter peak studies, stress cases (heavy transfers or extreme loads), and long-range studies. Single, double, and extreme contingencies should be studied with the results compared against NERC planning standard requirements. Stability studies should also be reviewed as necessary.

Big Rivers also participates in SERC near-term and long-term assessments. In addition, Big Rivers participates in the quarterly OASIS studies prepared by SERC companies.

IX. RATING METHODOLOGIES

All transmission facility ratings are based on the most limiting element included in any circuit (switches, breakers, buses, traps, protective relaying systems and their trip settings, transformers, CTs, transmission lines, etc.). Unless otherwise stated, summer and winter ratings are based on the same methodology.

All transmission system ratings have been provided to the TVA reliability coordinator. Any rating changes are communicated to the TVA reliability coordinator and interested neighboring systems as the changes occur. In addition, up-to-date ratings are included in the MMWG models available to most interested parties. Additional rating details will be made available to neighboring utilities and other interested parties as needed. Interconnection ratings are coordinated once per year as part of the MMWG model building process. Additional coordination is completed via email as necessary.

<u>Conductors</u>

The calculations of transmission line ratings are consistent with IEEE Standard 738-1993 "IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors". The following assumptions are utilized in the calculations:

1. Minimum ground clearances (as defined by NESC) will be maintained during operations at the conductor's maximum operating temperature (typically 212° F).

2. Summer Normal and Summer Emergency ratings are calculated with 2 foot per second wind speed, full sun, and an ambient temperature of 100° F.

3. Winter Normal and Winter Emergency ratings are calculated with 2 foot per second wind speed, full sun, and an ambient temperature of 32° F.

4. In addition to the above ratings, temperature dependent ratings are used by system operations (actual temperatures are used in place of the assumed temperature when calculating the ratings).

Generators

Manufactures nameplate information (including reactive capability curves) is used to determine unit ratings when actual test data is unavailable. At this time, each generating unit is schedule to be field tested. The test will determine actual real and reactive capabilities and other data necessary to properly model the generating units for steady-state and dynamic analyses.

High Voltage Air Switches

Big Rivers purchases, operates and maintains transmission voltage (100 kV and above) High Voltage Air Switches in accordance with ANSI C37.32 *HV Air Switches – Preferred Ratings, Specifications and Application Guide.* Table 1 of C37.32 lists *Preferred Ratings for Outdoor Air Switches.* Big Rivers does not derate High Voltage Air Switches based on weather conditions or previous loading conditions. Jumpers connecting switches to other elements of the transmission facility are sized with current carrying capacity greater than the switch itself.

Shunt Capacitors

Big Rivers purchases, operates and maintains transmission voltage (100 kV and above) Shunt Capacitors in accordance with NEMA CP1 - Shunt Capacitors, and ANSI/IEEE C37.99 – Guide for Protection of Shunt Capacitor Banks, and IEEE 1036 Guide for the Application of Shunt Power Capacitors. These capacitor banks are composed of capacitor can groups in series and connected in a grounded wye configuration. Since substation bus voltages run higher than 1.0 p.u., banks are designed for a minimum of 1.05 p.u. Jumpers connecting capacitor banks to other elements of the transmission system are sized with current carrying capacity greater than the capacitor bank itself.

Line Traps

Big Rivers purchases, operates and maintains transmission voltage (100 kV and above) Line Traps in accordance with ANSI C93.3 – *Requirements for Power-Line Carrier Line Traps*. Table 5 of C93.3 lists *Current Ratings*. Big Rivers does not derate Line Traps based on weather conditions or previous loading conditions. Jumpers connecting Line Traps to other elements of the transmission facility are sized with current carrying capacity greater than the Line Trap itself.

Transformers

Big Rivers purchases, operates and maintains transmission voltage (100 kV and above) Transformers in accordance with ANSI / IEEE C57.12.00 – 1987 General Requirements for Liquid Immersed Power Transformers and ANSI / IEEE C57.92 – 1981 Loading Mineral Oil Immersed Power Transformers. Big Rivers plans and operates power transformers on its system whose voltage ratings fall within the bulk transmission level (100 kV and above high side). Big Rivers has established that the normal and emergency rating for power transformers shall be the highest nameplate rating with all cooling equipment operating. For most of the Big Rivers transformers, this is the maximum FOA or FA (OFAF or ONAF) 65 degree Celsius nameplate rating with all cooling equipment operating. In the absence of any or all stages of cooling equipment, the rating is the maximum nameplate rating is 420 MVA (a significant increase above the nameplate value as determined by the manufacturer, General Electric Company). However, if these units are operated in a step-up mode (direction of flow from 161 kV to 345 kV system), either the high side voltage must be limited to 345 kV (1.0 per unit) or the unit rating reverts back to the 336 MVA nameplate value.

High Voltage Bus

Big Rivers purchases, operates and maintains transmission voltage (100 kV and above) High Voltage Bus in accordance with ANSI / IEEE Standard 605 – 1987 *Guide for Design of Substation Rigid-Bus Structures*. Table B3 of Standard 605 Appendix B lists *Bus Conductor Ampacity - Aluminum Tubular Bus –Schedule 40 AC Ampacity (53% Conductivity)*. Big Rivers utilizes this table assuming a normal oxidized surface with emissivity of 0.50, with sun, in still but unconfined air, with a 30 degree C temperature rise over 40 degrees C ambient.

Power Circuit Breakers

Big Rivers purchases, operates and maintains transmission voltage (100 kV and above) Power Circuit Breakers in accordance with ANSI C37.06 *AC HV Circuit Breakers – Preferred Ratings and Related Required Capabilities*. Table 3 of C37.06 lists *Preferred Ratings for Outdoor Circuit Breakers 121 kV and Above*. Big Rivers does not derate PCBs based on weather conditions or previous loading conditions. PCBs on the Big Rivers transmission system are equipped with Bushing Current Transformers (BCTs). These BCTs are usually Multi-ratio and sometimes tapped at less than the full continuous current rating of the PCB. In these situations the PCB is derated to the Multi-Ratio BCT tap value. The Thermal Rating Factor of the BCT is used where applicable. Jumpers connecting PCBs to other elements of the transmission facility are sized with current carrying capacity greater than the PCB itself.

Protective Relaying

Big Rivers purchases, operates and maintains transmission facilities protective relays in accordance with IEEE C37 Guides and Standards for Protective Relaying Systems. The protective relaying schemes are specified and their settings are calculated such that neither limits the capacity of the transmission facility. For impedance relays of networked transmission facilities, 0.85 p.u. voltage is utilized in the rating calculation.

Current Transformers

Big Rivers purchases, operates, and maintains current transformers in accordance with ANSI/IEEE C57.13 – Standard Requirements for Instrument Transformers. Current transformers are operated up-to a maximum current level equal to the nameplate rating multiplied by any continuous-thermal-current rating factor (RF).

X. LINE SWITCH CRITERIA

The following documents the criteria applied in the planning, design, construction, and operation of line switches on Big Rivers' transmission system. The focus here is on the 69 kV system serving all of the rural and many of the dedicated (customer) delivery point substations of our three member cooperatives. The following functional objectives and standards define the 69 kV transmission line switching practices currently in effect.

For loop or dual feed line sections:

- 1. Line sectionalizing switches shall be employed at both ends of every line section.
- 2. Full load interrupting capability shall exist at a minimum on one end of every line section.

- 3. Load interrupting capability shall exist on the other end line sectionalizing switch of sufficient rating to safely de-energize the line (i.e. break the line charging current).
- 4. Remote control operational equipment shall be added to full load interrupting switches to solve service reliability problems and typically shall be applied at three-way junction points to provide alternate power supply switching arrangements for a number of distribution stations.

For radial line sections:

- 1. Line sectionalizing switches shall be applied for tap lines greater than 4.0 miles in length or where continuous service is essential to other stations supplied off the radial line section being tapped.
- 2. Line sectionalizing switches shall have sufficient load interrupting capability to safely de-energize the line (i.e. minimum capability equal to or greater than line charging current).

XI. CRITICAL FACILITIES

While no critical facilities have been identified, Big Rivers has internal flowgates that can limit the ability to import and export power. The state estimator/on-line power flow model is used to monitoring and study each flowgate as well as all other bulk system facilities. Big Rivers recognizes the IROL and SOL definitions and processes as documented in *Transmission Reliability Order of Curtailment* (attached as Appendix F).

XII. COORDINATION/COMMUNICATION

As stated previously, transmission studies should be properly coordinated with neighboring transmission systems and reliability organizations. Specifically, all potentially impacted neighbors (E.ON. U.S., Hoosier Energy, MISO, SIPC, SPP, TVA, and Vectren) should be invited to participate (or allowed to review and provide input regarding planned improvements) in all generator interconnection studies and significant transmission interconnection or modification studies. Modeling information, study assumptions, alternatives considered, study results, and proposed transmission plans should be communicated to these entities and any other interested transmission planning entity or transmission owner/provider. After all internal and external approvals (including regulatory approvals) are obtained, the proposed facilities will be included in the MMWG model building process and communicated to the TVA Reliability Coordinator. A log of communication (email history is acceptable) should be maintained as part of the study process. All documentation will be maintained for a minimum of five years. As part of this communication/coordination effort, Big Rivers participates in near-term and longterm SERC study groups. Internal seasonal assessments will be made available to the reliability coordinator and others as requested.

In addition to study coordination and communication, facility ratings and methodologies must be properly coordinated and communicated. As previously stated, all transmission system ratings have been provided to the TVA reliability coordinator. Any rating changes are communicated to the TVA reliability coordinator and interested neighboring systems as the changes occur. In addition, up-to-date ratings are included in the MMWG models available to most interested parties. Additional rating details will be made available to neighboring utilities and other interested parties as needed. Interconnection ratings are coordinated once per year as part of the MMWG model building process. Additional coordination is completed via email as necessary.

As an additional communication and coordination effort, this document and Big Rivers documents relating to TTC/ATC/TRM/CBM will be provided to the reliability coordinator when any update is made (prior to effective date or implementation of any significant change). Upon request, or as appropriate, these documents will also be made available to neighboring utilities and other interested parties. Any comments or concerns received will be addressed in a written response within 45 calendar days of receipt.

XIII. TRANSFER CAPABILITY

Transfer capabilities are calculated, coordinated, and communicated to others through various means. The criteria described in this document are consistently applied in all transfer capability studies (near-term operating horizon and longer-term planning horizon). In all study processes, Big Rivers will respect all system operating limits (internal and external). Any variations from the criteria will be documented in the appropriate study report.

Big Rivers participates in SERC near-term, long-term, and OASIS study groups. These studies include all existing and planned facilities in the Big Rivers system. The Big Rivers loads will be consistent with the Big Rivers corporate load forecast for the study period. Only those transactions with a firm contract will be included in the model (after proper coordination with the other entity). Generation dispatch should reflect past experience. Reliability margins (CBM, TRM, etc.) are not included in these models. Appropriate summer and winter ratings will be modeled. Various import and export scenarios are studied. Currently, Big Rivers imports from TVA and SIPC as well as exports to LGEE, SIPC, and TVA are studied. Additional transfers will be added as necessary. Study results are available to all SERC members and other appropriate entities.

Internal studies also consider transfer capabilities. Internal seasonal assessments generally begin with all generation except Reid 1 and Reid CT dispatched. This net export base

model gives an indication of expected system performance with most generation dispatched. Generation outages (single and multiple units) provide an indication of performance under import conditions. Summer assessments generally include a study of north to south transfers. The seasonal assessment study reports are provided internally to system operations and are also made available to the reliability coordinator. Additionally, the report will also be made available to neighboring utilities and other interested parties.

Big Rivers TTC, AFC, and ATC calculations are performed by TVA. These calculations are described in the Big Rivers document PL-MOD-0001 *AFC/ATC Calculation Procedures*. This document and resulting ATC values are available through the Big Rivers OASIS.

APPENDIX A:

Voltage Level Criteria Guideline

APPENDIX A: VOLTAGE LEVEL CRITERIA GUIDELINE

In 1989, Big Rivers adopted a voltage criteria for use as a guideline in planning for the design and operation of its transmission system. This criteria was based on service voltage requirements defined by the Kentucky Public Service Commission (PSC) and the Rural Utilities Service (RUS). This criteria was defined as the acceptable voltage level at the unregulated distribution and/or industrial substation low-voltage buses (served from Big Rivers' 69 kV transmission system). This criteria, summarized below, includes a Range A criteria which is applied during normal system operations (all transmission elements in service) and a Range B criteria that is applied during single contingencies.

Transmission System Conditions	Minimum Bus Voltage	Maximum Bus Voltage
Range A: Normal System Operations	95.0%	105.0%
Range B: Single Contingency Conditions	91.7%	105.8%

A second criteria, which applies to Big Rivers' 161 kV transmission system, has also been adopted. The development of this criteria also involved a review of PSC and RUS voltage requirements. This criteria was based on maintaining acceptable voltage levels on the low-side unregulated bus at all 161 kV delivery points. The Range A and Range B criteria apply to the same system conditions as defined for the 69 kV system. These criteria limits are defined below:

Transmission System Conditions	Minimum Bus Voltage	Maximum Bus Voltage
Range A: Normal System Operations	95.0%	105.0%
Range B: Single Contingency Conditions	90.0%	105.0%

Both criteria, as previously defined, were applied to the low-side unregulated buses. For transmission planning purposes, a voltage criteria that applies to the high side buses was developed. When reflecting the voltage criteria to the high side bus, transformer regulation (voltage drop across the transformer) and the boost supplied by the no load tap changers was considered. Low-side voltage regulators or load tap changers were not considered.

When developing the low voltage criteria limit for the 69 kV delivery points, it was assumed that the transformer would be set on their mid-tap. In most cases, the mid-tap is 67 kV. With a 67 kV nominal tap, the transformer regulation is offset. In the few instances that the transformer mid-tap is 69 kV, it is assumed that the fixed tap could be changed to a boost position (which would offset the transformer regulation). When calculating the transformer regulation, it was assumed that the transformer was two-thirds loaded with a 90% power factor.

When developing the low voltage criteria limit for the 161 kV delivery points, it was assumed that the transformer would be set with one fixed tap of boost. It was also assumed that the transformers would be two-thirds loaded (with the corresponding transformer regulation). If a customer taking service from the 161 kV system has special needs which a 90% to 105% voltage criteria fail to meet, an LTC may be used to maintain acceptable voltage levels under both normal and single-contingency conditions.

To protect against damage due to high voltages during off-peak times or instances when a transformer may be unloaded (little or no transformer regulation would be expected), the high voltage limits were not changed when the criteria was reflected to the high-side bus.

The high-side voltage ranges included below were found to be necessary to maintain the lowside voltage criteria. However, the operator should not wait until voltages fall outside of the accepted range to take action. System operators should take all available actions to maintain voltages between .95 P.U. and 1.05 P.U. This includes, but is not limited to, switching capacitors and reactors, changing the voltage schedules at the generator buses, and utilizing load tap changers.

	69kV Bus '	Voltage	161 kV Bus	Voltage
Transmission System Conditions	Minimum	Maximum	Minimum	Maximum
Range A: Normal System Operations	95.0%	105.0%	95.0%	105.0%
Range B: Single Contingency Conditions	91.7%	105.8%	92.0%	105.0%

APPENDIX B:

Load Distribution and Modeling

LOAD DISTRIBUTION AND MODELING

A key part of the database development is load modeling. Big Rivers prepares a load forecast on an annual basis. This load forecast is built from individual member cooperative load forecast forecasts. The loads modeled in the power flow database should be consistent with the Big Rivers coincident peak load forecast with the loads distributed among all of the member cooperative substations.

Regression techniques have been used to help distribute the loads on an individual substation basis. Historical substation data is collected for each delivery point. The data series for each substation is regressed on time using a simple linear curve equation. In addition, the load at each substation is forecasted by applying the system average growth rate (from the cooperative forecast) to an average of the two most recent years coincident peak data. These two forecast values, along with input from each distribution cooperative and engineering judgment, are used to create a forecasted load for each delivery point. These forecasts are uniformly ratioed to match the overall Big Rivers coincident peak forecast. This method allows the historical trends to be reflected in the load distribution while consistency with the overall load forecast is maintained.

Industrial customers with dedicated delivery points are forecasted by the individual industries. As part of the load forecast preparation, all large industrial customers are contacted and asked to supply a forecast for their energy needs and expected peak demand. These forecasts are used to model these individual customers.

HMP&L personnel should provide HMP&L load. This load should be modeled in a separate area in the detailed power flow cases. However, in the MMWG models, the HMP&L take (HMP&L load supplied from Station 2) should be modeled as load at Henderson County, Reid 161 kV, and Reid 69 kV.

Power factors for each load are also based on historical data. The actual power factors at each delivery point during the most recent coincident peak for both summer and winter seasons are used. Since this historical power factor information is generally based on low-side meter data, adjustments are necessary when modeling loads on the high-side of the distribution transformers. This adjustment is typically accomplished by reducing the power factors by 98% to 99%. The percent adjustment is calculated on a seasonal basis for each distribution cooperative by modeling a distribution transformer loaded at 50% with a low-side power factor equal to the system average power factor during the most recent coincident peak. Loads metered on the high-side need no adjustment (this includes: Kimberly-Clark, Lodestar, P&M, Patriot Coal, Hopkins County Coal, ALCAN, and Century).

Appendix C:

Transformer Information

This information is available from a separate document.

Appendix D:

Shunt Information

This information is available from a separate document.

Appendix E:

Loadability Tables

Big Rivers Electric operates transmission voltage (100 kV and above) facilities according to the attached Loadability Table. The table identifies various limiting elements on each transmission line terminal. The lines are sorted in rows according to voltage with 345 kV lines listed first.

Equipment and conductor ratings exclusive of Current Transformer Ratio limitations are listed in the first set of columns. These columns indicate that the limiting component is usually the conductor. However, both 345 kV lines are limited by 1600 A line disconnect switches. Bryan Rd, Meade County and Newman 161 kV radial lines are limited by their transformation capacity. The Hardinsburg 138 kV Cloverport line is limited by a line trap.

Limiting Current Transformer Ratios are identified in the next set of columns. CTRs are only listed if they are set lower than the conductor would allow.

The next four columns check all components of the transmission facility and report the minimum rating. Listed are the Summer and Winter MVA and Amp ratings for each transmission line.

This information is available from a separate document.

Appendix F

Transmission Reliability Order of Curtailment

This information is available from the TVA document titled:

Transmission Reliability Order of Curtailment

APPENDIX B: 2015 SUMMER PEAK STUDY RESULTS

Loadings
Line
ä
Appendix

							,	,	2	-
Base			č	V	Cas	eB	Ca	ie C	Car	. n .
			C.					Dart Cant	Pro.Cont.	Post-Cont.
		Dating	ProCont	Post-Cont	Pre-Cont.	Post-Cont.	Fre-Cont	L USU-CUILL		
Cantingent Flement	Monitored Element	Junity	TICCOTT		1000	0107			69%	102%
Total and the second seco		2765	58%	92%	0//0	21/0				1000
Wilson-Daviess EHV	Keld-Davicos Co	207		000/	K70/	0/0/0	65%	97%	69%	9/2/6
11111	Daid-Daries Co	265	58%	20/00	0/ /0				1020	010/
Hancock-Coleman EHV	of contant-plays		/000	0107	260%	91%			0/.07	21/0
	Hancock-Coleman EHV	265	23%0	0/16	2.07		1000	1000		
Keid-Daviess Co		~~~			03%	63%	93%0	0/266		
Daac	Hardin-Daviess EHV	000							850%	95%
Base		000			93%	102%			0/ 00	~~~~
Tilson Green Pitter	Hardin-Daviess EHV	000				1020				
MIND-TOSTI M	A MARINA	107		_	45%	%ck				
Wilson Davisoe HHV	Smith-Daviess EHV	402							69%	67%
MISOU-DAVANTA		290								
Wilson-Reid EHV	Keld-Davicss Co	CV2								

Vilson Unit Outage			30	V	Cas	еB	č	se C	Cas	e D
			י ניי		turo rat	Poet-Conf	Pre-Cont.	Post-Cont	Pre-Cont	Post-Cont.
C . If	Monitored Element	Rating	Pre-Cont.	Fost-Cont	LIC-CORT	T use		1000	2007	0%%
Conungent Element		276	250/	100%	67%	68%	04%	7870	0/ /0	~~~~
Hancock-Coleman EHV	Reid-Daviess Co	C07	0/00	100/0	1000	/00/0	7000	01%	25%	92%
TIGON TO THE T	ve EUV	296	35%	92%	0//7	0/76	0/07			.000.
Reid-Daviess Co	Hancock-Colcillan Erry	3			2023	7070	64%	91%	69%	10/%
11111 · · · · · · · · · · · ·	Deid-Davies Co	265			0/ 10					
Wilson-Keid EHV					270/2	%20				
MILL F. H. HALL	Smith_Daviess EHV	483			0/10				2007	YOVD
Wilson-Keid Env									07.70	0/ 22
TATT	Deid Dames Co	202							0007	7000
Wilson-Daviess EHV	and								8870	0/ 04
and the second sec	Witcon-Reid EHV	598							000/	10502
New Hardinsburg-Farause									00/00	0/ 001
n-14 Designer Co	Wilson-Reid EHV	860							7055	91%
Keid-Daviess Cu		001							0/00	21/2
Particut Co	Wilson-Reid EHV	860					10/0	150/	%88 %	96%
FUSOT-DAMESS CO		002			74%	86%	10%0	0/07	0/00	
Gibson-Francisco	Wilson-Reid EHV	040		_						

										-	
Coleman 1 Unit Outage			C		Jac Lac	ь R	Ca	se C	Cas	eD	
				se A		Doet-Cont	Pre-Cont.	Post-Cont	Pre-Cont.	Post-Cont	
i	ad Thursday Thomas f	Ratino	Pre-Cont	Post-Cont	Levenue	T USU-CUILD			10,0	110/	
Contingent Element	ATOMICA PACING		100/	70201	740%	%66	71%	96%	10%0	11170	
The Design FUN	Reid-Daviess Co	202	0//00	0/701					7672	080	
WIISOB-DAVICS AND			1000	7020	74%	100%			0/0/	0/0/	
CUIV	Peid-Daviess Co	202	0/00	0/06				1000	7692	080	
Coleman-Daviess Erry			1001	0007	740%	0/0/0	/1%	2/20	0/0/	0/0/	
4 BA Ave	Dail Dariage Co	262	0%00	0/02	0/1-1				20.0	260/	
Hancock-Coleman Eriv	Volu-Davio			2007	1010	7070	23%	93%	71%	0/04	
	TI TI Caleman FHV	265	27%	%66	0/17	0/1-2	21.22		i di t	10501	
Reid-Daviess Co	Hancock-Coleman				7012	%70	71%	61%	/0%	0%C01	
	Daid Damage Co	265			0/+/	0/1/					
Wilson-Reid EHV	VCIU-DAVIA				700V	101%					
	Contact Dariane	483			0/0+	0/101					
Wilson-Daviess EHV	SILLING VICES CO						88%	97%			
	Undin Damose HHV	600									
Thiston Creen Killer											

Appendix B: Line Loadings

Green 2 Unit Outage			ç		Cae Cae	В	Ca	se C	Cas	e D
				SC A				Dect. Cont	Pro-Conf.	Post-Cont
		Dating	Pro.Cont.	Post-Cont.	Pre-Cont.	Post-Cont	Fre-Cont	I USU-CUME		
Contingent Element	Monitored Element	Bumpy			2007	0007	245%	98%	59%	98%
4	D and D and Co	265	46%	%66	0/00	20/0	0/00			
Hancock_Coleman EHV	Keld-Davicss CO	207	2.2.1			1010	7010	2010	31%	91%0
TIGHTON - WOOTHET	INTEL I S. I.	2765	7027	61%	32%	71%	0/ 1-0	2170		
Daid-Dathece Co	Hancock-Coleman Env	502	0/71			1000	070/	010/2	-	
North Barrier	I HALF I	007			87%	%66	0/00	0/1/		
The Direct	Hardin-Daviess EHV	000								
Wilson-Orthin Miver					49%	93%				
WELLARD Davideed HHV	Smith-Daviess EHV	485								
A TET SCHAPT-HOSTI M		002			87%	92%				
O the Dave CUV	Hardin-Daviess EHV	200							2002	%06
Coleman-Davies Link									0/ 50	0.00
WITH David monthly	Reid-Daviess Co	C07								
A TITT DISUL-TIOSIT M										

Paradise 1 Unit Outage			į	•	Ľ	e R	Cas	e C	Cas	eD
			- Can	A 10 T		Doet-Cont	Pre-Cont.	Post-Cont	Pre-Cont.	Post-Cont.
C. M. L. M. D. L. C.	Monitored Element	Rating	Pre-Cont	POSt-CORL	L Le-CUILL	T OSC-COTC			1002	10404
Conungent Element			2007	010/	68%	92%			0/0/	0/101
TTTT	Peid-Daviess Co	C07	0/00	0/12	0,00				1000	1000
Wilson-Davics Erry		-	2007	000	%89V	02%	66%	9.1%	N70	20/0
11111	Daid Daviece Co	265	28%	20/04	00/00				1010	010/
Hancock-Coleman Ertv	Volu-Davion			1010	7020	010%	2.7%	91%	%c7	21/0
	Unacock Coleman HHV	265	33%	21/0	0/ 17					
Reid-Daviess Co	Lightcock-conciliant				010/	%10	91%	91%		
G	Hardin-Daviess EHV	600			0/12			10101	/000	0.0/
Base	The sector of the byy	-					61%	101%	0/70	24/0
nut - Cara Direct	I Hardin-Daviess EHV	900							7002	00%
W IISOII-CICCU MAN		27.6		_					10/01	~ ~ ~
Wilson Peid HHV	Reid-Daviess Co	C07								

		C		Ľ°.	e R	Ca	se C	Ca	se D
		Cas	eA	Car	2				Doct-Cont
	D.	Cont	Post-Conf.	Pre-Cont.	Post-Cont	Pre-Cont	Post-Cont.	Fre-Cont	T OSE-COTE
d Element n	T HIME			1000	10001	7001	%00	84%	113%
athese Co	265	73%	03%	0%78	10/7/0	0/0/			
	27.0	1000	1110%	87%	108%	78%	104%		
aviess Co	C07	0/01	111/0		10001				
Transferration of the	245	45%	112%	0/17	102/01				
Newton VIIIc	222		10001	1000	70961			84%	125%
athec Co	265	73%	0%771	0/70	1 40 /0				1000
d vitage of		1000	7000	870%	%86	78%	%86	84%	78%0
aviess Co	C02	0/6/	0/22	0/70			10001		
1 10 100	370	100/	%U0	49%	100%	52%	108%		
-Coleman EHV	C07	40/0	0/0/			1001	10/0/	140/2	100%
	265	20%	100%	15%	%66	1 1 %0	0/16	2/11	
Oleman Lan V	207	2.07		706.0	2010	%£8	92%		
aviess EHV	600			0/70	1/1/				
	102			52%	107%				
aviess EHV	400							84%	81%
aviess Co	265								
wress Co wress Co avress Co Newtonrville Vriess Co avress Co coleman EHV bioteman EHV viess EHV avress EHV	265 265 265 265 265 265 265 483 600 600 600	73% 73% 73% 73% 73% 73% 20%		93% 111% 112% 99% 90% 100%	93% 82% 111% 82% 112% 82% 122% 82% 99% 49% 100% 15% 52% 52%	93% 82% 102% 111% 82% 108% 112% 82% 108% 112% 82% 108% 12% 82% 107% 90% 49% 100% 100% 15% 98% 90% 82% 98% 100% 15% 107% 25% 107% 107%	93% 82% 102% 78% 111% 82% 109% 78% 112% 82% 109% 78% 112% 82% 109% 78% 12% 82% 109% 78% 99% 78% 78% 78% 99% 100% 52% 98% 78% 90% 49% 100% 52% 99% 78% 90% 139% 99% 78% 78% 52% 90% 139% 99% 78% 52% 93% 52% 10% 52% 10% 83% 52% 10% 83% 52% 107% 83% 52% 107% 83% 52% 107% 83% 52% 107% 83% 52% 107% 83% 52% 107% 83% 52% 107% 83% 52% 52% 52% 52% 52% 52% 52% 52% 52% 52% 52% 52% <td>93% 82% 102% 78% 99% 111% 82% 108% 78% 104% 112% 82% 109% 78% 104% 112% 82% 109% 78% 104% 112% 82% 109% 78% 98% 99% 98% 78% 78% 98% 99% 98% 78% 98% 98% 90% 49% 100% 52% 108% 100% 15% 99% 83% 97% 25% 107% 83% 92% 92%</td> <td>93% 82% 102% 78% 99% 84% 111% 82% 108% 78% 99% 84% 112% 82% 109% 78% 84% 84% 112% 82% 109% 78% 84% 84% 112% 82% 78% 98% 84% 84% 99% 78% 78% 98% 84% 94% 99% 126% 98% 78% 84% 94% 99% 98% 78% 98% 84% 94% 90% 49% 100% 52% 108% 94% 90% 91% 83% 97% 14% 94% 100% 15% 91% 83% 92% 94% 52% 107% 83% 92% 84% 94%</td>	93% 82% 102% 78% 99% 111% 82% 108% 78% 104% 112% 82% 109% 78% 104% 112% 82% 109% 78% 104% 112% 82% 109% 78% 98% 99% 98% 78% 78% 98% 99% 98% 78% 98% 98% 90% 49% 100% 52% 108% 100% 15% 99% 83% 97% 25% 107% 83% 92% 92%	93% 82% 102% 78% 99% 84% 111% 82% 108% 78% 99% 84% 112% 82% 109% 78% 84% 84% 112% 82% 109% 78% 84% 84% 112% 82% 78% 98% 84% 84% 99% 78% 78% 98% 84% 94% 99% 126% 98% 78% 84% 94% 99% 98% 78% 98% 84% 94% 90% 49% 100% 52% 108% 94% 90% 91% 83% 97% 14% 94% 100% 15% 91% 83% 92% 94% 52% 107% 83% 92% 84% 94%

Wilson and Green 2 Unit Outage			Ċ		č	R	Ca	se C	Cas	e D
		1	יניי	Se A	Due Cont	Poet-Cont.	Pre-Cont	Post-Cont	Pre-Cont.	Post-Cont.
2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Monitored Element	Rating	Pre-Cont	FOST-LOIL	I ICCURE			,000	1007	7000
Conungent Element			/007	10.70/	2/0/2	%66	54%	97% 10%	0//00	0/ 22
The second secon	Reid-Daviess Co	202	43%0	0/7/1	0/10			2101	1000	7000
Hancock-Coleman Erry		-	1001	7000	%EE	61%	36%	91%	0/70	0/72
	Hancock-Coleman EHV	C07	40%0	0/76	0/00					
Keld-Davices Co					61%	92%				
AD D D D D D D D D D D D D D D D D D D	Smith-Daviess EHV	485			0110					
AB Brown-Nein ELLY					61%	61%				
Withon Daid HHV	Smith-Daviess EHV	483			0/10				2009	%26
A TITE DION-DOSIL M	2	376							~~~~	
Wilson Daid EHV	Reid-Daviess Co	C07							7022	01%
A TET DIANE-BOST M	1 34 44 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2002							0/11	1/1
Daid Dariage Co	Wilson-Keta EHV	040								

lings
Load
Line
ä
ppendix
Ā

															ase D		t. Post-Con	68%	98%	1000	0/76	95%	_	-	, vo
															J		Pre-Con	65%	65%		0%AC	47%			
۰C	Post-Cont	97%	96%	110%	/0201	0/601	12170			100%	0/00T	%c6			دەل		Post-Cont.					%06	7060		
Cas	Pre-Cont.	48%	7007	11/0/	110/0	110%	110%			1100/2	110/0	663%			°.		Pre-Cont					45%	2.40/2	0.470	
еB	Post-Cont	%16	040/	20011	11770	105%	122%	101%	7117%			95%			-	serv	Post-Cont.	0507	0/02	0%.0%	92%		/000	0/76	
Cas	Pre-Cont	48%	/001	47./0	112%	112%	112%	112%	70611	112/0		67%			Ċ	כי	Pre-Cont.	1007	00/00	68%	62%			0%00	
V	Post-Cont	11102	0/111	90%0	89%		103%		1000	70/0		110%	0/074			seA	Duct Cont	T 1000	122%	110%	101%	000/	90%0	92%	91%
and a	DearCont	2007-211	0/ 10	42%	89%		89%		1000	89%0		250/2	0/00			c	1000	LTC-COILL	64%	64%	26072	0/00	48%	64%	52%
	Detter	L'aung	C07	265	600	600	009	005	000	600	600	270	C07				;	Kating	265	265	000	0.00	265	265	336
		Monitored Element	Coleman-Coleman EHV	Reid-Daviess Co	Hardin-Daviess EHV	Hardin-Daviess EHV	The distance HUV	Liginin-Davies Lini	Hardin-Daviess EHV	Hardin-Daviess EHV	Hardin-Daviess HHV	IN CONTAINT IN THE	Coleman-NewtonVille					Monitored Element	Reid-Daviess Co	Daid Darages Co	NCIU-DIAN	Wilson-Green Ruver	Coleman-Coleman EHV	Reid-Daviess Co	171/37-1-1
No Century		Contingent Element	Coleman-Coleman EHV	Uracoch-Coleman EHV	TIGHTON NOTIFIT	Debd	ATT DIAN-IMOIG GP	Wilson-Green Ruver	Wilson-Reid EHV	Coleman_Newtonville		Coleman-Daviess EHV	Hardin-Daviess EHV		No Smelters			Contingent Element	Wilson-Reid FHV	A TIONT TIONT IN	Wilson-Daviess EHV	Wilson-Daviess EHV	Coleman-Coleman EHV	TT	Hancock-Coleman Ant

110% Case A L. Post-Cont 122%	67% Cas	95%	69%	95%						
110% Case A nt Post-Cont 110%	67% Cas Pre-Cont	95%	69%	95%						
Case A Lase A Lase A Lase Cont 122%	Cas Pre-Cont				-					
Case A nt. Post-Cont 110%	Cas Pre-Cont									
Case A at Post-Cont 110%	Cas Pre-Cont									
Case A nt. Post-Cont. 110%	Cas Pre-Cont									
nt. Post-Cont. 122%	Pre-Cont.	еВ	Ca	se C	Cas	еD				
122%	TILLOUT	Post-Cont.	Pre-Cont	Post-Cont	Pre-Cont	Post-Cont				
110%	2007	0507			65%	98%				
110%	00/00	0/02			650%	98%				
	68%	%26			1002	7000				
101%	62%	92%			0/.40	0/76				
08%			45%	%06	47%	92%				
1000	207	020%	64%	92%						
8%76	0/ 00	0/72	200							
91%				/0101	11 00/	1120%				
110%	126%	126%	121%	121%	110/0	110/0				
70901	126%	137%			118%	131%				
100/071	1760%	%101	121%	63%						
0/ 6/ 0	0107	105%			69%	93%				
	0/10	11002	70161	10.2%	118%	91%				
6 94%	0/071	110./0	141/0		75%	%16				
			1076	10502	60%	122%				
128%	81%	115%	/0/0	0/01	~~~~					
	110% 101% 92% 92% 110% 110% 126% 6 79% 6 79% 6 79%	110% 68% 101% 62% 98% 55% 91% 55% 91% 126% 110% 126% 6 79% 6 79% 79% 126% 6 94% 126% 126% 6 94% 128% 81%	110% 68% 95% 101% 62% 92% 98% 63% 92% 98% 55% 92% 91% 126% 126% 110% 126% 137% 6 110% 126% 101% 6 126% 101% 105% 6 94% 126% 110% 6 94% 126% 110% 6 94% 126% 110%	110% 68% 95% 45% 101% 62% 92% 45% 98% 65% 92% 64% 91% 55% 92% 64% 101% 126% 121% 121% 110% 126% 137% 121% 126% 126% 101% 121% 6 79% 101% 121% 6 79% 101% 121% 6 94% 126% 110% 121% 6 94% 126% 110% 79% 7 128% 110% 76% 76%	110% 68% 95% 95% 90% 101% 62% 92% 90% 90% 92% 63% 92% 64% 90% 91% 65% 92% 64% 92% 91% 126% 126% 121% 121% 6 110% 126% 137% 121% 93% 6 79% 126% 101% 121% 93% 6 79% 126% 101% 121% 93% 6 79% 105% 101% 121% 93% 6 94% 126% 101% 121% 93% 6 94% 126% 101% 121% 93% 6 94% 126% 105% 93% 93% 6 126% 101% 76% 102% 93%	110% 68% 95% 95% 50% 101% 62% 92% 55% 55% 98% 92% 45% 90% 47% 98% 65% 92% 64% 92% 47% 91% 65% 92% 64% 92% 47% 100% 126% 121% 121% 118% 100% 126% 137% 121% 118% 100% 126% 101% 121% 118% 156% 101% 121% 138% 69% 100% 126% 101% 121% 118% 128% 100% 121% 102% 118% 128% 81% 105% 157% 75% 128% 81% 156% 156% 69%				
No Smelter with Coleman 1 Outage	9		ç		Se J	e B	Car	se C	Cas	e D
----------------------------------	---------------------	--------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	------------
			- Ca	E A C	100 T T T	Poet-Cont	Pre-Conf.	Post-Cont	Pre-Cont.	Post-Cont.
	Monitored Element	Rating	Pre-Cont.	Fost-Cont	LIC-CORC	AND LOO T		2007	1000	1070/
Contingent Element		275	7002	178%	71%	67%	70%	9.1%	0/7/	101/0
Wilson-Reid EHV	Reid-Daviess Co	C07	0/0/	0/041	1170/	107%	116%	98%		
Wilson Deid HHV	Hardin-Daviess EHV	600			11//0	0/701	1002	DK0%	%0L	107%
. THE NEW FIGHT A	Daid Daviace Co	265	70%	118%	71%	78%0	0/ 0/	0/0/		
Wilson-Daviess EHV	Veld-Davies co				%117%	92%				
Wilson-Datriess FHV	Hardin-Daviess EHV	000				1000	7007	%060	72%	92%
	Peid-Daviese Co	265	66%	92%	/1%	0/276	0/0/	0/77/		
Hancock-Coleman Eriv		221	2007	020%						
Reid 345/161	Reid 345/161	330	0/.00	0/72					78%	96%
	With Doid CUV	508								10101
Reid-Daviess Co	Wilson-Kein Env								51%	101%
Undin Dathece FHV	Coleman-Newtonville	265				1000				
LIGIULT CONTACT-UIU IDI	/M121 F . 4 1.444	502			72%	0//n6				
Gibson-Francisco	Wilson-Keig Erry	2			70211	178%	116%	127%	112%	124%
Wilson Geen River	Hardin-Daviess EHV	600			11//0	2027			57%	92%
IN ITS TIM TO-TIOSTI M		530	%E5	100%						
Wilson-Daviess EHV	Wilson-Ureen KUVer	000	/0001	70001	1170%	117%	116%	116%	112%	112%
Base	Hardin-Daviess EHV	000	10/2/0	10770	22.2.4.4					

with Wilson Outage ingent Element	Monitored Element Reid-Daviess Co	Rating 265	Ca: Pre-Cont 60%	ie A Post-Cont 129%
n-keiu Eri V	Reid-Daviess Co	265	57%	92%
-CUICHIAN 141	Reid 345/161	336	63%	108%
161_Coleman EHV C	Coleman 161-Coleman EHV	265	55%	112%

No Smelter with Green 2 Outage			Cas	εA
Compared Filmmont	Monitored Element	Rating	Pre-Cont	Post-Cont
Conungent Elentere		370	7007	01%
HAU Freeder Coleman FHV	Reid-Daviess Co	C07	12/0	~~~~
Hallouck-Coloman		000	2000	00%
Base	Hardin-Daviess EHV	000	0/22	
Dave	111111 6 22 22 2	276	\$10%	104%
Coloman 161-Coleman EHV	Coleman 161-Coleman Ertv	C07	0/10	

No Smelters with Green River Uni	it 4 Outage		200	•	Cas	eB	C	se C	Cat	ie D
			- CBS	4	P	Poet-Cont	Pre-Cont.	Post-Cont	Pre-Cont.	Post-Cont.
	Monitored F.lement	Rating	Pre-Cont	Post-Cont.	LIGCOMP	T USU		1010	260/	101%
Contingent Element		376	7079	%EC1	65%	92%	64%	91%0	0/ 00	0/ 101
Wilson-Reid EHV	Reid-Daviess Co	C07	0/10		120%	104%	118%	%66		
Wilson-Reid EHV	Hardin-Daviess EHV	600			2007	010	750%	%06		
Cheon Francisco	Wilson-Reid EHV	598			0/DC	21/0	11 00/	020%		
	Hardin-Daviess EHV	600					110/0	0/77/	7077	7080
Wilson-Daviess EHV		376	640%	107%					0/00	0/0/
Wilson-Daviess EHV	Reid-Daviess Co	507	0/10	1020/	7029	0.2%	64%	95%	64%	100%
Wilson-Daviess EHV	Green River 161/138	100	44%	0/ 0/1	/007	050	%89	0/0/6	68%	%66
WILL DATAGE HIV	Wilson-Green River	530	56%	100%	00/00	0/00	1000	010/	7087	97%
A TITT SCOTAPT-HOSH A		290	48%	100%	45%	91%	0/104	0/1/		,000
Coleman-Coleman EHV	Coleman-Coleman Driv	300	2002	02%	65%	92%	64%	92%	66%	0%76
Hancock-Coleman EHV	Reid-Daviess Co	C07	0/ 00	1010						
Daid 345/161	Reid 345/161	336	53%	94%					29%	95%
Concerning Fight	Wilson-Reid EHV	598						1210/	1150/	%661
Keld-Davices Co		200			120%	133%	118%	0/101	112/0	
Wilson-Green River	Hardin-Daviess EHV	200	10011	1100/2	120%	120%	118%	118%	115%	115%
Base	Hardin-Daviess EHV	000	110%	110/0	0/077				67%	93%
Gibson-Francisco	Coleman-Newtonville	265			io t	/020			67%	93%
1 HILL . C	Coleman Neutonville	265			14%0	0/.05		10201	702.7	11 20%
Coleman-Daviess EHV		370	%0L	132%	74%	105%	75%	103%	0//0	110/0
Hardin-Daviess EHV	Coleman-Newton VIIIe	CN7	2/2/							

to Smelters with Paradise Unit O	utage				Cae	e B	C	se C	Cas	e D
				Port Cont	D. Cont	Poet-Cont	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contineent Flement	Monitored Element	Rating	Pre-Cont.	Post-Cont	LIGCOME	amo den T	250/	7020	66%	102%
Condingent and a start	Reid-Daviess Co	265	64%	122%	66%	0/76	0/00	1000	26202	101%
Wilson-Keid Erry		2765	64%	109%	66%	81%	%09	97.06	0/00	0/1/1
Wilson-Daviess EHV	Keid-Daviess Co	007	2002	107%	63%	91%	63%	63%	62%	96%
Wilson-Daviess EHV	Wilson-Green Kuver	000	0/0r	0/701			119%	91%		
Wilson-Daviess EHV	Hardin-Daviess EHV	000		10001	150/	01%	45%	%16	48%	98%
Coleman-Coleman EHV	Coleman-Coleman EHV	265	49%	100%	40/0	/00/0	2029	47%	66%	92%
Hancock-Coleman EHV	Reid-Daviess Co	265	60%	92%	00%0	0/76	0/20		78%	95%
Deid-Daviess Co	Wilson-Reid EHV	598				10507	1100/2	%00		
	Hardin-Darápee HHV	600			120%	0/201	0/211		1150/	10007
Wilson-Reid EHV	ATTER SECTION OF THE	2009			120%	132%	119%	130%	%C11	12070
Wilson-Green River	Hardin-Daviess EHV	200					76%	61%		
Skillman-Meade Co	Coleman-Newtonville	67			750%	0%26				
Coleman-Daviess EHV	Coleman-Newtonville	262			2/21				66%	93%
Gibson-Francisco	Coleman-Newtonville	265			/002	7000				
Ghson-Francisco	Wilson-Reid EHV	598			0/7/	10001	110%	119%	115%	115%
Bace	Hardin-Daviess EHV	600	103%	103%	120%	10/0/	169/	10.4%	66%	118%
Hardin-Daviess EHV	Coleman-Newtonville	265	67%	131%	15%	100%0	0/0/	0/101		
THE PARTY OF THE P										

Loadings
Line
ä
pendix
ā
< <u>C</u>

			-	-	-	-	1			_	-	Т				Γ.	Т	-	Т				Т	
еD	Post-Cont.	702.01	101/10			130%	153%	98%	155%		1010/2	101/0		103%	107%	10CD	10002	0/201		105%	169%		0.00/	0/06
Cas	Pre-Cont	207	0/00			130%	130%	98%	130%		1010/	101/0		98%	52%	450%	0/000	20/0		98%	130%		101	20%
°C	Post-Cont.	050/	0/06	98%		133%	154%	92%	158%	118%	10507	%C01		67%	%26	7000	10001	109%0		108%	167%			91%
Cas	Pre-Cont	1007	0/70	133%		133%	133%	92%	133%	10501	10201	105%		92%	48%	1000	0/70	77%		92%	70221			68%
e B	Post_Conf.		%66		105%	135%	155%		160%			107%	98%	94%	70/0	1000	0%75		94%	108%				020%
Cas	Pro. Cont	TIG-CONG	63%		89%	135%	135%		135%	~~~~~		107%	89%	89%	100/	0/01	63%		67%	89%				2012
V 0	Det Cont	FOST-COILL	121%			110%	134%		70EE1	0/001					1110/	0/111	92%						104%	
		Fre-Cont.	57%			110%	110%		1100/	110/0					1014	0470	57%						60%	
Vilson	;	Kating	265	265	598	265	296	202	326	C07	600	600	598	502	0.22	C07	265	598	265	508		202	336	
g-Paradise Looped through V		Monitored Element	Reid-Daviess Co	Wilson-Paradise	Wilson-Reid EHV	Wilson-Paradice	Wilcon Dendice	AND F: G	Wilson-Keid Edi V	Wilson-Paradise	Hardin-Daviess EHV	Hardin-Daviess EHV	Wilson-Reid EHV	THE FICK DOULD	A TET DIAN-HOSIL M	Coleman 161-Coleman EHV	Reid-Daviess Co	Wilson-Reid EHV	Coleman-Newtonville	Wilson Dold EUV	A TIT DIDY-HOSH M	Wilson-Paradise	Reid 345/161	
Vo Smelters with New Hardinsbur	with Paradise 1 Unit Outage	Contingent Element	Wilson-Reid EHV	Wilson-Reid HHV	Dold Deriver Co	Velu-Davies Co	Dase	Wilson-Daviess EHV	Base	Wilson-Green River	Wilson-Paradise	Bace	6 14 Derived FUV	Smith-Davies Edity	Calwell-Barkley	Coleman 161-Coleman EHV	Hancock-Coleman EHV	Coleman-Daviess EHV	Coleman Daviese HHV		Gibson-Francisco	Hardin-Daviess EHV	Reid 345/161	

Case C Case D	A Cast Dest-Cont Pre-Cont Pre-Cont Post-Cont	1080/ 110/ 10/ 10/ 10/	08% 69% 97% /1% 100%	1100/ 040/	98% 110% 24/0	71% 39%	010/	81% 91% 80% 71%	040/	06% 81% 97% 60%			200/ 070% 71% 92%	20200 0776 0776 0776	11.70/ 11.0% 110% 10.6% 100%	112/0 112/0 120/ 020/	07% 81% 96% 80% 73%			
Case R		Pre-Cont. FO.	7002	0/0/	112%					2000	00/00			20%	/0011	112%0	000/	0/.00		
	se A	Post-Cont	1010	1 24 7/0			97%							020%	14/1				0,60/	
ţ	Ca	Pre-Cont		65%			65%							727	0/00				10/2	0/10/
Wilson		Pating	CAULAR .	265	202	000	2765	C07	508	2	\$08		265	1.0	C07	2009	200	\$05		944
g-Paradise Looped through	D		Monitored Element	Deid-Daviess Co	Velo-Daviva	Hardin-Daviess EHV		Reid-Daviess Co		Wilson-Kela En V	/M11 F :- 4	Wilson-Keid Env	Coleman 161-Coleman EHV	COLCILIANT TO LOCAL	Reid-Daviess Co	11111	Hardin-Daviess EHV		W IISOB-Keld Fri v	171/3761. 4
N- Smaltare with New Hardinsbur		with Coleman 1 Unit Outage	Continuent Flement	Culturgent stands	Wilson-Reid EHV	with n - 14 CUV	Wilson-Keig En V	Wilson Darrace HHV	W IISUIT-DAVIDS THE STATE	Colonian Database HHV	COLEMAN TO A LOW TO A	Deid-Daviess Co	1HLL .	Coleman [6]-Coleman LHV	The form EHV	Hancock-Coleman Lity	Dace	Dase	Gibson-Francisco	

٦

No Smelter with Wilson to Paradi	se 161 kV Circuit		Cas	ie A	Ca	se B
1		Dating	Pre-Cont.	Post-Cont	Pre-Cont	Post-Cont
C tingent Flement	Monitored Element	Laure			240/	20702
Contrary and a second	Reid-Daviess Co	265	63%	123%	04/10	10101
Wilson-Reid EHV		600			117%	104%
Wilcon_Reid HHV	Hardin-Daviess Erry			1070		
A BLACK	Peid_Daviess Co	265	63%	0/.07		
Wilson-Daviess EHV		202			77%	92%
Daid Dames Co	Wilson-Reid EHV	045			7022	0690
Volution	Cotomon Neutronville	265			0/01	
Coleman-Daviess EHV	COLEMANTANIA	375	700V	101%	45%	92%
C 1 161 Coleman RHV	Coleman 161-Coleman EHV	C07	2/21		140/	70/0
Coleman 101-Coleman Laty	Dathace Co	265	59%	92%	04%0	0/75
Hancock-Coleman EHV	NO SCHAPT-DIAN	325	260%	66%		
Reid 345/161	Reid 345/161	000	0/00		20/0LL	94%
The second	Wilson-Reid EHV	598			10211	1170/
Cribson-Francisco	TT J Dovide FHV	600	104%	104%	11/70	11/ /0
Base	Hardin-Davices Line	376	269%	118%	73%	100%
Hardin Datages FHV	Coleman-Newtonville	507	0/00	1010	2007	020
	Wilcon-Paradise	265	45%	9/2/6	0/ /0	
Wilson-Daviess EHV	ATTACTO TO T-TIOCIT M					

Vo Smelter with Wilson to Parad	ise 161 kV Circuit and Green 1	River 4 0	utage			
			Cas	ie A	Ca	seB
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont	Post-Cont.
Wilson-Reid EHV	Reid-Daviess Co	265	62%	123%	64%	92%
Wilson-Daviess EHV	Reid-Daviess Co	265	62%	94%		
Wilson-Green River	Wilson-Paradise	265			52%	95%
Reid-Daviess Co	Wilson-Reid EHV	598			79%	94%
Coleman-Daviess EHV	Coleman-Newtonville	265			72%	96%
Coleman 161-Coleman EHV	Coleman 161-Coleman EHV	265	50%	103%	46%	93%
Hancock-Coleman EHV	Reid-Daviess Co	265	59%	92%	64%	92%
Reid 345/161	Reid 345/161	336	56%	%26		
Gibson-Francisco	Wilson-Reid EHV	598			79%	96%
Base	Hardin-Daviess EHV	600	100%	100%	116%	116%
Hardin-Daviess EHV	Coleman-Newtonville	265	63%	114%	72%	%66

No Smelter with Wilson to Paradise 161 kV Circuit and Coleman 1 Outage

			Cas	A a	Ca	se B
Contingent Element	Monitored Element	Rating	Pre-Cont	Post-Cont.	Pre-Cont	Post-Cont
Wilson-Reid EHV	Reid-Daviess Co	265	65%	124%	70%	98%
Wilson-Reid EHV	Hardin-Daviess EHV	600			113%	%66
Wilson-Daviess EHV	Wilson-Paradise	265			54%	92%
Wilson-Daviess EHV	Reid-Daviess Co	265	65%	101%	70%	92%
Wilson-Green River	Wilson-Paradise	265			54%	%06
Hancock-Coleman EHV	Reid-Daviess Co	265	65%	92%	70%	92%
Reid-Daviess Co	Wilson-Reid EHV	598			78%	95%
Gibson-Francisco	Wilson-Reid EHV	598			78%	96%
Reid 345/161	Reid 345/161	336	55%	95%		
Base	Hardin-Daviess EHV	600			113%	113%
Hardin-Daviess EHV	Coleman-Newtonville	265	45%	%06		
والمتعادين والمتعادين والمتعادين والمتعالية والمتعالية والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين						

No Simelter with Wilson to Paradise I of KV Circuit and Paradise I Outage Case A Case B Contingent Element Monitored Element Rating Pre-Cont. Post-Cont. Post-Cont

	Case A	-Cont Post-Cont	118%	0//	1 33% B		101 %61	/000	07.76 97.70	20% 020%	0/0	113%	
		Rating Pre-	5 370	C07	245		265 4		265	326	- 000	345	CN7
		Monitored Element		Reid-Daviess Co	Deriver Co	Keld-Davices Co	Coleman_Newtonville		Reid-Daviess Co		Reid 345/161	- 11 11 11	Coleman-Newtonville
o Smelters with Three Terminal			Conungent Element	Wilson-Reid EHV	A TIPOTA TOTAL TOTAL	Wilson-Daviess EHV	1 24 3.4	Coleman-Daviess Eriv	TTle Coloman EHV	Hancock-Coleman	191/372 Pie a	Voint-c niav	Hardin-Daviess EHV

Case C			7/M	Dut		
Green I and 2 and HIMFL I Outs			AB Brown t	o Reid EHV		
	Monitored Element	Rating	Pre-Cont	Post-Cont.	Pre-Cont	Post-Cont.
Contingent Element	TATOTICO CO TUNITAT		1001	10201		
MILL P. T.	Hancock-Coleman EHV	265	0//0	10//0		
Wilson-Keid Eri V			/012	10.70%		
	Henderson-AB Brown	774	/1/0	0/7/1		
Wilson-Keiu Linv		370	7066	119%	38%	105%
Hunder Coleman HHV	Reid-Daviess Co	CD7	0/77			2101
Lightenev-volume	The second secon	285	67%	61%	51%	91%0
Reid-Daviess Co	Hancock-Coleman Erry	224			540/	2000
11111111	Peid 345/161	336			0/ 1/0	0/0/
101/CHC DIAN						

Base		Cas	e A	Ca Pre-Cont	se B Post-Cont.	Case C Pre-Cont. Po	st-Cont.	Case Pre-Cont.	D Post-Cont.
Contingent Flement	Monitored Facility	Pre-Cont.	FOSt-Cont.	1 022	0 931	1.034	0.931	1.032	0.930
Honorek-Coleman FHV	Hancock Co	1.032	0.925	CC0.1	0.057	1.015	0.952	1.013	0.951
Halloon-vooring	Daviess Co	1.011	0.943	1.014	7000	1 021	0.943	1.019	0.943
	Ensor	1.018	0.936	0701	0 030	1.003	0.939	1.001	0.938
	Newman	0.999	0.930	1.002	101.0				

								ł	
Wilson Unit Outage		Ċ		Ü	se B	Cas	e C	Cas	e D
		Ca	Se A		Doct Cont	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
	Mand Dasility	Pre-Cont.	Post-Cont.	Fre-Cont.	I USU COLLO		2000	000	0 0 3 3
Contingent Element	Monitol eu raciaty		0100	1 030	0.925	1.031	C76.0	1.020	U-26-0
	Uancack Co	1.026	0.910	0001			0 045	1 008	10 043
Hancock-Coleman EHV	I Jailwww ww		0.020	1 010	0.945	110.1	0.74.0	1.000	21.00
	Darriese Co	c00.1	0.64.0	0101		1 010	0.020	1 015	0.936
	Davios		0.073	1 017	0.938	1.010	0.2.0	217.1	
	Ensor	1.012	C74.0		0.000	0000	0 932	0.996	0.930
		0 002	0.917	0.998	765.0	0.222			
	Newman	666.0							
		1 005	0.953					2000	0.046
Reid-Daviess Co	Daviess CO	CON.1	0100					0.990	0.740
and another minut	Moumon	0.993	0.940						
	NEWINAIN								

Coleman 1 Unit Outage		,		Č	sco R	Case	U	Case	0
		Cas	εA		Doct-Cont	Pre-Cont. 1	ost-Cont.	Pre-Cont.	Post-Cont.
C	Monitored Facility	Pre-Cont.	Post-Cont.	Fre-Cont.		1 1035	0 030	1.020	0.929
Contingent Element		1 018	0.921	1.022	0.930	CZV.1	2000		0100
Hancock-Coleman EHV	Hancock Co	0101	0700	1 006	0.950	1.008	0.950	1.004	0.949
	Daviess Co	1.002	0.740	1.011	0 043	1 013	0.943	1.009	0.942
	Fusor	1.007	0.934	110.1	0000	200.0	0.028	0 997	0.936
		000 0	0 077	0.994	0.938	0.990	002.0	4	
	Newman	0.220	172.0	1 006	0 937	1.008	0.948	1.004	0.932
Deid-Daviese Co	Daviess Co	1.002	176-0	1.000	2000	900 0	0.935	0.992	0.919
NGIU-DUANCOO CO	Newman	0.690	0.914	0.994	0.74.0	2222		9001	0.965
		000 -	0 033					1.040	
Coleman-Daviess EHV	Newtonville	1.020	1000	3001	0 953			1.022	0.957
	Coleman 161	1.019	176.0	1.020	0.052			1.02	0.956
	Hancock Co	1.018	0.929	1.022	CC4.0			1001	0 961
	ITauroon oo	1 00 1	0.934	1.026	0.958			170.3	
	National Aluminum	1.021	0.040				-		
	Daviess Co	1.002	0.948		0.050				
	Encor	1.007	0.941	1.011	404.0				
	TOTION .	0000	0 935			-			
	Newman	U-22U							

								ł	4
Creen 2 Ilnit Outage		,		ڻ	se B	Case C		Case	a
		Case	A a			100 Day	of Cont 1	Pre-Cont.	Past-Cont.
			Deet-Cont	Pre-Cont.	Post-Cont.	Pre-Cont. ros	SI-CUILL		
C Harnet Plamont	Monitored Facility	Pre-Cont.	I Ust-Cont		000 0	1 1 1 1 25	0 979	1.033	0.927
Contingent Exement			0 012	1 034	0.727	CC0.1			
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Unnoch Co	1.032	C12.0				010	1 014	0 947
Hancock-Coleman EHV	LIGHTON CO		000	1 016	0.949	1.010	0.747	1.017	
	Davison Co	1.012	CCK.0	1.010			0.040	000	0 070
	Lidvices CU		2000	1001	0 942	1.022	0.942	1.040	AF7.0
	Tassa	1 019	0.920	1-0-1			2000	1 003	0 034
	EIISOI		0.000	1 004	0.936	c00.1	0.220	1 000.1	1.0.0
	Naman	1.000	0.920	1.007					

								1	,	
Paradise 1 Unit Outage		6	-	Ĵ	se B	Case	ç	Cas	ŋ	
		Cas	Se A				Doct Cont	Pro.Cont	Post-Cont.	
		0	Deet Cont	Pre-Cont.	Post-Cont.	Fre-Cont.	COSE-CONE.			
1	Monitored Facility	Pre-Cont.	F USE-CUBL		1000	1 022	0 030	1 032	0.929	
Contingent Element			0 073	1 033	166.0	1 660.1	2000			
1 11 Aut	Hancock Co	150.1	0.74.7				0.051	1 017	0 950	
Hancock-Coleman EH V	TIALLON OU		0.013	1 012	0.951	1.014	106.0	710-1	00000	
			0.943	C10.1			0.00	1 010	CV0 0	
	Daviess CO			1010	570 0	1 1.020	0.945	1.010	0.744	
		1 018	0.936	i.017	C+/-0			. 200	2000	
	Ensor	1.010		1 001	0 038	1.002	0.938	1.000	166.0	
		0 000	0.930	1.001	0000					
	Newman	1000								

Colomon 1 and 2 Unit Outage		i		Ľ	co R	Case	c	Case	0
		Ca	se A	n Cant	Post-Cont.	Pre-Cont. P	ost-Cont.	Pre-Cont. 1	ost-Cont.
	Monitored Facility	Pre-Cont.	Post-Cont.	LTE-COILL	1 030-201	1 004	0 07R	0 994	0.926
Contingent Element		0 080	0.915	0.998	176.0	1.004	0	0000	2400
Hancock-Coleman EHV	Hancock Co	0.707	0.025	0 990	0.948	0.995	0.948	0.988	0.940
	Daviess Co	0.985	CC4.0	0000	0.040	0.997	0.941	0.990	0.939
	Fusor	0.985	0.928	0.994	2000	0.002	0 025	0 975	0.933
		0.071	0 077	0.978	0.950	C07.0	<i>CCC</i> .0	21.1.2	
	Newman	1/7.0	0.000	0000	0.902	0.995	0.916	0.988	0.893
	Daviess Co	0.983	0.888	0.770		200.0	247	0 000	0.924
Reid-Daviess Co		0.005	0 919	0.992	0.933	0.771	1+2-0	~~~~	
	Ensor	C07.0	0.074	0.078	0 889	0.983	0.903	0.975	0.879
	Newman	0.971	0.8/4	0.2.0	0.071			1.000	0.871
	NT	066 0	0.851	1.003	0.0/1			.000	0 0 0 0
Coleman-Daviess EHV	Newtonvinc		000	0 997	0.849			644.0	0.047
	Coleman 161	0.98/	670.0	0000	0.854			0.994	0.854
	Hancock Co	0.989	C28.U	0.220	0 050			0.998	0.859
	Meticaal Aluminum	0.993	0.84	1.001	600.0			0000	0 800
	National Aluminity		9880	0.99	0.898			0.700	0.00
	Daviess Co	0.905	0.000	0000	0.877			0.990	0.878
	Ensor	0.985	0.002	0.010	0 005			0.975	0.885
	Menuman	120.071	0.872	0.978	0.007				

			Ca.	ۍ و	Cat	se H
		Dating	Dre-Cont	Past-Cont.	Pre-Cont.	Post-Cont.
Contingent Element	Montored Element	Inaturg				010/
Witcon Daid EUV	Reid-Daviess Co	265	50%	108%	56%	91%0
A LET DISAT-DOLLAR	Wilson Creen Piner	530	57%	98%	62%	95%
Wilson-Daviess EHV	M TRAFT TIMET M	2				
Witcon Daviace EHV	Reid-Daviess Co	265	50%	94%		
A TITT SCALABOT-ILOGIL VA	TT-Ji- Dordon EUN	600			119%	132%
Wilson-Green Ruver	Hardin-Daviess Erry				1071	000
Reid-Daviess Co	Wilson-Reid EHV	598			/0%0	0/.04
	Coleman 161-Coleman EHV	265	45%	92%		
COLEMAN 101-CULEMAN EATV		1,0	140/	010/	7022	07%
Coleman-Daviess EHV	Coleman-Newtonville	265	6/%	2170	0/ []	
Transack Coleman FHV	Reid-Daviess Co	265				
	Colomon Mentionville	265	67%	130%	73%	125%
Hardm-Daviess EHV	COICHIGH-INCW INTAMO				7024	%80
Gibson-Francisco	Coleman-Newtonville	C02			0/7/	
171/37 1710	Reid 345/161	336	52%	91%		
Keiu 342/101		002			119%	119%
Base	Hardin-Daviess EHV	000			0/ / 7 7	

No Smelter (MW loads ratioed at	60%; Mvar loads ratioed at 50	%) with	3 terminal to) Wilson, Nev	w Hardinsbı	ırg,
and Paradise			Cas	e G	Car	se H
Continent Flement	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Uningent Element	Reid-Daviess Co	265	49%	109%		
W IISUIT-NEM ELIV	Coleman-Newtonville	265	66%	94%	71%	102%
Coleniau-Daviess Erry	Wilson-Reid EHV	598			80%	91%
Coleman-Daviess Erry	Colomon 161 Coloman FHV	265	45%	93%	49%	90%
Coleman 161-Coleman Erry		226	267	70/0		
Reid 345/161	Reid 345/161	000	0/00	0/ 1/		1100/
Hardin-Daviess EHV	Coleman-Newtonville	265	66%	120%	71%	119%
Gibcon Branciero	Coleman-Newtonville	265			71%	97%
Diusuititututu	Hardin-Daviess EHV	600			117%	117%
Dase		VUY			117%	124%
Wilson-Green River	Hardin-Daviess Erry				1170/	176%
Coleman-Newtonville	Hardin-Daviess EHV	600			11/70	0/071
Reid-Daviess Co	Wilson-Reid EHV	598			80%	97.66

Vo Smelter (MW loads ratioed at (50%; Mvar loads ratioed at 5	60%) with	3 terminal to	o Wuson, Ner	N HAI UUUUU	
and Paradise; Coleman 1 Outaged			Cat	se G	Cas	еH
	Monitored Rlement	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contingent Element		1 2/2	C E 0/	1150/	61%	96%
Witcon_Reid FHV	Reid-Daviess Co	607	0/00	0/CIT		
A TICL DIVIL-MORT AA		765	55%	00%		
Wilson-Daviess EHV	Keid-Daviess Cu	50.7				
	D.: 4 2 45/1 61	336	56%	6%		
Reid 345/161	reig 24-2/101	200				1000/
	Colourse Nantoniille	265	49%	100%	54%	100%
Hardm-Daviess EHV	COJEILIAU-LIVEW IULI VILLE				11.00/	11 70/
D.220	Hardin-Daviess EHV	009			11270	112/0
Base					117%	118%
Wilcon-Green River	Hardin-Daviess EHV	000			0/777	
TO A DI TOO TOO TOOTT MA		200			82%	97%
Reid-Daviess Co	WILSON-Keig EH V	020				

Vo Smelter (MW loads ratioed at	60%; Mvar loads ratioed at 50)%) with .	3 terminal to	Wilson, Ne	w Hardinsbu	ırg,
and Paradise; Green River 4 Out	aged		Cas	e G	Car	se H
from a from the from	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contingent Lienen	Reid-Daviess Co	265	49%	110%	55%	80%
	Wilson-Reid EHV	598			83%	94%
Coleman-Daviess Erry		345	64%	93%	20%	101%
Coleman-Daviess EHV	Coleman-INEWIOIIVILIE	507	0/10		100/	0102
Colomon 161-Coloman EHV	Coleman 161-Coleman EHV	265	46%	95%	45%	21%0
CONCINCT TOT CONTINUE TOTAL	17177171	326	57%	%66		
Reid 345/161	Kelu 247/101			10011	7002	1170/
Hardin-Daviess EHV	Coleman-Newtonville	265	64%	11/%	10/0	0/ / 11
Gibcon Erancisco	Coleman-Newtonville	265			70%	%2%
CONTINUE LITING	Unidin-Damage FHV	600			115%	115%
Base	IId court and the	000			1150%	123%
Wilson-Green River	Hardin-Daviess EHV	000			0/011	/070
Daid Darrace Co	Wilson-Reid EHV	598			0,52	2070

Ind Paradise I OutagedCase GCase HCase ICase IContingent ElementMonitored ElementRatingPre-Cont.Post-Cont.Post-Cont.Nilson-Green RiverMonitored ElementRatingPre-Cont.Post-Cont. <th co<="" th=""><th>to Smelter (MW loads ratioed at</th><th>00.70; IVLVAL NAUS LALIGUE</th><th></th><th></th><th></th><th></th><th></th></th>	<th>to Smelter (MW loads ratioed at</th> <th>00.70; IVLVAL NAUS LALIGUE</th> <th></th> <th></th> <th></th> <th></th> <th></th>	to Smelter (MW loads ratioed at	00.70; IVLVAL NAUS LALIGUE					
Contingent ElementMonitored ElementRating Nilson-Green RiverProc-Cont.Proc-Cont.Proc-Cont.Proc-Cont.Proc-Cont.Post-Cont.Wilson-Green RiverWilson-Green RiverWilson-3 Terminal265 84% 104% 97% 114% Wilson-Green RiverWilson-3 Terminal265 84% 114% 97% 91% 91% Wilson-Green RiverWilson-3 Terminal265 87% 114% 97% 91% 91% BaseParadise-3 Terminal265 87% 114% 94% 91% 91% BaseHardin-Daviess EHV 600 Wilson-Reid EHV 598 94% 91% 91% BaseHardin-Daviess EHV 600 Wilson-Reid EHV 598 81% 110% 91% 91% Wilson-Daviess EHVWilson-Daviess EHVWilson-Seid EHV 598 81% 102% 94% 92% Wilson-Daviess EHVWilson-Daviess EHVWilson-Seid EHV 265 84% 102% 94% 102% Wilson-Daviess EHVWilson-Daviess EHVWilson-Newtonvilte 265 84% 102% 94% 92% Wilson-Daviess EHVWilson-Daviess EHVWilson-Seid EHV 265 84% 102% 94% 107% Wilson-Daviess EHVWilson-ParaiciscoColeman I61-Coleman EHV 598 94% 107% 76% 102% 94% 107% Wilson-FranciscoColeman-Daviess EHVWilson-FranciscoColeman-Newtonvilte <th>ind Paradise; Paradise 1 Outaged</th> <th>_</th> <th></th> <th>Car</th> <th>se G</th> <th>Cas</th> <th>ie H</th>	ind Paradise; Paradise 1 Outaged	_		Car	se G	Cas	ie H	
Contingent Element Wullson-Green River Wullson-Green River Paradise-3 Terminal 265 84% 104% 97% 113% Wilson-Green River Paradise-3 Terminal 265 87% 114% 97% 97% Wilson-Green River Paradise-3 Terminal 265 87% 114% 94% 91% Wilson-Green River Wilson-S Terminal 265 87% 110% 94% 94% Base Plandin-Daviess EHV 600 89% 110% 95% 93% Reid-Daviess Co Wilson-Reid EHV 598 84% 110% 55% 93% Keid-Daviess Co Wilson-Reid EHV 598 84% 100% 46% 94% Wilson-Reid EHV Wilson-Reid EHV 598 84% 122% 93% 93% Wilson-Daviess EHV Wilson-Reid EHV 558 84% 100% 46% 94% Wilson-Daviess EHV Wilson-Reid EHV 265 84% 100% 66% 98% Wilson-Davies		Manitored Flement	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.	
Wilson-Green River Wilson-Green River Wilson-Green River Wilson-Green River Wilson-Green River Wilson-Green River Paradise-3 Terminal 265 87% 114% 94% 91% Wilson-Green River Wilson-Green River Wilson-3 Terminal 265 87% 114% 97% 94% Base Paradise-3 Terminal 265 87% 110% 94% 94% Base Hardin-Daviess EHV 600 Milson-Reid EHV 598 94% 100% Reid-Daviess Co Wilson-Reid EHV 598 88% 100% 55% 93% Wilson-Daviess EHV Wilson-Daviess EHV 598 87% 102% 94% 107% Wilson-Daviess EHV Wilson-Daviess EHV Wilson-Daviess EHV Wilson-State EHV 89% 94% 101% Wilson-Daviess EHV Wilson-Daviess EHV Wilson-State EHV 555 84% 102% 94% 107% Wilson-Daviess EHV Wilson-Daviess EHV S58 76% 102% 94% 94%	Contingent Element	ATOTION OF TOTION		0.40/	1040%	%10	125%	
w.m.dotter Paradise-3 Terminal 265 87% 114% 94% 11470 Wilson-Green River Wilson-3 Terminal 265 87% 114% 97% 97% Wilson-Green River Wilson-3 Terminal 265 87% 110% 91% 97% 97% 97% 97% 97% 97% 97% 94% 110% 91% 91% 91% 94% 110% 94% 110% 94% 91% 94% 91% 94% 110% 94% 110% 94% 110% 94% 103% Reid-Daviess EHV Wilson-Reid EHV 598 48% 110% 55% 93% 107% Wilson-Daviess EHV Wilson-Daviess EHV Wilson-Reid EHV 265 84% 100% 46% 94% 107% Wilson-Daviess EHV Wilson-Paviess EHV Wilson-Paviess EHV 80% 107% 80% 107% Coleman 161-Coleman EHV 265 84%	Wilcon-Green River	Wilson-3 Terminal	C07	0470	1/1/1		11 40/	
Wilson-Utech Arved Wilson-3 Terminal 265 91% 97% 97% 97% 97% 97% 97% 94% 910% 95% <t< td=""><td>W HSULF OLCOL DUILD</td><td>paradise-3 Terminal</td><td>265</td><td>87%</td><td>114%</td><td>94%</td><td>114%</td></t<>	W HSULF OLCOL DUILD	paradise-3 Terminal	265	87%	114%	94%	114%	
Base wusser valuency reminal 265 94% 110% Base Hardin-Daviess EHV 508 84% 110% 55% 93% 95%	MIISON-CIECH MAN	witcon 2 Terminal	265			97%	97%	
Base Paraditse-3 termulat 200 110% 103% 103% 103% 103% 103% 103% 103% 103% 103% 101% </td <td>Base</td> <td>MILLION C-MUCH W</td> <td>345</td> <td></td> <td></td> <td>94%</td> <td>94%</td>	Base	MILLION C-MUCH W	345			94%	94%	
Base Hardin-Daviess EHV 000 Base Hardin-Daviess EHV 598 103% Reid-Daviess Co Wilson-Reid EHV 598 89% 92% 95% Caldwell-Barkley Wilson-Reid EHV 598 89% 91% 93% Wilson-Reid EHV 89% 110% 55% 93% 93% Wilson-Daviess EHV Wilson-Daviess EHV Wilson-Daviess EHV 94% 1129% 94% 107% Wilson-Daviess EHV Wilson-Daviess EHV Wilson-Daviess EHV 94% 107% 94% 107% Wilson-Daviess EHV Noleman EHV 265 87% 100% 46% 94% Coleman 161-Coleman EHV S98 100% 46% 94% 101% Coleman-Daviess EHV Wilson-Reid EHV 598 100% 46% 94% Coleman-Daviess EHV Coleman-Newtonville 265 84% 101% 76% 94% Coleman-Daviess EHV Coleman-Newtonville 265 84% 101% 76% 94%	Base	Paradise-3 lenunar	007			110%	110%	
Reid-Daviess Co Wilson-Reid EHV 598 0.7% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 93% 110% 55% 93% 129% 93% 110% 55% 93% 107% 93% 107% 93% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 101% 75% 94% 107% 94% 107% 94% 107% 94% 101% 75% 94% 107% 94% 101% 75% 94% 101% 75% 94% 101% 75% 94% 101% 75% 94% 101% 75% 94% 101% 75% 94% 101% 75% 94% 101% 75% 75% 75%	Base	Hardin-Daviess EHV	000			200%	103%	
Numer-Darviess Wilson-Reid EHV 598 89% 93% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 107% 94% 101% 75% 94% 101% 75% 94% 101% 75% 94% 101% 75% 94% 101% 75% 95% 95% 101% 75% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% <td>Deid-Darriess Co</td> <td>Wilson-Reid EHV</td> <td>598</td> <td></td> <td></td> <td>0/ /0</td> <td>050/</td>	Deid-Darriess Co	Wilson-Reid EHV	598			0/ /0	050/	
Caldwell-Barkley Number Control 265 48% 110% 55% 93% Wilson-Reid EHV Reid-Daviess Co 265 84% 122% 97% 129% Wilson-Daviess EHV Wilson-Daviess EHV Wilson-Servector 265 84% 107% 94% 107% Wilson-Daviess EHV Wilson-Daviess EHV Vilson-Reid EHV 265 87% 100% 46% 94% Coleman 161-Coleman EHV 265 88% 100% 46% 94% Coleman 261-Coleman EHV 598 100% 46% 94% Coleman 161-Coleman EHV 758 87% 100% 66% 92% Coleman-Daviess EHV Wilson-Francisco Reid 345/161 336 58% 102% 94% 101% Reid 345/161 Reid 345/161 336 58% 102% 94% 131% Hardin-Daviess EHV Reid 345/161 336 58% 102% 94% 131% Hardin-Daviess EHV Reid 345/161 356 84%		Wilcon-Reid EHV	598			89%	0%66	
Wilson-Reid EHV Kenc-Daviess CO CO Edd 129% 97% 129% Wilson-Daviess EHV Wilson-Javess EHV Wilson-Javess EHV Vilson-Javes EHV 94% 107% Wilson-Daviess EHV Wilson-S Terminal 265 84% 100% 46% 94% Wilson-Daviess EHV Paradise-3 Terminal 265 88% 100% 46% 94% Coleman 161-Coleman EHV 265 48% 100% 46% 94% Coleman-Daviess EHV Wilson-Reid EHV 598 66% 92% 101% Coleman-Daviess EHV Coleman-Newtonville 265 84% 102% 94% 131% Reid 345/161 Reid 345/161 336 58% 102% 94% 131% Hardin-Davies EHV Paradise-3 Terminal 265 84% 130% 97% 131% Hardin-Davies EHV Paradise-3 Terminal 265 84% 130% 94% 131%	Caldwell-Barkley	O opping F:- G	265	48%	110%	55%	93%	
Wilson-Daviess EHV Wilson-Jacuation 200 67% 107% 94% 107% Wilson-Daviess EHV Paradise-3 Terminal 265 87% 100% 46% 94% 101% Wilson-Daviess EHV Paradise-3 Terminal 265 87% 100% 46% 94% Coleman 161-Coleman EHV 598 100% 46% 94% 101% Coleman-Daviess EHV Wilson-Reid EHV 598 66% 92% 101% Coleman-Daviess EHV Coleman-Newtonville 265 88% 102% 97% 131% Reid 345/161 Reid 345/161 336 58% 102% 94% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 84% 130% 94% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 84% 130% 94% 111%	Wilson-Reid EHV	Keid-Daviess Co	270	2/0/2	122%	67%	129%	
Wilson-Daviess EHV Paradise-3 Terminal 265 87% 10.2% 74.0 10.1% Coleman 161-Coleman EHV Coleman EHV 265 48% 100% 46% 94% Coleman 161-Coleman EHV Coleman EHV 265 48% 100% 46% 94% Coleman-Daviess EHV Wilson-Reid EHV 598 66% 98% 101% Coleman-Daviess EHV Coleman-Newtonville 265 65% 92% 92% Gibson-Francisco Reid 345/161 336 58% 102% 97% 131% Hardin-Daviess EHV Reid 345/161 336 58% 102% 94% 131% Hardin-Daviess EHV Reid 345/161 336 58% 102% 94% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 84% 130% 94% 131%	Wilson-Daviess EHV	Wilson-3 Terminal	C07	0/10	/0001	0407	107%	
WIISON-Daviess Erry Volume 46% 94% Coleman 161-Coleman EHV 265 48% 100% 46% 94% Coleman 161-Coleman EHV 598 100% 46% 94% Coleman 161-Coleman EHV 598 89% 101% Coleman-Daviess EHV Wilson-Reid EHV 565 98% 98% Coleman-Daviess EHV Coleman-Newtonville 265 66% 98% Gibson-Francisco Coleman-Newtonville 265 84% 102% 97% Reid 345/161 Wilson-3 Terminal 265 84% 130% 97% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 108% 66% 111%	WIND DOLLAR BUN	Paradise-3 Terminal	265	87%	102%	9470	TO I VO	
Coleman 161-Coleman EHV Coleman 101-Coleman 101-Coleman 101-Coleman 101-Coleman 101-Coleman 101-Coleman 101-Coleman 101-Coleman 101-Coleman 101-Coleman-Daviess EHV S9% 101% Coleman-Daviess EHV Wilson-Reid EHV 598 66% 98% Coleman-Daviess EHV Coleman-Newtonville 265 66% 92% Gibson-Francisco Coleman-Newtonville 265 58% 102% 92% Reid 345/161 Reid 345/161 336 58% 102% 97% 131% Hardin-Daviess EHV Wilson-3 Terminal 265 84% 130% 97% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 108% 66% 111%	WIISON-DAVIESS ER V	I mumor 1/1 Colonna EHV	245	48%	100%	46%	94%	
Coleman-Daviess EHV Wilson-Reid EHV 598 66% 98% Coleman-Daviess EHV Coleman-Newtonville 265 66% 98% Coleman-Daviess EHV Coleman-Newtonville 265 66% 92% Gibson-Francisco Coleman-Newtonville 265 58% 102% 92% Reid 345/161 Reid 345/161 336 58% 130% 97% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 84% 130% 94% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 108% 66% 111%	Coleman 161-Coleman EHV	Coleman 101-Coleman				89%	101%	
Coleman-Daviess EHV Coleman-Newtonville 265 00.0	Coleman-Daviess EHV	Wilson-Reid EHV	040			7077	08%	
Concurant Detection Coleman-Newtonville 265 927% Gibson-Francisco Coleman-Newtonville 336 58% 102% 97% Reid 345/161 Reid 345/161 336 58% 102% 131% Hardin-Daviess EHV Wilson-3 Terminal 265 84% 130% 94% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 124% 94% 111%	Colonian Davies EHV	Coleman-Newtonville	265			0/00	/000	
Gibson-francisco Concumaryow correct 336 58% 102% 131% Reid 345/161 Reid 345/161 336 58% 130% 97% 131% Hardin-Daviess EHV Wilson-3 Terminal 265 84% 130% 94% 123% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 124% 94% 111%	CORTIANT-DAVIOS FIT	Coleman_Newtonville	265			66%	0%76	
Reid 345/161 Keid 345/161 530 540 131% Hardin-Daviess EHV Wilson-3 Terminal 265 84% 130% 97% 131% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 124% 94% 123% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 124% 94% 111%	Gibson-Francisco		226	58%	102%			
Hardin-Daviess EHV Wilson-3 Terminal 265 64% 1.20% 94% 123% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 124% 94% 123% Hardin-Daviess EHV Paradise-3 Terminal 265 87% 108% 66% 111%	Reid 345/161	Reid 345/101	000	0.40/	200%	01%	131%	
Hardin-Daviess EHV Paradise-3 Terminal 265 87% 1.24% 94.7% 1.23.% Hardin-Daviess EHV Coleman-Newtonville 265 59% 108% 66% 111%	Hardin-Daviess EHV	Wilson-3 Terminal	502	0470	/0/07	7070	1720/	
Haltun-Devices 201 108% 66% 111%	Tra-din Darrase FHV	Paradise-3 Terminal	265	87%	124%	74.70	0/ 771	
		Coleman-Newtonville	265	59%	108%	66%	111%	

3 terminal to Wilson, New Hardin	burg, and Paradise			
			Cas	se F
41 11 1	Monitored Element	Rating	Pre-Cont.	Post-Cont.
Contingent Llement	Transat Coloman FHV	265	27%	91%
Reid-Daviess Co	Hallouck-Culeman Lity		C10/	010%
Wilson Green Diver	Paradise-3 Terminal	C02	01%	71/0
MINDER TO THE TOTAL		275	66%	101%
Wilson-Reid EHV	Keid-Daviess CO	C0.7		
	Wilcon-3 Terminal	265	61%	95%
Wilson-Daviess EHV	TO TO TO TAM	376	660/2	08%
III Topoch-Coleman RHV	Reid-Daviess Co	C07	0/00	
Haucock-Constitution	D.14 Darbars Co.	265	66%	93%
Wilson-Daviess EHV	Kein-Daviess CO		1000	1000/
Deid Darrisee Co	Wilson-Reid EHV	598	82%	9070

3 terminal to Wilson, New Hardins	burg, and Paradise			
Coleman 1 Outaged			Car	se F
	Monitored Element	Rating	Pre-Cont.	Post-Cont.
Contingent Element		276	73%	103%
Wilcon-Daviess EHV	Reid-Daviess CO	CN7	2.2.	1000
A TROUT A DESCRIPTION	Paid-Daviess Co	265	73%	93%
Coleman-Daviess	Do annu parta	376	730%	108%
Wilson-Beid FHV	Reid-Daviess Co	C07	0/01	
A TET MENT-TENET AA	louined C 1711	265	57%	93%
Wilson-Daviess EHV	WIISOIL-3 LEALING	2		/000
	Witson-Reid EHV	598	84%	0/276
Gibson-Francisco	TTT PICT TOOT M	376	730/2	08%
Transach-Coleman EHV	Reid-Daviess Co	C07	2/1/	
Lianon-wooner	Transack-Coleman FHV	265	22%	95%
Reid-Daviess Co	Hallouck-Condutant	002	010/	107%
Peid-Daviess Co	Wilson-Reid EHV	040	0.470	
an agait and minit				

3 terminal to Wilson, New Hardins	burg, and Paradise			
Wilson Outaged			Cas	e F
	Monitored Flement	Rating	Pre-Cont.	Post-Cont.
Contingent Element		276	7676	%20
n -11 Davisor Co	Hancock-Coleman EHV	C07	0/07	
Keld-Davicss Co	1111 D. 19 1111	508	%66	116%
Daid-Daviese Co	WIISON-Keid Eri V	0/0		
NGIU-LUUXDOO OO	Davisor Co	265	67%	109%
Wilson-Reid EHV	Kein-Davices Co			000/
	Daid Danage Co	265	67%	98%0
Hancock-Coleman EHV	NCIGATABATANION	000	/000	7000
Daca	Wilson-Reid EHV	598 2	97.66	0/72
Dasc				

3 terminal to Wilson, New Hardin	sburg, and Paradise			
Green 2 Outaged			Cas	ie F
	Monitored Riement	Rating	Pre-Cont.	Post-Cont.
Contingent Element			1000	7000
	Hancock-Coleman EHV	265	55%0	24/0
Reid-Daviess Co			1022	7000
11111	Peid-Daviess Co	265	0///0	70/0
Hancock-Coleman Eri V				

3 terminal to Wilson, New Hardins	burg, and Paradise			
Paradise 1 Uutageu			Ca	se F
Continuent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.
Wilson-Green River	Wilson-3 Terminal	265	108%	135%
Wilson-Green River	Paradise-3 Terminal	265	105%	125%
Deid_Darriess Co	Hancock-Coleman EHV	265	26%	92%
Wilson-Dariess FHV	Reid-Daviess Co	265	67%	92%
WINDER Davies FHV	Paradise-3 Terminal	265	105%	119%
WINDELDAWASS EHIV	Wilson-3 Terminal	265	108%	139%
WINDE-DAVIASI ELIV	Reid-Daviess Co	265	67%	98%
Haucock-Coleman EALV	Wilson-3 Terminal	265	108%	129%
Unardin Daviess BHV	Paradise-3 Terminal	265	105%	124%
VIII COMPACE INITIAL	Wilson-Reid EHV	598	101%	101%
Dace	Wilson-3 Terminal	265	108%	108%
Base	Paradise-3 Terminal	265	105%	105%

3 terminal to Wilson, New Hardins	burg, and Paradise			
Green River 4 Outaged			Cas	ie F
Contingent Flement	Monitored Element	Rating	Pre-Cont.	Post-Cont.
Witcon-Peid FHV	Reid-Daviess Co	265	67%	102%
W HAULTNOW LITY	Reid-Daviess Co	265	67%	93%
VILL COLUCITURE V	Hancock-Coleman EHV	265	26%	92%
Deid Dorders CO	Wilson-Reid EHV	598	85%	101%
Transcork Coleman RHV	Reid-Daviess Co	265	67%	98%
A TIT TIDITATO - WOOTEL				

No Smelter with Culley to Colema	a 345 kV			
			Ca	se F
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.
Race	Hardin-Daviess EHV	600	117%	117%
Wilcon-Green River	Hardin-Daviess EHV	600	117%	131%
Whoth Other EUV	Wilson-Green River	530	73%	%66
W HISULTAVIESS LITY	Witcon_Paid FHV	598	75%	%06
Coleman-Daviess Eri V	A TITI DIANT MOCH AA		1001	010/
Gibson-Francisco	Wilson-Reid EHV	598	0/,0/	0/1/
Coloman 161-Coloman FHV	Coleman 161-Coleman EHV	265	47%	95%
	Reid-Daviess Co	265	59%	93%
Hancock-Coleman Erry		370	7007	000
Hardin-Daviess EHV	Coleman-Newtonville	607	1070	20/0

No Smelter with Culley to Colema Coleman 1 Outaged	a 345 kV			
			Car	se F
Contingent Riement	Monitored Element	Rating	Pre-Cont.	Post-Cont.
Contingent Interest Race	Hardin-Daviess EHV	600	112%	112%
Wilcon Green Physic	Hardin-Daviess EHV	600	112%	125%
MINDER OF CONTRACT	Daid-Daviece Co	265	65%	92%
WIISOD-Keid EHV	CO CENTARIA MAN		710/	000
Wilson-Daviess EHV	Wilson-Green River	050	11 70	0/ 66
Daid-Damese Co	Wilson-Reid EHV	598	77%	91%
Cibron Erancisco	Wilson-Reid EHV	598	%LL	94%
UIUSUIFTIAILUSU	Reid-Daviess Co	265	65%	93%
HallCUCK-CUIGILIAM LAL				

~

reen kiver 4 Uutageu			Ca	se F
Cartineent Flement	Monitored Element	Rating	Pre-Cont.	Post-Cont.
Contingent by more	Hardin-Daviess EHV	600	114%	114%
Wilson-Green River	Hardin-Daviess EHV	600	114%	130%
Witson Darless EHV	Wilson-Green River	530	81%	106%
WISUH-DAVIOS EHV	Green River 161/138	100	65%	93%
WINDLEDANCON	Wilcon-Reid HHV	598	78%	95%
Coleman-Daviess Erry	A TTA DIAL DIAL TOOT A	270	100/	0707
Coleman 161-Coleman EHV	Coleman 161-Coleman EHV	C07	4070	0/12
Contract I Distance	Wilson-Reid EHV	598	78%	92%
Kelu-Davica		530	81%	98%
Hardin-Daviess EHV	M IISOID-DICCH MAN	200		1010
Hardin-Daviess EHV	Coleman-Newtonville	265	69%	9//6
Cihan Erandico	Wilson-Reid EHV	598	78%	95%
CIUSOIT T-TIOROTO		226	20%	%20
Hancock-Coleman EHV	Keld-Daviess CU	507	2/ /2	

No Smelter with Culley to Coleman	1 345 kV			
Paradise 1 Outaged			Ca	se Fi
Contineent Plament	Monitored Element	Rating	Pre-Cont.	Post-Cont.
COLLINGCUL LACINAM	Hardin-Daviess EHV	600	115%	115%
Ddau TTTIncon Coroan Divier	Hardin-Daviess EHV	600	115%	129%
MIII MARIA	Wilson-Green River	530	76%	102%
WIISOIL-LIAVICSS ETLY	Witcon Doid EHIV	598	77%	93%
Coleman-Daviess EHV	W IISUIT-NCIU		/000	010/
Reid-Daviess Co	Wilson-Reid EHV	598	0///	21%
Unitrin. Daviess RHV	Wilson-Green River	530	76%	93%
TTL COLVEL TO MANAGE EUV	Coleman-Newtonville	265	20%	98%
VITA SSAVE THANKS	Wilson-Reid EHV	598	%LL	94%
CIOSOII-FIAILUSOI	Coleman 161-Coleman EHV	265	54%	%16
	Reid-Daviess (10	265	60%	93%
Hancock-(, nieman v v	TVDIT TOTAL			

Base		Ca	se E	Car	se F
Contingent Element	Monitored Element	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.031	0.925	1.031	0.929
	Daviess Co	1.012	0.945	1.012	0.949
	Ensor	1.018	0.938	1.018	0.942
	Newman	1.000	0.932	1.000	0.937

Base					
Coleman 1 Outaged		Car	ie E	Ca	se F
Contingent Flement	Monitored Element	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Coleman-Daviess EHV	Newtonville	1.018	0.923	1.024	0.955
	Skillman	1.024	0.947	1.025	0.970
	Hancock Co	1.016	0.922	1.018	0.948
	Coleman 161	1.018	0.919	1.021	0.947
	National Aluminum	1.020	0.927	1.022	0.953
	Daviess Co	1.002	0.945		
	Ensor	1.007	0.936	1.007	0.956
	Newman	066.0	0.932	0.991	0.948
Hancock-Coleman EHV	Daviess Co	1.002	0.942	1.003	0.948
	Ensor	1.007	0.936	1.007	0.940
	Newman	066.0	0.929	0.991	0.935
Reid-Daviess Co	Daviess Co	1.002	0.923	1.003	0.928
	Ensor	1.007	0.954		
	Newman	066.0	0.910	0.991	0.915

Base					I
Wilson Outaged		Ca	se E	Ca	se F
Contingent Element	Monitored Element	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.025	0.915	1.027	0.923
	Daviess Co	1.006	0.934	1.008	0.943
	Ensor	1.012	0.927	1.013	0.935
	Newman	0.994	0.921	0.996	0.930
Reid-Daviess Co	Daviess Co	1.006	0.951		
	Newman	0.994	0.939	0.996	0.945

lase		1	ĩ	č	ß
Freen 2 Outaged		E C	se E	Ca	se r
Contingent Flement	Monitored Element	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.032	0.916	1.032	0.926
	Daviess Co	1.012	0.936	1.014	0.946
	Ensor	1.019	0.929	1.020	0.939
	Newman	1.001	0.923	1.002	0.933

Base				i	
Paradise 1 Outaged		Car	se E	Car	se F
Contingent Element	Monitored Element	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.030	0.924	1.029	0.928
	Daviess Co	1.011	0.944	1.010	0.948
	Ensor	1.017	0.937	1.016	0.940
	Newman	0.999	0.931	0.998	0.936
Reid-Daviess Co	Daviess Co				
	Newman	0.999	0.949	0.998	0.949

Base					
Coleman 1 and 2 Outaged		Cas	se E	Ca	se F
Contingent Element	Monitored Element	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Coleman-Daviess EHV	Newtonville	0.986	0.849	0.996	0.868
	Meade Co	0.986	0.915	0.986	0.926
	Skillman	1.000	0.869	1.001	0.885
	Hancock Co	0.987	0.835	166.0	0.852
	Coleman 161	0.985	0.829	066.0	0.847
	National Aluminum	166.0	0.840	0.995	0.857
	Daviess Co	0.983	0.888	0.986	0.898
	Ensor	0.985	0.863	0.987	0.876
	Newman	179.0	0.874	0.973	0.884
Hancock-Coleman EHV	Hancock Co	0.987	0.918	0.991	0.925
	Daviess Co	0.983	0.937	0.986	0.945
	Ensor	0.985	0.930	0.987	0.938
	Newman	0.971	0.925	0.973	0.932
Reid-Daviess Co	Hancock Co	0.987	0.942	166.0	0.949
	Coleman 161	0.985	0.946		
	Daviess Co	0.983	0.883	0.986	0.889
	Ensor	0.985	0.913	0.987	0.919
	Newman	0.971	0.869	0.973	0.876
Wilson-Daviess EHV	Coleman 161			0.990	0.949
	Newman			0.973	0.946

. Correction of CODA.	Muan loads ratioed at 50%)				
Base (MIW loads ranged at 00 70;	ALVAL AVAILA LANDAL AVAILA	Ċ	ç	200	н
Coleman 1 and 2 Outaged		Cas	5		
Continuent Flement	Monitored Element	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Coleman-Daviess EHV	Newtonville	1.014	0.891	1.021	0.899
	Meade Co	1.012	0.960		
	Skilman	1.024	0.919	1.026	0.926
	Hancock Co	1.013	0.889	1.016	0.896
	Coleman 161	1.010	0.880	1.014	0.888
	National Aluminum	1.016	0.891	1.018	0.899
	Daviess Co	1.017	0.939	1.019	0.945
	Ensor	1.015	0.920	1.017	0.926
	Newman	1.005	0.926	1.008	0.932
			and the second se		

3 terminal to Wilson, New Hardins	burg, and Paradise		
		Cas	ie F
Continvent Flement	Monitored Element	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.032	0.929
	Daviess Co	1.012	0.949
	Ensor	1.018	0.941
	Newman	1.000	0.936

isburg, and Faradise	Monitored Element	Newtonville	Skillman
3 terminal to Wilson, New Hardin Coleman 1 Outaged	Contingent Element	Coleman-Daviess EHV	

Coleman 1 Outaged		Car	se F
Contingent Element	Monitored Element	Pre-Cont.	Post-Cont.
Coleman-Daviess EHV	Newtonville	1.025	0960
	Skillman	1.026	0.975
	Hancock Co	1.019	0.953
	Coleman 161	1.021	0.953
	National Aluminum	1.022	0.958
Hancock-Coleman EHV	Hancock Co	1.019	0.927
	Daviess Co	1.003	0.948
	Ensor	1.008	0.940
	Newman	166.0	0.935
Reid-Daviess Co	Daviess Co	1.003	0.929
	Newman	166.0	0.916

terminal to Wilson, New Hardin	sburg, and Paradise		
Wilson Outaged		Car	se F
Continvent Element	Monitored Element	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.028	0.924
	Daviess Co	1.008	0.943
	Ensor	1.014	0.936
	Newman	966.0	0.931
Reid-Daviess Co	Daviess Co	1.008	0.958
	Newman	0.996	0.946

<u>3 terminal to Wilson, New Hardin</u>	sburg, and Paradise		
Green 2 Outaged		Cat	se F
Contingent Flement	Monitored Element	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.033	0.926
	Daviess Co	1.014	0.945
	Ensor	1.020	0.938
	Newman	1.002	0.932

3 terminal to Wilson, New Hardin	sburg, and Paradise		
Paradise 1 Outaged		Cas	ie F
Contingent Element	Monitored Element	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.030	0.926
	Daviess Co	1.010	0.947
	Ensor	1.016	0.939
	Newman	0.998	0.934

3 terminal to Wilson, New Hardin	sburg, and Paradise		
Green River 4 Outaged			
		Ca	se F
Contingent Element	Monitored Element	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.031	0.927
	Daviess Co	1.011	0.948
	Ensor	1.019	0.940
	Newman	0.999	0.935

Case C					
Green 1 and 2 and HMPL 1 Outa	ged	M	Dut		
	0	AB Brown to Rei	d EHV		
Contingent Element	Monitored Element	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Reid EHV	Hopkins Co	1.002	0.912		
	Reid 161	1.002	0.877		
	Daviess Co	0.992	0.911		
	Henderson Co 161	0.986	0.885		
	Henderson Co 138	0.980	0.909		
	Newman	0.993	0.897		
Hancock-Coleman EHV	Hopkins Co	1.002	0.952		
	Reid 161	1.002	0.933		
	Hancock Co	1.027	0.781	1.033	0.873
	Daviess Co	0.992	0.814	1.005	0.897
	Ensor	1.007	0.797	1.016	0.887
	Henderson Co 161	0.986	0.932		
	Newman	0.993	0.799	0.993	0.883

APPENDIX C: PRESENT WORTH ANALYSES

PROPOSED WILSON TO HARDINSBURG/PARADISE 161 KV 3-TERMINAL (2008)

		TRANS	TRANS. \$	ISUBSTATION	SUB \$	TRANS.	SUBSTATION		TRANS.	STATION	ANNUAL	PRESENT
		INVESTMENT	INFLATED	INVESTMENT	INFLATED	DEPR	DEPR	INTEREST	O&M	O&M	COST IN	WORTH
×	EAR	2008 \$'s	3.00%	2008 \$'s	3.00%	2.86%	2.22%	5.75%	6.63%	4.30%	NOM. \$	(2008)
,	2008	\$5.800.000	\$5,800,000	\$1,800,000	\$1,800,000	\$0	\$0	\$437,000	\$384,540	\$77,400	\$898,940	\$898,940
. 6	2009	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$437,000	\$384,540	\$77,400	\$1,104,780	\$1,044,709
e	2010	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$425,164	\$373,542	\$75,682	\$1,080,228	\$965,950
4	2011	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$413,328	\$362,544	\$73,963	\$1,055,676	\$892,667
2	2012	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$401,493	\$351,546	\$72,245	\$1,031,124	\$824,498
ø	2013	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$389,657	\$340,549	\$70,527	\$1,006,572	\$761,102
7	2014	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$377,821	\$329,551	\$68,809	\$982,020	\$702,163
∞	2015	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$365,985	\$318,553	\$67,090	\$957,468	\$647,384
6	2016	\$0	\$0	\$0	0\$	\$165,880	\$39,960	\$354,149	\$307,555	\$65,372	\$932,917	\$596,485
10	2017	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$342,314	\$296,557	\$63,654	\$908,365	\$549,208
11	2018	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$330,478	\$285,559	\$61,935	\$883,813	\$505,308
12	2019	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$318,642	\$274,562	\$60,217	\$859,261	\$464,559
13	2020	\$0	\$0	\$0	¢0	\$165,880	\$39,960	\$306,806	\$263,564	\$58,499	\$834,709	\$426,747
14	2021	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$294,970	\$252,566	\$56,781	\$810,157	\$391,674
15	2022	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$283,135	\$241,568	\$55,062	\$785,605	\$359,153
16	2023	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$271,299	\$230,570	\$53,344	\$761,053	\$329,010
17	2024	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$259,463	\$219,572	\$51,626	\$736,501	\$301,084
18	2025	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$247,627	\$208,574	\$49,908	\$711,949	\$275,222
19	2026	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$235,791	\$197,577	\$48,189	\$687,397	\$251,282
20	2027	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$223,956	\$186,579	\$46,471	\$662,845	\$229,132
21	2028	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$212,120	\$175,581	\$44,753	\$638,293	\$208,647
22	2029	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$200,284	\$164,583	\$43,034	\$613,742	\$189,713
23	2030	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$188,448	\$153,585	\$41,316	\$589,190	\$172,221
24	2031	\$0	0\$	\$0	\$0	\$165,880	\$39,960	\$176,612	\$142,587	\$39,598	\$564,638	\$156,071
25	2032	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$164,777	\$131,590	\$37,880	\$540,086	\$141,167
26	2033	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$152,941	\$120,592	\$36,161	\$515,534	\$127,423
27	2034	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$141,105	\$109,594	\$34,443	\$490,982	\$114,756
28	2035	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$129,269	\$98,596	\$32,725	\$466,430	\$103,090
29	2036	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$117,433	\$87,598	\$31,006	\$441,878	\$92,353
30	2037	\$0	\$0	\$0	\$0	\$165,880	\$39,960	\$105,598	\$76,600	\$29,288	\$417,326	\$82,479
30 YF	R.TOTAL	\$5,800,000		\$1,800,000		\$4,810,520	\$1,158,840	\$8,304,665	\$7,071,075	\$1,624,378	\$22,969,479	\$12,804,198
AVER	AGE YE	ARLY COST OV	VER 30 YEARS	0		\$160,351	\$38,628	\$276,822	\$235,703	\$54,146	\$765,649	\$426,807

Timing of upgrades and intalled cost in 2006 dollars:

mile 161 kV Wilson to Hardinsburg/Paradise tap line (2008) - \$4,700,000
 kV transmission line upgrade from new tap point to Paradise (2008) - \$1,100,000
 kV Wilson terminal addition (2008) - \$1,700,000
 kV Paradise terminal upgrade (2008) - \$100,000

Inflation: 3% per year.

Transmission depreciation: 2.86% calculated from an average of 3.24% for poles and 2.47% for lines from Big Rivers 1997 depreciation study. Substation depreciation: 2.22% from Big Rivers 1997 depreciation study. Interest: 5.75% RUS note (cost of debt).

O&M based on 5 year average (2001-2005): 6.63% for transmission and 4.30% for substation. Present Worth calculated with 5.75% discount rate - RUS note.

21 MILE WILSON TO PARADISE (TVA) 161 kV INTERCONNECTION (2008)

-		_							_																									
PRESENT	WORTH	(2008)	\$1,151,720	\$1,356,407	\$1,254,548	\$1,159,756	\$1,071,563	\$989,532	\$913,254	\$842,345	\$776,447	\$715,225	\$658,365	\$605,574	\$556,578	\$511,119	\$468,958	\$429,871	\$393,648	\$360,094	\$329,024	\$300,269	\$273,668	\$249,072	\$226,342	\$205,347	\$185,966	\$168,085	\$151,600	\$136,410	\$122,423	\$109,555	\$16,672,763	\$555,759
ANNUAL	COST IN	NOM. \$	\$1,151,720	\$1,434,400	\$1,402,969	\$1,371,537	\$1,340,106	\$1,308,675	\$1,277,243	\$1,245,812	\$1,214,381	\$1,182,949	\$1,151,518	\$1,120,086	\$1,088,655	\$1,057,224	\$1,025,792	\$994,361	\$962,930	\$931,498	\$900,067	\$868,636	\$837,204	\$805,773	\$774,342	\$742,910	\$711,479	\$680,048	\$648,616	\$617,185	\$585,753	\$554,322	\$29,988,191	\$999,606
STATION	O&M	4.30%	\$51,600	\$51,600	\$50,454	\$49,309	\$48,163	\$47,018	\$45,872	\$44,727	\$43,581	\$42,436	\$41,290	\$40,145	\$38,999	\$37,854	\$36,708	\$35,563	\$34,417	\$33,272	\$32,126	\$30,981	\$29,835	\$28,690	\$27,544	\$26,399	\$25,253	\$24,108	\$22,962	\$21,816	\$20,671	\$19,525	\$1,082,919	\$36,097
TRANS.	0&M	6.63%	\$490,620	\$490,620	\$476,588	\$462,557	\$448,525	\$434,493	\$420,461	\$406,430	\$392,398	\$378,366	\$364,334	\$350,303	\$336,271	\$322,239	\$308,207	\$294,176	\$280,144	\$266,112	\$252,081	\$238,049	\$224,017	\$209,985	\$195,954	\$181,922	\$167,890	\$153,858	\$139,827	\$125,795	\$111,763	\$97,732	\$9,021,717	\$300,724
	INTEREST	5.75%	\$609,500	\$609,500	\$593,246	\$576,992	\$560,738	\$544,484	\$528,230	\$511,975	\$495,721	\$479,467	\$463,213	\$446,959	\$430,705	\$414,451	\$398,197	\$381,943	\$365,689	\$349,434	\$333,180	\$316,926	\$300,672	\$284,418	\$268,164	\$251,910	\$235,656	\$219,402	\$203,148	\$186,893	\$170,639	\$154,385	\$11,685,835	\$389,528
SUBSTATION	DEPR	2.22%	0\$	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$71,040	\$2,060,160	\$68,672
TRANS.	DEPR	2.86%	\$0	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$211,640	\$6,137,560	\$204,585
sub \$	INFLATED	3.00%	\$3,200,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0		
SUBSTATION	INVESTMENT	2008 \$'s	\$3,200,000	\$0	\$0	\$0	\$0	С¢	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	0\$	\$0	\$0	\$0	\$0	\$0	0\$	\$0	\$0	\$0	\$3,200,000	
TRANS. \$	INFLATED	3.00%	\$7,400,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	Q\$	\$0	\$0	\$0	\$0	\$0	0\$	\$0	\$0		ER 30 YEARS
TRANS.	INVESTMENT	2008 \$'s	\$7,400,000	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$	\$0	\$0	\$0	\$0	0\$	\$0	\$7,400,000	VLY COST OV
		EAR	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	TOTAL	AGE YEA
		۶	-	2	e	4	S	9	2	8	6	9	11	12	13	14	15	16	17	8	19	20	21	22	23	24	25	26	27	28	29	g	30 YF	AVER

Timing of upgrades and intalled cost in 2006 dollars: Wilson 161 kV line terminal (2008) - \$1,200,000 (Based on Burns and McDonnell estimate for a Wilson 161 kV line terminal).

Paradise 161 kV line terminal (2008) - \$2,000,000 21 mile Wilson to Paradise circuit (2008) - \$7,400,000

Inflation: 3% per year.

Transmission depreciation: 2.86% calculated from an average of 3.24% for poles and 2.47% for lines from Big Rivers 1997 depreciation study. Substation depreciation: 2.22% from Big Rivers 1997 depreciation study.

Interest: 5.75% RUS note (cost of debt).

O&M based on 5 year average (2001-2005): 6.63% for transmission and 4.30% for substation (not including Paradise terminal). Present Worth calculated with 5.75% discount rate - RUS note.

APPENDIX D: SHORT CIRCUIT STUDY RESULTS

Short Circuit Study Results 2/5/2007 CSB

FAULT CURRENT (AMPS) AT EACH FAULT LOCATION

Fault Location	ECAR Model W Three Phase	ithout Improvements Single Line-to-Ground	ECAR Model v Three Phase	itth Improvements Single:Line-to-Ground
Wilson 345 kV	11,882	12,196	12,565	12,763
Coleman EHV 345 kV	10,233	10,190	10,318	10,249
Daviess Co. EHV 345 kV	13,070	12,188	13,360	12,374
Reid EHV 345 kV	9,432	9,961	9,645	10,128
Wilson 161 kV	20,096	22,359	24,212	26,217
Coleman EHV 161 kV	23,639	24,621	23,640	24,624
Reid 161 kV	24,907	29,386	25,114	29,580
Hancock County 161 kV	17,775	16,035	17,779	16,039
National Aluminum 161 kV	16,822	15,722	16,805	15,712
Daviess County 161 kV	7,833	6,603	7,850	6,611

APPENDIX E: SENSITIVITY STUDY RESULTS

Base						
			Car	se E	Car	se F
turnet Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contingent Exement			, 0, -	000/	C70/2	7080
Hancock-Coleman EHV	Reid-Daviess Co	762	04%	90/06	0/ /0	2/0/
LIALLUCK-CULTURAL LIA		ļ	2.01	010/	7676	01%
Daid Darrace Co	Hancock-Coleman EHV	797	50%0	0/.1/	0/07	0/7/
Nein-Daviess CO					7029	%00
Witcon_Perd FHV	Reid-Daviess Co	297			0/ /0	
A TIT DIANT HOUT AA		5			200%	92%
Witcon_Davages FHV	Wilson-Green Kuver	0,50			0//7	
A TIT SCATADO TOOT AA					67%	100%
Wilson-Daviess EHV	Reid-Daviess Co	607			01.10	2.1.2.1

Base Coleman 1 ()

oleman 1 Outaged			Ca	se E	Cas	ie F
	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contingent Element	Doid Darriers Co.	1 265	60%	98%	74%	98%
Hancock-Coleman EHV	reiu-Davies Cu	204			1010	020/
Deid Darrier Co	Hancock-Coleman EHV	265	30%	96%	21%0	0/.04
Nein-Daviess CU		002			769/2	04%
Paid-Daviese Co	Wilson-Reid EHV	840			0/0/	
INVIA-DUVIDO		375	2007	000%	740V	110%
Wilson-Daviess EHV	Reid-Daviess Co	C07	00.70	0/ 1/2	n/ + /	
A TROOT OF TROOT A		220			58%	92%
Wilcon-Daviess FHV	Wilson-Green Kuver	NCC			2000	
		376			70VL	107%
Witcon-Reid FHV	Reid-Daviess Co	C07			n/ 1 /	
A TYPE PRANE PROPERTY		375			74%	97%
Coleman-Daviess EHV	Reid-Daviess Co	C07				

	se F	Post-Cont.	1000	2070	0.00	0/72	01%		110%	0/044	010%	2/1/2
	Ca	Pre-Cont.	1007	08%0	1070	70/0	7020	0/16	7009	00/0	7007	00 / 0
	se E	Post-Cont.		99%	1000	97.76						
	Cas	Pre-Cont.		51%		39%						
		Rating		265		265	001	84C	1.0	697		202
		Monitored Element		Reid-Daviess Co		Hancock-Coleman EHV		Wilson-Reid EHV		Reid-Daviess Co		Reid-Daviess Co
Base	Wilson Outaged	A	Contingent Exement	Transalt Colonian EHV	Figure	Daid Darrace Co	Reiu-Daviess CU	Bace	TUBO	Wilson Daid EUV	A TITT DIDNI-HOSH M	Wilcon-Davies EHV

Base						
Green 2 Outaged			Car	se E	Car	еF
Contingent Riement	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
	Daid_Darress Co	265	42%	%66	58%	98%
Hancock-Coleman En V				1010	1000	010/
Reid-Daviess Co	Hancock-Coleman EHV	265	46%	91%	52%0	2170

Base

Paradise 1 Outaged			Ca	se E	Ca	ie F
Continuent Rlement	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Itoncoole Coleman RHV	Reid-Daviess Co	265	54%	98%	68%	98%
	Unancoch-Coleman FHV	265	36%	91%	25%	92%
Keig-Daviess CO	LIGHTODE CONTINUES				1000	/000
Reid-Daviess Co	Wilson-Reid EHV	598			11%0	92%0
AD SOATA DIANT					2007	10202
Wilson-Reid EHV	Reid-Daviess Co	262			00./0	0/ 0/1
TILL D. Son DITL	Wilcon Green River	530			62%	95%
WIISON-DAVIESS ETLY	TATT TATTO TO TOST A				1007	10201
Wilson-Daviess EHV	Reid-Daviess Co	265			00%0	102/0

Base						
Coleman 1 and 2 Outaged			Ca	se E	Ca	se F
Contingent Rlement	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Hancock-Coleman HHV	Reid-Daviess Co	265	69%	%66	83%	98%
Daid Darrece Co	Hancock-Coleman EHV	265	23%	101%	14%	100%
Daid-Daviese Co	Wilson-Reid EHV	598			%6L	98%
Witcon Doid EUV	Reid-Daviess Co	265			83%	117%
	Daid-Darrace Co	245	%69	118%	83%	124%
Coleman-Daviess EHV	INCIN-TORATOR	22.4		10101	C10/	1100/
Coleman-Daviess EHV	Coleman-Newtonville	265	58%	121%	0/10	0/011
Wilcon-Daviess EHV	Reid-Daviess Co	265	69%	101%	83%	121%
Wilcon-Duvies HHV	Wilson-Green River	530			56%	92%
VILLAVIOU VANDO PALA	Reid-Daviess Co	265			83%	91%
COLEMAN-INEW IOILVILLE	ACCOUNT PRAVIL					

No Smelter						
			Cas	ie E	Ca	se F
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Reid EHV	Reid-Daviess Co	265	53%	101%	62%	98%
Wilson-Daviess EHV	Wilson-Green River	530	62%	96%	72%	103%
Wilson-Daviess EHV	Reid-Daviess Co	265			62%	93%
Coleman-Daviess EHV	Wilson-Reid EHV	598			81%	90%
Coleman 161-Coleman EHV	Coleman 161-Coleman EHV	265	55%	112%	52%	105%
Hancock-Coleman EHV	Reid-Daviess Co	265	53%	92%	62%	93%
Hardin-Daviess EHV	Coleman-Newtonville	265	49%	102%	58%	107%
Hardin-Daviess EHV	Wilson-Green River	530			72%	91%
Reid-Hopkins Co	Wilson-Reid EHV	598			81%	91%
Reid-Daviess Co	Wilson-Reid EHV	598			81%	97%
Base	Hardin-Daviess EHV	600			112%	112%
Wilson-Green River	Hardin-Daviess EHV	600			112%	127%

No Smelter						
Coleman 1 Outaged			Ca	se E	Cas	ie H
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Reid EHV	Reid-Daviess Co	265	58%	107%	68%	105%
Wilson-Daviess EHV	Wilson-Green River	530	59%	94%	70%	102%
Wilson-Daviess FHV	Reid-Daviess Co	265	58%	96%	68%	101%
Hancock-Coleman EHV	Reid-Daviess Co	265	58%	92%	68%	93%
Caldwell-Barklev	Wilson-Reid EHV	598			84%	92%
Base	Hardin-Daviess EHV	600			106%	106%

Green KIVET 4 Outageu Contingent Element						
Contingent Element			Cas	e E	Car	se F
	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Reid EHV	Reid-Daviess Co	265	52%	103%	62%	100%
Witcon-Dardees RHV	Wilson-Green River	530	%0 <i>L</i>	101%	80%	110%
Wilcon-Darriess RHV G	Treen River 161/138	100	57%	92%	64%	%66
Wilcon-Daviess EHV	Reid-Daviess Co	265			62%	93%
Caldwell-Rarkley	Wilson-Reid EHV	598			85%	93%
Column Duriese RHV	Wilson-Reid EHV	598			85%	95%
Coleman-Daviess Edity	man 161-Coleman EHV	265	56%	115%	53%	107%
	Paid-Daviese Co	265	52%	92%	62%	93%
	Tardin-Daviese FHV	009			109%	125%
	"oleman-Newtonville	265	46%	97%	56%	104%
Hatuut-Daytess EHV/	Wilson-Green River	530	20%	94%	80%	966
natum-Daviess Litty	Hardin-Daviess EHV	600			109%	109%

No Smelter						
Paradise 1 Outaged			Cas	ie E	Cas	e F
Continuent Clement	Monitored Flement	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Reid FHV	Reid-Daviess Co	265	53%	101%	63%	102%
Wilson-Daviese FHV	Wilson-Green River	530	63%	97%	74%	106%
W ISUH-DAVIES EUV	Reid-Daviess Co	265			63%	96%
WINDL-DAVISS DI V	Wilson-Reid EHV	598			85%	100%
Cold-off Doubles	Wilson-Reid FHV	598			85%	93%
	Witcon-Daid FUN	508			85%	93%
Coleman-Daviess Eriv		275	2607	1150/	530%	108%
Coleman 161-Coleman EHV	Coleman 161-Coleman Erry	C07	0/00	11.7/0	0/00	2007
Hancock-Coleman EHV	Reid-Daviess Co	265	53%	92%	03%0	93%0
Hardin-Daviess EHV	Wilson-Green River	530			74%	93%
Hardin-Daviess EHV	Coleman-Newtonville	265	47%	97%		
Shillman-Meade Co	New Hardinsburg 161/138	224	61%	%66	63%	105%
Base	Hardin-Daviess EHV	600			109%	109%

			Cas	ie E	Car	se F
	Monitored Rlement	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contingent Element	MULTICAL CONTRACTOR	0	107	7030	84%	119%
Wilson-Green River	Wilson-3 Terminal	C02	00%0	20/0		1010/
	Daradice-3 Terminal	265			10%0	0/101
Wilson-Ureen Kuver		296	51%	103%	61%	101%
Wilson-Reid EHV	Keid-Daviess CO	50.4		10-0		
1111/	Witcon-3 Terminal	265	66%	95%		
WIISON-DAVIESS ELL V		27.0	1023	1120/	24%	110%
Colomon 161-Coloman EHV	Coleman 161-Coleman EHV	C07	0/./C	110/0		
CONCILIANT TOT -CONCILIANT		265	51%	92%	61%	93%0
Hancock-Coleman EHV	Keid-Daviess Cu	504			0 40/	1150/
	Wilson_3 Terminal	265	66%	104%	84%	0/011
Hardm-Daviess EHV	THOSE A	170	1023	7000	76%	103%
Hardin-Daviess EHV	Paradise-3 Terminal	C07	0//C	0/70	2001	020/
	Coleman-Newtonville	265			0%7.0	9/.04
Hardm-Daviess EHV		202			92%	92%
Base	Wilson-Reid EHV	040			10401	10/0/
Dara	Hardin-Daviess EHV	600			104%	104/0

No Smelter with 3 terminal to Wilso	on, New Hardinsburg, and P:	aradise				
Coleman 1 Outaged			Ca	se E	Cas	ie F
Ĩ	Monitored Flement	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contingent Element	MULTION CONTRACTOR	345	61%	92%	80%	114%
Wilson-Green River	WIISON-5 LEMMA	0.4			%09	94%
Wilson-Green River	Paradise-3 Terminal	262			10-10	/0001
ATT TO TO TO TANK	Deid-Daviess Co	265	56%	109%	67%	10/%
Wilson-Keid EHV	A CONTACTOR	3.70	6102	020	80%	113%
Wilson-Daviess EHV	Wilson-3 Terminal	C07	0/ 10		1011	/000
The Device FUV	Reid-Daviess Co	265			0//0	0/76
WIISON-LUAVICSS EALV		375	56%	92%	67%	93%
Hancock-Coleman EHV	Keid-Daviess CO	-07		020/	200%	110%
Uardin-Daviess FHV	Wilson-3 Terminal	265	01/0	0/02	2/00	0.040
	Daradice-3 Terminal	265			69%	95%
Hardin-Daviess EHV	THINK COSTINE	500			95%	95%
Base	Wilson-Keid EHV	020			000/	%80
Rase	Hardin-Daviess EHV	600			201	

No Smelter with 3 terminal to Wil	son, New Hardmsburg, and Fa	radise				
Green River 4 Outaged						
			Cas	ie E	Ca	se F
Contingent Flement	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Green River	Wilson-3 Terminal	265	56%	97%	78%	118%
Wilson-Green River	Paradise-3 Terminal	265			70%	%66
Wilson-Reid EHV	Reid-Daviess Co	265	50%	104%	61%	102%
Reid-Daviess Co	Wilson-Reid EHV	598			95%	111%
Coleman 161-Coleman EHV	Coleman 161-Coleman EHV	265	58%	120%	55%	112%
Hancock-Coleman EHV	Reid-Daviess Co	265	50%	92%	61%	93%
Hardin-Daviess EHV	Coleman-Newtonville	265			50%	92%
Hardin-Daviess EHV	Wilson-3 Terminal	265	59%	95%	78%	109%
Hardin-Daviess EHV	Paradise-3 Terminal	265			70%	97%
Base	Wilson-Reid EHV	598			95%	95%
Base	Hardin-Daviess EHV	600			102%	102%

No Smelter with 3 terminal to Wils	son, New Hardinsburg, and Pa	radise				
Paradise 1 Outaged			Ca	se E	Ca	se F
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Base	Wilson-3 Terminal	265	111%	111%	132%	132%
Base	Paradise-3 Terminal	265	120%	120%	141%	141%
Base	Wilson-Reid EHV	598			102%	102%
Wilson-Green River	Wilson-3 Terminal	265	111%	139%	132%	164%
Wilson-Green River	Paradise-3 Terminal	265	120%	140%	141%	164%
Wilson-Reid EHV	Reid-Daviess Co	265	50%	106%	62%	105%
Wilson-Daviess EHV	Wilson-3 Terminal	265	111%	133%	132%	159%
Wilson-Daviess EHV	Paradise-3 Terminal	265	120%	131%	141%	153%
Coleman-Daviess EHV	Wilson-Reid EHV	598			102%	113%
Coleman 161-Coleman EHV	Coleman 161-Coleman EHV	265	60%	124%	57%	116%
Hancock-Coleman EHV	Reid-Daviess Co	265	50%	93%		
Hardin-Daviess EHV	Wilson-3 Terminal	265	111%	144%	132%	162%
Hardin-Daviess EHV	Paradise-3 Terminal	265	120%	150%	141%	167%

Base (MW loads ratioed at 60%; 1	Mvar loads ratioed at 50%)					
			Cas	se G	Cas	еH
Contingent Floment	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
CONTINUES IN TRANSPORT					2000	1000
Bace	Hardin-Daviess EHV	600			90%06	20%0
Dash					000	10/00/2
Wilcon-Green River	Hardin-Daviess EHV	600			9/.//	100/0
TO THE TRACTO TIONT M					7007	20%
Wilson-Daviess EHV	Reid-Daviess Co	C07			0/ /0	0/02

Coleman 1 Outaged			Ca	se G	Cas	e H
Contingent Flement	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Ulticon Darbace EHV	Reid-Daviess Co	265	56%	95%	66%	102%
A TICL COLLAD THOUT A	TT-410 Dougon EUN	YUU			84%	94%
Wilson-Green River	Hardin-Daviess Erry	200			201	0.707
Wilson-Reid EHV	Reid-Daviess Co	265			00%0	20%0
A ATAT ANALY WORT AN	TITLE Darborn DUV	600			84%	102%
Coleman-Daviess EHV	Harum-Daviess Erry	-				

200

sase (MW loads ratioed at 90%; N Vilson Outaged	AVar Inaus Lativeu at 20 / 9)		č	ζ	200	н
			CH:	500	57	
Contineent Floment	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contingent Element					1000	1000
Daradica Many Hardinchurg	Wilson-Reid EHV	598	No Issues		89%	90%0
L'allauise-ivew manuaume					2007	7000
Wilcon Daid EHV	Reid-Daviess Co	265			00.20	77.70
A TTOT DIONI-HOGH AA		000			000	102%
Reid-Daviess	Wilson-Reid EHV	845			07/0	N/ COT

Base (MW loads ratioed at 60%;	Mvar loads ratioed at 50%)					
Green 2 Outaged			Car	se G	Cas	e H
Contingent Flement	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Contingent bitmen	Hordin Daviace FHV	600	No Issues		83%	92%
MIISON-CIECH KUVEL	A TIT SCALAD T- THU HILI					

والمتعاد المتعادي والمتعالم والمتعالية والمتعالية والمتعادية والمتعادية والمتعادية والمتعادي والمتعادية والمتع						
Base (MW loads ratioed at 60%; N	Avar loads ratioed at 50%)					
Paradise 1 Outaged						
			Cas	se G	Cas	ie H
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Green River	Hardin-Daviess EHV	600	No Issues		86%	97%
Wilson-Reid EHV	Reid-Daviess Co	265			61%	91%
Wilson-Daviess EHV	Reid-Daviess Co	265			61%	94%
Coleman-Daviess EHV	Hardin-Daviess EHV	600			86%	91%

Base (MW loads ratioed at 60%;	Mvar loads ratioed at 50%)					
Coleman 1 and 2 Outaged						
			Ca	se G	Cas	ie H
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Daviess EHV	Reid-Daviess Co	265	63%	104%	73%	111%
Coleman-Daviess EHV	Reid-Daviess Co	265	63%	100%	73%	105%
Coleman 161-Coleman EHV	Coleman 161-Coleman EHV	265	20%	93%	45%	93%
Wilson-Reid EHV	Reid-Daviess Co	265			73%	105%
Coleman-Daviess EHV	Hardin-Daviess	600			%6L	91%

lter (MW loads ratioed at	60%; Mvar loads ratioed at 50	(%)				
			Ca	se G	Ca	se H
ngent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
on-Reid EHV	Reid-Daviess Co	265	50%	108%		
1-Daviess EHV	Wilson-Green River	530	55%	9%16	%65	92%
n-Daviess EHV	Reid-Daviess Co	265	50%	96%		
161-Coleman EHV	Coleman 161-Coleman EHV	265	49%	91%		
an-Daviess EHV	Coleman-Newtonville	265	70%	95%	75%	101%
in-Daviess EHV	Coleman-Newtonville	265	70%	136%	75%	129%
son-Francisco	Coleman-Newtonville	265			75%	100%
Base	Hardin-Daviess EHV	600			122%	122%
on-Green River	Hardin-Daviess EHV	600			122%	134%
Appendix E: Line Loadings

Coleman 1 Outaged						
			Car	se G	Cas	ie H
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Reid EHV	Reid-Daviess Co	265	56%	114%	61%	95%
Wilson-Daviess EHV	Wilson-Green River	530	52%	96%	58%	91%
Wilson-Daviess EHV	Reid-Daviess Co	265	56%	103%	61%	96%
Wilson-Daviess EHV	Green River 161/138	100	43%	91%		
Wilson-Green River	Hardin-Daviess EHV	600			116%	127%
Reid-Daviess Co	Wilson-Reid EHV	598			76%	91%
Hardin-Daviess EHV	Coleman-Newtonville	265	53%	113%	57%	108%
Reid 345/161	Reid 345/161	336	54%	94%		
Base	Hardin-Daviess EHV	600			116%	116%

No Smelter (MW loads ratioed at	60%; Mvar loads ratioed at 50	(%)				
Green kiver 4 Uutaged			Ca	se G	Car	se H
Contingent Element	Monitored Element	Rating	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Wilson-Reid EHV	Reid-Daviess Co	265	50%	109%		
Wilson-Daviess EHV	Wilson-Green River	530	63%	103%	68%	%66
Wilson-Daviess EHV	Reid-Daviess Co	265	50%	93%		
Wilson-Daviess EHV	Green River 161/138	100	%09	104%	64%	100%
Wilson-Green River	Hardin-Daviess EHV	600			119%	133%
Reid-Daviess Co	Wilson-Reid EHV	598			27%	91%
Coleman 161-Coleman EHV	Coleman 161-Coleman EHV	265	45%	92%		
Coleman-Newtonville	Hardin-Daviess EHV	600			%611	128%
Coleman-Daviess EHV	Coleman-Newtonville	265	67%	94%	73%	101%
Hancock-Coleman EHV	Reid-Daviess Co	265				
Hardin-Daviess EHV	Coleman-Newtonville	265	%19	131%	73%	126%
Hardin-Daviess EHV	Wilson-Green River	530	63%	93%		
Gibson-Francisco	Coleman-Newtonville	265			73%	98%
Reid 345/161	Reid 345/161	336	55%	95%		
Race	Hardin-Daviess EHV	600			%611	%611

Appendix B: Voltages

Wilson and Green 2 Unit Outage									
		Ü	ase A	Ű	se B	Cas	e C	Car	e D
Contingent Flement	Monitored Facility	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Unncock-Coleman FHV	Hancock Co	1.024	0.890	1.031	0.920	1.032	0.919	1.029	0.917
	Daviece Co	1.002	0.912	1.012	0.939	1.013	0.939	1.010	0.936
	Encr	1 010	0 903	1.018	0.933	1.019	0.932	1.016	0.929
	Neuron	0.990	0.899	1.000	0.926	1.001	0.926	0.998	0.923
Boid Davious Co	Daviese Co	1 002	0.951						
NGIU-DAVIESS CO	Newman	0.990	0.938					0.998	0.948

Rase with CSN Load Addition									
		ü	ise A	C	ise B	Cas	e C	Cas	ie D
Contingent Element	Monitored Facility	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Hancock-Coleman FHV	Case Diverged							No Issues	
Deid Druges Co	Daviess Co	1.006	0.944	1.008	0.952	1.010	0.957		
NGIU-DUAYICON CO	N N	0000	0 031	900 0	0 939	866.0	0.944		
	INEWINAII	0.224	100.0	0///0	1010				

ŗ

No Century							
		C	ise A	C	se B	Cas	د د
Contingent Element	Monitored Facility	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Hancock-Coleman FHV	Hancock Co	1 1.069	0.934	1.069	0.939	1.066	0.938
	Daviess Co	1.039	0.956	1.040	0.960	1.038	0.960
	Fusor	1.048	0.947	1.048	0.952	1.046	0.951
	Newman	1.027	0.943	1.028	0.948	1.027	0.947

No Smelters with New Hardinsbu	rg-Paradise Looped through V	Wilson and CSN Lo	oad (Hancock Servi	ce)			
) ,	Ca	se A	Ca	se B	Ca	e C
Contingent Element	Monitored Facility	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.	Pre-Cont.	Post-Cont.
Hancock-Coleman EHV	Hancock Co	1.065	0.784	1.064	0.793	1.062	0.792
	CSN	1.064	0.783	1.063	0.793	1.061	0.791
	Daviess Co	1.049	0.861	1.047	0.869	1.046	0.868
	Ensor	1.051	0.822	1.049	0.831	1.048	0.830
	Newman	1.038	0.847	1.036	0.855	i.035	0.854

EXHIBIT B

The EPRI Overhead Electric Transmission Line Siting Methodology Results

For

Big Rivers Electric Corporation's

Line 19 F - Wilson to Line 7B Tap 161 kV Transmission Line

May 30th, 2007

Table of Contents

	Ŧ
2. Macro Corridors:	4
3. Alternative Corridors:	б
3.1. Built Environment Corridor:	1
3.2. Natural Environment Corridor:	2
3.3. Engineering Concerns Corridor:	3
3.4. Simple Average Corridor:	4
4. Alternative Routes:	5
5. Alternative Route Evaluation	6
5.1. Relative Cost Evaluation	б
5.2. Raw Statistics and Normalized Statistics	7
5.3. Alternative Route Evaluation Matrix	9
5.3.1. Emphasis on Built Environment	9
5.3.2. Emphasis on Engineering Concerns	0
5.3.3. Emphasis on Natural Environment	1
5.3.4. Equal Consideration of Categories (Simple Average)	2
5.4. Top Routes:	3
5.4.1. Route B:	4
5.4.2. Route C:	4
5.5. Expert Judgment:	5
6. Conclusion:	6

List of Figures

List of Tables

Table 3 - Project Specific Criteria for each Perspective of the Alternative Corridor Analysis 8
Table 5.1 – Cost Worksheet
Table 5.2a - Raw Statistics and Normalized Statistics 17
Table 5.3.1 - Alternative Route Evaluation Matrix with Emphasis on the Built Environment 19
Table 5.3.2 - Alternative Route Evaluation Matrix with Emphasis on Engineering Concerns 20
Table 5.3.3 - Alternative Route Evaluation Matrix with Emphasis on the Natural Environment 21
Table 5.3.4 - Alternative Route Evaluation Matrix with all Perspectives considered equal 22
Table 5.5 – Expert Judgment Matrix

1. Introduction:

The EPRI/GTC Overhead Electric Transmission Line Siting Methodology was used for this project. The suitability model developed during the Kentucky workshop held on February 28th, 2006 was used to identify Alternative Corridors. This document reports the results of this process. Any departure from the methodology or weights and values is documented, and the reason for deviation is explained in this report. Details concerning the siting methodology can be found in the document titled "EPRI – GTC Project Report: Standardized Methodology for Siting Overhead Electric Transmission Lines". Details regarding the criteria from the workshop to calibrate the model for use in Kentucky can be found in the document titled "Kentucky Transmission Line Siting Model – Project Report".

2. Macro Corridors:

The first step in this methodology is Macro Corridor creation, which defines an area for more detailed study. Typically for this stage, the best available land cover dataset based on 30m LandSat imagery is used (see Figure 2a). In the case of this area, the best available is from 1992. In addition to the land cover dataset, existing electric transmission corridors acquired from the Kentucky Public Service Commission, the road network, and high slope areas (greater or equal to 30 degrees) derived from 7.5 minute USGS digital elevation models are incorporated as well.

The Macro Corridor analysis produced a study area approximately 51 square miles. After evaluating the Macro Corridor results, it was determined that areas south and west of the Macro Corridors should be included in the study area due to a co-location opportunity with existing transmission line corridors (see Figure 2b). This increased the study area to approximately 64 square miles.

Figure 2a – Study Area

Figure 2b- Study Area with Macro Corridors

3. Alternative Corridors:

Once the Macro Corridors were identified, detailed datasets were developed for siting purposes. The primary source for project specific data was aerial photography from the National Agriculture Imagery Program (NAIP), dated 2004 (see Figure 3a as an example of some of the data collected). Weight and values used to build the suitability models were assigned based on the results of the Kentucky Transmission Line Siting Model workshop.

The only deviation from the criteria set by the Kentucky Transmission Line Siting Model was the modeling of noncontiguous sections of transmission line easements. These easements had been purchased for a past transmission line project that didn't come to fruition. The utilized easements where given the same weight as the opportunity to parallel an exiting transmission line in the Linear Infrastructure layer in the Engineering model.

The chart on the next page (Table 3) shows the criteria that were present in the study area and their adjusted weights and values. When some criteria are not present in a study area, the weights and values must be adjusted. Weights for layers (green items) that are present in the study area must equal 100%. Each feature (yellow items) in each layer must have at least one feature that equals 1 and one that equals 9. This gives statistic soundness to the suitability models that are derived from adding these perspectives together and ensures that some layers and features hold the intensity within the suitability models that the stakeholders intended. Layers and features not present in this study area are shown in gray. Figures 3b, 3c, 3d, & 3e illustrate the suitability models for each perspective that are used to create the Alternative Corridors.

Figure 3a - Example of some of the data used to create the suitability models

Enaineerina		Natural Environment			Built E	Environment	
			102-11-0			Proximity to Eligible Historic	
Linear Infrastructure	86.2%	Floodplain	-40%	Proximity to Buildings	17.5%	and Archeological Sites	32,2%
Parallel Existing Transmission Lines	-	Background	1	Background	-	Background	•
Rebuild Existing Transmission Lines (good)	2.2	100 Year Floodplain	6	900-1200	3.4	900-1200	4.6
Background	4.4	Streams/Wetlands	20/20/5	600-900	5.7	600-900	7.9
Paraliei Interstates ROW	4.7	Background	-	300-600	8	0-300	8.6
Parallel Roads ROW	5.4	Streams < 5cts	6.4	0-300	6	300-600	6
Parallel Ploelines	5.6	Rivers/Streams > 5cfs	5.7	Building Density	877.8	AVOIDANCE AREAS	
Future DOT Plans	5.6	Wettands + 30' Buffer	6	0 - 0.05 Buildings/Acre	-	Listed Archaeology Sites & Dist.	
Parallel Railway ROW	6.1	Outstanding State Resource Waters	8	0.05 - 0.2 Buildings/Acre	3.1	Listed NRHP Districts and Buildings	
Road ROW	7.2	Public Lands	4025245	0.2 - 1 Buildings/Acre	5.9	City and County Parks	
Rebuild Existing Transmission Lines (bad)	8.6	Background	-	1 - 4 Buildings/Acre	6	Day Care Parcels	
Scenic Highways ROW	ິດ	WMA - Not State Owned	6	> 4 Buildings/Acre	6	Cemetery Parcel s	
Slope	969.94	USFS (prodamation area)	6.2	Proposed Development	OX12-2	School Parcels (K-12)	
Slope 0-15%	-	Other Conservation Land	7.8	Background	L 1	Church Parcels	
Slope 15-30%	4	USFS (actually owned)	8	Proposed Development	6		
Slope 30-40%	6.7	State Owned Conservation Land	6	Spannable Lakes and Ponds	4.2%		
Slope >40%	6	Land Cover	VERE!	Background	Ŧ		
AVOIDANCE AREAS		Developed Land	-	Spannable Lakes and Ponds	6		
Non-Spannable Waterbodies		Agriculture	4.6	Land Use	37.49%		
Mines and Quarries (Active)		Forests	8	Commercial/Industrial	-		
Buildings		Wildlife Habitat	26.74%	Agriculture (crops)	3.5		
Alrports		Background		Agriculture (other livestock)	4.6		
Military Facilities		Species of Concern Habitat	6	Silviculture	9		
Center Pivot Irrigation		AVOIDANCE AREAS	compact	Other (forest)	6.7		
		EPA Superfund Sites	100000	Agriculture (horse farms)	8		
		State and National Parks	51,0204	Residential	6		
		USFS Wildemess Area	1000107			1	
		Wild/Scenic Rivers	10000				
		Wildlife Refuge	N/2047				
		State Nature Preserves Destancial Cetteral 11 added	- 000				
							1

Table 3 - Project Specific Criteria for each Perspective of the Alternative Corridor Analysis

Figure 3b – Built Environment Perspective Suitability Model

Figure 3c – Natural Environment Perspective Suitability Model

Figure 3d – Engineering Consideration Perspective Suitability Model

Figure 3e- Engineering Consideration Perspective Suitability Model

3.1. Built Environment Corridor:

The Built Environment Corridor leaves the Wilson Plant area in a southeasterly direction heading in almost a direct route to the destination area. Along the way, the corridor crosses mainly forested area (some of which is in the Peabody Wildlife Management Area) and some agricultural areas. It utilizes the segments of unutilized transmission line easements, while also paralleling a section of 69 kV transmission line for approximately 2 miles and an east/west corridor with two 138 kV transmission lines for approximately 2 miles. This corridor minimally impacts developed areas by avoiding the more dense areas near Centertown and McHenry. It only comes in close proximity to developed areas at State Route 69, State Route 85, State Route 1245, and US Highway 62 crossings. The general length of this corridor is approximately 13 miles. See Figure 3.1 below.

Figure 3.1 – Built Environmental Alternative Corridor

3.2. Natural Environment Corridor:

The Natural Environment Corridor leaves the Wilson Plant area in a more easterly direction than the Built Environment Corridor, minimizing impact to a stream system and causing it to take a less direct path at the beginning. This corridor passes through more agriculture areas and rural residential areas in order to minimize impacts to forested areas and some of the Peabody Wildlife Management Area. After approximately 5 miles this corridor begins to mimic the Built Environment Corridor utilizing the 69 kV parallel opportunity and most of the unutilized transmission line easement. However the natural model uses the 69 kV transmission line for approximately 1 mile longer than the Built Environment Corridor is approximately 13.5 miles. See Figure 3.2 below.

Figure 3.2 - Natural Environmental Alternative Corridor

3.3. Engineering Concerns Corridor:

The Engineering Corridor takes two main paths. One takes a path similar to the Built Environment Corridor; utilizing the 69 kV parallel opportunities and the unutilized transmission line easement, mimicking the Natural Environment Corridor for approximately the last 4 miles. The general length of this path of the corridor is approximately 13 miles.

The other takes a less direct route by heading south out of the Wilson Plant along an existing 161 kV transmission line near the Green River for approximately 5.5 miles, which brings it close to an archeology site that is on the National Register. It then travels cross county for approximately 0.5 miles, until reaching an existing east/west transmission corridor, which it utilizes for approximately 6.0 miles. Finally, it rejoins the other path. Both travel to the destination area by using a path similar to the Natural Environment Corridor. The general length of this path of the corridor is approximately 17 miles.

In addition to the two distinct paths, a narrow crossover path also developed between the two paths. This path utilizes a 138 kV transmission line corridor with runs in a northeasterly direction. The general length of this branch of the corridor is approximately 18 miles. See Figure 3.3 below.

Figure 3.3 – Engineering Consideration Alternative Corridor

3.4. Simple Average Corridor:

The Average Corridor most mimics the Built Environment Corridor for approximately the first 8.5 miles. After which, it takes similar paths to both the Built Environment Corridor and the Natural Environment Corridor for the last few miles while also utilizing more of the east/west 138 kV corridor than any of the other corridors. See Figure 3.4 below.

Figure 3.4 – Simple Average Alternative Corridor

4. Alternative Routes:

The siting team analyzed the alternative corridors and identified alternative routes within the alternative corridors. These alternate routes were compared using the Alternative Route Evaluation Matrix.

An additional route which paralleled a 34.5 kV transmission line outside the alternative corridors in the northern portion of the study area was also identified by the routing team to ensure that all reasonable co-location opportunities were evaluated.

Eight alternative routes were identified: A, B, C, D, E, F, G, and H (see Figure 4 below)

Figure 4 – Alternative Routes

5. Alternative Route Evaluation

Statistics are collected for each route. The statistics are divided into three categories similar to the Alternative Corridor perspectives (Built Environment, Natural Environment, and Engineering Considerations). The statistics are normalized (see Table 5.2a) and weights are applied that the internal siting team determined. Likewise, emphasis is applied to each of the perspective (see Tables 5.3.1, 5.3.2, 5.3.3, and 5.3.4).

5.1. Relative Cost Evaluation

Assumptions Used for Relative Cost Evaluation:

- Cost per mile for new single circuit construction = \$300,000
- Additional Angle Cost
 - $o \quad 0 7 \text{deg} = \$2,000$
 - o 7 25 deg = \$3,000
 - $o \ 25 40 \text{deg} = \$9,000$
 - $o \quad 40 + deg = $15,000$
- Clearing Cost per Acre of Forest = \$3,800
- Land Cost = 90% of the Fair Market Value (FairCash) from the Ohio County Tax Digest. Some parcels did not contain value information. For tracts that were abandoned coal fields, \$1,000 per acre was used. For tracts that appeared to be primarily agriculture in use, \$3,000 per acre was used.

Table 5.1 shows the break down of each costs considered for each Alternative Routes.

	ROUTEA	ROUTE B	ROUTEC	ROUTE D	ROUTEE	ROUTE F	ROUTEG	ROUTE H
LENGTH	15.5	13 8	13.2	16.8	16.5	14.8	14.1	17.7
Cost per Single Circuit Length	\$4,650,000	\$4,140,000	\$3,960,000	\$5,040,000	\$4,950,000	\$4,440,000	\$4,230,000	\$5,310,000
Angle Cost	\$170,000	\$111,000	\$113,000	\$115,000	\$195,000	\$136,000	\$138,000	\$110,000
Forested Acres	70.5	69.0	82.9	90 2	68.0	66 5	80.4	87.8
Clearing Cost	\$267,900	\$262,200	\$315,020	\$342,760	\$258,400	\$252,700	\$305,520	\$333,640
FMV	\$213,236	\$203,848	\$191,161	\$256,211	\$218,887	\$209,500	\$196,812	\$261,863
90% FMV	\$191,912	\$183,463	\$172,045	\$230,590	\$196,998	\$188,550	\$177,131	\$235,677
Total	\$5,279,812	\$4,696,663	\$4,560,065	\$5,728,350	\$5,600,398	\$5,017,250	\$4,850,651	\$5,989,317

Table 5.1 – Cost Worksheet

5.2. Raw Statistics and Normalized Statistics

Built	Route A	Route B	Route C	Route D	Route E	Route F	Route G	Route H
Feature	Unit							
Relocated Residences (within 100' Corridor)	0	0	0	0	0	0	0	0
Normalized	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Proximity to Residences (300')	16	6	3	5	15	6	4	6
Normalized	1.0	0.2	0.0	0.2	0.9	0.2	0.1	0.2
Proposed Developments	0	0	0	0	0	0	0	0
Normalized	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Proximity to Commercial Buildings (300')	0	0	0	0	0	0	0	0
Normalized	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Proximity to Industrial Buildings (300')	0	0	0	0	0	0	0	0
Normalized	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
School, DayCare, Church, Cemetery, Park Parcels (#)	0	0	0	0	1	1	1	1
Normalized	0.0	0.0	0.0	0.0	1.0	1.0	1.0	1.0
NRHP Listed/Eligible Strucs/Districts	0	0	0	0	0	0	0	0
(1500' from edge of R/W)								
Normalized	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Natural								
Natural Forests (Acres)	70.5	69.0	82.8	90.2	68.0	66.5	80.3	87.8
Normalized	0.2	0.1	0.7	1.0	0.1	0.0	0.6	0.9
Stream/River Crossings	22	22	21	25	21	21	20	24
Normalized	0.4	0.4	0.2	1.0	0.2	0.2	0.0	0.8
Wetland Areas (Acres)	5.9	6,3	5.7	11.9	3.7	4.2	3.6	9.7
Normafized	0.3	0.3	0.3	1.0	0.0	0.1	0.0	0.7
Floodplain Areas (Acres)	31.1	28.7	28.7	56.1	25.1	22.7	22.7	50.0
Normalized	0.3	0.2	0.2	1.0	0.1	0.0	0.0	0.8
Engineering								
Length (Miles)	15.5	13.8	13.2	16.8	16.5	14.8	14.1	17.7
Normalized	0.5	0.1	0.0	0.8	0.7	0.4	0.2	1.0
Percent of Rebuild with Existing T/L*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Normalized	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Inverted	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Percent of Co-location with Existing Utility*	72.3	36.2	35.6	74.4	81.8	49.3	40.4	87.6
Normalized	0.7	0.0	0.0	0.7	0.9	0,3	0.1	1.0
Inverted	0.3	1.0	1.0	0.3	0.1	0.7	0.9	0.0
Number of Parcels	75	68	57	72	84	77	66	81
Normalized	0.7	0.4	0.0	0.6	1.0	0.7	0.3	0.9
Total Project Costs	\$5,279,812	\$4,696,663	\$4,560,065	\$5,728,350	\$5,600,398	\$5,017,250	\$4,850,651	\$5,989,317
Normalized	0.5	0.1	0.0	0.8	0.7	0.3	0.2	1.0

Table 5.2a - Raw Statistics and Normalized Statistics

Figure 5.2a compares the difference between the number of parcels crossed between each alternative route.

Figure 5.2a – Number of Parcels Crossed

Figure 5.2b compares the difference between the relative cost between each alternative route.

Figure 5.2b - Relative Cost

5.3. Alternative Route Evaluation Matrix

The internal siting team that developed the alternative routes also determined a set of weights for the criteria within the Alternative Route Evaluation Matrices.

5.3.1. Emphasis on Built Environment

Built	72%	Route A	Route B	Route C	Route D	Route E	Route F	Route G	Route H
Feature		Unit							
Residences within the ROW	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Residences (300')	60.0%	1.00	0.23	0.00	0.15	0.92	0.23	0.08	0.23
Weighted	an na stérie na stérie	0.60	0.14	0.00	0.09	0.55	0.14	0.05	0.14
Proposed Residential Developments	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Commercial Buildings (300')	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Industrial Buildings (300')	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
School, DayCare, Church, Cernetery, Park Parcels (#)	40.0%	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00
Weighted		0.00	0.00	0.00	0.00	0.40	0.40	0.40	0.40
NRHP Listed/Eligible Strucs /Districts (1500' from edge of R/W)	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>, , , , , , , , , , , , , , , , , , , </u>		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100,0%	0.60	0.14	0.00	0.09	0.95	0.54	0.45	0,54
WEIGHTED TOTAL		0.43	0.10	0.00	0.07	0.69	0,39	0.32	0.39
Natural	14%								
Natural Forests (Acres)	25.0%	0.17	0.11	0.69	1.00	0.06	0.00	0.58	0.90
Weighted		0.04	0.03	0.17	0.25	0.02	0.00	0.15	0.22
Stream/River Crossings	10.0%	0.40	0.40	0.20	1.00	0.20	0.20	0.00	0.80
Weighted		0.04	0.04	0.02	0.10	0.02	0.02	0.00	0.08
Wetland Areas (Acres)	40.0%	0.28	0.33	0.25	1.00	0.01	0.07	0.00	0.73
Weighted	n an	0.11	0.13	0.10	0.40	0.00	0.03	0.00	0.29
Floodplain Areas (Acres)	25.0%	0.25	0.18	0.18	1.00	0.07	0.00	0.00	0.82
Weighted		0.06	0.04	0.04	0.25	0.02	0.00	0.00	0.20
TOTAL	100.0%	0.26	0.24	0.34	1.00	0.06	0.05	0.15	0.80
WEIGHTED TOTAL		0.04	0.03	0.05	0.14	0.01	0.01	0.02	0.11
Engineering	14%								
Percent of Rebuild with Existing T/L*	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Percent of Co-location with Existing T/L*	33.4%	0.29	0.99	1.00	0.25	0.11	0.74	0.91	0.00
Weighted	a server ta de la constantigat	0.10	0.33	0.33	0.08	0.04	0.25	0.30	0.00
Total Project Costs	66.6%	0.50	0.10	0.00	0.82	0.73	0.32	0.20	1.00
Weighted		0.34	0.06	0.00	0.54	0.48	0.21	0,14	0.67
TOTAL	100.0%	0.43	0.39	0.33	0.63	0.52	0.46	0.44	0.67
WEIGHTED TOTAL		0.06	0.06	0.05	0.09	0.07	0.06	0.06	0.09
SUM OF WEIGHTED TOTALS		0.53	0.19	0.09	0.29	0.77	0.46	0.40	0.59
RANK		6	2	1	3	8	5	4	7
* Inverted for calculations									

Table 5.3.1 - Alternative Route Evaluation Matrix with Emphasis on the Built Environment

5.3.2. Emphasis on Engineering Concerns

Bullt	14%	Route A	Route B	Route C	Route D	Route E	Route F	Route G	Route H
Feature		Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit
Residences within the ROW	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Residences (300')	60.0%	1.00	0.23	0.00	0.15	0.92	0.23	0.08	0.23
Weighted	1	0.60	0.14	0.00	0.09	0.55	0.14	0.05	0.14
Proposed Residential Developments	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Commercial Buildings (300')	0.0%	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Industrial Buildings (300')	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
School, DayCare, Church, Cernetery, Park Parcels (#)	40.0%	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00
Weighted		0.00	0.00	0.00	0.00	0.40	0.40	0.40	0.40
NRHP Listed/Eligible Strucs /Districts (1500' from edge of R/W)	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.0%	0,60	0.14	0.00	0.09	0.95	0.54	0.45	0.54
WEIGHTED TOTAL		0.08	0.02	0.00	0.01	0.13	0.08	0.06	0.08
Natural	14%				20000000		1922-192	1.10.000	
Natural Forests (Acres)	42.6%	0.17	0.11	0.69	1.00	0.06	0.00	0.58	0.90
Weighted	1	0.07	0.04	0.29	0.43	0.03	0.00	0.25	0.38
Stream/River Crossings	12.0%	0.40	0.40	0.20	1.00	0.20	0.20	0.00	0.80
Weighted		0.05	0.05	0.02	0.12	0.02	0.02	0.00	0.10
Wetland Areas (Acres)	41.9%	0.28	0.33	0.25	1.00	0.01	0.07	0.00	0.73
Weighted		0.12	0.14	0.11	0.42	0.01	0.03	0.00	0.31
Floodplain Areas (Acres)	3.5%	0.25	0.18	0.18	1.00	0.07	0.00	0.00	0.82
Weighted	Ī	0.01	0.01	0.01	0.04	0.00	0.00	0.00	0.03
TOTAL	100.0%	0.24	0.24	0.43	1.00	0.06	0.05	0.25	0.82
WEIGHTED TOTAL		0.03	0.03	0.06	0.14	0.01	0.01	0.03	0.11
Engineering	72%			qasta da			1.0550.000		
Percent of Rebuild with Existing T/L*	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Percent of Co-location with Existing T/L*	33.4%	0.29	0.99	1.00	0.25	0.11	0.74	0.91	0.00
Weighted	1	0.10	0.33	0.33	0.08	0.04	0.25	0.30	0.00
Total Project Costs	66,6%	0.50	0.10	0.00	0.82	0.73	0.32	0.20	1.00
Weighted		0.34	0.06	0.00	0.54	0.48	0.21	0.14	0.67
TOTAL	100.0%	0.43	0.39	0.33	0.63	0.52	0.46	0.44	0,67
WEIGHTED TOTAL		0.31	0.28	0.24	0.45	0.38	0.33	0.32	0.48
SUM OF WEIGHTED TOTALS	I	0.43	0.34	0.30	0.61	0.52	0.41	0.41	0.67
RANK		5	2	1	7	6	4	3	8
* Inverted for calculations									

Table 5.3.2 – Alternative Route Evaluation Matrix with Emphasis on Engineering Concerns

4

5.3.3. Emphasis on Natural Environment

Built	14%	Route A	Route B	Route C	Route D	Route E	Route F	Route G	Route H
Feature		Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit
Residences within the ROW	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Residences (300')	60.0%	1.00	0.23	0.00	0.15	0.92	0.23	0.08	0.23
Weighted		0.60	0.14	0.00	0.09	0.55	0.14	0.05	0.14
Proposed Residential Developments	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Commercial Buildings (300')	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Industrial Buildings (300')	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
School, DayCare, Church, Cemetery, Park Parcels (#)	40.0%	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00
Weighted		0.00	0.00	0.00	0.00	0.40	0.40	0.40	0.40
NRHP Listed/Eligible Strucs./Districts (1500' from edge of R/W)	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.0%	0.60	0.14	0.00	0.09	0.95	0.54	0.45	0.54
WEIGHTED TOTAL		0.08	0.02	0.00	0.01	0.13	0.08	0.06	0.08
Natural	72%			1999-339-33			National Section		
Natural Forests (Acres)	42.6%	0.17	0.11	0.69	1.00	0.06	0.00	0.58	0.90
Weighted		0.07	0.04	0.29	0.43	0.03	0.00	0.25	0.38
Stream/River Crossings	12.0%	0.40	0.40	0.20	1.00	0.20	0.20	0.00	0,80
Weighted		0.05	0.05	0.02	0.12	0.02	0.02	0.00	0.10
Wetland Areas (Acres)	41.9%	0.28	0.33	0.25	1.00	0.01	0.07	0.00	0.73
Weighted		0.12	0.14	0.11	0.42	0.01	0.03	0.00	0.31
Floodplain Areas (Acres)	3.5%	0.25	0.18	0.18	1.00	0.07	0.00	0.00	0.82
Weighted		0.01	0.01	0.01	0.04	0.00	0.00	0.00	0.03
TOTAL	100.0%	0.24	0.24	0.43	1.00	0.06	0.05	0.25	0.82
WEIGHTED TOTAL		0.18	0.17	0.31	0.72	0.04	0.04	0.18	0.59
Engineering	14%					Sali (Calesci)			
Percent of Rebuild with Existing T/L*	0.0%	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Percent of Co-location with Existing T/L*	33.4%	0.29	0.99	1.00	0.25	0.11	0.74	0.91	0.00
Weighted		0.10	0.33	0.33	0.08	0.04	0.25	0.30	0.00
Total Project Costs	66.6%	0.50	0.10	0.00	0.82	0.73	0.32	0.20	1.00
Weighted		0.34	0.06	0.00	0.54	0.48	0.21	0.14	0.67
TOTAL	100.0%	0.43	0.39	0.33	0.63	0.52	0.46	0.44	0.67
WEIGHTED TOTAL		0.06	0.06	0.05	0.09	0.07	0.06	0.06	0.09
SUM OF WEIGHTED TOTALS		0.32	0.24	0.36	0.82	0.25	0.18	0.30	0.76
RANK		5	2	6	8	3	1	4	7
* Inverted for calculations									

 Table 5.3.3 – Alternative Route Evaluation Matrix with Emphasis on the Natural Environment

5.3.4. Equal Consideration of Categories (Simple Average)

Built	33%	Route A	Route B	Route C	Route D	Route E	Route F	Route G	Route H
Feature		Unit	Unit	Unit	Unit	Unit	Unit	Unit	Unit
Residences within the ROW	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00
Proximity to Residences (300')	60.0%	1.00	0.23	0.00	0.15	0.92	0.23	0.08	0.23
Weighted		0.60	0.14	0.00	0.09	0.55	0.14	0.05	0.14
Proposed Residential Developments	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
Proximity to Commercial Buildings (300')	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Proximity to Industrial Buildings (300')	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Welahted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
School, DayCare, Church, Cemetery, Park Parcels (#)	40.0%	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00
Weighted		0.00	0.00	0.00	0.00	0.40	0.40	0.40	0.40
NRHP Listed/Eligible Strucs./Districts (1500' from edge of R/W)	0.0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	100.0%	0.60	0.14	0.00	0.09	0.95	0.54	0.45	0.54
WEIGHTED TOTAL		0.20	0.05	0.00	0.03	0,31	0,18	0.15	0.18
Natural	33%				40099333340			ASSESSED &	
Natural Forests (Acres)	42.6%	0.17	0.11	0.69	1.00	0.06	0.00	0.58	0.90
Weighted		0.07	0.04	0.29	0.43	0.03	0.00	0.25	0.38
Stream/River Crossings	12.0%	0.40	0.40	0.20	1.00	0.20	0.20	0.00	0.80
Weighted		0.05	0.05	0.02	0.12	0.02	0.02	0.00	0.10
Wetland Areas (Acres)	41.9%	0,28	0.33	0.25	1.00	0.01	0.07	0.00	0.73
Weighted		0.12	0.14	0.11	0.42	0.01	0.03	0.00	0.31
Floodplain Areas (Acres)	3.5%	0.25	0.18	0.18	1.00	0.07	0.00	0.00	0.82
Weighted		0.01	0.01	0.01	0.04	0.00	0.00	0.00	0.03
TOTAL	100.0%	0.24	0.24	0.43	1.00	0.06	0.05	0.25	0.82
WEIGHTED TOTAL		0.08	0.08	0.14	0.33	0.02	0.02	0.08	0.27
Engineering	33%								
Percent of Rebuild with Existing T/L*	0.0%	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00
Weighted		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Percent of Co-location with Existing T/L*	33.4%	0.29	0.99	1.00	0.25	0.11	0.74	0.91	0.00
Weighted		0.10	0.33	0.33	0.08	0.04	0.25	0.30	0.00
Total Project Costs	66.6%	0.50	0.10	0.00	0.82	0.73	0.32	0.20	1.00
Welghted		0.34	0.06	0.00	0.54	0.48	0.21	0.14	0.67
TOTAL	100.0%	0.43	0.39	0.33	0.63	0.52	0.46	0.44	0.67
WEIGHTED TOTAL		0.14	0.13	0.11	0.21	0.17	0.15	0.14	0.22
SUM OF WEIGHTED TOTALS		0.42	0.25	0.25	0.57	0.51	0.35	0.37	0.67
RANK		5	2	1	7	6	3	4	8
* Inverted for calculations									

Table 5.3.4 – Alternative Route Evaluation Matrix with all Perspectives considered equal

5.4. Top Routes:

After evaluating all routes within the network of alternatives, Route B and C (see Figure 5.4b) surfaced to be the most suitable. Figure 5.4a demonstrates which routes score better. Route B and Route C score visibly better in every category except for the Natural Environment Perspective.

Figure 5.4a - Comparison of Overall Scores from each Alternative Route Evaluation Matrices

Figure 5.4b – Top Routes

5.4.1. Route B:

Route B scores best in the Simple Average Selection Matrix. It scores second best in the Built Environment Emphasis Selection Matrix, Engineering Concern Emphasis Selection Matrix, and Natural Environment Emphasis Selection Matrix.

Route B most closely resembles the Natural Environment Corridor. It has the second lowest cost of all the routes, it crosses the third lowest number of parcels, and it is the second shortest route.

5.4.2. Route C:

Route C scores best in all Selection Matrices except the Natural Environment Emphasis, where it ranks sixth.

Route C most closely resembles the Built Environment Corridor. Route C is the shortest route, has the lowest cost, impacts the least parcels, and is in close proximity to the lowest number of residents.

5.5. Expert Judgment:

In the Expert Judgment Matrix (see Table 5.5), the top routes from the Route Selection Matrix are examined by the routing team. For this project the team determined that Schedule Delay Risks was the greatest concern to this project followed by Construction and Maintenance Accessibility Issues and Community Issues being equal. The lowest emphasis was placed on Visual Issues.

Both Route B and C are very similar in all of the Expert Judgment issues. Approximately 64% of their length is the same.

For Schedule Delay Risk, Route B received a 1.5 and Route C received a 1. Route C follows the same alignment as the canceled East Kentucky Power Cooperative project, Wilson - Aberdeen. Much of the field surveys, design, material purchase, and some of the easement have been acquired. Therefore, there is less work (time) required to develop this project along this same alignment. In the area where Route B and C differ, Route B takes a different path through more agricultural areas than Route C. Since much of the surveys, design, and land negotiations have been completed, Route C received a more favorable score.

Route B was given a score of 1.5 (in between a low impact and medium impact) for visual issues. The section that differs from Route C is in a more open environment and closer to a road and homes. This makes this section more visible to the community than Route C. This route also received a 1.5 in Community Issues for the same reasons. Route C received a 1 for both of these issues since this section of the route is further away from people and is in a more forested environment. Also, due to the previous study most of the land owners along Route C are already aware of a future transmission line project for Route C.

For Construction/Maintenance Accessibility Issues, Route B received a 1 and Route C received a 1.5. Since Route B is in a more open environment it will be more easily accessed and would have less clearing. However, there could be some limitations to the construction window due to cultivation activities in the agricultural areas.

EXPERT JUDGMENT	1 = Low Impact 2 = Medium Impact 3 = High Impact								
	Per Project	Route B	Route C						
Visual Issues	10%	1.5	1						
Weighted		0.15	0.1						
Community Issues	25%	1.5	1						
Weighted		0.375	0.25						
Schedule Delay Risk	40%	1.5	1						
Weighted		0.6	0.4						
Construction/ Maintenance Accessibility	25%	1	1.5						
Weighted		0.25	0.375						
TOTAL									
	100%	1.375	1.125						

Table 5.5 – Expert Judgment Matrix

6. Conclusion:

Overall, Route C (see Figure 6.1) scores the best in Expert Judgment Matrix and is therefore the preferred corridor.

Figure 6.1 – Preferred Route

,

...\OLKB\tu-1aas-1611.dxf 6/15/2007 12:04:26 PM

...\OLKB\tu-1as-161.dxf 6/15/2007 12:05:26 PM

A Constant State
Exhibit D-1

June 12, 2007

A.P. Vaught Trust J. Vince Vaught co-trustee Linda Vaught, widow co-trustee Barry Vaught co trustee 4788 State Route 85W Centertown, KY 42328

RE: Notice of Proposed Electric Transmission Line Construction Project

Dear Mr. Vaught, Ms. Vaught and Mr. Vaught:

Big Rivers Electric Corporation ("Big Rivers") proposes to construct a 13 mile 161 kilovolt ("kV") transmission line in southwestern Ohio County, Kentucky. The purpose of the proposed transmission line is to increase Big Rivers' capability to transfer electrical power into, out of, and within its system for the benefit of the customers of its three member distribution cooperatives. This transmission line is part of the transmission line construction project for which East Kentucky Power Cooperative ("East Kentucky") previously obtained a certificate of public convenience and necessity. Although East Kentucky has cancelled its project, Big Rivers still needs to construct this 13 mile segment.

This line is expected to cross your property on an easement conveyed by you to East Kentucky. This easement has been purchased by Big Rivers.

The route for the proposed line begins at Big Rivers' Wilson Power Plant located approximately 6 miles west of Centertown in western Ohio County and extends 13 miles to the southeast to an existing Big Rivers 161 kV transmission line located approximately 3 miles southeast of McHenry in southern Ohio County. The proposed transmission line will typically be constructed using single steel pole structures. A map showing the route of the proposed line is attached to this letter.

Big Rivers plans to file an application with the Kentucky Public Service Commission ("Commission"), on or about June 25, 2007, seeking a certificate of public convenience and necessity authorizing this project. The purpose of the Commission's review of Big Rivers' application is to determine whether the proposed transmission line is required by the public convenience and necessity. You have the right to move to intervene and

Mr. Vaught, Ms. Vaught and Mr. Vaught June 12, 2007 Page 2

participate in the proceeding. You also have the right to request the Commission to conduct a public hearing on that application in Ohio County.

To request to intervene in the Commission's proceeding on Big Rivers' application for a certificate of public convenience and necessity, or to request a public hearing in that case, you should contact the Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602, telephone number (502) 564-3940. The docket number under which this application will be processed is 2007-00177. If you have any questions for me, you may reach me at (270) 827-2561.

Sincerely yours,

BIG RIVERS ELECTRIC CORPORATION

Robert M. Warren Engineering Supervisor

Exhibit D-2

June 12, 2007

Rex Igleheart and Margaret Igleheart 295 Kirtley River Lane Centertown, KY 42328

RE: Notice of Proposed Electric Transmission Line Construction Project

Dear Mr. and Mrs. Igleheart:

Big Rivers Electric Corporation ("Big Rivers") proposes to construct a 13 mile 161 kilovolt ("kV") transmission line in southwestern Ohio County, Kentucky. The purpose of the proposed transmission line is to increase Big Rivers' capability to transfer electrical power into, out of, and within its system for the benefit of the customers of its three member distribution cooperatives. This transmission line is part of the transmission line construction project for which East Kentucky Power Cooperative ("East Kentucky") previously obtained a certificate of public convenience and necessity. Although East Kentucky has cancelled its project, Big Rivers still needs to construct this 13 mile segment.

This line is expected to cross your property. Terril Riley, Real Estate Agent at Big Rivers or another representative from Big Rivers will be in contact with you to discuss purchasing an easement from you across your property for the proposed electric line.

The route for the proposed line begins at Big Rivers' Wilson Power Plant located approximately 6 miles west of Centertown in western Ohio County and extends 13 miles to the southeast to an existing Big Rivers 161 kV transmission line located approximately 3 miles southeast of McHenry in southern Ohio County. The proposed transmission line will typically be constructed using single steel pole structures. A map showing the route of the proposed line is attached to this letter.

Big Rivers plans to file an application with the Kentucky Public Service Commission ("Commission"), on or about June 25, 2007, seeking a certificate of public convenience and necessity authorizing this project. The purpose of the Commission's review of Big Rivers' application is to determine whether the proposed transmission line is required by the public convenience and necessity. You have the right to move to intervene and

Rex Igleheart and Margaret Igleheart June 12, 2007 Page 2

participate in the proceeding. You also have the right to request the Commission to conduct a public hearing on that application in Ohio County.

To request to intervene in the Commission's proceeding on Big Rivers' application for a certificate of public convenience and necessity, or to request a public hearing in that case, you should contact the Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602, telephone number (502) 564-3940. The docket number under which this application will be processed is 2007-00177. If you have any questions for me, you may reach me at (270) 827-2561.

Sincerely yours,

BIG RIVERS ELECTRIC CORPORATION

Glen Thweatt Manager of Engineering and Energy Control

EXHIBIT E Easements Wilson 161 kV Line 19-F to 7-B Tap

Property Owner Name	Map Parcel	Address - Street	Address - City, State Zip	Easement Status
VAUGHT AP FAMILY TRUST	422	4788 State Route 85W	Centertown, KY 42328	S
IGLEHEART REX	417	295 Kirtley River Lane	Centertown, KY 42328	OG
IGLEHEART REXFORD F & MARGARET	413	296 Kirtley River Lane	Centertown, KY 42329	OG
IGLEHEART REX ETAL	411	297 Kirtley River Lane	Centertown, KY 42330	OG
HARREL LW ESTATE	408	312 North Vine Street	Haubstadt, IN 47639	OG
CENTRAL STATES COAL RESERVES	407	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	406	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	405	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
BEAVER DAM COAL COMPANY	404	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
WEST WALKER ONEIL	403	3914 Highway 764	Utica, KY 42376	S
WEST WALKER ONEIL	395	3915 Highway 764	Utica, KY 42377	S
Sanderfur Tyson C.	391	1449 Livermore Road	Hartford, KY 42347	S
SPINKS HAYWARD & NANCY	387	192 Windward Lane	Hartford, KY 42347	OG
CENTRAL STATES COAL RESERVES	385	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	381	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	380	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	376	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	375	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	374	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	373	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
GRIDER DENNIE LEE &	371	2515 Rockport Ceralvo Road	Centertown, KY 42328	S
WHITEHEAD EDWIN	365	1940 State Route 85E	Centertown, KY 42328	S
HOSKINS JERRY M & LINDA L	361	1783 Highway 85E	Centertown, KY 42328	S
NANCE ANN & RICK	357	1828 Highway 85E	Centertown, KY 42328	OG
GRIDER MIKEL R & CAROLYN M	356	854 State Route 85E	Centertown, KY 42328	S
NANCE ANN C & RICK E	355	1828 Highway 85E	Centertown, KY 42328	OG
CENTRAL STATES COAL RESERVES	354	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	353	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	351	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	347	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	346	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
BEAVER DAM COAL COMPANY	344	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	343	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG

Easements Wilson 161 kV Line 19-F to 7-B Tap

Property Owner Name	Map Parcel	Address - Street	Address - City, State Zip	Easement Status
JEFF STENBERG	342	7161 State Route 62W	Centertown, KY 42328	OG
CENTRAL STATES COAL RESERVES	339	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	337	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	334	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	331	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
CENTRAL STATES COAL RESERVES	330	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
DANIEL, NANCY K	329	5252 U. S. Highway 62W	Beaver Dam, KY 42320	S
DANIEL, NANCY K	316	5253 U. S. Highway 62W	Beaver Dam, KY 42321	S
CENTRAL STATES COAL RESERVES	314	7100 Eagle Crest Boulevard, Suite 200	Evansville, IN 47715-8152	OG
BLACK AG, LLC	306	701 Sharon Depoy Road	Greenville, KY 42345	OG
NBH, Lot 7	305c	5252 U. S. Highway 62W	Beaver Dam, KY 42320	S
NBH, Lot 6	305b	5253 U. S. Highway 62W	Beaver Dam, KY 42321	S
NBH, Lot 5	305a	5254 U. S. Highway 62W	Beaver Dam, KY 42322	S
STONE BRANDON	289a	789 Render Road	Beaver Dam, KY 42320	S
BAIZE RICK	289	1849 Highway 1245	Beaver Dam, KY 42320	S
N. B. H. INC	287	9824 Christi Ridge Way	Knoxville, TN 37931	S
TEMPLETON LAND, LLC	283	3948 Templeton	Lake Wales, FL 33898	OG
SCHROADER LILBURN	281	591 Happy Hollow Road	Beaver Dam, KY 42320	OG
SCHROADER LEONARD D & BETTY	278	119 W. 8th Street	Beaver Dam, KY 42320	S
TEMPLETON LAND, LLC	276	3948 Templeton	Lake Wales, FL 33898	OG
SAILING GILBERT & FLORA	275	1708 State Route 1245	Beaver Dam, KY 42320	S
SAILING GILBERT & FLORA	274	1708 State Route 1245	Beaver Dam, KY 42320	S
TEMPLETON LAND, LLC	272	3948 Templeton	Lake Wales, FL 33898	OG
TEMPLETON LAND, LLC	269	3948 Templeton	Lake Wales, FL 33898	OG
TEMPLETON LAND, LLC	268	3948 Templeton	Lake Wales, FL 33898	OG
BURDEN JOHN A	267	3743 Boulder Lane	Owensboro, KY 42303	OG

,

EXHIBIT F-1

June 11, 2007

Notice of Proposed Electric Transmission Line Construction Project

Big Rivers Electric Corporation, a Western Kentucky electric generation and transmission cooperative ("Big Rivers") proposes to construct a 13 mile 161 kilovolt ("kV") transmission line in southwestern Ohio County, Kentucky. The purpose of the proposed transmission line is to increase Big Rivers' capability to transfer electrical power into, out of, and within its system for the benefit of the customers of its three member distribution cooperatives.

The route for the proposed line begins at Big Rivers' Wilson Power Plant located approximately 6 miles west of Centertown in western Ohio County and extends 13 miles to the southeast to an existing Big Rivers 161 kV transmission line located approximately 3 miles southeast of McHenry in southern Ohio County (see Proposed Line Route map below). This transmission line will be part of a transmission line construction project for which East Kentucky Power Cooperative ("East Kentucky") previously obtained a certificate of public convenience and necessity. Although East Kentucky has cancelled its project, Big Rivers still needs to construct this 13 mile segment. The transmission line will typically be constructed using single steel pole structures. Big Rivers either has or will send a letter to each property owner (according to Property Valuation Administrator records) over whose property the transmission line is expected to cross.

Big Rivers plans to file an application with the Kentucky Public Service Commission ("Commission"), on or about June 25, 2007, seeking a certificate of public convenience and necessity authorizing this project. The purpose of the Commission's review of Big Rivers' application is to determine whether the proposed transmission line is required by the public convenience and necessity. Interested persons have the right to move to intervene and participate in the proceeding. They also have the right to request the Commission to conduct a public hearing on that application in Ohio County.

Interested parties may request to intervene in the Commission's proceeding on Big Rivers' application for a certificate of public convenience and necessity, or may request a public hearing in that case by contacting the Clarence Damon Akridge May 23, 2007 Page 2 Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602, telephone number (502) 564-3940. The docket number under which this application will be processed is 2007-00177. You may also direct questions to Big Rivers by contacting Glen Thweatt, Big Rivers Manager of Engineering & Energy Control, at (270) 827-2561.

[INSERT MAP]

